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Scope 

    

 

Scope  
 

Chapter 1 represents the introduction and is composed of three major parts. 

Part 1 is an introduction into general aspects of energetic materials.  It covers 

important definitions of energetic materials as well as frequently used test 

methods used to assess their properties.  Part 2 is an introduction into the 

chemistry related to the trinitromethyl group and describes important features 

related to this group. Part 3 of the introduction contains the conceptual 

formulation and objectives of this thesis and covers safety regulations 

mandatory for laboratory work. 

Chapter 2 contains the results obtained during this dissertation together with 

their discussion. It is comprised of two parts: ionic energetic compounds and 

energetic molecules. The ionic compounds contain anions of trinitromethane or 

3,5-diamino-2,4,6-trinitrophenol as well as some simple acids. The second part 

of Chapter 2 contains energetic molecules and is comprised of compounds 

carrying the trinitroethyl moiety followed by a chapter about valuable 

precursor molecules for the synthesis of novel energetic materials. The final 

part of Chapter 2 contains a selection of simple molecules containing 

pseudohalide functionalities. The chapter about mercury fulminate represents 

in large parts the original publication with a shared authorship.  

A summary of important results obtained within the scope of this thesis is 

provided in Chapter 3.   

Additional data include abbreviations, general safety regulations, a summary of 

standard operating procedures, frequency analyses, single crystal X-ray data, 

constitute the appendix to this thesis denoted as Chapter 4. 
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Chapter 1 

 

Introduction  
 

The development and testing of energetic materials is an exciting and 

challenging area of chemistry both as far as fundamental and applied aspects 

are concerned. Though the development of this kind of materials, which 

include high explosives, propellants, and pyrotechnics has a long standing 

tradition in the chemical sciences, research and efforts are undertaken world-

wide as never before, foremost driven by the prospect of outstanding materials 

properties in general, and in order to discover new representatives having 

significant advantages over compounds currently used. Environmental 

considerations and safety requirements are important driving factors next to 

higher performance and tailored properties for special applications. Due to 

their unique properties, these materials are useful for manifold and highly 

diverse applications ranging from military to civilian areas in many industries 

including but not limited to construction, mining, oil exploration as well as 

space exploration. Solid high explosives produce a velocity of detonation of up 

to three times the velocity of sound in the explosive (9000 m s-1), a high 

liberated energy density of about 6 megajoules per kilogram (MJ kg-1) and an 

initial material density of about 2000 kilograms per cubic meter (kg m-3). The 

product of these quantities corresponds to a power density of 1 x 1010 W cm-2. 

By comparison, a detonating explosive having a surface of 100 cm2 operates at 

a power level of 1.000.000 MW which is equal to the total average electric 

generating capacity of the United States in the year 2007. (1) This very rapid 

rate of energy liberation is what makes explosives unique. (2) Obtaining such 

materials is complex owing to the fact that several different and mutually 

exclusive appearing material properties have to be met to find the molecule 

fulfilling all the qualification criteria in order to become widely accepted.  The 

development of energetic materials is a whole world of trade-offs between 

energy content of a molecule and other desirable properties like higher 

performance, insensitivity against accidental initiation, thermal stability as well 

as a non-toxic and non-polluting behaviour when exposed to the environment 
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next to other additional properties. The traditional procedure for formulating 

new materials has been largely guided by intuition, experience and testing, 

relying foremost on trial and error. In turn, a better understanding of the basic 

principles is highly desirable to yield a more rational design process. However, 

exploiting these possibilities requires an understanding of the properties of the 

individual molecules, their interaction amongst each other as well as to 

surrounding matter next to an understanding of kinetic energy release and 

dynamics of initiation and decomposition processes. This bottom-up approach to 

energetic materials would allow for a more fundamental understanding of the 

evolution of properties with the size of the system as well as an understanding 

of the effects of the interaction of matter at different molecular-length scale 

with external stimuli and finally a detailed understanding of the functionalities 

of matter at molecular-length scale. The information obtained could provide 

breakthroughs not only in the area of energetic materials but additionally also 

in all areas of material science and chemistry in general both as far as 

fundamental and applied aspects are concerned. Energetic materials, due to 

their very nature, can offer a variety of unique insights into structure and 

matter. For example, detonations of high explosives produce thousands of 

Kelvins and a few hundred thousand atmospheres thus providing a unique 

means of elucidating the exotic chemical reactivity of matter under extreme 

conditions - similar to the conditions in the interiors of giant planets. In this 

context it has recently been reported that water formed during the detonation 

of the high explosive pentaerythritol tetranitrate (PETN) displays catalytic 

behaviour challenging the traditional view of water in high-explosives 

chemistry where water was considered to be one of the stable detonation 

products next to carbon dioxide and dinitrogen. These novel findings suggest 

that water may catalyse reactions in other explosives and in planetary 

interiours. (3) At the same time, the extreme conditions inside a detonating 

explosive have made it extremely difficult to perform measurements and 

consequently the detailed chemical reactions that cause a detonation are largely 

not understood. (4) Empirical observations are important to gain a better 

understanding of the final chemical composition after detonation and the 

corresponding reaction mechanisms are still not known for many explosives 

rendering this science to be very young and advances to be likely with the 
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advent of novel techniques allowing to acquire experimental information 

previously not available. (5)  

As mentioned above, it is important to discover new representatives having 

significant advantages over compounds currently used not only for military but 

also for civilian purpose. As far as the military is concerned, U.S. Defense 

Secretary Robert M. Gates recently announced to spend less money on 

traditional weapon systems for conventional warfare against large nations like 

China and Russia and shift more money to counterterrorism in Iraq and 

Afghanistan representing the first broad rethinking of American military 

strategy under the Obama administration. (6) Under this program a 

combination of evolutionary and novel technologies are under development to 

facilitate intelligence and surveillance using unmanned vehicles like the 

Predator or Reaper drones currently used in Pakistan, Afghanistan and Iraq. 

Today these systems rely on munitions made up of yesterday’s explosives and 

propellants. In contrast, novel energetic materials with increased performance, 

tailored energy release and insensitivity to unintended initiation would 

significantly improve existing systems and additionally enable new technology. 

 

As well as performance properties, the desired criteria for a new material in 

order to become widely accepted are insensitivity towards destructive stimuli 

such as electrostatic discharge, heat, friction, and impact to ensure safe 

handling procedures and enhance controllability of kinetic energy release and 

further low water solubility and hydrolytic stability for environmental reasons, 

as well as longevity- and compatibility questions and other criteria addressing 

high-priority ecological toxicity requirements.  
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New high explosives – energetic materials with very high energy density - 

developed at our laboratories should display the following properties: 

 
Table 1.1. Goals for the preparation of new High Energy Density Materials (HEDM): 

parameter desired property value 

performance velocity of detonation > 8500 m s-1 
 Koenen test (steel shell) > 8 mm 
thermal stability  > 200°C 
sensitivity impact > 7J 
 friction > 120N 
water solubility low (no) solubility  
water stability hydrolytically stable  
longevity  > 15 years 
compatibility chemically stable against:  
 binders: GAP / HTPB  
 plasticizer: nitro ester / NQ  
number of components oxidizer and fuel  one 
combustion smokeless  
toxicity low (no)  
environmental concerns low (no)  
yield high  
reaction medium / solvent water  
price low  

Notes. GAP = glycidyl azide polymer; HTPB = hydroxyl terminated polybutadiene; NQ = 
nitroguanidine. 
 
In this context, the scope of this thesis was defined by two major issues:  

 

1.  Gaining a deeper understanding of the basic principles of structure and 

matter as key to a more rational design process and the directed 

synthesis of novel compounds with tailored properties.  

 

2.  Development of a molecule with potential to replace RDX (Research 

Department Explosive, 1,3,5-trinitro-1,3,5-triazine), which currently 

serves as the most important military explosive produced on a large scale 

today. 
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The primary objective of this thesis was to develop a new energetic compound 

with potential to replace the most important high explosive currently used in 

the United States and world-wide. RDX can chemically be classified as a 

nitramine. Nitramines generally are highly energetic compounds having found 

wide acceptance as explosives or rocket propellants. The most common 

nitramines in use today are RDX  and  HMX (Fig. 1.1). 

 

 
Figure 1.1. Molecular structures of RDX (1,3,5-trinitro-1,3,5-triaza-cyclohexane) and HMX 
(1,3,5,7-tetranitro-1,3,5,7-tetraaza-cyclooctane). 
 
The acceptance of RDX and HMX is generally attributed to the high energetic 

performance and the high energy density possessed by these compounds. In 

essence, RDX and HMX are the standards of energetic performance and 

energy density by which other energetic compounds are measured. RDX was 

first prepared by Henning in 1899 intended for medicinal use, its explosive 

properties have been realized in 1920 by Herz. (7) As with most explosives, 

RDX can be used alone or as a component in explosive compositions like C-4 

(when mixed with plasticizers) or Semtex (a combination of RDX and PETN, 

pentaerythritol tetranitrate), or as a base charge in detonators and high 

explosives. A drawback to RDX and HMX is that these nitramine compounds 

are relatively sensitive to shock, friction, and impact. The high sensitivities 

associated with RDX and HMX make these nitramine compounds less 

desirable for some applications, especially in an environment where external 

stimuli on RDX or HMX can lead to catastrophic damage with destruction of 

surrounding objects and loss of human life. Processing of neat RDX or HMX 

can be difficult due to their high melting points rendering melt casting to be 

dangerous.  
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A breakthrough in energetic materials research was the development of CL-20 

(2,4,6,8,10,12-hexanitrohexaazaisowurtzitane, HNIW), a caged polynitramine 

compound that is 20 percent more powerful than HMX. It was first 

synthesised by A. Nielson in 1987 using a novel chemical reaction to construct 

the CL-20 cage in a single step thereby establishing a new type of amine 

glyoxal chemistry. While there have been several other new ingredients over 

the years, none of them have been successfully scaled up to mass production 

levels. 

 
Figure 1.2. Molecular Structure of CL-20. 

 
In contrast, CL-20 has been called the most significant energetic ingredient in 

energetic materials research since the discovery of RDX and HMX because it 

has made the jump from laboratory scale synthesis to scale up and finally to 

mass production levels. Its major limitations are due to the rather high costs of 

its production involving expensive reagents like nitronium tetrafluoroborate or 

a palladium catalyst. In the best case the potential of CL-20 stimulates 

increased demand leading to improved production processes. Availability will 

go up and cost will go down. Next to above mentioned criteria that may 

prevent the widespread use or even the development of an energetic material, 

both explosive and environmental safety issues are of major impact. Regarding 

the safety of the material, recent and growing interest in less sensitive 

energetic materials can be seen to be a consequence of national and 

international insensitive munitions policies (8) as well as additions to UN 

transport regulations. (9) According to BAM (Bundesanstalt für 

Materialprüfung), a compound can be classified as being insensitive, less 

sensitive, sensitive, very sensitive or extremely sensitive. According to their 

friction and impact sensitivity data, RDX and HMX are sensitive whereas CL-

20 has been found to be very sensitive. 
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At our laboratories we aim to develop energetic materials that will enable the 

design of novel insensitive high-energy propellants and explosives with 

tailored energy release. Our approach to these materials is based on compounds 

that combine both high oxygen and nitrogen contents allowing not only to 

obtain superior performance characteristics but additionally compounds that 

are more environmentally benign and less toxic - during storage or use and 

also during their preparation. High nitrogen compounds are highly desirable 

due to their high heats of formation and the formation of environmentally 

friendly and toxicologically harmless dinitrogen. Nitrogen is unique amongst 

all other elements of the periodic table in so far that the bond energy per two-

electron bond increases from a single over a double to a triple bond resulting in 

dinitrogen being more stable than any other polynitrogen species. (10) 

Compounds that preferentially contain only nitrogen can be very useful in 

propellants, but their use as high explosives is limited. The heat of formation of 

dinitrogen equals zero and consequently the products formed on decomposition 

of high nitrogen compounds display less negative values of their heats of 

formation resulting in lower heats of detonation (see page 30) and less 

thermochemical energy produced during detonation and usable for the work to 

be done by the explosive. To overcome this drawback but at the same time 

benefit from the advantages of high nitrogen compounds we are trying to 

develop new energetic materials preferentially containing both high nitrogen 

and oxygen content. These compounds release energy not only due to the high 

heats of formation of high nitrogen compounds but additionally through the 

release of energy produced from the oxidation-products formed during 

detonation. Within the scope of this thesis we were interested in developing 

oxygen rich energetic derivatives of high nitrogen compounds. 

Traditional representatives of high oxygen explosives (HOX) have been 

reported in public literature as research reports initiated by the Office of Naval 

Research (ONR) became declassified in the early seventies of the twentieth 

century; however, relevant data were published mainly in the patent literature, 

often without giving information about synthetic procedures or specifying the 

physicochemical characteristics of the compounds obtained. (11) Some of the 

most promising materials initially considered were polynitroaliphatic 

compounds containing the dinitromethyl, fluorodinitromethyl and 
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trinitromethyl groups. (12) Among them, the trinitromethyl compounds were 

found to have the most favourable heats of detonation and oxygen balance 

values. However, thermal stability was reported to be generally limited to 

150°C when solid and 100°C when molten reversing further investigation into 

trinitromethyl substituted compounds. (13) We have now investigated both 

compounds mentioned in the literature and we have developed and tested novel 

compounds carrying the trinitromethyl functionality in order to explore its 

potential for the design of next generation energetic materials trying to 

enhance the thermal stability of this class of compounds and finding the 

molecule offering the best trade-off between energy capability and thermal 

stability.
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1.1 General Characteristics of Energetic Materials 
 

1.1.1 Types of Energetic Materials 

 

Energetic materials are chemical compounds, or mixtures of chemical 

compounds, that are divided into three classes according to use:  

 

• Explosives 

• Propellants 

• Pyrotechnics 

 

Explosives and propellants that have been properly initiated evolve large 

volumes of hot gas in a short time. The difference between explosives and 

propellants is the rate at which the reaction proceeds. In explosives, a fast 

reaction produces a very high pressure shock in the surrounding medium. This 

shock is capable of shattering objects. In propellants, a slower reaction 

produces lower pressure over a longer period of time. This lower, sustained 

pressure is used to propel objects. Pyrotechnics evolve large amounts of heat 

but much less gas than propellants or explosives. The exothermic chemical 

reactions occurring in pyrotechnics are generally speaking non-explosive, 

relatively slow, self-sustaining, and self-contained. 

 

1.1.2 Classification of Energetic Materials  

 

There is considerable variation among the properties of the compounds that 

constitute each of the three major classifications of energetic materials, 

explosives, propellants and pyrotechnics. Generally, they can be divided into 

composites and monomolecular energetic materials. Composites like black 

powder are obtained on physically mixing solid oxidizers and fuels whereas in 

monomolecular energetic materials like TNT (2,4,6-trinitrotoluene), each 

molecule contains an oxidizing component and a fuel component. 
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Explosives. An explosive is defined as a material that can be initiated to 

undergo very rapid, self-propagating decomposition that results in the 

formation of more stable material, the liberation of heat, or the development of 

a sudden pressure effect through the action of heat on produced or adjacent 

gases. A chemical explosive is a compound or a mixture of compounds which, 

when subjected to heat, impact, friction, or shock, undergoes very rapid, self-

propagating, heat- producing decomposition. This decomposition produces 

gases that exert tremendous pressures as they expand at the high temperature 

of the reaction. The work done by an explosive depends primarily on the 

amount of heat given off during the explosion. The term detonation indicates 

that the reaction is moving through the explosive faster than the speed of 

sound in the unreacted explosive; whereas, deflagration indicates a slower 

reaction (rapid burning). Denser explosives usually give higher detonation 

velocities and pressures.  

A high explosive will detonate; a low explosive will deflagrate. Low-order 

explosives (LE) create a subsonic explosion and lack the over-pressurization 

wave generated by high explosives. Low-order explosives with lower density 

like ANFO (Ammonium Nitrate Fuel Oil) will suffice in easily fragmented or 

closely jointed rocks and are preferred for quarrying coarse material for mining 

and construction purpose. A High Explosive (HE) is a compound or mixture 

which, when initiated, is capable of sustaining a detonation shockwave to 

produce a powerful blast effect. A detonation is the powerful explosive effect 

caused by the propagation of a high-speed shockwave through a high explosive 

compound or mixture. During the process of detonation, the high explosive is 

largely decomposed into hot, rapidly expanding gas. These high density 

explosives may be desirable for difficult blasting conditions or where fine 

fragmentation is required. Ingredients of high explosives are classified as 

explosive bases, combustibles, oxygen carriers, antacids, and absorbents. Some 

ingredients perform more than one function. An explosive base is a solid or 

liquid which, upon the application of sufficient heat or shock, decomposes to 

gases with an accompanying release of considerable heat. A combustible 

combines with excess oxygen to reduce the formation of nitrogen oxides. An 

oxygen carrier assures complete oxidation of the carbon to reduce the 

formation of carbon monoxide. The formation of nitrogen oxides or carbon 
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monoxide, in addition to being undesirable from the standpoint of fumes, 

results in lower heat of explosion and efficiency than when carbon dioxide and 

nitrogen are formed. Antacids increase stability in storage, and absorbents 

absorb liquid explosive bases.  

Explosives are classified as primary or secondary based on their susceptibility 

to initiation. Primary explosives, which include lead azide and lead styphnate, 

are highly susceptible to initiation. Primary explosives often are referred to as 

initiating explosives because they can be used to ignite secondary explosives. 

Secondary explosives include nitroaromatics and nitramines and are 

formulated to detonate only under specific circumstances. Secondary explosives 

often are used as main charge. Secondary explosives can be loosely categorized 

into melt-castable explosives, which are based on nitroaromatics such as TNT, 

and plastic-bonded explosives which are based on a binder and crystalline 

explosive such as RDX.  
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Propellants can be divided into four classes:  

 

(I)  composites (II) single-base (III) double-base (IV) triple-base 

 

Propellants include both rocket and gun propellants. The choice of a propellant 

for a specific use is determined by ballistic and physical requirements rather 

than on the basis of composition. A given propellant composition may be 

suitable for use in several applications. 

 

(I) Most rocket propellants are composites. They generally consist of a physical 

mixture of a fuel such as metallic aluminum, a binder which is normally an 

organic polymer (generally a synthetic rubber which is also a fuel), and an 

inorganic oxidizing agent such as ammonium perchlorate. These are 

heterogeneous physical structures.  

 

(II) One group of gun propellants are called single-base and principally consist 

of nitrocellulose.  

 

(III) Double-base propellants usually consist of nitrocellulose and 

nitroglycerine. In general, double-base propellants contain nitrocellulose and a 

liquid organic nitrate which will gelatinize nitrocellulose. 

 

(IV) The term triple-base applies to propellants containing three explosive 

ingredients, usually with nitroguanidine as the major ingredient. The other 

two explosive ingredients frequently used are nitroglycerine and nitro-

cellulose. As in the double-base propellant, other gelatinizers may be 

substituted for the nitroglycerine. The nitroguanidine in the formulation 

produces a lower flame temperature and a greater amount of gaseous 

combustion products. The lower flame temperature considerably reduces 

erosion of gun barrels and the greater amounts of gas produce a greater force 

on the projectile.  
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Pyrotechnics include illuminating flares, signalling flares, colored and white 

smoke generators, tracers, incendiary delays, fuses, and photo-flash 

compounds. Pyrotechnics usually are composed of an inorganic oxidizer and 

metal powder in a binder. Illuminating flares contain sodium nitrate, 

magnesium, and a binder. Signaling flares contain barium, strontium, or other 

metal nitrates. Flares burn to produce intense light that is used for 

illumination. Signals produce colored flames that can exemplarily be used for 

recognition purpose during emergencies. Colored smoke is used for signalling 

while white smoke is used for screening. Tracers and fumers are small, smoke 

producing charges that are placed in projectiles. During the flight of the 

projectile, the charge burns. In a tracer, the smoke is used to track the flight of 

the projectile. A fumer produces smoke at the proper rate to fill the partial 

vacuum that movement through the air creates behind the projectile. This cuts 

drag and increases range. Incendiaries produce large amounts of heat that 

cause fires. A delay is an element that consists of an initiator, a delay column, 

and an output charge or relay in a specially designed inert housing. The delay 

column burns for a predetermined amount of time. Delays are used to provide 

an interval between initiation and functioning of a device. A fuse is a cord of 

combustible material commonly used in demolition. Photoflash powders are 

loose mixtures of oxidizers with metallic fuels. When ignited, these mixtures 

burn with explosive violence in a very short time. Igniters and initiators are 

used to ignite propellant charges and initiate detonation in explosive charges. 

 

1.1.3  Properties of Energetic Materials 

 

Chemical properties of individual energetic materials are discussed in the 

appropriate chapters of this thesis. The basic definitions and properties 

discussed for these materials include the following: 

 

Brisance. Brisance is the shattering capability of an explosive. Several tests are 

commonly used to determine brisance. In the sand test 0.400 grams of the 

explosive are placed in 200 grams of sand and detonated. The amount of sand 

crushed by the explosive is a measure of brisance. The plate dent test, in which 

a sample of the explosive is detonated in close proximity to a metal plate, is 
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also used to measure brisance. The size of the dent is proportional to the 

brisance. Another method of measurement involves detonating a sample of 

explosive on top of a cylinder made of copper and measuring the contraction in 

length of the cylinder. The number, size distribution, and velocity of fragments 

produced by an explosive in a projectile is also related to the brisance of the 

explosive. With a limited number of exceptions, increased detonation velocity 

increases brisance. 

 

Burning. The process of exothermic redox reactions taking place in energetic 

materials without introduction of atmospheric oxygen is preferably denoted as 

burning. The reaction is self-sustaining after an initial activating energy has 

been applied. Many explosives are capable of burning without detonation, if 

unconfined.  

 

Burning Rate. The burning rate is defined as the rate at which the burning 

surface consumes a compound grain in a direction normal to the grain surface. 

The velocity of the linear burning reaction is dependent on heat production 

and heat transfer to reach ignition temperature within the material. The rate of 

heat transfer by conduction, convection and radiation depends on the pressure 

of the combustion products. These phenomena are described in the Vieille 

equation (Fig. 1.3), where A is a constant and n is the burning rate index.  

 

r = 
dt
dx = Apn 

Figure 1.3.  Vieille equation for linear burning rate. r: linear burning rate; A: calibration 
factor; p: pressure; n: burning rate index. 
 
The value of the constant A depends on the pressure units used and the 

burning rate index n, which is an experimentally determined parameter 

typically varying between 0.3 and 1.0 for a certain explosive. (14)  
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The equation shown in Figure 1.4 allows the mass of explosive consumed per 

unit time to be calculated provided that the burning surface area and the 

density are known. The surface area of fine powders becomes very large and 

due to the enhanced convective heat transfer mechanism, the risk of a change 

from a burning reaction turning into a deflagration or detonation reaction is 

enhanced. (15) 

dt
dm = S(t) ρ r 

Figure 1.4. Mass consumption of a burning reaction. m: mass; t: time; S: surface; ρ: density; 
r: linear burning rate. 
 
 

Chapman-Jouget Theory. The Chapman-Jouget (CJ) theory is a fluid 

dynamical model of detonations and is used to calculate performance 

characteristics of an explosive expressed by the four parameters velocity of 

propagation (D), pressure (p), density (ρ) and particle velocity (u) behind the 

wave front. The performance of a chemical explosive or its usable energy is 

determined by the expansion of product gases arising from the chemical 

reactions taking place during detonation. The variation of pressure depends on 

the particle velocity of the product gases during adiabatic or free expansion and 

in order to describe this behaviour and calculate performance, the state (that is 

the pressure and particle velocity) of the materials at the end of the reaction 

zone and their equation of state (describing the pressure variation with the 

particle velocity during adiabatic or free expansion) have to be known. The CJ 

theory relates the detonation wave velocity to the properties of the gases 

behind the detonation wave front. It is assumed that all chemical energy is 

released at the detonation front and the reaction zone has no thickness. This 

approximation allows the detonation wave to be considered as a self-sustained 

supersonic wave travelling through the explosive at constant velocity. 

Generally, shock waves in inert materials can be described on the basis of  

three equations of conservation of energy, momentum and mass across the 

shock front. These equations are also called jump conditions. They allow the 

determination of the shock velocity (U) in terms of the pressure (p), density (ρ) 

and particle velocity (u) variables. Though these jump conditions do apply in 

the CJ theory as well, an additional condition is needed to determine the 
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detonation wave velocity (D) because energy is released at the front of the 

detonation wave making it self-propagating. 

 
Figure 1.5. Initiation and Propagation of a Detonation Wave according to the model of 
Zel’dovic, Neuman and Döring (ZND). (a) A schematic 1-D (planar) experiment is shown at 
different times. In the experiment, the impact of a plate thrown on one face of a cube of 
explosive (t = t0) produces a planar shock wave (t = t1) that gradually accelerates (t = t2) to a 
steady-state detonation (t = t3) as the shock wave sweeps through the explosive and causes 
chemical energy to be released to the flow at a finite rate. (b) The corresponding pressure-
vs-distance snapshots show the evolution of an essentially inert shock wave at t = t1 

growing into a classical 1-D ZND detonation structure at t = t3, namely, a shock, or 
pressure, discontinuity at the ZND point followed by decreasing pressure through the 
reaction zone, ending at the CJ point, the pressure predicted by the CJ model (see text). (c) 
Pressure-vs-time plots for material particles originally at the shock front locations in (b) 
show the particle pressure (or velocity) histories. Only at the location of the right-most 
particle has a ZND detonation fully formed. (2) (Credit: Courtesy of Dr. J.B. Bdzil, LANL) 
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Combustion. Combustion of energetic materials designates any exothermic 

oxidation reaction, including, but not limited to those produced by introduction 

of atmospheric oxygen (see burning).  

 

Deflagration. Deflagration (lat. de + flagrare = to burn) of propellants 

proceeds the same as normal burning and designates the process of very rapid 

burning without introduction of atmospheric oxygen but propagating at a 

velocity less than the speed of sound in that material. Due to the rate 

determining factors in the reaction being the rate of heat transfer into the 

propellant grain from the burning surface and the rate of decomposition of the 

propellant formulation, deflagration can result from having a fuel and oxidant 

in very close contact. 

 

Deflagration to Detonation Transition. Deflagration can be considered to be 

an intermediate process between burning and detonation. As mentioned above 

(see Burning Rate), a large surface area of an energetic material can result into 

deflagration and the same is true for confined materials due to the burning 

reaction and the deflagration reaction being based on heat transfer. The 

velocity of the reaction is rising until it reaches the magnitude of the material’s 

sound speed generating first shockwaves passing the material. A further 

acceleration to supersonic velocities yielding a detonation reaction depends on 

the type of material, its surface area and its confinement. (15) Hence, a burning 

reaction can be accelerated to a deflagration and by corresponding interference 

of shock waves further to a detonation reaction. The latter process is called 

deflagration-to-detonation transition (DDT). The detonation reaction is 

triggered by a shock wave. It occurs if enough of the explosive compound is 

compressed such that a chemical reaction can occur before it physically 

fragments and a shock wave is formed inside the sample.  A shock wave 

moving at supersonic speed proceeds through the explosive causing further 

decomposition of the explosive material. Detonation designates the supersonic 

propagation of chemical reactions through an explosive. It can be rationalized 

as a shock wave moving through an explosive accompanied by chemical 

reactions. The shock compresses the material thus increasing its temperature 

to the point of ignition. The energy release of the chemical reactions taking 



Chapter 1.1 – General Characteristics of Energetic Materials 

- 29 - 

place in the ignited material behind the shock front support the shock 

propagation. This self-sustained detonation wave is different from a 

deflagration, which propagates at a subsonic speed and without a shock or any 

significant pressure change. If there is no shock wave, the reaction is called a 

deflagration. The major difference in the two reactions is the velocity of 

propagation of the reaction front. The shock wave has a velocity of the order of 

km s-1 instead of cm s-1 in the case of a deflagration.  In the case of a detonation, 

the reaction rate is determined by the velocity of the shock wave, not by the 

rate of heat transfer.  

 

Explosion. An Explosion (lat. explodere = to shatter) is a sudden expansion of 

matter accompanied by an increase of its volume. (16) Explosions may both be 

caused by explosive chemical or nuclear reactions and physical processes. 

Accordingly, the term explosion includes effects that follow rapid burning, 

detonation, as well as physical processes like the bursting of a vessel filled with 

compressed gas. The resulting effect of an explosion is a sudden expansion of 

gases or vapor, whether they were present before, or originated during the 

explosion process. A chemical explosion is accompanied by the formation of 

large amounts of gaseous decomposition products and liberation of heat during 

a very short time. The gaseous products (usually several hundred liters during 

microseconds) are heated to several thousands of degrees centigrade and can 

not expand instantaneously resulting in a sudden pressure rise ranging to 

several hundred of kbar during detonation reactions. Subsequently they expand 

and exert strong impact effects and shock waves to the surroundings.  

 

Gap Test. In contrast to sensitivity towards impact, sensitivity of an explosive 

to shock is a very reproducible quantity. Shocks generated by a donor 

explosive can cause detonation in another explosive material. The strength of 

the shock wave required is a relative measure of the sensitivity of the material 

under test. In practice, a strong shock is produced and attenuated in an inert 

medium. The width of the medium that will allow detonation in 50 percent of 

the trials is reported as the test result. These tests are called gap tests. Gap test 

results are much more reliable data than impact test results, although there is 



Chapter 1.1 – General Characteristics of Energetic Materials 

- 30 - 

some dependence on the geometry of the test apparatus. Gap test have not been 

performed within the scope of this thesis. 

 

Heat of Combustion. The heat of combustion is the amount of heat produced 

when a material is burned. This differs from the heat of detonation because the 

products formed are different. Generally, the products formed in combustion 

are at a lower energy level than the products formed during detonation. For 

example, carbon monoxide and carbon dioxide may be products of both 

detonation and combustion for a particular explosive. However, the detonation 

process might produce more carbon monoxide, while combustion might 

produce more carbon dioxide. Heat of combustion is usually measured for a 

new explosive for the determination of the heat of formation. 

 

Heat of Detonation. The heat of detonation is considered to be the 

thermochemical energy produced during detonation and usable for the work to 

be done by the explosive. According to first principles – energy conservation – 

considerations, this quantity would seem to be a primary parameter of an 

explosive, upon which performance depends. Indeed it has been suggested (17) 

that some other detonation condition or parameter is as important as CJ 

pressure for the performance of explosives. Two explosives may serve as an 

example: TATB and NQ. In spite of their reasonably high calculated CJ 

pressure and measurements of detonation velocity and pressure they produce 

rather low performance. Kamlet (18) wondered whether, for some reason, 

insensitive explosives were not reaching the infinite-medium steady-state condition. He 

also suggested that the trouble with NQ (poor performance) was the low Q (heat of 

detonation), and that no formulation very rich in NQ or other low-Q explosives would 

have high performance. Two quantities are usually given for the heat of 

detonation, one with liquid water in the reaction products and one with 

gaseous water in the reaction products. The test used to determine these 

quantities uses a standard calorimeter. When the water is allowed to condense 

to liquid, the total heat produced by the detonation reaction is measured. The 

heat of detonation with gaseous water more accurately reflects the process of 

detonation in a non-laboratory setting. However, the results are less 

reproducible. 
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Heat of Fusion. The heat of fusion is the amount of heat necessary to 

transform (melt or fuse) a unit of solid into a liquid at the same temperature 

and standard pressure. This quantity is usually expressed in terms of calories 

per gram.  

 

Heat of Sublimation. The heat of sublimation is the amount of heat necessary 

to convert a weight of solid directly into vapor in a constant temperature 

process. This quantity is usually expressed in calories per gram. 

 

Heat of Vaporization. The heat of vaporization is the amount of heat 

necessary to convert a unit of liquid to vapor at the same temperature. This 

quantity is usually expressed in terms of calories per gram. 

 

Oxygen Balance. The oxygen balance (OB) of the explosive is closely related 

to the power. The oxygen balance is the ratio of oxygen contained in the 

explosive material to the amount of oxygen required for complete oxidation of 

the explosive material. Explosive compositions with better oxygen balances are 

more powerful. 

OB = (O – 2C – 0.5H) · 
M

1600  

Figure 1.6. OB: Oxygen balance [%] for a compound composed of the elements C/H/N/O 
to be oxidized completely to H2O and CO2. M: molecular weight of the compound. 
 
Negative values of oxygen balance indicate that the explosive does not contain 

enough oxygen to convert each atom of carbon and hydrogen to CO
2 

and H
2
O 

during detonation, where no atmospheric oxygen is consumed. Most energetic 

materials are oxygen deficient resulting in lower heats of detonation compared 

to the condition of complete oxidation. In contrast, zero-balanced compounds 

contain exactly the amount of oxygen necessary for carbon and hydrogen to be 

oxidized to carbon dioxide and water. Examples are ethylene glycol dinitrate 

(EGDN, C2H4N2O6), azidoformamidinium dinitramide (C1H4N8O4), 

aminotetrazolium dinitramide (C1H4N8O4) (19) or bis-(2,2,2-trinitroethyl)-urea 

(C5H6N8O13). Compounds with positive values of oxygen balance contain 

excess oxygen and can serve as oxidizer components in energetic compositions. 
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Examples are ammonium perchlorate (AP, NH4ClO4 + 33.8), ammonium 

dinitramide (ADN, N4H4O4 +25.8), ammonium nitrate (AN, N2H4O3, +20) or 

hydrazinium nitroformate (HNF, C1H5N5O6, +13.1) 

 

Performance. One of the driving forces for the development of any new 

energetic material is performance. Usually the discussion of new compounds 

includes a comparison of their ‘performance’ to the current highest energy 

density materials. The performance indicators used as a guide to the most 

promising materials are detonation velocity or detonation pressure in case of 

high explosives or values of the specific impulse in the case of propellants. 

However useful and apparent these indicators are, evaluation of performance is 

more complex and can lead to different results based on the intended use of the 

compound. There is no single indicator that allows judging the performance of 

either high explosive or propellants. For example, the effect of shaped charges 

is dependent on the composition of the product gases and the detonation 

energy, not solely on the detonation velocity. (20) As far as propellants are 

concerned, important criteria include the burning rate, burning rate exponent, 

temperature sensitivity and other parameters. Moreover, increased 

‘performance’ in a compound will not necessarily yield increased available 

performance in a usable composition. Compositions containing any new 

material usually contain a binder to tune the mechanical properties and achieve 

a tolerable safety and comparisons of single performance indicators do not 

allow for the amount of binder required in different applications to obtain 

acceptable mechanical, processing or safety properties. (21) Promoting new 

compounds based on single performance parameters like detonation velocity or 

detonation pressure would miss those materials that might give similar 

performance when used in compositions to those compositions in use today 

with increased safety. Less performance in terms of the above mentioned 

indicators do not necessarily have to be a drawback in case the physical and 

safety properties allow for higher useable proportions in compositions. One 

example mentioned by Sanderson would be ‘super-TNT’, a compound that can 

be melt casted and used like TNT in neat form or melt cast with other high 

explosives. (21) Though its performance would intrinsically be less compared to 

HMX, it could lead to compositions of higher performance. 
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Power. The power of an explosive is the total energy available to do work and 

depends both on its energy density and its detonation wave speed. This is a 

different quantity than brisance. Two explosives may serve as example: 

ammonium nitrate and RDX. If a charge of each is placed beneath a rock, the 

ammonium nitrate might hurl the rock many meters but the RDX might 

pulverize the boulder into many fragments. The former quality is power 

whereas the latter quality is brisance. Power is measured by the Trauzl lead 

block test in which a sample of the explosive is detonated in a cavity in a lead 

block. The expansion of the cavity is a measure of the power of the explosive. 

The ballistic pendulum and ballistic mortar tests are also used to measure 

power. A heavy weight is accelerated by the detonation of an explosive. The 

swing of the pendulum or movement of the mortar's weight is a measure of the 

power of the explosive.  

 

Prediction of Detonation Properties. The prediction of detonation 

properties (detonation pressure, velocity of detonation) from a given molecular 

structure and the known or estimated crystal density is of fundamental 

importance  especially for the synthesis of new high-explosive compound and 

aided by the calculated properties a decision can be made whether it is worth 

the effort to attempt a new and complex synthesis. It has been found that 

estimates of detonation pressure and velocity are possible for C/H/N/O 

explosives by means of relatively simple empirical equations. These equations 

imply that the mechanical properties of the detonation depend only on the 

number of moles of detonation gases per unit weight of explosive, the average 

molecular weight of these gases, the chemical energy of the detonation reaction 

(Q = -ΔH0), and the loading density. (22) 

  

(a) Detonation Pressure 

 

P = K ρ02 Φ 
Figure 1.7. P [kbar]; K: 15.58; ρ0 [g cm-3]; Φ = N M0.5 Q0.5; N [moles of gas per gram of 
explosive]; M [grams of gas per mole of gas]; Q [cal g-1]. 
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(b) Detonation Velocity 
  

The detonation velocity is the rate at which the detonation reaction proceeds 

through an explosive. The velocity of the shock wave depends on the physical 

characteristics of the individual explosive material and its chemical 

homogeneity next to degree of confinement and geometric configuration of the 

charge. The more heterogeneous a material is, the slower is the reaction rate 

and the more energy is lost to maintain shock wave velocity. The velocity of 

detonation (VOD) depends on density due to the sound velocity of a material 

being depended on its density. Both chemical homogeneity and density have to 

be optimized to yield high detonation velocities.  

 

D = A Φ½ (1+B ρ0) 
Figure 1.8. D [m s-1]; A: 1.01; B: 1.30; Φ = N M0.5Q0.5; N [moles of gas per gram of 
explosive]; M [grams of gas per mole of gas]; Q [cal g-1]. 
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1.2 General Characteristics of the Trinitromethyl Group 
 

The large oxygen content (Ω(CO2) = +37%) and the reactive hydrogen atom in 

trinitromethane (nitroform) render this molecule to be very interesting for the 

preparation of high oxygen explosives (HOX). Trinitromethane has been 

known as early as 1857. (23) In contrast, reports of the chemistry of 

trinitromethyl compounds appeared rather late in the open literature. 

According to a review published by Noble, Borgardt and Reed, a program 

initiated by the Office of Naval Research (ONR) was initiated in 1947 to 

investigate the nitroaliphatics for potential use as explosives and propellants. (11) 

Portions of this work have appeared in patents, reviews and monographs when 

reports became gradually declassified in the early 1970s but often few or no 

information about synthetic procedures or physicochemical characteristics were 

given. Today, excellent reviews describing the chemistry of the trinitromethyl 

group are available summarizing the data on synthesis and properties of these 

polynitro compounds. (11, 24-25) The purpose of this introduction into the 

chemistry and characteristics of the trinitromethyl group is to summarize the 

most important general findings thus providing necessary and useful basic 

information intended to serve as a first navigation into the wide and complex 

area of polynitro chemistry.  

Depending on the hybridization of the carbon atom carrying the three nitro 

groups two major groups of reactions can be differentiated. The first group 

refers to the chemistry of the trinitromethanide (nitroformate) ion whereas the 

second group involves the chemistry of the tetrahedral hybridized 

trinitromethyl group.   
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1.2.1 Tetranitromethane as Source to the Trinitromethanide Ion 

 

Synthesis 

 

An efficient and inexpensive method for the production of tetranitromethane or 

trinitromethane is a condition for its practical utility. Today, tetranitromethane 

is no longer commercially available though it has been produced in Germany 

during World War II on industrial scale utilizing the nitration of acetic 

anhydride (Fig. 1.9). (26-27) 

 

  
 
Figure 1.9. Formation of tetranitromethane via nitration of acetic anhydride. 
 

Approximately 10 tons of tetranitromethane were produced within a few weeks 

without regard to cost or yield but production stopped after the end of the war 

due to the high associated costs. In the 1950's this method was attempted on an 

industrial scale by the Nitroform Products Company (Newark, USA) but the 

entire plant was destroyed by an explosion in 1953. 

Tetranitromethane can also be prepared from acetylene by the action of nitric 

acid in higher yields. (28) Acetylene is passed through a solution of mercuric 

nitrate containing solution of nitric acid resulting in trinitromethane 

(nitroform) as well as a mixture of carbon dioxide and nitrogen oxide. The 

nitrogen oxides can be recovered as nitric acid using an absorption tower. 

Finally, a nitric acid and sulfuric acid are added to the nitroform solution at 

elevated temperatures yielding in yields of 90% (based on nitric acid). (29) 

Furthermore, tetranitromethane has also been prepared by nitrating nitroform, 
(23) from acetic anhydride by the action of diacetylorthonitric acid, (30) from 

iodopicrin and silver nitrite, (31) from acetyl nitrate by heating with acetic 

anhydride or glacial acetic acid, (32) from nitrobenzene by distilling with a 

mixture of nitric acid and fuming sulfuric acid, (33) by adding acetic anhydride to 

nitrogen pentoxide or a mixture of nitrogen pentoxide and nitrogen peroxide, 

(34) by the action of acetic anhydride on highly concentrated nitric acid, (35) from 

toluene by nitration, (36), from nitrobenzene and a mixture of nitric and fuming 

nitric acids, (37)  and from acetylene and ethylene by the action of nitric acid in 
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the presence of a catalyst. (38) The nitration of 4,6-dihydroxypyrimidine in 

sulfuric acid has recently been found to yield trinitromethane as the sole 

product. (39) 

 

 
 
Figure 1.10. Tetranitromethane as source to the trinitromethanide anion. 
 

 

Uses 

 

Due to its high oxygen balance (Ω(CO2) = +49.0%), tetranitromethane has been 

investigated as oxidizer but its freezing point of 13.8°C has precluded practical 

application. (40) Tetranitromethane can be used as nitrating agent both for 

aromatic (41) and aliphatic (42) nitro compounds and a valuable reagent for 

detection of double bonds. (43) The latter effect utilizes the inherent and strong 

yellow colour of charge transfer complexes arising from the interaction 

between the electron poor carbon atom of tetranitromethane and the electron 

rich double bonds. 
 

Safety 

 

CAUTION! The sensitivity of tetranitromethane strongly depends on its 

purity. Whereas pure tetranitromethane is difficult to initiate (initiation fails 

even when tetryl is used as detonator), small amounts of impurities yield 

extremely sensitive explosive mixtures that belong to the most brisant 

mixtures known. (44) A severe explosion accident happened in 1920 during a 

lecture experiment in which a mixture of toluene and tetranitromethane was 

burned at the chemical institute of the University of Münster (Germany) a 

severe explosion occurred. (45) It has been reported that of the thirty people 

affected by this explosion, ten lost their lifes and twenty people were severly 

injured. (46) 

 



Chapter 1.2 – General Characteristics of the Trinitromethyl Group 

- 38 - 

1.2.2 Trinitromethanide Ion as a Nucleophile 

 

In principal, the reactions that can be utilized to synthesise compounds 

containing the trinitromethyl group include carbonyl condensation reactions, 

addition reactions, as well as alkylation reactions.  

 

Carbonyl Condensation Reactions  

 

The condensation reaction of an aldehyde and a polynitroalkane having an 

acidified α proton yielding a β-nitro substituted alcohol is referred to as Henry 

reaction. The Henry reaction between trinitromethane and formaldehyde 

affords good yields of 2,2,2-trinitroethanol. However, attempts to add 

trinitromethane to a variety of other aldehydes or ketones have been reported 

to yield no isolable products. (47) Though not isolable, formation of 1-alkyl-

2,2,2-trinitroethanols was shown to occur in solution (see Table 1.2) and the 

extent of dissociation of these alcohols was found to increase in the order  

Y = –CH2– < –CH(CH3)– < (CH2)3C < –C(CH2)2– 

 

 
 
Figure 1.11. Dissociation of trinitromethylalcohols according to Hall et al. (see Table 1.2). 
the extent of dissociation of these alcohols was found to increase in the order Y = –CH2– < –
CH(CH3)– < –C(CH2)2– 
 
 
Table 1.2. Dissociation Constants determined by Hall in aqueous acid. (48) 

Compound K, M-1 

(NO2)3C–CH2–OH 7.80 · 10-7 
(NO2)3C–CH(CH3)–OH 2.80 · 10-4 
(NO2)3C–C(CH2)2–OH a) 

Notes. a) No detectable amount of alcohol was produced. 

 
It was concluded that steric interactions between the substituent on the alpha 

carbon atom and the trinitromethyl group governs the position of the 

equilibrium. The reaction is acid catalyzed and reversed in base affording the 

salt of the nitro compound and formaldehyde. 
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The Mannich condensation reaction between a nitroalkane, an aldehyde and an 

amine is a very useful method for the preparation of β-nitro substituted 

alkylated amines. 

 

 
 
Figure 1.12. Steps involved in the Mannich reaction. 

 
According to mechanistic studies, the rate controlling step involves the 

addition of the trinitromethanide anion to the cationic iminium intermediate 

previously formed from the condensation between the amine and the aldehyde. 
(49-50)  

Though this reaction provides convenient access to a variety of Mannich bases 

from polynitroakylamines, examples reported in the literature suggest them to 

be only moderately thermally stable. This has been rationalized in terms of a 

facile path for the reversal of the Mannich equilibrium. (24) 

 

 
Figure 1.13. Reversal of the Mannich reaction. 
 
The resonance stabilized trinitromethanide anion serves as a driving force for 

this reaction. However, it has been found that nitration of the Mannich bases to 

the corresponding nitramines (BTNNA, Bis-(2,2,2-trinitroethyl)-nitramine) or 

delocalization of the p electron pair of the nitrogen atom (BTU, Bis-(2,2,2-

trinitroethyl)-urea) enhances the stability of these products. (51) 
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Addition Reactions 

 

A wide variety of Michael systems have been utilized in Michael addition 

reactions with the trinitromethanide ion. Noble et al. has reviewed the various 

adducts that have been prepared. (11) 

In principal, addition to a variety of α, β – unsaturated Michael systems of the 

general formula CH2=CHY (Y = EWG) yields the corresponding 3-Y-1,1,1-

trinitropropyl derivatives.  

1,2-Addition reactions to unconjugated olefin systems have been reported 

using the mercury derivative of trinitromethane. Novikov and coworkers have 

extensively studied the reaction of mercury trinitromethanide with variours 

olefinic and active hydrogen substrates. (52) They found that it has a covalent 

structure in the solid state and dissociates in aqueous or alcoholic solutions: 

 

 
 
Figure 1.14. Dissociation of mercury trinitromethanide in aqueous or alcoholic solution. 
 
They report that they found no evidence for the existence of the tautomeric 

form in which oxygen was bonded to mercury neither in solid state nor in 

solution – the same bonding situation has been observed in the related 

compound mercury fulminate only recently. (53-54) The synthetic utility of using 

the mercury route as a preparative tool in trinitromethyl chemistry is 

somewhat limited due to the lack of a suitable general method for the cleavage 

of the carbon-mercury bond in the trinitroalkyl mercury derivatives. 
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Alkylation Reactions 

 

The nucleophilic displacement of halogen atoms from a saturated carbon by 

trinitromethanide is not a general synthetic strategy to obtain the 

corresponding carbon alkylated trinitromethyl compound. It has been reported 

that only simple primary alkyl iodides produced the desired derivatives 

whereas several other halide substrates including α-halogen acids, α-halogen 

esters, α-halogen ketones, α-halogen acetals and acetylenic halides yielded no 

carbon alkylation products though quantitative yields of the by product silver 

halide was observed together with the formation of a complex product mixture 

containing considerable amounts of unstable, red oils, which were assumed to 

be O-alkylation products. (55) The trinitromethanide ion is an ambident 

nucleophile and accordingly alkylation can either occur at the carbon or the 

oxygen atom. Assuming the alkylation taking place at the more electronegative 

oxygen atom, the formation of the carbon alkylated products would require 

subsequent rearrangement.  

 

 
Figure 1.15. Formation of O-alkylated intermediate and subsequent rearrangement to the 
C-alkylated product. 
 
Sterically demanding substituents certainly disfavour this rearrangement and 

products usually do not form. In contrast, the formation of carbon alkylation 

products in the case of simple primary alkyl halides or the formation of 

1,1,1,6,6,6-hexanitro-3-hexyne from the reaction between 1,4-dibromo-2-

butyne and silver trinitromethanide can be rationalized in terms of sterically 

less demanding substituents. (56)  
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1.2.3 Stepwise Construction of the Trinitromethyl Group 

 

Another approach to trinitromethyl containing compounds involves the 

stepwise construction of the trinitromethyl group. A nitromethyl derivative is 

converted into a dinitromethyl derivative and finally nitrated to the 

trinitromethyl compound. In order to obtain the 1,1-dinitroalkane, a 

nitroalkane can be converted to the α chloronitroalkane using the ter Meer 

reaction (57) or, alternatively, an oxidative nitration technique reported by 

Kaplan and Shechter. (58) 

However, according to Kaplan, there is no general route that allows for the 

further nitration to the corresponding trinitromethyl compounds. (24) Selected 

examples reported in the literature include: 

 

a) Nitration in alkaline media using tetranitromethane: (59) 

 
 

Figure 1.16. R = C6H5CH2CH2, (CH3)2CH, (CH3)2CHCH2, (CH3)3C, CH3CH2, 
CH3CH2CH2, CH3CH2CH2CH2. 
 
b) Nitration of phenyl substituted alkaline earth metal salts of selected 

nitromethanes using dinitrogen tetroxide: (60) 

 

 
 

Figure 1.17. Stepwise nitration using dinitrogen tetroxide. 
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c) Destructive nitration of the carboxyl group to the trinitromethyl entity 

using a 4:3 mixture of sulfuric acid (ρ = 1.84 g cm-3) and nitric acid (ρ = 1.5 

g cm-3): (61)  

 

 
 

Figure 1.18. Synthesis of 2,4,6-Tris(trinitromethyl)-1,3,5-triazine. According to the 
reported properties the compound is unstable when exposed to air and displays a melting 
point of 90-91°C. 

 
Further examples of nitration of dinitroalkanes or other intermediates include 

the formation of hexanitroethane from 1,1,2,2-tetranitroethane (62) or 

trinitroacetonitrile from cyanoacetic acid (63) as well as the formation of 

tetranitromethane from acetylene (28) or ketene (64). 
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1.2.4 Reactions of Trinitromethyl Compounds 

 

As already pointed out by Kaplan, a diversity of chemical reactions can be 

employed not affecting the trinitromethyl group yielding a variety of valuable 

products. (24) For example, 4,4,4-trinitrobutyric acid can be converted to the 

acid chloride and subsequently to the corresponding isocyanate which in turn 

can undergo typical reactions including amine, urea and urethane formation 

(Fig. 1.19). (65) 

 

 
 
Figure 1.19. Stepwise formation of 4,4,4-trinitroisocyanate from 4,4,4-trinitrobutyric acid. 
 
In addition, the acid chloride itself allows for a variety of other product, for 

example the formation of bis-(4,4,4-trinitrobutyryl)-peroxide (Fig. 1.20). (66) 

 

 
 
Figure 1.20. Formation of bis-(4,4,4-trinitrobutyryl)peroxide. 
 

Instead of using the 4,4,4-trinitrobutyryl moiety (C4H6N3O6, Ω(CO2) = -41.6%) 

for the development of oxygen rich energetic materials, we chose to introduce 

the trinitromethyl group using 2,2,2-trinitroethanol due to the positive oxygen 

balance value of the 2,2,2-trinitroethyl moiety (C2H2N3O6, Ω(CO2) = +9.8%).  

As pointed out earlier (see Table 1.2, page 38) and in contrast to the products 

arising from the reactions between a variety of aldehydes and ketones and 

trinitromethane, 2,2,2-trinitroethanol is an example of a stable condensation 

product. At the same time it displays a positive oxygen balance. It can readily 

be obtained in high yields and high purity from the Henry reaction between 

trinitromethane and formaldehyde, can be safely handled, stored and it can 
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conveniently and stoichiometrically be applied under ambient conditions. Other 

advantages of this group will be discussed in the appropriate sections of this 

thesis.  

 

Unfortunately, much of the chemistry reported for the trinitrobutyryl or 

trinitropropyl groups is not applicable in case of the trinitroethyl group 

because of the specific electronic properties of the trinitromethyl group that are 

most pronounced in the case of the trinitroethyl group (σ* = 1.62) and 

significantly limit the chemistry to introduce this group compared to the 

chemistry available in the case of the trinitropropyl group or trinitrobutyryl 

group. The chemistry of 2,2,2-trinitroethanol is different to that of other 

alcohols owing to the electron withdrawing inductive effect of the 

trinitromethyl group (σ* = 4.54) decreasing the oxygen basicity of the 

hydroxyl group. The alcohol becomes acidic (pKa = 6.1) and at pH values 

greater than 6, the equilibrium lies in the direction of the trinitromethanide 

anion and formaldehyde. This dissociation under weakly acidic or basic 

conditions precludes the possibility of 2,2,2-trinitroethoxy derivatives through 

the use of nucleophilic displacement reactions utilizing the 2,2,2,-

trinitroethoxide anion. Generally, attack of nucleophilic reagents like 

hydroxide on trinitroethyl compounds can take place at several sites: 

 

 
Figure 1.21. Possible sites for nucleophilic attack on the trinitroethyl moiety. 
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Proton removal (a) 
 

As a consequence of the strong electron withdrawing properties of the 

trinitromethyl group, hydrogen atoms α to the trinitromethyl group are 

acidified subject to being removed yielding E2-type base-catalyzed elimination 

of nitrous acid and subsequent further decomposition yielding 

dinitromethanide (Fig. 1.22). (67) 

 

 
 
Figure 1.22. Proton removal and subsequent formation of dinitromethanide. 
 
Next to base-catalyzed elimination of nitrous acid, there are at least two 

further modes of decomposition for the 2,2,2-trinitroethyl fragment. The first 

path involves removal of an acidic proton by base followed by intramolecular 

rearrangement of a nitro group of the trinitromethyl group via the resulting 

vicinal carbanion as reported in the degradation of 2,2,2-trinitroethyl chloride 

to 1,1,2,2-tetranitroethane. (68) The second path is the reversal of the Mannich 

reaction yielding trinitromethanide anion and the unsaturated counterpart. (24) 
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Nucleophilic attack on carbon (b) 
 

Reactions of nucleophilic reagents at the carbon atom carrying the nitro 

groups has been reported indicating that the sterically crowded carbon atom 

can be accessed under certain conditions as reported in the formation of 

succinic acid from the reaction between 4,4,4-trinitrobutyric acid with 

hydroxide (Fig. 1.23) (69) or the formation of carbonate from the reaction 

between tetranitromethane with hydroxide (Fig. 1.24): (70) 

 

 
 
Figure 1.23. Formation of succinic acid from the reaction between 4,4,4-trinitrobutyric acid 
and hydroxide. 

 

 
 
Figure 1.24. Carbonate formation from the reaction between tetranitromethane and 
hydroxide. 
 

 

Displacement of nitrite (c) 

 

Attack of the nitro group affords displacement of nitrite by hydroxide with 

reduction of the trinitromethyl group yielding 1,1-dinitroalkane anion and 

nitrate. A SN2 or SN2’ mechanism has been suggested but no evidence was 

given whether the reaction takes place at nitrogen (SN2) or oxygen (SN2’). (67) 

 

 
 
Figure 1.25. Displacement of nitrite. 

 
There is no general preference for each of the above mentioned decomposition 

modes as they strongly depend on the reaction conditions. Products arising 

from these reactions may be complex mixtures arising from a combination of 

different decomposition reactions taking place.  
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1.3 Methods  
 

Standard analytical methods that have been applied to characterize chemical 

compounds include elemental analysis next to spectroscopic methods like 

NMR spectroscopy, optical spectroscopy (UV-Vis) or vibrational spectroscopy 

(Infrared and Raman spectroscopy) as well as mass spectrometry, bomb 

calorimetry or X-ray diffraction and are mentioned in the appropriate chapters 

of this thesis. A few additional notes regarding single crystal X-ray diffraction 

are mentioned here due to the importance of this technique within the scope of 

this thesis. X-ray diffraction techniques have been developed that enable to 

extract information that goes beyond routine structure determination - 

provided the reliability of the data is high enough. In contrast to neutron 

diffraction where the nuclei are responsible for the diffraction, X-ray diffraction 

involves the internal and valence electrons of a molecule. In the case of the 

hydrogen atom the centre of gravity of the electron density does not coincide 

with the nucleus yielding systematically shorter bond distances. When judging 

the quality of a structure, it is useful to keep the following two criteria in mind: 

The first one has to do with the agreement between the observed structure 

factors (Fo) and the calculated ones (Fc). They should be of the same order of 

magnitude as the experimental accuracy to which the Fo’s are found. The 

second criterion involves the reliability index (R). Usually more reliable results 

are obtained with lower R values. However, it can be important to keep in mind 

that the information derived using the R value is based on the extent to which 

the model chosen for the calculation of the structure fits to the experimental 

results. Calculated structure factors that match the observed ones are a 

necessary condition for a good crystallographic analysis but they are not a 

solely sufficient condition to avoid erroneous results with excellent R values. 

 

In contrast to the standard analytical methods mentioned above, those methods 

with relevance to energetic materials research are briefly mentioned in this 

section to serve as a guide for the reader not familiar in the area of energetic 

materials research. 
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Safety Analysis 

 

The great amount of energy delivered from energetic materials places a 

premium on all aspects of their safety including manufacture, handling, 

transportation and storage. Likewise, much of the high-explosives work 

involves determining the sensitivity of new materials to impact, friction, 

electrostatic discharge or heat prior to further handling to obtain their 

sensitivity characteristics.  

 

Sensitivity. Various external stimuli can cause release of the energy contained 

in energetic materials. Knowing the response of individual energetic materials 

to specific stimuli like impact, shock, heat, friction or electric spark is important 

in terms of safety and in determining the suitability of a material for a specific 

application. However, sensitivity is anything but an absolute quantity and 

dependent on a variety of factors. Sensitivity reflects the ease of triggering a 

detonation which in turn depends on a complex interplay of a number of factors 

including, but not limited to molecular and crystal properties, physical 

conditions, the nature of the stimulus etc. (71-74)  There are different types of 

machines and apparatus to measure the respond of an explosive to external 

stimuli and determine the corresponding value. This value, however, is always 

obtained for a sample in the particular environment of the test that was used. 

The criteria chosen for determining whether a test resulted in an explosion 

(‘go’) or failure (‘no go’) may vary between different laboratories and further 

depend on the operator to signify a ‘go’ result, often based on visual 

observation of smoke, flash or flame, crackling or sound of explosion. One 

consequence of this evaluation together with the complex interplay of factors 

affecting sensitivity is the difficulty or reproducibly quantifying sensitivity. 

Nevertheless, examination of the respond of a material to these external stimuli 

like electrostatic discharge (Electrostatic Sensitivity), friction (Friction 

Sensitivity) or impact (Impact Sensitivity) is very important to be able to make 

at least some estimates of the level of sensitivity and thus important 

information in terms of safety and handling of these substances as well as a 

qualitative comparison between them. Electrostatic sensitivity is an equally 

important quantity in terms of handling a compound under study compared to 
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friction or impact sensitivity. Some explosives can be detonated from the shock 

of a person charged with static electricity. The test procedures used to 

determine sensitivity are covered in Chapter 4. As far as safety is concerned, it 

is important to notice that sensitivity of most materials is not a fundamental 

and unalterable property. Sensitive materials can sometimes be made to behave 

acceptably insensitive (desensitization). 

 

Impact Sensitivity. The initiation response of an explosive to the blow of a 

falling weight is called impact sensitivity.  Impact sensitivity is generally 

reported as the corresponding impact energy in Joule, given by the product 

mgh, where m is the mass of the falling weight, g is the acceleration due to 

gravity and h is the height of the falling weight. As mentioned above, it is very 

difficult to obtain reproducible impact sensitivity values. They should therefore 

be regarded as, at best, qualitative indicators of relative impact sensitivities. (75) 

there are a variety of different machines for determining this value. They are 

different in detail, but they are technically essentially similar though test 

procedures and test data analyses may differ. Traditionally, explosives have 

been subjected to falling weights to measure impact sensitivity. Within the 

scope of this work a standardized BAM drophammer (Bundesanstalt für 

Materialprüfung) has been employed to measure the impact sensitivity. In this 

test, the substance is placed between two steel cylinders that are subject to 

being impacted by a falling weight. The sound produced serves as information 

whether an explosion or failure has occurred together with a visual inspection 

of the sample after each experiment. The value taken as impact sensitivity (in 

Joule) is defined as the product of the mass of the falling weight and the 

distance necessary to yield not more than one explosion out of six experiments.  
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There have been numerous attempts trying to relate impact sensitivity (usually 

within a given class of compounds) to various other parameters like the 

strengths of certain bonds, enthalpy of formation (Table 1.3) or decomposition 

temperature (Table 1.4): 
 
Table 1.3. Impact sensitivity compared to enthalpy of formation. (76) 

Compound ΔfH0 FI 

1,2,4-Trinitrobenzene -56 103 
1,3,5-Trinitrobenzene -38 109 
2,4,6-Trinitroaniline +22 111 
2,3,4,6-Tetranitroaniline -43 86 
Pentanitroaniline -339 36 
2,3,4-Trinitrotoluene -124 92 
2,3,5-Trinitrotoluene -86 101 
2,4,6-Trinitrotoluene (TNT) -74 114 
3,4,5-Trinitrotoluene -104 95 
3,4,6-Trinitrotoluene -93 102 

Notes. Test method: Rotter Impact Test (77); FI: Figure of Insensitiveness; FI (picric acid) = 
100 by definition; ΔfH0 / kJ mol-1. 
 
Table 1.3 is a summary of the impact sensitivity data of isomers of 

trinitrotoluene, polynitroanilines and trinitrobenzene. The stabilities of the 

aromatic compounds are generally higher as long as the nitro groups are not in 

adjacent positions on the ring. It appears to show a relation between the 

enthalpy of formation (enthalpy of destabilization) as one method of 

characterizing impact sensitivity.  

 
Table 1.4. Impact sensitivity versus thermal stability. (Fehler! Textmarke nicht definiert.) 

Compound IS / cm T / °C 

Hexanitrobenzene (HNB) 15 165 
2,4,6-Trinitrotoluene (TNT) 148 250 
Picric Acid 191 260 
Diaminotrinitrobenzene (DATB) 320 300 
Triaminotrinitrobenzene (TATB) > 320 340 

Notes. Test method: Type 12 machine. The value given represents the result of 25 drops to 
give the height at which the propability of explosion is 50%. Setup: 40 mg of sample are 
placed on sandpaper between an anvil and a steel cylinder and a 2.5 kg weight is dropped 
from different heights. The temperature is given as the onset of exotherm. 
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The results of Table 1.4 suggest a dependence of impact sensitivity and 

thermal stability. The higher the thermal stability of an explosive, the less 

impact sensitive it appears to be. In addition, it has been observed, that impact 

sensitivity is temperature dependent (Table 1.5). (78) 

 
Table 1.5. The impact sensitivity of TNT increases with increasing temperature. 

Temperature / °C Height / inches Height / cm 

-40 17 43.18 
25 14 35.56 
80 7 17.78 
90 3 7.62 
105 2* 5.08 

Notes. Test method: Picatinny Arsenal apparatus (79), 2 kg weight; * five explosions in 20 
trials. 
 
Another contribution to the possible factors affecting impact sensitivities of 

energetic compounds has recently been reported. It has been suggested that 

there may be a link in terms of a crystal volume factor between the impact 

sensitivities of energetic compounds and the space available to their molecules 

in their crystal lattice. The authors suggested ‘that the availabiltiy of more space 

enhances the molecule’s ability to absorb and localize, vibrationally or translationally, 

the external energy coming from the impact.’ (75) 

 

Additional approaches for the prediction of some aspects of safety that appear 

in the literature are listed in Table 1.6. Assistance for the targeted design of 

safe compounds based on predictive methods available today is however by far 

not well established as there is yet no complete approach to sensitivity at 

molecular level.  
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Table 1.6. Methods for the prediction of the sensitivity of energetic compounds. (21) 
Method Ref. Function Requirements Comments 

quantum mechanical 
structure property 
relatonships / QSPR 

(80) impact  
sensitivity 

numerous predicted 
or measured 
parameters 

empirical method for predicting 
any material characteristic using 
physical and chemical properties 

ab initio / semi 
empricial molecular 
structure 

(81) bond lengths 
 / strengths 

 useful indicators, but no direct 
correlation with any sensitivity 
properties 

correlation to oxygen 
balance (Stine) 

(82) impact,  
shock,  
critical  
temperature 

oxygen balance does not account for anomalous 
behaviour caused by other chemical 
or mechanical properties 

correlation to oxygen 
balance (Kamlet) 

(83) impact oxygen balance does not account for anomalous 
behaviour caused by other chemical 
or mechanical properties 

correlation to bond 
length / charge 
distribution  

(84) impact bond lengths, 
electrostatic surface 
potential 

does not account for anomalous 
behaviour caused by other chemical 
or mechanical properties 

statistical / neural 
network 

(85) impact numerous predicted 
or measured 
parameters 

mechanical influence on sensitivity 
is not taken into account 

electronic structure / 
impact sensitivity 
correlation 

(86) impact relative variation of 
polarity of ‘trigger 
bond’ on excitation 
from MO 
calculations 

mechanical influence on sensitivity 
is not taken into account 

electronic structure / 
impact sensitivity 
correlation  

(87) impact HOMO and LUMO 
energies 

correlated only for a limited 
number of compounds 

 
A more general approach trying to relate impact sensitivity to molecular 

properties has also been suggested. Politzer & Murray reported a quantitative 

relationship of impact sensitivities for a number of nitroaromatics and 

nitroheterocycles to the degree of internal charge separation and the presence 

of strongly positive electrostatic potential (ESP) maxima on their molecular 

surfaces based on theoretical calculations of isolated molecules. (88) They have 

demonstrated that ‘there is a link – not necessarily a causal relationship – between the 

anomalous imbalance in the molecular surface electrostatic potentials of energetic 

compounds and their impact sensitivities.’ (75) Rice & Hare have extended this idea 

and conclude that ‘the level of sensitivity to impact is related to the degree of positive 

charge build-up over covalent bonds within the inner framework of these explosives’ (74)    
based on the idea that the C-NO2 and N-NO2 bonds associated with these 
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positive regions concomitantly become weaker. The unifying concept is based 

on the ideal that the breaking of a certain type of bond, a trigger linkage, is a key 

step in the decomposition process. Politzer & Murray have recently 

summarzied this as follows: ‘Thus, to the extent that C-NO2 and N-NO2 bonds are 

trigger linkages in some energetic compounds, the link between the imbalance in their 

molecular surface potentials and impact sensitivity may be that the former reflects the 

electronic charge depletion that facilitates the breaking of these bonds.’ (75) In doing so, 

they also recognized the limitations imposed by the number of factors affecting 

impact sensitivity and the uncertainty associated with its measurement and 

stated that their goal, therefore, was not a precise structure/activity 

correlation but rather a better understanding of the factors and properties 

actually influencing sensitivity as opposed to relationships that are 

symptomatic or even coincidental. (75) Meanwhile it has been recommended to 

include the experimentally derived charge density distribution and derived 

ESP of high resolution X-ray diffraction experiments in future theoretical 

studies. Impact sensitivity is a bulk property and the ESP of isolated molecules 

in the gas phase neglect the effects of intermolecular interactions. In contrast, 

the ESP obtained from a diffraction experiment represents molecules as part of 

the crystal and therefore includes both these effects. (89)  

A novel approach towards sensitivity of energetic compounds has been 

suggested very recently and outlining the relevance of kinetics of 

decomposition reactions on sensitivity. It has been reported that water displays 

catalytic behaviour in PETN (Pentaerythritol tetranitrate) reactions 

challenging the traditional view of water in high explosives chemistry which 

had previously only been considered to be one of the three major 

decomposition products next to carbon dioxide and molecular nitrogen. In 

contrast this recent study has demonstrated that water plays an active role in 

detonation chemistry and ‘the kinetics of water formation may also contribute to 

high explosives sensitivity’. (3) 



Chapter 1.3 – Methods 

- 55 - 

Stability. Stability is the ability of energetic materials to retain, unaltered, such 

properties as detonation velocity and sensitivity after long periods of storage 

under adverse conditions. All energetic materials are unstable to some extent. 

The degree of instability varies greatly. Compatibility with other materials and 

long-term stability is expected for safety in handling and use as well as storage 

of the products. Whatever its performance, an energetic material will not be 

widely used unless it can be used in formulations with a reasonable life 

expectancy. The safe service life of an explosive is made up of the safe storage 

life, also referred to as the chemical shelf life and the so-called functional life. 

Shelf life covers the period of time during which the explosive can safely be 

stored and is limited by chemical ageing reactions. The functional life is the 

period of time where a safe use of the explosive and its functional requirements 

remain fulfilled. The functional life is limited both by (i) chemical ageing 

reactions of the explosive that may yield lower energy content or reactions 

with the binder that may change the mechanical properties and (ii) physical 

processes within the explosive like diffusion or phase changes. (90)  

Picric acid may serve as an example. Though more powerful than TNT it was 

initially extensively used until it was found that it is incompatible with acid 

sensitive materials, particularly in the formation of sensitive metal salts. (91) 

There are two types of reactions that have to be distinguished when 

considering the stability of energetic materials. (92) The first type of thermal 

decomposition can be described as chemical ageing and occurs at low 

temperatures or at room temperature. The second type refers to thermal 

decomposition with ignition of the material. Generally, thermal decomposition 

occurs when bonding forces within the corresponding molecules or ions are 

weaker compared to those between atoms of neighbouring units. An increase in 

temperature may result in bond redistribution and the formation of 

decomposition products. It has been estimated that activation energies of 

decomposition higher than 170 kJ mol-1 correspond to a chemical shelf life in 

the order of thousands of years at room temperature whereas values below 155 

kJ mol-1 indicate limited stability and require further examination of the 

stability. (93) An estimation of the shelf life time of an energetic material based 

on the measurements of the activation energy has been reported by Klapötke et 

al. (94) 
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Thermal Stability. When heated, an explosive will begin to decompose 

exothermically. If a large enough sample is heated above its critical 

temperature, it can explode. The factors responsible to reach this critical 

temperature include the shape and size of the explosive sample, its thermal 

conductivity and its kinetics of decomposition. (95)  
 

(a) Differential Scanning Calorimetry. A small-scale test for the thermal 

stability of energetic materials is differential scanning calorimetry (DSC). 

Typically two milligrams of sample are placed inside an aluminium container 

and heated inside a furnace purged with dry nitrogen against a reference. A 

temperature programme is run and the instrument records the difference in 

heat flow of the two compartments as a function of temperature. A positive 

deflection corresponds to an exothermic process and a negative deflection 

corresponds to an endothermic one. The use of DSC is not limited to the 

characterization of the thermal stability of energetic materials but additionally 

yields useful information: 

Solids that do not exhibit the same high degree of ordering found in crystalline 

samples can be detected through the presence of a broad temperature range on 

melting. This is known as glass transition. Melting of a crystalline solid 

appears as a quite sharp peak in contrast. Information about the exothermic 

thermal decomposition includes the decomposition temperature, the width of 

the thermal reaction, the onset and offset temperatures of the peak and the 

enthalpy of the thermal decomposition corresponding to the peak area. A 

kinetic evaluation of data obtained at several heating rates (non-isothermal) 

allows for the estimation of the activation energy of decomposition.  

(b) Isothermal Long Term Testing. This test is used to obtain information 

on thermal ageing properties at elevated temperatures. Within the scope of this 

work, a RADEX oven has been employed. (96) Typically, 100 mg of sample were 

placed inside a steel container and isothermally heated for 48 hours inside the 

RADEX oven at elevated temperatures up to 40°C below the thermal 

decomposition point of the sample obtained from DSC measurements. Any heat 

flow occurring during the measurement is recorded. Howerver, it is important 

to note that a RADEX measurement is not that sensitive as microcalorimetry 

and thermal ageing might have occurred although no heat flow has been 
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recorded in case the heat flow was too small and thermal decomposition 

occurred slowly. For this reason it is important to visually inspect the sample 

after a measurement and carry out additional analytical tests to be able to 

guarantee that no ageing has occurred. Those tests include DSC measurements 

to judge wether a change in decomposition of the material has occurred 

compared to the decomposition temperature of a sample that has not been 

heated using the RADEX oven as well as other standard analytical methods 

like NMR spectroscopy. 

 

Chemical Compatibility. Next to thermal stability of the neat sample it is 

additionally possible to test chemical compatibility of the sample using 

differential scanning calorimetry (DSC). For this purpose selected compounds 

like nitroguanidine or methylammonium nitrate are added to the sample and 

the mixture heated. A subsequent comparison to the results obtained from the 

measurement of the neat sample allows drawing conclusions of any 

unfavourable interactions of the sample to the compounds added.  

 

Classification. In order to obtain an interim hazard classification for the 

transport of dangerous goods standardized tests have to be carried out for 

substances prior to shipment according to the instructions as specificated in the 

technical bulletin Department of Defense Ammunition and Explosives Hazard 

Classification Procedures. (97) The test procedures (Table 1.7) include the results 

of impact sensitivity (UN 3a), friction sensitivity (UN 3b), thermal stability 

(UN 3c), small scale burning (UN 3d) and may additionally include a test of 

‘thermal stability for articles and packaged articles’ (UN 4a) in case the test 

(UN 3c) fails as well as a 12 m free fall test (UN 4b) in case one of the tests 

(UN 3a, UN 3b, UN 3c) fails. Details of the procedures to these tests are 

documented in the appendix to this thesis (Chapter 4). 
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Table 1.7. UN hazard classification procedures for articles and substances. 

 test  conditions + (failure) - (pass) 

UN 3a impact  

sensitivity 

5 tests, 

50% 

≤ 3.5 J  > 3.5 J  

UN 3b friction  

sensitivity 

5 tests, 

1 / 5 

≤ 184 N,  

visible sparks,  

visible flame, 

audible expl., 

loud crackling noise 

> 184  

UN 3c thermal  

stability 

75°C, 48 h visual: 

- color change, 

- explosion, 

- ignition, 

- weight loss (any more than H2O)   

RADEX:  

self-heating > 3°C 

  

UN 3d small scale  

burning 

Kerosene-

soaked 

sawdust, 

unconfined 

explosion 

or 

detonation 

  

UN 4a thermal stability 
for articles and 
packaged articles 

75°C, 48 h visual: 
- color change, 
- explosion, 
- ignition, 
- weight loss (any more than H2O)   
RADEX:  
self-heating > 3°C 

  

UN 4b free fall 12 m free fall fire, explosion or detonation   
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Chapter 2 

 
2.1 Energetic Materials: Salts 
 

2.1.1 Salts of Trinitromethane 

 

Introduction 

 

Energetic salts containing the nitroformate anion have been known for over a 

century (98), however, only one compound hydrazinium nitroformate (HNF) has 

gained practical application as high performing, halogen free oxidizer for 

advanced propellant formulations. It has been called a promising candidate for 

the replacement of ammonium perchlorate (AP) oxidizer and indeed HNF-

based propellants show improved performance in terms of specific impulse over 

AP-based propellants due to the high oxygen content and only slightly 

negative heat of formation (ΔfH 0(s) = -94 cal g-1). (99)  Since the discovery of 

HNF in 1951, more than eighty publications (100) have appeared, showing that 

HNF is of continued interest.  Recently, two derivatives of hydrazinium 

nitroformate (HNF), namely monomethylhydrazinium nitroformate 

(MMHNF) and dimethylhydrazinium nitroformate (DMHNF) were 

synthesised and suggested as being promising new high performance energetic 

materials. (101) In the course of our investigations into high energy density 

materials (HEDM), we recently focussed our attention on various nitroformate 

salts, in order to explore their potential as possible new ingredients for high 

performance, halogen-free propellant formulations, which would avoid the 

problematic formation of hydrogen chloride from the use of ammonium 

perchlorate as oxidizer in rocket propellant formulations (see page 125). The 

cations which were combined with the nitroformate anion in this work were 

potassium, ammonium, hydrazinium, melaminium, guanidinium, 

aminoguanidinium, diaminoguanidinium and triaminoguanidinium.  Potassium 

nitroformate, (102) ammonium nitroformate, (98) hydrazinium nitroformate, (98) 

guanidinium nitroformate, (103) and melaminium nitroformate (104) have already 
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been mentioned in the literature.  However, to the best of our knowledge, not 

all were characterized in the solid state using single crystal X-ray diffraction.  

In the course of our investigations we have obtained the solid state structures 

of potassium-, ammonium-, hydrazinium-, melaminium-, guanidinium-, 

aminoguanidinium-, diaminoguanidinium- and triaminoguanidinium 

nitroformate using single crystal X-ray diffraction.  The salts containing the 

nitroformate anion which have been characterized using single crystal X-ray 

diffraction are described in references. (102, 105-120)   
 
Synthesis and Characterization 

 

The nitroformate salts were obtained in high yields as bright yellow solids 

(Fig. 2.1) either by the reaction of nitroform with the corresponding base in 

accordance with literature procedures (ANF, (98) MNF, (121) and HNF (122)) or, 

in the case of GNFH, AGNF, DAGNF and TAGNF, by a metathetical 

reaction of the potassium or silver salt of nitroform with the corresponding 

guanidinium chloride in acetonitrile according to a slightly modified 

procedure. (123) 

 

 
Figure 2.1. Preparation of GNFH, AGNF, DAGNF and TAGNF. 
 
Tetranitromethane, trinitromethane, the potassium salt of trinitromethane and 

the silver salt of trinitromethane are educts for the synthesis of the novel 

compounds and were synthesised first. Tetranitromethane was synthesised 

from acetic acid anhydride and concentrated nitric acid according to a 

literature procedure. Though it is known that sulfuryl chloride is a 

catalytically active component of this pernitration, a possible reaction 
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mechanism of the formation of tetranitromethane from acetic acid anhydride 

has never been reported to the best of our knowledge. In order to rationalize 

the formation of tetranitromethane the following mechanism is formally be 

proposed (Fig. 2.2). 

 
Figure 2.2. Proposed mechanism for the formation of tetranitromethane from acetic acid 
anhydride. 
 
The nitroformate salts prepared were characterized in solution using 1H, 13C 

and 14/15N NMR spectroscopy.  The 13C  and 14/15N spectra of the anion in all of 

the salts showed one signal at room temperature.  A comparison of the 

obtained signals can be found in Table 2.1.  The signals observed in the 13C 

NMR spectra which correspond to the anion are in good agreement with those 

reported by A.A. Gakh et al. (124) for the cesium and the tetrabutylammonium 

salts of the nitroformate anion at 150.3 ppm and 151.6 ppm (both measured in 

[D6]acetone), respectively.  Differential Scanning Calorimetry (DSC) was used 

to determine the thermal stabilities of compounds ANF, MNF as well as 

GNFH, AGNF, DAGNF and TAGNF. Whereas ANF shows only one 

decomposition signal at 116°, MNF, GNFH, AGNF, DAGNF and TAGNF 

show melting points as well as subsequent decomposition points.  The thermal 

stability increases within the series AGNF (71°C melting with decomp.) < 

DAGNF (80°C m.p. / 82°C decomp.) < TAGNF (84°C m.p. / 105°C decomp.) 

< GNFH (69°C m.p. / 113°C decomp.) < ANF (116°C decomp.) < MNF 
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(118°C m.p. / 143°C decomp.). Figure 2.3 shows the DSC spectra of AGNF, 

DAGNF and TAGNF at different heating rates: 

 

 
 

 
 

 
 
Figure 2.3. DSC spectra of AGNF, DAGNF and TAGNF. Each spectrum was recorded at 
different heating rates to illustrate the dependency of heating rate and decomposition 
temperature.  
 
The spectra show the dependency of the decomposition temperatures on the 

heating rate. The decomposition temperatures of these three compounds cover 

a range of roughly 40°C when heated at a rate of 2°C min-1 compared to a rate 

of 20°C min-1. Table 2.1 summarizes the analytical data of ANF, MNF, GNFH, 

AGNF, DAGNF and TAGNF. 
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Table 2.1. Selected Analytical Data for ANF, MNF, GNFH, AGNF, DAGNF and TAGNF. 
 

Parameter ANF MNF GNFH AGNF DAGNF TAGNF 
1H NMR 

 δ / ppm: 
 

7.54 NH4+ 7.6 C-NH2 
 

6.90 C-NH2 
3.39 H2O 
 

8.52 NH-NH2 
6.94 C-NH2 
4.28 NH-NH2 
 

8.50 NH-NH2 
4.48 (C-NH2, NH-NH2) 
 

9.79 NH-NH2 
3.53 NH-NH2 

 

13C NMR  

δ / ppm: 
 

153.3 C(NO2)3- 159.9 R2C-NH2+ 

150.3 C(NO2)3- 
158.0 C(NH2)3+ 
150.3 C(NO2)3- 
 

158.9 H2N-NH=C(NH2)2+ 
150.3 C(NO2)3- 
 

159.9 (H2N-NH)2C=NH2+ 
150.4 C(NO2)3- 
 

161.8 C(H2N-NH)3+ 
150.6 C(NO2)3- 
 

14/15N NMR  

δ / ppm: 
 

-364 NH4+ 

-30   NO2 
 

-29.9 NO2 
 

-306 C-NH2 
-31   NO2 
 

-326 NH-NH2 
-311 NH-NH2 
-284 C-NH2 
-30  NO2 
 

-328 NH-NH2 
-313 NH-NH2 
-288 C-NH2 
-31      NO2 
 

-348 NH-NH2 
-283 NH-NH2 
-31   NO2 
 

 Raman/ 
 cm-1 
 

1273 νs (NO2) 

871 δ (NO2) 
 

1257 νs (NO2) 

870 δ (NO2) 
 

1299 νs (NO2) 

868   δ (NO2) 
 

1277 νs (NO2) 

869 δ (NO2) 
 

1247 νs (NO2) 

873 δ (NO2) 
 

1385 νs (NO2) 

868 δ (NO2) 
 

Mass  
Spectrometry 
 

18 (cation, FAB+) 
150 (anion, FAB-) 
 

127 (cation, FAB+) 
150 (anion, FAB-) 
 

60 (cation, FAB+) 
150 (anion, FAB-) 
 

75 (cation, FAB+) 
150 (anion, FAB-) 
 

90 (cation, FAB+) 
150 (anion, FAB-) 
 

105 (cation, FAB+) 
150 (anion, FAB-) 
 

DSC /  
°C (2°C/min) 
 

116  (decomp.) 118  (m.p.) 
143  (decomp.) 

69 (m.p.) 
113      (decomp.) 
 

71 (decomp.) 
 

80 (m.p.) 
82 (decomp.) 
 

84 (m.p.) 
105 (decomp.) 
 

Elemental  
Analysis /  
% (calc./found) 
 

N         (33.34 / )  
C         (7.15 / ) 
H         (2.40 / ) 
 

N         (45.48 / 44.59)  
C         (17.33 / 17.72) 
H         (2.55 / 2.81) 
 

N         (36.84 / 36.39)  
C         (10.53 / 10.36) 
H         (3.53 / 3.96) 
 

N         (43.55/ 42.84)  
C         (10.67 / 10.83) 
H         (3.13 / 3.22) 
 

N         (46.66 / 45.38)  
C         (10.00 / 10.42) 
H         (3.36 / 3.41) 
 

N         (49.41 / 48.75)  
C         (9.41 / 10.08) 
H         (3.56 / 3.32) 
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Crystal Structure Analysis 

 

The influence of the many factors that affect the geometry of the nitroformate 

anion is complex and has been the subject to several publications. (123, 125-126)  

Previously reported data include the results of ab initio calculations (125-126) and 

single crystal X-ray diffraction studies. (102, 106-108, 112, 115, 119, 127-136) Competition 

between slow crystal growth and decomposition of the nitroformate moiety is a 

problem when trying to obtain single crystals of salts containing the 

nitroformate anion which are suitable for X-ray diffraction.  Using Infrared and 

Raman spectroscopy, the decomposition of concentrated solutions of GNF, 

AGNF and DAGNF on standing at room temperature yielding the 

corresponding guanidinium nitrates could be observed. It is known that silver 

nitroformate solutions on standing decompose to form silver nitrate (Figure 

2.4). (119) 

 

 
Figure 2.4. Decomposition of the trinitromethanide anion. 
 
In much the same way, GNF, AGNF and DAGNF are expected to decompose 

with the formation of the corresponding guanidinium nitrates.  However, a 

systematic study of the crystal structure was of interest to us in order to obtain 

reliable values for the density, cell volume and the number of formula units per 

unit cell, in order to be able to predict performance data for these energetic 

materials.  Crystals suitable for X-ray diffraction were therefore measured as 

soon as they were obtained. Detailed structural parameters of all compounds 

determined using single crystal X-ray diffraction are provided in the appendix 

(Chapter 4).  
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Potassium Nitroformate (KNF) 

 

In addition to the two previously described single crystal structures of KNF, 
(102, 119) it was possible to obtain a further third polymorph in this work on 

recrystallizing potassium nitroformate from acetone at room temperature.  

This polymorph of potassium nitroformate 1 crystallizes in the space group 

P21/n (no.14) with four formula units per unit cell.  The dihedral angles of the 

nitro groups relative to the central C-N3 moiety are 23° (N1, Fig. 2.5), 10° (N2, 

Fig. 2.5) and 38° (N3, Fig. 2.5). The density obtained from single crystal X-ray 

diffraction (2.325 g cm-3) is significantly higher than the density of the two 

previously reported polymorphs that have densities of 2.216 g cm-3 (102) and 

2.217 g cm-3. (119)  

 

 
 
Figure 2.5. ORTEP representation of the molecular structure of potassium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  
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Figure 2.6. Unit cell of potassium trinitromethanide, viewed along the c axis. 
 
Ammonium Nitroformate (ANF) 

 

Although ANF has been known for a long time, (98) surprisingly no single 

crystal structure had been reported prior to our work.  Crystals suitable for 

single crystal X-ray diffraction were obtained by recrystallization of ANF from 

propionitrile at room temperature. Ammonium nitroformate 2 crystallizes in 

the chiral tetragonal space group P41212 (no.92) with four formula units per 

unit cell.  The numbering of the atoms in Figure 2.7 indicates that the 

nitroformate anion lies on a special position having site symmetry along the 

C1-N1 bond which is part of a C2 axis.  The dihedral angles of the nitro groups 

relative to the central C-N3 moiety are 57° (N1, Fig. 2.7) and 1° (N2, Fig. 2.7). 

The hydrogen atoms of the ammonium group are disordered, resulting in two 
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tetrahedra that are twisted against each other.  In Figure 2.7 only one of the 

two tetrahedra is shown.  

 
Figure 2.7. ORTEP representation of the molecular structure of ammonium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  

 
Figure 2.8. Unit cell of ammonium trinitromethanide, viewed along the a axis. The 
hydrogen atoms of the ammonium cation have been ommited for clarity. 
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Hydrazinium Nitroformate (HNF) 

 

The single crystal structure of HNF was previously reported by Dickens in 

1967, (137) and has been extensively studied.  However, prior to this work, no 

further polymorph had been described.  The reported calculated density 

obtained from single crystal X-ray diffraction has a value of 1.93 g cm-3. (138)  A 

second modification with a calculated density of 1.938 g cm-3 was now obtained 

on recrystallizing HNF from ethyl acetate at room temperature.  Hydrazinium 

nitroformate 3 crystallizes in the space group P21/n (no.14) with four formula 

units per unit cell.  The structure reported by Dickens shows  two 

crystallographically independent nitroformate anions with dihedral angles for 

the nitro groups of 41°, 7°,  8° for the first anion, and of 74°, 4° and 5° for the 

second anion. (137)  The two corresponding hydrazinium cations are different 

and show staggered as well as eclipsed symmetry of the hydrogen atoms.  The 

second modification, however, consists of only one ion pair whereby the nitro 

groups of the anion have dihedral angles relative to the central C-N3 moiety of 

10° (N1, Fig. 2.9), 8° (N2, Fig. 2.9) and 77° (N3, Fig. 2.9), and the hydrogen 

atoms of the hydrazinium countercation show a staggered arrangement.  The 

N-N distance in the hydrazine ion is 1.446(3) Å which is in good agreement 

with the values of the N-N distances of the hydrazine cations in the previously 

described polymorph (1.44 ± 0.02 Å and 1.42 ± 0.02 Å) 

 
Figure 2.9. ORTEP representation of the molecular structure of hydrazinium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  
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Figure 2.10. Unit cell of hydrazinium trinitromethanide, viewed along the b axis. Yellow 
dashed lines indicate hydrogen bonding. 
 

Melaminium Nitroformate (MNF) 
 

Although two and three-fold protonated melaminium salts are known, (139) the 

reaction between melamine and nitroform only afforded a 1:1 adduct.  In the 

course of studying this reaction, however, several single crystal X-ray 

structures could be obtained. Two different modifications of MNF have been 

determined; a high density modification (MNFHD) with a density of 1.914 g cm-

3, and a low density modification (MNFLD) with a density of 1.771 g cm-3 (Figs. 

2.11 and 2.13). The high density modification of MNF crystallizes in the space 

group P21/n (no.14) with four formula units per unit cell, whereas the low 

density modification crystallizes in the chiral space group P21 (no.4) with two 

independent formula units.  
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Figure 2.11. ORTEP representation of the molecular structure of melaminium 
trinitromethanide (high density modification) in the crystalline state. Displacement 
ellipsoids are shown at the 50 % probability level.  
 

 
Figure 2.12. Unit cell of melaminium trinitromethanide (high density modification), viewed 
along the a axis. 
 
The asymmetric unit of the high density modification consists of one formula 

unit whereas the asymmetric unit of the low density modification consists of 

two independent formula units. The nitroformate anion in the high density 

modification shows dihedral angles of the three nitro groups of 16° (N7, Fig. 

2.11), 41° (N8, Fig. 2.11) and 8° (N9, Fig. 2.11), whereas the dihedral angles of 

the nitro groups of the two crystallographically independent nitroformate 

anions of the low density modification are 51° (N13, Fig. 2.13), 12° (N14, Fig. 
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2.13) and 6° (N15, Fig. 2.13) for the first anion and 81° (N16, Fig. 2.13), 6° (N17, 

Fig. 2.13) and 5° (N18, Fig. 2.13) for the second anion. 

 

 
Figure 2.13. ORTEP representation of the molecular structure of melaminium 
trinitromethanide (low density modification) in the crystalline state. Displacement ellipsoids 
are shown at the 50 % probability level.  

 
Figure 2.14. Unit cell of melaminium trinitromethanide (low density modification), viewed 
along the a axis. 
 
In addition, two further structures of MNF could be obtained by 

recrystallizing MNF from either dimethylsulfoxide or methanol.  The 1:1 co-

crystal of MNF and DMSO crystallizes in the space group P1 with two 

formula units per unit cell, whereas the 1:1 co-crystal of MNF and MeOH 

crystallizes in the space group P21/c with four formula units per unit cell. The 
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asymmetric unit of MNF · MeOH (Fig. 2.15) consists of one formula unit 

whereas the asymmetric unit of MNF · DMSO (Fig. 2.17) consists of two 

independent formula units.  

 
Figure 2.15. ORTEP representation of the molecular structure of melaminium 
trinitromethanide · methanol (1:1) in the crystalline state. Displacement ellipsoids are shown 
at the 50 % probability level.  

 
Figure 2.16. Unit cell of melaminium trinitromethanide · methanol (1:1), viewed along the b 
axis. 

 

The nitroformate anion in MNF · MeOH shows dihedral angles for the three 

nitro groups of 4° (N1, Fig. 2.15), 88° (N2, Fig. 2.15) and 2° (N3, Fig. 2.15), 

whereas the dihedral angles of the nitro groups of the two independent 

nitroformate anions in MNF · DMSO are 82° (N13, Fig. 2.17), 9° (N14, Fig. 
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2.17) and 7° (Fig. 2.17) for the first anion and 86° (N16, Fig. 2.17), 3° (N17, N18 

Fig. 2.17) for the second anion. 

 
Figure 2.17. ORTEP representation of the molecular structure of melaminium 
trinitromethanide · dimethylsulfate (1:1) in the crystalline state. Displacement ellipsoids are 
shown at the 50 % probability level.  

 
Figure 2.18. Unit cell of melaminium trinitromethanide · dimethylsulfate (1:1), viewed 
along the b axis. 
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Guanidinium Nitroformate Hydrate (GNFH) 

 

The X-ray structure of guanidinium nitroformate hydrate (GNFH) consists of 

a two dimensional layer of guanidinium cations, nitroformate anions and water.  

The anion shows both the characteristic planar C-N3 moiety and the typical 

conformation of the nitro groups, which has been previously described in the 

literature. (140)  Two of the nitro groups (Fig. 2.19) are almost co-planar with 

ONCN torsion angles of 5°, whereas the third nitro group is twisted with a 

ONCN torsion angle of 81°. The C-N3 moiety in the guanidinium cation is 

planar as expected, and the hydrogen atoms of the amino groups are slightly 

twisted out of plane with HNCN torsion angles of 1°, 3° and 9°. 

 

 
Figure 2.19. ORTEP representation of the molecular structure of guanidinium 
trinitromethanide · water (1:1) in the crystalline state. Displacement ellipsoids are shown at 
the 50 % probability level.  

 
Two anions form hydrogen bonds with one in-plane nitro group towards two 

amino groups of the cation. The remaining hydrogen atoms of the guanidinium 

cation show hydrogen bonding to the neighboring water molecule.  The third 

nitro group, which is almost perpendicular to the C-N3 moiety, is not involved 

in the formation of hydrogen-bonds.  Both planar nitro groups of the anion 

form a pair of chains with the guanidinium cation, which are interrupted by a 

chain of water (Fig. 2.20). 
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Figure 2.20. Unit cell of guanidinium trinitromethanide · water (1:1), viewed along the a 
axis. 
 
Aminoguanidinium Nitroformate (AGNF) 

 

Single crystals of aminoguanidinium nitroformate (AGNF) were obtained by 

recrystallizing AGNF from propionitrile at room temperature.  Since the above 

mentioned competition between formation of single crystals and decomposition 

is a major issue in this case, crystals formed in the saturated solution were 

measured immediately.  In contrast to the C2v like orientation of the nitro 

groups found in GNFH, the nitro groups aminoguanidinium nitroformate are 

twisted in a propeller-like manner (Fig. 2.21) with dihedral angles of 25°, 17° 

and 36°. 

 

 
Figure 2.21. ORTEP representation of the molecular structure of aminoguanidinium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  
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The b-c plane of the single crystal reveals an alternating, chessboard pattern of 

the anions and the cations (Fig. 2.22), whereas along the a axis the structure of 

AGNF is composed of chains of alternating cations and anions. 

 

 
 
Figure 2.22. Unit cell of aminoguanidinium trinitromethanide, viewed along the b axis. 
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Diaminoguanidinium Nitroformate (DAGNF) 

 

The solid state structure of diaminoguanidinium nitroformate (DAGNF)  

showed a further possible configuration for the nitroformate anion, whereby 

one nitro group lies nearly in plane (6°) with respect to the central C-N3 

moiety, and the other nitro groups are slightly twisted out of the plane (21° 

and 35°) (Fig. 2.23). 

 
Figure 2.23. ORTEP representation of the molecular structure of diaminoguanidinium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  
 
In this structure, the view along the b axis of the unit cell (Fig. 2.24) reveals an 

alternating arrangement of layers of cations and the anions whereby the planes 

of the corresponding layers are perpendicular to each other. 

 
Figure 2.24. Unit cell of diaminoguanidinium trinitromethanide, viewed along the b axis. 
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Triaminoguanidinium Nitroformate (TAGNF) 

 

In GNFH as well as AGNF both the anions and the cations lie in a common 

plane concerning the C-N3 moieties, whereas triaminoguanidinium 

nitroformate (TAGNF) can be compared with DAGNF in that the C-N3 

moieties of the cation and the anion are perpendicular to each other (Fig. 2.25).  

 

 
Figure 2.25. ORTEP representation of the molecular structure of triaminoguanidinium 
trinitromethanide in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level.  
 

The structure reveals the characteristic C2v like conformation of the nitro 

groups of the nitroformate anion. Two of the nitro groups are almost co-planar 

with ONCN torsion angles of 4° and 1° respectively, whereas the third nitro 

group is twisted with a ONCN torsion angle of 86° (Fig. 2.25).  The central C-

N3 moiety is planar, as was also observed for GNFH, AGNF and DAGNF.  

According to our calculations using Gaussian 03, (141) the calculated structure 

of the triaminoguanidinium cation is planar in the gas phase at the MP2 level 

of theory using a ccPVDZ basis set, whereas the amino groups of the X-ray 

structure are slightly twisted out of the plane with NCNN torsion angles of 

10°, 9° and 7°.  
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Figure 2.26. Unit cell of triaminoguanidinium trinitromethanide, viewed along the c axis. 
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Thermal Stability, Sensitivity and Performance Data 

 

The sensitivity data of ANF, MNF, GNFH, AGNF, DAGNF and TAGNF 

were measured in order to establish safe handling procedures for these 

compounds.  Two different instruments were used to determine the friction 

and impact sensitivity: the Bundesanstalt für Materialforschung und Prüfung 

(BAM) drop hammer (BAM fh (Fallhammer)) and friction tester (BAM ft). (142)  

GNFH was found to meet the United Nations (UN) recommendations for the 

transport of dangerous goods, with a friction sensitivity of greater than 360 N 

and an impact sensitivity of greater than 29.6 J.  In contrast, great care should 

be taken when handling the other salts (Table 2.3) which are considerably 

more sensitive.  The sensitivity data and the thermal behaviour of the series of 

guanidinium nitroformate salts appear to follow a general trend.  The 

sensitivity towards friction and impact increases within the series AGNF < 

DAGNF < TAGNF, as does the thermal stability.  GNFH is the least sensitive 

compound and also shows the highest decomposition point in the series of 

guanidinium nitroformate salts investigated.  Hydrogen bonding between 

GNF and water stabilizes this compound. ANF, MNF, GNFH, AGNF, 

DAGNF and TAGNF showed no sensitivity towards electrostatic discharge. 

Calorimetric measurements of the energies of combustion of nitro compounds 

present considerable difficulties because the compounds often explode on 

exposure to heat or mechanical shock. (143)  The heats of combustion for nitro 

compounds are usually lower than for hydrocarbons, and the handling of larger 

quantities of such substances is dangerous because of the possible change from 

combustion to detonation.  In addition, it is difficult to obtain accurate values 

for the enthalpy of formation since the accurate determination of the enthalpy 

of combustion effects the accuracy of the derived enthalpy of formation.  The 

energies and heats of formation for ANF, HNF, MNF, GNF, AGNF, DAGNF 

and TAGNF were therefore calculated at the MP2 level of theory using an 

aug-cc-pVDZ basis set (Table 2.2).  The values for the heat of formation 

obtained from our calculations can be compared with the previously reported 

values for ANF (-47.3 ± 0.2 kcal mol-1), (144) HNF (-18.4 ± 0.3 kcal mol-1), (144) 

and GNF (-50.9 ± 0.3 kcal mol-1) (144) which were determined using both 

combustion calorimetry and reaction calorimetry.  Although the previously 
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reported values for HNF and GNF appear to deviate from our calculated 

values, they are in good agreement, since according to our experimental 

results, GNF can only be obtained as a monohydrate, and the previously 

reported experimental value most probably corresponds to the hydrate GNFH, 

whereas our calculated value is for anhydrous GNF. The difference in the two 

values for HNF can be explained by the stoichiometric equation used for the 

combustion of the salts.  The experimental value for the heat of formation of 

HNF is reported to be -18.4 kcal mol-1 assuming the physical state of the water 

being formed during combustion to be liquid whereas a value of +7.6 kcal mol-1 

can be obtained assuming the physical state to be gaseous.  

 
Table 2.2. Calculated energies and heats of formation. 

 M ρ ΔHL ΔUL ΔH 0f ΔU 0f 

ANF 168.10 1.910 132.4 131.2 -35.9 -792 
HNF 183.09 1.938 

1.930 
1.890 
1.860 

130.0 
129.8 
129.1 
128.5 

128.8 
128.6 
127.9 
127.3 

+0.8 
+1.0 
+1.7 
+2.3 

+125.7 

MNF 277.20 1.914 116.2 115.0 -3.7 +42.4 
GNF 210.10 1.695 121.2 120.0 -35.3 -597.4 
AGNF 225.15 1.766 120.0 118.8 -9.5 -66.9 
DAGNF 240.16 1.702 117.1 115.9 +19.4 +451.2 
TAGNF 255.18 1.689 115.0 113.8 +59.1 +1085.4 

Notes. M = molar mass / g mol-1, ρ = density obtained from single crystal X-ray diffraction 
studies / g cm-3, ΔHL = lattice enthalpy / kcal mol-1, ΔUL = lattice energy / kcal mol-1, ΔH 0f 

= enthalpy of formation / kcal mol-1, ΔU 0f = energy of formation / kJ kg-1 
 
By applying the theoretical maximum density (TMD) values obtained from the 

crystal structure determination and the calculated energy of formation, the 

performance parameters of ANF, HNF, MNF, GNF, AGNF, DAGNF and 

TAGNF were calculated using the programme EXPLO5 (v. 5.02) (145-149) and 

are summarized in Table 2.3. 
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Table 2.3. Calculated performance data and experimental sensitivity data of ANF, HNF, MNF, GNF, AGNF, DAGNF, TAGNF and comparison 

with TNT and RDX. 

 ρ Ω 
 

Qv 
 

V0 

 
Tex 

 
P 
 

D 
 

impact 
sensitivity  

friction 
sensitivity  

ANF 1.910 +19.0 -4328 800 3575 312 8532 3 96 
HNF 1.938 

1.930 
1.890 
1.860 

+13.1 
+13.1 
+13.1 
+13.1 

-5451 
-5452 
-5447 
-5443 

826 
826 
826 
826 

4085 
4057 
4086 
4107 

380 
368 
354 
344 

9286 
9146 
9028 
8948 

15 (150) 25 (150) 

MNF 1.914 -31.8 -4729 764 3579 329 8693 - - 
GNF 1.695 -7.6 -5250 853 4012 290 8558 30 > 360 
AGNF 1.766 -10.7 -5617 854 4091 328 8877 10 144 
DAGNF 1.702 -13.3 -5853 873 4209 317 8846 5 32 
TAGNF 1.689 -15.7 -6274 885 4358 330 8982 2 20 
TNT 1.64 (151) -74 -5089 622 3741 202 

210a) (152) 
7150 
6900a) (151) 

15 (151) > 353 (151) 

RDX 1.80 (152) 
 

-21.6 -6034 796 4334 340 
347a) (153) 

8882 
8750a) (153) 

7.4 (153) 120 (153) 

Notes. a) experimental value, D = ρ / g cm-3 , Ω = oxygen balance / %, Qv = heat of explosion / kJ kg, V0 = volume of gaseous detonation 
products / L kg -1, Tex = explosion temperature / K, P = detonation pressure / kbar, D = speed of detonation / m s-1, impact sensitivity / J, 
friction sensitivity / N. 
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A comparison of the calculated values of TNT and RDX with their 

corresponding experimental values is included in Table 2.3 and shows that the 

calculated values obtained using this method are in good agreement with the 

experimental values.  The theoretically predicted values for the velocity of 

detonation and the detonation pressure for ANF, HNF, MNF, GNF, AGNF, 

DAGNF and TAGNF all lie within the range expected for high explosives 

such as RDX and are even superior compared to TNT, while at the same time 

releasing larger amounts of gaseous decomposition products and having a 

more favourable oxygen balance.  Of all the compounds studied in this work, 

HNF has the highest predicted values for the detonation pressure (380 kbar) 

and the velocity of detonation (9286 m s-1), whereas ANF shows the most 

positive oxygen balance with a value of +19%.  Of the new compounds studied, 

TAGNF is not only thermally more stable in contrast to AGNF and DAGNF 

which decompose on standing at room temperature after several hours, it also 

shows the highest predicted values for the detonation pressure (330 kbar) the 

speed of detonation (8982 m s-1).  Furthermore, TAGNF is predicted to release 

the largest amount of gaseous detonation products (885 L kg-1) and display the 

highest positive heat of formation (+59.1 kcal mol-1).  
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Experimental  

 

Caution! 

 

Salts containing the nitroformate anion are energetic materials.  Proper 

protective measures (safety glasses, face shields, leather coat, earthening 

(equipment and person), Kevlar™ gloves and ear plugs) should be used when 

handling these materials.  

 

All reagents and solvents were used as received (Aldrich, Fluka) if not stated 

otherwise. Nitroform, potassium nitroformate and silver nitroformate were 

prepared according to literature procedures. (119)  The thermal behaviour of the 

salts was investigated in a nitrogen atmosphere using differential scanning 

calorimetry (Perkin-Elmer Pyris 6 DSC or Linseis DSC PT-10) at heating 

rates of 2°C min-1. 1H, 13C and 14/15N NMR spectra were recorded using a Jeol 

Eclipse 270, Jeol EX 400 or Jeol Eclipse 400 instrument operating at 400 MHz 

(1H), 100.6 MHz (13C), 40.5 MHz (15N) and 28.9 MHz (14N).  All chemical shifts 

are quoted in ppm relative to TMS (1H, 13C) or nitromethane (14N). Infrared 

(IR) spectra were recorded using a Perkin-Elmer Spektrum One FT-IR (using 

KBr disks) or a Perkin-Elmer Spektrum BX FT-IR (pure substance) 

instrument. Raman spectra were measured using a Perkin Elmer Spektrum 

2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm).  

Elemental analyses were performed with a Netsch Simultanous Thermal 

Analyser STA 429.  Two different instruments were used to determine the 

friction and impact sensitivity: the Bundesanstalt für Materialforschung und 

Prüfung (BAM) drop hammer (BAM fh (Fallhammer)) and friction tester 

(BAM ft). (154)  The initial electrostatic sensitivity was tested using a  

20 kV Tesla-coil spark device. (155) 
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Tetranitromethane (TNM) 

 

44 mL of 100% HNO3 (1.08 mol) were filled into a three necked round bottom 

flask and cooled with an ice bath. To this, a solution of 50 mL acetic acid 

anhydride containing 0.4 mL of sulfuryl chloride was added dropwise within 

half an hour.  The temperature of the reaction mixture was kept below 15°C.  

Subsequently, 50 mL of acetic acid anhydride containing 2 mL of sulfuryl 

chloride were added to the reaction mixture in the same way.  The reaction 

flask containing a slight yellow solution was then protected from light with 

silver foil and left standing for seven days.  Then the solution was put onto 100 

mL of ice water in a separating funnel.  Two layers formed, one yellow upper 

phase and one colourless phase at the bottom.  The colourless phase was 

washed ten times with 10 mL of water and then with 20 mL of a water solution 

containing ten percent sodium carbonate affording pure tetranitromethane 

(Fig. 2.27). 

 
Figure 2.27. Isolation of Tetranitromethane. The reaction mixture is poured onto ice water 
and separates as heavy phase (left picture). NMR pure tetranitromethane is obtained as a 
colourless liquid after several washings using sodium bicarbonate (right picuture). 
 
44.3 g of TNM were obtained which corresponds to a yield of 83.7 % related to 

HNO3. m.p.: 13.0 - 14.0°C; 13C NMR (DMSO-d6) δ: 116.5 (Cq); 14N NMR 

(DMSO-d6) δ: -48.3 (-NO2, Δν1/2 = 4.4Hz); ν (KBr, r.t.)[cm-1]:  Raman (250mW, 

protection shield, 50 scans, 2 cm-1, r.t.) ν [cm-1]: 1647 [νas(NO2),(10)], 1615 

[νas(NO2),(10)], 1343 [νs (NO2),(18)], 1276 [νs (NO2),(12)], 998 (5), 862 [C-NO2, 
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(100)], 801 [C-NO2, (4)], 605 [δs (NO2),(5)], 414 [δC-N, (18)], 358 [δC-N, (82)], 227 

[δC-N, (11)], 197 [δC-N , (12)]. 
 

Potassium Nitroformate (KNF) 

 

Potassium nitroformate was prepared according to the literature. (119)  

Potassium hydroxide (111mg, 2 mmol) and glycerol (183 mg, 2 mmol) was 

dissolved in 5 mL of water and stirred at ice bath temperature.  To this 

solution, were added portion-wise over a period of ten minutes, 130 mg of 

tetranitromethane (0.66 mmol). The ice-bath was removed and the reaction 

mixture was allowed to warm up to room temperature and stirred for one hour. 

The precipitate was filtered off and washed with 2 mL of diethylether. The 

mother liquor was used again instead of the 5 mL of water used initially and 

the procedure was repeated. Crystals suitable for single X-ray crystallography 

were obtained by recrystallizing potassium nitroformate from nitromethane at 

room temperature and were measured immediately. 

The yield was 180 mg (72%) of bright yellow KNF. m.p.: 83°C (decomp. with 

evolution of gas); 13C NMR (DMSO-d6) δ: 150.8 (C(NO2)3); 14N NMR (DMSO-

d6) δ:  -30.3 (-NO2, Δν1/2 =  22.3 Hz); Raman (100 mW, protection shield, 60 

scans, 4cm-1) ν [cm-1]: 1508(5), 1466 (3), 1422 (6), 1394 (38), 1291 (34), 1272 

(100), 1246 (21), 1168 (7), 873 (35), 794 (11), 719 (7), 465 (8), 442 (3), 283 (6), 

257 (14), 155 (12), 113 (8); UV-VIS (Acetone): 349 nm (E=0.525); m/z (FAB-

/NBA): 150 [C(NO2)3-, vs], 62 [NO3-, w], 46 [NO2-, m]; Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 

 

Nitroform (NFM) 

 

313 mg of KNF (1.66 mmol) were suspended in 2.5 mL of pentane and cooled 

with an ice bath. To this suspension 1 mL of concentrated sulfuric acid (98%) 

was given dropwise over a period of ten minutes. The sulfuric acid turned 

yellow at once.  After two hours the color had disappeared and the sulfuric acid 

was extracted ten times with 2 mL of pentane. Alternatively, the potassium salt 

of trinitromethane can be acidifiend using gaseous hydrochloric acid (Fig. 
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2.28). In order to isolate the nitroform as a white solid, the collected pentane 

phases were treated with a current of nitrogen.  Because of the heat of 

evaporation of pentane it was ensured that the precipitating white nitroform 

crystals would not liquefy and clean product was obtained.  

 
 
Figure 2.28. Synthesis of trinitromethane from potassium nitroformate. Dry potassium 
nitroformate is suspended in pentane and acidified using gaseous hydrochloric acid (left 
picture) affording a colourless solution of trinitromethane in pentane after a few minutes. On 
passing a stream of nitrogen over the pentane solution, trinitromethane precipitates from 
the solution in high yield and purity (right picture). 
 

The yield was 157.5 mg (63%); m.p.: 25.4°C ; 1H NMR (CDCl3) δ: 7.46 (s, 1H, 

H-C(NO2)3); 13C NMR (CDCl3) δ: 114.4 (sept., 1C, J 8.7 Hz,  H-C(NO2)3); 14N 

NMR (DMSO-d6) δ: -38.3 (-NO2, Δν1/2 =  7.2 Hz); ν (gas, -196°C defrost)[cm-

1]:  3063 [ν(CH)], 1618 [s, νas(NO2)], 1608 [s, νas(NO2)], 1303 [s, νs(NO2) 

antiphase], 947 [w, ν(CN)], 845 [δ(NO2) synphase], 779 [s, δ(NO2) antiphase], 
630 [w, w(NO2)], 569 [w, w(NO2)];  Raman (100 mW, protection shield, 40 

scans, 0°C, 2 cm-1 ) ν [cm-1]: 3029 (25), 2758 (5), 1626 (49), 1611 (24), 1375 (50), 

1327 (22), 1309 (36), 1243 (26), 950 (69), 943 (57), 840 (51), 774 (22), 628 (36), 

574 (21), 405 (100), 375 (95), 237 (12), 204 (18), 121 (14); m/z (CI+, NH3) 152 

[(M+1)(0,6)], 105 [(M-NO2)(0,07)], 46 [(NO2)(100)], 30,0 [(NO)(32,6)]. 
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Ammonium Nitroformate (ANF) 

 

Ammonium nitroformate was prepared according to the literature. (98)  Crystals 

suitable for X-ray diffraction were obtained by recrystallizing ANF from 

propionitrile at room temperature. 

m.p.: 116 °C (onset, decomp., Linseis DSC); ν~  (pure substance, solid) [cm-1]: 
3222 (m), 1681 (w), 1533 (m), 1460 (m), 1415 (s), 1375 (s), 1247 (s), 1147 (s), 

1006 (m), 926 (m), 869 (m), 823 (w), 788 (s), 735 (s), 689 (m); Raman (200 mW,  

100 scans, 2 cm-1, protection shield) ν~  [cm-1]: 3172 (4), 2986 (7), 1610 (7), 1535 

(6), 1515 (6), 1475 (10), 1380 (43), 1349 (19), 1310 (28), 1273 (72), 1225 (39), 

1156 (36), 1138 (25), 871 (100), 859 (35), 791 (12), 727 (10), 466 (24), 443 (18), 

415 (20), 396 (16), 375 (21), 275 (23); m/z (FAB+, NBA): 18 [NH4+, w]; (FAB-, 

NBA): 150 [(C(NO2)3-), vs]; 1H NMR ([D6]acetone) δ: 7.54 (NH4+, t); 13C NMR 

([D6]acetone) δ: 153.3 (C(NO2)3-); 14N NMR ([D6]acetone) δ: -30 (NO2), -364 

(NH4+); C1H4N4O6: calc.: N: 33.3 %, C: 7.2 %, H: 2.4 %; found: N: 33.5 %, C: 7.6 

%, H: 2.7 %; Details of the single crystal X-ray diffraction experiment are listed 

in the appendix (Chapter 4). 

 

Silver Nitroformate Hydrate (AgNFH) 

 

258 mg of freshly prepared and moist silver oxide (1.11 mmol) were suspended 

in 5 mL of water and the suspension was filtered. 

146 mg of nitroform (0.97 mmol) were dissolved in 5 mL of freshly distilled 

diethylether and cooled with an ice-bath.  Freshly filtrated and moist silver 

oxide was then added to this solution while stirring vigorously.  After fifteen 

minutes, the reaction mixture was filtered and the solvent removed affording 

bright yellow crystals. Single crystals suitable for X-ray structure 

determination were obtained by recrystallizing these crystals from water and 

were immediately measured. 185 mg of yellow silver nitroformate 

monohydrate were obtained (74% yield). 

m.p.: 70°C (decomp. with evolution of gas); 13C NMR (DMSO-D6) δ: 150.4 

(C(NO2)3); 14N NMR (DMSO-D6) δ: -29.9 (-NO2, Δν1/2 =  13.5 Hz); Raman (100 

mW, protection shield, 100 scans, 4cm-1) ν [cm-1]: 1463 (14), 1379 (78), 1257 
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(87), 1153 (35), 878 (100), 791 (13), 722 (8), 473 (16), 455 (15), 420 (8), 280 

(16), 166 (24); UV-VIS (Acetone): 349 nm (E=0.382); m/z (FAB-, NBA): 150 

[(C(NO2)3-), vs], 104 [(C(NO2)2-, w], 46 [(NO2), w]; Details of the single crystal 

X-ray diffraction experiment are listed in the appendix (Chapter 4). 

 

Hydrazinium Nitroformate (HNF) 

 

Hydrazinium nitroformate was prepared according to the literature. (156)  

Crystals suitable for X-ray diffraction were obtained by recrystallizing HNF 

from ethyl acetate at room temperature. Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 

 

Melaminium Nitroformate (MNF) 

 

Melaminium nitroformate was prepared according to the literature. (157)  

Crystals suitable for X-ray crystallography were obtained by recrystallizing 

MNF from acetone (high density modification and low density modification) 

dimethylsulfoxide (DMSO adduct) or methanol (methanol adduct) at room 

temperature.  

m.p.: 118 °C (onset, Linseis DSC), 143 °C(onset, Linseis DSC); ν~  (pure solid 

substance) [cm-1]: 3446 (w), 3367 (m), 3317 (m), 3149 (m), 2960 (m), 1712 (m), 

1645 (s), 1613 (s), 1509 (s), 1467 (s), 1409 (s), 1367 (m), 1338 (m), 1263 (s), 

1213 (s), 1124 (s), 995 (s), 976 (s), 869 (m), 792 (s), 773 (s), 744 (s), 732 (s), 688 

(m); Raman (200 mW,  200 scans, 1 cm-1) ν~  [cm-1]: 3330 (6), 2989 (6), 1696 (8), 

1650 (7), 1596 (8), 1557 (9), 1520 (18), 1504 (13), 1479 (13), 1410 (16), 1375 

(48), 1257 (100), 1223 (68), 1156 (32), 1127 (45), 980 (13), 870 (96), 797 (22), 

739 (8), 723 (12), 687 (61), 578 (16), 562 (26), 478 (18), 444 (13), 384 (15), 279 

(23), 195 (14), 161 (13), 137 (14); 1H NMR ([D6]acetone) δ:  7.6 (s, NH2); 13C 

NMR ([D6]acetone) δ: 159.9 (C3, H7N6+), 150.3  (C(NO2)3-); 14N NMR 

([D6]acetone) δ: -29.9 (NO2); C4H7N9O6: calc.: N: 45.48 %, C: 17.33 %, H: 2.55 

%; found: N: 44.59 %, C: 17.72 %, H: 2.81 %; Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 
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Guanidinium nitroformate (GNF) 

 

To an ice-cooled suspension of 108.3 mg of guanidinium chloride (1.1 mmol) in 

6 mL freshly distilled acetonitrile, a solution of 222 mg silver nitroformate (0.8 

mmol) dissolved in 7.6 mL of freshly distilled acetonitrile was added drop-wise 

over a period of 10 minutes.  Silver chloride precipitated instantly.  The 

reaction mixture was stirred for a further 2.5 hours.  The reaction mixture was 

allowed to warm up to room temperature and was then stirred for further 2 

hours.  The precipitated silver chloride was then filtered off and washed with 4 

mL of acetonitrile. In order to isolate GNFH, the solvent was first removed 

using a rotary evaporator affording a yellow, highly viscous liquid.  The 

remaining solvent was removed using high vacuum. GNFH was obtained as a 

bright yellow solid. 

m.p.: 69°C (PE DSC), 113°C (decomp., PE DSC); ν~  (KBr pellets) [cm-1]: 3397 

(m), 3280 (w), 3197 (w), 2917 (w), 2851 (w), 1662 (m), 1640 (m), 1513 (m), 1495 

(m), 1421 (m), 1358 (w), 1272 (s), 1177 (m), 1144 (w), 976 (w), 866 (w), 794 (m), 

733 (m), 515 (w); Raman (200 mW, 100 scans, 4 cm-1, protection shield) ν~  [cm-

1]: 3287 (3), 1528 (11), 1470 (10), 1388 (63), 1299 (37), 1244 (35), 1155 (46), 

1055 (12), 1013 (63), 868 (100), 789 (15), 728 (13), 533 (24), 472 (25), 442 (15), 

252 (17); m/z (FAB+, NBA): 213 [(C(NH2)3+ + NBA), s], 119 [(C(NH2)3+ + 

HN=C(NH2)2), m], 60 [(C(NH2)3+), vs]; (FAB-, NBA): 360 [(2 C(NO2)3- + 

C(NH2)3+), s], 303 [(C(NO2)3- + NBA), m], 150 [(C(NO2)3-), vs], 104 [(C(NO2)2-), 

w]; 1H NMR ([D6]DMSO) δ: 6.90 (NH2), 3.39 (H2O); 13C NMR ([D6]DMSO) δ: 

158.0 (C(NH2)3+), 150.3 (C(NO2)3-); 15N  NMR ([D6]DMSO) δ: -31 (NO2), -306 

(NH2); C2H8N6O7: calc.: N: 36.8 %, C: 10.5 %, H: 3.5 %; found: N: 36.4 %, C: 

10.4 %, H: 3.9 %; Details of the single crystal X-ray diffraction experiment are 

listed in the appendix (Chapter 4). 
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Aminoguanidinium nitroformate (AGNF) 

 

124.8 mg of aminoguanidinium chloride (1.1 mmol) were suspended in 3 mL of 

freshly distilled acetonitrile and cooled with an ice bath.  To this suspension 

was added a solution of 222 mg silver nitroformate (0.8 mmol) in 7.6 mL 

freshly distilled acetonitrile drop-wise over a period of 10 min.  After stirring 

the reaction mixture for a further 30 minutes, the ice bath was removed.  The 

mixture was stirred for an additional 75 minutes and the silver chloride 

precipitate was filtered off.  The solvent was removed using a rotary 

evaporator. After removal of the remaining acetonitrile from the highly viscous 

liquid using high vacuum, a bright yellow solid was obtained (Fig. 2.29) 

 
 
Figure 2.29. Sample of bright yellow aminoguanidinium nitroformate. 

 

m.p.: 71°C (decomp., PE DSC); ν~  (KBr pellets) [cm-1]: 3447 (m), 3362 (m), 3297 

(m), 2917 (w), 2846 (w), 2181 (w), 1657 (s), 1512 (s), 1495 (s), 1421 (m), 1272 

(s), 1177 (s), 984 (w), 943 (w), 866 (w), 794 (m), 733 (m), 614 (w), 499 (w); 

Raman (100 mW, 20 scans, 2 cm-1, protection shield) ν~  [cm-1]: 3282 (1), 1487 

(10), 1465 (6), 1380 (76), 1333 (10), 1277 (100), 1244 (56), 1197 (16), 1163 (17), 

960 (10), 869 (93), 793 (13), 788 (13), 721 (11), 501 (19), 445 (15), 273 (18), 262 

(16),  156 (12); m/z (FAB+, NBA): 167 [(H2N-HN=C(NH2)2+ + NBA + H2O), 

m], 149 [(H2N-N=C(NH2)2+ + H2N-N=C(NH2)2),vs]; (FAB-, NBA): 150 

[(C(NO2)3-), vs]; 1H NMR ([D6]DMSO) δ: 8.52, 6.94, 4.28; 13C NMR 

([D6]DMSO) δ: 158.9 ((H2N-HN=C(NH2)2+), 150.3 (C(NO2)3-); 15N NMR 

([D6]DMSO) δ: -30 (NO2), -284 (C-NH2), -311 (NH-NH2), -326 (NH-NH2); 

C2H7N7O6: calc.: N: 43.6 %, C: 10.7 %, H 3.1 %; found: N: 42.8 %, C: 10.8 %, 3.2 

%; Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
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Diaminoguanidinium nitroformate (DAGNF) 

 

A solution of 182 mg silver nitroformate (0.66 mmol) in 5 mL of acetonitrile 

was added dropwise over a period of 10 minutes to a suspension of 85.5 mg 

diaminoguanidinium chloride (0.69 mmol) in 2 mL of acetonitrile at 0°C.  The 

reaction mixture was stirred for a further 40 minutes.  The reaction mixture 

was then allowed to warm up to room temperature and was stirred for a 

further 2 hours.  The silver chloride precipitate was filtered off and the solvent 

was removed using a rotary evaporator.  The highly viscous yellow liquid was 

dried using high vacuum affording a bright yellow solid. 

m.p.: 80°C (PE DSC), 82°C (decomp., PE DSC); ν~  (KBr pellets) [cm-1]: 3432 

(m), 3307 (s), 3247 (w), 2978 (w), 2554 (w), 2175 (w), 1682 (s), 1621 (m), 1512 

(s), 1495 (s), 1421 (s), 1352 (w), 1270 (s), 1177 (s), 992 (m), 957 (m), 869 (w), 

794 (s), 733 (s), 653 (w), 549 (w); Raman (200 mW, 100 scans, 4 cm-1, 

protection shield) ν~  [cm-1]: 3299 (3), 1379 (66), 1247 (100), 1184 (33), 1158 

(25),  873 (81), 793 (12), 725 (9), 277 (19), 152 (14); m/z (FAB+, NBA): 243 

[(H2N=C(NH-NH2)2+ + NBA), w], 90.1 [(H2N=C(NH-NH2)2+, vs], 89.1 

[(HN=C(NH-NH2)2, m]; m/z (FAB-, NBA): 303 [(C(NO2)3- + NBA), w], 150 

[(C(NO2)3-), vs]; 1H NMR ([D6]DMSO) δ: 8.50 (NH-NH2), 4.48 (C-NH2, NH-

NH2); 13C NMR ([D6]DMSO) δ: 159.9 ((H2N-C(NH-NH2)2)+), 150.4 (C(NO2)3-); 
15N NMR ([D6]DMSO) δ: -31 (NO2), -288 (C-NH2), -313 (NH-NH2), -328 (NH-

NH2); C2H8N8O6: calc.: N: 46.7, C: 10.0 %, H: 3.4 %; found: N: 45.4 %, C: 10.4%, 

H: 3.4 %; Details of the single crystal X-ray diffraction experiment are listed in 

the appendix (Chapter 4). 
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Triaminoguanidinium nitroformate (TAGNF) 

 

To a suspension of 185 mg triaminoguanidinium chloride (1.33 mmol) in 2 mL 

of freshly distilled acetonitrile, a solution consisting of 363 mg (1.32 mmol) 

silver nitroformate and 10 mL of acetonitrile was added dropwise within a 

period of 10 minutes at 0°C.  The reaction mixture was then stirred for a 

further 40 minutes.  The solution was allowed to warm up to room 

temperature and stirred for a further 70 minutes.  

After removing the precipitated silver chloride from the reaction mixture, the 

solution was concentrated using the rotary evaporator.  A highly viscous 

yellow liquid was obtained.  The remaining solvent was removed using high 

vacuum, whereby a bright yellow solid could be obtained. 

m.p.: 84°C (PE DSC), 105°C (decomp., PE DSC); ν~  (KBr pellets) [cm-1]: 3317 

(m), 3210 (s), 1683 (m), 1614 (w), 1513 (s) 1421 (m), 1333 (w), 1276 (s), 1177 

(s), 1127 (m), 951 (m), 871 (w), 793 (s), 733 (s), 638 (w), 603 (m), 483 (w); 

Raman (200 mW, 200 scans, 4 cm-1, protection shield)ν~ [cm-1]: 3287 (6), 1648 

(25), 1461 (16), 1437 (15), 1385 (71), 1331 (38), 1260 (27), 1153 (67), 868 (100), 

789 (19), 735 (6), 470 (34), 430 (24), 152 (20); 

m/z (FAB+, NBA): 227 [(H2N-N=C(NH-NH2)2 + (C(NH-NH2)3+ + H2O), w], 
209 [(H2N-N=C(NH-NH2)2 + (C(NH-NH2)3+), w], 105 [(C(NH-NH2)3+, vs]; 1H 

NMR ([D6]acetone) δ: 9.79 (C(NH-NH2)3+),  3.53 (C(NH-NH2)3+); 13C NMR 

([D6]acetone) δ: 161.8 (C(NH-NH2)3+), 150.6 (C(NO2)3-); 15N NMR 

([D6]acetone) δ: -31 (C(NO2)3-), -283 (C(NH-NH2)3+), -348 (C(NH-NH2)3+); 

C2H9N9O6: calc.: N: 49.4 %, C: 9.4 %, H: 3.6 %; found: N: 47.8 %, C: 10.4 %, H: 

3.3 %; Details of the single crystal X-ray diffraction experiment are listed in 

the appendix (Chapter 4). 
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2.1.2 Salts of Nitric Acid 
 

 

Melaminium Dinitrate (MDN) 

 

Introduction 

 

Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich, planar compound 

which can form salts containing mono- or diprotonated melaminium cations. 

Melaminium nitrate was synthesised by Tanbug et al. and classified as a novel 

energetic material. (158) However, no sensitivity or performance data were 

reported. In the course of investigating oxygen-rich energetic materials, the 

earlier unknown nitrogen and oxygen-rich energetic salt melaminium dinitrate 

was readily obtained from the reaction between melamine and concentrated 

nitric acid. (159) The salt was characterized using vibrational spectroscopy (IR, 

Raman), multinuclear NMR spectroscopy and elemental analysis.  The thermal 

behaviour of MDN was monitored using differential scanning as well as 

isothermal long term calorimetry.  In addition, the impact, friction and 

electrostatic sensitivity data were measured. The crystal structure of MDN 

was determined using single crystal X-ray diffraction.  
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Sensitivity and Performance 

 

The friction and impact sensitivities were measured with a BAM drop-hammer 

and a BAM friction tester. The friction sensitivity of this compound was 

determined as being greater than 350 N, and the impact sensitivity more than 

30 J. The thermal long term stability was studied using a RADEX V5 Oven. 

Isothermal tempering of the substance showed that the substance is thermally 

stable for at least 48 hours at a temperature of 140°C 

 
Table 2.4. Performance Data of MDN and comparison to TNT. 

 MDN TNT 
sum formula C3H8N8O6 C7H5N3O6 
m.w. / g mol-1 252.2 227.1 
ρ / g cm-3 1.852(2) 1.64 (160) 
ΔfH0(s) / kcal mol-1 -149.8 -13.27 
ΔfU0(s) / kJ kg-1 -2377.3 -175 
Ω / % -25.4 -74.0 
Q / kJ kg-1 2977 5064 
Tex / K 2562 3749 
V0 / L kg-1 803 625 
PCJ / kbar 236 203 
D / m s-1 7723 7170 

 

Although MDN has a favourable oxygen balance (Ω = -25.4) and a combined 

oxygen and nitrogen content of greater than 80%, it shows a remarkable 

thermodynamic stability (Tdecomp. = 330 °C). It was found to meet the United 

Nations (UN) recommendations for the transport of dangerous goods, with a 

friction sensitivity of greater than 360 N and an impact sensitivity of greater 

than 30 J. Excessive hydrogen bonding in the solid state not only stabilizes this 

compound but also results in a dense packing of the crystalline material leading 

to a remarkably high density (1.852 g cm-3) and performance values exceeding 

the detonation pressure, the detonation velocity of TNT while at the same time 

producing a favourably larger amount of decomposition gases and lower 

explosion temperature.  These properties render MDN to be an interesting 

material displaying potential for applications requiring insensitivity and 

thermal stability, for example for perforation and fracturing purposes for 

oilfield exploration (Table 2.4). 
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Crystal Structure Analysis 

 

MDN at 200 K has monoclinic symmetry; space group P21/c (no.14) The 

asymmetric unit contains one doubly protonated melaminium cation and two 

nitrate anions (Fig. 2.30).  

 
 
Figure 2.30. ORTEP representation of the molecular structure of melaminium dinitrate in 
the crystalline state. Displacement ellipsoids are shown at the 50 % probability level. 
Selected bond lengths [Å] and angles [°]: C1-N1 1.337(3), N1-C2 1.369(3), C2-N2 1.307(3), N2-
C3 1.309(3), C3-N3 1.361(3), N3-C1 1.335(3), C1-N4 1.278(3), C2-N5 1.311(3), C3-N6 1.300(3), 
N7-O1 1.240(3), N7-O2 1.236(3), N7-O3 1.249(3), N8-O4 1.232(3), N8-O5 1.243(3), N8-O6 
1.230(3), C1-N1-C2 120.5(2), N1-C2-N2 122.2(2), C2-N2-C3 117.4(2), N2-C3-N3 122.1(2), C3-
N3-C1 121.0(2), N3-C1-N1 116.7(2), O1-N7-O2 120.3(2), O1-N7-O3 121.1(2), O2-N7-O3 
118.6(2), O4-N8-O5 120.4(2), O4-N8-O6 119.3(2), O5-N8-O6 120.3(2). 
 

The melaminium cation is essentially planar. Considering the plane defined by 

the three ring carbon atoms, the deviations from planarity of the ring nitrogen 

atoms are 0.025Å (N1), 0.009Å (N2) and -0.038Å (N3) and the deviation of the 

exocyclic nitrogen atoms are 0.014Å (N4), -0.053 Å (N5)  and 0.003Å (N6). 

Compared to the corresponding deviations observed in melamine itself (161) 

where a slight boat configuration has been observed, the deviations from 

planarity in the case of the doubly protonated melaminium cation are likely to 

be due to packing effects in the solid state including hydrogen bonding.  

Protonation of the aromatic ring in melamine results in a redistribution of the 

π-electrons. The exocyclic C-NH2 bonds (1.278(3)–1.311(3) Å) are considerably 

shorter compared to the parent neutral base (1.337(1)–1.362(4) Å) (161) and even 

shorter when compared to the monoprotonated melaminium cation (1.311(3)–
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1.319(3) Å) (162) indicating an increase in bond order of these bonds on 

protonation. This is particularly the case for the imino-type exocyclic C-N 

bond arranged between the two protonated ring nitrogen atoms (d(C1-N4) = 

1.278(3)Å). The deviation from D3h symmetry is not only reflected in bond 

lengths. The angles within the six-membered ring become highly asymmetric 

on protonation. The endocyclic angles at the nitrogen atoms range from 

117.4(2) to 121.0(2)° with the largest angle being associated opposite the 

imino-type exocyclic C-N bond. In contrast, the corresponding angles in 

melamine are essentially equal (114.3(2) – 114.7(1)°). Angle opening at the 

protonated sites has also been observed in other diprotonated melaminium 

cations like melaminium diperchlorate hydrate (163) and melamine-cyanuric acid 

hydrochloride. (164) 
 

 
 
Figure 2.31. Unit cell of melaminium dinitrate, viewed along the b axis. 
 

The doubly protonated melaminium cation and nitrate anions exhibit a layered 

structure (Figs. 2.31 and 2.32). The cations and anions in adjacent layers are 

stacked such that the cations are followed by anions and vice versa, rendering π-

stacking interactions difficult. Nevertheless, the spacing between adjacent 

layers is as small as 334 pm. Within the planar two dimensional layers a tight 

hydrogen-bonding network is formed, with donor-acceptor distances ranging 

from 269 to 305 pm. The corresponding H…A contacts cover the range from 
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180 to 222 pm, thus demonstrating the remarkably efficient packing of the ions 

wihtin the planar sheets. 

 

 

 
Figure 2.32. Representation of one layer of melaminium dinitrate. Yellow dashed lines 
indicate hyrogen bonding (N1-H1···O1, N3-H3···O6i, N4-H4A···O2ii, N4-H4B···O3, N5-H5A···O2iii, 
N5-H5A···O3iii, N5-H5B···O4iv, N6-H6A···O4v, N6-H6A···O5v, N6-H6B···O5i ). (i) x, 1/2-y, 1/2+z, (ii) 
1-x, -1/2+y, 1/2-z, (iii) 1-x, 1/2+y, 1/2-z, (iv) x, 3/2-y, 1/2+z, (v) -x, 1-y, 1-z. 
 

Extensive two dimensional hydrogen bonding can be observed within a layer 

resulting in a significantly higher density compared to the monoprotonated 

melaminium nitrate species (1.85 g cm-3 compared to 1.70 g cm-3). 

Every hydrogen atom of the melaminium cation and every oxygen atom of the 

two nitrate anions is involved. Note that hydrogen bonding involving a non-

protonated ring nitrogen atom does not occur. 
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Experimental 

 

 
 

 

Nitric acid (7 mL, 0.1 mol, 65 %) was added drop wise to a hot aqueous solution 

(95 °C) of melamine (0.226 mg, 1 mmol in 5 mL H2O). Subsequent cooling of 

the reaction mixture to room temperature afforded precipitation of colorless 

crystalline product in pure form containing single crystals suitable for X-ray 

diffraction analysis.  

 

DSC (Linseis, 2 K min-1):  330°C (decomp.); Radex (isothermal long term 

stability, 48h, 140°C): unchanged; 1H NMR ([D4]methanol) δ:  9.8 (s, 2H), 7.7 

(s, 6H); 13C NMR ([D4]methanol) δ:  159.7; 14N NMR ([D4]methanol) δ:  -11.6; 

IR (KBr) v~ /cm-1: 3425(s), 3294(m), 3130(s), 1683(s), 1644(m), 1618(m), 

1574(w),1520(m), 1384(s), 1190(m), 1149(w), 1116(w), 1007(w), 981(w), 

816(w), 769(w), 724(w), 696(w), 660(w), 584(w), 575(w); Raman (4 cm-1) v~ /cm-

1: 1052(100), 690(69), 556(21), 391(9), 372(9), 141(20); Calc. for C3H8N8O6:  N 

(44.14%), C (14.29%), H (3.20%), found: N (44.16%), C (14.64%), H (3.24%); 

impact sensitivity: > 30 J, friction sensitivity: > 160 N; Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
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Guanidinium Nitrate : Azidoformamidinium Nitrate (1:1) 
 

Single Crystals consisting of guanidinium nitrate and azidoformamidinium 

nitrate could be obtained as decomposition products from the reaction between 

silver trinitromethanide and azidoformamidinium chloride. Silver 

trinitromethanide was allowed to react with azidoformamidinium chloride in 

acetonitrile solution at room temperature. The isolation of the product of the 

reaction resulted in an exothermic decomposition reaction when the solvent 

was removed using the rotary evaporator. The decomposition was accompanied 

by gas release and a flash of light. The isolation was immediately stopped and 

the remaining liquid was put in the freezer affording single crystals suitable for 

X-ray diffraction.  

 

Crystal Structure Analysis 

 

The double salt guanidinium nitrate and azidoformamidinium nitrate at 100K 

has monoclinic symmetry, space group P21/c (no. 14). The asymmetric is 

shown in Figure 2.33. 

 
 
Figure 2.33. ORTEP representation of the molecular structure of guanidinium nitrate, 
azidoformamidinium nitrate (1:1) in the crystalline state. Displacement ellipsoids are shown 
at the 50 % probability level. Selected bond lengths [Å] and angles [°]: C1-N1 1.3937(15), N1-
N2 1.2611(14), N2-N3 1.1158(14), C1-N4 1.3021(15), C1-N5 1.3171(15), C2-N6 1.3219(16), C2-
N7 1.3247(15), C2-N8 1.3295(16) , N9-O1 1.2436(12), N9-O2 1.2636(12), N9-O3 1.2520(12), N10-
O4 1.2494(12), N10-O5 1.2504(12), N10-O6 1.2593(13), C1-N1-N2 116.00(10), N1-N2-N3 

170.84(12), N4-C1-N1 113.64(11), N4-C1-N5 123.28(11), N5-C1-N1 123.07(11), N6-C2-N7 
120.29(12), N7-C2-N8 120.07(12), N8-C2-N6 119.65(11), O1-N9-O2 119.36(9), O1-N9-O3 

121.44(9), O3-N9-O2 119.20(9), O4-N10-O5 120.93(10), O4-N10-O6 119.60(9), O5-N10-O6 

119.47(9). 
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Each of the guanidinium-type cations of the double salt guanidinium nitrate - 

azidoformamidinium nitrate (1:1) contains one carbon atom carrying three 

nitrogen containing substituents (guanidinium cation (II) / 

azidoformamidinium cation (III), Fig. 2.34). Further single crystal X-ray 

structural data within this are only available for the triazidocarbonium cation 

(IV, 2.34) (165) and the free base guanidin (I, 2.34) whose structure could be 

determined for the first time within the scope of this thesis (see page 213). A 

summary of bond lengths of each of the four types of is provided in Table 2.5.  

 

 
Figure 2.34. Types of guanidine-based motivs where single crystal structural data are 
available.  

 
Table 2.5. Comparison of selected bond lengths of guanidine (I), guanidinium (II), 
azidoformamidinium (III) and triazidocarbenium (IV).  
 d(C-NH) /Å d(C-NH2) /Å d(C-N3) /Å d(Nα-Nβ) /Å d(Nβ-Nα) /Å 

(I) a) 1.295(2) (C1-N1) 1.366(2) (C1-N2) - - - 

 - 1.355(2) (C1-N3) - - - 

(I) b) 1.304(2) (C1-N1) 1.350(3) (C1-N2) - - - 

 - 1.359(3) (C1-N3) - - - 

 1.300(3) (C7-N8) 1.361(3) (C7-N9) - - - 

  1.361(3) (C7-N10) - - - 

(II) c) - 1.3219(16) (C2-N6) - - - 

 - 1.3247(15) (C2-N7) - - - 

 - 1.3295(16) (C2-N8) - - - 

(III) d) - 1.3021(15) (C1-N4) 1.3937(15) (C1-N1) 1.2611(14) (N1-N2) 1.1158(14) (N2-N3) 

 - 1.3171(15) (C1-N5) - - - 

(III) e) - 1.302(4) (C1-N1) 1.393(4) (C1-N3) 1.265(4) (N3-N4) 1.110(4) (N4-N5) 

 - 1.314(4) (C1-N2) - - - 

(IV) f) - - 1.312(18) (C1-N1) 1.411(19) (N1-N2) 1.022(17) (N2-N3) 

 - - 1.358(18) (C1-N4) 1.361(19) (N4-N5) 1.069(16) (N5-N6) 

 - - 1.348(18) (C1-N7) 1.398(18) (N7-N8) 1.062(17) (N8-N9) 

Notes. a) co-crystal of guanidine and 2-amino-4,6-dimethyl-1,3,5-triazine (1:1), b) co-crystal 
of guanidine and 2-amino-4,6-dimethyl-1,3,5-triazine (2:1), reference (166); c) guanidinium 
nitrate, this work, double salt; d) azidoformamidinium nitrate, this work, double salt; e) 
azidoformamidinium chloride, reference (167) f) triazidocarbonium hexachloroantimonate, 
reference (165). 
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The C-N bond lengths of the free base guanidine (I) are different and indicate 

substantial double bond character of the imino-type C-N bond (range: 

1.295(2)Å – 1.304(2)Å) and single bond character of the two remaining amino-

type C-N bonds (range: 1.350(3)Å – 1.366(2)Å). In contrast, the C-N bond 

length of the guanidinium cation (II) in the double salt are all of comparable 

size (range: 1.3219(16)Å – 1.3295(16)Å) indicating Y-aromaticity (168) with 

delocalisation of  π electron density affording a formal bond order of  1.33 of 

each C-N bond and agree well to typical bond lengths of guanidinium cations.  

It has been mentioned that the azide groups of triazidocarbonium (IV) display 

unusual bond lengths compared to other covalently bonded azides. Müller and 

Bärnighausen (165) have reported the structure of triazidocarbonium-

hexachloroantimonate and assigned single bond character to the Nα-Nβ 

nitrogen bonds (range: 1.361(19)Å – 1.411(19)Å) and triple bond character to 

the Nβ-Nγ bonds (range: 1.022(17)Å – 1.069(16)Å), in marked contrast to the 

values observed in other covalently bonded azides like methyl azide (d(Nα-Nβ) 
= 1.24Å corresponding to double bond character) (169). They also concluded 

that delocalisation of π electron density towards the electrophilic carbon atom 

was evenly distributed across the three C-N bonds in the guanidinium cation 

and the triazidocarbonium cation due to the fact that the corresponding bonds 

in each molecule were of comparable size and significantly shorter compared to 

a formal C-N single bond (1.47Å). Though the CN3 moiety of the 

azidoformamidinium cation has the same planar geometry as the CN3 moieties 

of the guanidinium and the triazidocarbonium cations, the C-N bond lenghts 

differ. The bond between the carbon atom and the Nα atom of the azide group 

(1.3937(15)Å) is significantly longer compared to the bond lengths of the 

carbon atom to the nitrogen atoms of the NH2 groups (1.3021(15) Å, 

1.3171(15)Å) indicating only weak interaction between the π systems of the 

guanyl-moiety, (H2N)2-C, and the π systems of the azide group. Compared to 

the unusual bond length of the azide group observed in the triazidocarbonium 

cation, the bond lengths of the azide group of the azidoformamidinium cation 

have typical values compared to other covalent azides like methyl azide. These 

geometrical data of the azidoformamidinium cation present in the double salt 

agree well to those reported for azidoformamidinium chloride. (170) The 
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extended structure of the double salt of guanidinium nitrate and 

azidoformamidinium nitrate is shown in Figure 2.35.  

 

 
 
Figure 2.35. Unit cell of guanidinium nitrate, azidoformamidinium nitrate (1:1), viewed 
along the b axis. 
 

The structure is mainly governed by a complex hydrogen bond network. Every 

hydrogen atom of both the guanidinium and the azidoformamidinium cations is 

involved in intermolecular N−H⋅⋅⋅O hydrogen bonding between those cations 

and the nitrate anions (Table 2.6). Of interest, the azide group is not involved 

in N−H⋅⋅⋅N hydrogen bonding. 
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Table 2.6. Intermolecular hydrogen bonding of the double salt guanidinium nitrate and 
azidoformamidinium nitrate. 

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅ A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N4−H4A⋅⋅⋅O6 0.852(15)  1.960(15) 2.8081(15) 173.8(13) 

N4−H4B⋅⋅⋅O1(i) 0.834(14)  2.072(14) 2.9057(14) 179.8(19) 

N5−H5A⋅⋅⋅O3(i) 0.854(13)  2.097(13) 2.9504(14) 176.8(11) 

N5−H5B⋅⋅⋅O2 0.927(15)  1.976(15) 2.8822(14) 165.4(13) 

N6−H6A⋅⋅⋅O6(ii) 0.869(15)  2.039(15) 2.8728(14) 160.3(13) 

N6−H6B⋅⋅⋅O4(iii) 0.868(16)  2.055(15) 2.8995(14) 164.2(13) 

N7−H7A⋅⋅⋅O4(iv) 0.862(16)  2.412(15) 3.1614(14) 145.7(13) 

N7−H7A⋅⋅⋅O5(iii) 0.862(16)  2.505(15) 3.1378(14) 131.0(12) 

N7−H7B⋅⋅⋅O3(v) 0.824(14)  2.242(14) 3.0518(15) 167.6(13) 

N8−H8A⋅⋅⋅O2(v) 0.808(14)  2.220(14) 3.0033(15) 163.3(13) 

N8−H8B⋅⋅⋅O5(ii) 0.865(16)  2.154(15) 3.0113(14) 171.3(13) 

Notes. Symmetry code: (i) x,1/2-y,-1/2+z, (ii) 1-x,-1/2+y,1/2-z, (iii) 1-x,1-y,-z, (iv) x,-1+y,z, 
(v) -x,-1/2+y,1/2-z. 
 

Experimental 

 

 
 

Single Crystals consisting of guanidinium nitrate and azidoformamidinium 

nitrate could be obtained as decomposition products from the reaction between 

silver trinitromethanide and azidoformamidinium chloride. Silver 

trinitromethanide was allowed to react with azidoformamidinium chloride in 

acetonitrile solution at room temperature. The isolation of the product of the 

reaction resulted in an exothermic decomposition reaction when the solvent 

was removed using the rotary evaporator. The decomposition was accompanied 

by gas release and a flash of light. The isolation was immediately stopped and 

the remaining liquid was put in the freezer affording single crystals suitable for 

X-ray diffraction.  

Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
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2.1.3 Salts of Diaminopicric Acid 

 

 

Introduction 

 

Bellamy et al. have recently investigated a variety of salts of 3,5-diaminopicric 

acid. (171) Amongst the compounds the series of guanidinium salts showed 

particularly promising thermal stability and sensitivity data. The compounds 

were characterized using multinuclear NMR spectroscopy, IR spectroscopy, 

differential scanning calorimetry, thermogravimetry, scanning electron 

microscopy and CHN elemental analysis. Their heats of combustion were 

measured using bomb calorimetry in order to calculate their heats of formation. 

We have now determined the structures of guanidinium 3,5-diaminopicrate 

(GDAP), aminoguanidinium 3,5-diaminopicrate (AGDAP), 

diaminoguanidinium 3,5-diaminopicrate (DAGDAP) and triaminoguanidinium 

3,5-diaminopicrate (TAGDAP) in the solid state using single crystal X-ray 

diffraction as a preliminary step in an investigation of the relationships 

between crystal density and explosive performance parameters. 
 
Sensitivity and Performance 
 

The detonation rate and detonation pressure values of GDAP, AGDAP, 

DAGDAP and TAGDAP have been reported according to the Rothstein and 

Petersen method. Based on the calculated densities from our crystal structure 

analysis and using the programme EXPLO5 (v. 5.02), we carried out 

performance calculations in order to predict the performance properties of of 

GDAP, AGDAP, DAGDAP and TAGDAP. A comparison of the results 

obtained using the two different methods is summarized in Table 2.7. A 

comparison of the calculated values of TNT with the corresponding 

experimental values shows that the calculated values obtained using this 

method are in good agreement with the experimental analogues. 
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Table 2.7. Sensitivity and Performance Data of GDAP, AGDAP, DAGDAP, TAGDAP and 
comparison to TNT. 

parameter GDAP AGDAP DAGDAP TAGDAP TNT 

Tdec., DSC / °C [a] 331 231 202 197 - 

F of I [b] > 130 > 130 100 30 - 

ρ / g cm-3 1.84 1.76 1.79 1.77 1.64 (151) 

D / m s-1 [c] 7737 7874 7998 8113 6900 (151) 

P / kbar [c] 266 279 290 301 210 (172) 

D / m s-1 [d] 7852 7614 7859 8140 7150 

P / kbar [d] 255 231 252 274 202 

Q / kJ kg-1 [d] 3983 3922 4294 4899 5089 

V0 / L kg-1 [d] 716 735 750 764 622 

Tex / °C [d] 3010 2983 3132 3443 3741 

Notes. [a] 10°C min-1 [b] Figure of Insensitiveness (Rotter Impact Test, RDX = 80) [c] exp. 
value, according to Rothstein and Petersen (ref. 149) [d] according to EXPLO5, D = 
velocity of detonation, P = detonation pressure, Q = heat of explosion, V0 = volume of 
gaseous detonation products, Tex = explosion temperature. 
 

The theoretically predicted values for the velocity of detonation and the 

detonation pressure of the four 3,5-diaminopicrate salts all lie within the range 

expected for high explosives and are superior compared to TNT.  TAGDAP 

has the highest predicted values for the detonation pressure (274 kbar) and the 

velocity of detonation (8140 m s-1) while at the same time showing the highest 

sensitivity towards impact (F of I = 30) indicating a potential use as initiator. 

In contrast, GDAP and AGDAP display a remarkable insensitivity towards 

impact (F of I > 130) and possess high decomposition temperatures.  



Chapter 2.1 – Salts of Diaminopicric acid 
 

- 107 - 

Crystal Structure Analysis 

 

Though the structure of picric acid and many structural reports containing 

salts thereof have been well documented, there are no structural reports 

containing the 3,5-diaminopicrate anion. In fact, only the structure of the 

parent compound, 3,5-diamino-2,4,6-trinitrophenol has been reported (173) 

rendering the four structures of guanidinium 3,5-diaminopicrate (GDAP), 

aminoguanidinium 3,5-diaminopicrate (AGDAP), diaminoguanidinium 3,5-

diaminopicrate (DAGDAP) as well as triaminoguanidinium 3,5-diaminopicrate 

(TAGDAP) to be first examples of a crystallographic characterization of the 

3,5-diaminopicrate anion.  

Before the structural features of the 3,5-diaminopicrate anion will be discussed, 

a brief summary of general features that have been observed and explored by 

various authors is given. (174) Compared to benzene, the benzene ring of various 

nitroanilines exhibits characteristic distortions due to substitution of a 

hydrogen atom by both nitro- and amino-groups. The angle having C-NH2 as 

vertex is smaller than 120°, whereas the corresponding angles with C-NO2 are 

greater than 120°. There seems to be a correlation between the C-N bond 

distances and the values of the adjacent C-C bond lengths of the phenyl ring in 

aromatic amines and various interpretations of the ring deformation have been 

made (175-177) based on (1) intramolecular nonbonded interactions; (178-180) (2) 

coulombic interaction between formally charged atoms; (175) (3) hybridization 

effects at the carbon atom to which the substituent is bonded; (181-182) and (4) 

valence-shell electron-pair repulsion. (183-188) Accordingly, the overall 

deformation of the phenyl ring due to the presence of an electron-attracting 

(nitro) substitutent consists of a shortening of the adjacent C-C bonds, an 

increase in the endocyclic bond angle opposite to the functional group and a 

minor decrease in the two adjacent endocyclic angles. The reverse is true for an 

electron-donating (amino) substituent. The presence of ortho and meta 

derivatives seems not to be rationalizable due to a multiplication of the various 

effects.  

A comparison of selected structural parameters of the 3,5-diaminopicrate anion 

in the structures of the series of guanidinium 3,5-diaminopicrates can be found 
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in Table 2.8. A comprehensive summary of the crystallographic details can be 

found in the appendix (Chapter 4). 

 
Table 2.8. Comparison of selected structural parameters of the 3,5-diaminopicrate anion 
(DAP), taken from the corresponding crystal structures of GDAP, AGDAP, DAGDAP and 
TAGDAP. 

 GDAP AGDAP DAGDAP TAGDAP 
d (C1-C2) / Å 1.448(3) 1.455(5) 1.445(5) 1.452(3) 
d (C2-C3) / Å 1.429(4) 1.443(5) 1.419(5) 1.413(3) 
d (C3-C4) / Å 1.447(3) 1.451(5) 1.458(5) 1.455(2) 
d (C4-C5) / Å 1.447(3) a) 1.454(5) 1.442(5) 1.450(3) 
d (C5-C6) / Å 1.429(4) a) 1.417(5) 1.422(5) 1.420(2) 
d (C6-C1) / Å 1.448(3) a) 1.435(5) 1.452(5) 1.449(2) 
d (C1-O1) / Å 1.224(5) 1.249(4) 1.257(4) 1.239(2) 
d (C2-N1) / Å 1.411(3) 1.405(5) 1.422(5) 1.426(2) 
d (C3-N2) / Å 1.322(3) 1.313(5) 1.326(5) 1.331(2) 
d (C4-N3) / Å 1.409(4) 1.414(5) 1.416(5) 1.402(2) 
d (C5-N4) / Å 1.322(3) a) 1.320(5) 1.330(5) 1.320(2) 
d (C6-N5) / Å 1.411(3) a) 1.426(4) 1.416(5) 1.415(2) 
d (O1-ring plane) / Å 0.117 b) 0.304 c) 0.522 c) 0.322 c) 
δ (O1-C1-C2-C3) / ° 177.99(18) 168.0(4) -160.1(4) 167.53(18) 
δ (O1-C1-C6-C5) / ° 177.99(18) a) -166.5(4) 161.4(4) -166.40(18) 
δ (O1-C1-C2-N1) / ° -2.3(3) -10.5(6) 16.7(6) -14.3(3) 
δ (O1-C1-C6-N5) / ° -2.3(3) a) 13.4(6) -16.8(6) 16.5(3) 

Notes. a) generated by symmetry. b) mean plane as defined by the atoms C2, C3, and C4. c) 
mean plane as defined by the atoms C2, C4, and C6. 
 

The comparison of C-C bond lengths shows that they are generally longer 

(range: 1.413(3) Å - 1.458(5) Å) than the 1.392 Å C-C distance in benzene (189) 

because of amino group substitutions at C3 and C5. The general finding 

mentioned above, that angles having C-NH2 as vertex are smaller than 120°, 

whereas the corresponding angles with C-NO2 are greater than 120° is true in 

the case of the 3,5-diaminopicrate anion as it is true in the case of the 3,5-

diamino-2,4,6-trinitrophenol or 1,3,5-triamino-2,4,6-trinitrobenzene (190). It has 

been reported for 3,5-diamino-2,4,6-trinitrophenol that the most obvious 

relationship would be the one between the C-N distance and the corresponding 

C-NO2 out-of-plane rotation with larger amounts of C=N character yielding 

smaller torsion angles. (191) By comparison, it is difficult to judge whether the 

same effect is present in the anionic species as well. Contrary to the case of 

neutral 3,5-diamino-2,4,6-trinitrophenol where a coplanar orientation of the 

hydroxyl group and the benzene ring has been reported, the phenolic oxygen 
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atom of the 3,5-diaminopicrate anion shows a deviation from the benzene ring 

plane. This deviation is smallest in the case of the guanidinium 3,5-

diaminopicrate and increases as do the torsion angles of the nitro groups at the 

C2 and C4 positions. Moreover, strong intermolecular hydrogen bonding is 

present in all four compounds yielding noticeably higher densities (TAGDAP: 

1.770 g cm-3, AGDAP: 1.755 g cm-3, DAGDAP: 1.786 g cm-3, GDAP: 1.842 g 

cm-3) significantly higher compared to the average value of 1.3 to 1.4 g cm-3 

usually observed for compounds composed only of the elements carbon, 

hydrogen, oxygen and nitrogen.  

 

Guanidinium 3,5-Diaminopicrate (GDAP) 

 

Guanidinium 3,5-diaminopicrate at 200K has monoclinic symmetry, space 

group C2/c.  The asymmetric unit consists of half of the guanidinium cation 

and half of the 3,5-diaminopicrate anion (Fig. 2.36).        

 

 
 
Figure 2.36. ORTEP representation of the molecular structure of guanidinium 3,5-diamino-
picrate in the crystalline state. Displacement ellipsoids are shown at the 50 % probability 
level. Only one half of each the guanidinium cation as well as the 3,5-diamino-picrate anion 
constitute the asymmetric unit. The N6, C7, O1, C1, C4, and N3 atoms are part of a mirror 
plane wich is oriented orthoghonal to the plane of the guanidinium cation and the 3,5-
diaminopicric anion and the sheet of this paper. Selected bond lengths [Å] and angles [°]: 
cation: C7-N6 1.323(5), C7-N7 1.322(3), N6-C7-N7 119.95(17) anion: C1-C2 1.448(3), C2-C3 
1.429(4), C3-C4 1.447(3), C1-O1 1.224(5), C2-N1 1.411(3), N1-O2 1.214(3), N1-O3 1.239(3), C3-
N2 1.322(3), C4-N3 1.409(4), N3-O4 1.251(2), O1-C1-C2 121.53(16), C1-C2-C3 122.6(2), C2-C3-
C4 118.1(2), C3-C4-N3 119.25(15), O1-C1-C2-C3 177.99(18), O1-C1-C2-N1 -2.3(3).   
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The extended structure of GDAP displays a complex hydrogen bond network 

(Table 2.9) yielding a high crystal density of 1.8422(8) g cm-3. 

 
Table 2.9. Hydrogen bonding of guanidinium 3,5-diaminopicrate. 

D−H⋅⋅⋅A type D−H / Å H⋅⋅⋅A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N2−H2A⋅⋅⋅O3 intra 0.90(4) 1.82(4) 2.524(3) 134(4) 

N2−H2B⋅⋅⋅O4 intra 0.86(4) 1.85(4) 2.511(3) 132(3) 

N6−H6B⋅⋅⋅O3(i) inter 0.89(4) 2.37(4) 3.189(3) 154(3) 

N6−H6B⋅⋅⋅O4(ii) inter 0.89(4) 2.45(4) 3.019(4) 122(3) 

N7−H7A⋅⋅⋅O2(i) inter 0.87(4) 2.27(4) 3.113(4) 162(4) 

N7−H7A⋅⋅⋅O3(i) inter 0.87(4) 2.52(4) 3.288(4) 147(3) 

N7−H7B⋅⋅⋅O1(iii) inter 0.86(4) 2.03(4) 2.811(4) 151(3) 

N7−H7B⋅⋅⋅O2(iv) inter 0.86(4) 2.26(4) 2.963(3) 139(3) 
Notes. Symmetry code: (i) x,-y,-1/2+z, (ii) 1/2-x,-1/2+y,1/2-z, (iii) 1/2+x,1/2+y,z, (iv) 
1/2-x,1/2+y,1/2-z.  
 

 
Figure 2.37. Unit cell of guanidinium 3,5-diaminopicrate, viewed along the c axis. 
 



Chapter 2.1 – Salts of Diaminopicric acid 
 

- 111 - 

Aminoguanidinium 3,5-Diaminopicrate (AGDAP) 
 

Aminoguanidinium 3,5-diaminopicrate at 200K has monoclinic symmetry, 

space group P21/c.  The asymmetric unit consists of one aminoguanidinium 

cation and one 3,5-diaminopicrate anion (Fig. 2.38).        

 
Figure 2.38. ORTEP representation of the molecular structure of aminoguanidinium 3,5-
diaminopicrate in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]: cation: C7-N6 1.321(5), C7-N7 
1.306(5), C7-N8 1.343(5), N8-N9 1.412(5), N6-C7-N7 120.6(4), N6-C7-N8 119.3(4), N7-C7-N8 
120.1(4), C7-N8-N9 117.3(3) anion: C1-C2 1.455(5), C2-C3 1.443(5), C3-C4 1.451(5), C1-O1 

1.249(4), C2-N1 1.405(5), N1-O2 1.246(4), N1-O3 1.250(4), C3-N2 1.313(5), C4-N3 1.414(5), N3-
O4 1.249(4), O1-C1-C2 121.6(3), C1-C2-C3 122.1(3), C2-C3-C4 118.0(3), C3-C4-N3 119.1(3), O1-
C1-C2-C3 168.0(4), O1-C1-C2-N1 -10.5(6), O1-C1-C6-C5 -166.5(4), O1-C1-C6-N5 13.4(6). 
 
Table 2.10. Hydrogen bonding of aminoguanidinium 3,5-diaminopicrate. 

D−H⋅⋅⋅A type D−H / Å H⋅⋅⋅A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N2−H2A⋅⋅⋅O3 intra 0.83(5) 1.88(5) 2.552(5) 137(3) 

N2−H2B⋅⋅⋅O4 intra 0.82(4) 1.84(4) 2.504(5) 137(3) 

N4−H4A⋅⋅⋅O5 intra 0.86(5) 1.84(5) 2.517(5) 135(5) 

N4−H4B⋅⋅⋅O6 intra 0.88(4) 1.90(4) 2.548(5) 128(3) 

N4−H4A⋅⋅⋅O5(i) inter 0.86(5) 2.44(5) 3.096(5) 134(4) 

N6−H6A⋅⋅⋅O2(ii) inter 0.84(5) 2.24(5) 3.042(5) 161(4) 

N6−H6B⋅⋅⋅O1(iii) inter 0.96(4) 1.97(5) 2.817(5) 146(3) 

N6−H6B⋅⋅⋅O2(iii) inter 0.96(4) 2.27(4) 3.039(5) 136(3) 

N7−H7A⋅⋅⋅O1(iii) inter 0.90(4) 2.01(4) 2.805(5) 146(4) 

N7−H7A⋅⋅⋅O7(iii) inter 0.90(4) 2.16(4) 2.875(4) 136(3) 

N7−H7B⋅⋅⋅O6(iv) inter 0.97(6) 2.18(5) 3.133(5) 170(4) 

N8−H8⋅⋅⋅O2(ii) inter 0.97(5) 2.33(5) 3.180(5) 146(4) 

N8−H8⋅⋅⋅O3(ii) inter 0.97(5) 2.09(5) 3.007(5) 157(4) 

N8−H8⋅⋅⋅N1(ii) inter 0.97(5) 2.58(5) 3.546(5) 174(5) 

N9−H9A⋅⋅⋅N8(v) inter 0.94(7) 2.45(6) 3.302(6) 152(5) 

N9−H9B⋅⋅⋅O4(vi) inter 0.88(4) 2.21(4) 3.047(5) 158(4) 
Notes. Symmetry code: (i) 1-x,1-y,-z, (ii) -1+x,y,z,  (iii) 2-x,-y,-z, (iv) x,1/2-y,1/2+z, (v) 1-
x,1/2+y,1/2-z, (vi)1-x,-1/2+y,1/2-z.  
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The extended structure of AGDAP displays a complex hydrogen bond 

network (Table 2.10) yielding a crystal density of 1.7555(4) g cm-3. 
 

 
 

Figure 2.39. Unit cell of aminoguanidinium 3,5-diaminopicrate, viewed along the b axis. 
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Diaminoguanidinium 3,5-Diaminopicrate (DAGDAP) 

 

Diaminoguanidinium 3,5-diaminopicrate at 200K has monoclinic symmetry, 

space group P21/n.  The asymmetric unit consists of one diaminoguanidinium 

cation and one 3,5-diaminopicrate anion (Fig. 2.40).    

     
 

 
Figure 2.40. ORTEP representation of the molecular structure of diaminoguanidinium 3,5-
diaminopicrate in the crystalline state. Displacement ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]: cation: C7-N6 1.331(6), C7-N7 
1.313(5), C7-N9 1.333(5), N7-N8 1.418(5), N9-N10 1.425(5),  N6-C7-N7 120.8(4), N6-C7-N9 
118.7(4), N7-C7-N9 120.6(4), C7-N7-N8 119.4(4), C7-N9-N10 117.7(4) anion: C1-C2 1.445(5), 
C2-C3 1.419(5), C3-C4 1.458(5), C1-O1 1.257(4), C2-N1 1.422(5), N1-O2 1.245(4), N1-O3 

1.260(4), C3-N2 1.326(5), C4-N3 1.416(5), N3-O4 1.261(4), O1-C1-C2 120.7(4), C1-C2-C3 
122.5(4), C2-C3-C4 117.6(4), C3-C4-N3 119.3(4), O1-C1-C2-C3 -160.1(4), O1-C1-C2-N1 16.7(6), 
O1-C1-C6-C5 161.4(4), O1-C1-C6-N5 -16.8(6). 
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Table 2.11. Hydrogen bonding of diaminoguanidinium 3,5-diaminopicrate. 

D−H⋅⋅⋅A type D−H / Å H⋅⋅⋅A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N2−H2A⋅⋅⋅O3 intra 0.83(6) 1.93(6) 2.556(5) 131(5) 

N2−H2A⋅⋅⋅O7(i) inter 0.83(6) 2.49(6) 3.043(6) 125(5) 

N2−H2B⋅⋅⋅O4 intra 0.93(4) 1.82(4) 2.500(5) 128(4) 

N2−H2B⋅⋅⋅O6(i) inter 0.93(4) 2.26(4) 2.978(5) 134(4) 

N4−H4A⋅⋅⋅O5 intra 0.85(6) 1.78(6) 2.511(5) 143(6) 

N4−H4B⋅⋅⋅O6 intra 0.86(4) 1.86(4) 2.540(5) 135(4) 

N6−H6A⋅⋅⋅O1 inter 0.88(4) 2.00(4) 2.851(5) 162(4) 

N6−H6A⋅⋅⋅O7 inter 0.88(4) 2.53(5) 3.134(6) 126(4) 

N6−H6B⋅⋅⋅O3(ii) inter 0.88(4) 2.43(4) 3.170(6) 142(3) 

N7−H7⋅⋅⋅N10(iii) inter 0.91(3) 2.22(3) 2.986(6) 142(2) 

N9−H8⋅⋅⋅O1 inter 0.88(6) 2.48(5) 3.077(5) 126(4) 

N9−H8⋅⋅⋅O4(iv) inter 0.88(6) 2.19(6) 2.945(5) 144(5) 

N8−H8A⋅⋅⋅O5(v) inter 0.87(5) 2.48(4) 3.101(6) 129(4) 

N8−H8A⋅⋅⋅O3(vi) inter 0.87(5) 2.59(5) 3.313(6) 142(4) 

N8−H8B⋅⋅⋅O1(vii) inter 0.87(4) 2.36(4) 3.186(6) 160(4) 

N8−H8B⋅⋅⋅O2(vii) inter 0.87(4) 2.37(4) 2.932(5) 123(4) 

N10−H10A⋅⋅⋅O3(viii) inter 0.93(6) 2.41(6) 3.118(6) 133(4) 

N10−H10B⋅⋅⋅O1(ix) inter 0.88(5) 2.28(5) 3.085(5) 151(5) 

N10−H10B⋅⋅⋅O7(ix) inter 0.88(5) 2.45(6) 3.116(6) 132(5) 
Notes. Symmetry code: (i) -1/2+x,3/2-y,-1/2+z,(ii) 1/2+x,3/2-y,1/2+z, (iii) -x,-y,1-z, (iv)  -
x,1-y,-z , (v) 1/2-x,-1/2+y,1/2-z, (vi) 1/2+x,1/2-y,1/2+z, (vii) -x,1-y,1-z (viii -1/2-x,-
1/2+y,1/2-z , (ix) x,-1+y,z. 

 
The extended structure of DAGDAP displays a complex hydrogen bond 

network (Table 2.11) yielding a high crystal density of 1.7856(17) g cm-3. 
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Figure 2.41. Unit cell of diaminoguanidinium 3,5-diaminopicrate, viewed along the b axis. 
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Triaminoguanidinium 3,5-Diaminopicrate hydrate (TAGDAP · H2O) 

 

Triaminoguanidinium 3,5-diaminopicrate monohydrate at 100K has monoclinic 

symmetry, space group P21/n.  The asymmetric unit consists of one 

diaminoguanidinium cation and one 3,5-diaminopicrate anion (Fig. 2.42).        
 

 
Figure 2.42. ORTEP representation of the molecular structure of triaminoguanidinium 3,5-
diaminopicrate hydrate in the crystalline state. Displacement ellipsoids are shown at the 50 
% probability level. Selected bond lengths [Å] and angles [°]: cation: C7-N6 1.331(6), C7-N8 
1.313(5), C7-N10 1.333(5), N6-N7 1.418(5), N8-N9 1.425(5), N10-N11, N6-C7-N8 120.8(4), N6-
C7-N10 118.7(4), N8-C7-N10 120.6(4), C7-N6-N7 119.4(4), C7-N8-N9 117.7(4), C7-N10-N11 
anion: C1-C2 1.452(3), C2-C3 1.413(3), C3-C4 1.455(2), C1-O1 1.239(2), C2-N1 1.426(2), N1-O2 
1.2386(19), N1-O3 1.248(2), C3-N2 1.331(2), C4-N3 1.402(2), N3-O4 1.252(2), O1-C1-C2 

122.55(16), C1-C2-C3 124.24(16), C2-C3-C4 117.68(16), C3-C4-N3 119.50(16), O1-C1-C2-C3 
167.53(18), O1-C1-C2-N1 -14.3(3), O1-C1-C6-C5 -166.40(18), O1-C1-C6-N5 16.5(3). 
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Table 2.12. Hydrogen bonding of triaminoguanidinium 3,5-diaminopicrate, hydrate. 
D−H⋅⋅⋅A type D−H / Å H⋅⋅⋅A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N2−H2A⋅⋅⋅O3 intra  0.88(2) 1.92(2) 2.609(2)  133.7(19) 

N2−H2A⋅⋅⋅O7(i) inter  0.88(2) 2.40(2) 2.984(2)  124.3(18) 

N2−H2B⋅⋅⋅O4 intra  0.84(3) 1.84(3) 2.520(2)     137(2) 

N2−H2B⋅⋅⋅O6(i) inter  0.84(3) 2.41(2) 2.958(2)     124(2) 

N4−H4A⋅⋅⋅O5 intra  0.86(2) 1.82(2) 2.518(2)  138.0(19) 

N4−H4A⋅⋅⋅O8(ii) inter  0.86(2) 2.50(2) 3.040(3)  121.5(16) 

N4−H4B⋅⋅⋅O6 Intra  0.86(2) 1.89(3) 2.585(2)     137(2) 

N4−H4B⋅⋅⋅N11(iii) Inter  0.86(2) 2.53(2) 3.187(3)     134(2) 

N6−H6⋅⋅⋅O8(iv) Inter  0.90(2) 2.04(2) 2.858(2)     151(2) 

N7−H7B⋅⋅⋅O2(v) Inter  0.89(2) 2.38(2) 2.943(2)  121.2(16) 

N7−H7B⋅⋅⋅O3(v) Inter  0.89(2) 2.52(2) 3.305(2)  147.5(18) 

N8−H8⋅⋅⋅O5(vi) Inter  0.86(3) 2.21(3) 3.031(2)     160(2) 

O8−H8A⋅⋅⋅O1 Intra  0.87(3) 1.95(3) 2.795(2)     163(3) 

O8−H8A⋅⋅⋅O7 Intra  0.87(3) 2.41(3) 2.974(2)     123(2) 

O8−H8B⋅⋅⋅N7(vii) Inter  0.85(3) 2.57(3) 3.078(2)     119(2) 

N9−H9A⋅⋅⋅O1(viii) Inter  0.90(2) 2.33(2) 3.072(2)  140.6(18) 

N9−H9B⋅⋅⋅O8 Intra  0.91(3) 2.49(2) 3.098(2)  124.2(19) 

N9−H9B⋅⋅⋅O2(viii) Inter  0.91(3) 2.36(3) 3.047(2)  132.1(18) 

N10−H10⋅⋅⋅O1 Intra  0.80(2) 2.50(2) 3.045(2)     127(2) 

N10−H10⋅⋅⋅O2 Intra  0.80(2) 2.30(2) 2.945(2)     139(2) 

N11−H11A⋅⋅⋅O4(ix) Inter  0.90(2) 2.18(2) 3.020(2)     155(2) 

N11−H11A⋅⋅⋅O4 Intra  0.90(2) 2.28(2) 3.122(2)     155(2) 

Notes. Symmetry code: (i) -1/2+x,3/2-y,-1/2+z, (ii) 1/2-x,1/2+y,1/2-z, (iii) 1/2-x,-
1/2+y,1/2-z, (iv) x,1+y,z, (v) 1-x,2-y,-z, (vi) 1+x,y,z, (vii) 3/2-x,-1/2+y,1/2-z, (viii) 1-x,1-
y,-z, (ix) -x,2-y,-z. 
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The extended structure of TAGDAP displays a complex hydrogen bond 

network (Table 2.12) yielding a high crystal density of 1.7704(1) g cm-3. 

 
 

 
Figure 2.43. Unit cell of triaminoguanidinium 3,5-diaminopicrate hydrate, viewed along the 
b axis. 
 

Experimental 

 

Samples of GDAP, AGDAP, DAGDAP and TAGDAP were provided by Dr. 

Anthony J. Bellamy from Cranfield University, UK. Single crystals suitable for 

X-ray diffraction were obtained from dissolving the compounds in hot water 

and subsequent cooling to room temperature. Details of the single crystal X-

ray diffraction experiment are listed in the appendix (Chapter 4). 
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2.1.4 Salts of Hydrochloric Acid 

 

3,6-Diamino-1,2,4,5-tetrahydro-tetrazinium dichloride 

 

3,6-diamino-1,2,4,5-tetrazine is a starting material for the synthesis of bis-

(2,2,2-trinitroethyl)-3,6-diamino-1,2,4,5-tetrazine (BTAT) and was synthesised 

from the condensation of diaminoguanidinium hydrochloride with 2,4-

pentanedione, followed by oxidation of the resulting dihydrotetrazine with 

sodium perborate (see section 2.2). (192)  Two pathways have been found for the 

preparation and isolation of BTAT. According to the first pathway, BTAT can 

be obtained on reaction of a solution of 3,6-diaminotetrazine in concentrated 

hydrochloric acid (37%) at a temperature of 70°C with stoichiometric amounts 

of trinitroethanol. The product precipitates from the solution and can be 

obtained in high purity on simple filtration. However, we observed that the 

yields of this approach are quite low. 

The reason for the low yields can now be rationalized in terms of formation of 

the previously unkown compound 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-

tetrazinium dichloride (Fig.  2.44).  

 

 
Fig. 2.44. Synthesis of 3,6-diamino-1,2,4,5-tetrahydro-tetrazinium dichloride from  the 
reaction between 3,6-diamino-1,2,4,5-tetrazine and hydrochloric acid.  
 

The compound becomes reoxidized to the corresponding 3,6-diamino-1,2,4,5-

tetrazine educt on contact with air already at ambient conditions within a few 

minutes. However, it was possible to determine the structure of the the 

tetrahydrotetrazinium dichloride using single crystal X-ray diffraction. 

Attempts to facilitate the formation of BTAT taking advantage of the higher 

reactivity of the amino groups present in this salt compared to the less reactive 

amino groups present in 3,6-diamino-1,2,4,5-tetrazine were unsuccessful so far 

due to the fact that oxidation of the tetrahydrotetrazinium salt on contact with 

trinitroethanol is preferred over the formation of BTAT.  
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Crystal Structure Analysis 

 

Of the three possible tetrazine isomers (1,2,3,4-tetrazines, 1,2,3,5-tetrazines, 

1,2,4,5-tetrazines), the class of 1,2,4,5-tetrazines appears to be the best-known. 
(193) Two important Lewis type structures of the parent compound (1) can be 

drawn (Fig. 2.45, 1a, 1b).  

 
Figure 2.45. Lewis type structures of the 1,2,4,5-tetrazine ring system. 

 
In addition to the aromatic tetrazine system (1), dihydro-1,2,4,5-tetrazines, 

tetrahydro-1,2,4,5-tetrazines, and hexahydro-1,2,4,5-tetrazines have been 

reported (Fig. 2.46). X-ray diffraction has revealed the dihydro derivatives to 

be best described as the 1,4-dihydro isomers (2). The corresponding 1,2-

dihydro- and 1,6-dihydro isomers (3) and (4) are very rare. (193) Though 

tetrahydro- and hexahydro-tetrazines (5, 7) have been reported, no X-ray 

crystallographic analysis of a dicationic tetrahydro-1,2,4,5-tetrazine (6) has 

been published so far to our knowledge. A similar structural motiv displays 

1,4-dihydro-1,2,4,5-tetrazine-3,6(2H,5H)-dione, the tautomer of 3,6-dihydroxy-

1,4-dihydro-1,2,4,5-tetrazine (p-urazine) from which tetraalkyl derivatives have 

been reported. (194)  

 

 
Figure. 2.46. Dihydro-, tetrahydro- and hexahydro derivatives of the 1,2,4,5-tetrazine ring 
system.  

 
It appears that 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride, 

which can formally be viewed as a dimer of guanidinium chloride, represents 

the first example of a  dicationic 1,2,4,5-tetrahydro-1,2,4,5-tetrazine ring 

system. 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride at 100K 
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has triclinic symmetry, space group P-1 (no.2). The asymmetric unit is shown 

in Figure 2.47. 

 
Figure 2.47. ORTEP representation of the molecular structure of 3,6-diamino-1,2,4,5-
tetrahydro-1,2,4,5-tetrazinium dichloride in the crystalline state. Displacement ellipsoids are 
shown at the 50 % probability level. Selected bond lengths [Å] and angles [°]: N1-N2 
1.402(2), N2-C2 1.326(2), C2-N3 1.348(2), N3-N4 1.405(2), N4-C1 1.326(2), C1-N1 1.346(2), C1-
N5 1.311(3), C2-N6 1.307(3), N4-C1-N5 123.13(18), N5-C1-N1 119.98(17), N4-C1-N1 
116.78(17), C1-N1-N2 115.92(15), N1-N2-C2 119.58(15), N2-C2-N6 122.27(17), N6-C2-N3 
121.15(17), N2-C2-N3 116.57(17), C2-N3-N4 116.16(15), N3-N4-C1 119.78(16), N5-C1-N4-N3 
162.05(19), N5-C1-N1-N2 163.51(18), N6-C2-N3-N4 168.52(18), N6-C2-N2-N1 156.85(18), C1-
N4-C3-N2 34.88(24), C1-N1-N2-C2 37.32(23). 
 

Boeyens mentioned that there was no generally accepted nomenclature or 

symbolic formalism to distinguish between the many conformations of six-

membered rings and introduced a new formalism. (195) The established 

terminology for the classical forms (chair, boat, half-chair, twist-boat) are 

retained and rendered more precisely. According to this ring conformational 

analysis, the tetrazine ring of 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-

tetrazinium dichloride displays a twist-boat conformation (Fig. 2.48) of 2T4 

type (puckering amplitude (Q) = 0.3771(15) Å, θ = 88.5(2)°,   φ = 218.6(2)°).  
 

 
Figure 2.48. Representation of the molecular structure of 3,6-diamino-1,2,4,5-tetrahydro-
1,2,4,5-tetrazinium dichloride in the crystalline state. According to the ring conformational 
analysis formalism suggested by Boeyens, the ring system displays a 2T4 type twist form. 
(195) 
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A comparison of bond length and angles of 3,6-diamino-1,2,4,5-tetrahydro-

1,2,4,5-tetrazinium dichloride to other di- or tetrahydro-derivatives of 3,6-

diamino-1,2,4,5-tetrazine is not possible because of a lack of structural data of 

the latter compounds. The exocyclic C-N bonds are shorter (1.307(3)Å, 

1.311(3) Å) compared to the corresponding C-N bond length of 3,6-diamino-

1,2,4,5-tetrazine (1.332(1)Å) indicating substantial double bond character. This 

notion is supported by the fact that the carbon atoms lie well in the plane 

spread through the three adjacent nitrogen atoms. The four endocyclic C-N 

bonds can be grouped pairwise. The C1-N4 bond as well as the C2-N2 (1.326(2) 

bond both have a value of 1.326(2)Å and belong to the first set of pairs whereas 

the C1-N1 bond (1.346(2)Å) and the C2-N3 bond (1.348(2)Å) form the second set 

of pairs with significantly longer bonds. The double bond character indicated 

by the shorter C-N bond length is again supported by the planar geometry of 

the N4 and N2 nitrogen atoms as indicated by the angle sum of 360° around 

these atoms. Complementary, the longer bond length values of the C1-N1 and 

C2-N3 bonds are accompanied by a pyramidal hybridization of the 

corresponding nitrogen atoms N1 and N3 affording a angle sum of 351.2(2)° 

around each of the two nitrogen atoms. Though the tetrazine ring of 3,6-

diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride is part of a dication, 

the two N-N bonds are significantly longer (1.402(2)Å, 1.405(2)Å)  than the 

corresponding N-N bonds of the aromatic 3,6-diamino-1,2,4,5-tetrazine 

(1.314(2)Å, 1.328(2)Å) and of comparable length to the N-N bond length 

observed in the two similar compounds   tetrahydro-1,2,4,5-tetramehtyl-

1,2,4,5-tetrazine-3,6-dione (1.411(2)Å, 1.414(2)Å) (194)  and tetrahydro-1,2,4,5-

tetramehtyl-1,2,4,5-tetrazine-3,6-dithione (1.413(2)Å, 1.418(2)Å) (194). The 

comparison with the two aforementioned compounds reveals and is limited to a 

similar twist-boat conformation of the tetrazine ring. Further comparisons of 

bond distances, bond angles or the extended structures seem little reasonable 

because the latter compounds contain 1,2,4,5-tetramethyl-1,2,4,5-tetrazine 

rings in contrast to the 1,2,4,5-tetrahydro-1,2,4,5-tetrazine ring  present in 3,6-

diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride with all the 

necessary electronic and steric effects on those values. 
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The extended structure of 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium 

dichloride (Figs. 2.49 and 2.50) displays extensive hydrogen bonding with all 

the N-H groups participating in N−H⋅⋅⋅Cl hydrogen bonding (Table 2.13). 

 . 

 
Figure 2.49. Unit cell of 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride, 
viewed along the a axis. 
 
 

 
Figure 2.50. Unit cell of 3,6-diamino-1,2,4,5-tetrahydro-1,2,4,5-tetrazinium dichloride, 
viewed along the c axis. 
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Table 2.13. Intermolecular hydrogen bonding of 3,6-diamino-1,2,4,5-tetrahydro-
tetrazinium dichloride.  

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 
N1−H1⋅⋅⋅Cl2 (i) 0.83(2) 2.25(2) 3.0838(14) 176(2) 
N2−H2⋅⋅⋅Cl1 (ii) 0.78(2) 2.38(2) 3.1135(14) 157(2) 
N3−H3⋅⋅⋅Cl1 (iii) 0.84(2) 2.31(2) 3.1359(14) 167(2) 
N4−H4⋅⋅⋅Cl2 0.776(18) 2.68(2) 3.2438(14) 131.5(17) 
N5−H5A⋅⋅⋅Cl1 (i) 0.80(2) 2.65(2) 3.2331(15) 132(2) 
N5−H5B⋅⋅⋅Cl1 (iv) 0.82(2) 2.41(2) 3.2055(15) 164(2) 
N6−H6A⋅⋅⋅Cl2 (v) 0.87(2) 2.63(2) 3.2691(15) 131.9(19) 
N6−H6A⋅⋅⋅Cl1 (ii) 0.87(2) 2.77(2) 3.4439(15) 135.3(19) 
N6−H6B⋅⋅⋅Cl1 (vi) 0.77(2) 2.46(2) 3.2201(15) 170(2) 

Notes. Symmetry code: (i) 1-x,1-y,1-z; (ii) -x,1-y,-z; (iii) -x,1-y,1-z; (iv) 1+x,y,z; (v) -1+x,y,-
1+z; (vi) -x,-y,1-z. 
 

 

Experimental 

 

3,6-diamino-1,2,4,5-tetrazine (0.5 g, 4.5 mmol) was dissolved in concentrated 

hydrochloric acid (500 mL). 2,2,2-Trinitroethanol (2.42 g, 13.4 mmol) was 

added and the solution heated to 100°C over a period of three hours using 

reflux conditions. During the reaction the initially red colour of the solution 

disappeared. Removal of the solvent afforded crystalline 3,6-diamino-1,2,4,5-

tetrahydro-tetrazinium dichloride as colourless solid. Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
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2.1.5 Salts of Perchloric Acid 

 

1-Methyl-5-(N-methyl)-aminotetrazolium Perchlorate 

 

The formation of 1-methyl-5-(N-methyl)-aminotetrazolium perchlorate has 

been observed recently on treatment of 1-methyl-5-(1-methyl-2-(2,2,2-

trinitroethyl)hydrazinyl)-1H-tetrazole with perchloric acid. This product has 

not been synthesised on purpose and was obtained by coincidence.  

As stated earlier (see page 59) the use of the perchlorate anion is an issue of 

concern predominantly in the United States due to contamination of drinking 

water supplies owing to its solubility and non-reactivity. The perchlorate anion 

is problematic because it is known to affect the function of the thyroid gland in 

mammals and its toxicity primarily results from the fact that it inhibits thyroid 

hormone output with all the negative consequences on normal physical and 

mental development or foetal and infant neuropsychological development just 

to name a few. (196) Today, great efforts are undertaken to replace energetic 

materials that contain this moiety as an oxidizing component, preferentially in 

propellants. Perchlorate does not occur naturally in the environment and its 

presence as an environmental contaminant mainly results from the use of 

ammonium perchlorate as an energetic booster or oxidant in solid rocket fuels. 

A prominent example where such a replacement would be highly desirable can 

be found in the use of ammonium perchlorate as component in solid state 

boosters of the Ariane 5 rocket, frequently used for space missions.  

Though only small quantities of 1-methyl-5-(N-methyl)-aminotetrazolium 

perchlorate were obtained as a side product of this reaction, it was possible to 

proof the existence of this previously unknown compound using single crystal 

X-ray diffraction. 
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Crystal Structure Analysis 

 

1-Methyl-5-(N-methyl)-aminotetrazolium perchlorate crystallizes in the 

orthorhombic space group P212121 (no. 19) with four moieties in the unit cell. 

The asymmetric unit consist of one moiety (Fig. 2.51). 

 

 
 
Figure 2.51. ORTEP representation of the molecular structure of 1-Methyl-5-(N-methyl)-
aminotetrazolium perchlorate in the crystalline state. The thermal ellipsoids are shown at 
the 50 % probability level. Selected bond lengths [Å]: C1-N1 1.344(4), N1-N2 1.359(3), N2-N3 
1.274(3), N3-N4 1.362(3), N4-C1 1.333(4), C1-N5 1.315(4), N5-C3 1.463(4), N1-C2 1.452(3), O1-
Cl1 1.450(2), O2-Cl1 1.4478(19), O3-Cl1 1.448(2), O4-Cl1 1.5563(19).  
 

The bond length and bond angles of the cation as well as the anion show 

typical values commonly observed for tetrazolate cations and the perchlorate 

anion in other structures. The extended structure is shown in Figure 2.52. The 

two N-H functionalities of the 1-methyl-5-(N-methyl)-aminotetrazolium cation 

are involved in N-H(cation)···O(anion) hydrogen bonding yielding an 

alternating, wavelike pattern of cations and anions along the crystallographic c 

axis (Fig. 2.52). The crystal density is only moderate (1.6408(1) g cm-3) 

rendering a possible use of this potential energetic material not only unlikely 

due to the general concerns regarding the perchlorate anion mentioned above 

but also due to the low performance characteristics that have to be expected as 

a consequence of the rather low value of the crystal density. 
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Figure 2.52. Unit cell of 1-Methyl-5-(N-methyl)-aminotetrazolium perchlorate, viewed 
along the a axis (left) and c axis (right). Yellow dashed lines indicate hyrogen bonding (N4-
H4···O2i, N5-H5···O3ii). (i) 1/2-x,1-y,-1/2+z, (ii) 1+x,y,z. 
 

Experimental 

 

The formation of 1-methyl-5-(N-methyl)-aminotetrazolium perchlorate has 

been observed as decomposition product from treatment of 1-methyl-5-(1-

methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole with perchloric acid at 

ambient conditions and letting stand the reaction mixture for several weeks at 

ambient conditions. Though only small quantities of 1-methyl-5-(N-methyl)-

aminotetrazolium perchlorate were obtained as a side product of this reaction, 

it was possible to proof the existence of this previously unknown compound 

using single crystal X-ray diffraction. Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 
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2.2 Energetic Materials: Molecules 
 

Molecules Containing the Trinitroethyl Functionality 

 

Introduction 

 

The development and testing of energetic materials is an exciting and 

challenging area of chemistry both as far as applied and fundamental aspects 

are concerned.  Considering the many applications of non nuclear energetic 

materials as explosives or propellants, it is important to discover new 

representatives having significant advantages over compounds currently used 

not only for military but also for civilian purpose because of environmental 

considerations and safety requirements while at the same time securing high 

performance.  A new generation energetic material has to meet several 

standards in order to become widely accepted.  

Next to performance properties, the desired criteria are insensitivity towards 

destructive stimuli like electrostatic discharge, heat, friction and impact to 

ensure safe handling procedures and enhance controllability of kinetic energy 

release as well as low water solubility and hydrolytic stability to protect the 

ground, longevity- and compatibility questions and furthermore criteria 

addressing highest priority ecological toxicity requirements. The Strategic 

Environmental Research and Development Program (SERDP) and the 

Environmental Security Technology Certification Program (ESTCP) are the United 

States of America Department of Defence’s (DoD) and Department of Energy 

(DOE) environmental technology programs supporting such progress ever 

since having been established in the late eighties of the twentieth century. 

Traditional representatives of high oxygen explosives (HOX) have been 

reported in public literature as research reports initiated by the Office of Naval 

Research (ONR) became declassified in the early seventies of the twentieth 

century; however, relevant data were published mainly in the patent literature, 

often without giving information about synthetic procedures or specifying the 

physicochemical characteristics of the compounds obtained. (11) Some of the 

most promising materials initially considered were polynitroaliphatic 
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compounds containing the dinitromethyl, fluorodinitromethyl and 

trinitromethyl groups. (197) Among them, the trinitroethyl compounds were 

found to have the most favourable heats of detonation and oxygen balance 

values. However, thermal stability was reported to be generally limited to 

150°C when solid and 100°C when molten reversing further investigation into 

trinitroethyl substituted compounds. (13) 

We have now investigated compounds mentioned in the literature and we have 

developed and tested novel compounds with the trinitroethyl functionality in 

order to explore its potential for the design of next generation energetic 

materials trying to enhance the thermal stability of this class of compounds and 

finding the molecule offering the best trade-off between energy capability and 

thermal stability. In the course of the global emerging interest in high-

energetic, dense materials (HEDM) (198) we are currently developing new 

energetic materials preferentially containing both high oxygen and nitrogen 

content with the trinitroethyl group contributing to a positive oxygen balance 

value. Oxygen balance (OB) is defined as the ratio of the oxygen content of a 

compound to the total oxygen required for the complete oxidation of all 

carbon, hydrogen and other elements that can be oxidised to form CO2, H2O, 

etc and is used to classify energetic materials as either oxygen deficient or 

oxygen rich.  

Most energetic materials are oxygen deficient. In contrast, this new class of 

compounds contains sufficient amounts of oxygen and releases energy not only 

from oxidation of the carbon back bone but also from the liberation of 

dinitrogen. Nitrogen is unique amongst all other elements of the periodic table 

in so far that the bond energy per two-electron bond increases from a single 

over a double to a triple bond resulting in dinitrogen being more stable than 

any other nitrogen species. (10) Here we report the synthesis, characterization 

and the energetic properties of compounds belonging to this new class of 

energetic materials and we are investigating structure property relationships of 

the trinitroethyl group affecting the density.  

Higher performance of a high explosive material crucially depends on density 

next to other critical parameters responsible for the effectiveness like the 

energy of the decomposition reactions, the number of moles and the molecular 

weight of the gaseous products. The velocity of detonation increases linearly 



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 130 - 

with density and the detonation pressure increases to the density squared. (22) In 

view of the high densities reported for trinitroethyl substituted compounds it 

seemed desirable to study the effect of this group on crystal density. In turn, all 

the compounds have been structurally characterized using single crystal x-ray 

analysis as a preliminary step in an investigation of the relationships between 

structure and crystal density. 

 

Synthesis and thermal stability 

 

The chemistry of 2,2,2-trinitroethanol is different to that of other alcohols 

owing to the electron withdrawing inductive effect of the trinitromethyl group 

(σ* = 4.54) (199) decreasing the oxygen basicity of the hydroxyl group. The 

alcohol becomes acidic (pKa = 6.1) and at pH values greater than 6, the 

equilibrium lies in the direction of the trinitromethanide anion and 

formaldehyde. (200) Due to the equilibrium position of the reaction forming 

trinitroethanol being dependent on the pH value, two pathways are possible for 

the Mannich reaction to occur with either the trinitromethane or 

trinitroethanol as the active hydrogen component. To study the behaviour of 

various heterocyclic amines in the Mannich reaction, we prepared a variety of 

amines of the tetrazole series and screen their properties in order to be able to 

judge which compounds would show promising properties in terms of fulfilling 

the desired criteria a new energetic material has to meet (see Table 1.1, page 

15). We were interested in determining the possibility of condensing these 

amines with formaldehyde and trinitromethane or directly with 2,2,2-

trinitroethanol and establishing the conditions of this reaction (Fig. 2.53). 
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Figure 2.53. Condensation of the amine can either occur directly with the alcohol or via the 
stepwise reaction with formaldehyde and trinitromethane.  
 

 
 

Figure 2.54. The two step reaction involves the condensation between the amine and 
formaldehyde yielding an intermediate iminium-type cation and subsequent product 
formation after reaction with trinitromethanide. 
 

The screening revealed that triazol or tetrazol derivatives carrying a hydrazine 

group were most readily converted into the corresponding condensation 

products already at room temperature and within a few minutes. In detail, 1-

methyl-1-(1H-tetrazol-5-yl)hydrazine, 1-methyl-1-(1-methyl-1H-tetrazol-5-

yl)hydrazine, 2-(5-(1-methyl-hydrazinyl)-1H-tetrazol-1-yl)ethanol and 1-

amino-2,5-hydroxymethyltriazine underwent this reaction and gave the 

corresponding products 5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-

tetrazol (MTHT), 1-methyl-5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-

tetrazol (MMTHT), 2-(5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-

tetrazol-1-yl)ethanol (MTHTE) and 2-(5-(1-methyl-2-(2,2,2-

trinitroethyl)hydrazinyl)-1H-tetrazol-1-yl)ethanol (MTHTE). However, the 

reversal of the Mannich reaction was most developed in these hydrazine-type 

compounds as well.  
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The equilibria in organic solvents were shifted towards the educts preventing 

accurate NMR analysis. In addition, the thermal stabilities were very low. 

MTHT showed the highest thermal stability (100°C), followed by MMTHT 

(82.5°C) as well as MTHTE and THMT that already decomposed at room 

temperature. The basic character of the nitrogen atom carrying the 

trinitroethyl moiety obviously prevents practical application of these 

compounds as energetic materials. In order to stabilize trinitroethyl Mannich 

bases that contain a free NH fragment effectively, a nitro group can be 

introduced to reduce the electron density of the amine nitrogen atom as a 

result of conjugation between the free electron pair of the amine nitrogen and 

the nitro group. As mentioned above, MTHT showed the highest thermal 

stability of this series of trinitroethylamines and was exemplarily chosen for 

this purpose. However, nitration of MTHT with various nitrating agents 

(mixtures of nitric acid with acetic acid and trifluoroacetic anhydrides, sulfuric 

acid, nitronium fluoroborate in acetonitrile) led to the formation of (E)-1-

methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)hydrazine (MTTH) 

instead of the desired nitramine (Fig. 2.55). 

 

 
Figure 2.55. Formation of (E)-1-methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)-
hydrazine, MTTH. 
 

MTTH is a rare example of a compound containing the trinitroethaniminyl 

moiety. A SciFinder Database enquiry revealed that there were only three 

entries mentioning molecules containing this fragment. (201-203) To our 

knowledge, MTTH represents the first example of a structurally characterized 

molecule containing this trinitroethylidene moiety. The crystal structure could 

be determined and is discussed in more detail later in this chapter. It is 

interesting to note that hydrazone formation was preferred over nitramine 

formation even though such a mild and non-oxidizing nitrating agent as 

nitronium tetrafluoroborate was used. A possible rational would be the 

presence of the nitramine as an intermediate product (Fig. 2.56). 
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Fig. 2.60. A possible rationale for the formation of MTTH includes intermediate nitramine 
formation with subsequent elimination of HNO2. 
 
Indeed, it has been suggested that hydrazone formation could 

thermodynamically be favoured compared to nitramine formation. (203) 

Another possibility to decrease the basicity of the amine would be 

disubstitution with two trinitroethyl moieties. However, the only example 

where double condensation occurs seems to be ammonia itself yielding bis-

(2,2,2-trinitroethyl)amine (BTNA). BTNA was first synthesised by Schenck 
(204) who reported the reaction of 2,2,2-trinitroethanol even with only one 

equivalent of ammonia yielding BTNA instead of 2,2,2-trinitroethylamine. N-

trinitroethyl compounds are generally base sensitive compounds with the 

methylene hydrogen atoms being acidified due to the electron withdrawing 

effect of the trinitromethyl group facilitating the reversal of the Mannich 

equilibrium involving the unshared p electron pair on the nitrogen atom 

yielding the methylene immonium ion and trinitromethanide anion.  

This effect is decreased in the novel compounds N1-(2,2,2-trinitroethyl)-1H-

tetrazole-1,5-diamine (TTD)  and N1,N5-bis(2,2,2-trinitroethyl)-1H-tetrazole-

1,5-diamine (BTTD) where the sp3-type electron pair is deactivated as a 

consequence of the electron withdrawing, inductive properties of the tetrazole 

unit. TTD and BTTD combine both the advantages of the tetrazole, as well as 

the trinitroethyl moiety. The tetrazole unit with its high nitrogen content 

together with its endothermic character (205) is remarkably thermally stable (206) 

and the trinitroethyl fragment contributes to a positive oxygen balance. The 

formation of TTD from the Mannich condensation between diaminotetrazole 

and trinitroethanol in water at ambient conditions can be accelerated when 

applying ultrasound. The product precipitates as a white solid and can be 

obtained in high yield and purity by simple filtration. On heating the neat 

sample using the DSC we observe a shift of the decomposition signal starting 

from 125.6°C (5 K min-1) to 146.5°C (1 K min-1) (Fig. 2.61). 
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Figure 2.61. DSC plot of TTD at heat rates β = 5 K min -1, β = 2 K min -1 and β = 1 K min -
1 (up = exo). 

Thermal rearrangement of substituted 5-aminotetrazoles is known to be a 

classic example of the Dimroth rearrangement and Moderhack et al. reported 

this reaction also to occur in case of substituted 1,5-diaminotetrazoles (Fig. 

2.62). (207) 

 

Figure 2.62. Thermal rearrangement of 5-amino-1H-tetrazole-1-carboxamide to 1-(1H-
tetrazol-5-yl)urea. 
 

In analogy we suppose the signal appearing in the DSC measurement at higher 

temperature to belong to 1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethyl)-hydrazine  

or its open-ring tautomer azido-(2-(2,2,2-trinitroethyl)-hydrazinyl)-

methanamine (Fig. 2.63). 
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Figure  2.63. Thermal rearrangement of TTD. 

 

The results of the isothermal long term experiment (85°C, 48h) show no 

decomposition or thermal rearrangement of TTD whereas the same 

experiment run at 120°C afforded an explosion of the sample with destruction 

of equipment. Isolation of this compound failed because of its extreme 

sensitivity and no further attempts were made to prove the existence of 1-(1H-

tetrazol-5-yl)-2-(2,2,2-trinitroethyl)-hydrazine  or its open-ring tautomer 

azido-(2-(2,2,2-trinitroethyl)-hydrazinyl)-methanamine as a consequence.  

Bis-(2,2,2-trinitroethyl)-3,6-diaminotetrazine (BTAT), has been mentioned in 

the literature to be a potentially promising energetic molecule according to 

theoretical calculations predicting its heat of formation (208) and velocity of 

detonation. (209) Experimental evidence for this substance is scarce. In detail,  

only the UV/VIS absorption bands have experimentally been determined in a 

study where this material has been used for time resolved optical UV/Vis 

spectroscopy but no other experimental data or synthesis were reported in this 

work. (210) Instead, Jeff Bottaro and Rob Schmidt from SRI international were 

given credit for providing samples of this material. Of interest, we mention that 

there is a structural report of the similar compound 3,6-bis(2-fluoro-2,2-

dinitroethylamino)-1,2,4,5-tetrazine. (211) No experimental data of this 

compound or synthetic protocols for this compound were provided in this 

work. Instead, Robert Schmitt of SRI international, Palo Alto, California was 

given credit in the experimental section for having synthesised this compound. 

Experimental evidence of BTAT available at the time of writing this thesis 

were limited to UV-Vis spectra. No other data or synthetic protocols were 

available to our knowledge.  

Here we present a synthetic pathway of 3,6-(2,2,2-trinitroethylamino)-1,2,4,5-

tetrazine (BTAT) and its detailed characterization. We find that the reversal 

Mannich reaction mentioned above is most effectively cancelled in this 

compound due to the unshared p electron pair at the sp2-type nitrogen atom 
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being delocalized over the tetrazine ring system. The lack of reactivity of this 

amino group present in the starting material (3,6-diaminotetrazine) prevents it 

from reacting with 2,2,2-trinitroethanol even at drastic conditions when being 

heated solvent free. However, we find that condensation occurs with the aid of 

a Lewis acid or strong mineral acids (see section 2.14, page 119). 

 

 
Figure 2.64. Mechanism for the formation of 3.6-diamino-1,2,4,5-tetrazine from 
diaminoguanidinium hydrochloride and acetylacetone according to Coburn et al. (212) 

 

 

 
Figure 2.65. Iron-(III)-chloride aided, three step synthesis of BTAT starting from 
diaminoguanidinium hydrochloride, 2,4-pentanedione and 2,2,2-trinitroethanol. 
 

The ultraviolet spectrum shows that the π→π* (tetrazine) band appears in the 

UV region at 240.5 nm. Two additional transitions are present in the visible 

region at 413.5 and 507.5 nm. The thermal stability of BTAT is enhanced 

compared to TTD with decomposition starting at 184°C (DSC, 5K min-1). 

BTAT is chemically stable at a temperature of 140°C for at least 48h (Fig. 

2.66).  
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Figure 2.66. Isothermal long term experiment (48h) of N1-(2,2,2-trinitroethyl)-1H-
tetrazole-1,5-diamine (TTD), bis(2,2,2-trinitroethyl)-3,6-diaminotetrazine (BTAT)  and bis-
(2,2,2-trinitroethyl)-hydrazodicarboxylate (BTHC). Color: sample (red), oven (blue). 
Decomposition did not occur rendering TTD, BTAT and BTHC long term stable at 
ambient as well as at elevated temperatures. 
 

Other compounds that can be related to BTAT in terms of having a similar 

composition include 2,4,6-(2,2,2-trinitroethylamino)-triazine (TTAT) and 

2,2,4,4,6,6-(2,2,2-trinitroethylamino)-triazine (HTAT). Formal comparison of 

BTAT and TTAT shows that the six membered ring of the latter compound 

(TTAT) consists of a six-membered ring containing three nitrogen atoms, 

three carbon atoms and three N-trinitroethyl functionalities, BTAT contains a 

six-membered ring containing four ring nitrogen atoms, two carbon atoms and 

two exocyclic N-trinitroethyl moieties. 2,4,6-(2,2,2-trinitroethylamino)-1,3,5-

triazine (TTAT) has been mentioned in only two publications. (213-214) The 

reported properties include infrared as well as NMR spectroscopic data next to 

elemental analysis and a melting point of 55-57°C. (214)  Two synthetic routes 

towards the preparation of 2,2,4,4,6,6-(2,2,2-trinitroethylamino)-triazine 

(HTAT) have been reported and shown to be unsuccessful: a) replacement of 

the chlorine atoms of cyanuric chloride by bis-(2,2,2-trinitroethyl)amine in the 

presence of pyridine as well as b) reaction of cyanamide with two equivalents of 

2,2,2-trinitroethanol to give bis-(2,2,2-trinitroethyl)cyanamide, followed by 
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trimerization of the latter. (215) In order to study whether the thermal stability 

could further be enhanced we also developed compounds where we take 

advantage of the unshared p electron pair of nitrogen trying to impact thermal 

stability through oxygen-balance neutral introduction of conjugation affording 

carbamates from the reaction between 2,2,2-trinitroethylchloroformate and a 

nitrogen nucleophile. 2,2,2-trinitroethyl-azidoformate (TAF) was obtained 

from the reaction of 2,2,2-trinitroethylchloroformate and trimethylsilylazide as 

shown in Figure 2.67. 

 
Figure 2.67. Synthsis of TAF. 

 

The DSC diagram of TAF shows that melting of the white solid occurs at 

27.5°C (onset). A second endothermic signal (96.2°C onset) corresponds to 

boiling with subsequent decomposition (130.4°C onset / 158.4°C max). A 

second exothermic signal appears (191.6°C onset / 205.6°C max) possibly 

originating from 2,2,2-trinitroethylcarbamate formed during pyrolysis of TAF 

in analogy to the azide pyrolysis of ethyl azidoformate where elimination of 

molecular N2 has been reported to occur on thermal decomposition. (216) 2,2,2-

trinitroethylcarbamate represents the most simple carbamate carrying the 

trinitroethyl moiety. Formally, bis-(2,2,2-trinitroethyl)-hydrazodicarboxylate 

(BTHC) can be considered as a dimer of 2,2,2-trinitroethylcarbamate and was 

obtained according to Figure 2.68. 

 

 
Figure 2.68. Synthesis of BTHC. 
 

In order to prevent facile dissociation of the base sensitive trinitroethyl moiety 

we chose to apply kinetic control and to avoid an excess of nucleophile. Under 

these conditions, even strong bases like hydrazine can be reacted. The NMR 

spectra of dissolved single crystals of BTHC and ethyl acetate (1:1) are shown 

in Figures 2.69 – 2.71. 
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Figure 2.69. 1H NMR Spectrum of BTHC / EtOAc (1:1). ([D3]chloroform) δ: 5.46 (2H, s, -
CH2-), 7.4 – 7.9 (2H, s, -NH-). 

 
Figure 2.70. 13C NMR Spectrum of BTHC / EtOAc (1:1). ([D3]chloroform) δ: 62.0 (s, -CH2-
), 122.7 (bs, -C(NO2)3), 153.4 (s, -O2C-).  

 
Figure 2.71. 15N NMR Spectrum of BTHC / EtOAc (1:1). ([D3]chloroform) δ 
(nitromethane):  -35.6 (s, -NO2), 284.0 (s, -NH-). 
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The pure substance (BTHC) is a glass-like, amorphous solid at room 

temperature rather softening than melting in the vicinity of greater 80°C as 

can be depicted from the DSC plot (Fig. 2.72). The DSC measurement was run 

at a rate (β) of 5 K min-1 displaying an onset of decomposition as high as 

188.3°C. The property of having a reasonable low melting point together with 

a liquid range of greater than 100°C renders this material as a promising 

candidate for use as melt-castable explosive.  

 

Figure 2.72. DSC plot of TAF (decomp. onset: 130.4°C), BTAT (decomp. onset: 184°C), 
BTHC (decomp. onset: 188.3°C) and BTHC/acetone (decomp. onset: 185.4°C) 1:1 (β = 5 K 
min -1, exo = up). The temperatures of the first exothermic maxima are given.  
 
The isothermal long term test (48 h) of BTHC has been carried out at 120°C 

and 140°C with no evidence of decomposition or change in decomposition 

point. The chemical long term stabilities of BTHC and BTAT at 140°C are 

exceptionally high for this class of trinitroethyl containing compounds. The 

decomposition rates in the liquid state or in solution are usually up to 50 – 100 

times faster than at corresponding temperatures in the solid state. (217-219) This 
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can be considered as a consequence of the atoms involved in the decomposition 

reactions being relatively immobile in the solid state hindering chemical 

reactions to take place and facilitating atom-to-atom recombination reactions 

in contrast to the liquid state. (13) Considering this fact, the stability of liquid 

BTHC can be considered excellent. A possible rationale for this could be that 

on comparing different molecules, additional rotational modes can effectively 

act as enthalpy sink with more energy being required to break bonds.  In 

contrast, restriction of rotational modes due to steric effects or the rigid body 

of a molecule can lead to energy redistribution within the molecule with more 

energy going into the vibrational modes eventually leading to bond homolysis.   

 

Heat of Formation 

 

Calorimetric measurements of the energies of combustion of nitro compounds 

present considerable difficulties (220) because the compounds often explode on 

exposure to heat or mechanical shock.  The heats of combustion for nitro 

compounds are usually lower than for hydrocarbons, and the handling of larger 

quantities of such substances is dangerous because of the possible change from 

combustion to detonation.  In addition, it is difficult to obtain accurate values 

for the enthalpy of formation since the accurate determination of the energy of 

combustion effects the accuracy of the derived enthalpy of formation.  In order 

to obtain highly accurate energy values, we first calculated the absolute gas 

phase enthalpies (H) at 298.15K using a modification of the Complete Basis Set 

(CBS) method of Peterson and co-workers. The CBS models make use of the 

asymptotic convergence of pair natural orbital expressions to extrapolate 

correlation energies from calculations using a finite basis set to the estimated 

complete basis set limit. (221) CBS-4 starts with a HF/3-21G(d) geometry 

optimization in order to compute the zero-point vibrational energy. Then a 

large basis set SCF calculation is performed yielding a base energy corrected 

through a second order MP2/6-31+G calculation with a CBS extrapolation. 

Higher-order contributions are estimated using a MP4(SDQ)/6-31G 

calculation. An empirical correction is then used to treat spin contamination 

effects. (222) In this study we applied the modified CBS-4M method (M referring 

to the use of minimal population localization) which is a re-parameterized 
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version of the original CBS-4 method. (223) The determination of the gas phase 

heats of formation was accomplished by using the method of atomization 

energies (Fig. 2.73). (224) 

 

∑∑ Δ+−=Δ
atomsatoms

HHHH ),A(),A(),M(),M( (g)f(g))g()g(f 298298298298 oooo  

Fig. 2.73. Notes. M refers to molecule, A refers to atoms, and 298.15 K is denoted as 298 for 
clarity. 
 

Finally, sublimation enthalpies were estimated according to Trouton’s rule 

(Fig. 2.74) and subtracted from the gas phase enthalpies of formation in order 

to obtain the solid state heat of formation values. (225) 

 

ΔsubH°(M(s), 298) [J mol-1] = 188 · Tm  [K]  

Figure 2.74. Estimation of the heat of sublimation. 

 
The values obtained for the heat of formation obtained from our calculations 

can be compared with the previously reported values for ethanol (EtOH), 2,2,2-

trinitroethanol (TNE), 2,4,6-trinitrotoluene (TNT) and 

cyclotrimethylenetrinitramine (RDX) as well as 

cyclotetramethylenetetranitramine (HMX) and hexanitrohexaazaisowurtzitane 

(HNIW / CL-20) which were determined using both precision combustion 

calorimetry and reaction calorimetry (Table 2.14).  
 
Table 2.14. Comparison of experimentally determined and calculated heat of formation. 

ΔfH0 / kcal mol-1 CBS-4M experimental a) 

EtOH -58.0 (g) -56.1 ± 0.1 (g) (226) 

TNE -47.0 (g) / -62.5 (s) -62.3 ± 0.7 (s) (227) 

TNT 2.21 (g) 5.8 ± 0.8 (g) (228) 

RDX 41.6 (g) 45.9 (g) (229) 

HMX 30.1 (s) 24.6 ± 0.7 (230) 
CL-20 96.7 (s) 102.9 (s) ± 3.1 (231) 

 

The differences between the experimentally determined and the calculated 

ΔfH° values do not exceed a range of 5 kcal mol-1 rendering this method valid 

for the estimation of the heats of formation (Table 2.15). Hence, the calculated 
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values for those compounds where no experimental data exist should be 

reliable estimates. High heat of formation is a critical parameter for the 

performance properties of a high explosive and most of the energy derived in 

modern HEDM stems not only from oxidation of the carbon backbone as in 

traditional energetic materials but also from ring or cage strain and from their 

very high positive heat of formation. Tetrazoles are the most promising 

heterocycles amongst five-membered rings with four nitrogen atoms in the 

ring displaying high heats of formation due to an increasing positive trend in 

heat of formation with increasing number of nitrogen moving from imidazole 

(ΔfH0, + 58.5 kJ mol-1) to 1,2,4-triazole (ΔfH0, + 109.0 kJ mol-1) to tetrazole 

(ΔfH0, + 237.2 kJ mol-1). (232) As far as six-membered nitrogen containing 

heterocycles are concerned, tetrazines display the highest heat of formation 

with four nitrogen atoms in the ring. The standard heat of formation of 1,2,4,5-

tetrazine has been calculated to be as high as 489.9 kJ mol-1. (233) In accordance, 

the tetrazole and tetrazine based compounds TTD, BTTD and BTAT display 

the highest values for the heat of formation of the compounds presented in this 

work (Table 2.15). 

 
Table 2.15. Composition, oxygen balance and calculated heat of formation. 

 i formula Σ (O, N)  N O Ω  ΔfH 0(g) a) ΔfH 0(s)  

BTHC 3, 4 C6H6N8O16 82.50 25.12 57.38 +3.6 -610.18 -671.27 

BTC 24 C5H4N6O15 83.48 21.65 61.83 +12.4 -508.08 -581.05 

TNE 8 C2H3N3O7 85.07 23.21 61.86 +13.3 -196.78 -261.57 

BTNA 10 C4H5N7O12 84.16 28.57 55.59 +7.0 -5.34 -77.77 

TAF 9 C3H2N6O8 84.78 33.60 51.18 +6.4 -1.55 -58.07 

BTAT 15 C6H6N12O12 82.18 38.36 43.82 -10.9 +422.00 +336.11 

TTD 7 C3H5N9O6 84.39 47.91 36.48 -15.2 +430.51 +355.54 

BTTD 17 C5H6N12O12 84.49 39.44 45.05 -3.8 +435.66 +360.69 

TNT  C7H5N3O6 60.76 18.50 42.26 -74.0 +9.27 -57.27 

RDX  C3H6N6O6 81.06 37.84 43.22 -21.6 +174.2 +84.50 

HMX  C4H8N8O8 81.06 37.84 43.22 -21.6 +230.57 +126.20 

Notes. i = index used to reference individual compounds, see Chart 1. M = molar mass / g 
mol-1, ρ = calculated density obtained from single crystal X-ray diffraction studies / g cm-3, 
Σ (O, N) = sum combined oxygen and nitrogen content / %, Ω = oxygen balance / %, ∆fH 0 

= calculated enthalpy of formation / kJ mol-1. 
 
Tables 2.15 and 2.16 contain the heat of formation and performance data of two 

molecules where we previously reported the crystal structures with 2,2,2-

trinitroethanol (TNE) (234) representing the most simple trinitroethyl 
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substituted compound as well as bis(2,2,2-trinitroethyl)carbonate (BTC) (235) 

displaying the highest crystal density amongst all trinitroethyl substituted 

compounds as well as the heat of formation and performance data of standard 

explosives such as 2,4,6-trinitrotoluene (TNT), 1,3,4-trinitro-1,3,5-

triazacyclohexane (RDX) and  1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane 

(HMX) for comparison. 

 

Sensitivity and Performance 
 

In order to establish safe handling procedures the sensitivity data of the new 

compounds towards mechanical destructive stimuli like impact or friction and 

electrostatic discharge have been measured. The sensitivity can be used to 

classify them as primary or secondary explosives. Whereas primary explosives 

explode readily from light to modest mechanical stimuli or application of heat, 

some secondary explosives or simply high explosives need a high energy 

impulse like the shock of a detonation in order to initiate detonation and will 

simply burn in small enough quantities. According to BAM (Bundesanstalt für 

Materialprüfung), a compound can be classified as being insensitive (impact 

energy > 40 J / friction force > 360 N), less sensitive (impact energy ≥ 35 J / 

friction force = 360 N), sensitive (impact energy ≥ 4 J / friction force < 360 N 

to > 80 N), very sensitive (impact energy ≤ 3 J / friction force ≤ 80 N) and 

extremely sensitive (impact energy ≤ 3 J / friction force ≤ 10 N). Of all the 

compounds tested, the following order of sensitivity including the standard 

explosives TNT, RDX, HMX and CL-20 arises: CL-20 (very sensitive, 4 J / 

48N) (236) > TTD (sensitive, < 30 J / 40 N) > HMX (sensitive, 7.4 J / < 120 N); 
(236) RDX (sensitive, 7.4 J / 120 N); (236) BTAT (sensitive, 7J / > 160 N) > TNT 

(sensitive, 15 J / 353 N) (236) > BTNA (sensitive, 15 J / > 360 N) > BTHC 

(insensitive, > 100 J / > 360 N). By applying the calculated density values 

obtained from the crystal structure determination and the calculated energy of 

formation, the performance parameters of TTD, BTTD, BTAT, TAF and 

BTHC as well as 2,2,2-trinitroethanol (TNE), bis-(2,2,2-trinitroethyl)-amine 

(BTNA) and bis-(2,2,2-trinitroethyl)-carbonate (BTC) were calculated using 

the software EXPLO5 (v. 5.02) (237-241) and are summarized in Table 2.16. The 

software is based on the chemical equilibrium, steady-state model of detonation 
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and uses the Becker-Kistiakowsky-Wilson’s equation of state (BKWN EOS) for 

gaseous detonation products. 

 
Table 2.16. Selection of calculated performance properties and comparison to TNT, RDX 
and HMX. 

 ρ ∆fU0 QCJ V0 Tex PCJ D 

BTHC calc.  1.8 -1421 5333 682 4376 284 8188 

TNE calc.  1.839 -1355 4875 712 4041 285 8180 

TAF calc.  1.853 -153 5353 675 4549 303 8359 

BTC calc.  1.975 -1417 4792 665 4068 317 8396 

BTNA calc.  1.881 -138 6010 705 4733 343 8815 

TTD calc. 1.831 +1443 6018 788 4650 370 9194 

BTTD calc. 1.897 +932 6479 739 5009 388 9323 

BTAT calc. 1.886 +852 6135 743 4867 389 9261 

TNT calc.  1.64 -175 5064 625 3749 203 7170 

TNT exp. 1.64 (242) - - - - 210 a) (242) 6950 a) (242) 

RDX calc.  1.80 +280 5875 797 4290 338 8894 

RDX exp. 1.80 (242) - - - - 347 a) (242) 8750 a) (242) 

HMX calc.  1.89 +526 6169 791 4385 384 9288 

HMX exp. 1.89 (242) - - - - 390 a) (242) 9110 a) (242) 

Notes. a) experimental value, ρ = calculated density obtained from single crystal X-ray 
diffraction studies / g cm-3, ∆fU0 = energy of formation / kJ kg-1, Ω = oxygen balance / %, 
QCJ = heat of explosion / kJ kg-1, V0 = volume of gaseous detonation products / L kg -1, Tex 
= explosion temperature / K, PCJ = detonation pressure / kbar, D = velocity of detonation / 
m s-1. 
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Figure 2.75. Small scale burning test (UN 3d) of BTAT as part of the interim hazard 
classification (IHC) procedure. An unconfined plastic transportcontainer filled with BTAT 
(2g) was placed in kerosene-soaked sawdust which was subsequently ignited. The picture in 
the middle shows deflagration of the substance indicating a pass of this test due to failure of 
explosion or detonation. 
 

A comparison of the calculated values of 2,4,6-trinitrotoluene (TNT), 1,3,4-

trinitro-1,3,5-triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-

tetraazacyclooctane (HMX) based on the calculated (CBS-4M) solid state heat 

of formation to their corresponding experimental values is included in Table 

2.16 and shows that the calculated values obtained using this method are in 

good agreement with the corresponding experimental values. TNT can be 

considered as first generation explosive, whereas the nitramine-type explosives 

RDX and HMX belong to the second generation and are standard explosives 

for most military applications today. The theoretically predicted performance 

values for TNE, BTC, BTNA, TTD, BTTD, BTAT, TAF and BTHC all lie 

within the range expected for high explosives while at the same time 

displaying a much more favourable oxygen balance compared to TNT, RDX 

and HMX. Oxygen balance values near or greater zero are highly desirable in 

order to reduce toxic fume gases like carbon monoxide. (236) The combined 

oxygen and nitrogen content of TNE, BTNA, BTC, TTD, BTTD, BTAT, 

TAF and BTHC all lie within 82.2% to 85.1% with oxygen balance values 

ranging from -15.2%  to +13.3%. Of all the compounds studied in this work, 

TTD, BTTD and BTAT show the highest predicted values for the velocity of 

detonation (BTTD: 9323 m s-1 / BTAT: 9261 m s-1/ TTD: 9194 m s-1), 

detonation pressure (BTAT: 389 kbar / BTTD: 388 kbar / TTD: 370 kbar) 

and heat of explosion (BTTD: 6479 kJ kg-1 / BTAT: 6135 kJ kg-1 / TTD: 6018 

kJ kg-1 ) displaying performance values superior to RDX and comparable to 

HMX.  
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Figure 2.76. High Speed Video Images (4000 frames per second) of the electrostatic ignition 
of BTAT and subsequent explosive decomposition. The four pictures show the unreacted 
sample, ignition of the sample by electrostatic discharge accompanied by formation of dark 
coloured gases, detonation accompanied by a flash of light and burning of the hot 
decomposition gases (from left to right). 
 

Figure 2.77 displays the pictures of a Steel Sleeve test (Koenen test) on TTD. 

This is indicative for the respond to thermal shock and performance of a 

compound under confinement according to German law of explosives as well as 

the United Nation Recommendations on the Transport of Dangerous Goods. (243) A 

steel core [d] (Fig. 2.77) filled with 25 mL of compound gets locked using a 

perforated disk [b] with variable whole width using screw threads [a] + [c]. 
The sample is then placed into the test setup where four Bunsen burners 

simultaneously heat it up to five minutes. Subsequently, large amounts of 

liberated gaseous decomposition products arise. The whole diameter of the 

perforated disk where no destruction of the steel assembly occurs is called the 

limiting diameter. This diameter has been found to be 6 mm for TNT, and 8 

mm for RDX and HMX.  In case the steel sleeve is ruptured into three or more 

pieces the test is evaluated as explosion. A whole width of 10 mm was used in 

this test (Fig. 2.77) and the steel tube was fragmented into powder-like pieces. 

Furthermore, the screw threads [a] + [c] were also broken into pieces 

rendering TTD as sensitive compound with a critical diameter of greater 

10mm (Type H). The explosion was recorded using a high speed camera at 

3500 frames per second and found to take place within less than 0.5 

milliseconds according to two frames with the first frame showing ignition and 

the second frame (picture B, Fig. 2.77) revealing that no visible metal pieces are 

present any longer. 
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Figure 2.77. Steel Sleeve test (Koenen) of TTD (10mm). A: Setup, B: High Speed Image 
(3500 fs-1) of the detonation, C: Steel sleeve assembly before the test: [a] + [c] screw thread, 
[b] perforated disk (10mm whole width), [d] steel core, filled with TTD, D: Steel sleeve 
residues. 
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Figure 2.78. Series of high speed images (3500 fs-1) of the Koenen Test of TTD.  
 

 

Crystal Structure Analysis 

 

Due to density being one of the most important parameters specifying 

detonation properties we determined solid state molecular and crystal 

structures in order to investigate the relationships between structure and 

crystal density. In order to evaluate the significance of the trinitroethyl group 

for the design of novel compounds displaying superior high energy density, 

intermolecular interactions of this moiety were of particular interest. The close 

approach of oxygen atoms with intermolecular oxygen···oxygen distances 

substantially less than 3.04Å, the sum of the van der Waals radii for O (1.52Å) 
(244) were chosen as manifestations of dipolar nitro group interactions and were 

investigated in analogy to those discussed in the structure determinations of 

2,2,2-trinitroethanol (234) and bis-(2,2,2-trinitroethyl)-carbonate (235). The 

attractive nitro group interaction is supposed to be both of dispersive as well as 

electrostatic nature. Nitrogen···oxygen distances less than 3.27Å were 

investigated to that effect. The value of 3.27Å was chosen as the sum of the van 

der Waals radii of nitrogen and oxygen (244) plus a tolerance value of 0.2 Å. 
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2,2,2-Trinitroethanol (TNE) 
 

 

The structure of 2,2,2-trinitroethanol, C2H3N3O7, at 100 (2) K has monoclinic 

(P21/c) symmetry with eight formula units in the unit cell whereby the 

asymmetric unit consists of two molecules. The compound is of interest with 

respect to energetic materials. The structure displays intramolecular O—H···O 

as well as intermolecular O—H···O and C—H···O hydrogen bonding, directed 

four-membered OH···OH···OH rings and dipolar nitro group interactions that 

account for the high density of 1.839 g cm3. 2,2,2-Trinitroethanol  with three 

nitro groups bonded to the same carbon atom is a valuable intermediate in the 

preparation of energetic materials. However, the structure of TNE in the solid 

state has not been investigated. Only a hypothesis about intramolecular as well 

as intermolecular hydrogen bonding, based on IR spectroscopy data, has been 

made. (245) Our X-ray investigation shows intra- as well as intermolecular O—

H···O hydrogen bonding next to non-classical C—H···O hydrogen bonding. 

The asymmetric unit of TNE (Fig. 2.79) consists of two crystallographically 

independent trinitroethanol molecules. 

 
Figure 2.79. ORTEP representation of the molecular structure of 2,2,2-Trinitroethanol in 
the crystalline state. Only one of the two molecules of the asymmetric unit is shown. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-C2 1.5352(19), C1-O1 1.4050(17), C2-N1 1.5197(18), C2-N2 1.5155(17), C2-
N3 1.5159(17), N1-O2 1.2094(18), N1-O3 1.2130(18), O2-N1-O3 126.98(14), N1-C2-N2 
106.24(11), N1-C2-N3 105.90(10), N2-C2-N3 108.43(10), N1-C2-C1 113.42(12), C2-C1-O1 
110.77(11), N2-C2-C1-O1 -34.29(16). 
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These two moieties display a very similar molecular geometry with a propeller-

type orientation of the nitro groups (D3) bonded to the β carbon atom. In both 

molecules the conformation of the substituents of the α- as well as the β carbon 

atom is found to be staggered and intramolecular O—H···O hydrogen bonding 

does occur (O1—H1···O3, O8—H8···O13). The length of the C-N bonds joining 

the three nitro groups to the β carbon atom (range 1.5150 ± 0.0018 Å - 1.5197 

± 0.0018 Å) are significantly longer than the normal C-N bond distance of 1.47

Å (246) as was already observed in the determination of the crystal structure of 

N,N'-bis-(2,2,2-trinitroethyl)-urea (247). A comparison of the geometrical trends 

for the bonding of the three nitro groups to one carbon atom in TNE with 

those in N,N'-bis-(2,2,2-trinitroethyl)-urea reported by Lind again shows good 

agreement taking into account that the measurement of Lind was undertaken 

at 296 K whereas our experiment was run at 100 K. The independent N-C-N 

bond angles are less (range 105.90 (0.10)° - 108.43 (0.10)°) than the tetrahedral 

value whereas the corresponding N-C-C bond angles are greater (range 110.18 

(0.11)° - 113.42 (0.12)°) than the tetrahedral value. The three independent nitro 

groups of each TNE molecule are identical in structure within the limits of 

error and display common geometry parameters like N-O distances (range 

1.2079 (0.0018)Å - 1.2181 (0.0018) Å), O-N-O bond angles (range 126.96 

(0.14)° - 127.91 (0.15)°) and O-N-C bond angles (range 113.63 (0.12)° - 118.64 

(0.12)°). In turn, the arrangement of the C-N and N-O bonds is coplanar with 

the sums of the three bond angles around one nitrogen atom being 360° within 

the limits of error.  

The extended structure of TNE involves secondary interactions in terms of 

intermolecular O—H···O hydrogen bonding, intermolecular C—H···O 

hydrogen bonding as well as dipolar nitro group interactions. The circular O—

H···O hydrogen bonding between the hydroxyl groups of four trinitroethanol 

molecules results in four-membered homodromic rings (O1—H1···O8—

H8···O1—H1···O8—H8). The structure that can be observed along the 

crystallographic a axis shows a stacking of these rings. Every ring is 

surrounded by four neighbouring rings whereby two of the four molecules of 

trinitroethanol that form such a ring interconnect the central ring to the 

surrounding rings via C3—H3B···O14 hydrogen bonding (Fig. 2.80). 
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Figure 2.80. Unit cell packing of 2,2,2-Trinitroethanol, viewed along the a axis. Yellow dashed lines indicate intermolecular hydrogen bonding 
(O1-H1···O8, O8-H8···O1i) Green dashed lines indicate intermolecular hydrogen bonding of the acidified methylene type hydrogen atoms of the 
trinitroethyl moiety (C3-H3B···O14ii); Symmetry code: (i) –x+2, -y+1, -z+1; (ii) x, -y+1/2, -z+1/2. 
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Additional contacts: Intramolecular hydrogen bonds: O1-H1···O3 and O8-

H8···O13.The close approach of oxygen atoms found in the extended structure of 

TNE suggest the possibility of dipolar nitro group interactions in analogy to a 

variety of non-covalent interactions such as halogen···O(nitro) (248), halogen···O=C 
(249) and carbonyl interactions (250). Short intermolecular oxygen···oxygen 

distances with values substantially less than 3.04Å, the sum of the van der 

Waals radii for O (1.52Å) (244), were investigated to that effect. Dipolar nitro 

group interactions were accepted for nitrogen···oxygen contacts less than 

3.17Å. The value of 3.17Å was chosen as the sum of the van der Waals radii of 

nitrogen and oxygen plus a tolerance value of 0.1 Å. (244) Given these values, 

two dipolar nitro group contacts were identified. Those two interactions were 

found for the N2O4O5 nitro group interacting with the N5O11O12 nitro group in 

one case and with itself in the other leading to oxygen···oxygen distances with 

values of 2.8519 (18) Å (O5···O12) and 2.8251 (15) Å (O4···O4). The correspondig 

values for the nitrogen···oxygen contacts are 3.1184 (17) Å (O5···N5) and 3.1234

(16) Å (O4···N2). Figure 2.81 displays the symmetric interaction of the two 

N2O4O5 nitro groups. 

 
Figure 2.81. Example of dipolar nitro group interaction in trinitroethanol. The interaction 
between the N2 and the O4 atoms [d(O···Ni) = 3.1234 (16) Å, symmetry code i = -x+1, -y+1, 
-z+1] obviously brings the O atoms into close proximity. (234) 
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Bis-(2,2,2-trinitroethyl)-amine (BTNA) 

 

BTNA is a high oxygen explosive (oxygen balance Ω = +7.0) and a valuable 

intermediate in the preparation of energetic materials. However, the structure 

had not been reported previously. The structure of BTNA at 200 K displays 

orthorhombic symmetry, space group Pbca (no.61). The asymmetric unit 

consists of one bis-(2,2,2-trinitroethyl)-amine molecule (Fig. 2.82).  

 
 

 
Figure 2.82. ORTEP representation of the molecular structure of BTNA in the crystalline 
state (right picture). Displacement ellipsoids are shown at the 50 % probability level. 
Selected bond lengths [Å] and angles [°]: C1-N1 1.524(2), N1-O1 1.206(2), N1-O2 1.215(2), C1-
C2 1.521(2), C2-N7 1.457(2), O1-N1-O2 127.31(16), N1-C1-N2 107.57(12), N1-C1-C2 114.24 
(14), C1-C2-N7 109.28(13), C2-N7-C4 113.54(14). 

The two trinitroethyl moieties display a very similar molecular geometry with 

a propeller-type orientation of the nitro groups bonded to the β carbon atom. 

In both moieties the conformation of the substituents of the  α- as well as the β 

carbon atom is found to be staggered. The length of the C-N bonds joining the 

three nitro groups to the β carbon atom (range 1.513 (2) Å - 1.530 (2) Å) are 

significantly longer than the C-N bond distances joining the trinitroethyl 

moieties to the secondary amine that lie in the normal range of 1.47 Å (246) as 

observed in the determination of the crystal structures of 2,2,2-trinitroethanol, 
(234) bis(2,2,2-trinitroethyl)carbonate, (235) and N,N'-bis-(2,2,2-trinitroethyl)urea. 
(247) The independent N-C-N bond angles of the trinitromethyl group are less 

(range 104.9 (1)° - 108.2 (1)°) than the tetrahedral value whereas the 

corresponding N-C-C bond angles are close to or greater (range 109.5 (1)° - 
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114.2 (1)°) than the tetrahedral value. The six independent nitro groups of each 

molecule are identical in structure within the limits of error and display 

common geometry parameters. In turn, the arrangement of the C-N and N-O 

bonds is coplanar with the sums of the three bond angles around one nitrogen 

atom being 360° within the limits of error. The extended structure of BTNA 

involves secondary interactions in terms of intermolecular C—H···O hydrogen 

bonding as well as dipolar nitro group interactions. The amine proton is 

involved in one intermolecular N—H···O hydrogen bond (N7-H7···O10, 

symmetry code: x-1/2, -y+1/2, -z+1) and two intramolecular hydrogen bonds 

(N7-H7···O1 and N7-H7···O8). Figure 2.83 displays the unit cell packing of BTNA 

together with trinitroethyl mediated intermolecular interactions. A color code 

was chosen in order to more clearly reveal the packing mode of the crystal 

structure of BTNA when comparing the two different views of the unit cell in 

Figure 2.83 with grey denoting all the molecules the unit cell is comprised of 

whereas the colors blue, orange, red and light blue were used in order to 

highlight the underlying packing motiv. The wave like pattern present in the 

view along the crystallographic b axis turns out to be comprised of molecules of 

two different layers when looking at the structure along the crystallographic a 

axis. The view along the crystallographic b axis reveals two dipolar nitro group 

interactions (green dashed lines) connecting the molecules along the 

crystallographic a and c axis (left picture). Intermolecular C—H···O hydrogen 

bonding (yellow dashed lines) between two BTNA molecules results in two 

membered, infinite chains oriented along the crystallographic b axis (right 

picture).  
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Figure 2.83. Unit cell packing of BTNA. Yellow dashed lines indicate trinitroethyl mediated intermolecular hydrogen bonding (C4-H4A
…O12i). 

Green dashed lines indicate dipolar nitro group interactions. Two dipolar nitro group interactions were found with the N3/O5/O6 nitro group 
interacting with the N4/O7/O8 nitro group (contact distances: 3.174(2) Å [N3…O8ii]; 3.039(2) Å [O6…O8ii]) and the N5/O9/O10 nitro group (contact 
distance: 3.1468(2) Å [N5…O5iii]; Symmetry code: (i) 3/2-x, 1/2+y, z; (ii) x, 1/2-y, -1/2+z; (iii) 1/2+x, y , 1/2-z. 
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N1-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-diamine (TTD) 

The structure of TTD at 100K has orthorhobic symmetry, space group Pna21. 

The asymmetric unit consists of one molecule (Fig. 2.84).  

 
Figure 2.84. ORTEP representation of the molecular structure of TTD in the crystalline 
state. Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths 
[Å] and angles [°]: C3-N9 1.525(3), N9-O6 1.221(3), N9-O5 1.207(3), C3-C2 1.522(3), C2-N6 
1.459(3), N1-N6 1.386(2), N1-C1 1.352(3), N1-N2 1.369(3), N2-N3 1.286(3), N3-N4 1.380(3), C1-
N4 1.325(3), C1-N5 1.333(3), O5-N9-O6 127.5(2), N9-C3-N8 104.81(17) , N9-C3-C2 112.27(19), 
C3-C2-N6 109.98(17), C2-N6-N1 114.47(17), N6-N1-N2 124.05(18), N6-N1-C1 126.29(19), N1-
C1-N5 124.14(19). 

The geometry parameters of the trinitroethyl group of the TTD molecule 

agree well with the aforementioned details in the discussion of the BTNA 

molecule. Furthermore, the tetrazole unit displays common structural bond 

length and angles compared to 1,5-diamino-1H-1,2,3,4-tetrazole with the 5-

amino group being conjugated with the π-system of the tetrazole ring and the 

1-amino group being sp3-hybridized and nonconjugated. The molecular 

packing reveals four types of secondary interactions in terms of N(amino)—

H···N(tetrazole) hydrogen bonding, C—H···N(tetrazole) hydrogen bonding, C—H···O 

hydrogen bonding and dipolar nitro group interactions resulting in a strong 

three dimensional network with each the tetrazole rings and the trinitromethyl 

moieties packed in chains along the b axis and alternating along the a axis (Fig. 

2.85). 
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Figure 2.85. Unit cell packing of TTD, viewed along the c axis. Yellow dashed lines indicate 
intermolecular hydrogen bonding (N5-H5A

…N3i, N5-H5B
…N2ii, N6-H6…N4iii, C2-H2A

…N4iii, C2-
H2A

…O2iv, C2-H2B
…O1v). Green dashed lines indicate dipolar nitro group interactions. One 

dipolar nitro group interaction was found between two N8/O3/O4 nitro groups (contact 
distances: 3.270(3) Å [N8…O3vi]; 3.051(3) Å [O3…O4vii]); Symmetry code: (i) 3/2-x, 1/2+y, 
1/2+z, (ii) x, y, 1+z, (iii) 3/2-x, 1/2+y, -1/2+z, (iv) x, y, -1+z, (v) 2-x, -y, -1/2+z, (vi) 2-x, 
1-y, -1/2+z, (vii) 2-x, 1-y, 1/2+z. 
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N1,N5-Bis-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-diamine (BTTD)  

 

The structure of BTTD at 100K has monoclinic symmetry, space group P21/c. 

The asymmetric unit consists of one molecule (Fig. 2.86).  

 
Figure 2.86. ORTEP representation of the molecular structure of BTTD in the crystalline 
state. Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths 
[Å] and angles [°]:C3-N9 1.523(5), N9-O6 1.214(5), N9-O5 1.217(4), C3-C2 1.516(5), C2-N6 
1.469(5), N1-N6 1.392(4), N1-C1 1.333(5), N1-N2 1.369(4), N2-N3 1.291(4), N3-N4 1.372(4), C1-
N4 1.322(4), C1-N5 1.359(4), N5-C4 1.441(5), C4-C5 1.522(6), C5-N11 1.537(5), N11-O9 1.207(4), 
N11-O10 1.211(5), O5-N9-O6 127.7(4), N9-C3-N8 106.7(3), N9-C3-C2 111.7(3), C3-C2-N6 
109.1(3), C2-N6-N1 111.5(3), N6-N1-N2 124.6(3), N6-N1-C1 126.6(3), N1-C1-N5 123.8(3), C1-
N5-C4 119.3(3), N5-C4-C5 111.3(4), C4-C5-N11 113.0(3) , N11-C5-N12 106.3(3), O9-N11-O10. 
 
The presence of the second trinitroethyl group in the BTTD molecule does not 

noticeably change either the bond length and angles of the trinitroethyl group 

or the tetrazole ring compared to TTD and 1,5-diamino-1H-1,2,3,4-tetrazole. 

The 5-amino group remains sp2 hybridized as indicated by the angles around 

the N5 atom being close to 120°. The orientation of the N5-C4 bond and the C1-

N1 bond are trans relative to the C1-N5 bond directing the N5 trinitroethyl 

group into the less sterically demanding position. The 1-amino group remains 

sp3 hybridized with the H6 atom and the C2 atom being located on different 

sides of the tetrazole plane and the angles around the N6 atom being close to 

the tetrahedral angle. Two BTTD molecules form dimers interconnected with 
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N(amino)—H···N(tetrazole) hydrogen bonding and C—H···N(tetrazole) hydrogen 

bonding resulting in a stacking of the tetrazole rings along the b axis. The 

N7/O1/O2 nitro group interacts with the N8/O3/O4 nitro group (contact 

distances: 2.869(4) Å [N7
…O3]; 2.908(4) Å [O2

…O3], 2.927(4) Å [O1
…O4], 

symmetry code as in Fig. 2.87) and the N9/O5/O6 nitro group interacts with 

the N11/O9/O10 nitro group (contact distances: 2.896(5) Å [N11
…O5]; 3.041(4) Å 

[O5
…O9], symmetry code as in Fig. 2.87). These two dipolar nitro group 

interactions interconnect one pair of dimers with four surrounding pairs of 

dimers. 

 

Figure 2.87. Unit cell packing of BTTD, viewed along the b axis. Yellow dashed lines 
indicate hydrogen bonding (N6-H6…N3i, C2-H2B

…N3ii). Green dashed lines indicate dipolar 
nitro group interactions. Two dipolar nitro group interactions were found with the 
N7/O1/O2 nitro group interacting with the N8/O3/O4 nitro group (contact distances: 
2.869(4) Å [N7…O3iii]; 2.908(4) Å [O2…O3iii], 2.927(4) Å [O1…O4iv]) and the N9/O5/O6 nitro 
group interacting with the N11/O9/O10 nitro group (contact distances: 2.896(5) Å [N11…O5v]; 
3.041(4) Å [O5…O9v]. Symmetry code: (i) 2-x, 1/2+y, 1/2-z; (ii) 2-x, -1/2+y, z; (iii) 1-x, 
1/2+y, 1/2-z; (iv) x, 1+y, z; (v) 2-x, -y, 1-z. 
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(E)-1-methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)hydrazine 

(MTTH) 

 

The structure of MTTH at 100K has orthorhombic symmetry, space group 

Pbca (no. 61). The asymmetric unit consists of one molecule (Fig. 2.88).  

 

 
Figure 2.88. ORTEP representation of the molecular structure of (E)-1-methyl-1-(1H-
tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)hydrazine (MTTH) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: N1-C1 1.320(6), N1-N2 1.357(6), N2-N3 1.290(6), N3-N4 1.363(6), N4-C1 
1.315(6), C1-N5 1.369(6), N5-C2 1.460(6), N5-N6 1.355(6), N6-C3 1.255(7), C3-C4 1.475(8), C4-
N8 1.516(7), N8-O3 1.221(6), N8-O4 1.219(6), N1-C1-N5 124.8(5), C1-N5-C2 121.4(4), C1-N5-N6 
114.5(4), N5-N6-C3 119.4(5), N6-C3-C4 117.6(6), C3-C4-N8 113.4(5), N1-C1-N5-N6 -6.1(7), N1-
C1-N5-C2 179.0(5), C1-N5-N6-C3 -177.1(5), N5-N6-C3-C4 175.3(4). 
 

 

MTTH is a rare example of a compound containing the trinitroethaniminyl 

moiety. Currently there are only eight entries in the SciFinder Database and 

only three of those entries contain experimental evidence for molecules 

containing this fragment and the structure determination was based on 

elemental analysis and spectral characteristics. (251-253) To our knowledge, 

MTTH represents the first example of a structurally characterized molecule 

containing this trinitroethylidene moiety. Bond length and angles of the 

tetrazole ring show no noticeable differences compared to other tetrazole 

containing molecules and neither do the geometrical parameter of the 

trinitromethyl group. The value of the N5-N6 bond length of the hydrazine 
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group is shorter (1.355(6) Å) compared to free hydrazine (1.46 Å) (254) due to 

mesomerism between the sp2-type N6 nitrogen atom and the sp2-type C3 carbon 

and is in fair accordance with the N-N bond length reported for diethyl 1,2-

hydrazinedicarboxylate (1.385 Å) (255) and diisopropyl hydrazocarboxylate 

molecule (1.381(2) Å). (256) With the exception of the C2 methyl hydrogen 

atoms and the three nitro groups of the trinitromethyl group, the whole 

molecule is planar within a few degrees. The torsional angles are given in the 

caption of Figure 2.89. The value of the C3-C4 carbon bond (1.475(8)Å) is 

significantly shorter compared to a standard carbon single bond (1.54Å) (257) or 

the corresponding bond distances of the trinitroethyl group (2,2,2-

trinitroethanol (1.5352(19)Å), MMTHT (1.5109(19)Å)) reflecting the higher s-

character of the C3 carbon atom of the trinitroethylidene moiety.  

 

 
Figure 2.89. (E)-1-methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)hydrazine 
(MTTH), viewed along the b axis, viewed along the a axis.  
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The extended structure of MTTH displays intermolecular N1-H1···N4,ring 

hydrogen bonding that mainly governs the molecular packing of the compound 

(Figs. 2.90 and 2.91), a characteristic feature of N-H substituted tetrazoles as 

has exemplarily shown by Goddard et al. for the parent compound (α-tetrazole). 
(258) 

 

 

 
 

Figure 2.90. Unit cell packing of (E)-1-methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-
trinitroethylidene)hydrazine (MTTH), viewed along the b axis. Yellow dashed lines indicate 
intermolecular hydrogen bonding (N1-H1···N4i); Symmetry code: (i) 1/2+x, y, 1/2-z. 
 
Due to the presence of the trinitroethylidene moiety, the characteristic 

hydrogen bonding of the acidified methylene-type hydrogen atoms of 

trinitroethyl substituted compounds is no longer possible in this compound 

yielding a crystal density of 1.69 g cm-3. Moreover, the remaining hydrogen 

atom is not involved in intermolecular hydrogen bonding. However, we 

observe interaction of a nitro group and the π electrons of the tetrazole ring 

(Fig. 2.91). 
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Figure 2.91. N9-O5···Centre of Gravity(Cg, π ring) Interaction. Distance O5···Cg (π-Ring): 
3.372(6) Ǻ, O5···plane(perpendicular projecton of O5): 3.222 Ǻ,  angle γ (Cg- O5-plane(perpendicular projecton of 

O6): 17.13°. 
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1-methyl-5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole 

(MMTHT) 

 

The structure of MMTHT at 100K has triclinic symmetry, space group P-1 

(no. 2). The asymmetric unit consists of one molecule (Fig. 2.92).  

 
 

 
 

Figure 2.92. ORTEP representation of the molecular structure of 1-methyl-5-(1-methyl-2-
(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole (MMTHT) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.3425(18), N1-N2 1.3527(16), N2-N3 1.2888(17), N3-N4 1.3620(15), 
C1-N5 1.3782(16), N5-N6 1.4311(16), N6-C4 1.4616(18), C4-C5 1.5109(19), C5-N9 1.5162(18), 
N9-O6 1.2154(16), N9-O5 1.2158(17), N1-C2 1.4538(20), N5-C3 1.4663(19), C1-N5-N6 111.5(1), 
C1-N5-C3 115.5(1), C3-N5-N6 117.0(1), N5-N6-C4 112.5(1), N5-N6-H6 103.6(1), H6-N6-C4 
112.4(1), C1-N5-N6-C4 -88.0(1). 
 
Of interest, the structure of MMTHT may be compared to the previous 

structure, MTTH. The two structures are quite similar in terms of molecular 

connectivity but differ in the substitution of the N1 ring nitrogen and C4 carbon 

atoms as well as in the hybridization of the N6 nitrogen and C4 carbon atoms. 

The N1 ring nitrogen atom of MMTHT carries a methyl group in contrast to 

the hydrogen atom of MTTH, the C4 carbon atom of MMTHT has two 

hydrogen atoms compared to only one hydrogen atom in MTTH and the N6 

nitrogen atom of the hydrazine group and the C4 carbon atom of MMTHT are 
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sp3 hybridized in contrast to the sp2-type hybridization observed in MTTH. As 

a consequence, the hydrazine group of MMTHT no longer has a planar 

geometry but the typical gauche conformation characteristic for hydrazine 

(Fig. 2.93).  

 

 
Figure 2.93. N9-O6···Centre of Gravity(Cg, π ring) Interaction. Distance O6···Cg (π-Ring): 
3.268(2) Ǻ, O6···plane(perpendicular projecton of O6): 3.055 Ǻ,  angle γ (Cg- O6-plane(perpendicular projecton of 

O6): 20.83°. 
 
The N5-N6 bond length of the hydrazine group of MMTHT (1.4311(16) Å) 

closely resembles that of free hydrazine (1.46 Å) (254). The gauche conformation 

of the hydrazine group is stabilized by intramolecular nitro group - π-Ring 

interaction. 
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Figure 2.94. Unit cell packing of 1-methyl-5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-
1H-tetrazole (MMTHT), viewed along the a axis. Yellow dashed lines indicate 
intermolecular hydrogen bonding (N6-H6···O2i, N6-H6···N2ii). Green dashed lines indicate 
intermolecular hydrogen bonding of the acidified methylene type hydrogen atoms of the 
trinitroethyl moiety (C4-H4A···N4iii, C4-H4B···N3ii); Symmetry code: (i) x, -1+y, z; (ii) 1+x, 1+y, 
z; (iii) 1-x, 1-y, -z. 
 

The extended structure of MMTHT is shown in Figure 2.94. The acidified 

methylene-type hydrogen atoms are involved in intermolecular hydrogen 

bonding yielding a pair of dimers running along the crystallographic a axis 

(C4-H4A···N4, C4-H4B···N3, Fig. 2.94). Due to the presence of the methyl groups, 

the characteristic intermolecular N-H···Nring hydrogen bonding frequently 

observed in tetrazole compounds cannot occur. However, the hydrazinic-type 

hydrogen atom H6 is involved in a bifurcated hydrogen bond (N6-H6···O2, N6-

H6···N2, Fig. 2.94) towards both the tetrazole ring and one nitro group 

interconnecting the pairs of dimers formed due to C-H···N hydrogen bonding 

and mentioned above. Compared to MTTH (1.69 g cm-3), the crystal density of 

MMTHT (1.63 g cm-3) is slightly lower although – a tribute to the two bulky 

methyl groups present in MMTHT. 
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2-(5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazol-1-yl)ethanol 

(MTHTE) 

The structure of MTHTE at 100K has monoclinic symmetry, space group 

P21/c (no. 14). The asymmetric unit consists of one molecule (Fig. 2.95).  

 
Figure 2.95. ORTEP representation of the molecular structure of 2-(5-(1-methyl-2-(2,2,2-
trinitroethyl)hydrazinyl)-1H-tetrazol-1-yl)ethanol (MTHTE) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.3476(15), N1-N2 1.3567(14), N2-N3 1.2838(15), N3-N4 1.3685(15), N4-
C1 1.3240(15), N1-C5 1.4723(16), C5-C6 1.5118(19), C6-O7 1.4195(15), C1-N5 1.3720(15), N5-
C2 1.4662(15), N5-N6 1.4232(14), N6-C3 1.4713(16), C3-C4 1.5113(17), C4-N8 1.5223(15), N8-
O3 1.2157(13), N8-O4 1.2178(13), N1-C1-N5 126.47(11), C1-N5-C2 116.18(10), C1-N5-N6 
114.68(9), N5-N6-C3 110.79(9), N6-C3-C4 110.08(10), C3-C4-N8 112.41(10), C1-N5-N6-C3 
92.93(12), C2-N5-N6-C3 -49.10(14), N5-C1-N1-N2 174.27(11), N5-C1-N1-C5 4.9(2), C6-C5-N1-
C1 69.05(16), C6-C5-N1-N2 -99.28(13), N4-C1-N5-N6 -141.91(12), N1-C1-N5-N6 43.89(16), N4-
C1-N5-C2 0.68(17), N1-C1-N5-C2 -173.52(12). 
 
 
The presence of the hydroxyethyl group in MTHTE compared to the methyl 

group present in MMTHT does not noticeably change the values of bond 

lengths or bond angles. The gauche conformation of the hydrazine group is 

retained and the hydrazinic-type H6 hydrogen atom is involved in a bifurcated 

hydrogen bond yielding one intramolecular hydrogen bond (N6-H6···O4) and 

one intermolecular hydrogen bond (N6-H6···O2, Fig. 2.96).  
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Figure 2.96. Unit cell packing of 2-(5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-
tetrazol-1-yl)ethanol (MTHTE), viewed along the b axis. Yellow dashed lines indicate 
intermolecular hydrogen bonding (N6-H6···O2i, O7-H7···N4ii). Green dashed lines indicate 
intermolecular hydrogen bonding of the acidified methylene type hydrogen atoms of the 
trinitroethyl moiety (C3-H3A···O7iii, C3-H3B···N3iV); Symmetry code: (i) x, -1+y, z; (ii) 3/2-x,-
1/2+y,1/2-z; (iii) -1/2+x,3/2-y,-1/2+z; (iv) 3/2-x,1/2+y,1/2-z.  
 
 

Additional intermolecular contacts include hydrogen bonding of the hydroxyl 

group to a ring nitrogen atom (O7-H7···N4, Fig. 2.96) as well as a non-covalent 

dipolar interaction between the oxygen atom of the hydroxyl group and the 

nitrogen atom of a nitro group of a neighbouring molecule as indicated by the 

distance between these two atoms which is shorter than the sum of the van der 

Waals radii of these atoms (d(vdW) =3.07 Å, d(O7···N8) = 2.96 Å). The 

characteristic hydrogen bonding of the acidified methylene-type hydrogen 

atoms of the trinitroethyl moiety can be observed and both of the hydrogen 

atoms are involved in intermolecular contacts. The first hydrogen atom is part 

of a bond to the hydroxyl oxygen atom (C3-H3A···O7, Fig. 2.96) and the second 

hydrogen atom forms a bond to a ring nitrogen atom (C3-H3B···N3, Fig. 2.96) 

yielding a crystal density of 1.63 g cm-3. By comparison, the values of 

MMTHT and MTHTE have the same crystal density values indicating that 

the additional bonding interactions of the hydroxyethyl group (MTHTE) 

compared to the methyl group (MMTHT) are counterbalanced by its sterically 

more demanding nature. 
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1-(4N-2,2,2-trinitroethyl)-2,5-Hydroxymethyltriazine (THMT) 

The structure of THMT at 100K has monoclinic symmetry, space group P21/n 

(no. 14). The asymmetric unit consists of one molecule (Fig. 2.97).  

 

 
Figure 2.97. ORTEP representation of the molecular structure of 1-(4N-2,2,2-trinitroethyl)-
2,5-hydroxymethyltriazine (THMT) in the crystalline state. Displacement ellipsoids are 
shown at the 50 % probability level. Selected bond lengths [Å] and angles [°]: C1-N2 
1.3082(18), N2-N3 1.3946(17), N3-C2 1.3051(18), C2-N1 1.3686(18), C1-N1 1.3702(18), C1-C3 
1.488(2), C3-O1 1.4298(18), C2-C4 1.494(2), C4-O2 1.4238(18), N1-N4 1.4050(16), N4-C5 
1.4618(19), C5-C6 1.516(2), C6-N5 1.5158(19), N5-O3 1.2163(15), N5-O4 1.2147(16), O1-C3 C1 
110.50(12), C2-C4-O2 110.96(12), N1-N4-C5 112.71(12), N4-C5-C6 109.77(12), C5-C6-N5 
111.01(12), N1-C1-C3-O1 90.96(18), N2-C1-C3-O1 -87.46(18), N3-C2-C4-O2 -58.9(2), N1-C2-C4-
O2 115.07(15), C2-N1-N4-C5 120.40(15), C1-N1-N4-C5 -56.99(18), C6-C5-N4-N1 -120.43(13), 
N4-C5-C6-N5 165.54(12). 

 
The presence of the triazole ring compared to 1,5-diamino-1H-1,2,3,4-tetrazole 

in TTD or BTTD does not noticeably change either the bond length and 

angles of the trinitroethyl group or the hydrazinic group. The hydrazinic-type 

amino group remains sp3 hybridized with the H4 atom and the C5 atom being 

located on different sides of the triazole plane and the angles around the N4 

atom being close to the tetrahedral angle (Fig. 2.97). The orientation of the C4-

O2 bond is pointing in the opposite direction relative to the C3-O1 bond 

directing the C4-O2 hydroxymethyl group into the less sterically demanding 

position. This geometry is stabilized by intramolecular hydrogen bonds (C4-

H4A···N4 and C5-H5A···O1, Fig. 2.98). 



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 171 - 

The extended structure of THMT reveals both intermolecular non-covalent 

dipolar interactions and intermolecular hydrogen bonding.  

 
Figure 2.98. Unit cell packing of 1-(4N-2,2,2-Trinitroethyl)-2,5-hydroxymethyltriazine 
(THMT), viewed along the b axis. Yellow dashed lines indicate intermolecular hydrogen 
bonding (O1-H1···N2i, O2-H2···O1ii, N4-H4···O2iii). Green dashed lines indicate intermolecular 
hydrogen bonding of the acidified methylene type hydrogen atoms of the trinitroethyl 
moiety (C5-H5A···O7iv, C5-H5B···N3V); Symmetry code: (i) -x,1-y,1-z, z; (ii) 1/2+x,1/2-y,1/2+z; 
(iii) -x,-y,1-z; (iv) 1/2-x,1/2+y,1/2-z; (v) -1/2+x,1/2-y,-1/2+z. 
 

Intramolecular hydrogen bonding includes contacts between a hydroxyl group 

and a ring nitrogen atom (O1-H1···N2, Fig. 2.98), two hydroxyl groups (O2-

H2···O1, Fig. 2.98), the hydrazinic-type hydrogen atom and a hydroxyl group 

(N4-H4···O2, Fig. 2.98) as well as hydrogen bonds of the acidified methylene-

type protons characteristic for the trinitroethyl group (C5-H5A···O7, C5-H5B···N3, 

Fig. 2.98). Additionally, a non-covalent dipolar interaction between the O3 

oxygen atom of one nitro group and the N2 ring nitrogen atom of a 

neighbouring molecule is present as indicated by the distance between these 

two atoms which is shorter than the sum of the van der Waals radii of these 

atoms (d(vdW) =3.07 Å, d(O3···N2) = 2.93 Å) yielding a crystal density of 1.71 

g cm-3. 
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N3,N6-bis-(2,2,2-trinitroethyl)-1,2,4,5-tetrazine-3,6-diamine (BTAT)  

The structure of BTAT at 100K has orthorhombic symmetry, space group 

Pna21. The asymmetric unit consists of one molecule (Fig. 2.99).  

 
Figure 2.99. Photographic picture of single crystals of BTAT (left picture). ORTEP 
representation of the molecular structure of BTAT in the crystalline state (right picture). 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.337(2), N1-N2 1.320(2), N2-C2 1.349(2), C2-N3 1.344(2), N3-N4 

1.3179(19), N4-C1 1.355(2), C1-N5 1.370(2), N5-C5 1.433(2), C5-C6 1.537(2), C6-N10 1.529(2), 
N10-O7 1.211(2), N10-O8 1.215(2), C2-N6 1.365(2), N6-C3 1.441(2), C3-C4 1.530(2), C4-N7 

1.531(2), N7-O1 1.213(2), N7-O2 1.220(2), C1-N5-C5 120.15(15), N5-C5-C6 112.69(14), C5-C6-
N10 112.67(14), N10-C6-N12 105.53(13), O7-N10-O8 127.98(16), N3-C2-N6 118.14(15), C2-N6-C3 

120.35(14), N6-C3-C4 112.33(14), C3-C4-N7 112.67(14), N7-C4-N8 105.87(13), O1-N7-O2 

127.64(17), N1-C1-N4 124.78(15), C1-N4-N3 116.87(14), N4-N3-C2 118.32(14), N3-C2-N2 

124.64(15), C2-N2-N1 117.06(14) , N2-N1-C1 118.32(14). 

The planar geometry reported for 3,6-diamino-1,2,3,4-tetrazine (259) is retained 

in the structure of BTAT. The two trinitroethyl groups bonded to the sp2-type 

amino nitrogen atoms are oriented trans to each other and are located on 

different sides of the tetrazine plane. Bond length and angles of the 

trinitroethyl group display no distinctive features compared to the structures 

of BTNA, TTD or BTTD and neither do the geometric parameters of the 

tetrazine moiety compared to the values of 3,6-diamino-1,2,3,4-tetrazine. The 

unit cell of solid BTAT consists of pairs of dimers of BTAT molecules 

connected through N(amino)—H···N(tetrazine) hydrogen bonding. In turn, these 

pairs of dimers are interconnected with each other through dipolar nitro group 

interactions yielding a two dimensional chain of BTAT molecules running 

along the axis. The chains are connected through C—H···O hydrogen bonding 

along the c axis yielding a high crystal density of 1.89 g cm-3 (Fig. 2.100).



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 173 - 

 

 

Figure 2.100. Unit cell packing of BTAT, viewed along the b axis. Yellow dashed lines indicate hydrogen bonding (N5-H5…N2i, N6-H6…N4ii, C3-
H3B

…O6iii, C5-H5A
…O9iv, C3-H3A

…O5v). Green dashed lines indicate dipolar nitro group interactions. Two dipolar nitro group interactions were found 
with the N8/O3/O4 nitro group interacting with the N10/O7/O8 nitro group (contact distances: 2.965(2) Å [O3…N10vi]; 2.900(2) Å [O3…O7vi]) and 
the N12/O11/O12 nitro group interacting with the N7/O1/O2 nitro group (contact distances: 2.859(2) Å [O12…N7vii]; 2.857(2) Å [O12…O1vii]. 
Symmetry code: (i) x, -1+y, z; (ii) x, 1+y, z; (iii) 1/2-x, y-1/2 , 1/2+z; (iv) -x, -y, z-1/2 ; (v) 1/2-x, 1/2+y, 1/2+z; (vi) 1/2+x, 1/2-y, z; (vii) -
1/2+x, 3/2-y, z. 
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S-Ethyl-2,2,2-trinitroethyl-thioformate 

 

S-Ethyl-2,2,2-trinitroethyl-thioformate at ambient conditions is a liquid. 

Crystals suitable for X-ray diffraction could be obtained on cooling the liquid 

to 5°C in the fridge (Fig. 2.101).  

 
Figure X. Photographic pictures of crystalline S-Ethyl-2,2,2-trinitroethyl-thioformate. The 
two pictures show a crystal mounted on the tip of a glass fiber during alignment in the 
centre of the X-ray beam of the Oxford Xcalibur3 CCD diffractometer.  
 

However the crystals proved to consist of two slightly twisted, thin plates 

resulting in pseudo-merohedral twinning. However, subsequent twin 

refinement using the Software CrysAlisPro from Oxford Diffraction Ltd. 

resulted in a dataset suitable for structure solution and refinement. The 

structure of S-ethyl-2,2,2-trinitroethyl-thioformate at 100K has triclinic 

symmetry, space group P-1 (no. 2). The asymmetric unit consists of one 

molecule (Fig. 2.102). 

 
Figure XX. ORTEP representation of the molecular structure of S-ethyl-2,2,2-trinitroethyl-
thioformate in the crystalline state. The two molecules of the asymmetric unit show very 
similar geometric paramters and only one molecule is shown for clarity. Displacement 
ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] and angles [°]: 
O6-N2 1.2167 (21), N2-C3 1.5202 (27), C3-C2 1.5109 (29), C2-O2 1.4264 (25), O2-C1 1.3737 
(25), C1-O1 1.1964 (23), C1-S1 1.7443 (23), S1-C4 1.8082 (22), C4-C5 1.5111 (31), O6-N2-O5 
127.76(19), O6-N2-C3 114.20(18), N2-C3-N3 106.95(17), N2-C3-N1 107.14(16), N3-C3-N1 
107.28(16), N1-C3-C2 111.23(18), C3-C2-O2  107.69(17), O2-C1-O1 124.4(2), O2-C1-S1 
107.09(15), O1-C1-S1 128.52(18), C1-S1-C4 99.67(11), S1-C4-C5 114.05(16), C3-C2-O2-C1 -
124.56(19), C2-O2-C1-O1 -2.4(3), S1-C1-O2-C2 178.54(14), O1-C1-S1-C4 -1.4(2), C1-S1-C4-C5 -
78.05(18). 
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The conformation of thiocarbonate moiety well reflects the s-cis-s-cis 

conformation of the carbonate moiety observed in the structure determination 

of bis-(2,2,2-trinitroethyl)carbonate (see page 177) and is governed by a variety 

of intramolecular interactions (Fig. 2.103). 
 

 
Figure 2.103. Intramolecular short contacts in S-ethyl-2,2,2-trinitroethyl-thioformate. A) 
Orange dashed lines indicate hydrogen bonding of acidifiend methylene-type hydrogen 
atoms: C2-H2B···O6, C2-H2A···O6, C2-H2B···O1, C4-H4B···O1) B) The green dashed line indicates a 
short distance between the carbonate carbon atom and one oxygen atom of the nitro group: 
C1-O8 (3.099(3)Å < 3.22Å(vdW) – 0.12Å) The red dashed line indicates the accompanying 
short distance between two oxygen atoms: O2-O3 (2.895(2)Å < 3.04Å (vdW) – 0.14Å) C) 
Green dashed lines indicate short distances between a nitrogen atom of one nitro group and 
an oxygen atom of a neighbouring nitro group: N1-O5 (2.599(3)Å << 3.07Å – 0.47Å); N1-O8 

(3.034(2)Å < 3.07Å – 0.04Å); N2-O3 (2.875(2)Å < 3.07Å – 0.19Å); N2-O7 (2.580(3)Å << 
3.07Å – 0.49Å); N3-O4 (2.565(2)Å << 3.07Å – 0.50Å); N3-O6 (3.011(3)Å < 3.07Å – 0.06Å). 
Red dashed lines indicate the accompanying short oxygen / oxygen distances between 
oxygen atoms of neighbouring nitro groups: O3-O5 (2.873(2)Å < 3.04Å – 0.17Å); O4-O8 
(2.970(2)Å < 3.04Å – 0.07Å); O5-O7 (3.022(2)Å < 3.04Å – 0.02Å) D) The green dashed line 
indicates a short distance between the nitrogen atom of this nitro group and the oxygen 
atom of the carbonate moiety: O2-N1 (2.663(3)Å << 3.07Å – 0.41Å) The red dashed line 
indicates the accompanying short oxygen / oxygen distance between the oxygen atom of the 
nitro group and the oxygen atom of the carbonate moiety: O2-O3 (2.895(2)Å < 3.04Å – 
0.14Å). 
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The extended structure is shown in Figure 2.104 and reveals that the 

characteristic intermolecular hydrogen bonding of the acidified methylene type 

protons of the trinitroethyl group is present in the solid state next to non-

covalent dipolar interactions including nitro group carbonyl and nitro group 

sulfur interactions affording a crystal density of 1.69 g cm-3. 

 
 

Figure 2.104. Unit cell packing of S-ethyl-2,2,2-trinitroethyl-thioformate, viewed along the 
a axis. Green dashed lines indicate intermolecular hydrogen bonding of the acidified 
methylene type hydrogen atoms of the trinitroethyl moiety (C2-H2A···O2i, C7-H7A···O10ii, C7-
H7B···O9iii); Symmetry code: (i) 1-x, 2-y, -z; (ii) 1-x, 1-y, -z; (iii) 1-x, 1-y, 1-z. The orange 
dashed line indicates intermolecular short distances between the carbonate carbon atom and 
one oxygen atom of a nitro group: C1-O3 (3.046(3)Å < 3.22Å – 0.17Å); C6-O12 (3.128(3)Å < 
3.22Å – 0.09Å). The grey dashed line indicates intermolecular short distances between the 
carbonyl oxygen atom and a nitrogen atom of a nitro group: O9-N6 (2.955(3)Å < 3.07Å – 
0.12Å). The pink dashed lines indicate intermolecular short distances between a sulfur atom 
and an oxygen atom of a nitro group: O15-S1 (3.1154(17)Å << 3.32Å – 0.20Å); O8-S2 
(3.3052(18)Å < 3.32Å – 0.01Å). 
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Bis-(2,2,2-trinitroethyl)carbonate (BTC) 

 

The structure of bis-(2,2,2-trinitroethyl)carbonate (BTC), C5H4N6O15, at 100K 

has orthorhombic (Pbca) symmetry. The asymmetric unit consists of one 

molecule (Fig. 2.105).  

 
Figure 2.105. ORTEP representation of the molecular structure of bis-(2,2,2-
trinitroethyl)carbonate in the crystalline state. Displacement ellipsoids are shown at the 50 
% probability level. Selected bond lengths [Å] and angles [°]: C1-O1 1.1915(12), C1-O2 
1.3451(12), C1-O3 1.3399(12), C2-O3 1.4255(12), C3-N1 1.5238(13), C3-N2 1.5214(13), C3-N3 
1.5201(13), C4-O2 1.4294(13), C5-N4 1.5262(14), C5-N5 1.5131(13), C5-N6 1.5271(13), O1-C1-
O3 127.57(10), O1-C1-O2 126.98(9), O3-C1-O2 105.46(8), O3-C2-C3 107.83(8), C2-C3-N3 
110.72(8), C2-C3-N2 112.73(8), N3-C3-N2 107.22(8), C2-C3-N1 113.01(8), N3-C3-N1 106.17(8), 
N2-C3-N1 106.59(8), N5-C5-C4 112.25(8), N5-C5-N4 107.55(8), C4-C5-N4 113.26(8), N5-C5-N6 
107.57(8), C4-C5-N6 109.88(8), N4-C5-N6 105.99(8), C1-O2-C4 116.48(8), C1-O3-C2 116.39(8), 
O1-C1-O2-C4 17.35(15), O3-C1-O2-C4 -162.59(8), C5-C4-O2-C1 118.99(9), O1-C1-O3-C2 
9.22(15), O2-C1-O3-C2 -170.84(8), C3-C2-O3-C1 117.22(9). 
 

The structure displays s-cis-s-cis conformation of the carbonate group, intra as 

well as intermolecular C—H···O hydrogen bonding and dipolar nitro group 

interactions that account for its exceptionally high density of 1.975 g cm-3, 

which is significantly higher than the reported value of 1.88 g cm-3. (260). As a 

consequence of the relationship between structure and crystal density this 

polymorph contains available oxygen in amounts even superior to liquid 

oxygen. The geometry in both trinitroethyl moieties is very similar with a 

propeller-type orientation of the nitro groups (C3) bonded to the β-C atoms and 

the conformation of the substituents of the α- and β-C atoms being staggered. 

Bond lengths of the trinitroethyl units show unusual values in that the C-N 
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bonds joining the three nitro groups to the β-C atom are significantly longer 

than the normal C-N bond distance of 1.47Å (246), the N-C-N bond angles are 

smaller than the tetrahedral value whereas the corresponding N-C-C angles 

are greater as was similarily observed in the structure determinations of bis-

(2,2,2-trinitroethyl)urea (247) and 2,2,2-trinitroethanol (234). Early investigations 

into the structural properties of BTC using IR spectroscopy could not settle 

the question what molecular geometry the carbonate adopts with s-cis-s-cis, s-

cis-s-trans or s-trans-s-trans conformations being all possible for organic 

carbonates. (261) Our X-ray investigation shows that intramolecular C—H···O 

hydrogen bonding (C2-H2B···O1 and C4-H4B···O1) does occur unambiguously 

demonstrating the s-cis-s-cis conformation. Bond lengths and angles of the 

carbonate moiety may be considered normal in comparison to the Cambridge 

Structural Database results. (262) The extended structure of BTC involves 

secondary interactions in terms of intermolecular C—H···O hydrogen bonding 

(C4-H4B···O9i and C2-H2B···O1i, symmetry code as in Fig. 2.106). The resulting 

bifurcated hydrogen bonding is displayed in Figure. 2.106. 

Short intermolecular O···O distances with values substantially less than 3.04 Å, 

the sum of the van der Waals radii for O (1.52 Å) (244) are observed as a 

consequence of non covalent dipolar nitro-group interactions. Dipolar nitro-

group interactions were accepted for N···O contacts shorter than 3.17Å. This 

value was chosen as the sum of the van der Waals radii of nitrogen and oxygen 

plus a tolerance value of 0.1 Å. Given these values, three dipolar nitro-group 

contacts were identified. These interactions were found for the N1/O4/O5 nitro 

group interacting with the N6/O14/O15 nitro group as well as with the 

N2/O6/O7 and the N3/O8/O9 nitro groups and finally for the N6/O14/O15 nitro 

group interacting with the N4/O10/O11 nitro group and the N5/O12/O13 nitro 

group, leading to O···O distances of 2.8317 (11)Å [O4···O7ii; symmetry code: (ii) -

x + 3/2, y - 1/2, z], 2.8626 (12)Å [O5···O14iii; symmetry code: (iii) -x + 3/2, -y, 

z-1/2] and 2.8381 (12)Å [O14···O12iiii; symmetry code: (iiii) x + 1/2, y, -z + 3/2]. 
The corresponding values for the N···O contacts are 3.0125 (11)Å [O4···N3ii], 
2.9935 (12)Å [O5···N6iii] and 3.1045 (12) Å [O14···N4iiii].  
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Figure 2.106. A centrosymmetric dimer containing two bis-(2,2,2-trinitroethyl)carbonate 
molecules. The bifurcated hydrogen bonding is indicated by dashed lines. Green dashed lines 
indicate intermolecular hydrogen bonding of the acidified methylene type hydrogen atoms of 
the trinitroethyl moiety (C2-H2B···O1i). Yellow dashed lines indicate intramolecular hydrogen 
bonding of the acidified methylene type hydrogen atoms of the trinitroethyl moiety (C2-
H2B···O1, C4-H4B···O1). Symmetry code: (i) –x+1, -y, -z+1. 
 

The high oxygen content of BTC, together with the intermolecular contacts 

(dipolar nitro-group interactions and hydrogen bonding) yield a high-crystal-

density polymorph that displays an oxygen content of 1.221 Mg m-3, higher 

than the value of liquid oxygen at 90 K that corresponds to 1.140 Mg m-3 (263). 
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Figure 2.107. Unit cell packing of bis-(2,2,2-trinitroethyl)carbonate, viewed along the b axis. Yellow dashed lines indicate intermolecular 
hydrogen bonding. Red dashed lines indicate intermolecular dipolar nitro group interactions (N3···O4, N6···O5). 
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2,2,2-Trinitroethyl-azidoformate (TAF) 

 

The structure of TAF at 100K has monoclinic symmetry, space group P21/c 

(no. 14). The asymmetric unit consists of two molecules (Fig. 2.108).  

 

 

Figure 2.108. ORTEP representation of the molecular structure of TAF in the crystalline 
state. The two molecules of the asymmetric unit show very similar geometric paramters and 
only one molecule is shown for clarity. Displacement ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]: N3-N2 1.115(5), N2-N1 1.266(5), 
N1-C1 1.397(5), C1-O1 1.199(5), C1-O2 1.345(5), O2-C2 1.426(5), C2-C3 1.513(6), C3-N5 
1.532(5), N5-O5 1.212(4), N5-O6 1.219(4), N3-N2-N1 173.5(4), N2-N1-C1 110.1(3), N1-C1-O1 
128.0(4), N1-C1-O2 106.4(3), C1-O2-C2 115.7(3), O2-C2-C3 106.8(3), C2-C3-N5 113.1(4), N5-C3-
N6 105.8(3), O5-N5-O6 127.9(4). 

 
The trinitroethyl group displays common bond length and angles compared to 

the structures discussed earlier in this work. The Nα—Nβ / Nβ—Nγ bond 

lengths as well as the Nα—Nβ—Nγ angles are in good agreement with other 

covalently bound azides. (264) With s-cis-s-cis, s-cis-s-trans or s-trans-s-trans 

conformations being all possible for the azidoformate moiety, our X-ray 

investigation shows that intramolecular C—H···O hydrogen bonding (C2—

H2A···O1, symmetry code as in Fig. 2.109) does occur unambiguously 

demonstrating the s-cis-s-cis conformation. Bond lengths and angles of the 

carbonate moiety may be considered normal in comparison to the Cambridge 

Structural Database results. (265) Secondary interactions include C—
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H···O(carbonyl) and C—H···N(azide) hydrogen bonding as well as dipolar nitro 

group interactions. A view along the a axis (Fig. 2.109) reveals that the C—

H···O(carbonyl) hydrogen bonding results in dimers being aligned in a chessboard 

like way with one sort of dimers (e.g. length axis of the molecule aligned 

horizontally) belonging to one kind of possible fields (e.g. black) and the other 

sort of dimers (e.g. length axis of the molecule aligned vertically) belonging to 

the other kind of field (e.g. white).  

 

 
Figure 2.109. Unit cell packing of TAF, viewed along the a axis. Yellow dashed lines 
indicate intermolecular hydrogen bonding (C2-H2A

…O1i, C2-H2B
…N7, C5-H5A

…N3ii, C5-H5B
…O9iii 

). Green dashed lines indicate dipolar nitro group interactions. One dipolar nitro group 
interaction was found with the N5/O5/O6 nitro group interacting with the N12/O15/O16 
nitro group (contact distances: 3.082(5) Å [N5…O15iv]; 2.966(4) Å [O6…O15iv]); Symmetry 
code: (i) 1-x, 2-y, 1-z; (ii) 2-x, 2-y, 1-z; (iii) 2-x, 1-y, 1-z, (iv) 1-x, 1-y, 1-z. 



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 183 - 

Bis-(2,2,2-trinitroethyl)-hydrazodicarboxylate (BTHC) 

 

Pure BTHC solidifies as a glass-like amorphous solid. However, two solvents 

were found to combine with BTHC to form stoichiometric crystal inclusion 

complexes. In both co-crystals the host : guest ratio equals 1:1 for the acetone 

as well as the ethyl acetate complex (BTHCa / BTHCe).  

 

 

Figure 2.110. Photographic picture of a single crystal of the 1:1 co-crystal of BTHC and 
ethyl acetate (left picture). ORTEP representation of the molecular structure of BTHC in 
the 1:1 co-crystal of BTHC and ethyl acetate (right picture). Displacement ellipsoids are 
shown at the 50 % probability level. Selected bond lengths [Å] and angles [°]: O7-N5 
1.2124(17), N5-O8 1.2079(18), N5-C3 1.5291(19), C3-C2 1.507(2), C2-O2 1.427(2), O2-C1 
1.3603(19), C1-O1 1.2040(18), C1-N2 1.345(2), N2-N1 1.3779(19), N1-C4 1.360(2), C4-O9 
1.2001(18), C4-O10 1.3641(18), O10-C5 1.4265(18), C5-C6 1.519(2), C6-N7 1.523(2), N7-O13 
1.2117(17), N7-O14 1.2131(16), O7-N5-O8 126.53(13), N5-C3-N3 108.00(11), N5-C3-C2 
113.90(13), C3-C2-O2 104.55(12), C2-O2-C1 114.11(12), O2-C1-O1 124.12(14), O2-C1-N2 
108.70(13), O1-C1-N2 127.18(14), C1-N2-N1-C4 70.93(18), C1-N2-N1 119.47(13), N2-N1-C4 
117.32(13), N1-C4-O9 126.31(14), N1-C4-O10 108.66(12), O9-C4-O10 125.03(14), C4-O10-C5 
115.87(11), O10-C5-C6 108.45(12), C5-C6-N7 111.43(12), N7-C6-N8 106.10(12), O13-N7-O14 
127.60(13). 

 

Each of these mixed crystals crystallise in the space group P-1. Compared to 

the 2,2,2-trinitroethylformyl moiety present in the structure of 2,2,2-

trinitroethylazidoformate, the geometric parameters of this group present in 

the BTHC molecule of the two co-crystals show no significant differences. 

Figure 2.110 exemplarily displays one BTHC molecule of the co-crystal of 

BTHC with ethyl acetate. The values of the N1-N2 bond length of the 

hydrazine group are shorter (1.3779(19) Å / BTHCe and 1.3790(14) Å / 

BTHCa) compared to free hydrazine (1.46 Å) (254) due to mesomerism between 

the nitrogen, carbon and carbonyl oxygen atoms and are in fair accordance 

with the N-N bond length reported for diethyl 1,2-hydrazinedicarboxylate 
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(1.385 Å) (255) and diisopropyl hydrazocarboxylate molecule (1.381(2) Å). (266) 

Bond lengths and angles of the carbonate moiety agree well to the results of a 

comparison with Cambridge Structural Database entries. (267) Intramolecular 

C—H···O(carbonyl) hydrogen bonding is present in BTHCe and BTHCa favouring 

the the s-cis-s-cis conformation of the carbamate group.  

The C1-N2-N1-C4 torsion angle of BTHCe (70.93(18)°) slightly differs from the 

corresponding angle in BTHCa (67.80(14)°) due to secondary N—

H···O(carbonyl) hydrogen bonding of the hydrazine hydrogen atoms and the 

carbonyl oxygen atom of the ethyl acetate or acetone molecule present in the 

co-crystals. Intermolecular C—H···O(nitro) as well as C—H···O(carbonyl) hydrogen 

bonding and dipolar nitro group interactions are present between two BTHC 

molecules in the structures of BTHCe and BTHCa resulting in the formation of 

BTHC dimers in both cases. These dimers are interconnected through N—

H···O(carbonyl) hydrogen bonding of the hydrazine hydrogen atom of a BTHC 

molecule and the carbonyl oxygen atom of acetone in the case of BTHCa or 

ethyl acetate in the case of BTHCe  yielding alternating pairs of BTHC host 

and acetone or ethyl acetate guest molecules stacked along the b  axis (BTHCa) 

and a axis (BTHCe) (Fig. 2.111). A comparison of the extended structures of 

BTHCe and BTHCa reveals that the same types of interactions are present in 

both mixed crystals between the BTHC molecules and the acetyl groups of 

acetone and ethyl acetate.  A remarkable fact mirrored in the very similar cell 

axes and angles of the single crystals. Details of the structure determinations 

are listed in the appendix (Chapter 4). 
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Figure 2.111. Comparison of the unit cells of BTHC/acetone 1:1 (left) and BTHC/ethyl acetate 1:1 (right).  
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Structural Relationships and the Concept of Higher Densities 

 

The number of crystal structures carrying the trinitroethyl group and 

published by us (234-235, 268) is nine with the number of different molecules being 

eight. A search of the Cambridge Structural Database (CSD version 5.29, 

November 2007) resulted in fifteen entries considering compounds carrying 

the trinitroethyl moiety. The number of different molecules amongst these 

entries is thirteen with three entries (refcodes NOETNA, NOETNA01, 

NOETNA02) describing polymorphs of the same molecule (bis-(2,2,2-

trinitroethyl)-nitramine / BTNNA). One structure (N-nitro-N-(2,2,2-

trinitroethyl)-guanidine) has been reported without having been deposited at 

the CCDC resulting in a total of only twenty two different molecules where 

crystal structure data have been reported. A summary of all structures is 

displayed in Figure 2.112. The corresponding names of the molecules are given 

and assigned a crystal index number, used to reference individual molecules in 

the figures and tables. 
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Figure 2.112. Summary of available trinitroethyl compounds deposited at the CCDC. 
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In addition, Table 2.16 includes the corresponding crystal refcode used in the 

Cambridge Structural Database (269) together with the reported densities.  

 
Table 2.16. Comprehensive summary of crystal structures containing the trinitroethyl 
moiety. The index I assigned to the compounds is related to increasing crystal density. 

I compound refcode R1 (I>2σ)  T /  
K 

ρ / 
g cm-3 

ref. 

1 2,4,6-trimethyl-1-(2,2,2-trinitroethyl)-benzene TUMBAE 0.0742 158 1.473 270 

2 4,4,4-trinitrobutanoic acid NABMIM 0.0612 298 1.621 271 

3 Bis-(2,2,2-trinitroethyl)-hydrazodicarboxylate 
/ EtOAc 

**) 0.0361 100 1.675 *) 

4 Bis-(2,2,2-trinitroethyl)-hydrazodicarboxylate 
/ acetone 

**) 0.0366 100 1.691 *) 

5 methylene-di(N-(2,2,2-trinitroethyl)-urea) QQQAUY - 298 1.699  247 

6 N-nitro-N’-(2,2,2-trinitroethyl)-guanidine ***) 0.063 295 1.758 272 

7 Bis-(2,2,2-trinitroethyl)-oxamide BINSUM 0.032 298 1.798   273 

8 N1-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-
diamine 

**) 0.0354 100 1.831 *)  

9 2,2,2-trinitroethanol DIKXEB 0.0370 100 1.839 234 

10 2,2,2-trinitroethyl-azidoformate **) 0.0830 100 1.852 *)  
11 Bis-(2,2,2-trinitroethyl)-amine **) 0.0392 200 1.857 *) 
12 Bis-(2,2,2-trinitroethyl)-urea NOEURA 0.054 298 1.861  247 

13 1,1,1,3-tetranitro-3-azabutane **) 0.0558 100 1.862 274 

14 1,1,1,3,6,8,8,8-octanitro-3,6-diaza-octane DILFUZ 0.032 298 1.876   275 

15 3-fluoro-1,1,1,3,5,5,5-heptanitropentane CUVXUM 0.057 298 1.884   276 

16 N3,N6-bis(2,2,2-trinitroethyl)-1,2,4,5-tetrazine-
3,6-diamine 

**) 0.0269 100 1.886 *) 

17 1,1,1,5,5,5-hexanitropentan-3-one SINMUX 0.089 110 1.897  277 

18 N1,N5-bis(2,2,2-trinitroethyl)-1H-tetrazole-
1,5-diamine 

**) 0.0844 100 1.897 *) 

19 1,1,1,3,5,5,5-heptanitropentane CUVXUG 0.068 298 1.908   276 

20 Bis-(2,2,2-trinitroethyl)-nitramine NOETNA 0.055 298 1.919   278 

21 3-chloro-1,1,1,3,5,5,5-heptanitropentane CUVYAT 0.043 298 1.924   276 

22 1,1,1,3,3,5,5,5-octanitropentane CEYDUF 0.054 100 1.94 279 

23 Bis-(2,2,2-trinitroethyl)-nitramine NOETNA02 0.105 298 1.953 280 

24 Bis-(2,2,2-trinitroethyl)-nitramine NOETNA01 0.058 298 1.955  279 

25 Bis-(2,2,2-trinitroethyl)-carbonate DIWHIB 0.0270 100 1.975 235 

Notes. *) this work. **)  this structure has yet to be allocated a refcode. ***) this structure 
has not been deposited at the CCDC. 
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The density values can be split into two groups: The first group shows 

densities in a range of 1.4 – 1.8 g cm-3 and the second group summarizes those 

crystals with densities in a range of 1.8 – 2.0 g cm-3 (Fig. 2.113).  
 

 
Figure 2.113. Number of crystal structures related to density range.  

A comparison with organic crystals containing atoms no heavier than oxygen 

(range 1.1 – 1.3 g cm -3) (281) reveals that the molecules of the first group have 

higher densities although consisting of sterically unfavourable molecular 

frameworks (Table 2.16, entries 1, 2 and 5) or co-crystals (Table 2.16, entries 3 

and 4). The molecules of the second group display exceptionally high densities. 

The seven structures discussed in this work display hydrogen bonding of the 

methylene-type protons and dipolar nitro group interactions of the 

trinitroethyl moiety contributing to their high densities. We recently reported 

the crystal structures of 9 (2,2,2-trinitroethanol, ρ = 1.839 g cm-3) and 25 

(bis(2,2,2-trinitroethyl)carbonate, ρ = 1.975 g cm-3) and showed the same 

trinitroethyl assisted intermolecular interactions to be present in these two 

compounds. The results of a survey towards dipolar nitro group interactions of 

all compounds where structural coordinates are available, is given in Table 

2.17. According to this listing of interatomic oxygen…oxygen and 

oxygen…nitrogen distances dipolar nitro group interactions are present in all 

twenty two entries. Contact details are given for nitro groups of trinitroethyl 

groups interacting with each other. 
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Table 2.17. Summary of short intermolecular nitrogen/oxygen and corresponding oxygen 
distances of compounds 1 – 25. Only nitro groups being part of the trinitroethyl substituent 
have been considered. The intermolecular interactions are limited to those less than the sum 
of the van der Waals radii (∑(vdWN,O) = 3.07 Å, ∑(vdWO,O) = 3.04 Å) plus a tolerance value 
of 0.2 Å.  

I nitro interaction between N/O  

contact 

d(N…O)  

/ Å 

Δ / 

vdW 

O/O  

contact 

d(O…O)  

/ Å 

Δ / 

vdW 

1 N4/O7/O8 and N2/O3/O4 N4
…O3 3.025(6) -0.04 O3

…O8 3.047(6) 0.01 

2 N3/O7/O8 and N2/O5/O6 N3
…O6 2.966(6) -0.10 O6

…O7 3.011(7) -0.03 

3 N3/O3/O4 and N7/O13/O14 N3
…O13 3.196(2) 0.13 O3

…O14 2.985(2) -0.06 

     O3
…O14 3.170(2) 0.13 

     O3
…O13 3.118(2) 0.08 

     O4
…O13 3.021(2) -0.02 

 N4/O5/O6 and N5/O7/O8 N4
…O7 3.259(2) 0.19 O6

…O7 2.991(2) -0.05 

     O7
…O7 2.971(2) -0.07 

 N7/O13/O14 and N3/O3/O4 N7
…O3 3.251(2) 0.18 O14

…O3 2.985(2) -0.06 

4 N6/O11/O12 and N6/O11/O12 N6
…O11 3.225(2) 0.16 O11

…O12 3.087(2) 0.05 

6 N3/O5/O6 and N3/O5/O6 *) - - O6
…O6 2.823 -0.22 

7 N3/O4/O5 and N4/O6/O7 N3
…O6 2.9506 -0.12 O6

…O5 3.0210  -0.02 

8 N8/O3/O4  and N8/O3/O4 N8
…O3 3.270(3) 0.20 O3

…O4 3.051(3)  0.01 

9 N2/O4/O5  and N2/O4/O5 N2
…O4 3.123(2) 0.05 O4

…O4 2.825(2) -0.21 

 N2/O4/O5  and N5/O11/O12 N5
…O5 3.118(2) 0.05 O5

…O12 2.852(2) -0.19 

10 N5/O5/O6  and N12/O15/O16 N5
…O15 3.082(5) 0.01 O6

…O15 2.966(4) -0.07 

11 N3/O5/O6  and N4/O7/O8 N3
…O8 3.174(2) 0.10 O6

…O8 3.039(2)  

 N3/O5/O6  and N5/O9/O10 N5
…O5 3.147(2) 0.08 - - - 

12 N2/O2/O3 and N3/O4/O5 N2
…O5 3.1647 0.09 O2

…O4 3.1632 0.12 

     O3
…O5 3.2100 0.17 

 N3/O4/O5 and N4/O6/O7 N3
…O6 3.2421 0.17 O4

…O6 3.0480 0.01 

     O4
…O7 2.9010 -0.14 

     O5
…O6 3.1179 0.08 

 N4/O6/O7 and N2/O2/O3 N4
…O3 3.2385 0.17 O6

…O2 2.9963 -0.04 

13 N3/O3/O4  and N5/O7/O8 N3
…O8 3.254(5) 0.18 O3

…O8 2.837(5)  -0.20 

 N3/O3/O4  and N3/O3/O4   N3
…O3 3.247(5) 0.18    

14 *) - - - - - - 

15 N5/O9/O10 and N1/O1/O2 N5
…O2 3.250(6) 0.18 O2

…O10 3.215(8) 0.17 

16 N7/O1/O2  and N12/O11/O12   N7
…O12 2.859(2) -0.21 O12

…O1 2.857(2) -0.18 

 N8/O3/O4  and N10/O7/O8   N10
…O3 2.965(2) -0.11 O3

…O7 2.900(2) -0.14 

18 N7/O1/O2  and N8/O3/O4   N7
…O3 2.869(4) -0.20 O2

…O3 2.908(4) -0.13 

     O1
…O4 2.927(4) -0.11 

 N9/O5/O6  and N11/O9/O10   N11
…O5 2.896(5) -0.17 O5

…O9 3.041(4) 0.00 

19 N5/O9/O10 and N6/O11/O12 N5
…O12 3.154(3) 0.08 O9

…O11 3.150(3) 0.11 

     O10
…O11 3.208(3) 0.17 

     O10
…O12 3.136(3) 0.10 
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     O11
…O12 3.116(3) 0.08 

20 N5/O3/O4 and N6/O9/O10 N5
…O10 3.2167 0.15 O3

…O10 3.1049 0.06 

     O4
…O10 2.9503 -0.09 

21 N2/O3/O4 and N3/O5/O6 N2
…O5 3.1623 0.09 O4

…O5 2.8822 -0.16 

     O4
…O5 3.1153 0.08 

 N2/O3/O4 and N6/O11/O12 N2
…O12 3.0535 -0.02 O3

…O11 3.1834 0.14 

 N7/O13/O14 and N1/O1/O2 N7
…O1 3.1174 0.05 O1

…O13 3.2207 0.18 

 N7/O13/O14 and N1/O1/O2 N7
…O2 3.2469 0.18    

22 N3/O5/O6 and N8/O15/O16 N3
…O16 3.2622 0.19 O5

…O16 3.1066 0.07 

     O6
…O16 3.0431 0.00 

 N7/O13/O14 and N8/O15/O16 N7
…O15 3.2530 0.18 O14

…O15 3.1836 0.14 

 N8/O15/O16 and N4/O7/O8 N8
…O7 3.2575 0.19 - - - 

23 *) - - - - - - 

24 *) - - - - - - 

25 N1/O4/O5 and N2/O6/O7 N1
…O6 3.259(1) 0.19 O4

…O7 2.832(1) -0.21 

     O5
…O6 2.957(1) -0.08 

 N1/O4/O5 and N3/O8/O9 N3
…O4 3.013 (1)  -0.06 O4

…O8 3.093(1) 0.05 

     O5
…O9 3.122(1) 0.08 

 N1/O4/O5 and N6/O14/O15 N6
…O5 2.994 (1) -0.08 O5

…O14 2.863(1) -0.18 

     O5
…O15 2.942(1) -0.10 

 N4/O10/O11 and N6/O14/O15 N4
…O14 3.105(1) 0.03 - - - 

 - - - - O12
…O14 2.838(1) -0.20 

Notes. Indices 5 and 17 refer to refcodes QQQAUY and SINMUX. Structural coordinates 
are missing, only the cell parameters are given. *) Dipolar nitro group interactions are 
present between nitro groups of the trinitroethyl substituent and the nitramine moiety. 
Structural coordinates referring to index 6 are not available; values were taken from 
reference 273. 

 
Four entries (6,14,23,24) display dipolar nitro group interactions between nitro 

groups of the trinitroethyl moiety and aliphatic nitro groups (14) or nitramine 

type nitro groups (6, 23 and 24) not included in the table. Nineteen out of the 

twenty structures display short oxygen···oxygen distances considering a value 

of 3.14 Å and thereof fourteen structures contain distances with values even 

less than the sum of the van der Waals radius (3.04 Å) indicating that the close 

approach of oxygen atoms due to dipolar nitro group interactions can 

commonly be observed in structures containing the trinitroethyl group. The 

occurrence of C—H···A hydrogen bonding was observed in the crystal 

structures of 2,2,2-trinitroethanol and bis-(2,2,2-trinitroethyl)carbonate. Here 

we present a comprehensive list of this kind of hydrogen bonding (Table 2.18). 
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Table 2.18. Summary of methylene-type C—H···A hydrogen bonding of the trinitroethyl 
group in compounds 1-25. 

I D—H···A D—H H···A D···A D—H···A i 

1 - - - - - - 

2 - - - - - - 

3 C2—H2A…O12(nitro)i 0.92(2) 2.54(2) 3.428(2) 162.8(18) x,y,-1+z 

 C2—H2B…O1(carbonyl)i 0.91(2)     2.49(2)    3.237(3)   138.6(15) -x,1-y,1-z 

 C5—H5B…O9(carbonyl)i 0.90(2)   2.383(18)  3.1437(19)   142.6(17) -x,1-y,2-z 

4 C2—H2B…O1(carbonyl)i 0.991(17)   2.354(18)    3.112(2)   132.7(13) 1-x,2-y,2-z 

 C5—H5B…O9(carbonyl)i 0.952(17)   2.355(15)  3.1350(17)   138.9(13) 1-x,2-y,1-z 

6 *)      

7 C2—H3···O1(carbonyl)i 0.96 2.37 3.229(2) 150 1-x,-y,1-z 

8 C2—H2A…O2(nitro)i 0.99 2.57 3.452(3) 149 2-x,-y,-1/2+z 

 C2—H2A…N4(ring)i 0.99 2.62 3.225(3) 119 3/2-x,1/2+y,-1/2+z 

 C2—H2B…O1(nitro)i 0.99        2.57    3.452(3)       149 2-x,-y,-1/2+z 

9 C3—H3B…O14(nitro)i 0.953(17) 2.385(17) 3.3304(19) 171.0(13)  

10 C2—H2A…O1(carbonyl)i 0.95(6) 2.44(5) 3.263(5) 144(4) 1-x,2-y,1-z 

 C2—H2B…N7(azide) 0.95(5) 2.49(5) 3.417(6) 165(3)  

 C5—H5A…N3(azide)i 1.00(4) 2.54(4) 3.360(6) 139(3) 2-x,2-y,1-z 

 C5—H5B…O9(carbonyl)i 0.97(5) 2.56(5) 3.361(6) 141(4) 2-x,1-y,1-z 

11 C4—H4A…O12(nitro)i 0.93(2) 2.52(2) 3.432(2) 167.6(17) 3/2-x,1/2+y,z 

12 C2—H1…O3(nitro)i 1.08        2.38      3.3560         150 x,y,1+z 

13 C2—H2A…O1(nitro)i 0.99 2.37 3.319(5) 160 -1+x,y,z 

 C2—H2B…O2(nitro)i 0.99 2.37 3.344(5) 169 -x,1/2+y,1/2-z 

14 C2—H1…O7(nitro)i 0.93 2.55 3.4015 152 1+x,y,z 

 C3—H3…O8B*(nitro)i 0.91       2.59     3.4952        176 1+x,y,z 

15 C2—H3…O13(nitro)i 0.99        2.41      3.1129         128 -x,1-y,1/2+z 

 C2—H4…O7(nitro)i 0.97        2.55      3.3528         140 x,-1+y,z 

16 C3-H3A
…O5(nitro)i 0.99 2.58 3.421(2) 142 1/2-x,1/2+y,1/2+z 

 C3-H3B
…O6(nitro)i 0.99        2.42    3.155(2)       130 1/2-x,-1/2+y,1/2+z 

 C5-H5A
…O9(nitro)i 0.99        2.40    3.188(2)       136 -x,-y,-1/2+z 

18 C2-H2B
…N3(ring)i 0.92(4) 2.57(4) 3.480(5) 171(3) 2-x, -1/2+y, z 

19 **)      

20 *)      

21 C2—H3…O1(carbonyl)i 0.96        2.37      3.2292         150 1-x,-y,1-z 

22 C4—H3…O1(nitro)i 0.98        2.40      3.3273         157 x,1+y,z 

 C4—H4…O8(nitro)i 0.93        2.56      3.4791         174 1/2-x,-y,-1/2+z 

23 C1—H2…O8(nitro)i 1.08        2.52      3.4991         151 -1/2-x,-1/2+y,1/2-z 

 C3—H4…O2(nitro)i 0.84        2.45      3.2261         154 1/2-x,-1/2+y,1/2-z 

24 *)      

25 C2—H2B…O1(nitro)i 0.923(13) 2.448(12) 3.2598(13) 146.7(10) -x+1,-y,-z+1 

 C4—H4B…O9(nitro)i 0.966(13) 2.651(13) 3.4532(13) 140.7(9) -x+1,-y,-z+1 
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Notes. Indices 5 and 17 refer to refcodes QQQAUY and SINMUX. Structural coordinates 
are missing, only the cell parameters are given. *) no hydrogen atom coordinates available. 
**) 19: C3—H5…O1(nitro) hydrogen bond between a non trinitroethyl hydrogen atom and an 
oxygen atom of a trinitroethyl nitro group. 
 

Of all the structures listed in Table 2.16 were hydrogen atom positions were 

available, C—H···A hydrogen bonding of the methylene-type hydrogen atoms 

of the trinitroethyl group was observed in seventeen out of twenty structures 

rendering C—H···A hydrogen bonding as another important intermolecular 

feature of the trinitroethyl functionality supporting higher densities. 
 

Conclusion 

 

Based on the crystal structures reported in this work and available in the 

literature, we find that trinitroethyl mediated intermolecular interactions like 

dipolar nitro group interactions and hydrogen bonding of the acidified 

methylene-type protons govern mainly the molecular packing of these 

compounds yielding high-crystal-density polymorphs with promising explosive 

performance parameters.  Five new highly explosive compounds are introduced 

belonging to a new class of energetic materials preferentially containing both 

high-nitrogen and high-oxygen content. TTD, BTTD and BTAT display 

superior performance properties to RDX with BTAT at the same time being 

less sensitive and displaying a better oxygen balance value yielding smokeless 

combustion and less toxic fumes on decomposition. The compounds are water 

insoluble in contrast to energetic salts, a prerequisite to protect the ground and 

one important environmental advantage amongst the qualification criteria for 

new HEDM. It is shown that temperature stability can be higher than 140°C 

for solid and liquid compounds carrying the trinitroethyl moiety not only as far 

as decomposition temperatures but also as far as chemical long term stabilities 

are concerned. BTAT and BTHC are shown to be the molecules offering the 

best trade-off between energy capability and thermal stability. Next to its 

excellent thermal stability as well as its positive oxygen balance value, BTHC 

displays the rare and desirable property of being a solid with a reasonable low 

melting point and a liquid range of greater than 100°C while at the same time 

being insensitive according to BAM standards rendering a possible use as safe 
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melt-castable explosive.  The tendency of conglomerate crystallization of 

BTHC is a further important point allowing for the specific design of its 

performance as well as sensitivity properties.  

 

Experimental  

 

CAUTION: The compounds described in this work are potential explosives, 

which may be subject to accidental initiation by such environmental stimuli as 

impact, friction, heat, or electrostatic discharge. Appropriate precautions and 

proper protective measures (safety glasses, face shields, leather coat, grounding 

(equipment and person), Kevlar™ gloves and ear plugs) should be taken and 

used when handling these materials. To avoid difficulties with the sensitivity of 

these compounds only millimolar amounts should be handled with care. 

Calculations. All calculations were carried out using the Gaussian G03W 

(revision B.03) program package. (282) 

Materials. All reagents and solvents were used as received (Acros, Aldrich, 

Fluka) if not stated otherwise.  

Instrumentation and Measurement.  Electronic absorption spectra were 

acquired by using a Varian CARY 50 Conc UV-visible spectrophotometer in 

quartz cuvettes. 1H, 13C and 14/15N NMR spectra were recorded using a Jeol 

Eclipse 270, Jeol EX 400 or Jeol Eclipse 400 instrument operating at 400 MHz 

(1H), 100.6 MHz (13C), 40.5 MHz (15N) and 28.9 MHz (14N).  All chemical shifts 

are quoted in ppm relative to TMS (1H, 13C) or nitromethane (14N / 15N). 

Infrared (IR) spectra were recorded using a Perkin-Elmer Spektrum One FT-

IR (using KBr disks) or a Perkin-Elmer Spektrum BX FT-IR (pure substance) 

instrument. Raman spectra were measured using a Perkin Elmer Spektrum 

2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm).  

Elemental analyses were performed with a Netsch Simultanous Thermal 

Analyser STA 429. The thermal behaviour of the salts was investigated in a 

nitrogen atmosphere using differential scanning calorimetry (Linseis DSC PT-

10) at heating rates (β) of 5 K min-1 and a nitrogen flow of 5 L h-1. Typically, 2 

mg of substance were measured inside a pressed aluminium container equipped 

with a hole (0.1 mm) for the gas release. Isothermal long term experiments 

were performed using a Systag TSC (isothermal safety calorimeter) station. 
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Ultrasound was applied using a Bandelin Sonorex RK 510 ultrasonic bath. The 

single crystal X-ray diffraction data were collected using an Oxford Xcalibur3 

diffractometer equipped with a Kappa CCD detector. The MoKα radiation (λ = 

0.71073 Å) was generated from a Spellman generator (50 kV, 40 mA) and 

focussed using a graphite collimator. The data collection was undertaken using 

the CrysAlis CCD software (283) and data reduction was performed using the 

CrysAlis RED software. (284) The structures were solved using SIR-92 (285) and 

refined using SHELXL-97 (286) implemented in the program package WinGX 
(287) and finally checked using PLATON. (288) The impact sensitivity tests were 

carried out according to STANAG 4489 (289) modified according to instruction 
(290) using a BAM (Bundesanstalt für Materialprüfung) drophammer. The 

friction sensitivity tests were carried out according to STANAG 4487 (291) 

modified according to instruction (292) using the BAM friction tester. The 

particle size was determined using a DIN 4188 testing sieve (Retsch). The 

respond to thermal shock and performance was tested using a Koenen steel 

sleeve apparatus. (293) The electrostatic sensitivity tests were carried out using 

an electric spark tester ESD 2010EN (OZM Research) operating with the 

‘Winspark 1.15 software package’. High speed images were recorded using a 

Visario G2 high-speed camera (Speed Cam Visario G2, Weinberger 

Deutschland GmbH, Erlangen, Germany).  
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2,2,2-Trinitroethanol (TNE) 

 

 
 

Trinitroethanol (294) was prepared from the reaction of trinitromethane with 

formaldehyde. (295) The crude product can be distilled (Caution: potential risk of 

explosion!). Suitable conditions for distillation have been found to be: pressure: 

36 mbar / oil bath temperature: 135°C / trinitroethanol fraction temperature: 

115°C, or: pressure: 22 mbar / oil bath temperature: 127°C / trinitroethanol 

fraction temperature: 112°C. Multinuclear NMR spectroscopy data confirm the 

structure of the compound:  
1H NMR ([D6]acetone) δ(ppm): 5.17 (2H, d, 3J=5.6 Hz), 6.32 (1H, t, 3J= 5.6

Hz); 13C NMR ([D6]acetone)  δ(ppm): 63.1 (d, -CH2), 127.5 (bs, -C(NO2)3); 14N 

NMR ([D6]acetone)  δ(ppm, nitromethane): -30.8 (-NO2); impact sensitivity 

(50%, 2.5 kg weight) (296): 11cm (pure crystals), 22cm (monohydrate), 25cm 

(wet with CCl4), 86-101cm (crude oil); m.p. 73.5-74°C, sublimes easily under 

reduced pressure. The crystal growth was accomplished by sublimation of the 

solid at 298 K applying static low pressure (0.1 mbar), yielding colourless 

single crystals of rectangular habitus. Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 

 

 

Bis-(2,2,2-trinitroethyl)-amine (BTNA) 

 

 
 

a) Though Murray and Sauer claim (297) that the condensation of nitroform 

with hexamethylenetetramine would afford bis-(2,2,2-trinitroethyl)amine we 

were not successful using this strategy or confirm it.  

Potassium nitroformate (0.8849g, 4.47 mmol) were suspended in water (1 mL) 

and hydrochloric acid was added (1 M) until the pH value of one was achieved. 

Hexamethylenetetramine (0.1026g, 0.731 mmol) was dissolved in water (1 mL) 
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and slowly added to the solution of potassium nitroformate using a syringe 

while stirring the reaction mixture at 20°C (water bath). In order to keep the 

pH value below one, a further amount of hydrochloric acid (1M, 2.5 mL) was 

added in small portions. The reaction mixture was allowed to stir at room 

temperature for twelve hours. The yellow precipitate formed was filtered and 

identified as potassium nitroformate using Raman spectroscopy. The solution 

was evaporated and the yellow solid shown to be potassium nitroformate 

according to the intensities obtained from Raman spectroscopy.  

b) Bis-(2,2,2-trinitroethyl)amine was successfully prepared from the reaction of 

trinitroethanol with ammonium acetate. (298)  2,2,2-trinitroethanol (2.5 g, 1.38 

mmol) is dissolved in water (1 mL). To this is added a solution of ammonium 

acetate (0.525 g, 0.68 mmol) dissolved in water (4 mL) at room temperature. 

The solution turned orange after a few seconds and a white precipitate formed 

on stirring the solution at room temperature after five minutes. Stirring was 

continued for further 30 minutes. The precipitate was filtered and washed with 

cold water (3 times, each 2 mL). The white solid obtained was air dried (oven, 

40°C, 30 min). The crystal growth was accomplished by storing a saturated 

carbontetrachloride solution in the refrigerator (7°C), yielding colorless single 

crystals of needle like habit. 

DSC (Linseis, 5 K min-1): 112.1°C (onset, decomp.); IR (KBr disk) v~ /cm-1: 3406 

(w), 3370 (m), 2987 (w), 2946 (w), 2894 (w), 1582 (vs), 1478 (s), 1442 (s), 1431 

(m), 1408 (w), 1397 (w), 1376 (m), 1350 (w), 1339 (w), 1307 (vs), 1298 (vs), 

1258 (s), 1243 (m), 1156 (m), 1133 (m), 1089 (m), 1059 (w), 1049 (m), 1020 (w), 

1008 (w), 883 (m), 873 (m), 854 (s), 803 (vs), 791 (vs), 781 (vs), 751 (w), 740 

(m), 712 (w), 660 (m), 642 (s); Raman (1 cm-1) v~ /cm-1: 3011 (8), 2982(13), 

2949(24), 1607(27), 1445 (20), 1431 (11), 1398 (16), 1377 (15), 1354 (43), 1311 

(41), 1260 (8), 859 (100), 809 (8), 782 (8), 663 (8), 644 (10), 562 (9), 536 (11),  

423 (47), 397 (50), 376 (90), 299 (19), 280 (22), 213 (24); MS (DEI, 70eV): 343 

[m+], HRMS: Calc. for BTNA: 342.9996 found: 342.9970 (-2.6 mmu); impact 

sensitivity: 15 J (1/6, explosion), friction sensitivity: greater 360 N; Details of 

the single crystal X-ray diffraction experiment are listed in the appendix 

(Chapter 4). 
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5-(1-Methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole  (MTHT) 

 

 
 

1-Methyl-1-(1H-tetrazol-5-yl)hydrazine (0.114 g, 1 mmol) was dissolved in 

water (200 mL) at ambient temperature. A solution of 2,2,2-trinitroethanol 

(0.200 mg, 1.1 mmol) in water (50 mL) was added and the reaction mixture was 

exposed to ultrasound at ambient temperature for ten minutes affording a 

white solid to precipitate. The reaction mixture was stirred for another two 

hours. The precipitate was filtered, washed with water (two times, 50 mL) and 

dried using a desiccator (P4O10).  

Raman (100 mW, 100 scans, protection shield, 1 cm-1) v~ /cm-1: 3287 (39), 2996 

(21), 2948 (43), 2826 (14), 1627 (34), 1605 (42), 1464 (24), 1450 (23), 1413 (38), 

1403 (41), 1349 (48), 1303 (41), 1285 (36), 1228 (19), 1114 (25), 1086 (38), 1063 

(25), 1038 (28), 998 (25), 971 (30), 856 (100), 800 (17), 779 (15), 740 (15), 656 

(23), 629 (19), 541 (21), 449 (31), 404 (72), 372 (75), 312 (28), 255 (30), 202 

(29), 187 (30); IR (pure solid substance) v~ /cm-1: 3286 (w), 2992 (w), 2946 (w), 

2890 (w), 2736 (w), 1774 (w), 1582 (vs), 1475 (w), 1410 (w), 1386 (w), 1348 (w), 

1298 (s), 1225 (m), 1162 (w), 1126 (w), 1061 (m), 1035 (m), 992 (w), 964 (w), 

876 (w), 854 (w), 834 (w), 796 (vs), 776 (s), 738 (m), 709 (w), 690 (w), 655 (w); 

Tdecomp.(Büchi melting point apparatus, 5°/min): 98°C (colour change from 

initally white to yellow), 100°C (deflagration). 

 

(E)-1-Methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-trinitroethylidene)hydrazine 

(MTTH) 
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Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
 

1-Methyl-5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole 

(MMTHT) 
 

 
 

1-Methyl-1-(1-methyl-1H-tetrazol-5-yl)hydrazine (0.128 g, 1 mmol) was 

dissolved in water (200 mL) at ambient temperature. A solution of 2,2,2-

trinitroethanol (0.200 mg, 1.1 mmol) in water (50 mL) was added and the 

reaction mixture was exposed to ultrasound at ambient temperature for ten 

minutes affording a white solid to precipitate. The reaction mixture was stirred 

for another two hours. The precipitate was filtered, washed with water (two 

times, 50 mL) and dried using a desiccator (P4O10).  
 

IR (pure solid substance between KBr plates) v~ /cm-1: 3342 (m), 2974 (w), 2941 

(w), 2903 (w), 1610 (m), 1571 (vs), 1474 (s), 1458 (m), 1430 (m), 1419 (m), 1405 

(w), 1391 (w), 1354 (w), 1308 (s), 1298 (s), 1265 (w), 1235 (w), 1202 (w), 1143 

(m), 1122 (w), 1107 (w), 1045 (w), 879 (w), 858 (w), 821 (m), 797 (vs), 770 (s), 

755 (m), 717 (w), 663 (w); Tdecomp.: 82.5°C (onset, 2°C/min, Linseis DSC); 

Tdecomp.(Büchi melting point apparatus, 5°/min): 82°C (colour change from 

initially white to yellow), 87°C (melting with decomp.) C5H9N9O6: calc.: N 

(43,3%), C (20,6%), H (3,1%), found: N (43,1%), C (20,9%), H (3,3%); impact 

sensitivity (powder): > 30J, impact sensitivity (single crystals): > 30J, friction 

sensitivity: 108N (visible flame, no sound), ΔUcomb. (exp.): 2936 cal/g, Ω: -

46.7%, Qv (calc.): -6368 kJ/kg, Tex (calc.): 4404 K, PD (calc.): 277 kbar, VD (calc.): 

8307 m/s, V0 (calc.): 783 L/kg. Details of the single crystal X-ray diffraction 

experiment are listed in the appendix (Chapter 4). 
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2-(5-(1-Methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazol-1-

yl)ethanol (MTHTE) 

 

 
 

2-(5-(1-Methyl-hydrazinyl)-1H-tetrazol-1-yl)ethanol (0.158 g, 1 mmol) was 

dissolved in water (200 mL) at ambient temperature. A solution of 2,2,2-

trinitroethanol (0.200 mg, 1.1 mmol) in water (50 mL) was added and the 

reaction mixture was exposed to ultrasound at ambient temperature for ten 

minutes affording a white solid to precipitate. The reaction mixture was stirred 

for another two hours. The precipitate was filtered, washed with water (two 

times, 50 mL) and dried using a desiccator (P4O10).  

Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 

 

1-(4N-2,2,2-Trinitroethyl)-2,5-hydroxymethyltriazine (THMT) 

 
 

 
 

1-Amino-2,5-hydroxymethyltriazine (0.144 g, 1 mmol) was dissolved in water 

(200 mL) at ambient temperature. A solution of 2,2,2-trinitroethanol (0.200 

mg, 1.1 mmol) in water (50 mL) was added and the reaction mixture was 

exposed to ultrasound at ambient temperature for ten minutes affording a 

white solid to precipitate. The reaction mixture was stirred for another two 

hours. The precipitate was filtered, washed with water (two times, 50 mL) and 

dried using a desiccator (P4O10).  

Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
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N1-(2,2,2-Trinitroethyl)-1H-tetrazole-1,5-diamine (TTD)  

 

 
 

2,2,2-Trinitroethanol is a starting material for the synthesis of TTD and was 

synthesised from the condensation of formaldehyde and trinitromethane. (295)  

1,5-Diaminotetrazole (0.100 g, 1 mmol) was dissolved in water (200 mL) at 

ambient temperature. A solution of 2,2,2-trinitroethanol (0.200 mg, 1.1 mmol) 

in water (50 mL) was added and the reaction mixture was exposed to 

ultrasound at ambient temperature for ten minutes affording a white solid to 

precipitate. The reaction mixture was stirred for another two hours. The 

precipitate was filtered, washed with water (two times, 50 mL) and dried using 

a desiccator (P4O10).  

DSC (Linseis, 5 K min-1): exo (125.6°C, onset / 129.1°C, max / 131.9°C, offset); 

Tdec(Büchi melting point apparatus, 10°/min): 156°C-157°C (explosion);  

isothermal long term stability (48 h, 85°C): unchanged;  isothermal long term 

stability (isoperibol steps, temperature was held constant every 20°C for one 

hour): explosion at 100°C; 1H NMR ([D6]acetone) δ:  5.33 (2H, -CH2-, d, 3J = 

6.1 Hz) 6.09 (2H, s, -NH2), 7.55 (1H, -NH-, t, 3J = 6.1 Hz); 13C NMR 

([D6]acetone) δ:  52.4 (s, -CH2-), 126.6 (bs, -C(NO2)3),  153.5 (s, Cring); IR (KBr) 

v~ /cm-1: 3414 (vs), 3311 (s), 3173 (vs), 3001 (m), 2955 (m), 1651 (vs), 1610 (vs), 

1585 (vs), 1494 (s), 1459 (w), 1414 (s), 1381 (w), 1347 (w), 1321 (vs), 1302 (vs), 

1136 (m), 1120 (m), 1081 (m), 1040 (w), 989 (w), 907 (w), 855 (w), 835 (w), 806 

(vs), 774 (m), 739 (w), 715 (w), 673 (w), 648 (m), 582 (w), 546 (w), 459 (w); 

Raman (4 cm-1) v~ /cm-1: 3172 (19), 3001 (23), 2987 (59), 2958 (41), 1652 (37), 

1612 (42), 1585 (25), 1495 (33), 1463 (31), 1416 (42), 1381 (34), 1349 (50), 1323 

(81), 1305 (43), 1278 (29), 1141 (24), 1116 (29), 1080 (23), 1041 (30), 1003 (18), 

991 (21), 909 (18), 857 (100), 808 (38), 780 (95), 736 (14), 675 (20), 643 (20), 

543 (19), 519 (23), 460 (26), 416 (57), 400 (58), 375 (100), 335 (61), 305 (32), 

264 (42), 225 (32), 207 (42), 172 (46); MS (DCI+, isobutane): 264 [m+H]; Calc 

for C3H5N9O6:  N (47.9%), C (13.7%), H (1.9%), found: N (47.5%), C (13.9%), H 
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(2.0%); impact sensitivity: < 30 J (decomposition), friction sensitivity: 40 N 

(explosion), electrostatic spark sensitivity (particle size 0.08 – 0.16 mm): < 0.1 J 

(explosion); Koenen Test: > 10 mm; Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 

 

 

N1,N5-Bis-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-diamine (BTTD) 

 

 
 

TTD (0.158 g, 0.6 mmol) was dissolved in concentrated hydrochloric acid (50 

mL). To the stirred solution was added 2,2,2-trinitroethanol (0.254 g, 1.4 

mmol) at room temperature. The colorless solution was heated to 50°C for one 

hour and extracted using dichloromethane. The collected organic fractions 

were dried using magnesium sulfate, filtered and concentrated using a rotary 

evaporator. 

DSC (Linseis, 5 K min-1): exo (126.6°C, onset / 132.0°C, max / 137.4°C, offset); 

MS (DCI+, isobutane): 427 [m+H]; Calc. for C5H6N12O12:  N (39.4%), C 

(14.1%), H (1.4%), found: N (39.0%), C (14.2%), H (1.5%); Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
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N3,N6-Bis-(2,2,2-trinitroethyl)-1,2,4,5-tetrazine-3,6-diamine (BTAT)  

 

 
 

3,6-Diamino-1,2,4,5-tetrazine is a starting material for the synthesis of BTAT 

and was synthesised from the condensation of diaminoguanidinium 

hydrochloride with 2,4-pentanedione, followed by oxidation of the resulting 

dihydrotetrazine with sodium perborate. (299)  Two pathways have been found 

for the preparation and isolation of BTAT. Method a) According to the first 

pathway, BTAT can be obtained on treating a solution of 3,6-diaminotetrazine 

in concentrated hydrochloric acid (37%) at a temperature of 70°C. The product 

precipitates from the solution and can be obtained in high purity on simple 

filtration. We observed that the yields of this approach are quite low (see 

section 2.1.4, page 119). Method b) 3,6-diamino-1,2,4,5-tetrazine (0.067 g, 0.6 

mmol) was suspended in acetonitrile (100 mL) at room temperature. A solution 

of iron-(III)-chloride (0.100 g, 0.6 mmol) dissolved in nitromethane (5 mL) was 

added. 2,2,2-trinitroethanol (0.253 g, 1.4 mmol) was subsequently added and 

the reaction stirred for four hours at room temperature. The reaction mixture 

was then treated with hydrochloric acid (2M, 100 mL) and extracted three 

times using dichloromethane (100 mL). The collected organic phases were 

dried using magnesium sulfate, filtered and concentrated using a rotary 

evaporator affording a red solid containing BTAT of rather low purity.  

Method c) 3,6-diaminotetrazine (2,2g) was suspended in acetonitrile (200 mL). 

Trinitroethanol (9g) and subsequently a solution of iron-(III)-chloride (12g) 

dissolved in nitromethane (75mL) were added yielding a clear solution of all of 

the components. The reaction was allowed to stir at ambient conditions for 

10h. The reaction mixture was concentrated using a rotary evaporator (60°C, 

90mbar) affording a sticky, nearly solid dark residue. Subsequently, the 

following steps were involved in the work up procedure: 
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1) The residue was dissolved in acetonitrile (20 mL) and filtered to remove 

unreacted starting material (3,6-diamino-1,2,4,5-tetrazine, 200mg). 
 

 
 
2) Hydrochloric acid (2M, 2L) was added to the filtrate to precipitate the 

BTAT from solution and keep the iron complex in solution. It takes several 

hours for the product to precipitate (bright orange colour). The picture on the 

right was taken after one day. 
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3) The orange precipitate is filtered yielding crude product. 
 

 
 
4) The crude product is dissolved in a small amount of acetonitrile and the 

undissolved iron complex is removed by filtration. 
 



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 206 - 

 
 
7) Hydrochloric acid (2M) is added to precipitate the BTAT from solution. 

Finally, the product is filtered and washed with water yielding BTAT as bright 

orange powder of high purity. 

 

 

DSC (Linseis, 5 K min-1): decomposition, 1st exo (183.7°C, onset / 189.2°C, max 

/ 197.8°C, offset), 2nd exo (201.4°C, onset / 208.4°C, max / 214.2, offset); 

isothermal long term stability (48h, 140°C): no decomposition; 1H NMR 

([D6]acetone) δ: 7.88 (1H, -NH-, t, 3J = 6 Hz), 5.61 (2H, -CH2- d, 3J = 6 Hz) 13C 

NMR ([D6]acetone) δ: 44.8 (s, -CH2-), 125.6 (bs, -C(NO2)3), 160.6 (s, Cring); 14N 

NMR ([D6]acetone) δ (nitromethane): -253.7 (bs, -NH-), -31.2 (s, -NO2), 109.9 

(bs, Nring); IR (KBr pellet) v~ /cm-1: 3285(m), 3013(w), 2963(w), 2890(w), 

1612(vs), 1580(vs), 1531(vs), 1441(s), 1416(m), 1386(w), 1356(w), 1313(s), 

1264(m), 1135(w), 1116(w), 1069(w), 1051(s), 1002(w), 941(m), 890(w), 854(w), 

816(m), 790(m), 772(w), 723(w), 640(w), 575(w), 541(w), 496(w); Raman (4 cm-

1) v~ /cm-1: 3289(7), 3006(4), 2965(17), 1896(6), 1607(14), 1556(19), 1509(27), 

1421(13), 1385(29), 1357(27), 1306(19), 1292(13), 1130(5), 1058(4), 1002(6), 

895(39), 857(73), 806(8), 784(5), 768(4), 680(6), 645(10), 602(6), 532(9), 519(7), 

423(19), 393(21), 375(26), 333(7), 300(17), 219(11), 205(13), 95(4); UV-vis 

(CH3CN) (λmax, nm): 240.5 nm, 413.5 nm, 507.5 nm; MS (DEI+): 438 [m, 

13.5%], 392 [m - NO2, 1.4%], 346 [m - 2 NO2, 1.5%], 300 [m - 3 NO3, 2.0%], 
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206 [N≡C−NH−CH2−C(NO2)3, 21.9%], 149 [C(NO2)3, 8.2%], 46 [NO2, 25.8%]; 
Calc. for C6H6N12O12:  N (38.4), C (16.5%), H (1.4%), found: N (37.7%), C 

(17.1%), H (1.5%); impact sensitivity: 7 J (decomp.) , friction sensitivity: 

between 160 N (no decomp.) and 168 N (decomp.), electrostatic spark 

sensitivity (particle size 0.08 – 0.16 mm): 0.2 J (decomp.); Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 

 

Tris-(2,2,2-trinitroethyl)borate (TTB) 
 

A mixture of 1g (5.5 mmol) 2,2,2-trinitroethanol and 4.8 g (32.8 

mmol) of triethyl borate was heated to 95°C over a period of four 

hours under inert reflux conditions. Ethanol was removed under 

reduced pressure affording a white solid. The substance shows a 

green flame colour. 

 

 
 

DSC (Linseis, 5 K min-1): 1st endo (153.3°C onset / 160.9°C min / 164.8 offset), 

2nd endo (175.7°C onset / 178.7°C min / 181.4 offset), 3rd endo (210.o onset / 

211.2 min / 214.9 offset); Tmelt(Büchi melting point apparatus, 5°/min): 175-

176°C ; 1H NMR ([D3]acetonitrile) δ: 5.18 (2H, s, -CH2-); 13C NMR 

([D3]acetonitrile) δ: 62.4 (s, -CH2-), 124.1 (bs, -C(NO2)3); 15N NMR 

([D3]acetonitrile) δ (nitromethane):  -33.8 (s, -NO2); 11B NMR ([D3]acetonitrile) 

δ: 16.7; MS (DEI+): 503 [m, 1%]. 
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S-Ethyl-2,2,2-trinitroethyl-thioformate 
 

 
 

Ethyl chlorothioformate (Acros, ρ (20°C) = 1.195 g mL-1, 5g, 40 mmol) is 

added to a stirred solution of 2,2,2-trinitroethanol (7.24g, 40 mmol) in 

dichloromethane (15 mL), followed by the addition of a solution of 

iron(III)chloride in nitromethane (1.4g FeCl3, 4mL CH3NO2). A vigorous 

reaction with evolution of hydrogen chloride begins immediately and is 

essentially complete within a few minutes. To insure complete reaction, 

stirring is continued for 30 minutes at ambient temperature. The reaction 

mixture is taken up in additional dichloromethane (50mL) and washed 

consecutively with dilute hydrochloric acid (2M, 100mL) and water 

(3x100mL). The organic phase is dried using magnesium sulfate, filtered and 

the solvent removed in vacuo yielding essentially pure product. 

 

 
Figure 2.114. Trinitroethanol (left picture), colourless solution of trinitroethanol and ethyl 
chlorothioformate (second left picture). A vigorous reaction starts immediately after the 
addition of iron(III)chloride (picuture in the middle). The formation of hydrogen chloride 
can be monitored using indicator paper (right picture). 
 
IR (KBr disk) v~ /cm-1: 2964 (s), 2932 (m), 2878 (m), 2641 (w), 2592 (w), 1723 

(vs), 1599 (vs), 1440 (s), 1379 (s), 1298 (vs), 1118 (vs), 1088 (vs), 1059 (s), 1032 

(m), 970 (m), 881 (w), 852 (m), 817 (m), 795 (vs), 776 (s), 758 (w), 739 (w), 720 

(w), 658 (m), 545 (m); Raman (200 mW, 100 scans, protection shield, 4 cm-1) 

v~ /cm-1: 2980 (60), 2939 (92), 2878 (41), 1727 (37), 1613 (40), 1451 (40), 1419 

(37), 1381 (43), 1350 (49), 1302 (43), 1055 (34), 1032 (33), 890 (29), 857 (75), 

795 (25), 706 (36), 684 (33), 668 (42), 658 (42), 636 (31), 550 (30), 509 (38), 401 

(49), 373 (70), 271 (53). Details of the single crystal X-ray diffraction 

experiment are listed in the appendix (Chapter 4). 
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2,2,2-Trinitroethyl-chloroformate 

 

 
 

A solution of S-ethyl-2,2,2-trinitroethyl-thioformate (40mmol) in 1,2-

dichloroethane (50mL, b.p. 83°C) and sulfuryl chloride (20mL, b.p. 68-70°C) is 

heated to reflux for six hours and then allowed to cool. The more volatile 

components are removed using a rotary evaporator and the residue is distilled 

through a short-path vigreux column (Caution: potential risk of explosion!). 

Suitable conditions for distillation have been found to be: pressure: 2.8·10-2 

mbar (dynamic vacuum) / oil bath temperature: 70°C / S-ethyl-2,2,2-

trinitroethyl-thioformate fraction temperature: 45°C, or: pressure: 22 mbar / 

oil bath temperature: 127°C / trinitroethanol fraction temperature: 112°C. 

 

 
Figure 2.115. Destillation of S-ethyl-2,2,2-trinitroethyl-thioformate (left picture) and pure 
product (right picture). 
 
IR (KBr disk) v~ /cm-1: 3022 (w), 2971 (w), 2893 (w), 2642 (w), 2593 (w), 1784 

(vs), 1598 (vs), 1438 (s), 1383 (m), 1347 (m), 1297 (vs), 1147 (vs), 1091 (vs), 

1034 (w), 979 (m), 890 (w), 853 (s), 827 (m), 798 (vs), 779 (vs), 721 (s), 677 (vs), 

644 (m), 609 (w), 548 (s), 496 (w) ; Raman (200 mW, 100 scans, protection 

shield, 4 cm-1) v~ /cm-1: 3021 (11), 2972 (35), 1785 (13), 1615 (26), 1439 (14), 

1301 (32), 1168 (7), 1092 (8), 1033 (25), 982 (4), 892 (21), 856 (100), 828 (8), 

800 (14), 778 (8), 724 (5), 644 (8), 549 (12), 501 (57), 463 (11), 399 (51), 373 

(86), 336 (15), 284 (48), 233 (29), 197 (29). 
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Bis-(2,2,2-trinitroethyl)-carbonate (BTC) 

 

 
 

Bis-(2,2,2-trinitroethyl)-carbonate (Hill, 1956) was prepared from the reaction 

of trinitroethanol with phosgene (Hall, 1968). The crystal growth was 

accomplished by concentration of a saturated CHCl3 solution at ambient 

temperature, yielding colourless single crystals.  

The following experimental data are available in the literature: (300-301) m.p. 

115°C, impact sensitivity (50%, NOL app., 2.5 kg, 16cm):  4 J; Details of the 

single crystal X-ray diffraction experiment are listed in the appendix (Chapter 

4). 

 

2,2,2-Trinitroethyl-azidoformate (TAF)   

 

 
 

2,2,2-Trinitroethyl-chloroformate is a starting material for the synthesis of 

TAF and was synthesised according to literature procedure. (302) 

Trimethylsilyazide (0.524 g, 4.55 mmol) was dissolved in acetonitrile (10 mL). 

2,2,2-Trinitroethyl-chloroformate (0.499 g, 2.05 mmol) dissolved in 

acetonitrile (1 mL) was added to this solution drop wise at room temperature 

and kept under a constant stream of nitrogen. The color of the solution 

changed from colorless to orange and got turbid after a few minutes with the 

formation of a precipitate. The reaction was allowed to stir for further twelve 

hours. The solvent was then removed using a high vacuum line affording 

orange oil together with precipitate. Pure TAF was obtained as a white solid 

on sublimation of the reaction residue using a cold finger (-78°C).  

DSC (Linseis, 5 K min-1): 1st endo (27.5°C, onset / 29.9°C, min / 32.3°C, offset), 

2nd endo (96.2°C, onset / 118.4°C, min / 129.2°C, offset), 1st exo (130.4°C, 

onset / 158.4°C, max / 174.5°C, offset), 2nd exo (191.6°C, onset / 205.6°C, max 



Chapter 2.2 – Molecules containing the trinitroethyl functionality 
 

- 211 - 

/ 218.6, offset); 1H NMR ([D6]acetone) δ: 5.96 (2H, s, -CH2-); 13C NMR 

([D6]acetone) δ: 63.7 (s, -CH2-), 123.9 (bs, -C(NO2)3), 156.1 (s, O2CN3); 15N 

NMR ([D6]acetone) δ (nitromethane): -34.7 (s, -NO2), -141.1 (s, Nbeta), -148.2 (s, 

Ngamma), -266.9 (s, Nalpha); IR (KBr disk) v~ /cm-1: 3018 (vs), 2971 (vs), 2893 (s), 

2651 (w), 2601 (w), 2399 (w), 2190 (vs), 1751 (s), 1598 (s), 1442 (s), 1386 (s), 

1354 (s), 1297 (s), 1236 (s), 1186 (s), 1099 (m), 1049 (m), 1007 (m), 941 (m), 879 

(m), 855 (m), 806 (m), 783 (m), 742 (m), 708 (w); Raman (4 cm-1) v~ /cm-1: 2974 

(36), 2170 (11), 1615 (38), 1384 (29), 1357 (43), 1304 (44), 1099 (15), 1009 (22), 

942 (27), 894 (19), 857 (83), 734 (21), 531 (20), 408 (61), 375 (73), 292 (53), 256 

(41); MS (DEI+): 250 [m, 1.7%], 204 [m - NO2, 2%], 164 [m - O2C-N3, 100%], 
158 [m - 2 NO2, 19.8%], 118 [m - (O2C-N3, 2 NO2), 100%], 70 [N3CO, 10.5%], 
44 [CO2, 3.8%]; Calc. for C3H2N6O8: C (14.4 %), H (0.8 %), N (33.6 %), found: C 

(14.7 %), H (1.0 %), N (32.5 %) ; Details of the single crystal X-ray diffraction 

experiment are listed in the appendix (Chapter 4). 

 

Bis-(2,2,2-trinitroethyl)-hydrazodicarboxylate (BTHC)  

 

 
 

2,2,2-Trinitroethylchloroformate (4.00 g, 18.7 mmol) was dissolved in 

dichloromethane (20 mL). The solution was cooled to -78°C. To this was added 

23.92 g of a solution of hydrazine in THF (1 molar, density 0.89 g/mL). A 

white precipitate formed. The reaction mixture was allowed to warm to 0°C 

over a period of one hour. Cold water (0°C) was added (20 mL) and the solution 

extracted with diethyl ether (5x, each 50 mL). The collected organic phases 

were dried using magnesium sulfate, filtered and concentrated using a rotary 

evaporator. The density of the pure substance was estimated to be 1.8 g cm-3 

according to weighing several samples of different volume. Solidified BTHC 

was dissolved in acetone or ethyl acetate affording single crystals on standing 

at room temperature.  
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DSC (Linseis, 5 K min-1): exo (188.3°C, onset / 193.6°C, max / 201.7°C, offset); 

Isothermal long term stability (RADEX, 48h, 140°C): no decomposition; 

impact sensitivity: greater 100 J, friction sensitivity: greater 360 N. 

 

BTHC / acetone 1:1  

 

DSC (Linseis, 5 K min-1): BTHC acetone (1:1): endo (87.1°C, onset / 89.8°C, 

min / 92.6°C, offset), exo (185.4°C, onset / 193.7°C, max / 206.4°C, offset);  1H 

NMR ([D6]acetone) δ: 5.79 (2H, s, -CH2-); 13C NMR ([D6]acetone) δ: 66.2 (s, -

CH2-), 128.7 (bs, -C(NO2)3), 158.2 (s, -O2C-); MS (DEI+, acetone): 446 [m, 

7.4%], 400 [m - NO2, 0.6%], 266 [m – O-CH2-C(NO2)3, 2.5%], 46 [NO2, 62.5%], 
30 [NO, 100%]; Details of the single crystal X-ray diffraction experiment are 

listed in the appendix (Chapter 4). 

 

BTHC / ethyl acetate 1:1 

 

DSC (Linseis, 5 K min-1): BTHC ethyl acetate (1:1): endo (51.5°C, onset / 

55.7°C, min / 59.2°C, offset), exo (188.6°C, onset / 193.6°C, max / 207.3°C, 

offset);  1H NMR ([D3]chloroform) δ: 5.46 (2H, s, -CH2-), 7.77 (2H, s, -NH-); 
13C NMR ([D3]chloroform) δ: 62.0 (s, -CH2-), 122.7 (bs, -C(NO2)3), 153.4 (s, -

O2C-); 15N NMR ([D3]chloroform) δ (nitromethane):  -35.6 (s, -NO2), 284.0 (s, -

NH-); IR (KBr disk) v~ /cm-1: 3416 (bs, w), 3020 (w), 2973 (w), 2900 (w), 1789 

(m), 1762 (m), 1693 (m), 1603 (vs), 1529 (w), 1497 (w), 1439 (w), 1384 (w), 

1302 (s), 1273 (m), 1207 (s), 1116 (m), 1093 (m), 1047 (w), 879 (w), 856 (w), 805 

(m), 785 (m), 753 (w), 647 (bs, w), 614 (w), 542 (w), 467 (w); Details of the 

single crystal X-ray diffraction experiment are listed in the appendix (Chapter 

4). 

 
Figure 2.116. a+b) crude reaction product c) column chromatography d) pure, glass-like 
prodcut e+f) co-crystallization with ethyl acetate to yield a white solid.  
 

a) b) c) d) e) f) 
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2.3 Precursor Molecules for the Synthesis of Energetic 

Materials 
 

2.3.1 Guanidine 
 

Introduction 

 

Guanidinium nitroformate was of interest to us not only because of its 

potentially promising energetic properties but also because the covalent form 

can formally be considered as saturated analogue to 1,1-dinitro-2,2-diamino-

ethene (303-304) (FOX-7), one of the most promising novel novel and insensitive 

energetic materials. (305) Of interest, 1,1,1-triamino-2,2,2-trinitroethane can be 

described as a hexasubstituted push-pull ethane where the electron distribution 

is influenced by or even switched between two extreme cases due to solvent 

molecules or change of physical state resulting in ionic (guanidinium 

nitroformate, GNF) and covalent (triaminotrinitroethane, TTE) bond-strech 

isomers (Fig. 2.117). (306-308)  

 
Figure 2.117. Bond stretch isomerism can formally occur in the substance composed of 
guanidine and trinitromethyl giving rise to 1,1,1-triamino-2,2,2-trinitroethane or its ionic 
form, guanidinium trinitromethanide. 
 

Hence, we were interested in investigating whether guanidinium nitroformate 

can exist in ionic or respectively and its corresponding covalent form (1,1,1-

triamino-2,2,2-trinitroethane, TTE). Our experimental data on GNFH (see 

Chapter 2.1.1) show that the hydrated guanidinium nitroformate exists in the 

ionic form both in solution and the solid state. However, the presence of water 

undoubtedly affects the stability of the salt as can be depicted by comparison of 

the sensitivity and thermal stability data of GNFH and the corresponding 

homologous guanidinium nitroformate salts where GNFH has been found to 

show the lowest sensitivity as well as highest thermal stability data. However, 

the possibility of a covalently-bonded isomer does occur either in an anhydrous 

state or other solvents not stabilizing the ionic form.  
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Synthesis 

Guanidine was prepared from the acid base reaction between guanidinium 

chloride and sodium methanolate in dry methanole (Fig. 2.118). 

 

 
 

Figure 2.118. Synthesis of guanidine from guanidinium chloride and sodium methanolate. 
 

In order to synthesise the anhydrous compound, we tested another approach 

utilizing the reaction between the free base guanidine and trinitromethane 

(Fig. 2.119).  

 

Figure 2.119. Synthesis of anhydrous guanidinium nitroformate from guanidine and 
trinitromethane. 
 

A stoichiometric amount of dry trinitromethane was subsequently added 

affording a yellow solution. As mentioned earlier, the yellow colour is 

characteristic for the nitroformate anion indicating that the compound formed 

in methanolic solution was ionic. By comparison, the Raman spectrum of the 

yellow solid obtained after removal of methanol was shown to be identical with 

guanidinium nitroformate hydrate except for the signals of water suggesting 

that anhydrous guanidinium nitroformate exists in its ionic form. Furthermore, 

we were able to proof that the educt used was indeed the free base guanidine as 

evidenced by the successful growth of single crystals and its subsequent 

structure determination. Only very recently, density functional theory 

calculations of both the ionic guanidinium nitroformate as well as the covalent 

form 1,1,1-triamino-2,2,2-trinitroethane have been reported. According to 

these calculations, guanidinium nitroformate has been found to be 85 kJ mol-1 

more stable than 1,1,1-triamino-2,2,2-trinitromethane. (309)  
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Crystal Structure Analysis 

Due to the high basicity, guanidine (aminoformamidine) was considered to be 

the strongest neutral organic base (pKa = 13.6) (310) until proton sponges (311-312) 

were synthesised. The question of its molecular structure and the reason for its 

exceptional properties inspired several controversial theoretical works (313-322) 

since an experimentally determined structure for guanidine was not available. 

To our knowledge, only a few neutral derivatives of guanidines containing 

sterically demanding organic substituents have been structurally characterized 

using single-crystal X-ray diffraction. Rare examples describe 1,1,3,3-

tetrasubstituted (323-324)  as well as 1,2,3-trisubstituted (325) guanidine derivatives 

acting as ligands in transition metal complexes. Here we report crystal 

structures containing the unsubstituted free base guanidine and 2-amino-4,6-

dimethyl-1,3,5-triazine. Single crystals consisting of guanidine and 2-amino-

4,6-dimethyl-1,3,5-triazine were obtained when acetonitrile was allowed to 

slowly diffuse into a methanolic solution of guanidine. The presence of 2-

amino-4,6-dimethyl-1,3,5-triazine in the crystal structures of the 1:1 co-crystal 

as well as the 2:1 co-crystal corresponds to and confirms the formation of 

substituted 2-amino-triazines from aliphatic nitriles and guanidine in the 

presence of alkoholates. (326)  

 

Figure 2.120. Ortep representation of the structure of 2-amino-4,6-dimethyl-1,3,5-triazine · 
guanidine. The thermal ellipsoids are shown at the 50 % probability level. 
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Figure 2.121. Ortep representation of the structure of 2-amino-4,6-dimethyl-1,3,5-triazine · 
2 guanidine. The thermal ellipsoids are shown at the 50 % probability level. 
 
A comparison of 2-amino-4,6-dimethyl-1,3,5-triazine in the crystal structures 

(Figs. 2.120, 2.121) with the earlier reported crystal structure of the pure 

compound (327) reveals the same planar triazine ring and a similar packing with 

the formation of dimers due to hydrogen bonding between the two terminal 

amino groups and two ring nitrogen atoms (Figs. 2.122, 2.123).  

 

Figure 2.122. Representation of the unit cell of guanidine and 2-amino-4,6-dimethyl-1,3,5-
triazine (1:1) along the b axis. Dashed lines indicate hydrogen bonding. 
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Figure 2.123. Representation of the unit cell of guanidine and 2-amino-4,6-dimethyl-1,3,5-
triazine (2:1)  along the a axis. Dashed lines indicate hydrogen bonding. 

The N-H…N distance reported for the pure substance (3.070(4) Å) is in good 

agreement with our finding (2.978 Å (1:1 co-crystal) / 3.006 Å (2:1 co-crystal)). 

The C-NH2 and C-NH hydrogen atoms of the guanidine molecules were 

directly located in the crystallographic study using difference Fourier maps. 

The attachment to the imino nitrogen atoms of the guanidine is further 

confirmed by the observation that the C-NH bonds between the central 

guanidine carbon atom and the attached nitrogen atoms [range 1.295(2) Å – 

1.304(2) Å] are significantly shorter than the remaining C-NH2 bonds to these 

carbons [range 1.350(3) Å – 1.366(2) Å]. A summary of selected bond lengths 

and angles is given in Table 2.19.  
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Table 2.19. Selected bond lengths and angles of the guanidine molecule. 

structure 1:1 (G : ADMT) 2:1 (G : ADMT) 

guanidine #1 #2 #3 

d / Å C1-N1        1.295(2) C1-N1        1.304 (2) C7-N8         1.300 (3) 

 C1-N2        1.366 (2) C1-N2        1.350 (3) C7-N10        1.361 (3) 

 C1-N3        1.355 (2) C1-N3        1.359 (3) C7-N9         1.359 (3) 

angle / ° N1-C1-N2  124 (0) N1-C1-N3  125 (0) N8-C7-N9   125 (0) 

 N1-C1-N3  120 (0) N1-C1-N2  120 (0) N8-C7-N10  120 (0) 

 N2-C1-N3  116 (0) N2-C1-N3  115 (0) N10-C7-N9  115 (0) 

 C1-N1-H1  110 (1) C1-N1-H1  109 (1) C7-N8-H8   110 (1) 

† / ° N2             356 (4) N2             359 (5) N10             348 (5) 

 N3             351 (3) N3             350 (6) N9               353 (5) 
† Degree of planarity given as the angle sum around the nitrogen atom of the 
corresponding amino group ΣCNH,CNH,HNH. 

The central carbon atom of the guanidine molecule in structures of the 1:1 and 

2:1 co-crystals of guanidine and  2-amino-4,6-dimethyl-1,3,5-triazine forms one 

plane with the three surrounding nitrogen atoms (ΣNCN = 360 °). In contrast, 

the two amino groups of guanidine show a pyramidal geometry confirming a 

theoretical study published by Frenking et al. (328) where a nonplanar geometry 

of the guanidine molecule with strongly pyramidal NH2 groups was predicted 

at the MP2 level of theory using a 6-31G(d) basis set. In addition, our 

experimentally determined bond lengths agree well with the calculated ones of 

the theoretical study where values of 1.284 Å, 1.396 Å and 1.400 Å (MP2/6-

31G(d)) were proposed. The deviations of the experimentally obtained values 

for the structure of guanidine in the solid state compared to the calculated 

equilibrium gas phase data are surprisingly small. Although the environment of 

the guanidine molecules in the two crystal structures is different and hydrogen 

bonding between guanidine itself as well as guanidine and 2-amino-4,6-

dimethyl-1,3,5-triazine does occur (Table 2.20), a comparison of the three 

observed guanidine molecules shows that the interatomic distances and angles 

(Table 2.19) are in excellent agreement and are not noticeably influenced by 

packing effects of the crystal. The obtained geometrical data of the free base 

guanidine thus provide reliable experimental evidence for the nature of the 

molecular structure of guanidine for the first time. 
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Table 2.20. Hydrogen bonding in the crystal structures of guanidine (G) and 2-amino-4,6-
dimethyl-1,3,5-triazine (ADMT) (1:1 and 2:1).  

structure D-H..A d (D-H) / Å d (H..A) / Å d (D..A) / Å < DHA 

1:1 (G:ADMT) N3-H3B..N5 0.908(15)     2.202(16)     3.1100(16) 178.7(13) 

 N2-H2A..N6i 0.927(18)     2.177(19)     3.1021(17) 175.7(15) 

 N7-H7A..N4ii 0.856(15) 2.122(16) 2.9777(17) 177.6(12) 

 N7-H7B..N1 0.915(15) 2.018(16) 2.9273(16) 172.50(13) 

                             

2:1 (G:ADMT) N2-H2A..N4iii 0.89(3)       2.17(3)       3.052(3)      170(2)  

 N3-H3A..N8iv 0.88(3)       2.17(3)       3.041(3)      171(2) 

 N9-H9A..N8v 0.93(2)       2.11(3)       3.030(3)      170.2(18)  

 N7-H7A..N1iii 0.88(2)       2.05(2)       2.934(3)      178(2) 

 N7-H7B..N6vi 0.93(2)       2.08(2)       3.006(2)      176.7(19) 
Notes. Symmetry codes: (i) x+1, y, z, (ii) –x+1, -y, -z, (iii) –x+2, -y, -z, (iv) x+1, y, z, (v) x, -
y+1/2, z+1/2, (vi) –x+3, -y, -z+1. 
 

Experimental 

 
 
Guanidine was prepared by adding a THF solution of guanidinium chloride 

(16.7 mmol, 24 mL) to a THF solution of sodium methanolate (16.8 mmol, 24 

mL) using standard Schlenk techniques. Acetonitrile was allowed to slowly 

diffuse into the solution until crystals suitable for X-ray diffraction formed at 

4°C (guanidine and 2-amino-4,6-dimethyl-1,3,5-triazine, 1:1) or 25°C 

(guanidine and 2-amino-4,6-dimethyl-1,3,5-triazine, 2:1). Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 

Anhydrous GNF was obtained for the first time by reacting the free 

guanidinium base with nitroform in dry methanol. A yellow solution was 

obtained indicating the presence of the trinitromethanide anion. After 

evaporation of the methanol a yellow solid was obtained. The Raman spectrum 

of this substance closely resembles that of the monohydrate of GNF. Hence, 

the anhydrous GNF obtained exist as ionic species rather than the covalent 

isomer. 

Raman (r.t.): ν = 2987(13), 1528(15), 1469(14), 1388(76), 1298(46), 1244(44), 

1156(54), 1014(56), 867(100), 790(18), 729(14), 533(25), 473(30), 442(20), 

253(24), 164(25). 
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Silylated 1,5-Diamino-1H-tetrazole derivatives 

 

Introduction 
 

Tetrazoles have manifold and highly diverse applications in chemistry. As far 

as energetic materials are concerned, they represent important building blocks 

for the synthesis of novel energetic materials. Of the many excellent reviews 

about tetrazoles, the work of Ostrovskii et al. (329) as well as the work of Benson 

et al. (330) is particularly noteworthy. Recent results and developments obtained 

in our laboratories at LMU Munich are documented in the dissertations of 

Hammerl (331), Weigand (332) and Stierstorfer (333) and references cited therein. 

As mentioned earlier, high heat of formation is a critical parameter for the 

performance properties of a high explosive and most of the energy derived in 

modern HEDM stems not only from oxidation of the carbon backbone as in 

traditional energetic materials but also from ring or cage strain and from their 

very high positive heat of formation. Tetrazoles are the most promising 

heterocycles amongst five-membered rings with four nitrogen atoms in the 

ring displaying high heats of formation due to an increasing positive trend in 

heat of formation with increasing number of nitrogen. Among the advantages 

of tetrazole based explosive and propellants we mention the large amount of 

gaseous decomposition products preferentially containing environmentally- as 

well as (eco)-toxicologically benign dinitrogen, a significant advantage in order 

to meet one of the major goals of contemporary research on next generation 

energetic materials.  We were interested in synthesizing derivatives of 1,5-

diamino-1H-tetrazole (DAT) that would give access to novel synthetic routes 

for the preparation of functionalized derivatives of this high nitrogen 

containing (84.0 %) compound. Two examples of such derivatives have already 

been mentioned in Chapter 2.2.1, N1-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-

diamine (TTD) as well as N1,N5-bis-(2,2,2-trinitroethyl)-1H-tetrazole-1,5-

diamine (BTTD) and were shown to have superior performance properties 

approaching or even exceeding those of RDX. However, they were lacking 

sufficient thermal stability and thus, an increase in this property would be 

highly desirable. We have shown that it is possible to keep the advantages of 

the trinitroethyl group and improve the thermal stability of the class of N-
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trinitroethyl substituted compounds by oxygen balance neutral introduction of 

carbon dioxide, manifested in terms of the carbamate functionality. (269) 

However, due to solubility properties of DAT, reactions were restricted to 

highly polar solvents like DMF, methanol or hot water precluding the 

possibility to perform reactions in common organic solvents. To overcome this 

drawback we decided to reduce the polarity of the DAT molecule by replacing 

the amino hydrogen atoms with silyl groups. In addition, this approach was 

chosen due to the benefit of higher reactivity of the functionalized amino 

groups towards electrophiles. The stabilization of the tetrazole ring system 

towards ring opening, commonly observed in the case of electron poor 

tetrazole derivatives, through the use of the electron donating properties of the 

trimethylsilyl substituens (334) was another advantage of this strategy. 

Interesting target molecules that would be readily at hand given that the 

corresponding trimethylsilyl protected DAT derivatives were available are 

shown in Figure 2.124. 

 
Figure 2.124. Silylated target derivatives of DAT and examples of possible subsequent 
functionalization. 
 

The possible target molecules as shown in Figure 2.124 would be expected to 

display performance properties comparable to TTD and BTTD while at the 

same time having higher thermal stabilities through the aid of the carbamate 

junction between the trinitroethyl- and the tetrazol moiety. Here we present 

the synthesis and characterization of the previously unknown silylated 
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derivatives of 1,5-diamino-1H-tetrazole including NMR- and vibrational 

spectroscopy, mass spectrometry and single crystal X-ray diffractometry. 

Structural optimizations of the isolated molecules in the gas phase and 

frequency analyses were also performed as a preliminary step for the 

assignment of vibrational frequencies. 

Synthesis 

 

Different methods have been reported for the silylation of amines in the 

literature. (335-341) Due to the fact, that DAT bears two amino groups, each 

exhibiting different chemical behaviour, selective monosilylation of each group 

is not a straightforward reaction. According to the literature, the following 

three silylation strategies are frequently employed: 
 

1. Direct silylation using trimethylsilyl chloride (TMSCl) in presence of 

a base. (342-343) 

 

2. Deprotonation of the amino group using n-buthyllithium and 

subsequent reaction with TMSCl. (344) 

 

3. Silylation using hexamethyldisilazane (HMDS) in presence of Lewis 

acids. (345-346)  

 

Among the reaction conditions applied, direct reaction of DAT with TMSCl 

using THF as solvent and applying reflux conditions proofed to be succesfull 

and yielded the doubly silylated product N1,N5-bis-(trimethylsilyl)-1,5-

diamino-1H-tetrazole (1,5-BTMSD, Fig. 2.125). 

 

 
Figure 2.125. Synthesis of N1,N5-bis-(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,5-
BTMSD) from the reaction between DAT and TMSCL. 
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However, due to difficulties during the work up and the low purity of the 

product obtained other reaction pathways were tested. Formally, selective 

deprotonation using n-butyllithium and subsequent reaction with 

trimethylsiylchloride with variation of the temperature and the quantity of base 

used was applied to selectively silylate the two different amino groups but 

proved to lead to similar results compared to the first method mentioned 

above. Instead, the most successful strategy for the preparation of 1,5-BTMSD 

proved to be the reaction using HMDS (Fig. 2.126). 

 

 
 
Scheme 2.126. Synthesis of N1,N5-bis-(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,5-
BTMSD) from the reaction between DAT and HMDS. 
 
Silyl transfer reactions using HMDS are frequently used, e.g. in carbohydrate 

chemistry for alcohol protection. It has been suggested that the most probable 

mechanism of these reactions includes a concerted transfer of formal Me3Si+ 

and H+ fragment between the non-silylated amino group and HMDS with the 

thermodynamic driving force of this reaction being the evolution of gaseous 

ammonia and while at the same time shifting the equilibrium in favour of the 

products. (347) We observed that silylation using HMDS always ended up at the 

stage of monosilylation of each amino group suggesting that the acidity of the 

remaining silylamino-proton to be not high enough for a second silylation step. 

Thus, this strategy offers the advantage of simple reaction control. The 

reaction is accompanied by release of ammonia (as indicated using indicator 

paper at the gas outlet) and can simply be monitored, indicated both by the 

stop of  ammonia release and a clear solution having formed since unreacted 

DAT is only very slightly soluble in the THF solvent. We observed that 1,5 - 

BTMSD is quite sensitive towards air and moisture. On contact with air, the 

solution gets turbid and crystallization is hindered.  
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We found that reaction between 1,5-BTMSD and acetone at room temperature 

readily results in the formation of N1-(propan-2-ylidene)1,5-diamino-1H-

tetrazole (1-PYD). 

 

 
 
Figure 2.127. Synthesis of N1-(propan-2-ylidene)-1,5-diamino-1H-tetrazole, (1-PYD) 
 

However, the trimetylsilylamino group at the N5-position does not react to the 

corresponding Schiff base, but is converted into a –NH2 group, possibly due to 

the presence of traces of water in the acetone.  

 

In order to increase the selectivity of the silylation reaction and achieve 

monosilylation of only one amino group we chose to apply kinetic control (Fig. 

2.128). Since heating proved to be necessary for the silylation reaction to take 

place in case HMDS was used as TMS-transfer reagent, other silylation agents 

were tested. The use of TMSCl in presence of triethylamine at 0 ºC proved to 

be successful.  

 

 
Figure 2.128. Synthesis of N5-(trimethylsilyl)-1,5-diamino-1H-tetrazole (5-TMSD) from 
the reaction between DAT and TMSCL. 
 

According to the general assumption that higher nucleophilicity should lead to 

the kinetic product, the hydrazine-type amino group was expected to display a 

higher reactivity compared to the conjugated sp2-type amino group. (348) 

Instead, the silylated amino group was found to be not the hydrazinic-type 

nitrogen, but the sp2-type amino group conjugated to the aromatic ring.  

 

Whereas all the silylated products mentioned so far already showed the desired 

solubility characteristics described in the introduction, N1,N1,N5-
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tris(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1,5-TTMSD) was of further 

interest to us because of the possibility of double functionalization of a single 

nitrogen atom and additionally should display increased stability towards air, 

moisture and alcohols compared to the monosilylated amines. (349) Several 

strategies have been reported for the preparation of doubly silylated amines. 

Deprotonation using n-butyl lithium and subsequent reaction with 

trimethylsilylchloride proved to be succesfull only in a few cases. (350-352) 

Another method utilizes the transfer of a trimethylsilyl group to an amide, fo r 

example the reaction between N-methyl-N-trimethylsilylacetamide and 

diethyltrimethylsilylamine. (353-354) Taking advantage of the very good leaving 

group properties of the triflate group, we found that the reaction between 

trimethylsilyl triflate and the monosilylamine of 1,5-BTMSD in the presence of 

a base (Fig. 2.129) worked best in our case after having tested several other 

methods.  
 

 
Figure 2.129. Synthesis of N1,N1,N5-tris(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1,5-
TTMSD) from the reaction between 1,5-BTMSD and TMSOTF. 

 

It was essential to add the base (dry triethylamine) after the addition of the 

trimethylsilyl triflate in order to avoid silylation of triethylamine. Further 

silylation yielding N1,N1,N5,N5-tetrakis(trimethylsilyl)-1,5-diamino-1H-

tetrazole did not occur using this strategy. 
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Crystal Structure Analysis 

Though silylated derivatives of heterocycles are generally important reagents 

in chemical synthesis, information about the structural chemistry of 

silyltetrazoles is scarce. Table 2.21 summarizes selected geometrical data 

obtained from the determination of the crystal structures of N5-trimethylsilyl-

1,5-diamino-1H-tetrazole (5-TMSD), N1,N5-bis-(trimethylsilyl)-1,5-diamino-

1H-tetrazole (1,5-BTMSD), N1,N1-bis-(trimethylsilyl)-1,5-diamino-1H-

tetrazole (1,1-BTMSD) and N1,N1,N5-tris-(trimethylsilyl)-1,5-diamino-1H-

tetrazole (1,1,5-TTMSD) and a comparison to 1,5-diamino-1H-tetrazole 

(DAT) as well as  5-(Trimethylsilyl)amino-1H-tetrazole (5-TAT). 
 
Table 2.21. Selected geometrical data of the series of silylated 1,5-diamino-1H-tetrazol 
derivatives and comparison to DAT as well as 5-TAT. 

d / Å 5-TAT a) DAT b) 5-TMSD 1,5-BTMSD 1,1-BTMSD 1,1,5-TTMSD 

C1-N1 - 1.345(1) 1.41(3) 1.3460(18) 1.346(7) 1.354(2) 

N1-N2 - 1.363(1) 1.35(2) 1.3753(1) 1.366(6) 1.371(2) 

N2-N3 - 1.279(1) 1.272(19) 1.2924(18) 1.293(6) 1.292(2) 

N3-N4 - 1.367(1) 1.37(2) 1.3647(18) 1.377(7) 1.372(2) 

N4-C1 - 1.327(1) 1.35(4) 1.3379(19) 1.332(7) 1.332(2) 

C1-N5 1.346(4) 1.334(1) 1.29(3) 1.3495(19) 1.331(8) 1.351(3) 

N1-N6 - 1.383(1) 1.36(3) 1.3836(17) 1.392(6) 1.403(2) 

N5-Si 1.760(3) - 1.75(2) 1.7631(13) - 1.7456(19) 

N6-Si1 - - - 1.7600(13) 1.780(5) 1.7750(17) 

N6-Si2 - - - - 1.766(5) 1.7745(17) 
Notes. 5-TAT = 5-(Trimethylsilyl)amino-1H-tetrazole. a) ref. (355) b) ref. (356) 
 

The comparison of the data of the compounds listed in Table 2.21 shows that 

the tetrazole ring is planar within the limits of error in all the structures. The 

bond length values of the endocyclic bonds are consistent with those observed 

previously for 1-mono- and 1,5-disubstituted tetrazoles. The exocyclic C1-N5 

bonds of the silylated derivatives display no significant deviations compared to 

the value of DAT and the 5-amino groups are coplanar to the tetrazole plane 

indicating a conjugation of the π system and the tetrazole ring. Similar to the 

N5 nitrogen atom, the N6 nitrogen atom also lies in the tetrazole ring plane. 

However, the lone pair of the N6 nitrogen atom is not conjugated with the π 
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system of the tetrazole ring indicated by the positions of the substituents 

bonded to this atom being located on different sides of the tetrazol ring plane. 

The N5-Si distances show no significant deviation from the typical value of a 

nitrogen silicon single bond with values in the range of 1.75 - 1.76 Å. In 

contrast, the N6-Si distances in the compounds carrying two trimethylsilyl 

groups at the N6 nitrogen atom are longer (1.78 Å). The involvement of the p-

orbital of the N6 nitrogen atom in terms of p → σ* (Si-C) hyperconjugation 

might serve as a possible rationale. This interpretation is supported by the 

planar geometry of the N6 nitrogen atom in contrast to the commonly observed 

sp3-type hybridization of this amino group. The extended structures of the 

silylated derivatives of DAT display interesting structural features and are 

subject to a more detailed discussion in the following sections.   
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N5-Trimethylsilyl-1,5-diamino-1H-tetrazole (5-TMSD)  

 

N5-trimethylsilyl-1,5-diamino-1H-tetrazole (5-TMSD) crystallizes in the 

monoclinic space group P21/c (no. 14) with four molecules in the unit cell. The 

asymmetric unit is comprised of one molecule (Fig. 2.130).  
 

 
 
Figure 2.130. ORTEP representation of the molecular structure of N5-trimethylsilyl-1,5-
diamino-1H-tetrazole (5-TMSD) in the crystalline state. Displacement ellipsoids are shown 
at the 50 % probability level. Selected bond lengths [Å] and angles [°]: C1-N1 1.41(3), N1-N2 
1.35(2), N2-N3 1.272(19), N3-N4 1.37(2), N4-C1 1.35(4), N1-N6 1.36(3), C1-N5 1.29(3), N5-Si1 
1.75(2), Si1-C2 1.838(15), Si1-C3 1.868(15), Si1-C4 1.819(16), C1-N5-Si1 122(2), N1-C1-N5-Si1 
175.4(13), N4-C1-N5-Si1 5(4). 
 

The single crystals were of rather small size giving rise to only a weak 

diffraction pattern precluding the possibility of an independent refinement of 

the hydrogen atoms and a detailed discussion of the intermolecular contacts. Of 

interest, we mention that due to the overall bond precision of this structure 

being lower by one digit compared to the other silylated structures mentioned 

in this chapter, a comparision of the bond length and angles is only possible 

within the error margins. 
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N1,N5-Bis-(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,5-BTMSD) 
 

 

1,5-BTMSD crystallizes in the monoclinic space group P 21/n. An Ortep 

representatin of the asymetric unit of 1,5-BTMSD in the solid state is shown in 

Fig. 2.131.  

 

 
 
Figure 2.131. ORTEP representation of the molecular structure of N1,N5-bis-
(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,5-BTMSD) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.3460(18), N1-N2 1.3753(17), N2-N3 1.2924(18), N3-N4 1.3647(18), N4-
C1 1.3379(19), C1-N5 1.3495(19), N5-Si2 1.7631(13), Si2-C5 1.8499(18), Si2-C6 1.8564(16), Si2-
C7 1.8576(17), N1-N6 1.3836(17), N6-Si1 1.7600(13), Si1-C2 1.8512(18), Si1-C3 1.8624(18), Si1-
C4 1.8513(18), C1-N5-Si2 122.54(11), N1-N6-Si1 119.92(9), N1-C1-N5-Si2 177.15(10), N4-C1-
N5-Si2 -4.15(19), C1-N1-N6-Si1 106.84(13), N2-N1-N6-Si1 -77.20(15). 
 

The structure of the two amino groups of 1,5-BTMSD, each substituted with 

one trimethylsilyl group, is comparable to the geometry of the two amino 

groups of 1,5-diamino-1H-tetrazole (360): one amino group (N6) displays a 

trigonal pyramidal coordination whereas the other amino group (N5) shows a 

planar, sp2-type coordination sphere. Accordingly, the trimethylsilyl group at 

the N6 nitrogen atom is almost orthogonal to the plane of the aromatic ring 

(torsion angle C1-N1-N6-Si1 = -106.84(13)°), while the other one is nearly 

coplanar (torsion angle N1-C1-N5-Si2 = 177.15(10)°) indicating that 

conjugation of the electron pair at the N5 nitrogen atom with the  π-system of 

the tetrazol ring. The extended structural motif in the crystal is comprised of 
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infinite ribbons, each consisting of two antiparallel planar chains of 1,5-

BTMSD molecules. The chains are oriented parallel to the crystallographic b 

axis and interconnected by hydrogen bonding (Table 2.22). 

 
Table 2.22. Intermolecular hydrogen bonding of N1,N5-bis-(trimethylsilyl)-1,5-diamino-
1H-tetrazole (1,5-BTMSD).  

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅ A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 
N6−H6⋅⋅⋅N2(i) 0.793 (17) 2.600 (17) 3.2317 (18) 137.8 (16) 
N6−H6⋅⋅⋅ N3(i) 0.793 (17) 2.600 (17) 3.3485 (19) 158.1 (16) 
N5−H5⋅⋅⋅N3(ii) 0.767 (19) 2.69 (2) 3.4353 (19) 164.7 (17) 

Notes. Symmetry code: (i) −x, 2−y, 1−z; (ii) x, y−1, z. 
 

Every chain is planar and contains the aromatic rings of the 1,5-BTMSD 

molecules that gave rise to it. Inside every chain, the molecules are held 

together via intermolecular hydrogen bonding (N5−H5⋅⋅⋅N3, Table 2.22). The 

chains again are interconnected through intermolecular hydrogen bonding 

(N6−H6⋅⋅⋅N2, N6−H6⋅⋅⋅N3, Table 2.22) yielding two dimensional bands 

consisting of two antiparallel oriented chains of 1,5-BTMSD molecules (Figs. 

2.132, 2.133). 

 
Figure 2.132. Intermolecular hydrogen bonding motiv interconnectiong two 1,5-BTMSD 
molecules to a pair of dimers.  
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Figure 2.133. View along the b axis of the crystal structure of 1,5-BTMSD. Hydrogen 
bonding is indicated by yellow dashed lines and is shown for only one pair of 1,5-BTMSD 
molecules.  
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N1-(Propan-2-ylidene)-1,5-diamino-1H-tetrazole (1-PYD) 

 

N1-(Propan-2-ylidene)-1,5-diamino-1H-tetrazole (1-PYD) crystallizes in the 

monoclinic space group P21/c (no. 14) with four molecules in the unit cell. The 

asymmetric unit is comprised of one molecule. The molecular structure of the 

asymmetric unit is shown in Figure 2.134. 

 

 
 

 
Figure 2.134. ORTEP representation of the molecular structure of N1-(propan-2-ylidene)-
1,5-diamino-1H-tetrazole (1-PYD) in the crystalline state. Displacement ellipsoids are 
shown at the 50 % probability level. Selected bond lengths [Å] and angles [°]: C1-N1 
1.3561(11), N1-N2 1.3799(9), N2-N3 1.2889(10), N3-N4 1.3674(10), N4-C1 1.3309(11), C1-N5 
1.3289(11), N1-N6 1.3854(9), N6-C3 1.2866(11), C3-C2 1.4970(13), C3-C4 1.4928(12), N1-N6-
C3 120.84(7), C1-N1-N6-C3 176.40(8), N2-N1-N6-C3 -2.07(13). 
 

 

The propan-2-ylidene substitutent is oriented coplanar to the rest of the 

molecule. In fact, all the non-hydrogen atoms of this molecule rest in one plane 

(torsion angle C1-N1-N6-C3 = 176.40(8)°). This finding, as well as the angle of 

120.84(7)° indicates a sp2-type hybridization of the N6 nitrogen atom. 

Intermolecular hydrogen bonding is present in the crystal giving rise to a pair 

of dimers of 1-PYD molecules (Table 2.23, Fig. 2.135).  
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Figure 2.135. Pair of dimers of 1-PYD molecules. Hydrogen bonding is indicated by yellow 
dashed lines. (N5−H5A⋅⋅⋅N4(i) and N5(i)−H5A(i)⋅⋅⋅N4; (i) 1−x, 1−y, −z).  
 
 
Table 2.23. Intermolecular hydrogen bonding of N1-(propan-2-ylidene)-1,5-diamino-1H-
tetrazole (1-PYD). 

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅ A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 
N5−H5A⋅⋅⋅N4(i) 0.850(13)   2.150(12) 2.9817(11)   165.9(11) 
N5−H5B⋅⋅⋅ N3(ii) 0.891(13)   2.195(13) 3.0572(11)   162.7(10) 

Notes. Symmetry code: (i) 1−x, 1−y, −z; (ii) x, 1/2-y, −1/2+z. 
 

 

Additional hydrogen bonding (N5,amino−H5B⋅⋅⋅N3,Ring; Table 2.23) is present 

interconnecting a pair of dimers to surrounding pairs resulting in three 

dimensional hydrogen bonded network (Figs. 2.136, 2.137). 
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Figure 2.136. Representation of the three-dimensional hydrogen bonding network of 1-PYD. 

 
Figure 2.137. Unit cell representations of 1-PYD, viewed along the crystallographic b axis. 
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N1,N1-Bis(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1-BTMSD)  
 

1,1-BTMSD crystallizes in the monoclinic space group P21/c (no. 14) with four 

molecules in the unit cell. The asymmetric unit is comprised of one molecule. 

The molecular structure of the asymmetric unit is shown in Figure 2.138. 

 

 
Figure 2.138. ORTEP representation of the molecular structure of N1,N1-
bis(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1-BTMSD) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.346(7), N1-N2 1.366(6), N2-N3 1.293(6), N3-N4 1.377(7), N4-C1 
1.332(7), C1-N5 1.331(8), N1-N6 1.392(6), N6-Si1 1.780(5), Si1-C2 1.854(6), Si1-C3 1.851(7), 
Si1-C4 1.847(6), N6-Si2 1.766(5), Si2-C5 1.849(7), Si2-C6 1.853(7), Si2-C7 1.861(6), N1-N6-Si1 
114.3(4), N1-N6-Si2 113.4(4), C1-N1-N6-Si1 -92.4(6), N2-N1-N6-Si1 75.9(6), C1-N1-N6-Si2 
106.3(6), N2-N1-N6-Si2 -85.5(6). 
 

The compound exhibits an interesting pattern of intermolecular hydrogen 

bonding (Table 2.24, Figs. 2.139, 2.140). 

 
Table 2.24. Intermolecular hydrogen bonding of N1,N1-bis(trimethylsilyl)-1,5-diamino-1H-
tetrazole (1,1-BTMSD). 

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅ A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N5−H5A⋅⋅⋅N4(i) 0.91(7) 2.11(7) 3.004(9) 170(7) 

N5−H5B⋅⋅⋅N3(ii) 0.80(6) 2.39(6) 3.107(9) 151(5) 
Notes. Symmetry code: (i) 1−x, 1−y, −z; 1+x, y z. 
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According to graph set analysis, the predominant structural hydrogen bonding 

motif can be described at the unitary level as antidromic N1= C11 (5) R22(4) 

motifs or at the secondary level as ring motiv: N2 = R44(10). 

 
Figure 2.139. Unit cell representation of two adjacent cells of 1,1,- BTMSD, viewed along 
the a axis. The hydrogen bonding pattern shown in Figure X is indicated by yellow dashed 
lines. 

 
Figure 2.140. Unit cell representation of 1,1,-BTMSD, together with a perspective view of 
the intermolecular hydrogen bonding motif (R44(10)). 
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N1,N1,N5-Tris(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1,5-TTMSD)  

 

N1,N1,N5-tris-(trimethylsilyl)-1,5-diamino-1H-tetrazole crystallizes in the 

monoclinic space group P21/c (no. 14) with four molecules in the unit cell. The 

asymmetric unit is comprised of one molecule. The molecular structure of the 

asymmetric unit is shown in Figure 2.141. 

 

 
Figure 2.141. ORTEP representation of the molecular structure of N1,N1,N5-
tris(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1,5-TTMSD) in the crystalline state. 
Displacement ellipsoids are shown at the 50 % probability level. Selected bond lengths [Å] 
and angles [°]: C1-N1 1.354(2), N1-N2 1.371(2), N2-N3 1.292(2), N3-N4 1.372(2), N4-C1 
1.332(2), C1-N5 1.351(3), N5-Si3 1.7456(19), Si3-C8 1.853(2), Si3-C9 1.858(2), Si3-C10 1.846(2), 
N1-N6 1.403(2), N6-Si1 1.7750(17), Si1-C5 1.856(2), Si1-C6 1.867(2), Si1-C7 1.861(2), N6-Si2 
1.7745(17), Si2-C2 1.859(2), Si2-C3 1.861(2), Si2-C4 1.855(2), C1-N5-Si3 126.09(15), N1-N6-Si1 
111.32(12), N1-N6-Si2 111.09(12), N1-C1-N5-Si3 178.43(15), N4-C1-N5-Si3 -2.4(3), C1-N1-N6-
Si1 -97.9(2), N2-N1-N6-Si1 77.63(18), C1-N1-N6-Si2 98.52(19), N2-N1-N6-Si2 -85.96(18). 
 

The two sterically demanding trimethylsilyl groups attached to the N6 

nitrogen atom result in an almost planar geometry in marked contrast to the 

pseudo-tetrahedral geometry commonly observed for this hydrazinic-type 

nitrogen atom. In detail, the angle sum around the N6 nitrogen atom has a 

value of 357° (Si1-N6-Si2: 135 º, Si1-N6-N1 and Si2-N6-N1: 111 º) resulting in a 

deviation of the position of the N6 nitrogen atom from the Si1-Si2-N1 plane of 

0.16 Å.  
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Compared to the structure of 1,5-BTMSD, this compound has only limited 

possibilities for the formation of hydrogen bonds yielding a less dense packing 

and a lower density (1,1,5-TTMSD: 1.0861(1) g cm-3, 1,5-BTMSD: 1.1702(1) g 

cm-3. The hydrogen bonding pattern is presented in Table 2.25 and Figure 

2.142. In fact, there is only a single hydrogen bond between the proton of the 

amino group and the N3 ring nitrogen atom of a neighboring molecule. 

 
Table 2.25. Intermolecular hydrogen bonding of N1,N1,N5-tris-(trimethylsilyl)-1,5-diamino-
1H-tetrazole (1,1,5-TTMSD). 

D−H⋅⋅⋅A D−H / Å H⋅⋅⋅ A / Å D⋅⋅⋅A / Å D−H⋅⋅⋅A / ° 

N5−H5⋅⋅⋅N3(i) 0.74(2) 2.26(2) 2.969(2) 162(2) 
Notes. (i) x, 1/2−y, −1/2+z. 

 
Figure 2.142. Unit cell representation of the structure of 1,1,5-TTMSD, viewed along the a 
axis. Intermolecular hydrogen bonding is indicated by yellow dashed lines. 
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Conclusion 

 

The attempts to synthesise the different singly and multiply silylated 

diaminotetrazoles lead to five new molecules, which have been characterized. 

Next to the acetone adduct 1-PYD, 5-TMSD represents a single silylated 

species whereas 1,1-BTMSD and 1,5-BTMSD represent doubly silylated. 

Furthermore, 1,1,5-TTMSD could be synthesised representing a triple 

silylated species.   

The synthetic conditions, especially towards 1,5-BTMSD were optimized with 

respect of the purity and yield of product. 

The initially promising strategy involving deprotonation using n-BuLi, did not 

lead to good synthetic results due to problems with the workup of the 

products. The preparation of the silylated compounds opens new possibilities 

for the functionalization of diaminotetrazole. In this way the DAT unit could 

be used in terms of a synthon and be reacted with a large spectrum of 

electrophiles as already mentioned in the introduction. Other silylated 

compounds of interest would include 1-TMSD as well as the persilylated 

compound N1,N1,N5,N5-tetrakis(trimethylsilyl)-1,5-diamino-1H-tetrazole. In 

terms of retrosynthesis, double silylation of a nitrogen atom converts it into a 

(d,d) (double donor) centre  giving rise to further interesting reactions like ring 

closures, possibly leading to new fused heterocycles.  

 

Experimental 

 

All reagents were of p.a. purity and were used as received from Aldrich, Fluka 

or Merck (if not stated otherwise). THF and diethyl ether were dried and 

freshly distilled prior to use. 1H, 13C, 15N and 29Si NMR spectra were measured 

on a Jeol Eclipse 270, Jeol EX 400 or Jeol Eclipse 400 instrument. Infrared 

spectra were measured in KBr pellets using a Perkin-Elmer Spectrum One FT-

IR instrument equipped with CsI windows. Raman spectra were measured on a 

Perkin Elmer Spectrum 2000R NIR FT-Raman instrument (Nd:YAG laser, 

1064 nm, laser power 200 – 400 mW). Mass spectra were recorded on a JEOL 
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MStation JMS 700 instrument. Differential scanning calorimetry 

measurements were performed using a Perkin ElmerPyris 6 DSC instrument.  

The reactions were generally performed using standard Schlenk techniques (if 

not stated otherwise). The reaction flasks, stirring bars and condensers were 

heated three times using of a heat gun in vacuo (2.5·10-2 mbar) and vented with 

nitrogen before being loaded with reagents. Solids were added over the neck of 

the flask in a counterflow of dry nitrogen, liquids were added using a syringe.  

Single crystal X-ray diffraction data for all compounds were collected using an 

Xcalibur3 CCD diffractometer from Oxford Diffraction equipped with a 

graphite monochromator affording Mo-Kα radiation (λ = 0.71073 Ǻ). The 

structures were solved with direct methods using the program SHELXS 97 

and refined using the program SHELXL 97.  
 

1,5-Diamino-1H-tetrazole (DAT)  
 

 
 

1,5-Diamino-1H-tetrazole (DAT) was synthesised according to a modified 

literature procedure. (357) DMF (350mL) was filled into a 500 mL two-necked, 

round-bottomed flask equipped with a reflux condenser, a large magnetic 

stirring bar and a glass stopper. Lead(II) oxide (89.2 g, 0.400 mol, 2.0 eq) and 

ammonium chloride (21.3 g, 0.400 mol; 2.0 eq) were added. After the mixture 

had been stirred at room temperature for 30 min., thiosemicarbazide (18.0 g, 

0.2 mol; 1.0 eq) was added and the reaction mixture heated to 90 ºC. 

Subsequently, sodium azide (21.3 g, 0.4 mol, 2.0 eq) was added in small 

portions over a period of 10 minutes. The reaction mixture was stirred at 

105 ºC for 7 h. 

The hot mixture was filtered off using a Büchner funnel with two layers of 

filter paper. The reddish filtrate was evaporated until dryness (Caution!) and 

the solid residue dissolved in hot water (80 mL). The hot solution was filtered 

through Celite and allowed to cool down to room temperature over night. The 

crystalline material obtained was filtered off and washed using ice water. 
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Concentration of the mother liquor to half of its volume yielded additional 

product. The crude product was recrystallized in water. After filtration, the 

purified product was washed three times using both cold ethyl acetate and 

subsequently cold diethyl ether. Colorless crystals (9.91 g; 197.5 mmol; yield 

50.1%) were obtained and later shown to be DAT. 

Caution: Explosive lead(II) azide (Pb(N3)2) is formed as a side product during 

the reaction. The black precipitate obtained after the filtration of the reaction 

mixture should be kept wet and finally be destroyed by putting it into a water 

solution of sodium nitrite (5%) subsequent acidification with hydrochloric acid 

(1M). 

 
1H NMR (400 MHz, [D6]-DMSO, 25 °C): δ = 6.35 (2H; NH2), 6.38 ppm (2H; 

NH2); 13C NMR (100 MHz, [D6]-DMSO, 25°C): δ = 155.00 ppm; 15N NMR 

(40.55 MHz, [D6]-DMSO, 25°C):  δ = −338.8 (N6), −315.2 (N5), −167.8 (N1), 

−97.5 (N4), −20.8 (N2), 5.5 (N3);  IR (KBr disk) v~ /cm-1: 3324 (vs), 3237 (s), 

3154 (s), 1656 (vs), 1578 (m), 1487 (w), 1329 (vs), 1109 (s), 1077 (m), 1002 (m), 

933 (m), 746 (w), 700 (w), 608 (m); Raman (200 mW) v~ /cm-1: 3243 (6), 3244 

(11), 1671 (9), 1623 (6) 1547 (20), 1497 (6), 1329 (15), 1307 (19), 106 (16), 1079 

(12), 792 (100), 698 (15), 323 (26), 231 (13). 
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N1,N5-Bis(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,5-BTMSD)  

a) Hexamethyldisilazane route 

All procedures were carried out using Schlenk techniques. DAT (0.500 g, 5.00 

mmol, 1.0 eq) and ammonium sulfate (0.10 g, 0.75 mmol, 0.15 eq) were placed 

inside a dry Schlenk flask (100 mL), equipped with a reflux condenser and 

bubble counter. Dry THF (15 mL) was added by means of a syringe and the 

suspension was stirred at room temperature. HMDS (2,42 g, 15.0 mmol, 3.0 eq) 

was added slowly to this mixture using a syringe and the temperature was 

raised to 80 ºC. The reaction mixture was stirred at this temperature for 6 h 

until no ammonia evolved any longer at the outlet of the bubble counter 

(indicator paper) and the solids in the reaction mixture were almost completely 

dissolved. The hot reaction mixture was filtered into another Schlenk flask 

using a Schlenk frit (pore size 3) and the solvent removed in vacuo. The 

colorless solid residue was then dissolved in hot and dry THF (30 mL), filtered. 

The volume of the solvent was slowly reduced (in vacuo) affording prismatic 

colorless single crystals that were later shown to be 1,5-BTMSD (0.971 g, 80% 

yield). The product can alternatively be purified by sublimation at 100 ºC in 

static vacuum (2.5·10-2 mbar) and using a cold finger cooled with liquid 

nitrogen. 

 
1H NMR (400 MHz, CDCl3, 25°C): δ = 0.08 (s, 9H, Si(CH3)3), 0.22 (s, 9H, 

Si(CH3)3), 4.25 (s, 1H, NH), 4.82 ppm (s, 1H, NH); 13C NMR (100 MHz, CDCl3, 

25°C): δ = − 1.23 (Si(CH3)3), − 0.83 (Si(CH3)3), 154.53 ppm (tetrazole C); 15N 

NMR (40.55 MHz, CDCl3, 25°C): δ = −332.6 (d, J(29Si-15N) = 82.2 Hz, N6), 

−313.4 (d, J(29Si-15N) = 81.3 Hz, N5), −164.1 (s, N1), − -97.5 (s, N4), −20.2 (s, 

N2), −6.8 ppm (s, N3);  29Si NMR (79.5 MHz, CDCl3, 25°C, INEPT, 9H, 

J = 6.5 Hz): δ = 10.57, 15.82 ppm;  IR (for an assignment of the vibrations, see 

Appendix, KBr disk) v~ /cm-1: 3334 (vs), 2903 (vs), 2557 (m), 2411 (m), 1656 

(vs), 1585 (vs), 1483 (s), 1428 (vs), 1378 (vs), 1352 (vs), 1289 (vs), 1250 (vs), 

1209 (vs), 1102 (vs), 987 (vs), 877 (vs), 848 (vs), 760 (vs), 715 (s), 696 (s), 650 
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(s), 616 (s), 585 (m), 494 (w); Raman (for an assignment of the vibrations, see 

Appendix (Chapter 4); 200 mW) v~ /cm-1:  3328 (16), 2964 (41), 2904 (50), 1587 

(20), 1485 (6), 1419 (14), 1289 (21), 1264 (6), 1209 (14), 1103 (17), 988 (5), 896 

(6), 856 (12), 840 (12), 698 (14), 625 (100), 522 (13), 375 (10), 341 (11), 315 

(20), 263 (22), 194 (20); m.p. (DSC, Tonset, 2 ºC/min) 90.1 ºC, 231.3 ºC decomp.; 

MS (DEI+, CHCl3): m/z = 244.3 [M+], 171.2 [M+ − Me3Si·], 98.08 

[M+ − 2 Me3Si·], 146.2, 115.2, 73.2 [SiMe3+], 45.2, 43.1; Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
 

b) Chlorotrimethylsilane route 
 

DAT (100 mg, 0.100 mmol, 1.00 eq) and diethyl ether (1 mL) were placed 

inside a dry Schlenk flask (50 mL) and sealed with a septum. TMSCl (119 mg) 

was added dropwise through the septum using a syringe. The mixture was 

stirred for 30 minutes at room temperature. The septum was replaced with a 

reflux condenser and triethylamine (111 mg, dried over 3 Å molecular sieve) 

was added over a period of five minutes and the temperature of the reaction 

mixture was raised to 80 ºC. Diethylether (1 mL) was added after three hours. 

The heating was stopped after a total of 6 hours. The reaction mixture was 

filtered using a Schlenk frit, the flask washed with pentane (two times 2 mL) 

and the filtrate was evaporated to dryness. The solid residue was recrystallized 

from pentane and cooled to -20 ºC. The resulting white amorphous precipitate 

was identified as 1,5-BTMSD using raman spectroscopy and mass 

spectrometry. The product obtained was of lower purity compared to the 

product obtained from the HMDS procedure. 
 

N5-Trimethylsilyl-1,5-diamino-1H-tetrazole (5-TMSD)  

 

DAT (100 mg, 0.100 mmol, 1.00 eq) and diethyl ether (1 mL) were placed 

inside a dry Schlenk flask (50 mL) and sealed with a septum. Using a syringe, 

TMSCl (119 mg) was added dropwise through the septum. The mixture was 

stirred for 30 minutes at 0 ºC. Then 111 mg of triethylamine (dried over 3 Å 

molecular sieve) were added over 5 min and the reaction mixture was heated up 
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to 80 ºC. After 3 hours, further diethyl ether (1 mL) was added. The heating 

was stopped after 6 hours. The reaction mixture was filtered of using a Schlenk 

frit, the flask was washed with two times with 2 mL pentane and the filtrate 

was evaporated in vacuo. The solid residue was dissolved in excess of pentane 

(30 mL) and the solvent was slowly removed in vacuo. Thereby colorless 

needles of the product were formed (101 mg; 0.563 mmol; 58%). The structure 

was determined by single crystal x-ray diffraction. 
 

IR (KBr disk) v~ /cm-1: 3436 (vs), 2960 (w), 1646 (s), 1586 (vs), 1383 (m), 1289 

(m), 1254 (s), 1209 (m), 1102 (m), 1102 (m), 995 (m), 988 (w), 875 (s), 849 (s), 

760 (w), 651 (w), 579 (w); Raman (400 mW, 25 °C, 100 scans) v~ /cm-1: 3328 

(16), 2963 (34), 2903 (57), 1586 (23), 1413 (22), 1290 (34), 1210 (25), 1104 (30), 

838 (24), 792 (28), 698 (29 ), 653 (28), 625 (89), 520 (26), 494 (32), 316 (31), 264 

(37). Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 

1,1-Bis(trimethylsilyl)-1,5-diamino-1H-tetrazole (1,1-BTMSD) 

 

Inside a dry 100 mL Schlenk flask, equipped with a reflux condenser and a 

bubble counter, were placed 0.500 g (5.00 mmol; 1.00 eq) of DAT and 0.100 g 

(0.75 mmol; 0.15 eq) ammonium sulfate. Dry THF (15 mL) was added and the 

suspension was stirred at room temperature. HMDS (2.421 g, 15.00 mmol, 

3.00 eq) was added slowly to this mixture and the temperature was increased to 

120 ºC. The reaction mixture was stirred at this temperature for 12 h until the 

evolution of ammonia could no longer be detected as indicated  by indicator 

paper at the outlet of the bubble counter and the solids in the reaction mixture 

had almost completely dissolved. Slow evaporation of the solvent at ambient 

conditions yielded a white precipitate containing single crystals (colorless 

needles) suitable for X-ray diffraction  
 

IR (KBr disk) v~ /cm-1: 3408 (s), 3307 (m), 3241 (m), 3179 (m), 2959 (m), 1645 

(vs), 1579 (m), 1416 (w), 1309 (m), 1097 (m), 979 (w), 933 (vs), 886 (vs), 847 

(vs), 760 (w), 690 (w), 625 (w), 524 (w);  Raman (400 mW, 25 °C, 100 scans) 

v~ /cm-1:  3148 (8), 2904 (75), 1646 (21), 1452 (19), 1413 (15), 1310 (16), 1102 
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(12), 1051 (10), 982 (10), 833 (12), 769 (20), 745 (22), 964 (17), 646 (100), 426 

(29), 361 (20), 290 (15), 251 (23); MS (DEI+, CHCl3): m/z = 244.2 [M+], 174.2 

[M+ − Me3Si·], 174.2, 146.2, 130.1, 115.2, 100.1 [M − Me3Si·+2H]+, 73.2 

[SiMe3+], 45.1; Details of the single crystal X-ray diffraction experiment are 

listed in the appendix (Chapter 4). 

N1-(Propan-2-ylidene)-1,5-diamino-1H-tetrazole (1-PYD) 

 

1,5-BTMSD (200 mg, 0.818 mmol) were placed inside a dry Schlenk flask 

(50 mL), equipped with a septum and magnetic stirring bar. By using a syringe, 

dry acetone ([D6]acetone, 2 mL, 1.43 g, 24.5 mmol, 30 eq) was added and the 

reaction mixture was stirred at room temperature for 6 h. The slightly turbid 

solution was filtered and the filtrate slowly evaporated affording colorless 

prismatic crystals (95.1 mg; 0.679 mmol; 83%). 
 

(C4H2D6N6): 1H NMR (400 MHz, [D6]acetone) δ:, 25°C): δ = 0.08 (s, 9H, 

Si(CH3)3), 0.22 (s, 9H, Si(CH3)3), 4.25 (s, 1H, NH), 4.82 ppm (s, 1H, NH); 13C 

NMR (100 MHz, [D6]acetone): δ = 29.6 (septet,  J(13C-D)=19.3 Hz, C2, C4), 

132.6 (C1), 205.8 ppm (C3); MS (DEI+, CHCl3): m/z = 146.3 [M+], 62.3, 48.2, 

28.2 [N2+]; Details of the single crystal X-ray diffraction experiment are listed 

in the appendix (Chapter 4). 

 

N1,N1,N5-Tris(trimethylsilyl)- 1,5-diamino-1H-tetrazole  (1,1,5-TTMSD)  
 

1,5-BTMSD (312 mg, 1.28 mmol, 1.00 eq) and triethylamine (freshly distilled, 

260 mg, 2.57 mmol, 2.00 eq) were added to a dry Schlenk flask (25 mL), 

equipped with a reflux condenser, bubble counter and a stirring bar by means 

of a syringe over the stopcock of the flask. The suspension was stirred at room 

temperature and subsequently trimethylsilyl triflate (569 mg, 2.57 mmol, 

2.00 eq) was added dropwise. A pale reddish coloured solution was obtained 

and the reaction mixture was stirred for further 8 h at 80 ºC. Colorless crystals 

precipitated from the solution already after approximately three hours.  

The reaction was cooled to room temperature, and freshly distilled diethyl 

ether (10 mL) were added affording a sepparation into two phases: a lower, red 
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coloured oily phase, containing mainly triethylammonium triflate, and an upper 

colorless phase, containing the product. The phases were separated (by means 

of a Pasteur pipette) and the lower phase was washed three times with 5 mL of 

ether. The ether solutions were combined and collected inside a dry Schlenk 

flask put under a nitrogen atmosphere. The volume of the solvent was reduced 

by fifty percent and the solution was cooled to 0 ºC. The product crystallized 

over night in form of colorless prismatic crystals. The yield was 320 mg 

(0.823 mmol; 64%). 
1H NMR (400 MHz, [D6]benzene, 25°C): δ = 0.29 (s, 18H, (Si(CH3)3)2), 

0.12 ppm (s, 9H, Si(CH3)3); 13C NMR (100 MHz, [D6]benzene, 25°C): δ = 1.15, 

1.79; 29Si NMR (79.5 MHz, [D6]benzene, 25°C, INEPT, 9H, J = 6.5 Hz): 

δ = 7.59, − 21.35 ppm; IR (for an assignment of the vibrations, see Appendix, 

KBr disk) v~ /cm-1: 3410 (s), 3237 (m), 3181 (s), 2958 (m), 2903 (w), 1645 (s), 

1580 (s), 1477 (w), 1454 (w), 1440 (w), 1347 (w), 1309 (w), 1298 (m), 1256 (vs), 

1204 (m), 1165 (m), 1097 (m), 1031 (m), 982 (w), 936 (s), 884 (s), 840 (vs), 759 

(m), 690 (w). 638 (m), 576 (w), 525 (w);  Raman (for an assignment of the 

vibrations, see Appendix, 400 mW, 25°C, 100 scans) v~ /cm-1:  2962 (50), 2902 

(100), 1645 (5), 1580 (9), 1452 (10), 1413 (15), 1299 (11), 1205 (8), 1105 (11), 

1034 (6), 983 (7), 899 (5), 759 (11), 692 (19), 644 (49), 621 (32), 531 (14), 425 

(21), 358 (19), 290 (14), 210 (25); MS (DCI+, isobutane): m/z = 317.2 [M+H]+, 

245.3 [M − Me3Si· + 2 H]+, 173.2 [M − 2Me3Si· + 3H]+, 102.2, 57.2, 34.2; 

Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
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Reaction of 1,5-BTMSD with n-Buthyllithium and TMSCl 

 

A dry Schlenk flask (100 mL) was charged with 1,5-BTMSD (255 mg, 

1.04 mmol, 1.00 eq)  using a dry box. The substance was dissolved in dry THF 

(15 mL) and the solution was cooled to −70 ºC. By means of a syringe, a 0.707 

M solution of a 0.707 M n-BuLi in hexanes (1.48 mL, 1.04 mmol, 1.00 eq) was 

added over a period of 10 minutes whith stirring of the reaction mixture. The 

reaction mixture was taken out of the cooling bath, warmed up to room 

temperature and stirred for additional 2 h. The solution was cooled again 

(−70 ºC) and TMSCl (113 mg) was added over a period of five minutes with a 

syringe during which the reaction mixture turned yellow. The reaction 

mixture was stirred overnight under an atmosphere of nitrogen at room 

temperature. Then THF (20 mL) was added, the mixture was heated to 40 ºC 

and filtered using a Schlenk frit, and the solvent was removed. Mass 

spectrometry of the solid residue revealed both the presence of 1,1,5,5-TTMSD 

[C13H36N6Si4] and 1,1,5,-TTMSD [C10H28N6Si3]  according to  the signals 

having a m/z of 388.2 and 316.17. No attempt was made to purify the product 

and optimize the procedure. 

 

Raman (400 mW, 25 °C, 100 scans) v~ /cm-1: 2951 (65), 2893 (100), 1368 (45), 

1283 (55), 1223 (60), 1105 (45), 997 (25), 961 (35), 675 (25), 615 (75), 321 (40), 

210 (35). MS (DEI+): selected m/z: 388.2, 316.17. 
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2.3.3  Pyridazines 
 

Introduction 
 

Halogenated pyridazines have been synthesised as possible precursor molecules 

for the synthesis of novel energetic matierials like the elusive 3,4,5,6-

tetraazido-1,2-pyridazine molecule. Next to our interest into the energetic 

properties of this compound pyridazines decorated with azide groups are 

interesting model compounds to study possible pyridazine azide cyclisation 

reactions. 

Azide groups α-substituted to annular N-atoms in aromatic compounds are 

subject to tautomeric conversion to a tetrazole ring. (358) The potential energy 

surface on which this type of reaction takes place in solution has recently been 

investigated experimentally and theoretically. (359-360) It has been established for 

a series of 2,4-diazidopyrimidines and 4,6-diazidopyrimidines that the azido-

tetrazole tautomerism is strongly solvent and temperature dependent and that 

the azide-azide and azide-tetrazole forms are energetically more favourable 

than the tetrazole-tetrazole form. (361) In the crystalline state, 3,6-

diazidopyridazine has been found to exist in the azide-tetrazole form (Fig. 

2.142). (362-363)  

 
Figure 2.143. Formation of 6-azidotetrazolo-[1,5-b]pyridazine upon treatment of 3,6-
dichloropyridazine wit sodium azide in a sealed tube with an ethanol-water solvent (90°C, 
3h). (364) 

 

In 2004, Allan et al. reported a study (365) investigating the reaction between 4-

methyl-3,5,6-tribromopydridazine and sodium azide. They reported the 

formation of 4-methyl-3,5,6-triazidopyridazine as intermediate and subsequent 

cyclisation to one of the two possible bicyclic tetrazolo[1,5-b]pyridazine 

products. They stated that this product was thermally unstable and nitrogen 
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was liberated on heating this compound giving rise to 5-amino-3-diazido-4-

methyl-tetrazolo[1,5-b]pydridazine. Finally they succeeded in determining the 

crystal structure of 3,5-diazido-4-methyl[1,5-b]tetrazolopyridazine confirming 

theoretical predictions that compound exists in the bicyclic (tetrazol-

pyridazine) rather than the tricyclic (tetrazol-pyridazine-tetrazol) form. 

However, their attempts to grow single crystals resulted in ‘twinned or 

otherwise unsuitable crystals that were prone to decomposition’ and 

synchrotron radiation had to be used to measure the very small crystals. The 

data obtained were sufficient as a structural proof but they mentioned that ‘due 

to the highly mosaic nature of the crystal the data is not of sufficient quality to 

give precise structural parameter’. We have synthesised both 3,4,6-

trichloropyridazine and 3,4,5,6-trichloropyridazine from 3,6-dichloropyridazine 

in order to subsequently substitute the chlorine atoms with azide and study 

these products. In accordance with the well established behaviour that nitrogen 

para to the site of nucleophilic attack is activating in perhalogenated 

heteroaromatic systems we were only able to substitute the chlorine atom at 

the 4-position yielding 3,6-dichloro-4-azidopyridazine. A more comprehensive 

study of the regioselectivity of the reactions between tetrachloropyridazine and 

a variety of aliphatic nitrogen nucleophiles has only recently been reported 

confirming our finding of the regioselectivity. (366) The reported ‘violently 

explosive’ nature of 6-azidotetrazolo-[1,5-b]pyridazine together with its low 

thermal stability (Tdec. = 128-129°C) (367) rendered it unlikely to obtain a 

material of sufficient stability to fulfil the qualification criteria for a novel 

energetic material (Table 1.1, page 15) and no further efforts were undertaken 

to overcome the difficulties experienced in obtaining a higher degree of azide 

substitution at this time.  

However, due to the importance of 3,4,6-trichloropyridazine and 3,4,5,6-

tetrachloropyridazine as educts in organic chemistry, their exceptional 

biological activity we investigated the solid state structures using single 

crystal X-ray diffraction because structural data of these two very simple 

compounds in the solid state were unkown.  
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Biological Activity 

 

Especially the chloro derivatives we have synthesised are synthetically valuable 

precursor molecules in organic synthesis and display remarkable biological 

activities. The trihalopyridazines are excellent herbicides and insecticides, but 

are less bacterically against S-aureus than the tetrahalopyridazines. The 

tetrahalopyridazines are excellent pre- and post-emergent herbicides and they 

also possess exceptional fungicidal and bactericidal properties.  From the 

reported data (368) it is apparent that 3,4,6-trichloropyridazine and 3,4,5,6-

tetrachloropyridazine are unique in their extremely broad spectrum of 

biological activity in that they are as effective or more effective than the 

reference standards, even though in some instances the concentration was 

much lower than the reference standard against which the pyridazines were 

tested. Of interest, we mention that 3,4,6-trichloropyridazine has been reported 

to be not only toxic and an irritant, but also a strong contact allergen to 

humans and special care has to be taken when working with this substances. 
(369) 
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Crystal Structure Analysis 

 

3,4,6-Trichloropyridazine (3,4,6-TCP) 

 

The structure of 3,4,6-Trichloropyridazine at 100K has orthorhombic 

symmetry, space group Pbca (no. 61). The asymmetric unit consists of one 

molecule (Fig. 2.144). 

 

 
 

Figure 2.144. ORTEP representation of the molecular structure of 3,4,6,-trichlorpyridazine 
in the crystalline state. The thermal ellipsoids are shown at the 50 % probability level. 
Selected bond lengths [Å] and angles [°]:N1-N2 1.350(2), N1-C1 1.317(2), C1-C2 1.399(3), C2-
C3 1.370(3), C3-C4 1.392(3), C4-N2 1.312(3), C1-Cl1 1.7205(18), C2-Cl2 1.7058(18), C4-Cl3 
1.7274(19), N1-C1-Cl1 115.50(14), Cl1-C1-C2 121.06(13), C1-C2-Cl2 121.66(13), Cl2-C2-C3 
121.34(14), C3-C4-Cl3 119.50(14), Cl3-C4-N2 115.37(14). 
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Figure 2.145. Unit cell of 3,4,6-trichlorpyridazine, viewed along the a axis (left) and c axis (right). Yellow dashed lines 
indicate hyrogen bonding (C3-H3···N1i , C3-H3···N2i). (i) 1/2+x,1/2-y,-z. 
 

 
Figure 2.146. Detail of the unit cell of 3,4,6-trichlorpyridazine, viewed along the a axis (left) and c axis (right). Yellow 
dashed lines indicate hyrogen bonding (C3-H3···N1i , C3-H3···N2i). (i) 1/2+x,1/2-y,-z. 
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3,4,5,6-Tetrachloropyridazine (3,4,5,6-TCP) 

 

The structure of 3,4,5,6-Tetrachloropyridazine at 100K has tetragonal 

symmetry, space group P41212 (no. 92). The asymmetric unit consists of two 

molecules (Fig. 2.147). 

 

Figure 2.147. ORTEP representation of the molecular structure of 3,4,5,6-
tetrachlorpyridazine in the crystalline state. The thermal ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]: N1-N2 1.347(8), N1-C1 1.314(10), 
C1-C2 1.410(10), C2-C3 1.385(10), C3-C4 1.407(10), C4-N2 1.317(10), C1-Cl1 1.739(7), C2-Cl2 
1.691(8), C3-Cl3 1.719(7), C4-Cl4 1.709(8), N1-C1-Cl1 115.2(6), Cl1-C1-C2 118.9(6), C1-C2-Cl2 
123.1(6), Cl2-C2-C3 122.2(6), C2-C3-Cl3 120.6(6), Cl3-C3-C4 121.3(6), C3-C4-Cl4 121.0(6), Cl4-
C4-N2 116.3(6). 
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Figure 2.148. Unit cell of 3,4,5,6-tetrachlorpyridazine, viewed along h,k,l = 1, 0, 0. Colour code: carbon (grey), nitrogen (blue), chlorine (green). 
 

 
Figure 2.149. 2x2x2 super cell of 3,4,5,6-tetrachlorpyridazine, viewed along h,k,l = 1, -1, 0. 
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4-Azido-3,6-dichloropyridazine (4A-3,6-DCP) 

 

The structure of 4-Azido-3,6-dichloropyridazine at 100K has orthorhombic 

symmetry, space group P212121 (no. 19). The asymmetric unit consists of one 

molecule (Fig. 2.150). 

 
 
Figure 2.150. ORTEP representation of the molecular structure of 4-azido-3,6-
dichloropyridazine in the crystalline state. The thermal ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]:N1-N2 1.361(3), N1-C1 1.310(4), 
C1-C2 1.415(4), C2-C3 1.372(4), C3-C4 1.389(4), C4-N2 1.318(4), C1-Cl1 1.728(3), C2-N3 
1.403(4), N3-N4 1.272(4), N4-N5 1.107(4), C4-Cl2 1.727(3), N1-C1-Cl1 116.0(2), Cl1-C1-C2 
119.4(2), C1-C2-N3 117.0(3), N3-C2-C3 127.2(3), C2-N3-N4 113.3(2), N3-N4-N5 170.7(3), C3-
C4-Cl2 118.8(2), Cl2-C4-N2 115.4(2). 
 

 
Figure 2.151. Unit cell of 4-azido-3,6-dichloropyridazine, viewed along the a axis. Yellow 
dashed lines indicate hyrogen bonding (C3-H3···N2i). (i) 2-x,-1/2+y,1/2-z. 
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4,6-Dichloro-3(2)H-pyridazinone 

 

The structure of 4,6-dichloro-3(2)H-pyridazinone at 100K has monoclinic 

symmetry, space group P21/n (no. 14). The asymmetric unit consists of one 

molecule (Fig. 2.152). 

 
Figure 2.152. ORTEP representation of the molecular structure of 4,6-dichloro-3(2)H-
pyridazinone in the crystalline state. The thermal ellipsoids are shown at the 50 % 
probability level. Selected bond lengths [Å] and angles [°]: N1-N2 1.352(2), N1-C1 1.368(2), 
C1-C2 1.457(2), C2-C3 1.345(2), C3-C4 1.423(2), C4-N2 1.292(2), C1-O1 1.233(2), C2-Cl1 
1.7130(17), C4-Cl2 1.7310(17), N1-C1-O1 121.39(15), O1-C1-C2 125.39(15), C1-C2-Cl1 
117.01(13), Cl1-C2-C3 122.03(13), C3-C4-Cl2 118.22(13), Cl2-C4-N2 116.22(12). 
 
Due to the possibility of tautomerism, this compound can either exist as 

hydroxysubstituted pyridazine or as oxo-dihydropyridazine (Fig. 2.153). 

 

 
Figure 2.153. Possible tautomerism of 4,6-dichloro-3(2)H-pyridazinone. 
 
The X-ray structure unabigously shows the oxo-dihydropyrdidazine tautomer 

to be the preferred motiv in the solid state.  
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Figure 2.154. Unit cell of 4,6-dichloro-3(2)H-pyridazinone, viewed along the a axis. Yellow 
dashed lines indicate hyrogen bonding (N1-H1···O1i, C3-H3···O1i ). (i) -x,1-y,-z, (ii) 1/2-x,-
1/2+y,1/2-z. 

 
Figure 2.155. Unit cell of 4,6-dichloro-3(2)H-pyridazinone, viewed along the c axis. Yellow 
dashed lines indicate hyrogen bonding (N1-H1···O1i, C3-H3···O1i ). (i) -x,1-y,-z, (ii) 1/2-x,-
1/2+y,1/2-z. 
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Figure 2.156. Unit cell of 4,6-dichloro-3(2)H-pyridazinone, viewed along h,k,l = -2.66, 7.63, 
1.22. Yellow dashed lines indicate hyrogen bonding (N1-H1···O1i, C3-H3···O1i ). (i) -x,1-y,-z, 
(ii) 1/2-x,-1/2+y,1/2-z. 
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Experimental 
 

Synthesis of 3,4,6-Trichloropyridazine 

 

Caution: Trichloropyridazine is a very strong contact allergen.  

 

 

Dichloropyridazine (15g) together with PCl5 (100g) were placed under inert 

conditions in a sealed steel cylinder (1000mL, swagelok). The cylinder was 

evacuated and heated for 20h up to 285°C using a heating tape. Afterwards, the 

container was washed with ice water and diethylether several times. The 

diethylether fractions were dried over magnesium sulphate and concentrated 

affording the crude product. Recrystallization from methanol afforded single 

crystals suitable for X-ray diffraction.  

Raman (1 cm-1) v~ /cm-1: 3094(w), 1533(w), 1498(w), 1475(w), 1289(w), 

1186(m), 1086(w), 1045(w), 854(w), 685(m), 509(w), 467(w), 405(s), 347(vs), 

215(w), 197(m), 186(w); m.p. 57 – 58°C (lit., 58 -59°C) (370); Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
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Synthesis of 3,4,5,6-Tetrachloropyridazine 
 

 
 

Though tetrachloropyridazine had previously been prepared from 

dichloromaleic anhydride, (371) we chose to prepare it using a slight modification 

from the reaction between commercially available 3,6-dichloropyridazine and 

phosphorus pentachloride at elevated temperature and pressure. (372) 

Dichloropyridazine (15g) together with PCl5 (100g) were placed under inert 

conditions in a sealed steel cylinder (1000mL, swagelok). The cylinder was 

evacuated and heated for 48h up to 360°C using a heating tape. Afterwards, the 

container was washed with ice water and diethylether several times. The 

diethylether fractions were dried over magnesium sulphate and concentrated 

affording the crude product. Recrystallization from methanol afforded light 

brown coloured single crystals suitable for X-ray diffraction. 
13C NMR ([D6]acetone) δ: 155.2 (C1,C4), 138.2 (C2,C3); 15N NMR ([D6]acetone) 

δ (nitromethane): 4.5 (N1,N2); IR (KBr disk) v~ /cm-1: 1505, 1480, 1360, 1290, 

1200, 1120, 1090, 890, 800, 630; Raman (1 cm-1) v~ /cm-1: 1495(w), 1475(w), 

1186(vs), 1085(w), 874(w), 617(w), 516(w), 500(w), 405(w), 348(s), 215(w); m.p. 

86 – 88°C (lit., 85 - 86°C) (373) ; Details of the single crystal X-ray diffraction 

experiment are listed in the appendix (Chapter 4). 
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Synthesis of 4-azido-3,6-dichloropyridazine 
 

 
To a solution of  3,4,6-Trichloropyridazine (226 mg, 1,23 mmol) in a mixed 

solvent (6 mL THF and 3 mL DMSO) at room temperature was added sodium 

azide (480 mg, 7,38 mmol). NaN3 was initially almost completely soluble but 

soon after the addition, a white precipitate was formed. The reaction mixture 

became coloured (orange) about 10 min after addition. It was stirred at room 

temperature for 12 h. Volatile solvent was removed under reduced pressure. 

The crude reaction mixture was taken up in ethyl acetate (90 mL), washed in 

turn with water (3 x 10 mL), dried over anhydrous Na2SO4 and concentrated 

under reduced pressure until dryness. Purification by chromatography (5% 

ethyl acetate / 95% hexane) and subsequent crystallisation afforded the 

potentially explosive compound as a solid. An analytical sample of this 

compound was prepared by recrystallisation from ethyl acetate and hexane 

yielding single crystals suitable for X-ray diffraction. Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
 

Synthesis of 4,6-Dichloro-3(2)H-pyridazinone 
 

 
4,6-Dichloro-3(2)H-pyridazinone was obtained over a period of several weeks 

from the reaction between 3,4,6-trichloropyridazine and moisture of the air at 

room temperature. m.p., lit., (374) 170 -172°C. Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4). 
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2.4 Molecules containing pseudohalide functionalities 
 

2.4.1 Mercury Fulminate (MF) 

 

Introduction 

 

The alchemists in the 17th century, among them Cornelius Drebbel (1572-1634) 

and Johann Kunckel von Löwenstein (1630-1703) have known that mixtures of 

“spiritus vini” with mercury and silver in “aqua fortis” could explode. (375-380) 

The English chemist Edward Howard (1774-1816) (375-376) succeeded in 1799 (in 

the beginning of the “Scientific Chemistry“) to isolate mercury fulminate by 

treating a solution of mercury in nitric acid with ethanol. Howard’s report (387) 

in 1800 on the preparation and properties was a sensation within the scientific 

world. (380, 386) Howard originally planned to synthesise hydrochloric acid which 

at that time was regarded as a combination of oxygen, hydrogen and a 

hypothetical element “murium“. As oxygen source Howard used nitric acid, and 

for hydrogen he took ethanol together with a metal (Hg) to give a metal 

chloride. To his surprise a violent detonation occurred when he tried to liberate 

hydrogen chloride from the greyish-white product by reaction with 

concentrated sulfuric acid. 

From 1820 until 1855 Justus von Liebig (1803-1873) was fascinated by the 

chemistry of mercury and silver fulminates. (383) In 1824 Liebig and Gay-Lussac 

succeeded in analyzing silver fulminate as AgCNO. (384) This master piece of 

chemical work together with Wöhler’s silver cyanate (AgNCO) led to the 

concept of isomerism. Scholl (385) and Nef (386) formulated fulminic acid as oxime 

of carbon monoxide and Lothar Wöhler (387) proved the monomeric nature of the 

fulminate ion C≡N-O−. 

Besides Justus von Liebig and Joseph Louis Gay-Lussac many famous chemists 
(388) were engaged in the chemistry of mercury and silver fulminate: Friedrich 

Wöhler, Jöns Jakob Berzelius,  August Kekulé, Louis-Jacques Thenard, Claude-Louis 

Berthollet, Pierre Berthelot, (389) Heinrich Wieland, (390-391) Linus Pauling, Rolf 

Huisgen. (392) Berthelot (393) reported a very exact analysis of Hg(CNO)2 and 

studied its explosive properties (Hg(CNO)2 → Hg + 2CO + N2). Wieland 
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offered - after his own important contributions to the chemistry of fulminic 

acid - a widely accepted interpretation for Howard’s formation of mercury 

fulminate from mercury, nitric acid and ethanol. (394) 

Mercury fulminate was widely used as primary explosive for nearly a hundred 

years. In the beginning of the 20th century the annual production of mercury 

fulminate only in Germany was about 100 000 kg per year. (380, 395) A. Nobel 

used this energetic compound as a component in his recent developed metal 

blasting cap detonator to initiate dynamite. (380, 396) The wide application of 

dynamite was only possible when the use of Hg(CNO)2 as primary explosive 

guaranteed a safe ignition. (400) For this purpose it is now replaced by lead azide 

which is more stable on storage. (397) 

To our knowledge a detailed X-ray crystal structure determination of mercury 

fulminate has not been carried out. Miles reported a good method for the 

crystallization of mercury fulminate and performed also first investigations on 

the crystal structure of mercury fulminate with single crystals already in 1931. 
(398) He correctly derived the holohedric crystal class and also the lattice 

parameters (a = 5.48, b = 7.71, c = 10.43 Å, V = 441 Å3), But atomic positions 

of the constituent atoms were not given.  

About twenty years later, Suzuki performed a single crystal investigation on 

mercury fulminate. (399) He could set Hg atoms correctly in the positions of a 

face centred lattice with a total of only 49 reflections, indexed using the cell 

parameters given by Miles. (400) However, due to the wrong space group, the 

positions of the C, N and O atoms could not be located and a bent CNO-Hg-

ONC structure was proposed as it was generally assumed at that time. 

Within the last decades, two results of X-ray powder investigations have also 

been published. The first was presented by the International Centre for 

Diffraction Data (ICCD) as powder diffraction file 00-002-0287 for mercury 

fulminate, HgC2N2O2, determined with CuKα radiation (λ = 1.540598 Å). It 

contained 22 d-values for non-indexed reflections. (401) These data were 

obtained from Canadian Industries Limited as private communication. The 

lattice parameters obtained by this d-values were calculated by least squares fit 

and correspond to a = 5.398(5), c = 10.214(4) and c = 7.630(10) Å. The result 

of the second X-ray powder investigation on mercury fulminate was published 

1981 by Brown and Swallowe. (402) In this case, NiKα radiation was used (λ = 
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1.6592 Å) with longer wave length in comparison to that with Cu radiation. 

The precision of the obtained values is lower in this case since mercury 

fulminate strongly absorbs X-ray radiation. As a consequence, the obtained 

lattice parameters calculated by least squares fit show higher standard 

deviations (a = 5.44(3), b = 10.38(4), c = 7.75(5) Å). 

Here we report the results of the X-ray investigations of single crystals as well 

as powders of Hg(CNO)2. The single crystal investigation reveals - as expected 

- almost linear O-N-C-Hg-C-N-O bonds, similar to those in mercury cyanide 

NC-Hg-CN. (403) Liebig already recognized the close analogy between metal 

fulminates and metal cyanides. (404-405) In analogy, the correct structure for 

fulminic acid is H-C≡N-O (383, 406-407) and not C≡N-OH. Furthermore, the 

fulminate ligand forms transition metal complexes that are very similar to 

those of cyanide. (408-409) The X-ray structure determination of two polymorphic 

forms of silver fulminate revealed very interesting structures containing CNO 

bridges and three centred Ag-C-Ag bonds in hexameric units or infinite chains. 
(410) The structures of the metal complexes [(Ph3P)2Pt(CNO)2], (411) 

[Ph3PAuCNO], (412) [Au(CNO)2]-, (413) [M(CNO)4]2-  (M = Ni, Pt, Zn), (414) 

[Hg(CNO)4]2- (415) as well as [Co(CNO)6]3- (416) with almost linear M-C≡N-O 

bonds were determined using X-ray diffraction. Density functional theory 

(DFT) calculations for these fulminato complexes are in good agreement with 

the observed structural parameters. (417) In contrast, a recent DFT calculation 

predicts bent CNO-Hg-ONC units, (418) a structure which is still present in the 

literature to our surprise. 
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X-ray Powder Diffraction 

 

An X-ray powder investigation of the micro crystalline Hg(CNO)2 was 

performed on a Huber G644 Guinier Diffractometer using MoKα1 radiation (λ = 

0.7093 Å, quartz monochro-mator). The angle calibration of the diffractometer 

was performed using electronic grade germanium (a = 5.6575 Å). In the 2θ-

range 1000 data points were collected with a counting time of 100 seconds for 

each increment (0.04°) between 6 and 46o.  

 

The Gunier diffractogram was analysed by the Rietveld technique using the 

program FullProf. (419) The diffractogram was refined by profile matching (420) 

in the space group Cmce with reliability indices R = 6.36 % and Rwp = 8.91 %. 

The corresponding lattice parameters are a = 5.470(3), b = 10.376(5) and c = 

7.700(4) Å at 295 K. Using the positional parameters derived by the single 

crystal investigation and applying soft distance constraints for Hg-C, C-N and 

N-O (2.03, 1.14, 1.25 Å), the Guinier diffractogram could be refined to R = 8.91 

% and Rwp = 11.70 %. The Rietveld plot for the refinement is shown in Figure 

2.157. The crystallographic data for the powder investigation at room 

temperature are summarized in Table 2.26. 

 
Table 2.26.  Crystallographic Data for Hg(CNO)2 obtained by X-Ray Powder  
Investigation at 295 K with Mo-Kα1 radiation. 

temperature / K 295 

a / Å 5.470(3) 

b / Å 10.376(5) 

c / Å 7.700(4) 

volume / Å 3 437.0(3) 
Hg (x,y,z) 0/0/0 
C   (x,y,z) 0/0.818(3)/0.095(3) 
N   (x,y,z) 0/0.711(3)/0.123(3) 
O   (x,y,z) 0/0.593(3)/0.149(3) 
R 0.0868 

Rwp 0.114 

RBragg 0.151 

Notes. Standard deviation in parentheses. 
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Figure 2.157.  Rietveld plot of the Guinier diffractogram for Mercury Fulminate obtained at 
295 K using MoKa1 radiation in the 2-theta-range from 6-46 o. 
 

The analysis of the Guinier powder data by applying the Rietveld technique 

does not allow for a decision whether the fulminate group is bonded via C-Hg-

C or O-Hg-O due to the small scattering contribution of the light non-metal 

atoms in comparison to mercury. The scattering contribution of the atoms at 

small diffraction angles is related to the squares of their total electron numbers: 

802 (one mercury) : 2·62 (two carbon atoms) : 2·72 (two nitrogen atoms) : 2·82 

(two oxygen atoms) = 6400 : 72 : 98 : 128 ≈ 100 : 1.1 : 1.5 : 2.0. In comparison 

to mercury, the scattering contribution of the C-, N- and O-atoms in mercury 

fulminate lies between 1 and 2%. The nitrogen atoms in Hg2(N3)2 next to 

mercury could not be located for the same reason by Meyer et al. (421) A reliable 

decision between C-Hg-C and O-Hg-O bonding in mercury fulminate can be 

made on the basis of precise single crystal X-ray diffraction data. The 

reliability indices R1 / wR2 [I > 2σ (I)] for C-Hg-C bonding are 0.0111 / 

0.0241 in comparison to those obtained when O-Hg-O bonding is assumed (R1 

/ wR2 [I > 2σ (I)] 0.0362 / 0.0576). 
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Single Crystal X-ray Diffraction 

 

A single crystal of mercury fulminate (0.05 X 0.05 X 0.01 mm) was measured 

using an Oxford Xcalibur3 CCD single crystal diffractometer from Oxford 

Diffraction (MoKα radiation, graphite monochromator, λ = 0.71073 Å). The 

temperature (100 K) of the single crystal was maintained using a Cryojet 

Controller from Oxford Diffraction. The conditions limiting possible reflections 

were hkl: h + k = 2n, h0l: l = 2n, hk0: h = 2n and yielding the space group 

Cmce (No.64, former space group Cmca). The derived centre of symmetry of this 

space group is in agreement with morphological studies of Miles. (422) A total of 

4428 data were collected in the 2-Theta range up to 55.0o according to a 

reflection range from -6 < h < 6, -13 < k < 13, -9 < l < 9. The data were 

corrected for absorption. After merging, 257 unique reflections with a 

redundancy of seventeen remained resulting in an reliability index Rint = 

4.18%. The structure was solved using SHELXS-97 (423) and refined using 

SHELXL-97. (290) A summary of the crystallographic data for mercury 

fulminate obtained by the single crystal investigation is shown in the appendix 

(Chapter 4). The positional parameters and the thermal displacement 

parameters are listed in Table 2.27. 

 
Table 2.27. Atomic Coordinates and Thermal Displacement Parameters (Å)2 for Hg(CNO)2 
at100 K obtained from a Single-Crystal Investigation. 

atom Hg C N O 

x/a 0 0 0 0 
y/b 0 0.8186 (6) 0.7109 (5) 0.5932 (4) 
z/c 0 0.0951 (8) 0.1210 (6) 0.1481 (6) 
U11 0.0148 (1) 0.0126 (3) 0.0122 (2) 0.0245 (2) 
U22 0.0141 (1) 0.0213 (3) 0.0263 (3) 0.0193 (2) 
U33 0.0209 (2) 0.0220 (3) 0.0144 (2) 0.0299 (2) 
U23 -0.0032 (3) 0.0013 (2) 0.0040 (2) 0.0104 (2) 
U13 0 0 0 0 
U12 0 0 0 0 
Ueq 0.0166 (1) 0.0187 (1) 0.0176 (1) 0.0246 (9) 

Notes. Standard deviation in parentheses. 
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Crystal Structure Analysis 
 

Mercury fulminate at 100K has orthorhombic symmetry, space group Cmce 

(no.64). The asymmetric unit consists of half a mercury atom and one fulminate 

group. From the results of this structural investigation it is obvious that 

crystals of mercury fulminate consist of discrete monomeric molecules ONC-

Hg-CNO which are C-Hg-C bonded. One discrete mercury fulminate molecule 

is shown in Figure 2.158.  The bond lengths (Å) and bond angles (o) are given 

in the figure caption. 

 

 
Figure 2.158. Representation of one mercury fulminate molecule with bond lengths (Å) and 
bond angles (o). The anisotropic thermal displacement parameters are shown at the 50% 
probability level. Selected bond lengths [Å] and angles [°]: Hg-C 2.029(6), C-N 1.143(8), N-
O 1.248(6), C-Hg-C 180.0(2), Hg-C-N 169.1(5), C-N-O 179.7(6). 
 

The fulminate group CNO consists of a short carbon-nitrogen and a longer 

nitrogen-oxygen bond. The carbon-nitrogen bond length is 1.143(8) Å. This 

refers to a triple bond, since the tabulated bond length C≡N is 1.11 Å and that 

for C=N is 1.22 Å. (424) The nitrogen-oxygen bond with a value of 1.248(6) Å is 

remarkably longer. Here the tabulated bond length for N=O is 1.17 Å and that 

for N-O is 1.45 Å. (429) Within the limitations of error, the atomic arrangement 

of the bonds C-N-O and C-Hg-C in the fulminate group is linear (179.7(6) o) 

and (180.0(2) o). However, the angle N-C-Hg (169.1(5) °) deviates from 

linearity by eleven degrees. The distances and angles of the Hg(CNO)2 

molecules are in the same range as for other metal fulminates. (416, 418, 420, 425-428)  
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Table 2.28. Bond lengths (Å) and angles (°) in mercury fulminates and cyanides 

 Hg-C C≡N N-O Hg-C≡N C≡N-O C-Hg-C 

Hg(CNO)2 2.029 1.143 1.248 169.1 179.7 180.0 

[Hg(CNO)4]2- (420) 2.16 1.13 1.25 170 178 102-118 

 2.21 1.14 1.26 172 179  
Hg(CN)2  (403) 2.015      1.137 - 177.0 - 175 

[Hg(CN)4]2- (429) 2.17 1.14 - 178 - 108 

 2.19     111 

 

A very similar structure has been determined for the linear isoelectronic gold 

complex [Au(CNO)2]−. (418) Of interest is the comparison of the linear 

Hg(CNO)2 with the tetrahedral [Hg(CNO)4]2−. (420) As with the mercury 

cyanides (408, 435) (Table 2.28) the Hg-carbon distance in the neutral linear 

compounds are considerably shorter than in the tetrahedral complexes which is 

certainly due to a larger contribution of the 6s orbital in the Hg-C bonds. (430) 

Remarkably, the Hg-C and C≡N bond lengths in the mercury fulminates and 

cyanides are very similar (Table 2.28). In conclusion, the formula O-N≡C-Hg-

C≡N-O well describes the bonding in the mercury fulminates.  

Figure 2.159 shows a view along [010] on the structure of mercury fulminate.  

 
Figure 2.159. Representation of the unit cell of mercury fulminate along [010]. The 
anisotropic thermal displacement parameters are shown at the 50% probability level. 
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The mercury atoms have the positions of a face-centred lattice at (0,0,0), 

(0,0.5,0.5), (0.5,0.5,0) and (0.5,0,0.5) arranging the discrete mercury fulminate 

molecules at layers with x = 0 and x = 0.5 in the b-c-plane.  Figure 2.160 

shows planar layers of mercury fulminate molecules lying at x = 0 and x = 0.5 

along [010]. 

 
Figure 2.160.  Planar layers of mercury fulminate molecules at x = 0 and x = 0.5. The 
anisotropic thermal displacement parameters are shown at the 50 % probability level. 
 

In order to achieve a higher space filling, the fulminate molecules in the layers 

at x = 0 and x = 0.5 are rotated against each other by an angle of 41.5o. Figure 

2.161 shows one layer with five discrete monomeric molecules. However, such 

an arrangement also leads to two mercury-oxygen contacts at 2.833(4) Å. The 

tabulated van-der-Waals radii for mercury and also for oxygen are 1.5 Å (431) 

leading to a van-der-Waals distance of about 3.0 Å. The measured Hg-O 

distance of 2.83 Å is slightly shorter than the van-der-Waals distance indicating 

some weak interactions. Similar contacts appear in the corresponding cyanide 

Hg(CN)2 with mercury-nitrogen distances of 2.742 (3) Å. (408) 
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Figure 2.161. View along [100] on one layer of mercury fulminate molecules. In this 
orientation, two oxygen atoms form interatomic distances Hg···O of 2.833(4) Å, smaller than 
the calculated van-der-Waals distance of 3.0 Å. The anisotropic thermal displacement 
parameters are shown at the 50% probability level. 
 

Considering the two surrounding layers, four additional mercury-oxygen 

contacts with distances of 3.06 Å are present. This results in six Hg···O 

distances. There are also six Hg-N distances (four times at 3.59 Å and two 

times at 3.62 Å).  These twelve atoms centred by a mercury atom build up a 

distorted polyhedron with four atoms at the top, four atoms in the middle and 

four atoms at the bottom. If these four atoms were arranged symmetrically as 

parallel squares one would obtain a cuboctahedron. The real polyhedron is far 

away from this situation, however. Figure 2.162 shows the distorted 

polyhedron around one mercury atom and the two fulminate groups. 
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Figure 2.162. Distorted polyhedron built up by six oxygen and six nitrogen atoms. The two 
chemically bonded fulminate groups are also shown. The distances to the central Hg atom 
are given in Å. The anisotropic thermal displacement parameters are shown at the 50 % 
probability level.  
 
It is interesting to compare the crystal structure of mercury fulminate 

Hg(CNO)2 with that of mercury azide (with the analogous formula) Hg(NNN)2. 

Both the fulminate and the azide anion are linear and contain 16 valence 

electrons resulting in one negative charge. The crystal structure of mercury 

azide was determined by Müller in 1973. (432) Hg(N3)2 crystallizes with four 

molecules per unit-cell as does the mercury fulminate. Both structures are not 

isotypic. Hg(N3)2 crystallizes in the non-centrosymmetric space group Pca21, 

Hg(CNO)2 in the centrosymmetric space group Cmce. However, the unit-cell 

volume of the azide is V = 421.1(3) Å3, (438) whereas that of the fulminate equals 

to 437.6 Å3 at room temperature. As a consequence, the azide is packed more 

densely (4%) compared to the fulminate. But the most striking difference is the 

bonding angle of the azide group to the mercury atom which is due to the 

totally different hybridization of the atom directly bonded to the mercury atom 

(C: sp / N: sp3). According to this, an oxygen bonded fulminate would lead to a 

bent M-O-N≡C group similar as in the corresponding azide Hg(N3)2. There are 

two crystallographic different azide groups in Hg(N3)2 with N-N-Hg angles of 

111(2) and 120(2)o. (438)  In Hg(CNO)2 the two fulminate groups are 
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crystallographic identical and have bond angles N-C-Hg of 169.1(5)o.  In 

addition, the atomic arrangement of N-N-N group in the the azide anions 

deviate with bond angles of 171(3) and 176(2) from linearity. This is also true 

for the atomic arrangement N-Hg-N with a bond angle of 175(1)o. Quite a 

puzzle are the Hg-N bond distances of the two crystallographically different 

azide groups. One Hg-N distance is 2.04(2) whereas the other is 2.14(2) Å. (438)  

In summary, the molecular and crystal structure of the historically important 

mercury fulminate has been solved, more than 200 years after its discovery. 

 

Experimental 

 

Synthesis. Hg(CNO)2 was synthesised by dissolving mercury (1g) in nitric acid 

(12g, ρ = 1.4 g cm-3) and adding ethanol (11g)  to this solution in two portions. 
(433) It is important to add the first half of ethanol before the red brown gases 

have disappeared. Caution: Mercury fulminate is sensitive to impact and friction 

and is easily detonated by sparks and flames. Before use it should be stored 

under water and with exclusion of light. 

Powder Preparation. For X-ray powder experiments freshly prepared 

microcrystalline mercury fulminate was used. After drying on filter paper, a 

Lindemann capillary (d = 0.5 mm) was carefully filled in order to prevent 

grinding. Single Crystal Preparation. Single crystals of sufficient quality for 

the structure determination were obtained from aqueous ammonia / ethanol 

solutions (1:1:1) (434) and dried on filter paper with the exclusion of light. Small 

crystals of rhombic habitus with well-developed faces were selected under a 

polarization microscope and then cooled to 100 K using a Cryojet Controller of 

an Oxford Xcalibur3 CCD single crystal diffractometer from Oxford Diffraction. 

Details of the single crystal X-ray diffraction experiment are listed in the 

appendix (Chapter 4). 
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2.4.2 Hexaazidocyclotriphosphazene (P3N21) 

 

Introduction 

 

Compounds which are composed of only the elements phosphorus and nitrogen 

can exist either as molecular species or as three dimensional polymeric solids. 

Examples of known solid state compounds include the structurally well 

characterised phases of the binary compound P3N5, which were reported by 

Schnick et al. (435) In contrast, none of the binary PN molecules described in the 

literature, namely P4N4, (436) P(N3)3, (437) P(N3)5, (438) [PN(N3)2]3 (439-441) or the 

ionic compound (N5)P(N3)6 (442) have been structurally characterised. The 

difficulties in the isolation and handling of these compounds have been shown 

by Christe et al. for (N5)P(N3)6  to arise from their highly endothermic 

character, as well as their extremely low barriers towards an often 

uncontrollable explosive decomposition. (443–445, 448) Here we report the single 

crystal X-ray structure of the P3N21 molecule and thereby the first example of a 

structurally characterised binary P-N molecule. 
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Synthesis 

 

Although the synthesis of this compound was first reported over 50 years ago 

through the reaction of hexachlorophosphazene with sodium azide, (445) 

compound (1) was only characterised using elemental analysis, (445) vibrational 

(446-447) and NMR spectroscopy. (447) The experimental difficulties involved in 

the structural characterisation of this compound are a consequence of the high 

energy content of P3N21, for which our calculated enthalpy of formation 

corresponds to 89.0 kcal/mol. In order to obtain as pure a product as possible, 

a new synthetic strategy was chosen for the introduction of the N3 group using 

Trimethylsilylazide (Fig. 2.163), whereby under the reaction conditions used, 

the trimethylsilylchloride side-product formed in the reaction was continuously 

removed form the reaction equilibrium. In addition, due to its volatility the 

excess trimethylsilylazide could be easily removed from the reaction mixture. 

 

 
 
Figure 2.163. Synthesis of P3N21. 

Characterization 

After purification of the product using sublimation, compound (1) was obtained 

in high purity. The observation of only one signal in the 31P NMR spectrum at 

δ = 13.6 ppm (Δν1/2 = 10 Hz) and the absence of further phosphorus signals 

indicated that complete chloride-azide exchange had occurred. The 14N and 15N 

NMR Spectra are shown in Figure 2.164. 

 
Figure 2.164.14N (top) and 15N (bottom) NMR spectra of P3N21 in C6D6. In addition, the 
broadened signal at δ = -300 ppm in the 14N NMR spectrum is shown enlarged. 
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The 15N NMR signal at δ = -305.4 ppm was assigned to the ring nitrogen atom 

after comparison with the chemical shift of the hexasubstituted 

cyclotriphosphazatriene. (446) The 15N signals of the covalent azide group were 

assigned according to the typical chemical shifts reported for covalent azides 
(264) δ = -152.7 (Nβ), -166.8 (Nγ) and -291.3 (Nα) ppm. In the 14N NMR 

spectrum, a broadened peak at -300 ppm is observed for the ring nitrogen atom 

and the Nα atom. The experimentally obtained Raman and Infrared spectra are 

shown in Figure 2.165, and a comparison with the calculated (unscaled) 

vibrational frequencies is given in Table 2.29. 

 
Figure 2.165. IR (top) and Raman (bottom) spectra of P3N21. 

If standard scaling factors are applied for both methods (447) (BLYP/6-31G(d): 

0.9940 / B3LYP/6-31G(d): 0.9613), good agreement between the calculated 

and experimental values is obtained. The vibrational frequencies observed for 

the liquid phase were assigned by comparison with the frequencies calculated 

for the molecule in C1 symmetry, in contrast to the previously reported values 

in the literature (446-447) which were assigned on the basis of D3h symmetry for 

the molecule.  
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Table 2.29. Comparison of the experimentally observed and theoretically calculated (C1 
point group) vibrational frequencies [cm-1] and intensities[a]. 

Experiment Theory 
Assignment 

IR Raman BLYP B3LYP 

νasN3 + νsN3 3406 (w)    

2νsN3 2511 (w)    

νasN3 2162 (vs) 2181 [26] 2189 (128) [196] 2318 (172) 

   2181 (701) [30] 2308 (1016) 

   2180 (567) [72] 2306 (624) 

   2178 (940) [50] 2304 (1101) 

   2175 (303) [25] 2303 (251) 

   2173 (83) [8] 2300 (37) 

νsN3  1291 [21] 1275 (13) [51]  

   1257 (22) [18]  

νsN3 1256 (s)  1268 (175) [1] 1336 (191) 

   1265 (99) [6] 1333 (103) 

   1258 (661) [3] 1324 (848) 

νas (PN)Ring 1201 (vs)  1149 (1536) [1] 1220 (1793) 

   1114 (1069) [2] 1185 (1191) 

νas (PN)Ring 910 (w)  1048 (88) [0] 1120 (96) 

δN3 786 (m)  727 (421) [0] 779 (517) 

δN3 739 (m)  679 (175) [0] 729 (232) 

   672 (191) [1] 721 (239) 

δbend(PN)Ring  712 [100] 638 (1) [63]  

δwag(PN)Ring, δN3 614 (m)  582 (222) [1] 617 (222) 

δrock(PN)Ring, δN3 564 (m)  562 (11) [15] 567 (137) 

   533 (148) [0] 558 (99) 

   526 (116) [1]  

δbend(NPN) 456 (w) 454 [63] 410 (0) [47]  

  220 [21] 298 (2) [1]  

δtwist(NPN)  160 [26] 215 (1) [11]  
[a] The intensities of the calculated IR and Raman spectra are given in km mol-1 and Å4 amu-

1 respectively. The IR frequencies which were calculated using the B3LYP method to have 
very low intensities are not given. 
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Crystal Structure Analysis 

 

The structure of P3N21 at 100K has triclinic symmetry, space group space 

group P1. The asymmetric unit consists of one molecules (Fig. 2.166). 

 
Figure 2.166. ORTEP representation of the molecular structure of P3N21 in the crystalline 
state. The thermal ellipsoids are shown at the 50 % probability level. Selected bond lengths 
[Å] and angles [°]: P1-N1 1.558(2), P1-N2 1.576(2), P1-N4 1.666(2), P1-N7 1.671(2), N4-N5 
1.218(3), N5-N6 1.117(3), N7-N8 1.203(3), N8-N9 1.114(3), N1-P1-N2 118.2(1), P1-N1-P2 
122.1(1), N4-N5-N6 173.4(3), N7-N8-N9 173.5(3), P1-N4-N5 117.7(2), P1-N7-N8 119.2(2), N4-
P1-N7 102.2(1), N1-P1-N4 104.5(1), N2-P1-N4 111.9(1), N1-P1-N7 108.9(1), N2-P1-N7 109.8(1). 
 

The calculated lowest energy conformation for free P3N21 in the gas phase 

corresponds to that observed in the solid state using single crystal X-ray 

diffraction, whereby a similar arrangement of the azide groups and the C1 point 

group are observed. The three azide groups (N4-N5-N6, N10-N11-N12, N19-N20-

N21) in Figure 2.166 are arranged in an almost parallel orientation with respect 

to the ring. In contrast, the other three azide groups (N7-N8-N9, N13-N14-N15, 

N16-N17-N18) are oriented in a perpendicular manner with respect to the ring, 

just like in the calculated gas phase structure. The Nα-Nβ/Nβ-Nγ bond lengths 

as well as the Nα-Nβ-Nγ angles are in good agreement with other covalently 

bound azides. (264) The six membered ring in P3N21 is nearly planar and shows 
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good agreement with the values previously reported for the (NPCl2)3 starting 

material, (448) whereby both show a slight chair conformation. The PNP / NPN 

angles (120.8(2) - 122.9(2) ° / 117.0(2) - 118.2(1) °) as well as the PN-distances 

(1.556(2) - 1.576(2) Å) correspond well with the average values of 121.4 / 

118.4° and 1.58 Å reported for (NPCl2)3. In addition, the Nα-P-Nα angles 

(99.2(1) – 102.2(1) °) correspond well with the Cl-P-Cl angles of 102° are also 

similar. However, the P-Nα distances (1.67 Å) are significantly shorter than the 

corresponding P-Cl distances (1.97 Å). The P-Nα-Nβ angles are all 

approximately 120° and suggest the presence of sp2-hybrided Nα nitrogen 

atoms.  

 

 
Figure 2.167. Unit cell of P3N21, viewed along the a axis. 
 

The structure of a single P3N21 molecule can be regarded as three membered 

ring built up of three corner-sharing PN4 tetrahedra and each of the two 

remaining corners of a single tetrahedron being decorated with azide groups 

(Fig. 2.167).  
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The structure of P3N21 contains a unique structural motiv (Figs. 2.168, 2.169): 

Covalently bonded nitrogen atoms are surrounded by each other as far as 

intermolecular distances are concerned rendering it possible to obtain an 

experimental estimate for the value of the van der Waals radius of a nitrogen 

atom. 

 

Figure 2.168. Unit cell of P3N21, viewed along the b axis. 
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Figure 2.169. Unit cell of P3N21, viewed along the c axis. 
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Thermal stability and sensitivity 

Furthermore, P3N21 could also be identified using high resolution mass 

spectrometry, which showed in addition, that the compound can be transferred 

into the gas phase without decomposition. Two signals were observed in the 

mass spectrum, whereby the first mass peak corresponds to the molecular peak 

and the second peak corresponds to a species where one azide group had been 

removed from the P3N21 molecule. The thermal stability of P3N21 was 

investigated using DSC (Differential Scanning Calorimetry). Using a heat rate of 

2°C min-1 resulted in the explosive decomposition of the compound at an onset 

temperature of 220°C. This relatively high decomposition temperature is in 

contrast to the very high impact sensitivity which gives a value of < 1J at room 

temperature. The substance is extremely impact sensitive. Direct heating in the 

flame also results in an explosive decomposition of the compound with an 

explosive sound and flash of light.  

Experimental  

 

 
 
Caution! Phosphorus azides are highly endothermic compounds, and exhibit 

explosive decomposition under various conditions! Trimeric Phosphorusnitride 

diazide is extremely impact sensitive. Due to the high energy content of 

trimeric Phosphorus nitride diazide, explosions can cause substantial damage, 

even when quantities of 1 mmol are used. (445) The use of suitable protective 

clothing, in particular a face shield, ear protectors, a bullet proof vest, arm 

protectors and gloves made from Kevlar®, as well as protection from 

electrostatic charge using appropriate shoes is mandatory. Ignoring these 

safety precautions can result in serious injuries!  
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P3N3Cl6 and TMS-N3 were purchased from Aldrich. Propionitrile was dried 

over P4O10 and distilled prior to use. Raman spectra were measured using a 

Perkin Elmer Spectrum 2000R NIR FT-Raman instrument (Nd:YAG Laser 

(1064 nm)). The Infrared spectra (IR) were recorded using a Perkin-Elmer 

Spektrum One FT-IR instrument. The 31P, 15N and 14N NMR Spectra were 

obtained using a Jeol EX 400 NMR spectrometer operating at 28.9 MHz (14N), 

40.6 MHz (15N) and 162.0 MHz (31P), and the chemical shifts are given in ppm 

relative to nitromethane (14/15N) and 85% phosphoric acid (31P). The mass 

spectra were measured using a Jeol MStation JMS-700 mass spectrometer. The 

decomposition temperature was determined using a Pyris 6 DSC instrument. 

The values for the impact sensitivity of the substance at room temperature 

were determined using a BAM-drop hammer (Bundesanstalt für 

Materialforschung und Prüfung). Computational methods: BLYP and B3LYP 

density functional theory (DFT) calculations were used. Calculation of the 

geometry, IR and Raman spectra employing the 6-31G(d) Basis sets were 

achieved using the Gaussian programme. (81) 

Preparation of P3N21: 224 mg (0.644 mmol) trimeric phosphorus nitride 

dichloride were added to a flamed out Schlenk flask under Argon, and dissolved 

in 20 mL of anhydrous Propionitrile at room temperature. Trimethylsilylazide 

(893 mg (7.750 mmol)) was added drop-wise to the stirred solution under a 

nitrogen purge. A blubberer was connected to the flask and a slow stream of 

nitrogen gas was passed continuously through the apparatus. The colourless 

solution was warmed to 60°C, and stirred for three hours at this temperature. 

Finally, the pale yellow solution was stirred for 19 hours at room temperature. 

The reaction mixture was subsequently concentrated using the rotary 

evaporator (30°C, 50 mbar) and the remaining solvent removed under vacuum 

using a Schlenk line (1·10-3 mbar, room temperature, several minutes). The pale 

yellow liquid that was obtained was purified using sublimation (1·10-3 mbar, 

130°C oil bath temperature, -86°C cold finger temperature) and the product 

was obtained as a colourless liquid. Single crystals of P3N21 were obtained via 

the controlled warming and cooling of the solid/liquid substance around its 

melting point. Repeated cooling of the substance to -78.5°C with dry ice and 

warming to -17°C in a cold room was monitored under a microscope, until 
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crystals formed.  As soon as a liquid phase formed, the substance was re-cooled 

using dry ice. Handling of the single crystals requires great care !  

Raman (liq., r.t.): s. Tab. 2.29. IR (Nujol, KBr, background subtracted): Tab. 

2.29. 31P NMR (C6D6, 25°C): δ = 13.6 ppm (Δν1/2 = 10 Hz); 15N NMR (C6D6, 

25°C): δ = -152.7 (Nβ), -166.8 (Nγ), -291.3 (Nα), -305.4 (NRing). 14N NMR (C6D6, 

25°C): δ = -152.7 (Nβ, Δν1/2 = 34 Hz), -166.8 (Nγ, Δν1/2 = 115 Hz), -300 (Nα/ 

NRing, Δν1/2 = 950 Hz). MS (DEI, 70eV): 387 [m+, 30%], 345 [m-N3+, 100%]; 
MS (HR): calculated for P3N21: 386.9858, found: 386.9851 (-0.7 mmu). DSC 

(2°/min): 220°C (decomposition). Impact sensitivity: < 1J; Details of the single 

crystal X-ray diffraction experiment are listed in the appendix (Chapter 4). 
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2.4.3 Trinitromethanes 

Trinitromethane (Nitroform, NFM) 

The potential of the trinitromethyl group, C(NO2)3, as a component of 

energetic compounds has long been recognized. (13, 449-451)  The parent molecule 

can be viewed as being trinitromethane, HC(NO2)3 (also called nitroform), 

which can be prepared by the reaction of acetylene with nitric acid. (457)  It has a 

high crystal density (1.806 g cm-3) and a low melting point (25 ºC). (133) Though 

the presence of three nitro groups attached at one carbon atom might render 

this compound a priori to be an effective explosive, nitroform has found no use 

as an explosive. It has been reported to be very difficult to initiate, display poor 

performance characteristics and a low brisance. (452) Furthermore it’s high 

acidity is connected with many disadvantages like its solubility in water 

contributing to make it hygroscopic and rendering it unsuitable for practical 

application as explosive. Finally, it displays unsatisfactory thermal stability 

yielding considerable (5-10%) decomposition even at such low temperatures as 

30°C. However, trinitromethane can be used to prepare various compounds of 

energetic interest, like derivatives of 2,2,2-trinitroethanol, which can be 

obtained from the reaction between trinitromethane and formaldehyde and it 

displays some interesting  academic aspects. (453)  The three strongly electron-

attracting NO2 groups make the hydrogen very acidic (although not as much as 

might be anticipated); the experimental pKa is 0.1 (457).  This should promote aci 

tautomerization, which involves the transfer of the proton to one of the nitro 

oxygens (Figs. 2.170, 2.171).  

 

 
 
Figure 2.170. Formation of aci-trinitromethane. 
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Figure 2.171. Proposed mechanism for the formation of aci-trinitromethane. The author of 
this thesis is indebted to and thanks both Prof. Dr. Thomas M. Klapötke and Dr. Harcourt 
for working out and kindly providing this scheme. 
 

It is well known that some nitro derivatives containing the C-NO2 linkage can 

undergo intramolecular transfer of a hydrogen to one of the nitro oxygens, 

forming an aci tautomer. (454-456) These aci tautomers are called nitronic acids; 

their pKa values are usually between 2 and 6.  They are quite reactive, and are 

important intermediates in organic synthesis, e.g. the Nef reaction.  However 

they are often rather unstable, with half-lives measured in hours and days. 

In the area of energetic materials, aci tautomerization is of particular 

importance because it is a possible early step in decomposition processes that 

are involved in detonation. (73, 457-458)  For example, in developing their oxygen 

balance correlations for the impact sensitivities of energetic compounds, 

Kamlet and Adolph found it necessary to treat separately the nitroaromatics 

with a C-H on an alkyl group ortho to an NO2. (459)  Such compounds may be 

decomposing via aci tautomerization. The corresponding nitronate anion, has 

also been implicated in decompositions. (460-461) 

This point has recently been addressed by us computationally in terms of 

reaction force analysis. (462) In the case of trinitromethane we found that 

rupture of a C-NO2 bond in the ground state is energetically less demanding 

than overcoming the activation barrier to aci-trinitromethane; the respective 

ΔE(298 K) are 37 and 45 kcal mol-1. Thus C-NO2 homolysis may be the 

preferred first step in decomposition.  To our knowledge, aci-trinitromethane 

has not been isolated, although there are reports that it may have been 

obtained but is quite unstable. (463-465)   
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Trinitromethanol 

 

Whereas trinitroethanol is widely used in synthesis (269) and is well-

characterized crystallographically (234), trinitromethanol is not known, as far as 

we are aware. Using reaction force analysis, we have recently analyzed 

trinitromethanol computationally. For trinitromethanol, we found the NO2 

groups in ground-state not to be in the propeller-like arrangement in contrast 

to trinitromethane. In trinitromethanol, one of them, e.g. NOaOb, was found to 

be nearly coplanar with the C-O-H portion of the molecule, while the other two 

were found to be approximately perpendicular to each other.  This permits O-

H···Oa hydrogen bonding as indicated by a H···Oa distance of 1.922 Å as 

opposed to the sum of the van der Waals radii (2.72 Å). (244)  It is to Oa that the 

hydrogen will migrate.  However, according to our gas phase calculations the 

result will not be an aci tautomer.  Instead, they are indicative for 

trinitromethanol breaking up into a weakly-bound complex of (O2N)2C=O and 

HOaNOb (Fig. 2.172), which is lower in energy by only 0.4 kcal mol-1 relative 

to the separate molecules.   

 

 

Figure 2.172. Decompositon of the elusive trinitromethanol into dinitromethanone and 
nitrous acid. 
 

This fragmentation has a very low activation barrier (10 kcal mol-1).  This 

barrier is less than the dissociation energy of the C-NOaOb bond alone (30 kcal 

mol-1) since a new bond, Oa-H is being formed and the C-O bond is being 

converted into a double bond rendering it plausible why trinitromethanol is 

not known as far as we know. 
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Chlorotrinitromethane 

 

Introduction 

 

Describing interactions of atoms and atomic groups in molecules is a 

fundamental chemical challenge. Any compound showing deviations from 

normal geometric parameters is useful for critically assessing the strengths and 

failings of chemical bond models used to explain experimental results and thus 

helps aiding their further development. (466) In addition, current computer 

simulations of molecular systems are limited by and require reliable 

experimental data for the accurate description of the energies of interacting 

molecules and forces between them. (467) A better understanding of molecular 

interactions has recently been shown to be important for the manipulation of 

molecular recognition processes involving halogen bonding (468-469) and the 

design of specific material properties. (269) One class of compounds displaying 

remarkable inter- as well as intramolecular effects encompasses molecules 

having the trinitromethyl group, with three nitro groups bonded to one carbon 

atom. Consisting of elements of Groups IV, V and VI, the properties of the 

trinitromethyl group are comparable to those of a Group VII element; early 

studies describing the chemical properties of α-halogen derivatives of 

trinitromethane have demonstrated the potential of the uncharged 

trinitromethyl moiety to behave as a pseudohalogen. (470) Today, experimental 

evidence supporting this notion include the description of pseudointerhalogen 

compounds like azidotrinitromethane (471-472) and cyanotrinitromethane (473) 

along with the series of α-halogen derivatives of trinitromethane (474) and its 

dimer hexanitroethane. (475) Structural data for the halogen derivatives of 

trinitromethane have been limited to theoretical calculations (476-479) and 

spectroscopic analyses. (480-481) However, the determination of the equilibrium 

structure of a polyatomic molecule using only spectroscopic information 

becomes increasingly difficult with the number of atoms. (482-483) The difficulties 

in the case of chlorotrinitromethane were discussed by Sadova et al. (487) 

Reliable structural data for α-halogen-substituted trinitromethane molecules in 

the solid state did not exist at the beginning of this work. An attempted X-ray 

structure determination has been reported for iodotrinitromethane, IC(NO2)3. 
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(106)  While this was the only representative amongst the halogen derivatives of 

trinitromethane retaining the crystalline state under standard conditions, the 

structure determination of iodotrinitromethane suffered from decomposition of 

several different single crystals exposed to the X-ray beam, considerably 

affecting the quality of the experimental data and precluding the possibility of a 

refinement of the individual parameters of the light atoms, resulting in a 

considerable scatter of the bond lengths. In regard to the trinitromethyl group 

as a pseudohalogen, chlorotrinitromethane holds a unique position amongst the 

halogen derivatives of trinitromethane. The question arises as to which 

halogen atom is most closely related to the C(NO2)3 group. Whereas the 

charges of the bromine and iodine atoms in the respective analogues are 

reported to be positive, (476, 484) there are contradictory estimates of the charge 

of the chlorine in chlorotrinitromethane, as being positive (476, 485) or negative. 
(106, 486) Experimental efforts to clarify this question were not successful, with 

neither positive nor negative mass spectra giving rise to parent ions even at 

low electron energies. (487) Another interesting point is that the structure of 

gaseous 1 derived from electron diffraction revealed the carbon-chlorine bond 

length (1.712 Å) to be the shortest yet found for a tetrahedral carbon. (486) In 

view of these findings, it seemed desirable to investigate single crystals of 

chlorotrinitromethane in order to obtain reliable geometrical data for the solid 

state.  
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Crystal Structure Analysis  

 

Chlorotrinitromethane crystallizes in the monoclinic space group P21/c with 

the asymmetric unit (Fig. 2.173a) consisting of one formula unit. The detailed 

structural parameters are given in the appendix (Chapter 4). 

The lengths of the C-N bonds joining the three nitro groups to the carbon 

atom [1.538 (2) Å - 1.544 (2) Å] are significantly greater than the normal C-N 

bond distance of 1.47 Å. (246) The independent N-C-N bond angles of the 

trinitromethyl group are smaller [105.96(11)° – 106.83(10)°] than the 

tetrahedral value whereas the corresponding N-C-Cl bond angles are larger 

[112.32 (10)° - 112.73 (10)°]. The three independent nitro groups of each 

molecule are identical in structure within the limits of error and display 

common geometry parameters; the C-N and N-O bonds within each group are 

coplanar, with the sum of the three bond angles around the nitrogen being 

360°. A propeller-like orientation of the nitro groups is observed, which 

minimizes repulsions between the oxygens on neighboring ones and which also 

allows for favourable intramolecular interactions.  Figure 2.173b shows short 

intergroup nitrogen···oxygen distances, substantially less than the sum of the 

van der Waals radii of nitrogen and oxygen (3.07Å), (244) suggesting attractive 

interactions, presumably dispersive as well as electrostatic in nature. The 

oxygen atoms (O2, O4, O6) that form close contacts to their neighbouring 

nitrogens (N1, N2, N3) lie beneath the plane defined by these nitrogens, on the 

side opposite to the chlorine (Fig. 2.173b). The other three oxygen atoms (O1, 

O3, O5) are located on the other side of this plane and display exceptionally 

short distances to the chlorine atom, with values substantially less than the 

sum of the van der Waals radii of oxygen and chlorine (3.27Å), (244) indicative of 

attractive interactions between these oxygens  and the chlorine (Fig. 2.173b). 

As mentioned earlier, the carbon-chlorine bond length of 1.6944 (14) Å is 

exceptionally short and will be discussed in more detail in the following 

section. 
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Figure 2.173. (a) ORTEP representation of the molecular structure of 1 in the crystalline 
state. The thermal ellipsoids are shown at the 50 % probability level. Selected bond lengths 
[Å] and angles [°]:  C-Cl 1.6944(14), C-N1 1.543(2), N1-O1 1.2135(18), N1-O2 1.2107(17), N2-
O3 1.2048(19), N2-O4 1.2158(19), N3-O5 1.2088(18), N3-O6 1.2148(19), O1-N1-C1 115.52(12), 
O2-N1-C1 116.21(12), O3-N2-C1 116.17(13), O4-N2-C1 115.38(13), O5-N3-C1 115.28(13), O6-
N3-C1 116.09(12), Cl-C-N1 112.32(10), N1-C-N2 105.96(11), O1-N1-O2 128.25(14), Cl-C-N1-
O1 -46.58(16), Cl-C-N1-O2 134.90(12). (b) View of chlorotrinitromethane along the chlorine 
carbon axis. Dashed lines indicate short intramolecular nitrogen···oxygen (yellow) as well as 
chlorine···oxygen (green) distances: contact distances are d(N1···O6) = 2.5713(19) Å, 
d(N2···O2) = 2.547(2) Å, d(N3···O4) = 2.5540(16) Å, d(O1···Cl) = 2.9388(12) Å, d(O3···Cl) = 
2.8973(12) Å, d(O5···Cl) = 2.9025(13) Å. (c) Unit cell packing of chlorotrinitromethane along 
the crystallographic b axis and a axis (d). Green dashed lines indicate short intermolecular 
chlorine···oxygen distances while yellow dashed lines indicate short intermolecular 
nitrogen···oxygen distances: d(Cl···O3i) = 2.9489(12)Å, d(N3···O4ii) = 2.9794(17)Å ; symmetry 
code: (i) x,3/2-y,1/2+z, (ii) x,1/2-y,1/2+z. 
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The crystal structure of chlorotrinitromethane consists of infinite one-

dimensional chains parallel to the crystallographic c axis and running in 

opposite directions along the crystallographic a- and b-axes. Intermolecular 

chlorine···oxygen and nitrogen···oxygen distances with values substantially less 

than the sums of the van der Waals radii of chlorine / oxygen (3.27Å) (244) and 

nitrogen / oxygen (3.07Å) (244) suggest  attractive interactions (Fig. 2.173c & 

Fig. 2.173d). Relative to the average conformation of monomeric 

chlorotrinitromethane in the gas phase, where C3 symmetry was assumed for 

refinement of the electron diffraction data, (486) the crystal structure monomer 

displays lower C1 symmetry. The nitro groups have a propeller-like orientation 

with torsion angles of 37.4°, 41.6° and 45.9°. Compared to the average gas 

phase torsion angles obtained from electron diffraction (49°) and ab initio 

calculations carried out in this study (42°), the torsion angle of 37.4° observed 

in the crystal structure reflects the intermolecular interactions in which the 

particular nitro group is involved. These secondary interactions result in a 

high crystal density of 2.0856(1) g cm-3, an increase of more than 20% 

compared to the density of 1.66 g cm-3 reported (488-489) for liquid 

chlorotrinitromethane. A further comparison of the individual parameters 

obtained from single crystal X-ray analysis, electron diffraction and ab initio 

calculations is provided in Table 2.30. 
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Table 2.30. Comparison of selected bond lengths and angles of 1 obtained from single 
crystal X-ray diffraction of the solid, and from gas phase electron diffraction and ab initio 
calculations. a 

 
 XRD ED (486) MP2/ccpVDZb 

d(C-Cl)  1.6944(14) 1.712 (4) 1.7205 
d(N1-O1)  1.2135(18) 1.213 (1) 1.2261 
d(N1-O2)  1.2107(17) 1.213 (1) 1.2221 
d(N2-O3)  1.2048(19) 1.213 (1) 1.2261 
d(N2-O4)  1.2158(19) 1.213 (1) 1.2221 
d(N3-O5)  1.2088(18) 1.213 (1) 1.2261 
d(N3-O6)  1.2148(19) 1.213 (1) 1.2221 
d(C-N1)  1.543(2) 1.513 (3) 1.5414 
d(C-N2)  1.5439(19) 1.513 (3) 1.5414 
d(C-N3)  1.538(2) 1.513 (3) 1.5414 
ω (Cl-C-N1) 112.32(10) 112.1 (0.5) 112.0 
ω (Cl-C-N2)  112.73(10) 112.1 (0.5) 112.0 
ω (Cl-C-N3)  112.53(10) 112.1 (0.5) 112.0 
ω (N1-C-N2) 105.96(11) - 106.8 
ω (N1-C-N3)  106.83(11) - 106.8 
ω (N2-C-N3)  105.96(11) - 106.8 
ω (Cl1-C1-N1-O1)  -46.58(16) - -43.3 
ω (Cl1-C1-N1-O2)  134.90(12) - 139.0 
φ (1st nitro group)   45.9 49 42.1 
φ (Cl1-C1-N2-O3)  -37.72(17) - -43.3 
φ (Cl1-C1-N2-O4)  143.00(12) - 139.0 
φ (2nd nitro group)   37.4 49 42.1 
φ (Cl1-C1-N3-O5)  -42.34(15) - -43.3 
φ (Cl1-C1-N3-O6)  139.23(12) - 139.0 
φ (3rd nitro group)   41.6 49 42.1 

a d = distance / Å, ω = angle / °, φ = torsion angle / °.  b this work. 
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The Carbon-Chlorine Bond Length  
 

A Cambridge Structural Database search was carried out to provide a reference 

for evaluating the observed carbon-chlorine bond length of 1.6944(14) Å. The 

search produced 575 hits for comparable bonds in other molecules with 

chlorines attached to tetra-coordinated, tetrahedral carbons (Fig. 2.174). The 

shape of the bond length distribution may be compared to the asymmetric 

shape of the bond energy profile commonly used to describe the relationship 

between the potential energy and the distance between two covalently-bonded 

atoms where distortions to longer distances are energetically less demanding 

than those to equivalently shorter ones, resulting in longer bonds appearing 

more frequently than shorter ones.  Examination of the bond length values in 

Figure 2.174 clearly reveals that the observed carbon-chlorine bond length in 

chlorotrinitromethane is exceptionally short.  

 
Figure 2.174. C-Cl bond length distribution for chlorine atoms attached to four-coordinate 
carbon atoms in a tetrahedral environment from 575 hits (Cambridge Structural Database). 
Shortest: 1.716 Å; longest: 1.906 Å; median: 1.771 Å. 
 

As a first step in seeking to understand the reasons for the short carbon-

chlorine bond length in chlorotrinitromethane, a natural bond orbital analysis 

(NBO) (490, 491) was carried out for an isolated chlorotrinitromethane molecule in 

the gas phase (Table 2.31). The results reveal a slight positive charge on the 
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chlorine atom, tetrahedral hybridization of the carbon, averaging sp3.0, and a 

non-polar carbon-chlorine bond. Thus, the bond shortening can not be 

explained in terms of a higher s character of the carbon atom.  
 

Table 2.31. Results of the NBO analysis of chlorotrinitromethane.a 
atom NBO charge bond hybridization occupancy 
Cl +0.149 C-Cl Cl: sp4.56d0.06 Cl: 49.5 % 
C +0.395 C-Cl C:  sp2.62d0.02 C:  50.5 % 
N1, N2, N3 +0.576 C-N1 C:  sp3.12d0.02  
O1, O3, O5 - 0.380 C-N2 C:  sp3.12d0.02  
O2, O4, O6 - 0.377 C-N3 C:  sp3.12d0.02  
   ø (C): sp2.99  

aMP2/cc-pVDZ, (C3 symmetry). 
 

A possible resonance interpretation of the bond shortening in the carbon-

chlorine bond involves hyperconjugation yielding the classical valence bond 

description (Fig. 2.175): 

 
Figure 2.175. Valence bond descripton of chlorotrinitromethane. 

 
The construction of an increased valence resonance structure (Fig. 2.176) 

allows for a better agreement to the NBO results compared to the Lewis 

structures of Figure 2.175. (492) It accounts for the observed elongation of the 

carbon nitrogen bonds as well as the sp3 hybridization of the carbon atom. 
 

 
Figure 2.176. Increased valence bond description of chlorotrinitromethane. 
 

However it should follow from these valence bond descriptions that other 

chloromethanes with strongly electron-withdrawing substituents, such as Cl-

C(CN)3 and Cl-CF3, should also have anomalously short C-Cl bonds provided 

that the hybridization of the central carbon atom as well as the contributions of 

hyperconjugation are comparable. Although these conditions are fulfilled 
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according to the results of the NBO analyses for these molecules (Table 2.32), a 

comparison of the carbon chlorine bond length values in Table 2.33 shows that 

a similar bond shortening is not observed in Cl-C(CN)3 or Cl-CF3.  
 

Table 2.32.  Comparison of the NBO analysis results of chlorotrinitromethane, chloro-
tricyanomethane and chlorotrifluoromethane.  

molecule atom NBO charge bond hybridization occupancy energy 

Cl-C(NO2)3 Cl +0.149 C-Cl Cl: sp4.56d0.06 Cl: 49.5 % 52.9 a) 

 C +0.395 C-Cl C:  sp2.62d0.02 C:  50.5 %  

 N1, N2, N3 +0.576 C-N1 C:  sp3.12d0.02   

 O1, O3, O5 - 0.380 C-N2 C:  sp3.12d0.02   

 O2, O4, O6 - 0.377 C-N3 C:  sp3.12d0.02   

    ø (C): sp2.99   

Cl-C(CN)3 Cl +0.067 C1-Cl Cl: sp6d0.06 Cl: 49.8 % 18.3 b) 

 C1 - 0.245 C1-Cl C1: sp4.33d0.02 C:  50.2%  

 C2, C3, C4 +0.314 C1-C2 C1: sp2.68d0.01   

 N1, N2, N3 - 0.255 C1-C3 C1: sp2.68d0.01   

   C1-C4 C1: sp2.68d0.01   

    ø (C1): sp3.09   

Cl-CF3 Cl - 0.046 C-Cl Cl: sp5.17d0.07 Cl: 55.6 % 39.8 c) 

 C +1.276 C-Cl C:  sp2.73d0.03 C: 44.4 %  

 F1, F2, F3 - 0.410 C-F1 C:  sp3.05d0.03   

   C-F2 C:  sp3.05d0.03   

   C-F3 C:  sp3.05d0.03   

    ø (C): sp2.97   
Sum of intramolecular donor-acceptor interactions: a) LP (Cl) →  σ*(C1-N1,2,3) / kcal mol-1 b) LP 
(Cl) →  σ*(C1-C2,3,4) / kcal mol-1 c) LP (Cl) →  σ*(C1-F1,2,3) / kcal mol-1. MP2/cc-pVDZ. 

 

Table 2.33.  Comparison of carbon chlorine bond lengths in related molecules.a 

molecule method temp. / K d(C-Cl) / Å state reference 
Cl-C(NO2)3 X-ray 

ED 
Calc. 
Calc. 
Calc. 
Calc. 

100 
318  

1.6944(14) 
1.712 (4) 
1.721 
1.708 
1.720 
1.713 

solid 
gas 
gas 
gas 
gas 
gas 

this work 
(486)  
(482), B3LYP/6-311+G(d,p) 
(482), MP2/6-31G(d,p) 
this work, MP2/ccPVDZ 
this work, B3PW91/6-31G(d,p) 

Cl-C(CN)3 X-ray 
Calc. 

r.t. 1.78(1) 
1.809 

solid 
gas 

(493) 
this work, MP2/ccPVDZ 

 Calc.  1.818 gas this work, B3PW91/6-31G(d,p) 
Cl-CF3 Calc.  1.765 gas this work, MP2/ccPVDZ 
 Calc  1.772 gas this work, B3PW91/6-31G(d,p) 

a X-ray = X-ray diffraction, ED = electron diffraction, Calc. = calculated value. 
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Although contributing, it follows that hyperconjugation seems not to be the 

dominant effect for the observed bond shortening in chlorotrinitromethane. 

Several approaches to the concept of short bonds may be taken, (494) or to bond 

length in general. In 1941, Schomaker and Stevenson proposed a relationship 

between the length of a covalent bond and the covalent radii, as well as 

electronegativities of the atoms. (495) In the approximation that permits 

polyatomic groups to be regarded as pseudo-atoms, the corresponding group 

electronegativities (χG) may be considered. These share the intrinsic problems 

associated with assigning electronegativities to atoms, (496) but help to 

understand the effects of substituents on the reactivity and physical properties 

of molecules. However, reliable electronegativity data for the trinitromethyl 

group do not exist at present. To explain the influence of substituents on 

molecular properties, another possibility is the linear free energy relationship 

approach, first demonstrated in the 1930s by Hammet for the dissociation of 

substituted benzoic acids. (497-498) Its alkyl counterpart was kinetically derived 

by Taft in the 1950s. (499) Hine and Bailey reported the Taft polar constant for 

the trinitromethyl group (σ* = 4.54) to be the largest determined for any 

electrically neutral group. (199) A classic interpretation of σ* is that it represents 

the electron-donating or -withdrawing power of a substituent. (500) The same 

perception is held for the electronegativity of a group, which indicates a 

possible correlation between χG and σ*. Indeed, it was reported (501) that such a 

relationship exists and it was concluded ‘that σ* does represent some kind of 

electronegativity of a group with a steric component. (506) Assuming a positively 

charged chlorine atom because of the electron-withdrawing properties of the 

trinitromethyl group, it seems reasonable that the short intramolecular Cl···O1, 

Cl···O3 and Cl···O5 distances observed in chlorotrinitromethane can be 

attributed to electrostatic attractions between the chlorine and these oxygen 

atoms. To gain further insight into the roles of such interactions in this 

molecule, we studied its electrostatic potential. 
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Molecular Electrostatic Potential Analysis 
 

V(r), the electrostatic potential that is created at any point r by a molecule’s 

nuclei and electrons, is given in Figure 2.177, 

 

    A

A A

Z ρ( )dV( ) = 
′ ′

−
′− −∑ ∫
r rr

R r r r
     

Figure 2.177. V(r) is the electrostatic potential at any point r, ZA is the charge on nucleus A, 
located at RA, and ρ(r) is the electronic density function. 
 

in which ZA is the charge on nucleus A, located at RA, and ρ(r) is the electronic 

density function. V(r) is a physical observable, which can be determined 

experimentally (502-503) as well as computationally. Our interest is in V(r) on the 

molecule’s surface, which we take to be the 0.001 electrons bohr-3 contour of 

ρ(r), as suggested by Bader et al. (504). V(r) computed on this surface is 

designated VS(r), and its most positive (maximum) and most negative 

(minimum) values as VS,max and VS,min. 

An interesting and important feature of VS(r) for many molecules containing 

Group IV – VII atoms is the presence of a localized region of positive potential 

on the extension of one or more of the covalent bonds to that atom. (505, 506)  

This is known as a positive σ-hole. (507) It develops when an orbital on that 

atom is involved in forming a covalent bond resulting in an electron deficiency 

in the outer (noninvolved) lobe of that orbital.  Positive σ-holes can interact 

electrostatically with negative sites on other molecules (e.g. the lone pairs of 

Lewis bases) to form noncovalent bonds that are often similar in strength to 

hydrogen bonds. (508)  These σ-hole bonding interactions are highly directional, 

since they are along the extensions of the covalent bonds that gave rise to the 

σ-holes.  

Experimental indications of such interactions were found already quite some 

time ago, spectroscopically (509) and crystallographically, (510-511) and they are 

becoming increasingly important in molecular biology (512) and in materials 

science. (269, 474-475) When the σ-hole is on a Group VII atom, the interaction is 

often called “halogen bonding”. (474-475, 513, 518) The maximum potential VS,max 

associated with a σ-hole increases with the polarizability of the Group IV – VII 

atom and with the electron-attracting power of the remainder of the molecule.  
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Accordingly, positive σ-holes are less likely to be found on the lightest (least 

polarizable) atoms in Groups IV – VII (i.e. C, N, O and F), although they do 

develop if the remainder of the molecule is sufficiently electron-withdrawing. 
(412) Chlorotrinitromethane illustrates well the importance of both inter- and 

intramolecular nonbonded interactions.  Figure 2.173 shows that there are 

several of each type, the origins of which can be understood by examining the 

electrostatic potential on the molecule’s surface.  Four views of this are in 

Figure 2.178, and its most positive and most negative values (the VS,max and 

VS,min) are listed in Table 2.34 along with the key inter- and intramolecular 

close contacts. 

 

Figure 2.178. The molecular electrostatic potential of Cl−C(NO2)3 (in kcal mol-1) computed 
on the 0.001 electrons bohr-3 isodensity surface, with chlorine facing the reader (a), facing 
away from the reader (b) and pointing to the top right (c, d). The colors form a continuum 
from most positive, blue (greater than or equal to 30 kcal mol-1), to most negative, red (equal 
to or more negative than -9.4 kcal mol-1), with blue, light blue and green increasingly less 
positive, and yellow and red as negative. Note the strongly positive σ-hole on the chlorine 
surface (blue), on the extension of the C−Cl bond, and the weak one (green) on the carbon 
(middle of top right view) on the extension of the Cl−C bond.  Color bars giving the 
continuum scales in atomic units are given to aid the reader (1 atomic unit = 627.5 kcal mol-

1). 
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Table 2.34.  Inter- and intramolecular close contacts in chlorotrinitromethane, determined 
crystallographically, and most positive and negative values of electrostatic potential on 
molecular surface, VS,max and VS,min, obtained from B3PW91/6-31G(d,p) calculations.  
Numbering of atoms is as in Figure 2.173.  Sums of van der Waals radii:  Cl···O:  3.27 Å, 
N···O:  3.07 Å. 

Intermolecular  
close contacts / Å a         

Intramolecular  
close contacts / Å b    

VS,max/kcal mol-1 VS,min/kcal mol-1 

Cl···Oodd: 2.9489 Cl···O1: 2.9388 Cl:  35.5 (σ-hole) O1:  −11.6 
 Cl···O3: 2.8973 C:  11.3 (σ-hole) O3:  −11.6 
 Cl···O5: 2.9025 N:  36.2, 11.9  O5:  −11.6 
N···Oeven: 2.9794 N1···O6: 2.5713 N:  36.0, 11.8  O6:  −12.4 
 N2···O2: 2.547 N:  35.9, 11.9 O2:  −12.4 
 N3···O4: 2.5540  O4:  −12.4 
Notes. a Figure 2.173c-d. b Figure 2.173b. 

 

Regarding the question of the charge on the chlorine, mentioned in the 

introduction, we find the chlorine surface to be entirely positive (Fig. 2.178), in 

marked contrast to the chlorine in, e.g., methyl chloride, which is entirely 

negative. (513)  Specifically, there are four strong positive sites shown in blue, on 

the chlorine and on the outer side of each nitrogen, all having VS,max of about 36 

kcal mol-1.  The one on the chlorine is a positive σ-hole, on the extension of the 

C−Cl bond.  These four positive regions participate in the intermolecular 

nonbonded interactions seen in Fig. 2.173c-d, each of which is with a negative 

site on the outer side of an oxygen atom on a neighboring molecule.  The Cl···O 

intermolecular interactions are with the sites having VS,min of −11.6 kcal mol-1, 

the N···O are with the VS,min of −12.4 kcal mol-1.  It is known that a σ-hole 

interaction R−X···B (B = Lewis base) is likely to affect the R−X bond, 

sometimes making it longer, with a lower vibration frequency (red shift), other 

times shortening it and increasing the vibration frequency (blue shift). (514, 515)  

Accordingly, we examined whether an intermolecular Cl···O σ-hole bond could 

be responsible for the anomalously short C−Cl bond. A B3PW91/6-31G(d,p) 

gas phase optimization of the geometry of the [ClC(NO2)3]2 dimer formed by a 

Cl···O σ-hole interaction showed only a very small blue shift of the C−Cl bond, 

corresponding to a bond shortening of 0.002Å. A comparison of the calculated 

(B3PW91/6-31G(d,p)) C−Cl stretching frequency of methyl chloride (743.9 

cm-1) and chlorotrinitromethane (1041.8 cm-1) shows that the trinitromethyl 

group causes a substantial increase (~ 300 cm-1) indicating bond shortening of 
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the isolated molecule in the gas phase. This result together with the small 

difference between the experimentally determined gas phase and solid state 

values of the C−Cl bond (Table 2.33) indicates that the primary factor causing 

the observed shortening is most likely intramolecular. It was already pointed 

out that while the chlorine VS,max is on its outermost side, the entire surface of 

the chlorine is positive (Fig. 2.178).  The propeller-like orientation of the nitro 

groups in 1 puts three of the oxygens (O1, O3 and O5) close to the chlorine (Fig. 

2.173); the Cl···O separations are about 2.90 Å and the Cl−C−N−O dihedral 

angles average 42° (Table 2.30). Thus the electrostatic attractions between the 

negative potentials on the inner sides of these oxygens (Fig. 2.178) and the 

positive chlorine are presumably the cause of the unusual shortening of the 

C−Cl bond.These Cl···O attractions would of course be maximized if the nitro 

groups were exactly coplanar with the C−Cl bond.  We carried out a 

B3PW91/6-31G(d,p) calculation in which we forced this to be the case.  The 

Cl···O separations decrease by 0.15 Å compared to the optimized geometry and 

the C−Cl bond is indeed shortened 0.013 Å.  However this constrained 

structure is less stable by 6 kcal mol-1 than the optimized one, because it 

eliminates the intramolecular close contacts between the nitrogens and O2, O4 

and O6.  These reflect electrostatic interactions between the respectively 

positive and negative inner sides of the nitrogens and these oxygens (Fig. 

2.173b).  The relevant nitrogen VS,max  are only 12 kcal mol-1, compared to their 

other VS,max  of 36 kcal mol-1, because they have been partially neutralized due 

to the proximity of the oxygens; for the analogous reason, inner-side VS,min of 

these oxygens cannot even be identified. With the observed structure being in 

equilibrium where the forces are balanced and the potential energy is 

minimized, our findings are in support of an intramolecular electrostatic 

attraction between the positively charged chlorine atom and the negatively 

charged oxygen atoms (O1, O3, O5). Together with their axial symmetry 

around the C−Cl bond, these interactions are reflected in the anomalously short 

character of this bond. 

Of interest, the data of Levchenkov et al. show a comparable shortening of the 

C−F and C−Br bonds in F−C(NO2)3  and Br−C(NO2)3. (482)  Our calculated 

B3PW91/6-31G(d,p) electrostatic potentials on the molecular surfaces of  
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fluoro- and bromotrinitromethane show the surfaces of the halogen atoms to be 

entirely positive (Figs. 2.179, 2.180), just like  the chlorine in Cl−C(NO2)3. 

 

Figure 2.179. Computed electrostatic potential on the molecular surface of F−C(NO2)3.  The 
fluorine atom is facing the viewer.  The color ranges of the electrostatic potential, in kcal 
mol-1, form a continuum from royal blue (more positive than 14) to red (more negative than -
10).  The surface of the fluorine is completely positive, with the most positive value on the 
extension of the C−F bond (VS,max = 15 kcal mol-1).  

 
Figure 2.180. Computed electrostatic potential on the molecular surface of Br−C(NO2)3.  
The bromine atom is facing the viewer.  The color ranges of the electrostatic potential, in 
kcal mol-1, form a continuum from royal blue (more positive than 14) to red (more negative 
than -10). The surface of the bromine is completely positive, with the most positive value on 
the extension of the C−Br bond (VS,max = 43 kcal mol-1). 
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A quantitative measure of the very strong electron-withdrawing power of the 

three NO2 groups can be obtained by comparing the corresponding Taft polar 

constants (σ*), which are 4.54 (516-517) for the C(NO2)3 group vs 3.19 (523) for 

fluorine, 2.94 (523) for chlorine and 2.80 (523) for bromine.  It seems likely, 

therefore, that the predicted (482) short F−C and Br−C bond lengths in 

F−C(NO2)3 and Br−C(NO2)3 can also be explained in terms of attractive 

electrostatic interactions, F···O and Br···O. 
 

Chloromethanes – Concluding Remarks 

 

The preceding discussion of the chlorotrinitromethane molecule has 

emphasized the striking effects that intramolecular interactions involving NO2 

groups can have upon molecular structures and properties. More recently, 

Macaveiu, Murray and Politzer examined this view in more detail 

computationally. (518)  Chloromethane, Cl-CH3, was selected as a reference 

molecule and the consequences of progressively introducing nitro groups were 

examined.  For comparison, the corresponding cyano and fluoro derivatives 

were also included yielding a total of ten molecules that were included in this 

study:  Cl-CH3, Cl-CHn(NO2)3-n, Cl-CHn(CN)3-n and Cl-CHnF3-n, (n = 0, 1 and 

2).  The focus of this study has been not only upon the molecular geometries 

but also the accompanying changes in the strengths of the carbon-chlorine 

bonds. The detailed procedure and findings of the latter can be found in the 

original article. (524) Here we present a summary of significant findings in 

regard to the potential of the nitro group in stabilizing intramolecular contacts.  

As pointed out earlier, a significant feature of trinitromethane is the orientation 

of the NO2 groups.  Electron diffraction (486), rotational spectral analysis (519) 

and X-ray diffraction (133) have successively shown that they are in a propeller-

like arrangement (Figure 2.181); the angle by which the nitro groups are 

rotated out of the respective H-C-N planes was found to be 44º 

crystallographically (133) and 42º computationally (459).  
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Figure 2.181. Structure of trinitromethane, optimized using the density functional B3PW91 
procedure at the 6-311G(3d,2p) level, displaying a propeller-type arrangement of the nitro 
groups. 
 

Figure 2.181 shows that the oxygens and the nitrogens are in three distinct 

planes, with the one containing the nitrogens being between the other two.  

This propeller-like structure is found for the trinitromethyl group in other 

molecules containing this group as well, and has been attributed to 

intramolecular electrostatic interactions between neighbouring nitrogen- and 

oxygen atoms involving the oxygens in the lowest plane (Fig. 2.181). (234, 520) In 

the case of the chlorotrinitromethane molecule it was concluded that the 

anomalous shortening of the carbon chlorine bond was due to intramolecular 

interactions between the chlorine atom and the oxygens in the upper (closer) 

plane after a detailed analysis of its molecular electrostatic potential. (526)  In the 

present series of molecules,  molecular electrostatic surface potential 

considerations revealed the chlorine in chloromethane to be entirely negative 

(VS,min = −16.6 kcal mol-1)  and progressively becoming less negative as 

fluorines were introduced with a positive VS,max appearing on the surface of the 

chlorine along the extension of the C-Cl bond already in chlorofluoromethane 

(+3.8 kcal mol-1), becoming stronger in chlorodifluoromethane (+8.9 kcal mol-

1) and chlorotrifluoromethane (+16.3 kcal mol-1).  In the fluorine series, 

therefore, the chlorine was shown to have both positive and negative regions 

on its surface. The same was found also to be the case for chlorocyanomethane, 

but in the other cyano systems and in all of the nitro derivatives, the chlorine 

was shown to have no VS,min and its surface to be essentially totally positive.  
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Its VS,max  was found to increase as cyano and especially nitro groups were 

added, to a high of +35.5 kcal mol-1 in chlorotrinitromethane.  It was suggested 

that the electrostatic attraction between this very positive chlorine and the 

three negative upper oxygens contributed to the short carbon chlorine bond in 

chlorotrinitromethane.  The most notable interactions were found to be the 

1,4-contacts Cl···O and the N···O, which are well below the sums of the 

respective van der Waals radii.  By comparison between the nitro derivatives 

and the other molecules, a key structural feature is the torsional possibilities 

available only to the nitro groups.  In chloronitromethane, the nitro group was 

found to be in the Cl-C-N plane (Fig. 2.182). Chlorodinitromethane was found 

to have one nitro group coplanar with the Cl-C-N plane and the other rotated 

out of the corresponding plane by 70º. The propeller-type arrangement of the 

nitro groups in chlorotrinitromethane mentioned earlier and found in the 

crystal was confirmed with all three nitro groups rotated out of their respective 

Cl-C-N planes by 42º (Fig. 2.182).  These conformations reflect and are 

stabilized by favourable intramolecular electrostatic interactions.   

 

 
Figure 2.182. Structure of chloronitromethanes, optimized using the density functional 
B3PW91 procedure at the 6-311G(3d,2p) level. Chlorodinitromethane has one nitro group 
coplanar with the Cl-C-N plane (left), chlorodinitromethane has one nitro group is coplanar 
with the Cl-C-N plane and the other rotated out of the corresponding plane by 70° (middle) 
and chlorotrinitromethane displays a propeller-type arrangement of the nitro groups, 
rotated out of their respective Cl-C-N planes by 42° (right). The conformation of the 
molecules reflects N···O, Cl···O and H···O attractive interactions, as well as O···O repulsions. 
 

 

A closer inspection of these interactions within the series of 

chloronitromethanes now yields additional support for the interpretation of 

carbon chlorine bond shortening due to electrostatic attraction between Cl···O, 

since an increase of the carbon chlorine bond length in chlorodinitromethane 
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and chloronitromethane was observed as the chlorine become less positive and 

was interacting with only one oxygen in each case.  Further evidence was 

provided by rotating the nitro group in chloronitromethane out of its 

equilibrium position coplanar with the carbon chlorine bond.  A change of the 

Cl-C-N-O dihedral angle from 0º to 90º was shown to successively cause an 

increase of the Cl···O separation and a subsequent lengthening of the carbon 

chlorine bond length from 1.744 Å (0º) to 1.758 Å (90º).  Forcing the Cl-C-N-O 

dihedral angles in chlorotrinitromethane to be 0° was shoen to also decrease 

the Cl···O distances and further shortened the C-Cl bond.  However the 

molecular energy increased, because of the unfavourable effect upon the 

interactions between the nitro groups. Obviously, the propeller-type 

arrangement of the nitro groups in chlorotrinitromethane has two favourable 

consequences:   

 

(1)  It promotes the attractive interactions between the nitrogens and the 

neighboring lower oxygens. 

(2)  It increases the O···O separations and hence diminishes repulsions 

between the lower oxygens on different nitro groups. 

  

In the case of the cyano series, comparable interactions between the chlorines 

and the cyano nitrogens cannot take place because the latter are constrained by 

the C-C≡N linearity to be relatively far from the chlorines.  The Cl···N 

distances were found to be 3.63 Å in Cl-C(CN)3, considerably more than the 

sum of their van der Waals radii of 3.25 Å.  In the fluoro series, the 

approximately 2.5 Å Cl···F separations were shown to be governed primarily by 

the Cl-C-F bond angles. Though the distances were found to be less than the 

sum of their van der Waals radii, they were not taken into account because in 

this case 1,3 contacts have to be considered and they are intrinsically governed 

by distances less than the sum of the van der Waals radii and cannot be called 

indicative for attractive interactions. Furthermore, the surface potentials 

supported the notion that no significant Cl···F attraction was present. In view 

of these findings, we suggest that the nitro group can play a unique role in 

intramolecular interactions.   
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This uniqueness comes from not one but a combination of factors:   

 

(1)  It includes three centers of charge, one positive (the nitrogen) and two 

negative (the oxygens).   

(2)   It is one of the most strongly electron-withdrawing groups, meaning 

that it can create an additional positive center or centers.   

(3)   It has rotational options that allow it to maximize the possibilities for 

favourable electrostatic interactions and minimize unfavourable ones.  

The effects of these factors multiply when a molecule contains more than 

one nitro group in close proximity.  

 

As a consequence, only the chloronitromethanes have the unusual feature that 

intramolecular nonbonded Cl···O interactions are actually reinforcing covalent 

C-Cl bonds.  This leads to the C-Cl bond energies being higher than expected, 

although they do decrease as additional nitro groups are introduced, as 

anticipated.  Since the C-Cl bond lengths decrease in the same direction, we see 

that the chloronitromethanes (and Cl-CH3) do not show the common inverse 

relationship between bond energy and bond length. 



Chapter 2.4 – Trinitromethanes 
 

- 308 - 

Experimental 
 

All calculations were carried out using the Gaussian G03W (revision B.03, 

NBO version 5.G) program package. The molecular electrostatic potentials 

were visualized using the program MOLISO. (521) Cambridge Structural 

Database (CSD version 5.29 (November 2007), search criteria: angle around 

the carbon atom 109.5° ± 3° and substitution pattern of the carbon atom with 

at least two substituents not being hydrogen / deuterium. Methylene chloride, 

chloroform and tetracarbonchloride containing structures were excluded in 

those cases where the corresponding molecules are part of the structure as 

solvent molecules in order to make sure that no structures are included within 

the histogram containing disordered solvent molecules frequently obtained in 

these mixed crystals. Not included are furthermore structures containing 

disorder, R value greater ten percent, errors, polymeric compounds, ions and 

those structures where three dimensional coordinates are not available as well 

as powder structures.Instrumentation and Measurement. 13C and 15N NMR 

spectra were recorded using a Jeol EX 400 instrument operating at 100.6 MHz 

(13C) and 40.5 MHz (15N). All chemical shifts are quoted in ppm relative to 

TMS (13C) or nitromethane (15N). The single crystal X-ray diffraction data 

were collected using an Oxford Xcalibur3 diffractometer equipped with a 

Kappa CCD detector. The MoKα1 radiation (λ = 0.71073 Å) was generated 

from a Spellman generator (50 kV, 40 mA) and focussed using a graphite 

collimator. The data collection was undertaken using the CrysAlis CCD 

software and data reduction was performed using the CrysAlis RED software. 

The structures were solved using SIR-92 and refined using SHELXL-97 

implemented in the program package WinGX and finally checked using 

PLATON. Chlorotrinitromethane was prepared from the reaction between 

trinitromethane and concentrated hydrochloric acid. (522) 13C NMR (C6D6, 

25°C) δ: 126.5 (bs, -C(NO2)3); 15N NMR (C6D6, 25°C) δ (nitromethane): -36.2 (s, 

-NO2). Single crystals of 1 were obtained on cooling the liquid to -30°C. A cold 

room tempered at -17°C was used to select suitable crystals for X-ray analysis 

in order to prevent thermal decomposition.  Details of the single crystal X-ray 

diffraction experiment are listed in the appendix (Chapter 4).
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Chapter 3    

 

Summary 

 
Today, the traditional procedure for formulating new energetic materials is 

largely guided by intuition, experience and testing, relying foremost on trial 

and error. In turn, a better understanding of the basic principles and 

relationships which are necessary to predict the properties of an energetic 

material are highly desirable in order to be able to more rationally design novel 

compounds with tailored properties and facilitate the development of next 

generation energetic materials. However, exploiting these possibilities requires 

an understanding of the properties of the individual molecules, their interaction 

amongst each other and to surrounding matter as well as an understanding of 

kinetic energy release and dynamics of initiation and decomposition processes. 

This bottom-up approach to energetic materials would allow for a more 

fundamental understanding of the evolution of properties with the size of the 

system as well as an understanding of the effects of the interaction of matter at 

different molecular-length scales with external stimuli, and finally a detailed 

understanding of the functionalities of matter at molecular-length scales. In 

this context, the scope of this thesis was defined by two major issues:  

 

1. Gaining a deeper understanding of the basic principles of structure and 

matter as key to a more rational design process and the directed synthesis of 

novel compounds with tailored properties.  

 

2. Development of a molecule with potential to replace RDX (hexahydro-1,3,5-

trinitro-1,3,5-triazine), which is the most important highest energy explosive 

produced on a large scale. 

 

In order to shed light on the question how performance arises from molecular 

parameters, an in-depth investigation of the trinitroethyl functionality (-CH2-

C(NO2)3) - chosen as model system - was conducted. The scope of this approach 
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covers both qualitative and a quantitative aspects. Various novel compounds 

carrying this moiety were synthesised, fully structurally characterized and 

screened for potential use as energetic materials. A closer analysis of these 

results and related molecules containing this fragment and available in the 

open literature revealed a key result of this thesis: 

Based on the crystal structures reported in this work and available in the 

literature, we find that trinitroethyl mediated intermolecular interactions like 

dipolar nitro group interactions and hydrogen bonding of the acidified 

methylene-type protons govern mainly the molecular packing of these 

compounds yielding high-crystal-density polymorphs with promising explosive 

performance parameters.  Whereas compounds based on the elements carbon, 

hydrogen, nitrogen and oxygen usually display density values in the range of 

1.3 g cm-3 to 1.4 g cm-3, compounds based on the same elements and containing 

the trinitroethyl functionality display density values of 1.8 g cm-3 on average 

and approaching 2 g cm-3. This result is useful because two very important 

performance properties of an energetic material are directly related to density: 

the velocity of detonation is proportional to the density and the detonation 

pressure is proportional to the density squared. 

 

• Taking advantage of the above mentioned concept of obtaining higher 

densities through the use of the trinitroethyl functionality, it was possible to 

synthesise BTAT (Bis-(2,2,2-Trinitroethyl)-3,6-diAmino-1,2,4,5-Tetrazine, 

sum formula C6H6N12O12), which represents a structural isomer of CL-20 (sum 

formula C6H6N12O12). While BTAT is less difficult to synthesise compared to 

CL-20, its performance characteristic is superiour to RDX by 15% and it 

displays a better oxygen balance value (BTAT: -10.9%, RDX: -21.6%) yielding 

smokeless combustion and less toxic fumes on decompositon. The compound is 

water insoluble in contrast to energetic salts, a prerequisite to protect the 

ground and one important environmental advantage amongst the qualification 

criteria for new HEDM. Increased performance and the results of initial safety 

characteristics render BTAT to be a suitable candidate in the process of 

replacing RDX subject to further investigations currently being carried out 

together with our collaboration partners.  
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• As far as thermal stability of trinitroethyl-derivatives is concerned, it was 

generally assumed that the decomposition temperatures of molecules carrying 

this functionality was generally limited to 150°C for solid compounds and 

100°C for liquid compounds. In contrast, we were able to show that not only 

decomposition temperatures can be significantly higher but also thermal long 

term stabilities (140°C / 48h) showed no evidence of decomposition both in the 

case of solid and liquid compounds. BTAT and BTHC are shown to be the 

molecules offering the best trade-off between energy capability and thermal 

stability. Next to its excellent thermal stability as well as its positive oxygen 

balance value of +3.6%, BTHC displays the rare and desirable property of 

being a solid with a reasonable low melting point and a liquid range of greater 

than 100°C while at the same time being insensitive according to BAM 

standards rendering a possible use as safe melt-castable explosive.  The 

tendency of conglomerate crystallization of BTHC is a further important point 

allowing for the specific design of its performance as well as sensitivity 

properties.  

 

• The synthetic approaches towards novel engergetic materials preferentially 

containing the tetrazole moiety were often restricted to polar solvents like 

water or methanol due to the solubility behaviour of this nitrogen rich 

heterocycle. Within this thesis we have developed a series of tetrazole 

derivatives which are readily soluble in standard organic solvents and may 

serve as valuable educts for the manyfold chemical reactions possible in these 

solvents to overcome this former drawback.  

 

• Of all the ionic energetic materials containing the trinitromethanide anion, 

only one compound hydrazinium nitroformate (HNF) has gained practical 

application as ingredient of propellant formulations so far. We have found a 

novel polymorph of HNF displaying a higher density compared to the 

previously reported one and we have investigated a series of novel compounds 

containing the trinitromethanide anion. Amongst these compounds, 

triaminoguanidinium nitroformate (TAGNF) was predicted to display superior 

performance characteristics in terms of detonation pressure, velocity of 

detonation and the highest positive heat of formation. Furthermore TAGNF  
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has been predicted to release the largest amount of gaseous decomposition 

products within the series of all known trinitromethanide salts rendering a 

possible use as high performance, halogen-free ingredient of propellant 

formulations that would avoid the problematic formation of hydrogen chloride 

from the use of ammonium perchlorate frequently used today. Furthermore, its 

water solubility would allow using concentrated solutions of it while at the 

same time reducing its sensitivity characteristics. 

 

Our investigations in developing a more fundamental understanding of the 

evolution of properties with the size of the system - from molecular to 

macroscopic scale – was often based on structure determination in the solid 

state using single crystal X-ray diffraction. Aside from the results and 

conceptual advances mentioned above, it was possible to shed ‘light’ on a 

variety of other questions and determine the structures of several interesting 

compounds including:  

 

• The structure of Mercury fulminate (Hg(CNO)2), a historically important 

compound that allowed Alfred Nobel to establish the safe use of Dynamite 

could finally be revealed more than 300 years after it’s first synthesis and it was 

established that the fulminate group is bonded to the mercury atom via the 

carbon atom. 

 

• The structure of the free base guanidine (C1N3H5) could be determined. 

Guanidine was considered to be the strongest organic and neutral base until 

the so-called proton sponges were developed. It could be demonstrated that its 

structure, which was subject to a long standing and controversial discussion is 

in fact not completely planar in contrast to its protonated form, the 

guanidinium cation, rendering Y-aromaticity to be the cause for its basic 

behaviour. 
 

• The structure of hexaazidocylotriphosphazen (P3N21) could be determined 

representing the first structural characterisation of a binary molecule 

composed only of the elements phosphorus and nitrogen. The presence of 

covalently bonded nitrogen atoms being surrounded by covalently bonded 
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nitrogen atoms in this structure is a rare example and permits a very accurate 

experimental estimate for the size of the van der Waals radius of a nitrogen 

atom. 

 

• The structure determination of the pseudo-interhalogencompound 

chlorotrinitromethane revealed an exceptionally short carbon-chlorine bond 

and led to the investigation of its possible cause using a concerted approach 

based on single crystal X-ray diffraction techniques and theoretical 

investigations of the molecular electrostatic potential. We observed that 

electrostatic interactions between neighbouring atoms to atoms of that bond 

are useful to clarify the cause of the tight bond. This in turn led to further 

studies that have shown how intra- and intermolecular interactions can 

significantly affect not only bond length but also properties including 

structure, acidity or tautomerisation behaviour. 

 

• The structure of 3,6-diamino-1,2,4,5-tetrazinium chloride could be 

determined representing a novel energetic dication and the first example of a 

1,2,4,5-tetrahydro-1,2,4,5-tetrazinium heterocyclic ring system. 

 

• The structure of (E)-1-methyl-1-(1H-tetrazol-5-yl)-2-(2,2,2-

trinitroethylidene)-hydrazine could be determined. The 2,2,2-trinitroethylidene 

moiety has only very rarely been mentioned in the literature  and this structure 

determination represents the first structural proof for its existence. The use of 

this moiety in energetic materials research would enable compounds with 

better oxygen balance values compared to the corresponding 2,2,2-trinitroethyl 

derivatives while possibly retaining the favourable intermolecular interactions 

of the 2,2,2-trinitroethyl moiety contributing to higher densities. 
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Chapter 4 

 

Appendix 
 
4.1 Abbreviations 

 
1,1-BTMSD N1,N1-bis(trimethylsilyl)-1,5-diamino-1H-tetrazole 

1,5-BTMSD N1,N5-bis(trimethylsilyl)-1,5-diamino-1H-tetrazole 

1-PYD   N1-(propan-2-ylidene)-1,5-diamino-1H-tetrazole  

5-TMSD   N5-trimethylsilyl-1,5-diamino-1H-tetrazole  

1,1,5-TTMSD N1,N1,N5-tris(trimethylsilyl)- 1,5-diamino-1H-tetrazole  

ADN   Ammonium Dinitramide 

ANFO   Ammonium Nitrate Fuel Oil 

AN   Ammonium Nitrate 

AP   Ammonium Perchlorate 

DAT   1,5-diamino-1H-tetrazole 

DATB   Diaminotrinitrobenzene 

DMF   N,N-Dimethylformamide 

DMSO  Dimethylsulfoxide 

BAM   Bundesanstalt für Materialprüfung 

BTAT  N3, N6-Bis(2,2,2-trinitroethyl)-1,2,4,5-tetrazine-3,6-diamine 

BTC   Bis(2,2,2-trinitroethyl)carbonate 

BTHC  Bis(2,2,2-trinitroethyl)-hydrazodicarboxylate 

BTNA  Bis(2,2,2-trinitroethyl)amine 

BTTD  N1, N5-Bis(2,2,2-trinitroethyl)-1H-tetrazole-1,5-diamine 

CCDC  Cambridge Crystallographic Data Center 

CJ   Chapman-Jouget 

CL-20  2,4,6,8,10,12-hexanitrohexaazaisowurtzitane 

CSD   Cambridge Structural Database 

DDT   Deflagration to Detonation Reaction 

DOD   Department of Defence 
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DOE   Department of Energy 

DSC   Differential Scanning Calorimetry 

ED   Electron Diffration 

EGDN  Ethylene Glycol Dinitrate 

ESD   Electrostatic Spark Discharge 

ESP   Electrostatic Surface Potential 

ESTCP  Environmental Security Technology Certification Program 

FI   Figure of Insesitiveness 

FIZ   Fachinformationszentrum Karlsruhe 

FS   Friction Sensitivity 

GAP   Glycidyl Azide Polymer 

HE   High Explosive 

HEDO  High Energy Dense Oxizider 

HEDM  High Energy Dense Material 

HMDS  Hexamethyldisilazane  
HMX Hexahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocene / 

Cyclotetramethylene-1,3,5,7-tetranitramine, 1,3,5,7-

tetranitro-1,3,5,7-tetraazacyclooctane / Octogen 

HNB   Hexanitrobenzene 

HNF   Hydrazinium Nitroformate 

HOX   High Oxygen Explosive 

HTPB  Hydroxyl Terminated Polybutadiene 

IHC   Insensitive Hazard Classification 

IR   Infrared Spectroscopy 

IS   Impact Sensitivity 

LE   Low order Explosive 

MF   Mercury Fulminate 

MMTHT  1-Methyl-5-(1-methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-

1H-tetrazole  

MP   Melting Point 

MTHT   5-(1-Methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-tetrazole  

MTHTE  2-(5-(1-Methyl-2-(2,2,2-trinitroethyl)hydrazinyl)-1H-

tetrazol-1-yl)ethanol 

MTTH  (E)-1-methyl-1-(1H-tetrazol-5-yl)- 
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2-(2,2,2-trinitroethylidene)-hydrazine 

NF Nitroformate (Trinitromethanide) 

NFM   Nitroform (Trinitromethane) 

NMR   Nuclear Magnetic Resonance Spectroscopy 

NQ   Nitroguanidine 

OB   Oxygen Balance 

ONR   Office of Naval Research 

PETN  Pentaerythritol tetranitrate 

PPM   Parts Per Million 

RDX Research Department Explosive, Hexahydro-1,3,5-trinitro-

1,3,5-triazine, Cyclotrimethylenetrinitramine, Cyclonite, 

Hexahydro-1,3,5-trinitro-1,3,5-triazine 

SERDP Strategic Environmental Research and Development 

Program 

STANAG  Standardisation Agreement of NATO/PfP 

TAF   2,2,2-Trinitroethyl-azidoformate 

TATB  Triaminotrinitrobenze 

TCF   2,2,2-Trinitroethyl-chloroformate 

THF   Tetrahydrofurane 

THMT  1-(4N-2,2,2-Trinitroethyl)-2,5-hydroxymethyltriazine  

TMSCl  Trimethylsilylchloride / Chlorotimethylsilane  

TNE   2,2,2-Trinitroethanol 

TNM   Tetranitromethane 

TNT   2,4,6-Trinitrotoluene 

TTAT  2,4,6-(2,2,2-trinitroethylamino)-1,3,5-triazine 

TTB   Tris-(2,2,2-trinitroethyl)-borate 

TTD   N1-(2,2,2-Trinitroethyl)-1H-tetrazole-1,5-diamine 

TTE   1,1,1-Triamino-2,2,2-trinitroethane 

VOD   Velocity of Detonation 

XRD   X-ray Diffraction 
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4.2 General Safety Regulations 
 

 
 
 
 



Chapter 4 – Appendix 
 

- 318 - 
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4.3 Steel Sleve Test Procedure 
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4.4  Summary of Standard Operation Procedures a) 

 

1. Könen-Test (Steel Sleeve) 

 

a. Vorschrift: „Prüfung der thermischen Empfindlichkeit 

(Stahlhülsenverfahren)“; Standardarbeitsanweisung 410/001 des 

Wehrwissenschaftlichen Instituts für Werk-, Explosiv- und 

Betriebsstoffe (WIWEB) i.d.F.v. 28. Mai 1997 ;geläufiger: EG A.141 

b. Ziel: Test der Explosionsfähigkeit einer Verbindung i.S.d. 

Sprengstoffgesetztes (SprengG) 

c. Probenvorbereitung: Die nichtwiederverwendbare Stahlhülse wird 

im Falle von Feststoffen unter Anpressen mit einer Kraft von 80 N 

bis zu einer Füllhöhe von 15 mm unterhalb des Hülsenrandes 

befüllt. Im Falle einer zu testenden Flüssigkeit – bzw. eines Gels – 

wird die Testsubstanz in die Hülse eingegossen, bis eine Lunker-

freie Füllhöhe von 60 mm erreicht ist. 

Substanzen mit einer Reibeempfindlichkeit von F < 80 N sollen 

nicht angepresst werden! 

Die Hülse wird mit der (u.U.) wiederverwendbaren Verschraubung 

verschlossen ohne Substanz zwischen Bund und Platte oder im 

Gewinde einzuschließen. 

d. Durchführung: Die Stahlhülse wird von vier Bunsenbrennern 

gleichmäßig erhitzt, die Heizgeschwindigkeit liegt im 

Temperaturbereich von 135 bis 285 °C zwischen 185 K/min und 

215 K/min. Es wird erhitzt, bis Explosion bzw. Zersetzung 

                                                 
1 EG A.14: Prüfverfahren nach Anhang I Teil A.14 der Richtlinie 92/69/EWG der 
Kommission vom 31. Juli 1992 zur Siebzehnten Anpassung der Richtlinie 67/548/EWG zur 
Angleichung der Rechts- und Verwaltungsvorschriften für die Einstufung, Verpackung und 
Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt (ABl. EG Nr. L 383 S. 
113 und Nr. L 383 A S. 1 (S. 87)) 
Und: Recommendations on the Transport of Dangerous Goods: Tests and criteria, 1990, 
United Nations, New York. a) The author of this thesis is indebted to and thanks Dr. F.X. 
Steemann for providing the summary of standard operation procedures mentionend in 
section 4.4. 
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eintritt, oder im Falle ausbleibender Zersetzung über einen 

Zeitraum von 5 Minuten. 

e. Auswertung:  

 

Splitterbildtyp Beschreibung Ergebnis 
0 Hülse unverändert  
A Hülsenboden ausgebeult  
B Hülsenboden und –wände ausgebeult  
C Hülsenboden abgeplatzt  
D Hülse aufgerissen  
E Hülse in zwei Teile zerlegt  
F Hülse in drei oder mehr überwiegend große 

Teile zerlegt, die evtl. noch zusammenhängen 
Explosion 

G Hülse in viele überwiegend kleine Teile zerlegt,  
Verschluß unbeschädigt 

Explosion 

H Hülse in viele überwiegend kleine Teile zerlegt,  
Verschluß ausgebeult oder zerlegt 

Explosion 

 
Damit gelten Splitterbildtypen F, G und H als „positiver“ Könen-

Test. Die thermische Empfindlichkeit der Substanz wird nach dem 

Düsendurchmesser bei der Explosion (kritischer Durchmesser) 

bewertet: 
 
Bewertung Düsendurchmesser bei Explosion 
Unempfindlich < 2 mm 
Wenig 
empfindlich 

≥ 2 mm und < 10 mm 

Empfindlich ≥ 10 mm und < 16 mm 
Sehr empfindlich ≥ 16 mm und < 20 mm 
Äußerst 
empfindlich 

≥ 20 mm 

 
2. Determination of the Impact Sensitivity  

 

a. Vorschrift: NATO Standardization Agreement 4489 (STANAG 

4489), Explosives, Impact Sensitivity Tests, September 17, 1999 

Geläufiger: EG A.141  

b. Ziel: Test der Schlagempfindlichkeit einer Verbindung mithilfe des 

BAM-Geräts 

c. Probenvorbereitung: Eine Probenmenge von etwa 40 mm³ wird 

im Falle eines Feststoffes als ein Häufchen in der Mitte des 
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Metallstempels aufgetragen und der obere Stempel leicht 

angedrückt, bis er den Haufen berührt. Bei insb. leichtflüssigen 

Flüssigkeiten kann u.U. das Problem auftreten, dass bei dem 

Aufprall des Fallgewichts die Probensubstanz zwischen Stempel 

und Fassung gepresst wird. Für diese Fälle enthält die hier zitierte 

STANAG-Vorschrift kein besonderes Vorgehen, nach EG A.141 

ist ein Abstand von 1 mm zwischen den Stempeln zu belassen. 

Wird z.B. Schleifpapier als zusätzliche Unterlage zwischen 

Stempel und Probe eingefügt, sollte dies gesondert angegeben 

werden und auf mögliche Auswirkungen auf das Testergebnis 

hingewiesen werden. 

d. Durchführung: Die Fallhöhe des Gewichtes (1kg, 5 kg, 10 kg) 

wird in 10 cm Inkrementen verringert, pro Versuch ist eine neue 

Probe einzusetzen. Messungen unterhalb einer Fallhöhe von 10 

cm sind nach STANAG nicht vorgesehen. 

Nach EG A.141 werden pro Fallhöhe sechs Versuche durchgeführt: 

Es werden sechs Einzelversuche unter Verwendung des 

Fallgewichts von 10 kg und Anwendung einer Fallhöhe von 0,40 

m (40 J) ausgeführt. Wenn es während der sechs Versuche bei 40 J 

zu einer Explosion kommt, sind weitere sechs Einzelversuche mit 

einem Fallgewicht von 5 kg und einer Fallhöhe von 0,15 m (7,5 J) 

auszuführen. In geeigneten Inkrementen wird die Fallhöhe der 

Einzelversuche verringert, bis sechs Versuche negativ verlaufen. 

Dieser Wert gilt als Schlagempfindlichkeit nach EG A.141. Nach 

STANAG ist der 50%-Wert ausgehend von dem wie eben 

beschrieben ermittelten Wert zu bestimmen, indem mit jeweils 30 

Einzelversuchen die Fallhöhe gefunden wird, bei welcher 50% der 

Versuche positiv ausfallen (Bruceton-Methode, „aufwärts“ und 

„abwärts“ gemessen). Zeigen dabei zehn Einzelversuche konsistent 

eine höhere oder niedrigere Fallhöhe an, ist ein neuer Startwert zu 

messen. 

e. Auswertung: Als positiver Verlauf wird eine Zersetzung in Gestalt 

von Explosion, Entflammung oder Knall gedeutet. 
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Unterhalb einer Fallenergie von 40 J gilt eine Substanz als 

schlagempfindlich gem. Richtlinie EG A.141; ist keiner von sechs 

Versuchen positiv, ist der Stoff bei der aktuellen Fallenergie nicht 

empfindlich nach EG A.141. 

 

3. Determination of the Friction Sensitivity 

 

a. Vorschrift: NATO Standardization Agreement 4487 (STANAG 

4487), Explosives, Friction Sensitivity Tests, August 22, 2002 

Geläufiger: EG A.141  

b. Ziel: Test der Reibempfindlichkeit einer Verbindung mithilfe des 

BAM-Geräts 

c. Probenvorbereitung: Porzellanplatte wird mit Riffelung quer zur 

Bewegungsrichtung des Porzellanstempels eingespannt. Eine 

Probenmenge von etwa 10 mm³ wird vor und unter den 

Porzellanstempel auf die Porzellanplatte aufgebracht, so dass der 

Stempel über die Probe gezogen wird. 

d. Durchführung: Jeder Einzelversuch hat zwischen unbenutzten 

Oberflächen zu erfolgen, d.h. neben einer bestehenden Reibspur 

oder auf einer neuen Platte und mit einer unbenutzten Seite des 

Stempels. Es werden sechs Einzelversuche unter Verwendung 

einer Belastung von 360 N ausgeführt. Wenn es während der 

sechs Versuche zu einer positiven Reaktion kommt, sind weitere 

sechs Einzelversuche mit einer Belastung von 120 N auszuführen. 

Der höchste Belastungswert, bei welchem in sechs Versuchen kein 

positiver Testverlauf zu beobachten ist, gilt als 

Reibeempfindlichkeit. 

Nach STANAG wird der 50%-Wert ermittelt, indem ausgehend 

von dem Ergebnis der „1 aus 6“-Methode statistisch nach 

Bruceton in 25 bis 30 Versuchen gemessen wird, bis 50% der 

Versuche positiv verlaufen. 

e. Auswertung: Als positiver Verlauf wird eine Zersetzung in Gestalt 

von Explosion, Entflammung oder Knall (nach STANAG auch 

Knistern) gedeutet. 
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Unterhalb einer Reibekraft von 120 N gilt eine Substanz als 

reibeempfindlich gem. Richtlinie EG A.141. 

 

4. Determination of the Electrostatic Discharge Sensitivity 

 

a. Vorschrift: NATO Standardization Agreement 4239 (STANAG 

4239), Electrostatic Discharge, Munitions Test Procedures, 

October 13, 1997 

b. Ziel: Test der Empfindlichkeit einer Verbindung gegenüber 

elektrostatischer Entladung mithilfe des ESD-Geräts2 

c. Probenvorbereitung: Gem. Benutzerhandbuch zum ESD-Gerät. 

d. Durchführung: Der Kondensator wird bis auf den Stellwert 

aufgeladen und dann über die Probe entladen. Es werden 

mindestens 20 Einzelversuche für Personen-verursachte 

Entladung (25 kV, 15 kV, 10 kV, 5 kV mit jeweils 5000 Ω und 500 

Ω bei jeweils 500 pF, Abweichungen von ±5% zulässig) und 

mindestens 10 Einzelversuche für Helikopter-verursachte 

Entladung (250 kV, 200 kV, 150 kV, 100 kV, 50 kV, 25 kV mit 

jeweils Gesamtstromkreiswiderstand bei Entladung mit ±5% 

Genauigkeit und 1000 pF ±10% gemessen) durchgeführt. Dabei 

genügt es, die Entladung bei jedem Einzelversuch an einer 

anderen Stelle der Probe herbeizuführen (Probe muss nicht immer 

wieder ausgetauscht werden). Die Auf- und Entladungszeit soll im 

Falle der Personen-verursachten Entladung anhand der 10%- und 

90%-Werte ermittelt und notiert werden, ebenso die 

Testergebnisse. 

e. Auswertung: STANAG 4239 gibt keine genaue Auskunft darüber, 

ob ein 50%-Wert zu ermitteln ist, oder ob ein positiver 

Testverlauf Empfindlichkeit gegenüber der jew. Entladungsstärke 

bedeutet. Letzteres erscheint jedoch sinnvoll.  
 

                                                 
2 Die STANAG 4239 bezieht sich hauptsächlich auf ein Prüfverfahren für Munitionssorten 
mit elektro-explosiven Bauteilen (EED) und ähnlichen elektrischen/elektronischen 
Subsystemen. 
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ANHANG: 

 

EG A.14: 

 

Prüfverfahren nach Anhang I Teil A.14 der Richtlinie 92/69/EWG der 

Kommission vom 31. Juli 1992 zur Siebzehnten Anpassung der Richtlinie 

67/548/EWG zur Angleichung der Rechts- und Verwaltungsvorschriften 

für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an 

den technischen Fortschritt (ABl. EG Nr. L 383 S. 113 und Nr. L 383 A S. 1 

(S. 87)) 

 

A.14.1. Methode  

A.14.1.1. Einleitung  

 

Die Methode stellt ein Prüfschema dar zur Feststellung, ob feste oder 

pastenförmige Stoffe bei Flammenzündung (thermische Empfindlichkeit) 

oder bei Einwirkung von Schlag oder Reibung (mechanische 

Empfindlichkeit) und ob Flüssigkeiten bei Flammenzündung oder bei 

Einwirkung von Schlag eine Explosionsgefahr darstellen.  

Die Methode besteht aus drei Teilen:  

a. Prüfung der thermischen Empfindlichkeit (1);  

b. Prüfung der mechanischen Empfindlichkeit bei Schlagbeanspruchung 

(1);  

c. Prüfung der mechanischen Empfindlichkeit bei Reibbeanspruchung (1).  

Die Methode liefert Ergebnisse, mit denen die Möglichkeit der Auslösung 

einer Explosion bei Einwirkung bestimmter, nicht außergewöhnlicher 

Beanspruchungen festgestellt werden kann. Sie dient nicht zur Feststellung, 

ob ein Stoff unter beliebigen Bedingungen explosionsfähig ist.  

Die Methode eignet sich zur Feststellung, ob ein Stoff unter den 

besonderen, in der Richtlinie festgelegten Bedingungen eine 

Explosionsgefahr darstellt (thermische und mechanische Empfindlichkeit). 

Sie beruht auf der Verwendung mehrerer Arten von Apparaturen, die 

international weit verbreitet sind (1) und die im allgemeinen 

aussagekräftige Ergebnisse ergeben. Dabei wird eingeräumt, daß die 
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Methode keine endgültige Lösung darstellt. Es können andere als die 

genannten Apparaturen verwendet werden, wenn diese international 

anerkannt sind und die Ergebnisse in angemessener Form mit denen aus 

den genannten Apparaturen korreliert werden können.  

Die Prüfungen brauchen nicht vorgenommen zu werden, wenn verfügbare 

thermodynamische Daten (z.B. Bildungs-, Zersetzungsenthalpie) und/oder 

das Fehlen bestimmter reaktiver Gruppen (2) in der Strukturformel 

zweifelsfrei erkennen lassen, daß sich der Stoff nicht unter Bildung von 

Gasen oder Freisetzung von Wärme schnell zersetzen kann (d.h. die 

Substanz keine Explosionsgefahr darstellt). Eine Prüfung der mechanischen 

Empfindlichkeit bei Reibbeanspruchung ist für Flüssigkeiten nicht 

erforderlich.  

 

A.14.1.2. Definitionen und Einheiten  

 

Explosionsgefährlich:  

 

Stoffe, die durch Flammenzündung zur Explosion gebracht werden können 

oder die gegen Schlag oder Reibung in den genannten Apparaturen 

empfindlich sind (oder die in alternativen Apparaturen eine höhere 

mechanische Empfindlichkeit zeigen als 1,3-Dinitrobenzol).  

 

A.14.1.3. Referenzsubstanzen  

 

1,3-Dinitrobenzol, kristallin, gesiebt auf Korngröße 0,5 mm, technisches 

Produkt für die Prüfung der Schlag- und Reibempfindlichkeit.  

Perhydro-1,3,5-trinitro-1,3,5-triazin (RDX, Hexogen, Cyclonit - CAS 121-

82-4), umkristallisiert aus wäßrigem Cyclohexanon, naßgesiebt durch ein 

Sieb 250 im und als Rückstand auf einem Sieb 150 μm gewonnen, 

anschließend bei 103 ± 2 °C (über 4 Stunden) getrocknet für die zweite 

Reihe der Prüfung auf Schlag- und Reibempfindlichkeit. 
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A.14.1.4. Prinzip der Methode  

 

Um sichere Bedingungen für die Ausführung der drei 

Empfindlichkeitsprüfungen zu finden, ist die Durchführung von 

Vorversuchen erforderlich.  

 

A.14.1.4.1. Prüfung auf die Sicherheit des Umgangs mit der Substanz  

 

Aus sicherheitstechnischen Gründen werden vor Durchführung der 

Hauptprüfungen sehr kleine Proben (etwa 10 mg) der Prüfsubstanz ohne 

Einschluß mit einer Gasbrennerflamme erhitzt, in einem geeigneten Gerät 

einem Schlag ausgesetzt und unter Verwendung eines Reibstiftes und eines 

Widerlagers oder in einer beliebigen Reibmaschine gerieben. Das Ziel 

dieser Vorversuche ist festzustellen, ob der Stoff so empfindlich und so 

explosiv ist, daß zur Vermeidung von Verletzungen des Prüfenden bei der 

Durchführung der vorgeschriebenen Empfindlichkeitsprüfungen, 

insbesondere der Prüfung der thermischen Empfindlichkeit, besondere 

Schutzmaßnahmen vorzusehen sind.  

 

A.14.1.4.2. Thermische Empfindlichkeit  

 

Für die Prüfung wird die Prüfsubstanz in einer Stahlhülse erhitzt, die durch 

Düsenplatten mit Öffnungen verschiedenen Durchmessers verschlossen ist. 

Auf diese Weise wird bestimmt, ob der Stoff unter intensiver thermischer 

Beanspruchung bei definiertem Einschluß explodieren kann.  

 

A.14.1.4.3. Mechanische Empfindlichkeit (Schlag)  

 

Die Prüfung besteht darin, die Prüfsubstanz dem Schlag eines festgelegten 

Fallgewichtes aus einer festgelegten Höhe auszusetzen.  
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A.14.1.4.4. Mechanische Empfindlichkeit (Reibung)  

 

Bei dieser Prüfung werden feste oder pastenförmige Substanzen der 

Reibung zwischen standardisierten Oberflächen unter festgelegten 

Bedingungen der Belastung und der relativen Bewegung ausgesetzt.  

 

A.14.1.5. Qualitätskriterien  

 

Nicht festgelegt.  

 

A.14.1.6. Beschreibung der Methode  

A.14.1.6.1. Thermische Empfindlichkeit (Flammenzündung)  

A.14.1.6.1.1. Apparatur  

 

Die Apparatur besteht aus einer nicht wiederverwendbaren Stahlhülse mit 

deren wiederverwendbarer Verschraubung (Abbildung 1), die in eine Heiz- 

und Schutzvorrichtung eingesetzt wird. Jede Hülse wird aus Blech im 

Tiefziehverfahren hergestellt (siehe Anlage) und hat einen inneren 

Durchmesser von 24 mm, eine Länge von 75 mm und eine Wanddicke von 

0,5 mm. Am offenen Ende sind die Hülsen mit einem Bund versehen, an 

dem sie mit der Düsenplatte verschlossen werden können. Der Verschluß 

besteht aus einer druckfesten Düsenplatte mit einer zentrischen Bohrung, 

die mit der aus Gewindering und Mutter bestehenden Verschraubung fest 

mit einer Hülse verbunden wird. Gewindering und Mutter bestehen aus 

Chrom-Mangan-Stahl (siehe Anlage), der bis 800 °C zunderfest ist. Die 

Düsenplatten sind 6 mm dick, bestehen aus warmfestem Stahl (siehe 

Anlage) und stehen mit verschiedenen Öffnungsdurchmessern zur 

Verfügung.  

 

A.14.1.6.1.2. Versuchsbedingungen  

 

Normalerweise wird die Substanz im Auslieferungszustand geprüft, obwohl 

in einigen Fällen, z.B. bei gepreßten, gegossenen oder anderweitig 
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verdichteten Stoffen, vor der Prüfung ein Zerkleinern erforderlich werden 

kann.  

Bei Feststoffen wird die Menge des pro Prüfung zu verwendenden 

Materials durch ein zweistufiges Probeverfahren für die Befüllung 

bestimmt. Dabei wird eine gewogene Hülse mit 9 cm3 Prüfsubstanz gefüllt 

und die Prüfsubstanz unter Anwendung einer Kraft von 80 N, bezogen auf 

den Gesamtquerschnitt der Hülse, angedrückt. Aus sicherheitstechnischen 

Gründen oder in solchen Fällen, wo der Aggregatzustand der Probe durch 

Druck verändert werden kann, können andere Füllverfahren angewendet 

werden; wenn z.B. die Substanz sehr reibempfindlich ist, empfiehlt sich das 

Andrücken nicht. Wenn der Stoff sich als kompressibel erweist, wird 

weitere Substanz hinzugefügt und angedrückt, bis die Hülse bis zu einer 

Höhe von 55 mm vom Rand gefüllt ist. Danach wird die Gesamtmenge 

bestimmt, die für die Füllung bis zum Niveau von 55 mm unter dem Rand 

benötigt wurde, und es werden zwei weitere gleichgroße Portionen 

zugegeben, wobei auch diese unter Anwendung einer Kraft von je 80 N 

angedrückt werden. Schließlich wird Substanz entweder zugefügt (unter 

Andrücken) oder ggf. entnommen, bis die Hülse bis zu einer Höhe von 15 

mm unter dem Rand gefüllt ist. Dann wird eine zweite Probebefüllung 

durchgeführt, die mit einer angedrückten Menge von einem Drittel der 

Gesamtmenge der ersten Probebefüllung beginnt. Danach werden zwei 

weitere solche Portionen unter Anwendung von 80 N hinzugefügt und die 

Höhe der Substanz in der Hülse durch Hinzufügen oder Entnehmen bis auf 

15 mm under dem Rand gebracht. Die bei der zweiten Probebefüllung 

ermittelte Feststoffmenge wird für jeden der eigentlichen Versuche 

verwendet, wobei das Füllen mit drei gleichgroßen Mengen vorgenommen 

wird, deren jede durch Anwendung der erforderlichen Kraft auf 9 cm3 

komprimiert wird. (Dies kann durch Verwendung von Abstandsringen 

erleichtert werden.)  

Flüssigkeiten und gelatinöse Substanzen werden in die Hülse bis zu einer 

Höhe von 60 mm eingefüllt, wobei im letzteren Fall besondere Sorge dafür 

zu tragen ist, daß keine Lunker gebildet werden. Der Gewindering wird von 

unten auf die Hülse aufgeschoben, die geeignete Düsenplatte eingesetzt und 

die Mutter nach Aufbringen eines Schmiermittels auf Molybdändisulfid-
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Basis angezogen. Es muß darauf geachtet werden, daß keine Substanz 

zwischen dem Bund und der Platte oder im Gewinde eingeschlossen ist.  

Zum Aufheizen wird Propangas verwendet, das aus einer handelsüblichen 

Stahlflasche mit Druckminderer (60 bis 70 mbar) entnommen und über 

einen Durchflußmesser und einen Verteiler gleichmäßig vier Brennern 

zugeführt wird (was durch Beobachtung der Flammen der einzelnen 

Brenner festgestellt werden kann). Die Brenner sind entsprechend 

Abbildung 1 an dem Schutzkasten angeordnet. Die vier Brenner haben 

zusammen einen Verbrauch von etwa 3,2 l Propan pro Minute. Die 

Verwendung alternativer Heizgase und Brenner ist möglich, doch muß die 

Heizgeschwindigkeit der in Abbildung 3 genannten entsprechen. Für alle 

Apparaturen ist die Heizgeschwindigkeit regelmäßig unter Verwendung 

von Hülsen mit Dibutylphthalatfüllung zu kontrollieren (vgl. Abbildung 3).  

 

A.14.1.6.1.3. Versuchsausführung  

 

Jeder Versuch wird fortgeführt, bis die Stahlhülse entweder zerlegt oder 

fünf Minuten erhitzt worden ist. Ein Versuch, der zu einer Zerlegung der 

Hülse in drei oder mehr Teile führt (diese können in einigen Fällen noch 

durch schmale Metallstreifen miteinander verbunden sein - vgl. Abbildung 

2), wird als Explosion eingestuft. Ein Versuch mit weniger Teilen oder 

überhaupt keiner Zerlegung wird nicht als Explosion eingestuft.  

Zunächst wird eine erste Reihe mit drei Versuchen unter Verwendung einer 

Düsenplatte mit einem Öffnungsdurchmesser von 6,0 mm durchgeführt; 

wenn es hier zu keiner Explosion kommt, folgt eine zweite Reihe, ebenfalls 

mit drei Versuchen, mit einer Düsenplatte von 2,0 mm 

Öffnungsdurchmesser. Tritt während einer dieser Versuchsreihen eine 

Explosion ein, kann auf die Durchführung weiterer Versuche verzichtet 

werden.  

 

A.14.1.6.1.4. Auswertung  

 

Das Versuchsergebnis wird als positiv eingestuft, wenn es in einer der 

genannten Versuchsreihen zu einer Explosion kommt.  
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A.14.1.6.2. Mechanische Empfindlichkeit (Schlag)  

A.14.1.6.2.1. Apparatur (Abbildung 4)  

 

Die wesentlichen Teile eines typischen Fallhammers sind der Block aus 

Gußstahl mit Fuß, der Amboß, die Säule, die Führungsschienen, die 

Fallgewichte, die Auslösevorrichtung und ein Probenhalter. Der 

Stahlamboß -100 mm (Durchmesser) x 70 mm (Höhe) ist oben auf einen 

Stahlblock - 230 mm (Länge) x 250 mm (Breite) x 200 mm (Höhe) - mit Fuß 

- 450 mm (Länge) x 450 mm (Breite) x 60 mm (Höhe) aufgeschraubt. Eine 

Säule aus nahtlos gezogenem Stahlrohr ist in einer Halterung befestigt, die 

auf der Rückseite des Stahlblocks angeschraubt ist. Der Fallhammer ist mit 

vier Steinschrauben auf einem massiven Betonsockel - 60 cm x 60 cm x 60 

cm - so verankert, daß die Führungsschienen absolut senkrecht stehen und 

das Fallgewicht leicht geführt wird. Fallgewichte zu 5 kg und 10 kg aus 

massivem Stahl stehen zur Verfügung. Der Schlageinsatz jedes Gewichts 

besteht aus gehärtetem Stahl, HRC 60 bis 63, und hat einen 

Mindestdurchmesser von 25 mm.  

Die zu untersuchende Probe ist in eine Stempelvorrichtung einzuschließen, 

die aus zwei koaxial übereinanderstehenden Stahlstempeln und einem 

Hohlzylinder aus Stahl als Führungsring besteht. Die Stahlstempel, 

Abmessung 10 (-0,003, -0,005) mm Durchmesser und 10 mm Höhe, müssen 

polierte Flächen, abgerundete Kanten (Krümmungsradius 0,5 mm) und eine 

Härte HRC 58 bis 65 haben. Der Hohlzylinder muß einen äußeren 

Durchmesser von 16 mm, eine geschliffene Bohrung von 10 (+0,005, 

+0,010) mm und eine Höhe von 13 mm haben. Die Stempelvorrichtung ist 

auf einen Zwischenamboss (26 mm Durchmesser, 26 mm Höhe) aus Stahl zu 

stellen und durch einen Zentrierring mit einem Lochkranz zum Abströmen 

der Explosionsschwaden zu zentrieren.  

 

A.14.1.6.2.2. Versuchsbedingungen  

 

Die Probe muß ein Volumen von 40 mm3 oder ein der verwendeten 

Alternativapparatur angepaßtes Volumen haben. Feststoffe sind im 

trockenen Zustand zu prüfen und wie folgt vorzubereiten:  



Chapter 4 – Appendix 
 

- 334 - 

a. Pulverförmige Substanzen sind zu sieben (Maschenweite 0,5 mm); der 

gesamte Siebdurchgang ist zur Prüfung zu verwenden;  

b. Gepreßte, gegossene oder anderweitig verdichtete Substanzen sind zu 

zerkleinern und zu sieben; zur Prüfung ist die Siebfraktion 0,5 bis 1 mm 

Durchmesser zu verwenden; sie muß für die Originalsubstanz 

repräsentativ sein.  

Substanzen, die in der Regel pastenförmig geliefert werden, sollten, wenn 

möglich, im trockenen Zustand geprüft werden, auf jeden Fall aber nach 

Entfernen der größtmöglichen Menge an Verdünnungsmittel. Bei der 

Prüfung flüssiger Substanzen ist zwischen dem oberen und dem unteren 

Stahlstempel ein Abstand von 1 mm zu halten.  

 

A.14.1.6.2.3. Versuchsausführung  

 

Es werden sechs Einzelversuche unter Verwendung des Fallgewichts von 

10 kg und Anwendung einer Fallhöhe von 0,40 m (40 J) ausgeführt. Wenn 

es während der sechs Versuche bei 40 J zu einer Explosion kommt, sind 

weitere sechs Einzelversuche mit einem Fallgewicht von 5 kg und einer 

Fallhöhe von 0,15 m (7,5 J) auszuführen. Bei Verwendung einer anderen 

Apparatur wird die Probe mit der gewählten Referenzsubstanz unter 

Benutzung einer anerkannten Auswertungsmethode (z.B. up-and-down 

technique usw.) verglichen.  

 

A.14.1.6.2.4. Auswertung  

 

Das Prüfergebnis wird als positiv eingestuft, wenn es mit der beschriebenen 

Apparatur zumindest in einem der genannten Versuche zu einer Explosion 

(eine Entflammung und/oder ein Knall steht einer Explosion gleich) kommt 

oder wenn bei Verwendung einer alternativen Apparatur die Probe 

empfindlicher ist als 1,3-Dinitrobenzol oder Hexogen (RDX).  

 

A.14.1.6.3. Mechanische Empfindlichkeit (Reibung)  

A.14.1.6.3.1. Apparatur (Abbildung 5)  
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Der Reibapparat besteht aus einer Grundplatte (Gußstahl), auf der die 

Reibvorrichtung, bestehend aus einem feststehenden Porzellanstift und 

einem beweglichen Porzellanplättchen, montiert ist. Das Porzellanplättchen 

ist in einem Schlitten befestigt, der in zwei Gleitschienen geführt wird. Der 

Schlitten wird mit einem Elektromotor über eine Schubstange, eine 

Exzenterscheibe und ein geeignetes Getriebe so angetrieben, daß das 

Porzellanplättchen unter dem Porzellanstift eine einmalige Hin- und 

Rückbewegung von 10 mm Länge ausführt. Der Porzellanstift kann z.B. mit 

120 oder 360 N belastet werden.  

Die flachen Porzellanplättchen sind aus rein weißem technischem Porzellan 

gefertigt (Rauhtiefe 9 μm bis 32 μm) und haben die Abmessungen 25 mm 

(Länge) x 25 mm (Breite) x 5 mm (Höhe). Der zylindrische Porzellanstift ist 

ebenfalls aus rein weißem technischem Porzellan gefertigt. Er ist 15 mm 

lang, hat einen Durchmesser von 10 mm und eine rauhe sphärische 

Endfläche mit einem Krümmungsradius von 10 mm.  

 

A.14.1.6.3.2. Versuchsbedingungen  

 

Die Probe muß ein Volumen von 10 mm3 oder ein der verwendeten 

Alternativapparatur angepaßtes Volumen haben.  

Feststoffe sind im trockenen Zustand zu prüfen und wie folgt vorzubereiten:  

a. Pulverförmige Substanzen sind zu sieben (Maschenweite 0,5 mm); der 

gesamte Siebdurchgang ist zur Prüfung zu verwenden;  

b. Gepreßte, gegossene oder anderweitig verdichtete Substanzen sind zu 

zerkleinern und zu sieben; zur Prüfung ist die Siebfraktion < 0,5 mm 

Durchmesser zu verwenden.  

Pastenförmige Substanzen sollten, wenn möglich, im trockenen Zustand 

geprüft werden. Falls das nicht = möglich ist, muß die Paste, nach 

Entfernen der größtmöglichen Menge an Verdünnungsmittel, als 0,5 min -

dicker, 2 mm breiter und 10 mm langer Film, der mit einem speziellen 

Formteil hergestellt wird, geprüft werden.  
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A.14.1.6.3.3. Versuchsausführung 

  

Der Porzellanstift wird auf die zu untersuchende Probe gesetzt und 

belastet. Bei Durchführung des Versuchs muß der Schwammstrich des 

Porzellanplättchens quer zu dessen Bewegungsrichtung liegen. Es ist 

darauf zu achten, daß der Stift auf der Probe steht und daß soviel 

Prüfsubstanz vor dem Stift liegt, daß bei der Plättchenbewegung genügend 

Prüfsubstanz unter den Stift gelangt. Pastenförmige Substanzen werden 

mittels einer Lehre (Dicke: 0,5 mm) mit einer Öffnung von 2 mm x 10 mm 

auf das Plättchen aufgetragen. Das Porzellanplättchen wird unter dem 

Porzellanstift in einer Zeit von 0,44 s je 10 mm hin- und herbewegt. jeder 

Oberflächenbezirk des Plättchens und des Stiftes darf nur einmal verwendet 

werden; die beiden Enden eines jeden Stiftes können für zwei Versuche, und 

die beiden Oberflächen eines jeden Plättchens können für je drei Versuche 

benutzt werden.  

Es werden sechs Einzelversuche unter Verwendung einer Belastung von 

360 N ausgeführt. Wenn es während der sechs Versuche zu einer positiven 

Reaktion kommt, sind weitere sechs Einzelversuche mit einer Belastung 

von 120 N auszuführen. Bei Verwendung einer anderen Apparatur wird die 

Probe mit der gewählten Referenzsubstanz unter Benutzung einer 

anerkannten Auswertungsmethode (z.B. up-and-down technique usw.) 

verglichen.  

 

A.14.1.6.3.4. Auswertung  

 

Das Prüfergebnis wird als positiv eingestuft, wenn es mit dem 

beschriebenen Reibapparat zumindest in einem der genannten Versuche zu 

einer Explosion (ein Knistern und/oder ein Knall oder eine Entflammung 

stehen einer Explosion gleich) kommt oder wenn bei Verwendung einer 

alternativen Reibprüfung die äquivalenten Kriterien erfüllt werden.  
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A.14.2. Daten  

 

Grundsätzlich gilt ein Stoff als im Sinne dieser Richtlinie 

explosionsgefährlich, wenn bei der Prüfung auf thermische, Schlag- oder 

Reibempfindlichkeit ein positives Ergebnis erzielt wird.  

 

A.14.3. Bericht  

A.14.3.1. Prüfbericht 

  

Im Prüfbericht ist, wenn möglich, folgendes anzugeben:  

• die Bezeichnung, die Zusammensetzung, die Reinheit, der 

Feuchtigkeitsgehalt usw. der Prüfsubstanz;  

• der Aggregatzustand der Probe und die Angabe, ob die Probe 

zerkleinert und/ oder gesiebt worden ist;  

• die Beobachtungen während der Prüfungen auf thermische 

Empfindlichkeit (z.B. Probenmasse, Anzahl der Splitter usw.);  

• die Beobachtungen während der Prüfungen auf mechanische 

Empfindlichkeit (z.B. größere Rauchentwicklung oder vollständige 

Zersetzung ohne einen Knall, Flammen, Funken, Knistern usw.);  

• die Ergebnisse jedes Einzelversuchs;  

• bei Anwendung einer Alternativapparatur: die wissenschaftliche 

Begründung sowie die Beweisführung für die Vergleichbarkeit der 

Ergebnisse zwischen der beschriebenen und der Alternativapparatur;  

• alle nützlichen Hinweise auf Versuche mit ähnlichen Substanzen, die für 

die richtige Interpretation der erhaltenen Versuchsergebnisse von 

Bedeutung sein können;  

• alle zusätzlichen Bemerkungen, die für die Interpretation der Ergebnisse 

von Bedeutung sind.  

 

A.14.3.2. Interpretation und Bewertung der Ergebnisse  

 

Im Prüfbericht sind alle Ergebnisse anzugeben, die als falsch, anormal oder 

nicht repräsentativ angesehen werden. Wird ein Versuchsergebnis nicht in 

die Bewertung einbezogen, so ist dies zu begründen, und es sind die 
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Ergebnisse anderer oder zusätzlicher Versuche aufzuführen. Kann die 

Abnormität eines Ergebnisses nicht erklärt werden, muß das Ergebnis als 

solches akzeptiert und der Stoff entsprechend eingestuft werden.  

 

A.14.4. Literatur  

 

(1) Recommendations on the Transport of Dangerous Goods: Tests and 

criteria, 1990, United Nations, New York.  

(2) Bretherick, L., Handbook of Reactive Chemical Hazards, 4. Auflage, 

Butterworths, London, ISBN 0-750-60103-5, 1990.  

(3) Koenen, H., Ide, K.H. und Swart, K.H., Explosivstoffe, 1961, Bd. 3, 6-13 

und 30-42.  

(4) NF T 20-033 (Sept. 35). Chemical products for industrial use - 

Determination of explosion risk.  

 

 

 

Anlage zu RL 67/548/EWG Anhang V A.14 

 

Beispiel für Werkstoffspezifikation zur Prüfung auf thermische 

Empfindlichkeit (vgl. DIN 1623)  

(1) Hülse: Werkstoffspezifikation Nr. 1.0336.505 g  

(2) Düsenplatte: Werkstoffspezifikation Nr. 1.4373  

(3) Gewindering und Mutter: Werkstoffspezifikation Nr. 1.3817  
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Abbildung 1: Apparatur für die Prüfung auf thermische Empfindlichkeit  
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Abbildung 2: Prüfung auf thermische Empfindlichkeit; Beispiele für Splitterbilder  
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Abbildung 3: Kalibrierung der Heizgeschwindigkeit für die Prüfung auf thermische 
Empfindlichkeit  
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Abbildung 4: Apparatur zur Prüfung auf Schlagempfindlichkeit  

Abb. 4a: Fallhammer, Vorder- und Seitenansicht; Gesamtansicht 



Chapter 4 – Appendix 
 

- 343 - 

 
 
Abb. 4b: Fallhammer unterer Teil  

 

 
Abb. 4c/4d: Stempelvorrichtung für pulver- oder pastenförmige Substanzen/ -für 
Flüssigkeiten  
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Abb. 4e: Hammer  
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Abbildung 5: Apparatur zur Prüfung auf Reibempfindlichkeit 
Abb. 5a Reibapparat; Aufriß und Grundriß  
Abb. 5b Ausgangsstellung des Stiftes auf der Probe  
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4.5 Explosives Hazard Classification Procedures 
 

 

 
Figure 5-1. UN hazard classification procedures for articles and substances. 
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Figure 5-13. Thermal stability test configuration (UN 3c). 

 
Figure 5-14. Small scale burning test configuration (UN 3d). 
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Figure 5-15. Thermal stability test for articles (UN 4a). 

 
Figure 5-17. Twelve meter drop test configuration (UN 4b).
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Test results according to:   
 

  12 m free fallUN 4b (ii) 

  Thermal stability for 
articles and packaged 
articles 

UN 4a (i) 
    

  Small scale burningUN 3d

  Thermal stabilityUN 3c

  Friction sensitivityUN 3b

  Impact sensitivityUN 3a

    

Comment+ / -  TestTest #

Munich, ………………………… 
    

Name: ……………………………………………. 
    

Signature: …………………………………………….
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Appendix 1 to section II N of the Army Research Laboratory (ARL) 
interim hazard classification (ICH) request 

 
Molecular structure (Lewis-type drawing):  
 
Chemical name:  
 
Abbreviation (if any):  
 
Formula (CHNO):  
 
m.p. / °C:        ………………………….. (DSC @ 5°C / min)  
Tdec. / °C:        ………………………….. (DSC @ 5°C / min) 
density / g cm-3: ...............................    
IS / J:         ........................... grain size:  ........................... µm  
FS / N:         ........................... grain size:  ........................... µm 
ESD / J:               ........................... grain size:  ........................... µm  
hygroscopic (yes / no): ………………. 
water-stable: (yes / no): ………………. 
water-soluble:          ………………. 
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4.6 Frequency Analyses 
 

The vibrational spectra of 1,5-BTMSD and 1,1,5-TTMSD were calculated 

using density functional methods. The Becke3LYP hybrid functional was used 

combined with a correlation consistent basis set (cc-pVDZ). The equilibrium 

geometries were optimized on the same level. The SCF convergence criteria 

were set tight and the size of the integration grid ultrafine. The harmonic 

vibrational frequencies were corrected by multiplication with a correction 

factor of 0.970 in order to account for anharmonicity effects. The calculations 

were performed with the program package Gaussian 03, Revision D.01. For the 

evaluation of the intensity of IR bands following abbreviations were used: vs 

(very strong, 100 – 75% of the maximal intensity), s (strong, 75 – 50%), m 

(medium, 50 – 25%) and w (weak, 25 – 0%). The Raman intensities are given as 

percentage of the maximal intensity. 

Frequency Analysis of 1,5-BTMSD 

Vibrational  
frequency  
(calculated,  
unscaled, cm-1) 

Vibrational 
frequency 
(calculated, 
scaled, cm-1) 

Calculated  
IR Intensity 
(arb. u.) 

Exptl. 
IR  
frequencies 
(cm-1) 

Exptl.  
Raman 
shifts  
(cm-1) 

Tentative 
assignment 

3565 3458 39.05   ν(N5H) 
3464 3360 6.13 3334 (vs) 3328 (16) ν(N6H) 
3128 3034 3.38    
3124 3030 3.52    
3123 3029 3.32    
3122 3029 4.87    
3117 3024 11.75    
3113 3020 6.90    
3110 3017 30.95 2903 (vs)  νas(CH3) 
3109 3016 17.03 2557 (m)  νas(CH3) 
3107 3014 0.17    
3107 3014 0.30    
3104 3011 18.59     
3102 3009 1.39    
3034 2943 3.36  2964 (41) νs(CH3) 
3030 2939 7.79    
3029 2938 9.32    
3028 2937 8.78    
3027 2936 5.32    
3026 2936 7.08  2904 (50) νs(CH3) 
   2411 (m)   
1637 1587 455.37 1656 (vs)   
1522 1476 15.54 1585 (vs)  1587 (20) ν(C1-N6) 
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1450 1407 3.76 1483 (s)  1485 (6) δas(CH3) 
1448 1404 17.35 1428 (vs)  1419 (14) δas (CH3) 
1441 1397 19.95     
1440 1397 1.73    
1436 1393 2.49    
1434 1391 0.37    
1433 1390 2.35    
1432 1389 0.94    
1430 1387 0.70    
1429 1386 0.85    
1427 1384 46.17 1378 (vs)  δ(NH) 
1421 1378 0.41    
1420 1378 0.23    
1369 1328 2.90    
1362 1321 126.18  1352 (vs)  Ν(N4-N5) 
1279 1240 11.49  1289 (vs)  1289 (21) δs (CH3) 
1276 1238 17.43  1250 (vs)  1264 (6) δs (CH3) 
1272 1234 28.81    
1269 1231 20.71    
1269 1231 38.97    
1267 1229 30.62    
1219 1182 29.97  1209 (vs) 1209 (14) δ(NH) 
1134 1100 9.69  1102 (vs) 1103 (17) ν(ring) 
1107 1074 51.75    
1007 976 24.54  987 (vs)  988 (5) ν(ring) 
887 861 93.45  877 (vs)  896 (6) δ(CH3) 
875 849 198.96    856 (12) δ(CH3) 
873 847 126.65     
868 842 230.77 848 (vs)  840 (12) ρ(C-H) 
863 837 103.43    
862 836 58.47    
853 827 50.97    
818 793 0.99    
790 766 12.55     
780 757 24.32    
775 751 24.27 760 (vs)  δ(CH3) 
769 746 19.49 715 (s)  δ(CH3) 
754 731 6.65    
700 679 20.86 696 (s) 698 (14) ν(Si-C) 
697 676 2.69     
696 675 0.51    
694 674 1.09    
693 672 9.41    
690 669 1.68    
688 667 9.77  650 (s)  skeleton vib. 
680 660 0.56    
654 634 6.91  625 (100) skeleton vib 
   616 (s)   
606 588 44.57 585 (m)   
601 583 1.31    
566 549 43.75     
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    522 (13)  
488 474 47.99  494 (w)    
429 416 25.02     
353 342 6.82  375 (10)  
315 306 16.78  315 (20)  
302 293 10.84    

Frequency Analysis of 1,1,5-TTMSD 

Vibrational  

frequency  

(calculated,  

unscaled, cm-1) 

Vibrational 

frequency 

(calculated, 

scaled, cm-1) 

Calculated  

IR intensity 

(arb. u.) 

Exptl. 

IR  

frequencies 

(cm-1) 

Exptl.  

Raman 

shifts  

(cm-1) 

Tentative  

assignment 

3571 3464 32.9 3237 (m)  ν(NH) 

3127 3033 2.7  3181 (s)  νas(CH3) 

3112 3019 12.3    

3111 3017 16.3    

3110 3017 36.5    

3109 3016 18.2    

3104 3011 28.9    

3102 3009 6.6    

3034 2943 5.0 2958 (m) 2962 (50) νs(CH3) 

3033 2942 6.0    

3030 2940 7.3    

3030 2939 11.7    

3029 2938 2.1    

3029 2938 8.7    

3028 2937 11.1    

3027 2936 5.3    

3026 2936 3.4  2903 (w)  2902 (100) νs(CH3) 

1625 1576 393.5  1580 (s) 1580 (9) ν(N5-C1) 

1508 1462 24.7  1454 (w) 1452 (10)  δ(NH) 

   1440 (w)   

1452 1408 3.4     

1450 1406 4.6     

1448 1405 12.6  1413 (15)  δ(CH3) 

1362 1322 75.7  1309 (w)  ν(N2-N3) 

1352 1312 79.0  1298 (m) 1299 (11) δ(NH) + ν(N3-N4) 

1277 1238 35.6     

1271 1233 44.6    

1269 1231 64.7 1256 (vs)  ρ(CH3) 

1269 1230 12.4    
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1268 1230 15.4    

1267 1229 24.4 1204 (m) 1205 (8) ρ(CH3) 

1211 1175 37.8 1165 (m)  δ(NH) + δ(ring) 

1133 1099 9.7 

 1097 (m) 1105 (11) ν(N1-N2) + ν(N3-

N4) 

1105 1072 38.5  1031 (m) 1034 (6) δ(NH) + δ(ring) 

1007 977 19.7  982 (w) 983 (7) δ(ring) 

   936 (s)   

903 876 374.1  899 (5) δ(N6out of plane) 

901 874 153.8 884 (s)  Skeleton vibration 

876 850 370.1    ρ(CH3) 

874 848 135.1     

864 838 100.5    

839 814 87.5 840 (vs)  ρ(CH3) 

776 753 19.3 759 (m) 759 (11) δ(CH3) 

772 749 25.2    

      

759 736 21.3    

696 675 6.4 690 (w) 692 (19)  νas(Si(CH3)3) 

690 669 4.6    

687 667 12.6    

682 662 5.1  644 (49) νas(Si(CH3)3) 

672 652 7.6 638 (m) 621 (32) νas(Si(CH3)3) 

620 601 16.5     

604 586 4.5 576 (w)  νs(Si(CH3)3) 

604 586 9.4     

523 507 1.3  525 (w) 531 (14) δ(N6in plane) 
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4.7 Single Crystal X-ray Structures 
 

compound name Potassium  
nitroformate 

Ammonium  
nitroformate  

compound, abbrev. KNF ANF 

formula, moiety K, CN3O6 NH4, CN3O6 

formula, sum KCN3O6 CH4NO6 

M / g mol-1 189.14 168.08 

crystal system monoclinic tetragonal 

space group P21/n (no.14) P41212 (no.92) 

a / Å 7.541(5) 6.7617(1) 

b / Å 8.041(5) 6.7617(1) 

c / Å 9.031(5) 12.7877(4) 

α / ° 90 90 

β / ° 99.334(5) 90 

γ / ° 90 90 

V / Å3 540.4(6) 584.66(2) 

ρ calc. / g  cm-3 2.325(3) 1.9095(1) 

F(000) 376 344 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer  Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.197 0.197 

T / K 200 100 

reflections, collected 2580 2710 

reflections, independent 998 588 

Rint 0.0436 0.0173 

parameter 100 72 

R1    [I  > 2σ(I)] 0.0325 0.0209 

wR2 [I  > 2σ(I)] 0.0663 0.0507 

R1    [all data] 0.0480 0.0243 

wR2 [all data] 0.0718 0.0523 

S 1.048 1.096 

Δ ρ max, min / e  Å3 0.264, 0.246 0.210, 0.152 

deposition no. CSD - 417762 CSD - 417767 
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compound name Hydrazinium  
nitroformate 

Melaminium  
nitroformate  

compound, abbrev. HNF MNF 

formula, moiety N2H5, CN3O6 C3H7N6, CN3O6 

formula, sum CH5N5O6 C4H7N9O6 

M / g mol-1 183.10 277.19 

crystal system monoclinic monoclinic 

space group P21/n (no.14) P21/n (no.14) 

a / Å 8.0447(8) 5.8220(3) 

b / Å 5.4420(5) 23.2249(18) 

c / Å 14.5015(12) 7.2508(4) 

α / ° 90 90 

β / ° 98.785(8) 101.129(6) 

γ / ° 90 90 

V / Å3 627.4(1) 961.9(1) 

ρ calc. / g  cm-3 1.938 1.6407(13) 

F(000) 376 568 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer  Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.196 0.175 

T / K 100 100 

reflections, collected 2734 5434 

reflections, independent 1033 2057 

Rint 0.0451 0.0373 

parameter 343 200 

R1    [I  > 2σ(I)] 0.0416 0.0588 

wR2 [I  > 2σ(I)] 0.0560 0.1066 

R1    [all data] 0.0858 0.0864 

wR2 [all data] 0.0660 0.1164 

S 1.004 1.113 

Δ ρ max, min / e  Å3 0.218, 0.247 0.301, 0.289 

deposition no. CSD - 417768 CSD - 417766 
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compound name Melaminium  
nitroformate 

Melaminium  
nitroformate,  

Dimethylsulfate, 1:1 
compound, abbrev. MNF MNF · DMSO 

formula, moiety C3H7N6, CN3O6 C3H7N6, CN3O6 · 
(CH3)2SO 

formula, sum C4H7N9O6 C6H13N9O7S 

M / g mol-1 277.19 355.32 

crystal system monoclinic triclinic 

space group P21 (no.4) P-1 (no.2) 

a / Å 9.2736(6) 9.966(5) 

b / Å 7.2249(4) 10.920(5) 

c / Å 15.660(1) 15.751(5) 

α / ° 90 108.257(5) 

β / ° 97.884(6) 90.342(5) 

γ / ° 90 116.274(5) 

V / Å3 1039.3(1) 1438.5(1) 

ρ calc. / g  cm-3 1.771 1.6407(13) 

F(000) 568 736 

cell formula Z 4 4 

space group Z 2 2 

Z΄ 2 2 

diffractometer  Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.162 0.282 

T / K 100 100 

reflections, collected 4182 11548 

reflections, independent 1475 5583 

Rint 0.0215 0.0434 

parameter 343 420 

R1    [I  > 2σ(I)] 0.0344 0.0662 

wR2 [I  > 2σ(I)] 0.0783 0.1542 

R1    [all data] 0.0497 0.0956 

wR2 [all data] 0.0831 0.1683 

S 0.962 0.957 

Δ ρ max, min / e  Å3 0.382, 0.244 0.019, 0.317 

deposition no. CSD - 417765 CSD - 417764 
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compound name Melaminium  
nitroformate,  
Methanol, 1:1 

Guanidinium  
nitroformate, 
Hydrate, 1:1 

compound, abbrev. MNF · MeOH GNFH 

formula, moiety C3H7N6, CN3O6 · CH3OH CH6N3, CN3O6 · H2O 

formula, sum C5H11N9O7 C2H8N6O7 

M / g mol-1 309.23 228.14 

crystal system monoclinic monoclinic 

space group P21/c (no.14) C2/c (no.15) 

a / Å 10.8294(19) 8.1859(4) 

b / Å 5.8091(11) 14.3541(7) 

c / Å 19.646(3) 7.7556(5) 

α / ° 90 90 

β / ° 95.82(1) 101.132(2) 

γ / ° 90 90 

V / Å3 1229.5(4) 894.1(1) 

ρ calc. / g  cm-3 1.6706(5) 1.6948(2) 

F(000) 640 472 

cell formula Z 4 8 

space group Z 4 4 

Z΄ 1 0.5 

diffractometer  Oxford Xcalibur 3 CCD Nonius Kappa CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.152 0.167 

T / K 100 200 

reflections, collected 9950 5277 

reflections, independent 1928 1021 

Rint 0.1163 0.0937 

parameters 193 87 

R1    [I  > 2σ(I)] 0.1034 0.0513 

wR2 [I  > 2σ(I)] 0.2025 0.1293 

R1    [all data] 0.1424 0.0645 

wR2 [all data] 0.2294 0.1395 

S 1.223 1.072 

Δ ρ max, min / e  Å3 0.305, 0.308 0.293, 0.433 

deposition no. CSD - 417763 CSD - 417769 
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compound name Aminoguanidinium 
nitroformate 

Diaminoguanidinium 
nitroformate 

compound, abbrev. AGNF DAGNF 

formula, moiety CH7N4, CN3O6 CH8N5, CN3O6  

formula, sum C2H7N7O6 C2H8N8O6 

M / g mol-1 225.15 240.16 

crystal system triclinic monoclinic 

space group P-1(no.2) P21/n (no.14) 

a / Å 5.0690(7) 10.980(1) 

b / Å 7.5590(10) 7.7524(8) 

c / Å 11.3200(11) 11.415(1) 

α / ° 84.567(9) 90 

β / ° 84.425(9) 105.336(8) 

γ / ° 79.609(11) 90 

V / Å3 423.2(1) 937.1(2) 

ρ calc. / g  cm-3 1.7665(4) 1.7022(3) 

F(000) 232 496 

cell formula Z 2 4 

space group Z 2 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.170 0.162 

T / K 200 200 

reflections, collected 4264 9138 

reflections, independent 1657 1832 

Rint 0.0169 0.0324 

parameter 164 178 

R1    [I  > 2σ(I)] 0.0312 0.0465 

wR2 [I  > 2σ(I)] 0.0748 0.1022 

R1    [all data] 0.0346 0.0602 

wR2 [all data] 0.0773 0.1107 

S 1.086 1.172 

Δ ρ max, min / e  Å3 0.181, 0.278 0.282, 0.194 

deposition no. CSD - 417771 CSD - 417772 



Chapter 4 – Appendix 
 

- 360 - 

 

compound name Triaminoguanidinium 
nitroformate 

Melaminium  
dinitrate 

compound, abbrev. TAGNF MDN 

formula, moiety CH9N6, CN3O6  C3H8N6, 2(NO3) 

formula, sum C2H9N9O6 C3H8N8O6 

M / g mol-1 255.18 252.17 

crystal system triclinic monoclinic 

space group P-1(no.2) P21/c (no.14) 

a / Å 8.020(2) 7.758(5) 

b / Å 8.347(2) 9.804(5) 

c / Å 8.515(2) 12.094(5) 

α / ° 105.49(2) 90 

β / ° 95.03(2) 100.526(5) 

γ / ° 111.10(2) 90 

V / Å3 501.7(2) 904.4(8) 

ρ calc. / g  cm-3 1.6892(7) 1.8521(16) 

F(000) 264 520 

cell formula Z 2 4 

space group Z 2 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.159 0.173 

T / K 200 200 

reflections, collected 2634 10088 

reflections, independent 1962 2084 

Rint 0.019 0.0694 

parameter 190 186 

R1    [I  > 2σ(I)] 0.0379 0.0647 

wR2 [I  > 2σ(I)] 0.0970 0.1402 

R1    [all data] 0.0476 0.0896 

wR2 [all data] 0.1041 0.1575 

S 1.070 1.185 

Δ ρ max, min / e  Å3 0.215, 0.301 0.273, 0.318 

deposition no. CSD - 417770 - 
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compound name Guanidinium nitrate, 
Azidoformamidinium 

nitrate, 
1:1 

Guanidinium 
diaminopicrate 

compound, abbrev. GN · AFN GDAP 

formula, moiety CH4N5, CH6N3, 2(NO3) C6 H4 N5 O7, C H6 N3 

formula, sum C2H10N10O6 C7 H10 N8 O7 

M / g mol-1 270.20 318.23 

crystal system monoclinic monoclinic 

space group P21/c (no.14) C2/c 

a / Å 11.7413(4) 12.688(3) 

b / Å 6.8897(3) 13.536(3) 

c / Å 13.6195(4) 6.8422(14) 

α / ° 90.00 90 

β / ° 102.593(3) 102.45(3) 

γ / ° 90.00 90 

V / Å3 1075.23(7) 1147.4(5) 

ρ calc. / g  cm-3 1.6692(1) 1.8422(8) 

F(000) 560 656 

cell formula Z 4 4 

space group Z 4 8 

Z΄ 1 0.5 

diffractometer Oxford Xcalibur 3 CCD  Nonius Kappa  CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.156 0.164 

T / K 100 200 

reflections, collected 5638 2157 

reflections, independent 2110 1119 

Rint 0.0217 0.0248 

parameter 203 123 

R1    [I  > 2σ(I)] 0.0260 0.0562 

wR2 [I  > 2σ(I)] 0.0582 0.1450 

R1    [all data] 0.0375 0.0783 

wR2 [all data] 0.0604 0.1628 

S 0.922 1.032 

Δ ρ max, min / e  Å3 0.165, 0.202 0.511, 0.399 

deposition no. - - 
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compound name Aminoguanidinium 
diaminopicrate 

Diaminoguanidinium 
diaminopicrate 

compound, abbrev. AGDAP DAGDAP 

formula, moiety C6 H4 N5 O7, C H7 N4 C6 H4 N5 O7, C H8 N5 

formula, sum C7 H11 N9 O7 C7 H12 N10 O7 

M / g mol-1 333.25 348.27 

crystal system monoclinic monoclinic 

space group P21/c P21/n 

a / Å 9.6745(10) 14.111(5) 

b / Å 7.2308(10) 6.656(5) 

c / Å 18.0315(18) 14.171(5) 

α / ° 90.00 90.000(5) 

β / ° 91.525(9) 103.257(5) 

γ / ° 90.00 90.000(5) 

V / Å3 1260.9(3) 1295.5(12) 

ρ calc. / g  cm-3 1.7555(4) 1.7856(17) 

F(000) 688 720 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.156 0.158 

T / K 200 200 

reflections, collected 6265 11771 

reflections, independent 2474 2560 

Rint 0.0659 0.1412 

parameter 253  

R1    [I  > 2σ(I)] 0.0710 0.0624 

wR2 [I  > 2σ(I)] 0.1316 0.0827 

R1    [all data] 0.1324 0.1691 

wR2 [all data] 0.1638 0.1163 

S 1.094 1.011 

Δ ρ max, min / e  Å3 0.497, 0.273 0.326, 0.293 

deposition no. - - 
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compound name Triaminoguanidinium 
diaminopicrate, hydrate 

1,2,4,5-Tetrahydro-3,6-
diamino-1,2,4,5-tetrazinium 

chlorid 
compound, abbrev. TAGDAP · H2O 4H-ATCl 

formula, moiety C6 H4 N5 O7, C H9 N6, H2 

O   

C2 H8 N6, 2(Cl) 

formula, sum C7 H15 N11 O8 C2 H8 Cl2 N6 

M / g mol-1 381.30 187.04 

crystal system monoclinic triclinic 

space group P21/n P-1 (no.2) 

a / Å 12.8432(5) 7.2122(6) 

b / Å 6.8676(3) 7.3472(5) 

c / Å 17.1507(7) 7.4770(6) 

α / ° 90.00 100.661(6) 

β / ° 108.969(4) 98.192(6) 

γ / ° 90.00 110.426(7) 

V / Å3 1430.58(10) 355.54(5) 

ρ calc. / g  cm-3 1.7704(1) 1.7472(2) 

F(000) 792 192 

cell formula Z 4 2 

space group Z 4 2 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.158 0.845 

T / K 100 100 

reflections, collected 8809 3353 

reflections, independent 3241 1266 

Rint 0.0392 0.0210 

parameter  115 

R1    [I  > 2σ(I)] 0.0407 0.0243 

wR2 [I  > 2σ(I)] 0.0792 0.0583 

R1    [all data] 0.0761 0.0337 

wR2 [all data] 0.0917 0.0613 

S 0.988 1.047 

Δ ρ max, min / e  Å3 0.303, 0.236 0.274, 0.226 

deposition no. - - 
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compound name 1-Methyl-5-(N-methyl)- 
aminotetrazolium 

perchlorate 

2,2,2-Trinitroethanol 

compound, abbrev.  TNE 

formula, moiety C3 H8 N5, Cl O4 C2 H3 N3 O7 

formula, sum C3 H8 Cl N5 O4 C2 H3 N3 O7 

M / g mol-1 213.59 181.07 

crystal system orthorhombic monoclinic 

space group P212121 (no.19) P21/c (no.14) 

a / Å 5.7472(2) 6.1242(4) 

b / Å 12.0965(4) 18.8223(7) 

c / Å 12.4377(4) 11.7466(4) 

α / ° 90 90.00 

β / ° 90 104.962(3) 

γ / ° 90 90.00 

V / Å3 864.68(5) 1308.14(11) 

ρ calc. / g  cm-3 1.6408(1) 1.8388(2) 

F(000) 440 736 

cell formula Z 4 8 

space group Z 4 4 

Z΄ 1 2 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.437 0.190 

T / K 100 100 

reflections, collected 2366 13153 

reflections, independent 1488 2566 

Rint 0.0183 0.0300 

parameter 126 241 

R1    [I  > 2σ(I)] 0.0313 0.0371 

wR2 [I  > 2σ(I)] 0.0889 0.0874 

R1    [all data] 0.0347 0.0432 

wR2 [all data] 0.0909 0.0919 

S 1.081 1.130 

Δ ρ max, min / e  Å3 0.380, 0.473 0.214, 0.181 

deposition no. -  
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compound name Bis-(2,2,2-trinitroethyl)-
amine 

N1-(2,2,2-Trinitroethyl)- 
1H-tetrazole-1,5-diamine 

compound, abbrev. BTNA TTD 

formula, moiety C4 H5 N7 O12 C3 H5 N9 O6 

formula, sum C4 H5 N7 O12 C3 H5 N9 O6 

M / g mol-1 343.15 263.16 

crystal system orthorhombic orthorhombic 

space group Pbca (no.61) Pna21 

a / Å 12.8907(3) 14.9692(6) 

b / Å 11.7069(3) 10.0155(5) 

c / Å 16.0622(5) 6.3729(3) 

α / ° 90 90.00 

β / ° 90 90.00 

γ / ° 90 90.00 

V / Å3 2423.95(11) 955.45(8) 

ρ calc. / g  cm-3 1.8806(1) 1.8295(2) 

F(000) 1392 536 

cell formula Z 8 4 

space group Z 8 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.190 0.171 

T / K 200 100 

reflections, collected 13680 5914 

reflections, independent 2305 1704 

Rint 0.0246 0.0517 

parameter 229 175 

R1    [I  > 2σ(I)] 0.0392 0.0354 

wR2 [I  > 2σ(I)] 0.1163 0.0616 

R1    [all data] 0.0470 0.0650 

wR2 [all data] 0.1095 0.0705 

S 1.060 0.944 

Δ ρ max, min / e  Å3 0.238, 0.230 0.276, 0.273 

deposition no. CCDC - 699142 CCDC - 699140 
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compound name N1,N5-Bis- 
(2,2,2-trinitroethyl)- 

1H-tetrazole-1,5-diamine 

(E)-1-methyl- 
1-(1H-tetrazol-5-yl)-2-

(2,2,2-trinitroethylidene)-
hydrazine 

compound, abbrev. BTTD MTTH 

formula, moiety C5 H6 N12 O12 C4H5N9O6 

formula, sum C5 H6 N12 O12 C4H5N9O6 

M / g mol-1 426.22 275.17 

crystal system monoclinic orthorhombic 

space group P21/c (no.14) Pbca(no.61) 

a / Å 9.9710(7) 9.7012(4) 

b / Å 6.4861(4) 12.8504(7) 

c / Å 23.1501(13) 17.3758(9) 

α / ° 90 90 

β / ° 94.464(5) 90 

γ / ° 90 90 

V / Å3 1492.64(16) 2166.14(19) 

ρ calc. / g  cm-3 1.8967(2) 1.6876(1) 

F(000) 864 1120 

cell formula Z 4 8 

space group Z 4 8 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.184 0.155 

T / K 100 100 

reflections, collected 8094 8573 

reflections, independent 2944 1784 

Rint 0.0525 0.1493 

parameter 280 172 

R1    [I  > 2σ(I)] 0.0844 0.0779 

wR2 [I  > 2σ(I)] 0.1145 0.1570 

R1    [all data] 0.1243 0.1457 

wR2 [all data] 0.1264 0.1942 

S 1.216 1.076 

Δ ρ max, min / e  Å3 0.327, 0.334 0.423, 0.425 

deposition no. CCDC - 699136 - 
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compound name 1-Methyl- 
5-(1-methyl-2-(2,2,2-

trinitroethyl)hydrazinyl)-
1H-tetrazole 

2-(5-(1-Methyl-2-(2,2,2-
trinitroethyl)hydrazinyl)-
1H-tetrazol-1-yl)ethanol 

compound, abbrev. MMTHT MTHTE 

formula, moiety C5H9N9O6 C5H11N9O7 

formula, sum C5H9N9O6 C5H11N9O7 

M / g mol-1 291.21 321.21 

crystal system triclinic monoclinic 

space group P-1 (no.2) P21/c (no.14) 

a / Å 7.2651(13) 13.0419(4) 

b / Å 7.5773(16) 7.3020(2) 

c / Å 11.695(7) 14.8002(5) 

α / ° 102.89(3) 90 

β / ° 103.82(3) 112.118(4) 

γ / ° 99.387(17) 90 

V / Å3 593.3(4) 1305.73(7) 

ρ calc. / g  cm-3 1.6301(11) 1.6341(1) 

F(000) 300 664 

cell formula Z 2 4 

space group Z 2 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.146 0.147 

T / K 100 100 

reflections, collected 5201 8966 

reflections, independent 2299 2813 

Rint 0.0225 0.0237 

parameter 217 243 

R1    [I  > 2σ(I)] 0.0293 0.0286 

wR2 [I  > 2σ(I)] 0.0678 0.0682 

R1    [all data] 0.0426 0.0425 

wR2 [all data] 0.0716 0.0732 

S 0.943 1.017 

Δ ρ max, min / e  Å3 0.204, 0.229 0.231, 0.218 

deposition no. - - 
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compound name 1-(4N-2,2,2-
Trinitroethyl)-2,5-

hydroxymethyl- 
triazine 

N3,N6-Bis- 
(2,2,2-trinitroethyl)- 
3,6-diamino-1,2,4,5-

tetrazine 
compound, abbrev. THMT BTAT 

formula, moiety C5H9N7O8 C6 H6 N12 O12 

formula, sum C5H9N7O8 C6 H6 N12 O12 

M / g mol-1 307.20 438.23 

crystal system monoclinic orthorhombic 

space group P21/n (no.14) Pna21 

a / Å 9.1753(4) 23.3824(8) 

b / Å 10.3168(4) 5.9271(2) 

c / Å 13.0862(5) 11.1373(3) 

α / ° 90.00 90 

β / ° 105.975(4) 90 

γ / ° 90.00 90 

V / Å3 1190.90(9) 1543.52(9) 

ρ calc. / g  cm-3 1.7134(1) 1.8858(1) 

F(000) 632 888 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.158 0.181 

T / K 100 100 

reflections, collected 7201 11060 

reflections, independent 2702 2339 

Rint 0.0313 0.0219 

parameter 226 279 

R1    [I  > 2σ(I)] 0.0315 0.0269 

wR2 [I  > 2σ(I)] 0.0620 0.0685 

R1    [all data] 0.0593 0.0329 

wR2 [all data] 0.0690 0.0710 

S 0.899 1.029 

Δ ρ max, min / e  Å3 0.256, 0.279 0.326, 0.200 

deposition no. - CCDC - 699141 
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compound name S-Ethyl-2,2,2-
trinitroethyl-thioformate 

Bis-(2,2,2-trinitroethyl)- 
carbonate 

compound, abbrev.  BTC 

formula, moiety C5 H7 N3 O8 S C5 H4 N6 O15 

formula, sum C5 H7 N3 O8 S C5 H4 N6 O15 

M / g mol-1 269.21 388.14 

crystal system triclinic orthorhombic 

space group P-1 (no.2) Pbca (no.61) 

a / Å 7.9304(6) 10.8828(2) 

b / Å 11.8342(11) 11.4746(2) 

c / Å 12.2221(12) 20.9073(4) 

α / ° 67.067(9) 90.00 

β / ° 88.073(7) 90.00 

γ / ° 87.634(7) 90.00 

V / Å3 1055.29(16) 2610.81(8) 

ρ calc. / g  cm-3 1.6944(3) 1.9750(1) 

F(000) 552 1568 

cell formula Z 4 8 

space group Z 2 8 

Z΄ 2 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.346 0.204 

T / K 100 100 

reflections, collected 6814 12846 

reflections, independent 6814 3795 

Rint 0.0893 0.0247 

parameter 324 251 

R1    [I  > 2σ(I)] 0.0356 0.0272 

wR2 [I  > 2σ(I)] 0.0658 0.0617 

R1    [all data] 0.0690 0.0445   

wR2 [all data] 0.0717 0.0681 

S 0.788 0.993 

Δ ρ max, min / e  Å3 0.320, 0.238 0.377, 0.244 

deposition no. -  
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compound name 2,2,2-Trinitroethyl- 
azidoformate 

Bis-(2,2,2-trinitroethyl)-
hydrazodicarboxylate, 

Acetone, 1:1 
compound, abbrev. TAF BTHC · Acetone 

formula, moiety C3 H2 N6 O8 C6 H6 N8 O16, C3 H6 O 

formula, sum C3 H2 N6 O8 C9 H12 N8 O17 

M / g mol-1 250.11 504.27 

crystal system monoclinic triclinic 

space group P21/c (no.14) P-1 (no.2) 

a / Å 7.3139(3) 10.1798(13) 

b / Å 13.0430(6) 10.4185(17) 

c / Å 18.8050(7) 11.256(3) 

α / ° 90.00 63.448(19) 

β / ° 91.273(4) 70.392(13) 

γ / ° 90.00 89.865(12) 

V / Å3 1793.46(13) 990.4(4) 

ρ calc. / g  cm-3 1.8526(1) 1.6910(7) 

F(000) 1008 516.0 

cell formula Z 8 2 

space group Z 4 2 

Z΄ 2 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.184 0.166 

T / K 100 100 

reflections, collected 8785 29458 

reflections, independent 3244 6588 

Rint 0.0657 0.0329 

parameter 323 355 

R1    [I  > 2σ(I)] 0.0830 0.0366 

wR2 [I  > 2σ(I)] 0.1016 0.0849 

R1    [all data] 0.1341 0.0718 

wR2 [all data] 0.1166 0.1006 

S 1.312 1.044 

Δ ρ max, min / e  Å3 0.374, 0.488 0.361, 0.294 

deposition no. CCDC - 699137 CCDC - 699138 
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compound name Bis-(2,2,2-trinitroethyl)-
hydrazodicarboxylate,  

Ethylacetate, 1:1 

2-amino-4,6-dimethyl 
-1,3,5-triazine, Guanidine, 

1:1 
compound, abbrev. BTHC · EtOAc ADMT  · Guanidine 

formula, moiety C6 H6 N8 O16, C4 H8 O2 C5H8N4, C1H5N3 

formula, sum C10 H14 N8 O18 C6H13N7 

M / g mol-1 534.29 183.23 

crystal system triclinic monoclinic 

space group P-1 (no.2) P21/c (no.14) 

a / Å 10.2012(7) 9.9182(3) 

b / Å 11.3283(4) 4.8503(2) 

c / Å 11.4482(6) 18.8708(7) 

α / ° 63.977(4) 90 

β / ° 64.955(6) 91.382(3) 

γ / ° 87.713(4) 90 

V / Å3 1059.65(10) 907.54(6) 

ρ calc. / g  cm-3 1.6746(2) 1.3411(1) 

F(000) 548 392 

cell formula Z 2 4 

space group Z 2 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.163 0.094 

T / K 100 100 

reflections, collected 9707 4341 

reflections, independent 4140 1755 

Rint 0.0201 0.0193 

parameter 349 170 

R1    [I  > 2σ(I)] 0.0361 0.0327 

wR2 [I  > 2σ(I)] 0.1014 0.0770 

R1    [all data] 0.0452 0.0499 

wR2 [all data] 0.1055 0.0837 

S 1.102 0.969 

Δ ρ max, min / e  Å3 0.384, 0.370 0.145, 0.196 

deposition no. CCDC - 699139 CCDC - 642807 
a) ADMT = 2-amino-4,6-dimethyl-1,3,5-triazine 
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compound name 2-amino-4,6-dimethyl 
-1,3,5-triazine, 2 

Guanidine, 
1:2 

N5-trimethylsilyl- 
1,5-diamino-1H-tetrazole 

compound, abbrev. ADMT · 2 Guanidine 5-TMSD 

formula, moiety C5H8N4, 2(C1H5N3) C4 H12 N6 Si 

formula, sum C7H18N10 C4 H12 N6 Si 

M / g mol-1 242.31 172.29 

crystal system monoclinic monoclinic 

space group P21/c (no.14) P21/c (no.14) 

a / Å 6.5743(2) 12.767(3) 

b / Å 23.7968(7) 5.9889(12) 

c / Å 7.8931(2) 11.752(2) 

α / ° 90.00 89.951(17) 

β / ° 96.373(2) 90.773(17) 

γ / ° 90.00 89.991(16) 

V / Å3 1227.22(6) 898.4(3) 

ρ calc. / g  cm-3 1.3115(1) 1.2738(4) 

F(000) 520 368 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.094 0.214 

T / K 100 100 

reflections, collected 12408 774 

reflections, independent 2148 327 

Rint 0.0385 0.1090 

parameter 204 112 

R1    [I  > 2σ(I)] 0.0412 0.0680 

wR2 [I  > 2σ(I)] 0.0992 0.1441 

R1    [all data] 0.0691 0.0966 

wR2 [all data] 0.1144 0.1599 

S 1.024 1.187 

Δ ρ max, min / e  Å3 0.201, 0.247 0.192, 0.223 

deposition no. CCDC - 642808 - 
b) ADMT = 2-amino-4,6-dimethyl-1,3,5-triazine 
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compound name N1,N5-bis(trimethylsilyl)-
1,5-diamino-1H-tetrazole 

N1-(propan-2-ylidene)- 
1,5-diamino-1H-tetrazole 

compound, abbrev. 1,5-BTMSD 1-PYD 

formula, moiety C7 H20 N6 Si2 C4 H2 D6 N6 

formula, sum C7 H20 N6 Si2 C4 H2 D6 N6 

M / g mol-1 244.47 146.18 

crystal system monoclinic monoclinic 

space group P21/n (no.14) P21/c (no.14) 

a / Å 14.6063(7) 7.4859(3) 

b / Å 6.4066(3) 7.4334(2) 

c / Å 15.0847(9) 11.9822(4) 

α / ° 90.00 90.00 

β / ° 100.568(5) 97.308(3) 

γ / ° 90.00 90.00 

V / Å3 1387.63(12) 661.34(4) 

ρ calc. / g  cm-3 1.1702(1) 1.4681(1) 

F(000) 528 296 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.239 0.102 

T / K 100 100 

reflections, collected 13361 6449 

reflections, independent 4562 2163 

Rint 0.0433 0.0217 

parameter 216 123 

R1    [I  > 2σ(I)] 0.0359 0.0342 

wR2 [I  > 2σ(I)] 0.0750 0.0839 

R1    [all data] 0.0787 0.0500 

wR2 [all data] 0.0931 0.0892 

S 0.988 0.995 

Δ ρ max, min / e  Å3 0.487, 0.601 0.231, 251 

deposition no. - - 
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compound name N1,N1-bis-(trimethylsilyl)- 
1,5-diamino-1H-tetrazole 

N1,N1,N5-
tris(trimethylsilyl)- 

1,5-diamino-1H-tetrazole 
compound, abbrev. 1,1-BTMSD 1,1,5-TTMSD 

formula, moiety C7 H20 N6 Si2 C10H28N6Si3 

formula, sum C7 H20 N6 Si2 C10H28N6Si3 

M / g mol-1 244.47 316.65 

crystal system triclinic monoclinic 

space group P-1 (no.2) P21/c (no.14) 

a / Å 6.3649(10) 9.5490(4) 

b / Å 8.0322(16) 17.1449(6) 

c / Å 14.026(2) 11.8672(4) 

α / ° 93.961(14) 90.00 

β / ° 97.427(13) 94.643(4) 

γ / ° 105.416(15) 90.00 

V / Å3 681.5(2) 1936.48(12) 

ρ calc. / g  cm-3 1.1914(3) 1.0861(1) 

F(000) 264 688 

cell formula Z 2 4 

space group Z 2 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.244 0.244 

T / K 100 100 

reflections, collected 4812 14750 

reflections, independent 1870 4281 

Rint 0.1030 0.0494 

parameter 144 176 

R1    [I  > 2σ(I)] 0.0879 0.0403 

wR2 [I  > 2σ(I)] 0.1214 0.0813 

R1    [all data] 0.1530 0.0818 

wR2 [all data] 0.1425 0.1001 

S 1.177 1.030 

Δ ρ max, min / e  Å3 0.411, 0.371 0.333, 0.274 

deposition no. - - 
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compound name 3,4,6-Trichlor- 
pyridazine 

3,4,5,6-Tetrachlor-
pyridazine 

compound, abbrev. 3,4,6-TCP 3,4,5,6-TCP 

formula, moiety C4 H Cl3 N2 C4 Cl4 N2 

formula, sum C4 H Cl3 N2 C4 Cl4 N2 

M / g mol-1 183.42 217.86 

crystal system orthorhombic tetragonal 

space group Pbca (no.61) P41212 (no.92) 

a / Å 10.571(5) 5.2649(2) 

b / Å 7.243(5) 5.2649(2) 

c / Å 17.302(5) 52.351(2) 

α / ° 90.0 90 

β / ° 90.0 90 

γ / ° 90.0 90 

V / Å3 1324.7(12) 1451.10(10) 

ρ calc. / g  cm-3 1.8394(17) 1.9944(1) 

F(000) 720 848 

cell formula Z 8 8 

space group Z 8 4 

Z΄ 1 2 

diffractometer Oxford Xcalibur 3 CCD  Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 1.280 1.542 

T / K 100 100 

reflections, collected 12166 13078 

reflections, independent 1278 1299 

Rint 0.0264 0.0972 

parameter 86 91 

R1    [I  > 2σ(I)] 0.0292 0.0770 

wR2 [I  > 2σ(I)] 0.0713 0.1411 

R1    [all data] 0.0301 0.0772 

wR2 [all data] 0.0720 0.1412 

S 1.169 1.138 

Δ ρ max, min / e  Å3 0.206, 0.240 0.382, 0.383 

deposition no. - - 
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compound name 4-Azido-3,6-dichlor-
pyridazine 

4,6-Dichloro-3(2H)-
pyridazinone 

compound, abbrev. 4-A,3,6-DCP DCP 

formula, moiety C4 H Cl2 N5 C4 H2 Cl2 N2 O 

formula, sum C4 H Cl2 N5 C4 H2 Cl2 N2 O 

M / g mol-1 190.00 164.98 

crystal system orthorhombic monoclinic 

space group P212121 (no.19) P21/n (no.14) 

a / Å 4.4512(6) 5.1841(2) 

b / Å 10.5426(12) 8.8456(4) 

c / Å 14.9866(17) 13.5868(5) 

α / ° 90.0 90.00 

β / ° 90.0 100.264(4) 

γ / ° 90.0 90.00 

V / Å3 703.28(15) 613.07(4) 

ρ calc. / g  cm-3 1.7945(4) 1.7874(1) 

F(000) 376 328 

cell formula Z 4 4 

space group Z 4 4 

Z΄ 1 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 0.854 0.962 

T / K 100 100 

reflections, collected 7079 8850 

reflections, independent 1374 2054 

Rint 0.0431 0.0412 

parameter 104 90 

R1    [I  > 2σ(I)] 0.0353 0.0342 

wR2 [I  > 2σ(I)] 0.0740 0.0706 

R1    [all data] 0.0374 0.0655 

wR2 [all data] 0.0753 0.0813 

S 1.101 1.042 

Δ ρ max, min / e  Å3 0.232, 0.202 0.430, 0.314 

deposition no. - - 
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compound name Mercuryfulminate Hexaazidocyclo- 
triphosphazene 

compound, abbrev. Hg(CNO)2 P3N21 

formula, moiety C2 N2 O2 Hg P3N21 

formula, sum C2 N2 O2 Hg P3N21 

M / g mol-1 284.63 387.12 

crystal system orthorhombic triclinic 

space group Cmce (no.64) P-1 (no.2) 

a / Å 5.3549(2) 7.1953(9) 

b / Å 10.4585(5) 7.3718(9) 

c / Å 7.5579(4) 12.9942(15) 

α / ° 90.00 87.432(10) 

β / ° 90.00 78.955(10) 

γ / ° 90.00 89.592(10) 

V / Å3 423.27(3) 675.80(14) 

ρ calc. / g  cm-3 4.467 1.9024(4) 

F(000) 488 384 

cell formula Z 4 2 

space group Z 8 2 

Z΄ 0.5 1 

diffractometer Oxford Xcalibur 3 CCD Oxford Xcalibur 3 CCD  

λMo Kα / Å 0.71073 0.71073 

μ / mm-1 36.220 0.486 

T / K 100 100 

reflections, collected 4428 6935 

reflections, independent 257 2657 

Rint 0.0418 0.0438 

parameter 23 217 

R1    [I  > 2σ(I)] 0.0111 0.0388 

wR2 [I  > 2σ(I)] 0.0241 0.0947 

R1    [all data] 0.0202 0.0505 

wR2 [all data] 0.0250 0.1027 

S 0.906 1.062 

Δ ρ max, min / e  Å3 0.478, 0.621 0.351, 0.340 

deposition no. CSD - 417930 CSD - 416415 
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compound name Chlortrinitromethane 

compound, abbrev. Cl-TNM 

formula, moiety C Cl N3 O6 

formula, sum C Cl N3 O6 

M / g mol-1 185.49 

crystal system monoclinic 

space group P21/c (no.14) 

a / Å 10.3347(5) 

b / Å 5.7397(1) 

c / Å 10.3885(2) 

α / ° 90.00 

β / ° 106.53(1) 

γ / ° 90.00 

V / Å3 590.76(4) 

ρ calc. / g  cm-3 2.0856(1) 

F(000) 368 

cell formula Z 4 

space group Z 4 

Z΄ 1 

diffractometer Oxford Xcalibur 3 CCD 

λMo Kα / Å 0.71073 

μ / mm-1 0.639 

T / K 100 

reflections, collected 6349 

reflections, independent 1031 

Rint 0.0916 

parameter 100 

R1    [I  > 2σ(I)] 0.0305 

wR2 [I  > 2σ(I)] 0.0774 

R1    [all data] 0.0323 

wR2 [all data] 0.0792 

S 1.056 

Δ ρ max, min / e  Å3 0.319, 0.348 

deposition no. CSD - 705645 



Chapter 4 – Appendix 
 

- 379 - 

4.8 Bibliography 
 

 
Scientific Journals  

 
 

16* The unique role of the nitro group in intramolecular interactions: 
chloronitromethanes, 
Laura Macaveiu, Michael Göbel, Thomas M. Klapötke, Jane S. Murray, and Peter 
Politzer, 

 Struct. Chem. 2010, 21, 139-146. 
 
15 Does [I3]+ act as an '[I]+' donor to CH3CN and N2O? Structure of [H3CCN-I-

NCCH3]+[AsF6]-, 
 Margaret-Jane Crawford, Michael Göbel, Thomas M. Klapötke, Konstantin 

Karaghiosoff, and Jan Welch, 
 Inorg. Chem. 2009, 48, 9983-9985. 
 
14* Reaction force analyses of nitro-aci tautomerizations of trinitromethane, the elusive 

trinitromethanol, picric acid and 2,4-dinitro-1H-imidazole,  
 Jane S. Murray, Pat Lane, Michael Göbel, Thomas M. Klapötke, and Peter Politzer, 
 Theor. Chem. Acc. 2009, 124, 355-363. 
 
13* Chlorotrinitromethane and its exceptional short carbon chlorine bond, 
 Michael Göbel, Boris H. Tchitchanov, Jane S. Murray, Peter Politzer and Thomas M. 

Klapötke,  
 Nature Chem. 2009, 1, 229-235. 
 
12* Electrostatic intra- and intermolecular interactions and their significance on 

structure, acidity and tautomerisation of trinitromethane. 
 Jane S. Murray, Pat Lane, Michael Göbel, Thomas M. Klapötke, and Peter Politzer,  

J. Chem. Phys. 2009, 130(10), 104304-1 – 104304-6. 
 
11* (Feature Article / VIP) 

Development and testing of energetic materials: the concept of high densities based 
on the trinitroethyl functionality,  
Michael Göbel and Thomas M. Klapötke, 
Adv. Funct. Mater. 2009, 19, 347-365. 
 
 
 
 
Note. * published as part of this thesis. 



Chapter 4 – Appendix 
 

- 380 - 

 
10 Preparation and characterization of bis-[4-dimethylamino-2-

pyrimidyl]dichalcogenides (S, Se, Te): X-ray crystal structure of bis-[4-
dimethylamino-2-pyrimidyl]diselenide and its physicochemical behaviour in 
microemulsion media, 

 Khuldip K. Bhasin, Ekta Arora, Khushwinder Kaur, Sung-Kyu Kang, Michael Göbel, 
Thomas M. Klapötke and S. K. Mehta, 

 Tetrahedron 2009, 65(1), 247-252. 
 
9 (Cover Picture / VIP) 

The synthesis of azadirachtin: a potent insect antifeedant, 
 Steven V. Ley, Antonio Abad-Somovilla, James C. Anderson, Carles Ayats, Rolf 

Bänteli, Edith Beckmann, Alistair Boyer, Maria G. Brasca, Abigail Brice, Howard B. 
Broughton, Brenda J. Burke, Ed Cleator, Donald Craig, Alastair A. Denholm, Ross 
M. Denton, Thomas Durand-Reville, Luca B. Gobbi, Michael Göbel, Brian Lawrence 
Gray, Robert B. Grossmann, Claire E. Gutteridge, Norbert Hahn, Sarah L. Harding, 
David C. Jennens, Lynn Jennens, Peter J. Lovell, Helen J. Lovell, Mary L. de la 
Puente, Hartmuth C. Kolb, Win-Jan Koot, Sarah L. Maslen, Catherine F. McCusker, 
Amos Mattes, Andrew R. Pape, Andrea Pinto, Dinos Santafianos, James S. Scott, 
Stephen C. Smith, Andrew Q. Somers, Christopher D. Spilling, Frank Stelzer, Peter 
L. Toogood, Richard M. Turner, Gemma E. Veitch, Anthony Wood, Cornelia 
Zumbrunn, 

 Chem. Eur. J. 2008, 14(34), 10683-10704. 
 
8* (Cover Picture) 
 Exceeding the oxygen content of liquid oxygen:  
 bis(2,2,2-trinitroethyl)carbonate,  
 Michael Göbel and Thomas M. Klapötke, 
 Acta Crystallogr., Sect. C: Cryst. Struct. Commun.  2008, 64(2), o58-o60. 
 
7 γ-FOX-7: Structure of a high energy density material immediately prior to 

decomposition,  
 Margaret J. Crawford, Jürgen Evers, Michael Göbel, Thomas M. Klapötke, Peter 

Mayer, Gilbert Oehlinger, Jan M. Welch, 
 Propellants, Explos., Pyrotech. 2007, 32(6), 478-495. 
 
6* 2,2,2-Trinitroethanol,  
 Michael Göbel and Thomas M. Klapötke, 
 Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2007, 63(9), o562-o564. 
 
5* First structural characterization of guanidine, HN=C(NH2)2, 
 Michael Göbel and Thomas M. Klapötke, 
 Chem. Commun.  2007, 3180-3182. 
 



Chapter 4 – Appendix 
 

- 381 - 

4* (Cover Picture / open access) 
The crystal and molecular structure of mercury fulminate (Knallquecksilber),  
Wolfgang Beck, Jürgen Evers, Michael Göbel, Gilbert Oehlinger and Thomas M. 
Klapötke, 

 Z. Anorg. Allg. Chem. 2007, 633(9), 1417-1422. 
 
3* (Cover Picture) 

Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, 
diaminoguanidinium-, triaminoguanidinium- and melaminiumnitroformate – 
synthesis, characterization and energetic properties,  

 Michael Göbel and Thomas M. Klapötke, 
 Z. Anorg. Allg. Chem. 2007, 633(7), 1006-1017. 
 
2* (Cover Picture) 

First structurally characterised binary P-N molecule: the highly energetic compound 
P3N21,  
Michael Göbel, Konstantin Karaghiosoff, Thomas M. Klapötke, 
Angew. Chem. 2006, 118(36), 6183-6186; Angew. Chem. Int. Ed. 2006, 45, 6037-6040.  

 
1 Crystal structures of the potassium and silver salts of nitroform, 

Michael Göbel, Thomas M. Klapötke, Peter Mayer, 
Z. Anorg. Allg. Chem. 2006, 632(6), 1043-1050. 

 
 
 

Seminar Proceedings 
 

9* (Cover Picture) 
Towards elucidating the exotic chemical reactivity of matter under extreme 
conditions, 

 Michael Göbel and Thomas M. Klapötke, 
 Swiss Society for Crystallography (SGK/SSCr) Newsletter 2009, 78, 16-17. 
 (ISSN 1662-5358 printed edition., ISSN 1662-534X electronic edition) 
 
8* A structural isomer of CL-20:  

synthesis, characterization and energetic properties of BTAT, 
 Michael Göbel and Thomas M. Klapötke, 
 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 12th, Czech 

Republic, Apr. 01-03, 2009 (Pt. 2), 542-547. 



Chapter 4 – Appendix 
 

- 382 - 

7* An insensitive melt castable explosive with positive oxygen balance: 
synthesis, characterization and energetic properties of BTHC, 
 Michael Göbel and Thomas M. Klapötke, 
New Trends in Research of Energetic Materials, Proceedings of the Seminar, 12th, Czech 
Republic, Apr. 01-03, 2009 (Pt. 2), 548-555. 

 
6* From molecular structure to explosive performance parameters: properties of the 

homologous series of guanidinium salts of 3,5-diaminopicirc acid, 
Michael Göbel, Thomas M. Klapötke, Anthony J. Bellamy, Luigi Cassioli, Alessandro 
E. Contini,  
New Trends in Research of Energetic Materials, Proceedings of the Seminar, 11th, Pardubice, 
Czech Republic, Apr. 9-11, 2008 (Pt. 2), 574-580. 

 
5* Development and testing of high density energetic materials containing superior 

amounts of oxygen, 
Michael Göbel and Thomas M. Klapötke, 

 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 10th, Czech 
Republic, Apr. 09-11, 2008, 150-154. 

 
4* Synthesis and characterization of N-trinitroethyl derivatives of nitrogen containing 

compounds, 
 Michael Göbel and Thomas M. Klapötke, 
 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 10th, Czech 

Republic, Apr. 25-27, 2007, 149-153. 
 
3* Synthesis and characterization of the oxygen rich energetic material melaminium 

dinitrate (MDN), 
 Roland Friedemann, Michael Göbel, Thomas M. Klapötke, Susanne Scheutzow 
 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 10th, Czech 

Republic, Apr. 25-27, 2007 (Pt. 2), 875-876. 
 
2 Stable salts of methylated 5-aminotetrazoles, 
 Michael Göbel, Konstantin Karaghiosoff, Thomas M. Klapötke, Carlos Miró, Jan M. 

Welch,  
 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 9th, Czech 

Republic, Apr. 19-21, 2006, 202-213. 
 
1* Guanidinium nitroformate salts: possible new oxidizers for high performance, 

halogen free solid propellants,  
 Michael Göbel, Thomas M. Klapötke, P. C. Thumbs, 
 New Trends in Research of Energetic Materials, Proceedings of the Seminar, 9th, Czech 

Republic, Apr. 19-21, 2006, 127-134. 



Chapter 4 – Appendix 
 

- 383 - 

Letter 
 
3 Danger with primary amines and methylene chloride,  

Andreas Böhm, Michael Göbel, Thomas M. Klapötke, Susanne Scheutzow and 
Johann Weis, 
Chemistry in Australia  2007, 74(8), 2. 

 
2 Gefahr bei primären Aminen und Dichlormethan, 

Andreas Böhm, Michael Göbel, Thomas M. Klapötke, Susanne Scheutzow and 
Johann Weis,  
Nachr. Chem. 2007, 55, 864. 

 
1 Visualisierung einzelner Viren auf ihrem Infektionsweg in lebende Zellen, 

Michael Göbel, Thomas Endreß, Christoph Bräuchle, 
Laborwelt  2002, (4), 4-7. 

 
 

Poster 
 
8* Reaction force analysis of nitro / aci tautomerization, 

Jane S. Murray, Pat Lane, Michael Göbel, Thomas M. Klapötke and Peter Politzer, 
 12th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, Apr. 01-03, 2009. 
 
7* (Award) 

A structural isomer of CL-20:  
synthesis, characterization and energetic properties of BTAT, 

 Michael Göbel and Thomas M. Klapötke, 
 12th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, Apr. 01-03, 2009. 
 
6* An insensitive melt castable explosive with positive oxygen balance: 

synthesis, characterization and energetic properties of BTHC,  
 Michael Göbel and Thomas M. Klapötke, 

12th International Annual Conference on New Trends in Research of Energetic Materials, 
Pardubice, Czech Republic, Apr. 01-03, 2009. 

 
5* From molecular structure to explosive performance parameters: properties of the 

homologous series of guanidinium salts of 3,5-diaminopicric acid, 
 Michael Göbel, Thomas M. Klapötke, 
 11th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, April 09 – 11, 2008. 
 



Chapter 4 – Appendix 
 

- 384 - 

4* Synthesis and characterization of the oxygen rich energetic material melaminium 
dinitrate (MDN), 

 Roland Friedemann, Michael Göbel, Thomas M. Klapötke, Susanne Scheutzow 
 10th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, April 25 – 27, 2007. 
 
3* (Award) 

P3N21, 
 Michael Göbel, Thomas M. Klapötke, 
 13. Vortragstagung der Wöhler Vereinigung für Anorganische Chemie, Aachen, September 

18 – 19, 2006. 
 
2* New energetic materials: guanidinium nitroformate salts, 
 Michael Göbel, Thomas M. Klapötke, 
 Gordon Research Conference on Energetic Materials, New Hampshire, USA, June 18 – 

23, 2006. 
 
1 (Award)  

Crystal structures of the potassium and silver salts of nitroform,  
 Michael Göbel, Thomas M. Klapötke, Peter Mayer,  
 8th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, April 19 – 21, 2005. 
 
 

Talks 
 
11* (Martin Summerfield Best Paper Award) 

High-nitrogen and high-oxygen explosives as possible replacements for RDX, 
 Thomas M. Klapötke, Michael Göbel, Jörg Stierstorfer, 
 8th International Symposium on Special Topics in Chemial Propulsion, Cape Town, South 

Africa, November 2 – 6, 2009.  
 
10* (Invited Talk) 

Energetic materials research – Kunst oder Wissenschaft? 
Michael Göbel, 

 Deutsches Krebsforschungszentrum (DKFZ), Heidelberger Life-Science Lab, Heidelberg, 
Germany, October 23, 2009. 

 
9* (Invited Talk) 
 Towards elucidating the exotic chemical reactivity of matter under extreme 

conditions, 
 Michael Göbel and Thomas M. Klapötke, 
Annual Meeting of the Swiss Society of Crystallography, Fribourg, Switzerland, 
September 8, 2009. 



Chapter 4 – Appendix 
 

- 385 - 

8* Development and testing of energetic materials: The concept of high densities based 
on the trinitroethyl functionality,  
Michael Göbel and Thomas M. Klapötke,  
EDA Workshop on Energetic Materials with Higher Performance, EMHP and 
Formulation and Production of New Energetic Materials, FPNEM, FOI, Kista, 
Stockholm, Sweden, April 22, 2008. 

 
7* Development and testing of high density energetic materials containing superior 

amounts of oxygen, 
Michael Göbel and Thomas M. Klapötke, 

 11th International Annual Conference on New Trends in Research of Energetic Materials, 
Pardubice, Czech Republic, April 09 – 11, 2008. 

 
6* (Award)  

Synthesis and characterization of N-trinitroethyl derivatives of nitrogen containing 
compounds, 

 Michael Göbel and Thomas M. Klapötke, 
 10th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, April 25 – 27, 2007. 
 
5* Recent aspects of academic and applied research in azide chemistry, 
 Thomas M. Klapötke, Michael Göbel, Vikas Verma, 
 IC07 – Conference of the Inorganic Chemistry Division Royal Australian Chemical Institute 

– Hobart, Tasmania, February 4 – 8, 2007. 
 
4* New highly energetic materials based on C-N and P-N heterocycles, 
 Thomas M. Klapötke, Michael Göbel, Margaret J. Crawford, Jan M. Welch, Jörg 

Stierstorfer, Vikas Verma, Jan J. Weigand, Anton Hammerl, 
 IRIS – 11, Oulu, Finland, 30 July – 04. August, 2006. 
 
3* Nitro compounds, tetrazoles and azides: the last five months at LMU munich, 
 Margaret J. Crawford, Michael Göbel and Thomas M. Klapötke, 
 University of Melbourne, Australia, May 22, 2006. 
 
2 Stable salts of methylated 5-aminotetrazoles, 

Michael Göbel, Konstantin Karaghiosoff, Thomas M. Klapötke, Carlos Miró,  
Jan M. Welch,  

 9th International Annual Conference on New Trends in Research of Energetic Materials, 
Pardubice, Czech Republic, April 19 – 21, 2006. 



Chapter 4 – Appendix 
 

- 386 - 

1 (Award) 
Guanidinium nitroformate salts: possible new oxidizers for high performance, 
halogen free solid propellants,  

 Michael Göbel, Thomas M. Klapötke, 
 9th International Annual Conference on New Trends in Research of Energetic Materials, 

Pardubice, Czech Republic, April 19 – 21, 2006. 
 
 
 

Press / Books 
 

 
10* Chemie der hochenergetischen Materialien, Klapötke, T.M. (Ed.), de Gruyter, Berlin, 

2009, 132-137. 
 
9* When atoms are getting close: shortest carbon-chlorine single bond detected until 

now,  
Press release, Ludwig-Maximilian University Munich, May (4) 2009.  

 
8* Explosive future, Materials Views 2009, March, p. A3. 
 
7* Wenn Grün die Umwelt gefährdet,   

Forschungsnewsletter EINSICHTEN, Ludwig-Maximilan University Munich, 
October 2008, p.61. 

 
6* Explosives Geheimnis gelüftet, 

Frankfurter Allgemeine Zeitung, September (26) 2007, 224, p. N2. 
 
5* Das letzte Geheimnis des Knallquecksilbers,  

Neue Zürcher Zeitung, September (5) 2007. 
 
4* Mercury fulminate revealed,  

Chemical & Engineering News, September (3) 2007, p. 10. 
 
3* Trendbericht Festkörperchemie,  

Nachr. Chem. 2007, 55, p. 244. 
 
2* Trendbericht Anorganische Chemie,  

Nachr. Chem. 2007, 55, p. 225. 
 
1* High Energy Density Materials; Mingos, D.M.P; Klapötke, T.M., Eds.; Structure and 

Bonding; Springer: Berlin Heidelberg, 2007; Vol. 125, pp. 77 & 96-99. 
 



Chapter 4 – Appendix 
 

- 387 - 

4.9 Curriculum Vitae 
 
 
 
Personal Details 
 
Name Michael Göbel 
Place of birth Landau / Pfalz 
Date of birth 25.04.1977 
Nationality German 
Marital status Unmarried 
 
 
Education 
 
 

06/05 – 12/09 Ludwig-Maximilian University, Munich 
 Research Group of Prof. T.M. Klapötke 

Dissertation: Energetic materials containing the trinitromethyl pseudohalide functionality 
 

09/04 – 03/05  Ludwig-Maximilian University, Munich 
  Research Group of Prof. T.M. Klapötke   

Diploma thesis: Versuche zur Darstellung von 1,1,1,4,4,4-Hexanitro-2-butin sowie 
Strukturaufklärung von Salzen des Trinitromethans  

 

07/04 Ludwig-Maximilian University, Munich 
 Diploma in Chemistry, final examinations 
 

09/01 – 12/01 University of Cambridge, UK 
 Research Group of Prof. S.V. Ley,  
 Advanced study period  
 

11/00 Ludwig-Maximilian University, Munich 
 Diploma in Chemistry, preliminary examinations 
 
 

10/99 Ludwig-Maximilian University, Munich 
 Official enrolment within the degree programme ‘Diplom-Chemie’ 
 

04/99 – 09/99 Ludwig-Maximilian University, Munich 
 Guest student within the degree programme ‘Diplom-Chemie’ 
 

10/97 – 10/99 Georg-Simon-Ohm Fachhochschule, Nuremberg 
 Diploma in Chemical Engineering, preliminary examinations 
 (February 1999) 
 

08/96 – 08/97 Civilian Service 
 at the ‚Ökumenische Sozialstation für den Landkreis Weilheim-Schongau’ 
  

07/96 Fachoberschule, Weilheim / Oberbayern 
 A-levels  

   
 



Chapter 4 – Appendix 
 

- 388 - 

4.10 Acknowledgements  
 
 
 
I am indebted to and thank Prof. Dr. Thomas M. Klapötke. Under his supervision it was 
possible to develop ideas and translate them into results. His always generous and 
supporting attitude together with a tremendous leap of faith towards my person is very 
much appreciated and I am most grateful and glad I had the opportunity to work in his 
group. 
 
I would like to express my gratitude to Prof. Dr. W. Beck. I feel honoured I had the chance 
to listen to and work with him on many topics including but not limited to mercury 
fulminate and I would like to thank him for being co-referee of this thesis. 
 
I am thankful to Prof. Dr. J. Evers, Prof. Dr. I.-P. Lorenz, Prof. Dr. P. Knochel and Prof. Dr. 
A. Kornath for their immediate attendance to act as examiners in my viva-voce. 
 
 
I am indebted for aid in the preparation of this thesis to many of my colleagues, friends and 
to many teachers in chemistry, including  
 
Dr. Anthony J. Bellamy, Dr. Richard Betz, Franziska Betzler, Dr. Sebastian M. Braun, Dr. 
habil. Margaret-Jane Crawford, Camilla Evangelisti, Dagmar Ewald, Dennis Fischer, Dr. 
Gerd Fischer,  Niko Fischer, Roland Friedemann, Dr. Anton Hammerl, Stefan Huber, Prof. 
Dr. Konstantin Karaghiosoff, Marcos Kettner, Prof. Dr. Peter Klüfers, Prof. Dr. Bettina V. 
Lotsch, Franz Martin, Dr. Peter Mayer, Norbert Mayr, Dr. Carlòs Miro-Sabaté Richard 
Moll, Dr. Jane S. Murray, Anian Nieder, Dr. Oliver Oeckler, Gilbert Oehlinger, Alexander 
Penger, Dr. Kurt Pohlborn, Prof. Dr. Peter Politzer, Davin Piercey, Hendrik Radies, 
Sebastian Rest, Magdalena Rusan, Irene Scheckenbach, Dr. Matthias Scherr, Susanne 
Scheutzow, Prof. Dr. Wolfgang Schnick, Dr. Stefan Sproll, Dr. Franz X. Steemann, Dr. Jörg 
Stierstorfer, Karina Tarantik, Boris H. Tchitchanov, Peter C. Thumbs, Vikas Verma, Dr. Jan 
J. Weigand, Dr. Jan Welch, and I am glad to express my gratitude to them. 
 
 
The Cusanuswerk is thanked for a scholarship. 
 
Above all, I am indebted to my parents, grandparents and family who continuously 
encouraged and supported me.  
 
 
 
 



Chapter 4 – Appendix 
 

- 389 - 

4.11 References 
 
(1)  Official Energy Statistics from the U.S. Government, Energy Information 

Administration (EIA), annual power data for 2007, 
http://www.eia.doe.gov/cneaf/electricity/epa/epat2p2.html 

(2) J.B. Bdzil, T.D. Aslam, R. Henninger, J.J. Quirk, Los Alamos Science 2003, 28, 96. 

(3)  C.J. Wu, L.E. Fried, L.H. Yang, N. Goldman, S. Bastea, Nature Chem. 2009, 1, 57. 

(4)  M.R. Manaa, E.J. Reed, L.E. Fried, N. Goldman, J. Am. Chem. Soc. 2009, DOI: 
10.1021/ja808196e 

(5)  W.C. Davies, Los Alamos Science 1981, 2, 48. 
(6)  The New York Times, April 7, 2009, p. A1. 
(7)  J. Akhavan (2004) The Chemistry of Explosives, 2nd edn. The Royal Society of 

Chemistry, Great Britain, p. 41. 
(8)  M. Dé Fourneaux, Overview of National Policies, ADPA IM Symposium, 

Williamsburg, June 6-9, 1994. 
(9)  UN Recommendations on the Transport of Dangerous Goods: series 7 Tests and 

Criteria. 
(10)  T.M. Klapötke (2007) Nichtmetallchemie. In: E. Riedel (ed.) Moderne Anorganische 

Chemie, 3rd edn. Walter de Gruyter, Berlin.  

(11)  P. Noble, Jr., F.G. Borgardt, W.L. Reed, Chem. Rev. 1964, 64, 19. 
(12)  a) M.J. Kamlet, NAVORD Report 6207, 14 Feb 1959, Naval Surface Weapons 

Center; b) M.J. Kamlet, H.G. Adolph, J. Org. Chem. 1968, 33, 3073. 
(13)  K.F. Mueller, R.H. Renner, W.H. Gilligan, H.G. Adolph, M.J. Kamlet, Combust. Flame 

1983, 50, 341. 
(14)  J. Akhavan, The Chemistry of Explosives, RSC Paperbacks, Cambridge, 1998. 

(15)  H. Bircher, Chimia 2004, 58(6), 357. 
(16)  C.H. Johannson, P.A. Persson, Detonics of High Explosives. Academic Press, London & 

New York, 1970. 
(17)  I.B. Akst, Heat of Detonation, the Cylinder Test, and Performance in Munition, 9th 

Symposium on Detonation, Portland, USA, 1989. 
(18)  M.J. Kamlet, in a seminar at the White Oak Laboratory, NSWC, 1987. 
(19)   T.M. Klapötke, J. Stierstorfer, Dalton Trans. 2009, 643. 
(20)  M. DéFourneaux, About the Misuse of Detonation Velocities for the Characterisation of 

High Explosives, 25th International Conference on ‘Energetic Materials – Analysis, 
Characterization and Test Techniques’ ICT, Karlsruhe (Germany), June 28 – July 1, 
1994. 

(21)  A.J. Sanderson, Journal de Physique 1995, 5, C4-573. 

(22)  M.J. Kamlet, S.J. Jacobs, J. Chem. Phys. 1968, 48, 23. 

(23) O. Schischkoff, Ann. Chem. 1857, 101, 216. 



Chapter 4 – Appendix 
 

- 390 - 

(24) L.A. Kaplan, in Chemistry of the Nitro and Nitroso Groups, H. Feuer (Ed.), Interscience 

Publishers, New York, 1970. 
(25) M.G.A. Shvekhgeimer, Russ. Chem. Rev. 1998, 67(1), 35. 

(26) F.D. Chattaway, J. Chem. Soc. 1910, 97, 2099.  

(27)  P. Liang, Org. Syn. 1955, 3, 803;  P. Liang, Org. Syn. 1921, 21, 105. 

(28) K.J. Orton, P.V. McKie, J. Chem. Soc. 1920, 117, 283. 

(29) T. Urbanski, Chemistry and Technology of Explosives 1964. I. Pergamon Press. pp. 589-
594. 

(30) Pictet, Genequand, Ber. 1903, 36, 2225.  

(31) A. Hantzsch, Ber. 1906, 39, 2478.  

(32) Pictet, Khotinsky, Ber.  1907, 40, 1163. 

(33) a) Claessen, Ger. pat. 184.229; b) Claessen, Chem. Abstr. 1907, 1, 2524. 

(34) a) R. Schenck, Ger. pat, 211.198, 211,199; b) R. Schenck, Chem. Abstr. 1909, 3, 2205.  
(35)  a) Bayer & Co, Brit. pat. 24.299; b) Bayer & Co, Ger. pat. 224.057; c) Bayer & Co, 

Chem. Abstr. 1911, 5, 2305; d) Berger, Compt. Rend. 1910, 151, 813; e) Berger, Bull. 
Soc. Chim. France 1911, 9, 26. 

(36) W. Will, Chem. Ber. 1914, 47, 961. 

(37)  P.V. McKie, J. Soc. Chem. Ind. 1925, 44, 430T. 

(38) P.V. McKie, J. Chem. Soc. 1927, 962. 

(39) A. Langlet, N.V. Latypov, U. Wellmar, P. Goede, Propellants Explos. Pyrotech. 2004, 

29(6), 344. 

(40)  J.G. Tschinkel, J. Ind. Eng. Chem. 1956, 48, 732. 

(41) A.G. Anderson, Jr., R. Scotoni, Jr., E.J. Cowles, G. Fritz, J. Org. Chem. 1957, 22, 
1193. 

(42) C.W. Plummer, U.S. Patent 2.991.315, Chem. Abstr. 1962, 56, 2330e. 
(43)  a) H. Meyer, Analyse und Konstitutionsermittlung organischer Verbindungen, Julius 

Springer, Vienna 1938, 6th ed. p. 773; b) Ruzicka, Huyser, Pfeiffer, Seidel, Ann. 1929, 
471, 21. 

(44)  T. Urbanski, Chemistry and Technology of Explosives 1964. I. Pergamon Press. p. 593. 

(45)  a) R. Schenck, Zeitsch. Angew. Chem. 1920, 33, 245; b) R. Schenck, Chem. Zeit. 1920, 
44, 497; 
c)www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=CA92018
05457&JournalCode=CA 

(46)  E. Rüst, A. Ebert, K. Egli, Unfälle beim chemischen Arbeiten, Rascher, 1948, p. 23. 
(47) H. Feuer, T. Kucera, J. Am. Chem. Soc. 1955, 77, 5740. 

(48) T.N. Hall, Tetrahedron 1963, 19, 115. 

(49) S.V. Lieberman, E.C. Wagner, J. Org. Chem. 1949, 14, 1001. 

(50) E.R. Alexander, E.J. Underhill, J. Am. Chem. Soc. 1949, 71, 4014. 
(51) H. Feuer, W.A. Swarts, J. Org. Chem. 1962, 27, 1455. 



Chapter 4 – Appendix 
 

- 391 - 

(52) V.I. Slovetskii, V.A. Tartakovskii, S.S. Novikov, Izv. Akad. Nauk SSSR, Otd. Khim. 
Nauk 1962, 1400. 

(53) W. Beck, J. Evers, M. Göbel, G. Oehlinger, T.M. Klapötke, Z. Anorg. Allg. Chem. 

2007, 1417. 
(54) W. Beck, T.M. Klapötke, J. Mol. Struct. 2008, 848, 94. 
(55) G.S. Hammond, W.D. Emmons, C.O. Parker, B.M. Graybill, J.H. Waters, N.F. 

Hawthorne, Tetrahedron 1963, 19, 177. 

(56) P.O. Tawney, U.S. Patent 3.040.105 1962; Chem. Abstr. 1962, 57, 13609. 

(57) D.R. Levering, J. Org. Chem. 1962, 27, 2930. 

(58) R.B. Kaplan, H. Shechter, J. Am. Chem. Soc. 1961, 83, 3535. 

(59) C.W. Plummer, U.S. Patent 2,991,315 1961; Chem. Abstr. 1967, 67, 53650. 

(60) S.S. Novikov, L.I. Khmelnitskii, O.V. Lebedev, Izv. Akad. SSSR 1960, 1783; Chem. 
Abstr. 1961, 55, 19832. 

(61) A.V. Shastin, T.I. Godovikova, S.P. Golova, V.S. Kuz’min, L.I. Khmel’nitskii, B.L. 
Korsunskii, Mendeleev Commun. 1995, 5, 17. 

(62) L. Hunter, J. Chem. Soc. 1923, 123, 543. 
(63) C.O. Parker, W.D. Emmons, A.S. Pangano, H.A. Rolewicz, K.S. McCallum, 

Tetrahedron 1962, 17, 79. 

(64) G. Darzens, M. Levy, Compt. Rend. 1949, 229, 1081.  

(65) M.H. Gold, M.B. Frankel, G.B. Linden, K. Klager, J. Org. Chem. 1962, 27, 334. 

(66) A.I. Shreibert, N.V. Elaskov, A.P. Khardin, V.I. Ermarchenko, Zh. Organ. Khim. 1967, 
3, 1755. 

(67) D.J. Glover, Tetrahedron 1963, 19, 219. 

(68) F.G. Borgardt, A.K. Seeler, P. Noble, Jr., J. Org. Chem. 1966, 31, 2806. 

(69) H. Feuer, E.H. White, M. Pier, J. Org. Chem. 1961, 26, 1639. 

(70) E. Schmidt, Chem. Ber. 1919, 52, 400. 
(71)  S. Iyer, N. Slagg, in: Structure and Reactivity. (1988) J.F. Liebman, A. Greenberg 

(Eds.), VCH, New York, Chapter 7. 
(72)  C.B. Storm, J.R. Stine, J.F. Kramer, in: Chemistry and Physics of Energetic Materials. 

(1990) S.N. Bulusu (Ed.), Kluwer, Dordrecht, Chapter 27. 
(73)  T.B. Brill, K. James, Chem. Rev. 1993, 93, 2667. 

(74)  B.M. Rice, J.J. Hare, J. Phys. Chem. A 2002, 106, 1770. 
(75)  M. Pospisil, P. Vávra, M.C. Concha, J.S. Murray, P. Politzer, J. Mol. Model. 2009, 

DOI 10.1007/s00894-009-0587-x. 
(76) J.F. Liebman, in: The Chemistry The Chemistry of Amino, Nitroso, Nitro and 

Related Groups, Supplement F2, Chapter 8, 371. 
(77) B.T. Fedoroff, O.E. Sheffield, Encyclopedia of Explosives and Related Items 1962, 7, I38. 
(78) B.T. Fedoroff, O.E. Sheffield, Encyclopedia of Explosives and Related Items 1962, 9, 

T266. 
(79) B.T. Fedoroff, O.E. Sheffield, Encyclopedia of Explosives and Related Items 1962, 7, I39. 



Chapter 4 – Appendix 
 

- 392 - 

(80) T.S. Pivina, K.V. Sukhachev, N.S. Zefirov, Proceedings of the 5th International 
Conference of the ‘Groupe de Travail de Pyrotechnie’, p.71, June 6, 1993. 

(81) Gaussian 03, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, 
M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. 
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. 
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. 
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. 
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. 
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. 
Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. 
Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. 
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, 
J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. 
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. 
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. 
Pople, Gaussian, Inc., Pittsburgh PA, 2003. 

(82) C.B. Storm, J. Stine, J.F. Kramer, Sensitivity Relationships in Energetic Materials, Los 
Alamos Technical Report LA-UR-89-2936, 1989. 

(83) M.J. Kamlet, 6th Symposium on detonation, San Diego, California, 1976. 

(84) J.S. Murray, P. Politzer, Computational studies of energetic nitramines, Proceedings of 
the NATO advanced study institute on chemistry and physics of the molecular 
processes in energetic materials, 1989. 

(85) H. Nefati, J.J. Legendre, C. Michot, Proceedings of the 5th International Conference of the 
‘Groupe de Travail de Pyrotechnic’, p.79, June 6, 1993. 

(86) A. Delpuech, J. Cherville, C. Michaud, 7th Symposium on Detonation, p.65, June 16, 
1981. 

(87) L. Brunet, J.M. Lombard, B. Blaise, L. Morin-Allory, Proceedings of the 5th 
International Conference of the ‘Groupe de Travail de Pyrotechnic’, p.89, June 6, 1993. 

(88) J.S. Murray, P. Lane, P. Politzer, J. Mol. Phys. 1995, 85, 1. 

(89) A. Meents, B. Dittrich, S.K.J. Johans, V. Thome, E.F. Weckert, Acta Cryst. 2008, B64, 
42. 

(90) B. Vogelsanger, Chimia 2004, 58(6), 402. 

(91) T. Urbanski, in Chemistry and Technology of Explosives, Vol. 4, Technical University 
Warsaw, 1985. 

(92) P. Folly, Chimia 2004, 58(6), 394. 
(93) G.B. Manelis; G.M. Nazin; Y.I. Rubtsov; V.A. Strunin, in Thermal Decomposition and 

Combustion of Explosives and Propellants, Taylor & Francis Group, London and Berlin, 

2003.  
(94) A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, G. Holl, M. Kaiser, U. 

Ticmanis, Inorg. Chem. 2001, 40, 3570. 

(95) R.N. Rogers, Thermochim. Acta 1975, 11, 131. 



Chapter 4 – Appendix 
 

- 393 - 

(96) Systag AG 
(97) Joint Technical Bulletin TB 700-2 NAVSEAINST 8020.8B TO 11A-1-47 DLAR 

8220.1, Department of Ammunition and Explosives Hazard Classification 
Procedures, Headquarters Departments of the Army, the Navy, the Air Force, and 
the Defense Logistics Agency, Washington DC (USA), January, 5th 1998.  

(98) A. Hantzsch, A. Rinckenberger, Ber. 1899, 32, 628. 

(99) O.E. Dragomir, Dissertation, Techn. Univ. Delft, 2009.  
(100) SciFinder Database Enquiry 02/2007 
(101) H.S Jadhav, M.B. Talawar, D.D. Dhavale, S.N. Asthana, V.N. Krishnamurthy, Indian 

Journal of Chemical Technology 2005, 12(2), 187. 

(102) N.I. Golovina, L.O. Atovmyan, Zh. Strukt. Khim. (Russ.) 1967, 8, 307. 

(103) A.M. Krishnan, P. Sjoberg, P. Politzer, J.H. Boyer, J. Chem. Soc. Perkins Trans. 2, 

1989, 1237. 
(104) A. Gunasekaran, J.H. Boyer, Heteroatom Chemistry 1992, 3, 611. 

(105) B. Dickens, Chem. Commun. 1967, 5, 246. 

(106) N.I. Golovina, L.O. Atovmyan, Zh. Strukt. Khim. (Russ.)(J. Struct. Chem.) 1966, 7, 235. 
(107) N.V. Grigor'eva, N.V. Margolis, I.N. Shokhor, V.V. Mel'nikov, I.V. Tselinskii, Zh. 

Strukt. Khim. (Russ. )(J. Struct. Chem.) 1966, 7, 278. 
(108) N.V. Grigor'eva, N.V. Margolis, I.N. Shokhor, I.V. Tselinskii, V.V. Mel'nikov, Zh. 

Strukt. Khim. (Russ.)(J. Struct. Chem.) 1968, 9, 550. 

(109) B. Dickens, J. Res. Nat. Bur. Stand. A, 1970 74, 309. 
(110) N.V. Podberezskaya, V.P.  Doronina, V.V. Bakakin, I.I. Yakovlev, Zh. Strukt. Khim. 

(Russ.)(J. Struct. Chem.) 1984, 25, 182. 

(111) K.D. Scherfise, F. Weller, K. Dehnicke, Z. Naturforsch. B 1985, 40, 906. 

(112) H.L. Ammon, C.S. Choi, A. Bashir-Hashemi, R.M. Moriarty, J.S. Khosrowshahi, Acta 
Crystallogr. 1989, C45, 319. 

(113) H.L. Ammon, C.S. Choi, R.S. Damvarapu, S. Iyer, J. Alster, Acta Crystallogr. 1990, 

C46, 295. 
(114) N.V. Podberezskaya, N.V. Pervukhina, V.P. Doronina, Zh. Strukt. Khim.(Russ.)(J. 

Struct. Chem.) 1991, 32, 34. 
(115) H. Bock, R. Dienelt, H. Schodel, Z. Havlas, Chem.Commun. 1993, 1792. 

(116) H. Schodel, R. Dienelt, H. Bock, Acta Crystallogr. 1994, C50, 1790. 

(117) H. Bock, T. Hauck, C. Nather, Z. Havlas, Z. Naturforsch.  1994, 49, 1012. 

(118) J.C. Bryan, M.N.  Burnett, A.A. Gakh, Acta Crystallogr., 1998, C(54)9, 1229. 
(119) M. Göbel, T.M. Klapötke, P. Mayer, Z. Anorg. Allg. Chem. 2006, 632(6), 1043. 
(120) M. Göbel, T.M. Klapötke, P.C. Thumbs, New Trends in Research of Energetic Materials, 

Proceedings of the Seminar, 9th, Pardubice, Czech Republic, Apr. 19-21, 2006 (2006), (Pt. 
1), 127. 

(121) A. Gunasekaran, J.H. Boyer, Heteroatom Chemistry 1992, 3, 611. 
(122) P.S. Dendage, D.B. Sarwade, S.N. Asthana, H. Singh, J. Energ. Mat. 2001, 19, 41. 



Chapter 4 – Appendix 
 

- 394 - 

(123) A.M. Krishnan, P. Sjoberg, P. Politzer, J.H. Boyer, J. Chem. Soc. Perkins Trans. 2, 

1989, 1237. 
(124) J.C. Bryan, M.N.  Burnett, A.A. Gakh, Acta Crystallogr., 1998, C(54)9, 1229. 

(125) H.M. Niemeyer, J. Mol. Struct. 1978, 50, 123. 

(126) K.E. Edgecombe, R.J. Boyd, Can. J. Chem. 1983, 61, 45. 

(127) B. Dickens, Chem. Commun. 1967, 5, 246. 

(128) B. Dickens, J. Res. Nat. Bur. Stand. A, 1970 74, 309. 
(129) N.V. Podberezskaya, V.P.  Doronina, V.V. Bakakin, I.I. Yakovlev, Zh. Strukt. Khim. 

(Russ.)(J. Struct. Chem.) 1984, 25, 182. 

(130) K.D. Scherfise, F. Weller, K. Dehnicke, Z. Naturforsch. B 1985, 40, 906. 

(131) H.L. Ammon, C.S. Choi, R.S. Damvarapu, S. Iyer, J. Alster, Acta Crystallogr. 1990, 
C46, 295. 

(132) N.V. Podberezskaya, N.V. Pervukhina, V.P. Doronina, Zh. Strukt. Khim.(Russ.)(J. 

Struct. Chem.) 1991, 32, 34. 

(133) H. Schodel, R. Dienelt, H. Bock, Acta Crystallogr. 1994, C50, 1790. 

(134) H. Bock, T. Hauck, C. Nather, Z. Havlas, Z. Naturforsch. 1994, 49, 1012. 

(135) J.C. Bryan, M.N.  Burnett, A.A. Gakh, Acta Crystallographica, 1998, C(54)9, 1229. 
(136) M. Göbel, T.M. Klapötke, P.C. Thumbs, New Trends in Research of Energetic 

Materials, Proceedings of the Seminar, 9th, Pardubice, Czech Republic, Apr. 19-21, 
2006 (2006), (Pt. 1), 127. 

(137) B. Dickens, Chem. Commun. 1967, 5, 246. 

(138) B. Dickens, J. Res. Nat. Bur. Stand. A, 1970 74, 309. 

(139) D.V. Jahagirdar, R.M. Kharwadkar, Ind. J. Chem. 1981, 20A, 635. 

(140) J.C. Bryan, M.N.  Burnett, A.A. Gakh, Acta Crystallogr., 1998, C(54)9, 1229. 
(141) Gaussian 03, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, 

M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. 
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. 
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. 
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. 
Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. 
Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. 
Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. 
Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. 
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, 
J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. 
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. 
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. 
Pople, Gaussian, Inc., Pittsburgh PA, 2003. 

(142) Test methods according to the UN Recommendations on the Transport of 
Dangerous Goods, Manual of Tests and Criteria, fourth revised edition, United 



Chapter 4 – Appendix 
 

- 395 - 

Nations Publications, New York and Geneva, 2003, ISBN 92-1-139087-7, Sales No. 
E.03.VIII.2.; 13.4.2 Test 3(a)(ii) BAM Fallhammer. 

(143) Y.A. Lebedev, E.A. Miroshnichenko, Y.K. Knobel, Termokhimiya nitrosoedinenii 

[Thermochemistry of nitrocompounds], Nauka, Moscow, 1970, 168. 

(144) T.S. Kon´kova, Yu.N. Matyushin, Russ. Chem. Bull. 1998, 47, 2371. 

(145) M. Sućeska, Propellants, Explos., Pyrotech. 1991, 16, 197. 

(146) M. Sućeska, Proc. of 30th Int. Annual Conference of ICT, June 29 – July 2, Karlsruhe, 

Germany, 1999, 50. 

(147) M. Sućeska, Propellants Explosives and Pyrotechniques 1999, 24, 280. 

(148) M. Sućeska, Proc. of 32nd Int. Annual Conference of ICT, July 3-6, Karlsruhe, Germany, 

2001, 110. 

(149) M. Sućeska, Materials Science Forum 2004, 465, 325. 

(150)  P.S. Dendage, D.B. Sarwade, S.N. Asthana, H. Singh, J. Energ. Mat. 2001, 19, 41. 

(151)  J.H. Köhler, Explosivstoffe, 9. Ed., Wiley-VCH, New York, 1998, 344. 

(152)  M. Sućeska, Materials Science Forum 2004, 465, 325. 

(153)  J.H. Köhler, Explosivstoffe, 9. Ed., Wiley-VCH, New York, 1998, 166. 
(154) Test methods according to the UN Recommendations on the Transport of 

Dangerous Goods, Manual of Tests and Criteria, fourth revised edition, United 
Nations Publications, New York and Geneva, 2003, ISBN 92-1-139087-7, Sales No. 
E.03.VIII.2.; 13.4.2 Test 3(a)(ii) BAM Fallhammer. 

(155) HF-Vacuum-Pruefer, type VP 24. 
(156) B. Dickens, Chem. Commun. 1967, 5, 246. 

(157) A. Gunasekaran, J.H. Boyer, Heteroatom Chemistry 1992, 3, 611. 

(158) R. Tanbug, K. Kirschbaum, A.A. Pinkerton, J. Chem. Crystallogr. 1999, 29, 4. 
(159)  R. Friedemann, M. Göbel, T.M. Klapötke, S. Scheutzow, New Trends in Research of 

Energetic Materials, Proceedings of the Seminar, 10th, Czech Republic, Apr. 25-27, 
2007, 875. 

(160) M.L. Hobbs, M.R. Baer, Calibration of the BKW-EOS with a large product species 
data base and measured CJ properties, Proc. of the 10th Symp. (Int.) on Detonation, 
ONR 33395-12, Boston, MA, July 12-16 1993, 409.  

(161)  J.N. Varghese, A.M. O’Connell, E.N. Maslen, Acta Cryst. 1977, B33, 2102. 

(162)  R. Tanbug, K. Kirschbaum, A.A. Pinkerton, J. Chem. Crystallogr. 1999, 29, 4. 

(163)  A. Martin, A.A. Pinkerton, Acta Cryst. 1995, C51, 2174. 

(164) Y. Wang, B. Wei, Q. Wang, J. Cryst. Spectrosc. Res. 1990, 20, 79.  
(165)  U. Müller, H. Bärnighausen, Acta Cryst. 1970, B26, 1671. 

(166) M. Göbel, T.M. Klapötke, Chem. Commun. 2007, 3180.  

(167) H. Henke, H. Bärnighausen, Acta Cryst. 1972, B28, 1100.  

(168)  A. Dworkin, R. Naumann, C. Seigfred, J.M. Karty, J. Org. Chem. 2005, 70, 7605; and 
references therein. 

(169) R.L. Livingston, C.N.R. Rao, J. Phys. Chem. 1960, 64, 756.  



Chapter 4 – Appendix 
 

- 396 - 

(170)  H. Henke, H. Bärnighausen, Acta Cryst. 1972, B28, 1100. 
(171)  A.J. Bellamy, L. Cassioli, A.E. Contini, New Trends in Research of Energetic Materials, 

Proceedings of the 8th Seminar (Part 1), Czech Republic, Apr. 19-21, 2005, 472. 

(172) Experimental value, M. Sućeska, Materials Science Forum 2004, 465, 325.  

(173)  S.K. Bhattacharjee, H.L. Ammon, Acta Cryst. 1981, B37, 2082. 
(174) S. Sorriso, in:The Chemistry of Amino, Nitroso, Nitro and Related Groups, S. Patai 

(Ed.), Supplement F, Part 1, Chapter 1.  
(175)  A. Domenicano, A. Vaciago, C.A. Coulson, Acta Cryst. 1975, B31, 221. 

(176) A. Domenicano, A. Vaciago, C.A. Coulson, Acta Cryst. 1975, B31, 1630.  

(177) A. Domenicano, A. Vaciago, C.A. Coulson, Tetrahedron Lett. 1976, 13, 1029.  

(178)  L.S. Bartell, J. Chem. Phys. 1960, 32, 827. 

(179)  L.S. Bartell, Tetrahedron 1962, 17, 177. 

(180)  L.S. Bartell, J. Chem. Educ. 1968, 45, 754. 

(181)  O.L. Carter, A.T. McPhail, G.A. Sim, J. Chem. Soc. (A) 1966, 822. 

(182) L. Nygaard, I. Bojesen, T. Pedersen, J. Rastrup-Andersen, J. Mol. Struct. 1968, 2, 209.  

(183)  R.J. Gillespie, R.S. Nyholm, Quart. Rev. 1957, 11, 339. 

(184)  R.J. Gillespie, J. Chem. Educ. 1963, 40, 295. 

(185)  R.J. Gillespie, J. Chem. Soc. 1963, 4672. 

(186) R.J. Gillespie, Angew. Chem. Int. Ed. 1967, 6, 819.  

(187)  R.J. Gillespie, J. Chem. Educ. 1970, 47, 18. 
(188) R.J. Gillespie, Molecular Geometry, Van Nostrand-Reinhold, London, 1972.  

(189)  E.G. Cox, D.W.J. Cruickshank, J.A.S. Smith, Proc. R. Soc. Sect. A 1958, 247, 1. 

(190)  H.H. Cady, A.C. Larson, Acta Cryst. 1965, 18, 485. 

(191) S.K. Bhattacharjee, H.L. Ammon, Acta Cryst. 1981, B37, 2082. 

(192) M.D. Coburn, D.G. Ott, J. Heterocycl. Chem. 1990, 27, 1941. 
(193) J. Sauer, in : Comprehensive Heterocyclic Chemistry, Ch. 6.21  
(194) S.F. Nelsen, Y. Kim, J. Org. Chem. 1991, 56, 1045.  

(195) J.C.A. Boeyens, J. Cryst. Molec. Struct. 1978, 8, 317.  

(196) J.D. Coates, L.A. Achenbach, Nat. Rev. Microbiol. 2004, 2, 569.  

(197) a) M.J. Kamlet, NAVORD Report 6207, 14 Feb 1959, Naval Surface Weapons 
Center. b) M.J. Kamlet, H.G. Adolph, J. Org. Chem. 1968, 33, 3073. c) V. Grakauskas, 
K. Baum, US Patent 3423419, 1969. d) V. Grakauskas, K. Baum, J. Org. Chem. 1969, 
34, 3927. 

(198) a) T.M. Klapötke, C.M. Sabaté, Chem. Mater. 2008, 20(11), 3629. b) C. Darwich, T.M. 
Klapötke, C.M. Sabaté, Chem. Eur. J. 2008, 14, 5756. c) J. Stierstorfer, T.M. Klapötke, 

A. Hammerl, B. Chapman, Z. Anorg. Allg. Chem. 2008, 634, 1051. d) M. Göbel, T.M.  

Klapötke, Z. Anorg. Allg. Chem. 2007, 633(7), 1006. e) Y. Guo, H. Gao, B. Twamley, 

J.M. Shreeve, Adv. Mat. 2007, 19, 2884. f) M. Göbel, K. Karaghiosoff, T.M. Klapötke, 

Angew. Chem. Int. Ed. 2006, 45(36), 6037. g) M. Hiskey, A. Hammerl, G. Holl, T.M. 



Chapter 4 – Appendix 
 

- 397 - 

Klapötke, K. Polborn, J. Stierstorfer, J.J. Weigand,  Chem. Mater. 2005, 17, 3784. h) 

H. Xue, J.M. Shreeve, Adv. Mat. 2005, 17, 2142. 

(199) J. Hine, W.C.  Bailey, J. Org. Chem. 1961, 26, 2098. 

(200) Th. N. Hall, Tetrahedron 1963, 19(1), 115. 
(201) I.B. Starchenkov, V.G. Andrianov, A.F. Mishnev, Chemistry of Heterocyclic Compounds 

1997, 33, 216.  
(202) A.B. Sheremetev, V.O. Kulagina, L.V. Batog, O.V. Lebedev, I.L. Yudin, T.S. Pivina, 

Proceedings of the International Pyrotechnics Seminar 1996, 22, 377.  

(203) A.V. Kalinin, E.T. Apasov, Y.A. Strelenko, S.L. Ioffe, V.A. Tartakovsky, Izvestiya 
Akademii Nauk, Seriya Khimicheskaya 1993, 4, 736.  

(204) a) R. Schenck; G.A. Wetterholm, U.S. Pat. 2,731,460 (1956). 

 b) R. Schenck; G.A. Wetterholm, Chem. Abstr. 1956, 50, 7125. 
(205) A.A. Kozyro, V.V. Simirsky, A.P. Krasulin, V.M. Sevruk, G.J. Kabo, M.L. Gopanik, 

Y.V. Grigotiev, Zh. Fiz. Khim. 1990, 64, 656. 

(206) A. Gao, Y. Oyumi, T.B. Brill, Combust. Flame 1991, 83, 345. 

(207) D. Moderhack, K.H. Goos, L. Preu, Chem. Ber. 1990, 123, 1575. 
(208) N.N. Makhova, A.B. Sheremetev, I.V. Ovchinnikov, I.L. Yudin, A.S. Ermakov, P.V. 

Bulatov, D.B. Vinogradov, D.B.  Lempert, G.B. Manelis, International Annual 

Conference of ICT 2004, 140/1. 

(209) X.X. Zhou, Y.Z. YU, Kogyo-kayaku 1991, 52(4), 251. 

(210) T.P. Russell, T.M. Allen, Y.M. Gupta, Chem. Phys. Lett. 1997, 267, 351.  

(211)  R. Gilardi, C. George, J. L. Flipper-Anderson, Acta Cryst. 1988, C44, 1686. 

(212) M.D. Coburn, D.G. Ott, J. Heterocycl. Chem. 1990, 27, 1941.  

(213) Ger. Pat. 934 694, 1955; Chem. Abstr. 1959, 53, 17513b.  
(214) I.V. Ovchinnikov, A.S. Kulikov, M.A. Epishina, N.N. Makhova, V.A. Tartakovsky, 

Russ. Chem. Bull. 2005, 54, 1346.  
(215) N.K. Sundholm, T.C. Richards, D.L. Schoene, Naugatuch Chem Div, US Rubber Co, 

Progress Report (15 Feb. 1950 to 15 Apr. 1950), NORD 10121, p.4.  
(216) J.M. Dyke, G. Levita, A. Morris, J.S. Ogden, A.A. Dias, M. Algarra, J.P. Santos, M.L. 

Costa, P. Rodrigues, M.M. Andrade, M.T. Barros, Chem. Eur. J. 2005, 11, 1665. 

(217)  R.C. Farmer, J. Chem. Soc. 1920, 1603. 

(218)  C.N. Hinshelwood, J. Chem. Soc. 1921, 721. 
(219)  J.M. Rosen, J.C.  Dacons, NOLTR 62-192, 15 Nov 1962, Naval Surface Weapons 

Center. 
(220) Y.A. Lebedev, E.A. Miroshnichenko, Y.K.  Knobel, Termokhimiya nitrosoedinenii 

(Thermochemistry of nitrocompounds) 1970, 168. 

(221) G.A. Petersson, T.G. Tensfeldt, J.A. Montgomery, Jr., J. Chem. Phys. 1991, 94, 6091. 

(222) J.W. Ochterski, G.A. Petersson, J.A. Montgomery, Jr., J. Chem. Phys. 1996, 104, 
2598.  



Chapter 4 – Appendix 
 

- 398 - 

(223) J.A. Montgomery, Jr., M.J. Frisch, J.W. Ochterski, G.A. Petersson, J. Chem. Phys. 

2000, 112, 6532. 
(224) L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A.  Pople, J. Chem. Phys. 1997, 106(3), 

1063. 
(225) M.S. Westwell; M.S. Searle; D.J. Wales; D. II. Williams, J. Am. Chem. Soc. 1995, 117, 

5013. 
(226) J. Chao, F.D. Rossini, J. Chem. Eng. Data 1965, 10, 374.  

(227) N.D. Lebedeva, V.L. Ryadnenko, I.N.  Kuznetsova, Russ. J. Phys. Chem. (Engl. Transl.) 
1968, 42, 962.  

(228) C. Lenchitz, R.W. Velicky, G. Silvestro, L.P. Schlosberg, J. Chem. Thermodyn. 1971, 

3, 689. 
(229) V.I. Pepekin, Y.N. Matyushin, Y.A. Lebedev, Thermochemistry of N-nitro- and N-

nitrosoamines of the alicyclic series, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1974, 
1707. 

(230) G. Krien, H.H. Licht, J. Zierath, Thermochim. Acta 1973, 6, 465. 
(231) R.L. Simpson, P.A. Urtiew, D.L. Ornellas, G.L. Moody, K.J.Scribner, D.M. Hoffman, 

Propellants, Explos., Pyrotech. 1997, 22, 249. 
(232) V.A. Ostrovskii, M.S. Pevzner, T.P. Kofman, I.V. Tselinskii, Targets Heterocycl. Syst. 

1999 , 3, 467.  

(233) M.F. Cheng, H.O. Ho, C.S. Lam, S. Chow, C.S. Li, J. Serb. Chem. Soc. 2002, 67(4), 257. 

(234) M. Göbel, T.M.  Klapötke, Acta Cryst. 2007, C63, o562. 

(235) M. Göbel, T. M. Klapötke, Acta Cryst. 2008, C64, o58.  
(236) J. Köhler, R. Meyer, A. Homburg, Explosivstoffe, 10th ed. 2008, Wiley VCH, 

Weinheim. 

(237) M. Sućeska, Propellants, Explos., Pyrotech. 1991, 16, 197.  

(238) M. Sućeska, Proc. of 30th Int. Annual Conference of ICT, June 29 – July 2, Karlsruhe, 

Germany, 1999, 50.  

(239) M. Sućeska, Propellants, Explos., Pyrotech. 1999, 24, 280.  

(240) M. Sućeska, Proc. of 32nd Int. Annual Conference of ICT, July 3-6, Karlsruhe, Germany, 

2001, 110.  

(241)  M. Sućeska, Materials Science Forum 2004, 465, 325. 

(242)  M.L. Hobbs, M.R. Baer, Calibration of the BKW-EOS With a Large product Species Data 
Base and Measured C-J Properties, Proc. of the 10th Symp. (International) on Detonation, 
ONR 33395-12, Boston, MA, July 12-16 1993, p. 409. 

(243) EG A.14: Prüfverfahren nach Anhang I Teil A.14 der Richtlinie 92/69/EWG der 
Kommission vom 31. Juli 1992 zur Siebzehnten Anpassung der Richtlinie 
67/548/EWG zur Angleichung der Rechts- und Verwaltungsvorschriften für die 
Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen 
Fortschritt (ABI. EG Nr. L 383 S. 113 und Nr. L 383 A S. 1 (S. 87)) as well as 



Chapter 4 – Appendix 
 

- 399 - 

Recommendations on the Transport of Dangerous Goods: Tests and criteria, 1990, 
United Nations, New York. 

(244) A. Bondi, J. Phys. Chem. 1964, 68, 441. 

(245) H.E. Ungnade, L.W. Kissinger, Tetrahdron 1963,19, 121.  

(246)  R.D. Shannon, Acta Cryst. 1976, A32, 751. 

(247) M.D. Lind, Acta Cryst. 1970, B26, 590. 

(248) F.H. Allen, J.P.M. Lommerse, V.J. Hoy, J.A.K. Howard, G.R. Desiraju, Acta Cryst. 
1997, B53, 1006.  

(249) J.P.M. Lommerse, A.J. Stone, R. Taylor, F.H. Allen, J. Am. Chem. Soc. 1996, 118, 
3108.  

(250) F.H. Allen, C.A. Baalham, J.P.M. Lommerse, P.R. Raithby, Acta Cryst. 1998, B54, 320.  
(251) I.B. Starchenkov, V.G. Andrianov, A.F. Mishnev, Chemistry of Heterocyclic Compounds 

1997, 33, 216.  
(252) A.B. Sheremetev, V.O. Kulagina, L.V. Batog, O.V. Lebedev, I.L. Yudin, T.S. Pivina, 

Proceedings of the International Pyrotechnics Seminar 1996, 22, 377.  
(253) A.V. Kalinin, E.T. Apasov, Y.A. Strelenko, S.L. Ioffe, V.A. Tartakovsky, Izvestiya 

Akademii Nauk, Seriya Khimicheskaya 1993, 4, 736.  

(254) R.L. Collin, W.N. Lipscomb, Acta Cryst. 1951, 4, 10. 

(255) K.H. Linke, H.G. Kalker, Z. Anorg. Allg. Chem.  1977, 434 , 165. 

(256) A. Héroux, F. Brisse, Acta Cryst. 1997, C53, 1318. 

(257) Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 102nd ed., Walther de Gruyter, 

Berlin, New York, 2007, p.2006.  
(258) R. Goddard, O. Heinemann, C. Kruger, Acta Cryst. 1997, C53, 590.  

(259)  C. Krieger, H. Fischer, F.A. Neugebauer, Acta Cryst. 1987, C43, 1320. 
(260) M.E. Hill, US Patent 3.375.266, 1956.  
(261) T.N. Hall, J. Org. Chem. 1968, 33, 4557.  

(262) F.H. Allen, Acta Cryst. 2002, B58, 380.  

(263) Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101st ed., de Gruyter, Berlin 

1995, p. 504.  
(264) P. Geißler, T.M. Klapötke, H.J. Kroth, Spectrochim. Acta 1995, Part A, 51A, 1075. 

(265) F.H. Allen, Acta Cryst. 2002, B58, 380. 
(266) A. Héroux, F. Brisse, Acta Cryst. 1997, C53, 1318. 

(267) F.H. Allen, Acta Cryst. 2002, B58, 380. 

(268) M. Göbel, T.M. Klapötke, Adv. Funct. Mater. 2009, 19, 347.  

(269) F.H. Allen, O. Kennard, Chem. Des. Autom. News 1993, 8, 31. 
(270) C.P. Butts, L. Eberson, K.L. Fulton, M.P. Hartshorn, W.T. Robinson, D.J. 

Timmerman-Vaughan, Acta Chem. Scand. 1996, 50, 991. 

(271)  Adolf, 1996, private communication to the Cambridge Structural Database, refcode 
NABMIM. 

(272) Y. Oyumi, A.L. Rheingold, T.B. Brill, Propellants, Explos., Pyrotech. 1987, 12, 46. 



Chapter 4 – Appendix 
 

- 400 - 

(273) S.K. Bhattacharjee, H.L. Ammon, Acta Crystallogr. 1982, B38, 2503. 
(274) T.M. Klapötke, B. Krumm, M. Scherr, G. Spieß, F.X. Steemann, Z. Anorg. Allg. Chem. 

2008, 634, 1244. 

(275) Y. Oyumi, T. B. Brill, A.L. Rheingold, J. Phys. Chem. 1985, 89, 4824. 
(276) L.O. Atovmyan, N.I. Golovina, L.T. Eremenko, N.G. Zhitomirskaya, G.V. Oreshko,  

M.A. Fadeev, Izv. Akad. Nauk SSSR, Ser. Khim. (Russ.) (Russ. Chem. Bull.) 1984, 549. 
(277) N.I. Golovina, L.O. Atovmyan, N.V. Chukanov, G.V. Oreshko, R.F. Trofimova, M.A. 

Fadeev, L.T.  Eremenko, Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.) 1990, 31, 126. 
(278)  L.O. Atovmyan, R.G. Gafurov, N.I. Golovina, L.T. Eremenko, B.S. Fedorov, Zh. 

Strukt. Khim. (Russ.)(J. Stuct. Chem.) 1980, 21, 135. 
(279) L.T. Eremenko, L.O. Atovmyan, N.I. Golovina, G.V. Oreshko, M.A. Fadeev, Chem. 

Commun. 1984, 709. 
(280) C. Jinhua, M. Shaoping, Z. Xiaotong, Jiegou Huaxue (Chin.) (Chinese J. Struct. Chem.) 

1983, 2, 41. 

(281) S.K. Bhattacharjee, H.L. Ammon, Acta Crystallogr. 1981, B37, 2082. 
(282) M.J.Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.Robb, J.R. Cheeseman, 

J.A. Montgomery Jr., T. Vreven, K.N.Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. 
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.Petersson, H. 
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. 
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, 
J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, 
O.Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.Ayala, K. 
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G.Zakrzewski, S. Dapprich, 
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck K. Raghavachari, 
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. 
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. 
Keith, M.A. Al-Laham, C.Y.Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. 
Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian 03, Revision 
D.01. Gaussian, Inc Wallingford CT. 2004. 

(283) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 
CrysAlis171.NET. 

(284) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 
CrysAlis171.NET. 

(285) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 1993, 
26, 343. 

(286) G.M. Sheldrick, SHELXL-97, University of Göttingen, 1997. 
(287) L.J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837. 
(288) A.L. Spek, Platon, Utrecht University, Utrecht, The Netherlands, 1999. 
(289) NATO standardization agreement (STANAG) on explosives, impact sensitivity tests, 

no. 4489, Ed. 1, Sept. 17, 1999. 



Chapter 4 – Appendix 
 

- 401 - 

(290) WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der 
Explosionsgefährlichkeit, hier der Schlagempfindlichkeit mit dem Fallhammer, Nov. 
8, 2002. 

(291)  NATO standardization agreement (STANAG) on explosives, friction sensitivity 
tests, no. 4487, Ed. 1, Aug. 22, 2002. 

(292) WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der 
Explosionsgefährlichkeit oder der Reibeempfindlichkeit mit dem Reibeapparat, Nov. 
8, 2002. 

(293) R.C. West, S.M. Selby, Handbook of Chemistry and Physics, The Chemical Rubber Co., 
Cleveland, 1967, 48th edn, p. D22. 

(294) N.S. Marans, R.P. Zelinski, J. Am. Chem. Soc. 1950, 72, 5329.  

(295) H. Feuer, T.J. Kucera, J. Org. Chem. 1960, 25, 2069.  
(296) K.G. Ship, M.E. Hill, NAVORD 6752, 1960.  
(297) W.J. Murray, C.W. Sauer, US Patent 3.006.957, 1957; Chem. Abstr. 1962, 56, 2330c.  

(298) H.E. Ungnade, L.W. Kissinger, Tetrahedron 1963, 19, 121. 

(299) M.D. Coburn, D.G. Ott, J. Heterocycl. Chem. 1990, 27, 1941. 
(300) M.E. Hill, Preparation and Properties of Bis(Trinitroethyl)Carbonate, NAVORD 3656 

(1953).  
(301) M.E. Hill, Development of the Synthesis of Bis(Trinitroethyl)Carbonate, BTNEC, A 

New Oxygen Rich High Explosive, NAVORD 3469 (1955).  
(302) W.H. Gilligan, S.L. Stafford, Synthesis 1979, 8, 600. 

(303) J.M. Welch, Dissertation, Ludwig-Maximilan Univ., 2008.  
(304) M.J. Crawford, J. Evers, M. Göbel, T.M. Klapötke, P. Mayer, G. Oehlinger, J.M. 

Welch, Propellants, Explos., Pyrotech. 2007, 32(6), 478. 

(305) M. Göbel, T.M. Klapötke, Z. Anorg. Allg. Chem. 2007, 633(7), 1006.  

(306) A.T. Mixon, J. Cioslowski, J. Am. Chem. Soc. 1991, 113, 6760. 

(307) J. Cioslowski, S.T. Mixon, E.D. Fleischmann, J. Am. Chem. Soc. 1991, 113, 4751. 
(308) M.A. Pietsch, M.B. Hall, J. Phys. Chem. 1994, 98, 11373. 
(309)  K.Y. Mathews, D.W. Ball,  J. Mol. Struct. (Theochem) 2009, 90(2), 15-20. 

(310)  S.J. Angyal, W.K. Warburton, J. Chem. Soc. 1951, 2492. 

(311)  R.W. Alder, M.R. Bryce, N.C. Goode, N. Miller, J. Owen, J. Chem. Soc., Perkin Trans. 
1 1981, 2840. 

(312)  H.A. Staab, T. Saupe, Angew. Chem. 1988, 100, 895; Angew. Chem., Int. Ed. Engl. 1988, 
27, 865. 

(313)  L. Pauling, The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, 
NY, 1960, p.286. 

(314)  P. Gund, J. Chem. Educ. 1972, 49, 100. 

(315)  P. Kollman, J. McKelvey, P. Gund, J. Am. Chem. Soc. 1975, 97, 1640. 

(316)  J.F. Capitani, L. Pedersen, Chem. Phys. Lett. 1978, 54, 547. 

(317)  A.M. Sapse, L.J. Massa, J. Org. Chem. 1980, 45, 719. 



Chapter 4 – Appendix 
 

- 402 - 

(318)  T. Ohwada, A. Itai, T. Ohta, K. Shudo, J. Am. Chem. Soc. 1987, 109, 7036. 

(319)  N. Sreerama, S. Vishveshwara, J. Mol. Struct. 1989, 194, 61. 

(320)  M. L. Williams, J. E. Gready, J. Comput. Chem. 1989, 10, 35. 

(321)  K. B. Wiberg, J. Am. Chem. Soc. 1990, 112, 4177. 

(322)  A. Gobbi, G. Frenking, J. Am. Chem. Soc. 1993, 115, 2362. 

(323)  N. de Vries, C. E. Costello, A.G. Jones and A. Davidson, Inorg. Chem. 1990, 29, 1348. 

(324)  W.P. Fehlhammer, R. Metzner and W. Sperber, Chem. Ber. 1994, 127, 829. 
(325)  P.J. Bailey, K.J. Grant, S. Pace, S. Parsons and L.J. Stewart,  

J. Chem. Soc., Dalton Trans. 1997, 4263. 

(326)  H.J. Kabbe, K. Eiter, F. Möller, Liebigs Ann. Chem. 1967, 704, 140. 

(327)  M. Becker, M. Jansen, Acta Crystallogr. 1999, C55, IUC 9900094. 

(328)  A. Gobbi, G. Frenking, J. Am. Chem. Soc. 1993, 115, 2362. 
(329) V.A. Ostrovskii, G.I. Koldobskii, R.E. Trifonov, in: Comprehensive Heterocyclic 

Chemistry, 2008, Ch. 6.07, 257.  
(330) F.R. Benson, in: Heterocyclic Compounds, R.C. Elderfield (Ed.), Wiley, New York, 

1967, Vol. 8, p.8.  
(331) A. Hammerl, Dissertation, Ludwig-Maximilan Univ., Munich 2001.  

(332)  J.J. Weigand, Dissertation, Ludwig-Maximilan Univ., Munich 2005. 

(333) J. Stierstorfer, Dissertation, Ludwig-Maximilan Univ., Munich 2009. 

(334)  P. Cmoch, L. Stefaniak, E. Melzer, S. Baloniak, G.A. Webb, Magn.Reson.Chem. 1999, 
37, 493. 

(335) J. Benito, Ernesto de Jesus, F. de la Mata, J. C. Flores, R. Gomez, Gomez-Sal, 
J.Organomet.Chem. 2002, 664, 258. 

(336)  R. M. Gauvin, C. Lorber, R. Choukroun, B. Donnadieu, J. Kress, Eur.J.Inorg.Chem. 

2001, 2337. 
(337)  Y. Hamada, Y. Yamamoto, H. Shimizu, J.Organomet.Chem. 1996, 510, 1. 

(338)  M. Schorr, W. Schmidt, Phosphorus, Sulfur Silicon Relat. Elem. 1992, 68, 25. 

(339)  W.Verboom, W.Visser, D.N.Reinhoudt, Synthesis 1981, 807. 

(340)  U. Wannagat, H.Bürger, C.Krüger, J.Pump, Z.Anorg.Allg.Chem. 1963, 321, 208. 
(341)  A.S.Gordetsov, S.V.Zimina, L.N.Martynkova, E.M.Moseeva, S.E.Skobeleva, 

T.K.Postnikova, V.L.Tsvetkova, R.P.Zaharova, Metalloorganicheskaya Khimiya 1992, 
5, 811. 

(342) J. Benito, Ernesto de Jesus, F. de la Mata, J. C. Flores, R. Gomez, Gomez-Sal, 
J.Organomet.Chem. 2002, 664, 258.  

(343)  Y. Hamada, Y. Yamamoto, H. Shimizu, J.Organomet.Chem. 1996, 510, 1. 
(344) R. M. Gauvin, C. Lorber, R. Choukroun, B. Donnadieu, J. Kress, Eur.J.Inorg.Chem. 

2001, 2337. 
(345) U. Wannagat, H.Bürger, C.Krüger, J.Pump, Z.Anorg.Allg.Chem. 1963, 321, 208.  



Chapter 4 – Appendix 
 

- 403 - 

(346) A.S.Gordetsov, S.V.Zimina, L.N.Martynkova, E.M.Moseeva, S.E.Skobeleva, 
T.K.Postnikova, V.L.Tsvetkova, R.P.Zaharova, Metalloorganicheskaya Khimiya 1992, 
5, 811.  

(347) U. Wannagat, H.Bürger, C.Krüger, J.Pump, Z.Anorg.Allg.Chem. 1963, 321, 208.  

(348) F. Brotzel, Y.C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679.   

(349) M. Schorr, W. Schmidt, Phosphorus, Sulfur Silicon Relat. Elem. 1992, 68, 25.  
(350) J. Benito, Ernesto de Jesus, F. de la Mata, J. C. Flores, R. Gomez, Gomez-Sal, 

J.Organomet.Chem. 2002, 664, 258.  

(351) W. Broser, W. Harrer, Angew. Chem. 1965, 77, 1139.  

(352) E. Boston, R. Maggi, K. Friedrich, M. Schlos, Eur. J. Inorg. Chem. 2001, 3985.  

(353) M. Schorr, W. Schmidt, Phosphorus, Sulfur Silicon Relat. Elem. 1992, 68, 25.  

(354) E. Boston, R. Maggi, K. Friedrich, M. Schlos, Eur. J. Inorg. Chem. 2001, 3985.  

(355)  I. Gronde, N.W. Mitzel, Z. Anorg. Allg. Chem. 2009, 635, 1313. 

(356) A.S. Lyakhov, P.N. Gaponik, S.V. Voitekhovich, Acta Cryst. 2001, C57, 185.  

(357) P.N. Gaponik, V.P. Karavai, Khimiya Geterotsiklicheskikh Soedinenii 1984, 12, 1683.  

(358) R. N. Butler, Adv .Heterocyclic Chem., 1977, 21, 323. 

(359) E. Cubero, M. Orozco, F. J. Luque, J. Am. Chem. Soc., 1998, 120, 4723. 

(360) H. A. Dabbagh, W. Lwowski, J. Org. Chem., 2000, 65, 7284. 
(361) V. P. Krivopalov, A. U. Denisov, U. V. Gaitlov, V. I. Mamatiuk, Dokl. Akad. Nauk 

SSSR, 1988, 300, 115.  

(362)  S. Baloniak, A. A. Katrusiak, Pol. J. Chem., 1994, 68, 683. 

(363) A. S. Katrusiak, M. Gdaniec, A. A. Katrusiak, Pol. J. Chem., 1997, 71, 488.  

(364) Itai, Kamiya, Chem. Pharm. Bull. (Tokyo) 1963, 11, 348.  
(365) R.D. Allan, J.R. Greenwood, T.W. Hambley, J.R. Hanrahan, D.E. Hibbs, S. Itani, 

H.W. Tran, P. Turner, Org. Biomol. Chem. 2004, 2, 1782.   
(366)  G. Pattison, G. Sandford, E.V.B. Wallace, D.S. Yufit, J.A.K. Howard, J.A. 

Christopher, D.D. Miller, J. Heterocyclic Chem. 2008, 45, 143. 

(367)  Itai, Kamiya, Chem. Pharm. Bull. (Tokyo) 1963, 11, 348. 

(368)  C.J. Pennino, B.F. Goodrich Company (New York), U.S. Patent 2.846.433, 1958. 
(369) A. Dooms-Goossens, K. De Boulle, J. Snauwaert, H. Degreef, Contact Dermatitis 1986, 

14, 64.  

(370)  R. Mizzoni, P. E. Spoerri, J. Am. Chem. Soc. 1954, 94, 2201. 
(371)  P. Coad, R.A. Coad, S. Clough, J. Hyepock, R. Salisbury, C.Wilkins, J. Org. Chem. 

1963, 28, 218. 
(372) R.D. Chambers, J.A.H. MacBride, W.K.R. Musgrave, J. Chem. Soc. 1968, 2116.  
(373) P. Coad, R.A. Coad, S. Clough, J. Hyepock, R. Salisbury, C.Wilkins, J. Org. Chem. 

1963, 28, 218.  

(374) R. Schönbeck, E. Kloimstein, Monatshefte für Chemie 1968, 99, 15.  

(375) F. Kurzer: „Fulminic Acid in the History of Organic Chemistry“, J. Chem. Educ. 2000, 
77, 851. 



Chapter 4 – Appendix 
 

- 404 - 

(376) H. Wieland: „Die Knallsäure“, Sammlung Chemischer und Chemisch-Technischer 
Vorträge, Enke 1909, Vol. 14, p. 385. 

(377)  Ch. Grundmann, P. Grünanger: „The Nitrile Oxides“, Springer, Berlin 1971. 
(378)  M. Winnewisser, B.P. Winnewisser: „Why it took 174 years to understand the 

structure of fulminic acid?“, Chem. Listy 1976, 70, 785. 

(379)  J.H. Teles, G. Maier, B.A. Hess, L.J. Schaad, M. Winnewisser, B. Winnewisser, Chem. 
Ber. 1989, 122, 753. 

(380)  N.H. Toftlund, Dansk Kemi. 1996, 77, 17; Chem.Abstr. 1997, 121, 143725. 
(381) F. Kurzer: „The Life and Work of Edward Charles Howard FRS“, Annals of Science 

1999, 56, 113.  

(382) E. Howard, Philosophical Transactions R. Soc. 1800, 90 I, 204.  
(383) For a review of Liebig’s work on metal fulminates: W. Beck: „The First Chemical 

Achievements and Publications by Justus von Liebig (1803-1873) and Some Further 
Developments in Metal Fulminates and Related Areas of Chemistry“, Eur. J. Inorg. 

Chem. 2003, 4275. 

(384) J. Liebig, J.L. Gay-Lussac: „Analyse der Fulminate d’argent“, Ann. Chim. Phys. 1824, 
XXV, 285; J. Liebig, J.L. Gay-Lussac: “Zerlegung des knallsauren Silberoxydes”, 

Poggendorffs Annalen der Physik 1824, 1, 87. 

(385)  R. Scholl, Ber. Dtsch. Chem. Ges. 1990, 23, 3509. 

(386) I.U. Nef, Ann. Chem. 1894, 280, 264. 

(387)  L. Wöhler, Ber. Dtsch. Chem. Ges. 1905, 38, 1351; 1910, 43, 754. 
(388)  H. Wieland: „Die Knallsäure“, Sammlung Chemischer und Chemisch-Technischer 

Vorträge, Enke 1909, Vol. 14, p. 385. 

(389)  Berthelot, Vielle, Comptes rendus 1880, 946. 
(390)  H. Wieland: „Die Knallsäure“, Sammlung Chemischer und Chemisch-Technischer 

Vorträge, Enke 1909, Vol. 14, p. 385. 

(391)  For Wieland’s work on fulminic acid see: F. Klages, Naturwissenschaften 1942, 30, 
351. 

(392) R. Huisgen, M. Christl, Angew. Chem. 1967, 79, 471; Angew. Chem. Int. Ed. Engl. 
1967, 6, 456; Chem. Ber. 1973, 106, 3291; M. Christl, R. Huisgen 1973, 106, 3345. 

(393) Berthelot, Vielle, Comptes rendus 1880, 946. 

(394) H. Wieland, Ber. Dtsch. Chem. Ges. 1907, 40, 418; 1910, 43, 3362; also see: 

L.Wöhler, Ber. Dtsch. Chem. Ges. 1910, 43, 754. 
(395) R. Knoll, „Das Knallquecksilber und ähnliche Sprengstoffe“, A. Hartleben’s Verlag, 

Wien und Leipzig 1908. 
(396)  A. Nobel, J. Soc. Arts 1875, 23, 611. 

(397) J. Boileau in „Explosives“, Ullmanns Encyclopedia of Industrial Chemistry 2003, 
Wiley-Interscience. 

(398) F.D. Miles, J. Chem. Soc. 1931, 2532; Strukturbericht Band II, 1928-1932, C. 
Hermann, O. Lohrmann, H. Philipp, Akademische Verlagsgesellschaft MBH Leipzig 



Chapter 4 – Appendix 
 

- 405 - 

1937, S. 880; H.G. Otto, Zeitschrift für das gesamte Schieß- und Sprengstoffwesen 
1943, 38, 85. 

(399) A. Suzuki, J. Ind. Explosives Soc. Japan 1953, 14, 142; Chem. Abstr. 1955, 49, 58514; Z. 

Iqbal, A.D. Yoffe, Proc. Roy. Acad. Soc. 1967, 302, 48. 

(400)  F.D. Miles, J. Chem. Soc. 1931, 2532; Strukturbericht Band II, 1928-1932, C. Hermann, 

O. Lohrmann, H. Philipp, Akademische Verlagsgesellschaft MBH Leipzig 1937, S. 
880; H.G. Otto, Zeitschrift für das gesamte Schieß- und Sprengstoffwesen 1943, 38, 85. 

(401)  International Centre for Diffraction Data, 12 campus Boulevard, Newton Square, PA, 
19073-3273 USA, Powder Diffraction File Mercury Fulminate, 00-002-0287. 

(402) M.E. Brown, G.M. Swallowe, Thermochimica Acta 1981, 49, 333. 

(403) R.C. Seccombe, C.H.L. Kennard, J. Organomet. Chem. 1969, 18, 243; J. Hvoslef, Acta. 
Chem. Scand. 1958, 12, 1568; O. Reckeweg, A. Simon, Z. Naturforsch. 2002, 57b, 895. 

(404) For a review of Liebig’s work on metal fulminates: W. Beck: „The First Chemical 
Achievements and Publications by Justus von Liebig (1803-1873) and Some Further 
Developments in Metal Fulminates and Related Areas of Chemistry“, Eur. J. Inorg. 

Chem. 2003, 4275.  
(405)  J. Liebig: „Über das Knallsilber und das Knallquecksilber“, Buchners Repertorium 

der Pharmacie 1823, Vol. XV, p. 361; J. Liebig: „Über das Knall-Silber und Knall-

Quecksilber und über ihre, und anderer Knall-Metalle wahre Natur“, Gilbert Annalen 
der Physik und Chemie 1823, Vol. LXXV, p. 393; J. Liebig: „Sur l’Argent et le Mercure 

fulminans“, Ann. Chim. Phys. 1823, XXIV, 294; presented by Gay-Lussac at the Royal 

Academy in Paris, Sept. 1823. 
(406) W. Beck, K. Feldl, Angew. Chem. 1966, 78, 746; Angew. Chem. Int. Edn. Engl. 1966, 5, 

722; W. Beck, P. Swoboda, K. Feldl, R. S. Tobias, Chem. Ber. 1971, 104, 533. 

(407)  M. Winnewisser, H.K. Bodensch, Z. Naturforsch. 1967, 22a, 1724; M. Winnewisser, 

R. Schermaul, Berichte der Justus Liebig-Gesellschaft, Bd. 3, 1994; G. Schulze, O. 
Koja, B.P. Winnewisser, M. Winnewisser, J. Mol. Structure 2000, 307, 517 and 
references therein. 

(408)  For a review of Liebig’s work on metal fulminates: W. Beck: „The First Chemical 
Achievements and Publications by Justus von Liebig (1803-1873) and Some Further 
Developments in Metal Fulminates and Related Areas of Chemistry“, Eur. J. Inorg. 

Chem. 2003, 4275. 

(409)  W. Beck, J. Organomet. Chem. Rev. Sect. A 1971, 7, 159. 

(410) D. Britton, J.D. Dunitz, Acta Crystallogr. 1965, 19, 662; J.C. Barrick, D. Canfield, B. C. 

Giessen, Acta Crystallogr. 1979, B35, 464; D. Britton, Acta Crystallogr. 1991, C47, 
2646.  

(411)  W. Weigand, U. Nagel, W. Beck, J. Organomet. Chem. 1986, 314, C55. 
(412)  W.P. Bosman, W. Bos, J.M.M. Smits, P.T. Beurskens, J.J. Bour, J.J. Steggerda, Inorg. 

Chem. 1986, 25, 2093. 



Chapter 4 – Appendix 
 

- 406 - 

(413) W. Ponikwar, P. Mayer, H. Pietrowski, P. Swoboda, C.J. Oetker, W. Beck, Z. Anorg. 
Allg. Chem. 2002, 628, 15. 

(414) W. Ponikwar, E. Schuierer, W. Beck, Z. Anorg. Allg. Chem. 2000, 626, 1282. 

(415) P. Mayer, W. Ponikwar, P. Swoboda, W. Beck, Z. Anorg. Allg. Chem. 2000, 626, 2038. 

(416) W. Beck, T.M. Klapötke, Z. Naturforsch. 2001, 56b, 1376. 

(417) L. Türker, S. Erkoc, J. Mol. Structure: THEOCHEM 2004, 712, 139.  
(418) J.R. Rodriguez-Carvajal, FullProf, A Program for Rietveld Refinement and Pattern 

Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV 

Congress of the IUCR, p.127, Toulouse, France, 1990. 
(419) J.R. Rodriguez-Carvajal, FullProf, A Program for Rietveld Refinement and Pattern 

Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV 

Congress of the IUCR, p.127, Toulouse, France, 1990, p. 1839. 
(420) P. Nockemann, U. Cremer, U. Ruschewitz and G. Meyer, Z. Anorg. Allg. Chem. 2003, 

629, 2079. 

(421)  F.D. Miles, J. Chem. Soc. 1931, 2532; Strukturbericht Band II, 1928-1932, C. Hermann, 

O. Lohrmann, H. Philipp, Akademische Verlagsgesellschaft MBH Leipzig 1937, S. 
880; H.G. Otto, Zeitschrift für das gesamte Schieß- und Sprengstoffwesen 1943, 38, 85. 

(422) G.M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1997. 
(423) Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101st ed., de Gruyter, Berlin 

1995, p.1842.  
(424) For a review of Liebig’s work on metal fulminates: W. Beck: „The First Chemical 

Achievements and Publications by Justus von Liebig (1803-1873) and Some Further 
Developments in Metal Fulminates and Related Areas of Chemistry“, Eur. J. Inorg. 
Chem. 2003, 4275.  

(425) W.P. Bosman, W. Bos, J.M.M. Smits, P.T. Beurskens, J.J. Bour, J.J. Steggerda, Inorg. 
Chem. 1986, 25, 2093. 

(426) U. Nagel, K. Peters, H. G. von Schnering, W. Beck, J. Organomet. Chem. 1980, 185, 
427. 

(427) W. Ponikwar, P. Mayer, H. Pietrowski, P. Swoboda, C.J. Oetker, W. Beck, Z. Anorg. 

Allg. Chem. 2002, 628, 15. 

(428)  P. Mayer, W. Ponikwar, P. Swoboda, W. Beck, Z. Anorg. Allg. Chem. 2000, 626, 2038. 
(429) P. Klüfers, H. Fuess, S. Haussühl, Z. Kristallogr. 1981, 156, 255. 

(430) R.L DeKock, E.J. Baerends., J. Am. Chem. Soc. 1984, 106, 3387. 
(431) Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, N. Wiberg, Walther de Gruyter, 

Berlin, New York, 1995, p.1842.  
(432) U. Müller, Z. Anorg. Allg. Chem. 1973, 399, 183. 
(433) Houben-Weyl, Methoden der Organischen Chemie, Vol. VIII, Thieme, Stuttgart 

1952, p. 355; E. Beckmann, Ber. Dtsch. Chem. Ges. 1886, 19, 993.  



Chapter 4 – Appendix 
 

- 407 - 

(434) F.D. Miles, J. Chem. Soc. 1931, 2532; Strukturbericht Band II, 1928-1932, C. Hermann, 

O. Lohrmann, H. Philipp, Akademische Verlagsgesellschaft MBH Leipzig 1937, S. 
880; H.G. Otto, Zeitschrift für das gesamte Schieß- und Sprengstoffwesen 1943, 38, 85. 

(435) a) Horstmann, S.; Irran, E.; Schnick, W., Angew. Chem. Int. Ed. 1997, 36(17), 1873. b) 

K. Landskron, H. Huppertz, J. Senker, W. Schnick, Angew. Chem. 2001, 113, 2713; 

Angew. Chem. Int. Ed. 2001, 40, 2643. 

(436) E.H. Kober, H.F. Lederle, G.F. Ottmann, USA Patent US 32918645 1966. 
(437) X. Zeng, W. Wang, F. Liu, M. Ge, Z. Sun, D. Wang, European Journal of Inorganic 

Chemistry 2006, (2), 416. 

(438) P. Volgnandt, A. Schmidt, Z. Anorg. Allg. Chem. 1976, 425(2), 189.  
The authors state that phosphorus pentachloride reacts with excess of sodium azide 
not to phosphorus pentaazide as reported earlier, but to sodium hexaazidophosphate. 

(439) Ch. Grundmann, R. Rätz, Z. Naturforschg. 1954, 10b, 116.  

(440)  F. Räuchle, M. Gayoso, Annales de Fisica 1970, 66, 241. 

(441)  J. Müller, H. Schröder, Z. Anorg. Allg. Chem. 1979, 450, 149. 

(442) R. Haiges, S. Schneider, T. Schroer, K.O. Christe, Angew. Chem. Int. Edn. 2004, 
43(37), 4919. 

(443) I.C. Tornieporth-Oetting, T.M. Klapötke, Angew. Chem. 1995, 107, 559; Angew. Chem. 
Int. Edn. Engl. 1995, 34, 511.  

(444) T.M. Klapötke, Chem. Ber. 1997, 130, 443.  

(445)  I.C. Tornieporth-Oetting, T.M. Klapötke in Combustion Efficiency and Air Quality, 

(Hrsg.: I. Hargittai, T. Vidoczy ), Plenum Press, New York, 1995, S. 51. 
(446) B. Thomas, G. Seifert, G. Großmann, Z. Chem. 1980, 20, 217. 
(447) J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd 

Ed., Gaussian, Inc. ISBN 0-9636769-3-8, 64. 
(448) G.J.Bullen, Journal of the Chemical Society 1971, [Section] A: Inorganic, Physical, 

Theoretical, (10), 1450. 

(449)  T. Urbański (Ed.), in: Nitro Compounds 1964, Tetrahedron 20, Suppl. 1. 
(450) L.A. Kaplan, in: The Chemistry of the Nitro and Nitroso Groups, Part 2. H. Feuer 

(Ed.) Wiley-Interscience, p. 289. 

(451) T. Urbański, in: Chemistry and Technology of Explosives 1984, Vol 4. Pergamon Press, 
New York, p. 245. 

(452) Ger. Pat. 934 694, 1955; Chem. Abstr. 1959, 53, 17513b.  

(453) J.S. Murray, P. Lane, M. Göbel, T.M. Klapötke, P. Politzer P, J. Chem. Phys. 2009, 
130, 104304.  

(454)  H. Morrison, B.H. Migdalof, J. Org. Chem. 1965, 30, 3996. 
(455)  A.T. Nielsen, in: The Chemistry of the Nitro and Nitroso Groups, Part 1, H. Feuer, 

(Ed.), Wiley-Interscience, New York, 1969, ch. 7. 
(456) S. Patai, (Ed.), The Chemistry of Amine, Nitroso and Nitro Compounds and Their 

Derivatives, Wiley, New York, 1982. 



Chapter 4 – Appendix 
 

- 408 - 

(457) M.L. McKee, J. Am. Chem. Soc. 1986, 108, 5784. 
(458) P.V. Bharatam, K. Lammertsma, in: Energetic Materials. Part 1. Decomposition, 

Crystal and Molecular Properties, P. Politzer, J.S. Murray, (Eds.), Elsevier, 
Amsterdam, 2003, ch. 3. 

(459) M.J. Kamlet, H.G. Adolph, Propell. Explos. 1979, 4, 30. 

(460)  R. Engelke, W.L. Earl, C.M. Rohlfing, J. Chem. Phys. 1986, 84, 142.  

(461) P. Politzer, J.M. Seminario, A.G. Zacarías, Mol. Phys. 1996, 89, 1511. 

(462) J.S. Murray, P. Lane, M. Göbel, T.M. Klapötke, P. Politzer, Theor. Chem. Acc. 2009, 
DOI 10.1007/s00214-009-0620-2. 

(463) A.T. Nielsen, in: The Chemistry of the Nitro and Nitroso Groups, Part 1, H. Feuer, 
(Ed.), Wiley-Interscience, New York, 1969, ch. 7.  

(464)  L.W. Andrew, D.L. Hammick, J. Chem. Soc. 1934, 244. 
(465) S.S. Novikov, V.I. Slovetskii, V.A. Tartakovskii, S.A. Shevelev, A.A. Fainzil’berg, 

Dokl. Akad. Nauk SSSR 1962, 146, 104; Chem. Abstr. 1963, 58, 3289.  

(466) R. Hoffmann, H. Hopf, Angew. Chem. Int. Ed. 2008, 47, 4474.  

(467) A.J. Stone, Science 2008, 321, 787. 
(468) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Edn. 

2008, 47, 6114.  

(469)  P. Metrangolo, G. Resnati, Science 2008, 321, 918. 

(470) L. Birckenbach, K. Huttner, W. Stein, Chem. Ber. 1929, 62, 2065. 
(471)  V.I. Pepkin, Yu.N. Matyushin, G.Kh. Khisamutdinov, V.I. Slovetskii, A.A. 

Fainzil’berg, Khimicheskaya Fizika 1993, 12, 1399.  
(472)  G.Kh. Khisamutdinov, V.I. Slovetsky, M.Yu. Golub, S.A. Shevelev, A.A. Fainzil’berg, 

Russ. Chem. Bull. 1997, 46, 324. 

(473) C.O. Parker, W.E. Emmons, H.A. Rolewicz, K.S. McCallum,Tetrahedron 1962, 17, 79. 

(474)  A.K. Macbeth, D.D. Pratt, J. Chem. Soc. 1921, 119, 354. 

(475)  W. Will, Chem. Ber. 1914, 47, 961. 

(476)  D.V. Levchenkov, A.B. Kharitonkin, V.A. Shlyapochnikov, Russ. Chem. Bull. 2001, 50, 
385. 

(477)  V.A. Shlyapochnikov, D.V. Levchenkov, A.B. Kharitonkin, Russ. Chem. Bull. 2001, 50, 
1173. 

(478)  S.G. Vulfson, A.P. Timosheva, A.N. Vereshchagin, B.A. Arbuzov, J. Mol. Struct. 1977, 
40, 225. 

(479)  V.A. Shlyapochnikov, A.A. Fainzil’berg, S.S. Novikov, Izvestiya Akademii Nauk SSSR 

1961, 3, 519. 
(480) N.I. Sadova, N.I. Popik, L.V. Vilkov, Ju.A. Pankrushev, V.A. Shlyapochnikov, Chem. 

Commun. 1973, 19, 708.  

(481)  N.I. Sadova, N.I. Popik, L.V. Vilkov, Zhurnal Strukturnoi Khimii 1976, 17, 298. 
(482)  J. Demaison, G. Wlodarczak, H.D. Rudolph, In Advances in Molecular Structure 

Research, Vol. 3; Hargittai, I.; Hargittai, M., Eds.; JAI Press: Greenwich, 1997, 1. 



Chapter 4 – Appendix 
 

- 409 - 

(483)  J. Demaison, L. Margulès, J.E. Boggs, Struct. Chem. 2003, 14, 159. 
(484)  A.N. Shidlovskaya, Ya.K. Syrkin, S.S. Novikov, A.A. Fainzil’berg, V.V. Sevost’yanova, 

V.I. Gulevskaya, Dokl. Akad. Nauk SSSR 1960, 132, 1367. 
(485)  T.E. Levow, Union Carbide Corporation. Novel organofunctional silicon compounds 

Substituted with Halogen and Process for making same. US Patent 3694480, 1972. 
(486) M.I. Dakhis, A.A. Levin, V.A. Shlyapochnikov, Zhurnal Strukturnoi Khimii 1971, 14, 

162. 
(487) J.T. Larkins, J.M. Nicholson, F.E. Saalfeld, Organic Mass Spectrometry 1971, 5, 265. 

(488) A.K. Macbeth, D.D. Pratt, J. Chem. Soc. 1921, 119, 354. 

(489) M.F. Zimmer, E.E. Barcody, M. Schwartz, M.P. McAllister, J. Chem. Eng. Data 1964, 
9, 527. 

(490) A. Reed, P.v.R. Schleyer, J. Am. Chem. Soc. 1987, 109, 7362. 

(491) A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899. 
(492) R.D. Harcourt, T.M. Klapötke, Pauling Three-electron bonds and increased valence 

structures as components of the “Intellectual Heritage” of Qualitative Valence Bond 
Theory Research Trends 9, 11-22 (2006). 

(493)  J.R. Witt, D. Britton, C. Mahon, Acta Crystallogr. 1972, B28, 950. 
(494) D.R. Huntley, G. Markopoulos, P.M. Donovan, L.T. Scott, R. Hoffmann, Angew. 

Chem. Int. Edn. 2005, 44, 7549. 

(495) V. Schomaker, D.R. Stevenson, J. Am. Chem. Soc. 1941, 63, 37. 

(496) H.O. Pritchard, H.A. Skinner, Chem. Rev. 1955, 55, 745. 

(497) L.P. Hammet, Chem. Rev. 1935, 17, 125. 

(498) L.P. Hammet, J. Am. Chem. Soc. 1937, 59, 96. 

(499) R.W. Taft, In: Steric effects in organic chemistry, ed. By Newman, M.S., Chapt. 13, 

Wiley, New York, 1956. 
(500) D. Datta, J. Phys. Org. Chem. 1991, 4, 96. 

(501) J.E. Huheey, J. Org. Chem. 1966, 31, 2365. 

(502) R.F. Stewart, J. Chem. Phys. 1972, 57, 1664. 
(503) Chemical applications of atomic and molecular electrostatic potentials (1981) Politzer, P.; 

Truhlar, D.G. (eds) Plenum Press, New York. 
(504) R.F.W. Bader, M.T. Carroll, J.R. Cheeseman, C. Chang, J. Am. Chem. Soc. 1987, 109, 

7968. 
(505) P. Politzer, P. Lane, M.C. Concha, Y. Ma, J.S. Murray, J. Mol. Model. 2007, 13, 305. 

(506)  J.S. Murray, P. Lane, P. Politzer, J. Mol. Model. 2009, 15, 723. 

(507) T. Clark, M. Hennemann, J.S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291. 

(508) P. Politzer, J.S. Murray, P. Lane, Int. J. Quant. Chem. 2007, 107, 3046. 
(509) T. Di Paolo, C. Sandorfy, Can. J. Chem. 1974, 52, 3612. 

(510) R.E. Rosenfield, Jr., R. Parthasarathy, J.D. Dunitz, J. Am. Chem. Soc. 1977, 99, 4860. 

(511) P. Murray-Rust, W.D.S. Motherwell, J. Am. Chem. Soc. 1979, 101, 4374. 



Chapter 4 – Appendix 
 

- 410 - 

(512) P. Auffinger, F.A. Hays, E. Westhof, P. Shing Ho, Proc. Nat. Acad. Sci. USA 2004, 
101, 16789. 

(513) T. Brinck J.S. Murray, P. Politzer, Int. J. Quant. Chem., Quantum Biol. Symp. 1992, 19, 
57. 

(514) J.S. Murray, M.C. Concha, P. Lane, P. Hobza, P. Politzer, J. Mol. Model. 2008, 14, 
699. 

(515) W. Wang, N.B. Wang, W. Zheng, A. Tian, J. Phys. Chem. A 2004, 108, 1799. 

(516) J. Hine, W.C. Bailey, Jr., J. Org. Chem. 1960, 26, 2098. 

(517) A. Brändström, J. Chem. Soc., Perkin Trans. 2 1999, 1855. 
(518) L. Macaveiu, M. Göbel, T.M. Klapötke, J.S. Murray, P. Politzer, 
 Struct. Chem. 2009, in press.  
(519) W. Caminati, E.B. Wilson, J. Mol. Spectrosc. 1980, 81, 507. 
(520) M. Göbel, B.H. Tchitchanov, J.S. Murray, P. Politzer, T.M. Klapötke, Nature Chem. 

2009, 1, 229. 

(521) C.B. Hübschle, P. Luger, J. Appl. Cryst. 2006, 39, 901. 

(522) A.K. Macbeth, D.D. Pratt, J. Chem. Soc. 1921, 119, 354. 

 


