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1 Summary 

Neurons are the signaling cells of the nervous system. To propagate signals, neurons 

elongate several neurites, which differentiate into a single axon and several dendrites 

during development. Among the factors that contribute to this differentiation process, 

the cytoskeleton and in particular the microtubules play a key role. For instance, the 

growth of the axon and the dendrites depends on dynamic microtubules and requires 

the formation of new microtubules. The centrosome is regarded as the primary source 

of microtubules in axonal and dendritic growth and has been proposed to direct axon 

formation. However, while microtubule nucleation from centrosomes enables effi-

cient spindle-pole organization and cytokinesis during cell division, it is difficult to 

reconcile the distinct microtubule array in branching axons, dendrites and spines with 

such focal microtubule assembly. Thus, the exact role of the centrosome and centro-

somal microtubule nucleation in axon growth is still unclear. 

To address this question, my doctoral research focused on where microtubules are 

generated in developing neurons and what role centrosomal microtubule nucleation 

plays in axonal growth. Using rodent hippocampal neurons in culture as a model sys-

tem, I found that the centrosome loses its function as a microtubule organizing center 

(MTOC) during neuronal development. The microtubule nucleating factor γ-tubulin 

was depleted from the centrosome. Consequently, after depolymerization with noco-

dazole, microtubules did not regrow at the centrosome at later stages of development. 

Nevertheless, acentrosomal microtubule nucleation still occurred. Furthermore, ax-

onal growth was unchanged after the centrosome has lost its activity. Moreover, when 

the axon was lesioned in mature neurons, a new axon grew out in the absence of cen-

trosomal γ-tubulin. As axons grow in mature neurons without a functional centro-

some, I next asked the question of whether axon growth requires centrosomal micro-
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tubule nucleation in earlier stages of development, when the centrosome still func-

tions as a MTOC. With the use of a two-photon laser ablation setup, the centrosome 

was removed in neurons that just started to form an axon. Intriguingly, the neurons 

retained the ability to grow an axon when the centrosome had been ablated by a laser. 

Thus, loss of centrosomal microtubule nucleation is not a limiting factor for axon 

growth and regeneration.  

My research implies that acentrosomal microtubule assembly is a key feature to estab-

lish the sophisticated cytoskeleton of neurons, which is the source for their complex 

morphology. While the centrosome is necessary for cell cycle progression and neuro-

genesis, neuronal differentiation requires sophisticated architectural changes that may 

be incompatible with a large microtubule network emanating from a focal point. 

Thus, acentrosomal microtubule nucleation may be a key feature during differentia-

tion of neuronal, but also of non-neuronal cells. Dismantling the centrosome and 

decentralizing microtubule nucleation may be essential to enable axon branching, 

dendrite formation and spine generation. 
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2 Introduction 

The human nervous system is a construction of billions of neurons, the signaling cells 

of the nervous system, and other cell types that together form one of the most com-

plex networks in nature. To achieve directed signal propagation, neurons are highly 

polarized, i.e. they have two types of morphologically and functionally distinct proc-

esses; typically a single axon and several dendrites (Figure 2-1). The shorter and ta-

pered dendrites receive information and relay it to the cell body for further processing 

and integration, whereas in contrast, the axon conducts the electrical signal as an ac-

tion potential from the axonal hillock to the presynaptic terminals, which, in turn, 

form synapses with dendrites of other neurons.  

 

 

Axons are microscopic in diameter (around 1μm), but extend to enormous 

lengths. For example, the human sciatic nerve can reach a length of more than one 

meter. In other organisms, such as giraffes and blue whales, axons can even exceed 

Figure 2-1: Schematic of a typical neuron. 

The neuron is divided into the cell body and the extending processes, the single axon and several dendrites. 
The myelination of the axon enables rapid signal propagation (Figure by Quasar Jarosz at en.wikipedia). 
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lengths of five meters. To achieve such a growth in length, neurons have established 

sophisticated mechanisms to extend their processes. Axons grow to their target cells 

through efficient path finding strategies to wire the brain correctly. To this end, axons 

turn towards attractive cues and away from repulsive cues and form new branches. 

The cytoskeleton, in particular actin filaments and microtubules, plays a key role in 

these processes. It not only provides the construction material and backbone for axon 

elongation, but also controls the direction of growth. Furthermore, signaling cascades 

triggered by external guidance cues converge at the cytoskeleton. Thus, the cytoskele-

ton integrates external signals and neuron-intrinsic factors and is thereby the place 

where axon growth is established, controlled and directed.  

 

2.1 The growth cone 

The growth cone is the highly motile tip of the growing axon that controls the direc-

tion of axon growth. Ever since its first description by Ramón y Cajal as a conical 

structure “with amoeboid movements” and important for axon outgrowth (Ramon y 

Cajal, 1890), the growth cone has been under investigation, with increased intensity 

over the last 40 years. With the rise of modern cell biology, we began to understand 

the involvement of the cytoskeleton in axon growth and in particular, the unique or-

ganization of the growth cone cytoskeleton (Yamada et al., 1970; Yamada et al., 

1971).  

In cultured neurons, where axons grow on a two-dimensional substrate, the 

growth cone is a fan-like, flat structure that can be divided into three distinct domains 

(Figure 2-2)(Lowery and Van Vactor, 2009): Filopodia and lamellipodia, actin based 

structures, form the peripheral domain (P-domain). Filopodia are thin, finger-like 

membrane protrusions, which are surrounded by lamellipodia, flattened, veil-like 
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membrane extensions. The P-domain is the most dynamic structure of the growth 

cone. The central domain (C-domain) is a thicker region in the core of the growth 

cone. Microtubules are polymerized in this region and organelles and vesicles are 

transported along microtubules into the growth cone. The size of the C-domain de-

pends on the growth mode of the axon: it is large when the growth cone is transiently 

pausing and thinner when the axon is rapidly extending. The transitional domain or 

transition zone (T-domain/T-zone) is a band at the interface of the actin-rich P- and 

the microtubule containing C-domain where actin filaments and microtubules inter-

act.  

Neurofilaments, the third neuronal cytoskeletal element, also exist in the C-

domain of neurons. However, they seem not to be involved in axon growth and path 

finding, as mice with a genetic deletion of neurofilaments are viable and show typical 

neuronal connections (Eyer and Peterson, 1994).  

Actin filaments and microtubules have different roles in axon growth. Actin 

filaments maintain the shape of the growth cone and are essential for proper axon 

guidance. In contrast, microtubules give structure to the axon shaft and are important 

for the elongation of the axon. Thus, growth cones without actin filaments can still 

elongate but in an undirected fashion (Marsh and Letourneau, 1984; Bradke and 

Dotti, 1999). Consequently, a dynamic interplay including structural and regulatory 

interactions between the two cytoskeletal systems is necessary to fulfill the complex 

task of directing axon growth to its appropriate target. 
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2.2 Axon elongation 

Axon growth occurs by the conversion of the proximal site of the growth cone into a 

stable axon shaft, thereby enabling the advancement of the actual growth cone and 

the elongation of the axon shaft. Axon elongation itself can be seen as a repeated 

process of the three stages of growth cone maturation (Figure 2-3)(Goldberg and 

Burmeister, 1986). The first stage, termed protrusion, is characterized by the elonga-

Figure 2-2: The growth cone. 

(A) Growth cone of a hippocampal neuron. 
The actin cytoskeleton is visualized by fluo-
rescently labelled phalloidin (red). Micro-
tubules are stained with antibodies against 
tubulin (green). The peripheral domain of the 
growth cone shows the typical actin bundles 
while microtubules dominate the central do-
main of the growth cone and the axon shaft. 
Scale bar, 10 μm. 
 
 
 
(B) Schematic diagram of a growth cone. 
The growth cone can be divided into three 
domains: The peripheral domain (P-domain) 
comprises the finger-like filopodia that are 
separated by membrane veils called lamelli-
podia. Filopodia are formed by F-actin bun-
dles while lamellipodia are based on an F-
actin meshwork. The central domain (C-
domain) is filled with microtubules that enter 
the growth cone bundled from the axon shaft. 
Single, dynamic microtubules explore the 
peripheral domain. In between the P- and C-
domain lies the transition zone (T-zone). 
Here, actin-myosin structures form F-actin 
arcs that surround the C-domain and are per-
pendicular to the F-actin bundles. 
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tion of filopodia and lamellipodia. This is achieved by increased actin polymerization. 

Therefore, growth cone advance is directly correlated to the size and dynamics of filo-

podia and lamellipodia. In the next phase, called engorgement, dynamic microtubules 

invade the area into which the actin cytoskeleton has protruded; the membrane veils 

become enriched with vesicles and organelles, most likely by both Brownian motion 

and directed microtubule transport. In the final consolidation step, the proximal part 

of the growth cone adopts a cylindrical shape and becomes part of the axon shaft. 

Hereby, the actin polymerization and protrusion are repressed and microtubules bun-

dle. Repeated rounds of these three steps lead to the elongation of the axon. Similarly, 

guided axon growth is a directed sequence of these three steps. During axon branch-

ing, these steps occur along the parental axon shaft. Importantly, after injury, neurons 

of the central nervous system cannot regrow because their microtubules are disassem-

bled and disorganized at the tip (Erturk et al., 2007). This prevents the implementa-

tion of the consecutive steps that underlie axon growth.  

 

Figure 2-3: Stages of axon growth. 

The process of axon growth can be divided into three different steps. 1. Protrusion: Actin filament polym-
erization is enhanced at the leading edge resulting in the extension of filopodia and lamellipodia and the 
clearance of actin from the corridor between the P- and C-domain. 2. Engorgement: Microtubules of the C-
domain invade the free corridor towards the site of new growth. Through the forward movement of the C-
domain, this region also becomes enriched with vesicles and organelles. 3. Consolidation: In the last step, 
microtubules get bundled and actin protrusion is repressed in the proximal part of the growth cone and 
thereby, the proximal part assumes cylindrical shape and is integrated into the axon shaft. 
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2.3 The role of the cytoskeleton in neuronal polarity 

The cytoskeleton including actin filaments and microtubules plays not only an active 

role in axon elongation, but also in axon initiation and the establishment of neuronal 

polarity (Witte and Bradke, 2008; Hoogenraad and Bradke, 2009). Before an axon 

forms and elongates, the neuron is an unpolarized cell with several short, equal neu-

rites. During development, the neuron acquires its highly polarized structure with 

typically one axon and several dendrites (Barnes and Polleux, 2009). It is proposed 

that negative and positive feedback loops regulate the breakage of neuronal symmetry 

by acting on cytoskeletal dynamics (Andersen and Bi, 2000). The breakage promotes 

growth of one of the former identical neurites, which will become the future axon 

(Figure 2-4). It was shown that the growth cone of the future axon shows enhanced 

actin dynamics, while the growth cones of the other neurites, the future dendrites, 

contain a more static and rigid actin cytoskeleton (Bradke and Dotti, 1999). Analog 

to axon growth, the dynamic actin network in the growth cone of the future axon 

allows dynamic microtubules to explore the growth cone and hence promotes the 

protrusion of the C-domain (engorgement) and finally axon growth. In the growth 

cones of the other neurites protrusion does not take place. The rigid actin network 

rather appears to function as barrier that hinders microtubules to explore the periph-

ery of the growth cone. Thus, the actin filaments inhibit advance of the microtubule 

containing C-domain into the P-domain. Consequently, removal of this actin barrier 

by actin depolymerization allows microtubules to grow into the growth cone and 

non-growing neurites transform into growing axons (Bradke and Dotti, 1999).  
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Neuronal polarization also involves the regulation of microtubule dynamics. 

To promote growth cone engorgement and consolidation, microtubules have to be 

stabilized. For that matter, microtubules in the future axon are more stable than in 

the other non-growing neurites. Moreover, the pharmacological stabilization of 

microtubules is sufficient to induce axon formation (Witte and Bradke, 2008). 

Thereby, the increased stability of microtubules does not only allow enhanced growth 

cone advance. Furthermore, through the stabilization of microtubules and axon-

specific posttranslational modifications that are associated with increased stability, the 

future axon may also contain specific tracks for motor protein based transport of vesi-

Figure 2-4: The role of the cytoskeleton in 

neuronal polarity. 

At the beginning of neuronal development, a 
neuron has several equal processes. During 
neuronal polarization, intracellular signaling 
pathways change the cytoskeleton in one of 
these processes, the future axon. The actin 
cytoskeleton in the growth cone becomes more 
dynamic and thus, actin filaments do not func-
tion anymore as a barrier to protruding micro-
tubules. Thus, the growth cone can advance and 
the axon forms. At the same time, microtubules 
are stabilized in the axon. These stable micro-
tubules may serve as tracks for specific axonal 
transport and promote further axonal and soma-
todendritic segregation. In the non-growing 
processes, the actin filaments form a rigid bar-
rier in the growth cone that prevents the protru-
sion of microtubules into the peripheral do-
main. Thus, this actin barrier inhibits the 
growth of the other processes, the future den-
drites. 
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cle cargoes (Bradke and Dotti, 1997; Baas, 1999; Nakata and Hirokawa, 2003; Jacob-

son et al., 2006; Reed et al., 2006; Konishi and Setou, 2009).  

These polarization events are regulated by various signaling cascades including 

partitioning defective (PAR) proteins, phosphatidylinositol 3-kinase (PI3K) and simi-

larly to the regulation of axon growth and guidance, the family of Rho GTPases 

(Arimura and Kaibuchi, 2007). They can be stimulated by extracellular signals 

(Barnes and Polleux, 2009). These pathways have in common that they converge on 

the actin and microtubule dynamics.  

 

2.4 The actin cytoskeleton 

Actin Filaments (F-actin) are helical polymers of globular actin monomers (G-actin) 

and measure approximately 7 nm in diameter (Pollard, 2007). The highest concentra-

tion of F-actin are found in the P- and T-domains of the growth cone and they are 

organized primarily into two types of arrays: polarized, bundled arrays found in the 

core of filopodia that also extend into the T-domain and meshwork-like arrays which 

constitute the bulk of lamellipodia in the P-domain (Figure 2-2). Furthermore, there 

are arc-like structures in the T-domain that surround the C-domain and are perpen-

dicular to the F-actin bundles (Pollard and Borisy, 2003; Lowery and Van Vactor, 

2009).  

2.4.1 Actin filaments 

Actin filaments have two structurally distinct terminals, termed barbed and pointed 

ends that result in an intrinsic polarity of the filaments. During polymerization, ATP-

actin preferentially binds to the barbed end of the polymer. ATP-actin then hydro-

lyzes to ADP-Pi-actin and finally to ADP-actin. ADP-actin dissociates from the 
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pointed end and becomes recycled to ATP-actin; the hydrolysis cycle can then start 

again (Figure 2-5). These different stages of nucleotide hydrolysis occur along the 

filament resulting in different regions along the filament with ATP-actin close to the 

barbed end, ADP-Pi-actin in the middle and ADP-actin close to the pointed end. In 

the growth cone, barbed ends are located at the distal membrane and the pointed 

ends face the T-zone (Pak et al., 2008). Actin-polymerization at the distal membrane 

causes the filopodia and lamellipodia to extend. At the same time, the actin assembly 

creates a force that “pushes” the actin network backwards. This “retrograde flow” 

phenomenon is a steady state rearward movement of the actin network and thereby, 

also of the closely linked growth cone membrane (Suter and Forscher, 2000). Thus, 

the net protrusion of both filopodia and lamellipodia is regulated by modulating actin 

polymerization and retrograde flow. The retrograde flow is additionally supported by 

myosin II contraction in the T-domain (Medeiros et al., 2006). Myosin II is a mo-

lecular motor that generates forces on F-actin by means of ATP hydrolysis. Myosin II 

not only transports F-actin retrogradely to the T-domain, it also contracts the actin 

meshwork in the T-zone, which results in the formation of thick actin arcs. The in-

creased contraction in the T-zone also induces severing and depolymerization of F-

actin, which in turn supports actin treadmilling. It is thought that retrograde actin 

flow might negatively regulate axon outgrowth and hinder exploring microtubules 

from entering into the P-domain.  

2.4.2 Actin binding proteins 

The growth cone uses sophisticated mechanisms to control the actin cytoskeleton 

(Pak et al., 2008). The generation of the complex actin network in the growth cone 

occurs in two steps. First, new filaments are nucleated and assembled. Second, the 

growing F-actin has to be organized in a functional and dynamic network that allows 

the growth cone to direct axon growth in accordance to external and internal signals. 
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Both steps are driven by actin binding proteins (ABPs) and their regulators (Figure 2-

5; for a comprehensive list of ABPs in growth cones: see (Dent and Gertler, 2003; 

Ishikawa and Kohama, 2007)).  

A first group of ABPs promotes actin nucleation and polymerization. This in-

crease in F-actin assembly is achieved by binding and/or sequestering G-actin, by nu-

cleating F-actin, by capping the pointed end, by anticapping the barbed end or even-

tually by performing combinations of these mechanisms. Actin nucleator proteins 

include the Arp2/3 complex and formins. Barbed end anticapping proteins comprise 

the Ena/VASP family and pointed end capping proteins include tropomodulin 

(Ishikawa and Kohama, 2007; Kwiatkowski et al., 2007). A second group of ABPs 

regulates the depolymerization and severing of F-Actin in the T-zone and thereby 

refreshing the pool of available G-actin monomers. This group includes the severing 

proteins ADF/cofilin and Gelsolin (Lu et al., 1997; Garvalov et al., 2007). The third 

group of ABPs is involved in the higher order organization of F-actin by bundling, 

crosslinking or stabilizing F-actin and by anchoring F-actin to membrane adhesions 

or specific regions of the membrane. This group includes the bundling proteins fascin 

and filamin, as well as membrane anchoring proteins including cortactin, vinculin 

and spectrin (Ishikawa and Kohama, 2007).  

These categories, however, are not exclusive and many of the ABPs function 

in several categories. The involved ABPs are well coordinated in space and time by 

their activation, their interaction as well as by their reciprocal competition. This re-

sults in a tight regulation of growth cone dynamics.  
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During development, axons grow through the embryonic environment and 

connect to their targets (Chilton, 2006). The cytoskeleton not only drives axon elon-

gation, but also directs the growth along defined pathways to find the correct axonal 

targets. It is primarily the actin cytoskeleton that is involved in path finding. The ac-

tin cytoskeleton and the actin binding ABPs are downstream of the signaling path-

ways of guidance receptors. Therefore, they directly rearrange the actin cytoskeleton 

in the growth cone and turn the growth cone in response to guidance cues (Dent and 

Gertler, 2003). The guidance receptors on the growth cone sense attractive or repul-

Figure 2-5: Dynamics of actin filaments. 

Actin filaments grow by the addition of ATP-actin (red) to the barbed end which faces the distal membrane 
in the growth cone. After ATP-actin hydrolysis to ADP-Pi-actin (blue) and loss of inorganic phosphate, 
ADP-actin (green) becomes disassembled from the filament at the pointed end that faces the T-zone. Po-
lymerization at the distal membrane and depolymerization in the T-zone leads to treadmilling of F-actin. 
ADP-actin becomes recycled to ATP-actin and can be used again for polymerization. Actin-binding pro-
teins (ABPs) regulate these dynamics by either promoting polymerization like Ena/Vasp proteins or by 
severing and depolymerizing F-actin like ADF/cofilin. Furthermore, ABPs can organize the actin filaments 
into higher order structures, for example by bundling through proteins like fascin. 
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sive cues, which provide the environmental directions. A plethora of signalling path-

ways downstream of these receptors translate the spatial information from the guid-

ance cues to modulate the cytoskeleton dynamics in order to drive axon growth into 

the right direction. Beside kinases, phosphatases and calcium ions, the family of Rho 

GTPases, including RhoA, Rac1 and Cdc42, regulates the cytoskeleton downstream 

of most guidance receptors (Govek et al., 2005). The Rho-GTPases act on actin dy-

namics, but also affect microtubules (Watabe-Uchida et al., 2006).  

 

2.5 Microtubules 

Microtubules are the second cytoskeletal component in axon growth. They give struc-

ture to the axon shaft and are the driving force for axon elongation (Conde and Ca-

ceres, 2009). 

2.5.1 Nucleation and polymerization of microtubules 

Microtubules are polarized, tubular structures that are assembled into linear arrays in 

the axon. They are highly dynamic, yet rigid cylindrical polymers of α/β tubulin het-

erodimers with a diameter of about 25 nm. During polymerization the α/β tubulin 

heterodimers arrange into linear protofilaments that associate laterally to form the 

hollow microtubule cylinders. In most mammalian cells, microtubules form a tube of 

13 protofilaments (Figure 2-6). Within a protofilament, the tubulin heterodimers 

associate in a head-to-tail fashion. This makes microtubules intrinsically polar, result-

ing in two, structurally and kinetically different ends: the highly dynamic plus-end 

and the less dynamic minus-end. The β-tubulin within the dimer is oriented toward 

the plus-end, and the α-tubulin subunit toward the minus-end (Desai and Mitchison, 

1997; Howard and Hyman, 2003). 
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Microtubules are intrinsically dynamic, a feature termed dynamic instability. 

They undergo periods of growth and shrinkage at the microtubule plus-end. Dy-

namic instability allows microtubules to switch abruptly from growth to shrinkage 

(catastrophe) and from shrinkage to growth (rescue) (Figure 2-6) (Mitchison and 

Kirschner, 1984; Howard and Hyman, 2003). 

The assembly and disassembly of microtubules are important for their genera-

tion but also their dynamic properties. The assembly of microtubules can be charac-

terized by three steps: the first phase is defined by a thermodynamically unfavourable 

and therefore rate-limiting nucleation step. It is followed by rapid elongation of the 

polymer and finally by a steady-state phase. In the nucleation step small oligomers of 

α/β tubulin heterodimers form a nucleus. Once a stable oligomer of a certain size is 

reached, rapid polymerization of the microtubule occurs. During the steady state 

microtubules display the dynamic instability, when microtubules switch randomly at 

their plus-ends between “catastrophe” and “rescue” leading to their highly dynamic 

behaviour (Mitchison and Kirschner, 1984; Howard and Hyman, 2003).  

To maintain the dynamic instability, microtubules consume energy by the hy-

drolysis of GTP. β-tubulin has a GTP-hydrolyzing activity that is strongly activated 

when the dimer is incorporated into the polymer. This hydrolyzing activity leads only 

to a small layer of tubulin dimers at the plus end that are bound to GTP, the so-called 

GTP cap (Figure 2-6). It stabilizes the plus-end, because GDP-bound microtubules 

are intrinsically more instable. If new polymerization is slower than the GTP hydroly-

sis, the plus-end becomes unstable and results in catastrophe (Mitchison and Kir-

schner, 1984; Howard and Hyman, 2003). The dynamic behaviour of the minus-

ends is not of interest in vivo, because they are generally capped and thus stabilized 

(Dammermann et al., 2003). Because GTP hydrolysis is not necessary for micro-
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tubule polymerization, the GTP hydrolysis is only important for the dynamic proper-

ties of microtubules.  

  

Figure 2-6: Dynamics of microtubules. 

Microtubules are intrinsically dynamic. The polymers rapidly switch from a shrinking mode to a growing 
mode (rescue) or the reverse way (catastrophe). The Cap of GTP-bound tubulin at the plus-end stabilizes 
the microtubule. GDP-bound microtubules are intrinsically more instable and therefore, if new polymeriza-
tion is slower than the GTP hydrolysis, the plus-end becomes unstable and results in catastrophe. 

 

Microtubules polymerize spontaneously in vitro from high α/β tubulin con-

centrations. However, the intracellular monomer concentration seems too low for 

spontaneous nucleation, although this possibility has not been excluded (Job et al., 

2003). Therefore, microtubule formation is assisted by specific structures called 

microtubule organizing centres (MTOCs) (Luders and Stearns, 2007). MTOCs allow 

the cell to control where and when to assemble microtubules. The conventional 

MTOC in animal cells is the centrosome, an organelle next to the nucleus (see chap-

ter 2.5.5). Recently, also centrosome-independent and decentralized microtubule 
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formation has been identified in many organisms and cell types (Bartolini and Gun-

dersen, 2006; Luders and Stearns, 2007). 

 

 

The key protein responsible for microtubule nucleation is thought to be γ-

tubulin, a highly conserved protein that shares around 30% homology with α/β tu-

bulin (Moritz and Agard, 2001). γ-tubulin is organized in large complexes that form 

an open ring structure, called the γ-tubulin ring complex (γTuRC; Figure 2-7). The 

γTuRC is composed of the gamma complex proteins (GCP) GCP 2-6 and γ-tubulin 

(GCP 1) (Raynaud-Messina and Merdes, 2007). Each of these GCPs is required for 

the assembly of the γTuRC (Verollet et al., 2006). Recently, NEDD1, which is there-

fore also called GCP-WD, was shown to be part of the γTuRC and to be responsible 

for the centrosomal targeting of the complex via its amino-terminal WD repeats 

(Haren et al., 2006; Luders et al., 2006). How γTuRCs nucleate microtubules is still 

Figure 2-7: γTuRCs and microtubule nucleation. 

The γTuRC consists of several γ-tubulin subunits, the GCPs 2 to 6 and GCP-WD/NEDD1, which anchors 
the γTuRC at the centrosome. According to the template model, the γTuRC mimics the end of a micro-
tubule. Tubulin dimers bind to the γTuRC and a microtubule assembles (Figure modified from Job et al., 
2003). 
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under debate, however the majority of evidence favours a template model, where the 

γTuRC essentially mimics the end of a microtubule and serves as a nucleation seed 

(Job et al., 2003). This view was supported by the γ-tubulin crystal structure, which 

showed lateral interactions between γ-tubulin subunits (Aldaz et al., 2005). Despite 

the data that support this model the definitive experimental evidence is still lacking. 

2.5.2 Microtubule associated proteins (MAPs) 

Microtubule dynamics are regulated by microtubule associated proteins (MAPs; Fig-

ure 2-8). There are different groups of MAPs that affect microtubule dynamics by 

different means. Structural MAPs stabilize microtubules and include the proteins 

MAP2 and tau. They bundle, stabilize and crosslink microtubules and can enhance 

microtubule growth by inhibiting catastrophe or by promoting rescue events. Their 

binding is regulated by posttranslational modifications (PTMs) or by phosphorylation 

of tubulin (Dehmelt and Halpain, 2004). 

In the last years, plus-end tracking proteins (+TIPs) came to the fore as new 

specialized MAPs including Adenomatosis polyopsis coli (APC), Cytoplasmic linker 

proteins (CLIP-115 and CLIP-170), CLIP-associating proteins (CLASP1 and 

CLASP2) and End-binding proteins (EB1 and EB3). They specifically accumulate at 

the plus-ends of microtubules and regulate microtubule dynamics by stabilizing them. 

Stabilization is achieved by reducing the microtubule catastrophe rate or by promot-

ing microtubule rescue. They are also proposed to link microtubules to F-actin by 

binding to ABPs (Akhmanova and Steinmetz, 2008). 

Collapsin response mediator protein-2 (CRMP-2) acts in a different fashion 

than the MAPs mentioned so far. Instead of binding to the microtubule polymer, 

CRMP-2 binds free tubulin subunits and promotes microtubule assembly (Fukata et 

al., 2002). Furthermore, CRMP-2 is involved in the transport of free tubulin to the 
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distal part of the growing axon by binding to Kinesin-1 (Kimura et al., 2005). Its role 

is not only important for axon growth, but also for axon-dendrite specification. In 

both of its roles, CRMP-2 also affects actin dynamics by its involvement in kinesin-

dependent transport of the WASP family and Verprolin-homologous proteins 

(WAVE)-complex, a regulator of actin polymerization, into the axon (Kawano et al., 

2005).  

Another group of MAPs acts as microtubule destabilizing proteins. Since dy-

namic microtubules are necessary for growth cone advance, they might counteract the 

structural MAPs in the growth cone, which stabilize microtubules and therefore re-

duce their dynamics. In neurons, stathmin and Superior cervical ganglion 10 protein 

(SCG10) increase the rate of microtubule catastrophes. Both proteins are highly ex-

pressed during neurite outgrowth. Furthermore, SCG10 localizes to the C-domain of 

the growth cone. Thus, they might regulate microtubule dynamics in the growing 

axon (Grenningloh et al., 2004). 

Microtubule motors like kinesin or dynein also bind to microtubules, but do 

not directly affect their dynamics. Analog to myosin and actin, they generate forces 

on microtubules by means of ATP-hydrolysis. The motors transport the building ma-

terial and single components to the growth cone that are required for axon growth. 

The intrinsic polarity of the microtubules specifies the direction of motor movement, 

since the motors can only move along the microtubule in one direction. Kinesin mo-

tor proteins move towards the plus-end and the dynein complex towards the minus 

end. Furthermore, the PTMs of the microtubules can determine the binding of mo-

tors. For example, kinesin-1 preferentially binds to the more stable, acetylated micro-

tubules, which are localized in the axon (Reed et al., 2006; Witte et al., 2008). In ad-

dition, tyrosinated tubulins that are abundant in dendrites prevent kinesin-1 from 
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binding to microtubules (Konishi and Setou, 2009). By means of these directional 

controls, the molecular motors are a good checkpoint to regulate the transportation 

and hence, the final localization of specific cargos.  

  

Figure 2-8: Microtubule associated proteins (MAPs) regulate microtubule dynamics. 

CRMP-2 and plus-end tracking proteins (+TIPs) promote microtubule assembly. In contrast, SCG10 and 
stathmin destabilize microtubules. Furthermore, proteins like katanin or spastin sever microtubules and are 
therefore important in axon growth and branching. 

 

 

Also important for axon growth and branching are microtubule severing pro-

teins. Two microtubule severing proteins are found in neurons, katanin and spastin. 

Katanin is mainly responsible for axon growth and is localized to the centrosome 

where it releases microtubules, but is also present in growth cones and at branching 

points (Karabay et al., 2004). In contrast, spastin is primarily involved in microtubule 

reorganization at branching points (Yu et al., 2008).  
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In conclusion, microtubules and their dynamics are key for axon growth and are 

tightly regulated by a plethora of proteins during axon growth.  

2.5.3 Microtubules in axon growth 

Microtubules have a unique organization in neurons. In contrast to many somatic 

cells, neuronal microtubules are not anchored at the centrosome, but are abundant in 

the cytoplasm throughout the whole cell body and funnel into the processes (Baas, 

1999). The microtubules reach lengths up to 100 microns within the axon shaft and 

are organized in regularly spaced, parallel arrays with their plus-ends distal to the cell 

body. In dendrites, microtubules are organized in anti-parallel arrays with micro-

tubule plus-ends oriented towards as well as distal to the cell body (Conde and Ca-

ceres, 2009).  

Microtubules are essential for axon growth (Yamada et al., 1970; Conde and 

Caceres, 2009). Upon entering the growth cone, microtubules splay out and are very 

dynamic. Within the growth cone they are mainly localized in the C-domain, but a 

subset of the microtubules also explores the P-domain by rapid extension and retrac-

tion into the domain (Lowery and Van Vactor, 2009). This dynamic exploration of 

the peripheral growth cone by microtubules is a key event in axon growth, guidance 

and branching. The transitions between catastrophe and rescue result in the dynamic 

exploration of the growth cone and a fast interconversion between splayed, looped 

and bundled arrays. These dynamics not only result in the extension of the axon, but 

are also an early step of path finding and branching. Hence, growth cone turning is 

abolished when microtubule dynamics are inhibited. Moreover, dynamic micro-

tubules turn towards or away from extracellular attractants and repellents, respectively 

(Gordon-Weeks, 2004). Furthermore, microtubules steer the growth cone by their 

local stabilization at the desired site of growth and destabilization at the opposite site. 



Introduction            22  

Consequently, by local application of the microtubule-stabilizing drug taxol, the sta-

bilized microtubules grow and thereby steer the growth cone to the site of taxol appli-

cation (Buck and Zheng, 2002). In contrast, after local application of the micro-

tubule-depolymerizing drug nocodazole, the growth cone turns away from the site of 

application (Buck and Zheng, 2002). Guidance cues act in a similar way by regulating 

microtubule stability through their downstream pathways. Thereby, microtubules are 

instrumental and instructive for growth cone turning during path finding (Gordon-

Weeks, 2004; Geraldo and Gordon-Weeks, 2009). 

Although axon growth depends on microtubule polymerization (Tanaka et al., 

1995), it is rather the formation of new microtubules than only the extension of exist-

ing microtubules that delivers the polymers necessary for axon extension (Yu and 

Baas, 1994). During the last decades it has been intensely debated how and where the 

microtubule arrays in axons are formed. First mentioned by Lasek (Lasek, 1986), the 

“polymer transport model” proposed that microtubules are nucleated at the centro-

some, released from the centrosome through the microtubule severing protein katanin 

(Ahmad et al., 1998; Baas et al., 2005) and then transported along the axon by the 

motor protein dynein (Figure 2-9A)(Ahmad et al., 1998; Wang and Brown, 2002). 

In contrast, other groups reported that, if nothing else, growing microtubules are not 

transported in axons and most microtubules are stationary (Ma et al., 2004; Kim and 

Chang, 2006). Moreover, tubulin is transported into the axon and to the growth cone 

in its non-polymerized form (Terada et al., 2000; Kimura et al., 2005). The alterna-

tive hypothesis was therefore termed the “subunit transport model” that postulated 

that tubulin is transported into the processes in single subunits or oligomers that are 

then locally incorporated into the microtubules (Figure 2-9B)(Hirokawa et al., 

1997). Indeed, local microtubule polymerization occurs in comparable rates through-

out all neuronal compartments (Stepanova et al., 2003). Consistently, local inhibition 
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of microtubule assembly at the axon tip inhibits axonal growth whereas inhibition at 

the cell body does not have an effect on axon growth (Bamburg et al., 1986). To date, 

both models are under discussion, especially the aspect of microtubule transport into 

the axon, with different groups still presenting data for both models by the use of live 

cell imaging approaches (Wang and Brown, 2002; Ma et al., 2004; Kim and Chang, 

2006). As the same experiments can be interpreted in different ways (Terada, 2003; 

Myers et al., 2006), finding the definitive answer is a complicated task.  

 

 

 

 

 

2.5.4 The centrosome 

Due to their unique organization, it is still debated where neuronal microtubules are 

generated. In most animal cells, microtubules are nucleated and organized at the cen-

trosome. Centrosomes were named by Theodor Boveri in the late 19th century on the 

basis of their central position in the cell. They are not only the main microtubule or-

Figure 2-9: Microtubule generation during axonal growth. 

(A) The polymer transport model: After their nucleation at the centrosome, microtubules are released and 
transported into the axon. (B) The subunit transport model: Tubulin subunits are transported into the 
axon and microtubules are assembled locally within the axon. 
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ganizing centers (MTOC) in animal cells, they are also important regulators of cell-

cycle progression (Doxsey, 2001) and serve as a template for the formation of the 

primary cilium (Bettencourt-Dias and Glover, 2007). Centrosomes are composed of 

two main structures: two cylinder-shaped centrioles and the amorphous pericentriolar 

material (PCM; Figure 2-10).  

 

 

Figure 2-10: Centrosome structure. 

A pair of centrioles is shown. Each centriole has pericentriolar material (PCM) that nucleates microtubules 
around the ends closest to one another. Only the maternal centriole has two sets of extra appendages, distal 
and subdistal; the latter seems to anchor microtubules. A series of interconnecting fibres, different from the 
PCM, links the closest ends of the two centrioles (Figure from Doxsey, 2001). 
 

 

Centrioles are open-ended cylinders, comprised of nine sets of triplet micro-

tubules linked together. The two centrioles are each around 500 nm in length and 

200 nm in diameter. They are oriented perpendicular to one another and in close 

proximity at one end (proximal end). The older centriole has appendages at the distal 
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end and is called the mother centriole. This centriole forms the basal body, which is 

the base of the primary cilium, a sensory organelle that extends from the plasma 

membrane and that is also involved in developmental signalling of vertebrates (Singla 

and Reiter, 2006; Goetz and Anderson, 2010). Besides coordinating the formation of 

the primary cilium, the centrioles regulate the cell cycle and seem to organize the 

PCM (Doxsey, 2001; Bettencourt-Dias and Glover, 2007).  

The PCM typically surrounds both centrioles and is the site of microtubule 

nucleation that is built up by an interconnected meshwork of fibers and protein ag-

gregates forming a matrix or lattice. In total, the PCM consists of around 100 pro-

teins, mainly with coiled-coiled domains (Andersen et al., 2003). This matrix pro-

vides a structural scaffold for the proteins that are important for microtubule nuclea-

tion, including γ-tubulin. 

In vertebrate somatic cells, 80% of γ-tubulin is present in the cytoplasm, 

whereas only the residual 20% is associated with the centrosome (Moudjou et al., 

1996). The cytoplasmic and centrosome-associated γTuRCs are related or even iden-

tical (Job et al., 2003). Multiple proteins seem to be involved in the recruitment of γ-

tubulin to the centrosome and for the formation of the PCM itself. These proteins 

include pericentrin (Dictenberg et al., 1998; Zimmerman et al., 2004), 

AKAP450/CG-NAP (Takahashi et al., 2002) and NEDD1/GCP-WD (Haren et al., 

2006; Luders et al., 2006). NEDD1 is considered as a part of the γTuRC. It anchors 

the complex in the PCM and therefore appears to be necessary for centrosomal target-

ing of γTuRCs, as shown by loss of function experiments (Haren et al., 2006; Luders 

et al., 2006). In dividing cells, fluctuation of γ-tubulin at the centrosome is a well 

known phenomenon and highly regulated by the cell cycle: at the onset of mitosis γ-

tubulin is recruited to the centrosome, a process called centrosomal maturation 
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(Khodjakov and Rieder, 1999; Blagden and Glover, 2003). Later in cell cycle, during 

anaphase/telophase, the centrosome associated γ-tubulin decreases to its residual level. 

However, the knowledge about γ-tubulin recruitment to the centrosome is still very 

basic and the process is not completely understood. 

2.5.5 The role of the centrosome in neuronal polarity 

In most animal cells, the centrosome is the major microtubule nucleation site and it is 

also involved in polarity processes (Bornens, 2008). Thus, polarized microtubule nu-

cleation at the centrosome could specifically support the outgrowth of one neurite, 

which subsequently would become the axon. Furthermore, the centrosome connects 

closely to the Golgi-apparatus (Sutterlin and Colanzi, 2010), which could allow po-

larized membrane traffic to the growing axon, a process that precedes axon formation 

(Bradke and Dotti, 1997). Consistently, the centrosome localizes to the site of axon 

outgrowth in cultured cerebellar granule cells (Zmuda and Rivas, 1998). Additionally, 

it has been proposed that the position of the centrosome determines the site of axon 

formation after the last round of precursor division of cultured hippocampal neurons 

(de Anda et al., 2005).  

Interestingly, the knockdown of the polarity regulator LKB1 mispositioned the 

centrosome in migrating bipolar cortical neurons. In the case of an inverted position 

of the centrosome, the polarity of the neuron was also inverted, although in this case 

the centrosome position did not determine the axon, but dendrite formation (Asada 

et al., 2007). However, it is known that also other regulators of neuronal polarity like 

PI3K and Cdc42 can control the position of the centrosome (Etienne-Manneville and 

Hall, 2003; Siegrist and Doe, 2007). Therefore, it is unclear whether the centrosome 

directly controls polarity or whether it might just be a byproduct of the polarization 
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process itself (Arimura and Kaibuchi, 2007; Li and Gundersen, 2008; Witte and 

Bradke, 2008). 

Supporting the latter, no correlation between centrosome position and the site 

of axon formation was found in cultured dorsal root ganglion neurons and hippo-

campal neurons, which did not polarize directly after the last cell division (Sharp et 

al., 1982; Dotti and Banker, 1991). This is also consistent with studies on zebrafish 

retinal ganglion neurons in vivo, which showed that the centrosome localizes opposite 

to the axon (Zolessi et al., 2006). Furthermore, Slit-mediated repolarization of devel-

oping interneurons of the olfactory bulb suggested that the centrosome does not de-

termine the site of axon outgrowth, but may be necessary for process stabilization 

(Higginbotham et al., 2006)  

 

2.6 Hippocampal neurons as model system for neuronal devel-

opment and axonal growth 

Many studies addressing the questions how a neuron develops and how axons grow 

are carried out in cell culture systems. Dissociated hippocampal neurons are the most 

widely used culture system for the examination of neuronal differentiation and polari-

zation (Kaech and Banker, 2006). These neurons constitute a relatively homogenous 

neuronal culture, form extensive, synaptically coupled networks and resemble the 

neuronal morphology very well: they form only one axon, many dendrites and inter-

cellular synapses in culture as well as in vivo. Furthermore, they develop in defined 

stages in a stereotypical fashion (Dotti et al., 1988; Craig and Banker, 1994).  
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Hippocampal neurons are dissected from embryonic mouse or rat hippocampi, 

dissociated and plated in growth medium. Shortly after, the cells attach and form la-

mellipodia around the cell body (stage 1). After 1 day in vitro (DIV) the lamellipodia 

condense and the cell forms several identical neurites that are 10-25 μm long (stage 

2). Within the next 24 hours one of the neurites starts to grow very rapidly whereas 

the remaining neurites remain quiescent (stage 3). The growing neurite will later be-

come the functional axon. Thus, at stage 3 the polarization process starts. After 4-6 

DIV the other neurites grow (stage 4) and will later form the dendrites. Whereas the 

axon grows at an average rate of 70 μm/day, the dendrites grow at a slower rate of 

around 12 μm/day (Dotti et al., 1988). After 10 days in culture the axons and den-

drites form synapses (stage 5). 

Figure 2-11: Developmental stages of hippocampal neurons in culture. 

Figure from Dotti et al., 1988 
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2.7 Objectives of my research: Localization of microtubule nu-

cleation during axon growth 

During neuronal differentiation, the axon and the dendrites extend rapidly. This 

process requires microtubule polymerization and the generation of new microtubules 

(Yu and Baas, 1994; Tanaka et al., 1995). There is much controversy about where 

these microtubules are generated. The centrosome is regarded as the primary source of 

microtubules in axonal and dendritic growth (Baas, 1999; Higginbotham and Glee-

son, 2007). It has been thought that they are nucleated and polymerized at the cen-

trosome, released by the microtubule severing protein katanin and then transported 

into the axon by dynein (Polymer transport model; Figure 2-9A)(Wang and Brown, 

2002; Baas et al., 2005). In contrast, it was shown that at least growing microtubules 

are not transported in axons (Ma et al., 2004). Moreover, various experiments showed 

the transport of non-polymerized tubulin into the axon (Terada et al., 2000; Kimura 

et al., 2005). Therefore, microtubules may also assemble locally from subunits or 

small oligomers within the axon (Subunit transport model; Figure 2-9B)(Hirokawa 

et al., 1997). Indeed, flies that lose centrosomes during development seem to develop 

a largely normal nervous system, where axon outgrowth appears not to be affected 

(Basto et al., 2006). Thus, the question where microtubules are generated in neurons 

is still unsolved.  

To investigate this problem, I analyzed the centrosome and its microtubule 

nucleating activity in rodent hippocampal neurons during their development. In my 

thesis, I show that the centrosome lost its function as microtubule organizing center 

(MTOC) during neuronal development. Axons, however, still grew and regenerated 

through decentralized microtubule nucleation disconnected from the centrosome. 

Importantly, axons also extended after 2-photon laser ablation of the centrosome. 
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To summarize, I propose that decentralized microtubule assembly enables axon 

growth and regeneration and that it is instrumental to provide the different com-

partments of a neuron with a distinct cytoskeleton, the origin of the sophisticated 

morphology of neurons. 
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3 Results 

3.1 Neuronal centrosomes lose their ability to nucleate  

microtubules during development 

To define the role of the centrosome in microtubule nucleation during neuronal de-

velopment, I determined where microtubules are nucleated at different developmental 

stages of rat hippocampal neurons.  

To this end, cells were treated with nocodazole, a drug that depolymerizes mi-

crotubules. The centrosome was visualized by expressing a GFP tagged version of cen-

trin-2, a centrosomal component, located in centrioles (Salisbury et al., 2002). After 

complete microtubule depolymerization with nocodazole (Figure 3-1A and C), the 

cells were then shortly washed in HBSS and then fixed after recovering in N2-

medium at 37 °C for 90 s (2 days in vitro (DIV) neurons) or 3 min (12 DIV neu-

rons). To visualize only polymerized microtubules without unpolymerized tubulin 

subunits, cells were simultaneously permeabilized and fixed using the PHEM-fixation 

(Witte et al., 2008). Microtubules were stained with an antibody against α-tubulin. 

Microtubule regrowth was analyzed in neurons that were just initiating an axon 

(2DIV) and in mature neurons (11-12 DIV). In young neurons (Figure 3-1B), mi-

crotubules regrew from the centrosome, consistent with previous results (Yu et al., 

1993). After 90 s of recovery a microtubule aster or a focused microtubule spot at the 

centrosome was identified in 83 ± 5% of neurons that contained minor neurites and 

an axon (n > 200 cells). However, small microtubule seeds were also visible at acen-

trosomal sites. In mature neurons (Figure 3-1D), the recovery following nocodazole 

wash-out did not reveal such a focused repolymerization activity. In contrast, micro-

tubules nucleated randomly throughout the whole cell, but did not emanate from the 
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centrosome (n > 30 cells). Newly formed microtubules appeared in mature neurons 

after around 2-3 minutes. This delay in comparison to the young neurons may be due 

to the possibility that acentrosomal microtubule nucleation is slower. Otherwise, the 

delay could be due to the higher nocodazole concentrations, which are necessary to 

depolymerize the more stable microtubules in the mature neurons.  

 

 

We next tested wether microtubule dynamics are changed at different develop-

mental stages. To this end, neurons were infected with the +TIP EB-3 fused to GFP, 

Figure 3-1: The centrosome loses its ability to nucleate microtubules during neuronal development. 

(A and C) Microtubules (α-tubulin: red) are completely depolymerized using nocodazole. (B) After 
washout of nocodazole, microtubules regrow from the centrosome in young neurons (2 DIV). (D) In 
mature neurons (11 DIV), microtubules regrow from acentrosomal sites all over the cell body, but not 
from the centrosome. GFP-Centrin2 (green) marks the centrosome (arrowheads). Scale bar, 10 µm; inset, 
2.5 µm. 
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treated with nocodazole and microtubule regrowth was imaged in real-time. EB3-

GFP binds to the growing plus-end of microtubules, which enables the tracking of 

microtubule growth and is an established tool to analyze microtubule dynamics 

(Stepanova et al., 2003). These experiments were performed by Lukas Kapitein from 

the Erasmus Medical Center in Rotterdam, Netherlands. To express EB3-GFP in 

both young and differentiated neurons, Semliki Forest virus (SFV)-mediated gene 

delivery was used (Ehrengruber et al., 1999). Using total internal reflection fluores-

cence (TIRF) microscopy, microtubule nucleation following nocodazole wash-out 

was analyzed in young (2 DIV) and mature neurons (14 DIV). In young neurons, 

EB-3 comets emanated from the centrosome, but also emerged from acentrosomal 

regions (n = 11 cells; Figure 3-2). In contrast, in mature neurons, EB-3 comets did 

not emanate from a focal region but in an acentrosomal manner (n = 14 cells; Figure 

3-2). Post hoc staining of the centrosomal marker pericentrin revealed the position of 

the centrosome, where no specific microtubule nucleation was observed (arrowhead, 

Figure 3-2).  

Acentrosomal microtubule growth speed (67 ± 23 nm/s (mean ± s.d.); n = 83 

comets) was indistinguishable from centrosomal microtubule growth speed (64 ± 24 

nm/s; n = 85 comets) in young neurons, while the acentrosomal microtubule growth 

speed in mature neurons was slightly reduced (58 ± 15 nm/s; n = 435 comets). The 

observed microtubule growth speeds were significantly slower than previously pub-

lished growth speeds (145 ± 8 nm/s (Grabham et al., 2007)). However, in contrast to 

our data, the published data are based on untreated neurons. As it was key for the 

experiment to assess the initial nucleation sites of microtubules, nocodazole wash-out 

experiments were performed. Due to remaining nocodazole after the rapid wash-out, 

microtubules might exhibit a lower rate of polymerization compared to untreated 

cells. This might also explain the slower speed of acentrosomal growth in mature neu-
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rons compared to young neurons, as much higher nocodazole concentrations were 

used in the mature neurons.  

In conclusion, these data indicate that the neuronal centrosome loses its poten-

tial to nucleate microtubules during development and that microtubules nucleate 

from acentrosomal sites in mature neurons. Interestingly, acentrosomal microtubule 

nucleation is also detectable in the younger neurons, even though centrosomal nuclea-

tion prevails. 

 

Figure 3-2: In young neurons, microtubules grow from a focal point, while in mature neurons EB3 

comets emerge all over the cell body. 

Maximum-projection of time-lapse recordings of EB3-GFP after nocodazole washout (time: 1 min 26 s). 
Comets predominantly grow radially from a central point in young neurons (2 DIV), but not in mature neu-
rons (14 DIV). EB3-GFP tracks are indicated by yellow arrows. The arrowhead marks the centrosome in 
mature neuron (from post-hoc staining of endogenous pericentrin). Scale bar, 10 μm. Experiment performed 
by L. Kapitein, EMC Rotterdam, Netherlands. 
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3.2 The centrosome loses its role as MTOC during neuronal  

development 

The next question was whether these changes in centrosomal activity during neuronal 

development can also be observed at the ultrastructural level of the centrosome. Due 

to the enormous amount of microtubules in neurons, the resolution of immunocyto-

chemistry is too low to analyze centrosomal microtubules without depolymerization. 

Using electron microscopy does not only allow the analysis of the centrosome at an 

ultrastructural level, but can also give insight into microtubule organization at the 

centrosome without the need for pharmacological manipulation.  

Electron microscopy revealed structural changes at the centrosome that corre-

late with the loss in centrosomal activity during neuronal development. In young neu-

rons (2 DIV), microtubules emanated from centrioles in all analyzed neurons and 

formed an aster-like structure in 60% ± 5% of the cells, indicating considerable mi-

crotubule nucleation at the centrosome (n = 10 cells; Figure 3-3A and B). In con-

trast, only in 20% ± 4% of differentiated neurons (9 DIV) the centrioles or the peri-

centriolar region were linked to microtubules and no aster-like structures were found 

at this stage (n = 10 cells; Figure 3-3A and B). Although microtubules did not 

emerge from of the pericentriolar area, they were detectable in every mature neuron 

analyzed. Furthermore, one of the centrioles was often elongated in the mature neu-

rons and surrounded by a membranous protuberance as it is characteristic of the pri-

mary cilium (Figure 3-3A, arrow). This finding indicates that during neuronal devel-

opment the primary cilium extends from the basal body, a structure derived from the 

mother centriole of the neuronal centrosome (Pedersen et al., 2008). Whether the 

formation of the primary cilium can be accounted for the functional changes at the 

centrosome remains to be determined. Together, these differences between young and 
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mature neurons suggest a loss of microtubule nucleation and anchoring at the centro-

some of differentiated neurons.  

 

 

 

 

 Since these changes of the centrosome were only observed in dissociated neu-

rons the next step was to determine whether these centrosomal changes occur in a 

similar manner in vivo. Therefore, centrosomes in pyramidal neurons of the hippo-

campus at embryonic day 18 (E18) were compared with centrosomes of neurons at 

postnatal day 6 (P6)(n = 13 cells each; Figure 3-3C and D) with the age difference 

Figure 3-3: The centrosome loses its function as a microtubule organizing center (MTOC) during 

neuronal development. 

Analysis of the neuronal centrosome by electron microscopy: Microtubules emerge from the pericentriolar 
area in young rat hippocampal neurons (2 DIV, A) and the neuronal centrosomes of E18 hippocampi (C), 
but not in mature neurons (9 DIV, A) and P6 hippocampi (C). Arrowheads indicate microtubules. Arrow 
indicates membrane protrusion of primary cilium. Scale bars, 250 nm. (B and D) Quantification of micro-
tubule organization at the neuronal centrosome in 2 DIV and 9 DIV neurons (n = 10 cells each, B) as well 
as in E18 and P6 hippocampi (n = 13 cells each, D). Error bars, s.e.m. of a binominal distribution. 
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approximately resembling the age difference in the cell culture experiments. I found 

that 62% ± 4% of the analyzed centrosomes in the pyramidal layer in E18 hippo-

campi showed microtubules that emerged out of the pericentriolar area (Figure 3-3C 

and D). Specific aster-like microtubules emerged from the centrioles in 38% ± 4% of 

the analyzed centrosomes. In P6 hippocampi, microtubules rarely emerged from cen-

trosomes (8% ± 2%) and aster-like organized microtubules were not observed (Figure 

3-3C and D). Thus, the neuronal centrosome loses its function as MTOC also dur-

ing development in vivo.  

In line with the microtubule regrowth experiments, the ultrastructural data 

show that the centrosome loses its function as MTOC during neuronal development. 

This is not only the case for dissociated neurons in culture, but also for hippocampal 

neurons in vivo.  

 

3.3 γ-tubulin is depleted from the centrosome during neuronal  

development 

How are these structural and functional changes of the neuronal centrosome reflected 

at the molecular level? To address this question, I determined whether γ-tubulin 

changes its intracellular localization during neuronal development. γ-tubulin, is one of 

the key proteins in microtubule nucleation (Wiese and Zheng, 2006), localizes to the 

centrosome and is essential for axon outgrowth (Ahmad et al., 1994). To this end, I 

analyzed cells by immunocytochemistry, where axon growth was just initiated (1 

DIV; stage 3), already polarized cells with a growing axon and growing dendrites (4/5 

DIV; stage 4) as well as mature neurons that formed synapses (11/12 DIV; stage 5) 

(Dotti et al., 1988). Centrosomes were localized by co-staining against pericentrin, 

another component of the pericentriolar material (PCM) (Figure 3-4A).  
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At 1 DIV, γ-tubulin localized to the centrosome in all neurons and showed an 

intensive centrosomal staining (ratio of centrosomal / cytoplasm fluorescence inten-

sity: 2.16 ± 0.05; n = 44 cells; Figure 3-4A and C). At 4/5 DIV, when not only the 

axons but also dendrites grow, centrosomal γ-tubulin was detectable in 97% ± 2% of 

the neurons (Figure 3-4A and C). However, the intensity of the γ-tubulin staining at 

the centrosome was reduced by 52% (ratio of centrosomal / cytoplasm fluorescence 

intensity: 1.55 ± 0.03, n = 49 cells; Figure 3-4A and C). After 11/12 DIV, centro-

somal γ-tubulin was only detectable in 42% ± 10% of mature neurons (Figure 3-4A 

and C) and the intensity was even reduced by 81% (ratio of centrosomal / cytoplasm 

fluorescence intensity: 1.22 ± 0.02, n = 43 cells; Figure 3-4A and C).  

The γ-tubulin depletion seems to come along with a general reduction of 

PCM around the centrioles, because the PCM component pericentrin also decreased 

at the centrosome by 30% from 1 DIV (ratio of centrosomal / cytoplasm fluorescence 

intensity: 2.52 ± 0.04; n = 47 cells; Figure 3-4A and C) to 4/5 DIV (ratio of centro-

somal / cytoplasm fluorescence intensity: 2.06 ± 0.03; n = 59 cells). At 11/12 DIV 

centrosomal pericentrin was still visible in all cells, but the staining was reduced by 

49% (ratio of centrosomal / cytoplasm fluorescence intensity: 1.78 ± 0.03; n = 52 

cells). As seen in the electron microscopy images, the centrioles remained in the cells 

(Figure 3-4B). Consistently, the centriolar component centrin remained relatively 

constant (ratio of centrosomal / cytoplasm fluorescence intensity at 1DIV: 1.65 ± 

0.03; at 4/5 DIV: 1.54 ± 0.04; at 11/12 DIV: 1.52 ± 0.03; n = 83/56/27 cells; Figure 

3-4B and C).  
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Figure 3-4: The pericentriolar material (PCM) proteins γ-tubulin and pericentrin are depleted from 

the neuronal centrosome during development, but the centriolar protein centrin remains. 

(A) Rat hippocampal neurons at 1, 5 and 12 DIV were stained for γ-tubulin (red) and pericentrin (green). 
Centrosomes are indicated by arrowheads. Scale bar, 20 μm. (B) Rat hippocampal neurons at 1 and 12 DIV 
were stained for centrin (red) and pericentrin (green). Centrosomes are indicated by arrowheads. Scale bar, 
20 μm. (C) Lines indicate the intensity ratio of centrosomal and cytoplasmic γ-tubulin (red), pericentrin 
(green) and centrin (blue) staining normalized to their 1 DIV signal (n = 27-83 cells per data point). Results 
are means ± s.e.m. 
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In conclusion, the microtubule nucleator γ-tubulin is depleted from the centro-

some during neuronal differentiation. This might be a general feature of CNS neu-

rons, because a similar depletion of centrosomal γ-tubulin was also reported for corti-

cal and thalamic neurons (Leask et al., 1997). Since γ-tubulin is the key molecule in 

microtubule nucleation, the loss of centrosomal nucleation activity as seen in the re-

growth experiments may therefore be caused by the centrosomal γ-tubulin depletion. 

 

3.4 γ-tubulin is still present in differentiated neurons, but cannot 

be recruited to the centrosome 

The immunofluorescence experiments clearly showed that γ-tubulin is depleted from 

the centrosome during neuronal development. This observation raises the question, 

whether γ-tubulin is only delocalized from the centrosome, but still present in the 

differentiated neurons or if the observed depletion of centrosomal γ-tubulin is caused 

by a reduction of the total γ-tubulin protein levels. To address this question the 

amount of γ-tubulin in whole cell extracts of neurons at different developmental stag-

es were examined by western blotting. The western blot revealed that γ-tubulin is still 

present in differentiated neurons (9 DIV; Figure 3-5A). However, γ-tubulin protein 

levels are reduced compared to earlier stages of development (1 and 4 DIV; Figure 3-

5A). 

  

Figure 3-5: γ-tubulin is still present in mature neurons. 

(A)  Western blot of total cell lysates of rat hippocampal neurons at different developmental stages. Anti-
bodies are used as indicated. For each point in time the equivalent protein amount was loaded. (B)  Western 
blot of axon and soma preparation of neurons at 8 DIV. Antibodies are used as indicated. Of note, the nu-
clear marker histone H3 is not found in the axonal preparations. 
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These results suggest that γ-tubulin is still present in mature neurons despite 

its centrosomal depletion. However, immunofluorescence could not reveal where γ-

tubulin might have relocalized to due to the high background staining in mature neu-

rons (Figure 3-4A). Therefore, neurons were plated on a filter with a laminin coated 

bottom side, which attracted axons to grow through the filter. The pore size of the 

filter was 3 μm and thus only allowed axons to cross the filter whereas the somato-

dendritic compartment remained on the other side. After 8 days of growth, neurons 

were fixed and either the cell bodies including dendrites on the upper side or the ax-

ons on the lower side of the filter were removed. The remaining cell bodies or axons 

were lysed and collected for western blot analysis. The purity of the axonal extracts 

was confirmed by the lack of the nuclear marker histone H3, indicating cell soma-free 

axonal extracts. With the western blot analysis I detected γ-tubulin in the axons of 

mature neurons (Figure 3-5B), which is contrary to previous immuno electron mi-

croscopy studies on sympathetic neurons that did not detect γ-tubulin in the axon 

(Baas and Joshi, 1992). This finding suggests delocalization of γ-tubulin from the 

centrosome into the growing axon, where it may act as a local microtubule nucleator.  

It is difficult to conclude from the western blot experiment (Figure 3-5A), 

whether the depletion of centrosomal γ-tubulin is caused by the observed general re-

duction of γ-tubulin protein levels. If this was the case, overexpression of γ-tubulin 

would rescue the centrosomal depletion. Alternatively, the depletion could be due to 

impaired targeting of γ-tubulin to the centrosome of mature neurons and thus, over-

expression of γ-tubulin would not affect the depletion of centrosomal γ-tubulin. To 

this end, I ectopically expressed a GFP-tagged form of γ-tubulin in neurons. In young 

neurons (1 DIV), GFP-γ-tubulin colocalized with the centrosome marker centrin in 

all cells (n = 258 cells; Figure 3-6). Interestingly, the overexpression of γ-tubulin in-
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terfered with the development of the neurons and the cells died after a few days in 

vitro. Transfection in mature neurons (8 DIV) did not lead to obvious effects. In con-

trast to the young neurons, no specific recruitment of GFP-γ-tubulin to the centro-

some was observed in the differentiated neurons (10 DIV) (Figure 3-6).  

These observations suggest that mature neurons cannot recruit γ-tubulin to the 

centrosomes, probably as a consequence of changes in the centrosomal composition. 

Whether excess targeting of overexpressed γ-tubulin to the centrosome in the young 

neurons caused impaired development and neuronal cell death after γ-tubulin overex-

pression remains unclear. In mature neurons that were unable to target γ-tubulin to 

the centrosome, such cell death was not apparent after overexpression. These findings 

indicate that γ-tubulin levels and perhaps also its localization have to be tightly regu-

lated during neuronal development. 

Figure 3-6: GFP-γ-tubulin is not recruited to the centrosome in mature neurons. 

(A) Neurons at 1 and 10 DIV transfected with GFP-γ-tubulin (green). Arrowheads mark centrosomes identified by Cen-
trin staining (red). Scale bar, 20 μm. (B) Quantification of centrosomal localization of GFP-γ-tubulin in 1 DIV (n = 258 
cells) and 10 DIV neurons (n = 121 cells). Results are shown as mean ± s.e.m. 
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3.5 Regulation of centrosomal γ-tubulin targeting in neurons  

The previous data suggest that during neuronal development the centrosome changes 

in a way, which disables centrosomal γ-tubulin targeting. Regulation of centrosomal 

γ-tubulin targeting is highly regulated at the on- and off-set of mitosis, a process 

called centrosome maturation (Khodjakov and Rieder, 1999; Blagden and Glover, 

2003). Analysis of the localization and expression of several known centrosomal pro-

teins, involved in centrosome regulation during mitosis identified two proteins: cen-

trosomal protein 4.1-associated protein (CPAP) and NEDD1/GCP-WD. Both pro-

teins showed a similar reduction in protein expression and a similar centrosomal de-

pletion during neuronal development as γ-tubulin and could be therefore involved in 

the regulation of centrosomal γ-tubulin targeting in neurons.  

Indeed, I found that in parallel to the depletion of γ-tubulin from the centro-

some, the expression of CPAP was strongly reduced during development (Figure 3-

7). The downregulation of total CPAP protein levels occurred simultaneously with 

the loss of centrosomal CPAP (Figure 3-8): All young neurons (1 DIV) showed cen-

trosomal staining of CPAP (ratio of centrosomal / cytoplasm fluorescence intensity: 

1.54 ± 0.04; n = 50 cells; Figure 3-8). At 4/5 DIV, most cells had a visible centro-

somal staining of CPAP (92% ± 6%), but the intensity was reduced by 57% (ratio of 

centrosomal / cytoplasm fluorescence intensity: 1.23 ± 0.03; n = 63 cells; Figure 3-8). 

After 11/12 DIV, less than half of the cells (46% ± 21%) showed centrosomal CPAP 

staining with a barely detectable centrosomal signal (ratio of centrosomal / cytoplasm 

fluorescence intensity: 1.21 ± 0.03; n = 60 cells; Figure 3-8).  

Figure 3-7: Potential γ-tubulin recruiting factors are 

downregulated during neuronal development. 

Western blot of total cell lysates of rat hippocampal 
neurons at different developmental stages. Antibodies 
are used as indicated. For each point in time the equiva-
lent protein amount was loaded. 



Results              44  

Studies showed that CPAP is involved in centriole duplication, but also in mi-

crotubule nucleation (Hung et al., 2000; Tang et al., 2009). Furthermore, its putative 

homologue in C. elegans SAS-4 controls the amount of pericentriolar material (PCM) 

(Kirkham et al., 2003). The downregulation of the centriolar protein CPAP in hippo-

campal neurons might therefore indicate changes at the centrioles that come along 

with the loss of PCM including γ-tubulin.  

Figure 3-8: CPAP is depleted from the neuronal centrosome during development. 

(A) Rat hippocampal neurons at 1, 4/5 and 11/12 DIV were stained for CPAP (green) and Centrin (red). Cen-
trosomes are indicated by arrowheads. Scale bar, 20 μm. (B) Bars represent the percentage of neurons (1, 4/5 
and 12 DIV) with centrosomal CPAP (n > 300 cells per data point). The green line indicates the intensity ratio 
of centrosomal and cytoplasmic CPAP staining (n > 50 cells per data point). Results are shown as mean ± 
s.e.m. 
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The γ-tubulin targeting factor NEDD1/GCP-WD was also downregulated 

during development (Figure 3-7). NEDD1 is a part of the γ-TuRC and targets the γ-

TuRC to the PCM (Haren et al., 2006; Luders et al., 2006). However, even though 

NEDD1 and γ-tubulin were still present in mature neurons (Figure 3-7), NEDD1 is 

not able to target γ-tubulin to the centrosome. The downregulation of NEDD1 ex-

pression was accompanied by the loss of centrosomal NEDD1 (Figure 3-9). At 1 

DIV, I found NEDD1 at the centrosome of all neurons with a strong signal (ratio of 

centrosomal / cytoplasm fluorescence intensity: 1.83 ± 0.03; n = 41 cells; Figure 3-9). 

At 4/5 DIV, the centrosome of most neurons (89% ± 6%) had a visible centrosomal 

staining of NEDD1, but the intensity was decreased by 48% (ratio of centrosomal / 

cytoplasm fluorescence intensity: 1.43 ± 0.02; n = 41 cells; Figure 3-9). After 11/12 

DIV, NEDD1 was only detectable in around half of the neurons (51% ± 12%) with a 

very low signal (ratio of centrosomal / cytoplasm fluorescence intensity: 1.28 ± 0.03; 

n = 41 cells; Figure 3-9).  

Together with the depletion of the PCM components γ-tubulin and pericen-

trin, the depletion of the PCM protein NEDD1 suggests that the delocalization of γ-

tubulin is due to a general reduction of PCM. In turn, the reduction might be caused 

by structural changes of the centrioles, as indicated by the CPAP depletion and the 

electron microscopy images.  
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Figure 3-9: NEDD1 is depleted from the neuronal centrosome during development. 

(A) Rat hippocampal neurons at 1, 5 and 12 DIV were stained for NEDD1 (red) and pericentrin (green). Centro-
somes are indicated by arrowheads. Scale bar, 20 μm. (B) Bars represent the percentage of neurons (1, 4/5 and 
12 DIV) with centrosomal NEDD1 (n > 200 cells per data point). The red line indicates the intensity ratio of 
centrosomal and cytoplasmic NEDD1 staining (n > 41 cells per data point). Results are shown as mean ± s.e.m. 
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3.6 Axons of mature neurons extend in the absence of centro-

somal microtubule nucleation  

Axon growth depends on microtubule polymerization (Tanaka et al., 1995). How-

ever, the average length of microtubules does not increase during axon growth, 

whereas the microtubule number increases extensively (Yu and Baas, 1994). In most 

cell types, microtubules are nucleated at the centrosome. Thus, the question whether 

axon growth is affected when the centrosome is depleted of γ-tubulin and has lost its 

function as a MTOC was investigated. To this end, the length of the longest axon 

branch was measured over two weeks.  

To measure axon length, neurons from a GFP-labeled mouse were used. These 

GFP-positive neurons were grown in a background of non-fluorescent neurons from 

wildtype animals resulting in a culture with single GFP-labeled neurons (Gomis-Ruth 

et al., 2008). This approach allowed the observation of axon growth in single neurons 

fully integrated into neuronal networks. Axons grew at a constant rate throughout all 

developmental stages, even after centrosomal microtubule nucleation ceased (Figure 

3-10). On average, axons grew 131 ± 39 μm/day (2 DIV - 4 DIV) when γ-tubulin 

was present at the centrosome, and 178 ± 55 μm/day (9 DIV - 13 DIV) when the 

centrosome was inactive (Figure 3-10). Since the axon was also branching, the total 

axon growth rate even increased with time. Thus, although mature neurons have lost 

their ability to nucleate microtubules at the centrosome, this does not restrain their 

potential to extend the existing axon. 



Results              48  

 

3.7 Axons regenerate in the absence of centrosomal microtubule 

nucleation  

As shown above, the extension of axons of mature neurons is independent of centro-

somal microtubule nucleation. However, this extension could still be based on the 

rearrangement of existing microtubules. Thus, the question arose, whether it is possi-

Figure 3-10: Axon growth is not affected when the centrosome has lost its ability to nucleate micro-

tubules. 

(A) The axon of a GFP labeled mouse hippocampal neuron grows from 9 DIV (asterisk) to 11 DIV (empty 
arrowheads) and 13 DIV (arrowheads). Scale bar, 200 μm. (B) Growth of longest axon branch over time 
(black line, n = 18 to 52 cells per data point) and intensity ratio of centrosomal and cytoplasmic γ-tubulin 
staining (dashed line; from Figure 3-4). Results are mean ± s.e.m 
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ble that the centrosome contributes to axon growth when the axon is cut and a large 

amount of microtubules is removed. Upon lesioning the axon, hippocampal neurons 

show different regenerative responses independent of their degree of polarization 

(Dotti and Banker, 1987; Goslin and Banker, 1989; Bradke and Dotti, 2000; Gomis-

Ruth et al., 2008). The neurons regrow their axon when the axon is cut distally; le-

sioning the axon close to the cell body (<35 μm) causing axon outgrowth from an 

existing dendrite (Gomis-Ruth et al., 2008). Remarkably, although a large amount of 

microtubules are removed by cutting the axon and axon regeneration requires new 

microtubule polymerization (Moskowitz and Oblinger, 1995), regenerative growth 

rates are comparable in young and mature neurons (Gomis-Ruth et al., 2008).  

Therefore, I tested whether axon regeneration after axotomy occurs in mature 

neurons in the absence of centrosomal microtubule nucleation. Alternatively, axoto-

my may rejuvenate mature neurons and reactivate their centrosome. To this end, the 

axon of neurons integrated in neuronal networks (>10 DIV) were cut using a micro-

needle (Figure 3-11). Axotomy was performed together with Susana Gomis-Rüth 

from our laboratory. Proximal axotomy caused the dendrites to elongate and to be 

become new axons (Figure 3-11C, arrows with T [transformation]), whereas distal 

axotomy lead to axon regrowth (Gomis-Ruth et al., 2008). After cutting the axon of 

8-17 DIV neurons, we examined one day later if a new axon had grown from the 

same process (axon regrowth) or a new axon initiated from a dendrite (identity 

change). In case the neurons regenerated, either axon regrowth or identity change, the 

cell was fixed and centrosomal γ-tubulin was analyzed by immunocytochemistry. 
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The intensity of centrosomal γ-tubulin staining was measured in lesioned neurons 

showing axon regeneration (ratio of centrosomal / cytoplasm fluorescence intensity: 

1.19 ± 0.03; n = 20 cells; Figure 3-12) and in unlesioned neurons on the same cover-

slip (ratio of centrosomal / cytoplasm fluorescence intensity: 1.19 ± 0.01; n = 244 

cells; Figure 3-12). No recruitment of centrosomal γ-tubulin was observed in axoto-

mized neurons undergoing dendritic-axonal transformation or axonal regrowth. Cen-

trosomal γ-tubulin remained at low levels similar to that seen in unlesioned cells and 

was not comparable to the strong signal seen in young neurons (1 DIV; ratio of cen-

trosomal / cytoplasm fluorescence intensity: 1.79 ± 0.03; n = 60 cells; Figure 3-12B). 

Thus, axons regenerate independently of centrosomal microtubule nucleation in ma-

ture neurons. 

Figure 3-11: Axotomy close to the cell 

body leads to the transformation of a 

dendrite into an axon. 

(A) The axon (arrow) of a GFP-positive 
cell (asterisk; 14 DIV) was cut close to 
the cell body (B, dashed line). (C) For-
mer dendrites of the same neuron (indi-
cated by arrowhead in A) elongated 5 
days after axotomy to form an axon 
(arrows with T [transformation]). Scale 
bars, 50  μm. 
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Figure 3-12: γ-tubulin is not recruited to the centrosome during axon regeneration. 

(A) Mouse hippocampal neuron 24 hours after axotomy at 14 DIV and uninjured control neuron from the 
same coverslip. Arrowheads indicate the centrosome stained by γ-tubulin and pericentrin antibodies. Scale 
bar, 20 μm. (B) Quantification of intensity ratio of centrosomal and cytoplasmic γ-tubulin in axotomized (n 
= 20 cells), non-axotomized (n = 244 cells), and young neurons (1 DIV, n = 60 cells). Results are means ± 
s.e.m. 
 

3.8 Axon growth in young neurons does not require centrosomal 

microtubule nucleation 

As axons grow and regenerate in mature neurons without a functional centrosome, I 

asked whether axon growth requires centrosomal microtubule nucleation in earlier 

stages of development, when the centrosome still functions as a MTOC. Therefore, 

we physically ablated the centrosome by laser microsurgery in young neurons (2 

DIV), which possess a functional centrosome. Laser ablation of the centrosome is an 

established technique that had been successfully performed in non-neuronal cells 

(Khodjakov et al., 2000; Efimov et al., 2007; Loncarek et al., 2008). For my project, I 

collaborated with Nicola Maghelli from the Max Planck Institute of Cell Biology and 

Genetics in Dresden, who developed a two-photon laser ablation setup, which can 

precisely ablate sub-micrometer structures inside living cells (Maghelli and Tolic-

Nørrelykke, 2008). The destruction was achieved by increasing the power of the laser 

while scanning the beam over a user-defined region of interest (ROI). The two cen-
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trioles of the centrosome were visualized by transfecting the neurons with centrin2-

GFP. By drawing a circular ROI around the two centrioles, the site of ablation was 

defined. First, we determined the laser power in the sample plane and the exposure 

time that was necessary to successfully ablate the centrosome. The difficulty was to 

find the window, in which the laser power was high enough to destroy the centro-

some, but not too high to fatally damage the neurons. 

To validate successful centrosome ablation, I used the following approaches. 

First, I stained the ablated neurons for the presence of centrosomal components by 

using immunocytochemistry. I found that neither γ-tubulin nor Pericentrin were pre-

sent at the centrosome of ablated neurons, both directly after ablation and also 24 

hours later (Figure 3-13A). Moreover, laser ablation not only removed the PCM, but 

Figure 3-13: Laser ablation 

destroys the centrioles and 

disrupts the pericentriolar 

material (PCM). 

After laser ablation of the 
centrosome, the neuron (2 
DIV) was stained for the 
pericentriolar proteins 
Pericentrin (A and B), γ-
tubulin (A) and the centriolar 
protein centrin (B). The 
centrosomes of non-ablated 
control neurons (2 DIV) are 
indicated by arrowheads. 
Scale bar, 10 μm 
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also the centrioles as shown by staining against centrin (Figure 3-13B).  

Second, laser ablated neurons were analyzed with serial section electron mi-

croscopy, performed by Michaela Wilsch-Bräuninger (MPI-CBG, Dresden). The 

serial sectioning enabled the analysis of the whole neuron for its centrioles. In control 

neurons, the centrioles were detected in the 70 nm thin sections and similar to Figure 

3-3, microtubules grew out of the pericentriolar area. In ablated neurons, the micro-

graphs confirmed the expected physical destruction of the centrosome (Figure 3-14). 

However, occasional centriolar fragments were visible in the micrographs, which still 

might have been able to nucleate microtubules (Figure 3-14). Therefore, microtubule 

nucleation in centrosome ablated neurons was analyzed and subsequent nocodazole 

washout experiments were performed. In centrosome ablated neurons, only acentro-

somal microtubule regrowth occurred after nocodazole washout (n = 19; Figure 3-

15B).  

Finally, microtubule regrowth in living neurons was imaged after nocodazole 

washout. Neurons were cotransfected with both GFP-centrin2 to visualize the centro-

some for ablation and with the microtubule plus-end tracking (+TIP) protein EB3-

GFP to visualize growing microtubules. In cells, where microtubules were depolymer-

ized with nocodazole, the centrosome was ablated at the two-photon setup. After-

wards, the cells were transferred to a spinning disc confocal microscope and micro-

tubule regrowth was observed in real-time after nocodazole washout. In non-ablated 

control neurons, microtubule regrowth from the centrosome was observed using 

GFP-centrin2 for the visualization of the centrosome (Figure 3-15E). After laser ab-

lation, no centrosomal but only acentrosomal microtubule nucleation occurred (Fig-

ure 3-15D).  
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Figure 3-14: Laser ablation destroys the centrosome. 

(A) Rat hippocampal neuron (2 DIV) before laser ablation. Scale bar, 25 μm. (B) Electron microscope picture 
of the neuron from A after centrosome ablation. Scale bar, 10 μm. (C) Serial sections of the ablated neuron. 
Image details I and II show centriolar fragments at a higher magnification (arrowheads). Scale bar, 500 nm.  
(D) Serial sections of a control neuron. Arrowheads indicate the centriole. Note the microtubules emerging 
from the centriole. Scale bar, 500 nm. Pictures taken by Michaela Wilsch-Bräuninger, MPI-CBG, Dresden. 
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Figure 3-15: Microtubules regrow acentrosomally after laser ablation of the centrosome. 

(A) After washout of nocodazole, microtubules (α-tubulin: red) regrow from acentrosomal sites in ablated 
neurons (2 DIV). Scale bar, 10 µm. (B) Microtubules regrow from the centrosome in control cells. Pericentrin 
(green) marks the centrosome. (A) Centrosome indicated by centrin2-GFP (arrow) before laser ablation in a 2 
DIV neuron. Scale bar, 5 µm. (B and C) Maximum-projection of time-lapse recordings of GFP-EB3 after 
nocodazole washout. GFP-EB3 tracks are indicated by yellow arrows. (B) In the ablated neuron, comets grow 
from acentrosomal sites. Arrow marks position of centrosome before ablation. (C) GFP-EB3 comets predomi-
nantly grow radially from the centrosome (arrow) in a control neuron (2 DIV). Scale bars, 5 µm. 
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In conclusion, using these different approaches, I showed that the laser pa-

rameters employed allowed successful centrosome ablation. Therefore, I could address 

the actual question, whether axons of young neurons are able to grow without a cen-

trosome. To this end, the centrosomes in neurons that just started to form an axon (2 

DIV) were ablated. Ablation killed approximately half of the neurons. In the surviv-

ing neurons, axon growth was followed during the subsequent 24 hours after ablation 

(Figure 3-16). To prove successful ablation and to exclude formation of a new cen-

trosome, all cells were analyzed for the absence of centrosomal γ-tubulin and pericen-

trin staining at the end of the experiment (Figure 3-13A). 8 hours after ablation, ax-

ons extended 38 ± 6 μm on average (n = 40 cells) similar to untreated control neurons 

(34 ± 7 μm; n = 52 cells). Also 24 hours after the removal of the centrosome, axon 

growth of ablated and control cells was indistinguishable (P = 0.81, two-tailed t-test). 

The axon of centrosome ablated neurons grew 115 ± 17 μm on average (n = 12 cells), 

similarly to control neurons (121 ± 16 μm; n = 26 cells). Thus, also young neurons 

can extend their axon without a centrosome.  

Together with the previous data, the presented results showed that axons can 

grow independently of centrosomal microtubule nucleation. Thus, acentrosomal mi-

crotubule assembly creates the new microtubules necessary for normal axon growth in 

young and mature neurons as well as during axon regeneration or new axon forma-

tion from a dendrite after axotomy 
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Figure 3-16: Laser ablation in young neurons does not affect axon growth. 

(A) Asterisks mark axon endings of a rat hippocampal neuron (2 DIV) before laser ablation. (B) Axon 
growth 24 h after ablation of the centrosome (arrowheads). Successful ablation was proven by immu-
nostaining against centrosomal components after the experiments (Figure 3-13A). Scale bars, 25 μm. (C) 
Axons grow similarly 8 h and 24 h  after ablation compared to axons of control cells (n = 12 to 52 cells). 
Results are shown as mean ± s.e.m. 
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4 Discussion 

Microtubules are essential for axon growth by giving structure to the axon shaft and 

driving axon extension (Lowery and Van Vactor, 2009). To extend the axon, neurons 

have to generate new microtubules and unlike most animal cells that are known to 

form microtubules at the centrosome it is still unclear how and where new micro-

tubules are generated in neurons. It has been proposed that neuronal microtubules are 

nucleated at the centrosome, and then transported as polymer into the axon (Wang 

and Brown, 2002; Baas et al., 2005). Nevertheless, it was also shown that growing 

microtubules are not transported in axons (Ma et al., 2004; Kim and Chang, 2006). 

Moreover, various experiments showed the transport of nonpolymerized tubulin into 

the axon (Terada et al., 2000; Kimura et al., 2005), suggesting local, decentralized 

microtubule assembly. In summary, while the debate heavily focused on microtubule 

transport, very little is known about where microtubules are actually formed. The goal 

of this study was therefore to address this problem from a different perspective and to 

investigate where microtubules are generated in neurons during axon growth.  

My data show that the centrosome loses its function as microtubule organizing 

center during development of rodent hippocampal neurons. The microtubule nucle-

ating factor γ-tubulin was depleted from the centrosome and after depolymerization 

with nocodazole, microtubules did not regrow at the centrosome at later stages of de-

velopment. Nevertheless, axonal growth was unchanged after the centrosome had lost 

its activity. Moreover, when the axon was lesioned in fully mature neurons, a new 

axon grew out in the absence of centrosomal γ-tubulin. Finally, developing neurons 

kept their ability to extend the axon when the centrosome had been ablated by a laser. 



Discussion             60  

In summary, I present evidence that axon growth and regeneration occur inde-

pendently of microtubule nucleation at the centrosome, and consequently, when the 

axon is initiated, decentralized microtubule assembly arranges the cytoskeleton, which 

is the source of the sophisticated neuronal morphology. Therefore, I propose that 

acentrosomal microtubule nucleation may be a key feature during differentiation of 

neuronal, but also of non-neuronal cells. 

 

4.1 Decentralization - The generation of neuronal microtubule 

arrays 

In contrast to most somatic cells, few microtubules are attached to the centrosome in 

neurons. Instead, the vast majority of microtubules is free in the cytoplasm where 

they tend to coalesce into bundles that “funnel” into the axon and dendrites (Baas, 

1999). Even though the microtubules are not attached to the centrosome, they lie in 

precisely oriented positions in the cytoplasm and the processes. Therefore, it is diffi-

cult to reconcile the distinct microtubule array in neurons with such focal micro-

tubule assembly at the centrosome as it is seen in many cells and as it is also proposed 

for neurons (Baas et al., 2005).  

In this work, I show that during neuronal development, microtubule forma-

tion becomes decentralized: in young neurons, centrosomal as well as acentrosomal 

microtubule nucleation could be detected. Later in development, centrosomal micro-

tubule nucleation ceased in mature neurons, and only acentrosomal microtubule nu-

cleation is visible. Intriguingly, in these mature neurons, axon growth was unaffected 

compared to younger neurons with a functional centrosome. Moreover, mature neu-

rons rapidly regenerated an axon when the original axon was lesioned without reacti-

vating the centrosome as a MTOC. Thus, these axons regenerated through acentro-
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somal, decentralized microtubule assembly and were not limited by centrosomal mi-

crotubule nucleation. My results therefore suggest that axon growth depends on acen-

trosomal microtubule assembly, at least in the later stages of development. 

 This finding raised the question whether centrosomal microtubule nucleation 

is necessary for axon growth in young neurons, in which the centrosome is still active. 

To answer this question, we destructed the centrosome using a 2-photon laser abla-

tion approach (Maghelli and Tolic-Nørrelykke, 2008) and analyzed axon growth af-

terwards. Centrosome ablated young neurons showed axon growth patterns and 

speeds indistinguishable from control neurons, arguing that centrosomal microtubule 

nucleation is dispensable for axon extension also in young neurons.  

However, one could argue that enough microtubules were already present in 

the centrosome-ablated young neurons or in the axotomized mature neurons to sup-

port extension of the growing axon. Several arguments speak against this assumption. 

The microtubule regrowth experiments in the centrosome-ablated neurons showed 

that these cells were still able to nucleate new microtubules without a centrosome. 

The same is true for mature neurons that were used for the axotomy experiments. 

Although I cannot completely exclude that axon extension in the young neurons after 

centrosome ablation relies on the transport and redistribution of already existing mi-

crotubules, this argument can be disproved for the growth of a new axon after axoto-

my. It was previously shown that after proximal axotomies, about 50% of the neurons 

formed multiple axons, when the original axon had been cut closer than 35 μm to the 

cell body (Gomis-Ruth et al., 2008). These new axons reach a total length of more 

than 5 mm per neuron, which is a length for which the existing microtubules would 

not be sufficient (Baas and Ahmad, 1993). Hence, my data do not support the hy-

pothesis that only microtubules already present in the short axon stump could enable 
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long-distance regeneration. This is further supported by the fact that axon growth is 

accompanied by an increase of microtubule polymer number (Yu and Baas, 1994). As 

the regeneration occurs without centrosomal microtubule nucleation, the new micro-

tubules have to form in an acentrosomal manner.  

Taken together, my data show that axon growth occurs independently of cen-

trosomal microtubule nucleation. In contrast to the prevailing view that the centro-

some is the primary source of neuronal microtubules (Baas et al., 2005; Higginbo-

tham and Gleeson, 2007; Conde and Caceres, 2009), I found that the generation of 

new microtubules becomes decentralized. This is an important finding since micro-

tubules shape the sophisticated morphology of neurons, which is the base for neu-

ronal function. Different mechanisms of decentralized microtubule assembly could 

therefore be involved in the formation and plasticity of axon branches, dendritic trees 

and dendritic spines (Jaworski et al., 2009).  

My results also put a new perspective on the discussion about the polymer and 

subunit transport models. Most microtubules in the axon are stationary and only a 

very small subset of short microtubules is transported (Brown, 2003). Since I showed 

that axons extend without a functional centrosome, there is also no new supply of 

new polymers from the cell body. Therefore, it seems that the transport of micro-

tubule polymers from the cell body to the axon might be negligible for axon growth. 

Alternatively, the transport of short microtubules into the axon might be also used for 

delivering tubulin subunits, when the short microtubules disassemble in the axon af-

ter the transport. Therefore, the subunit transport model seems to describe the actual 

situation in the growing axon much better than the polymer transport model. Motor 

proteins together with microtubule bundling proteins, however, might play an impor-

tant role in establishing the uniform polarity of microtubules in axons. For instance, 
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the minus-end oriented motor dynein was proposed to sort out disoriented micro-

tubules from the axon causing the uniform microtubule polarity in axons (Zheng et 

al., 2008). The oriented assembly of microtubules within the axon could be an alter-

native to form uniform microtubule arrays.  

 

4.2 Acentrosomal microtubule generation during axon growth 

The presented data show that a mechanism different than centrosomal microtubule 

nucleation is responsible for the formation of new microtubules during axon growth. 

How then are microtubules generated if not at the centrosome? There are several pos-

sibilities and most probably it is a combination of some or all that contribute to the 

establishment of new axonal microtubule arrays that are necessary to elongate the 

axon. In the following, I will discuss potential mechanisms. 

Microtubule severing proteins including katanin and spastin could play a role 

in the generation of new microtubules (Figure 4-1). Inhibition of the microtubule 

severing protein katanin severely compromises axon growth (Karabay et al., 2004). 

Considering that axons can extend without centrosomal microtubule nucleation, my 

data indicate that this effect of katanin inhibition might be based on the formation of 

many short microtubules in the axon. As described for the formation of the meiotic 

spindle in C. elegans, locally severed microtubules could serve as new seeds for micro-

tubule growth and thereby, increase microtubule polymer number and mass (Roll-

Mecak and Vale, 2006). Consistently, katanin is present along the axon, especially 

close to the growth cone (Yu et al., 2005) and is enriched at the tip of axons and den-

drites at later developmental stages, when the centrosome becomes deactivated (Yu et 

al., 2005). Additionally, short microtubules are found in growth cones and newly de-

veloping axonal branches (Kalil et al., 2000). In contrast to katanin, the microtubule 
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severing protein spastin localizes to axonal branch sites and seems to be important for 

axon branching as branching is strongly reduced by depleting spastin (Yu et al., 

2008). Thus, severing microtubules in the axon could play an important role in re-

modeling microtubule arrays, as it could potentially provide new microtubules for 

polymerization and enable the severed fragments to enter axon branches. In line with 

this hypothesis, injection of the protease trypsin into axons led to strong microtubule 

severing and extensive axon branching close to the injection site (Ziv and Spira, 

1998).  

A question that remains open in general and in particular in neurons is which 

mechanisms and proteins stabilize the newly formed microtubule minus ends after 

polymer breakage (Dammermann et al., 2003). The elucidation of these processes 

should provide more insight into the organization and regulation of acentrosomal 

microtubule arrays with free minus ends as found in neurons (Schaefer et al., 2002), 

but also in many other cells like in the lamellae of migrating epithelial cells (Water-

man-Storer and Salmon, 1997; Gupton et al., 2002). As I found γ-tubulin in the 

growing axon, it could be a key candidate for minus-end stabilization. In epithelial 

cells for example, ninein and nezha are known to organize and anchor microtubules 

in an acentrosomal array (Dammermann et al., 2003; Lechler and Fuchs, 2007; Meng 

et al., 2008). In fact, ninein was found to localize to dendrites during neuronal devel-

opment (Ohama and Hayashi, 2009), and could therefore stabilize the minus ends of 

dendritic microtubules. 

Another possibility of generating new microtubules is acentrosomal nucleation 

within the growing axon. I found that γ-tubulin becomes depleted from the centro-

some over time, but was present in axons of mature neurons. Localized in the axon, γ-

tubulin could serve as a local microtubule nucleator (Figure 4-1). However, it is still 
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unclear how acentrosomal nucleation in axons would be organized on a molecular 

level. For some degree, the observed regrowth might be also caused by spontaneous 

self-assembly due to the high tubulin concentrations after depolymerization, as it is 

also seen in vitro (Johnson and Borisy, 1977). Nevertheless, acentrosomal micro-

tubule nucleation by γ-tubulin has been found in many organisms from fission yeast 

and plant cells up to differentiated mammalian cells (Bartolini and Gundersen, 2006; 

Luders and Stearns, 2007).  

In plant cells, for example, microtubules are present in a well organized array 

at the cell cortex, despite the absence of a MTOC (Wasteneys and Ambrose, 2009). 

Cytosolic γ-tubulin binds to existing microtubules and nucleates new microtubules as 

branches analog to the Arp2/3 complex in actin nucleation (Murata et al., 2005). A 

similar phenomenon was observed in interphase cells of fission yeast, where γ-tubulin 

complexes are transported along existing microtubules. During the transport, these 

complexes nucleate microtubules in an anti-parallel manner (Janson et al., 2005). 

Acentrosomal nucleation is also found in mitotic spindles of human cells. Analog to 

the fission yeast interphase array, new microtubules are nucleated from existing spin-

dle microtubules by γ-tubulin/augmin complexes (Uehara et al., 2009), which seems 

to be a general mechanism for spindle assembly (Goshima and Kimura, 2010). Addi-

tionally, nucleation of spindle microtubules also takes place near chromatins, inde-

pendently of the centrosome (Gadde and Heald, 2004). Recently, it was also shown 

that the +TIP CLASP in concert with γ-tubulin nucleates acentrosomal microtubules 

at the trans-Golgi-network (Efimov et al., 2007).  

As my data suggested for neurons, many different cell types feature different 

mechanisms to nucleate new microtubules independent of a functional centrosome 

(Bartolini and Gundersen, 2006; Luders and Stearns, 2007). These mechanisms are 
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important and, intriguingly, they take over after removal of the centrosome by laser 

ablation in mammalian fibroblasts (Khodjakov et al., 2000), or in plant cells and an-

imal oocytes that naturally lack centrosomes (Szollosi et al., 1972; Dumont et al., 

2007; Wasteneys and Ambrose, 2009).  

Figure 4-1: Decentralization - generation of microtubules during neuronal development. 

(A) During axon specification, microtubules are uniformly polar in all processes, with their plus-end distal to the 
cell body. Microtubules are nucleated at the centrosome and released by the microtubule severing protein ka-
tanin. Short microtubules are transported within the axon, but also tubulin dimers are transported into the axon 
for microtubule assembly. Whether new microtubules are nucleated in the growing axon, remains speculative. 
However, new microtubules are formed by the severing of existing microtubules. 
(B) In later stages of development, microtubules are uniformly oriented with their plus-end distal in the axon 
and in the distal dendrite. In the proximal dendrites, microtubules are oriented in both directions with either the 
plus- or minus-end distal. Moreover, microtubules also invade dendritic spines. During development, the centro-
some loses its ability to nucleate microtubules and acentrosomal microtubule assembly takes over. New micro-
tubule fragments are formed through severing by katanin and spastin. Furthermore, acentrosomal microtubule 
nucleation could play a role in axon growth and branching. Another speculation is that the bipolar microtubule 
arrays in proximal dendrites are established by microtubule nucleation on existing microtubules. 
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4.3 Establishment of a distinct microtubule array in dendrites 

In addition to investigating the role of microtubules in axon growth, my data also 

have an implication for the establishment of microtubule arrays in dendrites. In con-

trast to axons, where microtubules are uniformly oriented with the plus-end distal, 

dendritic microtubules are oriented in both directions in the proximal part of the 

dendrite (Baas et al., 1988; Stepanova et al., 2003). Recently, it was shown that bidi-

rectional dynein-driven transport on bipolar microtubules in dendrites provides a po-

tential mechanism for selective transport into dendrites (Kapitein et al., 2010).  

Until now, it was proposed that this bipolar array is established by transporting 

microtubule polymers either with their plus- or minus-end distally into the dendrite 

through different motors (Baas, 1999). In this work, I show that the centrosome be-

comes disabled in cultured hippocampal neurons after 4 to 5 DIV, the time when 

dendrites start to grow and develop their morphological characteristics including the 

mixed polarity of microtubules. Therefore, my data indicate that acentrosomal micro-

tubule assembly may also be involved in the establishment of the bipolar microtubule 

arrays of dendrites, as the polymer transport model would require new polymers from 

a functional centrosome. Since the centrosome ceases microtubule nucleation during 

development, different mechanisms have to take over to generate the distinct micro-

tubule array of dendrites. 

A potential mechanism in dendrites may be that bipolar microtubule arrays are 

established by acentrosomal microtubule nucleation through γ-tubulin on existing 

microtubules (Figure 4-1B). As explained above, this mechanism functions for the 

generation of bipolar microtubule arrays in fission yeast (Janson et al., 2005), in the 

mitotic spindle (Goshima and Kimura, 2010), and for the generation of cortical mi-

crotubules in plant cells (Murata et al., 2005). Moreover, it was shown in fission 
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yeast, that cells can dynamically organize the acentrosomal nucleated microtubules 

into bipolar arrays by combining motor and bundling proteins (Janson et al., 2007). 

Consistent with this idea, crosslinkers like MAP-2 or NuMa (Ferhat et al., 1998) and 

motors like CHO1/MKLP1 or Eg5 (Ferhat et al., 1998; Ferhat et al., 1998) are also 

present in dendrites and could similarly contribute to establish these networks. In line 

with this hypothesis, the depletion of the crosslinker MAP-2 or the motor 

CHO1/MKLP1 severely disturbs dendritic morphogenesis (Yu et al., 2000; Harada et 

al., 2002). The axonal exclusion of these proteins may also explain why only in den-

drites microtubules are oriented with a mixed polarity.  

Furthermore, it was reported that centrosomal proteins relocalize from the cen-

trosome into dendrites during neuronal development, which might allow local micro-

tubule nucleation (Ferreira et al., 1993; Ohama and Hayashi, 2009). As mentioned 

above, one place that enables acentrosomal microtubule nucleation is the membrane 

of the Golgi apparatus (Efimov et al., 2007). Golgi outposts are located in dendrites 

and are necessary for the branching and development of dendrites (Horton and Eh-

lers, 2003; Horton et al., 2005; Ye et al., 2007). Whether acentrosomal microtubule 

nucleation at these Golgi outposts plays a role for dendritic development and the gen-

eration of the bipolar microtubule array remains to be determined.  

In summary, it is still unclear how a minor neurite develops into a complex 

dendrite with all its branches and spines. The bipolar microtubule arrays in dendrites 

are necessary for dendritic morphology and trafficking (Sharp et al., 1996; Kapitein et 

al., 2010). My data indicate that the dendritic microtubules are established in an 

acentrosomal manner. Further analysis of how the dendritic microtubule arrays are 

established will help to understand dendritic development. 
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4.4 Decentralization as a mechanism for cell differentiation 

The centrosome is an important organelle during the cell cycle. It is necessary for cell 

cycle progression, it is an important signaling hub and it forms the base of the pri-

mary cilium (Doxsey, 2001). Recently, it was also shown that the centrosome plays an 

important role in neurogenesis, specifying cell fate during asymmetric cell division of 

neuronal progenitors (Wang et al., 2009).  

Here, I have found that the centrosome loses its function as a microtubule or-

ganizing center during neuronal development and becomes dispensable for axon ex-

tension and regeneration. Parallel to the loss of centrosomal nucleation activity of 

neurons, I found γ-tubulin relocalizing from the centrosome to the axons of differen-

tiated neurons. In fact, this loss of γ-tubulin from the centrosome appears to contrib-

ute to the neuronal differentiation process in general, as it is found also in other CNS 

neurons including cortical and thalamic neurons (Leask et al., 1997). Furthermore, 

also other components of the pericentriolar material (PCM) redistribute from the 

centrosome to dendrites in mouse CNS neurons (Ferreira et al., 1993; Ohama and 

Hayashi, 2009).  

These observations raise the question why the centrosome becomes deactivated 

during neuronal development, while it is necessary for cell cycle regulation and neu-

rogenesis. There are probably two main reasons. First, the postmitotic neurons have 

left the cell cycle and therefore key regulators of the cell cycle have to be reorganized. 

Second, as neuronal differentiation requires sophisticated architectural changes, this 

remodeling may be incompatible with a large microtubule network emanating from a 

focal point. Therefore, deactivation of a focal microtubule organizer and acentrosomal 

microtubule nucleation may be key features during differentiation of neuronal but 

also of non-neuronal cells (Bartolini and Gundersen, 2006; Luders and Stearns, 
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2007). For example, during skeletal muscle differentiation, centrosomal proteins are 

redistributed from the centrosome to the nuclear membrane and the cytoplasm where 

they form new sites of microtubule nucleation (Bugnard et al., 2005). Similarly, mi-

crotubule regrowth from specific sites is also observed at the plasma membrane of 

polarized epithelia (Reilein et al., 2005), melanosomes in pigment cells (Malikov et 

al., 2004) as well as in osteoblasts (Mulari et al., 2003) and epithelial Sertoli cells 

(Vogl et al., 1995). Similar to my data, the decentralization of microtubule assembly 

comes along with acentrosomal distribution of PCM components, including pericen-

trin, ninein or γ-tubulin. Taken together, dismantling the centrosome and decentral-

izing microtubule generation, as it is observed in other differentiating cells, may be 

essential to enable late neuronal differentiation, including axon branching, dendrite 

formation and spine generation (Jaworski et al., 2009). 

How the observed depletion of centrosomal γ-tubulin and the associated inacti-

vation of the centrosome is regulated remains so far unknown. During the cell cycle 

the amount of PCM and centrosome function are tightly controlled by cell cycle pro-

teins (Khodjakov and Rieder, 1999; Blagden and Glover, 2003). In the last years, the 

concept evolved that many of these cell cycle proteins have also essential functions in 

post-mitotic neurons (Becker and Bonni, 2005; Herrup and Yang, 2007). Simultane-

ously, it was proposed that after their last mitosis, postmitotic neurons must con-

stantly suppress their cell cycle to avoid cell death (Herrup and Yang, 2007). Proteins 

that are controlling the mitotic exit including the anaphase promoting com-

plex/cyclosome (APC/C) (Sullivan and Morgan, 2007) are active in postmitotic neu-

rons and play a crucial role in the activation of neuron-specific gene expression, axon 

growth and dendrite development (Yang et al., 2010). As the same proteins regulate 

fluctuation of γ-tubulin levels at the centrosome during mitosis and cell cycle exit, 
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similar pathways could be involved in the deactivation of the neuronal centrosome as 

well as cell cycle suppression. Interestingly, it was recently found that the centrosomes 

of newborn neurons and their progenitor cells differ in their composition and that 

this difference is required for their neuronal cell fate (Wang et al., 2009). Thus, dis-

mantling the centrosome, as one of the key regulators of the cell cycle (Doxsey et al., 

2005), may be essential to maintain the neuronal cell cycle arrest and to avoid neu-

rodegeneration. 

Although I found that the PCM became disprupted and the centrosome lost its 

microtubule nucleating activity, the centrioles remained in the neuron. As the elec-

tron microscopy images indicate, one centriole, the mother centriole, changed its 

morphology during development and formed the basal body, the base for the primary 

cilium. The primary cilium is a cellular protrusion that develops in the interphase/G0 

phase of many cells including neurons (Pedersen et al., 2008). The formation of the 

primary cilium is regarded as one of the most important functions of the centrosome: 

it is necessary for survival (Basto et al., 2006) and its dysfunction underlies various 

human disorders (ciliopathies), including mental retardation or possibly even autism 

and schizophrenia (Fliegauf et al., 2007; Lancaster and Gleeson, 2009). The primary 

cilium is seen as a complex signaling hub sensing its environment and is involved in 

inter- and intracellular signaling, including Sonic hedgehog (Shh) and Wingless 

(Wnt) pathways (Singla and Reiter, 2006).  

As it is now known that most CNS neurons contain primary cilia, in vivo as 

well as in vitro (Berbari et al., 2007; Bishop et al., 2007), it could be that the observed 

loss of PCM and microtubule nucleating activity at the centrosome are necessary re-

quirements for the proper formation and function of the primary cilium in neurons. 

The exact function, however, of neuronal primary cilia is still unknown. A recent 
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study showed that the somatostatin receptor type 3, which is only found at the pri-

mary cilium, is critical for recognition memory (Einstein et al., 2010). Therefore, it 

seems that the neuronal cilium represents a novel nonsynaptic compartment involved 

in a special form of learning and memory. Furthermore, the primary cilium seems 

also to be involved in axonal and dendritic development. For instance, defects in axon 

guidance were observed in ciliopathies (Lee and Gleeson, 2009). Whether these de-

fects are linked to disturbed Wnt-APC signaling, which is involved in axon guidance 

and occurs at the primary cilium, remains speculative at the moment (Purro et al., 

2008). Additionally, the histone deacetylase HDAC6 that regulates primary cilium 

morphogenesis (Pugacheva et al., 2007) controls also ubiquitin signaling at the cen-

trosome, a pathway that drives dendrite differentiation (Kim et al., 2009).  

Taken together, the primary cilium seems to be an important signaling hub for 

neuronal development as well as neuronal function. Therefore, the occurring changes 

at the centrosome during neuronal development might also play a role for proper cil-

ium formation and function in neurons. 

 

4.5 The centrosome and neuronal polarization 

In many cell types, the centrosome is involved int the establishment of cell polarity. It 

can determine cell polarity either by organizing the microtubule network and the 

Golgi apparatus in an asymmetric manner or by its function as a signaling hub (Co-

wan and Hyman, 2004; Bornens, 2008). Some studies also suggested that the posi-

tion of the centrosome determines the site of axon outgrowth and thus, neuronal po-

larity (Zmuda and Rivas, 1998; de Anda et al., 2005). Other studies, however, did 

not find such a correlation (Sharp et al., 1982; Dotti and Banker, 1991; Zolessi et al., 

2006). Furthermore, it was proposed that the observed correlation of centrosome po-
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sition and axon outgrowth might have only been an epiphenomenon of the polariza-

tion itself (Arimura and Kaibuchi, 2007). Taken together, the role of the centrosome 

and centrosomal microtubule nucleation in neuronal polarization is still controversial 

(Arimura and Kaibuchi, 2007; Higginbotham and Gleeson, 2007; Witte and Bradke, 

2008).  

As I focused on the extension of already initiated axons and the regeneration of 

severed axons, my work can only provide indications about the role of the centrosome 

in initial neuronal polarization including axon initiation. I found that after proximal 

axotomies, new axons formed from dendrites in mature neurons, in which the centro-

some had already lost its ability to nucleate microtubules. These results show that a 

new axon can initiate and grow independently of centrosomal microtubule organiza-

tion. Therefore, this formation of new axons suggests that the centrosome might be 

also dispensable for axon initiation. Following the position of the centrosome after 

axotomy and during the subsequent regeneration may give further insight in this 

process, whether other functions of the centrosome might determine the site of axon 

outgrowth. Nevertheless, a study with flies that lose their centrosomes during devel-

opment further substantiates the view that the centrosome is not necessary for axon 

initiation. The neuronal organization of these flies without centrosomes was unper-

turbed and the direction of axon outgrowth was not affected (Basto et al., 2006). 

However, when precisely these flies lose their centrosomes during development is un-

der debate, since they still have functional centrosomes during early embryogenesis 

(Gonzalez, 2008).  

In conclusion, next to axon extension, also axon initiation might be possible 

without centrosomal microtubule nucleation. Further ablation studies have to prove 

whether centrosomal microtubule nucleation is necessary for the initial formation of 
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the axon. These studies might then elucidate the causal relation between the centro-

some (position) and axon formation both in vitro and in vivo. 

 

4.6 Implications for axonal regeneration after injury 

My results also have implications for the regenerative behavior of neurons in the ab-

sence of a microtubule-nucleating centrosome. If microtubules would only assemble 

at the centrosome, it would be impossible to generate new microtubules in lesioned 

mature neurons. Therefore, all approaches to induce regeneration of injured neurons 

would be doomed to failure. This apparently is not the case as regeneration also oc-

curs in mature neurons (Gomis-Ruth et al., 2008). In my thesis, I could now show 

that axons regenerate through acentrosomal microtubule assembly and are not limited 

by centrosomal microtubule nucleation. Importantly, it was shown that inhibitory 

components of the central nervous system myelin inhibit local microtubule assembly 

in axons (Mimura et al., 2006). Together with my findings, this implies that affecting 

local microtubule assembly may be beneficial for successful nerve regeneration after 

injury. As modest stabilization of microtubules by Taxol helps injured axons to regen-

erate, it indicates that increasing decentralized microtubule assembly is a promising 

path to improve axonal regeneration after spinal cord injury (Erturk et al., 2007). 

 

4.7 Concluding remarks 

In summary, here I present the direct evidence that centrosomal microtubule nuclea-

tion is not necessary for axonal growth. These results reopen a discussion that was 

stuck for many years, namely how the microtubule arrays of axons and dendrites are 

formed. These microtubule arrays are required for neuronal polarization, neuronal 
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morphology and the correct trafficking of dendritic and axonal proteins (Conde and 

Caceres, 2009; Kapitein et al., 2010) and thus, are key for neuronal function. In con-

clusion, my data suggest that acentrosomal microtubule generation plays a key role 

during axon growth and neuronal differentiation. Future studies will need to reveal 

the molecular mechanisms regulating this process. It will be exciting to see whether 

the molecules that are involved in acentrosomal microtubule nucleation in other spe-

cies and cell types are evolutionary conserved and also regulate acentrosomal micro-

tubule nucleation in neurons. Furthermore, it remains unclear how these changes in 

microtubule generation from centrosomal to acentrosomal nucleation are organized. 

To this end, the use of cryo electron microscopy and tomography might help to elu-

cidate how new microtubules are generated within axons and dendrites (Hoenger and 

McIntosh, 2009). Potential nucleation events and sites might be visible as well as the 

particular organization of the microtubule arrays. Additionally, the regulation of the 

cell cycle exit in postmitotic neurons as well as the formation and function of the 

primary cilium in neurons will be interesting topics of future research. 
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5 Materials and Methods 

5.1 Materials 

5.1.1 Chemicals 

Chemicals were analytical grade or the best commercially available.  

Table 5-1: Chemicals 

Chemicals  Supplier 

α-Chymotrypsine 

Acetone 

Agarose 

Ammonium Persulfate (APS) 

Ammonium chloride 

Apo-transferrin, human 

Aprotinine 

β-Mercaptoethanol 

Borax (Sodium borat) 

Boric acid 

Bovine serum albuminum, powder 

Calcium Chloride (CaCl2) 

DMRIEC reagent 

Dimethyl sulfoxide (DMSO) 

EDTA (ethylene diamine tetraacetic acid) 

EGTA (ethylene glycol tetraacetic acid) 

Ethanol absolute 

Fetal bovine serum 

Fish gelatine 

Gelmount mounting medium 

D(+)Glucose monohydrate 

L-Glutamine 200mM 

Glutaraldehyde (25% solution) 

Glycerol 

Hank’s balanced salt solution (HBSS) with Calcium and Magnesium 

HEPES (N-2-Hydroxyethylpiperazine-N’-2-ethane sulfonic acid) 

Horse serum 

Sigma 

Merck  

Biomol  

Sigma 

Merck 

Sigma  

USB Corporation 

Roth 

Sigma  

Merck  

Sigma  

Merck 

Invitrogen 

Roth  

Sigma  

Sigma  

Sigma  

Invitrogen  

Sigma  

Sigma  

Merck  

Invitrogen  

Serva 

Roth  

Invitrogen  

Biomol  

Sigma  
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Hydrochloric acid (HCl; 1M) 

Insulin 

Laminin (0.5mg/mL) 

Magnesium chloride hexahydrate (MgCl2*6H2O) 

Methanol 

Minimal essential Medium (MEM) 10x 

MEM essential amino acids 50x 

MEM non-essential amino acids 100x 

Milk powder 

Nitric acid (HNO3; ≥65%) 

Nocodazole 

Ovalbumin (albumin from chicken egg white) 

Paraffin 

Paraformaldehyde 

PIPES (1,4-Piperazinediethanesulfonic acid) 

Poly-L-lysine hydrobromide 

Potassium Chloride (KCl) 

Potassium dihydrogen phosphate (KH2PO4) 

Progesteron 

Putrescine-dihydrochloride 

Pyruvate (pyruvic acid) 

Sodium dodecylsulfate (SDS) 

Disodium hydrogen phosphate (Na2HPO4) 

Selenium-dioxide 

Sodium Chloride (NaCl) 

Sodiumhydrogencarbonate (NaHCO3) 

Sodium hydroxide 

Sucrose  

TEMED  

Tris(hydroxymethyl)-aminomethane  

Tris base  

Triton X(TX)-100  

Trypsin-EDTA (1x, 0.05 % Trypsin, 0.53 mM EDTA*4Na)  

Tryptone 

Tween 20 (Polyoxyethylene (20) sorbitan monolaurate) 

Yeast extract 

Merck  

Sigma  

Roche 

Merck  

Merck 

Invitrogen  

Invitrogen  

Invitrogen  

Heirler Cenovis 

Roth  

Sigma  

Sigma 

Merck  

Merck  

Sigma  

Sigma  

Merck 

Roth 

Sigma  

Sigma  

Sigma 

Merck  

Roth 

Sigma 

Merck 

Merck  

Merck  

Merck  

Sigma  

Merck  

Sigma  

Roth  

Invitrogen  

Roth 

Sigma 

Roth 
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5.1.2 Buffers and solutions 

 
50 mM ammonium chloride: 1.34g ammoniumchloride in 500 mL PBS. 
 
2x BES-buffered saline (BBS), pH 6.96: 50 mM BES (N,N-bis[2-hydroxyethyl]-2-
aminoethanesulfonic acid), 280 mM NaCl and 1.5 mM Na2HPO4*2H2O in H2O at 
pH 6.96. Solution is sterile filtered and stored at -20°C. 
 
Blocking Solution: 2% Fetal bovine serum, 2% BSA and 0.2% fish gelatine in 
H2O. 
 
Borate Buffer: 1,24 g Boric acid (Merck, Germany) and 1,90 g Borax (Sodium bo-
rat) in 400 mL H2O at pH 8.5. 
 
0.1 M Calcium Chloride (CaCl2): 1.11 g CaCl2 in 100 mL H2O. Solution is sterile 
filtered. 
 
HNE buffer: 40 mM HEPES, 138.5 mM NaCl, 0.1 mM EGTA; pH 7.4; osmol. 
300-310 
 
1 M Hepes: 23,8 g Hepes in 100 ml H2O at pH 7.25. Solution is autoclaved. 
 
7 mM Hepes buffered Hank`s Balanced Salt Solution (HBSS): 3.5 ml 1M Hepes 
in 500 ml HBSS (Gibco, USA). Solution is sterile filtered. 
 
5x Laemmli buffer: 250 mM Tris/HCl (pH 6.8), 1 M β-Mercaptoethanol, 10% 
(w/v) SDS, 30% (v/v) Glycerol in H2O. If used as a sample buffer for SDS-PAGE, 
bromophenol blue was added. 
 
Laminin Solution: 0.5mg/mL Laminin stock solution is diluted in warm N2-
Medium just before coating. 
 
LB(Luria-Bertani)-Medium: 10 g tryptone, 5 g yeast extract and 10 g NaCl in 1 L 
H2O at pH 7.0. Medium is sterilized by autoclaving. If necessary, antibiotics were 
added after sterilizing (Kanamycin: 50mg/mL or Ampicilin: 100 mg/mL). For bacte-
rial plates, 1.5% Bacto-Agar was added to the medium before autoclaving. 
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MEM-HS: 10 mL heat-inactivated horse serum in 90mL minimal essential medium 
(MEM). 
 
5% Milk/PBS-Tween: 12.5 g dry milk in 250 mL PBS-Tween. 
 
Neuronal Growth medium / N2 Medium: 50 mL 10x N2 Supplement and 100 
mg ovalbumin in 450 ml N-MEM. Medium is sterile filtered. 
 
10x N2 Supplement: 1 mL 5 mg/mL insulin, 1 mL 20 μM progesterone, 1 mL 
100mM putrescine, 1 mL seleniumdioxide, 100 mg transferrin in 96 mL N-MEM. 
Medium is sterile filtered 
 
N-MEM: 50 mL 10x MEM , 5 mL 1.1% pyruvic acid, 5mL 200 mM glutamine, 15 
mL 20% glucose, 20 mL 5.5.% NaHCO3 in 405 mL H2O. Medium is sterile fil-
tered. 
 
Paraformaldehyde (16%): 16 g paraformaldehyde and 16 g Sucrose in 100 ml PBS 
at pH 7.4. Solution is sterile filtered. Dilutions are made from this stock in PBS. 
 
PBS-Tween (0.1%): 0.5 mL Tween 20 in 500 mL PBS. 
 
PHEM Buffer: 60mM PIPES, 25mM HEPES, 5mM EGTA and 1mM MgCl2 in 
H2O. For fixation 4% paraformaldehyde (from 16% stock), 0.25% glutaralaldehyde 
and 0.1% Triton X-100 is added.  
 
Phosphate buffered saline (PBS): 0.2g KCl, 0.2g KH2PO4, 1.15g Na2HPO4 and 8g 
NaCl in 1L H2O at pH 7.4. 
 
Poly-L-lysine solution: 1 mg/mL Poly-L-lysine hydrobromide in borate buffer. So-
lution is sterile filtered. Glass cover slips are incubated with solution overnight and 
then washed three times with sterile H2O. 
 
SDS-PAGE Running Buffer: 1.5 g TrisHCl, 7.2 g Glycine and 0.1% SDS (w/v) in 
1 L H2O. 
 
Stripping buffer: 100 mM β-Mercaptoethanol, 2% (w/v) SDS , 62.5 mM TrisHcl 
(pH 6.7) in H2O. 
  
0.1% Triton X-100: 0.1% (v/v) Triton X-100 in PBS. 
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Trypsin: 1 mL 1M Hepes in 99mL Trysin-EDTA-Solution (Gibco, USA) 
 
Transfer Buffer for  western blotting: 3.2 g TrisHCl, 14,4 g Glycine and 100 mL 
Methanol in 900 mL H2O. 
 
 

5.1.3 Commercial kits 
Table 5-2: Commercial kits 

Commercial Kit  Supplier 

 
EndoFree Plasmid Maxi Kit 
 
Neurite Outgrowth Assay Plus Kit (3 µm) 
 
Rat Neuron Nucleofector Kit 

 
Quiagen 

 
Millipore 

 
Amaxa 
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5.1.4 Equipment 
Table 5-3: Equipment 

Device  Model  Supplier 
Primary Cell Culture 
Incubator (with CO2) 
Dissection stereomicroscope 
Forceps 
 
 
 
Laminar air flow hoods 
(for dissection) 

 
HERAcell240 
Stemi SV6 
Straight forceps Dumon #5, 11cm, Biological 
tips 
Curved forceps Dumont #7, 11.5cm, Biologi-
cal tips 
HERAguard HPH15 
EdgeGARD Hood EG-3252  

 
Kendro 
Zeiss 
Fine Science Tools 
 
Fine Science Tools 
 
Kendro  
The Baker Company 

Scissors Vannas-Tübingen spring scissors, 8.5cm, 
straight tips 
Hardened fine iris scissors, 11cm, straight 
tips 

Extra fine scissors, model “Bonn”, 8.5cm, 
straight tips 

Fine Science Tools 

Electroporation Nucleofector II Amaxa 
Epifluorescence Microscope 
CCD Camera 
Camera control panel 
Image acquisition hardware for PC 
Inverted epifluorescence micro-
scopes 

 
4912-5000 or 4912-5100 
C 2741 
LG3 image grabber 
Axiovert 135TV 
AxioObserver.D1 

 
Cohu 
Hamamatsu 
Scion Corp. 
Zeiss 
Zeiss 

Confocal Microscope SP2 confocal microscope Leica 
Spinning Disc Confocal Micro-
scope 
Scan head 
CCD Camera 

 
IX71 spinning disc confocal inverted micro-
scope  
CSU10  
iXon EM+ DU-897 BV back illuminated 
EMCCD 

 
Olympus 
Yokogawa 
Andor 

Custom-Built Two Photon La-
ser Ablation Setup 

 
Laser 

 
Custom built setup (described in Maghelli and 
Tolic-Norrelykke, 2008) 
Single Ti:Sa femtosecond pulsed laser  

 
 

Chameleon XR, Co-
herent 

Total-Internal Reflection 
(TIRF) Microscope  
CCD Cameras 

 
Eclipse TE2000E  
Coolsnap and QuantEM EMCCD  

 
Nikon 
Roper Scientific 

Western blotting 
Western blot Electrophoresis Cell 

 
Spectrophotometer 

 
XCell Surelock 

 
Ultropspec 3000 

 
Invitrogen 

 
Amersham Biosci-
ences 
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5.1.5 Consumables 
Table 5-4: Consumables 

Device  Model  Supplier 
Filtration Systems 
Bottle top filters 

 
 

Filtration systems 
 
 
 

Syringe driven filter units 
 
 

Microscopy and immunohisto-
chemistry 
Cover glasses for microscopy 

 
Cover glasses with relocation grid 

 
 

Glass bottom dishes 
(for live-cell imaging) 

 
 

Microscope slides 
 

Tissue culture 
Tissue culture flasks 
Tissue culture plastic dishes 

 
 
 

Western blotting 
 

Western blot gel cassettes 
 

Semi-dry transfer system 
 

Membrane for protein transfer 
 

Western blotting Detection System 
 

Molecular Weight Marker 
 

 
Steritop bottle top filter 250 ml/500 ml (0.22 
µm) 

 
Stericup filter unit 250 ml/500 ml (0.22 µm) 
Filter System 250 ml/500 ml (0.22 µm) 

 
 

Millex-GV, 0.22 µm (sterilization) or MillexR-
HA, 0.45 µm (clarification) 

 
 
 

No. 1, ø 15 mm 
 

Custom-made glass coverslips with 4x4 mm 
relocation grid 
 
3 cm (#P35G-1.5-20-C; 20 mm hole size) 
 
 
 
76x26 mm, with frosted end 

 
 

Nunclon Delta surface, 75 cm2 
Nunclon, ø 3 cm or 6 cm 
Falcon , ø 10 cm 

 
 
 
 

Gel cassettes, 1.5 mm 
 

Costum-made 
 

PVDF membrane, Hybond-P  
 

ECL Plus Detection System 
 

Full range rainbow marker; range from 12K-
225KDa 

 
Millipore 

 
 

Millipore 
 

Corning Inc. 
 
 

Millipore 
 
 
 

Marienfeld 
 

Laserzentrum Hanno-
ver 

 
MatTek 

 
 
 

Menzel-Gläser 
 
 

Nunc 
Nunc 
Becton and Dickinson 

 
 
 
 

Invitrogen 
 

Costum-made 
 

GE Healthcare 
 

GE Healthcare 
 

GE Healthcare 
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5.1.6 Antibodies 
Table 5-5: Primary antibodies for immunofluorescence (IF) and western blotting (WB)  

Antigen  Host   Dilution  Supplier 
 

α-Tubulin 
(clone B-5-1-2) 

 
γ-Tubulin 

(clone GTU-88) 
 

Centrin (clone 20H5) 

CPAP 
 
 

GAPDH 

GFP 

Histone H3 

NEDD1 
 
 

Pericentrin 

 

mouse 
 
 

mouse 
 
 

mouse 

rabbit 
 
 

mouse 

mouse 

rabbit 

mouse 
 
 

rabbit 

 

IF: 1 : 20.000 
WB: 1 : 50.000 

 
IF: 1 : 3000 

WB: 1 : 10.000 
 

IF: 1 : 10.000 

IF: 1 : 3000 
WB: 1 : 10.000 

 
WB: 1 : 3000 

IF: 1 : 2000 

WB: 1 : 2000 

IF: 1 : 3000 
WB: 1 : 10.000 

 
IF: 1 : 3000 

 

Sigma 
 
 

Sigma 
 
 

gift of Dr. J. Salisbury 

gift of Dr. E. Nigg 
 
 

Abcam 

RDI 

Cell Signaling 

Abnova 
 
 

Millipore 

 

 

Table 5-6: Secondary antibodies 

Antigen  Host   Conjugate 
 

mouse IgG 

 

 

 

 

rabbit IgG 

 

 

 

 

donkey 

goat 

goat 

goat 

goat 

goat 

goat 

donkey 

goat 

 

Alexa Flour 555 

Alexa Flour 555 

Alexa Flour 568 

Alexa Flour 488 

HRP 

Alexa Flour 555 

Alexa Flour 568 

Alexa Flour 488 

HRP 
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All secondary antibodies for immunofluorescence were purchased from Invitrogen 

and diluted 1:400 in 10% blocking solution. Horseradish Peroxidase (HRP)-

conjugated antibodies for western blotting were purchased from Sigma and diluted 

1:5000 (mouse) and 1:10000 (rabbit) in 5% milk PBS-Tween. 

 

5.1.7 Plasmids 
Table 5-7: Plasmids 

Construct  Plasmid  Resistance  Reference 
 

GFP  

GFP-γ-tubulin 

GFP-Centrin2 

GFP-EB3 

 

pEGFP-N2 

pCDNA3  

pEGFP-C1 

pEGFP-N1 

 

Kanamycin  

Ampicilin 

Kanamycin 

Kanamycin 

 

Clontech 

Khodjakov and Rieder., 1999 

 

Stepanova et al., 2003 

 

pEGFP-C1 centrin2 was kindly provided by M. Distel and R. Köster (Helmholtz 

Center, Neuherberg, Germany). pcDNA3 γ-tubulin-GFP was a gift from A. Khodja-

kov (Wadsworth Center, Albany, NY, USA). pEGFP-N1-EB3 was generously pro-

vided by A. Akhmanova (Erasmus Medical Center, Rotterdam, Netherlands). Plas-

mids were propagated and amplified in DH5α E. coli bacteria.  
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5.2 Methods 

5.2.1 Neuronal cell culture 

5.2.1.1 Overview 
The hippocampal culture system is based on coculturing astrocytes and neurons, al-

though not on the same plane. The astrocytes secrete growth factors that are essential 

for the long-term survival of the neurons (Banker, 1980). First, the astrocytes are iso-

lated from embryonic brain, plated and cultured until they reach around 20% conflu-

ency. Then the hippocampal neurons are isolated and plated onto coverslips. After the 

cells have attached, the coverslips are transferred to the dishes with astrocytes. With 

this coculture system, neurons can be cultured for at least four weeks.  

5.2.1.2 Preparation of glass coverslips 
Glass coverslips were incubated in nitric acid (≥65%) overnight, thoroughly washed 

in sterile, distilled water, baked at 220°C for 6 h. Paraffin dots were attached to the 

sterile coverlips and then coated with poly-L-lysine solution overnight at room tem-

perature. After thorough washing with sterile, distilled water, the coverslips were in-

cubated with MEM-HS overnight. For experiments in which it was necessary to relo-

cate the same neuron, custom-made coverslips with a laser engraved grid (Laserzen-

trum Hannover) were used. 

5.2.1.3 Preparation of rat hippocampal neurons 
Primary hippocampal neurons were derived from rat embryos at embryonic day 17 or 

18 (E17/18). The neurons were cultured following published  protocols (de Hoop et 

al., 1997; Kaech and Banker, 2006). In brief, the hippocampi of E17/18 rats were 

dissected, trypsinized, and physically dissociated. The cells were then washed in 

Hepes buffered HBSS, and 100,000 cells were plated onto poly-L-lysine-treated glass 

coverslips in 6 cm petri dishes containing MEM-HS. The cells were kept in 5% CO2 
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at 36.5 °C. After 12 h, the coverslips were transferred to a 6 cm dish containing astro-

cytes in N2-Medium. For protein extractions, 6 cm petri dishes were incubated with 

poly-L-lysine overnight and washed three times with H2O. Then the dishes were in-

cubated overnight with MEM-HS, and 300,000 cells were plated in N2-Medium. 

5.2.1.4 Preparation of mouse hippocampal neurons with single GFP la-
belled neurons  

To trace, axotomize and follow regeneration of single mature neurons integrated in 

complex neuronal networks, dissociated hippocampal neurons from wildtype (WT) 

mice were mixed with a very low proportion (1-3%) of GFP positive hippocampal 

neurons from genetically labeled mice. These neurons express enhanced green fluores-

cent protein (EGFP) under control of the ubiquitously active CAG promoter (Ikawa 

et al., 1995; Okabe et al., 1997), a hybrid promoter composed of the cytomegalovirus 

(CMV) enhancer, a fragment of the chicken β-actin promoter and rabbit β-globin 

exons (Niwa et al., 1991).  

5.2.1.5 Preparation of glia cultures 
Meninges was removed from cerebral hemispheres of  E17/E18 rat or mouse embryos 

(~4-5 hemispheres for one culture flask or ~4 hemispheres for ~15 dishes for use dur-

ing the next days). The hemispheres could be taken during the hippocampus dissec-

tion and stored in HBSS during the preparation of the hippocampal neurons. The 

hemispheres were then trypsinated and dissociated principally in the same way as the 

hippocampal neurons as described (de Hoop et al., 1997; Kaech and Banker, 2006). 

A volume corresponding to 4-5 hemispheres was then added to untreated tissue cul-

ture flasks containing 15-20 mL pre-warmed MEM-HS. The next day the medium 

was changed completely to remove cell debris. When the cells reached about 70-80% 

confluency (7-10 days), they were split in new flasks (1:3) or plated in 6 cm dishes (1 

flask in 40 dishes). The astrocyte cultures could be passaged up to three times. 
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5.2.2 Transfection of hippocampal neurons 

5.2.2.1 Nucleofection 
Neurons were transfected before plating with the Amaxa Nucleofector system 

(Amaxa, USA). Directly after isolation, 3 μg of pEGFP-C1-centrin2 plasmid DNA 

was used for electroporation of 500,000 neurons according to the manufacturer’s pro-

tocol. Subsequently cells were plated in MEM-HS and further cultured as described 

above.  

5.2.2.2 Calcium-phosphate transfection 
Differentiated neurons were transfected at 8 DIV using Calcium-phosphate transfec-

tion, as previously described (Goetze et al., 2004). Coverslips with differentiated neu-

rons were transferred in the wells of a 12-well plate with 1 mL Glia-conditioned N2-

medium in each well. 3 μg of Plasmid DNA were slowly added to freshly diluted 250 

mM CaCl2 to a total volume of 25 μL. 2XBBS (25 μL) was added to the DNA/CaCl2 

Mix and immediately vortexed for 5 seconds. After 15 minutes incubation, the mix 

was added dropwise to 1 mL of prewarmed N2-medium with constant vortexing. 

Then, the medium was removed form the coverslips in the 12-well dish and the trans-

fection mix was added. After 1-1.5 hours, crystals form and the transfection mix was 

removed. Neurons were washed with HBSS and put back in the glia dish. 

5.2.2.3 Semliki Forest virus (SFV)-mediated gene delivery 
To express EB3-GFP in both young and differentiated neurons for TIRF microscopy, 

Semliki Forest virus (SFV)-mediated gene delivery was used as described (Jaworski et 

al., 2009). The EB3-GFP construct was cloned into the pSFV2 vector according to 

the manufacturer's instructions (Invitrogen). Constructs were packaged into SFV rep-

licons, using coelectroporation of helper and vector RNA into baby hamster kidney-

21 cells using DMRIEC reagent (Invitrogen, 2mg/ml). SFV-replicons were harvested 

24 hours post-transfection, filter-sterilized, activated with α-chymotrypsine, and the 
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reaction was terminated with aprotinine. After concentrating the virus by ultracentri-

fugation, the pellet was dissolved in HNE buffer. Subsequently, the virus titer was 

determined by infection of BHK-21 cells with serial dilutions of concentrated virus, 

followed by fluorescence examination at 18-24 hrs post-infection. Cultured hippo-

campal neurons were infected at 2 DIV or 14 DIV by the addition of 1 μL (~107 

replicons/ml) of SFV infectious replicons to the cultures 4 hours before life cell imag-

ing. 

5.2.2.4 Freezing and thawing of transfected neurons 
To transfer cells for the ablation experiments in Dresden, neurons were frozen after 

transfection. Neuronal culture and transfection was performed as described above. 

Due to the cell death caused by freezing and thawing, the double amount of neurons 

was used (1 million neurons). Instead of plating, the transfected neurons were incu-

bated in a final volume of ~900 μL (~100 μL cell suspension, 500 μL warm MEM-

HS and additional 320 μL warm and equilibrated MEM-HS) in the incubator for 1.5 

hours with sporadic shaking. After quickly adding 100 μL DMSO to the cell suspen-

sion and immediate mixing, cells were frozen to -80°C in a insulating container with 

an approximated cooling speed of 1°C per minute. The next day, cells were trans-

ferred to liquid nitrogen. The frozen cells were transported to Dresden in liquid ni-

trogen. Cells were quickly thawed in 37°C warm water and plated in two MEM-HS 

dishes with coverslips as usual. After two hours, coverslips were flipped into dishes 

with glia-conditioned N2-medium to remove the remaining DMSO. 

 

5.2.3 Immunocytochemistry 

Three different fixation methods were applied. Using paraformaldehyde as fixative, 

cells were fixed in warm 4% paraformaldehyde for 20 min and washed three times 

with PBS. After quenching free aldehyde groups in 50 mM ammonium chloride for 



Material and Methods           90  

10 min and after extraction with 0.1% Triton X-100 for 5 min, cells were again 

washed three times with PBS. To visualize microtubules without unpolymerized tu-

bulin subunits, cells were simultaneously fixed and permeabilized in PHEM Buffer 

containing 4% paraformaldehyde, 0.25% glutaraldehyde and 0.1% Triton X-100. 

After having washed three times with PBS, aldehyde groups were quenched in 50 

mM ammonium chloride for 10 min. For the analysis of centrosome components, 

methanol fixation was used. Cells were fixed in -20 °C cold methanol for 3 min and 

then rehydrated three times for 5 min in 0.1% Triton X-100. Finally, cells were 

washed three times with PBS. All fixed neurons were incubated in blocking solution 

for 60 min at room temperature. Subsequently, cells were incubated with primary 

antibodies diluted in 10% blocking solution for 60 min. Following wahing with PBS, 

cells were incubated with secondary antibodies for 30 min. After the staining, the cells 

were washed with PBS and mounted on objective slides using Gelmount. 

 

5.2.4 Protein extraction 

For western blot analysis, three 6 cm Petri dishes with 300,000 cells were washed 

once with PBS and then lysed in 300 μL 1 x Laemmli buffer without dye. The cell 

lysate was boiled for 5 min at 95 °C, spun down and again boiled for 5 min at 95 °C. 

To increase the protein concentration, the proteins were precipitated by 20 °C ace-

tone. Therefore, 1.8 mL 20 °C acetone was added to no more than 400μL of the ex-

tract. The sample was kept at least 60 min at  20 °C, spun down, and the pellet was 

resuspended in 30 μL of 1x Laemmli buffer without dye. The protein concentration 

was determined by the Bradford assay (Biorad, Germany). The concentrations were 

adjusted to the same value with 1x Laemmli Buffer.  
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5.2.5 Axonal and cell soma protein extraction 

To prepare axon or cell body fractions, neurites were plated on filter inserts with 3 

μm pore size membranes (Neurite growth assay, Milipore). Filters were coated with 

poly-L-Lysine solution overnight, washed with distilled water. 30 min before plating, 

the bottom side only of the filter was coated with laminin (50 μg/mL). Then, cells 

were plated and grown for 8 days according to the manufacturer’s instructions. After 

8 days, cells were fixed with ice cold methanol. To obtain only axonal extracts, cell 

bodies were removed by wiping the upper side of the filter with flattened cotton tips 

following the manufacturer’s instructions. To obtain extracts only from cell bodies, 

axons were removed with a sharp razor blade and cotton tips at the bottom of the 

filter. Fractions were then lysed using hot SDS sample buffer. 

 

5.2.6 Western blotting 

The equivalent amount (around ~30 μg) whole cell lysate of each sample was loaded 

on a 12 % polyacrylamide gel (6 mL 30 % acrylamide/0.8 % bisacrylamid, 3.75 ml 

4x Tris-Cl/SDS (pH 8.8), 5.25 ml H2O, 50 μl 10 % ammonium persulfate, 10 μl 

TEMED). As a standard, 10 μL of Prestained Protein Marker, Broad Range (New 

England BioLabs, USA) was loaded. The gel was run at 200 V with 1 x running 

buffer. The gel was blotted onto Hybond-P membrane (Amersham, USA) with 150 

mA current. Successful blotting was confirmed by Ponceau staining. Blots were then 

blocked with 5% milk/PBS-Tween for 60 min at room temperature. The primary 

antibody was applied overnight at 4 °C. Blots were washed 5 times for 10 min with 

PBS-T and incubated with the secondary antibody for 60 min at room temperature. 

Blots were washed 5 times for 10 min with PBS-Tween. ECL plus (Amersham, USA) 

was used according to the manufacturer’s instructions. The blot was exposed to an X-

ray film and the film was developed. If necessary, the blot was stripped three times for 
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15 min with stripping buffer at 55 °C and probed again. Antibodies were diluted in 

5% milk/PBS-T. 

 

5.2.7 Axotomy  

Single mature GFP-expressing neurons from mixed cultures were axotomized as de-

scribed previously (Gomis-Ruth et al., 2008). The neurons were grown on coverslips 

with a laser engraved grid (Laserzentrum Hannover). For axotomy, the coverslips 

were placed in glass-bottom dishes with prewarmed HBSS. The area around the mi-

croscope was heated to 35°C. Single labelled neurons were localized using a epifluo-

rescence microscope with a plan-neofluar 25x oil objective. Neurons were imaged in 

phase contrast and fluorescent light to determine the position of the axon. The axon 

of the GFP positive neuron was identified by morphology. Pulled glass capillaries 

with a diameter of few micrometers were used for performing the cuts. The capillary 

was mounted in the needle holder of a manual micromanipulator and the axon was 

cut using the micromanipulator. To avoid reconnection of the sectioned axons, the 

distal part was removed with the capillary. After axotomy, cells were brought back to 

the incubator. 24 h after axotomy, the neuron was relocalized and axon regeneration 

was analyzed. Neurons were then either kept for additional 5 days in the incubator or 

immediately fixed with -20°C methanol to assess centrosomal γ-tubulin. Axotomy 

was performed with neurons at 8 to 17 DIV. 

 

5.2.8 Centrosome ablation 

Ablation of centrosomes was performed using a custom-built two-photon microscope 

capable of laser ablation (Maghelli and Tolic-Nørrelykke, 2008) with a 63x 1.0 N.A. 

water dipping objective (W Plan-Apochromat 63x/1.0 VIS-IR, Zeiss). Both two pho-

ton imaging and ablations were performed using a single Ti:Sa femtosecond pulsed 
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laser (Chameleon XR, Coherent), tuned to a wavelength of 880 nm. The laser power, 

measured at the sample plane, was 4 mW for imaging and around 100 mW during 

the ablation process. The ablations were performed on a user-defined region of inter-

est (ROI), drawn around the centrosome on a selected plane. The ROI was defined 

while continuously acquiring a 10 planes stack (500 nm between planes, 50 μs/pixel, 

5 s/stack) with a resolution of 40 nm/pixel. Ablation was achieved by scanning the 

laser at high power over the ROI, for a defined exposure time (typically between 20 

ms and 100 ms). The temperature of the sample was kept constant at 35 °C using a 

Peltier element and controller. Neurons were plated on coverslips with a laser en-

graved grid (Laserzentrum Hannover) to relocate them for further analysis. Ablation 

was done in neurons 1.5 to 2DIV after plating. After ablation, cells were either ana-

lyzed for centrosome removal or put back in the incubator for subsequent analysis of 

axon growth. Successful ablation of the centrosome was then confirmed after measur-

ing axon length. 

 

5.2.9 Nocodazole wash-out 

First, microtubules were completely depolymerized by nocodazole. A 6.67 mM noco-

dazole stock in DMSO was used for dilutions. To distribute the nocodazole homoge-

nously, 1 mL of medium was taken from the Petri dish, mixed with the appropriate 

nocodazole amount, and put back into the dish, resulting in the desired concentra-

tion. 2 day old cells were treated with 3.3 μM nocodazole for 4 h, 11 day old cells 

with 33 μM nocodazole for 6 h. During the treatment, cells were kept in the incuba-

tor at 37 °C. After nocodazole treatment, coverslips were washed in warm Hepes-

buffered HBSS and incubated in equilibrated N2-Medium at 37 °C for certain peri-

ods (from 30 s up to 15 min) to let the microtubules repolymerize. Cells were then 

fixed using the PHEM-Buffer. To assess microtubule regrowth in living cells after 
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laser ablation, neurons transfected with GFP-centrin2 and GFP-EB3 were incubated 

in nocdazole to depolymerize microtubules. After laser ablation, nocodazole was 

washed out and microtubules regrew in HBSS at 37°C on the microscope stage. 

 

5.2.10 Electron microscopy 

Cultured hippocampal neurons were fixed by adding glutaraldehyde to the medium 

to a final concentration of 2%. E18 hippocampi were dissected from brains and fixed 

with 4% paraformaldehyde (PFA) and 1% glutaraldehyde in phosphate buffer, pH 

7.2. Postnatal day 6 (P6) rats were terminally anesthetized with 5% chloral hydrate 

solution (prepared in saline) and transcardially perfused with phosphate buffered sa-

line (PBS; 0.1M, pH 7.4) followed by 4% PFA and 1% glutaraldehyde in phosphate 

buffer, pH 7.2. Hippocampi of E18 animals were dissected as for the hippocampal 

culture and the hippocampi directly put into fixative and postfixed as above. Vibra-

tom sections were cut from hippocampi or the P6 brains (Leica VT1000S). Cultured 

hippocampal neurons and vibratomsections were postfixed with 1% osmium tetrox-

ide. Cells and tissue were then dehydrated and embedded in Epon, cut by an ultrami-

crotome (Leica EM UC6) at 70 nm and poststained with lead citrate and uranyl ace-

tate by an ultrastainer (LKB). Electron microscopy images of the sections were ac-

quired using a Zeiss EM10 (Kodak 4489) and a JEOL JEM-1230 electron micro-

scope with CCD-camera (Gatan Orius SC1000). The neuronal identity of the ana-

lyzed cells was confirmed by immunofluorescence (E18) or by morphology (P6).  

To validate laser ablation of the centrosome, the cells were fixed in 2% PFA, 2% glu-

taraldehyde in 0.1 M phosphate buffer. After postfixation with 1% osmium tetroxide 

and dehydration, samples were embedded in LX 112 resin (Ladd Research) as a thin 

layer. The glass coverslip was removed with liquid nitrogen and selected regions re-

mounted. Serial 70 nm-ultrathin sections were cut on a Leica UCT ultramicrotome 
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(Leica Microsystems), poststained with uranyl acetate and lead citrate and viewed in a 

Morgagni electron microscope (FEI company). Images were taken with a Morada 

camera (Olympus/SIS company). 

 

5.2.11 Fluorescence microscopy 

Cells were analyzed using a Zeiss Axiovert 135 equipped with Plan-Neofluar 25x and 

Plan-Apochromat 40x and 63x objectives. Images were captured using a camera from 

the 4912 series (Cohu, USA). The camera was connected to a Hamamatsu CCD 

camera C 2741 control panel. Pictures were recorded on the hard disc of a personal 

computer equipped with a LG3 image grabber and Scion Image software, version 

Beta 4.0.2 (both from Scion Corp.).  

 

5.2.12 Confocal microscopy 

Confocal laser scanning microscopy was done with a Leica SP2 confocal microscope. 

Images were taken with the Leica software as series of different focal planes, which 

were processed to obtain a view through the section scanned.  

 

5.2.13 Spinning disc confocal microscopy 

To record GFP-EB3 dynamics in living cells after laser ablation, an Olympus IX71 

spinning disc confocal inverted microscope equipped with a Yokogawa CSU10 scan 

head and an Andor iXon EM+ DU-897 BV back illuminated EMCCD was used. A 

100x 1.4 N.A. oil immersion objective (100x / 1.40 Oil UPlanSApo) was used, giving 

images with a pixel size of 166 nm/pixel. The laser line used was 488 nm. During 

imaging, the cells were kept at 37°C in Hepes-buffered HBSS. 
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5.2.14 Total-internal reflection (TIRF) microscopy 

Time-lapse recordings of EB3-GFP after nocodazole washout in young and mature 

neurons were acquired using a total-internal reflection (TIRF) microscope as de-

scribed in (Jaworski et al., 2009). The setup consisted of an inverted research micro-

scope Nikon Eclipse TE2000E (Nikon) with a CFI Apo TIRF 100x 1.49 N.A. oil 

objective (Nikon), equipped with a Coolsnap and a QuantEM EMCCD cameras 

(Roper Scientific) controlled by MetaMorph 7.1 software (Molecular Devices). For 

excitation, the 488nm laserline of an argon laser (Spectra-Physics Lasers) and a 

Chroma ET-GFP filter cube were used. During imaging cells were maintained at 

37°C in the standard culture medium in a closed chamber with 5% CO2 (Tokai Hit). 

Images of live cells were processed and analyzed using MetaMorph, Adobe Photoshop 

and LabVIEW (National Instruments) software. 

 

5.2.15 Image analysis and processing 

Length, area and intensity measurements were performed using ImageJ analysis soft-

ware (NIH). The intensity of centrosomal γ-tubulin antibody staining was analyzed 

was analyzed by measuring the intensity of a circle around the centrosome with a 

fixed area of 32 pixels. The centrosomal region was determined by the pericentrin 

costaining. To assess the cytoplasmic staining, the whole cell body without neurites 

was selected and the mean intensity of the soma was measured. Afterwards, the ratio 

of centrosomal staining to cytoplasmic staining was analyzed. Maximum projections 

in Figure 2-2 were obtained using custom-written routines in LabVIEW 8.5 (Na-

tional Instruments). Before projecting the maximum value of each pixel during acqui-

sition onto a single image, each plane was low-pass filtered and convoluted with the 

top-hat filter described in (Mashanov and Molloy, 2007). These projections were 

used to draw arrows for all EB3 tracks that persisted for at least 3 frames and were 
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unambiguously identifiable. Maximum projections in Figure 2-15 were obtained 

using ImageJ. These projections were used to draw arrows for EB3 tracks. All pictures 

were processed using Adobe Photoshop CS and Deneba Canvas 9.  

 

5.2.16 CaCl2 competent cells (E. coli, DH5α) 

500 mL of LB medium were inoculated with 5 mL of an E. coli DH5α culture and 

grown until an optical density of A = 0.5 at λ = 600 nm was reached. Culture was 

spun down and resuspended in 10 mL of cold, sterile 0.1 M CaCl2. Suspension was 

kept for 15-30 min on ice, spun down and resuspended again in 10 mL of cold, ster-

ile 0.1 M CaCl2. Sterile glycerol was added to final concentration of 20%. 10 μl Ali-

quots were frozen and kept at -80 °C. 

 

5.2.17 Transformation of E.Coli and propagation of plasmids 

2 μL of DNA were added to 10 μL of competent cells and incubated for 5-10 min-

utes on ice. 100 μL LB Medium were added and the suspension was shaken for 1h at 

37 °C. After that the plasmid was plated on a LB medium agar plate containing the 

respective antibiotic (for pEGFP-C1-centrin2 plasmid: 50 μg / mL Kanamycin). After 

incubation overnight at 37 °C, a single colony was picked and 3 mL of LB-medium 

containing antibiotic were inoculated. This culture was shaken at 37 °C for around 9 

h. Then, 100 mL LB-Medium containing antibiotic were inoculated with 200 μL of 

the starting culture. After shaking at 37 °C overnight, the culture was spun down at 

3000 rpm for 15 min. Supernatant was decanted and pellet was frozen at 20 °C. After 

thawing, plasmid DNA was extracted and purified with the EndoFree Maxi Prep Kit 

(Qiagen, Germany) according to the manufacturer’s protocol. 
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5.2.18 Statistical analysis 

All data are shown as mean ± s.e.m., except microtubule growth speed, which is 

shown as mean ± s.d. In the quantification of the electron microscope analysis, error 

bars were s.e.m. of a binominal distribution. Student’s t-test was performed taking 

into account the two-tailed distribution and two-sample unequal variance of the data. 

Mean values, errors and t-test were computed using Microsoft Office Excel 2003.  
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