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Zusammenfassung 
 

Hintergrund: 

Das Default Mode Network (DMN) besteht aus kortikalen Regionen, die im 

Ruhezustand koaktiviert sind und deren Aktivität während aufgabeninduzierter 

Aktivität anderer Gehirnareal reduziert ist. Die Komponenten dieses Netzwerkes sind 

auf unterschiedliche Weise an Erinnerungs- und Gedächtnisleistungen beteiligt. 

Deshalb sind innerhalb des DMN Veränderungen im Rahmen dementieller 

Erkrankungen zu erwarten. 

Die Zielsetzung dieser Studie war die Darstellung von Veränderungen innerhalb des 

DMN im Rahmen des physiologischen Alterungsprozesses im Unterschied zu 

pathologischen Veränderungen bei Leichter Kognitiver Störung (LKS) und Alzheimer 

Demenz (AD) mittels funktioneller Magnetresonanztomographie im Ruhezustand 

(Ruhe-fMRT). Die Anwendung der unabhängigen Komponentenanalyse 

(independent component analysis, ICA) ermöglicht dabei ein aufgabenunabhängiges 

Studiendesign. Dies erleichtert die Untersuchung demenzerkrankter Patienten. 

 

Material und Methoden: 

Die Studienpopulation bestand aus 12 jungen, gesunden Probanden, 12 älteren, 

gesunden Probanden, 12 Probanden mit LKS und 12 Patienten mit AD. Die 

Einteilung in die Gruppen erfolgte mittels neuropsychologischer und genetischer 

Testung. Die Messungen wurden an einem 3 Tesla MRT (Magnetom TRIO, Siemens, 

Erlangen, Deutschland) durchgeführt. Es wurden funktionelle Aufnahmen im 

Ruhezustand in axialer Schichtführung mittels einer echoplanaren Gradienten-Echo-

Sequenz aufgenommen. Als anatomische Referenz wurde eine sagittale 

hochauflösende MPRAGE-Sequenz  verwendet. Die Aufbereitung der Daten und die 

statistische Analyse erfolgten mittels der Software Brainvoyager QX 1.9.9 

(BrainInnovation, Maastricht, Niederlande). Es wurden eine ICA auf individueller 

Ebene und anschließend Gruppenanalysen (self organizing group level ICA, sogICA) 

angewendet. Die Ergebnisse der Gruppenanalysen wurden mittels zweiseitiger t-

Tests auf Unterschiede untersucht (p≤0,01). 
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Ergebnisse: 

Durch die Untersuchung der individuellen Komponenten der jungen, gesunden 

Kontrollgruppe mittels sogICA konnten die Komponenten des DMN, im Einzelnen das 

vordere und hintere Cingulum, der Lobus parietalis inferior (LPI), der Gyrus 

temporalis medius (GTM) und die Gyri frontales superior et medius (GFS/GFM) 

jeweils beidseits dargestellt werden. In dieser Studie zeigten sich in der Gruppe der 

älteren, gesunden Probanden ebenfalls alle Komponenten des DMN. Dennoch ließen 

sich Unterschiede zu der Gruppe der jungen Probanden im Sinne einer 

Mehraktivierung in der Gruppe der Jungen in den meisten Regionen des DMN 

beobachten.  

In der Gruppe der Probanden mit LKS konnten die meisten Komponenten des DMN 

dargestellt werden. So fanden sich seitengleiche Aktivierungen im Bereich des 

vorderen und des hintern Cingulums. Der GTM hingegen zeigte sich ausschließlich 

auf der rechten Seite aktiviert, während die parietalen Komponenten beidseitig 

darstellbar waren. Die frontalen Komponenten zeigten sich relativ diffus verstreut. 

Besonders die Komponenten im Bereich des vorderen und hinteren Cingulums und 

die temporalen Komponenten des DMN waren bei den LKS-Patienten deutlich 

weniger koaktiviert als bei den gesunden, älteren Probanden. Eine auffällige 

Mehraktivierung im Vergleich zur gesunden Kontrollgruppe, die an dieser Stelle keine 

Aktivierung aufweisen, zeigten die LKS-Patienten im Bereich des rechten frontalen 

Cortex. 

Bei den AD-Patienten ließ sich die Komponente im Bereich des vorderen Cingulums 

nicht mehr darstellen, während sich im hinteren Cingulum noch eine Aktivierung fand. 

Die temporalen Komponenten waren rechtshemisphärisch darstellbar, fehlten jedoch 

links. Die parietalen Komponenten waren beidseits zu finden. In den übrigen 

Gruppen nicht beobachtete Aktivierungen fanden sich bei den AD-Patienten im 

rechten Temporallappen und im Gyrus frontalis inferior beidseits. 

 

Schlussfolgerung und Ausblick: 

Zusammenfassend ist festzustellen, dass die Ruhe-fMRT die Darstellung des DMN 

erlaubt und eine Unterscheidung zwischen jungen und alten gesunden Probanden, 

sowie leicht kognitiv beeinträchtigten und dementen Patienten möglich ist. Die 

Methode stellt ein potentielles Instrument zur Frühdiagnostik der Entwicklung einer 
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Demenz dar. Weitere Studien sind nötig, um die Methode auf Ebene von 

Einzeluntersuchungen zu etablieren.  

Desweiteren bleibt zu untersuchen, inwieweit sich durch diese Methode spezifische 

Veränderungen bei weiteren neurodegenerativen und psychiatrischen Erkrankungen, 

wie beispielsweise bei Schizophrenie oder Autismus darstellen lassen. 
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Die Alzheimer-Erkrankung ist die häufigste Ursache einer Demenz im Alter. Da die 

Lebenserwartung in den westlichen Ländern steigt, werden in Zukunft immer mehr 

Menschen von der Alzheimer Demenz (AD) betroffen sein. Die AD wird somit in 

zunehmendem Maße eine soziale und finanzielle Herausforderung für die 

Gesellschaft, aber auch für die betreuenden Angehörigen darstellen. 

 

Derzeit beträgt die Prävalenz in Deutschland zwischen 0,9% in der Gruppe der 65- 

bis 74- jährigen und bis zu 30% in der Gruppe der über 84-jährigen Frauen. Auch die 

Inzidenz steigt mit dem Alter und erreicht ein Maximum von 6,6% bei den über 90- 

Jährigen [1]. Insgesamt sind Frauen doppelt so häufig betroffen wie Männer [2]. 

Eine Behandlung kann besonders in frühen Stadien entscheidend dazu beitragen, 

die geistige Leistungsfähigkeit und alle damit zusammenhängenden Funktionen des 

täglichen Lebens länger aufrecht zu erhalten [3]. 

 

In diesem Zusammenhang wird die Wichtigkeit einer möglichst frühen Diagnostik der 

Alzheimer Demenz offensichtlich. Im Rahmen dieser Bemühungen hat sich der 

Begriff der Leichten Kognitiven Störung (LKS) als mögliches Vorstadium einer 

Demenz entwickelt. Menschen, die unter einer LKS leiden, haben ein höheres Risiko 

an Alzheimer zu erkranken. Die jährliche Konversionsrate von LKS zu AD wird in der 

Literatur zwischen 8% und 16% angegeben [4-6]. Die Inzidenz von Demenz bei 

LKS-Patienten beträgt insgesamt bis zu 80% in 6 Jahren [4]. 

 

Die folgende Studie wurde durchgeführt, um alters- und demenzspezifische 

Veränderungen in einem kortikalen Netzwerk mittels funktioneller Kernspin-

tomographie darzustellen und typische Unterschiede zwischen dem physiologischen 

Alterungsprozess und einer sich entwickelnden Demenz herauszuarbeiten. 
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1.1 Leichte kognitive Störung 

 

Der Begriff Leichte Kognitive Störung (LKS) ist nicht als exakte Diagnose mit 

homogener klinischer Manifestation, Ätiologie und Prognose zu verstehen. Er 

umfasst vielmehr die Gruppe aller Individuen mit einer eingeschränkten 

Gedächtnisleistung, die aber die Kriterien der Demenz noch nicht erfüllen. Die Mayo-

Kriterien nach Petersen und Kollegen [7] definieren LKS folgendermaßen: 

 

 Beschwerde des Patienten über Gedächtnisschwäche, wenn möglich durch 

eine weitere Person bestätigt 

 objektive Gedächtnisschwäche (entsprechend Alter und Ausbildung) 

 erhaltene generelle kognitive Fähigkeiten 

 Tätigkeiten des täglichen Lebens nicht eingeschränkt  

 nicht dement 

 

Die LKS wird in mehrere Untergruppen gegliedert. Es wird zwischen einer Form mit 

isolierter Gedächtnisschwäche und multifokalen Formen, die dann zusätzlich oder 

auch ausschließlich andere kognitive Bereiche wie visuelle Wahrnehmung oder 

Handlungsplanung betreffen, unterschieden [7]. 

 

Nach Petersen und Kollegen [7] stellen besonders der rein amnestische Typ der 

LKS (aLKS), aber auch amnestische Formen mit zusätzlichen kognitiven Defiziten 

mögliche Vorstufen der Alzheimer-Erkrankung dar. Etwa die Hälfte der von aLKS 

Betroffenen wird innerhalb von 3 bis 5 Jahren an der AD erkranken [8]. Andere LKS-

Unterformen hingegen sind eher mit Demenzerkrankungen wie der Lewy-Body- oder 

der frontotemporalen Demenz assoziiert. 

 

Um die Diagnose der LKS zu sichern, werden verschiedene neuropsychologische 

Testverfahren angewendet. Oft wird als Grenzwert für eine dementielle Störung 

mindestens eine Standartabweichung (SD) unterhalb der alterskorrigierten Norm 

festgesetzt [4, 5], wobei Patienten mit aLKS meist im Rahmen von 0,5 SD bleiben. 

So ist beispielsweise bei Anwendung der Clinical Dementia Rating Scale (CDR) ab 

einem Wert von 0,5 von einem kognitiven Defizit auszugehen [9]. Ebenso spricht ein 
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Ergebnis von 26 und weniger der 30 möglichen Punkte in der Mini-Mental Status 

Examination (MMSE) für eine LKS [10]. Aussagekräftiger als der absolute Wert ist  

die Veränderung innerhalb eines bestimmten Zeitraumes. Gesunde Personen, 

Patienten mit LKS und solche mit AD unterscheiden sich in der Veränderung der 

Testergebnisse. Während der MMSE-Wert bei gesunden Probanden stabil bleibt, 

fällt er bei LKS-Patienten im Durchschnitt um einen Punkt pro Jahr und bei Patienten 

mit AD um 3 bis 4 Punkte [7]. 

 

 

1.2 Alzheimer Demenz 

 

Die Alzheimer Demenz (AD) wurde von Alois Alzheimer (Psychiater und 

Neuropathologe u.a. in München, 1864-1915) erstmals beschrieben. Sie zählt zu 

den primär degenerativen Hirnerkrankungen und führt zu einer progressiven 

Demenz. Unter Demenz versteht man den meist irreversiblen, organisch bedingten 

Verlust früher erworbener intellektueller Fähigkeiten bei erhaltenem Bewusstsein 

[11]. 

 

Zu Beginn der Erkrankung steht der Verlust des Kurzzeitgedächtnisses im 

Vordergrund. Im Verlauf kommt es jedoch zu weiterreichendem Gedächtnisverlust, 

schwersten kognitiven Defiziten, Persönlichkeitsveränderungen, Orientierungs-

störungen, Aphasie, Agnosie, Apraxie, Halluzinationen oder Depressionen und somit 

zu funktionellen Einschränkungen, die zur völligen Abhängigkeit von Pflege- und 

Betreuungspersonen im Alltag führen [9]. 

 

 

1.2.1  Definition 

 

Die 4. Auflage des Diagnostic and Statistical Manual of Mental Disorders (DSM IV) 

definiert die AD als schleichend progredienten Verfall multipler kognitiver Fähigkeiten,  

der zu Einschränkungen im Alltag führt und nicht durch andere zentralnervöse oder 

systemische Erkrankungen bedingt ist (siehe Tab. 1). 
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Tabelle 1: Definition der AD nach DSM-IV (aus [12]) 
 
Verwendet man die Ergebnisse der MMSE zur Definition der Demenz, so spricht 

man zwischen 0 und 11 Punkten von einer sehr schweren Demenz, zwischen 12 

und 18 Punkten von einer mittelschweren Demenz, zwischen 19 und 23 Punkten von 

einer leichten Demenz, zwischen 24 und 26 Punkten von einer leichten 

Einschränkung und zwischen 27 und 30 Punkten von keiner Einschränkung der 

geistigen Leistungsfähigkeit [13]. Auf die Durchführung des MMSE wird im 

Folgenden genauer eingegangen. 

  

 
A. Entwicklung multipler kognitiver Defizite, die sich zeigen in sowohl 

(1) einer Gedächtnisbeeinträchtigung als auch 

(2) mindestens einer der folgenden kognitiven Störungen: Aphasie, Apraxie, Agnosie, 

                 Störung der Exekutivfunktionen. 

 

B. Die kognitiven Defizite aus den Kriterien A1 und A2 verursachen jeweils in bedeutsamer 

    Weise Beeinträchtigungen in sozialen oder beruflichen Funktionsbereichen und stellen 

    eine deutliche Verschlechterung gegenüber einem früheren Leistungsniveau dar. 

 

C. Der Verlauf ist durch einen schleichenden Beginn und fortgesetzten kognitiven Abbau 

    charakterisiert. 

 

D. Die kognitiven Einbußen in Kriterium A1 und A2 sind nicht zurückzuführen auf: 

(1) andere Erkrankungen des Zentralnervensystems, die fortschreitende Defizite in 

                  Gedächtnis und Kognition verursachen (z.B. zerebrovaskuläre Erkrankungen, 

                  Parkinsonsche Erkrankung, Huntingtonsche Erkrankung, subdurale Hämatome, 

                  Normaldruckhydrocephalus, Hirntumor), 

(2) Systemische Erkrankungen, die eine Demenz verursachen können  

(z.B. Hypothyreose,Vitamin-B12-Mangel oder Folsäure-Mangel, Niacinmangel, 

Hyperkalzämie, Neurolues, HIV-Infektion), 

(3) Substanzinduzierte Erkrankungen. 

 

E. Die Defizite treten nicht ausschließlich im Verlauf eines Delirs auf. 

 

F. Die Störung kann nicht durch eine Psychose (z.B. Major Depression, Schizophrenie) 

    erklärt werden. 

 



 

 
 
6 

 

1.2.2 Pathologie 

 

Im Rahmen der Alzheimer-Demenz kommt es makroskopischen zu einer 

Hirnatrophie durch Neuronenuntergang mit besonderer Ausprägung in fronto-

temporalen und parieto-okkzipitalen Regionen [2] und im Hippocampus. Die 

Ventrikel stellen sich vergrößert dar und auch die Sulci sind erweitert. 

 

Histopathologisch zeigt sich intrazellulär eine Degeneration von Neurofibrillen und 

die Entstehung sog. Alzheimer-Degenerationsfibrillen (siehe Abb. 1a). Dies sind 

längliche oder lockenförmige, dicke Fibrillen aus zwei helixartig verbundenen 

Filamenten im Zytoplasma von Neuronen. Sie bestehen aus Tubulin, ȕ-Amyloid und 

hyperphosphoryliertem Tau-Protein [2]. Studien an genetisch veränderten Mäusen 

legen nahe, dass das freie Tau-Protein, eher als die komplette Degenerationsfibrille, 

primär neurotoxisch wirkt [14]. Die Fibrillen verteilen sich über den gesamten 

Neocortex und die limbischen Kernregionen. Die Dichte an Degenerationsfibrillen 

korreliert mit der Schwere der Demenz, allerdings nimmt sie ab einem gewissen 

Ausmaß bei dennoch fortschreitender Demenz nicht weiter zu. Es scheint eine 

Höchstgrenze für die mögliche Dichte an Degenerationsfibrillen zu geben [15]. 

 

Extrazellulär finden sich typischerweise sog. Amyloidplaques (siehe Abb. 1b). Sie 

sind bei der Alzheimer’schen Erkrankung vorwiegend im Nucleus basalis Meinert, im 

Corpus amygdaloideum, in den Gyri temporales, im Hippocampus und im limbischen 

System nachzuweisen [2]. Amyloidplaques bestehen hauptsächlich aus Amyloid 

Beta 42 (Abeta42). Dieses entsteht bei der Spaltung von Amyloid Precursor 

Proteinen (APP) durch bestimme Sekretasen (ȕ- und Ȗ-Sekretasen). Erhöhte 

Abeta42- und Abeta-Oligomer-Konzentrationen finden sich im Gehirn und im Liquor 

von Patienten in frühen Demenzstadien und korrelieren mit der Abnahme der 

geistigen Leistungsfähigkeit [16, 17]. Diese Beobachtung stützt die Annahme, dass 

Abeta-Oligomere wichtigere Mediatoren der Neurotoxizität sind als die 

Amyloiplaques selbst [18]. Desweiteren ist bekannt, dass die Akkumulation von 

Abeta-Protein die Aktivität von Apoptose-initiierenden Caspasen steigert. 
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Auch lassen sich viele der bisher bekannten erblichen Formen der AD auf einen 

Defekt in der Amyloidentstehung- oder spaltung zurückführen. So ist für das Down-

Syndrom eine massive APP Überproduktion nachgewiesen. Andere genetische 

Formen führen über Mutationen in den Sekretasegenen zu einer Akkumulation von 

Amyloid-Spaltprodukten wie Abeta42. 

 

Generell scheint das Ausmaß der kognitiven Beeinträchtigung eher mit der Menge 

an abgelagerten Degenerationsfibrillen als mit der Menge an Amyloidablagerungen 

zu korrelieren [11]. Allerdings können diese zwei Strukturen nicht völlig getrennt 

voneinander betrachtet werden, da Amyloidablagerungen die Aktivität von Caspasen 

triggern, die dann wiederum die Spaltung der Tau-Proteine induzieren [19]. Dies ist 

für die Bildung der Neurofibrillen entscheidend. 

 

 

Abbildung 1: Histopathologische Veränderungen bei Alzheimer Demenz: 

Degenerationsfibrille (a) und Amyloidplaque (b) (beide aus [15]) 

 

Auf biochemischer Ebene lässt sich eine Verminderung der Achetylcholinsynthese 

feststellen, die auf eine reduzierte Aktivität der Cholinacetyltransferase (CAT) 

zurückzuführen ist. Dieser Mangel zeigt sich besonders im temporalen und 

entorhinalen Kortex sowie im Hippocampus [1] und ist die Grundlage für 

Therapiemöglichkeiten mit Achetylcholin-steigernden Medikamenten. 



 

 
 
8 

 

1.3 Diagnostische Methoden 

 

Ein wichtiger Schritt zur Erstdiagnostik einer Demenzerkrankung ist die Feststellung 

kognitiver Defizite durch den Betroffenen selbst oder Angehörige. Eventuelle 

Einbußen in der geistigen Leistungsfähigkeit können dann durch entsprechende 

neuropsychologische Tests quantifiziert und eventuell bestätigt werden. 

Laborchemische Parameter dienen in erster Linie dem Ausschluss anderer Demenz-

verursachender Erkrankungen. Auch die zerebrale Bildgebung dient dem 

Ausschluss eines andern symptomatischen Geschehens sowie der 

Diagnosebestätigung und der Verlaufsbeobachtung. 

 

 

1.3.1 Neuropsychologische Testung 

 

Aus einer Vielzahl von neuropsychologischen Testbatterien sollen hier zwei erläutert 

werden, die in der unten beschriebenen Studie zur Anwendung kamen. Die Mini-

Mental Status Examination (MMSE) ist etwas kürzer und ermöglicht eine 

orientierende Einschätzung. Die CERAD (Consortium to Establish a Registry for 

Alzheimer’s Disease) - Testreihe ist aufwendiger und präziser. 

 

 

1.3.1.1 Mini-Mental Status Examination 

 

Die MMSE ist der meist genutzte kognitive Test für Demenz im klinischen Alltag [10]. 

Die Testung dauert circa 7 Minuten und erfasst eine große Bandbreite kognitiver 

Funktionen wie Orientierung, Erinnerung, Aufmerksamkeit, Kopfrechnen, Sprache 

und Geschicklichkeit (siehe Tab. 2).  

 

Generell spricht man ab einem Ergebnis von weniger als 24 Punkten von Demenz 

oder Delirium. Geht man von diesem Grenzwert aus, so verfügt die MMSE über eine 

Sensitivität von 87% und eine Spezifität von 82% für eine Demenz [20]. 
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Tabelle 2: Durchführung der MMSE (nach [10]) 

 

 

1.3.1.2 Testung gemäß dem Consortium to Establish a Registry for 

Alzheimer’s Disease 

 

Eine etwas detaillierte Möglichkeit der neuropsychologischen Untersuchung bei 

möglicher oder manifester Alzheimer Demenz ist die CERAD-Testbatterie (siehe 

Tab. 3), deren Durchführung etwa 30-45 Minuten in Anspruch nimmt. Sie wurde von 

dem “Consortium to Establish a Registry for Alzheimer’s Disease” (CERAD) des US- 

amerikanischen National Institute on Aging (NIA) entwickelt. 

 

Aufgabe 
 

Maximale 

Punktzahl 
 

Orientierung:   

 Fragen Sie den Patienten nach dem Datum (Jahr-Jahreszeit-Datum-Tag-Monat)  

 Fragen Sie den Patienten nach dem Ort (Staat-Land-Stadt-Krankenhaus-Stockwerk)  

 

5 

5 
 

Aufnahmefähigkeit: 

 Nennen Sie 3 Objekte und bitten Sie den Patienten diese zu wiederholen 
 

3 
 

Aufmerksamkeit und Kopfrechnen: 

 Lassen Sie den Patienten von 100 in 7-er Schritten herunter zählen, Beenden nach 

max. 5 richtigen Antworten; (Alternativ: lassen Sie den Patienten „AMPEL“ rückwärts 

buchstabieren;) 

 Fragen Sie nach den 3 zuvor wiederholten Objekten; 

 Zeigen Sie dem Patienten zwei Gegenstände (z.B. Armbanduhr und Bleistift) und bitten 

Sie ihn diese zu benennen; 

 Lassen Sie den Patienten folgendes Sprichwort wiederholen: „ohne wenn und aber“; 

 Geben Sie dem Patienten eine dreiteilige Anweisung, wie „Nehmen Sie das Blatt 

Papier in die rechte Hand, falten Sie es der Länge nach und legen Sie es auf den 

Boden!“ 

 Schreiben Sie „Schließen Sie Ihre Augen“ auf ein Blatt Papier und lassen es den 

Patienten lesen und ausführen; 

 Geben Sie dem Patienten ein Blatt Papier und bitten Sie ihn einen Satz darauf zu 

schreiben. Der Satz muss ein Verb und ein Nomen enthalten und sinnvoll sein. 

 Bitten Sie den Patienten ein Bild, z.B. zwei überlappende Fünfecke abzumalen. Alle 

zehn Ecken müssen vorhanden sein und zwei müssen sich überschneiden. 

 

 

 

 

5 

3 

 

2 

1 

 

 

3 

 

1 

 

1 

 

1 

Maximal zu erreichende Punktzahl: 30 
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Tabelle 3: Durchführung der CERAD-Testbatterie (nach [23]) 

 

         Test 

 

Maximale 

Punktzahl 
 

1. Verbale Flüssigkeit (Kategorie Tiere) 

Die Probanden werden aufgefordert, eine Minute lang so viele Tiere wie möglich 
aufzuzählen. Mit dieser Aufgabe werden die Geschwindigkeit und Leichtigkeit der 
verbalen Produktionsfähigkeit, semantisches Gedächtnis, Sprache, exekutive 
Funktionen und kognitive Flexibilität untersucht.[21]  

Entspricht 

Anzahl der 

genannten 

Tiere 

 

2. Modifizierter Boston Naming Test [22] 

Die Probanden werden aufgefordert, 15 Objekte zu benennen, die in Form von 
Strichzeichnungen dargestellt sind. Damit werden visuelle Wahrnehmung, das 
Benennen und die Wortfindung erfasst.  15 

 

3. MMSE [10] 

Test zur Untersuchung der Orientierung, der Konzentrationsfähigkeit, des 
Gedächtnisses, der Sprache und der konstruktiven Praxis. Zur genauen 
Durchführung siehe 1.3.1.1. 30 

 

4. Wortliste Gedächtnis 

Die Probanden lesen nach einander 10 gedruckte Wörter und sollen diese 
anschließend frei abrufen. In weiteren Versuchen werden die Wörter in anderer 
Reihenfolge noch einmal gezeigt und sollen jeweils aus dem Gedächtnis wieder 
aufgezählt werden. Mit dieser Aufgabe wird die Fähigkeit erfasst, neue, nicht 
assoziierte verbale Informationen zu erlernen. 30 

 

5. Konstruktive Praxis 

Die Patienten werden gebeten, 4 Figuren in steigender Komplexität nachzuzeichnen 
(Kreis, Rhombus, zwei sich überschneidende Rechtecke, Würfel) 11 

 

6. Wortliste Abrufen 

Die Probanden werden aufgefordert, die in Aufgabe 4 gelernten Wörter zu erinnern 
(delayed recall). Damit wird das verbale Gedächtnis getestet, d.h. ob die Patienten 
neu gelernte verbale Information über einen Zeitraum von einigen Minuten behalten 
können. 10 

 

7. Wiedererkennen 

Die Probanden sollen die 10 Wörter aus Aufgabe 4 von 10 Distraktoren 
unterscheiden. Diese Aufgabe ermöglicht es zu differenzieren, ob bei der 
Gedächtnisstörung primär ein Abruf-oder ein Speicherdefizit vorliegt. 20 

 

8. Konstruktive Praxis 

Zum Schluss werden die Probanden gebeten, die zuvor abgezeichneten Figuren 
jetzt aus dem Gedächtnis noch einmal zu zeichnen. Damit wird das Gedächtnis der 
nonverbalen Modalität untersucht. 

 

14 
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Ziel war es kurze, standardisierte Instrumente zur Erfassung von 

neuropathologischen und neuropsychologischen Anzeichen einer AD zu entwickeln. 

Außerdem sollte eine Vergleichbarkeit der Daten in der Forschung ermöglicht 

werden. Die Testbatterie erfasst Hirnleistungen wie Gedächtnis, Sprache, Praxie und 

Orientierung [23], die von der AD besonders stark betroffen sind. 

 

 

1.3.2 Laborchemische Parameter 

 

Einige Studien legen nahe, dass ein erhöhter Tau-Protein Spiegel sowie ein 

erniedrigter Spiegel an Abeta42 im Liquor einen prädiktiven Wert für die Entwicklung 

von AD in nicht dementen Patienten und Patienten mit LKS darstellen und außerdem 

eine Unterscheidung zwischen AD und anderen Demenzformen ermöglichen [24-

26]. Allerdings haben sich diese Parameter bisher nicht im klinischen Alltag etabliert, 

könnten aber in Zukunft an Bedeutung gewinnen. 

Die einzigen Werte, deren Bestimmung von der American Academy of Neurology 

(AAN) empfohlen werden, sind Vit-B-12 und Schilddrüsenhormone. Zudem empfiehlt 

die deutsche Gesellschaft für Neurologie in ihren Leitlinien ein Blutbild, 

Serumelektrolyte, Serumcalcium, HbA1c sowie im Verdachtsfall 

Alkoholismusmarker. 

 

Der Nutzen einer genetischen Testung auf AD wird kontrovers diskutiert. Zwar 

erhöht das homozygote, und in abgeschwächter Form auch das heterozygote 

Vorliegen des Gens für Apolipoprotein E in der İ4-Variante das Risiko an AD zu 

erkranken; allerdings wurde gezeigt, dass viele homozygote Mutationsträger keine 

AD entwickeln [27].  
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1.3.3 Bildgebung 

 

Die Bildgebung ist ein wesentlicher Bestandteil der Diagnostik einer AD. So sind die 

Computertomographie (CT) oder die Magnetresonanztomographie (MRT) ohne 

Kontrastmittelgabe heute in der initialen Diagnose von Demenzerkrankungen 

unverzichtbar [28]. Sie dienen auch dem Ausschluss sekundärer Demenzformen, 

wie beispielsweise einer vaskulären Demenz. 

 

Typische Befunde in der MRT eines AD Patienten sind eine generealisierte sowie 

fokale Atrophie der grauen Substanz und Läsionen der weißen Substanz. Auch 

besteht eine Korrelation zwischen Volumenminderung des Hippocampus und 

kognitiver Beeinträchtigung [29, 30]. So zeigt sich sowohl bei jungen als auch alten 

Alzheimer-Patienten eine nicht altersentsprechende Atrophie des Hippocampus [31]. 

 

Möchte man aber neben den rein anatomischen Veränderungen auch die 

funktionellen Veränderungen der kognitiven Leistungsfähigkeit darstellen, kann man 

sich zweier weiterer Verfahren bedienen, die es ermöglichen die Kortexaktivierung 

während der Ausführung bestimmter kognitiver Aufgaben sichtbar zu machen. 

 

 

1.3.3.1 Positronenemissionstomographie 

 

Die Positronenemissionstomographie (PET) ist ein nuklearmedizinisches Verfahren, 

das zur qualitativen und quantitativen Bestimmung von Stoffwechselprozessen und 

regionalen Blutflüssen in vivo genutzt wird [2]. Das Prinzip beruht auf der Detektion 

von Ȗ-Strahlen, die von einer intrakorporalen Strahlungsquelle, meist 18-Flour-

markierte Flour-2-deoxy-2-D-Glucose (18FDG), ausgesendet werden. Die emittierten 

Positronen reagieren mit Elektronen, wobei zwei Ȗ-Photonen entstehen. Diese 

werden in diametraler Richtung entsendet und von dem PET-Scanner registriert, 

sofern sie diesen zum exakt gleichen Zeitpunkt erreichen. 

 
18FDG passiert die Blut-Hirn-Schranke und auch die Membranen der Neuronen wie 

normale Glucose. Da sie jedoch nicht weiter metabolisiert werden kann, verbleibt sie 
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in der Zelle. Die PET misst die Menge an 18FDG, die sich in den Neuronen des 

Gehirns über einen Zeitraum von 30 bis 45 Minuten ansammelt [32]. So werden 

besonders stoffwechselaktive kortikale Regionen sichtbar. 

 

 

1.3.3.2 Funktionelle Magnetresonanztomographie 

 
Ähnliche Möglichkeiten im Bezug auf die Darstellung kortikaler Aktivierungen bietet 

die funktionelle Magnetresonanztomographie (fMRT). Sie zeichnet sich zudem im 

Vergleich zur PET durch eine höhere örtliche und zeitliche Auflösung sowie durch 

die Unabhängigkeit von radioaktiver Strahlung aus. Zudem können während einer 

fMRT-Untersuchung sowohl anatomische als auch funktionelle Bilder gewonnen 

werden. 

 

Einschränkend muss erwähnt werden, dass aufgrund der Magnetisierung Patienten 

mit Herzschrittmachern und Cochleaimplantaten von der Untersuchung 

ausgeschlossen werden müssen. Auch können künstliche Herzklappen, Clips und 

Kavaschirme (je nach Material) ebenso wie Granatsplitter (je nach Lage) und eine 

Frühschwangerschaft Kontraindikation darstellen [33]. Eine eventuelle 

Klaustrophobie des Patienten kann zusätzlich limitierend sein [34]. Es liegen bisher 

keine Hinweise auf eine schädigende Wirkung der im Magnetfeld entstehenden 

Wärme im Körperinneren vor. 

 

 

1.3.3.2.1 Grundlagen der Magnetresonanztomographie 

 

Die Bildentstehung basiert auf dem Prinzip der Magnetresonanz, das auf den 

Eigenschaften von Atomkernen mit ungerader Nukleonenzahl beruht. Für die 

medizinische Bildgebung spielt der einfach positiv geladene Kern des 

Wasserstoffatoms (H+) aufgrund des hohen Wasseranteils des menschlichen 

Körpers die entscheidende Rolle. 
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Jedes Proton besitzt einen Eigendrehimpuls, den sog. Kernspin, d.h. die positive 

Ladung rotiert mit einer bestimmten Geschwindigkeit um die eigene Achse und 

induziert so ein magnetisches Dipolmoment. Da diese Magnetfelder im Körper 

ungeordnet vorliegen, kompensieren sie sich gegenseitig. Unter Einfluss eines von 

außen angelegten starken Magnetfeldes, dessen Feldstärke bei klinisch genutzten 

Geräten meist 1,5 oder 3,0 Tesla (T) beträgt, richten sich die magnetischen Dipole 

entlang der Feldlinien aus, wobei eine antiparallele und eine parallele Orientierung 

möglich sind. Da Letztere energetisch günstiger ist, wird sie „bevorzugt“ und es 

entsteht eine messbare Nettomagnetisierung, die sog. Längsmagnetisierung (Mz). 

Die Vektoren der Kernspins sind dabei um einen konstanten Winkel zum 

Hauptmagnetisierungsvektor des äußeren Magnetfeldes ausgelenkt und rotieren in 

einer Kreiselbewegung um diese Achse. Dies wird als Präzession bezeichnet. 

 

Durch einen kurzen Hochfrequenzimpuls (HF-Impuls), der durch eine 

Transmitterspule eingebracht wird, werden die Magnetisierungsvektoren der 

Atomkerne von der longitudinalen Ausrichtung (Mz) transversal ausgelenkt und so 

ihre Magnetisierung verändert [35]. Es entsteht eine messbare Quermagnetisierung 

(Mxy) (siehe Abb. 2). Die Präzessionsbewegung wird synchronisiert.  

 

Diese Veränderung hält nur wenige Sekunden an. Die Magnetisierungsachsen der 

Atome bewegen sich zurück in Richtung der Hauptachse Mz. Dieser Vorgang wird 

als Relaxation bezeichnet und kann in zwei simultan aber unabhängig voneinander 

ablaufende Phänomene unterteilt werden (siehe Abb. 2).  

 

Die Längsrelaxation beschreibt die Zunahme der longitudinalen Komponente des 

Magnetisierungsvektors entlang Mz. Bei diesem Vorgang wird Energie an die 

Umgebung (das Gitter) abgegeben. Die damit verbundene Zeitkonstante wird als T1 

oder Spin-Gitter-Relaxationszeit bezeichnet und beträgt je nach Gewebetyp 300-

2000 ms. 

 

Die Querrelaxation beschreibt die Abnahme der transversalen Komponente des 

Magnetisierungsvektors und resultiert aus der Dephasierung (Desynchronisierung) 

der Präzessionsbewegung durch Spin-Spin-Interaktionen. Die Quer-
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magnetisierungsvektoren zeigen zunehmend in alle Richtungen der xy-Ebene, so 

dass das Signal der Quermagnetisierung abnimmt. Die damit verbundene 

Zeitkonstante wird als T2 oder Spin-Spin-Relaxationszeit bezeichnet und beträgt je 

nach Gewebetyp 30-150 ms [33]. 

 

 

Abbildung 2: Wirkung eines Hochfrequenzimpulses (aus [36]) 

 

Eine weitere Relaxationskonstante ist T2*. Sie beschreibt den Signalverlust sowohl 

durch Spin-Spin-Interaktionen als auch durch Feldinhomogenitäten und ist aufgrund 

dieses zusätzlichen Faktors immer kürzer als T2. Während T1 und T2 hauptsächlich 

vom Gewebetyp abhängig sind, ist T2* stark von Veränderungen des Blutflusses 

abhängig. 

 

Da der magnetische Impuls, der bei der Relaxation von den Protonen ausgeht, sehr 

klein ist, wird er mehrmals gemessen und dann gemittelt, so dass auch diese 

kleinsten Signale genau bestimmt werden können. Dazu wird der HF-Impuls 

mehrmals hintereinander eingebracht, man spricht von der HF-Sequenz. Die Zeit 

zwischen zwei Anregungen heißt Repetitionszeit TR, die Zeit zwischen Anregung 

und Signalaufnahme Echozeit TE. 

 

Da die verschiedenen Gewebe sich bezüglich ihrer kontrastbestimmenden 

physikalischen Eigenschaften wie Protonendichte und Relaxationszeiten 

unterscheiden, sind die Bildkontraste durch Gewichtung dieser Eigenschaften 
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variierbar und lassen Rückschlüsse auf die Morphologie des jeweiligen Gewebes zu. 

So erscheinen beispielsweise Flüssigkeiten in T1-gewichteten Sequenzen 

signalarm, wohingegen sie sich in T2-gewichteten Sequenzen signalreich darstellen 

[2]. 

 

Durch Gradientenfelder, die dem homogenen magnetischen Hauptfeld überlagert 

werden, wird eine örtliche Zuordnung ermöglicht. Ein HF-Impuls einer bestimmten 

Präzessionsfrequenz regt ausschließlich Protonen einer bestimmten Schicht an [33]. 

Aus den so gewonnen Signalen aus beliebig wählbaren Körperschichten werden 

computergestützt zwei- oder dreidimensionale Schichtbilder in axialer, sagittaler und 

koronarer Schnittebene errechnet.  

 

 

1.3.3.2.2 Physiologische Grundlagen des FMRT 

 

1936 entdeckten Pauling und Coryell die magnetischen Eigenschaften des 

Hämoglobins [37]. 1990 fanden Forscher anhand von Experimenten mit Ratten und 

Mäusen heraus, dass diese Eigenschaften zur kontrastmittelfreien Messung der 

Gehirnaktivität, allein durch die Änderung der Sauerstoffkonzentration [38], genützt 

werden können. 1992 veröffentlichten Ogawa und Kollegen die ersten funktionellen 

MRT-Bilder, die durch Nutzung dieses sog. BOLD-Signals (blood-oxygenation-level 

dependent contrast) entstanden waren [39]. Die Grundlage der fMRT war 

geschaffen. 

 

Bei funktionellen Messungen mittels Magnetresonanztomographie bedient man sich 

der Eigenschaft des Blutes als endogenem Kontrastmittel. Gesteigerte neuronale 

Aktivität im Zerebrum bedingt einen erhöhten Sauerstoffbedarf, der wiederum zu 

einem lokalen Durchblutungsanstieg führt. Dabei kommt es zu einem 

überproportional hohen Sauerstoffangebot und damit zu einer erhöhten 

Konzentration an oxygeniertem Hämoglobin im Bereich des aktivierten Gewebes. 

Die magnetischen Eigenschaften des Hämoglobins werden hauptsächlich durch 

seine Eisenatome bestimmt. In diamagnetischem, oxygeniertem Hämoglobin 

maskiert der an die Eisenatome gebundene Sauerstoff deren magnetische Wirkung, 
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indem er Bindungen mit den zuvor ungepaarten Hüllenelektronen eingeht. Das 

gesamte Molekül wirkt damit im Wesentlichen unmagnetisch. Desoxygeniertes 

Hämoglobin hingegen besitzt paramagnetische Eigenschaften. Seine ungepaarten 

Hüllenelektronen werden im Feld magnetisiert und verursachen so in ihrer 

unmittelbaren Umgebung Magnetfeldinhomogenitäten [36]. 

 

Sind Gehirnregionen aktiv, kommt es durch den gesteigerten Glucose- und 

Sauerstoffbedarf zu einer Zunahme des regionalen zerebralen Blutflusses. Hierbei 

wird mehr Sauerstoff zur Verfügung gestellt als durch die Aktivität verbraucht wird, 

so dass insgesamt der Anteil an oxygeniertem Hämoglobin zu- und der Anteil an 

desoxygeniertem Hämoglobin abnimmt (siehe Abb. 3). Je geringer der Anteil des 

paramagnetischen, desoxygenierten Hämoglobins ist, desto geringer sind auch die 

umgebenden Magnetfeldinhomogenitäten. So kommt es in den aktiven 

Gehirnregionen zu einer langsameren Dephasierung der Protonenspins und damit 

zu einer Zunahme des T2*-Signals. 

 

 

Abbildung 3: Zerebraler Blutfluss (CBF) im Kontrollzustand mit basaler 

Konzentration an desoxygeniertem Hämoglobin (a). Gesteigerter CBF in aktivierten 

Regionen (b) führt zu einer verringerten Konzentration an desoxygeniertem 

Hämoglobin. Dadurch kommt es zu einer Verminderung der Feldgradienten um die 

Blutgefäße und so zu einem gesteigerten Signal (aus [40]). 

 

Für das klassische fMRT Experiment werden zwei Varianten häufig angewendet: Die 

erste Variante nennt sich Block-Design und bedeutet, dass sich während einer 

bestimmten Aufgabe ein “steady state” der neuronalen und hämodynamischen 
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Veränderungen einstellt. Bei der zweiten Variante, dem Ereignis-gekoppelten 

Design, wird die hämodynamische Antwort auf jeden Stimulus gemessen. In beiden 

Fällen muss das Design eine weitere Aufgabe oder einen Ruhezustand beinhalten, 

da die Ergebnisse immer im Vergleich zweier unterschiedlicher kognitiver Zustände 

entstehen [40].  

 

 

1.3.3.2.3 Unabhängige Komponentenanalyse 

 

Die klassische fMRT beruht auf aufgabeninduzierter Aktivierung. Das statistische 

Verfahren der unabhängigen Komponentenanalyse (independent component 

analysis, ICA) erlaubt hingegen die Auswertung von fMRT Messungen, die im 

Ruhezustand erhoben wurden.  

Die unabhängige Komponentenanalyse dient dazu, unabhängige Signalquellen aus 

einem Gesamtsignal zu extrahieren. Zur Veranschaulichung wird oft das sog. 

Cocktailparty-Phänomen herangezogen [41]: Auf einer Party wird Musik gehört, 

werden Gespräche aus anderen Teilen des Raumes wahrgenommen und womöglich 

lässt sich auf der Straße zusätzlich das Martinshorn eines Krankenwagens 

vernehmen. Dabei wird als selbstverständlich erachtet, dass man den Komponenten 

dieses Geräuschpegels die jeweiligen Quellen zuordnen kann, und man sich so 

problemlos auf eine einzige Komponente, z.B. den Dialog mit einem Freund, 

konzentrieren kann. Die ICA kann, ähnlich wie wir die Geräuschquellen auf einer 

Party trennen, die Signalquellen von unabhängigen Zeitreihen in einer fMRT 

Messung separieren (siehe Abb. 4).  

 

Die ICA ermöglicht es als multivariate Datenanalyse, vierdimensionale fMRT-

Datensätze in zusammenhängende Aktivitätsmuster umzuwandeln. Diese 

Umwandlung funktioniert unter der Bedingung der statistischen Unabhängigkeit der 

Signalquellen und stützt sich auf die räumliche und/oder zeitliche Kovarianz der 

Signale. Es stehen prinzipiell zwei Varianten zur Verfügung. Die räumliche 

Komponentenanalyse (spatial ICA, sICA) beruht auf der statistischen Verteilung der 

Signale über den bzgl. seiner Hämodynamik untersuchten Raum. Auf fMRT-Daten 

angewendet, extrahiert sie funktionelle Netzwerke, indem sie räumlich unabhängige 
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und zeitlich synchrone Regionen des Gehirns identifiziert, ohne jedoch ein a priori 

Wissen über das Versuchsparadigma zu haben. Die zeitliche Komponentenanalyse 

(temporal ICA, tICA) hingegen betrachtet die statistische Verteilung der 

Quellensignale über die gemessenen Zeitpunkte [42]. 

   

 

   

Abbildung 4: „Independent Component Analysis eines funktionellen MRT-

Datensatzes mit visueller Stimulation. Links dargestellt sind die mit dem Ansatz der 

ICA ermittelten Komponentenbilder. Die den Bildern zugehörigen, räumlich 

unabhängigen Zeitreihen sind rechts dargestellt. Die Modellfunktion der Stimulation 

ist den Signaldynamiken grau hinterlegt.“ (aus [43]) 

 

Der Prozess der Quellentrennung bei der sICA lässt sich folgendermaßen 

beschreiben: 

 

 

 

 

 

 

 

 

  

X vox1 vox2 vox3 

t1    

t2    

t3    

1 2 

3 4 

       

 

 

 

IC 2 

Voxel time 
 course  
(Zeitreihe) 

IC 1 

IC 3 IC 4 

Die Datenmatrix X eines jeden Probanden ist eine 

P×T Matrix und ist definiert durch die Voxelanzahl 

(vox) P und die Zeitmesspunkte (t) T. 
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Die erste Spalte von A besteht aus der Zeitreihe, die mit der ersten Reihe von C 

verbunden ist. Die meisten ICA Algorithmen errechnen dann eine „Unmixing“ Matrix 

W (= A-1), so dass die Formel 

 

C= W*X = (WTW)-1WT 

 

für eine Einschätzung der ursprünglichen Komponenten-Quellen und ihrer 

Aktivierung im Verlauf verwendet werden kann [44]. Als Resultat entsteht eine Art 

dreidimensionale Landkarte mit allen unabhängigen Komponenten, denen ein 

räumlicher z-Wert (Anzahl der Standartabweichungen vom Landkartenmittelwert) 

zugeordnet wird, bevor sie in den anatomischen Raum eines normalisierten Gehirns  

transferiert werden [44]. 

Zur Untersuchung der Komponenten nicht nur eines Datensatzes, bzw. eines 

Probanden, sondern einer Probandengruppe dient die Gruppen-ICA mittels „self-

organizing clustering“ (sogICA). Dazu werden die individuellen Komponenten aller 

Probanden (dargestellt in der Komponentenmatrix C in Verbindung mit der Mixing 

Matrix A, die den Zeitverlauf beschreibt) mit einem Label versehen, um die 

Verbindung zwischen Komponenten und ursprünglichem Probanden weiterhin 

nachvollziehen zu können. Die so markierten Komponenten werden dann 

entsprechend ihrer gegenseitigen Ähnlichkeit folgendermaßen sortiert: 

C vox1 vox2 vox3 

M1    

M2    

M3    

A M1 M2 M3 

t1    

t2    

t3    

Für X gilt dann: X=A*C, wobei A als „Mixing“ 

Matrix (T*M) bezeichnet wird. 

X kann nun durch eine Linearkombination von M 

statistisch unabhängigen Komponenten 

ausgedrückt werden und in einer Matrix C 

dargestellt werden: C ist eine Matrix aus M×P 
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Ein Maß für die Ähnlichkeit der unabhängigen Komponenten ist der absolute Wert 

ihrer gegenseitigen Korrelationskoeffizienten für die Lokalisation des Quellensignals 

bzw. für den dazugehörigen Zeitverlauf. Eine Ähnlichkeitsmessung zwischen den 

Komponenten 1 und 2 (SM für similarity (1,2)), basierend auf dem klassischen 

Pearson Korrelationskoeffizienten, kann durch die Kombination der räumlichen und 

zeitlichen Korrelation der Komponenten durch folgende Formel beschrieben werden: 

 

SM (1,2) = Ȝ*CCs(1,2) + (1-Ȝ)*CCt(1,2) 

 

 

 

 

 

Ȝ ist ein vom Benutzer zu definierender Parameter zwischen 0 und 1 und erlaubt 

eine Gewichtung von räumlicher und zeitlicher Ähnlichkeit. 0,5 wäre eine gleiche 

Gewichtung, 1 eine rein räumliche Korrelation. 

 

Aus diesem Schritt resultiert eine Ähnlichkeitsmatrix SM, die sich aus allen zu 

vergleichenden Komponenten zusammensetzt (SM = M*M) und dann nach Himberg 

und Kollegen in eine Unähnlichkeitsmatrix DM transformiert werden kann. Diese 

Matrix ist als eine Abstandsmatrix zwischen den Komponenten im ursprünglichen 

Raum zu verstehen und dient als Datengrundlage für den nächsten Schritt, das sog. 

Clustering der Komponenten. 

Dazu kann die Methode zur Mustererkennung, das self-organizing clustering, 

angewendet werden, die sich auf die Variabilität der räumlichen Anordnung der 

Komponenten zwischen den Probanden stützt. Der Clustering-Algorithmus, der 

Komponenten nur verbindet, wenn sie mit unterschiedlichen Labels versehen sind, 

also von unterschiedlichen Probanden stammen, basiert auf folgendem Prinzip: 

 

Der Grenzwert für den maximalen Abstand der Komponenten innerhalb eines 

Clusters wird zu Anfang auf 0 gesetzt. Wird er dann stufenweise bis 1 erhöht, wird 

bei jedem Schritt ein neues Cluster entdeckt, wenn gilt: 

Räumlicher 
Korrelationskoeffizient 

Zeitlicher 
Korrelationskoeffizient 
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1. Die Abstände der Komponenten innerhalb des Clusters sind unterhalb des 

aktuellen Grenzwertes 

2. Das Cluster ist repräsentativ, d.h. es hat die vom Benutzer definierte minimale 

Gruppengröße erreicht 

 

Nach jedem Schritt werden die bereits geclusterten Komponenten von weiteren 

Schritten ausgeschlossen. Die sogICA sortiert die extrahierten Cluster dann nach 

minimalem, mittlerem und maximalem Abstand innerhalb eines Clusters in einer 

Rangliste. Aus allen Komponenten, die einem Cluster zugeordnet wurden, wird dann 

eine Durchschnittskomponente errechnet, die dann für dieses Cluster repräsentativ 

ist [44]. Diese Durchschnittskomponenten können dann als Abbildung im 

normalisierten Gehirn betrachtet und bezüglich ihrer Bestandteile, Lokalistation und 

Größe beschrieben werden.  

 

Als eine rein datengestützte Methode kommt die ICA ohne zeitliche Signalprofile 

oder festgelegte zu betrachtende Regionen (regions of interest) aus. Die ICA ist 

dadurch ein statistisches Verfahren, das es ermöglicht, Gehirnaktivierungen ohne 

Kontrollzustand zu ermitteln, so dass kein zweiphasiger Untersuchungsaufbau von 

Aufgabe und Vergleichszustand nötig ist, sondern das Gehirn im Ruhezustand mit 

geschlossenen Augen untersucht werden kann. Der zu Untersuchende muss also 

keinen komplexen Anweisungen folgen und keine Aufgaben ausführen. Gerade bei 

der Untersuchung von Probanden mit fraglicher oder manifester Demenz hat dies 

den Vorteil, dass das Untersuchungsergebnis weniger durch Störfaktoren wie 

Tagesform, Konzentrationsvermögen, akustische oder optische Beeinträchtigungen 

oder das Unvermögen die Aufgabe zu verstehen oder zu behalten, beeinflusst wird. 

Dies ermöglicht eine bessere intra- und interindividuelle Vergleichbarkeit der 

Resultate.  
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1.4 Kortikale Konnektivität im Ruhezustand 

 

Das Verständnis des Ruhezustandes des Gehirns ist essentiell für jede weitere 

Untersuchung kognitiver Funktionen. Das Konzept des Ruhe-Modus (default mode) 

des Gehirns entstand aus der Notwendigkeit heraus, folgende Beobachtung zu 

erklären: Neben den Aufgaben-induzierten Gehirnaktivierungen, beispielsweise 

während motorischer oder visueller Tests, die sowohl in PET- als auch in fMRT-

Studien konsistent beschrieben werden, zeigen sich gleichzeitig in bestimmten 

anderen Gehirnarealen Aktivitätsabfälle im Vergleich zu einem passiven 

Kontrollzustand (z.B. mit geschlossenen Augen ruhend) [45]. Die Regionen, in 

denen diese Aufgaben-induzierten Aktivitätsabnahmen beobachtet werden, sind 

weitgehend unabhängig von der Art der Aufgabe und zeigen in ihrer Lokalisation 

kaum Variationen [46]. Es gibt Hinweise darauf, dass das Ausmaß dieser 

Deaktivierung mit der Komplexität der Aufgabe steigt [47].  

 

Die erste Beschreibung dieser Regionen findet sich in einer Metaanalyse von neun 

funktionellen Bildgebungsstudien mittels PET, die von Shulman und Kollegen 1997 

veröffentlicht wurde [48] (siehe Abb. 5 und Tab 4). 

 

 

Abbildung 5: Gehirnregionen, in denen regelmäßig eine Aktivitätsabnahme 

während Aufmerksamkeit beanspruchender kognitiver Aufgaben beobachtet wird 

(aus [45]) 
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Tabelle 4: Von Shulman und Kollegen beschriebene Gehirnareale mit Aufgaben-

induzierter Aktivitätsabnahme in PET Studien (aus [48]) 

 

Die lokale Konsistenz dieser Areale wiederum führte zu der Hypothese, dass es 

einen organisierten Ruhe-Modus (default mode) des Gehirns geben könnte, der 

während eines passiven kognitiven Zustandes vorherrscht und während 

zielgerichteter Denkprozesse unterdrückt wird. Aber wie ist dann ein Ruhezustand, 

also der „nicht-aktivierte“ Zustand zu definieren? 

 

Dazu ist es gemäß Raichle und Kollegen essentiell, Folgendes zu beachten: Eine im 

Vergleich zu einem vorherigen Zeitpunkt gesteigerte neuronale Aktivität im gleichen 

Areal führt zu einem überproportional gesteigerten lokalen zerebralen Blutfluss 

(CBF) und damit zu einer erniedrigten Sauerstoffextraktionsfraktion (SEF). Eine im 

Vergleich zu einem anderen Gehirnareal prinzipiell höhere neuronale Aktivität 

hingegen bringt zwar einen konstant höheren CBF mit sich, die SEF hingegen ist 

dieselbe wie in dem weniger aktiven Gebiet. Die SEF, die in PET-Studien 

quantifiziert werden kann, ist also trotz teilweise erheblicher Unterschiede im 

Sauerstoffverbrauch und CBF im Ruhezustand über das gesamte Gehirn 

weitgehend einheitlich (siehe Abb. 6). 

 

Region Brodman Areal 

1. PCC (Gyrus cinguli posterior)/Precuneus BA 23/31/7 

2. vACC(vorderer Gyrus cinguli anterior) BA 10/11/32 

3. MPFC (medialer präfrontaler Cortex) BA 8/9 

4. Linker und rechter GPI (Gyrus parietalis inferior) BA 39/40 

5. linker DLPFC (dorso-lateraler Präfrontalcortex) BA 8/9 

6. Linker GFS (Gyrus frontalis superior) BA 8/9 

7. Linker GTI (Gyrus temporalis inferior) BA 20/21 

8. Rechte Amygdala  
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Abbildung 6: Sauerstoffextraktionsfraktion (SEF), ausgedrückt als Prozentsatz des 

angelieferten Sauerstoffs. Die Daten wurden mittels PET erhoben und stammen von 

19 Erwachsenen, die wach, aber mit geschlossenen Augen im Scanner lagen. Trotz 

eines vierfachen Unterschiedes in Blutfluss und Sauerstoffverbrauch zwischen 

grauer und weißer Substanz ist das SEF-Signal über das gesamte Gehirn 

weitgehend konstant (aus [45]). 

 

Die SEF eignet sich also, um Veränderungen in der neuronalen Aktivität im 

Zeitverlauf eines Areals zu erkennen, der CBF, um lokale Unterschiede in der 

neuronalen Aktivität verschiedener Areale im Ruhezustand darzustellen. So konnten 

Raichle und Kollegen in ihrer PET-Studie einige Komponenten des Default Mode 

Network (DMN), die von Shulman und Kollegen beschrieben wurden, wie das 

vordere und das hintere Cingulum, als Gebiete mit höherem CBF und höherem 

Sauerstoffverbrauch reproduzieren (siehe Abb. 7). 
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Abbildung 7: Blutfluss (obere Reihe) und Sauerstoffverbrauch (untere Reihe) 

während eines wachen Ruhezustandes mit geschlossenen Augen (aus [45]) 

 

Das DMN mittels fMRT als klassisches BOLD-Signal darzustellen, ist nicht direkt 

möglich, da keine Veränderung der Sauerstoffextraktion aufgrund einer neuronalen 

Antwort auf einen extern kontrollierten Stimulus vorliegt. Allerdings kann man die 

BOLD-Signale im Ruhezustand hinsichtlich ihrer Amplitude und ihrer 

Frequenzfluktuation untersuchen und so bezüglich dieser Eigenschaften ähnliche 

Areale zu Netzwerken zusammenfassen. Wird in diesem Zusammenhang also von 

Aktivierungen gesprochen, handelt es sich nicht um extern induzierte Aktivierungen, 

sondern um intrinsische Koaktivierungen im Sinne einer Netzwerkaktivität. Diese 

Annahme, dass die Kohärenz der Fluktuationen im Ruhezustand funktionelle 

Netzwerke repräsentiert, wird gestützt durch die Darstellbarkeit von bereits 

bekannten, funktionell relevanten Netzwerken, wie z.B. dem motorischen Netzwerk 

[49]. 

 

Um die verschiedenen Signalkomponenten des Ruhezustandes zu extrahieren, ist 

die modellfreie ICA besonders geeignet [50, 51], da sie eine Reihe von Netzwerken 

separieren kann und gleichzeitig Effekte von anderen Signalmodulationen wie 

Bewegung, Herzschlag und Atmung herausfiltert [52]. ICA-basierte Studien haben so 

Komponenten identifiziert, die den kortikalen Netzwerken, die in der klassischen 

fMRT als Aufgaben-induzierten Aktivierungen darstellbar sind, wie das visuelle oder 

das auditive Netzwerk, sehr ähnlich sind. Aber auch das DMN, das bisher nur als 

Deaktivierung während zielgerichteter Aufgaben beschrieben werden konnte, kann 
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durch die ICA als eigene Komponente mit spezifischen BOLD-Signal-Eigenschaften 

separiert werden [53]. 

 

Demoiseaux und Kollegen gelang es auf diese Weise, viele der von Raichle und 

Kollegen in PET-Studien ermittelten Bestandteile dieses Netzwerkes zu 

reproduzieren (siehe Abb.8 und Tab. 5). Auch mit den Ergebnissen von Greicius 

und Kollegen [54], der das DMN mittels vergleichender fMRT untersuchte, sind die 

Ergebnisse weitestgehend konform. 

 

 

 
 

Abbildung 8: Von Damoiseaux und Kollegen im Ruhezustand erhobene fMRT-

Datensätze (2 Messungen, A und B der gleichen Studiengruppe), 

Komponentenanalyse mittels ICA. Hier gezeigt: das default mode network als eine 

von 5 erhaltenen Komponenten (aus [53]) 

 

Region Brodman Areal 

1. Präfrontaler Cortex  BA 11 

2. ACC (Gyrus cinguli anterior) BA 32 

3. PCC (Gyrus cinguli posterior) BA 23/31 

4. Gyrus temporalis inferior (GTI) BA 20/37 

5. Gyrus parietalis inferior (GPI) BA 7 
 

Tabelle 5: Bestandteile des DMN nach [53] 

B 

A 
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Obwohl die genauen Funktionen der einzelnen Bestandteile des DMN bisher eher 

vage beschrieben sind, lässt sich doch Folgendes festhalten: der Präfrontalkortex, 

besonders der dorsolaterale Anteil, ist Bestandteil des Arbeitsspeichers des 

Gedächtnisses [55] und spielt beim Abrufen episodischer Erinnerungen eine wichtige 

Rolle [56]. Auch vom Gyrus parietalis inferior weiß man, dass er regelmäßig bei 

Aufgaben, die den Arbeitsspeicher beanspruchen, sowohl beim Tier als auch beim 

Menschen aktiviert ist [57, 58]. Der Gyrus temporalis inferior dient als einer der 

wichtigsten Speicher für semantisches Wissen [59].  

 

Greicius und Kollegen zeigten in ihrer Konnektivitätsstudie, dass all diese höheren 

kortikalen Regionen im Ruhezustand stark mit dem PCC in Verbindung stehen. 

Dieses Areal wird daher als wichtiger Knotenpunkt im DMN angesehen, dessen 

Hauptaufgabe der Abruf und die Modulation von vergangenen Erfahrungen und 

deren Anwendung auf die Problemlösung und Zukunftsplanung ist [54, 60, 61]). 

 

Die Untersuchung des DMN bietet sich aus zweierlei Gründen als Screening und 

Verlaufsuntersuchung bei Demenzerkrankungen an: Erstens erlaubt sie durch die 

Bewertung einer Struktur, die für das Gedächtnis essentiell zu sein scheint, eine 

Aussage über die Funktion des Gehirns. Dies bedeutet eine wichtige 

Weiterentwicklung zu der bisher meist rein anatomischen Bildgebung. Zweitens ist 

die Untersuchung relativ unabhängig von akustischer und geistiger 

Aufnahmefähigkeit und -bereitschaft der Patienten, da keine Testaufgaben 

ausgeführt werden müssen. Dies kann zur Genauigkeit und Reproduzierbarkeit der 

Ergebnisse erheblich beitragen. 
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2  Zielsetzung der Arbeit 
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Die Zielsetzung dieser Arbeit ist die Beschreibung der Unterschiede des DMN im 

Rahmen des physiologischen Alterungsprozesses im Gegensatz zu Veränderungen 

bei Patienten mit LKS und AD.  
 

Im Einzelnen  

 

(A) sollen die Gehirnregionen identifiziert werden, die bei jungen gesunden 

Probanden das DMN bilden.  

(B) Um die Veränderungen im Rahmen eines physiologischen Alterungsprozesses 

beschreiben zu können, wird dieses Netzwerk mit dem DMN älterer gesunder 

Probanden verglichen. 

(C) Schließlich folgt die Untersuchung der Netzwerkschädigung durch dementielle 

Prozesse bei Patienten mit LKS und 

(D) mit AD. 

 

Es werden folgende Hypothesen aufgestellt: 

 

(a) Die Komponenten des DMN sind bei jungen gesunden Probanden, entsprechend 

den Ergebnissen aus vorangegangenen Studien [53, 62] darzustellen.  

(b) Das DMN verändert sich während des physiologischen Alterungsprozesses im 

Sinne einer weniger stark ausgeprägten Koaktivierung, aber annähernd 

gleichbleibender Anzahl und Lokalisation der Komponenten des Netzwerks.  

 

Basierend auf den Ergebnissen vorangegangener Studien zum DMN bei Demenz-

Patienten [63, 64] werden desweiteren die Hypothesen aufgestellt, dass 

  

(c) die DMN-Aktivität bei LKS-Patienten reduziert ist und auch die Komponenten, die 

aus der Gruppe der jungen und älteren gesunden Probanden bekannt sind, nicht 

mehr vollständig darstellbar sind.  

(d) diese Veränderungen in noch größerem Ausmaß bei Patienten mit AD zu 

beobachten sind. 
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3 Material und Methoden 
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3.1 Probanden 

 

Es wurden insgesamt 48 Probanden in die Studie eingeschlossen. Es erfolgte eine 

Einteilung in 4 Gruppen zu je 12 Probanden.  

 

Die junge Kontrollgruppe bestand aus 12 Probanden, von denen 7 weiblich und 5 

männlich waren. Das Alter variierte von 22 bis 37 mit einem Durchschnittsalter von 

27,64 Jahren und einer Standardabweichung von 4,08. Der MMSE-Wert lag bei allen 

Teilnehmern dieser Gruppe bei 30. 

 

Die Probanden wurden aus der MRT-Abteilung des Klinikums Großhadern (n=5), der 

Physiotherapieschule Großhadern (n=4) und der medizinischen Fakultät der LMU 

München (n=3) rekrutiert. Die Einschlusskriterien waren:  

 

 Alter zwischen 20 und 40 

 MMSE von 30 

 keine neurologischen oder psychiatrischen Erkrankungen 

 

Alle weiteren Probanden wurden durch die Psychiatrische Klinik Nussbaumstraße 

der LMU München rekrutiert und dort mittels neuropsychologischer Testverfahren 

(siehe Tab. 6) den folgenden drei Gruppen zugeordnet. 

 

Die ältere Kontrollgruppe bestand aus 12 Probanden, von denen 4 weiblich und 8 

männlich waren. Das Alter variierte von 59 bis 83 mit einem Durchschnittsalter von 

69,25 Jahren und einer Standardabweichung von 7,15. Der MMSE-Wert rangierte 

von 27 bis 30 mit einem Mittelwert von 28,58 und einer Standardabweichung von 

1,08. 

 

Die Gruppe der Patienten mit Leichter Kognitiver Störung bestand aus 12 

Probanden, von denen 6 weiblich und 6 männlich waren. Das Alter variierte von 60 

bis 88 mit einem Durchschnittsalter von 74,92 Jahren und einer 

Standardabweichung von 8,49. Der MMSE-Wert lag zwischen 24 und 28 mit einem 

Mittelwert von 26,42 und einer Standardabweichung von 1,17. 
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Die Gruppe der Patienten mit Alzheimer Demenz bestand aus 12 Probanden, von 

denen 6 weiblich und 6 männlich waren. Das Alter lag zwischen 58 und 87 Jahren 

mit einem Durchschnittsalter von 74 Jahren und einer Standardabweichung von 

8,11. Der MMSE-Wert bewegte sich zwischen 17 und 29 mit einem 

Durchschnittswert von 22,6 und einer Standardabweichung von 3,42. 

 

 Mittelwert (SD) 
Ältere 
Kontollgruppe 

Mittelwert (SD) 
LKS 

Mittelwert (SD) 
AD 

Verbale Flüssigkeit 22,63 (3,85) 20, 83 (4,22) 12,67 (4,72) 
BNT 14,88 (0,35) 14,08 (1,78) 12,17 (2,66) 
MMS 28,58 (1,08) 26,42 (1,16) 22,58 (3,42) 
Wortliste Gedächtnis 22,50 (2,67) 16,58 (4,17) 10,92 (7,05) 
Konstruktive Praxis 10,75 (0,46) 10,25 (0,97) 8,33 (2,53) 
Wortliste Abruf 8,13 (1,64) 4,08 (1,93) 1,75 (2,14) 
Wortliste 
Wiedererkennen 

10 (0) 8,67 (1,97) 6,83 (1,75) 

Abrufen konstruktive 
Praxis 

9,88 (1,55) 6 (2,96) 2,92 (3,48) 

Uhrentest nach 
Shulman 

1 (0) 2 (0,95) 3,5 (0,67) 

 

Tabelle 6: Ergebnisse der neuropsychologischen Testung  

 

3.2 Untersuchungsablauf 

 

Die Probanden wurden über den Untersuchungsverlauf und dessen Risiken und 

Kontraindikationen mündlich und mittels standardisierten Aufklärungsbögen 

informiert, und willigten in die Untersuchung, gegebenenfalls vertreten durch einen 

gesetzlichen Betreuer, durch Unterschrift ein. Die Probanden wurden aufgefordert, 

die Augen während der Untersuchung geschlossen zu halten, sich möglichst nicht zu 

bewegen und an nichts Spezielles zu denken, dabei aber auch nicht einzuschlafen. 

Um den Lärmeinfluss zu minimierten, trugen die Probanden Kopfhörer. Um die 

Kopfbewegungen möglichst gering zu halten, wurde der Kopf in einem Kopfgestell 

mittels kleiner Polster stabilisiert. Bei der Lagerung der Probanden auf der Liege des 

MR-Gerätes wurde ein Schaumstoffkissen unter den Kopf gelegt und eine Rolle 

unter den Knien positioniert, um die Wirbelsäule zu entlasten. 
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Die anatomischen und funktionellen Bilder wurden an einem Messtermin mit einer 

Gesamtdauer von 10:06 min. gewonnen 

 

 

3.3 Studienprotokoll 

 
Die Studie wurde an einem 3 Tesla Magnetresonanztomographen (Magnetom TRIO, 

Siemens, Erlangen, Deutschland) des Klinikums Großhadern der LMU München 

durchgeführt.  

 

Die funktionellen Aufnahmen wurden mittels einer echoplanaren Gradienten Echo 

Sequenz (EPI) gewonnen. Die TR betrug 3000 ms, die TE 30 ms und der FA 90°. Es 

wurden 36 Schichten in 120 Messungen aufgenommen. Die räumliche Auflösung 

betrug 3*3*3 mm. 

 

Für die anatomischen Referenzbilder wurde eine sagittale hochauflösende MPRAGE 

(magnetization prepared rapid acquisition gradient echo) Sequenz angewendet. Die 

TR betrug 14 ms, die TE 7,6 ms und der FA 20°. Es wurden 160 Schichten 

aufgenommen. Die räumliche Auflösung betrug 0,8*0,8*0,8 mm. 
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3.4 Datenanalyse 

 

Die aufgenommenen Datensätze wurden von dem Speicher des MRT-Rechners zur 

Auswertung auf einen PC des Klinikums transferiert. Für die Vorverarbeitung der 

Daten und die statistische Analyse wurde die Software Brainvoyager QX 1.9.9 

(BrainInnovation, Maastricht, Niederlande) verwendet.  

 

3.4.1 Datenvorverarbeitung  

 

Die Datenvorverarbeitung schafft optimale Vorrausetzungen für die statistische 

Auswertung und die Vergleichbarkeit der funktionellen Datensätze der Probanden. 

Sie setzt sich aus folgenden Einzelschritten zusammen: Schicht-Scanzeit-Korrektur, 

Bewegungskorrektur, örtliche Glättung und Hochpass- und Niedrigpassfilterung.  

 

Schicht-Scanzeit-Korrektur: 

 

Die fMRT Datensätze werden in vielen Schichten während der TR-Periode 

akquiriert, jedoch nicht zur gleichen Zeit, sondern mit einer gewissen Zeitdifferenz 

zwischen den Schichten. Um diese Verzögerung auszugleichen und so ihren 

Einfluss auf die Auswertung der Daten zu eliminieren, wird die sogenannte „temporal 

interpolation“ genutzt. Diese statistische Methode gleicht die zeitliche Verschiebung 

der Signalamplituden aus [40]. 

 

Bewegungskorrektur: 

 

Trotz der Aufforderung, während der Messung still zu liegen, und trotz einer 

stabilisierenden Kopfstütze, kommt es zu Bewegungen, die zu verfälschten 

Messergebnissen führen. Um diese Bewegung auszugleichen, wird ein einzelnes 

Bild eines Untersuchungsdurchgangs als Referenzbild ausgewählt und Unterschiede 

der anderen Bilder in Bezug auf das Referenzbild ausgeglichen. In einem zweiten 

Schritt müssen die Bilder mit Hilfe der geschätzten Bewegungsparameter neu 

berechnet werden. Es resultiert eine maximale Übereinstimmung des Einzelbildes 

mit dem Referenzbild [65]. 
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Örtliche Glättung: 

 

Die örtliche Glättung verbessert das Signal proportional zum Hintergrundrauschen. 

Eine Gehirnaktivierung bewirkt durch eine Durchblutungsänderung 

Helligkeitsänderungen im Kernspinbild. Diese Änderungen betragen allerdings nur 

wenige Prozent der Bildhelligkeit und  können so leicht durch nicht 

aktivitätsbedingte, teils zufällige Helligkeitsänderungen kaschiert werden. Um den 

Pegel dieses Hintergrundrauschens zu minimieren und so die Abgrenzbarkeit der 

aktivierten Gehirnareale zu verbessern, wurde die Glättung (sog. „smoothing“) 

herangezogen. Die Daten wurden mittels eines 8 mm FWHM (Full Width at Half 

Minimum) breiten isotropen gaußschen Kernels geglättet. Dazu werden alle Voxel im 

Abstand von 8 mm zueinander unter Berücksichtigung einer gausschen 

Verteilungskurve geglättet. Der Nachteil der örtlichen Glättung besteht darin, dass 

die räumliche Auflösung des Signals im Vergleich zum ursprünglichen Signal 

abnimmt, was jedoch durch den Vorteil des deutlicheren Signals aufgewogen wird. 

 

Hochpass- und Niedrigpassfilterung: 

 

Durch zeitliche Filter können Komponenten des Hintergrundrauschens, deren 

Signale eine bestimmte Frequenz haben, entfernt werden. Beispielsweise haben die 

Signale, die durch atem- oder pulsabhängige Veränderungen in der 

Blutzusammensetzung entstehen, eine charakteristische Frequenz. Durch die Wahl 

eines geeigneten Grenzwertes (sog. Cut-off-Periode) kann der Einfluss solcher 

Störquellen minimiert und so das Verhältnis von Signal zu Hintergrundrauschen 

verbessert werden. 
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3.4.2 Normalisierung 

 

Um eine maximale Vergleichbarkeit der Lokalisation der Aktivierungen zwischen den 

Probanden zu erreichen, wurden die anatomischen Datensätze normalisiert, das 

heißt auf ein Standardmaß vereinheitlicht. In einem ersten Schritt wurden die 

vordere und die hintere Kommissur definiert und eine Achse durch diese Fixpunkte 

gelegt, anhand derer die Ausrichtung im Raum normiert wurden. In einem zweiten 

Schritt wurden die äußersten zwei Punkte der sagittalen, frontalen und transversalen 

Achse und damit die Größenausdehnung der verschiedenen Gehirne bestimmt. 

Anhand dieser Fixpunkte konnte der jeweilige 3D-Datensatz in den standardisierten, 

dreidimensionalen anatomischen Referenzraum des Tailarach und Tournoux Atlas 

[66] transferiert werden (siehe Abb. 9). Mithilfe der entstandenen Transformations-

Files, wurden nach der Koregistrierung (s.u.) auch die individuellen funktionellen 

Daten anhand des Talairach und Tounoux Raumes normalisiert.  

 

 

Abbildung 9: Darstellung des Gehirns nach Normalisierung 

 

 

3.4.3 Koregistrierung und Alignment 

 

Nach der Datenvorverarbeitung wurden die funktionellen Daten mit den individuellen, 

anatomischen, hoch auflösenden MPRAGE Sequenzen koregistriert (siehe Abb. 

10a). In einem initialen Alignement-Schritt wurden die funktionellen und die 

anatomischen Datensätze anhand der räumlichen Positions-Files, die von dem MR-

Scanner für jede Messung produziert werden, koregistriert. Danach wurde eine 
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Intensitäts-gesteuerte Feinabstimmung durchgeführt. Die Ergebnisse dieser 

Alignment-Schritte wurden visuell überprüft und wenn nötig per Hand korrigiert. So 

wurde die Kongruenz zwischen den anatomischen und den jeweiligen funktionellen 

Bildern optimiert (siehe Abb. 10b). 
 

 

Abbildung 10: Übereinstimmung der anatomischen (obere Reihe) und funktionellen 

(untere Reihe) Datensätze vor (a) und nach (b) Alignment 

 

 

3.4.4 Statistische Analyse 

 

Die derart aufbereiteten Datensätze der einzelnen Probanden wurden anschließend 

einer individuellen unabhängigen Komponentenanalyse (ICA) unterzogen. Es wurde 

das sogenannte fastICA Verfahren nach Hyvärinen und Kollegen [67] angewandt, 

das eine zu definierende Anzahl an unabhängigen Komponenten errechnet. 

Entsprechend der Empfehlung von Greicius und Kollegen, die Komponentenzahl 

solle etwa ein Viertel bis ein Fünftel der Zeitmesspunkte des jeweiligen Scans 

betragen [63], entschieden wir uns für 30 Komponenten pro Proband. Alle so 

erhaltenen Komponenten der Probanden einer der vier Untersuchungsgruppen 

wurden dann mittels sogICA untereinander verglichen. Diese Gruppenanalyse 

besteht aus 3 Schritten: 

 

1. Datenreduktion 

2. Anwendung des ICA-Algorithmus 

3. Rekonstruktion 
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Der Datenreduktionsschritt bedient sich der PCA (Principal Component Analysis), 

um die Datendimension der einzelnen Probanden einzuschränken. Es folgt eine 

Schätzung der zu erwartenden unabhängigen Quellen (in diesem Fall 30), bevor die 

endgültige Datenreduktion, wiederum mittels PCA, durchgeführt wird. Die so 

komprimierten individuellen Datensätze können dann durch die oben beschriebene 

Matrix ausgedrückt werden. Diese Matrix wird dann im folgenden 

Rekonstruktionsschritt wieder verwendet. 

 

Im zweiten Schritt, bei der Anwendung der ICA-Algorithmus, wird der Infomax 

Algorithmus nach Bell und Sejnowski (1995) angewendet. In diesem Rahmen 

werden die räumlich unabhängigen funktionellen Aktivierungskarten geschaffen. Es 

wurde eine GM (gray-matter)-Maske verwendet. 

 

Der letzte Schritt, die Rekonstruktion, besteht aus der Verrechnung der Aktivierungs-

karten mit den dazugehörigen Zeitreihen der einzelnen Probanden. Diese 

Komponenten aller Probanden einer Gruppe werden hierbei entsprechend ihrer 

Ähnlichkeit gruppiert und, sofern sie einen gewissen Grenzwert erreichen, zu einer 

Gruppen-Komponente mit zugehörigem Aktivierungsmuster zusammengefasst [68]. 

Diese Aktivierungsmuster lassen sich dann als z-Wert bildlich darstellen. 

 

Auf diese Weise wurden pro Gruppe 30 unabhängige Komponenten extrahiert, von 

denen jede aus einer räumlichen Karte und dem zugehörigem Zeitverlauf besteht. 

Sowohl die räumliche Anordnung des Aktivierungsmusters als auch das 

Frequenzspektrum des BOLD-Signals jeder Komponenten wurden betrachtet. 

 

Für jede der 4 Gruppen wurde eine Komponente ausgewählt, die dem DMN am 

besten entspricht. Für diese DMN-Komponente wurde definiert, dass sie eine 

Koaktivierung des hintern Cingulums (PCC), des vorderen Cingulums (ACC), des 

Lobus parietalis inferior beidseits und des Gyrus frontalis superior et medius 

(GFS/GFM) beidseits aufweisen sollte. Da die Einbindung des Hippocampus in das 

DMN kontrovers beschrieben wird, wurde dessen Koaktivierung nicht als 

entscheidend für die Auswahl der jeweiligen Komponenten definiert.  
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Die Aktivierungen der ausgewählten Komponenten wurden dann bei einem z-Wert 

von 2,3 (p-Wert ≤ 0,01) betrachtet, die Ausdehnung in Voxel bestimmt sowie ihre 

Lokalisation im normalisierten Gehirn anhand ihrer Koordinaten im Atlas von 

Talairach und Tounoux [66] bestimmt.  

 

Die DMN der 4 Gruppen wurden untereinander mittels eines zweiseitigen t-Tests 

ebenfalls mit einem p-Wert von 0,01 hinsichtlich etwaiger Unterschiede untersucht. 

Auch die Lokalisation dieser Unterschiede wurde anhand des Talairach und 

Tournoux Atlas beschrieben. 
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4 Ergebnisse 
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4.1 Komponenten des Default Mode Network in der Gruppe  

  der jungen gesunden Probanden 

 

Die beiden prominentesten Koaktivierungen in der Gruppe der jungen gesunden 

Probanden liegen im Bereich des Gyrus cinguli. Die anterioren Bereiche des 

Cingulums (ACC) zeigen im Ruhemodus eine starke Aktivierung, die sich bis in den 

Gyrus frontalis medius (GFM) erstreckt (BA 32/24 und BA 9). Im Bereich des 

posterioren Cingulums (PCC) findet sich ein großer Bereich, der auch Teile des 

Precuneus umfasst (BA 23/30/31). 

 

In der Gruppe der jungen gesunden Probanden stellen sich desweiteren 

seitengleiche Aktivierungen im unteren Temporallappen (GTI) dar, die sich 

besonders in der linken Hemisphäre bis in den mittleren Temporallappen erstrecken 

(BA 20 bzw. 21). Die Koaktivierungen im rechten und linken unteren Parietallappen 

(LPI) reichen über den Gyrus angularis bis zum medialen Temporallappen (GTM) 

(BA 39/40). 

 

Ebenfalls symmetrisch zeigen sich die Koaktivierungen in den prä- und 

supplementärmotorischen Arealen BA 6 und 8 des Gyrus frontalis superior (GFS) 

und Gyrus frontalis medius (GFM) sowie in den Regionen im Gyrus temporalis 

superior (GTS, BA 38). Auch der Hippocampus ist auf beiden Seiten aktiviert, wobei 

sich auf der rechten Seite zusätzliche Areale im Bereich des Gyrus 

parahippocampalis und der Amygdala darstellen (siehe Abb.11 und Tab. 7). 
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z=53 z=38 z=21 

   

z=10 z=5 z=-11 
 

Abbildung 11: Aktivierungen der jungen gesunden Probanden (z=2,3) 
 
 

 

Tabelle 7: Aktivierungen der jungen gesunden Probanden (z=2,3) 

(PCC=posterior cingulate cortex, PCu=Precuneus, ACC=anterior cingulate cortex, GFS=Gyrus 
frontalis superior, GFM=Gyrus frontalis medius, GFI=Gyrus frontalis inferior, GTS=Gyrus temporalis 
superior, GTM=Gyrus temporalis medius, GTI= Gyrus temporalis inferior, LPI=Lobus parietalis 
inferior, GA=Gyrus angularis, GPH=Gyrus parahippocampalis, NA=Corpus amygdaloideum, 
Hi=Hippocampus) 

Region BA x y z Anzahl der Voxel 
       
PCC/PCu beidseits 23/30/31 -2 -53 22 24873 
ACC/GFM beidseits 
 
rechte Hemisphäre 

32/24/9 0 44 18 23967 

      
GTI 20 53 -8 -12 2577 
GTS 38 47 16 -18 106 
LPI/GTM/GA 39/40 46 -61 17 5377 
GFI 47 40 21 -18 181 
GFS/GFM 6/8 23 18 53 2243 
GPH/NA  28 -10 -15 205 
Hi  23 -22 -9 469 
      
linke Hemisphäre      
      
GTI/GTM 21 -57 -11 -9 2295 
GTS 38 -46 15 -18 97 
LPI/GTM/GA 39/40 -43 -67 21 4465 
GFS/GFM 6/8 -19 21 52 1603 
Hi  -21 -18 -15 976 
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4.2 Komponenten des Default Mode Network in der Gruppe der älteren 

gesunden Probanden 

 

Bei den gesunden älteren Probanden lassen sich die folgenden Areale als 

Bestandteile des DMN darstellen: in beiden Hemisphären zeigt sich eine deutliche 

Koaktivierung des ACC mit Ausdehnung bis in den GFM (BA 24/32 und 9) und des 

PCC mit Ausdehnung in den Precuneus (BA 23/30/31). 

 

Konnektivität besteht zu Bereichen des GTI/GTM (BA 20/21) beidseits, ebenso wie 

zu prä-und supplementärmotorischen Gebieten des GFS und GFM (BA 6 und 8). Im 

rechten und linken LPI findet sich ebenfalls eine Koaktivierung, die sich über den 

Gyrus angularis in den GTM fortsetzt (BA 39/40). Hippocampus und Gyrus 

parahippacampalis stellen sich ausschließlich auf der linken Seite dar. Auf dieser 

Seite zeigt sich zudem eine Aktivierung im Bereich der Inselrinde (siehe Abb. 12 und 

Tab.8). 
 

 

   

 

 

 

 

 

z=52 z=38 z=26 

 
 

 

z=15 z=5 z=-11  
 

Abbildung 12: Aktivierungen der älteren gesunden Probanden (z=2,3) 
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Tabelle 8: Aktivierungen der älteren gesunden Probanden (z=2,3) 

(PCC=posterior cingulate cortex, PCu=Precuneus, ACC=anterior cingulate cortex, GFS=Gyrus 
frontalis superior, GFM=Gyrus frontalis medius, GFI=Gyrus frontalis inferior, GTM=Gyrus temporalis 
medius, GTI=Gyrus temporalis inferior, LPI=Lobus parietalis inferior, GA=Gyrus angularis, 
GPH=Gyrus parahippocampalis, NA=Corpus amygdaloideum, Hi=Hippocampus, INS=Insula) 
 

4.3 Unterschiede zwischen jungen und älteren, gesunden Probanden 

 

Die wichtigsten Areale, in denen sich in der Gruppe der jungen gesunden Probanden 

im Vergleich zu der Gruppe der älteren gesunden Probanden eine stärkere 

Koaktivierung hinsichtlich Clustergöße im DMN findet, sind der rechte Hippocampus 

und der Gyrus parahippocampalis, die in der Gruppe der Älteren kaum aktiviert sind. 

 

Alle anderen Teilen des Netzwerkes, die bei den Jungen eine höhere Koaktivität 

zeigen, sind in der Gruppe der Älteren, wenngleich vermindert oder mit geringfügig 

abweichender Lokalisation, ebenfalls vorhanden. So sind bei den jungen Probanden 

der rechte ACC und der PCC beidseits stärker aktiviert (siehe Abb. 13). Auch im 

Bereich des rechten GTM (BA 21), des linken GTS/GTM (BA 38/39) und des linken 

LPI (BA 39) zeigt sich ein Unterschied zwischen jungen und älteren Probanden im 

Region BA x y z Anzahl 
der Voxel 

       
ACC/GFM beidseits 32/24/9 -2 46 22 16730 
PCC/PCu beidseits 23/30/31 -3 -52 14 27748 
       
rechte Hemisphäre      
      
GTI/GTM 20/21 56 -5,2 -13 705 
GTM 22 63 -14 -8 125 
 21 56 -27 -9 181 
 21 50 7 -19 190 
LPI/GTM/GA 39/40 44 -63 13 6154 
GFM 9 38 8,5 38 51 
GFS/GFM 6/8 24 21 51 703 
      
linke Hemisphäre      
       
GTI 21 -21 6 -17 121 
 20/21 -57 -7 -13 1073 
LPI/GTM/GA 39/40 -46 -66 15 6215 
GFS/GFM 6/8 -18 25 53 743 
 8 -19 11 53 69 
GFS 6 -35 6 47 677 
GPH  -30 -22 -16 67 
Hi  -17 -21 -8 1503 
INS 13/47 -29 19 -6 163 
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Sinne eines größeren Clusters in der Gruppe der jungen Kontrollgruppe (siehe 

Tab.9) 

 

Einige Komponenten des DMN sind hingegen bei den Älteren im Vergleich zu den 

jüngeren Probanden vermehrt koaktiviert. Zu diesen Regionen zählen der linke 

Hippocampus, der linke GTM (BA21) sowie Bereiche im GFM (BA 9) und im 

Precuneus/Cuneus (BA 18) beidseits (siehe Tab.10). 

 

Die einzige Region, die sich in der älteren, nicht jedoch in der jüngeren 

Kontrollgruppe findet, ist die linke Inselregion. 

 

           

 

 

Kontrast Jung > Alt 

 
 
 
 

 
 
 
 

          
 

Abbildung 13: Mehraktivierungen der jungen Kontrollgruppe im Vergleich mit der 

älteren Kontrollgruppe im Bereich des ACC und des PCC bei x=10; (zweiseitiger t-

Test, z=2,3) 
  

Junge 
Probanden
JJununge 

Ältere 
Probanden 
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Tabelle 9: Mehraktivierungen der jungen Kontrollgruppe im Vergleich mit der älteren 

Kontrollgruppe; (zweiseitiger t-Test, z=2,3) 
 

(PCC=posterior cingulate cortex, ACC=anterior cingulate cortex, GC=Gyrus cinguli, PCu=Precuneus, 
GTM=Gyrus temporalis medius, LPI=Lobus parietalis inferior, GFS=Gyrus frontalis superior, 
Hi=Hippocamous, GPH=Gyrus parahippocampalis, GTS=Gyrus temporalis superior,) 
 

 

 

Tabelle 10: Mehraktivierungen der älteren Kontrollgruppe im Vergleich mit der 

jungen Kontrollgruppe; (zweiseitiger t-Test, z=2,3) 
 

(PCu=Precuneus, Cu=Cuneus, GFM=Gyrus frontalis medialis, GTS=Gyrus temporalis superior, 

GTM=Gyrus temporalis medius, Hi=Hippocampus, INS=Insula) 

Region BA x y z Anzahl der Voxel 
       
PCC beidseits 31 2 -51 33 3365 
        
rechte Hemisphäre      
      
ACC 24/32 10 44 18 3440 
 24/32 6 22 23 623 
GC/PCu 7 8 -24 47 126 
GC  24 5 7 32 333 
 24 7 -8 44 65 
  31 2 -29 36 88 
GTM 21 49 -17 -17 138 
LPI  42 -53 19 171 
GFS 8 21 15 60 51 
Hi  29 -11 -9 147 
GPH  29 -24 -7 84 
       
linke Hemisphäre      
      
GC 24 -7 -2 36 97 
GTS 38 -36 12 -13 73 
GTM 39 -51 -13 0,2 99 

Region BA x y z Anzahl der Voxel 
       
PCu beidseits 
Cu beidseits 

18 -2 -73 11 702 

      
rechte Hemisphäre      
      
Cu 18 3 -85 2 83 
GFM 9 40 8 37 94 
      
linke Hemisphäre      
      
Cu 18 -5 -76 -4 252 
GTM 21 -21 -5 -18 133 
GTS 38 -30 24 -20 76 
GFM 9 -39 17 40 1630 
Hi  -15 -22 -11 52 
INS 13/47 -25 19 -6 139 
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4.4 Komponenten des Default Mode Network in der Gruppe der 

Probanden mit Leichter Kognitiver Störung 

 

In der Gruppe der Probanden mit LKS lassen sich die meisten Komponenten des 

DMN darstellen. So finden sich seitengleiche Aktivierungen im Bereich des vorderen 

cingulären Cortex (BA 32), die sich bis in den GFM (BA 9/10) erstrecken, und des 

hinteren cingulären Cortex (BA 31,32) sowie im Precuneus (BA 23). 

 

Der GTM (BA 20/21) hingegen findet sich ausschließlich auf der rechten Seite 

koaktiviert, während die parietalen Komponenten (LPI, BA 39/40) beidseitig 

darstellbar sind. Desweiteren zeigen sich die frontalen Komponenten mit 

Aktivierungen in den BA 6 und 8 und zusätzlichen Aktivierungen in den BA 9 und 10 

relativ weit verstreut. Aktivierungen in den parahippocamplen Gyri oder im 

Hippocampus sind nicht darstellbar (siehe Abb. 14 und Tab.11). 

 

   

 

 

 

 

 

z=45 z=35 z=25 

   

z=20 z=11 z=-9  

 

Abbildung 14: Aktivierungen der Probanden mit LKS (z=2,3) 
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Tabelle 11: Aktivierungen der Probanden mit LKS (z=2,3) 

(PCC=posterior cingulate cortex, Cu=Cuneus, ACC=anterior cingulate cortex, GC=Gyrus cinguli, 
GFS= Gyrus frontalis superior, GFM=Gyrus frontalis medius, PCu=Precuneus, GPrC=Gyrus 
precentralis, GTM= Gyrus temporalis medius, LPI= Lobus parietalis inferior) 

 

 

Region BA x y z Anzahl der Voxel 
      
ACC beidseits 32 -1 34 -4 173 
PCC/Cu beidseits 31/32/23 0 -52 23 22891 
GC beidseits 24 -1 -5 34 278 
GFS beidseits 9 und 10 0 58 21 129 
 
rechte Hemisphäre 

     

      
ACC 32 7 47 6 256 
GC  4 19 44 672 
PCu 19 5 -80 40 74 
GTM  21 61 -28 -10 432 
LPI/GTM 39/40 43 -65 24 6913 
GPrC 6 42 -4 48 80 
GFS/GFM 6 27 7 60 73 
 6 24 5 52 80 
 8 24 15 45 480 
 8 41 12 44 195 
 9 10 58 34 76 
 9 39 21 37 138 
 9 36 34 32 85 
 9 29 47 33 132 
 10 33 50 19 1555 
 10 18 57 14 514 
 10 10 57 24 136 
 
linke Hemisphäre 

     

      
ACC, GFM 32, 9/10 -3 47 12 1352 
LPI 40 -45 -58 43 51 
LPI/GTM 39/40 -41 -65 28 5366 
GFS 6 -18 21 52 93 
 10 -9 62 24 57 
GFM  10 -41 49 8 233 
 8 -25 28 47 267 
 8 -5 26 41 114 
 6 -30 8 45 126 
 6 -45 4 40 119 
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4.5 Unterschiede zwischen älteren gesunden Probanden und Probanden 

mit Leichter Kognitiver Störung 

 

Die älteren gesunden Probanden zeigen eine stärkere Konnektivität im Bereich des 

vorderen Cingulums (BA 32) inklusive GTS (BA 9) sowie des hinteren Cingulums 

(BA 23/30/31) (siehe Abb.15). Auch die temporalen Komponenten des DMN (BA 21) 

sind bei den gesunden Probanden beidseits deutlich aktiver. Im Bereich des rechten 

und linken Hippocampus/Gyrus parahippocampalis findet sich ein deutlicher 

Unterschied. Die LKS-Patienten zeigen hier im Gegensatz zur gesunden 

Kontrollgruppe keinerlei Aktivierung (siehe Tab. 12). 

 

  

Ältere Kontrollgruppe Probanden mit LKS 

 
 
 
 
 
 
 
 
 
 
 
 
   

 

 
 Kontrast Kontrollgruppe > LKS 

 
 

Abbildung 15: Mehraktivierungen der gesunden Kontrollgruppe im Vergleich mit 

LKS-Patienten bei x=-6 (sagittal), y=0 und z=24 (axial); (zweiseitiger t-Test, z=2,3) 
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Tabelle 12: Mehraktivierungen der gesunden Kontrollgruppe im Vergleich mit LKS-

Patienten; (zweiseitiger t-Test, z=2,3) 
 

(PCC=posterior cingulate cortex, ACC=anterior cingulate cortex, GC=Gyrus cinguli, GFS= Gyrus 
frontalis superior, GFM=Gyrus frontalis medius, GTS=Gyrus temporalis superior, GTM= Gyrus 
temporalis medius, LPI=Lobus parietalis inferior, GPH=Gyrus parahippocampalis, GA=Gyrus 
angularis, Hi=Hippocampus, INS=Insula) 

 

 

Die deutlichste Mehraktivierung seitens der LKS-Gruppe, der keine entsprechende 

Aktivierung in der jungen Kontrollgruppe gegenüber steht, liegt im präfrontalen 

Kortex (BA 10) mit besonderer Ausprägung rechts (siehe Abb. 16). Die weiteren 

Unterschiede sind weniger auf Mehraktivierungen seitens der LKS-Gruppe, als 

vielmehr auf Unterschiede in der Lokalisation zurückzuführen. So liegen die 

parietalen Komponenten in der LKS-Gruppe etwas weiter kranial als in der gesunden 

Vergleichsgruppe (siehe Tab. 13).  

 

Region BA x y z Anzahl der Voxel 
      
ACC/GFS beidseits 32/9 -3 48 26 2540 
PCC beidseits 23/31 -5 -60 12 4764 
      
Rechte Hemisphäre 
 

     

GC 30 10 -43 -7 255 
GTS/GTM 38/21 49 4 -14 3437 
 37 39 -72 -6 1663 
 21 45 -54 7 1438 
GPH  30 -10 -21 135 
Hippocampus  20 -6 -17 148 
 
 

     

linke Hemisphäre      
      
ACC  -1 38 5 183 
GTM/GTS 21 -47 -66 3 3588 
 21 -52 3 -15 1885 
 21 -43 3 -25 130 
 21 -56 -49 13 181 
LPI/GTM/GA 39 -56 -49 13 107 
GFM/GFS 10 -8 56 10 93 
Hi  -24 -8 -16 984 
GPH  -22 -35 -21 269 
  -30 -22 -17 52 
INS 13 -27 20 -5 271 
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Kontrast LKS > Kontrollgruppe 

 

 

    

 
 

Abbildung 16: Mehraktivierung der LKS-Patienten im Vergleich mit der gesunden 

Kontrollgruppe im Bereich des rechten GFM (BA 10) bei z=20; (zweiseitiger t-Test, 

z=2,3) 

 

 

Tabelle 13: Mehraktivierung der LKS-Patienten im Vergleich mit der gesunden 

Kontrollgruppe; (zweiseitiger t-Test, z=2,3) 

(PCC=posterior cingulate cortex, GC=Gyrus cinguli, GFM=Gyrus frontalis medius, GTM=Gyrus 

temporalis medius, LPI=Lobus parietalis inferior, GA=Gyrus angularis) 

 

Region  BA x y z Anzahl der Voxel 
      
Rechte Hemisphäre 
 

     

GC/PCC  5 -40 35 1031 
GC  7 17 44 267 
LPI/GTM/GA 39/40 59 -49 31 2178 
GFM 10 34 44 21 1747 

 
linke Hemisphäre 
 

     

LPI 39 -55 -44 30 2408 
GFM 10 -27 42 2 423 

 

Probanden 
mit LKS 

 

 Ältere 
Ältere 
Kontrollgruppe 
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4.6 Komponenten des Default Mode Network in der Gruppe der 

Probanden mit Alzheimer Demenz 

 

Bei den AD-Patienten lässt sich die Komponente im Bereich des vorderen cingulären 

Cortex nicht mehr darstellen, während sich im hinteren Cingulum (BA 30) noch eine 

Aktivierung findet. Die temporalen Komponenten (BA 20/21) sind rechts darstellbar, 

fehlen jedoch links, wohingegen die parietale Komponenten (LPI, BA 40) wieder 

beidseits zu finden sind. Auch Aktivierungen in den parahippocampalen Gyri sind 

beidseits vorhanden. Zusätzlich zeigt sich eine Aktivierung im BA 10 des rechten 

GTM. In den anderen Gruppen nicht beobachtete Aktivierungen finden sich bei den 

AD-Patienten im GFI beidseits (BA 45/46) (siehe Abb.17 und Tab. 14). 

 

 

    

 

 

 

 

 

z=53 z=40 z=25 

    

z=15 z=0 z=-17  
 

Abbildung 17: Aktivierungen der Gruppe der Alzheimer-Patienten (z=2,3) 
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Tabelle 14: Aktivierungen der Gruppe der Alzheimer-Patienten (z=2,3) 

(PCC=posterior cingulate cortex, GFM=Gyrus frontalis medius, GFI=Gyrus frontalis inferior, GTM= 
Gyrus temporalis medius, LPI=Lobus parietalis inferior, GPH=Gyrus parahippocampalis, 
PCu=Precuneus, Hi=Hippocampus) 
 

 

4.7 Unterschiede zwischen Patienten mit Alzheimer Demenz und älteren 

gesunden Probanden 

 

Es lässt sich bei den älteren gesunden Probanden eine deutliche höhere 

Koaktivierung aller Netzwerkkomponenten im Vergleich zu der Gruppe der 

Alzheimerpatienten feststellen. Lediglich im rechten Teil der temporalen 

Komponenten findet sich kein signifikanter Unterschied (siehe Abb. 18 und Tab.15). 

 

Eine deutliche Mehraktivierung seitens der AD-Gruppe, der keine entsprechende 

Region in der gesunden Kontrollgruppe gegenübersteht, liegt im BA 10 des rechten 

GFM (siehe Abb. 19 und Tab. 16) 

 
  

Region BA x y z Anzahl der Voxel 
      
PCC beidseits 30 -8 945 22 1648 
      
rechte Hemisphäre      
      
GTM  21 56 -24 -6 240 
 20 54 -36 -9 320 
LPI 40 30 -50 38 311 
GFM 10 34 44 4 906 
GFI 45 39 31 0 206 
GPH 35 26 -19 -17 160 
 28 25 -25 -5 104 
      
linke Hemisphäre 
 

     

PCu  7 -10 -40 50 373 
LPI 40 -28 -54 40 228 
GFI 46 -34 32 13 202 
Hi  -28 -29 -7 291 
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Abbildung 18: Mehraktivierungen der Kontrollgruppe im Vergleich mit der Gruppe 

der AD-Patienten im Bereich des ACC und des PCC bei x=-3 bzw. -8 (AD); 

(zweiseitiger t-Test, z=2,3) 
 

Region BA x y z Anzahl der Voxel 
      
ACC/GFM beidseits 32/9 -2 45 21 10494 
PCC/PCu beidseits 23/ 

30/31 
-3 -68 18 48968 

      
Rechte Hemisphäre      
      
LPI/GTM 39/40 47 -61 10 971 
GFM 6 36 -1 52 112 
GFS 8 25 22 50 377 
GPH  18 -5 -6 105 

 
linke Hemisphäre      
      
GTM 21 -55 -8 -15 424 
LPI/GTM 39/40 -52 -61 18 706 
GFS 8 -19 23 50 245 
GFM/GFS 8 -27 16 49 71 
 6 -41 6 44 1148 
INS 13/47 -28 17 -2 103 
 13 -43 -12 7 69 
GPH 28 -21 -15 -10 449 
Hi  -21 -5 -17 59 
 

Tabelle 15: Mehraktivierungen der Kontrollgruppe im Vergleich mit der Gruppe der 

AD-Patienten; (zweiseitiger t-Test, z=2,3) 

(PCC=posterior cingulate cortex, ACC=anterior cingulate cortex, GFS=Gyrus frontalis superior, 
GFM=Gyrus frontalis medius, GTM=Gyrus temporalis medius, LPI=Lobus parietalis inferior, 
GPH=Gyrus parahippocampalis, PCu=Precuneus, Hi=Hippocampus, INS=Insula) 

 

 

 

 

Kontrast Kontrollgruppe > AD 

 

 

 

 

 

Ältere 

Kontrollgruppe 

Probanden 

mit AD 



 

 
 

56 
 

 

Abbildung 19: Mehraktivierungen der AD-Patienten im Vergleich mit der 

Kontrollgruppe bei y=45 (koronar) und z=0 (axial); (zweiseitiger t-Test, z=2,3) 

 

 

Tabelle 16: Mehraktivierungen der AD-Patienten im Vergleich mit der 

Kontrollgruppe; (zweiseitiger t-Test, z=2,3) 

(GC=Gyrus centralis, GFM=Gyrus frontalis medius)  

 

      

Probanden mit AD Ältere Kontrollgruppe 

 

 

Kontrast AD > Kontrollgruppe 
 

  

Region BA x y z Anzahl der Voxel 
      
rechte Hemisphäre      
GC 24 6 2 36 453 
GFM 10 31 45 1 1229 
      
linke Hemisphäre      
GC 24 -7 -4 35 212 
GFM 6 -12 -8 63 178 
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4.8 Unterschiede zwischen Patienten mit Alzheimer Demenz und 

Leichter Kognitiver Störung 

 

In der LKS-Gruppe sind die Komponenten des vorderen und des hinteren Cingulums 

deutlicher aktiviert als bei den AD-Patienten, die besonders im Bereich des ACC 

keinerlei Aktivierung zeigen. 

Auch die präfrontale Aktivierung in der Region des BA 10, die sich lediglich in den 

beiden Patientengruppen findet, ist in der LKS-Gruppe im Vergleich zur AD-Gruppe 

vermehrt aktiviert (siehe Tab. 17).  

 

Region BA x y z Anzahl der Voxel 
      
ACC beidseits 32 0 35 -3 157 
PCC/PCu 23/30/31 1 -65 29 31256 
      
rechte Hemisphäre      
      
GC 31 4 15 40 59 
GTS  22 59 -51 13 66 
GFS 10 33 49 17 784 
 
Linke Hemisphäre 
 

8 5 20 48 128 

linker GFM 6 -46 3 40 312 
 

Tabelle 17: Mehraktivierungen der LKS-Patienten im Vergleich mit der Gruppe der 

AD-Patienten; (zweiseitiger t-Test, z=2,3) 

(PCC=posterior cingulate cortex, ACC=anterior cingulate cortex, GC=Gyrus cinguli, GFS= Gyrus 
frontalis superior, GFM=Gyrus frontalis medius, GTS=Gyrus temporalis superior, PCu=Precuneus) 
 
 

Mehraktivierungen seitens der Patienten mit AD finden sich u.a. im linken Precuneus 

(BA 7) sowie im rechten Gyrus parahippocampalis (siehe Tab. 22) 
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Tabelle 18: Mehraktivierungen der AD-Patienten im Vergleich mit der Gruppe der 

LKS-Patienten; (zweiseitiger t-Tests, z=2,3) 

(GFM=Gyrus frontalis medius, GTS=Gyrus temporalis superior, LPI=Lobus parietalis inferior, 

GPH=Gyrus parahippocampalis, PCu=Precuneus, Cu=Cuneus, Hi=Hippocampus) 

 

  

Region  BA x y z Anzahl der Voxel 
      
rechte Hemisphäre 
 

     

PCu 7 19 -50 42 218 
 7 12 -46 55 297 
      
linke Hemisphäre      
      
GTS 38 -48 15 -9 574 
LPI 40 -36 -33 54 174 
 3 -40 -19 49 195 
GFM  6 -9 -7 62 250 
Cu 30 -25 -73 9 102 
GPH  -39 -20 -15 1168 
Hi  -30 -28 -7 98 
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In dieser Studie war es möglich, das DMN mittels Ruhe-fMRT bei jungen und älteren 

gesunden Probanden sowie Patienten mit LKS und AD darzustellen und 

Unterschiede zwischen den Gruppen zu untersuchen. Im Folgenden werden die 

physiologischen Funktionen der einzelnen Netzwerkkomponenten erörtert. Darauf 

basierend wird die Bedeutung einer veränderten Koaktivierung dieser Komponenten 

für die Pathophysiologie der LKS sowie der AD diskutiert. 

 

5.1  Diskussion der Ergebnisse in der Gruppe der jungen gesunden  

  Probanden, physiologische Funktionen des Default Mode Network 

 

In der Untersuchung der Ruhenetzwerke der jungen, gesunden Kontrollgruppe 

mittels sogICA konnten die Komponenten des DMN, im Einzelnen das vordere (BA 

24/32) und hintere (BA 23/30/31) Cingulum, der Lobus parietalis inferior (BA 39/40), 

der Gyrus temporalis medius (BA 20/21) und die Gyri frontales medius et superior 

(BA 6/8/9) jeweils beidseits dargestellt werden. Diese Ergebnisse entsprechen und 

bestätigen die Erkenntnisse, die aus PET- und fMRT-Studien in der Literatur 

beschrieben sind. 

 

Vom hinteren Teil des Gyrus cinguli (PCC), der in unserer Studie in allen Gruppen 

die prominenteste Aktivierung innerhalb des Netzwerkes zeigte,  wird angenommen, 

dass er der entscheidende Knotenpunkt des DMN ist. Diese Annahme wird 

unterstützt durch die Tatsache, dass diese Region in der PET eine der metabolisch 

aktivsten im Ruhezustand ist [48] und dass die Aktivität mit abnehmendem 

Bewusstsein und  zunehmender Sedierung sinkt [69]. Desweiteren hat sich gezeigt, 

dass die Verbindungen zwischen PCC und präfrontalen Regionen bei 

Wachkomapatienten erheblich beeinträchtigt sind [70]. 

 

Der PCC ist als Teil des limbischen Systems mit anderen Erinnerungs-Regionen wie 

dem parahippocampalen Cortex, dem Hippocampus, dem entorhinalen Cortex und 

dem Thalamus reziprok verbunden. Studien zum episodischen Gedächtnis zeigen, 

dass der PCC über eine Vielzahl von Stimulustypen hinweg zum erfolgreichen 

erneuten Abrufen von Informationen essentiell ist. So ist der PCC beispielsweise bei 

der Wiedererkennung von Geräuschen [71], von Objekten und Bildern [71, 72], von 
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Gebäuden [73] und von erzählten Themen [74] aktiviert. PCC-Aktivierungen zeigen 

sich desweiteren in Studien, in denen Probanden mit bekannten Dingen aus ihrem 

persönlichen Umfeld konfrontiert werden: mit Namen von Freunden und 

Familienangehörigen [75], mit Gesichtern und Stimmen von Freunden und 

Familienangehörigen [76], mit persönlichen Besitztümern, bekannten Orten [77] und 

persönlichen, wichtigen Ereignissen im Leben [78]. 

 

Da der PCC also für die Erinnerungsfähigkeit eine große Rolle spielt und zugleich 

der Knotenpunkt des DMN ist, könnte dieses gesamte Netzwerk am Abruf 

episodischer Erinnerungen beteiligt sein. So ergibt sich die vorherrschende Meinung, 

dass dieses Netzwerk des „bewussten Ruhezustandes“ in das Erinnern und die 

Manipulation vergangener Ereignisse und darauf basierend in die Entwicklung von 

Problemlösungen und Zukunftsplänen involviert ist [54, 60, 61]. 

 

Diese Hypothese ist vereinbar mit der Tatsache, dass für die meisten weiteren, 

Komponenten des DMN, Funktionen beschrieben sind, die ebenfalls in engem 

Zusammenhang mit der Gedächtnisleistung stehen. So ist beispielsweise der Lobus 

parietalis inferior regelmäßig während Arbeitsspeicher-Aufgaben sowohl beim 

Menschen als auch bei Tieren aktiviert [58, 57]. 

 

Der Gyrus temporalis inferior (BA 20/21), der sich entsprechend unseren 

Untersuchungen bei den gesunden Probandengruppen beidseits darstellt, ist das 

Ende der Sehbahn [79] und wird auch als Speicher visueller Langzeiterinnerungen 

angesehen [80]. Dies entspricht der These von Buckner und Kollegen, die 

annehmen, dass informationsverarbeitende Gehirnareale später auch am Erinnern 

und „Vorstellen“ dieser Informationen beteiligt sind [81]. Desweitern ist für den linken 

Gyrus temporalis inferior beschrieben, dass er allgemein ein wichtiger Speicher für 

semantisches Wissen ist [59]. 

 

Die Aktivierungen im Gyrus frontalis superior (BA 6/8) finden sich in unserer Studie 

beidseits und entsprechen in ihrer Lokalisation etwa der dorsolateralen präfrontalen 

Komponente, wie sie von Schulman und Kollegen, allerdings nur für die linke Seite, 

beschrieben ist [48]. In der fMRI-Studie zu Aufgaben-negativen und Aufgeben-
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positiven Netzwerken von Fox und Kollegen zeigen sich im Aufgaben-negativen 

Netzwerk, das in den Hauptkomponenten dem DMN entspricht, die Komponenten im 

Gyrus frontalis superior (BA 8) beidseits [82]. 

 

Der PCC mit dem nahegelegenen Precuneus wird von Raichle und Kollegen [45] als 

tonisch aktive Gehirnregion, die kontinuierlich Informationen über die Umwelt und 

über unser Inneres sammelt, beschrieben. Nur wenn die erfolgreiche Bewältigung 

einer bestimmten Aufgabe fokussierte Aufmerksamkeit verlangt, wird diese breit 

angelegte Informationsaufnahme unterbrochen. Die besondere Wichtigkeit solch 

einer Funktion wird durch die Beobachtung unterstrichen, dass sich die 

Wiederherstellung des Bewusstseins aus einem vegetativen Status heraus durch die 

Wiederherstellung des Metabolismus in parietalen Regionen inklusive des 

Precuneus ankündigt [70]. Eine deutliche Koaktivierung von PCC und Precuneus 

konnte auch in der vorliegenden Studie in den Gruppen der gesunden Probanden 

gezeigt werden. 

 

Während von PCC und Precuneus also angenommen wird, dass sie Teile eines 

dorsalen „Aufmerksamkeits-, Erkenntnis- und Erinnerungs“-Netzwerkes sind, dem 

hauptsächlich höhere kortikale Komponenten angehören, zeigt der vordere Anteil 

des Gyrus cinguli (ACC) in diversen Studien eine funktionelle Verbindung zu eher 

subkortikalen und paralimbischen Regionen wie dem Nucleus accumbens und dem 

Hypothalamus, die an affektiven und autonomen Prozessen beteiligt sind [83, 84]. 

Der ACC könnte damit die ventrale „vegetativ-somatische-emotionale“ Komponente 

des DMN darstellen. Eine stabile funktionelle Verbindung zwischen PCC und ACC 

scheint die entscheidende Vernetzung zwischen höheren kortikalen (tendenziell 

bewussten) und eher elementaren (möglicherweise unbewussten) Prozessen zu 

sein [54]. Andererseits geht aus anderen Neuroimaging-Studien hervor, dass der 

ACC, zusammen mit medialen präfrontalen Regionen, auch während des 

episodischen Abrufs, besonders autobiographischer Ereignisse aktiviert ist [85], also 

auch an Gedächtnisfunktionen beteiligt ist. Den an den ACC angrenzenden 

medialen, präfrontalen Regionen (BA 9 und 10) wird eine Rolle in der Integration von 

emotionalen und kognitiven Vorgängen zugeschrieben. So können emotionale 
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Signale, die wiederum aus Erinnerungen resultieren, z.B. in Entscheidungsprozesse 

eingebracht werden [86]. 

 

Bisher wurden mehrere Hypothesen bezüglich der Gesamtfunktion des DMN 

aufgestellt. Es wird angenommen, dass es eine Rolle in der Wahrnehmung der von 

außen und innen generierten Stimuli [45], der Bewertung der Vergangenheit und der 

Planung zukünftiger Handlungen [61], als auch der Generierung stimulus-

unabhängiger Gedanken (Gedankenschweifen) [87] spielt. Eine noch 

weiterreichende Sichtweise ist, dass das DMN für die Aufrechterhaltung und 

Bereitstellung von Informationen verantwortlich ist, diese interpretiert und so auf 

Anforderungen der Umwelt reagieren und diese sogar in gewissem Sinne 

vorhersehen kann [46]. 

 

Ob der Hippocampus auch zu den Komponenten des DMN gezählt werden sollte, 

wird in der Literatur kontrovers diskutiert, da die Ergebnisse unterschiedlich 

ausfallen. Dies könnte Ausdruck der individuell unterschiedlichen Fähigkeit, an 

nichts Bestimmtes zu denken, sein. Auch die Möglichkeit der verminderten 

Hippocampusaktivierung durch Gewöhnung bei Probanden, die schon mehrfach an 

einem MRT-Experiment teilgenommen haben, könnte eine Rolle spielen. Wir haben 

den mentalen Zustand der Probanden während des Experiments nicht mittels eines 

geeigneten neuropsychologischen Fragebogens getestet. Weitere Studien sind 

nötig, um die Rolle der Hippocampusaktivierungen während des Ruhezustandes zu 

verstehen. Auch die Zugehörigkeit des Gyrus parahippocampalis zum DMN ist nicht 

abschließend geklärt. In unserer Studie zeigt sich eine beidseitige Aktivierung in der 

Gruppe der jungen Probanden und eine linksseitige Lateralisierung in der Gruppe 

der älteren Probenden. 
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5.2 Diskussion der Ergebnisse in der Gruppe der älteren gesunden 

Probanden, physiologische Veränderungen des Default Mode 

Network im Alter 

 

In der Gruppe der älteren, gesunden Probanden konnten alle Komponenten des 

DMN dargestellt werden. Dennoch lassen sich Unterschiede zu der Gruppe der 

jungen Probanden im Sinne einer Mehraktivierung in der Gruppe der Jungen in den 

meisten Regionen des DMN beobachten. Besonders im Bereich des PCC beidseits 

und des rechten ACC, Gyrus temporalis medius (GTM) und des linken Gyrus 

frontalis superior (GFS) und Lobus parietalis inferior (LPI) zeigen die älteren 

Probanden Einbußen im Vergleich zu den Jüngeren. Dies entspricht teilweise den 

Ergebnissen von Damoiseaux und Kollegen [62], die die intrinsische Aktivität des 

DMN von älteren und jungen Probanden untersuchten und ebenfalls eine reduzierte 

Koaktivierung im vorderen Teil des DMN (ACC (BA 24/32), GFS/GFM (BA 9/10/11) 

beidseits, GTM (BA 21/38) beidseits) sowie im hinteren Teil des DMN (PCC (BA 

23/31)), und in superioren parietalen Regionen (BA 7 beidseits) beschrieben. 

Insbesondere die Veränderungen der intrinsischen Aktivität in den vorderen Teilen 

des Netzwerkes korrelieren nach Damoiseaux und Kollegen [62] mit der 

verminderten geistigen Leistungsfähigkeit, also verminderter Aufmerksamkeit, 

Konzentration und Verarbeitungsgeschwindigkeit. Zusätzlich korreliert innerhalb der 

Gruppe der älteren Probanden die Aktivität des DMN mit dem Alter [62], was auf 

eine inverse Beziehung zwischen Alter und Integrität des Netzwerkes schließen 

lässt. 

 

Die Ergebnisse dieser Studie stehen ebenfalls in Einklang mit vorangegangenen 

Studien, die eine verminderte Deaktivierung des DMN während semantischer 

Klassifikations- und Erinnerungsaufgaben [64, 88] sowie eine verminderte Aufgaben-

induzierte Deaktivierung des PCC und parietaler Regionen bei älteren Probanden 

[64] beschreiben. Auch die Aufgaben-induzierte Aktivierung des medialen 

Temporallappens während der Verschlüsselung neu aufgenommener Informationen 

ist bei älteren im Vergleich zu jüngeren Probanden reduziert [89]. 
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Die Ergebnisse von Damoiseaux und Kollegen [62] blieben auch nach 

Berücksichtigung der geringeren Masse an grauer Substanz in der Gruppe der 

Älteren signifikant, so dass eine altersbedingte Degeneration der grauen Substanz 

alleine die verminderte Aktivität nicht hinlänglich erklärt. Bildgebende Studien, die 

das Volumen der weißen Substanz bei älteren Probanden untersuchten, zeigten 

einen Volumenverlust im Vergleich zu jungen Probanden im ACC und PCC, im 

Precuneus und in der Inselregion [62], aber auch in frontalen und parietalen 

Regionen [90], so dass die verminderte Aktivität des ACC und PCC teilweise auch 

als Resultat verminderter Afferenzen aus diesen Regionen zu deuten ist.  

 

Die intrinsische DMN-Aktivität ist mit spontanen Gedanken, bzw. 

„Gedankenschweifen“ assoziiert. Mason und Kollegen [87] führten dazu 2007 eine 

Studie durch, in der die Probanden über die Intensität bzw. „Frequenz“ ihres 

Gedankenschweifens während des fMRI-Experiments berichteten. Dabei korrelierte 

die Frequenz der Gedanken positiv mit der der DMN Aktivität. Dieser Ansatz wird 

unterstützt durch die Beschreibung einer inversen Beziehung zwischen Alter und 

spontanen, Stimulus- und Aufgaben-unabhängigen Gedanken [91]. 

 

Allerdings kann auch dieser Ansatz, der ja eine Veränderung in der bewussten 

mentalen Aktivität beschreibt, die geringere DMN-Aktivität bei älteren Probanden nur 

teilweise erklären. Entsprechend einer neueren Studie sind die kohärenten BOLD-

Fluktuationen des DMN auch unter allgemeiner Anästhesie, zumindest beim Affen, 

noch vorhanden [92]. 

 

Hinsichtlich veränderter Durchblutung und Stoffwechselrate innerhalb des DMN im 

Alter, zeigt eine große PET-Multicenter-Studie, dass eine inverse Korrelation 

zwischen Alter und Metabolismus im medialen Frontallappen bei Erwachsenen ohne 

Demenz besteht [93]. Diese Tatsache deckt sich mit unseren Ergebnissen, nach 

denen bei den älteren Probanden eine verminderte Koaktivierung in den frontalen 

Regionen des DMN (GFS/GFM (BA 9/10/11)) besteht. Diese Aktivitätsminderung 

könnte auch der Grund für die kompensatorische Mehraktivierung anderer frontaler 

Regionen sein, die bei den gesunden, jungen Probanden nicht zu finden ist. Eine 

solche Mehraktivierung bei älteren Probanden zeigt sich auch in unserer Studie im 



 

 
 

66 
 

Bereich des linken Gyrus frontalis medius (BA 9). Diese funktionelle Kompensation 

ist für den Frontallappen bei älteren Probanden in PET-Studien [94, 95] und fMRI-

Studien [85] für eine Vielzahl von Aufgaben beschrieben. 

 

Für den Hypometabolismus im Parietallappen und im PCC gilt, dass er lediglich mit 

der Schwere der AD assoziiert ist, nicht jedoch mit dem Alter alleine [93]. Das könnte 

wiederum bedeuten, dass während des physiologischen Alterungsprozesses 

Aktivitätseinbußen im PCC weniger durch primäre Schädigung, sondern eher durch 

reduzierte Aktivität assoziierter Gebiete, beispielsweise der Gyri frontales medius et 

superior, verursacht werden könnte.  

 

Zusammenfassend bleibt festzuhalten, dass ältere im Vergleich zu jüngeren 

Menschen eine leicht verminderte intrinsische Aktivität des DMN, sowie Einbußen in 

der aufgabeninduzierten Deaktivierung des DMN zeigen. Gerade diese Störung der 

Balance zwischen DMN-Aktivität und aufgabeninduzierter Aktivität könnte zur 

gesteigerten Anfälligkeit gegenüber Ablenkung durch irrelevante Informationen 

beitragen und so kognitive Funktionen negativ beeinflussen. Dieser Mechanismus 

spielt in noch höherem Maße eine Rolle bei der Einschränkung der kognitiven 

Leistungsfähigkeit bei Patienten mit LKS und AD. Insgesamt kann jedoch festgestellt 

werden, dass sich junge und ältere gesunde Probanden in der Anzahl der 

koaktivierten Netzwerkkomponenten charakteristischerweise nicht unterscheiden. 
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5.3 Diskussion der Ergebnisse der beiden Patientengruppen, 

pathologische Veränderungen des Default Mode Network 

 

Die Tatsache, dass der PCC beidseits bei den LKS-Probanden weniger koaktiviert 

ist als bei den älteren gesunden Probanden, und bei den AD-Patienten wiederum 

weniger als bei den LKS-Patienten, korreliert mit ebenfalls jeweils schlechteren 

Ergebnissen in den kognitiven Tests. Zusammen mit der Annahme, dass der PCC 

als Knotenpunkt des DMN zu sehen ist, kann man davon ausgehen, dass die 

Integrität dieses Netzwerkes und besonders des PCC eng mit der kognitiven 

Funktionsfähigkeit gekoppelt ist. So zeigen LKS-Patienten beispielsweise während 

des Wiedererkennens zuvor erlernter Gegenstände weniger Aktivität im PCC als 

gesunde Probanden [96]. Für die wichtige Rolle des PCC für die kognitive 

Leistungsfähigkeit und besonders für das Abrufen von Gedächtnisinhalten spricht 

auch, dass PCC-Hypometabolismus und -Minderperfusion regelmäßig sowohl bei 

LKS- [97] als auch bei Alzheimer-Patienten [98, 99] gefunden werden. Auch MRT-

Volumetriestudien zeigen bereits bei LKS Patienten Einbußen im PCC [100]. Nicht 

nur die Gesamtaktivierung des PCC während Erinnerungsaufgaben, bzw. die 

aufgabeninduzierte Deaktivierung sind bei Demenzpatienten erniedrigt, sondern 

auch die Schnelligkeit der Modulation. Gemäß Lustig und Kollegen [64] zeigt das 

zeitliche Profil der aufgabeninduzierten Deaktivierung im Bereich des PCC bei 

jungen Probanden eine sehr viel schnellere Antwort, während bei AD-Pateinten 

während des gesamten Aufgabenblocks eine Aktivierung bestehen bleibt. Die 

physiologische Deaktivierung kommt also verzögert und lediglich unvollständig 

zustande. 

 

Im Bereich des ACC zeigt sich einer der deutlichsten Unterschiede zwischen der 

AD-Gruppe und allen übrigen Gruppen. Die Aktivierung, die sich von jung über älter 

und LKS jeweils reduziert, lässt sich bei den AD-Patienten überhaupt nicht mehr 

darstellen. Diese Beobachtung lässt sich vereinbaren mit den Ergebnissen von 

Rombouts und Kollegen, die die DMN-Deaktivierung während einer visuellen 

Wiedererkennungsaufgabe untersuchten und herausfanden, dass sich das Ausmaß 

der reaktiven Deaktivierung im ACC zwischen LKS und AD-Patienten signifikant 

unterscheidet [101]. 
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Auch der Lobus parietalis inferior, dessen Koaktiervierung innerhalb des Netzwerkes 

in unserer Studie in der Gruppe der LKS-Patienten im Vergleich zur gesunden 

Kontrollgruppe relativ konstant ist, nimmt in der AD-Gruppe im Vergleich zu den 

LKS-Probanden deutlich ab. So lässt sich eine Aktivierung in der AD-Gruppe zwar 

beidseits, jedoch nur in geringer Ausprägung, darstellen. Fleisher und Kollegen 

konnten zeigen, dass die physiologische aufgabenbedingte Deaktivierung im Bereich 

des Parietallappens bereits bei Probanden mit einer positiven Familienenanamnese 

für Alzheimer Demenz und einem heterozygoten Vorliegen des Gens für 

Apolipoproteins E in der İ4-Variante im Vergleich zu gesunden Kontrollen signifikant 

reduziert ist [102]. Dass der Lobus parietalis inferior bereits in frühen Stadien der 

AD-Erkrankung einen reduzierten Stoffwechsel zeigt, weiß man aus 

vorangegangenen Studien [63]. Dieser reduzierte Metabolismus, der sich mittels 

PET bei AD-Patienten sowohl im PCC als auch im Parietallappen darstellen lässt 

[103], zeigt einen engen Zusammenhang mit dem neuropsychologischen Status 

[104]. Auch die funktionelle Konnektivität parietaler Regionen des DMN zu anderen 

Regionen des Netzwerkes wie dem medialen Temporallappen zeigt sich in diversen 

Studien bei der AD verändert [63, 105]. Unterschiede zwischen gesunden und 

dementen Probanden zeigt auch der Parietallappen hinsichtlich der Geschwindigkeit 

der Modulation. Lustig und Kollegen konnten zeigen, dass bei jungen Probanden 

während der Ausführung einer Aufgabe die Signalintensität in dieser Region nach 

einem kurzen Signalanstieg schnell abfällt, wohingegen bei den AD-Patienten die 

Aktivierung oft während der gesamten Aufgabe aufrecht erhalten wird [64]. Auch 

Wang und Kollegen beschreiben in ihrer Ruhe-fMRT-Analyse mittels Korrelation der 

sog. low frequency fluctuations (LFF) des BOLD-Signals, dass die meisten negativen 

Korrelationen bei AD-Patienten im Vergleich zu gesunden Probanden abnehmen. 

Dies gelte insbesondere für Verbindungen des Parietallappens [106]. 

 

Der PCC-Funktionsverlust könnte also u.a. durch verminderte Afferenzen, u.a. aus 

dem Lobus parietalis inferior bedingt sein. Aus DTI-Studien weiß man, dass bei AD-

Patienten eine erhebliche Abnahme der assoziativen Fasern der weißen Substanz 

im Bereich des Corpus callosum und des cingulären Cortex vorliegt [107], was die 

Annahme der reduzierten Konnektivität unterstützt.  
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Neben dem Lobus parietalis inferior zeigt sich in dieser Studie der Temporallappen 

als eine weitere Region, die durch eine Reduktion der Afferenzen zum PCC zu 

dessen verminderter Aktivität bei Demenz beitragen könnte. Koaktivierungen, 

besonders im oberen Temporallappen (BA 38), lassen sich schon in der Gruppe der 

älteren gesunden Probanden nicht mehr nachweisen. Koaktivierungen im mittleren 

und unteren Temporallappen (BA 20/21) nehmen von jung, über älter zu LKS und 

AD jeweils ab und sind in den beiden Patientengruppen nur noch rechts darstellbar. 

Dies lässt sich auch vereinbaren mit Ergebnissen aus PET-Studien, nach denen der 

Gyrus temporalis medius neben dem PCC und dem Precuneus zu den ersten 

Regionen zählt, die bei der Alzheimer-Erkrankung hinsichtlich Durchblutung und 

Stoffwechsel beeinträchtigt sind [102, 108]. Auch magnetenzephalographische 

Untersuchungen der funktionellen Konnektivität im Ruhezustand ergaben bei 

Alzheimer-Patienten eine Verschlechterung der temporalen Interhemisphären-

Verbindungen, die mit der Schwere der Erkrankung, ausgedrückt durch den MMSE-

Wert, korreliert. Zudem zeigen strukturelle MRT-Studien bereits bei LKS-Patienten 

eine Atrophie des Gyrus temporalis medius [109] und des Gyrus cinguli [110] sowie 

eine Reduktion der weißen Substanz [111], was auf eine veränderte Konnektivität 

des Gyrus temporalis medius zu Gebieten des Neocortex hindeutet. Die Annahme, 

dass der PCC-Funktionsverlust wiederum teilweise durch verminderte Afferenzen 

aus dem Gyrus temporalis medius bedingt ist, wird desweiteren unterstützt durch 

Studienergebnisse, die im physiologischen Zustand eine starke funktionelle 

Konnektivität zwischen diesen beiden Regionen beschreiben [112, 113]. 

 

Sorg und Kollegen fanden bei LKS-Patienten in einigen Teilen des DMN eine 

verminderte Aktivität, die jedoch nicht mit einer entsprechenden Volumenminderung 

korrelierte [114]. Diese Beobachtung legt nahe, dass die Veränderung in frühen 

Demenzstadien funktioneller Natur sind und die Atrophie sowohl der grauen als auch 

der weißen Substanz, wie sie bei der AD und in diversen Studien auch bei der LKS 

beschrieben wird [109, 110], nicht unbedingt als ursächlich für den Funktionsverlust 

zu sehen ist , sondern eventuell als Folge. 

 

Auch eine überproportional hohe Amyloidbelastung im PCC sowie in anderen Teilen 

des DMN kann für die frühe Funktionseinschränkung dieser Regionen mit 
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verantwortlich gemacht werden. So untersuchten Klunk und Kollegen mittels eines 

Amyloid-Tracers in einer PET-Studie das Verteilungsmuster der Ablagerungen bei 

Alzheimer-Patienten und gesunden Kontrollprobanden und fanden heraus, dass sich 

besonders in frontalen, aber auch parietalen und temporalen Regionen, die sich 

teilweise mit den Komponenten des DMN decken, eine erhöhte Retention des 

Amyloidtracers messen lässt. Außerdem besteht eine negative Korrelation zwischen 

Amyloidbelastung und Glucosemetabolismus der jeweiligen Region [115]. 

 

Allerdings stellte sich die Amyloidtracer-Retention im Gyrus temporalis medius nicht 

besonders ausgeprägt dar, was darauf hindeuten könnte, dass in diesem Gebiet 

weniger eine direkte Schädigung vorliegt, sondern eher der mangelnde Input aus 

anderen Regionen, wie z.B. dem Hippocampus, zu einem Funktionsverlust führt. 

Andererseits ist der Gyrus temporalis medius regelmäßig als eine der ersten 

Regionen von der Alzheimer-typischen Tau-Pathologie betroffen, welche dann mit 

Zellverlust und Atrophie einher geht [116]. Die Veränderungen in der Aktivität 

können neben dem Verlust anatomischer Verbindungen und neuronalen 

Ablagerungen zusätzlich durch eine eingeschränkte Verfügbarkeit von Acetylcholin 

bedingt sein. 

 

Desweiteren sind für den PCC und den Precuneus für verschiedene Bedingungen 

eine im Vergleich zu anderen Gehirnregionen besonders hohe Vulnerabilität 

beschrieben. So werden sie bei akuter Hypoxämie, beispielweise im Rahmen einer 

Kohlenmonoxidvergiftung und diffuser Gehirnischämie überproportional stark 

geschädigt. Diese erhöhte Vulnerabilität erklärt sich einerseits durch den hohen 

Bedarf bei hohem Stoffwechselumsatz und andererseits durch die Lage des PCC 

und Precuneus in der vaskulären Grenzzone zwischen Arteria cerebri media und 

posterior [45]. 

 

In beiden Patientengruppen fanden sich im rechten dorsolateralen Präfrontalcortex 

sowie im Bereich der Gyri frontales medius et inferior (BA 10) eine vermehrte 

Aktivierung im Vergleich zu der gleichaltrigen Kontrollgruppe. In der Gruppe der AD-

Patienten fehlen die Aktivierungen im oberen und mittleren Frontallappen, wie sie 

von den beiden Kontrollgruppen bekannt sind, fast vollständig. Allerdings zeigen sich 
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zusätzliche Aktivierungen im unteren Frontallappen (BA 45/46), die bei keiner 

anderen Gruppe zu beobachten sind. Diese Aktivierungen könnten 

Kompensationsversuche durch die Rekrutierung zusätzlicher neuronaler Ressourcen 

im lateralen Präfrontalcortex, bei schwindender Aktivität der medialen cingulären und 

frontalen Regionen, darstellen. Dafür würde auch sprechen, dass sich die frontalen 

Aktivierungen in der Gruppe der LKS-Patienten sehr viel diffuser und weiter verteilt 

darstellen als bei der gesunden Kontrollgruppe. Eine ähnliche Beobachtung 

beschreiben Celone und Kollegen, die besonders bei sehr milden Formen der LKS 

eine vermehrte aufgaben-induzierte Deaktivierung in mehreren Bereichen des DMN, 

u.a. dem Frontallappen, feststellen konnten [117]. Bei AD-Patienten ist im frühen 

Stadium eine gesteigerte präfrontale Aktivität während bestimmter kognitiver 

Aufgaben bekannt [118]. Auch zeigen AD-Patienten in einer Ruhe-fMRT-Studie von 

Wang und Kollegen eine vermehrte positive Korrelation innerhalb des 

Präfrontalkortex [106] sowie innerhalb des Parietallappens. Bei gleichzeitiger 

Abnahme der Konnektivität bzw. positiven Korrelationen zwischen den 

verschiedenen Lappen, wurde die erhöhte Konnektivität innerhalb eines Lobus auch 

in dieser Studie als Kompensationsmechanismus interpretiert [105]. Auch Grady und 

Kollegen beschreiben eine gesteigerte funktionelle Konnektivität innerhalb 

präfrontaler Regionen bei AD im Vergleich zu gesunden Kontrollen [119]. Ein 

möglicherweise ergänzender Erklärungsansatz geht davon aus, dass die 

Alzheimerpathologie, insbesondere die Amyloid Abeta 1-42 Ablagerungen, zu 

fehlgeleiteten axonalen Aussprießungen im Frontallappen führen [120]. 
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6 Zusammenfassung und Ausblick 
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Zusammenfassend ist festzustellen, dass mittels Ruhe-fMRT Unterschiede innerhalb 

des DMN zwischen jungen und älteren gesunden Probanden, sowie leicht kognitiv 

beeinträchtigten und dementen Patienten gefunden werden können. 

 

Obwohl diese Unterschiede bereits bei einer relativ kleinen Gruppengröße von 12 

Probanden darstellbar waren, bleibt offen, ob die Methode dies auch bei 

Einzelmessungen erlaubt. Hiervon hängt die klinische Anwendbarkeit entscheidend 

ab. Mögliche Anwendungsgebiete sind die Frühdiagnostik einer Demenz sowie die 

Evaluation therapeutischer Ansätze. 

 

Ein Ansatz, eine klinische Anwendbarkeit zu erreichen, basiert auf der Tatsache, 

dass die Ausdehnung der Aktivierungen schon innerhalb einer Studiengruppe stark 

variieren kann. Daher scheint es sinnvoll, im Gruppenvergleich hauptsächlich darauf 

zu achten, ob die einzelnen Komponenten des Netzwerkes vorhanden sind oder 

nicht. Insofern könnte in Zukunft für die Beurteilung von individuellen Datensätzen 

die sog. goodness-of-fit-Analyse, bei der eine individuelle statistische Karte mit einer 

DMN-Schablone verglichen wird, ein erfolgversprechender Ansatz sein [63]. 

 

Eine weitere Fragestellung könnte in Zukunft sein, ob das Vorhandensein 

bestimmter Teile des Netzwerkes, wie z.B. des PCC oder ACC, eine wichtigere Rolle 

für die Einordnung des Untersuchten spielt als die Anwesenheit anderer 

Netzwerkteile. Diese Überlegung ist auch unter dem Aspekt interessant, die 

Ruhemodus-fMRT zu nutzen, um die Effizienz medikamentöser und 

neuropsychologischer Therapie im Verlauf beurteilen zu können.  

 

Insgesamt hat diese Studie gezeigt, dass eine degenerative Veränderung des 

Gehirns anhand veränderter funktioneller Konnektivitätsprofile in einem kortikalen 

Ruhenetzwerkes charakterisiert werden kann. So ist auch die AD wesentlich durch 

pathologisch veränderte funktionelle Verbindungen gekennzeichnet. 

 

Da auch andere neuropsychiatrische Erkrankungen wie Schizophrenie [121], 

Depression [122] und Autismus [123] mit Veränderungen in der kortikalen 

Konnektivität im Ruhezustand einhergehen, besteht für die Ruhe-fMRT ein weites 
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mögliches Anwendungsgebiet. Gerade bei der Untersuchung psychiatrisch 

erkrankter Patienten stellt die Untersuchung des aufgabenunabhängigen 

Ruhesignals aufgrund der größeren Unabhängigkeit von Störgrößen wie 

eingeschränkter Kooperation und mangelndem Konzentrationsvermögen eine 

attraktive Alternative zu klassischen Aufgaben-Paradigmen dar. 

Zusätzlich zu der einfacheren Durchführbarkeit zeigen Ergebnisse von Rombouts 

und Kollegen, dass Gruppenunterschiede zwischen Demenzpatienten und gesunden 

Kontrollen signifikant deutlicher darstellbar sind, wenn man einen ICA-basierten 

Modell-freien Ansatz im Vergleich zu einem Modell-basierten Ansatz zur 

Datenauswertung verwendet [124]. 

Neben dem hier beschriebenen DMN wurden bereits weitere im Ruhezustand 

darstellbare Netzwerke identifiziert. Mantini und Kollegen kombinierten 2007 in einer 

Studie die ICA von BOLD-Signalen mit EEG-Frequenzfluktuationen und konnten auf 

diese Weise sechs unterschiedliche funktionelle Netzwerke aus dem Ruhesignal 

extrahieren [125]. Die Vielfalt der Ruhenetzwerke spiegelt die große intrinsische 

Dynamik des Gehirns wider, die durch externe Stimuli eher moduliert als bestimmt 

wird. Selektive Änderungen in diesen Netzwerken können charakteristisch für 

funktionelle Gehirnerkrankungen sein, so dass offen bleibt zu spezifizieren, welche 

Veränderungen in welchen Netzwerken für die Diagnose verschiedener 

neuropsychologischer Veränderungen wegweisend sind. 
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