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SUMMARY 

 

The research focuses on providing reliable spatial information in support of 

tsunami risk and vulnerability assessment within the framework of the German-

Indonesian Tsunami Early Warning System (GITEWS) project. It contributes to 

three major components of the project: (1) the provision of spatial information 

on surface roughness as an important parameter for tsunami inundation 

modeling and hazard assessment; (2) the modeling of population distribution, 

which is an essential factor in tsunami vulnerability assessment and local 

disaster management activities; and (3) the settlement detection and 

classification from remote sensing radar imagery to support the population 

distribution research. 

Regarding the surface roughness determination, research analyses on surface 

roughness classes and their coefficients have been conducted. This included the 

development of remote sensing classification techniques to derive surface 

roughness classes, and integration of the thus derived spatial information on 

surface roughness conditions to tsunami inundation modeling. This research 

determined 12 classes of surface roughness and their respective coefficients 

based on analyses of published values.  

The developed method for surface roughness classification of remote sensing 

data considered density and neighborhood conditions, and resulted in more 

than 90% accuracy. The classification method consists of two steps: main land 

use classification and density and neighborhood analysis. First, the main land 

uses were defined and a classification was performed applying decision tree 

modeling. Texture parameters played an important role in increasing the 

classification accuracy. The density and neighborhood analysis further 

substantiated the classification result towards identifying surface roughness 

classes. Different classes such as residential areas and trees were combined to 

new surface roughness classes, as “residential areas with trees”. The density 

and neighborhood analysis led to an appropriate representation of real surface 

roughness conditions. This was used as an important input for tsunami 

inundation modeling. 

By using Tohoku University’s Analysis Model for Investigation Near-field 

Tsunami Number 3 (TUNAMI N3), the spatially distributed surface roughness 

information was integrated in tsunami inundation modeling and compared to 

the modeling results applying a uniform surface roughness condition. An 

uncertainty analysis of tsunami inundation modeling based on the variation of 

surface roughness coefficients in the Cilacap study area was also undertaken. It 
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was demonstrated that the inundation modeling results applying uniform and 

spatially distributed surface roughness resulted in high differences of inundation 

lengths, especially in areas far from the coastline. This result showed the 

important role of surface roughness conditions in resisting tsunami flow, which 

must be considered in tsunami inundation modeling. 

With respect to the second research focus, the population distribution, a 

concept of population distribution modeling was developed. Within the modeling 

process, weighting factor determination, multi-scale disaggregation and a 

comparative study to other methods were conducted. The basis of the 

developed method was a combination of census and land use data, which led to 

an improved spatial resolution and accuracy of the population distribution. 

Socio-economic data were used to derive weighting factors to distributing 

people to land use classes. Moreover, in case of missing input data, an 

approach was developed that allows for the determination of generalized 

weighting factors. The approach to use specific weightings, where possible and 

generalized ones, where necessary, led to a flexible methodology with respect 

to the achievable accuracy and availability of data. A comparative study was 

performed by comparing this new model with previously developed population 

distribution models. The newly developed model showed a higher accuracy. 

The detailed population distribution information was a valuable input for the 

vulnerability assessment being the main data source for human exposure 

assessment and an important contribution to evacuation time modeling. 

In support of the population distribution research, settlement classification 

using TerraSAR-X imagery was conducted. A current classification method of 

speckle divergence analysis on SAR imagery was further developed and 

improved by including the neighborhood concept. The settlement classification 

provided highly accurate results in dense urban areas, whereas the method 

needs to be further developed and improved for rural settlement areas. 

Finally, it has been shown how the results of this research can be applied.  

These applications cover the integration of surface roughness conditions into 

the tsunami inundation modeling and hazard mapping. The contributions to 

tsunami vulnerability assessment and evacuation planning were shown. 

Additionally, the results were integrated into the decision support system of the 

Tsunami Early Warning Center in Jakarta.  
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CHAPTER 1: INTRODUCTION 
 

1.1. Motivation 

The devastating Sumatra earthquake of 26 December 2004 was the second 

largest ever detected rupture in the Earth’s crust. Only a few minutes after its 

detection, the first tsunami waves hit the coastlines of northern Sumatra and 

some time later, Malaysia, Thailand, Sri Lanka, India and Somalia were also 

affected. Due to the location of the earthquake epicenter, Aceh Province, 

Indonesia, complained of the largest number of casualties and damages. 

This tremendous disaster caused about 230,000 deaths and initiated – in 

addition to major relief efforts – intensive tsunami research and the emerging 

need for tsunami early warning systems that would mitigate tsunami impact.  

 

Due to the great potential for further tsunami events, Indonesia has taken 

centre stage in the current tsunami research. Figure 1.1 shows the tsunami 

occurrences from 1859 to 2007 with their earthquake magnitudes and 

intensities along the Sunda Trench (ITDB/WLD, 2007). 

 

 
 

Figure 1.1 The occurrence of tsunami with their earthquake magnitudes and 

intensities along the Sunda trench (Source: ITDB/WLD, 2007) 
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Based on these geological conditions and historical data, Indonesia is a highly 

susceptible region to tsunami hazards. At the same time, its population is 

increasingly growing in the coastal areas. In particular, the islands of Sumatra 

and Java have experienced a tremendous population growth since the 1970s. 

Java is well known for being the most populated areas in the world. Due to 

these conditions, a strategy on mitigating the consequences of a tsunami 

impact is strongly required. 

Risk assessment plays an important role in designing strategies for disaster risk 

reduction and disaster response. Knowledge about exposed elements, and their 

susceptibility, coping and adaptation mechanisms is a precondition for the 

development of people-centered warning structures (Post et al., 2008).  

Overall, risk assessment has two dimensions:  

 the hazard assessment;  

 the assessment of vulnerability.  

Both components have a significant influence on the level of tsunami risk and 

provide the basis for the tsunami risk assessment.  

In terms of the tsunami impact, the hazard assessment is often covered by 

numerical inundation modeling, which indicates a probability for the spatial 

distribution of the maximum inundation area depending on the location of the 

source (Geist and Parson, 2006; Annaka et al., 2007; Burbidge et al., 2008), 

and Power et al., 2007). It is clear that there is a correlation between the 

distance to the coast and the degree of impact. In addition, terrain altitude is 

an important influence factor. Moreover, in tsunami inundation modeling, a 

number of additional parameters must be taken into account, including surface 

roughness. Surface roughness of potentially affected areas plays an important 

role in mitigating or increasing tsunami intensity, by influencing the tsunami 

flow, tsunami direction, inundation length, and velocity of water. In addition, 

detailed information on surface roughness and the specific influences for 

tsunami inundation will provide decisive findings to reduce the long-term 

tsunami risk to human life and property by efficient urban planning. Therefore, 

it is necessary to quantify the surface roughness. The availability of up-to-date 

spatial data is crucial to achieve this goal. While in situ field surveys are time-

consuming and expensive, remote sensing provides an efficient possibility to 

derive the relevant surface parameters. The main challenge in using remote 

sensing is the development of an appropriate classification methodology that 

would allow for the automatic or semi-automatic derivation of these parameters 

from the remote sensing data. 
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Since the consideration of surface roughness in tsunami research is very 

limited, the first part of this thesis is devoted to research on how to describe 

the relevant surface roughness class to tsunami inundation modeling and to 

elaborate a concept for a roughness classification based on medium- and high-

resolution satellite imagery.     

Vulnerability assessment as the second dimension of risk assessment plays a 

crucial role in tsunami disaster reduction strategies. Vulnerability can be 

defined as “The conditions determined by physical, social, economic, and 

environmental factors or processes which increase the susceptibility of a 

community to the impact of hazards” (ISDR, 2004). With respect to this 

definition, vulnerability is trans-disciplinary and multi-dimensional, covering 

social, economic, physical, political, engineering and ecological aspects and 

dimensions (Post et al., 2009). Detailed and up-to-date information on 

population distribution in the potential hazard zone is the most important factor 

in mitigating the impact of natural disasters, e.g. by evacuation planning.  

The available information about population distribution is mostly based on 

statistical data and is related to administrative boundaries, such as village, 

municipal, district, province and national borders. In most countries and also in 

Indonesia, population distribution data are available for villages as the smallest 

administrative level. However, for an efficient disaster management, it is 

essential to have a good insight into the spatial distribution of the population at 

risk. The available census data on the village level are too coarse for a planning 

process at the local level. The question then is: How can population data in 

census districts be disaggregated to smaller geographical or mapping sectors 

that better satisfy the demands for information for emergency actions and 

disaster mitigation management? (Hofstee and Islam, 2004). 

In terms of remote sensing and GIS, spatial improvement on population 

distribution is not a new task. However, applying current research findings to 

tsunami early warning and disaster management issues is unsatisfying because 

of the static information of most approaches. The crucial assessment unit in 

quantifying human response capability related to tsunamis is time, but current 

research results considering temporal analyses do not meet the demands for 

tsunami-related topics. For vulnerability assessment, it is necessary to have 

spatially explicit information on population distribution as well as on its 

temporal distribution, i.e. the changes during the day- and night-time, which is 

crucial information needed for evacuation planning.  

Consequently, the second part of this thesis is devoted to improve the spatial 

and temporal resolution of the population distribution data in coastal areas of 

Indonesia.  In addressing this research problem, it focuses on a sub-national 
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and local-scale assessment related to different levels of tsunami disaster 

management. Results and conclusions from this part seek to provide key 

information for effective warning and evacuation planning, and will be 

implemented in the tsunami risk and vulnerability assessment framework.  

A key parameter in disaggregating population data based on a dasymetric 

mapping approach (see chapter 3) is the availability of comprehensive, detailed 

and up-to-date land use data, which is always a problem, especially in large 

and fast developing countries like Indonesia. Previous research has 

demonstrated the potential of remote sensing in mapping settlement areas. 

With the availability of high-resolution synthetic aperture radar (SAR) sensor 

systems, e.g. of the German TerraSAR-X Earth observation satellite, new 

opportunities of settlement mapping are available. SAR systems are capable of 

acquiring data at day and night, independently of weather or environmental 

conditions. Hence, sophisticated and efficient methodologies for settlement 

classification using TerraSAR-X are needed for the mapping and updating of 

land use and settlement areas. 

In the third part of the thesis, current research findings of settlement detection 

using TerraSAR-X will be reviewed. Methods will be further developed or 

improved and applied to coastal areas in Indonesia. The research findings shall 

contribute to assessing risk and vulnerability before an expected disastrous 

tsunami event, in coordinating emergency actions during an event, or in 

managing disasters after the event. 

Risk assessment aims at revealing the two dimensions of hazard and 

vulnerability assessment, and at deducing options for action related to 

adaptation and mitigation measures. This research focuses on the development 

of new methodologies based on remote sensing and GIS techniques, which 

shall help to provide improved geo-spatial data contributing to reduce tsunami 

risk at coastal areas of Indonesia and to cope with inevitable tsunami impact.  

 

1.2.   Research Questions 

The research is devoted to provide decisive parameters for an efficient tsunami 

risk assessment in order to reduce the impact of tsunami on the coastal areas 

of Indonesia. For this purpose, different research aspects and approaches are 

examined. The research questions that will be answered are stated below. 
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a) Surface roughness determination 

1. How can surface roughness be appropriately described and quantified in 

order to be used in tsunami inundation modeling and hazard 

assessment?  

2. How can surface roughness parameters be derived by remote sensing?  

3. How can the derived surface roughness parameters be integrated into 

tsunami modeling and hazard assessment? 

 

b) Population distribution modeling 

1. How can adequate population distribution data be derived or be spatially 

improved based on available statistical data? 

2. Is it possible to derive further information about the spatial and temporal 

changes, especially the different population distribution during the day- 

and night-time?  

 

c) Settlement classification using remote sensing  

1. How can settlement areas be efficiently mapped using remote sensing 

technologies?  

 

1.3.  Research Objectives 

Based on the above research questions, the research objectives are as follows:  

 

a) Surface roughness determination 

1. Determine an appropriate surface roughness parameterization for 

tsunami inundation modeling and hazard assessment. 

2. Develop a new remote sensing  for surface roughness classification. 

3. Integrate the derived roughness coefficients into tsunami modeling and 

tsunami hazard mapping. 

 

b) Population distribution modeling 

1. Develop a new or improved concept on how to derive adequate 

population data based on the disaggregation of available statistical data. 
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2. Determine day and night population distribution by modeling and 

integrating socio-economic factors into the developed approach. 

3. Analyze the transferability and accuracy of the developed population 

distribution model. 

 

c) Settlement classification using remote sensing   

1. Further develop and improve methods for the determination of 

settlement areas with a focus on SAR remote sensing data.  

 

1.4.  Research Benefits 

This research results shall contribute to tsunami risk mitigation and reduction at 

coastal areas in Indonesia. By integrating this research into the risk and 

vulnerability assessment of the German Indonesia Tsunami Early Warning 

System (GITEWS) project, a concerted focus on decisive research needs in the 

tsunami context is ensured. Major benefits of this research are: 

 the development of new remote sensing methods and GIS models; 

 contribution to the risk and vulnerability assessment of the German 

Indonesia Tsunami Early Warning System (GITEWS) project and the 

tsunami disaster management in Indonesia; 

 remote sensing-based mapping of surface roughness and derivation of 

settlement areas as a crucial contribution to tsunami modeling and 

hazard assessment; 

 an improved and automated approach for population distribution 

modeling based on GIS approaches as input for vulnerability analyses; 

 contribution to evacuation planning and disaster risk reduction. 

 

1.5.  Thesis Structure 

This thesis consists of eight chapters.   

 Chapter 1 explains the motivation of the research, presents the 

research questions and objectives, points out the research benefits, 

and describes the structure of the thesis.  
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 Chapter 2 provides the research framework. It shows the contribution 

of the research in the context of the GITEWS project and within the 

risk and vulnerability assessment part. All research components are 

clearly represented and described in this chapter in order to point out 

the coherent structure of the thesis. Finally, all research topics are 

linked to the respective study area, and relevant spatial conditions 

are explained in detail. 

 Chapter 3 explains the current status on roughness coefficient 

determination and classification research, the research development 

on population distribution modeling by using remote sensing and GIS, 

and the current status of remote sensing settlement classification 

research. It explains the current gaps in this specific field of research. 

 Chapter 4 explains the data required the various steps in the 

research process, and the approach to answer the research 

questions. It concretizes the objectives of this research.  

 Chapter 5 shows result of data collection, the research findings on 

the surface roughness and its coefficient estimation, the 

improvement on surface roughness classification by remote sensing, 

the improvement on population distribution modeling, and the results 

of settlement classification. 

 Chapter 6 discusses and interprets these research findings with 

respect to the state of the art of the research. It also discusses the 

implication of the results in the practical/theoretical aspect of this 

thesis.  

 Chapter 7 explains the application of the research, the integration of 

its results on the tsunami modeling, and the risk and vulnerability 

assessment.  

 Chapter 8 concludes the main research findings and their potential 

consequences. 
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CHAPTER 2: RESEARCH FRAMEWORK 
 

This research is part of the risk and vulnerability assessment within the German 

Indonesian Tsunami Early Warning System (GITEWS) project. It contributes to 

three major components of the project: (1) the provision of spatial information 

on surface roughness as an important parameter for tsunami inundation 

modeling and hazard assessment; (2) the modeling of population distribution, 

which is an essential factor in tsunami vulnerability assessment and local 

disaster management activities; and (3) the settlement detection and 

classification from remote sensing radar imagery to support the population 

distribution research. 

Detailed explanations of the GITEWS framework, the risk and vulnerability 

framework, research elements and the study area are stated below. 

 

2.1. GITEWS Framework 

The GITEWS project is a research collaboration between the Federal Ministry of 

Education and Research (BMBF) of Germany and the Indonesian Ministry of 

Research and Technology (RISTEK), aimed to develop an effective tsunami 

early warning system for Indonesia. The Joint Declaration of BMBF and RISTEK 

was signed on 14 March 2005. Its concept integrates terrestrial observation 

networks of seismology and geodesy with marine measuring processes and 

satellite observation. Several German and Indonesian institutions are involved 

and work together to set up end-to-end early warning system, which also 

contains the capacity-building provision for Indonesian institutions. The system 

itself was successfully launched on 11 November 2008 by the Indonesian 

President. The overall concept of the project is shown in Figure 2.1.  

GITEWS is designed as a comprehensive project consisting of several work 

packages and is conducted by a consortium of nine German research 

institutions in close cooperation with Indonesian partner institutions. The 

German Aerospace Center (DLR) is responsible for the Early Warning and 

Mitigation Center (EWMC), in which the risk and vulnerability assessment is 

integrated as an essential component (see Figure 2.2). 
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Figure 2.1 GITEWS Early Warning System framework  

 

 
 

Figure 2.2 The GITEWS Work Packages  
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2.2. Risk and Vulnerability Framework 

Risk management serves as a general guideline for developing disaster 

preparedness and adaptation strategies based on a continuous strategy of risk 

and vulnerability assessment (ISDR, 2004). This implies that risk and 

vulnerability assessment is an integral part in the development of an effective 

end-to-end early warning system, which significantly contributes to disaster risk 

reduction to low-frequency but extreme events like tsunamis.  

Risk and vulnerability assessment in the GITEWS context contributes to two 

main tasks:  

 enhancing crisis management capacities (e.g. emergency assistance) 

during an early warning scenario; 

 developing disaster risk reduction strategies such as adaptation and 

mitigation measures (e.g. evacuation and land use planning). 

The BBC framework has been adopted in order to implement effective early 

warning disaster response and recovery (see Figure 2.3). It shows the 

importance of addressing the potential intervention tools that could help to 

reduce vulnerability in the social, economic and environmental spheres. The 

framework integrates social, economic and environmental aspects into the 

vulnerability assessment, thus reflecting the “three pillars” of sustainable 

development (Birkmann, 2006).  

The risk and vulnerability assessment within GITEWS mainly focuses on 

vulnerability and risk factors of people exposed to tsunami hazard, in terms of 

loss of life, injury and loss of livelihood. Accordingly, the GITEWS vulnerability 

assessment aims at developing socio-economic indicators and assessment tools 

for the continuous improvement of intervention tools, such as early warning 

communication, evacuation planning, disaster response and rehabilitation.  

Regarding the BBC-framework, the risk and vulnerability assessment in the 

GITEWS project is translated into a coherent conceptual model, integrating the 

above-mentioned aspects.  

Generally, the concept was to establish monitoring and quantification of the 

spatial vulnerabilities within the timeline of disasters (see Figure 2.4). The 

properties or deficiencies related to warning (e.g. people’s ability to understand 

a warning), to evacuation (ability to respond immediately), as well as to 

emergency relief and recovery are stated accordingly (Post et al., 2008). The 

concept is explained more details in Figure 2.4. 



  Chapter 2: Research Framework 

 11 

e.g. 
Emission 
control

e.g. 
Insurances

e.g.     Land use changes

Social 
sphere

Economic risk

Environmental 
risk

Social risk

Vulnerability reduction (t=0)

Preparedness

Disaster/emergency
management

Vulnerability reduction (t=1)

e.g. 
Early 
warning

Event

HAZARD

Economic 
sphere

Environmental 
sphere

Risk 
reduction

INTERVENTION 
SYSTEM

Natural phenomena

Fragile and 
exposed 
elements

Coping
capacity

VULNERABILITY RISK

FEEDBACK

e.g. 
Emission 
control

e.g. 
Insurances

e.g.     Land use changes

Social 
sphere

Economic risk

Environmental 
risk

Social risk

Vulnerability reduction (t=0)

Preparedness

Disaster/emergency
management

Vulnerability reduction (t=1)

e.g. 
Early 
warning

Event

HAZARD

Economic 
sphere

Environmental 
sphere

Risk 
reduction

INTERVENTION 
SYSTEM

Natural phenomena

Fragile and 
exposed 
elements

Coping
capacity

VULNERABILITY RISK

FEEDBACK

 
Figure 2.3 The risk and vulnerability concept from Bogardi, Birkmann and 

Cardona (the BBC Framework) 

 

 

 
Figure 2.4 The GITEWS risk and vulnerability framework, the blue boxes are 

high lightening the research contribution 
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The aim of the hazard assessment is to achieve a better understanding of 

tsunami and the potential impacts on society in order to enable local and 

national decision-makers and other stakeholders to become better prepared for 

future tsunami events. In case of a tsunami, the decision whether a region 

should be warned requires sound information on the hazard zone and expected 

impact, on the spatial distribution of exposed population and on critical 

infrastructures. The immediate response component is represented by 

analyzing people’s ability to receive and understand a warning, their decision to 

evacuate and their capability to do so. Here, mainly socio-economic indicators 

are relevant that describe the intrinsic social properties of the population 

exposed to tsunamis.  

The component recovery is not directly linked to the early warning chain, but 

rather to the post-disaster management phase, since it deals with developing 

vulnerability indicators for disaster relief and rehabilitation aspects in the 

aftermath of a tsunami disaster. Hence, vulnerability assessment comprises 

information on the number of people exposed, critical facilities and immediate 

response capability. The vulnerability information is then combined with the 

hazard information based on the decision tree logic to calculate the overall 

tsunami risk (Post et al., 2008). 

 

2.3. Research Contributions to Tsunami Risk Assessment  

As highlighted in Figure 2.4, this research contributes to the hazard and 

exposure component in order to provide decisive input parameters for tsunami 

risk assessment.  

Detailed information about surface roughness is indispensable for tsunami 

inundation modeling and hazard assessment as a precondition for calculating 

the exposed population of the coastal areas. The surface roughness parameters 

derived in this thesis will be implemented accordingly in the risk and 

vulnerability framework above. 

A crucial factor in a people-centered risk assessment is detailed information 

about population distribution in the potential tsunami hazard zone, since 

disaster management strategies differ widely between uninhabited and highly 

populated areas. New and improved methodologies for settlement classification 

and population disaggregation will strongly enhance the available population 

data and consequently provide key information for tsunami warning decision 

support, effective warning and warning chain planning, as well as for 

evacuation and contingency planning. 
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Key elements in this research are Remote Sensing (RS) and Geographical 

Information Systems (GIS) (see Figure 2.5).  

Remote sensing data are the precondition for determining surface roughness 

and settlement detection. In this research, both optical and radar sensors are 

used. Optical, multi-spectral SPOT 5 data were used for roughness coefficient 

classification, while TerraSAR-X radar data were used for settlement 

classification.  

GIS modeling was applied for processing and analyzing population data. A 

dasymetric mapping concept was developed by combining available census data 

and ancillary data such as land use in order to improve the spatial population 

distribution. Statistical data, field survey results, reference maps and 

questionnaires were used to validate the gained modeling results. GIS 

technology provides efficient tools for the combination and analysis of different 

input data and is an essential working basis in this research. An accuracy 

assessment was conducted to check the quality of the GIS modeling and 

remote sensing classification techniques. As shown in Figure 2.5 and mentioned 

above, quality controlled results are implemented in the respective parts of the 

GITEWS risk and vulnerability assessment.  

 

2.4. Study Area 

The GITEWS risk and vulnerability assessment is conducted at two scales: at 

the broad scale and at the local level, each fulfilling a different purpose. 

While the broad-scale assessment provides products in the context of early 

warning for an entire exposed coastal zone, the local assessment aims at 

contributing to the development of local, specific disaster preparedness, 

adaptation and mitigation strategies (e.g. urban planning and evacuation 

planning for priority areas).  

In this research, the Cilacap region was selected as the study area at the local 

level for modeling and analyzing surface roughness, settlement classification 

and population distribution, while the latter, the population distribution 

modeling was also implemented for the coast of Sumatra, Java and Bali (broad-

scale level, see Figure 2.6). 
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Figure 2.5 The elements of research  
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Figure 2.6 The research study area, Cilacap as pilot region (below) and the 

broad scale area (above) for the implementation of population distribution  

 

Cilacap was selected as a pilot region in this research for the following reasons: 

 Cilacap is prone to tsunami disasters. The 2006 Tsunami confirmed this 

condition, and based on seismic analysis and historical data; there is a 

high probability for tsunami occurrence in this region in the future. 

 Cilacap is the largest city on south coast of Java. Several critical 

infrastructures, such as industrial areas, oil tanks, power plants, ports 

and hospitals, are located close to the beach. 
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 A great number of people are living or working near the beach, mostly in 

the agriculture, fisheries and tourism sector. 

 In addition to Padang and Bali, Cilacap is a GITEWS pilot area, and 

therefore, the results of this research strongly support project needs. 

 

2.4.1.  Geographic and socio-demographic characteristics  

Cilacap is the largest district in the Province of Central Java, Indonesia. The 

area of Cilacap region covers about 225,000 ha, and consists of 24 municipals 

(BPS, 2005). Cilacap city lies between 108º4'30"-109º30'30" East and 

7º30'00”-7º45'20" South; it bordered by Banyumas District in the north, 

Kebumen District in the east, Ciamis District in the west, and the south part of 

this region directly faces the Indian Ocean. 

Based on BPS data, the number of registered people in 2005 is approximately 

1.7 million, with an average growth rate of 0.52% per year. The average 

population density in Cilacap is about 803 people per km2.  

Most employees in Cilacap District work in the agriculture sector followed by the 

services, trade, industry and transportation sectors (BPS, 2005). The main 

source of income in Cilacap is from the agriculture sector.   

 

2.4.2.  Land use structure 

The variation of land use conditions in Cilacap District is high. In the west part 

of this district, there is Nusakambangan Island, with a hilly surface and very 

dense vegetation. The center part of Cilacap District is characterized by a 

varied settlement structure with high, medium and low density, surrounded by 

rural landscapes such as cropland and plantation. The flat area is crossed by 

various rivers and interrupted by small hilly zones. 

 

2.4.3. Tsunami exposure 

The coastal area of Cilacap is directly exposed to the Indian Ocean. Due to 

tectonic and bathymetric conditions, elevation on land and the recorded 

historical earthquake and tsunami events, the region of Cilacap is prone to 

tsunami hazard (see Figure 2.7).  

The region of the plate boundary between the Australian plate and the Sunda 

plate has a high seismic activity. Based on the integrated tsunami database 
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(ITDB), between 1859 and 2007, four tsunamis and 289 earthquakes with 

moment magnitudes of more than 5 were detected around the Cilacap region. 

Based on Indonesian National Coordinating Agency for Disaster Management 

(BAKORNAS PBP) 2006, the 2006 Tsunami with a moment magnitude (Mw) of 

7.7 killed around 650 people, injured around 520 people, and around 30 people 

are missing in this area and caused a lot of damage and economic loss. The 

event affected Ciamis, West Java (Pangandaran), Cilacap and Kebumen 

Districts, up to the famous beach in Yogyakarta, Parangtritis. In the district of 

Cilacap alone, 157 people were killed, 10 were missing, and 10 were injured in 

Adipala, Binangun, and Nusawungu (BAKORNAS PBP, 2006). The strongest 

recorded earthquake was in 1943, with a moment magnitude (Mw) of 8.1; 

however, no tsunami was reported.  

 

 

Figure 2.7 The bathymetry, the subduction zone, and the historical tsunami 

and earthquake occurrences in the Indian Ocean around the Cilacap region 

(ITDB/WLD, 2007) 
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CHAPTER 3: STATE OF THE ART OF RESEARCH 
 

This chapter is designed to analyze the current status on research and 

development on surface roughness determination, population distribution 

mapping, and settlement classification. The current status is critically described 

and needs for further research works are identified.  

In the first sub-chapter, a review of the current status of research on the 

application of remote sensing and GIS in the field of vulnerability and risk 

assessment as well as remote sensing classification techniques is given. 

In the second sub-chapter, the current status of research on surface roughness 

in relation to tsunami flow resistance is reviewed. It provides an overview of 

the factors affecting flow resistance and illustrates how vegetation is one 

important factor. The role of vegetation and its characteristics to reduce 

tsunami impact, the analysis of surface roughness, including the use of remote 

sensing techniques, and the estimation of surface roughness coefficients are 

explained.  

The third sub-chapter summarizes the current status of research on the 

application of remote sensing and geographical information systems (GIS) in 

the field of population distribution modeling. Top-down and bottom-up 

approaches are explained.  

The fourth sub-chapter describes the current status of research on settlement 

classification using remote sensing data. The chapter includes optical as well as 

SAR imagery applications, and the fusion of both kinds of data.  

The final sub-chapter concludes the state of the art of research and explains 

the needs for further research, to which this thesis will contribute.  
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3.1. Remote Sensing and Tsunami Risk and Vulnerability  

3.1.1. Overview 

For almost 40 years, remote sensing has been used for monitoring the Earth’s 

surface, its conditions and changes. In the field of disaster management, in 

particular, remote sensing can help to analyze areas that are prone to natural 

and man-made hazards and potential damages. Risk and vulnerability 

assessments are an important part of disaster management and can be 

supported by remote sensing for pre-disaster analyses.  

Regarding tsunami risk and vulnerability assessment and modeling, remote 

sensing techniques have been used for the following applications throughout 

the disaster cycle (see Figure 3.1): 

 Damage assessment and rapid mapping to support the emergency 

response phase immediately after a disaster has occurred 

 Contributions to vulnerability and risk assessment in the pre-disaster 

phase by deriving relevant information such as land use, settlement 

areas and buildings, elevation, etc. 

 Monitoring of reconstruction and rebuilding in the post-disaster 

phase. 

Specific remote sensing classification techniques are required to fulfill the 

demands of tsunami risk vulnerability analysis. Hence, this sub-chapter reviews 

the current state of the art of such techniques.  

 

 

Figure 3.1 The disaster management cycle and remote sensing contributions  
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3.1.2. Damage assessment 

Shortly after the Indian Ocean Tsunami 2004, high-resolution images acquired 

before and after the tsunami and damage assessments based on such images 

had been released to the relief organizations and centers. This was very helpful 

to describe the impact and extent of tsunami occurrence, for example, in Banda 

Aceh. It showed that remote sensing data is useful for disaster analysis; its 

application is not limited to tsunami disasters, but also for other kinds of 

natural and man-made disasters such as floods, landslides, forest fires and oil 

spills.  

In general, there are two main goals using remote sensing data for analyzing 

damage: rapid mapping assessment (e.g. Belward et al. 2007) and mapping 

the affected hazard impact zone (e.g. McAdoo et al. 2007; Iverson and Prasad, 

2007; Chatenoux and Peduzzi, 2007). The latter is very important in risk and 

vulnerability assessment in order to know the important parameters for 

tsunami hazard mapping. For example, the tsunami run-up is influenced by the 

topography of a region (McAdoo et al. (2007), the geomorphologic conditions, 

mangroves, and coral reefs influenced the characteristics of the tsunami 

inundation in Aceh (Chatenoux and Peduzzi, 2007), and the landscape analysis 

is used to model the tsunami damage in Aceh Province (Iverson and Prasad, 

2007).  

The damage assessment research is vital for improving the tsunami hazard 

mapping, and for analyzing what kinds of parameters influence the tsunami 

run-up and inundation. The role of vegetation on tsunami impact was examined 

through the analysis of the damaged areas by remote sensing and GIS, (e.g. 

Danielsen et al. (2005), Parish and Yiew (2005), Chang et al. (2006) and Olwig 

et al., 2007).  

 

3.1.3. Derivation of relevant information for risk and vulnerability 

Several components needed for tsunami risk and vulnerability assessment, 

such as elevation, land use, vegetation condition and population distribution 

can be derived from remote sensing data. Willige (2008) assessed tsunami 

hazard in the northern Aegean Sea by using the Digital Elevation Model (DEM) 

of the Shuttle Radar Topographic Mission (SRTM) and land use from LANDSAT 

TM. She analyzed the potential flooding area by tsunami using GIS modeling. 

Another application has been shown by Post et al. (2009). They used land 

cover, slope and population data to analyze evacuation planning strategies to 

minimize the impact of tsunami hazards using GIS. Both studies have shown 

the important role of remote sensing in tsunami risk and vulnerability modeling. 
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Moreover, the development of remote sensing technology has the potential to 

identify and assess objects, even on a detailed scale, e.g. the condition of 

buildings. The direct assessment of the vulnerability of objects such as 

buildings is not possible (e.g. Mueller et al., 2006). However, relevant 

parameters can be derived from remote sensing data, which can be used as 

input for vulnerability assessment as well as to identify buildings for potential 

vertical evacuation as a basis for developing an appropriate evacuation 

planning strategy. 

Another important component that can be derived from remote sensing data, 

especially for tsunami and flood hazard mapping, is surface roughness 

condition. Several studies have been undertaken; this issue is addressed in 

detail in chapter 3.2.   

 

3.1.4. Monitoring of reconstruction and rebuilding in the post-

disaster phase 

Remote sensing data is also used to monitor the progress of post-disaster 

environmental and infrastructure rebuilding activities in a cost-effective manner 

(Friesecke, 2006). An example of this application was shown by Shofiyati et al. 

(2005), who assessed the land use damaged by the Indian Ocean Tsunami 

2004 for Aceh, Indonesia, especially in agriculture. The information was used 

for soil reclamation and spatial planning in the coastal area. Another application 

was shown by Adams et al. (2004), who developed a remote sensing technique 

to monitor the reconstruction of buildings collapsed during earthquakes in 

Boumerdes, Algeria, and Bam, Iran. 

Both studies demonstrated the effectiveness of using remote sensing data for 

the monitoring of reconstruction and rebuilding activities in a disaster-damaged 

area. Remote sensing can thus significantly support disaster management 

activities in the recovery phase of the disaster cycle (Figure 3.1). 

  

3.1.5. Remote sensing classification techniques 

The quality of tsunami risk and vulnerability analysis by using remote sensing 

depends on the accuracy of the classification technique. Until now, the accuracy 

of such techniques is already well developed, and research is still ongoing to 

achieve further improvements. Current developments on remote sensing 

classification techniques are reviewed below.   
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Remote sensing classification has made great progress over the past decades 

mainly in the following three areas (Lu and Weng (2007):  

 development of advanced remote sensing classification techniques;  

 integration of multiple remote-sensing features in the classification 

process; 

 integration of ancillary data and knowledge into the classification 

procedures. 

Conventional methods such as the maximum likelihood classification to the 

more advanced object-based classification have been used and developed with 

great success. This advancement is in line with the progress of remote sensing 

sensor technology that led to high spatial resolution to below 1 m. Object-

based image classification, for example, was developed for high resolution 

image classification (e.g. Blaschke, 2009). From this comprehensive literature 

review it can be concluded that this methodology represents a significant trend 

in remote sensing and GIS science. In contrast, in low- and medium- resolution 

remote sensing data such as NOAA AVHRR and MODIS, one pixel usually 

contains several objects of the earth surface and heterogeneous information 

(mixed pixels). Spectral mixture analysis (SMA) was recognized as an effective 

method for dealing with the mixed pixel problem (Lu and Weng, 2007).  

The integration of multiple remote sensing features including spectral, spatial, 

multi-temporal, and multi-sensorial information are important for improving the 

classification accuracy. One example of this application is data fusion of multi-

spectral and panchromatic bands (“pan-sharpening”). Using multi-temporal 

imagery is another useful method to classify objects such as water, bare land or 

paddy field. As well known, paddy fields have three important phases: the 

water phase, the vegetative phase and the bare phase. By using a single 

image, a paddy field in the water phase will be classified as water, or in the 

vegetative phase, as vegetation. The use of multi-temporal imagery can 

improve the classification results of such features (e.g. Xiao et al., 2006). 

Hyper-spectral data can help to classify objects in more detail due to narrow 

spectral bands. As a result of specific spectral properties, it is possible to 

distinguish between different types of vegetation, phytoplankton in the ocean, 

and soil (e.g. Belluco et al., 2006). 

The integration of ancillary data such as digital elevation models, population 

density, road network, soil type, temperature, or precipitation, can also 

improve the accuracy of the classification results. For example, Stathakis and 

Kanellopoulus (2008) incorporate global elevation ancillary data for land use 

classification using granular neural networks. Liu et al. (2008) integrated GIS 



  Chapter 3: State of the Art of Research 

 23 

data to monitor mangrove forest changes with decision tree learning. They 

demonstrated that the use of the decision tree method on a combined dataset 

of multi-temporal Landsat TM Images and GIS data can be effective in 

delineating spatial and temporal distribution of mangrove forest. Moreover, 

classification accuracy can also be increased by including human knowledge, or 

“knowledge-based classification” (e.g. Hung and Rid, 2002; Judex et al., 2006). 

 

3.1.6. Summary of remote sensing and tsunami risk and 

vulnerability 

Remote sensing methodologies are useful during all phases of the disaster cycle 

(Figure 3.1), especially for damage assessment, mapping of risk-relevant 

information and monitoring of post-disaster reconstruction and rebuilding. For 

these applications, the choice of an appropriate remote sensing classification 

technique is important to achieve adequate accuracy of the results. 

There are still open issues and challenges in improving these techniques for 

several purposes, namely, for determining the surface roughness condition, the 

population distribution, and the settlement classification. Hence, sections 3.2 to 

3.4 will review the state of the art of these components in order to assess in 

detail the pending issues of current methods and necessary improvements. 

 

3.2. Surface Roughness Determination 

3.2.1. Overview 

Surface roughness can be defined as the smoothness and coarseness of the 

earth’s surface related to water flow resistance. Smooth earth surfaces, such as 

open land and water, have low resistance, and coarse earth surfaces, such as 

dense vegetation and dense residential area, have high resistance. In tsunami 

inundation and flood modeling, water resistance is described by a roughness 

coefficient; Manning’s roughness coefficient is the most widely used. 

Manning’s roughness formula is stated as follows: 

 

n

SkR
V

2132


          (3.1) 

Where: 

V is the cross-sectional average velocity (m s-1) 
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k is a factor to keep the equation dimensionally correct (m1/3 s-1) 
n is the roughness coefficient (independent of units) 

R  is the hydraulic radius (m) 

S 
is the slope of the water surface or the linear hydraulic head loss 
(dimensionless). 

 

In applying Manning’s roughness formula, the greatest difficulty lies in 

determining coefficient n, since there is no exact method of selecting the n 

value (Chow, 1959). The estimation of the surface roughness coefficient will be 

further discussed in sub-chapters 3.2.3. Before that, the factors affecting the 

roughness coefficient shall be first described. 

Cowan (1956) formulated as follows: 

  

mnnnnnn )( 43210 
      (3.2) 

 

Where: 

n is the roughness coefficient 
n0 is a basic n value for straight, uniform, smooth channel in the 

natural material involved 
n1 is a value added to n0 to rectify the surface irregularity 
n2 is a value for variation in shape and size of the channel cross 

section  
n3 is a value for obstruction   
n4 is a value for vegetation condition 
m is a correction factor for meandering channel.  

 

This formula was developed for flood modeling of channel and river flow. For 

tsunami events that struck lowland coastal areas, it could be modified as 

suggested by Morin et al. (2000): 

 

2
4

2
0

2 nnn 
        (3.3) 

 

This formula shows that the vegetation condition is the most important for 

determining a roughness coefficient. Recent developments also include building 

density for calculating the roughness coefficient (Koshimura, 2009). The 

roughness coefficient formula based on building condition is as follows (Dutta et 

al., 2007 and Koshimura et al., 2009): 
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Where: 

n is the roughness coefficient 
n0 is the roughness value due to land use except building 
  is the building/house occupancy ratio in the computational grid (23 m)   
Cd is the drag coefficient  
d is the horizontal scale of houses measured by using GIS 
D is the modeled flow depth 
g is the gravitational acceleration constant. 

 

Based on these formulas, the two main components affecting the roughness 

coefficient are vegetation and building conditions. Regarding building condition, 

it is obvious that building density is the most important characteristic. For 

vegetation, some further analysis is needed, and thus, the following section is 

dedicated to exploring the role of vegetation and its characteristics in reducing 

tsunami impact. 

 

3.2.2. The role of vegetation on reducing tsunami impact 

Several studies showed that vegetation could contribute to protecting coastal 

areas against tsunami waves (Kathiresan and Rajendran, 2005; Vermat et al., 

2006; Danielsen et al., 2005; Iverson and Prasad, 2007). However, the role of 

vegetation for tsunami protection very much depends on, among other factors, 

the tsunami wave height. Empirical studies show that the protective role of 

vegetation is mostly effective if the tsunami wave height is below 

approximately 7 m. If the tsunami wave height is higher, the protective 

vegetation will be destroyed in most cases and will no longer have wave 

reduction effects (Harada and Kawata, 2004) (Table 3.1). In the Indian Ocean 

Tsunami 2004, for example, run-up heights were in some areas peaked at more 

than 20 m and the coastal vegetation, e.g. near Banda Aceh, was completely 

destroyed (Hiraishi, 2005). 
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Table 3.1 The relation between tsunami intensity and tsunami damage 

Tsunami 
intensity 

0 1 2 3 4 5 

Tsunami 
wave height 
(m) 

1 2-3 4-7 8 16 32 

Coastal 
control 
forest 

Mitigates damage, 
stops drafts, and 
mitigates tsunami 

There is only 
partial 
damage and 
stop drafts 

There is complete 
damage, no reduction 
effect 

Source: Harada and Kawata (2004) 

 

In the case of the 2006 Tsunami in west Java, which had lower wave heights 

(4-10 m), the vegetation proved its ability to protect buildings near the coast 

(see Figure 3.1). High-resolution satellite imagery acquired before and after the 

tsunami in west Java shows that houses with no vegetation protection were 

completely destroyed, while houses with vegetation protection were only 

slightly damaged. Figure 3.2 shows that the vegetation was able to resist the 

tsunami flow and decrease the tsunami energy, and hence the building behind 

the vegetation has been only slightly damaged.  

 

 
 

Figure 3.2 The potential of vegetation on reducing tsunami impact in 

Pangandaran (Source: Latief and Hadi, 2007)) 
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The photographs in Figure 3.3 show additional examples of the protective role 

of vegetation in reducing the hazard impacts of the Indian Ocean Tsunami 2004 

(Kongko, 2005). The left photo shows an example of the west coast of 

Simeuleu Island, where some houses built of wooden material (houses A) were 

saved from the tsunami’s destructive force due to protection by a dense 

coconut tree zone of approximately 10 m width. There used to be a similarly 

built house not far from this location (B), which had no protective vegetation 

and was completely destroyed. The right photo shows houses built of bamboo 

material in Muawe-Lahewa (northern Nias Island), which was protected from 

the tsunami impact by dense mangrove forest. 

 

West Coast of Simeulue Island Muawe-Lahewa North Nias Island 
 

Figure 3.3 Observation pictures from the effect of tsunami 2004 in Nias 

Island and Simeulue (Source: Kongko, 2005) 

 

These examples clearly show the potential of vegetation to reduce tsunami 

impact, but there is a need to investigate the specific characteristics of 

potentially protective vegetation. The characteristics of coastal vegetation that 

play a protective role include width, density and structure of vegetation.  

Several studies deal with the correlation of the reduction rate of tsunami impact 

and the width of a forest zone (Harada and Kawata, 2004; Kongko, 2005), and 

the forest density, respectively (Harada and Kawata, 2004). The reduction rate 

was examined in terms of run-up, inundation depth, current and hydraulic 

force. The forest density proved to have a moderate influence on the reduction 

of inundation depth and current (Harada and Kawata, 2004), whereas the 

forest width has a significant influence on the reduction of run-up, current and 

hydraulic force (Harada and Kawata, 2004; Kongko, 2005). Figure 3.4 shows 

correlations between forest width and density and reduction rates.  
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Figure 3.4 Effects of forest width and density to tsunami reduction (Source: 

Harada and Kawata, 2004) 

 

Moreover, Tanaka et al. (2007) analyzed coastal vegetation structures and their 

functions in tsunami protection in Sri Lanka and the Andaman coast of 

Thailand. By field measurement, they analyzed the effectiveness of vegetation 

structure in providing protection from tsunami damage. This research showed 

that the neighborhood of vegetation types is an important factor regarding 

tsunami impact reduction. For example, both Casuarina equisetifolia and 

Pandanus odoratissimus have only little effect on reducing tsunami impact, but 

in a combined association of both plant species, the effect is strong.  

It may be concluded that width, density and structure of vegetation play 

important roles in tsunami reduction. This can be considered when 

recommending the development of natural structures to defend against tsunami 

waves. Surface roughness is an important input parameter for tsunami 

modeling, which needs to be quantified properly and integrated in mathematic 

tsunami modeling. As mentioned, the roughness coefficient is the quantification 

of the surface roughness condition, and it is most difficult to determine. The 

following section gives more detailed information about the current state of 

research to determine the surface roughness coefficient. 
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3.2.3. Estimation of the surface roughness coefficient 

Several studies on roughness coefficient estimation have been undertaken (e.g. 

Chow, 1959; Arcement and Schneider, 1989; Jarvela, 2005). The applied 

methodologies can be grouped into four categories: 

 Laboratory experiments 

 Site visit and photo matching 

 Use of roughness coefficients from published research 

 A combination of these methods.  

Table 3.2 gives an overview of these methodologies and summarizes the data 

requirements as well as the advantages and disadvantages of each method. 

  

Table 3.2 Methods of roughness coefficient estimation (modified from Sellin 

et al., 2003)  

Method Data required Advantages Disadvantages 
 

Laboratory 
experiments 

The drag 
coefficient, 
sufficient water 
velocity scenario, 
and appropriate 
surface roughness 
miniature. 

The most 
accurate method 
for flexible 
surface 
roughness.  

Only applicable to 
static surface 
roughness 
conditions. Each 
variation of the 
conditions 
requires costly 
recalibration. 

Site visit and 
photo matching 

Site visit and 
photographs. 
 
 

Quick and widely 
used, gives an 
approximate 
figure for any 
condition. 

Requires 
experience, no 
variation of water 
level. 

Use of roughness 
coefficients in 
published 
research 

A roughness 
classes table with 
roughness 
coefficient values. 

Systematic, 
familiar. 

Apparent 
accuracy is 
deceptive. 

A combination of 
these methods 
 

A roughness 
classes table with 
roughness 
coefficient values 
and formulas 
from laboratory 
experiments.  
 

Systematic, 
familiar. 

No deviation of 
roughness 
coefficients.  
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Laboratory experiments 

In flood engineering, scientists assess the roughness coefficient usually by 

experimental research in laboratory and field survey studies. For example, 

Righetti and Armanini (2002) analyzed the flow resistance on sparsely 

distributed bushes; Jarvela (2005) investigated the flow resistance of natural 

vegetation; Wilson (2007) analyzed the flow resistance models for flexible 

submerged vegetation; and Wilson and Horritt (2002) analyzed the flow 

resistance models for flexible submerged grass.  

This method is the most accurate approach in determining the roughness 

coefficient and also the conditions of vegetation or buildings can be modeled 

close to reality. Scenarios of water flow and velocity can be also undertaken to 

determine the appropriate roughness coefficient.  

 

Site visit and photo matching 

A very quick determination of the roughness coefficient is possible by site visit 

and photo matching. Arcement and Schneider (1989) outline an approach to 

match photographs and real conditions of a study area: several photographs 

are provided to guide people in estimating the roughness coefficient. The 

researcher’s experience is required in using this method. Brisbane City Council 

(2003) also provided several photos to estimate the roughness coefficient. 

Figure 3.5 shows examples of photographs and the corresponding roughness 

coefficient values. 

The weakness of this methodology is its subjectivity: different people will 

categorize the roughness coefficient differently according to their experience 

and knowledge in interpreting the photo. Therefore, this is a fast method to 

determine the roughness coefficient, but with a relatively high degree of error. 
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Figure 3.5 Examples of photograph matching (Source: Brisbane city council, 

2003) 

 

Use of roughness coefficients from published research 

Research based on laboratory experiments usually only measures a limited 

number of classes of surface roughness and in a costly manner. Sellin et al. 

(2003) therefore suggest using published roughness coefficients such as by 

Chow (1959) and Arcement and Schneider (1989). However, the problem of 

this approach is the limited transferability and the inconsistency of published 

roughness coefficients. For example, Hill and Mader (1987) determined the 

roughness coefficient for lake, water, river and sea at 0.007 and for cropland or 

grazing land at 0.015, while Murashima et al. (2008) determined 0.025 for 

lake, water, river and sea, and 0.020 for cropland or grazing land. Table 3.3 

shows examples of roughness coefficients from research publications. 

 

Combination methods 

A combined approach of surface roughness coefficient determination was 

developed by Koshimura et al. (2009). The combination consists of roughness 

coefficients from published research and roughness coefficients calculated with 

a formula developed in laboratory experiments. They modified the surface 

roughness coefficient from published research by adding the density of a 

populated area as class of surface roughness. Table 3.4 shows the roughness 

coefficient estimation by the combination method.  
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Table 3.3 Roughness coefficients for different land use/cover classes in 

several research publications 

Surface Roughness Roughness 
Coefficient 

References 
 

Water   
- River, lake 0.007 Hills and Mader (1987); Berrymann 

(2007) 
 0.025 Murashima et al. (2008) 
- Shallow water area 0.025 Koshimura et al. (2009) 
- Sea/pond 0.025 Latief et al. (2007) 
Land   
- Open field without 

crop 
0.015 Hills and Mader (1987); Berrymann 

(2007) 
- Rice field, cropland, 

arable land 
0.020 Murashima et al. (2008); Koshimura 

et al. (2009); Imamura (2009)  
 0.025 Latief et al. (2007) 
Vegetation   
- Rare vegetation  0.030 Murashima et al. (2008) 
- Relative dense 

vegetation 
0.050 Latief and Hadi (2007) 

- Dense vegetation 0.070 Latief and Hadi (2007) 
- Dense brush/tree 0.070 Hills and Mader (1987); Berrymann 

(2007) 
- Mangrove 0.060 Latief et al. (2007) 

- Forest 0.150 Latief et al. (2007) 

Developed Area   

- Road 0.016 Latief et al. (2007) 

- Developed area 0.030 Hills and Mader (1987) 

- Built-up areas 0.035 Berrymann (2007) 

- City center 0.100 Hills and Mader (1987); Berrymann 
(2007) 

 0.120 Sugimoto et al. (2003) 

- Building 0.150 Latief et al. (2007) 

- Rare density 
residential area (1-
20%) 

0.040 Murashima et al. (2008); Imamura 
(2009)  

- Medium density 
residential area (20-
50%) 

0.060 Murashima et al. (2008); Imamura 
(2009)  

- High density 
residential area 
(>50%) 

0.080 Murashima et al. (2008); Imamura 
(2009)  
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Table 3.4 The roughness coefficient estimation by Koshimura et al. (2009) 

Surface Roughness Class Roughness 

coefficient 

Methods 

Smooth ground 0.020 Published research  

 

Shallow water area or 

natural beach 

0.025 Published research  

Vegetated area 0.030 Published research  

 

Populated area 0.045 Published research  

 

Dense populated area Equation 3.4. Equation developed in 

laboratory experiments 

 

3.2.4. Roughness coefficient in tsunami modeling 

Researchers have studied the implementation of the roughness coefficients in 

the tsunami modeling, e.g. Dao and Tkalich (2007), who examined the 

sensitivity of tsunami propagation for the 2004 Indian Ocean Tsunami. Their 

results indicated that in shallow water, the roughness coefficient is an 

important parameter in the tsunami modeling. Lower roughness coefficients will 

significantly increase the tsunami wave. 

In a previous study, Myers and Baptista (2001) examined the factors 

influencing the numerical simulations of tsunami, and their implication for 

hazard mitigation. One of the important factors in their research is roughness. 

They analyzed the differences in run-up modeling results when changing the 

roughness coefficient. The original roughness coefficient was 0.0275, and the 

modifications were 0.015 and 0.035. This research demonstrated the important 

influence of the roughness coefficient on tsunami modeling results: in the three 

segments of the research along the Okushiri coastline, the tsunami run-up 

differs from – 6 to +6 m by changing the roughness coefficient (see Figure 

3.6).  
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Figure 3.6 The maximum run-up differences (m) by changing roughness 

coefficient (Source: Myers and Baptista, 2001)  

 

Another study related to the effect of roughness coefficients on the tsunami 

modeling was published by Gayer et al. (2008), who analyzed the importance 

of the roughness coefficients in tsunami modeling. Gayer et al. (2008) revealed 

the importance of using spatially differentiated roughness maps. Similar to 

findings of Myers and Baptista (2001), the roughness coefficient was varied. A 

higher coefficient resulted in considerably reduced inundation area and water 

velocity. 

Based on the results of the mentioned research, it is clearly shown that the 

roughness coefficient is a significant factor in tsunami modeling. Modifying the 

roughness coefficient in this modeling will lead to significantly different results 

of tsunami inundation. However, most of the studies use a uniform roughness 

value on the tsunami inundation and the modeling scenario merely adjust it 

with another value. In fact, surface roughness conditions in an inundation area 

differ spatially. Instead of applying uniform roughness in the modeling, it is 

therefore necessary to implement spatially differentiated surface roughness 
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conditions. Remote sensing data can provide information about the spatial 

distribution of surface roughness conditions and are thus a tool to fill this gap. 

       

3.2.5. Remote sensing approaches for surface roughness 

classification 

For remote sensing applications on surface roughness classification, there are 

two main activities: 

 Mapping of the tsunami inundation area to empirically analyze the 

effects of surface roughness in order to reduce tsunami impact; 

 Classification of land use to derive surface roughness conditions 

related to tsunami or flood modeling.  

For the first application, Chang et al. (2006) and Olwig et al. (2007) showed 

the potential of dense vegetation in Thailand and Indonesia to reduce the 

tsunami flow. Comparisons of pre- and post-tsunami satellite images provided 

information on inundated areas and the vegetation conditions at particular 

regions. The lesson learned from the remote sensing data show the reduction of 

tsunami flow by wood vegetation (Olwig et al., 2007), and mangroves (Chang 

et al., 2006). Both studies showed the effect of surface roughness qualitatively 

on the tsunami reduction without a quantitative estimation of the roughness 

coefficient.  

For the second application of surface roughness classification, a variety of 

studies have been undertaken using remote sensing data, such as ASTER 

(Chiang et al., 2004), IKONOS-2 (Van der Sande et al., 2003; Koshimura et al., 

2009; SAR (Mason et al., 2009), Schumann et al., 2007), Landsat TM (Melese, 

2003), airbone laser scanning (Straatsma and Baptist, 2008) and LIDAR 

(Murashima et al., 2008). Almost all of these studies classify the land use class 

by using conventional remote sensing classification techniques. The estimation 

of the roughness coefficients is based on published research results.  

The surface roughness classes contain specific characteristics, i.e. density and 

neighborhood, which means that the classification methodology should be 

different to the usual technique. The parameters describing the vegetation 

density and the neighborhood characteristics should be taken into account in 

the remote sensing classification methodology. Therefore, there is a need for 

developing more advanced classification methods that take into account these 

additional parameters. 
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A new application of surface roughness classification by using remote sensing is 

introduced by Koshimura et al. (2009), which considers a density analysis. 

Their study indicates the importance of building density on roughness 

coefficient estimation, but it still does not consider neighborhood classes, which 

are a desirable improvement of the remote sensing classification technique for 

surface roughness classification. The study by Koshimura et al. (2009) is 

further limited by the methodology of classification used. The classification by 

visual interpretation and manual digitization is time-consuming and ineffective. 

It needs to be improved by automatic or semi-automatic classification. 

 

3.2.6. Summary of surface roughness determination 

Research on the role of vegetation in protecting against or mitigating tsunami 

impact proved that coastal vegetation — depending on its condition (width, 

density, and structure) — may be able to reduce the impact of a tsunami. The 

flow resistance of the surface can be described by a roughness coefficient. To 

quantify the influence of surface roughness conditions on tsunami inundation 

modeling, and thus to perform sensitivity analyses, it is necessary to include 

surface roughness coefficients. There are several approaches to estimate the 

roughness coefficient; one uses published values of roughness coefficients. The 

accuracy of the thus estimated coefficient is often deceptive; this shortcoming 

shall be solved in this research. Previous research on remote sensing 

techniques to classify surface roughness conditions needs further improvement, 

since in general; only land use conditions are classified. Analyses of vegetation 

characteristics showed that the components vegetation density and 

neighborhood should also be taken into consideration. Hence, a new 

classification methodology is required since an integration of surface roughness 

coefficients in tsunami inundation modeling is necessary to improve the 

modeling results.  
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3.3. Population Distribution Modeling 

3.3.1. Overview 

Research on population distribution with respect to remote sensing and GIS can 

be categorized into two categories: top-down and bottom-up approaches. Top-

down approaches usually disaggregate global information to a detailed scale, 

whereas bottom-up approaches generate global information out of detailed 

scale information.  

Top-down approaches use statistical data and disaggregate it spatially to derive 

the population’s distribution. To increase the spatial resolution, ancillary data 

such as land use are used. There are two main methods — spatial interpolation 

and dasymetric mapping. 

 Spatial interpolation disaggregates tabular data or statistic data to 

geospatially distributed information through various interpolation 

approaches.  

 Dasymetric mapping is used to redistribute the number of people in 

an administrative unit to smaller units by using ancillary data such as 

land use.  

Bottom-up approaches analyze the conditions of texture, impervious surface 

and other structures that can be derived from remote sensing data to estimate 

and extrapolate population distribution. Statistical data as well as sampling data 

from surveys are used for regression and correlation analyses to estimate the 

number of people in an administrative unit. To date, estimations of the number 

of people in an administrative unit on small scales such as country or province 

yields good results with high accuracy; for large scales, however, this approach 

still needs some methodological improvements. Figure 3.7 summarizes the 

state of the art on population distribution modeling by using remote sensing 

and GIS.   
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Figure 3.7 The top-down and bottom-up approaches on population 

distribution by using remote sensing and GIS 

 

3.3.2. Top-down approach 

Spatial interpolation 

The main issue of spatial interpolation is the procedure of estimating the value 

of properties at unsampled sites within the area covered by existing 

observation. Spatial interpolation methods to be used for population distribution 

can be categorized in two groups:  

- Point-based interpolation 
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- Area-based interpolation. 

Traditionally, the point-based method is applied to isarithm, i.e. contour line 

mapping, and the area-based method, to isopleths mapping (Lam, 1983). The 

point-based interpolation method is derived from available data such as number 

of people from census data to spatial information of population distribution. 

Several point-based interpolation methods have been developed, for example, 

kriging, inverse distance weighting (IDW), natural neighbor and minimum 

curvature. Numerous algorithms for point interpolation have been developed in 

the past, but none of them is superior to any others for all applications (Lam, 

1983). 

A widely quoted point-based interpolation method for population distribution 

mapping is centroid zone (Martin and Bracken, 1991). This study describes a 

simple algorithm that uses census data centroid with a spreading function to 

allocate people to neighboring grid squares (Langford et al., 1991). This 

method allows congregating the number of people to the centroid, and when 

the location of cell far from the centroid has fewer numbers of people. 

Normally, the centroid data that can be used for this method are geo-

referenced postcode data. The estimation of the number of population is 

considered from the centroid zone of the available data; the formula is stated 

as follows: 

 

ij

c

j
ji WPP 




1

ˆ          (3.5) 

 

Where: 

iP̂  is the estimated population of cell i 

jP  is the population at centroid j 

ijW  is the unique weighting of cell i with respect to centroid j 

c is the total number of data centroids. 
 

The unique weighting of cell i with respect to centroid j is calculated by the 

distance between the center of cell i and centroid j. This value disaggregates 

the total number of population recorded in the centroid to the grid cell. The 

formula of this weighting is stated as follows:  
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Where: 

k  is the initial kernel width; this determines the maximum width of the 
kernel, and a value should be chosen that is representative of the 
width of a typical reporting area, for available centroid location 

ijd  is the distance between the center of cell i and centroid j  
  offers control over the shape of the distance decay function within 

the extent of the spatial kernel, although alternative distance decay 
functions could be readily specified, the simple  =1. 

 

In order to preserve the total of population, then  

1
1




kj

i
ijW          (3.7) 

 

Where: 

jk  is the number of cells within the window. 

 

Figure 3.8 illustrates the point-based interpolation by Martin (2006).  

 
 

Figure 3.8 General relationship between (a) zone boundaries and 

population-weighted centroids, and (b) population-weighted centroids and 

gridded population estimates (Source: Martin, 2006) 
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Although this method is well developed, Wu et al. (2005) revealed some 

problems for the population distribution analysis: 

 The centroid determination is unclear. This is the main source of 

errors on the population distribution model by this method. The 

centroid in the Martin and Bracken (1991) method usually has the 

highest number of people, but this is not true in reality. Using the 

geo-referenced postcode data does not ensure an aggregated 

location of people. 

 The arbitrary assumption on the interpolation methods is inadequate 

to explain the population distribution in the real word.  

 Most of those methods do not preserve the total value of population 

distribution in the source of data. 

 

The second interpolation method for population distribution is the area-based 

method. Tobler’s (1979) pycnophylactic interpolation is probably the most 

widely quoted area-based interpolation method (Wu et al., 2005). This 

procedure generates a smooth surface from polygon-based data, which 

preserves their mass or volume property (Comber et al., 2008). This procedure 

is based on the iterative weighting average of nearest neighbors. It is a 

mathematical smoothing process that considers the conditions of neighboring 

polygons. Figure 3.9 illustrates the steps of pycnophylactic interpolation with 25 

iterations.  

Although the results of population distribution mapping by both spatial 

interpolation techniques are smooth and nice-looking, the accuracy of the 

estimation is low and the population distribution not close to reality. Population 

distribution depends on human activity and has dynamic characteristics; hence, 

its methodology should consider these. For tsunami early warning, temporally 

differentiated information on population distribution (day- and night-time) is 

necessary. Therefore, dasymetric mapping is selected in this research as the 

most appropriate method.   

 



  Chapter 3: State of the Art of Research 

 42 

 

Figure 3.9 The smoothing process of pycnophylactic interpolation until 25 

iterations (Source: National Center for Geographic Information and Analysis 

University of California Santa Barbara based on Tobler, 1979) 

 

Dasymetric mapping  

Dasymetric mapping is an area-based thematic mapping method that generates 

more detailed spatial information by combining global area information such as 

administrative units with ancillary data. This makes this method different to 

areal interpolation. Spatial improvement of population distribution data is one 

example of this technique. It is a fundamental technique to indicate where 

people are located by considering where they are engaged in activity. It 

disaggregates population data (e.g. census) to geographical features such as 

settlement and land use to have fine spatial information. Dasymetric mapping 

usually employs land use/land cover data extracted from remote sensing data 

(Liu, 2004). The method is well developed and used by many applications in the 

research of population distribution mapping.  

The method was first developed and named by the Russian Cartographer Pyotr 

Semenov, who in the 1920s, developed and published a multi-sheet population 

density map of European Russia at a scale of 1:420 000 (Bielecka, 2005). The 

dasymetric method was created and used due to the need for accurate 

visualization methods of population data. Today, dasymetric mapping is widely 

used for producing finer resolution population information with automatic tools 

such as GIS and remote sensing. 
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There are mainly four approaches used to map the population distribution by 

dasymetric mapping: 

- The Choropleth map. One very simple and pragmatic technique is to 

divide the number of people from census data by the area of 

administrative units. 

- Binary method. A more advanced approach is to distribute the census 

population data to inhabited settlement areas only (Wright, 1936; 

Langford and Unwin, 1994; Fisher and Langford, 1996; Holt et al., 

2004; Wu et al., 2005; Mennis, 2003; Reibel and Agrawal, 2007; 

Tatem et al., 2007). 

- Land use class method. This method has been improved by the 

techniques to disaggregate census population data by using land use 

classes (Holloway et al., 1997; Sleeter and Gould, 2007; Bielecka, 

2005; Gallego and Peedell, 2001). Also road networks or terrain 

characteristics are included in the analysis to make sure to exclude 

areas unlikely used for activity like steep slopes (Dobson et al. ,2000; 

Balk et al., 2005, and Schneiderbauer and Ehrlich, 2007). 

- Spatio-temporal method. The most complex procedure on dasymetric 

mapping is spatio-temporal population distribution (Sleeter and 

Wood, 2006; Ahola et al., 2008). It shows the differences of 

population distribution by time, e.g. day and night.  

The illustration of the four methods on dasymetric mapping is shown in Figure 

3.10. Figure A represents the total number of people, aggregated by census 

delineated unit; Figure B represents settlement (red) versus uninhabited 

(green) area with population evenly distributed within the settlement area; and 

Figure B (below) represents an urban 3-class method where population is 

distributed in high (red), medium (pink), and low (yellow) with low, medium, 

and high density of settlement as weighting. Figure C represents the population 

distribution based on land use classes and areal weighting, which consider, e.g. 

people activities on agricultural areas (light green). The last approach considers 

the population distribution by time, such as day and night (Figure D). It uses 

land use classes and models, e.g. that people during the nighttime stay mainly 

in the settlement area, and during the daytime, are mostly in the agriculture 

area.  

In general, the main challenge in dasymetric mapping is determining the 

appropriate weighting factors for the land use and land cover (LULC) classes. 

The weighting factor is difficult to assess and is determined in many different 

ways. For example, the weighting factors that are applied by Holloway et al. 
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(1997) estimate that urban areas naturally have the main share of people’s 

habitations, while other land use classes like agriculture, open land or forest 

areas only account for a minor part.  Dobson et al. (2000) and Schneiderbauer 

(2007) use similar approaches, also taking into account topographic constraints 

(e.g. terrain slopes).  

The above-mentioned studies provide weighting factors with respect to logical 

considerations and to the proportion of the land use classes, but they do not 

consider people’s behavior based on their activity. In the focus of natural 

hazard risk assessment, an improvement of these methodologies is needed to 

provide an appropriate assessment of the weighting factors to derive the 

information about the people at risk as precisely as possible. For this task, 

statistical data about human activities in certain administrative units (villages) 

can be consulted to derive appropriate and reliable weighting factors.  

 

 

Figure 3.10 Fundamental approaches to population distribution mapping, 

modified from Sleeter and Gould (2007)   

 

To better understand dasymetric mapping and outline its problems, several 

methods used for population distribution mapping are reviewed:   

- the Mennis (2003) approach, which represents the binary method; 

- the Gallego and Peedell (2001) approach, which represents the land 

use data method, and the Schneiderbauer and Ehrlich (2007) and 
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Dobson et al. (2000) approaches, which represent the land use data 

method with additional ancillary data; 

- the Sleeter and Wood (2006) and Ahola et al. (2008) approaches, 

which represent the spatio-temporal method. 

Mennis (2003) proposes a comprehensive method to disaggregate numbers of 

people from statistical data, taking into account the use of inhabited areas. He 

determines the proportion of human activities in several land use classes as low 

and high by sampling the number of people who are carrying out their activities 

in inhabited classes based on the “block group”. For Mennis (2003), the 

hierarchy unit from large to small is the county, the block group, and the grid 

cell. The grid cell has three classes — non-settlement, low density settlement 

and high density settlement. The population in a grid cell of an inhabited area is 

calculated as follows: 

 

 
  ubbubcubc nxPOPfPOP /        (3.8) 

 

Where: 

ubcPOP  is the population assigned to one grid cell of settlement class in block 

group b and in county c  

bPOP  is the population of block group b 

ubcf  is total fraction of each settlement class in block group b and in 

county c 

ubn  is the number of grid cells of settlement class in block group b. 

 

By this formula, if the number of people in the block group b in a county c is 

100 people, the fraction for each settlement class ( ubcf ) — non-settlement, low, 

and high — is 0.022, 0.195, and 0.783, and the number of grid cells of that 

settlement class is 1, 3, 6, respectively. Then, the population density is 2.2, 

6.5, and 13.5 people per grid cell, respectively.    

The crucial point of population distribution mapping in this method is the 

fraction for settlement class ( ubcf ). This fraction was developed from the 

analysis number of samples in a county. The step-by-step formula is stated as 

follows: 
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1. Calculate the population density fraction: 

 

 nclchcucuc ppppd  /        (3.9) 

 

Where:  

ucd  is the population density fraction of settlement class in county c 

ucp  is the population density (persons/10,000 m2) of settlement class in 
county c  

hcp  is the population density (persons/10,000 m2) of settlement class h 
(high) in county c 

lcp  is the population density (persons/10,000 m2) of settlement class l 
(low) in county c 

ncp  is the population density (persons/10,000 m2) of settlement class n 
(non-settlement) in county c. 

 

Hypothetically, if the sample of population density of non-settlement, low- and 

high-density settlement were 1, 3, and 6 persons/10,000 m2, respectively, then 

the population density fraction of settlement class is 0.1, 0.3, and 0.6, 

respectively.  

 

2. Calculate the area ratio of settlement: 

 

 
33.0/)/( bubub nna          (3.10) 

 
 

Where:  

uba  is the area ratio of settlement class in block group b 

ubn  is the number of grid cells of settlement class in block group b 

bn  is the number of grid cells in block group b. 

 

Hypothetically, if the number of grid cells of non-settlement, low and high 

density settlement in a block group b was 1, 3, and 6, respectively, then the 

area ratios of these classes are 0.3, 0.9, and 1.8, respectively. The total 

fraction for each settlement class can then be calculated. 
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3. Calculate the total fraction for each settlement class: 

 
 

   )()()(/ nbnclblchbhcubucubc xadxadxadxadf      (3.11) 

 
 
where: 

hcd  is the population density fraction of settlement class h (high) in 

county c 

lca  is the population density fraction of settlement class l (low) in 

county c 

ncd  is the population density fraction of settlement class n (non-

urban) in county c, 

hba  is the area ratio of settlement class h (high) in block group b 

lba  is the area ratio of settlement class l (low) in block group b 

nba  is the area ratio of settlement class n (non-urban) in block group 

b. 

 

The Mennis (2003) approach is a robust method; it can be expanded to further 

land use classes and even implemented to day- and night-time population 

distribution analysis if information is available on the temporal variation of 

population density. 

Nevertheless, there are some limitations:  

 The weighting factor (total fraction) is derived from the observation 

analysis in a county (administrative unit above block group). 

Consequently, this results in an error because there are different 

characteristics of people’s activities in every unit level.  

 In fact, the area ratio of settlement of one third each is rarely found 

in the reality (formula 3.10). The formulation of the weighting factor 

therefore causes an error because of this assumption.  

 A boundary effect in the population distribution occurs based on the 

administrative unit disaggregation. Two adjacent pixels divided by a 

boundary may have different population density values. This may not 

represent reality properly because both pixels might actually form of 

a single land use class.  
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Other binary methods of population distribution (e.g. Wright, 1936; Langford 

and Unwin, 1994; Fisher and Langford, 1996; Holt et al., 2004; Wu et al., 

2005; Reibel and Agrawal, 2007; and Tatem et al., 2007)) that disaggregate 

population data from an administrative unit to uninhabited (non-settlement) 

and inhabited (settlement) areas have similar limitations because they ignore 

other land use classes as potential location of people’s activities  

The named limitations of the binary methods need to be de-restricted, which 

will be carried out by using land use/cover data, deriving reliable weighting 

factors and mitigating boundary effects. 

Gallego and Peedell (2001) proposed a land use data method to map the people 

density in Europe using CORINE land cover data. They revealed that the 

population in a commune is an accumulating resulting from multiplying the 

population density in one land cover type with its area. The formula to calculate 

the population is stated as follows: 

 

 

mcm WUY            (3.12) 
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Where: 

mX  is number of people in an administrative unit (e.g. village) 

mY  is density of population for land cover type c in village m 

cmS  is area of land cover c in village m 

cU  is the weighting factor for each land cover type 

mW  is an adjustment factor to ensure that the total of population in all 
villages matches the value of the administrative unit. 

 

To derive the weighting factors, initial values of proportional coefficients for 

each land cover type are used to calculate the population distribution 

disaggregation from a higher administrative level. By this disaggregation 

process, the accumulation of the people number in communes is calculated and 

then compared to the statistical population number in each commune. The 

iterative process is performed and until the errors become stable. The values of 
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the proportional coefficients for each land cover type ( cU ) when the errors 

became stable, are then used for combining population figures from census 

data and land cover type. 

As well as that of Mennis (2003), this is a robust method to distribute the 

population distribution number from the administrative unit to the land use 

classes. Also, it could be developed towards a spatio-temporal analysis by 

adjusting the weighting factor. Nevertheless, there several difficulties in this 

approach emerge:  

 The iterative process is time-consuming and determining the initial 

value as weighting is not closer to the reality.  

 The derived weighting factors are transferred from the higher to the 

lower administrative level. The proportional coefficient for each land 

cover type ( cU ) is identical for all communes. But an error arises 

here due to different commune characteristics, which increase the 

more the characteristics of people activities differ.  

 The explanation of population disaggregation by the formula is not 

transparent. In particular, the adjustment factor to ensure that the 

total of population in each village matches the administrative unit 

(Formula 3.12) does not indicate the real condition of population 

distribution. 

 This method does also not eliminate the boundary effect. 

To achieve a more realistic population distribution map, it is necessary to find a 

solution for the problems mentioned above. Schneiderbauer and Ehrlich (2007) 

improved the method by including further land use/cover categories. They 

analyzed the improvement of population distribution in Zimbabwe. The research 

collected available ancillary data such as land use, urban area, settlement, road 

network and elevation. A comprehensive weighting factor determination was 

developed using expert knowledge to point out convergent locations of activity 

of people. But due to the lack of calibration data, the result of population 

distribution analysis is difficult to evaluate.  

The similar method was applied by Dobson et al. (2000). They also 

disaggregated the number of people on the district level to ancillary data such 

as road network, slope, land cover and nighttime lights. Similar to 

Schneiderbauer and Ehrlich (2007), the derivation of the weighting factor is 

based on expert knowledge without considering people’s day- and night time 

activities. By using the nighttime light data, there is also the problem of 
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underestimating population density in the urban area and overestimating in the 

rural area (Sutton et el. (1997)). Dobson et al. (2000) produced LandScan 

population grid data, which is available globally. Another similar product was 

developed by Center for International Earth Science Information Network, 

Columbia University (CIESIN), USA, using the method of Balk et al. (2005). 

This method underlined that the ancillary data such as nighttime light and road 

network has some limitations and uncertainties resulting in a potentially high 

error rates. As with the LandScan product, this set of data is available globally. 

The example of LandScan and CIESIN products is shown in Figure 3.11.  

In developing countries with limited high-resolution population data, LandScan 

and CIESIN products are useful to describe the situation where people are 

located. However, for tsunami evacuation planning, for example, these data 

sets are not sufficient; more detailed population numbers based on people’s 

activity in a certain area are needed to minimize errors in evacuation capacity, 

and contingency or shelter planning due to inaccurate population data.  

Research on population distribution by binary and land use/cover methods has 

not considered temporal distribution variations. As mentioned, an early warning 

system needs a population distribution by time period, since the taken 

measures may vary depending on the time of the day, which would make the 

system more effective. Therefore, a method considering time is needed, i.e. 

spatio-temporal population distribution.   

 

  
 

Figure 3.11 Population distribution maps: the LandScan (left), and CIESIN 

population grids (right)   
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Sleeter and Wood (2006) and Ahola et al. (2008) focused on this kind of 

research. Their studies represent a new approach of population distribution by 

dasymetric mapping, which takes into consideration both spatial and temporal 

distribution. Sleeter and Wood (2006) adopted the Mennis (2003) method and 

included commuters in the block census data in a coastal community in Oregon, 

USA. For the night-time population, they used the total population in the block 

of a census and then implemented the Mennis (2003) method to distribute this 

number to the urbanization classes.  

For the day-time population, this method modifies the total number of block 

census population by taking into account the number of persons who stay in 

the block during the day and the number of employees coming to that block 

(commuters), which are recorded in the InfoUSA business database. This 

research does not consider outbound commuters due to a lack of data. By using 

the InfoUSA business database, the number of people in each block during the 

day-time can be calculated. In a developing country like Indonesia, since there 

is no data of this kind available, it is difficult to adopt these methods. The 

development of improvements of this methodology needs to consider the 

availability of data in the study area. 

Ahola et al. (2008) have an available database in their study area that enables 

them to estimate the population during different times of the day. The 

methodology of this research uses the kernel density estimation similar to the 

point-based interpolation method developed by Martin and Bracken (1991). By 

using expert knowledge weighting factor adjustment, this research has a 

problem explaining the real situation of population distribution. Like the method 

of Martin and Bracken (1991), this method has some limitations. Hence, an 

improvement is necessary to reduce the uncertainties and converge the 

population distribution modeling closer to reality.  

Based on the review of the top-down approaches on population distribution 

mapping, dasymetric mapping is more reliable than spatial interpolation since it 

calculates the population distribution closer to real situation. Although the 

approach is robust, enhancement of the methodology is still needed in some 

parts. 

First, the weighting factor to disaggregate the number of people from census to 

ancillary data must take into account the spatial and temporal variability. The 

characteristics of human activities in different land use classes and different 

geographical regions differ. For example, in agricultural areas in Europe, there 

are less people working in this land use class due to a high degree of 

mechanization. During the winter time, there are no activities in agricultural 

area. In a tropical country like Indonesia, the activities of people in agriculture 
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areas will be higher than in Europe. The growing season is almost done 

throughout the whole year, and due to the limited degree of mechanization and 

cultivation of labor-intensive crops like rice, more people engage in agricultural 

activities. The weighting factors of agriculture in Europe must therefore be 

different from those in Indonesia.  

In examining available formulas in current research on population distribution 

mapping using a dasymetric method, there is a lack of knowledge on the 

distribution of population data from the census. Hence, a modification of the 

distribution formula is necessary to consider and diminish the described 

limitations. The elimination of the boundary effect should also be taken into 

consideration when modifying the formula.  

Another issue is related to the needs for risk and vulnerability assessment. For 

risk and vulnerability assessment, the mapping of population distribution by 

time (e.g. day- and night-time, workdays and holidays) is important. Sleeter 

and Wood (2006) and Ahola et al. (2008) revealed that a main problem of 

population distribution mapping by time is caused by commuters, i.e. the 

number of people who leave one administrative unit for work and return there 

at night. Additionally, in some regions, the temporal variations due to tourists 

should be taken into account. 

Based on the explanation above, there are three topics that should be improved 

on the population distribution modeling by remote sensing and GIS: 

 development of appropriate weighting factors for disaggregating 

population data from census data to land use classes;  

 modification of the formula in order to comprehensively explain the steps 

of population disaggregation, considering the reality of where people are 

located and including the elimination of the boundary effect; 

 and including commuters and tourists in the population distribution 

modeling during day- and night-time. 

 

3.3.3. Bottom-up approach 

In contrast to the previously described approaches, it is also possible to use 

bottom-up approaches as a method to estimate the population density 

distribution from the variables derived from remote sensing data. This method 

comprises collection of census data, image classification and analysis, statistic 

analysis including linear regression and multivariate regression, and finally, the 

population distribution mapping itself. It was inspired by Tobler (1969), who 
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demonstrated that population can be estimated with a high degree of accuracy 

by measuring the size of human settlements observed from satellite 

photography generated by the Gemini manned space light program (Elvidge et 

al., 1996). Various studies use different kinds of remote sensing derived 

variables, which can be categorized as follows: 

 using nighttime lights (Elvidge et al.,1997; Sutton et al., 2001; Lo,  

2001; Briggs et al., 2007; Zhuo et al., 2009); 

 using impervious surfaces such as settlement or residential area, and 

urban morphology (Mesev, 1998; Chen, 2002; Lu et al., 2006; Mubareka 

et al., 2008);  

 using multiple image variables such as image texture, NDVI and other 

indices (Li and Weng, 2005; Liu et al., 2006); 

 using land use/cover (Yuan et al. 1997; Pozzi and Small, 2001; Min et 

al., 2002; and Tian et al., 2005).  

 

Nighttime lights 

Elvidge et al. (1997) used data from the Defense Meteorological Satellite 

Program (DMSP) Operational Linescan System (OLS), which is able to detect 

cities and towns during nighttime in order to estimate population density. They 

estimated the population in 21 countries, and received good correlation 

between the number of people and the “lit” area of the image. The results 

indicate that DMSP-OLS data can successfully be used to define and update the 

spatial distribution of human population on a global basis. However, it was 

noted that this product is not able to identify human settlements that lack 

electric power, as is often the case in developing countries. 

Based on the Elvidge et al. (1997) research, Sutton et al. (2001) estimated the 

population number of more than a thousand cities from the lit area of the 

images. They analyzed six population aggregates: national, all low-income 

countries, all middle-income countries, all high-income countries, population 

counts of the world, and selected cities. With the exception of selected cities, 

the population estimation error in each aggregate was sufficiently low. This 

means that this research allows an estimation of urban population for every 

country in the world, but that significant error must be taken into consideration 

for city-specific population estimation.  

Another study that used nighttime light was carried out by Lo (2001). He 

developed a model to estimate population density in China using area, volume 
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and percentage of light, and pixel mean as independent variables. Like Sutton 

et al. (2001), this study was divided into three spatial levels — province, county 

and city level. The estimation of population was satisfying for the province 

level, but this research concluded, as did Sutton et al. (2001), that the error 

was generally too high for counties and cities level.  

The latest research on estimating population density using nighttime light data 

was published by Zhuo et al. (2009). Similar to Lo’s results, this research 

achieved a good correlation between population and digital number of nighttime 

image, but the results were not sufficient for the urban population.  

In summary, of all studies using nighttime lights for population estimation, it 

can be concluded that sufficiently accurate results can be produced for the 

national and province level, but high errors result for population estimations of 

the county or city level and for developing countries.  

 

Impervious surfaces 

Other studies derive impervious surfaces from remote sensing data to estimate 

population distribution. One example is Mesev (1998), who correlates low, 

medium, and high densities of residential areas and tower blocks with 

population distribution. He found that such impervious surfaces have good 

correlation with the population density. 

The same is concluded by Chen (2002), who found that areal census dwelling 

data had higher correlations with areas of different residential densities 

(derived from Landsat TM) than with the aggregated whole  residential area at 

an individual census zone level. Lu et al. (2006) also used Landsat TM-derived 

residential impervious surfaces for population estimation and a good 

correlation, with population data could be achieved. Mubareka et al. (2008) 

detected settlement locations from Landsat TM and correlated them to 

population data. The result is a reasonable estimate of settlement population 

numbers for rural settlements (<1000 inhabitants) and a slightly weaker 

correlation in urban areas. 

In addition to the population estimation, the latter three publications also 

focused on the classification technique to identify impervious surfaces or 

settlements from remote sensing data. The decision to apply appropriate 

classification technique and thus the quality of the classification considerably 

affects the population estimation. 
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Multiple image variables 

Li and Weng (2005) estimated the population in the city of Indianapolis, 

Indiana, USA, by using multiple image variables derived from Landsat ETM, 

such as NDVI, SAVI and band ratio. This research explored the correlation 

between the image variables and the population density. By using multiple 

regressions, this research shows that the integration of textures, temperatures 

and spectral response substantially improves the accuracy of population density 

estimation. Li and Weng (2005) also revealed that a reasonably accurate 

population density estimation can be provided by combining multiple variables 

from remote sensing data derivation.  

A similar study regarding the use of multiple image variables was undertaken 

by Liu et al. (2006). By using image texture from high-resolution images and 

multiple regressions, they found that the coefficient determination of the 

regression model is below 60%. This means that estimating the amount of 

population using the texture of high-resolution images is insufficient due to 

mixed pixels.  

The application of multiple image variables as in Li and Weng (2005) suggested 

improved accuracy of the population density result. Although the application of 

multiple variables already resulted in good accuracies, Li and Weng indicate 

that using the remote sensing technique is still challenging due to the 

complexity of urban landscape and population distribution. In particular, in 

detailed scale, the technique of remote sensing classification can still be 

improved for better results on population distribution.  

 

Land use/cover 

The last category of remote sensing derived variables to estimate population 

density is land use/land cover. Encouraged by the result of dasymetric 

mapping, where population distribution is linked with population activity, Yuan 

et al. (1997) applied the multivariable regression to examine the correlation 

between land cover types and population counts by an enumeration district. 

The resulting correlation is high, and could be implemented to reliable 

estimates of the population at the district level. The same result was produced 

by Min et al. (2000), who achieved good correlation between habitation type 

(land use) and population density in several regions in China.  

Another example of using land use/cover to estimate the population density 

was done by Pozzi and Small (2001). Although they were not clear on how they 

did the actual estimation of the population density from land use data, they 
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showed that there is a consistency between land use/cover and population 

density in suburban areas: consistent spectral characteristics of suburbs were 

related to the degree of vegetation cover. A good result on estimation of 

population density by using land use/cover was also presented by Tian et al. 

(2005). The result indicated that land use data is sufficient to estimate the 

population density in China and proved that population density is correlated to 

where people carry out their activity.  

It can be concluded that at the current state of research, good correlations 

between population density and the remote sensing derived data can be 

produced. The estimation of population from remote sensing data can be done 

at a global scale and at the national, province and district levels. For 

estimations at the local or city level, the research of population estimation still 

must be improved especially concerning the remote sensing techniques to 

classify land use or impervious surfaces. 

 

3.3.4. Summary of population distribution modeling 

Research on population distribution modeling by using remote sensing data has 

made great progress in the past years, especially dasymetric mapping. This 

methodology is allegedly the approach with the highest accuracy. Although this 

method is not new, there are still some open issues and potential 

improvements, especially regarding the weighting factor determination. The 

weighting factor determination for different times of the day as well as for 

different land use classes and the commuters are recognized as still open 

problems. This research is designed to provide a solution. The modification of 

the population distribution formula, socio-economic data analysis, and multi-

scale disaggregation are required actions towards this solution. 

The bottom-up approach of using data derived from remote sensing to estimate 

population distribution is a promising approach. To date, insufficient accuracy at 

detailed scales still poses a challenge for this research. Due to conditions and 

characteristics of settlements, several researches indicate the need and 

challenge to identify these precisely. Hence, the settlement classification using 

remote sensing data is a necessary task.   
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3.4. Settlement Classification Using Remote Sensing Data  

3.4.1. Overview 

Information about settlements is a very important input parameter for 

population distribution mapping. Research on settlement classification is 

necessary since settlements have specific characteristics. The combination of 

buildings, roads, vegetation and open land, which all have different spectral 

characteristics, pose specific challenges on remote sensing data. Various 

classification approaches have been developed applying either optical or 

synthetic aperture radar (SAR) or a fusion of both data. The applications vary 

from pure settlement classification (e.g. Zha et al., 2003) to climate change 

research (e.g. Weng, 2001). 

To analyze the state of the art and the gaps in the field of settlement 

classification methodologies, this sub-chapter reviews research in the following 

categories: 

- optical imagery 

- SAR imagery 

- data fusion of optical and SAR imagery. 

 

3.4.2. Settlement classification using optical imagery 

The research on settlement classification using optical data can be categorized 

into three types of classification approaches: 

 common techniques such as maximum likelihood classification 

(supervised and unsupervised); 

 indices and threshold classification; 

 knowledge-based classification with use of ancillary data. 

 

Common techniques 

Common remote sensing classification techniques such as supervised and 

unsupervised maximum likelihood classification are widely used for urban 

growth and change detection applications (e.g. Li and Zhao, 2003). Several 

studies (e.g. Weng, 2001) show a good accuracy at settlement and land use 

classification using Landsat TM imagery. Supervised and unsupervised 
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maximum likelihood mostly is not used to classify purely settlement, but for 

overall land use/cover classifications. For example, Weng (2001) classifies 

settlement and also land cover to evaluate urban expansion in Zhujian Delta, 

China.  

It is widely used since it is usually implemented in image processing software 

available on the market. But this method occasionally cannot differentiate 

objects that have similar spectral reflectance, such as urban area and bare 

land. In addition, especially in mountainous areas, settlement classification 

occasionally makes problems. Hence, other methods are needed, such as index 

development and knowledge-based classification.    

 

Indices 

Several classification approaches have been developed, which are based on 

indices. Zha et al. (2003), for example, use the Normalized Difference Built-up 

Index (NDBI) on Landsat TM imagery for automatic classification of urban 

areas.  

A new method for extraction of built-up areas using Landsat TM was developed 

by Xu (2007). He created the Index-based Built-up Index (IBI), which is based 

on three thematic indices: NDBI, the Soil Adjusted Vegetation Index (SAVI) and 

the Modified Normalized Difference Water Index (MNDWI). With IBI, built-up 

areas receive higher values than other land uses. The formulas of those indices 

are stated as follows: 
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Where: 

MIR  is the mid-infrared band of Landsat ETM (canal 5) 

NIR  is the near-infrared band of Landsat ETM (canal 4) 

dRe  is the red band of Landsat ETM (canal 3) 

l  varies between 0 and 1 and its weighting is dependent on vegetation 

cover or soil moisture conditions (Huete, 1988). The default l  factor of 

0.5 was used for all images.  

Green  is green band of Landsat ETM (canal 2). 

 

Xu et al. (2007) obtain good accuracy of the settlement classification result, but 

a preliminary investigation of the research at hand showed that IBI index fails 

to discriminate settlement areas and open or bare land. Improvement of this 

methodology is needed; texture analysis of the panchromatic band and 

knowledge-based classification may enhance the accuracy.     

 

Knowledge-based classification 

By using knowledge-based classification and ancillary data, the accuracy of 

settlement classification can be significantly increased. Mubareka et al. (2008) 

detected settlement areas using ancillary data: they used a digital elevation 

model to support the detection of settlements in mountainous areas. Also, 

other ancillary data such as road density and road coverage can be applied to 

increase the accuracy of settlement classification (e.g. Zhang et al. (2002) and 

Epstein et al. (2002)).  

 

3.4.3. Settlement classification using SAR imagery 

Radar imagery has the advantage of being almost independent of day- and 

night-time and weather conditions. Therefore, SAR imagery is the most 

appropriate data for tropical countries like Indonesia where there is a high 

degree of cloud coverage throughout the year. In particular, for settlement 

classification, the methodologies are still under development. The most 

common techniques are: 

 Textural analysis (e.g. Dekker, 2003; Acqua and Gamba, 2003) 

 Multi-temporal analysis (Acqua et al., 2003; Pellizzeri et al., 2003) 

 Statistical model (e.g. Tison et al., 2004) 
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 Spatial index analysis (e.g. Stasolla and Gamba, 2008) 

 Object-oriented classification (e.g. Thiel et al., 2008; Esch et al., 2010).  

 

Textural analysis 

The most common radar imagery classification for earth surface detection is by 

using textural analysis. Dekker (2003) is one example, using ERS SAR imagery. 

Modern texture measures such as histogram measures, wavelet energy, fractal 

dimension, lacunarity and semivariogram were analyzed. The result improved 

the accuracy of the classification compared to widely used texture measures 

such as mean intensity, variance or entropy. Despite this improvement, the 

classification was still not satisfying, because of  the low separability of some 

classes, especially of urban area and forest, and urban area and 

industry/greenhouse.  

Acqua and Gamba (2003) propose to use the Histogram Density Index (HDI) to 

identify urban characteristics of high-resolution imagery. However, like Dekker 

(2003), the approach failed to classify main parts of urban areas like city 

centers, residential and suburban areas.   

The current methods of texture analysis therefore seem to be insufficiently 

developed for the detection of urban areas. The low separability of some 

features is the main barrier of using textural analysis for settlement 

classification.  

 

Multi-temporal analysis 

Being dissatisfied with the previous result, Acqua et al. (2003) modify the 

methodology with multi-temporal analysis to improve the urban 

characterization. The main problems of urban area classification by radar 

imagery are multiple bouncing, layovers and shadowing. Multi-temporal 

imagery produces a multi-angle look on urban areas and thus allows identifying 

different details of the same object. Hence, the discrimination of different 

classes in urban areas is facilitated. Acqua et al. (2003) again apply the HDI 

and using multi-temporal imagery, it provides better classification results than 

in the previous study. Additionally, the extraction of streets is also improved by 

this approach.  

Another comprehensive research on settlement classification by using multi-

temporal analysis was done by Pellizeri et al. (2003). They compared statistical 

analysis and the neural kernel-based approach to classify urban area. The 
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result from the analysis shows that the neural kernel-based approach slightly 

outperforms the statistical approach when classifying mono-temporal imagery. 

By extending the data to multi-temporal and multi-frequency, both approaches 

achieve similar accuracy of classification. This shows that multi-temporal data 

can slightly improve the accuracy of single data classification method.  

In summary, using multi-temporal SAR imagery leads to a better classification 

result than mono-temporal imagery because it minimizes some of the problems 

of SAR imagery over urban areas. 

 

Statistical model 

Tison et al. (2004) revealed that classes can be discriminated based on their 

statistical properties, which require an accurate statistical model. Hence, they 

investigated various statistic distribution models such as Weibull, Log-Normal, 

Nagatani-Rice and Fisher, and analyzed how these distributions fit the urban 

area characteristics in SAR imagery. The Fisher distribution proved the most 

appropriate distribution for urban characteristics in their study area Toulouse, 

France. 

This is an important result related to settlement classification using SAR 

imagery. It might be used as a reference for future applications of this kind. But 

one has to be aware that the best fitting statistical distribution for one region is 

not necessarily transferable to any other.  

 

Spatial index analysis 

Stasolla and Gamba (2008) propose spatial indices to extract settlements from 

high-resolution SAR imagery. After reviewing several indices, they defined 

three spatial indices for their purposes, Moran’s Index, Geary’s Index, and the 

Getis-ord Index. The basic principal of these indices is a local indicator of 

spatial association (neighborhood). 

Settlements being inhomogeneous objects were the reason to apply these 

indices. Hence pixel-by-pixel classification is inappropriate for classification. 

This method resulted in good overall accuracy, but omission and commission 

errors were still high. Considerable improvement of the methodology is 

especially needed on indexing thresholding, which indicates a problem for 

transferability to other area.  
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Object-based classification 

The latest research on settlement classification opts for an object-based 

approach. Thiel et al. (2008) and Esch (2010) describe the new methodology to 

detect settlement area using TerraSAR-X. They propose a pre-processing 

method called “speckle divergence analysis”, with a comparably straightforward 

approach of analyzing local statistics. They achieve more appropriate noise 

suppression compared to establish filtering routines, which preserve true 

structures with texture and contour information (Thiel et al., 2008). This filter is 

based on a sigma probability of the Gaussian distribution of speckle noise. It 

removes speckle and suppresses noise, but preserves the texture, structure 

and contour information. This is indispensable since many regions are 

characterized by small-scale structures. The speckle divergence image is used 

for object-based settlement classification. The result of this classification is 

satisfying and has good accuracy. It is promising to implement the 

methodology for analyzing the study area of this research, with an added 

improvement. 

 

3.4.4. Using data fusion of optical and SAR imagery 

Fusions of different types of satellite imagery are useful sometimes for 

increasing the accuracy of the classification result. The potential of one satellite 

image could fill the deficiencies of another image. One example is the fusion of 

radar and optical imagery where the optical imagery provides information about 

the spectral properties of objects, and radar imagery provides high resolution 

texture information. Additionally, the problem on cloud cover in optical imagery 

is minimized. Research on settlement classification using fusion imagery was 

undertaken by Gamba and Acqua (2007) and Corbane et al. (2008). 

Gamba and Aqcua (2007) classified settlement area by fusion of SAR and 

optical imagery in two study areas, Al-Fashir, Sudan, and Pavia, Italy. They 

used the method of multi-scale texture analysis to examine the different 

textures of both satellite imageries. The rule-based fusion algorithms, spatial 

analysis with multi-width texture, and Markov Random Field (MRF) classifier 

have been applied for the classification process. The authors used two different 

data in their research: first, a combination of ENVISAT ASAR data and SPOT 5 

for Al-Fashir, Sudan, and second, a combination of ERS 1/2 and ENVISAT ASAR 

and Landsat TM for Pavia, Italy. In the first application, although the 

misclassifications of rock/bare soil is still remains, the joint image with rule-

based on multi-texture reduced the problem significantly. Future research must 

be undertaken to eliminate the misclassification. The second application also 

shows improved accuracy by using data fusion.  
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Corbane et al. (2008) analyzed the potential combination of SAR and optical 

imagery for operational rapid urban mapping. They use Radarsat-1/ENVISAT 

and SPOT 4/5 imagery. There are two study areas, one in Bucharest, Romania, 

the other one in Cayenne, French Guiana. Unsupervised K-means and rule-

based fusion are applied for the settlement classification. The method has 

successfully increased the accuracy of the results compared to the single use of 

SAR or optical imagery. 

 

3.4.5. Summary of settlement classification using remote sensing 

data 

Remote sensing settlement classification has made great progress, both for 

optical and radar data and their fusion. Settlement classification with radar 

imagery is the most challenging. Several studies on application of radar 

imagery have been conducted using techniques such as textural analysis, multi-

temporal analysis, statistical model, spatial indexes and object-based 

classification.  

Improvements of these approaches are still needed since the characteristics of 

settlement areas are different throughout the world. The latter application 

provides comprehensive results and is promising for application in Indonesia. 

But the threshold determination for settlement classification must be improved 

and the conversion of the object-based procedure to a pixel-based one is a 

potential challenge in this methodology. 

 

3.5. Conclusion of the State of the Art of Research 

This chapter summarized the state of the art of research of three components 

that are important for tsunami vulnerability and risk assessment: surface 

roughness determination, population distribution mapping, and settlement 

classification. Remote sensing and GIS) play an important role in these 

research fields. 

Several studies proved that vegetation plays an important role in mitigating 

tsunami impact along the coast. The degree of mitigation depends mainly on 

parameters such as width, density and structure of the coastal vegetation. The 

inclusion of such surface roughness conditions into tsunami models significantly 

influences the inundation modeling results and makes the modeled inundation 

area more reliable for planning. In order to be able to integrate the surface 

roughness conditions into a tsunami model, it is necessary to quantify these 

conditions, which is done by determining surface roughness coefficients. 
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There are diverse approaches to determine these coefficients, starting from 

complex and costly but accurate laboratory experiments through to quick but 

subjective site visits with photo matching, and the use of coefficients published 

by other researchers, which is a widely used method albeit with limited 

transferability and inconsistencies. Each of these approaches has its advantages 

and disadvantages. It is necessary to choose an appropriate approach and 

implement required adjustments to improve it. 

In addition, the different surface roughness conditions along a coast should be 

reflected in spatially distributed roughness coefficients. Information about the 

present surface roughness conditions without extensive field surveys is possible 

by classification from remote sensing data. But previous studies dealing with 

this task were not able to fully capture the different surface roughness classes. 

The analysis of the role of vegetation on tsunami mitigation indicates that 

density and neighborhood classes are important parameters that should be 

taken into account when deriving surface roughness conditions from remote 

sensing data. The development of an approach to accurately identify the 

different surface roughness classes is a rewarding challenge to bring tsunami 

hazard modeling forward. 

For tsunami risk and vulnerability assessment, it is essential to determine an 

accurate population distribution, at best differentiated for different times of 

day. The review of the research status showed that dasymetric mapping 

outperforms mere spatial interpolation for population distribution modeling. 

Since currently developed formulas to perform distribution modeling are 

unsatisfying, it is necessary to modify and improve them. The weighting factors 

are crucial for the distribution modeling. In order to derive reliable weighting 

factors, it is desirable to integrate statistical socio-economic data. Thus, it 

would be possible to obtain a more reliable and realistic pattern of people’s 

spatial and temporal distribution as achieved by current distribution models.  

Moreover, knowledge of the precise location and extent of settlement areas is 

an important input for the dasymetric population mapping. In developing 

countries, in particular, detailed, consistent, complete and up-to-date land 

use/land cover data are often not available; Here again, remote sensing data 

are a good tool to derive such data. The review of the methodologies to classify 

settlements from various types of remote sensing data highlighted their 

advantages and disadvantages. Radar imagery is more appropriate for tropical 

regions than optical data due to frequent cloud coverage. The review also 

revealed that the methodologies for classification of radar data in particular still 

have deficiencies and need to be further developed and improved. 
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The gaps in research in these fields were outlined in this chapter — surface 

roughness determination, population distribution mapping and settlement 

classification. By contributing to fill these gaps, this research will effectively 

support the improvement of tsunami hazard assessment as well as of risk and 

vulnerability analyses. Consequently, it will better serve aims of disaster 

management. 
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CHAPTER 4: METHODOLOGY 
 

This chapter describes the developed procedures and methodologies to answer 

the research questions formulated in the introduction chapter with regard to the 

research objectives in surface roughness determination, population distribution 

modeling and settlement classification. 

In the first sub-chapter, the basic data requirements for this research are 

mentioned. It is a brief explanation of the type, the potential source, and the 

usages of the data in this research.    

In the second sub-chapter, the developed concept of surface roughness 

determination taking into account object density and neighborhood is 

presented. The improvements of the method to estimate of surface roughness 

classes and its coefficients, the new remote sensing methodology for surface 

roughness classification, and integration of the spatially distributed surface 

roughness information into tsunami modeling and hazard mapping are 

presented. The latter procedure examined the importance of spatially 

distributed surface roughness information in tsunami modeling/hazard 

mapping.  

In the third sub-chapter, for population distribution modeling, the new 

improvement concept on dasymetric mapping with regard to spatio-temporal 

differentiation by combining socio-economic data is presented. The procedure 

for analyzing socio-economic data to determine the proportion of people’s 

location with respect to different land use is also explained. The transferability 

of weighting factors for other Indonesia regions is analyzed to prove the 

applicability of the model.  

In the last sub-chapter, the further developed methodologies on settlement 

classification using radar imagery and the procedure of implementation in the 

study area are presented. The statistical analysis for threshold determination is 

also explained as well as the training sample collection process.    

In addition, in order to demonstrate the quality of the methodologies, every 

research topic is combined with an accuracy assessment and a comparative 

study of available methodologies.  
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4.1. Data Requirements 

Several datasets are required for analyzing the surface roughness 

determination, population distribution modeling, and the settlement 

classification. Table 4.1 is a list of data requirements, including the type of 

data, potential sources and use of these data. Satellite imagery – either optical 

or radar - is used as primary data of the research. In addition, secondary data 

such as socio-economic data is used to support the model development.  

 

Table 4.1 Data requirements for the research 

No. Type of data Potential Sources Usage 
1.  Optical Imagery 

(e.g. SPOT 5)  
Satellite data providers  Surface 

roughness 
determination 

2. Radar Imagery 
(e.g. TerraSAR-X) 

Satellite data providers Settlement 
classification 

3. Digital Surface/ 
Terrain Model  

National mapping agencies or 
commercial data providers —e.g. 
Intermap, United States Geological 
Survey (USGS) 

Tsunami 
modeling 
implementation 
input 

4. Bathymetry Oceanographic mapping agencies or 
open sources —e.g. GEBCO, 
National Coordinating Agency for 
Survey and Mapping 
(Bakosurtanal), Agency for the 
Assessment and Application of 
Technology (BPPT)  

Tsunami 
modeling 
implementation 
input 

5. Roughness 
coefficients 
 

Publications in scientific journals, 
guidance documents 

Surface 
roughness class 
and its 
coefficient 
determination 

6.  Population census 
data and growth rate 

National statistic agencies — e.g. 
Indonesian Statistical Bureau (BPS) 

Population 
distribution 
modeling 
 

7. Administrative 
boundaries 

National statistic or mapping 
agencies — e.g. Indonesian 
Statistical Bureau (BPS), 
Bakosurtanal 

Population 
distribution 
modeling 
 

8. Land use data National mapping agencies or land 
use data derived from remote 
sensing — e.g. Bakosurtanal, 
National Institute of Aeronautics 
and Space (LAPAN) 

Population 
distribution 
modeling 
 
 

9. Socio-economic data 
(potential of village, 
occupation) 

National statistic agencies — (e.g. 
Indonesian Statistical Bureau (BPS) 

Population 
distribution 
modeling 

10. Reference maps National mapping agencies, e.g. 
Bakosurtanal, or field survey 

All research 
fields 
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4.2. Surface Roughness Determination 

There are some limitations of remote sensing classification in previous studies 

for determining surface roughness, especially regarding the consideration of 

density and neighborhood, which were outlined in chapter 3. Density and 

neighborhood are important characteristics that contribute to surface roughness 

with respect to their function to resist tsunami flow. Hence, this research 

proposes a concept on density and neighborhoods classification for surface 

roughness determination. The steps of this concept are stated as follows: 

- Surface roughness classes and their coefficient determination. 

Defining the surface classes and their associated roughness coefficients 

is the first step in the overall approach. The determined surface 

roughness classes are used as basis for this process.  

- Surface roughness classification. This step includes the pre-

processing of the satellite imagery, analyses of relevant image variables 

and the classification of the land use classes, including density and 

neighborhood classification. 

- Accuracy assessment. This process evaluates the quality of the 

classification result. 

- Integration into Tsunami Modeling/Hazard Mapping. This is an 

important step to demonstrate the usefulness of the results for tsunami 

modeling/hazard mapping.  

 

4.2.1. Surface roughness classes and their coefficient estimation 

The estimation of the surface roughness classes is a very important and 

decisive step prior the remote sensing data classification. The chosen approach 

is based on the analysis of the research publications and the assigned 

roughness coefficients. Instead of relying on one publication only, a synopsis of 

the most relevant investigations has been made. Moreover, this approach also 

allows for the estimation of the variance and uncertainty of the used 

coefficients.  

The following steps were performed to determine the surface roughness classes 

and their coefficients: 

1. Review of publications that contain surface roughness classes and their 

coefficients. 
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2. Analysis of these publications. The analysis focuses on literature 

published in peer-reviewed journals or cited by several scientists.  

3. Analysis of variability and transferability of a surface roughness class 

considering density and neighborhood classes. For a better 

understanding of the variability of surface roughness in the study area, 

field surveys were performed in 2007 and 2008.  

4. Determination of the surface roughness class based on publications, 

results of field survey analyses, and the information derived from remote 

sensing data.  

5. Analysis of the minimum, maximum, average, and variance of the 

coefficient for each surface roughness class from the selected literature. 

 

4.2.2. Surface roughness classification  

The capability of remote sensing data to provide spatial information on surface 

roughness classes makes it an important tool for this research. The chosen 

classification technique and its accuracy are the core of the methodology. This 

sub-chapter explains step by step the surface roughness classification using 

remote sensing data, from pre-processing to classification of surface roughness 

and determination of coefficients. Additionally, the accuracy assessment to 

check the quality of the result is explained. 

SPOT 5 multi-spectral and panchromatic 2.5 m imagery were used in this 

research to investigate the surface roughness conditions in the study area. The 

steps to perform the roughness coefficient classification are as follows: 

 Pre-processing of satellite images including spatial enhancement, image 

variable calculation and textural analysis. 

 Analysis of relevance of variables to identify effective parameters to be 

used in the remote sensing classification.  

 Classification of main land use types as basis of surface roughness 

classification.  

 Analysis of density and neighborhood; these classes are part of the 

surface roughness classes. 

The summary of the classification steps to derive the spatial distribution of 

surface roughness conditions is shown in Figure 4.1. This figure also shows the 
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single steps of pre-processing, analyzing the relevance of variables, main land 

use classification, and density and neighborhood classification.  

 

 

Figure 4.1 The steps of surface roughness classification using optical satellite 

imagery 
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Pre-processing 

First, the satellite imagery, in this case SPOT 5 imagery (multi-spectral and 

panchromatic), must be pre-processed. The pre-processing consists of:  

- spatial enhancement; 

- image variables calculation; 

- and textural analysis.  

The spatial enhancement combines the high resolution panchromatic image 

with the lower resolution multi-spectral image to produce high spatial resolution 

multi-spectral imagery (pan-sharpening). This method applies a multiplicative 

algorithm that integrates two raster images, e.g. SPOT 5 multi-spectral image 

(10 m) and SPOT 5 panchromatic (2.5 m) images, to increase the intensity of 

the image and the spatial resolution of the multi-spectral data.  

Additionally, several indices such as the Normalized Differenced Vegetation 

Index (NDVI), the sigmoid NDVI (SNDVI) and exponential NDVI (ENDVI) are 

calculated from the multi-spectral image. The following are the formulas of 

NDVI, SNDVI and ENDVI: 

 

NDVI = (NIR-RED)/ (NIR + RED)      (4.1) 

SNDVI = 1/(1 + e –NDVI)       (4.2) 

ENDVI= EXP (NDVI)       (4.3) 

 

Where: 

NDVI is the Normalized Differenced Vegetation Index 

SNDVI is the Sigmoid Normalized Differenced Vegetation Index 

ENDVI is the Exponential Normalized Differenced Vegetation Index 

RED is the sensor’s red band (e.g. SPOT 5 band 2 (610-680 nm) 

NIR is the sensor’s near-infrared band (e.g. SPOT 5 band 3 (780-890 

nm). 

 

The next step is a textural analysis of the panchromatic image. It maximizes 

the function of the panchromatic image as a high spatial resolution image. The 

average, standard deviation, and coefficient of variation of kernel size of 9 x 9 

pixels are calculated using the following formulas: 
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Where: 

s  is the standard deviation of the digital numbers in a kernel  
N  is the total of pixels in a kernel 

ix  is the digital number of each pixel in a kernel 
x  is the average digital number in a kernel 

vc  is the variation coefficient of digital numbers in a kernel. 

 

These results of the pre-processing (spatial enhancement, image variable 

calculation, and the texture) are then stacked to a single file, which is used as 

input for analyzing relevant variables for the land use classification.  

 

Analysis of image variables 

After the pre-processing, the relevance of variables for the classification 

process is analyzed to find the most effective combination of parameters. The 

decision tree method is used to decide which image variables are the most 

appropriate for the classification. Therefore, training samples with land use 

known from field surveys and visual interpretation of satellite data are 

analyzed. For every sample of land use class, the layer stack created during the 

pre-processing is used, which contains the four spatially enhanced spectral 

bands of SPOT 5, NDVI, SNDVI, ENDVI, and the texture of the panchromatic 

image. Diverse parameter combinations are then examined and tested. The 

image variable combination with the highest classification accuracy of the 

training areas is chosen for the classification of the complete remote sensing 

imagery. Table 4.2 shows the analyzed parameter combinations.  
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Table 4.2 Analysis of image variables 

No. Image variable combinations 
 

1.  Only NDVI 
2. Only ENDVI 
3. Only SNDVI 
4. Only Texture 
5. NDVI and Texture 
6. Four spatially enhanced spectral bands of SPOT 5 
7. Four spatially enhanced spectral bands of SPOT 5 and NDVI 
8. Four spatially enhanced spectral bands of SPOT 5, NDVI and SNDVI 
9. Four spatially enhanced spectral bands of SPOT 5, ENDVI and SNDVI 
10.  Four spatially enhanced spectral bands of SPOT 5, NDVI and texture 
11. Four spatially enhanced spectral bands of SPOT 5, NDVI, SNDVI, ENDVI 

and texture. 

 

Main land use classification 

Having identified the most effective image variable combination for a remote 

sensing data set, the surface roughness classification is performed in two steps: 

main land use classification and density and neighborhood classification.  

For the classification of main land use classes, the non-parametric decision tree 

method is implemented here. The thresholding method of the decision tree 

analysis facilitates the classification process and is well integrated in modeler 

software to create an automatic classification procedure.  

Decision tree classifiers belong to the group of supervised and hierarchical 

classifiers where subsets of classes are processed at multiple stages. The 

internal node includes more than one class, while the leaf node includes only 

one class. The decision tree has a number of advantages over the maximum 

likelihood (ML) and artificial neural network (ANN) algorithms, being 

computationally fast and easy to apply (Chen and Wang, 2007).  

Similar to supervised classifiers, training samples of land use are required to 

then develop the decision tree rules. The number of main land use classes 

influences the result of the determination of surface roughness coefficients. 

After setting up the decision tree rules for every main land use class, the main 

land use classification can be performed, which is then followed by density and 

neighborhood analyses.  

The main land uses for surface roughness classification based on remote 

sensing data are “water”, “open field”, “crop field”, “shrubs”, “tree” and 

“residential area”.  
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Density and neighborhood analyses 

The density of land use features was calculated by using a kernel size of 9 x 9 

pixels (~23 m spatial resolution) based on Koshimura (2009). It resulted in 

three categories of densities — rare, medium and high density. These 

categories were classified as follows (Murashima et al., 2008): 

- Rare density   : 0–20 %  

- Medium density   : 20–50 %  

- High density   : more than 50%.  

The result is used for the neighborhood classification. A class of rarely dense 

residential area may contain a combination of trees and residential area, or vice 

versa. Hence, the classification of neighborhood is performed as follows 

particularly as an example for residential area with trees: 

- Selected main land use classes such as the class of residential and tree 

are grouped into one class (grouping). 

- The focal density analysis is performed and is categorized into two 

classes, high (> 80%) and low (< 80%); this is called the “density class” 

(after grouping). 

- The result of the density class (before grouping) is then overlaid with the 

new density class (after grouping).  

- The class of residential with trees can be identified where low or medium 

density residential/tree class (before grouping) meet the high density 

class (after grouping).   

- Where low or medium density residential/tree class (before grouping) 

meets the low-density class (after grouping), the original class is not 

changed. 

The same process is also performed for classifying the neighborhood of trees 

and shrubs, and other neighborhood classes. 

  

Neighborhood analysis 

The processes of the main land use classification by decision tree and the 

density and neighborhood analyses are packed into a GIS procedure. After 

manually selecting training samples, this package can be applied and the 
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classification process will be performed automatically. The processing steps of 

the semi-automatic model are shown in Table 4.3. 

 

Table 4.3 Steps of the semi-automatic classification  

No. The process Type of process 

1. Training sample selection Manual 

2. Decision tree modeling Automatic 

3. Transfer of decision tree model to image 

processing software 

Manual 

4. Process of main land use classification Automatic 

5. Process of density and neighborhood  

classification 

Automatic 

 

 

4.2.3. Accuracy assessment 

An accuracy assessment is performed to check the quality of the classification. 

To conduct a proper accuracy assessment, references from the field are 

needed. Two field surveys were conducted in the study area in 2007 and 2008; 

87 reference locations — reliable, equally distributed throughout the study area 

and of adequate size — were selected and captured with GPS. The confusion 

matrix accuracy assessment by Story and Congalton (1986) is used in this 

research. This methodology allows identifying the omission and commission 

error of every surface roughness class. The concept of calculating the overall 

accuracy, omission and commission errors is illustrated in Table 4.4 (Story and 

Congalton, 1986; Naesset, 1996; Liu et al, 2007). 

 

Table 4.4 Population error matrix based on information of classified and 

reference land use (LU) data 

Reference  Classified 
LU 1 LU 2 ... LU k Total 

LU 1 n11 n12 ... n1k n1+ 
LU 2 n21 n22 ... n2k n2+ 
. . . ... . . 
. . . ... . . 
. . . ... . . 
LU k nk1 nk2 … nkk nk+ 
Total n+1 n+2 … n+k N 
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The overall accuracy, commission error and omission error are then calculated 

as follows: 
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Where: 

i is classified land use data 

j is reference land use data 

LU is land use class 

N is total of pixel reference and classified class 

iin , jjn  is number of pixels in a certain land use, which is classified as the 

same land use of reference 

jn  is total number of pixel a certain reference land use 

in  is total number of pixel a certain classified land use. 

 

Figure 4.2 provides a numerical example of the confusion matrix accuracy 

assessment calculation. 

 

 
Figure 4.2 Confusion matrix accuracy assessment calculation (modified from 

Congalton and Green, 1999) 
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4.2.4. Integration into tsunami inundation modeling 

The implementation of the surface roughness classification into tsunami 

modeling is important to show the role of surface roughness for tsunami 

inundation. The settings of the tsunami model have focused on the scenario of 

the differences between spatially distributed and the uniform surface roughness 

condition. The following are the explanation of tsunami modeling setup and the 

procedure of analyzing the tsunami inundation result. In the latter procedure, 

the difference and variance analysis are presented.  

 

Tsunami model setup 

The Tohoku University’s Numerical Analysis Model for Investigation Near-field 

Tsunami No. 3 (TUNAMI N3) with 2D Nonlinear Shallow Water Equation 

(NLSWE) is used as the tsunami model in this research (Imamura et al., 2006). 

Further details of the tsunami modeling setup parameters are shown in 

Table 4.5.  

 

Table 4.5 The numerical parameters of tsunami model 

No. Parameter Parameter conditions 
1. Simulation time 90 minutes (5400 seconds) 
2. Time steps Varying from 0.2–1 second 

corresponding to the domain 
3. Number of domain Six domains of nested grids 
4. Grid spacing Domain 1 to 6, ~1850 m, ~616 m, 

~205 m,  ~ 68 m, ~ 23 m, and 
~7.6 m 

5.  Manning roughness Four scenarios (uniform roughness, 
0.025 and spatially distributed 
roughness (minimum, average, and 
maximum) 

6. Source model of hypothetical 
tsunami   

Epicenter of sub fault: 108.68 E, 
9.21 S 

7. Boundary condition Domain 1 – open boundary. 
Domain 2-6 – incoming flux and 
water level boundaries 

8. Result recording Flow depth and current velocity in 
some points as stations as well as 
the spatial distribution 

 

Kongko et al. (2009) defined 16 reliable source models of hypothetical tsunamis 

in the Cilacap region; Table 4.6 provides a list of them. For this research, the 

source model number 11 (sc.11, depth=25 km), which is indicated as a worst 

case scenario of all hypothetical tsunami sources, was used.  
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The most credible tsunami scenarios are located close to the coastal area of 

Cilacap. Figure 4.3 shows the distribution of these locations in the maps. The 

largest dot is the source of hypothetical tsunami in this research. 

 

Table 4.6 The reliable source models of hypothetical tsunamis  

Epicenter of subfault Angle Parameter No 
Lon 

(deg) 
Lat 

(deg) 
Depth 
(km) 

Strike Dip Rake 
Area 
(km2) 

Slip 
(m) 

Mw 

1 108.008 -9.777 5 289° 10° 95° 25,000 5.98 8 
2 108.404 -9.908 5 289° 10° 95° 25,000 5.98 8 
3 108.799 -10.038 5 289° 10° 95° 25,000 5.98 8 
4 108.876 -9.820 10 289° 10° 95° 25,000 5.98 8 
5 108.484 -9.681 10 289° 10° 95° 25,000 5.98 8 
6 108.092 -9.549 10 289° 10° 95° 25,000 5.98 8 
7 108.169 -9.342 15 289° 12° 95° 25,000 5.98 8 
8 108.558 -9.472 15 289° 12° 95° 25,000 5.98 8 
9 108.955 -9.606 15 289° 12° 95° 25,000 5.98 8 

10 107.320 -9.222 10 289° 10° 95° 25,000 5.98 8 
11 108.680 -9.210 25 289° 15° 95° 25,000 5.98 8 
12 110.003 -10.020 10 280° 10° 95° 25,000 5.98 8 
13 111.147 -10.219 10 280° 10° 95° 25,000 5.98 8 
14 112.835 -10.477 10 280° 10° 95° 25,000 5.98 8 
15 109.047 -9.335 25 289° 15° 95° 25,000 5.98 8 
16 112.835 -10.477 10 289° 15° 95° 25,000 5.98 8 

Note: The yellow row represents this research scenario. 
Source: Kongko et al. (2009) 

 

The crucial step in the tsunami modeling implementation is the use of different 

surface roughness scenarios. The results of the surface roughness classification 

were used as input. Four different scenarios of surface roughness coefficients 

were used, which are minimum, average and maximum coefficients 

corresponding the result from the determined surface roughness classes plus a 

uniform coefficient of 0.025 (Kongko et al., 2009). By retaining the same 

hypothetical tsunami source, bathymetry and elevation data, differences in the 

tsunami modeling results can be assigned to the effects of different surface 

roughness conditions. The results of these roughness scenarios can be analyzed 

in terms of the need for using spatially resolved data of surface roughness 

conditions.  
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Figure 4.3 The 16 reliable source models of hypothetical tsunamis, Sc.11 is 

the worst case source 

 

Analysis of Tsunami Inundation Modeling 

There are two important output parameters of the tsunami modeling used for 

analyzing the influence different surface roughness classes, i.e. the tsunami 

flow depth and tsunami velocity. The analysis is conducted both point- and 

spatial-based.  

The point-based analysis reveals differences of tsunami flow-depth and velocity 

of the tsunami modeling at 35 point samples (see Figure 4.4). These point 

samples are located in the modeled inundation area and vary in their distance 

to the coast (near, middle and far). The influence of difference roughness 

classes on tsunami flow depth and velocity is shown for each sample point. 

Additionally, this analysis proves the considerable influence of surface 

roughness condition on the modeled inundation area. 
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Figure 4.4 Locations of point samples to analyze the influence of difference 

roughness classes on tsunami flow-depth and velocity  

 

For the area-based analysis, the absolute differences of flow depth and velocity 

from the uniform and spatially distributed roughness scenario are calculated. 

The formula is stated as follows: 
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Where: 

(%)h  is the absolute difference of flow depth modeling for different surface 

roughness condition scenarios 

(%)u  is the absolute difference of velocity modeling for different surface 

roughness condition scenarios 

Unh   is the flow depth modeling for uniform surface roughness condition 

scenarios 

Snh   is the flow depth modeling for spatially distributed surface roughness 

condition scenarios 
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Unu   is the velocity modeling for uniform surface roughness condition 

scenarios 

Snu   is the velocity modeling for spatially distributed surface roughness 

condition scenario. 

 

The area-based analysis shows the spatial variety of tsunami flow-depth, 

velocity and inundation extent. The spatial information coefficient of variation 

can be shown spatially based on this analysis. By using this analysis, the 

variance of tsunami inundation by either flow depth or velocity is shown. The 

following are the formulas to calculate the coefficient of variation of flow depth 

and velocity.  

 

%100(%) x
h

s
COVh h   (4.12) 

%100(%) x
u

s
COVu u    (4.13) 

 

Where: 

COVh  is the coefficient of variation of flow depth modeling for different 

scenarios of surface roughness condition   

COVu  is the coefficient of variation of velocity modeling for different 

scenario of surface roughness condition   

hs  is the standard deviation of flow depth modeling for different scenario 

of surface roughness condition   

us  is the standard deviation of velocity modeling for different scenario of 

surface roughness condition   

h  is the average of flow depth modeling for different scenario of surface 

roughness condition   

u  is the average of velocity modeling for different scenario of surface 

roughness condition.   
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4.3. Population Distribution Modeling 

4.3.1. General concept 

The basic concept of population distribution in this research is shown in 

Figure 4.5. The disaggregation of the population from CENSUS data to land use 

classes is the core of the modeling approach. Statistical analysis of the people’s 

activities is used to allocate disaggregation weights.   

 

 

Figure 4.5 Synthetic example of the disaggregation method used to improve 

the spatial population data 

 

The formulas for population disaggregation are given below: 
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Where: 

Xd is the number of people in administrative unit 

Pi is the number of people in land use i 

Pij is the number of people in polygon j in land use i 

Sij is the size of polygon j in land use i in administrative unit 

Wi is the weighting of land use i; it is different during the day and night 

time %100
1




n

i
iW . 

 

This set of formulas describes the distribution of the population of one 

administrative unit with several types of land use (Equation 4.14). The 

population of one land use class is the accumulation from several polygons 

within one administrative unit that have the same land use (Equation 4.15). For 

example, one land use could have more than one polygon of different sizes 

inside one administrative unit. Equation 4.16 takes this into account by using 

the size of the polygons for weighting. In addition to the areal weighting, each 

polygon is weighted depending on people’s activities during the day- and night-

time, which characterize a land use class (Wi). The model assumes that the 

number of outbound commuters is equal to inbound commuters. The 

determination of the true numbers of in- and outbound commuters is still a 

problem because it is rarely recorded in the statistical data. To qualify the 

problem, this research estimates the caused error through an evaluation of a 

comprehensive questionnaire.  

Another problem that must be solved is the effect of dividing administrative 

boundaries. This problem frequently occurs in dasymetric mapping as this 

method distributes the number of people from administrative units to land use 

classes as ancillary data. A spatially connected unit of polygons of one land use 

class may result in different quantities of people in each single polygon if split 

due to an administrative boundary. As these polygons actually form a unit, the 

single polygons should be merged despite their belonging to different 

administrative units. For example, a hectare of paddy field may be located in 

two villages, and people carry out their activity in this area. Their activity is not 

confined to the administrative layer, but solely depends on the land use class. 

Hence, the population distribution within that paddy field should be equal and 

independent from the administrative boundary. This research provides a 

solution that keeps the overall number of people unchanged. The solution is 

illustrated in Figure 4.6 and equation 4.17. This finding eliminates the boundary 

effect and smoothes the population distribution map. 
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Figure 4.6 The boundary effect problem in the population distribution  

 

 

ijIDiijIDijIDiID PPPP  ...21   (4.17) 

 

Where: 

PiID is the number of people in land use with specific ID 

PijID1,2,..,i is the number of people in polygon j in land use with specific ID.  

 

Figure 4.6 shows as an example of a unit of settlement polygons (brown color), 

and two units of agriculture polygons (green color), which are each divided into 

four polygons due to administrative boundaries (blue lines). The total amount 

of people in the settlement polygons is the accumulation of the numbers of 

people in settlement polygons 1, 2, 3, and 4. The same applies for the two 

units of agriculture polygons. This means that after disaggregating the 

population within each administrative unit, adjacent polygons of the same land 

use class are merged and handled as one unit. 

The overall procedure of people density distribution is packed in an automatic 

process model. This model calculates the population distribution based on 

census data and land use information automatically calculates. 

 

4.3.2. Weighting factor determination  

The crucial part of the dasymetric model is the determination of the weighting 

factors that distribute the population to land use classes during the day- and 

night-time. This research analyzes the characteristics of socio-economic data of 

the study area in order to determine people’s activities in the land use class and 
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to derive the weighting factors thereof. There are two steps of weighting factor 

determination: 

- Derivation of the potential number of people engaged in different land 

use activities by occupation data. It is a knowledge-based initial 

percentage value for describing where people are located. Furthermore, 

this value can be used for calculating the percentage of people engaged 

in land use activity for every village. 

- The generalization of the weighting factor. This analysis ensures that 

weighting factors are specific to every village wherever necessary, or 

generalized by the village categories such as urban, rural, coastal and 

non-coastal.  

To this end, socio-economic data (potential of village and occupation) are 

required. 

 

Potential number of people engaged in different land use activities  

Available methods developed to provide weighting factors to land use classes 

do not consider the behavior of people based on their activities. An 

improvement is needed here to provide an appropriate and objective 

assessment of the weighting factors to derive information as precisely as 

possible about people at risk. Therefore, statistical data of people’s activities in 

certain administrative units (villages) are analysed to estimate the weighting 

factors.  

There are two sources of statistical data in Indonesia that provide information 

about people’s activities at the village level and that can be used for the 

derivation of weighting factors: potential of village data (PODES) and the 

census data. The PODES data set contains information on the main income 

sources of the population in a community and the number of workers and non-

workers. Additionally, the census data provide information on the percentage of 

employment in different sectors in each community. These parameters provide 

an indication of the type, volume and locality of human activities, and can be 

used to calculate the potential number of people engaged in different land use 

activities at various times of the day. Figure 4.7 shows the potential number of 

people engaged in different land use by occupation data. The share of people’s 

activities during the day- and night-time is also shown in this figure. During the 

night-time, almost all people stay in the settlement area, and during the day-

time, they are spread in otherwise inhabitant land use area.  
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Based on this assumption of potential number of people engaged in different 

land use activities by occupation data, the calculation of where are people 

located in the different land use can be done in every village. The general 

weighting factor is then generated, as described below.   

 

 

Figure 4.7 Potential number of people engaged in different land use activities 

during the day- and night-times in the village  

 

Generalization of weighting factor 

The first step of weighting factor generalization should answer the question 

“Could the weighting factors be generalized for the whole coastal area of 

Indonesia, or are individual weighting factors needed due to different village 

characteristics?” An analysis of the occupation data answers this question. 

There are at least 9100 villages with different characteristics in coastal 

Sumatra, Java and Bali. 

There are four possibilities to differentiate and regionally villages category 

according to their characteristics, as follows: 

- urban coastal, urban non-coastal, rural coastal and rural non-coastal 

areas; 
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- island (Sumatera, Java, and Bali) plus the first mentioned 

characteristics; 

- potential economics of village; 

- municipalities.  

 

The four groups of differentiation are statistically analyzed and the decision on 

the weighting generalization can be made accordingly. The statistical analyses 

of the differentiation groups are based on standard deviation and coefficient of 

variation.  

This analysis clarifies if the general weighting factors can be transferred to 

other areas or not. If it is possible, the uncertainty analysis with regard to the 

standard deviation of that general weighting factor can be applied.   

 

4.3.3. Accuracy assessment  

The accuracy assessment needs reference data of the true population 

distribution. To this end, a questionnaire was developed and distributed in the 

study area of Cilacap District. The main questions were: 

 What is the type of working sector? 

 During which time of the day do the inhabitants usually work? 

 In what kinds of land use, do they usually work or stay during their 

activities? 

 Where are these typical sites located: outside or inside their village, how 

far away? 

 

Through this questionnaire, crucial information about the amount of people in 

an occupation sector who are working or carrying out their activities in a certain 

land use during day- or night-time was assessed. Additionally, information on 

commuters was captured. Based on the questionnaire, the true condition of 

population distribution in the different land use classes can be formulated as 

follows: 



  Chapter 4: Methodology 

 88 

))(.(.

1,

OIdRQn

ji
ij

ij
ij PPXW

S

S
RQP 




     (4.18) 

 

Where: 

RQPij  is the number of people in polygon j in land use i in real condition 

PI is the number of inbound commuters 
PO is number of outbound commuters 

RQW  is the weighting factor derived from questionnaire. 

 

The error of population distribution in the model can be calculated as follows: 
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Where: 

RMSE  is the root mean square error 
COV  is the coefficient of variation 

P  is the average population distribution 

PDE  is the error of population distribution 

ijP  is the number of people in polygon land use (model) 

ijRQP  is the number of people in polygon land use (questionnaire). 

 

4.3.4. Multi-scale disaggregation 

The availability of detailed population information or land use is a general 

problem in developing countries. There is frequently missing data. As a result, 

multi-scale disaggregation is developed to integrate the described population 

distribution model into the entire area in the southwestern coast of Sumatra, 

the south coast of Java, and Bali, even where data are not available, not 

completely available, or not sufficiently available. The concept of multi-scale 

disaggregation is shown in Figure 4.8.  
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Figure 4.8 Multi-scale disaggregation concept to provide the population 

distribution in west coast of Sumatera, south coast of Java and Bali  
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To obtain a good population distribution map with low uncertainty, detailed 

population data, detailed information statistical data, and detailed land use data 

should ideally be available. In Indonesia as well as in other developing 

countries, there is frequently a lack of available data. This is the reason for 

which multi-scale disaggregation is proposed. 

The first needed data set is population data (at the village level). This data is 

provided by the Indonesian Statistical Bureau (BPS), but the data are 

sometimes incomplete. To fill the gaps, this research uses the data of the next 

higher administrative unit, such as the sub-district and the district. By areal 

weighting, this data is interpolated to the village level. 

The second needed data set is statistical data. As described in section 4.2.3, 

the weighting factors can be derived from this data. This data set is also 

incomplete in some parts of the study area. This gap is filled by a general 

weighting factor that is derived by the statistical analysis from the section 

4.2.3. The result of general weighting factor can be used for the process of 

multi-scale disaggregation.  

The final, necessary data set is land use data. These data are provided by the 

Indonesian institutes responsible for mapping, Bakosurtanal and LAPAN. Land 

use data can be available at scales of 1:25,000, 1:50,000 and 1:100,000. For 

each area, the largest available scale is used and thus, a best land use data is 

created.  

After preparation of all these data sets, the population distribution model can 

be applied to provide the population distribution map. 

   

4.3.5. Comparative study  

In addition to the accuracy assessment step for assessing the quality of the 

developed model, the model is also compared to the results of the models from 

Gallego and Pedell (2001) and Mennis (2003), which were implemented in the 

same study area of Cilacap. Root mean square error (RMSE), coefficient of 

variation (COV) and error of population distribution (EPD) are calculated to 

compare those models.     
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4.4. Settlement Classification by Using Radar Imagery Based on 

Speckle Divergence and Neighborhood Analysis 

4.4.1. Classification procedure 

The settlement classification method is an improvement over the approach of 

Esch et al. (2010). This research proposes the neighborhood analysis from the 

“real settlement” image using the speckle divergence and intensity image. The 

process of settlement classification is performed in two steps: pre-processing 

and classification (neighborhood). To ensure efficiency and quality of the 

model, an accuracy assessment and transferability analysis are carried out. The 

steps of the settlement classification are shown in Figure 4.9.  

In compact steps, the classification procedure is stated as follow: 

- pre-processing (speckle divergence analysis): 

- threshold analysis (threshold determination for real settlement and 

potential settlement): 

- neighborhood analysis (classification of settlement areas). 

 

Pre-processing 

The pre-processing of the data includes speckle suppression to enhance images 

degraded by speckle noise. This speckle phenomenon in TerraSAR-X data 

significantly hampers the analysis of radar data. The approach of speckle 

suppression consists of determining the difference between the local image 

heterogeneity and the theoretical, scene-specific heterogeneity of developed 

speckle. 

The calculation of speckle divergence is based on kernel size of 9 x 9 pixels, 

and the formulas are stated as follows (Esch et al., 2010): 
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Where: 

yxD ,  is the speckle divergence 

C  is the theoretical heterogeneity due to developed speckle; it is  
calculated from the inverse of equivalent number of look (ENL), 
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CLLENL ra /1 , aL  and rL defining the effective number of looks 

in the azimuth and range (stated in TerraSAR X metadata) 

yxC ,  is the local coefficient of variation defined by the local, it is calculated 
in kernel size of 9 x 9 pixels 

yx,  is the local standard deviation, it is calculated in kernel size of 9 x 9 
pixels  

yx,  is the local mean, it is calculated in kernel size of 9 x 9 pixels. 

 

 
 

Figure 4.9 The steps of settlement classification by using TerraSAR-X  
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Threshold analysis 

The threshold of real and potential settlement from the intensity and speckle 

divergence image is defined by analyzing samples of pixels in settlement and 

non-settlement areas. The threshold can be decided by analyzing the histogram 

of samples, as show in Figure 4.10. 

 

 

Figure 4.10 The threshold decision for potential settlement and real settlement  

 

Neighborhood analysis 

The settlement classification can be performed by generating a simple threshold 

of the speckle divergence, but this method cannot eliminate false settlement 

detections in hilly areas that have similar speckle divergence values. To avoid 

this error, it is proposed to use neighborhood analysis for the detection of 

settlement areas from TerraSAR-X imagery. The steps are as follows: 

- identification of “real settlement” pixels from speckle divergence and 

intensity images by using the threshold; 

- identification of “potential settlement” pixels from speckle divergence 

and intensity images by using the threshold; 

- a combination of “real settlement” and “potential settlement” pixels to 

identify settlement areas by conditional parameters (settlement mask). 
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The neighborhood analysis for settlement classification is shown in Figure 4.11: 

 

   
(a) (b) (c) 

Figure 4.11 Illustration the neighbourhood analysis for settlement classification 

(a) real settlement detection (b) potential settlement and (c) the settlement 

mask by neighbourhoods a kernel size of  3 x 3 pixels  

 

The resulting settlement mask is used to mask the intensity image to develop 

an “urban scatter” image. Then, the density of this image is analyzed by 

calculating the focal mean of a kernel size of 25 x 25 pixels and accordingly the 

“urban scatter” by a kernel size of 45 x 45 pixels. The threshold of the density 

image can be generated by analyzing several pixels to detect the settlement. 

Finally, the settlement classification is generalized by combining the settlement 

mask and the speckle divergence image, and filtering by a 45x45 matrix. 

 

4.4.2. Accuracy assessment 

Accuracy assessment is carried out by using a higher resolution reference map 

(e.g. from national mapping agencies) or by in situ mapping in a field survey. 

By using the same accuracy assessment method as for the surface roughness 

classification (see section 4.2.3), the quality of the settlement classification 

methodology is assessed. Furthermore, the omission and commission errors are 

calculated. 

 

4.4.3. Transfer of the approach to other areas 

The same classification methodology is applied to the Padang area. The 

accuracy assessment is performed accordingly to check the quality and 

transferability of the methodology, and an error map is created. 
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CHAPTER 5: RESULTS 
 

This chapter describes the main results of data collection, surface roughness 

classification and its implementation to tsunami modeling, population 

distribution modeling and settlement classification using TerraSAR-X data. The 

results of accuracy assessments and comparative studies are also presented.  

 

5.1. Data Collection 

Data collected and processed can be divided into three categories: satellite 

imagery and spatial information, demographic and socio-economic statistics, 

and reference data.  

 

5.1.1. Satellite imagery and spatial information 

Satellite imagery has been acquired from optical or radar sensors, providing 

important data for this study (see Figure 5.1). They are preliminarily used for 

surface roughness determination and settlement classification. For the surface 

roughness determination, SPOT-5 multi-spectral 10 m and panchromatic 2.5 m 

spatial resolution have been collected. This imagery has less than 10% cloud 

coverage. It covers the entire coastal area of the research site. TerraSAR-X 

imagery was used (see Figure 5.1) for settlement classification based on 

speckle divergence and neighborhood analysis. Three scenes of TerraSAR-X 

imagery for the study area in Cilacap and one scene for the implementation 

area in Padang were used. All TerraSAR-X Imageries were acquired in the strip 

map mode, which have 2.7 m spatial resolution and were provided by the 

German Aerospace Center (DLR). 

By using both types of data, a comprehensive study on the application of 

optical and radar imagery is presented to support the assessment of risk and 

vulnerability. The advantages and disadvantages of these data can be directly 

proven.  
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5.1 Satellite imagery data collection for this research: (a) SPOT-5 

multi-spectral (24 June 2004); (b) SPOT-5 Panchromatic (24 June 2004); (c) 

TerraSAR-X for Padang (04 April 2008);  (d) TerraSAR-X Cilacap 1 (24 January 

2009); (e) TerraSAR-X Cilacap 2 (04 February 2009); and (f) TerraSAR-X 

Cilacap 3 (15 February 2009) 

 

For population distribution modeling research, the spatial information of land 

use has also been collected. These data were provided by the National 

Coordinating Agency for Surveys and Mapping (Bakosurtanal) and the National 

Institute of Aeronautics and Space (LAPAN). Several scales of land use maps 

have been collected for the whole west coast of Sumatra, Java and Bali. For 

Java and Bali, land use maps were derived from the topographic map at a 1: 

25,000 scale. For Sumatra, maps were available at a 1: 100,000 scale, but 

maps of some of the areas, such as Padang and Aceh, are at a scale of 1: 

50,000. Figure 5.2 shows the availability of land use data in the study area of 

Cilacap and in the implementation area of the entire west coast of Sumatra, 

Java and Bali. 

In this research, the best available data were compiled from the responsible 

mapping institutions in Indonesia. As a developing country, the availability of 

detailed maps in Indonesia is a general and frequent problem.  
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Figure 5.2 Land use data collection in difference scales (1:100,000 scale in 

the red box, 1: 50,000 scale in the pink box, and 1: 25,000 scale in the yellow 

box.)  

 

Further important spatial data are bathymetry and terrain/elevation data. The 

General Bathymetric Chart of the Oceans (GEBCO) bathymetry data with 30 

arc-seconds spatial resolution was used. Where available, the more detailed 

bathymetry data from the National Coordinating Agency for Surveys and 

Mapping (Bakosurtanal)) and observations from the Agency for the Assessment 

and Application of Technology (BPPT) (single multi-beam sounding) were used. 

Hence, a best-of bathymetry data set was then used for the tsunami modeling. 

As elevation data served, the digital terrain model (DTM) with 5 m horizontal 

spatial resolution, which was derived from airborne SAR interferometry by 

Intermap was also collected. These data were used as input for tsunami 

inundation modeling in the study area.  
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5.1.2. Demographic and socio-economic statistics 

Statistical data are important for population distribution modeling and show the 

number of people in an administrative unit. The main source of socio-economic 

and demographic statistical data is the Indonesian Statistical Bureau (BPS). It 

provides census data for 2000 and the population growth rate from 2000 to 

2007. These data were collected in order to obtain the number of people at the 

village administrative level. The population growth rate is used for the future 

projection of the number of people per village. Figure 5.3 shows the number of 

people per village based on Census data (BPS, 2000).  

 

 

Figure 5.3 Statistical data on population distribution at the village level for 

the entire coast of Sumatra, Java and Bali 

 

Another source of statistical data is the BPS potential of village data (PODES, 

2005) which are updated every five years. It provides socio-economic data 

explaining the economic characteristics of each village in Indonesia: the main 

source of income, farmer population, the main commodity, number of 

infrastructures in the village, type of village (urban, rural, coastal, and non-

coastal), total number of people and other information. PODES data are an 

important source for population distribution modeling. 
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Another important statistical data is the occupation data for every village, 

documented in the BPS Census data. The raw census data have been collected 

and the percentages of people in their respective occupations were calculated. 

There are ten types of occupations in the census data: food crops, fishery, 

other agriculture, trade, transportation, plantation, animal husbandry, 

manufacturing, services and other occupations.  

 

5.1.3. Reference data 

Reference data are needed to prove the validity of this research. For the 

surface roughness determination, the reference for the land use and surface 

roughness classes was collected by field survey. Figure 5.4 shows the location 

of field survey and land use delineation used as reference data.  

 

 

Figure 5.4 Example of land cover reference polygons for the accuracy 

assessment of the surface roughness classification 

 

For population distribution modeling, the accuracy assessment needs reference 

data on the true population distribution. To this end, a questionnaire was 

developed and distributed in the study area of Cilacap District. More than 300 

households with a total of 1,119 family members, 207 individuals, and a total 

1,326 individuals in 36 villages in Cilacap District responded to this 

questionnaire. The result of this questionnaire data collection is shown in sub-

chapter 5.3.3.  
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Topographic maps and very high-resolution optical satellite imagery (SPOT-5 

and Quickbird) data are used to generate the reference settlement maps for 

TerraSAR-X classification in Cilacap and Padang; Figure 5.5 shows these maps.  

   

 

Figure 5.5 The reference data for settlement classification, Cilacap (left) and 

Padang (right)  

 

The other reference data that have been collected are the tabular value of 

roughness coefficient in published research (Chow, 1959; Hill and Mader, 1987; 

and Murashima et al., 2008). This published roughness coefficient values are 

used further on the determination of surface roughness class and its coefficient 

estimation (see chapter 5.2.1).  

A compilation of all data sets collected and used in this research both for model 

development and implementation is shown in Table 5.1. It explains type of 

data, characteristics, resolution/scale, source and usage. 

 



Table 5.1 Compilation of all data used in this research 

Type of data Data Characteristics Resolution/scale Source Usage 
 

SPOT-5 Multi-spectral 
Cilacap: 
Acquisition : 24 June 2004  

10 m  Data based on 
SPOTIMAGE2004 

Surface roughness determination 

SPOT-5 Panchromatic 
Cilacap: 
Acquisition : 24 June 2004  

2.5 m  Data based on 
SPOTIMAGE 2004 

Surface roughness determination 

TerraSAR-X Stripmap Mode  
Cilacap district (3 scenes) 
Acquisition dates: 
1. 24 January 2009 
2. 04 February 2009 
3. 15 February 2009 
Padang district (1 scene) 
Acquisition date: 
1. 03 April 2008 

2.7 m Data based on DLR 
2008/09 

Settlement Classification 

Cilacap DTM 5 m Data based on 
Intermap 2008 

Surface roughness determination 
(tsunami inundation modeling) 

Bathymetry data  ±925 m Data based on 
GEBCO 2003 

Surface roughness determination 
(tsunami inundation modeling) 

Bathymetry data  250 – 500 m Data based on 
Bakosurtanal 2007 

Surface roughness determination 
(tsunami inundation modeling) 

Bathymetry from single 
multi-beam sounding  

0.2 m Data based on 
BPPT 2007–2009 

Surface roughness determination 
(tsunami inundation modeling) 

Topographic maps: south 
coast of Java and Bali) 

1 : 25,000 Data based on 
Bakosurtanal 1999 

Population distribution modeling 
(population distribution 
disaggregation) 

Land use data: Padang  1 : 50,000 Data based on 
LAPAN 2005 

Population distribution modeling 
(population distribution 
disaggregation) 

Satellite data and 
other spatial 
information 

Land use data (City of 1 : 50,000 Data based on Population distribution modeling 

1
0
1
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Banda Aceh) LAPAN 2005 (population distribution 
disaggregation) 

Land use data (west coast 
of Sumatera, south coast of 
Java and Bali) 

1:100,000 Data based on 
LAPAN 2005 

Population distribution modeling 
(population distribution 
disaggregation) 

Census 2000 Village level, 
 

Data based on BPS 
2000 

Population distribution modeling 
(weighting factor determination) 

Potential of village data 
(Podes) 2005 

Village level 
 

Data based on BPS 
2005 

Population distribution modeling 
(weighting factor determination) 

Population growth rate 
2000–2007 

District level Data based on BPS 
2007 

Population distribution modeling 
(population distribution 
disaggregation) 

Demographic and 
Socio-economic 
statistics 
 

Administrative boundary  Village level Data based on BPS 
2004  

Population distribution modeling 
(population distribution 
disaggregation) 

Land use reference 
polygons 

- Data based on 
Field survey 2007-
2009 

Surface roughness determination 
(accuracy assessment) 

Questionnaire  - Data based on 
Field survey 2009 

Population distribution modeling 
(accuracy assessment) 

Published roughness 
coefficients 

- Chow (1959); Hill 
and Mader (1987); 
and Murashima et 
al. (2008) 

Surface roughness determination 
(estimation of roughness 
coefficient) 

Reference data 

Settlement reference 
polygons 

- Data based on 
SPOTIMAGE 2004 
and Topographic 
map Bakosurtanal, 
1999, Digitalglobe 
2006   

Settlement classification 
(accuracy assessment) 

 

 

1
0
2
 

C
h
ap

ter 5
: R

esu
lts 



  Chapter 5 : Results 

 103 

5.2. Surface Roughness Determination 

5.2.1. Surface roughness classes and their coefficient estimation 

This study determines 12 classes of surface roughness by using the roughness 

coefficients in published research and field survey results (see Table 5.1). 

These classes were derived based on: (1) the land use; (2) the density; and 

(3) neighborhood patterns. The land use classes are: “water”, “field”, “shrubs”, 

“trees” and “residential area”. The density classes are “low”, “medium” and 

“high” density of object (e.g. vegetation) and the neighborhood pattern is a 

class which has a combination of two land-use classes such as “residential area 

with trees” (see section 4.2.2 in Methodology). The 12 classes of surface 

roughness, their coefficient and the deviation are shown in Table 5.2. The 

roughness classes are grouped into four qualitative classes — “very low”, “low”, 

“medium” and “high”. This determined surface roughness is used as a basis for 

developing the new remote sensing classification methodology.  

 

Table 5.2 The roughness coefficients assigned to surface roughness classes 

based on literature review  

No. Land use Roughness 
coefficient 

Class of 
roughness 

A. Water   

1. River, lake and ocean 0.016±0.009 Very low 

B Field   

2. Open field 0.030±0.010 Low 

3. Crop field 0.035±0.010 Low 

C. Shrubs   

4. Low-medium density of shrubs 0.050±0.020 Medium 

5. Shrubs and trees 0.060±0.020 Medium 

6. Dense shrubs 0.100±0.010 Medium 

D. Trees   

7. Low density of trees 0.060±0.010 Medium 

8. Medium density of trees 0.100±0.020 Medium 

9. Dense tree 0.150±0.050 High 

E Residential   

10. Low-medium density of residential 

area 

0.050±0.010 Medium 

11. Dense residential area 0.115±0.020 High 

12. Residential area with trees  0.150±0.050 High 

Note: The definition of the surface roughness classes is based on the combination 

of land use, density and neighbourhood patterns.  
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The surface roughness is an indicator of the protection probability of land use 

against tsunami threats. Low roughness values thus lead to a low protection 

probability. The surface roughnesses, which indicate high probabilities of 

protecting against tsunamis, are “dense tree”, “dense residential” area and 

“residential area with trees” (see Figure 5.6). “River”, “lake”, “ocean”, “open 

field” and “crop field” have low protection probability (low roughness values, 

see Figure 5.6). 

 

 

Figure 5.6 The surface roughness classes and their relation to the tsunami 

protection probability (from very low to high)  

 

5.2.2.  Surface roughness classification 

Pre-processing result 

In order to enhance the spatial resolution, SPOT-5 multi-spectral data were 

pan-sharpened by using the panchromatic channel and multiplicative algorithm 

(see chapter 4.2.2.1). The different steps, before and after spatial 

enhancement, are shown in Figure 5.7. After this pre-processing, a set of 

SPOT 5 multispectral imagery with 2.5 m spatial resolution was obtained.  
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Figure 5.7 Result of the spatial enhancement of a SPOT-5 scene (right), 

based on a multi-spectral (left) and panchromatic imagery (middle)  

 

The result of image variable calculation is shown in the Figure 5.8. The NDVI, 

SNDVI and ENDVI have been calculated to differentiate the vegetation cover.  

 

Figure 5.8 Results of image variable calculation of a SPOT-5 scene based on 

NDVI (left), SNDVI (middle) and ENDVI (right)   

 

The next pre-processing step is the texture analysis (see Figure 5.9), which is 

important mainly for settlement extraction. Figure 5.9 shows that the 

settlement areas in the texture imagery become more visible than in the 
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panchromatic imagery itself. The differentiation of residential areas and 

open/bare land has significantly improved (see next chapter). 

 

 

Figure 5.9 Result of textural analysis of a SPOT-5 scene: panchromatic 

imagery (left) and the texture imagery (right)  

 

Relevant remote sensing variables  

Performing a multispectral analysis of SPOT-5 imagery, the following ratios and 

variables were calculated: NDVI, sigmoid NDVI, exponential NDVI and texture 

variable. These indices were then used to classify the main land use classes and 

to derive surface roughness. The result of this analysis together with their 

internal accuracies is shown in Table 5.3. Based on Table 5.3, the lowest 

accuracy is found in the combination that uses merely one variable of SPOT-5 

imagery (see No. 1-4 in Table 5.3). By using the four channels of SPOT-5 only, 

the accuracy of classification is no more than 70% (see No. 5 in Table 5.3). The 

accuracy is higher (over 80%) when using additional variables such as NDVI. 

Adding texture information, the accuracy is over 90% (Nos. 10 and 11 in Table 

5.3). The highest accuracy is obtained when using the combination of four 

channels of SPOT5, NDVI and texture for land use classification (No. 10. in 

Table 5.3). Texture significantly increases the accuracy of the classification 

(from around 80% up to over 90%). The expansion value of NDVI (ENDVI and 
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SNDVI) did not significantly increase the result of accuracy (see Table 5.3). This 

result was used in the following step in order to design a decision tree model. 

 

Table 5.3 The accuracy of SPOT-5 data image variables to classify the main 

classes of surface roughness by using a decision tree model 

No. Remote sensing variable combination Accuracy of the 

decision tree model 

(%) 

1. Only ENDVI 48.14 

2. Only NDVI 48.00 

3. Only SNDVI 48.29 

4. Only Texture 46.00 

5. Four spatially enhanced spectral bands of 

SPOT-5 

68.09 

6. NDVI and Texture 74.00 

7. Four spatially enhanced spectral bands of 

SPOT-5 and NDVI 

83.29 

8. Four spatially enhanced spectral bands of 

SPOT-5, NDVI and SNDVI 

82.86 

9. Four spatially enhanced spectral bands of 
SPOT-5, ENDVI and SNDVI 

81.57 

10. Four spatially enhanced spectral bands of 
SPOT-5, NDVI and Texture 

94.14 

11. Four spatially enhanced spectral bands of 
SPOT-5, NDVI, SNDVI, ENDVI and Texture 

94.43 

 

Table 5.4 shows an accuracy matrix of the decision tree model by using 

selected relevant variables. The overall accuracy of the model is 94.14%, 

indicating that the application of this model to the classification procedure can 

be reached with a high accuracy. The difficulties of this model are the 

differentiation of “tree”, “shrubs” and “crop field” that have a high omission and 

commission error (> 10%). Mis- and false classification among those three 

classes occurred accordingly.  
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Table 5.4 The accuracy of decision tree model by using relevant SPOT-5 

variable (four spatially enhanced spectral bands of SPOT-5, NDVI, and Texture) 

Classifi-
cation 

 
Reference 

Open 
field 

Resi-
dential 

Sea 
wave Shrubs Tree Water 

Crop 
field Total 

Omis-
sion 

error 
(%) 

Open field 95 1 0 0 0 3 1 100 5 

Residential 2 97 0 0 0 1 0 100 3 

Sea wave 0 0 98 0 0 2 0 100 2 

Shrubs 0 0 0 88 3 0 9 100 12 

Tree 1 0 0 2 97 0 0 100 3 

Water 2 0 1 0 0 97 0 100 3 

Crop field 2 0 0 10 1 0 87 100 13 

Total 102 98 99 100 101 103 97 700  
Commission 
error (%) 6.9 1 1 12 4 5.8 10.3 Overall 94.14 

 

Land use classification using decision tree model 

A decision tree model has been developed using the best combination of image 

variables (No. 10 in Table 5.3) for land use classification. Figure 5.10 shows 

this decision tree model, developed by including the automatically derived 

thresholds to classify the land use classes. This is the basis for further surface 

roughness classification.  

Figure 5.10 shows the classification of the main land use resulting from the 

decision tree model. In this figure, NDVI is the main variable for differentiating 

classes: “water”, “open fields” and “residential areas” with trees classes such as 

“crop fields”, “shrubs” and “trees”. This figure also shows the relevant variables 

for the differentiation of the main classes. For example, to differentiate 

residential areas and open field, NDVI channel 1, channel 4 and texture are the 

most relevant parameters. For residential areas and water, texture information 

is needed in addition.   

Texture clearly plays an important role for the differentiation of residential 

areas and open fields.  
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Figure 5.10 The decision tree model for main land use classification.  
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The result of main land use classification and its accuracy assessment is shown 

in Figure 5.11 and Table 5.4, respectively. The overall accuracy of main land 

use classification is 91.6% with the highest omission (25.6%) and commission 

error (18.8%) for the shrubs. There are still some problems, therefore, with 

respect to the separability between “shrubs” and “crop fields” or “trees”. The 

confusion matrix in Table 5.4 shows the percentage of shrubs classified as “crop 

field” or “tree”. The highest accuracy is for water classification, with only 0.5% 

commission error and 0.2% omission error. This method has also a good 

accuracy on the residential classification, with only 0.7% as commission error 

and 3.1% as omission error. Open field was classified with only a 1% omission 

error and a 5% commission error.  

 

 

Figure 5.11 The result of decision tree classification of SPOT-5 data for main 

land use classes 

 

The above-mentioned omission and commission errors are shown more clearly 

in Table 5.5. The result of classification can be miss (omission error) or false 

(commission error). For example, the misclassification of “shrubs”, classified as 
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“open field”, is around 0.025% (99 pixels); “crop field”, around 5% (20,635 

pixels); “tree” around 20% (80,272 pixels); and “residential”, around 0.03% 

(132 pixels) out of a total of 395,577 pixels-based reference. On the other 

hand, false classification of “shrubs” also occurred. In “open field”, around 

0.003% (12 pixels), “crop field” around 17% (61,789 pixels), “tree” around 

0.7% (2,515 pixels), and “residential areas” around 1 % (3,869 pixels) from 

around 362,625 total pixels of the “shrubs” classification. This example can be 

used as a guide to interpret the mis- and false classification of the main land 

use roughness, which is shown in Table 5.5.  

   

Table 5.5 Accuracy assessment of remote sensing classification for main 

land use roughness (number of pixels) 
         Classifi-

cation 
 
Reference Water 

Open 
field 

Crop 
field Shrubs Tree 

Residen
-tial 

 
Total 

Omis-
sion 

error 
(%) 

Water 315,757 590 0 0 1 0 316,348 0.2 

Open field 72 309,305 877 12 0 2,244 312,511 1.0 

Crop field 55 380 357,076 61,789 1,605 16 420,923 15.2 

Shrubs 0 99 20,635 294,438 80,272 132 395,577 25.6 

Tree 459 8,423 25 2,515 446,654 98 458,176 2.5 

Residential 1,040 6,752 87 3,869 135 376,859 388,745 3.1 

Total 317,385 325,551 378,701 362,625 528,668 379,351 2,292,282  
Commission 
error (%) 0.5 5.0 5.7 18.8 15.5 0.7  91.6 

 

Results of surface roughness assessment  

The results of roughness classification and its accuracy are shown in Figure 

5.12 and Table 5.5 respectively. The coastal area of Cilacap is dominated by 

very low to low surface roughness values. The zoomed subsets display the 

urban characteristics (A) and the rural situation (B) 
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Figure 5.12 Surface roughness classification in Cilacap District 

 

Classification of land use classes and assignment of respective roughness 

values were achieved with 91.8% overall accuracy. The highest omission and 

commission values occur in the medium surface roughness class, at 14.4% and 

16.4% respectively. Other omission and commission errors in classifying 

surface roughness are below 10% (see Table 5.5). The overall result shows 

high accuracy for the surface roughness classification.  

 

 

 

A B 
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Table 5.6 Accuracy assessment of the remote sensing classification of 

surface roughness classes  

       Classifi- 
cation 

 
Reference 

Very low 
 
 

Low 
 
 

Medium 
 
 

High 
 
 

Total 
 
 

Omission 
error (%) 

 
 

Very low 808,319 525 0.0 0.0 808,844 0.1 

Low 108 731,061 67,103 0.0 798,272 8.4 

Medium 18,468 48,912 682,204 47,656 797,241 14.4 

High 1,520 14,886 66,537 757,331 840,275 9.9 

Total  828,415 795,384 815,844 804,987 3,244,632  

Commission 
error (%) 2.4 8.1 16.4 5.9  91.8 

 

The high accuracy of surface roughness classification is mainly due to using the 

approach that includes the analysis of density and neighborhood characteristics. 

This accuracy cannot be achieved by using standard classification approaches 

such as a maximum likelihood classification. Low accuracy values occur 

especially for classes with a combination of shrubs and open-land (low-medium 

density of tree) or residential and trees (residential with trees). Table 5.7 

shows the resulting accuracy using a standard maximum likelihood approach 

for analyzing the samples, which contain density and neighborhood 

characteristics. 

 

Table 5.7 The classification accuracy resulting from a standard maximum 

likelihood approach 

Density and neighborhood characteristics Accuracy of maximum 

likelihood model 

Combination of shrubs and open land (“low-medium 

density of shrubs”) 

60.72 

Combination of tree and open land (“low-medium 

density of tree”) 

38.49 

Combination of residential and open land (“low-medium 

density of residential”) 

63.56 

High density of shrubs (“Dense shrubs”) 94.06 

High density of tree (“Dense tree”) 95.33 

High density of residential (“Dense residential”) 90.53 

Combination of residential and tree (“Residential with 

trees”) 

41.21 

Combination of tree and shrubs (“Shrubs and trees”) 65.10 
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5.2.3. Integration of surface roughness for tsunami inundation 

modeling 

The use of the gained spatially distributed surface roughness values is 

important for tsunami inundation modelling. Surface roughness conditions 

influence the results of tsunami inundation, especially the velocity of the 

tsunami wave. Figure 5.13 shows the spatial difference of tsunami velocity 

using the uniformed roughness coefficient (upper map) and spatially distributed 

roughness values (lower map). The maximum tsunami velocity mostly 

decreases when using the spatial distributed roughness values.  

 

 

 

Figure 5.13 Difference of tsunami velocity based on different roughness 

conditions: uniform roughness coefficient (top), spatially distributed roughness 

values (low)  
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Figure 5.14 shows the absolute difference for maximum velocity and for 

maximum water flow depth (%) between tsunami inundation modeling using 

uniform roughness coefficient and spatially distributed roughness values. The 

different representations of surface roughness show greater influence on water 

velocity than on the water flow depth. Areas far off the coastline show an 

increasing absolute difference. 

 

 

 
 

Figure 5.14 Absolute difference of maximum velocity and maximum water flow 

depth (%) between tsunami inundation modeling using uniform roughness 

coefficient and spatially distributed roughness values 
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Further explanation of the importance of spatially distributed roughness to 

tsunami modeling is shown by the result of the coefficient of variation analysis 

for the maximum velocity and the maximum flow depth. The coefficient of 

variation shows the sensitivity of the tsunami inundation modeling result, 

especially for areas which are far off the coastline (see Figure 5.15). 

 

 

 

Figure 5.15 Coefficient of variation (COV) for the maximum velocity (top) and 

maximum flow depth (low)  
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Figure 5.16 Coefficient of variation in selected samples for maximum flow 

depth (blue line) and maximum velocity (red line) 

 

For 35 point samples in the study area, the coefficient of variation was 

determined for the maximum velocity and the maximum flow depth 

(Figure 5.16). This figure shows that the sensitivity of surface roughness is 

generally higher for the maximum velocity than for the maximum flow depth. 

The variation of the values depends on the location of the sampling points (see 

chapter 4.2.5.2 and Figure 4.4) and the surface roughness conditions.  

 

5.3. Population Distribution Modeling 

5.3.1. Result of the population distribution modeling concept 

The result of different steps in population distribution modeling is shown in 

Figure 5.17 (see chapter 4.3.1), after combining census with land use data and 

the differences between population distributions during the day- and night-

time. During the day-time, people work in different land use areas, such as 

settlement and agriculture; during the night-time, most of the people return to 

their homes, hence the population distribution is concentrated mainly in 

settlement areas. 
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Figure 5.17 The result of population distribution modeling for day- and night-

time (lower left and right), based on dasymetric mapping census data (top left) 

and land use as ancillary data (top right) for Cilacap District 
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Since intersections occur when combining census and land use data, boundary 

effects must be taken into account. Therefore, a boundary effect elimination 

method (see chapter 4.3.1 and figure 4.6) was developed to improve the 

population distribution result. This result is shown in Figure 5.18 and used for 

further analysis. 

 

   
Population distribution 
based on administrative 
boundary only 

Population distribution 
(combination of census 
and land use data) with 
effect of boundaries 

Population distribution 
(combination of census 
and land use data) with 
eliminated boundary 
effects using the 
developed method 

 

Figure 5.18 Population distribution based on the administrative boundary only 

(left) and the improved population distribution, with boundary effects (middle) 

and without boundary effects (final result, right)  

 

5.3.2. Weighting factors determination 

For an adequate population distribution modeling, using the given concept 

shown above, one of the main driving components is the weighting factor. This 

factor is used to disaggregate the population census values (single number in 

each administrative unit) using the land use classes as ancillary data (multiple 

number of people in an administrative unit) for different time periods, day and 

night. Therefore, it is necessary to: describe the potential number of people 

engaged in different land use activities, based on a knowledge-based approach; 

and generalize the weighting factors. The results for both analyses are shown in 

the following sub-chapters. 
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Potential number of people engaged in different land use activities 

The result of the knowledge-based approach for calculating the potential 

number of people engaged in different land use activities, using the occupation 

data, is shown by the box plot distribution in Figure 5.19. This figure shows that 

“settlement” has the highest weighting factor (77% ±10.6) of land use classes. 

It is followed by “agricultural” (17% ±10.3) and “plantation” (3.2% ±7.2). 

Potential number of people engaged in “plantation” activities shows a large 

range from 0.15 to 61.9 (see Figure 5.19).  

 
Settlement: 
Minimum:36.4 
Maximum:97.8 
Mean :77.2 
Standard Deviation:10.6 
Coefficient of variation: 13.7% 
Agriculture: 
Minimum:0.2 
Maximum:.62.2 
Mean :17 
Standard Deviation: 10.3 
Coefficient of variation: 60.5% 
Plantation: 
Minimum:0.15 
Maximum:61.9 
Mean :3.2 
Standard Deviation:7.2 
Coefficient of variation:225% 
Beach: 
Minimum:0.14 
Maximum:19.5 
Mean :0.76 
Standard Deviation:1.07 
Coefficient of variation:140.7% 
Fishpond: 
Minimum: 0.14 
Maximum: 11.8 
Mean :0.66 
Standard Deviation:0.65 
Coefficient of variation:98.5 
Openland/grass 
Minimum: 0.15 
Maximum: 39.15 
Mean :1.045 
Standard Deviation: 1.71 
Coefficient of variation: 163.6% 
Settlement (night): 
Minimum: 96.15 
Maximum: 100 
Mean :99.9 
Standard Deviation:0.2 
Coefficient of variation: 0.2% 

 

Beach (night): 
Minimum: 0 
Maximum: 3.8 
Mean :0.05 
Standard Deviation:0 21 
Coefficient of variation: 4.2%              

 

Figure 5.19 Distribution of potential number of people engaged in different 

land use activities in  villages in the west coast of Sumatra, the south coast of 

Java, and Bali 
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The coefficient of variation is very high for several land use classes The 

selection of appropriate values for the weighting factors leads to high errors in 

cases with high coefficient of variation. Hence, a generalization of the weighting 

factor must follow. 

 

Generalization of weighting factor 

Due to the variation of potential number of people engaged in different land use 

activities (see Figure 5.19), the weighting factor cannot be generalized by 

determining the mean or median value only; otherwise, the generalization 

would cause high errors on the population distribution mapping. The 

appropriate approach is to determine a specific weighting factor for every 

village for the entire west coast of Sumatra, the south coast of Java and Bali. 

This means that for every village, a separate weighting factor is created for 

disaggregating the census population data to land use class. For villages where 

data on people’s activity are missing, the approach fails. To overcome this, the 

analysis of generalization of the weighting factor has been performed by 

grouping the villages based on their specific characteristics. There are four 

ways of differentiating and the category of villages according to their 

characteristics (see Chapter 4): 

- urban coastal, urban non-coastal, rural coastal, and rural non-coastal 

areas (code 1); 

- differentiated by island (Sumatra, Java and Bali), and combining the 

previous mentioned categories (code 2); 

- potential economics of villages (code 3); 

- municipalities (code 4). 

 

The result of this analysis is shown in Figure 5.20 and the details are provided 

in Table 5.8. The coefficient of variation for the potential number of people 

engaged in different land use activities is relatively high (> 50%), except for 

settlement areas, where the coefficient of variation is below 15%.  

In a first step, the generalization is based on the lowest value of the coefficient 

of variation in the settlements. This is because most of people’s activities are 

concentrated in settlement areas. In this case, the lowest coefficient of 

variation in the settlement is represented by code 4 (8.56%), followed by 

code 2 (10.37%), code 1 (10.42%) and code 3 (11.45%).  
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In a second step, the generalization using code 4 (every municipality has its 

own weighting factor) revealed the same problem of missing data on people’s 

activity. A possible solution may be to use the generalization based on code 2, 

but the coefficient of variation is not much different than that for code 1. 

Therefore, it is assumed that code 1 best fits the generalization. This simple 

categorization is available for all characteristics of villages in the implemented 

area. 

 

 

Figure 5.20 Average of coefficient of variation (%) of potential number of 

people engaged in different land use activities by the category of village 

(above) and those distributions for settlement (bottom)  

 

Figures 5.21 (day-time) and 5.22 (night-time) show the decision tree for the 

weighting factor generalization by the category of village based on urban 

coastal, urban non-coastal, rural coastal and rural non-coastal areas. 
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Table 5.8 Details of coefficient of variation (%) of potential number of 

people engaged in different land use activities by the category of village 

Coefficient of variation of people’s activity in land use 

No. Categorization Settlement Agriculture Plantation 
Openland 
/grass 

Fish 
pond Beach 

Urban coastal, urban non-coastal, rural coastal and rural non-coastal areas (Code 

1) 

1 Urban coastal 8.7 116.8 168.1 134.1 101.2 116.8 

2 
Urban non- 
coastal 8.7 93.6 238.9 96.4 56.5 83.3 

3 Rural coastal 11.5 56.8 192.3 196.1 114.5 133.0 

4 
Rural non- 
coastal 12.69 50.19 213.28 167.7 69.8 101.4 

Differentiated by Island (Sumatra, Java, and Bali) plus the abovementioned 

categories (Code 2) 

1 
Sumatra 
urban coastal 7.0 121.1 155.1 51.3 93.8 107.8 

2 

Sumatra 
urban non-
coastal 8.5 121.5 208.5 66.2 65.9 94.4 

3 
Sumatra rural 
coastal 11.1 64.7 157.2 107.1 98.6 112.7 

4 

Sumatra 
urban non-
coastal 12.3 53.1 160.5 127.5 84.3 119.5 

5 
Java urban 
coastal 8.5 71.1 182.7 24.5 84.4 94.8 

6 
Java urban 
non-coastal 8.8 82.2 215.9 82.8 45.9 68.8 

7 
Java rural 
coastal 10.8 36.8 216.8 114.6 89.8 114.1 

8 
Java urban 
non-coastal 12.8 46.5 225.2 151.5 36.1 49.3 

9 
Bali urban 
coastal 9.5 105.8 181.3 137.5 108.9 135.3 

10 
Bali urban 
non-coastal 7.9 101.7 168.0 135.3 41.5 59.9 

11 
Bali rural 
coastal 12.3 53.6 273.9 130.7 143.5 159.0 

12 
Java urban 
non-coastal 15.0 54.3 192.2 140.4 40.5 56.31 

Potential economic of village  
1 Agriculture 13.0 54.6 218.0 167.5 102.9 144.9 
2 Mining 13.5 54.1 202.8 180.4 56.8 80.1 
3 Industries 13.2 74.1 249.2 119.2 57.0 83.7 
4 Electricity 10.2 73.3 31.3 83.7 118.4 149.6 
5 Construction 23.2 7 162.0 89.3 10.2 9.1 
6 Trade 7.5 122.4 198.9 108.2 68.9 96.2 
7 Transportation 10.4 102.8 20.9 32.6 123.2 153.4 
8 Finance 1.7 25.3 47.1 0 0 8.3 
9 Services 7.2 131.9 255.6 92.7 51.5 73.7 

10 Other 14.4 106.2 229.0 63.7 74.7 102.3 
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Figure 5.21 Generalized weighting factor for day-time population distribution 
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Figure 5.22 Generalized weighting factor for night-time population distribution 
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5.3.3. Results from questionnaire analysis 

The potential number of people engaged in different land use activities during 

the day- and night-time can be validated based on the questionnaire results for 

the study area of Cilacap (see Table 5.9).  

The results of the questionnaires are comparable to those of the weighting 

factor generalization. The general weighting factor for settlement in urban-

coastal areas is 93.8%, which is very similar to 94.8% based on the 

questionnaire results. For agricultural land use (in urban coastal areas), the 

result of the questionnaire shows that people’s activity in agriculture is 2% as 

compared to the modeled weighting factor of 1.6%. The complete comparison 

is shown in table 5.9. 

 

Table 5.9 A comparison of the weighting factors in Cilacap District between 

the generalized weighting factors from the model and the reference values from 

the questionnaire results 

Urban Rural 
Model Questionnaire Model Questionnaire 

Landuse 

Day Night Day Night Day Night Day Night 
Settlement 93.8 99.9 94.8 99.1 75.9 99.9 80.1 99.3 

Agriculture 1.6 0 2 0 20.3 0 13.7 0 

Open 

land/grass 

0.7 0 0 0 0.6 0 0.3 0 

Plantation 0.7 0 0.7 0 0.7 0 2 0 

Pond 0.9 0 0 0 0.5 0 0.1 0 

Beach 1.1 0.1 2.4 0.9 0.7 0.1 2.4 0.7 

River 0 0 0 0 0 0 1.3 0 

 

The commuters and the actual weighting factor in Cilacap District have been 

analyzed. Based on the questionnaire, there are five categories of commuters: 

1) people who carry out their activities outside the village but still in 

municipal area (“within the municipality”) 

2) people who carry out their activities outside the municipality, but still in 

the district area (“within the district”) 

3) people who carry out their activities outside the district, but still in the 

province (“within the province”) 

4) people who carry out their activities outside the province (“outside the 

province”) 

5) people who carry out their activities by moving in the district, such as 

pitchmen, bus drivers, city transportation employee, etc. (“mobile”). 
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Based on this categorization, Figure 5.23 shows the percentage of people’s 

activity inside and outside their villages and the percentage of the five 

commuter categories in Cilacap. During the day-time, most people conduct 

activities inside the villages (73%), while the remainder (27%) work outside. Of 

those people carrying out activities outside the villages, 29% stay “within the 

municipality”, 36% “within the district”, 2% “within the province”, 8% are 

“mobile” and 25% “outside the province” during the day-time.  

 

  

Percentage of people who are doing 
activity inside and outside their villages 
on day time (based on all questioned 

villages in Cilacap)

27%

73%

Outside Inside
 

Percentage of commuter category from the 
people who are doing activity outside 

their villages on day time (based on all 
questioned villages in Cilacap)

29% 36%

2%8%
25%

Within municipal Within district
Within Province Outside province
Mobile  

 (a) (b) 

 

Figure 5.23 (a) The percentages of people carrying out activities inside and 

outside their villages in Cilacap in the day-time; and (b) the percentages of the 

different commuter categories carrying out activities outside their villages    

 

The final reference of population distribution can be achieved by combined, the 

commuter categories and the potential people activity (by using the weighting 

factor resulting from the questionnaires), this was then used for calculating the 

error of population distribution (EPD).  

 

5.3.4. Error of population distribution (EPD) 

EPD has been derived by comparing the population distribution based on the 

questionnaire results as reference with proposed population distribution model. 

From this accuracy analysis, the EPD in the Cilacap District for each polygon of 

land use has been calculated. The median of error is very small, at only 6.3%, 

with the third quartile is 16.4%. Specifically, the root mean square error 

(RMSE) of population distribution for settlement is 169 people; 24 people for 

“agriculture”;, two people for “plantations”; two people for “open land/grass”; 
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five people for “fish ponds area”; 16 people for “ beach”; and 37 people for 

“river” (see Figure 5.24).  
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Figure 5.24 RMSE error of population distribution in Cilacap for various land 

use classes, based on an accuracy assessment 

 

5.3.5. Comparative study 

The high quality of the methodology of population distribution (see previous 

chapter 5.3.4) is also shown by comparing the proposed model with other 

population distribution models; Gallego and Pedell (2001) and Mennis (2003). 

The results show that with the developed population distribution model, a 

higher accuracy is achieved than with other models (see Figure 5.25). The 

median of the EPD is 6.3% and the third quartile is 16.4%, which is lower than 

available approaches from Gallego and Pedell (2001) (EPD 11.38%, third 

quartile 48.4%) and Mennis (2003) (EPD 21.3%, third quartile 108.4%). The 

higher accuracy is also shown by the RMSE and the coefficient of variation 

(COV) of the model. The RMSE is 32 and the COV is 0.146. This is better than 

the results from the Gallego model (RMSE 40, COV 0.185) and the Mennis 

model (RMSE 53, COV 0.241).   
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Figure 5.25 Error comparison of three models for population distribution 

 

 

5.3.6. Multi-scale disaggregation for population distribution in Sumatra, 

Java and Bali 

The population distribution modeling was applied according to the different 

steps and methods described in the previous sub-chapters. The resulting 

population distribution is named as “multi-scale disaggregation population 

distribution” for the west coast of Sumatra, the south coast of Java and Bali; 

because it integrates the best available data at various scales (Figure 5.26).  
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Figure 5.26 Result of population distribution in the broad scale area — the 

west coast of Sumatra, the south coast of Java, and Bali — after applying the 

multi-scale disaggregation method 
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5.4. Settlement Classification 

5.4.1. Pre-processing 

Speckle divergence 

The result of speckle divergence analysis is shown in Figure 5.27. Using this 

analysis, settlement areas and their characteristics can be distinguished better 

than using the intensity image. Therefore the result is used further for 

settlement classification with TerraSAR-X imagery. 

 

 
Figure 5.27 TerraSAR-X image intensity (left) and after speckle divergence 

analysis (right) 

 

Neighbourhood analysis 

The result of the neighborhood classification to detect the settlement area is 

shown in Figure 5.28. The classification of settlements is performed 

automatically and the result is visualized. After this process, the accuracy 

assessment is carried out to check the quality of the remote sensing 

classification compared to the settlement areas (see chapter 5.1.3, Figure 5.5).  
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Real settlement Settlement mask Urban scatter Settlement class 

 

Figure 5.28 Settlement classification results and real settlement by using 

TerraSAR-X (see chapter 4.4.1) 

 

5.4.2. Classification results 

Settlement areas within Cilacap District and Padang District have been 

classified by using the speckle divergence and neighborhood analysis from 

TerraSAR-X data. The overall accuracy is 85.5% for Cilacap and 78.14% for 

Padang. The detailed results of settlement classification in these areas by using 

TerraSAR-X are described in the following sub-chapters. 

 

Cilacap District 

The accuracy assessment of the speckle divergence and neighborhood analysis 

for Cilacap is shown as confusion matrix in Table 5.10. The commission error of 

built-up detection in Cilacap area is 27.5% and the omission error is 39.9%. 

The overall accuracy of settlement classification by using TerraSAR-X in Cilacap 

area is 85.5%.  

 

Table 5.10 Accuracy assessment of speckle divergence and neighborhood 

analysis for Cilacap District 

Reference 

 

Classification 

Settlement 

(km2) 

Non-

settlement 

(km2) 

Total (km2) Commission 

error (%) 

Settlement (km2) 101.5 38.4 139.9 27.5 

Non-settlement (km2) 67.5 521.8 589.3 11.5 

Total (km2) 168.9 560.2 729.2   

Omission Error (%) 39.9 6.9 

Overall 

accuracy (%) 85.5 
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The result of speckle divergence and neighborhood analysis for settlement 

detection in Cilacap District is visualized in Figure 5.29.  

Settlements in rural areas of Cilacap were difficult to detect. The misdetection 

(blue color) appears more often than the good detection (red color). The 

occurrence of this error is due to the effect that the settlements in the rural 

areas are often mixed with vegetation. The settlement with surrounding 

vegetation is common and typical for almost all rural areas in Indonesia. The 

vegetation sometimes, covers the roof of a house and is therefore classified as 

vegetation, not as settlement. In urban areas, the classification of settlements 

delivers a good detection (see red colors in Figure 5.29). 

 

 

Figure 5.29 Result of speckle divergence and neighborhood analysis for 

settlement detection by using TerraSAR-X on Cilacap District  

 

Padang District 

The same model as that used for Cilacap District to classify settlements using 

Terra-SAR X data was also implemented to Padang area. The results of 

classification and accuracy assessment are shown in Figure 5.30.  

The results of the accuracy assessment of the neighborhood analysis provides 

by a confusion matrix shown in Table 5.11. The commission error of built-up 

detection in Padang area is 21.1% and the omission error is 32.9%. The overall 
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accuracy of settlement classification using TerraSAR-X imagery is 78.1% for the 

Padang area. 

 

Table 5.11 Accuracy assessment of speckle divergence and neighborhood 

analysis for Padang District 

                

Reference 

classification 

Settlement 

(km2) 

Non-

settlement 

(km2) Total (km2) 

Commission 

error (%) 

Settlement (km2) 36.8 9.9 46.7 21.1 

Non-settlement 

km2) 18.0 62.9 81.0 22.3 

Total (km2) 54.8 72.8 127.7  

Omission error 

(%) 32.9 13.5 

Overall 

accuracy (%) 78.1 

 

The result of the speckle divergence and neighborhood analysis for settlement 

detection in the Padang District is shown in Figure 5.30.  

 

Figure 5.30 Result of speckle divergence and neighborhood analysis for 

settlement detection using TerraSAR-X of the Padang District 
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Figure 5.30 shows the spatial distribution of false built-up detection (yellow), 

settlement misdetection (blue), good built-up detection (red), and other land 

use classes (green). Similar to the Cilacap region, mis- and false detection in 

the rural areas of Padang is higher than in the urban areas.  
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CHAPTER 6: DISCUSSION 
 

This chapter aims at discussing the results of the research carried out to 

improve tsunami risk and vulnerability assessment according to the result 

(chapter 5) of the research questions stated in chapter 1. In the framework of 

an improved tsunami risk assessment, spatially distributed surface roughness 

determination, population distribution modeling and settlement classification 

play an important role. Furthermore, recommendations, suggestions and 

limitations for future research are presented. The structure of this chapter is 

the same as   the previous chapter describing the results.  

 

6.1 Data Collection 

6.1.1 Satellite imagery and spatial information 

Today, earth observation is a valuable source of timely and spatially distributed 

information. Remote sensing data, both optical and SAR imagery were crucial 

for this research. The development of new methods on surface roughness 

determination and settlement classification required up-to-date satellite 

imagery. TerraSAR-X data was therefore acquired in the end of 2009 and in the 

beginning of 2010 to identify the current condition of the study area in Cilacap 

and Padang District. SPOT-5 imagery was available for 2004 only. In using this 

data, land use patterns might have been changed in the study area to date. 

This is insignificant for the image classification development, but must be taken 

into consideration, because the time shift limits the accuracy assessment. 

The multi-spectral bands of SPOT-5 and the additional panchromatic channel 

were used to derive new variables and improved texture information for 

classification method development. SPOT-5 was chosen because of the 

appropriate spatial and spectral resolution for this research, the consistency 

and availability of data sets in time, and the potential transferability of the 

methodology. Other optical satellite imagery, e.g. LANDSAT-ETM, ASTER, ALOS 

and DMC, would have had certain limitations with respect to spatial or spectral 

resolution, availability or consistency.  

TerraSAR-X is a new generation of high spatial resolution SAR imagery, which 

has several advantages, e.g. extracting urban patterns more clearly. This was 
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also shown by Esch et al. (2010), who stated the importance of settlement 

classification development using TerraSAR-X imagery.  

Land use data was chosen as ancillary data on population distribution modeling, 

because land use data can help describe where people carry out their activity 

during the day-time. The data set used was sufficient to perform the population 

distribution modeling in the pilot areas. For the broad scale approach (the 

entire west coast of Sumatra, the south coast of Java, and Bali), it was 

necessary to develop a multi-scale disaggregating method for providing an 

adequate population distribution data (see chapter 5.3.6).  

Bathymetry and topography data are also needed. Dao and Tkalich 2007 stated 

that these are the most sensitive data for tsunami inundation modeling. 

Bathymetry and topography data used for the broad scale assessment have 

sufficient spatial resolution for the tsunami inundation modeling to perform 

surface roughness sensitivity analysis. 

 

6.1.2 Demographic and socio-economic statistics 

The demographic and socio-economic data were used for the population 

distribution modeling, especially on the weighting factor determination. The 

complete information on the characteristics of village, number of infrastructures 

and occupation data is useful for analyzing the potential number of people 

engaged in different land use activities. For example, farmers perform their 

activity in agricultural areas, whereas industrial workers or service providers 

remain in settlements during the day-time. The situation in the night-time is 

changing according to the structure of the residential areas. It was assumed 

that most of the people stay at home during night-time. One limitation was 

missing data in several villages in the implementation area to provide the 

population distribution in the west coast of Sumatra, the south coast of Java, 

and Bali. To fill these gaps, the multi-scale disaggregation method (see chapter 

5.3.6) was performed. 

 

6.1.3 Reference data   

Reference data are crucial for calculating the accuracy assessment of the 

developed models used. The comprehensive field survey, which was conducted 

in 2008 and 2009 in Cilacap, is one example of estimating and validating the 

real conditions of surface roughness, population distribution, and settlement 

area location. These different reference data types can be described as follows: 
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1. Several areas in Cilacap have been selected randomly to map the surface 

roughness conditions in the field in four classes, including recent land use 

classes. The results were then used in the following accuracy assessment, 

combining field surveys and remote sensing classification results; it would 

have been difficult to validate the results without ground truth data. 

2. The reference of population distribution was created by disseminating 

questionnaires in order to derive information on the potential number of 

people engaged in different land use activities in the coastal area. More 

than a thousand people responded to the questionnaires, which provide a 

good basis to explain the true conditions where people are located during 

the day- and night-time. Since people are dynamic and always moving, 

the daily conditions vary for the different land use classes.  

3. The reference data for settlement detection were derived from the 

topographic map and further improved manually by using optical satellite 

imagery (Quickbird and SPOT-5). The resulting polygon reference of 

settlement areas has been compared with the satellite image classification 

result for the entire area of Cilacap. By performing this analysis, a 

differentiation between good, false and miss detection could be shown 

(see chapter 5.4.2 and Figures 5.29 and 5.30).  

 

6.2 Surface Roughness Determination 

The result of surface roughness classes and their coefficient estimation, the 

remote sensing classification (land use and roughness) and the integration to 

the tsunami inundation modeling show an improvement to current knowledge. 

Earth observation analysis can help provide the spatially distributed roughness 

coefficient. The result of this surface roughness determination is a worthy 

contribution to the tsunami inundation modeling and hazard mapping. 

 

6.2.1 Surface roughness classes and their coefficient estimation 

In a first step, surface roughness coefficients based on a literature review were 

assigned to land use classes. Roughness coefficients (mean values) published in 

previous research differ significantly (Chow, 1959; Gayer et al., 2008; 

Acrement & Schneider, 1989; Hills & Mader, 1987). This leads to substantial 

variations, which influence the modeling results. To improve this inconsistency, 

variation coefficients were used (see Table 5.1) and applied to the tsunami 

inundation modeling (see chapter 5.2.3 and Figures 5.13, 5.14, 5.15 and 5.16). 
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The published roughness coefficients are usually applied for flood modeling 

(e.g. Chow, 1959). In tsunami inundation modeling, e.g. the TUNAMI model 

(Imamura et al., 2006) uses Chow (1959) as a reference for determining the 

roughness coefficient. Hill and Mader (1987) derived roughness coefficients by 

empirical models based on the tsunami occurrences in Hawaii and Japan.  

In a second step, density and neighborhood relations have been included in the 

newly developed approach. The density of objects and vegetation and their 

respective neighborhood relation represents the true condition of surface 

roughness related to the protection probability. The combination of residential 

and tree, for example, are better protected against tsunamis, compared to 

those without vegetation surroundings. 

Due to the variation of roughness coefficient values, it is recommended for 

future research to develop a method using remote sensing and observation 

data (tsunami flow depth measurement in tsunami inundation area, tsunami 

velocity and inundation length, flow direction, etc.) from the occurrence of 

tsunamis. This has not yet been done for lack of sufficient observation data 

combined with timely satellite imagery. By using earth observation data taken 

before and after a tsunami event, the simulation of tsunami flow, the 

corresponding velocity and resistance (roughness parameters) can be analyzed 

and assessed. Figure 6.1 shows the differences of tsunami flow and inundation 

in the three marked areas (red cycles). In region 2, which contained dense 

vegetation before the tsunami struck, the tsunami flow stopped not far from 

the coastline (approximately 1.3 km). In contrast, in the regions 1 and 3 the 

tsunami flow continued further inland, because of missing or less dense 

vegetation cover (approximately 2.7 km from the coastline). Possible variations 

due to slope can be ignored because the entire area (regions 1-3) has a 

continuous slope less than 3 degrees. 

For transferability purposes, the analysis of several tsunami events is needed 

for developing and validating the method. In Indonesia, data on the Indian 

Ocean Tsunami 2004 and the 2006 Tsunami could be a good basis to perform 

this analysis.  
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Figure 6.1  Image before (a) and after (b) tsunami from LANDSAT TM 

 

6.2.2 Surface roughness classification by remote sensing 

Relevant remote sensing variables 

The analysis and combination of remote sensing variables is a key on remote 

sensing classification for deriving surface roughness classes. As shown in 

chapter 5.2.2, the appropriate variables for the land use classification in the 

study area were opposed and combined. The resulting decision tree model 

accuracy was shown for each variable and also for various combinations. It 

could be shown that the role of texture as an additional variable for land use 

classification is particularly important to increase the model accuracy, whereas 

the exponential NDVI and sigmoid NDVI have only minor influence.  

The reason of using NDVI modification was to separate shrubs, crop field and 

tree, because they have a low separability on spectral reflectance. Based on the 

theoretical background (Richard and Jia, 2006; Hasan and Akamatsu, 2004), it 

is assumed that the transformation of NDVI by sigmoid and exponential 

function should improve the separability and therefore could serve as a relevant 

variable. Figure 6.2 shows the transformation of NDVI by sigmoid and 

exponential function.  
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(a) sigmoid NDVI graph (b) exponential NDVI graph 

Figure 6.2 Transformation of NDVI by (a) sigmoid and (b) exponential function 

 

Possible reasons that do not show up in the results for the study area could be 

the limited number of ground truth samples and the low separability of classes 

through NDVI. Figure 6.3 shows the relevant NDVI characteristics of these 

classes.  

 

  

Figure 6.3. The histogram samples of NDVI for three vegetation classes (tree, 

shrubs, and crop field)  
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Therefore, it is recommended to use texture for separating “residential area” 

and “open land” as an addition variable, but not to use sigmoid and exponential 

NDVI to differentiate “shrubs”, “crop land” and “tree” for the Cilacap study 

area.  

 

Accuracy of surface roughness classification 

The overall accuracy of the classification, either on main land use or surface 

roughness classes, is over 90%. This shows that this approach provides realistic 

results that can be derived from remote sensing data, using a decision tree 

model for the land use classification, which then serves as input for the surface 

roughness classification in the study area.   

A limitation of the approach was the weak differentiation of “tree”, “shrubs” and 

“crop field”, which showed errors of more than 15%. Possible explanations for 

this weak point in this Indonesian study area could be the heterogeneous 

patterns of “tree” and “shrubs” in general and the interrelation between “crop 

field” and “shrubs” locally (see Figure 6.4). 

 

  
(a) (b) 

Figure 6.4. The heterogeneous patterns of land use in the study area: (a) tree 

and shrub; (b) crop field and shrubs 
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Due to the heterogeneous characteristics of the land use classes in the study 

area, neighborhood interrelations between the classes and density properties 

have to be taken into account. As described in chapter 4.2.2, densities of land 

use features were calculated, using a moving window based on a kernel size of 

9 x 9 pixels (~23 m spatial resolution) proposed by Koshimura (2009). The 

resulting categories of densities are rare, medium and high according to 

Murashima et al. (2008).  

The applied method allows combinations of classes, such as “residential area 

with trees” or “shrubs and tree”. For tsunami inundation modeling in particular, 

this approach shows clear advantages over the conventional methods, because 

the roughness coefficients of those classes vary significantly.  

 

6.2.3 Integration of surface roughness for tsunami inundation 

modeling 

The result of the spatially distributed roughness coefficient from remote sensing 

classification has been implemented to the tsunami inundation modeling for the 

study area of Cilacap (see chapters 4.2.4 and 5.2.3). It shows that this has a 

important influence on the inundation results, especially on the sensitivity of 

tsunami velocity and tsunami flow depth. The results show the high absolute 

difference and variance of tsunami velocity and flow depth for areas, which are 

far from the coastline. It proved that there is a significant influence of surface 

roughness on the resistance of tsunami flow.  

The results on the implementation of surface roughness in the tsunami 

inundation modeling are comparable with Leschka et al. (2009) and Gayer et al. 

(2008). They also revealed that the tsunami velocity is more sensitive than 

tsunami flow depth by changing the spatially distributed roughness coefficient. 

Generally, high roughness coefficients can decrease the tsunami velocity 

considerably. The velocity and flow depth are important for analyzing building 

damages and human stability in flowing water (RESCDAM, 2000). The 

inaccuracies and errors on the modeling of tsunami velocity and flow depth can 

influence the analysis of building damage and human stability. Human loss of 

life caused by tsunami is directly related to the ability to resist the tsunami 

velocity. Therefore, it is important to calculate not only the inundation area, 

and the flow depth, but also the tsunami velocity.  

Based on this sensitivity analysis, spatially distributed roughness coefficients 

should be used for tsunami inundation modeling, rather than a uniform 

roughness parameter. By using the spatially distributed roughness, the result of 

the tsunami inundation model is closer to the true situation.  



  Chapter 6: Discussion 

 144 

 

6.3 Population Distribution Modeling 

A major challenge, not only for tsunami inundation modeling, is the lack of low 

resolution of population distribution data. In order to improve this situation, it is 

important to develop a methodology to model the population distribution for 

regional and local applications.  

The proposed model has been described in steps to combine census and land 

use data for creating an adequate population distribution data set. The process 

steps of population distribution modeling comprise the development of an 

improved formula, the weighting factor determination, and the multi-scale 

disaggregation for population distribution for the coastal areas of Sumatra, Java 

and Bali.  

 

6.3.1 Weighting factor determination 

The result of population distribution shows how to determine weighting factors, 

which are based on the analysis of socio-economic data. The basic analysis of 

where people are located by knowing the potential number of people engaged 

in different land use activities based on occupation data is new in terms of 

population distribution mapping. It is possible to show that the potential 

number of people engaged in different land use activities varies between the 

day- and night-time for every village. This is an important analysis, because the 

weighting factor plays a role describing the true situation of population 

distribution. The results are better than in approaches that use an iterative 

regression process or sampling analysis for determining the weighting factors 

such as Gallego and Pedell (2001) and Mennis (2003).  

By using socio-economic data, the characteristics for each village can be 

identified and categorized in “fisheries”, “agricultural”, “plantation” or 

“business” village. The part of the area, classified as land use, in which people 

gather during the day- and night-time can be determined based on the above-

mentioned categorization. For example, most of the people within a plantation 

village carry out their daily activities on plantation area and most people within 

a “business village” carry out their work within the settlement during the day. 

The data on occupation as part of the socio-economic data plays a role in 

determining where people are located. During the day-time, a worker in the 

certain sector (e.g. agriculture) will work in the land use related to that sector 

of work (e.g. agricultural area). The main activity of the services sector, for 

example, concentrates on settlement areas. 
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Based on the results of the analysis, the coefficient of variation for the potential 

number of people engaged in different land use activities (for the west coast of 

Sumatra, the south coast of Java, and Bali) is relatively high. This means that 

every village in this area has its own characteristics of potential number of 

people engaged in different land use activities. The general weighting factor has 

been used to solve the problem of missing data, because for some villages, no 

occupation and socio-economic data are available. The weighting factor had to 

be categorized in urban and rural areas that either belongs to a coastal or non-

coastal class. The main reason for this was to describe the empiric approach, 

that urban and rural regions as well as coastal and non-coastal villages have 

different socio-economic characteristics. For example, in agricultural areas, 

people’s activity varies significantly for urban and rural regions (see Figure 

5.21).  

The weighting factor determination by socio-economic data provides a step 

forward in population distribution modeling. This makes it possible to model the 

differences of the distribution of people during the day- and night-time. During 

the day-time, people are engaged in certain land uses related to their 

occupation, and during night-time, they return back home to their village. In 

Cilacap, some people, such as local fishermen, work at night on the beach. It is 

assumed that commuters should be considered, but due to data limitations, this 

has not been yet accommodated in the weighting factor determination; it will, 

however, be discussed in the next section.   

Compared to the questionnaire results, the generalized weighting factor shows 

a good correlation. It can be stated, therefore, that the differentiation of urban 

and rural for the general weighting factor and the potential number of people 

engaged in different land use activities in Cilacap is appropriate, although there 

are minor discrepancies for people’s activity in ‘rivers’ in rural areas in the day-

time.  

 

6.3.2 Accuracy of population distribution 

The accuracy of population distribution from the proposed model has been 

examined to show the quality of the model. Similarly, the comparative study of 

the accuracy has been carried out to show improvement of the model used over 

the available approaches, such as those of Gallego and Pedell (2001) and 

Mennis (2003). Based on the accuracy assessment and the comparative study 

of the population distribution modeling, the proposed model has the lowest 

error of population distribution (EPD) and a low root mean square error (RMSE). 

This means that the proposed model is better than the previous model and 
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closer to the reality of population distribution. The reasons for these limitations 

were described in chapter 3.3.2, particularly, on the weighting factor 

determination. As mentioned above, the weighting factor is the important 

component to drive the disaggregation of census data using land use data. The 

quality of the weighting factor plays a role in the accuracy of population 

distribution.  

For further analysis, such as the calculation of the number of people in the 

hazard zone and evacuation planning, the accuracy of population distribution 

data is important in order to ensure an appropriate capacity of evacuation 

shelters.   

 

6.3.3 Multi-scale disaggregation of population distribution 

The multi-scale disaggregation has been undertaken to solve the problem on 

the missing of population and occupation data, and the different scale of land 

use data. This method provides the best available population distribution for the 

west coast of Sumatra, south coast of Java and Bali. This result is important for 

the broad scale analysis of tsunami risk and vulnerability. For areas where data 

are missing or low-scale resolution for land use data are available only, errors 

appear. The overall discussion on the source of errors and their effects for the 

population distribution has been presented in Khomarudin et al. (2010). The 

sources of errors in the multi-scale disaggregation of population distribution are 

from:  

- statistical data (number of people, administrative boundaries); 

- land use data (thematic, geometric error); 

- weighting factor (allocation of population to land use classes). 

 

6.3.4 Commuters 

Based on the questionnaire, it was recorded that there is a high number of 

commuters in the study area (see chapter 5.3.3). This means that the 

population distribution modeling must consider the commuters as an important 

component, especially with respect to day- and night-time population 

distribution. For the study area, it is difficult to use this parameter due to the 

lack of available data. In the statistical data, the commuters are not recorded 

for day-time activity, such as in the InfoUSA data, which was used by Sleeter 

and Wood (2006) for their people distribution mapping.  
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A method should be developed to accommodate the commuters in the 

population distribution modeling. The commuter analysis should use the PODES 

data, which show the number of infrastructures for every village, such as 

hospitals, schools, government buildings, hotels, supermarkets. Figure 6.5 

shows the potential additional of people in Cilacap District based on the 

infrastructures properties.  

 

 

Figure 6.5 Potential additional of people in the Cilacap District (red 

represents the high potential additional of people due to infrastructural 

facilities) 

 

The difficulties of this analysis are how to derive the actual number of additional 

people from the potential additional of people in a village. The first solution is 

by using the result of the questionnaire, calculating how many commuters are 

within a municipality and within a district by accumulating the total number of 

commuters from the villages. Within the municipality, the sums of these 

numbers are then distributed to every village in the municipality again, based 

on the number of infrastructure in the respective villages. The village with the 

highest proportion of infrastructure will have the highest additional number of 
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people as well. Figure 6.6 shows a calculation of additional people for the 

villages based on the infrastructure proportion. 

 

 

Figure 6.6 Example showing the additional number of people in villages 

based on The sum of the commuters  (here, 80 people) within the municipality 

 

This population distribution result by accommodating the commuters as an 

important component in the population distribution has been used to calculate 

the reference of population distribution modeling.  

 

6.4 Settlement Classification 

The methodology of settlement classification of TerraSAR-X imagery by using a 

combination of speckle divergence and the neighborhood analysis has been 

applied in order to improve the settlement detection, especially for hilly areas. 

The result of the accuracy assessment for the settlement classification in the 

study area is over 85%. The high omission and commission errors appear in the 

result of settlement classification, especially in the rural areas. It is assumed 

that this is because of the settlement conditions in the rural area, which are 

usually surrounded by vegetation. The texture of this area in the TerraSAR-X 

imagery is more likely vegetation than settlement area. Figure 6.7 shows 

pictures of settlement areas with vegetation surrounding, taken in the rural 

area of Cilacap.   

The transferability of this method has been also successfully investigated in the 

Padang area, which resulted in an accuracy of over 75%. The omission and 

commission errors for the rural area are also high, such as for the Cilacap 

District. The characteristics of settlement areas in the rural parts of Padang are 

mostly similar to the conditions of the rural areas in Cilacap District.   
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Figure 6.7 Examples of settlements in the rural area of Cilacap District 

(settlements surrounded by vegetation) 
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CHAPTER 7: APPLICATIONS OF THE RESEARCH 
 

7.1. Overview 

This chapter shows the application of surface roughness determination and 

population distribution modeling in the context of tsunami risk and vulnerability 

assessment. It explains the relevance of using information on surface 

roughness in the hazard assessment and of enhanced population distribution 

data for the human exposure assessment, the application of the results in 

evacuation planning, and the contributions to the decision support system for 

tsunami early warning.  

 

7.2. Hazard Assessment  

The research on determining land use specific roughness coefficients is an 

important input for tsunami hazard mapping, either through empirical or 

numerical methods. As mentioned in chapter 5, the different roughness 

coefficients used as input to tsunami inundation models lead to a better 

representation of tsunami flow-depth, inundation and velocity.  

In addition to the detailed assessment for Cilacap District shown in chapter 

5.2.3, the integration of spatially distributed surface roughness to tsunami 

inundation modeling was also applied to Padang City. Modeled inundation areas 

obtained when considering uniform roughness values yield a 30% different in 

inundation area compared to the spatially distributed roughness results. The 

hazard zone obtained based on uniform roughness coefficient as input for the 

tsunami inundation modeling is overestimated. Figure 7.1 shows the different 

inundation results by using uniform and spatially distributed roughness.  
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(a) (b) 

Figure 7.1 Tsunami inundation maps for Padang District based on (a) 

uniform roughness and (b) spatially distributed roughness 

 

Figure 7.1 clearly shows the differences in the tsunami inundation area. 

Generally, it can also be stated that for areas with low surface roughness the 

tsunami flow depth is high and vice versa. For near coastal areas in Padang, the 

tsunami flow depth modeled based on spatially distributed roughness is higher 

than for uniform roughness conditions. On the other hand, for inland areas, the 

roughness values are indicating higher surface resistance, and consequently 

lower flow depth values and smaller inundated area.  

Knowledge on spatially distributed roughness values is an important step 

towards a deeper consideration of surface characteristics and their impacts on 

tsunami inundation. Providing spatial distributed roughness information through 

field surveys is time consuming and costly. The remote sensing approach 

proposed and applied here provides up-to-date and spatially distributed 

spatially distributed roughness conditions.  
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7.3. Human Exposure 

Improved spatial resolution of population distribution representation is of great 

importance for people exposure assessment. In Figure 7.2 and 7.3, the hazard 

map and the human exposure map for the Denpasar using the results of the 

population modeling approach are shown. The results show that, for example, 

the hazard zone is relatively large in the south-eastern part of Denpasar. But, 

this area is mainly covered by swamp areas with low population density and 

therefore leads to a low exposure. On the west coast of Denpasar, the situation 

is different. Here, the hazard zone covers only a small but highly populated 

area. Consequently, in the western part of Denpasar, there are many more 

people exposed to tsunami hazards. 

 

 

Figure 7.2 Tsunami hazard maps for Kuta, Bali  
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Figure 7.3 Human exposure maps of Kuta, Bali for day-time population  

 

The importance of population distribution analysis is also shown by Kongko et 

al. (2009). The implementation of the developed method for population 

modeling by day- and night-time in several scenarios of tsunami inundation 

reveals significant differences in the number of people exposed. Figure 7.4 

shows the differences between the numbers of exposed people during the day- 

and night-time.  
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Figure 7.4 Number of exposed people in the hazard zone and changes  

during the day- and night-time  

 

This result shows the importance of population distribution research for 

dynamic human exposure assessment. The population distributions during day- 

and night-time provide enhanced information for tsunami hazard and human 

exposure assessment.  

 

7.4. Evacuation Planning 

The combination of the population distribution with the hazard zone is an 

important input for evacuation planning. Post et al. (2009) implemented the 

population distribution to estimate the casualties and displaced people by using 

human immediate response capability. Figure 7.5 shows the estimation of 

potential casualties on the evacuation time map. The circle on the map shows 

the number of people who are able to evacuate within 20 and 80 minutes and 

those who need more than 80 minutes. 
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Figure 7.5 Evacuation time map for major warning tsunami in Bali (Source: 

Strunz et al., 2010) 

 

Another important application of the population distribution modeling is to 

provide input for the planning of tsunami evacuation buildings and shelters. To 

map the areas that need additional evacuation shelters, the population 

distribution map is an important input.  

Figure 7.6 shows the planning map with recommendations on where to build 

tsunami evacuation buildings as shelters. It shows the areas with very high 

demand (red) or high demand (orange) for additional vertical evacuation 

buildings. 
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Figure 7.6 A Planning map recommendations for the need of tsunami 

evacuation buildings  (Source: Strunz et al., 2010) 

 

7.5. Integration into the Decision Support System 

The Decision Support System (DSS) for Tsunami Early Warning (Raape et al., 

2008) forecasts tsunami arrival time and expected wave heights at coast for 

defined warning segments along the coasts of Indonesia. The wave height at 

coast is also taken as an indicator for expected tsunami intensity. Wave heights 

at the coast above 3 m lead to a “major tsunami warning”, whereas wave 

heights between 0.5 and 3 m lead to a “tsunami warning”; and wave heights 

below 0.5 m, to a tsunami advisory (Raape et al., 2008). These thresholds are 

defined by the national Indonesian Tsunami Early Warning Centre. Hazard 

zones are calculated for both cases by categorizing the modeled tsunami 

scenarios according to their wave heights at the coast.  
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By displaying both hazard zones of the “warning Level” with the hazard zone of 

the “major warning level” the potentially hazard impact areas dependent on the 

respective warning level may be determined. By overlaying the derived hazard 

zones with the detailed population distribution, the exposed people in case of a 

tsunami at a certain warning level within a certain warning segment can be 

estimated. These numbers are implemented in the DSS.  

Figure 7.7 shows how these parameters are integrated in the graphical user 

interface of the decision support system. For each of the warning levels and 

warning segments, the number of people endangered by the expected tsunami 

is shown.  

 

 

Figure 7.7 Integration of key parameters of risk assessment into the decision 

support system (Source: Raape et al., 2008) 
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7.6. Conclusions 

From the explanations above, it can be concluded that the results of surface 

roughness determination and population distribution provide an essential basis 

for several applications. For tsunami modeling, the spatially distributed surface 

roughness is an important parameter to more precisely reflect flow resistance 

properties of the land surface, and hence improve the results of tsunami 

inundation modeling. The population distribution is a crucial input for human 

exposure assessment during the day- and night-time, evacuation planning and 

for estimating potential casualties, and the shelter evacuation building 

planning. Finally, key parameters derived from population distribution modeling 

have been implemented in the decision support system for tsunami early 

warning.  
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CHAPTER 8: CONCLUSIONS 
 

This research has successfully developed a concept on remote sensing 

classification for providing spatially distributed surface roughness, a concept for 

spatial and temporal population distribution modeling, and an improved concept 

of settlement classification based on speckle divergence and neighborhood 

analysis of SAR data. These concepts have successfully contributed to tsunami 

risk and vulnerability assessments. The applications of the research results 

include tsunami inundation modeling, human exposure analysis, evacuation 

planning, and integration into the decision support system of the Tsunami Early 

Warning Center in Jakarta. 

It can be concluded that the research questions in chapter 1.2 have been 

answered and that the research objectives are achieved. Further details of 

these achievements are concluded below. 

 

8.1. Surface Roughness Determination 

The importance of coastal vegetation in terms of tsunami impact reduction is 

unambiguous. But the amount of reduction depends not only on the mere 

presence of vegetation. The surface roughness of vegetation varies according to 

its characteristics, namely the density of vegetation and neighborhood 

conditions of the different land uses. Thus, it is essential to identify appropriate 

surface roughness classes and quantify those in order to integrate them into 

tsunami inundation modeling and hazard assessment. 

Analyses of various published surface roughness classes and coefficients made 

it possible to elaborate the values and variances of the roughness coefficients in 

each class. This process solved the current problem of coefficient 

inconsistencies. Furthermore, the variances were applied for uncertainty 

analyses of tsunami inundation modeling results. 

The research developed a method to derive surface roughness classes from 

remote sensing data including density and neighborhood classification. This 

classification process is essential for deriving spatially explicit information about 

surface roughness conditions along the coast. The developed classification 

procedure consists of two steps — main land use classification and density and 

neighborhood analyses. 



  Chapter 8: Conclusions 

 160 

The decision tree method was used to determine relevant and appropriate 

image variables as input for the main land use classification. It was revealed 

that texture is a crucial variable to increase the classification accuracy, 

especially in terms of separating residential areas and bare land.  

Standard remote sensing classification techniques such as supervised maximum 

likelihood are not capable to differentiate adequately and reliably mixed 

classes. Thus, the specific method of density and neighborhood classification 

was developed and applied. This method makes it possible to the density and 

neighboring objects or pixels using the determined a kernel. This two-stage 

classification procedure then provides spatially distributed surface roughness 

conditions which were supplied with the previously derived roughness 

coefficients. 

The thus derived spatial distribution of surface roughness was integrated in 

tsunami inundation modeling. The influence of surface roughness on the 

inundation results was demonstrated. By varying the roughness coefficients at 

several locations, the sensitivity of tsunami modeling to surface roughness 

conditions was quantified. 

This research brings a new dimension of knowledge for determining surface 

roughness conditions and coefficients. Moreover, the sensitivity of the models 

to surface roughness conditions was investigated, which is important for 

developing tsunami hazard maps. Such maps are vital for further vulnerability 

and risk analyses such as the assessment of population exposure or evacuation 

planning. 

 

8.2. Population Distribution Modeling 

For the purposes of risk assessment, especially tsunami risk assessment, 

knowledge about the distribution of the population is essential. This research 

successfully developed a concept to significantly improve population distribution 

data based on available census and other statistical data. 

The developed method combines census data with land use data as ancillary 

data. The underlying idea is to disaggregate people into an administrative unit 

to more spatially explicit units in order to derive a more realistic spatial 

distribution. To consolidate the population distribution modeling, further 

statistical data were used to determine weighting factors for the disaggregation 

to each land use class. 

The inclusion of socio-economic data to determine weightings allows to consider 

both spatial and temporal changes of the population distribution. The analyses 



  Chapter 8: Conclusions 

 161 

of the socio-economic data showed that weighting factors must be specific for 

every village. A generalized weighting factor must be used in case of 

insufficient or missing data. Missing data is a frequent problem, especially in 

developing countries like Indonesia. Therefore, a multi-scale disaggregation 

approach was developed and successfully applied in order to derive village-

specific weightings, where possible, and generalized weightings, where 

necessary. 

It was also demonstrated that commuters are an important component to 

consider in the modeling. Disregarding them decreases the accuracy of the 

resulting population distribution. As a result of the limited availability of data 

that captures commuters in Indonesia, it was suggested that infrastructure data 

could be used in future research to generate information on commuter 

behavior. 

Reference population data derived from survey data was used to analyze the 

error of the population distribution. Other available population distribution 

models showed a higher error than this newly developed approach. 

The developed population distribution model results in highly accurate data 

sets, which are of great use for risk and vulnerability analyses. The results were 

implemented in the field of tsunami risk research, but detailed information 

about population distribution is also valuable for many other natural hazards. 

 

8.3. Settlement Classification  

A method of settlement classification using radar data has been further 

developed using TerraSAR-X imagery. The improvements include the concept of 

neighborhood analysis. The settlement areas in the study area were mapped 

with satisfying overall accuracy. Limitations occur in rural areas where 

settlement structures are interspersed with vegetation. This results in relatively 

high omission and commission errors.  

The method of settlement classification has been successfully transferred to the 

Padang District. Here, the same problem regarding rural settlements occurred, 

also resulting in high omission and commission errors in rural areas. Thus, 

future research on settlement classification using radar imagery must focus on 

improving the methodology for the classification of rural settlements.  
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8.4. Applications of the Research 

Accuracy, benefit and usefulness of risk and vulnerability analyses always 

depend on the availability of spatially and temporally adequate and appropriate 

data. Remote sensing and GIS technology play an important role in providing, 

compiling and processing such data. 

The findings of the present research provide a valuable contribution to tsunami 

risk and vulnerability assessments in the framework of the GITEWS project. The 

results were successfully used for tsunami inundation modeling and hazard 

mapping, human exposure analysis and evacuation planning efforts. 

Furthermore, the results were integrated in the decision support system of the 

Tsunami Early Warning Center in Jakarta. 
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