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1. Einführung 

 

1.1 Das Mantelzelllymphom 

 

1.1.1 Die Pathogenese des Mantelzelllymphoms 

 

Das Mantelzelllymphom (MCL) ist ein niedrigmalignes B-Zell Non-Hodgkin-

Lymphom, das in der aktuellen WHO Lymphom Klassifikation als eigene 

Lymphomentität angesehen wird. Es macht etwa 5-10% aller Lymphome aus und ist 

vor allem durch die schlechteste Prognose aller Lymphome mit einem medianen 

Überleben von 3 Jahren und nur 10-15% Langzeitüberlebenden charakterisiert (Lenz 

et al., 2004). 

In den letzten Jahren konnten viele neue Erkenntnisse über die Biologie des MCL 

erlangt werden, welche das Verständnis der zugrunde liegenden Mechanismen 

gesteigert haben und somit auch zur Etablierung neuer Therapieansätze geführt 

haben. Beim MCL lassen sich zwei verschiedene zytologische Varianten 

unterscheiden. Einerseits der klassische Subtyp, der durch die monotone 

Proliferation von kleinen bis mittelgroßen zytoplasmaarmen Lymphozyten mit 

irregulären Kernen und unscheinbaren Nucleoli geprägt ist. Andererseits die 

blastoide Variante, die einen klinisch aggressiveren Verlauf zeigt und Tumoren 

beinhaltet, die Lymphoblasten ähneln sowie große und pleomorphe Zellen, die 

morphologisch großzelligen Lymphomen gleichen (Campo et al., 1999). 

Überlappende morphologische Charakteristika zwischen diesen beiden Varianten 

sind bekannt, so dass diese eher als Endpunkte des möglichen morphologischen 

Spektrums angesehen werden sollten (Tiemann et al., 2005).  

Die Tumorzellen des MCL zeigen den Phänotyp reifer B-Zellen mit  

Oberflächenexpression von IgM und IgG, desweiteren sind die Zellen positiv für die 

Marker CD5, CD20, CD22, CD24, CD43, CD79a und HLA-DR, während CD23 und 

die Follikelzentrumsmarker CD10 und bcl-6 gewöhnlich negativ sind (Bertoni et al., 

2004; Salaverria et al., 2006). Phänotypische Varianten können eine Negativität für 

CD5 und die gelegentliche Expression von CD10, bcl-6 oder T-Zell Markern CD8 

oder CD7 aufweisen (Campo et al., 1999; Swerdlow et al., 2002). Das genetische 

Kennzeichen des MCL ist die chromosomale Translokation t (11;14)(q13;q32), die in 
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praktisch allen MCL Fällen detektiert werden kann (Campo et al., 1999). Methode der 

Wahl zur Detektion dieser Translokation ist die Fluoreszenz in situ Hybridisierung 

(FISH). Die genetische Alteration führt zur Dysregulierung und Überexpression von 

Cyclin D1, das eine wichtige Rolle in der Steuerung des Zellzyklus spielt (Hunter et 

al., 1994). Zudem sind eine Reihe weiterer genetischer Alterationen bekannt, die 

beim MCL von Bedeutung sind, und auf die an späterer Stelle noch genauer 

eingegangen wird. Alle bisher in der Literatur beschriebenen molekularen 

Veränderungen beim MCL scheinen entweder die Zellzyklusregulation zu stören oder 

die zelluläre Antwort auf DNA-Schädigung zu beeinflussen (Fernandez et al., 2005).  

Wie oben bereits erwähnt ist die chromosomale Translokation t(11;14) (q13;q32) das 

genetische Kennzeichen des MCL. Diese Alteration führt zur Ankopplung des 

Promotors die für die schwere Kette der Immunglobuline auf Chromosom 14 mit dem  

bcl-1 (B-cell lymphoma/leukemia 1) Gen auf 11q13 (Tsujimoto et al., 1984) sowie 

CCDN1, das für Cyclin D1 codiert. Durch die Translokation wird bcl-1 unter die 

Kontrolle des IgH-Enhancers gestellt (Abb. 1) , was zu einer Überexpression von 

Cyclin D1 führt.  

 

 
Cyclin D1 ist ein wichtiger Regulator des Zellzyklus, der zusammen mit den Cyclin- 

abhängigen Kinasen (CDK) 4 und 6 den Übergang des Zellzyklus von der G1- zur S- 

Phase durch die Phosphorylierung des Retinoblastom Proteins (pRb) kontrolliert. 

Eine erhöhte Cyclin D1-Expression in MCL beschleunigt den Übergang der G1- in die 

S-Phase und die Proliferation der Tumorzellen durch zwei Mechanismen: Zum einen 

führt ein Anstieg der intrazellulären Konzentration von Cyclin D1/CDK-Komplexen zur 

Abbildung 1: Translo kation t(11;14)(q13;q32) 
in MCL  
 
(A) Normaler IgH-Locus auf 14q32.   
(B) Struktur des Cyclin D1 auf 11q13. Die meisten 
Bruchstellen sind im Breich des Major 
Translocation Cluster (MTC) lokalisiert. Zehn bis 
20% der MCL-Fälle weisen Bruchpunkte in weiter 
distal gelegen Regionen auf.  
(C) Als Ergebnis der t(11;14) Translokation gerät 
Cyclin D1 unter die Kontrolle des IgH-Enhancers. 
(modifiziert nach Fernandez et al., 2005) 
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Phosphorylierung des pRb, wodurch pRb seine hemmende Wirkung auf den 

Zellzyklus verliert (Hunter et al., 1994; Sherr 1996). Zum zweiten können erhöhte 

Mengen an Cyclin D1/CDK-Komplexen die Bindung der CDK Inhibitoren p27KIP und 

p21 an Cyclin E/CDK2 verhindern. Auch Cyclin E und CDK2 fördern den Eintritt der 

Zelle in die S-Phase des Zellzyklus durch die Phosphorylierung von pRb (Bertoni et 

al., 2006). Es konnte gezeigt werden, dass p27KIP in MCL Zellen vor allem durch 

Cyclin D1/CDK-Komplexe inhibiert wird, desweiteren führt eine gesteigerter Abbau 

durch den Ubiquitin-Proteasom-Pathway zur Verringerung dieses wichtigen CDK- 

Inhibitors (Chiarle et al., 2000).  

Obwohl die Cyclin D1-Überexpression, bedingt durch die Translokation t(11;14) 

(q13;q32), das genetische Kennzeichen des MCL ist, sind in der Literatur Fälle von 

Cyclin D1-negativen MCL veröffentlicht, bei denen mittels FISH auch keine 

Translokation t(11;14) (q13;q32) nachweisbar war. Diese Cyclin D1-negativen Fälle 

zeigten im Vergleich zu Cyclin D1-positiven MCL jedoch den gleichen klinischen 

Verlauf und ein für MCL charakteristisches Genexpressionsprofil in der Mikroarray 

Analyse. Zudem konnte in diesen Fällen als alternativer Mechanismus eine 

Hochregulation von Cyclin D2 und D3 detektiert werden (Fu et al., 2005).   

Zusätzlich zu oben genannten Mechanismen existieren in MCL weitere Alterationen, 

die zu einer Störung der Zellzyklusregulation beitragen. So konnte in einem Teil von 

besonders aggressiven MCL-Fällen eine homozygote Deletion des CDK-Inhibitors 

p16 INK4a  auf Chromosom 9p21 detektiert werden (Dreyling et al., 1997; Pinyol et al., 

1997). p16 INK4a    inhibiert CDK 4 und CDK 6 und führt daher dazu, dass  pRb in 

unphosphoryliertem und aktiven (antiproliferativem) Zustand bleibt. Die Deletion von 

p16 INK4a   und Überexpression von Cyclin D1 beschleunigen daher durch Erhöhung 

von aktiven Cyclin D1/CDK Komplexen den Übergang von der G1- in die S-Phase 

(Fernandez et al., 2005). In einem Teil der  MCL-Fälle mit p16 INK4a-Wildtyp zeigte 

sich eine Genamplifikation und hohe Expression von BMI-1. BMI-1 hemmt die 

Transkription von p16 INK4a  und fördert somit den Übergang von der G1- in die S- 

Phase. Obwohl Alterationen im BMI-1 Gen kein häufiges Ereignis in MCL sind, 

scheinen sie für die Pathogenese von besonders aggressiven MCL Fällen von 

Bedeutung sein (Bea et al., 2003). Neben p16 INK4a  codiert die genomische Region 

INK4a/ARF auch für ein weiteres Transkript, p14 ARF. Durch Verhinderung der 

MDM2-vermittelten proteasomalen Degradation des p53-Proteins besitzt p14 ARF eine 

wichtige Funktion in der Regulation von Signaltransduktionswegen der Zellzyklus- 
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und Apoptoseregulation (Harris et al., 2005). Nachdem beim MCL, wie auch in 

anderen B-Zell Lymphomen Deletionen des INK4a/ARF-Genorts sowohl das p16 

INK4a- als auch das p14 ARF-Gen betreffen, führt eine Inaktivierung zu einer 

gleichzeitigen Hemmung der Zellzyklusregulation und des p53- 

Signaltransduktionswegs. Eine weitere, in der Literatur beschriebene genetische 

Veränderung, die in besonders aggressiven, blastoiden Variante des MCL detektiert 

werden konnte ist die Amplifikation des CDK4-Gens, die zu einer Überexpression 

von CDK4 mRNA und Protein führt (Hernadez et al., 2005). Abbildung 2 fasst die 

bisher beschriebenen pathogenetischen Mechanismen nochmals zusammen. 

 

 
 
Abbildung 2: Zellzyklusdysregulation in MCL 
 
Moleküle mit gesteigerter Funktion oder Expression sind orange markiert, Moleküle mit geminderter 
Funktion oder Expression sind grün markiert. (modifiziert nach Fernandez et al., 2005) 
 

Der zweite pathogenetische Hauptmechanismus im MCL neben der oben 

beschriebenen Zellzyklusdysregulation ist eine fehlerhafte Funktion des DNA- 

Reparaturmechanismus. Eine der am häufigsten beim MCL beobachteten 

genetischen Alterationen sind Deletionen in der chromosomalen Region 11q22-23, in 

der das Ataxia-Teleangiectasia Mutated (ATM) Gen lokalisiert ist (Stilgenbauer et al, 

1999; Schaffner, 2000). ATM codiert für eine Phosphoproteinkinase der PI-3 Kinase- 

Familie und spielt eine zentrale Rolle in der zellulären Antwort auf DNA-Schädigung 

(Zhou et al., 2000). ATM ist nach DNA-Schädigung für die Aktivierung zahlreicher 

Schlüsselproteine wie p53, MDM2, BRCA1, CHK2 und NBSI verantwortlich (Zhou et 
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al., 2000) . Die Folge dieser Aktivierung nach DNA-Schädigung sind ein G1- oder ein 

G2-Arrest sowie eine verminderte DNA-Synthese. Auch die dem ATM-Gen in der 

Signaltransduktionskaskade nachgeordneten Regulatoren können genetische 

Alterationen aufweisen und somit zur Pathogenese des MCL beitragen. CHK1 und 

CHK2 sind Kinasen, die nach DNA-Schädigung eine DNA-Replikation verhindern 

und einen Arrest des Zellzyklus induzieren (Zhou et al., 2000).  In einem  Teil von 

MCL-Fällen konnten Alterationen des CHK2-Gens für festgestellt werden, in selten 

Fällen auch ein verminderter Gehalt an CHK1-Protein (Hangaishi et al., 2002; Tort et 

al., 2005).  

Auch p53 ist Ziel genetischer Alterationen beim MCL. p53 nimmt eine 

Schlüsselfunktion in der zellulären Antwort auf DNA-Schädigung ein. Die 

Tumorsuppressorfunktion von p53 wird durch eine Vielzahl an Mechanismen 

vermittelt, die zu Zellzyklusarrest, Induktion von Apoptose, Verhinderung von 

Angiogenese und Metastasierung und zur Initiierung der DNA-Reparatur führen 

(Harris et al., 2005). Während eine Inaktivierung von p53 nur selten in klassischen 

MCL Fällen beobachtet werden, zeigt diese sich in 30% der blastoiden Varianten mit 

hohen Proliferationsraten und ist mit einer schlechten Prognose verbunden 

(Fernandez et al., 2005).  

Neben den bereits erwähnten Mechanismen werden weitere pathogenetische 

Prinzipien des MCL diskutiert. So scheint der Transkriptionsfaktor NF-κB eine 

wichtige Rolle zu spielen. NF-κB ist normalerweise im Cytoplasma an IκB gebunden 

und somit inaktiv. Durch eine Vielzahl von Stimuli wird IκB durch die IK-Kinase 

phosphoryliert, ubiquitiniert und durch das Proteasom abgebaut. Dadurch wird NF-κB 

frei und in den Zellkern lokalisiert, wo es seine Zielgene aktiviert. Die Zielgene von 

NF-κB sind zum einen Entzündungsmediatoren, Angiogenesemediatoren, 

Adhäsionsmoleküle und Cytokine, zudem werden jedoch auch anti-apoptotische und 

proliferationssteigernde Effekte durch NF-κB vermittelt (Nakanishi et al., 2005). Eine 

konstitutive Überexpression von NF-κB konnte sowohl in MCL-Zelllinien als auch in 

primären MCL-Zellen nachgewiesen werden, die Inhibition der konstitutiven NF-κB 

Aktivierung führte zu Zellzyklusarrest und Apoptose (Pham et al., 2003). Diese Daten 

legen somit nahe, dass auch die dauerhafte Aktivierung von NF-κB zur Pathogenese 

des MCL beiträgt. 

Ein anderer, erst unlängst beschriebener möglicher Pathomechanismus könnte den 

PI3 Kinase/Akt-Signaltransduktionsweg betreffen. Nach Phosphorylierung durch die 
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PI3 Kinase und somit Aktivierung des Akt-Proteines werden sowohl die Proliferation 

der Zellen gesteigert, als auch Apoptose verhindert (Osaki et al., 2004). 

Phosphoryliertes Akt konnte in einer Arbeit von Rudelius et al. in 12 von 12 

blastoiden MCL-Varianten sowie in 4 von 4 Zelllinien detektiert werden, während 

phosphoryliertes Akt nur in 5 von 16 typischen MCL Fällen nachweisbar war. Eine 

Hemmung des PI3K/Akt-Signaltransduktionswegs führte zu Zellzyklusarrest und 

induzierte Apoptose, sodass auch die konstitutive Aktivierung des PI3K/Akt 

Signaltransduktionswegs zur Pathogenese des MCL beiträgt (Rudelius et al., 2006).  

 

 

1.1.2 Klinik, Verlauf und Therapie des Mantelzellly mphoms  

 

Das MCL zeigt eine Inzidenz von  2-3/100000/Jahr und macht etwa 5 bis 10% aller 

Lymphome in Nordamerika und Europa aus (Lenz et al., 2004). Mit einem 

Altersmedian von 65 Jahren bei Erstdiagnose betrifft es vor allem ältere männliche 

Patienten. Ein Großteil der MCL-Fälle wird erst in den fortgeschrittenen Ann Arbor- 

Stadien III und IV diagnostiziert (Bosch et al., 1998). Extranodale Verläufe werden in 

etwa 90% aller Fälle gefunden und betreffen vor allem Knochenmark, Leber und den 

Gastrointestinaltrakt. Eine B-Symptomatik wird in weniger als 50% beschrieben 

(Lenz et al., 2004).  

Der klinische Verlauf des Mantelzelllymphoms ist durch eine schlechte Prognose mit 

einem mittleren Überleben von 3 bis 4 Jahren und nur 10 bis 15% 

Langzeitüberlebenden charakterisiert. Wichtige  Prognosefaktoren sind schlechter 

Allgemeinzustand, B-Symptomatik, Splenomegalie und ein hoher IPI (International 

Prognostic Index)-Wert (Bosch et al., 1998). Desweiteren sind p53-Mutationen mit 

einer schlechten Prognose verbunden (Fernandez et al., 2005).  In einer Studie, die 

Histopathologie, Zellproliferation und klinischen Verlauf an 304 MCL-Patienten 

untersuchte, zeigten sich in der multivariaten Datenanalyse Ki67-Index,  mitotischer 

Index und Alter als statistisch signifikante Prognosefaktoren (Tiemann et al., 2005). 

Die große  prognostische Bedeutung von Markern der Zellproliferation konnte in 

einer Mirkoarray-Studie bestätigt werden (Rosenwald et al., 2003).  

Obwohl im Verständnis der Pathogenese in den letzten Jahren große Fortschritte 

erzielt werden konnten, bleibt die Therapie des MCL schwierig. Der klinische Verlauf  

ist durch eine hohe initiale Gesamtansprechrate, einen relativ kurzen Zeitraum bis 
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zum Krankheitsprogress sowie schlechtes Gesamtüberleben (OS) von nur 3 bis 4 

Jahren gekennzeichnet (Witzig et al., 2005). Bisher gibt es kein 

Standardtherapiekonzept für neu diagnostizierte oder rezidivierte MCL. Im 

Allgemeinen zeigen aggressivere Konzepte hohe Ansprechraten und verbessern das 

progressionsfreie Überleben (PFS), dennoch ist das MCL durch keine der bisher 

bekannten Therapien heilbar (Brody et al., 2006). 

Als initiale Therapie wird eine Kombinationschemotherapie durchgeführt. Die 

Chemotherapie-Regime lassen sich in 3 große Gruppen einteilen: Schemata die 

Doxorubicin enthalten wie CHOP (Cyclophosphamid, Doxorubicin, Vincristin und 

Prednison), intensivierte Kombinationschemotherapie wie HyperVAD 

(Cyclophosphamid, Vincristin, Doxorubicin, Dexamethason, Cytarabin und 

Methotrexat) , und auf Purin-Analoga basierende Schemata wie FCM (Fludarabin, 

Cyclophosphamid und Mitoxantron) (Witzig et al., 2005).  

Durch Hinzunahme des anti-CD20 Antikörpers Rituximab konnte in klinischen 

Studien eine Verbesserung der Ansprechrate (OR) erzielt werden. So führte R-

CHOP im Vergleich zu CHOP in einer prospektiven, randomisierten Studie 

unbehandelter Patienten im fortgeschrittenen Stadium zu signifikant höherem OR 

(94% vs. 74%, p=0,005) und kompletten Remission (CR) (34% vs. 7%, p=0,00024), 

dennoch konnte das PFS und das OS nicht signifikant verbessert werden (Lenz et 

al., 2005). 

In einer weiteren Studie an Patienten mit therapierefraktärem oder rezidivierendem 

MCL zeigte sich im R-FCM Arm im Vergleich zum FCM Arm beim MCL ein statistisch 

signifikant längeres OS (p=0,0042) (Forstpointner et al., 2004). 

Eine weitere therapeutische Option beim MCL besteht in der 

Stammzelltransplantation (SCT). Sowohl autologe als auch allogene SCT wurden in 

klinischen Studien auf ihren Einfluss auf PFS und OS untersucht. 2005 wurden die 

Ergebnisse der ersten prospektiven, randomisierten Studie vorgestellt, in der 

myoablative Radio-Chemotherapie und autologe SCT mit einer α-Interferon 

Erhaltungstherapie in 122 Patienten verglichen wurde. Verglichen mit dem α-

Interferon-Arm zeigten Patienten im SCT-Arm ein signifikant längeres PFS (39 

Monate vs. 17 Monate, p=0,018), jedoch keinen signifikanten Unterschied im 3- 

Jahres OS (83% vs. 77%, p=0,18) (Dreyling et al., 2005). Ergebnisse weiterer 

Studien legen nahe, dass der Nutzen einer autologen SCT größer ist, wenn sie 

früher im Krankheitsverlauf durchgeführt wird. Eine retrospektive Studie, die das 



Ein führung 

 8

Ergebnis von 195-MCL Patienten nach autologer SCT untersuchte, berichtet über ein 

OS von 76% nach 2 Jahren beziehungsweise 50% nach 5 Jahren mit einem PFS 

von 55% bzw. 33%. Der Krankheitsstatus bei Transplantation war der wichtigste 

Prognosefaktor hinsichtlich des Überlebens der Patienten: Patienten mit 

chemotherapieempfindlicher  Erkrankung, die sich jedoch nicht in erster kompletter 

Remission befanden, hatten eine 3 mal (95% CI: 1,66-5,38, P < 0,001) höhere 

Wahrscheinlichkeit zu versterben als Patienten, die in erster kompletter Remission 

transplantiert wurden (Vandenberghe et al., 2003). Die Frage, ob die Hinzunahme 

von Rituximab in die Induktion zu einer Verbesserung der Langzeitprognose führt ist 

Gegenstand aktueller Studien.  

Obwohl mit der autologen SCT eine Verlängerung des PFS erreicht wird, konnte 

bisher nicht nachgewiesen werden, dass eine definitive Heilung erzielt werden kann. 

Da die allogene SCT in anderen Lymphomtypen einen kurativen Ansatz aufgrund 

des Graft-versus-Leukemia Effekts gezeigt hat (Peggs et al., 2005) , wurde dieser 

Ansatz auch für therapierefraktäre MCL Patienten verfolgt. Mit einer myeloablativen 

Therapie gefolgt von einer allogenen SCT konnte in einer Studie an 16 MCL 

Patienten nach 3 Jahren ein OS von 55% erreicht werden, wobei die 

therapiebezogene Mortalität bei 38% lag (Khouri et al., 1999). Da das MCL 

vorwiegend bei älteren Patienten auftritt, wurden auch dosis-reduzierte 

Konditionierungen, gefolgt von allogener SCT geprüft. Die Ergebnisse der einzelnen 

Studien unterscheiden sich stark, sodass eine endgültige Bewertung noch aussteht. 

So konnte in einer Studie an 18 chemotherapie-sensitiven MCL-Patienten eine 3 

Jahresüberlebensrate von 85,5% und ein PFS von 82% ermittelt werden (Khouri et 

al., 2002), während in einer anderen Studie mit 22 chemotherapie-refraktären 

Patienten das 2 Jahresgesamtüberleben bei 12% lag und alle Patienten rezidivierten 

(Robinson et al., 2002). 

Ein weiterer Therapieansatz ist die Radioimmuntherapie. Die beiden klinisch zur 

Verfügung stehenden Substanzen sind hierbei Iod 131 -Tositumomab (Bexxar®) und 

Yttrium 90 -Ibritumomab Tiuxetan (Zevalin®). In einer Studie, in der MCL-Patienten im 

Rahmen einer Hochdosischemotherapie eine Radioimmuntherapie (Bexxar®) 

erhielten, lag das 3-Jahres Gesamtüberleben bei 93% und das PFS bei 61% (Gopal 

et al., 2002), vergleichbare Ergebnisse lieferte eine andere Studie, in der die Gabe 

von Zevalin® im Rahmen einer Hochdosischemotherapie gefolgt von autologer SCT 

untersucht wurde (Nademanee et al., 2005).  
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Auch die klinische Wirksamkeit neuer Substanzen wird untersucht. In Studien sind 

derzeit unter anderem Proteasom-Inhibitoren, auf die im nächsten Kapitel noch 

ausführlich eingegangen wird, Thalidomid und „Mammalian Target of Rapamicin“ 

(mTOR) Kinase-Inhibitoren und Cyclin D1-Inhibitoren im Einsatz. Die Kombination 

von Thalidomid und Rituximab führte in einer Studie an Patienten mit 

therapierefraktärem MCL in 31% zu einer kompletten Remission sowie einem 

medianen PFS von 20 Monaten (95% CI,  17,3-23,6) und einem 3-Jahres-Überleben 

von 75% (Kaufmann et al., 2004). Die Wirksamkeit des mTOR Kinase-Inhibitors 

Temsirolimus wurde in einer Phase-II-Studie an Patienten mit therapierefraktärem 

MCL untersucht. Das Gesamtansprechen lag bei 38%, die Rate der kompletten 

Remissionen bei 3% und die mediane Zeit bis zum Progress bei 6,5 Monaten (95% 

CI, 2,9-8,3) (Witzig et al., 2005). Auch der Ansatz der gezielten Inhibition von Cyclin 

D1 wird in Studien verfolgt. 

Zusammenfassend wurden in der Therapie des MCL in den letzten Jahren zwar 

Fortschritte erzielt und die Ansprechraten gesteigert, bezüglich des  

Gesamtüberlebens konnten jedoch keine wesentlichen Verbesserungen erreicht 

werden. Die SCT weist vielversprechende Ergebnisse auf, der Einfluß auf das 

Gesamtüberleben muß nach längerer Nachbeobachtungszeit bestätigt werden. Auch 

die neueren Substanzen bedürfen weiterer Untersuchungen, um ihren Stellenwert in 

der Therapie des MCL definieren zu können.  

 

 

1.2 Das Proteasom 

 

1.2.1 Bau und Funktion des Proteasoms 

 

Das Proteasom ist ein Enzymkomplex, der sowohl im Zellkern als auch im 

Zytoplasma aller eukaryotischen Zellen vorkommt. Es ist das wichtigste 

extralysosomale, proteolytische System (Orlowski et al., 2000). Das Proteasom ist 

ein hochselektiver Enzymkomplex, dessen Regulation einen schnellen Abbau von 

Zielproteinen sicherstellt. Die Substrate des Proteasoms sind in 

Zellzyklusprogression,  Onkogenese, Apoptose, Regulation von Genexpression, 

Entzündungsmechanismen und Langzeitgedächtnis involviert (Kisselev et al., 2001). 
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Das Proteasom ist ein 2,4-MDa Komplex, der aus zwei Untereinheiten aufgebaut ist, 

der 20S Kerneinheit (core particle, CP), die die Proteasen enthält,  und einer 19S 

Regulationseinheit (regulatory particle, RP), die die 20S CP reguliert (Abb. 3) 

(Glickman et al., 2002). Die 20S CP ist zylinderförmig aus vier horizontal 

angeordneten Ringsystemen aufgebaut. Von diesen  vier Ringen befinden sich zwei 

identische α-Ringe an den Außenseiten sowie  zwei identische β-Ringe im Inneren 

(Richardson et al., 2005). Jeder dieser  Ringe ist wiederum aus sieben 

Untereinheiten aufgebaut. Die zwei inneren β-Ringe enthalten die enzymatisch 

aktiven Bereiche des Proteasoms. Drei (β1,β2 und β5) der sieben β-Untereinheiten 

sind für die enzymatische Aktivität des Proteasoms verantwortlich. Diese katalytisch 

aktiven Bereiche werden nach Enzymen ähnlicher proteolytischer Aktivität und 

Spezifität als Chymotrypsin-ähnlich, Trypsin-ähnlich oder Post-Glutamyl-Peptid 

Hydrolase-ähnlich bezeichnet (Adams, 2004).  

In vivo ist die Bindung des 20S Proteasoms an eine regulatorische Einheit 

notwendig. Einer dieser Regulatoren ist das 19S RP, das den Eintritt von Substraten 

in den proteolytischen Kern kontrolliert (Glickman et al., 2002). Das 19S RP ist ein 

700-kDa Komplex aus 20 Polypeptid Untereinheiten, das an beide Enden des 20S 

CP bindet um so das 26S Proteasom zu bilden. Das 19S RP kann weiterhin in zwei 

Unterstrukturen unterteilt werden, die Basis und die Deckelplatte (Glickman et al., 

1998). Die Basis enthält sechs homologe ATPasen (Rpt 1-6) die Substrate entfalten 

und diese der Öffnung des 20S CP zuführen können, sowie drei Nicht-ATPase 

Untereinheiten (Rpn1, -2 und  -10) (Glickman et al., 2002; Richardson et al., 2005). 

Die Basis allein ist in der Lage, Peptide und nicht-ubiquitinierte Proteine abzubauen, 

die Deckelplatte wird jedoch benötigt, um ubiquitinierte Proteine zu degradieren, und 

trägt somit zu einem höheren Spezifität der Proteolyse bei (Adams, 2004). Das 26S 

Proteasom katalysiert den Ubiquitin-Signalpfad der ATP-abhängigen Proteolyse. 

ATP wird hierbei sowohl für die Bildung des 26S Komplexes als auch für das 

Entfalten und Linearisieren großer Proteine benötigt, um deren Eintritt in den 

katalytischen inneren Kern des Proteasoms zu erleichtern (De Martino et al., 1999; 

Benaroudj et al., 2003).  
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Zielproteine des Proteasoms werden durch Anfügen einer Ubiquitinkette, einem aus 

76 Aminosäuren bestehenden Polypeptid erkannt und somit dem Abbau zugeführt 

(Glickman et al., 2002). Die Ubiquitinierung von Substratproteinen beinhaltet die 

sequenzielle Wirkung von drei Enzymgruppen, die für die Aktivierung  von freiem 

Ubiquitin und dessen Transport zu den Zielproteinen verantwortlich sind. Diese 

Enzymkaskade besteht  aus einem ATP-abhängigem ubiquitin-aktivierendem Enzym 

(E1), etwa 25 verschiedenen ubiquitin-konjugiernendem Enzymen (E2) und 

hunderten von Ubiquitin Protein Ligasen (E3) (Adams, 2004). Durch die 

Enzmykaskade wird eine kovalente Bindung zwischen dem C-Terminus der 

Ubiquitinkette und einer freien Aminogruppe des Zielproteins hergestellt (Richardson 

et al., 2005).    

 

 
 
Abbildung 4: Vereinfachtes Schema des Ubiquitin-Pro teasom Pathways 
 
Das Zielprotein wird durch die Enzyme E1, E2 und E3 unter ATP-Verbrauch ubiquitiniert und somit für 
den Abbau im Proteasom gekennzeichnet (modifiziert nach Kisselev et al., 2001).  
 

 

Abbildung 3: Str uktur des 26S 
Proteasoms 
 
Dreidimensionale Darstellung des 
Proteasom Multienzym Komplexes. 
Dieser besteht aus dem 20S 
Komplex, der sich aus α- und β-
Untereinheiten zusammensetzt 
sowie zwei 19S Komplexen. Unter 
ATP Verbrauch bilden diese das 
Proteasom (modifiziert nach Adams, 
2004) 
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1.3 Proteasom-Inhibitoren - Bortezomib  

 

1.3.1 Entwicklung, Struktur und Funktionsweise von Bortezomib 

 

Die Proteinhomöostase ist entscheidend für biologische Prozesse, die für den 

Fortbestand von Tumorzellen von großer Bedeutung sind. Daher ist die Regulation 

von Bildung und Abbau von Proteinen, die Proliferation oder andere Eigenschaften 

von Tumorzellen  vermitteln, ein wichtiger Angriffspunkt für die Therapie maligner 

Tumoren. Das Ubiquitin-Proteasom-System, das mehr als 80% aller zellulären 

Proteine prozessiert ist der Hauptmechanismus für den Abbau von Proteinen, die für 

die Kontrolle von Zellzyklus, Apoptose oder Zelladhäsion verantwortlich sind (Adams, 

2004). Daher entwickelte sich das Proteasom zu einem Erfolg versprechenden 

Angriffsziel für die Therapie maligner Tumoren.  

Die wichtigsten Proteasom-Inhibitoren lassen sich entsprechend der chemischen 

Gruppen, die mit dem Threoninrest der aktiven Zone des Proteasoms reagiert,  in 

fünf verschiedene Gruppen einteilen: Peptid-Aldehyde, Petid-Vinylsulfone, Peptid- 

Boronate, Peptid-Epoxyketone und β-Lactone (Kisselev et al., 2001). Einzig die 

Peptid-Boronate zeigten Eigenschaften, die sie für eine klinische Fortentwicklung als 

geeignet erscheinen ließen: Enzymspezifität, metabolische Stabilität und reversible 

Bindung an das Proteasom (Adams et al., 1998; Almond et al., 2002). Anhand der 

Peptid-Aldehyde und dem β-Lacton Lactacystin konnten dennoch viele Erkenntnisse 

über die Wirkungen von Proteasom-Inhibitoren in Zelllinien und Tumor-Xenografts 

gewonnen werden. So zeigte sich eine selektive Zytotoxizität für maligne 

transformierte im Vergleich zu normalen Zellen sowie eine Apoptoseinduktion von in 

Bcl-2 überexprimierenden Zellen (An et al., 1998), additive Wirkungen in 

Kombination mit konventionellen Zytostatika und eine niedrigere erforderliche Dosis 

in transformierten Zellen (Guzman et al., 2002) sowie eine Sensibilisierung von 

strahlenresistenten Zellen (Pajonk et al., 2000) oder chemoresistenten Zellen (Ogiso 

et al., 2000).  

Es wurde vermutet, dass Peptid-Boronate das Proteasom durch Bindung an die 

Chymotrypsin-ähnliche Region des 20S CP inhibieren (Kettner et al., 1984; Adams et 

al., 1998). Um diese Hypothese zu bestätigen, wurden verschiedenste Bipeptid-

Boronate synthetisiert, die den Vorteil eines relativ geringen Molekulargewichts und 

einer einfachen Synthese aufweisen (Adams, 2003). 13 dieser Substanzen wurden 
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einer genauen Wirksamkeitsprüfung in einem Panel von 60 Tumorzelllinien des 

National Cancer Institute (NCI) unterzogen (Adams et al., 1999). Die getesteten 

Substanzen zeigten hohe Wirksamkeit, eine selektive Hemmung des Proteasoms 

und eine reversible Aktivität. Ein Präparat, PS-341, später als Bortezomib (Abb. 5A) 

bezeichnet, zeichnete sich durch eine Hemmung des Proteasoms in niedrigem 

Bereich (Ki 0,6nM) und eine durchschnittliche Wachstumshemmung von 50% (GI50) 

bereits in niedigen Konzentrationen (7nM) aus. Es zeigte sich desweiteren  eine 

enge Korrelation (Pearson Koeffizient, r²= 0,92) zwischen der intrinsischen 

Wirksamkeit der Substanz und seiner antiproliferativen Wirkung im Zellkulturassay. 

Die kompakte und wasserlösliche Substanz bindet an das Proteasom mit sehr hoher 

Affinität (Abb. 6) und dissoziiert nur langsam, somit liegt eine stabile, aber reversible 

Proteasomhemmung vor. Bortezomib zeigte in ersten präklinischen Untersuchungen 

hohe Wirksamkeit gegen Karzinomzelllinien verschiedenster Organe (Lunge, Kolon, 

Zentralem Nervensystem, Ovar, Nieren, Prostata, Mamma) und wies im Vergleich zu 

Daten von  60000 anderen Wirkstoffen ein einzigartiges Zytotoxizitätsprofil auf 

(Adams et al., 1999).  

 

A                                                                          B  

 
 
Abbildung 5: Bortezomib 
 
(A) Strukturformel von Bortezomib (nach Adams, 2004)  
(B) Korrelation (r²) zwischen der inhibitorischen Potenz (Ki) des 20S Proteasoms 13 verschiedener 
Dipeptid-Boronat Inhibitoren und ihrer antiproliferativen Aktivität (GI50) in 60 verschiedene 
Tumorzelllinien des National Cancer Institute. PS-273 zeigt eine geringe Spezifität für die Bindung an 
das Proteasom und PS-293 eine mangelnde Wirksamkeit (nach Adams et al., 1999) 
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1.3.2 Antineoplastische Wirksamkeit von Bortezomib in vitro 

 

Nachdem Adams et al. 1999 erstmals die antineoplastische Wirksamkeit von 

Bortezomib in Karzinomzelllinien sowie in einem Xenograft-Modell zeigen konnten, 

und diese Beobachtungen wenig später in vitro und weiteren Xenograft-Modellen 

bestätigt  werden konnten (Teicher et al., 1999; LeBlanc et al., 2002) wurde eine 

Vielzahl an präklinischen Studien durchgeführt, um die Wirksamkeit und den 

Wirkmechanismus von Bortezomib zu untersuchen. Präklinische Studien haben 

wiederholt eine selektive Sensitivität von maligne transformierten Zellen gegenüber 

Proteasom-Inhibition zeigen können (An et al., 1998; Orlowski et al., 1998; 

Masdehors et al., 1999; Soligo et al., 2001; Guzman et al., 2002). Dies lässt sich nur 

zum Teil auf die Beobachtung zurückführen, das aktiv proliferierende Zellen 

empfindlicher gegenüber Proteasom-Inhibitor-vermittelter Apoptose sind als ruhende 

Zellen (Drexler 1997). So wurden Phäochromozytomzellen unabhängig von 

Proliferation nach Proteasom-Inhibition apoptotisch (Lopes et al., 1997) und 

chronisch lymphatische Leukämie (CLL) -Zellen, die sich vor allem in der G0-Phase 

des Zellzyklus befanden, empfindlich auf Proteasom-Inhibitor vermittelte Apoptose 

(Delic et al., 1998). Viele Anhaltspunkte sprechen für einen Zusammenhang 

zwischen der Hochregulation verschiedenster Funktionen des Ubiquitin-Proteasom 

Systems, die bedeutsam ist für maligne Transformation von Zellen sind und der 

erhöhten Empfindlichkeit von malignen Zellen für Proteasominhibition (Voorhees et 

al., 2006). So zeigen CLL Zellen eine 3-fach höhere Chymotrypsin-ähnliche Aktivität 

Abbildung 6: Bindungsstelle von Bortezomib im 
Proteasom 
 
Schnittbild der Bortezomib (BZ)- Bindungsstelle im 
Proteasom. Bortezomib interagiert mit einem 
Threonin-Rest einer β-Untereinheit, die eine 
Chymotrypsin-ähnliche proteolytische Aktivität 
besitzt (modifiziert nach Adams, 2003).  
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des Proteasoms als normale Lymphozyten (Masdehors et al., 2000). Ein niedriger 

Gehalt des CDK-Inhibitors p27KIP, der beispielsweise auch in MCL-Zellen zu 

beobachten ist und mit einer schlechteren Prognose assoziiert ist, wird als Folge 

einer erhöhten proteasomalen Degradation oder Hochregulation einer spezifischen 

Ubiquitin-Ligase angesehen (Chiarle et al., 2000; Bloom et al., 2003; Nalepa et al., 

2003).  

In zahlreichen in vitro Experimenten (Tab. 1) konnte Bortezomib bei 

unterschiedlichsten hämatologischen wie nicht-hämatologischen Zelllinien Apoptose 

induzieren. Hierbei zeigte sich, dass Bortezomib nicht nur eine potente 

Einzelsubstanz ist, sondern auch in verschiedensten Kombination mit anderen 

Substanzen additive oder synergistische Effekte zeigt. Vor allem eine 

chemosensibilisierende Wirkung, die zu einer höheren antiproliferativen Wirkung 

schon in niedrigeren Dosen konventioneller Zytostatika führt ist wiederholt bestätigt 

worden (Cusack et al., 2001; Tan et al., 2002; Fahy et al., 2003; Mitsiades et al., 

2003; Yu et al., 2003; Adachi et al., 2004; Chauhan et al., 2004; Dai et al., 2004; 

Denlinger et al., 2004; Nawrocki et al., 2004; Bai et al., 2006; Catley et al., 2006; 

Cardoso et al., 2006; Nagy et al., 2006; Takigawa et al., 2006; Yanamandra et al., 

2006).  

Der Mechanismus, über den Bortezomib Apoptose induziert ist bisher noch nicht 

abschließend geklärt. Die Stabilisierung von verschiedenen pro- und anti-

apoptotischen Proteinen wie beispielsweise den CDK-Inhibitoren p21 oder p27KIP 

und dem Tumorsupressor p53, sowie eine Verschiebung des Gleichgewichts hin zu 

pro-apoptotischen Proteinen könnte eine Ursache für durch Proteasom-Inhibitoren 

induzierte Apoptose sein (Adams, 2004). Ein Molekül mit einer zentralen Rolle in der 

Vermittlung von Wirkungen der Proteasominhibition ist NF-κB. Proteasom-Inhibitoren 

hemmen den Abbau von IκB. Dadurch verbleibt NF-κB im Cytoplasma und ist als 

Transkriptionsfaktor inaktiv. Diese Inaktivierung von NF-κB, die in zahlreichen 

Arbeiten bestätigt werden konnte, (Cusack et al., 2001; Hideshima et al., 2001, 2002; 

Sunwoo et al., 2001; Pham et al., 2003) liefert die Rationale für die Anwendung von 

Bortezomib in malignen Zellen, die NF-κB konstitutiv überexprimieren, sowie für 

Kombinationen mit konventionellen Chemotherapeutika oder Radiatio.   
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Tabelle 1: Bortezomib in präklinischen Studien 
 
 
Tumorart der Zelllinien 
 
Chronisch myeloische Leukämie 

 

Mantelzelllymphom 

 

 

Multiples Myelom 

 

 

 

 

 

T-Zell Leukämie 

 

 

Kolorektales Karzinom 

 

 

 

Mammakarzinom 

 

 

 

 

Nicht-kleinzelliges Bronchialkarzinom 

 

 

 

 

Ovarialkarzinom  

 

Pankreaskarzinom  

 

 

 

Plattenepithelkarzinome von Kopf und Hals 

 

 

Prostatakarzinom 

 

 
Referenzen 
 
Gatto et al., 2003; Yu et al., 2003; Dai et al., 2004 

 

Pham et al., 2003; Perez-Galan et al., 2006, 2007; Weigert et al., 

2007 

 

Hideshima et al., 2001, 2003, 2004, 2005; LeBlanc et al., 2002; 

Ma et al., 2003; Mitsiades et al., 2003; Pei et al., 2003, 2004; 

Chauhan et al., 2004, 2004, 2004, 2005; David et al., 2005; Goel 

et al., 2005; Landowski et al., 2005; Yanamandra et al. 2006; 

Navas et al., 2006; Catley et al., 2006; Gomez-Bougie et al., 2007 

 

Tan et al., 2002; Satou et al., 2004; Nasr et al., 2005; Yu et al., 

2006; 

  

Cusack et al., 2001; Russo et al., 2001; Adachi et al., 2004; 

Minami et al., 2005; Zhu et al., 2005, 2005; Coquelle et al., 2006; 

Nagy et al., 2006;  

 

Teicher et al., 1999; Small et al., 2004; Cooper et al., 2004; Fahy 

et al., 2005; Lun et al., 2005; Nikrad et al., 2005; Cardoso et al., 

2006; Codony-Servat et al., 2006; Fujita et al., 2006; Ishii et al., 

2006; Marx et al., 2007; Xu et al., 2007 

 

Ling et al., 2002, 2003; Denlinger et al., 2004, 2004; Mortenson et 

al., 2004; Yang et al., 2004; Fahy et al., 2005;  Takigawa et al., 

2006; Jung et al., 2007; Liu et al., 2007; Neukirchen et al., 2007; 

Voortman et al., 2007;  

 

Frankel et al., 2000; Zhu et al., 2005; Bazzaro et al., 2006;  

 

Bold et al., 2001; Shah et al., 2001; Fahy et al., 2003, 2005; 

Nawrocki et al., 2004, 2005, 2005, 2006; Bai et al., 2005, 2006; 

Yeung et al., 2006;  

 

Sunwoo et al., 2001; Fribley et al., 2004, Lun et al., 2005; Duan et 

al., 2007;  

 

Adams et al., 1999; Frankel et al., 2000; An et al., 2003; Williams 

et al., 2003; Ikezoe et al., 2004; Fahy et al., 2005; Lashinger et al., 

2005; Nikrad et al., 2005;  

 

 
Allerdings kann die Inaktivierung von NF-κB nicht allein die Wirkungen von 

Bortezomib erklären, da eine isolierte Blockade der NF-κB Aktivierung eine geringere 

antiproliferativen Wirkung aufweist als eine Proteasomhemmung (Hideshima et al., 

2002). Eine Reihe von Studien zeigt einen Zusammenhang zwischen der 
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Akkumulation pro-apoptotischer Proteine der Bcl-2 Familie und der Proteasom-

Inhibitor induzierten Apoptose auf. So konnte ein ansteigender Spiegel der pro-

apoptotischen Moleküle Bik oder Bim nach Bortezomib Gabe nachgewiesen werden, 

während Bak, Bax, Bcl-2 oder Bcl-xL unbeeinflusst blieben (Nikrad et al., 2005; Zhu 

et al., 2005). Andere Arbeiten zeigten, dass Bortezomib im Zusammenhang mit 

einem G2/M Arrest des Zellzyklus eine Phosphorylierung und Abbau von Bcl-2 

induzieren kann (Ling et al., 2002), oder auch durch Aktivierung von Noxa Apoptose 

induziert (Perez-Galan et al., 2006).  

Auch das endoplasmatische Retikulum (ER) kann Apoptose initiieren. Durch 

Akkumulation von fehlgefalteten Proteinen im ER kommt es zu ER-Stress, was bei 

Versagen von kompensatorischen Mechanismen zu Apoptose führt (Rutkowski et al., 

2004). Da das Proteasom auch eine zentrale Rolle im Abbau von fehlgefalteten 

Proteinen spielt führt eine Hemmung des Proteasoms zu ER-Stress und konsekutiv 

zur Apoptose (Lee et al., 2003; Fribley et al., 2004; Nawrocki et al., 2005, 2005; Marx 

et al., 2007).    

Zusammenfassend sind eine Vielzahl an Mechanismen beschreiben worden, die mit 

Proteasom-Inhibitor induzierter Apoptose assoziiert sind. Für den Wirkmechanismus 

von Bortezomib scheinen unterschiedliche Signalpfade eine Bedeutung zu haben, 

deren genaue Zusammenhänge jedoch weiterhin nicht abschließend geklärt sind.  

 

 

1.3.3 Bortezomib in der Therapie bösartiger hämatol ogischer Erkrankungen 

 

Bortezomib ist der erste Proteasom-Inhibitor, der von der amerikanischen Food and 

Drug Administration (FDA) sowie von der Europäischen Arzneimittelbehörde EMEA 

für die Therapie des multiplen Myeloms zugelassen wurde. In mehreren Studien 

wurde die Sicherheit und Wirksamkeit von Bortezomib belegt. Zwei Phase-I-Studien 

in soliden Tumoren und bösartigen hämatologischen Erkrankungen zeigten, dass 

Bortezomib mit akzeptabler Toxizität verabreicht werden kann (Aghajanian et al., 

2002; Orlowski et al., 2002). Die ermutigenden Ergebnisse der präklinischen 

Untersuchungen und der Phase-I-Studien führten zu einer Phase-II-Studie (SUMMIT- 

Studie), in der 202 Patienten mit rezidivierendem oder therapieresistentem multiplem 

Myelom Bortezomib erhielten. Die Ansprechrate (OR) lag bei 27%, die mediane Zeit 

zur Progression (TTP) betrug 6,6 Monate und somit mehr als das doppelte  
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vorangegangenen Therapien (Richardson et al., 2003). Die Wirksamkeit von 

Bortezomib im Vergleich zu Dexamethason bei refraktärem multiplen Myelom wurde 

in einer Phase-III-Studie untersucht. Die OR lag bei 38% bzw. 18%, das 1-Jahres 

Überleben bei 80% bzw. 66% und die mediane TTP bei 6,2 bzw. 3,5 Monaten für die 

beiden Therapieformen, und belegten statistisch signifikant die Überlegenheit von 

Bortezomib (Richardson et al., 2005). In nicht vorbehandelten Patienten mit 

multiplem Myelom zeigten sich unter Bortezomib  Ansprechraten von 88% (CR und 

PR) (Jagannath et al., 2005). Auch die Kombination von Bortezomib mit anderen 

Substanzen wie Melphalan (Berenson et al., 2006), oder Melphalan plus Prednison 

(Mateos et al., 2006) wiesen beim multiplen Myelom hohe Ansprechraten auf.  

Phase-II-Studien bei NHL belegten die hohe Wirksamkeit von Bortezomib 

insbesondere beim Mantelzelllymphom (Goy et al., 2005; O’Connor et al., 2005). In 

der Studie von Goy et al. zeigten zwölf von 29 MCL Patienten ein Ansprechen, davon 

sechs CRs. Diese Ergebnisse konnten auch in weiteren Studien beim MCL bestätigt 

werden. Belch et al. berichteten von einer Ansprechrate von 46,4%, die in 

vorbehandelten und nicht vorbehandelten Patienten vergleichbar war (46,7% und 

46,2%). Bei Fisher et al. betrugt die Ansprechrate 33% (8% CR) sowie die mediane 

TTP 6,2 Monate, die häufigsten beobachteten Arzneimittel-Nebenwirkungen werden 

in Tabelle 2 zusammengefasst. Im Rahmen einer Studie, auf deren Ergebnissen 

Bortezomib von der FDA für die Therapie von Patienten mit vorbehandeltem MCL 

zugelassen wurde zeigte sich eine OR von 31% und eine mediane Ansprechdauer 

von 9,3 Monaten (Kane et al., 2007). Die aktualisierten Daten der Phase-II 

PINNACLE-Studie bestätigen die klinische Wirksamkeit von Bortezomib mit einem 

medianen OS von 23,5 Monaten und einem medianen OS von 35,4 Monaten bei auf 

die Therapie ansprechenden Patienten (Goy et al., 2009). Dass Patienten von einer 

Bortezomib-Therapie trotz Resistenz gegenüber Chemotherapeutika profitieren 

können wird durch die Beobachtung gestützt, dass das PFS mit Bortezomib 

vergleichbar mit dem der vorhergehenden Therapie ist. Kreuzresistenzen mit 

konventionellen Substanzen sind daher nur in geringem Maße anzunehmen 

(O’Connor et al., 2009).  
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Tabelle 2: Nebenwirkungen in ≥ 20% aller Patienten (N=155), Inzidenz von Grad ≥ 3 
Nebenwirkungen (gemäss NCI CTCAE version 3.0) 
(modifiziert nach Fisher et al., 2006) 
 

  
Insgesamt 

 
Schwer (Grad≥ 3) 

Ereignis 
 

N. %  N. %  

 

Müdigkeit 

Periphere Neuropathie 

Obstipation 

Diarrhoe 

Übelkeit 

Hautausschlag 

Erbrechen 

Anorexie 

Benommenheit  

Dyspnoe 

Insomnie 

Thrombozytopenie 

Muskuloskeletale Schmerzen 

Ödeme untere Extremität 

 

 

95 

85 

77 

73 

68 

43 

42 

36 

36 

35 

33 

33 

31 

31 

61 

55 

50 

47 

44 

28 

27 

23 

23 

23 

21 

21 

20 

20  

 

19 

20 

4 

11 

4 

4 

4 

5 

5 

7 

1 

17 

3 

1 

12 

13 

3 

7 

3 

3 

3 

3 

3 

5 

<1 

11 

2 

<1  
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2. Material und Methoden 

 

2.1 Methoden der Zellkultur 

 

2.1.1 Verwendete Zelllinien – Charakterisierung 

 

Die in der Arbeit verwendeten Zelllinien sind die etablierten humanen MCL-Zelllinien 

Granta 519, HBL-2, JeKo-1, NCEB-1 und  Rec-1 sowie als Kontrollzelllinien Jurkat 

(T-ALL) und Karpas 422 (diffus großzelliges Lymphom). Alle Zelllinien wurden über 

die Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), 

Braunschweig, Deutschland bezogen. Eine Charakterisierung der einzelnen MCL 

Zelllinien ist in Tabelle 3 zusammengestellt. 

 
   
 
Tabelle 3: Charakteristika der MCL Zelllinien 
nach Drexler et al., 2002; Amin et al., 2003; DSMZ Homepage 
 

 
Parameter 
 

 
Granta 
519 

 
HBL-2 

 
JeKo-1 

 
NCEB-1 

 
Rec-1 

 

Alter 

Geschlecht Patient 

Entnahmeort 

 

58 

 w 

PB 

 

84 

m 

LK 

 

78 

w 

PB 

 

57 

m 

PB 

 

61 

m 

LK 

Nachweis der t(11;14)(q13;q32) Positiv Positiv Positiv Positiv Positiv 

Cyclin D1 Protein-Expression Positiv  Positiv Positiv  

p53 Protein-Expression  Positiv  Negativ   

TP53 Sequenz Wildtyp Mutiert Wildtyp Mutiert Wildtyp 

Retinoblastom-Protein Positiv  Positiv Deletiert  

Bcl-2 Protein-Expression 

Bax Protein-Expression 

Bcl-XL Protein-Expression  

Mcl-1 Protein-Expression 

Positiv 

Positiv  

Positiv 

Positiv 

 Positiv 

Positiv  

Positiv 

Positiv 

  

Abkürzungen: w, weiblich; m, männlich; LK, Lymphknoten; PB, Peripheres Blut 

 
 
2.1.2 Zellkulturbedingungen 

 

Alle Zelllinien wurden bei 37°C, 5% CO 2- Gehalt und 95% relativer Luftfeuchtigkeit im 

Inkubator kultiviert. Granta 519, JeKo-1, NCEB-1 und Rec-1 wurden in 

Zellkulturflaschen (Sarstedt AG & Co, Nümbrecht) in RPMI-1640 Medium kultiviert, 

das mit 20% FKS, 1% Penicillin/Streptomycin und 0,4% Kanamycin versetzt wurde,  
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(HBL-2, Jurkat und Karpas 422 nur 10% FKS). Vor der ersten Verwendung wurde 

das FKS nach dem Auftauen bei 56°C im Wasserbad ina ktiviert und in 50ml 

Röhrchen aliquotiert.  

 

 

2.1.3 Einfrieren und Auftauen von Zelllinien 

 

Zelllinien wurden nach dem Abzentrifugieren bei 1000rpm für 5 min. bei 4°C in 90% 

FKS und 10% vorgekühltem DMSO aufgenommen und sofort bei -80°C gelagert. 

Nach einigen Tagen wurden die tiefgefrorenen Zellen in flüssigem Stickstoff bei -

180°C gelagert. Zum Auftauen der Zellen wurde die S uspension schnell erwärmt, in 

20 bis 25 ml Medium aufgenommen und sofort abzentrifugiert, um Reste des 

zytotoxischen DMSO zu entfernen. Um die Zellen in Kultur zu nehmen wurde der 

Überstand des Zentifugats verworfen und frisches Medium zugesetzt. 

 

 

2.1.4 Bestimmung der Viabilität und Proliferation v on Zellen mittels 

Trypanblau-Ausschluß-Test 

 

Die Zelldichte viabler Zellen wurde in einer Neubauer-Zählkammer mit Trypanblau 

zum Ausschluss toter Zellen bestimmt. Der Test basiert auf dem Prinzip, dass viable 

Zellen intakte Zellmembranen besitzen, die die Aufnahme von bestimmten 

Farbstoffen wie Trypanblau verhindern, während tote Zellen diese Fähigkeit verloren 

haben. 10µl Zellsuspension werden mit 10µl Trypanblau vermischt, auf eine 

Neubauer-Zählkammer pipettiert und im Durchlichtmikroskop analysiert. Viable 

Zellen zeigen ein transparentes Zytoplasma, tote Zellen hingegen können durch ein 

blaues Zytoplasma identifiziert werden. Die Zelldichte wird durch die Anzahl der 

Zellen in vier Großquadraten bestimmt, wobei bei einer Mischung von Zellsuspension 

zu Trypanblau von 1:1 folgende Formel gilt: 

 

 (N2) = (N1/2) x 104  

 

Hierbei gibt (N1) die Zellzahl in vier Großquadraten der Neubauer-Zählkammer an, 

(N2) die Zellzahl pro ml Zellsuspension.  
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2.1.5 WST-1 Zell-Proliferationsassay 

 

Zur Bestimmung der metabolischen Aktivität einer Zellpopulation wurde der so 

genannte WST-1 Assay verwendet, der auf  der Metabolisierung des 

Tetrazoliumsalzes 4-[3-(4-Iodophenyl)-2-(4-Nitrophenyl)-2H-5-tetrazolio]-1,3-

benzendisulfonat zum ringoffenen Formazansalz (Abb. 7) und somit einem 

Farbumschlag beruht, der kolorimetrisch ausgewertet werden kann. Das 

Absorptionsmaximum verschiebt sich dabei, so dass die Reaktion spezifisch ist. Das 

Formazan kann nur von metabolisch aktiven Zellen gebildet werden, deren 

mitochondriale Dehydrogenasen das Tetrazoliumsalz zum Formazansalz umbauen. 

Eine zunehmende Anzahl vitaler Zellen resultiert in einem Anstieg der 

Gesamtaktivität mitochondrialer Enzyme und einer vermehrten Bildung des 

Tetrazoliumsalzes. Die dadurch stattfindende Änderung des Absorptionsmaximums 

lässt sich mit einem Spektrophotometer (ELISA-Reader) quantifizieren, allerdings 

findet die Formazan-Bildung auch im Rahmen des Massenwirkungsgesetzes statt, so 

auch nach Inhibitor-Behandlung eine geringe Restaktivität nachweisbar ist. Dieser 

methodische Fehler wird durch Normalisierung der erhaltenen Messwerte auf einen 

Leer-Wert beseitigt, der nur Medium und zugesetzte Reagenzien enthält. Der WST-1 

Assay wurde mit Hilfe des Kits von Roche Diagnostics (Mannheim) nach 

Herstellerangaben durchgeführt. Dafür wurden die Zellen auf die gewünschte Dichte 

(1,0x106/ml) eingestellt und in 96-Well-Platten mit flachem Boden ausgesät (100µl 

der eingestellten Zellsuspension). Jeder Wert wurde als Triplett angesetzt und 

vermessen. Nach Inkubation über zwölf oder 24 Stunden wurden die Zellen mit 10µl 

WST-1 Reagenz versetzt und nach 4-stündiger Inkubation die optische Dichte (OD, 

Absorption450nm – Absorption690nm) am ELISA-Reader gemessen. Die Wellenlänge für 

die Messung der Absorption des Formazan-Produktes auf 450nm eingestellt, die 

Referenz-Wellenlänge betrug 690nm.  
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Abbildung 7: Spaltung des Tetrazoliumsalzes WST-1  
 
Das hellrote Tetrazoliumsalz WST-1 wird durch das mitochondriale Succinat-Tetrazolium-Reduktase 
System (RS) zum dunkelroten Formazan gespalten. Der hierbei stattfindende Farbumschlag ist 
kolorimetrisch messbar und korreliert mit der Anzahl vitaler Zellen (Abbildung aus dem Manual des 
Herstellers Roche Diagnostics, Mannheim).  
 
Aus drei erhaltenen Messwerten wurde der Mittelwert gebildet, der Mittelwert der 

Blank-Werte subtrahiert und die Differenz auf den Kontrollwert bezogen. Zur 

Quantifizierung der metabolischen Hemmung einer Substanz wurde der IC50-Wert 

herangezogen, der die Konzentration eines Inhibitors angibt, bei dem die Aktivität der 

Zellen auf 50% des Betrags von unbehandelten Zellen gesenkt wird. Die 

Bestimmung der IC50 erfolgte in drei unabhängigen Experimenten, Mittelwert und 

Standardabweichung der Einzelmessungen wurden angegeben.  

 

 

2.1.6 Bestimmung von kombinatorischen Indizes nach Chou und Talalay 

 

Zur Bewertung der Effekte zweier kombinierter Substanzen im Zellkulturmodell 

wurde die Methode nach Chou und Talalay herangezogen, die auf der Bestimmung 

der kombinatorischen Indizes Ci beruht (Chou et al., 1981, 1984). Dieser lässt sich 

nach folgender Gleichung berechnen: 

 

Ci = (D)1/(Dx)1 + (D)2/(Dx)2 + (D)1(D)2/(Dx)1(Dx)2 
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Hierbei gibt (D)1 und (D)2 die Dosis der Inhibitoren 1 und 2 an, die in Kombination zu 

einem Effekt von x% führen, während (Dx)1 und (Dx)2 die jeweilige Dosis des 

Inhibitors nach Einzelgabe darstellen. Der Term der Gleichung (D)1(D)2/(Dx)1(Dx)2 

geht nur für Inhibitoren in die Gleichung ein, deren jeweiliger Wirkmechanismus 

unabhängig ist. Ein nicht-unabhängiger Wirkmechanismus lässt sich aus dem 

parallelen Kurvenverlauf zweier Inhibitoren im Median-Effekt-Plot ersehen. Die oben 

genannte Gleichung besitzt unendlich viele Lösungen, die vom jeweiligen Wert x 

bestimmt werden, also in welchem Dosisbereich der Inhibitoren Ci errechnet wird. In 

der Literatur wird häufig ein Ci für die IC50, IC75 und IC90 angegeben. Um diese Ci-

Werte zu berechnen, müssen allerdings (D) und (Dx) genau bestimmt werden. Für 

die Berechnung des Ci bei IC50 ergibt sich dann folgende Gleichung: 

 

Ci (IC50) = (D50)1+2/(D50)1 + (D50)1+2/(D50)2 

 

Hierbei gibt (D50)1 und (D50)2 die IC50-Werte für die Einzelsubstanzen an, (D50)1+2  

den IC50 Wert bei Kombination der beiden Substanzen. Die Ci-Werte wurden mit 

Hilfe der CalcuSyn Software berechnet. Ein rein additiver Effekt zweier Substanzen 

liegt bei einem Ci von 1±0,3 vor, ein synergistischer Effekt bei Ci<0,7 und ein 

antagonistischer Effekt bei Ci>1,3.  

 

 

2.1.7 Apoptose Detektion mit Annexin V-PE und 7-AAD -Färbung 

 

Zur Bestimmung des Anteils apoptotischer Zellen in einer Kultur wurde das „Annexin 

V-PE Apoptosis Detection Kit I“ von BD Biosciences Pharmingen (Heidelberg, 

Deutschland) nach Herstellerangaben verwendet. Der Test beruht auf einer 

Doppelfärbung von apoptotischen beziehungsweise toten Zellen mit 

fluoreszenzmarkiertem Annexin V und dem rötlichen 7-AAD. Eines der ersten 

Anzeichen für das Einsetzen von Apoptose in Zellen ist der Verlust der Membran-

Asymmetrie der Zellen, es kommt zur Exposition des Membranphospholipids 

Phosphatidylserin (PS) auf der äußeren Plasmamembran. Dieser Prozess tritt neben 

dem Verlust des Membranpotentials und der verstärkten Produktion von Superoxid-

Anion-Radikalen vor der nukleärer Apoptose mit Chromatinkondensation und DNA-

Fragmentierung auf (Casted et al., 1996). Mittels Annexin V, einem Ca2+ -
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abhängigem, Phospholipid-bindendem Protein mit hoher Affinität für PS können 

Zellen bereits in einem frühen Stadium der Apoptose identifiziert werden. Annexin V 

wird an Fluorochrome wie Phycoerythrin (PE) gekoppelt, wodurch es als sensitive 

Sonde für die durchflusszytometrische Analyse apoptotischer Zellen besonders 

geeignet ist. Die Anfärbbarkeit von Zellen mit Annexin V-PE geht dem Verlust der 

Membranintegrität voraus, der die späten Stadien des programmierten Zelltods 

charakterisiert. Daher wird die Färbung mit Annexin V-PE typischerweise mit einem 

so genannten Vitalfarbstoff wie 7-Aminoactinomycin (7-AAD) kombiniert. 7-AAD kann 

zwischen Cytosin und Guanin interkalieren und nur in Zellen mit nicht mehr intakter 

Membranintegrität eindringen. Mittels Doppelfärbung kann zwischen intakten Zellen 

(Annexin V-PE negativ, 7-AAD negativ), frühapoptotischen (Annexin V-PE positiv, 7-

AAD negativ) und spätapoptotischen Zellen (Annexin V-PE positiv, 7-AAD positiv) 

unterschieden werden. Vollkommen nekrotische Zellen (Annexin V-PE negativ, 7-

AAD positiv) gingen nicht in die Auswertung ein. Für jede Analyse wurden die 

korrekten Einstellungen des Durchflusszytometers anhand von ungefärbten bzw. 

einfachgefärbten Zellen ermittelt. Annexin V-PE wurde in Floureszenzkanal FL-2 und 

7-AAD in Floureszenzkanal FL-3 detektiert. Die Auswertung der Versuche erfolgte 

mit Hilfe des Analyseprogramms WinMDI®. Der prozentuale Anteil apoptotischer 

Zellen wurde mit Hilfe folgender Gleichung berechnet: 

 

[1- (A l,b/Al,u)]x100%    

 

Hierbei steht Al,b für den Anteil vitaler behandelter Zellen, Al,u für den Anteil vitaler 

unbehandelter Zellen. Einen repräsentativen Densityplot zeigt Abbildung 8.  
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2.1.8 Zellzyklusanalyse mit Propidiumiodid Färbung 

 

Zur Durchführung von Zellzyklusanalysen wurden die Zellen gezählt und auf 200 000 

pro FACS-Röhrchen eingestellt. Anschließend wurden die Ansätze einmal mit kaltem 

PBS gewaschen, auf Eis mit 200 µl Lysis-Puffer für die PI-Färbung versetzt und 5 

min. unter Lichtausschluss lysiert. Sofort nach der Lyse wurden die Zellen im 

Durchflußzytometer analysiert. Es wurden mindestens 10 000 Zellen gemessen und 

die Ergebnisse mit Hilfe von ModFit LTTM ausgewertet. In der Histogramm-

Darstellung wurde auf der X-Achse die Fluoreszenz-Intensität und auf der Y-Achse 

die Anzahl der detektierten Ergebnisse linear aufgetragen. Der erste Peak 

repräsentiert Zellen in der G0/G1-Phase und der zweite Peak, der etwa die doppelte 

Intensität des ersten Peaks aufweist Zellen der G2/M-Phase (s. Abb. 15). Der Bereich 

zwischen den Peaks stellt die Zellen in der S-Phase dar. Apoptotische Zellen, die 

DNA-Fragmentationen aufweisen und im Sub-G1-Bereich lagen, wurden bei der 

Auswertung der Zellzyklusverteilung nicht  berücksichtigt.  

 

 

 

 

 

Abbildung 8: Apoptosedetektion mit 
Annexin V-PE und 7-AAD 
 
Im unteren linken Quadranten befinden sich 
intakte Zellen (Annexin V-PE negativ, 7-AAD 
negativ, hier 61,2%), im unteren rechten 
Quadranten frühapoptotische Zellen 
(Annexin V-PE positiv, 7-AAD negativ, hier 
21,1%) und im oberen rechten Quadranten 
spätapoptotische Zellen (Annexin V-PE 
positiv, 7-AAD positiv, hier 16,8%).  
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2.2 Material 

 

2.2.1 Chemikalien und Enzyme 

 

Chemikalien wie Lösungsmittel und sonstige Reagenzien wurden von Merck KG 

(Darmstadt), Sigma-Aldrich Chemie GmbH (Taufkirchen) oder Roth (Karlsruhe) 

bezogen.  

 

2.2.2 Lösungen und Puffer 

 

Zellkulturmedien (RPMI 1640 mit L-Glutamin) FKS und DPBS wurden bei PAN-

Biotech GmbH (Aidenbach) bezogen.  

Selbst hergestellte Lösung: 

 

Lysis-Puffer für PI Färbung Natriumcitrat 

Triton X-100 

Propidiumiodid 

Aqua purificata  

pH 8.0 mit HCl  

100mg 

100µl 

2mg 

ad 100ml 

 

 

2.2.3 Verwendete Inhibitoren und Zytostatika 

 

Bortezomib 

Cytarabin 

Fludarabin 

Gemcitabin  

Mitoxantron 

Stock à 100 nM in Aqua pur.   

Stock à 50 mg/ml in PBS 

Stock à 25 mg/ml in PBS 

Stock à 40 mg/ml in PBS 

Stock à 2 mg/ml in PBS 

Millenium (Cambridge, MA, USA) 

Cell pharm GmbH (Hannover) 

Medac GmbH (Wedel) 

Eli Lilly (Wien, Österreich) 

Hexal AG (Holzkirchen) 
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2.2.4 Verwendete Softwareprogramme 

 

CalcuSyn 2.0 

Cellquest 

EndNote 9 

ModFit LT 

MS-Office 2002 

SigmaPlot 2000 

SoftMax Pro 

WinMDI 2.8 

Biosoft (Cambridge, UK) 

Bekton Dickenson (Mountain View, CA, USA) 

Thompson ISI Researchsoft (Carlsbad, CA, USA) 

Verity Software House (Topsham, ME, USA) 

Microsoft (Redmond, WA, USA) 

SPSS Incorporated (Chicago, IL, USA) 

Molecular Devices (Sunnyvale, CA, USA 

Joseph Trotter 

 

 

2.2.5 Verwendete Geräte 

 

Durchflußzytometer: BD FACS Calibur  

ELISA-Reader: Optimax pro  

BD Biosciences (Palo Alto, CA, USA)  

Molecular Devices (Sunnyvale, CA, 

USA) 
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3. Ergebnisse 

 

3.1 Proliferationshemmung durch Bortezomib 

 

3.1.1 Bortezomib führt bei 72-Stunden Langzeitexpos ition zu einer dosis- und 

zeitabhängigien Proliferationshemmung in Zelllinien  

 

Zunächst wurde in einem initialen Experiment die antiproliferative Wirkung von 

Bortezomib auf MCL-Zelllinien (Granta 519, HBL-2, JeKo-1, NCEB-1, Rec-1) und 

Kontrollzelllinien (Jurkat, Karpas 422) in 72-stündiger Exposition untersucht. Hierzu 

wurden die Zellen bei einer Ausgangszelldichte von 0,5x106/ml ausgesät und über 72 

Stunden mit verschiedenen Dosen von Bortezomib (0, 5, 10, 25 und 50 nM) 

inkubiert. Es zeigte sich eine dosis- und zeitabhängige Proliferationshemmung in 

allen Zelllinien, wobei die Empfindlichkeit auf den Proteasom-Inhibitor innerhalb der 

MCL-Zelllinien stark variierte (Abb. 9). Während beispielsweise bei JeKo-1 als 

empfindlichster Zelllinie nach 48-stündiger Exposition mit 25nM Bortezomib nur noch 

16,7% im Vergleich zu nicht behandelten Zellen vital sind, zeigt sich bei NCEB-1 

nach gleicher Exposition eine zunehmende Zelldichte, die bei 130% der 

unbehandelter Zellen liegt. Beim Vergleich von MCL- zu Kontrollzelllinien lassen sich 

keine signifikanten Unterschiede in der Empfindlichkeit auf Bortezomib feststellen, 

die antiproliferative Wirkung ist in Karpas 422 allerdings größer als in Jurkat. Da sich 

bei einer mittleren Dosis von 25 nM, die auch klinisch erreicht wird, in allen Zelllinien 

eine antiproliferative Wirkung von Bortezomib zeigt, wurde diese Dosis festgelegt, 

um die Effekte des Inhibitors auf Apoptose und Zellzyklus eingehender zu 

untersuchen. 

A                                                                    B 
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Abbildung 9: Proliferationshemmung durch Bortezomib   
 
Mantelzelllymphom- und Kontrollzelllinien wurden mit einer Zelldichte von 0,5x106/ml ausgesät und 
über 72 Stunden mit Bortezomib kultiviert. Nach 24, 48 und 72 Stunden wurden die Zellen gezählt und 
die Viabilität mittels Trypanblau-Ausschluß-Test bestimmt. (A)  gibt die proliferationshemmende 
Wirkung von Bortezomib in der Zelllinie JeKo-1 an. (B) zeigt die deutlichen Unterschiede in der 
Empfindlichkeit auf Bortezomib.  
 

Da die einzelnen Zelllinien unterschiedliche Wachstumsgeschwindigkeiten, 

verdeutlicht durch unterschiedliche Zellverdopplungszeiten aufweisen und in obiger 

Darstellung die Werte nach Exposition mit dem Inhibitor auf den Ausgangswert zum 

Zeitpunkt 0 bezogen werden, ist der direkte Vergleich zwischen den Zelllinien in 

dieser Form nur eingeschränkt möglich. Zur besseren Vergleichbarkeit wurden daher 

die Zellzahlen bei Exposition mit 25 nM auf den jeweiligen Wert unbehandelten 

Zellen bei 24, 48 und 72 Stunden bezogen und so die Vergleichbarkeit vereinfacht 

(Tab. 4b, Abb. 10).  

 
 
Tabelle 4a: Zellzahlen nach Bortezomib Exposition 
in %, bezogen auf den Ausgangswert bei 0 h  
 
 

Zelllinie 

 

 

Konzentration 

Bortezomib 

 

0 h 

 

24h 

 

48h 

 

72h 

 

Granta 519 
 

0 nM 

25 nM 

 

100 

100 

 

146,15 

69,23 

 

200 

26,92 

 

273,08 

7,69 

HBL-2 0 nM 

25 nM 

100 

100 

186,96 

78,26 

269,57 

13,04 

347,83 

0 

JeKo-1 0 nM 

25 nM 

100 

100 

186,27 

105,88 

286,27 

16,67 

449,02 

0 

Jurkat 0 nM 

25 nM 

100 

100 

146,29 

111,11 

216,67 

92,59 

294,44 

77,78 

Karpas 422 0 nM 

25 nM 

100 

100 

226,09 

108,70 

302,17 

13,04 

391,30 

3,26 

NCEB-1 0 nM 

25 nM 

100 

100 

126,00 

98,00 

184,00 

130,00 

192,00 

144,00 

Rec-1 0 nM 

25 nM 

100 

100 

149,04 

82,69 

167,31 

46,15 

298,08 

19,23 
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Tabelle 4b: Zellzahlen nach Bortezomib Exposition 
in %, bezogen auf den jeweilige unbehandelte Zellzahl 
 
 

Zelllinie 

 

 

Konzentration 

Bortezomib 

 

0 h 

 

24h 

 

48h 

 

72h 

 

Granta 519 
 

0 nM 

25 nM 

 

100 

100 

 

146,15 

47,37 

 

200 

13,46 

 

273,08 

2,82 

HBL-2 0 nM 

25 nM 

100 

100 

186,96 

41,86 

269,57 

4,84 

347,83 

0 

JeKo-1 0 nM 

25 nM 

100 

100 

186,27 

56,84 

286,27 

5,82 

449,02 

0 

Jurkat 0 nM 

25 nM 

100 

100 

146,29 

75,95 

216,67 

42,74 

294,44 

26,42 

Karpas 422 0 nM 

25 nM 

100 

100 

226,09 

48,08 

302,17 

4,32 

391,30 

0,83 

NCEB-1 0 nM 

25 nM 

100 

100 

126,00 

77,78 

184,00 

70,65 

192,00 

75 

Rec-1 0 nM 

25 nM 

100 

100 

149,04 

55,48 

167,31 
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Auch bei obiger Darstellung zeigt sich, dass NCEB-1 und Jurkat am 

unempfindlichsten auf Bortezomib Exposition sind (75% und 26,42% lebende Zellen 

nach 72 Stunden), während alle anderen Zelllinien  eine ähnliche höhere 

Empfindlichkeit auf den Proteasom-Inhibitor zeigen (zwischen 0% und 6,45% viable 

Zellen) 

 

 

 

 

Abbildung 10: Vergleich der 
Wachstumskurven bei 25nM 
 
Bei dieser Darstellung wurde die Zelldichte 
nach 24, 48 und 72 Stunden der  mit 25nM 
behandelten Zellen auf den jeweiligen Wert der 
unbehandelten Zelllinie bezogen.  
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3.1.2 Die IC50-Werte nach 24-Stunden Exposition mit Bortezomib un terscheiden 

sich deutlich innerhalb der Mantelzelllymphom- und Kontrollzelllinien 

 

Um die antiproliferative Wirkung von Bortezomib auf Zelllinien genauer beurteilen 

und vergleichen zu können wurde der WST-1 Assay herangezogen. Hierzu wurden 

die Zellen mit einer Zelldichte von 1x106/ml ausgesät, mit einer Konzentration 

zwischen 0 und 100 nM Bortezomib über 24 Stunden inkubiert und anschließend ihre 

metabolische Aktivität mittels des kolorimetrischen WST-1 Assays analysiert. Zum 

Vergleich der antiproliferativen Wirkung des Inhibitors wurde der IC50-Wert 

herangezogen, der die Konzentration angibt, bei dem die Proliferation der 

behandelten Zellen auf die Hälfte des Betrags der unbehandelten Zellen abgesunken 

ist. Wie bereits in den 72-stündigen Wachstumskurven zeigten die Zelllinien deutliche 

Unterschiede in der Empfindlichkeit auf den Inhibitor. Den höchsten IC50-Wert wies 

NCEB-1 mit 44,5 ±9,1 nM auf, gefolgt von Rec-1 (28,2±0,4 nM), Granta 519 

(25,2±4,2 nM), Jurkat (24,4±0,3 nM), HBL-2 (22,4±2,6 nM), Karpas 422 (20,3±2,2 

nM) und JeKo-1 (14,8±1,3 nM). Somit bestätigten sich die Ergebnisse der 

Zellzahlmessung im WST-1 Assay, wo sich NCEB-1 deutlich unempfindlicher mit 

einem IC50-Wert, der das 1,6 bis 3-fache der anderen Zelllinien beträgt zeigt. 

Interessanterweise sind die Unterschiede in der Empfindlichkeit auf den Proteasom-

Inhibitor innerhalb der MCL-Zelllinien deutlich stärker ausgeprägt als zwischen MCL- 

und Kontrollzelllinien. So beträgt der IC50-Wert für NCEB-1 das 3-fache des Werts 

von JeKo-1. Im Gegensatz dazu sind die IC50-Werte der Kontrollzelllinien, die den 

Entitäten T-ALL und diffus großzelliges Lymphom zuzurechnen mit 25±5 nM 

vergleichbar. Am empfindlichsten auf Bortezomib Treatment ist, wie auch bei den 72- 

Stunden Wachstumskurven die Zelllinie JeKo-1 mit einem IC50-Wert von 14,8 nM 

(±1,3). Dieser Wert liegt deutlich unter den 25 nM, die in vivo bei einer Administration 

von 1,5 mg/m² erreichet werden, und der für die Analyse von Apoptose und 

Zellzyklus verwendet wurde. Somit lassen sich aus den Ergebnissen des WST-1 

Assay drei verschiedene Gruppen an Zelllinien identifizieren: Zum einen die 

weitgehend refraktäre Zelllinie NCEB-1, desweiteren Zellinien intermediärer 

Empfindlichkeit, deren IC50-Werte um 25±5 nM betragen (Granta 519, HBL-2, Rec-1 

Jurkat, Karpas 422) sowie die Zelllinie JeKo-1, die deutlich empfindlicher auf 

Bortezomib Exposition ist.  
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Abbildung 11: Metabolischer Effekt von Bortezomib 
 
Mantelzelllymphom- und Kontrollzelllinien wurden über 24h mit steigenden Dosen Bortezomib 
kultiviert und anschließend mittels WST-1 Assay analysiert. Die Kurvenverläufe von (A) Granta 519, 
(B) HBL-2, (C) JeKo-1, (D) Jurkat, (E) Karpas 422 und (E) Rec-1 werden jeweils im Vergleich zur am 
wenigsten empfindlichen Zelllinie NCEB-1 gezeigt. Die Abbildungen zeigen jeweils Mittelwert und 
Standardabweichung von drei unabhängigen Experimenten 
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Abbildung 12: IC 50-Werte für Bortezomib 
 
Die Zellen wurden für 24 Stunden mit 0 bis 100 nM Bortezomib inkubiert und mittels WST-1 Assay die 
IC50-Werte bestimmt. Angegeben sind Mittelwert und Standardabweichung von drei unabhängigen 
Experimenten.  
 

 

3.2 Induktion von Apoptose durch Bortezomib 

 

3.2.1 Bortezomib induziert im 24-Stunden Versuch Ap optose in 

Mantelzelllymphom Zelllinien 

 

Bortezomib kann in einer Vielzahl von Zelllinien unterschiedlicher Tumorentitäten 

Apoptose induzieren. Die nach den initialen 72-Stunden Wachstumskurven und der 

IC50-Bestimmung festgelegte Konzentration von 25 nM Bortezomib wurde 

herangezogen, um das Ausmaß der induzierten Apoptose nach Bortezomib 

Behandlung in MCL-Zelllinien zu bestimmen. Zellen wurden mit einer Zelldichte von 

0,5x106/ml ausgesät und der Anteil der apoptotischen Zellen initial, d.h. vor 

Behandlung sowie 12 und 24 Stunden nach Bortezomib-Exposittion 

durchflußzytometrisch analysiert. Anhand der Doppelfärbung mit Annexin V-PE und 

7-AAD konnte in den Versuchen zwischen den Populationen von früh- und 

spätapoptoischen Zellen unterschieden werden und durch die Analyse zu 
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verschiedenen Zeitpunkten auch deren zeitlicher Verlauf bestimmt werden. In die 

Auswertung miteinbezogen wurde der Gesamtprozentsatz an apoptotischen Zellen. 

Bezogen auf die initiale Gesamtzahl viabler Zellen wiesen die MCL-Zelllinien nach 

Behandlung mit Bortezomib über 12 bzw. 24 Stunden einen Anteil an apoptotischen 

Zellen zwischen 17,6% und 50,0% bzw. 24,7% und 77,9% auf. In der Analyse der 

Apoptoseinduktion bestätigten sich die auf den IC50-Werten basierende Einteilung 

der Zellen mit unterschiedlicher Empfindlichkeit auf den Proteasom-Inhibitor. NCEB-1 

war auch bezüglich der Apoptoseinduktion nach 24 Stunden die resistenteste 

Zelllinie, mit einem Anteil an apoptotischen Zellen von 24,7% (±0,4), gefolgt von Rec-

1 mit 61,2% (±4,9), HBL-2 mit 68,4% (±4,9), Granta 519 mit 69,2% (±1,7) und JeKo-1 

mit 77,9% (±0,9). Somit ist sowohl bei der Proliferationsinhibition als auch bezüglich 

der Apoptoseinduktion NCEB-1 als die Zelllinie identifiziert, die am geringsten auf 

Bortezomib Behandlung anspricht, während JeKo-1 in beiden Methoden die 

empfindlichste Zelllinie war. Auch die quantitative Apoptoseinduktion der anderen 

MCL-Zelllinien auf entspricht den Ergebnissen des WST-1 Assay. Bei einer Dosis 

von 25nM führt Bortezomib in allen MCL-Zelllinien nach 24 Stunden zu einer 

Induktion von Apoptose, die abgesehen von NCEB-1 50% oder mehr beträgt. 

Interessanterweise nimmt die Apoptoseinduktion über 24 Stunden in 

unterschiedlichen Zelllinien deutlich zu. Am auffälligsten zeigt sich dies in JeKo-1 

Zellen, die 12 Stunden nach Behandlung nur 17,6% (±3,9) apoptotische Zellen 

aufweisen und somit weniger als die unempfindliche Zelllinie NCEB-1 (18,2±2,4%), 

während nach 24 Stunden 77,9% (±0,9) apoptotische Zellen nachzuweisen sind. 

(siehe auch Abb. 13 und 14).        
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Abbildung 13: Apoptoseinduktion in Mantelzelllympho m Zelllinien 
 
Zellen wurden über 24 Stunden mit 25 nM Bortezomib inkubiert, Apoptose wurde zum Zeitpunkt 0, 12 
und 24 Stunden durchflußzytometrisch bestimmt. Gezeigt werden jeweils Mittelwert und 
Standardabweichung aus drei unabhängigen Experimenten. 
 
 A                                                       B                                                        C 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbildung 14: Zeitlicher Verlauf der Apoptoseindukt ion nach Bortezomib-Exposition 
 
Die Abbildung zeigt einen repräsentativen Densityplot der Zelllinie Granta 519 unmittelbar vor 
Exposition (A) sowie 12 Stunden (B) bzw. 24 Stunden (C) nach Behandlung mit 25 nM Bortezomib.  
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3.2.2 Die Empfindlichkeit auf Bortezomib ist nicht Mantelzelllymphom-

spezifisch 

 

Um zu verifizieren, ob die Apoptoseinduktion durch Bortezomib in einer 

Konzentration von 25 nM MCL-spezifisch ist, wurden auch die Kontrollzelllinien 

Jurkat und Karpas 422 in identischer Weise mit dem Proteasom-Inhibitor behandelt 

und anschließend durchflußzytometrisch analysiert. In Jurkat- als auch in Karpas 

422-Zellen induziert Bortezomib Apoptose, allerdings sind sowohl zwischen den 

Zelllinien, als auch im Vergleich zu den Ergebnissen des WST-1 Assay deutliche 

Unterschiede festzustellen. Während der Anteil der apoptotischen Zellen nach 24 

Stunden in Jurkat bei 19,3% (±2,9) liegt, und somit noch über dem Wert von NCEB-

1, waren bei Karpas 422 nach 24-stündiger Inkubation mit 25 nM Bortezomib 92,9% 

(±2,6) der Zellen apoptotisch. Diese Ergebnisse verdeutlichen, dass die 

Apoptoseinduktion nach Bortezomib nicht MCL-spezifisch ist, sondern in der 

gewählten Dosis auch in Zelllinien anderer Lymphomentitäten Zelltod induzieren 

kann.  

 

3.3 Auswirkungen von Bortezomib auf den Zellzyklus 

 

3.3.1 Veränderungen im Zellzyklusprofil sind ein fr ühes Ereignis nach 

Exposition mit Bortezomib 

 

Um den Mechanismus der antiproliferativen Wirkung von Bortezomib auf MCL-

Zelllinien weiter zu untersuchen wurden Zellzyklus-Analysen mit Propidiumiodid (PI) 

durchgeführt. Hintergrund dieses Versuchs war vor allem die Frage, ob die 

Proliferationshemmung primär über eine Apoptoseinduktion oder durch eine 

Zellzyklus-dysregulation vermittelt wird. Um auch den zeitlichen Verlauf nach 

Inhibitorgabe verfolgen zu können, wurden die Analyse vor Administration der 

Substanz sowie 4, 8 und 12 Stunden nach Bortezomib-Behandlung durchgeführt. 

Diese frühen Zeitpunkte wurden gewählt, da schon nach 12 Stunden in den meisten 

Zelllinien eine hohe Zellzahl apoptotisch waren. Da die Apoptose die Endstrecke 

unterschiedlichster zytotoxischer Mechanismen darstellt und mit einer Vielzahl an 

intrazellulären Vorgängen assoziiert ist,  wurden Veränderungen der 

Zellzyklusregulation zeitlich vor der Apoptoseinduktion vermutet. Nach Bortezomib- 
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Behandlung wurde in allen Zelllinien ein Anstieg im Sub-G1-Bereich beobachtet, der 

mit längerer Expositionsdauer zunahm und einen Marker für apoptotische Nuclei 

darstellt. Diese Zellen sind allerdings nicht dem eigentlichen Zellzyklus zuzuordnen 

und gehen daher nicht in die Berechnung der Zellzyklusphasen ein. In allen MCL-

Zelllinien veränderte sich nach Gabe von 25 nM Bortezomib das Zellzyklusprofil. Die 

Veränderungen traten innerhalb der ersten zwölf Stunden nach Inhibitorgabe auf und 

zeigten bei sequenzieller Analyse einen kontinuierlichen Anstieg an Zellen in der 

G2/M-Phase, während für die G0/G1-Phase ein fortlaufender Abfall beobachtet wurde 

(G2/M-Arrest).      
 

A                                                                      B                                
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

 C                                                                     D 
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Abbildung 15: Zellzyklusanalyse durch PI-Färbung 
 
Repräsentative Histogramme für Granta 519 Zellen initial (A), sowie 4 Stunden (B) 8 Stunden (C) und 
12 Stunden (D) nach Exposition mit 25 nM Bortezomib. Der erste Peak repräsentiert Zellen in der 
G0/G1-Phase, der zweite Peak Zellen, die sich in der G2/M Phase des Zellzyklus befinden. 
Dazwischen liegen die Zellen der S-Phase. Deutlich erkennbar ist ein Anstieg von Zellen im Sub-G1-
Bereich sowie eine zunehmende Verschiebung des Zellzyklus zur G2/M Phase (G2/M-Arrest).  
  
Veränderungen im Zellzyklusprofil zeigten sich bereits 4 bzw. 8 Stunden nach 

Exposition mit dem Proteasom-Inhibitor und konnten in allen Mantelzelllymphom-

Zelllinien beobachtet werden. Zellzyklusalterationen treten somit sehr früh nach 

Inhibitorgabe auf. Die stärksten Verschiebungen zeigten sich in HBL-2 Zellen mit 

einer Zunahme der G2/M-Phase von 13,6% auf 27,9% und einem Abfall der G0/G1-

Phase von 34,9% auf 15,7%. Auch in Granta 519  zeigten sich deutliche 

Veränderungen im Sinne eines G2/M-Arrests. Nur geringen Einfluss auf den 

Zellzyklus hatte die Gabe von Bortezomib auf NCEB-1 und besonders auf Rec-1 

Zellen. Interessanterweise scheint die Induktion eines Zellzyklusarrests in 

Zusammenhang mit der antiproliferativen Empfindlichkeit der Zellen auf Bortezomib 

zu stehen. Während die empfindlichen Zelllinien (Granta 519, HBL-2) deutliche 

Veränderungen der Zellzyklusphasen (Abnahme der Zellen in der G0/G1-Phase und 

Zunahme an Zellen in der G2/M-Phase) zeigen, sind die Veränderungen in NCEB-1 

oder Rec-1 deutlich weniger ausgeprägt. Einzige Ausnahme bildet die JeKo-1 

Zelllinie, in der zwar eine deutliche Reduktion der G0/G1-Phase beobachtet wurde, 

allerdings nur eine geringe Zunahme der G2/M-Phase.  

Um zu klären, ob der G2/M-Arrest ein spezifisches Ereignis in MCL ist, wurden auch 

die Kontrollzelllinien mit Bortezomib behandelt und anschließend mittels PI-Färbung 

analysiert. Auch hier bestätigte sich der bereits bei den MCL zu beobachtende G2/M-

Arrest in Abhängigkeit von der Empfindlichkeit der Zellen auf den Inhibitor. In Karpas 

422 kam es zu einer deutlichen Verschiebung zur G2/M-Phase, während dieser 

Effekt bei Jurkat deutlich geringer ausfiel.  
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F (Jurkat)                                                                           G (Karpas 422) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbildung 16: Zellzyklusanalysen durch PI-Färbung 
 
Zellzyklusanalyse innerhalb der ersten  12 Stunden nach Exposition mit 25 nM Bortezomib in 
Mantelzelllymphom- (A bis E) und Kontrollzelllinien (F und G). Gezeigt werden jeweils Mittelwert und 
Standardabweichung aus drei unabhängigen Experimenten. 
 

 

3.4 Kombination von Bortezomib mit konventionellen 

Chemotherapeutika 

 

3.4.1 Antiproliferative Wirksamkeit konventioneller  Chemotherapeutika  

 

Die Standardtherapie des MCL besteht derzeit in einer Kombination aus Zytostatika 

und dem anti-CD20 Antikörper Rituximab, wie in den Schemata R-CHOP oder R-

FCM. Durch Einsatz des Proteasom-Inhibitors Bortezomib, allein oder in 

Kombination, könnten die therapeutischen Optionen ergänzt werden. Anhand der 

MCL- und Kontrollzelllinien sollte gezeigt werden, inwieweit die Kombination aus 

Bortezomib mit unterschiedlichen konventionellen Chemotherapeutika in vitro einen 

Vorteil gegenüber der Anwendung von Einzelsubstanzen besitzen, d.h. ob 

synergistische Effekte zwischen verschiedenen Substanzen bestehen. Hierzu 

wurden die Zellen jeweils mit den Einzelsubstanzen und einer fixen Kombination aus 

Bortezomib und Zytostatikum inkubiert. Um festzustellen, ob die Sequenz der 

Substanzen Einfluss auf deren Interaktion hat, wurden Koinkubationen über 24 

Stunden und die sequenzielle Verabreichung der Substanzen verglichen. Hierzu 

wurden zusätzlich die IC50-Werte aller Monosubstanzen nach zwölfstündiger 
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Inkubation bestimmt. Zur Analyse der Interaktion zwischen den Einzelsubstanzen 

wurde der Ci (IC50)-Wert für jede Kombination und Sequenz  bestimmt. Die in 

Kombination mit Bortezomib zur Anwendung gekommenen Chemotherapeutika 

waren die Nukleosidanaloga Cytosin-Arabinosid (AraC) (0-25 µg/ml), Fludarabin (0-5 

µg/ml) und Gemcitabin (0-5 µg/ml) sowie der Topoisomerasehemmer Mitoxantron (0-

5 µg/ml). Die  IC50-Werte nach zwölf- und 24-stündiger Inkubation mittels WST-1 

Assay sind in Abbildung 17 dargestellt. 

  

A                                                                                        B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C                                                                                         D 

 
 
 
 
 
 
 
 
 
 
 
 
 
Abbildung 17: IC 50-Werte konventioneller Chemotherapeutika 
 
Mantelzelllymphom- und Kontrollzelllinien wurden über 24 Stunden mit ansteigenden Dosen 
verschiedener Chemotherapeutika inkubiert und mit dem WST-1 Assay die IC50-Werte bestimmt. (A) 
Cytosin-Arabinosid (0-25 µg/ml), (B) Fludarabin (0-5 µg/ml), (C) Gemcitabin (0-5 µg/ml) (D) 
Mitoxantron (0-5 µg/ml). Angegeben sind jeweils Mittelwert und Standardabweichung aus drei 
unabhängigen Experimenten. 
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Die Empfindlichkeit der Zelllinien auf konventionelle Chemotherapeutika ist mit der 

Empfindlichkeit auf Bortezomib vergleichbar. So weisen NCEB-1 und Rec-1 in den 

getesteten Dosisbereichen die höchsten IC50-Werte auf, allerdings bestehen 

durchaus Unterschiede zwischen den einzelnen Zytostatika. So ist NCEB-1 auf die 

Behandlung mit Fludarabin am empfindlichsten. Für AraC wird kein IC50-Wert für 

beide Zelllinien erreicht, dies gilt auch für Rec-1 Zellen bei Fludarabin und 

Mitoxantron. Somit sind diese Zellen sowohl nach Bortezomib-Exposition als auch 

nach Zytostatika-Behandlung am unempfindlichsten. Interessanterweise zeigt Rec-1 

auf Bortezomib eine intermediäre Empfindlichkeit, während es gegenüber 

konventionellen Chemotherapeutika weitgehend unempfindlich ist, was darauf 

hinweist, dass Bortezomib in der Lage ist, die Chemoresistenz von Tumorzellen zu 

überwinden. JeKo-1 ist auch bei der Anwendung der Chemotherapeutika, mit 

Ausnahme von Gemcitabin und Mitoxantron die empfindlichste  aller MCL-Zelllinien, 

Granta 519 und HBL-2 Zellen zeigen eine intermediäre Empfindlichkeit. Die 

Kontrollzelllinien Jurkat und Karpas 422 sind auf alle getesteten Chemotherapeutika 

empfindlicher, die IC50-Werte liegen, mit Ausnahme von Fludarabin, niedriger als die 

der MCLs. Diese Unterschiede verdeutlichen die Resistenz der MCLs auf 

konventionelle Zytostatika. 

 

 

 3.4.2 Die sequentielle Kombination von Bortezomib u nd Cytosin-Arabinosid 

wirkt synergistisch bei Präinkubation mit Cytosin-A rabinosid 

 

Um die Kombination aus Zytostatikum und Bortezomib zu evaluieren, wurden die 

Zelllinien in einer fixen Kombination aus Bortezomib und AraC inkubiert. Die IC50-

Werte wurden nicht nur für die Koinkubation beider Substanzen über 24 Stunden, 

sondern auch für die sequentielle Inkubation bestimmt. Jeweils eine Substanz wurde 

über den gesamten Zeitraum von 24 Stunden inkubiert, während die andere 

Substanz erst nach zwölf Stunden zugefügt wurde. Die Ci (IC50)-Werte für die 

Kombination aus Bortezomib und AraC zeigen starken Synergismus in allen MCL-

Zelllinien bei Präinkubation mit AraC für 12 Stunden, die Ci (IC50)-Werte lagen 

zwischen 0,17 (±0,05) und 0,62 (±0,04). Ein synergistischer Effekt liegt bei Ci < 0,7 

vor (s. Methoden). Ein synergistischer Effekt für diese Kombination wurde auch bei 

Karpas 422 (0,15±0,16), nicht jedoch bei Jurkat (1,11±0,34) nachgewiesen. Bei 
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Koinkubation beider Substanzen lässt sich nur in Jurkat und Rec-1 ein Synergismus 

feststellen, während sich bei allen anderen Zellen additive Effekte zeigen. Ein 

additiver Effekt liegt bei 0,7 < Ci < 1,3 vor. Interessanterweise bestehen bei der 

Präinkubation mit Bortezomib z.T. ausgeprägte antagonistische Effekte, die speziell 

in den MCL-Zelllinien auftraten (HBL-2, JeKo-1, NCEB-1) und durch Ci (IC50) Werte 

von bis zu 2,83 (±0,57) charakterisiert sind.  

 
 
Tabelle 5: Ci (IC 50) Werte für die Kombination von Bortezomib und AraC  
Mittelwert ± Standardabweichung aus drei unabhängigen Experimenten, signifikant synergistische 
Werte sind fett gedruckt 
 
 

Zelllinie 
 

Bortezomib (24h)+ 

AraC (12h) 

 

Bortezomib (24h)+ 

AraC (24h) 

 

Bortezomib (12h)+ 

AraC (24h) 
 

Granta 519 0,55(±0,21) 0,88(±0,30) 0,50(±0,08) 

HBL-2 2,83(±0,57) 0,79(±0,18) 0,17(±0,05) 

JeKo-1 1,60(±0,81) 0,64(±0,56) 0,23(±0,05) 

NCEB-1 0,62(±0,23) 0,15(±0,56) 0,46(±0,22) 

Rec-1 1,32(±0,34 ) 0,41(±0,23) 0,62(±0,04) 

Jurkat 1,52(±0,26) 0,39(±0,23) 1,11(±0,34) 

Karpas 422 2,08(±0,51 ) 1,15(±0,17 ) 0,15(±0,16) 

 

 

3.4.3 Überwiegend additive oder antagonistische Eff ekte bei der Kombination 

von Bortezomib mit Fludarabin, Gemicitabin oder Mit oxantron 

 

Analog zur Kombination von Bortezomib und AraC wurden auch die anderen 

Zytostatika auf synergistische Effekte mit Bortezomib untersucht. Hierbei zeigte sich 

kein einheitliches Bild. Die Kombination von Bortezomib und Fludarabin führte bei 

Präinkubation mit Fludarabin  sowie bei Koinkubation zu synergistischen oder  

additiven Effekten, die Präinkubation mit Bortezomib wies auf additive oder 

antagonistische Interaktionen zwischen den Substanzen hin. Sehr heterogene 

Ergebnisse wurden bei der Kombination aus Bortezomib und Gemcitabin beobachtet. 

Zwar war die Koinkubation mit Bortezomib in 2 von  5 MCL-Zelllinien synergistisch, 

allerdings zeigte sich bei Koinkubation sowie Präinkubation mit Bortezomib ein 

ausgeprägter Antagonismus mit Ci (IC50) Werten von bis zu 7,05 (±1,34). Für 

Mitoxantron wurde in keiner der Kombinationen ein  Synergismus nachgewiesen, bei 

Präinkubation mit Bortezomib bestanden additive Effekte, die Koinkubation und die 

Präinkubation mit Mitoxantron führte mehrheitlich zu antagonistischer Interaktion.  
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Tabelle 6: Ci (IC 50) Werte für die Kombination von Bortezomib und Flud arabin 
Mittelwert ± Standardabweichung aus drei unabhängigen Experimenten, signifikant synergistische 
Werte sind fett gedruckt 
 
 

Zelllinie 
 

Bortezomib (24h)+ 

Fludarabin (12h) 

 

Bortezomib (24h)+ 

Fludarabin (24h) 

 

Bortezomib (12h)+ 

Fludarabin (24h) 
 

Granta 519 1,05(±0,23) 0,85(±0,22) 1,01(±0,23) 

HBL-2 1,55(±0,28)  1,50(±0,22)  0,89(±0,13) 

JeKo-1 3,65(±0,46) 1,88(±0,28) 0,41(±0,09) 

NCEB-1 1,00(±0,20) 0,57(±0,10) 0,86(±0,71) 

Rec-1 2,38(±0,91) 1,41(±0,38) 1,97(±0,56) 

Jurkat 1,23(±0,27) 1,06(±0,23) 0,86(±0,01) 

Karpas 422 2,55(±0,53) 0,83(±0,15) 0,66(±0,39) 

 
    
 
Tabelle 7: Ci (IC 50) Werte für die Kombination von Bortezomib und Gemc itabin 
Mittelwert ± Standardabweichung aus drei unabhängigen Experimenten, signifikant synergistische 
Werte sind fett gedruckt 
 
 

Zelllinie 
 

Bortezomib (24h)+ 

Gemcitabin (12h) 

 

Bortezomib (24h)+ 

Gemcitabin (24h) 

 

Bortezomib (12h)+ 

Gemcitabin (24h) 
 

Granta 519 0,85(±0,30) 0,59(±0,23) 0,17(±0,04) 

HBL-2 1,55(±1,4) 3,71(±1,89) 1,46(±0,40) 

JeKo-1 3,65(±0,86) 3,86(±2,84) 1,55(±0,27) 

NCEB-1 0,30(±0,03)  4,62(±0,91) 7,05(±1,34)  

Rec-1 0,53(±0,41) 1,78(±0,31) 2,12(±0,69 ) 

Jurkat 0,25(±0,06) 0,35(±0,71) 0,29(±0,08) 

Karpas 422 0,74(±0,23) 0,63(±0,10) 1,53(±0,26) 

 
 
 
Tabelle 8: Ci (IC 50) Werte für die Kombination von Bortezomib und Mito xantron 
Mittelwert ± Standardabweichung aus drei unabhängigen Experimenten, signifikant synergistische 
Werte sind fett gedruckt 
 
 

Zelllinie 
 

Bortezomib (24h)+ 

Mitoxantron (12h) 

 

Bortezomib (24h)+ 

Mitoxantron (24h) 

 

Bortezomib (12h)+ 

Mitoxantron (24h) 
 

Granta 519 0,61(±0,19) 2,09(±0,87) 1,21(±0,49) 

HBL-2 0,92(±0,18) 1,47(±0,38) 1,57(±0,53) 

JeKo-1 0,69(±0,25) 2,20(±0,64) 1,69(±0,34) 

NCEB-1 1,74(±0,38) 1,69(±0,34) 1,18(±0,15) 

Rec-1 0,54(±0,29) 0,70(±0,2) 1,35(±0,22) 

Jurkat 1,14(±0,72) 1,56(±0,81) 1,76(±0,68) 

Karpas 422 0,93(±0,47) 1,92(±0,56) 1,84(±0,72) 

 
 

 

 



Diskuss ion  

 46

4. Diskussion 

 

4.1 Bortezomib zeigt hohe Wirksamkeit gegen Mantelz elllymphom 

Zelllinien 

 

Das Mantelzelllymphom ist ein aggressives B-NHL, welches durch die schlechteste 

Langzeitprognose aller Lymphomsubtypen und eine ausgeprägte Resistenz 

gegenüber konventionellen Chemotherapeutika charakterisiert ist (Bosch et al., 1998; 

Bertoni et al., 2004). Der klinische Verlauf zeigt in fortgeschrittenen Stadien eine 

kontinuierliche Progression und ein medianes Überleben von drei Jahren. Zwar 

können durch eine kombinierte Immunochemotherapie mit Rituximab (R-CHOP, R-

FCM oder R-MCP) ein höheres Gesamtansprechen und eine Verlängerung des 

Gesamtüberlebens erzielt werden, doch eine Heilung ist hierdurch nicht möglich 

(Dreyling et al., 2007). Die allogene Knochenmarktransplantation ist bisher der 

einzige potentiell kurative Therapieansatz. Angesichts dieser Situation sind neue 

Therapieansätze, die in Kombination mit bisher bewährten Therapieschemata das 

therapeutische Spektrum erweitern und zu einer Verbesserung von Prognose und 

Lebensqualität der Patienten führen dringend erforderlich. Ein Ansatz ist die 

Proteasominhibition durch Bortezomib. Bortezomib ist die erste Substanz einer 

neuen Klasse von Medikamenten die als zellulären Angriffspunkt zielgerichtet das 

Proteasom hemmen und für den Einsatz in klinischen Studien zugelassen wurde. 

Sowohl in vitro als auch in vivo zeigt Bortezomib ausgeprägte antitumorale Aktivität, 

was die Rationale für eingehendere Untersuchungen im präklinischen wie im 

klinischen Einsatz bildet.  

Zunächst konnte in der vorliegenden Arbeit demonstriert werden, dass Bortezomib 

eine hohe Wirksamkeit gegen MCL-Zelllinien zeigt. Nach 72-stündiger Inkubation mit 

25 nM lag die Zahl der lebenden Zellen zwischen 0% bis 75% der Zahl der 

unbehandelten Zellen. In klinisch erreichbarer Dosierung kann in allen Zelllinien die 

Proliferation effektiv gehemmt werden. Unterschiede zwischen MCL- und 

Kontrollzelllinien ließen sich hierbei nicht feststellen. Allerdings ist festzuhalten, dass 

NCEB-1 mit Abstand am wenigsten auf die Behandlung mit Bortezomib anspricht 

und die Zahl der lebenden Zellen nach Inkubation über 72 Stunden um das 11-fache 

höher liegt als die Zellzahl bei der am zweitunempfindlichsten Zelllinie Rec-1. Diese 
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Ergebnisse konnten durch Bestimmung der IC50-Werte nach 24-stündiger Inkubation 

bestätigt werden. Auch hier zeigte sich NCEB-1 mit 44,5±9,1 nM als deutlich 

resistenter als die anderen gestesteten Zelllinien, deren Werte zwischen 14,8±1,3 nM 

und 28,2±0,4 nM lagen. Die  IC50-Werte der Kontrollzelllinien (20,3±2,2 nM und 

24,4±0,3 nM) lagen Bereich der MCLs. Durchflußzytometrisch konnte eine 

Apoptoseinduktion durch Bortezomib gezeigt werden. Abhängig von der Zelllinie 

führte Bortezomib nach zwölf- bzw. 24-stündiger Inkubation zu einem Anteil an  

apoptotischen Zellen zwischen 17,6% und 50,0% bzw. 24,7% und 77,9%. Die 

Ergebnisse bestätigen somit Beobachtungen von Pham et al., die in den 

Mantelzelllymphom Zelllinien DB und Mino die antiproliferative und apoptose-

induzierende Wirkung von Bortezomib demonstrierten. Die höhere Rate an 

apoptotischen Zellen bei Pham et al. ist vor allem auf die in dieser Arbeit höhere 

Dosis von 50nM Bortezomib zurückzuführen. Ein unterschiedliches Ansprechen der 

MCL-Zelllinien auf Bortezomib konnte in einer Arbeit von Perez-Galan et al. bestätigt 

werden. Von den untersuchten Zelllinien war Rec-1  mit einer LD50 nach 20 Stunden 

von 60,1±1,6 nM deutlich weniger empfindlich als Granta 519 (19,4±1,8 nM) und 

JeKo-1 (26,6±2,2 nM). Die in der Arbeit publizierten deutlich höheren LD50-Werte 

kommen durch die geringer Inkubationsdauer und die Bestimmung der LD, welche 

sich auf eine apoptoseinduzierende Dosis bezieht zustande.  

Keine Korrelation konnte zwischen Sensibilität auf Bortezomib und Mutationen in 

Tumorsuppressorgenen gefunden werden. So sind Granta 519 und HBL-2 ähnlich 

empfindlich auf Bortezomib, obwohl Granta 519 den p53 Wildtyp aufweist und p53 

bei HBL-2 mutiert ist. Ähnlich verhält es sich bei den unempfindlichsten Zelllinien 

NCEB-1 und Rec-1, wo p53 bei NCEB-1 mutiert ist, während bei Rec-1 der Wildtyp 

vorliegt. Eine mögliche Erklärung für die Unempfindlichkeit von NCEB-1 könnte der  

Nachweis von Mauschromosomen in NCEB-1 sein (Camps et al., 2006). Die 

Expression muriner Genen wie bcl-2 in einer humanen Zelllinie könnte zur stärkeren 

Resistenz dieser Zelllinie gegenüber unterschiedlicher zytotoxischer Substanzen 

führen. Der weitere Einsatz der Zelllinie NCEB-1 als geeignetes Modell für MCLs 

erscheint vor dem Hintergrund dieser Beobachtung fragwürdig.  

Die Rolle des Proteasoms in der Onkogenese, die Mechanismen, über die 

Bortezomib antiproliferativ wirksam ist und die zellulären Ereignisse, die eine 

Inhibition des Proteasoms nach sich zieht sind nicht abschließend geklärt.  Tumoren 

können sowohl durch Stabilisierung von Onkoproteinen als auch durch 



Diskuss ion  

 48

Destabilisierung von Tumorsupressorgenen entstehen. Das Ubiquitin-Proteasom-

System spielt eine entscheidende Rolle in der zellulären Proteinhomöostase und das 

Proteasom scheint bei der Entstehung einer Vielzahl von Tumoren von großer 

Bedeutung zu sein. Proteine, die über das Ubiquitin-Proteasom-System reguliert 

werden sind beispielsweise die Tumorsupressoren p53 und p27KIP, die 

Oberflächenrezeptoren für Wachstumsfaktoren EGFR (epidermal growth factor 

Receptor) oder TGF-βR (transformin growth factor-β Receptor) sowie Regulatoren 

des Zellzyklus und der Transkription (Burger et al., 2004). Ein Zusammenhang 

zwischen der Aktivität des Proteasoms und der Pathogenese von Tumoren wurde 

bereits 1990 von Kumatori et al. in Leukämiezellen und 1991 von Kanayama et al. in 

Nierenkarzinomzellen beschreiben. Eine Arbeit von Dutaud et al. aus 2001 

untersuchte mittels eines ELISA die Plasmaaktivität des 20S Proteasoms bei 

Gesunden im Vergleich zur Aktivität bei Patienten mit akuter myeloischer Leukämie 

(AML), M. Hodgkin, chronisch myeloproliferativem Syndrom und soliden Tumoren. 

Hierbei zeigte sich, dass die Plasmaaktiviät des 20S Proteasoms bei Erkrankten im 

Vergleich zu Gesunden deutlich erhöht war, bei soliden Tumoren um bis zu 1200 

Prozent. Zudem ließen sich bei Patienten mit einer CLL erhöhte Werte während einer 

akuten Krankheitsphase und erniedrigte Werte während einer Therapie nachweisen.  

Viele Substrate des Proteasoms sind an Signaltransduktionswegen beteiligt, die in 

Tumorerkrankungen dysreguliert sind. Während die Zahl an bekannten Tumor-

assoziierten Proteinen, die ubiquitiniert und dann dem Abbau im Proteasom 

zugeführt werden sehr groß ist, ist nur wenig bekannt über die Rolle der einzelnen 

Ubiquitin-konjugierenden Enzyme in der Pathogenese von Tumoren (Burger et al., 

2004). Eine Beteiligung des E1 Enzyms an der Entstehung von Tumoren konnte 

nicht nachgewiesen werden, ein E2 Enzym (UbcH10) sowie mehrere E3 Ligasen 

wurden auf ihren Zusammenhang  mit der Entstehung von Tumoren hin untersucht. 

Die RNA-Expression von E2 UbcH10 in normalem Gewebe zeigte extrem niedrige 

Werte, während die RNA-Expression in Tumoren von Lunge, Magen, Uterus oder in 

Blasenkarzinomen hoch war (Okamoto et al., 2003).  

Ein wichtiges Beispiel für ein Protein, dass eine entscheidende Rolle in vielen 

Tumoren spielt und von einer substrat-spezifischen E3 Ubiquitin-Ligase reguliert wird 

ist p53. Als Tumorsuppressorprotein kurzer Halbwertszeit ist p53 in geringen Mengen 

in normalen eukaryotischen Zellen vorhanden. Zellulärer Stress, durch Chemikalien 

oder Bestrahlung verursachte DNA-Schäden, Hypoxie oder die Aktivierung von 
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Onkogenen führen zur Stabilisierung und Akkumulation von p53. Abhängig von 

Situation und Grad der Schädigung kann über p53 ein Zellzyklusarrest, DNA- 

Reparatur, Differenzierung, Seneszenz oder Apoptose reguliert werden (Chène, 

2003). In etwa 50% aller menschlichen Tumore lassen sich Mutationen in p53 

nachweisen, und eine große Zahl an Tumoren ist assoziiert mit Alterationen von 

positiven oder negativen Regulatoren von p53. Zwei E3 Ligasen, die RING-type E3 

Ligase MDM2 und die HECT-type E3 Ligase E6-AP können den Abbau von p53 

durch das Proteasom bewirken (Burger et al., 2004). Wildtyp p53 fördert die 

Expression von MDM2, welches wiederum p53 ubiquitiniert und so einem schnellem 

Abbau durch das Proteasom zuführt was zu einem effizienten Regelkreis führt (Abb. 

18). Zudem bindet MDM2 an die transkriptionsaktivierende Domäne von p53 und 

blockiert so dessen antiproliferative Wirkung (Haupt et al., 1997). Daher stellt die 

Überexpression von MDM2 eine Alternative zur Mutation oder Deletion von p53 in 

der Pathogenese von Tumoren dar (Yang et al., 2004). Eine Überexpression von 

MDM2 durch Genamplifikation wird vor allem bei Weichgewebssarkomen und 

Gliomen beschrieben, Überexpression durch Alterationen von Transkription oder 

Translation zeigen sich bei akuten lymphatischen Leukämien (ALL), Melanomen und 

Mammakarzinomen (Burger et al., 2004). Die Hemmung des Proteasoms in 

Tumoren, die MDM2 überexprimieren und bei denen daher p53 trotz fehlender 

Mutation inaktiv ist, könnte einen wirkungsvollen Ansatz zur Reaktivierung von p53 

und zur konsekutiven Induktion von Apoptose darstellen. 

 

 

 

 

 

 

 

 
 

 

 

 

Eine andere HECT-type E3 Ligase die sich als wichtig in der Entstehung von 

verschiedenen Tumoren erwiesen hat ist Smurf2 (Smad ubiquitination regulatory 

Abbildung 18: 
Ubiquitinierungspathways von p53 
 
In normalen Zellen ist die Halbwertszeit 
von p53 unter der Kontrolle der E3 
Ligase MDM2. Genotoxische Stimuli 
induzieren den Ubiquitin-vermittelten 
Abbau von  MDM2, um p53 zu aktivieren. 
Zellstreß aktiviert p53 auch durch 
Phophorylierung (modifiziert nach Mani 
et al., 2005).  
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factor-2). Smurf2 steuert die Ubiquitinierung und den proteasomalen Abbau von R-

Smads und dem TGF-β Rezeptor Komplex, die zelluläre Differenzierung, Wachstum 

und Apoptose regulieren (Zhang et al., 2001). Es konnte gezeigt werden, dass eine 

starke Expression von Smurf2 mit einer schlechten Prognose beim 

Plattenepithelkarzinom des Ösophagus korreliert (Fukuchi et al., 2002). Auch RING-

type E3 Ligasen konnte eine bedeutende Rolle in der Karzinogenese nachgewiesen 

werden, so beispielsweise der E3 Ligase BRCA-1 in der Entstehung von 

Mammakarzinomen (Burger et al., 2004). Zusammengefasst weisen die Arbeiten 

darauf hin, dass Tumorzellen einen höheren Grad an Proteolyse betreiben, was sie 

dazu befähigt, die Reparaturantwort normaler Zellen besser zu bewältigen und den 

Abbau von Tumorsupressorproteinen oder die Aktivierung von Protoonkogenen 

erleichtert (Glickman et al., 2002). Abbildung 19 fasst die unterschiedlichen 

Wirkungen der E3 Ligasen in Tumorzellen zusammen. 

Über die Regulation des Zellzyklus ist das Proteasom an einem anderen wichtigen 

Entstehungsmechanismus von Tumoren beteiligt. In eukaryotischen Zellen wird das 

Fortschreiten des Zellzyklus über CDK Komplexe reguliert. Die CDK Aktivität wird 

wiederum durch Cycline gesteuert, die in unterschiedlichen Phasen des Zellzyklus 

aktiv sind (King et al., 1996). Neben der Bindung an ein passendes Cyclin beinhaltet 

die Aktivierung von CDKs auch die Dephosphorylierung durch ein spezifisches 

Mitglied der CDC25-Phosphatase Familie. Das Zusammenspiel von CDKs, Cyclinen 

und CDC25 ist komplex reguliert und beinhaltet verschiedene 

Rückkopplungsschleifen und die Aktivität von CDK Inhibitoren wie p21WAF1 und 

p27KIP1. Der Ubiquitin-Proteasom-Signaltransduktionsweg ist sowohl in den schnellen 

Umsatz von Cyclinen als auch in den Abbau von CDK Inhibitoren involviert (Adams 

et al., 2004). 
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Abbildung 19: E3 Ligasen und ihre Substrate in Tumo rzellen 
(modifiziert nach Burger et al., 2004) 
 

 

In vitro und in vivo konnten gezeigt werden, dass p27KIP in ruhenden Zellen in 

weitaus geringerem Ausmaß in ubiquitinierter Form vorliegt als in proliferierenden 

Zellen (Shirane et al., 1999). Das Proteasom wurde mit der Regulierung der Stabilität 

von CDC25A, B und C während des Zellzyklus in Zusammenhang gebracht, deren 

geordneter Abbau für das Zellwachstum erforderlich ist. Daher könnte die Hemmung 

des proteasomalen Abbaus dieser Regulationsmoleküle das Zellwachstum bremsen 

oder hemmen (Adams, 2004). Beim MCL konnte in einer Studie in einem Großteil 

der untersuchten Patientenproben eine Verminderung von p27KIP auf Proteinebene 

bei normaler p27KIP Genexpression nachgewiesen werden (Lim et al., 2002). Dieser 

Verlust von p27KIP könnte durch eine vermehrte Akkumulation von Skp2 zustande 

kommen, einer Komponente der p27KIP  E3 Ubiquitin Ligase. Eine hoher Gehalt an 

Skp2 korreliert direkt mit einer hohen E3 Aktivität und folglich mit einem stärkeren 

Abbau des Zielproteins p27KIP. In blastoiden Mantelzelllymphomen ist ein erhöhter 

Gehalt an Skp 2 mit niedrigem p27KIP assoziiert, was darauf hinweist, dass der 

stärkere Abbau von p27KIP durch das Proteasom zu einem aggressiverem Phänotyp 

beiträgt (O’Connor, 2005). Ein Anstieg von p21WAF1, p27KIP und p53 nach Bortezomib 

Exposition ließ sich in mehreren Arbeiten nachweisen und war hierbei jeweils mit 

Apoptoseinduktion assoziiert (Pham et al., 2003; Perez-Galan et al., 2006). Somit ist 

die Rekrutierung von p21WAF1, p27KIP und p53 ein bedeutender Mechanismus der 

zytotoxischen Wirkung von Bortezomib. Es kann diese jedoch nicht allein erklären, 

da - wie in der vorliegenden Arbeit gezeigt wurde - Bortezomib auch in Zellen mit 
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mutiertem oder delektiertem p53 wirksam ist. Die Akkumulation von CDK-Inhibitoren 

könnte des Weiteren die Veränderungen im Zellzyklusprofil nach Proteasominhibition 

erklären. Ein G2/M-Arrest nach Bortezomib Behandlung wurde bereits in humanen 

nicht-kleinzelligen Bronchialkarzinomzelllinien beobachtet (Ling et al., 2003). Die 

Akkumulation von p21WAF1, die auch in MCL-Zelllinien gezeigt werden konnte, 

scheint hierbei die entscheidende Rolle zu spielen. Dass p21 nicht nur für den G1/S 

Übergang, sondern auch für die Kontrolle des G2/M-Kontrollpunkts wichtig ist und 

einen G2/M-Arrest induzieren kann, wurde in verschiedenen Arbeiten gezeigt 

(Guadagno et al., 1996; Mantel et al., 1999; Ando et al., 2001; Ling et al., 2003) und 

könnte somit den bei MCL-Zelllinien zu beobachtenden G2/M-Arrest erklären.  

Das Proteasom ist auch über den NF-κB Signaltransduktionsweg an der 

Karzinogenese beteiligt. Über den Transkriptionsfaktor NF-κB werden Gene reguliert, 

die bei der Steuerung von Proliferation, Apoptose, Angiogenese und 

Entzündungsprozessen eine entscheidende Rolle spielen. Die konstitutive 

Aktivierung von NF-κB, die in vielen malignen Tumoren beobachtet werden kann 

(Tab. 9) schützt die Zellen vor pro-apoptotischen Stimuli einschließlich derer durch 

antitumorale Wirkstoffe (Nakanishi et al., 2005) und wurde auch bei MCL-Zelllinien 

beschrieben (Pham et al., 2003). Die konstitutive Überexpression von NF-κB scheint 

entscheidend bei der Entwicklung von Medikamentenresistenzen in Tumorzellen zu 

sein. So ist der Grad der Phosphorylierung von IκB und die Aktivität von NF-κB in 

Cisplatin-resistenten Ovarialkarzinomzellen signifikant höher als das in Cisplatin-

empfindlichen Zellen (Mabuchi et al., 2004). NF-κB wird auch als Antwort auf die 

Therapie mit zytotoxischen Medikamenten wie Taxanen, Vincaalkaloiden oder 

Topoisomeraseinhibitoren aktiviert. So führt der Topoisomeraseinhibitor Doxorubicin 

in HeLa Zellen durch Mobilisierung und Stimulierung des IKK Komplexes zur 

Aktivierung von NF-κB und dessen Zielgenen, die Expression eines super-repressor 

IκBα Moleküls sensibilisierte die HeLa Zellen für die apoptotische Wirkung von 

Medikamenten (Bottero et al., 2001). Antitumorale Medikamente aktivieren somit 

gleichzeitig verschiedene Signaltransduktionswege die hemmend oder fördernd auf 

Mechanismen des Zelltods wirken. Eine Modulation der Balance zwischen pro- und 

anti-apoptotischen Signalen könnte eine neue Strategie zur Verbesserung der 

Wirksamkeit von bestehenden Chemotherapeutika darstellen (Nakanishi et al., 

2005). 
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Tabelle 9: Konstitutive NF- κB Aktivität in menschlichen Tumorzellen 
(modifiziert nach Pacifico et al., 2006) 
 
 
Tumorart 
 
M. Hodgkin 

Akute Lymphoblastische Leukämie 

T-Zell Leukämie 

Diffus großzelliges Lymphom 

Follikuläres Lymphom 

B-NHL 

Multiples Myelom 

Plattenepithelkarzinome von Kopf und Hals 

Brust 

Kolon 

Ovar 

Pankreas 

Schilddrüse 

Niere 

Blasenkarzinom 

Leber 

Prostata 

Astrozytom/Glioblastom 

Melanom 

 
Vermuteter Mechanismus 
 
Konstitutive IKK Aktivität, iκba, iκbe Mutationen 

Konstitutive IKK Aktivität, nfκb1chromosomales Rearrangement 

Gesteigerter IκBα Abbau 

c-rel Amplifikation, Rearrangement, Überexpression 

c-rel Rearrangement, Überexpression 

relA, nfκb2, bcl3 chromosomales Rearrangement 

relA Aminosäureaustausch 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität  

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 

Defekte IκBα Aktivität 
 

Die konstitutive Aktivierung von NF-κB kann durch genetische Alterationen der Gene 

für NF-κB und IκB oder durch uneingeschränkte IKK Aktivität bedingt sein (Rayet et 

al., 1999). Sowohl in soliden Tumoren wie auch in hämatologischen Neoplasien 

konnten chromosomale Aberrationen in Genen nachgewiesen werden, die für REL, 

RELA,  NF-κB1 oder NF-κB2 codieren. Eine konstitutive Aktivierung von  NF-κB 

wurden zudem als Folge einer konstitutiven IKK Aktivität oder von Mutationen, die 

IκBs inaktivieren beschrieben (Nakanishi et al., 2005, Pacifico et al., 2006).  

Die Mechanismen, über die NF-κB auf Proliferation und Apoptose Einfluss nimmt 

sind vielfältig. Aktiviertes NF-κB antagonisiert die Funktion von p53 (Webster et al., 

1999). NF-κB fördert das Überleben von Zellen durch Expression anti-apoptotischer 

Gene. Die codierten Proteine wirken entweder auf mitochondrialer Ebene, wie BCL-

XL oder BFL-1, die zur BCL2 Familie gehören (Karin et al., 2002), oder blockieren 

direkt die Aktivierung von Caspasen, wie IAP1, IAP2 und XIAP (Deveraux et al., 

1999). Neben seiner anti-apoptotischen Funktion induziert NF-κB Zellproliferation 

und Zellzyklusprogression durch Regulation der Expression von Wachstumsfaktoren 

oder Zellzyklusregulatoren wie MYC und Cyclin D1 (Rayet et al., 1999). Desweiteren 

induziert NF-κB die Angiogenese in Tumoren durch Hochregulation der 
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Cyclooxygenase-2 (COX2) und NO-Synthese, sowie die Expression von 

Adhäsionsmolekülen wie ICAM1 oder VCAM1, die mit Metastasierung und einer 

schlechten Prognose assoziiert sind (Bonizzi et al., 2004). Zudem konnte gezeigt 

werden, dass NF-κB die Expression des Human multidrug resistance gene 1 (MDR1) 

in vitro aktiviert, was die Bedeutung von NF-κB in der Resistenz gegen Zytostatika 

weiter untermauert (Bentires-Alj et al., 2003).  

Das Ubiquitin-Proteasom-System nimmt in der Steuerung des NF-κB Signalpfads 

eine bedeutende Funktion ein (Abb. 20). Wie Eingangs erwähnt, liegt NF-κB im 

Zytoplasma gebunden an IκB vor und ist somit inaktiv. Die durch die IKK vermittelte 

Phosphorylierung von IκB ist die gemeinsame Endstrecke der meisten NF-κB 

aktivierenden Stimuli. Die phosphorylierte Region auf IκB ist essentieller Bestandteil 

einer Erkennungsregion für eine spezifische E3 Ligase die IκB ubiquitiniert, so dass 

IκB durch das Proteasom degradiert werden kann und NF-κB in seiner aktiven Form 

vorliegt (Karin et al., 2000). Die wachstumsfördernden und anti-apoptotischen Effekte 

von NF-κB machen es zu einem wichtigen Ziel antineoplastischer Therapien. So 

konnte in Multiplen Myelom-Zelllinien nach Behandlung mit Bortezomib eine 

Wachstumshemmung induziert werden, die mit einer Stabilisierung von IκB und 

reduzierter NF-κB Aktivität einherging (Hideshima et al., 2001). In MCL-Zelllinien 

führte eine Exposition mit Bortezomib zu einer Akkumulation von pIκBα, zu einer 

Herabregulierung von NF-κB und hinderte die p50- und p65-Komponenten von NF-

κB daran, in den Zellkern zu einzutreten (Pham et al., 2003). Zudem konnte durch 

spezifische Hemmung von NF-κB eine ähnliche Proliferationshemmung erreicht 

werden wie durch Bortezomib, was die wichtige Bedeutung von NF-κB in der 

Pathogenese des MCL verdeutlicht und eine mögliche Erklärung für die Wirksamkeit 

von Bortezomib in MCL liefert.  
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Weiterere Apoptose-steuernde Proteingruppen, die durch das Ubiquitin-Proteasom-

System reguliert werden sind Mitglieder der Bcl-2 Familie und der IAP Familie 

(Zhang et al., 2004). Die Proteine der Bcl-2 Familie sind vor allem für die Steuerung 

des mitochondrialen oder intrinsischen Apoptosepathways verantwortlich, der durch 

intrazellulären Stress aktiviert wird und über eine Freisetzung von Cytochrom C aus 

dem Mitochondrium zur Bildung von Apaf-1 führt, was wiederum  Caspase 9 und 

konsekutiv Caspase 3, 6 und 7 aktiviert (Adams, 2003). Die Aktivierung von 

Caspasen ist die gemeinsame Endstrecke der Apoptose-Kaskade, die in einer 

Proteolyse der Zellen mündet. Die Bcl-2 Familie fungiert als wichtiges System, dass 

diverse inter- und intrazelluläre Signale integriert, um zu entschieden, ob der 

Signaltransduktionsweg der Apoptose aktiviert werden soll. Mitglieder der anti-

apoptotischen Subfamilie (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, A1 und Bcl-B) schützen Zellen, 

die unterschiedlichen zytotoxischen Einflüssen ausgesetzt sind vor dem Zelltod. Im 

Gegensatz dazu fördern Mitglieder der Bax-ähnlichen Familie (Bax, Bak und Bok) 

wie auch die „BH3-only Proteine“ (Bik, Bad, Bid, Bim, Bmf, Hrk, Noxa und Puma) 

Apoptose (Adams et al., 2007). Über ein komplexes System werden Bax und Bak 

aktiviert und bilden Oligomere, die eine Permeabilisierung der äußeren 

Mitochondrienmembran und eine Freisetzung von Cytochrom C auslösen. Dies führt 

Abbildung 20: Steuerung d es NF-κB 
Pathways über das Ubiquitin-Proteasom 
System 
 
Als Antwort auf verschiedenartigen Stess, wie 
beispielsweise Zytostatika oder Bestrahlung 
wird IκB phosphoryliert und durch das 
Proteasom deaktiviert. Danach aktivert NF-κB 
als Transkriptionsfaktor verschiedene Gene, 
die für Proliferation, Angiogense, Anti-
Apoptose, Adhäsion und Entzündungs-
mechanismen verantwortlich sind. Durch die 
Hemmung des Proteasoms wird die 
Aktivierung von NF-κB verhindert und könnte 
so die Empfindlichkeit der Tumorzelle für 
zytotoxische Substanzen steigern (modifiziert 
nach Adams, 2004).  
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zur Aktiverung von Apaf-1, Omi und Diablo welche wiederrum IAPs (Inhibitor of 

Apoptosis Proteins) hemmen (Cory et al., 2002; Willis et al., 2007). Verschiedenen 

Mitgliedern der Bcl-2 Familie wie den pro-apoptotischen Proteinen Bax oder Bid 

konnte eine Regulation durch das Ubiquitin-Proteasom-System nachgewiesen 

werden (Zhang et al., 2004), eine Proteasom-Inhibition in Tumorzellen ist mit der 

Akkumulation von pro-apoptotischen „BH3-only Proteinen“ Bim, Bik, Noxa oder 

Puma assoziiert (Adams et al., 2007). Auch in MCL-Zelllinien führt Bortezomib zu 

einer Aktivierung des mitochondrialen Apoptose-Signalpfads, der mit der Aktivierung 

von Caspasen, Alterationen des mitochondrialen Membranpotentials und der 

Generierung von ROS (Reactive Oxygen Species) assoziiert ist. Zudem konnte eine 

Akkumulation von Mcl-1, eine Konformationsänderung bei Bax und Bak und eine 

Hochregulierung von Noxa beobachtet werden (Perez-Galan et al., 2006). Diesem 

Protein wird in der Induktion von Apoptose durch Bortezomib eine herausragende 

Bedeutung zugeschrieben, da es die anti-apoptotische Wirkung von Mcl-1 

konterkarieren kann, in dem es an Mcl-1 bindet und das pro-apoptotische Bak 

freisetzt (Willis et al., 2005). Noxa wurde sowohl in Bortezomib-sensiblen als auch 

Bortezomib-resistenten Zelllinien als Mediator der Apoptose identifiziert (Rizzatti et 

al., 2008). Durch Hemmung der Noxa-Expression mittels RNAi wird die Wirkung von 

Bortezomib auf MCL-Zelllinien deutlich abgeschwächt (Perez-Galan et al., 2006), 

was die herausragende Bedeutung dieses Proteins in der Apoptose-Induktion durch 

Bortezomib untermauert. 

Zusammenfassend zeigt sich, dass das Ubiquitin-Proteasom-System in 

unterschiedlichster Weise an der Onkogenese beteiligt ist. Es ergeben sich eine 

Vielzahl an Angriffspunkten, über die mittels einer Hemmung des Proteasoms in 

Tumorzellen Einfluss auf Empfindlichkeit gegenüber zytotoxischer Substanzen, 

sowie auf Proliferation und Zelltod genommen werden kann. Die genauen 

Mechanismen, über die Bortezomib seine Wirkungen auf Zellen entfaltet sind jedoch 

noch nicht abschließend geklärt.  

 

 

 

 

 

 



Diskuss ion  

 57

 

 

 

 
  
 
 

 

 

 

 

 

 

 

 

 

 

4.2 Die Kombination von Bortezomib mit anderen Subs tanzen 

könnte eine neue therapeutische Option darstellen 

 

Proteasom-Inhibitoren steigern die Empfindlichkeit von Tumorzellen gegenüber einer 

Vielzahl an Zytostatika durch Herabregulierung von resistenzvermittelnden 

Signalpfaden. So konnten Multiple Myelom-Zellen, die resistent auf Melphalan, 

Mitoxantron und Doxorubicin waren mit einer subtoxischen Dosis Bortezomib 

sensibilisiert werden (Ma et al, 2003). Hierbei kommt der Herabregulierung von   NF-

κB durch Bortezomib eine besondere Bedeutung zu, da die Therapie mit 

Anthracyclinen NF-κB aktiviert, während Bortezomib diese blockiert. Ähnliche NF-κB- 

betreffende Mechanismen sind auch für die chemosensibilisierende Wirkung von 

Bortezomib in einem Kolonkarzinom-Xenograft Modell oder für die 

strahlensensibilisierende Wirkung in einen Kolonkarzinom Mausmodell beschrieben 

worden (Cusack et al., 2001; Russo et al., 2001). Desweiteren können Proteasom- 

Inhibitoren Tumorzellen für DNA-schädigende Substanzen sensibilisieren, in dem sie 

die Transkription von Genen der DNA-Reparatur hemmen (Mimnaugh et al., 2000; 

Mitsiades et al., 2003).  

Abbildung 21: Signalpfade des 
Zelltods 
 
Der Stress Pathway wird durch die 
„BH3-only“ Proteine ausgelöst, 
welche Bcl-2-ähnliche Proteine 
inaktivieren, die somit Bax oder Bak 
nicht mehr hemmen können. Bax 
oder Bak können die äußere 
Mitochondrienmembran 
permeabilisieren und lösen über die 
Freisetzung von Cytochrom C die 
Caspasen Kaskade aus.  
Beim Death Rezeptor Pathway wird 
durch Bindung eines Liganden der 
TNF-Familie an den entprechenden 
Rezeptor Caspase 8 über Adapter 
Proteine wie FADD aktivert, und 
somit Apoptose induziert (modifiziert 
nach Adams et al., 2007) 
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Die in vitro Daten der vorliegenden Arbeit bestätigen nicht nur die Aktivität von 

Bortezomib in MCL-Zelllinien, sondern demonstieren eine gesteigerte Wirksamkeit in 

Kombination mit Zytostatika, hierbei in besonderem mit AraC. Interessanterweise hat 

die Sequenz der Administration der Substanzen einen großen Einfluss auf die 

Interaktion. Es zeigt sich eine deutliche Überlegenheit der Kombination aus 

Präinkubation mit AraC gefolgt von Bortezomib. AraC ist eine der wirkungsvollsten 

Substanzen in Mono- oder Kombinationstherapie von hämatologischen Malignomen 

inklusive des MCL (Kantarjian et al., 1983; Lefrère et al., 2002). Nach Konversion zu 

seinem Triphosphatderivat Ara-Cytidintriphosphat (CTP) interferiert es mit DNA-

Polymerasen und wird während der DNA-Replikation in das Genom eingebaut. 

Hierdurch wird die strukturelle Integrität der DNA beeinträchtigt, was die Replikation 

zum Stillstand bringt. Dies aktiviert die zelluläre Antwort auf DNA-Schäden, die je 

nach Ausmaß der Schädigung einen Zellzyklusarrest oder den mitochondrialen 

Pathway der Apoptose einleitet (Sampath et al., 2003). Der synergistische Effekt 

zwischen AraC und Bortezomib könnte dadurch zu Stande kommen, dass 

Proteasom-Inhibition in mit AraC vorbehandelten Zellen die Menge an pro-

apoptotischen Molekülen des mitochondrialen Pathways weiter steigert und somit die 

Apoptose positiv begünstigt. Zudem wurde in spätapoptotischen Zellen gezeigt, dass 

Effektorcaspasen drei Untereinheiten des 19S Partikels abbauen und somit die 

Aktivität des Proteasoms irreversibel hemmen (Sun et al., 2004). Da Bortezomib in 

MCL-Zellen antiproliferativ wirksam ist und Apoptose induziert, könnte durch 

Hemmung des Proteasoms vor AraC-Exposition die Menge an Nukleosidanalogon, 

die in die DNA aufgenommen wird geringer sein. Dies wird durch die Beobachtung 

untermauert, dass Bortezomib einen G2/M-Arrest induziert und sich die Zellen somit 

zum Zeitpunkt der Exposition mit AraC überwiegend in einer Phase des Zellzyklus 

befinden, in dem DNA-Replikation nur in geringerem Maße stattfindet. Des Weiteren 

induziert Bortezomib die Akkumulation von anti-apoptotischem Mcl-1 (Perez-Galan et 

al., 2006), was die Wirksamkeit von AraC zusätzlich abschwächen könnte, während 

die Gabe von Zytostatika wie Nukleosidanaloga eine Herabregulierung von Mcl-1 

induziert (Ferrer et al., 2004). Diese Beobachtungen könnten somit die Ergebnisse 

der Kombinationstherapie erklären, die synergistische Effekte nur für die 

Präinkubation und teilweise für die Koinkubation mit AraC zeigen, während bei 

Präinkubation mit Bortezomib nur additive oder antagonistische Wirkungen 

feststellbar sind. Interessanterweise zeigen sich diese sequenzabhängigien 
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synergistischen Effekte vor allem in Kombination mit AraC, nicht jedoch in 

Kombination mit den anderen Nukleosidanaloga Fludarabin und Gemcitabin. Eine 

Begründung könnte das bereits gute Ansprechen der Zelllinien auf diese Substanzen 

in Monotherapie sein, da sich synergistische Effekte in Kombination überwiegend in 

den Zelllinien zeigen, die in Monotherapie nur ein geringes oder kein Ansprechen auf 

die konventionellen Substanzen zeigen. Ähnlich verhält es sich bei Mitoxantron, auf 

das die MCL-Zellen bereits in der Monotherapie gut ansprechen. Da das 

Topoisomerase-II Gen in MCL ein proliferationsabhängigies Gen ist (Rosenwald et 

al., 2003) und in Monotherapie das Ansprechen von Zellen mit hohem 

Proliferationsindex besser ist (Ferrer et al., 2004), könnte das Fehlen eines 

synergistischen Effekts durch den Bortezomib-vermittelten G2/M-Arrest und die 

ausgeprägte antiproliferative Wirkung des Proteasom-Inhibitors begründet werden.  

Weitere Synergismen mit anderen Substanzen in vitro wurden zwischen Bortezomib 

und dem pan-Bcl-2-Inhibitor GX15-070 (Perez-Galan et al., 2007), dem 

Farnesyltransferase-Inhibitor R115777 (Rolland et al., 2008) dem mTOR-Inhibitor 

Rad001 (Everolimus) (Haritunians et al., 2007), Cyclophosphamid und Rituximab 

(Wang et al., 2008), dem Histondeacetylase-Inhibitor SAHA (Heider et al., 2008), 

dem BH3-only Mimetikum ABT-737 (Paoluzzi et al., 2008), MI-63, einem Inhibitor der 

p53 E3 Ligase HDM-2 (Jones et al., 2008), einem ERAD-Inhibitor (Wang et al., 2009) 

sowie dem MDM-2 Antagonisten Nutlin-3 (Tabe et al., 2009) beschrieben. Der in der 

vorliegenden Arbeit gefundene Synergismus zwischen Bortezomib und AraC konnte 

an primären MCL-Zellen von 4 MCL-Patienten bestätigt werden, hierbei zeigte sich 

bei Koinkubation der Substanzen in allen Patientenproben eine höhere 

Apoptoseinduktion als durch die Wirksamkeit der Einzelsubstanzen auf die Zellen zu 

erwarten gewesen wäre (Weigert et al., 2007). Auf die Wirksamkeit von Bortezomib 

in Kombination mit AraC weisen auch Fallreporte  zweier mehrmals vorbehandelter 

Patienten mit rezidivierendem MCL in fortgeschrittenen Stadien hin. Während in 

beiden Fällen unter Monotherapie mit Bortezomib eine progrediente 

Lymphadenopathie bestand, kam es unter Therapie mit Bortezomib (1,5mg/m² an 

Tag 1 und 4) und AraC (1000mg/m² als 3h-Infusion an Tag 2 und 4) sowie der 

Hinzunahme von Rituximab (375mg/m² an Tag 0) zu einer deutlichen Verbesserung 

der Symptome sowie einem deutlichen Ansprechen bis hin zu einer partiellen 

Remission in einem der Fälle (Weigert et al., 2007). Auf Basis dieser Daten wurden 

weitere Patienten im Rahmen einer multizentrischen beobachtenden Studie mit dem 
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oben genannten Regime behandelt. Die kürzlich publizierten Langzeit-Ergebnisse 

zeigten bei vielfach vorbehandelten Patienten ein objektives Ansprechen in 50% der 

Fälle, hierunter 25% der Patienten mit einer CR (Weigert et al., 2009).  

Die Ergebnisse der vorliegenden Arbeit demonstrieren, dass der Proteasom-Inhibitor 

Bortezomib als Monosubstanz hochwirksam gegen MCL Zelllinien ist, und das die 

Substanz in Kombination mit AraC sequenzabhängig einen deutlichen Synergismus 

zeigt. Auf dem Boden dieses Synergismus und  erster klinischer Daten wird der 

Stellenwert von Bortezomib durch die randomisierte Phase-III-Studie des European 

MCL Networks Wirksamkeit und Sicherheit einer Kombinationstherapie mit 

Rituximab, hochdosiertem Ara-C und Dexamethason (R-HAD) mit oder ohne 

Bortezomib bei Patienten mit rezidiviertem und refraktärem Mantelzell-Lymphom   

weiter definiert werden und zeigen, ob die ermutigenden in vitro Daten klinisch 

bestätigt werden können und somit Prognose und Lebensqualität von MCL Patienten 

weiter verbessert werden können.  
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5. Zusammenfassung  

 

Das Mantelzelllymphom (MCL), ein niedrigmalignes B-Zell Non-Hodgkin-Lymphom, 

ist durch die schlechteste Prognose aller Lymphome mit einem medianen Überleben 

von nur 3 Jahren charakterisiert. Mit neueren Kombinationschemotherapien konnten 

Ansprechraten zwar gesteigert, das Gesamtüberleben der Patienten jedoch nicht 

verbessert werden. In der Pathogenese des MCL wurden in den letzten Jahren neue 

Erkenntnisse erlangt, welche das Verständnis der zugrunde liegenden Mechanimen 

verbessert haben. Eine wichtige Funktion in der Steuerung von 

Zellzyklusprogression, Apoptose, Onkogenese und Regulation von Genexpression 

nimmt hierbei das Proteasom ein. Dieser hochselektive Enzymkomplex ist das 

wichtigste extralysosomale proteolytische System, dessen Regulation einen schellen 

Abbau von Zielproteinen sicherstellt. In der vorliegenden Arbeit wurde die in vitro 

Wirksamkeit des Proteasom-Inhibitors Bortezomib (BZ) in MCL- sowie 

hämatologischen Kontrollzelllinien untersucht. Zunächst konnte in einem initialen 

Zellkulturversuch die dosis- und zeitabhängige Proliferationshemmung von BZ auf 

MCL- sowie Kontrollzelllinien gezeigt werden. Eine genauere Quantifizierung der 

proliferationshemmenden Wirkung von BZ war durch den kolorimetrischen 

Proliferationsassay möglich, wobei sich deutliche Unterschiede in der Empfindlichkeit 

auf den Proteasom-Inhibitor zwischen den einzelnen MCL-Zelllinien sowie den 

Kontrollzelllinien zeigten. Die zytotoxische Wirkung von BZ auf MCL-Zelllinien wurde 

im Apoptoseassay gezeigt, wobei sich die im Proliferationsassay beobachteten 

Unterschiede in der Empfindlichkeit auf den Inhibitor bestätigten. Im Rahmen der 

Zellzyklusanalyse konnte festgestellt werden, dass die Exposition der Zellen mit BZ 

bereits in den ersten 12 Stunden nach Inbibitorgabe zu einem Arrest des Zellzyklus 

in der G2/M-Phase führt. Um synergistische Effekte zwischen BZ und 

konventionellen Chemotherapeutika aufdecken zu können wurden die Zellen mit den 

Monosubstanzen sowie in unterschiedlichen sequentiellen Kombinationen inkubiert. 

Synergistische Effekte wurden insbesondere bei der Präinkubation der Zellen mit 

Cytosin-Arabinosid beobachtet, während die Kombination von BZ mit Fludarabin, 

Gemcitabin oder Mitoxantron vorwiegend additive oder antagonistische Effekte 

erbrachte.  

Die beschriebenen in vitro Experimente konnten die hohe Wirsamkeit von BZ gegen 

MCL-Zelllinien in Mono- und Kombinationstherapie demonstrieren. Der Stellenwert 
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von BZ in der Therapie des MCL wird jedoch in zukünftigen klinischen Studien 

definiert werden müssen. 
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