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1 Introduction

In my dissertation, I deal with dynamic models of strategic information accumulation and

transmission, meaning that I investigate situations in which strategically interacting agents

seek progressively to garner intelligence, which may potentially help them make better deci-

sions in the future. The canonical framework for the analysis of such questions is provided

by the literature on strategic experimentation on (two-armed) bandits.1 Previous related

work has been done in the papers by Bolton & Harris (1999, 2000), as well as Keller, Rady,

Cripps (2005), and Keller & Rady (2010). These papers investigated the case of several

agents experimenting with replica bandits, with both the players’ actions, as well as the

outcomes of their actions, being perfectly publicly observable to their peers.

This assumption that there is perfect positive correlation across the several players’ ban-

dits is lifted in Chapter 1 of the present dissertation.2 First investigating the case of perfect

negative correlation in a two-player game, we fully characterize the set of equilibria. We find

that there always exists an equilibrium in cutoff strategies, whereas there never exists an

equilibrium in cutoff strategies in the positively correlated benchmark case. Again in marked

contrast to the case of perfect positive correlation, where the probability of never finding out

the true state of the world was always inefficiently large, we find that in any equilibrium, this

probability coincides with the efficient benchmark. Furthermore, using elementary construc-

tive methods, we characterize a symmetric equilibrium in cutoff strategies for all parameter

values for the case of arbitrary negative correlation. These equilibria again exhibit efficient

long-run patterns of learning. We moreover extend our results to three players.

In Chapter 2, I analyze a game of two players operating replica bandits with one safe

arm and two risky arms, the respective types of which are perfectly negatively correlated.3

While the general setup may seem superficially similar to that in Chapter 1, there are no-

table differences, which are shown to be of quite some import to the analysis: Players now

endogenously decide at each “point” in time if they want to investigate a given hypothesis or

its negation. While previous literature has found that there never exists an efficient equilib-

rium, and Chapter 1 has shown that there exists an efficient equilibrium, if, and only if, the

stakes at play are below a certain threshold, I show in Chapter 2 that if players endogenously

choose which risky arm to pull, there exists an efficient equilibrium if, and only if, the stakes

1Throughout this dissertation, I use the term two-armed bandits to refer to bandits with one safe arm

and one risky arm, which some authors are wont to refer to as one-armed bandits. Indeed, the problem is

isomorphic to a stopping problem on a single risky arm.
2Chapter 1 is joint work with my dissertation advisor Sven Rady, and is based on a joint paper entitled

“Negatively Correlated Bandits” (2010).
3Chapter 2 is based on my paper “Strategic Learning in Teams” (2010a).
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exceed a certain threshold. While the technical issues arising from the negative correlation

between the risky arms can, modulo minor details, be solved in a manner mirroring Chapter

1, the actual construction of equilibria requires quite different technical methods: The ex-

tension of players’ action sets renders a full characterization of the equilibrium set elusive;

the construction rather relies on certain linearities, which guarantee the existence of a best

response in the boundary of a player’s action space.

Whereas Chapters 1 and 2 take the structure of agents’ rewards as given, Chapter 3 en-

dogenizes them by analyzing a game between a single principal, who enjoys full commitment

power, and a single agent.4 The principal is interested in knowing if a certain hypothesis is

true or false, yet he cannot conduct the relevant investigation himself, but has to delegate

this task to an agent. In continuous time, the agent in turn can either be honest and actually

investigate the hypothesis, or he can shirk and be lazy, or, unbeknownst to the principal, he

can manipulate the data intimating he has proved the hypothesis. In Chapter 3, I identify

the parameters for which it is possible for the principal to give the agent proper incentives

to investigate the hypothesis, and I construct an optimal mechanism that does so.

In Chapter 4, the agent no longer operates a bandit machine, but can rather be conceived

of as the strategically acting risky arm of a two-armed bandit.5 Specifically, in each period,

a decision maker who faces a sequence of decision problems chooses whether to seek the

advice of an expert. The latter is not interested in the policy decision per se, but rather tries

to maximize the number of periods that his advice is sought. The precision of the expert’s

private information is initially unknown, and is gradually learnt over time. Thus, the expert

may have incentives strategically to bias the cheap-talk relay of his information, in order

favorably to influence the decision maker’s impression of him. Should he choose to do so, he

will gradually accumulate private information about his type. We show that if exogenous

employment costs are low, the expert will be hired with some probability even after he has

revealed himself to be of the bad type. This construction heavily relies on the assumption

that the decision maker has full commitment power. In the absence of commitment power

and low employment costs, we show that any fully revealing equilibrium is dominated by

an equilibrium that allows the expert to accumulate some private information early in the

relationship (probationary period).

4Chapter 3 is based on my paper “The Importance of Being Honest” (2010b).
5Chapter 4 is joint work with Tymofiy Mylovanov of Pennsylvania State University, and is based on our

paper “Expert Experimentation” (2010).
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Chapter 1: Negatively Correlated Bandits∗

Nicolas Klein† Sven Rady‡

Abstract

We analyze a two-player game of strategic experimentation with two-armed bandits.

Either player has to decide in continuous time whether to use a safe arm with a known

payoff or a risky arm whose expected payoff per unit of time is initially unknown. This

payoff can be high or low, and is negatively correlated across players. We characterize

the set of all Markov perfect equilibria in the benchmark case where the risky arms

are known to be of opposite type, and construct equilibria in cutoff strategies for

arbitrary negative correlation. All strategies and payoffs are in closed form. In marked

contrast to the case where both risky arms are of the same type, there always exists

an equilibrium in cutoff strategies, and there always exists an equilibrium exhibiting

efficient long-run patterns of learning. These results extend to a three-player game

with common knowledge that exactly one risky arm is of the high payoff type.
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1 Introduction

Starting with Rothschild (1974), two-armed bandit models have been used extensively in

economics to formalize the trade-off between experimentation and exploitation in dynamic

decision problems with learning; see Bergemann and Välimäki (2008) for a survey of this

literature. The use of the two-armed bandit framework as a canonical model of strategic

experimentation in teams is more recent: Bolton and Harris (1999, 2000) analyze the case

of Brownian motion bandits, while Keller, Rady and Cripps (2005) and Keller and Rady

(2010) analyze bandits where payoffs are governed by Poisson processes. These papers

assume perfect positive correlation of the quality of the risky arm across players; all risky

arms generate the same unknown expected payoff per unit of time, so what is good news to

any given player is good news for everybody else.

There are many situations, however, where one man’s boon is the other one’s bane.

Think of a suit at law, for instance: whatever is good news for one party tends to be bad

news for the other. Or consider two firms pursuing research and development under different,

incompatible working hypotheses. One pharmaceutical company, for example, might base

its drug development strategy on the hypothesis that the cause of a particular disease is a

virus, while the other might see a bacterium as the cause. An appropriate model of strategic

experimentation in such a situation must assume negative correlation of the quality of the

risky arm across players. This we propose to do in the present paper.

There are two players in our model, either one facing a continuous-time exponential

bandit as in Keller, Rady and Cripps (2005). One arm is safe, generating a known payoff per

unit of time. The other arm is risky, and can be good or bad. If it is good, it generates lump-

sum payoffs after exponentially distributed random times; if it is bad, it never generates any

payoff. A good risky arm dominates the safe one in terms of expected payoffs per unit of

time, whereas the safe arm dominates a bad risky one. At the start of the game, the players

hold a common belief about the types of the two risky arms. Either player’s actions and

payoffs are perfectly observable to the other player, so any information that a player garners

via experimentation with the risky arm is a public good, and the players’ posterior beliefs

agree at all times.

We first analyze the case of perfect negative correlation, where it is common knowledge

that exactly one risky arm is good. In a lawsuit, for example, this means that there exists

conclusive evidence for one side which, once found, will decide the case in its favor; in the

example of drug development, it means that one of the two mutually exclusive hypotheses

will turn out to be true if explored long enough. The dynamics of posterior beliefs are easy

to describe in this case. If both players play safe, no new information is generated and
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beliefs stay unchanged. If only one player plays risky and he has no success, the posterior

probability that his risky arm is the good one falls gradually over time; if he obtains a lump-

sum payoff, all uncertainty is resolved and beliefs become degenerate at the true state of the

world. If both players play risky, finally, and there is no success on either arm, this is again

uninformative about the state of the world, so beliefs are constant up to the random time

when the first success occurs. It is important to note that a success on one player’s risky

arm is always bad news for the other player, while lack of success gradually makes the other

player more optimistic.

We restrict players to stationary Markov strategies with the common posterior belief

as the state variable. As is well known, this restriction is without loss of generality in the

decision problem of a single agent experimenting in isolation: his optimal policy is given

by a cutoff strategy, i.e. has him play risky at beliefs more optimistic than some threshold,

and safe otherwise. The same structure prevails in the optimization problem of a utilitarian

planner who maximizes the average of the two players’ expected discounted payoffs. In the

non-cooperative experimentation game, the Markov restriction rules out history-dependent

behavior that is familiar from the analysis of infinitely repeated games in discrete time,

yet technically quite difficult to formalize in continuous time (Simon and Stinchcombe 1989,

Bergin 1992, Bergin and McLeod 1993). Imposing Markov perfection allows us to focus on the

experimentation tradeoff that the players face and makes our results directly comparable to

those in the previous literature on strategic experimentation in bandits. Moreover, a simple

numerical evaluation of average payoffs suggests that Markov perfect equilibria are able to

capture a surprisingly high fraction of the welfare gain that the planner’s solution achieves

relative to the safe payoff level.

The implementation of the Markov restriction needs some care in our setting because

the incremental drift in beliefs can change direction as the action profile changes, which may

lead to a differential equation for the state variable that possesses no, two, or a continuum

of solutions. In contrast to Keller, Rady and Cripps (2005), where the drift always has

the same sign, this problem cannot be remedied by the imposition of one-sided continuity

requirements and arises even if both players use cutoff strategies. It is therefore impossible to

define the set of a player’s admissible strategies without reference to his opponent’s strategy.1

We confront this problem by calling a pair of strategies admissible if there exists at least

one well-defined solution to the corresponding law of motion of our state variable. If there

are several solutions, we select the one that can be obtained as the limit of a discrete-time

approximation. We set both players’ payoffs to minus infinity on any strategy profile that

1More generally, this problem arises whenever the types of the two risky arms are neither independent

nor perfectly positively correlated. We will see this in the case of imperfect negative correlation below; cf.

the proof of Proposition 11. For the case of imperfect positive correlation, see our concluding remarks.
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is not admissible. A best response to the opponent’s strategy thus necessarily leads to

well-defined dynamics of beliefs and actions.

Before turning to the Markov perfect equilibria of the experimentation game with perfect

negative correlation, we characterize efficient behavior by solving the planner’s optimization

problem. When stakes (as measured by the payoff advantage of a good risky arm over a safe

one) are so low that there exist beliefs at which both players are below their single-agent

optimal thresholds, it is optimal for the planner to let either player apply his respective

single-agent threshold, so that they both behave as if they were experimenting on their own.

In particular, the planner stops all learning once the belief is in the range where both players

are below their single-agent cutoffs. This is efficient because experimentation on player 1’s

bandit, say, can never make the belief jump into a region where experimentation on player

2’s bandit became profitable. When stakes are higher, there exist beliefs at which both

players are above their single-agent cutoffs, and it is optimal for the planner to have both

players simultaneously use the risky arm at some beliefs. In this case, learning is complete,

meaning that posterior beliefs converge to the truth almost surely.

As our first main result, we show that there always exists an equilibrium where both

players use a cutoff strategy. Suppose for example that player 2 follows a cutoff strategy

and player 1’s best response has him play risky at a given belief. Then player 1’s learning

benefit from doing so must outweigh the opportunity costs. At more optimistic beliefs, the

opportunity costs of playing risky are even lower while the learning benefit is at least as high

because the opponent provides either the same amount of free information or less. It must

therefore be optimal for player 1 to play risky at more optimistic beliefs as well, and so he

must be playing a cutoff strategy himself.

If player 1’s optimal cutoff lies in the region where player 2 is playing safe, it must

coincide with the single-agent cutoff because the tradeoff faced by player 1 is exactly the

same as that faced by an agent experimenting in isolation. If player 1’s optimal cutoff lies in

the region where player 2 is playing risky, it must be the same as that applied by a myopic

agent who is just interested in the maximization of current payoffs. Indeed, when player 1

joins player 2 in playing risky, he freezes beliefs and actions until the random time when

the first breakthrough resolves all uncertainty, and his total expected payoff is linear in the

probabilities that he assigns to the two possible states of the world. If player 1 were now

offered the possibility of observing, for a short time interval and at no cost, the payoffs

generated by a replica of his own risky arm, he would be indifferent to the offer because

the resulting mean-preserving spread in beliefs would leave his expected continuation payoff

unchanged. Player 1 thus assigns zero value to the information he gathers when playing

6



risky, so his decision to use the risky arm must maximize current payoffs.2

As the myopic cutoff belief is more optimistic than the single-agent cutoff, we obtain

three cases. When stakes are so low that there exist beliefs at which both players are below

their single-agent cutoffs, the unique equilibrium in cutoff strategies is for both players to

behave as if they were single agents. When stakes are so high that there exist beliefs at which

both players are above their myopic cutoffs, the unique equilibrium in cutoff strategies is

for both players to behave as if they were myopic. When stakes are intermediate in size,

finally, there exist beliefs at which either player finds himself in between his single-agent and

his myopic cutoff, and thus optimally plays risky if the opponent plays safe, and safe if the

opponent plays risky. Each such belief can then serve as the common threshold in an MPE

in cutoff strategies.

Our second contribution is a complete characterization of all Markov perfect equilibria of

the two-player game with perfect negative correlation. For low and high stakes, respectively,

the cutoff equilibrium just described is the unique MPE. We prove this by characterizing the

changes in the players’ action profile that may occur in equilibrium, and the beliefs at which

they may occur. Given that the players have dominant actions near subjective certainty (the

player who is very optimistic about his risky arm uses it, the other one plays safe), the proof

reduces to showing that as we vary the belief from one extreme of the state space to the

other, the respective cutoff equilibrium provides the only way for the players to transition

from one profile of dominant actions to the other.

For intermediate stakes, there exist equilibria that are not in cutoff strategies. Over the

range of beliefs where either player’s best response is to play the opposite of his opponent’s

action, it is possible for them to swap roles finitely often. Using the same approach as for low

and high stakes, we characterize the set of all equilibria and show that in every MPE that is

not in cutoff strategies, the players’ payoff functions necessarily have jump discontinuities.

These arise at each belief where players swap roles in a way that implies locally divergent

belief dynamics. Priors arbitrarily close to each other, but on different sides of such a belief

lead to very different paths of beliefs and actions, and hence to payoffs that are bounded

away from each other.

The third main result of the paper concerns the asymptotics of learning. In any MPE

of the two-player game with perfect negative correlation, the probability of learning the

true state in the long run is the same as in the planner’s solution. For low stakes, there is

nothing to show because the unique equilibrium coincides with the planner’s solution. For

2Intuitively, players cannot assign a negative value to public information when, as in the present model,

the only strategic link between them is a positive informational externality. They can do so when they also

exert a payoff externality on each other; see for example Harrington (1995) or Keller and Rady (2003).
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intermediate and high stakes, free-riding leads to an inefficiently small set of beliefs where

both players use the risky arm, yet learning is nevertheless complete in equilibrium, exactly

as the planner would have it. The intuition is straightforward. If players hold common

beliefs and there is perfect negative correlation between the types of the risky arms, it can

never be the case that both players are simultaneously very pessimistic about their respective

prospects; with stakes sufficiently high, this implies that at least one player must be using

the risky arm at any time, and so learning never stops. Thus, whenever society places a lot

of emphasis on uncovering the truth, as one may argue is the case with medical research or

the justice system, our analysis would suggest an adversarial setup was able to achieve this

goal.3

The existence of equilibria in cutoff strategies, the uniqueness of equilibrium for low and

high stakes, and the efficiency of long-run learning outcomes stand in stark contrast to the

case of perfect positive correlation analyzed in Keller, Rady and Cripps (2005). First, there is

no equilibrium in cutoff strategies when all risky arms are of the same type. It is easy to see

where the intuition given above fails. If player 2 follows a cutoff strategy and player 1’s best

response has him play risky at a given belief, then the learning benefit at more optimistic

beliefs can be lower because the opponent may provide more free information there. So

free-riding on this information may be the better choice.4 Second, the experimentation

game with identical risky arms admits a continuum of equilibria irrespective of the size

of the stakes involved. As the evolution of beliefs is determined by the total number of

risky arms used at a given time, one and the same equilibrium pattern of information can

in fact be generated via many different assignments of the roles of experimenter and free-

rider, respectively. Moreover, there is multiplicity with respect to these equilibrium patterns,

yielding a continuum of average payoff functions. Third, with experimentation stopping too

early, any MPE entails an inefficiently high probability of incomplete learning.

When the quality of the risky arm is perfectly negatively correlated across players, one

side’s failure to produce evidence in its favor means that the other side is more likely to do

so. However, in a lawsuit, for instance, there might not exist one single conclusive piece of

evidence which settled the case once and for all; in the drug development example, the disease

in question might be caused by a genetic defect rather than a virus or a bacterium. In a

second step, therefore, we extend the model to imperfect negative correlation by introducing

a third state of the world in which both risky arms are bad. When one side fails to produce

evidence in its favor, the increase in the other side’s individual optimism is now tempered

3Dewatripont and Tirole (1999) reach a similar conclusion in a moral hazard setting.
4More precisely, Keller, Rady and Cripps (2005) show that with two players, the player who is supposed

to use the least optimistic cutoff in a purported MPE in cutoff strategies always has an incentive to deviate

to the safe action at the other player’s cutoff belief.
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by an increase in collective pessimism, that is, an increase in the posterior probability that

both sides will remain unsuccessful.

With three states of the world, beliefs are elements of a two-dimensional simplex, and

the players’ payoff functions solve linear partial differential equations. Given a fixed action

profile, the trajectories of beliefs conditional on no breakthrough are straight lines in the

simplex. Along each such line, we can represent the corresponding payoff function in closed

form up to a constant of integration that varies with the slope of the line.

The fourth contribution of the paper is to show constructively that the game with

imperfect negative correlation always admits an equilibrium in cutoff strategies, and to

provide explicit representations for the players’ strategies and payoff functions. As there is

now a dimension of collective pessimism, the probability that learning remains incomplete

in the long run is always positive. In the equilibria that we construct, this probability is the

same as in the planner’s solution.

These insights carry over to a game with three players and common knowledge that

exactly one of them has a good risky arm. Again, there always exists an equilibrium in cutoff

strategies, and the resulting asymptotics of learning are the same as in the planner’s solution.

Moreover, two of our findings for the two-player game with perfect negative correlation

generalize to an arbitrary number of players: for sufficiently small stakes, players behave as

if they were single agents experimenting in isolation, which is efficient; and learning will be

complete in equilibrium if and only if efficiency requires complete learning.

The related literature on strategic experimentation with publicly observable actions and

outcomes has already been addressed. Rosenberg, Solan and Vieille (2007) and Murto and

Välimäki (2009) study strategic experimentation with two-armed bandits where the players’

actions are publicly observable, but their payoffs are private information. These authors

assume that the decision to stop playing risky is irreversible. In our model, players can

freely switch back and forth between the two arms. Bonatti and Hörner (2010) study a

model with private actions and publicly observable outcomes. Yet, theirs is more a model of

moral hazard in teams than an experimentation model, implying, inter alia, that no player

will ever play risky below his myopic cutoff.

There is a decision-theoretic literature on correlated bandits which analyzes correlation

across different arms of a bandit operated by a single agent; see e.g. Camargo (2007) for a

recent contribution to this literature, or Pastorino (2005) for economic applications. Our

focus here is quite different, though, in that we are concerned with correlation between

different bandits operated by two or more players who interact strategically.

Chatterjee and Evans (2004) analyze an R&D race with two firms and two projects in
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which it is common knowledge that exactly one of these projects will bear fruit if pursued

long enough, and actions and payoffs are observable. Their discrete-time model differs from

ours in several respects, chief of which is the payoff externality implied by the firms’ choices.

In our model, there is no payoff rivalry between players – strategic interaction arises out

of purely informational concerns. Moreover, Chatterjee and Evans allow firms to change

their projects at any time, so that it is possible for them to explore the same project. Our

analysis, by contrast, presumes that projects of opposite type have been irrevocably assigned

to players at the start of the experimentation game.5 Finally, we allow for imperfect negative

correlation between project types.

The rest of the paper is structured as follows. Section 2 introduces the game with

two players and perfect negative correlation between the types of their risky arms. Section

3 solves the planner’s problem. Section 4 characterizes the Markov perfect equilibria of

the non-cooperative game, compares their learning outcomes and average payoffs to the

planner’s solution, and discusses robustness to the introduction of interior intensities of

experimentation, asymmetries between the two players and news events that are not fully

revealing. Section 5 constructs equilibria in the version of the game where the negative

correlation between the types of the two players’ risky arms is imperfect. Section 6 extends

the model to three or more players. Section 7 concludes. Appendix A contains auxiliary

results on payoff functions. Appendix B characterizes admissible strategy pairs in the game

with perfect negative correlation. Most proofs are provided in Appendix C.

2 The Model

There are two players, 1 and 2, either one of whom faces a two-armed bandit problem in

continuous time. Bandits are of the exponential type studied in Keller, Rady and Cripps

(2005). One arm is safe in that it yields a known payoff flow of s; the other arm is risky in

that it is either good or bad. If it is bad, it never yields any payoff; if it is good, it yields a

lump-sum payoff with probability λdt when used over a length of time dt.6 Let g dt denote

the corresponding expected payoff increment; thus, g is the product of the arrival rate λ

and the average size of a lump-sum payoff. To have an interesting problem, we assume that

the expected payoff of a good risky arm exceeds that of the safe arm, whereas the safe arm

5In the concluding remarks, we briefly report on an extension of our model in which players are given a

sequential once-and-for-all choice of bandit prior to the experimentation game.
6The assumption of a common arrival rate of successes on a good risky arm is crucial to the analytic

tractability of the model, while asymmetries in the other parameters are straightforward to accommodate;

see the discussion in Section 4.6 below.
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is better than a bad risky arm, i.e. g > s > 0. The time-invariant constants λ > 0 and

g > 0 are common knowledge. Throughout Sections 2–4, we will further assume common

knowledge that exactly one bandit’s risky arm is good.

Player i = 1, 2 chooses actions {ki,t}t≥0 such that ki,t ∈ {0, 1} is measurable with

respect to the information available at time t, with ki,t = 1 indicating use of the risky

arm, and ki,t = 0 use of the safe arm. At the outset of the game, the players hold a

common prior belief about which of the risky arms is good, given by the probabilities with

which nature allocates the good risky arm to either player. Throughout the game, players

perfectly observe each other’s actions and payoffs, and so share a common posterior belief at

all times. We write pt for the players’ probability assessment at time t that player 1’s risky

arm is good. Player 1’s total expected discounted payoff, expressed in per-period units, can

then be written as

E

[
∫ ∞

0

r e−r t [k1,tptg + (1 − k1,t)s] dt

]

,

where the expectation is taken over the stochastic processes {k1,t} and {pt}, and r > 0 is

the players’ common discount rate. The corresponding payoff of player 2 is

E

[
∫ ∞

0

r e−r t [k2,t(1 − pt)g + (1 − k2,t)s] dt

]

.

The strategic link between the players stems from the impact of their actions on the evolution

of beliefs.

The posterior belief jumps to 1 if there has been a breakthrough on player 1’s bandit,

and to 0 if there has been a breakthrough on player 2’s bandit, where in either case it will

remain ever after. If there has been no breakthrough on either bandit by time t given the

players’ actions {k1,τ}0≤τ≤t and {k2,τ}0≤τ≤t, Bayes’ rule yields

pt =
p0e

−λ
∫ t

0 k1,τ dτ

p0e
−λ

∫ t

0 k1,τ dτ + (1 − p0)e
−λ

∫ t

0 k2,τ dτ
.

In particular, the posterior belief evolves continuously up to the time of the first break-

through.

We restrict players to stationary Markov strategies with the common belief as the state

variable and adopt the solution concept of Markov perfect equilibrium. As Markov strategies

of player i = 1, 2, we allow all functions ki : [0, 1] → {0, 1} such that both k−1
i (0) and k−1

i (1)

are disjoint unions of a finite number of non-degenerate intervals, with ki(0) = i − 1 and

ki(1) = 2 − i (the dominant actions under subjective certainty). A Markov strategy k1 for

player 1 is called a cutoff strategy with cutoff p̂1 if k−1
1 (1) = [p̂1, 1] or ]p̂1, 1]. Analogously,
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a Markov strategy k2 for player 2 is a cutoff strategy with cutoff p̂2 if k−1
2 (1) = [0, p̂2] or

[0, p̂2[ . The action at the cutoff itself is deliberately left unspecified.7

A pair of Markov strategies (k1, k2) is called symmetric if k1(p) = k2(1−p) at all p. The

pair is called admissible if there exists at least one well-defined solution to the corresponding

law of motion for posterior beliefs. This is the case if and only if for each initial belief p0 in

the unit interval, there is a function t 7→ pt on [0,∞[ that satisfies

pt =
p0e

−λ
∫ t

0 k1(pτ ) dτ

p0e
−λ

∫ t

0 k1(pτ ) dτ + (1 − p0)e
−λ

∫ t

0 k2(pτ ) dτ
(1)

at all t ≥ 0. This function then describes a possible time path of beliefs prior to the first

breakthrough on a risky arm. If there are multiple solutions, we select the unique solution

that is consistent with a discrete-time approximation; see Appendix B for details and a

characterization of admissible strategy pairs.8

Each admissible strategy pair (k1, k2) induces a pair of payoff functions u1, u2 : [0, 1] →

[0, g] given by

u1(p|k1, k2) = E

[
∫ ∞

0

re−rt
{

k1(pt)ptg + [1 − k1(pt)]s
}

dt

∣

∣

∣

∣

p0 = p

]

,

u2(p|k1, k2) = E

[
∫ ∞

0

re−rt
{

k2(pt)(1 − pt)g + [1 − k2(pt)]s
}

dt

∣

∣

∣

∣

p0 = p

]

.

For strategy pairs that are not admissible, we set u1 ≡ u2 ≡ −∞.

Strategy k1 is a best response against strategy k2 if the pair of strategies (k1, k2) is

admissible and u1(p|k1, k2) ≥ u1(p|k̃1, k2) for all p in the unit interval and all admissible

(k̃1, k2). Analogously, strategy k2 is a best response against strategy k1 if (k1, k2) is admissible

and u2(p|k1, k2) ≥ u1(p|k1, k̃2) for all p in the unit interval and all admissible (k1, k̃2). A

Markov perfect equilibrium (MPE) is a pair of strategies that are mutually best responses.

On any open interval of beliefs where an admissible pair of strategies (k1, k2) prescribes

constant actions, the posterior belief solves the ordinary differential equation

ṗ = λ [k2(p) − k1(p)] p (1 − p) (2)

7We shall see later that there are circumstances where equilibrium requires the players to play safe at the

cutoff belief, and others where equilibrium requires them to play risky.
8If we allowed for degenerate intervals in the interior of the unit interval, there would exist equilibria for

low stakes in which one player would be forced (purely for reasons of admissibility of the strategy pair) to

play risky at a belief where his resulting payoff is less than the safe payoff s. For high stakes, there would

be equilibria in which an interval of beliefs where both players play risky (and achieve a payoff higher than

s) is punctuated by finitely many beliefs at which both play safe. Details are available from the authors

upon request. These equilibria cannot be obtained as limits of equilibria in discrete-time approximations of

the continuous-time game, so we rule them out by insisting that either action must be played on a union of

non-degenerate intervals.
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as long as there is no breakthrough. Since the expected arrival rate of a breakthrough is

k1(p)p λ on player 1’s risky arm, and k2(p)(1− p)λ on player 2’s, standard arguments imply

that player 1’s payoff function solves the ordinary differential equation

ru1(p) = r
{

k1(p)pg + [1 − k1(p)]s
}

+ λ
{

k1(p) p [g − u1(p)] + k2(p) (1 − p) [s − u1(p)] + [k2(p) − k1(p)] p (1 − p) u′
1(p)

}

on any open interval where the players’ actions do not change. After dividing both sides by

r, we can write this ODE more succinctly as

u1(p) = s + k2(p)β1(p, u1) + k1(p)[b1(p, u1) − c1(p)],

where c1(p) = s − pg is the opportunity cost player 1 has to bear when he plays risky,

b1(p, u1) = λ
r
p[g − u1(p) − (1 − p)u′

1(p)] is the learning benefit accruing to player 1 when he

plays risky, and β1(p, u1) = λ
r
(1 − p)[s − u1(p) + pu′

1(p)] is his learning benefit from player

2’s playing risky. The corresponding equation for player 2’s payoff function is

u2(p) = s + k1(p)β2(p, u2) + k2(p)[b2(p, u2) − c2(p)],

where c2(p) = s− (1− p)g is the opportunity cost player 2 has to bear when he plays risky,

b2(p, u2) = λ
r
(1 − p)[g − u2(p) + pu′

2(p)] is the learning benefit accruing to player 2 when he

plays risky, and β2(p, u2) = λ
r
p[s − u2(p) − (1 − p)u′

2(p)] is his learning benefit from player

1’s playing risky. It is straightforward to obtain closed-form solutions for these differential

equations; see Appendix A for details.

Given a Markov strategy kj of player j, standard arguments imply that on any open

interval where player j’s action is constant, player i’s payoff function from playing a best

response is once continuously differentiable9 and solves the Bellman equation

ui(p) = s + kj(p)βi(p, ui) + max
ki∈{0,1}

ki[bi(p, ui) − ci(p)].

Conversely, a standard verification argument yields the following sufficiency result. Given

the Markov strategy kj, consider the set S(kj) of all Markov strategies of player i that form

an admissible strategy pair with kj. For any belief p, let Ki(p, kj) = {ki(p) : ki ∈ S(kj)};

this is the set of all actions player i can choose at the belief p under the constraint that

his Markov strategy be admissible together with kj. At all those beliefs where player j’s

action does not change, Ki(p, kj) = {0, 1}. At a belief where player j’s action does change,

by contrast, Ki(p, kj) may be a singleton, in which case player i’s action is already pinned

9At a belief where the opponent’s action changes while the best response does not, the payoff function

from this best response typically has a kink. At a belief where both the opponent’s action and the best

response change, the payoff function may possess a jump discontinuity; see Proposition 7 below.
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down by admissibility.10 Now, strategy ki ∈ S(kj) is a best response if the resulting payoff

function ui satisfies the modified Bellman equation

ui(p) = s + kj(p)βi(p, ui) + max
ki∈Ki(p, kj)

ki[bi(p, ui) − ci(p)]

everywhere on the unit interval. It is understood here that whenever the players’ actions

differ, the right-hand side is evaluated at the one-sided derivative in the direction of the

infinitesimal changes in beliefs implied by the respective strategy pair. When the players’

actions coincide, the terms involving derivatives cancel.

If players were myopic, i.e. merely maximizing current payoffs, player 1 would use the

cutoff pm = s
g

and player 2 the cutoff 1−pm. If they were forward-looking but experimenting

in isolation, player 1 would optimally use the single-agent cutoff computed in Keller, Rady

and Cripps (2005), p∗ = rs
(r+λ)g−λs

< pm, and player 2 the cutoff 1 − p∗.

We will find it useful below to distinguish three cases depending on the size of the stakes

involved, i.e. on the value of information as measured by the ratio g

s
, and on the parameters

λ and r that govern the speed of resolution of uncertainty and the player’s impatience,

respectively. We speak of low stakes if g

s
< 2r+λ

r+λ
, intermediate stakes if 2r+λ

r+λ
< g

s
< 2, and

high stakes if g

s
> 2. These cases are easily distinguished by the positions of the cutoffs pm

and p∗: stakes are low if and only if p∗ > 1
2
; intermediate if and only if p∗ < 1

2
< pm; and high

if and only if pm < 1
2
. The boundary cases g

s
= 2r+λ

r+λ
and g

s
= 2 will be treated separately

when needed.

3 The Planner’s Problem

In this section, we examine a utilitarian social planner’s behavior in our setup. The Bellman

equation for the maximization of the average payoff from the two bandits is

u(p) = s + max
(k1,k2)∈{0,1}2

{

k1

[

B1(p, u) −
c1(p)

2

]

+ k2

[

B2(p, u) −
c2(p)

2

]}

,

where B1(p, u) = λ
r
p[g+s

2
− u(p) − (1 − p)u′(p)] measures the expected learning benefit of

playing risky arm 1, and B2(p, u) = λ
r
(1−p)[g+s

2
−u(p)+pu′(p)] the expected learning benefit

of playing risky arm 2. The planner’s problem is clearly symmetric with respect to p = 1
2
.

By standard arguments, the corresponding value function is convex; by symmetry, it admits

its global minimum at p = 1
2
.

10We will first encounter this phenomenon when determining best responses to cutoff strategies in Propo-

sition 3 below.
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If it is optimal to set k1 = k2 = 0, the value function works out as u(p) = s. If it is

optimal to set k1 = k2 = 1, the Bellman equation reduces to u(p) = λ
r

[

g+s

2
− u(p)

]

+ g

2
, and

so u(p) = u11 = g

2
+ λ

r+λ
s
2
. As one risky arm is good for sure, playing both of them is certain

to generate an expected average payoff of g

2
. At some random time τ , the first success on

the good risky arm causes the planner to switch to the safe arm on the other bandit; his

expected total payoff from that bandit is therefore s
2

times the expectation of e−rτ . As τ is

exponentially distributed with rate parameter λ, this expectation is λ
r+λ

. In the remaining

cases where it is optimal to set k1 = 0 and k2 = 1, or k1 = 1 and k2 = 0, explicit solutions of

the Bellman equation are obtained as the average of the individual payoff functions stated

in Appendix A.

It is clear that (k1, k2) = (1, 0) will be optimal in a neighborhood of p = 1, and (k1, k2) =

(0, 1) in a neighborhood of p = 0. What is optimal at beliefs around p = 1
2

depends on which

of the two possible plateaus s and u11 is higher. This in turn depends on the size of the

stakes involved. In fact, s > u11 if and only if stakes are low, i.e. g

s
< 2r+λ

r+λ
. This is the case

we consider first.

Proposition 1 (Planner’s solution for low stakes) If g

s
< 2r+λ

r+λ
, and hence p∗ > 1

2
, the

planner’s optimum is to apply the single-agent cutoffs p∗ and 1− p∗, respectively, that is, to

set (k1, k2) = (0, 1) on [0, 1 − p∗[, k1 = k2 = 0 on [1 − p∗, p∗], and (k1, k2) = (1, 0) on ]p∗, 1].

This solution remains optimal in the limiting case where g

s
= 2r+λ

r+λ
and p∗ = 1

2
.

Proof: See Appendix C.

Thus, when the value of information, as measured by g

s
, is so low that the single-agent

cutoff p∗ exceeds 1
2
, it is optimal for the planner to let the players behave as though they

were solving two separate, completely unconnected, problems.11 The left panel of Figure 1

illustrates the corresponding value function.

Next, we turn to the case where u11 > s, which is obtained for intermediate and high

stakes.

Proposition 2 (Planner’s solution for intermediate and high stakes) If g

s
> 2r+λ

r+λ
,

and hence p∗ < 1
2
, the planner’s optimum is to apply the cutoffs p̄ = (r+λ)s

(r+λ)g+λs
∈ ]p∗, 1

2
[ and

1 − p̄, respectively, that is, to set (k1, k2) = (0, 1) on [0, p̄[ , k1 = k2 = 1 on [p̄, 1 − p̄], and

11This would be different if playing the risky arm could also lead to “bad news events” that triggered

downward jumps in beliefs. If, starting from p∗, such a jump were large enough to take the belief below

1 − p∗, then letting player 1 play risky at beliefs somewhat below p∗ would raise average payoffs.
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Figure 1: The planner’s value function for g

s
< 2r+λ

r+λ
(left panel) and g

s
> 2r+λ

r+λ
(right panel).

(k1, k2) = (1, 0) on ]1− p̄, 1]. This solution, with p̄ = p∗ = 1
2
, remains optimal in the limiting

case where g

s
= 2r+λ

r+λ
.

Proof: It is straightforward to check that p∗ ≤ p̄ ≤ 1
2

if g

s
≥ 2r+λ

r+λ
. The rest of the proof

proceeds along the same lines as that of Proposition 1 and is therefore omitted.

The right panel of Figure 1 illustrates this result. To understand why the planner has

either player use the risky arm on a smaller interval of beliefs than in the respective single-

agent optimum, consider the effect of player 1’s action on the aggregate payoff when player

2 is playing risky. If the planner is indifferent between player 1’s actions at the belief p̄, it

must be the case that λ
r
p̄[g + s − 2u11] = c1(p̄), with the possibility of a jump in the sum of

the two players’ payoffs from 2u11 to g + s exactly compensating for the opportunity cost of

player 1 using the risky arm. For a player 1 experimenting in isolation, the corresponding

equation reads λ
r
p∗[g − s] = c1(p

∗). When u11 > s, the jump from s to g is larger than the

one from 2u11 to g + s, so we cannot have p̄ = p∗. That p̄ must be greater than p∗ follows

from the fact that the opportunity cost of using player 1’s risky arm is decreasing in p.

4 Markov Perfect Equilibria

Our next aim is to characterize the Markov perfect equilibria of the experimentation game.

To start out, we shall establish that the best response to certain cutoff strategies is in turn

a cutoff strategy.
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To get a first intuition for the results to come, suppose player 2 follows a cutoff strategy

and player 1 plays a best response. If this response involves playing risky at some belief p,

then the expected benefit of player 1’s experimentation must outweigh its opportunity cost

at p. At a belief p′ > p, the opportunity cost is lower than at p and, since player 2 does

not provide more free information to player 1 at p′ than he does at p, the expected benefit

of player 1’s own experimentation should be at least as high as at p. So player 1 should

also play risky at the belief p′. Thus, k−1
1 (1) should be an interval with right boundary 1,

implying a cutoff strategy for player 1.

The following proposition confirms this intuition and characterizes best-response cutoffs.

Proposition 3 (Best responses to cutoff strategies) For player 1, a best response to

k−1
2 (1) = [0, p̂2[ with p̂2 ≤ p∗ is k−1

1 (1) = ]p∗, 1]; to k−1
2 (1) = [0, p̂2] with p̂2 ≥ pm, it is

k−1
1 (1) = [pm, 1]; and to k−1

2 (1) = [0, p̂2] with p∗ ≤ p̂2 < pm, it is k−1
1 (1) = [p̂2, 1].

For player 2, a best response to k−1
1 (1) = ]p̂1, 1] with p̂1 ≥ 1− p∗ is k−1

2 (1) = [0, 1− p∗[ ;

to k−1
1 (1) = [p̂1, 1] with p̂1 ≤ 1 − pm, it is k−1

2 (1) = [0, 1 − pm]; and to k−1
1 (1) = [p̂1, 1] with

1 − pm < p̂1 ≤ 1 − p∗, it is k−1
2 (1) = [0, p̂1].

Proof: See Appendix C.

While it is intuitive that player 1 should apply the single-agent cutoff p∗ against an

opponent who plays safe, and thus provides no information, at beliefs p ≥ p∗, it is surprising

that the myopic cutoff pm determines player 1’s best response against an opponent who

plays risky. Technically, this result is due to the fact that along player 1’s payoff function

for k1 = k2 = 1, u1(p) = pg + (1 − p) λ
r+λ

s, his learning benefit from playing risky vanishes:

b1(p, u1) =
λ

r
p

[

g −

(

pg + (1 − p)
λ

r + λ
s

)

− (1 − p)

(

g −
λ

r + λ
s

)]

= 0,

and so k1 = 1 is optimal against k2 = 1 if and only if c1(p) ≤ 0, that is, p ≥ pm.

Intuitively, this is best understood by recalling the law of motion of beliefs in the absence

of a success on either arm, ṗ = −(k1 − k2)λp(1− p), which tells us that for k1 = k2 = 1, the

state variable, and hence the players’ actions, will not budge until the first success occurs

and all uncertainty is resolved. Conditional on having the good risky arm, player 1 can thus

look forward to a total expected discounted payoff equal to g. Conditional on having the bad

risky arm, his total payoff equals s times the expectation of e−rτ where τ is the exponentially

distributed random time at which player 2 experiences his first success, causing player 1 to

switch to the safe arm irrevocably. Weighting each state with its subjective probability,
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we obtain a payoff function that is linear in p. This means that player 1 is risk neutral

with respect to lotteries over beliefs, so if he were offered the possibility of observing, for a

short time interval and at no cost, the payoffs generated by a replica of his own risky arm,

he would be indifferent to the offer, assigning zero value to this information because the

resulting mean-preserving spread in beliefs would leave his continuation payoff unchanged

on average. But if the value of information is zero, the decision to use the risky arm must

be myopically optimal.

This insight also explains the third part of the proposition. If player 2 uses a cutoff p̂2

in between player 1’s single-agent cutoff p∗ and myopic cutoff pm, player 1 does not want

to play risky to the left of p̂2 because doing so is not myopically optimal there. Just to the

right of p̂2, by contrast, he faces an opponent playing safe, so he views the situation exactly

as a single agent experimenting in isolation would, and plays risky accordingly. Thus, player

1 uses the same cutoff as player 2. At p̂2 itself, player 1’s behavior is pinned down by the

requirement that his action be part of an admissible strategy pair. If he played safe at p̂2,

the incremental drift of the state variable p would be positive for p ≤ p̂2, and negative for

p > p̂2. As we show in Appendix B, there would then be no solution to the law of motion

of beliefs starting from the prior p0 = p̂2. So player 1 can only use the risky arm at p̂2, and

this action is indeed compatible with admissibility.

Using Proposition 3, it is straightforward to draw best-response correspondences in the

space of cutoff pairs (p̂1, p̂2) and characterize the resulting MPE in cutoff strategies. The

nature of these equilibria depends on the relative position of the cutoffs p∗, pm, 1 − p∗ and

1 − pm, which, as previously noted, gives us a distinction between low, intermediate, and

high stakes. We defer details to Propositions 4–6 below, each of which covers one of these

three cases. For the moment, we just take note of the following stark contrast to Keller,

Rady, Cripps (2005).

Corollary 1 (Equilibria in cutoff strategies) For any combination of the parameters g,

s, r, and λ, there exists an equilibrium in cutoff strategies.

When investigating whether there exist Markov perfect equilibria beyond those in cutoff

strategies, we shall make use of combinatoric arguments, exploiting the fact that for any

admissible pair of Markov strategies, there can be but finitely many beliefs at which a

change in action profile occurs. Appendix B characterizes the types and possible loci of

these changes, allowing us to determine all manners in which equilibrium play can transition

from the action profile (0, 1) at p = 0 to the profile (1, 0) at p = 1.
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Figure 2: The equilibrium payoff functions for g

s
< 2r+λ

r+λ
(left panel) and g

s
> 2 (right panel).

The thick solid curve depicts the payoff function of player 1, the thin solid curve that of

player 2, and the dotted curve the players’ average payoff function.

4.1 Low Stakes

Recall that the low-stakes case is defined by the inequality g

s
< 2r+λ

r+λ
. In this case, 1 − pm <

1 − p∗ < 1
2

< p∗ < pm.

Proposition 4 (Markov perfect equilibrium for low stakes) When g

s
< 2r+λ

r+λ
, the

unique Markov perfect equilibrium is symmetric and coincides with the planner’s solution.

That is, player 1 plays risky if and only if p > p∗, and player 2 if and only p < 1−p∗. These

strategies continue to be an equilibrium in the limiting case where g

s
= 2r+λ

r+λ
and p∗ = 1

2
.

Proof: For 1 − p∗ ≤ p∗, the cutoff strategies k−1
1 (1) = ]p∗, 1] and k−1

2 (1) = [0, 1 − p∗[ are

mutually best responses by Proposition 3. For 1−p∗ < p∗, uniqueness is proved in Appendix

C.

Why we should have efficiency in this case is intuitively quite clear, as the planner lets

players behave as though they were single players. As p∗ > 1
2
, there is no spillover from a

player behaving like a single agent on the other player’s optimization problem. Hence the

latter’s best response calls for behaving like a single player as well. Thus, there is no conflict

between social and private incentives. The left panel of Figure 2 illustrates this result.

19



4.2 High Stakes

The high-stakes case is defined by the inequality g

s
> 2. In this case, p∗ < pm < 1

2
< 1−pm <

1 − p∗.

Proposition 5 (Markov perfect equilibrium for high stakes) When g

s
> 2, the game

has a unique Markov perfect equilibrium, which is symmetric and has both players behave

myopically. That is, player 1 plays risky if and only if p ≥ pm, and player 2 if and only if

p ≤ 1 − pm. These strategies also constitute the unique Markov perfect equilibrium in the

limiting case where g

s
= 2 and pm = 1

2
.

Proof: For pm ≤ 1− pm, the cutoff strategies k−1
1 (1) = [pm, 1] and k−1

2 (1) = [0, 1− pm] are

mutually best responses by Proposition 3. Uniqueness is proved in Appendix C.

When the stakes are high, the unique equilibrium calls for both players’ behaving my-

opically. This is best understood by recalling from our discussion above that individual

optimality calls for myopic behavior whenever one’s opponent is playing risky. When the

stakes are high, players’ myopic cutoff beliefs are more pessimistic than p = 1
2
, so the relevant

intervals overlap.

The right panel of Figure 2 illustrates this result. Player 1’s payoff function has a kink

at 1 − pm, where player 2 changes action. Symmetrically, player 2’s payoff function has a

kink at pm, where player 1 changes action. As a consequence, the average payoff function

has a kink both at pm and at 1− pm. That it dips below the level u11 close to these kinks is

evidence of the inefficiency of equilibrium.

4.3 Intermediate Stakes

This case is defined by the condition that 2r+λ
r+λ

< g

s
< 2, or p∗ < 1

2
< pm. Equilibrium is not

unique in this case; to start with, there is a continuum of equilibria in cutoff strategies, as

the following proposition shows.

Proposition 6 (Intermediate stakes, equilibria in cutoff strategies) For 2r+λ
r+λ

< g

s
<

2, there is a continuum of Markov perfect equilibria in cutoff strategies, each characterized

by a belief p̂ ∈ [max{1 − pm, p∗}, min{pm, 1 − p∗}] such that player 1 plays risky if and only

if p ≥ p̂, and player 2 if and only if p ≤ p̂. These strategies, with p̂ = p∗ = 1
2
, continue to be

an equilibrium in the limiting case where g

s
= 2r+λ

r+λ
.

20



s
0

u11

g+s

2

g

1
2

1

u2 u1

s

g

0 1p∗ p̂(0) p̃(1) p̂(1)

w1

u1

Figure 3: Equilibrium payoff functions for 2r+λ
r+λ

< g

s
< 2. The left panel shows the players’

payoff functions and their average in the unique symmetric equilibrium in cutoff strategies.

The right panel shows the payoff function of player 1 in an equilibrium that is not in cutoff

strategies (see the main text for further details).

Proof: For max{1 − pm, p∗} < p̂ < min{pm, 1 − p∗}, the cutoff strategies k−1
1 (1) = [p̂, 1]

and k−1
2 (1) = [0, p̂] are mutually best responses by Proposition 3.

Amongst the continuum of equilibria characterized in Proposition 6, there is a unique

symmetric one, given by p̂ = 1
2
. The left panel of Figure 3 illustrates this equilibrium.

Both players’ payoff functions and their average are kinked at p = 1
2
, where both players

change action. At any belief except p = 1
2
, the average payoff function is below the planner’s

solution; if the initial belief is p0 = 1
2
, however, the efficient average payoff u11 is achieved.

For the boundary case where g

s
= 2r+λ

r+λ
and p∗ = 1

2
, Propositions 4 and 6 imply that

both versions of the planner’s solution are Markov perfect equilibria. Applying the argu-

ments underlying the proof of Proposition 7 below, one easily shows that there are no other

equilibria in this particular case.

All the equilibria exhibited so far share three features: they are in cutoff strategies;

conditional on no breakthrough, posterior beliefs converge to a limit that varies continuously

with the initial belief (we will return to this point in Section 4.4 below); and the players’

payoff functions are continuous. For intermediate stakes, there exist further equilibria that

are not in cutoff strategies. In these, the limit to which beliefs converge in the absence of a

breakthrough depends discontinuously on the initial belief, and the players’ payoff functions

possess jump discontinuities. In combination with Proposition 6, the following result fully
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characterizes the set of Markov perfect equilibria for intermediate stakes.

Proposition 7 (Intermediate stakes, other equilibria) Let 2r+λ
r+λ

< g

s
< 2, and con-

sider a pair of Markov strategies that are not cutoff strategies. These strategies constitute

an equilibrium if and only if there exists an integer L ≥ 1 and beliefs p̂(0) < p̃(1) < p̂(1) <

. . . < p̂(L−1) < p̃(L) < p̂(L) in the interval [max{1 − pm, p∗}, min{pm, 1 − p∗}] such that: on

[0, p̂(0)[ and all intervals ]p̃(ℓ), p̂(ℓ)[ , the action profile is (0, 1); on all intervals ]p̂(ℓ−1), p̃(ℓ)[

and ]p̂(L), 1], the action profile is (1, 0); at all beliefs p̂(ℓ), the action profile is (1, 1); and at

any belief p̃(ℓ), the action profile is (0, 1) or (1, 0). Both players’ payoff functions have jump

discontinuities at all beliefs p̃(ℓ).

Proof: On the interval [0, p̃(1)[ , the players’ actions and payoffs are the same as in an

equilibrium in cutoff strategies with p̂ = p̂(0). The same is true for each of the intervals

]p̃(ℓ), p̃(ℓ+1)[ (with p̂ = p̂(ℓ)) and ]p̃(L), 1] (with p̂ = p̂(L)). So one only has to verify the mutual

best-response property at the beliefs p̃(ℓ). This is done in Appendix C. We also show there

that payoffs are discontinuous at these beliefs, and that there are no other equilibria.

The right panel of Figure 3 illustrates player 1’s payoff function in an equilibrium with

L = 1. The solid curve is u1, and the dashed line the payoff w1 that player 1 would get if both

players played risky. The dotted curve starting in the lower left corner is the payoff player

1 would receive in a cutoff equilibrium with p̂ = p̂(0), and the dotted curve starting in the

upper right corner the payoff he would obtain in a cutoff equilibrium with p̂ = p̂(1). Between

p̂(0) and p̃(1), beliefs drift downwards as only player 1 plays risky, and they will converge

to p̂(0) in finite time unless there is a breakthrough on player 1’s risky arm. Between p̃(1)

and p̂(1), beliefs drift upwards as only player 2 plays risky, and they will converge to p̂(1) in

finite time unless there is a breakthrough on player 2’s risky arm. Initial beliefs p̃(1) − ǫ and

p̃(1) + ǫ thus imply very different paths of beliefs and actions. As a consequence, payoffs are

discontinuous at p̃(1).

4.4 Asymptotics and Speed of Learning

When stakes are low and players use their single-agent cutoff strategies, the evolution of the

posterior belief in the absence of a success on a risky arm is governed by

ṗ =











λp(1 − p) if p < 1 − p∗,

0 if 1 − p∗ ≤ p ≤ p∗,

−λp(1 − p) if p > p∗.

(3)
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The asymptotics of the learning process depend both on the true state of the world and the

initial belief. Let us suppose, for example, that risky arm 1 is good. If the initial belief

p0 is lower than 1 − p∗, the posterior belief will converge to 1 − p∗ with probability 1 as

there cannot be a breakthrough on risky arm 2. If 1 − p∗ ≤ p0 ≤ p∗, the belief will remain

unchanged at p0 forever. If p0 > p∗, the belief will converge either to 1 or to p∗. If t∗ is the

length of time needed for the belief to reach p∗ conditional on there not being a breakthrough

on risky arm 1, the probability that the belief will converge to p∗ is e−λt∗ . By Bayes’ rule, we

have 1−pt

pt
= 1−p0

p0e−λt in the absence of a breakthrough, and so e−λt∗ = 1−p0

p0

p∗

1−p∗
. The belief will

therefore converge to p∗ with probability 1−p0

p0

p∗

1−p∗
, and to 1 with the counter-probability.

Analogous results hold when risky arm 2 is good. For low stakes, therefore, the unique (and

efficient) MPE always entails a positive probability for learning to remain incomplete in the

long run, that is, for the process of posterior beliefs to converge to a limit that assigns a

positive probability to the false state of the world.

When stakes are high, the equilibrium dynamics of beliefs conditional on there not being

a breakthrough are given by

ṗ =











λp(1 − p) if p < pm,

0 if pm ≤ p ≤ 1 − pm,

−λp(1 − p) if p > 1 − pm.

(4)

Players shut down incremental learning on the interval [pm, 1 − pm]. Yet they still learn

the true state with probability 1 in the long run because once this interval is reached, both

players use their risky arm until the first success resolves all uncertainty.

When stakes are intermediate and the equilibrium is in cutoff strategies with common

cutoff p̂, the dynamics are

ṗ =











λp(1 − p) if p ∈< p̂,

0 if p = p̂,

−λp(1 − p) if p > p̂,

(5)

and players learn the true state with probability 1 in the long run because both play risky

at p̂. When the equilibrium is not in cutoff strategies, ṗ > 0 on [0, p̂(0)[ and all intervals

]p̃(ℓ), p̂(ℓ)[ and possibly at some of the beliefs p̃(ℓ). Similarly, ṗ < 0 on all intervals ]p̂(ℓ−1), p̃(ℓ)[

and ]p̂(L), 1] and at the remaining beliefs p̃(ℓ). Finally, ṗ = 0 at all beliefs p̂(ℓ). Starting from

any prior, therefore, the dynamics conditional on no breakthrough imply convergence in

finite time to some p̂(ℓ), and as both players play risky there, learning will once more be

complete.

For intermediate and high stakes, learning will thus always be complete in equilibrium,

exactly as it would be in the planner’s solution for which (4) applies with pm and 1 − pm
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replaced by the cutoffs p̄ and 1 − p̄, respectively.

We summarize these findings in

Proposition 8 (Asymptotics of learning) In any Markov perfect equilibrium of the ex-

perimentation game, the probability of learning the true state of the world as t → ∞ is the

same as in the planner’s solution. It is smaller than 1 (incomplete learning) for g

s
< 2r+λ

r+λ
,

and equal to 1 (complete learning) for g

s
> 2r+λ

r+λ
. For g

s
= 2r+λ

r+λ
, both complete and incomplete

learning are consistent with efficiency, and both can arise in equilibrium.

Note that these asymptotics only depend on the position of the single-agent cutoffs.

Intuitively, for both players to play safe, neither of them can be more optimistic than his

single-agent cutoff. At any belief in the set [0, 1− p∗[ ∪ ]p∗, 1], therefore, at least one player

must play risky and thus keep the learning process alive. This set is the entire unit interval

if and only if p∗ < 1
2
, that is, g

s
> 2r+λ

r+λ
.

In Keller, Rady and Cripps (2005), where players face risky arms of a common type,

any Markov perfect equilibrium implies an inefficiently small probability of learning the true

state in the long run. As all players become gradually more pessimistic, the incentive to

free-ride makes them give up experimentation earlier than in the planner’s solution. With

risky arms of opposite type, by contrast, it can never be the case that both players are

simultaneously very pessimistic about their individual prospects. Whenever the stakes are

so high that the planner would want both players to experiment at a given belief, therefore,

at least one player is willing to experiment on his own at this belief. Free-riding incentives

can then delay the resolution of uncertainty relative to the social optimum, but not prevent

it. The following proposition derives an upper bound on the expected delay.

Proposition 9 (Speed of learning) For g

s
> 2r+λ

r+λ
and any initial belief, there exists a

Markov perfect equilibrium in cutoff strategies such that the expected delay in the resolution

of uncertainty is less than 1
3

of the expected time by which all uncertainty is resolved in the

planner’s solution.

Proof: See Appendix C.

As we shall see next, the optimality of long-run learning outcomes and the short expected

delay in the resolution of uncertainty are reflected in surprisingly good welfare properties of

the Markov perfect equilibria.
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4.5 Welfare

When stakes are low, the unique MPE has players use their single-agent cutoffs, which

is efficient. For intermediate stakes, an efficient equilibrium outcome can be achieved with

cutoff strategies if and only if the interval of possible equilibrium cutoffs given in Proposition

6 contains the efficient cutoff.

It is straightforward to verify that 1−pm ≤ p̄ and hence max{p∗, 1−pm} ≤ p̄ < 1− p̄ ≤

min{pm, 1 − p∗} if 2r+λ
r+λ

< g

s
≤ 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
. Then, if the players’ initial belief is

p0 ≤ p̄, the equilibrium with cutoff p̂ = p̄ achieves the efficient outcome as the only beliefs

that are reached with positive probability under the equilibrium strategies are given by the

set {0, 1}∪ [p0, p̄], and the equilibrium strategies prescribe the efficient actions at all of these

beliefs. Similarly, for p0 ≥ 1 − p̄, the efficient outcome is achieved by the equilibrium with

cutoff p̂ = 1−p̄. Finally, if p̄ < p0 < 1−p̄, the efficient outcome is achieved by the equilibrium

with cutoff p̂ = p0. If 2r+λ
2(r+λ)

+
√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
< g

s
< 2, by contrast, we have p∗ < p̄ < 1−pm

and hence p̄ < max{p∗, 1−pm} < min{pm, 1−p∗} < 1− p̄. In this case, the efficient outcome

can only be achieved for initial beliefs p0 ∈ {0} ∪ [1 − pm, pm] ∪ {1}.

If stakes are high, the unique MPE implies efficient behavior except on the set [p̄, pm[ ∪ ]1−

pm, 1− p̄]. In this case, the efficient outcome arises if and only if p0 ∈ {0}∪ [pm, 1−pm]∪{1}.

Proposition 10 (Welfare) If g

s
≤ 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, then for each initial belief, there

exists a Markov perfect equilibrium in cutoff strategies that achieves the efficient outcome.

If g

s
> 2r+λ

2(r+λ)
+

√

(2r+λ)2

4(r+λ)2
+ λ

r+λ
, there are initial beliefs under which the efficient outcome

cannot be reached in any Markov perfect equilibrium. For any such belief p, there exists an

equilibrium in cutoff strategies such that

u(p) − s

ū(p) − s
>

1

2
,

where u(p) and ū(p) are the players’ average payoffs in the equilibrium and the planner’s

solution, respectively.

Proof: The first two statements of the proposition follow directly from the preceding dis-

cussion. The lower bound on average payoffs is established in Appendix C.

The stated lower bound is straightforward to derive from the closed-form solutions for

the players’ payoff functions. This bound is by no means tight, however. In fact, a numerical

evaluation on a grid of pairs ( r
λ
, g

s
) suggests that for 0 < r

λ
≤ 10 and 1 < g

s
≤ 10, there

always exists an MPE in cutoff strategies for which the above ratio exceeds 86%. To put
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this number in perspective, it is worthwhile recalling from Keller, Rady and Cripps (2005)

that in any Markov perfect equilibrium of the experimentation game with risky arms of a

common type, there is a range of beliefs at which all players play safe while the planner

would want all of them to play risky. At these beliefs, the above ratio is zero.

4.6 Discussion

We have restricted attention to what in the literature have been termed “pure strategy

equilibria” (by Bolton and Harris, 1999 and 2000) or “simple equilibria” (by Keller, Rady

and Cripps, 2005, and Keller and Rady, 2010). An extension of the strategy space allowing

players to choose experimentation intensities from the entire unit interval would leave the

planner’s solution unchanged. Moreover, as the intensity of experimentation enters linearly

into a player’s Bellman equation, our simple equilibria are immune against deviations to

interior intensities.

While we have assumed that players are symmetric, it is straightforward to extend our

analysis to those asymmetries between players that preserve a zero value of information when

both players use the risky arm. This is the case if players differ in their discount rates, safe

payoff levels or average sizes of lump-sum payoffs on a good risky arm. If p∗ continues to

denote player 1’s single-agent cutoff, player 2’s single-agent optimum is then to play risky

on an interval [0, q∗[ with q∗ 6= 1 − p∗; similarly, the players’ myopic cutoffs will satisfy

qm 6= 1 − pm whenever players face different stakes. As all that matters for the planner’s

solution, best responses and equilibrium is the relative position of the four cutoffs, all our

results extend readily, the only difference being that typically there will be no symmetric

equilibrium.

Matters become more complicated if player 1, say, has a higher innate ‘ability’ than

player 2, i.e. if the risky arms are characterized by arrival rates λ1 > λ2. In this case, beliefs

satisfy ṗ = [λ2k2(p) − λ1k1(p)] p (1 − p) up to the first breakthrough, which has two major

implications. First, at any transition between the action profiles (0, 1) and (1, 1), player 1

must use the interior intensity of experimentation k1 = λ2/λ1 both in the planner’s solution

and when playing a best response. As in Presman (1990), such an interior allocation is

the only way to obtain a well-defined law of motion for beliefs, and we must broaden our

definition of cutoff strategies accordingly. Second, on any interval of beliefs where both

players use the risky arm, ṗ < 0, which leads to convex payoff functions. So the value of

information is positive and the best response against the opponent’s playing risky is given

by a threshold belief more pessimistic than the myopic cutoff.

If players differ only in the arrival rates of lump-sum payoffs, for example, player 1’s best
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response against player 2’s playing risky is to apply the cutoff p̂1 = (r+λ2)s
(r+λ1)λ1h−(λ1−λ2)s

< pm

which is pinned down by smooth pasting of player 1’s payoff function with the linear lower

bound obtained from the constant action profile (λ2/λ1, 1). In the high-stakes scenario

where player 2 plays risky to the right of p̂1, his best response must then be determined

via an intermediate-value argument that enforces smooth pasting, at a cutoff p̂2, between

the two functions that describe player 2’s payoffs from the action profiles (1, 1) and (1, 0),

respectively; p̂2 no longer admits a representation in closed form.12 Still, it is straightforward

to establish uniqueness and efficiency of Markov perfect equilibrium as well as incomplete

learning for low stakes, and complete learning for intermediate and high stakes.

The same holds true for an extension of our model where, as in Keller and Rady (2010),

even a bad risky arm has a non-zero arrival rate of lump-sum payoffs, implying that when-

ever a risky arm generates a success, beliefs about the quality of this arm jump up to a more

optimistic level, but never to full certainty. Consequently, payoff functions solve differential-

difference equations. These still admit closed-form solutions, yet it is now much harder to

paste them together at those beliefs where the action profile changes. When both players use

the risky arm, for instance, the continuation payoffs after both an upward and a downward

jump of beliefs enter the Bellman equation, so an optimal change of action must be deter-

mined jointly with these continuation payoffs. This yields nonlinear equations for optimal

cutoffs without explicit solutions. As to possible equilibria for intermediate and high stakes,

the best response to an opponent using the risky arm again differs from the myopic cutoff

strategy. This is because the belief held immediately after a success varies with the belief

held immediately before, so that expected payoffs conditional on the true state are no longer

constant over the range of beliefs where both players play risky, once more leading to convex

payoff functions and a positive value of information.

5 Imperfect Negative Correlation

We now extend our model by introducing a third state of the world in which both risky

arms are bad. This means that the quality of the risky arm is no longer perfectly negatively

correlated across players, and introduces a dimension of collective pessimism into the game,

captured by the posterior probability that neither player has a good risky arm.

There are two players, i = 1, 2, and three states, θ = 0, 1, 2, where θ = i ∈ {1, 2}

signifies that player i has the only good risky arm, while θ = 0 means that both risky

12Details on the extensions discussed in this paragraph and the next are available from the authors upon

request.
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arms are bad. This structure is common knowledge. We write pθ for the common posterior

probability assigned to state θ, and use the pair (p1, p2) as the vector of state variables. The

(subjective) correlation coefficient between the types of the two risky arms is

ρ = −

√

p1

1 − p1

p2

1 − p2

,

which can assume any value in the interval [−1, 0].

Given time paths of actions {ki,τ}0≤τ≤t for i = 1, 2 and no breakthrough by time t, the

posterior beliefs at time t are

pi,t =
pi,0 e−λ

∫ t

0 ki,τ dτ

1 − p1,0 − p2,0 +
∑2

j=1 pj,0 e−λ
∫ t

0 kj,τ dτ
(i = 1, 2).

The corresponding differential equations are

ṗi = λpi

(

2
∑

j=1

pjkj − ki

)

(i = 1, 2).

We note that over any time interval where the action profile (k1, k2) = (1, 1) is played without

a success, the ratio p2

p1
stays constant and the beliefs (p1, p2) move towards the origin along

a straight line, expressing an increase in collective pessimism. Under the action profile

(1, 0), the ratio p2

1−p1−p2
stays constant and the beliefs (p1, p2) move along a straight line

p2 = C (1 − p1) with a positive constant C < 1, expressing increases in player 1’s individual

pessimism, player 2’s individual optimism, and both players’ collective pessimism.

Writing P = {(p1, p2) ∈ [0, 1]2 : p1 + p2 ≤ 1}, we restrict players to Markov strategies

ki : P → [0, 1] with the following properties: (i) the sets k−1
i (0) and k−1

i (1) each have a

connected interior in P ; (ii) the union of the closures of k−1
i (0) and k−1

i (1) is P; (iii) the

intersection of the closures of k−1
i (0) and k−1

i (1) consists of a finite number of differentiable

curves; (iv) along each of these curves, ki varies continuously with beliefs; (v) ki(p1, p2) = 0

if pi = 0, and ki(p1, p2) = 1 if pi = 1. A Markov strategy ki is called a cutoff strategy if

there exists a continuous and piecewise differentiable function hi : [0, 1] → [0, 1] such that

ki(p1, p2) = 1 for pi > hi(p3−i) and ki(p1, p2) = 0 for pi < hi(p3−i). This function merely

defines the switching boundary where a player changes from one action to the other. The

behavior along the boundary needs to be specified separately so as to ensure a well-defined

evolution of beliefs. In some cases, this will require interior intensities of experimentation.

A pair of Markov strategies is called symmetric if k1(p, q) = k2(q, p) for all (p, q) ∈ P .

For cutoff strategies, symmetry means h1 = h2. The definition of admissibility is analogous

to the benchmark model of perfect negative correlation.
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Player i’s Bellman equation is

ui(p1, p2) = s + k3−i(p1, p2)βi(p1, p2, ui) + max
ki∈[0,1]

ki [bi(p1, p2, ui) − ci(pi)] ,

where bi(p1, p2, ui) = λ
r
pi[g − ui − (1− pi)

∂ui

∂pi
+ p3−i

∂ui

∂p3−i
], βi(p1, p2, ui) = λ

r
p3−i[s− ui − (1−

p3−i)
∂ui

∂p3−i
+pi

∂ui

∂pi
] and ci(pi) = s−pig. In Appendix A.3, we use the method of characteristic

curves to derive explicit expressions for the players’ payoffs from the action profiles (1, 1),

(1, 0) and (0, 1). This allows us to derive the following result.

Proposition 11 (Imperfect correlation) There always exists a symmetric Markov per-

fect equilibrium in cutoff strategies.

Proof: The proof is by construction; see the specification of equilibrium strategies below

and the verification of the best-response property in Appendix C.

For g

s
≤ 2r+λ

r+λ
, and hence p∗ ≥ 1

2
, the common equilibrium cutoff can be taken to be

constant and equal to the single-agent cutoff p∗, with either player playing safe at the cutoff

itself. This equilibrium is illustrated in the left panel of Figure 4, with the labels “00”, “01”

and “10” standing for the action profiles (0, 0), (0, 1) and (1, 0), respectively. The intuition

for this equilibrium carries over from the case of perfect negative correlation.

For 2r+λ
r+λ

< g

s
≤ 2, and hence p∗ < 1

2
≤ pm, equilibrium cutoffs can be defined by

the function h(p) = max{p∗, p }. Along the switching boundary, player i plays safe when

pi = p∗ ≥ p3−i and risky when pi = p3−i > p∗. This equilibrium is illustrated in the middle

panel of Figure 4. Fix a prior in the interior of the 10 region. If this prior lies below the line

joining the belief (p∗, p∗) with the belief (1, 0), player 1 plays risky until either a breakthrough

occurs or beliefs reach the vertical segment {p∗} × [0, p∗], where player 1 gives up and all

learning stops. In this scenario, the increase in player 2’s optimism as player 1 fails to have

a breakthrough is not enough to entice him to experiment himself. This is different if the

prior lies above the line joining the belief (p∗, p∗) with the belief (1, 0). In the absence of a

breakthrough on player 1’s risky arm, beliefs now move to the 45 degree line, where player 2

joins player 1 in playing risky. From that point on, beliefs move down the 45 degree line and,

in the absence of a breakthrough, become stationary in the point (p∗, p∗) where both players

play safe. Along the part of the 45 degree line where both players play risky, their payoff

functions are kinked and the best-response property follows from the restrictions imposed by

admissibility of the players’ strategies, exactly as in the symmetric MPE in cutoff strategies

under perfect negative correlation (corresponding to the upper right edge of the triangle).
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Figure 4: Cutoff equilibria of the experimentation game with imperfect negative correlation

between the types of the risky arms.

For g

s
> 2, and hence pm < 1

2
, we define p̃ = rs

(r+λ)g−2λs
, which lies between p∗ and pm.

An equilibrium cutoff function is then given by h(p) = max{p∗, p } for p ≤ p̃, and

h(p) =
(r + λp)s

(r + λ)g − λs

for p > p̃. As to the actions chosen along the switching boundary, player i plays safe when

pi = p∗ ≥ p3−i, plays risky when p∗ < pi = p3−i ≤ p̃, and sets

ki =
(r + λ)g − λs

g − s

p3−i

r + λp3−i

when pi = h(p3−i) > p̃. This equilibrium is illustrated in the right panel of Figure 4. As we

move down along player 2’s switching boundary from the belief (1 − pm, pm) to the belief

(p̃, p̃), player 2’s intensity of experimentation monotonically falls from 1 to s
g−s

.13 This

interior intensity is precisely the one that keeps posterior beliefs on the boundary as long as

no breakthrough occurs. The boundary itself is pinned down by the requirement that given

k1 = 1, player 2 must have b2 > c2 above the boundary and b2 < c2 below it.14 Once a belief

on the diagonal line segment between (p∗, p∗) and (p̃, p̃) is reached, the evolution of beliefs

and actions is the same as in the MPE for intermediate stakes.

For low stakes, the equilibrium described above is efficient. For intermediate and high

stakes, the planner’s solution is given by the cutoff function

h(p) = max

{

p∗,
(r + λp)s

(r + λ)g

}

.

13In this and the following figure, boundaries along which some player uses an interior intensity of exper-

imentation are shown as dashed lines.
14See Lemmas A.2 and A.3 in the Appendix.
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The increasing part of player 2’s efficient switching boundary is thus a straight line joining the

beliefs (p∗, p∗) and (1− p̄, p̄), where p̄ is the efficient cutoff for perfect negative correlation.15

For intermediate and high stakes, therefore, the equilibria that we constructed are inefficient

in that the set of beliefs at which both players use the risky arm is smaller than in the

planner’s solution. The set of beliefs at which learning stops is the same as in the planner’s

solution, though. This yields the following counterpart to Proposition 8.

Proposition 12 (Imperfect correlation, asymptotics of learning) There always exists

a Markov perfect equilibrium in which the probability of learning the true state of the world

as t → ∞ is the same as in the planner’s solution.

Proof: As the equilibrium constructed for g

s
≤ 2r+λ

r+λ
is efficient, we can assume that g

s
>

2r+λ
r+λ

and hence p∗ < 1
2
. By symmetry of the planner’s solution and the above equilibria

in cutoff strategies, we can restrict ourselves to initial beliefs (p1,0, p2,0) with p1,0 ≥ p2,0.

By Proposition 8, we can further assume that p1,0 + p2,0 < 1. If this initial belief satisfies

p1,0 ≤ p∗ or p2,0 ≤
p∗

1−p∗
(1−p1,0), the equilibrium outcome is the same as the efficient outcome.

Suppose therefore that p1,0 > p∗ and p2,0 > p∗

1−p∗
(1− p1,0). In the absence of a breakthrough,

both the efficient and the equilibrium paths of play then lead to the posterior belief (p∗, p∗)

in finite time.

Consider any time paths of actions {ki,τ}0≤τ≤t for i = 1, 2 that in the absence of a

breakthrough lead to the belief (p∗, p∗) by time t. Bayes’ law then implies

p∗ =
pi,0 e−λ

∫ t

0 ki,τ dτ

1 − p1,0 − p2,0 +
∑2

j=1 pj,0 e−λ
∫ t

0 kj,τ dτ

for i = 1, 2. This is a system of two linear equations in Pi = e−λ
∫ t

0 ki,τ dτ that is easily seen to

have a unique solution (P1, P2) for p∗ 6= 1
2
. As Pi is the probability of no breakthrough on

player i’s risky arm up to time t conditional on this arm being good, the efficient and the

equilibrium paths of play imply the same conditional probability of a breakthrough before

all learning stops, and hence the same conditional probability of learning the true state.

As in the case of perfect negative correlation, therefore, strategic interaction between

the players need not lead to an inefficiently high probability of incomplete learning.

15The derivation of the planner’s solution is very similar to the construction of the high-stakes MPE, and

can be based on straightforward adaptations of Lemmas A.2 and A.3.
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6 More Than Two Players

The last extension that we explore has N ≥ 3 players, i = 1, . . . , N , each playing a bandit

of the exponential type. It is common knowledge that exactly one of them has a good risky

arm. We write pi for the common posterior probability that player i’s risky arm is the good

one.

The three-player case is easiest to visualize, and its analysis very similar to that of the

two-player game with imperfect negative correlation, so we focus on this case, returning to

general N only briefly at the end of the section. With N = 3, we can again use the pair

(p1, p2) as the vector of state variables. Markov and cutoff strategies can be defined along

the same lines as in the previous section.

Player i’s Bellman equation is now

ui(p1, p2) = s +
∑

j 6=i

kjβij(p1, p2, ui) + max
ki∈{0,1}

ki[bi(p1, p2, ui) − ci(p1, p2)].

Here, the learning benefits from a player’s own experimentation are bi(p1, p2, ui) = λ
r
pi[g−ui−

(1− pi)
∂ui

∂pi
+ p3−i

∂ui

∂p3−i
] for i = 1, 2 and b3(p1, p2, u3) = λ

r
(1− p1 − p2)[g − u3 + p1

∂u3

∂p1
+ p2

∂u3

∂p2
].

The learning benefits that accrue to player i when player j 6= i uses the risky arm are

βij(p1, p2, ui) = λ
r
pj[s − ui − (1 − pj)

∂ui

∂pj
+ p3−j

∂ui

∂p3−j
] for j = 1, 2 and βi3(p1, p2, ui) = λ

r
(1 −

p1−p2)[s−ui+p1
∂ui

∂p1
+p2

∂ui

∂p2
]. The opportunity costs of experimentation are ci(p1, p2) = s−pig

for i = 1, 2, and c3(p1, p2) = s − (1 − p1 − p2)g.

If the prevailing action profile is (0, 0, 0), each player’s payoff function equals ui = s. If

(1, 1, 1) prevails, the payoff functions are linear, exactly as in the two-player model: ui =

pig + (1− pi)
λ

r+λ
s. Explicit expressions for the players’ payoffs from all other action profiles

can again be derived as in Appendix A.3. An equilibrium transition between the action

profiles (1, 0, 0) and (0, 0, 0) is easily seen to require p1 = p∗, while a transition between

(1, 1, 1) and (0, 1, 1) requires p1 = pm; the intuition for these findings is exactly the same as

in the two-player model with perfect negative correlation.

For g

s
< 3r+λ

r+λ
, and hence p∗ > 1

3
, the equilibria that we constructed for the two-player

game with imperfect negative correlation translate one-to-one into equilibria of the three-

player game. To see this, consider the triangle T with the corners (1
3
, 1

3
), (1

2
, 1

2
) and (1, 0)

in the (p1, p2)-plane; in the three-player game, this corresponds to the set of all beliefs such

that p1 ≥ p2 ≥ p3. On T , let players 1 and 2 play the same strategies as in the two-player

MPE constructed in the previous section, and let player 3 play safe. Given a prior belief in

T , posterior beliefs then remain in T unless there is a success on player 1’s or, if he gets

to experiment at all, player 2’s risky arm. As player 3 never experiments, players 1 and 2
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are facing exactly the same situation as in a two-player game between them, and thus are

playing best responses. Player 3’s payoff on T is u3 = s, so b3 < c3 if and only if p3 < p∗,

which is obviously the case here because the inequalities p1 ≥ p2 ≥ p3 imply p3 ≤ 1
3
. There

is now a unique way to extend the players’ strategies on T to a symmetric strategy profile

on the entire state space; this strategy profile clearly constitutes an equilibrium.

For the following proposition, therefore, only parameter constellations such that g

s
≥

3r+λ
r+λ

, and hence p∗ ≤ 1
3
, require further work.

Proposition 13 (Three players) There always exists a symmetric Markov perfect equi-

librium in cutoff strategies.

Proof: The proof is again by construction. Equilibrium strategies for g

s
≥ 3r+λ

r+λ
are illus-

trated in Figure 5 below. The verification of the best-response property proceeds along the

same lines as in the proof of Proposition 11. Details are available from the authors upon

request.

Figure 5 illustrates equilibrium strategies in the four cases that need to be distinguished

when p∗ ≤ 1
3
. To emphasize the symmetry of these equilibria, beliefs are represented as

elements of a standard 2-simplex. Its vertices correspond to the three possible degenerate

beliefs about the state of the world; the vertex marked “1”, for instance, corresponds to

subjective certainty that player 1 has the good risky arm. The probability pi that player

i has the good risky arm is constant along any line running parallel to the edge that lies

opposite vertex “i”.

In each of the four panels of Figure 5, all players use the risky arm at the center of the

simplex, where p1 = p2 = p3 = 1
3
. When g

s
≤ 3, and hence pm ≥ 1

3
, this is the only belief

at which the action profile (1, 1, 1) is played; when g

s
> 3, and hence pm < 1

3
, this profile is

played at all beliefs such that min{p1, p2, p3} ≥ pm.

As to the solid lines that end in the center of the simplex in the upper two panels of

Figure 5, the two players who experiment individually on either side of such a line, experiment

jointly along it. In the lower left panel, the action profile along any such line is the same

as in the region from where the line emanates, so that just one player experiments along it.

The same goes, in the lower right panel, for the solid lines ending in the triangle where the

profile (1, 1, 1) is played. In each case, the verification of the best-response property along a

solid line rests on restrictions imposed by admissibility of the players’ strategies.

The dashed lines in the upper right and the two lower panels are switching boundaries

of exactly the same type as in the high-stakes MPE of the two-player game with imperfect
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Figure 5: Cutoff equilibria of the experimentation game with three players when p∗ ≤ 1
3
.

negative correlation. The player who plays safe on one side of the boundary, and risky on

the other, chooses an interior intensity of experimentation at the boundary itself, making

posterior beliefs move along it as long as no breakthrough occurs.

Clearly, learning will be complete in any of the equilibria depicted in Figure 5. For

p∗ ≤ 1
3
, complete learning is also efficient because the action profile (1, 1, 1) weakly dominates

the profile (0, 0, 0) in terms of the three players’ expected average payoff, so the planner has

no reason ever to stop learning. For p∗ > 1
3
, we can exploit symmetry of our equilibria as well

as of the planner’s solution and restrict our attention to beliefs in the set T defined above.

On this set, the planner asks player 3 to use the safe arm, and players 1 and 2 to follow
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the strategies that are efficient in the two-player game with imperfect negative correlation.

Invoking Proposition 12, we thus obtain

Proposition 14 (Three players, asymptotics of learning) There always exists a Markov

perfect equilibrium in which the probability of learning the true state of the world as t → ∞

is the same as in the planner’s solution.

While the construction of Markov perfect equilibria becomes increasingly complex as

the number of players grows, it is clear that for g

s
≤ 2r+λ

r+λ
, and hence p∗ ≥ 1

2
, the planner’s

solution remains an equilibrium for arbitrary N ; as before, it lets all players use the single-

agent cutoff and implies incomplete learning. More generally, a necessary condition for all N

players to play safe on some non-empty open set of beliefs, be it in the planner’s solution or

in equilibrium, is that all elements of this set satisfy max{p1, . . . , pN} ≤ p∗. For g

s
> Nr+λ

r+λ
,

and hence p∗ < 1
N

, this means that the planner’s solution as well as any MPE must lead to

complete learning. For 2r+λ
r+λ

< g

s
≤ Nr+λ

r+λ
, it is optimal for the planner to let all N players use

the safe arm if and only if max{p1, . . . , pN} ≤ p∗. We conjecture that there exist equilibria

in which learning stops on the exact same set of beliefs.

7 Concluding Remarks

We have analyzed games of strategic experimentation in continuous time where players’

expected risky payoffs are negatively correlated. Our first set of results concerns a game

with two players and common knowledge that exactly one of them has a bandit with a good

risky arm. In sharp contrast to the situation where players face risky arms of a common

quality, this game always admits equilibria of the cutoff type, and equilibrium is unique and

symmetric in two subsets of the parameter space. When the stakes are low, players behave

as if they were single players experimenting in isolation, and this is efficient. When the

stakes are high, players behave as if they were myopic. Finally, learning will be complete in

equilibrium if and only if efficiency requires complete learning.

This analysis naturally raises the question under what circumstances two players would

choose to play a strategic experimentation game with bandits of opposite, rather than com-

mon, type. To analyze this question, we can extend our model by letting players first decide

sequentially whether they want to experiment with risky arm 1, whose prior probability of

being good is p0, or with risky arm 2, whose corresponding probability is 1− p0. They then

play the strategic experimentation game with either perfectly positively or perfectly nega-

tively correlated bandits, as the case might be. Using the fact that in the experimentation
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game in Keller, Rady and Cripps (2005), no player can obtain an equilibrium payoff higher

than twice the planner’s solution minus the single-agent solution, it is straightforward to

derive a condition on the model parameters under which equilibrium of the extended game

uniquely predicts that players choose different risky arms for all priors p0 in a neighborhood

of 1
2
. It is easy to find parameter combinations that satisfy this condition; for instance, r

λ
= 2

and g

s
= 3 will do. Given any r and λ, moreover, the condition will always be fulfilled if the

stakes g

s
are large enough.

While this extension of the model with perfect negative correlation merely allows for

one irreversible project choice, Chapter 2 analyzes a variant of this setup where, akin to

Chatterjee and Evans (2004), both players have access to both risky arms and can switch

between them at will. This requires the players to solve identical three-armed bandit prob-

lems with a safe arm and two risky arms that are known to be of opposite types. In contrast

to our setting, where the planner’s solution is incentive-compatible if and only if the stakes

are low enough, he finds that the planner’s solution is incentive-compatible if and only if the

stakes are high enough. This is because for sufficiently high stakes, the safe arm becomes

so unattractive that the players are willing to explore the risky arm that momentarily ap-

pears more promising given that the opponent also explores the arm, which is exactly what

efficiency requires.

Our second set of results concerns experimentation games with imperfect negative corre-

lation of the type of risky arm across players. In the model with two players and a third state

of the world in which neither has a good risky arm, there always exists a symmetric Markov

perfect equilibrium in cutoff strategies. Although the state space is a two-dimensional sim-

plex and the players’ payoff functions solve partial differential equations, we have been able

to compute players’ equilibrium strategies and payoffs in closed form. Imperfect correlation

introduces a dimension of collective pessimism into the model, captured by the posterior

probability that both risky arms are bad. As a consequence, the planner’s solution involves

a set of beliefs where both players use the safe arm, so efficient learning is necessarily in-

complete. In the equilibria we construct, the set of beliefs where both players play safe is

the same as in the planner’s solution, so learning does not stop inefficiently early; in fact,

the probability of learning the true state of the world in the long run is the same as in the

planner’s solution. Even with imperfect negative correlation, therefore, strategic interaction

does not make learning inefficient in the long run. We obtain quite similar results in a

three-player game in which it is common knowledge that exactly one player has a good risky

arm.

In our setting, the definition of admissible strategies turned out to be more involved

than in the case of perfect positive correlation. As a matter of fact, this difficulty arises
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as soon as the (binary) type of the risky arm is not perfectly positively correlated across

players, that is, as soon as there is a positive probability that they might have risky arms

of opposite type. To see this in a two-player setting, consider the four possible states of the

world: θ = 0 (no player has a good risky arm), θ = 1 (player 1 has the only good risky

arm), θ = 2 (player 2 has the only good risky arm), and θ = 3 (both players have a good

risky arm), and write pθ for the probability that the players assign to state θ. As long as

there is no breakthrough, we then have ṗ3 = −λp3 {(1 − p3)(k1 + k2) − p1k1 − p2k2} ≤ 0; for

p1 = p2 = 0, this reduces to the dynamics in Keller, Rady & Cripps (2005), where each pair

of strategies that are left-continuous in p3 is admissible. For i = 1, 2, on the other hand, we

have ṗi = λpi {piki + p3−ik3−i − ki + p3(k1 + k2)}; for p3 = 0, this reduces to the dynamics

in the imperfect-correlation version of our model. In particular, ṗ1 = −λp1(1−p1−p3) when

the action profile is (k1, k2) = (1, 0), ṗ1 = λp1(p2 + p3) when the action profile is (0, 1), and

similarly for ṗ2. Whenever pi > 0, therefore, the sign of ṗi depends on the action profile,

which means that, as in our model, player i’s admissible strategies cannot be defined without

reference to the other player’s strategy. This also applies to a scenario of imperfect positive

correlation obtained for p1 and p2 positive but small. Thus, the admissibility issues showing

up in our model are the “generic” phenomenon, while the case of perfect positive correlation

is truly exceptional because it is one of only two cases in which the space of admissible

strategy pairs is a product set, the other being the trivial case of independent types.

Throughout our analysis, we have maintained the assumption that both actions and

outcomes were publicly observable at all times. Bonatti & Hörner (2010) investigate varying

correlations of bandit types between players under the assumption of private actions and

publicly observable outcomes, but in their setup everybody switches to playing safe at the

myopic cutoff. The effect of allowing for private actions when there is an incentive to play

risky beyond the myopic cutoff has not been investigated yet. One of our main conclusions

appears robust to such an extension of our model: for sufficiently high stakes, it cannot

be common knowledge that all players have stopped using the risky arm, so there must be

complete learning in equilibrium. We leave a full analysis of such a model to future work.
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Appendix

A Payoff Functions

For p ∈ [0, 1], we define

w1(p) = pg + (1 − p)
λ

r + λ
s and w2(p) = (1 − p)g + p

λ

r + λ
s = w1(1 − p).

These are the players’ payoff functions when both are playing risky. For the explicit representation

of other payoff functions, it will be convenient to define

u0(p) = (1 − p)

(

1 − p

p

)
r
λ

.

Note that

u′
0(p) = −

r
λ

+ p

p(1 − p)
u0(p)

and u′′
0 > 0.

A.1 Explicit Solutions for Perfect Negative Correlation

On any open interval where k1(p) = 1 and k2(p) = 0, u1 and u2 satisfy the ODEs

λp(1 − p)u′
1(p) + (r + λp)u1(p) = (r + λ)pg,

λp(1 − p)u′
2(p) + (r + λp)u2(p) = (r + λp)s,

which have the solutions u1(p) = pg + C1u0(p) and u2(p) = s + C2u0(p) with constants C1 and C2.

Finally, on any open interval where k1(p) = 0 and k2(p) = 1, u1 and u2 solve

λp(1 − p)u′
1(p) − [r + λ(1 − p)]u1(p) = −[r + λ(1 − p)]s,

λp(1 − p)u′
2(p) − [r + λ(1 − p)]u2(p) = −(r + λ)(1 − p)g,

hence u1(p) = s + D1u0(1 − p) and u2(p) = (1 − p)g + D2u0(1 − p) with constants D1 and D2.

Note that each of the above closed-form solutions is the sum of one term that expresses the

expected payoff from committing to a particular action and another term that captures the option

value of being able to switch to the other action.

A.2 An Auxiliary Result for Perfect Negative Correlation

The following lemma will be useful in the proofs of Lemma B.4 and Proposition 3.

Lemma A.1 On any open interval of beliefs where the payoff function of player i satisfies ui(p) =

s + βi(p, ui), the sign of bi(p, ui) − ci(p) coincides with the sign of wi(p) − ui(p).

Proof: We first note that bi(p, ui) + βi(p, ui) = λ
r

[ui(p) − ui(p)] where u1(p) = pg + (1 − p)s and

u2(p) = u1(1 − p) are the players’ expected full-information payoffs. As βi(p, ui) = ui(p) − s, this

implies bi(p, ui) − ci(p) = λ
r

[ui(p) − ui(p)] − ui(p) + s − ci(p) = r+λ
r

[wi(p) − ui(p)].
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A.3 Explicit Solutions in the Three-State Model

The laws of motion for p1 and p2 under the action profile (1, 0) are ṗ1 = −λp1(1−p1) and ṗ2 = λp1p2.

The resulting partial differential equation for player 1’s payoff function is

λp1(1 − p1)
∂u1

∂p1
− λp1p2

∂u1

∂p2
+ (r + λp1)u1 = (r + λ)p1g.

A particular solution is u(p1, p2) = p1g, that is, the payoff from committing to (1, 0) forever.

We look for solutions to the homogeneous PDE of the form u1(p1, p2) = (1 − p1)v(p1, p2), so

that v must solve the PDE

λp1(1 − p1)
∂v

∂p1
− λp1p2

∂v

∂p2
+ rv = 0.

Along a trajectory (p1,t, p2,t)t≥0, this implies

d

dt
v(p1,t, p2,t) = rv(p1,t, p2,t)

and hence

v(p1,t, p2,t) = ertv(p1,0, p2,0).

We now note that under the action profile (1, 0), the posterior probability for player 1’s arm being

good in the absence of a breakthrough is

p1,t =
p1,0e

−λt

p1,0e−λt + 1 − p1,0
,

implying

ert =

(

1 − p1,0

p1,0

)− r
λ

(

1 − p1,t

p1,t

)
r
λ

.

Therefore,

v(p1,t, p2,t)

(

1 − p1,t

p1,t

)− r
λ

is constant along the trajectory. As each trajectory is uniquely described by its slope p2

1−p1
, we thus

have

v(p1, p2) = f1
10

(

p2

1 − p1

)(

1 − p1

p1

)
r
λ

with some differentiable univariate function f1
10. This yields the following general form for player

1’s payoff function under (1, 0):

u1(p1, p2) = p1g + f1
10

(

p2

1 − p1

)

u0(p1).

Player 2’s payoff function under the action profile (1, 0) satisfies

λp1(1 − p1)
∂u2

∂p1
− λp1p2

∂u2

∂p2
+ (r + λp1)u2 = (r + λp1)s,
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for which the same steps as above yield the general solution

u2(p1, p2) = s + f2
10

(

p2

1 − p1

)

u0(p1).

Straightforward computations show that the corresponding benefit of experimentation is

b2(p1, p2, u2) =
λ

r
p2 (g − s)

−

[

r + λ

r

p2

1 − p1
f2
10

(

p2

1 − p1

)

+
λ

r

p2 (1 − p1 − p2)

(1 − p1)2
(f2

10)
′

(

p2

1 − p1

)]

u0(p1).

Under the action profile (1, 1), the PDE for player i’s payoff function,

λpi(1 − p1 − p2)
∂ui

∂pi
+ λp3−i(1 − p1 − p2)

∂ui

∂p3−i
+ (r + λ(p1 + p2))ui = (r + λ)pig + λp3−is,

has the general solution

ui(p1, p2) = pig + p3−i
λ

λ + r
s + f i

11

(

p2

p1

)

u0(p1 + p2).

Here, one finds

b2(p1, p2, u2) =

[

p2

p1 + p2
f2
11

(

p2

p1

)

−
λ

r

p2

p1
(f2

11)
′

(

p2

p1

)]

u0(p1 + p2).

A.4 Auxiliary Results for the Three-State Model

The following lemma will be helpful in constructing Markov perfect equilibria in cutoff strategies.

It is a simple consequence of value matching.

Lemma A.2 Consider an interval I = ]pℓ, pr[ with 0 < pℓ < pr < 1 and a differentiable function

h: → ]0, 1[ with h(p1) < 1 − p1 and −h(p1)
1−p1

≤ h′(p1) ≤
h(p1)

p1
. Assume that at any belief (p1, p2) on

the graph H of h, player 1 sets k1 = 1 while player 2 chooses

k2(p1) =
p1

h(p1)

h(p1) + (1 − p1)h
′(p1)

1 − h(p1) + p1h′(p1)
.

Starting at a belief (p1, p2) ∈ H, posterior beliefs move along H until either a breakthrough occurs

or the belief (pℓ, h(pℓ)) is reached; fixing a continuation payoff at that belief, let U(p1) be player

2’s resulting payoff. For small ǫ > 0, let u↑
2 be the solution to the equation u2 = s + β2 on

{(p1, p2): pℓ < p1 < pr, p2 < h(p1) + ǫ} with u↑
2(p1, h(p1)) = U(p1) on I, and u↓

2 the solution to the

equation u2 = s+β2 + b2− c2 on {(p1, p2): pℓ < p1 < pr, p2 > h(p1)− ǫ} with u↓
2(p1, h(p1)) = U(p1)

on I. Then,

k2(p1)
[

b2(p1, h(p1), u
↑
2) − c2(h(p1))

]

= [1 − k2(p1)]
[

b2(p1, h(p1), u
↓
2) − c2(h(p1))

]

= 0

on I.
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Proof: We suppress the argument p1 whenever this is expedient. The bounds on h′ ensure that

0 ≤ k2 ≤ 1. Moreover,

ṗ2 = λp2[p1 + p2k2 − k2] = h′λp1[p1 + p2k2 − 1] = h′ṗ1,

which means that starting from (p1, p2) ∈ H, the action profile (1, k2) makes posterior beliefs move

along H until a breakthrough occurs or the left endpoint of H is reached.

On I, the payoff U satisfies the ODE

rU = r{k2hg + [1 − k2]s} + λp1[s − U ] + λk2h[g − U ] − λp1[1 − p1 − k2h]U ′.

As U(p1) = u↑
2(p1, h(p1)) on I, we have

U ′(p1) =
∂u↑

2

∂p1
(p1, h(p1)) +

∂u↑
2

∂p2
(p1, h(p1))h

′(p1).

Suppressing the argument (p1, h(p1)) in u↑
2 and its derivatives, we can thus rewrite the ODE for U

as

ru↑
2 = r{k2hg + [1 − k2]s} + λp1[s − u↑

2] + λk2h[g − u↑
2] − λp1[1 − p1 − k2h]

(

∂u↑
2

∂p1
+

∂u↑
2

∂p2
h′

)

.

As p1[1 − p1 − k2h]h′ = h[(1 − h)k2 − p1], the previous equation is easily seen to transform into

u↑
2(p1, h(p1)) = s + β2(p1, h(p1), u

↑
2) + k2(p1)

[

b2(p1, h(p1), u
↑
2) − c2(h(p1))

]

.

For p2 < h(p1), however, u↑
2(p1, p2) = s+β2(p1, p2, u

↑
2). Continuity of u↑

2 and its derivatives implies

k1(p1)
[

b2(p1, h(p1), u
↑
2) − c2(h(p1))

]

= 0.

Arguing exactly as above, one also shows that

u↓
2(p1, h(p1)) = s + β2(p1, h(p1), u

↓
2) + k2(p1)

[

b2(p1, h(p1), u
↓
2) − c2(h(p1))

]

.

For p2 > h(p1), we now have u↓
2(p1, p2) = s + β2(p1, p2, u

↓
2) + b2(p1, h(p1), u

↓
2) − c2(h(p1)). So

continuity of u↓
2 and its derivatives implies [1 − k2(p2)]

[

b2(p1, h(p1), u
↓
2) − c2(h(p1))

]

= 0.

While the previous result applies to all possible switching boundaries, the next lemma uses

necessary and sufficient conditions for optimality to derive constraints on the location of such a

boundary in equilibrium.

Lemma A.3 Let the players use an admissible strategy pair, giving player 2 the payoff function

u2. Fix a belief (p̂1, p̂2) with p̂1 > 0, p̂2 > 0 and 0 < p̂1 + p̂2 < 1, and define the rays R11 =
{

(p1, p2): p̂1 < p1 < p̂1

p̂1+p̂2
, p2 = p̂2

p̂1
p1

}

and R10 =
{

(p1, p2): p̂1 < p1 < 1, p2 = p̂2

1−p̂1
(1 − p1)

}

.

(1) Suppose that both players use the risky arm on R11, and that b2(p1, p2, u2) converges to

c2(p̂2) as (p1, p2) approaches (p̂1, p̂2) along R11. Then player 2 is playing a best response on R11 if

and only if p̂2 ≥ (r+λp̂1)s
(r+λ)g−λs

.

(2) Suppose that player 1 uses the risky arm, and player 2 the safe arm, on R10, and that

b2(p1, p2, u2) converges to c2(p̂2) as (p1, p2) approaches (p̂1, p̂2) along R10. Then player 2 is playing

a best response on R10 if and only if p̂2 ≤ (r+λp̂1)s
(r+λ)g−λs

.
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Proof: (1) Writing γ = p̂2

p̂1
, we have

b2(p1, p2, u2) =

[

γ

1 + γ
f2
11(γ) −

λγ

r
(f2

11)
′(γ)

]

u0([1 + γ]p1)

on R11. By assumption, this converges to c2(p̂2) as p1 ↓ p̂1, so we have

b2(p1, p2, u2) =
c2(p̂2)

u0(p̂1 + p̂2)
u0([1 + γ]p1)

on R11. If p̂2 < pm, and hence c2(p̂2) > 0, convexity of u0([1 + γ]p1) and linearity of c2(γp1) imply

that b2 ≥ c2 on R11 if and only if

c2(p̂2)

u0(p̂1 + p̂2)
u′

0(p̂1 + p̂2)[1 + γ] ≥ −γg.

This condition is easily seen to be equivalent to the inequality p̂2 ≥ (r+λp̂1)s
(r+λ)g−λs

. If p̂2 ≥ pm, then

b2 is constant or increasing in p1 along R11, whereas c2 is decreasing, which implies b2 ≥ c2. We

complete the proof by noting that (r+λp̂1)s
(r+λ)g−λs

< pm for all p̂1 < 1 − pm.

(2) Writing η = p̂2

1−p̂1
, we have

b2(p1, p2, u2) =
λη

r
(g − s) (1 − p1) − η

[

r + λ

r
f2
10(η) +

λ

r
(1 − η) (f2

10)
′(η)

]

u0(p1)

on R10. By assumption, this converges to c2(p̂2) as p1 ↓ p̂1, so we have

b2(p1, p2, u2) =
λη

r
(g − s) (1 − p1) +

[

c2(p̂2) −
λ

r
(g − s) p̂2

]

u0(p1)

u0(p̂1)

on R10. If p̂2 > p∗, we have c2(p̂2) < λ
r

(g − s) p̂2, so convexity of u0 and linearity of c2 imply that

b2 ≤ c2 on R10 if and only if

−
λη

r
(g − s) +

[

c2(p̂2) −
λ

r
(g − s) p̂2

]

u′
0(p̂1)

u0(p̂1)
≤ ηg.

This is easily seen to be equivalent to the inequality p̂2 ≤ (r+λp̂1)s
(r+λ)g−λs

. If p̂2 ≤ p∗, we have c2(p̂2) ≥
λ
r

(g − s) p̂2, so b2 is constant or decreasing in p1 along R10, whereas c2 is increasing, which implies

b2 ≤ c2. We complete the proof by noting that (r+λp̂1)s
(r+λ)g−λs

> p∗ for all p̂1 > 0.

B Admissible Pairs of Markov Strategies

We start with three examples.

Example 1: Suppose that player 1 plays risky at all beliefs p > 1
2 and safe otherwise, while player

2 plays risky at all beliefs p ≤ 1
2 and safe otherwise. Then there is no continuous function t 7→ pt

with p0 = 1
2 that satisfies equation (1) at all t ≥ 0. Suppose to the contrary that there exists such

a solution. If there is a time t such that pt > p0, then continuity implies that there exists a t′ < t

such that 1
2 < pt′ < pt and pτ > 1

2 for all τ in [t′, t]. Yet, k1(pτ ) = 1 and k2(pτ ) = 0 on [t′, t], so (1)
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implies pt < pt′ , a contradiction. The symmetric argument rules out the existence of a time t such

that pt < p0. So the only candidate for a solution to (1) is the constant function pt ≡ 1
2 . With

this function, k1(pt) = 0 and k2(pt) = 1 at all t, but then pt must be increasing by (1), another

contradiction. Starting from the prior belief p0 = 1
2 , therefore, there is no solution to the law of

motion for beliefs consistent with the above strategies, which means that these strategies do not

pin down the players’ actions.

Example 2: Suppose that player 1 plays risky whenever 1
4 ≤ p < 1

2 and safe whenever 1
2 ≤ p ≤ 3

4 ;

his behavior at other beliefs is irrelevant for this example. Player 2 always plays safe. For each

T ∈ [0,∞], the continuous function t 7→ pt given by

pt =







1
2 for 0 ≤ t ≤ T,

e−λ(t−T )

e−λ(t−T )+1
for t > T

then satisfies (1) up to the time T + τ at which it reaches the belief 1
4 . This means that the given

Markov strategies are consistent with a continuum of different solutions to the law of motion of

beliefs in continuous time. If we discretize time with fixed increment ∆t > 0 and approximate (2)

by

pt+∆t − pt = λ [k2(pt) − k1(pt)] pt (1 − pt)∆t

for t = 0,∆t, 2∆t, . . . , however, there is a unique solution with p0 = 1
2 , namely pt = 1

2 for all

t = n∆t. The only continuous-time solution that can be approximated by the discrete-time solution

as ∆t ↓ 0 is the constant function pt ≡
1
2 , corresponding to T = ∞.

Example 3: Suppose that player 1 plays risky and player 2 plays safe whenever 1
4 ≤ p < 1

2 , while

player 1 plays safe and player 2 plays risky whenever 1
2 ≤ p ≤ 3

4 . Behavior at other beliefs is again

irrelevant. Then there are two different solutions to (1) starting in p0 = 1
2 ,

pt =
e−λt

e−λt + 1
and pt =

eλt

eλt + 1
.

Only the latter is consistent with a discrete-time approximation as in Example 2.

In Examples 1 and 2, existence and uniqueness of solutions to the law of motion of beliefs

in a neighborhood of 1
2 can be restored by imposing specific one-sided continuity requirements on

the players’ strategies. In the first example, it suffices to make player 1’s strategy right-continuous

at the belief 1
2 , and in the second example, left-continuous. The appropriate one-sided continuity

requirement in these examples thus depends on the opponent’s strategy. In Example 3, moreover,

no combination of one-sided continuity requirements on the two players’ strategies can ensure

uniqueness. We therefore do not require uniqueness of the law of motion of beliefs in our definition

of admissible strategy pairs. Instead, whenever there are multiple continuous-time solutions, we

shall select the solution that is obtained in the limit of discrete-time approximations.

The following result shows that the problem of non-existence of solutions to the law of motion

of beliefs in continuous time would arise even if we were to restrict the space of strategies to less

complex functions such as cutoff strategies. It also establishes that the set of admissible strategy

pairs is not a product set.
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Lemma B.1 There exist admissible pairs of cutoff strategies (k1, k2) and (k̃1, k̃2) such that (k1, k̃2)

is inadmissible.

Proof: We take k−1
1 (1) = [14 , 1], k−1

2 (1) = [0, 3
4 ], k̃−1

1 (1) = ]23 , 1], and k̃−1
2 (1) = [0, 1

3 [ . Then each

of the pairs (k1, k2) and (k̃1, k̃2) implies a unique solution to the law of motion of beliefs from any

starting point, whereas for (k1, k̃2), non-existence of a solution starting from p0 = 1
3 follows exactly

as in Example 1.

B.1 Admissible Transitions

We say that the transition (k−
1 , k−

2 )—(k1, k2)—(k+
1 , k+

2 ) occurs at the belief p̂ ∈ ]0, 1[ if

limp↑p̂(k1(p), k2(p)) = (k−
1 , k−

2 ), (k1(p̂), k2(p̂)) = (k1, k2), limp↓p̂(k1(p), k2(p)) = (k+
1 , k+

2 ), and at

least one of the sets {k−
1 , k1, k

+
1 } and {k−

2 , k2, k
+
2 } contains more than one element. Given our def-

inition of strategies, each MPE has a finite number of transitions. We call a transition admissible

if it can arise under an admissible pair of Markov strategies.

We can rewrite (1) as

pt =

[

1 +
1 − p0

p0
e−λ

∫ t

0 ∆(pτ ) dτ

]−1

, (B.1)

with ∆(p) = k2(p)−k1(p). For any belief p̂ in the open unit interval, we define ∆(p̂−) = limp↑p̂ ∆(p)

and ∆(p̂+) = limp↓p̂ ∆(p). For the purposes of this section, we shall consider two transitions at

the beliefs p̂ and p̃ as equivalent if ∆(p̂−) = ∆(p̃−), ∆(p̂) = ∆(p̃), and ∆(p̂+) = ∆(p̃+). For

the remainder of this section, we shall only be concerned with the so defined equivalence classes

of transitions which we denote by triplets (∆(p̂−),∆(p̂), ∆(p̂+)). Since ∆(p) ∈ {−1, 0, 1} for all

p ∈ [0, 1], there are 27 such triplets. Two of them, (−1,−1,−1) and (1, 1, 1), do not correspond

to any change in action profile. A third one, (0, 0, 0), corresponds to a transition if and only if

players switch between (1, 1) and (0, 0); the associated dynamics are trivial. A further eight classes,

(1, 0, 1), (1,−1, 1), (1,−1, 0), (0, 1,−1), (0,−1, 1), (−1, 1, 0), (−1, 1,−1) and (−1, 0,−1), are ruled

out by our requirement that both k−1
i (0) and k−1

i (1) be disjoint unions of a finite number of non-

degenerate intervals. For each of the remaining classes, we are interested in solutions to (B.1) with

initial condition p0 = p̂ (the belief at which the transition occurs).

No Solution

Arguing as in Example 1, it is straightforward to establish that there is no solution to (B.1) with

p0 = p̂ for the following classes:

• (1, 1,−1), (1,−1,−1), (1, 1, 0), (0, 1, 0), (0,−1, 0), (0,−1,−1).

A Continuum of Solutions

As in Example 2, there exists a continuum of solutions to (B.1) with p0 = p̂ for each of the following

classes:
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• (0, 0, 1), (−1, 0, 1), (−1, 0, 0).

We select the constant solution pt ≡ p̂ because this is the one obtained as the limit of any discrete-

time approximation.

Exactly Two Solutions

The logic of Example 3 applies to both the following classes:

• (−1, 1, 1) and (−1,−1, 1).

Consistency with a discrete-time approximation leads us to select the solution pt =
[

1 + 1−p̂
p̂

e−λt
]−1

for (−1, 1, 1) and the solution pt =
[

1 + 1−p̂
p̂

eλt
]−1

for (−1,−1, 1).

A Unique Solution

Each of the remaining five classes implies a unique continuous-time solution to the law of motion

of beliefs (equal to the limit of any discrete-time approximation) in a neighborhood of p̂:

• (1, 0, 0), (0, 1, 1), (−1,−1, 0), (0, 0,−1), (1, 0,−1).

Admissible Classes and Transitions

The following table lists the admissible classes and the transitions that they represent.

Class Transitions

(1, 0, 0) (0, 1)—(1, 1)—(1, 1), (0, 1)—(0, 0)—(0, 0)

(1, 0,−1) (0, 1)—(0, 0)—(1, 0), (0, 1)—(1, 1)—(1, 0)

(0, 1, 1) (0, 0)—(0, 1)—(0, 1), (1, 1)—(0, 1)—(0, 1)

(0, 0, 1) (0, 0)—(0, 0)—(0, 1), (1, 1)—(1, 1)—(0, 1)

(0, 0, 0) (0, 0)—(0, 0)—(1, 1), (0, 0)—(1, 1)—(1, 1),

(1, 1)—(0, 0)—(0, 0), (1, 1)—(1, 1)—(0, 0)

(0, 0,−1) (0, 0)—(0, 0)—(1, 0), (1, 1)—(1, 1)—(1, 0)

(−1, 1, 1) (1, 0)—(0, 1)—(0, 1)

(−1, 0, 1) (1, 0)—(0, 0)—(0, 1), (1, 0)—(1, 1)—(0, 1)

(−1, 0, 0) (1, 0)—(0, 0)—(0, 0), (1, 0)—(1, 1)—(1, 1)

(−1,−1, 1) (1, 0)—(1, 0)—(0, 1)

(−1,−1, 0) (1, 0)—(1, 0)—(0, 0), (1, 0)—(1, 0)—(1, 1)

Table 1: Admissible transitions

This table yields the following characterization of admissible strategy pairs.

45



Lemma B.2 A pair of Markov strategies (k1, k2) is admissible if and only if all its finitely many

transitions appear in Table 1. Starting from a prior belief p0 equal to a transition point p̂, the evolu-

tion of beliefs is fully determined by ∆(p̂) = k2(p̂)−k1(p̂): pt ≡ p̂ if ∆(p̂) = 0; pt =
[

1 + 1−p̂
p̂

e−λt
]−1

if ∆(p̂) = 1; and pt =
[

1 + 1−p̂
p̂

eλt
]−1

if ∆(p̂) = −1. These solutions are valid as long as there is

no breakthrough on a risky arm and no other transition is reached.

Remarks

The six classes that do not admit a solution in continuous time would either lead to a short “blip”

in discrete time before reaching an absorbing state, as is the case with the classes (1, 1, 0), (0, 1, 0),

(0,−1, 0) and (0,−1,−1)), or to an oscillating solution, which, as we reduce period length, leads

to stasis in the limit, as is the case with the classes (1, 1,−1) and (1,−1,−1). While we rule these

classes out, the limits of their discrete-time solutions are still available through other admissible

strategy pairs. The continuous-time limit of the discrete-time solutions associated with the class

(1, 1, 0), for instance, is captured by the admissible class (1, 0, 0). Similarly, the limit of the discrete-

time oscillations implied by the classes (1, 1,−1) or (1,−1,−1) is captured by the admissible class

(1, 0,−1).

Each inadmissible strategy pair has but a finite number of inadmissible transitions. Each of

these can be made admissible by changing one player’s action at the belief where the transition

occurs. This means that for each inadmissible strategy pair (k1, k2), there exists an admissible pair

(k̃1, k̃2) such that k̃i differs from ki at finitely many points.

B.2 Locating Admissible Transitions

We first consider those admissible transitions in which one player’s action remains fixed.

Lemma B.3 The following statements hold for all Markov perfect equilibria:

(i) (0, 0)—(0, 0)—(1, 0) can only occur at the belief p∗; (1, 0)—(1, 0)—(0, 0) and (1, 0)—(0, 0)—

(0, 0) can only occur if g
s

< 2r+λ
r+λ

and only at beliefs in [1 − p∗, p∗[ .

(ii) (0, 1)—(0, 0)—(0, 0) can only occur at the belief 1 − p∗; (0, 0)—(0, 1)—(0, 1) and (0, 0)—

(0, 0)—(0, 1) can only occur if g
s

< 2r+λ
r+λ

and only at beliefs in ]1 − p∗, p∗].

(iii) (0, 1)—(1, 1)—(1, 1) can only occur at the belief pm; (1, 1)—(0, 1)—(0, 1) and (1, 1)—(1, 1)—

(0, 1) can only occur if g
s

> 2 and only at beliefs in ]pm, 1 − pm].

(iv) (1, 1)—(1, 1)—(1, 0) can only occur at the belief 1 − pm; (1, 0)—(1, 0)—(1, 1) and (1, 0)—

(1, 1)—(1, 1) can only occur if g
s

> 2 and only at beliefs in [pm, 1 − pm[ .

Proof: Suppose the transition (0, 0)—(0, 0)—(1, 0) occurs at p̂. Starting to the immediate right

of p̂, the dynamics of beliefs in the absence of a breakthrough converge to p̂, so u1 is continuous at

this belief. If p̂ > p∗, then u1 = s implies b1 > c1 to the immediate left of p̂ , so player 1 would
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deviate to playing risky there. If p̂ < p∗, then the solution to the ODE u1 = s + b1 − c1 with

u1(p̂) = s has u′
1(p̂+) < 0, so player 1 would deviate to playing safe to the immediate right of p̂.

So we must have p̂ = p∗.

Now, suppose the transition (1, 0)—(1, 0)—(0, 0) occurs at p̂. If p̂ ≥ p∗, then u1 = s implies

b1 > c1 to the immediate right of p̂ , so player 1 would deviate to playing risky there. If p̂ < 1− p∗,

then u2 = s implies b2 > c2 to the immediate right of p̂ , so player 2 would deviate to playing risky

there. So we must have 1 − p∗ ≤ p̂ < p∗, which requires p∗ > 1
2 , that is, g

s
< 2r+λ

r+λ
.

The same arguments apply to the transition (1, 0)—(0, 0)—(0, 0). This proves part (i). Part

(ii) is the mirror image of part (i) with the players’ roles reversed.

As to part (iii), suppose the transition (0, 1)—(1, 1)—(1, 1) occurs at p̂. Starting to the

immediate left of p̂, the dynamics of beliefs in the absence of a breakthrough converge to p̂, so

u1 is continuous at this belief. If p̂ < pm, then u1 = w1 implies b1 = 0 < c1 to the immediate right

of p̂, so player 1 would deviate to playing safe there. If p̂ > pm, then the solution to the ODE

u1 = s + β1 with u1(p̂) = w1(p̂) has u′
1(p̂−) > w′

1(p̂−), so player 1 would deviate to playing risky

to the immediate left of p̂. So we must have p̂ = pm (with smooth pasting).

Next, suppose the transition (1, 1)—(0, 1)—(0, 1) occurs at p̂. If p̂ ≤ pm, then u1 = w1 implies

b1 = 0 < c1 to the immediate left of p̂ , so player 1 would deviate to playing safe there. If p̂ > 1−pm,

then u2 = w2 implies b2 = 0 < c2 to the immediate left of p̂ , so player 2 would deviate to playing

safe there. So we must have pm < p̂ ≤ 1 − pm, which requires pm < 1
2 , that is, g

s
> 2.

The same arguments apply to the transition (1, 1)—(1, 1)—(0, 1). This proves part (iii) and,

by symmetry, part (iv).

Next, we pin down the conditions under which the admissible transitions in the classes

(1, 0,−1) and (−1, 0, 1) may occur in equilibrium.

Lemma B.4 The following statements hold for all Markov perfect equilibria. (i) The transi-

tion (0, 1)—(0, 0)—(1, 0) can only occur if g
s

= 2r+λ
r+λ

and only at belief 1
2 . (ii) The transition

(0, 1)—(1, 1)—(1, 0) can only occur if 2r+λ
r+λ

≤ g
s

≤ 2 and only at beliefs in [max{1 − pm, p∗},

min{pm, 1 − p∗}]. (iii) The transition (1, 0)—(0, 0)—(0, 1) can only occur if g
s
≤ 2r+λ

r+λ
and only at

beliefs in [1 − p∗, p∗]. (iv) The transition (1, 0)—(1, 1)—(0, 1) can only occur if g
s
≥ 2 and only at

beliefs in [pm, 1 − pm].

Proof: Suppose the transition (0, 1)—(0, 0)—(1, 0) occurs at belief p̂. As the dynamics of beliefs

are convergent, the players’ payoff functions are continuous at p̂ with u1(p̂) = u2(p̂) = s. If p̂ < p∗,

then the solution to the ODE u1 = s + b1 − c1 with u1(p̂) = s has u′
1(p̂+) < 0, so player 1 would

deviate to playing safe to the immediate right of p̂. So we must have p̂ ≥ p∗. Immediately to the

left of p̂, u1 ≥ w1 by Lemma A.1. If p̂ > p∗, continuity implies u1(p̂) ≥ w1(p̂) > s, which is a

contradiction. This shows that p̂ = p∗. The analogous steps for player 2 establish that p̂ = 1 − p∗.

So we must have p∗ = 1 − p∗ = 1
2 , which requires g

s
= 2r+λ

r+λ
. This proves statement (i).

Suppose now that the transition (0, 1)—(1, 1)—(1, 0) occurs at belief p̂. As the dynamics of

beliefs are convergent, the players’ payoff functions are continuous at p̂ with ui(p̂) = wi(p̂). If

47



p̂ > pm, then the solution to the ODE u1 = s + β1 with u1(p̂) = w1(p̂) has u′
1(p̂−) > w′

1(p̂), so

player 1 would deviate to playing risky to the immediate left of p̂. If p̂ < p∗, then w1(p̂) < s and,

by continuity, u1 < s to the immediate right of p̂, so player 1 would deviate to playing safe there.

This shows that p∗ ≤ p̂ ≤ pm. The analogous steps for player 2 establish that 1− pm ≤ p̂ ≤ 1− p∗.

So we must have p∗ ≤ 1 − p∗, which requires p∗ ≤ 1
2 , that is, g

s
≥ 2r+λ

r+λ
. On the other hand, we

must have 1 − pm ≤ pm, which requires pm > 1
2 , that is, g

s
< 2. This proves statement (ii).

Next, suppose the transition (1, 0)—(0, 0)—(0, 1) occurs at belief p̂. This implies u1(p̂) =

u2(p̂) = s. Starting close to p̂, the dynamics of beliefs in the absence of a breakthrough are

divergent, so u1 and u2 need not be continuous at this belief. We can establish one-sided continuity,

though. If u1(p̂−) > s, player 1 would deviate to playing risky at p̂ (note that this deviation yields

an admissible transition again). If u1(p̂−) < s, player 1 would deviate to playing safe immediately

to the left of p̂. So u1 must be left-continuous at this belief. By symmetry, u2 must be right-

continuous. Now, if p̂ > p∗, then the solution to the ODE u1 = s + b1 − c1 with u1(p̂) = s has

u′
1(p̂−) > 0, so player 1 would deviate to playing safe to the immediate left of p̂. This implies

p̂ ≤ p∗. The analogous argument for player 2 yields p̂ ≥ 1 − p∗. So we must have p∗ ≥ 1
2 , that is,

g
s
≤ 2r+λ

r+λ
. This proves statement (iii).

Finally, suppose the transition (1, 0)—(1, 1)—(0, 1) occurs at belief p̂, so that u1(p̂) = w1(p̂)

and u2(p̂) = w2(p̂). If we had u1(p̂+) > w1(p̂), player 1 would deviate to playing safe at p̂ (yielding

another admissible transition again), so we must have u1(p̂+) ≤ w1(p̂). But play of (0, 1) to the

immediate right of p̂ requires u1 ≥ w1 there by Lemma A.1, hence u1(p̂+) ≤ w1(p̂). So u1 is

right-continuous at p̂, and u2 left-continuous by symmetry. Now, if p̂ < pm, then the solution to

the ODE u1 = s+β1 with u1(p̂) = w1(p̂) has u′
1(p̂+) < w′

1(p̂), so player 1 would deviate to playing

risky to the immediate right of p̂. This implies p̂ ≥ pm. The analogous argument for player 2 yields

p̂ ≤ 1 − pm. So we must have pm ≤ 1
2 , that is, g

s
≥ 2. This proves statement (iv).

Finally, we show that transitions in the class (0, 0, 0) cannot arise in equilibrium.

Lemma B.5 The transitions (0, 0)—(0, 0)—(1, 1), (0, 0)—(1, 1)—(1, 1), (1, 1)—(0, 0)—(0, 0) and

(1, 1)—(1, 1)—(0, 0) do not occur in any Markov perfect equilibrium.

Proof: By symmetry, it is enough to establish the claim for the transitions (1, 1)—(0, 0)—(0, 0)

and (1, 1)—(1, 1)—(0, 0). Suppose that the former occurs at p̂, so that u1(p̂) = w1(p̂) and u2(p̂) =

w2(p̂). If p̂ > p∗, then w1(p̂) > s and player 1 has an incentive to deviate to playing risky at

p̂ (which yields an admissible transition again). If p̂ < p∗, then w1(p̂) < s and player 1 has an

incentive to deviate to playing safe immediately to the left of p̂. So we must have p̂ = p∗. But then

player 1 has an incentive to deviate to playing risky immediately to the right of p̂. An analogous

argument rules out the transition (1, 1)—(1, 1)—(0, 0).

The only admissible transitions that Lemmas B.3–B.5 do not cover are (1, 0)—(0, 1)—(0, 1)

and (1, 0)—(1, 0)—(0, 1). We shall see in the proofs of Propositions 4–7 that they can only occur

in those equilibria for intermediate stakes that involve jump discontinuities in the players’ value

functions.

48



C Proofs

Proof of Proposition 1

The policy (k1, k2) implies a well-defined law of motion for the posterior belief. The planner’s payoff

function from this policy is

u(p) =















1
2

[

s + (1 − p)g + (s − p∗g) u0(1−p)
u0(1−p∗)

]

if p ≤ 1 − p∗,

s if 1 − p∗ ≤ p ≤ p∗,
1
2

[

s + pg + (s − p∗g) u0(p)
u0(p∗)

]

if p ≥ p∗.

This function satisfies value matching and smooth pasting at p∗ and 1− p∗, hence is of class C1. It

is decreasing on [0, 1− p∗] and increasing on [p∗, 1]. Moreover, u = s + B2 −
c2
2 on [0, 1− p∗], u = s

on [1 − p∗, p∗], and u = s + B1 −
c1
2 on [p∗, 1] (we drop the arguments for simplicity).

To show that u and the policy (k1, k2) solve the planner’s Bellman equation, and hence that

(k1, k2) is optimal, it is enough to establish that B1 < c1
2 and B2 > c2

2 on ]0, 1 − p∗[ , B1 < c1
2

and B2 < c2
2 on ]1 − p∗, p∗[ , and B1 > c1

2 and B2 < c2
2 on ]p∗, 1[ . Consider this last interval.

There, u = s + B1 − c1
2 and u > s (by monotonicity of u) immediately imply B1 > c1

2 . Next,

B2 = λ
r
[g+s

2 −u]−B1 = λ
r
[g+s

2 −u]−u+ s− c1
2 ; this is smaller than c2

2 if and only if u > u11, which

holds here since u > s and s > u11. The other two intervals are treated in a similar way.

Proof of Proposition 3

Suppose k−1
2 (1) = [0, p̂2[ with p̂2 ≤ p∗. Then, player 1’s payoff from the strategy k−1

1 (1) = ]p∗, 1] is

his single-agent payoff u1 = u∗
1, that is, u1 = s on [0, p∗] and u1 = s+b1−c1 on [p∗, 1]. To show that

u1 and the policy k1 solve player 1’s Bellman equation given player 2’s strategy k2, and hence that

k1 is a best response to k2, it is enough to establish that b1 < c1 on ]0, p∗[ and b1 > c1 on ]p∗, 1[ . On

this last interval, u1 = s+b1−c1 and u1 > s (by monotonicity of u1 = u∗
1) immediately imply b1 > c1.

On ]0, p∗[ , we have u1 = s and u′
1 = 0, hence b1 − c1 = λ

r
p(g − s)− (s− pg) = (r+λ)g−λs

r
p− s < 0.

Next, suppose k−1
2 (1) = [0, p̂2] with p̂2 ≥ pm. Then, player 1’s payoff from the strategy

k−1
1 (1) = [pm, 1] is given by

u1(p) =















s + (1 − pm) λ
r+λ

s u0(1−p)
u0(1−pm) if p ≤ pm,

pg + (1 − p) λ
r+λ

s if pm ≤ p ≤ p̂2,

pg + (1 − p̂2)
λ

r+λ
s u0(p)

u0(p̂2) if p ≥ p̂2.

We note that u1 is of class C1 except at p̂2, where its first derivative jumps downward; moreover,

u1 is increasing and satisfies u1 = s + β1 on [0, pm[, u1 = s + β1 + b1 − c1 = w1 on [pm, p̂2], and

u1 = s + b1 − c1 on ]p̂2, 1]. On ]0, pm[ , it is easily verified that u1 > w1, so Lemma A.1 implies

b1 < c1. At pm, we have b1 = 0 = c1. On ]pm, p̂2[ , we have b1 = 0 > c1. On ]p̂2, 1[ , u1 = s+ b1− c1

and u1 > s (by monotonicity of u1) also imply b1 > c1. To complete the proof that k1 is a best

response to k2, it suffices to note that there are no admissible strategy pairs (k̃1, k2) for which
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k̃1(p̂2) = 0. In fact, any strategy k̃1 with k̃1(p̂2) = 0 would give rise to a transition in a class

(∆(p̂2−), 1, ∆(p̂2+)) with ∆(p̂2+) ∈ {−1, 0}, and none of these is admissible.

Finally, suppose k−1
2 (1) = [0, p̂2] with p∗ < p̂2 ≤ pm. Then player 1’s payoff from playing

k−1
1 (1) = [p̂2, 1] is given by

u1(p) =







s +
[

p̂2g + (1 − p̂2)
λ

r+λ
s − s

]

u0(1−p)
u0(1−p̂2) if p ≤ p̂2,

pg + (1 − p̂2)
λ

r+λ
s u0(p)

u0(p̂2) if p ≥ p̂2.

The function u1 is of class C1 except at p̂2, where its derivative jumps downward; moreover, it is

increasing and satisfies u1 = s + β1 on [0, p̂2[, u1(p̂2) = w1(p̂2) and u1 = s + b1 − c1 on ]p̂2, 1]. As

u1 > w1 on [0, p̂2[, we have b1 < c1 on this interval by Lemma A.1. On ]p̂2, 1], we have u1 > s,

hence b1 > c1. At the belief p̂2 itself, the same argument as in the previous paragraph establishes

that there are no admissible strategy pairs (k̃1, k2) for which k̃1(p̂2) = 0.

Analogous arguments apply to player 2.

Proof of Proposition 4

It remains to prove uniqueness of the equilibrium for g
s

< 2r+λ
r+λ

. Of the transitions covered by

Lemmas B.3–B.4, the following nine could occur: (0, 0)—(0, 0)—(1, 0) at p∗; (1, 0)—(1, 0)—(0, 0)

and (1, 0)—(0, 0)—(0, 0) in [1 − p∗, p∗[ ; (0, 1)—(0, 0)—(0, 0) at 1 − p∗; (0, 0)—(0, 1)—(0, 1) and

(0, 0)—(0, 0)—(0, 1) in ]1 − p∗, p∗]; (0, 1)—(1, 1)—(1, 1) at pm; (1, 1)—(1, 1)—(1, 0) at 1 − pm;

(1, 0)—(0, 0)—(0, 1) in [1 − p∗, p∗]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—

(1, 0)—(0, 1) could potentially arise. Moving from left to right along the unit interval, we consider

possible sequences of transitions leading from (k1(0), k2(0)) = (0, 1) to (k1(1), k2(1)) = (1, 0).

Players have two ways to transition out of (k1(0), k2(0)) = (0, 1): either into (1, 1) at pm, or

into (0, 0) at 1 − p∗. The former is incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible

transition out of (1, 1) to the right of pm. So players have to transition from (0, 1) to (0, 0) at 1−p∗.

The available transitions out of (0, 0) lead to (0, 1) or (1, 0). The only transition out of (0, 1)

available to the right of 1−p∗ would lead to (1, 1) at pm, which we have already ruled out. Therefore,

players must transition out of (0, 0) into (1, 0) at p∗.

To the right of p∗, the only available transitions out of (1, 0) lead into (0, 1), and the only

available transition out of (0, 1) leads into (1, 1), which we have ruled out before. So there cannot

be any further transition to the right of p∗.

Proof of Proposition 5

For uniqueness when g
s
≥ 2, we note that of the transitions covered in Lemmas B.3–B.4, the

following nine might occur: (0, 0)—(0, 0)—(1, 0) at p∗; (0, 1)—(0, 0)—(0, 0) at 1 − p∗; (0, 1)—

(1, 1)—(1, 1) at pm; (1, 1)—(0, 1)—(0, 1) and (1, 1)—(1, 1)—(0, 1) in ]pm, 1 − pm]; (1, 1)—(1, 1)—

(1, 0) at 1− pm; (1, 0)—(1, 0)—(1, 1) and (1, 0)—(1, 1)—(1, 1) in [pm, 1− pm[ ; (1, 0)—(1, 1)—(0, 1)

in [pm, 1 − pm]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—(1, 0)—(0, 1) could

potentially arise.
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Players have two ways to transition out of (k1(0), k2(0)) = (0, 1): either into (0, 0) at 1 − p∗,

or into (1, 1) at pm. The former is incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible

transition out of (0, 0) to the right of 1 − p∗. Therefore, players have to transition from (0, 1) to

(1, 1) at pm.

The available transitions out of (1, 1) lead to (0, 1) or (1, 0). The only transition out of (0, 1)

available to the right of pm would lead to (0, 0) at 1 − p∗, which we have already ruled out. So

players must transition out of (1, 1) into (1, 0) at 1 − pm.

To the right of 1− pm, the only available transitions out of (1, 0) lead into (0, 1), and the only

available transition out of (0, 1) leads into (0, 0), which we have ruled out before. So there cannot

be any further transition to the right of 1 − pm.

Proof of Proposition 7

We fix one of the beliefs p̃(ℓ) and introduce two auxiliary functions. Let y : [p̂(ℓ−1), 1] → [s, g] be

the unique solution of the ODE y(p) = s + b1(p, y)− c1(p) with initial value y(p̂(ℓ−1)) = w1(p̂(ℓ−1)),

and z : [0, p̂(ℓ)] → [s, g] the unique solution of the ODE z(p) = s + β1(p, z) with terminal value

z(p̂(ℓ)) = w1(p̂(ℓ)). As y(p) = pg + Cu0(p) and z(p) = s + Du0(1 − p) for some positive constants

C and D, both functions are strictly increasing and strictly convex. As y(1) = g = w1(1) and

z(0) = s > w1(0), convexity implies y < w1 on ]p̂(ℓ−1), 1[ and z > w1 on ]0, p̂(ℓ)[ . Player

1’s payoff function satisfies u1 = y on [p̂(ℓ−1), p̃(ℓ)[ and u1 = z on ]p̃(ℓ), p̂(ℓ)]. This implies that

u1(p̃(ℓ)−) = y(p̃(ℓ)) < w1(p̃(ℓ)) < z(p̃(ℓ)) = u1(p̃(ℓ)+), so u1 has a jump discontinuity at p̃(ℓ).

If the action profile played at p̃(ℓ) is (0, 1), then u1(p̃(ℓ)) = z(p̃(ℓ)) > w1(p̃(ℓ)), and player 1

has no incentive to deviate since the action profile (1, 1) would give him the payoff w1(p̃(ℓ)). If the

action profile played at p̃(ℓ) is (1, 0), then u1(p̃(ℓ)) = y(p̃(ℓ)) > s, and player 1 has no incentive to

deviate since the action profile (0, 0) would give him the payoff s. In either case, player 1 thus plays

a best response.

Analogous arguments apply to player 2. This establishes that the strategy pairs described in

the proposition constitute Markov perfect equilibria and that both players’ payoffs jump at each of

the beliefs p̃(ℓ).

To see that there are no other equilibria, we note that of the transitions covered by Lemmas

B.3–B.4 the following five could occur: (0, 0)—(0, 0)—(1, 0) at p∗; (0, 1)—(0, 0)—(0, 0) at 1 − p∗;

(0, 1)—(1, 1)—(1, 1) at pm; (1, 1)—(1, 1)—(1, 0) at 1 − pm; (0, 1)—(1, 1)—(1, 0) in I = [max{1 −

pm, p∗},min{pm, 1−p∗}]. In addition, the transitions (1, 0)—(0, 1)—(0, 1) and (1, 0)—(1, 0)—(0, 1)

could potentially arise.

Players have three ways to transition out of (k1(0), k2(0)) = (0, 1): either into (0, 0) at 1− p∗,

or into (1, 1) at pm, or into (1, 0) at some belief in I. The transition into (0, 0) is incompatible

with (k1(1), k2(1)) = (1, 0) as there is no possible transition out of (0, 0) to the right of 1 − p∗.

The transition into (1, 1) is also incompatible with (k1(1), k2(1)) = (1, 0) as there is no possible

transition out of (1, 1) to the right of pm. Therefore, there must be a belief p̂min ∈ I such that the

action profile (0, 1) is played on [0, p̂min[ and the transition (0, 1)—(1, 1)—(1, 0) occurs at p̂min.
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By the same sequence of arguments started at (k1(1), k2(1)) = (1, 0), there must also exist a

belief p̂max ≥ p̂min in I such that the action profile (1, 0) is played on ]p̂max, 1] and the transition

(0, 1)—(1, 1)—(1, 0) occurs at p̂max. If p̂min < p̂max, finally, any two “adjacent” transitions (0, 1)—

(1, 1)—(1, 0) must be separated by one transition (1, 0)—(0, 1)—(0, 1) or (1, 0)—(1, 0)—(0, 1).

Proof of Proposition 9

When stakes are high, the expected delay will be maximal for p0 = 1 − p because this yields the

largest possible interval of beliefs on which equilibrium play differs from the efficient solution, and at

the same time minimizes the expected time until uncertainty is resolved in the efficient solution. At

the belief 1− p, the planner will play the good risky arm for sure until it produces a breakthrough;

the corresponding expected time to breakthrough is t̂ = 1
λ
. The expected equilibrium time to

breakthrough is t̃ = (1 − p)t̂ + p(δ + t̂) = t̂ + pδ, where δ is the time needed to slide from 1 − p

to 1 − pm, conditional on risky arm 2 being good. Bayes’ rule for the action profile (1, 0) implies

δ = 1
λ

[

ln 1−p
p

− ln 1−pm

pm

]

. Writing x = g
s
, we therefore have

t̃ − t̂

t̂
= p

[

ln
1 − p

p
− ln

1 − pm

pm

]

=
r + λ

(r + λ)x + λ
ln

(

1 +
λ

r + λ

1

x − 1

)

.

As this decreases in x, an upper bound on the relative delay for high stakes is obtained by setting

x = 2, so that
t̃ − t̂

t̂
≤

r + λ

2r + 3λ
ln

(

1 +
λ

r + λ

)

≤
λ

2r + 3λ
<

1

3

by the fact that ln(1 + y) ≤ y for all y ≥ 0.

Turning to intermediate stakes, we may assume that pm < 1 − p, for otherwise there exists

an equilibrium that achieves the efficient outcome (see the discussion leading up to Proposition 10

in Section 4.5). We now calculate the delay that arises for p0 = 1 − p in the equilibrium in cutoff

strategies defined by p̂ = pm, that is, the worst possible delay in the best possible equilibrium.

Proceeding as above, we find

t̃ − t̂

t̂
= p

[

ln
1 − p

p
− ln

pm

1 − pm

]

=
r + λ

(r + λ)x + λ
ln

(

x −
r

r + λ

)

.

Using the fact that ln z ≤ z − 1 for all z > 0, we obtain

t̃ − t̂

t̂
≤

r + λ

(r + λ)x + λ

(

x −
2r + λ

r + λ

)

.

As the right-hand side increases in x, and x < 2 for intermediate stakes, this yields the same upper

bound as for high stakes.

Proof of Proposition 10

For high stakes, the players’ average equilibrium payoff function u is strictly below the planner’s

value function on ]1 − pm, 1[ . To the right of 1 − p̄, the two functions differ only with respect to
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the constant that premultiplies the solution u0(p) of the homogenous ODE for the action profile

(1, 0); in particular, both functions and their difference are monotonic there. The minimum of the

average payoff is therefore attained at some belief p̆ strictly in between 1 − pm and 1 − p̄, and the

quotient (u(p̆) − s)/(u11 − s) is the minimum over all beliefs of our relative welfare measure.

For p ≥ 1 − pm, we have u(p) = (s + pg)/2 + Cu0(p) with some positive constant C, and so

u′(p̆) =
g

2
− C

µ + p̆

p̆(1 − p̆)
u0(p̆) = 0,

where µ = r
λ
. Solving for Cu0(p̆), we obtain

u(p̆) =
s + p̆g

2
+

p̆(1 − p̆)

µ + p̆

g

2
,

which is easily seen to be increasing in p̆. As p̆ > 1 − pm, we thus have

u(p̆) >
s + (1 − pm)g

2
+

pm(1 − pm)

µ + 1 − pm

g

2
=

g

2
+

(g − s)s

2[(µ + 1)g − s]

and, with x = g
s
≥ 2 denoting the stakes involved,

u(p̆) − s

u11 − s
>

x + x−1
(µ+1)x−1 − 2

x + 1
µ+1 − 2

= 1 −
µ

(µ + 1)2(x − 1)2 − µ2
≥ 1 −

µ

(µ + 1)2 − µ2
.

The last term on the right-hand side decreases in µ and approaches the limit 1
2 as µ → ∞.

For intermediate stakes, we only need to cover the case where pm < 1− p, so that the efficient

outcome cannot be achieved for initial beliefs below 1−pm or above pm. By symmetry, it is enough

to consider the latter scenario. Given a prior above pm, the players’ average payoff function u in

the MPE in cutoff strategies defined by p̂ = pm is strictly below the planner’s value function on

]pm, 1[ . Arguing as above and exploiting the fact that p̆ > pm, we now find

u(p̆) >
s + pmg

2
+

pm(1 − pm)

µ + pm

g

2
= s +

(g − s)s

2(µg + s)

and, writing x = g
s

again,

u(p̆) − s

u11 − s
>

x−1
µx+1

x + 1
µ+1 − 2

.

As pm < 1 − p, we have µx + 1 < (µ + 1)(x − 1)x, and so

u(p̆) − s

u11 − s
>

1

[(µ + 1)(x − 2) + 1]x
.

The right-hand side exceeds 1
2 since 2µ+1

µ+1 < x < 2, and hence 0 < (µ + 1)(x − 2) + 1 < 1, for

intermediate stakes.
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Proof of Proposition 11

Low stakes. Let g
s
≤ 2r+λ

r+λ
, so that p∗ ≥ 1

2 . If players behave as described in the main text,

their payoff functions coincide with the respective single-agent value functions, and either player is

trivially playing a best response.

Intermediate stakes. Let 2r+λ
r+λ

< g
s
≤ 2, so that p∗ < 1

2 ≤ pm. It suffices to construct the players’

payoff functions and verify the mutual best-response property on the set of beliefs where p1 ≥ p2.

At all such beliefs with p1 ≤ p∗, we trivially have u1 = u2 = s, and both players are clearly playing

a best response there.

Starting from a prior belief in the interior of the triangle with corners (p∗, 0), (p∗, p∗) and

(1, 0), the action profile (1, 0) makes posterior beliefs move up a ray p2 = x (1 − p1) with x ≤ p∗

1−p∗

until either player 1 experiences a breakthrough or all experimentation stops at p1 = p∗. So player

2 will never use his risky arm and earns a sure payoff of s; as p2 < p∗, he is playing a best response.

Player 1 achieves a payoff equal to the single-agent optimum, hence is playing a best response as

well.

For p ∈ ]p∗, 1
2 ], we have

u1(p, p) = u2(p, p) = p

[

g +
λ

r + λ
s

]

+ C∗u0(2p),

where

C∗u0(2p
∗) = s − p∗

[

g +
λ

r + λ
s

]

=
λ

r
p∗

[

g −
2r + λ

r + λ
s

]

> 0.

This implies that the above payoff is a strictly convex function of p. As p tends to p∗ from above,

moreover, this payoff reaches the level s with a slope of zero. As a consequence, it is increasing in

p on ]p∗, 1
2 ] and exceeds s there.

For p1 > max{p∗, p2}, we write p2 = x (1 − p1) with x > p∗

1−p∗
. We recall the general form

of the players’ payoff functions from Appendix A.3 and determine f i
10(x) by value matching along

the diagonal line segment where the action profile (1, 1) is played. For given x, the corresponding

point on this line segment is ( x
x+1 , x

x+1), and the players’ common payoff at this point is

x

x + 1

[

g +
λ

r + λ
s

]

+ C∗u0

(

2x

x + 1

)

.

Equating this with player 1’s payoff from the action profile (1, 0) at the belief ( x
x+1 , x

x+1),

x

x + 1
g + f1

10(x)u0

(

x

x + 1

)

,

yields

f1
10(x) =

{

x

x + 1

λ

r + λ
s + C∗u0

(

2x

x + 1

)}/

u0

(

x

x + 1

)

=
λ

r + λ
s x

r+λ
λ + C∗2−

r
λ (1 − x)

r+λ
λ .

For player 2, we find

f2
10(x) =

(

x

[

g −
r

r + λ
s

]

− s

)

x
r
λ + C∗2−

r
λ (1 − x)

r+λ
λ .
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To verify that player 1 is playing a best response when p1 > max{p∗, p2}, we note that

u1 = s + b1 − c1, so we only need to prove that u1 > s. As u1 > s when p1 = p2 > p∗, it suffices to

show that p1g + f1
10(x)u0(p1) is increasing in p1 for p1 > x

x+1 . By convexity of u0, it is enough to

show that g + f1
10(x)u′

0(p1) ≥ 0 at p1 = x
x+1 or, equivalently,

{

λ

r + λ
s + C∗ x + 1

x
u0

(

2x

x + 1

)}(

r

λ
+

r + λ

λ
x

)

≤ g.

As 2p∗ < 2x
x+1 ≤ 1 and u0(1) = 0, convexity of u0 implies

u0

(

2x

x + 1

)

≤
1 − 2x

x+1

1 − 2p∗
u0(2p∗).

Using the definition of C∗ and the fact that 1 − 2p∗ = r+λ
rs

p∗
(

g − 2r+λ
r+λ

s
)

, we thus find that it is

enough to show that
(

r

r + λ

1

x
+ 1

)

s ≤ g.

The left-hand side of this inequality is obviously decreasing in x, and is easily seen to assume the

value g at x = p∗

1−p∗
= r

r+λ
s

g−s
. The inequality thus holds for all x in the relevant range. This

completes the proof that player 1 is playing a best response at all beliefs such that p1 > max{p∗, p2}.

To establish that player 2 is also playing a best response at these beliefs, we can invoke Lemmas

A.2 and A.3. The former implies that b2 tends to c2 as we approach the diagonal p2 = p1 from

below, while part (2) of the latter implies that b2 < c2 below the diagonal. In fact, p2 = p1 implies

p2 ≤ (r+λp1)s
(r+λ)g−λs

for intermediate stakes.

Finally, given player 2’s strategy, admissibility rules out any strategy k1 for player 1 such

that k1(p, p) < 1 for some p ∈ ]p∗, 1
2 ]. To see this, we note that any such strategy would imply

ṗ2 = λp[pk1(p, p) + p − 1] < 0 in the point (p, p). For p2 < p1, however, k2(p1, p2) = 0 implies

ṗ2 = λp2p1k1(p1, p2) ≥ 0. Starting in (p, p), therefore, there is no solution to the law of motion for

beliefs unless k1(p, p) = 1. The symmetric argument applies to player 2.

High stakes. Let g
s

> 2, so that pm < 1
2 . At all beliefs such that p2 ≤ p1 ≤ p̃ or p2 ≤ p̃

1−p̃
p2 ≤ p̃,

the players’ actions and payoffs coincide with those in the MPE for intermediate stakes, so both

players are playing a best response there.

For p1 > p̃ and p2 > p̃
1−p̃

p1, Lemma A.2 implies that b2 tends to c2 as we approach player

2’s switching boundary, so Lemma A.3 implies that b2 < c2 whenever player 1 alone is playing

risky, and b2 > c2 whenever both players play risky. By symmetry, this also means that b1 > c1

whenever both players play risky. The verification of the best-response property is thus complete

if we can show that player 1 plays a best response when p1 > p̃ and p̃
1−p̃

p1 < p2 < (r+λp1)s
(r+λ)g−s

. As

u1 = s + b1 − c1 at these beliefs, we only need to show that u1 > s. This step is similar to the

intermediate-stakes case and therefore omitted.
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Chapter 2: Strategic Learning in Teams∗

Nicolas Klein†

Abstract

This paper analyzes a two-player game of strategic experimentation with three-armed

exponential bandits in continuous time. Players face replica bandits, with one arm

that is safe in that it generates a known payoff, whereas the likelihood of the risky

arms’ yielding a positive payoff is initially unknown. It is common knowledge that the

types of the two risky arms are perfectly negatively correlated. I show that the efficient

policy is incentive-compatible if, and only if, the stakes are high enough. Moreover,

learning will be complete in any Markov perfect equilibrium with continuous value

functions if, and only if, the stakes exceed a certain threshold.
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1 Introduction

Instances abound where economic agents have to decide whether to use their current infor-

mation optimally, or whether to forgo current payoffs in order to gather information which

might potentially be parlayed into higher payoffs come tomorrow. Often, though, economic

agents do not make these decisions in isolation; rather, the production of information is a

public good. Think, for instance, of firms exploring neighboring oil fields, or a research team

investigating a certain hypothesis, where it is not possible to assign credit to the individ-

ual researcher actually responsible for the decisive breakthrough. The canonical framework

to analyze these questions involving purely informational externalities is provided by the

literature on strategic experimentation with bandits.1

As information is a public good, one’s first intuition may be that, on account of free-

riding, there will always be inefficiently little experimentation in equilibrium. Indeed, the

previous literature on strategic experimentation with bandits shows that, with positively

correlated two-armed bandits,2 there never exists an efficient equilibrium; with negatively

correlated bandits,3 there exists an efficient equilibrium if, and only if, stakes are below a

certain threshold. In his canonical Moral Hazard in Teams paper, Holmström (1982) shows

that a team cannot produce efficiently in the absence of a budget-breaking principal, on

account of payoff externalities between team members. Surprisingly, though, my analysis

shows that, in a model with purely informational externalities in which players can choose

whether to investigate a given hypothesis or its negation, the efficient solution becomes

incentive compatible if the stakes at play exceed a certain threshold. The extension of

players’ action sets to include how they go about investigating a given hypothesis thus

matters greatly for the results.

Specifically, I consider two players operating replica three-armed exponential bandits in

continuous time.4 One arm is safe in that it yields a known flow payoff, whereas the other two

arms are risky, i.e. they can be either good or bad. As the risky arms are meant to symbolize

two mutually incompatible hypotheses, I assume that it is common knowledge that exactly

one of the risky arms is good. The bad risky arm never yields a positive payoff, whereas a

good risky arm yields positive payoffs after exponentially distributed times. As the expected

1See e.g. Chapter 1, of this dissertation, Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller

& Rady (2010); for an overview of the bandit literature, consult Bergemann & Välimäki (2008).
2See the papers by Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010).
3See Chapter 1.
4The single-agent two-armed exponential model has first been analyzed by Presman (1990); Keller, Rady,

Cripps (2005) have introduced strategic interaction into the model; Klein & Rady (2010) have then introduced

negative correlation into the strategic model, see Chapter 1 of this dissertation.
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payoff of a good risky arm exceeds that of the safe arm, players will want to know which risky

arm is good. As either player’s actions, as well as the outcomes of his experimentation, are

perfectly publicly observable, there is an incentive for players to free-ride on the information

the other player is providing; information is a public good. Moreover, observability, together

with a common prior, implies that the players’ beliefs agree at all times. As only a good

risky arm can ever yield a positive payoff, all the uncertainty is resolved as soon as either

player has a breakthrough on a risky arm of his and beliefs become degenerate at the true

state of the world. In the absence of such a breakthrough, players incrementally become

more pessimistic about that risky arm that is more heavily utilized. As all the payoff-

relevant strategic interaction is captured by the players’ common belief process, I restrict

players to using stationary Markov strategies with their common posterior belief as the

state variable, thus making my results directly comparable to those in the previous strategic

experimentation literature.

In the game with positively correlated two-armed bandits, Keller, Rady, Cripps (2005)

find two dimensions of inefficiency in any equilibrium: The overall amount of the resource

devoted over time to the risky arm conditional on there not having been a breakthrough,

the so-called experimentation amount, is too low, as is the intensity of experimentation, i.e.

the resources devoted to the risky arm at a given instant t. Analyzing negatively correlated

two-armed bandits, we find in Chapter 1 that, while the experimentation intensity may be

inefficient, the experimentation amount is always at efficient levels. In particular, learning

will be complete, i.e. beliefs will almost surely eventually become degenerate at the true

state of the world in any equilibrium, if, and only if, efficiency so requires. Here, I show that

learning will be complete in any equilibrium with continuous value functions for exactly the

same parameter range as is the case in Chapter 1. In the present model, however, complete

learning is efficient for a wider set of parameters, as both players can reap the benefits of a

breakthrough, while in Chapter 1 one player will be stuck with the losing project.

There are two distinct effects at play that make players in the three-armed setup perform

better than in the two-armed model. The first effect is also apparent in the comparison of

the planner’s solutions, and is based on a strictly positive option value to both players’

having access to the initially less auspicious approach. The second effect is less obvious,

and purely strategic: Indeed, while even the lower appertaining planner’s solution is not

compatible with equilibrium in the two-armed model,5 the higher planner’s solution can be

achieved in equilibrium with three arms, if the stakes are high enough. The reason for this

is that with the stakes high enough, the safe option of doing essentially nothing becomes

5As already mentioned, the negatively correlated case with low stakes provides a notable exception, cf.

Chapter 1.
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so unattractive that it can be completely disregarded. But then, since there are no payoff

rivalries or switching costs in my model, given an opponent behaves in the same fashion,

a player is willing to go for the project that looks momentarily more promising, which is

exactly what efficiency requires. In Chapter 1, by contrast, players will always choose the

safe option if their assigned task looks sufficiently hopeless.

Having characterized the single-agent and the utilitarian planner’s solutions, which are

both symmetric, I construct a symmetric Markov perfect equilibrium with the players’ com-

mon posterior belief as the state variable for all parameter values. For those parameters

where learning is incomplete in equilibrium, I find that the experimentation amount, as

well as the intensity, are inefficiently low. This obtains because, as in Keller, Rady, Cripps

(2005), there is no encouragement effect in these equilibria,6 and hence experimentation will

stop at the single-agent cutoff rather than the more pessimistic efficient cutoff, which takes

into account that both players benefit from finding out which project is good. Indeed, as is

characteristic of the team production paradigm, individual players do not take into account

that their efforts are also benefiting their partner.

The planner’s and the single agent’s solutions, as well as the equilibria I construct, all

exhibit continuous value functions. While I do not provide a full characterization of the

equilibrium set, I show in section 4 that learning will be complete in any equilibrium with

continuous value functions, provided the stakes at play exceed a certain threshold.

The present paper is related to a fast-growing strand of literature on bandits. Whereas

the introduction of strategic interaction into the model is due to Bolton & Harris (1999),

the use of bandit models in economics harks back to the discrete-time model of Rothschild

(1974).7 While the first papers analyzing strategic interaction featured a Brownian motion

model (Bolton & Harris, 1999, 2000), the exponential framework I use has proved itself to

be more tractable (cf. Keller, Rady, Cripps, 2005, Keller & Rady, 2010, Chapter 1). These

previous papers analyzed variants of the two-armed positively correlated model, with the

exception of Chapter 1, who introduced negative correlation into the literature.

While the afore-mentioned papers, as well as the present one, assume both actions and

outcomes to be public information, there has been one recent contribution by Bonatti &

6The encouragement effect was first identified in the Brownian motion model of Bolton & Harris (1999).

It makes players experiment at beliefs that are more pessimistic than their single-agent cutoff, because they

will have a success with a non-zero probability, which will make the other players more optimistic also,

thus inducing them to provide more experimentation, from which the first player can then benefit. With

fully revealing breakthroughs as in this model, as well as in Keller, Rady, Cripps (2005) and in Chapter

1, however, a player could not care less what others might do after a breakthrough, as there will not be

anything left to learn. Therefore, there is no encouragement effect in these models.
7Bandit models have been analyzed as early as the 1950s; see e.g. Bradt, Johnson, Karlin (1956).
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Hörner (2010) analyzing strategic interaction under the assumption that only outcomes are

publicly observable, while actions are private information.8 Rosenberg, Solan, Vieille (2007),

as well as Murto & Välimäki (2006), analyze the two-armed problem of public actions and

private outcomes in discrete time, assuming action choices are irreversible.9

Bergemann & Välimäki (1996, 2000) analyze strategic experimentation in buyer-seller

setups. In their 1996 model, they investigate the case of a single buyer facing multiple firms

offering a product of differing, and initially unknown, quality, and show that experimentation

is efficient in any Markov perfect equilibrium in this setting. With multiple buyers and two

firms, one of which offers a product of known quality, whereas the other firm’s product quality

is initially unknown, equilibrium results in excessive experimentation.10 The reason for this is

that price competition leads the “risky” firm to subsidize experimentation beyond efficient

levels. If there are many different markets, though, with each having its own, separate,

incumbent firm, while the same “risky” firm is active in all the markets, incumbents price

more aggressively as they also benefit from the experimentation being performed in other

markets. Indeed, Bergemann & Välimäki (2000) show that as the number of markets grows

large, experimentation tends toward efficient levels.

Manso (2010) analyzes the case of a single worker, who can either shirk, or take risks

and innovate, or produce in an established, safe, manner. In a simple two-period model, he

shows that, in order to induce risk taking, the principal will optimally be very tolerant of, or

even reward, early failure and long-term success. In a related fully dynamic continuous-time

model, Chapter 3 also shows that incentives are optimally provided through continuation

values after breakthroughs. I furthermore show there that there is no agency loss stemming

from the delegation of the project to an agent. Chatterjee & Evans (2004) analyze an R

& D race also involving payoff externalities in discrete time, where it is common knowledge

that exactly one of several projects is good. As in my model, they allow players to switch

projects at any point in time.

Recently, there has also been an effort at generalization of existing results in the decision-

theoretic bandit literature. For example, Bank & Föllmer (2003), as well as Cohen & Solan

(2009), analyze the single-agent problem when the underlying process is a general Lévy

process, while Camargo (2007) analyzes the effects of correlation between the arms of a

two-armed bandit operated by a single decision maker.

8Bonatti & Hörner’s (2010) is not a full-blown experimentation model, though; indeed, their game stops

as soon as there has been a breakthrough, implying that there is no positive value of information. Therefore,

no player will ever play risky below his myopic cutoff.
9In my model, by contrast, players can switch between bandit arms at any time completely free of costs.

10cf. Bergemann & Välimäki (2000).
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The rest of the paper is structured as follows: Section 2 introduces the model; section 3

analyzes the benchmarks provided by the single agent’s and the utilitarian planner’s prob-

lems; section 4 analyzes some long-run properties of equilibrium learning; section 5 analyzes

the non-cooperative game, giving a symmetric Markov perfect equilibrium for all parameter

values, and a necessary and sufficient condition for the existence of an efficient equilibrium;

section 6 concludes. Proofs are provided in the appendix.

2 The Model

I consider a model of two players, either of whom operates a replica three-armed bandit

in continuous time. Bandits are of the exponential type as studied e.g. in Keller, Rady &

Cripps (2005). One arm is safe in that it yields a known flow payoff of s; both other arms,

A and B, are risky, and, as in Chapter 1, it is commonly known that exactly one of these

risky arms is good and one is bad. The bad risky arm never yields any payoff; the good

risky arm yields a positive payoff with a probability of λ dt if played over a time interval of

length dt; the appertaining expected payoff increment amounts to g dt. The constants λ and

g are assumed to be common knowledge between the players. In order for the problem to

be interesting, we assume that a good risky arm is better than a safe arm, which is better

than a bad risky arm, i.e. g > s > 0.

The objective of both players is to maximize their expected discounted payoffs by choos-

ing the fraction of their flow resource they want to allocate to either risky arm. Specifically,

either player i chooses a stochastic process {(ki,A, ki,B)(t)}0≤t which is measurable with re-

spect to the information filtration that is generated by the observations available up to time

t, with (ki,A, ki,B)(t) ∈ {(a, b) ∈ [0, 1]2 : a + b ≤ 1} for all t; ki,A(t) and ki,B(t)) denote the

fraction of the resource devoted by player i at time t to risky arms A and B, respectively.

Throughout the game, either player’s actions and payoffs are perfectly observable to the

other player. At the outset of the game, the players share a common prior belief that risky

arm A is the good one, which I denote by p0. Thus, players share a common posterior pt

at all times t. Thus, specifically, player i seeks to maximize his total expected discounted

payoff

E

[
∫ ∞

0

r e−r t [(1− ki,A(t)− ki,B(t))s+ (ki,A(t)pt + ki,B(t)(1− pt)) g] dt

]

,

where the expectation is taken with respect to the processes {pt}t∈R+
and {(ki,A, ki,B)(t)}t∈R+

.

As can immediately be seen from this objective function, there are no payoff externalities
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between the players; the only channel through which the presence of the other player may

impact a given player is via his belief pt, i.e. via the information that the other player is

generating. Thus, ours is a game of purely informational externalities.

As only a good risky arm can ever yield a lump sum, breakthroughs are fully revealing.

Thus, if there is a lump sum on risky arm A (B) at time τ , then pt = 1 (pt = 0) at all t > τ .

If there has not been a breakthrough by time τ , Bayes’ Rule yields

pτ =
p0e

−λ
∫ τ

0
KA,t dt

p0e
−λ

∫ τ

0
KA,t dt + (1− p0)e

−λ
∫ τ

0
KB,t dt

,

where KA,t := k1,A(t) + k2,A(t) and KB,t := k1,B(t) + k2,B(t). Thus, conditional on no

breakthrough having occurred, the process {pt}t∈R+
will evolve according to the law of motion

ṗt = −(KA,t −KB,t)λpt(1− pt)

almost everywhere.

As all payoff-relevant strategic interaction is captured by the players’ common posterior

beliefs {pt}t∈R+
, it seems quite natural to focus on Markov perfect equilibria with the players’

common posterior belief pt as the state variable. As is well known, this restriction is without

loss of generality in the single agent’s and the planner’s problems, which are studied in

Section 3. In the non-cooperative game, the restriction rules out history-dependent play

that is familiar from discrete-time models.11 A Markov strategy for player i is any piecewise

continuous function (ki,A, ki,B) : [0, 1] → {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, pt 7→ (ki,A, ki,B)(pt),

implying that ki,B(p) − ki,A(p) exhibits a finite number of jumps. However, this definition

does not guarantee the existence, and even less the uniqueness, of a solution to Bayes’ Rule,

which now amounts to

pτ =
p0e

−λ
∫ τ

0
KA(pt) dt

p0e
−λ

∫ τ

0
KA(pt) dt + (1− p0)e

−λ
∫ τ

0
KB(pt) dt

,

if there has not been a breakthrough by time τ , with KA(pt) := k1,A(pt) + k2,A(pt) and

KB(pt) := k1,B(pt) + k2,B(pt). Further restrictions on the players’ strategy spaces are hence

needed to ensure that their actions and payoffs be well-defined and uniquely pinned down. I

shall call admissible all strategy pairs for which Bayes’ rule admits of a solution that coincides

with the limit of the unique discrete-time solution. This in effect boils down to ruling out

those strategy pairs for which there either is no solution in continuous time, or for which the

solution is different from the discrete-time limit.

All that matters for the admissibility of a given strategy pair is the behavior of the

function ∆(p) := sgn{KB(p)−KA(p)} at those beliefs p‡ where a change in sign occurs, i.e.

11See e.g. Bergin & McLeod (1993) for appropriate continuous-time concepts.
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where it is not the case that limp↑p‡ ∆(p) = ∆(p‡) = limp↓p‡ ∆(p). Given our definition of

strategies, there are only finitely many such beliefs p‡, and hence both one-sided limits will

exist. By proceeding as in Chapter 1, one can show that admissibility has to be defined for

pairs of strategies, i.e. it is impossible to define a player’s set of admissible strategies without

reference to his opponent’s action. Now, a pair of strategies is admissible if, and only if, it

either exhibits no change in sign, or only changes in sign (limp↑p‡ ∆(p),∆(p‡), limp↓p‡ ∆(p)) of

the following types: (1, 0, 1), (0, 0, 1), (−1, 0, 1), (−1, 0, 0), (−1, 0,−1), (−1, 1, 1), (−1,−1, 1),

(1, 0, 0), (0, 1, 1), (0, 0,−1), (−1,−1, 0), (1, 0,−1).12

Each strategy pair (k1, k2) = ((k1,A, k1,B), (k2,A, k2,B)) induces a pair of payoff functions

(u1, u2) with ui given by

ui(p|k1, k2) =

1adm.E

[
∫ ∞

0

re−rt
{

(ki,A(pt)pt + ki,B(pt)(1− pt))g + [1− ki,A(pt)− ki,B(pt)]s
}

dt

∣

∣

∣

∣

p0 = p

]

for each i ∈ {1, 2}, where 1adm. is an indicator function that is 1 whenever the strategy pair

is admissible. Thus, non-admissible strategy pairs lead to payoffs of u1 = u2 = 0.

In the subsequent analysis, it will prove useful to make case distinctions based on the

stakes at play, as measured by the ratio of the expected payoff of a good risky arm over

that of a safe arm (g
s
), the players’ impatience (as measured by the discount rate r), and the

Poisson arrival rate of a good risky arm λ, which can be interpreted as the players’ innate

ability at finding out the truth: I say that the stakes are high if g

s
≥ 4(r+λ)

2r+3λ
; stakes are

intermediate if 2r+λ
r+λ

< g

s
<

4(r+λ)
2r+3λ

; stakes are low if g

s
≤ 2r+λ

r+λ
; they are very low if g

s
<

2(r+λ)
r+2λ

.

3 Two Benchmarks

3.1 The Single-Agent Problem

I denote by kA and kB the fraction of the resource that the single agent dedicates to risky

arms A and B, respectively. The law of motion for the state variable is then given by the

following expression:

ṗt = −(kA(pt)− kB(pt))λpt(1− pt), for a.a. t.

12The list of admissible changes in sign differs somewhat from the corresponding list in Chapter 1: (1, 0, 1)

and (−1, 0,−1) are ruled out in Chapter 1 by the requirement imposed there that the region on which a

player uses his risky arm be the union of non-degenerate intervals. Furthermore, (0, 0, 0) does not correspond

to a change in sign according to my definition here; however, it can correspond to a transition in Chapter 1.
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Straightforward computations show the Bellman equation to be given by13

u(p) = s+ max
{(kA,kB)∈[0,1]2:kA+kB≤1}

{kA[BA(p, u)− cA(p)] + kB[BB(p, u)− cB(p)]} ,

where cA(p) := s − pg and cB(p) := s − (1 − p)g measure the myopic opportunity costs

of playing risky arm A (risky arm B) rather than the safe arm; BA(p, u) :=
λ
r
p[g − u(p) −

(1− p)u′(p)] and BB(p, u) :=
λ
r
(1− p)[g − u(p) + pu′(p)], by contrast, measure the value of

information gleaned from playing risky arm A (or risky arm B, respectively).14

Playing risky arm A, e.g., would yield an expected instantaneous payoff of pg rather

than s. Thus, a myopic agent, i.e. one who was only interested in maximizing his current

payoff, would prefer risky arm A over the safe arm if, and only if, p > pm, where pm = s
g

is defined by cA(p
m) = 0. By the same token, he would prefer risky arm B over the safe

arm, if, and only if, p < 1 − pm. A far-sighted agent, however, derives a learning benefit

over and above the myopic benefit from using either risky arm. Indeed, as the uncertainty

is about the distribution underlying the risky arms, the only way for the agent to learn is

to play a risky arm. Conceptually, while 1
r
measures the discounting, pλ[g − u(p)] measures

the expected value of a potential jump, as λ is the Poisson arrival rate of a breakthrough on

risky arm A given that the arm is good while p is the probability that it is good; g is the

value the agent jumps to in case of a success, while u(p) is the value he jumps from. The

second component, −λp(1− p)u′(p) = u′(p) dp, captures the incremental change in value as

a result of the infinitesimal movement in beliefs that is brought about by the agent’s playing

risky if there is no breakthrough.

As the Bellman equation is linear in the agent’s choice variables, it is without loss of

generality for me to restrict my attention to corner solutions, for which it is straightforward

to derive closed-form solutions for the value function:

If the agent sets (kA, kB)(p) = (0, 0), then u(p) = s.

If he sets (kA, kB)(p) = (1, 0), then his value function satisfies the following ODE:

λp(1− p)u′(p) + (r + λp)u(p) = (r + λ)pg,

which is solved by

u(p) = pg + C(1− p)Ω(p)
r
λ ,

where C is some constant of integration, and Ω(p) := 1−p

p
is the odds ratio.

13By standard arguments, if a continuously differentiable function solves the Bellman equation, it is the

value function; see also Chapter 1.
14By the standard principle of smooth pasting, the agent’s payoff function from playing an optimal policy

is once continuously differentiable.
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If he sets (kA, kB)(p) = (0, 1), then his value function satisfies the following ODE:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −(r + λ)(1− p)g,

which is solved by

u(p) = (1− p)g + CpΩ(p)−
r
λ .

If at some belief p both (kA, kB)(p) = (1, 0) and (kA, kB)(p) = (0, 1) are optimal, then

so is (kA, kB)(p) = (1
2
, 1
2
), and the agent’s value amounts to u(p) = r+λ

2r+λ
g =: ũ11.

The optimal policy for the single agent depends on whether the stakes at play, as

measured by the ratio g

s
, exceed the threshold of 2r+λ

r+λ
or not. Note that g

s
≤ 2r+λ

r+λ
if and

only if p∗1 ≥
1
2
, where p∗1 ≡

rs
(r+λ)g−λs

denotes the optimal single-agent cutoff in the standard

two-armed problem with one safe and one risky arm A, and 1 − p∗1 is the corresponding

threshold for the two-armed problem with one safe arm and one risky arm B.15

Proposition 3.1 (Single-Agent Solution for Low Stakes) If g

s
< 2r+λ

r+λ
, the single agent

will optimally play his risky arm B in [0, 1 − p∗1[, his safe arm in [1 − p∗1, p
∗
1], and his risky

arm A in ]p∗1, 1]. His value function is given by

u(p) =















(1− p)g +
λp∗

1

λp∗
1
+r

(Ω(p)Ω(p∗1))
− r

λ pg if p ≤ 1− p∗1

s if 1− p∗1 ≤ p ≤ p∗1

pg +
λp∗

1

λp∗
1
+r

(

Ω(p)
Ω(p∗

1
)

)
r
λ

(1− p)g if p ≥ p∗1.

This solution continues to be optimal if g

s
= 2r+λ

r+λ
.

The result is illustrated in figure 1. The agent thus optimally behaves as though he

was operating a two-armed bandit with one safe arm and one risky arm of that type that

is initially more likely to be good. With low enough stakes, therefore, the option value of

having an additional risky arm is 0.

As is easily verified, the optimal solution implies incomplete learning. Indeed, let us

suppose that it is risky arm A that is good. Then, if the initial prior p0 is in [0, 1− p∗1[, then

limt→∞ pt = 1 − p∗1 with probability 1. If p0 ∈ [1 − p∗1, p
∗
1], then pt = p0 for all t, since the

agent will always play safe. If p0 ∈]p∗1, 1], it is straightforward to show that the belief will

converge to p∗1 with probability Ω(p0)
Ω(p∗

1
)
, while the truth will be found out (i.e. the belief will

jump to 1) with the counter-probability.

If g

s
> 2r+λ

r+λ
, which is the case if and only if ũ11 > s, the single agent will never avail

himself of the option to play safe. Specifically, we have the following proposition:

15cf. Proposition 3.1. in Keller, Rady, Cripps (2005).
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s
0

g

1−p∗1 1
2

p∗1 1

Figure 1: The single-agent value function for g

s
< 2r+λ

r+λ
.

Proposition 3.2 (Single-Agent Solution for Intermediate and High Stakes) If g

s
>

2r+λ
r+λ

, the agent will play his risky arm B at all beliefs p < 1
2
and his risky arm A at all beliefs

p > 1
2
. At p = 1

2
, he will split his resources equally between his risky arms. His value function

is given by

u(p) =

{

(1− p)g + pΩ(p)−
r
λ

λ
2r+λ

g if p ≤ 1
2

pg + (1− p)Ω(p)
r
λ

λ
2r+λ

g if p ≥ 1
2
.

This solution continues to be optimal if g

s
= 2r+λ

r+λ
.

The result is illustrated in figure 2.

Thus, there now is an option value to having access to the alternative risky project,

as for any p ∈ [0, 1], there is now a positive probability of the agent’s ending up at p = 1
2
,

and thus using the project that initially looked less promising. The single agent’s behavior

at p = 1
2
is dictated by the need to ensure a well-defined time path for the belief.16 Note

that whenever stakes exceed the threshold of 2r+λ
r+λ

, the single agent will make sure learning

is complete, i.e. the truth will be found out with probability 1.

3.2 The Planner’s Problem

I now turn to the investigation of a benevolent utilitarian planner’s solution to the two-

player problem at hand. As the planner does not care about the distribution of surplus,

16cf. also Presman (1990).
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Figure 2: The single agent’s value function for g

s
> 2r+λ

r+λ
.

and both players are equally apt at finding out the truth, all that matters to him is the

sum of resources devoted to both risky arms of type A (B), which I denote by KA (KB).

Straightforward computations show that the planner’s Bellman equation is given by

u(p) = s+ max
{(KA,KB)∈[0,2]2:KA+KB≤2}

{

KA

[

BA(p, u)−
cA(p)

2

]

+KB

[

BB(p, u)−
cB(p)

2

]}

.

Again, the planner’s problem is linear in the choice variables, and we can therefore

without loss of generality restrict our attention to corner solutions.

If KA = KB = 0 is optimal, u(p) = s.

If KA = 2 and KB = 0 is optimal, the Bellman equation is tantamount to the following

ODE:

2λp(1− p)u′(p) + (2λp+ r)u(p) = (2λ+ r)pg,

which is solved by

u(p) = pg + C(1− p)Ω(p)
r
2λ ,

where C is again some constant of integration.

If KA = 0 and KB = 2 is optimal, the Bellman equation amounts to the following ODE:

−2λ(1− p)pu′(p) + (2λ(1− p) + r)u(p) = (1− p)(r + 2λ)g,

which is solved by

u(p) = (1− p)g + CpΩ(p)−
r
2λ .
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If (2, 0) and (0, 2), and therefore also (1, 1), are optimal, the planner’s value satisfies

u(p) =
r + 2λ

2(r + λ)
g =: u11.

Which policy is optimal will again depend on the stakes at play, though this time the

relevant threshold is different from the single agent’s problem, namely 2(r+λ)
r+2λ

. Note that
g

s
≤ 2(r+λ)

r+2λ
if and only if p∗2 ≥

1
2
, where p∗2 ≡

rs
(r+2λ)(g−s)+rs

.

Proposition 3.3 (Planner’s Solution for Very Low Stakes) If g

s
<

2(r+λ)
r+2λ

, the plan-

ner will play the same arm on both bandits at all beliefs. Specifically, he will play arm A on

]p∗2, 1], arm B on [0, 1 − p∗2[, and safe on [1 − p∗2, p
∗
2]. The corresponding payoff function is

given by

u(p) =















(1− p)g +
2λp∗

2

2λp∗
2
+r
p (Ω(p)Ω(p∗2))

− r
2λ g if p ≤ 1− p∗2,

s if 1− p∗2 ≤ p ≤ p∗2,

pg +
2λp∗

2

2λp∗
2
+r
(1− p)

(

Ω(p)
Ω(p∗

2
)

)
r
2λ

g if p ≥ p∗2.

This solution continues to be optimal if g

s
= 2(r+λ)

r+2λ
.

The planner’s solution thus has pretty much the same structure as the single agent’s

solution for low stakes; as the latter, it implies incomplete learning. However, it is a different

cutoff, namely p∗2, that is relevant now. p∗2 is always strictly less than p∗1, and is familiar

from the two-player two-armed bandit problem with perfect positive correlation,17 where

the utilitarian planner will apply the cutoff p∗2. As in the low-stakes single-agent problem,

the value of the risky project that is less likely to be good is so low that it does not play

a role in the optimization problem. The planner is more reluctant, though, completely to

forsake the less auspicious project, simply because, in case of a success, he gets twice the

goodies, so information is more valuable to him than it is to the single agent. This effect is

absent in the negatively correlated two-armed bandit case, which is why in Chapter 1 the

relevant cutoff continues to be p∗1 for the planner.

Proposition 3.4 (Planner’s Solution for Stakes that Are Not Very Low) If g

s
>

2(r+λ)
r+2λ

,

the planner will play the same arm on both bandits at almost all beliefs. Specifically, he will

play arm A on ]1
2
, 1] and arm B on [0, 1

2
[. At p = 1

2
, he will split his resources equally between

the risky arms. The corresponding payoff function is given by

u(p) =

{

(1− p)g + λ
r+λ

pΩ(p)−
r
2λ g if p ≤ 1

2
,

pg + λ
λ+r

(1− p)Ω(p)
r
2λ g if p ≥ 1

2
.

17cf. Keller, Rady, Cripps (2005)
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This solution continues to be optimal if g

s
= 2(r+λ)

r+2λ
.

At the knife-edge case of g

s
= 2(r+λ)

r+2λ
, the planner is indifferent over all three arms at

p = 1
2
. Yet, in order to ensure a well-defined time path of beliefs, he has to set KA(

1
2
) =

KB(
1
2
) ∈ [0, 1].

Note that if the stakes at play are not very low, the planner’s solution implies complete

learning, i.e. he will make sure the truth will eventually be found out with probability 1. As a

matter of fact, the solution is quite intuitive: As the planner does not care which of the risky

arms is good, the solution is symmetric around p = 1
2
. Furthermore, it is straightforward to

verify that as g

s
≥ 2(r+λ)

r+2λ
, playing risky always dominates the safe arm as u11 ≥ s. However,

on account of the linear structure in the Bellman equation, it is always the case that either

(2, 0) or (0, 2) dominates (1, 1). Therefore, the only candidate for a solution has the planner

switch at p = 1
2
. At the switch point p = 1

2
itself, the planner’s actions are pinned down by

the need to ensure a well-defined law of motion of the state variable.

4 Long-Run Equilibrium Learning

Previous literature has noted that with perfectly positively correlated two-armed bandits,

learning is always incomplete, i.e. there is a positive probability that the truth will never

be found out. As a matter of fact, Keller, Rady, and Cripps (2005) find that, on account of

free-riding incentives, the overall amount of experimentation performed over time is ineffi-

ciently low in any equilibrium. On the other hand, we find in Chapter 1 that with perfectly

negatively correlated bandits, the amount of experimentation is at efficient levels in any equi-

librium; in particular, learning will be complete in any equilibrium if and only if efficiency

so requires.

The purpose of this section is to derive conditions under which, in our framework,

learning will be complete in any equilibrium in which players’ value functions are continuous.

To this end, I define as u∗
1 the value function of a single agent operating a bandit with only

a safe arm and a risky arm A, while I denote by u∗
2 the value function of a single agent

operating a bandit with only a safe arm and a risky arm B. It is straightforward to verify

that u∗
2(p) = u∗

1(1− p) for all p and that18

u∗
1(p) =







s if p ≤ p∗1,

pg +
λp∗

1

λp∗
1
+r

(

Ω(p)
Ω(p∗

1
)

)
r
λ

(1− p)g if p ≥ p∗1
.

18cf. Prop.3.1 in Keller, Rady, Cripps (2005)
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The following lemma tells us that u∗
1 and u∗

2 are both lower bounds on players’ value functions

in any equilibrium with continuous value functions.

Lemma 4.1 (Lower Bound on Equilibrium Payoffs) Let u ∈ C0 be a player’s value

function. Then, u(p) ≥ max{u∗
1(p), u

∗
2(p)} for all p ∈ [0, 1].

The intuition for this result is very straightforward. Indeed, there are only informational

externalities, no payoff externalities, in our model. Thus, intuitively, a player can only benefit

from any information his opponent provides him for free; therefore, he should be expected

to do at least as well as if he were by himself, forgoing the use of one of his risky arms to

boot.

Now, if g

s
> 2r+λ

r+λ
, then p∗1 < 1

2
< 1 − p∗1, so at any belief p, we have that u∗

1(p) > s or

u∗
2(p) > s or both. Thus, there cannot exist a p such that (k1,A, k1,B)(p) = (k2,A, k2,B)(p) =

(0, 0) be mutually best responses as this would mean u1(p) = u2(p) = s. This proves the

following proposition:

Proposition 4.2 (Complete learning) If g

s
> 2r+λ

r+λ
, learning will be complete in any

Markov perfect equilibrium with continuous value functions.

It is the same threshold 2r+λ
r+λ

above which complete learning is efficient, and prevails

in any equilibrium, in the perfectly negatively correlated two-armed bandit case.19 In our

setting, however, complete learning is efficient for a larger set of parameters, as we saw in

Proposition 3.4.

Moreover, the planner’s solution is an obvious upper bound on players’ average equilib-

rium payoffs. If g

s
<

2(r+λ)
r+2λ

, we know from Proposition 3.4 that the planner’s value is s on

the non-degenerate interval [1 − p∗2, p
∗
2]. Since there cannot be an open interval on which a

player’s value is less than s, it will be s almost everywhere on [1−p∗2, p
∗
2]. Since either player

can always guarantee himself a payoff of s by playing safe forever, so that s is an obvious

lower bound on either player’s equilibrium payoffs, this means both players’ value must be s

on [1− p∗2, p
∗
2] in any equilibrium. Therefore, in any equilibrium, both players uniquely play

safe almost everywhere in [1− p∗2, p
∗
2], implying the following proposition:

Proposition 4.3 (Incomplete Learning) If g

s
<

2(r+λ)
r+2λ

, learning will be incomplete in

any equilibrium.

19cf. Chapter 1
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5 Strategic Problem

Proceeding as before, I find that the Bellman equation for player i (i 6= j) is given by20

ui(p) = s+ kj,ABA(p, ui) + kj,BBB(p, ui)

+ max
{(ki,A,ki,B)∈[0,1]2:ki,A+ki,B≤1}

{ki,A [BA(p, ui)− cA(p)] + ki,B [BB(p, ui)− cB(p)]} .

As players are perfectly symmetric in that they are operating two replicas of the same

bandit, the Bellman equation for player j looks exactly the same. It is noteworthy that a

player only has to bear the opportunity costs of his own experimentation, while the benefits

accrue to both, which indicates the presence of free-riding incentives.

On account of the linear structure of the optimization problem, we can restrict our

attention to the nine pure strategy profiles, along with three indifference cases per player.

Each of these cases leads to a first-order ordinary differential equation (ODE). Details, as

well as closed-form solutions, are provided in Appendix A.

5.1 Necessary Conditions for Best Responses

The linearity of the problem provides us with a powerful tool to derive necessary conditions

for a certain strategy combination ((k1,A, k1,B), (k2,A, k2,B)) to be consistent with mutually

best responses on an open set of beliefs.21 As an example, suppose player 2 is playing (1, 0).

If player 1’s best response is given by (1, 0), it follows immediately from the Bellman equation

that it must be the case that BA(p, u1) ≥ cA(p) and BA(p, u1) − BB(p, u1) ≥ cA(p) − cB(p)

for all p in the open interval in question. Moreover, we know that on the open interval in

question, the player’s value function satisfies

2λp(1− p)u′
1(p) + (2λp+ r)u1(p) = (2λ+ r)pg,

20By the smooth pasting principle, player i’s payoff function from playing a best response is once contin-

uously differentiable on any open interval on which (kj,A, kj,B)(p) in continuous. If (kj,A, kj,B)(p) exhibits a

jump at p, u′
i(p), which is contained in the definitions of BA and BB , is to be understood as the one-sided

derivative in the direction implied by the motion of beliefs. In either instance, standard results imply that

if for a certain fixed (kj,A, kj,B), the payoff function generated by the policy (ki,A, ki,B) solves the Bellman

equation, then (ki,A, ki,B) is a best response to (kj,A, kj,B).
21As we keep player j’s strategy (kj,A, kj,B) fixed on an open interval of beliefs, player i’s value function

ui (i 6= j) is of class C1 on that open interval. Therefore, by standard arguments, ui solves the Bellman

equation on the open interval in question.
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which can be plugged into the two inequalities above, yielding a necessary condition for

(k1,A, k1,B) = (1, 0) to be a best response to (k2,A, k2,B) = (1, 0). Proceeding in this manner

for the possible pure-strategy combinations gives us necessary conditions for a certain pure-

strategy combination to be consistent with mutually best responses on an open interval of

beliefs, which I report as an auxiliary result in Appendix A.

5.2 Efficiency

Inefficiency because of free-riding has hitherto been a staple result of the literature on strate-

gic experimentation (cf. Bolton & Harris, 1999, 2000, Keller, Rady, Cripps, 2005, Keller &

Rady, 2010). Introducing negative correlation into the strategic experimentation literature,

in Chapter 1, we find that efficient behavior is incentive-compatible if and only if the stakes

are low enough. The essential reason for this is as follows: With the stakes low enough,

it is clear that the more pessimistic player will never play risky; therefore, the more opti-

mistic player, not having an opportunity to free-ride on his opponent’s efforts, will behave

efficiently. As a matter of fact, in Chapter 1, the efficient equilibrium disappears as soon

as the players’ single-agent cutoffs overlap, and free-riding incentives come into play again.

Here, though, the opposite result prevails: The efficient solution is incentive-compatible if,

and only if, the stakes are high enough, as the following proposition shows.

Proposition 5.1 (Efficient Equilibrium) There exists an efficient equilibrium if and only

if g

s
≥ 4(r+λ)

2r+3λ
.

Indeed, the mechanism ensuring existence of an efficient equilibrium for low stakes

in Chapter 1 cannot be at work here, since both players are operating replica bandits.

Therefore, if one player has an incentive to experiment given the other player abstains from

experimentation, then so does the other player, and free-riding motives enter the picture, no

matter how low the stakes might be. One possible intuition for why we here obtain efficiency

for high stakes is as follows: For high enough stakes, players would never consider the safe

option. Moreover, the efficient policy coincides with the single-agent policy, namely, either

implies both players’ playing risky, at full throttle, on the arm that is more likely to be good.

Therefore, for a player to deviate from this policy in equilibrium, he has to be given special

incentives to do so; in the absence of such incentives, e.g. when the other player sticks to

the efficient policy, a player’s best response calls for his doing the efficient thing also, i.e.

there exists an efficient equilibrium. However, for free-riding incentives to be totally eclipsed,

stakes have to exceed a threshold that is higher than the one making sure a single agent

would never play safe. Indeed, as we have seen, stakes higher than this latter threshold
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only ensure that learning will be complete in any equilibrium, i.e. while the experimentation

amount is at efficient levels, the intensity does not reach efficient levels as long as g

s
<

4(r+λ)
2r+3λ

.

While it is not surprising that the utilitarian planner, who now has more options, should

always be doing better than the planner in Chapter 1, who could not transfer resources

between the two types of risky arm, it may seem somewhat surprising that the players

should now be able to achieve even this higher efficient benchmark, while they could not

achieve the lower benchmark in the negatively correlated two-armed model in Chapter 1.

Indeed, with the stakes high enough, free-riding incentives can be overcome completely in

non-cooperative equilibrium.

5.3 Symmetric Equilibrium for Low And Intermediate Stakes

The purpose of this section is to construct a symmetric equilibrium for those parameter

values for which there does not exist an efficient equilibrium. I define symmetry in keeping

with Bolton & Harris (1999) as well as Keller, Rady, Cripps (2005):

Definition An equilibrium is said to be symmetric if equilibrium strategies ((k1,A, k1,B), (k2,A, k2,B))

satisfy (k1,A, k1,B)(p) = (k2,A, k2,B)(p) ∀p ∈ [0, 1].

As a matter of course, in any symmetric equilibrium, u1(p) = u2(p) for all p ∈ [0, 1]. I

shall denote the players’ common value function by u.

5.3.1 Low Stakes

Recall that the stakes are low if, and only if, the single-agent cutoffs for the two risky arms

do not overlap. It can be shown that in this case the symmetric equilibrium in Keller, Rady,

and Cripps (Prop. 5.1, 2005) will survive in the sense that there exists an equilibrium that

is essentially two copies of the Keller, Rady, and Cripps equilibrium, mirrored at the p = 1
2

axis. Specifically, we have the following proposition:

Proposition 5.2 (Symmetric MPE for Low Stakes) If g

s
≤ 2r+λ

r+λ
, there exists a sym-

metric equilibrium where both players exclusively use the safe arm on [1 − p∗1, p
∗
1], the risky

arm A above the belief p̂ > p∗1, and the risky arm B at beliefs below 1− p̂, where p̂ is defined

implicitly by

Ω(pm)−1 − Ω(p̂)−1 =
r + λ

λ

[

1

1− p̂
−

1

1− p∗1
− Ω(p∗1)

−1 ln

(

Ω(p∗1)

Ω(p̂)

)]

.
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In [p∗1, p̂], the fraction kA(p) =
u(p)−s

cA(p)
is allocated to risky arm A, while 1− kA(p) is allocated

to the safe arm; in [1 − p̂, 1 − p∗1], the fraction kB(p) =
u(p)−s

cB(p)
is allocated to risky arm B,

while 1− kB(p) is allocated to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)

− r
2λ . Then, the

players’ value function is given by u(p) = W (p) if 1− p̂ ≤ p ≤ p̂, where W (p) is defined by

W (p) :=















s+ r
λ
s
[

Ω(p∗1)
−1

(

1− p

p∗
1

)

− p ln
(

Ω(p)
Ω(p∗

1
)

)]

if 1− p̂ ≤ p ≤ 1− p∗1

s if 1− p∗1 ≤ p ≤ p∗1

s+ r
λ
s
[

Ω(p∗1)
(

1− 1−p

1−p∗
1

)

− (1− p) ln
(

Ω(p∗
1
)

Ω(p)

)]

if p∗1 ≤ p ≤ p̂

;

u(p) = Vh(p) if p̂ ≤ p, while u(p) = Vl(p) if p ≤ 1− p̂, where the constants of integration Ch

and Cl are determined by Vh(p̂) = W (p̂) and Vl(1− p̂) = W (1− p̂), respectively.

Thus, in this equilibrium, even though either player knows that one of his risky arms

is good, whenever the uncertainty is greatest, the safe option is attractive to the point that

he cannot be bothered to find out which one it is. When players are relatively certain which

risky arm is good, they invest all their resources in that arm. When the uncertainty is

of medium intensity, the equilibrium has the flavor of a mixed-strategy equilibrium, with

players devoting a uniquely determined fraction of their resources to the risky arm they

deem more likely to be good, with the rest being invested in the safe option. As a matter

of fact, the experimentation intensity decreases continuously from kA(p̂) = 1 to kA(p
∗
1) = 0

(from kB(1− p̂) = 1 to kB(1−p∗1) = 0). Even though players’ Bellman equations are linear in

the strategy variable, the equilibrium requires them to use interior levels of experimentation.

Intuitively, the situation is very much reminiscent of the classical Battle of the Sexes game:

If a player’s partner experiments, he would like to free-ride on his efforts; if his partner plays

safe, though, he would rather do the experimentation himself than give up on finding out the

truth. Now, in symmetric equilibrium, the experimentation intensities are chosen in exactly

such a manner as to render the other player indifferent between experimenting and playing

safe, thus making him willing to mix over both his options.

Having seen that there exists an equilibrium implying incomplete learning, and exhibit-

ing continuous value functions, for g

s
≤ 2r+λ

r+λ
, we are now in a position to strengthen our

result on complete learning:

Corollary 5.3 (Complete Learning) Learning will be complete in any Markov Perfect

equilibrium with continuous value functions if and only if g

s
> 2r+λ

r+λ
.

In Chapter 1, we found that with the possible exception of the knife-edge case where
g

s
= 2r+λ

r+λ
, learning was going to be complete in any equilibrium if and only if complete
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learning was efficient. While complete learning obtains in any equilibrium with continuous

value functions for the exact same parameter set in both models, here, by contrast, we find

that if 2(r+λ)
r+2λ

< g

s
≤ 2r+λ

r+λ
, efficiency uniquely calls for complete learning, yet there exists

an equilibrium entailing incomplete learning. This is because with three-armed bandits

information is more valuable to the planner, as in case of a success he gets the full payoff

of a good risky arm. With negatively correlated two-armed bandits, however, the planner

cannot shift resources between the two types of risky arm; thus, his payoff in case of a success

is just g+s

2
.

5.3.2 Intermediate Stakes

For intermediate stakes, the equilibrium I construct is essentially of the same structure as

the previous one: It is symmetric and it requires players to mix on some interval of beliefs.

However, there does not exist an interval where both players play safe, so that players will

always eventually find out the true state of the world, even though they do so inefficiently

slowly.

Proposition 5.4 (Symmetric MPE for Intermediate Stakes) If 2r+λ
r+λ

< g

s
<

4(r+λ)
2r+3λ

,

there exists a symmetric equilibrium. Let p̌ := λ+r
λ
(2pm − 1), and W(p) be defined by

W(p) :=

{

s+ r+λ
λ
(g − s)− r

λ
ps (2 + ln(Ω(p))) if p ≤ 1

2

s+ r+λ
λ
(g − s)− r

λ
(1− p)s (2− ln(Ω(p))) if p ≥ 1

2

Now, let p
†
1 > 1

2
and p

†
2 > 1

2
be defined by W(p†1) =

λ+r(1−p
†
1
)

λ+r
g and W(p†2) = 2s − p

†
2g,

respectively. Then, let p† ≡ p
†
1 if p

†
1 ≥ p̌; otherwise, let p† ≡ p

†
2.

In equilibrium, both players will exclusively use their risky arm A in [p†, 1], and their

risky arm B in [0, 1 − p†]. In ]1
2
, p†], the fraction kA(p) =

W(p)−s

cA(p)
is allocated to risky arm

A, while 1 − kA(p) is allocated to the safe arm; in [p†, 1
2
[, the fraction kB(p) = W(p)−s

cB(p)
is

allocated to risky arm B, while 1−kB(p) is allocated to the safe arm. At p = 1
2
, a fraction of

kA(
1
2
) = kB(

1
2
) = (λ+r)g−(2r+λ)s

λ(2s−g)
is allocated to either risky arm, with the rest being allocated

to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)

− r
2λ . Then, the

players’ value function is given by u(p) = W(p) in [1− p†, p†], by u(p) = Vh(p) in [p†, 1], and

u(p) = Vl(p) in [0, 1 − p†], with the constants of integration Ch and Cl being determined by

Vh(p
†) = W(p†) and Vl(1− p†) = W(1− p†).

Thus, no matter what initial prior players start out from, there is a positive probability

beliefs will end up at p = 1
2
, and hence they will try the risky project that looked initially
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less auspicious. Therefore, in contrast to the equilibrium for low stakes, there is a positive

value attached to the option of having access to the second risky project.

6 Conclusion

I have analyzed a game of strategic experimentation with three-armed bandits, where the two

risky arms are perfectly negatively correlated. In so doing, I have constructed a symmetric

equilibrium for all parameter values. Furthermore, we have seen that any equilibrium is inef-

ficient if stakes are below a certain threshold, and that any equilibrium with continuous value

functions involves complete learning if stakes are above a certain threshold. In particular, if

the stakes are high, there exists an efficient equilibrium and learning will be complete in any

equilibrium with continuous value functions. If stakes are intermediate in size, all equilibria

are inefficient, though they involve complete learning (provided there are no discontinuities

in the value functions), as required by efficiency. If the stakes are low but not very low, all

equilibria are inefficient; there exists an equilibrium that involves incomplete learning, while

efficiency requires complete learning. If the stakes are very low, the efficient solution implies

incomplete learning; all equilibria involve incomplete learning and are inefficient.

The present paper is merely a first foray into the analysis of strategic experimentation

on bandits with more than two arms. The underlying stochastic process was assumed to

be Poisson, with a bad risky arm never yielding any payoff. Whether my results are robust

to alternative distributional assumptions, such as a non-zero, yet low, arrival rate of a bad

risky arm, as in Keller & Rady (2010), or to the assumption of a diffusion process, as in

Bolton & Harris (1999, 2000), or even a general Lévy process in the vein of Cohen & Solan

(2009), is an interesting question for future research.

Furthermore, while Chapter 1 explores the robustness of their results to certain kinds

of asymmetries between players, all the strategic experimentation papers out to date as-

sume players are perfectly symmetric with respect to their “innate” learning abilities, as

parameterized by the Poisson arrival rate of breakthroughs, or the diffusion coefficient. In

the three-armed case, it could be interesting to explore the additional trade-offs that would

arise, if, say, player 1 was able to learn faster on risky arm A, while player 2 was faster with

risky arm B. Modeling these trade-offs might yield new insights into the conditions under

which there is excessive, or insufficient, specialization in equilibrium. I intend to explore

these questions in future research.

The assumption of perfect negative correlation between the two types of risky arm has

allowed me to represent beliefs as elements of the one-dimensional unit interval. Analyzing
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the case of a general correlation coefficient would imply beliefs evolving in a simplex of

dimension greater than 1, and the players’ value functions satisfying partial, rather than

ordinary, differential equations. It also remains to be investigated how the introduction of

private information would affect the analysis, and the conclusions, of the model. I hope to

investigate these questions in future work.
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Appendix

A Closed-Form Solutions And An Auxiliary Result

If ((0, 0), (0, 0)) is played, it is easy to see that u1(p) = u2(p) = s.

If ((1, 0), (1, 0)) is played, both players’ value functions satisfy the following ODE:

2λp(1− p)u′(p) + (2λp+ r)u(p) = (2λ+ r)pg,

which is solved by

u(p) = pg + C(1− p)Ω(p)
r
2λ ,

where C is some constant of integration.

If ((0, 1), (0, 1)) is played, both players’ value functions satisfy the following ODE:

−2λp(1− p)u′(p) + (2λ(1− p) + r)u(p) = (2λ+ r)(1− p)g,

which is solved by

u(p) = (1− p)g + CpΩ(p)−
r
2λ .

If ((0, 1), (1, 0)) is played, player 1’s value function is linear:

u1(p) =
λ+ r(1− p)

λ+ r
g.

By the same token, player 2’s value is also linear,

u2(p) =
λ+ rp

λ+ r
g.

Symmetrically, if ((1, 0), (0, 1)) is played we have:

u1(p) =
λ+ rp

λ+ r
g,

and

u2(p) =
λ+ r(1− p)

λ+ r
g.

If ((0, 0), (1, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p) + (λp+ r)u(p) = rs+ λpg,

which is solved by

u1(p) = s+
λ

λ+ r
p(g − s) + C(1− p)Ω(p)

r
λ ,

while player 2’s value satisfies

λp(1− p)u′(p) + (λp+ r)u(p) = (λ+ r)pg,

which is solved by

u2(p) = pg + C(1− p)Ω(p)
r
λ .
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Symmetrically, if ((1, 0), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p) + (λp+ r)u(p) = (λ+ r)pg,

which is solved by

u1(p) = pg + C(1− p)Ω(p)
r
λ .

Meanwhile, player 2’s value satisfies:

λp(1− p)u′(p) + (λp+ r)u(p) = rs+ λpg,

which is solved by

u2(p) = s+
λ

λ+ r
p(g − s) + C(1− p)Ω(p)

r
λ .

If ((0, 0), (0, 1)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −rs− λ(1− p)g,

which admits of the solution

u1(p) = s+
λ

r
g +

λ

r
p[
λ

r
g − (g − s)] + CpΩ(p)−

r
λ .

As for player 2, his value evolves according to:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −(1− p)(r + λ)g,

which is solved by

u2(p) = (1− p)g + CpΩ(p)−
r
λ .

Symmetrically, if ((0, 1), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −(1− p)(r + λ)g,

which is solved by

u1(p) = (1− p)g + CpΩ(p)−
r
λ .

Player 2’s value, by contrast, satisfies

λp(1− p)u′(p)− (r + λ(1− p))u(p) = −rs− λ(1− p)g,

which admits of the solution

u2(p) = s+
λ

r
g +

λ

r
p[
λ

r
g − (g − s)] + CpΩ(p)−

r
λ .

Moreover, there are three indifference cases for player i: He might be indifferent between his

risky arm A and his safe arm, between his risky arm B and his safe arm, or between his two risky

arms of opposite types.
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If player i is indifferent between his safe arm and his risky arm A, his value function satisfies

the following ODE:

λp(1− p)u′(p) + λpu(p) = (λ+ r)pg − rs,

which is solved by

ui(p) = s+
r + λ

λ
(g − s) +

r

λ
s(1− p) ln [Ω(p)] + C(1− p).

If player i is indifferent between his safe arm and his risky arm B, his value function satisfies

the following ODE:

λp(1− p)u′(p)− λ(1− p)u(p) = rs− (r + λ)(1− p)g,

which is solved by

ui(p) = s+
r + λ

λ
(g − s)−

r

λ
sp ln [Ω(p)] + Cp.

If player i is indifferent between both his risky arms, his value function satisfies the following

ODE:

2λp(1− p)u′(p) + λ(2p− 1)u(p) = (λ+ r)(2p− 1)g,

which is solved by

ui(p) =
r + λ

λ
g + C

√

p(1− p).

An Auxiliary Result

The logic we discussed in section 5.1 of the main text gives us the following auxiliary result, which

will be useful in the proofs of Propositions 4.3, 5.1, and 5.4.

Lemma A.1 Let P ⊂]0, 1[ be an open interval of beliefs in which the action profile remains con-

stant, and let p ∈ P.

Let kj(p) = (0, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then ui(p) = s.

• If player i’s best response is given by ki(p) = (1, 0) or ki(p) = (0, 1), then ui(p) ≥ max{s, r+λ
2r+λ

g}.

Let kj(p) = (1, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then λ+r(1−p)
λ+r

g ≤ ui(p) ≤ 2s− pg.

• If player i’s best response is given by ki(p) = (1, 0), then ui(p) ≥ max{λ+r(1−p)
λ+r

g, 2s− pg}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) =
λ+r(1−p)

λ+r
g and p ≤ min{1−

pm, r+λ
2r+3λ}.

Let kj(p) = (0, 1). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then λ+rp
λ+r

g ≤ ui(p) ≤ 2s− (1− p)g.
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• If player i’s best response is given by ki(p) = (1, 0), then ui(p) =
λ+rp
λ+r

g and p ≥ max{pm, r+2λ
2r+3λ}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) ≥ max{λ+rp
λ+r

g, 2s− (1− p)g}.

As r+λ
2r+3λ < 1

2 < r+2λ
2r+3λ , the lemma immediately implies that in no equilibrium ((1, 0), (0, 1)) or

((0, 1), (1, 0)) can arise on an open interval. If furthermore g
s
≥ 2, and hence 2s − pg ≤ λ+r(1−p)

λ+r
g

for all p ∈ [0, 1], then ((1, 0), (0, 0)), ((0, 0), (1, 0)), ((0, 1), (0, 0)) and ((0, 0), (0, 1)) cannot arise on

an open interval either.

B Proofs

Proof of Proposition 3.1

The policy (kA, kB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗1 and 1 − p∗1, hence is of class C1. It is strictly

decreasing on ]0, 1− p∗[ and strictly increasing on ]p∗, 1[. Moreover, u = s+BB − cB on [0, 1− p∗],

u = s on [1 − p∗, p∗], and u = s + BA − cA on [p∗, 1] (I drop the arguments for simplicity), which

shows that u is indeed the planner’s payoff function from (k1, k2).

To show that u and this policy (kA, kB) solve the agent’s Bellman equation, and hence that

(k1, k2) is optimal, it is enough to establish that BA < cA and BB > cB on ]0, 1 − p∗[ , BA < cA

and BB < cB on ]1 − p∗, p∗[ , and BA > cA and BB < cB on ]p∗, 1[ . Consider this last interval.

There, u = s+BA − cA and u > s (by monotonicity of u) immediately imply BA > cA. It remains

to be shown that BA − cA > BB − cB. Using the appertaining differential equation, we have that

BA − BB = 2(u − pg) − λ
r
(g − u). It is now straightforward to show that BA − BB > cA − cB if

and only if u > r+λ
2r+λ

g. By the afore-mentioned monotonicity properties, we know that u > s; yet,
r+λ
2r+λ

g ≤ s if and only if g
s
≤ 2r+λ

r+λ
, i.e. if and only if the stakes are low. The other intervals are

dealt with in similar fashion.

Proof of Proposition 3.2

The policy (kA, kB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p = 1
2 , hence is of class C1. It is strictly decreasing

on ]0, 12 [ and strictly increasing on ]12 , 1[. Moreover, u = s+BB − cB on [0, 12 ] and u = s+BA − cA

on [12 , 1], which shows that u is indeed the agent’s payoff function from (k1, k2).

Note that on account of ũ11 ≥ s, it can never be the case that 0 > max{BA − cA, BB − cB}.

Thus, all that remains to be shown is that BB − cB > BA− cA on ]0, 12 [ and BA− cA > BB − cB on

]12 , 1[. Consider this last interval. Plugging in the relevant ODE, we have that BA−cA = u−s, and

BB − cB = (1 + λ
r
)(g − u)− s; hence BA − cA > BB − cB is equivalent to u > r+λ

2r+λ
g = ũ11 = u(12),

which is satisfied on account of the afore-mentioned monotonicity properties. The other interval is

dealt with in a similar way.
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Proof of Proposition 3.3

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗2 and 1 − p∗2, hence is of class C1. It is strictly

decreasing on [0, 1−p∗2] and strictly increasing on [p∗2, 1]. Moreover, u = s+2BB − cB on [0, 1−p∗2],

u = s on [1 − p∗2, p
∗
2], and u = s + 2BA − cA on [p∗2, 1], which shows that u is indeed the planner’s

payoff function from (k1, k2).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB− cB
2 > max{0, BA− cA

2 } on ]0, 1−p∗2[, 0 > max{BA− cA
2 , BB− cB

2 } on ]1−p∗2, p
∗
2[,

BA − cA
2 > max{0, BB − cB

2 } on ]p∗2, 1[. Consider this last interval. There, u = s + 2BA − cA and

u > s (by monotonicity of u) immediately imply 2BA − cA > 0. It remains to be shown that

2BA − cA > 2BB − cB. Using the appertaining differential equation, we have that BA − BB =

u−pg− λ
r
(g−u). It is now straightforward to show that BA−BB > cA−cB

2 if and only if u > 2λ+r
2(r+λ)g.

By the afore-mentioned monotonicity properties, we know that u > s; yet, s ≥ 2λ+r
2(r+λ)g if and only

if g
s
≤ 2(r+λ)

2λ+r
, i.e. if and only if the stakes are very low. The other intervals are dealt with in similar

fashion.

Proof of Proposition 3.4

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p = 1
2 , hence is of class C1. It is strictly decreasing

on ]0, 12 [ and strictly increasing on ]12 , 1[. Moreover, u = s+2BB−cB on [0, 12 ] and u = s+2BA−cA

on [12 , 1], which shows that u is indeed the planner’s payoff function from (KA,KB).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB − cB
2 > max{0, BA− cA

2 } on ]0, 12 [, and BA− cA
2 > max{0, BB − cB

2 } on ]12 , 1[. To

start out, note that on account of u11 ≥ s, it can never be the case that 0 > max{BA−
cA
2 , BB− cB

2 }.

Thus, all that remains to be shown is that BB − cB
2 > BA − cA

2 on ]0, 12 [ and BA − cA
2 > BB − cB

2

on ]12 , 1[. Consider this last interval. Using the appertaining differential equation, we have that

BA−BB = u−pg− λ
r
(g−u). It is now straightforward to show that BA−BB > cA−cB

2 if and only

if u > 2λ+r
2(r+λ)g = u11, which is satisfied on account of the afore-mentioned monotonicity properties

and the fact that u(12) = u11. The other interval is treated in a similar fashion.

Proof of Lemma 4.1

I shall first prove that u∗1 is a lower bound on player i’s value function u, writing B∗
A(p) = BA(p, u

∗
1),

and B∗
B(p) = BB(p, u

∗
1). Henceforth, I shall suppress arguments whenever this is convenient. Since

p∗1 is the single-agent cutoff belief for player 1, we have u∗1 = s for p ≤ p∗1 and u∗1 = s+b∗1−c1 = pg+b∗1

for p > p∗1. Thus, if p < p∗1, the claim holds by continuity, because on any open interval between

any two points of discontinuity in his opponent’s strategy,22, a player can always guarantee himself

22Note that, on account of my definition of strategies, there can be only finitely many such points of

discontinuity.
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a payoff of at least s by playing (0, 0).

Now, let p ≥ p∗1. Then, noting that B∗
A = u∗1 − pg, we have B∗

B = λ
r
[g− u∗1]− (u∗1 − gp). Thus,

B∗
B ≥ 0 if and only if u∗1 ≤

λ+rp
λ+r

g =: w1(p). Let p̃ be defined by w1(p̃) = s; it is straightforward to

show that p̃ < p∗1. Noting furthermore that u∗1(p
∗
1) = s, w1(1) = u∗1(1) = g, and that w1 is linear

whereas u∗1 is strictly convex in p, we conclude that u∗1 < w1 and hence B∗
B > 0 on [p∗1, 1[ . As a

consequence, we have u∗1 = pg +B∗
A ≤ pg + k2,BB

∗
B +B∗

A on [p∗, 1].

Now, suppose u1 < u∗1 at some belief. Since s is a lower bound on u1, this, by continuity,

implies the existence of a belief strictly greater than p∗1 where u1 < u∗1 and u′1 ≤ (u∗1)
′. This

immediately yields BA > B∗
A > cA, as well as

kj,ABA + kj,BBB +max{BA − cA, BB − cB, 0} < max{B∗
A − cA, 0},

which, as B∗
A ≥ 0 (cf. Keller, Rady, Cripps, 2005), in turn implies BB < 0 and kj,B = 1. If ki,B = 1,

then u would amount to (1− p)g + 2BB < (1− p)g, a contradiction. Therefore, we have ki,A = 1,

and u = pg +BB +BA at the belief in question. But now,

u1 − u∗1 ≥ pg +BB +BA − (pg +B∗
B +B∗

A) =
λ

r
(u∗1 − u1) > 0,

a contradiction.

An analogous argument applies for u∗2.

Proof of Proposition 4.3

First, I note that 2s − p∗2g = 2s − rsg
(r+2λ)(g−s)+rs

and
λ+r(1−p∗

2
)

λ+r
g = g − r

r+λ
rsg

(r+2λ)(g−s)+rs
are

strictly bigger than s. As p 7→ 2s − pg and p 7→ λ+r(1−p)
λ+r

g are both strictly decreasing in p, this

implies that either player i’s payoff function satisfies ui < min{2s − pg,
λ+r(1−p)

λ+r
g} on the entire

interval ]1 − p∗2, p
∗
2[. By Lemma A.1, this rules out ((1, 0), (1, 0)), ((0, 1), (0, 1)), ((0, 0), (1, 0)) and

((1, 0), (0, 0)) on any open subinterval. Noting that p 7→ 2s − (1 − p)g and p 7→ λ+rp
λ+r

g are both

strictly increasing in p, the same calculations rule out ((0, 1), (0, 0)) and ((0, 0), (0, 1)). Therefore,

((0, 0), (0, 0)) uniquely prevails almost everywhere on ]1− p∗2, p
∗
2[.

Proof of Proposition 5.1

Suppose g
s
≥ 4(r+λ)

2r+3λ . What is to be shown is that the action profiles ((1, 0), (1, 0)) and ((0, 1), (0, 1))

are mutually best responses on ]12 , 1], and [0, 12 [, respectively. At p = 1
2 , admissibility uniquely pins

down a player’s response to the other player’s action. By the characterization of efficiency (cf.

Proposition 3.4), both players’ respective value function if efficiency prevails is given by:

u(p) =

{

(1− p)g + pΩ(p)−
r
2λ

λ
r+λ

g if p ≤ 1
2

pg + (1− p)Ω(p)
r
2λ

λ
r+λ

g if p ≥ 1
2 .

Now, by Lemma A.1, it is sufficient to show that u(p) > max{λ+r(1−p)
λ+r

g, 2s − pg} on ]12 , 1], and

u(p) > max{λ+rp
λ+r

g, 2s−(1−p)g} on [0, 12 [. I shall only consider the former interval, as the argument

pertaining to the latter is perfectly symmetric.
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Simple algebra shows that if g
s
≥ 4(r+λ)

2r+3λ , w(p) := λ+r(1−p)
λ+r

g ≥ 2s − pg everywhere in [12 , 1].

Since u(12) = w(12), and u is strictly increasing while w is strictly decreasing in ]12 , 1[, the claim

follows.

Suppose 2(r+λ)
r+2λ ≤ g

s
<

4(r+λ)
2r+3λ , and define w̃(p) := 2s − pg. It is now straightforward to show

that w̃(12) > w(12) = u(12), and, therefore, by Lemma A.1, there exists a neighborhood to the right

of p = 1
2 in which (1, 0) is not a best response to (1, 0).

Suppose that the stakes are very low, i.e. g
s
<

2(r+λ)
r+2λ . From our characterization of the efficient

solution (cf. Proposition 3.3), we know that BA(p
∗
2, u) =

cA(p∗
2
)

2 , and that the players’ value function

is given by

u(p) =















(1− p)g +
2λp∗

2

2λp∗
2
+r

p (Ω(p)Ω(p∗2))
− r

2λ g if p ≤ 1− p∗2,

s if 1− p∗2 ≤ p ≤ p∗2,

pg +
2λp∗

2

2λp∗
2
+r

(1− p)
(

Ω(p)
Ω(p∗

2
)

)
r
2λ

if p ≥ p∗2.

For the efficient actions to be incentive-compatible, it is necessary that BA ≥ cA on ]p∗2, 1]. Yet,

since u is of class C1, we have that limp↓p∗
2
BA(p, u) =

cA(p∗
2
)

2 < cA(p
∗
2), as p

∗
2 < pm.

Proof of Proposition 5.2

First, I show that p̂ as defined in the proposition indeed exists and is unique in ]p∗1, 1[. It is

immediate to verify that the left-hand side of the defining equation is decreasing, while the right-

hand side is increasing in p̂. Moreover, for p̂ = p∗1, the left-hand side is strictly positive, while the

right-hand side is zero. Now, for p̂ ↑ 1, the left-hand side tends to −∞, while the right-hand side

is positive. The claim thus follows by continuity.

The proposed policies imply a well-defined law of motion for the posterior belief. The function

u satisfies value matching and smooth pasting at p∗1 and 1− p∗1, hence is of class C1. It is strictly

decreasing on ]0, 1− p∗1] and strictly increasing on ]p∗1, 1[. Moreover, u = s+2BB − cB on [0, 1− p̂],

u = s+ kBBB on [1− p̂, 1− p∗1], u = s on [1− p∗1, p
∗
1], u = s+ kABA on [p∗1, p̂] and u = s+2BA− cA

on [p̂, 1], which shows that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).

Consider first the interval ]1− p∗1, p
∗
1[. It has to be shown that BA − cA < 0 and BB − cB < 0.

On ]1 − p∗1, p
∗
1[, we have that u = s and u′ = 0, and therefore BA − cA = λ+r

r
(pg − s). This

is strictly negative if and only if p < pm, which is verified as p∗1 < pm. By the same token,

BB − cB = λ+r
r

((1− p)g − s). This is strictly negative if and only if p > 1− pm, which is verified

as 1− pm < 1− p∗1.

Now, consider the interval ]p∗1, p̂[. Here, BA = cA by construction, as kA is determined by

the indifference condition and symmetry. It remains to be shown that BB ≤ cB here. Using the

relevant differential equation, I find that BB = λ
r
(g−u)+pg−s. This is less than cB = s− (1−p)g

if and only if u ≥ λ+r
λ

g − 2r
λ
s. Yet, λ+r

λ
g − 2r

λ
s ≤ s if and only if g

s
≤ 2r+λ

r+λ
, so that the relevant

inequality is satisfied. The interval ]1− p̂, 1− p∗1[ is treated in an analogous way.

Finally, consider the interval ]p̂, 1[. Plugging in the relevant differential equation yields BA −

BB = u − pg − λ
r
(g − u). This exceeds cA − cB = (1 − 2p)g if and only if u ≥ λ+r(1−p)

λ+r
g, which is
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satisfied as p 7→ λ+r(1−p)
λ+r

g is decreasing and
λ+r(1−p∗

1
)

λ+r
g < s whenever 1 − p∗1 < pm. The interval

]0, 1− p̂[ is dealt with in similar fashion.

Proof of Proposition 5.4

The proposed policies imply a well-defined law of motion for the posterior belief. u is strictly

decreasing on ]0, 12 [ and strictly increasing on ]12 , 1[. Furthermore, as lim
p↑

1
2
u′(p) = lim

p↓
1
2
u′(p) = 0,

the function u is of class C1. Moreover, u = s+2BB−cB on [0, 1−p†], u = s+kBBB on [1−p†, 12 ],

u = s+ kABA on [12 , p
†] and u = s+ 2BA − cA on [p†, 1], which shows that u is indeed the players’

payoff function from ((kA, kB), (kA, kB)).

To establish existence and uniqueness of p†, note that p 7→ λ+r(1−p)
λ+r

g and p 7→ 2s − pg are

strictly decreasing in p, whereas W is strictly increasing in p on ]12 , 1[. Now, W(12) =
r+λ
λ

g − 2r
λ
s.

This is strictly less than
λ+ r

2

λ+r
g and 2s − g

2 whenever g
s
<

4(r+λ)
2r+3λ . Moreover, W(12) strictly exceeds

λ+r(1−pm)
λ+r

g = g − r
r+λ

s and 2s− pmg = s whenever g
s
> 2r+λ

r+λ
. Thus, I have established uniqueness

and existence of p† and that p† ∈]12 , p
m[.

By construction, u > max{λ+r(1−p)
λ+r

g, 2s − pg} in ]p†, 1], which, by Lemma A.1, implies that

((1, 0), (1, 0)) are mutually best responses in this region; by the same token, u > max{λ+rp
λ+r

g, 2s−

(1−p)g} in [0, 1−p†[, which, by Lemma A.1, implies that ((0, 1), (0, 1)) are mutually best responses

in that region.

Now, consider the interval ]12 , p
†]. Here, BA = cA by construction, so all that remains to be

shown is BB ≤ cB. By plugging in the indifference condition on u′, I get BB = λ
r
(g − u) + pg − s.

This is less than cB = s− (1− p)g if and only if u ≥ λ+r
λ

g− 2r
λ
s = W(12) = u(12), which is satisfied

by the monotonicity properties of u. An analogous argument establishes BA ≤ cA on [1−p†, 12 [.
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Chapter 3: The Importance of Being

Honest∗

Nicolas Klein†

Abstract

I analyze the case of a principal who wants to give an agent proper incentives

to investigate a hypothesis which can be either true or false. The agent can shirk,

thus never proving the hypothesis, or he can avail himself of a known technology to

manipulate the data. If the hypothesis is false, a proper investigation never yields
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1 Introduction

Instances abound when a principal, e.g. society, is interested in the investigation of a certain

hypothesis. Indeed, important policy decisions may depend on whether, say, there is a

causal link between passively inhaling other people’s cigarette smoke and the occurrence of

cancer, or whether global warming trends are caused by certain emissions related to specific

kinds of economic activity. Often, though, it will not be practical for “society” to carry out

the necessary research itself; it will rather have to delegate the investigation to a group of

scientists, or, as is the case in my model, to a single scientist. The problem with that, of

course, is that this scientist will typically have interests of his own, some of which may even

be endogenously generated by society’s incentive scheme.

As is well known from the principal-agent literature, when an agent’s actions cannot

easily be monitored, his pay must be made contingent on his performance, so that he have

proper incentives to exert effort. Thus, the scientist will get paid a substantial bonus, or

will be afforded high peer recognition if, and only if, he proves his hypothesis. While this

may well provide him with the necessary incentives to work, unfortunately, it might also give

him incentives to fabricate, or manipulate, his data, in order to make it appear as though

his hypothesis was proved. In a setting involving Bayesian learning on the agent’s part, my

model investigates how optimally to achieve the dual objective of providing the agent with

the right incentives to work, while also making sure that he not be tempted to engage in

manipulations and trickery, even if said manipulations were not verifiable in a court of law,

or even completely unobservable.1

Or think of the owners of a firm, who might be interested in its long-term prospects.

Depending on the incentive scheme they offer management, they may endogenously create

an incentive for the latter to induce a short-term bubble in the price of the firm’s stock.2

Alternatively, one could interpret my model as a model of technology adoption: An agent is

1A case in point, where a scientist’s untoward behavior was eventually discovered, might be provided

by (in)famous South Korean stem cell researcher Hwang Woo-Suk. Mr. Hwang was considered one of the

world’s foremost authorities in the field of stem-cell research, and was even designated his country’s first “top

scientist” by the South Korean Government. He purported to have succeeded in creating patient-matched

stem cells, which would have been a major breakthrough that had raised high hopes for new cures for hitherto

hard-to-treat diseases, and that I am told had been the source of considerable pride in South Korea. Yet, a

university panel found that “the laboratory data for 11 stem cell lines that were reported in the 2005 paper

were all data made using two stem cell lines in total,” forcing Mr. Hwang to resign in disgrace, and causing

a major shock to people in South Korea and throughout the scientific community. I am indebted to Tri-Vi

Dang for alerting me to this story; see e.g. the report by the Associated Press from December, 23, 2005.
2Bolton, Scheinkman, Xiong (2005) analyze a setting where even owners might have an interest in creating

such short-term bubbles, and thus wittingly give incentives to this effect.
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hired expressly to test some new production method, or some new way of doing business, yet

his boss cannot monitor whether the successes he observes are really due to the new method,

or whether the agent has surreptitiously availed himself of an old established method to

produce the observed results.

In my model, the agent can either shirk, in which case he will never have a success, but

which gives him some flow benefit, or he can cheat, which gives him an apparent success

according to some known distribution, or he can do the risky thing, and be honest. If the

hypothesis is incorrect, honesty never yields a success. The principal can only observe if

there has been a success or not; he cannot observe the agent’s actions, and, in particular, he

does not observe if a success has been achieved by honest means or whether it is the result

of manipulation.

I show that if even the investigation of a correct hypothesis yields breakthroughs at a

lower frequency than manipulation, honesty is not implementable at all. If, however, inves-

tigating a correct hypothesis yields breakthroughs at a higher intensity than manipulation,

I characterize the optimal incentive schemes making sure that the agent is always honest up

to the first breakthrough at least.

While actually investigating the hypothesis, the agent increasingly grows pessimistic

about the thesis being true as long as no breakthrough arrives. At the first breakthrough,

though, all uncertainty is resolved, and the agent will know for sure that the hypothesis is

true. Thus, depending on the incentive scheme, this learning aspect might give the agent

additional incentives for investigating the hypothesis. The principal himself has no learning

motive as he is only interested in the first breakthrough achieved on arm 1; however, when

designing the incentive scheme, it will be one of his goals to make information valuable to

the agent as a way of providing incentives.

If honesty is implementable, I show that even though the principal is only interested

in the first breakthrough the agent achieves, he will reward the agent for the (m + 1)-st

breakthrough, with m ≥ 1, in order to deter the agent from engaging in manipulation,

which otherwise might seem expedient to him in the short term. Now, m will be chosen

high enough that even for an off-path agent, who has achieved his first breakthrough via

manipulation, m breakthroughs are so unlikely to be achieved by cheating that he will prefer

to be honest after his first breakthrough. This will put the cheating off-path agent at a

distinct disadvantage, as, in contrast to the honest on-path agent, he will not have had a

discontinuous jump in his belief. This difference in beliefs between on-path and off-path

agents in turn can be leveraged by the principal, who enjoys full commitment power; thus,

the principal can induce investigation of the hypothesis by endogenously creating a high

value of information for the agent.
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To provide adequate incentives in the cheapest way possible, the principal will endeavor

to give the lowest possible value to a dishonest agent, given the continuation value he has

promised the on-path agent. While paying only for the (m + 1)-st breakthrough ensures

that off-path agents will not continue to cheat, they will nevertheless continue to update

their beliefs after their first success, and might be tempted to switch to shirking once they

have grown too pessimistic about the hypothesis, a possibility that, as is well known from

the literature on strategic experimentation with bandits, gives them a positive option value.

When designing his incentive scheme, it will be one of the principal’s goals to reduce this

additional option value. As a matter of fact, I will show that it is possible for the principal to

structure incentives in such a way that cheating will be dominated even by shirking. Thus,

in an optimal scheme, the agent only needs to be compensated for his outside option of

shirking.

The rest of the paper is set up as follows: Section 2 reviews some relevant literature;

Section 3 introduces the model; Section 4 analyzes the provision of a certain continuation

value; Section 5 characterizes the optimal mechanism before the first breakthrough, Section 6

analyzes when the principal will optimally elect to stop the project, and Section 7 concludes.

2 Related Literature

Holmström & Milgrom (1991) analyze a case where, not unlike in my model, the agent

performs several tasks, some of which may be undesirable from the principal’s point of view.

The principal may be able to monitor certain activities more accurately than others. They

show that in the limiting case with two activities where one activity cannot be monitored

at all, incentives will only be given for the activity which can in fact be monitored; if the

activities are substitutes (complements) in the agent’s private cost function, incentives are

more muted (steeper) than in the single task case. While their model could be extended to

a dynamic model where the agent controls the drift rate of a Brownian Motion signal,3 the

learning motive I introduce fundamentally changes the basic trade-offs involved. Indeed, in

my model, the optimal mechanism extensively leverages the fact that only an honest agent

will have had a discontinuous jump in his beliefs.

Bergemann & Hege (1998, 2005), as well as Hörner & Samuelson (2009) examine a

venture capitalist’s provision of funds for an investment project of initially uncertain quality;

the project is managed by an entrepreneur, who might divert the funds for his private ends.

The investor cannot observe the entrepreneur’s allocation of the funds, so that, off-path, the

3See Holmström & Milgrom (1987).
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entrepreneur may accumulate some private information about the quality of the project. If

the project is good, it yields a success with a probability that is proportional to the amount

of funds invested in it; if it is bad, it never yields a success. While Bergemann & Hege (2005)

and Hörner & Samuelson (2009) analyze the game without commitment, Bergemann & Hege

(1998) investigate the problem under full commitment. These papers differ from my model

chiefly in that there is no way for the entrepreneur to “fake” a success; any success that is

publicly observed will have been achieved by honest means alone.

Gerardi & Maestri (2008) investigate the case of a principal who, in order to find out

about the binary state of the world, has to employ an agent. The agent can decide to

incur private costs to exert effort to acquire an informative binary signal, one realization of

which is only possible in the good state. As for the principal, he can monitor neither the

agent’s effort choice nor the realization of the signal. The game ends as soon as the agent

announces that he has had conclusive evidence in favor of the good state. They show that

the agent needs to be left an information rent because of both the Moral Hazard and the

Adverse Selection problems. In my model, by contrast, the game does not end after the

first breakthrough; much to the contrary, I show that in my model, in order to give optimal

incentives, it is absolutely vital that they be provided via the continuation game that follows

the first breakthrough rather than via an immediate transfer.

One paper that is close in spirit to mine is Manso (2010), who analyzes a two-period

model where an agent can either shirk, try to produce in some established manner with a

known success probability, or experiment with a risky alternative. He shows that, in order to

induce experimentation, the principal will optimally not pay for a success in the first period,

and might even pay for early failure,4 while a success in the second period is always rewarded.

My continuous-time investigation confirms Manso’s (2010) central intuition that it is better

to give incentives through later rewards; furthermore, the richer action and signal spaces in

my fully-fledged dynamic model yield additional insights into the structure of the optimal

incentive scheme. Moreover, the dynamic structure allows me to analyze the principal’s

optimal stopping time.

De Marzo & Sannikov (2008) also incorporate private learning on the agent’s part into

their model, where current output depends both on the firm’s inherent profitability and on

the agent’s effort, which is unobservable to the principal. Thus, off-path, the agent’s private

belief about the firm’s productivity will differ from the public belief. Specifically, if the agent

4This is an artefact of the discrete structure of the model and the limited signal space; indeed, in Manso’s

(2010) model, early failure can be a very informative signal that the agent has not exploited the known

technology, but has rather chosen the risky, unknown alternative. In continuous time, by contrast, arbitrary

precision of the signal can be achieved by choosing a critical number of successes that is high enough, as will

become clear infra.
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withholds effort, this depresses the drift rate of the firm’s Brownian motion cash flow. They

show that the firm will optimally accumulate cash as fast as it can until it reaches some

target level, after which it starts paying out dividends; the firm is liquidated as soon as it

runs out of cash. De Marzo & Sannikov (2008) show that one optimal way of providing

incentives is to give the agent an equity stake in the firm, which is rescindable in the case of

liquidation, and that liquidation decisions are efficient, agency problems notwithstanding.

To capture the learning aspect of the agent’s problem, I model it as a bandit problem.5

Bandit problems have been used in economics to study the trade-off between experimentation

and exploitation since Rothschild’s (1974) discrete-time single-agent model. The single-

agent two-armed exponential model, a variant of which I am using, has first been analyzed

by Presman (1990). Strategic interaction among several agents has been analyzed in the

models by Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010),

who all investigate the case of perfect positive correlation between players’ two-armed bandit

machines, as well as in Chapter 1, where the cases of perfect, as well as imperfect, negative

correlation are investigated. Chapter 2 analyzes the case where bandits have three arms, with

the two risky ones being perfectly negatively correlated. While the afore-mentioned papers

all assumed that players’ actions, as well as the outcomes of their actions, were perfectly

publicly observable, Rosenberg, Solan, Vieille (2007), as well as Murto & Välimäki (2009),

analyze the case where actions are observable, while outcomes are not. Bonatti & Hörner

(2010) analyze the case where actions are not observable, while outcomes are. Bergemann

& Välimäki (1996, 2000) consider strategic experimentation in buyer-seller interactions. My

contribution to this literature is to introduce the question of optimal incentive provision into

a fully-fledged dynamic bandit model.

Rahman (2009, 2010) deals with the question of implementability in dynamic contexts,

and finds that, under a full support assumption, a necessary and sufficient condition for

implementability is for all non-detectable deviations to be unprofitable under zero transfers.

The issue of implementability turns out to be quite simple in my model, and is dealt with

in Proposition 3.1.

3 The Model

There is one principal and one agent. The agent operates a bandit machine with three arms,

i.e. one safe arm yielding the agent a private benefit flow of s, one that is known to yield

breakthroughs according to Po(λ0) (arm 0), and arm 1, which either yields breakthroughs

5See Bergemann & Välimäki (2008) for an overview of this literature.
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according to Po(λ1) (if the time-invariant state of the world θ = 1, which is the case with

initial probability p0 ∈]0, 1[) or never yields a breakthrough (if the state is θ = 0). It is

commonly known that λ1, λ0 > 0. The principal only observes if, and at what time, there

has been a breakthrough; he does not observe on which arm the breakthrough has been

achieved. The agent in addition observes on which arms the breakthroughs have occurred.

The principal and the agent share a common discount rate r.

The principal, only being interested in the first breakthrough achieved on arm 1, chooses

an end date Ť (t) ∈ [t, T ] (where T ∈]T,∞[ is arbitrary), in case the first breakthrough occurs

at time t. Conditional on there having been no breakthrough, the game ends at time T < ∞.

I the first half of this paper, I take T to be exogenously given, and assume the principal

always wants to incentivize the agent to use arm 1 up until the first breakthrough at least.

In the second half, the principal optimally chooses the end date T .6 There, I shall assume

that the first breakthrough achieved on arm 1 at time t gives the principal a payoff of e−rtΠ.

Formally, I consider the point processes {N i
t}0≤t≤T (for i ∈ {0, 1}), where N i

t measures

the number of breakthroughs achieved on arm i up to, and including, time t. In addition, I

define the point process {Nt}0≤t≤T , where Nt := N0
t +N1

t for all t. Moreover, I consider the

filtrations F := {Ft}0≤t≤T and FN :=
{
FN
t

}

0≤t≤T
generated by the processes {(N0

t , N
1
t )}0≤t≤T

and {Nt}0≤t≤T , respectively.

By choosing which arm to pull, the agent affects the probability of breakthroughs on

his several arms. Specifically, if he commits a constant fraction k0 of his unit endowment

flow to arm 0 over a time interval of length ∆ > 0, the probability of achieving at least one

breakthrough on arm 0 in that interval is given by 1 − e−λ0k0∆. If he commits a constant

fraction of k1 of his endowment to arm 1 over a time interval of length ∆ > 0, the probability

of achieving at least one breakthrough on arm 1 in that interval is given by θ
(
1− e−λ1k1∆

)
.

Formally, a strategy for the agent is a process k := {(k0,t, k1,t)}t which satisfies (k0,t, k1,t) ∈

{(a, b) ∈ R+ : a+ b ≤ 1} for all t, and is F-predictable, where ki,t (i ∈ {0, 1}) denotes the

fraction of the agent’s resource that he devotes to arm i at instant t. The agent’s strategy

space, which I denote by U , is given by all the processes k satisfying these requirements.

I denote the set of abridged strategies kT prescribing the agent’s actions before the first

breakthrough by UT .

A wage scheme offered by the principal is a non-negative, non-decreasing process {Wt}0≤t≤T

which is FN -adapted, where Wt denotes the discounted time 0 value of the cumulated pay-

6I am essentially following Grossman & Hart’s (1983) classical approach to principal-agent problems in

that I first solve for the optimal incentive scheme given an arbitrary T (sections 4 and 5), and then let the

principal optimize over T (Section 6).
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ments the principal has consciously made to the agent up to, and including, time t. I

assume the agent is protected by limited liability; hence {Wt}0≤t≤T is non-negative and

non-decreasing.7 I furthermore assume that the principal has full commitment power, i.e.

he commits to a wage scheme {Wt}0≤t≤T , as well as a schedule of end dates {Ť (t)}t∈[0,T ], at

the outset of the game.

Over and above the payments he gets as a function of breakthroughs, the agent can

secure himself a safe payoff flow of s from the principal by pulling the safe arm; the principal,

however, can do nothing about this, and only observes it after the end of the game. The

idea is that society cannot observe its scientists shirking in real time, as it were; only after

the lab e.g. is shut down, such information might come to light, and society will only learn

ex post that it has been robbed of the payoff flow of s during the operation of the research

lab.

It is the principal’s goal to induce the agent to use arm 1 at least up to the first

breakthrough, and to do so in the most cost-efficient manner possible. Thus, I shall denote

the set of full-experimentation strategies by K := {k ∈ U : ∀ t ∈ [0, T ] : Nt = 0 ⇒ k1,t = 1}.

Clearly, as the principal wants to minimize wage payments subject to implementing a full-

experimentation strategy, it is never a good idea for him to pay the agent in the absence of

a breakthrough; moreover, since the principal is only interested in the first breakthrough,

the notation can be simplified somewhat. Let {Wt}0≤t≤T be the principal’s wage scheme,

and t the time of the first breakthrough: In the rest of the paper, I shall write ht :=

ert (Wt − limτ↑t Wτ ) for the instantaneous lump sum the principal pays the agent as a reward

for his first breakthrough. By wt I denote the expected continuation value of an agent who

has achieved his first breakthrough on arm 1 at time t, given he will behave optimally in the

future; formally,

wt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E
[

ert
(
WŤ (t) −Wt

)

+s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |Ft, N
1
t = 1, lim

τ↑t
N1

τ = 0, N0
t = 0, {(k0,τ , k1,τ )}t<τ≤Ť (t)

]

,

i.e. the expectation conditions on the agent’s knowledge that the first breakthrough has been

achieved on arm 1 at time t. The corresponding expected continuation payoff of an off-path

7If the game ends at time Ť < T , we set W
Ť+∆ = W

Ť
for all ∆ > 0.
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agent, who achieves his first breakthrough on arm 0 at time t, I denote by ωt; formally,

ωt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E
[

ert
(
WŤ (t) −Wt

)

+s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |Ft, N
0
t = 1, lim

τ↑t
N0

τ = 0, N1
t = 0, {(k0,τ , k1,τ )}t<τ≤Ť (t)

]

.

The state of the world is uncertain; clearly, whenever the agent uses arm 1, he gets

new information about its quality; this learning is captured in the evolution of his (private)

belief p̂t that arm 1 is good. Formally, p̂t := E [θ|Ft, {(k0,τ , k1,τ )}0≤τ<t]. On the equilibrium

path, the principal will correctly anticipate p̂t; formally, pt = p̂t, where pt is defined by

pt := E
[
p̂t|F

N
t ,k ∈ K

]
.

The evolution of beliefs is easy to describe, since only a good arm 1 can ever yield a

breakthrough. By Bayes’ rule,

p̂t =
p0e

−λ1

∫ t

0 k1,τ dτ

p0e
−λ1

∫ t

0 k1,τ dτ + 1− p0
,

and
˙̂pt = −λ1k1,tp̂t(1− p̂t)

prior to the first breakthrough. After the agent has achieved at least one breakthrough on

arm 1, his belief will be p̂t = 1 forever thereafter.

As, in equilibrium, the agent will always operate arm 1 until the first breakthrough, it

is clear that if on the equilibrium path Nt ≥ 1, then pt+∆ = 1 for all ∆ > 0. If Nt = 0,

Bayes’ rule implies that

pt =
p0e

−λ1t

p0e−λ1t + 1− p0
.

In the following, I shall write pt whenever pt = p̂t, even when analyzing the agent’s opti-

mization problem.

Now before the first breakthrough, given an arbitrary incentive scheme g := (ht, wt)0≤t≤T ,

the agent seeks to choose kT ∈ UT so as to maximize
∫ T

0

{

re−rt−λ1

∫ t

0 pτk1,τ dτ−λ0

∫ t

0 k0,τ dτ [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt) + k1,tλ1pt(ht + wt)]
}

dt.

subject to ṗt = −λ1k1,tpt(1− pt).

The following impossibility result is now immediate:

Proposition 3.1 If λ0 ≥ λ1, there does not exist a wage scheme {Wt}0≤t≤T implementing

any strategy in K.
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Proof: Suppose λ0 > λ1. Then, any distribution over {Nt}0≤t≤T that can be generated

by a good arm 1 can be generated by a combination of arm 0 and the safe arm that puts

strictly positive weight on the safe arm. As the safe arm gives the agent an instantaneous

flow utility of s > 0, the latter option strictly dominates the former. If λ0 = λ1, arm 0

dominates arm 1 since p̂t < 1 before the first breakthrough.

In the rest of the paper, I shall therefore assume that λ1 > λ0. When we denote the set

of solutions to the agent’s problem that is implemented by an incentive scheme g as k∗(g),

the principal’s problem is to choose g = (ht, wt)0≤t≤T so as to minimize his wage bill
∫ T

0

re−rt−λ1

∫ t

0 pτ dτptλ1(ht + wt) dt

subject to k∗(g) ∩ K 6= ∅ and pt =
p0e

−λ1t

p0e
−λ1t+1−p0

.

In the next two sections, I shall consider the end date T as given. In Section 6, the

principal will optimally choose this end date T . Thus far, we have been silent on how the

continuation value of wt is delivered to the agent after his first breakthrough. It will turn

out, though, that the manner in which the principal gives the agent his continuation value

will matter greatly, as we will see in the next section.

4 Incentives After The Breakthrough

4.1 Introduction

The purpose of this section is to analyze how the principal will deliver a promised continua-

tion value of wt given a first breakthrough has occurred at time t. His goal will be to find a

scheme which maximally discriminates between an agent who has achieved his breakthrough

on arm 1, as he was supposed to, and an agent who has been “cheating”, i.e. who has achieved

the breakthrough on arm 0. Put differently, for any given promise wt to the on-path agent,

it is the principal’s goal to push the off-path agent’s continuation value ωt down, as this

will give him a bigger bang for his buck in terms of incentives. As an off-path agent always

has the option of imitating the on-path agent’s strategy, we know that ωt ≥ p̂twt, where

p̂t ∈ [pt, p0] denotes his (off-path) belief at time t. The following proposition summarizes

the main result of this section; it shows that, as a function of p̂t, ωt can be pushed arbitrarily

close to this lower bound.

Proposition 4.1 For every ǫ > 0, wt ≥ 0, there exists a continuation scheme such that

ωt(p̂t) ≤ p̂twt +
s
r
(1− e−rǫ) for all p̂t ∈ [pt, p0].
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Proof: Proof is by construction, see infra.

The construction of this wage scheme relies on the assumption that λ1 > λ0, implying

the variance in the number of successes with a good risky arm 1 is higher than with arm 0.

Therefore, the principal will structure his wage scheme in such a way as to reward realizations

in the number of later breakthroughs that are “extreme enough” that they are very unlikely

to have been achieved on arm 0 as opposed to arm 1. Thus, even the most pessimistic of

off-path agents would prefer to bet on his arm 1 being good rather than pull arm 0. Yet, now,

in contrast to the off-path agents, an on-path agent will know for sure that his arm 1 is good,

and therefore has a distinct advantage in expectation when facing the principal’s payment

scheme after a first breakthrough. The agent’s anticipation of this advantage in turn gives

him the right incentives to use arm 1 rather than arm 0 before the first breakthrough occurs.

4.2 Construction of An Optimal Continuation Scheme

My construction proceeds in several steps. First, the principal will only pay the agent for

the m-th breakthrough after time t, where m is chosen large enough that any, even the most

pessimistic of off-path agents will deem m breakthroughs more likely to occur on arm 1 than

on arm 0. Then, for a given ǫ > 0, I make sure that even the most pessimistic of off-path

agents, whose belief p̂t = pt, will not switch to playing safe with more than ǫ time left to go.

This requires a certain minimum lump sum reward for the m-th breakthrough. Then, given

this reward, the end date Ť (t) is chosen appropriately so that the on-path agent exactly

receives his promised continuation value of wt in expectation.

Specifically, the agent is only paid a constant lump sum of V 0 after his m-th break-

through after time t, where m is chosen sufficiently high that even for the most pessimistic

of all possible off-path agents, arm 1 dominate arm 0. As λ1 > λ0, such an m exists, as the

following lemma shows:

Lemma 4.2 There exists an integer m such that if the agent is only paid a lump sum reward

V 0 > 0 for the m-th breakthrough, arm 1 dominates arm 0 for any type of off-path agent

whenever he still has m breakthroughs to go before collecting the lump sum reward.

Proof: See appendix.

Intuitively, the likelihood ratio of m breakthroughs being achieved on arm 1 vs. arm 0 on the

time interval (t, Ť (t)], p̂t

(
λ1

λ0

)m

e−(λ1−λ0)(Ť (t)−t), is unbounded in m. The proof now shows

that when m exceeds certain thresholds, it indeed never pays for the agent to use arm 0.
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Now, given m, Ť (t), and V 0, I recursively define the auxiliary functions Vi(.;V 0) :

[t, Ť (t)] −→ R for i = 1, · · · ,m according to

Vi(t̃;V 0) := max
{ki,τ}∈M(t̃)

∫ Ť (t)

t̃

e−r(τ−t̃)−λ1

∫ τ

t̃
k1,χ dχ

[
s+ ki,τ

(
λ1Vi−1(τ ;V 0)− s

)]
dτ,

whereM(t̃) denotes the set of measurable functions ki : [t̃, Ť (t)] → [0, 1], and I set V0(τ ;V 0) :=

V 0 +
s
r

(

1− e−r(Ť (t)−τ)
)

. Thus, Vi(t̃;V 0) denotes the agent’s continuation value at time t̃

given the agent knows that θ = 1 and that he has i breakthroughs to go before being able

to collect the lump sum V 0.

The following lemma notes that, once the agent knows that θ = 1, a best response

for him is given by a cutoff time t∗i at which he switches to the safe arm given he has i

breakthroughs to go. It also takes note of some useful properties of these functions Vi:

Lemma 4.3 Let V 0 > s
λ1
. A best response for the agent is given by a sequence of cutoff

times t∗m ≥ · · · ≥ t∗2 > t∗1 = Ť (t) (with all inequalities strict if t∗m−1 > t), such that he use

arm 1 at all times t̃ ≤ t∗i , and the safe arm at times t̃ > t∗i , when he still has i breakthroughs

to go before collecting the lump sum V 0. For i = 2, · · · ,m, there exists a constant Ci such

that for V 0 > Ci, the cutoff time t∗i is strictly increasing in V 0. The functions Vi(.;V 0) are of

class C1 and strictly decreasing; for t̃ < t∗i , Vi(t̃;V 0) is strictly increasing in V 0. Moreover,

limV 0→∞ t∗i = Ť (t), and limV 0→∞ Vi(t̃;V 0) = ∞ for any t̃ ∈ [t, Ť (t)). The functions Vi

satisfy

Vi(t̃;V 0) = max
t̂∈[t̃,Ť (t)]

∫ t̂

t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ +
s

r
e−(r+λ1)(t̂−t̃)

(

1− e−r(Ť (t)−t̂)
)

,

and Vi(t̃;V 0) ≤ Vi−1(t̃;V 0), with the inequality strict for t̃ < t∗i .

Proof: See appendix.

In our next lemma, I shall derive a sufficient condition on Vm−1(t̃;V 0) for any type of

off-path agent always to play risky up to some given time t̃ < Ť (t). This will then allow me,

in a next step, to choose V 0 in a way that makes sure that the sufficient condition holds at

Ť (t)− ǫ, in case Ť (t)− t ≥ ǫ.

Lemma 4.4 If Vm−1(t̃;V 0) ≥
s(r+λ1)
p
T
rλ1

, any type of (off-path) agent who has not yet collected

the lump sum V 0 will use arm 1 a.e. on (t, t̃].

Proof: See appendix.
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In what will follow, it will be crucial that my choice of V 0 be independent of Ť (t). To

make this clear, I shall now use the transformation Ṽi(α;V0), which is defined by

Ṽi(α;V0) := max
α̂∈[0,α]

∫ α̂

0

e−(r+λ1)τλ1Ṽi−1(α− τ ;V 0) dτ +
s

r
e−(r+λ1)(α−α̂)

(
1− e−rα̂

)
,

with Ṽ0(α;V0) = V 0+
s
r
(1− e−rα). It is immediate to verify that Ṽi(α;V 0) = Vi(Ť (t)−α;V 0)

for any given Ť (t) ∈ [t+α, T ]; in other terms, the value Vi at any point in time t̃ only depends

on the remainder of time, α = Ť (t)− t̃.

Now, by Lemma 4.3, one can choose a reward V 0 such that, for given ǫ > 0, Ṽm−1(ǫ;V 0) ≥
s(r+λ1)
p
T
rλ1

. By Lemma 4.4, this guarantees that all types of agents will play risky at the very

least until there is only ǫ time left to go (or they have collected the prize).

Thus, through our choice of m, we have made sure that the agent will never use arm 0.

Through our choice of V 0, we can make sure that the agent will use arm 1 at least through

time Ť (t) − ǫ. After that, he may switch to the safe arm at a time that depends on his

previous experience with arm 1. Since he will get to play the safe arm for a length of time

of at most ǫ, the option value from being able to switch to the safe arm is bounded above

by s
r
(1− e−rǫ).

As a last step, we now need to make sure that the on-path agent is indeed delivered an

expected continuation value of wt. In order to do so, I first define another auxiliary function

f : [t, T ]× R+ −→ R by f(Ť (t), V 0) = Vm(t;V 0; Ť (t)), where, in a slight abuse of notation,

I write Vm(t;V 0; Ť (t)) for Vm(t;V 0) given the end date Ť (t). Thus, f(Ť (t), V 0) maps the

choice of the stopping time Ť (t) into the on-path agent’s time-t expected payoff, given the

reward V 0. The following lemma notes some properties of f :

Lemma 4.5 f(., V 0) is of class C1 and strictly increasing with f(t;V 0) = 0.

Proof: See appendix.

Now, if wt ≤ f(T , V 0), Lemma 4.5 implies that we can choose Ť (t) so that wt =

f(Ť (t), V 0). Otherwise, since limV 0→∞ f(Ť (t), V 0) = ∞ for any Ť (t) ∈ (t, T ], we can choose

a constant δ > 0 high enough so that wt ≥ f(T , V 0 + δ); then, by Lemma 4.5, we can find a

Ť (t) ∈ (t, T ] so that wt = f(Ť (t), V 0 + δ).

Now, with Ť (t) chosen as described, it may well be the case that ǫ ≥ Ť (t) − t. In this

case, it might well happen that an off-path agent prefers to play safe all along on (t, Ť (t)],

in which case he collects a payoff of s
r
(1− e−r(Ť (t)−t)) ≤ s

r
(1− e−rǫ) ≤ s

r
(1− e−rǫ) + p̂twt. Or

otherwise, the agent might play risky for a while, and switch to safe after a period of length
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ξ ≤ Ť (t) − t ≤ ǫ, in which case his payoff is bounded above by s
r
(1 − e−r(Ť (t)−t)) + p̂twt ≤

s
r
(1− e−rǫ) + p̂twt.

Thus, in summary, the mechanism I have constructed delivers a certain given continu-

ation value of wt to the on-path agent; it must take care of two distinct concerns in order

to harness maximal incentive power at a given cost. On the one hand, it must make sure

off-path agents never continue to play arm 0; this is achieved by only rewarding the m-th

breakthrough after time t. On the other hand, the mechanism must preclude the more pes-

simistic off-path agents from collecting an excessive option value from switching between the

safe arm and arm 1, so as to make being an off-path agent none too attractive.

5 Before the Breakthrough–Optimal Incentive Scheme

Whereas in the previous section, I have investigated how a principal would optimally deliver

a given continuation value wt, the purpose of this section is to understand to what extent the

principal would optimally give incentives via continuation values wt, as opposed to immediate

rewards ht, which are paid out right at the moment of the first breakthrough. I shall show in

this section that, by Proposition 4.1, arm 0 can be made so unattractive that in any optimal

scheme it is dominated by the safe arm. Thus, in order to induce the agent to use arm 1, he

only needs to be compensated for his outside option of playing safe (Proposition 5.4), which

pins dow the principal’s wage costs (Corollary 5.5).

In order formally to analyze this question, we first have to consider the agent’s best

response to a given incentive scheme (ht, wt)0≤t≤T , in order to derive conditions for the agent

to best reply by always using arm 1 until the first breakthrough. In a second step, we will

then use these conditions as constraints in the principal’s problem as he seeks to minimize his

wage bill. While the literature on experimentation in bandits would typically use dynamic

programming techniques, this would not be expedient here, as an agent’s optimal strategy

will depend not only on his current belief and the current incentives he is facing but also

on the entire path of future incentives. To the extent we do not want to impose any ex

ante monotonicity constraints on the incentive scheme, today’s scheme need not be a perfect

predictor for the future path of incentives; therefore, even a three-dimensional state variable

(pt, ht, wt) would be inadequate. Thus, I shall be using the Pontryagin approach of Optimal

Control.
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The Agent’s Problem

Given an incentive scheme (ht, wt)0≤t≤T , the agent chooses (k0,t, k1,t)0≤t≤T so as to maximize

∫ T

0

{

re−rt−λ1

∫ t

0 pτk1,τ dτ−λ0

∫ t

0 k0,τ dτ [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(pt)) + k1,tλ1pt(ht + wt)]
}

dt.

subject to ṗt = −λ1k1,tpt(1− pt).

It will turn out to be useful to work with the log-likelihood ratio xt := ln
(

1−pt
pt

)

,

and the probability of no success on arm 0, yt := e−λ0

∫ t

0 k0,τ dτ , as the state variables in

our variational problem. These evolve according to ẋt = λ1k1,t (to which law of motion

I assign the co-state µt) and ẏt = −λ0k0,tyt (co-state γt), respectively. The initial values

x0 = ln
(

1−p0
p0

)

and y0 = 1 are given, and xT and yT are free. The agent’s controls are

(k0,t, k1,t) ∈ {(a, b) ∈ R+ : a+ b ≤ 1}.

Neglecting a constant factor, the Hamiltonian Ht is now given by8

Ht = e−rtyt[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt))]

+ yte
−rt−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}

+ µtλ1k1,t − γtλ0k0,tyt.

By the Maximum Principle, the equations (1), (2), (3), together with the transversality

conditions γT = µT = 0, are necessary for the agent’s behaving optimally by setting k1,t = 1

for all t:

µ̇t = e−rtyt
{
e−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]

−k0,tλ0(1 + e−xt)ω′(xt)
}
, (1)

γ̇t = −e−rt{[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt))]

+ e−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}+ γtλ0k0,t , (2)

e−rtyt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1

≥ max
{
0, e−rtyt(1 + e−xt)[λ0(ht + ωt(xt))− s]− γtλ0yt

}
. (3)

In the appendix, it is shown that these conditions are also sufficient for optimality of

the agent’s behavior, thus validating my first-order approach.

8In a slight abuse of notation, I now write ωt as a function of xt.
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The Principal’s Problem

Now, we turn to the principal’s problem, who will take the agent’s incentive constraint into

account when designing his incentive scheme with a view toward implementing k1,t = 1

for almost all t ∈ [0, T ]; I shall refer to incentive schemes implementing this kind of full

experimentation as incentive compatible. We note that k1,t = 1 for all t implies yt = 1 for

all t. Thus, the principal’s objective is to choose (ht, wt)0≤t≤T ∈ [0, L]2 (for some L which I

choose large enough) so as to minimize

∫ T

0

re−rt−λ1

∫ t

0 pτ dτptλ1(ht + wt) dt

subject to the constraints (1), (2), (3), and the transversality conditions µT = γT = 0.

Neglecting constant factors and using the fact that full experimentation implies that

xt = x0 + λ1t, one can re-write the principal’s objective in terms of the log-likelihood ratio

as ∫ T

0

e−(r+λ1)t(ht + wt) dt.

This can be viewed as a variational problem with the co-state variables (µt, γt) from the

agent’s problem as the state variables. As we have seen, µt and γt evolve according to

µ̇t = e−rt−xtλ1(ht + wt),

and

γ̇t = −e−rt−xtλ1(ht + wt) = −µ̇t.

In the following lemma, I make precise the intuition that if a plan is optimal, the agent’s

incentive constraint will bind for almost all t.

Lemma 5.1 In any optimal plan, the agent’s incentive constraint binds a.s.

Proof: Suppose (ht, wt)0≤t≤T is an optimal plan. As the plan is optimal, it must be in-

centive compatible for a.a. t. This means that either ht > 0 or wt > 0 for a.a. t, for

otherwise playing safe is a strictly dominant action for the agent. Now, suppose that, under

(ht, wt)0≤t≤T , the incentive constraint was slack on a set of positive measure. This means

that there exists an interval [t1, t2], with t1 < t2, such that the incentive constraint is slack

a.e. on [t1, t2]. Then there exists a collection (ǫt)t1≤t≤t2 with ǫt > 0 and a plan (h̃t, w̃t)0≤t≤T

satisfying (h̃t, w̃t) = (ht, wt) if t ∈ [0, t1) ∪ (t2, T ], and h̃t + w̃t = ht + wt − ǫt if t ∈ [t1, t2]

such that (h̃t, w̃t) would be incentive compatible given the old state variable µt. It follows

immediately from the explicit expression for the incentive constraint that (h̃t, w̃t) is incentive
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compatible given the new state variable µ̃t if µ̃t ≥ µt. Yet the appertaining law of motion

immediately implies that µ̃t = µt if t > t2, and µ̃t = µt + λ1

∫ t2

t
e−rτ−xτ ǫτ dτ ≥ µt otherwise,

where we set ǫt = 0 for t < t1. Hence, (h̃t, w̃t) is incentive compatible, and, as [t1, t2] has

positive measure, the principal is strictly better off under (h̃t, w̃t)0≤t≤T , contradicting the

optimality of (ht, wt)0≤t≤T .

In the next lemma, we shall see that it can never be strictly optimal for the principal

to pay for the first breakthrough:

Lemma 5.2 The principal can without loss restrict himself to plans (ht, wt)0≤t≤T with ht = 0

for all t.

Proof: Consider an incentive compatible plan (ĥt, ŵt)0≤t≤T with ĥt > 0 for some t. Con-

sider the alternative plan (ht, wt)0≤t≤T with ht = 0 and wt = ŵt + ĥt. As is apparent from

the explicit expression for µ̇t, µt is unaffected by the change; applying Proposition 4.1 for

the same ǫ in both cases, one shows that (ht, wt)0≤t≤T is incentive compatible. Moreover, it

gives the principal exactly the same payoff as the original plan (ĥt, ŵt)0≤t≤T .

The intuition for this result is that when paying an immediate lump sum for the first

breakthrough, the principal cannot discriminate between an agent who has achieved his first

breakthrough on arm 0, and an equilibrium agent who will enjoy an informational advantage

in the continuation game. Indeed, by Proposition 4.1, the principal can make sure that an

increase in wt translates into less of an increase in ωt, whereas ht is paid out indiscriminately

to on-path and off-path agents alike. Hence, incentive provision can only be helped when

incentives are given through the continuation game rather than through immediate lump

sum payments.

Now, we are ready to characterize the optimal incentive scheme, which is essentially

unique in the class of optimal schemes with ht = 0 for a.a. t, as the following proposition

shows. The characterization relies on the fact, which we have formalized in Lemma 5.1, that

it never pays for the principal to give strict rather than weak incentives for the agent to do

the right thing, because if he did, he could lower his expected wage bill while still providing

adequate incentives. This means that the agent is indifferent between doing the right thing

and using arm 1, on the one hand, and his next best outside option on the other hand. Yet,

the wage scheme we have constructed in Section 4 makes sure that the agent’s best outside

option can never be arm 0. Indeed, playing arm 0 yields the agent approximately ptwt after

a breakthrough, which occurs with an instantaneous probability of λ0dt if arm 0 is pulled

over a time interval of infinitesimal length dt. Arm 1, by contrast, yields wt in case of a
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breakthrough, which occurs with an instantaneous probability of ptλ1dt; thus, as λ1 > λ0,

arm 1 dominates arm 0. Any optimal incentive scheme now has the property that the agent

is exactly indifferent between the safe arm and arm 1. To facilitate the statement of the

next two propositions, it is judicious to define the function w̃(t), the reward that the agent

has to be paid to be kept indifferent between using arm 1 and the safe arm, given he will

use arm 1 at all future times:

w̃(t) :=

{
s

λ1pt
+ s

r
(1− e−r(T−t)) + 1−pt

pt

s
r−λ1

(
1− e−(r−λ1)(T−t)

)
if r 6= λ1

s
λ1pt

+ s
r
(1− e−r(T−t)) + 1−pt

pt
s(T − t) if r = λ1.

Before I characterize the full set of optimal wage schemes, I first take note of the

essentially unique optimal scheme with the feature that ht = 0 for all t, as doing so facilitates

our proof later on:

Proposition 5.3 An optimal wage scheme is given by ht = 0 and wt = w̃(t) for all t ∈ [0, T ].

Proof: By Lemma 5.2, we know that the principal can without loss restrict himself to wage

schemes (ht, wt)0≤t≤T with ht = 0 for all t. If such a scheme is optimal, Lemma 5.1 implies

that, for a.a. t, one of the following two constraints will bind almost surely:

e−rt
[
e−xtλ1wt − (1 + e−xt)s

]
+ µtλ1 ≥ 0, (4)

e−rt
[
e−xtλ1wt − (1 + e−xt)s

]
+ µtλ1 ≥ e−rt(1 + e−xt) [λ0ωt(xt)− s] + µtλ0. (5)

Now, suppose that the constraint (4) is slack on a set of positive measure. This means that

there exist times t1 < t2 such that (4) is slack a.s. on [t1, t2]. Lemma 5.1 now implies that

constraint (5) will bind a.s. on [t1, t2]. Simple algebra now shows that for (4) to hold given

that (5) binds, it has to be the case that ωt ≥ ptwt +
(

1
λ0

− 1
λ1

)

s a.e. on [t1, t2]. Yet, by

Proposition 4.1, there exists an alternative scheme (h̃t, w̃t, ω̃t) with h̃t := ht = 0 and w̃t := wt

for all t, yet ω̃t < ptwt +
(

1
λ0

− 1
λ1

)

s. Clearly, (h̃t, w̃t, ω̃t) = (ht, wt, ω̃t) still satisfies (4) with

slackness a.e. on [t1, t2], since (4), as well as µt, are independent of ω̃t. Since ω̃t < ωt a.e.

on [t1, t2], it follows that (5) is now also slack a.s. on [t1, t2]. Hence, by the same argument

as in the proof of Lemma 5.1, there exists a sequence of (δt)t1≤t≤t2 with δt > 0 such that,

for ŵt := wt − δt, (ht, ŵt, ω̃t) satisfy both constraints and imply lower wage costs for the

principal on [t1, t2], a set of positive measure, contradicting the optimality of (ht, wt, ωt).

Thus, we have shown that if ht = 0 for all t, and (ht, wt) is optimal, then (4) binds a.s.

Conversely, this scheme is clearly optimal, since it is impossible further to reduce wt on any

time interval of positive measure without violating (4). Furthermore, as we have discussed,
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we have that µt = −λ1

∫ T

t
e−rτ−xτwτ dτ , which we can plug into condition (4) to solve for

wt, thus completing the proof.

That the agent will be kept indifferent between arm 1 and the safe arm is a feature of

any optimal wage scheme, as the following proposition shows:

Proposition 5.4 Any optimal wage scheme (ht, wt)0≤t≤T has the property that, prior to

the first breakthrough, it keeps the agent indifferent between arm 1 and the safe arm almost

surely.

Proof: Proof is by contradiction. Suppose to the contrary that (ht, wt)0≤t≤T is an optimal

wage scheme with the property that the agent strictly prefers arm 1 over the safe arm a.s.

on some interval [t1, t2] with 0 ≤ t1 < t2 ≤ T . In a first step, I shall show that this implies

that ht > 0 a.s. on [t1, t2], which, as I show in a second step, contradicts the optimality of

(ht, wt)0≤t≤T .

Indeed, suppose it is not the case that ht > 0 a.s. on [t1, t2]. Then, there exists a

time interval [t′1, t
′
2] ⊆ [t1, t2] such that t′1 < t′2 and ht = 0 a.s. on [t′1, t

′
2]. Since the agent

a.s. strictly prefers arm 1 over the safe arm on this interval, it follows by Lemma 5.1 that

the constraint (5) will bind a.s. on [t′1, t
′
2], which, by the same argument as in the proof of

Proposition 5.3, contradicts optimality.

Therefore, ht > 0 a.s. on [t1, t2]. As the agent strictly prefers arm 1 over the safe arm,

Lemma 5.1 implies that the incentive constraint

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1 ≥ e−rt(1 + e−xt) [λ0(ht + ωt(xt))− s] + µtλ0

will bind for a.a. t ∈ [t1, t2]. Now, consider the alternative plan (ĥt, ŵt)0≤t≤T with ĥt = 0

and ŵt = wt + ht for all t ∈ [t1, t2], and ĥt = ht and ŵt = wt for all t ∈ [0, t1) ∪ (t2, T ].

Arguing as in the proof of Lemma 5.2, one shows that under (ĥt, ŵt)0≤t≤T the incentive

constraint (3) is a.s. slack on [t1, t2], and gives the principal exactly the same payoff as the

original plan (ht, wt)0≤t≤T . Therefore, by Lemma 5.1, the principal can strictly improve

over (ĥt, ŵt)0≤t≤T , and hence over (ht, wt)0≤t≤T . Thus, we have shown that if (ht, wt) is

optimal, the incentive constraint for the safe arm binds a.s. Conversely, these schemes are

clearly optimal since the principal cannot further lower ht+wt without violating the incentive

constraint (3).

Thus, an immediate implication of the preceding proposition is that the optimal incen-

tive scheme is essentially unique in that wt + ht is a.s. uniquely pinned down in any optimal

incentive scheme:
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Corollary 5.5 If (ht, wt)0≤t≤T is optimal, then ht + wt = w̃(t) t-a.s.

6 The Optimal Stopping Time

In this section, the principal can optimally choose the end date T , which had been exogenous

thus far. As the first-best benchmark, I use the solution which is given by the hypothetical

situation in which the principal operates the bandit himself, and he decides when to stop

using arm 1, which he pulls at a flow cost of s, conditional on not having obtained a success

thus far. Thus, he chooses T so as to maximize

∫ T

0

{

e−rt−λ1

∫ t

0 pτ dτ (ptλ1Π− s)
}

dt (6)

subject to ṗt = −λ1pt(1 − pt) for all t ∈ (0, T ). Clearly, the integrand is positive if, and

only if, ptλ1Π ≥ s, i.e. as long as pt ≥
s

λ1Π
=: pm. As the principal is only interested in the

first breakthrough, information has no value for him, meaning that, very much in contrast

to the classical bandit literature, he is not willing to forgo current payoffs in order to learn

something about the state of the world. In other words, he will behave myopically, i.e. as

though the future was of no consequence to him, and stops playing risky at his myopic cutoff

belief pm, which is reached at time T FB = 1
λ1

ln
(

p0
1−p0

1−pm

pm

)

.

Now, when the principal delegates the investigation to an agent, his goal is to choose T

so as to maximize ∫ T

0

{

e−rt−λ1

∫ t

0 pτ dτptλ1 (Π− (ht + wt))
}

dt (7)

subject to ṗt = −λ1pt(1− pt) for all t ∈ (0, T ).

Thus, all that changes with respect to the first best problem (6) is that the opportunity

cost flow s is now replaced by the wage costs ht + wt, which only have to be paid out in

case of a success, which happens with an instantaneous probability of ptλ1dt. After plugging

in the optimal wage costs, which we have computed in Proposition 5.4, one finds that the

first-order derivative of the objective with respect to T is given by

e−(r+λ1)T

(

λ1Π−
s

pT

)

︸ ︷︷ ︸

Marginal effect

−e−rT s

pT

(
1− e−λ1T

)

︸ ︷︷ ︸

Intra-marginal effect

. (8)

The marginal effect captures the benefit the principal could collect by extending experimen-

tation for an additional instant at time T . Yet, the choice of an end date T also entails an

intra-marginal effect at times t < T . Indeed, for him to use arm 1 at time t, the agent has
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to be compensated for the opportunity cost of the potentially forgone rewards for having his

first breakthrough at some future date, an effect that is the stronger “the more future there

is,” i.e. the more distant the end date T is. Hence, by marginally increasing T , the principal

also marginally raises his wage liabilities at times t < T . This creates a distortion, so that

the following proposition comes as no surprise:

Proposition 6.1 Let p0 > pm. The principal stops the game at the time T ∗ ∈ (0, T FB)

when pT ∗ = pmeλ1T
∗

, i.e.

T ∗ =
1

λ1

ln

(

−pmp0 +
√

(pmp0)2 + 4pmp0(1− p0)

2pm(1− p0)

)

.

Proof: The formula for pT ∗ is gotten by setting the expression (8) to 0, and verifying that

the second-order condition holds. Now, T ∗ is the unique positive root of p0e
−λ1T

∗

p0e
−λ1T

∗
+1−p0

=

pmeλ1T
∗

.

The size of the distortion can be measured by the ratio pT∗−pm

pm
, which is increasing both

in the stakes at play, as measured by the ratio 1
pm

= λ1Π
s
, as well as in players’ optimism, as

measured by p0. This is hardly surprising, since when delegating the project to an agent, the

principal can only appropriate part of any increase in the overall pie. The following corollary

summarizes these comparative statics:

Corollary 6.2 The wedge pT∗−pm

pm
is increasing in the stakes at play λ1Π

s
, as well as in

players’ optimism p0.

Proof: For 1
pm

, this immediately follows from the explicit expression for the wedge

pT ∗ − pm

pm
=

p0 − 2 +
√

p20 + 4 p0
pm

(1− p0)

2(1− p0)
.

For p0, one shows that the sign of the first-order derivative of this expression is equal to the

sign of

p0

[

1−

√

1 +
4

pmp0
(1− p0)

]

+ (1− p0)
2

pm
,

which is strictly positive if, and only if,

p0 + (1− p0)
2

pm
>

√

p20 +
4

pm
p0(1− p0)

⇐⇒

(
2

pm
(1− p0)

)2

> 0.
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Yet, also recall from the preceding sections that given the optimal incentive scheme

we have computed there, the principal only needs to compensate the agent for his outside

option of using the safe arm, which is exactly what arm 1 has to compensate the principal

for in the first-best problem. Put differently, the presence of a cheating action, arm 0, does

not give rise to any distortions; the only distortions that arise are due to the fact that high

future rewards to some extent cannibalize today’s rewards. Yet, in most applications, the

principal’s access will not be restricted to a single agent; rather, he will be able to hire several

agents sequentially if he so chooses. Now, in the limit, if the principal can hire agents for a

mere infinitesimal instant dt, he can completely shut down the intra-marginal effect we have

discussed above.9 Indeed, we can see from the formula for w̃ that the reward an agent who

is only hired for an instant of length dt would have to be promised for a breakthrough is

given by s
λ1pt

(1+λ1dt)+ o(dt2). Hence, it pays for the principal to go on with the project as

long as ptλ1

(

Π− s
λ1pt

(1 + λ1dt)
)

dt+ o(dt3) = ptλ1

(

Π− s
λ1pt

)

dt+ o(dt2) > 0, i.e. he stops

at the first-best efficient stopping time, a result I summarize in the following proposition:

Proposition 6.3 If the principal has access to a sequence of different agents, he stops the

delegated project at the time T FB when pTFB = pm.

Thus, while delegating the project to an agent forces the principal to devise quite a

complicated incentive scheme, it only induces him to stop the exploration inefficiently early

if he does not have access to a sequence of many different agents. In summary, if λ0 ≥ λ1, it

is impossible to have the agent use arm 1; if λ0 < λ1, with a sequence of many agents, it is

even possible to give incentives in a manner that renders the principal willing to implement

the efficient amount of exploration.

7 Conclusion

The present paper introduces the question of optimal incentive design into a dynamic single-

agent model of experimentation on bandits. I have shown that even though the principal

9Intuitively, one might think that hiring one particularly myopic agent might remedy the problem as well.

However, while it is true that the impact future rewards have on today’s incentives, and hence the intra-

marginal effect of an extended end time T , becomes arbitrarily small as the players become very impatient,

the same holds true for the marginal benefit of extending play for an instant after a given time T > 0, so

that in sum the distortion is independent of the players’ discount rate. If one were to relax the assumption

that the players share the same discount rate, the problem could conceivably be addressed by the principal’s

hiring an agent who is much more impatient than himself. However, doing so would impact our analysis in

the previous sections, in that it would introduce an additional cost to the provision of incentives through

the continuation value wt, as opposed to the immediate rewards ht.
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only cares about the first breakthrough, he only rewards later ones.

I here only investigate the case of a single agent. It would be interesting to explore

how the structure of the optimal incentive scheme would change if several agents were si-

multaneously working for the same principal. Intuition would suggest that the rationale for

only rewarding later breakthroughs should carry over to that case. Previous literature on

strategic experimentation on bandits with exogenously given rewards has found that in most

cases the efficient amount of experimentation cannot be achieved in any Markov perfect

equilibrium. It would be quite compelling to investigate under what conditions efficiency

would be sustained with several players. I intend to explore these questions in future work.
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Appendix

Proof of Lemma 4.2

Fix an arbitrary Ť (t) ∈ (t, T ], t̃ ∈ (t, Ť (t)], p̂t̃ ∈ [pt̃, p0], and V 0 > 0. Consider the restricted

problem in which the agent can only choose between arms 0 and 1. Then, the agent’s reward is

given by
∫ Ť (t)

t̃

e−r(τm−t̃)
(

V 0 +
s

r

(

1− e−r(Ť (t)−τm)
))

dF,

where F is the distribution over τm, the time of the m-th breakthrough after time t̃. As the

integrand is decreasing in τm, all that remains to be shown is that F ∗(τ ; p̂t̃), the probability of m

breakthroughs up to time τ ∈ (t̃, Ť (t)] when the agent always pulls arm 1, is first-order stochastically

dominated by the probability of m breakthroughs up to time τ for any alternative strategy, which

I shall denote by F̃ (τ ; p̂t̃). Fix an arbitrary τ ∈ (t̃, Ť (t)]. Now,

F ∗(τ ; p̂t̃) = p̂t̃
λm
1

m!
(τ − t̃)me−λ1(τ−t̃).

Whatever the alternative strategy under consideration may be, F̃ can be written as

F̃ (τ ; p̂t̃) =

∫ 1

0
Fα(τ ; p̂t̃)µ(dα),

with

Fα(τ ; p̂t̃) = p̂t̃
[αλ1 + (1− α)λ0]

m

m!

(
τ − t̃

)m
e−(αλ1+(1−α)λ0)(τ−t̃)

+ (1− p̂t̃)
[(1− α)λ0]

m

m!

(
τ − t̃

)m
e−(1−α)λ0(τ−t̃)

for some probability measure µ on α ∈ [0, 1]. The weight α can be interpreted as the fraction of the

time interval [t̃, τ ] devoted to arm 1; of course, since the agent’s strategy allows him to condition

his action on the entire previous history, α will generally be stochastic. Therefore, the strategy of

the proof is to find an m such that for any t̃ ∈ (t, T ), τ ∈ (t̃, T ] and p̂t̃ ∈ [pT , p0], it is the case that

F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃) (.1)

uniformly for all α ∈ (0, 1).

Computations show that

∂Fα

∂α
=

(τ − t̃)m

m!

{

p̂t̃e
−(αλ1+(1−α)λ0)(τ−t̃)(λ1 − λ0) (αλ1 + (1− α)λ0)

m−1 [m− (αλ1 + (1− α)λ0)(τ − t̃)]

−(1− p̂t̃)e
−(1−α)λ0(τ−t̃)λ0 ((1− α)λ0)

m−1 [m− (1− α)λ0(τ − t̃)]
}

.

Further computations show that ∂Fα

∂α
> 0 if and only if

ξ(α) > 1− λ0
τ − t̃

m
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with

ξ(α) :=
p̂t̃

1− p̂t̃
e−αλ1(τ−t̃)

(
λ1

λ0
− 1

)(
αλ1 + (1− α)λ0

(1− α)λ0

)m−1 [

1− (αλ1 + (1− α)λ0)
τ − t̃

m

]

−αλ0
τ − t̃

m
.

Now, we choose m ≥ 2 high enough that

(m− 1)

(
λ1

λ0
−

λ2
1

λ0

T

m

)

−
λ2
1

λ0
T

(

1 +
1

m

)

>
1− pT
pT

λ2
0

λ1 − λ0
eλ1T

T

m
. (.2)

As the left-hand side of (.2) is increasing in m, and diverging for m → +∞, such an m ≥ 2 exists.

Algebra shows that this ensures that limα↑1 ξ(α) = ∞ and ξ′(α) > 0 for all α ∈ (0, 1). Now, if

p̂t̃λ1 ≥ λ0, it is the case that ξ(0) ≥ 1 − λ0
τ−t̃
m

, and hence ∂Fα

∂α
> 0 for all α ∈ (0, 1), so that

F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃) for all α ∈ [0, 1). In case p̂t̃λ1 < λ0, we have that ξ(0) < 1 − λ0
τ−t̃
m

; now,

there exists a unique α∗ ∈ (0, 1) such that ∂Fα

∂α
< 0 for all α ∈ (0, α∗), ∂Fα

∂α
> 0 for all α ∈ (α∗, 1),

and we can conclude that Fα(τ ; p̂t̃) is maximized either by α = 1 or α = 0. Choosing m such that

pT

(
λ1

λ0

)m

> e(λ1−λ0)T (.3)

ensures that the maximum is indeed attained at α = 1.

In summary, there clearly exists an m ∈ N ∩ [2,∞) satisfying both (.2) and (.3). Choosing m

in this manner ensures that

F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃)

for all α ∈ [0, 1). Now, for such an m, it is clearly the case that F ∗(τ ; p̂t̃) > F̃ (τ ; p̂t̃) for any τ > t̃

whenever µ 6= δ1, where δ1 denotes the Dirac measure associated with the strategy of always of

always pulling arm 1, whatever befall.

It remains to be shown that the preference ordering does not change if the agent also has

access to the safe arm. In this case, his goal is to maximize

∫ Ť (t)

t̃

{

(1− kτ )e
−r(τ−t̃)s+

∫ Ť (t)

t̃

e−r(τm−t̃)
(

V 0 +
s

r
(1− e−r(Ť (t)−τm))

)

dF̃{kτ}(τm)

}

dν
(

{kτ}t̃≤τ≤Ť (t)

)

for some probability measures F̃ and ν, with the process {kτ} satisfying 0 ≤ kτ ≤ 1 for all

τ ∈ [t̃, Ť (t)].

First, we fix some arbitrary probability measure ν and an arbitrary τ ∈ (t̃, Ť (t)] such that

Probν
(∫ τ

t̃
kσ dσ > 0

)
> 0. [If τ is such that Probν

(∫ τ

t̃
kσ dσ > 0

)
= 0, the objective is invariant in

α.] Now, consider an arbitrary {kσ}
τ
σ=t̃

with
∫ τ

t̃
kσ dσ > 0. Arguing as above, we can now write

F̃ (τ ; p̂t̃) =

∫ 1

0
Fα(τ ; p̂t̃)µ(dα)

for

Fα(τ ; p̂t̃) = p̂t̃
[αλ1 + (1− α)λ0]

m

m!

(∫ τ

t̃

kσ dσ

)m

e−(αλ1+(1−α)λ0)
∫ τ

t̃
kσ dσ

+ (1− p̂t̃)
[(1− α)λ0]

m

m!

(∫ τ

t̃

kσ dσ

)m

e−(1−α)λ0

∫ τ

t̃
kσ dσ
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and some probability measure µ. Since all that changes with respect to our calculations above

is for τ − t̃ to be replaced by
∫ τ

t̃
kσ dσ ≤ τ − t̃, and our previous τ was arbitrary, the pre-

vious calculations continue to apply. In particular, any m ≥ 2 satisfying conditions (.2) and

(.3) ensures that F ∗ be first-order stochastically dominated by any F̃ , as long as µ 6= δ1. As

e−r(τm−t̃)
(

V 0 +
s
r
(1− e−r(Ť (t)−τm)

)

is decreasing in τm, we can conclude that α = 1 is (strictly)

optimal for all {kσ}
τ
σ=t̃

(with
∫ τ

t̃
kσ dσ > 0).

Proof of Lemma 4.3

To analyze the agent’s best responses, I shall make use of Bellman’s Principle of Optimality. Stan-

dard arguments imply that the player’s payoff function from playing a best response is once con-

tinuously differentiable, and satisfies the Bellman equation. A first-order Taylor expansion gives

that

Vi(t̃;V 0) =
[

s+ k1,t̃
(
λ1Vi−1(t̃;V 0)− s

)]

dt+ (1− rdt)(1− k1,t̃λ1dt)
(

Vi(t̃;V 0) + V̇i(t̃;V 0)dt
)

⇐⇒ rVi(t̃;V 0) = s+ V̇i(t̃;V 0) + k1,t̃
[
λ1

(
Vi−1(t̃;V 0)− Vi(t̃;V 0)

)
− s
]
. (.4)

Hence, by Bellman’s principle, k1,t̃ = 1 is optimal if, and only if,

Vi−1(t̃;V 0)− Vi(t̃;V 0) ≥
s

λ1
, (.5)

and it is uniquely optimal if, and only if, this inequality is strict.

For i = 1, setting k1,τ = 1 for all τ ∈ [t̃, Ť (t)] implies

V1(t̃;V 0) =
λ1

λ1 + r

(

1− e−(r+λ1)(Ť (t)−t̃)
)(

V 0 +
s

r

)

−
s

r
e−r(Ť (t)−t̃)

(

1− e−λ1(Ť (t)−t̃)
)

.

V̇1 exists, and, because V 0 >
s
λ1
, satisfies

V̇1(t̃;V 0) = −λ1e
−(r+λ1)(Ť (t)−t̃)V 0 − se−r(Ť (t)−t̃)

(

1− e−λ1(Ť (t)−t̃)
)

≤ −se−r(Ť (t)−t̃) < 0.

By simple algebra, one finds that

V0(t̃;V 0)− V1(t̃;V 0) =

(
r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(Ť (t)−t̃)

)

V 0 +
s

r + λ1

(

1− e−(r+λ1)(Ť (t)−t̃)
)

,

which one shows strictly to exceed s
λ1

for all t̃ ∈ (t, Ť (t)] if V 0 > s
λ1
. We conclude that for i = 1,

a cutoff strategy with t∗1 = Ť (t) is optimal, and that V1 is of class C1 and strictly decreasing with

V̇1(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for all t̃.

Now let i > 1. As my induction hypothesis, I posit that Vi−1 is of the following structure:

Vi−1(t̃;V 0) =







∫ t∗i−1

t̃
e−(r+λ1)(τ−t̃)λ1Vi−2(τ ;V 0) dτ + e−(r+λ1)(t∗i−1−t̃) s

r

(

1− e−r(Ť (t)−t∗i−1)
)

if t̃ ≤ t∗i−1

s
r

(

1− e−r(Ť (t)−t̃)
)

if t̃ > t∗i−1

for some t∗i−1 ≤ Ť (t). It is furthermore assumed that Vi−1 is C
1, and that V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃)

for all t̃ ∈ (t, Ť (t)).
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Now, if Vi−1(t;V 0) <
s
λ1

+ s
r

(

1− e−r(Ť (t)−t)
)

, I set t∗i = t. Otherwise, I define t∗i as the lowest

t∗ satisfying Vi−1(t
∗;V 0) = s

λ1
+ s

r

(

1− e−r(Ť (t)−t∗)
)

. Since V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for all

t̃ ∈ (t, Ť (t)), Vi−1 is continuous, and Vi−1(Ť (t);V 0) = 0, it is the case that t∗i exists, and t∗i < Ť (t).

Fix an arbitrary t̃ ∈ (t, Ť (t)). If Vi−1(t̃;V 0) ≤
s
λ1

+ s
r

(

1− e−r(Ť (t)−t̃)
)

, i.e. t̃ ≥ t∗i , condition

(.5) implies that setting k1,τ = 0 for all τ ∈ [t̃, Ť (t)] is a best response (since V̇i−1(τ ;V 0) ≤

−se−r(Ť (t)−τ)), and Vi(t̃;V 0) =
s
r

(

1− e−r(Ť (t)−t̃)
)

. This establishes that k1,t̃ = 0 is a best response

for all t̃ ≥ t∗i .

Now, let us assume that Vi−1(t̃;V 0) >
s
λ1

+ s
r

(

1− e−r(Ť (t)−t̃)
)

. Yet, suppose that Vi−1(t̃;V 0)−

Vi(t̃;V 0) ≤
s
λ1
. This implies that Vi(t̃;V 0) >

s
r

(

1− e−r(Ť (t)−t̃)
)

; hence, it follows that there exists

some t̂ ∈ (t̃, Ť (t)) when k1,t̂ = 1 is a best response. Let t̂1 be the lowest such t̂.10 First, suppose that

t̂1 > t̃. Then, for all t† ∈ (t̃, t̂1), Vi(t
†;V 0) >

s
r

(

1− e−r(Ť (t)−t†)
)

, and hence, by (.4), V̇i(t
†;V 0) >

−se−r(Ť (t)−t†) ≥ V̇i−1(t
†;V 0) for all t

† ∈ [t̃, t̂1]—contradicting Vi−1(t̂1;V 0)− Vi(t̂1;V 0) ≥
s
λ1
. Now,

suppose t̂1 = t̃, and Vi−1(t̃;V 0) − Vi(t̃;V 0) =
s
λ1
. In this case, limτ↓t̃ V̇i(τ ;V 0) > −se−r(Ť (t)−t̃) ≥

V̇i−1(t̃;V 0). Hence, k1 = 0 is a strict best response to the immediate right of t̃, and hence, by our

previous step, at all t‡ > t̃. By continuity of Vi, this contradicts Vi(t̃;V 0) > s
r

(

1− e−r(Ť (t)−t̃)
)

.

This establishes that k1,t̃ = 1 is a best response for all t̃ ≤ t∗i .

Thus, I have shown that

Vi(t̃;V 0) =







∫ t∗i
t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ + e−(r+λ1)(t∗i−t̃) s
r

(

1− e−r(Ť (t)−t∗i )
)

if t̃ ≤ t∗i
s
r

(

1− e−r(Ť (t)−t̃)
)

if t̃ > t∗i

.

This implies that V̇i(t̃;V 0) = −se−r(Ť (t)−t̃) if t̃ > t∗i , and

V̇i(t̃;V 0) = −λ1e
−(r+λ1)(t∗i−t̃)Vi−1(t

∗
i ;V 0) +

r + λ1

r
e−(r+λ1)(t∗i−t̃)

(

1− e−r(Ť (t)−t∗i )
)

s

+ λ1

∫ t∗i

t̃

e−(r+λ1)(τ−t̃)V̇i−1(τ ;V 0) dτ

for t̃ < t∗i . Hence, using Vi−1(t
∗
i ;V 0) =

s
λ1

+ s
r

(

1− e−r(Ť (t)−t∗i )
)

, one shows that limt̃↑t∗i
V̇i(t̃;V 0) =

−se−r(Ť (t)−t∗i ) = limt̃↓t∗i
V̇i(t̃;V 0), implying that Vi is of class C

1.

It remains to prove that V̇i(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for t̃ < t∗i . Yet, this is easily shown to follow

from the fact that, by induction hypothesis, V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃), and hence

λ1

∫ t∗i

t̃

e−(r+λ1)(τ−t̃)V̇i−1(τ ;V 0) dτ ≤ −se−r(Ť (t)−t̃)
(

1− e−λ1(t∗i−t̃)
)

,

which completes the induction step.

Now, consider some i ∈ {1, · · · ,m − 1}. Having established that the agent’s best response is

given by a cutoff strategy, I shall now show that t∗i+1 ≤ t∗i . Consider an arbitrary time t̃ ≥ t∗i , and

10Since I am looking at weak best responses here, t̂1 exists as a proper minimum. If Vi−1(t̃;V 0)−Vi(t̃;V 0) =
s

λ1

, t̂1 = t̃.
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suppose the agent still has i+1 breakthroughs to go. By stopping at an arbitrary time t∗ ∈ (t̃, Ť (t)],

the agent can collect

∫ t∗

t̃

λ1
s

r
e−(r+λ1)(τ−t̃)

(

1− e−r(Ť (t)−τ)
)

dτ +
s

r
e−(r+λ1)(t∗−t̃)

(

1− e−r(Ť (t)−t∗)
)

=
s

r

[
λ1

λ1 + r

(

1− e−(r+λ1)(t∗−t̃)
)

− e−r(Ť (t)−t̃)
(

1− e−λ1(t∗−t̃)
)]

+
s

r
e−(r+λ1)(t∗−t̃)

(

1− e−r(Ť (t)−t∗)
)

.

By stopping immediately at time t̃, he can collect s
r

(

1− e−r(Ť (t)−t)
)

. Thus, since

1−e−r(Ť (t)−t) >
λ1

λ1 + r

(

1− e−(r+λ1)(t∗−t̃)
)

−e−r(Ť (t)−t̃)
(

1− e−λ1(t∗−t̃)
)

+e−(r+λ1)(t∗−t̃)
(

1− e−r(Ť (t)−t̃)
)

⇐⇒ 1 >
λ1

r + λ1
+

r

r + λ1
e−(r+λ1)(t∗−t̃),

the agent strictly prefers to stop immediately at t̃. For t̃ = t∗i in particular, we can conclude that

t∗i+1 ≤ t∗i ; if t
∗
i > t, we have that t∗i+1 < t∗i .

Clearly V1 is strictly increasing in V 0 for all t̃ < t∗1 = Ť (t), with limV 0→∞ V1(t̃;V 0) = ∞. A

simple induction argument now establishes that Vi is strictly increasing in V 0, with limV 0→∞ Vi(t̃;V 0) =

∞ for all i = 1, · · · ,m whenever t̃ < t∗i .

Suppose t∗i+1 > t. Then, t∗i+1 is defined by Vi(t
∗
i+1;V 0) =

s
λ1

+ s
r

(

1− e−r(Ť (t)−t∗i+1)
)

. By our

previous step, we furthermore know that t∗i > t∗i+1, implying Vi is strictly increasing in V 0 at t∗i+1.

Hence, the cutoff t∗i+1 is strictly increasing in V 0.

Now, suppose that t∗i+1 = t. Then, Vi(t;V 0) ≤ s
λ1

+ s
r

(

1− e−r(Ť (t)−t)
)

. Let

j := min {ι ∈ {1, · · · ,m} : t∗ι = t}. Since t∗1 = Ť (t) > t, we have that j ≥ 2. Now, Vj−1(t;V 0)

is strictly increasing in V 0 with limV 0→∞ Vj−1(t;V 0) = ∞. Hence, there exists a constant Cj−1

such that for V 0 > Cj−1, we have that Vj−1(t;V 0) >
s
λ1

+ s
r

(

1− e−r(Ť (t)−t)
)

, and hence t∗j > t.

Iterated application of this argument yields the existence of a constant Ci such that V 0 > Ci implies

that t∗i+1 > t. Hence, by our previous step, t∗i+1 is strictly increasing in V 0 for V 0 > Ci.

Now, consider arbitrary t̃ ∈ [t, Ť (t)) and i ∈ {1, · · · ,m}. Let σ be defined by

σ := max
{
ι ∈ {1, · · · ,m} : t∗ι > t̃

}
. As t̃ < Ť (t) = t∗1, σ ≥ 1. As t̃ < t∗σ, Vσ(t̃;V 0) is strictly in-

creasing in V 0 with limV 0→∞ Vσ(t̃;V 0) = ∞. Hence, there exists a constant C̃σ such that V 0 > C̃σ

implies Vσ(t̃;V 0) >
s
λ1

+ s
r

(

1− e−r(Ť (t)−t̃)
)

, and hence t∗σ+1 > t̃. Iterated application of this argu-

ment yields the existence of a constant C̃i−1 such that V 0 > C̃i−1 implies t∗i > t̃. As t̃ ∈ [t, Ť (t))

was arbitrary, we conclude that limV 0→∞ t∗i = Ť (t), and that limV 0→∞ Vi(t̃;V 0) = ∞ for any

t̃ ∈ [t, Ť (t)).

For t̃ ≥ t∗i , we have that Vi(t̃;V 0) =
s
r

(

1− e−r(Ť (t)−t̃)
)

≤ Vi−1(t̃;V 0). It remains to be shown

that for t̃ < t∗i , Vi(t̃;V 0) < Vi−1(t̃;V 0). Since Vi−1 is strictly decreasing, we have that

Vi(t̃;V 0) =

∫ t∗i

t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ + e−(r+λ1)(t∗i−t̃) s

r

(

1− e−r(Ť (t)−t∗i )
)

≤
λ1

λ1 + r
Vi−1(t̃;V 0)

(

1− e−(r+λ1)(t∗i−t̃)
)

+ e−(r+λ1)(t∗i−t̃) s

r

(

1− e−r(Ť (t)−t∗i )
)

.
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Now, suppose that Vi(t̃;V 0) ≥ Vi−1(t̃;V 0). Then, the above inequality implies that

(
r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−t̃)

)

Vi(t̃;V 0) ≤ e−(r+λ1)(t∗i−t̃) s

r

(

1− e−r(Ť (t)−t∗i )
)

.

Yet, as Vi(t̃;V 0) ≥
s
r

(

1− e−r(Ť (t)−t̃)
)

> s
r

(

1− e−r(Ť (t)−t∗i )
)

, this implies

r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−t̃) < e−(r+λ1)(t∗i−t̃),

a contradiction.

Proof of Lemma 4.4

Let t and p̂t be given. The agent now chooses {k1,τ}t<τ≤Ť (t) (with k1,τ ∈ [0, 1] for all τ) so as to

maximize
∫ Ť (t)

t

{

re−r(τ−t)−λ1

∫ τ

t
p̂τk1,τ dτ

[
(1− k1,t)s+ k1,tλ1p̂tVm−1(τ ;V 0)

]}

dτ.

subject to ˙̂pτ = −λ1k1,tp̂τ (1− p̂τ ).

As in Section 5, it is again convenient to work with the log-likelihood ratio xτ := ln
(
1−p̂τ
p̂τ

)

.

Since ẋτ = λ1k1,τ (co-state variable µτ ), the Hamiltonian for this problem is now given by

H̃τ = e−r(τ−t)
[
k1,τλ1e

−xτVm−1(τ ;V 0) + (1− k1,τ )(1 + e−xτ )s
]
+ µτλ1k1,τ .

Clearly, the agent’s choice set is closed, bounded and convex, the set of admissible policies is

non-empty, and the state variable is bounded. Moreover, the objective and the law of motion are

linear in the choice variable; thus, existence of an optimal plan follows from the Existence Theorem

of Filippov-Cesari (Thm. 8 in Seierstad & Sydsæter, 1987, p. 132).

To show sufficiency of the first-order Pontryagin conditions, I use the same variable trans-

formation as Bonatti & Hörner (2010), qτ := e−xτ . The maximized Hamiltonian is then clearly

concave in qτ , so that sufficiency follows from Arrow’s Sufficiency Theorem (Thm. 5 in Seierstad &

Sydsæter, 1987, p. 107).

Now, Pontryagin’s conditions are given by µŤ (t) = 0,

µ̇τ = e−r(τ−t)−xτ
[
k1,τλ1Vm−1(τ ;V 0) + (1− k1,τ )s

]
.

Furthermore, the agent prefers arm 1 over the safe arm at time τ if, and only if,

e−r(τ−t)
[
e−xτλ1Vm−1(τ ;V 0)− (1 + e−xτ )s

]
≥ −µτλ1. (.6)

Since, by Lemma 4.3, Vm−1 is strictly decreasing, −µτ is bounded by

−µτ ≤ e−r(τ−t)−xτλ1max

{
s

λ1
, Vm−1(τ ;V 0)

}∫ Ť (t)

τ

e−(r+λ1)(σ−τ) dσ

< e−r(τ−t)−xτλ1max

{
s

λ1
, Vm−1(τ ;V 0)

}∫ ∞

τ

e−(r+λ1)(σ−τ) dσ
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=
λ1

r + λ1
e−r(τ−t)−xτ max

{
s

λ1
, Vm−1(τ ;V 0)

}

.

Thus, assuming Vm−1(τ ;V 0) ≥
s
λ1
, the following condition is sufficient for (.6):

Vm−1(τ ;V 0) ≥
r + λ1

rλ1
(1 + exτ )s =

r + λ1

rλ1

s

p̂τ
. (.7)

We note that Vm−1(τ ;V 0) ≥
s
λ1

is implied by (.7). Now, suppose Vm−1(t̃;V 0) ≥
s(r+λ1)
p
T
rλ1

for some

t̃ ∈ (t, Ť (t)). Since, by Lemma 4.3, Vm−1 is strictly decreasing, equation (.7) holds for all τ ≤ t̃.

As equation (.7) also implies that t̃ < t∗m−1, and t∗m−1 < t∗i (i = 1, · · · ,m − 2) by Lemma 4.3, the

claim follows.

Proof of Lemma 4.5

By Lemma 4.3, we have that

f(Ť (t), V 0) =







∫ t∗m
t

e−(r+λ1)(τ−t)λ1Vm−1(τ ;V 0) dτ + e−(r+λ1)(t∗m−t̃) s
r

(

1− e−r(Ť (t)−t∗m)
)

if t < t∗m
s
r

(

1− e−r(Ť (t)−t̃)
)

if t = t∗m
.

Differentiability of f(., V 0) is thus immediate. When computing derivatives, we distinguish three

different cases: First, suppose t∗m = t. Then, it immediately follows from the explicit expression

for f that
df

dŤ (t)
= se−r(Ť (t)−t).

If Ť (t) > t∗m > t, the Envelope Theorem implies that

df

dŤ (t)
=

∂f

∂t∗m

dt∗m

dŤ (t)
+

∂f

∂Ť (t)
=

∂f

∂Ť (t)
= se−r(Ť (t)−t)−λ1(t∗m−t).

If t∗m = Ť (t), i.e. m = 1, we get from the explicit expression for f(Ť (t), V 0) = V1(t;V 0; Ť (t)) that

df

dŤ (t)
= λ1e

−(r+λ1)(Ť (t)−t)

(

V 0 −
s

λ1

)

+ se−r(Ť (t)−t).

f(t;V 0) = 0 immediately follows from the fact that Vm(Ť (t);V 0) = 0 for any Ť (t) ∈ [t, T ].

The Agent’s Optimization Problem

As derived in the text, the agent’s Hamiltonian is given by

Ht = e−rtyt[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt))]

+ yte
−rt−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}

+ µtλ1k1,t − γtλ0k0,tyt.

116



with the state variables evolving according to ẋt = λ1k1,t (co-state µt) and ẏt = −λ0k0,tyt (co-state

γt), x0 given, y0 = 1, and xT and yT free, and (k0,t, k1,t) ∈ {(a, b) ∈ R
2
+ : k0,t + k1,t ≤ 1} = Ǔ .

Clearly, Ǔ is closed, bounded and convex , the set of admissible policies is non-empty, and the state

variables are bounded. Using in addition the linearity of the objective and the laws of motion in

the choice variables, one shows that the conditions of Filippov-Cesari’s Existence Theorem (Thm.

8 in Seierstad & Sydsæter, 1987, p. 132) are satisfied.

To show sufficiency of Pontryagin’s conditions, I invoke Arrow’s Sufficiency Theorem (Thm.

5 in Seierstad & Sydsæter, 1987, p. 107). To do so, I define the new state variable zt := yte
−xt

(co-state ζt). It is straightforward to verify that żt = −zt (λ0k0,t + λ1k1,t). Now, Ht can be written

as

Ht = e−rtyt[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(zt))]

+ e−rtzt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(zt)) + k1,tλ1(ht + wt)]}

− γtλ0k0,tyt − ζtzt(k0,tλ0 + k1,tλ1).

As Ht is linear in the control variables, the maximized Hamiltonian is given by plugging in

either k0,t = k1,t = 0, (k0,t, k1,t) = (0, 1) or (k0,t, k1,t) = (1, 0) in the above expression. We shall now

show that Ht is concave in (yt, zt) for each of these three cases, which in turn implies sufficiency of

the first-order Pontryagin conditions by Arrow’s Theorem.

If k0,t = k1,t = 0,

Ht = e−rt(yt + zt)s,

i.e. Ht is linear.

If (k0,t, k1,t) = (0, 1),

Ht = e−rtztλ1(ht + wt)− ζtλ1zt,

i.e. Ht is linear again.

If (k0,t, k1,t) = (1, 0),

Ht = e−rt(yt + zt)λ0(ht + ωt(zt))− λ0(γtyt + ζtzt).

Now, after plugging in ωt(zt) =
zt

yt+zt
wt + δ̂t,

11 we find that Ht is again linear:

Ht = e−rt(yt + zt)λ0(ht + δ̂twt) + e−rtλ0ztwt − λ0(γtyt + ζtzt),

which thus completes the proof.

11Here, I set ωt =: wt(pt + δ̂t). In Proposition 4.1, we have seen that for any ǫ > 0, there exists a

continuation scheme such that ptwt ≤ ωt ≤ ptwt +
s

r
(1− e−rǫ). Equivalently, we can think of the principal

choosing δ̂t ∈ (0, L] such that ωt(pt) = wt(pt + δ̂t). If the proof of Proposition 4.1 goes through with m = 1,

δ̂t = 0 can also be chosen.
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Chapter 4: Expert Experimentation∗

Nicolas Klein† Tymofiy Mylovanov‡

Abstract

We analyze a dynamic game between an expert and a decision maker. In each period,

the decision maker has the option of buying cheap-talk advice from the expert, who is

merely interested in his continued employment. The expert’s quality is uncertain and

is initially unknown to either of the parties. We characterize properties of the optimal

decision rules, describing the effects of the expert’s strategic reporting behavior. If the

price of the expert’s advice is low, the optimal decision rule calls for more employment

as compared to the first best, and does so after bad news about the expert’s quality.

If the decision maker can commit to this rule, the expert reports his information

truthfully. Yet even if the decision maker lacks commitment power, there exists an

equilibrium in which the expert is always truthful when the price of advice is low. Yet,

without commitment the decision maker may be better off in an alternative equilibrium

in which the expert is allowed to accumulate some private information about his type.
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1 Introduction

This paper studies a model of a decision maker (she) experimenting with employing an

expert (he) whose quality is uncertain and is unknown to either of them. The expert is

strategic and is only interested in his continued employment. The core issue in the model

is the following: If the expert were not strategic, the decision maker would like to employ

the expert if and only if the expert continued to prove his competence. Yet, if this decision

rule were in fact followed, the expert might have incentives to suppress a priori unlikely

information to maximize his chances of appearing competent; this would slow down learning

about the quality of the expert. In this paper, we are interested in the effect the expert’s

concern for reputation has on the structure of the optimal decision rules and, in particular,

on the amount of experimentation by the decision maker.

To motivate the question, think of a legislator, for instance, who wants to find out

whether the people she represents would prefer a vote in favor of, or against, a particular

bill under consideration. Knowing the ideological bent of her district, she would have some

initial belief on which position her constituents would tend to favor. Still, she might want to

hire a pollster, the quality of whose analyses she will only gradually learn to ascertain over

time. While, initially, she may trust her own instincts more than the pollster’s judgment,

she may still find it worthwhile experimenting with a particular polling firm, as information

on how good they are may come in handy in subsequent decision problems.1

We investigate how this trade-off between experimentation and exploitation is affected

by the presence of incentive constraints, or, equivalently, by a risky bandit arm which now

decides strategically whether to release the information it produces. Indeed, concerned about

his reputation, the pollster, unsure of how well-suited his methodology is to the district in

question, may prefer to base his recommendation on the district’s ideological tilt, which

is common knowledge, rather than on his actual polling, thus incidentally preventing the

legislator from learning about the accuracy of his polling methods. It is the goal of this

paper to analyze the effects of the dynamic interplay of the experimentation motive on the

one hand, and the presence of agency costs arising from the need to provide incentives for

1More broadly, the model applies to many instances when a decider who faces a sequence of multiple

decision problems can either follow the information she already has, or else can elect to seek the help of

outside advisors. Thus, a firm trying to gauge the demand for a new product may either trust in its own

prior belief, or seek the advice of outside consultants. People filing their income tax returns may either

follow their own information when trying to figure out if a particular set of expenses is deductible, or hire a

tax consultant, whose help may be very valuable in years to come should he turn out to be competent. Or

a college student having set aside an afternoon to study for a test may do so by herself, or spend the time

with a tutor; even if she may not initially trust the tutor’s advice, he might over time turn out to be quite

competent, thus helping her improve her performance on future tests.
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truth-telling, on the other hand.

While one’s first intuition may be that the introduction of additional agency costs

associated with pulling the risky arm would render the decision maker more reluctant to

pull her risky arm, our analysis shows that this need not be so. Indeed, if agency costs

are relatively low, the reverse happens. Now, there is optimally more experimentation with

agency costs than in the first best without agency costs, and the distortion only occurs after

bad news, while after good news, the decision maker continues to behave as in the first best

(Proposition 4.7).

By the Revelation Principle, the expert will always report his information truthfully in

the optimal decision rule. To ensure truth-telling, the decision maker has two conceptually

distinct tools at her disposal: She could penalize the expert after he has correctly announced

the state that was initially more likely in the first place, or she could reward him even

if his minority opinion turns out to be incorrect. With agency costs low, future option

values are quite high, and thus, incentive costs are minimized by encouraging the expert

to venture a minority opinion by the decision maker’s continuing to employ him with some

probability even if his information turned out to have been mistaken. This tool crucially

depends, however, on the decision maker’s enjoying full commitment power; indeed, without

commitment, she will only have the former tool at her disposal.

Regarding the concrete implementation of incentives in an optimal decision rule, we

can show that the threat of firing dominates mere temporary suspension (Lemma 4.5).

Furthermore, firing right away dominates firing later (Lemma 4.6); this is obvious in the

case where the expert has revealed himself to be of the bad type. We show that it also

holds true if firing has to occur in the context of punishment for the expert’s sticking to the

prevailing majority opinion.

Our model belongs to the class of ‘bad reputation’ models: the expert’s concern about

appearing to be competent creates incentives for the expert to distort his reports. Ottaviani

and Sørensen (2006a, 2006b) explore the effect of this type of reputation concerns on the

reporting strategy of the expert in a single-decision environment and show that, under weak

conditions, truthful reporting is not feasible; these conditions are satisfied by the static

version of our model.2

By contrast, we show that all agency problems vanish, and the first-best policy becomes

incentive compatible, as the reputation concerns grow sufficiently high, which we formalize as

the total number of periods (Proposition 4.2). While this result, which is independent of the

2Similar results are obtained in Morris (2001) and Morgan & Stocken (2003) who study cheap talk models

in which (bad) reputation concerns are about the preferences of the expert rather than his competence.
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decision maker’s commitment possibilities, may seem reminiscent of familiar folk theorems,

the fundamental mechanism underlying it is completely different and is primarily driven by

the fact that the expert is conditioning the expectation of his future continuation payoff on

different events on and off the equilibrium path. This continuation payoff effect is absent in

single-decision environments.

Furthermore, even in the presence of agency problems, truthful reporting of the expert’s

information can be supported in equilibrium. Of course, if the decision maker can commit

to a decision rule, this is implied by the Revelation Principle. Yet even without commitment

there exists an equilibrium in which the expert reports his information truthfully if the price

of advice is low (Proposition 5.1). This equilibrium is non-Markovian and conditions the

expert’s retainment both on the belief about his competence as well as on the payoff-irrelevant

features of the reporting history.

However, truthtelling should not be an end in itself for the decision maker. Without

commitment power, the decision maker can be better off in an equilibrium in which the expert

babbles in the first periods and accumulates private information about his type (Proposition

5.5). The reason is that implementing truthtelling in early periods requires firing a competent

expert with non-negligible probability; this could be excessively costly for the decision maker.

The rest of this paper is structured as follows: Section 2 reviews some related literature;

Section 3 presents the model, and introduces necessary notation; in Section 4, we analyze

the game under full commitment, whereas Section 5 analyzes the case of a decision maker

who cannot commit to a specific decision rule at the outset of the game; Section 6 concludes.

Most proofs are provided in the appendix.

2 Related Literature

Our decision maker’s problem is akin to that of an economic agent operating a two-armed

bandit machine with one safe arm, whose expected payoff is known, and one risky arm,

whose expected payoff is initially unknown but can potentially be learnt through use over

time. Bandit models have been used in economics, at least since Rothschild’s (1974) discrete-

time model, to analyze the trade-off between experimentation and exploitation, providing

insights into agents’ incentives to forgo current payoffs in exchange for information which

can potentially be parlayed into better decisions, and thus higher payoffs, come tomorrow.3

The same trade-off is central to our paper, with the additional twist that our “risky arm”

is acting strategically, in the sense that the expert will choose his messages with a view to

3cf. Bergemann & Välimäki (2008) for an overview of this literature.
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maximizing his expected duration of employment.

The single-agent two-armed bandit decision problem has been analyzed as early as

the 1950s (cf. e.g. Bradt, Johnson, Karlin, 1956). The analysis of the strategic interplay

between several agents operating replica bandits (cf. Bolton & Harris, 1999, 2000, Keller,

Rady, Cripps, 2005, Keller & Rady, 2010), negatively correlated bandits (cf. Chapter 1), or

three-armed bandits (cf. Chapter 2), is much more recent, by contrast.

“Strategic risky arms”, in the sense that the party about whom information is gathered

is also taking an action, have been studied by Bergemann & Välimäki (1996, 2000) and

Bar-Isaac (2003). Bergemann & Välimäki (1996) investigate the case of a single buyer

desiring to purchase a good from any one of multiple firms, which produce at different,

and initially unknown, qualities. They show that, with firms pricing the good strategically,

experimentation is at efficient levels in any Markov perfect equilibrium. In Bergemann

& Välimäki (2000), by contrast, they show that with multiple buyers and two firms, the

firms are subsidizing experimentation to the point that it reaches inefficiently high levels

in equilibrium. In Bar-Isaac (2003), a seller of a good of initially unknown quality faces

a sequence of buyer pairs, who, in each period the seller (strategically) decides to sell,

Bertrand-compete for the good. After the transaction, the quality of the good is publicly

observed, and beliefs about the seller’s quality are updated. In contrast to these papers,

we investigate the role of long-term contracts an experimenter could potentially offer the

“risky arm” to induce behavior conducive to the experimenter’s interests. Moreover, in the

previously mentioned papers, the risky arm is deciding on a costly action—i.e. players are

engaged in a signaling, rather than a cheap-talk, game.

In a simple two-period Moral Hazard model, Manso (2010) shows that in order to induce

the agent to eschew an undesirable action, the principal will be very tolerant of, and may

even reward, early failure. Chapter 3 also shows that incentives are best provided through

later continuation values; moreover, he shows that if the optimal incentive scheme is run

there is no deadweight loss from agency. In our present setting, by contrast, the provision

of incentives through continuation values will lead to a distortion of the first-best rule.

Our model is also related to the literature on dynamic agency under gradual learning,

which has e.g. been investigated by Bergemann & Hege (1998, 2005) and Hörner & Samuelson

(2009), who examine a venture capitalist’s optimal provision of funds to an entrepreneur, who

might divert the funds toward his private ends. As is the case in our model, the accumulation

of private information by an agent subsequent to a deviation from the equilibrium path

provides an interesting dynamic aspect to the strategic interaction. However, our model

is probably closest to Gerardi & Maestri (2008) who analyze the case of an expert who, in

order to receive an informative signal about the decision-relevant state of nature, has to incur
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some private effort costs. After choosing whether or not to expend effort on acquiring the

signal, the expert then sends the decision maker a cheap-talk message about the state of the

world. Our model crucially differs from all these papers, though, in that we are investigating

a problem of adverse selection, or hidden information, rather than moral hazard : Our expert

privately observes a signal without having to incur any effort costs; it is rather his innate

quality, which determines the precision of his signal, which is uncertain at first.4 Over the

course of the interaction, the parties gradually update their beliefs about the expert’s type;

as he wants to continue to be thought of highly in order to be re-employed, our expert will

have incentives strategically to manipulate the decision maker’s learning process. To the

best of our knowledge, our paper is the first to investigate the dynamic interplay between a

decision maker’s reliance on cheap-talk advice and her desire to screen out advisors of poor

quality.

The problem of testing, and discriminating between, experts of different, and uncertain,

quality has recently received considerable attention in the literature. Many contributions

stress the impossibility of fully discriminating between an expert who knows the stochastic

process about which he is called on to make predictions, and false experts who just make

wild guesses, see e.g. Olszewski & Sandroni (2008). Stewart (2009) relaxes the strong re-

quirement generally made in this literature that good experts must never be mistaken for

bad ones, constructing a test that can distinguish experts’ types with high probability, while

Olszewski & Peski (2009) construct a Bayesian test which allows the principal under certain

circumstances to overcome any potential incentive problems stemming from the informa-

tional asymmetry concerning the expert’s quality.

As our expert wants to be employed as long as possible, he cares about his reputation,

i.e. the principal’s belief that he is of the good type. Building on the seminal contribution

by Crawford & Sobel (1982), several papers have researched the implications of experts’

reputational concerns in cheap-talk games: Morris (2001), e.g., studies the effects of social

norms of political correctness on an advisor’s candor; in Ottaviani & Sørensen (2006), an ex-

pert’s perceived competence directly enters his utility function, whereas Fong (2009) studies

optimal evaluation rules for surgeons.

4While initially and on the equilibrium path, there is incomplete but symmetric information as to the

expert’s quality, private information may arise endogenously off the equilibrium path. Moreover, there is

obviously asymmetric information concerning the realized signals.
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3 Model Setup

There is a decision maker and an expert who live for N + 1 periods, t = 0, 1, . . . , N .5 In

each period, the decision maker has to choose a policy from the set {0, 1}. The optimal

policy is uncertain and is described by the state ωt ∈ {0, 1}. The value of ωt is distributed

independently across periods and is equal to 0 with a probability of p0 ∈ (0, 1/2), which is

common knowledge. The decision maker obtains a period payoff of 1 whenever the policy

matches the state and 0 otherwise; there is no discounting.

In each period, the decision maker can either consult an expert or she can simply rely

on her prior to make the decision. Our goal is to study the effect of the expert’s strategic

reporting behavior on an optimal decision rule in an environment where there is a tradeoff

between an immediate cost of employing the expert and the future benefit of learning about

the expert’s competence. To this end, we assume some exogenous cost c > 0 that is incurred

by the decision maker whenever she employs the expert.

If the decision maker decides to consult the expert, the expert observes a non-verifiable

signal, s̃ ∈ {0, 1}, about the realized state. There are two types of expert: With probability

α0 ∈ (0, 1) the expert is competent and his signal reveals the optimal policy. With comple-

mentary probability, the expert is incompetent and his signals are uninformative. We denote

the type of the expert by θ ∈ {0, 1} where θ = 1 denotes the competent expert.

This assumption implies that the decision maker will learn with certainty that the expert

is incompetent whenever he is expected to tell the truth and makes a mistake. Similar full-

revelation assumptions are commonly made for reasons of tractability, e.g. in the strategic

experimentation literature, where it is often assumed that one instance of good (or bad)

news resolves all uncertainty about the value of the risky arms.6 It is also concordant with

the assumptions often made in the literature on repeated games with reputation and perfect

monitoring, where a single deviation from the behavior expected from a Stackelberg leader

reveals that the player is strategic.7

The type of the expert is uncertain and not known to either of the players. The expected

probability that the expert’s signal is correct at time t = 0 is β0 = α0 + (1 − α0)/2. The

belief of the decision maker that the expert is competent given the information available in

5Alteratively, we could assume infinitely many periods with discounting. Yet, end-of-game effects are not

much of a concern in our model, because the uncertainty about the expert’s quality will gradually resolve

over time, so that players’ preferences will eventually become aligned. The same would be true in a model

with infinitely many periods, so that we would expect similar qualitative results.
6See e.g. Keller, Rady, Cripps (2005) or Chapter 1 of this dissertation.
7See Mailath & Samuelson (2006) for a review of the (non-cheap talk) literature on repeated games with

reputations.
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period t is denoted by αt and is called the reputation of the expert. We use βt to denote the

probability that the expert’s signal is correct in period t.

We introduce reputational concerns on the expert’s part into our dynamic setting by

assuming it is the expert’s objective to be employed for as many periods as possible. Hence,

we assume that the expert gets a payoff of 1 per period whenever he is employed and 0

otherwise. Again, there is no discounting.

To rule out uninteresting cases, we assume that it is commonly believed that β0 < 1−p0;

i.e. the decision maker obtains a higher payoff if she follows her prior beliefs than if she

follows the signals of the expert with reputation α0. Thus, employing the expert in the early

periods of the game entails a cost of c per period while providing the decision maker with

an opportunity to learn about his type and to screen out a bad expert. Our assumption

also implies that an expert with a reputation of α0 will believe that state 1 is more likely

to occur regardless of his signal. This can create an incentive for the expert to lie about his

signal, thus impeding learning about his type.

The timing of the interaction in each period is as follows. First, the decision maker

decides whether to hire the expert. If he is employed, the expert then observes a signal and

sends a subsequent cheap-talk report to the decision maker, after which the decision maker

chooses a policy. Then, at the end of the period, the actual state of the world is publicly

observed, and payoffs are realized.

We will consider two variants of the model. In the game with full commitment, the

decision maker can commit to her strategy at the outset of the game in period 0. In the

game without commitment, the decision maker has no commitment power and her choices

must be sequentially rational in each period. Our solution concept is perfect Bayesian

equilibrium.

Whether the expert is employed or not, the signal reported by the expert (if any)

and the realized state are common knowledge in each period. Hence, the public history at

the beginning of period t ≥ 1, denoted by hp
t , is a sequence of t triples νp

τ = (ϕτ , ŝτ , ωτ ),

τ = 0, . . . , t − 1, where we set ϕτ = 1 if the expert is consulted in period τ and ϕτ = 0

otherwise, and where ŝτ denotes the expert’s message in period τ .8 We extend our definition

of a public history to t = 0 by setting hp
0 = ∅. In addition, we will use the notation

hp
t+1 = (νp

t , h
p
t ) and hp

t+1 = (ϕt, ŝt, ωt, h
p
t ). Also, let hp

t+τ = hp
th

p
τ denote a public history of

length t + τ in which the first t periods are described by history ht and the last τ periods

are described by history hτ . We set hp
t = hp

t∅.

Because he privately observes his signals, the expert’s information partition is finer.

8We set ŝτ = ∅ if the expert is not consulted in period τ .

125



Therefore, the private history of the expert at the beginning of period t ≥ 1, denoted by

ha
t , is a sequence of t four-tuples νa

τ = (ϕτ , s̃τ , ŝτ , ωτ ).
9 We define ha

0 = ∅. As in the case

of public histories, we will use the notation ha
t+1 = (νa

t , h
p
t ), h

a
t+1 = (ϕt, s̃t, ŝt, ωt, h

a
t ), and

ha
t+τ = ha

τh
a
t .

LetHp andHa respectively denote the set of all public and private histories. In addition,

we define the set of private histories in which the expert reports his signals truthfully in all

previous periods:

H̃a := {ha
t ∈ Ha|ŝτ = s̃τ , τ ≤ t} .

Hp is partitioned by Hp
0, the subset of histories in which there is a report inconsistent

with the state, and Hp
1, the subset of histories in which all reports coincide with the realized

states.

In our environment, the decision maker faces two objectives. The first objective is the

choice of an optimal policy in each period given the available information. The second objec-

tive is choosing optimally when to consult the expert given the history of his performance.

Achieving the first objective is straightforward and will not be the focus of our analysis:

If the expert is employed, the decision maker will follow her recommendation if and only if it

is sufficiently informative. Otherwise, the decision maker will comply with her prior beliefs

and choose policy 1. If the expert is not consulted, the decision maker will follow her prior

belief.

The focus of our analysis is the second objective of the decision maker. Therefore, our

definition of the decision maker’s rule only considers whether the expert will be employed

in a given period. Specifically, a (behavioral) decision rule is a function mapping the public

history in period t into the probability of consulting the expert in this period:

ρ : Hp → [0, 1].

Every decision rule induces a decision problem for the expert, in which the expert maximizes

his expected payoff. A (behavioral) strategy of the expert is a function that maps the private

history in period t and the observed signal into a distribution of reports to the decision maker:

ŝ : Ha × {0, 1} → [0, 1], (ha
t , s̃t) 7→ ŝ(ha

t , s̃t),

where we set ŝ(ha
t , s̃t) to be the probability of report 1. A strategy is truthful if

ŝ(ha
t , s̃t) =







1, if s̃t = 1;

0, otherwise.

9We set s̃τ = ŝτ = ∅ if the expert is not consulted in period τ .
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We denote the truthful strategy by ŝ∗. Let S be the set of all strategies ŝ.

Given decision rule ρ, let uρ(ha
t ) denote the expert’s expected payoff in period t after the

private history ha
t , conditional on being employed in this period. Similarly, let uρ(ŝ, s̃, ha

t )

denote the expert’s expected payoff given ρ in period t after private history ha
t conditional on

being employed in this period and after observing signal s̃ and using a strategy ŝ. A decision

rule ρ is incentive compatible after the signal s if it is optimal for the expert to report his

signals truthfully given that he did not lie in any of the preceding periods:

uρ(ŝ∗, s, ha
t ) ≥ uρ(ŝ′, s, ha

t ), for all ha
t ∈ H̃a, ŝ′ ∈ S, s ∈ {0, 1} (1)

Let ρ be an incentive compatible decision rule. Then, on the equilibrium path after any

history in Hp

∅
the public posterior belief is that the expert is certainly incompetent, αp

t = 0.

By contrast, after a history in Hp
1, t ≥ 1, the public posterior belief about the competence

of the expert increases in the number of periods

αp
t =

α0

α0 + (1− α0)
1

2t

=
αt−1

αt−1 + (1− αt−1)
1

2

for any history hp
t ∈ Hp

1.

If αt ≥ 1− 2p0 or, equivalently,

t ≥ K := log2
1− 2p0
2p0

1− α0

α0

.

the expert’s signals become sufficiently informative for the decision maker to match her

action to the signal. Let K0 be the largest integer that is smaller than K. As β0 < 1 − p0,

the value of K0 ≥ 0.

4 Optimal Decision Rule

Throughout this section, we shall assume that the decision maker can commit to whatever

decision rule she would like to at the outset of the game.

Let vρ(hp
t ) denote the expected payoff of the decision maker at the beginning of period

t given history hp
t and decision rule ρ, from which we subtract the payoff she can obtain if

she always relies on her own information, (N + 1 − t)(1 − p0), by way of normalization. A

decision rule is optimal if it maximizes the ex-ante expected payoff of the decision maker

among all incentive compatible decision rules:

(P0) : max vρ(∅)

s.t. (1).
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In the game with full commitment, the Revelation Principle implies that we can without

loss of generality restrict our attention to incentive compatible rules. Any optimal decision

rule is an equilibrium outcome in the game with full commitment; an optimal decision rule

exists because the set of incentive compatible decision rules is compact in the weak topology

and vρ is continuous on this set.

We denote by V (α) the ex-ante expected payoff of the decision maker in an optimal

decision rule where we make explicit that it depends on the prior reputation of the expert.

The value of V (α) is non-negative for any α ∈ [0, 1] because the decision maker can always

ensure the payoff of 0 by not employing the expert and following her prior. Furthermore,

V (α) is positive and increasing in α if the expert is employed in the optimal decision rule.

Consider a hypothetical environment in which the expert’s signals are observed by the

decision maker. In this environment, the (first-best) optimal decision rule is either never to

buy the signal, and thus to realize a payoff of 0, or to continue buying the signal as long as

it has been correct and to stop doing so after a first incorrect forecast. In the latter case,

this rule yields a payoff of

vFB(α0, N + 1) = α0 [(N −K)p0 − (N + 1)c]

+ (1− α0)
{

(

1

2

)K
[

1 + 1

2
+ · · ·+

(

1

2

)N−K−1
]

(

1

2
− (1− p0)

)

−
[

1 + 1

2
+ · · ·+

(

1

2

)N
]

c
}

In order to avoid the uninteresting case in which buying the signal would not be optimal

even in a first-best world, we impose the following

Assumption 4.1

vFB(α0, N + 1) > 0.

The agency problem in our model arises because the first best decision rule might not

be incentive compatible if the expert’s signals are not observable. Let, for instance, N = 2

and imagine that the expert observes s̃0 = 0 in period 0. Then, the expert believes that the

state ω0 = 1 is more likely because his signals are not sufficiently informative to outweigh his

prior beliefs.10 Thus, the probability of employment in the second period is maximized by

reporting ŝ0 = 1. As a result, the expert’s best response to the first best decision rule would

entail “babbling” in period 0, i.e., for instance, a report of 1 irrespective of the observed

signal. Thus, there is no learning about the expert’s type, and the decision maker would

find herself compelled to revert to her prior in either period, thus realizing her outside option

of 0.

10This is so because p0β0 < (1− p0)(1− β0).
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Nevertheless, the first best decision rule becomes incentive compatible if the duration of

the interaction between the expert and the decision maker is sufficiently large. This result is

based on the observation that, as N increases, the rate of growth of the payoff from telling

the truth in any given period t exceeds the rate of growth of the payoff from lying in that

period.

Although there is an obvious analogy, the proof is not a folk theorem type of argument.

First of all, there is no discounting in our environment and the number of periods is finite.

More importantly, the reason behind the different rates of growth of the payoffs from lying

and from telling the truth is that the two parties are conditioning on different events. If the

expert lies and his report turns out to be correct, he privately learns that he is incompetent.

By contrast, if he reports his signal truthfully and it is correct, then the expert believes

that he is more likely to be competent. While deciding about his report, the expert’s

expectation about how likely he is to continue to be correct in the future if retained is,

therefore, conditioned on two distinct events. This conditioning is the reason why the rates

of growth of the payoffs from lying and telling the truth differ.

Proposition 4.2 (Vanishing Concerns for Reputation) For any given c, p0, α0, there

exists an integer N0 such that the first best decision rule is incentive compatible if and only

if N ≥ N0.

Proof: A formal version of the argument expounded above proves that for any t there

exists an integer N ′(t) such that for all N ≥ N ′(t) there is no profitable (possibly, multi-

period) deviation from truth-telling that starts in period t. It is left to show, then, that

there exists an N0 such that N(t) ≤ N0 for all t or, in other words, that as we increase N the

incentive constraints are not violated in the newly added periods. This, however, holds true

because, if the expert is employed toward the end of the relationship under the first best rule,

then his reputation is necessarily high, the expert considers his signals very informative, and

truth-telling is his strict best response. A complete proof is provided in the appendix.

If N < N0, the first best decision rule is not incentive compatible. The decision maker

will want to fire the expert if he reveals himself to be incompetent, which can potentially

create incentives for the expert to report a signal of 1 more frequently than he observes

it. Thus, incentive compatibility requires adjusting the decision rule to make reporting 0

relatively more attractive. A priori, there are two options: To encourage reports that go

against the grain of received prior wisdom, one may want to promise the expert that he will

be retained (with some probability) after such a report even if it does not match the state.

An alternative is to discourage sticking with the majority opinion by promising to fire the
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expert (again, with some probability) after such a report even if the report turns out to be

correct in the end. Whether the decision maker is better off relying on the carrot or on the

stick will depend on the parameters; in the latter case, she will under-employ the expert as

compared to the first-best benchmark, whereas, in the former case, the expert will be over-

employed, an option, which, as we shall see in Section 5, crucially relies on the assumption

that the decision maker has full commitment power.

In order to characterize certain properties of the optimal decision rule, we proceed in

several steps, progressively restricting the class of decision rules the decision maker will

want to consider. Our first lemma shows that there is no gain for the decision maker in

conditioning on the different histories that may arise after the expert has made a mistake.

The intuition for this is that, as long as the players are on the equilibrium path, both will

know that the expert is of the low type for sure after he has made a mistake; conditioning

the rule in the manner proposed could thus only be leveraged by a privately informed expert,

who, by lying, had erroneously convinced the decision maker that he was no good. Affording

off-equilibrium experts who lied such opportunities can only encourage lying, and therefore

cannot be in the decision maker’s best interests.

Lemma 4.3 Within the class of incentive compatible decision rules, the decision maker can

without loss restrict herself to rules that do not condition on the continuation histories that

occur after the expert makes an incorrect report.

Proof: Let ρ be an incentive compatible decision rule and hp ∈ H∅ be a public history

after which the decision rule retains the expert with positive probability that depends on the

continuation history. Then, consider a decision rule ρ′ that (i) coincides with ρ everywhere

except hp and (ii) after history hp retains the expert for the same expected number of periods

as ρ regardless of the continuation history, where the expectation is taken with respect to a

probability distribution induced by truthful reporting of the incompetent expert.

By construction, ρ′ is incentive compatible at all private histories that induce hp and

their successors. Furthermore, the expert’s payoff along the equilibrium path is the same in

both rules at all other private histories. Furthermore, off the equilibrium path, the expert’s

payoff is affected only for the private histories that are predecessors and successors of private

histories that result in public history hp and for which at the node corresponding to hp the

expert believes that he is competent with a positive probability.

Let ha be such a history. In ρ′, the expert’s expected payoff at ha is constant in his

private belief and coincides with that of the incompetent expert. By contrast, in ρ, the

expert’s payoff at ha is non-decreasing in his private belief and is not lower than that of the
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incompetent expert; the expert can guarantee himself the expected payoff of an incompetent

expert by using the latter’s strategy conditioning, if necessary, his reports on a coin flip

rather than his signals. Hence, the expert’s payoff at history ha in ρ′ is not greater than

in ρ. Furthermore, by construction of ρ′, truth-telling is a best response in this rule for

any successor history of ha regardless of the continuation history. It follows then that ρ′ is

incentive compatible.

By construction, both decision rules induce the same expected payoff for the decision

maker.

Iterated application of the preceding construction proves the claim.

Our next observation is that we can focus on the decision rules that do not condition

on the realization of the state in periods in which the expert is not employed. Let h0

∅
and

h1

∅
denote one period histories in which the expert is not employed and the state is 0 and 1

respectively.

Lemma 4.4 Within the class of incentive compatible decision rules, the decision maker can

without loss restrict herself to rules that satisfy

ρ̂i(h
p
th

0

∅h
p
τ ) = ρ̂i(h

p
th

1

∅h
p
τ ) for any hp

t′ , h
p
τ ∈ Hp, (2)

where t+ τ + 1 ≤ N .

Proof: Consider any incentive compatible decision rule ρ. We will construct, by induction,

another incentive compatible decision rule ρ̂.

Step 1. Set ρ̂0 = ρ.

Step 2. For any i = 1, · · · , N let t′ = N − i and define ρ̂i as follows.

1. ρ̂i(h
p
t ) = ρ̂i−1(h

p
t ) for all histories of length less than or equal to t′ (t ≤ t′) and for

histories of any length t > t′ in which the expert is employed in period t′+1 (φt′+1 = 1);

2. ρ̂i(h
p
t′h

0

∅
hp
τ ) = ρ̂i(h

p
t′h

1

∅
hp
τ ) := p0ρ̂i−1(h

p
t′h

0

∅
hp
τ )+(1−p0)ρ̂i−1(h

p
t′h

1

∅
hp
τ ) for any hp

t′ , h
p
τ ∈ Hp,

where τ ≤ N − t′ − 1.

Define ρ̂ = ρ̂N . Decision rule ρ̂ is incentive compatible. To see this, note that ρ̂0 is triv-

ially incentive compatible as it coincides with ρ. Furthermore, if ρ̂i−1 is incentive compatible,

then ρ̂i is also incentive compatible: This follows from the following two observations: (a)
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The expert who finds it optimal to report truthfully after history hp
t′h

0

∅
hp
τ and after history

hp
t′h

1

∅
hp
τ in ρ̂i−1 will also find it optimal to report truthfully after either of these histories in

ρ̂i, as beliefs are the same after both histories. (b) Moreover, the expert’s expected payoff

in period t′ after histories considered in step 2.2 of construction is the same in both rules.

By construction, ρ̂ satisfies (2) and generates the same expected payoff for the decision

maker as ρ.

Let C̃ denote the set of incentive compatible decision rules that satisfy the conditions

of Lemma 4.3 and Lemma 4.4. Our next lemma shows that when the decision maker wants

to penalize the expert even though his forecast had been correct, it is best to fire the expert

for good with a certain probability rather than to suspend him for a limited amount of time.

Its proof formalizes the intuition that the decision maker can always exactly reproduce

the incentives provided by the threat of temporary suspension with the threat of complete

termination with the appropriate probability. Indeed, termination is a much sharper and

fearsome tool; moreover, since we allow for stochastic decision rules, the decision maker can

exactly fine-tune the dosage of this threat as she needs to in any given situation. While our

lemma only proves that the decision maker can always do at least as well by threatening to

fire the expert as by temporarily suspending him, she may often be able to do strictly better

with the sharper tool, as it can enforce compliance where the mere threat of temporary

suspension may fail.

Lemma 4.5 (No Temporary Suspensions) Within C̃, the decision maker can without

loss neglect such rules ρ̂ for which there exist a time period t̃ and a history h̃p

t̃
such that

ρ̂(h̃p

t̃
) < 1 and ρ̂(0, ∅, ωt, h̃

p

t̃
) > 0.

Proof: The idea of the proof is to construct a decision rule that instead of suspending the

expert in period t̃ and employing him in the next period employs the expert in period t̃ and

suspends him in the next period. As the actual time of employment of the expert is payoff

irrelevant for either of the parties, the constructed decision rule is incentive compatible and

generates the same expected payoff for the decision maker. The full proof is provided in the

appendix.

Let C̃ ′ be the subset of the decision rules in C̃ that satisfy the conditions of Lemma

4.5. Our next lemma uses a somewhat related argument: The decision maker can never gain

by waiting to exact a penalty that is due. For one thing, the expert will with a positive

probability have revealed himself to be of poor quality, and hence have gotten fired, before

the “penalty period”; therefore, if the firing is to take place later, it must occur with a higher
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probability to give the same incentives. Conversely, conditional on the expert’s reaching the

“penalty period”, his expected ability is higher than it is today, and hence firing him with

the same given probability would already be costlier for the decision maker. As our previous

lemma, Lemma 4.6 merely shows that it is always possible to reproduce the incentives

imposed by a decision rule that fires the expert later by one which fires him earlier.

Lemma 4.6 (No Delay in Firing) Within C̃ ′, the decision maker can without loss neglect

such rules ρ̂ for which there exists a history h̃p

t̃
∈ Hp

1 such that ρ̂(h̃p

t̃
) > 0 and such that

ρ̂(hp

t̃+1
) < 1 for all successor histories hp

t̃+1
and ρ̂(hp

t̃+1
) > 0 for some successor history hp

t̃+1
.

Proof: The proof again proceeds by construction. The idea behind the construction is

to decrease the probability of retainment in period t̃ and simultaneously to increase the

probability of retainment in the subsequent period in a manner that will uniformly increase

the expert’s continuation payoffs in the next period on the equilibrium path. We prove that

this construction will not disturb incentive compatibility of the decision rule and will not

decrease the expected payoff of the decision maker. Details are provided in the appendix.

While we are providing the full proof in the appendix, we here illustrate the construction

underlying our proof with an example. Let N = 1 and assume that ρ̂(∅) = 1, ρ̂(hp
1) = γ ∈

(0, 1) for all hp
1 ∈ Hp

1, and ρ̂(hp
1) = 0 for all hp

1 ∈ Hp

∅
. In the new decision rule ρ′, we set

ρ′(hp
1) = 1 if hp

1 ∈ Hp
1 and ρ′(hp

1) = 1− γ otherwise. Finally, we let ρ′(∅) = γ.

It is clear that ρ′ is incentive compatible as the continuation payoffs of the expert after

each history in the first period are increased by 1 − γ. Furthermore, in the first period the

decision maker’s payoff is decreased by 1− γ times the expected value of the expert, whilst

in the second period the decision maker’s payoff is increased by 1 − γ times the expected

value of the expert after the first period history. The former is necessarily not bigger than

the latter as the decision maker can condition her later action on additional payoff relevant

information. Hence, the decision maker is weakly better off under ρ′.

Several additional issues arise when we generalize this argument. First, the expression

for the amount by which we should increase the probability of employment in the consequent

period is more complex and depends on the continuation payoff of the expert as well as the

probability of employment in the current period. Second, the degree by which the payoffs

of the expert are affected will depend on his private belief; this requires some additional

arguments to prove incentive compatibility of the constructed rule. Finally, extending the

argument to show that the decision maker is better off with the new rule is not immediate

because the amount of increase in the probability of the expert’s employment in latter periods

is not necessarily constant across histories.
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The following proposition shows that whenever employment costs are low, the risky arm

will be over-used in the optimal decision rule, as compared to the first-best benchmark; in

order to give proper incentives for truthtelling, the expert is kept on for some time even after

a mistake.

Proposition 4.7 (Optimal decision rule, low costs) There exists c > 0 such that for

all c < c in the optimal decision rule

1. the expert is always retained after a correct report;

2. incentives to report truthfully are provided by a promise to retain the expert for a certain

amount of time even if his report turns out to be incorrect.

Proof: See appendix.

5 No Commitment

A decision maker’s option of continuing to employ the expert after he has mistakenly an-

nounced the less likely state crucially depends on the assumption that she can credibly

commit to doing so ex ante. Indeed, after the expert has made a mistake in an equilibrium

where he is supposed always truthfully to reveal his signal, he is commonly known to be of

poor quality, and it is not sequentially rational for the decision maker to keep him on. By

the same token, a decision maker would not fire the expert after he correctly forecast the

state, albeit the more likely one, unless she is bound to do so. Indeed, after the expert has

correctly forecast the state, even though it be the more likely one, his reputation increases,

so that his services become more, rather than less, valuable to the decision maker.

This brief discussion shows that many of the tools the decision maker may be using

in the optimal decision rule may no longer be available to her in the absence of long-term

commitment possibilities. However, she could still try and enforce truth-telling by threat-

ening to fire the expert with some probability after he has correctly forecast the more likely

state, a threat made incentive compatible for her by the expert’s off-equilibrium threat to

send but uninformative messages if he continues to be employed and the decision maker has

randomized with an off-equilibrium probability.11 Of course, this construction relies on the

assumption that the decision maker’s randomizing probability is perfectly observable to the

expert.

11This is incentive compatible for the expert, because the decision maker does not condition his continued

employment on the reports.

134



One result from the commitment case readily extends, however. If, in response to the

decision maker’s pursuing her first-best policy, the expert maximizes his reputation by being

truthful, then it is the decision maker’s (sequentially rational!) best response to pursue her

first-best policy; therefore, if the number of sequential decision problems is large enough,

the first-best policy becomes incentive compatible, by the same argument as in the problem

with full commitment. We summarize this finding in the following remark:

Remark For any given c, p0, α0, there exists an integer N0 such that the first-best decision

rule is incentive compatible if and only if N ≥ N0.

Proof: Identical to Proposition 4.2, and therefore omitted.

5.1 Fully Revealing Equilibria

Even without commitment, it is still possible to construct equilibria in which the expert

always truthfully reveals his information.

Proposition 5.1 Suppose assumption 4.1 holds. Then, for any N , α0 and p0, there exists

a ĉ > 0 such that for all c < ĉ, there exists a fully revealing equilibrium in the game without

commitment.

Proof: Let the principal pursue her first-best policy after tFB, and let her always fire the

expert after he has made a mistake, while always keeping him on after he has announced

state 0 correctly. After he has forecast state 1 correctly, he is kept on with a probability ρs1,t
such that, before time tFB, the incentive constraint for a signal of 0 exactly bind. From the

explicit expression for the incentive constraint, it is immediate that ρs1,t >
p0

1−p0
. Hence, the

probability of reaching period tFB, µ̃tFB , is bounded below by α0 (2p0)
tFB

> 0. Thus, the

principal’s payoff from this policy is bounded below by

α0 (2p0)
tFB

vFB(αtFB , N − tFB)− tFBc.

As the first term is positive by Assumption 4.1, as well as increasing in c, the verification of

the mutual best response property, as indicated in the text, completes the proof.

However, without commitment, the Revelation Principle no longer applies, which means

that we do not know ex ante that full revelation will necessarily be optimal. Indeed, below,

we shall construct an equilibrium which entails the accumulation of endogenous private
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information on the agent’s part; it can be shown that for any fully revealing equilibrium,

there exists a threshold c > 0 such that the equilibrium with private information dominates

it for all c < c. In the following proposition, we show that whenever the first-best solution

is not incentive compatible at time 0, the decision maker’s payoff in any fully revealing

equilibrium is bounded away from vFB(α0, N + 1).

Proposition 5.2 Let tFB ≥ 1, and let V , and ρ, be the decision maker’s payoff, and strategy,

in a fully revealing equilibrium. Then, there exists a time t < tFB, a constant µt and a history

ht ∈ H1 such that

V ≤ vFB(α0, N + 1)− µt(1− ρ(ht))v
FB(αt+1, N − t) < vFB(α0, N + 1).

Proof: Since tFB ≥ 1, there exists some t < N and some history ht ∈ H1 with ρ(ht) < 1 and

µt > 0, where µt denotes the probability of the expert’s still being employed in period t, and

history ht realizing, in this equilibrium. The upper bound is then given by the hypothetical

situation where the first best became implementable after period t. By assumption 4.1,

vFB(αt+1, N − t) > 0; hence V is bounded away from vFB(α0, N + 1).

As an illustration, we give the following corollary pertaining to a particularly intuitive

class of fully revealing equilibria:

Corollary 5.3 Suppose there exists a fully revealing equilibrium which has the feature that

after tFB, the first-best decision rule is played. Then, there exists a constant µtFB−1 > 0 such

that the principal’s payoff in this equilibrium is bounded above by

vFB(α0, N + 1)− µ̂tFB−1(1− p0)βtFB−1v
FB(αtFB , N − tFB)

×

[

1−
p0βtFB−1

(1− p0)(1− βtFB−1)

1 + βtFB−1 + · · ·+ βN−tFB

tFB−1

1 + (1− p0) + · · ·+ (1− p0)N−tFB

]

< vFB(α0, N + 1).

Proof: Let µ̂tFB−1 denote the probability of the expert’s still being employed in period

tFB − 1. Then, the upper bound on the principal’s payoff is derived by computing the

loss in payoffs as compared to the first-best from the binding incentive constraint in period

tFB −1, given the first-best decision rule is played starting from the next period onward. By

assumption 4.1, vFB(αtFB , N − tFB) > 0; moreover, µ̂tFB−1 > 0, since otherwise the decision

maker would be better off not employing the expert at all in period 0.
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5.2 Equilibrium With Endogenous Private Information

A quite natural way for the decision maker to handle the expert’s incentive problem would

be for her to grant him an initial “grace period”, during which he was allowed to send

uninformative signals each period, and to gain confidence in his abilities, finding his mark

in his new job. Once this probationary period, which lasts for tFB periods, ends, though,

he is expected to be right every time, i.e. the first-best policy will be implemented. The

expert will then report his signals truthfully if, and only if, his signals have all been correct

during the first tFB periods; otherwise, he will best respond by continuing to babble, i.e. to

announce state 1 no matter what his signal may have been.

Of course, for the decision maker to be willing to extend such initial leniency, it has to

be the case that the overall length of this probationary period, during which she incurs a

per-period loss of c, is sufficiently small relative to the expected gains in the later stages of

the relationship. Specifically, the following condition must hold:

vFB(α0, N + 1) ≥

(1−α0)c

{

tFB − 1− 1

2
− · · · −

1

2N
+
(

1−
(

1

2

)tFB
) [

(1− p0) + (1− p0)
2 + · · ·+ (1− p0)

N−tFB

]

+
(

1

2

)tFB
[

1

2
+
(

1

2

)2
+ · · ·+

(

1

2

)N−tFB
]}

. (3)

We summarize this equilibrium in the following proposition:

Proposition 5.4 Let (3) hold. Then, there exists an equilibrium in which no information

is transmitted, and the expert is never fired during the first tFB periods; thereafter, the expert

truthfully reveals his signals if, and only if, his first tFB signals were correct. Moreover, he

will only be fired as soon as he has made an incorrect forecast after the first tFB periods.

Proof: The expert’s equilibrium strategy is for him always to report state 1, unless t ≥ tFB,

and he has been employed, and has received correct signals, in all previous periods, in which

case he truthfully reveals his signal. The decision maker’s equilibrium strategy calls for

employing the expert in t = 0, and for retaining him if he reports 1 during the first tFB

periods. In all other cases, she retains the expert if, and only if, his current prediction

turns out to be correct. Optimality of the expert’s behavior immediately follows from the

definition of tFB. Optimality of the principal’s behavior follows from (3).

In this equilibrium, experts are costly but harmless, in the sense that it is always optimal

for the decision maker to follow the expert’s advice. Indeed, suppose the expert has privately
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learned that he is of the bad type; he then maximizes his expected employment duration by

always reporting state 1. For a decision maker who knew that she cannot rely on a high-

quality expert’s advice, it is also optimal always to stick with her prior, and to implement

policy 1. Hence, as compared to the first-best solution, babbling only imposes an employment

cost on the decision maker; there is no cost in terms of inefficient decision making. Thus,

for low c, the decision maker’s payoff in this babbling equilibrium is arbitrarily close to the

first best, something we explore in more detail in the following subsection.

5.3 Welfare Comparison

We shall now show that if c is below a certain threshold it pays for the principal to allow

the agent to accumulate private information on the equilibrium path, as doing so dominates

any given fully revealing equilibrium. Specifically, we shall show that the equilibrium we

have constructed in the previous subsection dominates our fully revealing equilibria for low

enough c. We summarize this result in the following proposition:

Proposition 5.5 Let tFB ≥ 1. Then, there exists a threshold c > 0 such that for all c ∈]0, c[

the principal is strictly better off in the equilibrium with babbling (see Proposition 5.4) than

in any fully revealing equilibrium.

Proof: By construction, the equilibrium exhibited in Proposition 5.4 yields the principal

a value of V p, with

V p = vFB − (1− α0)c

× {tFB − 1− 1

2
− · · · −

1

2N
+
(

1−
(

1

2

)tFB
) [

(1− p0) + (1− p0)
2 + · · ·+ (1− p0)

N−tFB

]

+
(

1

2

)tFB
[

1

2
+
(

1

2

)2
+ · · ·+

(

1

2

)N−tFB
]

},

while, by Proposition 5.2, the payoff in any fully revealing equilibrium is bounded above by

vFB(α0, N + 1)− µt(1− ρ(ht))v
FB(αt+1, N − t).

Clearly, any fully revealing equilibrium for some given value of c remains an equilibrium

for all c < c; moreover, vFB(αt+1, N − t) is decreasing in c. Furthermore, as the agent’s

incentives are independent of c, any new fully revealing equilibria that appear as we lower

c are dominated by the original equilibrium. Thus, as c decreases, the equilibrium from

Proposition 5.4 achieves a payoff arbitrarily close to the first-best, whereas the payoff in any

fully revealing equilibrium remains bounded away from it.
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Thus, whereas with full commitment the Revelation Principle tells us that there is no

loss for the principal to restrict herself to fully revealing decision rules, we have shown that

this is no longer true without commitment. Indeed, while in the game with commitment,

incentives may be given through rewards for minority opinion, this tool is no longer available

without commitment. Thus, absent commitment, it may become too costly for the principal

to extract the agent’s information; he may in fact be better off forgoing learning for a while,

thus endogenously allowing the expert to build up private information, which will then, in

turn, facilitate the transmission of information.

6 Conclusion

We have investigated the dynamic interaction between a decision maker and an expert of

unknown quality who privately observes a potentially decision-relevant signal. As he only

cares about his reputation insofar as it translates into a longer expected duration of em-

ployment, the expert may have an incentive strategically to manipulate his cheap-talk relay

of the signal to the decision maker. We have shown that when the number of periods is

large enough, the expert’s reputational concerns vanish, and the first-best becomes imple-

mentable. We have shown that in the game with commitment, agency costs may lead to a

situation where the risky arm is being over-used as compared to the first-best benchmark.

In the game without commitment, the decision maker may be better off letting the expert

accumulate some private information during an initial grace period than he would be in any

fully revealing equilibrium.

While we have assumed a simple binary type space for the expert, one could of course

imagine richer type spaces. While analytical results will likely be rather difficult to get in

that setting, as the number of relevant incentive constraints increases, we should expect the

qualitative results of our analysis to continue to hold. Moreover, it seems interesting to

introduce multiple, possibly even a continuum of, experts into our setup. One could imagine

that the introduction of competition amongst experts would make them more inclined to

gamble on the initially less likely state, thus easing incentive constraints, as there will be

pressure favorably to surprise the decision maker with an unlikely success, especially in the

early stages of the game. We intend to explore these questions in future work.
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Appendix

Proof of Proposition 4.2

Suppose the principal pursues the first-best policy of immediately firing the expert if, and only if,

the expert has made a mistake. Then, the agent is willing to reveal a signal indicating the less

likely state 0 truthfully at any time t, if at all times 0 ≤ t ≤ N , the following incentive constraint

holds:

p0

[

αt(N − t) +
1− αt

2

(

1 + 1

2
+ · · ·+

1

2N−t−1

)]

≥ (1− p0)
1− αt

2

[

1 + (1− p0) + · · ·+ (1− p0)
N−t−1

]

. (A.1)

To understand the right-hand side of the incentive constraint, the reader should note that if, upon

lying, the expert finds out ex post that his message was in fact correct, he then privately learns

that he is of the low type and will maximize his continuation payoff by reporting the a priori more

likely state in all subsequent periods.

It is now immediate to verify that, as N → ∞, the left-hand side diverges to +∞, whereas

the right-hand side converges to 1−p0
p0

1−αt

2
< ∞. Let N0 be the smallest value of N for which this

constraint is satisfied for all t ≤ K. By our assumption that β0 < 1− p0, we have N0 ≥ 2.

It is left to check that the constraint is also satisfied for all t > K. It is direct to verify that

the constraint holds for any N if αt = 1− 2p0. Furthermore, the left hand side of the constraint is

increasing in αt while the right hand side is decreasing in αt. Therefore, the constraint is satisfied

for all αt ≥ 1− 2p0, which is equivalent to t ≥ K.

As is straightforward to verify, the left-hand side of the incentive constraint conditional on a

signal indicating the more likely state 1, is 1−p0
p0

> 1 times the left-hand side of the above constraint,

whereas the right-hand side is p0
1−p0

times the above right-hand side. Therefore, this constraint also

holds for all N ≥ N0.

Proof of Lemma 4.5

Consider an incentive compatible decision ρ̂ that satisfies the conditions of the lemma. We show

that there exists an incentive compatible decision rule ρ′ in which

ρ′(h̃p
t̃
) > ρ̂(h̃p

t̃
),

ρ′(0, ∅, ω, h̃p
t̃
) = 0

and this rule yields the same payoffs as ρ̂ to both parties. Iterated application of this construction

proves the claim.

To make the argument more transparent, we offer separate constructions for deterministic and

stochastic decision rules, even though the former construction is a special case of the latter.

Let hp
∅
and hp

1
be any one period public history with φ = 0 and φ = 1 respectively. The

argument for a deterministic decision rule is straightforward: We have ρ̂(h̃p
t̃
) = 0 and ρ̂(h̃p

t̃
hp
∅
) = 1

and construct ρ′ as follows:
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(i) ρ′(h̃p
t̃
) := 1 (compare with ρ̂(h̃p

t̃
) = 0);

(ii) ρ′(h̃p
t̃
hp
1
) := 0 (observe that h̃p

t̃
hp
1
is reached with 0 probability under ρ̂);

(iii) ρ′(h̃p
t̃
hp
∅
) := 0 (compare with ρ̂(h̃p

t̃
hp
∅
) = 1);

(iv) ρ′(h̃p
t̃
hp
1
hp
∅
hpτ ) := ρ̂(h̃p

t̃
hp
∅
hp
1
hpτ ) for any hp

1
, hp

∅
and hpτ with τ ≥ 0,

For the remaining histories, we set ρ′ = ρ̂.

By construction of ρ′, the expected payoff of the decision maker is the same in both rules.

Furthermore, the expert’s payoff is affected only at the histories that are successors of h̃p
t̃
.

The incentive compatibility after any private history on the equilibrium path that is a successor of

h̃p
t̃
hp
1
hp
∅
follows from the incentive compatibility at the corresponding successor history of h̃p

t̃
hp
∅
hp
1

in ρ̂. The incentive compatibility in period t̃ + 1 after histories h̃p
t̃
hp
1
and h̃p

t̃
hp
∅
is not relevant

as the expert is not employed in this period. The incentive compatibility of ρ′ in period t̃ after

history h̃p
t̃
follows from the incentive compatibility in period t̃+ 1 after history h̃p

t̃
hp
∅
under ρ̂. For

other successor histories of h̃p
t̃
, both decision rules coincide and hence incentive compatibility is

immediate.

For stochastic decision rules, the argument is a bit more tedious as we make sure that the

new rule generates the same distribution of payoff relevant events. By Lemma 4.4, it holds that

ρ̂(0, ∅, 1, h̃p
t̃
) = ρ̂(0, ∅, 0, h̃p

t̃
) =: r. We construct ρ′ as follows:

(i) ρ′(h̃p
t̃
) := ρ̂(h̃p

t̃
) + (1− ρ̂(h̃p

t̃
))r;

(ii) ρ′(h̃p
t̃
hp
1
) := γρ̂(h̃p

t̃
hp
1
);

(iii) ρ′(h̃p
t̃
hp
∅
) := 0;

(iv) ρ′(h̃p
t̃
hp
1
hp
∅
hpτ ) := γρ̂(h̃p

t̃
hp
1
hp
∅
hpτ ) + (1− γ)ρ̂(h̃p

t̃
hp
∅
hp
1
hpτ ) for any hp

1
, hp

∅
and hpτ with τ ≥ 0,

where

γ =
ρ̂(h̃p

t̃
)

ρ̂(h̃p
t̃
) + (1− ρ̂(h̃p

t̃
))r

.

For the remaining histories, we set ρ′ = ρ̂.

By construction of ρ′, the expected payoffs of the decision maker is the same in both rules.

Verifying incentive compatibility of ρ̂ is direct and we omit it.

Proof of Lemma 4.6

Assume that t ≤ K0. Define H ′ to be the set of all private histories in H̃a whose corresponding

public history is a one period successor history of h̃p
t̃
. With some abuse of notation, let hp(hat )

denote the public history induced by a private history hat .

Set h∗ to be a private history for which uρ̂(hat )(1/ρ̂(h
p(hat ))−1) is minimized among all hat ∈ H ′

and define δ := uρ̂(h∗)(1/ρ̂(hp(h∗)) − 1). In addition, denote by h′ ∈ H̃a the private history that
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induces h̃p
t̃
and let u∗ be the expert’s expected payoff under ρ̂ after h′ conditional on being employed

in period t̃.

We construct ρ′ as follows: First, define ρ′(h̃p
t̃
) = ρ̂(h̃p

t̃
) u∗

u∗+δ
. Next, pick any public history h

that is a one period successor of h̃p
t̃
. If ρ̂(h) > 0, we set ρ′(h) = ρ̂(h)(uρ̂(hat ) + δ)/uρ̂(hat ), where

hat is the private history in H̃a that corresponds to h. (Observe that ρ′(h) ≤ 1 by definition of δ.)

If ρ̂(h) = 0, we define ρ′ at h and any successor of h such that (a) ρ′ does not condition on the

continuation history after h and (b) generates for the expert the expected payoff u(hat ) = δ, where

hat is any private history that induces h. (This construction is feasible by definition of δ.) Finally,

we keep ρ′ = ρ̂ at any other public history.

By construction, the expert’s payoffs on the equilibrium path are either unaffected or, at

history h̃p
t̃
and conditional on retainment are increased uniformly by δ for all continuation histories.

Now, consider any out of equilibrium path private history that corresponds to the public history

h̃p
t̃
. Then, the expert knows that he is incompetent.12 Observe that the continuation payoffs of the

expert for all two period successor private histories are not affected. Furthermore, all payoffs for

one period successor histories that result in a public history in Hp

∅
are increased by δ. Furthermore,

since a competent expert can always ensure the same expected payoff as a bad expert,13 the payoffs

of the incompetent expert are smaller than, or equal to, the payoffs of the expert who is competent

with a positive probability, after any history, and the incompetent expert’s payoffs after all one

period successor private histories do not increase by more than δ. Thus, ρ′ is incentive compatible.

It remains to be shown that the decision rule ρ is in the class of decision rules that do not

satisfy the conditions of the lemma. This follows, however, from the observation that ρ′(h̃p(h∗)) = 1

by the definition of δ.

Finally, from an ex ante perspective, the expected number of periods of employment of the

expert is the same under both rules, and hence the payoff of the decision maker is weakly higher

under ρ′ as she is better informed about the expert’s type in future periods, and her payoff in future

periods is bounded below by −c, the payoff in period t̃.

The argument for t̃ > K0 is different and simpler. The new decision rule can be constructed

by increasing the probability of employment in period t̃+1 after correct reports and decreasing the

probability of employment in t̃ to keep the expected payoff of the expert on the equilibrium path

at the node corresponding to h̃p
t̃
constant in both rules. The new rules delivers a strictly higher

payoff for the decision maker; incentive compatibility of the new rule follows from t̃ > K0.

Iterated application of the preceding construction proves the claim.

Proof of Proposition 4.7

Proof is by contradiction. Suppose ρ is an optimal decision rule and suppose there exists a history

ĥ ∈ H1 such that ρ(ĥ) < 1. Let ĥt∗ be the longest such history. If there are more such histories

12By Lemma 4.3, we need not consider histories after which the expert privately thinks he might be of the

good type, while, according to the public belief, he is certain to be of the bad type.
13The competent expert can always play the strategy of the incompetent expert by using the outcome a

fair coin toss to generate the signal of the incompetent expert.
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of equal length t∗, we choose any one of them. We shall now recursively construct an alternative

decision rule ρ′, which is incentive compatible and performs better than ρ, thus contradicting the

optimality of ρ.

For all histories h of length greater than t∗, we set ρ′(h) ≡ ρ(h); hence ρ′ is incentive compat-

ible after all these histories, as the optimality of ρ implies its incentive compatibility. Moreover,

we set ρ′1(ĥt∗) ≡ 1; in order to preserve incentive compatibility after an immediate predecessor

history ht∗−1, the employment probabilities may have to be adjusted after other successor histo-

ries of ĥt∗−1 that are of length t∗. Define ∆ := [1 − ρ(ĥt∗)]u
ρ(ĥt∗), where uρ(ĥt∗) denotes the

expected duration of the expert’s employment under ρ conditional on his being re-employed after

ĥt∗ . It follows from the explicit expression of the incentive constraints after any given predecessor

history ĥt∗−1 that an upper bound on the ex interim cost, as evaluated at period t∗ − 1, from

readjusting the employment probabilities to restore incentive compatibility after history ĥt∗−1 is

given by Pr(ĥt∗ |ĥt∗−1, ρ)
1−p0
p0

∆c. Call δt∗ the overall increase in the expert’s expected employment

conditional on his being re-employed after history ĥt∗−1.

Now, consider ĥt∗−2, any given immediate predecessor history of ĥt∗−1. Again, the ex-

plicit expression for the incentive constraint after history ĥt∗−2 shows us that the cost of restor-

ing incentive compatibility in period t∗ − 2 is bounded above by Pr(ĥt∗−1|ĥt∗−2, ρ)
1−p0
p0

δt∗c ≤

Pr(ĥt∗ |ĥt∗−2, ρ)
(

1−p0
p0

)2

∆c. By iterating these steps, one shows that the overall cost of making ρ′1

incentive compatible is bounded above by Pr(ĥt∗ |ρ)
(

1−p0
p0

)t∗+1

(t∗ + 1)c∆.

If t∗ > K, the benefit of moving from ρ to ρ′1 is bounded below by

Pr(ĥt∗ |ρ
′
1)(1 − ρ(ĥt∗)) (βt∗+1 − (1− p0)− c); if t∗ ≤ K, it is bounded below by Pr(ĥt∗ |ρ

′
1)(1 −

ρ(ĥt∗))[αt∗(N −K)(p0− c)− (K− t∗)c], which, by assumption 4.1, is strictly positive. By construc-

tion, we have that Pr(ĥt∗ |ρ) = Pr(ĥt∗ |ρ
′
1). Thus, for ρ

′
1 to dominate ρ, it is sufficient that

αt∗(N −K)(p0 − c)− c(K − t∗) ≥

(

1− p0
p0

)t∗+1

(t∗ + 1)c.

Since the left-hand side is bounded away from zero by assumption 4.1, this holds for c below a

certain threshold.

If there exists a history h̃ ∈ H1 such that ρ′1(h̃) < 1, we repeat the above procedure for ρ′1. As

the number of periods and histories is finite, there exists some finite n such that h ∈ H1 ⇒ ρ′n(h) =

1. Setting ρ′ ≡ ρ′n completes the proof.
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