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1 Zusammenfassung 

 

Die Desoxyribonukleinsäure (DNA) ist Trägerin der genetischen Information. 

Ihre  fehlerfreie Weitergabe ist notwendig, um das Überleben eines jeden 

Organismus zu sichern. Jedoch stellt sie ein ständiges Angriffsziel einer 

Vielzahl von endogenen und exogenen Faktoren dar. Um die genetische 

Integrität der DNA trotzdem aufrecht zu erhalten, haben sich verschiedene 

Wege der DNA-Reparatur ausgebildet. Aufgrund der Komplexität der DNA-

Reparatur sind diese jedoch noch nicht komplett verstanden. Besonders im 

Bereich der Schadenserkennung werden momentan verschiedene 

Mechanismen diskutiert. Die Frage, wie geschädigte Basen aus einer Vielzahl 

ungeschädigter Basen spezifisch erkannt werden ist hierbei von zentraler 

Bedeutung. Störungen in dem Prozess der Reparatur/Schadenserkennung 

führen zur Entstehung von Krankheiten und Krebs. Somit ist ein genaues 

Verständnis der Mechanismen in der Schadenserkennung essentiell für die 

Entwicklung neuartiger und innovativer Medikamente im Bereich der 

Krebsforschung. Aus diesem Grund wurde in dieser Arbeit die 

Schadenserkennung der zwei wichtigsten DNA-Reparaturwege, der 

Nukleotidexzisionsreparatur und der Basenexzisionsreparatur, untersucht.  

Die Basenexzisionsreparatur (BER) ist der wichtigste Reparaturpfad für die 

Detektion und Entfernung von Basen, die durch Oxidation, Alkylierung und 

Deaminierung geschädigt wurden, jedoch keinen oder nur einen geringen 

Einfluss auf die Struktur der Doppelhelix aufweisen. Initiiert wird die BER durch 

DNA-Glykosylasen, die die geschädigten Basen erkennen und entfernen. Der 

genaue Mechanismus, wie diese Glykosylasen geschädigte von 

ungeschädigten Basen unterscheiden können ist derzeit noch nicht völlig 

verstanden. Speziell 8-oxo-dG, das schwerwiegende Mutationen verursacht, 

unterscheidet sich nur um zwei Atome von seinem natürlichen Analogon und 

steht damit besonders im Fokus der Wissenschaft. In dieser Arbeit konnte 

erstmalig die Struktur einer Wildtyp-Formamidopyrimidin Glykosylase 

(Fpg/MutM) aus Lactococcus lactis in Komplex mit 8-oxo-dG geschädigter DNA 
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2 Summary 

 

Deoxyribonucleic acid (DNA) is the carrier of the genetic information. By its 

error free passing the survival of an organism is secured. The DNA is, however, 

a constant target of a multitude of endogenous and exogenous agents. In order 

to keep the genetic integrity of the DNA, different ways of DNA repair have 

evolved. Due to its complexity, the mechanisms are not yet completely 

understood. Particularly in the field of damage recognition different mechanisms 

have been suggested. The question of how DNA lesions are effectively 

recognized in a vast expanse of normal DNA is of crucial importance. 

Disturbances during the process of damage recognition can lead to diseases 

and cancer. Thus, an exact understanding of the mechanisms of damage 

recognition is essential for the development of new and innovative drugs. The 

damage recognition mechanisms of the two most important DNA repair 

pathways, the base excision repair and the nucleotide excision repair are the 

subject of this thesis. 

Base excision repair (BER) is the predominant pathway for coping with a 

broad range of small lesions resulting from oxidation, alkylation, and 

deamination which modify single bases without large effect on the double helix 

structure. It is initiated by DNA glycosylases which recognize and remove 

damaged bases. The accurate mechanism of how the DNA Glycosylases 

discriminate between damaged and undamaged bases is still not fully 

understood. Particularly 8-oxo-dG, a source for severe mutations, differs only by 

two atoms from its natural counterpart and is therefore of special interest. In this 

thesis the first time a crystal structure of a wildtype formamidopyrimidine 

glycosylase (Fpg/MutM) from Lactococcus lactis in complex with 8-oxo-dG 

damaged DNA could be obtained (Figure 2.1). This structure is essential for the 

further elucidation of damage recognition.  
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3 Einleitung 

3.1 Struktur der DNA 

 

“We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). 

This structure has novel features which are of considerable biological interest.“ 

Bei diesem Zitat handelt es sich um die ersten beiden Sätze einer der 

denkwürdigsten Publikationen zu Beginn der Forschung im Bereich der 

Nukleinsäuren. Der Artikel mit dem Namen „Molecular Structure of Nucleic 

acids: A structure for deoxynucleic acid“ wurde von J. D. Watson und F. H. C. 

Crick in Nature im Jahre 1953 veröffentlicht und beschreibt die doppelhelikale 

Struktur der DNA basierend auf Röntgen-diffraktogrammen von M. Wilkins und. 

R. Franklin.[1]  Das DNA-Molekül besteht aus den vier Nukleobasen Adenin (A), 

Guanin (G), Cytosin (C) und Thymin (T), die über ein Rückgrat aus 2-

Desoxyribose und Phosphodiestergruppen zu einer linearen Kette aufgereiht 

und über spezifische Wasserstoffbrückenbindungen zu einem zweiten DNA-

Strang verbunden sind. Dabei kommt es stets zu einer Paarung von A mit T 

bzw. G mit C (Abbildung 3.1 a), wobei die Abfolge der Nukleobasen die 

Erbinformation kodiert. Unter physiologischen Bedingungen dominiert die 

rechtsgängige B-Form der DNA-Doppelhelix, zusätzlich besteht die Möglichkeit 

der Ausbildung einer A- und Z-Form. Während es sich bei der A-Form ebenfalls 

um eine rechtsgängige Helix handelt, welche jedoch eine engere und tiefere 

große Furche aufweist, so liegt in der Z-Form eine linksgängige Helix vor. Diese 

tritt besonders bei GC-reichen Abschnitten auf. 2005 wurde eine Kristallstruktur 

der Z-DNA in Verbindung mit der B-DNA veröffentlicht und somit auf eine 

biologische Aktivität der Z-DNA hingewiesen.[2]  Regionen in der Nähe des 

Startpunkts der Transkription weisen häufig Sequenzmotive für die Ausbildung 

einer Z-DNA auf. Das Auftreten der Z-DNA in der Nähe der Promoterregionen 

führt zu einer Stimulation der Transkription. In Abbildung 3.1 (b) ist die 

doppelhelikale Struktur der B-DNA abgebildet. Die Helix besitzt einen 

Durchmesser von 2 nm und eine vollständige Drehung wird nach 10 Basen 

erreicht. Die Abfolge von 3 Nukleobasen bestimmt den degenerierten 

genetischen Code für die Aminosäuren.  
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ausgetauscht worden, wobei die Basen chemisch unverändert bleiben. Durch 

die Degeneration des genetischen Codes kann eine Punktmutation 

vergleichsweise harmlos ausfallen, besonders wenn es sich um eine wobble 

Base handelt. Der allgemeinen Hypothese für wobble Paarungen zufolge,  

entsteht die Basen-Paarung zwischen dem Codon-Triplett der mRNA und dem 

Anticodon-Triplett der tRNA nur bei der 1. und 2. Base der mRNA durch eine 

feste Wasserstoffbrückenbindung. Die Bindung der 3. Base ist schwächer und 

kann auch zu sogenannten Nicht-Watson-Crick-Paarungen führen. Damit diese 

Paarungen möglich sind, müssen die Basen aus ihrer Position am Ribosom 

während der Translation „herauswackeln“. Diese Paarungen werden deshalb 

als wobble-Paarungen bezeichnet. In den anderen und damit 

schwerwiegenderen Fällen besteht jedoch die Möglichkeit einer Leseraster-

Verschiebung (frameshift mutation), die durch Insertionen oder Deletionen 

auftreten. Hierbei baut die Polymerase während der Replikation zuviele Basen 

in die Sequenz ein, oder es kommt zum Verlust einzelner Basen. Folgedessen 

kommt es zu einer Verschiebung des Leserasters und zur Synthese eines unter 

Umständen verkürzten oder defekten Proteins.  Zwar handelt es sich bei diesen 

Veränderungen nicht um eine chemische Modifikation der DNA, doch können 

diese Veränderungen eine große Schädigung der Zelle hervorrufen.  

In Abbildung 3.2 sind auch die verschiedenen Reparatursysteme aufgeführt, 

die die DNA Schäden beheben können. Bei Betrachtung des großen Spektrums 

an schädigenden Substanzen ist es kaum verwunderlich, dass sich eine große 

Vielfalt an unterschiedlichen Reparatursystemen entwickelt hat. Im Rahmen 

einer generellen biologischen Antwort haben sich neben den 

Reparaturmechanismen auch gewisse Toleranzmechanismen ausgebildet, die 

das Überleben einer Zelle/Organismus sichern. Zum einen wird geschädigte 

DNA durch Direkte Reparatur, Basenexzisionsreparatur (BER), Nukleotid-

exzisionsreparatur (NER), Mismatch Reparatur und Einzel-

/Doppelstrangbruchreparatur behoben, auf welche in den folgenden Kapiteln 

genauer eingegangen wird. Bei den Toleranzmechanismen hingegen handelt 

es sich um Translesion DNA synthesis, Postreplicative gap filling und 

Replication fork progression (siehe Abbildung 3.3). Ferner kann eine Zelle aber 

auch die Schädigung während des Zellzykluses durch den cell cycle checkpoint 
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3.3 Direkte Reparatur 

 

Im einfachsten Fall kann ein entstandener DNA-Schaden durch direkte 

Reparatur in einem einfachen enzymatischen Prozess wieder in seine 

Ursprungsform überführt werden. Aufgrund der großen chemischen Viefalt von 

DNA Schäden ist diese Form der Reparatur in der Evolution jedoch durch 

komplexere Systeme ergänzt, bzw. ersetzt worden. Im Folgenden werden die 

bekanntesten Reparaturenzyme der direkten Reparatur vorgestellt. 

 

3.3.1 CPD-Photolyase, (6-4)-Photolyase und Sporenphotoproduktlyase 

 

DNA Photolyasen verwenden die Energie des Lichts, um durch UV-Strahlung 

geschädigte DNA, wie Cyclobutan Pyrimidin Dimere (CPD) oder (6-4)-

Photoprodukte ((6-4)PP) (siehe auch 3.7.3.1) zu reparieren.[17] Die 

Sporenphotoproduktlyase hingegen arbeitet bei der Entfernung von 

Sporenphotoschäden unter Ausschluss von Licht. 2004 wurde von Mitarbeitern 

des AK Carell die Co-Kristallstruktur einer Photolyase aus A. nidulans in 

Komplex mit CPD geschädigter DNA veröffentlicht.[18] Während der Reparatur 

wurde der DNA Strang durch das Enzym um 50° gebogen, der Dimerschaden 

in das aktive Zentrum um 180° gedreht und dort durch Synchrotron-Strahlung 

bei 100K in zwei Thymine gespalten. In Abbildung 3.4 (a) ist die Co-

Kristallstruktur einer CPD-Photolyase in Komplex mit CPD geschädigter DNA 

dargestellt. Alle bekannten CPD-Photolyasen enthalten FAD in 

stöchiometrischen Mengen als Cofaktor.[19] Der zweite Cofaktor kann 8-HDF (8-

Hydroxy-10-(D-Ribo-2,3,4,5-tetrahydroxypentyl-5-deazaalloxazin) oder das 

Pterin MTHF (5,10-Methenyl-tetrahydrofolat) sein. Der Reparaturmechanismus 

der CPD-Photolyase ist weitest gehend biochemisch untersucht worden.[20]  

Im Jahre 2008 gelang es wiederum Mitarbeitern des AK Carell die Co-

Kristallstruktur einer (6-4)-Photolyase aus D. melanogaster in Komplex mit 

einem definierten T(6-4)T-Schaden zu lösen.[21] Die Struktur zeigt eine hohe 

Ähnlichkeit zu den bereits bekannten Strukturen aus der Familie der 
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Die Struktur und der genaue Mechanismus  der Sporenphotoproduktlyase, 

die für die Entfernung des Sporenphotoprodukts verantwortlich ist, bleibt 

Gegenstand der Forschung.[24]   

 

 

3.3.2 Direkte Reparatur einer alkylierten DNA 

 

Neben den in dem vorangehenden Kapitel besprochenen Photolyasen, die in 

einer enzymatischen Einschrittreaktion verschiedene Photoprodukte entfernen, 

gibt es eine zweite Form der direkten Reparatur und Entfernung von 

mindestens vier Typen alkylierter DNA (3-Methyladenin, O6-Methylguanin, 1-

Methyladenin und Methyl-FaPyG). Alkylierende Agenzien können verschiedene 

Schäden an den heterozyklischen Basen oder dem Rückgrat der DNA 

hervorrufen, welche für die Zelle toxisch und mutagen sind. Bei diesen 

Molekülen handelt es sich um exogene oder endogene Stoffe, wie z.B. S-

Adenosylmethionin, das ein Methyldonor für viele zelluläre Prozesse ist, aber 

auch Methylierungsschäden hervorrufen kann.[25] Die meisten dieser alkylierten 

Nukleobasen werden durch direkte Reparatur mittels folgender Enzyme 

entfernt: die N-terminale Domäne des E. coli Ada Proteins, die Familie der O6-

Alkylguanin-DNA Alkyltransferasen und die AlkB Familie.[26] Bisher konnten 9 

humane AlkB Homologe identifiziert werden.[27] Es entwickelten sich zwei 

verschiedene Strategien, um die Alkylierung zu beheben. In einer einstufigen 

Reaktion wird die Methylgruppe auf einen internen Cystein-Rest der 

Alkyltransferase übertragen, was zu einer Inaktivierung des Enzyms führt 

(Suizid-Enzym). Neben Methylgruppen können auch längerkettige Alkylgruppen 

auf dieses Reparaturprotein übertragen werden, wobei die Effizienz mit 

zunehmender Länge des Alkylrestes abnimmt. Zum anderen benutzt AlkB einen 

ähnlichen Mechanismus wie Eisen-abhängige Oxygenasen, nämlich Eisen-

Oxo-Intermediate, um chemisch wenig reaktive Addukte oxidieren zu können.[28]  

 

 



3 Einleitung 
 

17 
 

3.4 Mismatch-Reparatur (MMR) 

 

Die DNA-Mismatch-Reparatur ist verantwortlich für das Entfernen von 

Basenfehlpaarungen, die durch Desaminierung, Oxidation, Methylierung und 

Replikationsfehlern während der DNA Replikation und Rekombination 

entstehen können. Da das proofreading nicht absolut fehlerfrei arbeitet, kommt 

es mit einer Fehlerhäufigkeit von 10-7 pro Basenpaar und Replikation zu 

fehlgepaarten Basen. Diese Fehler werden nun durch die Mismatch-Reparatur 

behoben. Die Fehlerrate während der Replikation wird dadurch um den Faktor 

50-1000 erniedrigt.[5] Aber auch Basenpaaranomalien, die von einem DNA 

Schaden herrühren, werden durch MMR repariert. Dazu zählen O6-

Methylguanin,[6] 8-Oxoguanin,[7] Karzinogene Addukte,[8] UV-Photoprodukte[9] 

und Cisplatin-Addukte.[10]  

In gram-negativen Bakterien (z. B. E. coli) erfolgt die Diskriminierung 

zwischen dem Parental- und Tochterstrang über das Methylierungsmuster der 

DNA.[11] Methyltransferasen, wie z. B. die Desoxyadenine Methyltransferase 

(DAM) addieren eine Methylgruppe an das N6 Atom des Adenins in d(GATC).  

In Folge dessen liegt der Templatstrang methyliert vor, während der 

Tochterstrang unmethyliert bleibt.[12] Somit kann zwischen den verschiedenen 

Generationen der DNA Population unterschieden werden. In E. coli sind die 

Proteine MutS, MutH und MutL maßgeblich an der MMR beteiligt. Der initiale 

Schritt in der Erkennung von fehlgepaarten, aber chemisch intakten Basen 

erfolgt durch das MutS-Homodimer über das ATP-abhängig MutL rekrutiert 

wird. Nach Bildung des Repairosoms schneidet MutH an der 5‘-Position einer 

unmethylierten d(GATC)-Sequenz.[13] An dieser Stelle binden anschließend die 

DNA Helikase II (UvrD) und verschiedene Endonukleasen (ExoVIII, RecJ oder 

ExoI), die den Strang über die ungepaarte Stelle hinaus abbauen. Der somit 

entstandene Einzelstrang wird durch SSB Proteine stabilisiert und durch die 

DNA Polymerase III wieder aufgefüllt. Die entstandene Lücke wird in Folge 

durch die DNA Ligase wieder geschlossen.[14, 15] Durch die Strukturaufklärung 

des MutS/MuSα-DNA Komplexes wurde gezeigt, dass die fehlgepaarten Basen 

direkt im DNA-Duplex erkannt werden.[16] Die verstärkte Deformation der DNA 

aufgrund der Schwächung der Watson-Crick-Basenpaarung in Fehlpaarungen 
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stellt einen Teil des Erkennungsmechanismus dar. Die Schadenserkennung  

bei der eukaryotischen MMR wird durch Proteine vollzogen, die zu den 

bakteriellen Homolog sind. Vor allem aber kommt es zu einer Detektion eines 

Knicks in der DNA, wobei noch nicht alle Fragen geklärt werden konnten.  

 

 

3.5 Reparatur von Doppelstrangbrüchen- 

Rekombinationsreparatur 

 

Vor allem Chemotherapeutika, endogene Agenzien oder auch ionisierende 

Strahlung rufen häufig Doppelstrangbrüche hervor.[29] Diese können zu 

chromosomalen Aberrationen oder zu Apoptose führen. In einer eukaryotischen 

Zelle kann bereits ein einziger, nicht reparierter Doppelstrangbruch eines 

entscheidenden Gens den Zelltod durch Apoptose induzieren, oder bei Eintritt 

in die S-Phase des Zellzyklus zur fehlerhaften Bildung der Tochterchromatiden 

führen. Für die Reparatur von Doppelstrangbrüchen sind bisher zwei 

Mechanismen bekannt, zum einen die Homologe Rekombination (HR) und zum 

anderen das Non Homologous End Joining (NHEJ). Das NHEJ stellt bei 

eukaryotischen Zellen den entscheidenden Reparaturmechanismus für 

mitotisch teilende Zellen dar, um mögliche Chromosomentranslokationen, -

deletionen und Genamplifikationen zu verhindern, wohingegen in Hefen die HR 

dominiert. Das NHEJ ligiert zwei Enden eines Doppelstrangbruchs, ohne dass 

eine Sequenzhomologie bestehen muss. Die HR nimmt in höheren Eukaryoten 

eine entscheidende Rolle bei der  Reparatur von DNA Doppelstrangbrüchen 

während der Meiose ein. Hierbei tritt das geschädigte Chromosom mit der 

sequenzhomologen ungeschädigten DNA in Kontakt, die als Matrize für die 

Reparatur dient.[30]  
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3.6 Basenexzisionsreparatur (BER) 

 

3.6.1 Allgemeines 

 

Die Basenexzisionsreparatur (BER) ist der wichtigste Reparaturmechanismus 

für die Entfernung und Korrektur von geschädigten Einzelbasen in der DNA.[31] 

Sie ist unter anderem verantwortlich für die Reparatur von oxidativ 

geschädigten Basen, wie sie durch reaktive Sauerstoffspezies (ROS) gebildet 

werden. Diese entstehen durch entzündliche Prozesse in der Zelle, ionisierende 

Strahlung, langwelliges UV-Licht oder während der Atmungskette in den 

Mitochondrien. Hierbei fallen als Nebenprodukte der Sauerstoffreduktion 

Wasserstoffperoxid, Superoxidradikal-anionen und Hydroxylradikale an. Aber 

auch alkylierte Einzelbasen sind Substrate für die BER. Initiiert wird die BER 

durch DNA-Glykosylasen, einer Klasse von Enzymen, die geschädigte DNA-

Basen erkennen und diese durch Hydrolyse der N-glykosidischen Bindung 

entfernen. Beim Menschen sind bisher 11 verschiedene Glykosylasen bekannt, 

die sich durch ihre hohe Spezifität auszeichnen.[32]  

 

3.6.2 Substrate für die BER 

 

Die oxidative Schädigung der DNA und die damit einhergehenden chemischen 

Veränderungen der Nukleobasen sind nicht nur bei der Tumorgenese oder 

beim Alterungsprozeß, sondern auch bei verschiedenen Entzündungs-

prozessen der Zelle von Bedeutung.[33] Basenschädigungen, DNA-Protein-

crosslinks und Oxidationen an den Desoxyriboseeinheiten, die zu 

Strangbrüchen führen, sind hauptsächliche Typen von oxidativen Schäden.[34] 

Insgesamt sind bislang etwa 100 oxidativ erzeugte DNA Schäden bekannt.[35] 

Aufgrund des geringsten Redoxpotentials von Guanin unter den natürlichen 

Basen, ist diese Nukleobase am leichtesten oxidierbar. Dies führt zu einer 

Vielzahl unterschiedlicher oxidierter Guaninbasen (GO).[36] Aber auch die 

oxidative Schädigung der anderen Basen ist möglich, jedoch spielen sie eine 
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Befindet sich 8-oxo-dG während der Replikation im Templatstrang, wird 

sowohl dCTP, als auch dATP durch die jeweilige Polymerase eingebaut.[41] Die 

high fidelity B. stearothermophilus Polymerase I insertiert bevorzugt dATP 

gegenüber 8-oxo-dG. Da bei korrektem Einbau eines dC und der Bildung eines 

Watson-Crick-Basenpaares es zu einer sterischen Behinderung zwischen 

C8=O und dem Zucker-Phosphatrückgrat kommt, rotiert 8-oxo-dG in die anti-

Konformation. Dadurch wird ein Hoogsteen-Basenpaar aus 8-oxo-dG:dA 

gebildet, welches keiner sterischen Behinderung unterliegt. Die 

Rotationsfähigkeit von 8-oxo-dG ist daher die Grundlage für das hohe 

Mutationspotenital dieses Schadens.[42] Die T7 Polymerase, eine weitere high 

fidelity Polymerase und Polymerase β, eine error-prone Polymerase, bauen im 

Gegensatz zu BstPolI dCTP gegenüber 8-oxo-dG ein. Dies ist möglich, da die 

DNA im aktiven Zentrum einen stärkeren Knick erfährt und dadurch sterische 

Behinderungen minimiert werden. Durch eine stärkere Stabilisierung der anti-

Konformation im aktiven Zentrum von Dpo4, einer low fidelity Polymerase, 

kommt es zu einem Einbau von dCTP gegenüber 8-oxo-dG und somit zu keiner 

Mutation.[42] Somit vollziehen einige Polymerasen eine Translesion synthesis in 

dessen Folge es zu keiner schädlichen Mutation kommt.  

Neben der bereits beschriebenen Entstehung von 8-oxo-dG gibt es ein 

weiteres wichtiges Oxidationsprodukt von Guanin, das Formamidopyrimidin-2‘-

desoxyguanosin (FaPydG) (Abbildung 3.6). FaPydG und dessen Derivate 

werden durch Hydroxylradikale gebildet, welche durch eine Reihe 

unterschiedlicher Mechanismen zellulär gebildet werden.[43]  Aufgrund der 

langen Lebensdauer von 1O2 in Zellen ist die Bedeutung von Singulärem 

Sauerstoff für die Oxidation erheblich,[44] da dieser größtenteils an Guanin und 

dessen Oxidationsprodukten angreift.[45] Dabei entsteht in einer [4+2]-

Cycloaddition zunächst ein zyklisches Endoperoxid, welches in einer 

Reaktionskaskade zu zwei weiteren wichtigen Oxidationsprodukten, dem 

Guanidinohydantoin (Gh) und Spiroiminohydantoin (Sp) reagiert (Abbildung 

3.6).    
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unterschiedliche Enzyme durchgeführt werden. Hierbei wird entweder nur ein 

Nukleotid (Short-Patch-BER) oder es werden zwei bis acht Nukleotide (Long-

Patch-BER) ausgetauscht. In der humanen Short-Patch-BER wird der 5’-dRp 

Schnitt durch die duale Lyase- (dRpase) und Polymerase-Aktivität der 

Polymerase β katalysiert. Anschließend wird durch die DNA Ligase I die 

Reparatur vervollständigt. Die Long-Patch-BER beinhaltet den Austausch und 

die Reparatur von mindestens zwei Nukleotiden, wobei bei diesem 

Mechanismus die 5‘-dRp-Stelle als ein Teil des flap-Strukturelements durch die 

FEN1-Endonuklease geschnitten wird.[46] Die dabei involvierte Polymerase 

konnte bisher noch nicht identifiziert werden. Möglicherweise können sowohl 

die Polymerase β, als auch die Polymerasen δ und ε beteiligt sein. 

Anschließend kommt es auch hierbei zur Ligation durch die DNA Ligase I.  Die 

Wahl des Reparaturpfades ist im Moment Gegenstand der Diskussion und 

hängt von verschiedenen Faktoren ab. Falls das dRp-Intermediat durch die 

dRpase Aktivität der Polymerase β effizient entfernt werden kann, wird der Weg 

der Short-Patch-BER beschritten. Sofern die Prozessierung des dRp-Rests, wie 

im Falle der Reparatur einer reduzierten AP-Stelle, nicht effizient ablaufen kann, 

kommt es zur Long-Patch-BER. Aber ebenso beeinflussen die Art des 

Schadens, der momentane Zustand des Zellzyklus und ob sich die Zelle 

differenziert oder bereits teilt die Entscheidung bei der Wahl des 

Reparaturweges. In nachfolgender Abbildung sind die beiden Wege 

schematisch dargestellt.  
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terminale Domäne ist aus zwei α-Helices und zwei β-Faltblattstrukturen 

aufgebaut, die ein Zink-Finger-Motiv ausbilden.[48] Diese beiden Domänen sind 

über ein flexibles Scharnier verbunden. Zu dieser Superfamilie gehören u.a. Nei 

und MutM/Fpg (siehe Kapitel 3.6.4.1). Bei der dritten und vierten Klasse der 

DNA Glykosylasen handelt es sich um die Alkyladenin DNA Glykosylase (Aag) 

und Uracil DNA Glykosylase (Udg), die nach den bekannten humanen 

Glykosylasen benannt wurden. Uracil DNA Glykosylasen sind monofunktionelle 

Enzyme, welche für das Erkennen und Entfernen von Uracil in DNA 

verantwortlich sind. Udg schneidet Uracil aus Einzel- und Doppelsträngiger 

DNA und ist komplett inaktiv gegenüber natürlichen Pyrimidinen in DNA und 

Uracil in RNA.[49]  Uracil tritt in DNA durch Desaminierung von Cytosin oder 

fälschlicherweise engebautes dUTP auf. Die Superfamilie schließt mindestens 

fünf Gruppen unterschiedlicher Enzyme mit ähnlicher Substratspezifität ein. Alle 

Uracil Glykosylasen sind um ein zentrales paralleles 4-faches β-Faltblatt 

organisiert, welches von mindestens zwei α-Helices auf jeder Seite 

eingeschlossen ist. Loops verbinden diese Elemente, tragen die aktiven 

Aminosäuren und bilden die Schadens-erkennende Tasche aus. Neu entdeckt 

wurde die Familie der die HEAT-like repeat (HLR) DNA Glykosylasen, die 

ausschließlich aus α-Helices in einer selenoidähnlichen Superhelix-Struktur 

aufgebaut sind. Diese Glykosylasen wurden bisher nur in Prokaryoten gefunden 

und hydrolysieren die N-glykosidische Bindung in CPD.[50] 

  

3.6.4.1 Formamidopyrimidin Glykosylase (Fpg/MutM) und die Suche nach 

dem Schaden 

Bei der Formamidopyrimidin DNA Glykosylase (Fpg/MutM) handelt es sich um 

eine bifunktionelle Glykosylase der H2TH Superfamilie. Es ist ein ca. 30 kDa 

schweres Enzym mit einem Zinkfinger-Motiv und einem N-terminalen Prolinrest 

im aktiven Zentrum, der den nukleophilen Angriff auf das Substrat durchführt. 

Die Kristallstruktur von Fpg aus T. thermophilus zeigt, dass das Protein aus 

zwei globulären Domänen besteht, die über ein flexibles Scharnier verbunden 

sind, sowie zwei DNA Bindungsstellen besitzt.[48] MutM bildet mit MutY (entfernt 

Adenin aus einer 8-oxo-dG:dA Fehlpaarung) und MutT (entfernt dOGTP) das 

als „GO“-System bekannte bakterielle Schutzsystem gegen genotoxische 
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Diffusionsmodelle.[52] Genauer gesagt kann man das Problem der 

Schadenserkennung in zwei Bereiche einteilen:  

1. Dynamische Erkennung (Wie findet das Enzym die ungeschädigte Base 

im Genom?)  

2. Statische Erkennung (Wie wird der identifizierte Schaden als Michaelis-

Menten-Komplex in dem aktiven Zentrum stabilisiert?) 

Für hOGG1 wurde ein Mechanismus für die Schadenserkennung postuliert, 

der beide Bereiche vereint. Hierzu muss jede Base in die aktive Tasche 

geklappt werden, unabhängig davon ob sie geschädigt ist oder nicht. Dieses 

Konzept wird durch die experimentelle Analyse der Bindungswinkel in hOGG1 

mit geschädigter und ungeschädigter DNA unterstützt.[53, 54] Dieses Modell kann 

jedoch nicht als universell angesehen werden, da z. B. Purinbasen nicht in die 

aktive Tasche der Uracil DNA Glykosylase geklappt werden können.[55]  

Zusätzlich erklärt es nicht die Erkennung und das selektive Herausschneiden 

der natürlichen Base Adenin durch MutY.[56] Bei einem weiteren 

vorgeschlagenen Mechanismus handelt es sich um einen „direct readout“, bei 

dem geschädigte Nukleobasen durch Wasserstoffbrücken-bindungen oder 

elektrostatische Wechselwirkungen in der großen oder kleinen Furche 

dynamisch detektiert werden. Anschließend kommt es zu einem flip-out der 

geschädigten Base und zu deren Entfernung. Dieser Mechanismus ist sowohl 

mit, als auch ohne statischer Erkennung möglich. Der „indirect readout“ 

hingegen beschreibt ein Erkennungsmodell, das nicht auf gebildete 

Wasserstoffbrücken-bindungen zu den geschädigten Basen basiert, sondern 

thermodynamische Instabilitäten an der geschädigten Seite erkennt. Beide 

Mechanismen implizieren jedoch eine „Prä“-aktive Seite, die mit der 

geschädigten Base in Wechselwirkung tritt, bevor sie in das aktive Zentrum 

geklappt wird. Aufgrund der Tatsache, dass 8-oxo-dG sowohl ein 

thermodynamisch stabiles Watson-Crick-Basenpaar mit dC, als auch ein 

ebenso stabiles Hoogsteen Basenpaar mit dA ausbilden kann, wurde eine 

dynamische Erkennung mit einem „direct readout“  postuliert. Jedoch bleibt die 

Frage unbeantwortet, ob Glykosylasen zur Detektion geschädigter Basen jede 

Base aus der DNA herausklappen, oder nur bestimmte. Dagegen spricht der 
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hohe energetische Aufwand verbunden mit diesem Detektionsprozess. 

Abgesehen davon müsste der Mechanismus sehr schnell ablaufen, da das 

gesamte Genom untersucht werden muss. Hier liegt die Vermutung nahe, dass 

dieser Prozess ungenau ist. Als Lösung dieses Problems wurde eine 

wiederholte Untersuchung der DNA ohne Verbauch von chemischer Energie 

durch das Enzym postuliert.[57]  Dieser schnelle Suchprozess konnte kürzlich 

durch Einzelmolekülmessungen von hOGG1 an einem ungeschädigten DNA-

Duplex  visualisiert werden. Es wurde gezeigt, dass hOGG1 mit einer 

Diffusionsgeschwindigkeit nahe der theoretisch möglichen Geschwindigkeit für 

eindimensionale Diffusion über die DNA gleitet. Dies hat zur Folge, dass 

Millionen von Basen pro Sekunde untersucht werden.[58]  

Für Fpg, das funktionelle Homolog von hOGG1 in Bakterien, wurde ein 

anderer Mechanismus der Schadenserkennung postuliert, der noch einige 

Schwachstellen aufweist. In einem ersten Schritt bindet Fpg unspezifisch an die 

DNA Doppelhelix und bewegt sich entlang dieser. Möglicherweise wird dabei 

ein Phenylalaninrest (Phe114), gleich einer Sonde, zwischen die Basenpaare 

eingeführt, in dessen Folge die Doppelhelix stark gekrümmt wird und so 

Instabilitäten detektiert werden könnten.[57] Trifft das Enzym nun auf eine 

geschädigte Nukleobase, so wird diese aus der Doppelhelix herausgeklappt 

und in einer extrahelikalen Position in dem aktiven Zentrum des Enzyms 

stabilisiert. In dieser Position liegt der C1-Kohlenstoff der Ribose frei vor und 

kann durch das N-terminale Pro2 nukleophil angegriffen werden (siehe 

Abbildung 3.9 a). Die im Doppelstrang entstandene Lücke wird durch die 

hydrophobe Seitenkette von Phenylalanin (Phe114) gefüllt. Die verbliebene 

Gegenbase wechselwirkt über Wasserstoffbrückenbindungen mit Arginin 

(Arg112). Aus der herausgeklappten 2‘-Desoxyribose und dem sekundären 

Stickstoff des Pro2 bildet sich eine Schiff‘sche Base, die durch Reaktion des 

Intermediats mit Natriumborhydrid nachgewiesen werden konnte.[39] 

Anschließend wird durch Glu6 ein Wassermolekül deprotoniert, das die Ribose 

wiederum deprotoniert und es zu einer Umlagerung einer Doppelbindung 

kommt (β-Eliminierung, b). Dies hat eine Spaltung der 3‘-

Phosphodiesterbindung zur Folge (c). Als letzten Schritt folgt eine δ-

Eliminierung durch eine Deprotonierung mit Glu3 und einer anschließenden 



S

pe

um

A

ve

V

Ab

sin

ge

Ab

Sp

au

un

Ex

un

 

paltung de

entenal.[59]

m essenti

ktivität vo

erhindern, 

ariante von

 

bbildung 3.9

nd in rot darg

eschädigten 

bspaltung d

paltung der P

 

Um den

ufzuklären

nd unges

xperimente

ngeschädig

er 5‘-Phosp
] Wie bere

elle Amino

n Fpg zu

kommt in

n Fpg zum

9: Vorgeschl

gestellt. (a) N

Base. (b)

es Zuckers.

Phosphodies

n genaue

, besonde

schädigten 

en auch

gter DNA 

phodiester

its erwähn

osäuren, d

r Folge h

n Kristallisa

m Einsatz. 

lagener Rea

Nukleophiler 

β-Eliminier

. (d) δ-Elim

sterbindung.

en Mecha

rs wie es z

Basen 

h eine 

nötig. Um 

rbindung, u

nt handelt e

deren Mu

hätte. Um 

ationsexpe

ktionsmecha

r Angriff des 

rung und 

minierung un

anismus d

zu einer D

kommt, i

Co-Krista

die kataly

unter Verlu

es sich bei

tation eine

ein Hera

erimenten 

anismus von 

Pro2 auf C1

Spaltung d

nter Freisetz

der Scha

iskriminier

ist neben

allstruktur 

ytische Akt

ust einen M

i Glu3, ebe

en komple

ausschneid

häufig die

Fpg; die bet

der Ribose 

er Phospho

zung von 4-

adenserken

ung zwisch

 weiteren

mit ge

tivität des 

3 Ein

Moleküls 4

enso wie b

etten Verl

den der B

e E3Q-ode

teiligten Amin

unter Abspa

odiesterbind

-Oxo-2-pente

nnung vo

hen gesch

n biochem

eschädigte

Enzyms w

nleitung 

29 

-Oxo-2-

bei Pro2 

ust der 

Base zu 

er ∆P2-

 

nosäuren 

altung der 

ung. (c) 

enal und 

on Fpg 

hädigten 

mischen 

r und 

während 



3 Einle

30 
 

der Da

verwen

denen 

Glutam

Folge, 

kann. D

diesem

dies du

Cystein

DNA D

Abbildu

 

Abbildu

stearoth

geschaff

 

Die 

Bereich

veränd

Carell 

genau 

werden

Analog

gegen 

Elektro

itung 

auer der K

ndet. Einer

entweder 

min ausget

dass Fpg

Die E3Q-V

m Fall das 

urch die di

nreste im B

Disulfidbrüc

ung 3.10 in

ung 3.10: 

ermophilus, 

fenen Cystei

Verwendu

h des aktiv

erten Sch

inerte Su

gleichen 

n können. 

a der oxid

einen Ko

ophilie des 

ristallbildun

rseits könn

Pro2 mut

tauscht wo

g die gesc

Variante w

Protein zu

isulfide cro

Bereich de

cken ausbil

n grün darg

Struktur d

dunkelrot) 

n-Reste sind

ung von m

ven Zentru

hadenserke

bstrate en

und durch

Bei diese

dativen Sc

hlenstoff a

C1 gesen

ng zu unte

nen inaktiv

tiert  (∆2P

orden war

chädigte D

urde von 

usätzlich a

oss-linking

es aktiven 

lden könne

gestellt.  

des Schad

gebunden a

d in grün darg

mutierten

ums könne

ennung fü

ntwickelt, 

h das Enz

en Substr

chäden, be

ausgetausc

kt wurde u

erdrücken,

ve Mutante

P),[60]  ode

r (E3Q).[57

DNA zwar 

Verdine e

an die DNA

(DXL) Me

Zentrums 

en. Die ne

denserkenne

an 8-oxo-dG

gestellt.[57] 

Enzymen,

en Artefakt

hren. Aus

die dem 

zym zwar 

raten hand

ei denen d

cht wurde

und es zu 

 wurden  

en von Fp

er anderer
7] Diese M

bindet, ab

t al. verwe

A fixiert w

ethode, be

im Enzym

u gebildete

nden Kom

G geschädig

 besonde

te zur Folg

 diesem G

natürliche

erkannt, 

delt es sic

der Ringsa

. Dies ha

keinem nu

verschiede

g benutzt 

rseits Glu3

Mutationen

ber nicht p

endet, jedo

werden. Err

i der neu 

 mit Thiolr

en Cystein

 

mplexes von

gte DNA (g

rs Veränd

ge haben, 

Grund wu

n Schade

jedoch nic

ch um ca

auerstoff d

t zur Folg

ukleophilen

ene Ansät

werden, b

3 gegen e

n haben z

prozessiere

och muss 

reicht wurd

geschaffe

resten in d

nreste sind 

n MutM 

gold). Die n

derungen 

die zu ein

rden im A

en möglich

cht reparie

rbozyklisc

des Zucke

ge, dass d

n Angriff d

ze 

bei 

ein 

zur 

en 

in 

de 

ne 

der 

in 

(B. 

neu 

im 

ner 

AK 

hst 

ert 

he 

ers 

die 

es 



St

S

Ze

m

E

ca

w

bi

Ab

3

3.

 

In

M

ei

E

S

Pi

 

tickstoffs v

chiff’schen

entrum de

mögliche st

nzyms ve

arbozyklisc

werden, d

iochemisch

 

bbildung 3.1

 

 

 

.7 Nukle

 

.7.1 Allge

n den letzte

Mondschein

inem selte

ntstehung 

onnenlicht

Pigmentosu

von Pro2 

n Base ver

es Enzyms

rukturelle V

rmieden. I

ches Analo

ass die 

hen Einflus

11: Das natü

eotidexzi

emeines 

en Jahren 

nkinder hin

enen gene

von Hau

t vermeid

um (XP, 

mehr kom

wehrt und

s, kann ab

Veränderu

In Abbildu

ogon zu se

Verände

ss hat.[61] 

ürliche 8-oxo

isionsrep

wurde du

ngewiesen

etischen D

utkrebs e

en müss

auch 

mmen kan

die gesch

ber nicht p

ungen durc

ung 3.11 is

ehen. In m

rung der

-dG (a) und 

paratur (

urch die Me

n. Es hand

Defekt be

ntgegen z

en. Diese

Melanosi

nn. Somit 

ädigte Nuk

prozessiert

ch Mutation

st das nat

ehreren Ex

r Ribose 

das carbozy

(NER) 

edien verm

delt sich 

troffen sin

zu wirken

e Kinder 

is lenticu

bleibt die

kleobase v

t werden. 

nen im akt

türliche 8-

xperimente

keinen 

klische Analo

mehrt auf d

dabei um 

nd und u

n, jegliche

leiden u

ularis pr

3 Ein

e Ausbildu

verweilt im 

Dadurch 

tiven Zentr

-oxo-dG u

en konnte 

zellulären

 

ogon (b).  

das Schick

 Kinder, d

m der sc

e Expositio

unter Xer

rogressiva 

nleitung 

31 

ung der 

aktiven 

werden 

rum des 

nd sein 

gezeigt 

n oder 

ksal der 

die von 

chnellen 

on von 

roderma 

oder 



3 Einleitung 

32 
 

Mondscheinkrankheit genannt), das durch einen Defekt in der 

Nukleotidexzsionsreparatur entsteht. Durch den Defekt kommt es aber nicht nur 

zu Xeroderma Pigmentosum, sondern es entstehen zwei weitere Krankheiten, 

das sogenannte Cockayne Syndrom und Trichothiodystrophie, auf die in den 

folgenden Kapiteln näher eingegangen werden soll.  

 

 

3.7.2 Krankheiten bedingt durch defekte NER 

3.7.2.1 Xeroderma Pigmentosum 

Xeroderma Pigmentosum  wurde zwischen 1874 und 1883 das erste Mal von 

den Dermatologen Kaposi und von Hebra erwähnt, als sie die beobachteten 

Symptome ihrer Patienten beschrieben.[62, 63]  Die Patienten wiesen gegenüber 

einem gesunden Menschen eine extreme Sensitivität gegenüber dem 

Sonnenlicht auf und waren einem 1000-fach höherem Hautkrebsrisiko 

ausgesetzt. 1932 entdeckte de Sanctis, dass XP auch mit neuronalen 

Dysfunktionen in Zusammenhang steht.[64] In ca. 18 % der Fälle sind die 

Symptome mit einer primären neuronalen Degeneration und dem Verlust von 

Neuronen gekoppelt.[65] Erste Tumore entstehen bereits in einem mittleren Alter 

von 8 Jahren und ohne Behandlung überleben die Patienten ihr erstes 

Lebensjahrzehnt nicht. XP kann zur Zeit nicht geheilt werden, aber durch 

systematische Abschirmung der Patienten vor Sonnenlicht und anderen 

schädlichen Einflüssen kann die Lebenserwartung auf ca. 20 Jahre erhöht 

werden.[66] In den westlichen Ländern betrifft XP einen von 250000 Menschen, 

in Afrika und Japan ist es einer von 40000.[67] Verschiedene 

Komplementationsgruppen, die nach den jeweiligen inaktiven Proteinen 

benannt wurden untergliedern die Formen von XP in A bis G. Die schwerste 

Form, bzw. der schwerste Ausprägungsgrad ist XP-A. In diesem Fall ist die 

Funktion des schadenserkennenden Proteins XPA gestört. Die leichteste Form 

stellt XP-F/G dar. 
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3.7.2.2 Cockayne Syndrom 

Eine zweite Funktionsstörung wurde 1936 von Edward Alfred Cockayne mit UV-

Sensitivität in Verbindung gebracht und nach seinem Entdecker als Cockayne 

Syndrom (auch Weber-Cockayne-Syndrom oder Neill-Dingwall-Syndrom 

genannt) bezeichnet.[68] Es handelt sich hierbei um eine autosomal rezessiv 

vererbte Erkrankung, die durch einen Defekt in der Transkriptions gekoppelten 

Reparatur (TCR) bedingt ist, an dem die Proteine CSA und CSB beteiligt 

sind.[69] Interessanterweise zeigen die Patienten keine klare Veranlagung für die 

Entwicklung von Hautkrebs und auch die globale Genomreparatur (GGR) 

funktioniert einwandfrei. CS-Patienten weisen jedoch folgende Symptome auf: 

Verlangsamte körperliche und geistige Entwicklung, schwere neurologische 

Anomalitäten sowie Gesichtsfehl-bildungen. Die Lebenserwartung liegt bei ca. 

6-12 Jahren, wobei der Tod meistens durch vorzeitige Aterienverkalkung 

eintritt.[70] 

 

3.7.2.3 Trichothiodystrophie 

Trichothiodystrophie (auch IBIDS, Tay-Syndrom oder sulfur-deficient brittle hair 

genannt) wurde 1971 von Tay zum ersten Mal beschrieben.[71] Es handelt sich 

hierbei um eine autosomal-rezessive Krankheit, die mit Mutationen in der TCR, 

namentlich in den Proteinen XPB, XPD und TTDA, einhergeht. Patienten 

weisen kurzes brüchiges Haar, retardiertes Wachstum, Minderbegabung und 

Nagelanomalien auf.[72, 73] 

 

 

3.7.3 Substrate für die NER 

 

Eine erstaunliche Vielzahl unterschiedlicher DNA-Schäden wird durch die NER 

erkannt und repariert. Dazu gehören sowohl ein- als auch mehrbasige 

Läsionen, die durch UV-Strahlung oder chemisch reaktive Moleküle gebildet 

werden. In Abbildung Abbildung 3.12 ist eine Übersicht aller in dieser Arbeit 

untersuchten Substrate der NER dargestellt.  
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Ozonschicht größtenteils herausgefiltert werden.[74] Die Bildung von DNA-

Photoprodukten in menschlichen Hautzellen geschieht maximal bis zu einer 

Wellenlänge von 300 nm, welche mit dem Absorptionsspektrum der 

bedeutendsten DNA-Chromophoren korreliert (Thymin, Cytosin und 5-

Methylcytosin). Prokaryoten und viele Eukaryoten können UV-Schäden sowohl 

durch NER, als auch durch spezifische Photolyasen entfernen (siehe Kapitel 

3.3.1).[75] Allerdings besitzen Menschen keine Photolyasen als Alternative zu 

der NER, so dass UV-Schäden nur durch NER repariert werden können.[76] 

Bei den wichtigsten UV-induzierten DNA-Schäden handelt es sich um 

Cyclobutan-Pyrimidin-Dimere (CPD), T(6-4)T-Photoprodukte, Dewar 

Photoprodukte und Sporenphotoprodukte. Die eigentliche Photoreaktion der 

Basen kann aus angeregten Singulett- oder Triplettzuständen erfolgen,[77] wobei 

fast alle UV-Schäden zwischen benachbarten Pyrimidinbasen gebildet 

werden.[78] Addukte zwischen Purinbasen bzw. Pyrimidin- und Purinbasen sind 

kaum bekannt und wenig untersucht, auch die Anzahl an Pyrimidinmono-

addukten ist ebenfalls sehr gering.[79]  Die Photoreaktionen sind extrem 

abhängig vom umgebenden Milieu[80,81] (pH-Wert, Trockenheit, 

Photosensitizern, Salzen, usw.), so dass die Anzahl und Art der entstehenden 

Pyrimidindimere sich weiterhin im Fokus der Wissenschaft befinden.  

  

3.7.3.1.1 Cyclobutan Pyrimidin Dimere 

Das häufigste und am besten charakterisierte Photoprodukt ist der Cyclobutan 

Pyrimidin Dimer Schaden (CPD). Er entsteht durch eine [2π+2π] Cycloaddition 

aus dem angeregten Triplettzustand der C5-C6-Doppelbindung benachbarter 

Pyrimidinbasen. Da Thymidin die niedrigste Triplettenergie aufweist, stellt es 

den besten Akzeptor beim Energietransfer innerhalb der DNA dar.[82] Diese 

chemische Eigenschaft führt theoretisch zu einer häufigeren Bildung von 

Thymidindimeren als Cytosindimeren, was auch durch experimentelle 

Untersuchungen bestätigt wurde. Dabei kam es zu einer Häufigkeitsverteilung 

der Photodimeren: T=T > T=C > C=T > C=C.[83] Da jedoch festgestellt wurde, 

dass die C  T Transversion die häufigste Mutation bei der Replikation von 

Photodimeren ist, sagt diese Häufigkeitsverteilung jedoch nichts über die 



3 Einle

36 
 

biologis

möglich

Photod

auf de

findet in

zur in 

entstan

von Ad

Replika

Adenos

alle ci

aufgrun

cis-syn

Gegens

 

Abbildu

 

3.7.3.1

Das P

ebenfa

eine P

und de

Cytosin

Zwisch

itung 

sche Rele

he Gründe

dimer viel s

n Verlust 

n vivo inne

vivo Re

ndenen Ur

denosin al

ation des G

sin und so

is/trans un

nd von ste

n-Diastereo

satz dazu 

ung 3.13: Da

.2 (6-4)Ph

Pyrimidin(6

lls sehr gu

aternó-Büc

er C4-Carb

ns) über e

enstufe ist

vanz aus.

e. Zum e

schneller s

der Ringa

erhalb eine

eparatur v

racil-enthal

ls Gegenb

Gegenstra

mit zur beo

nd syn/an

erischen S

omer das H

bilden sich

rstellung des

otoproduk

6-4)pyrimid

ut untersuc

chi-Reaktio

bonylgrupp

eine insta

t oberhalb 

[84-87] Für 

einen find

statt, als d

aromatizitä

es Tages s

von Photo

ltenden Di

base währ

ngs führt z

obachteten

nti Diaster

pannunge

Hauptprodu

h trans-syn

s Cyclobutan

kte 

on Adduk

chte Photod

on zwisch

e des 3‘-T

bile Oxeta

von -80°C

diesen be

et die De

ie Desami

ät zurückz

statt[88, 89] u

odimeren 

mere veru

rend der R

zu einem E

n C  T T

reomere 

n nur syn-

ukt der CP

n-CPD nur 

npyrimidindim

kt (6-4PP

dimerscha

hen der C5

Thymins (b

an (bzw. 

C nicht stab

eobachtete

esaminieru

inierung ei

uführen is

und steht in

und der 

ursachen n

Replikation

Einbau von

ransversio

entstehen,

-Isomere a

PD (siehe A

in Einzelst

 

mers (CPD).

P) ist der

den. Das (

5-C6-Bind

bzw. der 4-

Azetidin) 

bil und zer

en Effekt g

ung von C

ines C ode

st. Die De

n zeitlicher

Zellteilun

nun eine In

n. Eine an

n Thymidin

n. Theoret

, jedoch 

aus. Folglic

Abbildung 3

trängiger D

 

r zweithä

(6-4)PP en

ung des 5

-Iminogrup

Zwischens

rfällt unter 

gibt es zw

C zu U 

er m5C, w

esaminierun

r Konkurre

ngsrate. D

nkorporatio

nschließend

n gegenüb

tisch könne

bilden si

ch stellt d

3.13) dar. 

DNA.  

ufigste u

ntsteht dur

5‘-Pyrimidi

ppe eines 3

stufe. Die

Ringöffnu

wei 

im 

as 

ng 

nz 

Die 

on 

de 

ber 

en 

ch 

as 

Im 

nd 

ch 

ns 

3‘-

se 

ng 



in

zu

de

de

A

M

M

di

H

Im

H

G

w

Ab

ei

 

3.

B

es

de

B

he

B

bi

zw

 

n das jewe

usätzliche 

etektiert w

eutlich von

uch hier s

Mutationspo

Mutationsra

ie DNA sin

elix und k

m Gegens

elix und e

Grund für d

weiteren Ex

 

bbildung 3.

ne Oxetan Z

.7.3.1.3 De

ei zwei we

s sich um 

es Dewar-

elichtung 

ervorgerufe

elichtunge

isher aussc

wei benach

eilige (6-4

Absorptio

werden. Di

n der des C

sagt die Q

otential au

ate aus.[93] 

nd sehr un

keine stark

atz dazu 

ein damit 

die wesen

xperimente

.14: Bildung 

Zwischenstufe

ewar-Photo

eiteren Pho

das Dewa

-Photoprod

mit UV-Li

en werde

en nachgew

chließlich 

hbarten Th

4)Photopro

nsmaximu

ie Häufigk

CPD: T(6-4

Quantität de

s. Der T(6

Die struktu

terschiedli

ke Verände

entsteht d

verbunden

tlich besse

n herauszu

des (6-4)-P

e.  

oprodukt u

otoprodukt

r-Photopro

duktes kan

cht photoc

en und k

wiesen we

in Sporen 

hymidinen.

dukt (sieh

um von 32

keitsverteil

4)C > T(6-4

er entstan

6-4)T Scha

urellen Aus

ch. CPD e

erung in d

durch das 

ner Verlus

ere Repar

ufinden.  

Photoproduk

und Sporen

ten, die du

odukt und 

nn durch 

chemisch 

konnte bi

erden.[102, 

gefunden
[104, 105] 

he Abbildu

26 nm des

ung des 

4)T > C(6-

ndenen Sc

aden zeich

swirkunge

erzeugen n

der Watso

(6-4)PP e

st der Bas

ratur von 

ts aus zwei

nphotoprod

urch UV-Be

das Spore

die Umwa

bei einer 

sher nur 
103] Das S

und entste

ung 3.14).[

s (6-4)PP 

(6-4)PP u

-4)C > C(6

chäden nur

hnet sich d

n des CPD

nur eine le

n-Crick-Ba

eine starke

enpaarung

(6-4)PPs[9

benachbart

dukt 

elichtung e

enphotopro

andlung de

Wellenlän

in Säug

Sporenphot

eht durch d

3 Ein

[90, 91] Dur

kann dies

nterscheid

6-4)T.[83, 92] 

r wenig üb

durch die h

D und (6-4

ichte Bieg

asenpaaru

e Verzerru

g.[97] Ob d
98-101] ist, b

ten Thymidin

entstehen, 

odukt. Die 

es (6-4)PP

nge von 3

getierzellen

toprodukt 

die Belichtu

nleitung 

37 

rch das 

ses gut 

det sich 

Wie im 

ber das 

höchste 

)PP auf 

ung der 

ng.[94-96] 

ung der 

dies der 

bleibt in 

 

nen über 

handelt 

Bildung 

P durch 

312 nm 

n nach 

 wurde 

ung von 



3 Einleitung 

38 
 

 

3.7.3.2 DNA Addukte durch Elektrophile Moleküle 

Bei der großen Mehrzahl an Karzinogenen handelt es sich um elektrophile 

Moleküle, die teilweise durch Aktivierung im Metabolismus entstehen. Sie 

reagieren mit den nukleophilen Atomen/Gruppen der DNA, zu denen die 

Phosphodiester-Bindungen, N7 und C8 des Guanins, N3 des Adenins und die 

exocyclischen Aminogruppen des Guanins (N2) und Adenins (N6) zählen. Die 

N7 Position zeichnet sich durch eine besonders hohe Reaktivität aus, da sie 

eine hohe Elektronendichte und eine gute Zugänglichkeit vereint. Ob die 

Reaktivität des C8 aus einer schnellen Elektronenumlagerung mit N7 entsteht, 

ist im Moment Gegenstand der Diskussion.[106] 

 

3.7.3.2.1 Cisplatin 

Cis-Diaminodichloroplatin (cis-DDP oder Cisplatin) ist eines der am häufigsten 

benutzten Chemotherapeutika (Zytostatikum) für die Behandlung einer Vielzahl 

von Tumoren. Bei Cisplatin handelt es sich um einen neutralen quadratisch-

planaren Platin(II)-Komplex, der von zwei relativ inerten Ammoniumgruppen 

und zwei labilen Chloridliganden in cis-Stellung koordiniert ist.[107] Intravenös 

verabreicht, bleibt Cisplatin stabil im Blut, bis es in das Cytoplasma der Zellen 

diffundiert und dort, aufgrund der geringeren Salzkonzentration, die 

Chloridliganden gegen Wasser oder Hydroxid-Ionen ausgetauscht werden. 

Diese Substitution führt zu einem nun aktivierten und geladenen Elektrophil, 

das eine Reaktion mit den nukleophilen Gruppen der DNA eingeht und es zu 

der Bildung von Monoaddukten, intrastrang oder interstrang Crosslinks mit den 

Basen kommt. Dies führt zur Entstehung von  Punktmutationen während der 

DNA Replikation. Neben diesen Einflüssen führt Cisplatin auch zur Hemmung 

der DNA-Reparatur und der Telomeraseaktivität. Durch diese 

Wirkungsprinzipien des Cisplatin kommt es zur Aktivierung der Apoptose in sich 

schnell-teilenden Zellen, wie es bei Krebszellen der Fall ist. Die Platinierung 

führt gewöhnlicherweise zu intrastrang N7-N7-Crosslinks zwischen 

benachbarten Pyrimidinen. 1,2-d(GpG) Komplexe bilden ca. 65 % aller durch 

Cisplatin erzeugten DNA-Schäden, 1,2-d(ApG) bilden ca. 25 % und ein 
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elektrostatische Interaktionen, als auch hydrophobe Wechselwirkungen eine 

entscheidende Rolle spielen.[129]  Der Komplex UvrA2B (A2B) bzw. UvrA2B2 

(A2B2) bindet an geschädigte DNA, wobei UvrA die direkte Bindung zum 

Schaden vollzieht und den Transfer der DNA an das UvrB-Molekül durchführt. 

UvrB weist in Gegenwart von UvrA und der geschädigten DNA eine ATPase-

Aktivität auf, die für die Schadenserkennung ebenso notwendig ist. Die 

Erkennung geschädigter DNA und die Anbindung der DNA an UvrB führen zu 

weiterem ATP-Verbrauch und zur Spaltung des Komplexes.[130] Zurück bleibt 

ein stabiler Komplex aus UvrB und DNA. Basierend auf mehreren Co-

Kristallstrukturen von UvrB und geschädigter DNA wird vermutet, dass UvrB für 

die Schadenerkennung wichtig und für die Verfizierung des Schadens essentiell 

ist.[131] Es kommt hierbei zu einem Herausklappen des geschädigten 

Nukleotids.[132-134] Anschließend bindet UvrC an den Komplex (= BC·DNA). 

Nachdem UvrB weiteres ATP gebunden hat, erfolgt eine Phoshphodiester-

Spaltung zwischen dem vierten oder fünften Nukleotid auf der 3‘-Seite des 

Schadens. Der zweite Schnitt findet an der 5‘-Seite im Abstand von 8 

Nukleotiden statt.[135] Anschließend dissoziiert UvrC von der DNA und UvrD 

(DNA Helikase II) entfernt den ausgeschnittenen Einzelstrang. Nun füllt die 

DNA Polymerase I die Lücke wieder auf, während sich UvrB von der nun 

ungeschädigten DNA ablöst.[136] Nun wird das neusynthetisierte DNA-Fragment 

durch die DNA Ligase mit dem parentalen Strang verbunden, um den NER-

Pfad abzuschließen. Eine Transkriptions-gekoppelte NER, wie sie in 

Eukaryoten vorkommt, existiert nicht. Allerdings kann UvrA gezielt durch den 

Faktor Mfd an die Stelle einer durch Schäden blockierten RNA Polymerase 

rekrutiert werden.  

Bisher wurde das UvrABC-System nur in Prokaryoten und Archaebakterien 

gefunden und es wurden auch keine Sequenzhomologien mit anderen 

Reparaturproteinen festgestellt, bis auf eine kleine Region am C-Terminus von 

UvrC, welches dem ERCC1-Protein ähnlich ist.[137] Dieses Protein ist in der 

maßgeblich an der eukaryotischen NER beteiligt.  
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3.7.5 Eukaryotische Nukleotidexzisionsreparatur 

 

Bei der Eukaryotischen Nukleotidexzisionsreparatur handelt es sich, wie im 

Falle der Prokaryotischen NER (siehe Kapitel 3.7.4), auch um einen cut-and-

patch-Reparaturweg. Der Reparaturkomplex der eukaryotischen NER besteht 

aus ca. 30 unterschiedlichen Proteinen, die eine außerordentliche Vielzahl 

unterschiedlicher DNA-Schäden erkennen und eliminieren können. Aufgrund 

der Komplexität konnte bisher der genaue Erkennungsmechanismus der NER 

nicht vollständig geklärt werden. Es konnten zwar alle beteiligten Proteine sowie 

bestimmte Details des Mechanismus identifiziert werden, jedoch ist der genaue 

Ablauf der Schadenserkennung noch nicht komplett verstanden. In den 

nächsten Kapiteln wird der Mechanismus mit der kontroversen Diskussion der 

eukaryotischen NER dargestellt. Das Hauptaugenmerk liegt hierbei auf der 

Schadenserkennung.   

 

3.7.5.1 Mechanismus der NER 

Das NER-System eliminiert DNA-Schäden durch das Herausschneiden eines 

Oligonukleotidfragments mit einer Länge von ca. 24-32 Basen[138] um den 

Schaden und ersetzt dieses durch neusynthetisierte DNA mit anschließender 

Ligation. Nachdem verschiedene Modelle für den Mechanismus vorgeschlagen 

wurden, konnte die Hypothese eines cut and patch-Mechanismus in 5 Schritten 

bestätigt werden: (i) Schadenserkennung, (ii) Öffnung der Doppelhelix um den 

Schaden, (iii) Ausschneiden und Entfernen des geschädigten Fragments (ca. 

24-32 Nukleotide), (iv) DNA-Synthese und schließlich (v) Ligation.[139, 140] Es 

wurde gezeigt, dass eukaryotische NER aus zwei unterschiedlichen Subwegen 

besteht, der globalen Genomreparatur und der Transkriptions-gekoppelten 

Reparatur.[100] Die globale Genomreparatur (GGR), auf die hier hauptsächlich 

eingegangen wird, findet an jedem Ort des Genoms statt. Die Effizienz hängt 

von der Art des Schadens ab, wobei (6-4)PP im Vergleich viel schneller als 

CPD eliminiert werden.[141] 

Im Gegensatz dazu werden in der Transkriptions-gekoppelten Reparatur 

(TCR) Schäden entfernt, die die RNA Polymerase beim Ablesen aktiver Gene 
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blockieren. Anders als bei der GGR, werden in diesem Fall unterschiedliche 

Schäden mit ähnlicher Effizienz beseitigt.[142] Dies sorgt für eine schnelle 

Wiederherstellung der Transkriptions-Aktivität und der Aufrechterhaltung der 

zelluläre Funktionen.[143, 144] Die Blockierung der RNA Polymerase während der 

Elongation durch geschädigte DNA initiiert die NER und das CSB Protein wird 

an diese Stelle rekrutiert. Die primäre Schadenserkennung findet also durch die 

Blockierung oder Verlangsamung der Polymerase statt.[145, 146] Unter ATP-

Hydrolyse entsteht ein stabiler CSB-RNAP-DNA Komplex. Falls es sich um 

einen kleinen Schaden handelt, erlaubt CSB der Polymerase den Schaden zu 

überlesen.[147, 148] Handelt es sich hingegen um UV-induzierte, Cisplatin oder 

große Addukt-Schäden, so ist das Überlesen für die Polymerase nicht möglich 

und es kommt zu einer Rekrutierung weiterer Proteine, wie CSA,[149] TFIIH[150] 

und XPG.[151] Anschließend wird wie bei GGR die Doppelhelix entwunden und 

das Oligofragment herausgeschnitten.  

Mittlerweile ist man sich sicher, dass folgende Proteine bei der 

Schadenserkennung der humanen GGR involviert sind: XPA (Hefe: Rad14), 

XPC (Hefe: Rad4), TFIIH, RPA und UV-DDB.[101, 152] UV-DDB (UV-damaged 

DNA-binding protein) weist  eine außerordentliche Affinität zu UV-geschädigter 

DNA auf.[153] Es bindet sowohl (6-4)PP, als auch CPD. Letztere werden durch 

XPA und XPC nur schwach erkannt.[154] Somit kann UV-DDB als primärer 

Schadenssensor für UV-Schäden betrachtet werden, wobei auch eine geringe 

Affinität zu abasic sites und einer zweifachen Fehlpaarung beschrieben 

wurde.[154, 155] Bei TFIIH handelt es sich um einen Komplex aus 10 

Untereinheiten, dem zwei eindeutige Schritte im Mechanismus zugeordnet 

werden können. Erstens wird TFIIH durch Protein-Protein-Interaktionen mit 

XPC-HR23B durch einen ATP-abhängigen Schritt an die geschädigte Stelle 

rekrutiert.[156, 157] In einem zweiten ATP-abhängigem Schritt kommt es zu einem 

Aufschmelzen der DNA, welcher es erlaubt, dass weitere Proteine an die 

geschädigte Stelle binden. Dies ist der erste katalytische und irreversible Schritt 

der Kern-Reaktion, da sie in einer neuen Struktur endet und nun weitere 

Proteine rekrutiert. Es handelt sich hierbei um „kinetic proofreading“, ein 

Prozess, der sich dadurch auszeichnet, dass eine Zwischenstufe mit mittlerer 

Spezifität in eine mit größerer Spezifität umgewandelt wird.[101, 158]  
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Tabelle 3.1: Alle an der humanen GGR beteiligten Gene, ihre ERCC Äquivalente und die 

daraus resultierenden Krankheiten. Abkürzungen: GGR: Globale Genom Reparatur, CAK: CDK-

aktivierende Kinase, CDK: Cyclin abhängige Kinase, DSBR: Doppelstrangbruchreparatur, ODR: 

Reparatur der oxidativen Schäden, ERCC1: Excision repair cross-complementing rodent repair 

deficiency, complementation group 1, XP: Xeroderma Pigmentosum, CS: Cockayne Syndrom, 

TTD: Trichothiodystrophie. 

      
Gen Protein 

Untereinheit 
Proteingröße 
(AS) 

Funktion Interaktions- 
partner 

Krankheit 

      
   XPC-HR23B   

hHR23B 
XPC 
CEN2 

HR23B 
XPC 
CEN2 

  43 kDa (409) 
106 kDa (940) 
  20 kDa (172) 

Schadenserkennung 
Plattform 

TFIIH 
XPA 
DDB 

XP 
(GGR) 

      
   DDB   

DDB1 (p127) 
DDB2 (p48) 

DDB1 
DDB2 

127 kDa (1140) 
  48 kDa (428) 

CPD-Erkennung 
Chromatin Remodelling 

XPC 
RPA 

XP (leicht) 

      
   XPA   

XPA XPA 31 kDa (273) Schadenserkennung 
Strukturrolle? 
Große Addukte 

XPC 
RPA 
TFIIH 
ERCC1 

XP 

      
   RPA   

RPA1 
RPA2 
RPA3 

RPA70 
RPA32 
RPA14 

68 kDa (616) 
30 kDa (270) 
14 kDa (121) 

Bindung ssDNA 
Bindung geschädigter 
DNA? 

XPA 
XPG 
PCNA/RFC 

 

      
   TFIIH   

XBP (ERCC3) 
XPD (ERCC2) 
GTF2H1 (TFB1) 
GTF2H2 
GTF2H3 (TFB4) 
GTF2H4 (TBF2) 
GTF2H5 (TTDA) 
MNAT1 (TFB3) 
CDK7 
CCNH 

 

XBP 
XPD 
p62 
p44 
p34 
p52 
p8 
Mat1 
Cdk7 
CyclinH 

89 kDa (782) 
87 kDa (760) 
62 kDa (548) 
44 kDa (395) 
34 kDa (308) 
52 kDa (462) 
   8 kDa (71) 
36 kDa (309) 
39 kDa (346) 
38 kDa (323) 

3’5’ DNA Helikase 
5’3’ DNA Helikase 
TFIIH Untereinheit 
DNA Bindung? 
DNA Bindung? 
TFIIH Untereinheit 
Stabilisierung 
CAK-Komplex 
Phosphoryliert RNA 
PolII und andere 

XPC 
XPA 
XPG 
XPF 

XP 
XP/CS 
TTD 

      
   ERCC1-XPF   

ERCC1 
XPF (ERCC4) 

ERCC1 
XPF 

  33 kDa (297) 
103 kDa (905) 

5’-Endonuklease XPA 
TFIIH 

XP 
DSBR? 

 
 

     

   XPG   

XPG (ERCC5) XPG 133 kDa (1186) 3’-Endonuklease RPA 
TFIIH 
PCNA? 

XP 
XP/CS 
ODR? 

      
   RFC   

RFC1 
RFC2 
RFC3 
RFC4 
RFC5 

RFC1 
RFC2 
RFC3 
RFC4 
RFC5 

128 kDa (1148) 
  39 kDa (354) 
  41 kDa (356) 
  40 kDa (363) 
  38 kDa (340) 

ATP-abhängiges laden 
von PCNA 

PCNA 
RPA 

 

      
   PCNA   
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PCNA PCNA 
(Trimer) 

3 x 29 kDa 
(3 x 261) 

Sliding clamp RFC 
Polδ 
XPG? 

 

      
   Polδ   

p125 
p66 
p50 
p12 

p125 
p66 
p50 
p12 

124 kDa (1107) 
  51 kDa (466) 
  51 kDa (469) 
  12 kDa (107) 

DNA Polymerase PCNA  

      
   Polε   

p261 
p59 
p17 
p12 

p261 
p59 
p17 
p12 

261 kDa (2286) 
  60 kDa (527) 
  17 kDa (147) 
  12 kDa (117) 

DNA Polymerase PCNA  

      
   Ligase I   

LIGI Ligase I 102 kDa (919) DNA Ligation PCNA XP-ähnlich 
      

 

 

3.7.5.2 Schadenserkennung in der eukaryotischen NER 

Anfänglich wurden zwei gegensätzliche Theorien zum Mechanismus der 

Schadenserkennung vorgeschlagen: ‚XPC zuerst‘ oder ‚XPA zuerst‘.[101] In dem 

‚XPC zuerst‘ Modell stellt XPC den primären Schadenssensor dar, welcher 

geschädigte von ungeschädigter DNA unterscheidet und weitere NER-Proteine 

rekrutiert.[100, 165] In zahlreichen Bindungsstudien (z. B. EMSA) und in vivo 

Experimenten konnte die Bindungsaffinität von Rad4/XPC zu UV-induzierter 

und AAF geschädigter DNA gezeigt werden.[100, 140, 166-168] In letzter Zeit wurden 

häufiger Photoaffinitäts-Crosslinking Experimente durchgeführt, die gezeigt 

haben, dass sowohl XPC-HR23B/Rad4-Rad23, aber auch XPA/Rad14 eine 

hohe Affinität zu geschädigter DNA aufzeigen und diese auch binden.[169-171] 

Zusätzlich zeigten geschädigte Plasmide in Zellextrakten, falls diese mit XPC-

HR23B vorinkubiert wurden eine schnellere Reparaturrate. Bei Vorinkubation 

der geschädigten Plasmide mit XPA-RPA wurde hingegen eine langsamere 

Reparatur festgestellt.[172] In anderen Experimenten hingegen wurde 

festgestellt, dass die Reparatur effektiver ist, falls geschädigte DNA mit XPA-

RPA vorinkubiert wurde. Diese gegensätzlichen Ergebnisse sprechen dafür, 

dass XPC, XPA und RPA in einem kooperativen Modus agieren und weitere 

NER-Proteine rekrutieren.[158] Der Vorteil dieser konzertierten Aktion wäre, dass 

die teilweise geringe Schadensaffinität von einzelnen Proteinen kompensiert 

wird und es zu einer Affinitätssteigerung gegenüber geschädigter DNA kommen 
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konservierte Bereiche aufweist.[175] Das humane homologe Protein heißt 

hHR23B und besitzt ähnliche Eigenschaften wie Rad23. Der N-terminale 

Bereich von Rad23 zeigt Homologien zu Ubiquitin und Ubiquitin ähnlichen 

Domänen (UbL). Des Weiteren gibt es zwei Bereiche, die mit Ubiqutin 

wechselwirken können (UbA). Die UbL Domäne ist nötig für eine maximale 

Effizienz der NER, da diese die Interaktion von Rad23 mit dem 26S Proteasom 

koordiniert. Rad23 interagiert also nicht nur mit Rad4, sondern spielt in 

Ubiquitinilierungsprozessen während der NER eine Rolle.[176] Bereits 1998 

konnte durch electrophoretic mobility shift assays mit AAF- und CPD 

geschädigter DNA das Bindungsverhalten des Rad4/Rad23-Komplexes 

nachgewiesen werden. Rad4 ist hierbei für die Bindung geschädigter DNA 

verantwortlich, da Rad23 alleine nicht in der Lage ist geschädigte DNA zu 

binden.[168, 177] Bei diesen Experimenten wurden allerdings keine definierten 

DNA Schäden verwendet, sondern DNA Fragmente, die unspezifische DNA 

Schäden aufweisen. Aus diesem Grund können keine präzisen Aussagen über 

das Bindungsverhalten von Rad4/XPC, sowie deren Bindungskonstanten 

getroffen werden. Eine N- sowie C-terminal verkürzte Version von Rad4 zeigte 

dasselbe Bindungsverhalten in electrophoretic mobility shift assays zu CPD-

enthaltener DNA wie das gesamte Protein. Die Kristallstruktur der verkürzten 

Version von Rad4, bei der es sich nur um die DNA-bindende Domäne handelt, 

wurde kürzlich in Komplex mit CPD-enthaltender DNA gelöst (Abbildung 

3.20).[178] Es wurde gezeigt, dass lokale Instabilitäten des Watson-Crick-

Basenpaares durch die Insertion einer β-Haarnadelschleife erkannt und in 

dessen Folge die Basen aus der DNA gedreht werden (base flipping). 

Erstaunlicherweise besteht zwischen dem Protein und den geschädigten 

Nukleotiden keine direkte Interaktion, nur die gegenüberliegenden 

ungeschädigten Basen werden durch Rad4 kontaktiert. Es bleibt fraglich, ob 

Ursache hierfür die starke Verkürzung von Rad4 ist, oder Rad4 tatsächlich 

keine Wechselwirkungen mit dem Schaden eingeht. Ebenso ist der genaue 

Erkennungsmechanismus des humanen Homologen XPC noch nicht völlig 

geklärt. Bisher konnte nur eine Bindung von XPC an geschädigte DNA gezeigt 

werden.[100, 166, 179-181]   
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4 Aufgabenstellung 

 

Glykosylasen, wie sie in der Basenexzisionsreparatur vorkommen, sind vor 

allem für die Entfernung von oxidativen Schäden verantwortlich. In der 

Einleitung wurde ausführlich beschrieben, dass der genaue Mechanismus der 

Schadenserkennung dieser Glykosylasen noch nicht im Detail verstanden ist. 

Probleme stellen die Verwendung mutierter Enzyme und die Zugänglichkeit 

geschädigter DNA dar. Daher soll in dieser Arbeit die Schadenserkennung, 

sowie das Entfernen der geschädigten Base durch die Formamidopyrimidin 

Glykosylase (Fpg/MutM) untersucht werden. Da bisher keine Kristallstruktur 

eines Wildtyp-Proteins bekannt ist, sollte hier die Kristallstruktur von Fpg (wt) in 

Komplex mit c8-oxo-dG geschädigter DNA und ungeschädigter DNA erzeugt 

werden. Ferner sollen Aktivitätsassays des Proteins (Wildtyp und Mutante) mit 

unterschiedlich geschädigten DNA Oligonukleotiden durchgeführt werden.  

Rad4 und Rad14 sind vor allem für die Schadenserkennung in der 

Nukleotidexzisionsreparatur verantwortlich. Auch hier ist die genaue Aufgabe 

jedes einzelnen Proteins bei der Schadenserkennung noch nicht völlig klar. 

Bisher wurden größtenteils für die Experimente zur Aufklärung der primären 

Schadenserkennung DNA-Stränge verwendet, die undefinierte DNA-Schäden 

enthielten. Deswegen soll im zweiten Teil dieser Arbeit das Bindungsverhalten 

von Rad14 gegenüber Oligonukleotiden untersucht werden, die definierte DNA-

Schäden aufweisen. Um eine Vorstellung auf atomarer Basis zu erhalten, soll 

eine verkürzte Version von Rad14 mit AAF-geschädigter DNA kristallisiert 

werden.  
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5 Materialien und Methoden 

 

5.1 Materialien 

5.1.1 Chemikalien 

 

Chemikalien und Lösemittel in BioChemica Qualität wurden von den Firmen 

AppliChem (Darmstadt), Boehringer (Mannheim), Invitrogen (Karlsruhe), Merk 

(Darmstadt), Roth (Karlsruhe) und Sigma/Aldrich/Fluka (Deisenhofen) bezogen. 

 

5.1.2 Spezielle Anwendungen 

 

Tabelle 5.1: Isolierungs- und Präparationssysteme. 

Bezeichnung Anwendung Hersteller 

DNeasy Kit Präparation von genomischer DNA Qiagen, Hilden 

MinElute PCR 
Purification Kit 

Reinigung von PCR-Produkten Qiagen, Hilden 

MinElute Gel 
Extraction Kit 

Isolierung von DNA aus 
Agarosegelen 

Qiagen, Hilden 

PeqGold GelPure 
Kit 

Isolierung von DNA aus 
Agarosegelen 

Peqlab, Erlangen 

PeqGold Plasmid 
Miniprep Kit I 

Präparation von Plasmid-DNA aus 
E. coli 

Peqlab, Erlangen 

MinElute Reaction 
Cleanup Kit 

Reinigung enzymatischer 
Reaktionen 

Qiagen, Hilden 

QIAquick Midiprep 
Kit 

Präparation großer 
Plasmidmengen aus E. coli 

Qiagen, Hilden 

TOPO® Cloning Klonierung Invitrogen, 
Karlsruhe 

Stargate® Cloning Klonierung Iba, Göttingen 

Gateway® System Klonierung Invitrogen, 
Karlsruhe 
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5.1.3 Enzyme 

 

Restriktionsenzyme sowie Polymerasen wurden vorwiegend von den Firmen 

New England Biolabs (NEB, Frankfurt a. M.), Invitrogen (Karlsruhe) und 

Stratagene (Amsterdam) bezogen. Andere DNA modifizierende Enzyme, 

Ligasen und DNasen stammen von den Firmen NEB und Sigma-Aldrich. 

 

 

5.1.4 Plasmide 

 

Tabelle 5.2: Verwendete Plasmide ohne Insert.  

Bezeichnung Größe Resistenzen/ 
Promoter 

Affinitätstag Hersteller 

pDest 007 4876 bp Amp, Cm, 
ccdB, tet 

N-terminaler 
Strep-tagII 

Hergestellt 
von  Dr. 
Jan 
Carsten 
Pieck[24] 

pDest 17 6354 bp Amp, Cm, 
ccdB, T7 

N-terminaler 
His6-tag 

Invitrogen, 
Karlsruhe 

pDONR201 4470 bp Kan, Cm, 
ccdB 

- Invitrogen, 
Karlsruhe 

pENTRY-IBA10 1775 bp Kan - IBA, 
Göttingen 

pPSG-IBA3 2806 bp Amp, T7 C-terminaler 
Strep-tagII 

IBA, 
Göttingen 

pPSG-IBA25 3481 bp Amp, T7 N-terminaler 
GST-tag 

IBA, 
Göttingen 

pKLAC1 9091 bp Amp, LAC4, 
ADH2 

- NEB, 
Frankfurt 
a. M. 
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5.1.5 Oligonukleotide 

 

In Tabelle 5.3 sind die für die Klonierungen verwendeten Primer aufgeführt. Alle 

Primer wurden wurden vor der Verwendung über eine HPLC gereingt.  

Tabelle 5.3: Verwendete Primer.  

Primer  Bezeichnung  Sequenz (5‘ 3‘)

1 5‘-Fpg-
Gateway 

ggggacaagtttgtacaaaaaagcaggcttcatgccagagttaccagaag

2 3‘-Fpg-
Gateway 

ggggaccactttgtacaagaaagctgggtcttatttttgctgacagaatggg

3 5‘-Fpg-
Stargate 

aatgccagagttaccagaagttgaaa

4 3‘-Fpg-
Stargate 

tccctttttgctgacagaatgggcaa

5 5‘-Fpg-E6A ccaatgccagaattaccagcagttgaaaccgttagaaga 

6 3’-Fpg-E6A tcttctaacggtttcaactgctggtaattctggcattgg 

7 5’-Fpg-K131A agtgattccctattttctgaacaaagcaattggaccagaaccgaccta 

8 3’-Fpg-K131A taggtcggttctggtccaattgctttgttcagaaaatagggaatcact 

9 5’-Fpg-K154A gctttttcgagagaaattaagaaaatcaacagcgaaaataaaaccttatttact
tgagcaaacc 

10 3’-Fpg-K154A ggtttgctcaagtaaataaggttttattttcgctgttgattttcttaatttctctcgaaa
aagc 

11 5’-Fpg-K257A cgttgtggtgcagagattcaaaaaatagcagttgctggtcgag 

12 3’-Fpg-K257A ctcgaccagcaactgctattttttgaatctctgcaccacaacg 

13 5’-Rad14 Pho-aatgactcccgaacaaaaggccaaactagaggctaacaggaa 
attagcaatag 

14 3’-Rad14 Pho-tcccaatgtcaatttcttcagtttctagcc

15 5’-Rad14-DBD Pho-aatggcgccgaaatgtattgaatgt

16 3’-Rad14-DBD Pho-tcccgtattttttctcccttctgtg

17 5’-∆9NRad14 Pho-aatggaggctaacaggaaattagcaatag 

18 3’-∆9NRad14 Pho-tcccaatgtcaatttcttcagtttctagcc

19 5’-Rad4-His ggcctcgagaaaagaatgaatgaagacctgcccaag 

20 3’-Rad4-His gccggatcctcagtgatggtgatggtgatggtctgattcctctgacatctc

21 5’-Rad4-Hind ggcaagcttatgaatgaagacctgcccaag
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22 5’-Rad23 ggggacaagtttgtacaaaaaagcaggcttcatggttagcttaacctttaaaa
atttcaag 

23 3’-Rad23 ggggaccactttgtacaagaaagctgggtctcagtcggcatgatcgctg 

 

5.1.6 Bakterienstämme 

 

Tabelle 5.4: Verwendete Bakterienstämme. 

E. coli 
Stamm 

Genotyp Herkunft 

NEB Turbo F' proA+B+ lacIq ∆lacZM15/fhuA2 ∆(lac-
proAB) glnV gal R(zgb-210::Tn10) TetR 
endA1 thi-1 ∆(hsdS-mcrB)5 

NEB, Frankfurt a. 
M. 

DH5α F'  Phi80 dlacZ DeltaM15 Delta (lacZYA-
argF) U169  deoR  recA1 endA1  
hsdR17 (rK-mK+) phoA supE44  lambda- 
thi-1 

Stratagene, 
Amsterdam 

TOP10 F- mcrA (mrr-hsdRMS-mcrBC) Φ80lacZ 
∆M15 ∆lacX74 recA1 ara∆139 (ara-leu) 
7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen, 
Karlsruhe 

XL10 Gold TetR ∆(mcrA)183 ∆(mcrCB-hsdSMR-
mrr)173 endA1 supE44 thi-1 recA1 gyrA96 
relA1 lac Hte [F- proAB laclqZ ∆M15 
Tn10(Tetr) Amy Camr] 

Stratagene, 
Amsterdam 

Rosetta™ 
(DE3) 

F-, ompT  hsdSB(rB
-mB

-) gal dcm lacY1 
pRARE (argU, argW, ileX, glyT, leuW, proL) 
(CmR) 

Novagene, 
Schwalbach 

Tuner™ 

(DE3) 
F- ompT, hsdSB(rB

-mB
-) gal dcm lacY1 (CmR) Novagene, 

Schwalbach 

BL2 (DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3)  Novagene, 
Schwalbach 

B834(DE3) F- ompT hsdSB(rB
- mB

-) gal dcm met (DE3) Novagene, 
Schwalbach 

One Shot® 
ccdB 
Survival™  

F- mcrA ∆(mrr-hsdRMS-mcrBC) 
Φ80lacZ∆M15 ∆lacX74 recA1 ara∆139 
∆(ara-leu)7697 galU galK rpsL (StrR) endA1 
nupG fhuA::IS2 

Invitrogen, 
Karlsruhe 
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5.1.7 Hefestämme 

 

Tabelle 5.5: Verwendete Hefestämme. 

Hefe-  
Stamm 

Genotyp Herkunft 

K. lactis 
GG799 

MATα, [pGKI1+] NEB, Frankfurt a. M.

S. cerevisiae 
YPH499 

MATα  ura3-52 lys2-801_amber ade2-
101_ochre trp1-∆63 his1-∆200 leu2-∆1

Sigma, Deisenhofen 

 

 

5.1.8 Geräte 

 

Tabelle 5.6: Verwendete Geräte. 

Geräte Hersteller 

Äkta Basic Chromatographie System GE Healthcare, München 

Äkta Purifier Chromatographie System GE Healthcare, München 

Agarose Gelelektrophoresekammer Biorad, München 

Autoklav Vakulab S3000 Systec, Gießen 

Biofuge pico Heraeus, Hanau 

BioPhotometer 6131 Eppendorf, Hamburg 

Carey UV-Spectrometer Bio100 Varian, Darmstadt 

Elektrotransformator, Micropuls Biorad, München 

Elisa Reader, FP Spektrometer Tecan, Crailsheim 

Fluorimeter Jasco, Gross-Umstadt 

French Pressure Cell Press Thermo, Dreieich 

Gelscanner IDA Raytest, Straubenhardt 

Geldokumentationsgerät LAS3000 Raytest, Straubenhardt 
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Geltrockner 583 Biorad, München 

Hochdruckhomogenisator Avestin, Mannheim 

HPLC Waters, Eschborn 

Inkubator 1S Noctua, Wiesloch 

Inkubator 44R New Brunswick, Nürtingen 

Kristallisationsroboter Hydra II Thermo, Dreieich 

Mastercycler Personal Eppendorf, Hamburg 

Mini Protean 3 Cell Biorad, München 

Multicaster Biorad, München 

Nanodrop UV-Spectrometer Peqlab, Erlangen 

pH Meter MP220 Mettler Toledo, Gießen 

PCR Realplex Eppendorf, Hamburg 

Power Supply Biorad, München 

Sorvall Zentrifuge, Evolution RC Kendro, Dreieich 

Storm 860TM GE Healthcare, München 

Thermomixer Comfort Eppendorf, Hamburg 

Tiefkühlschränke Sanyo, Bad Nenndorf 

Tischzentrifuge, 5415R Eppendorf, Hamburg 

Trans-Blotter, Semi-Dry Biorad, München 

Vortexer VWR, Darmstadt 

Waters Millipore System Millipore, Schwalbach 

Zentrifuge 5810R Eppendorf, Hamburg 
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LeMaster [194] siehe Literaturstelle 
  
YPD 2.0% (w/v) Pepton, 1% (w/v) Hefeextrakt, 2% (w/v) 

Glucose 
  
YPG 2.0% (w/v) Pepton, 1% (w/v) Hefeextrakt 
 Nach autoklavieren: 2.0% (w/v) Galaktose  

(mit 20% Stocklösung) 
  
YCB Agar Medium mit 
5 mM Acetamid 

15 mL 1 M Natriumphosphat-Puffer, 5.85 g YCB 
Mediumpulver, 10 g Agar-Agar, 495 mL H2O 

 Nach autoklavieren: 5 mL 100x Acetamid-
Stocklösung 

  
 

Induktions- und Antibiotika-Stammlösungen 

  
Anhydrotetracyclin 2 mg/mL in Dimethylformamid 

  
Carbenicillin 100 mg/mL in Wasser 

  
Chloramphenicol 34 mg/mL in Ethanol  

  
Kanamycin 25 mg/mL in Wasser 

  
IPTG 1 mM in Wasser 

 
 

 

5.1.11 Datenbanken und Programme 

 

EMBL  European Molecular Biology Laboratory 
Data Library Nucleotide Sequence Database 
Heidelberg 

  http://www.embl-heidelberg.de 
  http://www.ebi.ac.uk/clustalw 

 

NCBI  National Center for Biotechnology Information USA 
  http://www.ncbi.nlm.nih.gov/ 

 

Swiss-Prot  Department de Biochemie Medicale 
  Centre Medical Universitaire Genf, Schweiz 
  http://www.swissprot.com 
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Bioinformatik Vector NTI 10, Invitrogen 
Lasergene DNA Star 5.0 (Seqman, Editseq, 
Seqbuilder, Protean, PrimerSelect), GATC 

 Clone Manager, SciEd Central 
 

Äkta Unicorn 6.0, GE 

 

Fluorimeter  Spectra Manager Version 1.54.03 

 

Elisa-FP-Reader  X Fluoro Genius Pro, Tecan 

 

AIDA  AIDA Advanced Image Data Analyzer Version 4.10 

 

Storm860TM  Imagequant Version 5.0, Molecular Dynamics 

 

Statistik  SigmaPlot für Windows Version 11.0, Systat, Erkrath 

 

 

 

5.1.12 Bioinformatische Anwendungen 

 

5.1.12.1 Homologievergleiche und Alignments 

DNA- und Proteinsequenzen der DNA bindenden Enzyme, sowie der 

Polymerasen wurden mittels der NCBI Datenbank gefunden. 

Homologievergleiche wurden sowohl mit dem NCBI Basic Local Alignment 

Search Tool (BLAST) Server (http://www.ncbi.nlm.nih.gov/BLAST), als auch mit 

Clustal X 1.8 bzw. der BLAST Search Funktion des Bioinformatik Programms 

Vector NTI 10 durchgeführt. Allgemeine Sequenzalignments wurden ebenfalls 

mit Vector NTI 10, Clustal x 1.8 und Lasergene DNA Star 5.0 durchgeführt.  

 

5.1.12.2 Strukturvergleiche und Strukturabbildungen 

Für die Darstellung der Kristallstrukturen bzw. der Strukturvergleiche wurden 

die Programme WinCoot 0.3.3, sowie Pymol 1.0r1, XDS, PHASER und SCALA 

verwendet. 
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5.1.12.3 Primerdesign und Klonierungsstrategien 

Die Klonierungsstrategien, sowie die dafür benötigten Primer wurden in Vector 

NTI 10 und Lasergene DNA Star 5.0 entwickelt und dargestellt. Für das Design 

der Primer für die Punktmutationen wurde das QuickChange® Primer Design 

Programm von Stratagene verwendet.  

 

5.1.12.4 Kalkulation der Proteinparameter 

Physikalische und chemische Parameter der rekombinanten Proteine wie 

Molekulargewicht (MW), Isoelektrischer Punkt (pI), Extinktionskoeffizienten und 

Restriktionsschnittstellen wurden mit Vector NTI 10 und Lasergene DNA Star 

5.0 ermittelt. 

 

5.1.12.5 Vorhersage der Sekundärstrukturen 

Für die Kristallisation von Rad14 wurde eine Vorhersage der Sekundärstruktur 

getroffen. Dies geschah mit JPred 3 (Protein Secondary Structure Prediction 

Server) der University of Dundee.  
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5.2 Mikrobiologische Methoden 

 

5.2.1 Bakterienkulturen 

 

5.2.1.1 Anlegen einer Bakterienkultur 

Die Anzucht der verwendeten Bakterienstämme erfolgte als Suspensions-

schüttelkultur (225 rpm) in 5 mL LB-Medium in einem 13 mL Kulturröhrchen bei 

37°C unter aeroben Bedingungen. Selektion resistenzvermittelnder Plasmide 

oder resistenter Bakterienstämme entstand durch Zusatz des entsprechenden 

Antiobiotikums unter einer in Tabelle 5.7 angegebenen Konzentration. Die 

Animpfung mit einer Bakterienkultur erfolgte mittels einer sterilen 

Pipettenspitze, welche in die Bakterienkolonie auf der entsprechenden Platte 

gestochen und anschließend in das Medium überführt wurde.  

 

5.2.1.2 Anlegen einer Bakterien Plattenkultur 

Die Petrischalen wurden mit sterilem LB-Medium und 15 g/L Agar, bei einer 

Medientemperatur von ca. 37°C gegossen. Die Zugabe von temperaturlabilem 

Antibiotikum, in den bereits angegebenen Konzentrationen, erfolgte kurz vor 

dem Gießen. Das Animpfen der Platten erfolgte durch zwei unterschiedliche 

Methoden: Zum einen wurde das unterbrochene Ausstrichverfahren 

angewendet. Hierzu pickte man einen Klon mit einer Pipettenspitze und verteilte 

die anhaftenden Bakterien großzügig über die Platte. Zum anderen, um eine 

Selektion von Transformaten zu Nicht-Transformaten zu erreichen, wurde das 

komplette Flüssigkeitsvolumen auf einer Petrischale mit einem Drygalski-Spatel 

verteilt. Die Platten wurden bei 37°C über Kopf 12-16 h inkubiert, zur Lagerung 

mit einem Parafilm verschlossen und bei 4°C aufbewahrt.  

 

5.2.1.3 Bakterien-Stammhaltung 

Da Plattenkulturen nur eine begrenzte Haltbarkeit aufweisen, wurden die 

Bakterien in einer Glycerinkultur über längere Zeit aufbewahrt. Dazu wurden 

850 μL Flüssigkultur in einem Cryo-Röhrchen mit 150 μL sterilem Glycerin 
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versetzt, durchmischt und in flüssigem Stickstoff schockgefroren. Die Kulturen 

können nun bei -80°C über Jahre gelagert werden.  

 

 

5.2.2 Hefe – Kulturen 

 

5.2.2.1 Anlegen einer Hefekultur 

Hierzu wurden die verwendeten Hefestämme in 5 mL eines geeigneten 

Mediums in einem Schüttelinkubator bei 30°C unter aeroben Bedingungen 

gezüchtet. Es muss, wie bei den Bakterien, darauf geachtet werden, dass der 

Selektionsdruck vorhanden bleibt.  

 

5.2.2.2 Anlegen einer Hefe-Plattenkultur 

Es besteht eine große Ähnlichkeit zur bereits in Kapitel 5.2.1.2 beschriebenen 

Bakterien-Plattenkultur. Der Unterschied jedoch besteht in der Verwendung 

Hefe-spezifischer Medien; um den Selektionsdruck aufrecht zu erhalten wurden 

oftmals Drop-Out-Medien anstelle von Antibiotika verwendet. Die Ausbildung 

der Hefekolonien nimmt mindestens zwei Tage bei 30°C in Anspruch. 

Anschließend können die mit Parafilm verschlossenen Agarplatten bei 4°C ca. 2 

Wochen gelagert werden.  

 

5.2.2.3 Anlegen einer Hefe-Dauerkultur 

Hefen können ebenfalls in Glycerin bei -80°C über Jahre gelagert werden. Dazu 

wurden 850 μL Flüssigkultur mit 150 μL sterilem Glycerin versetzt, durchmischt 

und in flüssigem Stickstoff schockgefroren. Alternativ kann man auch eine 

Kolonie von einer Platte picken und diese in 1 mL 15 % (v/v) Glycerinlösung 

geben, schütteln und schockfrieren.  
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5.2.3 Transformation von E. coli 

 

5.2.3.1 Herstellung elektrokompetenter E. coli 

Zur Herstellung elektrokompetenter E. coli Stämme wurden 500 mL LB-Medium 

nach Zugabe der entsprechenden Antibiotika mit 5 mL einer Übernachtkultur 

angeimpft und bis zu einer OD600 von 0.6 bei 37°C inkubiert. Ab dann erfolgten 

alle Arbeiten bei ständiger Kühlung auf 4°C und unter sterilen Bedingungen. 

Nach 30 min Inkubation auf Eis wurde die Zellsuspension in vorgekühlten 

Zentrifugenbechern bei 4°C und bei 8000 x g 30 min lang zentrifugiert. Das 

Sediment wurde in 40 mL eiskaltem, sterilem ddH2O resuspendiert, wiederum 

über 15 min bei 8000 x g zentrifugiert und in 20 mL eiskaltem, sterilem ddH2O 

resuspendiert. Nach einem weiteren Zentrifugationsschritt bei 8000 x g über 15 

min wurde das Pellet in 1 mL eiskaltem, sterilem 10%igem Glycerin 

aufgenommen und in 50 μL Aliquots in flüssigem Stickstoff schockgefroren. Die 

Aufbewahrung erfolgte bei -80°C.  

 

5.2.3.2 Transformation von elektrokompetenten Bakterien 

Zur Vorbereitung wurde eine Elektroporationsküvette auf Eis vorgekühlt und 1 

mL SOC-Medium auf 37°C vorgewärmt. Die elektrokompetenten Zellen wurden 

auf Eis aufgetaut, mit 10 ng bis 1000 ng der zu transformierenden DNA versetzt 

und vermischt. Anschließend wurde 1 min auf Eis inkubiert, schnell in die 

Elektroporationsküvette überführt und ein Spannungsimpuls von 2.5 kV 

angelegt. Nur bei Spannungen, die länger als 3 ms gehalten werden ist die 

Transformation als erfolgreich zu beurteilen, optimal sind 5-6 ms. Im Anschluss 

erfolgte die sofortige Zugabe von 1 mL SOC-Medium und die Überführung in 

ein snap cap oder ein 1.5 mL Reaktionsgefäß. Nach 60 min Schütteln bei 37°C 

wurden die Zellen in einer Tischzentrifuge mit 4000 x g für 5 min sedimentiert, 

der Überstand verworfen und das Pellet auf Agar-Platten mit dem 

entsprechenden Antibiotikum ausgestrichen. Die Platten wurden schließlich 

über Nacht bei 37°C inkubiert und bei 4°C gelagert.  
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5.2.3.3 Herstellung chemisch kompetenter E. coli Zellen  

Zur Herstellung hitzekompetenter E. coli-Zellen wurden 500 mL LB-Medium mit 

einer Übernachtkultur im Verhältnis 1:100 angeimpft und bis zu einer OD600 von 

0.6 bei 37°C inkubiert. Die Zellen wurden bei 4°C 10 min lang bei 4000 rpm 

zentrifugiert und das Pellet in 100 mL eiskalter CaCl2-Lösung (50 mM) 

resuspendiert. Nach einer 90 minütigen Inkubation auf Eis wurden diese bei 

4°C für 10 min bei 4000 rpm zentrifugiert, das Pellet in 16 mL eiskalter CaCl2-

Lösung resuspendiert und 60 min auf Eis inkubiert. Nach einem 

Zentrifugationsschritt bei 4°C und 4000 rpm für 10 min wurden die Zellen in 2 

mL eiskalter steriler 10%igen Glycerin-Lösung resuspendiert, in 50 μL Aliquots 

überführt und in flüssigem Stickstoff schockgefroren. Die Lagerung erfolgte bei  

-80°C.  

 

5.2.3.4 Transformation chemisch kompetenter E. coli Zellen 

Die bei -80°C gelagerten chemisch kompetenten 50 μL Aliquots wurden auf Eis 

aufgetaut, mit 10 bis 1000 ng DNA versetzt und anschließend 30 min auf Eis 

inkubiert. Nun erfolgte ein 2-minütiger Hitzeschock bei 37°C und danach eine 2-

minütige Inkubation auf Eis. Schließlich wurden die Zellen mit 1 mL SOC-

Medium versetzt und bei 37°C unter Schütteln inkubiert. Anschließend wurden 

die Zellen mit einer Tischzentrifuge mit 4000 x g für 5 min sedimentiert und das 

verbleibende Pellet auf Agarplatten mit dem entsprechenden Antibiotikum 

ausgestrichen. Die Inkubation der Platten erfolgte über Nacht bei 37°C.  

 

5.2.3.5 Transformation ultrakompetenter XL10-Gold Zellen (Stratagene) 

Ultrakompetente XL10-Gold-Zellen werden für schwierige Transformationen 

von großen Plasmiden oder Ligationen verwendet, sie besitzen aber auch die 

Fähigkeit linearisierte Fragemente in zirkuläre zu ligieren. Für die 

Transformation wurde ein Kulturröhrchen auf Eis vorgekühlt und SOC-Medium 

auf 42°C vorgewärmt. Die Zellen wurden auf Eis aufgetaut, in ein snap cap 

überführt, mit 4 μL β-Mercaptoethanol versetzt, leicht geschüttelt und 10 min 

auf Eis inkubiert, während alle 2 min leicht geschüttelt wurde. Nun wurden 0.1-

50 ng auf Eis gelagerte DNA oder 2 μL einer Ligation zu den Zellen gegeben, 
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leicht geschüttelt und 30 min auf Eis inkubiert. Für den Hitzeschock wurde das 

snap cap exakt 30 s in ein 42°C warmes Wasserbad gehalten und 

anschließend 2 min auf Eis inkubiert. Zuletzt wurden 0.9 mL 37°C warmes 

SOC-Medium zugegeben und eine Stunde bei 37°C bei 225 rpm geschüttelt. 

Die Zellen wurden 10 min bei 1000 x g zentrifugiert und das Pellet auf Agar-

Platten ausgestrichen. Die Inkubation erfolgte wiederum bei 37°C für 12 bis 16 

h.  

 

 

5.2.4 Transformation von Hefe 

 

Im Gegensatz zu E. coli werden die kompetenten Hefe-Zellen normalerweise 

nicht bei -80°C gelagert, sondern die Transformation sofort durchgeführt. Durch 

eine längerfristige Lagerung der kompetenten Hefen-Zellen sinkt die 

Transformations-effizienz erheblich bzw. bleibt komplett aus.  

 

5.2.4.1 Ein-Schritt Hefe Transformation 

Dieses one-step Protokoll ist ein schnelles Verfahren um Plasmid-DNA in Hefen 

zu transformieren. Dazu wurde 1 mL einer Hefekultur mit einer Zelldichte von 

mindestens 108 Zellen pro mL benötigt. Zuerst wurde salmon sperm DNA 

(Sigma, Nr. 31149), als carrier-DNA verwendet, für 10 min auf 95°C erhitzt und 

anschließend 5 min auf Eis inkubiert. Anschließend wurde 1 mL der Hefekultur 

bei 4000 x g zentrifugiert, in 100 μL one-step buffer (0.2 M LiAc, 40% PEG 

3350, 100 mM DTT) resuspendiert und gevortext. Nach Zugabe von 20 μg 

ssDNA und 100-500 ng der zu transformierenden DNA wurde die Mischung 

abermals gevortext und 30 min bei 45°C inkubiert. Nun wurde 1 mL YPD-

Medium zugegeben, gevortext und 10 s bei 13000 x g zentrifugiert. Der 

Überstand wurde verworfen, das Pellet in 1 mL YPD-Medium resuspendiert und 

100 μL davon wurden auf die entsprechenden Platten ausgestrichen. Die 

Inkubation erfolgte für zwei Tage bei 30°C. 
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5.2.4.2 Hoch Effizienz Hefe Transformation 

Zur Erhöhung der Transformationseffizienz ist ein modifiziertes Verfahren nötig. 

Dazu wurden 50 mL YPD-Medium mit der Menge einer Übernachtkultur 

angeimpft, so dass die Start OD600 bei 0.25 lag. Die Zellen wurden nun bis zu 

einer OD600 von 1 inkubiert, bei  2500 rpm 5 min zentrifugiert, der Überstand 

verworfen und das Pellet in 25 mL sterilem ddH2O resuspendiert. Nach einer 

erneuten Zentrifugation bei 2500 rpm für 5 min wurden die Zellen in 1 mL 100 

mM LiAc resuspendiert und in ein 1.5 mL Reaktionsgefäß überführt. 

Anschließend wurde mit einer Tischzentrifuge bei 13000 x g für 15 s 

zentrifugiert, der Überstand mit einer Pipette abgenommen und das Pellet in 

400 μL 100 mM LiAc gelöst. Die Suspension wurde gevortext und in 50 μL 

Proben aliquotiert. Nebenbei wurde ssDNA für 10 min auf 95°C erhitzt und 

anschließend auf Eis inkubiert. Die Aliquots wurden zentrifugiert, der Überstand 

abgenommen und zu den pelletierten Zellen wurde in folgender Reihenfolge 

zugegeben: 240 μL PEG-3350 (50% w/v), 36 μL 1 M LiAc, 25 μL ssDNA 

(2mg/mL), 50 μL ddH2O und zuletzt 0.1-10 μg Plasmid-DNA. Es ist zu 

beachten, dass PEG-3350 zuerst zugegeben wird, da dieses die Zellen vor 

dentrimentalen Effekten des hoch konzentrierten LiAc abschirmt. Der 

Transformations-Mix wurde nun ca. 1 min gevortext, bis sich das Pellet komplett 

gelöst hatte und anschließend bei 30°C 30 min inkubiert. Die Zellen wurden nun 

einem Hitzeschock über 42°C für 20 min ausgesetzt, dann bei 6000 x g für 15 s 

zentrifugiert, der Überstand abgenommen, in 1 mL ddH2O resuspendiert und 

jeweils 100 bzw. 300 μL auf den selektiven Platten ausplattiert.  

 

5.2.4.3 Transformation von K. lactis 

Für die Transformation von DNA in K. lactis GG799 kompetenten Zellen, 

wurden diese auf Eis aufgetaut und mit 620 μL NEB Yeast Transformation 

Reagent versetzt. Nach einer kurzen Durchmischung (nicht vortexen) wurde 1 

μg des mit SacII linearisierten pKLAC1-Vektors, in den zuvor das Gen kloniert 

wurde, zu den Zellen gegeben. Nach kurzem Schütteln wurde die Mischung 30 

min bei 30°C inkubiert und anschließend einem 1-stündigem Hitzeschock bei 

37°C ausgesetzt. Die Zellen wurden bei 7000 rpm für 2 min in einer 

Mikrozentrifuge pelletiert und der Überstand verworfen. Das Zellpellet wurde in 
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1 mL sterilem YPG-Medium resuspendiert, wiederum bei 7000 rpm für 2 min 

zentrifugiert und der Überstand verworfen. Nun wurde das Pellet in 1 mL YPG-

Medium resuspendiert und in einem 14 mL Kulturröhrchen bei 250 rpm bei 

30°C für 3 h inkubiert. Anschließend wurde die Mischung in ein steriles 1.5 mL 

Reaktionsgefäß transferiert, wiederum sedimentiert und das Zellpellet in 1 mL 

1x PBS-Puffer zum Waschen resuspendiert. 100 μL der Zellsuspension wurden 

mit 50 μL sterilem bidest. H2O versetzt und auf YCB-Agar (mit 5 mM Acetamid) 

ausgestrichen. Nach 3 bis 4 Tagen Inkubation bei 30°C bildeten sich Kolonien 

aus.  

 

 

5.2.5 Induktion der Proteinexpression von Fpg in E. coli 

 

Von einer Agarplatte wurde ein Klon entnommen und damit eine 5 mL 

Flüssigkultur mit dem entsprechenden Antibiotikum angeimpft. Die ÜNK wurde 

bis zum nächsten Morgen bei 37°C und 200 rpm auf dem Schüttelinkubator 

inkubiert. Das als Vollmedium verwendete TB- oder LB-Medium wurde im 

Verhältnis 1:200 mit einer ÜNK überimpft und weiterhin bei 37°C geschüttelt. 

Bei einer OD600 von 0.6 wurde mit 1.0 mM IPTG der Promotor induziert; die 

Proteinexpression fand bei 30°C für 4 h statt. Anschließend wurden die Zellen 

durch Zentrifugation im SLA-3000 Rotor (8 min, 8000 rpm) sedimentiert und 

mittels einer French-Press oder einem Durchflusshomogenisator (siehe Kapitel 

5.2.8 und 5.2.9) aufgeschlossen bzw. -20°C gelagert. Die Proteinexpression 

von Fpg wurde für alle C-terminalen Strep-tagII und MBP-tag Varianten nach 

diesem Schema durchgeführt. Für die Induktion der Expression der 

Formamidopyrimidin Glykosylase mit N-terminalem Strep-tagII wurde 0.2 nM 

Anhydrotetracyclin verwendet und wie bereits beschrieben exprimiert.  
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5.2.6 Induktion der Proteinexpression von Rad14 in E. coli 

 

Um Rad14 in E. coli zu exprimieren wurde von einer Agarplatte ein Klon 

entnommen und damit eine 5 mL Flüssigkultur mit dem entsprechenden 

Antibiotikum angeimpft. Die ÜNK wurde bis zum nächsten Morgen bei 37°C und 

200 rpm auf dem Schüttelinkubator inkubiert. Das LB-Medium wurde im 

Verhältnis 1/200 mit einer ÜNK überimpft und weiterhin bei 37°C geschüttelt. 

Bei einer OD600 von 1.0  wurde mit 1 mM IPTG der Promotor induziert; die 

Proteinexpression fand bei 25°C für 3 h statt. Anschließend wurden die Zellen 

durch Zentrifugation im SLA-3000 Rotor (8 min, 8000 rpm) sedimentiert und 

mittels French-Press (siehe Kapitel 5.2.8) aufgeschlossen oder bei -20°C 

gelagert. Die Expression war für alle Rad14-Varianten identisch.  

 

 

5.2.7 Hefe Induktion 

 

Da K. lactis einen Galactose induzierbaren LAC4-Promoter aufweist, wurde 

jeweils eine Kolonie in 1 mL YPG-Medium überführt und ü.N. bei 30°C und 250 

rpm inkubiert. Anschließend wurde eine größere Kultur im Verhältnis 1:100 

angeimpft und für zwei Tage in YPG-Medium bei 30°C inkubiert.  

 

 

5.2.8 Aufschluss mit der French-Press 

 

Sowohl Bakterien, als auch Hefen können mit der French-Press aufgeschlossen 

werden. Für Expressionsansätze bis zu 4 L wurden die pelletierten Zellen in 

dem jeweiligen Puffer und einer Tablette Protease Inhibitor Complete (Roche) 

resuspendiert und in den eisgekühlten Zylinder der French-Press gegeben, der 

maximal 30 mL fassen kann. Zuvor wurden alle Teile der French-Press die mit 
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der Zellsuspension in Berührung kommen auf Eis vorgekühlt. Der Stempel 

wurde langsam bei einem maximalen Druck von 1500 psi nach unten bewegt, 

wodurch die Zellsuspension auf einen Zapfen trifft und dort durch dort 

auftretende Scherkräfte zerplatzen. Durch ein Ventil wurden die 

aufgeschlossenen Zellen in ein auf Eis gelagertes Gefäß abgeführt. Dieser 

Vorgang wurde 4- bis 5-mal wiederholt. Der Zellaufschluss wurde bei 

18000 rpm für 30 min bei 4°C zentrifugiert. Aus dem Überstand konnte 

anschließend das gewünschte Protein isoliert werden. 

 

 

5.2.9 Aufschluss im Durchflusshomogenisator 

 

Der Durchflusshomogenisator wurde zum Aufschluss großer 

Expressionsansätze von 5 L bis 10 L verwendet (Bakterien und Hefe). Das 

Bakteriensediment der Proteinexpression wurde im jeweiligen Puffer mit einer 

Tablette Protease Inhibitor Complete (Roche) resuspendiert. Zum Kühlen des 

Systems wurde eiskalter Puffer durch den Homogenisator gepumpt. Der 

Homogenisator wurde aus der N2-Hausleitung gespeist und hatte einen 

Eingangsdruck von 200 psi, welcher sich in der Homogenisatorkammer 

während des Aufschlusses auf 10000-15000 psi erhöht. Die Zellsuspension 

wurde in die Vorlagenkammer gegeben und durch Betätigung des 

Durchgangsventils durch den Homogenisator gepumpt. Dieser Vorgang wurde 

2- bis 3-mal wiederholt. Der Zellaufschluss wurde bei 18000 rpm für 30 min bei 

4°C zentrifugiert und der Überstand für die weiteren Reinigungsschritte 

verwendet. 
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5.2.10 Alternative Hefe-Aufschluss-Methoden 

 

Eine andere Methode des Aufschlusses von Hefe stellt die Verwendung von 

Glasperlen dar. Sie ist ebenfalls zum Aufschluss von großen Mengen geeignet, 

aber es können auch kleine Zellvolumina schnell und effizient aufgeschlossen 

werden. In diesem Fall wurden die Zellen (bis zu 5 mL) 5 min bei 4000 rpm 

zentrifugiert, mit 1 mL kaltem, sterilem ddH2O gewaschen, in ein 1.5 mL 

Reaktionsgefäß überführt und 1 min bei 13000 x g zentrifugiert. Der Überstand 

wurde verworfen und das Pellet in 200 μL 80°C vorgewärmten SDS-

Auftragspuffer resuspendiert. Anschließend wurde 30 s gevortext und 100 μL in 

HCl gewaschene und gebackene Glasperlen (400-600 μm) zugegeben. Nun 

wurde 1 min gevortext, 2 min bei 95 °C inkubiert, wiederum 1 min gevortext und 

noch mal 2 min bei 95°C inkubiert. Danach wurden die Glasperlen 5 min bei 

13000 x g abzentrifugiert und 15 μL des Überstandes auf ein Gel aufgetragen.  

Eine weitere Methode stellt der Zellaufschluß mit der Kugelmühle dar. Die 

Mahlbehälter einer Kugelmühle führen in horizontaler Lage kreisbogenförmige 

Schwingungen aus. Durch die Trägheit der Kugeln schlagen diese mit hoher 

Energie auf das an den abgerundeten Stirnflächen befindliche Probengut auf, 

wodurch dieses zerkleinert wird. Aufgrund der Becherbewegung und des 

Bewegungsablaufes der Kugeln findet gleichzeitig eine intensive Mischung 

statt. Durch Verwendung mehrerer kleiner Kugeln kann der Grad der 

Durchmischung noch erhöht werden. Bei der Verwendung von vielen kleinen 

Kugeln (z.B. Glasperlen) können z.B. auch eukaryotische Zellen 

aufgeschlossen werden. Dabei sorgt die große reibende Schlagwirkung 

zwischen den Kugeln für effektive Zellaufschlüsse. 
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5.3 Molekularbiologische Methoden 

 

5.3.1 DNA – Isolierung 

5.3.1.1 Isolierung von genomischer DNA aus S. cerevisiae 

Die Isolierung genomischer DNA aus S. cerevisiae erfolgte mit dem DNeasy Kit 

von Qiagen. Die Hefezellen wurden über Nacht in YPD-Medium bei 30°C 

inkubiert und bei 7500 rpm für 10 min zentrifugiert.  Der Überstand wurde 

verworfen  und  das Pellet in 600 μL Sorbitol-Puffer resuspendiert. 

Anschließend wurden 200 U Lyticase zugegeben und 30 min bei 30°C inkubiert. 

Die Spheroplasten wurden 10 min bei  300 x g zentrifugiert und in 180 μL ATL 

Puffer aufgenommen. 20 μL Proteinase K wurden zugegeben und unter 

gelegentlichem Schütteln bis zur vollständigen Lyse bei 55°C für 3 h inkubiert. 

Die komplette Lyse ist an der heller werdenden Flüssigkeit zu erkennen. Nun 

wurde 15 s gevortext, 200 μL Puffer AL zugegeben, gevortext und 10 min bei 

70°C inkubiert. Danach wurden 200 μL EtOH zugegeben, durch Vortexen 

intensiv gemischt und auf eine DNeasy Mini Spin-Säule gegeben. Nach 

Zentrifugieren bei 6000 x g für 1 min wurde der Durchbruch verworfen, die 

Säule in einen neuen 2 mL Behälter überführt und mit 500 μL Puffer AW1 

gewaschen. Es erfolgte eine erneute Zentrifugation bei 6000 x g für 1 min, der 

Durchbruch wurde erneut verworfen, die Säule in einen neuen 2 mL Behälter 

überführt und überschüssiges EtOH mit 500 μL Puffer AW2 ausgewaschen. 

Anschließend wurde 3 min bei 13000 x g zentrifugiert, die Säule in ein 1.5 mL 

Reaktionsgefäß überführt, mit 200 μL Puffer AE eluiert, für 1 min bei 6000 x g 

zentrifugiert und der letzte Schritt wiederholt.  

 

5.3.1.2 Isolierung von genomischer DNA aus L. lactis 

Die genomische DNA aus Lactococcus lactis (Subspezies cremoris SK 11) 

konnte mit dem DNeasy Kit von Qiagen isoliert werden. Hierfür wurden die 

Zellen im M17-Medium über Nacht bei 30°C kultiviert und anschließend 4000 

rpm für fünf Minuten zentrifugiert. Der Überstand wurde verworfen und das 

Pellet in 180 L Puffer EL und 90 L Lysozym-Lösung wieder aufgenommen 
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und für 30 Minuten bei 37°C inkubiert. Anschließend erfolgte die Zugabe von 

200 L Puffer AL sowie 25 L Proteinase K. Die Probe wurde gevortext und für 

weitere 30 Minuten bei 70°C inkubiert. Anschließend wurden 200 L absoluter 

EtOH zugegeben, gevortext und die Lösung auf eine DNeasy Mini Spin-Säule 

gegeben. Es folgte eine Zentrifugation für zwei Minuten bei 8000 rpm, wobei 

der Durchbruch verworfen wurde. Die Säule wurde dann in ein neues 2 mL 

Reaktionsgefäß gegeben und mit 500 L Puffer AW1 gewaschen. Nach einem 

weiteren Zentrifugationschritt für eine Minute bei 8000 rpm wurde der 

Durchbruch abermals verworfen und die Säule erneut in ein neues 2 mL 

Reaktionsgefäß gegeben. Überschüssiges EtOH wurde durch Zugabe von 500 

L Puffer AW2 und anschließender Zentrifugation für drei Minuten bei 13000 

rpm entfernt. Der Durchbruch wurde wieder verworfen und die Säule in ein 

neues 1.5 mL Reaktionsgefäß gegeben. Durch Zugabe von 100 L Puffer AE 

auf die Säule mit anschließender Zentrifugation für eine Minute bei 8000 rpm 

erfolgte schließlich die Elution. Dieser Letzte Schritt wurde nochmals wiederholt 

und letztendlich die isolierte DNA-Konzentration gemessen. 

 

5.3.1.3 Midi-Plasmidpräparation von E. coli 

 

Tabelle 5.8: Puffer für Plasmidisolierung.  

  
Puffer I pH 8.0 

 

50 mM Tris-HCl 
10 mM EDTA 
100 mg/mL RNase A 

  
Puffer II  

 
200 mM Natriumhydroxid 
1 % (w/v) SDS 

  
Puffer III pH 5.5 3 M Kaliumacetat  

  
DNA-Waschpuffer pH 6.5 1.0 M NaCl 

50 mM MOPS 
15 % (v/v) Ethanol 

  
Elutionspuffer-Puffer pH 8.5 10 mM Tris 
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Die Herstellung großer Mengen an Plasmid-DNA erfolgte mit dem QIAquick 

Midiprep Kit von Qiagen. Dazu wurden 50 mL LB-Medium mit entsprechendem 

Antibiotikum mit 5 mL einer Übernachtkultur angeimpft und über Nacht 

inkubiert. Die Bakterien wurden bei 4000 x g für 15 min bei 4°C zentrifugiert, der 

Überstand verworfen und in 4 mL Puffer P1 resuspendiert. Das in dem Puffer 

P1 enthaltene EDTA komplexiert zweiwertige Kationen (Mg2+, Ca2+), die für die 

Stabilität der bakteriellen Zellwand wichtig sind und diese dadurch destabilisiert 

werden. Durch die ebenfalls enthaltene RNase wird ein Großteil der bakteriellen 

RNA degradiert. Nach maximal 15 min wurden 4 mL des Lysepuffer P2 

zugegeben, der aufgrund seiner stark basischen Eigenschaft chromosomale 

DNA, sowie Proteine denaturiert. Ebenfalls enthaltenes SDS löst als Detergenz 

die Phospholipide und Proteinkomponenten der Zellwände. Die Dauer der 

Inkubation ist für die Qualität der Plasmid-DNA wichtig, sie muss so gewählt 

werden, dass möglichst viel Plasmid-DNA, aber keine chromosomale DNA 

freigesetzt wird. Es wurde 4-mal invertiert, wobei eine klare Lösung entstand, 

welche exakt 4.5 min inkubiert wurde. Anschließend wurde die Lösung durch 

Zugabe von 4 mL eiskaltem Puffer P3 neutralisiert; nach 5-maligem Invertieren 

ist ein weißer Niederschlag zu erkennen, der 10 min auf Eis inkubiert wurde. 

Bei dem Niederschlag handelt es sich um einen schwerlöslichen Komplex aus 

dem Kaliumsalz des Dodecylsulfats mit chromosomaler DNA und den daran 

gebundenen Proteinen. Der Niederschlag entsteht erst nach Zugabe von P3, da 

das Kaliumsalz einen schwerlöslicheren Komplex bildet als das in P2 

vorhandene Natriumsalz. Anschließend wurde 45 min bei 4000 x g bei 4°C 

zentrifugiert, der Überstand der die Plasmid-DNA enthält abgenommen und 

noch mal für 10 min zentrifugiert. Nachdem eine Qiagen Tip 100-Säule mit 4 mL 

eiskaltem Puffer QBT äquilibriert worden war, wurde der Überstand auf die 

Säule gegeben und zweimal mit je 10 mL Puffer QC gewaschen. Schließlich 

wurde die Plasmid-DNA durch Zugabe von 5 mL Puffer QF eluiert, mit 3.5 mL 

iPrOH gefällt, 30 min bei 13000 x g zentrifugiert und mit 5 mL 70%igem EtOH 

gewaschen. Wiederum wurde für 10 min bei 13000 x g zentrifugiert, das DNA-

Pellet 1 h bei RT getrocknet und in 500 μL sterilem ddH2O gelöst. 
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5.3.1.4 Mini-Plasmidpräparation von Plasmid DNA mittels Peqlab-

Plasmid- Isolationskit 

Die während der Klonierung erzeugten Plasmidkonstrukte wurden zunächt aus 

den zur Amplifikation herangezogenen E. coli Zellen isoliert. Dazu wurden 5 mL 

LB-Medium in einem 13 mL Snap-Cap mit einem Klon angeimpft und über 

Nacht bei 37°C und 200 rpm auf dem Schüttler inkubiert. Am nächsten Morgen 

wurden die Bakterien zentrifugiert (4000 rpm, 10 min), das Medium verworfen 

und das entstandene Sediment in 250 μL Puffer I resuspendiert. Diese 250 μL 

wurden in ein 1.5 mL Eppendorf-Reaktionsgefäß überführt, 250 μL Puffer II 

hinzugegeben und dreimal invertiert. Diese Reaktion wurde 2 min inkubiert und 

mit 350 μL Puffer III, nachdem dreimal invertiert wurde, abgestoppt. Im 

Anschluss wurde das Reaktionsgefäß in einer Tischzentrifuge mit 10000 rpm 

für 10 min zentrifugiert. Der Überstand wurde in eine HiBind-Miniprep-

Zentrifugensäule überführt und 1 min mit 10000 rpm zentrifugiert. Die an die 

Säule gebundene DNA wurde zweimal mit 750 μL DNA-Waschpuffer 

überschichtet und anschließend mit 10000 rpm 30 s erneut zentrifugiert. Der 

Durchfluss wurde verworfen und die Säule erneut, zum vollständigen Entfernen 

des Puffers, 1 min mit 10000 rpm zentrifugiert. Die DNA auf der Säule wurde 

nun bei Raumtemperatur getrocknet und mit 30-40 μL Elutionspuffer 1 min bei 

10000 rpm in der Tischzentrifuge eluiert. Die so isolierte DNA wurde bei -20°C 

gelagert. 

 

5.3.1.5 Isolierung  von DNA aus Agarosegelen mit dem Qiagen Minelute 

Gel-Extraktions Kit 

 

Tabelle 5.9: Puffer für DNA Extraktion aus Agarosegelen.  

  
QG-Puffer 

 
PE-Puffer pH 6.5 

Zusammensetzung unbekannt 
 

1.0 M NaCl 
50 mM MOPS 
15 % (v/v) Ethanol 

  
EB-Puffer pH 8.5 10 mM Tris 
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Die zu isolierende DNA-Bande wurde zunächst mit einem Skalpell 

ausgeschnitten und anschließend nach dem Herstellerprotokoll 

weiterbehandelt. Dazu wurde die ausgeschnittene Bande in ein 1.5 mL 

Reaktionsgefäß überführt, gewogen und mit dem dreifachen des Gewichtes an 

QG-Puffer behandelt. Im Anschluss wurde das Agarosegelstück im 

Thermoblock bei 50°C für 10 min inkubiert, so dass es sich vollständig auflöst. 

Zur pH-Wert-Kontrolle ist dem QG-Puffer Phenolrot als pH-Indikator zugesetzt. 

Bei pH-Werten >7 konnte der pH mit 3 M Natriumacetat korrigiert werden. 

Isopropanol wurde im Verhältnis 1:1 zum Gelvolumen hinzugegeben und durch 

mehrmaliges invertieren gemischt. Die Probe wurde nun auf die Säule 

aufgetragen und 30 s bei 13000 rpm in der Tischzentrifuge zentrifugiert. Der 

Durchlauf wurde verworfen und die gebundene DNA 2-mal mit je 750 μL PE-

Puffer gewaschen. Die Säule wurde dazu jeweils 1 min bei 13000 rpm in der 

Tischzentrifuge zentrifugiert und der Durchfluss verworfen. Die Säule wurde 

nun wieder getrocknet und die gebundene DNA mit 10 - 15 μL EB-Puffer eluiert. 

 

 

5.3.1.6 Agarosegelelektrophorese 

 

Tabelle 5.10: Puffer für Agarosegelelektrophorese. 

  
TAE-Laufpuffer 

 
40 mM Tris-HOAc pH 7.5 
1 mM EDTA 

  
TAE-Gelpuffer 20 mM Tris-HOAc pH 7.5 

0.5 mM EDTA 
  

EtBr 1 mg/mL 
  

 

DNA-Fragmente können aufgrund ihrer Größe und Konformation durch 

Agarosegelelektrophorese getrennt werden. Es handelt sich hierbei um DNA-

Fragmente der Größe von 0.1 bis 25 kbp. Es liegt eine Spannung von ca. 110 V 

längs der Laufrichtung an. Die DNA Fragmente wandern durch ein 

Agarosepolymer zur Anode und werden dabei in ihrer Laufgeschwindigkeit 
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beeinflusst (Siebeffekt). Kleine, kompakte DNA-Moleküle wandern dabei 

schneller als große, liniearisierte DNA-Moleküle. Es wurden je nach zu 

erwartender Fragmentgröße 0.8-2.0%ige Agarosekonzentrationen verwendet. 

Dem flüssigen Agarosegel wurden 0.1 μL EtBr/1 mL Agarosegel hinzugesetzt. 

Der Fluoreszenzfarbstoff Ethidiumbromid ist in der Lage in doppelsträngige 

DNA zu interkalieren. Die Detektion erfolgt nach Anregung (λabs= 300 nm) bei 

einer Wellenlänge von λem= 595 nm. Die zur Ermittlung der Fragmentgröße 

verwendeten Standards sind in Kapitel 5.1.9 dargestellt. 

 

 

5.3.2 DNA – Reinigung 

 

5.3.2.1 QIAquick PCR Purification Kit 

Um die DNA nach einer PCR-Reaktion von überschüssigen Salzen, 

insbesondere MgCl2, dNTPs und Polymerasen zu reinigen wurde der QIAquick 

PCR Purification Kit von Qiagen verwendet. Dazu wurde der Ansatz mit dem 5-

fachen Volumen an PB Puffer versetzt, auf die QIAquick-Säule aufgetragen und 

mit einer Tischzentrifuge bei 13000 x g für 1 min zentrifugiert. Der Durchbruch 

wurde verworfen und die Säule mit 750 μL PE Puffer gewaschen, 1 min bei 

13000 x g abzentrifugiert, der Durchbruch verworfen und erneut zentrifugiert, 

um die letzten Reste des EtOH zu entfernen. Anschließend wurde die Säule in 

ein 1.5 mL Reaktionsgefäß überführt und die DNA mit 10 μL EB Puffer eluiert.  

 

5.3.2.2 Reinigung nach enzymatischem Restriktionsverdau 

Um dsDNA nach enzymatischen Reaktionen von Enzymen, Primern, 

Nukleotiden oder Salzen zu reinigen wurde der MinElute Reaction Cleanup Kit 

von Qiagen verwendet. Mit Hilfe dieses Kits können DNA-Fragmente der Größe 

von 70 bp bis 4 kb gereinigt werden. Zu einem Reaktionsvolumen von 20 μL 

wurden 300 μL ERC Puffer hinzugegeben, vermischt, auf eine Minelute Säule 

überführt und die DNA durch einen Zentrifugationsschritt bei 13000 x g für 1 

min an die Säule gebunden. Im Anschluß wurde die DNA mit 750 μL PE Puffer 
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gewaschen, 1 min zentrifugiert, der Durchbruch verworfen, und noch einmal für 

eine Minute zentrifugiert, um restliches EtOH zu entfernen. Die Säule wurde in 

ein 1.5 mL Reaktionsgefäß überführt und die DNA mit 10 μL EB Puffer oder 

ddH2O eluiert. Eine Elution mit H2O bietet den Vorteil, dass nachfolgende 

enzymatische Reaktionen durch das im EB Puffer vorhandene EDTA nicht 

gestört werden. 

 

5.3.2.3 Phenol - Extraktion 

Bei der Phenol-Extraktion wurden Proteine und DNA durch ihre 

unterschiedliche Löslichkeit in Phenol bzw. Wasser voneinander getrennt. 

Hierzu wurde zu dem Ansatz, welcher die trennenden Komponenten enthielt, 

die gleiche Volumenmenge an TE-gepuffertem Phenol zugegeben und gut 

gemischt. Durch Zentrifugation für 5 min bei 13000 rpm wurden die beiden 

Phasen getrennt und anschließend die untere organische Phase entfernt und 

verworfen. Auf die wässerige Phase wurde dieselbe Volumenmenge an 1:24 

Isoamlyalkohol/Chloroform gegeben, wiederum gut gemischt und wie oben 

beschrieben erneut zentrifugiert. Nach dem Entfernen der unteren organischen 

Phase wurde nochmals für 1 min bei 13000 rpm zentrifugiert um den Rest an 

organischer Phase abzunehmen. Anschließend wurde die DNA nach Kapitel 

5.3.2.4 gefällt.  

 

5.3.2.4 Ethanol- und Isopropanolfällung von DNA 

Um in einer wässerigen Phase DNA zu konzentrieren, wurde das 0.7 fache 

Volumen Isopropanol und das 0.1 fache Volumen 3 M Natriumacetat (pH 5.2) 

zugegeben. Alternativ wurde das 2.5 fache Volumen Ethanol und das 0.1 fache 

Volumen 3 M Natriumacetat (pH 5.2) zugegeben. Die Fällung erfolgte für 10 

min bei Raumtemperatur. Im Anschluss wurde jeweils für 30 min bei 13000 rpm 

und 4°C in der Tischzentrifuge zentrifugiert. Der Überstand wurde abgenommen 

und das Sediment zweimal mit eiskaltem 70%-igem Ethanol gewaschen. Das 

Pellett wurde luftgetrocknet und je nach gewünschter Konzentration in ddH2O 

oder TE gelöst.  



5 Materialien und Methoden 
 

83 
 

5.3.2.5 Entsalzen von kurzen Oligonukleotiden mittels Sep-Pak 

Das Entsalzen von Oligonukleotiden geschah mit C18 Sep-Pak Säulen von 

Waters (WAT051910). Zuerst musste die Säule konditioniert werden, indem 5-

10 mL Acetonitril langsam durch die Säule gedrückt wurde. Anschließend 

wurde die Säule mit 20 mL ddH2O gespült und durch Luftdurchdrücken 

getrocknet. Dann wurde langsam die DNA-Lösung auf die Säule gegeben (1 

mL/min, max. 1 mL) und das Salz durch 5 mL bidest. H2O gewaschen. Nun 

konnte die DNA mit einem Gemisch aus 80:20 Acetonitril/bidest. H2O (3-5 mL) 

eluiert werden.  

 

5.3.2.6 Reinigung von Oligonukleotiden mittels HPLC 

Die Aufreinigung gekaufter oder selbst synthetisierter Oligonukleotide erfolgte 

mit  0.1 M TEAA in Wasser pH 7.0 (Puffer A), TEAA 0.1 M pH 7.0 in 

Wasser/Acetonitril 20:80 (Puffer B) und einem Gradienten von 5 – 22 % Puffer 

B in 50 min mit einer Flussrate von 5 mL/min durch eine Machery – Nagel 

Nucleodur 100-5 C18. Um die analytische Reinheit der Fraktionen 

sicherzustellen, wurden diese per HPLC mit demselben Puffersystem und 

Gradienten auf einer Macherey – Nagel Nucleodur 120-3 C18 kontrolliert und 

durch MALDI - TOF und ESI - MS analysiert. 

 

5.3.2.7 Bestimmung der DNA Konzentration 

Für die Konzentrationsbestimmung von Nukleinsäuren wurde das NanoDrop 

Spectrophotometer ND-1000 (Peqlab), sowie das BioPhotometer (Eppendorf) 

verwendet. Die Quantifizierbarkeit von Nukleinsäuren beruht auf folgender 

Beziehung: 

mL

g
ssDNA

mL

g
dsDNA

mL

g
A


4033501 260   in H2O 

 

Der Reinheitsgrad der DNA kann über das 260/280nm Verhältnis bestimmt 

werden. Liegen die Werte im Bereich von 1.8 und 2.0 liegen keine bis wenige 
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Verunreinigungen vor. Werte oberhalb des Bereiches deuten auf 

RNA-Verunreinigungen, Werte unterhalb dieses Bereiches, auf Proteine oder 

Aromaten (Phenol) hin. Für die Messung wurden 2 μl der unverdünnten Probe 

auf die Messplatte des Spektrometers pipettiert.  

 

 

5.3.3 Enzymatische Modifikationen von Nukleinsäuren 

 

5.3.3.1 Restriktionsverdau von DNA 

Die Restriktion von Plasmid-DNA bzw. DNA-Fragmenten wurde mit dem 

entsprechenden Restriktionsenzym und dem vom Hersteller empfohlenen 

Puffer und bei dem enzymspezifischen Temperaturoptimum durchgeführt. Das 

Restriktionsenzym wurde mit 5-10 U pro μg DNA eingesetzt. In nachfolgender 

Tabelle ist ein Beispielansatz für einen Restriktionsverdau dargestellt.  

 

Tabelle 5.11: Beispielansatz für einen Restriktionsverdau.  

 
Restriktionsenzym 1 (10 U/μL) 

 
1 μl  

Restriktionsenzym 2 (10 U/μL, nur bei Doppelrestriktion) 1 μl  
DNA (10 ng bis 1μg) x μl 
10x Puffer 2 μl  
evtl. BSA, von Enzym abhängig (1 mg/mL) 2 μl 
HPLC-H2O y μl  
Gesamt 

 
20 μl 

 

Die Inkubationszeit betrug normalerweise 1 h. Bei gleichzeitiger 

Doppelrestriktion musste darauf geachtet werden, dass der verwendete Puffer 

für beide Enzyme eine maximale Aktivität zur Folge hatte, was aus den 

Herstellerangaben hervorging. Die Kontrolle der Restriktion erfolgte mittels 

Agarosegelelektrophorese. 
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5.3.3.2 Klenow – Fill – In Reaktion 

Um sticky ends mit dNTP aufzufüllen, wurde das Klenow-Enzym verwendet. Es 

handelt sich hierbei um das große Fragment der DNA Polymerase I, welches 

ein proteolytisches Produkt der Pol I ist, das die Polymeraseaktivität und 3’5’-

Exonukleaseaktivität noch besitzt, aber die 5’3’-Exonukleaseaktivität verloren 

hat. Für einen Ansatz wurde die DNA mit 1 μL Klenow-Fragment und je 10 mM 

dNTP in einem geeigneten Reaktionspuffer versetzt und 30 min bei 37°C 

inkubiert. Anschließend kann durch eine 20 minütige Inkubation bei 65°C das 

Enzym inaktiviert werden.  

 

5.3.3.3 Dephosphorylierung von DNA 

Selbstligation des linearisierten Plasmids wurde durch Dephosphorylierung der 

5’-Enden unterdrückt. Dazu wurden 10 U Calf Intestinal Alkaline Phosphatase 

(CIAP) oder Antarctic Phosphatase nach der Restriktion in die gereinigte 

Reaktionslösung gegeben und 1 h bei 37°C inkubiert. Da CIAP nicht durch 

Hitze inaktiviert werden kann, wurde die Reaktion durch Auftragen auf ein 

Agarosegel oder durch ein MinElute Reaction Cleanup Kit gereinigt. Die 

Verwendung der Antarctic Phosphatase bietet den Vorteil, dass diese bei 65°C 

in 5 min inaktiviert werden kann.  

 

5.3.3.4 Phosphorylierung von DNA 

Um DNA-Fragmente miteinander ligieren zu können, müssen diese an ihrem 5’-

Ende eine Phosphatgruppe besitzen. Die Phosphorylierung des 5’-Endes wurde 

durch die T4-Polynukleotid Kinase katalysiert. Diese transferiert die 

Phosphatgruppe der γ-Position von ATP an das 5’-Hydroxylende von ds- und 

ssDNA. Hierzu wurden 300 pmol DNA mit 10 U T4-Polynukleotid Kinase in 20 

μL Reaktionsvolumen  und 1 mM ATP bei 37°C für 4 h inkubiert und bei 65°C 

für 20 min Hitze inaktiviert.  
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5.3.3.5 Ligation von Plasmid DNA 

Für Ligationsreaktionen wurde die T4 Ligase (low oder high concentrated) von 

NEB eingesetzt. Die Verwendung der richtigen Konzentration der Ligase ist ein 

wichtiger Faktor bei einer erfolgreichen Ligation. Eine Ligation wurde in 20 μL 

Endvolumen in Ligasepuffer durchgeführt. Normalerweise betrug die Dauer der 

Ligation 16 h mit 1 U Ligase bei 16°C, im Falle der high concentrated T4 

Ligase, verkürzte sich die Reaktionszeit auf 10 min. Noch wichtiger ist die 

Konzentration der DNA-Fragmente. Diese wurden in einer Konzentration 

eingesetzt, die von der Größe der Fragmente und der Art der Ligation abhängig 

ist. Für blunt-end Ligationen betrug das Verhältnis von Insert zu Vektor 5:1 und 

für sticky ends Ligationen 3:1. Ein Ansatz enthielt ca. 100 bis 1000 ng DNA und 

1 U Ligase. Die ligierte DNA wurde im Anschluss direkt in die Bakterien 

transformiert.  

 

 

5.3.4 PCR – Polymerase Ketten Reaktion 

 

Die Polymerase Kettenreaktion (Polymerase chain reaction, PCR) ermöglicht 

die gezielte Amplifikation von DNA-Sequenzen. Das Prinzip beruht auf einer 

enzymatischen Duplikation der DNA-Sequenz unter Verwendung von zwei 

Primern, die komplementär zu den Enden der Templat-DNA sind. Nach einer 

Dentaturierung der dsDNA bei 95°C entsteht ssDNA. Die Temperatur wird 

gesenkt, so dass sich die Primer, die in höheren Konzentrationen vorliegen, an 

die DNA-Matrix anlagern können (Annealing). Eine thermophile Polymerase 

kann an der 3’-OH-Gruppe des hybridisierten Primers binden und eine vom 5’- 

zum 3’-Ende komplementären Sequenz der Target-DNA synthetisieren 

(Extension). Die Primer müssen so orientiert sein, dass die Synthese der DNA-

Moleküle aufeinander zu läuft. Die 25-100 fache Wiederholung dieses Zykluses 

ermöglicht eine exponentionelle Amplifikation des DNA-Abschnitts. Die 

Temperatur des Hybridisierungsschritts kann mit jedem Zyklus 0.2 bis 0.5°C 

abgesenkt werden (Toch Down PCR), was dazu führt, dass zunächst eine 

spezifische Bindung des Primers an sein Templat erfolgt. Wenn genug Templat 
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vorhanden ist, wird dadurch die Hybridisierungseffektivität erhöht. Die 

Annealingtemperatur der Primer lässt sich empirisch bestimmen (Tabelle 1 

siehe Anhang). Dabei wird berücksichtigt, dass zwischen Adenin und Thymin 

zwei Wasserstoffbrücken und zwischen Guanin und Cytosin drei 

Wasserstoffbrücken ausgebildet werden. Für die Ermittlung der 

Annealingtemperatur wird die Gesamtzahl der Nukleotide, sowie der Anteil an 

Guaninen und Cytosinen in einem Primer bestimmt. Die überhängenden Anteile 

werden dabei nicht berücksichtigt. 

Die Taq-Polymerase wurde für die Analyse der Bakterien- oder Plasmid-PCR 

verwendet, während AccuPrimePfx und PfuUltra für die fehlerfreie Synthese der 

DNA-Sequenz verwendet wurden. Bei der Wahl des Puffers, der 

Zusammensetzung der Mischung und der Extensionstemperatur wurde auf die 

spezifischen Eigenschaften der jeweiligen Polymerase eingegangen. Die PCR 

wurde standardmäßig mit vier verschiedenen DNA Templatkonzentrationen 

durchgeführt um den Erhalt des PCR Produktes sicherzustellen. 

 

Tabelle 5.12: Beispiel eines Mastermix-Ansatzes. 

 
Master Mix für 4 Ansätze: 

 

Puffer (10x) 10 μL 
dNTPs (10 mM) 4 μL 
Primer sense (10 μM) 4 μL 
Primer antisense (10 μM) 4 μL 
AccuPrime Pfx(15 U/μL) 2 μL 
Gesamt 
 

24 μL 

 

Bei einem PCR-Ansatz wurden vier verschiedene DNA-Templat 

Konzentrationen von 1 ng bis 100 ng verwendet (siehe Tabelle 5.12 und 

Tabelle 5.13).  
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Tabelle 5.13: Beispiel eines PCR-Ansatzes.  

 
Master Mix 

 
6 μL 

DNA-Templat x μL 
HPLC-H2O y μL 
Gesamt 
 

20 μL 

 

In nachfolgender Tabelle ist eine Touch Down-PCR beschrieben, welche zu 

höherer Spezifität und höheren Ausbeuten führt (Tabelle 5.14).  

 

Tabelle 5.14: Stufen der PCR. 

Stufe Zyklen Segment Temperatur Dauer 

1 1  95°C 2:00 min 
2 10 Denaturierung 95°C 0:10 min 

  Annealing Tm 0:30 min 
  Extension 68°C 1:00 min/1 

kbp 
  Slope -0.2°C/Zyklus  

3 25-30 Denaturierung 95°C 0:10 min 
  Annealing Tm-2°C 0:30 min 
  Extension 68°C 1:00 min/1 kb 

4 1  68°C 5:00 min 
5 1 Hold 4°C  

 

Die Dauer der Primer-Verlängerung variiert je nach Länge des zu 

amplifizierenden DNA–Stücks. Für 1000 bp wurden 60 s veranschlagt. Es 

wurden 25-30 Wiederholungen des Zyklus 3 durchgeführt. Anschließend 

erfolgte eine 5-minütige Inkubation bei 68°C, um nicht komplettierte 

Doppelstränge fertig zu synthetisieren. 
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5.3.5 Bakterien PCR 

 

Nach Transformation der rekombinanten DNA in einen E. coli Stamm wurden 

die erhaltenen Klone geprüft, ob sie das gewünschte Insert enthalten. Dies 

erfolgte mit den Insert spezifischen Primern, mit denen das Insert durch PCR 

amplifiziert wurde. Dazu wurden Klone von einer Platte gepickt, in 15 μL ddH2O 

aufgenommen und für 5 min bei 95°C aufgeschlossen. Nach Zugabe von 7 μL 

des folgenden Ansatzes wurde eine PCR durchgeführt. 

 

Tabelle 5.15: Beispiel eines Bakterien-PCR-Ansatzes.  

 
Master Mix für 10 Ansätze:

 

Puffer (10x) 20 μL 
dNTPs (10 mM) 5 μL 
Primer sense (10 μM) 5 μL 
Primer antisense (10 μM) 5 μL 
Taq (15 U/μL) 2 μL 
ddH2O 33 μL 
Gesamt 
 

70 μL 

 

In nachfolgender Tabelle ist das verwendete Programm der PCR dargestellt.  

Tabelle 5.16: Stufen der Bakterien PCR. 

Stufe Zyklen Segment Temperatur Dauer 

1 1  95°C 2:00 min 
2 25 Denaturierung 95°C 0:10 min 

  Annealing Tm 0:30 min 
  Extension 72°C 1:00 min/ 

1 kbp 
  Slope -0.2°C/Zyklus  

3 25-30 Denaturierung 95°C 0:10 min 
  Annealing Tm-2°C 0:30 min 
  Extension 72°C 1:00 min/ 

1 kb 
4 1  72°C 5:00 min 
5 1 Hold 4°C  
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5.3.6 Ortsspezifische Mutagenese 

 

Durch die ortsspezifische Mutagenese können bis zu drei Basen einer dsDNA 

beliebig ausgetauscht werden. Dieser Methode bedient man sich, um gerichtet 

Aminosäuren auszutauschen, Stoppcodons zu entfernen bzw. auszubilden oder 

eine spontane Mutation wieder rückgängig zu machen. Dazu sind mehrere 

Schritte notwendig: 

(1) PCR 

Für die mutagene PCR dient ein Plasmid mit dem Zielgen als Templat. 

Die Primer sollten eine Länge von 25 bis 45 Basen haben, wobei die 

gewünschte Punktmutation bzw. das degenerierte Codon möglichst in 

der Mitte der Primer lokalisiert sein sollte. Folgende Bedingungen 

wurden für die PCR gewählt:                                                    . 

 

 
Master Mix für 3 Ansätze: 

 

Puffer (10x) 7.5 μL 
dNTPs (10 mM)   2 μL 
Primer sense (10 μM)   1 μL 
Primer antisense (10 μM)   1 μL 
Pfu Turbo (2.5 U/μL)     0.5 μL 
Gesamt 
 

12 μL 

 

Für die Ansätze wurden 1 μL, 1.5 μL und 2 μL Plasmid-DNA eingesetzt: 

 
Master Mix 

 
4 μL 

DNA-Templat x μL 
HPLC-H2O y μL 
Gesamt 
 

25 μL 

 

 Im Folgenden ist das verwendete Programm aufgeführt.  
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Tabelle 5.17: Stufen der mutagenen PCR. 

Stufe Zyklen Segment Temperatur Dauer 

1 1  95°C 2 min 
2 30 Denaturierung 95°C 0:30 min 

  Annealing 58°C 0:30 min 
  Extension 72°C 1:00 min/1 kbp 

3  Extension 72°C 10 min 
4 1 Hold 4°C  

 

 

(2) DpnI Restriktion 

Nach der PCR wird das Plasmid-Templat, welches die ursprüngliche 

genetische Information trägt, enzymatisch verdaut. Da die in E. coli 

amplifizierte DNA (parentale DNA) in fast allen Fällen dam-methyliert 

vorliegt kann diese durch die DpnI Endonuklease verdaut werden 

(Erkennungssequenz: 5’-Gm6ATC-3’). 

 

(3) Transformation 

Von dem Reaktionsansatz wurden 2 µL in XL10-Gold ultrakompetente 

Zellen transformiert, die in der Lage sind lineare ssDNA in zirkuläre 

dsDNA umzuwandeln. Aus den Kolonien wurden Übernachtkulturen 

angeimpft, die DNA isoliert und sequenziert.  

 

 

5.3.7 Gateway® - Technologie 

 

Die Gateway®-Technologie erlaubt einen schnellen und effizienten Transfer von 

DNA-Sequenzen in unterschiedliche Vektorsysteme zur Funktionsanalyse und 

Proteinexpression. Die Methode beruht auf dem Prinzip der Amplifikation des 

Bakteriophagen Lambda (λ-Phagen) in E. coli. Die Rekombination des λ-

Phagen setzt sich aus dem lysogenen und dem lytischen Zyklus zusammen. 

Der lysogene Zyklus wird durch das Phagenprotein Integrase (Int) und dem E. 
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coli Integration Host Factor (IHF) katalysiert. Die Integration findet zwischen 

spezifischen Erkennungssequenzen, attP auf der Phagen-DNA und attB auf 

dem E. coli Genom, statt. Nach der Integration flankieren attL und attR 

Attachment-Sites die Phagen-DNA. Im lytischen Zyklus wird mittels der λ-

Phagen Enzyme Int, Excisionase (Xis) und dem E. coli IHF die Umkehrung der 

Attachment-Sites von attL und attR in attB und attP katalysiert. Bei der 

Verwendung von Primern, die bereits die attB-sites enthalten, kann das spätere 

PCR-Produkt in einer BP-Reaktion (lysogener Zyklus) in einen Entry-Vektor 

bzw. im nachfolgenden Schritt, der LR-Reaktion (lytischer Zyklus) in einen 

Expressionsvektor kloniert werden. Die kommerziell erhältlichen Enzym-

Mischungen für BP- sowie LR-Reaktion erlauben Restriktion, Exzision und 

Ligation in einem Schritt. Zudem ermöglicht der Entry-Klon (BP-Reaktion) eine 

einfache Sequenzierung und den schnellen Wechsel zwischen prokaryotischen 

und eukaryotischen Expressionssystemen ohne weitere Notwendigkeit der 

Sequenzierung. 

 

5.3.7.1 BP-Reaktion 

Das attB-flankierte PCR-Produkt oder ein linearisierter attB-Expressionsklon 

wird durch die BP-Reaktion in einen Donor-Vektor (pDONR201, pDONR207) 

integriert. Während der erfolgreichen Rekombination wird das ccdB Gen (attP-

sites), welches für einen DNA-Gyrase-Inhibitor kodiert, durch das PCR-Produkt 

(attB) ersetzt. Ist dies nicht der Fall, wird nach der erfolgten Transformation das 

ccdB in E. coli translatiert, was zur Inhibierung des Zellwachstums führt. Die 

Enzyme Int und IHF nutzen die Attachment-Sites um das attB-flankierte PCR-

Produkt mit dem attP-flankierten ccdB Gen auszutauschen. Dabei wird ein Teil 

der Erkennungssequenzen mit dem ccdB ausgeschnitten, der entstandene 

Entryklon beinhaltet das durch attL-sites flankierte PCR-Produkt. Das ccdB Gen 

mit attR-sites entsteht als Nebenprodukt (Abbildung 5.1). 
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5.3.8.1 Generierung des Donor - Vektors 

Das mit den kombinatorischen Seiten flankierte PCR-Produkt wurde in den 

Entry- Vektor pENTRY-IBA10 transferiert. Dabei bleibt zu beachten, dass in der 

Gensequenz sowohl das Startcodon, als auch das Stoppcodon weggelassen 

wurde, da diese durch die kombinatorischen Seiten geliefert werden. Um das 

Risiko einer Mutation zu minimieren, wurde eine proof-reading high fidelity 

Polymerase für die PCR verwendet. Anschließend wurde das PCR-Produkt 

über die Agarose-Gelelektrophorese (Kapitel 5.3.1.5 und 5.3.1.6) aufgereinigt 

und auf eine Konzentration von 4 bis 16 nM verdünnt. Das gereinigte PCR-

Produkt (14 μL) wurde mit dem Entry-Vektor pENTRY-IBA10 (10 μL) gemischt 

und 1 μL der StarSolution E zugegeben. Nach vorsichtigem Durchmischen 

wurde der Reaktionsansatz 1 h bei 22°C inkubiert. 10 μL dieses Ansatzes 

wurden zu kompetenten E. coli TOP10 gegeben und wie in Kapitel 5.2.3.4 

beschrieben weiterbehandelt. Die so erhaltenen Plasmide wurden nun 

sequenziert und können für die Generierung eines Destinations-Vektors 

verwendet werden.  

 

5.3.8.2 Generierung des Destinations - Vektors 

Um das Gen in einen Destinationsvektor zu transferieren, wurden 12 μL des 

Donor-Vektors (2 ng/μL) mit 10 μL Akzeptor-Vektor und jeweils 1 μL der 

StarSolutions A1, A2 und A3 vorsichtig vermischt und 1 h bei 30°C inkubiert. 

Anschließend wurde der Reaktionsansatz, wie im vorhergehenden Kapitel 

beschrieben, in E. coli transformiert. Der so gewonnene Destinations-Vektor 

wurde durch Restriktionsverdau und Sequenzierung verifiziert und kann für die 

Transformation in einen Expressionsstamm weiterverwendet werden.  

 

 

5.3.9 Eukaryotische Proteinexpression mit K. lactis  

 

Das K. lactis Proteinexpressions-Kit bietet eine einfache Methode für die 

Klonierung und Expression eines Gens in Kluyveromyces lactis. Proteine 
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können hierbei zum einen intrazellulär exprimiert werden, oder andererseits in 

das Medium sekretiert werden. Die Expression eines Gens geschieht mit Hilfe 

des Vektors pKLAC1, welcher einen α-mating factor für die Ausschleusung des 

Proteins trägt und einen LAC4 Promoter aufweist, der für die Expression des 

Proteins in Anwesenheit von Galactose verantwortlich ist. Nachdem das Gen in 

den Vektor kloniert wurde, musste der Vektor mit SacII geschnitten werden, um 

eine lineare Expressionskassette zu erhalten. Diese konnte durch homologe 

Rekombination in das K. lactis Genom an der Stelle des LAC4-Promoters 

integriert werden. Da die Kassette stabil in das Genom integriert wird, kann die 

Expression in Vollmedium stattfinden. Um eine Selektion der das Plasmid 

tragenden Kolonien zu erhalten, trägt der Vektor ein Acetamidase Gen, das die 

Zellen befähigt auf Stickstoff-freiem Minimalmedium Acetamid zu Ammoniak zu 

spalten und dieses als Stickstoffquelle zu verwenden.  

 

 

5.4 Proteinchemische Methoden 

 

5.4.1 SDS – Polyacrylamidgelelektrophorese 

 

Proteingemische wurden durch denaturierende SDS-Polyacrylamid-

Gelektrophorese aufgetrennt (Laemmli, 1970). Dazu wurde ein 

diskontinuierliches System, bestehend aus Trenn- und Sammelgel verwendet. 

Zunächst wurde das Trenngel in die Kammern gegossen und sofort mit 

Isopropanol überschichtet um eine gerade Kante zu erhalten. Nachdem das 

Trenngel polymerisiert war, wurde das Isopropanol entfernt und das Sammelgel 

mit den Taschenformern auf das Trenngel gegeben. Die fertigen Gele wurden 

anschließend bei 4°C in feuchten Tüchern gelagert oder, zur umgehenden 

Verwendung, in die Elektrophoresekammern eingesetzt und die Apparatur mit 

1x SDS-Laufpuffer gefüllt. Die Proteinproben wurden mit SDS-Auftragspuffer 

versetzt und 5 min bei 95°C gekocht. Dabei werden Tertiär- und 

Sekundärstrukturen durch Aufspaltung der Wasserstoffbrücken und durch 
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Streckung der Moleküle gelöst. Disulfidbrücken zwischen Cysteinen wurden 

durch die reduzierende Wirkung von β-Mercaptoethanol aufgespalten. Pro 1 g 

Protein binden ca. 1.4 g des anionischen Tensides SDS, so dass die Proteine 

eine konstante Eigenladung aufweisen. Maximal 15 μL der behandelten Probe 

wurden pro Tasche auf das Gel geladen. Zusätzlich wurden 10 μL des in 

Kapitel 5.1.9 aufgeführten Proteinstandards aufgetragen. Die Spannung betrug 

120 V (konstant). Das Gel wurde anschliessend mit Coomassie gefärbt und 

überschüssiger Farbstoff durch Waschen in Entfärber entfernt. 

 

Tabelle 5.20: Puffer für die SDS-PAGE. 

  
5x SDS-Auftragspuffer pH 6.8 62.5 mM Tris 

8 % (w/v) Sodiumdodecylsulfat (SDS) 
20 % (w/v) Glycerin 
10 % (w/v) ß-Mercaptoethanol 
0.02 % Bromphenolblau 
0.02 % Xylencyanol 

  
Rotiphorese 30 30 % (w/v) Acrylamid 

0.8 % (w/v) Bisacrylamid 

  
Trenngelpuffer pH 8.8 1.5 M Tris 

  
Sammelgelpuffer pH 6.8 0.5 mM Tris 

  
10x SDS Laufpuffer 

 
250 mM Tris 
1.92 M Glycin 
1 % (w/v) SDS 

  
APS-Lösung 10 % (w/v) Ammoniumperoxodisulfat 

  
SDS- Lösung 10 % (w/v) SDS 

  
Färbelösung  0.25% (v/v) Coomassie Brilliant Blue R250 

9.20 % (v/v) Essigsäure 
45.40% (v/v) Ethanol 

  
Entfärbelösung:  20 % (v/v) Ethanol 

10 % (v/v) Essigsäure 
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Tabelle 5.21: Zusammensetzung der Trenn- und Sammelgele. 

Trenngel Sammelgel 
Gelkonzentration 10% 12% 15% 5% 

Aqua dest. (mL) 7.9 6.6 4.6 5.5 
30% Rotiphorese (mL) 6.7 8 10     1.3 
Trenn/Sammelgelpuffer 
(mL) 

5 5 5 1 

10%ige SDS-Lösung (μL) 200 200 200 80 
10%ige APS-Lösung (μL) 200 200 200 80 
TEMED (μL) 20 20 20 8 

 

 

5.4.2 Western – Blot – Analyse 

 

Tabelle 5.22: Puffer für Western – Blot. 

  
Kathodenpuffer 25 mM Tris 

40 mM ε-Aminocapronsäure 
0.1 % (w/v) SDS 
20 % (v/v) Methanol 

  
Anodenpuffer I 300 mM Tris 

20 % (v/v) Methanol 
  

Anodenpuffer II 25 mM Tris 
20 % (v/v) Methanol 

  
Ponceau S Lösung 0.02 %  (w/v) Ponceau S 

2 % (v/v) Trichloressigsäure 
 

 

Die durch die SDS-Gelelektrophorese aufgetrennten Proteine wurden über ein 

elektrisches Feld im Semi-Dry-Verfahren (Khyse-Anderson, 1984) auf eine 

Membran (Nitrozellulose) übertragen und für die nachfolgende Immundetektion 

fixiert. Die Methode des Western-Blots ist eine der am häufigsten verwendeten 

Methode zur Identifikation und Detektion von Proteinen.  
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Dazu wurden sieben Whatman-Papiere (0.3 mm) und eine 

Nitrozellulosemembran auf die Größe des Trenngels zugeschnitten. Drei 

Whatman-Papiere wurden im Kathodenpuffer und jeweils zwei in Anodenpuffer 

I und Anodenpuffer II getränkt. Die Nitrozellulosemembran wurde im 

Anodenpuffer II befeuchtet. Nach der Entfernung des Sammelgels wurde das 

Trenngel mit destilliertem Wasser abgespült und dann zwischen Membran und 

den Whatman-Papieren (mit Anodenpuffer II getränkt) positioniert. Die 

Whatman-Papiere wurden zuvor durch Abstreifen an der Gefäßkante von 

überschüssigem Puffer befreit.  

Der Proteintransfer erfolgte bei einer der Gelgröße angepassten Stromstärke 

von 2.5 mA/cm2 Gelfläche. Die Blotdauer betrug 1 h, wobei darauf zu achten 

war, dass die Spannung während des Transfers nicht über 25 V steigt, da es 

sonst zu einer Wärmeentwicklung und damit zu einer Schädigung des Proteins 

kommt. Um den Transfer von Proteinen von einem Gel auf eine 

Nitrozellulosemembran zu kontrollieren, wurde eine Ponceau S Färbung 

durchgeführt. Ponceau S ist ein roter Farbstoff, welcher die Proteine reversibel 

anfärbt. 

 

 

5.4.3 Immunchemische Färbung für Proteine 

 

Das auf der Membran immobilisierte Protein wird mittels einer indirekten 

Nachweismethode visualisiert, bei der ein spezifischer Antikörper an das 

Protein bindet. Dieser Antikörper fungiert als Antigen für einen 

Sekundärantikörper, der mit alkalischer Phosphatase markiert ist. Durch eine 

enzymatische Umsetzung mit BCIP/NBT wird diese Markierung sichtbar 

gemacht. Der Vorteil dieser indirekten Nachweismethode ist eine Steigerung 

der Intensität um das 50-100 fache. Neben dieser Methode gibt es auch HRP 

(horseradish peroxidase) markierte primäre oder sekundäre Antikörper, welche 

durch Chemilumineszenz mit Luminol sichtbar gemacht werden können.  
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Tabelle 5.23: Puffer für Immunchemische Färbung. 

 
TBS-Puffer 

 
50 mM Tris-HCl pH 7.5 
150 mM NaCl 

  
TBST-Puffer 1x TBS 

0.1 % (v/v) Tween 20 
  

TBST-Blotto 1x TBST 
5.0 % (w/v) Magermilchpulver 

  
PBS-Puffer 140 mM NaCl 

10 mM KCl 
6.4 mM Na2HPO4*2 H2O 
2 mM KH2PO4 

  
PBST-Puffer 1x PBS 

0.05% (v/v) Tween 20 
  

PBS-Blotto 1x PBS  
3.0 % (w/v) BSA 

  
AP-Puffer 100 mM Tris pH 9.5 

100 mM NaCl 
5 mM MgCl2 

  
Stop-Puffer 200 mM  pH 8.0 

5 mM EDTA 
  

NBT-Lösung 5.0 % (w/v) NBT 
70.0 % (v/v) DMF 

  
BCIP-Lösung 5.0 % (w/v) BCIP 

100 % (v/v) DMF 
  

 

Zunächst wurde die Membran dreimal 5 min mit 1x TBST gewaschen. 

Danach erfolgte ein einstündiges Blockieren mit TBST-Blotto, um freie Stellen 

auf der Membran abzusättigen und unspezifische Bindungen zu vermeiden. 

Anschließend wurde der Primärantikörper in einer Konzentration von 1:800 in 

5% Magermilchpulver in 1x TBST für 2 h zugegeben. Danach wurde für 5, 10, 

und 15 min mit 1x TBST gewaschen und der Sekundärantikörper in einer 
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Konzentration von 1:5000 für 1 h zugegeben. Anschließend wurde die 

Membran für 5, 10 und 30 min mit 1x TBST gewaschen und 10 min in AP-Puffer 

geschwenkt. Schließlich wurde in 25 mL AP-Puffer, 75 μL BCIP-Lösung und 

125 μL NBT-Lösung inkubiert, bis die Banden sichtbar wurden. Anschließend 

wurde die enzymatische Reaktion mit dem Stop-Puffer beendet und der Blot  

mit Wasser gewaschen und an Luft getrocknet.  

 

5.4.3.1 Immunchemische Färbung von Fpg 

Um sicher zustellen, dass es sich bei der Bande bei 30 kDa um das Fpg-Protein 

handelt, wurde ein Western-blot mit einem Strep-tagII spezifischem Antikörper 

verwendet. Dazu wurde ein SDS-Gel mit dem aufgereinigten Fpg angefertigt 

und diese wie in Kapitel 5.4.2 dargestellt, auf eine Nitrozellulose-Membran 

geblottet. Da Milchpulver eines der reichsten Quellen an Biotin ist, muss zum 

Blocken der Membran BSA verwendet werden. Andernfalls kommt es zu einer 

Reaktion des Strep-tags mit Biotin. Dazu wurde die Membran mit 20 mL 1 x 

PBS-Puffer (inklusive 3 % (w/v) BSA und 0.5 % (v/v) Tween20) 1 h bei 

Raumtemperatur geschüttelt. Anschließend wurde die Membran 3-mal je 5 min 

mit 40 mL 1 x PBST gewaschen. Nach dem letzten Waschschritt wurden 10 mL 

PBST und Strep-tagII spezifischer Antikörper (Strep-tagII monoklonaler 

Antkörper, IBA, 2-1507-001) zu der Membran gegeben (Endkonzentration: 200 

ng/mL) und für 60 min geschüttelt. Anschließend wurde die Membran 3-mal je 5 

min mit PBST gewaschen. Nach dem letzten Waschschritt wurden 10 mL PBST 

und anti-Maus IgG1-AP (Endkonzentration: 1:5000) zu der Membran gegeben 

und für weitere 45 min geschüttelt. Dann wurde die Membran je zweimal mit 

PBST und PBS gewaschen und für die chromogene Reaktion mit 20 mL AP-

Puffer vorbereitet. Die Sichtbarmachung der Banden wurde wie im 

vorhergehenden Kapitel beschrieben, durchgeführt.  

 

5.4.3.2 Immunchemische Färbung von Rad14 

Für die Detektion des Proteins Rad14, wurde die bereits beschriebene 

Vorgehensweise angewendet. Als primären Antikörper wurde der polyklonale 

Maus IgG1 Antikörper anti-Rad14 (ab22092, Abcam, Cambridge) in einer 
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Verdünnung von 1:1000 eingesetzt, als sekundärer Antikörper anti-Maus IgG1-

AP (Endkonzentration 1:5000).  

 

5.4.3.3 Immunchemische Färbung von Rad4 

Für die Immunchemische Färbung von Rad4 wurde der anti-His6 Antikörper 

(Acris, Nr. AM05288PU-N) verwendet, als Sekundärantikörper wiederum anti-

IgG1-AP und die bereits beschriebenen Schritte durchgeführt.  

 

 

5.4.4 Proteinquantifizierung 

 

5.4.4.1 Warburg – Formel 

Die Quantifizierung von Proteinen erfolgte durch Absorptionsmessung bei 280 

nm. Bei dieser Wellenlänge besitzen die aromatischen Aminosäuren 

Phenylalanin, Tryptophan und Tyrosin ihr Absorptionsmaximum. Bei der 

statistisch ermittelten Anzahl an aromatischen Aminosäuren in einem Protein 

gilt, dass eine Absorptionseinheit bei 280 nm einer Konzentration von 1 mg/mL 

Protein entspricht. Die exakte Proteinkonzentration lässt sich durch 

Multiplikation mit dem entsprechenden Extinktionskoeffizienten bestimmen. 

Voraussetzung dafür ist die Kenntnis der Aminosäuresequenz. Unter 

Berücksichtigung eventuell vorhandener Nukleinsäure- und 

Nukleotidverunreinigungen gilt folgender Zusammenhang: 

 

Proteinkonz. = Faktor x Proteinkonz. = (1,55 x A280) – (0,76 x A260) 

 

Für die Messung wird zunächst das Spektrometer mit dem Lagerpuffer des 

Proteins kalibriert. Die Proteinkonzentration wurde im Anschluss gegen diese 

Referenz gemessen. 
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5.4.4.2 Bradford – Assay 

Das Prinzip des Bradford-Assays beruht darauf, dass der verwendete Farbstoff 

Coomassie-Brilliant-Blue G 250 relativ unspezifisch an kationisch, unpolare und 

hydrophobe Seitenketten der Proteine bindet, wodurch es zu einer 

Verschiebung des Absorptionsmaximums von 465 nm auf 595 nm kommt. Die 

Bradford-Lösung (Biorad) wurde dafür 1:5 mit bidest. Wasser verdünnt. Für die 

Bestimmung des Blank-Wertes, wurden 950 μL der Bradford-Lösung mit 50 μL 

des betreffenden Puffers versetzt. Die Probenvorbereitung zur Bestimmung der 

Proteinkonzentration erfolgte wie folgt: 

 

Tabelle 5.24: Bradford – Ansatz.  

  
Bradford-Lsg. 950 μL 
Proteinlsg. x μL 
Puffer y μL 
Gesamt 1000 μL 
  

 

 

5.4.5 Proteinreinigung 

 

5.4.5.1 Strep-tagII Aufreinigung der Formamidopyrimidin Glykosylase 

 

Tabelle 5.25: Verwendete Puffer.  

  
Puffer A 100 mM Tris-HCl pH 8.0 

150 mM NaCl 
1 mM EDTA 

  
Puffer B Puffer A 

2.5 mM Desthiobiotin 
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Die hohe Bindungsselektivität des Strep-tagII an Streptavidin ermöglicht, im 

Vergleich zu anderen tags wie z.B. dem His6-tag, eine höhere 

Reinigungseffizienz. Zudem treten bei der Elution des Proteins, wie im Falle von 

Imidazol, keine störenden Überlagerungen der Absorption bei 280 nm auf. Das 

lösliche Protein wurde mittels Superloop oder bei größeren Volumina, durch 

Batch-Inkubation an das Säulenmaterial gebunden. Bei der Batch-Inkubation 

wurde das lose Säulenmaterial für 2 Stunden mit der Proteinlösung bei 4°C 

unter leichtem Schwenken inkubiert und anschließend in eine XK16 Säule (GE) 

gepackt. Im Normalfall wurde die Proteinlösung über einen Superloop auf eine 

5 mL Strep-Tactin H-PR cartridge (IBA) aufgetragen. Die Interaktion erfolgt, wie 

in Abbildung 5.4 dargestellt, zwischen Protein-Strep-tagII und dem auf dem 

Säulenmaterial immobilisierte Streptavidin. Ungebundenes Protein wurde im 

Anschluss mit Puffer A von der Säule gewaschen. Die Elution erfolgte mit Puffer 

B, der zusätzlich freies Desthiobiotin enthält. Dabei kommt es zur kompetitiven 

Verdrängung des gebundenen Proteins von der Säule. Alle Schritte wurden bei 

einer Flussrate von 1 mL/min und 4°C durchgeführt, um eine vorzeitige 

Denaturierung des Proteins zu vermeiden. Die Fraktionsgröße betrug 1.0 mL. 

Das Eluat wurde vereinigt und mit 10 kDa Amicon® Ultra Zentrifugenfiltern 

(Millipore) auf ein Volumen von 500 µL aufkonzentriert und einem weiteren 

Reinigungsschritt unterzogen. Die Reinigungen wurden mit dem ÄKTA Purifier 

(FPLC) von GE durchgeführt. Diese Methode wurde für die Wildtyp Variante 

von LlFpg, sowie allen Mutanten mit C-terminalem Strep-tagII verwendet.   
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aufweist, sind zwei Stellen für die Bindung des Imidazolrings des Histidins frei. 

Ein Protein mit einer hohen Anzahl an frei zugänglichen Histidinen wird also 

besser binden, als ein Protein mit vereinzelten Histidinen im Inneren des 

Proteins. Die Elution der über die Ni-NTA Säule gereinigten Proteine erfolgte 

mit Hilfe von freiem Imidazol, welches kompetetiv um die Bindungsstellen des 

Ni2+ konkurriert und das Histidin verdrängt. Dazu wurde der Proteinüberstand in 

Puffer A auf den Superloop gegeben und die Reinigung mit einer Flussrate von 

1 mL/min durchgeführt.  

 

5.4.5.5 MonoQ-Aufreinigung von Rad23 

Bei MonoQ-Säulen handelt es sich um starke Anionentauscher-Säulen; in 

diesem Fall wurde eine MonoQ 5/50GL-Säule von GE verwendet. Diese wurde 

zuvor mit 5 CV Puffer Rad23A äqulibriert und anschließend das Protein mit 

einem 500 μL Loop aufgetragen. Die Verunreinigungen wurden ausgewaschen 

und das Protein mit einem Gradienten von 0-100 % in 5 CV Puffer Rad23B 

eluiert. Die Elution von Rad23 erfolgte bei ca. 300 mM NaCl. 

 

Tabelle 5.26: Verwendete Puffer für die Reinigung von Rad23.  

  
Rad23A 50 mM Tris-HCl pH 7.5 

50 mM KCl 
1 mM EDTA 
5 mM β-Mercaptoethanol 
10 % Glycerin 

  
Rad23B Rad23A 

800 mM NaCl 
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5.4.5.6 Heparin Aufreinigung der Formamidopyrimidin Glycosylase 

 

Tabelle 5.27: Verwendete Puffer.  

  
HepA pH 7.6 100 mM Tris-HCl pH 7.6 

50 mM NaCl 
1 mM EDTA 
5 mM DTT 
5% Glycerin 

  
HepB pH 7.6 HepA  

800 mM NaCl 
  

 

Neben dem Einsatz als Antikoagulanz wird das Glucosaminoglycan Heparin 

ebenfalls zur Reinigung von DNA-bindenden Proteinen herangezogen. Die 

Bindung der Proteine erfolgt aufgrund der strukturellen Ähnlichkeit mit dem 

polyanionischen Charakter der Nukleinsäure. Die Interaktion kann durch 

Erhöhung der Ionenstärke geschwächt werden. Für die Affinitätsreinigung 

wurden HiTrap Heparin HP Säulen (GE) verwendet. Zunächst wurde die Säule 

mit 5 CV HepA Puffer äquilibriert, die Probe über den 500 µL Probenloop 

aufgetragen, Verunreinigungen ausgewaschen und das gebundene Protein mit 

einem linearen Gradienten von 0% - 100% HepB in 5 CV eluiert. Die 

Proteinfraktionen wurden vereinigt und mit 10 kDa Amicon® Ultra 

Zentrifugenfiltern (Millipore) aufkonzentriert und in HepA umgepuffert. Die 

Proteinkonzentration wurde anschließend mit dem Nanodrop  bestimmt; die 

Reinheit mit der beschriebenen SDS-PAGE kontrolliert. 

 

5.4.5.7 Source 15S Aufreinigung der Formamidopyrimidin Glycosylase 

 

Bei Source 15S handelt es sich um einen starken Kationentauscher basierend 

auf negativ geladenen Sulfatgruppen, welche auf einer Polystyren/Divinylbenzyl 

Matrix immobilisiert sind. Die Verwendung eines starken Kationentauschers 

bietet den Vorteil gegenüber einer Heparin-Säule, dass manche DNA bindende 

Enzyme stärker aufgereinigt werden können. Das lose Säulenmaterial (5 mL) 
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wurde in eine XK16 Säule (GE) gepackt und bei 4°C mit dem FSA-Puffer 

äquilibriert (5 CV). Anschließend wurde das bereits über eine Strep-tagII Säule 

gereinigte Protein über einen 500 μL Loop aufgetragen, Verunreinigungen 

ausgewaschen und mit einem linearen Gradienten von 0-100 % FSB in 5 CV 

eluiert. Die Proteinfraktionen wurden vereinigt, mit 10 kDa Amicon® Ultra 

Zentrifugenfiltern (Millipore) aufkonzentriert und in FSA umgepuffert. Die 

Proteinkonzentration wurde anschließend mit dem Nanodrop bestimmt; die 

Reinheit mit der beschriebenen SDS-PAGE kontrolliert. Das aufgereinigte 

Protein wurde mit einer Konzentration von 12 mg/mL bis zur Verwendung bei -

80°C gelagert.  

 

Tabelle 5.28: Verwendete Puffer. 

  
FSA pH 7.6 100 mM Tris-HCl pH 7.6 

50 mM NaCl 
1 mM EDTA 
5 mM DTT 
5% Glycerin 

  
FSB pH 7.6 HepA  

800 mM NaCl 
  
 

 

5.4.5.8 Source 15S Aufreinigung von Rad14 

 

Tabelle 5.29: Verwendete Puffer. 

  
RSA pH 7.6 100 mM Tris-HCl pH 7.6 

50 mM NaCl 
1 mM EDTA 
5 mM DTT 
5% Glycerin 

  
RSB pH 7.6 HepA  

800 mM NaCl 
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Die Reinigung von Rad14 mit einer Source 15S-Säule erfolgte analog zu der in 

Kapitel 5.4.5.7 beschriebenen Aufreinigung unter Verwendung der in Tabelle 

5.29 angegebenen Puffer.  

 

5.4.5.9 MonoQ - Aufreinigung des DNA bindenden Fragments von Rad14  

 

Tabelle 5.30: Verwendete Puffer.  

  
RSA pH 7.6 100 mM Tris-HCl pH 7.6 

50 mM NaCl 
1 mM EDTA 
5 mM DTT 
5% Glycerin 

  
RSB pH 7.6 HepA  

800 mM NaCl 
  

 

Die Reinigung des DNA bindenden Fragments von Rad14 erfolgte analog der in 

Kapitel 5.4.5.5 beschriebenen Aufreinigung unter Verwendung der Tabelle 5.30 

angegebenen Puffer.  

 

5.4.5.10 Analytische- und Größenausschlusschromatographie 

Bei der Gelfiltrationschromatographie werden die Proteine der Größe nach 

aufgetrennt. Diese Methode besitzt den Vorteil, dass sie unabhängig von 

äußeren Faktoren, wie pH-Wert, Pufferzusammensetzung oder Temperatur ist. 

Gelfiltrationssäulen bestehen aus porösen und stark hydratisierenden 

Kügelchen aus einem Polymer wie Kohlenhydraten oder Polyacrylamid. Beim 

Auftragen der Proteine können Kleinere in die Hohlräume der Kügelchen 

eindringen, dabei verringert sich die Laufgeschwindigkeit der kleinen Proteine. 

Die größeren Proteine werden als erstes von der Säule gespült und es kommt 

zu einer Trennung der Größe nach. Die Gelfiltrationschromatographie wurde für 

die Aufreinigung unterschiedlicher Proteine eingesetzt; als Puffer wurde der 

jeweilige Lagerungspuffer des Proteins verwendet. 
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5.5 Kristallisationsexperimente 

 

5.5.1 Kristallisation des DNA bindenden Fragments von Rad14 

 

Erste Screenings wurden mit NeXtal Matrix screens (Qiagen) mit einer 

CrystalEX 96 well sitting drop plate (Corning, New York, USA) durchgeführt. Die 

96 well Platten wurden mit dem Hydra II Proteinkristallisationsroboter (Matrix 

Technologies Corporation, Hudson, USA) pipettiert. Das Reservoirvolumen 

betrug dabei 100 µL, der Kristallisationsansatz 0.2 µL Protein-/DNA-Lösung und 

0.2 µL Reservoirpuffer. Das DNA-bindende Fragment des Proteins Rad14 

(Rad14-DBD) wurde mit dem  AAF-Schaden in einem 16mer Oligonukleotid 

(ODN 36 und 37) kristallisiert. Das molare Verhältnis von Protein zu DNA betrug 

1:1.3, bei einer eingesetzten Protein-Konzentration von 5 mg/mL. Für das 

primäre Screening wurden drei verschiedene Screening Kristallisationskits von 

Qiagen verwendet (NeXtal Tubes AmSO4 Suite, NeXtal Tubes Classics Suite 

und NeXtal Tubes PEGs Suite). Erste Kristalle entstanden bei dem AmSO4-Kit 

in Nr. 71 (0.1 M Tris-HCl pH 8.0, 3.2 M AmSO4). Das Refinement fand in 24 

well hanging-drop Linbro Platten (Hampton Research) mittels der hanging-drop 

vapor diffusion Methode statt. Dazu wurden 1 µL der Protein/DNA-Lösung (in 

50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 % Glycerin, 5 mM β-Mercaptoethanol 

und 10 μM ZnCl2) mit 1 µL Kristallisationspuffer versetzt. Als Protein/DNA-

Lösung wurden 20 nmol DNA und 16 nmol (290 μM) Protein in 20 μL Puffer 

verwendet. Nach 2 Monaten bei 18°C waren erste Kristalle bei den 

Bedingungen 0.08 M Tris-HCl pH 8.0 und 3.2-3.4 AmSO4 sichtbar. In Tabelle 

6.11 sind die DNA-Stränge beschrieben, welche für die Kristallisation verwendet 

wurden. 
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5.5.2 Kristallisation der Formamidopyrimidin Glykosylase 

 

Für die Kristallisation von Fpg wurden Crystalgen SuperClear™ Platten 

(pregreased, 24 well) von Jena Bioscience verwendet. Das Kristallwachstum 

erfolgte auch hier durch die hanging vapor diffusion Methode. Das 

Reservoirvolumen betrug 500 μL, der Kristallisationsansatz 1 μL Protein/DNA-

Gemisch und 1  μL Reservoirpuffer mit einem molaren Verhältnis von Protein zu 

DNA von 1:1.3. Die Proteinkonzentration betrug 12.0 mg/mL in dem FSA Puffer 

(100 mM Tris-HCl pH 7.6, 50 mM NaCl, 1 mM EDTA, 5 mM DTT und 5% 

Glycerin). Die DNA wurde zuvor mittels Sep-Pak® Säulen entsalzt, lyophilisiert 

und in einem geeigneten Volumen an Puffer FSA aufgenommen. Bevor DNA 

und Protein zusammen gegeben wurden, mußten beide zentrifugiert werden, 

um etwaige Verunreinigungen zu entfernen. Anschließend wurden beide in 

einem Reaktionsgefäß vermischt und bis zur Kristallisation auf Eis gelagert (ca. 

5 min). Die Platten wurden für ca. 3 Wochen bei 18 °C gelagert.  

 

 

5.6 Biochemische Methoden 

 

5.6.1 Native Polyacrylamidgelelektrophorese 

 

Native, nicht denaturierende Gele wurden für EMSA-Experimente (Kapitel 

5.6.4.1 und 5.6.4.2) benutzt. Bei der nativen Gelelektrophorese können DNA-

Protein- Komplexe als intakte Einheiten von der freien DNA abgetrennt werden. 

Durch den Käfigeffekt und die nicht-denaturierenden Bedingungen bleiben auch 

schwächere DNA-Protein-Komplexe während der Elektrophorese erhalten. In 

Tabelle 5.31 ist die Zusammensetzung für 2, 4 und 6 native Polyacrylamidgele 

angegeben.  
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Tabelle 5.31: Zusammensetzung eines 4% nicht-denaturierenden Gels.  

Anzahl Gele 2 4 6 
Aqua dest. (mL) 15.5 23.25 31 
30% Rotiphorese (mL) 3 4.5 6 
10 x TBE (mL) 1 1.5 2 
Glycerin (μL) 500 750 1000 
10%ige APS-Lösung (μL) 150 225 300 
Temed (μL) 10 15 20 

 

 

5.6.2 Denaturierende Polyacrylamidgelelektrophorese 

 

Denaturierende TBE Gele wurden zur analytischen Trennung von kurzen DNA-

Fragmenten verwendet. Mit Hilfe dieser Gele ist es möglich eine Auflösung von 

einer Base zu bekommen. Die Zusammensetzung ist in nachfolgender Tabelle 

dargestellt.  

 

Tabelle 5.32: Zusammensetzung denaturierender Polyacrylamidgele.  

Acrylamid-Konzentration (%) 8 12 20 
25 % Rotiphorese 
Sequenziergel (mL) 

 
3.2 

 
4.8 

 
8.0 

Verdünner 5.8 4.2 1.0 
10 x TBE (mL) 1.0 1.0 1.0 
10%ige APS-Lösung (μL) 50 50 50 
Temed (μL) 5 5 5 

 

 

5.6.3 Aktivitätsassays der Formamidopyrimidin Glycosylase 

 

Zur Untersuchung der Aktivität von Fpg wurden verschiedene Varianten des 

Proteins mit geschädigter DNA zusammengegeben. In dem Reaktionspuffer 

(100 mM Tris-HCl pH 7.6, 50 mM NaCl, 1 mM EDTA, 5 mM DTT, 5 % Glycerin) 

wurden 40 μM dsDNA mit 3.2 μM Fpg in einem Volumen 10 μL für 30 min bei 
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30°C inkubiert. Nach Zugabe des Formamidauftragspuffers (2 μL) wurde der 

Reaktionsansatz auf einem 20 %igem denaturierenden Gel untersucht. Die 

Ergebnisse sind in Kapitel 6.1.3 dargestellt.  

 

 

5.6.4 Electromobility shift assays (EMSA) mit Rad14 

 

Die Interaktionen von Proteinen mit DNA spielt eine zentrale Rolle in vielen 

zellulären Prozessen, wie z.B. DNA Replikation, Rekombination, Reparatur und 

Transkription. Eine der wichtigsten Methode zur Untersuchung dieser DNA-

Protein-Interaktionen ist der electromobility shift assay. Das Prinzip des EMSA, 

auch band shifts oder gel retardation assays genannt, beruht darauf, dass DNA-

Protein-Komplexe in einer elektrophoretischen Auftrennung langsamer laufen 

als die freie DNA. Die Auftrennung wird auf einem nativen Polyacrylamidgel 

analysiert. Quervernetztes Polyacrylamid bietet, im Gegensatz zur Agarose, 

den Vorteil der schärferen Trennung der Komplexe, sowie die Stabilisierung der 

DNA-Proteinkomplexe um den Faktor ~ 40 durch den Käfigeffekt des 

Polyacrylamids.  

Bei einem EMSA-Experiment müssen sehr viele Reaktionsparameter 

optimiert werden. Dies ist nötig, da sehr viele Faktoren den DNA-Protein-

Komplex beeinflussen, darunter fallen die Zeit und Temperatur der Inkubation, 

der pH-Wert, die Ionenstärke und generell die Zusammensetzung des 

Bindungspuffers. Aber auch bivalente Ionen, wie z.B. Mg2+ beeinflussen die 

Dissoziationskonstante des Komplexes. Falls es sich um weniger stabile 

Komplexe handelt, müssen diese durch z.B. Glutaraldehyd stabilisiert werden. 

Um eine sensitivere Detektion zu erreichen wird  die DNA normalerweise 

radioaktiv markiert. DNA kann aber auch mit SYBR Green II angefärbt oder mit 

einem Fluoreszenzfarbstoff (Fluorescein, AlexaFluor 555 oder Atto 550) 

versehen werden.  
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5.6.4.1 Fluoreszenz markierte EMSA 

Für diese Art der electromobility shift assays wurde der Gegenstrang am 5‘-

Ende mit Fluorescein markiert. Der Gegenstrang und der geschädigte bzw. 

ungeschädigte Strang wurden in äquimolarem Verhältnis gemischt, auf 80°C 

erhitzt und langsam (1°C/min) auf 4°C abgekühlt, um die Ausbildung des 

Doppelstrangs zu ermöglichen. Das Vorhandensein des Duplexes wurde 

mithilfe von nativen Gelen kontrolliert. Ein typischer Bindungsassay besteht aus 

40 μM dsDNA, steigender Konzentration an Rad14 in dem in Tabelle 5.33 

dargestellten Puffer mit einem Endvolumen von 10 μL. Der Ansatz wurde 30 

min bei 30°C inkubiert, mit dem Auftragspuffer versetzt und auf ein 12%iges 

natives Polyacrylamidgel gegeben (100 V, 45 min, 4°C, Laufpuffer: 1 x TBE). 

  

Tabelle 5.33: Verwendete Puffer.  

  
Bindungspuffer 25 mM Hepes KOH pH 8.3 

100 mM KCl 
4 mM MgCl2 

1 mM EDTA 
1 mM DTT 
45 μg/mL BSA 
10 % (v/v) Glycerin 

  
Auftragspuffer 250 mM Tris – HCl pH 7.5 

40 % Gylcerin 
0.2 % Bromphenolblau) 

  
 

5.6.4.2 Radioaktiv markierte EMSA 

Zunächst wurde der ungeschädigte Gegenstrang mit der T4 Polynukleotid 

Kinase mit [γ-32P]ATP (3000 Ci/mmol) am 5‘-Ende markiert. Anschließend 

wurden die ungeschädigten und geschädigten Oligonukleotide mit ihrem 

makiertem komplementären Strang in einem äquimolaren Verhältnis vermischt 

und hybridisiert. Dazu wurde ein 30 μL Ansatz (1 pmol dsDNA im 

Bindungspuffer) auf 80°C erhitzt und langsam abgekühlt. Die Bildung des 

Doppelstranges wurde per nativer Gelelektrophorese kontrolliert. Ein typischer 

Bindungsassay (9 μL, siehe Tabelle 5.34) bestand aus 33 fmol dsDNA und 

einer ansteigenden Konzentration an Rad14 im Bindungspuffer (siehe Tabelle 
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5.33). Nach einer 30 minütigen Inkubation bei 30°C wurde 1 μL Auftragspuffer 

zugegeben und die Elektrophorese auf einem 4 % nicht-denaturierendem Gel 

durchgeführt (100 V konstant, 60 min, 4°C). Das Gel wurde zuvor 30 min bei 

100 V laufen gelassen und als Laufpuffer wurde 1 x TBE verwendet. Die 

Analyse des Gels geschah mit Hilfe eines PhosphorImagers, dem StormTM 860 

von GE.  

 

Tabelle 5.34: Zusammensetzung des Bindungsassays. 

  
Radioaktiv markierte dsDNA (33 fmol)  1 μL 
Rad14 (23 pmol) x μL 
Bindungspuffer y μL 
H2O z μL 
Gesamt 9 μL 

  

 

Für die Bestimmung der Bindungsaffinitätskonstante wurde ein 

Reaktionsansatz (siehe Tabelle 5.35) mit 33 fmol dsDNA, einer steigenden 

Menge an unmarkierter dsDNA als Kompetititor und 23 pmol Rad14 für 30 min 

bei 30°C im Bindungspuffer inkubiert. Anschließend wurde wiederum 1 μL 

Auftragspuffer zugegeben und auf einem 4 % nativem Polyacrylamidgel bei 100 

V für 60 min analysiert. Die Visualisierung geschah mit einem StormTM 860 

Phosphorimager von GE.  

 

Tabelle 5.35: Zusammensetzung des kompetetiven Assays.  

  
Radioaktiv markierte DNA (33 fmol) 1 μL 
Kompetitive DNA  x μL 
Rad14 (23 pmol) 1 μL 
Bindungspuffer y μL 
H2O z μL 
Gesamt 9 μL 
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5.6.5 Fluoreszenz-Polarisationsmessungen 

 

Die Grundlagen der Fluoreszenzpolarisation wurden erstmals 1926 von Perrin 

beschrieben[195] und später durch Dandliker und dessen Mitarbeiter 

weiterentwickelt.[196,197]  Diese Methode ermöglicht es, Informationen über DNA-

Protein-Interaktionen direkt in Lösung zu erhalten. Regt man ein Fluorescein- 

markiertes Molekül mit linear polarisiertem Licht an, so wird Licht in der gleichen 

Ebene emittiert, so lange sich das Molekül während der Anregung stationär 

verhält (4 ns für Fluorescein). Rotiert das Molekül hingegen während der 

Anregung aus dieser Ebene heraus, so wird das Fluoreszenzlicht in eine 

andere Ebene als die Anregungsebene emittiert. Regt vertikal polarisiertes Licht 

den Fluorophor an, so kann die Intensität des emittierten Lichtes in eine 

vertikale und horizontale Ebene eingeteilt werden, wobei diese Verteilung von 

der Mobilität des Fluorescein-markierten Moleküls abhängt. Ist ein Molekül sehr 

groß, weist es eine geringe Mobilität während der Anregung auf, wobei dies 

eine hohe Polarisation des emittierten Lichtes zur Folge hat. Ist ein Molekül 

dagegen sehr klein, so rotiert es schneller und das Licht wird relativ zur 

Anregungsebene depolarisiert. Die Fluoreszenzpolarisation ist durch folgende 

Gleichung gegeben: 

 

P
I I

I I









 

 

Dabei ist I die Intensität bei parallelen Anregungs- und 

Emissionspolarisatoren und I die Intensität bei perpendikularen Anregungs- 

und Emissionspolarisatoren. Vereinfacht dargestellt, weist freie DNA eine 

geringere Polarisation auf als ein DNA-Protein-Komplex. Somit bietet die 

Fluoreszenzpolarisation die Möglichkeit, Bindungsstudien zwischen DNA-

bindenden Proteinen und DNA, sowie in diesem speziellen Fall zwischen dem 

Rad14-Protein und unterschiedlichen DNA-Schäden durchzuführen. Die 

Fluoreszenzpolarisations-Messungen wurden in dieser Arbeit mit dem 
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GeniusPro Fluoreszenzphotometer der Firma Tecan durchgeführt. Hierbei 

musste man berücksichtigen, dass Spiegel und Monochromatorgitter des 

Gerätes selbst schon einen Einfluss auf die Polarisation haben, so dass der 

Geräte-Faktor von reinem Fluorescein zunächst auf 1.1079 bestimmt wurde 

und die Messwerte damit korrigiert worden sind. Für die Messungen wurden 8 

ng der zu untersuchenden DNA mit steigender Rad14-Konzentration für 30 

Minuten bei 30°C inkubiert. Bei einer Anregungswellenlänge von 485 nm und 

einer Emissionswellenlänge von 535 nm wurden die Proben schließlich bei 30 

°C vermessen. Als Reaktionspuffer wurde der in Tabelle 5.33 beschriebene 

Bindungspuffer in einem Volumen von 100 μL verwendet.  

 

 

5.6.5.1 Photoaffinity labeling von Proteinen 

Zur Durchführung der Belichtungsexperimente wurden zunächst die                

Duplex-DNA-Sonden hergestellt. Hierzu wurden äquimolare Mengen des 

Diazirinstrangs mit einem der geschädigten Stränge (ODN 30 und 31, siehe 

Abbildung 6.28) und dem ungeschädigten Strang (ODN 32) hybridisiert. Danach 

standen die Doppelstränge für die weiteren Versuche zur Verfügung.  

Photoaffinity labeling-Experimente wurden sowohl mit dem gereinigten Fpg, 

als auch mit den gereinigten rekombinanten Proteinen Rad14 bzw. Rad23 

durchgeführt.[169] Hier soll jedoch nur auf die für die NER-Schadenserkennung 

wichtigen Proteine Rad14 und Rad23 eingegangen werden. Für die Labeling-

Experimente wurden bei 0 °C je 50-100 pmol des DNA-Duplexes (ODN 30-32) 

in ein 0.2 mL-PCR-Eppendorf-Gefäß gegeben und je 5-10 g des Proteins 

hinzugesetzt. Mit dem Photoaffinity labeling-Belichtungspuffer (10 mM Tris-HCl 

pH 7.5, 10 mM MgCl2, 50 mM KCl, 1 mM EDTA, 0.05 % Nonidet P-40, 0.2 

g/mL BSA und 50 ng/L calf thymus DNA (Sigma)) wurde auf auf ein 

Gesamtvolumen von 100 L verdünnt. Die Ansätze (DNA-Endkonzentration 

500 nM-1 μM) wurden 30 min unter Lichtausschluss auf Eis inkubiert und 

anschließend für 30-60 min bei 365 nm belichtet. Die Lösungen wurden in 

Biomax–Zentrifugationsfiltersäulen (Millipore, 100 L Fassungsvermögen, 
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MWCO 10 kDa) umpipettiert und diese bei 3500 rpm bei 4 °C aufkonzentriert, 

bis ein Volumen von 30 μL erreicht war (ca. 30 min). Es wurden 6 μL 5x-SDS-

Auftragspuffer zugesetzt, für 5 min auf 95 °C erhitzt und die Proben danach 

kurz auf Eis abgeschreckt. Je 10 μL der Proben wurden dann per SDS-PAGE 

analysiert. Zur Detektion der Fluoreszenz wurden die Gele unter einem 

LAS3000-Imager (Raytest) betrachtet, anschließend mit Coomassie Blue 

angefärbt.  

 

 

5.7 Analytische und Präparative Methoden 

 

5.7.1 Messung der Schmelzpunktkurven von Oligonukleotiden 

 

Schmelzpunkte der Doppelstränge wurden auf einem Varian Cary 100 Bio mit 

einer Temperaturkontrolle, Transporteinheit und einem MultiCellBlock 

durchgeführt. Der Temperaturgradient betrug 0.5°C/min bzw. 1.0°C/min. Es 

wurden pro Messung je 5 Abkühlkurven (85 °C  0 °C) und 5 Aufheizkurven 

(0 °C  85 °C) bei 260 nm und 420 nm aufgenommen. Die Tempe-

raturmessung erfolgte hierbei in einer Referenzküvette. Der Probenraum wurde 

während der Messung mit Stickstoff gespült, um ein Beschlagen der Küvetten 

bei tiefen Temperaturen zu verhindern. Es wurden Küvetten der Fa. Hellma mit 

4 mm Innendurchmesser und 10 mm Strahlengang verwendet. Für die 

Schmelzkurven wurden 5 pmol DNA-Duplexlösungen in einer Lösung mit 

150 mM NaCl und 10 mM Tris-HCl pH 7.4 angesetzt. In den Küvetten wurden 

die Lösungen mit Dimethylpolysiloxan überschichtet, um ein Verdampfen der 

Probe zu verhindern. Die Auswertung der Messungen erfolgte unter 

Verwendung von Microcal Origin. Hierzu wurden die erhaltenen Kurven bei 

260 nm gemittelt und hiervon die gemittelte Hintergrundmessung bei 420 nm 

subtrahiert. Die so erzeugte Kurve wurde durch ein Polynom approximiert, die 

Nullstelle der 2. Ableitung der Näherungsfunktion stellt den gesuchten 

Schmelzpunkt dar. 
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5.7.2 Tryptischer Peptidverdau 

 

Der tryptische Peptidverdau ist eine weit verbreitete Technik in der 

Proteomforschung, um Proteine in einem Gel in Peptide zu verdauen, welche 

dann einer massenspektrometrischen Untersuchung unterzogen werden 

können. Trypsin ist hierfür besonders geeignet, da es eine definierte Spezifität 

aufweist, nämlich nur die Peptidbindungen zu hydrolysieren, bei welcher die 

Carbonylgruppe an einem Arginin oder Lysinrest hängt. In nachfolgender 

Tabelle sind die verwendeten Lösungen aufgeführt.  

 

Tabelle 5.36: Verwendete Lösungen.  

  
Ammoniumbicarbonatlösung 40 mM NH4HCO3 

 25 mM NH4HCO3 
  

DTT-Lösung 10 mM DTT 
  

Iodacetimidlösung 55 mM Iodacetimid  
  

Trypsinlösung 1 µg/µL Trypsin (Promega) 
50 mM Essigsäure 

  

 

5.7.2.1 Waschen der Gelstücke 

Zur Identifizierung der Proteine wurden die Banden aus einem SDS-Gel mit 

einem sauberen Skalpell ausgeschnitten, 2-mal mit je 200 µL ddH2O und 2-mal 

mit je 200 µL 40 mM Ammoniumbicarbonatlösung für jeweils 30 min bei 37°C 

im Thermomixer (600 rpm) gewaschen. Anschließend wurde 2-mal mit je 200 

µL 40 mM NH4HCO3/ Acetonitril 1:1 (v/v) für 5 min bei 37°C gewaschen. Die 

Lösung wurde abgenommen und restliches Acetonitiril bei RT evaporiert. Im 

Anschluss wurden die Gelstücke in 100 µL 40 mM NH4HCO3-Lösung für 5 min 

rehydriert, dann 100 µL Acetonitril-Lösung dazugegeben und erneut 5 min 

inkubiert, die Lösung abgenommen und die Gelstücke für 10 min mit Acetonitril 

überschichtet. Überschüssiges Acetonitril wurde in der SpeedVac entfernt. 
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5.7.2.2 Reduktion der Disulfidbrücken 

Für die Reduktion der Disulfidbrücken zwischen den Cysteinresten wurden die 

Gelstücke in 100 µL 40 mM NH4HCO3-Lösung mit 10 mM DTT bei 56°C für 45 

min inkubiert, anschließend die Lösung auf RT abgekühlt und der Überstand 

abgenommen. 

 

5.7.2.3 Alkylierung der Cysteinreste 

Die freien Cysteinreste wurden im nächsten Schritt in 100 µL frisch angesetzter 

55 mM Iodacetamidlösung in 40 mM NH4HCO3-Lösung für 30 min bei RT im 

Dunkeln alkyliert. Die Lösung wurde abgenommen und die Gelstücke 2-mal in 

je 200 µL 40 mM NH4HCO3/Acetonitril 1:1 (v/v) für 15 min gewaschen, mit 100 

µL Acetonitril für 10 min überschichtet und das Gel in der SpeedVac für 10-15 

min getrocknet. 

 

5.7.2.4 In-gel Verdau 

Im Anschluss wurde 1 µL Trypsinlösung (Promega) auf das Gel pipettiert und 3 

min bei 37°C inkubiert, bevor das Gel mit 40 µL 40 mM 

Ammoniumbicarbonatlösung überschichtet wurde und ü.N. bei 37°C und 200 

rpm im Thermomixer geschüttelt wurde. 

 

5.7.2.5 Extraktion der Peptide 

Am nächsten Tag wurde die Ammoniumbicarbonatlösung abgenommen und bei 

4°C gelagert. Für die Extraktion wurden nacheinander 100 µL 25 mM 

NH4HCO3-Lösung, 100 µL Acetonitril zu den Gelstücken gegeben und jeweils 

15 min im Ultraschallbad inkubiert. Die Lösung wurde abgenommen und 

ebenfalls bei 4°C aufbewahrt. Dieser Schritt wurde mit 5 %iger Ameisensäure 

und Acetonitril wiederholt. Der Überstand wurde mit den zuvor bei 4°C 

gelagerten Fraktionen vereinigt und in der SpeedVac auf ca. 40 µL 

aufkonzentriert. 
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5.7.3 MALDI-TOF und LC-MS 

 

Das intakte Protein und auch die Peptidfragmente wurden mit ZipTip® C4 bzw. 

C18 Pipettenspitzen nach Herstellerangaben entsalzt und mit zwei 

verschiedenen Matrizes auf einem Stahltarget (Bruker Daltonics Inc.) zur 

Kristallisation gebracht. Dazu wurde je 1 μL der Probe mit 1 μL der Matrix 

zusammengegeben. Als Matrix wurde für die Peptidfragmente eine gesättigte 

Lösung von α-Cyano-4-hydroxy-zimtsäure in 30 % Acetonitril verwendet. Um 

intakte Proteine zu messen, wurde als Matrix eine gesättigte Lösung von 2,5-

Dihydroxybenzoesäure in 20 % Acetonitril verwendet. Die auskristallisierten 

Proben wurden mit einem AutoflexII MALDI-TOF von Bruker Daltonics Inc. 

gemessen. Die Proben wurden mit etablierten Methoden im Positiv-Modus 

gemessen. Die erhaltenen Daten des Peptidfingerprints wurden mit dem 

Programm Mascot (Matrixscience) und Biotools (Bruker Daltonics Inc.) 

bearbeitet und mit Datenbanken abgeglichen.  

Die Peptidfragmente des tryptischen Verdaus wurden aufgrund der höheren 

Auflösung auch mit einem LC-MS in der Gruppe von Prof. Dr. Stephan Sieber 

gemessen. Dazu wurde die Peptidlösung auf einer Dionex C18 Nano Trap 

Column (100 μm) entsalzt und das Eluat anschließend mit einer Dionex C18 

PepMap 100 (3 μm) aufgetrennt. Die Peptidfragmente wurden durch Tandem 

MS sowie hoch-auflösender MS auf einem gekoppeltem Dionex Ultimate 3000 

LC-ThermoFinnigan LTQ-FT MS System analysiert. (Elutionspuffer A: 

MeCN/H2O und Puffer B: MeCN/H2O, 5 % Ameisensäure; Gradient: 5 % Puffer 

B für 5 min, 5-60 % B in 65 min; 60-95 % B in 1 min Gesamtzeit/Lauf: 95 min) 

Die MS Daten wurden auf Basis des SEQUEST Algorithmus gegen die 

entsprechende Datenbank der „bioworks“ Software ausgelesen.  
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5.8 Statistische Methoden 

 

Die statistischen Daten zur Bestimmung der Bindungskonstanten von Rad14 

wurden mit dem Programm SigmaPlot11 von Systat ermittelt. Es wurde ein 

Algorithmus für eine homologe kompetetive Bindung angenommen (one site 

competetion experiment). Dem wurde zugrunde gelegt, dass nicht radioakiv 

markierte DNA, radioaktiv markierte DNA, also das gleiche Substrat kompetetiv 

verdrängt. Die Kurve wurde mit folgender Gleichung ermittelt: 

  

ݕ    ൌ min൅ ሺ୫ୟ୶ି	୫୧୬	ሻ

ଵା	ଵ଴ೣష೗೚೒ಶ಴ఱబ
 (Equation 1) 

 

 

5.9 Synthese der DNA für Electromobility shift assays und 

Kristallisationen 

 

Das AAF-dG Phosphoramidit enthält für die DNA-Festphasensynthese eine 

Isopropylphenoxyacetyl-Gruppe an der N2 Position und wurde nach Gillet et al. 

synthetisiert. [198] Der Einbau in die DNA geschah durch „ultra milde“ 

Bedingungen[119] für DNA Synthese. AF-dG enthaltene Oligonukleotide wurden 

präpariert, indem AAF-dG enthaltene Oligonukleotide mit einer Lösung 

bestehend aus 1 M NaOH und 0.25 M β-Mercaptoethanol für 3 h bei 37°C nach 

einer veröffentlichten Prozedur behandelt und per HPLC aufgereinigt 

wurden.[199]  AAP-dG wurde analog der bereits beschriebenen Prozedur von 

AAF-dG synthetisiert. Das (6-4)-Photoprodukt wurde wie kürzlich veröffentlicht 

hergestellt.[21] Das CPD Phosphoramidit wurde von GlenResearch (Sterling, 

Virginia) bezogen und per Standard-Festphasensynthese eingebaut (16mer). 

Das CPD Phosphoramidit mit dem Formacetal-Rückgrat wurde nach einer 

bereits veröffentlichten Prozedur synthetisiert und der Einbau in das 27mer per 

Standard-Festphasensynthese durchgeführt.[200] Cisplatin geschädigte DNA 
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wurde analog einer veröffentlichten Prozedur hergestellt[201] und Fluorescein 

markierte DNA wurde von Metabion (Martinsried) bezogen. Die für die 

Photoaffinity labeling Experimente verwendeten Diazirinstränge wurden, wie 

bereits publiziert, hergestellt.[169] Die Phosphoramidite von 8-oxo-dG, 8-Br-dG, 

8-NH2-dG und 8-OMe-dG wurden von Glen Research bezogen und per 

Standardfestphasensynthese in die Oligonukleotide eingebaut. Die 

carbozyklischen Analoga von 8-oxo-dG und cFaPy-dG wurden nach 

beschriebenden Bedingungen synthetisiert und in die Oligonukleotide 

eingebaut.[202]  Die Oligonukleotide wurden über HPL-Chromatographie 

aufgereinigt, entsalzt und per MALDI-TOF Analyse und enzymatischen Verdau 

charakterisiert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Ergebnisse und Diskussion 
 

125 
 

6 Ergebnisse und Diskussion 

 

6.1 Formamidopyrimidin Glykosylase (Fpg/MutM) 

 

6.1.1 Allgemeines 

 

Im Rahmen der Untersuchung der Schadenserkennung der 

Formamidopyrimidin Glykosylase (Fpg/MutM) mit geschädigter DNA wurden 

zwei verschiedene Konstrukte von Fpg hergestellt, die Fusionsproteine mit 

einem N- bzw. C-terminalen Strep-tagII ergeben. Da der Streptag nur aus 8 

Aminosäuren besteht, kann angenommen werden, dass das Verhalten des 

Proteins nicht oder nur geringfügig beeinflusst wird. Zusätzlich wurden mehrere 

Mutanten der C-terminalen Fusion hergestellt, in denen wichtige Aminosäuren 

ausgetauscht worden sind. Alle verwendeten Konstrukte sind in Tabelle 6.1 

aufgeführt. 

 

Tabelle 6.1: Übersicht über die verschiedenen Konstrukte des Fpg und die jeweilige Aktivität. 

Plasmid 
 

Variante Strep-tagII Aktivität 

pDest007-FpgN 
 

wt N-terminal    0 % 

pPSG-IBA3-FpgC 
 

wt C-terminal 100 % 

pPSG-IBA3-FpgC2 
 

E6A C-terminal   80 % 

pPSG-IBA3-FpgC3 
 

K131A C-terminal   90-95 % 

pPSG-IBA3-FpgC4 
 

K131A, K154A C-terminal   90-95 % 

pPSG-IBA3-FpgC5 
 

K257A C-terminal   90-95 % 

pPSG-IBA3-FpgC6 K131A,K154A, 
K257A 
 

C-terminal   90-95 % 
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6.1.2 Klonierung, Expression und Eigenschaften von Fpg (Wildtyp) 

 

In der Literatur wurden zahlreiche Konstrukte beschrieben, bei denen die 

katalytisch wichtigen Aminosäuren Pro2[60,203] oder Glu3[204] mutiert wurden. Um 

auszuschließen, dass Mutationen im aktiven Zentrum Einfluß auf das 

Bindungsverhalten des Proteins aufweisen, sollte in dieser Arbeit die Wildtyp-

Variante von Fpg kloniert werden. Zusätzlich wurde eine Variante kloniert, bei 

der das aktive Zentrum durch den N-terminalen Strep-tagII blockiert wurde, so 

dass nur eine Bindung zu der DNA, jedoch keine Katalyse möglich ist.  

Die Fpg-Variante mit C-terminalem Strep-tagII wurde mit Hilfe der Stargate®-

Methode (Kapitel 5.3.8) kloniert. Dazu wurde eine PCR mit den Primern 3 und 4 

und der genomischen DNA von L. lactis cremoris sk11 durchgeführt. Um 

fehlerfreie DNA-Sequenzen zu erhalten wurde die High Fidelity AccuPrimePfx 

Polymerase von Invitrogen benutzt. Die Primer wurden mit den für die 

Erkennungssequenz der Stargate®-Methode notwendigen Basen modifiziert. 

Das PCR Produkt wurde in pENTRY-IBA10 mit Hilfe der StarCombinaseTM 

kloniert. In einem weiteren Schritt wurde das Gen in das Expressionsplasmid 

pPSG-IBA3-FpgC überführt und anschließend in einen E. coli 

Expressionsstamm transformiert. Die Verifizierung der Plasmide wurde mit 

einem Restriktionsverdau (XbaI und HindIII, nach Herstellerangaben) und per 

Sequenzierung durchgeführt. Nach mehreren Testexpressionen mit 

verschiedenen Expressionsstämmen stellte sich heraus, dass eine 4-stündige 

Expression bei 30°C die größte Proteinausbeute mit E. coli BL21 (DE3) liefert. 

Da es sich um ein Protein mit einem Zinkfinger handelt wurde dem Medium vor 

der Induktion ZnCl2 (10 μM) zugesetzt. In Tabelle 6.2 sind noch einmal die 

optimalen Expressionsbedingungen zusammen gefasst.  

Für die N-terminale Variante von Fpg wurde ebenfalls die genomische DNA 

von   L. lactis isoliert und mit Hilfe der Primer 1 und 2 eine PCR durchgeführt. 

Diese Primer wiesen die typischen flankierenden attB-sites auf, die zu einer 

erfolgreichen Gateway-Klonierung nötig sind (Kapitel 5.3.7). In dieser Reaktion 

wurde wiederum die AccuPrimePfx Polymerase von Invitrogen benutzt. In einer 

BP-Reaktion wurde das Gen in den Donorvektor pDONR201-FpgN und in einer 
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anschließenden LR-Reaktion in pDest007-FpgN transferiert. Nach der 

Überprüfung der Sequenz wurde das Plasmid in den Expressionsstamm E. coli 

Rosetta (Merck Biosciences) transformiert. Dieser E. coli Stamm codiert 7, in E. 

coli selten verwendete tRNAs und erreicht damit eine verbesserte 

Proteinausbeute bei ungünstiger Codon-Zusammensetzung. Die höchste 

Protein-Ausbeute stellte sich bei den in Tabelle 6.2 aufgeführten 

Expressionsbedingungen ein. 

 

Tabelle 6.2: Darstellung der optimalen Expressionsbedingungen für pDest007-FpgN und 

pPSG-IBA3-FpgC.  

 
 

 
pDest007-FpgN 

 
pPSG-IBA3-FpgC 
 

E. coli K12-Substamm Rosetta BL21 (DE3) 
   

Wachstumstemperatur 37°C 37°C 
   

OD600 zum Zeitpunkt der Induktion 0.8 0.8 
   

Expression 2 nM AT 1 mM IPTG 
   

Zusatz 10 μM ZnCl2 10 μM ZnCl2 
   

Zeitdauer der Expression 4 h 4 h 
   

Induktionstemperatur 30°C 30 °C 
   

Schüttelumdrehungen 225 rpm 225 rpm 
   

 

 

Im Folgenden sind nun die Plasmidkarten von pDest007-FpgN und pPSG-

IBA3-FpgC dargestellt.  
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Tabelle 6.3: Darstellung der verwendeten Oligonukleotide bei den Aktivitätsassays.  

ODN Sequenz 

 
1 

 
5‘-Fluo-CTCTTT   G TTTCTCG -3‘ 
3‘-         GAGAAA C AAAGAGA-5‘ 
 

2 5‘-Pho-CTCTTT-Fluo-3‘ 
 

3 5‘-Fluo-CTCTTT  Pyren  TTTCTCG -3‘ 
3‘-        GAGAAA    G     AAAGAGC -5‘ 
 

4 5‘-Fluo-CTCTTT  8-oxo-dG  TTTCTCG -3‘ 
3‘-        GAGAAA      C         AAAGAGC-5‘ 
 

5 5‘-Fluo-CTCTTT  8-Br-dG  TTTCTCG -3‘ 
3‘-        GAGAAA      C       AAAGAGC-5‘ 
 

6 5‘-Fluo-CTCTTT  8-OMe-dG TTTCTCG -3‘ 
3‘-        GAGAAA      C          AAAGAGC-5‘ 
 

7 5‘-Fluo-CTCTTT  8-NH2-dG TTTCTCG -3‘ 
3‘-        GAGAAA      C         AAAGAGC-5‘ 
 

8 5‘-Fluo-CTCTTT  8-oxo-dA  TTTCTCG -3‘ 
3‘-        GAGAAA      T         AAAGAGC-5‘ 

  

 

Dabei handelt es sich bei ODN 1 um einen ungeschädigten Referenz-

Doppelstrang und bei ODN 2 um einen einzelsträngigen Größenstandard von 6 

Basen. Als Größenstandard von 14 Basen wurde ODN 1 verwendet. Ein 

Herausschneiden der Base durch Fpg würde in einem 6mer mit einem 

Phosphatrest resultieren. Da bei diesem Experiment denaturierende Gele 

verwendet wurden, wird immer nur der fluoreszenzmarkierte Einzelstrang 

detektiert. Fpg besitzt nur Aktivität gegenüber doppelsträngiger DNA und 

deshalb wurden hier ausschließlich Doppelstränge verwendet.  Bei ODN 4 und 

5 handelt es sich um doppelsträngige DNA, welche die Schäden 8-oxo-dG bzw. 

8-Br-dG in der Mitte des Duplexes aufweisen. Hierbei muss erwähnt werden, 

dass bei diesen Aktivitätsassays keine Schäden verwendet werden, die einer 

Fehlpaarung unterliegen. Um zu untersuchen, ob FPG auch in der Lage ist, 
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hitzeinaktivierten Fpg (20 min, 65°C, Spur 4) versetzt. Hierbei stellt sich die 

Frage, wo die Diskriminierung zwischen einer geschädigten und 

ungeschädigten Base durch das Enyzm stattfindet bzw. ob eine ungeschädigte 

Base in die aktive Tasche vordringen, aber nicht durch das Enzym geschnitten 

werden kann. Diese Fragestellung sollte im folgenden Kapitel durch 

Röntgenkristallstrukturanalyse beantwortet werden. Dazu war es notwendig 

festzustellen, ob während des Kristallwachstums, was etwa 3 Wochen dauerte, 

Fpg nicht doch in der Lage ist dG umzusetzen. Aber selbst nach 3 Wochen ist 

keine Aktivität des Enzyms gegen die ungeschädigte Base zu beobachten (b, 

Spur 5).  Letzteres deutet darauf hin, dass Fpg nur mit geschädigten Basen 

reagieren kann. Jedoch bleibt die Überlegung bestehen, ob Fpg eine natürliche 

Base zwar kurzzeitig binden, aber nicht schneiden kann. Als Vergleich wurde in 

diesem Gel in Spur 3 derselbe Reaktionsansatz verwendet, jedoch mit einer 

Inkubationszeit von 30 min. In beiden Fällen ist dasselbe Ergebnis zu sehen. 

Aus diesen Daten kann geschlossen werden, dass die Verwendung des Pyrens 

keinen Einfluß auf die Katalyse des Fpg hat und somit diese Möglichkeit für die 

Strukturanalyse zur Verfügung steht. Im Falle von 8-oxo-dG, ein 

hervorragendes Substrat für Fpg, ist in a Spur 7 deutlich das zu erwartende 

6mer zu erkennen, aber die Reaktion konnte auch gut über 3 Wochen 

beobachtet werden (b, Spur 8). In beiden Fällen läuft das Produkt auf gleicher 

Höhe wie die Referenz (6mer). Wie erwartet kann man erkennen, dass auch 

hitzeinaktiviertes Fpg in beiden Fällen (a, Spur 8 und b Spur 9) keine Reaktion 

durchführen konnte. 
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Die hier abgebildeten Kristalle (Abbildung 6.7 a) wurden in einer 

Gefrierschutzlösung (100 mM Tris-HCl pH 7.5, 2 mM Spermidin, 1 mM TCEP, 

10 μM ZnCl2, 90 mM Li2SO4, 18 % PEG4000 und 15 % Butandiol) gewaschen, 

in flüssigem Stickstoff schockgefroren und bis zur Vermessung in flüssigem 

Stickstoff gelagert. Die Daten wurden an der Beamline PXI (X10SA) der Swiss 

Light Source (SLS), Villigen, Schweiz gesammelt. Die Kristalle beugten die 

Röntgenstrahlen bis zu einer Auflösung von 2.3 Å (Fpg-c8-oxo-dG), 3.15 Å 

(Fpg-dG-Pyren) und 2.65 Å (mtFpg-c8-oxo-dG). Alle Datensätze wurden mit 

den Programmen XDS und SCALA prozessiert. Die Strukturen wurden durch 

Molekularen Ersatz (PHASER, McCoy 2005) unter Verwendung der 

Koordinaten der Fpg Struktur in Komplex mit dem FaPyG-Schaden (PDB Code 

2TDZ) gelöst.[61] Um eine Überanpassung des Atommodels an die Daten zu 

verhindern, wurden vorher die Atome des Schadens, sowie weitere 

benachbarte Basenpaare entfernt. Ausserdem wurden die isotropen 

Temperaturfaktoren des Suchmodels, auf die des Wilson-B-Faktors gesetzt und 

simulated annealing (PHENIX) vor dem manuellen Anpassen des Modells in die 

Elektronendichte in COOT (Emsley 2010) durchgeführt. Positionelle 

Verfeinerung, sowie die der Temperaturfaktoren unter der Benutzung eines TLS 

(Translational Liberation Screw) wurde in REFMAC5[207] durchgeführt. Im 

Folgenden sind alle Statistiken und prozessierten Daten aufgeführt.  
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Tabelle 6.4: Experimentelle Daten, Prozessierungs- und Verfeinerungsstatistik der Co-

Kristallstrukturen.  

Struktur FPG-c8oxo-dG 
inaktive Mutante 

FPG(wt)-c8-oxo-
dG 

FPG(wt)-pyren 

Data collection    

X-ray source SLS X10SA SLS X10SA ESRF ID23-2 

Wavelength (Å) 1.000 1.077 0.875 

Space group P21212 P212121 P212121 

Unit cell param.[Ǻ] a=72.6, b=226.7, 
c=40.7    

a=43.0, b=112.6, 
c=132.7   

a=42.2, b=113.1, 
c=131.0  

Resolution 45-2.65 (2.71-2.65) 44.2-2.3 (2.42-2.3) 40-3.15 (3.32-3.15) 

No. unique reflections 18940 (1427) 29566 (4251) 11706 (1671) 

Completeness (%) 98.7 (100) 99.9 (100) 100 (100) 

Rmerge 0.088(0.357) 0.084 (37.6) 0.092 (0.436) 

Mean I/(I)  10.3 (3.4) 11.9 (4.1) 11.7 (3.1) 

Redundancy 3.2 5.3 6.4 

Refinement    

Resolution  in refinement 
[Å] 

45-2.65 44-2.3  

Rwork/Rfree 0.22/0.27 0.199/0.238 0.237/0.294 

Number of atoms    

 Protein  4297 4277 

 DNA 514 570 542 

 Water  21 131 - 

Average B-factors [Å2]    

 Protein 34.7 23.4 58.3 

 DNA 37.6 33.4 75.2 

      Water 24.9 25.9 - 

R.m.s Bond lengths [Å] 0.013 0.012 0.011 

R.m.s Bond angles [] 1.4 1.5 1.2 
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Tabelle 6.5: Auflistung der für die Kristallisationsexperimente verwendeten DNA-Stränge. Die 

Strukturen des verwendeten c8-oxo-dG bzw. des Pyrens sind in der Abbildung 6.4 dargestellt.  

ODN  Sequenz 

 
9 

 
5‘-CTCTTT  c8-oxodG TTTCTC -3‘ 
3‘-   AGAAA       C       AAAGAGG-5‘ 
 

10 5‘-CTCTTT c8-oxodG TTTCTCG-3‘ 
3’-GAGAAA       C      AAAGAGC-5’ 
 

11 5‘-CTCTTT     cG     TTTCTCC-3‘ 
3‘-GAGAAA Pyren  AAAGAGG-5’ 
 

12 5‘-TCTTT     cG     TTTCTCG -3‘ 
3‘-AGAAA  Pyren  AAAGAGCG -5‘ 
 

 

Wie in gel shift Untersuchungen gezeigt wurde, bindet das inaktive Fpg, bei 

dem das aktive Zentrum durch den Strep-tagII blockiert ist, DNA. Um die DNA-

Protein Interaktionen zu analysieren, wurde dieses mit dem Oligonukleotid 10 

(ohne Überhänge) kristallisiert. Die besten Kristalle wurden bei einem Puffer 

bestehend aus 100 mM Tris-HCl pH 7.5, 2 mM Spermidin, 1 mM TCEP, 10 μM 

ZnCl2, 50 mM Li2SO4 und 26 % PEG4000 erhalten. Die restlichen Bedingungen 

gleichen den bereits erwähnten. Diese Kristalle wurden in dem bereits 

beschriebenen Puffer mit 10 % Butandiol als Gefrierschutzlösung gewaschen 

und in flüssigem Stickstoff schockgefroren. Die Kristalle wurden an der 

Beamline PXI (X10SA) der Swiss Light Source, Villigen gemessen und beugten 

die Röntgenstrahlung bis zu einer Auflösung von 2.65 Å. 

Anschließend sollte versucht werden, eine kanonische, nicht geschädigte 

Base, im aktiven Zentrum des Enzyms zu kristallisieren. Dies würde einen 

weiteren Einblick in die Schadenserkennung von Fpg geben und man könnte 

zeigen, dass auch ungeschädigte Basen in das aktive Zentrum gedreht werden. 

Da der flipping-Prozeß sehr schnell vonstatten geht, ist es vermutlich nicht 

möglich, die Base in dem aktiven Zentrum zu fixieren. Daher wurde als 

Gegenbase die sperrige Pyrenbase (Abbildung 6.4) in die DNA gegenüber 

einem ungeschädigten Guanin eingebaut. Aufgrund der Aromatizität von Pyren 
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kann dieses Molekül ein starkes π-stacking innerhalb der DNA eingehen. Das 

bedeutet, dass Pyren im Doppelstrang stabilisiert vorliegt und aufgrund seiner 

Größe die gegenüberliegende Base aus der Helix drückt, damit diese vom 

Enzym erkannt und gebunden werden kann. Analog zu der bereits 

beschriebenen Vorgehensweise wurde auch hier ein Screening mit bereits 

bekannten Bedingungen durchgeführt. Um größtmögliche Flexibilität zu 

erreichen, wurden zwei verschiedene DNA Stränge (ODN 11 und 12) 

verwendet. Bei ODN 11 handelt es sich um einen Doppelstrang mit zwei blunt 

ends, während ODN 12 einen Überhang aufweist. Mit beiden DNA-Strängen 

entstanden die besten Kristalle bei einem Puffer bestehend aus 100 mM Tris-

HCl pH 7.3, 2 mM Spermidin, 1 mM TCEP, 10 μM ZnCl2, 50-60 mM Li2SO4 und 

16-18 % PEG4000. Nach einer Lagerung für drei Wochen bei 18°C wurden 

diese mit einer Gefrierschutzlösung (100 mM Tris-HCl pH 7.3, 2 mM Spermidin, 

1 mM TCEP, 10 μM ZnCl2, 50-60 mM Li2SO4, 16-18 % PEG4000 und 25 % 

Ethylenglykol) gewaschen und in flüssigem Stickstoff schockgefroren. Beide 

DNA-Stränge unterscheiden sich nur um die überhängende Base, dennoch 

kommt es zu einem sehr unterschiedlichen Kristallwachstum. Im Falle von ODN 

12 entstehen sehr große pyramidale Kristalle (siehe Abbildung 6.7 c), während 

im Falle von ODN 11 nur dünne Platten wachsen, wie sie bei c8-oxo-dG 

geschädigter DNA entstanden sind. Die Kristalle wurden an der Beamline ID23-

2 der European Synchrotron Radiation Facility (ESRF), Grenoble, Frankreich 

aufgenommen und beugten die Röntgenstrahlung bis zu einer Auflösung von 

3.15 Å.  

 

6.1.5 Strukturanalyse der Kristalle von Fpg mit DNA 

Aus den gemessenen Daten konnte durch Molekularen Ersatz die Struktur von 

Fpg (wt) mit einem C-terminalem Strep-tagII in Komplex mit einem c8-oxo-dG 

enthaltenen 14mer (ODN 9) gelöst werden. In Abbildung 6.8 ist die errechnete 

Co-Kristallstruktur abgebildet. Im linken Teil der Abbildung ist die C-terminale 

Domäne, bestehend aus zwei α-Helices und zwei β-Faltblattstrukturen, zu 

erkennen. Diese Strukturen bilden ein Zinkfinger-Motiv aus und sind über ein 

flexibles Scharnier verbunden.[48]  Das Zinkfinger-Motiv beeinflußt maßgeblich 

die DNA-Bindung und ist ein weit verbreitetes Motiv, welches für die Bindung 
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Fpg, wie alle anderen Glykosylasen auch, biegt die DNA um ca. 65°, um 

diese zwischen der N- und C-terminalen Domäne zu platzieren. Dieser Prozess 

erzeugt eine erweiterte und flachere kleine Furche und ermöglicht das base 

flipping, so wie es in zahlreichen anderen Proteinen (z.B. DNA 

Methyltransferasen, Photolyasen) auch vorkommt. Das base flipping ist ein 

energetisch ungünstiger Prozess, da das DNA-Rückgrat eine nicht optimale 

Konformation einnimmt und das Watson-Crick-Basenpaar aufgehoben wird. 

Jedoch ist diese Strategie für eine effiziente Diskriminierung zwischen 

geschädigten und ungeschädigten Basen unabläßlich und erleichtert den 

nukleophilen Angriff auf das Anomere C1 der Ribose. Im Folgenden soll nun 

das aktive Zentrum genauer betrachtet werden.  

In Abbildung 6.9 ist das aktive Zentrum mit den beteiligten Aminosäuren 

dargestellt. Man erkennt deutlich, dass 8-oxo-dG aus der Doppelhelix 

herausgedreht wurde und in einer extrahelikalen Position erkannt wird. Wie 

bereits beschrieben wird die kleine Furche aufgeweitet und die DNA gebogen, 

indem die Seitenketten der drei Aminosäuren Met77, Arg112 und Phe114 in 

den Doppelstrang insertiert werden. Phe114 dringt auf der 5‘-Seite der 

Gegenbase in den Doppelstrang ein und stabilisiert durch seinen aromatischen 

Rest durch π-Elektronenwechselwirkungen mit der Gegenbase den geöffneten 

Duplex. Es besteht auch die Möglichkeit, dass Phe114 thermodynamische 

Instabilitäten der DNA während dem Suchprozeß detektiert.[57] Met77 dringt 

neben Phe114 in den Duplex ein und befindet sich somit auf der 3‘-Seite der 

geschädigten Stelle. Durch räumliche Nähe kann Met77 van-der-Waals-

Wechselwirkungen mit dem Zuckerrest (C2‘ und C3‘) der geschädigten Base 

ausbilden. Arg112 besetzt den freien Raum, an der sich ursprünglich die 

geschädigte Base befunden hat und bildet eine Wasserstoffbrückenbindung, die 

einer Watson-Crick-Basenpaarung ähnelt, mit der Gegenbase aus.  Zusätzlich 

wird ein π-stacking mit der 5‘-Base neben dem Schaden eingegangen. Arg112 

und Met77 spielen zudem eine sehr wichtige Rolle an der Katalyse der 

geschädigten Base, da sie den freien Raum besetzen und den Zuckerrest der 

geschädigten Base in eine geeignete Orientierung bringen. 
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In der oben stehenden Abbildung ist nun eine Überlagerung der im Rahmen 

dieser Arbeit gelösten Struktur von Fpg (wt) in Komplex mit c8-oxo-dG und der 

mutierten Variante von Verdine (E3Q, gelb) zu sehen.[204] Es ist zu erkennen, 

dass hier nur geringe Abweichungen vorhanden sind, alle Sekundärstrukturen 

sind gleich, auch das aktive Prolin. Jedoch kann man bei dieser Struktur einen 

großen Unterschied erkennen, nämlich die geschädigte Base. Beide 8-oxo-dG 

Nukleobasen werden in einer Art syn-Konformation, anders als bei cFaPydG, 

erkannt und gebunden. Jedoch sind die Basen um ca. 90° voneinander gedreht. 

Das c8-oxo-dG (magenta) zeigt deutlicher mit der Keto-Gruppe auf das aktive 

Prolin, während das 8-oxo-dG von Verdine (orange) in Richtung der mutierten 

Aminosäure zeigt. Der Ursprung dieses Verhaltens bleibt in weiteren 

Experimenten herauszufinden. Vor allem, ob Mutationen im aktiven Zentrum 

Einfluss auf die Konformation haben. Es kommt hinzu, dass bei der Wildtyp-

Fpg-Struktur der Loop in einer ungeordneten oder auch offenen Konformation 

vorliegt. Dies hängt vermutlich mit dem Winkel der glykosidischen Bindung 

zusammen. Welchen Einfluss dies auf die Aktivität des Proteins hat, ist noch 

unklar.  

Im Folgenden soll nun untersucht werden, ob es möglich ist, eine 

kanonische, nicht-geschädigte Nukleobase im aktiven Zentrum zu fixieren und 

eine Kristallstruktur zu erhalten. Dieser Ansatz führt an das wahre Problem, das 

es zu lösen gibt, ob Fpg während der Schadenssuche jede Base aus der 

Doppelhelix klappt oder ob ‚nur‘ Instabilitäten detektiert werden. Nur ein 

geeignetes Substrat würde aus der Doppelhelix in das aktive Zentrum gedreht 

werden. Um für die Dauer der Kristallisation eine nicht-geschädigte Base 

außerhalb der DNA zu fixieren, wurde gegenüber einem dG ein sperriges Pyren 

eingebaut. Durch die aromatischen Wechselwirkungen in der Doppelhelix und 

dem enormen sterischen Anspruch sollte die Gegenbase aus der DNA gedrückt 

werden. Die Kristalle wurden wie bereits beschrieben gemessen und die 

Struktur gelöst. Jedoch ist, wie in Abbildung 6.11 zu sehen, nicht dG in dem 

aktiven Zentrum zu finden, sondern die Nachbarbase, ein ungeschädigtes 

Thymin. Dies kann durch sterische Beanspruchung des Pyrens erklärt werden, 

aber auch durch die Tatsache, dass Thymin ein schlechteres π-stacking als 

Guanin eingeht. Dies hat zur Folge, dass Thymin nun außerhalb der 
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(Lys131, Lys154 und Lys257) direkt auf die DNA gerichtet sind. Diese drei 

Aminosäuren befinden sich in räumlicher Nähe zu der DNA, so dass sich 

Wasserstoffbrückenbindungen ausbilden können. Der Abstand von Lys131 zu 

Thymin beträgt 3.41 Å, der von Lys155 2.79 Å und der von Lys257 3.03 Å. 

Interessanterweise zeigt Lys257 direkt auf das Sauerstoffatom der 

geschädigten Nukleobase (Abbildung 6.13 b). Hierbei kommt die Vermutung ins 

Spiel, dass diese Lysine als eine Art ‚Finger‘ benutzt werden, um gewisse 

Störungen bei der DNA zu detektieren und den Suchprozeß abzubremsen. Mit 

Hilfe von Aktivitätsassays konnte aber keine oder nur eine wenig verringerte 

Geschwindigkeit der Katalyse mit den mutierten Enzymen (FpgC3-C6) 

festgestellt werden. Die geringfügige Reduzierung kann aber auch damit erklärt 

werden, dass es sich nicht mehr um den Wildtyp handelt. Somit haben die 

Lysine keinen direkten Einfluß auf die Geschwindigkeit der Reaktion. Um dies 

zu beweisen, könnte auch ein in-vivo-Experiment durchgeführt werden. Dazu 

wird das Fpg-Enzym in E. coli mutiert und eine eventuelle Anhäufung von 8-

oxo-dG in der Zelle detektiert. In diesem Fall würde es sich nicht um kurze 

DNA-Oligonukleotide handeln, sondern 8-oxo-dG müsste in einem sehr langen 

Strang detektiert werden. Der Schaden würde auch nicht in einer mehr oder 

weniger optimalen Position sitzen und ob dann die Lysine eine Rolle spielen 

bleibt zu klären.  

 

 



Ab

ge

 

D

da

de

ge

 

 

6.

 

D

un

da

E

de

si

 

bbildung 6.

eschädigter D

Um weite

rehung de

as aktive Z

em zunehm

esetzt werd

.1.6 Hypo

Fpg 

as Auffin

ngeschädig

ar. Zum e

nergie (AT

en natürlic

nd die Un

13: (a) Dars

DNA. (b) Nä

ere Überga

er geschäd

Zentrum s

mend meh

den.  

othetisch

nden ein

gten Base

einen mus

TP) ablaufe

chen Base

terschiede

stellung der 

here Betrach

angszustä

digten Bas

schrittweise

hr Aminosä

her Mech

er gesch

n stellt ein

ss die Su

en, zum an

en teilweise

e sehr geri

mutierten V

htung von Ly

nde oder 

se in das a

e zu block

äuren (z. B

anismus

hädigten 

ne besonde

che ohne

nderen unt

e nur min

ng. Ein zu

6

Variante von

ys257 und de

Zwischens

aktive Zen

kieren. Die

B. Alanin) a

der Sch

Base un

ere Heraus

 den Ver

terscheiden

imal. Im F

usätzliches

Ergebniss

 Fpg in Kom

em aktiven Ze

stufen zu e

trum zeige

es kann er

an Position

hadenserk

nter den 

sforderung

brauch vo

n sich die g

Falle von 8

 Sauerstof

se und Dis

mplex mit c8

entrum.  

erhalten, d

en, wird ve

rreicht wer

n 1 vor da

kennung 

Millione

g für Glyko

on biochem

geschädig

8-oxo-dG 

ffatom an 

kussion 

149 

 

8-oxo-dG 

die eine 

ersucht, 

rden, in 

s Prolin 

durch 

n von 

sylasen 

mischer 

gten von 

und dG 

C8 und 



6 Ergebnisse und Diskussion 

150 
 

ein Wasserstoffatom an N7 stehen einem freien Elektronenpaar am N7 

gegenüber. Kommt es zu einer Detektion einer geschädigten Base, so wird 

diese von der komplementären Base losgelöst und dem Enzym in einer 

exponierten Konformation zur Verfügung gestellt. Ob es anschließend zu einer 

vollen Rotation um die glykosidische Bindung der Base in die syn-Konformation 

kommt, muss jedoch noch geklärt werden. Es gibt strukturelle Daten, die 

zeigen, dass 8-oxo-dG in der syn-Konformation in dem aktiven Zentrum von B. 

stearothermophilus Fpg liegt.[208] Andererseits befindet sich cFaPy-dG in der 

anti-Konformation im aktiven Zentrum von L. lactis.[209] Wie aus Abbildung 6.10 

ersichtlich, befindet sich c8-oxo-dG in L. lactis Fpg (wt) in einem Zustand 

zwischen syn und anti. Die Base ist um 99° Richtung syn gedreht. Es stellt sich 

die Frage, inwiefern sich die Verwendung eines Carbozyklus, eines mutierten 

Enzyms oder die verschiedenen Schäden auf die Konformation auswirken. Die 

Erkennung der geschädigten Base erfolgt dann in einer extrahelikalen Position. 

Hierbei handelt es sich genauer gesagt um ein ‚nucleotide flipping‘, da nicht nur 

die Base, sondern das ganze Nukleotid aus der Helix gedreht wird und sich im 

aktiven Zentrum befindet. Aber anders als in der Struktur von Verdine et al.[210] 

ist ein Loop (Aminosäuren 220-224), eine Art ‚Deckel‘ des aktiven Zentrums in 

der hier erhaltenen Struktur nicht geordnet. Der flexible Teil der αF-β9-Schleife 

nimmt offentlichtlich zwei verschiedene Konformationen ein, die als ‚offen‘ und 

‚geschlossen‘ betrachtet werden können. Es stellt sich die Frage, inwieweit er 

geschlossen sein muss. Castaing et al. beschreiben eine ungeordnete (pdb: 

1TDZ), aber auch eine geordnete (pdb: 3C58) Struktur des Loops.[61, 209] Falls 

der Loop in der erhaltenen Struktur eine ähnlich geordnete Struktur 

(geschlossen) aufweisen würde, so könnte sich eine Wasserstoffbrücke 

ausbilden. Die Stellung, welche die geschädigte Base im aktiven Zentrum 

einnimmt, könnte sich demnach auf die Konformation des Loops auswirken. Ob 

die Verwendung eines Carbozyklus der Grund dafür sein könnte, muss noch 

geklärt werden. Ferner ist zu erkennen, dass Glu6 sich in räumlicher Nähe zu 

der Keto-Gruppe (C8=O) befindet und eine Wasserstoffbrücke ausbilden kann 

bzw. die Möglichkeit einer Protonierung dieser Position besteht. Glu3 hingegen 

befindet sich in der Nähe der Ribose und könnte den Sauerstoff (O6‘) bei 

Ausbildung eines Kations stabilisieren. Das nukleophile Pro2 hingegen liegt in 

der Nähe des anomeren Zentrums, auf das der Angriff ausgeführt wird.  
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Nun soll ein modifizierter Mechanismus der Diskriminierung und des 

Herausschneidens der geschädigten Base postuliert werden. Aus zahlreichen 

Veröffentlichungen ist bekannt,[204, 208, 209] dass die Aminosäuren 2-6 (PELPE) 

maßgeblich an der Katalyse beteiligt sind. Da es sich bei der geschädigten 

Base um keine gute Abgangsgruppe handelt, muss diese aktiviert werden. 

Durch die Aktivitätsassays hat man einen guten Überblick über die Reparatur 

verschiedener Substrate erhalten. Demnach ergibt sich für die Reparatur 

folgende Reihenfolge: 8-oxo-dG > 8-NH2-dG > 8-OMe-dG >>> 8-Br-dG ~ 8-

oxo-dA ~ dG. 8-oxo-dG stellt hiermit das beste Substrat dar, während 8-Br-dG, 

8-oxo-dA und dG überhaupt nicht aus der DNA geschnitten werden und daher 

nicht als Substrat angesehen werden können. Betrachtet man die 

unterschiedlichen funktionellen Gruppen, so stellt man fest, dass hier zum einen 

elektronische Effekte eine Rolle spielen können. 8-oxo-dG und 8-NH2-dG 

besitzen stark elektronenschiebende Gruppen am aromatischen Ring und 

weisen daher einen aktivierenden Einfluss auf. Des Weiteren ist eine bessere 

Protonierung dieser Gruppen möglich und dadurch kann diese Reihe ebenfalls 

erklärt werden. Während dG oder 8-Br-dG nicht an der Position 8 protoniert 

werden können, ist das im Falle von 8-oxo-dG und 8-NH2-dG gut möglich. Da 8-

oxo-dA an dieser Position aber auch gut protoniert werden kann, jedoch kein 

Substrat für Fpg darstellt, müssen noch andere Kriterien eine Rolle spielen.   

Die vorhandenen Daten dieser und anderer Glykosylasen weisen auf einen 

dissoziativen SN1-Mechanismus hin.[211, 212] Nachdem sich die geschädigte 

Base im aktiven Zentrum des Enzyms befindet, kommt es zu einer Spaltung der 

C1‘-N-glykosidischen Bindung, die durch den anomeren Effekt unterstützt wird. 

Die Reaktion läuft über einen Übergangszustand, dem Oxo-Carbenium-Kation, 

das durch Glu3, Pro2 und der negativen Ladung der Base stabilisiert wird. 

Die Stabilisierung durch Glu3 ist ein essentieller Faktor bei diesem 

Mechanismus, da wie bereits erwähnt, die Mutation von Glu3 zu einem völligen 

Verlust der Aktivität führt. Die Carboxylgruppe von Glu3 liegt bei pH 7 in diesem 

Milieu deprotoniert vor und steht somit für die Stabilisierung zur Verfügung. 

Glu6 ist für die Protonierung von C8=O verantwortlich, in dessen Folge die 

entstandene negative Ladung der Base besser stabilisiert werden kann und die 

Base eine bessere Abgangsgruppe darstellt. Das freie Elektronenpaar der Base 
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deprotoniert den Stickstoff von Pro2, wird von dem Zuckerrest endgültig entfernt 

und liegt nun unreaktiv vor. Das nun vorhandene freie Elektronenpaar des 

Stickstoffs greift unter Ausbildung einer Schiff’schen Base das Oxo-Carbenium-

Kation an C1 an und neutralisiert die positive Ladung. Anschließend kommt es 

zu einer β-Eliminierung und einer ersten Spaltung des Phosphodiesters. Durch 

eine δ-Eliminierung wird die zweite Phosphodiesterbindung gespalten, in 

dessen Folge eine abasische Stelle entsteht.  

Grundsätzlich wird der Mechanismus der Diskriminierung zwischen 

geschädigten und ungeschädigten Basen von der Möglichkeit der Protonierung 

der Base und der Schnelligkeit dieser Reaktion getrieben. Die Kinetik spielt 

demnach eine große Rolle bei der Schadensdetektion. Dies hat zur Folge, dass 

die Base eine bessere Abgangsgruppe darstellt und es zu einer Spaltung der 

glykosidischen Bindung kommt. Falls es sich um eine ungeschädigte Base 

handelt, oder die Protonierung, wie im Falle von 8-Br-dG nicht möglich ist, so 

kann die Reaktion nicht ablaufen und die Reparatur wird nicht durchgeführt. Die 

Base wird demnach in einer extrahelikalen Position erkannt, jedoch falls es sich 

um kein Substrat handelt wieder in die DNA Doppelhelix gedreht. Zusätzlich 

kommen noch weitere strukturelle Effekte hinzu, da 8-oxo-dA kein Substrat für 

Fpg darstellt. Hierfür müssen noch weitere kristallographische Daten 

herangezogen werden.  
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Im Falle von Rad4 war es nicht möglich das Protein in E. coli zu exprimieren, 

da ein Abschnitt des Proteins für die bakteriellen Zellen toxisch ist.[213] Daher 

wurde ein alternatives Expressionssystem verwendet und Rad4 sollte daher in 

Kluyveromyces lactis (K. lactis), einem Hefestamm, der vor allem in der 

Lebensmittelindustrie Anwendung findet, exprimiert werden. Ein weiterer Vorteil 

der Verwendung des K. lactis Protein Expression Kits (NEB) bietet sich in der 

Sekretion des exprimierten Proteins in das Medium, um vorzeitige Degradation 

in der Zelle zu vermeiden. Um die Sekretion zu erreichen, wird das Protein C-

terminal des α-mating factors (MF) in pKLAC1 kloniert und es entsteht ein α-

MF-Fusionsprotein. Diese Domäne schleust das Protein durch den Hefe-

Sekretionspfad aus der Zelle heraus, während die Kex-Protease im Golgi-

Apparat den α-mating factor abschneidet. Aber es ist auch möglich, ein natives 

Protein zu exprimieren, das in der Zelle bleibt. Dazu muss das gewünschte Gen 

in die einzige HindIII-Schnittstelle des Vektors kloniert werden, in dessen Folge 

es nicht zur Expression des α-mating factors kommt, sondern das Protein nativ 

vorliegt. Im Falle von Rad4 wurden beide Methoden angewendet. Um eine 

bessere Aufreinigung durchführen zu können, wurde ein C-terminaler His6-tag 

eingeführt. Es wurde eine PCR mit den Primern 20 und 19 bzw. 21 und der 

genomischen DNA aus S. cerevisiae als Templat-DNA durchgeführt. Nach 

Aufreinigung des PCR-Produkts wurde dieses in den Vektor pKLAC1 kloniert 

und zur Vervielfältigung in E. coli DH5α transfomiert. Nach einer 

Plasmidpräparation wurde der Vektor nach Herstellerangaben mit SacII 

linearisiert und in kompetente K. lactis-Zellen transfomiert. Nach einer 

Inkubation bei 30°C über 4 Tage entstanden die Kolonien, die aufgrund des 

Selektionsdrucks das gewünschte Gen enthielten. Dies konnte  durch eine PCR 

nachgewiesen werden. Leider konnte nach einer Expression das Protein nicht 

detektiert werden.   
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6.3 Das Protein Rad14 

 

6.3.1 Allgemeines 

 

Um einen besseren Einblick in die primäre Schadenserkennung der NER zu 

bekommen, sollten die Eigenschaften von Rad14 genauer untersucht werden. 

Für die Durchführung von Bindungs- und Kristallisationstudien wurden drei 

verschiedene Konstrukte von Rad14 kloniert und aufgereinigt. Es handelt sich 

um das Volllängenprodukt, eine N-terminal verkürzte Variante (∆9NRad14) und 

ein stark verkürztes Konstrukt, bei dem es sich nur um das DNA-bindende 

Fragment (Rad14-DBD) handelt.  

 

6.3.1.1 Klonierung, Expression, Aufreinigung und Eigenschaften des 

Proteins Rad14 (Rad14 und ∆9NRad14) 

Die Expression von Rad14 in S. cerevisiae wurde 1993 von Guzder et al. zum 

ersten Mal beschrieben.[186] Die Expression von Rad14 erfolgte in S. cerevisiae 

mit einer anschließenden nativen Aufreinigung. Nach einigen Jahren wurde die 

Expression von rekombinantem Rad14 in E. coli beschrieben, der sich eine 

Affinitätschromatographie anschloss.[187] Da es sich bei den veröffentlichten 

Daten jeweils um 9-Aminosäuren N-terminal verkürzte Versionen von Rad14 

handelt, sollte in dieser Arbeit u. a. die Volllängen Version von Rad14 kloniert 

und exprimiert werden. Dazu wurde das 1. Exon (1-27 bp) über den 5‘-Primer 

(Primer 13), welcher an das 2. Exon bindet, in das PCR-Produkt eingebaut; als 

3‘ Primer wurde Nr. 14 verwendet. Da rekombinantes Rad14 als Fusionsprotein 

mit einem Affinitäts-tag aufgereinigt werden sollte, wurde das PCR-Produkt von 

Rad14 in pENTRY-IBA10 mit Hilfe der StarCombinaseTM (Kapitel 5.3.8.1) 

kloniert. Anschließend wurde das Gen in einer weiteren Reaktion (Kapitel 

5.3.8.2) mit Hilfe der Stargate® Methode in den Destinationsvektor pPSG-IBA3 

überführt. Bei diesem Destinationsvektor handelt es sich um einen Vektor mit 

T7-Promoter und einem C-terminalen Strep-tagII. Die Verifizierung der 

Plasmide wurde mit einem Restriktionsverdau (XbaI und HindIII, nach 
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Herstellerangaben) und per Sequenzierung durchgeführt. Das 

Expressionsplasmid wurde nun in einen E. coli Expressionsstamm 

transformiert. Nach mehreren Testexpressionen mit verschiedenen 

Expressionsstämmen stellte sich heraus, dass eine 3-stündige Expression bei 

25°C die größte Proteinausbeute mit BL21 (DE3) liefert. Da es sich um ein 

Protein mit einem Zinkfinger-Motiv handelt wurde dem Medium vor der 

Induktion ZnCl2 (10 μM) zugesetzt. In Tabelle 6.6 sind noch einmal die 

optimalen Expressionsbedingungen zusammen gefasst.  

 

Tabelle 6.6: Optimale Bedingungen für die Expression von Rad14. 

  
E. coli Substamm BL21 (DE3) 

  

Wachstumstemperatur 37°C 
  

OD600 zum Zeitpunkt der Induktion 0.8 
  

Endkonzentration IPTG 1 mM 
  

Zusatz 10 μM ZnCl2
  

Zeitdauer der Expression 3 h 
  

Expressionstemperatur 25°C 
  

Schüttlergeschwindigkeit 225 rpm 
  

 

In Abbildung 6.15 sind die Plasmidkarten von pPSG-IBA3-Rad14 (a) und 

pPSG-IBA3-∆9NRad14 (b) dargestellt. 
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Die Aufreinigungen für das Volllängenprodukt und das N-terminal verkürzte 

Fragment verliefen identisch und konnte ebenfalls durch SDS-PAGE, Western-

Blots und massenspektrometrische Untersuchungen bestätigt werden.  

 

6.3.1.2 Klonierung, Expression, Aufreinigung und Eigenschaften des DNA 

bindenden Fragments von Rad14 (Rad14-DBD) 

Da für die Aufklärung des Mechanismus der primären Schadenserkennung 

nicht nur biochemische Experimente von Nöten sind, sondern auch eine 

Kristallstruktur des Proteins mit geschädigter DNA sehr nützlich ist, sollte 

Rad14 mit Acetylaminofluoren-geschädigter DNA kristallisiert werden. Da für 

dieses Protein keine kristallographischen Daten vorhanden sind, jedoch für das 

humane Homologe XPA eine NMR-Struktur existiert, wurde die Strategie an die 

verkürzte Version von XPA angelehnt.  Kuraoka et al. identifizierte in XPA eine 

Bindungsdomäne für geschädigte DNA.[214] Es handelt sich hierbei um eine 122 

Aminosäuren lange, minimale DNA-Bindungsdomäne, welche die Affinität für 

geschädigte DNA aufrecht hält. Basierend auf diesen Ergebnissen wurde eine 

NMR-Struktur mit cis-Pt geschädigter DNA veröffentlicht.[138] Im Falle von 

Rad14 sollte ebenfalls nur die minimale DNA bindende Domäne kristallisiert 

werden. Dazu wurden die Sequenzen von Rad14 und XPA verglichen und eine 

Sekundärstruktur-Vorhersage mit Hilfe von Jpred 3 getroffen. Dies ist nützlich, 

um möglicherweise nicht geordnete Bereiche ausschließen zu können, da 

Sekundärstruktur-Elemente die Kristallisation beeinflussen können. In 

Abbildung 6.19 ist ein Ausschnitt der  Vorhersage der Sekundärstruktur von 

Rad14 zu sehen. Bei dem rot markierten Bereich handelt es sich um die 

ausgewählte Domäne, die geordnete Bereiche aufweist und dies 

möglicherweise sich positiv auf die Kristallisation auswirken könnte. Dieser 

Bereich gehört zu der minimalen DNA Bindungsdomäne (Rad14-DBD), die 

geschädigte DNA erkennt und diese auch bindet. Diese stark verkürzte Variante 

von Rad14 besteht aus den Aminosäuren 185-306.  
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Polarisationsmessung dar. Die Methode ist in Kapitel 5.6.5 bereits erläutert 

worden. Dazu wurde die Fluoreszenz eines DNA-Proteingemischs nach einer 

Inkubationszeit mit Hilfe eines Fluoreszenz-Mikroplattenreaders gemessen. In 

diesem Fall muss ein DNA-Strang Fluorescein markiert sein. In Tabelle 6.8 sind 

die verwendeten DNA-Stränge aufgeführt. Ein Reaktionsansatz betrug 

insgesamt 100 μL mit folgendem Reaktionspuffer: 25 mM HEPES-KOH pH 8.3, 

100 mM KCl, 4 mM MgCl2, 1 mM EDTA, 1 mM DTT, 45 μg/mL BSA und 10 % 

(v/v) Glycerin. Eingesetzt wurden jeweils 10 μM DNA und die in Abbildung 6.22 

angebenen Konzentrationen an Rad14. In diesem Fall wurde ∆9NRad14 

verwendet, spätere Experimente mit dem Volllängenprodukt brachten dieselben 

Ergebnisse zutage. Das Reaktionsgemisch wurde 30 min bei 30°C inkubiert 

und anschließend sofort in schwarze 96well Microplatten (Nunc, ThermoFischer 

Scientific) überführt und mit einem Tecan Microplattenreader gemessen.  

 

Tabelle 6.8: Aufstellung der verwendeten DNA-Stränge. Z = dG-AAF, YY = Pt-GG.  

ODN Sequenz 

 
14 

 
5‘-Fluo-TCTCTC   G CTCATCCAC -3‘ 
3‘-         AGAGAG C GAGTAGGTG-5‘ 
 

15 5‘-Fluo TCTCTC  G CTCATCCAC-3‘ 
3‘-        AGAGAG G GAGTAGGTG-5’ 
 

16 5‘-Fluo-TCTCTC  Z  CTCATCCAC -3‘ 
3‘-        AGAGAG C  GAGTAGGTG-5‘ 
 

17 5‘-Fluo- TCTCTC  YY   TTCTCTTCT-3‘ 
3‘-         AGAGAG CC  AAGAGAAGA-5‘ 
 

 

In nachfolgender Abbildung sind die Ergebnisse zu sehen. Auf der x-Achse 

ist die steigende Konzentration von Rad14 indiziert und auf der y-Achse der 

Polarisationswert. Bei allen vier DNA-Strängen ist ein Anstieg der Polarisation 

mit Zunahme der Rad14-Konzentration zu erkennen. Ein Anstieg der 

Polarisation deutet auf eine zunehmende DNA-Potein-Bindung mit steigender 
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Aufgrund dieses Ergebnisses und der Fluoreszenz-Polarisationsmessungen 

kann darauf geschlossen werden, dass Rad14 bei den verwendeten DNA-

Strängen nicht zwischen geschädigter und ungeschädigter DNA unterscheiden 

kann. Da Fluorescein als polares DNA-Addukt Eigenschaften eines DNA-

Schadens trägt, liegt die Vermutung nahe, dass in den vorangegangenen 

Experimenten eine Bindung von Rad14 an den markierten Strang und nicht an 

den Schaden stattgefunden hat. Um diese Bindung auszuschließen, wurden 

nun im Folgenden Bindungsstudien mit radioaktiv markierter DNA durchgeführt.  

 

6.3.3.2 EMSA mit 32P markierter DNA 

Da Fluorescein ein artifizielles Target für Rad14 in den zuvor beschriebenen 

Bindungsstudien ist, konnte keinerlei Aussage über die Unterscheidung 

zwischen geschädigter und ungeschädigter DNA getroffen werden. Die 

radioaktive Markierung von DNA mit 32P weist zwei Vorteile auf. Zum einen wird 

durch den Einbau von 32P die DNA strukturell nicht verändert, zum anderen 

können durch die Verwendung von modernen Phosphorimagern sehr genaue 

quantitative Aussagen, bei geringster Konzentration, getroffen werden. Für 

diese Experimente wurden fünfzehn verschiedene DNA Duplexe hergestellt 

(ODN 18-32), die die wichtigsten Schäden  durch UV-Belichtung oder 

elektrophilen Karzinogenen an definierten Positionen aufweisen. In Tabelle 6.9 

sind die Sequenzen der verwendeten Oligonukleotide mit den zugehörigen 

Schmelztemperaturen der Duplexe dargestellt. Oligonukleotide 18 und 19 

enthalten entweder ein Cyclobutanpyrimidin Dimer (CPD) oder einen Pyrimidin-

Pyrimidon T(6-4)T[215] Schaden an den Positionen XX. Diese beiden Schäden 

gehören zu den häufigsten UV-induzierten DNA Schäden. Ferner wurden 

Oligonukleotide hergestellt, die entweder einen Pt-GG (YY, ODN 21) oder einen 

Pt-GTG (YTY, ODN 22) intrastrang crosslink aufweisen. Diese beiden Schäden 

sind die durch eine Chemotherapie typischerweise gebildeten Hauptaddukte mit 

Cisplatin.[201] Die Adduktschäden  dG-AAF, dG-AF und dG-AAP wurden an den 

Z-Positionen in den Oligonukleotiden 25-27 eingebaut. Bei den hier 

verwendeten DNA-Schäden handelt es sich um gängige NER Substrate, wobei 

der CPD-Schaden die schwächste Antwort hervorruft.[165] Für die Herstellung 

von CPD-,[200] dG-AAF-,[216] dG-AF- und dG-AAP-enthaltenden Oligonukleotide, 
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wurden die Phosphoramidite der DNA-Schäden synthetisiert und mit Hilfe der 

Festphasensynthese[217, 218] in DNA-Einzelstränge eingebaut. Pt-GG-, Pt-GTG- 

und T(6-4)T-enthaltende Oligonukleotide wurden hergestellt, indem 

einzelsträngige DNA entweder mit Cisplatin[201, 219] oder durch Belichtung mit 

UV-Strahlung (254 nm) unter Luftausschluss behandelt wurden.[21, 217] Die 

Einzelstränge wurden durch eine zweifache HPLC-Auftrennung bis zu einer 

Reinheit >99% aufgereinigt und mit den zugehörigen 32P-markierten 

Gegensträngen zu einem stabilen Duplex hybridisiert. Um sicherzustellen, dass 

während der Reaktion bei 30°C ein stabiler Duplex vorhanden ist, wurden die 

Schmelzpunkte aller Doppelstränge mit einem UV-Spektrometer aufgenommen. 

Es zeigte sich, dass alle Doppelstränge einen Schmelzpunkt von mindestens 

50°C aufweisen und somit während der Reaktion stabil bleiben. 

Tabelle 6.9: Darstellung der verwendeten Oligodesoxynukleotide mit zugehörigen 

Schmelztemperaturen.  

ODN Schaden Schm.temp. Sequenz 
    

18 XX = CPD TM = 55°C 5‘-32P-ACAGCGG  XX  GCAGGT-3‘ 
19 XX = T(6-4)T TM = 51°C 3‘-       TGTCGCC  AA  CGTCCA-5‘ 
20 XX = TT TM = 62°C  

    
21 YY  = Pt-GG TM = 54°C 5‘-32P-TCCTCTCTT  YY  TTCTCTTCT-3‘ 
22 Y Y = GG TM = 62°C 3‘-      AGGAGAGAA CC AAGAGAAGA-

5‘ 
    

23 YTY= Pt-
GTG 

TM = 52°C 5‘-32P-TCCTCTCTT  YTY  TTCTCTTC-3‘ 

24 YTY= GTG TM = 61°C 3‘-      AGGAGAGAA CAC AAGAGAAG-
5‘ 

    
25 Z = dG-AAF TM = 50°C 5‘-32P-TCTCTC  Z  CTCATCCAC-3‘ 
26 Z = dG-AF TM = 52°C 3‘-      AGAGAG C  GAGTAGGTG-5‘ 
27 Z = dG-AAP TM = 51°C  
28 Z = dG TM = 55°C  

    
29 Z = dU-Fl TM = 52°C 5‘-32P-TCTCTC W CTCATCCAC-3‘ 
30 Z = dT TM = 53°C 3‘-      AGAGAG A GAGTAGGTG-5‘ 
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Um den Erkennungsprozess von Rad14 zu untersuchen, wurde eine Lösung 

bestehend aus Rad14 und den 5‘-32P markierten Oligonukleotiden (18-32) 

inkubiert und die Verschiebung der Banden auf einem nicht-denaturierenden 

Gel (native PAGE) untersucht. Zuerst wurde die Bindung von Rad14 zu den 

UV-induzierten Schäden CPD und T(6-4)T studiert, wissend, dass es sich bei 

T(6-4)T um ein exzellentes Substrat für die NER handelt.[165] 33 fmol der 

geschädigten Oligonukleotide 18 und 19 und ein ungeschädigtes Oligonukleotid 

(20, XX = TT) als Kontrolle wurden mit einer steigenden Menge von Rad14 

inkubiert. Wie man in Abbildung 6.25 a erkennen kann, kam es zu keiner 

Verschiebung der Banden (Spur 2 und 4). Selbst mit einer höheren 

Konzentration an Rad14 (Spur 3 und 5) ist kein Unterschied zum 

Kontrollexperiment (Spur 6) sichtbar. Da die Bindung von Rad14 zu dieser Art 

von Schäden eine anerkannte Tatsache ist, ist das als ein überraschendes 

Ergebnis zu werten. Um auszuschließen, dass Rad14 den Schaden nur in 

einem offenen Duplex erkennt, wurde die Bindung von Rad14 auch zu 

einzelsträngiger T(6-4)T DNA untersucht. Auch hier ist keine Bindung 

feststellbar. Ob die Länge der Oligonukleotide einen Einfluss auf das 

Bindungsverhalten aufweist wurde in nachfolgenden Experimenten untersucht. 

In Abbildung 6.25 f ist zu sehen, dass Rad14 einen längeren Doppelstrang mit 

CPD (27mer, ODN 31) ebenfalls nicht bindet. Da auch hier keine Bindung 

entdeckt werden konnte, kann darauf geschlossen werden, dass Rad14 

keinerlei Affinität zu ungeschädigter oder UV-geschädigter ssDNA und dsDNA 

aufweist. Als nächstes wurde Cisplatin geschädigte DNA untersucht. Das 

Chemotherapeutikum Cisplatin reagiert bevorzugt mit zwei benachbarten 

Guanin-Nukleotiden, in dessen Folge ein verbrücktes Pt-GG Dinukleotid, oder 

Pt-GTG Trinukleotid entsteht, welches schwere strukturelle Veränderungen im 

DNA-Duplex hervorruft. Eine bestätigte Tatsache ist, dass Cisplatin-Schäden 

durch NER effizient repariert werden.[165] Tatsächlich kann man an den 

Bindungsstudien in Abbildung 6.25 b erkennen, dass Rad14 den Duplex  mit 

einem Pt-GG-Schaden erkennt und bindet (Spur 2-4). Ferner konnte festgestellt 

werden, dass das Pt-GTG-Trinukleotid (ODN 23, Spur 5-7) sehr viel schlechter 

erkannt wird, obwohl der Helix-destabilisierende Effekt sehr viel größer als bei 

Pt-GG ist, was auch durch die Reduktion der Schmelztemperatur von 

zusätzlichen 2°C bestätigt wird.   
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Schließlich wurde das Bindungsverhalten von Rad14 zu DNA untersucht, 

welche sperrige DNA-Addukte trägt, die metabolisch aktiviert werden und mit 

DNA reagieren können.[111] Sowohl dG-AAF, als auch dG-AF sind 

hervorragende Substrate für eine starke NER Antwort.[165] Abbildung 6.25 c 

zeigt die erhaltenen gelshifts. Für beide Schäden ist nun eine starke 

Verschiebung der Bande zu sehen (Abbildung 6.25 c; ODN 25 (Spur 1-4) und 

Spur 5-7 (ODN 26)). Dies deutet auf einen stabilen Protein-DNA-Komplex hin. 

Es ist auch deutlich zu erkennen, dass dG-AAF viel besser erkannt und 

gebunden wird als dG-AF. Veröffentlichte Daten zeigen, dass dG-AAF in vivo 

eine stärkere NER-Antwort aufweist.[220] Um zu prüfen, ob ein längeres 

Oligonukleotid (30mer) eine stärkere Bindung hervorruft, wurde die Bindung von 

Rad14 zu dem DNA Duplex 32 untersucht, der ein eingebautes dG-AAF enthält. 

Auch hier wurde eine ähnliche Bande beobachtet, der Einfluss der Länge des 

Oligonukleotid scheint keine oder nur eine kleine Auswirkung auf die 

Bindungsaffinität zu haben (Abbildung 6.25 g). Desweiteren wurde die Bindung 

zu dem Pyren-Analogon dG-AAP untersucht, welches dieselben strukturellen 

Elemente wie dG-AAF und dG-AF aufweist, nämlich einen planaren 

aromatischen Rest an der Position C8 der Purinbase. Auch hier konnte eine 

klare Bindung festgestellt werden (Abbildung 6.25 e, Spur 3-5), obwohl die 

Affinität geringer ist, als die zu dem dG-AAF-Addukt (vgl. Spur 2 und 3). Da all 

diese großen Addukte als gemeinsames Element eine planare aromatische 

Einheit, die in die große Furche zeigt, aufweisen, kann dies als ein klares 

strukturelles Element für die Erkennung von Rad14 gewertet werden. Um die 

Hypothese zu bestätigen, wurde die Nukleobase dU mit Fluorescein markiert 

(siehe Abbildung 6.24 b) und in die Mitte eines DNA Duplexes eingebaut (ODN 

29). [171] Diese Base weist eine große aromatische Einheit auf, die aus der 

großen Furche der DNA herausdeutet und einen 15 Å langen flexiblen Spacer 

zwischen der aromatischen Gruppe und der Nukleobase besitzt. Dies hat den 

Vorteil, dass die sterische Abstoßung zwischen Fluorescein und dem 

Doppelstrang minimiert wird und der Duplex eine ungestörte B-Typ Helix mit 

einer intakten Watson-Crick-Basenpaarung bildet. Dies wurde durch  eine 

Schmelzpunktmessung bestätigt, welche zeigt, dass die Stabilität des 

Oligodinukleotids 29 im Gegensatz zu ODN 30 nur um 1°C erniedrigt wird. 

Rad14 bindet den entsprechenden Doppelstrang mit einer Effizienz, die die 
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enthaltene Einzelstränge als Substrate verwendet, da die Doppelstränge dieser 

Schäden eine sehr starke Bindung zu Rad14 aufweisen.  Die erhaltenen 

Ergebnisse sind in Abbildung 6.26 c und d dargestellt (ssDNA dG-AAF 30mer, 

Spur 1-2 und ssDNA dU-Fl, Spur 1-2). Beide Experimente zeigen deutlich, dass 

die Bindung von Rad14 zu einzelsträngiger DNA unerheblich ist, da keine 

Verschiebung der Banden zu sehen ist. Dieses Ergebnis ist ein klarer Beweis 

dafür, dass Rad14 als Substrat doppelsträngige DNA benötigt, welche nicht 

oder nur schwach durch den Schaden gestört ist.  

 

6.3.3.3 Bestimmung der Bindungskonstanten von Rad14 zu geschädigter 

DNA 

Um ein quantitatives Bild des Bindungsprozesses zu erhalten, wurden die 

Bindungskonstanten von Rad14 zu den zwei Substraten dG-AAF und dU-Fl 

durch ein kompetitives Bindungsexperiment bestimmt. Die Konzentration der 

radioaktiven geschädigten DNA wurde konstant gehalten, während eine 

steigende Menge an unmarkierter geschädigter DNA als Kompetetitor 

zugegeben wurde. Der Bindungsassay enthielt 33 fmol markierter, geschädigter 

DNA, 23 pmol gereinigtes Rad14 und eine unterschiedliche Konzentration an 

geschädigter, unmarkierter DNA. Abbildung 6.26 a fasst die erhaltenen Daten 

für das Substrat dU-Fl zusammen. In Spur 1 ist als Kontrolle kein Protein 

zugegeben, während in Spur 8 ungeschädigte DNA verwendet wurde, um die 

geringe Affinität von Rad14 zu dsDNA zu bestätigen. Die verschobenen Banden 

von den Spuren 2-7 wurden gegen den Logarithmus der Konzentration der 

kompetitiven DNA aufgetragen und mit Hilfe eines one-site kompetitiven 

Algorithmus gefittet.  Es ergibt sich eine Bindungskonstante von Kaff = 32 nM (± 

8 nM), welche auf die starke Affinität von Rad14 zu diesem Typ einer nicht Helix 

destabilisierenden Basenmodifikation hinweist. Es ist auch eindeutig zu 

erkennen, dass ungefähr 80% der dU-Fl enthaltenden DNA verschoben wurde, 

was die starke Affinität von Rad14 zu hydrophoben aromatischen Einheiten in 

der großen Furche der DNA unterstreicht. Diese Tatsache wurde bereits 

mehrfach in der Literatur beschrieben.[170, 171] Die Bindungskonstante zu dG-

AAF wurde wie zuvor beschrieben zu 135 nM (± 10 nM) bestimmt, was auch 
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zwei Diazirinen versehen waren und dadurch ein- oder zweimal mit dem Protein 

reagieren konnten. Dies führt zu konformationell leicht unterschiedlichen 

Crosslinks, durch die das Auftreten zweier Banden im SDS-Gel erklärt werden 

konnten. Ein Rad14-spezifischer Western-blot zeigte ebenfalls eine 

Doppelbande, so dass es sich hier nicht um eine Kontamination handeln 

konnte.  

Wie in bereits beschriebenen Experimenten zeigt auch hier Rad14 eine hohe 

Affinität zu ungeschädigter DNA, was darauf schließen lässt, dass die 

strukturellen Veränderungen der DNA ein Substrat für Rad14 darstellen. Der 

Blick auf die Spuren 3 und 4, welche die Belichtungen in Anwesenheit von 

Rad14 und Rad23 zeigen, belegt keine Markierung von Rad23, welche leicht 

(Masse des freien Proteins: 46 kDa, Laufhöhe im SDS-Gel: ca. 55 kDa) über 

der vom Rad14 herrührenden Doppelbande zu sehen sein müsste. Ein 

Western-blot bestätigt diese Annahme. Rad23 besitzt, wenn es nicht mit Rad4 

komplexiert ist, keinerlei Affinität weder zu geschädigter, noch zu 

ungeschädigter DNA. Dies wurde auch in der Literatur schon mehrfach 

bestätigt,[140, 165, 166] ebenso hat die Anwesenheit von Rad23 keine 

Auswirkungen auf die Effizienz der Markierung von Rad14, wie ein Vergleich 

der Spuren 2-3 und 4-5 deutlich zeigt. Auch diese Tatsache ist bereits mehrfach 

erwähnt worden. Jedoch entsteht bei Anwesenheit von Rad23 eine neue Bande 

unterhalb der von Rad14. Da diese Bande vor allem im Fluoreszenzgel und 

nicht im Coomassie gefärbten Gel zu sehen ist könnte angenommen werden, 

dass Rad23 einen geringen Einfluß auf die Entstehung des Crosslinks besitzt. 

Diese Tatsache muss noch genauer untersucht werden.   

 

6.3.3.5 Kristallisationsexperimente des DNA bindenden Fragments von 

Rad14 

Das minimale DNA bindende Fragment von Rad14 wurde mit einem dG-AAF 

geschädigten 16mer zusammen einem Kristallisationsscreening unterworfen 

(siehe Kapitel 5.5.1). Um zu zeigen, dass auch dieses stark verkürzte Protein 

die Möglichkeit der DNA-Bindung aufrecht erhalten hat, wurde ein EMSA-

Experiment durchgeführt. Dazu wurde in den bereits beschrieben Bedingungen 
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Da für die Lösung der Kristallstruktur kein Molekularer Ersatz verwendet 

werden konnte, musste das Protein mit Selenomethionin angereichert werden. 

Dazu wurde das Expressionsplasmid pPSG-IBA3-Rad14-DBD in den 

Methionin-auxotrophen-Stamm E. coli B834 (DE3) transformiert. Die Expression 

erfolgte in  einem LeMaster-Medium und die Aufreinigung des Proteins geschah 

analog zu der des in normalem Medium exprimierten Proteins. Es musste 

allerdings darauf geachtet werden, dass die Puffer zuerst entgast wurden und 

als Reduktionsmittel DTT statt β-Mercaptoethanol verwendet wurde. Bei der 

bereits oben angegebenen Bedingung entstanden nach 2 Monaten wiederum 

Kristalle, die einer Synchrotronmessung unterzogen wurden (Abbildung 6.30). 

Die ersten Kristalle streuten nur bis ungefähr 6 Å, im Moment wird an der 

Lösung einer Kristallstruktur mit einer Auflösung von 2.9 Å gearbeitet. 

 

Tabelle 6.11: Darstellung der verwendeten Oligodesoxynukleotide. Bei ODN 37 wurde ein 

Überhang von einer Base verwendet.  

ODN Schaden Sequenz 
 

 
36 

 
Z = dG-AAF 

 
5’- TCTCTC  Z  CTCATCCAC -3‘ 
3‘- AGAGAG C GAGTAGGTG -5’ 

   
37 Z = dG-AAF 5’- TCTCTC  Z  CTCATCCAC -3‘ 

3‘-   GAGAG C  GAGTAGGTGG -5’ 
   

 

 

 

6.4  Mechanismus der Schadenserkennung in der NER 

 

NER ist das grundlegende Verteidigungssystem gegen große Addukte und UV-

DNA- Schäden in den drei Reichen der Lebewesen.[165] Der genaue 

Mechanismus, wie eine so große Anzahl verschiedenster DNA Schäden 

erkannt werden kann ist bisher unbekannt.[164] Anfangs wurden zwei 
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gegensätzliche Modelle vorgeschlagen, in denen entweder Rad14/XPA oder 

Rad4/XPC die primäre Schadenserkennung durchführen. Später wurde ein 

drittes Modell vorgeschlagen, in dem Rad4/XPC-Rad23/HR23B,  Rad14/XPA 

und RPA in zufälliger Reihenfolge geschädigte DNA binden, welches in einem 

Multi-Komplex resultiert.[221] Mit Hilfe einer Vielzahl von unterschiedlichen 

geschädigten und ungeschädigten DNA-Strängen, die definierte DNA-Schäden 

enthalten, konnten in dieser Arbeit die Bindungseigenschaften von Rad14 

untersucht werden. Aus den Ergebnissen der durchgeführten Experimente kann 

gefolgert werden, dass Rad14 weder geschädigte Einzelstränge, noch typische 

NER-Substrate wie UV-induzierte CPD und T(6-4)T Schäden, oder intrastrang 

Pt-GTG Crosslinks, erkennt.  

Anders als Rad4 ist Rad14 nicht in der Lage destabilisierte Doppelstränge zu 

erkennen. Dies zeigt sich auch deutlich, wenn man die Schmelzpunkte der 

geschädigten Stränge, die durch Rad14 erkannt werden, mit denen von 

ungeschädigten Kontrollsträngen vergleicht. Der CPD Schaden reduziert die 

Schmelztemperatur um 7°C und T(6-4)T erniedrigt die Temperatur noch 

deutlicher um 10°C, was durch den bekannten Helix-störenden Effekt des 

Dimers bestätigt wird. Beide Schäden werden weder in Einzel- noch in 

Doppelsträngen von Rad14 erkannt. Die Idee, dass die Destabilisierung der 

Helix kein Kriterium für die Bindung von Rad14 ist, wird durch die 

Bindungsstudien mit Pt-GTG bestätigt. Dieser intrastrang Crosslink wird nur 

schwach erkannt, obwohl es sich hierbei um einen der am stärksten 

helixverzerrenden Schäden handelt. 

Im Falle der großen Adduktschäden, die durch eine Reaktion von 

elektrophilen Karzinogenen mit DNA entstehen, ändert sich die Situation. [119] 

Diese Karzinogene reagieren mit DNA Basen und führen zu einer Vielzahl von 

DNA-Addukten, von denen einige nur leichte Störungen der Helixstruktur 

hervorrufen, wie z. B. die C8-Addukte von dA und dG.[115] Jedoch handelt es 

sich bei diesen Schäden um hervorragende Substrate für die NER.[165] Wie 

erwartet, werden die Schmelzpunkte von dG-AAF und dG-AF enthaltenen 

Doppelsträngen nur um 5°C bzw. 3°C erniedrigt und auch NMR-

Untersuchungen  zeigen, dass kein oder nur ein geringer Einfluss auf die 

Duplexstruktur besteht. Jedoch zeigen die hier beschriebenen Studien, dass 
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trotz der fehlenden Destabilisierung der Doppelhelix beide Schäden von Rad14 

sehr effizient erkannt werden, nicht aber in dem korrespondierenden 

Einzelstrang. Zusätzlich führt die effiziente Bindung des vom Aminopyren 

abgeleiteten AAP-dG Schadens zu der Erkenntnis, dass planare aromatische 

Gruppen, die aus der DNA heraus in die große Furche zeigen, das molekulare 

Schlüsselmotiv für die Erkennung von Rad14 darstellen.  

Unterstützt wird diese These durch die Experimente mit dem C5-Fluorescein-

dU-Addukt, welches aufgrund des langen Spacers zwischen der Nukleobase 

und der aromatischen Fluorescein Einheit fast keinen destabilisierenden oder 

störenden Einfluss auf die Struktur der Doppelhelix aufweist. Dennoch wird 

diese Verbindung sehr effizient von Rad14 erkannt. Paradox wird die Situation 

mit den Cisplatin-Schäden. In diesem Fall kann eine klare Erkennung von Pt-

GG detektiert werden, jedoch ist die Erkennung des intrastrang Pt-GTG 

Crosslinks schwächer.  Dieses Ergebnis mag den Hinweis geben, dass Helix-

störende Effekte eine effiziente Erkennung durch Rad14 schwächt oder 

verhindert.  

Diese Ergebnisse erlauben nun ein neues Modell für die NER-

Schadenserkennung vorzuschlagen. Eine gut begründete Tatsache ist, dass 

Rad4/XPC destabilisierte Duplexstrukturen unabhängig von der Art des 

Schadens erkennt, welcher die Störung hervorruft. Die Kristallstruktur von Rad4 

zeigt, dass das Protein den Schaden selber nicht kontaktiert, aber wenige 

Basen von der Störung entfernt bindet. Bei diesem Rad4-spezifischen 

Mechanismus, der gestörte Strukturen erkennt, handelt es sich um eine Art der 

Schadenserkennung durch NER. Die hier beschriebenen Daten zeigen, dass 

Rad14/XPA eine zweite Art der Schadenserkennung ermöglicht, die 

unabhängig von Rad4/XPC ist. Auf dieser Stufe werden zu Beginn der NER 

nicht-Helix verzerrende Schäden, wie große Addukte, erkannt. Bei dem 

gemeinsamen strukturellen Motiv handelt es sich um ein planares aromatisches 

Ringsystem, welches in die große Furche der DNA zeigt. Zusätzlich erkennt 

Rad14 Pt-GG Schäden, jedoch bleibt dieser Mechanismus noch aufzuklären.  

Zusammenfassend kann man feststellen, dass NER mit zwei 

gegensätzlichen Schadenserkennungsmechanismen arbeitet. Schadens-
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A   Adenin 

Å  Angström 

Abb.  Abbildung 

Ak   Antikörper 

AP  Alkalische Phosphatase 

APS  Ammoniumperoxodisulfat 

AS   Aminosäure 

AcOH   Essigsäure 

BCIP  5-Brom-4-chlor-3-indolylphosphat-p-toluidinsalz 

BER   Basenexzisionsreparatur 

bp   Basenpaar(e) 

BSA   bovine serum albumine 

C   Cytosin 

CPD   Cyclobutanpyrimidindimer 

Cry   Cryptochrom 

CV   column volumes, Säulenvolumen 

d   Tage 

Da   Dalton 

dATP  2’-Desoxyadenosin-5’-triphosphat 

dCTP  2’-Desoxycytosin-5’-triphosphat 

dGTP  2’-Desoxyguanosin-5’-triphosphat 

DMSO  Dimethylsulfoxid 

dNTP  2’-Desoxynukleosid-5’-triphosphat 

DNA   Desoxyribonukleinsäure (desoxyribonuecleic acid) 
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ds   doppelsträngig 

DTT   Dithiothreitol 

dTTP  2’-Desoxythymidin-5’-triphosphat 

E. coli  Escherichia coli 

EDTA   Ethylendiamintetraessigsäure 

Em   Emission 

eq.   Äquivalente 

ESI   Elektronenspray-Ionisation 

et al.    und andere 

Ex.   Anregung (exitation) 

Fa.  Firma 

G   Guanin 

g  Gramm 

GMP   Guanosinmonophosphat 

GTP   Guanosintriphosphat 

GST   Glutathion-S-Transferase 

h   Stunde(n) 

His   Histidin 

HEPES  2-[4-(2-Hydroxyethyl)-1-piperazino]-ethansulfonsäure 

HPLC   High performance liquid chromatography 

HRP   horseradish peroxidase 

HV   Hochvakuum (10-3-10-2
 mbar) 

hν   Photoreaktion 

I   Intensität 

IgG   Immunglobulin G 
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IPTG   Isopropylthiogalactosid 

k  Kilo 

KS   Bindungskonstante 

kb   Kilobase(n) 

konz.  konzentriert 

L   Liter 

LB   Luria Bertani 

LC   liquid chromatography 

Lsg.   Lösung 

M   molar 

m  Meter 

m  milli (10-3) 

MALDI matrix assisted laser desorption assay 

MeCN  Acetonitril 

MeOH  Methanol 

min   Minute(n) 

mL  Milliliter 

μL   Mikroliter 

MS   Massenspektrum 

μ  micro (10-6) 

n  nano (10-9) 

NBT  3,3′-(3,3′-Dimethoxy-4,4′-biphenylylen)-bis-[2-(4-nitro-phenyl)-5-

phenyl-2H -tetrazoliumchlorid] 

NER   Nukleotidexzisionsreparatur 

Net3   Triethylamin 
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ng   Nanogramm 

nm   Nanometer 

NMR  nuclear magnetic resonance 

NTP   Nukleosidtriphosphat 

OD   optische Dichte 

ODN  Oligodesoxynukleotid 

ORF  offener Leserahmen 

ori   origin of replication 

ox   oxidiert 

PAGE  Polyacrylamid-Gelelektrophorese 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

pg   prep grade 

ppm   parts per million 

RNA   Ribonukleinsäure (ribonucleic acid) 

RNS   reactive nitrogen species 

ROS   reactive oxygen species 

RP   reversed phase 

rpm   revolutions per minute 

RT   Raumtemperatur 

s   Sekunde(n) 

ss  einzelsträngig 

SDS   Natriumdodecylsulfat 

T   Temperatur 

Tab.   Tabelle 
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TB   terrific broth 

TEMED  N,N,N’,N’-Tetramethylendiamin 

TEAA   Triethylamoniumacetat 

TLS   trans lesion sythesis 

TM  Schmelztemperatur 

Tris   Tris(-hydroxymethyl)-aminomethan 

u   units 

U   Uracil 

ü.N.   über Nacht 

ÜNK   über Nacht Kultur 

UV   Ultraviolet 

V   Volt 

Vis   visible 

v/v  Volumenanteil (volume per volume) 

W   Watt 

wt  Wildtyp 

w/v  Massenanteil (weight per volume) 

λ  Wellenlänge 
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Tabelle 9.1: Tabelle zur Bestimmung der PCR Primer-Annealingtemperatur anhand der 

empirisch ermittelten Schmelzpunkte in °C. 

 

 

 

 

 

 

 

 

 

 

 

 

Länge des Primers 
GC 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 28.7 31.2 33.5 35.5 37.2 38.9 40.3 41.6 42.8 43.9 44.9 45.9 46.7 47.6 48.3 49.0 49.7 50.3
2 31.4 33.8 35.9 37.7 39.4 40.9 42.3 43.5 44.6 45.6 46.6 47.5 48.3 49.0 49.7 50.4 51.0 51.6
3 34.2 36.4 38.3 40.0 41.6 43.0 44.2 45.3 46.4 47.3 48.2 49.0 49.8 50.5 51.1 51.7 52.3 52.8
4 36.9 38.9 40.7 42.3 43.7 45.0 46.2 47.2 48.2 49.1 49.9 50.6 51.3 51.9 52.5 53.1 53.6 54.1
5 39.9 41.5 43.1 44.6 45.9 47.1 48.1 49.1 50.0 50.8 51.5 52.2 52.8 53.4 54.0 54.5 54.9 55.4
6 42.4 44.1 45.5 46.9 48.0 49.1 50.1 50.9 51.7 52.5 53.1 53.8 54.3 54.9 55.4 55.8 56.3 56.7
7 45.1 46.6 47.9 49.1 50.2 51.2 52.0 52.8 53.5 54.2 54.8 55.3 55.9 56.3 56.8 57.2 57.6 58.0
8 47.8 49.2 50.4 51.4 52.4 53.2 54.0 54.7 55.3 55.9 56.4 56.9 57.4 57.8 58.2 58.6 58.9 59.2
9 50.6 51.7 52.8 53.7 54.5 55.3 55.9 56.5 57.1 57.6 58.1 58.5 58.9 59.3 59.6 59.9 60.2 60.5

10 53.3 54.3 55.2 56.0 56.7 57.3 57.9 58.4 58.9 59.3 59.7 60.1 60.4 60.7 61.0 61.3 61.6 61.8
11 56.0 56.9 57.6 58.2 58.8 59.4 59.8 60.3 60.6 61.0 61.3 61.6 61.9 62.2 62.4 62.7 62.9 63.1
12 58.8 59.4 60.0 60.5 61.0 61.4 61.8 62.1 62.4 62.7 63.0 63.2 63.4 63.7 63.9 64.0 64.2 64.4
13 61.5 62.0 62.4 62.8 63.1 63.5 63.7 64.0 64.2 64.4 64.6 64.8 65.0 65.1 65.3 65.4 65.5 65.6
14 64.2 64.6 64.8 65.1 65.3 65.5 65.7 65.8 66.0 66.1 66.3 66.4 66.5 66.6 66.7 66.8 66.8 66.9
15 67.0 67.1 67.2 67.4 67.5 67.6 67.6 67.7 67.8 67.8 67.9 68.0 68.0 68.1 68.1 68.1 68.2 68.2
16 69.7 69.7 69.7 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5
17 72.4 72.2 72.1 71.9 71.8 71.7 71.5 71.4 71.3 71.3 71.2 71.1 71.0 71.0 70.9 70.9 70.8 70.8
18 75.2 74.8 74.5 74.2 73.9 73.7 73.5 73.3 73.1 73.0 72.8 72.7 72.6 72.4 72.3 72.2 72.1 72.1
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Sequenz des fpg Gens aus Lactococcus lactis Cremoris sk11 (819 bp) 

ATGCCAGAATTACCAGAAGTTGAAACCGTTAGAAGAGAACTTGAAAAAAGAATTGTTGGACA

AAAAATTATATCTATAGAAGCCACTTATCCAAGAATGGTCTTAACTGTTTTGAGCAATTGAAAA

AAGAATTGACAGGAAAAATCATTCAGGGCATCTTGCGGAGGGAAATATTTAATTTTTGAAATT

GGAGATGACTTTCGCTTGATTTCTCATTTACGAATGGAAGGGAAATATCGCTTAGCAACACTT

GATGCACCAAGAGAAAAGCATGACCATTTGACAATGAAATTTTCTGATGGGCAGTTAATCTAT

GCCGATGTAAGGAAATTTGGAACTTGGGAATTGATTTCTACTGACCAAGTGATTCCCTATTTTC

TGAACAAAAAAATTGGACCAGAACCGACCTATGAAGATTTTGATGAAAAGCTTTTTCGAGAGA

AATTAAGAAAATCAACAAAGAAAATAAAACCTTATTTACTTGAGCAAACCCTTGTTGCTGGGC

TTGGCAATATTTATGTTGATGAAGTGCTCTGGTTAGCAAAAATTCATCCAGAAAAAGAGGCTA

ATCAGCTGACAGAAAGTTCCATCCACCTTTTGCACGACTCAATTATTGAAATTTTGCAAAAAGC

GATTAAGCTTGGTGGTTCAAGTATTAGAACTTATAGTGCCTTAGGATCAACTGGTAAAATGCA

AAATGAGTTGCAAGTTTATGGTAAAACGGGTGAAAAATGTTCCCGTTGTGGTGCAGAGATTC

AAAAAATAAAAGTTGCTGGTCGAGGCACTCATTTTTGCCAGTTTGTCAGCAAAAATAA 

 

Sequenz des rad14 Gens aus S. cerevisiae (1116 bp) 

ATGACTCCCGAACAAAAGGCCAAACTAGAGGCTAACAGGAAATTAGCAATAGAACGGTTAAG

AAAAAGGGGAATACTGAGTAGCGACCAATTGAATCGAATAGAAAGTAGGAATGAACCTTTAA

AAACCCGGCCTCTCGCAGTTACTAGTGGCAGCAATCGGGATGATAATGCAGCAGCCGCAGTA

CATGTGCCAAATCATAATGGACAACCGTCTGCGCTTGCTAACACTAACACTAACACTACTTCAC

TTTATGGTAGCGGAGTAGTTGATGGAAGTAAAAGGGATGCGTCGGTACTCGACAAAAGGCCA

ACGGATAGAATCAGACCTAGCATAAGGAAACAAGATTACATTGAGTACGATTTTGCCACCATG

CAGAACTTGAATGGTGGTTATATCAACCCTAAGGACAAGCTTCCAAATTCTGACTTTACCGATG

ACCAAGAATTTGAATCTGAGTTTGGATCTAAAAAGCAGAAGACACTACAGGACTGGAAAAAG

GAACAACTTGAACGGAAAATGCTGTACGAAAATGCACCTCCTCCAGAGCATATTTCAAAGGCG

CCGAAATGTATTGAATGTCATATTAATATTGAGATGGATCCTGTGCTACATGATGTGTTCAAGT

TACAAGTTTGTAAACAGTGTTCTAAGGAGCATCCAGAAAAGTATGCACTACTGACGAAAACA

GAATGTAAGGAAGATTACTTTTTAACAGACCCCGAATTGAATGATGAGGATCTCTTTCATAGA

CTAGAAAAGCCGAACCCTCATTCGGGGACATTTGCAAGAATGCAACTATTTGTTAGATGTGAA

GTGGAAGCCTTTGCGTTCAAGAAATGGGGTGGAGAAGAAGGTTTAGATGAGGAATGGCAAC
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GTCGTGAAGAAGGAAAGGCTCACAGAAGGGAGAAAAAATACGAAAAGAAAATCAAGGAAAT

GCGACTGAAAACAAGAGCTCAAGAATATACTAATAGATTAAGAGAAAAGAAGCATGGGAAA

GCCCATATTCATCATTTTAGTGATCCAGTTGATGGAGGTATTGATGAAGACGGTTATCAAATTC

AAAGAAGAAGATGTACAGACTGCGGGCTAGAAACTGAAGAAATTGACATTTAA 

 

Sequenz des rad14 Gens aus S. cerevisiae (N-terminal verkürzt, 1089 bp) 

ATGGAGGCTAACAGGAAATTAGCAATAGAACGGTTAAGAAAAAGGGGAATACTGAGTAGCG

ACCAATTGAATCGAATAGAAAGTAGGAATGAACCTTTAAAAACCCGGCCTCTCGCAGTTACTA

GTGGCAGCAATCGGGATGATAATGCAGCAGCCGCAGTACATGTGCCAAATCATAATGGACAA

CCGTCTGCGCTTGCTAACACTAACACTAACACTACTTCACTTTATGGTAGCGGAGTAGTTGATG

GAAGTAAAAGGGATGCGTCAGTACTCGACAAAAGGCCAACGGATAGAATCAGACCTAGCATA

AGGAAACAAGATTACATTGAGTACGATTTTGCCACCATGCACAACTTGAATGGTGGTTATATC

AACCCTAAGGACAAGCTTCCAAATTCTGACTTTACCGATGACCAAGAATTTGAATCTGAGTTTG

GATCTAAAAAGCAGAAGACACTACAGGACTGGAAAAAGGAACAACTTGAACGGAAAATGCT

GTACGAAAATGCACCTCCTCCAGAGCATATTTCAAAGGCGCCGAAATGTATTGAATGTCATAT

TAATATTGAGATGGATCCTGTGCTACATGATGTGTTCAAGTTACAAGTTTGTAAACAGTGTTCT

AAGGAGCATCCAGAAAAGTATGCACTACTGACGAAAACAGAATGTAAGGAAGATTACTTTTT

AACAGACCCCGAATTGAATGATGAGGATCTCTTTCATAGACTAGAAAAGCCGAACCCTCATTC

GGGGACATTTGCAAGAATGCAACTATTTGTTAGATGTGAAGTGGAAGCCTTTACGTTCAAGAA

ATGGGGTGGGGAAGAAGGTTTAGATGAGGAATGGCAACGTCGTGAAGAAGGAAAGGCTCAC

AGAAGGGAGAAAAAATACGAAAAGAAAATCAAGGAAATGCGACTGAAAACAAGAGCTCAAG

AATATACTAATAGATTAAGGGAAAAGAAGCATGGGAAAGCCCATATTCATCATTTTAGTGATC

CAGTTGATGGAGGTATTGATGAAGACGGTTATCAAATTCAAAGAAGAAGATGTACAGACTGC

GGGCTAGAAACTGAAGAAATTGACATTTAA 
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Sequenz des rad14 Gens aus S. cerevisiae (DNA bindendes Fragment, 363 

bp) 

ATGGCGCCGAAATGTATTGAATGTCATATTAATATTGAGATGGATCCTGTGCTACATGATGTG

TTCAAGTTACAAGTTTGTAAACAGTGTTCTAAGGAGCATCCAGAAAAGTATGCACTACTGACG

AAAACAGAATGTAAGGAAGATTACTTTTTAACAGACCCCGAATTGAATGATGAGGATCTCTTT

CATAGACTAGAAAAGCCGAACCCTCATTCGGGGACATTTGCAAGAATGCAACTATTTGTTAGA

TGTGAAGTGGAAGCCTTTGCGTTCAAGAAATGGGGTGGAGAAGAAGGTTTAGATGAGGAAT

GGCAACGTCGTGAAGAAGGAAAGGCTCACAGAAGGGAGAAAAAATACTAA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C
 
 
P
 
N

G

G

 

 

S

09

09

 

 

H

10

10

 

09

 

 

P

12

 

 

M

 

Curriculum

Persönlich

ame:  

Geburtsdatu

Geburtstort:

chulausbi

9/84 – 07/8

9/88 – 06/9

Hochschuls

0/97 – 02/0

0/00 – 09/0

02/04

 

03/05

9/05  

Promotion 

2/05 – 08/0

 

München, 1

m vitae 

e Daten 

 Ra

um:  08

:  M

ildung 

88 G

97 M

studium 

00 St

05 St

4 – 03/04 

  

5 – 09/05 

 Ho

09 W

Ar

M

  

2.08.2010

alf Strasse

8. Mai 1978

ünchen 

rundschule

ichaeligym

tudium der

tudium der

Organ

Unive

Diplom

Münc

DNA 

ochschulab

Wissenscha

rbeitsgrupp

aximilians-

 

  

er  

8  

e an der Fü

mnasium M

r Biotechno

r Chemie a

nisch-Chem

ersité René

marbeit b

chen („Isol

Nukleotide

bschluss: 

aftlicher Mit

pe bei Prof

-Universitä

 

Famil

Staats

ührichstras

München 

ologie an d

an der Ludw

misches-F

é Descarte

bei Prof. 

ierung von

excisionsre

Dipl.-Chem

tarbeiter/D

f. Dr. Thom

ät 

ienstand: 

sangehörig

sse, Münch

der FH We

wig-Maxim

orschungs

es, Paris, F

Dr. Thom

n Schlüsse

eparatur“) 

m. Univ.  

Doktorand i

mas Carell 

  

9 A

   ledig

gkeit: Öste

hen 

eihenstepha

milians-Univ

spraktikum

Frankreich 

mas Carel

elproteinen

n der 

an der Lud

Anhang 

211 

g 

erreich 

an 

versität 

 

ll, LMU 

n in der 

dwig-



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


