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Zusammenfassung

Die Klassifikation von Lagrange Untermannigfaltigkeiten in symplektischen Mannigfal-
tigkeiten bis auf Isotopie (Lagrange, Symplektische und Hamiltonsche) ist eine schwere
und interessante Frage. Bekanntes in diesem Gebiet beschrankt sich vornehmlich auf das
Problem der Lagrange Isotopie, da unter den genannten Typen der Isotopie dieses das
einfachste ist.

In der vorliegenden Arbeit beweisen wir die Klassifikation von monotonen Lagrange Tori
in (S? x 5% wyq ® wsg) bis auf Hamiltonsche Isotopie fiir eine besondere Klasse von
monotonen Lagrange Tori unter einer zuséatzlichen Annahme.

Die Klasse von monotonen Lagrange Tori, die wir betrachten sind die sogenannten ge-
faserten monotonen Lagrange Tori. Ein Lagrange Torus L in (S? X S?, wgq @ weq) heifit
gefasert, falls es eine Blitterung F von S? x S? durch symplektische 2-Sphéren in der
Homologieklasse [pt x S?] und eine kompakte, symplektische Untermannigfaltigkeit X'
(Schnitt der Blatterung) in der Klasse [S? X pt] mit den folgenden Eigenschaften gibt:

e Y/ ist transversal zu den Blattern von F und Y’ ist disjunkt zu L;

e F induziert eine Blétterung von L durch Kreise (die Blétter von F schneiden L in
Kreisen).

Die Motivation, diese Klasse von monotonen Lagrange Tori zu betrachten, kommt aus der
Doktorarbeit von A. Ivrii [I2], in welcher er unter anderem beweist, dass jeder Lagrange
Torus in S? x S? gefasert ist.

Wir beweisen in der vorliegenden Arbeit den Satz EZAl dass ein gefaserter monotoner
Lagrange Torus zu dem es noch einen zweiten symplektischen Schnitt > mit bestimmten
Eigenschaften gibt, Hamiltonsch isotop zum Standard Torus ist. Der Standard Torus ist
der monotone Lagrange Torus, der aus den Aquatoren in den beiden kartesischen Faktoren
gebildet wird. Es ist bekannt [28],[24],[25],[26],[27] und [23], dass es in (S? X S?, wstq Dwsta)
exotische monotone Lagrange Tori gibt. Es folgt deshalb sofort, dass es den zweiten sym-
plektischen Schnitt wie in unserem Satz gefordert fiir diese Tori nicht geben kann.
Ausblickend in die Zukunft kann man deshalb hoffen, dass die Klassifikation von mono-
tonen Lagrange Tori in S? x S? in den Bereich des Moglichen gelangt, falls man die
Bedingungen versteht, unter denen der zweite symplektische Schnitt existiert.
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Abstract

The classification of Lagrangian submanifolds in symplectic manifolds up to isotopy (La-
grangian, symplectic and Hamiltonian) is a hard and interesting question. Known results
in this area concern mainly the problem of Lagrangian isotopy, since among the types of
isotopy mentioned above this is the easiest case.

In the following thesis, we prove the classification of monotone Lagrangian tori in (5% x
S?% Wyta D wstg) up to Hamiltonian isotopy for a special class of monotone Lagrangian tori
under an additional assumption.

The class of monotone Lagrangian tori considered in this thesis are fibered monotone La-
grangian tori. A Lagrangian torus L in (5% x 8%, wq@wsa) is called fibered if there exists
a foliation F of S? x S? by symplectic 2-spheres in the homology class [pt x S?| and a
compact symplectic submanifold ¥’ in class [S? x pt] with the following properties:

e Y is transverse to the leaves of F and is disjoint from L;
e F induces a foliation of L by circles (the leaves of F intersect L in circles).

The motivation to consider this class of monotone Lagrangian tori is A. Ivrii’s PhD thesis
[T2] in which he proves among other things that any Lagrangian torus in S? x S? is fibered.
The theorem we prove in this thesis (Theorem EZ5T]) states that a fibered monotone La-
grangian torus for which there exists a second symplectic section X with certain properties,
is Hamiltonian isotopic to the standard torus Lgyg.

L4 is the monotone Lagrangian torus made up of the equators in both cartesian factors.
It is known [28],[24],[25],[26],[27] and [23] that there exist exotic monotone Lagrangian
tori in (S?% x 5%, wyq @ wea). Consequently, the second symplectic section as described
above cannot exist for these tori.

As an outlook, one can hope that the classification of monontone Lagrangian tori in 52 x S?
comes within reach if we understand the conditions under which the second symplectic
section exists.
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Chapter 1

Introduction

The classification of Lagrangian submanifolds in symplectic manifolds up to Lagrangian,
symplectic or Hamiltonian isotopy is an interesting problem. Mainly, the known results
concern Lagrangian spheres or tori in symplectic manifolds of dimension four. Results in
the area are R. Hinds classification up to Hamiltonian isotopy of Lagrangian 2-spheres
in S5? x S? with the standard product symplectic form in 2004 [22] and very recently,
J. Evans paper [2I] on the Lagrangian unknottedness of Lagrangian spheres in certain
Del-Pezzo surfaces.

Another result which is of importance for this thesis is A. Ivriis PhD thesis about the
Lagrangian unknottedness of Lagrangian tori in R*, S? x S2, CP?, T*T? with the standard
symplectic forms in 2003 [12].

We address the question of Hamiltonian (un-)knottedness of a certain class of monotone
Lagrangian tori in S? x S2.

A Lagrangian torus is called monotone if the symplectic area of any relative 2-cycle with
boundary on the Lagrangian torus is a fixed multiple of its Maslov index. The cartesian
product of the equators in each S?-factor in S? x S? is called the standard Lagrangian torus
Lgyq (or the Clifford torus). This torus is monotone for the symplectic form wgg ® wsiq-
It is known by results of Chekanov-Schlenk [28], Entov-Polterovich [24], Biran-Cornea
[25], Fukaya-Oh-Ohta-Ono [26], Albers-Frauenfelder [27] and Yau [23], that there exist
monotone Lagrangian tori in (52 X S% Wy ® wstq) Which are not Hamiltonian isotopic.
Two such are the Clifford torus and the Chekanov-Schlenk Torus Lcg (one of the tori
constructed in [28]).

In this thesis, we consider L a monotone Lagrangian torus in (S? x 5%, wgq ® Weta)-
Ivrii’s result motivates the following definition. A monotone Lagrangian torus L in (S? x
S?% Wyta B weta) is called fibered if there exists a foliation F of S? x S? by symplectic 2-
spheres in the homology class [pt x S?] and a symplectic submanifold ' in class [S? x pt]
with the following properties:

e X' is transverse to the leaves of F and is disjoint from L;

e F induces a foliation of L by circles (the leaves of F intersect L in circles).
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2 CHAPTER 1. INTRODUCTION

We will also say that L is fibered by F and Y’ if we want to name the foliation and
the section explicitly in the definition.
Note that >’ singles out a disk in each leaf of F which intersects the torus L. These disks
together form a solid torus T" with 97T = L.
One part of Ivrii’s result now says that any monotone Lagrangian torus in S? x S? is
fibered.
We prove the following

Theorem (Main Theorem). Let L C (S? x S?, wgq @ wea) be a monotone Lagrangian
torus which is fibered by F and Y.

Assume in addition, that there exists a symplectic submanifold 3 in homology class [S* X pt]
which is transverse to the leaves of F and which is disjoint from ' and T. Then L is
Hamiltonian isotopic to the standard torus L.

As an immediate consequence, for the torus Lcg constructed by Y.Chekanov and
F.Schlenk, there cannot exist the additional section ¥. This instantly rises the question
whether the classification of monotone Lagrangian tori in (S? x S% wyq ® wga) up to
Hamiltonian isotopy comes within reach if we understand the role of the second section
3.

Now we turn towards outlining the proof of the Main Theorem. By a relative symplectic
fibration on S? x S%, we mean a quintuple of the form

(f7 w’ L7 27 El)’

where L is a monotone Lagrangian torus for the symplectic form w and L is fibered by F
and Y. Further ¥ is an additional symplectic section with properties as required for the
Main Theorem.

Now note that the triple (F, %, Y) is diffeomorphic to (Fyqa, S? x {N}, 52 x {S}) where
Faaq denotes the standard foliation on S? x S? given by the fibers of the projection
pr: S? x 8% — 5% (x1,72) — x;. On the other hand w is always diffeomorphic to
Wsta Dwsta (see [B]). So each of w and F on its own is not interesting, but the pair of them
carries interesting structure. Important in the following is the symplectic curvature of the
symplectic connection defined by (F,w,3’). The symplectic connection on a symplectic
fiber bundle is given by the symplectic orthogonal complements to the tangent spaces to
the fibers. A priori, the symplectic curvature is a two-form on the base with values in
the vertical symplectic vector fields. But as the curvature identity tells us, the curvature
vector field is Hamiltonian, so that we can regard the symplectic curvature as a two form
on the base with values in the functions (the Hamiltonians) on the fiber.

The main step in the proof of the main theorem is to find a deformation of a given relative
symplectic fibration to one with vanishing symplectic curvature. If a relative symplectic
fibration has vanishing symplectic curvature, then using symplectic parallel transport, we
can write down explicitly a symplectomorphism which maps the foliation to the standard
foliation, the Lagrangian torus to the standard torus, and which is the identity on homol-
ogy. By a theorem of Gromov, there exists a symplectic isotopy from the identity to ¢.
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Figure 1.1: Where the symplectic curvature vanishes after the first step.

Since S? x S? is simply-connected, this symplectic isotopy is Hamiltonian.
Thus, most of the work will go into showing the existence of a deformation of relative
symplectic fibrations to one with vanishing symplectic curvature. In the first step, which
makes up Chapter 2, we kill the symplectic curvature near the two sections X, ¥’ and near
a leaf of F intersecting L.
After applying the diffeomorphism described before, we can therefore assume that (F, %, ¥)
is the standard fibration p; and X, ¥’ are the constant sections at the north and southpole.
Moreover we can assume that the symplectic curvature vanishes near the two sections and
near the fibers over the line of longitude through Greenwich in the base.

Let (A, i) be spherical polar coordinates on S? where A denotes the latitude and pu
denotes the longitude.
In step 2 (first part of chapter 3) we kill the monodromy along all circles of latitude C*.
Observe that after Step 1 the monodromy maps ¢* along C* give a loop in Ham(A, DA, wyy),
the group of Hamiltonian symplectomorphisms of the annulus which are fixed in some
neighbourhood of the boundary. Since the fundamental group of Ham(A, 0A, wsyq) van-
ishes, we can contract the loop ¥ = (¢*)~! and obtain a family of Hamiltonians H
which generate the contraction.
Now consider the closed two form

Q=w+d(H)dp).

This form gives a symplectic connection whose monodromies along C* are the identity.
However €2 need not be symplectic if a;? is large. This can be remedied by the inflation
procedure due to McDuff and Lalonde [3]. To keep the Lagrangian torus monotone in the
inflation, we have to make some modifications in the procedure. Consider a leaf F' = S?
intersecting L in the equator. Monotonicity of L forces the upper hemisphere D, and
the lower hemisphere Dy, in F' to have symplectic area % Then if we alter the symplectic
form in the inflation procedure and we want to keep L fixed and monotone, we have
to make sure that both D,; and Dy, keep their symplectic area. This “symmetrical

inflation is the reason why we have to use two symplectic sections, whereas usually only
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one submanifold suffices. After this step, we can assume that the monodromy along the
circles of latitude is the identity.

In step 3 (the second part of chapter 3) we write down a explicit deformation of the
symplectic form to obtain vanishing symplectic curvature. This finishes the outline of the
proof.



Chapter 2

Setup

2.1 Framework

In the following M will be a compact smooth 4-manifold which is diffeomorphic to S?% x S2.
Further by L = T? we mean an embedded two torus in M.
The second homology Hy(M;R) = R?. Fix a diffeomorphism 0: S? x S? — M. Then we
define A := [0(S? x {pt})] and B := [0({pt} x S?)]. Since 0, is an isomorphism A, B span
Ha(M). Let

pi: S7 x S — §?

(1, x) — ;.
Definition 2.1.1. A symplectic form w on S? x S? which is of the form
W = piwi + prwe

for symplectic forms wy,w, € Q%(S?) is called split.

In Appendix [Al the symplectic form wyy on S? with area 1 is defined.
Definition 2.1.2. The symplectic form

Wo = P1Wstd + PaWstd

on S? x S? is called the standard symplectic form on S? x S2.

Definition 2.1.3. Consider S? x S? C R? x R? in the standard way with standard coor-
dinates ((z,y, 2), (u,v,w)) on R3 x R3. Then let

Lga = {((z,y,2), (u,v,w)) € S x $?|z=0;w =0}

be the cartesian product of the two equators in S%. We will call Lgyq the Clifford torus in

S? x S2.
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Remark
We will call 6,wy the standard symplectic form on M and for convenience we will also
denote it by wy.
In the sequel we will consider M with various symplectic forms w. The standard form wy
will often be used as a “reference” symplectic form.
We will also call §(Lgy) the Clifford torus in M and denote it by L.
Next we will call p; 0 §71: M — S? the standard projections on M and denote them by

Di-

2.2 Symplectic foliations, fibrations and the symplec-
tic connection

2.2.1 Foliations

Let X be a smooth manifold of dimension n.

Definition 2.2.1. A foliation F of dimension k on X is given by an open covering
{Ua}uea and charts ¢o: Vo — U, with V, C R™ such that for all o, 3 the transition
function

bap: ¢n' (Ua NUs) — ¢3(Us N Ug)
€T = ¢5 © ¢a(z)

maps (subsets of) the fibers of the standard fibration p: R* — R"7*, (11,..,1,) —
(1, o, Tng) to (subsets of) fibers of p. Then (Uy, du)aca as above is called a foliating
atlas of X for F.

Remark
Let X be a smooth manifold and ¢: R® — U C X a chart, then ¢({zy,.., 2,1} X RF)
defines a family of k-dimensional submanifolds on X. A foliation on X is then to say that
these families of submanifolds defined by different charts match up.

Example
Consider the 2-torus 72 as R?/Z% Then a line of irrational slope through the origin
defines a foliation of T2
Another example are the fibers of any smooth surjective submersion 7: X — B. Folia-
tions of this type are called simple foliations.

Definition 2.2.2. Let F be a foliation of dimension k on X. Then let x € X and
consider a chart (Uy, o) around z of a foliating atlas for F. Then this chart defines a
submanifold S, of dimension k through x. Now we define the leaf F, of F through the
point x as the set of points on X which can be connected to x by paths lying entirely in
Sy or its continuations by other foliating charts.
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Remark
If we speak of a foliation of X by 2-spheres we mean a foliation F of X whose leaves are
all diffeomorphic to the 2-sphere.

We want to see how we can alter a foliation.

Definition 2.2.3. A smooth family of foliations {F,},cp of dimension k on the manifold
X s defined to be a foliation F of dimension k+1 on X X R such that F restricts to F;
on X x {t}.

Remark
Let ¢ be a diffeomorphism of X and F; a smooth family of foliations on X then ¢(F)
is also a smooth family of foliations on X. Consider the diffeomorphism & = ¢ x id of
X x R then ®(F) is the desired foliation of X x R.

Theorem 2.2.4. Let Fy be a foliation of dimension k of the n-dimensional manifold X .
Assume that there exists an embedding G: U x F — X with U open in R"* such that G
maps {x} x F diffeomorphically onto a leaf of F for all x € U. Let V C U be an open
set in R"™* with V C U and assume that

Gs: UxF — X

for s € R is a smooth family of embeddings such that G|\vyxr = Glunv)xr then the
embeddings G define a smooth family of foliations Fs on X.

Proof. A detailed proof will be given in the appendix. Note first that all the embeddings
G are local diffeomorphisms for dimensional reasons and thus G(U x F) is an open
set of X. Since the embeddings G, agree on (U \ V) x F it follows that the image
G,(U x F) = G(U x F) is fixed for all s. We write Z = G(V x F) and Y = G(U x F).
Then Z is closed and Y is open in X. First we want to show that using the embeddings
G5 we can define foliating charts for all s, so that indeed we get a foliation F; on X for
every s.

If (Ua, @a)aca is a foliating atlas for Fy then we can define a new atlas by restricting the
old atlas to (U = Uy N (X \ Z), o = $alg, ). And choosing as new foliating charts on Y,

(U x Wj, Gy o (id x 1))

where 1)3: W, — Wy C F are charts of F and U x Wj C R"* x R¥ is open. By
construction, the restricted charts coming from the old foliation match up with the new
ones on the overlaps. Also clearly the new foliating charts satisfy the foliation condition.
Thus indeed this defines a foliation F; on X.

We are left to show that the foliations F; form a smooth family. Therefore we only have
to choose a smooth way to group leaves of the foliations F; together to form a leaf of F.
Write G: U x F x R — X X R; (z,5) — (G4(x),s). Then G is an embedding. Thus we
define the foliation F on X X R by specifying its leaves through any point:

(Fo)e x Rforx & Z
Fop = =
’ Gz} x FxR) forz €Y
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leaves of F
Figure 2.1: The map m
Then on Y — Z the two definitions agree due to the fact that G, is fixed to G there.
Clearly F restricts to Fs on X X {s}. This proves the theorem. O
The following theorem will be used frequently in the sequel.

Theorem 2.2.5. Let F be a foliation of M by symplectic 2-spheres. Further let ¥ be a
submanifold of M which is transverse to F, for all ¢ € M. Then X is diffeomorphic to
S2, % intersects every leaf of F in a single point and the map

T M — X

qe Fgr—=FgNX

is a surjective submersion. Moreover there exist diffeomorphisms ¢: M — S? x 5? and
w: ¥ — S?% such that the following diagram commutes:

M —2 §2x 52
lﬂ lpl (2.1)
r — S

Proof. A detailed proof is given in Appendix B. Let B = M/ ~ be the set of equivalence
classes of the equivalence relation ~ on the set of points of M which is defined by

p~q iff geF,

i.e. if both points belong to the same leaf of F. For a foliation F of a connected manifold
M whose leaves are all simply connected and compact, it follows that p: M — B; ¢ — [q]
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given by the projection to the leaf space is a smooth fibration. Consequently, the leaf-
space B is a closed orientable 2-manifold. Further it follows that the Euler-Characteristics
of the spaces involved satisfy
X(M) = x(5*)x(B).

Thus x(B) = 2 and so B is diffeomorphic to S?. Let u: B — S? be a diffecomorphism then
uop: M — S?is a S%-bundle over S2. But there are only two such bundles, the trivial
one and a non-trivial one. Note that the intersection forms of the total spaces of the two
S2-bundles differ. But M is diffeomorphic to S? x S? which is the trivial S2-bundle over
S2. Hence it has the intersection form of the trivial S?-bundle and consequently u o p is
the trivial S2-bundle over S2. Hence there exists a trivialisation:

M —— S$?2xS?

l” lpl

B —2— S
Now push 3 forward under 7. Then 7(X) is transverse to {¢} x S? for all ¢ € S?. This
implies however that p;|,x): 7(X) — S? is a covering and so by simply-connectedness of
S?, pil-x) is a diffeomorphism. Hence 7(X) is the image of a section o of p;. But then
o' = 771 o 0 o u defines a section of p with image ¥ and © = ¢’ o p. From this it is clear
that 7 is a smooth surjective submersion and that X is diffeomorphic to S?. The existence
of the trivialisation can be deduced as above for the space of leaves B. This proves the
theorem. O

Definition 2.2.6. Let F be a smooth foliation of M. Then F is called a symplectic
foliation if every leaf of F is symplectic.

Remark
We will exclusively study symplectic foliations F on M whose leaves are symplectic 2-
spheres and for which there exists a section ¥ as in EE2Z3 Then by the theorem, the
symplectic foliations in our setup can always be thought of as being symplectic fibrations.
The foliation obtained by the fibers of the standard projection p; is called the standard
foliation and is denoted by Fyyq.

2.2.2 Symplectic fibrations and symplectic vector bundles

Definition 2.2.7. A fibrationp: M — B is called a symplectic fibration if (p™!(b), w|,~1(s))
is a symplectic submanifold of (M,w) for allb € B.

Definition 2.2.8. Let p: M — B be a symplectic fibration with fiber diffeomorphic to S?,
then p is called a symplectic ruling of M.

In particular if 7: M — B is a symplectic ruling, then the proof of shows that
B is diffeomorphic to S? and that 7 is the trivial S?-bundle over S2.

Symplectic vector bundles
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Definition 2.2.9. Let w: E — M be a smooth vector bundle. Then (w, E, M,w) is a
symplectic vector bundle if w is a non-degenerate 2-form on E, i.e. a smooth section of
the bundle

E*NE*— M

which restricts to a non-degenerate form on every fiber.

Remark
If (X,w) is a symplectic manifold and 7: TX — X; v € T, X — z then (7, TX, X,w) is
a symplectic vector bundle.

2.2.3 The symplectic connection and its curvature
The symplectic connection and some properties

Definition 2.2.10. Let (X,w) be a symplectic manifold and p: X — B be a symplectic
fibration. Then the symplectic form defines a connection on p via a splitting

TX = H & kerdp
gien by the symplectic orthogonal complements to the tangent spaces of the fibers of p
H, = (ker dp,)™.
This is called the symplectic connection induced by (p,w) on X.
Then we have

Proposition 2.2.11. Let (X,w) be a symplectic manifold and p: X — B be a symplec-
tic fibration. Then the parallel transport Py: p~*(v(0)) — p~'(y(1)) for the symplectic
connection induced by (p,w) on X along the path v C B satisfies

Plwn(1) = wyo)
where w, denotes the symplectic form w|,-1(y).

Proof. Let Z be the vector field on X defined by the horizontal lift of a vector field Y
on B. Let ¢; denote the flow of Z and 1; denote the flow of Y. Obviously ¢; preserves
the fibration since a flowline of Z is the horizontal lift of a flow-line of Y. Then ¢; :=
Dielp-12y: p @) — p N (Yy(z)) is a diffeomorphism between the fibers. Consider the
restriction of ¢jw to the fiber p~!(z) over x. This is just the pull-back d;wy, () of the
symplectic form wy,(,) under 6;. If 6wy, () is independent of ¢ then it follows immediately
that 6wy, = w, showing the statement of the proposition that symplectic parallel
transport is through fiberwise symplectomorphisms.

Thus consider J

%@w =Lzw=dizw+ 1zdw = dizw.



2.2. SYMPLECTIC FOLIATIONS, FIBRATIONS AND THE SYMPLECTIC CONNECTION11

Now let ¢,: p~'(x) < X be the inclusion of the fiber p~!(z) into X. Then

A d

xdt@w = E(ﬁwwt(m)-

L

Thus to show that d;wy, () is independent of ¢ it is enough to show that the restriction of
4 prw to the fiber p~!(z) vanishes.
For any 1-form o we have the following identity:

do(v,w) = Lya(w) — Lya(v) — a[v, w]).

Thus
dizw(v,w) = Lytzw(w) — Lytzw(v) — tzw([v, w])

and since we only have to consider vertical vectors v, w, by the definition of the symplectic
connection, it follows that dvzw vanishes as desired. This shows the proposition. O

Proposition 2.2.12 (Symplectic trivialisation by symplectic parallel transport). Let
(X,w) be a symplectic manifold and let p: X — C be a symplectic fibration. Let F, =
p~Y(2), then there exists a diffeomorphism ¢: C x Fy — X

CxF —2 X

| E

c “sc
such that ¢*w restricted to {z} x Fy equals w(0) for all z € C. And where w(z) denotes
the restriction of w to F,. Moreover ¢ is the identity on Fj.

Proof. By Proposition 22111 the symplectic paralleltransport satisfies

Plw(y(1)) = w((0))

for any path v in the base. Thus we are going to prove this proposition by symplectic
parallel transport over the specific set of paths v, , given by first going along the x-axis
from the origin to (z,0) and then going to (z,y) along the parallel to the y-axis through
(x,0).

Let

0
7= o

denote the vector field on X defined by the horizontal lift of the vector field a% on the
base. Similarly Y denotes the horizontal lift of a%' Let ¢Z, ¢Y denote the flows of Z,Y.

Now we define
¢: Cx Fy— X; (t+is,w) — ¢} (6] (w)).

Then the pullback form ¢*w restricts to w(0) on {z} x Fy. Moreover it is clear that ¢ is
the identity on F{. This proves the proposition. O
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—2¢ —€ € 2€

Figure 2.2: The bump function p

Remark
In the case when p: C x FF — C; (z,w) — z and only the symplectic form varies
from fiber to fiber, then in the construction above we can write ¢Z(z + iy, w) = (x +
s + iy, PZ(x,y)(w)) where PZ(x,y): F — F is a diffeomorphism of F' which depends
smoothly on s,z,y. Note that PZ(z,y) = id for all x,y. Similarly we define PY (z,y).
Note that

oY 0 ¢Z(0,w) = (t +is, PY(t,0) o PZ(0,0)(w)).

We now consider a cut-off function p (see figure Z2).
and define

T:Cx F—-CxF; (t+is,w) — (t+is, szsz_i_tz)s(t, 0)o Pjs2+t2)t(0, 0)(w)).
Then by construction 7*w restricts to w(0) on the fibers in a neighbourhood of F' and 7
is the identity outside some bigger neighbourhood.

The symplectic curvature and some properties

Definition 2.2.13. Let (X,w) be a symplectic manifold and p: X — B a symplectic
fibration then we define the vertical tangent-bundle associated to (X, p) to be the subbundle
VTX :=kerdp of TX.

Let I'(p: £ — X)) denote the vector space of sections of the vector bundle p: F — X.
['(X) is shorthand for the vector fields on X.

Definition 2.2.14. The curvature of a connection H (distribution of horizontal sub-
spaces) on w: X — B is defined to be a map

Qu:T(B)xT'(B) = T'(7: VT X — X)

Qu(Y,2) =Y, 2]

for any two vector fields Y, Z in T'(B) where ~ denotes the horizontal lift and """ denotes
the projection to the vertical subbundle VT'X of TX along H.
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Remark
By the Frobenius theorem it is clear that the curvature as defined above measures the
non-integrability of the horizontal distribution.

Note that Qg (vy,v2) is linear over functions: write f=nf
Qur(for, gvs) = [fon, §oa]""" = (F51()2 — §02(F)0 + filor, o))"
but the first two terms vanish because the vector fields are horizontal, thus

QH(fUh 9”2) = W*fﬂ*g[ﬁh ?72]vm = ngH(Ula Uz)

so the value of Qg (vy,v2) at b € B depends only on v(b),v2(b) in the base not on a
neighbourhood of b. Moreover it is skew symmetric and bilinear, so Qg is a 2-form on
the base with values in the vertical vector fields on the fibers.

Remark

Since we only consider 2-dimensional horizontal distributions it is clearly enough to con-
sider two linearly independent vectors in the base to determine the integrability of the
horizontal distribution at some point.

Proposition 2.2.15 (The curvature identity). Let (X,w) be a symplectic manifold and
m: X — B be a symplectic fibration then the following holds:

ALyl W = L5y 5o)W
when restricted to VT X for all vectors vy, vs tangent to the base.

Proof of the curvature identity. For any 2-form « and vector fields Yy, Y7, Ys we have the
following identity:

dO&(Yb, Yiv Yé) = LYO (O‘(Yiv }/2)) - LYl (O‘(va }/2)) + LYz (O‘(va }/1))

_a([%a}/lLYVQ) _I_Oé([YE)a}/Q]?Y'l) _OZ([Y'l,}/Q],YE))
hence for a = w, Yy =01, Y1 = 0y and Yy = v € VT'X this gives:

dw(’fll, 'lNJQ, 'U) = L@lw(’flg, 'U)—L{)zw(’fll, U)+va(’l~11, ’[Jg)—(d([’fll, ’lNJQ], U)‘l‘&)([’fll, ’U], flg)—&)([’flg, U], 1~)1)

But [0, w] is vertical for any vertical w. To see this note that the flow ¢ of ¥ is the
horizontal lift of the flow ¢; of v on the base. Hence ¢; restricted to the fiber 7—!(x)
equals the parallel transport map P;: 7 1(z) — 77 1(¢(z)) of the symplectic connection
for the path {@s()} () in the base. Therefore if ¢, denotes the flow of w then for fixed
t,
¢roths o (¢) ' (2) = Piothy o P (2)

remains in the fiber 7(z) for all s. Consequently the vector field (gz;t)*w is vertical for all
t. This shows that the Lie-bracket [0, w] is also vertical (cf. Remark 6.26 in [I3] and the
discussion before). Then the above reduces to

dw(@l,f)g,v) = LU(W(@l,f)g)) — w([@l,f)g],v)
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for all vertical v. Thus
ALy Ly, W — Lyl dw = L, gw on VT'X.
But w is closed, hence it reduces to the required form. O
Thus given any two vector fields vy, v on the base, the curvature vector field
Qvy,v9) e N(VTX)

is Hamiltonian since

LQ(v1,02)W = d(w(ﬁlv 62))'
Hence the Hamiltonian H := w(?,72). The vector field determines the Hamiltonian up
to a constant. Fixing this constant by requiring that fp,l o Hwsta = 0, we can thus view
the symplectic curvature as a two form on the base with values in the functions on the
fibers, i.e.

Q(v1,v9) = w(vq,02) — ¢y

where ¢, is the fiberwise constant normalising the Hamiltonian as required above. Indeed
if w(%, a%) is constantly equal to ¢, then ¢, = ¢ and the curvature vanishes.

Remark
Let (X,w) be symplectic and p: X — B be a symplectic fibration. Let 2 denote the
curvature of the connection induced by (p,w). Vanishing curvature implies that the Lie-
bracket for any two horizontally lifted vector fields v, w has vanishing vertical part, thus
it is entirely horizontal. But then the Frobenius theorem implies that the horizontal
distribution is integrable, since it is spanned by such vector fields. Thus there exist
integral submanifolds whose tangent distribution equals the horizontal distribution.
Observe that if the base B is simply connected, then vanishing curvature implies that the
monodromy map around any closed curve in the base is the identity (if B is not simply
connected, a integral submanifold could be a cover of B in which case the monodromy
need not be the identity). In particular, parallel transport is independent of the path and
depends only on endpoints. In this case we say that (p,w) has trivial monodromy.
Example
Consider (52 x S?,w) with w split and the standard projection p;. Since the submanifolds
S?x pt are horizontal, they are integral submanifolds for the symplectic connection induced
by (p1,w) on S? x S? and so by the Frobenius theorem the symplectic connection has
vanishing symplectic curvature. In particular, symplectic parallel transport is the identity
for all paths in the base.

Definition 2.2.16. Let ¢: X — Y and u: Bx — By be diffeomorphisms such that

X 2. v

B S

BXL)BY
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with (Y,w) symplectic and py a symplectic fibration. Then the pullback symplectic con-
nection ¢*(py,w) on py is defined to be the symplectic connection induced by (px, d*w)
on X.

Proposition 2.2.17. Let (Y,w) be symplectic and py: Y — By a symplectic fibration
such that the symplectic connection induced by (py,w) has vanishing symplectic curvature.
Let ¢: X — Y and u: Bx — By be diffeomorphisms such that

X 2, v

lpx l
Bx — By

then the pull-back symplectic connection has also vanishing symplectic curvature. More-
over ¢ maps the integral submanifolds for ¢*(py,w) to the integral submanifolds for

(py,w).

Proof. From above we know that vanishing symplectic curvature implies integrability of
the horizontal distribution. Thus let S be an integral submanifold for the horizontal
distribution. Now consider S’ = ¢~15, then dg,w € Ty(,)S if w € T,,S". Thus

We(z) (dpzw,v) = 0

for all v € Vj)TY by definition of the symplectic connection induced by (py,w). Now ¢
maps the fibers of px diffemorphically onto the fibers of py, thus v = d¢,v for v € V,TX
and so

0= w¢(m)(d¢xw> d¢x@) = (¢*w)x(w> @)

for all v € V,X. Thus indeed T,S" is horizontal for the pull-back symplectic connec-
tion and S’ is an integral submanifold. Again by the Frobenius theorem, integrability
of the horizontal distribution implies vanishing symplectic curvature. This proves the
proposition. ]

Proposition 2.2.18. Let (X,w) be a symplectic four manifold and let p: X — C be a
symplectic fibration. Assume that the symplectic curvature of the symplectic connection
induced by (p,w) vanishes, then there exists a diffeomorphism ¢: C x Fy — X such that

C x Fy LN
B E
c “.c
and such that ¢*w is split.

Proof. Consider the diffeomorphism ¢ constructed in proposition by symplectic
parallel transport. If we fix a point w € Fy then ¢(vy,, x {w}) is the horizontal lift of
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Yoy C C starting at w. Since (p,w) has vanishing symplectic curvature, this horizontal
lift is contained in the integral submanifold S through the point w. This is true for all
x,y in C. Hence, since ¢ is a diffeomorphism ¢(C x {w}) = S. But we have seen before
that ¢ maps the integral submanifolds for the pull-back symplectic connection to those
of the original connection. Consequently C x {w} are the integral submanifolds for the
symplectic connection induced by (p1, ¢*w) on C x Fy. Then we can write

¢o*w=w(0)+a, ANdr + (5, Ndy + fdy N\ dx

where a,, 3, are 1-forms on {z} x Fy which are allowed to vary with the foot-point
z = (z,y) in C. By construction, the vertical part of ¢*w is fixed to w(0). But now note
that the horizontal lifts of a% and a@ at (z,w) are a%, a@ itself since C x {w} is horizontal.
Hence ! !

0
¢*w(%7 U) =0

for all vertical tangent vectors v € T} ,, {z} x Fy. Thus
—a(v) =0 Yo

and similarly for 5. @« = = 0 and hence ¢*w = w(0) + fdz A dy. Moreover f needs to
be constant in the vertical direction since otherwise ¢*w would not be closed.
Thus we can write

¢*'w = w(0) + pigdx N dy
for a function g: C — R. This proves the proposition. O

Remark
As before, if p = p;: C x F — C, then by introducing a suitable cut-off function, the
assertion in proposition can also be realised in a neighbourhood of the origin and
with ¢ being fixed outside some bigger neighbourhood.

2.3 Monotonicity of Lagrangian submanifolds

Recall that M is diffeomorphic to S? x S? and w is a symplectic form on M which is
cohomologous to wy.

Definition 2.3.1. A submanifold L of dimension 2 in (M,w) is called Lagrangian if

(U|LEO.

2.3.1 The Maslov index

Now we will define the maslov index

w: (M, L) — Z
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for a Lagrangian submanifold L in the symplectic manifold (M,w). We will rely on the
Maslov index Maslov: m (L) — 7Z defined in Appendix G.

First we consider a continuous map u: [E — M where [E denotes the closed unit disk in
C such that w(0E) C L. Since the tangent bundle T'M|, g, is a trivial symplectic vector
bundle, there exists a bundle map

E x R* — TM|u(IE)

bl
such that Tfwy,u) = Qo = dx A dy + du A dv where 7, {z} x R* — T,y M is the
isomorphism given by restricting 7 to the fiber over x € [E. Then

Lg = T_iel (Tu(ew)L)

e

defines a loop of Lagrangian subspaces in (R*,€)). The map Maslov from Appendix G
assigns an integer to this loop, so we define

p(u) = Maslov(Ly).

First we have to check that this is well-defined. The choice we made was in the
symplectic trivialisation 7. But any two such 7,7’ differ by a map ¢: E — Sp(4) into the
group of symplectic matrices of (R%,€)). More precisely let

¢:ExR! - E xR
(2,0) = &(2,0) = (2)(v)

then 3

T'=7o0¢.
Now ®(0) = ¢(e??)~! is a contractible loop of symplectomorphism since it extends to the
disk. The loop of Lagrangians with respect to the trivialisation 7 o ¢ instead of 7 is given
by

Ly = ¢(e) 7 (Lg) = ®(0) Le.

Then by Appendix G
Maslov(Ly) = Maslov(Lg) + 2Maslov(®) = Maslov(Lg)

and the Maslov index of u is well-defined.

Further if u;: E — M with w(0E) C L is a continuous family then the maslov index
p(uy) depends continuously on ¢. Since p is integer-valued pi(w;) is constant. This implies
the homotopy invariance of p.

If we write the group operation in my(M, L) as +, then any map uw: E — M with
u(OE) C L in the relative homology class [u] = [a] + [b] is homotopic to the concatenation
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(see App. F) of a and b so u([a] + [b]) = Maslov(L* x L?) = Maslov(L*) + Maslov(L’) =
p(a) + p(b) where L%, Lb are the loops of Lagrangians defined by the maps a,b: E — M
with boundary on L.

Definition 2.3.2. Let L be a Lagrangian submanifold in (M,w). Then the Maslov index
w: (M, L) — Z is the homomorphism which assigns to a relative cycle the Maslov index
of the corresponding loop of Lagrangians.

2.3.2 Monotonicity

Definition 2.3.3. Let L be a Lagrangian submanifold in (M,w), then L is called mono-
tone with monotonicity constant A\ if there exists a constant A € R, such that

() = | x

for all relative cycles [u] € my(M, L).

Remark We have to show first that this definition makes sense, i.e. that the sym-
plectic area of a relative cycle is well-defined. This is true since if U: E x I — M with
w(E) = U(JE x {t}) C L for all ¢ is smooth, then

0:/ dw:/ w:/ w—/ w—/ w.
UExI) U (ExI) u1 (E) uo(E) U(OEXT)

Now U(0E x I) C L thus the last term vanishes. Since by smooth approximations we can
always assume smoothness, this shows that symplectic area of relative cycles is indeed
well-defined.

By the appendix mo(M, L) = Hy(M, L) so that we can also view p as a linear map from
Hy(M, L) to Z. Thus to check monotonicity, it suffices to check the evaluation of w on a
set generating Hy(M, L) with known Maslov indices.

Also if w is a symplectic form such that L is monotone Lagrangian, then L is monotone
Lagrangian for ' if L is w’ Lagrangian and [,w = [’ for all relative cycles D €
Hy(M, L). This amounts to say that w,w’ are relative cohomologous.

In order to show that the Clifford torus Ly in (S? x S%, wg) is monotone we need to show
that the Maslov index of the relative cycles given by the section S? x {2z} and the fiber
{20} x S? is 4. Therefore we prove

Theorem 2.3.4. Let f: (S? z) — (M, o) be an embedding with f(z) = xo € L with
trivial normal bundle, then p(u) = 4 for u = fo¢: E — M. In the definition of u, via
stereographic projection from zy, we have identified E C C with the western hemisphere in

S2. Further ¢: S? — S? collapses the eastern hemisphere to zy and has mapping degree
1.

Proof. The proof is given in Appendix B. O
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Remark
The western and eastern hemispheres in S? C R? are defined by x § 0 respectively.

Proposition 2.3.5. The Clifford torus Ly in (S% x S? wy) is monotone Lagrangian.

Proof. Tt is clear that Ly is Lagrangian for wy. By Appendix F, we know that Hy(S? x
S?, Lyyq) is generated by

[5% x {pt}], [{pt} x S°], [Du, > {pt}], [{pt} x D]

where Dy, denotes the closed lower hemisphere in S2.

Now let u,v: (8% 29) — (5% x S?, (20, 20)) be given by u(z) = (z, 2) and v(z) = (20, 2).
Then u, v are the standard parametrisations of S? x {z}, {2} x S%. But u, v satisfy the
conditions of Theorem EZ34 so that p(uo ¢) = u(vo @) = 4. From Appendix [Al we know
that f g2 Wsta = 1 so that the monotonicity constant (if it exists) is fixed to A = i.

On the other hand in the proof of Proposition 223, it is shown that u(Dy, x {pt}) =
u({pt} x Dy,) = 2. Using stereographic projection from N on S?, the disk Dy, is mapped
to the closed unit disk E in C. Further from Appendix [Al we know that wgy is pushed
forward to sdr A df on C under stereographic projection from N. Then

T
/Emd’f’/\de—/l)lh Wstd-

This indeed equals % showing the monotonicity of Lgyq. O

(l—i-r2

Proposition 2.3.6. Let ¢ € Dif f*(M) and L a monotone Lagrangian torus in (M,w)
then ¢(L) is monotone Lagrangian for the symplectic form ¢.w.

Proof. First note that ¢(L) is Lagrangian for the push forward symplectic form. Next as-
sume that u: (E, JE) — (M, L) is smooth, then pu(u) = A f w. Thus for pou: (E,E) —

(M, ¢(L)) we have
/¢OU(E) P = /uaE) -

We are left to show that u(¢ou) = pu(u). Let
E x R* — TM|u(]E)
bk
such that 7wy = €, be a bundle map as in the definition of the Maslov index of u,

with
Ly = 7y gy (Tugein L)
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Then i
E xR =20 M| joue)

|» |-
E BN pou(E)

is a bundle map, since ¢ is a diffeomorphism so that d¢ is an isomorphism on tangent
spaces. Further

%;(qﬁ*w)d)ou(m) = Q.
First note that the tangent space to the Lagrangian torus ¢(L) at ¢ o u(e') is given by
T¢ou(ei9)¢(L) = d¢u(eie)Tu(eie)L.

Now the loop of Lagrangians defined by the trivialisation 7 equals
Ly = %;01T¢Ou(eie)¢([/) = TU_(L-Q)(d¢u(ei0))_1d¢u(ei9)(Tu(ez‘e)L) = T&iie)(Tu(eiG)L) = Ly.
Thus using the trivialisation 7 we see straight away that

plu) = p(dou).

By smooth approximations we can always assume the smoothness of u, this proves the
proposition. [

Remark
This shows that Ly in M is monotone Lagrangian for wqg since it is the push forward
under 6 (cf. section 2.1) of the Clifford torus in S? x S?. Hence we also call Lyq C M the
Clifford torus in M.

2.4 Monotone Lagrangian tori lying nicely in sym-
plectic fibrations

2.4.1 Fibered tori and some properties

Recall that M is diffeomorphic to S? x S2.

Definition 2.4.1. Let p: M — B be a smooth fibration over the (real) surface B and let
L C M be an embedded 2-torus then we say that L is fibered by p if

e v :=p(L) is an immersed loop with transverse self-intersections which are at most
double points;

o pL(v(t)) N L is diffeomorphic to St if ¥(t) is not a double point and to two disjoint
SYs if 4(t) is a double point;
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(1) B

Figure 2.3: L fibered by p

e in each of the S'’s in p~1(~(t)) N L we can fill in an embedded disk D C p~*(y(t))
in the fiber such that the two disks at a double point are disjoint and all the disks
form a solid torus T = S' x D? with L as its boundary.

Remark

Compare fig. For example, the Clifford torus Ly, is fibered by either standard
projection p;. This is also what one shall have in mind when thinking of tori fibered by
some fibration p.

As it is stated, the definition above is of topological nature. We will mainly have the
situation that p: M — B is a symplectic fibration and L is a monotone Lagrangian torus.
In this case, we have the following two important results on which most of the sequel is
based. In fig. 24 the cylinder formed by the lifted paths is then part of the Lagrangian
torus L by the following proposition:

Proposition 2.4.2. Let L C M be an embedded Lagrangian torus which is fibered by the
symplectic fibration m: M — B. Then L is given by parallel transport of the symplectic
connection induced by (w,w) on M of the S' in the fiber over a non-double point along
the projection curve v = w(L) in B.

Proof. Fix a parametrisation «y(t) of v such that ~/(¢) # 0 for all ¢ (from the definition of
being fibered, it follows that -y is an immersed curve). Then parallel transport along - is
defined by integrating the vectorfield X on p~'(v) given by the unique horizontal lifts in
H, of ~/(t) at all points = over 7(t). So it suffices to prove that the tangent space to the
Lagrangian torus L at z is spanned by X (x) and a non-zero vector v which is tangent to
the S! in the fiber given in the definition of being fibered by .

Clearly v € T, L. Since m is a symplectic fibration we can choose a linear independent
tangent vector w in T,p~'((t)) such that w(v,w) = 1. Since M is four dimensional, the
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Figure 2.4: L is generated by parallel transport
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fibers of 7 are two dimensional and v, w span T,p~(y(t)).
Further X (x) € H, lies in the symplectic orthogonal complement to T,p~'(y(t)). This is
also a symplectic subspace so we may choose another linear independent vector u € H,
such that w(X(x),u) = 1. Thus {v,w, X (z),u} forms a symplectic basis of T, M.
Now let w € T, L then

dm () = M/ (t)

for some A € R since (L) = 7. But then both AX (z) and @ project under dr to the same
vector in the tangent space of the base. Consequently they can only differ by a vector in
the kernel of dm which means by a vector tangent to the fiber

W= AX(x) + v + pow.

But L is Lagrangian, hence
0=w(v, W) = po

and so all vectors tangent to L at x are of the form AX(x) + pv. But T,L is two
dimensional so that there exists at least one vector w in T,L with A # 0 and thus

X(z) = +(w — pv) € T, L as claimed. O
Remark

Let L in M be fibered by p. Let N = p~!v be the 3-dimensional submanifold of M formed
by the fibers in which the torus L sits. In the topological definition of being fibered by
p we didn’t require the torus to be transverse to the fibers of p in N. If however L is
Lagrangian and p is symplectic, Proposition ZZ2] shows that we get this property for free.
Also important is the following proposition, which shows that in the case that L is also
monotone, then the curve v in the base must be embedded.

Lemma 2.4.3. Let L C (M,w) be a monotone Lagrangian torus with w cohomologous to
wo. Further let p: M — B be a symplectic fibration over the (real) surface B such that L
is fibered by p. Then the loop v := p(L) is an embedded curve,i.e. has no double points.

Proof. The idea is as follows. First note, that because of Theorem 23] and the coho-
mology assumption on w, it follows that the monotonicity constant equals i.

Assume now the contrary and consider a double point ¢ € v. We get two disjoint embed-
ded disks in p~!(g). Since the Maslov index of such a disk is 2, each of these disks has
symplectic area % Consequently the total symplectic area of the fiber is bigger than 1.
The desired contradiction. We are left to show that the maslov index of such a disk is 2.
We may assume that the fibration p is the trivial fibration, the base is equal to C with
standard coordinates z,y such that 4/(¢) is in direction a%‘ Let D be one of the disks in
p~H(q).

Let u: E — M be an embedding with image D where E denotes the closed unit disk in C
with standard coordinates u+iv. On E := T'M|p we can define a smooth almost complex
structure J which is compatible with w as follows.

Write
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for all z € D and define J by
J(v) = du(idu™*(v))

for v € T'D and by o .
0 0 0 0
Tor "oy Yoy T T

where 8@, aﬁ denote the horizontal lifts of aﬁ, aﬁ spanning H,. This defines a w-compatible
Dy ? Dy

smooth almost complex structure on E. Moreover a trivialisation of the footpoint map
. E—-Dvel,Fw—x

is given by

g 0 0 0

—, J—,du(=), Jdu(=—) ;.

{8x’ ox’ “(au)’ u(ﬁu)}

For calculating the Maslov index of a disk D with boundary on a Lagrangian submanifold
we first fix a trivialisation of the tangent bundle restricted to the disk D. Using the
trivialisation we can fix a standard Lagrangian subspace L*¢ in each tangent space T, M.
Now we want to use Lemma [G.0.40 to calculate the Maslov index, so we seek a loop of
unitary matrices A(#) which map the standard Lagrangian L** to L.« the tangent space

to the Lagrangian L at u(e®). Then according to Lemma [GLO40, the winding number of
the loop given by det A%(#) is then the Maslov index of D.

We fix the standard Lagrangian to L*¢ := spang {(%,du(%)}. Then by Proposition

Lew = spang {%,du((—sinw) +icos(9>>8%) = - sin(e)du(a%) - cos(e)J(du(a%))}

If we consider T, M to be a complex vector space with complex scalar multiplication
defined by (a 4 if)v := av + fJv then we can write

Lo = spang {%, iewdu(%)} :

Hence with respect to the complex basis 2, du(Z) the loop of unitary matrices A() is
given by
1 0
A(0) =
0 ie
Thus

det A%(0) = —e*

and the winding number is 2 as claimed. O
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Remark
In particular, if L is a monotone embedded Lagrangian torus in (M,w) which is fibred
by p: M — B, by Lemma 223, there exists a unique disk D, = T'Np~'(g) in the fiber
p~Y(q) for all points q € v := p(L).
We will also need the following;:

Proposition 2.4.4. Let (S? x S? ,w) be such that p, is a symplectic fibration, and such
that the Clifford torus Lgq in S? x S? is Lagrangian Jor w. Further w and wy induce the
same orientation on S* x S2. Then the relative cycle D = D, X {z} with 2z = (1,0,0)
and boundary on Lgg has Maslov index 2.

Proof. Consider stereographic projection from S in the base and consider coordinates
z =+ 1y on S\ {S} in the base. Then in these coordinates D,; = {|z| <1}. Let
m: T(S? x S?)|5 — D; veT,(52x S?) — p.

Consider the equator £ = {z = 0} C S? and the 0-meridian m = {y = 0} C S% Then
both £, m go through the point 2 in S2. Let v and w be tangent vectors to E respectively
m in T,,5% such that {v,w} is positively oriented. Consider v, w € T, ,,({z} x S?) for all
2 € Dyp. Now let a(2) := w(. ) (v, w). Then since v, w are positively oriented, a(z) > 0
for all z € Dyy,.

Since the fibers of p; are symplectic, so are the horizontal complements H, = (ker d(p;),)™*.

Let a%h(q), a%h(q) denote the horizontal lifts of 2, a% at ¢. Then a%h(q), a%h(q) are linearly

independent and span H, for all ¢ € (S*\{S}) x S2. So define 3(z) := w(s,») (a%h, a%h) >

0 for z € D, (this is greater than zero by the assumption that wg,w induce the same
orientation). Thus

LR S S 1o
Vaiz) Wa(z) T V/B(z) 9 T \/B(z) dy
is a symplectic basis of Ti...)(S? x S?) for all (z,2) € D. This defines a symplectic

trivialisation of w. Further we define a compatible almost complex structure J on 7 by

defining
o ah oh o
Jv=w;, Ju=-v; J— =— ; J— =—— .
v e v o dy ' Oy Ox
Via complex multiplication (a+ib)v = av+bJv, we can consider 7 to be a complex vector
bundle. Now w and J define a hermitian structure h(uy, us) = w(uy, Jug) + iw(uy, uz) on

every tangent space T, ., (S? x S?). With respect to h,

1 1 0"
v, —
Va(z)  /B(z) 0%
is a unitary basis of T(, .,)(S* x S?) (or unitary trivialisation of 7). Now we define the

standard Lagrangian L in every tangent space T{, .,)(S? x 5?) to be

h

Ly :=<v,— >p.
0 78:1: R
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By construction v is tangent to Ly along all points of dD. Further by Proposition P

h
and the fact that Ly is fibered by py, it follows that the horizontal lift (— sin(t) 2 + cos(t) (% )

at (cos(t) +isin(t), z) of the tangent vector —sin(t) 2 + cos(t)a% to the projection curve
p1(Lsta) at (cos(t) 4+ isin(t)) is also tangent to Lgy. Hence

0 2\"
T(cos(t)—i—isin(t),zo)Lstd =<, |- Sll’l( )8_3: + COS(t) ay > .

But since

0 a\" o" ah o" ar ., an
(— sin(t )% + cos(t )ay) = —sin(t )% +cos(t )Oy = —sin(¢ )% +cos(t )J% = ie”%
we see that .
T(eit,zO)Lstd =<, ieit% > .

Hence

1 0

A(t) =

0 e

is a loop of unitary matrices which maps Ly to Tieit ) Lsa along the boundary oD of D.

By Lemma [G.0.40 it follows that
(D) = wind(det A%(t)).

But det A%(t) = —e** and the winding number is 2. This proves the Proposition. O

2.4.2 Relative symplectic fibrations and their properties

Recall that M is diffeomorphic to S? x S? via the diffeomorphism 6: S? x S? — M and
A=1[0(5? x pt)] and B = [0(pt x S?)] span Hy(M).

Definition 2.4.5. A quintuple of the form (F,w, L,3,3) is called a relative symplectic
fibration on M if

o F is a smooth foliation of M by 2-spheres in homology class B;

o w is a symplectic form on M making the leaves of F symplectic with w(A) = w(B) =
1;

Y, Y are disjoint symplectic submanifolds in class A which are transverse to all the
leaves of F, so by Theorem ZZA7: M — ¥/ © € F, — X' NF, is a symplectic
ruling;

L C M is an embedded monotone Lagrangian torus fibered by m;
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o ¥ is disjoint from the solid torus T (0T = L in Def. [Z.Z1);
o Y intersects each of the fibers 71 ((t)) in the interior of the disk T N7~ 1(~y(t)).
Now we define what we mean by a homotopy of relative symplectic fibrations.

Definition 2.4.6. By a homotopy of relative symplectic fibrations, we mean a smooth
1-parameter family
(ft, wi, L, X, Z:g)te[o,l]

of relative symplectic fibrations where Ly, >y, 3 are smooth isotopies of submanifolds, w;
is a smooth family of symplectic forms and F; is a smooth family of foliations on M.

Definition 2.4.7. Two relative symplectic fibrations (Fy, w1, L1, 31, 3) and (Fa,we, Lo, Yo, b))
are diffeomorphic if there exists a diffeomorphism ¢ of M such that

¢(F1>w1>LlazlaZ,1) = (¢(f1)>¢*wla¢(L1)>¢(21)>¢(2/1)) = (anw2aL2>Z2>Z/2)'

Remark

By the definition of a relative symplectic fibrations, it follows that a diffeomorphism ¢
which makes two relative symplectic fibrations diffeomorphic induces the identity on the
second homology group Ho(M). Conversely, the push-forward (¢(F), ¢.w, (L), ¢(2), p(X'))
of a relative symplectic fibration (F,w, L, 3, ') under the diffeomorphism ¢ which induces
the identity on Ho(M) is again a relative symplectic fibration. In particular the image of a
relative symplectic fibration under ¢ € Dif fo(M) is again a relative symplectic fibration.
Note further that the symplectic connection induced by (¢(F), p.w, ¢(X')) is the push-
forward symplectic connection of (F,w, ).

Proposition 2.4.8. Let p: M — B be a symplectic fibration over u: B = S? by 2-spheres
in homology class B = [0(pt x S?)]. Consider the symplectic foliation F given by the fibers
of p and assume, that (F,w, L, %, Y') is a relative symplectic fibration on M. Further let
¢ be a diffeomorphism such that

M —2 82 x 52
lp lpl (2:2)
B —— §?

commutes. Then ¢(F,w, L, %, %) is a relative symplectic fibration on S? x S2.

Proof. All we have to show is, that ¢,: Hy(M) — Hy(S? x S?) induces the identity, where
we identify Hy(M) with Hy(S? x S?) via 6. By the Remark above, it then follows, that

¢(F,w, L, 5, Y)

defines a relative symplectic fibration.
Since ¢ maps the fibers of p to the fibers of p; which both lie in homology class B, we
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have ¢, B = B. Now Y is a section of p, hence ¢(X') is a section of p;. But a section of p;
is homologically of the form A +nB for some n. Indeed let o: S? — S? x S? be a section
of p; and assume that [0(S?)] = mA + nB, then p; o 0 = id and so [S?] = (p1).0.[S?] =
(p1)«mA +nB = m[S?). Hence m = 1 as claimed.

But ¢, is a ring homomorphism for the intersection product and A.A = 0 hence

0=0¢.(A.A) = d.(A).¢0.(A) = (A+nB).(A+nB) =2n.
This shows that ¢,A = A and so ¢, is the identity on Hy(M). O

Definition 2.4.9. Two relative symplectic fibrations (F,w, L, %,%), (F,w,L,%,%) o
M are said to be equivalent if there exists a sequence (F;,wi, L;,3;,%0), i = 1
relative symplectic fibrations such that

(f,w,L,Z,Z') = (fl,wl,Ll,Zl,le)

and .
(f,w,L,Z,Z/) = (fNawNaLNagNaZiN)'

We require, that any two consecutive relative symplectic fibrations in the sequence are
either diffeomorphic or the endpoints of a homotopy of relative symplectic fibrations.

Remark
Note that in the above definitions nothing has been said about the isotopy class of the
diffeomorphisms ¢;, so that it is unknown if equivalent relative symplectic fibrations are
homotopic in general!

Theorem 2.4.10. Let (F,w,L,%,Y') and (F,©, L, Y, il) be equivalent relative symplec-
tic fibrations on M where (F,w, L, %, E,) has vanishing symplectic curvature and the sec-

tions %, Y are horizontal. Then there exists a homotopy of relative symplectic fibrations
(Fs, ws, L, Xg, 30) with (Fo, wo, Lo, X0, 24) = (F,w, L, X, %) such that

(fh W, L17 217 2/1)
has vanishing symplectic curvature and the sections X1, %) are horizontal.

Proof. Let (F',w', L}, %", ¥¥) i =1,.., N be the sequence of relative symplectic fibrations
such that
(F’ w? L? 27 Z/) = (F17 wl’ Ll’ 217 21/)

and -

(F, o, L, %, %) = (FN, WV, LV £V v
as in Definition We can assume without loss of generality that every other step
consists of a homotopy of relative symplectic fibrations and the first step is given by

a diffeomorphism. Indeed, by composition and concatenation we may replace several
consecutive steps by diffeomorphisms or homotopies by a single one. Also if the first step
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is a homotopy, we may start with its second endpoint. Further, we can assume that the
last step is a homotopy. If this is not the case, we use the fact that vanishing symplectic
curvature is carried along by diffeomorphisms (cf. Proposition ZZZT7), to conclude that
the endpoint of the last homotopy also has vanishing symplectic curvature. Hence the
even steps are homotopies and the odd steps are diffeomorphisms.

Hence, let ¢9;_1, 2 = 1, ..k denote the diffeomorphisms and

(Fwet, L3, 58 (20)%)
with ¢ = 1, .., k the homotopies. By definition,
(PR, LS8, (S0)) = daica (FE 072, T2 582, (51)22)
for all i = 2, .., k. Thus start with ¢ = k, then
Gyl (F2 w2k 2k 32k (5)%)
is a homotopy of relative symplectic fibrations which starts at
(F2=2 (22 [2h=2 522k=2 (51 y2h=2)

and ends at
-1 2% , 2k 72k 2k 2k
¢2k—1(f1 y Wy 7L1 721 7(2/1> )
Now concatenate the two homotopies

(f2k 2 2k 2 L2k 2 22k 2 (2/8)2k—2)

and
¢2k 1(~F2]c 2ka Lika E§k> (Z;)2k)

Iterate this process. Then, we obtain a homotopy of relative symplectic fibrations
(Fs»ws, L, T, 25)
which starts at (F,w, L, X, Y') and ends at
(¢1) o0yt (Fw,L,S,Y) = (pop_10..61) " (F,w,L,5,%).
Since (F,w, L, X, i/) has vanishing symplectic curvature and is diffeomorphic to
(Fr,wi, Ly, 21, %)),

we find that
(fl,Wl,Ll,Zl,le)

has vanishing symplectic curvature (cf. Proposition EZZIT). Further, since X, Y are
horizontal, and horizontal submanifolds are mapped to horizontal submanifolds, ¥, 3}
are horizontal and the theorem follows. O



30 CHAPTER 2. SETUP

Remark
As was already said in the introduction, we need to deform a given relative symplectic
fibration to have vanishing symplectic curvature. In chapters Bl and Bl we will construct
an equivalent relative symplectic fibration with vanishing symplectic curvature. Then
Theorem ZZT0 gives us the required homotopy to a relative symplectic fibration with
vanishing symplectic curvature.

Lemma 2.4.11. Let (Fy,wy, Ly, X4, 3) be a homotopy of relative symplectzo fibrations.
Then there exists a homotopy of relative symplectic fibrations (]—"t, wo, Lt, ZS, Z’) such that
(Fr,wi, L1, %4, %) and (fl,wo, Ly, >, Z’) are diffeomorphic and the Lagrangian isotopy
L, can be realised by a Hamiltonian isotopy v, of (M, wo).

Proof. wy is a family of cohomologous symplectic forms and so Moser’s theorem gives an
isotopy ¢; of diffeomorphisms of M, such that ¢;w; = wy. Then we claim that

¢t (E>wt>Lt>Zt> ) (¢t E>W0>¢t (Lt)a@_l(zt)a@_l(Z;»

is the desired homotopy of relative symplectic fibrations.
To show this, first note that L; is monotone for w; for all ¢ by assumption. Now

(Lt = ¢y Le,wo = (¢ "wr))

is the push-forward data of (L;,w;) under the diffeomorphism ¢; ', hence by Proposition
P34, it follows that L, is monotone for wy. The other conditions are trivial to check.
To show that the Lagrangian isotopy can be realised by a Hamiltonian isotopy we use
Banyaga’s isotopy extension theorem. Let [;: Lo — M be a isotopy realising L; = [;(Lo),
then L, = ¢; ! ol,(Lo) realises L;.

First find a symplectic extension @Dt U — M of the Lagrangian isotopy ¢; ' ol,: Ly — M
with U a neighbourhood of Ly in M. Now extend this to a smooth diffeotopy p; of
M by the isotopy extension theorem and consider the symplectic form p;jwy. Again by
Proposition 230, it follows that the push-forward torus

pi (L)

is monotone for
-1 *
Pty Wo = PrWo-

But p; extends ¢, Lo 1, thus B
pi 'Ly = Lo

for all t. Hence Ly is monotone for pjwy for all £. This implies however that the relative
cohomology class of pjwy is constant in ¢ and so Banyaga’s isotopy extension theorem
implies that the smooth isotopy p; can be altered to a symplectic isotopy v, which extends
¢; ' o l,. But then the symplectic isotopy ¢ is actually Hamiltonian since M is simply
connected. Thus (L) = L; is the desired Hamiltonian isotopy. This proves the Lemma.

U
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2.5 The main result

The aim of this thesis is to prove the following result:

Theorem 2.5.1. Let L. C (M,wy) be an embedded monotone Lagrangian torus fibered
by a symplectic ruling m: M — S, the fibers of which are in the homology class B. Let
¥, Y be two disjoint symplectic sections of 7 in the homology class A such that XNT = ()
where T is the solid torus in Def. [ZZ1 with OT = L. Further, for all ¢ € v :=w(L), ¥’
intersects the unique disk D, =T N7~ (q) in its interior.
Then L is Hamiltonian isotopic to the Clifford torus Lgyq.

The strategy to prove this will be the following. The conditions in the theorem give
rise to a relative symplectic fibration (F,wy, L, X, ¥') where the foliation F is given by the
fibers of 7. Note that the symplectic connection on M induced by (7, wp) need not have
vanishing symplectic curvature in general. If, however, it has vanishing curvature then,
using symplectic paralleltransport, we can write down explicitly a symplectomorphism ¢
of (M,wp) which induces the identity on homology, maps the fibers of 7 to the fibers of
the standard projection p; and which maps L to the Clifford torus Lg,. By a theorem
of Gromov there exists a symplectic isotopy ¢; between id and ¢. Since M is simply
connected this symplectic isotopy will also be Hamiltonian.

Thus most of our work will go into showing that starting with any relative symplectic
fibration, there exists a homotopy of relative symplectic fibrations to one with vanishing
symplectic curvature.

In chapter Bl we will bring our data in a particularly nice form. In chapter H we will
do the actual work of changing the symplectic connection to have vanishing symplectic
curvature. In chapter Bl we will then discuss how the results of chapter Hl are translated
in the setting of homotopies of relative symplectic fibrations.
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Chapter 3

The standardisation

In this chapter and the next chapter, we will assume that L is an embedded monotone
Lagrangian torus in (M = S? x S? w) fibered by the standard projection p;. w is some
symplectic form on M such that p; is a symplectic fibration. Further we assume that
¥, are two disjoint, symplectic sections of p; in the homology class A = [S? x pt] such
that ¥ is disjoint from the solid torus T (07" = L) and ¥’ intersects the unique closed disk
TNr(q) over a point q € p;(L) in its interior. Let Fyy denote the foliation of S? x S? by
the fibers of p;. Then, in other words, we assume in this chapter, that (Fgq,w, L, >, 3)
is a relative symplectic fibration on S? x S2.

Remark

In the following we will consider several results to make the setup nicer (these will give rise
to equivalent relative symplectic fibrations). Most of them will be of topological nature
and only a few will have symplectic content. To help the reader distinguish between a
result where nothing really happens and we just look at the problem from a different an-
gle, we indicate this by a label T'. If however there is something symplectically important
happening, we indicate this by a label S.

3.1 Conveniently fibered Lagrangian tori

We now want to adjust the Lagrangian torus which is already fibred by p; in a particular
nice way. We want it to lie over the equator in the base and to intersect the fiber over
the point zp = (1,0,0) in the equator.

Consider S? C R? in the standard way. Let z, = (1,0, 0), the northpole N = (0,0, 1) and
the southpole S = (0,0, —1). Moreover let E = {z =0} C S? denote the equator. Let
o?: S?\ {p} — C denote stereographic projection (see Appendix [Al) from p € S?. Let
F, = p;Y(x) and let F := p;t(20).

Definition 3.1.1 (T). Let p: S? x S? — S? be a fibration such that p~*(z) = p; ' (20)
i.e. that the fibers over zy of p and p; agree. Then an embedded torus L C S? x S? is
conveniently fibered by p if

33
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e L is fibred by p;
e p(L) = E C S? the equator in the base;

e pl(20)NL =FE C 52 the equator in the fiber over z;
After these preliminary remarks we can now phrase:

Proposition 3.1.2 (T). There exists a diffeomorphism 7 of M = S% x S* such that T
preserves the standard fibration p1 and such that 7=1(L) is conveniently fibered by p;.

Proof. A detailed proof can be found in Appendix [Bl Here is an outline. We will only
show the proposition for the base curve since the proof for the curve in the fiber is precisely
the same. Let p(L) = 7. be the closed embedded curve in the base. By the Jordan curve
theorem the complement in S? of 7, are two simply connected disks. Thus take the union
of the curve and one of them and use (an extension to the boundary of) the Riemann
mapping theorem to find a diffeomorphism @ to the closed upper half disk in S?. Then
6~1 and the inclusion of the upper half disk are two embeddings of the closed disk in S2.
Hence they are isotopic (any two embeddings of the closed disk in a manifold are isotopic)
and by the isotopy extension theorem there exists a diffeomorphism H of S? which maps
one to the other. Pulling all the data back by the diffeomorphism 7 = H X id gives the
required properties. O

For future reference, we summarize Theorem EZZ0, Proposition and Proposition
3.1.2 by:

Corollary 3.1.3. Let M, L, 7, %, % as in Theorem [ZZ1. Then (F,wq, L, X, %) with F
given by the fibers of m is the relative symplectic fibration on M. Then there exist diffeo-
morphisms 7: M — S? x S? and uw: B — S?% such that the following diagram commutes

M —— §2 x 52

ln Jpl (3.1)

B —— §?
and such that T(L) is an embedded monotone Lagrangian torus for T.wo, which is con-
veniently fibered by py. Further, T(F,wo, L, X, Y") = (Faa, w, 7(L), 7(2), 7(X)) is a
relative symplectic fibration on S? x S?.

3.2 Standardisation of the symplectic fibration near
a fiber

Note that the standardisation can’t be done by diffeomorphisms preserving p; alone due to
a possibly non-vanishing curvature of the symplectic connection (a diffeomorphism can’t
map a non-integrable distribution to an integrable one). Indeed by the example (p1,wp)
on S? x S? has vanishing curvature. Thus at some point we will have to alter the form
and the fibration independent (not related by diffeomorphisms) of each other.
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3.2.1 Standardisation of the symplectic form

Before we start with the actual standardisation of the symplectic form we want to make
the symplectic form standard in the vertical direction, therefore we have the following
two results.

Proposition 3.2.1 (T). Let w,wyq be symplectic cohomologous forms on S* C R3. Let
E denote the equator and D the upper hemi-sphere. Let wa = 1. Then there exists a

2
diffeomorphism h € Dif f¥(S?) such that

« W(E)=E

o hV'w = wgy

Proof. The linear interpolation between the two symplectic forms gives rise to a Moser
isotopy ¢;. Consider the Lagrangian isotopy given by v;: E — S% e + ¢, '(e). Then
extend this to a symplectic isotopy v of a neighbourhood U of E in S2. Extend this by
the isotopy extension theorem to a diffeotopy p; of S? and check that by the conditions on
the two symplectic forms the extension p; satisfies the conditions of the Banyaga isotopy
extension theorem. Hence there exists actually a symplectic extension a; of ¢;. Now
consider the diffeomorphism
h = ¢1 o (7.

Then
* k[ k *
h'w = ajpiwr = Qjwstd = Wstd

and
WE) = ¢roa(E) = g0y (E)=¢10¢ (E)=E.
]

Thus by Proposition B2l we can assume that the symplectic form restricted to the
fiber over z; is the standard form wgy.

Proposition 3.2.2 (T). Let M, p1, L as above and moreover let w|p = wgq, then there
exists a py-preserving diffeomorphism T of M such that

e 77 (L) is monotone Lagrangian for T*w and conveniently fibered by p:;
o T'w = wyq when restricted to F, for all z in a neighbourhood V' of zy;
o 7 = id outside a neighbourhood U x S? where U is a neighbourhood of zg and V C U.

Proof. This is just Proposition 2212 trivialising by symplectic parallel transport, and
the Remark after the proof. We only note that 7 preserves the fibers of p; and is the
identity on F, thus it follows that 77!(L) is a monotone Lagrangian torus for the pull-back
symplectic form 7w which is conveniently fibered by p;. This proves the proposition. [

Theorem 3.2.3 (T). There exists a diffeomorphism 7 € Dif fo"(M) and neighbourhoods
V CW of Fin M such that
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o supp(?) C W;
o 7*w restricted to V is Wo;
o 7 is the identity on p;*(E) = E x S?;

Proof. Choosing local coordinates on the base, centered at z,, we can assume that p;: C x
S? — C;(z,w) — z and L projects to the real line.

First we find a diffeomorphism y of C x S? with compact support which pulls the sym-
plectic form back to a form which agrees with the standard form on T'M]|g, where
Q. := p;'((—e€,€)). € is chosen so small that (—2¢,2¢) C V from Proposition BZZ2
Then we alter the obtained form by a Moser type argument such that it agrees with the
standard form in a neighbourhood of F'.

After applying Proposition B22Z2, the horizontal lifts 8%, 8% of 8%,

just %, a% for points in Qg (cf. the proof of ZZTZ). Thus the symplectic forms w and wy

9 9
oz’ dy”

aﬁ with respect to w are
Y

agree on T'()s. and have the same orthogonal complements to ker dp;, the span of

It’s just the evaluation on % = %, a% = a% which might still differ.

Consider the non-zero vector field

—_
(o5}

(g ) %
and let s be its flow, then
x: D(0,€) x S* — C x §?

(t +is,w) — s(t +i0,w)

is an embedding of a neighbourhood of F into C x S2%. Indeed Y is non-zero, so 9_(t +
i0,w) is a smooth inverse. It is the identity on R x S? where it is defined and it distorts
the fibers of p; in y-direction.

Extend y to a diffeomorphism of all of S? x S? which is the identity outside a bigger
neighbourhood W C D(0,2¢) x S? of F. Pulling back the data by y finishes the first step,
i.e. we can assume that w agrees with the standard form wy on T'M|g, . Further since
x = id on the part of p; ' (R) where it is defined, we can assume that the extension is also
the identity on p;'(E). So x 'L is still conveniently fibered by p := p; o x '

Since symplecticity is open and w,wy agree on T'M|q,_, there exists a neighbourhood of Q).
on which the linear interpolation of the two forms is symplectic. There exists a primitive
o of w — wy which is defined in a neighbourhood of ). and which vanishes for points in

Qe

Lemma 3.2.4. There exists a 1-form o € QY(U) defined on a neighbourhood U of Q.
such that

w—wy =do

and o, = 0 for all x € Q.
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Proof. For a proof compare Lemma 3.14 page 94 in [I3] and Appendix [Q
0

Hence the Moser isotopy for the form o is the identity on (). and by cutting off suitably
we obtain a diffeomorphism 7 which pulls the form w back to the standard form wq in
a neighbourhood V of F as desired and which has support in w. By construction, 7 is
isotopic to the identity. This proves the theorem. O

3.2.2 Standardisation of the symplectic foliation near the fiber

7 was not pi-fibre-preserving (except over the equator in the base) and did alter the stan-
dard foliation F 4. This will be fixed in the next theorem in a smaller neighbourhood of
the fibre F'. We will describe how we can see the bent fibers close to F' as a smooth family
of graphs of functions f*: F — C, parametrised by their intersection point (A, N) with
the disk D(zo,€) x {N} (see the fig. Bl on the following page). Recall that zy = (1,0,0).

Let F* denote the leaf of the foliation 771F,,; through the point (\, N).

Proposition 3.2.5 (T). There exists an € > 0 and a smooth family of smooth functions
A 82 — C; X € D(z,¢€) such that

F*={(z,w) € Cx S®|z= A+ fH(w)}
with f* =0 for X real and such that f*(N) =0 for all \.

Proof. Again we think of the base being C, F' to be the fiber over the origin and L along
the real line. Then for ) real, by construction F* = {\} x S% and so F* is transverse to
all fibers S, = p;*(g) of the standard projection p,. Since transversality is generic there
exists a neighbourhood U of 0 C C for which all leaves F* with A\ € U are transverse to
all the S,. The following topological lemma proves the proposition.

Lemma 3.2.6. Let X, Y be smooth manifolds with X compact and simply connected. Let
S C X xY be a smooth, compact submanifold of the same dimension as X and such that
S is transverse to {x} XY for allx € X. Then S can be written as the graph of a unique
function f: X —Y

Proof. Let m: X XY —Y; (x,y) — x be the standard projection. Then by transversality
if (z,y) € S then dmyy): T(zy)S — T, X is an isomorphism. Indeed it’s injective since if
dm(zy)(v) = 0 then v € kerdr. Thus v € T{,,) {z} x Y so that by transversality v = 0.
Hence g is a local diffeomorphism. But since S is compact any point in x € X can
have at most finitely many preimages in S under 7. So that 7|s: S — X is a covering
map. But X is simply connected, hence it has no non-trivial cover. It follows that 7 is a
diffeomorphism. Let ¢ = (7|g)~! then s = tg0p: X — X x Y is a section of 7 with image
S. But in a trivial fibration 7: X x Y — X any section s is of the form s(z) = (z, f(x))
for some unique function f: X — Y hence S = I'(f) the graph of f. O
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F)\

/

D(zg,¢) x {N}

real axis

imag. axis
zo = 0 in loc. coord.

(A1, N) (Mg, N) (0,N>(A37N)
\ \ | sy =952 x (N}
no graph ™ e F ‘ s
— S, =5%x {p}
L graph
/*i/x/

S, = 5% x
imag. axis e {a}
not transverse

Figure 3.1: The bent fibers over the imaginary axis
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AS,

D(O> 52) ‘ )

Figure 3.2: where the alteration of G takes place in the base

Remark-1
The smooth map
G: D(0,6) x S* — C x §*

A\ w) = (A4 fA(w), w)
is an embedding for § < e small enough (see in Appendix [(). By construction

G({\} x §%) =

the leaf of the foliation F = 771 Fy through the point (A, N) € C x S?. Recall that 7
is the identity over the real line (the equator in the base), hence f* = 0 for real A and
hence G({A\} x S?) = {\} x 52 for real \.

Let A := {z € C|r < |z] < R}. In the following we will alter G(\,w) = (A + f>(w),w)
through embeddings G,(A, w) = (A + f}M(w),w) (G; = G) being fixed on A} x S? for
some d; < § to an embedding G being the identity on D(0,dy) x S? for d, < 6; (see fig
B2). Observe, that being the identity for |\| < d, implies that the functions f;* vanish
for [\| < d,. But the deformation G, will be chosen such that f} = 0 for X real for all s,
consequently, the images G,({\} x S%) = {A\} x S? for real A and all s.

Further, the family f2 (and thus the embeddings G,) will be chosen such that the
images under G, of the sets of the form {\} x S? will be symplectic and transverse to the
symplectic sections ¥, ' for all s. Then the family G, of embeddings satisfies all the con-
ditions of Theorem 224l Thus these images will form the leaves of a family of symplectic
foliations F, which standardises the symplectic fibration near F'. Moreover, the leaves
over the real line in which L sits have not been altered at all since Gy({\} x 5%) = {\} x §?
for real A and all s. Hence the quintuple (F,w, L, 3, Y') is a relative symplectic fibration
for all s. Indeed after the alteration on D(0,d;) x S?, the foliation Fy as well as the
symplectic form w = wy are standard. In particular there, near F', we have vanishing
symplectic curvature.

Remark

e Note that by construction w = wy on G(D(0,4) x S?).
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o1
1
S B ¢s
0
% Sa
%o °

Figure 3.3: The family ¢, of cut-off functions

In Proposition B2.9 below we need two families of cut-off functions whose properties
are fixed in the following two propositions (the proofs are postphoned to Appendix C).
Fig. describes pictorially both families of the cut-off functions.

Proposition 3.2.7. For every 1 > 6 > 0, a > 0 there exists a smooth family of non-
decreasing functions ¢s: [0,00) — [0,1], s € [0, 1] satisfying

0. rolr) + 6.(r) <+ (3.2)
such that ¢5(r) = s forr < £, ¢5(r) =1 for r > 2 and ¢1 = 1.

Proposition 3.2.8. There exists a constant C > 0 such that for all € > 0 there exists a
smooth family of functions ¢S: [0,00) — [0, 1], s € [0, 1] such that

o ¢i(r) =s forallr < g
o ¢i(r) =1
o ¢5(r) =1 forallr > ¢, forall s

® max,c(o00) [01(r)] < 1C for all s.

The following proposition is prepatory for the theorem below.
Proposition 3.2.9 (S). Let G: D(0,6) x S? — C x S?%; (A, w) — (XA + fANw),w) be the
embedding from Remark-1 on the previous page. Hence in particular f**°(w) =0 and
so G(x +1i0,w) = (x +1i0,w). Then there exist positive real numbers 0 < 6 < 07 < § and
a smooth family of embeddings G,: D(0,8) x S? — C x S?%; (A, w) — (XA + fNw),w) for
s € R, with Gy =G, =G fors>1 and G, = Gy for s <0 such that
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* Gs|Ag1xs2 = G|Aglxs2£

® Golp(,sy)xs? = id;

o Gy(z+10,w) = (z+1i0,w) for all x,w;

o =G ({\} x S?%) is symplectic for all s, \;
o [} is transverse to $3, % for all s, \;

Proof. We will show how to construct the family G in three steps, first without taking care
of the last two assertions. Once we have seen this we will show in an explicit calculation
that the remaining two assertions can also be realised.

Linearization We write f(\,w) = f*(w) and consider the first order Taylor expan-
sion of f with respect to A with remainder (here we regard A as a vector in R?)

a(w)  b(w)
f()‘>w):f(0’w)+ )\+f2()‘>w)

with | fo(A, w)| < C1|A? for some constant C; for all w and [A| < 2. Now we multiply the
remainder by the smooth family of cut-off functions ¢¢ from Proposition B2Z8 Then we
can show that for e < % small enough, the smooth maps

Gy: D(0,2¢) x §? — C x S?

Gs(Aw) = | A+ A+ oS(IAD f2(A w), w
c(w)  d(w)

are embeddings. It is enough to show the injectivity and the immersion property.
To show injectivity we will proceed in all three steps as follows: Assume first that

G\, w) = G,(N,w')
then clearly w = w’ and

a(w)  b(w) a(w)  b(w)
A+ A+ G5 (A w) = X + N+ oIV f2(N w).
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Since G is an embedding, its differential

a(w) b(w)
Id+ B,

dG = c(w) d(w)
0 1d

a(w) b(w) ))
0<pu< inf Id+ V| .

o]=1;wes? c(w) d(w)

Let
HE(A) = ¢(IAD (A, w)
then if the operator norm of the differential ||(DH®),|| < p for all w and || < 2¢, then

pA =N < || 1d+ (A=X)| =[H () — HE (X)) <

< [IDHE )M p0,20xs2 1A = N < plA = X

showing the injectivity of G. Furthermore G, is immersive if its differential

a(w) b(w) )
Id+ +DHY B
dGs = c(w) d(w)
0 Id

is non-degenerate. This is equivalent to

being non-degenerate. Again this is true if
[(DHS A < p

on D(0,2¢) x S2.
Now estimate the operator norm of (DHY),. For

A < 2
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! € 1
ICDHDA < @)1 w)] + [SL]IIDfall < C-Crde® +2C5e < 4(CC1 + Co)e.

Where || D f|| < Cs|A| for all w and [A| < & and where C is the constant from Proposition
B28 Choose

€< min é #
17 4(CCy + Cy)

Gy: D(0,2¢) x §? — C x S?

is a smooth family of embeddings.

By the properties of ¢¢, G is only changed for |A\| < e. Thus the alteration takes place
in G(D(0,¢) x S§%), G is not at all altered on (—2¢,2¢) x S? and Gy is linear in A on
D(0,+5) x S* (compare Proposition BZR).

Since G, = G on (D(0,2¢) \ D(0,¢€)) x S? it follows as in the proof of Theorem EZZ4 in
Appendix [0 that G4(D(0,2¢) x S?) = G(D(0,2¢) x S?) for all s. Hence we may extend
the embeddings G, by G to embeddings defined on all of D(0,4) x S2.

This proves the linearisation.

then by construction

Standardisation By the linearisation we may assume that

a(w)  b(w)
fA w) = A
c(w) d(w)

is linear in A. But f(\,w) = 0 for real A and so

0 a(w)
f\w) = A.
0 b(w)

Thus
G: D(0,0) x S* = M

()\1, )\2, w) — ()\1 + CL(’LU))\Q, )\2(1 + b(w)),w)

A priori there is no bound on a except that a(N) = 0. Thus depending on the foliation
given by G, a(w) — a(IN) can be arbitrarily large. Run along the imaginary axis starting
from the origin and look what happens to the leaves. First note that the northpole is
always fixed, i.e. G(0, A2, N) = (0, A2, N) but G(0, Ag, w) = (a(w)A2, Aa(1 + b(w)), w) is
arbitrarily far along the Aj-axis depending on the maximum of |a(w)|. We would like to
continue, by using a family of cut-off functions as in the linearisation, to kill the remaining
terms which cause G to differ from the identity in a neighbourhood of {0} x SZ.
Although it is probably not intrinsic to the problem, an explicit calculation shows that
this method forces us to do this in two steps. First we kill the term involving a(w) and
then the term involving b(w).

We cut off by a family of functions ¢S as before, but which have now support on an ellipse
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all F* with \ having fixed imag. part

Fo

p(F)

The ellipse vA? + \2

Figure 3.4: The figure shows a possible big distorsion of F* along the real axis
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with excentricity related to the maximum of |a(w)|.
Let ¢ := max,eg2 |a(w)| and choose positive real numbers v, € such that

) 1
v < mm{w,l}

€ < vd?

(C is the constant from Proposition BZ2Z8). Again let ¢¢ be the family of functions from
Proposition and consider the map

Gy: D(0,6) x S — C x S?
(A1, Agy w) = (Ag + 65 (VA2 + A2)a(w) Ay, (1 + b(w))Ag, w).

With the choice of v, € we can show similarly as before that GG, is an embedding for all s.
Injectivity
Assume

Gs(A w) = Gs(X, )
then
LA 4 ¢S (vA? + AD)a(w)da = N + ¢S (w2 + N2 a(w') N,
2. (14+b(w))Aa = (14 b(w"))N,
3. w=uw

From G being immersive, it follows that (1 4+ b(w)) > 0. So from 2.,3. it follows that
w=w" and Ay = A\;. We can thus write

M= A= —a(w)ds (G(vA] + A3) — GL(VAT + A7) -

Let
Hy(M) = ¢5(vAT +23)

then by the mean value theorem
Hy(M) = Hs(A) = H(Q)(M — AY)
for ¢ € (A}, A\1). By construction we have
H,(¢) = 68/ (v¢? + A3)21C
so that
M= X =1 = a(w)[[Xo] [Ho(\) = Ho(N)| = | = a(w)][Aa]og (vC? + A7) [2v[C][ A — Ay,

Note that ¢¢'(r) = 0 for r > e since there ¢<(r) constantly equals 1. Hence for v(2+\3 > ¢,
it follows that A\; = A|. Thus let
v( 24 )\g <e
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then |¢| < % and |Ag| < /€. Hence

|~ a(w) M6 (00 + N)N2wlc] < eveSawYE — ey < 1.
S~

As desired this implies that A\; = A}, showing the injectivity.
The immersion property
Note that dG; is a block matrix of the form.

As Bs
dGs =
0 Id

Thus det dGs = det(As) with

L+ a(w)dg (VAT + A3)20 0 Ay a(w) (¢5(AT + A3) 4 ¢F (VAT + A3)2A3)
A, =
0 1+ b(w)

Thus det(dGy) = (1 + a(w)d® (vA2 +A2)20A X)) (1 + b(w)) and (1+ b(w)) > 0. But as for
the injectivity by the choice of v, €

la(w)llg' (AT + A3) 120 A [|Ae| < 1

and the immersion property follows.
Now comes the last step.
We may assume that

G: D(0,0) x S* — C x §*
(A1, Az, w) = (A, (1 + b(w)) A, w).
Since G is immersive (1 + b(w)) > 0 for all w € S%. Let 1 > £ > 0 be a real number such

that
1—¢&>—b(w) Yw e S2

Let € > 0 be so small that
Y]

€2
and let ¢,: [0,00) — [0, 1] be the family of functions from Proposition B2 for a =€, =
&. Now consider the smooth map

Gs: D(0,0) x S - C x §?

(A1 A2, w) = (Mg, (1 + ds(JA])b(w)) Ag, w).

Then as claimed .
Go(A\,w) = (A, w) for |\ < 3"
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By the special choice of the cut-off function we can show as before that GG, is an embedding.

Injectivity
Assume

G\, w) = G,(N,w')
then

2. (14 ¢5(|ADb(w)) A2 = (1 + ds(IN])b(w')) Ny
3. w=u'

By 1., 3. the second equation can be written as

Ay = Xy = =b(w) (ds(JA[) A2 = s ([N])X)

Hy(\2) = ¢, (\/ AT+ )\%) Ao

then by the mean value theorem

Write

H,(X2) = Ha(Ay) = Hi(Q) (A2 = X3)
for ¢ € (X}, A\2). By construction

HI(C) = ¢;<\A|>|%‘ T ou(A)

with A = (A\y, (). But || < || so that
H(C) < ¢(r)r + ¢5(r)
for r = |A|. Hence

Ay = Xy = =b(w) H{(C) (A2 = Ay) < =b(w) (¢4 (r)r + ¢s(r)) (A2 — A3) <

1
<(1- 5)1?5()\2 = A5) < (A2 = Ay).
This shows the injectivity of Gg.
The immersion property

Again dG, is a block matrix of the form.
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Thus det dG; = det(Ag) with

A, =
L(IADAb()As 1+ (M) b(w) + Ga(|A)b(w)

Then
det(di) = 1+ 8w (L0N)E +0n()).

But
—b(w)(¢ (M|)|M+¢s(|M))

as before, and the immersion property follows.

We are left to show the assertion, that we can assure that all submanifolds
F) = G,({\} x §%)

are symplectic and that the two submanifolds ¥, ¥ remain transverse to all the F} in all
three deformations.

Transversality of X, Y

Let G: D(0,6) x S? — C x S? be an embedding as before such that X is transverse to F*
for all \. Consider the submanifold ¥ := G=%(X) of D(0,4) x S% which is transverse to
the standard fibers {\} x S2.

Similarly to Proposition B.Z0, transversality implies that there exists a section s(z) =
(2,9(2)) of pr1: D(0,8) x 52 — D(0,6); (2,w) — z with image ¥. Thus ¢ := Go s is a
parametrisation of ¥ N Im(G). Now let G be a smooth family of embeddings as before
which alters the foliation in D(0,€) x S? and such that G; = G.

Then transversality of F) to ¥ means precisely, that the map

D1 OG;1 o

is a submersion (or a local diffeomorphism for dimensional reasons).
As before dG, is a block matrix of the form

As By
dG, =
0 Id

We write A := Ay, B := B; and G = G;. By elementary facts about block matrices it
follows (see for details) that

d(proG; oo)=A;' (A+ (B — B,)odg).
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Due to the immersion property of G,
det A;' >0,
and the transversality of ¥ boils down to show that the matrix
A+ (B — By)odyg

is invertible for all s. Observe that (B — By)(A,w) is non-zero only for |A| < e by the
assumptions on the family G.
Let

0<p:= inf AN, w)v].

)
|'U|:17’LU€S2,‘)\|§§

Then if
1dgll[|B = Bs|l po,e)xs2 < b

for all s, the matrix
A+ (B — By)odyg

is invertible and X is indeed transverse to all the F* as claimed. So we have to check
whether we can make ||B — Bi||p(,e)xs2 arbitrary small for all three deformations above.
We will do this after we have shown that for the symplecticity we need the same condition
(possibly with other constants).

Symplecticity

Let G be a family of embeddings with Gy = G as before, which alters the foliation in
D(0, €) x S%2. We are required to show that the leaves F are symplectic for the symplectic
form wy for all A, s. This is equivalent to the condition that Giwy, = w;, restricts to a
symplectic form on any fiber {\} x S2.

Since dGy is a block matrix of the form

As Bs
dGs = )
0 Id

a vertical vector (0,v) € T,D(0,6) x T,,S% = T, ) (D(0,6) x S?) is mapped by dG, to

AS Bs O BS'U
dG4(0,v) = =
0 Id v )

Thus
ws((0,v), (0,w)) = Giwe((0,v), (0, w)) = wsa(v, w) + wsa( Bsv, Bsw).

Every two form « on S? is of the form o = fwgq for a function f: S? — R. Thus
write w) 1= wy|ayxs2 and f: S? — R for the function satisfying

A A
W, = fs Wstd-
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Symplecticity of F? is then equivalent to f2 > 0 for all \, s.
We write fA := f{ because of G = G;. Since w := w; = G*wy restricts to symplectic
forms on {\} x S? by assumption, f* > 0 for all A € D(0,4). We define real numbers

V= inf |fA(w)] >0
AeD(0,2),weS?
and
N = sup | B(A, w)]|.
(Aw)eD(0,%)x 52
Claim: [f

sup || By(\w) — B, w)|| < min {L,N}
(Aw)eD(0,5)x 52 6N

for all s, then the fibres F are symplectic.
To see this, let v, w be a symplectic basis of T(y ) ({\} x S?) for wgy. Then

F2(p) = [ (P)wsta(v, w) = w (p) (v, w)

where
WM, w) = Wea(v, w) + Wea(Bsv, Baw) =
= wWga(V, W) + wsa( Bv, Bw) + weq((Bs — B)v, Bsw) 4+ wga( B, (Bs — B)w) =
= w(v,w) + wga((Bs — B)v, Bsw) + wgq(Bv, (Bs — B)w).
But then

fsA(p) > v — |wsa((Bs — B)v, Bsw) 4+ wsa(Bv, (Bs — B)w)|.
Let g be the Riemannian metric on S? given by g(v,w) = wg(v,iw) and define |v| :=

\/m for v € TS?. Let

(Bs—B)v (Bs — B)w Bsw Buv
= = e = s D s
|(Bs — B)v| |(Bs = Bw| | Bswl | Bu|

if these vectors are defined.
So we estimate the last term:

|wstd((Bs - B)U> Bsw) + wstd(Bva (Bs - B)'LU)| S

< [(Bs = B)v|| Baw||wsta(u, 2)[ + [ Bu[|(Bs = B)w|lwsia(Z, 0)|

Since u, U, z, Z have norm 1 and g is compatible with wg it follows that |wsa(u, 2)|, |wsa(Z, @)] <
1. Hence

\weta((Bs — B)v, Bsw) + wea(Bu, (Bs — B)w)| < —-2N + N—— < 2.
oN 6 2
Thus y y
A
>y — =
fop) >v 5 =35>0
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and indeed F? is symplectic for all \, s.
Estimation of ||B; — BJ| in the deformations

In the first deformation we had

a(w) b(w)
fs(A w) = A+ OS(IAD f2(A, w).
c(w) d(w)
Thus
s w) = fo(hw) = (1= ¢L(|AD) f2(A, w).
Consequently

(B = Bs)aw = (1= L(IAD)A(f) -

where f3'(w) = fo(\, w) indicates that we regard \ as a parameter and differentiate with
respect to w. But ||(df3)w|| < Co|A| for [A| < £ since dfy is part of the differential dfs
with [|dfaorw|| < Ca|A| for |A| < 2. Thus

1B — BsHD(o,g)xs2 < Che

since (1 — ¢¢) has support in D(0,¢€). So indeed we can make || B; — B|| arbitrarily small.
In the second deformation we have

Aoday, — M@ (VAT + \2) day, Ao(1 — ¢S (VA2 + A2))day,
(B - Bs))\,w = =
Aadb,, — Aadby, 0

Note that 1 — ¢<(vA? + A\2) = 0 for vA? + A2 > ¢, thus we may assume that A3 < € or
equivalently that |\o| < /€. Let Cy = ||day||wes> With respect to the metric g on S?, then

1Bs = Bllpo,3)xs2 < Cave.

This can also be made arbitrarily small.
Finally in the last deformation we find

0
(B - Bs))\,w -
(1= @5 (|A])) Aadby,

define C5 := ||dby||wes? With respect to g, then

5¢
£

if ¢, is the family of functions from Proposition B2ZZ7 for § = &, o = ¢, since (1 — ¢s(|A]))
has support in D(0, %) This proves the proposition. O

|Bs = Bl po,5)xs> < Cs

s
2
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Theorem 3.2.10. (S) Let F be a foliation of (M = 5% x 5% wy) by symplectic 2-spheres
such that F agrees with the standard foliation Fgq over the equator E in the base, i.e.
Fo = pH(p1(2)) for allz € py ' (E). Further $,% are two disjoint symplectic submanifolds
transverse to the leaves of F. Then there exists a family of symplectic foliations Fy on M
such that F, = F with the following properties:

o (Fo=pi (p1(2)) for any x € py*(E) for all s;
e XY are transverse to all the leaves of Fy for all s;
o Fy = Fua on a neighbourhood of F' = p* ().

Proof. By Proposition B2ZH and Proposition B2 we obtain a family of embeddings G
which satisfies all the conditions of Theorem EZZA in chapter Bl Thus the family of
embeddings G, gives rise to a smooth family of foliations F, on M. All the desired
properties follow now from the corresponding properties of the isotopy G,. This proves
the theorem. O

From the theorem we obtain a smooth family of foliation F, of M by symplectic 2-
spheres which are transverse to X, ¥’ and such that the symplectic connection induced by
(Fo,w) has vanishing symplectic curvature near F. Further throughout the deformation,
the leaves of F, through points in p;*(e) agree with p;'(e) for all e € E the equator in
the base. Consequently, the torus L is still monotone Lagrangian for w and it is fibered
by the symplectic fibrations

o: M — Y v e (Fy)er— (Fo)a N

Thus (Fs,w, L, %, Y') is a homotopy of relative symplectic fibrations. Now we can apply
corollary to get a commutative diagram

M —- M

J”O lpl (3.3)

SV u S2

such that 7(L) is conveniently fibered by p; and monotone Lagrangian for the push-
forward symplectic form. Since the diffeomorphism group of a closed manifold (¥') is
transitive on points, we can assume that 7(F) = p;*(z). Further 7(Fp,w, L, ¥,Y) is a
relative symplectic fibration.

Proposition 3.2.11. (T) There ezists a pi-fiberpreserving diffeomorphism 9 of M such
that 9(L) is conveniently fibered by p; and V,w is the standard form on a neighbourhood

of F:=py'(20).
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Proof. By Proposition BZ2Z.Tlwe may assume that the symplectic form on the fiber F'is wyg.
Since the symplectic connection induced by (Fp,w) has vanishing symplectic curvature
near the fiber F' and vanishing symplectic curvature is preserved under push-forward by
diffeomorphisms, the symplectic connection induced by (p;, T.w) has vanishing symplectic
curvature near F'. By Proposition and the Remark after its proof, there exists
a pi-fiberpreserving diffeomorphism ¢ of M, which pulls the symplectic form back to a
split form w = plw; + Phwea near F. We seek a diffeomorphism of the base S? which
preserves the equator pointwise, and which pulls w; back to the standard form on U, a
neighbourhood of zy. Hence the following lemma proves the proposition.

Lemma 3.2.12. Given symplectic forms w,w’ on C, then there exists a diffeomorphism
¢ of C with compact support which

e is the identity on the real line

o ¢o*'w=w' on U a neighbourhood of the origin

Proof. The proof is trivial, but can be found in Appendix C. O

This finishes the standardisation near a fiber.

3.3 Standardisation of the symplectic fibration near
the sections

3.3.1 Topological Standardisation of the sections

We seek a pi-fiberpreserving diffeomorphism of M which maps the symplectic sections
¥, % to the constant sections at N the north- and S the southpole. The idea is first
to use the transitivity of the symplectomorphism group on points and then to use the
isotopy extension theorem.

Let Sy := S? x {N} and Sy := S? x {S}. By the following lemma, we may assume that
Y3, % go through N, respectively S over the point zg.

Lemma 3.3.1. Let p € S? be a point in the open upper hemi-sphere Dy;,. Then there
exists a ¢ € Sympo(S?,w) such that ¢(N) = p with support in Dy,

Proof. The proof is trivial, but nevertheless given in Appendix O

Remark
Let 0,0’ be parametrisations of 3, X',
In Proposition B.3.8 we prove how to locally alter a symplectic section through symplectic
sections to be the constant section (actually, there, we do much more). Doing this here we
can assume that the sections o, 0’ are constantly N, S in a neighbourhood of F'. Observe,
that this gives rise to a homotopy of relative symplectic fibrations with Fg4, w, L fixed.



o4 CHAPTER 3. THE STANDARDISATION

S? L
7 S /
------------------------------- 0
20 SQ
RN
’\\—/’_\ N \\\
S
b

Figure 3.5: The effect of the diffeomorphism 7 in Thm.

Theorem 3.3.2. (T) Let M,w,L,p;,%, Y be as above. Then there ezists a p;-fiber-
preserving diffeomorphism T of M which is the identity on a neighbourhood of F such
that 7(Sx) = X, 7(Sp) = ¥'.

Proof. Write o(z) = (z, f(2)). Then by Hurewicz’s Theorem, Hy(M) = mo(M). Since
[¥] = A we find that f is nullhomotopic. By smooth approximations, we can find a smooth
contraction f; of f to IV, and furthermore, we can assume that f; maps a neighbourhood V”’
of zo to N for all ¢ (cf. [COLT7). Then the family of sections oy(z) = (z, fi(2)) is constantly
N in V’. We want to use the isotopy extension theorem to get the desired diffeomorphism,
but since we have the additional requirement that the resulting diffeomorphism is fiber
preserving we have to review the proof of the isotopy extension theorem and make the
necessary modifications. By a reparametrisation we assume that the track

F:S*xR — M xR; (2,t) — (0,(),t)

of the isotopy o, is defined for all ¢ € R and is constant for t < é and t > % The vector
field X = dF(%) = X; + % on Im(F) generates the isotopy o;. By construction X; is
vertical (tangent to the fibers of p). To obtain a fiber-preserving diffeotopy of M, we need
to extend the vertical vector field X on I'm(F') to a global vertical vector field Z = Z;, + %
on M x R. First note that this condition is convex so that we can use a partition of unity
to reduce the problem to the neighbourhood of a point in M x R. Let C' := F(S?x [0, 1]).
Then for points outside the closed set C'; on a neighbourhood not meeting C', we simply
define the vector field Z to be %.

Let x = (20, fs(20), s) be a point in C. Choose local coordinates (z,w,t) on M x R around
x via stereographic projection from —zq, —fs(z9) on each factor of S? x S%. Using this
chart on the range and the chart of S? given by stereographic projection from —z, on the



3.3. STANDARDISATION OF THE SYMPLECTIC FIBRATION NEAR THE SECTIONS55

domain, we may assume that

F:UxR—-CxCxR

F(z,t) = (2, fi(2),1)
with U C C open, 0 € U and f,(0) = 0.
Now we define a new chart of M x R around x by the smooth map

a:UXxCxR—-CxCxR

(Za w, t) = (Za ft(z) + w, t)
Indeed, since dag s has full rank, « is a local diffeomorphism and a(z,0,t) = F(z,1).
Geometrically, it foliates a neighbourhood of x € M by translating the image of F' in the
fiber direction w. We have to shrink the domain of the local diffeomorphism « if necessary
in order to avoid the rest of the image of . Then a suitable vertical extension of the

vector field X near x is given by
0
Z=da|—=|.
a(m)

By construction, the obtained diffeomorphism is fiberpreserving and the identity in a
neighbourhood of the fiber F'. Thus the image of the torus is still conveniently fibered by
p1. Now do the same for >'. Note that we have to choose the domains of the maps « in
such a way that they do not interfere with ¥ = S,,. This proves the theorem. O

Hence pulling back the data by 7, we have a monotone Lagrangian torus for the pull-
back symplectic form which is conveniently fibered by p;. Moreover the solid torus T is
disjoint from the symplectic section S,, and the symplectic section Sj intersects T in each
fibre over the equator.

3.3.2 Standardisation of the symplectic form near the sections

We are now going to make the symplectic form split near the sections Sy, Soo. Why do
we not want to make it equal to the standard symplectic form which is also split? The
reason is that for proceeding in the next chapter, we require the Lagrangian torus to be
conveniently fibered by p;. It is important to notice that we cannot assume that the curve
p1(L) = 7 encloses a disk of area 1 in the base (note that we identify the base with the
section Sp). If L is conveniently fibered by p; and we have the standard form wy near Sy,
then indeed p;(L) = 7 encloses a disk of area 3.

We will do this in 3 steps. In step 1 we will make the symplectic form constant on the
sets S% x {p} for p in a neighbourhood S? x U,, U Uy of the sections S, Sp. In step 2 we
will construct (as in the symplectic neighbourhood theorem) an isotopy ¢;, with support
in a possibly smaller neighbourhood, such that the pull-back form ¢jw agrees with some
split form on T M|s,, T M|s.,. In the third step we consider a Moser isotopy 1; given by
the linear interpolation between the split form and the form obtained in step 2. Then the
pull-back form ] ¢jw is split near the sections S, So.
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Step 1

Let w(p) denote the restriction of w to S? x {p} (by openness of symplecticity there
is a neighbourhood of Sy U S, where these are symplectic forms). With the following
proposition, we are going to make w equal to w(S), the restriction of w to Sy, on the
sets S% x {p}, for p in a neighbourhood of N and S. Note that we consider Sy to be
the base, so that changing the symplectic form on Sy results in a rearrangement of the
fibers and therefore in changing the projection of L. Thus L would not be conveniently
fibered anymore. Avoiding this is the reason why we make the symplectic form on the
sets S? x {p} in neighbourhoods of S,, and Sy equal to its restriction to Sp.

Proposition 3.3.3. (T) There exists a T € Dif fo(M) with support in a neighbourhood
of Seo USy away from the Lagrangian torus L such that the pull-back form T*w restricts to
w(S) on the fibers S* x {p} of p2 for p in a smaller neighbourhood of Se U Sy. Moreover
7 =1d on a neighbourhood of the fiber .

Proof. The idea is to construct a diffeomorphism of M by using Moser isotopies ¢} ob-
tained from the linear interpolation w;(p) = (1 — t)w(S) + tw(p) of symplectic forms on
S? x {p} (for p € Uy, UUy a neighbourhood of N U S). The issue here is to find a smooth
family of primitives o(p) such that 7(p) = w(p) — w(S) = do(p) and such that o vanishes
in a neighbourhood of zy. 7(p) is a closed form which vanishes on V', a neighbourhood of
29, for all p € Uy, U Uy and which is trivial in cohomology. So for all p, we can view 7(p)
as an element of Q%(R?), the compactly supported 2-forms on R? with support in B(0, R)
for some R > 0. Now we have

Lemma 3.3.4. Let 7 € Q2(R?) be closed with support in D(0,1) and such that

/7'20.
]R2

Then there exists a canonical choice of o € QL(R?) such that do =T

Proof. We will do this by altering the (non-compactly supported !) primitive obtained
from the Poincare Lemma to one with compact support. See Appendix C for a proof.
O

Applying a suitable diffeomorphism (scaling) on R? we may assume that 7(p) has
support in D(0, 1) for all p. So by the lemma we obtain a smooth family (in p) of 1-forms
o(p) which we extend by zero to 1-forms §(p) € Q'(S?). These vanish at points where
w(S) and w(p) agree and which satisfy w(p) — w(S) = dB(p). Let ¢} denote the Moser
isotopy corresponding to the 1-form G(p) for p € U, UUy. These families depend smoothly
on p by construction. Now choose a suitable cut-off function p: R — R with support in
[—2¢, 2¢] and being 1 on [—¢, €]. Consider the diffeomorphism

T(Z, w) = ((bz)(\wD (Z)v w)'
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Choosing € small enough this diffeomorphism 7 doesn’t alter the torus L. Near F we
have ¢} = id by construction (the Moser vector fields vanish), so the standard fibration
is unaltered in the region where we standardised the symplectic form near the fiber F'.
Furthermore by construction 7 = id on Sy. The pull-back symplectic form (via 7) is equal
to w(S) on the sets S? x {p} in a (smaller) neighbourhood of Sy U S,,. By construction,
T is isotopic to the identity. This finishes step 1. O

Step 11

As in the standardisation of the symplectic form near a fiber, we first show the existence of
a diffeomorphism ¢ of M which has support near S,, U Sy and which pulls the symplectic
form back to a symplectic form which agrees with wy = piw(S) + piwsq on T'M|s.. and on
TM|s,. Further ¢ needs to be the identity near the fiber F. This is of course nothing else
than the first part of the proof of the symplectic neighbourhood theorem, but because of
the last condition we will write down a proof but with the necessary modifications. Since
we can easily split the problem in two, it is enough to find such a diffeomorphism for S...

Lemma 3.3.5 (T). There exists a smooth isotopy ¢;: V — M such that
e V is a neighbourhood of S in M;
o Os,. =id for allt;
o ¢l =1d;
o ¢, =1id for allt in a neighbourhood of F';
e ¢jw agrees with wy on TM|s_.

Proof. The idea is to write down a smooth family of bundle maps A* of the vector bundle
7: TM|s, — Seo; v € T, M +— x starting at the identity, such that A' maps a symplectic
basis for w; to one for w. Now use the exponential map of some metric on T'M to get
from the family A’ an isotopy ¢; of a neighbourhood of S,, which is the identity on S,
and ¢jw = wy; on T'M|s, . This is just the first part of the symplectic neighbourhood
theorem.

We only have to show, how to construct A® such that ¢, is the identity in a neighbourhood
of F.

We think of the second factor in M = S? x S? as being C and S,, = S? x {0}. Since
symplecticity is an open condition, there exists a neighbourhood S? x D(0, €) such that
all the fibres of py: S? x D(0,¢) — D(0,¢); (2,w) — w are symplectic for the symplectic
form w. Consequently there exists a symplectic connection on ps given via a distribution
of horizontal subspaces H defined by the symplectic orthogonal complements to ker dp,.

Consider the standard coordinates u + iv on C and lets denote by 2 (z,w), 2 (2, w) the

’ v
horizontal lifts of &, -2 with respect to H at (z,w). Moreover let K (z,w) = w(z u)(Z, Z)
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and ¢ = wstd(%, %) > 0.

For all x € S, any tangent space T, M has two splittings:
ToM =T, Se & (T:S00)7
ToM = T,Ss @ (TSs0) "

where ()1 is the symplectic orthogonal complement with respect to w; and ()1 is the
symplectic orthogonal complement with respect to w. Note that (7,54 )7 is spanned by

%, % whereas H, is spanned by a%(1’), %(l’). Moreover let e, f1 be a symplectic basis
for T,,S. for both w; and w (both forms agree on fibers of p, because of step I). Then

19 10 ; - - 19 19 -
e, f1, Tede Jooe 1S a symplectic basis of T,, M for w; whereas ey, f1, ﬁ%(:c), ﬁ%(x) is

a symplectic basis of T, M for w.
Then
Ati TM|SO<> — TM|SO<>

with ¢ € [0, 1] is given by

[ A;‘ngoo =1id for all z € Soo

o Al(L Oy —(1—¢t)L 2 4 1 E(:E)forallzzeSoo

c Ou \/@au
t

(z) for all z € S

c Ov \/@80

In a neighbourhood of F', we have w = w; thus 2 = 2 2 = 2 and K(z) = c¢. Thus

A! = id there. This proves the lemma. O

Choosing V small enough we can assure that the image of the isotopy stays away from
the Lagrangian torus L. By the isotopy extension theorem there exists a diffeomorphism
HY of M which extends ¢; and which is supported away from the torus and S,. Doing
the same for Sy, we obtain a diffeomorphism H*® with similar properties. After pulling
back w by 7 = H™ o H® we may hence assume that w agrees with w; on TM|s._,TM]|s,.
Obviously, by construction, 7 is isotopic to the identity. This finishes Step 2.

Step III

Proposition 3.3.6 (T). There exists T € Dif fo(M) which preserves Ss,USy pointwise, is
supported in a neighbourhood of S USy away from the Lagrangian torus L and which pulls
the symplectic form w back to a form which agrees with the symplectic form w, = piw(S)+
Pawsta 0 a smaller neighbourhood of Soo USy. Moreover, T = id on a neighbourhood of F'.

Proof. Without loss of generality, it suffices to do this for S,,. Consider the linear in-
terpolation between w and w;. Since they both agree on TM|s_ and symplecticity is an
open condition, there exists a neighbourhood 5% x U, of S, on which the family of closed
2-forms

wi = (1 —t)wy + tw
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is symplectic. As in Lemma B2 there exists a 1-form [ which vanishes on S, and on
a neighbourhood of F' such that w — w; = df. Then the vector fields X; generating the
Moser isotopy ¢; vanish on S, so that ¢, = id there. Thus for all ¢, any neighbourhood
of S, is mapped by ¢; to a neighbourhood of S,,. Choosing the neighbourhood small
enough, call it S? x U’ say, we can assure that it is mapped into S? x U by all ¢;. This
defines an isotopy of S? x U’ into M starting at the inclusion (since ¢y = id). Hence by the
isotopy extension theorem there exists a diffecomorphism g of M which extends (¢1)|s2xp-
We can choose this diffeomorphism to have support in S? x U,, (by shrinking U’ even
further if necessary) and to be disjoint from the Lagrangian torus L and Sy;. Hence the
pull-back p*w = w; on S? x U’'. Moreover by the above 8 = 0 on a neighbourhood of F
thus there X, = 0 and hence ¢, = id as claimed. Let 7 := u with support in S? x U,,. By
construction 7 is isotopic to the identity. This proves Step 3. O

Hence the symplectic form is now split in S? x U, U Uy a neighbourhood of S, U Sy
and in V' x S? a neighbourhood of F' as claimed. Note that the fibration is not standard
yet in a neighbourhood of S, U Sy, only the symplectic form is!

3.3.3 Standardisation of the symplectic foliation near the sec-
tions

The diffeomorphisms used so far preserved S, were the identity on Sy, but did alter the
standard foliation near Sy, So. In this step we want to deform the foliation back to the
standard foliation in a smaller neighbourhood of S, U Sy. This deformation should be
through symplectic foliations. Again it suffices to study one of Sy, S...

Up to now, all diffeomorphisms used in steps 1 — 3 were the identity on a neighbourhood
V x S? of F, hence the standard foliation wasn’t altered in V x S? and we can use
Proposition to alter the symplectic foliation to the standard foliation in a smaller
neighbourhood. Let 0P denote stereographic projection from p on S? and consider the
following diffeomorphism

7157\ {20} x S*\ {S} = R*
(z,w) = (0%(2), 0% (w)).

By construction 7(S5? \ {20} X U) is a neighbourhood of R? x {0} on which the push-
forward symplectic form 7,w is split but not yet Qy = dx Ady + du A dv (R* with standard
coordinates z,y,u,v and z = x + iy, w = u + ).
By applying Lemma B2 T2 on each factor we can assume that we indeed have the standard
form dx A dy + du A dv on 7(S%\ {20} X Us). The smooth foliation we obtain on (5% \
{20} X Us) by pushing the foliation on M forward via 7 is standard, i.e. the leaves are
of the form {z} x R? for |z| > £ for some R > 0.
Preliminary discussion to Proposition
Regard any smooth function f: R? — R2, then the pullback F*( of the symplectic form
Qo under the embedding

F:R* - R?
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2 (2, f(2))

is given by
(14 detDf)dx A dy.

Hence the graph I'(f) C R* of f is symplectic if and only if 1 + detDf > 0 and if it
inherits its orientation from the projection to the z-plane.

Now assume that A: R? — R? is linear and that ¢: R — R is a smooth function. Then a
short calculation shows that for f(z) = ¢(|z])Az

detDf = detA(¢*(r) +ro(r)d'(r))

with r = |z|. This proves

Lemma 3.3.7. Let A: R? — R? be linear with detA > —1+¢. Let ¢: [0,00) — R be a
smooth function. Then the graph of f(z) = ¢(|z|)A(z) is symplectic provided that for all
r >0,

1

0= 8 +ro(r)d (1) < T—.

Proposition 3.3.8 (S). Let A := D(0,R) C R? be a closed disk and (SA)AGA be a

smooth foliation of a region in (R* Qq) by symplectic hypersurfaces S* intersecting R? x
{0} transversely in (X, 0). Then for every neighbourhood W C R* of A there exists a
neighbourhood U C W of A and a family of foliations (S)\)seol} \eA with the following

properties.
o 52 =5
o S is symplectic and intersects R? x {0} transversely in (0, \);
o 52 = 8% outside W;

o S = {\} xR in U. Moreover, for every X with S* = {\} x R in W we have
S) = SA for all s.

Proof. The proof is in spirit similar to the proof of Proposition BZZ9. After shrinking W,
we may assume that in W each surface can be written as a graph S)‘ {z=X+ f(w )}
over the w-plane with f*(0) = 0 (cf. the discussion before Proposition BZZH). After a
C'-small perturbation we may assume that the f* are linear functions A*. We do this
as in the linearization in Proposition by cutting off the Taylor expansion of f* in w
after the linear term.

Symplecticity implies detA* > —1. Since we may choose W compact, there exists a § > 0
with detA» > —1+§ in W for all \. Moreover, we may assume that the d-neighbourhood
of A is contained in TW. Pick a > 0 so small that 2 <. Let ¢5 be the family of functions
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St
Sr = Sp
\ (A, 0) after

R? ;< {0} deformation R? x {0}
S1

S)\
’ (A, 0)

Figure 3.6: The family of foliations S

from Lemma BT for «,d. Then since 0 < ¢4(r) + r¢l(r) < = it also follows that
0 < @%(r) + ros(r)¢.(r) < 5. Now define

fMw) = ¢y (lw]) F(w).

Then by Lemma B237, the graph S of A + f2 satisfies all the conditions of the proposi-
tion, where U is the $-neighbourhood of A. Note that if S* = {A} x R? for some A, then

f*(z) = 0 and thus S2 = S* for all s.
It only remains to verify that the surfaces (S2)xea form a foliation for each s or equiva-
lently, that the map

F,: A x D(0,6) — R*
A w) = A+ fHw),w) = (A + b1y (|w]) A w, w)

is an embedding.
To show injectivity suppose that Fy(\, w) = Fs(N,w’). Then w = w’ and

A= N = —¢1_(Jw]) (A = AN)w.
This implies
A= N] < | AN = AN |lw] < ||A* — AYY|S.

Since f* depends smoothly on ), there exists a constant C' such that [|A* — AY|| <
CIA = XN|. For § < é this implies A = ). For the immersion property, consider the
differential

af

1 + Bs ow afA

DFS()\,w) = , By = 8;
0 1




62 CHAPTER 3. THE STANDARDISATION

This is an embedding iff the matrix

aAA
14+ By =1+ ¢1- s(lw|)

is 1nvert1b1e By smoothness in A, there exists a constant C' with [|2- w|| < Clw|. Then
for 0 < & we get

AA
[p1- s(lw\) wH < Clw| < C§ < 1,

which implies invertibility of 1 4+ B,. O

As in the standardisation of the symplectic fibration near a fiber, Proposition B:3.8
provides a smooth family of foliations F, on S? x S? such that (F;,w) has vanishing
symplectic curvature near the sections S, Sy and near F'. We need to show:

Proposition 3.3.9. (F,,w, L, So, So) is a homotopy of relative symplectic fibrations.

Proof. We need to show, that L is fibered by my: z € (.7:8)96 — (Fs)e N Sp for all s.
Consider the embeddings F; in the proof of Proposition B.3.d and note, that for all s,
they have the same open set W as image in R* and agree in a neighbourhood of oW
Thus F,o F; ' W —-WcM (we identify R* with a subset of M) is an isotopy which is
the identity near OW for all s. Extend this isotopy by the identity to all of M and denote
it by 1. Hence the smooth family of symplectic foliations on M is given by Fy = 1)s(Fo).
Further note, since Fy(X,0) = (A + ¢1-4(|0])A%0,0) = (},0), that 1) preserves S, S
pointwise. Now consider

Ts: & € (Fs)w = (Fs)z N So.

Since (Fs)e = ¥s((Fo)y-1(,)) and ¢s preserves Sy pointwise, it follows, that m,(z) =
mo(¢; (). Also o, = id out81de a neighbourhood of S., U Sy, so in particular ¢s(L) = L
pointwise for all s. Thus 7y (L) = mo(¢; L) = me(L) = ~ is an embedded curve and
77 (y(t)) N L is an embedded circle. Further let T be the solid torus for the relative
symplectic fibration (Fo,w, L, Se, So), then the solid torus Ty = 14(T') is made up of
symplectic embedded disks in each leaf of F; which bound the embedded circles from
before, so that T bounds L. This shows, that L is fibered by m, for all s. To check the
other properties that (Fs,w, L, Se, So) is a homotopy of relative symplectic fibrations is

trivial. O

Hence we can assume that there exists a neighbourhood S? x (U, U Up) of S U Sy on
which both the foliation F := F; as well as the symplectic form are standard and which
is away from the Lagrangian torus L. Observe that, by construction, L still lies above
the equator in S, = S2.
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2/3€ €

Figure 3.7: The cut-off function p

3.3.4 Trivialising the fibration

By a suitable diffeomorphism we want to obtain the standard foliation again.

Consider the map © = m1: M — S? given by (z,w) € F, — x where F, denotes the leaf
of the altered foliation from Proposition through the point (z,5) € S% = .

As before it is the trivial S2-bundle over S?, hence there exits a trivialisation ¢, such that
the following diagram commutes:

M —2 M

lﬂ lpl (3.4)

52 L 52
Since ¢ covers the identity, the fibers over the equator in S? = S are mapped to the fibers
over the equator. Thus ¢(L) is a monotone Lagrangian torus for ¢,w which is fibered by
p1 and which lies above the equator in the base. It is however not conveniently fibered
since ¢ might have messed up the region near the fiber F. Also the sections Sy, S are
not a priori preserved by ¢. The following lemma however shows that we can assume
without loss of generality that ¢(L) is conveniently fibered and ¢ preserves the sections

50, Soo-

Lemma 3.3.10 (T). There exists a diffeomorphism T of M, such that the diagram above
commutes, and such that 7 = id on a neighbourhood S* x (Usx, UUy) of Se U Sy and on
V x S? a neighbourhood of F.

Proof. Clearly it suffices to show the lemma for one of S, Sp. First we show that we can



64 CHAPTER 3. THE STANDARDISATION

assume that ¢ is the identity in V' x S?, the neighbourhood of F' where the foliation has
not been altered. We do this by applying a suitable fiber preserving diffeomorphism 1 of
M which undoes ¢ on V x S2.

Therefore note that ¢, = ¢[,-1,) is a diffeomorphism of S? = prl(z) for all z € V.

Consider the cut-off function p in the fig. B and define u: D(zg,¢) — Dif f(S?) by
u(z) = gbp_dz‘)ﬁ where z are local coordinates around zy. Extending u by ¢;* to all of

S? we found the desired diffeomorphism of S? x S? by setting (2, w) = u(z)(w). Then
indeed 1) o ¢ is the identity in a neighbourhood of z.

Then using Theorem B32, we may assume that ¢ preserves the sections S,, and Sp.
Next m = p; on a small neighbourhood S? x Uy, of S, (this is what we have obtained
in Proposition B3.8). Fix z € S2, then ¢ maps a small disk D(N,¢) C p;'(2) into a
neighbourhood of N in p;'(z) = S2?. Denote this embedding of the disk D := D(N,e)
into S% by 7,. These embeddings are the identity for points near z;, so we can regard
T, = Tyyis as a two parameter family of embeddings of the disk into S? which is the
identity for 24 s? large. By the isotopy extension theorem with parameters we find a two
parameter family 1), of diffeomorphisms of S? which agree with 7, on D and which have
support in an arbitrarily small neighbourhood V of N with D C V. From this we can
construct a diffeomorphism of S? x S? by setting ¢ (z, w) = ¥;(w) such that 7 = ¢ 0 ¢
has the desired properties. O

7(L) is monotone Lagrangian for 7,w and is conveniently fibered by p;. This proves
the standardisation near the two sections S, Sp.

3.4 Topological standardisation of the torus

In this section we construct a p;-fiberpreserving diffeomorphism 7 of M which maps the
Lagrangian torus L to the Clifford Torus L.

The definitions of A, Dif f(A,0A) and Ham(A, 0A, wgqa) used in the sequel can be found
in Appendix [E] and chapter Bl

We construct 7, by first finding a loop of diffeomorphisms of the annulus A, which realises
the torus L over the equator (see below what we mean by this). Then we use the fact
that the fundamental group of Dif f(A,0A) is trivial so that we can find a contraction
of this loop of diffeomorphisms. We then use this contraction to explicitly construct a
fiber-preserving diffeomorphism of M which maps the Clifford torus Ly to L and which
preserves S, and Sj.

Proposition 3.4.1 (T). Let (S?xS5?%,w) be symplectic such that p; is a symplectic fibration
and let L be a monotone Lagrangian torus conveniently fibered by p,. Further w is of the
form w = wy on V x S?% a neighbourhood of F and w = wy on S?x Us,UU, a neighbourhood
of Sse U Sy. Then there exists a pi-fiber-preserving diffeomorphism T of S? x S? which
maps Lgqg to L and which is the identity on a neighbourhood S? x (Uy U Uy) of See U So
and on a neighbourhood V x S? of F.
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Proof. The Lagrangian torus L is given by symplectic parallel transport of the equator
E C F around the equator in the base by Proposition 242
Since the symplectic connection is flat near S, Sy, the diffeomorphisms of the fibers given
by symplectic parallel transport

P:F — F,

(20, w) — ((cos(2mt), sin(27t), 0), pr(w))

fixes neighbourhoods of the north- and the southpole pointwise (Note that the fibers
are smoothly identified but not symplectically so!). Hence we can view ¢; as living
in Dif f(A,0A) the group of diffeomorphisms of the annulus which are fixed near the
boundary (again we smoothly identify the annuli in all fibers). Define E; := ¢(E) =
py ((cos(t),sin(t),0)) N L. Furthermore symplectic parallel transport is the identity in
V x S? near F. Hence ¢; defines a smooth path in Dif f(A, dA) which is stationary near
its ends. It is a well-know fact that m;(Dif f(A, 0A)) = id for all i > 1 (see Appendix [E).
From Theorem EEZT in chapter Bl we know that the monodromy map ¢; is hamilto-
nian. Since L is a torus generated by symplectic parallel transport, it follows that ¢; is
hamiltonian with ¢;(E) = E. We have the following lemma:

Lemma 3.4.2. Lety € Ham(A, 0A, wsq) (for a definition see[[-2.9) such that Y(E) = E,
i.e. that v fizes the equator, then there exists a smooth path 1y € Ham(A, 0A, wgq) from
the identity to ¢ such that ¢ (F) = E for all t.

Proof. This is proved in Appendix [Dl, Lemma [D-0.24] O

Apply Lemma BZ2A to ¢ = ¢;'. Then let 1/, be the path given by the Lemma and
reparametrise in ¢ such that 1, is constant in ¢ near its ends. Now consider the path

0 = ¢ oy

and note that, by construction, it is still true that 6,(EF) = E,. But by construction 6, is
a loop since ¢1 oY = id and it is also smooth by construction (6; = id near its ends).
But m (Dif fo(A,0A)) = id so that the loop 6, is contractible. By smooth approximations
we may assume that 6; is a smooth contraction of 0, i.e. 8} = 6;; 0) = id; 05 = 605 = id.
Again by a reparametrisation in s, we may assume that ; is constant in s near its ends.
We can extend the diffeomorphism 6 by the identity to all of S2.

Choosing cylindrical coordinates z, u € (—1,1) x R/27Z on S?\ {N, S} we can define
a global diffeomorphism of S? x S? by

7: 9% x 5% = 5?2 x 8% ((z,p),w) — ((ZW),@EL;ZQ(W))

on S?\ {N,S} x S% and by the identity on {N,S} x S% This is a fiber-preserving
diffeomorphism of S? x S? by construction and it maps the standard torus L.q onto L.
Trivially, 7 fixes a neighbourhood S? x (Uy U Up) of S, U Sy by construction. Moreover,
since 6 is constant in s near its ends and 0} = id € Dif f(S?) for ¢ near 0, 1, it follows
that 7 = id in a neighbourhood V x S?% of F'. This proves the proposition. O
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Pulling back all data by 7 gives the required standardisation theorem of the torus.
Hence w is a symplectic form on S? x S? which makes the fibers of p; symplectic, such
that w = wp on V x S% w = w; on S? x (Uyx U Upy) and such that L, is monotone
Lagrangian for w. This finishes the standardisation.

3.5 Summary

Recall that Fq4 is the foliation on S? x S? given by the fibers of p;, Soo = S x {N}, S, =
S% x {S} and F = p;'((1,0,0)).

For convenience, we summarize the results in this chapter by Theorem B5.l Observe,
that all the diffeomorphisms in this chapter to simplify the setup induce the identity
on Hy(M). This follows either since they are isotopic to the identity or by Proposition
P18 Hence, all these diffeomorphisms map relative symplectic fibrations to relative
symplectic fibrations. On the other hand, those steps in this chapter whose output is not
a diffeomorphism giving diffeomorphic relative symplectic fibrations, where shown to be
homotopies of relative symplectic fibrations. This proves

Theorem 3.5.1 (Standardisation). Assume that
(Fata,w, L, 2, %)
is a relative symplectic fibration. Then (Fgaq,w, L, 3,3 is equivalent to
(Fstas @, Listay Seos So)
in the sense of Definition[2.4.9 such that @ = pi0+ phwea on the set W = (V x S?)U(S5?% x

(Us UlY)). Where V x S? is a neighbourhood of F and S* x (Us, UUy) is a neighbourhood
of Sao U Sy. So in particular, S, Sy are horizontal. Furthermore, W = wgy near zy.



Chapter 4

Killing the monodromy

Recall that Fq4 is the foliation on S? x S? given by the fibers of p;, Soo = S x {N}, S, =
S2x{S} and F = p;*((1,0,0)). In this chapter, we assume, that (Fyq, w, Lad, Seo, So) is a
relative symplectic fibration, such that w = piO+piwsq on W = (VX S?)U(S%x (U, UlY)).
In particular S, .Sy are horizontal for the symplectic connection. Moreover note, that
72 € (Faa)e — (Faa)z N S is just given by m(z,w) = (z,5) for all (z,w) € S* x S,
and so 7 is basically p;. In the following, we identify Sy with S2.

4.1 Suitable coordinates on the base

As before we consider S* C R? and zy = (1,0,0). Let ¢; € Dif f(S?) be the gradient flow
of the height function h: S* — R; (z,y,2) — z. Then ¢(E) = E for all t. Let

By = {(z,y,2) € S*[x > b} = h™!([b, 00)).

By shrinking, we can assume that V' = D(z, €) is the neighbourhood of z, over which
the symplectic form is standard after the standardisation in chapter B. Now take ¢t = T" so

big, that ¢ := ng(B_%) C D(zp,€). Pull back all the data by the diffeomorphism ¢ X id.
2
S? C R3 2u-pl -pl
y-plane 52 - g3 xy-plane
N
T-axjg ————= T-ax]
o
~——
b By \

¢ (Bs)

Figure 4.1: The gradient flow of h and its effect on B,

67
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Figure 4.2: Circles of latitude and the set B_ 3

M

Clearly the symplectic form is not the original form over B_ 1 anymore, it is however

still split of the form w; = piw + piwsq. Consider the usual sf)herical polar coodinates
A€ (=%,%), 1€ [0,2n] on the base S* \ {N, S} centered at z.

Denote by C* the circle of latitude A in the base and by ¢* the symplectic parallel
transport around C* parametrised in the obvious way. Since the starting and end point

of the parametrisation of C* is contained in B_ 3 for all A and the symplectic form w
2

equals piw + piwsg over B_ 1, we can regard ¢* as living in Symp(S?, wgq) for all \.
2

In the following proposition, we want to fix two properties of ¢* which are due to the
standardisation in chapter Bk

Proposition 4.1.1. 1. ¢* =id for |\| > &
2. ¢ restricts to the identity on D(N,2¢), D(S,2¢) for some € > 0;
Proof. C* C B_ 1 for all |A| > 7. Since the symplectic form is split in B_ 1, it follows
2

V2

that symplectic parallel transport ¢* around those C* is the identity.

Further, by the Standardisation B2l the symplectic form is split in a neighbourhood of
the symplectic sections S.., Sy so that there exists € > 0 and neighbourhoods D(N, 2¢),
D(S,2¢) of N, S in S? such that ¢)\‘D(N,2e) = ¢A|D(S72€) = id. O

By stereographic projection oV from N the set S?\ (D(N,€)U D(S,¢€)) is a closed
annulus A in C which is centerd at the origin. For a simpler notation we will assume
without loss of generality that

A:{zeC|%§\z|§2}

T

and by Appendix [Al, wyg = mdr A df on C via stereographic projection. Further
let A\gig = mw be the standard primitive of wgyy. Thus we may assume that for all
A we have ¢* € Symp(A, DA, wya) (see the definition in Appendix E). Further by the
first conclusion in proposition LI, A — ¢* defines a loop in Sympg(A, DA, wyy) which
is constant near its ends (for |A| > Z). Consider the loop ¢* = (¢*) ™.
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4.2 Monodromy is Hamiltonian

In this section we show that the monodromy maps ¢* and their inverses 1* are Hamilto-
nian.

Lemma 4.2.1. Let ¢ € Symp(A,0A,wgq). Then there ezists a smooth function F: A —
R which is constant in a neighbourhood of the boundary (not necessarily the same constant
near the two boundary components !) such that

¢*)\std - )\std =dF.
Proof. Trivial (Appendix D). O
Now we can define:

Definition 4.2.2. Let ¢ € Sympo(A, OA, wga), the identity component of Symp(A, OA, wgq)-
Then Fluz(¢) € R, the Flux of ¢, is defined to be

Flur(8) = F(2) - F(3)

where F': A — R is the smooth function from Lemma[{.2_1] which satisfies
dF = ¢*)\std - )\std-

Remark If I, F’ are two functions such that dF = ¢*\yq— Astq = dF’ then F' = F'+c¢
for some constant ¢ and obviously Fluz(¢) = F(2) — F(1) = F'(2) — F'(3). Hence Flux
is well-defined.

Also note that Fluz(¢) for ¢ € Sympy(A, DA, wgyq) is independent of the primitive of wgy.
Since this is important in the sequel, we phrase it as a lemma:

Lemma 4.2.3. If Flux*(¢) denotes the Fluz of ¢ € Sympo(A, DA, wea) defined with
respect to A with d\ = wgy instead of \gq, then

Fluz(¢) = Flua*(¢).
Proof. Trivial (Appendix D). O

Lemma 4.2.4. Let ¢, € Sympo(A, 0A, wsa) then Flux(p o ) = Flux(p) + Flux ()
and Flux(Id) = 0.

Proof. Trivial (Appendix D). Follows also from Lemma 23 O
Now we can define

Definition 4.2.5. The group Ham(A,0A,wgq) of Hamiltonian symplectomorphisms of
the annulus A which are fized in some neighbourhood of the boundary is defined to be

Ham(A, 0A,wgq) := {¢p € Sympo(A, A, wga)|Flux(s) = 0} .
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Note that Lemma FE2Z4 above shows that Ham(A, 0A, wgqg) forms a group under com-
position. We proceed by showing two Lemmata which will be useful in the sequel.

Lemma 4.2.6. Let (M,w = d\) be an exact symplectic manifold. Let ¢, be a symplectic
isotopy starting at ¢g = id. Let ¢, be generated by the time-dependent vector field Xy, i.e

d
%Cbt = X 0 ¢

Then tx,w = dH; for a smooth family of functions H,: M — R if and only if p; \—\ = dF,
for a smooth family of functions Fy: M — R. Moreover F, and H; are related by the
equations

t
F’t:/(HS_‘_LXS)\)OQSst
0

d
Hs - <% |t:s F’t> ¢ LXS

Proof. see Appendix D. O

Lemma 4.2.7. Given any real number a, there exists a canonical symplectomorphism
¢ € Sympo(A, 0A, wgq) such that

Fluz(¢*) = a
and ¢° = id. Further ¢* depends smoothly on a.
Proof. Trivial (Appendix D). O
Now we can show

Lemma 4.2.8. If ¢ € Ham(A, 0A, wsa), then there exists a smooth family of functions
H,: A — R which have support away from the boundary, such that ¢ is the time-one
map of the isotopy ¢y of A, generated by the time-dependent vector field X, defined by
Lx,Wsta = dHy. In particular the group Ham(A, DA, wgq) is path-connected.

Proof. Since ¢ € Ham(A,0A,wgq) C Sympo(A,0A,wgq) there exists a smooth path
o1 € Sympo(A, 0A, wea) from id to ¢. Define A(t) := Flux(¢:). By smoothness of the
path, A(t) is smooth in ¢. Hence consider the smooth path v, = ¢~4® o ¢, between id
and ¢ (from above ¢° = id). Since Fluxz(¢p=4® o ¢,) = Flux(¢p~4D) + Fluz(¢y) = 0
(cf. Proposition EE2ZA), this is a path in Ham(A, 0A) which connects id to ¢. Then
Wi Asta — Asta = dFy with Fy(2) = Ft( )=0and H; = <<d83 - F,)o¢;? LXt A) has support
away from the boundary and the desned properties by Lemma [ This shows also
that Ham(A, 0A, wgyq) is path-connected. O

We have the following proposition:
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Proposition 4.2.9. Let M := C x A and Q a symplectic form on M such that the fibers
of p1: Cx A — C; (z,w) — z are symplectic. Moreover let Q) = pia+ piwsia near Cx A
be split.

Let 6:[0,1] — C be a closed curve in the base such that Qf —1(5q)) = wWsta- Then the
monodromy map ¢ of the symplectic connection around ¢ is Hamiltonian.

Proof. Since H?*(M) = 0 it follows that Q = dA is exact. Let A := p~(§(0)) and let
Ala= A

Since ) is split near 0A there exists a neighbourhood U of A such that ¢|y = id. Sym-
plectic parallel transport is symplectic and the loop d is contractible, hence it follows, that
¢ € Sympo(A, 0A, wgya) (indeed, the monodromy maps around the loops in a contraction
with fixed endpoints define a symplectic path to the identity). Thus by Lemma 2Tl we
have

O'N—\N=dF

for some function F and we can define Fluxz*(¢). By Lemma Flux(¢) is independent
of the primitive A\ and we surpress A in the notation for Fluzx.

Now if v: [0, 1] — A traces out the straight line element ANR, between the two boundary
components, then by the Fundamental Theorem of Calculus,

Fluz(g) = F(1(1)) — F(7(0)) = / IF = / Y

Define
Py: A— p(5(s))

the parallel transport map for the path ds: [0,s] — C; ¢+ §(¢) and
$: [0,1] x [0,1] — M; (s,t) — Ps(7(1)).

Let C := ®([0, 1] x [0,1]). Observe that Py = id and P, = ¢. Now
bt (0% 0P
Q= Q| —,—= ) dsdt
o= oG5

/Gt: [Oa 1] - M7 S (I)(Sat) = Ps(fy(t))
is by definition the horizontal lift of ¢ starting at +(¢) and thus

Note that

0P :
St = Ails)

is horizontal. But
od

St = AP/ (1)
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Figure 4.3: The map ¢ and its image

is vertical. Hence by definition of the symplectic connection

0 (S0, 5 -

/ Q=0
c
On the other hand

/Q:/dA:/A:/ A—/ A+/ A—/ A=
c c ac ®({1}x[0,1]) ®({0}x[0,1]) ®([0,1]x{1}) o([0,1]x{0})
:/)\—/)\—I—/ A—/ A:Flux(gb)—l—/ A—/ A.
by v ox{y(1)} 5x{~(0)} ox{y(1)} 5x{~(0)}

Let i,,: C — M; z — (2,w) denote the inclusion and let A; := 4}, A. Since near (i),
Q = pia + phweq and py 04, = td and pe o7, = w, it follows that ii;(i)Q = « and
consequently d\g = a = d\;. Thus \g = A\; + df for a function f: C — R. But then

L= Lot
ot S s

and so
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/)\0:/)\1.
6 0

This implies by the equation above that

[ ooa-[ a0
ox{v(1)} ox{v(0)}

Flux(¢) =0

and so, since ¢ is closed

and thus

as claimed. 0
The following theorem is a simple corollary of Proposition

Theorem 4.2.10. The monodromy map ¢ of the symplectic connection defined by (py,w)
around the circle of latitude X is an element of Ham(A, 0A, wgq).

Proof. Via stereographic projection from the northpole N applied to the base, we may
assume that we meet the conditions from Proposition EEZd Then C? is just a closed
circle around the origin. Hence ¢* € Ham(A, DA, wy) as claimed. O

Since 1 = (¢*)71, it follows straight away that also ¥* € Ham(A, A, weq).
Theorem 4.2.11. Ham(A, DA, wgq) is simply connected.
Proof. This is proved in Proposition [EL0.31 in Appendix [El O

Thus the loop ¥ is contractible.

4.3 A special contraction

In the previous section, we have shown that the loop 1” is contractible. In order for the
inflation procedure to work in the next section we need a special contraction ¥? with

A€ [5£, 5], s € [0,1] and such that ¢(E) = E where E is the equator in S?. We will

also call E = {|z| = 1} C A the equator.

Theorem 4.3.1. There exists a smooth contraction 1) of ¥*, with A € [5F, %], s € [0, 1],
such that:

it =
o Yy =1d;
o ) =id for || > I for all s;

e 1) is constant in s near its ends;
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\ wo n \ V2
(G “
02
Id / Id d

D,

8}
D,
A
Id 14 Id (0

Figure 4.4: The idea to construct the special contraction )

e V)(FE)=F forall s.

Proof. We want to use Lemma and the fact that Ham(A, 0A,wgy) is simply con-
nected to find the desired special contraction. Here is the idea (cf. fig E4)): Since ¢ is the
monodromy map around the equator in the base, it follows that it preserves E (recall that
a fibered Lagrangian torus is generated by symplectic parallel transport by Lemma 2Z2.2).
Thus by Lemma there exists a path a(t) € Ham(A, 0A, wsq) between the identity
and 1° which preserves E for all t. Now split the loop 9* in two paths §; := {1&)‘}/\6[_%’0]

and 9 = {wA},\E[O - Form two loops 71 := 01 * & and v, = « * dy where x means
'3

concatenation of paths and 4 means travelling through + in opposite direction. Since

these loops are contractible in Ham(A, A, wgq), we can fill in disks D;, Dy which will

agree along a. Gluing them suitably together along « gives the desired contraction which

contains . The issue here is that we have to do this in a smooth way. So the actual proof
looks somewhat different.

First we apply a smooth homotopy (a smooth family of reparametrisations) such that
Y is constantly ¢ = ¢° for A near 0. Now we define the paths

91 [0, g] — Ham(A, 0A, wgyq); t— Y2

™

dy: [0, 5] — Ham(A, 0A,wgq); t— @Dg_t

and these paths are now constant near the ends due to the homotopy above.
Apply Lemma to ¢ = 4" and reparametrize the path a(t) in ¢ such that t € [0, 7]
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B

ty
~

s

Figure 4.5: The construction of K

and such that it is constant near its ends.
In a simply connected space, all path with the same endpoints are homotopic through
such paths. Thus we get two continuous maps

K1, K [0,1] x [0, g] — Ham(A,0A, wy)

with K;(s,t) a homotopy between the paths d; and a and Ks(s,t) a homotopy between
a and . We can assume that K; is constant in ¢ near 0,7 (say for ¢ being 4e close).
Now reparametrise in s such that K;(s,t) = K;(0,t) for s < 4e and K;(s,t) = K;(1,?)
for s > 1 — 4e. Since 91, s, a are smooth paths, it follows that K; is smooth in a 4e-
neighbourhood of the boundary by construction.

We concatenate the two homotopies above by concatenating the paths K!(s) = K;(s,t)
for fixed t to obtain a homotopy

K:[0,1] x [0, g] — Ham(A, 94, w)

K'= Ki« K!

By construction K is a homotopy between d; and 85 such that K(1,t) = a(t). It is
smooth on the 2e neighbourhood of its boundary and it is constant in s for s € [% — 2e, %—i—
2€].

Next consider the continuous map (cf. fig. 6

7:[0,1] x [0,3] — [-1,1] x [0, 1]
given by
(—x,tz) for 0 <t <1
T(x,t) = (—z+2(t — 1)z, z) for 1 <t <2
(r,z — (t —2)x) for 2<t <3
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K is const.in s here K = ¢ here
\ t
t b) :
0s) /] K b
...................... a
| —
| _
! B
-1 —s5 0 so 1 s 0 % 1 s

Figure 4.6: The construction of the map G
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The following two smooth maps
1
a: =11 0,2 = 0,11 x [0, 5]; (2,) = (5 + 1), 5y)

T T 3 m
are only used to adjusted the domain and the range of 7 to those of K. Then

G: [0,1] x [—g, g] — Ham(A, 0A, wy)

G(s,t) = KoaoTob(s,t)

is a continuous contraction of the loop d; * ¢4 * 9y where ¢y denotes the constant path at
0.

Note that K (s,t) is constantly ¢ for ¢ > 7 — 2¢ and constantly id for ¢ < 2¢ (cf. fig. BLG).
Thus G(s,t) = id for s < € and G(s,t) is a reparametrisation of d; * 5 for s > 1 — € which
is constantly ¢ while ¢ runs through the non-smooth points of 7. Hence G is smooth for
s near 0, 1. Furthermore, since 7(s,t) is smooth near ¢t = %, s >0 and K(s,t) is constant
in s near s = %, it follows that G(s,t) is smooth near t = 0 with

1
G(s,0) = K(5. 55) = al59)
Hence G is a continuous contraction (of a reparametrisation) of d; * 9 which contains o
and which is smooth on the set V' (see fig. E). Now consider the following lemma which

will be proved in Appendix D.

Lemma 4.3.2. There exists a smooth approzimation G: [0, 1]x[~%, 5] — Ham(A, 0A, wsta)
such that G = G on V. .C V' an open set which is a neighbourhood of the boundary, such

that G(s,0) = a(gs).

Thus by the lemma there exists a smooth map G which is a contraction of a reparametri-
sation of 81 % 0y in H am(A, 0A,wgq) and which contains the path «. Reparametrising
suitably in s, ¢ gives the required contraction ¢} = G(s, \) with 10 = a(%s). This proves
the theorem. O

4.4 Construction of a suitable Hamiltonian function

2, the special contraction from Theorem EE31], is Hamiltonian for all ), s. It follows that
(Q/JSA)*)\Std — Agtg = dF 8’\ for a function F S)‘ being constant near the boundary of A and such
that F}(2) — F(3) = 0. But F.* is determined by the equation above up to a constant,
so we choose the constant such that F vanishes near the boundary. Because of this
canonical choice and the smoothness of the contraction 2 in A, s, we obtain a smooth
family F}: A — R of smooth functions. By Lemma EZZH, the family F is related to
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N

Figure 4.7: Q and Q

the family of Hamiltonians H} generating the Hamiltonian isotopy 1 for fixed A, by the
formula

dF? _
H} = d—; o (1) — txaAsta

where J
Ew? = Xt)\ © %)\

and thus, H? is also a smooth family of functions in ), s. Note that, since 10 preserves
the equator, the Hamiltonian vector field X? is tangent to E for all s, so that H?|g is
constant for all s. Further, since ) is constant near its ends in both s and A\, H vanishes

near its ends. Hence we have H)(a) = 0 for [\| > Z, s < 2¢; s > 1 — 2¢ or a near the
boundary of A.
We define

Q={mN e \(N.5He<p<1-a]N < T

Qi={(1N) € S\ {N.S} < 15 [N < T}

Define a smooth function B
H:QxA—-R

(A, p1.a) = Hy(a).

Now extend H to all of S? x S? by zero and denote the resulting function also by H. Then
by construction H has support in Q x A and H (0, u)|g is constant for all p (H (A, p) =
H| ey ). Now we can evoke the inflation procedure.

4.5 Inflation

Recall, that in this chapter, we assume, that (Fgq, w, Lsa, Seo, So) is a relative symplectic
fibration. Further the symplectic form w is split of the form w = pj® + piwsq on

W= (S? x (U UUp)) U (B-1 x S?)

V2
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Neighbourhoods

S? x {N}

@/SQ x {S}

T
Figure 4.8: Where w is split.
nec

o)

2

@ is realised here

where S? x (U, U Up) is a neighbourhood of the symplectic sections S, = S% x {N} and
So = S? x {S} (see figure B2 for the definition of B;_l and figure [LF).

2

In this section, we are going to show, how to change the symplectic form w, in its
relative cohomology class in H?(S? x S?, Lyq4; R), to a form which has trivial monodromy
around the circles of latitude. To explain the idea, fix the circle of latitude C*(cf. fig. ).
Then symplectic parallel transport equals the identity along the part of C* lying within

B_ 3 since the symplectic form is split over B_ 1 It also follows that the monodromy
2 2

¢ will be realised by travelling along the part of C* not lying within B_ 3

N

The idea is now to smoothly change the symplectic form w to a relative cohomologous
symplectic form w’, such that the symplectic connection of w’ outside @ x S? agrees with
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that of w and such that its symplectic connection realises the inverse monodromy ¢* along
C*N Q for all \.
We define

Definition 4.5.1. A smooth function G: S? x S? — R is called admissible if
o Supp(G) C int(Q) x int(A)
° G\p;l(e)msm = constant for all e € E/, where E is the equator in the base.

The following diffeomorphism

-1 1 T T
gp[_ _]X[_gvg

~ 2
575 j]JcC—-QCS

. 1
iy A=y pu=c+3)

provides local coordinates x, y around the point (A, 1) = (0, %) in S2. Further Q is covered
by these local coordinates.

In these coordinates, the admissible function G has support in [3, 3] X [-%, 3] x A.
Furthermore G|{;4i0}xp is constant for all . Let G’ be an admissible function. Then
consider the closed form

QGIW—FCZG/\CLT.

Since {2¢ is vertically non-degenerate, the ()g-orthogonal complements to the tangent
spaces of the fibers of p; induce a symplectic connection on S? x S2.

Definition 4.5.2. The symplectic connection on p; induced by the form Qg for the ad-

missible function G will be denoted by Vg’;mp and will be called the connection induced by
G.

First notice that 2 is obviously closed. It will be symplectic, if it is non-degenerate.
This is equivalent for the form Qg A Q¢ to be a volume form on S? x S2. This statement
is local and trivially satisfied outside Supp(G). On Supp(G),

kN *
W = P1W + PoWstd-

We work in the chosen coordinates x, y and write for the form @ on the base w = fdz Ady
for some function f > 0. Hence

10G
QeAQe=(1-=222 .
e ( fay)ww
1 0G

So Q¢ will be symplectic iff 1 — 795 >0 everywhere. This need not be true for general
G.



4.5. INFLATION 81

We are now interested in the following question: Given any admissible function G, can
we find a deformation w; of w through symplectic forms such that L, remains monotone
Lagrangian throughout the deformation and such that w; has as symplectic connection

G
Vioymp’

Since g = w outside Supp(G), the induced connection of G is the same as the induced
connection of w outside Supp(G). Within Supp(G), w = pjl + piwstq is split, so that its
induced connection is flat. Thus the horizontal spaces of the induced connection of g
are spanned by the horizontal lifts of %, a%' These can be easily seen to be a% + Xa,,

and a%' Here X, , is the Hamiltonian vector field on (py'(z,y), wsa) of the Hamiltonian

function G, 4(a) = G(z,y, a). Indeed let % = 2 + v, be the horizontal lift of = with v,
vertical, then by definition

0 0
0= Qg(%,v) = Qg(%,v) + Qa (v, v) = —dG(v) + wsta(Vs, V)

for all vertical v. Hence
dG = 1y, Wstq

which implies that v, = Xg, . The same calculation shows that v, = 0.

4.5.1 The inflation procedure

Now let f,, f; be two smooth non-negative bump-functions on S? where we think of f,
as living on the fiber F' = {2} x S? and of f, as living on the base. Let f, be such that
Supp(fy) C D(S,e) UD(N,€) where D(N,€) C Uy; D(S,€) C Uy are neighbourhoods of
N, S. In particular let f, be such that

1
/ fawstd = / fawstd = 5
D(N,e) D(S.e)

Now let f. be a bump-function with support in @Q so that f.(z,y) = f-(x, —y) and that

.f'r|Q = 1. Let
a::/ ﬁ@:/de:c/\dy
o f Q
and define B
fr
fr= of
Then

/fTQZE/dez/\dyzl
Q aJq
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s
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<0 20 |
f (S,¢€)

Figure 4.10: The functions f,, f,
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and by the symmetry of f,

. 1 _ 1
/ fTw:_/ de.fL’/\dy:_
Qn{y<o} a JQn{y<o} 2

Let 0,7 be the two non-negative 2-forms o = f,wyq and 7 = f,0 and consider the

family of 2-forms
1

a c+1
Then on W = (S? x (Uy, UUp)) U (B:/_l x S?),

2

We (W + cepiT + cp3o).

1 * * N * *
we = —— ((1+ pif)pi + (1+ e fo)piwsa).

w, is obviously closed for all ¢ > 0, wy = w and w, is non-degenerate on W if

1
we Nwe = ————=(1+cpi fr)(1 + epsyfo)w Aw >0

(c+1)

everywhere. But this is obviously true by the choice of ¢, f;, f,. Furthermore, on (5% x
S\ W

1

o 1*

which is also symplectic. Thus w, is symplectic for all ¢ > 0.

It is important to observe that the symplectic connections on p; defined with respect to

We
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w and w, coincide for all ¢ > 0. Indeed, on W the form w, is split as is w, hence here
both symplectic connections are flat and the horizontal subspaces are the tangent spaces
to the other cartesian factor. Note that by construction on (S? x S?)\ W

1
c+1

and the symplectic horizontal complements H, to ker dp, are not affected by scaling of
the symplectic form. Hence the symplectic connections of both w, w,. do agree for all ¢ > 0
as claimed.

But w, is also relative cohomologous to wyg in H?(S? x S?, Lyq;R) for all ¢ > 0. This
follows by checking that both forms vanish on Ly, and that they evalute equally on a
basis of Hy(S? x S?, Ly4;R). We take as a basis [F], [So], [D], [X] where D = TN F
and ¥ = Dy, x {2} denotes the image of the constant section at zy restricted to the
lower hemisphere Dy;,. Firstly, it is clear that Ly, is Lagrangian for all ¢. Secondly note
that Ly is monotone for w and both D and ¥ have Maslov index 2 (Lemma and
Proposition ZZ4 in chaper @ show this for D respectively 3J). The monotonicity constant
is i because of the normalisation condition [, wy = 1 and u(F) = 4 by Theorem 234, so
it follows that [, w = [, w = 3. But now

2
° wac: ;ll(wa—l—cp;a) = ﬁ(l—i—c) =1

o [ we=ilfs,wtepiT)=7(1+c)=1

We = w,

° wac: H_Ll(wa—i—cp;g) = ?11(%_‘_0%) :%

o Jowe = (e +epir) = 3+ b = }
for all ¢ > 0. To see the last equation, notice that p; ()N Q = {y < 0}NQ. Hence by the
discussion above for f- = 5_} with & = fdx Ady over Q it follows that f{y<0}ﬂQ ffo=31In

particular, Ly, is still monotone for all ¢ > 0. Since Supp(G) and Supp(psf,) are disjoint,

Wwe = C%(w + ¢piT) on Supp(G). Hence if we restrict w. to the fibers, on supp(G), it is

just the standard form wgy scaled by ;11 Now we want to find an admissible function é,

which induces the connection Vg/mp for the form w,.. By this we mean that the symplectic

connection Vg’;mpc induced by the form

Q‘é:wc—l—dé/\dx

should agree with VsGymp.

horizontal lifts of a% are trivial anyway, it boils down to comparing the horizontal lifts of

For this to be true, all horizontal lifts have to agree. Since the

%. In particular the fiberwise Hamiltonian vector fields X¢, , of G with respect to the
symplectic form wg, on the fiber and the fiberwise Hamiltonian vector fields X@z , of G
with respect to the symplectic form Hilwstd on the fiber have to agree. Hence

~ 1 1 1

dGm,y = lx Wstd = c+ 1LXGx,ywStd - et 1

Gz,y Is + 1 dvay
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thus ]
G =
c+1
Hence Q°, o induces the connection VsGymp. For ¢ big enough the forms ¢, o will be
c+1 ct+1

symplectic (see below) but not yet relative cohomologous to w. Hence we have to modify
these forms further to obtain this property as well.

To do this, we denote K (z) := G, o(l) with [ € E the equator in the fiber. Hence K(z)
is the constant which G equals on the E = S* that L cuts out of p;*(z,0). Let p be a
smooth symmetric cut-off function in y such that p(0) = 1 and Supp(p(y)K(x)) C Q.
Now consider the family of 2-forms

e 1
O =w.+ tdc—i— 1(G p(y)K(x)) A dx

and note that
for

1 _ Py)K()
o= W)K(z)dr Ady = et DS

But a pull-back form from the base does not change the symplectic connection, hence €2f

still induces the symplectic connection Vg’;mp.

4.5.2 Symplecticity
On (5%\ Q) x S? the form Qf is just w, which we know is symplectic. Now on Q x S? C W

We N\ We = L4+ epi fr)(1 + epifo)w Aw

1
CESE

while

1 oG
wc/\tdm(G—pK)/\dx: le——)(l—i—cp;fg)w/\w.

t
2f(c+1)? ( Ay

Hence we find

1
QfAQf:wcch+2(wc/\td?(G—pK)/\dx) =
c

oG
= (04}71)2 <1+Cpffr+§ (P,K— O—y)) (I+epsfo)wAhw

on Q x S% (1+ cphf,) is greater than zero for all ¢ anyway as before. But the function
PK — % is supported in the compact set ) x S? hence there exists a constant M >
K — %—g\ on Q x S?2. Now on @ x S?, the function p}f, = é and so for ¢ > Ma

1—1—E+E p'K—ﬁ >0 on @ x S%
a f dy
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Hence for ¢ big enough, the family €2f is symplectic, starts at w. and €2f has as symplectic
connection V§  as desired. So we are left to show that the deformation is through
relative cohomologous forms.

4.5.3 Lagrangian monotonicity

We first have to check that Ly, is Lagrangian for f for all t. But T, Ly is spanned by
2 and a vector v tangent to the S* = pi ! (p1(2)) N Ly in the fiber. But by assumption G
is constant on this S'. Hence so is G — pK, since pK is a function of the base. It follows
that d(G — pK) Adz(Z,v) = 0 and Ly, is Lagrangian for € for all ¢. Furthermore since
d(G — pK) Ndx = d((G — pK)dx) is exact, the integrals of Qf over F, Sy are independent
of t. Also [, = [ w.=1 and

t 1 t 1
O = | w — pK)dz = = dr = =
/Et /zw+0+1/e)z(G pK)dz 2—|—C+1/820x 5

To see this, note that ¥ has boundary on Ly which projects to the equator on the base.
This means that p(0%)) = 1 (where it is defined) and so by definition of K it follows that
G(0X) — p(0X)K(0%) = 0. Thus the above implies that € is relative cohomologous to
w, as desired.

Indeed, for any admissible function G, we can find a deformation

Wy

of symplectic forms through relative cohomologous forms in H?(S? x 5%, Lyg4; R), such
that one end of the deformation is w and the other end has as symplectic connection the
connection induced by G: first consider the deformation w, with ¢ € [0,C] and C so big

that o 9C
t
I+ —+=(pK—-——])>0.
( fa f(” ay))

Then we consider the deformation
Qf

with ¢ € [0, 1] which starts at wg. Then the form Qf has Vg;ymp as its symplectic connec-
tion as desired.

Hence by construction, (Fsq, wr, Lsid, Seo, So) is a homotopy of relative symplectic fibra-
tions. Note that the symplectic forms w; are still split near the sections S, Sp.

4.6 Killing the monodromy

4.6.1 Killing the monodromy along circles of latitude

Putting the last two sections together, we can now prove:
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Proposition 4.6.1. Let (Fya, w, Lsia, Soo, So) be a relative symplectic fibration with w =
PO + piwsta on

W = (8% x (Uyx UUp)) U (B% x S?).

Then there exists a deformation w, of the symplectic form w such that (Fgq, wi, Lsta, Seos So)
is a homotopy of relative symplectic fibrations and the monodromy maps ¢ along the cir-
cles of latitude \ with respect to the symplectic connection induced by wy are the identity
for all . Further, wy is still split near the sections Ss, So

Proof. This follows directly from the inflation procedure applied to the admissible func-
tion H: S? x S? — R obtained from the special contraction in Theorem B30 Indeed
by construction the function H is admissible. Hence by the inflation procedure, we can
find a deformation w; of the symplectic form w through symplectic forms, such that
(Fstd, wis Lsta, Soo, So) is @ homotopy of relative symplectic fibrations, such that the sym-
plectic connection induced by w; equals that of w outside Q) x.S? and realises the symplectic
connection induced by Q = w + dH A dx over () x S?. Further, w; is split near the sec-
tions Sy, So by construction. We are left to show that the monodromy of the symplectic
connection induced by Q along Q N C* precisely equals ¢* = (¢*)71.

By the choice of the local coordinates (z,y), @ N C* = (x,\) with z € [Z,2]. Thus we
have to calculate the horizontal lift of a% which we know by the inflation procedure equals
a% + X, , over the point (z,A). Here Xy, denotes the Hamiltonian vector field on the
fiber p;'(x, \) of the function H, , = H|,1(,,»- But by construction of H in section B4
H, )= H;‘Jr% = H} for s € [0,1] with s = z + 1. Recall that H in [ was the family of

Hamiltonians generating the special contraction 7. Consequently the monodromy map
equals indeed ¥* once we have travelled along the path Q N C* = {(x, )\)}xe[%l7%]. This

finishes the proof of the proposition. O

Thus by Proposition LGl we can assume that the monodromy maps ¢* along the
circles of latitude are trivial (the identity).

4.6.2 Killing all the monodromy

We alter the symplectic form in its relative cohomology class such that the resulting form
has trivial monodromy along any closed curve in the base. We need the following lemma.

Lemma 4.6.2. Let w,w’ be linear symplectic forms on R* which define the same orien-
tation and agree on a real hyperplane H. Then w, := (1 — t)w + tw' is symplectic for all
t € [0,1]. Further, wy agrees with either form on H.

Proof. Take a symplectic basis ey, fi, es, fo for w such that ey, fi, es is a basis of H. Take
a vector fi = aje; + by fi + ases + by fo such that ey, fi, es, f5 is a symplectic basis for w’.
Since w,w’ induce the same orientation, we have by > 0, and therefore

! ! 1
w(ez, f3) =by >0, Wi(ey, fo) = b > 0.
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For w; := (1 — t)w + tw’ we find
wi Awp = (1 —1)%w* 4+ 2t(1 — hw A W' +12(W)?,

and therefore
wi N\ wt(eh fi, €2, fﬁ) =

= 2(1 — t)’wler, fr)w(es, f3) + 2t°W (er, f1)w' (2, f3)+
+2t(1 — t) (wler, fr)w'(ea, f3) + wlea, fo)w'(er, f1)) >0
]

Proposition 4.6.3. Let (Fgq, 2, Lsta, Soo, So) be a relative symplectic fibration, such that
the monodromy ¢* around all circles of latitude C* C Sy is the identity and Q) = piw, +
pytog 15 split near So, So. Then there exists a deformation €, of symplectic forms starting
at Q, such that (Fsa, Q, Lsia, Seo, So) 18 a homotopy of relative symplectic fibrations and
(Fsta, 0, Lsta, Seo, So) has trivial monodromy.

Proof. Outline: Using the triviality of the monodromy around the circles of latitude we
write down a p;-fiber-preserving diffeomorphism ¢ of M = S? x S? which pulls the sym-
plectic form 2 back to a form which agrees with the standard form wy on T(C* x S?) for
all \. Then the linear deformation between ¢*(2 and wy will be shown to be a symplectic
relative cohomologous deformation and obviously wy has trivial monodromy. The desired
deformation will then be the family, obtained by pushing forward the linear interpolation
between the forms ¢*(2 and wy by ¢.

Denote the 0-meridian by mq := {(\, u) € S?|u = 0}. And let
Py: {N} x S* = {()\,0)} x 52

the parallel transport map of the symplectic connection defined by €2 on p; along mg from
N to (X, 0).
Moreover denote by

P:\Z {()\,O)} X S2 — {()‘MU“)} X 52

the parallel transport map with respect to the symplectic connection defined by 2 along
the path +, () = (X, tp) (this is the path along the circle of latitude A from (X,0) to
(A, ).

Observe, that due to the fact that € is split near Sy, So, P (w) = id = P}(w) for w near
N, S.

Further we will denote the restriction of the symplectic form € to the fiber {2} x S? by
Q..

We construct ¢ by parallel transport on the left sphere in figure EETT] with respect to the
symplectic connection defined by wq by first going backwards along the circle of latitude
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prLN) @ pr'(N)
—1 71X, 0) _
p ()‘70) —1 P ’ 1 A
1 s i (Aaﬂ) P, D1 ( nu)
/ /A
‘id// \]i#/’

Figure 4.11: The maps Py, P} and the construction of ¢.

until we hit the meridian my and then upwards along mg until we hit the north pole N.
Then via a symplectomorphism

a: ({N} x S% waa) — ({N} x 52, Qp)

we symplectically identify the fibers over the northpole. Finally we use symplectic par-
allel transport for the induced symplectic connection by €2 along my first and then along
the circle of latitude to land in the fiber over the original point. The fact that the mon-
odromies along the circles of latitude of the symplectic connection induced by €2 are trivial
assures that the construction of ¢ is well-defined.

Since parallel transport with respect to the symplectic connection defined by wy is the
identity for all paths, we neglect this first part of the construction above.

We require the diffeomorphism ¢ to preserve the Clifford torus L. Therefore it is neces-
sary to choose a symplectomorphism a with the property that Pyoa: ({N} x S?, wgq) —
({(0,0)} x S2,9,,) preserves the equator (Note that in the description of the construction
of ¢ above, this should actually be written Pyo « o Id).

To obtain this, note that wyy and €2, are two cohomologous symplectic forms, which give
the upper hemi-sphere symplectic area % Thus, by Proposition B2l in the standardis-
ation, there exists a diffeomorphism h of S? such that h(E) = E and h*Q,, = wsa. Let
a = (Py)~! o h then « has the desired properties.

Now define ¢ (cf. fig. ELTT]) by

¢ S*x 5% = 5% x §*
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(A, 1), w) = Bi(Pa(a(N, w))).

Note that P}, Py are dlffeomorphlsms which are smooth in A, and ¢: S? x S? — S? x
S2 (N, ), ) (A ), « (P,\(P’\( ))) is a smooth inverse where P, indicates parallel
transport along 4. Thus ¢ is a dlffeomorphism. It preserves the Clifford Torus Lgqg
because

o({(0,n)} x E) = P)(Po(a({N} x E))) = P,)({(0,0)} x E) = {(0, )} x E

since Pyoa = h and the Clifford torus Ly, is given by parallel transport of the equator in
the fiber around the equator in the base. Further, since P, Pﬁ\ = id for points near N, S,
it follows that ¢(z,w) = (2, a(N,w)) for points (z,w) € S% x S? near ¢$~*(S4), ¢~1(So).
Now consider the pull-back form Q := ¢*Q. Note first, that near ¢~1(S), »~*(So),

Q = plwy + pra’w,

is split. By construction, € restricts to wyq on every fiber and moreover the horizontal
lifts of vectors tangent to circles of latitude with respect to wy and € agree. Accordingly,
wo and ©Q agree on the 3-dimensional subspaces T(( - (C* x S?) in T ) (S? x S?)
for all (A, p),2) € S* x S%. Thus by Lemma EG.2, the linear interpolation Qt = (1—-
)Q + twy is through symplectic forms which are invariant on the 3-dimensional subspaces
T ), (C x S?). _

By Pl"OpOSlthIl I8 ¢ induces the identity on Hy, thus €2, is a family of cohomologous
symplectic forms. Moreover near ¢~1(S4), »~1(S),

Q= pi((1 — )y + twea) + ps((1 — t)a s + tweg)

is split. Hence ¢1(S4), #~1(Sp) remain symplectic and horizontal throughout the defor-
mation. Next,

Proposition 4.6.4. L, is monotone Lagrangian for Q, for all t.

Proof. First we show that L, is Lagrangian for €, for all . This follows immediately
since ; = wy on T(C* x S?) for all A and all ¢ and the Clifford torus is contained in
E x S?=(C%x S2,

We are left to show that L, is monotone for €, for all t.

Let D be a relative cycle, then

/DQtZ/Dmt/D(wO_Q).

Hence we are done if we can show that Ly is monotone for both forms wy, Q. For € this
follows from the fact that L4 was monotone for the symplectic form €2 and by Proposition
P30 By construction Lyy = ¢~ 1(Lgq) and Q = ¢*Q is the pull-back data under ¢. For
wp this follows from Proposition 235 O
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Now consider the deformation €, = ¢,Q;. This is the desired deformation. It is
invariant on the 3-dimensional subspaces T((,\,Mz)(C’\ X 52) since Q; is.
Further, since ¢ preserves Ly, it follows straight away that L4 is Lagrangian for €2;.
Then note that
Q= (1 -1)Q + td.wo

since ¢, is linear. Now Lg, is monotone Lagrangian for both €2 and ¢.wq. For € this
is clear by assumption and for ¢.wq this follows since (¢(Lgsig) = Lsia, Pswo) is the push-
forward data under ¢ of (L, wo) which is monotone by Proposition 2238 Hence along the
lines of the proof of Proposition EEG.4] it follows that L, is indeed monotone Lagrangian
for ), for all t. Next, near S., So,

Q= pi((1 — oy + twsa) + p5((1 — t) g + tawsq)

is split. Hence S, Sy remain symplectic and horizontal throughout the deformation.

To see that €2; has trivial mondromy, note that (p;, wp) has vanishing symplectic curvature
and (p1, ¢.wp) is the push-forward symplectic connection which, by Proposition ZZT1, also
has vanishing symplectic curvature. Then symplectic parallel transport is the identity for
all loops in the base S?. By construction, (Fsa, 4, Lstd, Sao, So) is a homotopy of relative
symplectic fibrations. This proves the proposition. O

4.7 Summary

We summarize this chapter by Theorem LTIl Again all steps in this chapter either give
rise to diffeomorphic relativ symplectic fibrations or to homotopies of relative symplectic
fibrations, this proves

Theorem 4.7.1. Assume that (Fsa, w, Lsta, Soo, So) 8 a relative symplectic fibration, such
that w = Piw + Piwsa on W = (V. x S?) U (S? x (Uy U Up)). In particular S, So
are horizontal for the symplectic connection. Then (Fsa, w, Lsia, Soo, So) 1S equivalent to
(Fstas 'y Lsta, Sooy So) in the sense of Definition[2.Z.9 such that (Fsta,w', Lsta, Seo, So) has
vanishing symplectic curvature. Further S, Sy are still horizontal.



Chapter 5

Hamiltonian isotopy of fibered
monotone Lagrangian tori

In this chapter we show, how the results, which we have obtained in chapters Bl and @l to
kill the monodromy, can be applied to the original foliation and symplectic form. First
we will deform these to have trivial monodromy. Then by Moser’s theorem we will fix the
symplectic form to be standard all the way through the deformation process. In the next
step we construct a symplectomorphism ¢ of (M,wy) by parallel transport, which maps
the Lagrangian torus L to the Clifford torus Lgy. Moreover ¢ will induce the identity
on homology. So, by a theorem of Gromov, there exists a symplectic isotopy ¢; from
the identity to ¢. Since M is simply-connected, this isotopy is Hamiltonian. This proves
Theorem 251

5.1 Killing the monodromy by a homotopy of relative
symplectic fibrations

This is the main section of the thesis. Let (F,wo, L, 2, 3') be a relative symplectic fibration
on M as given by the assumptions in Theorem 571

Theorem 5.1.1. There exists a homotopy (Fy,wo, Ly, X, 23,) of relative symplectic fibra-
tions with
(F()a wo, LOa 207 ZE)) = (fy wo, Lv Zv Z,)

such that
(fla("JOv L17 217 Z/1)

has trivial monodromy. Further, the symplectic sections ¥1,%) are horizontal and the
1sotopy Ly can be realised by a Hamiltonian isotopy.

Proof. We start with the relative symplectic fibration (F,wy, L, 3, %) on M. Corollary
B3 implies that there exists a diffeomorphism 7: M — S?xS?, such that 7(F,wp, L, 2, %) =

91
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(Fstd, P, (L), d(X), #(X')) is a relative symplectic fibration on S? x S?. Now, by com-
bining Theorem B Tland Theorem EEZ Tl we can assume that (Fgq, duwo, ¢(L), ¢(2), ¢(X'))
is equivalent to a relative symplectic fibration (F,w, L, %, i/) with vanishing symplectic
curvature such that 3, 3 are horizontal. But then also (F,wy, L, ¥, Y’) and (F,w, L, %, i/)
are equivalent. Thus Theorem gives a homotopy of relative symplectic fibrations
(Frywi, Ly, X4, 30) on M, starting at (F,wo, L, 3, %) and ending at (Fy,ws, Ly, 29, X))
with vanishing symplectic curvature such that ¥, Y/ are horizontal. Since ¥’ is simply
connected the monodromy map around any closed loop in ¥’ is the identity.

Finally, by Lemma P-ZTT], there exists a homotopy (]—},wo,Lt,Zt,Z’ ) of relative sym-
plectic fibrations, starting at (F,wy, L, 3, %), which keeps the symplectic form fixed and
whose endpoint is diffeomorphic to (Fy,ws, L1, %1, %)). Further, the Lagrangian isotopy
EL can be realised by a Hamiltonian isotopy. Since the endpoints are diffeomorphic,
(F1,wo, L1, %1, X)) has trivial monodromy and the sections 3, 3 are horizontal (cf. Propo-

sition ZZZTT). This proves Theorem BTl O

The purpose of the following proposition is to show, that if we have a relative sym-
plectic fibration with vanishing symplectic curvature, then the symplectic area of a disk
D in ¥ and a horizontal lift D of D have invariant symplectic area. This is necessary in
the sequel to show that the torus L can be mapped onto L.

Proposition 5.1.2. Let (F,w, L, %, %) be a relative symplectic fibration with vanishing
symplectic curvature. Let D C ¥' be a disk enclosed by v = w(L) where 7: v € F, +
F.NYX. Further let D denote a horizontal lift of D. Then

o

Proof. Let z, = 7(0), 2, € F., N D and let §: [0,1] — F., be a path such that §(0) = z
and 0(1) = z(cf. fig. BJ]). Since the symplectic curvature vanishes, symplectic parallel
transport depends only on the endpoints of a path, not on the path itself. Thus let ~,
denote a path in D which connects zy to z and let P, denote the parallel transport along
v.. Now we define

O: D x[0,1] = M; (2,t) — P.(6(2)).
This is a smooth map (actually an embedding) and we define

C = d(D x [0, 1)).

0:/dw:/w:/w—/w—/ w
c aC D D ®(8Dx[0,1])

But the last integral vanishes since ®(0D x [0, 1]) denotes the surface traced out by parallel
transport of the path . Thus any tangent space is spanned by a vertical vector and a
horizontal vector and so the symplectic area of (0D x [0,1]) vanishes. This proves the
proposition. ]

Then
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o(D x [0,1])

Figure 5.1: The path 8, the disk D and a horizontal lift D

Proposition 5.1.3. Let (F,w,L,%,%) be a relative symplectic fibration with vanishing
symplectic curvature. Let D C ¥/ be a disk enclosed by v = w(L) where m: x € F, +—

F.NX'. Then
1

Proof. Let z; € Fyo) N L and let D be the horizontal lift of D through z;. Since L is
generated by symplectic parallel transport it follows that 0D C L. By Proposition

fio- Lo

L is monotone with monotonicity constant i, thus

/f)w = iﬂ(b)

with p(D) € 2Z. But « is an embedded S!, thus by the Jordan curve theorem its
complement in ¥/ = S? consists of two disks and either of these disks has non-vanishing
symplectic area. Since the total symplectic area of ¥ equals 1, it follows that

0</w<1.

D

/ 1
W= —.
D 2

This proves the proposition. Note that one could also calculate the Maslov index of D as
in Proposition 22441 O

Hence p(D) = 2 and indeed
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F.
ﬁ Jf‘a(z)

\) — ﬁa(m)

, Pa()

i}% fr s e ¢(x)

¢ I

Y

K )

7(

Figure 5.2: The construction of ¢

5.2 Hamiltonian isotopy to the Clifford torus

With the help of the following Proposition and a theorem of Gromov, we show the exis-
tence of the desired Hamiltonian isotopy.

We start with some preliminary remarks. Let (F,w, L,%,Y), (F,&, L, %, %) be relative
symplectic fibrations and let § C X' be a path then let Ps: F50) — Fsq) denote the
parallel transport along ¢ for the symplectic connection defined by F and w. Similarly Pj
denotes symplectic parallel transport along the path § C ¥’ for the symplectic connection
defined by F and @.

Definition 5.2.1. Let (F,w,L,%, %), (F,&,L, %, %) be relative symplectic fibrations.
Then they are said to have conjugate monodromy if

o X% are horizontal;

o there exists a z € ¥ and symplectomorphisms o: (¥, w|sw) — (X', 0|sy) and : (F.,w|z,) —
(fa(z)uw‘fa(z)) with Oé(z) = ﬂ(z>;

Pay) =B o Pyof™

or all closed path v in X' starting and ending at z.
for all closed path ~y in X' starti d ending at
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Proposition 5.2.2. If two relative symplectic fibrations (F,w, L, %, %), (F,@,L, %, %)
on M have conjugate monodromy, then there exists a diffeomorphism ¢ of M such that
O(F)=F and ¢*'w = w.

Proof. Let m: M — ¥'; x € F, — F,NY. Then given any x € M, pick a path
Yz [0,1] — X' between z and 7(z).
Now we define

¢o: M — M

= Pogyy 0 Bo PN (x).

For the construction of ¢, see figure B2 Since the two relative symplectic fibrations have
conjugate monodromy, this definition doesn’t depend on the choice of the path v, and so
¢ is well-defined.

¢ is smooth and has a obvious smooth inverse (just construct it the other way round), so
that ¢ is a diffeomorphism.

By construction leaves of F are mapped symplectically onto leaves of F. Moreover ¢
maps the horizontal distributions to each other and it maps ¥’ symplectically onto %' (by
the map «). Hence the symplectic form 7 := ¢*w has the following properties: 7 = w on
the leaves of F and on Y. Moreover 7, w induce the same symplectic connection on 7 and
consequently the same symplectic curvature. But by Proposition 2215, this implies that
the evaluation of 7 and w on horizontal vectors can only differ by a fiberwise constant.
Thus the two forms 7 and w differ by a pull-back form from the base. So 7 —w = 7*¢ for
a two-form o on ¥’. But on ¥’ we have seen that 7 = w and hence 0 = 0. So indeed, ¢ is
a symplectomorphism as claimed, which maps the foliations onto each other. This proves
the proposition. O

Remark
Recall from section 1.1 that M is diffeomorphic to S? x S? via the fixed diffeomorphism
0. Via 0, we define all the ”"standard” data on M which has been previously defined
on S? x S2. For example p; o 0~! are the standard projections on M, then 0wy =
(p1o 07 waa + (p2 0 071 *wyg is the standard symplectic form on M and 671 Ly is the
Clifford torus. We denote the data on M, defined via #, by the same notation as on
S? x S2.

Theorem 5.2.3. Let (F,wq, L,3,%) be a relative symplectic fibration with vanishing
symplectic curvature and such that X, are horizontal. Then there exists a symplecto-
morphism ¢ of (M,wy) which makes the following diagram commaute

M -2 M
lw lpl (5.1)
w52

Furthermore, ¢ maps L to Lgq, is trivial on homology and f: (X', wols) — (S? wea) 48
a symplectomorphism which maps w(L) onto the equator in S2.
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Proof. We need to show that (F,wy, L, 2, ¥) and (Faq, wo, Lsta, S* X {N},S? x {S}) have
conjugate monodromy. Then by Proposition B.2Z2, there exists the required symplecto-
morphism.

Let z € v:=m(L) and let D C ¥’ be one of the disks enclosed by ~. First we construct
symplectomorphisms

(0" (Z/,WO|Z/) — (52 X {S} ,wstd)
B (Foywolr) — ({(1,0,0)} x S?, wea)

such that a(y) = F C S? with a(z) = (1,0,0) and S(LNF,) = £ C §* with 3(z) = S.
We only show the construction for « since that of  is along the same lines. Compare fig.
B3

From Theorem EZZH, we know that ¥ is diffeomorphic to S?. Since wylsy, wyq integrate to
1 over Y/, 5% x {S} respectively, by Moser’s theorem, there exists a symplectomorphism

a: (X wolsr) — (52 X {S}, Wsta)-

As in Proposition B2 we can find a diffeomorphism & of S? such that k(a(y)) = E, i.e.
a diffeomorphism which maps &(7y) to the equator in S2.

Consider the push-forward symplectic form w := k,wgyq.

By Proposition T3 fD Wy = % and k o & maps D to D, thus fDuh W= %
Since wgq and w are cohomologous and give the upper hemi-sphere D,,;, area % it follows
by Proposition B2l that there exists a diffeomorphism & of S? such that h(E) = E and
h*w = Weg.

Now consider the symplectomorphism

a:=h"tokoa.

It maps 7 to F, so that a(z) lies on the equator. If necessary, composition with a rotation
around the north pole (this is wgg symplectic) will assure that a(z) = (1,0,0).

¥ and S? x {S} are horizontal and both relative symplectic fibrations (F,wq, L, %, %)
and (Fita, wo, Lsta, S x {N},5? x {S}) have vanishing symplectic curvature. Hence, the
monodromy around any closed curve is the identity. But then, the last condition in
Definition B.2.T] is trivially satisfied and they have indeed conjugate monodromy. Let ¢
be the symplectomorphism from Proposition and let f := p; o . Since ¢, preserves
the classes A, B, it is trivially the identity on homology. This proves the theorem. O

Now we quote Gromov’s theorem from [2]

Theorem 5.2.4. Let ¢ € Symp(S? x S?,wy) be trivial on homology. Then there exists a
symplectic isotopy ¢; € Symp(S? x S?%,wy) with ¢y = id and ¢1 = ¢.

Thus there exists a symplectic isotopy ¢; which starts at the identity and ends at the
symplectomorphism ¢ from Proposition B2Z3 Since M is simply-connected, this isotopy
is Hamiltonian. Hence there exists a Hamiltonian isotopy from L to the Clifford torus
Lgq. This proves Theorem 2511
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&(D) Duy,

[oN
>
L

a=hlokoa
Z[):(]_,0,0)

Z/

Figure 5.3: The construction of the map «
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Chapter 6

A.Ivrii’s result and its relation to the
Main Theorem

6.1 The Chekanov-Schlenk Torus

In this section, we show the construction of the Chekanov-Schlenk Torus L¢og following
[28]. They show, that it is a monotone Lagrangian torus in (S? X S?, wsy @ wsq) Which is
not Hamiltonian isotopic to the Clifford torus Lgyg.

6.1.1 The construction

We construct Leg in C? with the split symplectic form wy = wsig ® werg, Where wyg =
de/\dy is the push-forward of w,; under stereographic projection 1 : S?\ N —
C (see Appendix [Al) and show the relevant properties there. Then via (¥ x 1)~ we
conclude the existence of Log in (S? x 52, wy).

Let v: S* — C be an embedded circle with image in the positive halfplane x > 0 (cf.

figl6.1]) which encloses a region of symplectic area i with respect to wsg. Now we define

1y

OE v

Figure 6.1: The embedded curve ~
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¢: St x St —C?

(t, @) = (e"(t), e~ y(1)).
This defines the Chekanov Schlenk Torus L¢g in C?.

6.1.2 Properties

Embedded

Obviously ¢ is smooth and S! x S! is compact, thus is suffices to show that ¢ is an
injective immersion.

The differential of ¢ at (¢, «) can be written as

ey (t) e (1)
d¢(t,a) = . '
ey (t) —ie (1)
It’s determinant over C equals

det dd(r.a) = —2iy(t)Y ().

Since 7 is embedded, 7/(t) doesn’t vanish. Further + lies in the positive half-plane {x > 0},
so that v(t) # 0. Hence it follows that ¢ is immersive.
To show injectivity, assume, that

¢(ta a) = ¢(t/a O/)a

then we get two equations

Writing v(t) = r(t)e?®, this gives
and

20(t) — 0(t))) = 2k

for some k € Z. But since v lies in the positive half plane, (t) — 6(¢') € (—m, ) so that
k=0 and 6(t) = 6(t'). Hence

1(E) = e’ = r(#)e") = (¢),
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so since 7 is an embedding, it follows that t = #’. Then obviously a = o/ and ¢ is injective.
Lagrange
We have to show, that ¢*wy vanishes. Therefore note first that

— 1 (A
(Wstd>z(aaﬁ) - 71_(1 + |Z|2)2‘y(aﬁ)
Here (z) denotes the imaginary part of the complex number z.
Then 5 5 5 5
Cb*wo(a, a) = (WO)qb(t,a) <d¢(t,a)§> dgb(t,a)%) .
But 5
0 (57) = (€7 O (1)
and 5
i (g1 ) = (G0, =i 1)
Thus
(wWo)a(ray ((€9' (1), ey (1)) , (i€ (t), —ie " y(t))) =
= (Wsta) (et (ey) (€07 (), €Y (1)) + (Wata) (e—ien(ey) (€7 (t), —ie ™" (1)) .
So
(6" )t (o) =~ S(E(0) + = S~ (E) = 0
B Ty B S T2 ) R T P10 1 E
Monotonicity

Since we are in a vector space, calculating Maslov indices is easy, since we can use the
ambient “trivialisation” of the tangent bundle and write down the loop of Lagrangians
straight away. Similarly, by Stokes theorem, the symplectic area of every disk in C? is
equal to the integral of a primitive of wy around the boundary. Since wy = wgg B wsrg and
wgtqg on C is exact, there exists a primitive of wy of the form Ag = Agq D Aga-

We only have to check monotonicity for a pair of loops in Lgg spanning the homol-
ogy. Hence as the first loop take 01(t) = (v(t),7(t)) and as the second loop take
da(a) = (ey(0),e " y(0)). From the definition of the embedding ¢ it is clear that
51, 52 Span H1 (Lcs, Z)

We regard C? with the standard complex- and hermitian structure (denoted i, k). Obvi-
ously

0 0
'U(t, Oé) = d¢(t7a)a, U)(t, Oé) = d¢(t’a)a_a

span Ty.q)Los over R; over C, v(t,a), w(t,a) span C?. Let the standard Lagrangian

L% be given by 2,2 for standard coordinates = + 4y, u + v on C2. Note that v, w are

oz’ Ou
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orthogonal with respect to h. So normalising them yields a unitary map A(¢, «), which
maps the standard Lagrangian L™ to Ty »)Les:

A(t,a) _ ( v(t,o) w(t,a) ) .

lo(t)|  fw(t,a)l

Consequently, by Lemma [G040, the Maslov index of ¢; is given by
w(0;) = wind(det A%(5;)).

But |u(t, )| = [y'(#)] and [w(t, a)] = [v(#)], thus

A(d1(t)) =

Hence

and
_i/(0)*(0)?
[7(0)7(0)2[
But then, since 7 is embedded and lies in the positive half-plane, it follows that

p(01) =2

(only + contributes once to the winding number) and

1(02()) =0

det A*(65(ar)) =

since the second loop is constant.
Now we have to calculate the symplectic area of disks spanned into d1, d5 or alternatively

and

Thus
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On the other hand let v, (a) = €®y(0) and Y2(a) = e7~(0), then d(a) = (71(a), Yo ()).
Then

/5 No = / " No(B(a))da = / (00 o termateny (14 (@), 1) =

2

- / )y (s (@) dor + / )i (1o(0))der =

:/ )\std_l'/ )\std~
7 Y2

But () =€ = 71 (27 — «) is a reparametrisation with the opposite orientation,
hence fyl Astd = — fw Astq and thus
/ )\0 == 0
62

Consequently, Log is monotone in C? with monotonictiy constant i. Putting L¢cg into
5% x S? via (1 x hy) " gives indeed an embedded, Lagrangian torus. Since [g, woq = 1
and p(S? x pt) = p(pt x S?) = 4 by Theorem 234, it follows that Lcs is also monotone
in S% x S2.

i(2r—a)

Theorem 6.1.1 (Chekanov-Schlenk,[28]). Lcs and Lgqg are not Hamiltonian isotopic in
(8% X 5%, Wstd ® Wsta) -

Remark
M.-L. Yau also proved this by completely different methods in [23].

6.2 A.lvrii’s result

We want to describe briefly the methods that A.Ivrii uses to prove that any Lagrangian
torus in (S? X S?,wsq B wstg) is fibered. The methods are based on Symplectic Field
Theory as introduced by Eliashberg, Givental and Hofer in [30].

Definition 6.2.1. A contact manifold (V,«) is a 2n — 1-dimensional manifold V', such
that o A (da)™™ ! is a volume form on V. The 2n — 2 dimensional distribution ¢ := ker o
1s called the contact structure and the vector field Xgr defined by

txpda =0, o(Xg) =1,
1s called the Reeb vector field.

Definition 6.2.2. A contact type hypersurface V- C (M,w) is a contact manifold (V, «)
such that w = d(e*a) in a neighbourhood N = (—e€,€) X V of V' in M such that the vector
field % 15 everywhere transversal to V.
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Definition 6.2.3. Let (V,«) be a contact manifold, then the symplectization of V' is
defined to be the symplectic manifold (R x V,d(e*)), where s denotes the coordinate
along the R-factor.

Definition 6.2.4. An almost complex structure J on the symplectization (R x V,d(e*a))
of (V, ) is called cylindrical if

e J is invariant under translation in the R-direction,

o JC=(;
[} J%:XR

By the Weinstein neighbourhood theorem, every Lagrangian submanifold L C (X, w)
has a neighbourhood U in X which is symplectomorphic to a neighbourhood of the zero-
section in 7*L with the canonical symplectic form. The boundary V := 9D} of the
disk bundle D*L = {(¢,p) € T*L||p| < r} is a contact type hypersurface. We obtain
two symplectic manifolds (M, ,w) and (M_,w), each with boundary V' and % pointing
outwards of M_ and inwards of M, with M = M, U M_.

Now we define a family (M7, w™) of symplectic manifolds by

(M7, w™) = (M_,e7w) U (V x [-7,7],d(e’a)) U (M4, e"w).

In the limit as 7 — oo, we can view (M7, w") as a decomposition of (M, w) into the union
of
M= = M_U([0,00) x V,d(e’a))

and
MY = M, U ((—00,0] x V,d(e*a)).

In our case, MS° is symplectomorphic to (M \ L,w) and M is symplectomorphic to
(T*L, dMean).-

Start with an almost complex structure J on M, which is compatible with w. Now it is
possible to choose a family of compatible almost complex structures J7 on (M7, w") such
that J7 = J on M, and M_ and J" is cylindrical on V' x [—7,7]. Note that (M7,w")
is symplectomorphic to (M,w) for all finite 7, so that we can actually assume only the
almost complex structure J7 to vary (this can also be done more directly, see [21]). This
procedure is called a neck-stretch of J along V.

Now let (M = S%x 5% w = wyg®wsq) and L C M a Lagrangian torus, then for any J7 (7
finite), there exists a J7-holomorphic foliation by spheres in the homology class [pt x S?]
([S? x pt]). Symplectic field theory provides a compactness theorem for J7-holomorphic
maps in a splitting as above akin to the Gromov compactness theorem.

Ivrii examines how the J™-holomorphic foliations in class [pt x S?] degenerate for 7 — oo
and deduces the existence of a limit foliation F with the following properties (here the
properties are stated only for monotone tori! cf. Lemma ZZ3):

e a S'-family of leaves of F intersects L in an embedded circle (so these leaves break
into two embedded disks along L).
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e These families of disks together form two solid tori 17, 1> with 017 = 91, = L.

Observe, that the leaves of F are not necessarily smooth along L. A. Ivrii shows that the
foliation F can be smoothened (see below how he does this) near L such that it remains
symplectic with otherwise the same properties.

In Theorem 4.4.1, A. Ivrii shows the existence of a symplectic section ¥’ of the foli-
ation F in the homology class [S? x pt] which is disjoint from L. His proof proceeds as
follows:

Let Jy be a split almost complex structure on S? x S? and consider the foliation by
Jo-holomorphic spheres S? x pt. Apply a neck-stretch to Jy in a neighbourhood V of L
in S% x S2. By A. Ivrii’s result, the foliations F7 for J in the neck-stretch converge to a
J§°-holomorphic foliation F>° by symplectic spheres in the homology class [S? x pt] such
that a S'-family of leaves intersects L. F°° is not smooth near the torus L. But following
Ivrii (see Theorem 4.1.1), we can smoothen the S'-family of leaves intersecting L in an
arbitrary small neighbourhood N C V of L such that they remain symplectic. Further,
we can find a compatible almost complex structure .J; which agrees with J§° outside N
such that the smoothened spheres intersecting L become J;-holomorphic (see Theorem
4.1.1 in [12]). Now consider the Jj-holomorphic foliation F; of S? x S? by symplectic
spheres in the homology class [S? x pt]. By construction, a S'-family of the leaves of
JF intersects L, hence we can choose a leaf ¥/ not intersecting L (the leaves of F; are
parametrised by a S?).

Now apply a neck-stretch for J; along a neighbourhood V; of L which is disjoint from 7.
Now we are interested in the degeneration of the J7-holomorphic foliations by spheres in
class [pt x S?]. Again, by Ivrii’s result, the foliations in the neck-stretch converge to a
Jie-holomorphic foliation F7° which is not smooth near L and such that a S'-family of
leaves of F° intersects L. As in the previous step, we can smoothen these spheres in N,
and find a almost complex structure J; which agrees with J;° outside N, and which makes
the smoothened spheres J,-holomorphic. Observe that J;° agrees with J; outside Vi, so
that J; agrees with J; outside V. Consider the foliation F; given by the Js-holomorphic
spheres in class [S? x pt]. Since ¥ is still Jy-holomorphic, positivity of intersections im-
plies that > intersects the leaves of F5 uniquely and transversely. Hence we can regard
Y as a section of Fy. This proves the existence of the symplectic section 7.

Hence L is fibered by F and ¥'.

6.3 Relation to the Main Theorem and Outlook

Ivrii’s results says that any monotone Lagrangian torus L in S? x S? is fibered. Hence,
there exists a foliation F and a section ¥’ of F as in the previous section. If there ex-
ists a second section Y meeting the requirements of the Main Theorem LRl then L is
Hamiltonian isotopic to the standard torus L.
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The Chekanov-Schlenk torus Leog is monotone Lagrangian in (S? X S? wq @ weq) but
not Hamiltonian isotopic to Lgg by Theorem EIT], hence by Ivrii’s result it is fibered by
F and ¥’ but there cannot exist the second symplectic section 3.

This instantly rises the question whether the classification of monotone Lagrangian tori
in (5% x 5%, wyq @ waa) up to Hamiltonian isotopy comes within reach if we understand
the role of the second section .



Appendix A

The standard form w; and
stereographic projection

Consider S? C R? with standard coordinates z,y, z as the submanifold of R? given by the
zero set of the function f: R® — R; (z,y,2) — 22 +y*> + 22 — 1. Let

on: SP\{N} = C

i Y
1—=z

be stereographic projection from the northpole N in S? (stereographic projection from a

different point p € S? is obtained by precomposing ¢y by some element in SO(3) which
maps p to N). This is a diffeomorphism with inverse given by

(2,9.2) = 77 +

2u 20 w402 —1
1+u2+v2 14+ u2+02" 14+ u2+02

(o) = (

where u + v are the standard cartesian coordinates on C. Consider the 2-form

1
o= 4—(xdy/\dz—yd:c/\dz+zdx/\dz)
7T

on R3. Then if we denote the restriction of o to S? by w, we have

Lemma A.0.1. ]

1+ u? +v?)

@D}k\,w:—w( sdu A dv

Proof. Denote o = 1 + u? 4 v? then

g\ 1 5 9, O 0 0
dwN(%)_az (2(1 u+v)8$ 4uvay+4u82)

g\ 1 0 5 o 0 0
dle<%)—a2< 4u1)8$+2(1 v +u)ay+4vaz).

107



108APPENDIX A. THE STANDARD FORM wsrp AND STEREOGRAPHIC PROJECTION

Any 2-form 3 on C is of the form
B, = f(z)du A dv

for a smooth function f: C — R. Hence we write ¥jyw = fdu A dv and so

. g 90\ _
(YNW)uw (%’ %) = f(u+ ).
Then 5 9
Wahn (u,v) (dle (%) 7d¢N <%)) =
2 2
B nds = Paende + S T Y vy (o (2 dow () =
o « o ou v
__la® 1
b w(l+u+0?)

as claimed. O

Note that on C* = C\ {0} with polar coordinates 7,6 € (0, 00) x [0, 27)

Yyw = Srdr A db.

m(1+7?)
Lemma A.0.2. The 2-form w is a volume form on S? with total volume —1.

Proof. This is Exercise 4.3.1 in [I0]. We have to show that w = 1,0 is closed, everywhere
non-degenerate and that it integrates to —1 over S2. It is obviously closed, since any 2-
form on S? is closed for dimensional reasons. To show that it is non-degenerate on S?\{N},
note that since ¥y is a diffeomorphism, this is equivalent to the function f in the proof
of Lemma [AZ0T] to be non-zero. This is obviously true. Using stereographic projection
from the southpole, we can show similarly that the form w is non-degenerate at N. This
shows that w is a volume form. We are left to show that it has total volume —1. Since
the set {5, NV} has measure zero, we can consider polar coordinates r, 6 € (0, 00) x [0, 27)
on C* and hence

. m oo —1 27 [ T
/s2w_ c*wNw_/o /0 7ﬂ<1+r2)2rdrd9— - /0 (1+T2)2dr.

o (L4722 Jo dr \2(1+172) e 2(1472) 20 2

Hence as claimed [, w = —1. O

With

Now we define
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Definition A.0.3. The standard symplectic form wgq on S? is defined to be
Wstd - — —W.

Remark
The Fubini-Study form wpg on CP' is defined in the standard chart Uy = {2z # 0} by the

formula
1 dzNdz

27 (L+ [z

Hence indeed wyy = wpg under the usual identification CP! 2 §2.
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Appendix B

Proofs of results in chapter 2

The proof of Theorem 2.2.4

We will need the following lemma.

Lemma B.0.4. Let X be a topological space and consider [0,1] C R with the subspace
topology. Let U be an open set in X and let v: [0,1] — X be a continuous path such that
v(0) € U and v(1) € X \ U. Then there exists a ty € (0, 1] such that v(ty) € OU.

Proof. Recall the definition of QU for U an open set in X:
U :={z e X\U|Fz, €U s.t. z, — z}.

Consider the non-empty set T'= v~ 'U. Since v is continuous, T is open in [0,1]. Since
[0,1] is bounded ty = sup(t € T) exists. Now tg & T. To see this assume t, € T, then
either ¢y = 1 with contradicts the assumption that v(1) ¢ U or ¢, < 1. But 7' is open,
thus there exists an interval (tg — €,t9 +¢) C T ((0,¢)) for € small enough. But then
to + 5 € T contradicting that ¢, is the sup in 7. Thus ¢y € T". There exists ¢, — t; in
T, thus by continuity of 7, we have v(t,) — 7(to) with v(t,) € U and ~(tg) ¢ U. Hence
7(to) € OU. This proves the lemma. 0O

Theorem ([ZZA). Let Fy be a k-dimensional foliation of the n-dimensional manifold X .
Assume that there exists an embedding G: U x F — M with U open in R** and F a
closed k-dimensional manifold such that G maps {z} x F diffeomorphically onto a leaf of
Fo forallz € U. Let V. C W C U be open sets in R** with VC W and W C U and
such that W is path-connected. Assume that

Gs:UxXxF —M

for s € R is a smooth family of embeddings such that G| nvyxr = Glnv)xp- Then the
embeddings G4 define a smooth family of foliations Fs on M.

111
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Proof. Note first, that all the embeddings G, are local diffeomorphisms for dimensional
reasons. Thus Y := G(U x F) is an open set of X. We want to show that G,(U x F') =Y
for all s € R.

Assume the opposite and let Z = G(W x F'). Then there exists a s € [0, 1] and a point
x € V x F such that G4(x) € Y. Since W is path-connected and V' C W, there exists a
continuous path 3: [0,1] — W x F such that 8(0) € (W \ V) x F and (1) = . Thus
v(t) = G4(B(t)) is a continuous path in X such that v(0) € Z and (1) € Z. By Lemma
B0, there exists a ty € (0, 1] such that v(tg) € 9Z. But 0Z C (Y'\ Z) and there G; = G
so that

B(to) = GT'Gs(B(to)) = G™'1(to).

Since a diffeomorphism ¢ satisfies ¢ = ¢0 it follows that
B(ty) € O(W x F).

Hence [(ty) € W x F which contradicts the definition of § and indeed G4(U x F) =
G(U x F) for all s.
Consider the map

G:UxR— X xR; (z,5) = (Gy(x), 5).

This is an embedding since it is a diffeomorphism onto ¥ x R. Indeed, by the discussion
above,
G:Y XR—-UXxR

(y.5) = (G (y),9)

i1s a smooth inverse.

Consider the closed set P = G(V x F) in X. First we want to show how to obtain
foliating charts from an embedding G: U x F' — X which has the property that {z} x F’
is mapped by G onto a leaf of Fj. Let {wﬁz Wj — Wﬁ}BeB be an atlas for F. Since

G({z} x F) is a leaf of F
0 = Go(Idxg): UxWs—GU x W) CX

is a foliating chart for Fy. Indeed, any two such dg,, d3,, satisfy the foliation condition in
Definition ZZT] for the foliation Fyly on Y.

Now use the embeddings G, and the fact that they agree on (U \ V) x F to define
foliating charts for all s in order to get foliations F; on X for every s. Define 05 as dg but
using G, instead of G.

Let {¢a: U, = Us},c4 be a foliating atlas for F;. Define a new foliating atlas by restrict-
ing the old atlas to U, = U, N (X \ P), ¢o = $alg, - And choosing as new foliating charts
onY,

(U x Wj,03)
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where U x Wj C R"* x R" is open. Since G = G, on' Y — P, there the old and the new
foliating charts match up, and on Y, the charts ¢3 form foliating charts. This foliating
atlas defines a foliation F; on X. Clearly the leaves of F; are the images Gs({z} x F) for
x € U and agree with the old leaves outside of P.

We are left to show that the foliations Fy form a smooth family. First note that for a
constant family F; = F; of foliations, the foliating charts of the required foliation F on
X xR are given by (¢4 x id, U, x R). But the map G is an embedding, so the construction
above shows precisly how to obtain the foliating charts for the required foliation F on
X x R: Restrict the charts for the constant foliation as above and use the embedding G
to obtain foliating charts on the remaining open set.

The leaves of the foliation F on X x R are given by

(Fo)e x Rforx & Z
Fop = =
Gz} x FxR) forzeY

This proves the theorem. O

The proof of Theorem

Theorem B.0.5. A foliation whose leaves are all compact and simply connected is simple.
Moreover if the ambient manifold X is connected, then the projection to the leaf-space
p: X — X/ ~ provides X with the structure of a smooth fiber bundle.

Proof. This is Corollary 8.6 on p. 92 in [I1]. Note the difference in the statement. Simply
connectedness of the leaves, however, implies trivial leaf holonomy. Compare Definition
7.6 on p.86 in [I1]. O

Definition B.0.6. A cover {U,},.4 of a smooth n-manifold X by open sets is called a
good cover, if all non-empty finite intersections

Uy, NU,, N ...N Uy,
for any n € N and a;; € A are diffeomorphic to R™.
Theorem B.0.7. Every compact smooth manifold N has a finite good cover.
Proof. This is Theorem 5.1 in [10] on p.42. O

Proposition B.0.8. If m: X — B is a fiber bundle with fiber F' with finite-dimensional
cohomology and B admits a finite good cover then x(X) = x(F)x(B)

Proof. This is Exercise 14.37 on p.182 in [I0]. O

Theorem B.0.9 (3.11). Two connected compact surfaces are diffeomorphic if and only
if they have the same Euler characteristic and the same number of boundary components,
and both are orientable or both are mon-orientable.
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Proof. [, page 207. O

Theorem (ZZ1). Let F be a foliation of (M,w) by symplectic 2-spheres. Further let %
be a submanifold of M which is transverse to F, for all ¢ € M. Then X is diffeomorphic
to S%, ¥ intersects every leaf of F in a single point and the map

T M— X

geFa—F,NX

is a surjective submersion. Moreover there exist diffeomorphisms ¢: M — S? x S? and
u: X — S? such that the following diagram commutes:

M —2 . 52 % 52

lﬂ lpl (B.1)

y =t 52

Proof. Since the leaves are compact, symplectic and simply connected, by Theorem
p: M — M,/ ~ is a smooth symplectic fibration. Consequently, the leaf-space B is a
closed orientable 2-manifold: p is an open map so that all points in B are interior points
and B has no boundary. An open cover of B lifts to an open cover of M which by
compactness has a finite subcover. The projection of this subcover by p is the required
finite subcover of B. Thus B is a closed manifold. Finally (p,w) induces a symplectic
connection on M. Two linearly independent vectors v,w in H, the horizontal space
with respect to the symplectic connection are positively oriented if w(v,w) > 0. Since
dpy: Hy — T, B is an isomorphism, we can use this to put a orientation on T B.
Clearly this definition is well-defined. Hence B is closed and orientable.

Since B is compact, by Theorem [B.0.7, B admits a finite good cover. Clearly the homology
of the fibers is finite dimensional, thus by Proposition [BX0L8, it follows that the Euler-
Characteristics of the spaces involved satisfy

xX(M) = x(S*)x(B).

Thus x(B) = 2 and by Theorem B9, B is diffeomorphic to S?. Let u: B — S? be a
diffeomorphism then wo p: M — S? is a S?-bundle over S2. But there are only two such
bundles, the trivial one and a non-trivial one. Note that the intersection forms of the
total spaces of the two S2-bundles differ. But M is diffeomorphic to S? x S? which is the
trivial S2-bundle over S?. Hence it has the intersection form of the trivial S?-bundle and
consequently u o p is the trivial S%.-bundle over S%. Hence there exists a trivialisation:

M —/— S?x §?

E B

B — S2
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Now push ¥ forward under 7. Then 7(X) is transverse to {q} x S? for all ¢ € S%. By
Proposition BZ2Z8, this implies that 7(X) is the image of a section o of p;. But then
o' = 771 o 0 o u defines a section of p with image ¥ and © = ¢’ o p. From this it is clear
that 7 is a smooth surjective submersion and that X is diffeomorphic to S?. The existence
of the trivialisation can be deduced as above for the space of leaves B. This proves the
theorem. O

The proof of theorem 2.3.4

Consider S? C R? in the standard way and let D, = {(z,y,2) € S?*|z > 0} and D,, :=
{(x,y,2) € S*|x <0} be the closed eastern and the western hemispheres in S?. Denote
by C = D.N D, = {x = 0} the meridian of longitude 0.

In the proof of the theorem, we need a function ¢: S? — S? with degree 1 which collapses
the closed eastern hemisphere D, to zy. Therefore, let p: R — R be a smooth decreasing
function which is equal to 1 for » < 1 and 0 for » > 1 + ¢. Now consider the family of
functions 1;(r) := 1 —tp(r). Via stereographic projection from —z, we identify S?\ {—z}
with C and consider the family of functions ¢;: C — C; z +— 4(|z|)z. By construction
¢i(2) = z for |z| > 1 +¢, so that we can extend ¢, by the identity to maps ¢, of S2. Note
that ¢ collapses D, to zp so we define ¢ := ¢1. Since ¢y = id, ¢; is a homotopy from id
to ¢. This shows that id and ¢ have degree 1 as maps from S? to S2.

For completeness, we will now recall the definition of the first chern number of a complex
vector bundle as defined in [I3] on p. 74:

Theorem (2.69 in [I3]). There ezists a unique functor ¢y, called the first chern num-
ber, that assigns an integer ¢, (E) € Z to every symplectic vector bundle E over a compact
oriented Riemann surface ¥ without boundary and satisfies the following axioms.

e (naturality) Two symplectic vector bundles E and E' over ¥ are isomorphic iff
they have the same dimension and the same Chern number.

e (functorality) For any smooth map ¢: ¥ — X of oriented Riemann surfaces and
any symplectic vector bundle £ — ¥

c1(¢°E) = deg(o) - c1(E).
o (additivity) For two symplectic vector bundles E; — X of rank n;:
c1(Ey & Ey) = ¢1(Ey) + c1(Ey), (B ® Ey) = naocy(Ey) + nici(Es).
e (normalization) The chern number of the tangent bundle of ¥ is
a(TY)=2-2g

where g is the genus.
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We will only consider complex vector bundles, which are in particular symplectic. Let
E — S? be a complex 1-dimensional vector bundle, then there exist trivialisations over
D., D,,. The first chern number of E is then given by the degree of the transition map
U: S'~C=D.,NnD, — S'=U(1) (cf. the discussion on p.75 in [T3]).

Theorem E34). Let f: (S?, 20) — (M, x0) be an embedding with f(z) = xo € L with
trivial normal bundle, then p(u) = 4 for u = fo¢: E — M. In the definition of u, via
stereographic projection from zg, we have identified E C C with the western hemisphere
in SZ.

Proof. We have
["TM =TN ® vy

where vy denotes the normal bundle of f in M. By assumption vy is trivial.

Note that any real two dimensional vector bundle over an orientable surface can be re-
garded as a complex vector bundle. This follows, since any metric on a 2-dimensional
bundle gives rise to a complex structure by counter-clockwise rotation by 7. Obviously
the Whitney-sum of two complex vector bundles is also a complex vector-bundle.

Now let ¢; denote the first chern number as defined above. By construction @: S? —
M; z+— fo@(z) has image f(S?) as well and

cl(@WTM) = ci((fo¢)'TM) = cr(¢"f'TM) = c1(¢"(TS* B vy)) =

= deg(¢p)er(TS? D vp) = 1 (TS?) = 2.

Further it follows that u*T'M also decomposes as a Whitney sum (a*7'S?) @ u*vy. Since
u*vy is trivial, it follows that ¢; (@*TS?) = 2.

The chern number of a complex 1-dimensional vector bundle over S? is the degree of
the transition map, hence, the complex two dimensional vector-bundle over S?, given by
u*T'S* ® w*vy has a transition function of the form

§: C—U(2)
el01(t) 0
t—
0 e02(t)

where 6, (27) — 0,(0) = 47 and 65(27) — 02(0) = 0.

Now note that u := @|p, can be regarded as a map from E to M with image f(S?) and
which collapses the boundary of JE to zy in M. So we can calculate the Maslov index of
u with the definition given in Chapter 2l But note that by construction, the Lagrangians
L. in a*T M over points z € D, are constant (L, = L**®), due to the fact that @ collapses
D, to xg. Thus, if we trivialise the complex vector bundle with respect to u, then the
loop of Lagrangians along the boundary JE is precisely the image under the transition
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map 6§ of the standard Lagrangian L*Y. Hence by Lemma [L0.40, the Maslov index of u
is given by the degree of the map

eié)l(t) 0 2
t— det (6(t)) = det — 82001 (0)+02(1))

fhee 6y (2m) — 6,(0)
_ nl4m) =ty 2
p(u) =2 o +2 o

This proves the theorem. O
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Appendix C

Proofs of results in chapter 3

A detailed proof of Proposition [3.1.2

In the proof, we need the Jordan curve theorem and an extension of the Riemann mapping
theorem to the boundary(in case the boundary is nice). Thus we quote:

Theorem C.0.10 (Jordan curve theorem). Let H be a simple closed curve in C. Then

e C\ H has exactly two connected components one of which is bounded and simply
connected (called the interior) and the other one is unbounded (the exterior);

e The boundary of every component of C\ H is H;
o [f~:]0,1] — C is a simple loop with v([0,1]) = H then wind(y,z) = 0 if x lies in
the unbounded component of C\ H and wind(y,x) = +1 if x lies in the bounded

component.

Proof. see [T9] Chapter IX, App. 4.2, page 256 for the statement and its proof and [20]
for the proof of the additional statement that the interior is simply connected. O

Theorem C.0.11 (Painlevé/Warschawski). Let G be a proper (not all of C) simply con-
nected domain in C such that the boundary curve can be parametrised by a smooth simple
closed curve, then there exists a diffeomorphism

¢: G — D(0,1)
between the closure of G and the closed unit disk.
Proof. The proof is given in [I7]. O

Furthermore we need the following theorem about the isotopy type of embeddings of
the closed disk into a smooth manifold:

119
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Theorem C.0.12. Let X be a connected n-manifold and f,g: D' - X embeddings of
the closed k-disk, 0 < k <n. If k =n and X s orientable, assume that f, g both preserve,
or both reverse, orientation. Then f and g are isotopic. If f(ﬁk) U g(ﬁk) C X\ 0X, an
isotopy between them can be realized by a diffeotopy of X having compact support.

Proof. The statement and the proof can be found in [7], Chapter 8.3, Isotopies of Disks,
on page 185. O

Proposition [BI2). Let L C S? x S? be a torus fibered by p;. Then there exists a
diffeomorphism T of S% x S? such that T preserves the standard fibration p; and such that
77YL) is conveniently fibered by p.

Proof. Since v, = p;(L) has a tubular neighbourhood, there exists a point a in the
complement of 7, in the base. On the base, consider stereographic projection ¢ from a.
Then o%(7y;) is a closed embedded curve in C (so in particular it is a simple closed curve).
Let G be the interior of ¢®(v.). Then by the Jordan curve theorem, G is simply connected
but not all of C and its boundary curve is the simple closed curve o%(vy.). So by Theorem
[COTT, there exists a diffeomorphism ¢: G — D(0,1). Then

Bri=10(c") " ogp~t: D0,1) — S?
By =10 (™) D(0,1) — S?

are two embeddings which satisfy the conditions of Theorem for X = S?. Then
there exists a diffeomorphism h of S? which satisfies h o 3y = 3; (the time-1 map of the
diffeotopy given by the theorem). Clearly h maps the equator to 7y, by construction.
Consider the diffeomorphism H := h x id of S? x S2.

Analogously we achieve the second part (but now on the other factor) of being conveniently
fibered. But it is slightly easier because L being fibered implies already that FNT =V
is diffeomorphic to a closed disk (so that we don’t have to refer to the Jordan curve
theorem). Let the diffeomorphism obtained be denoted by H.

Now we can define the desired diffeomorphism 7 by 7 := H o H. Since 7 respects the
product structure of S? x S2, it preserves the standard fibration p; and by construction
77Y(L) is conveniently fibered by p;. This proves the proposition. a

The proofs of the various little results

Lemma [BZ4). There exists a 1-form o € QY(U) defined on a neighbourhood of Q such
that
w—wy =do

and o, =0 for all z € Q

Proof. Compare Lemma 3.14 page 94 in [I3]. Let 7 := w — wp. Outline: Choose a
Riemannian metric g (a product metric) on M and let exp be the exponential map with
respect to g. Let

U := {v € TQ|g(v,v) <€} .
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Choosing € small enough (let Q := E x 52 and choose € such that it works for the compact
submanifold @) then
exp: Uo — M

is an embedding with exp(U;) = Npy. Define ¢ : Ny — Ny by ¢r(exp,(v)) = exp,(tv).
Then ¢, is an embedding for all t > 0 with ¢o(Ny) C @, ¢1 = id and ¢;|g = id. Since T
vanishes on () it follows that ¢f7 = 0.

Let v (¢ (z)) denote the tangent vector to the curve s — ¢4(z) at s = t. Define a 1-form

1
O’Z:/ Oy Ly, TdL
0

(One has to prove that the family of forms o, := ¢}, 7 is smooth in ¢).
Then

Ld
7':¢17'_¢07':/0 %@Tdt:

1 1
= / ¢y (Lo, 7)dt = / &5 (Lo, d7 + duy,T)dt = do.
0 0
Since 7 vanishes on @ so does o; and hence also 0. Let U := N, O

Let F* denote the leaf of the foliation 77!(F) through the point (A, N). This is a
closed submanifold of S? x S%2. Note that F* = {\} x S? for A real and that F* =
771 ({q(\)} x S?) for ¢(A) = pi7 (A, N).

Lemma C.0.13. dqy s an isomorphism.

Proof. Note that d(7)o v is a very special isomorphism. If vy, vo, wy, wy is a basis of Ty y M
with vy, vy spanning Ty x {0} x S? the tangent space to the fiber and wi,wy spanning
To.nC x {N} the standard orthogonal complement such that w; is along the real axis,
then

d(%)O,N(Ui) = U, d(f')o,N(Uh) = w1
and d(7)o n(we) is linearly independent of vy, ve, wy. Consequently

dQO(wl) = d(pl)O,N(d(%)O,Nwl) = Wz, dQO(w2) = d(pl)O,N(d(%)O,N(UQ)) = A\wy + pws

with o # 0. Otherwise d(7)o n(w2) lies in the span of vy, v, wy and thus would not be
linearly independent. This shows that dqy has rank two and is an isomorphism. O

Lemma C.0.14. G is an embedding (by shrinking 0 if necessary).

Proof. Since 7 is a diffeomorphism it follows that GG is an embedding if and only if 70 G is
an embedding. By construction, G|yxs2 is a diffeomorphism onto F*, but 77,1 xs2
is also a diffeomorphism onto F*. Thus we can write

7o G\ w) = (g(N), 9 (w))
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with ¢* € Dif f+(S?). But by Lemma [CCOT3], dg, is an isomorphism and hence a local
diffeomorphism, clearly d¢* is also an isomorphism. Since

dg 0
d7 oG =

a)\

2 g

it follows that d(70G)g,, is an isomorphism for all w € S%. Consequently by compactness
of 5% after shrinking § > 0 if necessary 70G: D(0,d) x S? — C x S? is an embedding. [

Proposition B2Z17). For every 1 > § > 0, a > 0 there exists a smooth family of non-
decreasing functions ¢s: [0,00) — [0,1], s € [0, 1] satisfying

1
0 <rg,(r) + ¢s(r) < 1T=3 (C.1)
such that ¢5(r) = s forr < £, ¢4(r) =1 forr > 2 and ¢1 = 1.
Proof. For r > 0 define x(r) by x(r) = r¢(r) then x’ = r¢' + ¢, so that the condition on
¢ is equivalent to

1
0<x(r) < —.
<X(r) <15
This will be the case if y solves the differential equation
1
/
X (T) = 5
I=7
then
-
X(T) = 1_2 +c
T i

by requiring that x(a) = 0.
Then

Observe that y(%2) = 22,
Now note, that ¢(r) = 0 for » < § is equivalent to x(r) = 0 for r < § and ¢(r) = 1 for
r> 570‘ is equivalent to x(r) = r for r > 57“. Consider the continuous function

0r) = {maa:((),x(r)) for r < 22

rforrz%o‘
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ISTf~RE |

Figure C.1: The functions @ and

Let p be a smooth non-negative bump-function on R with support in [—¢, €], such that

/_ " or)dr = 1.

[e.9]

Let € < min {%, ;‘—6} Then the convolution
O(r) =px0(r) = / p(8)0(r — s)ds

— 00

is a non decreasing smooth function which satisfies
1

0'(r) < :

IS

Further 6(r) = 0 for 7 < 3¢ and 6(r) = r for r > 22, Thus ¢y = 16(r) has all the required

properties. Now let
s = p * max(s, o).
O

This proves the proposition.
Proposition (BZZ). There exists a constant C > 0 such that for all € > 0 there exists a

smooth family of functions ¢S: [0,00) — [0, 1], s € [0,1] such that
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o (r) =5 forallr < 5

o ¢5(r) =1 forallr > ¢

® max,cjoo0) |¢(r)] < 2C
for all s.

Proof. Let 6 = % and o = {5. Then by Proposition BZT, there exists a smooth, non
negative family of functions ¢s: [0, 00) — [0, 1] such that ¢ (r)r+¢s(r) < 2 and such that
¢s(r) = s for r < 55. But then ¢ (r) = 0 for r < 55. So that

€ / /
— <
S0 < 1l (1)
for all r. Together with ¢, being non negative, it follows that
S50 < LI+ 0u(r) <2

Thus ¢ (r) < %, ¢s(r) = s for r < 55 and ¢y(r) = 1 for r > 570‘ = €. Let ¢ := ¢ and
C :=40. This proves the Lemma. O

In the proof of the next lemma we use the following facts from linear algebra for block
matrices:

A B C AC+ BD
Proposition C.0.15. 1. =
0 Id D D
A B
2. det =det A
0 Id
A B A B\ A"l —A'B
3. 1If 1s invertible then =
0 Id 0 Id 0 Id

In the proof of the transversality of F} to 3, we have

Lemma C.0.16.
d(p1oG;loo) = AN (A+ (B — B,)ody)

Id
Proof. ds = , hence by the Proposition
dg
A B Id A+ Bodyg
do‘ = =

0 Id dg dg



125

Further
A7l —A7IB,
(alGS)_1 =
0 Id
and thus
A7Y(A+ (B — B,) odyg)
(dGs)_lda =

dg
by Proposition [C.O.TH Hence
dp1odG; odo = A (A+ (B — B,) odyg)
]

Lemma B2ZT2). Given symplectic forms w,w’ on C, then there exists a diffeomorphism
¢ of C with compact support which

e fixes the origin
e is the identity on the real line
e ¢*w =1uw on U a neighbourhood of the origin

Proof. We write w = fdx A dy and ' = f'dx A dy for positive functions f, f': C — R.
We do this by an Moser argument for the linear interpolation of forms

we=(1=8t)f +tf)dx A dy.

Obviously this is a smooth family of symplectic forms on C with 7 = 22 = (f'— f)dz Ady.

ot
Consider the 1-form y
Ozy = (/ f(xv 5) - f/(xu S)dS) dz.
0

Then
doyy = (f'(z,y) — f(z,y))dz Ndy = 7.
Moreover the vector fields X; defined by

Lx,Wt =0

are given by
Sl s) = [ 5)ds D
(A =1)f(z,y) +tf'(z,y) Oy
But since 0,9 = foo(f(x,s) — f(x,s))dsdx = 0, it follows that X;(x,0) = 0 for all t.

Consequently, the flow 1; of the time-dependent vector field X; on C is the identity on
the real line.

Xt(x7 y) =
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Choose a non negative cut-off function p.: R — R which has support in [—2e, 2¢] and
which satisfies p(r) = 1 for r € [—¢,¢]. Now consider the time-dependent vector field
Yi(z,y) = pe(v/2? + %) Xi(z,y) on C and denote its flow by ¢;. Then ¢; has compact
support and preserves the real line pointwise. In particular it preserves the origin for all
t, so that any neighbourhood of 0 is mapped to a neighbourhood of 0. By compactness of
0, 1] there exists a disk D(0, p) such that ¢,(D(0, 1)) C D(0,€) for all t. But there, X; =
Y}, hence the flow lines of ¢; and 1, starting at points in D(0, u) coincide. Consequently
61(2) = P1(2) for all z € D(0, ). It follows that ¢jw’ = w on D(0, p). Choosing ¢ := ¢,
and U := D(0, ) proves the lemma. O

Remark
By choosing a suitable cut-off function in the proof above, one can also assure that
¢*w = W' on a prescribed open set 0 € U and ¢ = id on V an open set satisfying U C V.

Lemma B3). Let w be any symplectic form on S% and let p € S? be a point in the
open upper hemi-sphere D,y,. Then there exists a ¢ € Sympo(S?,w) such that ¢(N) = p
with support in D,y,.

Proof. Via stereographic projection from S, we identify S?\ {S} with C and consider the
push-forward symplectic form. Choosing coordinates x,y suitably on C, we can assume
without loss of generality, that p = (z9,0) € R with 0 < xy < 1. Then the push-
forward symplectic form can be written as fdx A dy for a positive function f on C.
Let € be so small that 1 — e > x5 and let p: Rt — [0,1] be a non increasing cut-off

function such that p(r) = 1 for r < 1 — € and p(r) = 0 for r > 1 — 5. Now define

a function H(x,y) = p(y/2? +y?)y. Then the Hamiltonian vector field X defined by
tx(fdx ANdy) = dH equals X = %% in D(0,1—¢). It particular it will never vanish there.
It follows that ¢;, the Hamiltonian flow of H, will map 0 to p for a sufficiently big time
T. Hence ¢7(0) = p with supp(¢) C E. Going back to S? via stereographic projection,
and extending ¢ by the identity to all of S2, we found the desired symplectomorphism
¢ € Symp(S?, w) O

Lemma C.0.17. For any null-homotopic smooth map f: (S?, 20) — (S?, N) for which
there exists a neighbourhood U of zy with f(U) = N, there exists a smooth contraction
fi: (S?,20) — (S?,N) with f;(U') = N for a possibly smaller neighbourhood U' C U of 2
with fo = N and f1 = f.

Proof. Since f is null-homotopic, there exists a continuous family h;: (S?, z) — (5%, N)
with ¢ € [0, 1] such that hy = f; hg = N; hy(z0) = N for all t. By smooth approximations,
we may assume that h; is actually a smooth family through smooth maps, by this we mean
that the map H: S? x I — S?; (w,t) — hy(x) is smooth.

We construct a smooth map ¢g: S? — S2, which maps a neighbourhood U’ of z,, with
U’ C U to zy, and which has support in U C f~!(N). Then the smooth family f; = h;og
has the property that:

fi=hiog=nh = f; ft(U/):N§ fo=N
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as claimed. To construct g, consider stereographic projection c=* from —z,. Then
U = o07*(U) is a neighbourhood of the origin. Choose an ¢ > 0 such that the disk
D(0,2¢) C U. Let p: R — R be a smooth non decreasing bumpfunction, such that
p(r) =0 for r <eand p(r) =1 for r > 2¢. Define g: C — C by

9(z) = p(|2])=.

By construction g is smooth, has support in U and maps D(0,€) to 0. Extend g to —z
by the identity then the resulting smooth map from S? to S? is the desired map g. O

Lemma [B34). Let 7 € Q*(R?) be closed, with support in D(0,1), and such that

/7'20.
R2

Then there exists a canonical choice of o € QL(R?) such that do = T.

Proof. We will do this by altering the (non-compactly supported !) primitive obtained
from the Poincare Lemma to one with compact support.

Let 2,y be standard coordinates on C and write 7 = fdx A dy for a function f: R? — R
with support in D := {(z,y) € R?||(z,y)| < 1}.

Then from the Poincare Lemma n € Q'(R?) defined by

1
Moy = / tf(tx, ty)dt(xdy — ydz)
0

is a primitive of .
Away from the origin, in polar coordinates re’
define a function g: S' — R by

9 we can write dz A dy = rdr Adf. Now

g(eie):/0 tf(te)dt.

Then o
0= [ fdxNdy= / / rf(re®)drdd =
R? o Jo

:/027r /Ol(tf(tew))dtdﬁz/Ozﬂg(ew)dez/Sl gdo

it follows that gdf € Q'(S') defines
[gd9] =0 € H'(SY).

Consequently there exists a function h: S — R with dh = ¢gdf. If, however, h': S* — R
is another such function, then d(h — h') = 0, which means that the function h — A’ is
locally constant, and by connectedness of S*, globally constant. Thus b’ = h + ¢ for some
constant ¢ € R. Obviously d(h + ¢) = gdf for any constant c¢. So there exists a unique
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function h: S* — R which satisfies dh = gdf and h(1) = 0. Let p: R — R be a smooth,
once and for all fixed, non decreasing cut-off function which is equal to 1 for r > 1 — ¢
and zero for r < e. Now consider the 1-form

o :=n—d(ph).

We claim that this is the desired compactly supported 1-form.
Trivially do = 7. On the other hand o = n — hp'dr — pdh. So that for r > 1,

o=mn—gdf.

But now, for |z| =r > 1, since

J0 — xdy — ydx

Y

r2
we have

1 1
Nay = / tf(te, ty)dir®dd = / tf (tre?)dtr?do =
0 0

"s o ds ! -

= Zf(se)=r%dh = / sf(se)dsdf = gdb.
o T r 0

We have made the substitution s = ¢r in the third equality. Hence it follows indeed,

that up to the choice of p, 0 € Q! is a canonical primitive as desired. This proves the

lemma. O



Appendix D

Proofs of results in chapter 4

Proofs of the various little results

Lemma [{LZT). Let ¢ € Symp(A, DA, wga) then there exists a smooth function F: A — R
which is constant in a neighbourhood of the boundary (not necessarily the same constant
near the two boundary components !) such that

¢*)\std - )\std = dF.

Proof. The lemma is actually true for any closed 1-form o € Q!(A) which vanishes iden-
tically in a neighbourhood U of the boundary. Write o = Adr + udf for A\, u: A — R
smooth functions which vanish on U.

F:A—R

(r,0) / A 0)dt

is smooth and satisfies dF' = «. Indeed

oF
E(n 8) - )\<T7 6)
and since « is closed 9 9
or _ oA
or 10 = 54 0)
so that
oF B T OA B "o B 1 B
%(Tv 9) - % %(ta e)dt - % 87’ (ta e)dt - ,u(r, 9) M(Qve) - ,u(r, 9)

since p(1,0) = 0.
Since ¢ = id in a neighbourhood of A, the 1-form ¢*\ ;4 — As1q vanishes near the boundary
and since ¢* is symplectic it follows that d(¢*Nsq — Asta) = ¢ dAsta — dAsig = 0. O

129
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Lemma [EZ3). If Flux*(¢) denotes the Fluz of ¢ € Sympo(A, OA, wea), defined with
respect to A with d\ = wgy, instead of Agq, then

Fluz(¢) = Fluaz*(¢).

Proof. Let v: [0,1] — A;t — ((1—¢)5+2t,0) be the straight line element in R N A which
connects the two boundary components, then by the Fundamental theorem of Calculus

Flux(¢) = /¢*>\std — Astd

and

Fluz? = A — A
ur(0) L¢

Since ¢(2) = 2 and gb(%) = %, we can form a loop o4 = ¢(7) * 7 where * means concate-
nation of paths and 5(s) = y(1 — s). Then

Fluz(¢) = / Nota;  Fluz?(¢) = / A

o 7%
Thus
Fluz*(¢) — Fluz(¢) = / A — Nsta-

T¢
But
d()\ — )\std) = Wstd — Wstd = 07

and 3 := A — A\gq defines a cohomology class in A. Since ¢ € Sympo(A, A, wgya), the
identity component of Symp(A, 0A, wgq), the loop oy is null-homotopic, and consequently

/%6=0,

Fluz*(¢) = Fluz(o)

showing that

as claimed. O

Lemma [Z7). Let ¢, € Sympo(A, 0A, wsa) then Flux(p o) = Flux(¢) + Flux()
and Flux(Id) = 0.

Proof. Let Fy, F\y: A — R be the functions such that
¢*)\std - )\std - dF¢

and
Y Nstd — Asta = dFy.



Then
(o) Nsta — Asta = V™ (O™ Asta — Astd) + V' Astd — Asta = Y dEy + dFy =
=d(Fyop+ Fy).
Hence 1 1
Fluz(¢ o) = Fy(1(2)) + Fy(2) — (F(v(5 5)) =

R
= Fy(2) ~ Fy(5) + Fo(2) — Fo() = Flua(9) + Flua(y).

Since 1(2) = 2; ¥(3) = 3. The statement for Fluz(Id) = 0 is clear.
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O

Lemma ([20). Let (M,w = d\) be an exact symplectic manifold. Let ¢ be a symplectic
1sotopy starting at ¢g = id. Let ¢, be generated by the time-dependent vector field X;, i.e

d
£¢t = X} 0 ¢y.

Then tx,w = dH; for a smooth family of functions Hy: M — R if and only if p; \—\ = dF,
for a smooth family of functions Fy: M — R. Moreover F, and H; are related by the

equations

t
E:/(HS+LXSA)O¢SdS
0

d
Hs - <% |t:s F’t> ¢ LXS

Proof. Assume first that 1x,w = dH; then we have:

t t
G- A= / 4| giads = / 6?Lx. \ds =
0 du 0

t t
= / Oi(Lx, AN+ dix N)ds = d/ (Hs + tx \) o ¢gds.
0 0

For F; = fg(Hs + 1x.A) o ¢sds this shows that ¢;A — A = dF; and the relation stated

above. Conversely if p;\ — \ = dFt then we differentiate the equation to obtain
‘t s ¢: )‘ d ‘t s F t

since partial derivatives commute. Then

d
GilLxN) = dg lims

d
dLXS)\ + LXSd)\ = d (% |t:s F’t) o ¢s_1
and hence p
Hs == (E |t=8 Ft) o¢s_1 - LXS)\

as claimed.
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In order to get a canonical choice for a symplectomorphism with given Flux a, we put
the following bump-function before the statement of the lemma: p: R — R be a smooth,
non decreasing function which equals 0 for r < % and 1 for r > %.

Lemma ([27). Given any real number a, there ezists a canonical symplectomorphism
¢* € Sympo(A, A, wgq) such that

Flux(¢®) = a.
Further ¢* depends smoothly on a.

Proof. Consider the smooth function
H,: A—R

(r,0) — ap(r).
Define a vector field X on A by the equation txwsg = dH,. Let ¢; denote the flow of X.

By Lemma B ZTlthere exists a function F' with ¢ A\—\ = dF where F' = fol(H—i—LX A)ogydt.
Since ¢4(2) = 2, ¢(3) = 3 and X vanishes near A we have

Fluz(ey) = F(2) —F(%) _ /01 ap(2)ds — /01 ap(%)ds _ /01 ads = a.

Define ¢® := ¢,. This proves the lemma. Obviously ¢° = id and ¢* depends smoothly on

a.
U

The proofs of the results used in Theorem 4.3.7]

The proof of Lemma

Before we can start the proof of Lemma we have to prove a couple of propositions.
Recall that in Chapter Bl we assume for simplicity that

A:{zeC|%§\z|§2}

with symplectic form

-
————dr N df.
1+ 22"

We abbreviate: f(r) = e Let B = {|z| =1} C A be called the equator.

Wstd =

Proposition D.0.18. Given ¢ € Ham(A, DA, wsq) with ¢(E) = E. Then there exists a
smooth path ¢, € Ham(A, 0A, wsa) which connects ¢ to ¢ € Ham(A, DA, wsyq) such that
¢'(e) = e for all e € E and such that ¢,(E) = E for all t.
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Proof. We restrict ¢ to E and denote ¢ := (¢|g)~*. Then 9 is a orientation preserving
diffeomorphism of S'. Since Dif f*(S') is path-connected (see [15], Corollary 2.7.B),
there exists a smooth path ¢y € Dif f+(S!) with ¢y = id and ¢, = 1. Let Y; be the
time-dependent vector field on S', defined by

O

Yioty = ot

Let p: R — R be a smooth cut-off function with support in [2, 2], /(1) = 1 and p(1) = 0.
Consider on A the smooth family of functions

Hi(r,0) = ~§(1)p(r)¥i(0)

Then
0H, 0H,
or 00
Let X; be the time-dependent vector field defined by tx,wsiq = dH; on A, and let its
flow be ¢;. Then by construction ¢; = 1, on E and thus in particular preserves E. By
Proposition 2.8 and the fact that the family of functions H; has support away from the
boundary, it follows that ¢; is a Hamiltonian isotopy. Then ¢ o ¢, € Ham(A, 0A, wgy) is
a smooth path which starts at ¢ and ends at a Hamiltonian symplectomorphism ¢’ which
is the identity on E. This proves the proposition. O

97 1,0) = Vi(0); Z2t1,9) = 0.

To prove the next proposition, we need the following two little Lemmata: By [I8] page
15, we have

Lemma D.0.19. If f(t,q) is a smooth function on I. x M where I. is an open interval
(—e€,€), such that f(0,q) =0 for all ¢ € M then there exists a smooth function g(t,q) on
I. x M such that

f(t, C.I) =g(t,q)t.
Moreover g(0,q) = f'(0,q), where f = 8t’ forqe M

Proof. 1t is sufficient to define g(t, q) fo f'(ts, q)ds. O

Lemma D.0.20. Let W be a neighbourhood of the zero-section in T*S' and let o €
QY(W) be a closed 1-form which vanishes on the zero-section, then there exists a function
F: W — R with a = dF which also vanishes on the zero-section.

Proof. In the standard coordinates ¢, p on T*S! we can write a = adq + bdp. Then

da ob

on W, since « is closed, and a(q,0) = b(q,0) = 0, since « vanishes on the zero-section.
Now it suffices to define

F(q,p) = /Op b(q, s)ds,
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U E
V:¢_1(U> oy
|
\ VnU
—— ——
S T SN
a~ (VNU) J\/
= o

Figure D.1: The construction of 7

since dF' = %—sdq + %—I;dp with

oF d/p
—(q,p) = — [ b(g,s)ds = b(q,
op 4P =g, | Yas) (4,p)
e op v b X
a
—(q,p) = —(q,s)ds = —(q,s)ds = al(q,p) —alq,0) = alq,p).
ag @7 i 9,0 %) i ap 1) (¢,p) — alq,0) = alq, p)
Thus dF = « and F(q,O):fOOb(q,s)ds:Oas claimed. O

Proposition D.0.21. Given ¢ € Ham(A, A, wgq) with ¢|p = id, then there ezists
a smooth path ¢ € Ham(A, A, wga) and a neighbourhood U of E such that ¢y = ¢,
1|y = id and ¢|g = id for all t.

Proof. Since E C A is a Lagrangian submanifold, by the Weinstein neighbourhood the-
orem, there exists a symplectomorphism «: (Ny, dAcan) — (U, wsg) between Ny a neigh-
bourhood of the zero-section in 7*S* and U a neighbourhood of E C A. For simplicity,
we assume that Ng = D, = {(¢,p) € T*S*||p| < €0}

Let V := ¢~1U then we can define (see figure [D])

ria  (UNV) = Ny

r=alogoa.
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Let (q,p) € ST x R be global coordinates on T*S* and write

7(q,p) = (Q(q,p), P(q,p)).

From 7 being the identity on the zero-section, it follows that its differential at a point
(¢,0) on the zero-section is of the form

9Q  0Q

D0 op 1 *
a0 = oP 9P B

% o 0

But 7 is also a symplectomorphism hence 7*dA.., = dA..,, Which implies that %—I; = 1.
Now apply Lemma to the function P: S' x (—e€y,€1) — R with P(q,0) = 0 and
D, Ca i (UNV).

~ We obtain a smooth function P: S x (—€1,¢) — R such that P(q,p) = pP(q, p) and
P(q,0) = 5(q,0) = 1.

Since P is continuous and P(0,q) = 1, for every ¢ € S' there exists an €, > 0 such that
|P(q,p) — 1| < 1 for all |p| < ¢, and by compactness of S! there exists a e > 0 such that
|P(q,p) — 1] < £ for all [p| < e and all g.

Further let 0 < €3 < min {%eo, 62} then

- - 2 1
[P(g,p)] = IpPg,p)| = Pl P(g.p)| < ge(1+ 5) = €
on D,.
Let M, be fiberwise multiplication by the real number s:

My: T*S' — T*SY; (q,p) — (q,sp).

We define a smooth isotopy
Ts: Dey — Ny

1 -
(a,p) = My o0 M(q,p) = (Qla, 5p), - P(g, 5p)) = (@, sp), pP(g; 5))-
The last equality comes from the equation P(q, sp) = (sp)P(q, sp). Because of the first
defining expression and the fact that the M, are diffeomorphisms for all s # 0, it follows
that the 7, are embeddings. Because of the choice of €3, it follows that the images all land
in Ny and by the last expression, it follows that the family is smooth in s.

Observe that by construction

~P(0,0)) = (,0)

75(¢,0) = (Q(q, 0),

is the identity on the zero-section for all s and

70(q,p) = (Q(g,0),pP(q,0)) = (¢,p)
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is the identity.

Since 7 is symplectic, the 1-form 7*\..,, — Acan s closed. Since 7 is the identity on the
zero-section and A.g, = %p2dq, it follows that 7*Aean — Aean vanishes on the zero-section.
So by Lemma [LO20, there exists a function F': D, — R which vanishes on the zero-
section with dF = 7*Acan, — Acan-

But then for s # 0

T;Acan — Acan = M;T*MI)\can — Acan = M;(T*Mi)\can - MIAcan)-

The last equation follows from the fact that M, is a diffeomorphism with inverse M1 so
that M7 o M3 = id. But dM(£) = £; dM(%) = s5 thus

. 0 1 0
(M; AC&H)(!}JJ)(%) = 5(3]9)2 = SzAC&H(q,p)(a_q)-

Hence
* 2
Ms Acan = $“Acan

and so

TS Acan — Acan = Ms (?(T Acan — Acan)) = ?MSdF = d?F o Ms.
We show that the family of functions Fi(q,p) := S%F o M,(q,p) is smooth in s. By
construction, F’ vanishes on the zero-section and furthermore since 7*Acan — Acan = dF
and 7*Acan — Acan vanishes on the zero-section, it follows that dF also vanishes on the

zero-section. In particular %—i(q, 0) = 0 for all ¢ € S'. So we can apply Lemma [D.0.19

twice and obtain smooth functions F, F: D., — R such that

F(q,p) = pF(q,p) = p*F(q,p).

Thus

1 1 -
Fy(q,p) = gF(q, sp) = g(sp)QF(q, sp) = p°F(q, sp).

Hence indeed, Fj is a smooth family of functions, which vanish on the zero-section and
such that
T;)\can — Acan = dF.

From Proposition E2.0, we know that given the functions F above, a potential smooth
family of functions whose Hamiltonian flow generates 7, has the form

Hs: (% ‘t:s E) OTS_I—LXS)\

where %Ts = X, o7, Observe that if they are defined, then dH, vanishes on the zero-
section due to the fact that 7s|o_section = id (thus X(g,0) = 0).
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We want to show, that there exists a neighbourhood of the zero-section in 7*S*', on which
Ts is generated by the Hamiltonians H, defined by the equation above.
If we write

7s(¢:p) = (Qs(a,p), Ps(a,p))
then by the choice of €3

|Ps(q,p)| = |pP(q, sp)| > 33° 1

for all [p| = 2 and all ¢. Indeed 1 — |P(q,p)| <|P(q,p)—1| < 1 for all ¢ and all [p| < e3.
Thus De C 75(De,) for all s.

Thus, X, is defined on all of D%S for all s. So is tx,Acan- Moreover since %Fs is defined

on all of D, (since Fj is defined on D,,) it follows that %Fs oT, I'is defined on all of D%g
as well.
Thus indeed, on DeTg , the smooth family of functions

d _
Hs = (% |t:s F’t) O T, t— LXS)\
is defined, and by construction, for all points (¢, p) € D%a , it follows that

(LXSW)(q,p) = (st)(q,p)

as desired.

Next we are going to cut-off the functions Hy suitably. Let p be a cut-off function p: R —
R with support in [—%, %] and which satisfies p(r) = 1 for r € [-F, ¢]. Consider the
following family of functions

K(q,p) == p(p)Hs(q, p).

Since Ky, = H, on D« the Hamiltonian vector fields Y, of K, agrees with X, there.
8

Denote the flow of Y; by ;.

We are left to show, that there exists a neighbourhood D,, of the zero-section, which is

mapped into D%g by 75 for all s. Then the whole flow-line of the time-dependent vector

field X starting at a point in D, lies inside D ., and consequently, 75 = 1, for all s when

restricted to D.,.

Consider

Py(q,p)| >0

€4 1= inf
5€[0,1],qeS% |p|l=¢
if 771(q,p) = (Qs(q,p), Ps(q,p)). Then ¢, is greater than zero since the set [0, 1] x S x S°
over which we take the infinum is compact and 7. !'is an embedding which maps the

zero-section to the zero-section (thus Fy(q,p) # 0 for p # 0). Then indeed 7,(D.,) C Dea
for all s and consequently

V1(q,p) = 11(q,p) = 7(q,p)
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for all (¢,p) € D,.

By construction, K, o o~ ! is a family of smooth functions with support in U. Extend by
zero to all of A and let G4 denote the resulting family of functions on A. Now consider
the flow y; of the time-dependent vector field Z; defined by 1z, wgqy = dGs on A. Then
by construction on U’ := «a(D,,), we have y; = ¢, and furthermore, the isotopy x;s lives
in Ham(A, A, wgq). This follows from Proposition and the fact that the family G,
has support in U away from the boundary. By construction, x(E) = E pointwise for all
S.

Then ¢oy; ! is a smooth path of Hamiltonian symplectomorphisms such that ¢ox; |z = id
for all s, and such that ¢ o x; ' is the identity on U’. This proves the proposition. O

For the definition of A;, Symp(A;, 0A;, wgq) and P in the following proposition,
consult Appendix [E

Proposition D.0.22. Let p: R — R be a smooth function with support in [%, Z] and which
is equal to 1 forr € [3,2]. Consider the functions Tj,: A — R given by Ty(re?) = 1fr2p(r).
Then the flow ¢F generated by the vector field X* which is defined by txrweq = dT} is
Hamiltonian and preserves E for all t. Furthermore ¢%| 4, € Symp(A;, 0A;, wea) and is

in this group isotopic to (¢P)F € Symp(A;, 0A;, weta)-

Proof. The flow ¢¥ is Hamiltonian, since by Proposition FEZH (¢F)* Ay — Asta = dF; with

t
F, = / (Tk + txrAsa) © ¢’§ds.
0

Now 7}, has support in the interior of A, thus X* vanishes in a neighbourhood of the
boundary and ¢¥ = id in some neighbourhood of the boundary. Hence Flux(¢;) =
F,(2)— Fy(3) = 0 as claimed. Next calculate the Hamiltonian vector field X* = a-Z +3.2.

ko, 2kr
Lkad’r VAN df = di == (1 n sz (7”) - mp('f’)) dr.
Thus a o
+ro)km
B(r) = 2mkp(r) — ——————p'(r)
and o = 0.
Set ¢y (r,0) = (r,0 + tg"(r)) for some yet to be found function g*: [1,2] — R and differ-
entiate p 9 9
gbf(ﬁ 0) = gk(r)@ = X*(i(r,0)) = Br) g
Hence

61 (r,0) = (r,0 +16(r))
is the flow of X*. Now observe that for r € [%72]7 p(1) = 1; p/(r) = 0 so that there
B(r) = 2rk. Hence for r € [%, g]

oF(r,0) = (r,0 + t27k).
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In particular ¢f preserves E for all t.

Then ¢F|a, € Symp(A;, OA;,wea) and both ¢f|4, and (¢P)* satisfy the conditions of
Lemma [E032% They are isotopic in Symp(A;, 0A;, wsq) as claimed. d

Proposition D.0.23. Let ¢ € Ham(A, 0A, wgq) be such that it is the identity in a neigh-
bourhood of E. Further assume that ¢|a, € Sympo(A;, 0A;, wsa), the identity component
of Symp(A;, 0A;,wsa). Then, there exists a Hamiltonian path ¢y € Ham(A, A, wsq)
such that ¢po = ¢, ¢y preserves a neighbourhood of E pointwise and such that ¢1|a, €
Ham(Ai, 8142, wstd) .

Proof. Since ¢ is Hamiltonian, there exists a function F': A — R with
(b*)\std - >\std =dF

such that Fluz(¢) = F(2) — F(3) = 0. Since the 1-form ¢*Ayq — Asq vanishes in a
neighbourhood V' of E we find that dF" = 0 in V and consequently F' is constant on V.

Hence we can define

Flur(6,) = F(2) ~ F(1); Flur(6) = F(1) - F(3).
Consequently

Flux(p,) = —Fluz(¢;).

We need a Hamiltonian path which preserves E, and redistributes Flux between the two
annuli A; and A,, in order to make ¢,, ¢; Hamiltonian.
Consider a cut-off function p with support in [2, 2] and such that p(r) =1 for r € [3, £].
Let

Ha(r,0) = +ap(r)
and let x§ be the flow of the vector field X* defined by txewgq = dH,. x{ is Hamiltonian
as before, since H, has support away from the boundary, and x§ is the identity near E.
But the flux of x{|4, is precisely a. Indeed by Proposition EEZ0]

(XT)*Astd - )\std =dF"
with X
F* = / (Ha + LXG)\std) @) X?dt
0

Then in V', we have x§ =1id, X® =0 and H, = a, thus

1
Fluz(x{la,) = F*(2) — F*(1) =0 —a = —a; Flux(x{|a,) = F*(1) — F“(ﬁ) =a—0=a.

Now consider the isotopy ¢ o x; Fluz(@) hich preserves E for all £, starts at ¢ and ends

at a symplectomorphism with zero Flux on each of the annuli A,, A;. This proves the
proposition. ]
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Now we can proof Lemma B.4.2

Lemma D.0.24. Given ¢ € Ham(A, 0A, wgq) with ¢(E) = E, then there exists a smooth
path ¢ € Ham(A, 0A, wgq) which connects ¢ to the identity and which satisfies ¢,(E) = E
for all t.

Proof. By Propositions[D.018 and [D-0.2]], we may assume that ¢ is already the identity in
a neighbourhood U of E. Thus ¢, = ¢|a,, ¢i = ¢|a, are elements in Symp(A,, 0A,, wWsta),
Symp(A;, 0A;, wsiq) Tespectively. A priori ¢; may not lie in the identity component in
case we have chosen the path 1;: S — S! in in the wrong homotopy class.

Since ¢ generates mo(Symp(A;, 0A;, wsa)) (see Theorem and the Remark af-
ter Proposition [EX130), there exists a k € Z such that ¢; and (¢”)* are isotopic in
Symp(A;, 0A;, wsia)-

Consider the flow ¢F € Ham(A, DA, wyyq) of the function T}, given by Proposition [D.0.22
Then, the isotopy ¢o(¢F) ™! in Ham(A, A, wsq) preserves E for all t and ends at a Hamil-
tonian symplectomorphism ¢o (¢¥)~! which restricts to a symplectomorphism ¢o (¢¥)~?
in the identity component Sympo(A;, DA;, wsia)-

But ¢ itself is in Sympo(A, OA, wsq), this implies in particular that as soon as we killed
any Dehn-twist in the inner Annulus, we also killed all Dehn-twists in the outer An-
nulus (otherwise a net-Dehn-twist would survive making ¢ non-isotopic to id). Hence
we may assume that ¢ restricts to symplectomorphisms ¢,, ¢; in Sympo(A,, 0A,, wsia),
Sympo(A;, DA;, wsg) respectively. But then ¢ satisfies the conditions of Proposition
D023 Hence we may assume without loss of generality that ¢, € Ham(A,, 0A,, wsta)
and ¢; € Ham(A;, 0A;, wsa). But Ham(A,, 0A,, wsa) and Ham(A;, 0A;, wgq) are path
connnected by Lemma FEZ8 hence there exists Hamiltonian path to the identity on both
annuli. In total we found a Hamiltonian isotopy ¢; € Ham(A, DA, wsq) which connects
id to ¢ and such that ¢;(E) = E for all t. This proves the Lemma. O

A;

The proof of Lemma

Lemma ([E32). There exists a smooth approzimation G [0,1]x [—5,5] — Ham(A, 0A, wya)

of G such that G=GonVC V', an open set which is a neighbourhood of the boundary,
such that G(s,0) = a(3s).

Proof. Observe that, by construction, G is smooth in a neighbourhood V = [0,1] x
(55, 5] — W of the boundary of [0,1] x [, 7] and in a neighbourhood of [0,1] x {0}
(cf.fig. EEH)). Let

/ T T /
V :[0,1]X[7,§]—W

and

Compare figure [D.2
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Figure D.2: Where G is smooth

By smooth approximations as in chapter 2 in [7], in particular Theorem 2.4 on p.48,
we may assume there exists a smooth map

~ - T

A2 10,1) % [0, 5] = Dif f(A,04)
such that H agrees with G on V'. In particular H (s, 0) = a(%s).

Next we apply a parametrised version of Moser’s theorem, to push this smooth map
down into Symp(A, A, wgq). Thus consider the smooth 2-parameter family

w(s,t) = H(s,t) wsa

and its primitive A(s,t) = H(s,t)*Asq. Further consider the linear interpolation
wu(s,t) = (1 — w)wgg + uw(s, t).

Then
Ow, (s, 1)

ou
Consider the vector fields defined by

=d(A(s,t) = Astd)-

[/Xu(svt)w“(87 t) = )\(87 t) - )\std-

If (s,t) € V' then w,(s,t) = wgq for all u, further the 1-form A(s,t) — A is closed so that
the vector field X (s, t) defined by

LX (s,t)Wstd = )‘(87 t) — Astd
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is symplectic. Thus, if ¢, (s, t) denotes the flow of the time-dependent vector field X, (s, t),
then for (s,t) € V' it follows that ¢,(s,t) € Symp(A, 0A, wsa). By construction ¢,(s,t)
depends smoothly on s, ¢. B

Let p be a smooth cut-off function which is 1 on W’ and zero on V. Consider the smooth

map
-

[77
(87 t) = ?I(S, t) © ¢p(s,t)(87 t)’

K2 [0,1] x [, 5] — Symp(A, 94, w410)

Then indeed
K(Sv t)*wstd = Wstd

for all s,¢ and K = G on V. In particular K (s,0) = a(%s).
In the last step we push K down into Ham by using Lemma EE27. Therefore note first
that Fluz(K(s,t)) depends smoothly on s, ¢. Indeed

K(Su t>*>\std - )\std = U(Svt)u

a smooth family of closed 1-forms on A, which vanish near the boundary of A. Hence,
there exists functions F(s,t) such that

o(s,t) = dF(s,t).

Since these functions are determined up to a constant, by choosing F(s,t)(3) = 0 we have
determined these functions uniquely. Consequently the family F'(s,t) is smooth in s,
and so it follows that

Fluz(K (s, 1)) = F(s,t)(2) — F(s, t)(%) = F(s,1)(2)

¢—Flu:c(K(s,t

is indeed smooth. But the family ) in Lemma BEZZ7 depends smoothly on s, t.

So we can define o
G: [O, 1] X [7, 5] — Ham(A, aA, wstd)

(S,t) N ¢—Flum(K(s,t)) o K(S,t).
Now K = G on V and G(sﬁlt) € Hgm(A,@A, Wstd )- Sirice ¢° = id, it follgws that

p~FuaK (1) = jd for (s,t) € V. Then G agrees with G on V and in particular G(s,0) =
a(5s). This proves the lemma. O



Appendix E

Homotopy groups of some
diffeomorphism groups

We discuss the homotopy groups of Symp(A, 0A,wsq) and Ham(A, 0A, wgq). First we
have to begin with a few definitions. Let D := {z € (CHz| <2}and A:={z € C|3 < 2] < 2}

be equipped with the symplectic form wgy = ﬁl +T2 ——T—dr AN df. Let \yq = 5l +7"2 df be

the standard primitive of wyy on A. In the following we define some dlffeomorphlsm
groups which are equipped with the subspace topology of the C*°-topology of smooth
maps COO(A R?). This topology on C*(A;R?) is the topology induced by the metric

d(f,g) = 1 |f-gle

k 0 5F To ol where

8kf i 8k9i
f =gl = I%ingg ‘8%’18:65‘ (*) = OxT'0xy (@)l
By a smooth map f: X — C>(A,R?) we shall mean smoothness of the induced map
f: X x A — R2% The following proposition implies that this gives genuine continuity of
the map f.

Proposition E.0.25. Let X be a topological space and let F': X — C*(A,R?). Then F
is continuous iff the induced map F: X x A — R?; (z,a) — F(x)(a) and all its partial
derivatives in directions of A are continuous.

Proof. A function F': X — C*°(A,R") is continuous if for any convergent sequence (z,, —
x) in X, the image sequence F(z,) — F(x) converges to F'(z). Hence if we start with a
continuous function F' and (z,) a convergent sequence, then F'(x,) — F(z) means that
given any € > 0 there exists a N € N such that for all n > N

d(F(x,), F(x)) <e

in the metric defined above. This means in particular that the partial derivatives of any
order are € close for n > N(e).

Then the function F' is continuous, since for any convergent sequence (z,,k,) — (z,k)
we have

|F (@, k)= F (2, k)| = |F(20) (k)= F (2) (k)| < [F(2,)=F(2)lo+F(2)(kn) = F (2) (k)] < 2€
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for all n > N and N so big that the first term is smaller than e (see above) and the
second term is smaller than e by the continuity of F'(x). The same works for all partial
derivatives of F in directions of A. Conversely if we have a continuous function F as above
which is smooth when restricted to the factor A and for which all partial derivatives in

directions of A are continuous functions then this defines a continuous function F': X —
(C*(A,R"™),C*). To see this observe that

OF; o d _d _ OF (),
a—yj(x, k) = thZ(x, k+ty;) = th(m)Z(kJ +ty;) = 9, (k)
Hence OF(z,) OF (2)
Tn)i )i o
Fla) = P = mar,supieal =5 22 ) — 200 ) =
OF, OF,
= maa:i,jsupkeﬂa—yj(zn, k) — a—yj( k)|

Consequently, by compactness of A, we can find for any given ¢ > 0, a N such for all
n>N _ _

oF; oF;

—(xp, k) — =—(x, k)| <€

5y o) = 5 )

for all £ € K and all ¢, j. Thus
|F(zn) — Fz)]1 <€

The same can be done for all higher partial derivatives. Thus given any € > 0, fixar € N
such that 2"~! < e. Now we can find a N such that for all n > N:

P () — F(a)] < =

4
for all [ = 0..r. Hence
= . oo
d(F(z,), F(2)) < 2 §4(1 sy +l;1_l <e€
and so F' is continuous. U

Definition E.0.26. We define:

e Diff(D,0D) to be the group of diffeomorphisms of the closed disk D, such that
every element ¢ is equal to the identity in some neighbourhood of the boundary.

e Diff(A,0A) to be the group of diffeomorphisms of the closed annulus A, such that
every element ¢ is equal to the identity in some neighbourhood of the boundary.

o Symp(A,0A,wgq) C Dif f(A,0A) to be the subgroup of symplectomorphisms of
(Aawstd)-
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Figure E.1: The bump function p

o Sympo(A, 0A, wsq) to be the identity component of Symp(A, OA, wsia).

Ham(A, 0A,wgq) := {¢p € Sympo(A, DA, wga)|Flux(o) = 0} .
Further we need the following definitions. Define the outer annulus
A, ={z€C|]1 <|z| <2}
and the inner annulus

Ai:{zeC%gMgl}.

Definition E.0.27. The groups Dif f(A,, 0A,), Dif f(A;, 0A;), Symp(A,, DA, wsta),
Symp(AZ> aAZ) wstd); SympO(Aw aAO? wstd); ngpO(Ala aAZ) wstd); Ham(Am aAO? wstd);
Ham(A;, 0A;,wgq) are defined as the corresponding groups for (A, wsq)-

Now we quote

Theorem E.0.28 (Smale). The group Dif f(D,0D) is contractible.

Proof. This is proved in [4]. O
Let p: R — R be a smooth cut-off function as in fig. [T

Theorem E.0.29. m;(Dif f(A,0A)) = 0 fori > 0 and mo(Diff(A,0A)) = Z and is
generated by the Dehn-twist

P A— A

(T€i6> N Tei(0+27rp(r)) )
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Proof. The proof is taken from [I5] and goes as follows. Let Emb(B, D) be the space
of embeddings of the closed disk B := D(0, ) C R? into the open disk D = D(0,2).
Again the topology is given by the subspace topology of the compact open topology on
the corresponding space of smooth functions.

Let UT'D denote the unit tangent bundle of the disk D, then firstly the map f: Emb(B, D) —

o
UTD; ¢ — slzzg o ;‘ is a weak homotopy equivalence. UTD is homotopy equivalent to
ox

S and is generated by the fiber. Since f, is an isomorphism on the homotopy groups, it
follows that the loop

v: ST 2 R\27aZ — Emb(B, D); 0 +— (z — ¢?2)

is a generator of m (Emb(B, D)) (cf. Theorems 2.6.C and 2.6.D in [T5]).
Secondly, a multiparameter version of the isotopy extension theorem shows that the con-
tinuous map

p: Dif f(D,dD) — Emb(B, D)

given by restriction to B is a Serre fibration (has the homotopy lifting property for cubes).
Consider the fiber over the inclusion. This is the set of diffeomorphisms in Dif f(D, dD)
which restrict to the identity on B or in other words, the diffeomorphisms of A which
are the identity near {|z| = 2} and which can be extended to D by the identity. Denote
this set by D¢, Since the homotopy long exact sequence applies to Serre fibrations, we
obtain that 0 = 741 (S?) = w1 (Emb(B, D)) = m;(D*")) for i > 1. Further the map
7 = 1 (SY) = 7 (Emb(B, D)) — m(D") given by the boundary homomorphism is an
isomorphism.
Recall that the boundary homomorphism 0: m(B) — m(F) in the homotopy long exact
sequence of a fibration F' — E — B, can be described by the homotopy lifting property.
Explicitly let v: [0,27] — B with v(0) = v(27) be a representative of an element in 7 (B)
and let 7: [0,27] — E be a lift of v starting at the basepoint xy in F', then the boundary
homomorphism is given by

() = [r(2m)]
where [¥(27)] denotes the path component in F' of the endpoint of the lift 5 (cf. the
discussion on p.209 in [10]).
Hence we are required to find a lift of the loop 7 starting at the identity in D!, Let p
be the cut-off function from Figure [E1] and consider the extension

Ry € Dif f(D,0D); Ry(z) = e*=D?

of the embedding Ry: B — D; z — ¢z, Thus 7: [0,2x] — Dif f(D,dD); 6 — Ry is the
required lift of 7. Consequently, Ror = P generates mo(D"). Note that by the choice
of p, actually Ry, = ¢P € Dif f(A,DA).

Now let u: 8™ — Diff(A,0A) be a continuous map, which represents an element in
mn(Dif f(A,0A)) for n > 1. Since S™ is compact, there exists a real number ¢ > 0
such that u(z) is the identity in an e-neighbourhood of {|z| = 3} for all z € S™. Let
As={2€CJ]d < |z| <2} for0 < § < Landlet Dif f(As, 0As) be defined as Dif f(A, DA).
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Leta: A— A 1 be a diffeomorphism which is the identity outside of the e-neighbourhood
of the set {|z| =3} in A.

Since any element in Dif f(A,0A) is extendable to the disk D by the identity, we can
regard u: S™ — D', But then there exists a contraction u;: S™ — D" since 7, (D") =
0 for n > 1.

Obviously D¢t C Diff(A%,ﬁA%). Thus we can regard u;: S™ — Dz'ff(A%,ﬁA%) as a
contraction of u in Diff(A%, 8A%) and

vy: S™ — Dif f(A,0A); v+ a tou(z)oa

is the desired contraction of w in Dif f(A,JA). Indeed « is the identity on the support
of u. This shows the first assertion of the theorem.

Any ¢ € D is isotopic in D to (¢P)" for some i. Let ¢ € Dif f(A,DA), then by the
same argument as above, we can find an isotopy in Dif f(A, DA) between ¢ and (¢P)%
This shows that the Dehn-twist ¢ generates mo(Dif f(A, OA)). O

Proposition E.0.30. The groups Dif f(A,0A) and Symp(A, 0A, wgq) are weakly homo-
topy equivalent.

Proof. Let Q C Q?(A) be the set of symplectic forms on A. Since every 2-form w on A
can be written as
w = fdr N\ df

for some function f: A — R, we can identify 2 with a subset of C>°(A,R). As above we
can define the C'*°-topology on C*°(A,R) and endow 2 with the subspace topology.
We are going to show, that the map

p: Dif f(A,0A) — Q

¢ — ¢ Wsta

is continuous and is a Serre fibration (i.e. p has the homotopy lifting property for all
cubes [0, 1]%). Further p~!(wqq) equals Symp(A, 0A, wsq) and € is contractible since it is
convex. The proposition then follows since the long exact sequence for homotopy applies
to Serre-fibrations.

Continuity of p is trivial and the homotopy lifting property for cubes follows by Moser’s
theorem with parameters. We only show this for the 1-dimensional cube [0, 1] since the
proof for [0, 1]¥ works entirely analogously.

Let v: [0,1] — Q be a continuous map and ¢ € p~*(7(0)), then we seek a continuous map
7:[0,1] — Dif f(A,JA) such that py = v and 5(0) = ¢.

First note that for w € €2 we can define a canonical primitive \*. To do this we write

w = fdr A df and define
(A)p = (/ f(s,@)ds) de.
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Now consider the linear interpolation of symplectic forms
ws(t) = swgq + (1 — s)y(t).
Then

Ows(t)
0s

— d(>\std _ )\“/(t))

and we define
o(t) = Aga — N0,

Now define the Moser vector fields X(t) by
Lx.ws(t) = o(t)
and denote their flows by ¢(¢). Hence
G1(t) wsta = (2)
and by continuity of v and therefore of \?® it follows that the path
t— ()

is a continuous lift of 7. Consider
h=¢o(4(0)7"
Since ¢*wgqg = 01(0)* wgg, it follows that h*wggy = wgq and therefore
Y(t) = ho ¢a(t)
is the desired lift of ~. O

Remark
Note that the Dehn-twist ¢P € Symp(A, A, wyq) and thus by Proposition P
generates m(Symp(A, 0A, wsa)).

Proposition E.0.31. The group Sympo(A, A, wsq) deformation retracts onto Ham(A, A, wsq).

Proof. By Proposition L2717, given any real number a there exists a canonical symplecto-
morphism ¢* € Sympo(A, A, wgq) such that Fluz(¢®*) = a. Thus define

s Symp(] (A7 8147 wstd) - Symp(](A7 aAv wstd)

¢ N (b—tFlum((j)) o (b

for t € [0,1]. Since composition o in Symp(A, 0A, wgqa) is continuous, to show continuity
of r;, it suffices to show that the map

¢ — (b—tFlum((j))
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is continuous. But ¢“ is canonical for a € R, hence it suffices to show that ¢ — Flux(¢)
is continuous (obviously, then ¢ — tFluz(¢) is also continuous).

Fluz(¢) — Fluz(y) = Fluz(¢ o ™),

and ¢ o 9~! is close to id if and only if ¢ is close to ¥. Hence Flux is continuous, if it is
continuous at id.

Write ¢(r,0) = (R(r,0),Q(r,0)) for ¢ € Symp(A, 0A, wsq) being e-close to the identity.
Then

Fluz(¢) = /¢*>\std — Astd

where y(t) = ((1 — ¢)3 + 2¢,0) is the path along R, which connects the two boundary

components.
Further
-1 0Q 0Q
Ntd)ro = —(r,0)dr + —(r,0)df
(# sa)o 27r(1+1-z(r,9)2)<ar (r0)dr+ G (1:9) )
and thus

! )
\Flu:c<¢>>|=\/¢*Astd—Astd|z|/0 " Nata ((2—%)5) dt |<
v

1 0qQ

3
- Pl
2n(1+ R?) Or B

3
< — —
_2max =

0
5

< max

‘ oQ

r

But ¢ is e-close to id thus ‘%—?} < €. This shows the continuity of Fluxz and that of r;.
Now

r1: Sympo(A, 0A, weq) — Ham(A, 0A, wsq)

since Flux (¢~ T o ¢) = 0.
Finally r¢|mam(4,04,0,,,) = d, this follows from the fact that ¢* = id for a = 0. Thus 7 is
indeed a deformation retraction as claimed. O

Remark
The corresponding statements for the groups Dif f(A,, 0A,), Dif f(A;, 0A;), Symp(A,, 0A,, Wsia),
Symp(A;, 0A;, wsta), Sympo(Ao, 0Aq, wsta), Sympo(Ai, 0A;, wea), Ham(A,, 0A,, wsta),
Ham(A;, 0A;,wsq) can be proved in exactly the same way. Thus we can replace the an-
nulus A in any of the results above by either A, or A;.

Consider the following lemma, which we need in Appendix D.

Lemma E.0.32. Let ¢g, 1 € Dif f(A,0A) be of the special form ¢;(re®) = re@+/fi()
with f,(%) = 2nk and fi(2) = 0 for k € Z then there exists a smooth path ¢; €
Dif f(A,0A) which connects ¢g and ¢1. Furthermore if ¢g, 1 € Symp(A, DA, wgq) then
the ¢y € Symp(A, DA, wgq) for all t.
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Proof. Tt suffices to write down the linear isotopy ¢;(re?) = re/@*0=0fM+tA () Then
¢ is smooth with smooth inverse ¢; !(re?) = re!@=0=0/o)=thT) = Clearly ¢, restricts
to the identity near A due to the fact that fo(3) = fi(3) and fo(2) = f1(2) near JA.
Further by the defining equation it is clear that ¢, depends smoothly on ¢. Moreover note
that a diffeomorphism of this form is always symplectic. This proves the lemma. O



Appendix F
Homology of (M, L)

Definition of the second relative homotopy group

Let 79 € L be the base point and let I? = [0,1] x [0,1] C R? be the unit square in R?
with standard coordinates x,y.

Definition F.0.33.
To(M, L) := {u: (I*,0I*,J) — (M, L,z0)|u continuous} / ~

where OI? is the boundary of I? and J the closure of the boundary with the edge {0} x [0, 1]
removed. Further u ~ v if and only if there exists a continuous family us: (I?,01%,J) —
(M, L,xo) fort e [0,1] such that uy = u and u; = v.

This is a group under composition given by concatenation of paths in the z-direction.
By this we mean to fix y and then concatenate the two path u¥ v¥: (I,0I) — (M, )
defined by u¥(z) = u(z,y) and v¥(x) = v(z,y).

For convenience we will usually identify (72,01, .J) with (E,dE, 1) (its harder to de-
fine the group operation here).

Proposition F.0.34. Let M be diffeomorphic to S* x S? and L be an embedded T?, then
mo(M, L) = Hy(M, L) = Hy(M) & Hy(L)
Proof. Follows by the long exact sequence on homology /homotopy for the pair (M, L). O
In particular, if L is the Clifford torus in S? x S? then
o (M, L)
is abelian and is spanned by
[5% > {pt}], [{pt} x S°], [Dun x {pt}], [{pt} > Dur]

where D, denotes the closed upper hemisphere in S2.
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Appendix G

Maslov index for the
symplectomorphism group and the
Lagrangian Grassmanian

The Maslov index for the group of symplectomorphisms
Sp(4)

Proposition G.0.35. The unitary group U(n) is a mazimal compact subgroup of Sp(2n)
and the quotient Sp(2n)/U(n) is contractible.

Proof. This is Proposition 2.22 in [I3] on p.45. O

Proposition G.0.36. The fundamental group of U(n) is isomorphic to the integers. The
determinant map det: U(n) — S* induces an isomorphism of fundamental groups.

Proof. This is Proposition 2.23 in [I3] on p.46. O

It follows from the propositions above that the fundamental group of Sp(n) is isomor-
phic to Z. An explicit isomorphism is given by the Maslov index:

Theorem G.0.37. There exists a unique functor Maslov, called the Maslov index, which
assigns an integer Maslov(V) to every loop V: R/Z — Sp(4) of symplectic matrices and
satisfies the following axioms

e (homotopy) Two loops in Sp(4) are homotopic if and only if they have the same
Maslov index.

e (product) For any two loops V1, Vy: R/Z — Sp(4) we have
Maslov(V1Vs) = Maslov(Vy) + Maslov(Ws).

In particular, a constant loop ¥ (t) = Id has Maslov index 0.
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o (direct sum) Consider Sp(2) & Sp(2) C Sp(4) as a subgroup in the obvious way.
Then
Maslov(¥; @ Wy) = Maslov(Vy) + Maslov(¥s).

e (normalization) The loop ¥: R/Z — U(1) C Sp(2) defined by
\I/(t) — e27rit
has Maslov index 1.

Proof. This is Theorem 2.29 in [I3] on page 48. The proof can also be found there. O

The Maslov index for the Lagrangian Grassmanian

Consider (R*, Q) where Qg = dx A dy + du A dv for standard coordinates x, y, u, v on R%.
Then let £ be the set of linear Lagrangian subspaces of (R?%,{)). Then we have

Lemma G.0.38. 1. IfA € L and ¢ € Sp(4) then oA € L;

2. For any two Lagrangian subspaces A, N € L there exists a symplectic matriz ¢ €
U(n) such that A" = ¢pA;

3. There is a natural isomorphism £ = U(2)/O(2).
Proof. This is Lemma 2.31 in [I3] on page 51. There can also be found the proof. O

From the lemma follows that m; (£) = Z and an explicit homomorphism Maslov: m (L) —
7 is the Maslov index. Its properties are fixed in

Theorem G.0.39. There exists a unique functor Maslov, called the Maslov index, which
assigns an integer Maslov(A) to every loop A: R/Z — L of Lagrangian subspaces and
satisfies the following axioms

e (homotopy) Two loops in L are homotopic if and only if they have the same Maslov
index.

e (product) For any two loops A: R/Z — L and V: R/Z — Sp(4) we have
Maslov(VA) = Maslov(A) + 2Maslov(V).
In particular, a constant loop A(t) = Ay has Maslov indez 0.

o (direct sum) Let A: R/Z — L be a direct sum of Lagrangian subspaces in C = R2.
So A(t) = A1(t) ® Ay(t) with Ay: R/Z — G(2,1) with G(2,1) the Grassmanian of
I-dimensional subspaces in R? and were we have identified R* = R? x R%. Then

Maslov(A) = Maslov(Ay @ Ao) + Maslov(Ag & Asg)

where No: R/Z — G(2,1) denotes the constant loop at the real line.
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e (normalization) The loop A: R/Z — L defined by
A(t) =< (cosmt,sinnt,0,0),(0,0,1,0) >
has Maslov index 1.

Proof. This is Theorem 2.35 in [I3] on page 52. The proof can also be found there. O
The following will be used to calculate Maslov indices in the text:

Lemma G.0.40. If a loop of Lagrangian subspaces A: R/Z — L is given by A(t) =
U(t)A(0) for aloop of unitary matrices U: R)Z — U(2), then Maslov(A) = wind(det U?),
the winding number of S* — S1; t — det(U(t)?).

Proof. This follows from the proof of Theorem 2.35 in [I3]. O



156 APPENDIX G. MASLOV INDEX FOR THE SYMPLECTOMORPHISM GROUP AND THE LAGRA



Bibliography

1]

[10]

[11]

[12]

[13]

J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University
Press, 1974.

M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. math.
82, 307-347, 1985.

F. Lalonde and D. McDuft, The classification of ruled symplectic 4-manifolds,
Math. Res. Letters 3, 769-778, 1996.

S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10, 621-626,
1959.

A. Banyaga, Sur la structure du groupe des difféeomorphismes qui préservent une
forme symplectique, Comment. Math. Helv. 53, no. 2, 174-227, 1978.

D. Husemoller, Fibre Bundles, Springer, Graduate Texts in Mathematics, 3rd
edition, 1994.

M. W. Hirsch, Differential topology, Springer, Graduate Texts in Mathematics,
1997.

T. Brocker and K. Jahnich, Finfihrung in die Differentialtopologie, Springer,
Heidelberger Taschenbiicher, 1990.

V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1974.

R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer, Grad-
uate Texts in Mathematics, revised third printing, 1982.

R. W. Sharpe, Differential Geometry, Springer, Graduate Texts in Mathematics,
corrected second printing, 2000.

A. Ivrii, Lagrangian unknottedness of tori in certain symplectic 4-manifolds, PhD
thesis, Stanford, 2003.

D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Uni-
versity Press, 2nd edition, 2005.

157



158

[14]

[15]
[16]

[17]

[18]

[19]
[20]
[21]

[22]

23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

BIBLIOGRAPHY
L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms,
Birkhauser, 2001.
N. Ivanov, Mapping Class Groups, http://www.mth.msu.edu/~ivanov/m99.ps.

A. Kriegl, Lecture Notes “Differentialgeometrie”,
www.mat.univie.ac.at /~kriegl/Skripten /diffgeom.pdf.

S. Warschawski, Uber das Randverhalten der Ableitung der Abbildungsfunktion
bei konformen Abbildungen, Math.Z., 35, 321-456, 1932.

S. Kobayashi and K. Nomitzu, Foundations of Differential Geometry, Inter-
science, New York, 1969.

J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
R. Busam and E. Freitag, Funktionentheorie, Springer, Heidelberg, 1993.

J. Evans, Lagrangian spheres in Del Pezzo surfaces, Journal of Topology, Volume
3(1), 181-227, 2010.

R. Hind, Lagrangian spheres in S* x S? Geometric and Functional Analysis (2)
14, 303-318, 2004.

M.-L. Yau, Monodromy and isotopy of monotone Lagrangian tori, Math. Res.
Lett. Vol.16, Issue 3, 531-541, 2009.

M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compos.
Math. 145, 773-826, 2009.

P. Biran and O. Cornea, Rigidity and uniruling for Lagrangian submanifolds,
Geom.Topol. 13, 2009.

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory:
anomaly and obstruction. Part II. AMS/IP Studies in Advanced Mathematics
46.2. AMS; International Press, Somerville, MA, 2009.

P. Albers and U. Frauenfelder, A non-displaceable Lagrangian torus in T*S?,
Comm. Pure Appl. Math. 61, 1046-1051, 2008.

Y. Chekanov and F. Schlenk, Notes on monotone Lagrangian twist tori,
http://arxiv.org/abs/1003.5960v1.

Y. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomor-
phic curves, Duke Math. J. 95, 213-226, 1998.

Y .Eliashberg, A. Givental and H.Hofer, Introduction to Symplectic Field Theory,
http://arxiv.org/abs/math/0010059v1.



Danksagung

Bedanken mochte ich mich herzlichst bei meinem Betreuer Kai Cieliebak. Nicht nur hat
er sich immer die Zeit genommen, mit mir meine Ideen und Probleme zu diskutieren, auch
hat er zur rechten Zeit mit konstruktiver, niemals entmutigender Kritik die Niederschrift
dieser Arbeit erst moglich gemacht. Seit unserem ersten Treffen im Dezember 2005 habe
ich unsere personlichen Gesprache und Diskussionen sehr geschétzt. Vielen Dank dafiir!

Ein grofler Dank geht natiirlich an meine zukiinftige Frau Monika Sichler, die mich
in den vergangenen vier Jahren in jeder Hinsicht liebevoll unterstiitzt und mir vieles
abgenommen hat. Sie hat mir in dieser Zeit meine beiden wunderbaren Kinder, Antonia
und Magdalena, geschenkt, die ihrerseits dazu beitrugen, dass die mathematische Arbeit
auf einen verniinftigen Teil in meinem Leben beschréankt blieb.

Besonders bedanken will ich mich auch bei meinen Eltern, Klaus und Mariele Schwin-
genheuer, die mir zu allen Zeiten eine groffe Unterstiitzung waren und oft die Hohen und
Tiefen der Forschungsarbeit mitdurchleben (und durchleiden) mussten.

Auch meinen Gschwendtner Grofieltern, Georg und Maria Gabriel gebiihrt Dank fiir
ihre Liebe und Unterstiitzung.

Bei meinen Freunden in England, Jack Waldron und Jonny Evans, will ich mich fiir
die mathematisch und personlich bereichernden Gespriache bedanken.

Ein Dank soll hier auch an die Mitglieder, die jetztigen und die einstigen, der Arbeits-
gruppe Differentialgeometrie und Topologie gehen, die immer fiir Fragen offen waren. Im
Besonderen will ich mich hier bei Andreas Gerstenberger, Alexander Stadelmaier, Urs
Frauenfelder und Fabian Ziltener bedanken.

159



	Introduction
	Setup
	Framework
	Symplectic foliations, fibrations and the symplectic connection
	Foliations
	Symplectic fibrations and symplectic vector bundles
	The symplectic connection and its curvature

	Monotonicity of Lagrangian submanifolds
	The Maslov index
	Monotonicity

	Monotone Lagrangian tori lying nicely in symplectic fibrations
	Fibered tori and some properties
	Relative symplectic fibrations and their properties

	The main result

	The standardisation
	Conveniently fibered Lagrangian tori
	Standardisation of the symplectic fibration near a fiber
	Standardisation of the symplectic form
	Standardisation of the symplectic foliation near the fiber

	Standardisation of the symplectic fibration near the sections
	Topological Standardisation of the sections
	Standardisation of the symplectic form near the sections
	Standardisation of the symplectic foliation near the sections
	Trivialising the fibration

	Topological standardisation of the torus
	Summary

	Killing the monodromy
	Suitable coordinates on the base
	Monodromy is Hamiltonian
	A special contraction
	Construction of a suitable Hamiltonian function
	Inflation
	The inflation procedure
	Symplecticity
	Lagrangian monotonicity

	Killing the monodromy
	Killing the monodromy along circles of latitude
	Killing all the monodromy

	Summary

	Hamiltonian isotopy of fibered monotone Lagrangian tori
	Killing the monodromy by a homotopy of relative symplectic fibrations
	Hamiltonian isotopy to the Clifford torus

	A.Ivrii's result and its relation to the Main Theorem
	The Chekanov-Schlenk Torus
	The construction
	Properties

	A.Ivrii's result
	Relation to the Main Theorem and Outlook

	The standard form std and stereographic projection
	Proofs of results in chapter 2
	Proofs of results in chapter 3
	Proofs of results in chapter 4
	Homotopy groups of some diffeomorphism groups
	Homology of (M,L)
	Maslov index for the symplectomorphism group and the Lagrangian Grassmanian

