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1 Introduction 

1.1 Pituitary gland 

1.1.1 Anatomy of Pituitary gland  

The pituitary gland is a small (pea-sized in humans) endocrine gland, lies in close proximity to 

the hypothalamus at the base of brain, and is protected by a bony cavity structure of the 

sphenoid bone called sella turcica (also known as Turkish saddle) (Figure 1). The pituitary 

gland is regulated by the central nervous system to control normal homeostasis through 

neuroendocrine pathways involving the hypothalamus. By feedback effects from peripheral 

target gland hormones, the hypothalamus secretes stimulatory and inhibitory hormones to 

regulate pituitary gland function. Under control of hypothalamus, the pituitary gland is a central 

regulator, responsible for the producing trophic hormones, and these hormones affect 

peripheral endocrine glands which are essential for growth, reproduction, metabolism, 

development, adaptation to external environmental changes, and stress. 

The pituitary gland is composed of three compartments which are anterior (adenohypophysis), 

posterior (neurohypophysis) and intermediate lobe. The anterior pituitary arises from a 

depression in the dorsal wall of the pharynx (stomodial part) known as Rathke's pouch 

(Kelberman and Dattani 2007). It consists of two anatomical regions known as the pars 

tuberalis and pars distalis. The pars distalis represents the majority of the anterior pituitary and 

is where the pituitary hormone production occurs. The function of the anterior pituitary is to 

synthesize and secrete important endocrine hormones, such as adrenocorticotropic hormone 

(ACTH), thyroid-stimulating hormone (TSH), prolactin (PRL), growth hormone (GH), follicle-

stimulating hormone (FSH), and luteinizing hormone (LH). These hormones are produced by 

specific types of endocrine cells, and work on target glands or tissues, regulating 

corresponding release of hormones and several processes of human physiology (Table 1). 

The anterior pituitary itself is regulated by hypothalamic hormones which are transported from 

hypothalamus by a system of blood vessels called hypothalamo-hypophyseal portal system. 
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Table 1. Anterior pituitary hormones and their control (Nussey and Whitehead 2001) 

Hormone 
Target 
organs 

Effect 

Seretory cell 
types  

(% of pituitary 
cell population) 

Hypothalamic 
hormone 

Predominant 
hypothalamic 

nucleus of 
synthesis 

Adrenocorticotropic 

hormone (ACTH) 

Adrenal 

gland 

Stimulates  

glucocorticoids; induces 

stress response 

Corticotroph 

(15%-20%) 
CRH (+) 

Paraventricular, 

supraoptic 

Growth hormone 

(GH) 

Liver; 

adipose 

tissue 

Stimulates IGF-1; 

promotes bone and 

muscle growth; lipid and 

carbohydrate metabolism 

Somatotroph 

(40%-50%) 

GHRH (+) 

Somatostatin (-) 

Arcuate, 

anterior 

periventricular 

Prolactin (PRL) 

Ovary, 

mammary 

gland 

Stimulates 

estrogens/progesterone; 

milk production 

Lactotroph 

(10%-25%) 

TRH (+) 

Dopamine (-) 

Arcuate, 

paraventricular 

Luteinizing hormone 

(LH) 

 

Follicle-stimulating 

hormone (FSH) 

Gonads 

Stimulates sex hormones; 

regulates the 

development, growth, 

pubertal maturation of the 

reproductive system 

Gonadotroph 

(10-15%) 
GnRH (+) Arcuate 

Thyroid-stimulating 

hormone (TSH) 

Thyroid 

gland 

Stimulates thyroid 

hormone; regulates thyroid 

function 

Thyrotroph  

(3%-5%) 

TRH (+) 

Somatostatin (-) 

Paraventricular, 

anterior 

periventricular 

CRH, Corticotropin-releasing hormone; GHRH, growth-hormone-releasing hormone; TRH, Thyrotropin-releasing 

hormone; GnRH, Gonadotropin-releasing hormone. (+), stimulatory; (-), inhibitory.  

Among the endocrine cells scattered pluripotent progenitor cells, stem cells, and 

folliculostellate cells (FS cells) (Landolt, et al. 2006). FS cells are of neuro-ectodermal origin, 

and represent 5% of anterior pituitary cell population (Landolt, et al. 2006). They are 

immunopositive for S-100 protein and glial fibrillary acidic protein (GFAP), and are 

characterized by their star-like morphology and their ability of forming follicles (Allaerts and 

Vankelecom 2005; Jin, et al. 2001; Kagayama 1965; Rinehart and Farquhar 1953). They not 

only act as supporting cells for the endocrine cells, but also offer an intrapituitary 

communication system through gap junctions and their long cytoplasmic processes surround 

the neighboring endocrine cells (Acosta, et al. 2010; Fauquier, et al. 2001; Inoue, et al. 1999; 

Morand, et al. 1996). FS cells do not produce hormones but express interleukin-6 (IL-6), basic 

fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), transforming 

growth factor-beta (TGF-), platelet-derived growth factor-A (PDGF-A), PDGF-B and some 

cytokine and hormone receptors, suggesting that they are implicated in regulation of hormone 

secretion, angiogenesis promotion, formation and permeability of blood vessels by auto- and 

paracrine manner (Inoue, et al. 1999; Kowarik, et al. 2010; Lohrer, et al. 2001; Lohrer, et al. 

2000; Renner, et al. 2009; Renner, et al. 2002; Vlotides, et al. 2009). 

http://en.wikipedia.org/wiki/Adrenocorticotropic_hormone
http://en.wikipedia.org/wiki/Adrenocorticotropic_hormone
http://en.wikipedia.org/wiki/Adrenal_gland
http://en.wikipedia.org/wiki/Adrenal_gland
http://en.wikipedia.org/wiki/Glucocorticoid
http://en.wikipedia.org/wiki/Corticotrophs
http://en.wikipedia.org/wiki/Carbohydrate
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Somatotrophs
http://en.wikipedia.org/wiki/Prolactin
http://en.wikipedia.org/wiki/Ovary
http://en.wikipedia.org/wiki/Mammary_gland
http://en.wikipedia.org/wiki/Mammary_gland
http://en.wikipedia.org/wiki/Estrogen
http://en.wikipedia.org/wiki/Progesterone
http://en.wikipedia.org/wiki/Milk
http://en.wikipedia.org/wiki/Lactotroph
http://en.wikipedia.org/wiki/Luteinizing_hormone
http://en.wikipedia.org/wiki/Follicle-stimulating_hormone
http://en.wikipedia.org/wiki/Follicle-stimulating_hormone
http://en.wikipedia.org/wiki/Gonads
http://en.wikipedia.org/wiki/Reproductive_system
http://en.wikipedia.org/wiki/Gonadotroph
http://en.wikipedia.org/wiki/Thyroid-stimulating_hormone
http://en.wikipedia.org/wiki/Thyroid-stimulating_hormone
http://en.wikipedia.org/wiki/Thyroid_gland
http://en.wikipedia.org/wiki/Thyroid_gland
http://en.wikipedia.org/wiki/Thyroid_hormone
http://en.wikipedia.org/wiki/Thyroid_hormone
http://en.wikipedia.org/wiki/Thyroid_hormone
http://en.wikipedia.org/wiki/Thyrotrophs
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The posterior pituitary gland develops by the evagination of neural tissue from the floor of the 

third ventricle (Mehta and Dattani 2008). It is mainly composed of the terminals of the distal 

axons which extend from the magnocellular neurons of supraoptic and paraventricular nuclei 

in hypothalamus. Besides axons, the posterior pituitary also contains glial cells called 

pituicytes which surround the axon projections. Two hormones named oxytocin and arginine 

vasopressin (AVP) are produced by the hypothalamus and theses hormones are transported 

through extended axons to the posterior pituitary where they are stored and released as 

required under hypothalamic control (di Iorgi, et al. 2009). Pituicytes were reported to regulate 

the release of these two hormones by morphological changes (Rosso and Mienville 2009; 

Theodosis 2002). Oxytocin increases the uterine contraction during labor and stimulates 

lactation, and recently, some studies have shown the implication of oxytocin in social memory 

and attachment, sexual and maternal behavior, human bonding and trust, and aggression 

(Lee, et al. 2009). AVP is involved in regulating body’s retention of water. Additionally, AVP 

has primarily been implicated in male-typical social behaviors, including aggression and pair-

bond formation, and in stress-responsiveness (Heinrichs, et al. 2009). 

The intermediate lobe, which is the part between anterior pituitary and posterior pituitary, is 

derived from oral ectoderm together with the anterior pituitary (Mehta and Dattani 2008). It 

mainly contains melanotroph cells, which produce pro-opiomelanocortin (POMC) and release 

processed POMC products such as -endorphin and -melanocyte stimulating hormone 

(MSH) (Bicknell 2008; Saland 2001). In humans, in contrast to the mouse, the intermediate 

lobe largely disappears during embryogenesis, and fuses with the anterior lobe soon after 

birth, thought to be represented in the adult by cysts at the junction of anterior and posterior 

lobes (Kelberman, et al. 2009; McNicol 1986; Rasmussen 1930). The function of the 

intermediate lobe as defined in animals has no discrete anatomical location within human 

pituitary gland (McNicol 1986).  

The pituitary stalk is the bridge between hypothalamus and pituitary gland, carrying neural and 

vascular connections, responsible for delivering hypothalamic hormones to the anterior 

pituitary and neural tracts from the hypothalamic nuclei to the posterior pituitary (Kelberman, 

et al. 2009; Mehta and Dattani 2008).  

http://en.wikipedia.org/wiki/Supraoptic_nucleus
http://en.wikipedia.org/wiki/Paraventricular_nucleus
http://en.wikipedia.org/wiki/Glial_cell
http://en.wikipedia.org/wiki/Pituicyte
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Figure 1. Anatomy and blood supply of pituitary gland. The pituitary gland is located 

below the hypothalamus, sitting in the sella turcica of sphenoid bone. It contains three 

parts: anterior, posterior and intermediate lobe. The hypothalamic trophic hormones which 

target endocrine cells in the anterior pituitary are produced by neurosecretory cells in the 

hypothalamus. The terminals of these neurosecretory cell axons reach to the median 

eminence capillaries, where the hormones are transported to and released into the 

anterior pituitary by portal blood system. The posterior hormones are produced by the 

magnocellular neurons in the hypothalamus and are released into the posterior pituitary 

through the extending magnocellular neuron axons. The secreted pituitary hormones 

diffuse into the systemic blood circulation through capillaries net work in the anterior and 

posterior pituitary. 

1.1.2 Blood supply and vascularization of pituitary gland 

The pituitary gland is highly vascularized and gains blood supply through the hypothalamo-

hypophyseal portal system (Figure 1). The capillaries of the hypothalamo-hypophyseal portal 

system are characterized by fenestrated endothelia, improving the delivery and diffusion of 

hormones (Nussey and Whitehead 2001). A separate branch of the internal carotid artery 

called superior hypophysial artery, which ascends from cavernous sinus, delivers the arterial 
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blood into portal capillary beds in the median eminence, and then reaches the pars distalis of 

anterior pituitary through the long portal veins that descend along the pituitary stalk, and 

interconnect the portal capillary beds and capillary beds inside the pars distalis (Leclercq and 

Grisoli 1983). In addition, approximately 30% of the total blood supply to the anterior pituitary 

is from the venous blood draining from the posterior pituitary through the short portal veins 

(Gross, et al. 1993). The pars distalis of anterior pituitary receives little or no arterial blood 

supply from the internal carotid artery (Bergland and Page 1978; Leclercq and Grisoli 1983). 

Rapidly enhanced magnetic resonance images (dynamic MRI) showed in man that the 

perfusion sequence of arterial blood first reached the posterior pituitary and the median 

eminence, followed by venous drainage to the anterior pituitary (Yuh, et al. 1994). The venous 

blood drainage from the anterior pituitary flows into systemic circulation trough the 

adenohypophysial veins (Bergland and Page 1978). This blood flow pattern allows anterior 

pituitary to collect both hypothalamic factors and posterior information. The posterior pituitary 

is fed by the inferior hypophyseal artery branches distributing in the cavernous sinus. The 

venous drainage from the posterior pituitary goes into the neurohypophysial veins besides the 

short portal veins, and then enters the venous circulation.  

Some studies about activators contributing to the angiogenesis and vascularization of pituitary 

gland have been performed. VEGF, which is a well known angiogenic factor, has been 

localized mainly in corticotroph, somatotroph and folliculostellate cells (Lloyd, et al. 1999; Vidal, 

et al. 1999; Yamamoto, et al. 1999). A study in rat using FITC-labeled gelatin injection, 

immunohistochemistry and in-situ RT-PCR showed that VEGF is involved in development of 

primary capillaries in median eminence and vascularization of pars distalis (Nakakura, et al. 

2006). Pituitary autotransplantation demonstrated that VEGF expression in pituitary is not 

critical under hypothalamic control and hypoxia may play a crucial role in the induction of 

VEGF expression in the non-tumorous pituitary (Lombardero, et al. 2006). Leptin, which was 

reported to have a significant role in induction of neovascularization, is also expressed in 

pituitary gland, suggesting that it could play a role in pituitary angiogenesis (Cao, et al. 2001; 

Lloyd, et al. 2001; Ribatti, et al. 2007a). The mouse pituitaries with Prop1 (Prophet of pituitary 

transcription factor 1) gene mutations are poorly vascularized and dysmorphic, with a striking 

elevation in apoptosis, indicating that Prop 1 is implicated in pituitary vascularization during 

the pituitary development (Ward, et al. 2006). bFGF, a stimulator of angiogenesis, has been 

shown to be localized in gonadotroph cells, FS cells and endothelial cells in the anterior 

pituitary, and is released by cellular disruption during pituitary vascular development in rats 

(Schechter, et al. 1996; Schechter, et al. 1993). 

http://en.wikipedia.org/wiki/Corticotrophs
http://en.wikipedia.org/wiki/Somatotrophs
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1.2 Pituitary adenomas 

Pituitary adenomas, arising from adenohypophysial cells, are the most common tumors in the 

sella region. The majority of pituitary adenomas grow slowly, and are defined as benign 

because of the absence of metastases, but some exhibit a faster growth pace and can be 

highly invasive (Kovacs, et al. 2001). About 15–25% of cases demonstrate tumor invasion into 

the hypophysis or cavernous sinus at initial diagnosis (Yoshida and Teramoto 2007). Pituitary 

adenomas may cause serious health problems due to either compression of neighboring 

tissues (i.e. visual nerve) or major changes in endocrine homeostasis resulted from the 

hormone excess syndromes they cause. It is difficult to determine the true incidence of the 

pituitary adenomas, because they are often asymptomatic (Swearingen and Biller 2008b). 

They are present in approximately 16.9% of the general population, and represent up to 25% 

of all intracranial tumors (Ezzat, et al. 2004; Oberholtzer 1999). There are no significant 

differences in the frequency of pituitary adenomas between men and women, if the types are 

ignored and both surgically and autopsy obtained tissues are combined (Kovacs, et al. 2001). 

Although rarely diagnosed in prepubertal age, pituitary adenomas can be found in every age 

group, from infancy to senescence (Kovacs, et al. 2001).The prevalence, which increases with 

advancing age, is about 14% and 22% in postmortem and imaging studies, respectively 

(Swearingen and Biller 2008b). 

Pituitary adenomas can be classified in various ways, such as functional, anatomic/radiologic, 

histologic, immunohistochemical, ultrastructural, and clinicopathologic (Asa and Ezzat 2009). 

The functional classification, based on hormonal activity,  divides pituitary adenomas into six 

groups: ACTH-producing adenomas, linked to Cushing disease and Nelson’s syndrome; GH-

producing adenomas, linked to acromegaly and/or gigantism; PRL-producing adenomas, 

linked to hyperprolactinemia, TSH-producing tumors linked to thyroid dysfunction; rare 

clinically detectable gonadotroph adenomas, linked to hypogonadism due to paradoxical 

down-regulation of function; non-functioning adenomas, clinically endocrinologically inactive 

adenomas, unaccompanied with detectable hormone activity (Asa and Ezzat 2009; Kovacs, et 

al. 2001). The anatomic/radiologic classification is based on size and degree of local invasion. 

On the basis of their size, pituitary adenomas can be separated into macroadenomas with 

more than 10 mm in their largest diameter and microadenomas with less volume (Kovacs, et 

al. 2001). The histologic classification is based on the tinctorial characteristics of the cell 

cytoplasm, and separates pituitary adenomas into acidophilic, basophilic and chromophobic 

tumors (Asa and Ezzat 2009; Kovacs, et al. 2001). This classification has limited value, since 

it fails to take into consideration hormone production, cellular derivation and structure–function 

relationship, and has been largely abandoned (Kovacs, et al. 2001). The 

immunohistochemical classification is based on the detection of antigens in tissue, providing 
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the information primarily about hormone content, additionally about transcription factors and 

keratins (Asa and Ezzat 2009; Kovacs, et al. 2001). The ultrastructural classification with 

application of electron microscopy is based on subcelluar features of cell differentiation. The 

electron microscopy provides conclusive information on the cellular composition and secretory 

activity of the tumor, and it’s a very valuable tool for research. However, the ultrastructural 

investigation is time consuming, expensive and has difficulties in correct diagnosis (Asa and 

Ezzat 2009; Kovacs, et al. 2001). Clinicopathologic classification, based on both 

morphological and clinical features, is most effective and practical (Table 2).  

       Table 2. Clinicopathological classification of pituitary adenomas (Asa and Ezzat 2009) 

Functioning adenomas Non-functioning adenomas 

GH-PRL-TSH family 

Adenomas causing GH excess  

Densely granulated somatotroph adenomas  

Sparsely granulated somatotroph adenomas Silent somatotroph adenomas 

Mammosomatotroph adenomas  

Adenomas causing hyperprolactinemia  

Lactotroph adenomas Silent lactotroph adenomas 

Acidophil stem cell adenomas  

Adenomas causing TSH excess  

Thyrotroph adenomas Silent thyrotroph adenomas 

ACTH family 

Adenomas causing ACTH excess  

Densely granulated corticotroph adenomas Silent corticotroph adenomas (Type I) 

Sparsely granulated corticotroph adenomas Silent corticotroph adenomas (Type II) 

Gonadotroph family 

Adenomas causing gonadotropin excess  

Gonadotroph adenomas 
Silent gonadotroph adenomas (null-cell 
adenomas, oncocytomas) 

Unclassified adenomas 

Unusual plurihormonal adenomas Immunonegative adenomas 

ACTH, adrenocorticotropin; GH, growth hormone; PRL, prolactin; TSH, thyrotropin-stimulating hormone. 

1.2.1 Prolactinomas 

Prolactinomas (also known as lactotroph adenomas) are the most common type of pituitary 

adenomas. It arises from lactotroph cells of anterior pituitary, secreting prolactin (PRL). They 

comprise 45% of the clinical pituitary tumor cases with an incidence of 6 to 10 per million per 

year and a prevalence of 60 to 100 cases per million in clinical series (Ciccarelli, et al. 2005). 

Prolactinomas are the most frequent cause of PRL excess, and usually the most relevant 

clinical manifestations are infertility, gonadal and sexual dysfunction in both sexes (Gillam, et 

al. 2006; Schlechte 2003). The number of these tumors in surgical series is very low, due to 

the success of dopamine agonist therapy.  
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There are three variants of prolactinomas: sparsely granulated and densely granulated 

lactotroph adenomas and the rare, but aggressive, acidophil stem cell tumor (Asa and Ezzat 

2009). The most common variant is sparsely granulated lactotroph adenomas which consist of 

chromophobic tumor cells (Asa and Ezzat 2009). Immunohistochemistry shows strong 

immunostaining for PRL with paranuclear globular pattern corresponding to the Golgi area 

(Asa and Ezzat 2009). Densely granulated lactotroph adenomas are much less common than 

the sparsely granulated variant (Asa and Ezzat 2009). Differing from the sparsely granulated 

adenomas, these tumors cells are acidophilic and show diffuse cytoplasmic positivity for PRL 

(Asa and Ezzat 2009). The acidophil stem cell adenomas are composed of oncocytic cells 

with large cytoplasmic vacuoles corresponding to giant mitochondria (Asa and Ezzat 2009). 

These tumors may have an unusual bihormonal profile with diffuse immunoreactivity for PRL 

and scant immunoreactivity for GH (Asa and Ezzat 2009).  

1.2.2 Somatotroph adenomas 

Somatotroph adenomas, which arise from GH-producing cells, account for 10~15% of pituitary 

adenomas (Asa and Ezzat 2009). GH hypersecreting tumors cause gigantism in young 

patients and acromegaly in adults (Asa and Ezzat 2009). The incidence of acromegaly is 

about 2 to 4 per million with a mean age at presentation of 40–50 years (Ciccarelli, et al. 

2005). Morphologically, the majority of these tumors are macroadenomas and frequently have 

suprasellar growth and expansion to the lateral sellar wall (Swearingen and Biller 2008b).  

The subtypes of these adenomas include densely granulated, sparsely granulated 

somatotroph adenomas and mammosomatotroph adenomas (Swearingen and Biller 2008b). 

Densely granulated somatotroph adenomas are the most common finding in adult acromegaly, 

and mammosomatotroph adenomas that produce both GH and PRL are the most frequent 

findings in childhood-onset gigantism and in young patients with acromegaly (Asa and Ezzat 

2009). Both of these two types of adenomas express -subunit, and resemble normal 

somatotroph and mammosomatotroph cells (Asa and Ezzat 2009). They are characterized by 

acidophilic and densely granulated cytoplasm, strong and diffuse cytoplasmic 

immunoreactivity for GH, and strong nuclear immunoreactivity for Pit-1 (pituitary transcription 

factor-1) (Asa and Ezzat 2009; Kovacs, et al. 2001). The immunohistochemistry shows that 

the low molecular weight cytokeratins (CAM 5.2) in densely granulated somatotroph 

adenomas cells are of diffuse cytoplasmic pattern (Asa and Ezzat 2009; Kovacs, et al. 2001; 

Swearingen and Biller 2008b). In contrast, the sparsely granulated somatotroph adenomas 

with chromophobic and less granular cytoplasm have weak and focal GH immunoactivity and 

the staining for -subunit is not identified (Asa and Ezzat 2009; Swearingen and Biller 2008b). 

The immunostaining for CAM 5.2 shows dot-like juxtanuclear aggresome corresponding to the 
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fibrous body (Asa and Ezzat 2009; Swearingen and Biller 2008b). However, they are usually 

nuclear immunopositive for Pit-1 like densely somatotroph adenomas (Asa and Ezzat 2009). 

1.2.3 Corticotroph adenomas 

The corticotroph adenomas which arise from ACTH-producing corticotroph cells comprise 

about 10%~15% of clinical cases of pituitary adenomas (Asa and Ezzat 2009). ACTH is 

overproduced by corticotroph adenomas which cause an excessive release of adrenal 

glucocorticoids leading to the different symptoms of Cushing’s disease. The majority of 

corticotroph adenomas are microadenomas, softer and paler than the normal gland 

(Swearingen and Biller 2008b). Three variants of corticotroph adenomas are known: densely 

granulated corticotroph adenomas, sparsely granulated corticotroph adenomas and Crooke’s 

cell adenomas (Swearingen and Biller 2008b). Cushing’s disease is mostly caused by densely 

granulated cortocotroph adenomas, which have densely granulated basophilic cytoplasm 

apparent with the classical hematoxylin and eosin stain (Asa and Ezzat 2009; Swearingen and 

Biller 2008b). The cytoplasm is also strongly PAS (Periodic acid-Schiff stain)-positive 

(Swearingen and Biller 2008b). The macroadenomas with lower florid hormone excess in 

patients are less common, and have sparsely granulated chromophobic cytoplasm and are 

less PAS-positive (Asa and Ezzat 2009; Swearingen and Biller 2008b). They may be 

associated with Nelson’s syndrome in patients who have undergone bilateral adrenalectomy 

as treatment for pituitary Cushing’s disease without initial identification of a discrete lesion 

(Asa and Ezzat 2009). The Crooke’s cell adenomas are rare. The normal corticotroph cells 

respond to high levels of glucocorticoids by developing Crooke’s hyalinization corresponding 

to intracytoplasmic accumulation of cytokeratins 7 and 8, which are intermediate filaments on 

electron microscopy (Asa and Ezzat 2009; Swearingen and Biller 2008b). Usually the 

corticotroph adenomas don’t have this marker of feedback suppression by glucocorticoids; 

however, the Crooke’s adenomas have the same change as nontumorous corticotroph cells 

(Asa and Ezzat 2009; Kovacs and Horvath 1986; Swearingen and Biller 2008b). They can be 

associated with Cushing’s disease as well (Asa and Ezzat 2009).  

1.2.4 Thyrotroph adenomas 

The thyrotroph adenomas are rare and make up to 1% of pituitary adenomas (Asa and Ezzat 

2009). They can be associated with hyperthyroidism or hypothyroidism, but the majority are 

clinically nonfunctioning (Asa and Ezzat 2009; Swearingen and Biller 2008b). The thyrotroph 

adenomas in general are macroadenomas and invasive, and mass effects with visual-field 

disturbances are common (Asa and Ezzat 2009). The tumor cells are chromophobic and can 

have small cytoplasmic granules with PAS stain (Swearingen and Biller 2008b). 
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Immunohistochemistry shows positivity for TSH and variable staining for -subunit; some also 

express GH and PRL (Swearingen and Biller 2008b). Characteristically, the tumor cells with 

significant nuclear pleomorphism have a polygonal or elongated shape and resemble 

nontumorous thyrotroph cells (Asa and Ezzat 2009). 

1.2.5 Gonadotroph adenomas 

The gonadotroph adenomas comprise the majority of clinically nonfunctioning adenomas 

(Swearingen and Biller 2008b), and clinical manifestations of gonadotropin excess are rare. 

The elevated serum FSH level induced by the gonadotroph adenomas led to ovarian 

enlargement in a 10-year old girl (Tashiro, et al. 1999). A case of clearly high circulating 

immunoreactive FSH due to a functioning FSH-secreting gonadotroph adenoma in a man with 

the MEN 1 syndrome was also reported (Sztal-Mazer, et al. 2008). The tumor cells exhibit 

strong nuclear staining with SF-1 (steroidogenic factor-1), but variable and often only focal 

positive reaction for -subunit, -FSH, and -LH, and show variable degrees of differentiation 

(Asa and Ezzat 2009). Well-differentiated tumor cells are elongated, with the nucleus 

occupying one pole and secretory granules accumulating at the opposite pole (Asa and Ezzat 

2009). In contrast, poorly differentiated cells are generally ovoid or polygonal and lack polarity 

(Asa and Ezzat 2009). 

1.2.6 Non-functioning adenomas 

The non-functioning adenomas lack detectable hormone activity, and cause no signs or 

symptoms secondary to hormonal hypersecretion by the tumor (Greenman and Stern 2009). 

They typically tend to be present with signs of mass effects such as headaches, visual field 

defects and hypopituitarism, when the tumor has reached the stage of a macroadenoma, and 

are usually large at the time of diagnosis (Greenman and Stern 2009; Snyder 1985). Non-

functioning adenomas comprise roughly 50% of pituitary tumors in surgical series (Saeger, et 

al. 2007). The vast majority of these lesions are actually silent gonadotroph adenomas, 

accounting for 85% of non-functioning adenomas, and they are morphologically and 

pathogenetically identical to functioning gonadotroph adenomas (Asa and Ezzat 2009; 

Greenman and Stern 2009). They are positively stained with FSH, LH and their subunits 

(Greenman and Stern 2009). In a minority of patients, intact gonadotropins, mainly FSH, may 

be detected on basal conditions in vivo, but hormone-related symptoms are rare (Greenman 

and Stern 2009). Based on hormone and transcription factor staining, the non-functioning 

adenomas also include silent somatotroph adenomas, silent prolactinomas, silent thyrotroph 

adenomas and silent corticotroph adenomas (Table 3) (Greenman and Stern 2009). They may 

express hormones but do not secret them, and their lack of clinical manifestation may be 
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attributable to reduced hormonal activity or to synthesis of nonfunctional hormone products 

(Asa and Ezzat 2009; Greenman and Stern 2009). The majority are the silent corticotroph 

adenomas which express ACTH (Greenman and Stern 2009). The silent type 3 adenomas 

may express several pituitary hormones and transcription factors (Greenman and Stern 2009). 

Poorly differentiated gonadotroph adenomas cells are often classified as null-cell or 

undifferentiated adenomas because of focal or weak immunoreactivity, but they are positive 

stained with SF-1 and can secret gonadotropins in vitro, indicating their gonadotroph origin 

(Asa and Ezzat 2009; Greenman and Stern 2009). The truly null cell adenomas stain 

negatively both to pituitary hormones and transcription factors (Greenman and Stern 2009). 

Additionally, most oncocytomas represent silent gonadotroph adenomas with extensive 

oncocytic change (Asa and Ezzat 2009). 

Table 3. Clinicopathological classification of non-functioning adenomas (Greenman and Stern 2009) 

             Tumor Type Transcription factors Hormone staining 

Silent gonadotroph adenomas SF-1, GATA-2, ER -FSH, -LH, -subunit 

Silent somatotroph adenomas Pit-1 GH 

Silent prolactinomas Pit-1, ER PRL 

Silent thyrotroph adenomas Pit-1, TEF, GATA-2 -TSH, -subunit 

Silent corticotroph adenomas Tpit ACTH 

Null cell adenomas None None 

Silent subtype 3 adenomas  Multiple 

SF-1, steroidogenic factor-1; ER, estrogen receptor; Pit-1, pituitary transcription factor-1; TEF, thyrotropin 

embryonic factor; GATA-2, GATA binding protein-2; Tpit-1, T-box transcription factor. 

1.2.7 Plurihormonal adenomas 

Plurihormonal pituitary adenomas are capable of producing more than one hormone (Kovacs, 

et al. 2001). Morphologically, they can be divided into monomorphous and plurimorphous 

tumors (Kovacs, et al. 2001). Monomorphous plurihormonal adenomas consist of one cell 

population which produces two or more hormones, and they can not be explained by a 

common cellular origin (Kovacs, et al. 2001; Swearingen and Biller 2008b). Plurimorphous 

adenomas, representing mixed adenomas, are composed of two or more distinct cell types, 

each producing one hormone (Kovacs, et al. 2001). The 2004 WHO classification includes 

only monomorphous adenomas in the category of plurihormonal adenomas, which excludes 

adenomas with any combination of GH, PRL and TSH, or FSH and LH. By this definition these 

tumors are rare (Swearingen and Biller 2008b). 
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1.2.8 Pituitary carcinomas 

Pituitary carcinomas are defined based on the presence of metastasis (Swearingen and Biller 

2008b). In contrast to the high frequency of local invasion, pituitary adenomas only rarely 

metastasize to distant locations in the central nervous system, lymphnodes, and liver (Asa and 

Ezzat 2009). The pituitary carcinomas represent approximately only 0.2% of operated pituitary 

neoplasms (Swearingen and Biller 2008b). Microscopically, the tumors have different degrees 

of high cell density, pleomorphism, necrosis, and invasion, but all of these characteristics can 

also be found in benign pituitary adenomas (Swearingen and Biller 2008b). 

1.3 Pathogenesis of pituitary adenomas 

The pathogenesis of pituitary adenomas has been intensively studied, but the exact 

mechanisms involved in pituitary cell transformation and tumorigenesis is still unclear. X-

chromosomal inactivation analysis demonstrated that pituitary adenomas arise from the 

replication of a single transformed pituitary cell, indicating that they are monoclonal neoplasms 

(Alexander, et al. 1990; Gicquel, et al. 1992; Herman, et al. 1990; Schulte, et al. 1991). This 

observation also suggests that the tumor formation results from the growth advantage 

characteristics of the monoclonal transformed pituitary cell with either activation of proto-

oncogenes or inactivation of tumor-suppressor genes. 

A lot of etiologic factors involved in pituitary tumor formation have been extensively studied, 

including genetic abnormalities in pituitary tumors, over-expression of proto-oncogenes and 

proliferative signals, down-regulation of tumor suppressor genes and inhibitory signals, and 

hormonal dysregulation.  

1.3.1 Genetic abnormalities of proto-oncogenes and anti-proliferative signals 

Many common genetic defects in proto-oncogenes which occur frequently in human 

malignancies are not identified in most of pituitary adenomas (i.e. abnormalities of the Ras-

family).  

The mutations in the gene encoding the  subunit of Gs (GNAS1) frequently appear in about 

30~40% GH-secretion adenomas, leading to constitutively active cAMP-dependent pathway 

(Landis, et al. 1989; Vallar, et al. 1987). However, these mutations infrequently occur in other 

tumors, i.e., in about 10% of non-functioning pituitary adenomas and less than 5% of ACTH-

secreting adenomas (Tordjman, et al. 1993; Williamson, et al. 1995).  

The aberrant expression of an N-terminally truncated variant of fibroblast growth factor (FGF) 

receptor-4 (ptd-FGFR4) has been detected in 40% of pituitary adenomas, and ptd-FGFR4 is 

constitutively phosphorylated in the absence of ligand and transformation in vitro and in vivo 

(Ezzat, et al. 2002).  
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Germline mutations of the tumor suppressor gene MEN1 with LOH (loss of heterozygosity) 

inactivate the normal allele in tumors, resulting in familial pituitary adenomas associated with 

multiple endocrine type 1 (MEN1) (Chandrasekharappa, et al. 1997). However, MEN1 

mutations rarely occur in sporadic pituitary adenomas (Prezant, et al. 1998; Wenbin, et al. 

1999; Zhuang, et al. 1997), although LOH have been found in the region of MEN1 gene in 

10~30% of sporadic pituitary adenomas and the expression of Menin is down-regulated in 

high percentage of cases with or without LOH. Therefore, allelic loss may be responsible for 

the lower menin levels in some, but not all, cases with low menin expression, and post-

transcriptional mechanisms may be involved (Tanaka, et al. 1998; Theodoropoulou, et al. 

2004).  

Germline Inactivating mutations in the aryl hydrocarbon receptor (AHR) interacting protein 

(AIP) gene with LOH of the normal allele in familial presentation of somatotroph adenomas 

and prolactinomas have been reported (Vierimaa, et al. 2006). However, AIP mutations have 

not been identified in sporadic pituitary adenomas (DiGiovanni, et al. 2007).  

Germline mutations in protein kinase-A (PKA) regulatory subunit 1 gene PRKAR1 are 

responsible for Carney’s complex, an autosomal dominant disorder associated with 

somatotroph adenomas and other endocrine tumors (Kirschner, et al. 2000a; Kirschner, et al. 

2000b). However, no mutations of this gene were found in sporadic pituitary adenomas, 

although significantly reduced protein expression of this gene was shown in non-functioning 

and somatotroph adenomas (Kaltsas, et al. 2002; Lania, et al. 2004; Mantovani, et al. 2005; 

Sandrini, et al. 2002; Yamasaki, et al. 2003).  

1.3.2 Over-expression of proto-oncogenes and proliferative signals 

Cyclin proteins are cell cycle regulators, which promote cell progression by activating cyclin-

dependent kinases (CDKs). It has been shown that cyclin proteins, especially cyclin D1, are 

over-expressed in aggressive non-functioning adenomas without cyclin D1 gene (CCND1) 

amplification, indicating that additional mechanisms are involved in the deregulating of cyclin 

D1 expression in human pituitary tumorigenesis. Moreover, cyclin E is preferentially present in 

corticotroph adenomas (Hibberts, et al. 1999; Jordan, et al. 2000). 

The pituitary tumor transforming gene (PTTG) which is an estrogen-inducible gene 

responsible for chromosomal separation and mitosis during the cell division is mostly over-

expressed in adenomas with a more than 50% increase (up to a 10-fold increase in some 

cases) in non-functioning, GH-, PRL-, and ACTH-producing adenomas compared with normal 

pituitaries, suggesting that PTTG is indeed involved in some manner in pituitary tumorigenesis 

(Zhang, et al. 1999); however, specific mutation of PTTG has not been shown in sporadic 

pituitary adenomas (Dworakowska and Grossman 2009). PTTG mediates the estrogen-

induced up-regulation of growth factors with potent mitogenic and angiogenic activity, such as 
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fibroblast growth factor-2 (FGF-2) (Zhang, et al. 1999). FGF-2 (also known as basic or bFGF) 

is over-expressed in pituitary tumor cells (Ezzat, et al. 1995).  

Akt, the best-characterized phosphorylation target of phosphatidylinositol 3-kinase (PI3K), 

which enhances cell proliferation by activating the serine-threonine kinase mTOR (mammalian 

target of rapamycin) is over-expressed (at both mRNA and protein levels) as well as over-

activated (through phosphorylation) in all pituitary tumors, especially non-functioning pituitary 

adenomas (Musat, et al. 2005; Volarevic and Thomas 2001). 

1.3.3 Down-regulation of tumor suppressors and inhibitory signals 

The retinoblastoma protein (pRb), coded by Rb1 gene, is a main inhibitor of cell cycle 

progression between G1 and S phases. The phosphorylation of the pRb by cyclin/CDK 

complex leads to inactive pRb and thus allowing a cell cycle transit from G1 to S phase (Musat, 

et al. 2004). Additionally, CDK inhibitors (CDKI) including Ink4 family (p15, p16, p18, for CDK4 

and 6) and Kip/cip family (p21, p27, p57 for CDK2) are involved in regulation of cell cycle 

(Musat, et al. 2004). The vast majority of pituitary adenomas (90%) display alterations of the 

pRb pathway. In particular, promoter hypermethylation (resulting in transcription silencing) of 

the p15 (INK4b), p16 (INK4a) and pRb genes was detected in 32~36%, 59~71% and 29~35% 

of pituitary tumors, respectively (Ogino, et al. 2005; Yoshino, et al. 2007). It has been 

demonstrated that p27 (Kip1) protein expression level is lower in all types of pituitary 

adenomas without changes of the mRNA levels compared with normal pituitaries, especially in 

corticotroph adenomas and pituitary carcinomas, suggesting enhanced p27 protein 

degradation (Lidhar, et al. 1999; Yoshino, et al. 2007). 

The pituitary tumor apoptosis gene (PTAG) which is a differentially methylated chromosome 

22 CpG island-associated gene (C22orf3) has been recently identified (Bahar, et al. 2004). It 

has been shown that 80% of the pituitary adenomas failed to express this gene compared with 

normal pituitaries, and in this group approximately 20% showed methylation of the CpG 

islands of the PTAG promoter (Bahar, et al. 2004). The methylation of the promoter was 

invariably associated with loss of transcript expression (Bahar, et al. 2004).  

ZAC, a zinc-finger protein that induces apoptosis and cell cycle, is highly expressed in the 

anterior pituitary gland, and is strongly down-regulated at both mRNA and protein expression 

level in non-functioning adenomas (Pagotto, et al. 2000).    

1.3.4 Endocrine specific mechanisms  

The vast majority of sporadic pituitary adenomas do not show hyperplasia in the surrounding 

tissue, suggesting that hormonal stimulation is not a primary etiologic mechanism in pituitary 

adneomas; however, hormone dysregulation and impaired feedback inhibition may be 

involved in development of the pituitary adenomas, concerning that the differentiation, 
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proliferation and hormone release of the adenohypophysial cells are under the strict control of 

hypothalamic neurohormones and regulated by the feedback mechanisms (Asa and Ezzat 

2009; Swearingen and Biller 2008a).  

High levels of CRH and vasopressin V3 receptors have been detected in ACTH-secreting 

adenomas without identified mutational changes in the genes (de Keyzer, et al. 1998). 

Glucocorticoid hormones regulate corticotroph function through specific negative feedback 

loop, and loss of glucocorticoid feedback might cause Cushing’s disease (Asa and Ezzat 

2009). A germline mutation of glucocorticoid receptor (GR) which results in glucocorticoid 

resistance by diminished ligand binding has been implicated as the cause of pituitary 

Cushing’s disease in a small number of patients (Karl, et al. 1996a). However, rare GR 

mutations have been found in sporadic pituitary corticotroph tumors (Karl, et al. 1996b). 

GH auto-regulation and Insulin-like growth factor-1 (IGF-1) regulate GH secretion through 

negative feedback inhibition (Dworakowska and Grossman 2009). The decreased expression 

of the GH receptors and IGF receptors in 18 somatotroph tumors (both at the mRNA and 

protein level) may be the cause of the continuous secretion of GH from the tumor despite high 

circulation levels of IGF-1 and GH; However, no somatic mutations of GH receptor mRNA was 

detected in that group, indicating that decreased feedback inhibition of GH due to somatic 

mutations of the coding region of the GH receptor is unlikely to be a common factor in the 

pathogenesis of GH-producing adenomas (Kola, et al. 2003). 

Dopamine inhibits prolactin secretion through dopamine 2 receptor (D2R). D2R-deficient mice 

develop lactotroph adenomas, suggesting that inactivating mutations of this receptor might 

contribute to the development of lactotroph adenomas (Asa, et al. 1999). However, no 

mutations in the D2R gene have been found in human prolactinomas, including those 

dopaminergic drug resistant prolactinomas which frequently show a reduction of D2R 

transcript (Caccavelli, et al. 1994; Friedman, et al. 1994). Inactivation of the nerve growth 

factor (NGF) receptor (p75) gene results in D2R loss in dopamine-responsive cells and 

prevents D2R expression by NGF in dopamine-nonresponsive cells, which may account for 

some dopamine resistant prolactinomas (Asa and Ezzat 2009; Fiorentini, et al. 2002). 

The mutations in the thyroid hormone receptor  isoform (TR) causing diminished T3 binding 

resulted in reduced inhibition of TSH secretion in two TSH-secreting adenomas (Ando, et al. 

2001). 

1.4 General overview of angiogenesis 

Angiogenesis is the process of new capillary formation by sprouting or by splitting from pre-

existing blood vessels (Risau 1997).  Angiogenesis by vessel sprouting is a multistep process. 

Firstly, after a stimulatory signal, the basement membrane is degraded by the proteolytic 
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enzymes (such as matrix metalloproteinases (MMPs) and plasminogen activators) released by 

activated endothelial cells (ECs), which leads to the formation of tiny sprouts penetrating the 

perivascular stroma. Next, the ECs at the sprout tip migrate toward the angiogenic stimulus 

and proliferate, whereby the ECs form a tubular structure by cell adhesion molecules which 

establish the polarity, luminal versus abluminal, followed by the formation of capillary loops, 

which leads to the development of functioning circulatory network. Finally, the new vessels are 

stabilized, and this process requires the recruitment of pericytes and vascular smooth muscle 

cells (VSMCs), which is regulated by platelet-derived growth factor (PDGF) (Ribatti, et al. 

2007a; Risau 1997). The non-sprouting angiogenesis is the process of splitting pre-existing 

vessels by transcapillary pillars or posts of extracellular matrix, first described in the embryonic 

lung (Patan, et al. 1996; Risau 1997).  

Angiogenesis is controlled by the balance of proangiogenic and inhibitory stimuli (Ribatti, et al. 

2007b). The quiescence of endothelial cells in the healthy adult organism is maintained by the 

dominant influence of endogenous angiogenesis inhibitors over angiogenic stimuli (Ribatti, et 

al. 2007a). Negative regulators may be particularly important in endocrine organs that are very 

vascular, and down-regulation of inhibitor production may be required to activate the 

angiogenic switch (Hanahan and Folkman 1996). Angiogenesis involves a large number of 

endogenous proangiogenic factors including VEGF, FGF-2, IL-8, TGF-PDGF, angiopoietins, 

matrix metalloproteinases, which play important roles in endothelial cell proliferation, vascular 

stabilization, recruitment of inflammatory cells releasing angiogenic factors, or extracellular 

matrix degradation (Li, et al. 2003; Ribatti, et al. 2007a). In addition to metabolic factors such 

as hypoxia, the process of angiogenesis is also regulated by some hormones such as 

estrogen, GH, IGH-1 and TSH through promoting endothelial cell proliferation or increasing 

VEGF production (Hellstrom, et al. 1999; Hyder, et al. 2000; Smith, et al. 1999). Gene 

mutations or down-regulation of tumor suppressor genes such as p53 and VHL facilitate tumor 

angiogenesis by inactivating angiogenesis inhibitors or enhancing angiogenic factors 

(Dameron, et al. 1994; Levine 1997; Teodoro, et al. 2007; Turner, et al. 2002).The 

endogenous inhibitors of angiogenesis include thrombospondin-1, angiostatin, endostatin and 

so on, which inhibit endothelial cell proliferation or matrix metalloproteinases (Ribatti, et al. 

2007a). In pathological situations angiogenesis may be triggered not only by the 

overproduction of proangiogenic factors, but also by the down-regulation of inhibitory factors 

(Ribatti, et al. 2007a). Pathogenic angiogenesis may occur in several diseases such as 

atherosclerosis (O'Brien, et al. 1994), rheumatoid arthritis (Colville-Nash and Scott 1992), 

diabetic retinopathy (Sharp 1995) and psoriasis (Nickoloff, et al. 1994).  

A large number of studies have firmly demonstrated that angiogenesis plays an essential role 

in tumorigenesis, tumor development and progression, besides in physiological processes 

such as embryogenesis, wound healing and the normal menstrual cycle. It is well known that 
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tumors require neovascularization to supply themselves with nutrients, oxygen and also give 

the metabolites access to blood circulation if they are to grow beyond 2 mm3  (Jugenburg, et al. 

1997). It is proposed that increased tumor diameter require a corresponding increase in 

vascularization (Folkman 1972). Tumor invasion of surrounding structures and tumor 

metastasis may occur due to the degradation of extracellular matrix during angiogenesis, and 

the new blood vessels provide a way for metastatic tumor cells to enter the systemic 

circulation (Folkman 1990; Gasparini and Harris 1995). The acquisition of angiogenic 

capability can be regarded as a milestone of progression from neoplastic transformation to 

tumor growth and metastasis (Ribatti, et al. 2007a). Many studies have shown the relationship 

between angiogenesis and tumor behavior; for example, increased angiogenesis has been 

shown to be associated with the development of metastases, poor prognosis, and reduced 

survival in breast, prostate and stomach malignancies (Horak, et al. 1992; Maeda, et al. 1995; 

Turner, et al. 2003; Weidner, et al. 1993; Weidner, et al. 1992; Weidner, et al. 1991).  

Angiogenesis is measured as microvessel density using antibodies against different 

endothelial markers on both frozen and paraffin-embedded sections. Antibodies that are most 

commonly used are against the endothelial antigens factor eight-related antigen (F8), CD31 

(platelet endothelial cell adhesion molecule), CD34, and the lectin ulex europaeus agglutinin 1 

(UEA1) (Turner, et al. 2003). 

1.5 Angiogenesis in pituitary adenomas 

The pituitary, as a central endocrine organ, is highly-vascularized, and in contrast to other 

tumor types such as prostate and breast tumors, which are more vascularized than respective 

normal tissue, pituitary adenomas have been shown of less vascular density compared with 

normal pituitary specimens as measured by different endothelial markers (Horak, et al. 1992; 

Jugenburg, et al. 1995; Schechter 1972; Turner, et al. 2000b; Weidner, et al. 1991). It is not 

simply the benign nature of pituitary adenomas that explains their relatively low vascular 

density, because benign or precancerous breast or cervical lesions are more vascular than 

corresponding normal tissues (Brem, et al. 1978; Dobbs, et al. 1997; Turner, et al. 2003). This 

low vascular density or inhibition of angiogenesis may partly explain why pituitary adenomas 

have relatively low growing speed besides another possible explanation that these relatively 

slow-growing tumors have low metabolic demands that do not require increased 

vascularization (Turner, et al. 2003). 

The neuroradiological and morphological studies suggest that pituitary adenomas receive a 

direct systemic arterial blood supply in contrast to the normal anterior pituitary gland, and 

tumors without arterial supply were described as small (Gorczyca and Hardy 1988; Powell, et 

al. 1974; Schechter, et al. 1988; Yuh, et al. 1994). A potential explanation for the relatively low 
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vascular density of pituitary adenomas is that the indeed increased angiogenesis has led to in-

growth of blood vessels from the systemic circulation and the escape from the hypothalamic 

controlling factors found in the portal circulation (Turner, et al. 2003). In addition, it has been 

shown that the majority of pituitary tumors have capillaries with reduced or even absent 

fenestrations and complete absence or fragmentation of parenchymatous basement 

membrane, and the endothelial cells of the capillaries are swelling and blebbing due to the 

compression of the long portal veins and ischemia along with tumor growth (Farnoud, et al. 

1992; Kovacs and Horvath 1973; Tuffnell, et al. 1991).  

Many activators of angiogenesis, including VEGF and its receptors, FGF and its receptors, 

hypoxia-inducible factor-1 (HIF-1), angiogenin, angiopoietin and Tie2 tyrosine kinase 

receptors, matrix metalloproteinases (MMPs), pituitary tumor transforming gene (PTTG), and 

estrogens, have shown to be associated with pituitary tumor angiogenesis (Lloyd, et al. 2003; 

Turner, et al. 2003). Some studies about therapeutic application of angiogenesis inhibitors 

have been performed. The fumagillin analog TNP-470 and a synthetic MMPs inhibitor 

batimastat have been demonstrated to reduce neovascularization and lactotroph proliferation 

in Fischer 344 rat estrogen-induced prolactinoma model (Mucha, et al. 2007; Stepien, et al. 

1996; Takechi, et al. 1994).  

1.6 Sumoylation and RSUME 

Sumoylation is a form of post-translational modification by SUMO (small ubiquitin-related 

modifier), regulating protein function (Johnson 2004). SUMO, which has four isoforms (SUMO-

1, SUMO-2, SUMO-3, and SUMO-4) belongs to the ubiquitin-like protein family (Wilkinson and 

Henley 2010). SUMO share only ~18% sequence identity with ubiquitin, but the folded 

structure of SUMO is similar with ubiquitin (Bayer, et al. 1998).  During the process of 

sumoylation, SUMO proteins are firstly activated by a thioester linkage with enzyme E1, a 

heterodimer of SAE1 (SUMO-activating enzyme E1) and SAE2 in mammals (Gong, et al. 

1999). Then, SUMO is passed to conjugating enzyme Ubc9 (ubiquitin-conjugating 9), again 

via a thioester linkage (Gong, et al. 1997; Johnson and Blobel 1997; Schwarz, et al. 1998). 

SUMO E3 ligase acts as scaffolds bringing SUMO-loaded Ubc9 into contact with the substrate 

protein or holding the SUMO-Ubc9 thioester in a conformation facilitating SUMO transfer 

(Figure 2) (Alarcon-Vargas and Ronai 2002; Wilkinson and Henley 2010).  
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Figure 2. The SUMO conjugation pathway. SUMO is synthesized as a precursor and 

processed by hydrolases to make the carboxy-terminal double-glycine motif available for 

conjugation. It is subsequently conjugated to proteins by means of E1 activation, E2 

conjugation and E3 ligation enzymes. The E3 enzymes might serve to increase the affinity 

between Ubc9 (E2) and the substrates by bringing them into close proximity in 

catalytically favorable orientations, allowing sumoylation to occur at a maximal rate. 

(Alarcon-Vargas and Ronai 2002) 

Most sumoylation occurs in the nucleus, and has the effects on modulating activity of 

transcription factors negatively or positively, participates in protein nuclear transport, and also 

affects DNA repair and chromosome organization and function (Figure 3) (Alarcon-Vargas and 

Ronai 2002; Johnson 2004). In contrast to ubiquitination that leads to proteasomal 

degradation of proteins, the functional consequences of sumoylation vary greatly from 

substrate to substrate, and in many cases are not understood at molecular level (Johnson 

2004). An increasing number of studies show that sumoylation positively or negatively 

regulates the substrate proteins which are involved in human cancers, such as PML (a nuclear 

body-associated phosphoprotein), IB, Mdm2 and c-Jun (Verger, et al. 2003), suggesting 

that this process may be important in tumorigenesis and development.  
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Figure 3. Functions of sumoylation. Some of the known functions of sumoylation are 

indicated. PML, promyelocytic leukaemia protein. (Alarcon-Vargas and Ronai 2002) 

Frequently sumoylation alters protein function by influencing the interactions of substrates with 

other proteins or with DNA, and this may be achieved by blocking the interaction site, creating 

a new binding face on the substrate to recruit other binding partners, or change in 

conformation of the substrate protein to alter its activity or revealing previously masked 

binding sites (Johnson 2004; Wilkinson and Henley 2010). In addition, sumoylation can block 

ubiquitin binding sites by competing with ubiquitination on the same lysine residue to increase 

protein stabilization (Desterro, et al. 1998).  

RSUME (RWD-containing sumoylation enhancer) has been recently identified in rat pituitary 

lactosomatotroph tumor cell line GH3 (Carbia-Nagashima, et al. 2007). As an E3 enzyme, it 

increases noncovalent binding of SUMO to Ubc9, enhances Ub9-SUMO thioester formation 

and SUMO polymerization, and therefore enhances sumoylation (Carbia-Nagashima, et al. 

2007; Huang, et al. 2007). RSUME is expressed in various tissues, with higher expression in 

cerebellum, pituitary, heart, kidney, liver, stomach, pancreas, prostate, and spleen (Carbia-

Nagashima, et al. 2007). It has been shown that RSUME is induced by hypoxia, and RSUME 

expression is in the necrotic inner zone rather than in the peripheral zone of two gliomas 

(Carbia-Nagashima, et al. 2007). By enhancing sumoylation, RSUME increases IB levels and 

stabilize HIF-1in monkey kidney cell line COS-7 leading to inhibition of NF-B 

transcriptional activity, and increased HIF-1transcriptional activity and VEGF expression 

(Figure 4) (Carbia-Nagashima, et al. 2007).  
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Figure 4. Actions of RSUME on the sumoylation process. RSUME enhances Ubc9-

SUMO thioester formation and facilitates the progression of the SUMO transfer cascade. 

By enhancing sumoylation, RSUME inhibits NF-B activity through the stabilization of IB, 

which leads to the inhibition of its targets, and activates HIF-1 and consequently its 

targets. (Carbia-Nagashima, et al. 2007) 

1.7 Hypoxia-inducible factor 1 (HIF-1)   

HIF-1 plays an essential role in cellular and systemic oxygen homeostasis by adopted oxygen 

sensing mechanism in higher eukaryotes (Lee, et al. 2004). HIF-1 is a heterodimeric 

transcription factor containing the - subunit and - subunit (also known as aryl hydrocarbon 

receptor nuclear translocator (ARNT)), and both belong to bHLH (basic helix-loop-helix)-PAS 

(Per/ARNT/Sim) family (Wang, et al. 1995). The  subunit is stabilized and activated by 

hypoxic conditions and maintained at low levels under normoxia conditions; whereas the 

subunit is constitutively expressed and its activity is not affected by hypoxia (Li, et al. 

1996).HIF-1 dimerizes with HIF-1through bHLH and PAS motifs and binds to the hypoxia 

response element (HRE) of the DNA sequence, which leads to transcription activation (Jiang, 

et al. 1996). Two transactivation domains (TAD), N-terminal (N-TAD) and C-terminal (C-TAD) 

are located in the C-terminal half of the HIF-1(Figure 5) (Ke and Costa 2006; Ruas, et al. 

2002). The N-TAD overlaps with the oxygen-dependent degradation domain (ODDD), and it is 

continuous with protein stability (Cockman, et al. 2000). The C-TAD which is required for full 
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HIF-1 activity has been shown to interact with coactivators such as CBP/p300 to activate gene 

transcription independent of protein stability (Lando, et al. 2002b). 

Figure 5. Domain structure of human HIF-1 HIF-1 belong to the bHLH and PAS 

protein family. It contains an ODDD that mediates oxygen-regulated stability through the 

hydroxylation of two proline (P) residues and the acetylation of a lysine (K). HIF-1also 

contains two transaction domains (C-TAD and N-TAD). The total number of amino acids 

of HIF-1 is marked at the end of the domain structure. (Ke and Costa 2006) 

Under normoxia, two proline residues Pro402 and Pro564 within ODD domain of HIF-1 are 

hydroxylated by prolyl hydroxylase (PHD) to promote the interaction of HIF-1 with pVHL (von 

Hippel-lindau tumor suppressor) which is a part of ubiquitin ligase complex to tag HIF-1 with 

ubiquitin, leading to HIF-1 degradation by 26S proteasome (Masson and Ratcliffe 2003; 

Masson, et al. 2001; Srinivas, et al. 1999). The lysine residue 532 (Lys532) located in the 

ODDD domain of HIF-1is acetylated by an acetyl-transferase called arrest-defective-1 

(ARD1), which facilitates the binding of HIF-1 with pVHL, and thus destabilizes HIF-

1(Jeong, et al. 2002) The hydroxylation of an asparagine residue N803 in the C-TAD by the 

factor inhibiting HIF-1 (FIH-1) prevents the association of HIF-1 with CBP/p300 which results 

in transcriptional inactivity (Hewitson, et al. 2002; Lando, et al. 2002b; Sang, et al. 2002). The 

PHD and FIH-1, regarded as oxygen sensors, are 2-oxoglutarate (2-OG)-dependent 

diooxygenases requiring oxygen for hydroxylation as well as Fe2+ and ascorbate as cofactors. 

Their activity to impair HIF-1stabilization and transcriptional activity, respectively, is known 

to depend on the oxygen concentration (Epstein, et al. 2001; Jewell, et al. 2001; Lando, et al. 

2002a; Lando, et al. 2002b; Schofield and Zhang 1999). The ARD1 is not influenced by 

oxygen, but the mRNA and protein levels of ARD1 were higher in normoxia than in hypoxia, 

causing more acetylated HIF-1 in normoxia (Jeong, et al. 2002). Under hypoxia, PHD and 

FIH-1 lose the activity of mediating hydroxylation of HIF-1 due to lack of oxygen, thus non-

hydroxylated HIF-1 is stabilized without pVHL binding and CBP/p300 recruitment is allowed. 

Then, stabilized HIF-1 translocates into the nucleus and binds to HIF-1, resulting in gene 

transcription (Figure 6) (Ke and Costa 2006). In addition, recently sumoylation of HIF-1 has 

been identified as another posttranslational modification to stabilize HIF-1 against 

degradation (Bae, et al. 2004; Carbia-Nagashima, et al. 2007; Shao, et al. 2004).  

Besides hypoxia, HIF-1 is also regulated by cytokines, growth factors, environmental stimuli, 

and other signaling molecules under normoxia (Feldser, et al. 1999; Gorlach, et al. 2001; 
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Haddad and Land 2001; Hellwig-Burgel, et al. 1999; Ke and Costa 2006; Li, et al. 2004; 

Richard, et al. 2000; Salnikow, et al. 2000; Stiehl, et al. 2002). HIF-1 transactivation or 

synthesis is also shown to be induced by activation of mitogen-activated protein kinase 

(MAPK) or the phosphatidylinositol 3-kinase (PI3K) signaling pathways (Li, et al. 2004; Zelzer, 

et al. 1998). 

HIF-1, inducing a large number of target gene transcriptions, plays a general role in multiple 

physiological responses to hypoxia, such as erythropoiesis and glycolysis, which quickly 

counteract oxygen deficiency, and angiogenesis, which provides a long-term solution (Ke and 

Costa 2006; Semenza 1998). Tumor growth leads to progressively hypoxic condition in the 

inner area as its size increases until enough blood vessels are built by tumors. Over-

expression of HIF-1 has been found in various human cancers such as breast, colon, 

pancreas, prostate, bladder, ovary, liver, kidney and brain, probably as a consequence of 

intratumoral hypoxia or genetic alteration, resulting in the subsequent induction of 

proangiogenic genes such as VEGF which is one the major target genes of HIF-1 (An, et al. 

2000; Berra, et al. 2000; Conway, et al. 2001; Harris 2000; Josko, et al. 2000; Talks, et al. 

2000; Zhong, et al. 1999).  HIF-1 also induces growth factors such as insulin-like growth 

factor-2 (IGF-2) and transforming growth factor- (TGF-), leading to cell proliferation and 

survival in hypoxia (Feldser, et al. 1999; Krishnamachary, et al. 2003). Paradoxically, HIF-1 

has been shown to promote apoptosis induced by hypoxia (Carmeliet, et al. 1998). For 

example, proapoptotic protein Bcl-2/adenovirusEIB19-KDa interacting protein 3 (BNip3) and 

its homolog Nip3-like protein X (NIX) have shown to be up-regulated in a HIF-dependent 

manner (Bruick 2000).  
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Figure 6. Oxygen-dependent regulation of HIF-1 stabilization and transactivation. In 

normoxia (left), two proline residues of HIF-1 (P402 and P564) and asparagine (N803) 

are hydroxylated by PHDs and FIH-1, respectively, in an O2, 2-OG, and Fe
2+

-dependent 

manner. Hydroxylated HIF-1 proteins bind to the E3 ubiquitin ligase VHL complex, 

leading to its degradation by the proteasome. Acetylation of lysine (K532) by ARD1 favors 

the interaction of HIF-1 with VHL. Hydroxylated N803 blocks the recruitment of 

transcriptional coactivator CBP/p300. In hypoxia (right), the activities of PHDs and FIH-1 

are inhibited due to lack of O2, resulted in no proline and asparagine hydroxylation. 

Therefore, there is no VHL binding and HIF-1 is stabilized. Stabilized HIF-1 proteins 

translocate to the nucleus and bind to HIF-1. HIF-1 may bind preferentially to the 

MAPK-induced phosphorylated form of HIF-1. Nonhydroxylated N803 of HIF-1 allows 

CBP/p300 recruitment to the target genes, resulting in gene transcription. In addition, the 

expression of ARD1 is decreased under hypoxia, causing less acetylated HIF-1. (Ke and 

Costa 2006) 
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1.8 VEGF 

VEGF (also known as VEGF-A) belongs to the VEGF family which also includes VGEF-B, C, 

D, E, and placental growth factor (PIGF) (Achen, et al. 1998; Joukov, et al. 1996; Lee, et al. 

1996; Lyttle, et al. 1994; Maglione, et al. 1991; Maglione, et al. 1993; Orlandini, et al. 1996). 

VEGF is a key regulator of angiogenesis, while VEGF-B is required for normal heart function 

in adults but is not required for cardiovascular development or for angiogenesis, and VEGF-C 

and VEGF-D participate in embryonic lymphangiogenesis (Ferrara 2004; Karkkainen, et al. 

2004; Roskoski 2007). VEGF-E is encoded by the Orf parapoxvirus, supporting the 

angiogenesis associated with parapoxvirus-infected lesion (Meyer, et al. 1999). PIGF 

enhances VEGF signaling (Carmeliet, et al. 2001).  

Alternative exon splicing of VEGF gene generates four different isoforms of VEGF: VEGF121, 

VEGF165, VEGF189, and VEGF206, having 121, 165, 189, and 206 amino acids, respectively, 

after signal sequence cleavage (Houck, et al. 1991; Tischer, et al. 1991).  VEGF165, which is 

the predominant isoform, is a heparin-binding homodimeric glycoprotein of 45 KD, and it is 

secreted but a significant fraction remains bound to the cell surface and extracellular matrix 

(Ferrara and Henzel 1989; Houck, et al. 1992; Park, et al. 1993). VEGF121, which does not 

bind heparin, is a freely diffusible protein (Houck, et al. 1992; Park, et al. 1993). VEGF183 and 

VEGF206 have high affinity with heparin, and they are almost completely sequestered in the 

ECM (extracellular matrix), but may be released in a diffusible form by heparin or heparinase, 

which displaces them from their binding to heparin-like moieties, or by plasmin cleavage at the 

COOH terminus, which generates a bioactive fragment containing the first 110 NH2-terminal 

amino acids (Houck, et al. 1992; Park, et al. 1993). VEGF interacts with two highly related 

receptor tyrosine kinases (RTKs), VGEFR-1 and VEGFR-2; while the co-receptor neuropilin 1 

(NP1) enhances the binding of VEGF165 to VEGFR-2 and VEGF165-mediated chemotaxis (de 

Vries, et al. 1992; Soker, et al. 1998; Terman, et al. 1992). 

VEGF has the ability to promote growth and survival of vascular endothelial cells (ECs) 

derived from arteries, veins and lymph vessels (Ferrara and Davis-Smyth 1997), and also has 

mitogenic effects on certain non-EC types such as retinal pigment epithelial cells, pancreatic 

duct cells and Schwann cells (Compernolle, et al. 2002; Guerrin, et al. 1995; Oberg-Welsh, et 

al. 1997; Sondell, et al. 1999). VEGF also has effects on the bone marrow-derived cells and 

hematopoiesis. It promotes monocyte chemotaxis and controls hematopoietic stem cell 

survival during hematopoietic repopulation (Clauss, et al. 1990; Gerber, et al. 2002). The 

potential role of VEGF as a neuronal protective factor has been demonstrated by recent 

studies in amyotrophic lateral sclerosis (Lambrechts, et al. 2003). Moreover, VEGF induces 

vascular permeability, underlining its important role in inflammation (Dvorak, et al. 1995; 

Senger, et al. 1983).  
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VEGF mRNA transcription is induced by hypoxia in various pathophysiological circumstances 

(Dor, et al. 2001). The VEGF gene has a single hypoxia response element (HRE) in the 

promoter, which is the HIF-1 binding site (Madan and Curtin 1993). Besides oxygen tension, 

several major growth factors and inflammatory cytokines, including epidermal growth factor, 

TGF-, TGF-, IGF-1, FGF, keratinocyte growth factor, IL-1 and IL-6, also up-regulate VEGF 

expression, indicating that VEGF release is under regulation of the autocrine or paracrine 

factors together with local hypoxia in the microenvironment (Ferrara and Davis-Smyth 1997; 

Neufeld, et al. 1999). Oncogenic mutations or amplification of ras proto-oncogene over-

activate the Raf-Mek-Erk MAP kinase cascade, leading to increased VGEF expression 

(Grugel, et al. 1995; Okada, et al. 1998).  

VEGF plays an essential role in both physiological angiogenesis (such as angiogenesis during 

embryonic and postnatal development, skeletal growth, endochondral bone formation, and 

angiogenesis in endocrine glands) and pathological angiogenesis (such as angiogenesis in 

solid tumors, haematological malignancies, intraocular neovascular syndromes, inflammatory 

disorders and brain edema, and diseases of the female reproductive system) (Ferrara 2004). 

As mentioned above, tumor growth has the requirement for angiogenesis, and therefore, 

VEGF is identified as an essential factor for tumor angiogenesis. It has been shown by in situ 

hybridization studies that VEGF mRNA is significantly up-regulated in the vast majority of 

human tumors, such as carcinoma of the lung, breast, gastrointestinal tract, kidney, bladder, 

ovary, endometrium, and several intracranial tumors including glioblastoma multiforme and 

sporadic, as well as VHL syndrome-associated, capillary hemangioblastomas (Ferrara 2004). 

VEGFR-1 and VEGFR-2 are expressed in endothelial cells, indicating that VEGF released by 

tumor cells may influence the endothelial cells nearby in a paracrine manner (Roskoski 2007). 

VEGF is also expressed in pituitary adenomas, although it has been shown to be generally 

less intense than in normal pituitary by immunohistochemistry (Lloyd, et al. 1999). Pituitary 

carcinomas show relatively increased VEGF expression compared with adenomas, 

suggesting an up-regulation of VEGF expression during pituitary tumor progression (Lloyd, et 

al. 1999). Interestingly, VEGF-A is not only acting as an angiogenic but also as a growth factor 

on pituitary adenomas through differently expressed VEGF receptors in tumor and vessel cells 

of pituitary tumors (Onofri, et al. 2006). Monoclonal anti-VEGF antibodies suppress growth of 

various transplanted tumor cell lines in nude mice (Kim, et al. 1993). Therapeutic trials using 

anti-VEGF antibodies, genetically engineered VEGF-binding proteins and VEGF receptor 

protein-tyrosine kinase inhibitors have been performed, and VEGF pathway inhibitors are now 

being explored in combination with chemotherapy for many types of solid tumor (Roskoski 

2007).  
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2 Aim of this study 

RSUME, a novel protein, was shown to enhance HIF-1 stabilization and transcriptional 

activity in monkey kidney cell line COS-7, and a large number of studies have demonstrated 

that HIF-1and its target VEGF play essential roles in growth and progression of a wide 

variety of solid tumors by promoting tumor angiogenesis. However, only few reports focus on 

the role of HIF-1 and VEGF in slowly growing and poorly vascularized pituitary adenomas, 

and whether RSUME is implicated in pituitary adenoma angiogenesis and development is 

completely unclear.  

The aim of this study is to investigate the expression and regulation of HIF-1, VEGF and 

RSUME in pituitary adenomas and also to explore novel additional functions of RSUME in 

pathogenesis of pituitary adenomas.  

In order to achieve these goals, experiments were carried out with human pituitary adenomas 

and mouse pituitary cell lines. HIF-1, VEGF and RSUME were examined at RNA level by 

quantitative real-time PCR in human pituitary adenoma tissues. HIF-1, VEGF protein 

expression and RSUME mRNA expression were measured by western blot, ELISA and 

quantitative real-time PCR respectively after hypoxia-mimicking stimulation in mouse pituitary 

adenoma cell lines and primary human pituitary adenoma cell cultures. HIF-1 translocation 

after hypoxia mimicking treatment was demonstrated by immunofluorescence studies. 

RSUME knockdown was performed by siRNA technology to clarify its relationship with HIF-1 

and VEGF in pituitary cell lines and primary cell cultures. The role of RSUME in pituitary cell 

proliferation and survival was noticed in the experiments with RSUME knockdown and 

analyzed by WST-1 assay, cell number counting, cell death ELISA, and immunofluorescence 

studies on pro-apoptotic protein cleaved caspase-3.  
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3 Materials and methods 

3.1 Regents 

Product  Company  

Acridine orange  Sigma (St. Louis. MO, USA)  

Ammonium persulfate  Sigma (St. Louis. MO, USA)  

Ampuwa water  Fresenius (Germany)  

Alexa Fluor 594 Invitrogen (Carlsbad, CA, USA) 

Beta-mercaptoethanol  MERCK (Darmstadt, Germany)  

Biomax MR films  Kodak (Stuttgart, Germany)  

BLOCK-iTTM Alexa Fluor
® red fluorescent 

oligo 
Invitrogen Corp. (Paisley, UK) 

Bovine serum albumin (BSA)  Invitrogen Corp. (Paisley, UK)  

Protein assay Dye Reagent  Biorad (Munich, Germany)  

Chloroform  Sigma (St. Louis. MO, USA)  

Collagenase  
Worthington Biochemical Corp. 

(Lakewood, NJ, USA)  

Culture slides BD biosciences (California, USA) 

Developer solution  Kodak (Stuttgart, Germany)  

Diethyl-pyrocarbonate (DEPC)  Sigma (St. Louis. MO, USA)  

Dimethyl sulfoxide (DMSO)  Sigma (St. Louis. MO, USA)  

Dithiothreitol (DTT)  Sigma (St. Louis. MO, USA)  

DNase I Invitrogen Corp (Paisley, UK)  

dNTP Mix  MBI Fermentas (Vilnius, Lithouania)  

Dulbecco’s modified Eagle medium 

(DMEM)  
Invitrogen Corp (Paisley, UK)  

Ethylenediaminotetraacetic acid (EDTA)  MERCK (Darmstadt, Germany)  

Ethidium bromide  Sigma (St. Louis. MO, USA)  

Fetal calf serum  Gibco (Karlsruhe, Germany)  

Fixer solution  Kodak (Stuttgart, Germany)  

Guanidine thiocyanate 
Fluka Chemie AG (Buchs, 

Switzerland) 

Hexanucleotide Mix  Roche (Mannheim, Germany)  
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Hydrochloric acid  MERCK (Darmstadt, Germany)  

Hyperfilm ECL 
Amersham Biosciences (Uppsala, 

Sweden) 

Isopropanol  Sigma (St. Louis. MO, USA)  

KCl MERCK (Darmstadt, Germany) 

KH2PO4 MERCK (Darmstadt, Germany) 

LipofectamineTM 2000  Invitrogen Corp (Paisle, UK) 

L-Glutamine  Biochrom AG (Berlin, Germany)  

Loading Buffer 4× Roth (Karlsruhe, Germany) 

Lumi-Light Western Blotting Substrate  Roche (Mannheim, Germany)  

Magnesium chloride  MERCK (Darmstadt, Germany)  

Marker 1kb Plus  Life Technologies (Paisley, UK)  

MEM-Vitamins  Biochrom (Berlin, Germany)  

Milk powder  Roth (Karlsruhe, Germany)  

Nitrocellulose membrane Hybond-ECL  
Amersham Biosciences (Uppsala, 

Sweden)  

Paraformaldehyde (PFA)  MERCK (Darmstadt, Germany)  

Partricin Biochrom (Berlin, Germany) 

PBS  
Gibco/invitrogen (Carlsbad, CA, 

USA)  

Penicillin+Streptavidine mix  Biochrom AG (Berlin, Germany)  

Cultrex
® 

Poly-L-Lysine 
R&D Systems (Wiesbaden, 

Germany) 

Ponceau S solution Sigma (St. Louis, Mo, USA) 

Phenol  Roth (Karlsruhe, Germany)  

Phosphate based buffer  

PBS  
Life Technologies (Paisley, UK)  

Polyacrylamide  Invitrogen Corp (Paisle, UK)  

ProLong gold anti-fade reagent with DAPI Invitrogen (Carlsbad, CA, USA) 

Goat serum Sigma (St. Louis, Mo, USA) 

RNAsin (RNase inhibitor)  Promega Corp. (Madison, WI, USA)  

Rneasy Mini kit  QIAGEN (Hilden, Germany)  

Reverse transcriptase  

(SuperScript II TM )  
Invitrogen (Carlsbad, CA, USA)  

Semi-dry blotter Invitrogen (Carlsbad, CA, USA) 
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siRNA against RSUME MWG Biotech (Ebersberg, Germany) 

Sodium acetate dihydrate  MERCK (Darmstadt, Germany)  

Sodium acetate trihydrate  MERCK (Darmstadt, Germany)  

Sodium chloride (NaCl)  Roth (Karlsruhe, Germany)  

Sodium citrate dihydrate  MERCK (Darmstadt, Germany)  

Sodium dihydrogen phosphate mono-

hydrate  

(NaH2PO4-H2O)  

MERCK (Darmstadt, Germany)  

Sodium hydrogen phosphate dihydrate 

(Na2HPO4-2H2O)  
MERCK (Darmstadt, Germany)  

Sodium peroxyde (NaOH)  MERCK (Darmstadt, Germany)  

Taq DNA polymerase  MBI Fermentas  

TEMED  Sigma (St. Louis, Mo, USA)  

Transferrin Sigma (St. Louis, Mo, USA) 

Triiodothyronine Henning (Berlin, Germany) 

Tris-Glycine 10% gel  Anamed (Darmstadt, Germany)  

Tris pure  
ICN Pharmaceuticals (Aurora, OH, 

USA)  

Triton X-100  Roth (Karlsruhe, Germany)  

Trizol Invitrogen (Carlsbad, CA, USA) 

Trypsin  Sigma (St. Louis, Mo, USA)  

Tween 20  Sigma (St. Louis, Mo, USA)  

WST-1 reagent Roche (Mannheim, Germany) 

3.2 Solutions 

Acridin orange/ ethidium 

bromide solution 

Acridinorange: 50 µl 200 mg/l 

Ethidiumbromid: 50 µl 10 mg/l  

PBS: 900 µl 

Collagenase Mix  

1000 U/ml  

Collagenase : 4g/ 100ml solution  

Trypsin inhibitor : 10 mg/ 100ml solution  

Hyaluronidase : 100 mg/ 100ml solution  

BSA : 400 mg/ 100ml solution  

DNase : 500 μl/ 100ml solution  

DEPC water  
200 μl DEPC/l deionized water  

Leave under the fume hood overnight  
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Autoclave  

HDB buffer  

Hepes: 5,95 g/l  

NaCl : 8 g/l  

KCl: 0,37 g/l  

Na2HPO4.H2O: 0,12 g/l  

Glucose: 1,982 g/l  

Amphotericine B 25μg/ml: 10 ml  

Penicillin/Streptomycin 105U/l : 10 ml  

Adjust pH to 7,3 with NaOH  

Store at +4°C  

4% Paraformaldehyde (PFA)  

paraformaldehyde: 4 g/100 ml  

Sodium phosphate buffer: 20 ml/100ml  

Ampuwa water: 80 ml  

Add 1M NaOH to pH 7.4  

Heat at 56°C to dissolve  

Filter and cool before usage  

Store at +4°C for maximum 2 days  

Phosphate based buffer (PBS)  

NaCl: 8 g/l  

KCl: 0.2 g/l  

Na2HPO4.2H2O: 1.44 g/l  

KH2PO4: 0.2 g/l  

Adjust to pH 7.4  

RIPA buffer 

50 mM Tris pH 8.0 

150 mM NaCl 

1% NP40 

0.5% Sodium Deoxicholate 

0.1% SDS 

1% Triton X-100 

10 x Running buffer for protein 

electrophoresis 

Tris-base: 30.3 g/L 

Glycine: 144.2 g/L 

SDS: 10 g/L 

Adjust pH to 8.3 

2M Sodium acetate  

Sodium acetate trihydrate: 27.2 g/ 100ml  

DEPC: 20 μl  

Add acetic acid to pH 4.0  

Leave at room temperature overnight and the 

next day autoclave  

Solution D 

4 M Guanidium thiocyanate: 250 g/337 ml 

0.75 M sodium citrate pH 7.0 : 17.6 ml/337 ml 

10% Sarcosyl: 26.4 ml/337 ml 

dissolve in 293 ml DEPC 

To complete the medium add: 

180 µl beta-mercaptoethanol/25 ml solution just 
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before use 

Transfer buffer for semi-dry 

blotting 

39 mM Glycine 

48 mM Tris-Cl 

0.037% SDS 

10% Methanol 

10x Tris borate EDTA buffer 

(TBE)  

Boric acid (H3BO3): 61.83 g/l  

EDTA: 37.2 g/l  

Tris pure: 30.03 g/l  

Adjust to pH 8.0  

Tris-based buffer (TBS)  

Tris pure: 2.42 g/l  

NaCl: 8 g/l  

Adjust to pH 7.6  

3.3 Human pituitary and pituitary adenoma tissues  

This study was performed after approval of the local ethics committee (Ethics Grant No. 141-

07) and in the case of pituitary adenomas, informed written consent was received from each 

patient.  

3.3.1 Tissues used for investigation of HIF-1, VEGF and RSUME mRNA expression  

Normal human pituitaries (n=3) were obtained from autopsies, performed within 12 h after 

accidentally occurred death of 3 healthy persons: 2 males (age 67 and 47) and 1 female (age 

37). The tumor tissues received after transsphenoidal surgery from 31 patients: 13 males and 

18 females with 47.9±17.8 average age (range 26-80 years), classified according to clinical 

presentation in somatotrophinomas (n=6), corticotrophinomas (n=6), non-functioning 

adenomas (n=8), prolactinomas (n=7) and thyrotrophinomas (n=4) were shock frozen as soon 

as possible, stored at -80°C and later used for RT-PCR. All the tumors were benign and tumor 

grade was determined according to a modified Hardy´s classification (Boggild, et al. 1994) 

following the medical reports after nuclear magnetic resonance and after surgery: 1 grade I, 7 

grade II, 18 grade III cases were identified, and 5 cases couldn’t be identified from clinical 

data offered by neurosurgeons (Table 4). In patients pre-treated with somatostatin analogues 

or dopamine agonists, medication was stopped at least 1 week prior to surgery. All the tumor 

tissues were received within 12~16 hours after surgery. 
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Table 4. The clinical characteristics of the normal and 

adenomatous pituitary tissues included in this study. 

Tissue Gender Age Grade 

NP1 M 67 - 

NP2 M 46 - 

NP3 F 37 - 

CUSH1 F 46 II 

CUSH2 F 67 - 

CUSH3 M 37 III 

CUSH4 F 27 III 

CUSH5 F 64 - 

CUSH6 F 45 I 

NFPA1 M 65 II 

NFPA2 M 75 II 

NFPA3 F 40 III 

NFPA4 F 77 III 

NFPA5 F 70 II 

NFPA6 F 30 - 

NFPA7 M 54 III 

NFPA8 F 66 III 

ACRO1 F 34 II 

ACRO2 F 80 II 

ACRO3 F 27 III 

ACRO4 F 41 III 

ACRO5 M 36 III 

ACRO6 F 77 - 

TSH1 F 29 III 

TSH2 F 55 II 

TSH3 F 32 III 

TSH4 M 53 III 

PROL1 M 40 - 

PROL2 M 31 III 

PROL3 M 64 III 

PROL4 F 28 III 

PROL5 M 30 III 

PROL6 M 40 III 

PROL7 M 26 III 

NP, normal pituitary; CUSH, corticotrophinomas; NFPA, non-

functioning adenomas; ACRO, somatotrophinomas; TSH, 

thyrotrophinomas; PROL, prolactinomas; “ - “: no data.  

3.3.2 Tissues used for primary cell culture 

Human pituitary adenomas obtained from 36 patients were used for primary cell culture. For 

investigation of HIF-1 expression under hypoxia-mimicking conditions, 8 human pituitary 

adenomas (5 non-functioning, 2 somatotroph, and 1 lactotroph) were used. For investigation 
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of VEGF expression under hypoxia-mimicking conditions, 17 human pituitary adenomas (11 

non-functioning, 3 somatotroph, 2 lactotroph, and 1 cortocotroph) were used. For investigation 

of RSUME mRNA expression under hypoxia-mimicking conditions, 3 human pituitary 

adenomas (2 non-functioning and 1 somatotroph) were used. For investigation of effect on 

RSUME knockdown, 8 human pituitary adenomas (6 non-functioning, 1 somatotroph, and 1 

corticotroph) were used. All the tumor tissues were received within 12~16 hours after surgery 

and were cultivated as soon as possible. Due to the limited amount of human pituitary tumor 

tissue available, not all the experiments could be done in parallel in primary human pituitary 

tumor cells.       

3.4 RNA isolation 

RNA was isolated from normal human pituitaries and from human pituitary adenomas using 

the guanidium isothiocyanate protocol. The tissue piece was first homogenized in 800 μl of 

solution D supplemented with −mercaptoethanol, using the Ultra-TURRAX T8 (IKA 

Labortechnic, Germany) tissue homogenizer.  

Guanidium isothiocyanate and -mercaptoethanol inhibit the RNase action activated by cell 

disruption, preventing in this way RNA degradation. 80 μl of sodium acetate 2 M pH 4.0 were 

added afterwards to precipitate RNA, followed by 800 μl of saturated phenol and 160 μl of a 

choloroform-isoamyl alcohol (49:1) solution. After 15 minutes incubation on ice the samples 

were centrifuged at 13000 rpm for 20 minutes at 4°C; this step led to the formation of two 

phases, the upper one containing RNA and the lower one containing DNA and proteins. The 

upper phase was then transferred to a new tube together with the same volume of ice-cold 

isopropanol. Incubation of the sample at –20°C at least for 2 hours was necessary for RNA 

precipitation. After centrifugation of the sample at 13000 rpm for 10 minutes at 4°C, the 

supernatant was discarded and the pellet was washed with ice-cold ethanol 70%. After 10 

minutes centrifugation at 13000 rpm the supernatant was again discarded and the pellet left to 

dry at room temperature and then dissolved in an appropriate amount of DEPC-treated water.  

RNA extraction from pituitary adenoma cell lines (TtT/GF and AtT-20) and primary human 

pituitary adenoma cell cultures was performed with TRIzol
®
 Reagent according to the 

manufacturer’s instruction.  

The samples absorbance was measured with a photometer. The lack of DNA contamination 

was assessed performing a PCR reaction for a housekeeping gene -Actin, using the RNA 

sample: if no DNA contamination is present, no band is visible after loading the PCR product 

on an ethidium bromide gel (as described below). If DNA contamination was detected, RNA 

purification was performed with DNase I. 
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3.5 Reverse Transcriptase- Polymerase Chain Reaction  

Reverse transcription was performed by incubating 1 µg of total RNA with 1 μl of dNTP mix 2 

mM, 2 μl of 62.5 U/ml random primers (Hexanucleotide mix), 2 μl of dithiothreitol (DTT) 10 mM, 

1 μl of 200 U reverse transcriptase (SuperScript II), 4 μl of 5x first strand buffer and DEPC-

water to get a final volume of 20 μl, for 1 hour at 45°C. Reaction was stopped by boiling the 

samples at 95°C for 5 minutes.  

For semi-quantitative RT-PCR, 1 μl of cDNA samples obtained from TtT/GF and AtT20 cells 

were used for PCR reaction with primers specific for mouse RSUME, mouse VEGF, mouse -

Actin, human RSUME and human -Actin (Table 5). The cDNA samples were incubated with 

1.5 μl 10x PCR buffer, 0.9 μl MgCl2 25 mM, 1.5 μl dNTP mix 2mM, 0.5 μl amplification primer 

sense 10 pmol/μl, 0.5 μl amplification primer anti-sense 10 pmol/μl, 0.15 μl Thermus aquaticus 

(Taq) DNA polymerase and 8.95 μl autoclaved distilled water. The PCR reaction consisted of 

35 cycles each containing the following steps: denaturation at 94° C for 1 min, annealing at 58° 

C for 30 sec and finally elongation of the PCR fragment at 72° C for 1 min. 

The amplified fragments were electrophoresed in ethidium bromide agarose gel 1 - 1,5% 

according to the size of the product (1% for 500- 1100 bp fragments, 1,5% for 200- 500 bp 

fragments), in 1 X TBE buffer for 15-20 minutes at 80 V and then visualized under UV light. 

The 1 kb Plus DNA Ladder marker was used to determine the fragments size. 

Quantitative real time RT-PCR was performed with cDNA samples of TtT/GF, AtT-20 and 

primary human pituitary tumor cells as templates. The amplification reactions of 35 cycles 

were carried out with specific primers for human HIF-1, human VEGF, human RSUME, 

human -Actin, mouse RSUME, and mouse -Actin (Table 5). Absolute Blue QPCR SYBR 

Green Mix (Thermo Scientific) was used following the manufacturer’s instructions. PCR 

amplifications were performed in a MiniOpticon Real-Time PCR Detection System (Bio-Rad, 

Munich, Germany), and the data were analyzed with CFX Manager Software for MiniOpticon 

(version 1.5, Bio-Rad). For each sample, the gene copy number was normalized by the 

amount of -Actin. All experiments were carried out in triplicates. 

Each sequence of the primers was checked with the NCBI BLAST program in order to exclude 

eventual annealing with other genes different from the ones studied. All primers were 

synthesized by MWG Biotech, reconstituted with sterile distilled water to a concentration of 

100 μM and stored at -20 ° C.  
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Table 5. Primers used for RT-PCR 

Target Sequence (5’-3’) 
Tm 

(° C) 

Fragment 

(bp) 

Human HIF-1 
Sense: CAT AGA ACA GAC AGA AAA ATC TCA TCC 

Anti-sense: TTA ACT TGA TCC AAA GCT CTG AGT AAT 
58 450 

Human VEGF 
Sense: CAG ATT ATG CGG ATC AAA CCT 

Anti-sense: CAA ATG CTT TCT CCG CTC TGA 
58 148 

Human RSUME 
Sense: TAC CTG GTA TCT CGA TTA ACT CTG AAC 

Anti-sense: TCA GTA TTA TTT TAC CCA TGA ACA TCA 
58 300 

Human -Actin 
Sense: ACG GGG TCA CCC ACA CTG TGC 

Anti-sense: CTA GAA GCA TTT GCG GTG GAC GAT G 
58 660 

Mouse VEGF 
Sense: TCT ACC AGC GAA GCT ACT GCC 

Anti-sense: TTA CAC GTC TGC GGA TCT TG 
58 349 

Mouse RSUME 
Sense: GAC TCA AGT GGA AAG AAA TGC AA 

Anti-sense: GGA AAT CAA AAC CAG GCT GT 
58 199 

Mouse -Actin 
Sense: AGT ATC CAT GAA ATA AGT GGT TAC AGG 

Anti-sense: CAC TTT TAT TGG TCT CAA GTC AVT GTA 
58 300 

 

3.6 Cell culture and stimulation experiments 

Folliculostellate TtT/GF and corticotroph AtT20 mouse pituitary tumor cells were grown in 

DMEM supplemented with 10% FCS, 2 nmol/l glutamine, 0.5 mg/l partricin, and 105 U/l 

penicillin-streptomycin at 37°C and 5% CO2.  

For primary human pituitary tumor cell culture, adenoma tissue was cultivated as below. The 

tissue was washed with HDB buffer. Sliced fragments were enzymatically dispersed in a buffer 

containing 4 g/l collagenase, 10 mg/l DNase II, 0.1 g/l soybean trypsin inhibitor, and 1 g/l 

hyaluronidase (37°C, approximately 45 minutes). Dispersed cells were centrifuged and 

resuspended in tumor medium (DMEM supplemented with 2 mM essential vitamins, 40U/l 

insulin, 20 ng/l natrium selenate, 5 mg/l transferrin, 30 pM triiodothyronine (T3), 10% fetal calf 

serum, 2 mmol/l L-glutamine, 0.5 mg/l partricin and 105 U/ml penicillin-streptomycin). Cell 

viability was determined by fluorescence microscopy after staining with acridin orange and 

ethidium bromide. Acridin orange enters the membranes of normal cells, yielding green 

fluorescence in viable cells. Ethidium bromide does not pass the healthy cell membrane and 

enters only in dead cells with damaged membranes, yielding a red fluorescence. Cell viability 

of pituitary cells was determined as the percentage of green cells in the total number of cells 

(counted in a neubauer chamber). Cells were distributed in 48-well plates or 24-well plates 

and incubated at 37°C under 5 % CO2. The human adenoma cells attached to the plastic wells 

within 24 h and were then used for stimulation experiments. 



Materials and methods 

37 

 

CoCl2 was dissolved in distilled water as a stock solution of 200 mM, and was diluted in cell 

culture medium to stimulate pituitary tumor cells for various time periods and at different 

concentrations as indicated.  

3.7 Cell counting 

In this study, cell number was counted with the neubauer chamber before seeding plates or 

petri dishes. After trypsinizing and washing the cells, the cells were resuspended according to 

the size of pellet in 5ml, 10ml or 20 ml Medium. 50 µl cell suspension and 50 µl color solution 

(mixture of 50 µl 200mg/l Acridinorange, 50 µl 10 mg/l Ethidiumbromid and 900 µl PBS) were 

mixed. The coverslip was placed over the counting chambers and the diluted cell suspension 

was loaded into the counting chambers. Approximately 10 µl was required. The entire volume 

of the chamber was filled, but not overfilled. The cells were viewed under a microscope at 

100x magnification. The cells were visible above the grid of the counting chamber (Figure 7). 

The number of viable cells (cells with green color under UV light) was determined overlying 4 

x 1 mm2 areas of the counting chamber (labeled A-D in Figure 7). The cell concentration was 

calculated: firstly, the total cells counted in 4 mm2 was divided by 4; secondly, the average of 

cell number in 1 mm2 area was divided by the dilution factor 1/2; thirdly, the cell number of 1 

mm2 area was divided by 10-4 ml, the volume of 1 mm2 area; finally, the cell number of 1 ml 

medium was obtained. 

Figure 7. The neubauer chamber for cell counting. 

3.8 Transfection of siRNA against RSUME 

RNA interference (RNAi) is a gene silencing system in eukaryotic cells, by which double-

stranded RNA (dsRNA) triggers the destruction of mRNA with sequence complementarity. 

A B 

C D 
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RNAi is initiated by the conversion of dsRNA into 21~23 nt fragments known as small 

interfering RNAs (siRNAs) by the multidomain RNase III enzyme (Dicer). These siRNAs are 

then incorporated into a second enzyme complex, the RNA-induced silencing complex (RISC), 

in an ATP-dependent step or series of steps during which the siRNA duplex is unwound into 

single strands. The resulting single stranded siRNA guides the RISC to recognize and cleave 

the target RNA complementary to the siRNA sequence (Figure 8) (Schwarz, et al. 2002). 

Nowadays, siRNA is applied in biology research. Designed siRNA is transfected into 

mammalian cells to suppress expression of specific genes, which has become a useful tool to 

explore the function of target genes. 

Figure 8. The siRNA pathway. Long double-stranded RNA (dsRNA) is digested by Dicer 

in an ATP-dependant way. Then siRNAs are uptaken by RISC. ATPs are hydrolysed to 

help unwind of siRNA but the incorporation is ATP independent. The single-stranded 

antisense strand help RISC to find the target mRNA, and the mRNA is cleaved. (Schwarz, 

et al. 2002) 

3.8.1 Transfection of siRNA against mouse RSUME in pituitary cell lines 

TtT/GF and AtT20 cells were seeded in plates with antibiotics-free culture medium. After 

overnight growing, 100 nM siRNA against mouse RSUME (5’- GGA CTT GTG GGT GAG GAT 

G-3’, supplied by Prof. Arzt, FCEN-Universidad de Buenos Aires, Argentina) was transfected 
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into cells with lipofectamineTM 2000 (Invitrogen, Karlsruhe, Germany) to suppress endogenous 

RSUME expression. 100 nM scrambled siRNA (Scramble II, MWG Biotech, Ebersberg, 

Germany) was used as a control. The time periods of transfection are described in results. 

3.8.2 Transfection of siRNA against human RSUME in primary human pituitary 
adenoma cells 

Transfection of siRNA in primary human pituitary adenoma cells was established in 6 primary 

cell cultures of human non-functioning pituitary adenomas in this study. BLOCK-iTTM Alexa 

Fluor
® red fluorescent oligo (Invitrogen Corp, Paisley, UK) was used for determination of 

transfection efficiency. The BLOCK-iTTM Alexa Fluor
® red fluorescent oligo is Alexa Fluor 555-

labeled, double-stranded RNA (dsRNA) oligomer. It is designed for use in RNAi analysis to 

facilitate assessment and optimization of dsRNA oligonucleotides delivery into mammalian 

cells using cationic lipids (such as lipofectamineTM 2000). In this study, 10 nM, 20 nM, 50 nM 

or 100 nM fluorescent oligo was transfected with lipofectamineTM 2000 into primary human 

pituitary cells. 24 hours after transfection, primary cells were observed under fluorescence 

microscope with standard filter set for detection of Texas red (Carl Zeiss MicroImaging, 

Munich, Germany). Transfection efficiency was determined by counting the number of cells 

with red color in 100 cells. 

The optimized transfection conditions are described as follows. After dispersion of human 

pituitary adenomas, 200,000~250,000 adenoma cells/well were cultivated in poly-L-Lysine 

coated 24-well plates with 500 µl antibiotics-free tumor medium. After overnight incubation, for 

each well, 100 µl Opti-MEM I reduced serum medium containing 20 nM or 50 nM siRNA 

against human RSUME (5’- GGA TTT ATG GAT GCG GAT A-3’, supplied by Prof. Arzt, 

FCEN-Universidad de Buenos Aires, Argentina) and 1 µl lipofectamineTM 2000 was added to 

the cells to suppress endogenous RSUME expression. 100 nM scrambled siRNA (Scramble II, 

MWG Biotech, Ebersberg, Germany) was used as a control. The time periods of transfection 

are described in the results. 

3.9 Western blot analysis 

The western blot is a kind of immunoblot technique for detection of specific proteins in various 

samples, such as tissue homogenate or extract of cell cultures. The native or denatured 

proteins are firstly separated by molecular weight or 3D-structure, respectively, using gel 

electrophoresis, and then the proteins are transferred onto nitrocellulose or polyvinylidene 

fluoride membranes. For the two-step method, the primary antibody is applied to probe the 

target protein after blocking the membrane typically with bovine serum albumin (BSA) or non-

fat milk solution to avoid unspecific binding. Afterwards, the membrane is incubated with the 
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secondary antibody which binds to a species-specific binding site of the primary antibody. The 

secondary antibody is usually conjugated with a reporter enzyme such as horseradish 

peroxidase (HRP), which produces luminescence visualized on the film in proportion to the 

amount of target protein after reaction with chemiluminescent agent. 

In this study, after CoCl2 stimulation, the cells were washed with cold PBS, removed from the 

dish with a plastic scraper and the proteins were extracted breaking the cell membranes by 

pipetting up and down through a very small (insulin) syringe, in proteases inhibitor cocktail 

diluted 1:100 in RIPA buffer, working always on ice.  

The protein samples concentration was determined with Bradford dye assay (Bradford 1976). 

In the acidic environment of the reagent, protein binds to the coomassie dye. This results in a 

spectral shift from the reddish/brown form of the dye (absorbance maximum at 465 nm) to the 

blue form of the dye (absorbance maximum at 610 nm). The difference between the two forms 

of the dye is greatest at 595 nm, which therefore is the optimal wavelength to measure the 

blue color from the coomassie dye-protein complex. The linear standard curve was 

established by a serial concentration (0, 1, 2, 4, 6, 10, 15 µg/ml) of BSA/coomassie dye 

solution. The absorbance was measured by a spectrophotometer (Bio-rad, SmartSpecTMPlus). 

This standard curve is valid when the square of coefficient of determination value R2 ≥ 0.991; 

otherwise, the assay should be repeated. To determine the protein concentration of a test 

sample from absorbance, the standard curve was used to find the concentration of standard 

that would have the same absorbance as the sample. 

30 μg of each sample was separated by a pre-cast Tris-glycine gel (Anamed, Darmstadt, 

Germany) in an electrophoresis apparatus (Invitrogen). Then, the separated proteins were 

transferred on a nitrocellulose membrane (Hybond ECL) with Novex
®
 Semi-Dry Blotter 

(Invitrogen) through a electrophoresis procedure, in which the gel was on the negative side of 

the apparatus and the nitrocellulose membrane on the positive side, in this way the negative-

charged proteins are driven from the gel to the positive-charged membrane, in the same 

position. The membrane was then blocked in 5% non-fat milk solution (dissolved in TBS/0.1% 

tween) for 2 h. The blocked membrane was incubated with mouse monoclonal antibody 

against HIF-1 (diluted in 2.5% non-fat milk solution, 1:500, R&D Systems, Germany) or -

Actin (dilute in 2.5% non-fat milk solution, 1:10000, Milipore, USA) overnight at 4 °C. After 

washing three times with TBS/0.1% tween, the membrane was incubated with HRP-

conjugated anti-mouse antibody (diluted in 2.5% non-fat milk solution, 1:2000, Cell Signaling, 

USA) for 1 h. ECL system and hyperfilm (GE Health, Germany) were used for membrane 

visualization.  
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3.10 Immunofluorescence assay 

Immunocytochemistry was applied in cultured cells in this study. It is a common technique to 

assess the localization, distribution and expression level of target protein in situ, using a 

specific antibody, and this antibody-antigen interaction can be visualized by many methods 

under the conventional microscope, fluorescence microscope or confocal microscope. 

Immunofluorescence is a method widely used in immunocytochemistry to visualize the target 

proteins with fluorescent dye. As for the indirect immunofluorescence assay, the secondary 

antibody labeled with fluorescent dye is used to bind with the primary antibody which is 

against the antigen being probed for (Figure 9). The Alexa Fluor fluorescent dyes conjugated 

secondary antibodies are typically used, because the Alexa Fluor family has more robust 

fluorophores which are less prone to photobleaching. 

Figure 9. The principle of indirect fluorescence assay. The target antigen is 

recognized by the specific primary antibody which is recognized by the fluorescent labeled 

secondary antibody. The fluorescence is observed under fluorescence microscope or 

confocal microscope. 

The confocal microscope is popularly applied in life sciences, and it uses a kind of optical 

imaging technique which can increase micrograph contrast and reconstruct three dimensional 

images. With conventional microscopes, the fluorescence of the entire of specimen excited in 

the optical path is detected as background signal. In contrast, the confocal microscope uses 

point illumination and an aperture in front of fluorescence detector to eliminate out-of-focus 

signal, so only fluorescence very closed to the focal plane and in the sample depth direction 

can be detected, which results in higher image resolution than that of conventional 

fluorescence microscopes. However, scanning over a regular raster (i.e. a rectangular pattern 

Cell 
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of parallel scanning lines) in the specimen is required in 2D or 3D imaging, because only one 

point in the sample is illuminated at a time (Figure 10). 

Figure 10. The principal light pathways in confocal microscope. A laser provides the 

excitation light, and the laser light reflects off a beam splitter to get across the specimen. 

Afterwards, the fluorescence dyes in the specimen is emitted, then the emitted light 

passes through the beam splitter and is focused onto the aperture. The light passing 

trough the aperture is measured by the fluorescence detector. 

In this study, 24 hours after transfection with siRNA against RSUME and scramble siRNA in 6-

well plates, cells were split onto Falcon culture slides (BD biosciences), and stimulated with 

250 µM CoCl2 for 3 hours the next day. After treatment, cells were fixed in 4% 

paraformaldehyde for 5 minutes on ice, and then blocked in 5% goat serum with 0.1% (v/v) 

triton X-100 for 30 minutes at room temperature. Slides were incubated with mouse 

monoclonal anti-HIF-1 (1: 100, Novus Biologicals, USA), rabbit polyclonal anti-cleaved-

caspase-3 (1:200, Cell Signaling, USA) or rabbit polyclonal anti-VEGF (1:100, Abcam, USA) 

overnight at 4 °C, and then washed and incubated with Alexa Fluor
®
 594 goat anti-mouse 

antibody ((Invitrogen, Paisley, UK) or Alexa Fluor
®
 594 goat anti-rabbit antibody (Invitrogen, 

Paisley, UK) for 45 minutes at room temperature. ProLong
®
 Gold antifade reagent with DAPI 

(Invitrogen, Paisley, UK) was used for visualization of the cell nucleus. Images were obtained 

using a confocal microscope (FluoView™ FV1000, Olympus, Munich, Germany). The 

proportion of cells immunopositive for cleaved caspase-3 was determined by counting the 
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number of positive cells out of 100 cells in five different areas of each slice. Images were 

obtained using 10×, 20× or 60× objectives. 

3.11 Enzyme-Linked Immunosorbent Assay (ELISA) 

Figure 11. The procedure of sandwich ELISA. 

ELISA is a biochemical technique to detect and quantify target antigen from ng/ml to pg/ml in 

samples, such as blood, urine and cell culture supernatant. The sandwich ELISA which 

measures the amount of antigen between two layers of antibodies (i.e. capture and detection 

antibody) is more sensitive and specific compared with other ELISA methods. 

The general steps are as follows (Figure 11): 1) a known quantity of capture antibody is 

coated in a 96-well polystyrene plate; 2) non specific binding sites of the coated plate are 

blocked with blocking buffer (i.e. 5% BSA solution); 3) the appropriately diluted sample is 

applied and incubated for 2 hours at room temperature; 4) unbound antigen is washed away 

from the plate; 5) the biotinylated detection antibody that binds specifically to the antigen is 

applied and incubated for 2 hours at room temperature; 6) unbound biotinylated detection 

antibody is washed away from the plate; 7) the horseradish-peroxidase (HRP)-conjugated 

streptavidin which binds to the detection antibody is applied and incubate the plate for 30 

minutes; 8) unbound streptavidin conjugates are washed away from the plate; 9) the substrate 

(1:1 mixture of H2O2 and tetramethylbenzidine), which is converted by HRP into a color, is 

applied and incubated for 15~30 minutes; 10) the absorbance of each well is measured using 

a multiwell spectrophotometer set to 450 nm to determine the presence and quantity of 

antigen. 

In this study, cells were seeded in 48-well plates. After stimulation, the supernatant of cell 

culture was collected. The measurement of VEGF secreted into the cell culture supernatant 
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was carried out with VEGF ELISA kit (R&D Systems, Wiesbaden, Germany) following the 

manufacturer’s instruction. All experiments were carried out in quadruplicates. 

3.12 Proliferation assay 

Cell proliferation was assessed using the non-radioactive colorimetric WST-1 assay. The Cell 

Proliferation Reagent WST-1 is a clear, slightly red ready-to-use solution, containing 

tetrazolium salt WST-1 and an electron coupling reagent, diluted in sterile phosphate buffered 

saline. This assay is based on the cleavage of WST-1 into formazan dye by mitochondrial 

dehydrogenases in viable cells, and provides a non-radioactive alternative to the [3H]-

thymidine incorporation assay. An expansion in the number of viable cells results in an 

increase in the overall activity of mitochondrial dehydrogenases in the sample. This 

augmentation in enzyme activity leads to an increase in the amount of formazan dye formed, 

which directly correlates to the number of metabolically active cells in the culture. The 

absorbance of the dye solution is measured by a multiwell spectrophotometer (DYNATECH, 

MR5000) at 420-480 nm. 

In this study, 6×103 cells/well TtT/GF cells or 15×103 cells/well AtT20 cells were seeded into 

96-well plates, and 24 hours after transfection of siRNA against RSUME, the cell culture 

medium was changed to DMEM containing 2% FCS and incubated the cells for indicated time 

periods. Then, 10 μl of WST-1 solution was added into the cell culture medium of each well 

and the plate was incubated at 37°C and 5% CO2 for 30 minutes. The absorbance of samples 

was measured by a multiwell spectrophotometer set to 450 nm. All experiments were carried 

out in quadruplicates. 

The effect of RSUME knockdown on cell growth was confirmed by direct cell counting using a 

cell size-adapted coulter counter (Beckman, Z1™ Series COULTER COUNTER®). The cell 

counting was carried out in triplicates.   

3.13 Apoptosis detection  

Apoptosis is characterized by membrane blebbing (zeiosis), condensation of cytoplasm, and 

the activation of an endogenous endonuclease. This nuclease cleaves double-stranded DNA 

at the most accessible internucleosomal linker region, generating mono- and 

oligonucleosomes. In contrast, the DNA of the nucleosomes is tightly complexed with the core 

histones H2A, H2B, H3, and H4, and is thus protected from cleavage by the endonuclease. 

The yielded DNA fragments are discrete multiples of a 180-bp subunit, detected as a “DNA 

ladder” on agarose gels after extraction and separation of the fragmented DNA. The 

enrichment of mono- and oligonucleosomes in the cytoplasm of the apoptotic cell is due to the 

fact that DNA degradation occurs several hours before plasma membrane breakdown.  
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DNA fragmentation as an indicator of apoptosis was measured by a cell death ELISA kit 

(Roche Molecular Biochemicals, Germany) according to the manufacturer’s instruction. All 

experiments were carried out in triplicates. This assay is based on the quantitative “sandwich 

enzyme immunoassay” principle using mouse monoclonal antibodies directed against DNA 

and histones. This allows the specific determination of mono- and oligonucleosomes in the 

cytoplasmic fraction of cell lysates. The samples are placed into a streptavidin-coated 

microplate and incubated with a mixture of anti-histone-biotin and anti-DNA-peroxidase. 

During the incubation interval, nucleosomes will be captured via their histone component by 

the anti-histone-biotin antibody, while binding to the streptavidin-coated microplate. 

Simultaneously, anti-DNA-peroxidase binds to the DNA part of the nucleosomes. After 

removal of the unbound antibodies, the amount of peroxidase retained in the immunocomplex 

is photometrically determined with ABTS as the substrate (Figure 12, Roche Applied science). 
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Figure 12. The principle of the Cell Death Detection ELISA
PLUS

. Panel A: sample 

preparation; Panel B: ELISA. (Roche Applied Science). 

3.14 Statistics 

Results are expressed as mean±SD. The correlation analysis of HIF-1, VEGF and RSUME 

mRNA expression with the tumor grade, age and gender of patients was performed with the 

Fisher exact test, and statistical significance was considered at P < 0. 05. The simple linear 

regression analysis was used to examine the correlation of HIF-1, VEGF and RSUME mRNA 

expression between each other, and a contribution ratio (square of coefficient of determination 

value R2) >0.6 were considered significant. One-way ANOVA was used to compare variables 

in stimulation experiments and HIF-1, VEGF and RSUME mRNA expression in different 

After incubating cells with an apoptosis-

inducing agent, pellet the cells by 

centrifugation (if the cells are adherent cells, 

just remove the culture medium). Retain a 

sample of the supernatant, which may contain 

necrotic DNA that leaked through the 

membrane during incubation. 

Incubate cells with lysis buffer. 

Pellet the intact nuclei by centrifugation. Take 

an aliquot of the supernatant (cell lysate) and 

determine the amount of apoptotic 

nucleosomes present 
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tumor types and normal pituitary glands, and P < 0.05 was considered as significant. The 

statistic analyses were performed with SigmaStat 2.0 (SPSS Inc). 
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4 Results 

4.1 HIF-1, VEGF and RSUME mRNA expression in human normal pituitaries 

and pituitary adenomas 

RNA were extracted from 3 human normal pituitaries and 31 pituitary adenomas, and then 

quantitative real time RT-PCR was performed to evaluate HIF-1, VEGF and RSUME mRNA 

levels with normalization to the amount of house keeping gene -Actin (Figure 13 A-C).  

Figure 13. mRNA expression levels of HIF-1, RSUME and VEGF in human normal 

pituitaries and pituitary adenomas. Quantitative real time PCR was performed with 31 

human pituitary adenomas and 3 normal pituitaries to detect the mRNA levels of HIF-1 

(A), VEGF (B) and RSUME (C). Values are given as mean±SD (standard deviation) after 

normalization to the amount of -Actin. While the mRNA expression levels of HIF-1, 

RSUME and VEGF in human pituitary adenomas tended to be higher compared with 

normal pituitaries, the difference was not statistically significant, and the difference among 

the various types of adenomas examined was not statistically significant as well. 
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One-way ANOVA statistical analysis showed that the mRNA expression levels of HIF-1, 

RSUME and VEGF in human pituitary adenomas tended to be higher compared with normal 

pituitaries, the difference was not statistically significant, and the difference among the various 

types of adenomas examined was not statistically significant as well, although thyrotroph 

adenomas appeared to produce highest HIF-1, VEGF and RSUME levels. Lowest level of 

HIF-1 and VEGF mRNA were found in non-functioning adenomas and lowest level of 

RSUME was found in prolactinomas.  

Simple linear regression analyses showed that in the pituitary adenomas studied, VEGF and 

RSUME mRNA levels were significantly correlated with HIF-1 mRNA levels (R2=0.6610 or 

R2=0.7296, respectively) (Figure 14 A, B). No significant correlation was found between HIF-

1, VEGF, RSUME mRNA expression and patient age, gender, or tumor grade. 

Figure 14. Correlations of mRNA expression levels among HIF-1, RSUME and 

VEGF in human normal pituitaries and pituitary adenomas. Values are given as 

mean±SD (standard deviation) after normalization to the amount of -Actin. A, B: Simple 

linear regression analyses showed that VEGF and RSUME mRNA levels were 

significantly correlated with HIF-1 mRNA levels in the tested pituitary adenomas 

(R
2
=0.6610 or R

2
=0.7296, respectively). 

4.2 Effect of hypoxia mimicking conditions on RSUME mRNA expression  

In order to test whether RSUME responds to hypoxia in pituitary tumor cells, RSUME mRNA 

expression under hypoxia mimicking conditions was investigated.  

Before stimulation with hypoxia-mimicking agent CoCl2, AtT20 and TtT/GF cells were exposed 

to medium containing only 1% FCS overnight, and then stimulated with 250 μM CoCl2 in the 

same medium. After CoCl2 treatment, RSUME mRNA expression was measured with 

quantitative real time PCR. RSUME mRNA levels in AtT20 and TtT/GF cells were significantly 

increased shortly after CoCl2 treatment and reached the peak at 30 minutes. Maximal 
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stimulations of 3.22±0.58 and 2.65±0.69 fold versus untreated cells were achieved in AtT20 

and TtT/GF cells, respectively (Figure 15).  

 

Figure 15. RSUME mRNA expression were increased under CoCl2 stimulation in 

AtT20 and TtT/GF cells. AtT20 and TtT/GF cells were stimulated with 250 µM CoCl2. 

RSUME mRNA level was analyzed by quantitative real time PCR in triplicates, and the 

values are given as mean±SD after normalization to -Actin. *, P < 0.05; **, P < 0.01; ***, 

P < 0.001 vs. untreated cells.  

Figure  16. RSUME mRNA expression were increased under CoCl2 stimulation in 

primary human pituitary tumor cells. Primary human pituitary tumor cells were 

stimulated with 125 µM CoCl2. RSUME mRNA level was analyzed by quantitative real 

time PCR in triplicates, and the values are given as mean±SD after normalization to -

Actin. ***, P < 0.001 vs. untreated cells. The similar effect was found in another primary 

non-functioning adenoma cells (data not shown).  

The primary cell cultures of 2 non-functioning adenomas and 1 somatotroph adenoma were 

also tested. Before stimulation, primary human pituitary tumor cells were exposed to tumor 
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medium containing 2% FCS over night, and stimulated with 125 μM CoCl2 in the same 

medium. After CoCl2 treatment, RSUME mRNA expression was measured with quantitative 

real time PCR. RSUME mRNA levels were also significantly increased under CoCl2 treatment 

in all the tested tumor cells (Figure 16 shows the results of 1 non-functioning adenoma and 1 

somatotroph adenoma). Maximal stimulations of 58.80±7.64 and 65.10±8.84 fold versus 

untreated cells were achieved in the non-functioning adenoma and somatotroph adenoma 

shown above, respectively. RSUME mRNA expression reached the peak at 1 hour after 

stimulation. The similar result was found in another non-functioning adenoma (data not 

shown).  

4.3 Effect of hypoxia mimicking conditions on HIF-1 protein expression 

In order to investigate whether HIF-1 can be activated after hypoxia in pituitary tumor cells, 

HIF-1 protein levels under hypoxia mimicking conditions were determined by western blot. 

Before stimulation, TtT/GF and AtT20 cells were exposed to medium containing only 1% FCS 

overnight, and then stimulated in the same medium with CoCl2 of different doses and for 

different time periods. After stimulation, HIF-1 was determined in cell lysates by western blot. 

CoCl2 dose-dependently increased HIF-1 protein levels in both cell lines (Figure 17). With 

stimulation of 5 hours, the maximal HIF-1 expression was achieved at 500 μM CoCl2. The 

stimulatory effect was time-dependent and with the stimulation of 250 µM CoCl2 the maximum 

HIF-1 protein levels were reached after 2 h and 3 h in AtT20 and TtT/GF cell lines, 

respectively (Figure 17). During CoCl2 stimulation, compared with untreated cells, the toxic 

effects of CoCl2 and the changes in cell viability were not observed. 

Figure 17. HIF-1 protein level was increased under CoCl2 stimulation in a 

concentration- and time-dependent manner in AtT20 and TtT/GF cells. AtT20 and 

TtT/GF cells were stimulated with indicated concentrations of CoCl2 and time periods. 

Each image is representative of 3 experiments with similar results. 
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For immunofluorescence studies, after stimulation of 250 µM CoCl2 for 3 hours, AtT20 and 

TtT/GF cells were fixed and immunofluorescence assay for HIF-1 was performed. By 

confocal immunofluorescence microscopy, CoCl2 did not only stimulate expression of HIF-1 

but also its translocation into the nucleus as shown in both cell lines (Figure 18).  

Figure 18. HIF-1 is translocated and accumulated in nucleus after CoCl2 treatment 

in AtT20 and TtT/GF cells. AtT20 and TtT/GF cells were stimulated with 250 µM CoCl2 

for 3 hours. Red color corresponds to HIF-1, and blue color corresponds to nucleus.  

The immunofluorescence images were taken from confocal microscope using 60× and 

20× objectives for AtT20 and TtT/GF cells, respectively. The parameters were fixed when 

taking images by confocal microscopy, and one representative image of 5 observations 

from two independent experiments with similar results is shown. 
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Primary cell cultures of 8 human pituitary adenomas (5 non-functioning, 2 somatotroph 

adenomas, 1 lactotroph adenomas) were also treated with CoCl2 in order to find out whether 

HIF-1 can be activated as in mouse pituitary tumor cell lines. Before stimulation, primary 

tumor cells were exposed to tumor medium containing only 2% FCS overnight, and then 

stimulated in the same medium with CoCl2 of different doses and for different time periods. 

After stimulation, HIF-1 was determined in cell lysates by western blot. HIF-1 protein 

expression was time- and dose-dependently increased after CoCl2 treatment in all the tested 

primary cell cultures (Figure 19 shows the representative findings from two tumor cell cultures). 

Due to limited amount of primary tumor cells, not all the stimulation experiments of different 

doses and time periods could be done in parallel.  

Figure 19. HIF-1 expression was increased under CoCl2 stimulation in a 

concentration- and time-dependent manner in primary human pituitary tumor cells. 

Primary somatotroph adenoma cells were stimulated with different concentrations of 

CoCl2 for 3 h, and primary non-functioning adenoma cells were stimulated with 125 μM 

CoCl2 for different time periods. Each image is representative of 3 experiments with 

similar results. HIF-1 was increased in all the tested primary human pituitary tumor cell 

cultures after CoCl2 treatment, following a time- and concentration-dependent manner. 

Western blots from primary human somatotroph adenoma cells and non-functioning 

adenoma cells were shown as representatives.  

4.4 Effect of hypoxia mimicking conditions on VEGF expression 

VEGF is a well-characterized HIF-1 target and a key factor in angiogenesis. In order to find 

out whether CoCl2 not only induces HIF-1 protein expression but also stimulates VEGF 

secretion, VEGF secretion after CoCl2 stimulation was investigated by VEGF ELISA. 

Before stimulation, TtT/GF and AtT20 cells were exposed to medium containing only 1% FCS 

overnight, and then stimulated in the same medium with CoCl2 of different doses and for 

different time periods. After stimulation, the supernatant of the cell culture was collected and 

VEGF secretion was determined by ELISA. VEGF was significantly increased under CoCl2 

treatment, following a time- and concentration-dependent manner, in TtT/GF cells (Figure 20). 

However, CoCl2 treatment did not significantly stimulate the increase of VEGF secretion in 
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AtT20 cells. From the previous study, it is shown that AtT20 cells have a very high basal 

VEGF production rate (Lohrer, et al. 2001). It may be that the VEGF output by AtT20 cells is 

already saturated and can not be further enhanced under hypoxia mimicking conditions. 

Figure 20. VEGF expression was increased under CoCl2 stimulation in a 

concentration- and time-dependent manner in TtT/GF. TtT/GF cells were stimulated 

with indicated concentrations of CoCl2 and time periods. Values were from ELISA assays, 

and given as mean±SD. **, P < 0.01; ***, P < 0.001 vs. untreated cells. All experiments 

were carried out in quadruplicates. 

VEGF secretion under CoCl2 stimulation in primary cell cultures of 17 human pituitary 

adenomas (11 non-functioning, 3 somatotroph, 2 lactotroph, 1 corticotroph) was also tested. 

Before stimulation, primary tumor cells were exposed to tumor medium containing only 2% 

FCS overnight, and then stimulated in the same medium with different doses of CoCl2 and for 

different time periods. After stimulation, VEGF secretion in the supernatant of culture medium 

was determined by ELISA. CoCl2 dose-dependently increased VEGF secretion in all the 

tested primary tumor cells (Figure 21 A-D show the representative findings). Due to limited 

amount of primary tumor cells, not all the stimulation experiments of different doses and time 

periods could be done in parallel. 
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Figure 21. VEGF expression was increased under CoCl2 stimulation in a 

concentration- and time-dependent manner in primary human pituitary tumor cells. 

Primary human tumor cells were stimulated with indicated concentrations of CoCl2 and 

time periods. Values were from ELISA assays, and given as mean±SD. **, P < 0.01; ***, P 

< 0.001 vs. untreated cells. All experiments were carried out in quadruplicates. 

4.5 Effect of RSUME knockdown on HIF-1 and VEGF production 

4.5.1 In mouse pituitary cell lines 

In order to investigate whether RSUME plays a role in HIF-1 increase after hypoxia in 

pituitary tumor cells, siRNA against mouse RSUME and scrambled siRNA were transfected 

into AtT20 and TtT/GF cells. 24 hours after transfection, the total RNA was extracted and RT-

PCR for mouse RSUME was performed. RSUME mRNA was obviously decreased in both cell 

lines 24 hours after RSUME siRNA transfection compared with un-transfected and scrambled 

siRNA transfected control (Figure 22). 48 hours after transfection of RUSME siRNA and 

scrambled siRNA, AtT20 and TtT/GF cells were stimulated with 250 μM CoCl2 in medium 

containing 1% FCS for 3 hours. After stimulation, HIF-1 was determined in cell lysates by 

western blot. CoCl2-stimulated HIF-1 expression was significantly suppressed in RSUME 
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siRNA transfected AtT20 cells and TtT/GF compared with un-transfected and scrambled 

siRNA transfected control (Figure 23).  

Figure 22. RSUME mRNA expression was suppressed by transfection of siRNA 

against mouse RSUME in AtT20 and TtT/GF cells. AtT20 and TtT/GF cells were 

transfected with siRNA against mouse RSUME, and RT-PCR was performed 24 hours 

after transfection. 

Figure 23. RSUME knockdown suppressed HIF-1 in both TtT/GF and AtT20 cells. 

AtT20 and TtT/GF cells were transfected with mouse RSUME siRNA for 48 h, and then 

treated with 250 μM CoCl2 for 3 h. Each image is representative of 3 experiments with 

similar results. 

For immunofluorescence studies, 48 hours after transfection of RUSME siRNA and scrambled 

siRNA, AtT20 and TtT/GF cells were stimulated with 250 μM CoCl2 in medium containing 1% 

FCS for 3 hours. After stimulation, AtT20 and TtT/GF cells were fixed and 

immunofluorescence assay for HIF-1 was performed. Confocal immunofluorescence 

microscopy showed that the translocation of HIF-1 in response to CoCl2 treatment was 

impaired in AtT20 and TtT/GF cells in which RSUME had been knocked down (Figure 24 and 

Figure 25).  
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Figure 24. HIF-1 was suppressed by RSUME knockdown in AtT20 cells as shown 

by immunofluorescence assay. 48 hours after transfection of RUSME siRNA and 

scrambled siRNA, AtT20 cells were stimulated with 250 μM CoCl2 for 3 hours. Red color 

corresponds to HIF-1, and blue color corresponds to nucleus. The immunofluorescence 

images were taken from confocal microscope using 60× objectives. The parameters were 

fixed when taking images by confocal microscopy, and one representative image of 5 

observations from two independent experiments with similar results is shown. 
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Figure 25. HIF-1 was suppressed by RSUME knockdown in TtT/GF cells as shown 

by immunofluorescence assay. 48 hours after transfection of RUSME siRNA and 

scrambled siRNA, TtT/GF cells were stimulated with 250 μM CoCl2 for 3 hours. Red color 

corresponds to HIF-1, and blue color corresponds to nucleus.  The immunofluorescence 

images were taken from confocal microscope using 20× objectives. The parameters were 

fixed when taking images by confocal microscopy, and one representative image of 5 

observations from two independent experiments with similar results is shown. 
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In order to find out whether RSUME knockdown not only suppresses HIF-1 protein 

expression but also reduces VEGF secretion, VEGF ELISA was performed to determine 

VEGF secretion in AtT20 and TtT/GF cells after transfection of siRNA against RSUME.  

For TtT/GF cells, 48 hours after transfection of RSUME siRNA, cells were treated with 250 μM 

CoCl2 for 24 h, and then the culture supernatant was collected for VEGF ELISA and RNA was 

extracted for RT-PCR. From VEGF ELISA, it was found that RSUME knockdown did not 

significantly reduce the basal VEGF secretion, but significantly decreased CoCl2-stimulated 

VEGF expression. From RT-PCR, VEGF mRNA expression was obviously increased by CoCl2 

stimulation, and was significantly suppressed by RSUME knockdown compared with un-

transfected and scrambled siRNA transfected control (Figure 26) 

 

Figure 26. CoCl2-stimulated VEGF expression was suppressed by RSUME 

knockdown at both protein and mRNA levels in TtT/GF cells. After 48 h transfection of 

RSUME siRNA, TtT/GF cells were treated with 250 μM CoCl2 for 24 h, and then VEGF 

ELISA (A) and RT-PCR (B) were performed to determine VEGF protein and mRNA 

expression. ELISA assay was carried out in quadruplicates and values were given as 

mean±SD. **, P < 0.01. Images of ethidium bromide agarose gel are representatives of 3 

experiments with similar results. 

For AtT20 cells, the effect of RSUME silencing was only tested at basal conditions, as it was 

shown that CoCl2 treatment did not significantly enhance VEGF secretion in this cell line. To 

this end, 48 hours after transfection of RSUME siRNA, the culture supernatant of AtT20 cells 

was collected for VEGF ELISA, RNA from a part of cells was extracted for RT-PCR, and cells 

were also fixed to perform immunofluorescence studies. From VEGF ELISA and RT-PCR, it 

was found that basal VEGF expression was suppressed at both protein and mRNA levels by 

RSUME knockdown compared with un-transfected and scrambled siRNA transfected control 
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(Figure 27).  From Immunofluorescence studies, VEGF staining was obviously weaker in cells 

with RSUME knockdown compared with un-transfected and scrambled siRNA transfected 

control, confirming that RSUME knockdown resulted in a significant reduction of basal VEGF 

expression in AtT20 cells (Figure 28). 

Figure 27. Basal VEGF expression was suppressed by RSUME knockdown at both 

protein and mRNA levels in AtT20 cells. After 48 h transfection of RSUME siRNA, 

VEGF ELISA (A) and RT-PCR (B) were performed to determine VEGF protein and mRNA 

expression. ELISA assay was carried out in quadruplicates and values were given as 

mean±SD. **, P < 0.01. Images of ethidium bromide agarose gel are representatives of 3 

experiments with similar results.  

 

 

 

 

 

A 

C
T

si
R
N
A

sc
ra

m
bl

e

0

50

100

150

AtT20

 

V
E

G
F

 c
o
n
c
e
n
tr

a
tio

n
 (

p
g
/m

l)

VEGF 

-Actin 

__ siRNA scramble 

B 

AtT20 



Results 

61 

 

Figure 28. Basal VEGF production was suppressed by RSUME knockdown in AtT20 

cells as shown by immunofluorescence assay. After 48 h transfection of RSUME 

siRNA, immunofluorescence was performed to stain VEGF. Red color corresponds to 

VEGF, and blue color corresponds to nucleus. The parameters were fixed when taking 

images by confocal microscopy using 60× objectives, and one representative image of 5 

observations from two independent experiments with similar results is shown. 

4.5.2 In primary human pituitary tumor cell cultures 

RSUME knockdown was applied in primary human pituitary tumor cell cultures to find out 

whether RSUME is implicated in HIF-1 activation as in mouse pituitary cell lines. Due to 

limited amount of primary tumor cells, the experiments on HIF-1 and VEGF expression after 

RSUME knockdown could not be done in parallel. 

Transfection of siRNA in primary human pituitary tumor cells was established for the first time 

in 6 primary cell cultures of human pituitary non-functioning adenomas, and BLOCK-iTTM 

Alexa Fluor
® red fluorescent oligo was used to estimate transfection efficiency. With optimized 

transfection conditions, transfection efficiency was determined to be about 50% by counting 

red fluorescence stained cells in 100 cells 24 hours after transfection of fluorescent oligo 

(Figure 29). RNA was extracted for RT-PCR 24 hours after transfection of RSUME siRNA. 
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From RT-PCR, it was confirmed that 50 nM siRNA against human RSUME obviously 

suppressed RSUME mRNA in primary tumor cells (Figure 30). 

Figure 29. Evaluation of siRNA transfection efficiency in primary human pituitary 

tumor cells. The red fluorescent oligo was transfected into primary cells. 24 hours after 

transfection, the cells were observed under fluorescence microscope, and the number of 

cells with red color was counted in 100 cells to determine the transfection efficiency. The 

images were taken from fluorescence microscope using 10× objectives. 

Figure 30. RSUME mRNA expression was suppressed by transfection of siRNA 

against human RSUME in primary human pituitary tumor cells. The primary human 

non-functioning tumor cells were transfected with siRNA against human RSUME, and RT-

PCR was performed 24 hours after transfection. 

With optimized transfection conditions, RSUME knockdown was also performed in the primary 

human cell cultures of 1 corticotroph adenoma and 1 somatotroph adenoma. 5 days after 

transfection of 20 nM or 50 nM RSUME siRNA, the corticotroph tumor cells were stimulated 

with 125 µM CoCl2 for 3 hours, and then HIF-1 expression in cell lysates was determined by 

western blot. For the primary somatotroph tumor cells, 4 days after transfection of RSUME 

siRNA, cells were stimulated with 125 µM CoCl2 for 24 hours, and then the supernatant of cell 

culture was collected for VEGF ELISA. CoCl2-stimulated HIF-1 protein expression and VEGF 

secretion was significantly suppressed in that corticotroph adenoma and somatotroph 
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adenoma, respectively, compared with scrambled siRNA transfected controls (Figure 31 A, B). 

The suppression of HIF-1 and VEGF expression by RSUME knockdown was not found until 

5 days after transfection of siRNA.       

Figure 31. CoCl2-stimulated HIF-1 and VEGF secretion were suppressed by 

RSUME knockdown in primary human pituitary adenoma cells. The primary human 

corticotroph and somatotroph tumor cells were stimulated with CoCl2 5 days and 4 days 

after transfection of RSUME siRNA, respectively. HIF-1 and VEGF expression were 

determined by western blot in corticotroph tumor cells (A) and by VEGF ELISA in 

somatotroph tumor cells (B), respectively. **, P < 0.01; ***, P < 0.001. 

4.6 Effect of RSUME knockdown on proliferation and apoptosis in mouse 

pituitary cell lines 

During the application of RSUME silencing, it was noticed that a part of cells appeared dead. 

Therefore, the effect of RSUME knockdown on proliferation and apoptosis in pituitary tumor 

cells was studied in AtT20 and TtT/GF cells.  

AtT20 and TtT/GF cells were transfected with RSUME siRNA in 6-well plates. 24 hours after 

transfection, the cells were split into 96-well plates and cultured in medium containing 2% FCS 

for 48 hours. Afterwards, WST-1 assays were performed and the absorbance of samples was 

measured by a multiwell spectrophotometer set to 450 nm. Meanwhile, the cell number was 

also counted using a cell size-adapted coulter counter. By decreased absorbance values from 

WST-1 assay and the decreased cell number, RSUME knockdown significantly suppressed 

cell proliferation in both AtT20 and TtT/GF cells compared with un-transfected and scrambled 

siRNA transfected control (Figure 32 A, B).  
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Figure 32. RSUME knockdown suppressed proliferation in both AtT20 and TtT/GF 

cells. AtT20 and TtT/GF cells were transfected with RSUME siRNA for 72 h, and then cell 

proliferation was determined by WST-1 assay (A) and cell number counting (B). **, P < 

0.01; ***, P < 0.001. The WST-1 assay was carried out in quadruplicates and cell number 

counting was carried out in triplicates. 

RSUME knockdown could be involved in induction of apoptosis besides in the suppression of 

cell proliferation in pituitary tumor cells. Therefore, studies on apoptosis in AtT20 and TtT/GF 

cells were carried out. AtT20 and TtT/GF cells were transfected with RSUME siRNA in 6-well 

plates. 24 hours after transfection, the cells were split into 96-well plates or slides and cultured 

in medium containing 2% FCS for 48 hours. Afterwards, apoptosis-associated DNA 

fragmentation was measured with a specific ELISA in 96-well plates, and the cells on slides 

were fixed to perform immunofluorescence studies on cleaved caspase-3. From cell death 

ELISA, a significant increase of apoptosis-associated DNA fragmentation by RSUME 

knockdown was observed in both AtT20 and TtT/GF cells compared with un-transfected and 
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scrambled siRNA transfected control (Figure 33). From immunofluorescence studies on 

cleaved caspase-3, the active fragment of a well-known pro-apoptotic protein caspase-3, it 

was found that the number of cells with immunoreaction of cleaved caspase-3 strongly 

increased by RSUME knockdown compared with un-transfected and scrambled siRNA 

transfected control in both AtT20 cells (Figure 34) and TtT/GF cells (data not shown). This 

finding indicates that the RSUME knockdown induces pro-apoptotic caspase-3, and thus 

confirms the involvement of RSUME in apoptosis of pituitary tumor cells.  

Figure 33. RSUME knockdown induced apoptosis in AtT20 and TtT/GF cells by cell 

death ELISA.  AtT20 and TtT/GF cells were transfected with RSUME siRNA for 72 h, and 

then cell death ELISA was performed to detect apoptosis-associated DNA fragmentation. 

***, P < 0.001. All the experiments were carried out in triplicates. 
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Figure 34. RSUME knockdown increased cleaved caspase-3 in AtT20 cells. AtT20 

cells were transfected with RSUME siRNA for 72 h, and then immunofluorescence was 

performed to detect cleaved caspase-3. Red color corresponds to cleaved caspase-3, and 

blue color corresponds to nucleus. The images were taken by confocal microscopy using 

10× objectives, and one representative image of 5 observations from two independent 

experiments with similar results is shown (A). The proportion of cells immunopositive for 

cleaved caspase-3 was determined by counting the number of positive cells out of 100 

cells in five different areas of each slice (B). ***, P < 0.001. 
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5 Discussion 

In the present study, the role of the novel sumoylation enhancer RSUME in pituitary 

tumorigenesis was comprehensively studied for the first time. In particular, its co-expression 

with HIF-1and VEGF in pituitary adenomas as well as its implication in the regulation of 

these two potent angiogenesis regulating factors in pituitary tumor cells was investigated. It 

could be demonstrated that RSUME critically regulates HIF-1and VEGF production and thus 

might play an important role in pituitary tumor neovascularization. Moreover, novel functions of 

RSUME on proliferation and survival of pituitary tumor cells have been identified suggesting 

that RSUME is of considerable importance for pituitary tumor development and progression 

and therefore, represents an interesting candidate for development of novel targeted therapies 

for the treatment of pituitary tumors. 

An essential step in the development of any kind of solid tumor is the neovascularization of 

the expanding tumor mass by angiogenesis to supply the tumor cell with enough nutrients and 

oxygen (Carmeliet 2003). The expansion of the tumor mass causes intratumoral cellular 

hypoxia (Harris 2002), which induces the formation of the dimeric transcription factor HIF-1 by 

stabilizing its regulated subunit HIF-1. Activated HIF-1 triggers the expression of VEGF 

protein, which is a key mediator of angiogenesis (Carmeliet 2005). A large number of studies 

have demonstrated that vascularization is more advanced and HIF-1 and VEGF are over-

expressed in the majority of human cancers in comparison to their corresponding normal 

tissues (Ferrara 2004; Zhong, et al. 1999). However, so far little is known about HIF-1 and 

VEGF regulation in pituitary adenomas due to limited and controversial information from few 

immunohistochemistry studies.  

Herein the mRNA expression of RSUME as well as HIF-1 and VEGF was studied in parallel 

in a series of 31 pituitary adenomas by quantitative RT-PCR and the results were compared 

with the findings from 3 normal human pituitaries. Expression analysis at mRNA level had 

been chosen since for comparative analysis at protein level, still no appropriate RSUME 

antibodies are available for immunohistochemistry. RSUME, HIF-1 and VEGF mRNA levels 

were all slightly but not significantly enhanced in pituitary tumors in comparison to normal 

pituitaries. 

This is the first time to show RSUME expression in pituitary adenomas, indicating its 

involvement in pituitary adenoma pathogenesis. Inspired by its function of enhancing HIF-1 

stabilization (Carbia-Nagashima, et al. 2007), if the appropriated RSUME antibodies are 

available, it would be interesting to explore RSUME protein expression in pituitary adenomas 

and its relationship with tumor microvessel density by immunohistochemistry, which could 

offer more evidences about the role of RSUME in angiogenesis of pituitary adenomas.     
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The present study showed HIF-1 mRNA expression in both normal and adenomatous 

pituitaries, whereas one immunohistochemistry study showed no HIF-1 staining in normal 

pituitary gland but distributed HIF-1 staining in pituitary adenomas (Vidal, et al. 2003a). This  

could be explained by previous conclusions that the transcription and synthesis of HIF-1 is 

constitutive but this protein is degraded rapidly in normoxia and stabilized in hypoxia (Ke and 

Costa 2006). The slight increase of HIF-1 mRNA expression in pituitary adenomas 

compared with normal pituitaries shown here underlines that activated HIF-1 up-regulates 

target genes such as PDGF and triggers MAPK and PI3K pathways that contribute to up-

regulating transcription of HIF-1(Semenza 2003; Zhang, et al. 2003). Such autocrine-

signaling pathways are crucial for tumor progression.  

Previous studies from ISH and immunohistochemistry have shown higher VEGF expression in 

the non-tumorous pituitary which is adjacent to tumor tissue compared with pituitary 

adenomas (Lloyd, et al. 1999). In contrast, a RT-PCR study using autopsy-derived pituitary as 

a normal control like in the present study showed the same result as obtained here that VEGF 

expression is higher in pituitary adenomas compared with normal pituitaries (McCabe, et al. 

2002). The differing results between these studies may be caused by different controls. The 

non-tumorous pituitary tissue surrounding the tumor may theoretically be subject to subtle 

changes due to the presence of a tumor, whereas degradation and time to fixation may lead to 

loss of detectable antigens in autopsy tissue (Turner, et al. 2003).   

In contrast to studies in other types of solid tumors, it has been shown that pituitary adenomas 

appear less vascularized than non-tumorous anterior pituitary tissues (Jugenburg, et al. 1995; 

Schechter 1972; Turner, et al. 2000b). However, higher HIF-1 and VEGF expression is 

shown here in adenomatous tissues compared with normal pituitary gland. One of the 

explanations could be that HIF-1 can induce growth factors such as IGF-1 and TGF- to 

activate signal transduction pathways that lead to cell proliferation and survival under hypoxia 

(Feldser, et al. 1999; Krishnamachary, et al. 2003). Moreover, VGEF may not only play a role 

in angiogenesis but may also participate in proliferation and survival of pituitary tumor cells 

through VEGFR-1 as shown in our previous study (Onofri, et al. 2006). Additional, non-

tumorous pituitary tissue which is adjacent to tumor tissue may differ in its characteristics of 

vascularization from normal pituitary gland. Therefore, using normal tissue besides the tumor 

to address vascularization of normal pituitary is not convincible. 

In this study, RSUME, HIF-1 and VEGF mRNA expression is not significantly different 

among the various types of pituitary adenomas examined, which is consistent with previous 

studies. Despite this, there was a tendency that all of them appeared highest level in 

thyrotroph adenomas, and lowest level of HIF-1 and VEGF were found in non-functioning 

adenomas and lowest level of RSUME was found in prolactinomas. One 



Discussion 

69 

 

immunohistochemistry study showed strongest staining of HIF-1 in prolactinomas and weak 

staining in corticotroph adenomas (Yoshida, et al. 2005), whereas another 

immunohistochemistry study showed strongest HIF-1 staining in GH-producing adenomas 

and lowest in cortocotroph as well (Vidal, et al. 2003a). Additionally, previous 

immunohistochemistry study with a large cohorts of human pituitary adenomas showed 

strongest VEGF staining in GH, corticotroph, silent corticotroph, silent subtype3, and non-

oncocytic null cell adenomas and relatively weak staining in PRL, gonadotroph and thyrotroph 

adenomas (Lloyd, et al. 1999), whereas another study by RT-PCR showed strongest VEGF 

staining in thyrotroph adenomas and lowest in GH-producing adenomas (Kim, et al. 2005). 

The present study could not confirm the results from the study mentioned above, and this is 

probably due to different investigating technology and limited sample number, and different 

classification of non-functioning adenomas. These controversial previous reports together with 

present study indicate that HIF-1 and VEGF expression are not associated with pituitary 

adenoma histotypes. Whether RSUME expression has significant relationship with types of 

pituitary adenomas need to be clarified with more samples.   

An immunohistochemistry study on angiogenesis by measurement of microvessel density 

(MVD) in pituitary adenomas showed highest and lowest MVD in thyrotroph adenomas and 

prolactinomas, respectively (Niveiro, et al. 2005). In the present study, RSUME mRNA 

expression level is highest in thyrotroph adenomas and lowest in prolactinomas, which is 

probably correlated with the MVD reported in the study mentioned above; however, relatively 

low level of RSUME mRNA expression did not correlate with relatively high MVD in non-

functioning adenomas (Niveiro, et al. 2005). Although in the present study HIF-1 and VEGF 

mRNA expression were highest in thyrotroph adenomas as well, they showed lowest level in 

non-functioning adenomas which have high MVD reported in some studies (Niveiro, et al. 

2005; Turner, et al. 2000b). It was concluded that the present study could not correlate the 

HIF-1, VEGF mRNA expression with the microvessel density of pituitary adenomas 

described in previous study. This conclusion is consistent with other studies. One study using 

RT-PCR showed higher levels of HIF-1 expression in pituitary carcinomas and GH-producing 

adenomas (Vidal, et al. 2003a), the most and least vascularized pituitary tumors ,respectively, 

which was shown by another study (Vidal, et al. 2001). And a high rate of HIF-1 has been 

shown in cases of non-small cell lung cancer with both high and low MVD (Giatromanolaki, et 

al. 2001). This could be explained by the hypothesis that HIF-1 is required not for vessel 

formation but for the regular distribution of the vascular network, and disordered vasculature 

causes microenvironmental hypoxia which induces HIF-1activity (Vidal, et al. 2003a; Yu, et 

al. 2001). A study based on microvessel structural entropy has shown that rather than 

microvessel density, regular and less chaotic microvascular geometry contributes to increased 
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cell proliferation activity in PRL-producing tumors. This conclusion indicates that the 

interactions between vascular supply and pituitary tumor cell behavior may not be fully 

explained only by microvessel density (Vidal, et al. 2003a; Vidal, et al. 2003b). On the other 

hand, most of patients with prolactinomas or somatotroph adenomas have the history of 

dopamine agonist or somatostatin treatment that show anti-angiogenic effects (Gomez, et al. 

2006; Novella-Maestre, et al. 2009), which probably leads to alteration in HIF-1, VEGF and 

RSUME expression. Therefore, it is necessary to perform separate studies for treated and 

untreated adenomas, and otherwise a comparison may not be valid.  

Consistent with previous study, no correlation was found in the present study between HIF-1, 

VEGF expression and tumor grade, age and gender of patients (Viacava, et al. 2003; Vidal, et 

al. 2003a), and RSUME mRNA expression also did not correlate with these parameters. A 

relationship between tumor size and MVD in prolactinomas has been shown, and 

microprolactinomas were less vascular than macroprolactinomas; in contrast, there was no 

such a difference between vascular densities of microadenomas and macroadenomas 

producing GH (Turner, et al. 2000b). No significant difference was found in MVD between 

invasive and non-invasive pituitary adenomas (Jugenburg, et al. 1995; Vallar, et al. 1987), 

whereas another study showed significant higher MVD in invasive than non-invasive PRL-

producing adenomas but not in GH and ACTH-producing adenomas (Vallar, et al. 1987). 

Therefore, it seems that HIF-1, VEGF and RSUME expression and even MVD are not 

significantly implicated in pituitary adenoma behavior. However, HIF-1, VEGF and MVD are 

significantly higher in pituitary carcinoma than adenomas (Jugenburg, et al. 1995; Lloyd, et al. 

1999; Turner, et al. 2000a; Vidal, et al. 2003a), indicating the up-regulation of HIF-1 and 

VEGF during pituitary tumor progression and also a relationship between aggressive pituitary 

behavior and angiogenesis. 

Based on previous observations that RSUME acts through enhancing sumoylation on HIF-1 

expression (Carbia-Nagashima, et al. 2007) and thus probably on angiogenesis-regulating 

VEGF, correlation analyses among RSUME, HIF-1 and VEGF mRNA expression were 

performed in pituitary tumors. HIF-1 mRNA significantly and positively correlated with 

RSUME and VEGF mRNA expression in pituitary tumors indicating an interrelationship among 

these factors in pituitary adenomas.  

Regulation of VEGF expression has been studied previously in pituitary adenomas, and it has 

been shown that several stimuli such as IL-6, estradiol and pituitary adenylate cyclase 

activating peptide (PACAP) up-regulate VEGF expression (Banerjee, et al. 1997; Gloddek, et 

al. 1999), whereas glucocorticoids inhibit VEGF (Lohrer, et al. 2001). However, whether VEGF 

can be induced in pituitary adenomas by hypoxia through HIF-1 signaling pathway involving 

RSUME has not yet been studied.  



Discussion 

71 

 

In the present study, CoCl2 was chosen to simulate hypoxia condition. CoCl2 is a well 

established hypoxia mimicking substance (Ebert and Bunn 1999; Webb, et al. 2009). Co2+ are 

thought to mimic the hypoxia by binding instead of Fe2+ to the heme molecules which are 

regarded as oxygen sensors in both mammalian and bacteria, causing decreased oxygen 

affinity due to a conformational change (Ebert and Bunn 1999; Goldberg, et al. 1988). 

Additionally, It has been shown that sharing similar mechanism in hypoxia Co2+ are able to 

stabilize HIF-1 in normoxia by substituting Fe2+ from the Fe2+ -binding site of PHDs, leading 

to inhibition of PHDs activity (Masson and Ratcliffe 2003), and Co2+ inhibits the Interaction 

between HIF-1 and VHL Protein by direct binding to HIF-1(Yuan, et al. 2003) Moreover, 

like in hypoxia, Co2+ activates mRNA transcription of hypoxia response genes such as 

erythropoietin, glycolytic enzymes and VEGF by stimulating reactive oxygen species (ROS) 

generation, although mitochondrial-dependent ROS generation was found in hypoxia but not 

found after Co2+ exposure (Chandel, et al. 1998).  

In order to test whether RSUME responds to hypoxia in pituitary tumor cells, stimulation with 

CoCl2 was performed. RSUME mRNA expression was shown to increase within 30 minutes 

after CoCl2 stimulation and to go down within 2 hours  in mouse pituitary cell lines and primary 

human pituitary adenoma cell cultures. This is not paradoxical in view of the results obtained 

for HIF-1which reached its accumulation peak 2 hours after the onset of CoCl2 stimulation. 

As shown in the previous study, RUSME enhances HIF-1 stabilization by facilitating SUMO 

transfer (Carbia-Nagashima, et al. 2007), therefore RSUME mRNA expression is probably 

down-regulated after SUMO chain formation. Due to lack of proper antibody of RSUME, 

determination of RSUME at protein level could not be performed. 

It was next tested whether CoCl2 induces HIF-1 and VEGF in mouse pituitary cell lines and 

as well as in primary cell cultures of human pituitary adenomas. As shown in other cell types 

(Liu, et al. 1999; Okada, et al. 1998; Shima, et al. 1995; Steinbrech, et al. 2000; Webb, et al. 

2009), CoCl2 treatment time- and dose-dependently stimulated HIF-1 protein expression in 

AtT-20, TtT/GF cell lines and all the tested human pituitary adenoma cultures, and HIF-1 

accumulation in nucleus was shown in both AtT20 and TtT/GF cells. A significant rise in VEGF 

release by CoCl2 stimulation following a time- and dose- dependent manner was found in 

TtT/GF cells and all the human pituitary adenoma cell cultures, indicating that HIF-1 can be 

induced and activated in hypoxia-mimicking conditions in pituitary adenoma cells.  

Since neither RSUME inhibitors nor neutralizing antibodies are actually available, RSUME 

was down regulated by siRNA technology to further clarify the involvement of RSUME in 

regulation of HIF-1 and VEGF in pituitary adenomas. Transfection of siRNA in primary 

human pituitary tumor cells was established for the first time. siRNA against RSUME strongly 

down-regulated RSUME expression examined by RT-PCR and significantly reduced the HIF-
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1 expression in both mouse pituitary cell lines and primary human pituitary tumor cells. 

Additionally, it was shown that the RSUME knockdown abolished nucleus accumulation of 

HIF-1in both AtT20 and TtT/GF cell lines, and also decreased CoCl2-stimulated VEGF 

secretion in TtT/GF cells and primary human pituitary tumor cells. These findings suggest that 

RSUME is required in HIF-1 activation in pituitary tumor cells under hypoxia-mimicking 

conditions. Although all these experiments with CoCl2 need to be confirmed under real 

hypoxic conditions at 1% oxygen, the results shown here already point to an essential role of 

RSUME in the induction of angiogenic processes in pituitary adenomas, and probably other 

types of solid tumors.  

In the present study, a significant rise in VEGF release by CoCl2 stimulation was not found in 

AtT20 cells, but RSUME knockdown significantly decreased basal secretion of VEGF in AtT20 

cells. It is known that AtT20 cells basally secrete the highest level of VEGF compared with 

other pituitary tumor cell lines such as TtT/GF, GH3 and T3-1 (Lohrer, et al. 2001). From 

previous studies, VEGF is also regulated by other mechanisms besides hypoxia. It has been 

demonstrated that the gene promoter of VEGF contains consensus binding sites for 

transcription factor -catenin/TCF complex, and VEGF is up-regulated by transfection of 

normal colon epithelial cells with activated -catenin (Easwaran, et al. 2003). The 

transcriptional activity of -catenin/TCF complex is reduced when TCF-4 lacks SUMO 

attachment sites, suggesting that sumoylation activates -catenin/TCF (Yamamoto, et al. 

2003). Activated -catenin/TCF signaling may be responsible for the constitutively high 

secretion of VEGF by AtT20 cells, and CoCl2 induced HIF-1 accumulation may not be able 

further stimulate already saturated VEGF production. Additionally, RSUME knockdown in 

AtT20 cells probably leads to lack of sumoylation of TCF-4, and thus abolishes the activity of 

-catenin/TCF, which results in decreased VEGF expression.  

Since RSUME has been detected only recently, little is known about other functions beyond 

its action on HIF-1 stabilization and thus, angiogenesis. Interestingly, it was found that a part 

of cells were floating after RSUME knockdown, whereas the control cells without RSUME 

silencing had no changes. Therefore, the putative role of RSUME is implicated in the 

regulation of proliferation and survival was investigated in the present study for the first time. 

RSUME knockdown by siRNA in pituitary tumor cell lines led to a significant suppression of 

proliferation as shown by WST-1 assay and direct cell number counting. Cell death ELISA and 

detection of cleaved caspase-3 proved that apoptosis was induced by RSUME knockdown. 

This would mean that in pituitary adenomas in which RSUME is present and probably over-

expressed, this factor would stimulate pituitary adenoma cell proliferation and would prevent 

intratumoral apoptosis and thus in total would support pituitary adenoma progression.  



Discussion 

73 

 

Some apoptosis key regulators involved in human cancers which have been shown to be 

regulated by sumoylation may be affected also in pituitary tumor cells by the sumoylation 

enhancer RSUME (Alarcon-Vargas and Ronai 2002; Kim and Baek 2006). For instance, it has 

already been demonstrated, that RSUME can block the transcriptional activity of nuclear 

factor-B (NF-B) by enhancing the sumoylation of IB (Carbia-Nagashima et al. 2007). 

Sumoylated IB escapes from ubiquitin-mediated degradation and acts as the inhibitor of NF-

B. NF-B generally acts as a tumor promoter through up-regulating anti-apoptotic proteins; 

however it is sometimes pro-apoptotic depending on cell types, stimuli as well as the subunit 

involved (Radhakrishnan and Kamalakaran 2006). It has been shown that inhibition of NF-B 

activity combined with expression of oncogenic Ras in epidermal keratinocytes leads to 

invasive neoplasia with features similar to those of squamous cell carcinoma (Dajee, et al. 

2003; Dutta, et al. 2006; Kim and Baek 2006). From our previous study, NF-B is expressed in 

normal anterior pituitary and in pituitary adenomas and facilitates the inhibitory effect of 

interferonon POMC gene transcription in AtT20 cells (Labeur, et al. 2008). It is speculated 

that NF-B activation by RSUME knockdown could be responsible for the here observed 

apoptosis induction in pituitary tumor cells.  

The sumoylation of the important tumor suppressor p53 is well studied. It has been 

demonstrated that PIAS1 (protein inhibitor of activated STAT-1), which is an E3-like ligase, 

promotes sumoylation of p53 and in this way represses its transcriptional activity, suggesting 

that sumoylation of p53 restricts its ability to control cell death and/or growth (Alarcon-Vargas 

and Ronai 2002; Schmidt and Muller 2002). Furthermore, Mdm2 which mediates ubiquitination 

and degradation of p53 is also SUMO-modified (Alarcon-Vargas and Ronai 2002; Buschmann, 

et al. 2000). Sumoylation of Mdm2 enhances its stabilization and increases its activity of 

mediating degradation of p53 through ubiquitination (Buschmann, et al. 2000). Therefore, it 

was speculated that the activation of p53 by RSUME silencing through abolished sumoylation 

of p53 and Mdm2 contributes to apoptosis induction in pituitary tumor cells.   
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Alternatively, the pro-apoptotic effects of RSUME knockdown on pituitary adenoma cell 

proliferation may be explained by the down-regulation of HIF-1 and VEGF, since HIF-1 and 

VEGF not only promote angiogenesis but also facilitate cell proliferation and survival (Feldser, 

et al. 1999; Krishnamachary, et al. 2003; Lee, et al. 2004; Onofri, et al. 2006). Through 

supporting pituitary tumor neovascularization and growth in parallel, RSUME might enhance 

pituitary adenoma progression and therefore represents a putative therapeutic target for the 

development of novel concepts for the treatment of human pituitary tumors (Figure 35). 

Figure 35. Schematic model for the role of RSUME on pituitary tumor pathogenesis. 

It is proposed that RSUME enhances pituitary tumor progression through supporting 

tumor angiogenesis and growth as well as inhibiting tumor cell apoptosis. 

Sumoylation consequences are variable with different substrates and different cell types, and 

therefore sumoylation may promote or inhibit tumor progression. In Wnt signaling pathway, 

sumoylation of TCF-4 enhances its transcriptional activitythus enhances its target gene 

expression, including some proto-oncogenes such as c-Myc, c-jun and cyclin-D1 (He, et al. 

1998; Mann, et al. 1999; Tetsu and McCormick 1999; Yamamoto, et al. 2003). SUMO-
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conjugating enzyme Ubc9 is over-expressed in several human tumors such as lung 

adenocarcinoma, ovarian carcinoma and melanoma, and several approaches to target Ubc9 

functions are in experimental phases to explore the therapeutic application (Hoeller and Dikic 

2009). However, sumoylation may reversely suppress tumor progression. It has been shown 

that sumoylation negatively regulates c-jun activity, thereby limits its oncogenic capacity 

(Muller, et al. 2000).  Additionally, arsenic trioxide, which stimulates degradation of oncogenic 

fusion protein PML-RAR- by enhancing its sumoylation, is currently used in clinics as an 

efficient therapeutic agent for the treatment of patients with APL (acute promyelocytic 

leukemia) (Hoeller and Dikic 2009). As a sumoylation enhancer, RSUME could adopt both 

tumor-promoting and tumor-suppressing roles, and it would be meaningful to perform more 

extensive studies on the exploration of RSUME actions and putative therapeutic strategies not 

only in human pituitary tumors but also in other types of human cancers. 
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6 Summary 

Despite considerable progress, neither the processes involved in the genesis nor the 

mechanisms triggering the progression of pituitary adenomas are well understood. A large 

number of studies have shown that HIF-1and VEGF play essential roles in growth and 

progression of a wide variety of solid tumors by promoting tumor neovascularization. However, 

so far only few reports focus on the role of these two most powerful, hypoxia-induced 

angiogenic factors in slowly growing and poorly vascularized pituitary adenomas. RSUME was 

recently isolated from experimentally induced pituitary tumors in nude mice, and was shown to 

increase stability and transcriptional activity of HIF-1 in monkey kidney cell line COS-7 by 

acting as a sumoylation enhancer. These findings suggest a putative role of RSUME in 

pituitary tumor formation and progression.  

In the present study, the pathological role of RSUME in angiogenesis and progression of 

pituitary adenomas was studied for the first time in mouse pituitary cell lines AtT20 and TtT/GF 

as well as in human pituitary adenoma cells. 

By real-time quantitative PCR, it was demonstrated that RSUME, HIF-1 and VEGF mRNA 

expression tended to be over-expressed in human pituitary adenomas compared with the 

expression levels in normal pituitaries. However, no significant differences among adenoma 

types, tumor grade, age or gender of patients were observed. Nevertheless, correlation 

analyses showed that HIF-1 mRNA level was significantly correlated with VEGF and RSUME 

mRNA levels in the examined pituitary adenomas, giving the first evidence for the interference 

of RSUME with the two major angiogenic factors and thus, with pituitary adenoma 

neovascularization.    

To further explore the angiogenic role of RSUME, the hypoxia-mimicking substance CoCl2 

was applied in mouse pituitary cell lines and primary human pituitary tumor cell cultures to 

investigate the regulatory role of RSUME on HIF-1 and VEGF. Under CoCl2 treatment, 

RSUME mRNA expression was significantly enhanced and HIF-1with translocation into 

nucleus was remarkably increased at protein level. The increased transcriptional activity of 

HIF-1was demonstrated by a significant elevation of the VEGF production in pituitary tumor 

cells.  In order to test whether RSUME was implicated in up-regulation of HIF-1 and VEGF 

under hypoxia-mimicking conditions, the corresponding experiments were performed after 

RSUME knockdown using the siRNA technology. This approach was not only performed in 

easily transfectable pituitary tumor cell lines but also for the first time in primary cell cultures of 

human pituitary adenomas. RSUME knockdown significantly suppressed HIF-1 and VEGF 

expression in mouse pituitary tumor cell lines and primary cell cultures of human pituitary 

adenomas, indicating that RSUME is critically involved in pituitary tumor angiogenesis through 

regulating HIF-1 and VEGF production.  
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As changes in pituitary tumor cell viability were noticed after RSUME silencing, this factor may 

have additional functions in pituitary tumors. Indeed, RSUME knockdown was shown to inhibit 

pituitary tumor cell proliferation and to enhance the apoptosis in these cells. Therefore, in 

addition to its pro-angiogenic action, RSUME has proliferative and anti-apoptotic activities in 

pituitary tumor cells. 

In conclusion, the findings of the present study suggest that, the novel protein RSUME is an 

important player in pituitary tumor pathogenesis by supporting intratumoral angiogenesis, 

stimulating pituitary tumor cell proliferation and inhibiting tumor cell apoptosis. Therefore, this 

factor could represent a novel future target for the development of new concepts for the 

treatment of pituitary tumors.   
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8 Abbreviations 

2-OG 2-oxoglutarate 

-MSH Alpha-melanocyte stimulating hormone 

ACTH Adrenocorticotropic hormone 

AHR Aryl hydrocarbon receptor 

AIP Aryl hydrocarbon receptor interacting protein 

APL Acute promyelocytic leukemia 

ARD1 Arrest-defective-1 

AVP Arginine vasopressin 

ARNT Aryl hydrocarbon receptor nuclear translocator 

bFGF Basic fibroblast growth factor 

bHLH Basic helix-loop-helix 

CD31 Platelet endothelial cell adhesion molecule 

CDK Cyclin-dependent kinase 

CDKI Cyclin-dependent kinase inhibitor 

CRH Corticotropin-releasing hormone 

D2R Dopamine 2 receptor 

EC Endothelial cell 

ECM Extracellular matrix 

ER Estrogen receptor 

F8 Endothelial antigens factor eight-related antigen 

FIH Factor inhibiting HIF-1 

FS Folliculostellate cell 

FSH Follicle-stimulating hormone 

GFPA Glial fibrillary acidic protein 

GH Growth hormone 

GHRH Growth-hormone-releasing hormone 

GnRH Gonadotropin-releasing hormone 

GR Glucocorticoid receptor 

HIF-1 Hypoxia inducible factor-1 

HRE Hypoxia response element 
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IGF-1 Insulin-like growth factor-1 

IL-6 Interleukin-6 

LH Luteinizing hormone 

LOH Loss of heterozygosity 

MAPK Mitogen-activated protein kinase 

MEN1 Multiple endocrine type 1 

MMP Matrix metalloproteinase 

mTOR Mammalian target of rapamycin 

MVD Microvessel density 

NF-B Nuclear factor-B 

NGF Nerve growth factor 

ODDD Oxygen-dependent degradation domain 

PAS domain Per-ARNT-Sim domain 

PAS stain Periodic acid-Schiff stain 

PDGF Platelet-derived growth factor 

PHD Prolyl hydroxylase 

PI3K Phosphatidylinositol 3-kinase 

PIAS1 Protein inhibitor of activated STAT-1 

Pit-1 Pituitary transcription factor 1  

PKA Protein kinase-A 

PML Promyelocytic leukemia protein 

POMC Pro-opiomelanocortin 

pRb Retinoblastoma protein 

PRL Prolactin 

Prop1 Prophet of pituitary transcription factor 1 

PTAG Pituitary tumor apoptosis gene 

PTTG Pituitary tumor transforming gene 

RAR Retinoic acid receptor 

SAE SUMO-activating enzyme 

SF-1 Steroidogenic factor-1 

STAT Signal transduction and transcription protein 

SUMO Small ubiquitin-related modifier 
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TAD Transactivation domain 

TGF- Transforming growth factor-beta 

Tpit-1 T-box transcription factor 

TR Thyroid hormone receptor  

TRH Thyrotropin-releasing hormone 

TSH Thyroid-stimulating hormone 

Ubc9 Ubiquitin-conjugating 9 

UEA1 Ulex europaeus agglutinin 1 

VEGF Vascular endothelial growth factor 

VHL Von Hippel-lindau  

VSMC Vascular smooth muscle cell 
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