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1 Abstract 

Depression and anxiety disorders affect a great number of people in the world. Although 

remarkable efforts have been devoted to understanding the clinical and biological basis of 

these disorders, progress has been relatively slow. Furthermore, no laboratory test 

currently is available for diagnosis of anxiety and depression. These disorders are mainly 

diagnosed empirically on the basis of a doctor’s personal observations and experiences. 

Hence, discovery of biomarkers for these psychiatric disorders deserves much scientific 

attention.  

The animal models investigated in the present study represent high, low, and normal 

anxiety-like phenotypes (HAB, LAB, NAB) and were established by selective inbreeding. To 

compare the protein expression levels between different animal lines, living animals were 

metabolically labeled with the 15N stable isotope and then investigated by quantitative 

mass spectrometry. In addition, metabolomic studies were performed to shed light on 

pathways affected in the trait anxiety mouse model. A number of proteins and metabolites 

were found to be significantly altered in their expression levels between the three mouse 

lines. Both protein and metabolite information was used for in silico network analysis to 

find pathways pertinent to the pathobiology of anxiety disorders.  

Another focus of this thesis was the development of new methodologies for the metabolic 

labeling approach. This includes improved identification of labeled proteins and the 

analysis of protein turnover. The latter represents another important aspect in the field of 

proteomics and adds a dynamic dimension to the field. The method allows the detection 

of protein expression alterations at a much earlier stage. The newly developed ProTurnyer 

(Protein Turnover Analyzer) algorithm is able to calculate in a high throughput manner 

turnover for individual proteins. 
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2 Introduction 

2.1 Anxiety and depression 

2.1.1 Anxiety and depressive disorders 

Up to 20% of the world’s population suffers from depression or anxiety disorders (Kessler 

et al., 1994). According to data published by the World Health Organization (WHO), 

currently depressive disorders are the fourth leading cause of disability in the world and 

are likely to rise to the second position by 2020. The symptoms of depression and anxiety, 

such as sadness, hopelessness, feeling of being worthless, diminished interest, anxiety, 

worry, fear etc., exist in almost everyone’s daily life, but in people without mental illness 

these feelings usually appear to be reasonable and disappear within a couple of hours or 

days. However, these symptoms are much more persistent and excessive in a person with 

depression or anxiety or both. Thus, these disorders can interfere severely with patients’ 

lives, the lives of their families, and society in general.  

Although remarkable efforts have been devoted to understanding the clinical and 

biological basis of depression and anxiety, progress has been relatively slow. Epidemiologic 

studies have demonstrated that heredity factors can contribute roughly 40%-50% to the 

risk for depression (Fava and Kendler, 2000). In twin studies, 15%-20% heritability was 

observed for anxiety disorders (Hettema et al., 2001). One promising hypothesis of 

depression is based on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and 

the relevant components, such as corticotrophin-releasing factor (CRF), 

adrenocorticotropin (ACTH) and glucocorticoid. Hyperactivity of the HPA axis is observed 

in approximately half of depressed individuals. A number of factors have been studied and 

found to be highly relevant for anxiety. For instance, inactivation of the gamma-amino 

butyric acid (GABA) synthesis enzyme or its receptors resulted in increased anxiety-like 

behavior (Kash et al., 1999; Low et al., 2000). Similarly, inactivation of the 5-HT1A receptor 

also increased anxiety-like behavior in mice (Heisler et al., 1998; Parks et al., 1998; Ramboz 

et al., 1998). In addition, monoamine oxidase A (MAO-A) (Cases et al., 1995), and CRF and 

its receptors (Bale et al., 2002; Smith et al., 1998a) have been found to regulate anxiety. 

Comorbidity is a quite common occurrence in psychiatric disorders. Data have shown that 

during one year, almost 50% of psychiatric patients have two or more syndromes (Kessler 
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et al., 2005). Therefore, it is not surprising that depression and anxiety frequently co-occur 

(Devane et al., 2005; Moffitt et al., 2007; Regier et al., 1998), although they represent 

distinct phenotypes. The comorbidity between anxiety and depression disorders is as high 

as 50%-60% (Kaufman and Charney, 2000; Landgraf, 2001). The genetic correlation 

between major depression and generalized anxiety has been investigated in twin studies 

(Kendler et al., 2007): correlation scores of 1 and 0.74 were observed in women and men, 

respectively. 

Currently, no laboratory test is available for diagnosis of anxiety and depression. These 

disorders are mainly diagnosed empirically on the basis of a doctor’s personal 

observations and experiences. The patients’ reported symptoms, behavior, way of 

speaking, and family medical history can all help make the correct diagnosis. The 

diagnostic criteria also are summarized in the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV-TR), a commonly used classification system. Despite our limited 

knowledge of anxiety and depression, medication, electroconvulsive seizures (ECS), and 

psychotherapy are normally effective treatments. Eighty percent of patients with 

depression benefit from clinical treatment (Holsboer, 2001; Nestler et al., 2002). 

2.1.2 Anxiety mouse model 

Emotions, cognitions, environmental experience, and individual genetic background vary 

enormously in human psychiatric disorders, such as anxiety (Blanchard et al., 2001; 

Gordon and Hen, 2004). To facilitate the study of anxiety, animal models have been 

introduced to model particular aspects of anxiety-like behavior. There are several 

advantages to using animals instead of human patients. First, the anxiety-like behavior of 

the animal models can be very stable. Second, both the genetic and environmental 

background of the animals can be well controlled via an inbreeding approach and 

conditioned feeding. Moreover, there is no theoretical limitation to the type and number 

of specimens, since the animals can be easily bred. In contrast, clinical specimens from 

patients are always heterogeneous, more difficult to obtain, and limited to body fluids. 

Despite the above attractive features, the animal phenotype will never be expected fully 

to mirror the corresponding human phenotype, since it is impossible to know the real 

emotional status of an animal. 

Animal models mainly are established by genetic means or selective breeding. Transgenic 

mouse models—which may have a gene and its product overexpressed, underexpressed, 
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lost or wrongly synthesized by adding, deleting, silencing, or mutating a gene—have been 

created for many neurotransmitters, receptors, messengers, and transporters (Gross et al., 

2002; Heisler et al., 1998; Kash et al., 1999). Selective breeding is the process of breeding 

animals to obtain particular behavioral and genetic traits. Animals with a homogeneous 

appearance, behavior, and other characteristics are mated and inbred to obtain offspring 

with a stable phenotype. The characteristic behavior can be maintained steadily after 

selective breeding for several generations. The behavioral phenotype is the outcome of 

the integration of all the factors ongoing in both internal and external environments. A 

single gene change normally does not result in disease occurrence. In this regard, an 

animal model established on the basis of behavioral selection can be more applicable to 

simulating the same phenotype in humans. 

Behavioral tests normally are used to evaluate the phenotype. The anxiety-like behavioral 

tests for mice include the elevated plus maze (EPM) (Cook et al., 2001; Handley and 

Mithani, 1984; Lister, 1987; Pellow et al., 1985) (Figure 1), light-dark transitions test 

(Crawley and Goodwin, 1980), marble burying (Broekkamp et al., 1986; Jacobson et al., 

2007), and shock-probe burying (Gasparotto et al., 2007; Sluyter et al., 1996). The tail 

suspension test (TST) and forced swim test (FST) (Crowley et al., 2005; Cryan et al., 2005; 

Porsolt et al., 1978; Steru et al., 1985) are the two main tests used to assess 

depression-like behavior. The EPM test is essential in our animal model development and 

will be the main focus of the discussion below. EPM has been established on the basis of 

the fact that anxiety patients avoid exposing themselves to threatening situations and 

places. In the EPM, the mouse has the opportunity to choose freely between highly 

elevated, unguarded open arms and unchallenged enclosed arms; the high anxiety level 

mouse will avoid entering an open arm (Figure 1).  
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Figure 1. Elevated plus maze set up. Unlike non-anxious LAB-M mice, which explore the 

aversive open arms of the EPM, the anxious HAB-M mice spend most of the test time in 

the dimly lit closed arms. 

On the basis of EPM behavior, both rats and mice were bred selectively to obtain different 

animal models with high/low/normal anxiety-related behavior (HAB/LAB/NAB) (Kessler et 

al., 2007; Kromer et al., 2005; Landgraf et al., 2007; Landgraf and Wigger, 2002; Liebsch et 

al., 1998a; Liebsch et al., 1998b)(Figure 1). HAB mice commonly spend ~10% of time or 

even less on an open arm; by contrast, LAB mice spend more than 50% of time on an open 

arm. NAB mice spend ~30% of time on an open arm, which is close to the mean value of 

outbred mice. These mouse lines have maintained their featured behavior for more than 

50 generations. Besides EPM, these animal models were verified by some other 

anxiety-related and depression-related tests, including the dark-light avoidance test, 

open-arm exposure test, ultrasound vocalization test, TST and FST (Kromer et al., 2005). 

The HAB mice also showed a higher passive level of activity in desperate situations during 

TST and FST.  

2.2 Proteomics 

Genomics has been used to elucidate the complete sequence of genomes for a number of 

species (Lander et al., 2001; Venter et al., 2001). Although the whole human 

genome—with less than 20,325 annotated protein-coding genes—has been fully identified, 

the function of probably 100,000 of human proteins (Gstaiger and Aebersold, 2009) 

encoded by those genes remains elusive. Genomic studies are inadequate mainly because: 

1) the level of transcription of a gene does not always reflect its level of protein expression; 

2) protein post-translational modifications (PTM) play an important role in protein 

function and activity, but this aspect is undetectable in genomics; 3) a given transcription 
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can affect more than one protein by altering splicing or PTM or both; and 4) many proteins 

have bioactivity only when they co-exist with other proteins or RNA molecules.  

The study of proteins can complement genomic research because proteins are the 

bio-functional molecular parts in living organisms, i.e. the actual main components that 

take part in the physiological mechanisms of biological processes. Moreover, proteins can 

interact with any other molecular compounds. The word proteome initially came from 

merging "protein" and "genome" and was created by Wilkins in 1994 (Wilkins et al., 1996). 

The proteome can be defined as the entire set of proteins expressed by a genome in any 

organism. The organism can be a cell, tissue, or even whole living body. The term 

“proteomics” was coined soon after “proteome”, in 1997 (James, 1997), in analogy with 

genomics. Therefore, proteomics can be described as a post-genomic science. Proteomics 

characterizes the identification and quantification of proteome(s), including protein 

expression, protein subcellular distribution, protein interaction, protein post-translational 

modifications, and protein turnover. 

2.2.1 Mass spectrometry 

2.2.1.1 What is mass spectrometry? 

Mass spectrometry (MS) is an analytical approach that measures the mass-to-charge (m/z) 

ratios of charged compounds. The determined m/z of charged ions or their fragments can 

be used to interpret the elemental composition of molecules, even the chemical structures. 

John B Fenn, who received the Nobel Laureate in Chemistry for inventing electrospray 

ionization, described mass spectrometry as follows: “Mass spectrometry is the art of 

measuring atoms and molecules to determine their molecular weight. Such mass or weight 

information is sometimes sufficient, frequently necessary, and always useful in determining 

the identity of a species. To practice this art one puts charge on the molecules of interest, 

i.e., the analyte, then measures how the trajectories of the resulting ions respond in 

vacuum to various combinations of electric and magnetic fields.” (Siuzdak, 2006) 

A typical mass spectrometer consists of three modules: an ionization source, a mass 

analyzer, and a detector (Figure 2). The ionization source is the mechanical device that 

allows ionization to occur. This can be achieved by either addition or loss of electrons, 

protons, cations, anions, and even charged molecules. A mass analyzer measures the ion 

behaviors in an electric or magnetic field. The ions are separated based on their m/z. The 

http://en.wikipedia.org/wiki/Alternative_splicing
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detector records the electric signal of either the charge induced or the current produced 

when an ion passes by or hits a surface. The value reflects the abundances of each ion 

present.  

Before the development of Matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI), MS was incapable of measuring large biomolecules whose 

molecular weights exceeded the limitation of the electron ionization (EI) source. The 

concept of electrospray was initially described by Dole et al. at the end of the 1960s (Dole 

et al., 1968). Twenty years later, the well-known breakthrough of ESI occurred when John 

Fenn of Yale University claimed to have identified polypeptides and proteins with a 

molecular weight of 130,000 kDa (Fenn et al., 1989). The ESI disperses the liquid 

containing the analytes of interest into a fine aerosol, which is transferrable to and 

measureable in a normal MS set-up. The first innovation for application of the laser 

desorption method to large biomolecules, in which the proteins with m/z up to 100,000 

Figure 2. Schematic representation of a mass spectrometer and its constituents. 

The mass spectrometer has three main modules: an ionization source, a mass 

analyzer, and a detector. (reproduced with permission from (Bayes and Grant, 2009)) 
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were successfully ionized and detected by mass spectrometry, was reported by Koichi 

Tanaka in 1988 (Tanaka et al., 1988). MALDI is triggered by a laser beam. The matrix, which 

consists of crystallized molecules, is used to protect the analytes from being destroyed by 

the direct laser beam and to facilitate vaporization and ionization. 

2.2.1.2 Orbitrap mass analyzer 

The ion trap is a robust mass analyzer because of its fast scan rates, MSn ability, easy 

maintenance, reasonable resolution, sensitivity, and mass accuracy. However, the 

sensitivity and mass accuracy of the traditional ion trap are relatively low, making it 

difficult to identify and quantify peptides accurately (Mann and Kelleher, 2008). The 

Orbitrap mass analyzer initially was developed by Makarov (Makarov, 2000; Makarov et al., 

2006a) to overcome these drawbacks. The Orbitrap is a robust instrument with high 

resolution (150,000 full width at the half height [FWHH]), high mass accuracy (2–5 ppm), a 

dynamic range (greater than 103), an m/z range over 6,000, and high sensitivity (Hu et al., 

2005; Makarov et al., 2006b). It is innately capable of very high mass accuracy because the 

m/z of the ion is the only element affecting the ion axial motion along the central spindle, 

and there is no impairment by the initial injection condition.  

2.2.1.3 Nano HPLC and ESI 

High performance liquid chromatography (HPLC) and MS are two important analytical 

tools in proteomics. Proteomic analytes often are present in biological samples at very low 

concentrations. To separate and ionize these complex compounds effectively, nano HPLC 

and nano ESI—in which the HPLC column and ESI emitter are at the micro-/nano-meter 

level—are frequently employed (Emmett and Caprioli, 1994; Griffina et al., 1991). The 

internal diameter (ID) of an HPLC column is a critical parameter that influences the 

detection sensitivity and separation selectivity during chromatographic elution. A smaller 

ID of the HPLC column can result in a higher sensitivity. Theoretically, the column 

sensitivity is inversely proportional to the square of the ID of the HPLC column. This means 

that a change in column ID from a conventional 4.6 mm ID column to a 75 µm column 

would result in a theoretical sensitivity gain of more than 3,700 fold. Besides the 

extraordinary sensitivity, nano HPLC is chosen for proteomics studies because of the 

column loading capacity. The great complexity and extreme dynamic range of biological 

samples usually make it difficult to purify or enrich the target proteins. Therefore, the 

quantity of individual analytes is normally very small. The nano HPLC is able to work with 

minute sample sizes; moreover, nano HPLC—especially the splitless nano HPLC system—is 

http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Laser
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reasonably priced in terms of consumption of mobile phases. The nano ESI was introduced 

by Wilm and Mann in 1996 to couple nano HPLC with ESI MS (Wilm and Mann, 1996). The 

nano ESI emitter is made by pulling laser-heated fused silica into a very fine taper filament, 

whose orifice is only several microns across. A verified theoretical model predicts a 

proportionality between the two-thirds power of the flow rate and the size of droplets 

emitted from the tip of a stable Taylor cone (Wilm and Mann, 1994). A smaller droplet has 

a higher surface/volume ratio, which makes a larger proportion of analyte molecules 

available for desorption. 

2.2.2 Protein identification by mass spectrometry 

MS has become the central technology in proteomics today. To identify a peptide and 

protein, the mass spectrometer collects both MS and MSn for peptide/protein precursor 

ions and their fragments. There are three main approaches to identifying peptides through 

MS data: de novo sequencing, spectrum library search, and peptide database search. De 

novo sequencing is the only method that can identify previously unknown peptides or 

peptides that go against the parameter setting in the search engine. Spectrum library 

search (Frewen et al., 2006) was developed recently and is based on the establishment of 

an MS2 spectrum database. Previously identified MS2 data were collected into a reference 

spectrum library that is used to identify new spectra. With this approach, peptide 

identification seems to be reliable and faster.  

Peptide database search is the most widely used technique in protein identification. For a 

bottom-up proteomic strategy, the MS actually measures the enzymatic digests, but not 

intact proteins. Two types of mass spectra are typically obtained: MS spectra containing 

peptides digested from proteins and MS2 spectra that contain fragments of those peptide 

precursors. Application of the MS peptide mass fingerprinting (PMF) approach typically 

requires relatively pure proteins, such as those obtained from two-dimensional gel 

electrophoresis (2-DE). Thus, proteins can be identified by mapping the peaks in the MS to 

those of theoretical proteolytic peptides. MS2 is composed of the fragments of a 

particular precursor peptide, whose m/z is already determined in MS. Ideally, the 

fragmented ions form a ladder in which each successive fragment contains one additional 

residue, thus allowing the sequence to be interpreted from the mass shift between the 

peaks. MS2 can provide information on both the amino acid sequence and the mass of the 

precursor peptide, resulting in very high confidence identification. Therefore, MS2 is the 

most preferred technique for peptide identification in current proteomic studies. 
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Moreover, more than one approach can be employed simultaneously. For example, 

peptide sequence tag identification (Mann and Wilm, 1994; Mortz et al., 1996) combines 

de novo sequencing and peptide database search.  

Since MS2 peptide database search is the most commonly used method, and also the only 

one performed in the studies presented in this paper, the following description of 

identification algorithms will cover only this workflow. Several peptide database search 

engines have been developed to identify peptides in a high throughput manner, such as 

Mascot (Perkins et al., 1999), SEQUEST (Eng et al., 1994), and X!Tandem (Craig and Beavis, 

2004). The overall designs of the different identification algorithms are similar; they all 

attempt to match experimental spectra with theoretical spectra generated from the 

sequences in a protein database. Before submitting the data to the search engine, several 

parameters must be defined, including database, mass accuracy, modification, etc. The 

algorithm usually has a particular built-in approach to evaluate the match between 

experimental and theoretical spectra. Users normally can optimize the output on the basis 

of different filtering thresholds. False discovery rate (FDR) (Balgley et al., 2007; Cargile et 

al., 2004; Jones et al., 2009; Wang et al., 2009) is usually employed as the criterion for the 

success rate of the identification. However, the algorithmic difference behind these 

platforms will not be discussed here; more detailed information can be found in the 

following informative review articles on this topic (Balgley et al., 2007; Kapp and Schutz, 

2007; Martens and Apweiler, 2009; McHugh and Arthur, 2008; Nesvizhskii, 2007; 

Shadforth et al., 2005). 

2.2.3 2-DE based proteomics 

To investigate thousands or even more proteins from an organism comprehensively, it is 

critical to reduce the sample complexity. At the beginning of the proteomic era, 2-DE 

predominantly was exploited as a tool to separate complex protein mixtures. In a typical 

2-DE experiment, the protein mixture is usually loaded onto an immobilized pH gradient 

(IPG) gel. The proteins move along the gel until they reach their isoelectric points, where 

the overall charge on the protein is neutral. After the first isoelectric focusing (IEF) 

separation, the IPG gel saturated with proteins is transferred to a sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). The proteins with similar isoelectric points 

can then be further separated on the basis of their molecular weights. 2-DE based 

quantification is normally performed by comparing the staining densities or patterns of 

proteins. This provides researchers with a rough idea of the relative quantification. 
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However, 2-DE has some limitations. First of all, the 2-DE gel has a low resolution, which 

makes it difficult to resolve all or the majority of the proteome. The incompatibility with 

hydrophobic proteins means it cannot be used for membrane proteins. 2-DE can handle 

high abundant proteins but is incapable of analysing low abundant proteins existing in a 

high dynamic range sample such as plasma, whose dynamic range of protein expression 

can vary by up to 12 orders of magnitude (Corthals et al., 2000). 2-DE–based quantification 

detects only extreme differences and inaccurately estimates quantity changes. 

Furthermore, 2-DE is a low throughput strategy that allows only individual gel spots to be 

identified. 

2.2.4 Shotgun proteomics 

The shotgun proteomics approach (Link et al., 1999; Wolters et al., 2001; Yates, 2004), also 

known as MS-based proteomics (Aebersold and Mann, 2003; Ong et al., 2003; Ong and 

Mann, 2005), was introduced to obtain large-scale analyses of high-complexity samples 

(Figure 3). It is equivalent to shotgun genomic sequencing. In a typical shotgun proteomics, 

protein complex mixtures are digested into predictable peptides by a site-specific enzyme, 

such as trypsin. The peptide mixtures then are separated by an HPLC column and injected 

directly into a MS system. A number of separating techniques can be used in shotgun 

proteomics, including SDS gel, one or multiple-dimensional chromatography, IEF, or a 

combination thereof. Because the amino acid sequence of a peptide is rather unique, the 

protein can be identified by identifying its peptides. 

 

Figure 3. Shotgun proteomics. (reproduced with permission from (Gstaiger and Aebersold, 

2009)) 

2.2.5 Quantitative proteomics 

A protein expression map of a certain proteome can now be routinely generated in some 

depth by the shotgun methods described above (Baerenfaller et al., 2008; Brunner et al., 

2007; de Godoy et al., 2008; Schrimpf et al., 2009). The Mann group even demonstrated 

that MS-based proteomics can cover almost the whole proteome of yeast, with its more 
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than 4,000 proteins (de Godoy et al., 2008). In its inchoate stage, proteomics was largely 

aimed at qualitative analysis; however, the expression map normally does not address 

biological issues efficiently. The absolute or relative quantity change of proteins is 

probably an important reflection of the disease stage. Altered proteins are possible drug 

targets and also potential clinical biomarkers for disease diagnosis, even at an early clinical 

phase. Consequently, quantification has become the essential aspect (Ong and Mann, 

2005) by which scientists are attempting to study disease processes. The categorization of 

the current quantitative approaches is shown in Figure 4. As mentioned above, 

2-DE-based quantification has inherent weaknesses and is being replaced by MS-based 

methods. Therefore, the following discussion will cover only the MS-based quantitative 

strategy. MS-based quantitative data are obtained by either stable isotope labeling or 

label-free approaches. The isotope labeling approach can be furthermore classified as 

absolute and relative quantification. 

 

Figure 4. Categorization of current techniques for quantitative proteomics. 

The label-free strategy aims to quantify two or more experiments by either comparing the 

MS ion intensity of peptides (Bondarenko et al., 2002; Chelius and Bondarenko, 2002; 

Higgs et al., 2008; Wang et al., 2003; Wiener et al., 2004) or using the number of acquired 

spectra (Gilchrist et al., 2006; Liu et al., 2004; Washburn et al., 2001) matching a 

peptide/protein as an indicator for their respective amounts in a given sample. The ion 

intensity is obtained by extracting the chromatographic elution profile of all the 

Quantitative 
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isotoplogues of a given peptide (Ono et al., 2006) for highly resolved MS data. The 

spectrum-counting approach works because of the fact that more MS2 scans will be 

triggered when the peptide is present at a higher concentration. 

Label-free approaches probably are the least accurate of the MS-based quantification 

techniques, since both the ion intensity and MS2 count are affected by any systematic or 

non-systematic alteration. Therefore, variations in sample preparation and 

chromatographic and electrospraying behavior should be minimized. Despite its poor 

quantitative accuracy, the label-free method still is considered a powerful quantitative tool 

in proteomics for several reasons. First, it omits the need for introducing artificially 

enriched heavy isotope, which can dramatically reduce the complexity of experimental 

design, and avoids the high cost resulting from stable isotope reagents. Second, an 

unlimited number of experiments can be compared; in contrast, isotope labeling 

experiments are limited by the number of isotope reagent patterns. Third, label-free 

samples result in “pure” spectra, which contain only the peptide with natural isotope 

composition; these less complex spectra enable a better precursor selection during data 

acquisition and better peptide identification in the database search. 

Stable isotope labeling is the most accurate method in relative quantitative proteomics, 

and its development has been reviewed in a number of papers (Aebersold and Mann, 

2003; Bantscheff et al., 2007; Becker, 2008; Gstaiger and Aebersold, 2009; Guerrera and 

Kleiner, 2005; Ong et al., 2003; Ong and Mann, 2005; Tao and Aebersold, 2003). A typical 

stable isotope labeling approach compares two or more physiological states of a biological 

target. One is labeled with the natural isotope abundance (light/unlabeled) and the 

other(s) with a stable heavy isotope (heavy/labeled). The labeled and unlabeled samples 

are mixed and processed together, and the paired peptides behave identically during HPLC 

separation. The mass difference of the heavy and light peptides or their fragments can be 

distinguished by mass spectrometry, and the subsequent quantification is achieved by 

comparing their signal intensities. 

Several approaches have been taken to introducing stable isotope tags into 

proteins/peptides via chemical, enzymatic, or metabolic reactions (Figure 5). The first two 

forms are accomplished in vitro, whereas the metabolic labeling is executed in vivo. 
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Figure 5. Common quantitative mass spectrometry workflows. Blues and organge boxes 

represent two experimental conditions. Horizontal lines indicate when samples are 

combined. Dashed lines indicate points at which experimental variation and thus 

quantification errors can occur (reproduced with permission from Ref.(Bantscheff et al., 

2007)) 

Enzymatic labeling refers mainly to proteolytic 18O-labeling (Reynolds et al., 2002a; 

Reynolds et al., 2002b; Yao et al., 2001), which generates 16O/18O .isotope-labeled peptides 

by proteolytic digestion with H2
16O /H2

18O and protease. 18O-labeling is an easily adapted 

and cost-saving approach; however, the variable incorporation of 18O atoms into peptides 

(Johnson and Muddiman, 2004; Julka and Regnier, 2004; Ramos-Fernandez et al., 2007) 

complicates data analysis.  

Chemical labeling targets reactive groups on the side chains of amino acids or peptide 

termini. The first type of chemical labeling methods usually makes use of the reactions 

between cysteine and isotope-coded tag. The original successful application was the 

so-called ICAT (isotope-coded affinity tag) procedure (Gygi et al., 1999; Smolka et al., 2001), 

in which cysteine residues specifically were derivatized with a reagent containing either 

eight 1H or eight 2H atoms and a biotin group, and the peptide mixture is then subjected to 

avidin affinity chromatography to purify ICAT coded peptides. Thereafter, the isolated 
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peptides are analyzed by liquid chromatography-mass spectrometry (LC-MS). As cysteine is 

not an abundant amino acid, the ICAT technique can reduce significantly the complexity of 

the peptide mixture, which can be valuable for complex samples. On the other hand, ICAT 

obviously eliminates all non–cysteine-containing peptides and therefore is not suitable for 

comprehensive large-scale quantification. Furthermore, a deuterium tag results in a 

retention time shift between light and heavy peptides in reversed-phase chromatography, 

which complicates the subsequent data analysis. ICAT has been modified to give several 

techniques (Hansen et al., 2003; Li et al., 2003; Oda et al., 2003) that are more adaptable 

for practical applications. Another group of labeling reagents is aimed at the peptide 

N-terminus and lysine residues, such as isotope-coded protein label (ICPL) (Schmidt et al., 

2005), isotope tags for relative and absolute quantification (iTRAQ) (Ross et al., 2004), 

tandem mass tags (TMT) (Thompson et al., 2003), etc. Of these isotope-coded reagents, 

iTRAQ, which is compatible with up to eight isobaric mass tags, has become popular and 

commercially successful. The iTRAQ technique determines the tag ions that are detached 

from the peptide precursor by MS2 fragmentation. The intensities of these reporter ions 

enable a relative quantification of the peptides. The most important feature of the iTRAQ 

strategy is its capability to analyze eight separately labeled pools of protein in a single 

analysis, improving analytical time significantly. The iTRAQ reagents are undetectable in 

conventional ion trap instruments because these low-mass reporters are not stable during 

the activation step, owing to the principle known as the “low mass cut off 1/3 rule” (Louris 

et al., 1987). A recently developed, new activation method, pulsed q dissociation 

(PQD)(Cunningham et al., 2006), enables MS/MS reporter ions from isobaric peptide tags 

such as iTRAQ to be detected in an ion trap mass analyzer. A transformation of chemical 

isotope labeling is the creation of the labeled peptide/protein from two chemically 

different tags (Beardsley and Reilly, 2003; Cagney and Emili, 2002) rather than from variant 

isotope of the same chemical. Although this substitute is much more economical, the 

labeling reaction, HPLC, and MS behavior may not be identical, which obviously affects the 

accuracy of the quantification.  

Metabolic labeling employs an isotope-enriched medium or diet to culture or feed living 

systems. The isotopic tracer is incorporated into the whole proteome through protein 

synthesis during protein turnover and cell multiplication. The labeled peptide has a mass 

increase that can be detected by a mass spectrometer. When labeled and unlabeled 

samples are combined, the ratio of peak intensities in the mass spectrum reflects the 

relative protein abundance. Metabolic labeling is considered to have higher quantitative 
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accuracy than in vitro labeling, since it allows the control and case samples to be mixed 

prior to any sample preparation, avoiding potential artificial variance (Figure 5). However, 

in vitro isotope labeling can be applied universally for any type of sample, which is the 

major advantage over the in vivo metabolic labeling method. In the past, metabolic 

labeling has been used with radioactive isotopes mainly for metabolite monitoring. By 

contrast, stable isotope metabolic labeling first was introduced into proteomics by Langen 

et al. in 1998, who used an 15N- and 13C-labeling approach to compare protein quantities 

with 2-DE (Langen et al., 1998). Other research groups soon after reported the successful 

application of 15N metabolic labeling in both yeast (Oda et al., 1999) and a mammalian cell 

line (Conrads et al., 2001). Nitrogen commonly is chosen rather than carbon, mainly 

because the isotopic reagent of nitrogen is easier to synthesize. Moreover, there are on 

average four times as many carbon atoms in a protein than nitrogen atoms. As a result, the 

13C-labeled peptide usually results in a broad distribution of the peptide isotopic peak, 

making data analysis challenging. Up until now, the 15N-labeling technology has been 

applied successfully to cells in culture (Conrads et al., 2001; Ishihama et al., 2005), plants 

(Huttlin et al., 2007; Nelson et al., 2007; Palmblad et al., 2007; Schaff et al., 2008), 

Drosophila melanogaster (Krijgsveld et al., 2003), Caenorhabditis elegans (Dong et al., 

2007; Krijgsveld et al., 2003), and mammals (McClatchy et al., 2007a; Wu et al., 2004). The 

15N labeling of mammals also is called stable isotope labeling of amino acids in mammals 

(SILAM) (Liao et al., 2008; McClatchy et al., 2007b). Another metabolic labeling method, 

known as stable isotope labeling with amino acids in cell culture (SILAC), was introduced in 

2002 (Ong et al., 2002). In a typical SILAC experiment, cells are differentially labeled by 

growing them in light medium with normal arginine or lysine (e.g. Arg-0 or Lys-0) or 

labeled medium with heavy arginine or lysine (e.g. Arg-6 or Lys-6). The subsequent trypsin 

digest cleaves the proteins at arginine and lysine residues. Therefore, every tryptic peptide 

except for the C-terminal contains one labeled amino acid, which makes the mass increase 

of the labeled peptide predictable. Conventionally, SILAC is suitable only for cell culture. 

However, the SILAC approach also has been recently applied to mouse labeling (Kruger et 

al., 2008) by feeding the mice a 13C6-lysine–labeled diet for four generations. 

As the two main forms of metabolic labeling, SILAM and SILAC have both strengths and 

shortcomings (Table 1). SILAC and SILAM represent different isotope patterns for labeled 

peptides in mass spectra. Since only one labeled amino acid can be included for any given 

tryptic SILAC peptide, the mass difference between the unlabeled and labeled peptide can 

be predicted, which facilitates data analysis. By contrast, the mass increase of labeled 
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SILAM peptide depends on the peptide chemical composition as well as on the labeling 

incorporation rate. This variable mass gain usually makes data analysis more challenging. 

Moreover, the SILAM and SILAC relative isotope abundance (RIA) ordinarily does not reach 

100% because of residual unlabeled atoms in the nutritional source and metabolic amino 

acid recycling. The SILAM peptide usually contains a number of nitrogen atoms, and these 

nitrogen atoms are normally more than the labeled number of atoms in SILAC peptide. 

The incomplete RIA and relatively numerous potentially labeled nitrogen atoms result in a 

complex and broad isotopic pattern for labeled SILAM peptides. By contrast, SILAC 

peptides are much easier to handle, since the labeled peptide appears at a certain mass in 

the spectrum. 

Table 1. Comparison of SILAC and SILAM in quantitative proteomics 

 SILAC SILAM 

Mass shift for labeled 
peptide 

Predictable 
Dependent on both peptide 
sequence and 15N% 

Number of mixed 
samples 

Maximal 3 2 

Isotope effect unknown reported in a few cases 

Identification of labeled 
peptide 

Easy Challenging 

Incorporation 
requirement 

Must be high Can be relatively low 

Cost for mouse labeling ~7,000 EURO/mouse ~1,000 EURO/mouse 

 

SILAC peptides usually appear only in two forms in the MS: labeled and unlabeled. If a 

protein is only partially labeled, the MS of unlabeled peptide is a mixture composed of two 

parts: the original unlabeled peptide and the unlabeled peptide resulting from the partial 

labeling. To avoid this, the labeling incorporation rate of SILAC should be close to 100%. By 

contrast, as the incorporation rate increases, the labeled MS peaks of SILAM peptide 

gradually move toward the high mass range. A rather low labeling incorporation rate is 

sufficient to separate the labeled and unlabeled MS peak envelopes of SILAM peptides. 

Consequently, partial labeling is also applicable to the SILAM quantitative strategy, 

reducing the cost and time required for the experiment. Complete labeling usually is 
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achievable in cell-based experiments because the medium that contains the labeled amino 

acids can take the place of the whole nutritional source for protein synthesis after the 

replacement. Moreover, the metabolic rate of cultured cells normally is very high. 

Mammals such as mouse and rat, which are more relevant for biological research, are not 

easily labeled fully because of the relatively slow turnover of both proteins and the amino 

acid pool. Hence, SILAM works better than SILAC for mammal labeling because of its lower 

incorporation rate compatibility. 

In addition, 15N partial labeling can facilitate the determination of protein turnover in 

mammals. Protein turnover measurement usually tries to calculate the fraction of newly 

synthesized protein after the isotope tracer has been added. As mentioned above, part of 

the newly synthesized SILAC peptide will appear in the unlabeled pattern and co-exist with 

pre-existing peptide, and it is impossible for MS to distinguish between the two. Although 

the newly synthesized SILAM peptide may appear at a low incorporation rate shortly after 

the labeling, it is still possible to separate it from the pre-existing unlabeled peptide. The 

strategy involved will be discussed in depth in the following sections.  

The relative quantification methods described above currently dominate the quantitative 

proteomics field. However, conducting absolute quantification studies is yet another 

attractive dimension of proteomics. In principle, relative quantification can be 

incorporated into absolute quantification, since the relative ratios easily can be obtained if 

the absolute quantities of the proteins are known. 

Absolute quantitative proteomics, commonly known as AQUA (absolute quantification of 

proteins), employs a synthetic stable isotope-labeled peptide at a known concentration 

(Gerber et al., 2003) as a reference for calculating the concentration of the target peptide. 

The AQUA method relies on the relative comparison between internal isotope-labeled 

standard peptide and unlabeled sample digest, in which a chemically identical peptide also 

is expected. Analysis of the peptide mixture in selected reaction monitoring (SRM) or 

multiple reaction monitoring (MRM) (Kirkpatrick et al., 2005) modes enables the MS to 

monitor both the intact peptide mass and one or more specific fragment ions of that 

peptide over the course of an LC-MS experiment. In combination with the retention time, 

the AQUA platform can eliminate ambiguities in peptide assignments and extend the 

quantification range to 4–5 orders of magnitude (Wolf-Yadlin et al., 2007). Unlike the other 

relatively quantitative approaches, because of the low synthetic efficiency of 

isotope-labeled peptides AQUA does not measure the protein quantity in a high 
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throughput manner but determines one or a few specific peptides of interest. The 

selection of the optimal peptide standard and the amount of the standard to be added to 

the sample are very important criteria for the AQUA method. Therefore, preliminary 

experiments are required to determine optimal conditions. However, the degree to which 

the determined amount in fact reflects the absolute quantity, after the time-consuming 

sample preparation procedure and physical/chemical treatment of the sample, is still 

under debate. There is a good probability that it does not reflect the real protein level in 

vivo.  

2.3 Metabolomics 

Findings concerning DNA (genomics), RNA (transcriptomics), proteins (proteomics), and 

small molecules (metabolomics) have to be combined to obtain a complete profile of living 

organisms and to allow a systematic understanding of the occurrence of disease. 

Metabolite analysis usually is restricted to small molecules, which are the intermediates 

and products of metabolism. The term metabolome (Oliver et al., 1998) refers to the 

complete collection of small molecule metabolites, such as metabolic intermediates, 

hormones, and other signalling molecules, to be found within a biological sample. 

Metabolomics can be defined as “the quantitative measurement of the dynamic 

multiparametric response of a living system to pathophysiological stimuli or genetic 

modification” (Nicholson et al., 2002; Nicholson et al., 1999). The techniques involved 

should be able to detect, identify, and quantify the global profiling of the metabolome in a 

high throughput manner. Various platforms are suitable for metabolomic analysis, such as 

nuclear magnetic resonance (NMR), fourier transform infrared spectroscopy (FT-IR), gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry 

(LC-MS), ultra performance liquid chromatography-mass spectrometry (UPLC-MS), and 

capillary electrophoresis-MS (Lenz and Wilson, 2007; Want et al., 2007). This paper 

focuses on chromatography-MS–based methods. 

Two steps typically can be applied to identify metabolites. First, a limited number of 

possible chemical formulae can be derived from the accurate measurement of the 

chemical mass. Second, the structure can be deduced from the MS2 fragments of the 

precursor, which also can be performed by searching an MS/MS library. Moreover, a 

database can be established, which greatly facilitates identification of the metabolite. If 

the metabolite has been identified previously, the features of mass, MS/MS, and retention 

time on the chromatography can be used to identify it again. The signal intensities of MS 
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are used for the quantification. It should be noted that, like proteomics, metabolomics is 

still incapable of identifying the entire metabolome.   

2.4 Systems biology 

The popularity of molecular biology has led scientists toward detailed research at the 

molecular level, where a specific biomolecule or a few biomolecules are studied. Although 

millions of –omics data (e.g. from proteomics, metabolomics) have been generated, there 

is still a long way to go before either a particular molecule or –omics data can be 

interpreted and eventually applied in therapeutics or as a ‘‘cure’’ for diseases. Except for 

Mendelian diseases, most common human disorders originate from not only one genetic 

mutation but from the complex interplay between DNAs, proteins, metabolites, and 

external environmental influences. Therefore, there is a great demand for integrative 

analysis of data across a wide range of fields; however, this cannot normally be achieved 

with any independent traditional biological approach. Systems biology thus was 

introduced to help scientists unravel the organization and interactions of cellular networks 

between DNAs, RNAs, proteins, and metabolites (Barabasi and Oltvai, 2004; Kitano, 2002) 

(Figure 6). Several technical aims still have to be achieved before these intricate networks 

can be established on the basis of both validated and predicted interactions (Sauer et al., 

2007): 1) identification and quantification of all participants at the –omics level, such as 

proteomics and metabolomics; 2) experimental identification of physical component 

interactions; 3) computational deduction of data; and 4) rigorous integration of 

heterogeneous data.  

Obviously, to handle the enormous amount of data in systems biology, computational 

tools capable of analyzing -omics data from multiple platforms are crucial. A number of 

algorithmic packages are available, such as KEGG (Kanehisa et al., 2008), PathVisio (van 

Iersel et al., 2008), pSTIING (Ng et al., 2006), MetaCoret (Ekins et al., 2007), Cytoscape 

(Shannon et al., 2003), VANTED (Junker et al., 2006), Pathway-Express (Draghici et al., 

2007), Systems Biology Markup Language (SBML) (Hucka et al., 2003), and also the 

commercial tool PathwayStudio® (Sivachenko and Yuryev, 2007) (Ariadne Genomics, 

Rockville, MD, USA). PathwayStudio, for example, enables a high-throughput, 

cross-platform analysis of gene, protein, chemical, and disease data. The potential 

network of any form of interest can be visualized. Although all these tools seem to be 

highly advanced and powerful enough to uncover the true fundamental physiological 
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processes, they are still a long way from completely characterizing all the interactions 

involved in biological events.  

 

Figure 6. A systems roadmap. (reproduced with permission from (Sauer et al., 2007)) 

2.5 Biomarkers 

According to the North American National Institute of Health (NIH) 

(http://www.biomarkersconsortium.org/), “Biomarkers are characteristics that are 

objectively measured and evaluated as indicators of normal biological processes, 

pathogenic processes, or pharmacologic responses to therapeutic intervention. 

Biomarkers can be used in clinical practice to identify risk for or diagnose a disease, stratify 

patients, assess disease severity or progression, predict prognosis, or guide treatment. In 

drug development biomarkers may be used to help determine how a drug works in the 

body, to determine a biologically effective dose of a drug, to help assess whether a drug is 

safe or effective, and to help identify patients most likely to respond to a treatment, or at 

least likely to suffer an adverse event when treated with a drud. Biomarkers can 

sometimes be used as part of the approval process for a drug or treatment, to inform 

regulatory decision-making.” As discussed above, biomarkers can be any kind of physical or 

chemical change between health and disease. Of the potential biomarker targets, proteins 

are likely the most ubiquitously affected in any cellular process, and protein patterns are 

more directly related to the phenotype of an organism. In addition, the advances of 

MS-based proteomics enable the construction of a comprehensive biomarker discovery 

pipeline. Therefore, protein biomarker discovery is the main focus of this thesis. 
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The first step is to look for protein biomarker candidates using a quantitative proteomics 

approach. Afterwards, all or at least a subset of the biomarker candidates require 

verification. Verification can confirm the MS-based result and provide support for better 

quantification. A commonly used verification method is the Western blotting technique, 

which combines one-dimensional gel electrophoresis (1-DE) and antibody 

immunoreactions. Similarly, enzyme-linked immunosorbent assay (ELISA), which is based 

on the immune-affinity principle, can be used for verification. Although Western blot is 

used routinely in every proteomic lab, there are bottlenecks associated with this approach: 

the method is only semi-quantitative; moreover, the central reagents in Western blot, 

antibodies, often are of poor specificity, especially those against novel candidate proteins 

or post-translational modifications. 

Alternatively, proteomic data can be verified by SRM or MRM. As described above, 

together with a standard peptide, MRM enables both the structure and quantity of the 

analyte to be determined. The final step of the biomarker validation is the clinical 

evaluation. Despite many efforts and promising biomarker candidates generated from 

proteomic studies, it remains a formidable, undefined, and expensive task to demonstrate 

their final clinical usefulness and compliance with regulatory requirements. 

Thanks to the great research efforts in the past few decades, a few biomarkers have been 

validated for complex disorders like diabetes and heart disease; however, currently there 

are still no biomarkers for psychiatric disorders. Progress in studies of psychiatric disorders 

is relatively slow because of the limited knowledge of etiology and pathogenesis, the large 

clinical heterogeneity, uncertain phenotype boundaries, genetic overlap between 

disorders, and the large influence of non-genetic factors. Despite the existing challenges, 

MS-based proteomics facilitates the identification of potential biomarkers. 
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3 Proteomic and metabolomic brain and plasma profiling of 

a trait anxiety mouse model 

3.1 Introduction 

As mentioned above, up to 20% of the world’s population suffers from depression or 

anxiety disorders (Kessler et al., 1994), and the number of people is still growing. Although 

remarkable efforts have been devoted to understanding the clinical and biological basis of 

depression and anxiety, only relatively slow progress has been made. Currently, no 

laboratory test is available for diagnosing anxiety and depression. Diagnoses mainly are 

made empirically, on the basis of a doctor’s personal observations.  

Emotions, cognitions, environmental experience, and genetic background vary enormously 

in human psychiatric disorders, such as anxiety (Blanchard et al., 2001; Gordon and Hen, 

2004). To make the study of anxiety more realistic, animal models have been introduced to 

model particular aspects of anxiety-like behavior. The study of animal models has several 

advantages over the study of humans. First, the anxiety-like behavior of the animal models 

can be very stable. Second, both the genetic and environmental background of the animals 

can be well controlled via an inbreeding approach and conditioned feeding. Moreover, 

there is no theoretical limitation to the type and number of specimens, since the animals 

can be easily bred. In contrast, clinical samples from patients are always heterogeneous, 

more difficult to obtain, and limited to body fluids. 

On the basis of behaviour on the EPM, both rats and mice have been bred selectively to 

obtain different animal models with high, low, and normal anxiety-related behavior (HAB, 

LAB, NAB, respectively) (Kessler et al., 2007; Kromer et al., 2005; Landgraf et al., 2007; 

Landgraf and Wigger, 2002; Liebsch et al., 1998a; Liebsch et al., 1998b). HAB mice 

commonly spend ~10% of time or even less on an open arm of the EPM; by contrast, LAB 

mice spend more than 50% of time on an open arm. NAB mice spend ~30% of time on an 

open arm, which is close to the mean value of outbred mice. These mouse lines have 

maintained their featured behavior for more than 50 generations. Besides verfication with 

the EPM, these animal models were verified by using some other anxiety-related and 

depression-related tests, including the dark-light avoidance test, open-arm exposure test, 
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ultrasound vocalization test, TST and FST (Kromer et al., 2005). The HAB mice also showed 

a higher passive level of activity in desperate situations during the TST and FST.  

Stable isotope metabolic labeling of living animals followed by quantitative mass 

spectrometry is a powerful method for accurately comparing protein expression levels 

between two or more specimens. Metabolomic studies also can provide additional 

information and give deeper insights into disease pathobiology. For this purpose, in this 

study mice were metabolically labeled, starting in utero, by feeding a 15N-enriched diet for 

56 days. Metabolomic analyses were carried out using a GS-MS platform. 

3.2 Material and methods 

3.2.1 Materials 

The standard rodent diet was purchased from Harlan (Harlan Laboratories, Inc. 

Indianapolis, IA, USA), and the bacterial protein-based rodent diets were purchased from 

Silantes (Silantes GmbH, Munich, Germany). Two isotopic forms of bacterial diets were 

used: natural isotopic (denoted as 14N) and 15N enriched. All the other chemicals were 

from Sigma-Aldrich (St. Louis, MO, USA), Merck (Darmstadt, Germany), and BioRad 

(Hercules, CA, USA).  

3.2.2 Animal experiments 

All the animal experiments were conducted in accordance with the “Guide for the Care 

and Use of Laboratory Animals of the Government of Bavaria”. High (HAB), normal (NAB), 

and low (LAB) anxiety-related behavior mouse models were established from CD1 mice by 

using a selective inbreeding approach. The anxiety-related behavior mainly is assessed by 

the time that the animals spend on the open arm of an EPM device: HAB mice spend 

approximately 10% of the total time on an open arm, LAB mice > 50% of time, and NAB 

animals around 30% (Kromer et al., 2005). The animals were bred and housed in the 

animal facility of Max Planck Institute of Psychiatry. Dams were housed in type 3 

macrolone cages, mature animals in groups of four animals in type 2 macrolone cages with 

12 h light/dark cycle (lights on at 6 a.m.), room temperature 23±2°C, humidity 60%; tap 

water and food were available ad libitum. All the behavioral tests were performed 

between 8 a.m. and 1 p.m. 

3.2.2.1 Mouse feeding  
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The 15N/14N feeding started in utero. Four to eight female mice from each line were mated 

one-to-one with an adequate male (i.e. sibling) to increase the pregnancy probability. 

After 10 days, the pregnancy was detected visually and/or by palpation of the embryos 

along the backbone, and the males were removed from the cage. To allow them to adapt 

to the bacterial protein diet, the pregnant females were fed 14N or 15N bacterial diet with 

standard diet for 4 days. Subsequently, only bacterial diets were provided. All the female 

pups were sacrificed on postnatal day (PND) 5, 14, and 28. On PND 28, the remaining male 

pups were weaned and grouped into new cages (2–4 animals per cage) and fed with pure 

bacterial diets. On PND 56, all the mice were sacrificed for proteomic analysis (Figure 7). 

Blood was taken by cardiac puncture, and plasma was obtained by centrifuging the blood 

in an EDTA and protease inhibitor cocktail tablet (F. Hoffmann-La Roche Ltd. Basel, 

Switzerland) pre-added tube at 1,300 × g for 10 min. The pellets were saved as blood cells. 

The remaining body blood was removed by 0.9% saline perfusion. The brains were divided 

into four sections: cerebellum, cortex, hippocampus, and amygdale. All the other organs 

were isolated. The plasma and organs were snap-frozen in liquid nitrogen, and the samples 

stored at -80°C for further use. The animals did not show any discernible health effects 

compared with animals fed a standard diet.  

 

Figure 7. Protocol for feeding mice with the bacteria diet. After pregnancy detection, the 

animals were given a free choice of standard or bacteria diet for 4 days before being fed 

the bacteria diet only. Organs were harvested at PND 5, 14, 28 and 56 to determine the 

15N incorporation rate and line-specific protein expression pattern. 
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3.2.2.2 Behavior test 

3.2.2.2.1 Ultrasonic vocalization test (USV) 

On PND 5, pups were individually separated from their mothers and gently placed on a 

Petri dish (15 cm diameter) cleaned with 70% ethanol. The temperature was kept constant 

at 23°C by a water bath underneath the dish. Lines were drawn to divide the dish into 2×2 

cm squares. The number of line crossings (two forepaws across the line) was counted 

during the 5 min test. USV calls were detected and recorded for 5 min with a bat detector 

(Mini 3 bat-detector, Ultra Sound Advice, U.K.) at 70 kHz.  

3.2.2.2.2 Elevated plus maze test (EPM) 

The EPM tests were performed on PND 49. The EPM was built of black plastic and 

consisted of two open arms (30 × 5 cm; 100 lux) and two enclosed arms (30 × 5 × 15 cm; 

10 lux). The arms extended from a central platform (5 × 5 cm; 90 lux). The EPM was 

located 40 cm above the table surface. The whole device was surrounded by a black 

curtain (Pellow et al., 1985). The mice were put onto the central platform facing a closed 

arm, and then behavior was recorded for 5 min via a video camera fixed above the maze. 

The number of entries into the closed and open arms and the percentage of time spent on 

the open arms were monitored by a trained observer blind to treatment or tracking 

software. Mice were considered to have entered an open or closed arm when both 

forepaws and front shoulders were on the arm. 

3.2.2.2.3 Tail suspension test (TST) 

On PND 51, each mouse was suspended from a bar 35 cm above the floor by affixing the 

end of its tail to the bar with adhesive scotch tape (Steru et al., 1985). The animals' 

behavior was videotaped for 6 min and the duration of total immobility scored by a 

trained observer blind to the treatment. 

3.2.3 Quantitative proteomics 

3.2.3.1 Determination of 15N incorporation  

The development of 15N incorporation rates during the labeling was monitored with the 

software QuantiSpec to determine 15N in both brain and plasma collected on PND 5, 14, 28, 

and 56 (Haegler et al., 2009a). The 14N and 15N samples were combined at an approximate 

ratio of 1:1 for cerebella (w/w) and plasma (v/v). The brain and tissue mixtures were put 
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into an ice-cold 5× buffer of 250mM sucrose, 50mM Tris - HCl (pH 7.4), 5mM MgCl2, 1mM 

DTT, 25 µg/ml Spermine, 25 µg/ml Spermidine, and a protease inhibitor cocktail tablet (F. 

Hoffmann-La Roche Ltd. Basel, Switzerland), and then homogenized by using a Teflon-glass 

dounce homogenizer and an electric drill at 1,200 rpm for 3 min. The homogenates were 

centrifuged at 20,000 g for 30 min at 4°C and the supernatants collected. The protein 

mixture was resolved by SDS-PAGE and the gel stained with Coomassie blue. Several 

selected gel pieces were subjected to in-gel tryptic digestion. Gel pieces were de-stained 

twice with 100 µL 50mM NH4HCO3 /ACN (1:1, vol/vol) for 30 min, and disulfide bonds 

reduced with 10mM DTT in 50mM NH4HCO3 at 56°C for 30 min, and then alkylated with 

55mM iodoacetamide in 50mM NH4HCO3 in the dark for 30 min. Subsequently, 12.5 ng/µL 

trypsin in 25mM NH4HCO3 was added to saturate and cover gel slices. The enzymatic 

reaction was carried out overnight at 37°C. After digestion, the peptides were extracted 

from the gel pieces by adding 5% formic acid at 37°C for 30 min. The gel pieces were spun 

down and the liquid collected. The extraction was repeated twice. Finally, the extracted 

peptide mixture was lyophilized to dryness and dissolved in 10 µL 0.1% trifluoroacetic acid 

(TFA). The peptide mixtures were then desalted by OMIX tips (Varian, Palo Alto, CA, USA) 

according to the manufacturer’s recommended procedure. The eluted cleaned peptides 

were spotted with 4-hydroxy-α-cyano-cinnamic acid (HCCA) onto AnchorChip™ targets 

(Bruker Daltonics, Bremen, Germany) (Schuerenberg et al., 2000). Both peptide mass 

fingerprinting (PMF) and MS/MS data were acquired by using an Ultraflex mass 

spectrometer (Bruker Daltonics).  

3.2.3.2 QuantiSpec  

Both PMF and MS/MS data were subjected to a MASCOT database search. The PMF 

spectra were exported in DAT format by using the script that was part of the FlexAnalysis 

2.4 software (Bruker Daltonics). Furthermore, the Mascot results were exported in XML 

format via the Mascot server XML-export service. The DAT and XML files were processed 

by QuantiSpec, written in ActivePerl language. Briefly, on the basis of the theoretical 

isotopologue distribution of identified peptides with a known amino acid sequence, the 

15N incorporation rate was determined by comparing the experimental isotope patterns 

with a set of theoretical ones. Relative quantitation was accomplished by calculating the 

signal intensity ratios for each 14N/15N peptide pair. 

3.2.3.3 Sample preparation 
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The hippocampus and plasma of male mice from PND56 were used for quantitative 

proteomics. The 14N-HAB/15N-HAB comparison was processed by a direct strategy (Figure 

8), whereas the HAB/LAB comparison was processed by indirect comparison (Figure 9).  

The plasma samples were first diluted 1:50 with a dilution buffer (10 mM Tris-HCl, pH 7.4, 

150 mM NaCl) provided in an IgY-M7 Spin column kit (GenWay Biotech, Inc., CA). The 

protein concentrations were estimated by Bradford assay, and then the two samples being 

compared (14N-HAB vs. 15N-HAB, 14N-HAB vs. 15N-NAB, 14N-LAB vs. 15N-NAB) were mixed at 

a ratio of 1:1, based on their protein content. The protein mixtures were subjected to 

IgY-M7 Spin column to remove the 7 high abundant proteins (Mouse Serum Albumin, IgG, 

Fibrinogen, Transferrin, IgM, Haptoglobin, and alpha1-Antitrypsin), according to the 

manufacturer’s guidelines. Briefly, the mixed proteins were first incubated with IgY 

microbeads, which bound the 7 high abundant proteins with the immobilized specific IgY 

antibodies. The other unbound proteins were spun down and collected as the 

flow-through factions, which contained the low abundant proteins. The flow-through 

fractions were concentrated by ultrafiltration with a centrifugal YM-3, 3 kDa cut-off filter 

(Millipore, MA). The resulting proteins were ready for SDS-PAGE separation. The bound 

fractions were eluted out with stripping buffer (0.1M Glycine-HCl, pH 2.5), and the 

columns regenerated by adding neutralization buffer (0.1M Tris-HCl, pH 8.0).  

The blood pellets collected from the plasma preparation were used to extract red blood 

cell proteins. For red blood cell lysis, the pellets were thawed on ice, and cold water 

containing 1mM PMSF was added. After the removal of cellular debris, the concentrations 

of supernatants were measured and 14N-LAB and 15N-HAB samples were mixed at a ratio of 

1:1. 
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Figure 9. Proteomic indirect comparison between two mouse strains. 

Figure 8. Proteomic direct comparison between two mouse strains 
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The brain proteins were extracted by using methods slightly modified from earlier ones 

(Cox and Emili, 2006). The mouse hippocampus was put into an ice-cold 10× buffer of 

250mM sucrose, 50mM Tris - HCl (pH 7.4), 5mM MgCl2, 1mM DTT, 25 µg/ml Spermine, 25 

µg/ml Spermidine and a protease inhibitor cocktail tablet (F. Hoffmann-La Roche Ltd., 

Basel, Switzerland) and then homogenized with a Teflon-glass dounce homogenizer and an 

electric drill at 1,200 rpm for 3 min. The homogenates were then centrifuged at 6,000g for 

15 min at 4°C to pellet the nuclei and mitochondria. The supernatants were collected, and 

the protein concentrations were measured by Bradford assay. The two samples being 

compared (14N-HAB vs. 15N-HAB, 14N-HAB vs. 15N-NAB, 14N-LAB vs. 15N-NAB) were mixed at 

a ratio of 1:1, based on their protein content. The protein mixtures were then subjected to 

an ultracentrifuge for 1 h at 100,000g in a swing bucket at 4°C. The supernatants were 

collected as the cytosol proteins. The pellets were re-suspended with 0.5 ml of ME buffer 

(20mM Tris-HCl [pH 7.8], 0.4M NaCl, 15% glycerol, 1mM DTT, protease inhibitor cocktail 

tablet [F. Hoffmann-La Roche Ltd., Basel, Switzerland], and 1.5% Triton-X-100) and 

incubated for 1 h with gentle rocking. The supernatants were collected as microsome 

proteins after a centrifuge at 9,000g, 4°C for 30 min. The protein concentrations of the 

cytosol and microsome fractions were measured by Bradford assay.  

The brain, plasma and blood cell protein mixtures were resolved by Criterion XT Bis-Tris 

precast gels (Biorad), and the gel stained with Coomassie Brilliant Blue. The gel lane 

containing the separated proteins was cut into 2 mm wide pieces, and the resulting pieces 

subjected to in-gel tryptic digestion. Gel pieces were de-stained twice with 100 µL 50mM 

NH4HCO3 /ACN (1:1, vol/vol) for 30 min, and disulfide bonds reduced with 10mM DTT in 

50mM NH4HCO3 at 56°C for 30 min, and then alkylated with 55mM iodoacetamide in 

50mM NH4HCO3 in the dark for 30 min. Subsequently, 12.5 ng/µL trypsin in 25mM 

NH4HCO3 was added to saturate and cover gel slices. The enzymatic reaction was carried 

out overnight at 37°C. After digestion, the peptides were extracted from the gel pieces by 

adding 5% formic acid at 37°C for 30 min. The gel pieces were spun down and the liquid 

collected. The extraction was repeated twice. Finally, the extracted peptide mixture was 

lyophilized to dryness and dissolved in 10 µL 0.1% formic acid. 

3.2.3.4 HPLC and Mass Spectrometry  

The peptide mixtures were analyzed by nanoHPLC (Eksigent Technologies, Inc., Dublin, CA) 

coupled to an LTQ-Orbitrap (Thermo Fisher Scientific, Bremen, Germany) hybrid mass 

spectrometer. The C18 reverse-phase columns were made by packing PicoFrit emitters 
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(New Objective, Inc., Woburn, MA) with a methanol slurry of reverse-phase ReproSil-Pur 

C18-AQ 3µm resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) under a constant 

pressure of 100 bar. The packed columns were cut to approximately 15 cm length. 

Peptides were separated at a 200 nl/min flowrate by using a gradient of 2%-98% solvent B 

(98% ACN in water, 0.1% FA) over 130 min. The eluates were on-line electrosprayed into 

the mass spectrometer via a nanoelectrospray ion source (Thermo Fisher Scientific, San 

Jose, CA). 

The LTQ-Orbitrap was running in positive ion, top 5 data-dependent acquisition mode. For 

full scans in the Orbitrap, the target ion value was 1,000,000, and the maximal injection 

time was 500 ms at a resolution of r=60,000 at m/z 400. The MS full scan range was 

380-1600 m/z. The 5 most intense peaks in the MS scan were fragmented in the LTQ by 

collision-induced dissociation with a target value of 10,000 ions and an injection time of 

250 ms. Former precursor ions selected for MS/MS were dynamically excluded for a period 

ranging from 30 to 60 s. 

The mass spectrometric conditions were: spray voltage, 2.1 kV; no sheath and auxiliary gas 

flow; ion transfer tube temperature, 200°C; normalized collision energy using wide-band 

activation mode, 35% for MS2. 

3.2.3.5 Data processing 

For SEQUEST database analysis, the ORBITRAP raw files were searched against a 

concatenated forward/reversed IPI-mouse database v 3.46. The 14N database search was 

performed by using the following parameters: 20 ppm mass tolerance for the MS scan, 1 

Da for the MS/MS scan, fixed carbamidomethylation for cysteine, and variable oxidation 

for methionine. The 15N database search was executed using 15N amino acid masses and an 

additional -1 Da variable modification for arginine and lysine residues (Zhang et al., 2009). 

Assembly and removal of redundant proteins based on their accession numbers were 

performed by using Perl scripts written in-house. The SEQUEST results were filtered by 

using peptide XCorr >1.9 for 1+ charged ions, >2.7 for 2+ charged ions, >3.5 for 3+ or 

above charged ions, and DeltaCN >0.08. The false discovery rate (FDR) was then 

determined by calculating the ratio of the number of peptides identified from decoy to the 

number identified from forward database searches. Relative quantification of the peptide 

pair signals was performed with the ProRata software (Pan et al., 2006) on the basis of the 

SEQUEST identification results. Briefly, the ion chromatograms were extracted for both 

labeled and unlabeled isotope envelopes according to the identified amino acid sequence. 
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The m/z window for the natural isotopologue was calculated from the natural isotopic 

envelope of the peptide. The m/z window for the heavy isotopologue was calculated by 

using pre-defined 15N% for all nitrogen atoms. The retention time window of the selected 

ion chromatograms was defined as from 2 min before the identified MS/MS scans to 2 min 

after the identified MS/MS scans. The ratios of areas of labeled and unlabeled 

chromatographic peaks were used for peptide quantification.  

3.2.4 Corticosterone assay 

Corticosterone is the principle glucocorticoid secreted by the adrenal cortices of mice 

(Shimizu et al., 1983). Glucocorticoid (cortisol in humans and corticosterone in most 

laboratory rodents) exerts potent actions in the brain, influencing brain function by either 

shutting off the response of the hypothalamic-pituitary-adrenal (HPA) axis to stress or 

modulating behavioral states such as mood and emotion and cognitive functions such as 

learning and memory (Yu et al., 2008). Corticosterone concentrations were measured by 

radio immunoassay (RIA; DGR Instruments GmbH, Germany). Briefly, 100 μL of unlabeled 

corticosterone standards at the concentrations 25, 50, 100, 250, 500, and 1000 ng/ml, or 

1:200 diluted plasma samples, were mixed with 200 μL 125I-labeled corticosterone. A 

limited amount of anti-corticosterone was added to react with both labeled and unlabeled 

corticosterone. As the amount of antigen added increases, the fraction of labeled antigen 

bound to the antibody decreases correspondingly. After precipitating all antibody-bound 

antigen, the radioactivity was counted in a gamma counter.  

3.2.5 GO and KEGG analysis 

Quantified proteins were sorted by log2 ratio in ascending order and divided into five bins 

with log2 ratios of -1.0, -0.5, 0.5, 1.0. The GO analysis (Ashburner et al., 2000) was 

processed with the methods described previously (Pan et al., 2009) by using R (Team, 2009) 

and the GOstats (Falcon and Gentleman, 2007) package. Briefly, for each bin the P values 

for each GO category were calculated with the conditional hypergeometric test by using 

the quantitative proteome as a background. After obtaining the P value for each category 

and bin, GO categories were filtered on the basis of their P values. Categories with no 

significant enrichment (P < 0.05) in any bin were filtered out. Those categories that after 

filtering did not have a P value for a bin were provided a conservative P value of 1. Finally, 

the P values were transformed with the equation x = -log10 P, and the z-scores were 

calculated by [x-mean(x)]/sd(x). For the KEGG analysis (Kanehisa et al., 2004), the mouse 
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proteins were mapped to the KEGG ortholog level. This allows an interspecies comparison 

for further investigations. Afterwards, the hypergeometric test was calculated by using R. 

The background of the test was set to all mouse proteins in KEGG with at least one 

pathway entry (3319). Similar to the GO analysis, the P values were transformed into 

z-scores. 

3.2.6 Western blot analysis 

MS-based quantitative proteomics has quantified a number of proteins expressed 

differentially in 14N-HAB/15N-HAB, 14N-HAB/15N-NAB, and 14N-LAB/15N-NAB comparisons. 

Relative protein levels of several selected proteins were analyzed by Western blot. Protein 

mixtures with equal protein content (10-30µg) were first resolved by SDS-PAGE. 

Subsequently, the separated proteins were transferred onto polyvinylidene fluoride (PVDF) 

membranes. Western blot analysis was performed with several selected antibodies. The 

membranes were then incubated with HRP-conjugated secondary antibody. ECL system 

and film were used for membrane visualization. ECL images were quantified by 

QuantityOne software (BioRad). 

3.2.7 Metabolomics 

The metabolomic analyses shown in this thesis were processed at the ‘Metabolomics Core’ 

of the University of California, Davis, CA, USA (Dr. Vladimir Tolstikov).  

3.2.7.1 Sample preparation 

Six mice from each animal line were employed in metabolic studies. 

The plasma samples were prepared by using the method described previously (Fiehn and 

Kind, 2007). Briefly, the plasma proteins were precipitated, and the metabolite extraction 

was obtained. An aliquot of plasma extract was dried down, and the other aliquots were 

frozen for recording purposes. The plasma was derivatized by first adding methoxyamine 

in an aprotic basic solvent and then adding a trimethylsilylating agent. The derivatized 

sample was analyzed by direct thermodesorption GC-TOF. 

The brain tissue samples were prepared as follows: First, the extraction solution was 

prepared by mixing acetonitrile, isopropanol, and water in the volume proportion 3:3:2. 

The pH of acetonitrile and isopropanol (pH7) was checked using wetted pH paper. The 

extraction solution mix was rinsed with small bubbles of argon for 5 min. The Argon line 
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was flushed out of air before being used for degassing the extraction solvent solution. The 

extraction solution was pre-cooled at -18°C to -22°C. Eppendorf tubes with two metal balls 

(3 mm diameter) containing frozen mouse brain samples were placed in a freezer 

pre-chilled to -80°C or with liquid nitrogen Eppendorf-holder of the grinder. Immediately 

afterwards the Eppendorf tubes were put back in liquid nitrogen. 10-50 mg of frozen 

mouse brain (hippocampus) was homogenized with 500-2.500 μl (or aliquot according to 

sample aliquot) extraction solution mix for 45 s in 25 ml conical polypropylene tubes in the 

homogenizer Tissue Master 125. The homogenate was centrifuged at 2500 rpm for 5 min. 

An aliquoted 250 or 500 μl of supernatant was evaporated in the Labconco Centrivap cold 

trap concentrator to complete dryness. The dried residue was then re-suspended with 500 

μl of acetonitrile : water (1:1 v/v) mixture and centrifuged for 2 min at 14000 rcf in the 

centrifuge Eppendorf 5415 D. The clear supernatant was for GC-TOF-MS analysis. Samples 

were dried in the Labconco Centrivap cold trap concentrator to complete dryness and, 

once dried, stored in darkness under argon. The dried samples were then derivatized for 

GC/MS profiling. Methyl oxime derivatives were produced by dissolving the dry extracts in 

20 μL freshly prepared omethylhydroxylamine·HCl (40 mg/mL in pyridine) and incubated 

at 30°C for 90 min while being shaken continuously. Subsequent trimethyl silylation was 

achieved by adding 80 μL of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), 

followed by continuous shaking for 30 min at 37°C. 

3.2.7.2 GC-MS data acquisition 

GC-TOF-MS analysis was performed by using an Agilent 6890 N gas chromatograph (Palo 

Alto, CA, USA) interfaced to a time-of-flight (TOF) Pegasus III mass spectrometer (Leco, St. 

Joseph, MI, USA). The mass spectrometer first was tuned according to the manufacturer’s 

manuals to achieve optimal parameters for ion lenses, detector voltage, and other settings. 

Automated injections were performed with a programmable robotic Gerstel MPS2 

multipurpose sampler (Mülheim an der Ruhr, Germany). The gas chromatograph (GC) was 

fitted with both an Agilent injector and a Gerstel temperature-programmed injector, a 

cooled injection system (model CIS 4) with a Peltier cooling source. An automated liner 

exchange (ALEX), designed by Gerstel, was used to eliminate cross-contamination from the 

sample matrix between sample runs. Multiple baffled liners for the GC inlet were 

deactivated with 1 μL injections of MSTFA. One microliter of each sample was injected in 

splitless mode, depending on the metabolite concentrations and eventual signal-to-noise 

ratios in the GC-MS profiles. The Agilent injector temperature was held constant at 250°C 

while the Gerstel injector was programmed (initial temperature 50°C, hold 0.1 min, 
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increased at a rate of 10°C/s to a final temperature of 330°C, hold time 10 min). Injections 

of 1 μL were made in split (1:5) mode (purge time 120 s, purge flow 40 ml/min). 

Chromatography was performed on an Rtx-5Sil MS column (30 m × 0.25 mm i.d., 0.25 μm 

film thickness) with an Integra-Guard column (Restek, Bellefonte, PA, USA). Helium carrier 

gas was used at a constant flow of 1 mL/min. The GC oven temperature program had an 

initial temperature of 50°C, with a 1 min hold time, and was ramped at 20°C/min to a final 

temperature of 330°C with a 5 min hold time. Both the transfer line and source 

temperatures were 250°C. The Pegasus III TOF (Leco, St. Joseph, MI, USA) mass 

spectrometer ion source operated at -70 kV filament voltage with ion source. After a 

solvent delay of 350 s, mass spectra were acquired at 20 scans per second with a mass 

range of 50 to 500 m/z. 

3.2.7.3 Data analysis 

The data were processed according to the methods described previously (Zou and Tolstikov, 

2008). The Xconvert program included in Xcalibur was used to convert the Xcalibur (*.raw) 

files to netCDF (*.cdf) format. Automatic peak finding, deconvolution, and alignment were 

performed using XCMS running on the open statistical platform R. Preliminary data were 

explored by unsupervised methods such as principle component analysis (PCA) and 

clustering. For PCA, a scree plot (to show the optimal number of eigenvalues), a score plot 

(to show the most important principal components and visually detect clusters), and a 

loading plot (to show positive and negative correlations of components) were included for 

each analysis by using the R package pcaMethods in the Bioconductor project. Cluster 

analysis of the PCA scores was performed with partitioning methods such as K-means 

using the function kmeans() in R package stats; hierarchical agglomerative methods such 

as Ward's method using the function hclust() in R package stats; multiscale bootstrap 

resampling using R package pvclust; and the model-based clustering approach using R 

package mclust, which assumes a variety of data models. Maximum likelihood estimation 

and Bayes criteria were applied to identify the most likely model and number of clusters. 

All calculations were performed in an R integrated development environment (IDE), 

RKWard, under Kubuntu 7.10, a Debian Linux operating system, on a quad core Dell 

OptiPlex 755 workstation (4 x 3.0 GHz CPU speed, 2 x 4 MB L2 cache, 8 GB RAM). The 

current versions of Kubuntu, R, Bioconductor, XCMS, pcaMethods, stats, pvclust, mclust, 

GALGO, and RKWard are free open source softwares (FOSS). 
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The MarkerView 1.1 Software (Applied Biosystems/MDS Sciex, Concord, Ontario, Canada) 

allows data from several samples to be compared so that differences can be identified. 

Typical applications include metabolomics, biomarker discovery, metabolite identification, 

impurity profiling, etc. In the current study, this software was used for data analysis in 

conjunction with the techniques described above. The program uses multivariate analysis 

techniques to compare samples and provides both supervised and unsupervised methods. 

Supervised methods use prior knowledge of the sample groups (for example, 

affected/altered vs. control) to determine the variables that distinguish the groups. In 

contrast, unsupervised methods allow the structure within the data to be determined and 

visualized. The two approaches can be combined, i.e. unsupervised methods can be used 

to determine the groups, and then supervised methods can be used to confirm the 

important variables. 

3.2.8 Pathway analysis 

The interactions between protein-protein, protein-metabolite, and metabolite-metabolite 

were analyzed with the software Pathway Studio (Ariadne Inc., MD). The differentially 

expressed proteins (>2 fold change, 2 out of 3 replicates, 10 peptides) and metabolites 

(P < 0.05) were uploaded and converted to the synonymous names compatible with the 

software database. The direct interactions among different entities were mapped by 

Pathway Studio. The confidence of each interaction can be evaluated by the number of 

references providing evidence. The enrichment of a sub-network can be calculated 

regarding any functional group. The enrichment of each Gene Ontology category was also 

obtained. Specific networks were generated for different purposes. 
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3.3 Results 

3.3.1 Animal experiments 

3.3.1.1 Bacterial diet feeding 

No discernible health effects were observed in the animals fed the bacterial diet compared 

with those fed a standard diet. After pregnancy detection, 4 days of free-choice feeding 

between the standard and bacterial diets provided enough time for animals to adapt 

gradually to the change of diet.  

Before weaning, no differences in overall food consumption were observed between dams 

and the offspring in any mouse line or diet. However, the animals fed bacterial diet 

showed lower body weights than the animals fed with standard chow (Figure 10). The 

reason for the lower body weight could be the different protein sources and nutritional 

composition of the two diets.  

 

Figure 10. Weight gain after weaning of animals fed with a bacterial or standard diet. 

Compared to standard-fed HAB animals (orange dotted line), bacterial-fed animals 

(red line) had gained less body weight at different developmental time points 

(++p<0.01 bacterial vs. control). 
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Figure 11. Anxiety-related behavior at post natal day 5 in the ultrasonic vocalization test 

(USV).  

3.3.1.2 Behavior test 

3.3.1.2.1 Ultrasonic vocalization (USV) 

The ultrasonic vocalization test (UVT) at PND 5 was used to predict the anxiety level at an 

early developmental stage. The HAB mice emitted significantly more ultrasound 

vocalization than the LAB mice. The ultrasound vocalization of the NAB mice was between 

that of the HAB and LAB mice (Figure 11). The USV results do not show a significant 

isotopic effect of the 15N/14N bacterial diet on any of the animal lines (Figure 11). The 

15N-fed NAB mice had a slightly higher USV level than the 14N–NAB mice; however, both 

were still within the control range. When compared with the USV data acquired from the 

animals fed the standard diet (Figure 11 b), the USV phenotypes of the different anxiety 

mouse lines did not demonstrate an effect of the bacterial diet. 
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3.3.1.2.2 Tail suspension test (TST) 

 

Figure 12. Depression-like behavior in the tail suspension test (TST). 

The tail suspension test (TST) evaluates the level of depression-like behavior. Independent 

of gender (separate data not shown), LAB mice displayed significantly less immobility time 

than HAB and NAB animals in the TST (Figure 12). However, a difference was observed 

between 15N- and 14N-fed HAB mice. The 15N diet showed an antidepressant-like effect, 

and HAB mice fed 15N had significantly less immobility time in the TST, implying a lower 

level of passivity in a hopeless situation. The comparison between the animals fed the 

standard diet and those fed the bacterial diet indicated that the group of 15N-fed HAB mice 

was the only one whose TST behavior was affected significantly by 15N feeding (Figure 12b), 

whereas 15N-HAB animals still showed considerably more depression-like behavior than 

LAB animals. All the other groups demonstrated constant TST behavior, indicating that 

there were no isotopic or dietary effects. Another 15N-labeled diet based on Spirulina 

protein has shown a similar effect on depression-like behavior in HAB mice (Frank et al., 

2009). Therefore, this effect appears to be diet independent. Since the 14N and 15N diets 
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are supposed to have identical ingredients, except for the nitrogen form, the reason for 

the TST variation between 14N- and 15N-HAB mice must be related to the 15N isotope. 

Although the phenotype we observed can involve a combination of different factors, the 

known factor in this study is the 15N isotope; hence, we assume that an isotope effect 

exists and that it can affect both animal behavior and protein expression. 

In order to avoid this isotope effect, an indirect comparison strategy was employed to 

analyze the protein expression differences between HAB and LAB mice (Figure 9).  

3.3.1.2.3 Elevated plus maze (EPM) 

 

Figure 13. Anxiety-related behavior and locomotion on the elevated plus maze (EPM).  

Elevated plus maze (EPM) data (percentage of time spent on the open arms) were used to 

evaluate the anxiety-like behavior level. As shown in Figure 13, the HAB mice spent less 

than 10% of the total testing time on the open arms of the EPM; by contrast, the LAB mice 

spent more than 50% of the time on an open arm. The time spent by NAB mice on an 

open arm was between that of the other two groups. Compared to mice fed the standard 
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diet, neither the anxiety behavior nor the locomotion of the EPM phenotypes (Figure 13b) 

were affected by either the bacterial diet or 15N isotope. 

3.3.2 Quantitative proteomics 

3.3.2.1 15N Incorporation rates 

The 15N incorporation rates in brain and plasma were determined on the basis of the 

peptides and proteins quantified by QuantiSpc. Figure 14 shows how incorporation rates 

increased during 15N feeding. The peptides mixed 1:1 were analyzed by MALDI-TOF; the 

mass spectra of tryptic peptides LGEYGFQNAILVR from plasma albumin (Figure 14a) and 

IWHHTFYNELR from brain beta actin (Figure 14b) are shown in Figure 14. In both cases, 

the 15N isotopic envelopes moved to the higher mass range during 15N labeling, indicating 

an increase in the 15N incorporation rate. By PND of sacrifice, day 56, the incorporation 

rates in both brain and plasma had reached over 90% (Figure 14c), which is sufficient for 

sensitive and accurate quantification by mass spectrometry. 
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Figure 14. 15N incorporation rate changes during 15N labeling. a: Tryptic peptide 

LGEYGFQNAILVR derived from mouse plasma albumin; b: Tryptic peptide IWHHTFYNELR 

derived from brain beta actin; c: The average 15N incorporation rate on different labeling 

days  

3.3.2.2 Glyoxalase-I in blood cells and brain 

Glyoxalase-I (Glo1) previously was identified and quantified by two-dimensional gel 

electrophoresis (2-DE) in both brain and red blood cells as a protein that is expressed 

differentially between HAB and LAB mice (Kromer et al., 2005) (Figure 15a), which was 

also confirmed by Western blot (Figure 15b). However, because of the technical limitations 

of the 2-DE platform mentioned in the introduction above, Glo1 was one of only a few 

protein candidates found by 2-DE to be differentially expressed between HAB and LAB.  

The SILAM labeling approach has given a much deeper insight into the proteome 

differences between HAB and LAB. A greater number of proteins were found to have 
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altered expression levels. Glo 1 was used to evaluate whether SILAM gives the same 

results as 2-DE. Our 14N-HAB/15N-HAB comparison showed that Glo 1 expression was not 

influenced by 15N isotopic feeding. Therefore, the 15N-HAB/14N-LAB red blood cells were 

used for direct comparison of Glo 1 expression, and HAB/LAB hippocampi were compared 

by using the indirect approach. Figure 15c shows the red blood cell Glo 1 tryptic peptide 

from three different biological replicates. In all instances, the LAB mice have a higher 

expression level than the HAB mice. Figure 15d shows the results of the HAB/LAB indirect 

comparison for tryptic peptide GLAFIQDPDGYWIEILNPNK. The left panel of Figure 15d 

illustrates that the expression levels of Glo 1 are quite comparable in HAB and NAB mice. 

However, the NAB and LAB comparison, shown in the right panel, reveals that the LAB 

mice have a higher expression level of Glo 1. By combining the two comparisons, one can 

conclude that HAB mice have a lower protein expression level than LAB mice. In summary, 

SILAM quantification results from both brain and red blood cells closely agree with 

previous 2-DE experiments.  
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Figure 15. Quantification of glyoxalase-I in red blood cells and brain. a: 2-DE 

quantification; b: Western blot quantification; c: Direct comparison between HAB and LAB 

blood cell Glo1; d: Indirect comparison between HAB and LAB hippocampal Glo1. 
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3.3.2.3 HAB/NAB and LAB/NAB comparison in cytosol and microsomes 

HAB/NAB and LAB/NAB hippocampal cytosol comparisons generated quantitative results 

for 2273 and 1962 proteins, respectively. In total, 2761 proteins were quantified by at least 

one experiment; 1509 proteins were quantified by both HAB/NAB and LAB/NAB 

experiments and used for the subsequent HAB/LAB indirect comparison. Of these 

quantified proteins, 230 were found to be expressed differentially (2 fold change, 2 out 

of 3 replicates, 10 peptides) in HAB and LAB hippocampal cytosol (Supplementary table 

1). 

HAB/NAB and LAB/NAB hippocampal microsome comparisons generated quantitative 

results for 2545 and 1956 proteins, respectively. In total, 3284 proteins were quantified by 

at least one experiment; 1254 proteins were quantified by both HAB/NAB and LAB/NAB 

experiments and used for the subsequent HAB/LAB indirect comparison. Of these 

quantified proteins, 143 were found to be expressed differentially (2 fold change, 2 out 

of 3 replicates, 10 peptides) in HAB and LAB hippocampal microsome (Supplementary 

table 2). 

The correlation between hippocampal protein regulation and KEGG pathways is shown in 

Figure 16, and between hippocampal protein regulation and GO cellular component in 

Figure 17. The pathways and categories enriched with proteins from the first and fifth bins 

are of great interest, since they show a change between HAB and LAB. Notably, synapse 

proteins are enriched in the first bin, implying a role of synapses in psychiatric disorders. 

3.3.2.4 HAB/NAB and LAB/NAB comparison in plasma 

HAB/NAB and LAB/NAB plasma comparisons generated quantitative results for 640 and 

647 proteins, respectively. In total, 974 proteins were quantified by at least one 

experiment; 355 proteins were quantified by both HAB/NAB and LAB/NAB experiments 

and used for the subsequent HAB/LAB indirect comparison. Of these quantified proteins, 

48 were found to be expressed differentially (2 fold change, 2 out of 3 replicates, 10 

peptides) in HAB and LAB plasma (Supplementary table 3). 
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Figure 16. Correlation between hippocampal protein regulation and KEGG pathways. The 

blue boxes at the top show protein regulation factors between HAB and LAB mouse lines. 

Proteins were divided into five bins and analyzed with respect to KEGG pathways. P values 

were transformed to z-scores, indicating bin-specific enrichments. (Due to the limited 

resolution the pathway names on the right are not legible; higher resolution figure is 

available in electronic file.)  
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Figure 17. Correlation between hippocampal protein regulation and GO cellular 

component. The blue boxes at the top show protein regulation factors between HAB and 

LAB mouse lines. Proteins were divided into five bins and analyzed with respect to GO 

cellular component categories. P values were transformed to z-scores, indicating 

bin-specific enrichments. (Due to the limited resolution the category names on the right 

are not legible; higher resolution figure is available in electronic file.)  
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3.3.2.5 Isotope effects: HAB/HAB comparison in cytosol and plasma 

The 14N-HAB/15N-HAB hippocampal cytosol comparison generated quantitative results for 

2969 proteins. Of those quantified proteins, 39 were found to be expressed differentially 

(2 fold change, 2 out of 3 replicates, 10 peptides) in 14N- and 15N-HAB hippocampal 

cytosol (Supplementary table 4). 

The correlation between hippocampal protein regulation and KEGG pathways is shown in 

Figure 18. It is clear that most of the protein population enrichments are in the 

intermediate bin, indicating a consistent expression level between 14N- and 15N-HAB. 

Notably, the pathway “long−term depression” is enriched with proteins from the second 

bin, implying differences in this pathway between 14N- and 15N-HAB, which is in 

accordance with the finding of the isotope effects on depression-like behavior.  

A similar analysis was performed for GO cellular component (Figure 19). Several categories, 

such as neurofilament, synaptosome, axon, and myelin sheath—which are highly relevant 

to psychiatric disorders—were found to be enriched in the fourth bin, indicating a 

difference between 14N- and 15N-HAB.  

The 14N-HAB/15N-HAB plasma comparison generated quantitative results for 788 proteins. 

Of these quantified proteins, 51 were found to be expressed differentially (2 fold change, 

2 out of 3 replicates, 10 peptides) in 14N- and 15N-HAB plasma (Supplementary table 5). 

3.3.2.6 HAB/NAB indirect comparison in cytosol and plasma 

14N-HAB/15N-HAB and 14N-HAB/15N-NAB hippocampal cytosol comparisons generated 

quantitative results for 2969 and 2273 proteins, respectively. In total, 3376 proteins were 

quantified by at least one experiment; 1906 proteins were quantified by both HAB/NAB 

and LAB/NAB experiments and used for the subsequent HAB/LAB indirect comparison. Of 

these quantified proteins, 132 were found to be expressed differentially (2 fold change, 

2 out of 3 replicates, 10 peptides) in HAB and NAB hippocampal cytosol 

(Supplementary table 6).  

14N-HAB/15N-HAB and 14N-HAB/15N-NAB plasma comparisons generated quantitative 

results for 659 and 640 proteins, respectively. In total, 1090 proteins were quantified by at 

least one experiment; 276 proteins were quantified by both HAB/NAB and LAB/NAB 

experiments and used for the subsequent HAB/LAB indirect comparison. Of these 
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quantified proteins, 53 were found to be expressed differentially (2 fold change, 2 out 

of 3 replicates, 10 peptides) in HAB and NAB plasma (Supplementary table 7). 

 

Figure 18. Correlation between hippocampal protein regulation and KEGG pathways. The 

blue boxes at the top show protein regulation factors between 14N- and 15N-HAB. Proteins 

were divided into five bins and analyzed with respect to KEGG pathways. P values were 

transformed to z-scores, indicating bin-specific enrichments. (Due to the limited resolution 

the pathway names on the right are not legible; higher resolution figure is available in 

electronic file.)  
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Figure 19. Correlation between hippocampal protein regulation and GO cellular 

component. The blue boxes at the top show protein regulation factors between 14N- and 

15N-HAB. Proteins were divided into five bins and analyzed with respect to GO cellular 

component categories. P values were transformed to z-scores, indicating bin-specific 

enrichments. (Due to the limited resolution the category names on the right are not 

legible; higher resolution figure is available in electronic file.)  
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3.3.3 Corticosterone assay 

The protein corticosteroid-binding globulin (CBG, IPI00116105) showed an expression 

difference between 14N- and 15N-HAB in plasma (Figure 25). CBG is the major transport 

protein for glucorticoids and progestins in the blood. Therefore, corticosterone 

concentrations were investigated in 14N- and 15N-HAB plasma. The free corticosterone was 

analyzed after filtering out binding corticosterone by ultrafiltration. The 15N-HAB mice 

showed significantly higher total corticosterone concentrations (Figure 20 a, P = 0.0182) 

and free corticosterone concentrations (Figure 20b, P = 0.0271) than 14N-HAB mice. 

 

Figure 20. Plasma corticosterone assay. a: Total corticosterone concentrations in 14N- and 

15N-HAB plasma; the 15N mice have a significantly higher level of corticosterone than the 

14N mice (P =0.0182); b: Free corticosterone concentrations in 14N- and 15N-HAB plasma; 

the 15N mice have a significantly higher level of corticosterone than the 14N mice (P = 0. 

0271) 

3.3.4 Western blot validation 

Western blot analyses were performed for several selected proteins to verify our 

MS-based quantitative data with a different strategy. Previous discussions (Mann, 2008) 

and empirical experience have indicated that the sensitivity of Western blot analysis relies 

largely on the specificity and reactivity of the commercial antibody. Moreover, a large 

number of experiments have shown that MS-based quantification in general is more 

sensitive than Western blot. Hence, the success rate of Western blot validation depends 

on the quality of the antibody, and we did not expect a 100% success rate. 

3.3.4.1 14N-HAB vs. 15N-HAB 



Results 

54 

3.3.4.1.1 Hippocampus 

Neurofascin (IPI00329927) is an axonal member of the L1 subgroup of the immunoglobulin 

superfamily and is implicated in neurite extension in the course of embryonic 

development. The MS-based data showed a significant increase in protein expression in 

14N-HAB mice (Figure 21a). However, the findings could not be validated by Western blot 

analysis, i.e. the difference between 14N- and 15N-HAB was not found on a global level. 

However, if we focus only on the individual animals analyzed by mass spectrometry 

(marked with a star), the 14N-HAB mice showed a tendency towards a higher level of 

neurofascin (Figure 21b). Besides the uncontrolled quality of the antibody, individual 

biological variance represents another challenge in validating MS results by Western blot. 

Neurofilaments, including neurofilament heavy polypeptide (Nefh, IPI00114241), are 

found specifically in neurons. Some studies have shown that Nefh can impair spatial 

learning and neuritis (Lalonde and Strazielle, 2003; Liberski et al., 1995). The MS-based 

data showed a significant protein expression increase in 14N-HAB mice (Figure 22a). 

However, the finding could not be validated by Western blot analysis, i.e. the difference 

between 14N- and 15N-HAB was not found on a global level. Similar to neurofascin, the 

individual 14N-HAB animals analyzed by mass spectrometry also demonstrated a tendency 

towards an elevated expression of Nefh in Western blot analysis compared to the 15N-HAB 

mice (Figure 22b). This protein appears also to show individual biological variance. 
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14N HAB                             15N HAB 

b 

 

c 

14N HAB 

15N HAB 

Figure 21. Quantification of 14N-HAB/15N-HAB neurofascin (IPI00329927) by mass 

spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N and 15N 

tryptic peptide GPEPDTIIGYSGEDLPSAPR; the peak areas are used for the 14N/15N signal 

quantification; b: The Western blot analysis of neurofascin for 14N- and 15N-HAB; bands 

marked with a star are from the animals that were used also for MS analysis; unlabeled bands 

are from the animals that were analyzed only by Western blot; c: The densities of protein 

bands from Western blot (b) are shown; a t test was performed to compare the 14N and 15N 

groups (P = 0.1967). 
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a 

14N HAB                                15N HAB 
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c 

14N HAB 

15N HAB 

Figure 22. Quantification of 14N-HAB/15N-HAB neurofilament heavy polypeptide (Nefh, 

IPI00114241) by mass spectrometry and Western blot. a: Eluted chromatographic profiles for 

both 14N and 15N tryptic peptide HQADIASYQDAIQQLDSELR; the peak areas are used for the 

14N/15N signal quantification; b: The Western blot analysis of Nefh for 14N- and 15N-HAB; bands 

marked with a star are from the animals that were used also for MS analysis; unlabeled bands 

are from animals that were analyzed only by Western blot; c: The densities of protein bands 

from Western blot (b) are shown; a t test was performed to compare the 14N and 15N groups 

(P = 0.2509). 
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3.3.4.1.2 Plasma 

The endogenous function of major urinary protein 3 (MUP3, IPI00120832) within an 

animal is still unknown, but may involve regulating energy expenditure. The MS-based 

data showed a significant protein expression increase in 14N-HAB mouse plasma (Figure 

23a). The same change was also found by Western blot analysis (Figure 23b and c). Some 

other proteins from the same subfamily have also been quantified by MS and found 

differentially expressed between 14N- and 15N-HAB (MUP2, MUP4, MUP5). 

Complement C5 (C5, IPI00330833) is involved in the complement system, a biochemical 

cascade that complements the ability of antibodies to clear pathogens from an organism. 

The complement system has been found to be relevant to many diseases, particularly 

those of the central nervous system, such as Alzheimer's disease and other 

neurodegenerative conditions (McGeer and McGeer, 2001; Mukherjee and Pasinetti, 

2000). The MS-based data showed a significant protein expression increase in 14N-HAB 

mouse plasma (Figure 24a). The same change also was found in Western blot analysis 

(Figure 24b and c). Some other proteins from the same subfamily also have been 

quantified by MS as proteins expressed differentially between 14N- and 15N-HAB, including 

C6, C8, and C9. 

Corticosteroid-binding globulin (CBG, IPI00116105) is the major transport protein for 

glucocorticoids and progestins in the blood of almost all vertebrate species. CBG and 

glucocorticoids have been found to be relevant to psychiatric diseases (de Kloet et al., 

2007; Maes et al., 1996). The MS-based data showed a significant protein expression 

increase in 15N-HAB mouse plasma (Figure 25a). The same change also was found in 

Western blot analysis (Figure 25b and c). 
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14N HAB    15N HAB             14N HAB                 15N HAB 

15N HAB 

14N HAB 

Figure 23. Quantification of 14N-HAB/15N-HAB major urinary protein 3 (MUP3, IPI00120832) 

by mass spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N and 

15N tryptic peptide AGIYYMNYDGFNTFSILK; the peak areas are used for the 14N/15N signal 

quantification; b: The Western blot analysis of MUP3 for 14N HAB and 15N HAB; c: The densities 

of protein bands from Western blot (b) are shown; a t test was performed between the 14N and 

15N groups (P < 0.0001). 
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Figure 24. Quantification of 14N-HAB/15N-HAB complement C5 (C5, IPI00330833) by mass 

spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N and 15N tryptic 

peptide TDDPELPEENQASK; the peak areas are used for the 14N/15N signal quantification; b: The 

Western blot analysis of C5 for 14N-HAB and 15N-HAB; c: The densities of protein bands from 

Western blot (b) are shown; a t test was performed between the 14N and 15N groups (P < 

0.0001). 
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Figure 25. Quantification of 14N-HAB/15N-HAB corticosteroid-binding globulin (CBG, 

IPI00116105) by using mass spectrometry and Western blot. a: Eluted chromatographic 

profiles for both 14N and 15N tryptic peptide NTLISPVSISMALAMLSLSTR; the peak areas are used 

for the 14N/15N signal quantification; b: The Western blot analysis of CBG for 14N-HAB and 

15N-HAB; c: The densities of protein bands from Western blot (b) are shown; a t-test was 

performed between the 14N and 15N groups (P=0.0007). 
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3.3.4.2 HAB vs. LAB indirect comparison 

3.3.4.2.1 Hippocampus 

Several proteins (Transthyretin, Myosin, Carbonic anhydrase 2) that showed expression 

differences in the HAB/LAB hippocampal comparison were chosen for the Western blot 

analyses.  

Transthyretin (TTR, IPI00127560) is a serum and cerebrospinal fluid carrier of the thyroid 

hormone thyroxine (T4) and retinol. TTR has been reported previously to play important 

roles in both depressed patients (Sullivan et al., 1999) and suicide attempters (Schultz et 

al., 2008). In this HAB/LAB indirect comparison using MS data, HAB mice showed a higher 

expression level of TTR than LAB mice (Figure 26a and b). The same difference was found 

in Western blot analysis (Figure 26c and d), confirming the MS-based quantitative result.  

Myosin, heavy polypeptide 10 (Myh10, IPI00338604), is a member of the myosin family, a 

family of mostly motor proteins found in eukaryotic tissues. An earlier study showed that 

myosin can be controlled indirectly by excess glucocorticoids (Fukumoto et al., 2009), 

which are one of the main mediators of the stress reaction in the HPA axis. In this HAB/LAB 

indirect comparison using MS data, HAB mice showed a lower expression level of Myh10 

than NAB mice (Figure 27a and b). The same difference was found in Western blot analysis 

(Figure 27c and d), confirming the MS-based quantitative result. However, the LAB/NAB 

comparison could not be validated by Western blot. 

Carbonic anhydrase 2 (CA2, IPI00121534) catalyses the hydration of CO2 and the hydrolysis 

of esters. Complete absence of CA2 leads to mild mental retardation, cerebral calcification, 

osteoporosis, and renal tubular acidosis. For example, the inhibitor of carbonic anhydrase, 

topiramate, has been used to treat bipolar disorder, and topiramate often is used to 

augment psychotropics or to counteract the weight gain associated with numerous 

antidepressants (Arnone, 2005). In this HAB/LAB indirect comparison using MS data, HAB 

mice showed a higher expression level of CA2 than LAB mice (Figure 28a and b). The same 

difference was found in Western blot analysis (Figure 28c and d), confirming the MS-based 

quantitative result.  

  

http://en.wikipedia.org/wiki/Motor_proteins
http://en.wikipedia.org/wiki/Eukaryotic
http://en.wikipedia.org/wiki/Biological_tissue
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a                            b 

Figure 26．Quantification of HAB/LAB transthyretin (TTR, IPI00127560) by mass 

spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N-HAB 

and 15N-NAB tryptic peptide TSEGSWEPFASGK; b: Eluted chromatographic profiles for 

both 14N-LAB and 15N-NAB tryptic peptide TSEGSWEPFASGK; the peak areas are used for 

the 14N/15N signal quantification; c: The Western blot analysis of TTR for HAB, LAB, NAB; 

d: The densities of protein bands from Western blot (c) are shown; a t test was 

performed between groups (LAB vs. HAB: P = 0.0002; NAB vs. HAB: P = 0.0004) 
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Figure 27. Quantification of HAB/LAB Myosin, heavy polypeptide 10 (Myh10, IPI00338604), 

by mass spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N-HAB 

and 15N-NAB tryptic peptide DAAGLESQLQDTQELLQEETR; b: Eluted chromatographic profiles 

for both 14N-LAB and 15N-NAB tryptic peptide DAAGLESQLQDTQELLQEETR; the peak areas are 

used for the 14N/15N signal quantification; c: The Western blot analysis of Myh10 for HAB, LAB, 

NAB; d: The densities of protein bands from Western blot (c) are shown; a t test was 

performed between groups (NAB vs. HAB: P = 0.0009). 

a                            b 
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Figure 28. Quantification of HAB/LAB carbonic anhydrase 2 (CA2, IPI00121534) by mass 

spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N-HAB 

and 15N-NAB tryptic peptide AVQQPDGLAVLGIFLK; b: Eluted chromatographic profiles for 

both 14N-LAB and 15N-NAB tryptic peptide AVQQPDGLAVLGIFLK; the peak areas are used 

for the 14N/15N signal quantification; c: The Western blot analysis of CA2 for HAB, LAB, 

NA;. d: The densities of protein bands from Western blot (c) are shown; a t test was 

performed between groups (LAB vs. HAB: P = 0.0025; NAB vs. HAB: P = 0.0114). 
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3.3.4.2.2 Plasma 

As mentioned above, transthyretin (TTR, IPI00127560) is a serum and cerebrospinal fluid 

carrier of the thyroid hormone thyroxine (T4) and retinol. TTR is one of a few proteins 

found to be expressed differentially between HAB and LAB mice in both brain and plasma. 

In this HAB/LAB indirect comparison using MS data, HAB mice showed a higher expression 

level of TTR than LAB mice (Figure 29a and b). The same difference was found in Western 

blot analysis (Figure 29c and d) confirming the MS-based quantitative result. 

Serum amyloid P-component (SAP, IPI00309214) is a normal plasma constituent that has 

been found to be a biomarker for mild cognitive impairment and Alzheimer's disease 

(Nishiyama et al., 1996; Verwey et al., 2008; Yasojima et al., 2000). In this HAB/LAB indirect 

comparison using MS data, LAB mice showed a higher expression level of SAP than HAB 

mice (Figure 30a and b). The same difference was found in Western blot analysis (Figure 

30c and d), confirming the MS-based quantitative result.  
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Figure 29. Quantification of HAB/LAB transthyretin (TTR, IPI00127560) by mass 

spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N-HAB and 

15N-NAB peptide tryptic TAESGELHGLTTDEK; b: Eluted chromatographic profiles for both 

14N-LAB and 15N-NAB tryptic peptide TAESGELHGLTTDEK; the peak areas are used for the 

14N/15N signal quantification; c: The Western blot analysis of TTR for HAB, LAB, NAB; d: 

The densities of protein bands from Western blot (c) are shown; a t test was performed 

between groups (LAB vs. NAB: P < 0.0001; LAB vs. HAB: P < 0.0001; NAB vs. HAB: P = 

0.0015) 
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Figure 30. Quantification of HAB/LAB Serum amyloid P-component (SAP, IPI00309214) by 

mass spectrometry and Western blot. a: Eluted chromatographic profiles for both 14N-HAB 

and 15N-NAB tryptic peptide GRDNELLIYKEK; b: Eluted chromatographic profiles for both 

14N-LAB and 15N-NAB tryptic peptide GRDNELLIYKEK; the peak areas are used for the 

14N/15N signal quantification; c: The Western blot analysis of SAP for HAB, LAB, NAB; d: The 

densities of protein bands from Western blot (c) are shown; a t test was performed 

between groups (LAB vs. NAB: P = 0.0001; LAB vs. HAB: P = 0.0008) 

. 
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3.3.5 Metabolomics 

The data presented in this thesis kindly were analyzed by the ‘Metabolomics Core’ of the 

University of California, Davis, CA, USA (Dr. Vladimir Tolstikov). The results concerning the 

technical platform are presented with permission from Dr. Vladimir Tolstikov.  

3.3.5.1 Data processing 

GC-TOF-MS data were annotated prior to further analysis (Scholz and Fiehn, 2007). The 

GC-MS annotation procedure was automated and the data output generated as an Excel 

table (Scholz and Fiehn, 2007). Initial GC-TOF-MS peak detection and mass spectrum 

deconvolution were performed with ChromaTOF software (version 2.25, Leco). A reference 

chromatogram was defined that had a maximum of detected peaks over a signal/noise 

threshold of 20. This reference chromatogram was used for automated peak identification 

by means of mass spectral comparison to a standard NIST 05 library and in-house 

customized mass spectral libraries. Analytes spectra were searched against custom 

spectrum libraries and identified on the basis of the retention index and spectrum 

similarity match. A mixture of the retention time standards n-dodecane (RI 1,200), 

n-pentadecane (RI 1,500), n-nonadecane (RI 1,900), n-docosane (RI 2,200), n-octacosane 

(RI 2,800), n-dotriacontane (RI 3,200), and n-hexatriacontane (RI 3,600) was included in 

the final reagent volume (Wagner et al., 2003). Automated assignments of unique 

fragment ions for each individual metabolite were chosen as quantifiers and corrected 

manually where necessary. Relative quantification was performed on quantifiers with 

optimal selectivity. All known artifact peaks caused by column bleeding or phthalates and 

polysiloxanes derived from MSTFA hydrolysis were identified manually and removed from 

the results table. Since the purposes of the described studies were mainly clustering, 

classification, and prediction, metabolite annotation and identification were not required 

prior to data mining.  

GC-TOF-MS datasets were used after annotation. It is very important to search for and 

eliminate correlated variables introduced during sample preparation or as a result of the 

analytical methods, or both, especially for values close to the margins of measurements 

like overload, limits of detection, and background noise levels. Close proximity to these 

factors easily can generate false positive values characterized by a convincing P value that 

may not reflect the actual situation but rather the absence of the particular variable, 

which is not detected in a sample, or group of samples, since its level is below the current 

lower limit of detection of the instrument or method. When a biological question is 
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related to the highest variance in a dataset, PCA is a powerful technique to reduce, 

visualize, and explore dimensionality. 

Visualization methods often are the best way to discover interesting grouping information 

in data, whereas clustering methods provide mathematical rigor. Basically, there are three 

major categories of clustering methods: partitioning (clusters), hierarchical (trees), or 

probability model based (models). Partitioning methods map peaks into multiple 

disjointed clusters using a chosen criterion. K-means is the most popular partitioning 

method, although it requires the input of an initial clustering number. The K-means 

clustering algorithm chooses a pre-specified number of cluster centers to minimize the 

within-class sum of squares from those centers. Hierarchical methods construct a binary 

tree in which the root is a single cluster containing only one element and the leaves each 

contain only one element. A divisive tree is built top-down, and an agglomerative tree 

bottom-up. Recently, with the advances in methods, software, and interpretability of the 

results, probability model-based clustering methods have become increasingly popular. 

Probability modeling assumes that the data pool is a mixture with all of the labels lost and 

tries to find the most probable label for each data point. 

3.3.5.2 Plasma 

By using the strategy described previously, in mouse plasma 273 metabolites were 

detected, of which 94 compounds with a known chemical structure were identified. 

Concentrations of 31 known metabolites differed significantly (P < 0.05) between mouse 

lines (Table 2). For instance, the concentration of cholesterol in HAB plasma was much 

higher than in NAB and LAB plasma (Figure 31). Another metabolite that deserves 

attention is inositol. The HAB mice showed a higher level only for allo-inositol and not for 

other stereoisomers, such as myo-inositol (Figure 32). The PCA plots showed significant 

clustering and differentiation among groups (Figure 33). 

Table 2. Metabolite level comparisons (P < 0.05) in plasma between three mouse lines 

Metabolites P values 

HAB vs. LAB HAB vs. NAB LAB vs. NAB 

Threonic acid 0.003 0.040 0.968 

Pseudo uridine 0.002 0.688 0.001 

Malate 0.046 0.817 0.090 

Lysine 0.034 0.248 0.397 

Inositol myo- 0.002 0.785 0.005 
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Inositol allo- 0.045 0.079 0.864 

Indole-3-lactate 0.026 0.246 0.103 

Glutamic acid 0.000 0.299 0.004 

Fumaric acid 0.043 0.822 0.066 

Cholesterol 0.035 0.000 0.166 

Alanine 0.009 0.012 0.544 

3-hydroxypropionic acid 0.045 0.008 0.370 

3-hydroxy-3-methylglutaric acid 0.042 0.094 0.447 

Uric acid 0.180 0.110 0.012 

Tocopherol alpha 0.877 0.034 0.018 

Ornithine 4TMS 0.085 0.285 0.033 

Hydroxycarbamate 0.107 0.684 0.046 

Fructose 2 0.118 0.430 0.014 

Fructose 1 0.149 0.501 0.026 

Arabitol 0.223 0.207 0.023 

3,6-anhydrogalactose 0.992 0.057 0.023 

Valine 0.515 0.043 0.179 

Taurine 0.583 0.041 0.115 

Serine 0.357 0.027 0.395 

Pelargonic acid 0.516 0.045 0.208 

Methionine 0.118 0.003 0.215 

Leucine 0.368 0.029 0.192 

Isoleucine 0.707 0.037 0.096 

Glycine 0.495 0.029 0.098 

Ethanolamine 0.698 0.023 0.280 

1-monoolein 0.112 0.020 0.880 
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Figure 31. Variation of plasma cholesterol levels in the three mouse lines: 1,HAB; 2,LAB; 

3,NAB. 

  

a                            b 

Figure 32. Variation of plasma inositol levels in the three mouse strains: 1,HAB; 2,LAB; 

3,NAB. a: allo-inositol stereoisomer; b: myo-inositol stereoisomer 
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3.3.5.3 Hippocampus 

By applying our strategy to mouse hippocampi, 281 metabolites were detected, 129 of 

which were identified as having a known chemical structure. Concentrations of 14 known 

metabolites differed significantly (P < 0.05) between mouse lines (Table 3). For instance, 

the concentration of zymosterol, a cholesterol intermediate, was much higher in HAB brain 

than in LAB brain (Figure 34). The PCA plots showed significant clustering and 

differentiation among groups (Figure 35). 

  

a                              b 

Figure 33. PCA-DA scores and loading plots of the HAB, NAB, and LAB plasma metabolites. 

GC-TOF-MS data. a: Groups (HAB, NAB, LAB) are color coded as: 1, red: HAB; 2, green: LAB; 3, 

blue: NAB; the software MarkerView 1.0 was used; b: Loading plot showing resolved 

metabolites, annotated by BinBase (Scholz and Fiehn, 2007); chemical names are given for 

known metabolites; unidentified ones are labeled with numbers. (Due to the limited resolution 

the metabolite names are not legible; higher resolution figure is available in electronic file.) 
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Table 3. Metabolite level comparisons (P < 0.05) in hippocampi of the three mouse lines 

Metabolites P-values 

HAB vs. LAB HAB vs. NAB LAB vs. NAB 

1,2,4-benzenetriol 0.775  0.009  0.274  

2-hydroxybutanoic acid 0.032  0.756  0.007  

Dehydroascorbate 1 0.123  0.000  0.162  

Dehydroascorbate 3 0.132  0.000  0.186  

Ethanolamine 0.804  0.010  0.121  

FAD 0.128  0.001  0.389  

Fucose 1 + rhamnose 2 0.019  0.009  0.217  

Glycerol-beta-phosphate 0.365  0.012  0.143  

Inosine 0.128  0.556  0.042  

Palmitic acid butyl ester NIST 0.653  0.050  0.185  

Palmitoleic acid 0.101  0.046  0.573  

Threonic acid 0.067  0.048  0.269  

Xylose 1 0.297  0.008  0.327  

Zymosterol 0.914  0.038  0.079  

Figure 34. Variation of hippocampal zymosterol levels in the three mouse strains: 1,HAB; 

2,LAB; 3,NAB. 
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3.3.6 Pathway analysis 

The differentially expressed proteins and metabolites quantified from HAB/LAB/NAB mice 

as biomarker candidates were used to generate interaction maps with the Pathway Studio 

software. The proteins and metabolites were grouped on the basis of the Ariadne 

pathways, ontology (software built-in), GO cellular component, molecular function, and 

biological process. The P value of each biological event was calculated to assess the entity 

enrichment. Furthermore, sub-networks were created on the basis of the different target 

and interaction types. The enrichments also were assessed for statistical significance. 

Some of the top enriched categories are listed in Tables 4-11. Several well-known 

biological processes that may contribute to psychiatric disorders demonstrated high entity 

enrichments, such as oxidative stress, tricarboxylic acid cycle, glycinergic synaptic 

transmission, and long-term synaptic potentiation (LTP) (Figure 36). LTP is a critical neural 

process that likely underlies learning and memory formation (Bliss and Collingridge, 1993; 

Cooke and Bliss, 2006) and was another promising finding in this study. LTP has been well 

a                            b 

Figure 35. PCA-DA score and loading plots of the HAB, NAB, LAB hippocampal metabolites. 

GC-TOF-MS data. a: Groups (HAB, NAB, LAB) are color coded as: 4, purple: HAB; 5, green: LAB; 

6, red: NAB; the software MarkerView 1.0 was used; b: Loading plot showing resolved 

metabolites, annotated by BinBase (Scholz and Fiehn, 2007); chemical names are given for 

known metabolites ; unidentified ones are labeled with numbers. (Due to the limited 

resolution the metabolite names are not legible; higher resolution figure is available in 

electronic file.) 
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studied in neurodegenerative diseases, such as Alzheimer's disease (Rowan et al., 2003). It 

also has been found to influence anxiety (Marsch et al., 2007; Walther et al., 1998).  

Ariadne pathway and ontology analyses revealed several pathways that are significantly 

enriched with proteins and metabolites expressed differentially between animal lines 

(Table 4-5). These pathways may provide new insights into disease pathobiology. The 

tricarboxylic acid cycle (TCA cycle) showed a high entity enrichment in both the Ariadne 

Metabolic Pathways and ontology (Table 4-5) analyses. Twenty-five percent of the total 

ontology entities involved in the TCA cycle were found to be differentially expressed 

between the three mouse lines (Table 5, Figure 36d), indicating an important role of 

energy metabolism in anxiety.  

The notch pathway resulting from the Ariadne Signaling Pathways demonstrated a high 

entity enrichment (Table 6), implying its potential function in psychiatric disorders. The 

Notch signaling pathway is a highly conserved cell-signaling system present in most 

multicellular organisms (Artavanis-Tsakonas et al., 1999) and is very important for cell-cell 

communication as well as neuronal function (Gaiano and Fishell, 2002) and many diseases 

(Radtke et al., 2010; Tao et al., 2010). Some other pathways or ontologies, such as axon 

guidance, also have been found potentially to be involved in anxiety (Table 6). 
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Table 4. Ariadne metabolic pathways with P < 0.05 

Name 
Number of 
Entities 

Percent 
Overlap 

P value 

Tricarboxylic acid cycle 69 15 8.16E-06 
Branched chain amino acids metabolism 127 11 3.68E-05 
Serine and glycine metabolism 95 9 2.99E-03 
Ser/Gly/Thr/Cys metabolism 183 6 1.29E-02 
Folate biosynthesis 73 8 2.85E-02 
Bile acids metabolism 104 6 4.80E-02 

 

Oxidative stress                   Glycinergic synaptic transmission 

Long term synaptic potentiation               Tricarboxylic acid cycle 

Figure 36. Pathways enriched with proteins and metabolites. (Due to the limited resolution 

the protein/metabolite names are not legible; higher resolution figure is available in 

electronic file) 
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Table 5. Ariadne ontology with the 15 most significant P values. 

Name 
Number of 
Entities 

Percent 
Overlap 

P value 

Tricarboxylic acid cycle 39 25 1.21E-09 
Branced aminoacid metabolism 46 21 6.93E-09 
Actin-based cytoskeleton assembly 202 7 3.75E-06 
Actomyosin based movement 72 12 5.52E-06 
Microtubule sliding 156 7 2.54E-05 
ER to Golgi transport 47 12 1.89E-04 
ROCK1-2 2 100 3.26E-04 
Lipid transport 55 10 4.53E-04 
Asp/Lys/Thr/Met/Cys metabolsm 39 12 6.46E-04 
PAK 3 66 9.68E-04 
Protein folding 88 7 1.06E-03 
Aromatic aminoacid metabolism 125 6 1.93E-03 
Ubiquitin-dependent protein 
degradation 

166 5 3.20E-03 

Microtubule cytoskeleton assembly 148 5 5.45E-03 
PP2A 7 28 6.46E-03 

 

Table 6. Ariadne signaling pathways with the 10 most significant P values. 

Name 
Number of 
Entities 

Percent 
Overlap 

P value 

Notch pathway 1486 4 2.61E-06 
B-cell activation 1178 4 1.97E-05 
Insulin action 905 4 2.38E-05 
EphrinR -> actin signaling 216 7 3.21E-05 
Actin cytoskeleton regulation 539 5 4.77E-04 
T-cell activation 1100 4 5.47E-04 
Adipocytokine signaling 780 4 4.05E-03 
TNFRSF6 -> HSF1 signaling 15 20 5.96E-03 
EctodysplasinR -> AP-1 signaling 19 15 1.18E-02 
Axon guidance 1049 3 1.35E-02 

 

The GO biological process analyses revealed a number of categories that are significantly 

enriched with differentially expressed proteins and metabolites. The TCA cycle also was 

found as a “top hit” in this study (Table 7), confirming another result from Ariadne 

pathway analysis. Besides the TCA cycle, the fat metabolism-related categories, such as 

lipid transport (P = 5.65E-08), the cholesterol metabolic process (P = 9.17E-08), 

phospholipid efflux (P = 2.25E-07), cholesterol efflux (P = 1.66E-06), and the lipoprotein 

metabolic process (P = 3.56E-06), showed higher enrichments, indicating a potential 

correlation between fat metabolism and anxiety. Furthermore, proteins involved in 

oxidation reduction may play an important role in the response to oxidative stress, which 

is involved in many diseases, including many psychiatric disorders.  
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Table 7. Gene ontology biological process categories with the 20 most significant P 

values. 

Name 
Number of 
Entities 

Percent 
Overlap 

P value 

Metabolic process 858 4 1.43E-14 

Transport 1807 2 2.08E-08 

Lipid transport 94 10 5.65E-08 

Cholesterol metabolic process 75 12 9.17E-08 

Tricarboxylic acid cycle 24 25 1.44E-07 

Phospholipid efflux 14 35 2.25E-07 

Response to oxidative stress 137 8 2.26E-07 

Triglyceride metabolic process 33 18 1.09E-06 

Cholesterol efflux 20 25 1.66E-06 

Response to reactive oxygen species 22 22 2.77E-06 

Lipoprotein metabolic process 40 15 3.56E-06 

Cell motion 120 7 5.06E-06 

Response to axon injury 12 33 5.45E-06 

Acute-phase response 43 13 5.51E-06 

Protein transport 556 3 7.49E-06 

Intracellular protein transport 235 5 7.76E-06 

Response to carbohydrate stimulus 13 30 7.81E-06 

Anti-apoptosis 198 5 8.43E-06 

Interspecies interaction between 
organisms 

239 5 9.21E-06 

Oxidation reduction 702 2 1.86E-05 

 

The GO cellular component analyses indicated the localizations of proteins expressed 

differentially between HAB, NAB, and LAB mice (Table 8). Not surprisingly, cytoplasm had 

the largest number of proteins. The mitochondrial proteins also were more likely to differ 

between mouse lines; this is in accord with the findings on the TCA cycle because almost 

all the enzymes of the TCA cycle are located in the mitochondrial matrix. The TCA cycle 

first oxidizes acetyl-CoA to carbon dioxide and, in the process, produces reduced cofactors 

(three molecules of NADH and one molecule of FADH2) that are a source of electrons for 

the electron transport chain and a molecule of GTP that readily can be converted to ATP 

(Henze and Martin, 2003). 

The high-density lipoprotein particle and very-low-density lipoprotein particle were found 

to be highly enriched with differentially expressed proteins which is in agreement with GO 

biological process analysis, which found many differences in the expression of proteins 

related to fat metabolism. 

Another relevant group of proteins comes from axons, long, slender projections of a 
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neuron. Axons conduct electrical impulses away from the neuron's cell body and play a 

very important role in neuronal signal transmission. Axon dysfucntion previously has been 

reported to be closely related to schizophrenia (Benes et al., 1987; Eastwood et al., 2003; 

Pierri et al., 1999), depression (Hatt and Smith, 1976), and other psychiatric disorders. 

 

Table 8. Gene ontology cellular component categories with the 20 most significant P 

values. 

Name 
Number of 
Entities 

Percent 
Overlap 

P value 

Cytoplasm 5094 2 5.08E-29 

Cytosol 1197 5 8.22E-22 

Mitochondrial matrix 171 12 3.96E-16 

Mitochondrion 1253 4 1.54E-15 

Soluble fraction 428 6 7.67E-12 

Cytoskeleton 624 4 7.31E-09 

Stress fiber 36 22 1.29E-08 

High-density lipoprotein particle 25 28 1.86E-08 

Axon 137 9 2.05E-08 

Growth cone 61 14 6.92E-08 

Microtubule 270 5 3.70E-07 

Microtubule-associated complex 80 11 7.51E-07 

Perinuclear region of cytoplasm 188 6 8.35E-07 

COPII vesicle coat 7 57 8.39E-07 

Chylomicron 16 31 1.20E-06 

Very-low-density lipoprotein particle 17 29 1.68E-06 

Melanosome 88 10 1.69E-06 

Proteasome complex 33 18 3.16E-06 

ER-Golgi intermediate compartment 36 16 5.39E-06 

Protein complex 500 4 6.28E-06 

 

The GO molecular function analyses (Table 9) again demonstrated that the energy- and 

fat-related categories are enriched with proteins. For instance, a large number of proteins 

involved in ATP and ADP binding were found to be expressed differentially between HAB 

and LAB. The proteins relevant to phospholipid binding, lipid binding, lipid transporter 

activity, and cholesterol transporter activity were all highly enriched. Similarly, the 

oxidation-related proteins in the categories of antioxidant activity and oxidoreductase 

activity were all found to be highly enriched.  

Table 9. Gene ontology molecular function categories with the 20 most significant P 

values. 

Name Number of Percent P value 
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Entities Overlap 

Protein binding 7274 2 2.29E-20 

Catalytic activity 871 4 6.12E-14 

Motor activity 157 10 7.09E-11 

Nucleotide binding 2057 2 5.56E-10 

ATP binding 1750 2 8.58E-10 

Eukaryotic cell surface binding 23 30 6.54E-09 

Binding 1151 3 1.32E-07 

Hydrolase activity 1657 2 1.89E-07 

Microtubule binding 84 10 7.14E-07 

Phospholipid binding 64 12 9.07E-07 

Microtubule motor activity 99 9 2.87E-06 

Antioxidant activity 20 25 3.08E-06 

Actin binding 352 4 5.65E-06 

Lipid binding 169 6 6.15E-06 

Unfolded protein binding 146 6 1.04E-05 

ADP binding 26 19 1.23E-05 

Calmodulin binding 152 6 1.48E-05 

Lipid transporter activity 29 17 2.16E-05 

Oxidoreductase activity 730 3 2.44E-05 

Cholesterol transporter activity 16 25 3.19E-05 

 

The sub-network analyses were performed with two different methods. The interaction 

type of the first analysis was based exclusively on protein-protein or protein-metabolite 

binding. The second interaction map used all the other interaction methods, such as 

regulation, expression, etc. The sub-network analyses identified central proteins, 

metabolites, or even biological events and their interacting neighbor entities. The 

presence of a high enrichment of input proteins and metabolites in a particular network 

may indicate a potential correlation with the disease.  

The non-binding analyses demonstrated a number of networks that are highly enriched 

with proteins and metabolites expressed differentially between HAB and LAB (Table 10). 

The 20 networks with the most significant P values are shown in Table 10. 

Table 10. Sub-networks (connected by non-binding) with the 20 most significant P 

values. 

Central Entity 
Total Number 
of Neighbors 

Percent 
Overlap 

P value 

PD 98,059 23 66 2.39E-25 

Genistein 16 76 4.40E-22 

Dexamethasone 23 58 4.16E-21 

Cisplatin 10 90 1.11E-18 

Calcimycin 13 71 9.80E-17 

Nicotine 14 66 2.91E-16 

Wortmannin 11 75 1.75E-15 
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Cycloheximide 43 29 7.05E-15 

Okadaic acid 19 50 1.69E-14 

Rapamycin 10 72 1.05E-13 

Actinomycin D 10 72 1.05E-13 

Trichostatin A 10 72 1.05E-13 

Staurosporine 16 52 1.83E-13 

U0126 7 87 4.17E-13 

Diethylstilbestrol 165 11 5.01E-13 

Cilastatin sodium 8 77 1.85E-12 

Cyclosporine 9 70 6.11E-12 

Edetic acid 9 70 6.11E-12 

C.I. 77491 15 50 7.76E-12 

D-glucose 1518 3 8.27E-12 

 

 

Figure 37. Network of Ras/Raf/MEK/ERK pathway inhibition. The proteins shown in this 

figure interact with the metabolites that inhibit the Ras/Raf/MEK/ERK pathway. (Due to 

the limited resolution the protein/metabolite names are not legible; higher resolution 

figure is available in electronic file.) 
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Figure 38. Quantification of MEK and phosphorylated MEK by Western blot analysis. a: 

The Western blot analysis of MEK and p-MEK for HAB, LAB, and NAB; b: The densities of 

protein bands from Western blot (a) are shown; a t test was performed between groups 

(MEK comparisons: LAB vs. NAB: P < 0.0001; HAB vs. NAB: P = 0.0009 ; p-MEK comparisons: 

LAB vs. HAB: P = 0.0059; HAB vs. NAB: P = 0.0329) 

One notable pathway that deserves much attention is the signal transduction 

Ras/Raf/MEK/ERK(MAPK) pathway. Ras is a protein subfamily of small GTPases; Raf, MEK, 

and MAPK are all serine/threonine protein kinases. Activated Ras activates the protein 

kinase activity of Raf kinase; Raf kinase phosphorylates and activates MEK; and MEK 

phosphorylates and activates a mitogen-activated protein kinase (MAPK). A significant 

number of central entities, shown in Table 10, have been used to inhibit the 

Ras/Raf/MEK/ERK pathway, including but not limited to PD 98059 (Alessi et al., 1995; 

Dudley et al., 1995; Lazar et al., 1995; Pang et al., 1995), genistein (Akiyama et al., 1987), 

wortmannin (Ferby et al., 1996; Wymann et al., 1996), okadaic acid (Fujiki and Suganuma, 

2009; Garcia et al., 2003), staurosporine (Karaman et al., 2008), U0126 (Duncia et al., 1998; 

Favata et al., 1998), and SB 203580 (Cuenda et al., 1995) (Figure 37). To verify the 

involvement of this pathway in our anxiety mouse model, MEK and phosphorylated MEK 

(p-MEK) were quantified by Western blot (Figure 38). The results show that the NAB mice 

have a higher expression level of MEK than both HAB and LAB, and that the HAB and LAB 

mice have quite comparable MEK expression levels. However, the HAB mice showed a 

higher expression level of p-MEK than the LAB and NAB mice (Figure 38). 
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The Ras/Raf/MEK/ERK pathway transfers extracellular stimuli to the nucleus, resulting in 

diverse cellular responses such as proliferation, growth, differentiation, and apoptosis. The 

cascade pathways have been found to be relevant in different types of diseases, 

particularly cancers (Hoshino et al., 1999; Karreth and Tuveson, 2009; Sebolt-Leopold, 

2008). However, more recently, correlations between the Ras/Raf/MEK/ERK(MAPK) 

pathway and psychiatric disorders, such as depression, increasingly have become the focus 

of many studies, indicating that this pathway may be involved in the neuronal modulation 

of psychiatric disorders (Dwivedi et al., 2001; Feng et al., 2003; Gourley et al., 2008; Qi et 

al., 2008; Qi et al., 2009; Tiraboschi et al., 2004; Todorovic et al., 2009). Since a large 

number of Ras/Raf/MEK/ERK-related sub-networks were found in this analysis, another 

interaction map derived from the Ras/Raf/MEK/ERK pathway is shown below (Figure 39); 

all the entities in this map are part of the pathway and also have different levels of 

expression between the mouse lines.  

 

Figure 39. Network of the Ras/Raf/MEK/ERK pathway. (Due to the limited resolution the 

protein/metabolite names are not legible; higher resolution figure is available in electronic 

file.) 
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Another important finding is that dexamethasone (P = 4.16E-21) and the neighbors which 

it interacts with are highly enriched with proteins and metabolites expressed differentially 

between the animal lines (Table 10, Figure 40). Dexamethasone is a synthetic cortisol that 

acts as an anti-inflammatory and immunosuppressant and is used in cancer chemotherapy. 

Many studies have indicated that dysfunction of the HPA axis may lead to a depressive 

situation. Blood cortisol, which is secreted by the adrenal glands, can be used to assess the 

level of HPA axis activity. In depression patients, cortisol is secreted continuously, even 

though blood levels are already high. Therefore, the cortisol level is elevated in depression; 

the high levels usually decrease to a normal level once the depression disappears 

(Handwerger, 2009; Muller and Holsboer, 2006; Strohle and Holsboer, 2003; Yu et al., 

2008).  

 

Figure 40. Dexamethasone network. Proteins and metabolites shown in this figure 

interact with dexamethasone. (Due to the limited resolution the protein/metabolite 

names are not legible; higher resolution figure is available in electronic file.) 

Cortisol levels can be tested using the dexamethasone suppression test (DST). An 

individual is given a dose of dexamethasone before going to sleep at night, and blood 

cortisol levels are measured at different times on the following day. In a healthy person, 

the cortisol level drops at first but then returns to normal as the HPA axis compensates for 
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the dexamethasone in the blood. In depressed patients, cortisol secretion may not be 

reduced by the HPA axis or there may be no change at all after receiving dexamethasone. 

The sub-networks surrounding nicotine and rapamycin also were found to be enriched 

with proteins and metabolites expressed differentially between HAB, LAB, and NAB mice 

(Table 10). Nicotine is an alkaloid found in tobacco. Despite its toxicity and addictive 

properties, nicotine actually has demonstrated potential benefits in Alzheimer's and 

Parkinson's disease, as well as some mental disorders (Baron, 1996; Dome et al., 2009; 

Fagerstrom and Aubin, 2009; Quik et al., 2009). Rapamycin is an immunosuppressant drug 

used to prevent rejection in organ transplantation. It is the key element in the mammalian 

target of rapamycin (mTOR) pathway, which can influence neuronal development and 

plasticity (Jaworski and Sheng, 2006), resulting in the development of psychiatric disorders 

(Ehninger et al., 2009; Lang et al., 2009).  

The analyses of binding interactions also revealed a number of sub-networks of great 

significance and biological interest (Table 11). An obvious important one is glycinergic 

synaptic transmission (Table 11, Figure 36). Glycine is a major inhibitory neurotransmitter 

in, but not restricted to, the spinal cord and brainstem and has been shown to have a key 

function in the regulation of locomotor behavior (Kirsch, 2006; Legendre, 2001; Xu and 

Gong, 2010; Zafra et al., 1997). Several decades ago, glycine was found to be beneficial in 

depression treatment (Weinberg and Pittsburg, 1945 ).  

 

Table 11. Sub-networks (connected by binding) with the 20 most significant P values  

Central Entity 
Total Number 
of Neighbors 

Percent 
Overlap 

P value 

UGCGL1 10 100 9.07E-19 

Glycinergic synaptic transmission 10 90 4.35E-16 

ETFA 14 73 1.14E-15 

PSMD7 15 68 3.57E-15 

Reduction of virulence 9 90 1.76E-14 

Myelin maintenance 9 90 1.76E-14 

Microsporogenesis 9 90 1.76E-14 

AP2B1 19 55 1.26E-13 

SEC24B 26 44 2.58E-13 

ASPA 23 45 1.73E-12 

STRN 27 39 1.37E-11 

SYN2 27 39 1.37E-11 

PURB 28 37 2.16E-11 

Toluene catabolism 7 87 2.73E-11 

Carbon dioxide transport 7 87 2.73E-11 
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Spermine transport 7 87 2.73E-11 

Nav channel clustering 7 87 2.73E-11 

Humoral defense mechanism 7 87 2.73E-11 

Delayed-type hypersensitivity 7 87 2.73E-11 

SPTBN2 29 36 3.34E-11 

 

An additional analysis was performed to investigate the interaction between proteins and 

psychiatric disorders, with a focus on anxiety and depression. The correlation was built up 

on the basis of previous studies of depression and anxiety-related disorders. All the 

proteins shown in Figure 41 showed different expression levels between mouse lines on 

the basis of our MS-based data; their important roles in these psychiatric disorders have 

been the subject of much published resarch. For instance, a possible correlation with the 

anxiety phenotype previously was reported for both Glo1 and ApoE and was confirmed by 

the present study. 

 

Figure 41. Network of psychiatric disorders. The proteins shown in this figure are 

expressed differentially between HAB and LAB mice. These proteins have been reported 

previously to be relevant to psychiatric disorders. (Due to the limited resolution the 

protein/metabolite names are not legible; higher resolution figure is available in electronic 

file.) 
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3.4 Discussion 

By using the SILAM approach, we were able to identify and quantify a large number of 

proteins in a high throughput mode. As mentioned above, metabolic labeling enables us to 

mix the samples being compared at the earliest possible stage, reducing the potential 

variance generated during sample preparation. This study identified a lot more potential 

new biomarker candidates than had been found with the traditional 2-DE gel platform and 

thus helps improve our understanding of the anxiety mouse models as well as of the 

disorder as a whole.  

The stable isotope-labeled diet increased the costs of the whole experiment. However, 

labeling the whole animal allows all tissues to be harvested, and the labeled tissues are 

commonly used as the reference for mixing with case samples. Therefore, one labeled 

mouse enabled us to run numerous experiments on different tissues, making this 

approach actually relatively economical. 

3.4.1 Isotope effect 

As shown in this study, the 15N- and 14N-fed mice showed differences in both 

depression-like behavior and protein expression. The ingredients of the 14N and 15N diets 

are identical except for the nitrogen forms, and the only apparent difference between the 

two diets is the nitrogen source of the media used for bacterial culture. Although the 

observed effect can result from multiple factors, the isotope is the only known one; 

therefore, this effect is referred to as the isotope effect in this thesis.  

The underlying explanations for this isotope effect are still uncertain. One hypothesis is 

that the introduction of 15N may change the stability and synthesis rate of some proteins. 

Protein synthesis and degradation involve breaking and forming covalent peptide bonds, 

which are generated by the reaction between carboxyl and amine groups from two 

molecules. Two different types of isotope effects can be observed: the primary isotope 

effect happens at a chemical bond that is broken or formed, such as a peptide bond, 

where it affects the reaction rate; the secondary isotope effect results from isotope 

substitution involved in the side chain (Cassano et al., 2004; Cleland, 2003, 2005). 

In the SILAM approach, all the 14N atoms in an amine group are replaced by 15N. 

Furthermore, the nitrogen atoms at the side chains also are labeled with 15N. Heavier 

atoms normally result in more stable chemical bonds or lower vibration frequencies. 



Discussion 

88 

Therefore, more energy is required to break the 15N peptide bond. Since every peptide 

bond is modified during the SILAM experiment, this effect seems to be very pronounced. 

Actually, the vibrational frequencies of the affected bonds are highly dependent on the 

relative mass change. For instance, changing a hydrogen (H) atom to deuterium (D) results 

in a 100% increase in mass, whereas replacing 14N with 15N increases the mass by only 7%. 

The absolute mass increase of both H to D and 14N to 15N is 1 Dalton; however, the rate of 

a reaction involving a C-H bond is typically 6 to 10 times faster than the rate of a reaction 

involving a C-D bond, whereas an 14N reaction is only slightly faster than the corresponding 

15N reaction.  

As discussed above, 15N labeling may lead to a slight change in protein stability and protein 

synthesis and degradation rates. The influence of the 15N isotope may be amplified if the 

protein synthesis rate is the rate-limiting step in a biological process or if the activities of 

some enzymes are sensitive to their stabilities, resulting in biological responses. However, 

there is no evidence yet to support our hypothesis.  

Despite the unclear explanations for the isotope effects on the animals’ behavior and 

protein expression, a finding of interest is that the 15N diet showed an antidepressant-like 

effect in the HAB mice. Therefore, the differentially expressed proteins may be related to 

depression-like behavior, which may provide some hints for depression research. The 

pathobiology of this disorder will be discussed in the following sections.  

Even though the isotope influences protein expression to some degree, this is irrelevant 

when using 15N labeling tissue for quantitative proteomics. A typical approach—called 

indirect comparison in this study—is to use the 15N labeled material as the reference and 

to mix it with either case or control samples. These two proteomic experiments are then 

used to compare case and control samples. The biggest benefit of this approach is that any 

kind of dietary or isotopic effect can be avoided. Another benefit is that standard healthy 

animals can be used for labeling; furthermore, all the labeled tissues can be used in many 

different studies. By contrast, a labeled case animal may be used exclusively in only one 

study. However, a shortcoming of indirect comparison is that the number of overlapping 

proteins between two experiments is reduced, and the final protein quantification can 

employ only those overlapping proteins, leading to a smaller proteome coverage for 

quantification. However, the situation is improved by using multiple biological or technical 

replicates, or both.  



Proteomic and metabolomic brain and plasma profiling of a trait anxiety mouse model 

89 

3.4.2 Pathobiology of the anxiety phenotype 

Although the detailed pathogenesis of psychiatric disorders remains elusive, there is 

growing evidence for the involvment of several neural circuits and pathways in the brain. A 

single genetic, physiological or environmental lesion may not result in a psychiatric 

phenotype. Hence, systems biological analyses were performed in this study with both 

proteomic and metabolic data from trait anxiety mouse models. The strategies used 

enabled us to identify and quantify a great number of proteins and metabolites that are 

differentially expressed in HAB, LAB, and NAB mice. The interaction maps of protein and 

metabolite candidates were developed on the basis of various types of interaction. The 

results found several significant biological processes or pathways that showed high 

enrichment for candidate entities. These pathways help increase our understanding of 

anxiety. Some of the significant biological processes and pathways are highly related to 

psychiatric disorders (see further discussion below).  

3.4.2.1 Oxidative stress 

It is well known that the oxygen redox reaction is essential to and found everywhere in 

aerobic organisms. However, a disturbance in this normal redox state can have toxic 

effects through the production of peroxides and free radicals (molecules with unpaired 

electrons on an open shell configuration), leading to a higher chemical reactivity. Free 

radicals can damage all components of the cell, including proteins, lipids, and DNA (Davies, 

1995; Filomeni and Ciriolo, 2006). 

Oxidative stress has been thought to play an important role in the pathogenesis of various 

diseases, including psychiatric disorders. The brain is highly vulnerable to oxidative 

damage for the following reasons: first, the O2 consumption is high and hence more free 

radicals can be generated; and second, the antioxidant defense is modest, and third, a 

lipid-rich constitution provides a larger amount of substrates for oxidation (Halliwell, 2006; 

Valko et al., 2007).  

Oxidative stress has been found to be highly relevant to a number of neurological diseases, 

including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke (Kaur and 

Ling, 2008). Moreover, oxidative stress also has been associated with several psychiatric 

disorders, such as schizophrenia, bipolar disorder, and depression (Adibhatla and Hatcher, 

2009; Andreazza et al., 2008; Bouayed et al., 2009; Do et al., 2009; Ng et al., 2008; Tylec et 

al., 2007; Wood et al., 2009). In the present study, both 14N-HAB/15N-HAB and HAB/LAB 
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comparisons indicated a significant number of proteins responsible for responding to 

oxidative stress, and these proteins demonstrated expression differences between the 

mouse groups. Glo1 is an enzyme that modulates the level of oxidative stress and has 

been reported to be highly relevant to anxiety disorder by our research group as well as 

that of Hovatta (Hambsch et al., 2010; Hovatta et al., 2005; Kromer et al., 2005). However, 

the results of the two independent research groups are inconsistent: we found that Glo1 

was expressed at a higher level in low anxiety mice, while Hovatta found that 

overexpression of Glo1 resulted in an increase of anxiety-like behavior. The contradiction 

may partly be explained by the differences in the genotypes of the animals, but may not 

be limited to this explanation. Both results support the presence of abnormal Glo1 in 

anxiety-like behavior. Our finding is in accordance with that of another study focusing on 

mood disorder (which has a high comorbidity rate with anxiety disorders); this study also 

found that expression of Glo1 was lower in major depression and bipolar disorder patients 

than in healthy control subjects (Fujimoto et al., 2008).  

Further support for the involvement of oxidative stress in anxiety comes from the 

phospholipid transfer protein (PLTP) and alpha-tocopherol, the main isomer of vitamin E. 

Vitamin E is transferred by PLTP and is an antioxidant widely used in clinical therapies 

(Desrumaux et al., 2005). Complete PLTP deficiency is accompanied in mice by increased 

anxiety, as shown by fewer entries into and less time spent in the open arms of an 

elevated plus maze. Bouayed et al. found a positive relationship between peripheral 

oxidative status and level of anxiety in mice (Bouayed et al., 2007).  

Human studies on anxiety disorders, such as panic disorder and obsessive-compulsive 

disorder (OCD), also have indicated a correlation between oxidative stress and anxiety. 

Ersan et al. showed a significant relationship between OCD and oxidative stress and, 

consequently, an involvement of free radicals and of antioxidant defense (Ersan et al., 

2006). Kuloglu et al. reported that both panic disorder and OCD were associated with free 

radicals (Kuloglu et al., 2002a; Kuloglu et al., 2002b). 

There is a lot more evidence to support the correlation between oxidative stress and 

neuropsychiatric disorders (Bouayed et al., 2009; Masood et al., 2008; Rammal et al., 

2008a, b). Oxidative stress, like many other emotional stresses, also has a strong influence 

on anxiety behavior (Gingrich, 2005). All the published multi-dimensional data, including 

the OMICS data presented in this thesis, demonstrate that there is a link between 

oxidative stress and anxiety. These data imply that oxidative mechanisms play a key role in 
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pathogenic pathways in psychiatric disorders and antioxidants can be used as therapeutic 

targets for these diseases. 

3.4.2.2 HPA axis and hormones 

The role of the HPA axis in depression has been well studied for several decades (Pariante 

and Lightman, 2008). HPA axis activity is governed by the secretion of 

corticotropin-releasing factor (CRF), and vasopressin from the paraventricular nucleus of 

hypothalamus. CRF and vasopressin can in turn stimulate and regulate the secretion of 

adrenocorticotrophic hormone (ACTH) from the pituitary. ACTH further stimulates the 

secretion of the glucocorticoids (cortisol in humans and corticosterone in rodents) from 

the adrenal gland. Glucocorticoids then not only interact with their receptors in multiple 

target tissues but also act on the HPA axis (to suppress CRH and ACTH production) in a 

negative feedback cycle (Figure 42) (Herbert et al., 2006; Keck and Holsboer, 2001). The 

glucocorticoids, including synthetic forms such as dexamethasone, suppress CRF and ACTH 

synthesis and release. In this manner, glucocorticoids inhibit their own synthesis. Besides 

their peripheral functions, such as regulation of glucose metabolism, and their role in the 

immune system, the HPA axis and glucocorticoids also regulate neuronal survival, 

neurogenesis, memory, and emotions (Herbert et al., 2006). Excess glucocorticoids may 

impair or even damage the hippocampus, which may initiate and maintain a 

hypercortisolemic state, as found in some cases of depression (Nestler et al., 2002). A 

number of studies have shown that in depressed people the HPA axis is not suppressed by 

an oral dose of synthetic glucocorticoid dexamethasone; by contrast, in non-depressed 

people a small dose of dexamethasone can result in a reduced cortisol level, indicating a 

negative feedback inhibition of the HPA axis (Pariante and Lightman, 2008).  

The HPA axis mainly has been studied in depressive disorders. However, anxiety and 

depressive disorders are often comorbid and also commonly co-occur with other 

psychiatric disorders (Aina and Susman, 2006). Possible reasons for this comorbidity may 

relate to factors such as overlapping of symptoms, environment, and biology. Furthermore, 

anxiety also is a stress-related illness, and obviously stress can greatly affect the HPA axis. 

Therefore, HPA dysfunction also has been associated with anxiety by a number of studies 

(Cameron, 2006; Young et al., 2004).  

The 15N-labeled diet used in this study showed an antidepressant-like effect in HAB mice. 

Although we do not have a clear idea how the 15N diet reduces depression-like behavior, 

we consider it to be an antidepressant. Our finding is in good agreement with that of an 



Discussion 

92 

earlier study in which the effects of acute and subchronic treatment with different 

antidepressants (amitriptyline, fluoxetine, mirtazapine, St John’s wort extract) on the 

brain/plasma distribution of corticosterone were investigated in mice (Weber et al., 2006). 

Significantly elevated plasma and brain corticosterone levels were found after one single 

oral treatment with fluoxetine, mirtazapine, or St John’s wort extract. However, in 

subchronic treatment, only fluoxetine and St John’s wort extract significantly elevated 

plasma and brain corticosterone levels. Mirtazapine and amitriptyline showed no effects. 

However, earlier studies showed inconsistent results concerning the effect of fluoxetine on 

plasma corticosterone (Stout et al., 2002). A possible explanation for the observation in 

our study is that the antidepressant may increase cortisol secretion by enhancing 

serotoninergic and noradrenergic neurotransmission (Schule et al., 2004). Furthermore, 

the levels of corticosteroid-binding globulin (CBG), which is responsible for binding and 

transferring corticosteroid, were found to be higher in 15N-fed mice than in 14N-fed mice. In 

other words, the 15N antidepressant-like effect can result in both increased corticosterone 

and CBG. Although it is unclear whether increased CBG is a result of increased 

corticosterone or another cause, this finding is in accordance with that of a previous study 

in which positive associations were observed between CBG and cortisol levels following 

the Trier Social Stress Test (TSST) (Kumsta et al., 2007).  
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Figure 42. Regulation of the Hypothalamic-Pituitary-Adrenal Axis. (Reproduced from 

(Nestler et al., 2002)).  

3.4.2.3 Neurotransmission 

Neurotransmission is an electrical movement across synapses caused by the propagation 

of nerve impulses by a neurotransmitter. Anxiety disorders may involve decreased 

inhibitory signaling by gamma amino butyric acid (GABA) or increased excitatory signaling 

by glutamate (Martin et al., 2009). Currently, the mainstays of anxiety therapies are 

benzodiazepines and selective serotonin reuptake inhibitors (SSRIs) (Gingrich, 2005), both 

of which are targeted at neurotransmitter pathways. Benzodiazepines interact with the 

receptor A of gamma amino butyric acid (GABA), an inhibitory neurotransmitter in the 

mammalian central nervous system that plays a role in regulating neuronal excitability. 

SSRIs increase the extracellular level of the neurotransmitter serotonin, also known as 

5-hydroxytryptamine (5-HT), by inhibiting its reuptake into the presynaptic cell and thus 

increasing the level of serotonin available to bind to the postsynaptic receptor. This implies 

that neurotransmission plays an essential role in anxiety disorders.  

The two principal subtypes of postsynaptic GABA receptor complexes, the ionotropic 

GABA-A and metabotropic GABA-B receptors, play important roles in the brain and are a 

target for a variety of endogenous and exogenous modulators (Kalueff and Nutt, 2007; 
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Mombereau et al., 2004; Nutt and Malizia, 2001). GABA-A receptors are ligand-gated ion 

channels, and activated GABA-A could hyperpolarize the neuronal membrane, reducing 

neuron excitability and leading to inhibitory actions of GABA. GABA-B receptors may be 

involved in modulating the generation of excitatory postsynaptic potential and long-term 

potentiation (Chang et al., 2003). Both GABA-A and -B receptors have been shown to be 

involved in the regulation of neuronal excitability and rapid changes in fear arousal, such 

as sleep, anxiety, panic, and the acute stress response (Brambilla et al., 2003; Kalueff and 

Nutt, 2007). 

Our study identified a number of candidate proteins associated with GABAergic 

neurotransmission. Moreover, glycinergic synaptic transmission was found to be enriched 

with proteins and metabolites expressed differentially between mouse lines. Both glycine 

and GABA are two essential inhibitory neurotransmitters in the central nervous system. 

Although glycine’s involvement in psychiatric disorders is less understood than GABA’s, 

co-localization and release of GABA and glycine is widespread in inhibitory neurons of the 

brain and spinal cord, and GABA even acts as a co-agonist to modify the response of 

glycine receptors (Lu et al., 2008). Furthermore, glycine is a requisite co-agonist of 

glutamate, the most abundant excitatory neurotransmitter in the vertebrate nervous 

system (Laube et al., 1993; Lester et al., 1993). Therefore, it is reasonable to assume an 

important role of glycinergic transmission in psychiatric disorders. Indeed, studies have 

found that glycine exerts inhibitory effects in certain areas of the brain, resulting in 

significant anxiety relief (Chojnacka-Wojcik et al., 2001; Young et al., 1974).  

3.4.2.4 Ras/Raf/MEK/ERK pathway  

The Ras/Raf/MEK/ERK pathway is a signal transduction pathway involved in metazoan 

development; it controls many biological processes, including metabolic processes, the cell 

cycle, cell migration, and cell shape as well as cell proliferation and differentiation 

(Schlessinger, 2000).  

The receptor tyrosine kinases (RTKs), such as the EGF receptor, first stimulate the exchange 

of GTP for GDP on the small G protein Ras, which is activated by the Grb2/Sos complex. 

Then, the Ras interacts with Raf to stimulate intracellular processes. Activated Raf 

stimulates MAP-kinase-kinase (MAPKK, MEK) by phosphorylating a key Ser residue. 

MAPKK then phosphorylates and activates MAPK (ERK). Activated MAPK phosphorylates a 

variety of cytoplasmic- and membrane-linked substrates. In addition, MAPK is transferred 
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rapidly into the nucleus, where it phosphorylates and activates transcription factors 

(Figure 43).  

The Ras/Raf/MEK/ERK pathway has been found to be highly related to diverse diseases, 

especially cancers (Dhillon et al., 2007; Hoshino et al., 1999; Roberts and Der, 2007). Raf 

has attracted much attention since the Raf gene was found to be mutated in a large 

percentage of malignant tumors (Wan et al., 2004). Furthermore, Ras, Raf, and MEK have 

been used as drug targets in cancer for many years (Kohno and Pouyssegur, 2006). In 

contrast to its relevance in cancer, the importance of the Ras/Raf/MEK/ERK pathway in 

psychiatric disorders is relatively poorly understood; however, it is increasingly becoming a 

focus of research in psychiatry.  

As discussed above, the HPA axis and the hormones it controls are of great importance in 

psychiatric disorders, including depression and anxiety. One hypothesis is that CRF acts as 

a ligand that can bind to and phosphorylate the CRF receptor and eventually may activate 

the Ras/Raf/MEK/ERK pathway (Hauger et al., 2006; Hillhouse and Grammatopoulos, 2006; 

Sananbenesi et al., 2003).  

In this study, a number of enriched sub-networks were found to be relevant to the 

Ras/Raf/MEK/ERK pathway. Western blot results showed that activated MEK is expressed 

at a higher level in high anxiety mice, which is in accordance with the findings of a 

previous study in which mice deficient in CRF2 displayed an increased anxiety level and 

also an increased hippocampal level of activated MEK (Todorovic et al., 2009). 

Furthermore, inhibition of the Ras/Raf/MEK/ERK pathway by the MEK inhibitor U0126 was 

found to decrease dramatically the depression-like behavior in both wild-type and mutant 

mice, indicating an involvement of this pathway in psychiatric disorders (Todorovic et al., 

2009). Some inconsistent findings were that activation of ERK may result in depression or 

anxiety-like behavior (Qi et al., 2008; Qi et al., 2006; Qi et al., 2009). This contradiction can 

be partly explained by the finding that region-specific manipulation of the 

Ras/Raf/MEK/ERK pathways may generate quite different behavioral phenotypes 

(Todorovic et al., 2009). 



Discussion 

96 

 

Figure 43. Schematic representation of the Ras/Raf/MEK/ERK signaling cascade. 

(Reproduced from (Roberts and Der, 2007)) 

In summary, the pathology of psychiatric disorders is not yet fully understood. However, it 

is well accepted that psychiatric disorders probably arise from a combination of factors, 

including genetic vulnerabilities and environmental stressors. A typical biological study 

focusing on a particular protein or pathway is normally insufficient to deepen the 

understanding of the pathophysiology of a disease. On the basis of our OMCIS data, we 

have found a number of proteins and metabolites that are involved in some important 

pathways and that could provide a new approach in psychiatric disorder research. As 

demonstrated in this thesis, anxiety probably is caused by several pathways. A simple 

hypothesis could be that oxidative stress damages the brain and neurotransmission and 

also stimulates the HPA axis and hormone excretion. CRF also may be involved in the 

Ras/Raf/MEK/ERK signaling cascade. Any dysregulation in this complex network may 

contribute to anxiety disorders.
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4 Technology development  

The previous section has demonstrated that methods involving stable isotope metabolic 

labeling result in high quantitative accuracy, since they allow the combination of two or 

more samples before workup. Unfortunately, stable isotope incorporation rates in 

metabolic labeling experiments using mammalian organisms usually do not reach 100%. 

As a consequence, protein identifications in 15N database searches with mass 

spectrometry data have poor success rates. In this section, we report on a strategy that 

significantly improves the number of 15N-labeled protein identifications and results in a 

more comprehensive and accurate relative peptide quantification workflow.  

At present most quantitative proteomics investigations are restricted to the analysis of 

protein expression differences between two or more sample specimens. With each 

analysis a static snapshot of a cellular state is captured with regard to protein expression. 

However, any information on protein turnover cannot be obtained using classic 

methodologies. Protein turnover, the result of protein synthesis and degradation, 

represents a dynamic process, which is of equal importance to understanding physiological 

processes. Therefore a protein turnover analysis method was developed using the 

15N-labeled diet as an isotopic tracer. Unlike the 15N complete labeling strategy used for 

relative quantitation, adult mice were fed with the labeled diet for limited time periods 

and the resulting partially labeled proteins digested and subjected to tandem mass 

spectrometry. Results are presented reflecting the dynamics for a great number of 

proteins from mouse brain and plasma. 

4.1 A mass spectrometry data search method for improved 

15N-labeled protein identification  

4.1.1 Introduction 

Modern quantitative proteomics greatly benefits from both high resolving mass 

spectrometers and stable isotope labeling. In this regard global metabolic labeling with 15N, 

as well as ‘Stable Isotope Labeling with Amino Acids in Cell Culture’ (SILAC) (Kruger et al., 

2008; Ong et al., 2002), are the gold standards in terms of accuracy since the control and 

case samples are combined prior to any sample preparation. This avoids the risk of 

introducing artificial variance due to inconsistent sample preparation. The 15N labeling 
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technology has been applied successfully to cells in culture (Conrads et al., 2001; Ishihama 

et al., 2005), plants (Huttlin et al., 2007; Nelson et al., 2007; Palmblad et al., 2007; Schaff 

et al., 2008), Drosophila melanogaster (Krijgsveld et al., 2003), Caenorhabditis elegans 

(Dong et al., 2007; Krijgsveld et al., 2003), and mammals (McClatchy et al., 2007a; Wu et 

al., 2004). 

Proteins are labeled with 15N during their synthesis. However, the 15N incorporation rates 

typically do not reach 100% due to residual 14N that is left in the diet and/or organism. 

Incomplete 15N labeling will result in a rather complex peptide isotopologue distribution 

during mass spectrometry analysis, which affects both peptide identification and 

quantification. Therefore, a modified method for 15N-labeled protein identification was 

considered in the present study.  

4.1.2 Material and methods 

4.1.2.1 Methods 

For protein identification using mass spectrometry data, the expected and measured 

monoisotopic peptide peak values need to coincide during the first step of the database 

search. Hence, during mass spectrometry data acquisition the instrument needs to select 

the correct 15N monoisotopic peak for subsequent fragmentation and MS/MS analysis. For 

incompletely labeled peptides the 15N isotopologue envelope is different from the natural 

14N envelope. If the 15N monoisotopic peak does not represent the most intense signal, it is 

typically not chosen as precursor ion for fragmentation. Instead the most intense peak 

that is not made up of only the 15N isotope is selected for fragmentation. For 15N 

incorporation rates of approximately 90% the mass of the most intense peak is generally 1 

Da smaller than that of the fully labeled 15N monoisotopic peak (Figure 44). This deviation 

results in a low success rate for 15N protein identification using default search parameters 

and a 15N protein database.  
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Figure 44. Isotopologue distributions of 15N labeled peptide TFTTQETITNAETAK, 

C70H114N18O28. a: observed isotopologue distribution, in which the most intense peak is 1 

Da smaller than the 15N monoisotopic peak and therefore subjected to fragmentation 

during MS/MS analysis. b: theoretical isotopogue distributions of the same peptide with 

90% and 100% 15N enrichment.  The mass of the most intense peak for 90% 15N 

incorporation is 1Da smaller than that for 100% incorporation. 

In a tryptic protein digest every identified peptide contains at least one arginine or lysine 

residue with the exception of the C-terminal peptide. Here we introduce a hypothetical 

-0.997035 Da (Δmass=
14N-15N), simplified as -1 Da, variable modification for arginine and 

lysine residues to correct for non-monoisotopic peak selection in MS/MS analysis during 

mass spectrometry data acquisition. Amino acid modifications can be easily included in 
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MASCOT (Perkins et al., 1999) or SEQUEST (Eng et al., 1994) database searches. By 

introducing the -1 Da variable modification for arginine and lysine residues, both the all 

15N and n-1 15N signals will be considered in the database search. For the MS/MS fragment 

ions no modification edits are necessary, since all isotopologue peaks in close proximity to 

the selected precursor ion will be included during fragmentation.  

4.1.2.2 Experiments 

The animal studies were conducted in accordance with the“Guide for the Care and Use of 

Laboratory Animals of the Government of Bavaria”. CD1 mice were fed for 56 days starting 

in utero with either U-15N-SILAM-Mouse or U-14N-SILAM-Mouse diets (Silantes GmbH, 

Munich, Germany) (McClatchy et al., 2007a; Wu et al., 2004). The 15N incorporation rates 

determined by MALDI-TOF analysis and the in-house software QuantiSpec (Haegler et al., 

2009b) were approximately 90% and 98% for brain and plasma proteins, respectively. 15N 

and 14N mouse hippocampal protein extracts were mixed at a ratio of 1:1 based on 

Bradford assay quantification. The protein mixture was resolved by SDS-PAGE (4-12%) and 

the gel stained with Coomassie blue. The gel lane containing the separated proteins was 

cut into 2 mm-wide pieces and each piece subjected to in-gel tryptic digestion 

(Shevchenko et al., 2006). Gel pieces were destained twice with 100 μL 50 mM 

NH4HCO3/acetonitrile (1:1, vol/vol) for 30 min, and disulfide bonds reduced with 10 mM 

DTT in 50 mM NH4HCO3 at 56°C for 30 min, and then alkylated with 55 mM iodoacetamide 

in 50 mM NH4HCO3 in the dark for 30 min. Subsequently, 12.5ng/μl trypsin in 25 mM 

NH4HCO3 was added to saturate and cover gel slices. The enzymatic reaction was carried 

out at 37°C overnight. After the digestion, the peptides were extracted from the gel pieces 

by adding 5% formic acid at 37°C for 30 min. The gel pieces were spun down and the liquid 

collected. The extraction was repeated twice. Finally, the extracted digest peptide mixture 

was lyophilized to dryness, dissolved in 10 μL 0.1% formic acid and then analyzed by 

LC-MS/MS with an ORBITRAP (Thermo Fisher Scientific, Bremen, Germany) analyzer. In 

addition, 15N and 14N mouse plasma proteins were mixed at a 1:1 ratio, and seven high 

abundant proteins were immunodepleted using the IgY-M7 cartridge (GenWay Biotech 

Inc., San Diego, CA) according to the product manual. The flow-through fraction was 

processed using the same workflow as for the brain samples.  

4.1.2.3 Data process 

For SEQUEST database analysis the ORBITRAP Raw files were searched against a 

concatenated forward / reversed IPI-mouse database v 3.46. The Raw files were also 
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converted to mzData files with Bioworks 3.3.1 SP1 (Thermo Fisher Scientific Inc., Waltham, 

MA), and then searched against forward IPI-mouse database v 3.46 with activation of the 

Decoy checkbox in MASCOT v 2.2. The 14N database search was performed by using the 

following parameters: 20 ppm mass tolerance for the MS scan, 1 Da for the MS/MS scan, 

fixed carbamidomethylation for cysteine and variable oxidation for methionine, one 

miscleavage. The 15N database search was executed twice using two different sets of 

parameters. The first search was done with the same parameters as for the 14N search but 

using 15N amino acid masses. The second search employed an additional -1 Da variable 

modification for arginine and lysine residues. Assembly and removal of redundant proteins 

based on their accession numbers were performed by in-house written Perl scripts. The 

SEQUEST results were filtered using peptide XCorr >1.9 for 1+ charged ions, >2.7 for 2+ 

charged ions, >3.5 for 3+ or above charged ions, and DeltaCN >0.08 . MASCOT results were 

filtered using a fixed significance threshold of p<0.01, and MASCOT score > 20. The False 

Discovery Rate (FDR) was then determined by calculating the ratio of the number of 

peptides identified from decoy and forward database searches (Wang et al., 2009). 

Relative quantification of the peptide pair signals was performed with the ProRata 

software (Pan et al., 2006) based on the SEQUEST identification results. Briefly, the ion 

chromatograms were extracted for both labeled and unlabeled isotope envelopes 

according to the identified amino acid sequence, and the ratio of areas of labeled and 

unlabeled chromatographic peaks were used for peptide quantification. 

4.1.3 Results 

The above mass spectrometry data search strategy significantly improves 15N protein 

identification success for the brain protein mass spectrometry dataset, with the number of 

proteins approaching those of the 14N database search results (Table 12). The conventional 

SEQUEST search parameters and a 15N database resulted in 798 identified peptides 

corresponding to 525 proteins. When using the modified search method, we identified 

10525 peptides corresponding to 1586 proteins, 1203 of which were only identified by the 

latter method. The FDR also greatly improved due to the modified database search 

method. Together with 14N search results the total number of identified proteins for the 

brain mass spectrometry dataset is 2681 with the modified method; 1294 proteins were 

identified by both 14N and 15N database searches. The 15N/14N database search results 

overlap is only 283 proteins when the conventional method is used. Moreover, the average 

number of identified peptides for a given protein also increases with our method (Table 
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12). The MASCOT search results also demonstrate the advantage of the modified 15N 

database search method, with an increase of the identified 15N peptide number from 3892 

to 22713, and a decrease of the FDR from 8.42% to 2.02% (Table 12). 

Table 12. Number of peptides and proteins identified by different search methods 

search mode  
SEQUEST  MASCOT 

peptidesa) proteinsb) 
peptide 

FDR 
 

peptidesc) proteinsb) 
peptide 

FDRd) 

Brain        
14N and 15N unmodified  32102 2631 -  42685 3205 - 
14N and 15N modified  41829 2681 -  61506 3353 - 
14N 31304 2389 0.40%  38793 3083 3.57% 
unmodified 15N 798 525 45.74%  3892 948 8.42% 
modified 15N 10525 1586 10.92%  22713 1616 2.02% 
Plasma        
14N and 15N unmodified  25209 873 -  37372 1145 - 
14N and 15N modified  26514 892 -  37225 1093 - 
14N 13414 663 0.19%  19346 896 6.08% 
unmodified 15N 11795 702 1.66%  18026 741 3.34% 
modified 15N 13100 725 2.41%  17879 662 2.37% 

a) Number of redundant peptides with SEQUEST XCorr >1.9 for charge state 1+, >2.7 for 
charge state 2+, >3.5 for charge state 3+ or above, and DeltaCN >0.08 

b) Number of non-redundant proteins 
c) Number of redundant peptides with MASCOT significance threshold p<0.01, MASCOT 

score > 20 
d) FDR based on the peptide matches above identity threshold calculated by MASCOT 
 
 
The proteins in plasma show higher 15N incorporation rates, which is a reflection of their 

higher metabolic turnover rates compared to brain proteins. The almost 100% 15N 

incorporation rates resulted in a greater success rate for monoisotopic peak selection. 

Therefore, the plasma 15N protein identification numbers using the modified database 

search method did not improve as much as it did for the brain proteins. However, there 

were still 1305 peptides and 25 proteins exclusively identified by SEQUEST with the 

modified 15N database search method. The majority of large peptides could only be 

identified by the new database search method, since their isotopologue distributions are 

more affected by small amounts of residual 14N. Using SEQUEST the modified method 

identified 408 peptides > 3 kDa, whereas the conventional method resulted in only 23 

peptides. Similarly, 969 peptides and 252 peptides, respectively, were found to be > 2.5 

kDa with the modified and conventional search methods. MASCOT results show no 

significant advantage of our modified method for highly labeled plasma proteins.  
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4.1.4 Discussion 

As has been reported by others (Balgley et al., 2007; Elias et al., 2005; Kapp et al., 2005) 

the number of identified peptides depends on the search engine and score threshold. For 

a given search engine, be it SEQUEST or MASCOT, a 15N database search benefits from the 

presented modified method in terms of peptide identification number, when the labeling 

percentage is not close to 100%. The observed FDR for 15N identifications using the 

conventional method appears to be relatively high, a finding that has been reported by 

others (Nelson et al., 2007). This is probably due to the increased complexity of the 15N 

isotopomer and isotopologue patterns, making the correct monoisotopic peak selection 

during data acquisition and peak mapping during database search less likely. Furthermore, 

for a 1:1 14N/15N protein mixture, the ratio of MS/MS spectra from 14N and 15N precursors 

should also be approximately 1:1. As a consequence, a great number of 15N 

peptide-derived data submitted to either 14N or 15N database searches will result in a 

significant number of false positive identifications. This situation gets worse the lower the 

15N incorporation rates are since the spectra get even more complex. For our 98% labeled 

plasma dataset, the 15N FDR for SEQUEST and MASCOT searches is low. However, for 90% 

labeled brain proteins our modified search method using SEQUEST or MASCOT decreases 

the 15N FDR by approximately 75% compared to the conventional search method. The 15N 

search continues to show a much higher FDR than a 14N search for SEQUEST if a fixed 

threshold filtering is applied. The difference between SEQUEST and MASCOT searches are 

most likely due to decoy search and threshold filtering methods. MASCOT shows a higher 

compatibility with lower % 15N incorporation data. 

The modified search method also facilitates relative protein quantification. Although 

existing algorithms like Census (Park et al., 2008) or ProRata (Pan et al., 2006) are able to 

quantify the paired 14N and 15N peptides from either 14N or 15N search results, a greater 

number of identified peptides and proteins provide better statistical quantification values. 

With the conventional search method, peptide and protein quantification is predominantly 

based on the identified 14N peptides since the number of 15N identifications is low. This 

results in a loss of information in cases where the 15N signal has a higher intensity than the 

corresponding 14N signal, the latter thus not being subjected to fragmentation. As a result, 

peptide signal comparison and quantification are not possible in those cases. With the 

present method, the greater number of identified and quantified 14N and 15N peptide pairs 

from the same protein results in increased accuracy, especially in cases where only a few 

peptides are identified for a protein.  
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Gouw and colleagues have introduced another method for dealing with 15N-labeled mass 

spectrometry data (Gouw et al., 2008). In this case precursor selection was corrected. 

However, this leads to a doubling of database search time and post-search alignment is 

required. Our method can be performed with a single database search and no 

post-alignment is necessary since the -1 Da correction can be introduced at the database 

search step.  

We should also emphasize that the deviation between the most intense peak and 15N 

monoisotopic peak varies not only with the rate of 15N incorporation but also peptide 

length, both of them affecting isotopologue distribution. This becomes evident from a 

theoretical simulation of both parameters (Figure 45). Averagine is an imaginary average 

amino acid with the molecular formula C4.9384H7.7583N1.3577O1.4773S0.0417, which represents the 

statistical occurrence of the 20 common amino acids in the Protein Identification Resource 

(PIR) protein database (Senko et al., 1995). Peptides with different averagine residue 

numbers and 15N incorporation rates result in isotopologue patterns with varying mass 

deviations between the 15N monoisotopic peak and the most intense peak. These mass 

deviations can be calculated for every hypothetical peptide. If the 15N monoisotopic peak 

and most intense peak coincide this difference is zero. A mass correction in the database 

search becomes necessary for all the peptides with negative deviation shown in Fig. 2. 

When the 15N incorporation rate is equal or greater than 90%, the -1Da variable 

modification works well, and extended modifications, such as -2 Da, do not generate more 

peptide identifications (data not shown). The modification can be adjusted (e.g. -2 Da) in 

cases of lower 15N incorporation rates. Searches with more than one modification can also 

be performed in parallel if necessary. The presented method can also be applied to other 

global metabolic labeling techniques, including 13C and 2H isotopes, when the 

incorporation rates are less than 100%. Alternatively, the hypothetical -1 Da variable 

modification can also be used for peptide C- or N-termini. One advantage of choosing 

arginine and lysine residues for the variable modification is that the mass shift of long 

peptides resulting from missed cleavage will be automatically adjusted to -2 Da or greater. 
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Figure 45. The mass shift between the most intense peak and 15N monoisotopic peak.  

The peptides illustrated are hypothetical and consist of a different number of averagine 

residues.  Averagine has the molecular formula C4.9384H7.7583N1.3577O1.4773S0.0417, which is 

based on the statistical occurrence of the 20 common amino acids in the PIR protein 

database. 

4.2 Proteome scale turnover analysis in living animals using 

stable isotope metabolic labeling  

4.2.1 Introduction 

Proteomics continues to generate valuable protein identification and quantitation 

information for many cell types and species. A particular focus of current proteomics 

efforts is the quantitative assessment of relative as well as absolute protein expression 

levels. Methods based on stable isotope labeling and label free approaches are employed 

using mass spectrometers of high resolving power and accuracy (Aebersold and Mann, 

2003; Ong and Mann, 2005). Although these studies provide valuable protein 

identification and quantitation information they only represent “snapshot” pictures of a 

cellular state that capture the proteomic state of affairs at a given time. However, the 

proteome is a highly dynamic and tightly regulated entity that is constantly changing and 
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adapting to its environment. The protein amount represents the final outcome of the 

protein synthesis and degradation process resulting in expanded, contracted or unchanged 

protein pools.  

Previous studies have found only weak correlations between mRNA and protein levels 

(Chen et al., 2002; Griffin et al., 2002; Ideker et al., 2001). A potential reason for these 

discrepancies is differential protein turnover that impacts on the overall protein levels in 

the cell. Since the overall amount of a protein depends on its synthesis and degradation 

upcoming changes in protein levels are apparent at a much earlier time point using 

turnover analysis when those changes are not yet reflected by the total protein amount. 

This paradigm has great significance for biomarker discovery since it would allow the 

detection of upcoming protein changes at a much earlier time point. Several reports 

confirm this hypothesis. Rao et al. have found that 5 proteins were upregulated in 

Mycobacterium tuberculosis bacteria grown in high iron medium. However, higher 

turnover rates were found for 24 proteins in the same experiment (Rao et al., 2008). In 

another study, Pupim et al. found that in chronic hemodialysis patients, nutritional 

interventions do not or only slightly affect the concentration of serum albumin, whereas 

turnover of the protein was significantly changed (Pupim et al., 2004). 

Protein turnover analysis is typically performed by administering either radiolabeled or 

stable isotope labeled tracers, mostly amino acids, which are incorporated into proteins 

during synthesis. The rate of the gain or loss of a tracer provides a measure of protein 

dynamics. Among other disadvantages the primary shortcoming of turnover determination 

with the help of radioisotopes is that these methods are restricted to the assessment of 

whole-body protein. Individual protein dynamics can only be achieved after protein 

purification rendering this method inefficient for high throughput analyses (Afify, 2002; 

Marshall et al., 2005; Rechinger et al., 2000). For this and also safety reasons the stable 

isotope tracer method is now preferred for protein turnover studies, and has become 

feasible with the availability of mass spectrometers that have high resolution and accuracy.  

Studying protein dynamics in cultured cells is a rather straightforward process. In this case, 

after changing the cell culture media the precursor pool is rapidly converted from an 

unlabeled to a labeled state or vice versa, so that the media relative isotope abundance 

(RIA) of the tracer represents the precursor RIA in the cell. Hence the newly synthesized 

protein will be labeled with a known RIA, and no RIA calculations are required (Pratt et al., 

2002).  
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An RIA of 1, however, can only be achieved in cell culture experiments and is difficult to 

realize in living animals due to the presence of internal unlabeled amino acids resulting 

from the degradation of pre-existing proteins. Living animals can be labeled by 

intravenously injecting the isotope tracer by either continuous infusion (Caso et al., 2001; 

Walrand et al., 2004) or a flooding dose (Bregendahl et al., 2004). In both cases, however, 

measuring protein turnover of individual proteins in a high throughput manner is not 

possible (Doherty and Beynon, 2006a). Furthermore, the sudden intake of the isotope 

tracer by intravenous injection may alter protein synthesis and lead to artificial protein 

turnover data (Smith et al., 1998b). Alternatively, the isotope tracer can be administered 

orally with the diet (Doherty et al., 2005) or water (Rachdaoui et al., 2009) resulting in a 

more natural labeling of the animals. 

All the current methods for protein dynamics measurement require data on precursor RIA, 

which especially in living animals is difficult to measure precisely. We have developed a 

new approach which enables monitoring individual protein turnover rates in complex 

mixtures. A diet, in which all the 20 amino acids are fully 15N-labeled was used as the 

tracer. This is in contrast to other methods that either use single labeled amino acids as 

tracers or heavy water where mainly labeled nonessential amino acids are generated. In 

both instances only low overall RIAs are achieved. The all amino acid labeled diet that we 

have used significantly amplifies protein labeling efficiency and results in greater data 

accuracy. Even early on during the labeling process when the precursor RIA is still relatively 

low, peptides derived from newly synthesized proteins will rarely consist of only unlabeled 

amino acids. 

The mass spectrometry signal of a labeled peptide derived from a newly synthesized 

protein overlaps with the peptide signal from pre-existing unlabeled protein. To distinguish 

the labeled/newly synthesized from the unlabeled/pre-existing peptide populations we 

developed the algorithm ProTurnyzer (Protein Turnover Analyzer). The algorithm is based 

on the hypothesis that the monoisotopic (all 14N) peptide only originates from the 

pre-existing protein population and hence the knowledge of precursor RIA is not required 

for protein turnover analysis. Here we present protein turnover data from bacteria and 

mice that demonstrate the validity of the method. 

4.2.2 Material and methods  
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4.2.2.1 Material 

Standard rodent diet (Harlan Laboratories, Inc., Indianapolis, IN) and bacterial 

protein-based rodent diet (Silantes GmbH, Munich, Germany) were used for all 

experiments. Two isotopic forms of the bacterial diet were used: natural isotope 14N and 

15N-enriched. Media for E. coli culture were 14N (Spectra 9-U) and 15N-enriched (Spectra 

9-N, >98%) (Cambridge Isotope Laboratories, Inc., Andover, MA). All other chemicals were 

from Sigma-Aldrich (St. Louis, MO), Merck (Darmstadt, Germany) and BioRad (Hercules, 

CA).  

4.2.2.2 Animal experiments 

Twelve 8-week old DBA/2 male mice were divided into 6 groups. For adaptation to the 

bacterial protein diet the animals were first fed 14N bacterial diet for 4 days. Two mice only 

fed with the 14N bacterial diet were then sacrificed. Blood was taken by cardiac puncture, 

and the plasma was obtained by centrifuging the blood in an EDTA pre-added tube at 

1,300 × g for 10 min. The remaining body blood was removed by 0.9% saline perfusion. 

The plasma and organs were snap-frozen in liquid nitrogen and the samples stored at 

-80°C for further usage. The food supply for the remaining mice was switched to 

15N-labeled bacterial diet and 2 mice each were sacrificed after 1, 2, 4, 7, and 14 days of 

feeding with the labeled diet (Figure 46). Organs and blood were isolated. The animals did 

not show any discernible health effects compared to animals fed with a standard diet. 

 

Figure 46. 15N feeding protocol for DBA/2 mice. 

4.2.2.3 E.coli experiments 
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14N (Spectra 9-U) and 15N-enriched (Spectra 9-N, >98%) media were used for bacterial 

cultures. 20%, 40%, and 60% 15N-labeled media were generated by mixing the 14N and 15N 

media at 80 : 20, 60 : 40, and 40 : 60 ratios, respectively. Single E. coli clones were 

pre-cultured in 2 ml of natural, 20%, 40%, or 60% 15N-labeled media for 6 h at 37°C with 

shaking at 220 rpm. Then the bacteria were expanded into 100 ml of the same media 

containing 100 μg / ml ampicillin and incubated overnight at 37°C with shaking at 220 rpm. 

The bacterial pellets were obtained by centrifuging the cultures at 5,000 rpm for 15 min at 

4°C.  

4.2.2.4 Sample preparation 

Mouse plasma protein concentrations from days 0, 1, 2, 4, 7 were measured by Bradford 

assay. Mouse cerebella from days 0, 2, 4, 7, 14 were put into ice-cold 5× buffer of 250 mM 

sucrose, 50 mM Tris - HCl (pH 7.4), 5 mM MgCl2, 1 mM DTT, 25 µg / ml Spermine, 25 µg / 

ml Spermidine and protease inhibitor cocktail tablet (F. Hoffmann-La Roche Ltd., Basel, 

Switzerland), and then homogenized with a Teflon-glass dounce homogenizer and an 

electric drill at 1,200 rpm for 3 min. The homogenates were centrifuged at 20,000 g for 30 

min at 4°C and the supernatants collected. The protein concentrations were estimated by 

Bradford assay. 

The E. coli pellets were sonicated in lysis buffer consisting of 100 mM Tris-HCl (pH 8), 150 

mM NaCl, 1 mM EDTA to break the bacterial cells. The lysates were then centrifuged at 

13,000 rpm for 12 min and the supernatants containing the soluble proteins were 

collected. The protein concentrations were estimated by Bradford assay. The 14N- and 

differently 15N-labeled E. coli populations were mixed to obtain defined E. coli mixtures 

with different labeled/unlabeled ratios according to their protein concentrations (Table 13). 

The labeled protein fractions consisted of 3 populations with different 15N incorporations 

in order to simulate newly synthesized proteins exposed to different 15N amounts. 

The mouse brain, mouse plasma, and E. coli protein mixtures were resolved by SDS-PAGE 

and the gel stained with Coomassie Brilliant Blue. The gel lane containing the separated 

proteins was cut into 2 mm-wide pieces, and several selected pieces subjected to in-gel 

tryptic digestion. Gel pieces were destained twice with 100 µL 50 mM NH4HCO3 / ACN (1 : 

1, vol / vol) for 30 min, and disulfide bonds reduced with 10 mM DTT in 50 mM NH4HCO3 

at 56°C for 30 min, and then alkylated with 55 mM iodoacetamide in 50 mM NH4HCO3 in 

the dark for 30 min. Subsequently, 12.5 ng / µL trypsin in 25 mM NH4HCO3 was added to 

saturate and cover gel slices. The enzymatic reaction was carried out at 37°C overnight. 
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After digestion, the peptides were extracted from the gel pieces by adding 5% formic acid 

at 37°C for 30 min. The gel pieces were spun down and the liquid collected. The extraction 

was repeated twice. Finally, the extracted peptide mixture was lyophilized to dryness and 

dissolved in 10 µL 0.1% formic acid. 

4.2.2.5 HPLC and mass spectrometry 

The peptide mixtures were analyzed by nanoHPLC (Eksigent Technologies, Inc., Dublin, CA) 

coupled to an LTQ-Orbitrap (Thermo Fisher Scientific, Bremen, Germany) hybrid mass 

spectrometer. The C18 reverse-phase columns were made by packing PicoFrit emitters 

(New Objective, Inc., Woburn, MA) using a methanol slurry of reverse-phase ReproSil-Pur 

C18-AQ 3µm resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) under a constant 

100 bar pressure. The packed columns were cut to approximately 15 cm length. Peptides 

were separated at a 200 nl/min flowrate using a gradient of 2-98% solvent B (98% ACN in 

water, 0.1% FA) over 130 min. The eluates were on-line electrosprayed into the mass 

spectrometer via a nanoelectrospray ion source (Thermo Fisher Scientific, San Jose, CA). 

The LTQ-Orbitrap was running in positive ion, top 5 data-dependent acquisition mode. For 

full scans in the Orbitrap, the target ion value was 1,000,000 and the maximal injection 

time was 500 ms at a resolution of r=60,000 at m/z 400. The MS full scan range was 

380-1600 m/z. The 5 most intense peaks in the MS scan were fragmented in the LTQ by 

collision-induced dissociation with a target value of 10,000 ions and injection time of 250 

ms. Former precursor ions selected for MS/MS were dynamically excluded for a period 

ranging from 30 to 60 s. 

The mass spectrometric conditions were: spray voltage, 2.1 kV; no sheath and auxiliary gas 

flow; ion transfer tube temperature, 200°C; normalized collision energy using wide-band 

activation mode, 35% for MS2. 

4.2.2.6 Free amino acid analysis 

We analyzed tissue free amino acids to investigate the enrichment of the precursor pool 

for protein synthesis. Although aminoacyl-tRNA is the actual precursor (Caso et al., 2002; 

Johnson et al., 1999; Martini et al., 2004), previous studies have shown that the tissue free 

amino acid pool is a valid surrogate for measuring the enrichment, while being accessible 

much more easily (Davis et al., 1999). Mouse plasma and brain extract were prepared 

using a cation-exchange extraction and derivatization with propyl chloroformate using the 

EZfaast amino acid analysis kit (Phenomenex, Torrance, CA). Prior to extraction the 
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samples were spiked with a mixture of internal standards homoarginine, methionine d3, 

and homophenylalanine supplied with the kit. Extraction and derivatization were 

performed according to the manufacturer’s manual. Derivatized amino acids were 

separated in 15 min in gradient mode using a reversed phase Kinetex 2.1 x 150 mm 1.7 um 

C18 column (Phenomenex) at 0.25 mL/min flow rate on an ACQUITY UPLC system (Waters, 

Milford, MA). The column was thermostated at 40°C. Mobile phase A was 10 mM 

ammonium formate in water, mobile phase B was 10 mM ammonium formate in 99.5% 

methanol. The following gradient program was used: 0 min – 40% B, 10 min – 75% B, 12 

min – 75% B with subsequent equilibration at 40% B for 3 min. The amino acid samples 

were held in an autosampler at 15°C. Injection volume was 5 μL and each sample was 

injected twice. The UPLC was coupled to an Exactive benchtop Orbitrap mass 

spectrometer (Thermo Fisher Scientific). The mass spectrometer operated in positive 

electrospray ionization mode at 50,000 FWHM resolution (2 scans/s), 250 ms maximum 

inject time and balanced AGC target (10e6 ions) scanning in m/z 195-505 mass range. The 

following tune parameters were used: 3.5 kV spray voltage, 275°C capillary temperature, 

40, 8 and 1 arbitrary units of sheath, auxiliary and sweep gas (nitrogen), 60 V capillary 

voltage, 100 V tube lens voltage, 20 V skimmer voltage. The data analysis was performed 

using LCquan software (Thermo Fisher). Theoretical masses of natural and 15N labeled 

derivatized amino acids were calculated using Xcalibur software and a 2 mmu window was 

used to ensure selective detection. Eight level calibration curve was built at concentration 

levels 6 nM, 20 nM, 60 nM, 2,00 nM, 600 nM, 2,000 nM, 6,000 nM, and 20,000 nM with 

1/X weighting factor. Calibration curve was linear with R^2 at least 0.95. Calibrators were 

spiked with internal standards at the same level as the samples. Therefore a response 

factor (area ratio of analyte peak to internal standard peak) was calibrated to 

concentration levels. Calibration standards of natural amino acids were supplied with the 

kit. The samples were 10 fold diluted compared to the calibration standard to avoid 

column and detector saturation problems for abundant amino acids. Concentration of 

15N-labeled amino acids was calculated under the assumption that the response factor is 

the same for natural and 15N-labeled amino acids. 

4.2.2.7 Data processing 

The LTQ-Orbitrap raw files were converted to universal mzXML format using ReAdW 

(http://tools.proteomecenter.org/software.php). The raw MSn data were converted to 

mzData files with Bioworks 3.3.1 SP1 (Thermo Fisher Scientific, Waltham, MA), and then 

searched against IPI-mouse database v 3.57 (20 ppm mass tolerance for the MS scan, 0.8 
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Da for the MS/MS scan, fixed carbamidomethylation for cysteine, and variable oxidation 

for methionine) or SwissProt15.3 E.Coli database (20 ppm mass tolerance for the MS scan, 

1 Da for the MS/MS scan, fixed carbamidomethylation for cysteine, and variable oxidation 

for methionine) with activation of the Decoy checkbox using MASCOT v 2.2 (Perkins et al., 

1999). MASCOT results were exported as xml files with a filtering threshold of p<0.001 and 

score>20. MASCOT xml and mzXML files were subsequently used for ProTurnyzer analysis.  

4.2.2.8 ProTurnyzer 

The in-house developed software ProTurnyzer was written in Java. All peptide IDs are read 

from the MASCOT files and for each ID the sequence and identification scan (MS/MS scan) 

are stored. The expected isotopologue distributions (masses and frequencies) of the 

peptides are calculated based on the respective sequence and natural frequencies of the 

isotopes. For each peptide, additional theoretical masses are calculated to account for 

additional peaks of isotope enriched (labeled) molecules. For each mass extracted ion 

chromatograms (XICs) were created by extracting peak intensities from the raw data from 

scans within an elution time window of 60 s before and after the corresponding MS/MS 

scan. The chromatographic peak of the peptide was determined by local minima of the XIC 

of the monoiostopic ion. In general there is no need for de-noising and smoothing before 

peak extraction on modern mass spectrometers such as the LTQ Orbitrap due to their high 

resolution and accuracy. 

The following equations formally describe the algorithm to estimate the fractional 

synthesis rate of an identified peptide. 

Let mp be the theoretical mass of the pth isotopic peak and 𝑝 ∈  0, . . . , 𝑁, . . . , 𝑀 . The first 

N + 1 masses are calculated based on natural isotope abundances comprising all natural 

isotopologues, whose frequency is at least 10%. The remaining M − N masses correspond 

to additional theoretical masses of all peaks that might arise from isotopic enrichments in 

a given range. These additional masses are defined by 

 𝑚𝑝 = 𝑚𝑝−1 + 𝑑 for 𝑝 ∈  𝑁 + 1, . . . , 𝑀 , (1) 

where d is the constant mass difference between the 15N and the 14N isotopes. In other 

words, the additional masses arise by replacing a 14N atom with a 15N atom until the 

percentage of heavy nitrogen atoms reaches a user defined maximum. 
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Let ip be the total measured intensities of the pth isotopic peak, which is derived by 

summing up all extracted ion intensities for that particular mass across the 

chromatographic peak of the peptide. Simple summation results in a weighted average of 

the relative isotopologue intensities. Based on ion statistics, the most intense scans 

(highest weight) should also most accurately reflect the true relative intensities. The total 

peptide intensity T is then simply the sum of all intensities arising from both natural and 

labeled molecules, denoted by Tnat and Tlab, respectively 

 𝑇 = 𝑇𝑛𝑎𝑡 + 𝑇𝑙𝑎𝑏  (2) 

From the extracted data the amount of total unlabeled signal can be calculated by 

 
𝑇𝑛𝑎𝑡 =

𝑖0

𝑓0
 (3) 

where i0 and f0 are the extracted intensity and calculated theoretical fractional frequency 

of the monoisotopic peak, respectively. The labeled peptide fraction LPF is then defined as 

the proportion of the labeled peptide signal to the total peptide signal, i.e. 

 
𝐿𝑃𝐹 =

𝑇𝑙𝑎𝑏

𝑇
=

𝑇 − 𝑇𝑛𝑎𝑡

𝑇
= 1 −

𝑇𝑛𝑎𝑡

𝑇
 (4) 

In order to determine actual rates, protein degradation has to be taken into account as 

well. Assuming steady state conditions (amount of synthesis = amount of degradation), the 

labeled peptide fraction measured after labeling duration t, LPFt, can be described by an 

exponential equation 

 𝐿𝑃𝐹𝑡 = 1 − 𝑒−𝜆𝑡  (5) 

Where  is the degradation/synthesis rate constant. Rearranging yields the final equation 

to estimate the FSR, which is independent of the labeling duration 

 
𝐹𝑆𝑅 = 𝜆 =

−ln⁡(1 − 𝐿𝑃𝐹𝑡)

𝑡
 (6) 

For further analysis, in case the required conditions are met, the LPF values can be 

converted into fractional synthesis rates using equation (6). However, even if steady state 

cannot be assumed, relative differences in protein turnover between two states can be 

readily derived from the LPF.  
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4.2.2.9 Western blot 

Relative protein levels of α-tubulin from 14 d labeled brain, and liver carboxylesterase 1 

from 1 d labeled plasma were analyzed by Western blot. Protein mixtures with equal 

protein content (10 µg) were first resolved by SDS-PAGE. Each sample was loaded three 

times. Subsequently, the separated proteins were transferred onto polyvinylidene fluoride 

membranes. Western blot analysis was then performed with anti-α-tubulin (1:5000, CP06, 

Oncogene Research Products, La Jolla, CA) and anti-liver carboxylesterase 1 (1:500, 

ab52941, Abcam plc., Cambridge, UK) antibodies, respectively. The membranes were then 

incubated with HRP-conjugated secondary antibody. ECL system and film were used for 

membrane visualization. Quantification of ECL images was done using Quantity One 

software (BioRad). 

4.2.2.10 Gene ontology and pathway analysis 

Brain proteins derived from 7 day labeled mice were sorted by FSR in ascending order and 

divided into four equal bins. The GO (Ashburner et al., 2000) analysis was performed using 

the methods described previously (Pan et al., 2009) using R (Team, 2009) and the GOstats 

(Falcon and Gentleman, 2007) package. Briefly, for each bin the p-values for each GO 

category were calculated by the conditional hypergeometric test using the quantitative 

proteome as a background. After obtaining the p-value for each category and bin, GO 

categories were filtered based on their p-values. Categories with no significant enrichment 

(p<0.05) in any bin were filtered out. Those categories which did not have a p-value for a 

bin after filtering were provided a conservative p-value of 1. Finally, the p-values were 

transformed with the equation x = -log10 p, and the z-scores were calculated by 

[x-mean(x)]/sd(x). For the KEGG (Kanehisa et al., 2004) analysis the mouse proteins were 

mapped to the KEGG ortholog level. This allows an interspecies comparison for further 

investigations. Afterwards the hypergeometric test was calculated using R. The background 

of the test was set to all mouse proteins in KEGG with at least one pathway entry (3319). 

Similar to the GO analysis the p-values were transformed into z-scores. 

4.2.3 Results 

4.2.3.1 ProTurnyzer 

The determination of protein turnover with the newly developed ProTurnyzer algorithm is 

based on the assumption that for peptides derived from co-existing labeled and unlabeled 

proteins, the monoisotopic peptide population almost exclusively originates from the 
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pre-existing protein fraction. This is evident from the following calculations. The 

probability of observing monoisotopic tryptic peptides is influenced by the total number of 

atoms N of each element and its corresponding heavy isotope percentage in the precursor 

pool p during protein synthesis. The greater N and/or p are, the lower is their contribution 

to the monoisotopic fraction. For example, for a hypothetical peptide consisting of 10 

averagines (Senko et al., 1995) that is synthesized under unlabeled conditions, the 

probability of generating a monoisotopic peptide is 53.4% (Figure 47a). In contrast, if the 

precursor pool is labeled with 10% 15N, the probability of synthesizing a monoisotopic 

peptide is reduced to 13.6% (Figure 47b). In case of a 20% 15N-labeled precursor pool, the 

monoisotopic peptide level decreases to only 3% (Figure 47c). Although an in silico tryptic 

digestion of all proteins from a typical protein database results in a relatively large number 

of small peptides (Elias and Gygi, 2007), only very few peptides smaller than 10 amino 

acids in sequence are typically identified during a shotgun mass spectrometry experiment. 

Commonly identified tryptic peptides have an average length of approximately 15 amino 

acids (Wang et al., 2010) and the newly synthesized labeled peptides are mainly 

non-monoisotopic in nature. For instance, a 15 averagine peptide only contains 0.4% 

monoisotopic signal when labeled with 20% 15N (Figure 47g). In summary, unless a peptide 

has a very short sequence and a low 15N% incorporation, the newly synthesized fraction is 

mainly made up of the non-monoisotopic species. Thus, for the majority of commonly 

identified peptides, the newly synthesized fraction will have a negligible monoisotopic 

signal (Figure 47d, h). 
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Figure 47. Theoretical isotopologue distributions for peptides consisting of 10 (a,b,c,d) or 

15 (e,f,g,h) averagine residues with natural (a,e), 10% (b,f) and 20% 15N (c,g) content. The 

monoisotopic peptide signal disappears rapidly with increasing peptide length and/or 15N 

incorporation. Spectra d and h show mixed peptide populations, consisting of natural, 10% 

15N, 20% 15N populations at a ratio of 60:20:20. The example demonstrates that the 

monoisotopic peptide signal mainly represents the natural protein population. M0 

represents the monoisotopic peptide. Mx the peptides containing x heavy isotopes.  
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Figure 48. The free amino acid relative isotopic abundance in mouse brain and plasma 

during 15N labeling. A rapid increase of the 15N label is observed in plasma whereas in 

brain tissue the 15N incorporation is somewhat delayed.  

To verify the above assumption we analyzed free amino acids in tissue and plasma for 15N 

enrichment of the precursor pool in living mice. Prior to feeding the animals with the 

15N-labeled diet only 14N amino acid signals were detectable. After feeding the 15N-labeled 

diet for 14 days, the 15N amino acid signal increased from 0% to 66% in brain tissue and 

from 0% to 84% in plasma (Figure 48). Since diet-based amino acids can get into plasma 

more rapidly, the 15N amino acid quantity increased at a relatively high rate at the 

beginning of labeling (47% on day 1). The plasma proteins which are mostly synthesized in 

the liver incorporate labeled amino acids without much delay resulting in mainly 

non-monoisotopic signals for almost all tryptic peptides. Previous studies have shown that 

brain has lower amino acid concentrations since free amino acids cannot enter it directly 

due to the blood brain barrier (Hawkins et al., 2006). This is the reason for the low 15N 

increase in brain compared to plasma. On day 1 the free 15N amino acid levels were 

approximately 10% and increased to 66% on day 14 (Figure 48). Since essential amino 

acids cannot be synthesized de novo by the organism, they must be obtained from the diet. 

Therefore, the essential amino acid 15N% should increase at a faster rate than the one for 

non-essential amino acids. This was indeed the case for the plasma samples on days 1, 2 

and 4 whereas in the brain samples the difference was insignificant (data not shown). 
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Figure 49. Isotopologue distributions of plasma albumin peptide TCVADESAANCDK (a, b, 

c, d) and brain heat shock protein 70kDa peptide LDKSQIHDIVLVGGSTR (e, f, g, h) at 

different labeling times as determined by mass spectrometry followed by ProTurnyzer 

analysis. The yellow part of the bars represents the peptide derived from pre-existing 

protein, and the purple part the peptide derived from newly synthesized protein. With 

increasing labeling time the newly synthesized protein fraction steadily increases whereas 

the pre-existing protein fraction disappears. The average mass of the peptide derived from 

newly synthesized protein increases along with the precursor pool RIA. 

Table 13. E.Coli protein mixtures labeled to different extents with 15N. 

 

15N content 
Proportion (%) 

in mixture 

Theoretical 
15N labeled 
fraction (%) 

Measured 15N 
labeled 
fraction 

(mean±S.E. %) 

Mixture 1 Natural 40 60 61.18±1.34 
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20% 10 (n=82) 
40% 20 
60% 30 

Mixture 2 

Natural 60 

40 
38.92±1.09 

(n=116) 
20% 13.3 

40% 13.3 

60% 13.3 
 

 

Figure 50. Mass spectra of E.Coli protein carbamoyl-phosphate synthase peptide 

ELLIDESLIGWK. a, c: theoretical isotopologue distributions of the peptide in mixtures 1 (a) 

and 2 (c) (see Table 13 for compositions). b, d: observed mass spectra of the peptide 

following ProTurnyzer analysis. The yellow part of the bars represents the natural peptide 

and the purple part the labeled peptide fractions.  

 

In order to validate the ProTurnyzer algorithm for calculating the protein fractional 

synthesis rate (FSR), we performed experiments with predefined 15N-labeled protein 

mixtures derived from E.coli cultures (Table 13). The objective here was to distinguish 

labeled and unlabeled peptide populations based on the mass spectrometry isotopologue 

patterns. In the example, the observed isotopologue distribution of E.Coli 

carbamoyl-phosphate synthase tryptic peptide ELLIDESLIGWK is close to the predicted 

isotopologue distribution calculated based on the differentially labeled protein mixtures 

(Figure 50). The ProTurnyzer algorithm is able to distinguish the labeled and unlabeled 

fractions (Figure 50b, d) and the average % of labeled peptide in mixtures 1 and 2 was 
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calculated to be 61.18±1.34% and 38.92±1.09%, respectively (Table 13), which is in good 

agreement with the expected values (60% and 40%, respectively). These data demonstrate 

that ProTurnyzer succeeds in capturing the labeled fraction of an isotopologue pattern 

from labeled and unlabeled peptide mixtures without prior knowledge of the precursor 

pool RIA. 

4.2.3.2 Protein turnover analysis in living mice 

Mice were fed a 15N-labeled diet for several days to analyze brain tissue and plasma 

protein turnover. Figure 49 shows tryptic peptide isotopologue distributions for plasma 

albumin and brain heat shock protein 70 kDa at different labeling times. The yellow part of 

the bars represents the unlabeled peptide fraction derived from pre-existing protein. The 

purple part represents the peptide fraction that is newly synthesized from 15N-labeled 

amino acids in the precursor pool. The gain of purple and loss of yellow signals reflect the 

protein turnover progress. The average peptide mass of the purple signal increases over 

the course of 15N labeling, reflecting an increased 15N amino acid incorporation into the 

precursor pool. At an early labeling time the newly synthesized proteins have a low 15N 

content and the tryptic peptide isotopologue signal overlaps with the one from the 

pre-existing protein. Despite this low 15N content ProTurnyzer is still able to distinguish the 

mixed peptide populations. Our data show that the FSR calculated for the albumin peptide 

TCVADESAANCDK is approximately 15%/day, which is in good agreement with the 

4.96%/8h value reported using the H2
18O labeling method (Rachdaoui et al., 2009). 
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Figure 51. Liver carboxylesterase (a,b,c) and alpha-tubulin (d,e,f) ProTurnyzer(a,b,d,e) 

and Western blot analyses (c,f) in two mice of the same strain. a, b: ProTurnyzer analysis 

results for carboxylesterase peptide EGASEEETNLSK from 1-day labeled mouse plasma. d, e: 

ProTurnyzer results for alpha-tubulin peptide NLDIERPTYTNLNR from 14-day labeled 

mouse brains. The purple part of the bars represents peptide derived from newly 

synthesized protein. In both cases, mouse 2 (corresponding to spectra b and e) shows a 

faster turnover rate than mouse 1 (corresponding to spectra a and d). No difference in 

protein amount is detected by western blot (c, f) between the two animals (analyzed in 

triplicate). 

In another set of studies we investigated the correlation between protein turnover and 

quantity. Liver carboxylesterase N (IPI00138342) from 1-day labeled plasma and tubulin 

alpha (IPI00117350) from 14-day labeled brain tissue showed different turnover rates 

between two animals (Figure 51a, b, d, e). At the same time western immunoblots 

showed no detectable change in the two proteins’ expression levels (Figure 51c, f) 

implying that protein synthesis can vary without an obvious change in overall protein 

expression. It also demonstrates that protein turnover is a more sensitive measure for 

detecting biological variability. 
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Figure 52. Correlation between brain protein turnover and KEGG pathway (a) and gene 

ontology cellular component (b). The blue graph on top displays protein FSR distribution 

from 7-day labeled brain tissue. Proteins were divided into four equal bins and analyzed 

with respect to KEGG pathways and GO categories. P-values were transformed to z-scores 

indicating bin specific enrichments (Due to the limited resolution the pathway and 

category names on the right are not legible; higher resolution figure is available in 

electronic file.). 

Based on their FSRs brain proteins from 7-day labeled brain tissue were divided into equal 

four bins. Proteins in each bin were analyzed independently with respect to enrichment in 

GO categories cellular component, molecular function, biological process, as well as KEGG 

pathways. Only categories with at least one bin of statistical significance larger than 95% 

(p-value<0.05) are shown. KEGG pathway analyses (Figure 52a) reveal that pathways 

citrate cycle (TCA cycle) (p=7.6E-17), valine, leucine and isoleucine degradation (p=5.8E-15) 

and butanoate metabolism (p=2.5E-12) are enriched with proteins from the first bin with 

low FSRs. In contrast, proteasome (p=1.7E-5), fatty acid biosynthesis (p=3.9E-4) and 

aminoacyl-tRNA biosynthesis (p=5.0E-4) are enriched with proteins from the fourth bin, 

implying high turnover rates. The GO analysis on cellular components (Figure 52b) 

demonstrates that proteins in the mitochondrion (p=7.1E-15), mitochondrial inner 

membrane (p=6.3E-12), mitochondrial envelope (p=8.3E-11), and organelle membrane 
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(p=4.2E-9) are enriched in the first bin, and proteins in the nucleus (p=2.0E-5) and 

endoplasmic reticulum (p=7.0E-4) are enriched in the fourth bin. Our results are in 

agreement with a previous study (Takizawa and Yamashita, 1989) that also found shorter 

biological half lives for nuclear compared to mitochondrial proteins. GO biological process 

and molecular function analyses also demonstrate differences in protein turnover. Proteins 

relevant to oxidation/reduction (p=3.4E-5), acetyl-CoA metabolic process (p=4.7E-5), and 

hyaluronic acid binding (p=0.001) and oxidoreductase activity (p=0.004) are enriched in 

the first bin, indicating slow turnover rates. The proteins relevant to protein metabolic 

process (p=2.7E-4), cellular biopolymer metabolic process (p=8.3E-4), and protein binding 

(p=1.7E-4), DNA binding (p=4.7E-4), unfolded protein binding (p=6.7E-4) and ATP binding 

(p=7.9E-4) are enriched in the fast turnover bin (Figure 53, 54). 
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Figure 53. Correlation between brain protein turnover and gene ontology biological 

process. The blue graph on top displays protein FSR distribution from 7-day labeled brain 

tissue. Proteins were divided into four equal bins and analyzed with respect to KEGG 

pathways and GO categories. P-values were transformed to z-scores indicating bin specific 

enrichments. 
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Figure 54. Correlation between brain protein turnover and gene ontology molecular 

function. The blue graph on top displays protein FSR distribution from 7-day labeled brain 

tissue. Proteins were divided into four equal bins and analyzed with respect to KEGG 

pathways and GO categories. P-values were transformed to z-scores indicating bin specific 

enrichments. 

4.2.4 Discussion 
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We introduce a new straightforward method for the global analysis of individual protein 

turnover in live organisms that unlike other protein turnover analysis methods (Doherty 

and Beynon, 2006b) does not require precursor pool RIA knowledge. Our method is based 

on the hypothesis that tryptic peptides derived from newly synthesized proteins are 

essentially devoid of any monoisotopic peptides. This is attributable to the fully 15N 

labeled dietary tracer, which significantly increases labeling efficiency. We show that for an 

average sized tryptic peptide with a low 15N incorporation the monoisotopic peptide signal 

is mostly derived from the pre-existing protein population (Figure 47h). We also 

demonstrate that the free amino acid RIA increases rapidly for plasma proteins, and 

somewhat slower in the brain. As a consequence the newly synthesized protein fraction 

can be distinguished from the pre-existing fraction already early on in the labeling process 

(Figure 49). 

Other methods for protein turnover analysis in live organisms that rely on RIA knowledge 

have been developed previously. One such method is mass isotopomer distribution 

analysis (MIDA) (Hellerstein and Neese, 1992, 1999). After labeling an organism with a 

single labeled amino acid tracer, the precursor RIA can be calculated based on the ratio 

between the intensities of singly and doubly labeled peptide populations. However, 

adapting the MIDA method to precursor pools whose RIA is changing is not 

straightforward, since proteins synthesized over the course of the labeling process are 

exposed to non-homogeneous precursor RIAs. The second limitation of the MIDA 

approach is that only tracer amino acid-containing peptides are amenable to turnover 

analysis. In one MIDA-based study chicken were labeled with valine as a tracer (Doherty et 

al., 2005). Using this approach protein turnover can only be calculated for 

valine-containing peptides after determining the precursor RIA. The chicken was chosen in 

this study because of its continuous diet intake which leads to a quick increase and 

plateauing of precursor RIA that subsequently remains constant. However, this method is 

not applicable to other mammals including mice. 

In an alternative approach, stable isotope labeled water, 2H2O or H2
18O, has been orally 

administered to determine protein dynamics (Rachdaoui et al., 2009). In this case the 

labeled water is utilized by the animal for the synthesis of amino acids and proteins (Foster 

et al., 1938). The assumption of this strategy is that a fast equilibration can be achieved 

between body water and free amino acid. Isotopologue analysis is used to determine the 

protein turnover. However, the small change in isotopologue distribution resulting from 
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low tracer incorporation makes the analysis of slow turnover and low abundant proteins 

difficult. Moreover, the hydrogen/deuterium exchange is reversible and can result in a 

back-exchange from deuterium to hydrogen during sample preparation in aqueous 

solvents (Kipping and Schierhorn, 2003; Mandell et al., 1998). 

Stable isotope labeling with amino acids in cell culture (SILAC) (Ong et al., 2002) was 

originally introduced to relatively quantify two or more proteomes from different 

physiological cellular states. More recently, the SILAC method has also been adapted for 

the determination of protein dynamics in cultured cell systems (Doherty et al., 2009). In 

HeLa cells the effect of microRNAs on protein synthesis was investigated by the pulsed 

SILAC (pSILAC) approach (Selbach et al., 2008). However, for incomplete precursor RIA the 

SILAC peptides derived from newly synthesized protein can only have two patterns: 

labeled or unlabeled. The peptide signals derived from the unlabeled newly synthesized 

protein overlaps with the one from unlabeled pre-existing protein. In case of a low 

precursor RIA the majority of the peptide signal derived from newly synthesized protein 

shows up in its unlabeled form. Hence the knowledge of the amino acid precursor RIA is 

mandatory if one wants to apply the pSILAC approach to living animals. Since the SILAC 

tryptic peptides only contain one labeled tracer amino acid (unless proteins are cleaved 

incompletely) and the precursor RIA in living animals is continuously changing after tracer 

administration, calculation of the precursor RIA with the MIDA method cannot be 

performed. In a recent report pSILAC was also applied to living mice (58th ASMS 

Conference on Mass Spectrometry and Allied Topics poster “Proteome wide determination 

of true turnover rates in mice” by Ruhs et al.). Here the precursor RIA was calculated by 

fitting an exponential function to proteins with the highest incorporation rates. However, 

data from multiple labeling time points had to be acquired. Furthermore, the calculated 

precursor RIA resulting from the labeled fractions of a few proteins with a fast turnover 

may not correspond to the real-time RIA when the animal is sacrificed. Hence, if the 

precursor RIA for different proteins is not homogeneous, the method is prone to error. 

The major advantage of the protein turnover analysis method we are presenting here is 

that precursor RIA determination is not required. The accuracy of our method depends on 

the match between measured and theoretical isotopologue distributions. Deviations 

between the two are more pronounced for peptides derived from low abundant proteins 

due to poor mass spectrometry ion statistics (Xu et al., 2010) and the variable decay rates 

for different isotopic species in certain mass spectrometer detectors (Bresson et al., 1998). 
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However, using a weighted average isotopologue distribution of all spectra across the 

entire elution time of a peptide improves this situation. 

15N labeling periods for brain and plasma of 7 days and 2 days, respectively, resulted in the 

determination of FSRs for a great number of proteins, typically showing ratios between 

labeled and unlabeled protein fractions neither too low nor too high. This results in a small 

overlap of the mass spectrometry signals from the two peptide populations that the 

ProTurnyzer software can easily deal with. 

Our data indicate that protein FSRs differ from each other to a significant extent. For an 

in-depth analysis, two labeling time points can be applied in order to capture proteins 

covering a wide range of FSRs. For instance, a 1-day labeling period is sufficient for the 

plasma protein plasminogen (FSR > 50%/day). In this case longer labeling times would 

result in the disappearance of the pre-existing natural protein fraction which makes FSR 

determination difficult. Brain heat shock protein 70kDa FSR was much lower than that of 

plasminogen. Here longer labeling times can reduce the error caused by the monoisotopic 

peptide signal derived from proteins that are newly synthesized shortly after onset of 

labeling while precursor RIA is still low. Using proper labeling times our method succeeds 

in measuring individual protein dynamics. Based on our data the labeling time window is 

reasonably wide and results in comparable FSRs even when different labeling times are 

used. 

As mentioned in the ’Introduction’ mRNA and its corresponding protein levels do not 

always correlate. Protein turnover is one important aspect of translatomics since it reflects 

the rate of protein translation and serves as an important link between mRNA and protein. 

Methods able to determine protein turnover in a high throughput manner, especially in 

living animals, are critical to obtain a better understanding of the poor correlation 

between mRNA and protein quantities. We have been able to analyze FSRs for a great 

number of proteins, and the KEGG pathway and GO analyses have shown that protein 

turnover correlates with biological processes and organelle protein distribution. 

In the medical sciences protein turnover analysis can deliver important information for 

biomarker research that is more sensitive than simple protein quantitation. Particularly in 

the blood where proteins are rapidly turned over standard analyses for protein expression 

levels may not be able to catch subtle differences between healthy and diseased states 

and FSR analysis could provide a more sensitive platform for protein biomarker assays. 
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This becomes especially relevant in the case of low abundant proteins. Even in cases 

where protein expression levels are detectable the analysis of protein turnover may sense 

these upcoming changes at a much earlier time point, which is critical for the early 

detection of disease.
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5 Perspectives 

The presented studies have demonstrated that a combination of proteomics 

and metabolomics is able to identify molecular pathways pertinent for the 

anxiety phenotype in a mouse model. The identified proteins and metabolites 

allow the elucidation of biological networks, which provide a global view of 

disease pathobiology. Based on the presented findings on the anxiety mouse 

model two lines of future research can be considered. On one hand an 

investigation of the possibility of translating the results from the mouse model 

to the clinic should be performed. After successful clinical validation of a 

candidate biomarker, the latter can serve to indicate the anxiety phenotype in 

case / control studies and to monitor treatment response. Even without 

knowing a biomarker’s role in modulating anxiety disorders, it still can assist 

the psychiatrist to get a better diagnosis for patients. The second level of 

studies is related to preclinical research. Although several pathways that are 

relevant to psychiatric disorders are suggested in the present study, the 

ultimate disease cause is still not understood. The current study opens several 

directions for psychiatric disease research. Among others the identified 

pathways can be used for drug development efforts by the pharmaceutical 

industry. 

Besides protein expression quantification, the 15N metabolic labeling 

technology enables us to detect the protein turnover rate, whose alteration is 

thought to be more sensitive than protein expression. The protein turnover 

information opens another venue for biomarker discovery efforts, as changes in 

protein levels are apparent at a much earlier time point using turnover analysis 

and those changes are not yet reflected by the total protein amount. Moreover, 

protein turnover studies may help us to get a better understanding of the poor 

correlation between mRNA and protein quantities. 

Another focus when it comes to technology development is the analysis of 

clinical samples. Disease specific signature proteins and metabolites should be 
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quantified by an assay procedure in a standard and fast manner. The current 

-omics platforms are relatively time consuming. There is a need to improve the 

shotgun proteomics workflow to analyze low abundant biomarkers in a 

targeted fashion precisely and fast.
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7 Supplementary tables 

Supplementary table 1. Proteins expressed 
differentially between HAB/LAB hippocampal 
cytosol (indirect comparison) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00271166.4 Htt -7.2 28 
IPI00128071.7 Uso1 -4.1 14 
IPI00320831.3 Nbea -3.9 107 
IPI00652358.5 Arsb -3.6 13 
IPI00377455.3 Gcc2 -3.4 12 
IPI00336281.1 Golga3 -3 39 
IPI00115663.2 Dctn1 -3 50 
IPI00228222.1 Ubr3 -3 13 
IPI00788324.1 Myh9 -2.9 11 
IPI00331299.9 Ncdn -2.9 173 
IPI00112001.1 Cap2 -2.8 22 
IPI00466610.5 Map2k1 -2.7 10 
IPI00453996.1 Myh14 -2.7 16 
IPI00114894.1 Myh11 -2.7 116 
IPI00421179.1 Eif4g1 -2.6 28 
IPI00308938.6 Capn2 -2.6 14 
IPI00123181.3 Myh9 -2.5 352 
IPI00400432.2 Eif4a2 -2.4 16 
IPI00621417.1 Hbb-b1 -2.4 231 
IPI00467383.2 Cul3 -2.3 41 
IPI00225961.5 Phgdh -2.3 21 

IPI00130390.5 Kif1b -2.2 31 

IPI00221817.5 
Loh11cr2
a 

-2.2 23 

IPI00453613.3 Huwe1 -2.2 89 
IPI00761751.2 Kif13b -2.2 12 
IPI00480321.2 Grlf1 -2.1 27 
IPI00338604.5 Myh10 -2.1 558 
IPI00331444.7 Ipo7 -2.1 58 
IPI00123709.1 Akap12 -2 36 
IPI00123465.1 Cops7a -2 23 
IPI00118120.1 Myo5a -2 94 
IPI00128341.1 Wasf3 -2 12 
IPI00453615.3 Huwe1 -2 21 
IPI00420562.5 Cand1 -2 281 
IPI00119762.4 Dclk1 -2 26 
IPI00453803.5 Ube2o -2 93 
IPI00114667.1 Psmd7 -1.9 14 
IPI00116752.7 Sec23ip -1.9 22 
IPI00115833.2 Mtap6 -1.9 165 
IPI00319320.4 Nckap1 -1.9 94 
IPI00407835.2 Ubap2l -1.9 30 
IPI00229483.3 Sec24c -1.9 28 
IPI00262114.1 Pak3 -1.9 12 
IPI00117929.1 Oxr1 -1.9 238 
IPI00377609.2 Vcpip1 -1.9 25 
IPI00464181.4 BC067047 -1.8 11 
IPI00224151.5 Ap1g1 -1.8 14 
IPI00118676.3 Eif4a1 -1.8 17 
IPI00377592.7 Sec31a -1.8 137 
IPI00554992.2 Kif1a -1.8 63 

IPI00132762.1 Trap1 -1.8 83 
IPI00129350.1 Aldh18a1 -1.7 12 
IPI00270877.5 Usp14 -1.7 11 
IPI00136350.3 Dlg3 -1.7 36 
IPI00108388.1 Usp9x -1.7 131 
IPI00407144.1 Kif1b -1.7 18 
IPI00405625.9 Cyfip2 -1.7 134 
IPI00187356.1 Ankfy1 -1.7 22 
IPI00626501.3 Kif1a -1.7 58 
IPI00124614.1 Epm2aip1 -1.7 36 
IPI00399840.2 Ube3a -1.7 21 
IPI00343557.1 Mapre3 -1.7 31 
IPI00321646.3 AI314180 -1.7 21 
IPI00881540.2 Synj1 -1.7 11 
IPI00115824.1 Nipsnap1 -1.7 43 
IPI00108150.1 Rock2 -1.7 172 
IPI00221769.5 Ak3 -1.7 14 
IPI00229080.7 Hsp90ab1 -1.7 883 
IPI00172221.2 Dnm1l -1.7 60 
IPI00133132.1 Ptk2b -1.6 54 
IPI00132080.1 Pgls -1.6 51 
IPI00321734.7 Glo1 -1.6 207 
IPI00125135.1 Ube2d2 -1.6 41 
IPI00465648.3 Dnm1 -1.6 31 
IPI00331016.1 Sec24b -1.6 37 
IPI00312128.3 Trim28 -1.6 52 
IPI00227236.2 Cadps2 -1.5 28 

IPI00109044.8 
2900073G
15Rik 

-1.5 12 

IPI00330476.3 Cyfip1 -1.5 202 
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IPI00459745.3 Rap1gap -1.5 39 
IPI00229647.5 Tln2 -1.5 62 

IPI00123624.8 
2610301G
19Rik 

-1.5 53 

IPI00352986.2 Strn -1.5 38 
IPI00129526.1 Hsp90b1 -1.5 337 

IPI00808550.1 
B230112C
05Rik 

-1.5 18 

IPI00458854.2 Sart3 -1.5 30 
IPI00117087.1 Cdc37 -1.4 12 
IPI00116546.2 Prkar2a -1.4 10 
IPI00129282.1 Dlg2 -1.4 31 
IPI00311461.1 Atp6v1h -1.4 25 
IPI00758170.2 Synj1 -1.4 116 
IPI00222496.3 Pdia6 -1.4 18 
IPI00123349.2 Sec23a -1.4 42 
IPI00120076.2 Ckmt2 -1.4 41 
IPI00331076.4 Slk -1.4 169 
IPI00137331.6 Cap1 -1.4 109 
IPI00314439.3 Psmd3 -1.4 19 
IPI00113214.1 Usp5 -1.4 373 
IPI00331568.7 Hgs -1.4 23 
IPI00310091.8 Ppp2r1a -1.4 75 
IPI00330804.4 Hsp90aa1 -1.4 614 
IPI00465786.3 Tln1 -1.3 41 
IPI00323483.3 Pdcd6ip -1.3 50 
IPI00406624.2 Mgea5 -1.3 41 
IPI00132993.1 Pak1 -1.3 64 
IPI00127707.1 Pcbp2 -1.3 14 
IPI00131692.7 Rabep1 -1.3 62 
IPI00323881.1 Kpnb1 -1.3 100 

IPI00469103.1 Kars -1.3 23 
IPI00112335.1 Map2k4 -1.3 24 
IPI00381019.1 Smarcc2 -1.3 21 
IPI00123379.1 Hdlbp -1.3 16 
IPI00221723.1 Wasf2 -1.2 12 
IPI00123518.1 Lypla2 -1.2 18 
IPI00261627.1 Sucla2 -1.2 59 
IPI00850983.1 Synj1 -1.2 665 
IPI00351252.4 Gmps -1.2 78 

IPI00468516.3 
D6Wsu11
6e 

-1.2 23 

IPI00123292.5 Fubp1 -1.2 59 
IPI00225231.1 Ank2 -1.2 20 
IPI00312076.4 Kif3a -1.2 10 
IPI00108147.1 Rock1 -1.1 25 
IPI00415908.4 Ppme1 -1.1 23 
IPI00128127.1 Dgkg -1.1 15 
IPI00132278.1 Cplx1 -1.1 12 
IPI00226602.3 6-Sep -1.1 22 
IPI00762897.2 Ugcgl1 -1.1 208 
IPI00330163.4 Cadps -1.1 203 
IPI00116554.2 Ptpn11 -1.1 37 
IPI00118075.1 Mtap2 -1.1 3147 
IPI00420870.4 Ogt -1.1 114 
IPI00119689.1 Ap2b1 -1.1 159 
IPI00555125.1 Kif5b -1.1 27 
IPI00329843.4 Ankfy1 -1.1 40 

IPI00154004.1 
LOC10004
6081 

-1.1 86 

IPI00222306.5 Ppp2r1b -1.1 68 
IPI00109420.2 Kif5a -1.1 120 

IPI00169448.1 Ube2m -1.1 26 
IPI00187407.4 Cops8 -1.1 36 
IPI00119876.1 Dync1h1 -1.1 1143 
IPI00165854.3 Ube2n -1.1 65 
IPI00381365.1 Abr -1.1 64 
IPI00224128.7 Nmt1 -1 15 
IPI00130992.1 Capns1 -1 11 
IPI00420385.4 11-Sep -1 17 

IPI00127176.3 
6720456B
07Rik 

-1 24 

IPI00471372.2 Wasf1 -1 54 
IPI00668903.1 Cadps -1 14 
IPI00134344.6 Spnb3 -1 606 
IPI00853823.2 Rapgef2 -1 134 
IPI00127492.1 Smap1 -1 29 
IPI00310131.5 Ap2a2 -1 76 
IPI00114241.2 Nefh -1 43 
IPI00405227.3 Vcl -1 214 

IPI00347394.7 
1300001I
01Rik 

-1 48 

IPI00124787.3 Arl3 -1 36 
IPI00876559.1 Khsrp -1 20 
IPI00110990.1 Dusp3 -1 123 
IPI00128867.3 Purb -1 21 
IPI00894724.1 Mtap2 -1 43 
IPI00308446.2 Ahcyl2 -1 16 
IPI00127172.3 Ddx1 -1 42 

IPI00849505.1 
LOC10004
3998 

-1 138 

IPI00379625.2 Nova2 -1 15 
IPI00228113.5 Mthfd1l -1 32 
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IPI00453849.3 Rnmt -1 10 

IPI00553419.3 Dsp 1 40 

IPI00229598.4 Cnp 1 19 

IPI00129519.3 Basp1 1 94 

IPI00130280.1 Atp5a1 1 124 

IPI00468481.2 Atp5b 1 132 

IPI00330523.1 Pcca 1 109 

IPI00308976.1 Me3 1 249 

IPI00223216.5 Tst 1 78 

IPI00272401.4 Acyp2 1 114 

IPI00126172.1 
4931406C
07Rik 

1 17 

IPI00317309.5 Anxa5 1 139 

IPI00336881.1 Ddah2 1 31 

IPI00114710.2 Pcx 1 637 

IPI00127450.1 Man2c1 1 82 

IPI00110351.1 
2310007H
09Rik 

1 16 

IPI00459279.2 Qdpr 1 138 

IPI00459326.1 
Uncharact
erized 

1 23 

IPI00626662.3 Aldh1a1 1.1 11 

IPI00118011.6 Manba 1.1 27 

IPI00121440.4 Etfb 1.1 63 

IPI00109169.1 Idh3g 1.1 93 

IPI00116753.4 Etfa 1.1 187 

IPI00230351.1 Sdha 1.1 121 

IPI00329927.4 Nfasc 1.1 127 

IPI00380195.1 
1700012G
19Rik 

1.1 69 

IPI00109109.1 Sod2 1.1 360 

IPI00108980.2 Cpne4 1.1 14 

IPI00123744.1 Cst3 1.1 128 

IPI00130344.3 Clic1 1.1 20 

IPI00170307.1 Apoa1bp 1.1 156 

IPI00228253.2 Acat2 1.1 80 

IPI00131830.1 Serpina3k 1.1 56 

IPI00469548.2 Syn2 1.2 10 

IPI00132653.1 Oxct1 1.2 354 

IPI00122971.1 Ncam1 1.2 80 

IPI00315452.5 Pnp1 1.2 25 

IPI00120030.1 Crym 1.2 423 

IPI00315302.5 Ndufa2 1.2 18 

IPI00123014.1 Padi2 1.2 69 

IPI00310035.3 Fah 1.2 33 

IPI00133557.1 Tppp3 1.2 61 

IPI00139788.2 Trf 1.2 219 

IPI00223060.1 Pck2 1.3 96 

IPI00653664.2 Enoph1 1.3 26 

IPI00137736.1 Rps28 1.3 19 

IPI00127267.4 Gldc 1.3 26 

IPI00331094.3 Aspa 1.3 11 

IPI00471246.2 Ivd 1.5 58 

IPI00670735.1 
LOC67731
7 

1.5 24 

IPI00117042.3 Gfap 1.6 75 

IPI00121038.2 Vcan 1.6 50 

IPI00115240.1 Mbp 1.7 12 

IPI00312058.5 Cat 1.7 22 

IPI00121534.1
1 

Car2 1.7 267 

IPI00229475.1 Jup 1.9 39 

IPI00133034.3 Hint2 1.9 47 

IPI00112719.1 Alad 1.9 55 

IPI00138274.1 Cryab 2 10 

IPI00130640.5 Hrsp12 2.2 242 

IPI00127560.1 Ttr 2.5 54 

IPI00131695.3 Alb 3.2 412 

IPI00222228.5 
4732456N
10Rik 

3.5 33 

IPI00762198.2 Hbb-b1 5.3 233 

IPI00330039.3 Srgap3 8.1 14 

 
Supplementary table 2. Proteins expressed 
differentially between HAB/LAB hippocampal 
microsome (indirect comparison) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00116222.1 Hibadh -5.1 41 
IPI00135915.1 Glb1 -5 10 
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IPI00466610.5 Map2k1 -2.7 60 
IPI00464166.2 Ptpn23 -2.4 24 
IPI00116331.1 Sgta -2.3 27 
IPI00378557.3 Pfdn4 -2.2 12 
IPI00114894.1 Myh11 -2.1 95 
IPI00421179.1 Eif4g1 -2 41 
IPI00331299.9 Ncdn -1.9 267 
IPI00453615.3 Huwe1 -1.8 18 
IPI00119762.4 Dclk1 -1.7 36 
IPI00453996.1 Myh14 -1.7 23 
IPI00336281.1 Golga3 -1.7 22 
IPI00123181.3 Myh9 -1.7 320 
IPI00282957.4 Mtap7d1 -1.7 16 
IPI00115663.2 Dctn1 -1.7 141 

IPI00123624.8 
2610301G
19Rik 

-1.7 85 

IPI00752390.4 Sbf1 -1.6 87 
IPI00453613.3 Huwe1 -1.6 99 
IPI00172221.2 Dnm1l -1.6 176 
IPI00788324.1 Myh9 -1.5 19 
IPI00118120.1 Myo5a -1.5 242 
IPI00338604.5 Myh10 -1.5 573 
IPI00118676.3 Eif4a1 -1.4 41 
IPI00467383.2 Cul3 -1.4 38 
IPI00321734.7 Glo1 -1.4 146 
IPI00407835.2 Ubap2l -1.4 43 
IPI00128296.1 Ckmt1 -1.4 307 
IPI00321922.2 Pacs1 -1.3 17 
IPI00407425.2 Myo18a -1.3 73 
IPI00137331.6 Cap1 -1.3 210 
IPI00403682.2 Mapre2 -1.3 15 

IPI00420562.5 Cand1 -1.3 288 
IPI00377609.2 Vcpip1 -1.2 21 
IPI00222496.3 Pdia6 -1.2 38 
IPI00115097.1 Copb2 -1.2 26 
IPI00122069.1 Prkcc -1.2 153 
IPI00132993.1 Pak1 -1.2 12 
IPI00377592.7 Sec31a -1.2 77 
IPI00117063.1 Fus -1.2 17 
IPI00112001.1 Cap2 -1.2 50 
IPI00462934.2 Khsrp -1.2 68 
IPI00119876.1 Dync1h1 -1.2 1527 
IPI00312128.3 Trim28 -1.2 52 
IPI00461469.3 Mars -1.1 42 
IPI00115833.2 Mtap6 -1.1 157 
IPI00108147.1 Rock1 -1.1 17 
IPI00319320.4 Nckap1 -1.1 114 
IPI00120076.2 Ckmt2 -1.1 79 
IPI00139795.2 Rplp2 -1.1 66 
IPI00458854.2 Sart3 -1.1 32 
IPI00321646.3 AI314180 -1.1 105 
IPI00896700.1 Mtap1b -1.1 40 
IPI00124223.3 Psme1 -1 23 

IPI00127176.3 
6720456B
07Rik 

-1 10 

IPI00114801.2 Inpp1 -1 17 
IPI00123465.1 Cops7a -1 52 
IPI00553419.3 Dsp -1 28 
IPI00312752.3 Sh3gl1 -1 21 
IPI00122826.1 Cend1 -1 12 
IPI00471372.2 Wasf1 -1 50 
IPI00330476.3 Cyfip1 -1 156 

IPI00225533.1 Necap1 -1 34 
IPI00626501.3 Kif1a -1 42 
IPI00117929.1 Oxr1 -1 173 
IPI00114667.1 Psmd7 -1 73 
IPI00270877.5 Usp14 -1 17 
IPI00320831.3 Nbea -1 78 
IPI00133428.3 Psmc1 -1 30 
IPI00115546.4 Gnao1 1 319 
IPI00109727.1 Thy1 1 141 
IPI00230277.3 Mapk3 1 12 
IPI00154054.1 Acat1 1 246 
IPI00331745.2 Lxn 1 36 
IPI00117312.1 Got2 1 719 
IPI00126635.1 Idh3b 1 124 
IPI00468653.3 Pccb 1 53 
IPI00110827.1 Acta1 1 814 
IPI00110850.1 Actb 1 1062 
IPI00226430.2 Acaa2 1 38 

IPI00380195.1 
1700012G
19Rik 

1 48 

IPI00115679.1 Ganab 1 159 
IPI00269481.7 Capzb 1 164 
IPI00116120.3 Pdcd5 1 24 
IPI00128857.1 Me1 1 94 
IPI00126940.1 Adk 1 19 
IPI00317309.5 Anxa5 1 106 
IPI00471246.2 Ivd 1 37 
IPI00555059.2 Prdx6 1 130 
IPI00135977.3 Clic4 1 10 
IPI00119035.1 Acan 1 49 
IPI00116134.1 Dpp3 1 98 
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IPI00139788.2 Trf 1 123 
IPI00153400.2 H2afj 1.1 31 

IPI00222228.5 
4732456N
10Rik 

1.1 27 

IPI00128973.1 Gap43 1.1 21 
IPI00323592.2 Mdh2 1.1 1244 
IPI00116192.1 Prdx3 1.1 182 
IPI00308976.1 Me3 1.1 181 
IPI00116074.1 Aco2 1.1 1609 
IPI00132653.1 Oxct1 1.1 205 
IPI00461964.3 Aldh6a1 1.1 56 
IPI00330480.1 EG432987 1.2 169 
IPI00113052.1 Tsfm 1.2 17 
IPI00114241.2 Nefh 1.2 38 
IPI00109169.1 Idh3g 1.2 95 
IPI00116753.4 Etfa 1.2 140 
IPI00330523.1 Pcca 1.2 111 
IPI00121013.1 Pea15a 1.2 51 
IPI00124692.1 Taldo1 1.2 69 
IPI00127450.1 Man2c1 1.2 53 

IPI00340165.5 
21 kDa 
protein 

1.2 16 

IPI00230013.3 Cacna2d1 1.2 74 
IPI00459279.2 Qdpr 1.2 90 
IPI00130391.1 Tcrb-V20 1.3 208 
IPI00229475.1 Jup 1.3 38 
IPI00120045.1 EG628438 1.3 114 
IPI00109109.1 Sod2 1.3 206 
IPI00122971.1 Ncam1 1.3 313 
IPI00122265.1 Sh3bgrl 1.3 41 

IPI00170307.1 Apoa1bp 1.3 96 
IPI00115620.1 Psat1 1.3 69 
IPI00222515.5 Psmd11 1.3 61 
IPI00759847.1 Ndrg2 1.4 15 
IPI00169622.3 Phyhip 1.4 108 
IPI00118825.2 Csl 1.4 10 
IPI00121566.1 Gmpr 1.4 35 
IPI00118011.6 Manba 1.5 13 
IPI00229718.1
0 

Gltp 1.5 15 

IPI00121105.2 Hadh 1.5 29 
IPI00120030.1 Crym 1.6 319 
IPI00123014.1 Padi2 1.6 38 
IPI00121534.1
1 

Car2 1.6 215 

IPI00222149.4 Chl1 1.7 75 
IPI00123379.1 Hdlbp 2 35 
IPI00114710.2 Pcx 2 459 
IPI00112719.1 Alad 2.1 48 
IPI00131830.1 Serpina3k 2.1 37 
IPI00130640.5 Hrsp12 2.3 92 
IPI00138274.1 Cryab 2.3 19 
IPI00762198.2 Hbb-b1 4.2 123 

IPI00454053.7 
2010300C
02Rik 

5.1 12 

IPI00118757.1 Phpt1 6.3 43 

 
Supplementary table 3. Proteins expressed 
differentially between HAB/LAB plasma 
(indirect comparison) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00877236.1 Apoa1 -6.2 190 
IPI00831484.1 382044 -4.4 76 
IPI00177214.1 Igh-6 -4.3 63 
IPI00116548.1 Reg3b -3.8 12 
IPI00855108.2 Hbb-b1 -3.5 75 
IPI00113806.1 Reg3g -3 85 
IPI00118130.1 Orm1 -2.3 441 
IPI00118455.1 Saa1 -2.1 87 
IPI00309214.1 Apcs -2 668 
IPI00453488.1 Antxr2 -2 30 
IPI00128484.1 Hpx -1.8 5713 
IPI00663742.3 Dnahc10 -1.8 40 
IPI00122312.2 Fgg -1.6 1416 
IPI00279079.1 Fgb -1.4 1439 
IPI00115522.3 Fga -1.4 1253 
IPI00124725.2 Itih3 -1.4 1093 
IPI00462363.1 BC026782 -1.4 71 

IPI00468477.4 
25 kDa 
protein 

-1.4 26 

IPI00129250.1 Lrg1 -1.3 183 

IPI00222228.5 
4732456N
10Rik 

-1.3 15 

IPI00119299.1 Lifr -1.2 247 
IPI00314141.5 Serpina3n -1.2 228 
IPI00130010.4 Cfh -1.1 2741 
IPI00121055.1 EG214403 -1.1 116 
IPI00378649.1 LOC63510 -1.1 38 
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1 
IPI00107952.2 Lyz2 -1.1 11 
IPI00137599.2 Sepp1 -1 172 
IPI00459201.1 Igh -1 51 
IPI00133751.1 Mfap4 -1 31 
IPI00114099.2 Apoc3 1 317 
IPI00109996.1 H2-Q2 1 62 
IPI00468281.5 Rsad2 1.1 20 

IPI00850317.1 
LOC10004
4179 

1.2 60 

IPI00323571.1 Apoe 1.3 668 
IPI00127560.1 Ttr 1.4 689 
IPI00122429.1 Rbp4 1.4 463 
IPI00111315.1 Apoa2 1.4 185 
IPI00317356.1
0 

Pon1 1.4 137 

IPI00118994.1 Apoc4 1.4 54 
IPI00119676.1 Apoc1 1.5 77 
IPI00869381.1 Apoa2 1.6 190 
IPI00666034.3 Apob 1.7 2182 

IPI00138892.2 
OTTMUS
G0000000
4411 

1.7 14 

IPI00828873.1 Hbb 3.7 44 
IPI00117910.3 Prdx2 5.7 36 
IPI00621417.1 Hbb-b1 5.8 362 
IPI00762198.2 Hbb-b1 6.4 556 
IPI00230320.6 Car1 8.9 13 

 
Supplementary table 4. Proteins expressed 
differentially between 14N-HAB/15N-HAB 

Hippocampal cytosol (Isotope effect) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00378172.2 Armc9 -7.3 13 
IPI00338604.5 Myh10 -1.4 184 
IPI00123181.3 Myh9 -1.3 112 
IPI00229834.3 Copa -1.1 10 
IPI00114894.1 Myh11 -1.1 54 
IPI00115363.2 Nhej1 -1 11 
IPI00134344.6 Spnb3 -1 192 
IPI00115827.1 Gbas 1 19 
IPI00127560.1 Ttr 1 30 
IPI00323800.6 Nefm 1 67 
IPI00453777.2 Atp5d 1.1 11 
IPI00221769.5 Ak3 1.1 12 
IPI00129755.2 Serpina1b 1.1 18 
IPI00131830.1 Serpina3k 1.1 145 
IPI00121038.2 Vcan 1.2 17 
IPI00153400.2 H2afj 1.2 17 
IPI00122349.1 Dpysl3 1.2 204 
IPI00122549.1 Vdac1 1.3 16 
IPI00229598.4 Cnp 1.3 81 
IPI00624192.3 Dpysl5 1.3 158 
IPI00407425.2 Myo18a 1.7 17 
IPI00117857.2 Serpina1c 1.7 47 
IPI00224067.2 Hdgfrp3 1.9 10 
IPI00221825.1 Clic6 1.9 21 
IPI00403938.2 Tnc 1.9 68 
IPI00621417.1 Hbb-b1 2 43 
IPI00831055.2 Beta-globi

n 
2.1 18 

IPI00762198.2 Hbb-b1 2.4 116 
IPI00128441.3 Hnrnpr 2.9 28 
IPI00553419.3 Dsp 4.1 77 
IPI00329998.3 11 kDa 

protein 
4.7 10 

IPI00222228.5 4732456N
10Rik 

5 17 

IPI00117042.3 Gfap 5.5 78 
IPI00118011.6 Manba 6 24 
IPI00131674.3 2210010C

04Rik 
6 32 

IPI00468203.3 Anxa2 6.3 20 
IPI00229475.1 Jup 6.3 29 
IPI00130391.1 Tcrb-V20 6.7 104 
IPI00330480.1 EG432987 6.8 68 

 
Supplementary table 5. Proteins expressed 
differentially between 14N-HAB/15N-HAB 
plasma (Isotope effect) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00457439.1 Ssna1 -6.9 12 
IPI00115553.2 BC005624 -2.1 23 
IPI00411007.1 Man1c1 -2 50 
IPI00230760.5 Mb -1.9 18 
IPI00112331.1 Gli1 -1.8 12 
IPI00116105.1 Serpina6 -1.3 219 
IPI00623506.3 Ank3 -1.2 15 
IPI00118413.2 Thbs1 -1.2 37 
IPI00881564.1 Serpina6 -1 22 
IPI00222188.4 Col1a2 -1 34 
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IPI00119676.1 Apoc1 1 15 
IPI00135547.1 Saa4 1.1 77 
IPI00123924.1 Serpina1d 1.1 123 
IPI00556721.1 Igfals 1.2 111 
IPI00119299.1 Lifr 1.3 74 
IPI00117857.2 Serpina1c 1.3 748 

IPI00138892.2 
OTTMUS
G0000000
4411 

1.5 11 

IPI00648416.1 C8a 1.5 18 
IPI00122122.1 C8g 1.5 54 
IPI00118437.1 C8g 1.5 177 
IPI00407657.2 C8a 1.5 303 
IPI00121274.2 C8b 1.5 327 
IPI00314270.3 C6 1.6 50 
IPI00123223.2 Mug1 1.7 6074 

IPI00890309.1 
2610016E
04Rik 

1.9 22 

IPI00621417.1 Hbb-b1 1.9 65 
IPI00121190.1 Egfr 1.9 310 

IPI00831055.2 
Beta-globi
n 

2 32 

IPI00115241.1 Mup4 2.1 13 
IPI00117910.3 Prdx2 2.1 22 
IPI00762198.2 Hbb-b1 2.2 149 
IPI00230718.3 C9 2.3 205 
IPI00113996.7 Blvrb 2.4 20 
IPI00120832.1 Mup3 2.5 67 

IPI00330913.1 
OTTMUS
G0000000

2.6 29 

0231 

IPI00378649.1 
LOC63510
1 

2.7 17 

IPI00230320.6 Car1 3.2 11 
IPI00719897.1 Try10 3.6 13 
IPI00115243.1 Mup5 4.1 22 

IPI00131674.3 
2210010C
04Rik 

5.1 39 

IPI00132542.1 Mup2 5.1 125 
IPI00468281.5 Rsad2 5.5 13 
IPI00117042.3 Gfap 5.6 49 
IPI00135701.3 Slco1a5 5.8 25 
IPI00466399.1 Mup2 5.9 72 
IPI00263313.1 Drg1 6.1 11 
IPI00124590.3 Casp8ap2 6.4 19 
IPI00118161.1 Usp26 6.8 15 
IPI00458776.3 Irak1bp1 7.2 13 
IPI00330480.1 EG432987 7.2 69 
IPI00130391.1 Tcrb-V20 7.2 135 

 
Supplementary table 6. Proteins expressed 
differentially between HAB/NAB hippocampal 
cotysol (Indirect comparison) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00621417.1 Hbb-b1 -8.7 102 
IPI00221825.1 Clic6 -5.4 23 
IPI00474783.4 Acaca -4.8 23 
IPI00123379.1 Hdlbp -4 30 

IPI00135151.1 
9030624J
02Rik 

-3.9 12 

IPI00224067.2 Hdgfrp3 -2.9 13 
IPI00221769.5 Ak3 -2.2 22 
IPI00407425.2 Myo18a -2.1 31 
IPI00128071.7 Uso1 -2.1 13 
IPI00115663.2 Dctn1 -2 61 

IPI00228693.4 
2310035C
23Rik 

-2 25 

IPI00459177.6 Mtap7d2 -2 12 
IPI00115824.1 Nipsnap1 -1.9 31 
IPI00114241.2 Nefh -1.9 28 
IPI00119202.1 S100a11 -1.9 10 
IPI00128319.1 Centg3 -1.9 10 
IPI00125135.1 Ube2d2 -1.8 34 
IPI00336281.1 Golga3 -1.8 30 
IPI00420426.1 Ap3b2 -1.8 19 
IPI00407835.2 Ubap2l -1.7 26 
IPI00115833.2 Mtap6 -1.6 197 
IPI00120076.2 Ckmt2 -1.6 44 
IPI00262349.2 Cpne7 -1.6 33 
IPI00229483.3 Sec24c -1.6 33 
IPI00123709.1 Akap12 -1.5 61 
IPI00469103.1 Kars -1.5 47 
IPI00222759.3 AI427515 -1.5 42 
IPI00226872.1 Efhd2 -1.5 25 

IPI00808550.1 
B230112C
05Rik 

-1.5 25 

IPI00129526.1 Hsp90b1 -1.4 510 
IPI00762198.2 Hbb-b1 -1.4 249 
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IPI00320831.3 Nbea -1.4 84 
IPI00128076.1 Serpina3c -1.4 36 
IPI00785480.2 Inpp4a -1.4 25 
IPI00138089.4 Lrrc47 -1.4 13 
IPI00229598.4 Cnp -1.3 94 
IPI00323800.6 Nefm -1.3 90 
IPI00343557.1 Mapre3 -1.3 58 

IPI00468516.3 
D6Wsu11
6e 

-1.3 22 

IPI00377609.2 Vcpip1 -1.3 19 
IPI00465809.2 Kif3b -1.3 12 
IPI00330862.5 Ezr -1.2 114 
IPI00118120.1 Myo5a -1.2 111 
IPI00132762.1 Trap1 -1.2 102 
IPI00331444.7 Ipo7 -1.2 93 
IPI00381019.1 Smarcc2 -1.2 36 
IPI00128341.1 Wasf3 -1.2 21 
IPI00130555.1 Rasal1 -1.2 20 
IPI00312076.4 Kif3a -1.2 15 
IPI00458894.3 Tnfaip8 -1.2 14 
IPI00551348.1 Rapgef6 -1.2 13 
IPI00420562.5 Cand1 -1.1 350 
IPI00128296.1 Ckmt1 -1.1 246 
IPI00223253.1 Hnrnpk -1.1 228 

IPI00849505.1 
LOC10004
3998 

-1.1 114 

IPI00312128.3 Trim28 -1.1 92 
IPI00626501.3 Kif1a -1.1 47 
IPI00314153.4 Yars -1.1 40 
IPI00399840.2 Ube3a -1.1 35 
IPI00331568.7 Hgs -1.1 34 

IPI00136054.1 Lsm2 -1.1 32 
IPI00379625.2 Nova2 -1.1 31 
IPI00132539.3 Btf3l4 -1.1 28 
IPI00308324.2 Rdx -1.1 26 
IPI00111876.2 Abhd14b -1.1 11 
IPI00308446.2 Ahcyl2 -1.1 11 
IPI00229080.7 Hsp90ab1 -1 996 
IPI00108150.1 Rock2 -1 147 
IPI00108388.1 Usp9x -1 127 
IPI00111218.1 Aldh2 -1 108 
IPI00453803.5 Ube2o -1 84 
IPI00127172.3 Ddx1 -1 75 
IPI00132080.1 Pgls -1 64 
IPI00119762.4 Dclk1 -1 43 
IPI00128867.3 Purb -1 38 
IPI00224151.5 Ap1g1 -1 34 
IPI00271905.2 Rabggta -1 28 
IPI00153400.2 H2afj -1 27 

IPI00116850.3 
D10Wsu5
2e 

-1 21 

IPI00464296.5 Epb4.1l3 -1 18 
IPI00131873.1 Cops6 -1 13 
IPI00130439.1 Camk1 -1 10 
IPI00129451.1 Cpne6 1 461 
IPI00136372.3 Syn1 1 332 
IPI00134492.4 Syn2 1 272 
IPI00117042.3 Gfap 1 105 
IPI00222833.1 Lsamp 1 27 
IPI00132087.1 Fdx1l 1 23 
IPI00337980.5 Rab21 1 20 
IPI00138406.1 Rap1a 1 17 

IPI00153144.3 Suox 1 11 
IPI00656325.2 Nsf 1.1 488 
IPI00115546.4 Gnao1 1.1 58 
IPI00118011.6 Manba 1.1 36 
IPI00132722.8 Anxa3 1.1 28 
IPI00229703.6 Vamp2 1.1 21 
IPI00352984.4 Xdh 1.1 16 
IPI00308333.3 Ccdc128 1.1 15 
IPI00223060.1 Pck2 1.2 130 
IPI00129519.3 Basp1 1.2 103 
IPI00221456.1 Sv2b 1.2 42 
IPI00132276.1 Vamp3 1.2 36 
IPI00281761.3 Prrt2 1.2 15 
IPI00116072.7 Ak5 1.2 15 
IPI00121218.5 Fahd2a 1.3 77 
IPI00316495.3 Rab3c 1.3 53 
IPI00624175.1 Acp6 1.3 24 
IPI00227168.1 Nlgn3 1.3 20 
IPI00312058.5 Cat 1.5 78 

IPI00670735.1 
LOC67731
7 

1.5 33 

IPI00470962.1 Camk2b 1.5 23 
IPI00132506.3 Chac2 1.5 21 
IPI00762636.2 Acsf3 1.5 16 
IPI00133690.2 Tsta3 1.5 11 
IPI00162780.3 Gnb2 1.5 10 
IPI00230096.1 Camk2a 1.6 51 
IPI00113149.1 Stx1b 1.6 23 
IPI00876208.1 Me3 1.6 15 
IPI00318595.1 Erap1 1.6 12 
IPI00283531.8 Gstp2 1.7 420 
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IPI00127558.3 Acox1 1.7 18 
IPI00555023.2 Gstp1 1.8 148 
IPI00120716.3 Gnb1 1.8 46 

IPI00222228.5 
4732456N
10Rik 

2 27 

IPI00230408.2 Mapt 2.1 19 
IPI00122069.1 Prkcc 2.2 258 
IPI00109727.1 Thy1 2.4 42 
IPI00117083.1 Grpel1 2.5 11 
IPI00553419.3 Dsp 2.9 97 
IPI00420725.4 Camk2a 2.9 32 

IPI00831055.2 
Beta-globi
n 

3.4 24 

IPI00648312.3 Nt5dc3 6.1 115 

 
Supplementary table 7. Proteins expressed 
differentially between HAB/NAB plasma 
(Indirect comparison) 

Accession Gene 
symbol 

Log2 
Ratio 

Peptide 
number 

IPI00177214.1 Igh-6 -7.9 13 
IPI00466399.1 Mup2 -6 239 

IPI00480401.3 
OTTMUS
G0000000
7428 

-6 23 

IPI00890309.1 
2610016E
04Rik 

-5.1 55 

IPI00132542.1 Mup2 -4.9 261 
IPI00115243.1 Mup5 -4.4 56 

IPI00120832.1 Mup3 -3 136 

IPI00378649.1 
LOC63510
1 

-2.9 28 

IPI00330913.1 
OTTMUS
G0000000
0231 

-2.3 32 

IPI00381881.7 C7 -2.2 149 
IPI00123411.1 Serpina3g -2.1 59 
IPI00402967.3 F13a1 -2 70 
IPI00121190.1 Egfr -1.7 565 
IPI00119299.1 Lifr -1.7 152 
IPI00458159.1 Igh-VJ558 -1.7 56 
IPI00459201.1 Igh -1.7 39 
IPI00648416.1 C8a -1.6 45 
IPI00131830.1 Serpina3k -1.3 5633 
IPI00121274.2 C8b -1.3 432 
IPI00553546.4 EG381806 -1.3 24 
IPI00407657.2 C8a -1.2 465 
IPI00118437.1 C8g -1.2 366 
IPI00230718.3 C9 -1.2 331 
IPI00137599.2 Sepp1 -1.2 143 
IPI00272690.2 Ace -1.2 98 
IPI00123927.1 Serpina1e -1.2 24 
IPI00122272.1 Ecm1 -1.2 22 
IPI00123223.2 Mug1 -1.1 13081 
IPI00128076.1 Serpina3c -1.1 1646 
IPI00556721.1 Igfals -1.1 198 
IPI00115658.2 Igf1 -1.1 44 
IPI00320239.1 Clec3b -1.1 27 
IPI00230320.6 Car1 -1.1 16 

IPI00377351.2 Apoa4 -1 1160 
IPI00113879.1 Il1rap -1 58 

IPI00222419.5 
ENSMUSG
00000058
927 

-1 16 

IPI00109324.3 Retnla -1 10 
IPI00310049.3 Cpb2 1 69 
IPI00762198.2 Hbb-b1 1.2 528 

IPI00468477.4 
25 kDa 
protein 

1.2 26 

IPI00119818.1 Itih4 1.3 1215 
IPI00124725.2 Itih3 1.3 844 
IPI00336324.1
1 

Mdh1 1.3 13 

IPI00312711.3 Itih4 1.4 98 

IPI00850317.1 
LOC10004
4179 

1.4 26 

IPI00666034.3 Apob 1.5 3348 
IPI00323571.1 Apoe 1.7 671 
IPI00663742.3 Dnahc10 1.9 26 
IPI00309214.1 Apcs 2 447 
IPI00230760.5 Mb 3.1 55 
IPI00138860.3 Golga4 5.3 17 

IPI00831055.2 
Beta-globi
n 

5.5 66 

IPI00755694.1 
LOC10004
5680 

6.4 73 
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8 Abbreviations 

1-DE one-dimensional gel electrophoresis 

2-DE two-dimensional gel electrophoresis 

5-HT 5-Hydroxytryptamine 

AA amino acid 

ACTH adrenocorticotrophic hormone 

AD Alzheimer's disease 

AQUA absolute quantification of proteins 

CA2 carbonic anhydrase 2 

CBG corticosteroid-binding globulin 

CRF corticotropin-releasing factor  

CRH corticotropin-releasing hormone 

DSM diagnostic and statistical manual 

DST dexamethasone suppression test 

ECS electroconvulsive seizures 

EGF epidermal growth factor 

EI electron ionization 

ELISA enzyme-linked immunosorbent assay 

EPM elevated plus maze 

ERK extracellular signal-regulated kinase 

ESI electrospray ionization 

FDR false discovery rate 

FSR fractional synthesis rate 

FST forced swim test 

FT-IR fourier transform infrared spectroscopy 

GABA gamma amino butyric acid 

GC-MS gas chromatography-mass spectrometry 

GDP guanosine diphosphate 

Glo1 glyoxalase-I 

GO gene ontology 

GTP guanosine-5'-triphosphate 

HAB high anxiety-related behavior 

HCCA 4-hydroxy-α-cyano-cinnamic acid 

HPA hypothalamic-pituitary-adrenal 

HPLC high-performance liquid chromatography 

ICAT isotope-coded affinity tag 

ICPL isotope coded protein label 

IEF isoelectric focusing 

IPG immobilized pH gradient 

iTRAQ isotope tags for relative and absolute quantification 

KEGG Kyoto encyclopedia of genes and genomes 

LAB low anxiety-related behavior 

LC liquid chromatography 

LC-MS liquid chromatography-mass spectrometry 
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LTP long-term synaptic potentiation 

m/z mass-to-charge 

MALDI matrix-assisted laser desorption ionization 

MAO monoamine oxidase 

MAPK mitogen-activated protein (MAP) kinases 

MEK mitogen-activated protein kinase kinase 

MIDA mass isotopomer distribution analysis  

MRM multiple reaction monitoring 

MS mass spectrometry 

MSTFA N-methyl-N-trimethylsilyltrifluoroacetamide 

MUP major urinary protein 

Myh10 myosin, heavy polypeptide 10 

NAB normal anxiety-related behavior 

Nefh neurofilament heavy polypeptide 

NIH national institute of health 

NMR nuclear magnetic resonance 

OCD obsessive-compulsive disorder 

PCA principle component analysis 

PD Parkinson's disease 

PLTP phospholipid transfer protein 

PMF peptide mass fingerprinting 

PND postnatal day 

PQD pulsed q dissociation 

PTM post-translational modifications 

PVDF polyvinylidene fluoride 

RIA relative isotope abundance 

RIA radio immunoassay 

RTK receptor tyrosine kinases 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SILAC Stable isotope labeling with amino acids in cell culture 

SILAM stable isotope labeling of amino acids in mammals  

SILIP stable isotope labeling in planta 

SRM selected reaction monitoring  

SSRI serotonin–selective reuptake inhibitor 

TCA cycle tricarboxylic acid cycle 

TMT tandem mass tags 

TOF time-of-flight 

TST tail suspension test 

TTR transthyretin 

UPLC ultra performance liquid chromatography 

USV ultrasonic vocalization test 

WHO world health organization 
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