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Zusammenfassung

Die Klassifikation von Lagrange Untermannigfaltigkeiten in symplektischen Mannigfal-
tigkeiten bis auf Isotopie (Lagrange, Symplektische und Hamiltonsche) ist eine schwere
und interessante Frage. Bekanntes in diesem Gebiet beschränkt sich vornehmlich auf das
Problem der Lagrange Isotopie, da unter den genannten Typen der Isotopie dieses das
einfachste ist.
In der vorliegenden Arbeit beweisen wir die Klassifikation von monotonen Lagrange Tori
in (S2 × S2, ωstd ⊕ ωstd) bis auf Hamiltonsche Isotopie für eine besondere Klasse von
monotonen Lagrange Tori unter einer zusätzlichen Annahme.
Die Klasse von monotonen Lagrange Tori, die wir betrachten sind die sogenannten ge-
faserten monotonen Lagrange Tori. Ein Lagrange Torus L in (S2 × S2, ωstd ⊕ ωstd) heißt
gefasert, falls es eine Blätterung F von S2 × S2 durch symplektische 2-Sphären in der
Homologieklasse [pt × S2] und eine kompakte, symplektische Untermannigfaltigkeit Σ′

(Schnitt der Blätterung) in der Klasse [S2 × pt] mit den folgenden Eigenschaften gibt:

• Σ′ ist transversal zu den Blättern von F und Σ′ ist disjunkt zu L;

• F induziert eine Blätterung von L durch Kreise (die Blätter von F schneiden L in
Kreisen).

Die Motivation, diese Klasse von monotonen Lagrange Tori zu betrachten, kommt aus der
Doktorarbeit von A. Ivrii [12], in welcher er unter anderem beweist, dass jeder Lagrange
Torus in S2 × S2 gefasert ist.
Wir beweisen in der vorliegenden Arbeit den Satz 2.5.1, dass ein gefaserter monotoner
Lagrange Torus zu dem es noch einen zweiten symplektischen Schnitt Σ mit bestimmten
Eigenschaften gibt, Hamiltonsch isotop zum Standard Torus ist. Der Standard Torus ist
der monotone Lagrange Torus, der aus den Äquatoren in den beiden kartesischen Faktoren
gebildet wird. Es ist bekannt [28],[24],[25],[26],[27] und [23], dass es in (S2×S2, ωstd⊕ωstd)
exotische monotone Lagrange Tori gibt. Es folgt deshalb sofort, dass es den zweiten sym-
plektischen Schnitt wie in unserem Satz gefordert für diese Tori nicht geben kann.
Ausblickend in die Zukunft kann man deshalb hoffen, dass die Klassifikation von mono-
tonen Lagrange Tori in S2 × S2 in den Bereich des Möglichen gelangt, falls man die
Bedingungen versteht, unter denen der zweite symplektische Schnitt existiert.
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Abstract

The classification of Lagrangian submanifolds in symplectic manifolds up to isotopy (La-
grangian, symplectic and Hamiltonian) is a hard and interesting question. Known results
in this area concern mainly the problem of Lagrangian isotopy, since among the types of
isotopy mentioned above this is the easiest case.
In the following thesis, we prove the classification of monotone Lagrangian tori in (S2 ×
S2, ωstd⊕ωstd) up to Hamiltonian isotopy for a special class of monotone Lagrangian tori
under an additional assumption.
The class of monotone Lagrangian tori considered in this thesis are fibered monotone La-
grangian tori. A Lagrangian torus L in (S2×S2, ωstd⊕ωstd) is called fibered if there exists
a foliation F of S2 × S2 by symplectic 2-spheres in the homology class [pt × S2] and a
compact symplectic submanifold Σ′ in class [S2 × pt] with the following properties:

• Σ′ is transverse to the leaves of F and is disjoint from L;

• F induces a foliation of L by circles (the leaves of F intersect L in circles).

The motivation to consider this class of monotone Lagrangian tori is A. Ivrii’s PhD thesis
[12] in which he proves among other things that any Lagrangian torus in S2×S2 is fibered.
The theorem we prove in this thesis (Theorem 2.5.1) states that a fibered monotone La-
grangian torus for which there exists a second symplectic section Σ with certain properties,
is Hamiltonian isotopic to the standard torus Lstd.
Lstd is the monotone Lagrangian torus made up of the equators in both cartesian factors.
It is known [28],[24],[25],[26],[27] and [23] that there exist exotic monotone Lagrangian
tori in (S2 × S2, ωstd ⊕ ωstd). Consequently, the second symplectic section as described
above cannot exist for these tori.
As an outlook, one can hope that the classification of monontone Lagrangian tori in S2×S2

comes within reach if we understand the conditions under which the second symplectic
section exists.
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Chapter 1

Introduction

The classification of Lagrangian submanifolds in symplectic manifolds up to Lagrangian,
symplectic or Hamiltonian isotopy is an interesting problem. Mainly, the known results
concern Lagrangian spheres or tori in symplectic manifolds of dimension four. Results in
the area are R. Hinds classification up to Hamiltonian isotopy of Lagrangian 2-spheres
in S2 × S2 with the standard product symplectic form in 2004 [22] and very recently,
J. Evans paper [21] on the Lagrangian unknottedness of Lagrangian spheres in certain
Del-Pezzo surfaces.
Another result which is of importance for this thesis is A. Ivriis PhD thesis about the
Lagrangian unknottedness of Lagrangian tori in R4, S2×S2, CP2, T ∗T2 with the standard
symplectic forms in 2003 [12].
We address the question of Hamiltonian (un-)knottedness of a certain class of monotone
Lagrangian tori in S2 × S2.
A Lagrangian torus is called monotone if the symplectic area of any relative 2-cycle with
boundary on the Lagrangian torus is a fixed multiple of its Maslov index. The cartesian
product of the equators in each S2-factor in S2×S2 is called the standard Lagrangian torus
Lstd (or the Clifford torus). This torus is monotone for the symplectic form ωstd ⊕ ωstd.
It is known by results of Chekanov-Schlenk [28], Entov-Polterovich [24], Biran-Cornea
[25], Fukaya-Oh-Ohta-Ono [26], Albers-Frauenfelder [27] and Yau [23], that there exist
monotone Lagrangian tori in (S2 × S2, ωstd ⊕ ωstd) which are not Hamiltonian isotopic.
Two such are the Clifford torus and the Chekanov-Schlenk Torus LCS (one of the tori
constructed in [28]).
In this thesis, we consider L a monotone Lagrangian torus in (S2 × S2, ωstd ⊕ ωstd).
Ivrii’s result motivates the following definition. A monotone Lagrangian torus L in (S2 ×
S2, ωstd ⊕ ωstd) is called fibered if there exists a foliation F of S2 × S2 by symplectic 2-
spheres in the homology class [pt×S2] and a symplectic submanifold Σ′ in class [S2 × pt]
with the following properties:

• Σ′ is transverse to the leaves of F and is disjoint from L;

• F induces a foliation of L by circles (the leaves of F intersect L in circles).
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2 CHAPTER 1. INTRODUCTION

We will also say that L is fibered by F and Σ′ if we want to name the foliation and
the section explicitly in the definition.
Note that Σ′ singles out a disk in each leaf of F which intersects the torus L. These disks
together form a solid torus T with ∂T = L.
One part of Ivrii’s result now says that any monotone Lagrangian torus in S2 × S2 is
fibered.
We prove the following

Theorem (Main Theorem). Let L ⊂ (S2 × S2, ωstd ⊕ ωstd) be a monotone Lagrangian
torus which is fibered by F and Σ′.
Assume in addition, that there exists a symplectic submanifold Σ in homology class [S2×pt]
which is transverse to the leaves of F and which is disjoint from Σ′ and T . Then L is
Hamiltonian isotopic to the standard torus Lstd.

As an immediate consequence, for the torus LCS constructed by Y.Chekanov and
F.Schlenk, there cannot exist the additional section Σ. This instantly rises the question
whether the classification of monotone Lagrangian tori in (S2 × S2, ωstd ⊕ ωstd) up to
Hamiltonian isotopy comes within reach if we understand the rôle of the second section
Σ.
Now we turn towards outlining the proof of the Main Theorem. By a relative symplectic
fibration on S2 × S2, we mean a quintuple of the form

(F , ω, L,Σ,Σ′),

where L is a monotone Lagrangian torus for the symplectic form ω and L is fibered by F
and Σ′. Further Σ is an additional symplectic section with properties as required for the
Main Theorem.
Now note that the triple (F ,Σ,Σ′) is diffeomorphic to (Fstd, S

2 × {N} , S2 × {S}) where
Fstd denotes the standard foliation on S2 × S2 given by the fibers of the projection
p1 : S2 × S2 → S2; (x1, x2) 7→ x1. On the other hand ω is always diffeomorphic to
ωstd⊕ωstd (see [3]). So each of ω and F on its own is not interesting, but the pair of them
carries interesting structure. Important in the following is the symplectic curvature of the
symplectic connection defined by (F , ω,Σ′). The symplectic connection on a symplectic
fiber bundle is given by the symplectic orthogonal complements to the tangent spaces to
the fibers. A priori, the symplectic curvature is a two-form on the base with values in
the vertical symplectic vector fields. But as the curvature identity tells us, the curvature
vector field is Hamiltonian, so that we can regard the symplectic curvature as a two form
on the base with values in the functions (the Hamiltonians) on the fiber.
The main step in the proof of the main theorem is to find a deformation of a given relative
symplectic fibration to one with vanishing symplectic curvature. If a relative symplectic
fibration has vanishing symplectic curvature, then using symplectic parallel transport, we
can write down explicitly a symplectomorphism which maps the foliation to the standard
foliation, the Lagrangian torus to the standard torus, and which is the identity on homol-
ogy. By a theorem of Gromov, there exists a symplectic isotopy from the identity to φ.
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Greenwich
Σ

Σ′

L

Fiber Base

Figure 1.1: Where the symplectic curvature vanishes after the first step.

Since S2 × S2 is simply-connected, this symplectic isotopy is Hamiltonian.
Thus, most of the work will go into showing the existence of a deformation of relative
symplectic fibrations to one with vanishing symplectic curvature. In the first step, which
makes up Chapter 2, we kill the symplectic curvature near the two sections Σ,Σ′ and near
a leaf of F intersecting L.
After applying the diffeomorphism described before, we can therefore assume that (F ,Σ,Σ′)
is the standard fibration p1 and Σ,Σ′ are the constant sections at the north and southpole.
Moreover we can assume that the symplectic curvature vanishes near the two sections and
near the fibers over the line of longitude through Greenwich in the base.

Let (λ, µ) be spherical polar coordinates on S2 where λ denotes the latitude and µ
denotes the longitude.
In step 2 (first part of chapter 3) we kill the monodromy along all circles of latitude Cλ.
Observe that after Step 1 the monodromy maps φλ along Cλ give a loop inHam(A, ∂A, ωstd),
the group of Hamiltonian symplectomorphisms of the annulus which are fixed in some
neighbourhood of the boundary. Since the fundamental group of Ham(A, ∂A, ωstd) van-
ishes, we can contract the loop ψλ = (φλ)−1 and obtain a family of Hamiltonians Hλ

µ

which generate the contraction.
Now consider the closed two form

Ω = ω + d(Hλ
µdµ).

This form gives a symplectic connection whose monodromies along Cλ are the identity.

However Ω need not be symplectic if
∂Hλ

µ

∂λ
is large. This can be remedied by the inflation

procedure due to McDuff and Lalonde [3]. To keep the Lagrangian torus monotone in the
inflation, we have to make some modifications in the procedure. Consider a leaf F ∼= S2

intersecting L in the equator. Monotonicity of L forces the upper hemisphere Duh and
the lower hemisphere Dlh in F to have symplectic area 1

2
. Then if we alter the symplectic

form in the inflation procedure and we want to keep L fixed and monotone, we have
to make sure that both Duh and Dlh keep their symplectic area. This “symmetrical“
inflation is the reason why we have to use two symplectic sections, whereas usually only
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one submanifold suffices. After this step, we can assume that the monodromy along the
circles of latitude is the identity.
In step 3 (the second part of chapter 3) we write down a explicit deformation of the
symplectic form to obtain vanishing symplectic curvature. This finishes the outline of the
proof.



Chapter 2

Setup

2.1 Framework

In the following M will be a compact smooth 4-manifold which is diffeomorphic to S2×S2.
Further by L ∼= T 2 we mean an embedded two torus in M .
The second homology H2(M ; R) ∼= R2. Fix a diffeomorphism θ : S2 × S2 →M . Then we
define A := [θ(S2 ×{pt})] and B := [θ({pt}×S2)]. Since θ∗ is an isomorphism A,B span
H2(M). Let

pi : S
2 × S2 → S2

(x1, x2) 7→ xi.

Definition 2.1.1. A symplectic form ω on S2 × S2 which is of the form

ω = p∗1ω1 + p∗2ω2

for symplectic forms ω1, ω2 ∈ Ω2(S2) is called split.

In Appendix A the symplectic form ωstd on S2 with area 1 is defined.

Definition 2.1.2. The symplectic form

ω0 = p∗1ωstd + p∗2ωstd

on S2 × S2 is called the standard symplectic form on S2 × S2.

Definition 2.1.3. Consider S2 × S2 ⊂ R3 × R3 in the standard way with standard coor-
dinates ((x, y, z), (u, v, w)) on R3 × R3. Then let

Lstd :=
{
((x, y, z), (u, v, w)) ∈ S2 × S2|z = 0 ;w = 0

}

be the cartesian product of the two equators in S2. We will call Lstd the Clifford torus in
S2 × S2.

5



6 CHAPTER 2. SETUP

Remark

We will call θ∗ω0 the standard symplectic form on M and for convenience we will also
denote it by ω0.
In the sequel we will consider M with various symplectic forms ω. The standard form ω0

will often be used as a “reference” symplectic form.
We will also call θ(Lstd) the Clifford torus in M and denote it by Lstd.
Next we will call pi ◦ θ−1 : M → S2 the standard projections on M and denote them by
pi.

2.2 Symplectic foliations, fibrations and the symplec-

tic connection

2.2.1 Foliations

Let X be a smooth manifold of dimension n.

Definition 2.2.1. A foliation F of dimension k on X is given by an open covering
{Uα}α∈A and charts φα : Vα → Uα with Vα ⊂ Rn such that for all α, β the transition
function

φαβ : φ−1
α (Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

x 7→ φβ ◦ φα(x)
maps (subsets of) the fibers of the standard fibration p : Rn → Rn−k; (x1, ..., xn) 7→
(x1, ..., xn−k) to (subsets of) fibers of p. Then (Uα, φα)α∈A as above is called a foliating
atlas of X for F .

Remark

Let X be a smooth manifold and φ : Rn → U ⊂ X a chart, then φ({x1, .., xn−k} × Rk)
defines a family of k-dimensional submanifolds on X. A foliation on X is then to say that
these families of submanifolds defined by different charts match up.

Example

Consider the 2-torus T 2 as R2/Z2. Then a line of irrational slope through the origin
defines a foliation of T 2.
Another example are the fibers of any smooth surjective submersion π : X → B. Folia-
tions of this type are called simple foliations.

Definition 2.2.2. Let F be a foliation of dimension k on X. Then let x ∈ X and
consider a chart (Uα, φα) around x of a foliating atlas for F . Then this chart defines a
submanifold Sx of dimension k through x. Now we define the leaf Fx of F through the
point x as the set of points on X which can be connected to x by paths lying entirely in
Sx or its continuations by other foliating charts.
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Remark

If we speak of a foliation of X by 2-spheres we mean a foliation F of X whose leaves are
all diffeomorphic to the 2-sphere.

We want to see how we can alter a foliation.

Definition 2.2.3. A smooth family of foliations {Ft}t∈R
of dimension k on the manifold

X is defined to be a foliation F of dimension k + 1 on X ×R such that F restricts to Ft

on X × {t}.
Remark

Let φ be a diffeomorphism of X and Ft a smooth family of foliations on X then φ(Ft)
is also a smooth family of foliations on X. Consider the diffeomorphism Φ = φ × id of
X × R then Φ(F) is the desired foliation of X × R.

Theorem 2.2.4. Let F0 be a foliation of dimension k of the n-dimensional manifold X.
Assume that there exists an embedding G : U × F → X with U open in Rn−k such that G
maps {x} × F diffeomorphically onto a leaf of F for all x ∈ U . Let V ⊂ U be an open
set in Rn−k with V̄ ⊂ U and assume that

Gs : U × F → X

for s ∈ R is a smooth family of embeddings such that Gs|(U\V̄ )×F = G|(U\V̄ )×F then the
embeddings Gs define a smooth family of foliations Fs on X.

Proof. A detailed proof will be given in the appendix. Note first that all the embeddings
Gs are local diffeomorphisms for dimensional reasons and thus G(U × F ) is an open
set of X. Since the embeddings Gs agree on (U \ V̄ ) × F it follows that the image
Gs(U × F ) = G(U × F ) is fixed for all s. We write Z = G(V̄ × F ) and Y = G(U × F ).
Then Z is closed and Y is open in X. First we want to show that using the embeddings
Gs we can define foliating charts for all s, so that indeed we get a foliation Fs on X for
every s.
If (Uα, φα)α∈A is a foliating atlas for F0 then we can define a new atlas by restricting the
old atlas to (Ũα = Uα ∩ (X \Z), φ̃α = φα|Ũα

). And choosing as new foliating charts on Y ,

(U ×W ′
β , Gs ◦ (id× ψβ))

where ψβ : W ′
β → Wβ ⊂ F are charts of F and U × W ′

β ⊂ Rn−k × Rk is open. By
construction, the restricted charts coming from the old foliation match up with the new
ones on the overlaps. Also clearly the new foliating charts satisfy the foliation condition.
Thus indeed this defines a foliation Fs on X.
We are left to show that the foliations Fs form a smooth family. Therefore we only have
to choose a smooth way to group leaves of the foliations Fs together to form a leaf of F .
Write Ḡ : U × F × R → X × R; (x, s) 7→ (Gs(x), s). Then Ḡ is an embedding. Thus we
define the foliation F on X × R by specifying its leaves through any point:

Fx,t =

{
(F0)x × R for x 6∈ Z

Ḡ({x} × F × R) for x ∈ Y
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x

π

Fx

leaves of F

Σ′

π(x)

Figure 2.1: The map π

Then on Y − Z the two definitions agree due to the fact that Gs is fixed to G there.
Clearly F restricts to Fs on X × {s}. This proves the theorem.

The following theorem will be used frequently in the sequel.

Theorem 2.2.5. Let F be a foliation of M by symplectic 2-spheres. Further let Σ be a
submanifold of M which is transverse to Fq for all q ∈ M . Then Σ is diffeomorphic to
S2, Σ intersects every leaf of F in a single point and the map

π : M → Σ

q ∈ Fq 7→ Fq ∩ Σ

is a surjective submersion. Moreover there exist diffeomorphisms φ : M → S2 × S2 and
u : Σ → S2 such that the following diagram commutes:

M
φ−−−→ S2 × S2

yπ
yp1

Σ
u−−−→ S2

(2.1)

Proof. A detailed proof is given in Appendix B. Let B = M/ ∼ be the set of equivalence
classes of the equivalence relation ∼ on the set of points of M which is defined by

p ∼ q iff q ∈ Fp

i.e. if both points belong to the same leaf of F . For a foliation F of a connected manifold
M whose leaves are all simply connected and compact, it follows that p : M → B; q 7→ [q]
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given by the projection to the leaf space is a smooth fibration. Consequently, the leaf-
space B is a closed orientable 2-manifold. Further it follows that the Euler-Characteristics
of the spaces involved satisfy

χ(M) = χ(S2)χ(B).

Thus χ(B) = 2 and so B is diffeomorphic to S2. Let u : B → S2 be a diffeomorphism then
u ◦ p : M → S2 is a S2-bundle over S2. But there are only two such bundles, the trivial
one and a non-trivial one. Note that the intersection forms of the total spaces of the two
S2-bundles differ. But M is diffeomorphic to S2 × S2 which is the trivial S2-bundle over
S2. Hence it has the intersection form of the trivial S2-bundle and consequently u ◦ p is
the trivial S2-bundle over S2. Hence there exists a trivialisation:

M
τ−−−→ S2 × S2

yp
yp1

B u−−−→ S2

Now push Σ forward under τ . Then τ(Σ) is transverse to {q} × S2 for all q ∈ S2. This
implies however that p1|τ(Σ) : τ(Σ) → S2 is a covering and so by simply-connectedness of
S2, p1|τ(Σ) is a diffeomorphism. Hence τ(Σ) is the image of a section σ of p1. But then
σ′ = τ−1 ◦ σ ◦ u defines a section of p with image Σ and π = σ′ ◦ p. From this it is clear
that π is a smooth surjective submersion and that Σ is diffeomorphic to S2. The existence
of the trivialisation can be deduced as above for the space of leaves B. This proves the
theorem.

Definition 2.2.6. Let F be a smooth foliation of M . Then F is called a symplectic
foliation if every leaf of F is symplectic.

Remark

We will exclusively study symplectic foliations F on M whose leaves are symplectic 2-
spheres and for which there exists a section Σ as in 2.2.5. Then by the theorem, the
symplectic foliations in our setup can always be thought of as being symplectic fibrations.
The foliation obtained by the fibers of the standard projection p1 is called the standard
foliation and is denoted by Fstd.

2.2.2 Symplectic fibrations and symplectic vector bundles

Definition 2.2.7. A fibration p : M → B is called a symplectic fibration if (p−1(b), ω|p−1(b))
is a symplectic submanifold of (M,ω) for all b ∈ B.

Definition 2.2.8. Let p : M → B be a symplectic fibration with fiber diffeomorphic to S2,
then p is called a symplectic ruling of M .

In particular if π : M → B is a symplectic ruling, then the proof of 2.2.5 shows that
B is diffeomorphic to S2 and that π is the trivial S2-bundle over S2.

Symplectic vector bundles
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Definition 2.2.9. Let π : E → M be a smooth vector bundle. Then (π,E,M, ω) is a
symplectic vector bundle if ω is a non-degenerate 2-form on E, i.e. a smooth section of
the bundle

E∗ ∧E∗ → M

which restricts to a non-degenerate form on every fiber.

Remark

If (X,ω) is a symplectic manifold and π : TX → X; v ∈ TxX → x then (π, TX,X, ω) is
a symplectic vector bundle.

2.2.3 The symplectic connection and its curvature

The symplectic connection and some properties

Definition 2.2.10. Let (X,ω) be a symplectic manifold and p : X → B be a symplectic
fibration. Then the symplectic form defines a connection on p via a splitting

TX = H ⊕ ker dp

given by the symplectic orthogonal complements to the tangent spaces of the fibers of p

Hx = (ker dpx)
⊥ω .

This is called the symplectic connection induced by (p, ω) on X.

Then we have

Proposition 2.2.11. Let (X,ω) be a symplectic manifold and p : X → B be a symplec-
tic fibration. Then the parallel transport Pγ : p−1(γ(0)) → p−1(γ(1)) for the symplectic
connection induced by (p, ω) on X along the path γ ⊂ B satisfies

P ∗
γωγ(1) = ωγ(0)

where ωx denotes the symplectic form ω|p−1(x).

Proof. Let Z be the vector field on X defined by the horizontal lift of a vector field Y
on B. Let φt denote the flow of Z and ψt denote the flow of Y . Obviously φt preserves
the fibration since a flowline of Z is the horizontal lift of a flow-line of Y . Then δt :=
φt|p−1(x) : p

−1(x) → p−1(ψt(x)) is a diffeomorphism between the fibers. Consider the
restriction of φ∗

tω to the fiber p−1(x) over x. This is just the pull-back δ∗tωψt(x) of the
symplectic form ωψt(x) under δt. If δ∗tωψt(x) is independent of t then it follows immediately
that δ∗t ωψt(x) = ωx showing the statement of the proposition that symplectic parallel
transport is through fiberwise symplectomorphisms.
Thus consider

d

dt
φ∗
tω = LZω = dιZω + ιZdω = dιZω.
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Now let ιx : p−1(x) →֒ X be the inclusion of the fiber p−1(x) into X. Then

ι∗x
d

dt
φ∗
tω =

d

dt
δ∗tωψt(x).

Thus to show that δ∗t ωψt(x) is independent of t it is enough to show that the restriction of
d
dt
φ∗
tω to the fiber p−1(x) vanishes.

For any 1-form α we have the following identity:

dα(v, w) = Lvα(w) − Lwα(v) − α([v, w]).

Thus
dιZω(v, w) = LvιZω(w) − LwιZω(v) − ιZω([v, w])

and since we only have to consider vertical vectors v, w, by the definition of the symplectic
connection, it follows that dιZω vanishes as desired. This shows the proposition.

Proposition 2.2.12 (Symplectic trivialisation by symplectic parallel transport). Let
(X,ω) be a symplectic manifold and let p : X → C be a symplectic fibration. Let Fz =
p−1(z), then there exists a diffeomorphism φ : C × F0 → X

C × F0
φ−−−→ Xyp1

yp

C
id−−−→ C

such that φ∗ω restricted to {z} × F0 equals ω(0) for all z ∈ C. And where ω(z) denotes
the restriction of ω to Fz. Moreover φ is the identity on F0.

Proof. By Proposition 2.2.11 the symplectic paralleltransport satisfies

P ∗
γω(γ(1)) = ω(γ(0))

for any path γ in the base. Thus we are going to prove this proposition by symplectic
parallel transport over the specific set of paths γx,y given by first going along the x-axis
from the origin to (x, 0) and then going to (x, y) along the parallel to the y-axis through
(x, 0).
Let

Z =
∂̃

∂x

denote the vector field on X defined by the horizontal lift of the vector field ∂
∂x

on the
base. Similarly Y denotes the horizontal lift of ∂

∂y
. Let φZs , φ

Y
s denote the flows of Z, Y .

Now we define
φ : C × F0 → X; (t+ is, w) 7→ φYs (φZt (w)).

Then the pullback form φ∗ω restricts to ω(0) on {z} × F0. Moreover it is clear that φ is
the identity on F0. This proves the proposition.
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ǫ−ǫ 2ǫ−2ǫ

1

Figure 2.2: The bump function ρ

Remark

In the case when p : C × F → C; (z, w) 7→ z and only the symplectic form varies
from fiber to fiber, then in the construction above we can write φZs (x + iy, w) = (x +
s + iy, PZ

s (x, y)(w)) where PZ
s (x, y) : F → F is a diffeomorphism of F which depends

smoothly on s, x, y. Note that PZ
0 (x, y) = id for all x, y. Similarly we define P Y

s (x, y).
Note that

φYs ◦ φZt (0, w) = (t+ is, P Y
s (t, 0) ◦ PZ

t (0, 0)(w)).

We now consider a cut-off function ρ (see figure 2.2).

and define

τ : C × F → C × F ; (t+ is, w) 7→ (t+ is, P Y
ρ(s2+t2)s(t, 0) ◦ PZ

ρ(s2+t2)t(0, 0)(w)).

Then by construction τ ∗ω restricts to ω(0) on the fibers in a neighbourhood of F and τ
is the identity outside some bigger neighbourhood.

The symplectic curvature and some properties

Definition 2.2.13. Let (X,ω) be a symplectic manifold and p : X → B a symplectic
fibration then we define the vertical tangent-bundle associated to (X, p) to be the subbundle
V TX := ker dp of TX.

Let Γ(p : E → X) denote the vector space of sections of the vector bundle p : E → X.
Γ(X) is shorthand for the vector fields on X.

Definition 2.2.14. The curvature of a connection H (distribution of horizontal sub-
spaces) on π : X → B is defined to be a map

ΩH : Γ(B) × Γ(B) → Γ(π̃ : V TX → X)

ΩH(Y, Z) = [Ỹ , Z̃]vert

for any two vector fields Y, Z in Γ(B) where .̃ denotes the horizontal lift and .vert denotes
the projection to the vertical subbundle V TX of TX along H.
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Remark

By the Frobenius theorem it is clear that the curvature as defined above measures the
non-integrability of the horizontal distribution.

Note that ΩH(v1, v2) is linear over functions: write f̃ = π∗f

ΩH(fv1, gv2) = [f̃ ṽ1, g̃ṽ2]
vert = (f̃ ṽ1(g̃)ṽ2 − g̃ṽ2(f̃)ṽ1 + f̃ g̃[ṽ1, ṽ2])

vert

but the first two terms vanish because the vector fields are horizontal, thus

ΩH(fv1, gv2) = π∗fπ∗g[ṽ1, ṽ2]
vert = fgΩH(v1, v2)

so the value of ΩH(v1, v2) at b ∈ B depends only on v1(b), v2(b) in the base not on a
neighbourhood of b. Moreover it is skew symmetric and bilinear, so ΩH is a 2-form on
the base with values in the vertical vector fields on the fibers.
Remark

Since we only consider 2-dimensional horizontal distributions it is clearly enough to con-
sider two linearly independent vectors in the base to determine the integrability of the
horizontal distribution at some point.

Proposition 2.2.15 (The curvature identity). Let (X,ω) be a symplectic manifold and
π : X → B be a symplectic fibration then the following holds:

dιṽ2ιṽ1ω = ι[ṽ1,ṽ2]ω

when restricted to V TX for all vectors v1, v2 tangent to the base.

Proof of the curvature identity. For any 2-form α and vector fields Y0, Y1, Y2 we have the
following identity:

dα(Y0, Y1, Y2) = LY0(α(Y1, Y2)) − LY1(α(Y0, Y2)) + LY2(α(Y0, Y1))

−α([Y0, Y1], Y2) + α([Y0, Y2], Y1) − α([Y1, Y2], Y0)

hence for α = ω, Y0 = ṽ1, Y1 = ṽ2 and Y2 = v ∈ V TX this gives:

dω(ṽ1, ṽ2, v) = Lṽ1ω(ṽ2, v)−Lṽ2ω(ṽ1, v)+Lvω(ṽ1, ṽ2)−ω([ṽ1, ṽ2], v)+ω([ṽ1, v], ṽ2)−ω([ṽ2, v], ṽ1)

But [ṽ, w] is vertical for any vertical w. To see this note that the flow φ̃t of ṽ is the
horizontal lift of the flow φt of v on the base. Hence φ̃t restricted to the fiber π−1(x)
equals the parallel transport map Pt : π

−1(x) → π−1(φt(x)) of the symplectic connection
for the path {φst(x)}s∈[0,1] in the base. Therefore if ψs denotes the flow of w then for fixed
t,

φ̃t ◦ ψs ◦ (φ̃t)
−1(z) = Pt ◦ ψs ◦ P−1

t (z)

remains in the fiber π(z) for all s. Consequently the vector field (φ̃t)∗w is vertical for all
t. This shows that the Lie-bracket [ṽ, w] is also vertical (cf. Remark 6.26 in [13] and the
discussion before). Then the above reduces to

dω(ṽ1, ṽ2, v) = Lv(ω(ṽ1, ṽ2)) − ω([ṽ1, ṽ2], v)
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for all vertical v. Thus

dιṽ2ιṽ1ω − ιṽ2ιṽ1dω = ι[ṽ1,ṽ2]ω on V TX.

But ω is closed, hence it reduces to the required form.

Thus given any two vector fields v1, v2 on the base, the curvature vector field

Ω(v1, v2) ∈ Γ(V TX)

is Hamiltonian since
ιΩ(v1,v2)ω = d(ω(ṽ1, ṽ2)).

Hence the Hamiltonian H := ω(ṽ1, ṽ2). The vector field determines the Hamiltonian up
to a constant. Fixing this constant by requiring that

∫
p−1(x)

Hωstd = 0, we can thus view

the symplectic curvature as a two form on the base with values in the functions on the
fibers, i.e.

Ω(v1, v2) = ω(ṽ1, ṽ2) − cω

where cω is the fiberwise constant normalising the Hamiltonian as required above. Indeed

if ω( ∂̃
∂x
, ∂̃
∂y

) is constantly equal to c, then cω = c and the curvature vanishes.

Remark

Let (X,ω) be symplectic and p : X → B be a symplectic fibration. Let Ω denote the
curvature of the connection induced by (p, ω). Vanishing curvature implies that the Lie-
bracket for any two horizontally lifted vector fields v, w has vanishing vertical part, thus
it is entirely horizontal. But then the Frobenius theorem implies that the horizontal
distribution is integrable, since it is spanned by such vector fields. Thus there exist
integral submanifolds whose tangent distribution equals the horizontal distribution.
Observe that if the base B is simply connected, then vanishing curvature implies that the
monodromy map around any closed curve in the base is the identity (if B is not simply
connected, a integral submanifold could be a cover of B in which case the monodromy
need not be the identity). In particular, parallel transport is independent of the path and
depends only on endpoints. In this case we say that (p, ω) has trivial monodromy.
Example

Consider (S2×S2, ω) with ω split and the standard projection p1. Since the submanifolds
S2×pt are horizontal, they are integral submanifolds for the symplectic connection induced
by (p1, ω) on S2 × S2 and so by the Frobenius theorem the symplectic connection has
vanishing symplectic curvature. In particular, symplectic parallel transport is the identity
for all paths in the base.

Definition 2.2.16. Let φ : X → Y and u : BX → BY be diffeomorphisms such that

X
φ−−−→ YypX

ypY

BX
u−−−→ BY
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with (Y, ω) symplectic and pY a symplectic fibration. Then the pullback symplectic con-
nection φ∗(pY , ω) on pY is defined to be the symplectic connection induced by (pX , φ

∗ω)
on X.

Proposition 2.2.17. Let (Y, ω) be symplectic and pY : Y → BY a symplectic fibration
such that the symplectic connection induced by (pY , ω) has vanishing symplectic curvature.
Let φ : X → Y and u : BX → BY be diffeomorphisms such that

X
φ−−−→ YypX

ypY

BX
u−−−→ BY

then the pull-back symplectic connection has also vanishing symplectic curvature. More-
over φ maps the integral submanifolds for φ∗(pY , ω) to the integral submanifolds for
(pY , ω).

Proof. From above we know that vanishing symplectic curvature implies integrability of
the horizontal distribution. Thus let S be an integral submanifold for the horizontal
distribution. Now consider S ′ = φ−1S, then dφxw ∈ Tφ(x)S if w ∈ TxS

′. Thus

ωφ(x)(dφxw, v) = 0

for all v ∈ Vφ(x)TY by definition of the symplectic connection induced by (pY , ω). Now φ
maps the fibers of pX diffemorphically onto the fibers of pY , thus v = dφxv̄ for v̄ ∈ VxTX
and so

0 = ωφ(x)(dφxw, dφxv̄) = (φ∗ω)x(w, v̄)

for all v̄ ∈ VxX. Thus indeed TxS
′ is horizontal for the pull-back symplectic connec-

tion and S ′ is an integral submanifold. Again by the Frobenius theorem, integrability
of the horizontal distribution implies vanishing symplectic curvature. This proves the
proposition.

Proposition 2.2.18. Let (X,ω) be a symplectic four manifold and let p : X → C be a
symplectic fibration. Assume that the symplectic curvature of the symplectic connection
induced by (p, ω) vanishes, then there exists a diffeomorphism φ : C × F0 → X such that

C × F0
φ−−−→ Xyp1

yp

C
id−−−→ C

and such that φ∗ω is split.

Proof. Consider the diffeomorphism φ constructed in proposition 2.2.12 by symplectic
parallel transport. If we fix a point w ∈ F0 then φ(γx,y × {w}) is the horizontal lift of
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γx,y ⊂ C starting at w. Since (p, ω) has vanishing symplectic curvature, this horizontal
lift is contained in the integral submanifold S through the point w. This is true for all
x, y in C. Hence, since φ is a diffeomorphism φ(C × {w}) = S. But we have seen before
that φ maps the integral submanifolds for the pull-back symplectic connection to those
of the original connection. Consequently C × {w} are the integral submanifolds for the
symplectic connection induced by (p1, φ

∗ω) on C × F0. Then we can write

φ∗ω = ω(0) + αz ∧ dx+ βz ∧ dy + fdy ∧ dx

where αz, βz are 1-forms on {z} × F0 which are allowed to vary with the foot-point
z = (x, y) in C. By construction, the vertical part of φ∗ω is fixed to ω(0). But now note
that the horizontal lifts of ∂

∂x
and ∂

∂y
at (z, w) are ∂

∂x
, ∂
∂y

itself since C×{w} is horizontal.
Hence

φ∗ω(
∂

∂x
, v) = 0

for all vertical tangent vectors v ∈ Tz,w {z} × F0. Thus

−α(v) = 0 ∀v

and similarly for β. α = β = 0 and hence φ∗ω = ω(0) + fdx ∧ dy. Moreover f needs to
be constant in the vertical direction since otherwise φ∗ω would not be closed.
Thus we can write

φ∗ω = ω(0) + p∗1gdx ∧ dy
for a function g : C → R. This proves the proposition.

Remark

As before, if p = p1 : C × F → C, then by introducing a suitable cut-off function, the
assertion in proposition 2.2.18 can also be realised in a neighbourhood of the origin and
with φ being fixed outside some bigger neighbourhood.

2.3 Monotonicity of Lagrangian submanifolds

Recall that M is diffeomorphic to S2 × S2 and ω is a symplectic form on M which is
cohomologous to ω0.

Definition 2.3.1. A submanifold L of dimension 2 in (M,ω) is called Lagrangian if
ω|L ≡ 0.

2.3.1 The Maslov index

Now we will define the maslov index

µ : π2(M,L) → Z



2.3. MONOTONICITY OF LAGRANGIAN SUBMANIFOLDS 17

for a Lagrangian submanifold L in the symplectic manifold (M,ω). We will rely on the
Maslov index Maslov : π1(L) → Z defined in Appendix G.
First we consider a continuous map u : E → M where E denotes the closed unit disk in
C such that u(∂E) ⊂ L. Since the tangent bundle TM |u(E) is a trivial symplectic vector
bundle, there exists a bundle map

E × R4 τ−−−→ TM |u(E)yp1
yπ

E
u−−−→ u(E)

such that τ ∗xωu(x) = Ω0 = dx ∧ dy + du ∧ dv where τx : {x} × R4 → Tu(x)M is the
isomorphism given by restricting τ to the fiber over x ∈ E. Then

Lθ := τ−1
eiθ (Tu(eiθ)L)

defines a loop of Lagrangian subspaces in (R4,Ω0). The map Maslov from Appendix G
assigns an integer to this loop, so we define

µ(u) = Maslov(Lθ).

First we have to check that this is well-defined. The choice we made was in the
symplectic trivialisation τ . But any two such τ, τ ′ differ by a map φ : E → Sp(4) into the
group of symplectic matrices of (R4,Ω0). More precisely let

φ̃ : E × R4 → E × R4

(z, v) 7→ φ̃(z, v) = φ(z)(v)

then
τ ′ = τ ◦ φ̃.

Now Φ(θ) = φ(eiθ)−1 is a contractible loop of symplectomorphism since it extends to the
disk. The loop of Lagrangians with respect to the trivialisation τ ◦φ instead of τ is given
by

L′
θ = φ(eiθ)−1(Lθ) = Φ(θ)Lθ.

Then by Appendix G

Maslov(L′
θ) = Maslov(Lθ) + 2Maslov(Φ) = Maslov(Lθ)

and the Maslov index of u is well-defined.
Further if ut : E → M with ut(∂E) ⊂ L is a continuous family then the maslov index
µ(ut) depends continuously on t. Since µ is integer-valued µ(ut) is constant. This implies
the homotopy invariance of µ.

If we write the group operation in π2(M,L) as +, then any map u : E → M with
u(∂E) ⊂ L in the relative homology class [u] = [a]+ [b] is homotopic to the concatenation
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(see App. F) of a and b so µ([a] + [b]) = Maslov(La ∗Lb) = Maslov(La) +Maslov(Lb) =
µ(a) + µ(b) where La, Lb are the loops of Lagrangians defined by the maps a, b : E → M
with boundary on L.

Definition 2.3.2. Let L be a Lagrangian submanifold in (M,ω). Then the Maslov index
µ : π2(M,L) → Z is the homomorphism which assigns to a relative cycle the Maslov index
of the corresponding loop of Lagrangians.

2.3.2 Monotonicity

Definition 2.3.3. Let L be a Lagrangian submanifold in (M,ω), then L is called mono-
tone with monotonicity constant λ if there exists a constant λ ∈ R+ such that

µ([u]) = λ

∫

u(E)

ω

for all relative cycles [u] ∈ π2(M,L).

Remark We have to show first that this definition makes sense, i.e. that the sym-
plectic area of a relative cycle is well-defined. This is true since if U : E × I → M with
ut(E) = U(∂E × {t}) ⊂ L for all t is smooth, then

0 =

∫

U(E×I)
dω =

∫

∂U(E×I)
ω =

∫

u1(E)

ω −
∫

u0(E)

ω −
∫

U(∂E×I)
ω.

Now U(∂E× I) ⊂ L thus the last term vanishes. Since by smooth approximations we can
always assume smoothness, this shows that symplectic area of relative cycles is indeed
well-defined.
By the appendix π2(M,L) ∼= H2(M,L) so that we can also view µ as a linear map from
H2(M,L) to Z. Thus to check monotonicity, it suffices to check the evaluation of ω on a
set generating H2(M,L) with known Maslov indices.
Also if ω is a symplectic form such that L is monotone Lagrangian, then L is monotone
Lagrangian for ω′ if L is ω′ Lagrangian and

∫
D
ω =

∫
D
ω′ for all relative cycles D ∈

H2(M,L). This amounts to say that ω, ω′ are relative cohomologous.
In order to show that the Clifford torus Lstd in (S2×S2, ω0) is monotone we need to show
that the Maslov index of the relative cycles given by the section S2 × {z0} and the fiber
{z0} × S2 is 4. Therefore we prove

Theorem 2.3.4. Let f : (S2, z0) → (M,x0) be an embedding with f(z0) = x0 ∈ L with
trivial normal bundle, then µ(u) = 4 for u = f ◦ φ : E → M . In the definition of u, via
stereographic projection from z0, we have identified E ⊂ C with the western hemisphere in
S2. Further φ : S2 → S2 collapses the eastern hemisphere to z0 and has mapping degree
1.

Proof. The proof is given in Appendix B.
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Remark

The western and eastern hemispheres in S2 ⊂ R3 are defined by x ⋚ 0 respectively.

Proposition 2.3.5. The Clifford torus Lstd in (S2 × S2, ω0) is monotone Lagrangian.

Proof. It is clear that Lstd is Lagrangian for ω0. By Appendix F, we know that H2(S
2 ×

S2, Lstd) is generated by

[S2 × {pt}], [{pt} × S2], [Dlh × {pt}], [{pt} ×Dlh]

where Dlh denotes the closed lower hemisphere in S2.
Now let u, v : (S2, z0) → (S2 × S2, (z0, z0)) be given by u(z) = (z, z0) and v(z) = (z0, z).
Then u, v are the standard parametrisations of S2 × {z0} , {z0} × S2. But u, v satisfy the
conditions of Theorem 2.3.4 so that µ(u ◦ φ) = µ(v ◦ φ) = 4. From Appendix A, we know
that

∫
S2 ωstd = 1 so that the monotonicity constant (if it exists) is fixed to λ = 1

4
.

On the other hand in the proof of Proposition 2.4.3, it is shown that µ(Dlh × {pt}) =
µ({pt}×Dlh) = 2. Using stereographic projection from N on S2, the disk Dlh is mapped
to the closed unit disk E in C. Further from Appendix A, we know that ωstd is pushed
forward to r

π(1+r2)2
dr ∧ dθ on C under stereographic projection from N . Then

∫

E

r

π(1 + r2)2
dr ∧ dθ =

∫

Dlh

ωstd.

This indeed equals 1
2

showing the monotonicity of Lstd.

Proposition 2.3.6. Let φ ∈ Diff+(M) and L a monotone Lagrangian torus in (M,ω)
then φ(L) is monotone Lagrangian for the symplectic form φ∗ω.

Proof. First note that φ(L) is Lagrangian for the push-forward symplectic form. Next as-
sume that u : (E, ∂E) → (M,L) is smooth, then µ(u) = λ

∫
u(E)

ω. Thus for φ◦u : (E, ∂E) →
(M,φ(L)) we have ∫

φ◦u(E)

φ∗ω =

∫

u(E)

ω.

We are left to show that µ(φ ◦ u) = µ(u). Let

E × R4 τ−−−→ TM |u(E)yp1
yπ

E
u−−−→ u(E)

such that τ ∗xωu(x) = Ω0, be a bundle map as in the definition of the Maslov index of u,
with

Lθ = τ−1
u(eiθ)

(Tu(eiθ)L).
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Then

E × R4 τ̃=dφ◦τ−−−−→ TM |φ◦u(E)yp1
yπ

E
φ◦u−−−→ φ ◦ u(E)

is a bundle map, since φ is a diffeomorphism so that dφ is an isomorphism on tangent
spaces. Further

τ̃ ∗x(φ∗ω)φ◦u(x) = Ω0.

First note that the tangent space to the Lagrangian torus φ(L) at φ ◦ u(eiθ) is given by

Tφ◦u(eiθ)φ(L) = dφu(eiθ)Tu(eiθ)L.

Now the loop of Lagrangians defined by the trivialisation τ̃ equals

L̃θ = τ̃−1
eiθ Tφ◦u(eiθ)φ(L) = τ−1

u(eiθ)
(dφu(eiθ))

−1dφu(eiθ)(Tu(eiθ)L) = τ−1
u(eiθ)

(Tu(eiθ)L) = Lθ.

Thus using the trivialisation τ̃ we see straight away that

µ(u) = µ(φ ◦ u).

By smooth approximations we can always assume the smoothness of u, this proves the
proposition.

Remark

This shows that Lstd in M is monotone Lagrangian for ω0 since it is the push forward
under θ (cf. section 2.1) of the Clifford torus in S2 ×S2. Hence we also call Lstd ⊂M the
Clifford torus in M .

2.4 Monotone Lagrangian tori lying nicely in sym-

plectic fibrations

2.4.1 Fibered tori and some properties

Recall that M is diffeomorphic to S2 × S2.

Definition 2.4.1. Let p : M → B be a smooth fibration over the (real) surface B and let
L ⊂M be an embedded 2-torus then we say that L is fibered by p if

• γ := p(L) is an immersed loop with transverse self-intersections which are at most
double points;

• p−1(γ(t))∩L is diffeomorphic to S1 if γ(t) is not a double point and to two disjoint
S1’s if γ(t) is a double point;
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L = ∂T ⊂M

p

B

p−1(γ(t)) ∩ T

γ

γ(t)

p−1(γ(t))

Figure 2.3: L fibered by p

• in each of the S1’s in p−1(γ(t)) ∩ L we can fill in an embedded disk D ⊂ p−1(γ(t))
in the fiber such that the two disks at a double point are disjoint and all the disks
form a solid torus T ∼= S1 ×D2 with L as its boundary.

Remark

Compare fig. 2.3. For example, the Clifford torus Lstd, is fibered by either standard
projection pi. This is also what one shall have in mind when thinking of tori fibered by
some fibration p.
As it is stated, the definition above is of topological nature. We will mainly have the
situation that p : M → B is a symplectic fibration and L is a monotone Lagrangian torus.
In this case, we have the following two important results on which most of the sequel is
based. In fig. 2.4, the cylinder formed by the lifted paths is then part of the Lagrangian
torus L by the following proposition:

Proposition 2.4.2. Let L ⊂M be an embedded Lagrangian torus which is fibered by the
symplectic fibration π : M → B. Then L is given by parallel transport of the symplectic
connection induced by (π, ω) on M of the S1 in the fiber over a non-double point along
the projection curve γ = π(L) in B.

Proof. Fix a parametrisation γ(t) of γ such that γ′(t) 6= 0 for all t (from the definition of
being fibered, it follows that γ is an immersed curve). Then parallel transport along γ is
defined by integrating the vectorfield X on p−1(γ) given by the unique horizontal lifts in
Hx of γ′(t) at all points x over γ(t). So it suffices to prove that the tangent space to the
Lagrangian torus L at x is spanned by X(x) and a non-zero vector v which is tangent to
the S1 in the fiber given in the definition of being fibered by π.
Clearly v ∈ TxL. Since π is a symplectic fibration we can choose a linear independent
tangent vector w in Txp

−1(γ(t)) such that ω(v, w) = 1. Since M is four dimensional, the
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π

γ

γ̃z1

γ̃z2

γ̃z3

γ̃z4

π−1(γ(t0))
π−1(γ(t1))

π−1(γ(t0)) ∩ L π−1(γ(t1)) ∩ L

B

Figure 2.4: L is generated by parallel transport
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fibers of π are two dimensional and v, w span Txp
−1(γ(t)).

Further X(x) ∈ Hx lies in the symplectic orthogonal complement to Txp
−1(γ(t)). This is

also a symplectic subspace so we may choose another linear independent vector u ∈ Hx

such that ω(X(x), u) = 1. Thus {v, w,X(x), u} forms a symplectic basis of TxM .
Now let w̃ ∈ TxL then

dπ(w̃) = λγ′(t)

for some λ ∈ R since π(L) = γ. But then both λX(x) and w̃ project under dπ to the same
vector in the tangent space of the base. Consequently they can only differ by a vector in
the kernel of dπ which means by a vector tangent to the fiber

w̃ = λX(x) + µ1v + µ2w.

But L is Lagrangian, hence
0 = ω(v, w̃) = µ2

and so all vectors tangent to L at x are of the form λX(x) + µv. But TxL is two
dimensional so that there exists at least one vector w̃ in TxL with λ 6= 0 and thus
X(x) = 1

λ
(w̃ − µv) ∈ TxL as claimed.

Remark

Let L in M be fibered by p. Let N = p−1γ be the 3-dimensional submanifold of M formed
by the fibers in which the torus L sits. In the topological definition of being fibered by
p we didn’t require the torus to be transverse to the fibers of p in N . If however L is
Lagrangian and p is symplectic, Proposition 2.4.2 shows that we get this property for free.
Also important is the following proposition, which shows that in the case that L is also
monotone, then the curve γ in the base must be embedded.

Lemma 2.4.3. Let L ⊂ (M,ω) be a monotone Lagrangian torus with ω cohomologous to
ω0. Further let p : M → B be a symplectic fibration over the (real) surface B such that L
is fibered by p. Then the loop γ := p(L) is an embedded curve,i.e. has no double points.

Proof. The idea is as follows. First note, that because of Theorem 2.3.4 and the coho-
mology assumption on ω, it follows that the monotonicity constant equals 1

4
.

Assume now the contrary and consider a double point q ∈ γ. We get two disjoint embed-
ded disks in p−1(q). Since the Maslov index of such a disk is 2, each of these disks has
symplectic area 1

2
. Consequently the total symplectic area of the fiber is bigger than 1.

The desired contradiction. We are left to show that the maslov index of such a disk is 2.
We may assume that the fibration p is the trivial fibration, the base is equal to C with
standard coordinates x, y such that γ′(q) is in direction ∂

∂x
. Let D be one of the disks in

p−1(q).
Let u : E →M be an embedding with image D where E denotes the closed unit disk in C

with standard coordinates u+ iv. On E := TM |D we can define a smooth almost complex
structure J which is compatible with ω as follows.
Write

TxM = TxD ⊕Hx
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for all x ∈ D and define J by
J(v) = du(idu−1(v))

for v ∈ TD and by

J
∂̃

∂x
=

∂̃

∂y
; J

∂̃

∂y
= − ∂̃

∂x

where ∂̃
∂x
, ∂̃
∂y

denote the horizontal lifts of ∂
∂x
, ∂
∂y

spanning Hx. This defines a ω-compatible
smooth almost complex structure on E. Moreover a trivialisation of the footpoint map

π : E → D; v ∈ TxE 7→ x

is given by {
∂̃

∂x
, J

∂̃

∂x
, du(

∂

∂u
), Jdu(

∂

∂u
)

}
.

For calculating the Maslov index of a disk D with boundary on a Lagrangian submanifold
we first fix a trivialisation of the tangent bundle restricted to the disk D. Using the
trivialisation we can fix a standard Lagrangian subspace Lstd in each tangent space TxM .
Now we want to use Lemma G.0.40 to calculate the Maslov index, so we seek a loop of
unitary matrices A(θ) which map the standard Lagrangian Lstd to Leiθ the tangent space
to the Lagrangian L at u(eiθ). Then according to Lemma G.0.40, the winding number of
the loop given by detA2(θ) is then the Maslov index of D.

We fix the standard Lagrangian to Lstd := spanR

{
∂̃
∂x
, du( ∂

∂u
)
}

. Then by Proposition

2.4.2

Leiθ = spanR

{
∂̃

∂x
, du((− sin(θ) + i cos(θ))

∂

∂u
) = − sin(θ)du(

∂

∂u
) + cos(θ)J(du(

∂

∂u
))

}

If we consider TxM to be a complex vector space with complex scalar multiplication
defined by (α + iβ)v := αv + βJv then we can write

Leiθ = spanR

{
∂̃

∂x
, ieiθdu(

∂

∂u
)

}
.

Hence with respect to the complex basis ∂̃
∂x
, du( ∂

∂u
) the loop of unitary matrices A(θ) is

given by

A(θ) =




1 0

0 ieiθ


 .

Thus
detA2(θ) = −e2iθ

and the winding number is 2 as claimed.
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Remark

In particular, if L is a monotone embedded Lagrangian torus in (M,ω) which is fibred
by p : M → B, by Lemma 2.4.3, there exists a unique disk Dq = T ∩ p−1(q) in the fiber
p−1(q) for all points q ∈ γ := p(L).
We will also need the following:

Proposition 2.4.4. Let (S2 × S2, ω) be such that p1 is a symplectic fibration, and such
that the Clifford torus Lstd in S2 × S2 is Lagrangian for ω. Further ω and ω0 induce the
same orientation on S2 × S2. Then the relative cycle D̃ = Duh × {z0} with z0 = (1, 0, 0)
and boundary on Lstd has Maslov index 2.

Proof. Consider stereographic projection from S in the base and consider coordinates
z = x + iy on S2 \ {S} in the base. Then in these coordinates Duh = {|z| ≤ 1}. Let

π : T (S2 × S2)| eD
→ D̃; v ∈ Tp(S

2 × S2) 7→ p.
Consider the equator E = {z = 0} ⊂ S2 and the 0-meridian m = {y = 0} ⊂ S2. Then
both E,m go through the point z0 in S2. Let v and w be tangent vectors to E respectively
m in Tz0S

2 such that {v, w} is positively oriented. Consider v, w ∈ Tz,z0({z} × S2) for all
z ∈ Duh. Now let α(z) := ω(z,z0)(v, w). Then since v, w are positively oriented, α(z) > 0
for all z ∈ Duh.
Since the fibers of p1 are symplectic, so are the horizontal complements Hq = (ker d(p1)q)

⊥.

Let ∂
∂x

h
(q), ∂

∂y

h
(q) denote the horizontal lifts of ∂

∂x
, ∂
∂y

at q. Then ∂
∂x

h
(q), ∂

∂y

h
(q) are linearly

independent and span Hq for all q ∈ (S2\{S})×S2. So define β(z) := ω(z,z0)

(
∂
∂x

h
, ∂
∂y

h
)
>

0 for z ∈ Duh (this is greater than zero by the assumption that ω0, ω induce the same
orientation). Thus

{
1√
α(z)

v,
1√
α(z)

w,
1√
β(z)

∂

∂x

h

,
1√
β(z)

∂

∂y

h
}

is a symplectic basis of T(z,z0)(S
2 × S2) for all (z, z0) ∈ D̃. This defines a symplectic

trivialisation of π. Further we define a compatible almost complex structure J on π by
defining

Jv = w; Jw = −v; J ∂

∂x

h

=
∂

∂y

h

; J
∂

∂y

h

= − ∂

∂x

h

.

Via complex multiplication (a+ ib)v = av+bJv, we can consider π to be a complex vector
bundle. Now ω and J define a hermitian structure h(u1, u2) = ω(u1, Ju2) + iω(u1, u2) on
every tangent space T(z,z0)(S

2 × S2). With respect to h,
{

1√
α(z)

v,
1√
β(z)

∂

∂x

h
}

is a unitary basis of T(z,z0)(S
2 × S2) (or unitary trivialisation of π). Now we define the

standard Lagrangian L0 in every tangent space T(z,z0)(S
2 × S2) to be

L0 :=< v,
∂

∂x

h

>R .
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By construction v is tangent to Lstd along all points of ∂D̃. Further by Proposition 2.4.2

and the fact that Lstd is fibered by p1, it follows that the horizontal lift
(
− sin(t) ∂

∂x
+ cos(t) ∂

∂y

)h

at (cos(t) + i sin(t), z0) of the tangent vector − sin(t) ∂
∂x

+ cos(t) ∂
∂y

to the projection curve

p1(Lstd) at (cos(t) + i sin(t)) is also tangent to Lstd. Hence

T(cos(t)+i sin(t),z0)Lstd =< v,

(
− sin(t)

∂

∂x
+ cos(t)

∂

∂y

)h
> .

But since

(
− sin(t)

∂

∂x
+ cos(t)

∂

∂y

)h
= − sin(t)

∂

∂x

h

+cos(t)
∂

∂y

h

= − sin(t)
∂

∂x

h

+cos(t)J
∂

∂x

h

= ieit
∂

∂x

h

,

we see that

T(eit,z0)Lstd =< v, ieit
∂

∂x

h

> .

Hence

A(t) =




1 0

0 ieit




is a loop of unitary matrices which maps L0 to T(eit,z0)Lstd along the boundary ∂D̃ of D̃.
By Lemma G.0.40, it follows that

µ(D̃) = wind(detA2(t)).

But detA2(t) = −e2it and the winding number is 2. This proves the Proposition.

2.4.2 Relative symplectic fibrations and their properties

Recall that M is diffeomorphic to S2 × S2 via the diffeomorphism θ : S2 × S2 → M and
A = [θ(S2 × pt)] and B = [θ(pt× S2)] span H2(M).

Definition 2.4.5. A quintuple of the form (F , ω, L,Σ,Σ′) is called a relative symplectic
fibration on M if

• F is a smooth foliation of M by 2-spheres in homology class B;

• ω is a symplectic form on M making the leaves of F symplectic with ω(A) = ω(B) =
1;

• Σ,Σ′ are disjoint symplectic submanifolds in class A which are transverse to all the
leaves of F , so by Theorem 2.2.5 π : M → Σ′; x ∈ Fx 7→ Σ′ ∩ Fx is a symplectic
ruling;

• L ⊂M is an embedded monotone Lagrangian torus fibered by π;
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• Σ is disjoint from the solid torus T (∂T = L in Def. 2.4.1);

• Σ′ intersects each of the fibers π−1(γ(t)) in the interior of the disk T ∩ π−1(γ(t)).

Now we define what we mean by a homotopy of relative symplectic fibrations.

Definition 2.4.6. By a homotopy of relative symplectic fibrations, we mean a smooth
1-parameter family

(Ft, ωt, Lt,Σt,Σ
′
t)t∈[0,1]

of relative symplectic fibrations where Lt,Σt,Σ
′
t are smooth isotopies of submanifolds, ωt

is a smooth family of symplectic forms and Ft is a smooth family of foliations on M .

Definition 2.4.7. Two relative symplectic fibrations (F1, ω1, L1,Σ1,Σ
′
1) and (F2, ω2, L2,Σ2,Σ

′
2)

are diffeomorphic if there exists a diffeomorphism φ of M such that

φ(F1, ω1, L1,Σ1,Σ
′
1) = (φ(F1), φ∗ω1, φ(L1), φ(Σ1), φ(Σ′

1)) = (F2, ω2, L2,Σ2,Σ
′
2).

Remark

By the definition of a relative symplectic fibrations, it follows that a diffeomorphism φ
which makes two relative symplectic fibrations diffeomorphic induces the identity on the
second homology groupH2(M). Conversely, the push-forward (φ(F), φ∗ω, φ(L), φ(Σ), φ(Σ′))
of a relative symplectic fibration (F , ω, L,Σ,Σ′) under the diffeomorphism φ which induces
the identity on H2(M) is again a relative symplectic fibration. In particular the image of a
relative symplectic fibration under φ ∈ Diff0(M) is again a relative symplectic fibration.
Note further that the symplectic connection induced by (φ(F), φ∗ω, φ(Σ′)) is the push-
forward symplectic connection of (F , ω,Σ).

Proposition 2.4.8. Let p : M → B be a symplectic fibration over u : B ∼= S2 by 2-spheres
in homology class B = [θ(pt×S2)]. Consider the symplectic foliation F given by the fibers
of p and assume, that (F , ω, L,Σ,Σ′) is a relative symplectic fibration on M . Further let
φ be a diffeomorphism such that

M
φ−−−→ S2 × S2

yp
yp1

B
u−−−→ S2

(2.2)

commutes. Then φ(F , ω, L,Σ,Σ′) is a relative symplectic fibration on S2 × S2.

Proof. All we have to show is, that φ∗ : H2(M) → H2(S
2×S2) induces the identity, where

we identify H2(M) with H2(S
2 × S2) via θ. By the Remark above, it then follows, that

φ(F , ω, L,Σ,Σ′)

defines a relative symplectic fibration.
Since φ maps the fibers of p to the fibers of p1 which both lie in homology class B, we
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have φ∗B = B. Now Σ′ is a section of p, hence φ(Σ′) is a section of p1. But a section of p1

is homologically of the form A+nB for some n. Indeed let σ : S2 → S2 ×S2 be a section
of p1 and assume that [σ(S2)] = mA + nB, then p1 ◦ σ = id and so [S2] = (p1)∗σ∗[S

2] =
(p1)∗mA+ nB = m[S2]. Hence m = 1 as claimed.
But φ∗ is a ring homomorphism for the intersection product and A.A = 0 hence

0 = φ∗(A.A) = φ∗(A).φ∗(A) = (A+ nB).(A + nB) = 2n.

This shows that φ∗A = A and so φ∗ is the identity on H2(M).

Definition 2.4.9. Two relative symplectic fibrations (F , ω, L,Σ,Σ′), (F , ω, L,Σ,Σ′) on
M are said to be equivalent if there exists a sequence (Fi, ωi, Li,Σi,Σ

′
i), i = 1, .., N of

relative symplectic fibrations such that

(F , ω, L,Σ,Σ′) = (F1, ω1, L1,Σ1,Σ
′
1)

and
(F , ω, L,Σ,Σ′) = (FN , ωN , LN ,ΣN ,Σ

′
N ).

We require, that any two consecutive relative symplectic fibrations in the sequence are
either diffeomorphic or the endpoints of a homotopy of relative symplectic fibrations.

Remark

Note that in the above definitions nothing has been said about the isotopy class of the
diffeomorphisms φi, so that it is unknown if equivalent relative symplectic fibrations are
homotopic in general!

Theorem 2.4.10. Let (F , ω, L,Σ,Σ′) and (F , ω, L,Σ,Σ′
) be equivalent relative symplec-

tic fibrations on M where (F , ω, L,Σ,Σ′
) has vanishing symplectic curvature and the sec-

tions Σ,Σ
′
are horizontal. Then there exists a homotopy of relative symplectic fibrations

(Fs, ωs, Ls,Σs,Σ
′
s) with (F0, ω0, L0,Σ0,Σ

′
0) = (F , ω, L,Σ,Σ′) such that

(F1, ω1, L1,Σ1,Σ
′
1)

has vanishing symplectic curvature and the sections Σ1,Σ
′
1 are horizontal.

Proof. Let (F i, ωi, Li,Σi,Σi′), i = 1, .., N be the sequence of relative symplectic fibrations
such that

(F , ω, L,Σ,Σ′) = (F1, ω1, L1,Σ1,Σ1′)

and
(F , ω, L,Σ,Σ′) = (FN , ωN , LN ,ΣN ,ΣN ′)

as in Definition 2.4.9. We can assume without loss of generality that every other step
consists of a homotopy of relative symplectic fibrations and the first step is given by
a diffeomorphism. Indeed, by composition and concatenation we may replace several
consecutive steps by diffeomorphisms or homotopies by a single one. Also if the first step
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is a homotopy, we may start with its second endpoint. Further, we can assume that the
last step is a homotopy. If this is not the case, we use the fact that vanishing symplectic
curvature is carried along by diffeomorphisms (cf. Proposition 2.2.17), to conclude that
the endpoint of the last homotopy also has vanishing symplectic curvature. Hence the
even steps are homotopies and the odd steps are diffeomorphisms.
Hence, let φ2i−1, i = 1, ..k denote the diffeomorphisms and

(F2i
s , ω

2i
s , L

2i
s ,Σ

2i
s , (Σ

′
s)

2i)

with i = 1, .., k the homotopies. By definition,

(F2i
0 , ω

2i
0 , L

2i
0 ,Σ

2i
0 , (Σ

′
0)

2i) = φ2i−1(F2i−2
1 , ω2i−2

1 , L2i−2
1 ,Σ2i−2

1 , (Σ′
1)

2i−2)

for all i = 2, .., k. Thus start with i = k, then

φ−1
2k−1(F2k

s , ω
2k
s , L

2k
s ,Σ

2k
s , (Σ

′
s)

2k)

is a homotopy of relative symplectic fibrations which starts at

(F2k−2
1 , ω2k−2

1 , L2k−2
1 ,Σ2k−2

1 , (Σ′
1)

2k−2)

and ends at
φ−1

2k−1(F2k
1 , ω2k

1 , L
2k
1 ,Σ

2k
1 , (Σ

′
1)

2k).

Now concatenate the two homotopies

(F2k−2
s , ω2k−2

s , L2k−2
s ,Σ2k−2

s , (Σ′
s)

2k−2)

and
φ−1

2k−1(F2k
s , ω

2k
s , L

2k
s ,Σ

2k
s , (Σ

′
s)

2k).

Iterate this process. Then, we obtain a homotopy of relative symplectic fibrations

(Fs, ωs, Ls,Σs,Σ
′
s)

which starts at (F , ω, L,Σ,Σ′) and ends at

(φ1)
−1 ◦ .. ◦ φ−1

2k−1(F , ω, L,Σ,Σ
′
) = (φ2k−1 ◦ ..φ1)

−1(F , ω, L,Σ,Σ′
).

Since (F , ω, L,Σ,Σ′
) has vanishing symplectic curvature and is diffeomorphic to

(F1, ω1, L1,Σ1,Σ
′
1),

we find that
(F1, ω1, L1,Σ1,Σ

′
1)

has vanishing symplectic curvature (cf. Proposition 2.2.17). Further, since Σ,Σ
′

are
horizontal, and horizontal submanifolds are mapped to horizontal submanifolds, Σ1,Σ

′
1

are horizontal and the theorem follows.
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Remark

As was already said in the introduction, we need to deform a given relative symplectic
fibration to have vanishing symplectic curvature. In chapters 3 and 4 we will construct
an equivalent relative symplectic fibration with vanishing symplectic curvature. Then
Theorem 2.4.10 gives us the required homotopy to a relative symplectic fibration with
vanishing symplectic curvature.

Lemma 2.4.11. Let (Ft, ωt, Lt,Σt,Σ
′
t) be a homotopy of relative symplectic fibrations.

Then there exists a homotopy of relative symplectic fibrations (F̃t, ω0, L̃t, Σ̃s, Σ̃
′
t) such that

(F1, ω1, L1,Σ1,Σ
′
1) and (F̃1, ω0, L̃1, Σ̃1, Σ̃

′
1) are diffeomorphic and the Lagrangian isotopy

L̃t can be realised by a Hamiltonian isotopy ψt of (M,ω0).

Proof. ωt is a family of cohomologous symplectic forms and so Moser’s theorem gives an
isotopy φt of diffeomorphisms of M , such that φ∗

tωt = ω0. Then we claim that

φ−1
t (Ft, ωt, Lt,Σt,Σ

′
t) = (φ−1

t Ft, ω0, φ
−1
t (Lt), φ

−1
t (Σt), φ

−1
t (Σ′

t))

is the desired homotopy of relative symplectic fibrations.
To show this, first note that Lt is monotone for ωt for all t by assumption. Now

(L̃t = φ−1
t Lt, ω0 = (φ−1

t ∗ωt))

is the push-forward data of (Lt, ωt) under the diffeomorphism φ−1
t , hence by Proposition

2.3.6, it follows that L̃t is monotone for ω0. The other conditions are trivial to check.
To show that the Lagrangian isotopy can be realised by a Hamiltonian isotopy we use
Banyaga’s isotopy extension theorem. Let lt : L0 → M be a isotopy realising Lt = lt(L0),

then L̃t = φ−1
t ◦ lt(L0) realises L̃t.

First find a symplectic extension ψ̂t : U → M of the Lagrangian isotopy φ−1
t ◦ lt : L0 → M

with U a neighbourhood of L0 in M . Now extend this to a smooth diffeotopy ρt of
M by the isotopy extension theorem and consider the symplectic form ρ∗tω0. Again by
Proposition 2.3.6, it follows that the push-forward torus

ρ−1
t (L̃t)

is monotone for
ρt

−1
∗ ω0 = ρ∗tω0.

But ρt extends φ−1
t ◦ lt thus

ρ−1
t L̃t = L0

for all t. Hence L0 is monotone for ρ∗tω0 for all t. This implies however that the relative
cohomology class of ρ∗tω0 is constant in t and so Banyaga’s isotopy extension theorem
implies that the smooth isotopy ρt can be altered to a symplectic isotopy ψt which extends
φ−1
t ◦ lt. But then the symplectic isotopy ψt is actually Hamiltonian since M is simply

connected. Thus ψt(L) = L̃t is the desired Hamiltonian isotopy. This proves the Lemma.
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2.5 The main result

The aim of this thesis is to prove the following result:

Theorem 2.5.1. Let L ⊂ (M,ω0) be an embedded monotone Lagrangian torus fibered
by a symplectic ruling π : M → S, the fibers of which are in the homology class B. Let
Σ,Σ′ be two disjoint symplectic sections of π in the homology class A such that Σ∩T = ∅
where T is the solid torus in Def. 2.4.1 with ∂T = L. Further, for all q ∈ γ := π(L), Σ′

intersects the unique disk Dq = T ∩ π−1(q) in its interior.
Then L is Hamiltonian isotopic to the Clifford torus Lstd.

The strategy to prove this will be the following. The conditions in the theorem give
rise to a relative symplectic fibration (F , ω0, L,Σ,Σ

′) where the foliation F is given by the
fibers of π. Note that the symplectic connection on M induced by (π, ω0) need not have
vanishing symplectic curvature in general. If, however, it has vanishing curvature then,
using symplectic paralleltransport, we can write down explicitly a symplectomorphism φ
of (M,ω0) which induces the identity on homology, maps the fibers of π to the fibers of
the standard projection p1 and which maps L to the Clifford torus Lstd. By a theorem
of Gromov there exists a symplectic isotopy φt between id and φ. Since M is simply
connected this symplectic isotopy will also be Hamiltonian.
Thus most of our work will go into showing that starting with any relative symplectic
fibration, there exists a homotopy of relative symplectic fibrations to one with vanishing
symplectic curvature.
In chapter 3 we will bring our data in a particularly nice form. In chapter 4 we will
do the actual work of changing the symplectic connection to have vanishing symplectic
curvature. In chapter 5 we will then discuss how the results of chapter 4 are translated
in the setting of homotopies of relative symplectic fibrations.
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Chapter 3

The standardisation

In this chapter and the next chapter, we will assume that L is an embedded monotone
Lagrangian torus in (M = S2 × S2, ω) fibered by the standard projection p1. ω is some
symplectic form on M such that p1 is a symplectic fibration. Further we assume that
Σ,Σ′ are two disjoint, symplectic sections of p1 in the homology class A = [S2 × pt] such
that Σ is disjoint from the solid torus T (∂T = L) and Σ′ intersects the unique closed disk
T ∩π−1(q) over a point q ∈ p1(L) in its interior. Let Fstd denote the foliation of S2×S2 by
the fibers of p1. Then, in other words, we assume in this chapter, that (Fstd, ω, L,Σ,Σ

′)
is a relative symplectic fibration on S2 × S2.
Remark

In the following we will consider several results to make the setup nicer (these will give rise
to equivalent relative symplectic fibrations). Most of them will be of topological nature
and only a few will have symplectic content. To help the reader distinguish between a
result where nothing really happens and we just look at the problem from a different an-
gle, we indicate this by a label T . If however there is something symplectically important
happening, we indicate this by a label S.

3.1 Conveniently fibered Lagrangian tori

We now want to adjust the Lagrangian torus which is already fibred by p1 in a particular
nice way. We want it to lie over the equator in the base and to intersect the fiber over
the point z0 = (1, 0, 0) in the equator.
Consider S2 ⊂ R3 in the standard way. Let z0 = (1, 0, 0), the northpole N = (0, 0, 1) and
the southpole S = (0, 0,−1). Moreover let E = {z = 0} ⊂ S2 denote the equator. Let
σp : S2 \ {p} → C denote stereographic projection (see Appendix A) from p ∈ S2. Let
Fx = p−1

1 (x) and let F := p−1
1 (z0).

Definition 3.1.1 (T). Let p : S2 × S2 → S2 be a fibration such that p−1(z0) = p−1
1 (z0)

i.e. that the fibers over z0 of p and p1 agree. Then an embedded torus L ⊂ S2 × S2 is
conveniently fibered by p if

33
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• L is fibred by p;

• p(L) = E ⊂ S2 the equator in the base;

• p−1(z0) ∩ L = E ⊂ S2 the equator in the fiber over z0;

After these preliminary remarks we can now phrase:

Proposition 3.1.2 (T). There exists a diffeomorphism τ of M = S2 × S2 such that τ
preserves the standard fibration p1 and such that τ−1(L) is conveniently fibered by p1.

Proof. A detailed proof can be found in Appendix B. Here is an outline. We will only
show the proposition for the base curve since the proof for the curve in the fiber is precisely
the same. Let p(L) = γL be the closed embedded curve in the base. By the Jordan curve
theorem the complement in S2 of γL are two simply connected disks. Thus take the union
of the curve and one of them and use (an extension to the boundary of) the Riemann
mapping theorem to find a diffeomorphism θ to the closed upper half disk in S2. Then
θ−1 and the inclusion of the upper half disk are two embeddings of the closed disk in S2.
Hence they are isotopic (any two embeddings of the closed disk in a manifold are isotopic)
and by the isotopy extension theorem there exists a diffeomorphism H of S2 which maps
one to the other. Pulling all the data back by the diffeomorphism τ = H × id gives the
required properties.

For future reference, we summarize Theorem 2.2.5, Proposition 2.4.8 and Proposition
3.1.2 by:

Corollary 3.1.3. Let M,L, π,Σ,Σ′ as in Theorem 2.5.1. Then (F , ω0, L,Σ,Σ
′) with F

given by the fibers of π is the relative symplectic fibration on M . Then there exist diffeo-
morphisms τ : M → S2 × S2 and u : B → S2 such that the following diagram commutes

M
τ−−−→ S2 × S2

yπ
yp1

B
u−−−→ S2

(3.1)

and such that τ(L) is an embedded monotone Lagrangian torus for τ∗ω0, which is con-
veniently fibered by p1. Further, τ(F , ω0, L,Σ,Σ

′) = (Fstd, τ∗ω, τ(L), τ(Σ), τ(Σ′)) is a
relative symplectic fibration on S2 × S2.

3.2 Standardisation of the symplectic fibration near

a fiber

Note that the standardisation can’t be done by diffeomorphisms preserving p1 alone due to
a possibly non-vanishing curvature of the symplectic connection (a diffeomorphism can’t
map a non-integrable distribution to an integrable one). Indeed by the example (p1, ω0)
on S2 × S2 has vanishing curvature. Thus at some point we will have to alter the form
and the fibration independent (not related by diffeomorphisms) of each other.
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3.2.1 Standardisation of the symplectic form

Before we start with the actual standardisation of the symplectic form we want to make
the symplectic form standard in the vertical direction, therefore we have the following
two results.

Proposition 3.2.1 (T). Let ω, ωstd be symplectic cohomologous forms on S2 ⊂ R3. Let
E denote the equator and D the upper hemi-sphere. Let

∫
D
ω = 1

2
. Then there exists a

diffeomorphism h ∈ Diff+(S2) such that

• h(E) = E

• h∗ω = ωstd

Proof. The linear interpolation between the two symplectic forms gives rise to a Moser
isotopy φt. Consider the Lagrangian isotopy given by ψt : E → S2; e 7→ φ−1

t (e). Then
extend this to a symplectic isotopy ψ̂t of a neighbourhood U of E in S2. Extend this by
the isotopy extension theorem to a diffeotopy ρt of S2 and check that by the conditions on
the two symplectic forms the extension ρt satisfies the conditions of the Banyaga isotopy
extension theorem. Hence there exists actually a symplectic extension αt of ψt. Now
consider the diffeomorphism

h = φ1 ◦ α1.

Then
h∗ω = α∗

1φ
∗
1ω1 = α∗

1ωstd = ωstd

and
h(E) = φ1 ◦ α1(E) = φ1 ◦ ψ1(E) = φ1 ◦ φ−1

1 (E) = E.

Thus by Proposition 3.2.1, we can assume that the symplectic form restricted to the
fiber over z0 is the standard form ωstd.

Proposition 3.2.2 (T). Let M , p1, L as above and moreover let ω|F = ωstd, then there
exists a p1-preserving diffeomorphism τ of M such that

• τ−1(L) is monotone Lagrangian for τ ∗ω and conveniently fibered by p1;

• τ ∗ω = ωstd when restricted to Fz for all z in a neighbourhood V of z0;

• τ = id outside a neighbourhood U×S2 where U is a neighbourhood of z0 and V ⊂ U .

Proof. This is just Proposition 2.2.12, trivialising by symplectic parallel transport, and
the Remark after the proof. We only note that τ preserves the fibers of p1 and is the
identity on F , thus it follows that τ−1(L) is a monotone Lagrangian torus for the pull-back
symplectic form τ ∗ω which is conveniently fibered by p1. This proves the proposition.

Theorem 3.2.3 (T). There exists a diffeomorphism τ̂ ∈ Diff+
0 (M) and neighbourhoods

V̂ ⊂ Ŵ of F in M such that
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• supp(τ̂) ⊂ Ŵ ;

• τ̂ ∗ω restricted to V̂ is ω0;

• τ̂ is the identity on p−1
1 (E) = E × S2;

Proof. Choosing local coordinates on the base, centered at z0, we can assume that p1 : C×
S2 → C; (z, w) 7→ z and L projects to the real line.
First we find a diffeomorphism χ of C × S2 with compact support which pulls the sym-
plectic form back to a form which agrees with the standard form on TM |Q2ǫ

where
Qǫ := p−1

1 ((−ǫ, ǫ)). ǫ is chosen so small that (−2ǫ, 2ǫ) ⊂ V from Proposition 3.2.2.
Then we alter the obtained form by a Moser type argument such that it agrees with the
standard form in a neighbourhood of F .

After applying Proposition 3.2.2, the horizontal lifts ∂̃
∂x
, ∂̃
∂y

of ∂
∂x
, ∂
∂y

with respect to ω are

just ∂
∂x
, ∂
∂y

for points in Q2ǫ (cf. the proof of 2.2.12). Thus the symplectic forms ω and ω0

agree on TQ2ǫ and have the same orthogonal complements to ker dp1, the span of ∂
∂x
, ∂
∂y

.

It’s just the evaluation on ∂̃
∂x

= ∂
∂x
, ∂̃
∂y

= ∂
∂y

which might still differ.
Consider the non-zero vector field

Y =
1

ω( ∂̃
∂x
, ∂̃
∂y

)

∂

∂y

and let ψs be its flow, then

χ : D(0, ǫ) × S2 → C × S2

(t+ is, w) 7→ ψs(t+ i0, w)

is an embedding of a neighbourhood of F into C × S2. Indeed Y is non-zero, so ψ−s(t+
i0, w) is a smooth inverse. It is the identity on R × S2 where it is defined and it distorts
the fibers of p1 in y-direction.
Extend χ to a diffeomorphism of all of S2 × S2 which is the identity outside a bigger
neighbourhood Ŵ ⊂ D(0, 2ǫ)×S2 of F . Pulling back the data by χ finishes the first step,
i.e. we can assume that ω agrees with the standard form ω0 on TM |Qǫ. Further since
χ = id on the part of p−1

1 (R) where it is defined, we can assume that the extension is also
the identity on p−1

1 (E). So χ−1L is still conveniently fibered by p := p1 ◦ χ−1.
Since symplecticity is open and ω, ω0 agree on TM |Qǫ, there exists a neighbourhood of Qǫ

on which the linear interpolation of the two forms is symplectic. There exists a primitive
σ of ω − ω0 which is defined in a neighbourhood of Qǫ and which vanishes for points in
Qǫ.

Lemma 3.2.4. There exists a 1-form σ ∈ Ω1(U) defined on a neighbourhood U of Qǫ

such that
ω − ω0 = dσ

and σx = 0 for all x ∈ Qǫ
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Proof. For a proof compare Lemma 3.14 page 94 in [13] and Appendix C.

Hence the Moser isotopy for the form σ is the identity on Qǫ and by cutting off suitably
we obtain a diffeomorphism τ̂ which pulls the form ω back to the standard form ω0 in
a neighbourhood V̂ of F as desired and which has support in Ŵ . By construction, τ̂ is
isotopic to the identity. This proves the theorem.

3.2.2 Standardisation of the symplectic foliation near the fiber

τ̂ was not p1-fibre-preserving (except over the equator in the base) and did alter the stan-
dard foliation Fstd. This will be fixed in the next theorem in a smaller neighbourhood of
the fibre F . We will describe how we can see the bent fibers close to F as a smooth family
of graphs of functions f̄λ : F → C, parametrised by their intersection point (λ,N) with
the disk D(z0, ǫ)×{N} (see the fig. 3.1 on the following page). Recall that z0 = (1, 0, 0).

Let F λ denote the leaf of the foliation τ̂−1Fstd through the point (λ,N).

Proposition 3.2.5 (T). There exists an ǫ > 0 and a smooth family of smooth functions
fλ : S2 → C; λ ∈ D(z0, ǫ) such that

F λ =
{
(z, w) ∈ C × S2|z = λ+ fλ(w)

}

with fλ = 0 for λ real and such that fλ(N) = 0 for all λ.

Proof. Again we think of the base being C, F to be the fiber over the origin and L along
the real line. Then for λ real, by construction F λ = {λ} × S2 and so F λ is transverse to
all fibers Sq = p−1

2 (q) of the standard projection p2. Since transversality is generic there
exists a neighbourhood U of 0 ⊂ C for which all leaves F λ with λ ∈ U are transverse to
all the Sq. The following topological lemma proves the proposition.

Lemma 3.2.6. Let X, Y be smooth manifolds with X compact and simply connected. Let
S ⊂ X × Y be a smooth, compact submanifold of the same dimension as X and such that
S is transverse to {x}× Y for all x ∈ X. Then S can be written as the graph of a unique
function f : X → Y

Proof. Let π : X×Y → Y ; (x, y) 7→ x be the standard projection. Then by transversality
if (x, y) ∈ S then dπ(x,y) : T(x,y)S → TxX is an isomorphism. Indeed it’s injective since if
dπ(x,y)(v) = 0 then v ∈ ker dπ. Thus v ∈ T(x,y) {x} × Y so that by transversality v = 0.
Hence π|S is a local diffeomorphism. But since S is compact any point in x ∈ X can
have at most finitely many preimages in S under π. So that π|S : S → X is a covering
map. But X is simply connected, hence it has no non-trivial cover. It follows that π is a
diffeomorphism. Let ϕ = (π|S)−1 then s = ιS ◦ϕ : X → X×Y is a section of π with image
S. But in a trivial fibration π : X × Y → X any section s is of the form s(x) = (x, f(x))
for some unique function f : X → Y hence S = Γ(f) the graph of f .
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SN = S2 × {N}
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(λ1, N) (λ2, N)
(λ3, N)

F λ1 F λ2

(0, N)

z0 = 0 in loc. coord.

F λ3F

F λ

real axis

imag. axis

D(z0, ǫ) × {N}

Sp = S2 × {p}

Sq = S2 × {q}
imag. axis

Figure 3.1: The bent fibers over the imaginary axis
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δ2 δ1 δD(0, δ2)

Aδδ1

Figure 3.2: where the alteration of Gs takes place in the base

Remark-1

The smooth map

G : D(0, δ) × S2 → C × S2

(λ, w) 7→ (λ+ fλ(w), w)

is an embedding for δ < ǫ small enough (see C.0.14 in Appendix C). By construction

G({λ} × S2) = F λ

the leaf of the foliation F = τ̂−1Fstd through the point (λ,N) ∈ C × S2. Recall that τ̂
is the identity over the real line (the equator in the base), hence fλ = 0 for real λ and
hence G({λ} × S2) = {λ} × S2 for real λ.
Let ARr := {z ∈ C|r < |z| < R}. In the following we will alter G(λ, w) = (λ + fλ(w), w)
through embeddings Gs(λ, w) = (λ + fλs (w), w) (G1 = G) being fixed on Aδδ1 × S2 for
some δ1 < δ to an embedding G0 being the identity on D(0, δ2) × S2 for δ2 < δ1 (see fig
3.2). Observe, that being the identity for |λ| < δ2 implies that the functions fλ1 vanish
for |λ| < δ2. But the deformation Gs will be chosen such that fλs = 0 for λ real for all s,
consequently, the images Gs({λ} × S2) = {λ} × S2 for real λ and all s.

Further, the family fλs (and thus the embeddings Gs) will be chosen such that the
images under Gs of the sets of the form {λ}×S2 will be symplectic and transverse to the
symplectic sections Σ,Σ′ for all s. Then the family Gs of embeddings satisfies all the con-
ditions of Theorem 2.2.4. Thus these images will form the leaves of a family of symplectic
foliations Fs which standardises the symplectic fibration near F . Moreover, the leaves
over the real line in which L sits have not been altered at all since Gs({λ}×S2) = {λ}×S2

for real λ and all s. Hence the quintuple (Fs, ω, L,Σ,Σ
′) is a relative symplectic fibration

for all s. Indeed after the alteration on D(0, δ2) × S2, the foliation F0 as well as the
symplectic form ω = ω0 are standard. In particular there, near F , we have vanishing
symplectic curvature.

Remark

• Note that by construction ω = ω0 on G(D(0, δ) × S2).
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φ1
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Figure 3.3: The family φs of cut-off functions

In Proposition 3.2.9 below we need two families of cut-off functions whose properties
are fixed in the following two propositions (the proofs are postphoned to Appendix C).
Fig. 3.3 describes pictorially both families of the cut-off functions.

Proposition 3.2.7. For every 1 > δ > 0, α > 0 there exists a smooth family of non-
decreasing functions φs : [0,∞) → [0, 1], s ∈ [0, 1] satisfying

0 ≤ rφ′
s(r) + φs(r) <

1

1 − δ
(3.2)

such that φs(r) = s for r ≤ α
2
, φs(r) = 1 for r ≥ 5α

δ
and φ1 ≡ 1.

Proposition 3.2.8. There exists a constant C > 0 such that for all ǫ > 0 there exists a
smooth family of functions φǫs : [0,∞) → [0, 1], s ∈ [0, 1] such that

• φǫs(r) = s for all r ≤ ǫ
20

• φǫ1(r) ≡ 1

• φǫs(r) = 1 for all r ≥ ǫ, for all s

• maxr∈[0,∞) |φ′ǫ
s (r)| ≤ 1

ǫ
C for all s.

The following proposition is prepatory for the theorem below.

Proposition 3.2.9 (S). Let G : D(0, δ) × S2 → C × S2; (λ, w) 7→ (λ + fλ(w), w) be the
embedding from Remark-1 on the previous page. Hence in particular fx+i0(w) ≡ 0 and
so G(x+ i0, w) = (x+ i0, w). Then there exist positive real numbers 0 < δ2 < δ1 < δ and
a smooth family of embeddings Gs : D(0, δ) × S2 → C × S2; (λ, w) 7→ (λ + fλs (w), w) for
s ∈ R, with Gs = G1 = G for s ≥ 1 and Gs = G0 for s ≤ 0 such that
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• Gs|Aδ
δ1
×S2 = G|Aδ

δ1
×S2;

• G0|D(0,δ2)×S2 = id;

• Gs(x+ i0, w) = (x+ i0, w) for all x, w;

• F λ
s := Gs({λ} × S2) is symplectic for all s, λ;

• F λ
s is transverse to Σ,Σ′ for all s, λ;

Proof. We will show how to construct the familyGs in three steps, first without taking care
of the last two assertions. Once we have seen this we will show in an explicit calculation
that the remaining two assertions can also be realised.

Linearization We write f(λ, w) = fλ(w) and consider the first order Taylor expan-
sion of f with respect to λ with remainder (here we regard λ as a vector in R2)

f(λ, w) = f(0, w) +




a(w) b(w)

c(w) d(w)


λ+ f2(λ, w)

with |f2(λ, w)| ≤ C1|λ|2 for some constant C1 for all w and |λ| ≤ δ
2
. Now we multiply the

remainder by the smooth family of cut-off functions φǫs from Proposition 3.2.8. Then we
can show that for ǫ < δ

4
small enough, the smooth maps

Gs : D(0, 2ǫ) × S2 → C × S2

Gs(λ, w) =


λ+




a(w) b(w)

c(w) d(w)


λ+ φǫs(|λ|)f2(λ, w), w




are embeddings. It is enough to show the injectivity and the immersion property.
To show injectivity we will proceed in all three steps as follows: Assume first that

Gs(λ, w) = Gs(λ
′, w′)

then clearly w = w′ and

λ+




a(w) b(w)

c(w) d(w)


λ+ φǫs(|λ|)f2(λ, w) = λ′ +




a(w) b(w)

c(w) d(w)


λ′ + φǫs(|λ′|)f2(λ

′, w).

We rewrite this equation as


Id+




a(w) b(w)

c(w) d(w)




 (λ− λ′) = φǫs(|λ′|)f2(λ

′, w) − φǫs(|λ|)f2(λ, w).
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Since G is an embedding, its differential

dG =




Id+




a(w) b(w)

c(w) d(w)


 Bs

0 Id




is non-degenerate and we can find a constant µ such that

0 < µ ≤ inf
|v|=1;w∈S2

∣∣∣∣∣∣


Id+




a(w) b(w)

c(w) d(w)




 v

∣∣∣∣∣∣
.

Let
Hw
s (λ) = φǫs(|λ|)f2(λ, w)

then if the operator norm of the differential ‖(DHw
s )λ‖ < µ for all w and |λ| ≤ 2ǫ, then

µ|λ− λ′| ≤

∣∣∣∣∣∣


Id+




a(w) b(w)

c(w) d(w)




 (λ− λ′)

∣∣∣∣∣∣
= |Hw

s (λ) −Hw
s (λ′)| ≤

≤ ‖(DHw
s )λ‖D̄(0,2ǫ)×S2 |λ− λ′| < µ|λ− λ′|

showing the injectivity of Gs. Furthermore Gs is immersive if its differential

dGs =




Id+




a(w) b(w)

c(w) d(w)


 +DHw

s Bs

0 Id




is non-degenerate. This is equivalent to

Id+




a(w) b(w)

c(w) d(w)


 +DHw

s

being non-degenerate. Again this is true if

‖(DHw
s )λ‖ < µ

on D̄(0, 2ǫ) × S2.
Now estimate the operator norm of (DHw

s )λ. For

|λ| ≤ 2ǫ
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‖(DHw
s )λ‖ ≤ |(φǫs)′||f2(λ, w)| + |φǫs|‖Df2‖ ≤ C 1

ǫ
C14ǫ

2 + 2C2ǫ ≤ 4(CC1 + C2)ǫ.

Where ‖Df2‖ ≤ C2|λ| for all w and |λ| ≤ δ
2

and where C is the constant from Proposition
3.2.8. Choose

ǫ < min

{
δ

4
,

µ

4(CC1 + C2)

}

then by construction
Gs : D(0, 2ǫ) × S2 → C × S2

is a smooth family of embeddings.
By the properties of φǫs, G is only changed for |λ| ≤ ǫ. Thus the alteration takes place
in G(D(0, ǫ) × S2), G is not at all altered on (−2ǫ, 2ǫ) × S2 and G0 is linear in λ on
D(0, ǫ

20
) × S2 (compare Proposition 3.2.8).

Since Gs = G on (D(0, 2ǫ) \ D̄(0, ǫ)) × S2 it follows as in the proof of Theorem 2.2.4 in
Appendix C, that Gs(D(0, 2ǫ) × S2) = G(D(0, 2ǫ) × S2) for all s. Hence we may extend
the embeddings Gs by G to embeddings defined on all of D(0, δ) × S2.
This proves the linearisation.

Standardisation By the linearisation we may assume that

f(λ, w) =




a(w) b(w)

c(w) d(w)


λ

is linear in λ. But f(λ, w) = 0 for real λ and so

f(λ, w) =




0 a(w)

0 b(w)


λ.

Thus
G : D(0, δ) × S2 →M

(λ1, λ2, w) 7→ (λ1 + a(w)λ2, λ2(1 + b(w)), w).

A priori there is no bound on a except that a(N) = 0. Thus depending on the foliation
given by G, a(w) − a(N) can be arbitrarily large. Run along the imaginary axis starting
from the origin and look what happens to the leaves. First note that the northpole is
always fixed, i.e. G(0, λ2, N) = (0, λ2, N) but G(0, λ2, w) = (a(w)λ2, λ2(1 + b(w)), w) is
arbitrarily far along the λ1-axis depending on the maximum of |a(w)|. We would like to
continue, by using a family of cut-off functions as in the linearisation, to kill the remaining
terms which cause G to differ from the identity in a neighbourhood of {0} × S2.
Although it is probably not intrinsic to the problem, an explicit calculation shows that
this method forces us to do this in two steps. First we kill the term involving a(w) and
then the term involving b(w).
We cut off by a family of functions φǫs as before, but which have now support on an ellipse
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 F λ

imag. axis

C

all F λ with λ having fixed imag. part

real axis

F λ0

p1(F
λ0)

The ellipse νλ2
1 + λ2

2

Figure 3.4: The figure shows a possible big distorsion of F λ0 along the real axis
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with excentricity related to the maximum of |a(w)|.
Let c := maxw∈S2 |a(w)| and choose positive real numbers ν, ǫ such that

ν < min

{
1

4C2c2
, 1

}

ǫ < νδ2

(C is the constant from Proposition 3.2.8). Again let φǫs be the family of functions from
Proposition 3.2.8 and consider the map

Gs : D(0, δ) × S2 → C × S2

(λ1, λ2, w) 7→ (λ1 + φǫs(νλ
2
1 + λ2

2)a(w)λ2, (1 + b(w))λ2, w).

With the choice of ν, ǫ we can show similarly as before that Gs is an embedding for all s.
Injectivity

Assume
Gs(λ, w) = Gs(λ

′, w′)

then

1. λ1 + φǫs(νλ
2
1 + λ2

2)a(w)λ2 = λ′1 + φǫs(νλ
′
1
2 + λ′2

2)a(w′)λ′2

2. (1 + b(w))λ2 = (1 + b(w′))λ′2

3. w = w′

From G being immersive, it follows that (1 + b(w)) > 0. So from 2.,3. it follows that
w = w′ and λ2 = λ′2. We can thus write

λ1 − λ′1 = −a(w)λ2

(
φǫs(νλ

2
1 + λ2

2) − φǫs(νλ
′2
1 + λ2

2)
)
.

Let
Hs(λ1) = φǫs(νλ

2
1 + λ2

2)

then by the mean value theorem

Hs(λ1) −Hs(λ
′
1) = H ′

s(ζ)(λ1 − λ′1)

for ζ ∈ (λ′1, λ1). By construction we have

H ′
s(ζ) = φǫs

′(νζ2 + λ2
2)2νζ

so that

|λ1 − λ′1| = | − a(w)||λ2||Hs(λ1) −Hs(λ
′
1)| = | − a(w)||λ2||φǫs′(νζ2 + λ2

2)|2ν|ζ ||λ1 − λ′1|.

Note that φǫs
′(r) = 0 for r > ǫ since there φǫs(r) constantly equals 1. Hence for νζ2+λ2

2 ≥ ǫ,
it follows that λ1 = λ′1. Thus let

νζ2 + λ2
2 ≤ ǫ
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then |ζ | ≤
√
ǫ√
ν

and |λ2| ≤
√
ǫ. Hence

| − a(w)||λ2||φǫs′(νζ2 + λ2
2)|2ν|ζ | ≤ c

√
ǫ
C
ǫ
2ν

√
ǫ√
ν

= cC2
√
ν < 1.

As desired this implies that λ1 = λ′1, showing the injectivity.
The immersion property

Note that dGs is a block matrix of the form.

dGs =




As Bs

0 Id


 .

Thus det dGs = det(As) with

As =




1 + a(w)φǫs
′(νλ2

1 + λ2
2)2νλ1λ2 a(w) (φǫs(νλ

2
1 + λ2

2) + φǫs
′(νλ2

1 + λ2
2)2λ

2
2)

0 1 + b(w)


 .

Thus det(dGs) = (1 + a(w)φǫ′s(νλ
2
1 +λ2

2)2νλ1λ2)(1+ b(w)) and (1 + b(w)) > 0. But as for
the injectivity by the choice of ν, ǫ

|a(w)||φǫs′(νλ2
1 + λ2

2)|2ν|λ1||λ2| < 1

and the immersion property follows.
Now comes the last step.
We may assume that

G : D(0, δ) × S2 → C × S2

(λ1, λ2, w) 7→ (λ1, (1 + b(w))λ2, w).

Since G is immersive (1 + b(w)) > 0 for all w ∈ S2. Let 1 > ξ > 0 be a real number such
that

1 − ξ > −b(w) ∀w ∈ S2.

Let ǫ > 0 be so small that
5ǫ

ξ
<
δ

2

and let φs : [0,∞) → [0, 1] be the family of functions from Proposition 3.2.7 for α = ǫ, δ =
ξ. Now consider the smooth map

Gs : D(0, δ) × S2 → C × S2

(λ1, λ2, w) 7→ (λ1, (1 + φs(|λ|)b(w))λ2, w).

Then as claimed
G0(λ, w) = (λ, w) for |λ| < ǫ

2
.
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By the special choice of the cut-off function we can show as before thatGs is an embedding.
Injectivity

Assume

Gs(λ, w) = Gs(λ
′, w′)

then

1. λ1 = λ′1

2. (1 + φs(|λ|)b(w))λ2 = (1 + φs(|λ′|)b(w′))λ′2

3. w = w′

By 1., 3. the second equation can be written as

λ2 − λ′2 = −b(w) (φs(|λ|)λ2 − φs(|λ′|)λ′2)

Write

Hs(λ2) = φs

(√
λ2

1 + λ2
2

)
λ2

then by the mean value theorem

Hs(λ2) −Hs(λ
′
2) = H ′

s(ζ)(λ2 − λ′2)

for ζ ∈ (λ′2, λ2). By construction

H ′
s(ζ) = φ′

s(|λ|)
ζ2

|λ| + φs(|λ|)

with λ = (λ1, ζ). But |ζ | ≤ |λ| so that

H ′
s(ζ) ≤ φ′

s(r)r + φs(r)

for r = |λ|. Hence

λ2 − λ′2 = −b(w)H ′
s(ζ)(λ2 − λ′2) ≤ −b(w)(φ′

s(r)r + φs(r))(λ2 − λ′2) <

< (1 − ξ)
1

1 − ξ
(λ2 − λ′2) < (λ2 − λ′2).

This shows the injectivity of Gs.
The immersion property

Again dGs is a block matrix of the form.

dGs =




As Bs

0 1


 .
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Thus det dGs = det(As) with

As =




1 0

φ′
s(|λ|)λ1

|λ|b(w)λ2 1 + φ′
s(|λ|)λ

2
2

|λ|b(w) + φs(|λ|)b(w)


 .

Then

det(dGs) = 1 + b(w)

(
φ′
s(|λ|)

λ2
2

|λ| + φs(|λ|)
)
.

But

−b(w)(φ′
s(|λ|)

λ2
2

|λ| + φs(|λ|)) < 1

as before, and the immersion property follows.

We are left to show the assertion, that we can assure that all submanifolds

F λ
s = Gs({λ} × S2)

are symplectic and that the two submanifolds Σ,Σ′ remain transverse to all the F λ
s in all

three deformations.
Transversality of Σ,Σ′

Let G : D(0, δ)×S2 → C×S2 be an embedding as before such that Σ is transverse to F λ

for all λ. Consider the submanifold Σ̃ := G−1(Σ) of D(0, δ) × S2 which is transverse to
the standard fibers {λ} × S2.
Similarly to Proposition 3.2.6, transversality implies that there exists a section s(z) =

(z, g(z)) of p1 : D(0, δ) × S2 → D(0, δ); (z, w) 7→ z with image Σ̃. Thus σ := G ◦ s is a
parametrisation of Σ ∩ Im(G). Now let Gs be a smooth family of embeddings as before
which alters the foliation in D(0, ǫ) × S2 and such that G1 = G.
Then transversality of F λ

s to Σ means precisely, that the map

p1 ◦G−1
s ◦ σ

is a submersion (or a local diffeomorphism for dimensional reasons).
As before dGs is a block matrix of the form

dGs =




As Bs

0 Id


 .

We write A := A1, B := B1 and G = G1. By elementary facts about block matrices it
follows (see C.0.16 for details) that

d(p1 ◦G−1
s ◦ σ) = A−1

s (A + (B −Bs) ◦ dg) .
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Due to the immersion property of Gs,

detA−1
s > 0,

and the transversality of Σ boils down to show that the matrix

A+ (B − Bs) ◦ dg

is invertible for all s. Observe that (B − Bs)(λ, w) is non-zero only for |λ| ≤ ǫ by the
assumptions on the family Gs.
Let

0 < µ := inf
|v|=1,w∈S2,|λ|≤ δ

2

|A(λ, w)v| .

Then if
‖dg‖‖B − Bs‖D̄(0,ǫ)×S2 < µ

for all s, the matrix
A+ (B − Bs) ◦ dg

is invertible and Σ is indeed transverse to all the F λ
s as claimed. So we have to check

whether we can make ‖B −Bs‖D̄(0,ǫ)×S2 arbitrary small for all three deformations above.
We will do this after we have shown that for the symplecticity we need the same condition
(possibly with other constants).
Symplecticity

Let Gs be a family of embeddings with G1 = G as before, which alters the foliation in
D(0, ǫ)×S2. We are required to show that the leaves F λ

s are symplectic for the symplectic
form ω0 for all λ, s. This is equivalent to the condition that G∗

sω0 = ωs restricts to a
symplectic form on any fiber {λ} × S2.
Since dGs is a block matrix of the form

dGs =




As Bs

0 Id


 ,

a vertical vector (0, v) ∈ TzD(0, δ) × TwS
2 = T(z,w) (D(0, δ) × S2) is mapped by dGs to

dGs(0, v) =




As Bs

0 Id






0

v


 =




Bsv

v


 .

Thus
ωs((0, v), (0, w)) = G∗

sω0((0, v), (0, w)) = ωstd(v, w) + ωstd(Bsv, Bsw).

Every two form α on S2 is of the form α = fωstd for a function f : S2 → R. Thus
write ωλs := ωs|{λ}×S2 and fλs : S2 → R for the function satisfying

ωλs = fλs ωstd.
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Symplecticity of F λ
s is then equivalent to fλs > 0 for all λ, s.

We write fλ := fλ1 because of G = G1. Since ω := ω1 = G∗ω0 restricts to symplectic
forms on {λ} × S2 by assumption, fλ > 0 for all λ ∈ D(0, δ). We define real numbers

ν := inf
λ∈D̄(0, δ

2
),w∈S2

|fλ(w)| > 0

and
N = sup

(λ,w)∈D̄(0, δ
2
)×S2

‖B(λ, w)‖.

Claim: If

sup
(λ,w)∈D̄(0, δ

2
)×S2

‖Bs(λ, w) − B(λ, w)‖ < min
{ ν

6N
,N
}

for all s, then the fibres F λ
s are symplectic.

To see this, let v, w be a symplectic basis of T(λ,p) ({λ} × S2) for ωstd. Then

fλs (p) = fλs (p)ωstd(v, w) = ωλs (p)(v, w)

where
ωλs (v, w) = ωstd(v, w) + ωstd(Bsv, Bsw) =

= ωstd(v, w) + ωstd(Bv,Bw) + ωstd((Bs −B)v, Bsw) + ωstd(Bv, (Bs −B)w) =

= ω(v, w) + ωstd((Bs − B)v, Bsw) + ωstd(Bv, (Bs − B)w).

But then
fλs (p) ≥ ν − |ωstd((Bs −B)v, Bsw) + ωstd(Bv, (Bs − B)w)|.

Let g be the Riemannian metric on S2 given by g(v, w) = ωstd(v, iw) and define |v| :=√
g(v, v) for v ∈ TS2. Let

u :=
(Bs −B)v

|(Bs −B)v| , ũ :=
(Bs −B)w

|(Bs −B)w| , z :=
Bsw

|Bsw|
, z̃ :=

Bv

|Bv|
if these vectors are defined.
So we estimate the last term:

|ωstd((Bs −B)v, Bsw) + ωstd(Bv, (Bs − B)w)| ≤

≤ |(Bs −B)v||Bsw||ωstd(u, z)| + |Bv||(Bs − B)w||ωstd(z̃, ũ)|
Since u, ũ, z, z̃ have norm 1 and g is compatible with ωstd it follows that |ωstd(u, z)|, |ωstd(z̃, ũ)| ≤
1. Hence

|ωstd((Bs − B)v, Bsw) + ωstd(Bv, (Bs −B)w)| ≤ ν

6N
2N +N

ν

6N
≤ ν

2
.

Thus
fλs (p) ≥ ν − ν

2
=
ν

2
> 0
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and indeed F λ
s is symplectic for all λ, s.

Estimation of ‖Bs − B‖ in the deformations

In the first deformation we had

fs(λ, w) =




a(w) b(w)

c(w) d(w)


λ+ φǫs(|λ|)f2(λ, w).

Thus
f(λ, w) − fs(λ, w) = (1 − φǫs(|λ|))f2(λ, w).

Consequently
(B − Bs)λ,w = (1 − φǫs(|λ|))d(fλ2 )w.

where fλ2 (w) = f2(λ, w) indicates that we regard λ as a parameter and differentiate with
respect to w. But ‖(dfλ2 )w‖ ≤ C2|λ| for |λ| < δ

2
since dfλ2 is part of the differential df2

with ‖df2(λ,w)‖ ≤ C2|λ| for |λ| < δ
2
. Thus

‖B − Bs‖D̄(0, δ
2
)×S2 < C2ǫ

since (1− φǫs) has support in D(0, ǫ). So indeed we can make ‖Bs −B‖ arbitrarily small.
In the second deformation we have

(B −Bs)λ,w =




λ2daw − λ2φ
ǫ(νλ2

1 + λ2
2)sdaw

λ2dbw − λ2dbw


 =




λ2(1 − φǫs(νλ
2
1 + λ2

2))daw

0




Note that 1 − φǫs(νλ
2
1 + λ2

2) = 0 for νλ2
1 + λ2

2 ≥ ǫ, thus we may assume that λ2
2 < ǫ or

equivalently that |λ2| <
√
ǫ. Let C4 = ‖daw‖w∈S2 with respect to the metric g on S2, then

‖Bs −B‖D̄(0, δ
2
)×S2 < C4

√
ǫ.

This can also be made arbitrarily small.
Finally in the last deformation we find

(B − Bs)λ,w =




0

(1 − φs(|λ|))λ2dbw




define C5 := ‖dbw‖w∈S2 with respect to g, then

‖Bs −B‖D̄(0, δ
2
)×S2 < C5

5ǫ

ξ

if φs is the family of functions from Proposition 3.2.7 for δ = ξ, α = ǫ, since (1 − φs(|λ|))
has support in D(0, 5ǫ

ξ
). This proves the proposition.
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Theorem 3.2.10. (S) Let F be a foliation of (M = S2 × S2, ω0) by symplectic 2-spheres
such that F agrees with the standard foliation Fstd over the equator E in the base, i.e.
Fx = p−1

1 (p1(x)) for all x ∈ p−1
1 (E). Further Σ,Σ′ are two disjoint symplectic submanifolds

transverse to the leaves of F . Then there exists a family of symplectic foliations Fs on M
such that F1 = F with the following properties:

• (Fs)x = p−1
1 (p1(x)) for any x ∈ p−1

1 (E) for all s;

• Σ,Σ′ are transverse to all the leaves of Fs for all s;

• F0 = Fstd on a neighbourhood of F = p−1
1 (z0).

Proof. By Proposition 3.2.5 and Proposition 3.2.9 we obtain a family of embeddings Gs

which satisfies all the conditions of Theorem 2.2.4 in chapter 2. Thus the family of
embeddings Gs gives rise to a smooth family of foliations Fs on M . All the desired
properties follow now from the corresponding properties of the isotopy Gs. This proves
the theorem.

From the theorem we obtain a smooth family of foliation Fs of M by symplectic 2-
spheres which are transverse to Σ,Σ′ and such that the symplectic connection induced by
(F0, ω) has vanishing symplectic curvature near F . Further throughout the deformation,
the leaves of Fs through points in p−1

1 (e) agree with p−1
1 (e) for all e ∈ E the equator in

the base. Consequently, the torus L is still monotone Lagrangian for ω and it is fibered
by the symplectic fibrations

πs : M → Σ′; x ∈ (Fs)x 7→ (Fs)x ∩ Σ′.

Thus (Fs, ω, L,Σ,Σ
′) is a homotopy of relative symplectic fibrations. Now we can apply

corollary 3.1.3 to get a commutative diagram

M
τ−−−→ Myπ0

yp1

Σ′ u−−−→ S2

(3.3)

such that τ(L) is conveniently fibered by p1 and monotone Lagrangian for the push-
forward symplectic form. Since the diffeomorphism group of a closed manifold (Σ′) is
transitive on points, we can assume that τ(F ) = p−1

1 (z0). Further τ(F0, ω, L,Σ,Σ
′) is a

relative symplectic fibration.

Proposition 3.2.11. (T) There exists a p1-fiberpreserving diffeomorphism ϑ of M such
that ϑ(L) is conveniently fibered by p1 and ϑ∗ω is the standard form on a neighbourhood
of F := p−1

1 (z0).
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Proof. By Proposition 3.2.1 we may assume that the symplectic form on the fiber F is ωstd.
Since the symplectic connection induced by (F0, ω) has vanishing symplectic curvature
near the fiber F and vanishing symplectic curvature is preserved under push-forward by
diffeomorphisms, the symplectic connection induced by (p1, τ∗ω) has vanishing symplectic
curvature near F . By Proposition 2.2.18 and the Remark after its proof, there exists
a p1-fiberpreserving diffeomorphism φ of M , which pulls the symplectic form back to a
split form ω = p∗1ω1 + p∗2ωstd near F . We seek a diffeomorphism of the base S2 which
preserves the equator pointwise, and which pulls ω1 back to the standard form on U , a
neighbourhood of z0. Hence the following lemma proves the proposition.

Lemma 3.2.12. Given symplectic forms ω, ω′ on C, then there exists a diffeomorphism
φ of C with compact support which

• is the identity on the real line

• φ∗ω = ω′ on U a neighbourhood of the origin

Proof. The proof is trivial, but can be found in Appendix C.

This finishes the standardisation near a fiber.

3.3 Standardisation of the symplectic fibration near

the sections

3.3.1 Topological Standardisation of the sections

We seek a p1-fiberpreserving diffeomorphism of M which maps the symplectic sections
Σ,Σ′ to the constant sections at N the north- and S the southpole. The idea is first
to use the transitivity of the symplectomorphism group on points and then to use the
isotopy extension theorem.
Let S∞ := S2 × {N} and S0 := S2 × {S}. By the following lemma, we may assume that
Σ,Σ′ go through N , respectively S over the point z0.

Lemma 3.3.1. Let p ∈ S2 be a point in the open upper hemi-sphere Duh. Then there
exists a φ ∈ Symp0(S

2, ω) such that φ(N) = p with support in Duh.

Proof. The proof is trivial, but nevertheless given in Appendix C.

Remark

Let σ, σ′ be parametrisations of Σ,Σ′.
In Proposition 3.3.8 we prove how to locally alter a symplectic section through symplectic
sections to be the constant section (actually, there, we do much more). Doing this here we
can assume that the sections σ, σ′ are constantly N, S in a neighbourhood of F . Observe,
that this gives rise to a homotopy of relative symplectic fibrations with Fstd, ω, L fixed.
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N

S

S2

S2

Σ′

Σ

L

S0

z0

S∞

Figure 3.5: The effect of the diffeomorphism τ in Thm. 3.3.2

Theorem 3.3.2. (T) Let M,ω, L, p1,Σ,Σ
′ be as above. Then there exists a p1-fiber-

preserving diffeomorphism τ of M which is the identity on a neighbourhood of F such
that τ(S∞) = Σ, τ(S0) = Σ′.

Proof. Write σ(z) = (z, f(z)). Then by Hurewicz’s Theorem, H2(M) ≡ π2(M). Since
[Σ] = A we find that f is nullhomotopic. By smooth approximations, we can find a smooth
contraction ft of f toN , and furthermore, we can assume that ft maps a neighbourhood V ′

of z0 to N for all t (cf. C.0.17). Then the family of sections σt(z) = (z, ft(z)) is constantly
N in V ′. We want to use the isotopy extension theorem to get the desired diffeomorphism,
but since we have the additional requirement that the resulting diffeomorphism is fiber
preserving we have to review the proof of the isotopy extension theorem and make the
necessary modifications. By a reparametrisation we assume that the track

F : S2 × R →M × R; (x, t) 7→ (σt(x), t)

of the isotopy σt is defined for all t ∈ R and is constant for t < 1
3

and t > 2
3
. The vector

field X = dF ( ∂
∂t

) = Xt + ∂
∂t

on Im(F ) generates the isotopy σt. By construction Xt is
vertical (tangent to the fibers of p). To obtain a fiber-preserving diffeotopy of M , we need
to extend the vertical vector field X on Im(F ) to a global vertical vector field Z = Zt+

∂
∂t

on M ×R. First note that this condition is convex so that we can use a partition of unity
to reduce the problem to the neighbourhood of a point in M ×R. Let C := F (S2× [0, 1]).
Then for points outside the closed set C, on a neighbourhood not meeting C, we simply
define the vector field Z to be ∂

∂t
.

Let x = (z0, fs(z0), s) be a point in C. Choose local coordinates (z, w, t) on M×R around
x via stereographic projection from −z0,−fs(z0) on each factor of S2 × S2. Using this
chart on the range and the chart of S2 given by stereographic projection from −z0 on the
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domain, we may assume that

F : U × R → C × C × R

F (z, t) = (z, ft(z), t)

with U ⊂ C open, 0 ∈ U and fs(0) = 0.
Now we define a new chart of M × R around x by the smooth map

α : U × C × R → C × C × R

(z, w, t) 7→ (z, ft(z) + w, t).

Indeed, since dα0,0,s has full rank, α is a local diffeomorphism and α(z, 0, t) = F (z, t).
Geometrically, it foliates a neighbourhood of x ∈M by translating the image of F in the
fiber direction w. We have to shrink the domain of the local diffeomorphism α if necessary
in order to avoid the rest of the image of F . Then a suitable vertical extension of the
vector field X near x is given by

Z = dα

(
∂

∂t

)
.

By construction, the obtained diffeomorphism is fiberpreserving and the identity in a
neighbourhood of the fiber F . Thus the image of the torus is still conveniently fibered by
p1. Now do the same for Σ′. Note that we have to choose the domains of the maps α in
such a way that they do not interfere with Σ = S∞. This proves the theorem.

Hence pulling back the data by τ , we have a monotone Lagrangian torus for the pull-
back symplectic form which is conveniently fibered by p1. Moreover the solid torus T is
disjoint from the symplectic section S∞ and the symplectic section S0 intersects T̊ in each
fibre over the equator.

3.3.2 Standardisation of the symplectic form near the sections

We are now going to make the symplectic form split near the sections S0, S∞. Why do
we not want to make it equal to the standard symplectic form which is also split? The
reason is that for proceeding in the next chapter, we require the Lagrangian torus to be
conveniently fibered by p1. It is important to notice that we cannot assume that the curve
p1(L) = γ encloses a disk of area 1

2
in the base (note that we identify the base with the

section S0). If L is conveniently fibered by p1 and we have the standard form ω0 near S0,
then indeed p1(L) = γ encloses a disk of area 1

2
.

We will do this in 3 steps. In step 1 we will make the symplectic form constant on the
sets S2 × {p} for p in a neighbourhood S2 ×U∞ ∪U0 of the sections S∞, S0. In step 2 we
will construct (as in the symplectic neighbourhood theorem) an isotopy φt, with support
in a possibly smaller neighbourhood, such that the pull-back form φ∗

1ω agrees with some
split form on TM |S0 , TM |S∞. In the third step we consider a Moser isotopy ψt given by
the linear interpolation between the split form and the form obtained in step 2. Then the
pull-back form ψ∗

1φ
∗
1ω is split near the sections S∞, S0.
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Step I

Let ω(p) denote the restriction of ω to S2 × {p} (by openness of symplecticity there
is a neighbourhood of S0 ∪ S∞ where these are symplectic forms). With the following
proposition, we are going to make ω equal to ω(S), the restriction of ω to S0, on the
sets S2 × {p}, for p in a neighbourhood of N and S. Note that we consider S0 to be
the base, so that changing the symplectic form on S0 results in a rearrangement of the
fibers and therefore in changing the projection of L. Thus L would not be conveniently
fibered anymore. Avoiding this is the reason why we make the symplectic form on the
sets S2 × {p} in neighbourhoods of S∞ and S0 equal to its restriction to S0.

Proposition 3.3.3. (T) There exists a τ ∈ Diff0(M) with support in a neighbourhood
of S∞∪S0 away from the Lagrangian torus L such that the pull-back form τ ∗ω restricts to
ω(S) on the fibers S2 × {p} of p2 for p in a smaller neighbourhood of S∞ ∪ S0. Moreover
τ = id on a neighbourhood of the fiber F .

Proof. The idea is to construct a diffeomorphism of M by using Moser isotopies φpt ob-
tained from the linear interpolation ωt(p) = (1 − t)ω(S) + tω(p) of symplectic forms on
S2 ×{p} (for p ∈ U∞ ∪U0 a neighbourhood of N ∪S). The issue here is to find a smooth
family of primitives σ(p) such that τ(p) = ω(p)− ω(S) = dσ(p) and such that σ vanishes
in a neighbourhood of z0. τ(p) is a closed form which vanishes on V , a neighbourhood of
z0, for all p ∈ U∞ ∪ U0 and which is trivial in cohomology. So for all p, we can view τ(p)
as an element of Ω2

c(R
2), the compactly supported 2-forms on R2 with support in B(0, R)

for some R > 0. Now we have

Lemma 3.3.4. Let τ ∈ Ω2
c(R

2) be closed with support in D(0, 1) and such that

∫

R2

τ = 0.

Then there exists a canonical choice of σ ∈ Ω1
c(R

2) such that dσ = τ

Proof. We will do this by altering the (non-compactly supported !) primitive obtained
from the Poincare Lemma to one with compact support. See Appendix C for a proof.

Applying a suitable diffeomorphism (scaling) on R2 we may assume that τ(p) has
support in D(0, 1) for all p. So by the lemma we obtain a smooth family (in p) of 1-forms
σ(p) which we extend by zero to 1-forms β(p) ∈ Ω1(S2). These vanish at points where
ω(S) and ω(p) agree and which satisfy ω(p) − ω(S) = dβ(p). Let φpt denote the Moser
isotopy corresponding to the 1-form β(p) for p ∈ U∞∪U0. These families depend smoothly
on p by construction. Now choose a suitable cut-off function ρ : R → R with support in
[−2ǫ, 2ǫ] and being 1 on [−ǫ, ǫ]. Consider the diffeomorphism

τ(z, w) = (φwρ(|w|)(z), w).
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Choosing ǫ small enough this diffeomorphism τ doesn’t alter the torus L. Near F we
have φpt = id by construction (the Moser vector fields vanish), so the standard fibration
is unaltered in the region where we standardised the symplectic form near the fiber F .
Furthermore by construction τ = id on S0. The pull-back symplectic form (via τ) is equal
to ω(S) on the sets S2 × {p} in a (smaller) neighbourhood of S0 ∪ S∞. By construction,
τ is isotopic to the identity. This finishes step 1.

Step II

As in the standardisation of the symplectic form near a fiber, we first show the existence of
a diffeomorphism φ of M which has support near S∞ ∪S0 and which pulls the symplectic
form back to a symplectic form which agrees with ω1 = p∗1ω(S)+p∗2ωstd on TM |S∞ and on
TM |S0 . Further φ needs to be the identity near the fiber F . This is of course nothing else
than the first part of the proof of the symplectic neighbourhood theorem, but because of
the last condition we will write down a proof but with the necessary modifications. Since
we can easily split the problem in two, it is enough to find such a diffeomorphism for S∞.

Lemma 3.3.5 (T). There exists a smooth isotopy φt : Ṽ → M such that

• Ṽ is a neighbourhood of S∞ in M ;

• φt|S∞ = id for all t;

• φ0|Ṽ = id;

• φt = id for all t in a neighbourhood of F ;

• φ∗
1ω agrees with ω1 on TM |S∞.

Proof. The idea is to write down a smooth family of bundle maps At of the vector bundle
π : TM |S∞ → S∞; v ∈ TxM 7→ x starting at the identity, such that A1 maps a symplectic
basis for ω1 to one for ω. Now use the exponential map of some metric on TM to get
from the family At an isotopy φt of a neighbourhood of S∞ which is the identity on S∞
and φ∗

1ω = ω1 on TM |S∞. This is just the first part of the symplectic neighbourhood
theorem.
We only have to show, how to construct At such that φt is the identity in a neighbourhood
of F .
We think of the second factor in M = S2 × S2 as being C and S∞ = S2 × {0}. Since
symplecticity is an open condition, there exists a neighbourhood S2 × D(0, ǫ) such that
all the fibres of p2 : S2 ×D(0, ǫ) → D(0, ǫ); (z, w) 7→ w are symplectic for the symplectic
form ω. Consequently there exists a symplectic connection on p2 given via a distribution
of horizontal subspaces H defined by the symplectic orthogonal complements to ker dp2.

Consider the standard coordinates u + iv on C and lets denote by ∂̃
∂u

(z, w), ∂̃
∂v

(z, w) the

horizontal lifts of ∂
∂u
, ∂
∂v

with respect to H at (z, w). Moreover let K(z, w) = ω(z,w)(
∂̃
∂u
, ∂̃
∂v

)
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and c = ωstd(
∂
∂u
, ∂
∂v

) > 0.
For all x ∈ S∞, any tangent space TxM has two splittings:

TxM = TxS∞ ⊕ (TxS∞)⊥1

TxM = TxS∞ ⊕ (TxS∞)⊥.

where ()⊥1 is the symplectic orthogonal complement with respect to ω1 and ()⊥ is the
symplectic orthogonal complement with respect to ω. Note that (TxS∞)⊥1 is spanned by
∂
∂u
, ∂
∂v

whereas Hx is spanned by ∂̃
∂u

(x), ∂̃
∂v

(x). Moreover let e1, f1 be a symplectic basis
for TxS∞ for both ω1 and ω (both forms agree on fibers of p2 because of step I). Then

e1, f1,
1√
c
∂
∂u
, 1√

c
∂
∂v

is a symplectic basis of TxM for ω1 whereas e1, f1,
1√
K

∂̃
∂u

(x), 1√
K

∂̃
∂v

(x) is
a symplectic basis of TxM for ω.
Then

At : TM |S∞ → TM |S∞

with t ∈ [0, 1] is given by

• Atx|TxS∞ = id for all x ∈ S∞

• Atx(
1√
c
∂
∂u

) = (1 − t) 1√
c
∂
∂u

+ t√
K(x)

∂̃
∂u

(x) for all x ∈ S∞

• Atx(
1√
c
∂
∂v

) = (1 − t) 1√
c
∂
∂v

+ t√
K(x)

∂̃
∂v

(x) for all x ∈ S∞

In a neighbourhood of F , we have ω = ω1 thus ∂̃
∂u

= ∂
∂u

, ∂̃
∂v

= ∂
∂v

and K(x) = c. Thus
At = id there. This proves the lemma.

Choosing Ṽ small enough we can assure that the image of the isotopy stays away from
the Lagrangian torus L. By the isotopy extension theorem there exists a diffeomorphism
HN of M which extends φ1 and which is supported away from the torus and S0. Doing
the same for S0, we obtain a diffeomorphism HS with similar properties. After pulling
back ω by τ = HN ◦HS we may hence assume that ω agrees with ω1 on TM |S∞, TM |S0.
Obviously, by construction, τ is isotopic to the identity. This finishes Step 2.

Step III

Proposition 3.3.6 (T). There exists τ ∈ Diff0(M) which preserves S∞∪S0 pointwise, is
supported in a neighbourhood of S∞∪S0 away from the Lagrangian torus L and which pulls
the symplectic form ω back to a form which agrees with the symplectic form ω1 = p∗1ω(S)+
p∗2ωstd in a smaller neighbourhood of S∞∪S0. Moreover, τ = id on a neighbourhood of F .

Proof. Without loss of generality, it suffices to do this for S∞. Consider the linear in-
terpolation between ω and ω1. Since they both agree on TM |S∞ and symplecticity is an
open condition, there exists a neighbourhood S2×U∞ of S∞ on which the family of closed
2-forms

ωt = (1 − t)ω1 + tω
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is symplectic. As in Lemma 3.2.4, there exists a 1-form β which vanishes on S∞ and on
a neighbourhood of F such that ω − ω1 = dβ. Then the vector fields Xt generating the
Moser isotopy φt vanish on S∞ so that φt = id there. Thus for all t, any neighbourhood
of S∞ is mapped by φt to a neighbourhood of S∞. Choosing the neighbourhood small
enough, call it S2 × U ′ say, we can assure that it is mapped into S2 × U∞ by all φt. This
defines an isotopy of S2×U ′ into M starting at the inclusion (since φ0 = id). Hence by the
isotopy extension theorem there exists a diffeomorphism µ of M which extends (φ1)|S2×U ′.
We can choose this diffeomorphism to have support in S2 × U∞ (by shrinking U ′ even
further if necessary) and to be disjoint from the Lagrangian torus L and S0. Hence the
pull-back µ∗ω = ω1 on S2 × U ′. Moreover by the above β ≡ 0 on a neighbourhood of F
thus there Xt = 0 and hence φt = id as claimed. Let τ := µ with support in S2 ×U∞. By
construction τ is isotopic to the identity. This proves Step 3.

Hence the symplectic form is now split in S2 × U∞ ∪ U0 a neighbourhood of S∞ ∪ S0

and in V × S2 a neighbourhood of F as claimed. Note that the fibration is not standard
yet in a neighbourhood of S∞ ∪ S0, only the symplectic form is!

3.3.3 Standardisation of the symplectic foliation near the sec-

tions

The diffeomorphisms used so far preserved S∞, were the identity on S0, but did alter the
standard foliation near S0, S∞. In this step we want to deform the foliation back to the
standard foliation in a smaller neighbourhood of S∞ ∪ S0. This deformation should be
through symplectic foliations. Again it suffices to study one of S0, S∞.
Up to now, all diffeomorphisms used in steps 1− 3 were the identity on a neighbourhood
V × S2 of F , hence the standard foliation wasn’t altered in V × S2 and we can use
Proposition 3.3.8 to alter the symplectic foliation to the standard foliation in a smaller
neighbourhood. Let σp denote stereographic projection from p on S2 and consider the
following diffeomorphism

τ : S2 \ {z0} × S2 \ {S} → R4

(z, w) 7→ (σz0(z), σS(w)).

By construction τ(S2 \ {z0} × U∞) is a neighbourhood of R2 × {0} on which the push-
forward symplectic form τ∗ω is split but not yet Ω0 = dx∧dy+du∧dv (R4 with standard
coordinates x, y, u, v and z = x+ iy, w = u+ iv).
By applying Lemma 3.2.12 on each factor we can assume that we indeed have the standard
form dx ∧ dy + du ∧ dv on τ(S2 \ {z0} × U∞). The smooth foliation we obtain on τ(S2 \
{z0} × U∞) by pushing the foliation on M forward via τ is standard, i.e. the leaves are
of the form {z} × R2 for |z| > R

2
for some R > 0.

Preliminary discussion to Proposition 3.3.8

Regard any smooth function f : R2 → R2, then the pullback F ∗Ω0 of the symplectic form
Ω0 under the embedding

F : R2 → R4
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z 7→ (z, f(z))

is given by

(1 + detDf)dx ∧ dy.
Hence the graph Γ(f) ⊂ R4 of f is symplectic if and only if 1 + detDf > 0 and if it
inherits its orientation from the projection to the z-plane.
Now assume that A : R2 → R2 is linear and that φ : R → R is a smooth function. Then a
short calculation shows that for f(z) = φ(|z|)Az

detDf = detA(φ2(r) + rφ(r)φ′(r))

with r = |z|. This proves

Lemma 3.3.7. Let A : R2 → R2 be linear with detA ≥ −1 + ǫ. Let φ : [0,∞) → R be a
smooth function. Then the graph of f(z) = φ(|z|)A(z) is symplectic provided that for all
r > 0,

0 ≤ φ(r)2 + rφ(r)φ′(r) <
1

1 − ǫ
.

Proposition 3.3.8 (S). Let Λ := D(0, R) ⊂ R2 be a closed disk and
(
Sλ
)
λ∈Λ

be a

smooth foliation of a region in (R4,Ω0) by symplectic hypersurfaces Sλ intersecting R2 ×
{0} transversely in (λ, 0). Then for every neighbourhood W ⊂ R4 of Λ there exists a
neighbourhood U ⊂ W of Λ and a family of foliations

(
Sλs
)
s∈[0,1],λ∈Λ

with the following
properties.

• Sλ0 = Sλ;

• Sλs is symplectic and intersects R2 × {0} transversely in (0, λ);

• Sλs = Sλ outside W ;

• Sλ1 = {λ} × R2 in U . Moreover, for every λ with Sλ = {λ} × R2 in W we have
Sλs = Sλ for all s.

Proof. The proof is in spirit similar to the proof of Proposition 3.2.9. After shrinking W ,
we may assume that in W each surface can be written as a graph Sλ =

{
z = λ+ fλ(w)

}

over the w-plane with fλ(0) = 0 (cf. the discussion before Proposition 3.2.9). After a
C1-small perturbation we may assume that the fλ are linear functions Aλ. We do this
as in the linearization in Proposition 3.2.9 by cutting off the Taylor expansion of fλ in w
after the linear term.
Symplecticity implies detAλ > −1. Since we may choose W compact, there exists a δ > 0
with detAλ ≥ −1+ δ in W for all λ. Moreover, we may assume that the δ-neighbourhood
of Λ is contained in W . Pick α > 0 so small that 5α

δ
< δ. Let φs be the family of functions
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R2 × {0}R2 × {0}
after

deformation

Sλ1
Sλ = Sλ0

(λ, 0)

(λ, 0)

Sλs

Sλ1

Figure 3.6: The family of foliations Sλs

from Lemma 3.2.7 for α, δ. Then since 0 ≤ φs(r) + rφ′
s(r) <

1
1−δ it also follows that

0 ≤ φ2
s(r) + rφs(r)φ

′
s(r) <

1
1−δ . Now define

fλs (w) = φ1−s(|w|)fλ(w).

Then by Lemma 3.3.7, the graph Sλs of λ + fλs satisfies all the conditions of the proposi-
tion, where U is the α

2
-neighbourhood of Λ. Note that if Sλ = {λ} ×R2 for some λ, then

fλ(z) = 0 and thus Sλs = Sλ for all s.
It only remains to verify that the surfaces (Sλs )λ∈Λ form a foliation for each s or equiva-
lently, that the map

Fs : Λ ×D(0, δ) → R4

(λ, w) 7→ (λ+ fλs (w), w) = (λ+ φ1−s(|w|)Aλw,w)

is an embedding.
To show injectivity suppose that Fs(λ, w) = Fs(λ

′, w′). Then w = w′ and

λ− λ′ = −φ1−s(|w|)(Aλ − Aλ
′
)w.

This implies

|λ− λ′| ≤ ‖Aλ − Aλ
′‖|w| ≤ ‖Aλ −Aλ

′‖δ.
Since fλ depends smoothly on λ, there exists a constant C such that ‖Aλ − Aλ

′‖ ≤
C|λ − λ′|. For δ < 1

C
this implies λ = λ′. For the immersion property, consider the

differential

DFs(λ, w) =




1 +Bs
∂fλ

s

∂w

0 1


 , Bs =

∂fλs
∂λ

.
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This is an embedding iff the matrix

1 +Bs = 1 + φ1−s(|w|)
∂Aλ

∂λ
w

is invertible. By smoothness in λ, there exists a constant C with ‖∂Aλ

∂λ
w‖ ≤ C|w|. Then

for δ < 1
C

we get

‖φ1−s(|w|)
∂Aλ

∂λ
w‖ ≤ C|w| ≤ Cδ < 1,

which implies invertibility of 1 +Bs.

As in the standardisation of the symplectic fibration near a fiber, Proposition 3.3.8
provides a smooth family of foliations Fs on S2 × S2 such that (F1, ω) has vanishing
symplectic curvature near the sections S∞, S0 and near F . We need to show:

Proposition 3.3.9. (Fs, ω, L, S∞, S0) is a homotopy of relative symplectic fibrations.

Proof. We need to show, that L is fibered by πs : x ∈ (Fs)x 7→ (Fs)x ∩ S0 for all s.
Consider the embeddings Fs in the proof of Proposition 3.3.8 and note, that for all s,
they have the same open set W̃ as image in R4 and agree in a neighbourhood of ∂W̃ .
Thus Fs ◦ F−1

0 : W̃ → W̃ ⊂M (we identify R4 with a subset of M) is an isotopy which is

the identity near ∂W̃ for all s. Extend this isotopy by the identity to all of M and denote
it by ψs. Hence the smooth family of symplectic foliations on M is given by Fs = ψs(F0).
Further note, since Fs(λ, 0) = (λ + φ1−s(|0|)Aλ0, 0) = (λ, 0), that ψs preserves S∞, S0

pointwise. Now consider

πs : x ∈ (Fs)x 7→ (Fs)x ∩ S0.

Since (Fs)x = ψs((F0)ψ−1
s (x)) and ψs preserves S0 pointwise, it follows, that πs(x) =

π0(ψ
−1
s (x)). Also ψs = id outside a neighbourhood of S∞∪S0, so in particular ψs(L) = L

pointwise for all s. Thus πs(L) = π0(ψ
−1
s L) = π0(L) = γ is an embedded curve and

π−1
s (γ(t)) ∩ L is an embedded circle. Further let T be the solid torus for the relative

symplectic fibration (F0, ω, L, S∞, S0), then the solid torus Ts = ψs(T ) is made up of
symplectic embedded disks in each leaf of Fs which bound the embedded circles from
before, so that Ts bounds L. This shows, that L is fibered by πs for all s. To check the
other properties that (Fs, ω, L, S∞, S0) is a homotopy of relative symplectic fibrations is
trivial.

Hence we can assume that there exists a neighbourhood S2 × (U∞ ∪U0) of S∞∪S0 on
which both the foliation F := F1 as well as the symplectic form are standard and which
is away from the Lagrangian torus L. Observe that, by construction, L still lies above
the equator in S0

∼= S2.



3.3. STANDARDISATION OF THE SYMPLECTIC FIBRATION NEAR THE SECTIONS63

2/3   

Figure 3.7: The cut-off function ρ

3.3.4 Trivialising the fibration

By a suitable diffeomorphism we want to obtain the standard foliation again.
Consider the map π = π1 : M → S2 given by (z, w) ∈ Fx 7→ x where Fx denotes the leaf
of the altered foliation from Proposition 3.3.8 through the point (x, S) ∈ S2 = S0.
As before it is the trivial S2-bundle over S2, hence there exits a trivialisation φ, such that
the following diagram commutes:

M
φ−−−→ Myπ

yp1

S2 id−−−→ S2

(3.4)

Since φ covers the identity, the fibers over the equator in S2 ∼= S0 are mapped to the fibers
over the equator. Thus φ(L) is a monotone Lagrangian torus for φ∗ω which is fibered by
p1 and which lies above the equator in the base. It is however not conveniently fibered
since φ might have messed up the region near the fiber F . Also the sections S0, S∞ are
not a priori preserved by φ. The following lemma however shows that we can assume
without loss of generality that φ(L) is conveniently fibered and φ preserves the sections
S0, S∞.

Lemma 3.3.10 (T). There exists a diffeomorphism τ of M , such that the diagram above
commutes, and such that τ = id on a neighbourhood S2 × (U∞ ∪ U0) of S∞ ∪ S0 and on
V × S2 a neighbourhood of F .

Proof. Clearly it suffices to show the lemma for one of S∞, S0. First we show that we can
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assume that φ is the identity in V × S2, the neighbourhood of F where the foliation has
not been altered. We do this by applying a suitable fiber preserving diffeomorphism ψ of
M which undoes φ on V × S2.
Therefore note that φz = φ|p−1

1 (z) is a diffeomorphism of S2 ∼= p−1
1 (z) for all z ∈ V .

Consider the cut-off function ρ in the fig. 3.7 and define u : D(z0, ǫ) → Diff(S2) by
u(z) = φ−1

ρ(|z|) z
|z|

where z are local coordinates around z0. Extending u by φ−1
0 to all of

S2, we found the desired diffeomorphism of S2 × S2 by setting ψ(z, w) = u(z)(w). Then
indeed ψ ◦ φ is the identity in a neighbourhood of z0.
Then using Theorem 3.3.2, we may assume that φ preserves the sections S∞ and S0.
Next π = p1 on a small neighbourhood S2 × U∞ of S∞ (this is what we have obtained
in Proposition 3.3.8). Fix z ∈ S2, then φ maps a small disk D(N, ǫ) ⊂ p−1

1 (z) into a
neighbourhood of N in p−1

1 (z) ∼= S2. Denote this embedding of the disk D := D(N, ǫ)
into S2 by τz. These embeddings are the identity for points near z0, so we can regard
τz = τt+is as a two parameter family of embeddings of the disk into S2 which is the
identity for t2 +s2 large. By the isotopy extension theorem with parameters we find a two
parameter family ψz of diffeomorphisms of S2 which agree with τz on D and which have
support in an arbitrarily small neighbourhood V̄ of N with D ⊂ V̄ . From this we can
construct a diffeomorphism of S2 × S2 by setting ψ̂(z, w) = ψ−1

z (w) such that τ = ψ̂ ◦ φ
has the desired properties.

τ(L) is monotone Lagrangian for τ∗ω and is conveniently fibered by p1. This proves
the standardisation near the two sections S∞, S0.

3.4 Topological standardisation of the torus

In this section we construct a p1-fiberpreserving diffeomorphism τ of M which maps the
Lagrangian torus L to the Clifford Torus Lstd.
The definitions of A, Diff(A, ∂A) and Ham(A, ∂A, ωstd) used in the sequel can be found
in Appendix E and chapter 4.
We construct τ , by first finding a loop of diffeomorphisms of the annulus A, which realises
the torus L over the equator (see below what we mean by this). Then we use the fact
that the fundamental group of Diff(A, ∂A) is trivial so that we can find a contraction
of this loop of diffeomorphisms. We then use this contraction to explicitly construct a
fiber-preserving diffeomorphism of M which maps the Clifford torus Lstd to L and which
preserves S∞ and S0.

Proposition 3.4.1 (T). Let (S2×S2, ω) be symplectic such that p1 is a symplectic fibration
and let L be a monotone Lagrangian torus conveniently fibered by p1. Further ω is of the
form ω = ω0 on V̄ ×S2 a neighbourhood of F and ω = ω1 on S2×Ū∞∪Ū0 a neighbourhood
of S∞ ∪ S0. Then there exists a p1-fiber-preserving diffeomorphism τ of S2 × S2 which
maps Lstd to L and which is the identity on a neighbourhood S2 × (U∞ ∪ U0) of S∞ ∪ S0

and on a neighbourhood V × S2 of F .
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Proof. The Lagrangian torus L is given by symplectic parallel transport of the equator
E ⊂ F around the equator in the base by Proposition 2.4.2.
Since the symplectic connection is flat near S∞, S0, the diffeomorphisms of the fibers given
by symplectic parallel transport

Pt : F → Ft

(z0, w) → ((cos(2πt), sin(2πt), 0), φt(w))

fixes neighbourhoods of the north- and the southpole pointwise (Note that the fibers
are smoothly identified but not symplectically so!). Hence we can view φt as living
in Diff(A, ∂A) the group of diffeomorphisms of the annulus which are fixed near the
boundary (again we smoothly identify the annuli in all fibers). Define Et := φt(E) =
p−1

1 ((cos(t), sin(t), 0)) ∩ L. Furthermore symplectic parallel transport is the identity in
V ×S2 near F . Hence φt defines a smooth path in Diff(A, ∂A) which is stationary near
its ends. It is a well-know fact that πi(Diff(A, ∂A)) = id for all i ≥ 1 (see Appendix E).
From Theorem 4.2.10 in chapter 4 we know that the monodromy map φ1 is hamilto-
nian. Since L is a torus generated by symplectic parallel transport, it follows that φ1 is
hamiltonian with φ1(E) = E. We have the following lemma:

Lemma 3.4.2. Let ψ ∈ Ham(A, ∂A, ωstd) (for a definition see 4.2.5) such that ψ(E) = E,
i.e. that ψ fixes the equator, then there exists a smooth path ψt ∈ Ham(A, ∂A, ωstd) from
the identity to ψ such that ψt(E) = E for all t.

Proof. This is proved in Appendix D, Lemma D.0.24.

Apply Lemma 3.4.2 to ψ = φ−1
1 . Then let ψt be the path given by the Lemma and

reparametrise in t such that ψt is constant in t near its ends. Now consider the path

θt = φt ◦ ψt
and note that, by construction, it is still true that θt(E) = Et. But by construction θt is
a loop since φ1 ◦ ψ1 = id and it is also smooth by construction (θt = id near its ends).
But π1(Diff0(A, ∂A)) = id so that the loop θt is contractible. By smooth approximations
we may assume that θst is a smooth contraction of θt, i.e. θ1

t = θt; θ
0
t = id; θs0 = θs1 = id.

Again by a reparametrisation in s, we may assume that θst is constant in s near its ends.
We can extend the diffeomorphism θst by the identity to all of S2.

Choosing cylindrical coordinates z, µ ∈ (−1, 1)×R/2πZ on S2 \ {N, S} we can define
a global diffeomorphism of S2 × S2 by

τ : S2 × S2 → S2 × S2; ((z, µ), w) 7→ ((z, µ), θ1−z2
µ
2π

(w))

on S2 \ {N, S} × S2 and by the identity on {N, S} × S2. This is a fiber-preserving
diffeomorphism of S2 × S2 by construction and it maps the standard torus Lstd onto L.
Trivially, τ fixes a neighbourhood S2 × (U∞ ∪ U0) of S∞ ∪ S0 by construction. Moreover,
since θst is constant in s near its ends and θ1

t = id ∈ Diff+(S2) for t near 0, 1, it follows
that τ = id in a neighbourhood V × S2 of F . This proves the proposition.
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Pulling back all data by τ gives the required standardisation theorem of the torus.
Hence ω is a symplectic form on S2 × S2 which makes the fibers of p1 symplectic, such
that ω = ω0 on V × S2, ω = ω1 on S2 × (U∞ ∪ U0) and such that Lstd is monotone
Lagrangian for ω. This finishes the standardisation.

3.5 Summary

Recall that Fstd is the foliation on S2×S2 given by the fibers of p1, S∞ = S2×{N} , S0 =
S2 × {S} and F = p−1

1 ((1, 0, 0)).
For convenience, we summarize the results in this chapter by Theorem 3.5.1. Observe,

that all the diffeomorphisms in this chapter to simplify the setup induce the identity
on H2(M). This follows either since they are isotopic to the identity or by Proposition
2.4.8. Hence, all these diffeomorphisms map relative symplectic fibrations to relative
symplectic fibrations. On the other hand, those steps in this chapter whose output is not
a diffeomorphism giving diffeomorphic relative symplectic fibrations, where shown to be
homotopies of relative symplectic fibrations. This proves

Theorem 3.5.1 (Standardisation). Assume that

(Fstd, ω, L,Σ,Σ
′)

is a relative symplectic fibration. Then (Fstd, ω, L,Σ,Σ
′) is equivalent to

(Fstd, ω, Lstd, S∞, S0)

in the sense of Definition 2.4.9 such that ω = p∗1ω̃+p∗2ωstd on the set W = (V ×S2)∪(S2×
(U∞∪U0)). Where V ×S2 is a neighbourhood of F and S2× (U∞∪U0) is a neighbourhood
of S∞ ∪ S0. So in particular, S∞, S0 are horizontal. Furthermore, ω̃ = ωstd near z0.



Chapter 4

Killing the monodromy

Recall that Fstd is the foliation on S2×S2 given by the fibers of p1, S∞ = S2×{N} , S0 =
S2×{S} and F = p−1

1 ((1, 0, 0)). In this chapter, we assume, that (Fstd, ω, Lstd, S∞, S0) is a
relative symplectic fibration, such that ω = p∗1ω̃+p∗2ωstd onW = (V×S2)∪(S2×(U∞∪U0)).
In particular S∞, S0 are horizontal for the symplectic connection. Moreover note, that
π : x ∈ (Fstd)x 7→ (Fstd)x ∩ S0 is just given by π(z, w) = (z, S) for all (z, w) ∈ S2 × S2,
and so π is basically p1. In the following, we identify S0 with S2.

4.1 Suitable coordinates on the base

As before we consider S2 ⊂ R3 and z0 = (1, 0, 0). Let φt ∈ Diff(S2) be the gradient flow
of the height function h : S2 → R; (x, y, z) 7→ x. Then φt(E) = E for all t. Let

Bb :=
{
(x, y, z) ∈ S2|x ≥ b

}
= h−1([b,∞)).

By shrinking, we can assume that V = D(z0, ǫ) is the neighbourhood of z0 over which
the symplectic form is standard after the standardisation in chapter 3. Now take t = T so
big, that φ := φT (B− 1√

2
) ⊂ D(z0, ǫ). Pull back all the data by the diffeomorphism φ× id.

xy-planexy-plane S2 ⊂ R3
S2 ⊂ R3

bb Bb

φt
x-axisx-axisx-axisx-axis

φt(Bb)

Figure 4.1: The gradient flow of h and its effect on Bb
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B− 1√
2

Cλ

z0

Figure 4.2: Circles of latitude and the set B− 1√
2

Clearly the symplectic form is not the original form over B− 1√
2

anymore, it is however

still split of the form ω1 := p∗1ω̂ + p∗2ωstd. Consider the usual spherical polar coodinates
λ ∈ (−π

2
, π

2
), µ ∈ [0, 2π] on the base S2 \ {N, S} centered at z0.

Denote by Cλ the circle of latitude λ in the base and by φλ the symplectic parallel
transport around Cλ parametrised in the obvious way. Since the starting and end point
of the parametrisation of Cλ is contained in B− 1√

2
for all λ and the symplectic form ω

equals p∗1ω̂ + p∗2ωstd over B− 1√
2
, we can regard φλ as living in Symp(S2, ωstd) for all λ.

In the following proposition, we want to fix two properties of φλ which are due to the
standardisation in chapter 3:

Proposition 4.1.1. 1. φλ = id for |λ| ≥ π
4
;

2. φλ restricts to the identity on D(N, 2ǫ), D(S, 2ǫ) for some ǫ > 0;

Proof. Cλ ⊂ B− 1√
2

for all |λ| ≥ π
4
. Since the symplectic form is split in B− 1√

2
, it follows

that symplectic parallel transport φλ around those Cλ is the identity.
Further, by the Standardisation 3.5.1, the symplectic form is split in a neighbourhood of
the symplectic sections S∞, S0 so that there exists ǫ > 0 and neighbourhoods D(N, 2ǫ),
D(S, 2ǫ) of N, S in S2 such that φλ|D(N,2ǫ) = φλ|D(S,2ǫ) = id.

By stereographic projection σN from N the set S2 \ (D(N, ǫ) ∪D(S, ǫ)) is a closed
annulus A in C which is centerd at the origin. For a simpler notation we will assume
without loss of generality that

A =

{
z ∈ C|1

2
≤ |z| ≤ 2

}

and by Appendix A, ωstd = r
π(1+r2)2

dr ∧ dθ on C via stereographic projection. Further

let λstd = −1
2(1+r2)π

dθ be the standard primitive of ωstd. Thus we may assume that for all

λ we have φλ ∈ Symp(A, ∂A, ωstd) (see the definition in Appendix E). Further by the
first conclusion in proposition 4.1.1, λ 7→ φλ defines a loop in Symp0(A, ∂A, ωstd) which
is constant near its ends (for |λ| ≥ π

4
). Consider the loop ψλ = (φλ)−1.
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4.2 Monodromy is Hamiltonian

In this section we show that the monodromy maps φλ and their inverses ψλ are Hamilto-
nian.

Lemma 4.2.1. Let φ ∈ Symp(A, ∂A, ωstd). Then there exists a smooth function F : A→
R which is constant in a neighbourhood of the boundary (not necessarily the same constant
near the two boundary components !) such that

φ∗λstd − λstd = dF.

Proof. Trivial (Appendix D).

Now we can define:

Definition 4.2.2. Let φ ∈ Symp0(A, ∂A, ωstd), the identity component of Symp(A, ∂A, ωstd).
Then F lux(φ) ∈ R, the Flux of φ, is defined to be

F lux(φ) = F (2) − F (
1

2
)

where F : A→ R is the smooth function from Lemma 4.2.1 which satisfies

dF = φ∗λstd − λstd.

Remark If F, F ′ are two functions such that dF = φ∗λstd−λstd = dF ′ then F ′ = F+c
for some constant c and obviously F lux(φ) = F (2) − F (1

2
) = F ′(2) − F ′(1

2
). Hence F lux

is well-defined.
Also note that F lux(φ) for φ ∈ Symp0(A, ∂A, ωstd) is independent of the primitive of ωstd.
Since this is important in the sequel, we phrase it as a lemma:

Lemma 4.2.3. If F luxλ(φ) denotes the Flux of φ ∈ Symp0(A, ∂A, ωstd) defined with
respect to λ with dλ = ωstd instead of λstd, then

F lux(φ) = F luxλ(φ).

Proof. Trivial (Appendix D).

Lemma 4.2.4. Let φ, ψ ∈ Symp0(A, ∂A, ωstd) then F lux(φ ◦ ψ) = F lux(φ) + F lux(ψ)
and F lux(Id) = 0.

Proof. Trivial (Appendix D). Follows also from Lemma 4.2.3.

Now we can define

Definition 4.2.5. The group Ham(A, ∂A, ωstd) of Hamiltonian symplectomorphisms of
the annulus A which are fixed in some neighbourhood of the boundary is defined to be

Ham(A, ∂A, ωstd) := {φ ∈ Symp0(A, ∂A, ωstd)|F lux(φ) = 0} .



70 CHAPTER 4. KILLING THE MONODROMY

Note that Lemma 4.2.4 above shows that Ham(A, ∂A, ωstd) forms a group under com-
position. We proceed by showing two Lemmata which will be useful in the sequel.

Lemma 4.2.6. Let (M,ω = dλ) be an exact symplectic manifold. Let φt be a symplectic
isotopy starting at φ0 = id. Let φt be generated by the time-dependent vector field Xt, i.e

d

dt
φt = Xt ◦ φt.

Then ιXtω = dHt for a smooth family of functions Ht : M → R if and only if φ∗
tλ−λ = dFt

for a smooth family of functions Ft : M → R. Moreover Ft and Ht are related by the
equations

Ft =

∫ t

0

(Hs + ιXsλ) ◦ φsds

Hs =

(
d

dt
|t=s Ft

)
◦ φ−1

s − ιXsλ.

Proof. see Appendix D.

Lemma 4.2.7. Given any real number a, there exists a canonical symplectomorphism
φa ∈ Symp0(A, ∂A, ωstd) such that

F lux(φa) = a

and φ0 = id. Further φa depends smoothly on a.

Proof. Trivial (Appendix D).

Now we can show

Lemma 4.2.8. If φ ∈ Ham(A, ∂A, ωstd), then there exists a smooth family of functions
Ht : A → R which have support away from the boundary, such that φ is the time-one
map of the isotopy φt of A, generated by the time-dependent vector field Xt, defined by
ιXtωstd = dHt. In particular the group Ham(A, ∂A, ωstd) is path-connected.

Proof. Since φ ∈ Ham(A, ∂A, ωstd) ⊂ Symp0(A, ∂A, ωstd) there exists a smooth path
φt ∈ Symp0(A, ∂A, ωstd) from id to φ. Define A(t) := F lux(φt). By smoothness of the
path, A(t) is smooth in t. Hence consider the smooth path ψt = φ−A(t) ◦ φt between id
and φ (from above φ0 = id). Since F lux(φ−A(t) ◦ φt) = F lux(φ−A(t)) + F lux(φt) = 0
(cf. Proposition 4.2.4), this is a path in Ham(A, ∂A) which connects id to φ. Then
ψ∗
t λstd−λstd = dFt with Ft(2) = Ft(

1
2
) = 0 and Ht = (( d

ds s=t
Fs) ◦φ−1

t − ιXtλ) has support
away from the boundary and the desired properties by Lemma 4.2.6. This shows also
that Ham(A, ∂A, ωstd) is path-connected.

We have the following proposition:
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Proposition 4.2.9. Let M := C×A and Ω a symplectic form on M such that the fibers
of p1 : C×A → C; (z, w) 7→ z are symplectic. Moreover let Ω = p∗1α+p∗2ωstd near C×∂A
be split.
Let δ : [0, 1] → C be a closed curve in the base such that Ω|p−1

1 (δ(0)) = ωstd. Then the
monodromy map φ of the symplectic connection around δ is Hamiltonian.

Proof. Since H2(M) = 0 it follows that Ω = dΛ is exact. Let A := p−1(δ(0)) and let
Λ|A = λ.
Since Ω is split near ∂A there exists a neighbourhood U of ∂A such that φ|U = id. Sym-
plectic parallel transport is symplectic and the loop δ is contractible, hence it follows, that
φ ∈ Symp0(A, ∂A, ωstd) (indeed, the monodromy maps around the loops in a contraction
with fixed endpoints define a symplectic path to the identity). Thus by Lemma 4.2.1, we
have

φ∗λ− λ = dF

for some function F and we can define F luxλ(φ). By Lemma 4.2.3 F lux(φ) is independent
of the primitive λ and we surpress λ in the notation for F lux.
Now if γ : [0, 1] → A traces out the straight line element A∩R+ between the two boundary
components, then by the Fundamental Theorem of Calculus,

F lux(φ) = F (γ(1)) − F (γ(0)) =

∫

γ

dF =

∫

γ

φ∗λ− λ.

Define
Ps : A→ p−1(δ(s))

the parallel transport map for the path δs : [0, s] → C; t 7→ δ(t) and

Φ: [0, 1] × [0, 1] →M ; (s, t) 7→ Ps(γ(t)).

Let C := Φ([0, 1] × [0, 1]). Observe that P0 = id and P1 = φ. Now

∫

C

Ω =

∫ 1

0

∫ 1

0

Ω

(
∂Φ

∂s
,
∂Φ

∂t

)
dsdt

Note that
βt : [0, 1] → M ; s 7→ Φ(s, t) = Ps(γ(t))

is by definition the horizontal lift of δ starting at γ(t) and thus

∂Φ

∂s
(t, s) = β̇t(s)

is horizontal. But
∂Φ

∂t
(t, s) = dPs(γ

′(t))
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0

0

1

1

Φ

A

δ

C

δ × {γ(0)}

δ × {γ(1)}

γ
F lux(φ)

φ(γ)

Ps(γ)

βt

Figure 4.3: The map Φ and its image

is vertical. Hence by definition of the symplectic connection

Ω

(
∂Φ

∂s
(s, t),

∂Φ

∂t
(s, t)

)
= 0

and so ∫

C

Ω = 0.

On the other hand
∫

C

Ω =

∫

C

dΛ =

∫

∂C

Λ =

∫

Φ({1}×[0,1])

Λ −
∫

Φ({0}×[0,1])

Λ +

∫

Φ([0,1]×{1})
Λ −

∫

Φ([0,1]×{0})
Λ =

=

∫

φγ

λ−
∫

γ

λ+

∫

δ×{γ(1)}
Λ −

∫

δ×{γ(0)}
Λ = Flux(φ) +

∫

δ×{γ(1)}
Λ −

∫

δ×{γ(0)}
Λ.

Let iw : C → M ; z 7→ (z, w) denote the inclusion and let λi := i∗γ(i)Λ. Since near γ(i),
Ω = p∗1α + p∗2ωstd and p1 ◦ iw = id and p2 ◦ iw ≡ w, it follows that i∗γ(i)Ω = α and
consequently dλ0 = α = dλ1. Thus λ0 = λ1 + df for a function f : C → R. But then

∫

δ×{γ(i)}
Λ =

∫

iγ(i)(δ)

Λ =

∫

δ

λi
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and so, since δ is closed ∫

δ

λ0 =

∫

δ

λ1.

This implies by the equation above that
∫

δ×{γ(1)}
Λ −

∫

δ×{γ(0)}
Λ = 0

and thus
Flux(φ) = 0

as claimed.

The following theorem is a simple corollary of Proposition 4.2.9

Theorem 4.2.10. The monodromy map φλ of the symplectic connection defined by (p1, ω)
around the circle of latitude λ is an element of Ham(A, ∂A, ωstd).

Proof. Via stereographic projection from the northpole N applied to the base, we may
assume that we meet the conditions from Proposition 4.2.9. Then Cλ is just a closed
circle around the origin. Hence φλ ∈ Ham(A, ∂A, ωstd) as claimed.

Since ψλ = (φλ)−1, it follows straight away that also ψλ ∈ Ham(A, ∂A, ωstd).

Theorem 4.2.11. Ham(A, ∂A, ωstd) is simply connected.

Proof. This is proved in Proposition E.0.31 in Appendix E.

Thus the loop ψλ is contractible.

4.3 A special contraction

In the previous section, we have shown that the loop ψλ is contractible. In order for the
inflation procedure to work in the next section we need a special contraction ψλs with
λ ∈ [−π

2
, π

2
], s ∈ [0, 1] and such that ψ0

s(E) = E where E is the equator in S2. We will
also call E = {|z| = 1} ⊂ A the equator.

Theorem 4.3.1. There exists a smooth contraction ψλs of ψλ, with λ ∈ [−π
2
, π

2
], s ∈ [0, 1],

such that:

• ψλ1 = ψλ;

• ψλ0 ≡ id;

• ψλs = id for |λ| ≥ π
4

for all s;

• ψλs is constant in s near its ends;
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α

α

IdIdId

IdIdId

ψ0

ψ0 ψ0

γ1 γ2

D1

δ1

δ2

D2

ψλ

ψλ

Figure 4.4: The idea to construct the special contraction ψλs

• ψ0
s(E) = E for all s.

Proof. We want to use Lemma 3.4.2 and the fact that Ham(A, ∂A, ωstd) is simply con-
nected to find the desired special contraction. Here is the idea (cf. fig 4.4): Since ψ0 is the
monodromy map around the equator in the base, it follows that it preserves E (recall that
a fibered Lagrangian torus is generated by symplectic parallel transport by Lemma 2.4.2).
Thus by Lemma 3.4.2 there exists a path α(t) ∈ Ham(A, ∂A, ωstd) between the identity
and ψ0 which preserves E for all t. Now split the loop ψλ in two paths δ1 :=

{
ψλ
}
λ∈[−π

2
,0]

and δ2 :=
{
ψλ
}
λ∈[0,π

2
]
. Form two loops γ1 := δ1 ∗ ᾱ and γ2 := α ∗ δ̄2 where ∗ means

concatenation of paths and γ̄ means travelling through γ in opposite direction. Since
these loops are contractible in Ham(A, ∂A, ωstd), we can fill in disks D1, D2 which will
agree along α. Gluing them suitably together along α gives the desired contraction which
contains α. The issue here is that we have to do this in a smooth way. So the actual proof
looks somewhat different.

First we apply a smooth homotopy (a smooth family of reparametrisations) such that
ψλ is constantly φ = ψ0 for λ near 0. Now we define the paths

δ1 : [0,
π

2
] → Ham(A, ∂A, ωstd); t 7→ ψt−

π
2

δ2 : [0,
π

2
] → Ham(A, ∂A, ωstd); t 7→ ψ

π
2
−t

and these paths are now constant near the ends due to the homotopy above.
Apply Lemma 3.4.2 to φ = ψ0 and reparametrize the path α(t) in t such that t ∈ [0, π

2
]
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K1

K2

s

t

Figure 4.5: The construction of K

and such that it is constant near its ends.
In a simply connected space, all path with the same endpoints are homotopic through
such paths. Thus we get two continuous maps

K1, K2 : [0, 1] × [0,
π

2
] → Ham(A, ∂A, ωstd)

with K1(s, t) a homotopy between the paths δ1 and α and K2(s, t) a homotopy between
α and δ2. We can assume that Ki is constant in t near 0, π

2
(say for t being 4ǫ close).

Now reparametrise in s such that Ki(s, t) = Ki(0, t) for s < 4ǫ and Ki(s, t) = Ki(1, t)
for s > 1 − 4ǫ. Since δ1, δ2, α are smooth paths, it follows that Ki is smooth in a 4ǫ-
neighbourhood of the boundary by construction.
We concatenate the two homotopies above by concatenating the paths Kt

i (s) = Ki(s, t)
for fixed t to obtain a homotopy

K : [0, 1] × [0,
π

2
] → Ham(A, ∂A, ω)

Kt = Kt
2 ∗Kt

1

By construction K is a homotopy between δ1 and δ2 such that K(1
2
, t) = α(t). It is

smooth on the 2ǫ neighbourhood of its boundary and it is constant in s for s ∈ [1
2
−2ǫ, 1

2
+

2ǫ].
Next consider the continuous map (cf. fig. 4.6)

τ : [0, 1] × [0, 3] → [−1, 1] × [0, 1]

given by

τ(x, t) =





(−x, tx) for 0 ≤ t ≤ 1

(−x+ 2(t− 1)x, x) for 1 ≤ t ≤ 2

(x, x− (t− 2)x) for 2 ≤ t ≤ 3

.
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1

1

1

1

1

1

2

3
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0
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(0, s0)

s0

s0
s0 −s0

G = K ◦ a ◦ τ ◦ b

K

a

b

K = φ here

K = Id here

Id

ψλ

π
2

π
2

−π
2

α

φ

K is const.in s here

W

G is continuous

on W

G is smooth on

1
2

V = [0, 1] × [−π
2
, π

2
] \W

Figure 4.6: The construction of the map G
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The following two smooth maps

a : [−1, 1] × [0, 1] → [0, 1] × [0,
π

2
]; (x, y) 7→ (

1

2
(x+ 1),

π

2
y)

b : [0, 1] × [−π
2
,
π

2
] → [0, 1] × [0, 3]; (x, y) 7→ (x,

3

π
(y +

π

2
))

are only used to adjusted the domain and the range of τ to those of K. Then

G : [0, 1] × [−π
2
,
π

2
] 7→ Ham(A, ∂A, ωstd)

G(s, t) = K ◦ a ◦ τ ◦ b(s, t)
is a continuous contraction of the loop δ1 ∗ cφ ∗ δ̄2 where cφ denotes the constant path at
φ.
Note that K(s, t) is constantly φ for t > π

2
− 2ǫ and constantly id for t < 2ǫ (cf. fig. 4.6).

Thus G(s, t) = id for s < ǫ and G(s, t) is a reparametrisation of δ1 ∗ δ̄2 for s > 1− ǫ which
is constantly φ while t runs through the non-smooth points of τ . Hence G is smooth for
s near 0, 1. Furthermore, since τ(s, t) is smooth near t = 3

2
, s > 0 and K(s, t) is constant

in s near s = 1
2
, it follows that G(s, t) is smooth near t = 0 with

G(s, 0) = K(
1

2
,
π

2
s) = α(

π

2
s).

Hence G is a continuous contraction (of a reparametrisation) of δ1 ∗ δ̄2 which contains α
and which is smooth on the set V (see fig. 4.6). Now consider the following lemma which
will be proved in Appendix D.

Lemma 4.3.2. There exists a smooth approximation G̃ : [0, 1]×[−π
2
, π

2
] → Ham(A, ∂A, ωstd)

such that G̃ = G on Ṽ ⊂ V an open set which is a neighbourhood of the boundary, such
that G̃(s, 0) = α(π

2
s).

Thus by the lemma there exists a smooth map G̃ which is a contraction of a reparametri-
sation of δ1 ∗ δ̄2 in Ham(A, ∂A, ωstd) and which contains the path α. Reparametrising
suitably in s, t gives the required contraction ψλs = G̃(s, λ) with ψ0

s = α(π
2
s). This proves

the theorem.

4.4 Construction of a suitable Hamiltonian function

ψλs , the special contraction from Theorem 4.3.1, is Hamiltonian for all λ, s. It follows that
(ψλs )

∗λstd−λstd = dF λ
s for a function F λ

s being constant near the boundary of A and such
that F λ

s (2) − F λ
s (1

2
) = 0. But F λ

s is determined by the equation above up to a constant,
so we choose the constant such that F λ

s vanishes near the boundary. Because of this
canonical choice and the smoothness of the contraction ψλs in λ, s, we obtain a smooth
family F λ

s : A → R of smooth functions. By Lemma 4.2.6, the family F λ
s is related to
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N

S

C
π
3

C−π
3 µ = 0

µ = 1

Q

z0

Q̄

Figure 4.7: Q and Q̄

the family of Hamiltonians Hλ
s generating the Hamiltonian isotopy ψλs for fixed λ, by the

formula

Hλ
s =

dF λ
s

ds
◦ (ψλs )

−1 − ιXλ
s
λstd

where
d

dt
ψλt = Xλ

t ◦ ψλt
and thus, Hλ

s is also a smooth family of functions in λ, s. Note that, since ψ0
s preserves

the equator, the Hamiltonian vector field X0
s is tangent to E for all s, so that H0

s |E is
constant for all s. Further, since ψλs is constant near its ends in both s and λ, Hλ

s vanishes
near its ends. Hence we have Hλ

s (a) = 0 for |λ| ≥ π
4
, s < 2ǫ; s > 1 − 2ǫ or a near the

boundary of A.
We define

Q :=
{

(µ, λ) ∈ S2 \ {N, S} |ǫ ≤ µ ≤ 1 − ǫ; |λ| ≤ π

4

}

Q̄ :=
{

(µ, λ) ∈ S2 \ {N, S} |µ ≤ 1; |λ| ≤ π

3

}
.

Define a smooth function
H : Q̄×A→ R

(λ, µ, a) 7→ Hλ
µ(a).

Now extend H to all of S2×S2 by zero and denote the resulting function also by H . Then
by construction H has support in Q × A and H(0, µ)|E is constant for all µ (H(λ, µ) =
H|p−1

1 (λ,µ)). Now we can evoke the inflation procedure.

4.5 Inflation

Recall, that in this chapter, we assume, that (Fstd, ω, Lstd, S∞, S0) is a relative symplectic
fibration. Further the symplectic form ω is split of the form ω = p∗1ω̂ + p∗2ωstd on

W := (S2 × (U∞ ∪ U0)) ∪ (B−1√
2
× S2)
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Neighbourhoods
S2 × {N}

S2 × {S}

F

Figure 4.8: Where ω is split.

B− 1√
2

B− 1√
2
∩ Cλ

Q ∩ Cλ; ψλ shall be realised here

Q

µ = 1

z0

φλ is realised here

Figure 4.9: The path Q ∩ Cλ and B− 1√
2
∩ Cλ

where S2 × (U∞ ∪U0) is a neighbourhood of the symplectic sections S∞ = S2 ×{N} and
S0 = S2 × {S} (see figure 4.2 for the definition of B−1√

2
and figure 4.8).

In this section, we are going to show, how to change the symplectic form ω, in its
relative cohomology class in H2(S2 ×S2, Lstd; R), to a form which has trivial monodromy
around the circles of latitude. To explain the idea, fix the circle of latitude Cλ(cf. fig. 4.9).
Then symplectic parallel transport equals the identity along the part of Cλ lying within
B− 1√

2
since the symplectic form is split over B− 1√

2
. It also follows that the monodromy

φλ will be realised by travelling along the part of Cλ not lying within B− 1√
2
.

The idea is now to smoothly change the symplectic form ω to a relative cohomologous
symplectic form ω′, such that the symplectic connection of ω′ outside Q× S2 agrees with
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that of ω and such that its symplectic connection realises the inverse monodromy ψλ along
Cλ ∩Q for all λ.
We define

Definition 4.5.1. A smooth function G : S2 × S2 → R is called admissible if

• Supp(G) ⊂ int(Q) × int(A)

• G|p−1
1 (e)∩Lstd

= constant for all e ∈ E, where E is the equator in the base.

The following diffeomorphism

ϕ : [
−1

2
,
1

2
] × [−π

3
,
π

3
] ⊂ C → Q̄ ⊂ S2

x+ iy 7→ (λ = y, µ = x+
1

2
)

provides local coordinates x, y around the point (λ, µ) = (0, 1
2
) in S2. Further Q̄ is covered

by these local coordinates.

In these coordinates, the admissible function G has support in [−1
2
, 1

2
] × [−π

3
, π

3
] × A.

Furthermore G|{x+i0}×E is constant for all x. Let G be an admissible function. Then
consider the closed form

ΩG = ω + dG ∧ dx.
Since ΩG is vertically non-degenerate, the ΩG-orthogonal complements to the tangent
spaces of the fibers of p1 induce a symplectic connection on S2 × S2.

Definition 4.5.2. The symplectic connection on p1 induced by the form ΩG for the ad-
missible function G will be denoted by ∇G

symp and will be called the connection induced by
G.

First notice that ΩG is obviously closed. It will be symplectic, if it is non-degenerate.
This is equivalent for the form ΩG ∧ΩG to be a volume form on S2 × S2. This statement
is local and trivially satisfied outside Supp(G). On Supp(G),

ω = p∗1ω̂ + p∗2ωstd.

We work in the chosen coordinates x, y and write for the form ω̂ on the base ω̂ = fdx∧dy
for some function f > 0. Hence

ΩG ∧ ΩG =

(
1 − 1

f

∂G

∂y

)
ω ∧ ω.

So ΩG will be symplectic iff 1 − 1
f
∂G
∂y

> 0 everywhere. This need not be true for general
G.
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We are now interested in the following question: Given any admissible function G, can
we find a deformation ωt of ω through symplectic forms such that Lstd remains monotone
Lagrangian throughout the deformation and such that ω1 has as symplectic connection
∇G
symp?

Since ΩG = ω outside Supp(G), the induced connection of G is the same as the induced
connection of ω outside Supp(G). Within Supp(G), ω = p∗1ω̂ + p∗2ωstd is split, so that its
induced connection is flat. Thus the horizontal spaces of the induced connection of ΩG

are spanned by the horizontal lifts of ∂
∂x
, ∂
∂y

. These can be easily seen to be ∂
∂x

+ XGx,y

and ∂
∂y

. Here XGx,y is the Hamiltonian vector field on (p−1
1 (x, y), ωstd) of the Hamiltonian

function Gx,y(a) = G(x, y, a). Indeed let ∂̃
∂x

= ∂
∂x

+ vx be the horizontal lift of ∂
∂x

with vx
vertical, then by definition

0 = ΩG(
∂̃

∂x
, v) = ΩG(

∂

∂x
, v) + ΩG(vx, v) = −dG(v) + ωstd(vx, v)

for all vertical v. Hence

dG = ιvxωstd

which implies that vx = XGx,y . The same calculation shows that vy = 0.

4.5.1 The inflation procedure

Now let fσ, f̄τ be two smooth non-negative bump-functions on S2 where we think of fσ
as living on the fiber F = {z0} × S2 and of f̄τ as living on the base. Let fσ be such that
Supp(fσ) ⊂ D(S, ǫ) ∪D(N, ǫ) where D(N, ǫ) ⊂ U∞;D(S, ǫ) ⊂ U0 are neighbourhoods of
N, S. In particular let fσ be such that

∫

D(N,ǫ)

fσωstd =

∫

D(S,ǫ)

fσωstd =
1

2
.

Now let f̄τ be a bump-function with support in Q̄ so that f̄τ (x, y) = f̄τ (x,−y) and that
f̄τ |Q = 1. Let

a :=

∫

Q̄

f̄τ
f
ω̂ =

∫

Q̄

f̄τdx ∧ dy

and define

fτ :=
f̄τ
af
.

Then ∫

Q̄

fτ ω̂ =
1

a

∫

Q̄

f̄τdx ∧ dy = 1
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D(N, ǫ)

D(S, ǫ) D(z0, ǫ)

z0z0

NN

SS

{z0} × S2

S0

On the baseOn the fiber

fσ

fσ

f̄
τ

sy
m
m
etric

Figure 4.10: The functions fσ, f̄τ

and by the symmetry of f̄τ
∫

Q̄∩{y≤0}
fτ ω̂ =

1

a

∫

Q̄∩{y≤0}
f̄τdx ∧ dy =

1

2
.

Let σ, τ be the two non-negative 2-forms σ = fσωstd and τ = fτ ω̂ and consider the
family of 2-forms

ωc =
1

c+ 1
(ω + cp∗1τ + cp∗2σ) .

Then on W = (S2 × (U∞ ∪ U0)) ∪ (B−1√
2
× S2),

ωc =
1

c+ 1
((1 + cp∗1fτ )p

∗
1ω̂ + (1 + cp∗2fσ)p

∗
2ωstd).

ωc is obviously closed for all c ≥ 0, ω0 = ω and ωc is non-degenerate on W if

ωc ∧ ωc =
1

(c+ 1)2
(1 + cp∗1fτ )(1 + cp∗2fσ)ω ∧ ω > 0

everywhere. But this is obviously true by the choice of c, fτ , fσ. Furthermore, on (S2 ×
S2) \W

ωc =
1

c + 1
ω

which is also symplectic. Thus ωc is symplectic for all c ≥ 0.
It is important to observe that the symplectic connections on p1 defined with respect to
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ω and ωc coincide for all c ≥ 0. Indeed, on W the form ωc is split as is ω, hence here
both symplectic connections are flat and the horizontal subspaces are the tangent spaces
to the other cartesian factor. Note that by construction on (S2 × S2) \W

ωc =
1

c+ 1
ω,

and the symplectic horizontal complements Hx to ker dpx are not affected by scaling of
the symplectic form. Hence the symplectic connections of both ω, ωc do agree for all c ≥ 0
as claimed.
But ωc is also relative cohomologous to ωstd in H2(S2 × S2, Lstd; R) for all c ≥ 0. This
follows by checking that both forms vanish on Lstd and that they evalute equally on a
basis of H2(S

2 × S2, Lstd; R). We take as a basis [F ], [S0], [D], [Σ] where D = T ∩ F
and Σ = Dlh × {z0} denotes the image of the constant section at z0 restricted to the
lower hemisphere Dlh. Firstly, it is clear that Lstd is Lagrangian for all c. Secondly note
that Lstd is monotone for ω and both D and Σ have Maslov index 2 (Lemma 2.4.3 and
Proposition 2.4.4 in chaper 2 show this for D respectively Σ). The monotonicity constant
is 1

4
because of the normalisation condition

∫
F
ω0 = 1 and µ(F ) = 4 by Theorem 2.3.4, so

it follows that
∫
D
ω =

∫
Σ
ω = 1

2
. But now

•
∫
F
ωc = 1

c+1
(
∫
F
ω + cp∗2σ) = 1

c+1
(1 + c) = 1

•
∫
S0
ωc = 1

c+1
(
∫
S0
ω + cp∗1τ) = 1

c+1
(1 + c) = 1

•
∫
D
ωc = 1

c+1
(
∫
D
ω + cp∗2σ) = 1

c+1
(1

2
+ c1

2
) = 1

2

•
∫
Σ
ωc = 1

c+1
(
∫
Σ
ω + cp∗1τ) = 1

c+1
(1

2
+ c1

2
) = 1

2

for all c ≥ 0. To see the last equation, notice that p1(Σ)∩ Q̄ = {y ≤ 0}∩ Q̄. Hence by the

discussion above for fτ = f̄τ

af
with ω̂ = fdx∧dy over Q̄ it follows that

∫
{y≤0}∩Q̄ fτ ω̂ = 1

2
. In

particular, Lstd is still monotone for all c ≥ 0. Since Supp(G) and Supp(p∗2fσ) are disjoint,
ωc = 1

c+1
(ω + cp∗1τ) on Supp(G). Hence if we restrict ωc to the fibers, on supp(G), it is

just the standard form ωstd scaled by 1
c+1

. Now we want to find an admissible function G̃,

which induces the connection ∇G
symp for the form ωc. By this we mean that the symplectic

connection ∇ eG
sympc

induced by the form

Ωc
eG

= ωc + dG̃ ∧ dx

should agree with ∇G
symp. For this to be true, all horizontal lifts have to agree. Since the

horizontal lifts of ∂
∂y

are trivial anyway, it boils down to comparing the horizontal lifts of
∂
∂x

. In particular the fiberwise Hamiltonian vector fields XGx,y of G with respect to the

symplectic form ωstd on the fiber and the fiberwise Hamiltonian vector fields X eGx,y
of G̃

with respect to the symplectic form 1
c+1

ωstd on the fiber have to agree. Hence

dG̃x,y = ιX eGx,y

1

c+ 1
ωstd =

1

c+ 1
ιXGx,y

ωstd =
1

c+ 1
dGx,y
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thus

G̃ =
1

c+ 1
G

Hence Ωc
1

c+1
G

induces the connection ∇G
symp. For c big enough the forms Ωc

1
c+1

G
will be

symplectic (see below) but not yet relative cohomologous to ω. Hence we have to modify
these forms further to obtain this property as well.
To do this, we denote K(x) := Gx,0(l) with l ∈ E the equator in the fiber. Hence K(x)
is the constant which G equals on the E = S1 that L cuts out of p−1

1 (x, 0). Let ρ be a
smooth symmetric cut-off function in y such that ρ(0) = 1 and Supp(ρ(y)K(x)) ⊂ Q.
Now consider the family of 2-forms

Ωc
t = ωc + td

1

c+ 1
(G− ρ(y)K(x)) ∧ dx

and note that
Ωc

1 = Ωc
1

c+1
G

+ p∗1α

for

α =
1

c+ 1
ρ′(y)K(x)dx ∧ dy =

ρ′(y)K(x)

(c+ 1)f
ω̂.

But a pull-back form from the base does not change the symplectic connection, hence Ωc
1

still induces the symplectic connection ∇G
symp.

4.5.2 Symplecticity

On (S2\Q)×S2 the form Ωc
t is just ωc which we know is symplectic. Now on Q×S2 ⊂W

ωc ∧ ωc =
1

(c+ 1)2
(1 + cp∗1fτ )(1 + cp∗2fσ)ω ∧ ω

while

ωc ∧ td
1

c+ 1
(G− ρK) ∧ dx =

t

2f(c+ 1)2

(
ρ′K − ∂G

∂y

)
(1 + cp∗2fσ)ω ∧ ω.

Hence we find

Ωc
t ∧ Ωc

t = ωc ∧ ωc + 2

(
ωc ∧ td

1

c+ 1
(G− ρK) ∧ dx

)
=

=
1

(c+ 1)2

(
1 + cp∗1fτ +

t

f

(
ρ′K − ∂G

∂y

))
(1 + cp∗2fσ)ω ∧ ω

on Q × S2. (1 + cp∗2fσ) is greater than zero for all c anyway as before. But the function
ρ′K − ∂G

∂y
is supported in the compact set Q × S2 hence there exists a constant M ≥

|ρ′K − ∂G
∂y
| on Q× S2. Now on Q× S2, the function p∗1fτ = 1

af
and so for c > Ma

(
1 +

c

a
+
t

f

(
ρ′K − ∂G

∂y

))
> 0 on Q× S2.
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Hence for c big enough, the family Ωc
t is symplectic, starts at ωc and Ωc

1 has as symplectic
connection ∇G

symp as desired. So we are left to show that the deformation is through
relative cohomologous forms.

4.5.3 Lagrangian monotonicity

We first have to check that Lstd is Lagrangian for Ωc
t for all t. But TxLstd is spanned by

∂
∂x

and a vector v tangent to the S1 = p−1
1 (p1(x))∩Lstd in the fiber. But by assumption G

is constant on this S1. Hence so is G− ρK, since ρK is a function of the base. It follows
that d(G− ρK)∧ dx( ∂

∂x
, v) = 0 and Lstd is Lagrangian for Ωc

t for all t. Furthermore since
d(G− ρK)∧ dx = d((G− ρK)dx) is exact, the integrals of Ωc

t over F, S0 are independent
of t. Also

∫
D

Ωc
t =

∫
D
ωc = 1

2
and

∫

Σ

Ωc
t =

∫

Σ

ωc +
t

c + 1

∫

∂Σ

(G− ρK)dx =
1

2
+

t

c+ 1

∫

∂Σ

0dx =
1

2

To see this, note that Σ has boundary on Lstd which projects to the equator on the base.
This means that ρ(∂Σ)) = 1 (where it is defined) and so by definition of K it follows that
G(∂Σ) − ρ(∂Σ)K(∂Σ) = 0. Thus the above implies that Ωc

t is relative cohomologous to
ωc as desired.
Indeed, for any admissible function G, we can find a deformation

ωt

of symplectic forms through relative cohomologous forms in H2(S2 × S2, Lstd; R), such
that one end of the deformation is ω and the other end has as symplectic connection the
connection induced by G: first consider the deformation ωc with c ∈ [0, C] and C so big
that (

1 +
C

fa
+
t

f

(
ρ′K − ∂G

∂y

))
> 0.

Then we consider the deformation
ΩC
t

with t ∈ [0, 1] which starts at ωC . Then the form ΩC
1 has ∇G

symp as its symplectic connec-
tion as desired.
Hence by construction, (Fstd, ωt, Lstd, S∞, S0) is a homotopy of relative symplectic fibra-
tions. Note that the symplectic forms ωt are still split near the sections S∞, S0.

4.6 Killing the monodromy

4.6.1 Killing the monodromy along circles of latitude

Putting the last two sections together, we can now prove:
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Proposition 4.6.1. Let (Fstd, ω, Lstd, S∞, S0) be a relative symplectic fibration with ω =
p∗1ω̂ + p∗2ωstd on

W := (S2 × (U∞ ∪ U0)) ∪ (B−1√
2
× S2).

Then there exists a deformation ωt of the symplectic form ω such that (Fstd, ωt, Lstd, S∞, S0)
is a homotopy of relative symplectic fibrations and the monodromy maps φλ along the cir-
cles of latitude λ with respect to the symplectic connection induced by ω1 are the identity
for all λ. Further, ω1 is still split near the sections S∞, S0

Proof. This follows directly from the inflation procedure applied to the admissible func-
tion H : S2 × S2 → R obtained from the special contraction in Theorem 4.3.1. Indeed
by construction the function H is admissible. Hence by the inflation procedure, we can
find a deformation ωt of the symplectic form ω through symplectic forms, such that
(Fstd, ωt, Lstd, S∞, S0) is a homotopy of relative symplectic fibrations, such that the sym-
plectic connection induced by ω1 equals that of ω outside Q×S2 and realises the symplectic
connection induced by Ω = ω + dH ∧ dx over Q × S2. Further, ω1 is split near the sec-
tions S∞, S0 by construction. We are left to show that the monodromy of the symplectic
connection induced by Ω along Q ∩ Cλ precisely equals ψλ = (φλ)−1.
By the choice of the local coordinates (x, y), Q̄ ∩ Cλ = (x, λ) with x ∈ [−1

2
, 1

2
]. Thus we

have to calculate the horizontal lift of ∂
∂x

which we know by the inflation procedure equals
∂
∂x

+XHx,λ
over the point (x, λ). Here XHx,λ

denotes the Hamiltonian vector field on the

fiber p−1
1 (x, λ) of the function Hx,λ = H|p−1

1 (x,λ). But by construction of H in section 4.4

Hx,λ = Hλ
x+ 1

2

= Hλ
s for s ∈ [0, 1] with s = x+ 1

2
. Recall that Hλ

s in 4.4 was the family of

Hamiltonians generating the special contraction ψλs . Consequently the monodromy map
equals indeed ψλ once we have travelled along the path Q̄ ∩ Cλ = {(x, λ)}x∈[−1

2
, 1
2
]. This

finishes the proof of the proposition.

Thus by Proposition 4.6.1 we can assume that the monodromy maps φλ along the
circles of latitude are trivial (the identity).

4.6.2 Killing all the monodromy

We alter the symplectic form in its relative cohomology class such that the resulting form
has trivial monodromy along any closed curve in the base. We need the following lemma.

Lemma 4.6.2. Let ω, ω′ be linear symplectic forms on R4 which define the same orien-
tation and agree on a real hyperplane H. Then ωt := (1 − t)ω + tω′ is symplectic for all
t ∈ [0, 1]. Further, ωt agrees with either form on H.

Proof. Take a symplectic basis e1, f1, e2, f2 for ω such that e1, f1, e2 is a basis of H . Take
a vector f ′

2 = a1e1 + b1f1 + a2e2 + b2f2 such that e1, f1, e2, f
′
2 is a symplectic basis for ω′.

Since ω, ω′ induce the same orientation, we have b2 > 0, and therefore

ω(e2, f
′
2) = b2 > 0, ω′(e2, f2) =

1

b2
> 0.
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For ωt := (1 − t)ω + tω′ we find

ωt ∧ ωt = (1 − t)2ω2 + 2t(1 − t)ω ∧ ω′ + t2(ω′)2,

and therefore

ωt ∧ ωt(e1, f1, e2, f
′
2) =

= 2(1 − t)2ω(e1, f1)ω(e2, f
′
2) + 2t2ω′(e1, f1)ω

′(e2, f
′
2)+

+2t(1 − t) (ω(e1, f1)ω
′(e2, f

′
2) + ω(e2, f

′
2)ω

′(e1, f1)) > 0

Proposition 4.6.3. Let (Fstd,Ω, Lstd, S∞, S0) be a relative symplectic fibration, such that
the monodromy φλ around all circles of latitude Cλ ⊂ S0 is the identity and Ω = p∗1̟1 +
p∗2̟2 is split near S∞, S0. Then there exists a deformation Ωt of symplectic forms starting
at Ω, such that (Fstd,Ωt, Lstd, S∞, S0) is a homotopy of relative symplectic fibrations and
(Fstd,Ω1, Lstd, S∞, S0) has trivial monodromy.

Proof. Outline: Using the triviality of the monodromy around the circles of latitude we
write down a p1-fiber-preserving diffeomorphism φ of M = S2 × S2 which pulls the sym-
plectic form Ω back to a form which agrees with the standard form ω0 on T (Cλ× S2) for
all λ. Then the linear deformation between φ∗Ω and ω0 will be shown to be a symplectic
relative cohomologous deformation and obviously ω0 has trivial monodromy. The desired
deformation will then be the family, obtained by pushing forward the linear interpolation
between the forms φ∗Ω and ω0 by φ.

Denote the 0-meridian by m0 := {(λ, µ) ∈ S2|µ = 0}. And let

Pλ : {N} × S2 → {(λ, 0)} × S2

the parallel transport map of the symplectic connection defined by Ω on p1 along m0 from
N to (λ, 0).

Moreover denote by

P λ
µ : {(λ, 0)} × S2 → {(λ, µ)} × S2

the parallel transport map with respect to the symplectic connection defined by Ω along
the path γλµ(t) = (λ, tµ) (this is the path along the circle of latitude λ from (λ, 0) to
(λ, µ)).
Observe, that due to the fact that Ω is split near S∞, S0, P

λ(w) = id = P λ
µ (w) for w near

N, S.
Further we will denote the restriction of the symplectic form Ω to the fiber {z} × S2 by
Ωz.
We construct φ by parallel transport on the left sphere in figure 4.11 with respect to the
symplectic connection defined by ω0 by first going backwards along the circle of latitude
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Pλ

P λ
µ

p−1
1 (N) p−1

1 (N)

p−1
1 (λ, µ) p−1

1 (λ, µ)p−1
1 (λ, 0) p−1

1 (λ, 0)

m0

Id

Id

(λ, 0)

(λ, 0)
(λ, µ) (λ, µ)

α

φ

Figure 4.11: The maps Pλ, P
λ
µ and the construction of φ.

until we hit the meridian m0 and then upwards along m0 until we hit the north pole N .
Then via a symplectomorphism

α : ({N} × S2, ωstd) → ({N} × S2,ΩN )

we symplectically identify the fibers over the northpole. Finally we use symplectic par-
allel transport for the induced symplectic connection by Ω along m0 first and then along
the circle of latitude to land in the fiber over the original point. The fact that the mon-
odromies along the circles of latitude of the symplectic connection induced by Ω are trivial
assures that the construction of φ is well-defined.
Since parallel transport with respect to the symplectic connection defined by ω0 is the
identity for all paths, we neglect this first part of the construction above.
We require the diffeomorphism φ to preserve the Clifford torus Lstd. Therefore it is neces-
sary to choose a symplectomorphism α with the property that P0 ◦α : ({N}×S2, ωstd) →
({(0, 0)}×S2,Ωz0) preserves the equator (Note that in the description of the construction
of φ above, this should actually be written P0 ◦ α ◦ Id).
To obtain this, note that ωstd and Ωz0 are two cohomologous symplectic forms, which give
the upper hemi-sphere symplectic area 1

2
. Thus, by Proposition 3.2.1 in the standardis-

ation, there exists a diffeomorphism h of S2 such that h(E) = E and h∗Ωz0 = ωstd. Let
α := (P0)

−1 ◦ h then α has the desired properties.
Now define φ (cf. fig. 4.11) by

φ : S2 × S2 → S2 × S2
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((λ, µ), w) 7→ P λ
µ (Pλ(α(N,w))).

Note that P λ
µ , Pλ are diffeomorphisms which are smooth in λ, µ and φ̄ : S2 × S2 → S2 ×

S2; ((λ, µ), u) 7→ ((λ, µ), α−1(P̄λ(P̄
λ
µ (u))) is a smooth inverse where P̄γ indicates parallel

transport along γ̄. Thus φ is a diffeomorphism. It preserves the Clifford Torus Lstd
because

φ({(0, µ)} ×E) = P 0
µ(P0(α({N} ×E))) = P 0

µ({(0, 0)} × E) = {(0, µ)} ×E

since P0 ◦α = h and the Clifford torus Lstd is given by parallel transport of the equator in
the fiber around the equator in the base. Further, since P λ, P λ

µ = id for points near N, S,
it follows that φ(z, w) = (z, α(N,w)) for points (z, w) ∈ S2 × S2 near φ−1(S∞), φ−1(S0).
Now consider the pull-back form Ω̄ := φ∗Ω. Note first, that near φ−1(S∞), φ−1(S0),

Ω̄ = p∗1̟1 + p∗2α
∗̟2

is split. By construction, Ω̄ restricts to ωstd on every fiber and moreover the horizontal
lifts of vectors tangent to circles of latitude with respect to ω0 and Ω̄ agree. Accordingly,
ω0 and Ω̄ agree on the 3-dimensional subspaces T((λ,µ),z)(C

λ × S2) in T((λ,µ),z)(S
2 × S2)

for all ((λ, µ), z) ∈ S2 × S2. Thus by Lemma 4.6.2, the linear interpolation Ω̄t := (1 −
t)Ω̄+ tω0 is through symplectic forms which are invariant on the 3-dimensional subspaces
T((λ,µ),z)(C

λ × S2).
By Proposition 2.4.8, φ induces the identity on H2, thus Ω̄t is a family of cohomologous
symplectic forms. Moreover near φ−1(S∞), φ−1(S0),

Ω̄t := p∗1((1 − t)̟1 + tωstd) + p∗2((1 − t)α∗̟2 + tωstd)

is split. Hence φ−1(S∞), φ−1(S0) remain symplectic and horizontal throughout the defor-
mation. Next,

Proposition 4.6.4. Lstd is monotone Lagrangian for Ω̄t for all t.

Proof. First we show that Lstd is Lagrangian for Ω̄t for all t. This follows immediately
since Ω̄t = ω0 on T (Cλ × S2) for all λ and all t and the Clifford torus is contained in
E × S2 = C0 × S2.
We are left to show that Lstd is monotone for Ω̄t, for all t.
Let D be a relative cycle, then

∫

D

Ω̄t =

∫

D

Ω̄ + t

∫

D

(ω0 − Ω̄).

Hence we are done if we can show that Lstd is monotone for both forms ω0, Ω̄. For Ω̄ this
follows from the fact that Lstd was monotone for the symplectic form Ω and by Proposition
2.3.6: By construction Lstd = φ−1(Lstd) and Ω̄ = φ∗Ω is the pull-back data under φ. For
ω0 this follows from Proposition 2.3.5.
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Now consider the deformation Ωt = φ∗Ω̄t. This is the desired deformation. It is
invariant on the 3-dimensional subspaces T((λ,µ),z)(C

λ × S2) since Ω̄t is.
Further, since φ preserves Lstd, it follows straight away that Lstd is Lagrangian for Ωt.
Then note that

Ωt = (1 − t)Ω + tφ∗ω0

since φ∗ is linear. Now Lstd is monotone Lagrangian for both Ω and φ∗ω0. For Ω this
is clear by assumption and for φ∗ω0 this follows since (φ(Lstd) = Lstd, φ∗ω0) is the push-
forward data under φ of (Lstd, ω0) which is monotone by Proposition 2.3.5. Hence along the
lines of the proof of Proposition 4.6.4 it follows that Lstd is indeed monotone Lagrangian
for Ωt for all t. Next, near S∞, S0,

Ωt = p∗1((1 − t)̟1 + tωstd) + p∗2((1 − t)̟2 + tα∗ωstd)

is split. Hence S∞, S0 remain symplectic and horizontal throughout the deformation.
To see that Ω1 has trivial mondromy, note that (p1, ω0) has vanishing symplectic curvature
and (p1, φ∗ω0) is the push-forward symplectic connection which, by Proposition 2.2.17, also
has vanishing symplectic curvature. Then symplectic parallel transport is the identity for
all loops in the base S2. By construction, (Fstd,Ωt, Lstd, S∞, S0) is a homotopy of relative
symplectic fibrations. This proves the proposition.

4.7 Summary

We summarize this chapter by Theorem 4.7.1. Again all steps in this chapter either give
rise to diffeomorphic relativ symplectic fibrations or to homotopies of relative symplectic
fibrations, this proves

Theorem 4.7.1. Assume that (Fstd, ω, Lstd, S∞, S0) is a relative symplectic fibration, such
that ω = p∗1ω̃ + p∗2ωstd on W = (V × S2) ∪ (S2 × (U∞ ∪ U0)). In particular S∞, S0

are horizontal for the symplectic connection. Then (Fstd, ω, Lstd, S∞, S0) is equivalent to
(Fstd, ω

′, Lstd, S∞, S0) in the sense of Definition 2.4.9 such that (Fstd, ω
′, Lstd, S∞, S0) has

vanishing symplectic curvature. Further S∞, S0 are still horizontal.



Chapter 5

Hamiltonian isotopy of fibered

monotone Lagrangian tori

In this chapter we show, how the results, which we have obtained in chapters 3 and 4 to
kill the monodromy, can be applied to the original foliation and symplectic form. First
we will deform these to have trivial monodromy. Then by Moser’s theorem we will fix the
symplectic form to be standard all the way through the deformation process. In the next
step we construct a symplectomorphism φ of (M,ω0) by parallel transport, which maps
the Lagrangian torus L to the Clifford torus Lstd. Moreover φ will induce the identity
on homology. So, by a theorem of Gromov, there exists a symplectic isotopy φt from
the identity to φ. Since M is simply-connected, this isotopy is Hamiltonian. This proves
Theorem 2.5.1.

5.1 Killing the monodromy by a homotopy of relative

symplectic fibrations

This is the main section of the thesis. Let (F , ω0, L,Σ,Σ
′) be a relative symplectic fibration

on M as given by the assumptions in Theorem 2.5.1.

Theorem 5.1.1. There exists a homotopy (Ft, ω0, Lt,Σt,Σ
′
t) of relative symplectic fibra-

tions with

(F0, ω0, L0,Σ0,Σ
′
0) = (F , ω0, L,Σ,Σ

′)

such that

(F1, ω0, L1,Σ1,Σ
′
1)

has trivial monodromy. Further, the symplectic sections Σ1,Σ
′
1 are horizontal and the

isotopy Lt can be realised by a Hamiltonian isotopy.

Proof. We start with the relative symplectic fibration (F , ω0, L,Σ,Σ
′) on M . Corollary

3.1.3 implies that there exists a diffeomorphism τ : M → S2×S2, such that τ(F , ω0, L,Σ,Σ
′) =

91



92CHAPTER 5. HAMILTONIAN ISOTOPY OF FIBERED MONOTONE LAGRANGIAN TORI

(Fstd, φ∗ω0, φ(L), φ(Σ), φ(Σ′)) is a relative symplectic fibration on S2 ×S2. Now, by com-
bining Theorem 3.5.1 and Theorem 4.7.1 we can assume that (Fstd, φ∗ω0, φ(L), φ(Σ), φ(Σ′))

is equivalent to a relative symplectic fibration (F , ω, L,Σ,Σ′
) with vanishing symplectic

curvature such that Σ,Σ are horizontal. But then also (F , ω0, L,Σ,Σ
′) and (F , ω, L,Σ,Σ′

)
are equivalent. Thus Theorem 2.4.10 gives a homotopy of relative symplectic fibrations
(Ft, ωt, Lt,Σt,Σ

′
t) on M , starting at (F , ω0, L,Σ,Σ

′) and ending at (F1, ω1, L1,Σ1,Σ
′
1)

with vanishing symplectic curvature such that Σ1,Σ
′
1 are horizontal. Since Σ′ is simply

connected the monodromy map around any closed loop in Σ′ is the identity.
Finally, by Lemma 2.4.11, there exists a homotopy (F̃t, ω0, L̃t, Σ̃t, Σ̃

′
t) of relative sym-

plectic fibrations, starting at (F , ω0, L,Σ,Σ
′), which keeps the symplectic form fixed and

whose endpoint is diffeomorphic to (F1, ω1, L1,Σ1,Σ
′
1). Further, the Lagrangian isotopy

L̃t can be realised by a Hamiltonian isotopy. Since the endpoints are diffeomorphic,
(F̃1, ω0, L̃1, Σ̃1, Σ̃

′
1) has trivial monodromy and the sections Σ,Σ′ are horizontal (cf. Propo-

sition 2.2.17). This proves Theorem 5.1.1.

The purpose of the following proposition is to show, that if we have a relative sym-
plectic fibration with vanishing symplectic curvature, then the symplectic area of a disk
D in Σ′ and a horizontal lift D̃ of D have invariant symplectic area. This is necessary in
the sequel to show that the torus L can be mapped onto Lstd.

Proposition 5.1.2. Let (F , ω, L,Σ,Σ′) be a relative symplectic fibration with vanishing
symplectic curvature. Let D ⊂ Σ′ be a disk enclosed by γ = π(L) where π : x ∈ Fx 7→
Fx ∩ Σ′. Further let D̃ denote a horizontal lift of D. Then

∫

D̃

ω =

∫

D

ω.

Proof. Let z0 = γ(0), z1 ∈ Fz0 ∩ D̃ and let δ : [0, 1] → Fz0 be a path such that δ(0) = z0
and δ(1) = z1(cf. fig. 5.1). Since the symplectic curvature vanishes, symplectic parallel
transport depends only on the endpoints of a path, not on the path itself. Thus let γz
denote a path in D which connects z0 to z and let Pz denote the parallel transport along
γz. Now we define

Φ: D × [0, 1] → M ; (z, t) 7→ Pz(δ(t)).

This is a smooth map (actually an embedding) and we define

C := Φ(D × [0, 1]).

Then

0 =

∫

C

dω =

∫

∂C

ω =

∫

D̃

ω −
∫

D

ω −
∫

Φ(∂D×[0,1])

ω.

But the last integral vanishes since Φ(∂D×[0, 1]) denotes the surface traced out by parallel
transport of the path δ. Thus any tangent space is spanned by a vertical vector and a
horizontal vector and so the symplectic area of Φ(∂D × [0, 1]) vanishes. This proves the
proposition.
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z0

z1

Fz0 ⊃ δ
γ

Σ′

Φ(D × [0, 1])
Pz(δ)

Fz0

D

D̃

Figure 5.1: The path δ, the disk D and a horizontal lift D̃

Proposition 5.1.3. Let (F , ω, L,Σ,Σ′) be a relative symplectic fibration with vanishing
symplectic curvature. Let D ⊂ Σ′ be a disk enclosed by γ = π(L) where π : x ∈ Fx 7→
Fx ∩ Σ′. Then ∫

D

ω =
1

2
.

Proof. Let z1 ∈ Fγ(0) ∩ L and let D̃ be the horizontal lift of D through z1. Since L is

generated by symplectic parallel transport it follows that ∂D̃ ⊂ L. By Proposition 5.1.2
∫

D̃

ω =

∫

D

ω.

L is monotone with monotonicity constant 1
4
, thus

∫

D̃

ω =
1

4
µ(D̃)

with µ(D̃) ∈ 2Z. But γ is an embedded S1, thus by the Jordan curve theorem its
complement in Σ′ ∼= S2 consists of two disks and either of these disks has non-vanishing
symplectic area. Since the total symplectic area of Σ′ equals 1, it follows that

0 <

∫

D

ω < 1.

Hence µ(D̃) = 2 and indeed ∫

D

ω =
1

2
.

This proves the proposition. Note that one could also calculate the Maslov index of D̃ as
in Proposition 2.4.4.
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z

π(x)

φ(x)Pγx

P̄α(γx)

Fz

Fx

F̄α(z)

F̄α(x)

α(γx)

α(z)
α(π(x))

α

β

x

γx

Figure 5.2: The construction of φ

5.2 Hamiltonian isotopy to the Clifford torus

With the help of the following Proposition and a theorem of Gromov, we show the exis-
tence of the desired Hamiltonian isotopy.
We start with some preliminary remarks. Let (F , ω, L,Σ,Σ′), (F̄ , ω̄, L̄, Σ̄, Σ̄′) be relative
symplectic fibrations and let δ ⊂ Σ′ be a path then let Pδ : Fδ(0) → Fδ(1) denote the
parallel transport along δ for the symplectic connection defined by F and ω. Similarly P̄δ
denotes symplectic parallel transport along the path δ ⊂ Σ̄′ for the symplectic connection
defined by F̄ and ω̄.

Definition 5.2.1. Let (F , ω, L,Σ,Σ′), (F̄ , ω̄, L̄, Σ̄, Σ̄′) be relative symplectic fibrations.
Then they are said to have conjugate monodromy if

• Σ′, Σ̄′ are horizontal;

• there exists a z ∈ Σ′ and symplectomorphisms α : (Σ′, ω|Σ′) → (Σ̄′, ω̄|Σ̄′) and β : (Fz, ω|Fz) →
(F̄α(z), ω̄|F̄α(z)

) with α(z) = β(z);

•
P̄α(γ) = β ◦ Pγ ◦ β−1

for all closed path γ in Σ′ starting and ending at z.
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Proposition 5.2.2. If two relative symplectic fibrations (F , ω, L,Σ,Σ′), (F̄ , ω̄, L̄, Σ̄, Σ̄′)
on M have conjugate monodromy, then there exists a diffeomorphism φ of M such that
φ(F) = F̄ and φ∗ω̄ = ω.

Proof. Let π : M → Σ′; x ∈ Fx 7→ Fx ∩ Σ′. Then given any x ∈ M , pick a path
γx : [0, 1] → Σ′ between z and π(x).
Now we define

φ : M →M

x 7→ P̄α(γx) ◦ β ◦ P−1
γx

(x).

For the construction of φ, see figure 5.2. Since the two relative symplectic fibrations have
conjugate monodromy, this definition doesn’t depend on the choice of the path γx and so
φ is well-defined.
φ is smooth and has a obvious smooth inverse (just construct it the other way round), so
that φ is a diffeomorphism.
By construction leaves of F are mapped symplectically onto leaves of F̄ . Moreover φ
maps the horizontal distributions to each other and it maps Σ′ symplectically onto Σ̄′ (by
the map α). Hence the symplectic form τ := φ∗ω̄ has the following properties: τ = ω on
the leaves of F and on Σ′. Moreover τ, ω induce the same symplectic connection on π and
consequently the same symplectic curvature. But by Proposition 2.2.15, this implies that
the evaluation of τ and ω on horizontal vectors can only differ by a fiberwise constant.
Thus the two forms τ and ω differ by a pull-back form from the base. So τ −ω = π∗σ for
a two-form σ on Σ′. But on Σ′ we have seen that τ = ω and hence σ = 0. So indeed, φ is
a symplectomorphism as claimed, which maps the foliations onto each other. This proves
the proposition.

Remark

Recall from section 1.1 that M is diffeomorphic to S2 × S2 via the fixed diffeomorphism
θ. Via θ, we define all the ”standard” data on M which has been previously defined
on S2 × S2. For example pi ◦ θ−1 are the standard projections on M , then θ∗ω0 =
(p1 ◦ θ−1)∗ωstd + (p2 ◦ θ−1)∗ωstd is the standard symplectic form on M and θ−1Lstd is the
Clifford torus. We denote the data on M , defined via θ, by the same notation as on
S2 × S2.

Theorem 5.2.3. Let (F , ω0, L,Σ,Σ
′) be a relative symplectic fibration with vanishing

symplectic curvature and such that Σ,Σ′ are horizontal. Then there exists a symplecto-
morphism φ of (M,ω0) which makes the following diagram commute

M
φ−−−→ Myπ

yp1

Σ′ f−−−→ S2

. (5.1)

Furthermore, φ maps L to Lstd, is trivial on homology and f : (Σ′, ω0|Σ′) → (S2, ωstd) is
a symplectomorphism which maps π(L) onto the equator in S2.
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Proof. We need to show that (F , ω0, L,Σ,Σ
′) and (Fstd, ω0, Lstd, S

2×{N} , S2×{S}) have
conjugate monodromy. Then by Proposition 5.2.2, there exists the required symplecto-
morphism.
Let z ∈ γ := π(L) and let D ⊂ Σ′ be one of the disks enclosed by γ. First we construct
symplectomorphisms

α : (Σ′, ω0|Σ′) → (S2 × {S} , ωstd)
β : (Fz, ω0|Fz) → ({(1, 0, 0)} × S2, ωstd)

such that α(γ) = E ⊂ S2 with α(z) = (1, 0, 0) and β(L ∩ Fz) = E ⊂ S2 with β(z) = S.
We only show the construction for α since that of β is along the same lines. Compare fig.
5.3.
From Theorem 2.2.5, we know that Σ′ is diffeomorphic to S2. Since ω0|Σ′, ωstd integrate to
1 over Σ′, S2 × {S} respectively, by Moser’s theorem, there exists a symplectomorphism

α̃ : (Σ′, ω0|Σ′) → (S2 × {S} , ωstd).

As in Proposition 3.1.2, we can find a diffeomorphism k of S2 such that k(α̃(γ)) = E, i.e.
a diffeomorphism which maps α̃(γ) to the equator in S2.
Consider the push-forward symplectic form ω := k∗ωstd.
By Proposition 5.1.3

∫
D
ω0 = 1

2
and k ◦ α̃ maps D to Duh, thus

∫
Duh

ω = 1
2
.

Since ωstd and ω are cohomologous and give the upper hemi-sphere Duh area 1
2

it follows
by Proposition 3.2.1 that there exists a diffeomorphism h of S2 such that h(E) = E and
h∗ω = ωstd.

Now consider the symplectomorphism

α := h−1 ◦ k ◦ α̃.

It maps γ to E, so that α(z) lies on the equator. If necessary, composition with a rotation
around the north pole (this is ωstd symplectic) will assure that α(z) = (1, 0, 0).
Σ′ and S2 × {S} are horizontal and both relative symplectic fibrations (F , ω0, L,Σ,Σ

′)
and (Fstd, ω0, Lstd, S

2 × {N} , S2 × {S}) have vanishing symplectic curvature. Hence, the
monodromy around any closed curve is the identity. But then, the last condition in
Definition 5.2.1 is trivially satisfied and they have indeed conjugate monodromy. Let φ
be the symplectomorphism from Proposition 5.2.2 and let f := p1 ◦α. Since φ∗ preserves
the classes A,B, it is trivially the identity on homology. This proves the theorem.

Now we quote Gromov’s theorem from [2]

Theorem 5.2.4. Let φ ∈ Symp(S2 × S2, ω0) be trivial on homology. Then there exists a
symplectic isotopy φt ∈ Symp(S2 × S2, ω0) with φ0 = id and φ1 = φ.

Thus there exists a symplectic isotopy φt which starts at the identity and ends at the
symplectomorphism φ from Proposition 5.2.3. Since M is simply-connected, this isotopy
is Hamiltonian. Hence there exists a Hamiltonian isotopy from L to the Clifford torus
Lstd. This proves Theorem 2.5.1.
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Σ′

α = h−1 ◦ k ◦ α̃

α̃

γ

D
z

α̃(z)

α̃(D)

α̃(γ)

k

Duh

E

k(α̃(z))

h−1

z0 = (1, 0, 0)

Figure 5.3: The construction of the map α
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Chapter 6

A.Ivrii’s result and its relation to the

Main Theorem

6.1 The Chekanov-Schlenk Torus

In this section, we show the construction of the Chekanov-Schlenk Torus LCS following
[28]. They show, that it is a monotone Lagrangian torus in (S2 ×S2, ωstd⊕ ωstd) which is
not Hamiltonian isotopic to the Clifford torus Lstd.

6.1.1 The construction

We construct LCS in C2 with the split symplectic form ω0 = ωstd ⊕ ωstd, where ωstd =
1

π(1+x2+y2)2
dx∧dy is the push-forward of ωstd under stereographic projection ψN : S2\N →

C (see Appendix A) and show the relevant properties there. Then via (ψN × ψN )−1 we
conclude the existence of LCS in (S2 × S2, ω0).
Let γ : S1 → C be an embedded circle with image in the positive halfplane x > 0 (cf.
fig.6.1) which encloses a region of symplectic area 1

4
with respect to ωstd. Now we define

γ

x

iy

∂E

Figure 6.1: The embedded curve γ
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φ : S1 × S1 → C2

(t, α) 7→ (eiαγ(t), e−iαγ(t)).

This defines the Chekanov Schlenk Torus LCS in C2.

6.1.2 Properties

Embedded

Obviously φ is smooth and S1 × S1 is compact, thus is suffices to show that φ is an
injective immersion.
The differential of φ at (t, α) can be written as

dφ(t,α) =




eiαγ′(t) ieiαγ(t)

e−iαγ′(t) −ie−iαγ(t)


 .

It’s determinant over C equals

det dφ(t,α) = −2iγ(t)γ′(t).

Since γ is embedded, γ′(t) doesn’t vanish. Further γ lies in the positive half-plane {x > 0},
so that γ(t) 6= 0. Hence it follows that φ is immersive.
To show injectivity, assume, that

φ(t, α) = φ(t′, α′),

then we get two equations

eiαγ(t) = eiα
′
γ(t′); e−iαγ(t) = e−iα

′
γ(t′).

Multiplying both equations leads to

γ(t)2 = γ(t′)2.

Writing γ(t) = r(t)eiθ(t), this gives

r(t) = r(t′)

and

2(θ(t) − θ(t′)) = 2πk

for some k ∈ Z. But since γ lies in the positive half plane, θ(t) − θ(t′) ∈ (−π, π) so that
k = 0 and θ(t) = θ(t′). Hence

γ(t) = r(t)eiθ(t) = r(t′)eiθ(t
′) = γ(t′),
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so since γ is an embedding, it follows that t = t′. Then obviously α = α′ and φ is injective.
Lagrange

We have to show, that φ∗ω0 vanishes. Therefore note first that

(ωstd)z(α, β) =
1

π(1 + |z|2)2
ℑ(αβ).

Here ℑ(z) denotes the imaginary part of the complex number z.
Then

φ∗ω0(
∂

∂t
,
∂

∂α
) = (ω0)φ(t,α)

(
dφ(t,α)

∂

∂t
, dφ(t,α)

∂

∂α

)
.

But

dφ(t,α)

(
∂

∂t

)
= (eiαγ′(t), e−iαγ′(t))

and

dφ(t,α)

(
∂

∂α

)
= (ieiαγ(t),−ie−iαγ(t)).

Thus

(ω0)φ(t,α)

((
eiαγ′(t), e−iαγ′(t)

)
,
(
ieiαγ(t),−ie−iαγ(t)

))
=

= (ωstd)(eiαγ(t))

(
eiαγ′(t), ieiαγ(t)

)
+ (ωstd)(e−iαγ(t))

(
e−iαγ′(t),−ie−iαγ(t)

)
.

So

(φ∗ω0)(t,α)

(
∂

∂t
,
∂

∂α

)
=

1

π(1 + |γ(t)|2)2
ℑ(iγ′(t)γ(t)) +

1

π(1 + |γ(t)|2)2
ℑ(−iγ′(t)γ(t)) = 0.

Monotonicity

Since we are in a vector space, calculating Maslov indices is easy, since we can use the
ambient “trivialisation” of the tangent bundle and write down the loop of Lagrangians
straight away. Similarly, by Stokes theorem, the symplectic area of every disk in C2 is
equal to the integral of a primitive of ω0 around the boundary. Since ω0 = ωstd⊕ωstd and
ωstd on C is exact, there exists a primitive of ω0 of the form λ0 = λstd ⊕ λstd.
We only have to check monotonicity for a pair of loops in LCS spanning the homol-
ogy. Hence as the first loop take δ1(t) = (γ(t), γ(t)) and as the second loop take
δ2(α) = (eiαγ(0), e−iαγ(0)). From the definition of the embedding φ it is clear that
δ1, δ2 span H1(LCS,Z).
We regard C2 with the standard complex- and hermitian structure (denoted i, h). Obvi-
ously

v(t, α) := dφ(t,α)
∂

∂t
, w(t, α) := dφ(t,α)

∂

∂α

span Tφ(t,α)LCS over R; over C, v(t, α), w(t, α) span C2. Let the standard Lagrangian
Lstd be given by ∂

∂x
, ∂
∂u

for standard coordinates x + iy, u+ iv on C2. Note that v, w are
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orthogonal with respect to h. So normalising them yields a unitary map A(t, α), which
maps the standard Lagrangian Lstd to Tφ(t,α)LCS:

A(t, α) =
(

v(t,α)
|v(t,α)|

w(t,α)
|w(t,α)|

)
.

Consequently, by Lemma G.0.40, the Maslov index of δi is given by

µ(δi) = wind(detA2(δi)).

But |v(t, α)| = |γ′(t)| and |w(t, α)| = |γ(t)|, thus

A(δ1(t)) =




γ′(t)
|γ′(t)| i γ(t)|γ(t)|

γ′(t)
|γ′(t)| −i γ(t)|γ(t)|


 .

A(δ2(α)) =




eiα γ′(0)
|γ′(0)| ieiα γ(0)

|γ(0)|

e−iα γ′(0)
|γ′(0)| −ie−iα γ(0)

|γ(0)|


 .

Hence

detA2(δ1(t)) = − γ′(t)2

|γ′(t)|2
γ(t)2

|γ(t)|2
and

detA2(δ2(α)) = − iγ′(0)2γ(0)2

|γ′(0)2γ(0)2| .

But then, since γ is embedded and lies in the positive half-plane, it follows that

µ(δ1) = 2

(only γ′ contributes once to the winding number) and

µ(δ2(α)) = 0

since the second loop is constant.
Now we have to calculate the symplectic area of disks spanned into δ1, δ2 or alternatively

∫

δ1

λ0

and ∫

δ2

λ0.

Thus ∫

δ1

λ0 = 2

∫

γ

λstd = 2
1

4
=

1

2
.
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On the other hand let γ1(α) = eiαγ(0) and γ2(α) = e−iαγ(0), then δ2(α) = (γ1(α), γ2(α)).
Then ∫

δ2

λ0 =

∫ 2π

0

λ0(δ
′
2(α))dα =

∫ 2π

0

(λ0)(γ1(α),γ2(α))((γ
′
1(α), γ′2(α))dα =

=

∫ 2π

0

(λstd)γ1(α)(γ
′
1(α))dα+

∫ 2π

0

(λstd)γ2(α)(γ
′
2(α))dα =

=

∫

γ1

λstd +

∫

γ2

λstd.

But γ2(α) = ei(2π−α) = γ1(2π − α) is a reparametrisation with the opposite orientation,
hence

∫
γ1
λstd = −

∫
γ2
λstd and thus

∫

δ2

λ0 = 0.

Consequently, LCS is monotone in C2 with monotonictiy constant 1
4
. Putting LCS into

S2 ×S2 via (ψN ×ψN )−1 gives indeed an embedded, Lagrangian torus. Since
∫
S2 ωstd = 1

and µ(S2 × pt) = µ(pt× S2) = 4 by Theorem 2.3.4, it follows that LCS is also monotone
in S2 × S2.

Theorem 6.1.1 (Chekanov-Schlenk,[28]). LCS and Lstd are not Hamiltonian isotopic in
(S2 × S2, ωstd ⊕ ωstd).

Remark

M.-L. Yau also proved this by completely different methods in [23].

6.2 A.Ivrii’s result

We want to describe briefly the methods that A.Ivrii uses to prove that any Lagrangian
torus in (S2 × S2, ωstd ⊕ ωstd) is fibered. The methods are based on Symplectic Field
Theory as introduced by Eliashberg, Givental and Hofer in [30].

Definition 6.2.1. A contact manifold (V, α) is a 2n − 1-dimensional manifold V , such
that α ∧ (dα)n−1 is a volume form on V . The 2n− 2 dimensional distribution ζ := kerα
is called the contact structure and the vector field XR defined by

ιXR
dα = 0, α(XR) = 1,

is called the Reeb vector field.

Definition 6.2.2. A contact type hypersurface V ⊂ (M,ω) is a contact manifold (V, α)
such that ω = d(esα) in a neighbourhood N ∼= (−ǫ, ǫ)× V of V in M such that the vector
field ∂

∂s
is everywhere transversal to V .
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Definition 6.2.3. Let (V, α) be a contact manifold, then the symplectization of V is
defined to be the symplectic manifold (R × V, d(esα)), where s denotes the coordinate
along the R-factor.

Definition 6.2.4. An almost complex structure J on the symplectization (R× V, d(esα))
of (V, α) is called cylindrical if

• J is invariant under translation in the R-direction;

• Jζ = ζ;

• J ∂
∂s

= XR.

By the Weinstein neighbourhood theorem, every Lagrangian submanifold L ⊂ (X,ω)
has a neighbourhood U in X which is symplectomorphic to a neighbourhood of the zero-
section in T ∗L with the canonical symplectic form. The boundary V := ∂D∗

r of the
disk bundle D∗

rL = {(q, p) ∈ T ∗L||p| ≤ r} is a contact type hypersurface. We obtain
two symplectic manifolds (M+, ω) and (M−, ω), each with boundary V and ∂

∂s
pointing

outwards of M− and inwards of M+ with M = M+ ∪M−.
Now we define a family (M τ , ωτ) of symplectic manifolds by

(M τ , ωτ) = (M−, e
−τω) ∪ (V × [−τ, τ ], d(esα)) ∪ (M+, e

τω).

In the limit as τ → ∞, we can view (M τ , ωτ) as a decomposition of (M,ω) into the union
of

M∞
− = M− ∪ ([0,∞) × V, d(esα))

and
M∞

+ = M+ ∪ ((−∞, 0] × V, d(esα)).

In our case, M∞
+ is symplectomorphic to (M \ L, ω) and M∞

− is symplectomorphic to
(T ∗L, dλcan).
Start with an almost complex structure J on M , which is compatible with ω. Now it is
possible to choose a family of compatible almost complex structures Jτ on (M τ , ωτ) such
that Jτ = J on M+ and M− and Jτ is cylindrical on V × [−τ, τ ]. Note that (M τ , ωτ )
is symplectomorphic to (M,ω) for all finite τ , so that we can actually assume only the
almost complex structure Jτ to vary (this can also be done more directly, see [21]). This
procedure is called a neck-stretch of J along V .
Now let (M = S2×S2, ω = ωstd⊕ωstd) and L ⊂M a Lagrangian torus, then for any Jτ (τ
finite), there exists a Jτ -holomorphic foliation by spheres in the homology class [pt× S2]
([S2 × pt]). Symplectic field theory provides a compactness theorem for Jτ -holomorphic
maps in a splitting as above akin to the Gromov compactness theorem.
Ivrii examines how the Jτ -holomorphic foliations in class [pt× S2] degenerate for τ → ∞
and deduces the existence of a limit foliation F with the following properties (here the
properties are stated only for monotone tori! cf. Lemma 2.4.3):

• a S1-family of leaves of F intersects L in an embedded circle (so these leaves break
into two embedded disks along L).
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• These families of disks together form two solid tori T1, T2 with ∂T1 = ∂T2 = L.

Observe, that the leaves of F are not necessarily smooth along L. A. Ivrii shows that the
foliation F can be smoothened (see below how he does this) near L such that it remains
symplectic with otherwise the same properties.

In Theorem 4.4.1, A. Ivrii shows the existence of a symplectic section Σ′ of the foli-
ation F in the homology class [S2 × pt] which is disjoint from L. His proof proceeds as
follows:

Let J0 be a split almost complex structure on S2 × S2 and consider the foliation by
J0-holomorphic spheres S2 × pt. Apply a neck-stretch to J0 in a neighbourhood V of L
in S2 × S2. By A. Ivrii’s result, the foliations F τ for Jτ0 in the neck-stretch converge to a
J∞

0 -holomorphic foliation F∞ by symplectic spheres in the homology class [S2 × pt] such
that a S1-family of leaves intersects L. F∞ is not smooth near the torus L. But following
Ivrii (see Theorem 4.1.1), we can smoothen the S1-family of leaves intersecting L in an
arbitrary small neighbourhood N ⊂ V of L such that they remain symplectic. Further,
we can find a compatible almost complex structure J1 which agrees with J∞

0 outside N
such that the smoothened spheres intersecting L become J1-holomorphic (see Theorem
4.1.1 in [12]). Now consider the J1-holomorphic foliation F1 of S2 × S2 by symplectic
spheres in the homology class [S2 × pt]. By construction, a S1-family of the leaves of
F1 intersects L, hence we can choose a leaf Σ′ not intersecting L (the leaves of F1 are
parametrised by a S2).
Now apply a neck-stretch for J1 along a neighbourhood V1 of L which is disjoint from Σ′.
Now we are interested in the degeneration of the Jτ1 -holomorphic foliations by spheres in
class [pt × S2]. Again, by Ivrii’s result, the foliations in the neck-stretch converge to a
J∞

1 -holomorphic foliation F∞
1 which is not smooth near L and such that a S1-family of

leaves of F∞
1 intersects L. As in the previous step, we can smoothen these spheres in N2

and find a almost complex structure J2 which agrees with J∞
1 outside N2 and which makes

the smoothened spheres J2-holomorphic. Observe that J∞
1 agrees with J1 outside V1, so

that J2 agrees with J1 outside V1. Consider the foliation F2 given by the J2-holomorphic
spheres in class [S2 × pt]. Since Σ′ is still J2-holomorphic, positivity of intersections im-
plies that Σ′ intersects the leaves of F2 uniquely and transversely. Hence we can regard
Σ′ as a section of F2. This proves the existence of the symplectic section Σ′.
Hence L is fibered by F and Σ′.

6.3 Relation to the Main Theorem and Outlook

Ivrii’s results says that any monotone Lagrangian torus L in S2 × S2 is fibered. Hence,
there exists a foliation F and a section Σ′ of F as in the previous section. If there ex-
ists a second section Σ meeting the requirements of the Main Theorem 2.5.1, then L is
Hamiltonian isotopic to the standard torus Lstd.
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The Chekanov-Schlenk torus LCS is monotone Lagrangian in (S2 × S2, ωstd ⊕ ωstd) but
not Hamiltonian isotopic to Lstd by Theorem 6.1.1, hence by Ivrii’s result it is fibered by
F and Σ′ but there cannot exist the second symplectic section Σ.
This instantly rises the question whether the classification of monotone Lagrangian tori
in (S2 × S2, ωstd ⊕ ωstd) up to Hamiltonian isotopy comes within reach if we understand
the rôle of the second section Σ.



Appendix A

The standard form ωstd and

stereographic projection

Consider S2 ⊂ R3 with standard coordinates x, y, z as the submanifold of R3 given by the
zero set of the function f : R3 → R; (x, y, z) 7→ x2 + y2 + z2 − 1. Let

φN : S2 \ {N} → C

(x, y, z) 7→ x

1 − z
+ i

y

1 − z

be stereographic projection from the northpole N in S2 (stereographic projection from a
different point p ∈ S2 is obtained by precomposing φN by some element in SO(3) which
maps p to N). This is a diffeomorphism with inverse given by

ψN (u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
u2 + v2 − 1

1 + u2 + v2

)

where u+ iv are the standard cartesian coordinates on C. Consider the 2-form

σ =
1

4π
(xdy ∧ dz − ydx ∧ dz + zdx ∧ dz)

on R3. Then if we denote the restriction of σ to S2 by ω, we have

Lemma A.0.1.

ψ∗
Nω = − 1

π(1 + u2 + v2)2
du ∧ dv

Proof. Denote α = 1 + u2 + v2 then

dψN

(
∂

∂u

)
=

1

α2

(
2(1 − u2 + v2)

∂

∂x
− 4uv

∂

∂y
+ 4u

∂

∂z

)

dψN

(
∂

∂v

)
=

1

α2

(
−4uv

∂

∂x
+ 2(1 − v2 + u2)

∂

∂y
+ 4v

∂

∂z

)
.
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Any 2-form β on C is of the form

βz = f(z)du ∧ dv

for a smooth function f : C → R. Hence we write ψ∗
Nω = fdu ∧ dv and so

(ψ∗
Nω)u,v

(
∂

∂u
,
∂

∂v

)
= f(u+ iv).

Then

ωψN (u,v)

(
dψN

(
∂

∂u

)
, dψN

(
∂

∂v

))
=

=
2u

α
dy ∧ dz − 2v

α
dx ∧ dz +

u2 + v2 − 1

α
dx ∧ dy

(
dψN

(
∂

∂u

)
, dψN

(
∂

∂v

))
=

= −1

π

α3

α5
= − 1

π(1 + u2 + v2)
.

as claimed.

Note that on C∗ = C \ {0} with polar coordinates r, θ ∈ (0,∞) × [0, 2π)

ψ∗
Nω =

−1

π(1 + r2)2
rdr ∧ dθ.

Lemma A.0.2. The 2-form ω is a volume form on S2 with total volume −1.

Proof. This is Exercise 4.3.1 in [10]. We have to show that ω = ι∗
S2σ is closed, everywhere

non-degenerate and that it integrates to −1 over S2. It is obviously closed, since any 2-
form on S2 is closed for dimensional reasons. To show that it is non-degenerate on S2\{N},
note that since ψN is a diffeomorphism, this is equivalent to the function f in the proof
of Lemma A.0.1 to be non-zero. This is obviously true. Using stereographic projection
from the southpole, we can show similarly that the form ω is non-degenerate at N . This
shows that ω is a volume form. We are left to show that it has total volume −1. Since
the set {S,N} has measure zero, we can consider polar coordinates r, θ ∈ (0,∞)× [0, 2π)
on C∗ and hence

∫

S2

ω =

∫

C∗
ψ∗
Nω =

∫ 2π

0

∫ ∞

0

−1

π(1 + r2)2
rdrdθ =

−2π

π

∫ ∞

0

r

(1 + r2)2
dr.

With ∫ ∞

0

r

(1 + r2)2
dr =

∫ ∞

0

d

dr

( −1

2(1 + r2)

)
dr = lim

r→∞

−1

2(1 + r2)
+

1

2
=

1

2
.

Hence as claimed
∫
S2 ω = −1.

Now we define
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Definition A.0.3. The standard symplectic form ωstd on S2 is defined to be

ωstd := −ω.

Remark

The Fubini-Study form ωFS on CP1 is defined in the standard chart U0 = {z0 6= 0} by the
formula

i

2π

dz ∧ dz̄
(1 + |z|2)2

.

Hence indeed ωstd = ωFS under the usual identification CP1 ∼= S2.
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Appendix B

Proofs of results in chapter 2

The proof of Theorem 2.2.4

We will need the following lemma.

Lemma B.0.4. Let X be a topological space and consider [0, 1] ⊂ R with the subspace
topology. Let U be an open set in X and let γ : [0, 1] → X be a continuous path such that
γ(0) ∈ U and γ(1) ∈ X \ U . Then there exists a t0 ∈ (0, 1] such that γ(t0) ∈ ∂U .

Proof. Recall the definition of ∂U for U an open set in X:

∂U := {x ∈ X \ U |∃xn ∈ U s.t. xn → x} .

Consider the non-empty set T = γ−1U . Since γ is continuous, T is open in [0, 1]. Since
[0, 1] is bounded t0 = sup(t ∈ T ) exists. Now t0 6∈ T . To see this assume t0 ∈ T , then
either t0 = 1 with contradicts the assumption that γ(1) 6∈ U or t0 < 1. But T is open,
thus there exists an interval (t0 − ǫ, t0 + ǫ) ⊂ T ((0, ǫ)) for ǫ small enough. But then
t0 + ǫ

2
∈ T contradicting that t0 is the sup in T . Thus t0 6∈ T . There exists tn → t0 in

T , thus by continuity of γ, we have γ(tn) → γ(t0) with γ(tn) ∈ U and γ(t0) 6∈ U . Hence
γ(t0) ∈ ∂U . This proves the lemma.

Theorem (2.2.4). Let F0 be a k-dimensional foliation of the n-dimensional manifold X.
Assume that there exists an embedding G : U × F → M with U open in Rn−k and F a
closed k-dimensional manifold such that G maps {x}×F diffeomorphically onto a leaf of
F0 for all x ∈ U . Let V ⊂ W ⊂ U be open sets in Rn−k with V̄ ⊂ W and W̄ ⊂ U and
such that W is path-connected. Assume that

Gs : U × F →M

for s ∈ R is a smooth family of embeddings such that Gs|(U\V̄ )×F = G|(U\V̄ )×F . Then the
embeddings Gs define a smooth family of foliations Fs on M .
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Proof. Note first, that all the embeddings Gs are local diffeomorphisms for dimensional
reasons. Thus Y := G(U ×F ) is an open set of X. We want to show that Gs(U ×F ) = Y
for all s ∈ R.
Assume the opposite and let Z = G(W × F ). Then there exists a s ∈ [0, 1] and a point
x ∈ V × F such that Gs(x) 6∈ Y . Since W is path-connected and V ⊂ W , there exists a
continuous path β : [0, 1] → W × F such that β(0) ∈ (W \ V̄ ) × F and β(1) = x. Thus
γ(t) = Gs(β(t)) is a continuous path in X such that γ(0) ∈ Z and γ(1) 6∈ Z. By Lemma
B.0.4, there exists a t0 ∈ (0, 1] such that γ(t0) ∈ ∂Z. But ∂Z ⊂ (Y \Z) and there Gs = G
so that

β(t0) = G−1Gs(β(t0)) = G−1γ(t0).

Since a diffeomorphism φ satisfies ∂φ = φ∂ it follows that

β(t0) ∈ ∂(W × F ).

Hence β(t0) 6∈ W × F which contradicts the definition of β and indeed Gs(U × F ) =
G(U × F ) for all s.
Consider the map

Ḡ : U × R → X × R; (x, s) 7→ (Gs(x), s).

This is an embedding since it is a diffeomorphism onto Y × R. Indeed, by the discussion
above,

G̃ : Y × R → U × R

(y, s) → (G−1
s (y), s)

is a smooth inverse.

Consider the closed set P = G(V̄ × F ) in X. First we want to show how to obtain
foliating charts from an embedding G : U ×F → X which has the property that {x} ×F
is mapped by G onto a leaf of F0. Let

{
ψβ : W ′

β → Wβ

}
β∈B be an atlas for F . Since

G({x} × F ) is a leaf of F0

δβ = G ◦ (Id× ψβ) : U ×W ′
β → G(U ×Wβ) ⊂ X

is a foliating chart for F0. Indeed, any two such δβ1, δβ2, satisfy the foliation condition in
Definition 2.2.1 for the foliation F0|Y on Y .

Now use the embeddings Gs and the fact that they agree on (U \ V̄ ) × F to define
foliating charts for all s in order to get foliations Fs on X for every s. Define δsβ as δβ but
using Gs instead of G.
Let {φα : U ′

α → Uα}α∈A be a foliating atlas for F0. Define a new foliating atlas by restrict-

ing the old atlas to Ũα = Uα ∩ (X \P ), φ̃α = φα|Ũα
. And choosing as new foliating charts

on Y ,

(U ×W ′
β , δ

s
β)
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where U ×W ′
β ⊂ Rn−k × Rk is open. Since G = Gs on Y − P , there the old and the new

foliating charts match up, and on Y , the charts δsβ form foliating charts. This foliating
atlas defines a foliation Fs on X. Clearly the leaves of Fs are the images Gs({x}×F ) for
x ∈ U and agree with the old leaves outside of P .
We are left to show that the foliations Fs form a smooth family. First note that for a
constant family Ft = F0 of foliations, the foliating charts of the required foliation F on
X×R are given by (φα×id, Uα×R). But the map Ḡ is an embedding, so the construction
above shows precisly how to obtain the foliating charts for the required foliation F on
X × R: Restrict the charts for the constant foliation as above and use the embedding Ḡ
to obtain foliating charts on the remaining open set.
The leaves of the foliation F on X × R are given by

Fx,t =

{
(F0)x × R for x 6∈ Z

Ḡ({x} × F × R) for x ∈ Y

This proves the theorem.

The proof of Theorem 2.2.5

Theorem B.0.5. A foliation whose leaves are all compact and simply connected is simple.
Moreover if the ambient manifold X is connected, then the projection to the leaf-space
p : X → X� ∼ provides X with the structure of a smooth fiber bundle.

Proof. This is Corollary 8.6 on p. 92 in [11]. Note the difference in the statement. Simply
connectedness of the leaves, however, implies trivial leaf holonomy. Compare Definition
7.6 on p.86 in [11].

Definition B.0.6. A cover {Uα}α∈A of a smooth n-manifold X by open sets is called a
good cover, if all non-empty finite intersections

Uα1 ∩ Uα2 ∩ ... ∩ Uαn

for any n ∈ N and αi ∈ A are diffeomorphic to Rn.

Theorem B.0.7. Every compact smooth manifold N has a finite good cover.

Proof. This is Theorem 5.1 in [10] on p.42.

Proposition B.0.8. If π : X → B is a fiber bundle with fiber F with finite-dimensional
cohomology and B admits a finite good cover then χ(X) = χ(F )χ(B)

Proof. This is Exercise 14.37 on p.182 in [10].

Theorem B.0.9 (3.11). Two connected compact surfaces are diffeomorphic if and only
if they have the same Euler characteristic and the same number of boundary components,
and both are orientable or both are non-orientable.
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Proof. [7], page 207.

Theorem (2.2.5). Let F be a foliation of (M,ω) by symplectic 2-spheres. Further let Σ
be a submanifold of M which is transverse to Fq for all q ∈M . Then Σ is diffeomorphic
to S2, Σ intersects every leaf of F in a single point and the map

π : M → Σ

q ∈ Fq 7→ Fq ∩ Σ

is a surjective submersion. Moreover there exist diffeomorphisms φ : M → S2 × S2 and
u : Σ → S2 such that the following diagram commutes:

M
φ−−−→ S2 × S2

yπ
yp1

Σ
u−−−→ S2

(B.1)

Proof. Since the leaves are compact, symplectic and simply connected, by Theorem B.0.5
p : M → M� ∼ is a smooth symplectic fibration. Consequently, the leaf-space B is a
closed orientable 2-manifold: p is an open map so that all points in B are interior points
and B has no boundary. An open cover of B lifts to an open cover of M which by
compactness has a finite subcover. The projection of this subcover by p is the required
finite subcover of B. Thus B is a closed manifold. Finally (p, ω) induces a symplectic
connection on M . Two linearly independent vectors v, w in Hx the horizontal space
with respect to the symplectic connection are positively oriented if ω(v, w) > 0. Since
dpx : Hx → Tp(x)B is an isomorphism, we can use this to put a orientation on Tp(x)B.
Clearly this definition is well-defined. Hence B is closed and orientable.
Since B is compact, by Theorem B.0.7, B admits a finite good cover. Clearly the homology
of the fibers is finite dimensional, thus by Proposition B.0.8, it follows that the Euler-
Characteristics of the spaces involved satisfy

χ(M) = χ(S2)χ(B).

Thus χ(B) = 2 and by Theorem B.0.9, B is diffeomorphic to S2. Let u : B → S2 be a
diffeomorphism then u ◦ p : M → S2 is a S2-bundle over S2. But there are only two such
bundles, the trivial one and a non-trivial one. Note that the intersection forms of the
total spaces of the two S2-bundles differ. But M is diffeomorphic to S2 ×S2 which is the
trivial S2-bundle over S2. Hence it has the intersection form of the trivial S2-bundle and
consequently u ◦ p is the trivial S2-bundle over S2. Hence there exists a trivialisation:

M
τ−−−→ S2 × S2

yp
yp1

B u−−−→ S2
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Now push Σ forward under τ . Then τ(Σ) is transverse to {q} × S2 for all q ∈ S2. By
Proposition 3.2.6, this implies that τ(Σ) is the image of a section σ of p1. But then
σ′ = τ−1 ◦ σ ◦ u defines a section of p with image Σ and π = σ′ ◦ p. From this it is clear
that π is a smooth surjective submersion and that Σ is diffeomorphic to S2. The existence
of the trivialisation can be deduced as above for the space of leaves B. This proves the
theorem.

The proof of theorem 2.3.4

Consider S2 ⊂ R3 in the standard way and let De = {(x, y, z) ∈ S2|x ≥ 0} and Dw :=
{(x, y, z) ∈ S2|x ≤ 0} be the closed eastern and the western hemispheres in S2. Denote
by C = De ∩Dw = {x = 0} the meridian of longitude 0.
In the proof of the theorem, we need a function φ : S2 → S2 with degree 1 which collapses
the closed eastern hemisphere De to z0. Therefore, let ρ : R → R be a smooth decreasing
function which is equal to 1 for r ≤ 1 and 0 for r > 1 + ǫ. Now consider the family of
functions ψt(r) := 1−tρ(r). Via stereographic projection from −z0 we identify S2\{−z0}
with C and consider the family of functions φ̄t : C → C; z 7→ ψt(|z|)z. By construction
φ̄t(z) = z for |z| > 1 + ǫ, so that we can extend φ̄t by the identity to maps φt of S2. Note
that φ1 collapses De to z0 so we define φ := φ1. Since φ0 = id, φt is a homotopy from id
to φ. This shows that id and φ have degree 1 as maps from S2 to S2.
For completeness, we will now recall the definition of the first chern number of a complex
vector bundle as defined in [13] on p. 74:

Theorem (2.69 in [13]). There exists a unique functor c1, called the first chern num-
ber, that assigns an integer c1(E) ∈ Z to every symplectic vector bundle E over a compact
oriented Riemann surface Σ without boundary and satisfies the following axioms.

• (naturality) Two symplectic vector bundles E and E ′ over Σ are isomorphic iff
they have the same dimension and the same Chern number.

• (functorality) For any smooth map φ : Σ′ → Σ of oriented Riemann surfaces and
any symplectic vector bundle E → Σ

c1(φ
∗E) = deg(φ) · c1(E).

• (additivity) For two symplectic vector bundles Ej → Σ of rank nj:

c1(E1 ⊕E2) = c1(E1) + c1(E2), c1(E1 ⊗ E2) = n2c1(E1) + n1c1(E2).

• (normalization) The chern number of the tangent bundle of Σ is

c1(TΣ) = 2 − 2g

where g is the genus.
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We will only consider complex vector bundles, which are in particular symplectic. Let
E → S2 be a complex 1-dimensional vector bundle, then there exist trivialisations over
De, Dw. The first chern number of E is then given by the degree of the transition map
Ψ: S1 ∼= C = De ∩Dw → S1 = U(1) (cf. the discussion on p.75 in [13]).

Theorem (2.3.4). Let f : (S2, z0) → (M,x0) be an embedding with f(z0) = x0 ∈ L with
trivial normal bundle, then µ(u) = 4 for u = f ◦ φ : E → M . In the definition of u, via
stereographic projection from z0, we have identified E ⊂ C with the western hemisphere
in S2.

Proof. We have

f ∗TM ∼= TN ⊕ νf

where νf denotes the normal bundle of f in M . By assumption νf is trivial.
Note that any real two dimensional vector bundle over an orientable surface can be re-
garded as a complex vector bundle. This follows, since any metric on a 2-dimensional
bundle gives rise to a complex structure by counter-clockwise rotation by π

2
. Obviously

the Whitney-sum of two complex vector bundles is also a complex vector-bundle.
Now let c1 denote the first chern number as defined above. By construction ū : S2 →
M ; z 7→ f ◦ φ(z) has image f(S2) as well and

c1(ū
∗TM) = c1((f ◦ φ)∗TM) = c1(φ

∗f ∗TM) = c1(φ
∗(TS2 ⊕ νf )) =

= deg(φ)c1(TS
2 ⊕ νf ) = c1(TS

2) = 2.

Further it follows that ū∗TM also decomposes as a Whitney sum (ū∗TS2) ⊕ ū∗νf . Since
ū∗νf is trivial, it follows that c1(ū

∗TS2) = 2.
The chern number of a complex 1-dimensional vector bundle over S2 is the degree of
the transition map, hence, the complex two dimensional vector-bundle over S2, given by
ū∗TS2 ⊕ ū∗νf has a transition function of the form

δ : C → U(2)

t 7→




eiθ1(t) 0

0 eiθ2(t)




where θ1(2π) − θ1(0) = 4π and θ2(2π) − θ2(0) = 0.
Now note that u := ū|Dw can be regarded as a map from E to M with image f(S2) and
which collapses the boundary of ∂E to x0 in M . So we can calculate the Maslov index of
u with the definition given in Chapter 2. But note that by construction, the Lagrangians
Lz in ū∗TM over points z ∈ De are constant (Lz = Lstd), due to the fact that ū collapses
De to x0. Thus, if we trivialise the complex vector bundle with respect to u, then the
loop of Lagrangians along the boundary ∂E is precisely the image under the transition
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map δ of the standard Lagrangian Lstd. Hence by Lemma G.0.40, the Maslov index of u
is given by the degree of the map

t 7→ det
(
δ(t)2

)
= det






eiθ1(t) 0

0 eiθ2(t)




2
 = ei2(θ1(t)+θ2(t))

Thus

µ(u) = 2
θ1(2π) − θ1(0))

2π
+ 2

θ2(2π) − θ2(0))

2π
= 4.

This proves the theorem.
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Appendix C

Proofs of results in chapter 3

A detailed proof of Proposition 3.1.2

In the proof, we need the Jordan curve theorem and an extension of the Riemann mapping
theorem to the boundary(in case the boundary is nice). Thus we quote:

Theorem C.0.10 (Jordan curve theorem). Let H be a simple closed curve in C. Then

• C \ H has exactly two connected components one of which is bounded and simply
connected (called the interior) and the other one is unbounded (the exterior);

• The boundary of every component of C \H is H;

• If γ : [0, 1] → C is a simple loop with γ([0, 1]) = H then wind(γ, x) = 0 if x lies in
the unbounded component of C \ H and wind(γ, x) = ±1 if x lies in the bounded
component.

Proof. see [19] Chapter IX, App. 4.2, page 256 for the statement and its proof and [20]
for the proof of the additional statement that the interior is simply connected.

Theorem C.0.11 (Painlevé/Warschawski). Let G be a proper (not all of C) simply con-
nected domain in C such that the boundary curve can be parametrised by a smooth simple
closed curve, then there exists a diffeomorphism

φ : G→ D(0, 1)

between the closure of G and the closed unit disk.

Proof. The proof is given in [17].

Furthermore we need the following theorem about the isotopy type of embeddings of
the closed disk into a smooth manifold:

119
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Theorem C.0.12. Let X be a connected n-manifold and f, g : D
k → X embeddings of

the closed k-disk, 0 ≤ k ≤ n. If k = n and X is orientable, assume that f, g both preserve,

or both reverse, orientation. Then f and g are isotopic. If f(D
k
) ∪ g(Dk

) ⊂ X \ ∂X, an
isotopy between them can be realized by a diffeotopy of X having compact support.

Proof. The statement and the proof can be found in [7], Chapter 8.3, Isotopies of Disks,
on page 185.

Proposition (3.1.2). Let L ⊂ S2 × S2 be a torus fibered by p1. Then there exists a
diffeomorphism τ of S2 ×S2 such that τ preserves the standard fibration p1 and such that
τ−1(L) is conveniently fibered by p1.

Proof. Since γL = p1(L) has a tubular neighbourhood, there exists a point a in the
complement of γL in the base. On the base, consider stereographic projection σa from a.
Then σa(γL) is a closed embedded curve in C (so in particular it is a simple closed curve).
Let G be the interior of σa(γL). Then by the Jordan curve theorem, G is simply connected
but not all of C and its boundary curve is the simple closed curve σa(γL). So by Theorem
C.0.11, there exists a diffeomorphism φ : G→ D(0, 1). Then

β1 := ι ◦ (σa)−1 ◦ φ−1 : D(0, 1) → S2

β0 := ι ◦ (σN)−1 : D(0, 1) → S2

are two embeddings which satisfy the conditions of Theorem C.0.12 for X = S2. Then
there exists a diffeomorphism h of S2 which satisfies h ◦ β0 = β1 (the time-1 map of the
diffeotopy given by the theorem). Clearly h maps the equator to γL by construction.
Consider the diffeomorphism H := h× id of S2 × S2.
Analogously we achieve the second part (but now on the other factor) of being conveniently
fibered. But it is slightly easier because L being fibered implies already that F ∩ T = V
is diffeomorphic to a closed disk (so that we don’t have to refer to the Jordan curve
theorem). Let the diffeomorphism obtained be denoted by H̃.
Now we can define the desired diffeomorphism τ by τ := H̃ ◦ H . Since τ respects the
product structure of S2 × S2, it preserves the standard fibration p1 and by construction
τ−1(L) is conveniently fibered by p1. This proves the proposition.

The proofs of the various little results

Lemma (3.2.4). There exists a 1-form σ ∈ Ω1(U) defined on a neighbourhood of Q such
that

ω − ω0 = dσ

and σx = 0 for all x ∈ Q

Proof. Compare Lemma 3.14 page 94 in [13]. Let τ := ω − ω0. Outline: Choose a
Riemannian metric g (a product metric) on M and let exp be the exponential map with
respect to g. Let

Uǫ :=
{
v ∈ TQ⊥g |g(v, v) < ǫ

}
.
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Choosing ǫ small enough (let Q̃ := E×S2 and choose ǫ such that it works for the compact
submanifold Q̃) then

exp : Uǫ →M

is an embedding with exp(Uǫ) = N0. Define φt : N0 → N0 by φt(expq(v)) = expq(tv).
Then φt is an embedding for all t > 0 with φ0(N0) ⊂ Q, φ1 = id and φt|Q = id. Since τ
vanishes on Q it follows that φ∗

0τ = 0.
Let vt(φt(x)) denote the tangent vector to the curve s 7→ φs(x) at s = t. Define a 1-form

σ :=

∫ 1

0

φ∗
t ιvtτdt

(One has to prove that the family of forms σt := φ∗
t ιvtτ is smooth in t).

Then

τ = φ∗
1τ − φ∗

0τ =

∫ 1

0

d

dt
φ∗
t τdt =

=

∫ 1

0

φ∗
t (Lvtτ)dt =

∫ 1

0

φ∗
t (ιvtdτ + dιvtτ)dt = dσ.

Since τ vanishes on Q so does σt and hence also σ. Let U := N0.

Let F λ denote the leaf of the foliation τ̂−1(F0) through the point (λ,N). This is a
closed submanifold of S2 × S2. Note that F λ = {λ} × S2 for λ real and that F λ =
τ̂−1({q(λ)} × S2) for q(λ) = p1τ̂(λ,N).

Lemma C.0.13. dq0 is an isomorphism.

Proof. Note that d(τ̂ )0,N is a very special isomorphism. If v1, v2, w1, w2 is a basis of T0,NM
with v1, v2 spanning T0,N {0} × S2 the tangent space to the fiber and w1, w2 spanning
T0,NC × {N} the standard orthogonal complement such that w1 is along the real axis,
then

d(τ̂)0,N(vi) = vi; d(τ̂)0,N(w1) = w1

and d(τ̂)0,N(w2) is linearly independent of v1, v2, w1. Consequently

dq0(w1) = d(p1)0,N(d(τ̂)0,Nw1) = w1; dq0(w2) = d(p1)0,N(d(τ̂)0,N(w2)) = λw1 + µw2

with µ 6= 0. Otherwise d(τ̂ )0,N(w2) lies in the span of v1, v2, w1 and thus would not be
linearly independent. This shows that dq0 has rank two and is an isomorphism.

Lemma C.0.14. G is an embedding (by shrinking δ if necessary).

Proof. Since τ̂ is a diffeomorphism it follows that G is an embedding if and only if τ̂ ◦G is
an embedding. By construction, G|{λ}×S2 is a diffeomorphism onto F λ, but τ̂−1|{q(λ)}×S2

is also a diffeomorphism onto F λ. Thus we can write

τ̂ ◦G(λ, w) = (q(λ), φλ(w))
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with φλ ∈ Diff+(S2). But by Lemma C.0.13, dq0 is an isomorphism and hence a local
diffeomorphism, clearly dφλ is also an isomorphism. Since

dτ̂ ◦G =




dq 0

∂φλ

∂λ
dφλ




it follows that d(τ̂ ◦G)0,w is an isomorphism for all w ∈ S2. Consequently by compactness
of S2 after shrinking δ > 0 if necessary τ̂ ◦G : D(0, δ)×S2 → C×S2 is an embedding.

Proposition (3.2.7). For every 1 > δ > 0, α > 0 there exists a smooth family of non-
decreasing functions φs : [0,∞) → [0, 1], s ∈ [0, 1] satisfying

0 ≤ rφ′
s(r) + φs(r) <

1

1 − δ
(C.1)

such that φs(r) = s for r ≤ α
2
, φs(r) = 1 for r ≥ 5α

δ
and φ1 ≡ 1.

Proof. For r > 0 define χ(r) by χ(r) = rφ(r) then χ′ = rφ′ + φ, so that the condition on
φ is equivalent to

0 ≤ χ′(r) <
1

1 − δ
.

This will be the case if χ solves the differential equation

χ′(r) =
1

1 − δ
4

then
χ(r) =

r

1 − δ
4

+ c

for some constant c. We fix the constant to

c =
−α

1 − δ
4

by requiring that χ(α) = 0.
Then

χ(r) =
1

1 − δ
4

(r − α).

Observe that χ(4α
δ

) = 4α
δ

.
Now note, that φ(r) = 0 for r ≤ α

2
is equivalent to χ(r) = 0 for r ≤ α

2
and φ(r) = 1 for

r ≥ 5α
δ

is equivalent to χ(r) = r for r ≥ 5α
δ

. Consider the continuous function

θ̄(r) =

{
max(0, χ(r)) for r ≤ 4α

δ

r for r ≥ 4α
δ

.
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θ

Figure C.1: The functions θ̄ and θ

Let ρ be a smooth non-negative bump-function on R with support in [−ǫ, ǫ], such that

∫ ∞

−∞
ρ(r)dr = 1.

Let ǫ < min
{
α
4
, α

2δ

}
. Then the convolution

θ(r) = ρ ∗ θ̄(r) =

∫ ∞

−∞
ρ(s)θ̄(r − s)ds

is a non decreasing smooth function which satisfies

θ′(r) ≤ 1

1 − δ
4

.

Further θ(r) = 0 for r ≤ 3α
4

and θ(r) = r for r ≥ 5α
δ

. Thus φ0 = 1
r
θ(r) has all the required

properties. Now let
φs := ρ ∗ max(s, φ0).

This proves the proposition.

Proposition (3.2.8). There exists a constant C > 0 such that for all ǫ > 0 there exists a
smooth family of functions φǫs : [0,∞) → [0, 1], s ∈ [0, 1] such that
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• φǫs(r) = s for all r ≤ ǫ
20

• φǫs(r) = 1 for all r ≥ ǫ

• maxr∈[0,∞) |φ′ǫ
s (r)| ≤ 1

ǫ
C

for all s.

Proof. Let δ = 1
2

and α = ǫ
10

. Then by Proposition 3.2.7, there exists a smooth, non
negative family of functions φs : [0,∞) → [0, 1] such that φ′

s(r)r+φs(r) < 2 and such that
φs(r) = s for r ≤ ǫ

20
. But then φ′

s(r) = 0 for r ≤ ǫ
20

. So that

ǫ

20
φ′
s(r) ≤ rφ′

s(r)

for all r. Together with φs being non negative, it follows that

ǫ

20
φ′
s(r) ≤ φ′

s(r)r + φs(r) < 2.

Thus φ′
s(r) <

40
ǫ
, φs(r) = s for r ≤ ǫ

20
and φs(r) = 1 for r ≥ 5α

δ
= ǫ. Let φǫs := φs and

C := 40. This proves the Lemma.

In the proof of the next lemma we use the following facts from linear algebra for block
matrices:

Proposition C.0.15. 1.




A B

0 Id






C

D


 =




AC +BD

D




2. det




A B

0 Id


 = detA

3. If




A B

0 Id


 is invertible then




A B

0 Id




−1

=




A−1 −A−1B

0 Id




In the proof of the transversality of F λ
s to Σ, we have

Lemma C.0.16.

d(p1 ◦G−1
s ◦ σ) = A−1

s (A+ (B −Bs) ◦ dg)

Proof. ds =




Id

dg


, hence by the Proposition C.0.15

dσ =




A B

0 Id






Id

dg


 =




A+B ◦ dg

dg


 .
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Further

(dGs)
−1 =




A−1
s −A−1

s Bs

0 Id




and thus

(dGs)
−1dσ =




A−1
s (A + (B −Bs) ◦ dg)

dg




by Proposition C.0.15. Hence

dp1 ◦ dG−1
s ◦ dσ = A−1

s (A+ (B − Bs) ◦ dg)

Lemma (3.2.12). Given symplectic forms ω, ω′ on C, then there exists a diffeomorphism
φ of C with compact support which

• fixes the origin

• is the identity on the real line

• φ∗ω = ω′ on U a neighbourhood of the origin

Proof. We write ω = fdx ∧ dy and ω′ = f ′dx ∧ dy for positive functions f, f ′ : C → R.
We do this by an Moser argument for the linear interpolation of forms

ωt = ((1 − t)f + tf ′)dx ∧ dy.

Obviously this is a smooth family of symplectic forms on C with τ = ∂ωt

∂t
= (f ′−f)dx∧dy.

Consider the 1-form

σx,y =

(∫ y

0

f(x, s) − f ′(x, s)ds

)
dx.

Then
dσx,y = (f ′(x, y) − f(x, y))dx ∧ dy = τ.

Moreover the vector fields Xt defined by

ιXtωt = σ

are given by

Xt(x, y) = −
∫ y
0
(f(x, s) − f ′(x, s))ds

(1 − t)f(x, y) + tf ′(x, y)

∂

∂y
.

But since σx,0 =
∫ 0

0
(f(x, s) − f ′(x, s))dsdx = 0, it follows that Xt(x, 0) = 0 for all t.

Consequently, the flow ψt of the time-dependent vector field Xt on C is the identity on
the real line.
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Choose a non negative cut-off function ρǫ : R → R which has support in [−2ǫ, 2ǫ] and
which satisfies ρ(r) = 1 for r ∈ [−ǫ, ǫ]. Now consider the time-dependent vector field
Yt(x, y) = ρǫ(

√
x2 + y2)Xt(x, y) on C and denote its flow by φt. Then φt has compact

support and preserves the real line pointwise. In particular it preserves the origin for all
t, so that any neighbourhood of 0 is mapped to a neighbourhood of 0. By compactness of
[0, 1] there exists a disk D(0, µ) such that φt(D(0, µ)) ⊂ D(0, ǫ) for all t. But there, Xt =
Yt, hence the flow lines of φt and ψt starting at points in D(0, µ) coincide. Consequently
φ1(z) = ψ1(z) for all z ∈ D(0, µ). It follows that φ∗

1ω
′ = ω on D(0, µ). Choosing φ := φ1

and U := D(0, µ) proves the lemma.

Remark

By choosing a suitable cut-off function in the proof above, one can also assure that
φ∗ω = ω′ on a prescribed open set 0 ∈ U and φ = id on V an open set satisfying Ū ⊂ V .

Lemma (3.3.1). Let ω be any symplectic form on S2 and let p ∈ S2 be a point in the
open upper hemi-sphere Duh. Then there exists a φ ∈ Symp0(S

2, ω) such that φ(N) = p
with support in Duh.

Proof. Via stereographic projection from S, we identify S2 \ {S} with C and consider the
push-forward symplectic form. Choosing coordinates x, y suitably on C, we can assume
without loss of generality, that p = (x0, 0) ∈ R with 0 ≤ x0 < 1. Then the push-
forward symplectic form can be written as fdx ∧ dy for a positive function f on C.
Let ǫ be so small that 1 − ǫ > x0 and let ρ : R+ → [0, 1] be a non increasing cut-off
function such that ρ(r) = 1 for r ≤ 1 − ǫ and ρ(r) = 0 for r > 1 − ǫ

2
. Now define

a function H(x, y) = ρ(
√
x2 + y2)y. Then the Hamiltonian vector field X defined by

ιX(fdx∧dy) = dH equals X = 1
f
∂
∂x

in D(0, 1− ǫ). It particular it will never vanish there.
It follows that φt, the Hamiltonian flow of H , will map 0 to p for a sufficiently big time
T . Hence φT (0) = p with supp(φ) ⊂ E. Going back to S2 via stereographic projection,
and extending φ by the identity to all of S2, we found the desired symplectomorphism
φ ∈ Symp(S2, ω)

Lemma C.0.17. For any null-homotopic smooth map f : (S2, z0) → (S2, N) for which
there exists a neighbourhood U of z0 with f(U) = N , there exists a smooth contraction
ft : (S2, z0) → (S2, N) with ft(U

′) = N for a possibly smaller neighbourhood U ′ ⊂ U of z0
with f0 ≡ N and f1 = f .

Proof. Since f is null-homotopic, there exists a continuous family ht : (S2, z0) → (S2, N)
with t ∈ [0, 1] such that h1 = f ; h0 ≡ N ; ht(z0) = N for all t. By smooth approximations,
we may assume that ht is actually a smooth family through smooth maps, by this we mean
that the map H : S2 × I → S2; (x, t) 7→ ht(x) is smooth.
We construct a smooth map g : S2 → S2, which maps a neighbourhood U ′ of z0, with
Ū ′ ⊂ U to z0, and which has support in U ⊂ f−1(N). Then the smooth family ft = ht ◦ g
has the property that:

f1 = h1 ◦ g = h1 = f ; ft(U
′) = N ; f0 ≡ N
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as claimed. To construct g, consider stereographic projection σ−z0 from −z0. Then
Ũ = σ−z0(U) is a neighbourhood of the origin. Choose an ǫ > 0 such that the disk

D(0, 2ǫ) ⊂ Ũ . Let ρ : R → R be a smooth non decreasing bumpfunction, such that
ρ(r) = 0 for r ≤ ǫ and ρ(r) = 1 for r ≥ 2ǫ. Define ḡ : C → C by

ḡ(z) = ρ(|z|)z.

By construction ḡ is smooth, has support in Ũ and maps D(0, ǫ) to 0. Extend ḡ to −z0
by the identity then the resulting smooth map from S2 to S2 is the desired map g.

Lemma (3.3.4). Let τ ∈ Ω2
c(R

2) be closed, with support in D(0, 1), and such that
∫

R2

τ = 0.

Then there exists a canonical choice of σ ∈ Ω1
c(R

2) such that dσ = τ .

Proof. We will do this by altering the (non-compactly supported !) primitive obtained
from the Poincare Lemma to one with compact support.
Let x, y be standard coordinates on C and write τ = fdx ∧ dy for a function f : R2 → R

with support in D := {(x, y) ∈ R2||(x, y)| < 1}.
Then from the Poincare Lemma η ∈ Ω1(R2) defined by

ηx,y =

∫ 1

0

tf(tx, ty)dt(xdy − ydx)

is a primitive of τ .
Away from the origin, in polar coordinates reiθ we can write dx∧ dy = rdr ∧ dθ. Now

define a function g : S1 → R by

g(eiθ) =

∫ 1

0

tf(teiθ)dt.

Then

0 =

∫

R2

fdx ∧ dy =

∫ 2π

0

∫ ∞

0

rf(reiθ)drdθ =

=

∫ 2π

0

∫ 1

0

(tf(teiθ))dtdθ =

∫ 2π

0

g(eiθ)dθ =

∫

S1

gdθ

it follows that gdθ ∈ Ω1(S1) defines

[gdθ] = 0 ∈ H1(S1).

Consequently there exists a function h : S1 → R with dh = gdθ. If, however, h′ : S1 → R

is another such function, then d(h − h′) = 0, which means that the function h − h′ is
locally constant, and by connectedness of S1, globally constant. Thus h′ = h+ c for some
constant c ∈ R. Obviously d(h + c) = gdθ for any constant c. So there exists a unique
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function h : S1 → R which satisfies dh = gdθ and h(1) = 0. Let ρ : R → R be a smooth,
once and for all fixed, non decreasing cut-off function which is equal to 1 for r > 1 − ǫ
and zero for r < ǫ. Now consider the 1-form

σ := η − d(ρh).

We claim that this is the desired compactly supported 1-form.
Trivially dσ = τ . On the other hand σ = η − hρ′dr − ρdh. So that for r > 1,

σ = η − gdθ.

But now, for |x| = r > 1, since

dθ =
xdy − ydx

r2
,

we have

ηx,y =

∫ 1

0

tf(tx, ty)dtr2dθ =

∫ 1

0

tf(treiθ)dtr2dθ =

=

∫ r

0

s

r
f(seiθ)

ds

r
r2dθ =

∫ 1

0

sf(seiθ)dsdθ = gdθ.

We have made the substitution s = tr in the third equality. Hence it follows indeed,
that up to the choice of ρ, σ ∈ Ω1

c is a canonical primitive as desired. This proves the
lemma.



Appendix D

Proofs of results in chapter 4

Proofs of the various little results

Lemma (4.2.1). Let φ ∈ Symp(A, ∂A, ωstd) then there exists a smooth function F : A→ R

which is constant in a neighbourhood of the boundary (not necessarily the same constant
near the two boundary components !) such that

φ∗λstd − λstd = dF.

Proof. The lemma is actually true for any closed 1-form α ∈ Ω1(A) which vanishes iden-
tically in a neighbourhood U of the boundary. Write α = λdr + µdθ for λ, µ : A → R

smooth functions which vanish on U .

F : A→ R

(r, θ) 7→
∫ r

1
2

λ(t, θ)dt

is smooth and satisfies dF = α. Indeed

∂F

∂r
(r, θ) = λ(r, θ)

and since α is closed
∂µ

∂r
(r, θ) =

∂λ

∂θ
(r, θ)

so that

∂F

∂θ
(r, θ) =

∫ r

1
2

∂λ

∂θ
(t, θ)dt =

∫ r

1
2

∂µ

∂r
(t, θ)dt = µ(r, θ) − µ(

1

2
, θ) = µ(r, θ)

since µ(1
2
, θ) = 0.

Since φ = id in a neighbourhood of ∂A, the 1-form φ∗λstd−λstd vanishes near the boundary
and since φλ is symplectic it follows that d(φ∗λstd − λstd) = φ∗dλstd − dλstd = 0.
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Lemma (4.2.3). If F luxλ(φ) denotes the Flux of φ ∈ Symp0(A, ∂A, ωstd), defined with
respect to λ with dλ = ωstd, instead of λstd, then

F lux(φ) = F luxλ(φ).

Proof. Let γ : [0, 1] → A; t 7→ ((1−t)1
2
+2t, 0) be the straight line element in R+∩A which

connects the two boundary components, then by the Fundamental theorem of Calculus

F lux(φ) =

∫

γ

φ∗λstd − λstd

and

F luxλ(φ) =

∫

γ

φ∗λ− λ.

Since φ(2) = 2 and φ(1
2
) = 1

2
, we can form a loop σφ = φ(γ) ∗ γ̄ where ∗ means concate-

nation of paths and γ̄(s) = γ(1 − s). Then

F lux(φ) =

∫

σφ

λstd; F luxλ(φ) =

∫

σφ

λ.

Thus

F luxλ(φ) − F lux(φ) =

∫

σφ

λ− λstd.

But
d(λ− λstd) = ωstd − ωstd = 0,

and β := λ − λstd defines a cohomology class in A. Since φ ∈ Symp0(A, ∂A, ωstd), the
identity component of Symp(A, ∂A, ωstd), the loop σφ is null-homotopic, and consequently

∫

σφ

β = 0,

showing that
F luxλ(φ) = F lux(φ)

as claimed.

Lemma (4.2.4). Let φ, ψ ∈ Symp0(A, ∂A, ωstd) then F lux(φ ◦ ψ) = F lux(φ) + F lux(ψ)
and F lux(Id) = 0.

Proof. Let Fφ, Fψ : A→ R be the functions such that

φ∗λstd − λstd = dFφ

and
ψ∗λstd − λstd = dFψ.
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Then

(φ ◦ ψ)∗λstd − λstd = ψ∗(φ∗λstd − λstd) + ψ∗λstd − λstd = ψ∗dFφ + dFψ =

= d(Fφ ◦ ψ + Fψ).

Hence

F lux(φ ◦ ψ) = Fφ(ψ(2)) + Fψ(2) − (Fφ(ψ(
1

2
)) + Fψ(

1

2
)) =

= Fφ(2) − Fφ(
1

2
) + Fψ(2) − Fψ(

1

2
) = F lux(φ) + F lux(ψ).

Since ψ(2) = 2; ψ(1
2
) = 1

2
. The statement for F lux(Id) = 0 is clear.

Lemma (4.2.6). Let (M,ω = dλ) be an exact symplectic manifold. Let φt be a symplectic
isotopy starting at φ0 = id. Let φt be generated by the time-dependent vector field Xt, i.e

d

dt
φt = Xt ◦ φt.

Then ιXtω = dHt for a smooth family of functions Ht : M → R if and only if φ∗
tλ−λ = dFt

for a smooth family of functions Ft : M → R. Moreover Ft and Ht are related by the
equations

Ft =

∫ t

0

(Hs + ιXsλ) ◦ φsds

Hs =

(
d

dt
|t=s Ft

)
◦ φ−1

s − ιXsλ.

Proof. Assume first that ιXsω = dHs then we have:

φ∗
tλ− λ =

∫ t

0

d

du
|u=s φ

∗
uλds =

∫ t

0

φ∗
sLXsλds =

=

∫ t

0

φ∗
s(ιXsdλ+ dιXsλ)ds = d

∫ t

0

(Hs + ιXsλ) ◦ φsds.

For Ft =
∫ t
0
(Hs + ιXsλ) ◦ φsds this shows that φ∗

tλ − λ = dFt and the relation stated
above. Conversely if φ∗

tλ− λ = dFt then we differentiate the equation to obtain

d

dt
|t=s φ∗

tλ = d
d

dt
|t=s Ft

since partial derivatives commute. Then

φ∗
s(LXsλ) = d

d

dt
|t=s Ft

dιXsλ+ ιXsdλ = d

(
d

dt
|t=s Ft

)
◦ φ−1

s

and hence

Hs =

(
d

dt
|t=s Ft

)
◦ φ−1

s − ιXsλ

as claimed.
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In order to get a canonical choice for a symplectomorphism with given Flux a, we put
the following bump-function before the statement of the lemma: ρ : R → R be a smooth,
non decreasing function which equals 0 for r < 3

4
and 1 for r > 5

4
.

Lemma (4.2.7). Given any real number a, there exists a canonical symplectomorphism
φa ∈ Symp0(A, ∂A, ωstd) such that

F lux(φa) = a.

Further φa depends smoothly on a.

Proof. Consider the smooth function

Ha : A→ R

(r, θ) 7→ aρ(r).

Define a vector field X on A by the equation ιXωstd = dHa. Let φt denote the flow of X.
By Lemma 4.2.1 there exists a function F with φ∗

1λ−λ = dF where F =
∫ 1

0
(H+ιXλ)◦φtdt.

Since φt(2) = 2, φt(
1
2
) = 1

2
and X vanishes near ∂A we have

F lux(φ1) = F (2) − F (
1

2
) =

∫ 1

0

aρ(2)ds−
∫ 1

0

aρ(
1

2
)ds =

∫ 1

0

ads = a.

Define φa := φ1. This proves the lemma. Obviously φ0 = id and φa depends smoothly on
a.

The proofs of the results used in Theorem 4.3.1

The proof of Lemma 3.4.2

Before we can start the proof of Lemma 3.4.2 we have to prove a couple of propositions.
Recall that in Chapter 4 we assume for simplicity that

A =

{
z ∈ C|1

2
≤ |z| ≤ 2

}

with symplectic form

ωstd =
r

π(1 + r2)2
dr ∧ dθ.

We abbreviate: f(r) = r
π(1+r2)2

. Let E = {|z| = 1} ⊂ A be called the equator.

Proposition D.0.18. Given φ ∈ Ham(A, ∂A, ωstd) with φ(E) = E. Then there exists a
smooth path φt ∈ Ham(A, ∂A, ωstd) which connects φ to φ′ ∈ Ham(A, ∂A, ωstd) such that
φ′(e) = e for all e ∈ E and such that φt(E) = E for all t.
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Proof. We restrict φ to E and denote ψ := (φ|E)−1. Then ψ is a orientation preserving
diffeomorphism of S1. Since Diff+(S1) is path-connected (see [15], Corollary 2.7.B),
there exists a smooth path ψt ∈ Diff+(S1) with ψ0 = id and ψ1 = ψ. Let Yt be the
time-dependent vector field on S1, defined by

Yt ◦ ψt =
∂ψt
∂t

.

Let ρ : R → R be a smooth cut-off function with support in [3
4
, 5

4
], ρ′(1) = 1 and ρ(1) = 0.

Consider on A the smooth family of functions

Ht(r, θ) = −f(r)ρ(r)Yt(θ).

Then
∂Ht

∂r
(1, θ) = Yt(θ);

∂Ht

∂θ
(1, θ) = 0.

Let Xt be the time-dependent vector field defined by ιXtωstd = dHt on A, and let its
flow be φt. Then by construction φt = ψt on E and thus in particular preserves E. By
Proposition 4.2.6, and the fact that the family of functions Ht has support away from the
boundary, it follows that φt is a Hamiltonian isotopy. Then φ ◦ φt ∈ Ham(A, ∂A, ωstd) is
a smooth path which starts at φ and ends at a Hamiltonian symplectomorphism φ′ which
is the identity on E. This proves the proposition.

To prove the next proposition, we need the following two little Lemmata: By [18] page
15, we have

Lemma D.0.19. If f(t, q) is a smooth function on Iǫ ×M where Iǫ is an open interval
(−ǫ, ǫ), such that f(0, q) = 0 for all q ∈ M then there exists a smooth function g(t, q) on
Iǫ ×M such that

f(t, q) = g(t, q)t.

Moreover g(0, q) = f ′(0, q), where f ′ = ∂f

∂t
, for q ∈M

Proof. It is sufficient to define g(t, q) :=
∫ 1

0
f ′(ts, q)ds.

Lemma D.0.20. Let W be a neighbourhood of the zero-section in T ∗S1 and let α ∈
Ω1(W ) be a closed 1-form which vanishes on the zero-section, then there exists a function
F : W → R with α = dF which also vanishes on the zero-section.

Proof. In the standard coordinates q, p on T ∗S1 we can write α = adq + bdp. Then

∂a

∂p
(q, p) =

∂b

∂q
(q, p)

on W , since α is closed, and a(q, 0) = b(q, 0) = 0, since α vanishes on the zero-section.
Now it suffices to define

F (q, p) =

∫ p

0

b(q, s)ds,
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φ

EU
V = φ−1(U)

α−1(V ∩ U)

V ∩ U

τ

N0

α α

Figure D.1: The construction of τ

since dF = ∂F
∂q
dq + ∂F

∂p
dp with

∂F

∂p
(q, p) =

d

dp

∫ p

0

b(q, s)ds = b(q, p)

and
∂F

∂q
(q, p) =

∫ p

0

∂b

∂q
(q, s)ds =

∫ p

0

∂a

∂p
(q, s)ds = a(q, p) − a(q, 0) = a(q, p).

Thus dF = α and F (q, 0) =
∫ 0

0
b(q, s)ds = 0 as claimed.

Proposition D.0.21. Given φ ∈ Ham(A, ∂A, ωstd) with φ|E = id, then there exists
a smooth path φt ∈ Ham(A, ∂A, ωstd) and a neighbourhood U of E such that φ0 = φ,
φ1|U = id and φt|E = id for all t.

Proof. Since E ⊂ A is a Lagrangian submanifold, by the Weinstein neighbourhood the-
orem, there exists a symplectomorphism α : (N0, dλcan) → (U, ωstd) between N0 a neigh-
bourhood of the zero-section in T ∗S1 and U a neighbourhood of E ⊂ A. For simplicity,
we assume that N0 = Dǫ0 = {(q, p) ∈ T ∗S1||p| < ǫ0}.

Let V := φ−1U then we can define (see figure D)

τ : α−1(U ∩ V ) → N0

by
τ = α−1 ◦ φ ◦ α.



135

Let (q, p) ∈ S1 × R be global coordinates on T ∗S1 and write

τ(q, p) = (Q(q, p), P (q, p)).

From τ being the identity on the zero-section, it follows that its differential at a point
(q, 0) on the zero-section is of the form

dτ(q,0) =




∂Q

∂q

∂Q

∂p

∂P
∂q

∂P
∂p


 =




1 ∗

0 ∗


 .

But τ is also a symplectomorphism hence τ ∗dλcan = dλcan which implies that ∂P
∂p

= 1.

Now apply Lemma D.0.19 to the function P : S1 × (−ǫ1, ǫ1) → R with P (q, 0) = 0 and
Dǫ1 ⊂ α−1(U ∩ V ).

We obtain a smooth function P̃ : S1 × (−ǫ1, ǫ1) → R such that P (q, p) = pP̃ (q, p) and
P̃ (q, 0) = ∂P

∂p
(q, 0) = 1.

Since P̃ is continuous and P̃ (0, q) = 1, for every q ∈ S1 there exists an ǫq > 0 such that
|P̃ (q, p)− 1| < 1

2
for all |p| < ǫq and by compactness of S1 there exists a ǫ2 > 0 such that

|P̃ (q, p) − 1| < 1
2

for all |p| < ǫ2 and all q.
Further let 0 < ǫ3 < min

{
2
3
ǫ0, ǫ2

}
then

|P (q, p)| = |pP̃ (q, p)| = |p||P̃ (q, p)| < 2

3
ǫ0(1 +

1

2
) = ǫ0

on Dǫ3 .
Let Ms be fiberwise multiplication by the real number s:

Ms : T
∗S1 → T ∗S1; (q, p) 7→ (q, sp).

We define a smooth isotopy
τs : Dǫ3 → N0

(q, p) 7→M 1
s
◦ τ ◦Ms(q, p) = (Q(q, sp),

1

s
P (q, sp)) = (Q(q, sp), pP̃ (q, sp)).

The last equality comes from the equation P (q, sp) = (sp)P̃ (q, sp). Because of the first
defining expression and the fact that the Ms are diffeomorphisms for all s 6= 0, it follows
that the τs are embeddings. Because of the choice of ǫ3, it follows that the images all land
in N0 and by the last expression, it follows that the family is smooth in s.
Observe that by construction

τs(q, 0) = (Q(q, 0),
1

s
P (q, 0)) = (q, 0)

is the identity on the zero-section for all s and

τ0(q, p) = (Q(q, 0), pP̃ (q, 0)) = (q, p)
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is the identity.
Since τ is symplectic, the 1-form τ ∗λcan − λcan is closed. Since τ is the identity on the
zero-section and λcan = 1

2
p2dq, it follows that τ ∗λcan − λcan vanishes on the zero-section.

So by Lemma D.0.20, there exists a function F : Dǫ3 → R which vanishes on the zero-
section with dF = τ ∗λcan − λcan.
But then for s 6= 0

τ ∗s λcan − λcan = M∗
s τ

∗M∗
1
s

λcan − λcan = M∗
s (τ

∗M∗
1
s

λcan −M∗
1
s

λcan).

The last equation follows from the fact that Ms is a diffeomorphism with inverse M 1
s

so

that M∗
s ◦M∗

1
s

= id. But dMs(
∂
∂q

) = ∂
∂q

; dMs(
∂
∂p

) = s ∂
∂p

thus

(M∗
s λcan)(q,p)(

∂

∂q
) =

1

2
(sp)2 = s2λcan(q,p)(

∂

∂q
).

Hence
M∗

s λcan = s2λcan

and so

τ ∗s λcan − λcan = M∗
s (

1

s2
(τ ∗λcan − λcan)) =

1

s2
M∗

s dF = d
1

s2
F ◦Ms.

We show that the family of functions Fs(q, p) := 1
s2
F ◦ Ms(q, p) is smooth in s. By

construction, F vanishes on the zero-section and furthermore since τ ∗λcan − λcan = dF
and τ ∗λcan − λcan vanishes on the zero-section, it follows that dF also vanishes on the
zero-section. In particular ∂F

∂p
(q, 0) = 0 for all q ∈ S1. So we can apply Lemma D.0.19

twice and obtain smooth functions F̃ , ˜̃F : Dǫ3 → R such that

F (q, p) = pF̃ (q, p) = p2 ˜̃F (q, p).

Thus

Fs(q, p) =
1

s2
F (q, sp) =

1

s2
(sp)2 ˜̃F (q, sp) = p2 ˜̃F (q, sp).

Hence indeed, Fs is a smooth family of functions, which vanish on the zero-section and
such that

τ ∗s λcan − λcan = dFs.

From Proposition 4.2.6, we know that given the functions Fs above, a potential smooth
family of functions whose Hamiltonian flow generates τs has the form

Hs =

(
d

dt
|t=s Ft

)
◦ τ−1

s − ιXsλ

where ∂
∂s
τs = Xs ◦ τs. Observe that if they are defined, then dHs vanishes on the zero-

section due to the fact that τs|0−section = id (thus Xs(q, 0) = 0).
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We want to show, that there exists a neighbourhood of the zero-section in T ∗S1, on which
τs is generated by the Hamiltonians Hs defined by the equation above.
If we write

τs(q, p) = (Qs(q, p), Ps(q, p))

then by the choice of ǫ3

|Ps(q, p)| = |pP̃ (q, sp)| ≥ ǫ3
2

1

2
=
ǫ3
4

for all |p| = ǫ3
2

and all q. Indeed 1− |P̃ (q, p)| ≤ |P̃ (q, p)− 1| < 1
2

for all q and all |p| ≤ ǫ3.
Thus D ǫ3

4
⊂ τs(Dǫ3) for all s.

Thus, Xs is defined on all of D ǫ3
4

for all s. So is ιXsλcan. Moreover since d
ds
Fs is defined

on all of Dǫ3 (since Fs is defined on Dǫ3) it follows that d
ds
Fs ◦ τ−1

s is defined on all of D ǫ3
4

as well.
Thus indeed, on D ǫ3

4
, the smooth family of functions

Hs = (
d

dt
|t=s Ft) ◦ τ−1

s − ιXsλ

is defined, and by construction, for all points (q, p) ∈ D ǫ3
4
, it follows that

(ιXsω)(q,p) = (dHs)(q,p)

as desired.
Next we are going to cut-off the functions Hs suitably. Let ρ be a cut-off function ρ : R →
R with support in [− ǫ3

4
, ǫ3

4
] and which satisfies ρ(r) = 1 for r ∈ [− ǫ3

8
, ǫ3

8
]. Consider the

following family of functions

Ks(q, p) := ρ(p)Hs(q, p).

Since Ks = Hs on D ǫ4
8

the Hamiltonian vector fields Ys of Ks agrees with Xs there.
Denote the flow of Ys by ψs.
We are left to show, that there exists a neighbourhood Dǫ4 of the zero-section, which is
mapped into D ǫ3

8
by τs for all s. Then the whole flow-line of the time-dependent vector

field Xs starting at a point in Dǫ4 lies inside D ǫ3
8
, and consequently, τs = ψs for all s when

restricted to Dǫ4 .
Consider

ǫ4 := inf
s∈[0,1],q∈S1,|p|= ǫ3

8

|P̄s(q, p)| > 0

if τ−1
s (q, p) = (Q̄s(q, p), P̄s(q, p)). Then ǫ4 is greater than zero since the set [0, 1]×S1×S0

over which we take the infinum is compact and τ−1
s is an embedding which maps the

zero-section to the zero-section (thus P̄s(q, p) 6= 0 for p 6= 0). Then indeed τs(Dǫ4) ⊂ D ǫ3
8

for all s and consequently
ψ1(q, p) = τ1(q, p) = τ(q, p)
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for all (q, p) ∈ Dǫ4.
By construction, Ks ◦ α−1 is a family of smooth functions with support in U . Extend by
zero to all of A and let Gs denote the resulting family of functions on A. Now consider
the flow χs of the time-dependent vector field Zs defined by ιZsωstd = dGs on A. Then
by construction on U ′ := α(Dǫ4), we have χ1 = φ, and furthermore, the isotopy χs lives
in Ham(A, ∂A, ωstd). This follows from Proposition 4.2.6 and the fact that the family Gs

has support in U away from the boundary. By construction, χs(E) = E pointwise for all
s.
Then φ◦χ−1

s is a smooth path of Hamiltonian symplectomorphisms such that φ◦χ−1
s |E = id

for all s, and such that φ ◦ χ−1
1 is the identity on U ′. This proves the proposition.

For the definition of Ai, Symp(Ai, ∂Ai, ωstd) and φD in the following proposition,
consult Appendix E.

Proposition D.0.22. Let ρ : R → R be a smooth function with support in [3
4
, 5

4
] and which

is equal to 1 for r ∈ [4
5
, 6

5
]. Consider the functions Tk : A→ R given by Tk(re

iθ) = k
1+r2

ρ(r).

Then the flow φkt generated by the vector field Xk which is defined by ιXkωstd = dTk is
Hamiltonian and preserves E for all t. Furthermore φk1|Ai

∈ Symp(Ai, ∂Ai, ωstd) and is
in this group isotopic to (φD)k ∈ Symp(Ai, ∂Ai, ωstd).

Proof. The flow φkt is Hamiltonian, since by Proposition 4.2.6 (φkt )
∗λstd− λstd = dFt with

Ft =

∫ t

0

(Tk + ιXkλstd) ◦ φksds.

Now Tk has support in the interior of A, thus Xk vanishes in a neighbourhood of the
boundary and φkt = id in some neighbourhood of the boundary. Hence F lux(φt) =
Ft(2)−Ft(1

2
) = 0 as claimed. Next calculate the Hamiltonian vector field Xk = α ∂

∂r
+β ∂

∂θ
.

ιXk

r

π(1 + r2)2
dr ∧ dθ = dTk =

(
k

1 + r2
ρ′(r) − 2kr

(1 + r2)2
ρ(r)

)
dr.

Thus

β(r) = 2πkρ(r) − (1 + r2)kπ

r
ρ′(r)

and α = 0.
Set φkt (r, θ) = (r, θ + tgk(r)) for some yet to be found function gk : [1

2
, 2] → R and differ-

entiate
d

dt
φkt (r, θ) = gk(r)

∂

∂θ
= Xk(φt(r, θ)) = β(r)

∂

∂θ
.

Hence
φkt (r, θ) = (r, θ + tβ(r))

is the flow of Xk. Now observe that for r ∈ [4
5
, 6

5
], ρ(1) = 1; ρ′(r) = 0 so that there

β(r) = 2πk. Hence for r ∈ [4
5
, 6

5
]

φkt (r, θ) = (r, θ + t2πk).
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In particular φkt preserves E for all t.
Then φk1|Ai

∈ Symp(Ai, ∂Ai, ωstd) and both φk1|Ai
and (φD)k satisfy the conditions of

Lemma E.0.32: They are isotopic in Symp(Ai, ∂Ai, ωstd) as claimed.

Proposition D.0.23. Let φ ∈ Ham(A, ∂A, ωstd) be such that it is the identity in a neigh-
bourhood of E. Further assume that φ|Ai

∈ Symp0(Ai, ∂Ai, ωstd), the identity component
of Symp(Ai, ∂Ai, ωstd). Then, there exists a Hamiltonian path φt ∈ Ham(A, ∂A, ωstd)
such that φ0 = φ, φt preserves a neighbourhood of E pointwise and such that φ1|Ai

∈
Ham(Ai, ∂Ai, ωstd).

Proof. Since φ is Hamiltonian, there exists a function F : A→ R with

φ∗λstd − λstd = dF

such that F lux(φ) = F (2) − F (1
2
) = 0. Since the 1-form φ∗λstd − λstd vanishes in a

neighbourhood V of E we find that dF = 0 in V and consequently F is constant on V .
Hence we can define

F lux(φo) = F (2) − F (1); F lux(φi) = F (1) − F (
1

2
).

Consequently
F lux(φo) = −F lux(φi).

We need a Hamiltonian path which preserves E, and redistributes Flux between the two
annuli Ai and Ao, in order to make φo, φi Hamiltonian.
Consider a cut-off function ρ with support in [3

4
, 5

4
] and such that ρ(r) = 1 for r ∈ [4

5
, 6

5
].

Let
Ha(r, θ) = +aρ(r)

and let χat be the flow of the vector field Xa defined by ιXaωstd = dHa. χ
a
t is Hamiltonian

as before, since Ha has support away from the boundary, and χat is the identity near E.
But the flux of χa1|Ai

is precisely a. Indeed by Proposition 4.2.6,

(χa1)
∗λstd − λstd = dF a

with

F a =

∫ 1

0

(Ha + ιXaλstd) ◦ χat dt.

Then in V , we have χat = id, Xa = 0 and Ha = a, thus

F lux(χa1|Ao) = F a(2) − F a(1) = 0 − a = −a; F lux(χa1|Ai
) = F a(1) − F a(

1

2
) = a− 0 = a.

Now consider the isotopy φ ◦ χ−F lux(φi)
t which preserves E for all t, starts at φ and ends

at a symplectomorphism with zero Flux on each of the annuli Ao, Ai. This proves the
proposition.
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Now we can proof Lemma 3.4.2:

Lemma D.0.24. Given φ ∈ Ham(A, ∂A, ωstd) with φ(E) = E, then there exists a smooth
path φt ∈ Ham(A, ∂A, ωstd) which connects φ to the identity and which satisfies φt(E) = E
for all t.

Proof. By Propositions D.0.18 and D.0.21, we may assume that φ is already the identity in
a neighbourhood U of E. Thus φo = φ|Ao, φi = φ|Ai

are elements in Symp(Ao, ∂Ao, ωstd),
Symp(Ai, ∂Ai, ωstd) respectively. A priori φi may not lie in the identity component in
case we have chosen the path ψt : S

1 → S1 in D.0.18 in the wrong homotopy class.
Since φD generates π0(Symp(Ai, ∂Ai, ωstd)) (see Theorem E.0.29 and the Remark af-
ter Proposition E.0.30), there exists a k ∈ Z such that φi and (φD)k are isotopic in
Symp(Ai, ∂Ai, ωstd).
Consider the flow φkt ∈ Ham(A, ∂A, ωstd) of the function Tk given by Proposition D.0.22.
Then, the isotopy φ◦(φkt )

−1 in Ham(A, ∂A, ωstd) preserves E for all t and ends at a Hamil-
tonian symplectomorphism φ◦(φk1)

−1 which restricts to a symplectomorphism φ◦(φk1)
−1|Ai

in the identity component Symp0(Ai, ∂Ai, ωstd).
But φ itself is in Symp0(A, ∂A, ωstd), this implies in particular that as soon as we killed
any Dehn-twist in the inner Annulus, we also killed all Dehn-twists in the outer An-
nulus (otherwise a net-Dehn-twist would survive making φ non-isotopic to id). Hence
we may assume that φ restricts to symplectomorphisms φo, φi in Symp0(Ao, ∂Ao, ωstd),
Symp0(Ai, ∂Ai, ωstd) respectively. But then φ satisfies the conditions of Proposition
D.0.23. Hence we may assume without loss of generality that φo ∈ Ham(Ao, ∂Ao, ωstd)
and φi ∈ Ham(Ai, ∂Ai, ωstd). But Ham(Ao, ∂Ao, ωstd) and Ham(Ai, ∂Ai, ωstd) are path
connnected by Lemma 4.2.8, hence there exists Hamiltonian path to the identity on both
annuli. In total we found a Hamiltonian isotopy φt ∈ Ham(A, ∂A, ωstd) which connects
id to φ and such that φt(E) = E for all t. This proves the Lemma.

The proof of Lemma 4.3.2

Lemma (4.3.2). There exists a smooth approximation G̃ : [0, 1]×[−π
2
, π

2
] → Ham(A, ∂A, ωstd)

of G such that G̃ = G on Ṽ ⊂ V , an open set which is a neighbourhood of the boundary,
such that G̃(s, 0) = α(π

2
s).

Proof. Observe that, by construction, G is smooth in a neighbourhood V = [0, 1] ×
[−π

2
, π

2
] − W of the boundary of [0, 1] × [−π

2
, π

2
] and in a neighbourhood of [0, 1] × {0}

(cf.fig. 4.6). Let

V ′ = [0, 1] × [
−π
2
,
π

2
] −W ′

and

Ṽ = [0, 1] × [
−π
2
,
π

2
] − W̃ .

Compare figure D.2.
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Figure D.2: Where G is smooth

By smooth approximations as in chapter 2 in [7], in particular Theorem 2.4 on p.48,
we may assume there exists a smooth map

H̃ : [0, 1] × [
−π
2
,
π

2
] → Diff(A, ∂A)

such that H̃ agrees with G on V ′. In particular H̃(s, 0) = α(π
2
s).

Next we apply a parametrised version of Moser’s theorem, to push this smooth map
down into Symp(A, ∂A, ωstd). Thus consider the smooth 2-parameter family

ω(s, t) = H̃(s, t)∗ωstd

and its primitive λ(s, t) = H̃(s, t)∗λstd. Further consider the linear interpolation

ωu(s, t) = (1 − u)ωstd + uω(s, t).

Then
∂ωu(s, t)

∂u
= d(λ(s, t) − λstd).

Consider the vector fields defined by

ιXu(s,t)ωu(s, t) = λ(s, t) − λstd.

If (s, t) ∈ V ′ then ωu(s, t) = ωstd for all u, further the 1-form λ(s, t) − λ is closed so that
the vector field X(s, t) defined by

ιX(s,t)ωstd = λ(s, t) − λstd
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is symplectic. Thus, if φu(s, t) denotes the flow of the time-dependent vector field Xu(s, t),
then for (s, t) ∈ V ′ it follows that φu(s, t) ∈ Symp(A, ∂A, ωstd). By construction φu(s, t)
depends smoothly on s, t.
Let ρ be a smooth cut-off function which is 1 on W ′ and zero on Ṽ . Consider the smooth
map

K : [0, 1] × [
−π
2
,
π

2
] → Symp(A, ∂A, ωstd)

(s, t) 7→ H̃(s, t) ◦ φρ(s,t)(s, t).
Then indeed

K(s, t)∗ωstd = ωstd

for all s, t and K = G on Ṽ . In particular K(s, 0) = α(π
2
s).

In the last step we push K down into Ham by using Lemma 4.2.7. Therefore note first
that F lux(K(s, t)) depends smoothly on s, t. Indeed

K(s, t)∗λstd − λstd = σ(s, t),

a smooth family of closed 1-forms on A, which vanish near the boundary of A. Hence,
there exists functions F (s, t) such that

σ(s, t) = dF (s, t).

Since these functions are determined up to a constant, by choosing F (s, t)(1
2
) = 0 we have

determined these functions uniquely. Consequently the family F (s, t) is smooth in s, t
and so it follows that

F lux(K(s, t)) = F (s, t)(2) − F (s, t)(
1

2
) = F (s, t)(2)

is indeed smooth. But the family φ−F lux(K(s,t)) in Lemma 4.2.7 depends smoothly on s, t.
So we can define

G̃ : [0, 1] × [
−π
2
,
π

2
] → Ham(A, ∂A, ωstd)

(s, t) 7→ φ−F lux(K(s,t)) ◦K(s, t).

Now K = G on Ṽ and G(s, t) ∈ Ham(A, ∂A, ωstd). Since φ0 = id, it follows that

φ−F lux(K(s,t)) = id for (s, t) ∈ Ṽ . Then G̃ agrees with G on Ṽ and in particular G̃(s, 0) =
α(π

2
s). This proves the lemma.



Appendix E

Homotopy groups of some

diffeomorphism groups

We discuss the homotopy groups of Symp(A, ∂A, ωstd) and Ham(A, ∂A, ωstd). First we
have to begin with a few definitions. LetD := {z ∈ C||z| ≤ 2} andA :=

{
z ∈ C|1

2
≤ |z| ≤ 2

}

be equipped with the symplectic form ωstd = r
π(1+r2)2

dr ∧ dθ. Let λstd = −1
2π(1+r2)

dθ be
the standard primitive of ωstd on A. In the following we define some diffeomorphism
groups which are equipped with the subspace topology of the C∞-topology of smooth
maps C∞(A; R2). This topology on C∞(A; R2) is the topology induced by the metric

d(f, g) =
∑∞

k=0
1
2k

|f−g|k
1+|f−g|k where

|f − g|k = max
i,m+n=k

sup
x∈A

| ∂kfi
∂xm1 ∂x

n
2

(x) − ∂kgi
∂xm1 ∂x

n
2

(x)|.

By a smooth map f : X → C∞(A,R2) we shall mean smoothness of the induced map
f̄ : X × A → R2. The following proposition implies that this gives genuine continuity of
the map f .

Proposition E.0.25. Let X be a topological space and let F : X → C∞(A,R2). Then F
is continuous iff the induced map F̄ : X × A → R2; (x, a) 7→ F (x)(a) and all its partial
derivatives in directions of A are continuous.

Proof. A function F : X → C∞(A,Rn) is continuous if for any convergent sequence (xn →
x) in X, the image sequence F (xn) → F (x) converges to F (x). Hence if we start with a
continuous function F and (xn) a convergent sequence, then F (xn) → F (x) means that
given any ǫ > 0 there exists a N ∈ N such that for all n ≥ N

d(F (xn), F (x)) < ǫ

in the metric defined above. This means in particular that the partial derivatives of any
order are ǫ close for n ≥ N(ǫ).
Then the function F̄ is continuous, since for any convergent sequence (xn, kn) → (x, k)
we have

|F̄ (xn, kn)−F̄ (x, k)| = |F (xn)(kn)−F (x)(k)| ≤ |F (xn)−F (x)|0+|F (x)(kn)−F (x)(k)| ≤ 2ǫ

143
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for all n ≥ N and N so big that the first term is smaller than ǫ (see above) and the
second term is smaller than ǫ by the continuity of F (x). The same works for all partial
derivatives of F̄ in directions of A. Conversely if we have a continuous function F̄ as above
which is smooth when restricted to the factor A and for which all partial derivatives in
directions of A are continuous functions then this defines a continuous function F : X →
(C∞(A,Rn), C∞). To see this observe that

∂F̄i
∂yj

(x, k) =
d

dt
F̄i(x, k + tyj) =

d

dt
F (x)i(k + tyj) =

∂F (x)i
∂yj

(k)

Hence

|F (xn) − F (x)|1 = maxi,jsupk∈A|
∂F (xn)i
∂yj

(k) − ∂F (x)i
∂yj

(k)| =

= maxi,jsupk∈K|
∂F̄i
∂yj

(xn, k) −
∂F̄i
∂yj

(x, k)|

Consequently, by compactness of A, we can find for any given ǫ > 0, a N such for all
n ≥ N

|∂F̄i
∂yj

(xn, k) −
∂F̄i
∂yj

(x, k)| < ǫ

for all k ∈ K and all i, j. Thus

|F (xn) − F (x)|1 ≤ ǫ

The same can be done for all higher partial derivatives. Thus given any ǫ > 0, fix a r ∈ N

such that 2r−1 < ǫ. Now we can find a N such that for all n ≥ N :

|F (xn) − F (x)|l <
ǫ

4

for all l = 0..r. Hence

d(F (xn), F (x)) ≤
l=r∑

l=0

1

2l
ǫ

4(1 + ǫ
4
)

+

∞∑

l=r+1

1

2l
< ǫ

and so F is continuous.

Definition E.0.26. We define:

• Diff(D, ∂D) to be the group of diffeomorphisms of the closed disk D, such that
every element φ is equal to the identity in some neighbourhood of the boundary.

• Diff(A, ∂A) to be the group of diffeomorphisms of the closed annulus A, such that
every element φ is equal to the identity in some neighbourhood of the boundary.

• Symp(A, ∂A, ωstd) ⊂ Diff(A, ∂A) to be the subgroup of symplectomorphisms of
(A, ωstd).
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Figure E.1: The bump function ρ

• Symp0(A, ∂A, ωstd) to be the identity component of Symp(A, ∂A, ωstd).

•
Ham(A, ∂A, ωstd) := {φ ∈ Symp0(A, ∂A, ωstd)|F lux(φ) = 0} .

Further we need the following definitions. Define the outer annulus

Ao = {z ∈ C|1 ≤ |z| ≤ 2}

and the inner annulus

Ai =

{
z ∈ C|1

2
≤ |z| ≤ 1

}
.

Definition E.0.27. The groups Diff(Ao, ∂Ao), Diff(Ai, ∂Ai), Symp(Ao, ∂Ao, ωstd),
Symp(Ai, ∂Ai, ωstd), Symp0(Ao, ∂Ao, ωstd), Symp0(Ai, ∂Ai, ωstd), Ham(Ao, ∂Ao, ωstd),
Ham(Ai, ∂Ai, ωstd) are defined as the corresponding groups for (A, ωstd).

Now we quote

Theorem E.0.28 (Smale). The group Diff(D, ∂D) is contractible.

Proof. This is proved in [4].

Let ρ : R → R be a smooth cut-off function as in fig. E.1

Theorem E.0.29. πi(Diff(A, ∂A)) = 0 for i > 0 and π0(Diff(A, ∂A)) = Z and is
generated by the Dehn-twist

φD : A→ A

(reiθ) 7→ rei(θ+2πρ(r)).
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Proof. The proof is taken from [15] and goes as follows. Let Emb(B, D̊) be the space
of embeddings of the closed disk B := D̄(0, 1

2
) ⊂ R2 into the open disk D̊ = D(0, 2).

Again the topology is given by the subspace topology of the compact open topology on
the corresponding space of smooth functions.
Let UTD denote the unit tangent bundle of the diskD, then firstly the map f : Emb(B, D̊) →
UTD; φ 7→ dφ0( ∂

∂x
)

|dφ0(
∂

∂x
)| is a weak homotopy equivalence. UTD is homotopy equivalent to

S1 and is generated by the fiber. Since f∗ is an isomorphism on the homotopy groups, it
follows that the loop

γ : S1 ∼= R\2πZ → Emb(B, D̊); θ 7→ (z 7→ eiθz)

is a generator of π1(Emb(B, D̊)) (cf. Theorems 2.6.C and 2.6.D in [15]).
Secondly, a multiparameter version of the isotopy extension theorem shows that the con-
tinuous map

p : Diff(D, ∂D) → Emb(B, D̊)

given by restriction to B is a Serre fibration (has the homotopy lifting property for cubes).
Consider the fiber over the inclusion. This is the set of diffeomorphisms in Diff(D, ∂D)
which restrict to the identity on B or in other words, the diffeomorphisms of A which
are the identity near {|z| = 2} and which can be extended to D by the identity. Denote
this set by Dext. Since the homotopy long exact sequence applies to Serre fibrations, we
obtain that 0 = πi+1(S

1) ∼= πi+1(Emb(B, D̊)) ∼= πi(D
ext)) for i ≥ 1. Further the map

Z ∼= π1(S
1) ∼= π1(Emb(B, D̊)) → π0(D

ext) given by the boundary homomorphism is an
isomorphism.
Recall that the boundary homomorphism ∂ : π1(B) → π0(F ) in the homotopy long exact
sequence of a fibration F → E → B, can be described by the homotopy lifting property.
Explicitly let γ : [0, 2π] → B with γ(0) = γ(2π) be a representative of an element in π1(B)
and let γ̃ : [0, 2π] → E be a lift of γ starting at the basepoint x0 in F , then the boundary
homomorphism is given by

∂([γ]) = [γ̃(2π)]

where [γ̃(2π)] denotes the path component in F of the endpoint of the lift γ̃ (cf. the
discussion on p.209 in [10]).
Hence we are required to find a lift of the loop γ starting at the identity in Dext. Let ρ
be the cut-off function from Figure E.1 and consider the extension

R̃θ ∈ Diff(D, ∂D); R̃θ(z) = eiρ(|z|)θz

of the embedding Rθ : B → D̊; z 7→ eiθz. Thus γ̃ : [0, 2π] → Diff(D, ∂D); θ 7→ R̃θ is the
required lift of γ. Consequently, R̃2π = φD generates π0(D

ext). Note that by the choice
of ρ, actually R̃2π = φD ∈ Diff(A, ∂A).
Now let u : Sn → Diff(A, ∂A) be a continuous map, which represents an element in
πn(Diff(A, ∂A)) for n ≥ 1. Since Sn is compact, there exists a real number ǫ > 0
such that u(x) is the identity in an ǫ-neighbourhood of

{
|z| = 1

2

}
for all x ∈ Sn. Let

Aδ = {z ∈ C|δ ≤ |z| ≤ 2} for 0 < δ < 1
2

and letDiff(Aδ, ∂Aδ) be defined asDiff(A, ∂A).
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Let α : A→ A 1
4

be a diffeomorphism which is the identity outside of the ǫ-neighbourhood

of the set
{
|z| = 1

2

}
in A.

Since any element in Diff(A, ∂A) is extendable to the disk D by the identity, we can
regard u : Sn → Dext. But then there exists a contraction ut : S

n → Dext since πn(D
ext) =

0 for n ≥ 1.
Obviously Dext ⊂ Diff(A 1

4
, ∂A 1

4
). Thus we can regard ut : S

n → Diff(A 1
4
, ∂A 1

4
) as a

contraction of u in Diff(A 1
4
, ∂A 1

4
) and

vt : S
n → Diff(A, ∂A); x 7→ α−1 ◦ ut(x) ◦ α

is the desired contraction of u in Diff(A, ∂A). Indeed α is the identity on the support
of u. This shows the first assertion of the theorem.
Any ψ ∈ Dext is isotopic in Dext to (φD)i for some i. Let φ ∈ Diff(A, ∂A), then by the
same argument as above, we can find an isotopy in Diff(A, ∂A) between φ and (φD)i.
This shows that the Dehn-twist φD generates π0(Diff(A, ∂A)).

Proposition E.0.30. The groups Diff(A, ∂A) and Symp(A, ∂A, ωstd) are weakly homo-
topy equivalent.

Proof. Let Ω ⊂ Ω2(A) be the set of symplectic forms on A. Since every 2-form ω on A
can be written as

ω = fdr ∧ dθ
for some function f : A→ R, we can identify Ω with a subset of C∞(A,R). As above we
can define the C∞-topology on C∞(A,R) and endow Ω with the subspace topology.
We are going to show, that the map

p : Diff(A, ∂A) → Ω

φ 7→ φ∗ωstd

is continuous and is a Serre fibration (i.e. p has the homotopy lifting property for all
cubes [0, 1]k). Further p−1(ωstd) equals Symp(A, ∂A, ωstd) and Ω is contractible since it is
convex. The proposition then follows since the long exact sequence for homotopy applies
to Serre-fibrations.
Continuity of p is trivial and the homotopy lifting property for cubes follows by Moser’s
theorem with parameters. We only show this for the 1-dimensional cube [0, 1] since the
proof for [0, 1]k works entirely analogously.
Let γ : [0, 1] → Ω be a continuous map and φ ∈ p−1(γ(0)), then we seek a continuous map
γ̃ : [0, 1] → Diff(A, ∂A) such that pγ̃ = γ and γ̃(0) = φ.
First note that for ω ∈ Ω we can define a canonical primitive λω. To do this we write
ω = fdr ∧ dθ and define

(λω)r,θ =

(∫ r

1
2

f(s, θ)ds

)
dθ.
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Now consider the linear interpolation of symplectic forms

ωs(t) = sωstd + (1 − s)γ(t).

Then
∂ωs(t)

∂s
= d(λstd − λγ(t))

and we define
σ(t) = λstd − λγ(t).

Now define the Moser vector fields Xs(t) by

ιXs(t)ωs(t) = σ(t)

and denote their flows by φs(t). Hence

φ1(t)
∗ωstd = γ(t)

and by continuity of γ and therefore of λγ(t), it follows that the path

t 7→ φ1(t)

is a continuous lift of γ. Consider

h = φ ◦ (φ1(0))−1.

Since φ∗ωstd = φ1(0)∗ωstd, it follows that h∗ωstd = ωstd and therefore

γ̃(t) = h ◦ φ1(t)

is the desired lift of γ.

Remark

Note that the Dehn-twist φD ∈ Symp(A, ∂A, ωstd) and thus by Proposition E.0.30 φD

generates π0(Symp(A, ∂A, ωstd)).

Proposition E.0.31. The group Symp0(A, ∂A, ωstd) deformation retracts ontoHam(A, ∂A, ωstd).

Proof. By Proposition 4.2.7, given any real number a there exists a canonical symplecto-
morphism φa ∈ Symp0(A, ∂A, ωstd) such that F lux(φa) = a. Thus define

rt : Symp0(A, ∂A, ωstd) → Symp0(A, ∂A, ωstd)

φ 7→ φ−tF lux(φ) ◦ φ
for t ∈ [0, 1]. Since composition ◦ in Symp(A, ∂A, ωstd) is continuous, to show continuity
of rt, it suffices to show that the map

φ 7→ φ−tF lux(φ)
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is continuous. But φa is canonical for a ∈ R, hence it suffices to show that φ 7→ F lux(φ)
is continuous (obviously, then φ 7→ tF lux(φ) is also continuous).

F lux(φ) − F lux(ψ) = F lux(φ ◦ ψ−1),

and φ ◦ ψ−1 is close to id if and only if φ is close to ψ. Hence F lux is continuous, if it is
continuous at id.
Write φ(r, θ) = (R(r, θ), Q(r, θ)) for φ ∈ Symp(A, ∂A, ωstd) being ǫ-close to the identity.
Then

F lux(φ) =

∫

γ

φ∗λstd − λstd

where γ(t) = ((1 − t)1
2

+ 2t, 0) is the path along R+ which connects the two boundary
components.
Further

(φ∗λstd)r,θ =
−1

2π(1 +R(r, θ)2)

(
∂Q

∂r
(r, θ)dr +

∂Q

∂θ
(r, θ)dθ

)

and thus

|F lux(φ)| =|
∫

γ

φ∗λstd − λstd |=|
∫ 1

0

φ∗λstd

(
(2 − 1

2
)
∂

∂r

)
dt |≤

≤ 3

2
max

∣∣∣∣
1

2π(1 +R2)

∂Q

∂r

∣∣∣∣ ≤
3

π
max

∣∣∣∣
∂Q

∂r

∣∣∣∣ ≤ max

∣∣∣∣
∂Q

∂r

∣∣∣∣ .

But φ is ǫ-close to id thus
∣∣∂Q
∂r

∣∣ < ǫ. This shows the continuity of F lux and that of rt.
Now

r1 : Symp0(A, ∂A, ωstd) → Ham(A, ∂A, ωstd)

since F lux(φ−F lux(φ) ◦ φ) = 0.
Finally rt|Ham(A,∂A,ωstd) = id, this follows from the fact that φa = id for a = 0. Thus rt is
indeed a deformation retraction as claimed.

Remark

The corresponding statements for the groupsDiff(Ao, ∂Ao),Diff(Ai, ∂Ai), Symp(Ao, ∂Ao, ωstd),
Symp(Ai, ∂Ai, ωstd), Symp0(Ao, ∂Ao, ωstd), Symp0(Ai, ∂Ai, ωstd), Ham(Ao, ∂Ao, ωstd),
Ham(Ai, ∂Ai, ωstd) can be proved in exactly the same way. Thus we can replace the an-
nulus A in any of the results above by either Ao or Ai.

Consider the following lemma, which we need in Appendix D.

Lemma E.0.32. Let φ0, φ1 ∈ Diff(A, ∂A) be of the special form φi(re
iθ) = rei(θ+fi(r))

with fi(
1
2
) = 2πk and fi(2) = 0 for k ∈ Z then there exists a smooth path φt ∈

Diff(A, ∂A) which connects φ0 and φ1. Furthermore if φ0, φ1 ∈ Symp(A, ∂A, ωstd) then
the φt ∈ Symp(A, ∂A, ωstd) for all t.
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Proof. It suffices to write down the linear isotopy φt(re
iθ) = rei(θ+(1−t)f0(r)+tf1(r)). Then

φt is smooth with smooth inverse φ−1
t (reiθ) = rei(θ−(1−t)f0(r)−tf1(r)). Clearly φt restricts

to the identity near ∂A due to the fact that f0(
1
2
) = f1(

1
2
) and f0(2) = f1(2) near ∂A.

Further by the defining equation it is clear that φt depends smoothly on t. Moreover note
that a diffeomorphism of this form is always symplectic. This proves the lemma.



Appendix F

Homology of (M,L)

Definition of the second relative homotopy group

Let x0 ∈ L be the base point and let I2 = [0, 1] × [0, 1] ⊂ R2 be the unit square in R2

with standard coordinates x, y.

Definition F.0.33.

π2(M,L) :=
{
u : (I2, ∂I2, J) → (M,L, x0)|u continuous

}
/ ∼

where ∂I2 is the boundary of I2 and J the closure of the boundary with the edge {0}× [0, 1]
removed. Further u ∼ v if and only if there exists a continuous family ut : (I2, ∂I2, J) →
(M,L, x0) for t ∈ [0, 1] such that u0 = u and u1 = v.

This is a group under composition given by concatenation of paths in the x-direction.
By this we mean to fix y and then concatenate the two path uy, vy : (I, ∂I) → (M,x0)
defined by uy(x) = u(x, y) and vy(x) = v(x, y).

For convenience we will usually identify (I2, ∂I2, J) with (E, ∂E, 1) (its harder to de-
fine the group operation here).

Proposition F.0.34. Let M be diffeomorphic to S2 ×S2 and L be an embedded T 2, then

π2(M,L) ∼= H2(M,L) ∼= H2(M) ⊕H1(L)

Proof. Follows by the long exact sequence on homology/homotopy for the pair (M,L).

In particular, if L is the Clifford torus in S2 × S2 then

π2(M,L)

is abelian and is spanned by

[S2 × {pt}], [{pt} × S2], [Duh × {pt}], [{pt} ×Duh]

where Duh denotes the closed upper hemisphere in S2.
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Appendix G

Maslov index for the

symplectomorphism group and the

Lagrangian Grassmanian

The Maslov index for the group of symplectomorphisms

Sp(4)

Proposition G.0.35. The unitary group U(n) is a maximal compact subgroup of Sp(2n)
and the quotient Sp(2n)/U(n) is contractible.

Proof. This is Proposition 2.22 in [13] on p.45.

Proposition G.0.36. The fundamental group of U(n) is isomorphic to the integers. The
determinant map det : U(n) → S1 induces an isomorphism of fundamental groups.

Proof. This is Proposition 2.23 in [13] on p.46.

It follows from the propositions above that the fundamental group of Sp(n) is isomor-
phic to Z. An explicit isomorphism is given by the Maslov index:

Theorem G.0.37. There exists a unique functor Maslov, called the Maslov index, which
assigns an integer Maslov(Ψ) to every loop Ψ: R/Z → Sp(4) of symplectic matrices and
satisfies the following axioms

• (homotopy) Two loops in Sp(4) are homotopic if and only if they have the same
Maslov index.

• (product) For any two loops Ψ1,Ψ2 : R/Z → Sp(4) we have

Maslov(Ψ1Ψ2) = Maslov(Ψ1) +Maslov(Ψ2).

In particular, a constant loop Ψ(t) ≡ Id has Maslov index 0.
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• (direct sum) Consider Sp(2) ⊕ Sp(2) ⊂ Sp(4) as a subgroup in the obvious way.
Then

Maslov(Ψ1 ⊕ Ψ2) = Maslov(Ψ1) +Maslov(Ψ2).

• (normalization) The loop Ψ: R/Z → U(1) ⊂ Sp(2) defined by

Ψ(t) = e2πit

has Maslov index 1.

Proof. This is Theorem 2.29 in [13] on page 48. The proof can also be found there.

The Maslov index for the Lagrangian Grassmanian

Consider (R4,Ω0) where Ω0 = dx∧ dy+ du∧ dv for standard coordinates x, y, u, v on R4.
Then let L be the set of linear Lagrangian subspaces of (R4,Ω0). Then we have

Lemma G.0.38. 1. If Λ ∈ L and φ ∈ Sp(4) then φΛ ∈ L;

2. For any two Lagrangian subspaces Λ,Λ′ ∈ L there exists a symplectic matrix φ ∈
U(n) such that Λ′ = φΛ;

3. There is a natural isomorphism L = U(2)/O(2).

Proof. This is Lemma 2.31 in [13] on page 51. There can also be found the proof.

From the lemma follows that π1(L) = Z and an explicit homomorphismMaslov : π1(L) →
Z is the Maslov index. Its properties are fixed in

Theorem G.0.39. There exists a unique functor Maslov, called the Maslov index, which
assigns an integer Maslov(Λ) to every loop Λ: R/Z → L of Lagrangian subspaces and
satisfies the following axioms

• (homotopy) Two loops in L are homotopic if and only if they have the same Maslov
index.

• (product) For any two loops Λ: R/Z → L and Ψ: R/Z → Sp(4) we have

Maslov(ΨΛ) = Maslov(Λ) + 2Maslov(Ψ).

In particular, a constant loop Λ(t) ≡ Λ0 has Maslov index 0.

• (direct sum) Let Λ: R/Z → L be a direct sum of Lagrangian subspaces in C ∼= R2.
So Λ(t) = Λ1(t) ⊕ Λ2(t) with Λi : R/Z → G(2, 1) with G(2, 1) the Grassmanian of
1-dimensional subspaces in R2 and were we have identified R4 = R2 × R2. Then

Maslov(Λ) = Maslov(Λ1 ⊕ Λ0) +Maslov(Λ0 ⊕ Λ2)

where Λ0 : R/Z → G(2, 1) denotes the constant loop at the real line.
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• (normalization) The loop Λ: R/Z → L defined by

Λ(t) =< (cosπt, sin πt, 0, 0), (0, 0, 1, 0) >

has Maslov index 1.

Proof. This is Theorem 2.35 in [13] on page 52. The proof can also be found there.

The following will be used to calculate Maslov indices in the text:

Lemma G.0.40. If a loop of Lagrangian subspaces Λ: R/Z → L is given by Λ(t) =
U(t)Λ(0) for a loop of unitary matrices U : R/Z → U(2), then Maslov(Λ) = wind(detU2),
the winding number of S1 → S1; t 7→ det(U(t)2).

Proof. This follows from the proof of Theorem 2.35 in [13].
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forme symplectique, Comment. Math. Helv. 53, no. 2, 174-227, 1978.

[6] D. Husemoller, Fibre Bundles, Springer, Graduate Texts in Mathematics, 3rd
edition, 1994.

[7] M. W. Hirsch, Differential topology, Springer, Graduate Texts in Mathematics,
1997.
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[17] S. Warschawski, Über das Randverhalten der Ableitung der Abbildungsfunktion
bei konformen Abbildungen, Math.Z., 35, 321-456, 1932.

[18] S. Kobayashi and K. Nomitzu, Foundations of Differential Geometry, Inter-
science, New York, 1969.
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