Aus dem Department für Veterinärwissenschaften der Tierärztlichen Fakultät der Universität München Lehrstuhl für Tierzucht und Allgemeine Landwirtschaftslehre Univ.-Prof. Dr. Dr. habil. Martin Förster

Kartierungsstudien und funktionelle Kandidatengenanalyse für Tot- und Schwergeburt in der deutschen Fleckviehpopulation

Inaugural-Dissertation
zur Erlangung der veterinärbiologischen Doktorwürde
der Tierärztlichen Fakultät
der
Ludwigs-Maximilians-Universität München

vorgelegt von Ina Vogl aus Bayreuth

München, April 2010

Aus dem Department für Veterinärwissenschaften der Tierärztlichen Fakultät der Universität München Lehrstuhl für Tierzucht und Allgemeine Landwirtschaftslehre Univ.-Prof. Dr. Dr. habil. Martin Förster

Kartierungsstudien und funktionelle Kandidatengenanalyse für Tot- und Schwergeburt in der deutschen Fleckviehpopulation

Inaugural-Dissertation
zur Erlangung der veterinärbiologischen Doktorwürde
der Tierärztlichen Fakultät
der
Ludwigs-Maximilians-Universität München

vorgelegt von Ina Vogl aus Bayreuth Gedruckt mit freundlicher Genehmigung der Tierärztlichen Fakultät der Ludwigs-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. Joachim Braun

Referent: Univ.-Prof. Dr. Dr. habil. Martin Förster

Koreferent: Univ.-Prof. Dr. Holm Zerbe

Tag der Promotion: 24. Juli 2010

Für meine Mutter und meinen Schatz Enver

Inhaltsverzeichnis

INHALTSVERZEICHNIS

1. EI	NLEITUNG	1
2. LI	TERATURÜBERSICHT	3
2.1.	Marker gestützte Selektion	3
2.2.	Genetische Marker	5
2.2.2		
2. LITER. 2.1. Marke 2.2. Gene 2.2.1. Mil 2.2.2. Sir 2.3. QTL- 2.3.1. Ka 2.3.2. Ers 2.3.3. Au 2.4. IGF2I 2.4.1. Bic 2.4.2. An 2.4.3. Me 2.4.4. Ac 2.4.5. Zu 2.4.6. Ab 2.4.7. Mc 2.4.8. Ko 2.4.9. As 2.5. Östro 2.5.1. Bic 2.5.2. Trs 2.5.3. As 2.6. Mikro 2.5.2. Trs 2.5.3. As 2.6. Mikro 2.6.1. Lel 2.6.2. He 2.7. eQTL 2.7.1. Lel 2.7.2. He 2.8. Supe 2.8.1. Bic 2.8.2. As 2.9. Zielsc 3.1.1. Tic 3.1.2. Mc 3.1.3.1. Wa 3.1.3.1. Wa 3.1.3.1.	QTL-Kartierungen	8
2.4.	IGF2R	10
2.4.3		
_		
	, , ,	
	· · ·	
25	Östrogenrezeptor	19
-		
	·	
2.6.	Mikroarrayanalysen	22
	Leber	
	Herz	
27	eQTL's auf BTA09 mit Mikrosatelliten	25
	Leber	
	Herz	
2 Q	Superoxiddismutase	27
	•	
_		
2.9.	Zielsetzung	27
		= /
3. M	ATERIAL UND METHODEN	28
3.1.	Material	28
3.1.1		
3.1.2	. Molekulargenetisches Material	30
3.1.3		
3.1		
3.1	I.3.2. Enzyme	
2 4	1.3.3 Modion and Buffor	20

Inhaltsverzeichnis

3.1.3.3.1. LB- Medium	
3.1.3.3.2. Einmermedium für Bakterien	
3.1.3.3.4. PBS- Puffer	
3.1.3.3.5. Extraktionspuffer	
3.1.3.3.6. DEPC- Wasser	
3.1.4. DNA- Leitern für Agarosegelelektrophorese	
3.1.5. Geräte	
3.1.6. Verwendete Software und Datenbanken	
3.2. Methoden	
3.2.1. Molekularbiologische Methoden	
3.2.1.1. Arbeiten mit Bakterien	
3.2.1.1.1. BAC- Klone	
3.2.1.1.2. Animpfen einer Übernachtkultur	
3.2.1.2. Isolierung von DNA	
3.2.1.2.1. genomische DNA aus Rinderblut und Gewebe	
3.2.1.2.2. genomische DNA aus Bullensperma	
3.2.1.2.3. Plasmid-DNA aus Bakterien	
3.2.1.3. Isolierung von RNA	
3.2.1.3.1. aus Rindergewebe	
3.2.1.3.2. aus Isopropanolproben	
3.2.1.3.3. Trennung von mRNA aus der gesamt RNA	
3.2.1.4. Polymerase- Chain- Reaction (PCR)	
3.2.1.4.1. GC-Rich KIT	
3.2.1.4.2. Mikrosatelliten- PCR	41
3.2.1.4.3. Sequenzierungs-PCR	44
3.2.1.4.4. One Step Real Time PCR	
3.2.1.5. Auftrennung, Analyse und Aufreinigung von DNA- Fragmenten	47
3.2.1.5.1. Mikrosatellitenauftrennung und -analyse	
3.2.1.5.2. Aufreinigung der PCR- Fragmente	
3.2.1.5.3. Sequenzierungen	
3.2.1.6. Single- Nucleotide- Polymorphism (SNP) Genotyping	
3.2.1.6.1. Restriktionsverdau mit Narl und anschließender Genotypisierung übe	
Agarosegel	
3.2.1.6.2. Illumina SNP- Chip	
3.2.2. Bioinformatische Methoden	
3.2.2.1.1 Design der Primer	
3.2.2.1.2. Überprüfung der Spezifität	
3.2.2.1.3. Überprüfung der Qualität	
3.2.2.2. Quantitative Real Time PCR	
3.2.2.2.1. Referenzgenanalyse	
3.2.2.2.1.1. Normfinder Algorithmus	
3.2.2.2.1.2. GenNorm Algorithmus	
3.2.2.2.2. Analyse der relativen Real Time PCR	
3.2.2.3. Alignments	
3.2.2.4. Erstellen einer Kopplungskarte	
3.2.2.5. Assoziationsstudien	55
3.2.2.6. Kombinierte Kopplungs- und Kopplungs-ungleichgewichtsanalyse	57
3.2.2.7. Haplotypisierung	58
4. ERGEBNISSE	59
4.1. <i>igf2r</i> - Analysen	59
4.1.1. Sequenzierung des CpG- Islands	59
4.1.2. Überprüfung der Inaktivierung des paternalen Allels	60
4.2. Kopplungskarte BTA09	63

4.3.	Östrogenrezeptor Analysen	65
4.	.3.1. Kartierung des Östrogenrezeptors	
4.	3.2. Sequenzierung der Exons	
	3.3. Sequenzierung der Promotorregion	
	3.4. Real Time PCR	
4.4.	Superoxiddismutase Analysen	72
4.	.4.1. Sequenzierung der mRNA	
4.	.4.2. Genotypisierung	
4.	4.3. Real Time PCR	75
4.5.	Genomweite Assoziationsstudien und LDL-Analysen	78
5.	DISKUSSION	86
5.1. Flec	<i>igf2r</i> als mögliches Kausalgen für Totgeburten paternal in der deutsch	
5.2.	• •	
	esr1 als mögliches Kausalgen für Totgeburten in der deutschen kviehpopulation	87
5.3.	sod2 als mögliches Kausalgen für Totgeburten in der deutschen	
	kviehpopulation	89
5.4.	Kartierungsstudien	91
5.5.	Ausblick	96
6.	ZUSAMMENFASSUNG	97
7.	SUMMARY	99
8.	ABBILDUNGSVERZEICHNIS	101
9.	TABELLENVERZEICHNIS	103
10	ABKÜRZUNGSVERZEICHNIS	104
10.	ADNORZONOGY ENZERGINIO	104
11.	LITERATURVERZEICHNIS	107
12.	ANHANGSÜBERSICHT	121
13.	ANHANG	122

Einleitung 1

1. Einleitung

Trotz der Selektion gegen Schwer- bzw. Totgeburt und immer besser werdenden Zuchtwertschätzungsverfahren (Ramirez-Valverde et al., 2001a; Ramirez-Valverde et al., 2001b) wurde in den letzten Jahrzehnten ein kontinuierlicher Anstieg der Schwer- und Totgeburtenrate in allen Rinderrassen, die unter künstlicher Selektion auf die Milchmenge und -qualität stehen, beobachtet. Beim deutschen Fleckvieh zum Beispiel, wurde nach Angaben des LKV Bayern e.V. (2007) bei 6,6% aller Erstlingskalbungen Schwer- und bei 5,7% Totgeburten beobachtet. Schwergeburten größeren Ausmaßes führen vielfach zum Tod ansonsten gesunder Kälber. Meist geht dies mit einer erheblichen Beeinträchtigungen oder dem Tod der Mütter einher. Da in einzelnen Fleckviehbullenlinien Totgeburtenraten beobachtet werden, die um das 2 bis 3fache über dem Durchschnitt liegen, sind Gegenmaßnahmen über eine marker- bzw. gengestützte Selektion (MAS bzw. GAS) aus züchterischen, ökonomischen und Tierschutzgründen notwendig. Gegenwärtig wird der Totgeburtenrate durch die Anwendung einer Zuchtwertschätzung entgegengewirkt, bei der Bullen, die in diesem Verfahren einen niedrigen (schlechten) Zuchtwert für die Merkmale paternale und maternale Totgeburt und paternalen und maternalen Kalbeverlauf zeigen, in der Zucht gezielt nicht auf Färsen eingesetzt werden. Allerdings ist dieses Verfahren sehr zeitintensiv und es dauert bis zur zweiten Generation, bis ein Zuchtwert für den maternalen Kalbeverlauf und die maternale Totgeburt erhalten wird. Eine markergestützte bzw. gengestützte Selektion würde ein schnelleres Auswahlverfahren für Zuchtbullen ermöglichen.

Die Merkmale paternaler und maternaler Kalbeverlauf und Totgeburt sind Bestandteile des Merkmalkomplexes Fruchtbarkeit und weisen als solche recht niedrige Heritabilitäten auf, was den züchterischen Fortschritt in diesem Gebiet negativ beeinflusst (Fürst and Egger-Danner, 2003; Kuhn et al., 2003; Schrooten et al., 2000). Die Zuchtwertschätzung für Kalbeverlauf und Totgeburten wird in Deutschland für die Rasse Fleckvieh gemeinsam mit Österreich vier Mal jährlich durchgeführt. Die gemeinsame Zuchtwertschätzung berücksichtigt ein Achtmerkmalmodell:

Einleitung 2

- (1) Paternaler Kalbeverlauf bei der ersten Kalbung
- (2) Maternaler Kalbeverlauf bei der ersten Kalbung
- (3) Paternaler Kalbeverlauf bei weiteren Kalbungen
- (4) Maternaler Kalbeverlauf bei weiteren Kalbungen
- (5) Paternale Totgeburt bei der ersten Kalbung
- (6) Maternale Totgeburt bei der ersten Kalbung
- (7) Paternale Totgeburt bei weiteren Kalbungen
- (8) Maternale Totgeburt bei weiteren Kalbungen

Dieses Achtmerkmalmodell berücksichtigt die genetischen negativen Korrelationen zwischen paternalen und maternalen Effekten einerseits und andererseits die hohen positiven Korrelationen zwischen paternal-paternalen sowie maternal-maternalen Effekten (Fürst and Egger-Danner, 2003). Die genetische Korrelation zwischen zwei Merkmalen beschreibt die genomweit durchschnittliche Kovarianz zwischen den Effekten der einzelnen Gene auf beide Merkmale. Dieser Durchschnitt kann, muss aber nicht, auf das Einzelgenniveau ("Quantitative Trait Loci" oder "Quantitative Trait Gene") zutreffen. Somit präsentieren die Zuchtwerte oder Abweichungen aus komplexen Mehrmerkmalsmodellen oft nicht optimale Phänotypen für eine Kartierungs- oder Assoziationsstudie (Gomeringer, 2007).

Aus diesem Grund wurde als Grundlage dieser Arbeit ein Bulle ausgewählt, der als Phänotyp einen sehr großen Rahmen zeigt und eine hohe Totgeburtenrate aufweist. Von diesem wurden 36 fötale Nachkommen mit verschiedenen statistischen und molekularbiologischen Methoden untersucht, um eine chromosomale Region und/oder ein Gen zu finden, dass mit diesem Merkmal der Tot- und Schwergeburt assoziiert ist.

Das Ziel dieser Arbeit war es, diese Regionen auf den Chromosomen zu finden und mit molekularen Markern zu assoziieren. Anhand dieser Ergebnisse, könnte die oben genannte gen- bzw. markergestützte Selektion ausgearbeitet werden, um mit dieser Methodik die Totgeburtenrate in der deutschen Fleckviehpopulation zu senken.

2. Literaturübersicht

2.1. Marker gestützte Selektion

Die genetische Verbesserung von Nutztieren wurde in traditioneller Weise mit künstlicher Selektion gewonnen. Das bedeutet, dass Tiere, die bestimmte Eigenschaften hatten, die für die Rasse von Nutzen waren, bevorzugt in der Züchtung eingesetzt wurden, damit sie diese an ihre Nachkommen weitervererben konnten. Rein theoretisch führt dies zu einer Veränderung der Allelfrequenz an den Orten des Chromosoms, die unter dem Selektionsdruck stehen (Gomez-Raya et al., 2002). Diese Veränderung der Frequenz wird benutzt um eine Assoziation eines positiven oder negativen Merkmals mit einem Genort herzustellen.

Da nicht alle für die Tierzucht und die Genetik relevanten Merkmale monogen sind und sich den Gesetzen der klassischen mendelschen Genetik unterwerfen und somit schnell auffindbar sind, ist die Entschlüsselung der Korrelationen zwischen komplex vererbten Merkmalen (polygen vererbten Merkmale) und ihrer zugehörigen chromosomalen Lokalisation für die Wissenschaft heutzutage eine der bedeutendsten Herausforderungen (Andersson and Georges, 2004). Für ein solches Merkmal sind mehrere Gene verantwortlich, die das phänotypische Erscheinungsbild variabel machen. Es gibt bei alle Nutztierarten und auch beim Menschen typische Merkmale, die polygen (multifaktoriell) vererbt werden und somit bei der Verteilung eine Gauß-Kurve bilden. Zu solchen Merkmalen zählen Leistungsmerkmale, Körperhöhe, Gewicht, Intelligenz, Hautfarbe und Blutdruck.

Zu den häufigsten polygen vererbten Merkmalen bei Nutztieren zählen Leistungsmerkmale (Milchleistung, Wachstum oder Zunahme, Legeleistung etc.) und Produktqualitätsmerkmale (Milchproteinprozent, Marmorierung oder Fleischzartheit etc.). Beim Menschen sind das komplexe Krankheiten, wie Hypertonie, Schizophrenie, psychische Labilitäten und Diabetes mellitus. Diese Merkmale bezeichnet man als quantitative Merkmale, da sich im Gegensatz zu den qualitative Merkmalen eine kontinuierliche Merkmalsverteilung aufweist. Wichtig ist, dass bei den quantitativen Merkmalen immer Umwelteinflüsse in den sich ausprägenden Phänotyp mit hineinspielen. Manche quantitativen

Merkmale sind jedoch so komplex oder stehen unter so Umwelteffekten. dass deren einzelne genetische Komponenten kaum nachweisbar sind. Die in dieser Arbeit benutzten Merkmale, Expressionsdaten (2.3.2) und die Zuchtwerte für das Merkmal Totgeburt paternal, wurden innerhalb eines komplexes Verfahrens auf ihre Umwelteinflüsse korrigiert (Fürst and Egger-Danner, 2003).

Um solchen Krankheiten auf die Spur zu kommen, braucht man eine Segregationsanalyse, durch die man auf den Erbgang (monogen/polygen, dominant/rezessiv/additiv) der an dem untersuchten Phänotyp beteiligten Gene schließt. Durch anschließende Kopplungsanalyse mit der Hilfe von genetischen Markern kann man eine Verbindung eines chromosomalen Abschnitts mit einem polygenen Merkmal herstellen. Der Abschnitt ist durch zwei oder mehrere informative Marker definiert. Innerhalb dieses Abschnittes wird nach Kandidatengenen, die in ihrer biologischen Eigenschaft in die Ausprägung des Merkmales passen, gesucht. Neben der Suche nach Kopplung (linkage), die die Nachbarschaft von Markern und ihre daraus resultierende gemeinsame Segregation beschreibt, wird nach einem Kopplungsungleichgewicht (linkage desequilibrium) gesucht. Das Kopplungsungleichgewicht beschreibt die Verknüpfung eines bestimmten Markerallels mit dem zu untersuchenden Phänotyp (polygenen Merkmal) innerhalb einer Population. Die perfekte allelische Assoziation ist hierbei nur auffindbar, wenn alle Träger des Merkmals in einer Studie, auch wenn sie scheinbar nicht verwandt sind, das chromosomale Segment von einem gemeinsamen Vorfahren geerbt haben. Bei einer nicht perfekten allelischen Assoziation, in denen die kausale Punktmutation nicht bekannt ist, sowie bei den in dieser Arbeit durchgeführten Studien gibt ein statistischer Test Aussage über die Signifikanz der Assoziation. In den meisten Assoziationsstudien wird über eine Fall-Kontroll-Analyse die Häufigkeit eines bestimmten Markerallels zwischen einer Gruppe von Trägern des Merkmals und einer Nichtträger-Gruppe verglichen. Allerdings ist es hier wichtig, dass Kontrolltiere und Falltiere aus der gleichen Subpopulation stammen (zusammengefasst in Tariverdian und Buselmaier (2004)).

Da bei Zuchtrassen Krankheiten, die erst beobachtet werden, nachdem sie ausbrechen, zu einem finanziell hohen Verlust des Züchters führen, ist es hier besonders wichtig, Zuchttiere vor der Paarung als Träger eines mit einer

Krankheit assoziierten Markerallels zu identifizieren. Das kranke Tier kann dann von der Züchtung ausgeschlossen oder gezielt und kontrolliert eingesetzt werden, wie zum Beispiel im Falle der bovinen Leukozyten-Adhäsions-Defizienz (BLAD). Hierbei handelt es sich um eine autosomal-rezessive Erbkrankheit, bei der das CD18 Gen zwei Mutationen auf Nucleotidebene aufweist. Allerdings führt nur eine der beiden zu einem Aminosäureaustausch und einem daraus resultierenden defekten Protein. Wenn ein Kalb nun beide defekten Gene von den Eltern erbt, stirbt es bereits innerhalb des ersten Lebensjahres, da es nicht fähig ist, sich gegen normale bakterielle Infekte zu schützen. Seit 1991 existiert ein direkter Gentest in den USA und so können Individuen, die auf dieses Allel heterozygot positiv getestet wurden, aus der Zucht entfernt werden. Als Ergebnis dieser Selektion konnte diese Krankheit aus der Holstein Zucht entfernt werden. In anderen Rinderrassen wurde dieses defekte Allel nicht gefunden (Gerardi, 1996). Kurz nach der Einführung des Testes in den USA wurde er weltweit in der Holsteinzucht eingesetzt.

2.2. Genetische Marker

Ein genetischer Marker kennzeichnet einen Fixpunkt auf der Genomkarte. Jeder Marker darf nur einen Lokus im Genom besitzen. Zur Konstruktion von genetischen Karten sind polymorphe Marker wichtig, während zur Konstruktion von physikalischen Karten die genomische Sequenz verwendet wird (Lottspeich and Engels, 2006). Es gibt verschiedene Arten von genetischen Markern, die alle ihre Vor- und Nachteile mit sich bringen. Die gängigsten sind in Tabelle 1 zusammengefasst.

Tabelle 1: Übersicht der gängigsten genetischen Marker

Markertyp	Eigenschaften
DNA-RFLP	zwei Markerallele, maximale Heterozygotie 0,5; erforderte zuerst Southern-Blot, jetzt PCR; einfache physikalische Lokalisierung, Genotypisierung durch Fragmentlängenbestimmung mit Gelelektrophorese
DNA-VNTR (Mikrosatelliten)	viele Allele, hochinformativ, Bestimmung durch automatisierte Multiplex- PCR möglich; einfache physikalische Lokalisierung, im gesamten Genom verteilt, Genotypisierung durch Fragmentlängenbestimmung mit Gelelektrophorese
DNA-SNP	weniger informativ als Mikrosatelliten, dafür aber zahlreicher; Bestimmung durch automatisierte Verfahren im großen Maßstab möglich; keine Gelelektrophorese notwendig

2.2.1. Mikrosatelliten

Mikrosatelliten (SSR - simple sequence repeats oder auch SSLP - simple sequence length polymorphism) sind kurze, nicht kodierende DNA-Sequenzen, die im Genom eines Organismus oft wiederholt werden. Oftmals konzentrieren sich viele Wiederholungen am selben Locus.

Die wiederholte Sequenz in einem Mikrosatelliten ist sehr einfach. Sie besteht aus zwei bis vier Nukleotiden und kann 10- bis 100-mal wiederholt auftreten. Mikrosatelliten sind die häufigste Form repetitiver DNA. Am häufigsten sind die Dinukleotidwiederholungen vom Typ (CA)n (Griffiths et al., 2008; Lottspeich and Engels, 2006; Strachan and Read, 2005)

Mikrosatelliten können zur Genanalyse verwendet werden, da die Anzahl der Wiederholungen sich bei verschiedenen Individuen unterscheidet und deswegen bei einer PCR des Genabschnitts Fragmente unterschiedlicher Länge entstehen, die dann durch eine besondere hochauflösende Art der Gelelektrophorese identifiziert werden können (siehe 3.2.1.5.1.). Diese durch PCR hergestellten Markersequenzen müssen einmalig sein, sonst sind sie als genomische Marker nicht tauglich. Das heißt, die Mikrosatelliten müssen von DNA-Sequenzen flankiert sein, die einmalig im Genom sind.

2.2.2. Single Nukleotid Polymorphismus

Ein single nucleotide polymorphism (SNP) oder Einzelnukleotidpolymorphismus ist eine genetische Variation eines einzelnen Nukleotids (meist der Austausch von Cytosin und Thymin) in der Genomsequenz und stellt eine Form der genetischen Variation dar (Griffiths et al., 2008). Man unterteilt SNPs in verschiedene Kategorien, je nach Lage im Genom und biologischer Relevanz:

rSNPs (random SNPs): Nur etwa zehn Prozent unseres Erbguts besteht aus Genen – dementsprechend finden sich die weitaus meisten SNPs in den nicht codierenden Bereichen unseres Genoms. Sie haben in aller Regel keine Auswirkungen auf den Phänotyp, (also das Erscheinungsbild eines Individuums). Sie dienen in der Wissenschaft vor allem als Marker bei der Kartierung des Genoms.

gSNPs (Gen-assoziierte SNPs): Viele SNPs liegen in unmittelbarer Nähe von Genen bzw. in den Introns; also denjenigen Bereichen eines Gens, die nicht in ein Genprodukt übersetzt werden. Sie werden meistens mit diesen Genen zusammen vererbt, was sie für deren Kartierung wichtig macht. Auch können gSNPs wichtige Kontrollelemente des Gens beeinflussen und damit das Ablesen eines Gens behindern oder beschleunigen.

cSNPs (codierende SNPs): Exons bilden den codierenden -das heißt in ein Genprodukt übersetzten- Bereich eines Gens. SNPs in diesem Bereich haben oft einen großen Einfluss auf die Funktion des entsprechenden Genproduktes, hierbei gibt es synonyme und nicht synonyme cSNPs. Bei synonymen cSNPs kommt es zu einer sogenannten stillen Mutation, bei der die Aminosäure nicht umgeändert wird, bei nicht synonymen cSNPs hingegen kommt es zu einem Aminosäureaustausch innerhalb der Proteinsequenz, was zu einer neuen Isoform des Proteins führt.

pSNPs (Phänotyp-relevante SNPs): Sowohl gSNPs als auch cSNPs können den Phänotyp eines Individuums beeinflussen: Erstere über die Menge, letztere über die Form des entsprechenden Genproduktes. Für die Tierzucht, Tier- und

Humanmedizin sind diese pSNPs die wichtigsten Variationen, die zeigen, was für Phänotypvarianten und Krankheiten sie auslösen können. Insbesondere bei polygenen Merkmalen oder Krankheiten, bei denen die Merkmalsausprägung oder das Krankheitsbild von verschiedenen Genen beeinflusst wird, sind solche Mutationen in Kausalgenen der Schlüssel zum Verständnis des komplexen Zusammenspiels.

Die Dichte der SNPs im Genom beträgt ungefähr 1,91 Kilobasen, das heißt in mehr als 90% einer Ausdehnung von 2 Kilobasen von DNA befindet sich mindestens ein SNP (Chakravarti, 2001). Durch ihre Häufigkeit bieten sie eine genauere Abdeckung des Genoms.

In Bos taurus sind derzeit 2.210.567 SNPs bekannt, davon sind 15.029 in kodierenden Regionen (cSNP). Der Anteil hiervon beläuft sich auf 6.982 nicht synonyme SNPs. (NCBI dbSNP Datenbank *Bos taurus*) (http://www.ncbi.nlm.nih.gov/snp/).

2.3. QTL-Kartierungen

2.3.1. Kartierung zweier QTL's auf BTA09

Bei vorherigen Arbeiten des Lehrstuhls für Tierzucht und Allgemeine Landwirtschaftslehre (Gomeringer, 2007) wurden zwei "quantitative trait loci" (QTL) für das Merkmal Totgeburt paternal kartiert. Ein QTL wurde mit zwei verschiedenen Kartierungsdesigns (Intervallkartierung und kombinierter Linkage und Linkage Desiquillibrium Kartierung) am distalen Bereich des Chromosom 9 (BTA09) von *Bos taurus* gefunden. Durch eine zusätzliche Intervallkartierung wurde der zweite QTL am proximalen Pol des Chromosoms gefunden. Diese beiden Regionen wurden auf geeignete Kandidatengene abgesucht und an Hand dieser Region wurde ein geeignetes Versuchsmodell erstellt, um Expressionsstudien und Kandidatengenstudien durchzuführen.

2.3.2. Erstellung eines Versuchsmodells

Für ein geeignetes Versuchsmodell wurde ein Fleckvieh Bulle (0970512), nach folgenden kombinierten Kriterien ausgewählt:

- (1) Überdurchschnittlich hohe paternale Totgeburtenrate
- (2) Erhöhter Prozentsatz an übergroßem Nachwuchs
- (3) Überdurchschnittliche Körpergröße des Bullen (Phänotyp)
- (4) Träger des Haplotyps auf BTA09, distal, der durch QTL-Kartierung und Haplotypisierung mit Totgeburten paternal assoziiert wurde

Von besagtem Bullen wurden 35 gesunde, zufällige Fleckvieh Färsen besamt, die alle am Trächtigkeitstag 150 geschlachtet wurden. Sie wurden alle in demselben Stall unter identischen Bedingungen gehalten, um etwaige Umweltfaktoren zu standardisieren. Die Färsen und die 150 Tage alten Feten wurden in einem Schlachthof von einem Schlachthofteam geschlachtet und vermessen. Hierbei entnahm man Gewebeproben mit denen die Studien dieser Arbeit durchgeführt wurden.

2.3.3. Auswahl geeigneter Kandidatengene

Auf Grund der vorausgegangenen Kartierungs- und Assoziationsstudien wurden bestimmte Bereiche auf Chromosom 9 als Kandidatengenregionen deklariert (Gomeringer, 2007). In diesen Regionen wurden zwei geeignete Kandidatengene ausgewählt, zum einen der Insulin ähnlichen Wachstumsfaktor 2 Rezeptor (*igf2r*) und der Östrogenrezeptor (*esr1*). Diese Gene wurden auf Grund ihrer Lokalisation (positionelle Kandidaten) und ihrer biologischen Relevanz (funktionelle Kandidaten) ausgewählt. Sie wurden auf etwaige Deletionen, Insertionen und Substitutionen überprüft. Zeitgleich wurde durch das LAFUGA (Laboratory for Functional Genome Analysis, Genzentrum der Ludwig- Maximilians- Universität München) eine Expressionsstudie an diesen Feten durchgeführt, um etwaige Abweichungen im Expressionsmuster von Genen zu erkennen.

2.4. **IGF2R**

2.4.1. Biologischer Prozess, zelluläre Lokalisation und metabolische Funktion

IGF2R wurde ausgewählt, weil es der Antagonist des dem Insulin ähnlichen Wachstumsfaktors 2 (IGF2) ist.

Die Urfunktion von IGF2R besteht darin mit Mannose-6-Phosphat markierte Proteine zu den Lysosomen zum Abbau zu bringen. Ursprünglicher Name dieses Rezeptors ist Kation unabhängiger Mannose-6-Phosphat Rezeptor (CI-MPR). In Beuteltieren und Plazentatieren hat dieser Rezeptor eine eindeutige Bindungsstelle für IGF2, die in Vögeln, Amphibien und Kloakentieren nicht vorhanden ist. Die ursprüngliche Funktion des Proteins suggeriert, dass der Rezeptor IGF2 nicht für eine weitere Signaltransduktion bindet, sondern es zum Abbau zu den Lysosomen bringt.

Das *igf2r* ist in Beuteltieren, Nagern und Paarhufern, außer im zentralen Nervensystem, imprintet, das orthologe Gen der Kloakentiere und Hühner hingegen nicht. Eine Korrelation zwischen Imprinting und dem Besitzen der IGF2R Bindungsstelle ist nicht gegeben, da der IGF2R von Primaten, Spitzhörnchen und Riesengleitern biallelisch exprimiert wird (Haig, 2004). Die phylogenetische Einschätzung ist, dass das Imprinting während der Evolution erst erworben und dann in einem gemeinsamen Vorfahren von Menschen und Primaten wieder verloren wurde.

2.4.2. Anordnung des igf2r Clusters

Das *igf2r* befindet sich in einem Cluster mit mehreren anderen Genen, die teilweise ebenfalls imprintet sind (Abbildung 1). Dieser Cluster beinhaltet eine non-coding RNA (ncRNA), die *Air* (Antisense to *igf2r*) RNA und zwei nur maternal exprimierte Kationentransporter *slc22a2* und *slc22a3* (Haig, 2004) und wird von zwei Genen *mas* (Protoonkogen) und *plg* (Plasminogen) flankiert. *mas* wird im Gehirn und in den Testis und Plasminogen in der Leber exprimiert (Regha et al., 2006). Dieser Cluster wurde durch eine Deletion am proximalen Pol von Chromosom 17 bei Mäusen entdeckt. Mäuse, die heterozygot für diese

Deletion sind, sterben in der Gebärmutter, wenn das Allel von der Mutter vererbt wurde, aber sie überleben, sofern es vom Vater stammt. Dadurch wurde diese Region *T-associated maternal effect (Tme)* bekannt. Aus dieser Beobachtung entwickelte sich die Annahme, dass *igf2r* nur von dem maternalen Allel exprimiert wird.

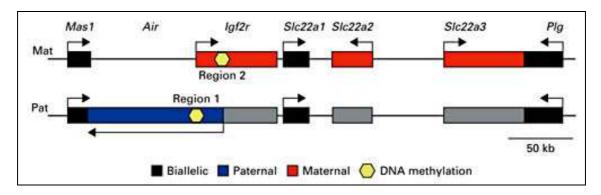


Abbildung 1: Anordnung des *igf2r* Clusters und schematische Darstellung des Expressionsprofils (Regha et al., 2006).

2.4.3. Methylierung der *igf2r* Promotorregion

Das igf2r besitzt mehrere GC-reiche Regionen, CpG-Islands genannt. Zwei davon sind DMRs (differentially methylated region) DMR1 und DMR2. Die DMRs können durch Methylierung des Cytosin so modifiziert werden, dass die Transkriptionsfaktoren an diesen Regionen nicht mehr anlagern können. DMR1, die Promoterregion von igf2r, ist selber eine somatische DMR, das heißt, die Region eignet sich die Methylierung erst während der postimplanaren Entwicklung an. DMR2 ist die Promoterregion der antisense RNA Air, die sich im Intron zwei des igf2r befindet (Abbildung 1). Diese ist maternal methyliert und ist eine gametische DMR, da die Methylierung in den Oozyten erhalten und während der De- und Remethylierung in der preimplanaren Entwicklung beibehalten wird (Regha et al., 2006). Durch die Methylierung der DMR2 wird die Expression von Air auf dem maternalen Allel unterdrückt. Fehlende DNA-Methylierung der DMR2 bewirkt eine komplette Abwesenheit von IGF2R. Dies impliziert, dass eine nicht methylierte DMR1, also nicht Methylierung der igf2r Promotorregion, nicht genug ist, um die Expression von igf2r zu aktivieren (Li et al., 1993). Bei Mäusen, die einen Mangel an der DNA-Methyltransferase 1

(Dmrt1) haben, wurde beobachtet, dass es keine Expression des normal maternal exprimierten Genes von IGF2R gibt. Die DNA-Methyltransferase 1 ist ein Protein, dass die Cytosine von CpG-Islands methyliert.

2.4.4. Acetylierung der Histone

Um die Gentranskription durch Imprinting zu beeinflussen, spielen noch weitere Faktoren eine Rolle. Eine Deacetylierung der Histone zieht eine Kondensation des Chromatins nach sich und unterdrückt somit die Transkription. Das bedeutet, dass Histone, die deacetyliert sind, die Transkription unterbinden, wohingegen Histone, die acetyliert sind, die Transkriptionsrate erhöhen. Die Acetylierung findet während der Mitose statt, weswegen dieses Muster einen erblichen epigenetischen Imprintingfaktor repräsentiert, der die Transkription beeinflussen kann. In *igf2r* sind die Histone unterschiedlich acetyliert. Histon 4 ist in der DMR1 auf dem maternalen Allel hyperacetyliert, während es auf dem paternalen hypoacetyliert ist. Dieses Phänomen ist in gegensätzlicher Weise in der DMR2 zu beobachten: Die Hyperacetylierung befindet sich auf dem paternalen Allel und die Hypoacetylierung auf dem Maternalen. Diese Beobachtung weist daraufhin, dass die Acetylierung eine entschiedene Rolle im Imprintingmechanismus von *igf2r* spielt (Hu et al., 2000).

2.4.5. Zusammenspiel von Acetylierung und Methylierung

Es ist zu beobachten, dass DNA, die reich an methylierten CpG-Islands ist, mit hypoacetylierten Histonen assoziiert ist und über einen hohen Anteil an Histon 1 verfügt, während das Gegenteil in unmethylierten CpG-Islands zu beobachten ist: hyperacetylierte Histone und weniger Histon 1. Eine Methylierung hat nicht nur unterdrückte Transkription zur Folge, sondern auch eine inaktive DNase resistente lokal ausgeprägte Chromatinstruktur mit hypoacetylierten Histonen. Diese Struktur kann sich auch auf benachbarte unmethylierte DNA Stücke ausdehnen, was eine Inhibition der Gentranskription über längere Segmente des Chromosoms zur Folge hat. Dies könnte ein möglicher Mechanismus für das Imprinting von Genclustern sein. Trichostatin A (TSA) ist ein Reagenz, das die Histondeacetylase inhibiert. Hierdurch wird die Deacetylierung der Histone verhindert. Bei mit TSA behandelten Zellen zeigte sich, dass diese Behandlung

auch eine Auswirkung auf den Methylierungsgrad und die Expression zur Folge hat. Bei Mauszellen, die mit TSA behandelt wurden, konnte man feststellen, dass das Imprinting der antisense RNA (*Air*) des maternalen Allels sehr stark gelockert wurde, aber der Verlust war nicht vollständig. Auf dem paternalen Allel hingegen wurde das Imprinting der sense mRNA nur sehr leicht gelockert. In beiden Promoterregionen wurden partielle DNA-Demethylierungen beobachtet, das heißt, dass TSA beziehungsweise die Inhibition der Deacetylase eine Demethylierung bewirkt.

2.4.6. Ablauf des Imprinting des igf2r in der Maus

Der erste Schritt des Imprinting von *igf2r* ist die Methylierung der DMR2 in der maternalen Keimbahn (Brandeis et al., 1993; Stoger et al., 1993). Im frühen Embryostadium ist die Expression des *igf2r* noch biallelisch, dies impliziert, dass die Methylierung beziehungsweise Demethylierung der Promoterregion der antisense RNA (*Air*) nicht alleine ausreicht, um die Transkription des Genes zu unterdrücken. Das "Silencing" des Genes auf dem paternalen Allel startet zum Zeitpunkt der Einnistung der Eizelle und ist noch vor der Geburt vollständig abgeschlossen (Lerchner and Barlow, 1997). Der Beginn des Imprinting der Gene für die benachbarten Kationentransporter SLC22A2 und SLC22A3 ist noch nicht bestimmt.

2.4.7. Modelle für das igf2r Imprinting in der Maus

Von Hu et al. (1999) wurden zwei verschiedene Modelle des möglichen Imprinting des *igf2r* beschrieben.

Modell 1, das antisense RNA Modell, geht von einem Expressionswettbewerb aus. Das heißt, die Methylierung ist nicht zwingend notwendig, jedoch die DNA Modifikation des antisense *igf2r* (*Air*-RNA). Diese These wurde durch den Verlust des Imprinting gestützt, welcher in YAC Mäusen zu beobachten war, wenn die Promoterregion von *Air* (DMR2) deletiert war.

In Modell 2 wird das Imprinting durch die allelspezifische DNA Methylierung hervorgerufen wird. Dieses Modell wird dadurch untermauert, dass im zentralen

Nervensystem *igf2r* biallelisch exprimiert wird, aber trotzdem auf dem paternalen Gen die *Air*-RNA transkribiert wird.

Yang et al. (2003) beschrieb ein weiteres mögliches Modell, das beide Modelle verbindet.

Dem zu Folge wird die *Air*-RNA, die DNA-Methylierung und die Histondeacetylierung am paternalen igf2r Promoter (sekundäre DMR1) während früher Entwicklungsstadien induziert. Sobald die Methylierung und Deacetylierung dieser Region abgeschlossen ist, unterliegt die Kontrolle der Transkription der lokalen Chromatinstruktur und nicht länger der Air-RNA. Um die biallelische Expression im zentralen Nervensystem zu erklären, wird spekuliert, dass es die Air-RNA in diesen Geweben in den frühen Entwicklungsstadien versäumte, eine methylierte und deacetylierte Region zu bilden. Als Folge dessen kann man eine biallelische Expression von igf2r auch in Anwesenheit von der Air-RNA beobachten.

Bei Regha et al. (2006) wurden drei verschiedene Möglichkeiten beschrieben, wie die Air RNA das Imprinting des *igf2r* Promotors bewirken könnte. Diese Modelle beziehen sich unter anderem auf die vorher beschriebenen Publikationen und Untersuchungen zu diesem Thema.

Das erste Modell ist ein small interfering RNA (siRNA) Modell. SiRNAs sind kleine doppelsträngige RNA Moleküle von ungefähr 22 Nukleotiden, die von einer längeren doppelsträngigen RNA abstammen, die aus einem sense und antisense Produkt eines Genes besteht. Eine Endonuclease zerschneidet sie dann in kleine Stücke. siRNAs sind Mittler im RNA Interferenz (RNAi) Stoffwechselweg, der zur Verminderung der Genexpression führt. Das Problem ist, dass siRNAs normalerweise in trans agieren, für die Air-RNA aber nachgewiesen wurde, dass sie in cis agiert, woraufhin ein zwei Schritte Modell vorgeschlagen wurde (Sleutels et al., 2002). Zuerst führt die siRNA, die aus wurde, igf2r-Air-Hybrid gewonnen zu einer Umordnung Chromatinstruktur und der nach sich ziehenden Stilllegung des *igf2r* an dessen Promoterregion. Darauf breitet sich die Chromatinstruktur auf die benachbarten Gene aus (Kass et al., 1993; Sleutels et al., 2003).

Das zweite Modell ist ein dem Xist RNA Modell ähnliches Modell. Die Air-RNA richtet sich auf dem paternalen Chromosom aus, ummantelt es, wodurch es

chromatinmodifizierende Proteine zum Cluster bringt. Was in einer unterdrückten Expression von *igf2r, slc22a2* und *slc22a3* resultiert.

Als Drittes wird ein Modell vorgeschlagen, in dem die Transkription von Air die Bindung von Transkriptionsfaktoren oder der RNA Polymerase II an regulatorische Elemente wie Promotoren und Enhancer, die mit der Transkription von *igf2r, slc22a2* und *slc22a3* zusammenhängen, verhindert.

Bei Bos taurus ist noch keines dieser Modelle verifiziert. Allerdings besitzt das Intron2 von *igf2r* das CpG-Island, dass in der Maus als Promotorstelle der Air deklariert wurde. Diese Promotorstelle ist in *Bos taurus* differentiell methyliert. In Spermazellen wurde zum Beispiel keine Methylierung gefunden, aber dafür in Herz und Lunge (Long and Cai, 2007).

2.4.8. Korrelation des IGF2R mit dem Wachstumsfaktor IGF2

IGF2R ist als Rezeptor dafür da, die IGF2 Konzentration in der Zelle zu regeln, indem er *igf2* zum Abbau zu den Lysosomen bringt. Wenn das Imprinting des *igf2r* als Dosiskompensation nicht mehr funktioniert, dann wirkt sich das auf seinen Antagonisten *igf2* aus. Wenn in der maternalen Keimbahn die Methylierung der Promotorregion der *Air*-RNA fehlschlägt, wird auch das maternale Gen imprintet, was dazu führen würde, dass zuwenig IGF2R in der Zelle vorhanden ist. Der Anteil an IGF2 würde somit deutlich ansteigen, was zu einem rapiden Großwuchs führen würde, da es ein Wachstumsfaktor ist (Cornish et al., 2007). Wenn allerdings das Imprinting das paternalen Allel durch die *Air*-RNA fehlschlägt, hätte es einen sofortigen Wachstumstop zur Folge, das Individuum bliebe klein. In diesem Falle würde zuviel IGF2R gebildet und damit sänke der Anteil an IGF2 in der Zelle drastisch (siehe Abbildung 2).

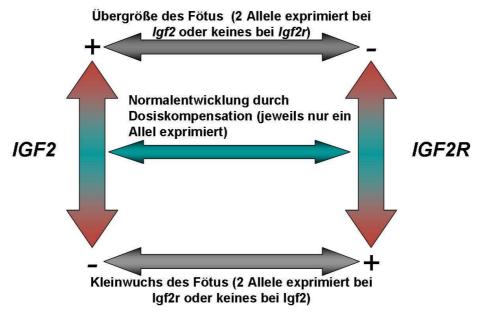


Abbildung 2: Abhängigkeit von IGF2 und seinem Antagonisten IGF2R

Um einen derartigen Verlust des Imprintings beobachten zu können, müsste entweder der Promotor der Air (das CpG-Island) einen Defekt haben, im Sinne von Deletionen oder Insertionen, die verhindern, dass die Air exprimiert wird, oder einen Defekt der Air selber, wie z.B. eine Deletionen in ihrer Sequenz. Da die Sequenz über verschiedene Arten hinweg wenia Sequenzähnlichkeit aufweist, es aber nachgewiesen ist, dass sie exprimiert wird und existiert, kommt man zu dem Schluss, dass die Nukleotidsequenz nicht so wichtig ist wie ihre Strukturbildung. Ähnlich wie bei den so genannten ITS ("internal transcribed spacer"), einer Nukleotidsequenz zwischen der 18S rRNA und der 5,8S rRNA und 5,8S rRNA und der 25S rRNA liegt (Mercure et al., 1993), liegt die Selektion hier auf der Struktur und nicht auf der Sequenz. Deletionen in ihr wären aber fatal, da sie die Struktur aufbrechen würden (siehe Abbildung 3).

Ein starker Kleinwuchs wäre auch zu beobachten, wenn der Wachstumsfaktor IGF2 in seiner Proteinsequenz und zwar in einer seiner funktionellen Domänen oder in der, die für Andocken von IGF2R wichtig ist, Defekte hätte oder seine Promoterregion Insertionen, Deletionen oder Substitutionen an den Transkriptionsfaktorbindungsstellen aufweisen würde (siehe Abbildung 3).

Um den Phänotyp der Übergröße zu bekommen, müsste in der maternalen Keimbahn das Methylieren des CpG-Islands des Intron2 des *igf2r* fehlschlagen, was somit eine Expression der *Air*-RNA des maternalen Allels zur Folge hätte

und somit auch hier zur Stilllegung des gesamten Clusters führen würde. Dieses würde durch einen Mangel des Rezeptors zu einem Überschuss an IGF2 führen, welcher das Wachstum anregen würde.

Dasselbe würde auch passieren, wenn das Imprinting von *igf2* in der maternalen Keimbahn fehlschlagen würde. Das hätte eine Überexpression und damit verbundenen einen hohen IGF2 Spiegel in der Zelle zur Folge (siehe Abbildung 3).

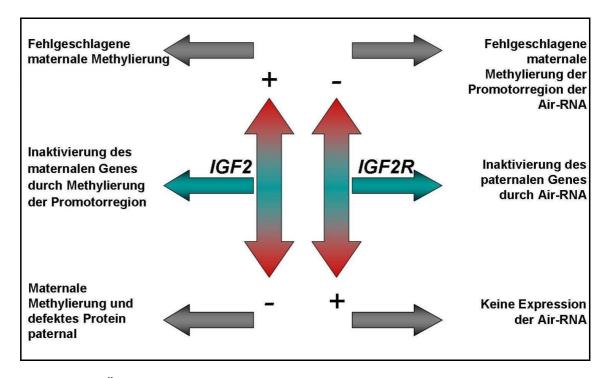


Abbildung 3: Übersicht über die möglichen Defekte der beiden Gene und ihre Korrelation

2.4.9. Assoziation mit verschiedenen Krankheiten

Es ist nicht bekannt, ob der IGR2R mit bestimmten Krankheiten assoziiert ist, allerdings wurde der Verlust des Imprintings von IGF2 mit verschiedenen Krankheiten wie dem Beckwith-Wiedemann Syndrom (Feinberg, 1993; Weksberg et al., 1993) und sporadischem Wilms Tumor (Rainier et al., 1993) in Verbindung gebracht. Constancia et al. (2002) zeigte durch eine Deletion des Genes, dass IGF2 beim fetalen Wachstum involviert ist, das heißt Mäuse, die das defekte Gen besaßen, stellten das fetale Wachstum ein. Daraus könnte wiederum geschlossen werden, dass eine Überexpression in einer fetalen

Übergröße resultieren würde.

Durch die vorhergegangenen Assoziationsstudien (Gomeringer, 2007) konnte ausgeschlossen werden, dass IGF2 selbst innerhalb des hier verwendeten Versuchmodells einen Gendefekt aufweist. Da man IGF2R aber benötigt, um den IGF2 Spiegel in der Zelle konstant zu halten, ist es wahrscheinlich, dass diese Krankheitsbilder auch eintreten, wenn der Rezeptor einen Defekt besitzt.

2.5. Östrogenrezeptor

2.5.1. Biologischer Prozess, zelluläre Lokalisation und metabolische Funktion

Der Östrogenrezeptor alpha (ESR1) dient dazu im Körper das spezifische Wirken von Östrogenen zu übertragen (Jensen, 1962). Östrogene fördern das Wachstum von den primären weiblichen Geschlechtsorganen wie Vagina, Uterus, Ovar und Tuben sowie die Ausbildung sekundärer weiblicher Geschlechtsorgane. Östrogenrezeptoren regulieren Prozesse wie Reproduktion, Differenzierung, Entwicklung, Homöostase und Onkogenese (Szreder et al., 2008).

Es existieren zwei verschieden Östrogenrezeptoren alpa und beta (Kuiper et al., 1996), die beide zu den Steroid- und Thyroidhormonrezeptoren gehören, welche alle einen gemeinsamen 3D-Strukturaufbau aufzeigen (Evans, 1988; Giguere et al., 1988; Nilsson et al., 2001). Die Proteine weisen drei unabhängige, aber funktionell interagierende Domänen auf. Die N-terminale Domäne ist die Domäne, die vom Liganden völlig unabhängig ist, sie ist involviert in Protein-Protein Interaktionen und transkriptionaler Aktivierung von Zielgenen. Die mittlere Domäne beinhaltet zwei Zinkfingerdomänen, die an die DNA binden. Die COOH-terminale Domäne ist die, welche den Liganden bindet und somit durch Strukturveränderungen, die Rezeptordimerisation, die nukleare Translokation oder die Aktivierung der Transkription von Zielgenen vermittelt (Nilsson et al., 2001).

Viele verschiedene Spleißvarianten der Östrogenrezeptoren alpha und beta wurden beschrieben (Petersen et al., 1998), in dieser Doktorarbeit wurde aber nur speziell der Östrogenrezeptor alpha untersucht, da in seiner Nähe ein QTL für paternale Totgeburt gefunden wurde (Gomeringer, 2007), der in Mikroarrayanalysen eine unterschiedlich Expressionsrate zeigt. (siehe 2.6) Außerdem wurde bereits ein Polymorphismus in diesem Gen nachgewiesen, der mit Übergröße assoziiert ist (Lehrer et al., 1994).

2.5.2. Transkription

Es wurde gezeigt, dass der Östrogenrezeptor im Menschen eine sehr komplexe Promotorregion mit verschiedenen zusätzlichen untranslatierten Exons besitzt. Es wird vermutet, dass ihre Aufgabe in einer gewebespezifischen Expression des Östrogenrezeptors besteht. Es konnte gezeigt werden, dass beim Menschen bestimmte Exons nur in bestimmten Zelllinien exprimiert werden. Die Anordnung der verschiedenen Promotoren ist über verschiedene Spezies (siehe Abbildung 4) konserviert (Kos et al., 2001; Szreder and Zwierzchowski, 2007).

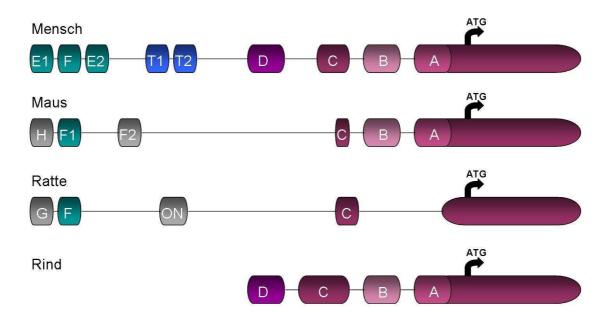


Abbildung 4: Übersicht der Promotorregion des Östrogenrezeptors in verschiedenen Spezies. Die Buchstaben stehen hierbei für die vorgeschlagene Nomenklatur der verschiedenen Forschungsgruppen, die sie entdeckt haben. Die verschiedenen Farben wurden zur Übersichtlichkeit benutzt. Gleiche Buchstaben deklarieren gleiche Exons zwischen den einzelnen Spezies.

Da diese Promotorexons so konserviert sind und im Menschen zur Regulation der Expression dienen, wird dies für *Bos taurus* auch suggeriert. Es konnte auch schon gezeigt werden, dass in Holstein-Friesian-Bullen ein SNP im Promotorbereich zu einer Expressionsveränderung führt (Szreder et al., 2008).

2.5.3. Assoziation mit verschiedenen Krankheiten

Durch Kopplungsanalysen beim Menschen wird der Östrogenrezeptor primär mit dem Krankheitsbild Brustkrebs assoziiert (Stacey et al., 2007; Zuppan et al., 1991). Allerdings entdeckte Lorentzon et al. (1999), dass ein Polymorphismus im esr1 für einen Verlust der Knochendichte und einen daraus resultierenden Minderwuchs bei adulten Männern verantwortlich ist. Diese Studie zeigte auch, dass der Estradiol-Level nicht mit diesem Phänotyp in Verbindung gebracht werden konnte. Becherini at al. (2000) zeigte, dass Allelvarianten eines Mikrosatelliten in der 5'-Region des Exon 1 eine statistisch signifikante Korrelation zu der Knochendichte in den Hüften bei postmenopausalen Frauen hat. Der von Lorentzon et al (1999) entdeckte Polymorphismus wurde von Okura et al (2003) mit einem höheren "Body Mass Index" und einem höheren Fettanteil in Verbindung gebracht. Dieser Polymorphismus erzeugt ebenso ein höheres Herzinfarktrisiko und ein Risiko für ischämische Herzkrankheiten (Schuit et al., 2004). Diesen Studien zufolge ist der Östrogenrezeptor beim Menschen in mehrere Stoffwechselwege involviert. Er ist vor allem wegen seiner Korrelation zur Knochendichte und zur Körpergröße ein interessantes Kandidatengen. Natürlich sind die Stoffwechselwege des Menschen nicht eins zu eins auf das Rind anzuwenden, jedoch geben sie sehr gute Hinweise, denen in dieser Arbeit nachgegangen wird.

2.6. Mikroarrayanalysen

Von den vorher beschriebenen 36 Feten (siehe 2.3.3) wurden im LAFUGA Labor Expressionsstudien anhand des Mikroarraychips von Affymetrix durchgeführt (Krebs et al., 2008). Für die Gewebe Leber und Herz wurden je 10 leichte und 10 schwere Kälber analysiert. Für das Herzgewebe wurden alle Feten, bis auf Fetus 1 und 14, da sie vorher abgestorben waren und somit keine RNA isoliert werden konnte, analysiert. Die mit Programmen wie STRING (Jensen et al., 2009) and Bibliosphere (Scherf et al., 2005) durchgeführte Netzwerkanalyse zeigte einen weiteren Hinweis auf den Östrogenrezeptor, der in der Mitte des Expressionsnetzwerkes steht (Abbildung 5).

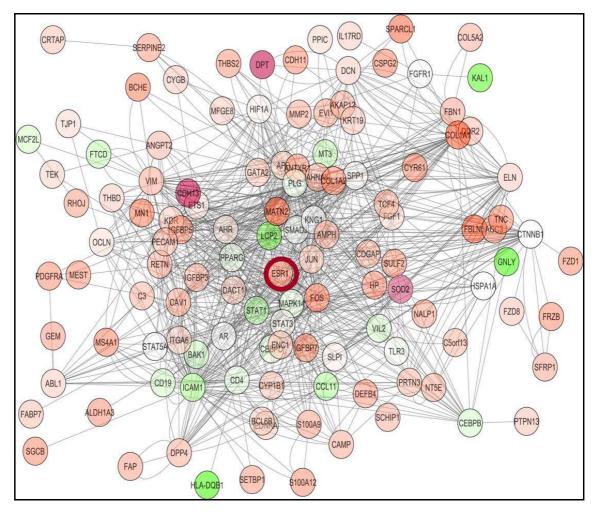


Abbildung 5: Netzwerk der koexprimierten Gene mit ESR1 im Mittelpunkt (Krebs et al., 2008)

2.6.1. Leber

Die Expressionsdaten ESR1 regulierter Gene zeigten einen Unterschied zwischen den verschiedenen paternalen Haplotypen (siehe Abbildung 6), hier als Q und q gekennzeichnet, des proximalen Stücks von BTA09 die die einzelnen Individuen bekamen. Das proximale Stück des BTA09 entspricht dem bei Gomeringer (2007) als Totgeburt paternal und Schwergeburt paternal gefundenen QTL.

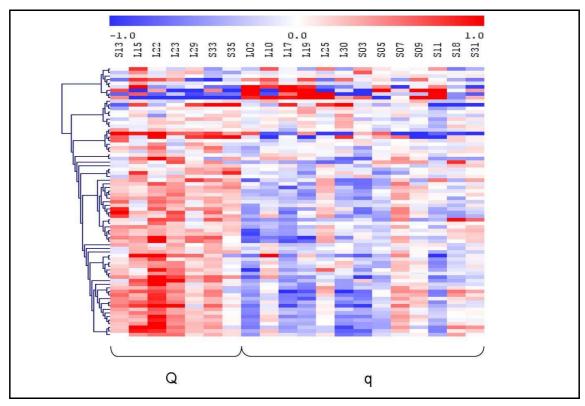


Abbildung 6: Expressionsdaten von ESR1 regulierten Genen in der Leber sortiert nach Haplotypen des BTA09 proximalen Pols (Krebs et al., 2008). In den Spalten sind die einzelnen Tiere aufgelistet. Sie wurden in zwei Gruppen kategorisiert: leicht (L) und schwer (S). In den Reihen sind die einzelnen Expressionsdaten eines Genes pro Tier zu sehen. Verschiedene Blautöne bedeuten, dass dieses Gen im Vergleich zum Mittelwert runterreguliert ist (bis -1,0), Rottöne bedeuten, dass die Expression des Genes erhöht ist (bis +1,0) und weiß ist der Mittelwert (0,0), was an dem Farbbalken ganz oben verdeutlicht ist.

2.6.2. Herz

Bei den Expressionsdaten der ESR1 regulierten Gene aus dem Herzgewebe sieht man auch eine Tendenz der verschiedenen paternalen Haplotypen des bei Gomeringer (2007) gefundenen QTL's (Abbildung 7).

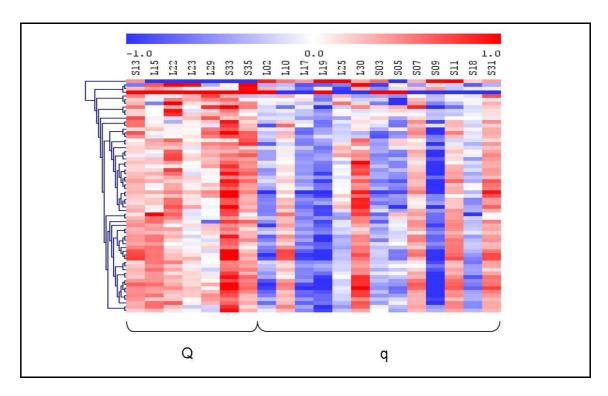


Abbildung 7: Expressionsdaten von ESR1 regulierten Genen im Herzen sortiert nach Haplotypen des BTA09 proximalen Pols (Krebs et al., 2008). In den Spalten sind die einzelnen Tiere aufgelistet. Sie wurden in zwei Gruppen kategorisiert: leicht (L) und schwer (S). In den Reihen sind die einzelnen Expressionsdaten eines Genes pro Tier zu sehen. Verschiedene Blautöne bedeuten, dass dieses Gen ist im Vergleich zum Mittelwert runterreguliert ist (bis -1,0), Rottöne bedeuten, dass die Expression des Genes erhöht ist (bis +1,0) und weiß ist der Mittelwert (0,0), was an dem Farbbalken ganz oben verdeutlicht ist.

2.7. eQTL's auf BTA09 mit Mikrosatelliten

Expression Quantitative Trait Locus (eQTL) Kartierung versucht genomische Variationen zu finden, die die differentielle Expression erklären. Der Unterschied zur traditionellen QTL-Kartierung ist, dass die traditionelle auf ein oder ein paar wenigen phänotypischen Merkmalen fokussiert ist, während bei der eQTL-Kartierung tausende von Expressionsmerkmalen analysiert werden können.

Die Mikroarraydaten wurden mit der RAM Methode normalisiert (Bioconductor R-suite) und durch die eQTL-Kartierung, die auf einem fünf Generationen Stammbaum von 223 Tieren und auf einer kombinierter "linkage desiquilibrium and linkage" (LDL) Kartierung mit dem Programm "LDL_rams" (Lee and van der Werf, 2004; Lee et al., 2005; Lee and Van der Werf, 2005) beruht, analysiert (Medugorac et al., 2008).

2.7.1. Leber

In dieser Studie wurde eine eQTL Analyse von jedem, auf dem Mikroarraychips verwendeten Gen, durchgeführt. Als Ausgangsmaterial diente hierbei Lebergewebe der Feten. In der Abbildung 8 sieht man die graphische Zusammenstellung der wichtigsten Ergebnisse der Leberexpressionskartierungsdaten auf BTA09: Als quantitatives Merkmal wurden die Expressionsdaten der einzelnen Gene von jedem Tier genommen. Man sieht ein deutliches Signal um die Region des Östrogenrezeptors und im Bereich des Gens der Superoxiddismutase 2. Die Superoxiddismutase 2 (SOD2) ist auch als einziges ein sogenanntes *cis* QTL, da es seinen eigenen Genort kartiert (Medugorac et al., 2008). Auf Grund dieser Tatsache wurde dieses Gen in dieser Doktorarbeit als Kandidatengen näher analysiert.

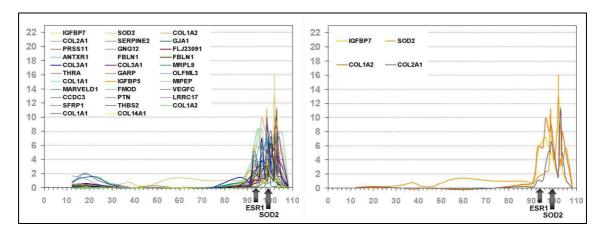


Abbildung 8: Differentiell exprimierte Gene mit einer Irrtumswahrscheinlichkeit von P > 0,01 (links) und P > 0,001 (rechts) auf BTA09; Einheiten: x-Achse: cM; y- Achse: Teststatistik "Likelihood-Ratio" (LR)

2.7.2. Herz

Mit den Expressionsdaten des Herzgewebes LAFUGAaus den Untersuchungen wurde genauso verfahren. Wobei hier nun als quantitatives Merkmal die Expressionsdaten im Herzgewebe einen jeden einzelnen Tieres die Grundlage der Analyse waren. Acht dieser Gene kartieren mit einer hohen Likelihood-Ratio genau im 0,6 cM großen Intervall, in dem sich das Gen des Östrogenrezeptors befindet, während 19 der Gene mit einer Irrtumswahrscheinlichkeit von kleiner als 0,001 auf den distalen Pol des BTA09 kartieren (Medugorac et al., 2008).

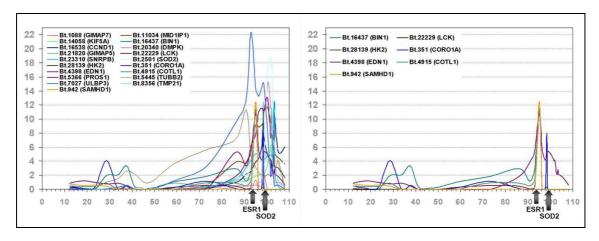


Abbildung 9: Differentiell exprimierte Gene mit einer Irrtumswahrscheinlichkeit von P > 0,001 auf BTA09 (links); 8 davon kartieren genau das 0,6 cM große Intervall des esr1 Genes (rechts); Einheiten: x-Achse: cM; y- Achse: Teststatistik "Likelihood-Ratio" (LR)

2.8. Superoxiddismutase

2.8.1. Biologische Prozess, zelluläre Lokalisation und metabolische Funktion

Die Superoxiddismutase 2 oder auch manganabhängige mitochondriale Superoxiddismutase ist ein Radikalfänger. Sie katalysiert eine chemische Reaktion: damit die radikalen Sauerstoffe, die in den Zellen produziert werden und ansonsten toxisch wären, umgewandelt werden (McCord and Fridovich, 1969).

$$2 O_{2}^{-} + 2 H^{+} = O_{2} + H_{2}O_{2}$$

2.8.2. Assoziation mit verschiedenen Krankheiten

Bei sod2 "knock- out" Mäusen zeigte sich, dass diese innerhalb der ersten 10 Tage an einer geweiteten Kardiomyopathie, einer Ansammlung von Fett in der Leber und im Skelettmuskel und einer metabolischen Azidämie verstarben (Li et al., 1995).

2.9. Zielsetzung

Das Ziel dieser Arbeit ist es eine genomweite Feinkartierung durchzuführen und die ausgewählten Kandidatengene *igf2r, esr1* und *sod2* für das Merkmal paternale Tot- und Schwergeburt zu untersuchen, um deren Ursache zu ergründen. Die ausgesuchten Kandidatengene werden mit Hilfe von Sequenzierungen auf etwaige Mutationen untersucht und ihre Expression wird mit einer Real Time PCR überprüft. Die Entdeckung kausaler Kandidatengene für dieses Merkmal ist elementar wichtig, da dies dazu dient, dass man zu einem späteren Zeitpunkt eine markergestützte Selektion bei Zuchtbullen durchführen, kann, so dass die Verluste durch den Tod der Kälber und der Kühe verringert werden können.

Material und Methoden 28

3. Material und Methoden

3.1. Material

3.1.1. Tiere

Für diese Arbeit wurden Rinder-Proben aus der Probenbank des Lehrstuhls für Tierzucht und Allgemeine Landwirtschaftslehre der LMU München analysiert. Die Proben der verwendeten Tiere wurden gesammelt und die DNA aus den unterschiedlichen Proben von Sperma, Haarwurzeln, Gewebe, Milch und Vollblut isoliert (siehe 3.2.1.2). Die DNA wurde am Lehrstuhl mit Mikrosatelliten (siehe Tabelle 6) genotypisiert und in einer lehrstuhleigenen Datenbank katalogisiert. Es wurden insgesamt 754 Tiere der Deutschen Fleckvieh Population für die Mikrosatelliten auf BTA09 genotypisiert. Alle diese Tiere sind Besamungsbullen, die Ergebnisse aus der Leistungsprüfung und Zuchtwertschätzung besitzen. Von ihnen gibt es elf große Halbgeschwisterfamilien. Diese bilden mit den in diesem Institut gesammelten und genotypisierten Vorfahren eine Großfamilie.

Eine dieser Halbgeschwisterfamilien, die man in der Rindergenetik auch als Grand-Daughter-Design (GDD) Familien bezeichnet, ist von besonderem Interesse für diese Arbeit. Diese GDD-Familie ist durch einen Bullen, der für das starke Wachstum und die damit verbundenen Schwer- und Totgeburten verantwortlich sein sollte (siehe 2.3.2), und 111 seiner leistungsgeprüften Söhne bekannt. Die 111 Söhne und der Vater wurden für eine Genotypisierung mit dem bovinen 50k BeadChip von Illumina ausgewählt. Die SNP-Chip Genotypisierung wurde vom Tierzuchtforschung e.V. München durchgeführt (siehe 3.2.1.6.2.). Diese Daten wurden ebenfalls in der Datenbank katalogisiert. Von diesem Bullen, der als Träger im Mittelpunkt der Untersuchungen steht, wurden für die Analysen 36 Feten am Tag 150 geschlachtet und vermessen (siehe Tabelle 2). Gewebeproben wurden entnommen und für RNA- und DNA-Extraktion (siehe 3.2.1.2 und 3.2.1.3) vorbereitet. 35 Feten (ausgenommen ein abgestorbener Fetus) wurden neben dem genomweiten Expressionschip auch mit dem genomweiten SNP-Chip analysiert. Um eine sichere Haplotypisierung zu erreichen und die Herkunft von fraglichen Haplotypen ableiten zu können, Material und Methoden 29

wurden von den 35 Feten auch deren Mütter, und zusätzlich 16 verfügbare Mutterväter und acht Mutterväterväter ebenfalls mit dem oben genannten SNP-Chip genotypisiert.

Tabelle 2: Liste, der untersuchten 150 Tage alten Feten. Probenentnahme-Datum ist Schlachtdatum der Mütter, die synchronisiert in drei Gruppen besamt und 150 Tage später geschlachtet wurden. Die Gewichte sind in Gramm angegeben.

TierID	Geschlecht	Datum	MutterID	Gesamt-	Herz-	Leber-
	- Contracting		. M. G. C. C.	gewicht	gewicht	gewicht
FV0301	m	18.01.2006	FV0341	3556,7	15,2	124,3
FV0302	₩	18.01.2006	FV0342	2276,8	17,7	97,8
FV0303	W	18.01.2006	FV0343	2956,6	23,0	103,5
FV0304	W	18.01.2006	FV0344	2471,3	16,7	83,6
FV0305	W	18.01.2006	FV0345	3194,5	21,0	113,5
FV0306	W	25.01.2006	FV0346	2417,0	18,2	83,3
FV0307	W	25.01.2006	FV0347	2659,5	19,3	82,0
FV0308	W	25.01.2006	FV0348	2550,4	18,8	86,8
FV0309	W	25.01.2006	FV0349	2789,0	20,3	99,5
FV0310	w	25.01.2006	FV0350	2263,5	16,6	77,4
FV0311	∵m	25.01.2006	FV0351	2956,6	20,1	96,6
FV0312	W	25.01.2006	FV0352	2538,9	19,0	77,0
FV0313	W	25.01.2006	FV0353	2642,0	17,6	87,8
FV0314	W	01.02.2006	FV0354	2820,8	20,2	1, 107
FV0315	W	01.02.2006	FV0355	2346,2	16,5	89,1
FV0316	W	01.02.2006	FV0356	2569,7	18,4	86,1
FV0317	m	01.02.2006	FV0357	2514,3	18,4	85,0
FV0318	m	01.02.2006	FV0358	3116,5	20,4	92,3
FV0319	w	01.02.2006	FV0359	2376,5	18,7	96,0
FV0320	m	01.02.2006	FV0360	2913,3	18,7	89,2
FV0321	w	08.02.2006	FV0361	2600,1	19,1	83,7
FV0322	m	08.02.2006	FV0361	2207,1	15,8	61,1
FV0323	w	08,02,2006	FV0362	2181,4	16,2	69,9
FV0324	⊘m	08.02.2006	FV0363	2784,9	19,4	104,8
FV0325	W	08.02.2006	FV0364	2250,3	16,2	75,9
FV0326	W	08.02.2006	FV0365	2507,6	17,5	80,3
FV0327	m	01.03.2006	FV0366	2863,7	20,2	88,38
FV0328	m	01.03.2006	FV0367	2945,1	20,1	89,6
FV0329	m	15,03,2006	FV0368	2559,8	18,9	85,4
FV0330	m	15.03.2006	FV0369	1938,3	15,7	61,9
FV0331	m	15.03.2006	FV0370	3358,6	22,9	105,4
FV0332	m	15.03,2006	FV0371	2614,4	17,7	88,7
FV0333	m	22.03.2006	FV0372	3437,6	25,3	126,4
FV0334	m	22.03.2006	FV0373	2694,0	19,6	80,1
FV0335	W	26.04.2006	FV0374	2707,1	21,0	89,0
FV0336	m	26.04.2006	FV0375	2835,1	20,4	86,5

3.1.2. Molekulargenetisches Material

Molekulargenetisches Material in Form von verwendeten BAC-Klonen und Oligonukleotide, die für die Anordnung der BAC-Klone und der Exons der Kandidatengene in der genomischen Sequenz, für Genotypisierung von Mikrosatelliten und SNPs, sowie Sequenzierungen und Expressionsanalysen der Kandidatengene verwendet wurden, werden im einzelnen bei den entsprechenden Methoden dargestellt.

3.1.3. Verbrauchsmaterialien

3.1.3.1. Chemikalien

Die verwendeten Chemikalien wurden, wenn nicht anders vermerkt, von den Firmen Roth, Biozym und Applied Biosystems bezogen.

3.1.3.2. Enzyme

DNA- Polymerasen, Restriktionsendonukleasen und DNA-modifizierende Enzyme wurden mit den dazugehörigen Puffern von den Firmen Roche, Promega, New England Biolabs, MBI Fermentas und Biosolis geliefert.

3.1.3.3. Medien und Puffer

3.1.3.3.1. <u>LB- Medium</u>

Das LB-Medium wurde für die Vermehrung der BAC-Klone (siehe 3.2.1.1.2) verwendet und aus folgenden Zutaten hergestellt:

10,0g	Trypton
10,0g	NaCl
5,0g	Hefe- Extrakt

Die Substanzen wurden in eine Flasche gegeben und auf 1000 ml mit destilliertem Wasser aufgefüllt. Der pH-Wert wurde auf 7,0 mit NaOH oder HCl eingestellt, danach wurde die Lösung autoklaviert.

3.1.3.3.2. Einfriermedium für Bakterien

Dieses Medium wurde für die längerfristige Aufbewahrung der BAC-Klone bei -80℃ verwendet (siehe 3.2.1.1.3). Es wurde aus fol genden Zutaten hergestellt.

2,8g Trypton

2,8g NaCl

1,4g Hefe- Extrakt

Die Substanzen wurden in eine Flasche gegeben und auf 280 ml mit destilliertem Wasser aufgefüllt. Es wurde 120 ml Glycerin zugegeben, damit die Lösung bei -80℃ nicht gefriert. Zum Schluss wurde das Gemisch autoklaviert.

3.1.3.3.3. TE- Puffer 10-fach

Der TE-Puffer (1-fache Konzentration) wurde zum Giessen der Agarosegele und als Laufpuffer verwendet. Hergestellt wurde der Puffer in 10-facher Konzentration. Kurz vor der Benutzung wurde er mit ddH₂O auf eine 1-fache Konzentration verdünnt. Die 10-fach-Lösung wurde nach folgendem Rezept hergestellt:

12,10g Tris

3,72g EDTA

Die Substanzen wurden in eine Flasche gegeben und mit 500 ml destilliertem Wasser aufgefüllt. Mit HCl (2 M) wurde die Lösung auf pH 8,0 titriert und mit destilliertem Wasser auf 1000 ml aufgefüllt, danach wurde sie autoklaviert.

3.1.3.3.4. PBS- Puffer

Der PBS-Puffer wurde zum ersten Reinigungsschritt des Rinderspermas für die DNA-Isolation verwendet (siehe 3.2.1.2.2). Die Lösung ist isotonisch und ist somit für die einzelnen Zellen unschädlich, so dass sie in diesem Puffermilieu durch Zentrifugation gereinigt werden können, ohne dass die Zellwände aufbrechen. Der Puffer wurde nach folgendem Rezept hergestellt:

8,0g	NaCl
0,2g	KCI
1,44g	Na ₂ HPO ₄
0,24g	KH ₂ PO ₄

Die Substanzen wurden in eine Flasche gegeben und mit destilliertem Wasser auf 1000 ml aufgefüllt.

3.1.3.3.5. Extraktionspuffer

Der Extraktionspuffer diente bei der DNA-Isolation aus Bullensperma dazu die DNA aus den Zellen zu extrahieren (siehe 3.2.1.2.2). Der Puffer wurde nach folgendem Rezept hergestellt:

5,0ml	100mM Tris pH 8,2
2,5ml	2M NaCl
5,0ml	20mM EDTA pH 8
5.0ml	10% SDS

Die Substanzen wurden in eine Flasche gegeben und mit destilliertem Wasser auf 50 ml aufgefüllt.

3.1.3.3.6. DEPC- Wasser

Das DEPC-Wasser wurde für die Reinigung von Pipetten, Pinzetten und allen Werkzeugen, die für die Arbeiten mit RNA (siehe 3.2.1.3 und 3.2.1.4.4) benötigt wurden, gebraucht. Hiermit wurde sichergestellt, dass sich daran keine RNasen mehr befanden, die die RNA sofort verdaut hätten.

0,1ml DEPC auf 100 ml destilliertes Wasser geben, gut auflösen, für 12h bei 37℃ inkubieren, danach zweimal autoklavieren.

3.1.4. DNA- Leitern für Agarosegelelektrophorese

Für die Darstellung von kleinen Fragmenten, vor allem für die Resultate des Verdau, wurde die GeneRuler™ low range Leiter von Fermentas, für größere Fragmente wurde die GeneRuler™ 1 kb Leiter (siehe Abbildung 10) verwendet.

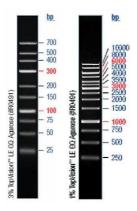


Abbildung 10: Bandendarstellung der beiden DNA-Leitern, links die GeneRuler™ lowrange Leiter, rechts die GeneRuler™ 1kb- Leiter (http://www.fermentas.com/catalog/electrophoresis/generulers.htm)

3.1.5. Geräte

Für die in Analysen in dieser Arbeit wurden lehrstuhleigene Geräte benutzt, aufgelistet in Tabelle 3.

Tabelle 3: Übersicht der verwendeten Geräte

Gerät	Typbezeichnung	Hersteller
Autoklav	Varioklav Typ400	Thermo Scientific
Brutschrank		Memmert
Bunsenbrenner		Usbeck/ D&N
Clean-Benches		BDK, Hohenlohe
Elektrophoresekammer	GPS200/400	Pharmacia
Genotyper	ABI310	Applied Biosystems
Heizblöcke	Thermomixer 5436	Eppendorff
Kühlschrank		Bosch, Siemens
Magnetrührer	yellow line	MSH basics
Mikrowellengerät	NN-326	Panasonic
PCR-Thermocycler	Primus	MWG Biotech
A.	PTC-100	MJ Research
	PTC-200	MJ Research
pH-Meter	pH 211	Hanna Instruments
Photodrucker	UP/D860E	Sony
Photometer	Nanodrop	Peqlab
Pipetten		Ranin
		Gilson, Eppendorff
Real Time PCR- Thermocycler	Light Cycler 2.0	Roche
Schüttelinkubator	Certomat HK	Braun
Vortexer		IKA- Works, INC.
Waagen	portable PT1200	Sartorius
	analytic Pro22F	Sartorius
Zentrifugen	Tischzentrifuge	Qualitron
	Universal16R	Hettich Zentrifugen
	RC28S	Sorvall

3.1.6. Verwendete Software und Datenbanken

Die wichtigsten in dieser Arbeit verwendeten Programme und Datenbanken sind in Tabelle 4 aufgelistet.

Tabelle 4: Übersicht der verwendeten Software und Datenbanken

Name	Beschreibung und Homepage
BLAST	Werkzeug für Sequenzalignments einzelner Sequenzen gegen ganze Sequenzdatenbanken
	http://blast.ncbi.nlm.nih.gov/Blast.cgi
Primer3	Programm zum konstruieren von Primern anhand der zu amplifizierenden Sequenz
	http://frodo.wi.mit.edu/primer3/
ClustalX	Werkzeug für multiple Sequenzalignments
	http://www.clustal.org/
Bacon Designer™	Werkzeug zum Überprüfen der konstruierten Primer auf ihre Qualität
	http://www.premierbiosoft.com/molecular_beacons/index.html
PLINK	Programm für Assoziationsstudien anhand von SNPs Daten
	http://pngu.mgh.harvard.edu/~purcell/plink/
Haploview	Programm zum Visualisieren von PLINK Ergebnissen und zum Auffinden von Haplotypenblöcken in Populationen (nur mit SNP- Daten möglich)
	http://www.broadinstitute.org/mpg/haploview
Cri- Map	Programm zum Konstruieren von multilokalen Kopplungskarten
	http://compgen.rutgers.edu/Crimap/Default.aspx
LightCycler Software	Programm zum Visualisieren der Light Cycler Rohdaten und zum Berechnen der CT-Werte über das Maximum der 2.Ableitung der Kurven
GenexLight	Programm zum Erstellen der best möglichen Referenzgene in einem bestimmten Genset und Normalisierung und Visualisierung der Real Time PCR Ergebnisse
LDLram	Programm für QTL- Kartierung durch kombinierte Kopplungs- und Kopplungsungleichgewichtsanalysen
Genescan®	ldentifiziert die Fragmentlängen der Mikrosatteliten relative zu einem internen Standard von bekannter Länge
Genotyper®	Genotypisierungsprogramm für Mikrosatelliten
National Center for Biotechnology Information (NCBI)	http://www.ncbi.nlm.nih.gov/
University of California Santa Cruz (UCSC) Genome Browser	http://genome.ucsc.edu/
Zentrale Arbeitsgemeinschaft österreichischer Rinderzüchter (ZAR)	http://www.zar.at/

3.2. Methoden

3.2.1. Molekularbiologische Methoden

3.2.1.1. Arbeiten mit Bakterien

3.2.1.1.1. BAC- Klone

Sechs "Bacterial artificial Chromosome"-Klone (BAC-Klone) wurden in den United States of America vom BACPAC Resource Center (BPRC) des Children's Hospital Oakland Research Institute in Oakland (CHORI), California, bestellt. Die Klone CH240-399B23, CH240-67F3, CH240-218D15, CH240_61O17 und CH240-306M5 dienten zur Analyse des Kandidatengenes esr1 und zur Überprüfung der Lokalisation des Genes auf dem Chromosom. Der Klon CH240-40N2 wurde als Referenz für die Sequenzierung des CpG-Islands im Intron2 des *igf2r* verwendet (siehe 3.2.1.5.3). Alle BAC-Klone sind modifizierte *E. coli* DH10B Stämme, die den pTARBAC1.3 Vektor beinhalten, in den das jeweilige Segment des Rindergenoms kloniert wurde.

Für die fünf der sechs BAC-Klonen, die für die *esr1*-Analysen verwendet wurden, wurden Oligonukleotide zur PCR-Vervielfältigung der Endsequenz hergestellt. Durch BAC-Endsequenzenüberprüfung und PCRs der Exons 2 bis 8 wurde eine Anordnung der BAC-Klone und der dazugehörigen Exons des Kandidatengen *esr1* bewerkstelligt (siehe Tabelle 5). Diese sowie andere im Rahmen dieser Doktorarbeit konstruierten Oligonukleotide wurden von den Firmen Metabion und Eurofins MWG Operon hergestellt.

Tabelle 5: Übersicht, der für die Überprüfung der Reihenfolge der BAC-Klone verwendeten Primer. Die ersten zehn sind die mit Hilfe der BAC-Endsequenzen hergestellten Primer, die Nachfolgenden sind Primer der einzelnen esr1 Exons, die hier zur Unterstützung genommen wurden. Sie wurden auch für die Sequenzierung verwendet (siehe 3.2.1.5.3).

Primer	Sequenz (5'-3')	Klon	Tm
399B23rechts_F	GCCATAAGGGTGGTGTCATC	Klon CH240-399B23	59°C
399B23rechts_R	TGGTCTTGATCCCTGTCTCC	Klon CH240-399B23	59°C
67F3links-F	CTTTGGGCAGTAAGCACCTC	Klon CH240-67F3	59°C
67F3links-R	GCTCAGCAAAAGGACATGAA	Klon CH240-67F3	55°C
67F3rechts-F	TGCTGGACACATTCTTGAGG	Klon CH240-67F3	57°C
67F3rechts-R	CCACACTGGAAACACCACTG	Klon CH240-67F3	59°C
218D15links_F	GGGGGAATCACATTTGTTGT	Klon CH240-218D15	57°C
218D15links_R	TTGGCTAGCTGGGATCAAGT	Klon CH240-218D15	57°C
61017rechts_F	CTGAAGCTTGGAACTGGTCA	Klon CH240-61017	57°C
61017rechts_R	GCAAAACCATGCCTGATCAAAAA	Klon CH240-61017	53°C
ESR1_E1_F2	GAGCGGTACTTAAAGTTGGA	Klon CH240-399B23	55°C
ESR1_E1_R2	GGGCCAGAGAACTTGACT	Klon CH240-399B23	56°C
ESR1_E2_F2	AATTTTCAAGGCTGGTGTAA	Klon CH240-399B23	51°C
ESR1_E2_R2	AAAATGGGATGAGTTGTTTG	Klon CH240-399B23	51°C
ESR1_E3_F2	TCTGTCCTCTTGCTTTTCAT	Klon CH240-306M5	53°C
ESR1_E3_R2	CTCTTTGTTCTCTCCTGGTG	Klon CH240-306M5	57°C
ESR1_E4_F2	TCATAGCAGGAGCAATCTTT	Klon CH240-306M5	53°C
ESR1_E4_R2	TTGTGTCCCACTATCTCTCC	Klon CH240-306M5	57°C
ESR1_E5_F2	ATTTGAGTCAGGGGAGATTT	Klon CH240-218D15	53°C
ESR1_E5_R2	TGATGGAAAAATTGGAAGAG	Klon CH240-218D15	51°C
ESR1_E6_F2	TGGGGACTGAATAAGACATC	Klon CH240-218D15	55°C
ESR1_E6_R2	CCTTATGATCTGAAGCTTGG	Klon CH240-218D15	55°C
ESR1_E7_F2	TGGATTCCCTTACATCTTTG	Klon CH240-218D15	53°C
ESR1_E7_R2	GCCCTTCCTATCATAAACCT	Klon CH240-218D15	55°C
ESR1_E8_F2	GCGACTAAATGACAACAACA	Klon CH240-218D15	53°C
ESR1_E8_R2	CCACTTTCAGTTCTTTCCTG	Klon CH240-218D15	55°C

3.2.1.1.2. Animpfen einer Übernachtkultur

Die vom BPRC im Stechagar zugesendeten BAC-Klone (siehe 3.2.1.2.3) wurden vor deren weitere Analyse in einer Übernachtkultur vermehrt. Es wurden insgesamt 500 ml LB-Medium in autoklavierte 1 l Kolben gefüllt und mit Chloramphenicol versetzt, so dass man eine Endkonzentration von 12,5µg/ml erhält. Die Bakterien wurden vom Stechagar in die Kolben mit einer sterilen

Pipettenspitze übertragen. Die Lösung wurde über Nacht bei 38℃ und 185rpm geschüttelt. Von der im Medium gewachsenen Kultur wurde am nächsten Tag Plasmid-DNA, sprich der pTARBAC1.3 Vektor mit dem chromosomalen Segment des Rindergenoms, isoliert (siehe 3.2.1.2.3).

3.2.1.1.3. Herstellen einer Gefrierkultur

Es wurde eine 10 ml Übernachtkultur (siehe 3.2.1.1.2) hergestellt. Von dieser wurden je 600 µl mit je 600 µl Einfriermedium (3.1.3.3.2) in einem Kyroröhrchen bei -80℃ zur längerfristigen Aufbewahrung eingefro ren, da die Stechagarkulturen nur 3 Monate haltbar sind.

3.2.1.2. Isolierung von DNA

Die Isolierung hochqualitativer DNA ist notwendig, um die erhaltenen Ergebnisse richtig interpretieren und deren Reproduzierbarkeit garantieren zu können. Degradierung der DNA würde zum Beispiel zum Ausfall der PCR und somit zu falsch negativen Ergebnissen führen. Deswegen muss man Vortexschritte während der Isolation vermeiden. Auch darf man die isolierte DNA nicht ständig auf- und abtauen, da dies zu Strangbrüchen führt. Auch Kontaminierung mit chemischen Komponenten der Isolation, wie zum Beispiel Ethanol, Phenol oder SDS, führt zur Inhibition der PCR. Um die Reinheit der DNA Proben zu überprüfen, wurden sie nach der Isolation am Photometer gemessen. Eine 260nm/280nm Ratio von 1,8- 1,9 zeigt reine DNA. Im Folgenden werden die verschiedenen in dieser Doktorarbeit verwendeten Isolationsmethoden beschrieben.

3.2.1.2.1. genomische DNA aus Rinderblut und Gewebe

Zur Genotypisierung der Feten und der meisten weiblichen Tiere wurde genomische DNA aus Blut- oder Gewebeproben isoliert. Dafür wurde der QIAamp DNA Mini Kit von Qiagen gemäß den Angaben des Herstellers (http://www1.qiagen.com/literature/handbooks/literature.aspx?id=1000190) verwendet. Die DNA wurde nach der Isolierung mit dem Nanodrop (siehe Tabelle 3) gemessen.

3.2.1.2.2. genomische DNA aus Bullensperma

Für die meisten der hier genotypisierten Bullen standen tiefgefrorene Spermaproben zur DNA Isolierung von genomischer DNA zur Verfügung. Ungefähr 200-300 μl des Samens wurde abzentrifugiert. Das danach sichtbare Pellet wurde mit PBS-Puffer resuspendiert und wiederholt abzentrifugiert bis der Überstand klar war. Das Pellet wurde dann in 900 μl DNA Extraktionspuffer (siehe 3.1.3.3.5) resuspendiert, danach wurden 100 μl einer 0,5 Molaren DTT-Lösung und 50 μl Proteinase K hinzugegeben. Diese Lösung wurde über Nacht bei 65°C inkubiert. Am darauf folgenden Tag wurden 450 μl NaCl (6M) hinzugefügt und 40 min bei 5000rpm zentrifugiert. Der Überstand wurde in ein neues Gefäß überführt und mit 5,5 ml 100%-tigem eiskaltem Ethanol versetzt. Die gefällte DNA wurde herausgefischt, der Ethanol an der Luft verdampft und in 50 μl ddH₂0 gelöst. Um die genomische DNA vollständig zu lösen, wurde das Gemisch über Nacht bei 37°C inkubiert. Die DNA-Konz entration wurde mit dem Nanodrop bestimmt.

3.2.1.2.3. Plasmid-DNA aus Bakterien

Die Plasmid- DNA aus den Bakterien wurde aus den Übernachtkulturen (siehe 3.2.1.1.2) isoliert. Dafür wurde das NucleoBond BAC 100 Kit von Macherey-Nagel verwendet. Die Isolation wurde gemäß dem Herstellerprotokoll durchgeführt.

(http://www.mn-net.com/Portals/8/attachments/Redakteure_Bio/Protocols/Plasmid%20DNA%20
Purification/UM pDNA NuBo.pdf). Die DNA wurde nach der Isolierung mit dem Nanodrop gemessen und für verschiedene PCRs verwendet.

3.2.1.3. Isolierung von RNA

Die in dieser Arbeit durchgeführten Expressionsanalysen der Kandidatengene durch Real Time PCR wurden mit RNA durchgeführt, die aus den Feten isoliert wurde. Für die Isolierung von RNA gelten ähnliche Bedingungen wie bei der DNA Isolation. Jedoch sind die Bedienungen strenger, weil die RNA vor allem durch die allgegenwärtige Präsenz von RNasen sehr kurzlebig ist. Deswegen muss man immer auf Eis und unter einem Abzug arbeiten, die mit speziellem Desinfektionsmittel und RNase Inhibitoren, wie zum Beispiel DEPC- Wasser

(siehe 3.1.3.3.6), behandelt ist. Auch bei der Aufbewahrung von RNA sind wiederholte Auftauschritte zu vermeiden. Aus diesem Grund muss man die Arbeitslösungen zuerst aliquotieren und dann aufbewahren. Es wurde festgestellt, dass es die langlebigste und schonendste Variante ist, RNA in gefällter Form bei −80℃ aufzubewahren. Im Folgenden werden zwei verschiedene Varianten der Isolation beschreiben, die erste, die von den Geweben ausgeht bis zur vollständigen RNA Isolation, und die andere mit Probenmaterial, das schon in Isopropanol gefällte RNA enthielt.

3.2.1.3.1. aus Rindergewebe

100 mg Gewebe in 1 ml Trizol wurden mit einem sterilen und RNase freien Pürierstab homogenisiert und anschließend bei Raumtemperatur 5 min inkubiert. Nach Zugabe von 0,2 ml Chloroform wurde das Reaktionsgefäß invertiert, um die Lösung mit dem Homogenisat zu vermischen. Danach wurde sie erneut bei Raumtemperatur inkubiert. Um die Suspension in drei Phasen zu trennen wurde sie bei 11700 g 15 min lang bei 4℃ z entrifugiert. Die obere wässrige Phase wurde vorsichtig abgenommen und in ein neues Reaktionsgefäß überführt. Um die RNA zu fällen wurden 500 μl Isopropanol hinzu gegeben, vermischt und nach einer Inkubationszeit von 10 min bei Raumtemperatur, für 10 min bei 11700g und 4℃ zentr ifugiert. Das Pellet wurde anschließend mit 1 ml Ethanol gewaschen. Zum Schluss wurde es in 50 μl ddH₂0 und 1 μl RNasin resuspendiert, aliquotiert und bei − 80℃ gelagert.

3.2.1.3.2. <u>aus Isopropanolproben</u>

Ein Teil der RNA-Proben aus fetalem Leber- und Herzgewebe wurde freundlicherweise, schon in Isopropanol gefällt, von dem LAFUGA Labor zur Verfügung gestellt. Sie wurde dann noch mit 1 ml Ethanol gewaschen und danach in 50 μl ddH₂0 resuspendiert. RNasin wurde nicht verwendet, da die gesamt RNA weiter aufbereitet wurde und es bei Verwendung von RNasin zu Schwierigkeiten in der Real Time PCR kommen kann.

3.2.1.3.3. Trennung von mRNA aus der gesamt RNA

Um in der Real Time PCR bessere Ergebnisse zu erzielen wurde die mRNA aus der gesamt RNA, in der sich unter anderem auch noch ribosomale RNA befindet, isoliert. Hierzu wurde Oligotex[®] mRNA Kit von Qiagen verwendet. Die Durchführung erfolgte gemäß dem empfohlenen Protokoll des Herstellers. Die Proben wurden nach der Isolation mit dem Nanodrop gemessen.

3.2.1.4. Polymerase- Chain- Reaction (PCR)

Das Verfahren der PCR (Mullis et al., 1986) benötigt eine doppelsträngige DNA-Kette mit zumindest teilweise bekannter Sequenz. Zur Durchführung der Amplifikation sind außerdem zwei Primer essentiell, die auf beiden Seiten der Sequenz jeweils an eine der komplementären DNA-Stränge binden können, sowie einzelne Nukleotid-Moleküle und eine hitzestabile Polymerase (Taq-Polymerase), die üblicherweise aus *Thermus aquaticus* isoliert wird. Die PCR wird heute apparativ in einem Thermocycler durchgeführt.

Die Sequenz und die Länge der Primer bestimmen die Spezifität der Reaktion. Allerdings wird die Bindungsspezifität der Primer auch durch die Temperatur beeinflusst, das heißt selbst wenn die Sequenz der Primer spezifisch ist, können sie durch zu geringe Temperatur auch unspezifisch binden (Wobblehypothese). Eine definierte Sequenz einer Länge von 20 Basenpaaren kommt statistisch gerade ein einziges Mal in einer zufälligen Sequenz von einer Billion Basenpaaren vor. Damit reicht ein Primer von einer Länge von 16-20 Basenpaaren um eine bestimmte Zielsequenz aus nahezu beliebig komplexem Ausgangsmaterial selektiv zu vervielfältigen. Reale Genome Ausgangsmaterial sind jedoch keine rein zufälligen Nukleotidfolgen und weisen viele einander ähnliche Abschnitte auf, so dass die Wahl guter Primer-Sequenzen nicht immer einfach ist. Deswegen wurden die in dieser Arbeit konstruierten Primer mit verschieden Computerprogrammen auf ihre Spezifität und ihre Qualität, das heißt keine Sekundärstruktur- und Dimerausbildungen, überprüft (siehe 3.2.2.1).

3.2.1.4.1. GC-Rich KIT

Um das CpG Island im zweiten Intron von *igf2r* zu amplifizieren, wurde der GC-Rich Kit von Roche verwendet, da es nicht möglich war ohne den speziellen Puffer das Template zu amplifizieren. Bei diesem Kit wurde für alle PCRs eine Konzentration von 1M der GC-Rich Resolution Solution (spezielle Puffer-Lösung des Herstellers zum amplifizieren von GC-reichen Fragmente) verwendet. Die Durchführung erfolgte gemäß dem empfohlenen Protokoll des Herstellers (https://www.roche-applied-science.com/pack-insert/4743784a.pdf).

3.2.1.4.2. Mikrosatelliten- PCR

Für die Mikrosatelliten-PCR wurde das Protokoll aus Gomeringer (2007) benutzt. Die meisten zu untersuchenden Tiere waren schon im Rahmen vorheriger Arbeiten genotypisiert und in der Datenbank des Lehrstuhls gespeichert worden. Die anderen wurden noch im Rahmen dieser Arbeit genotypisiert, wobei sich die PCRs aus zwei Multiplex (Set 1 und Set 2) ergeben.

Set 1 bestand aus 17 Mikrosatelliten (siehe Tabelle 6), für die die Multiplex-PCR auf eine gemeinsame Annealingtemperatur von 61°C eingestellt wurde.

Set 2 bestand aus 14 Mikrosatelliten (siehe Tabelle 6), für die die Multiplex-PCR auf eine gemeinsame Annealingtemperatur von 58℃ eingestellt wurde.

Tabelle 6: Übersicht der verwendeten Mikrosatelliten auf BTA09. Neben offiziellem Markername (MarkerID) sind interne Primername (PrimerID), verwendete Primersequenz und Farbmarkierung (Label), PCR-Multiplex (Set), Relative Position auf Chromosom und Annealingtemperatur (Tm) aufgelistet. Marker sind nach deren Relative Position sortiert.

Marker ID	PrimerID	Sequenz (5' - 3')	Label	Set	Position (cM)	Tm
DMC47	BMS47 H	CAGAGAGCGTCTGTGGAGG	HEX	2	9,6530	61°C
BMS47	BMS47 2	TCTTGTCTGGCTGGATGATG			9,6530	57°C
DIK2433	DIK2433 1F	TGTGGGGCTCCTTTGTAACT	FAM	1	15,1210	57°C
DIN2455	DIK2433 2	CAGAGCGGCTACAGTTTGTG			15,1210	59°C
DIK2876	DIK2876 1F	TTGCTGTTGAATTTTCATGGAT	FAM	1	20,4150	53°C
DIK2676	DIK2876 2	ATAGTCCCACCGCGAAACTC			20,4150	59°C
BM1227	BM1227 1F	CACCAGTGATATTGGCTTATGG	FAM	1	24,1390	58°C
DIVITZZI	BM1227 2	GGAAGAACACTTCCAAACCC			24,1390	58°C
ILSTS037	ILSTS037 F	TAGGCTATGTACTGACCATGC	FAM	2	26,2660	58°C
ILS13037	ILSTS037 2	CTGAACTGAGATGACTTTGGC			26,2660	58°C
BM2504	BM2504 1T	CAGCTTTCCATCCCCTTTC	TET	1	30,9200	57°C
DIVI2304	BM2504 2	CTCCCATCCCAAACACAGAC			30,9200	59°C
DINSOOS	DIK3003 1F	ACTTTCAGTTTTGGGCTGAC	FAM	1	36,5420	55°C
DIK3003	DIK3003 2	TGTCACTAGGTAAATTGGTG			36,5420	53°C
BMS1267	BMS1267 3H	CCCAGAGTAAAACTGTTGGTGA	HEX	1	38,7420	58°C
BIVIS 1207	BMS1267 2	TGTTGTCCTGGAAGGCTTTAG			38,7420	58°C
BMS555	BMS555 F	GGAAAGAGTAGGTGATTCCCTG	FAM	2	43,8180	60°C
DIVISSSS	BMS555 2	ATTTAATTGTCATCCCAGGTGA			43,8180	55°C
DM4627	UWCA09 1H	CCTTCTCTGAATTTTTGTTGAAAGC	HEX	1	48,0000	58°C
BM4627	UWCA09 2	GGACAGAAGTGAGTGACTGAGA			48,0000	60°C
UWCA09	BM4627 1H	AGGACAAGCTGGCTTCTGAG	HEX	1	52,0000	59°C
UVVCAUS	BM4627 2	TGAAGCAACTGGGTATGCAC			52,0000	57°C
BMS1290	BMS1290 T	TTGGCACTTACTACCTCATATGTT	TET	2	64,9350	58°C
DIVIS 1290	BMS1290 2	TTTTCTGGATGTTGAGCCTATT			64,9350	55°C
DM7200	BM7209 H	TTTTCTGCTCATGCTTCAGTG	HEX	2	81,5690	56°C
BM7209	BM7209 2	GCAGGCTATAGTCCATGACATC			81,5690	60°C
DN44000	BM4208 F	TCAGTACACTGGCCACCATG	FAM	2	90,6900	59°C
BM4208	BM4208 2	CACTGCATGCTTTTCCAAAC			90,6900	55°C
INIDAAAA	INRA144 T	TCGGTGTGGGAGGTGACTACAT	TET	2	90,9800	62°C
INRA144	INRA144 2	TGCTGGTGGGCTCCGTCACC			90,9810	66°C
DIKOOS	DIK096 F	GCTGTAATGAGGCACCACAATA	FAM	2	94,8030	58°C
DIK096	DIK096 2	GCTTGCAGACTCCCTCTCTC			94,8030	61°C

Tabelle 6: Fortsetzung

Marker ID	PrimerID	Sequenz (5' - 3')	Label	Set	Position (cM)	Tm
BMS2063	BMS2063 F	GGGGAGGAGCTTAAGTAGGAA	FAM	2	95,3800	60°C
DIVISZUUS	BMS2063 2	CATGAATGAGTACGTGTGC			95,3810	58°C
URB028	URB028 T	GTATCAGTCTCTAAAACT	TET	2	97,2850	57°C
UKDU20	URB028 2	CATGTCAGGCATCAGTCCATAG			97,2850	60°C
URB024	URB024 T	ATCGGACACCACCTAGCAAC	TET	2	98,2190	59°C
UKB024	URB024 2	CATGTGAGCATATTCTGAAGCA			98,2190	57°C
BMS2295	BMS2295 1H	GCTCTGGTGACCCAGGTG	HEX	1	98,6460	61°C
DIVIOZZO	BMS2295 2	CTGGCAGGAGATGAGAGGAG			98,6460	61°C
LMU0903	LMU0903 1F	TCTGGTTTTTGTCATTTTCACC	FAM	1	99,0000	55°C
LIVIOUSUS	LMU0903 2	GCAGCCAGAAGGAATACAAGA			99,0000	58°C
LMU0902	LMU0902 1T	GGGAAAAAGAAACCCAGACA	TET	1	99,0000	55°C
LIVIOUSUZ	LMU0902 2	GCCTGAAAACTTGATACTGAGC			99,0000	58°C
DIK4548	DIK4548 1F	TGATGAGGGCCTCTGAGAAT	FAM	1	101,7000	57°C
DIN4546	DIK4548 2	CTAGACGCCGAATTCTGACC			101,7000	59°C
LMU0904	LMU0904 1H	AAGCATGGTGGCTTAGTGGT	HEX	1	102,0000	57°C
LIVIOU304	LMU0904 2	AAAATGACAAAGGTAGGGCAAA			102,0000	55°C
LMU0905	LMU0905 1H	CCAGGGAAGTCCAGTGAATG	HEX	1	102,5797	59°C
LIVIOUSUS	LMU0905 2	TCTAGAGCAGGCAGGACACC			102,5797	61°C
DIK4140	DIK4140 1F	ACCTGCCTGCAACGTTAAAT	FAM	1	103,0460	55°C
DIN4140	DIK4140 2	CACGACTGGTGAGACTGGTG			103,0460	61°C
LMU0906	LMU0906 1T	TCTCCTGCAAGAACGTGAGA	TET	1	103,3955	57°C
LIVIOUSUU	LMU0906 2	AGACTGTGGGCAGCTTGTCT			103,3955	59°C
LMU0901	LMU0901 F	CCAGCTGGTGAAGTCAAACA	FAM	2	103,4036	57°C
LIVIOUSUI	LMU0901 2	TGACATCTCGACTCCCATTCT			103,4036	58°C
LMU0908	LMU0908 1H	GGTCACATGCACACATCCTC	HEX	1	103,4718	59°C
LIVIOUSUO	LMU0908 2	ATGCTTGCTTCCAAACATCC			103,4718	55°C
BMS1943	BMS1943 H	ATCAGTCGTTCCCAGAATGTC	HEX	2	103,7080	58°C
DIVIS 1943	BMS1943 2	TTGATATCCTCTCTGTCAAGCC			103,7080	58°C
DIVOOAE	DIK2045 1F	CTTTCCACTCAGCAGCCTTT	FAM		106,9600	57°C
DIK2045	DIK2045 2	GGCTCCAGTATTCTTTCTTGGA			106,9600	58°C
BMS1967	BMS1967 H	GGGCAGATGTGAGTAATTTTCC	HEX	2	109,2780	58°C
DIVIO 1907	BMS1967 2	AACTGAGCTGTATGGTGGACG			109,2780	60°C

Der Mikrosatellit DIK2045 (siehe Tabelle 6) gehört nicht in Set 1 oder 2, wurde aber für alle Tiere schon im Rahmen eines anderen Projektes genotypisiert und hier zusammen mit Markern aus Set 1 oder 2 für die Kartierung verwendet. Der Mikrosatellit LMU0901 wurde zur Überprüfung der Inaktivierung des paternalen Allels von *igf2r* verwendet. Die cDNA die hierbei verwendet wurde, wurde mit OligoT Primern aus dem Lebergewebe der Feten hergestellt und freundlicherweise vom LAFUGA zur Verfügung gestellt.

3.2.1.4.3. Sequenzierungs-PCR

In dieser Arbeit wurde eine Sequenzierung der Kandidatengene *sod2* und *esr1* sowie CpG-Island im Intron2 von *igf2r* durchgeführt. Dafür wurden mit optimierten Primern Sequenzierungs-PCR Produkte hergestellt und zur Sequenzierung an einen Dienstleister weitergeleitet. Für die Sequenzierungs-PCR wurde eine andere Taq-Polymerase mit einem anderen Puffer verwendet, um mögliche Fehleinbauten von Nukleotiden zu vermeiden. In dieser Arbeit wurde die Hot Start GoTaq[®] von Promega mit zugehörigen Puffern verwendet. Diese Taq-Polymerase besitzt eine 5'→ 3' Exonuklease Aktivität. Falsch eingebaute Basen werden ausgeschnitten und korrigiert. Was bei den Sequenzierungen sehr wichtig war, da hier nach Unterschieden zwischen einzelnen Basen gesucht wurde und nicht nach verschiedenen Längen, wie bei der Genotypisierungs-PCR.

Eine Übersicht über die sequenzierten Regionen und dazu gehörige Primer befindet sich in Abschnitt 3.2.1.5.3.

3.2.1.4.4. One Step Real Time PCR

Die Real Time PCR ist eine Vervielfältigungsmethode für Nukleinsäuren, die auf dem Prinzip der herkömmlichen PCR beruht, und zusätzlich die Quantifizierung der gewonnenen DNA ermöglicht. Diese Methode wurde in dieser Arbeit für Genexpressionsanalyse der Gene esr1 und sod2 verwendet.

Die Quantifizierung wird mit Hilfe von Fluoreszenz-Messungen durchgeführt, die während eines PCR-Zyklus erfasst werden (daher der Name "Real Time"). Die Fluoreszenz nimmt proportional mit der Menge der PCR-Produkte zu. Das Signal wird am Ende eines jeden Zyklus gemessen (siehe Abbildung 11). Am Ende eines Laufs (der aus mehreren Zyklen besteht) wird die Quantifizierung an Hand des so genannten CT-Wertes in der exponentiellen Phase der PCR Der CT-Wert wird anhand einer Kurve bestimmt. der einzelnen Fluoreszenzsignale berechnet. Nur in der exponentiellen Phase der PCR (die wenige Zyklen in einem Lauf dauert) ist die korrekte Analyse möglich, da während dieser Phase optimale Reaktionsbedingungen herrschen.

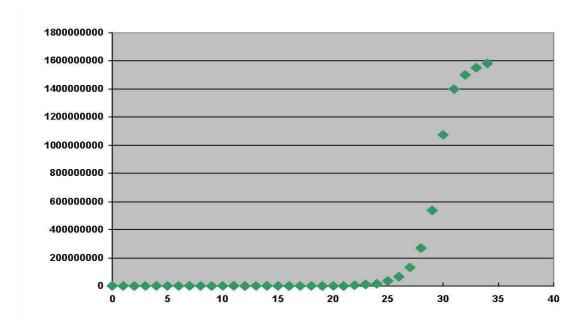


Abbildung 11: Amplifizierungskurve der DNA während einer PCR; x-Achse sind die Anzahl der Zyklen der PCR, y-Achse ist die Menge an gebildeter DNA. Das Fluoreszenzsignal entspricht der gebildeten Menge an doppelsträngiger DNA, da sich der Farbstoff SYBR-Green nur in doppelsträngige DNA einbaut und fluoresziert.

In dieser Arbeit wurde eine One Step Real Time PCR durchgeführt, bei der mRNA als Ausgangsmaterial eingesetzt wurde. Der erste Schritt war eine Transkription mit Hilfe einer Reversen Transkriptase. Die so erhaltene cDNA wird nun gleich im Anschluss mit einem normalen PCR Protokoll und einer modifizierten Taq-Polymerase amplifiziert. Diese Methode dient dazu, die Fehlerquote durch unnötige Pipettierschritte möglichst gering zu halten. Deswegen wurden auch alle Proben doppelt amplifiziert. Ergebnisanalyse wurde der Durchschnitt des CT-Wertes beider Proben genommen. Als Methode wurde hier die relative Quantifizierung benutzt, da man eine Abweichung der Standardexpression überprüfen wollte und nicht wissen wollte, wie viel mRNA absolut in der Probe war. Deswegen waren für die Analyse neben dem interessanten Gen auch Referenzgene nötig.

Referenzgene sind Gene die in allen Proben gleich exprimiert werden oder sich gegeneinander aufheben. Sie werden benötigt, um eine Abweichung des beobachteten Genes vom Standard (Referenz) zu detektieren, unabhängig von der Menge an mRNA in der Probe. Natürlich sollte die Menge ungefähr gleich sein. Da man aber im ng Bereich nicht pipettieren kann, ist es sicherer eine Referenz, von der man weiß, dass es keine Abweichungen in der Expression

gibt, zu verwenden, um nun in der nachfolgenden Analyse die relative Expressionsabweichung des Zielgenes zu diesen Referenzgenen bestimmen. Oft werden bei relativen Quantifizierungen die Gene für ACTB und GAPDH oder ribosomale Gene als Referenzgen benutzt. Ribosomale Gene sind allerdings als Referenzgene sehr fragwürdig, da der Anteil an ribosomaler RNA gegenüber der mRNA in total RNA zu groß ist. Deswegen wurde in dieser Arbeit auf die Verwendung von ribosomaler RNA als Referenz verzichtet. Auch actb und gapdh wurden als Referenzgene ausgeschlossen, da es sich bei dem untersuchenden Material um Feten RNA handelt, das heißt die Zellen befanden sich im Entwicklungsstadium und folgen deswegen nicht den Gesetzesmäßigkeiten einer adulten Zelle. Die Referenzgene, die in dieser Arbeit verwendet wurden, wurden aus 16.000 Genexpressionsdaten von Mikroarraychips, die freundlicherweise vom LAFUGA zur Verfügung gestellt wurden, mit Hilfe des Programms GenexLight ausgesucht (3.2.2.2). Eine Ubersicht der Primersequenzen und ihrer zugehörigen Gene, Fragmentgrößen und Annealingtemperaturen, die für die Real Time verwendet wurden, befindet sich in Tabelle 7.

Tabelle 7: Übersicht der für die Real Time verwendeten Primer

Primer	Sequenz (5'- 3')	GenID	Fragmentgröße	Tm
RT-ESR_3F	TGGCTACTTCGTCTCGGTTC	esr1	105 hn	60°C
RT-ESR_3R	CATCAGATGGATCAAGGTGTC	esri	185 bp	59°C
RT-Ferretin_F	GTGCTTGGAGAGAGTGTGAATC	fth1	156 hn	63°C
RT-Ferretin_R	CGCAGGTTGGTTATGTGGTC	1011	156 bp	60°C
RT-MTMR2_F	CTGCCCTCTTGGTTGTTCC	mtmr2	178 bp	59°C
RT-MTMR2_R	TCATCTTCTTTGCTTCGCTTCC	mumz	176 bb	60°C
RT-Myosin_lc_F23	GCCCATCAACTTCACTGTCTTC	en d7	121 hn	62°C
RT-Myosin_lc_R23	GTTCACCACGCCTTTACCAC	myl7	121 bp	60°C
RT-Phrotymosin_F	CTCCCGCTTTTCTTCTCAGTC	n f ma A	100 hn	61°C
RT-Phrotymosin_R	GCTCCCCATTTTCCTCATTC	ptmA	190 bp	58°C
RT-SNX3_F2	CCGCTTCACCACCTACGAG	snx3	225 ha	62°C
RT-SNX3_R2	CAACCCTTGCTTCCTTTCTTC	SIIXS	235 bp	59°C
RT-Sod2_4F	GCTGTATCTGTTGGTGTC	sod2	225 km	54°C
RT-Sod2_4R	GGTTTATCTGGTTCTCTGC	S002	335 bp	55°C
RT-Synbindin_F	CTGGCTATCAATGGTGTGGAC	trannal	170 hn	61°C
RT-Synbindin_R	GCGAACAGCGAGTGGAAC	trappc4	170 bp	58°C

3.2.1.5. Auftrennung, Analyse und Aufreinigung von DNA-Fragmenten

3.2.1.5.1. Mikrosatellitenauftrennung und -analyse

Die Auftrennung der einzelnen DNA-Fragmente der Mikrosatelliten-PCR erfolgte mit den ABI PRISM® 310 Genetic Analyzer der Firma Applied Biosystems. Die mit diesem Gerät mögliche hochauflösende Gelelektrophorese dient dazu, Unterschiede in der Länge von 1 bp zu detektieren. Sie wurde in dieser Arbeit zum Genotypisieren der Mikrosatelliten der einzelnen Tieren verwendet und um die Inaktivierung des paternalen Allels von *igf2r* zu überprüfen. Die Auftrennung mit diesem Kapillargerät erfolgt nach dem Prinzip der Gelelektrophorese, da die Moleküle ebenfalls durch Poren des Gels in Richtung des elektrischen Feldes hindurch wandern. Jeweils einer der eingesetzten Primerpaaren ist mit einem Farbstoff markiert, entweder FAM(blau), HEX(grün) oder TET(gelb) (siehe Label in Tabelle 6). In jedes Reaktionsgefäß wird ein Längenstandard gegeben der TAMRA(rot) markiert ist. Mit der Genotyper® Software wird dem über einen Laser detektierten Signal die dazugehörigen Fragmentlängen zugeordnet, das Tier kann somit für seine Mikrosatellitenallele des eingesetzten Markersets genotypisiert werden.

3.2.1.5.2. Aufreinigung der PCR- Fragmente

Die Aufreinigung der PCR-Produkte für nachfolgende Sequenzierungen oder Restriktionsverdau wurde mit dem Montage[®] PCR Centrifugal Filter Device Kit von Millipore gemäß Angaben des Herstellers (http://www.millipore.com/userguides.nsf/a73664f9f981af8c852569b9005b4eee/ $\frac{628d7fc6969c43885256c690064f951}{FILE/P36461.pdf}$) durchgeführt. Sie wurden in insgesamt $\frac{40\mu l}{40}$ eluiert.

3.2.1.5.3. Sequenzierungen

Die Sequenzierungen wurden von der Firma Sequisereve (http://www.sequiserve.de/) durchgeführt. Die entsprechenden Fragmente wurden nach dem Amplifizieren über Säulchen (siehe 3.2.1.5.2) aufgereinigt,

damit die verschiedenen Pufferkonzentrationen die Sequenzierung nicht beeinflussen.

Für die Sequenzierung der igf2r Intron2 CpG-Island wurde im ersten Schritt, eine long run von 900bp mit den Primern lgf2r1 1 und lgf2r1 2 (Tabelle 8) durchgeführt, diese waren aber durch das schwierige GC-reiche Template nicht gut vollständig zu editieren. Deswegen wurde ein zweiter Run mit den Primern Igf2r2_1 und Igf2r2_2 (siehe Tabelle 8) durchgeführt, die sich zwischen den ersten beiden Primern, also "nested", befinden. Um den zu untersuchenden Sequenzabschnitt zu verlängern, wurde ein weiterer long run von 900bp mit dem Primer AIRIgf2r1-1 und AIRIgf2r1-2 (siehe Tabelle 8) hinzugefügt. Mit dieser Vorgehensweise war es möglich ein gesamtes 3564bp langes genomisches Stück DNA sicher zu editieren. Die entsprechenden Sequenzierungs-PCR Produkte wurden nach dem GC- Rich KIT Protokoll (siehe 3.2.1.4.1) hergestellt.

Für Kandidatengen *sod*2 wurde die cDNA durchsequenziert. In Tabelle 8 sind die zwei Primer, die für die *sod*2 cDNA Sequenzierung verwendet wurden, mit zugehöriger Sequenz und Annealingtemperatur dargestellt.

Für die Sequenzierung der einzelnen esr1 Exons wurde eine andere Strategie verfolgt. Im ersten Schritt wurde mit 16 Primern für das esr1 (von ESRseq_1 bis ESR_Exon8_R) aus Tabelle 8 von den einzelnen Exons aus in die jeweilige Strang Richtung nach außen sequenziert. Im zweiten Schritt wurde aus den durch die Sequenzierung erhaltenen Sequenzen und der Refseg mRNA-Sequenz ein ca 900bp langes Stück genomischer DNA mit dem jeweiligen Exon in beide Strang Richtungen mit den 16 Primern von Primer ESR1_E1_F2 bis ESR1_E8_F2; Primer Tabelle 8) sequenziert, um die jeweiligen Basenaustausche beobachten zu können. Die beiden Primer ERalpha_1 und ERalpha_22 aus Tabelle 8 dienten zur späteren Sequenzierung der Promotorregion.

Tabelle 8: Übersicht der Primer für die Sequenzierung des *igf2r* CpG-Island im Intron2, der *sod2* mRNA und der einzelnen Exons des *esr1*. Neben Primername und Sequenz ist auch entsprechende Annealingtemperatur (Tm) dargestellt.

Primer	Sequenz (5'- 3')	Template	Tm
lgf2r1-1	GGATCGTTCTTCCGCGCCTAAA	igf2r	62°C
lgf2r1-2	AATATTCAGCAGGGTGGGTGTTGC	igf2r	63°C
lgf2r2-1	TACTGGCCAGGACCGATT	igf2r	56°C
lgf2r2-2	CGGTACACGTCGAAAGACAC	igf2r	59°C
AirRNA1_1	GGAGCCAGGTAATTCGCTGCTTT	igf2r	62°C
AirRNA1_2	CCCTTTCACCAAGGTAACAGACCC	igf2r	64°C
SOD2(RNA)_F	GCATCGTCTCAGGTCAGC	sod2(mRNA)	58°C
SOD2(RNA)_R	AAACACTACAACAGAGCAGC	sod2(mRNA)	56°C
ERalpha_1	GTCAGGTATTCCGTCAGGT	esr1	56°C
ERalpha_22	CTATCTCTGTTTGTCTCCCG	esr1	58°C
ESR_seq1	CGGGAGACAAACAGAGATAG	esr1	57°C
ESR_seq2	TCAACAGCGTGTCTCCGA	esr1	56°C
ESR_Exon2_F	TACCATTACGGAGTTTGGTC	esr1	55°C
ESR_Exon2_R	TAGCCTGAGGCATAGTCATT	esr1	55°C
ESR_Exon3_F	TGCACGATTGATAAAAACAG	esr1	51°C
ESR_Exon3_R	CCTCCTGTTTTTATCAATCG	esr1	53°C
ESR_Exon4_F	TGAAGCACAAGCGCCAGAGAGA	esr1	62°C
ESR_Exon4_R	CAGCCTCCAGCAAGGCACTGA	esr1	64°C
ESR_Exon5_F	CCTCATGATTGGTCTTGTCT	esr1	55°C
ESR_Exon5_R	AGACAAGACCAATCATGAGG	esr1	55°C
ESR_Exon6_F	GAATCTCCAGGGAGAAGAGT	esr1	57°C
ESR_Exon6_R	CTCCCTGGAGATTCATCATA	esr1	55°C
ESR_Exon7_F	CACTCTGAGGTCTCTGGAAG	esr1	59°C
ESR_Exon7_R	TCTCTTCCAGAGACCTCAGA	esr1	57°C
ESR_Exon8_F	AGAATCCCTGTTGCACTTTA	esr1	53°C
ESR_Exon8_R	AACTGAGTGAGCGAATGAAT	esr1	53°C
ESR1_E1_F2	GAGCGGTACTTAAAGTTGGA	esr1	55°C
ESR1_E1_R2	GGGCCAGAGAACTTGACT	esr1	56°C
ESR1_E2_F2	AATTTTCAAGGCTGGTGTAA	esr1	51°C
ESR1_E2_R2	AAAATGGGATGAGTTGTTTG	esr1	51°C
ESR1_E3_F2	TCTGTCCTCTTGCTTTTCAT	esr1	53°C
ESR1_E3_R2	CTCTTTGTTCTCTCCTGGTG	esr1	57°C
ESR1_E4_F2	TCATAGCAGGAGCAATCTTT	esr1	53°C
ESR1_E4_R2	TTGTGTCCCACTATCTCTCC	esr1	57°C
ESR1_E5_F2	ATTTGAGTCAGGGGAGATTT	esr1	53°C
ESR1_E5_R2	TGATGGAAAAATTGGAAGAG	esr1	51°C
ESR1_E6_F2	TGGGGACTGAATAAGACATC	esr1	55°C
ESR1_E6_R2	CCTTATGATCTGAAGCTTGG	esr1	55°C
ESR1_E7_F2	TGGATTCCCTTACATCTTTG	esr1	53°C
ESR1_E7_R2	GCCCTTCCTATCATAAACCT	esr1	55°C
ESR1_E8_F2	GCGACTAAATGACAACAACA	esr1	53°C
ESR1_E8_R2	CCACTTTCAGTTCTTTCCTG	esr1	55°C

3.2.1.6. Single- Nucleotide- Polymorphism (SNP) Genotyping

3.2.1.6.1. <u>Restriktionsverdau mit Narl und anschließender</u> Genotypisierung über ein Agarosegel

Um einen nicht synonymen Basenaustausch im Exon 2 des *sod2* zu genotypisieren wurde ein Restriktionsverdau mit Narl und anschließender Genotypisierung über ein Agarosegel durchgeführt. Die PCR-Produkte wurden durch die Primerpaare Sod2_E2_F und Sod2_E2_R aus Tabelle 9 hergestellt. Vor dem Verdau musste das PCR-Produkt über spezielle Säulchen (siehe 3.2.1.5.2) aufgereinigt werden, da das Enzym Narl im PCR-Puffer Milieu nicht arbeitet. Für jeden Verdau wurden 200 ng mit 12 Units Narl Enzyme 1 h bei 38°C in einem gesamt Volumen von 15 µl verdaut. Ans chließend wurden 10 µl dieses Ansatzes mit 2 µl 6-fach loading Dye auf ein 3% Agarosegel aufgetragen. Die einzelnen Fragmente wurden durch ein 3%-tiges Agarosegelelektrophorese aufgetrennt und sichtbar gemacht. Die DNA-Stücke werden hier entsprechend ihrer Größe und/oder ihrer elektrischer Ladung in einem elektrischen Feld getrennt.

Um eine mögliche Assoziation zwischen diesem SNP und verschiedenen Fetus- und Bullen-Phänotypen überprüfen zu können, wurden 234 Tiere der GDD Familie des ausgesuchten Bullen durch diesen Restriktionsverdau genotypisiert.

Tabelle 9: Übersicht des Primerpaares für die Genotypisierungs-PCR von *sod2*. Neben Primername und Sequenz ist auch entsprechende Annealingtemperatur (Tm) dargestellt.

Primer	Sequenz (5'- 3')	Tm
Sod2_E2_F	TGGGTGTGCTCTCTCTGC	58°C
Sod2_E2_R	GCGTTGATGTGCGGCTCC	61°C

3.2.1.6.2. <u>Illumina SNP- Chip</u>

Für 237 ausgesuchte Tiere wurde DNA hoher Qualität nach der Methode präpariert wie sie unter 3.2.1.2.1 beschrieben wurde und in einer für den Chip geeignete Konzentration (50ng/µl) vorbereitet. Die DNA-Proben wurden im

Auftrag des Lehrstuhls im Labor der Tierzuchtforschung e.V. München (TZF) in Grub mit dem BovineSNP50 BeadChip von Illumina genotypisiert. Die Genotypen wurden in die institutseigene Datenbank transferiert und für die Assoziationsstudien und LDL- Analysen (siehe 3.2.2.5) verwendet. Von den sich auf dem SNP-Chip befindenden 54.001 SNPs wurden nach Qualitätskontrollen wie den GenCall Score (Fan et al., 2003; Oliphant et al., 2002) 53.725 SNPs pro Chip an den Lehrstuhl von der Tierzuchtforschung übergeben. Es wurden nur Tiere, die eine Call-Rate über 95% zeigten und Marker, die eine CallRate über 90% in Tieren mit Call-Rate über 95% zeigten, für weitere Analysen verwendet. Die CallRate ist definiert als das Verhältnis der Anzahl der Genotypen, die über dem Qualitätsgrenzwert liegen, zu der Anzahl aller Genotypen (Fan et al., 2003; Oliphant et al., 2002).

$$CallRate = \frac{NumGenotypen(score \geq threshold)}{gesamtNumGenotypen}$$

3.2.2. Bioinformatische Methoden

3.2.2.1. Primerdesign

3.2.2.1.1. <u>Design der Primer</u>

Die Primer wurden mit dem Programm Primer3 (Rozen and Skaletsky, 2000) vorkonstruiert. Das Programm sucht in einer eingegeben Sequenz, um eine eventuell vorgegebene Zielsequenz herum, ein Primerpaar. Hierbei werden benutzerdefinierte Eigenschaften, wie zum Beispiel Größe des Amplikons, Schmelztemperatur der Primer, Selbstkomplementarität usw., berücksichtigt. Das Programm findet meistens mehrere Primerpaare, die eine vordefinierte Produktlänge aufweisen. Davon wird nun ein Primerpaar ausgewählt und auf die Spezifität überprüft. Auf diese Art und Weise wurden alle in dieser Arbeit verwendeten Primer (siehe Tabelle 5, Tabelle 7, Tabelle 8 und Tabelle 9) optimiert.

3.2.2.1.2. Überprüfung der Spezifität

Hierbei wird nun die Häufigkeit der Sequenz im Genom überprüft. Benutzt wird ein herkömmlicher BLAST Algorithmus, der aber speziell auf kleine Sequenzen eingestellt werden muss. Als Zieldatenbank wurde entweder die Ensembl-Datenbank oder die Genom-Datenbank des NCBI von Bos taurus benutzt. Wenn die Primersequenzen mehrmals im Genom vorkamen, wurde der nächste Vorschlag des Primer3 Programms untersucht, so lange bis ein Primerpaar gefunden wurde, das sehr spezifisch band. Das Gleiche wurde auch für die Primer der Real Time PCR durchgeführt. Da diese aber mRNA als Template benutzen wurde hier als Zieldatenbank nur die Bos taurus Refseq mRNA Datenbank und nicht die redundante Nukleotidkollektion des NCBIs (siehe Tabelle 4) verwendet. Alle Primer für die Real Time PCR wurden exonüberspanned konstruiert, so dass sie bei einer eventuellen Kontamination mit genomischer DNA kein Produkt erzeugen konnten.

3.2.2.1.3. Überprüfung der Qualität

Nach der Überprüfung auf die Spezifität der Primer wurden sie nun auf ihre Qualität überprüft, das heißt darauf, ob sie Haarnadel-Strukturen ausbilden und mit sich selbst oder dem anderen Primer des Paares Dimere bilden können. Dieses wurde mit der frei zugänglichen Version des Programms Bacon Designer™ von Premier Biosoft durchgeführt.

3.2.2.2. Quantitative Real Time PCR

3.2.2.2.1. Referenzgenanalyse

Mit den nachfolgenden Algorithmen wurden die Referenzgene für die Real Time PCR für jedes der zu untersuchenden Geweben (Herz, Leber) separat ausgewählt. Die ausgewählten Referenzgene und ihre Primer sind neben den Zielgenen *esr1* und *sod2* in Tabelle 7 aufgelistet.

3.2.2.2.1.1. Normfinder Algorithmus

NormFinder (Andersen et al., 2004) ist ein Algorithmus um das optimale Referenzgen für Real Time Analysen aus einem Set von Genen zu

identifizieren. Er platziert die zur Auswahl stehenden Referenzgene nach Expressionsstabilität in einem gegebenen Genset unter gegebenen experimentellen Konditionen.

Der Algorithmus ist in einem mathematischen Modell der Genexpression verankert und benutzt ein solides statistisches Gerüst, um nicht nur die generelle Variation der Genexpression abzuschätzen, sondern auch um zwischen Sample Untergruppen der Proben, wie zum Beispiel normale und Krebsproben, zu unterscheiden.

In dieser Doktorarbeit wurde der Algorithmus benutzt, um unter den ca. 16.000 Genen aus der LAFUGA Mikroarrayanalyse ein Referenzgen zu finden, das in allen Feten gleichmäßig exprimiert wird.

3.2.2.2.1.2. GenNorm Algorithmus

Der GenNorm Algorithmus (Vandesompele et al., 2002) sucht in einem gegebenen Set von Genen, die in einem gegebenen Set von Proben sind, die zwei stabilsten Gene heraus. Diese Gene können in sich selbst variieren, das heißt das eine Gen kann von Probe 1-10 in der Expression absteigen, während sich das andere dann aber in diesen Proben genau entgegengesetzt verhält. Sie heben sich gegenseitig auf. In dieser Doktorarbeit wurde der Algorithmus benutzt, um unter den ca. 16.000 Genen aus der Mikroarrayanalyse zwei Referenzgene zu finden, die sich so verhalten.

3.2.2.2.2. Analyse der relativen Real Time PCR

Zur Auswertung der relativen Real Time PCR wurden zwei verschiedene Programme benutzt. Zum einen wurde die Schmelzkurvenanalyse und die CT-Wert Bestimmung mit der LightCycler Software, zum anderen die Expressionsabweichungen des Zielgenes mit der GenexLight Software durchgeführt:

Schmelzkurvenanalyse

Die Produkte der PCR wurden mit Hilfe einer Schmelzkurve auf etwaige Artefakte wie Primerdimere oder unspezifische Produkte überprüft. Falls das Produkt trotz vorheriger Überprüfung der Primer Artefakte aufwies, wurden neue Primer bestellt oder die Annealingtemperatur verändert.

CT- Punkt Analyse

Der CT- Wert befindet sich, wie schon oben erwähnt, in der exponentiellen Phase der PCR, das heißt hier läuft die Reaktion optimal ab ohne limitierende Faktoren wie Menge des Produkts oder Verbrauch der Primer oder Abfallen der Enzymaktivität sprich Polymeraseleistung. Dieser Wert wird nun mit Hilfe der 2. Ableitung der Kurvenfunktion bestimmt. Dieser Wert wird nun von allen Referenzgenen, sprich den Zielgenen und ihren Duplikaten errechnet.

Normalisierungen

Die CT-Werte werden durch verschiede Faktoren bestimmt. Einmal durch die Effizienz der PCR, die aus der Steigung der Standardkurve für jedes Gen berechnet wird. Dann durch die Anzahl der Duplikate einer jeden Probe, das heißt der Mittelwert der Duplikate wird errechnet. Und zuletzt wird der CT-Wert des zu untersuchenden Genes im Verhältnis zu den Referenzgenen gesetzt. Die CT-Werte wurden dann relativ zum Mittelwert gesetzt und in einen log2 umgerechnet.

3.2.2.3. Alignments

Alle in dieser Arbeit erstellten Sequenzalignment wurden mit dem Programm ClustalW2 (17846036) erstellt. Bei den DNA-Sequenzen wurde bei dem einem Farbschema jede Base mit einer anderen Farbe unterlegt, bei dem anderen Farbschema wurden alle Basen bis auf Adenin grün gezeichnet. Adenin wurde zur besseren Übersicht rot gefärbt. Die erste Variante wurde für Ausschnitte aus einem Gesamtsequenz-Alignment zur Verdeutlichung einzelner Basenveränderungen gewählt, die zweite Variante wurde für die Gesamtsequenz-Alignments gewählt. Hierbei wurden die einzelnen polymorphen Regionen schwarz unterlegt.

Proteinsequenzen wurden nach folgendem Schema eingefärbt:

Buchstabenkürzel	Farbe	chemische Eigenschaften
AVFPMILW	ROT	Kleine Aminosäuren (klein und hydrophob (inklusive Aromaten -Y))
DE	BLAU	Sauere Aminosäuren
RK	MAGENTA	Basische Aminosäuren
STYHCNGQ	GRÜN	Aminosäuren mit Hydroxylgruppe und Aminogruppe und basisch - Q
Andere	Grau	

3.2.2.4. Erstellen einer Kopplungskarte

Die Kopplungskarte für Mikrosatellitenmarker auf BTA09 wurde mit dem Programm Cri-Map (Green, 1988) erstellt. Der Algorithmus dieses Programms basiert auf einer Maximum-Likelihood-Methode und nutzt maximale Information aus segregierenden Allelen in einem komplexen Stammbaum.

In dieser Doktorarbeit wurde dieses Verfahren verwendet, indem die Markerpositionen von neuen und enggekoppelten Markern anhand einiger fixer Positionen überprüft wurden. Als Ausgangsdatei diente hierzu ein komplexer Stammbaum mit 1666 Tieren, in dem 754 für 33 Marker auf Chromosom 9 (siehe Tabelle 6) genotypisiert waren. Der Stammbaum besteht aus den wichtigsten Gründertieren der deutschen Fleckviehpopulation sowie elf Grand-Daughter-Design Familien (Georges, 2007). Nach dieser Schätzung errechnete das Programm nun an Hand dieser bekannten Daten, wo die wahrscheinlichste Position des Markers auf dem Chromosom ist. Für diese Schätzung wurde die Option build des Programms Cri-Map benutzt. Im ersten Schritt wurden sechs Marker als Fixpunkte gewählt und der siebte als Insert irgendwo zwischen den sechs Markern. Konnte dieser siebte Marker mit 3-LOD support intervals (P<0.001, Green 1988) einer Position zugeordnet werden, so wurde im nächsten Schritt eine Karte mit sieben Markern als Fixpunkte angenommen und ein achter als unbekannt deklariert. Wenn ein Marker nun vom Programm an mehreren Positionen als wahrscheinlich deklariert wurde, wurde der 2-LOD support intervals (P<0.01) eingesetzt und die Analyse erneut durchgeführt, was zu einem eindeutigen Ergebnis führte. Bei Markern die trotzdem noch mehrere mögliche Positionen besaßen, wurde die Position genommen, die mit der in dem Genome Browser der Universität von Kalifornien Santa Cruz (USCS) übereinstimmt. Diese Karte basiert auf dem Bos taurus release 4.0 des Baylor College of Medicine Human Genome Sequencing Center in Houston, Texas (http://genome.ucsc.edu/cgi-bin/hgGateway).

3.2.2.5. Assoziationsstudien

Um das gesamte Genom für das Merkmal Totgeburt zu untersuchen, wurde eine Allelassoziationsstudie mit 109 Söhnen des ausgewählten Bullen durchgeführt. Von TZF erhaltene SNP-Genotypen wurden mit institutseigenen

Datenbankanwendungen auf Plausibilitäts- und Abstammungsfehler überprüft. Jeder SNP, der mehr als 1% Abstammungsfehler bei sonst korrekten Abstammungen in der Fleckviehpopulation aufwies, wurde aus den weiteren Analysen entfernt. Für die Assoziationsstudien wurden die SNPs, die über die gesamten dem Institut zur Verfügung stehende Fleckviehproben homozygot waren, ebenfalls aus der Analyse ausgeschlossen. Außerdem wurden Marker mit einer unbekannten chromosomale Position aussortiert. Somit ergab sich ein Set von 44.467 SNPs, die auf den Autosomen liegen.

Ein Standard Fall/Kontrolle Allel Test wurde genomweit mit der –assoc Funktion des Programms PLINK (Purcell et al., 2007) durchgeführt. Als Eingabe dienten hierbei die Zuchtwerte der ZAR (siehe Tabelle 4) für das Merkmal paternale Totgeburt. Jeder Zuchtwert über 99 wurde als Kontrolle bezeichnet, während der Zuchtwert unter 90 als Fall gekennzeichnet wurde. Die allelische Assoziation mit der Fallgruppe wird über einen χ^2 – Test statistisch ausgewertet. Die Nullhypothese (Ho) eines χ^2 – Test geht davon aus, dass es keine signifikanten Unterschiede in der Verteilung der Allelfrequenzen, in den zu untersuchenden Proben der Fall- und Kontrollgruppe gibt. Während die alternative Hypothese (HA) davon ausgeht, dass die Annahme betreffend der Allelfrequenzen nicht zutrifft.

Der χ^2 wird durch die Formel

$$\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$

berechnet, wobei O die beobachtete Frequenz ("observed frequency")ist, E die erwartete ("expected frequency") und k die Anzahl der Merkmalsklassen in der Studie darstellt (Lottspeich and Engels, 2006). Hier ist k = 2, da wir entweder Fall oder Kontrolle haben. Daraus wird auch die Anzahl der Freiheitsgrade df = (k - 1) = 1 ermittelt.

3.2.2.6. Kombinierte Kopplungs- und Kopplungs- ungleichgewichtsanalyse

Zur Absicherung der Ergebnisse aus den genomweiten Assoziationsstudien (2.2.2.4.) wurde in den chromosomalen Regionen, an denen durch die Assoziation signifikante Signale gefunden wurden, eine kombinierte Kopplungsund Kopplungsungleichgewichtsanalyse (Meuwissen and Goddard, 2000) mit dem Programm LDLrams (Lee and van der Werf, 2004; Lee et al., 2005; Lee and Van der Werf, 2005) durchgeführt.

Hierbei wurden nur SNPs verwendet, die heterozygot im Familienvater vorkommen. Dieser methodische Ansatz versucht möglichst die gesamte relevante Information zur Kartierung der QTL's zu nutzen.

Für die LDL-Kartierung und die Schätzung der IBD-Wahrscheinlichkeiten werden beobachtete Markerdaten, Stammbaum-Informationen, Phänotypen und Allelfrequenzen in einem entsprechendem Format benötigt, welches ebenfalls mit einer Datenbankanwendung vorbereitet wurde. Im sogenannten map-file wurden "mutation age" und die effektive Populationsgröße auf 100 festgesetzt, der Homozygotiegrad der Marker betrug 0,70.

Die hier gemachten Analysen wurden mit 215 Tieren, 100 Markern und 1100 Samplings bei 100 Burning Periods durchgeführt. Die von Programm LDLrams1.76 durch den "random walk approach" und "meiosis Gibbs sampling" berechnete Genotype-Relationship-Matrix (GRM-Datei) kann als Eingangsdatensatz für das Programm LDL1.42 verwendet werden. Somit muss diese nicht für Analysen mit anderen Phänotypen aber gleichen Genotypen zeitaufwendig berechnet werden. Die Signifikanz der Kartierungsergebnisse wurde mit dem sogenannten log-likelihood ratio Test (LRT) berechnet. LRT-Teststatistik wird als Differenz in logL (Logarithmus von Likelihood) zwischen einem Modelle mit QTL an Position p (logLp) und einem Modell ohne QTL (logL0) berechnet:

LRT = -2 (logL0-logLp)

LRT-Teststatistik ist annähernd wie eine χ^2 Teststatistik mit einem Freiheitsgrad verteilt (Olsen et al 2004). Dieser Test wurde für jedes Markerintervall

durchgeführt und das Intervall mit dem höchsten LRT-Wert wurde als die wahrscheinlichste QTL-Position betrachtet.

3.2.2.7. Haplotypisierung

Die Haplotypisierung des proximalen Endes von BTA21 wurde mit dem Programm SimWalk2 (Sobel and Lange, 1996; Sobel et al., 2002; Sobel et al., 2001) durchgeführt. Hierbei wurden 20 SNPs verwendet, die heterozygot im Familienvater, dem besagten Stier (siehe 3.1.1), vorkommen. Die Analyse wurde mit 237 Tieren durchgeführt. Anhand der eingegebenen Genotypen schätzt das Programm das höchst wahrscheinliche Set an paternalen und maternalen Haplotyp der Markerloci eines jeden Tiers im Stammbaum. Die Haplotypisierung wurde verwendet, um den mit dem Phänotyp Totgeburt paternal assoziierten Haplotyp am proximalen Pol von BTA21 zu identifizieren.

4. Ergebnisse

4.1. igf2r- Analysen

4.1.1. Sequenzierung des CpG- Islands

Im Zuge der Annahme, dass das CpG-Island des Intron 2 (siehe Abbildung 12) die Promotorregion der *Air*-RNA ist, wurde dieses Stück durch PCR amplifiziert und anschließend sequenziert.

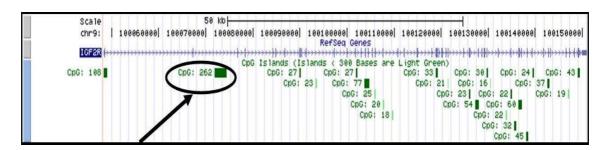


Abbildung 12: Anordnung der Exons und Intron 2 des *igf2r* mit den CpG-Islands, die über das gesamte Gen verteilt sind (http://genome.ucsc.edu/). Blau dargestellt ist die Lage des Genes mit den Exons als senkrechten Strichen, grün dargestellt die verschiedenen CG reichen Abschnitte des *igf2r*. Die nebenstehende Nummer ist die Anzahl der gezählten CG Dinukleotide der jeweiligen Island. Das Island, das für diese Arbeit von Interesse war, liegt im Intron 2, hat eine CG Anzahl von 262 und eine insgesamte genomische Länge von 2477 bp.

Dieses CpG- Island wurde auf etwaige Deletionen, Insertionen oder Substitutionen untersucht, um eine Expressionsveränderung des "Insulin like growth factor 2 receptor" zu erklären. In Abbildung 13 ist die sequenzierte Sequenz schwarz dargestellt und das CpG- Island grün. Man sieht, dass es von unserer Sequenz überdeckt wird. Nach der Sequenzierung der DNA zweier ausgewählter Bullen und des BAC-Klones CH240-40N2 des Chori Centers (Primer, Tabelle 8), wurden die somit erhaltenen Sequenzen gegeneinander aligniert. Es konnten keinerlei Abweichungen hierbei festgestellt werden (siehe 13.1)

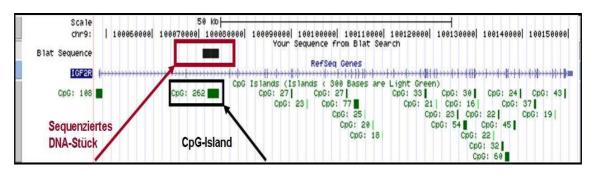


Abbildung 13: Übersicht des sequenzierten Stückes im Intron2, schwarz eingezeichnet und rot umrahmt, grün ist das CpG-Island und schwarz umrahmt.

4.1.2. Überprüfung der Inaktivierung des paternalen Allels

Um festzustellen, ob es sich bei dem Defekt um einen Imprintingdefekt und eine somit verbundene nicht stattfindende Dosiskompensation handelt (siehe 2.4.7), wurde das Imprinting anhand des Mikrosatelliten LMU0901 überprüft, der sich im 3'-untranslatiertem Bereich der mRNA befindet. Da der Vater der Feten heterozygot für diesen Mikrosatellit ist, konnte man mit Hilfe einer Genotypisierung des exprimierten Allels die Inaktivierung des paternalen Allels feststellen (siehe Abbildung 14 und Abbildung 15). Hierfür wurde cDNA verwendet, die mit OligoT-Primern aus RNA von Lebergewebe hergestellt wurde (siehe 3.2.1.4.2). Das heißt, das ganze Transkriptom des Lebergewebes wurde hiermit abgedeckt.

In Abbildung 14 sieht man, dass das paternale Allel 143 nur in der genomischen DNA genotypisiert wurde, während das maternale Allel 141 in genomischer und in cDNA zu sehen ist.

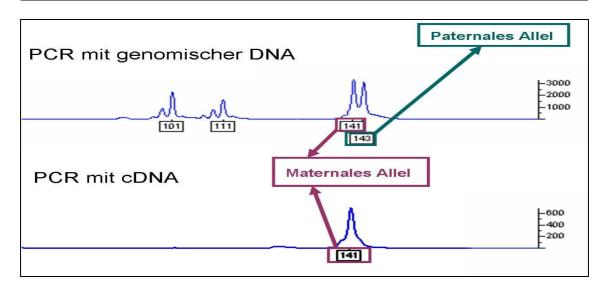


Abbildung 14: Überprüfung der Inaktivierung des paternalen Allels 143 mit Hilfe genomischer DNA und cDNA. Hier als Beispiel dargestellt für einen Fetus, der das 143 Allel des Vaters geerbt hatte. Die Allele 101 und 111 sind Allele eines anderen Mikrosatelliten, der bei der Multiplex-PCR dabei war und nur in genomische DNA nachweisbar ist.

In Abbildung 15 sieht man dasselbe Muster wie in Abbildung 14 nur dass hier ein Fetus genommen wurde, der das Allel 141 des Vaters geerbt hatte. Die Mütter der beiden ausgewählten Feten waren homozygot für eines der beiden Allele (141-141 in Abbildung 14 und 143-143 in Abbildung 15), so dass man mit Sicherheit sagen konnte, welches das paternale Allel ist. Dieses Ergebnis lässt darauf schließen, dass kein Verlust des Imprinting an diesem Gen vorliegt. Der kleinen Vorpeak, den man in Abbildung 15 vor dem maternalen Allel bei der cDNA-Genotypisierung sieht, ist ein Schattenpeak (Hauge and Litt, 1993). Dieser bestätigt die Annahme, dass das Imprinting des paternalen Allels von *igf2r* bis kurz vor der Geburt noch nicht vollständig abgeschlossen ist (Lerchner and Barlow, 1997). Es wurde auch ein Nachpeak des paternalen Allels beobachtet. Die Verhältnisse beider Peaks zu den eigentlichen Peaks wurden berechnet und mit den homozygoten Tieren verglichen. Sie wurden als nicht signifikant unterschiedlich befunden.

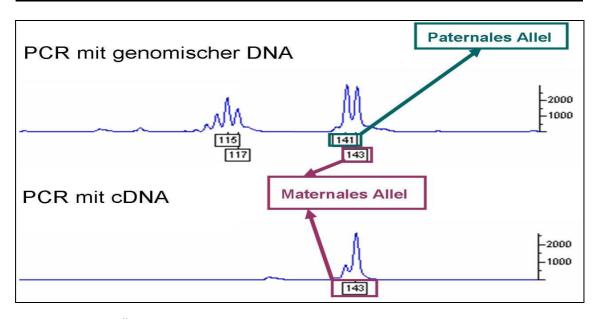


Abbildung 15: Überprüfung der Inaktivierung des paternalen Allels 141 mit Hilfe genomischer DNA und cDNA. Hier als Beispiel dargestellt für einen Fetus, der das 141 Allel des Vaters geerbt hatte. Die Allele 115 und 117 sind Allele eines anderen Mikrosatelliten, der bei der Multiplex-PCR dabei war und nur in genomische DNA nachweisbar ist.

4.2. Kopplungskarte BTA09

Mit der build option des Programms Cri-Map wurde die Positionen der Marker LMU0906, LMU0908, LMU0901, LMU0907 und UWCA09 überprüft. Als Fixpunkte für die Analyse wurden die Marker BM3215, DIK4548, DIK4140, BMS1943, DIK2045, BMS1967 benutzt. Zuerst konnte die Position des Markers LMU0906 mit einer Irrtumswahrscheinlichkeit von P<0,001 zwischen dem Markern DIK4140 und BMS1943 zugeordnet werden, der somit auch zum Fixpunkt wurde (siehe 3.2.2.3). Die gleiche Analyse wurde mit LMU0908 durchgeführt, allerdings wurden hier vom Programm zwei Positionen als wahrscheinlich deklariert. Deswegen wurde die Analyse mit dem 2-LOD support intervals wie in 3.2.2.3 beschrieben wiederholt. Dadurch konnte die Position des Markers zwischen den Markern LMU0906 und BMS1943 mit einer Irrtumswahrscheinlichkeit von 0,001<*P*<0,01 bestimmt werden. Der Marker LMU0901 konnte ebenfalls durch die erste Analyse keiner eindeutigen Position zugeordnet werden. Die Likelihood-Werte für zwei Positionen waren fast gleich, deswegen wurde hier die physikalische Karte des USDA Btau 4.0 (siehe Tabelle 4) für die genauere Kartierung benutzt. Die genomische Lokalisation aller Sequenzen der Mikrosatelliten wurde mit der BLAT-Option des UCSC Genome Browsers (siehe Tabelle 4) bestimmt und die Basenpaarposition notiert, somit konnte der Marker LMU0901 zwischen LMU0906 und LMU0908 kartiert werden. Der Marker LMU0907 wurde durch die erste Cri-MAP Analyse außerhalb der durch Fixpunkte definierten Markerkarte gestellt, was zu der Annahme führte, dass die markerflankierenden Sequenzen noch nicht korrekt in der aktuelle Ausgabe der Rindergenomsequenz angeordnet oder nicht einmalig im Genom sind, was zu einer falschen Genotypisierung führte. Der Mikrosatellit wurde aus den Analysen ausgeschlossen.

Der Marker UWCA09 wurde ebenfalls auf seine Position überprüft, da der Vergleich mit der physikalischen Karte zu der Annahme führte, dass seine Position falsch war. Als Fixpunkte wurden hier die Marker DIK3003, BMS555, BM4627, BMS1290, BM7209 und BM4208 benutzt. Der Marker UWCA09 konnte eindeutig der Position zwischen BMS555 und BM4627 zugeordnet werden, was mit der physikalischen Karte übereinstimmte. Eine Übersicht der neuen Anordung der Mikrosatelliten auf BTA09 mit Basenpaarposition und cM befindet sich in Tabelle 10.

Tabelle 10: Mikrosatellitenanordnung auf BTA09. Markiert ist der Mikrosatellit DIK096 (rot unterlegt), der sich durch nachgewiesene PCR zwischen den beiden Exons 7 und 8 des Östrogenrezeptor alpha befindet (siehe 4.3.1). Mit roter Schrift sind die Mikrosatelliten gekennzeichnet, die anhand der hier durchgeführten Kartierung eine neue Position bekamen.

Marker	Basepairs		cM
BMS47	8255113	8255513	9.6530
DIK2433	12029457	12030156	15.1210
DIK2876	15032621	15033321	20.4150
BM1227	17864488	17864888	24.1390
ILSTS037	19417845	19418445	26.2660
BM2504	25450582	25451032	30.9200
DIK3003	31337454	31337854	36.5420
BMS1267	35555767	35555983	38.7420
BMS555	40095010	40095184	43.8180
UWCA09	48829358	48829493	48.0000
BM4627	49571905	49572144	52.0000
BMS1290	66959030	66959630	64.9350
BM7209	81244399	81244596	81.5690
BM4208	88747950	88748152	90.6900
INRA144	88924536	88924930	90.9800
DIK096	92495317	92495917	94.8030
BMS2063	93638183	93638442	95.3800
URB028	94651950	94652384	97.2850
URB024	95627496	95627858	98.2190
BMS2295	96055876	96056127	98.6460
LMU0902	96096812	96097212	99.0000
BM3215	96877699	96877977	101.6470
DIK4548	97110406	97110906	101.7000
LMU0904	97549706	97550206	102.0000
LMU0905	97999388	98000188	102.5797
DIK4140	98790051	98790751	103.0460
LMU0906	100119291	100120091	103.3955
LMU0901	100150165	100150965	103.4036
LMU0908	100780614	100781414	103.4718
BMS1943	101308384	101308766	103.7080
DIK2045	103273177	103273777	106.9600
BMS1967			109.2870

4.3. Östrogenrezeptor Analysen

4.3.1. Kartierung des Östrogenrezeptors

Zu Beginn dieser Arbeit wurde die online verfügbare Btau 3.1 Ausgabe des Rindergenoms (http://www.ensembl.org/) benutzt (aktuell Btau 4.0). Es stellte sich hierbei heraus, dass die Exons des Kandiatengens esr1 auf verschiedene Teile der genomischen Sequenz, konstruiert aus überlappenden Endsequenzen von "whole-genome shotgun" BAC-Klonen, in verschiedener Reihenfolge kartiert waren. Verschiedene Exons waren abwechselnd auf dem minus bzw. plus Strang lokalisiert. Als ein Beispiel wird hier in Abbildung 16 die Positionierung von Exon I und II auf plus und minus Strang gezeigt.

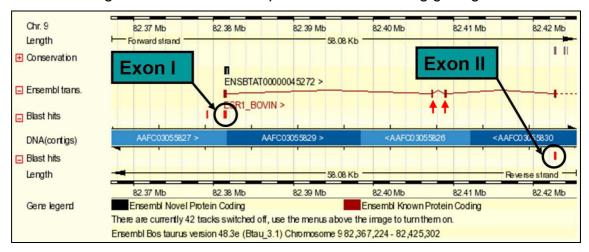


Abbildung 16: Suchergebnis (Programm BLAST) nach der Exon I und II des Östrogenrezeptors; Als Vorlage das Btau3.1 der Ensembl Datenbank, blau sind die verschiedenen "Contigs". Die zwei Exons, die hier als Exon II und Exon III dargestellt sind (rote Pfeile) konnten mit der mRNA-Sequenz nicht bestätigt werden. Exon I wurde auf dem plus und Exon II auf dem minus Strang lokalisiert.

Auf ähnliche Art und Weise wurden die Exons I, IV, VII und VIII, auf dem plus Strang und Exons II, III, V und VI auf dem negativen Strang lokalisiert.

Anhand der Suchergebnisse und den entsprechenden Basenpaaren kann man erkennen, dass die Exons 1- 4 in der richtigen Reihenfolge angeordnet sind. Ab Exon 5 allerdings sind sie 1Mb 5' aufwärts auf dem Chromosom in umgekehrter Reihenfolge angeordnet. Zwischen Exon 7 und 8 befindet sich der Mikrosatellit DIK096 (Abbildung 17).

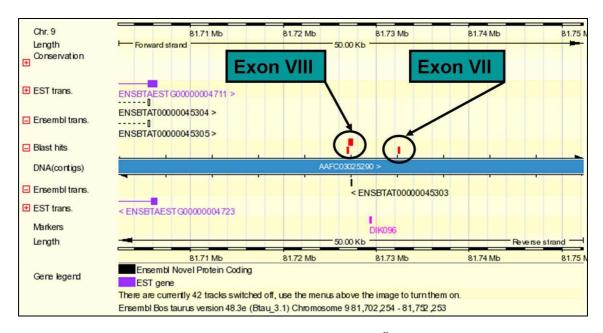


Abbildung 17: Suchergebnis der Exon VII und VIII des Östrogenrezeptors; Als Vorlage das Btau3.1 der Ensembl Datenbank. Der Mikrosatellit DIK096 ist pink gekennzeichnet.

Auch die einzelne BAC-Klone (399B23, 306M5 und 218D15, Tabelle 5) auf denen die einzelnen Exons liegen wurden mit dem BLAST-Algorithmus des NCBIs überprüft (Abbildung 18).

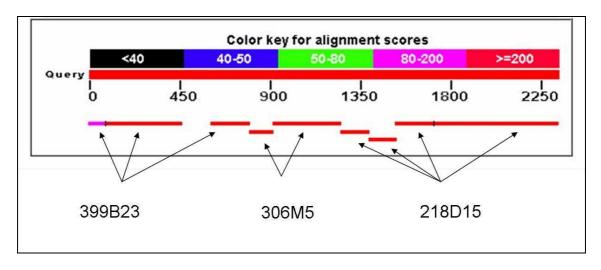


Abbildung 18: Ergebnis des BLAST gegen die WGS- Datenbank des NCBI; die Pfeile deklarieren auf welchem Klon des jeweilige Exon liegt, das pinke Stück ist ein Teil der 5'- Promotorregion des *esr1*, das fehlende Stück ist eine durch den "repeat-Filter" herausgenommene Sequenz.

Beide Ergebnisse wurden überprüft und verglichen, die Contigs, auf denen die Exons liegen, sind identisch, nur die Anordnung der Exons auf dem Chromosom in der Ensembl Datenbank weicht von der anhand der mRNA

erwarteten Reihenfolge ab. Die Sequenz der verwendeten mRNA ist als Refseq deklariert, das bedeutet, dass sie durch Experimente gefunden und verifiziert wurde. Dies lässt den Schluss zu, dass die Scaffoldanordnung im Ensembl nicht der Realität entspricht und hier etwaige Fehler unterlaufen sind. Um das esr1 näher zu untersuchen und um die genaue Lokalisation des DIK096 Markers zu bestimmen, musste geklärt werden, in welcher Reihenfolge die Exons bzw. die Scaffolds bzw. die Klone wirklich liegen. Hierzu wurde die physikalische bovine Karte (Snelling et al., 2007) zu Hilfe genommen (siehe Abbildung 19).

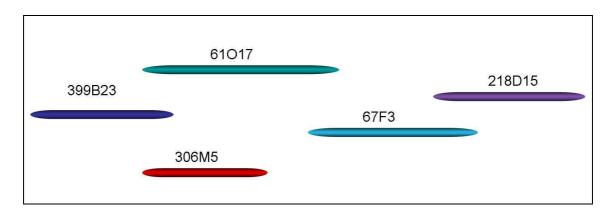


Abbildung 19: Physikalische Klonkarte der CHORI (CH240) - Clone library

Von diesen Klonen wurden Endsequenzen oder andere Sequenzierungsstücke in der NCBI- Datenbank gesucht. Die BAC-Klone 399B23, 306M5 und 218D15 sind komplett durchsequenziert. Bei den Klonen 61017 und 67F3 nur die Endsequenzen. Von allen fünf Klonen wurde mit der blastn Option des BLAST-Programms die gesamte genomische Sequenz (Whole genome sequence, WGS") des Rindes nach möglichen Stücken für spezifische PCR- Produkte gesucht, für diese wurden dann Primer konstruiert (siehe Tabelle 5). Anhand der PCR-Produkte soll bewiesen werden, in welcher Reihenfolge die Klone anzuordnen sind. Um alle möglichen Informationen zu nutzen, wurden auch der Mikrosatellit DIK096, sowie PCRs der einzelnen Exons zu Hilfe genommen. Zuerst wurde per PCR überprüft, ob die Primerpaare richtig binden und das Produkt in der richtigen Länge amplifizieren. Als nächstes wurde per PCR überprüft, in welchen Klonen diese Primer noch ein Produkt amplifizieren. Um diese noch genauer zu untersuchen, wurden PCRs der einzelnen Exons, außer Exon1, und PCRs der Mikrosatelliten BMS2036, URB024, URB028 und DIK096

zu Hilfe genommen.

Alle diese Informationen wurden zum Erstellen einer neuen Klonkarte benutzt (siehe Abbildung 20). Die genaue Anordung der einzelnen Mikrosatelliten auf BTA09 wurde durch das neue Btau 4.0 (USDA siehe Tabelle 4) erstellt und mit dem Programm Cri-Map überprüft (siehe 3.2.2.2). Zuvor wurde der Östrogenrezeptor zwischen dem Mikrosatelliten URB024 und URB028 kartiert (Btau 3.1, Ensembl). Nun wurde Mikrosatelliten DIK096 zwischen den Exons 7 und 8 lokalisiert. Er wurde zwar in Btau 3.1 ebenfalls an dieser Stelle platziert (siehe Abbildung 17), aber diese Exons wurden nicht zum Östrogenrezeptor zugehörig deklariert. Dadurch konnte eine Umkartierung des Östrogenrezeptors vorgenommen werden (siehe Tabelle 10).

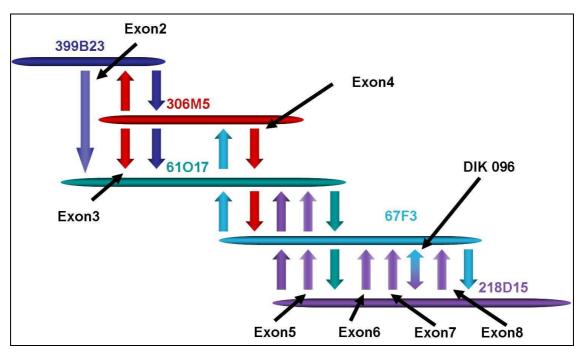


Abbildung 20: BAC- Klone Karte. Die Pfeile symbolisieren die PCRs der einzelnen Exons und auf welchem Klon sie gefunden wurden. Der Klon von dem der jeweilige Pfeil ausgeht ist der Klon, auf dem die Primer konstruiert wurden, nachdem der jeweilige Klon durch einen BLAST gegen die WGS-Datenbank des NCBI's detektiert wurde.

4.3.2. Sequenzierung der Exons

Die DNA vier ausgewählter Tiere wurde durch Sequenzierung auf etwaige Insertionen, Deletionen und Mutationen der Exons des *esr1* überprüft (siehe 13.2). Als Tiere wurden der fragliche Bulle (3.1.1), dessen Muttervater und zwei Nachkommen (FV0307 und FV0314) ausgewählt. Zwei Nachkommen des

heterozygoten Bullen wurden als homozygot für die jeweiligen DIK096 Markerallele genotypisiert. Das bedeutet beide bekamen verschiedene Haplotypen vom Vater. Es wurden in Exon 1, 4 und 8 Mutationen festgestellt (siehe Abbildung 21- Abbildung 23).

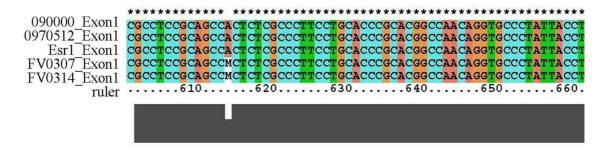


Abbildung 21: Basenaustausch (SNP) im Exon1 des esr1; M steht für Aminogruppe (A oder C).

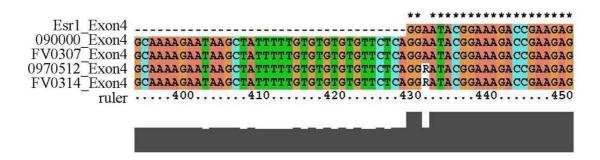


Abbildung 22: Basenaustausch (SNP) im Exon4 des esr1; R steht für Purin (A oder G).

Abbildung 23: Basenaustausch (SNP) im Exon8 des esr1; Y steht für Pyrimidin (C oder T).

Alle sequenzierten Exons wurden zu einer gesamten mRNA zusammengefügt und mit der Referenzsequenz im der NCBI- Datenbank verglichen (Anhang 13.3).

Anhand der hier erhaltenen Sequenzen aller Exons der vier Tiere wurden zwei alternative mRNA Sequenzen hergestellt. Eine mit A-A-C und die andere mit C-

G-T Basen an den polymorphen Stellen in Exon 1, 4 und 8. Die so erhaltenen Nukleotidsequenzen wurden mit dem Programm Translate (Gasteiger et al., 2003) übersetzt. Anhand eines Alignments der beiden so erhaltenen Proteinsequenzen und der Referenzsequenz des ESR1 aus der NCBI-Datenbank wurde festgestellt, dass alle Basenaustausche synonym waren (siehe Anhang 13.4).

4.3.3. Sequenzierung der Promotorregion

Die Promtorregion B des *esr1* (siehe 2.5.2) wurde sequenziert. Als Stichprobe dienten hier dieselben Tiere wie in 4.3.2, allerdings wurde in den ersten Sequenzierungen nur die DNA der zwei Nachkommen und des Stieres sequenziert, weitere Tiere sollten nachfolgen, wenn sich Unterschiede ergäben. Da die drei Proben zu 100% mit sich selbst und der Referenzsequenz des Promotors B aus der NCBI-Datenbank identisch waren, wurden keine weiteren Analysen durchgeführt (siehe Anhang 13.5).

4.3.4. Real Time PCR

Zur Verifizierung der Mikroarraydaten und einer etwaigen Korrelation mit den verschiedenen paternal vererbten chromosomalen Segmenten wurden fünf Feten mit dem paternalen Haplotyp 1 und sechs Feten mit dem paternalen Haplotyp 2 durch Real Time PCR analysiert (Abbildung 24). Die Daten wurden auf Wiederholungen und Referenzgene normalisiert. Die Daten sind in einem log2 relative zum Mittelwert dargestellt. Das heißt bei einem Wert von 1 handelt es sich um die doppelte Expressionsrate im Vergleich zum Mittelwert. Eine differentielle Expression ist zu beobachten, kann aber nicht mit dem paternalen Haplotyp in Verbindung gebracht werden. Auch die Korrelationen zu den einzelnen Gewichten, wie Gesamtgewicht, Herzgewicht und Lebergewicht, konnte nicht bestätigt werden (siehe Tabelle 2).

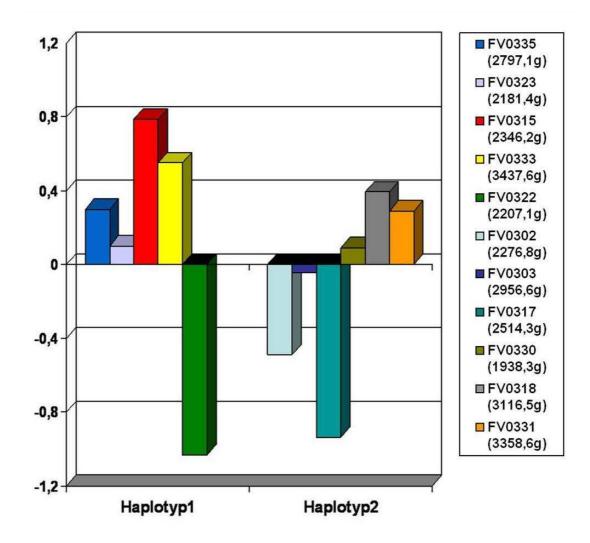


Abbildung 24: Real Time PCR Balkendiagramm für die Expression des Östrogenrezeptors in 5 Feten, die das paternale Haplotyp 1 (rot gekennzeichnet) und 6 Feten, die das paternale Haplotyp 2 (blau gekennzeichnet) besitzen.

4.4. Superoxiddismutase Analysen

4.4.1. Sequenzierung der mRNA

Die Superoxiddismutase liegt auf BTA09 zwischen den Mikrosatelliten DIK4140 und LMU0908 (Tabelle 10). Für die Sequenzierung der mRNA aus cDNA wurden zwei Feten auf Grund ihrer Mikrosatellitenallele dieser Marker und ihrer Expressionsdaten ausgewählt. In den Sequenzen waren ausgehend von der Referenzsequenz drei Basenmutationen zu beobachten: Eine A12G, eine T41C und eine C192T Mutation (siehe Abbildung 25). Zur Überprüfung, ob diese Austausche synonym oder nicht synonym sind, wurden alternativ die mRNA Sequenzen in die Proteinsequenz translatiert und mit der Referenzsequenz der Superoxiddismutase 2 in der NCBI-Datenbank (siehe Tabelle 4) verglichen. Man kann in dem Alignment deutlich erkennen, dass durch den Basenaustausch T41C die Aminosäure Valin zu Alanin (V14A) geändert wird (siehe Abbildung 26). Die anderen beiden Polymorphismen (A12G und C192T) in der Sequenz sind synonym, da sie keine Veränderung auf der Proteinebene bewirken.

NM_201527.2 FV0328_mRNA FV0320_mRNA	ATGTTGTCGCG GCGGCGTGCAGCACGAGCAGGAGACTGG GCCGGCCCTGAGCGTGCTG ATGTTGTCGCG GCGGCGTGCAGCACGAGCAGGAGACTGG GCCGGCCCTGAGCGTGCTG ATGTTGTCGCG GCGGCGTGCAGCACGAGCAGGAGACTGG GCCGGCCCTGAGCGTGCTG	60 60 60
NM_201527.2 FV0328_mRNA FV0320_mRNA	GGCTCCCGGCAGAAGCACAGCCTCCCCGACCTGCCGTACGACTACGGCGCCCTGGAGCCG GGCTCCCGGCAGAAGCACAGCCTCCCCGACCTGCCGTACGACTACGGCGCCCTGGAGCCG GGCTCCCGGCAGAAGCACAGCCTCCCCGACCTGCCGTACGACTACGGCGCCCTGGAGCCG	120
NM_201527.2 FV0328_mRNA FV0320_mRNA	CACATCAACGCGCAGATCATGCAGCTGCACCACAGCAAGCA	180 180 180
NM_201527.2 FV0328_mRNA FV0320_mRNA	AACCTCAACGT GCCGAGGAGAAGTACCGGGAGGCGCTGGAGAAGGGTGATGTTACAGCT AACCTCAACGT GCCGAGGAGAAGTACCGGGAGGCGCTGGAGAAGGGTGATGTTACAGCT AACCTCAACGT GCCGAGGAGAAGTACCGGGAGGCGCTGGAGAAGGGTGATGTTACAGCT ************************************	240 240 240
NM_201527.2 FV0328_mRNA FV0320_mRNA	CAGATAGCTCTGCAGCCTGCGTTGAAGTTCAACGGTGGGGGCCATATCAATCA	300 300 300
NM_201527.2 FV0328_mRNA FV0320_mRNA	TTCTGGACAAATCTGAGCCCTAACGGTGGTGGAGAACCCCAAGGGGAATTGCTGGAAGCC TTCTGGACAAATCTGAGCCCTAACGGTGGTGGAGAACCCCAAGGGGAATTGCTGGAAGCC TTCTGGACAAATCTGAGCCCTAACGGTGGTGGAGAACCCCAAGGGGAATTGCTGGAAGCC	360 360 360
NM_201527.2 FV0328_mRNA FV0320_mRNA	ATCAAACGTGACTTTGGTTCCTTTGCCAAATTTAAGGAAAAGTTGACTGCTGTATCTGTT ATCAAACGTGACTTTGGTTCCTTTGCCAAATTTAAGGAAAAGTTGACTGCTGTATCTGTT ATCAAACGTGACTTTGGTTCCTTTGCCAAATTTAAGGAAAAGTTGACTGCTGTATCTGTT	23,5737
NM_201527.2 FV0328_mRNA FV0320_mRNA	GGTGTCCAAGGCTCCGGTTGGGGTTGGCTCGGCTTCAATAAGGAGCAGGGACGCTTACAG GGTGTCCAAGGCTCCGGTTGGGGTTGGCTCGGCTTCAATAAGGAGCAGGGACGCTTACAG GGTGTCCAAGGCTCCGGTTGGGGTTGGCTCGGCTTCAATAAGGAGCAGGGACGCTTACAG	
NM_201527.2 FV0328_mRNA FV0320_mRNA	ATTGCTGCTTGTTCTAACCAGGATCCCCTGCAAGGAACAACAGGTCTTATCCCCCTGCTG ATTGCTGCTTGTTCTAACCAGGATCCCCTGCAAGGAACAACAGGTCTTATCCCCCTGCTG ATTGCTGCTTGTTCTAACCAGGATCCCCTGCAAGGAACAACAGGTCTTATCCCCCTGCTG	540
NM_201527.2 FV0328_mRNA FV0320_mRNA	GGGATTGACGTGTGGGAGCATGCTTATTACCTTCAGTATAAAAATGTCAGGCCCGATTAT GGGATTGACGTGTGGGAGCATGCTTATTACCTTCAGTATAAAAATGTCAGGCCCGATTAT GGGATTGACGTGTGGGAGCATGCTTATTACCTTCAGTATAAAAATGTCAGGCCCGATTAT *********************************	600
NM_201527.2 FV0328_mRNA FV0320_mRNA	CTGAAGGCCATTTGGAATGTGATCAACTGGGAGAATGTAACTGCACGATACACGGCTTGC CTGAAGGCCATTTGGAATGTGATCAACTGGGAGAATGTAACTGCACGATACACGGCTTGC CTGAAGGCCATTTGGAATGTGATCAACTGGGAGAATGTAACTGCACGATACACGGCTTGC	660
NM_201527.2 FV0328_mRNA FV0320_mRNA	AGCAAGTAAACCGTCAGCCTTACACTGAGTACACCAAGCTCTTTCTGACTATTTTTGTAG AGCAAGTAAACCGTCAGCCTTACACTGAGTACACCAAGCTCTTTCTGACTATTTTTGTAG AGCAAGTAAACCGTCAGCCTTACACTGAGTACACCAAGCTCTTTCTGACTATTTTTGTAG	720
NM_201527.2 FV0328_mRNA FV0320_mRNA	TAGTGCAGAGAACCAGATAAACCAGTACGCTGCTCTGTTGTAGTGTTTCTGAGTGTGGCT TAGTGCAGAGAACCAGATAAACCAGTACGCTGCTCTGTTGTAGTGTTT TAGTGCAGAGAACCAGATAAACCAGTACGCTGCTCTGTTGTAGTGTTT *************************	768

Abbildung 25: Alignment der sod2 mRNAs mit der Referenzsequenz NM_201527.2. Die drei Polymorphismen sind auf Positionen 12, 41 und 192 in mRNA zu finden. Diese entsprechen den A12G, T41C und C192T Substitutionen, schwarz unterlegt.

NP_963285.2 FV0328 FV0320		60
NP_963285.2 FV0328 FV0320	nlnvaeekyrealekgdvtaqialqpalkfnggghinhsifwtnlspngggepqgellea nlnvaeekyrealekgdvtaqialqpalkfnggghinhsifwtnlspngggepqgellea nlnvaeekyrealekgdvtaqialqpalkfnggghinhsifwtnlspngggepqgellea **********************************	120
NP_963285.2 FV0328 FV0320	ikrdfgsfakfkekltavsvgvqgsgwgwlgfnkeqgrlqiaacsnqdplqgttglipll	180
NP_963285.2 FV0328 FV0320	GIDVWEHAYYLQYKNVRPDYLKAIWNVINWENVTARYTACSK 222 GIDVWEHAYYLQYKNVRPDYLKAIWNVINWENVTARYTACSK 222 GIDVWEHAYYLQYKNVRPDYLKAIWNVINWENVTARYTACSK 222 **********************************	

Abbildung 26: Alignment der zu Proteinsequenzen translatierten mRNAs von FV0328 und FV0320 mit der Referenzproteinsequenz NP_963285.2. Grau hervorgehoben sind die Positionen der A12G und C192T Basenmutationen, die synonym sind. Schwarz hervorgehoben ist der T41C Austausch, der zu dem Aminosäureaustausch V14A führt.

4.4.2. Genotypisierung

Für weitere Analysen wurden mit Hilfe des Restriktionsenzyms Narl 234 Tiere der deutschen Fleckviehpopulation für den nicht synonymen SNP in *sod2* genotypisiert. Das Enzym schnitt das mittels PCR amplifizierte 128 bp lange Stück genomischer DNA in zwei oder drei Stücke. Im Falle des T- Allel wurde die Sequenz in ein 23 bp langes und ein 105 bp langes Segment geschnitten, während im Fall des C- Allels drei Segmente mit den Längen 23 bp, 38 bp und 67 bp auftraten. Bei heterozygoten Tieren waren vier Banden zu sehen (Abbildung 27). Die Genotypen der Tiere wurden in die Datenbank aufgenommen und der SNP wurde in die NCBI-dbSNP eingereicht (ss158145578 online verfügbar nach dem Update der Datenbank zum dbSNP Build 131). Die Allelfrequenzen wurden über die gesamte Population anhand von Stichproben geschätzt (F_T= 0,323; F_C = 0,677)

Abbildung 27: Exemplarische Darstellung eines Restriktionsverdaus; Die einzelnen Proben wurden mit Hilfe eines 3,5%-tigen Agarosegels aufgetrennt. In den Ansätzen 1 und 2 befanden sich homozygote Individuen für das T- Allel, im Ansatz 3 war eine homozygote Probe für das C- Allel und in den Ansätzen 4 und 5 befanden sich heterozygote Proben. Die 23 bp Banden sind nur als leichter Schatten erkennbar.

4.4.3. Real Time PCR

Zur Verifizierung der Mikroarraydaten und einer etwaigen Korrelation mit den verschiedenen paternal vererbten chromosomalen Segmenten wurden drei Feten mit dem paternalen Haplotyp1 und drei Feten mit dem paternalen Haplotyp2 in Leber und Herzgewebe durch Real Time PCR analysiert (siehe Abbildung 28 und Abbildung 29). Die Feten wurden nach Haplotyp und nach Expressionsmuster der Mikroarrayanalyse ausgewählt, deswegen weichen sie in den verschiedenen Geweben voneinander ab. Die Variation in beiden Geweben ist sehr gering und auch nicht mit den paternalen Haplotypen, sowie den drei Phänotypen für Gewicht (siehe Tabelle 2) zu assoziieren.

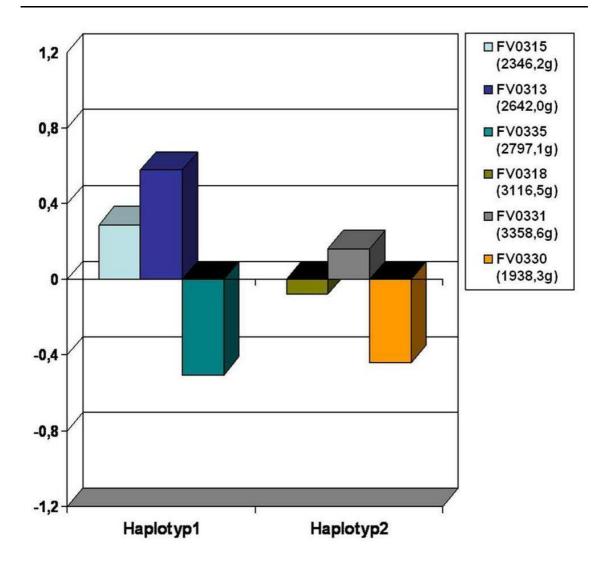


Abbildung 28: Balkendiagramm der Expressionsrate der Superoxiddismutase 2 im Lebergewebe sortiert nach paternalem Haplotyp 1 (rot) und paternalem Haplotyp 2 (blau).

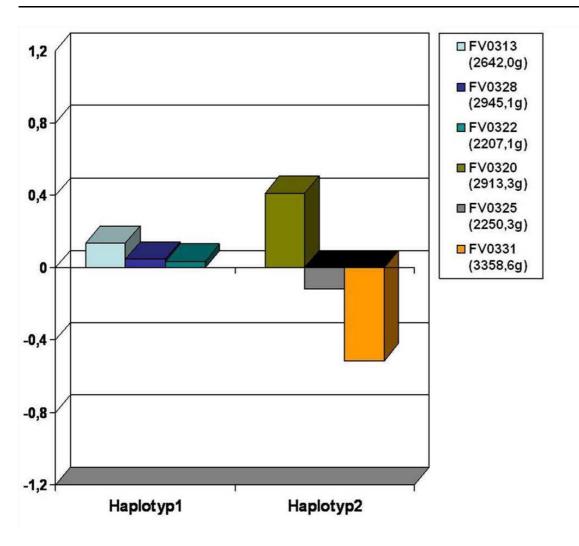


Abbildung 29: Balkendiagramm der Expressionsrate der Superoxiddismutase 2 im Herzgewebe sortiert nach paternalem Haplotyp 1 (rot) und paternalem Haplotyp 2 (blau).

4.5. Genomweite Assoziationsstudien und LDL-Analysen

Von dem ausgewählten Stier wurden 111 Söhne genomweit mit dem Illumina SNP-Chip genotypisiert. Zwei Söhne zeigten Abstammungsprobleme, somit verbleiben 109 für eine genomweite Assoziationsanalyse für das Merkmal Totgeburt. Dies diente als Vorauswahl für die rechenintensiveren und genaueren LDL-Analysen, bei denen es mit den derzeit verfügbaren Programmen unmöglich ist mit SNPs als Eingabe ganze Genome zu durchsuchen. Die genomweite Assoziation wurde mit dem Programm PLINK als Fall/Kontrolle Studie durchgeführt (siehe 3.2.2.5). Als Richtwert dienten hierbei die Zuchtwerte aus der ZAR- Datenbank (Zentrale Arbeitsgemeinschaft österreichischer Rinderzüchter) (siehe Tabelle 4). Als Kontrolle wurden alle Söhne mit einem Zuchtwert von unter 90 deklariert. Es wurden alle 29 Autosome analysiert und auf 12 Autosomen wurden χ^2 Werte über 10 gefunden (siehe Tabelle 11):

Tabelle 11: Übersicht, der chromosomalen Regionen mit SNPs, die in der PLINK-Studie einen χ^2 Wert über 10 haben.

Chromosom	Anzahl der SNPs	Region in Baasenpaaren
BTA01	2	12.265.746
		148.770.164
BTA02	2	137,634,388 - 139,108,293
BTA05	5	10.657.977 - 49.446.398
		110.984.107 -117.865.856
BTA06	5	105.402.482 - 120.000.305
BTA08	2	60.945.964 - 63.646.896
BTA09	1.	91.064.768
BTA10	4	40.426.574 - 46.040.797
BTA16	4	76.543.103
BTA17	1.	38.276.863
BTA18	1	22.340.689
BTA21	9	677.219 - 24.330.010
BTA28	4	2.661.773

Bei einem χ^2 Test sagt ein Wert über 10,82755 aus, dass das Allel, mit der niedrigeren Allelfrequenz an dieser Position mit einer Irrtumswahrscheinlichkeit von 0,001 mit dem Merkmal assoziiert ist. Dieser Test wurde in dieser Arbeit nur als Vorscreen benutzt, weil Assoziationsstudien normalerweise in einer Subpopulation von unverwandten Individuen durchgeführt werden. Die einzelnen Regionen wurden daher mit einer kombinierten Kopplungs- und Kopplungsungleichgewichtsanalyse (3.2.2.6) auf ihre Richtigkeit überprüft. Es konnten vier Regionen bestätigt werden (Abbildung 30 - Abbildung 33). Als Grenzwert wurde hierbei eine Irrtumswahrscheinlichkeit von 0,05 gewählt, was einem Likelihood-Ratio (LR) Mindestwert von 3,84 entspricht.

In Abbildung 30 A sind auf BTA01 die beiden Ausschläge an den Positionen 12.265.746 bp und 148.770.164 bp in der Fall/Kontrollstudie zu sehen. Mit der LDL-Analyse konnte der Ausschlag im proximalen Bereich nicht bestätigt werden, aber der des distalen Pols. Der höchste Peak ist über 3,84 was einer Irrtumswahrscheinlichkeit von 0,05 entspricht (Abbildung 30 B).

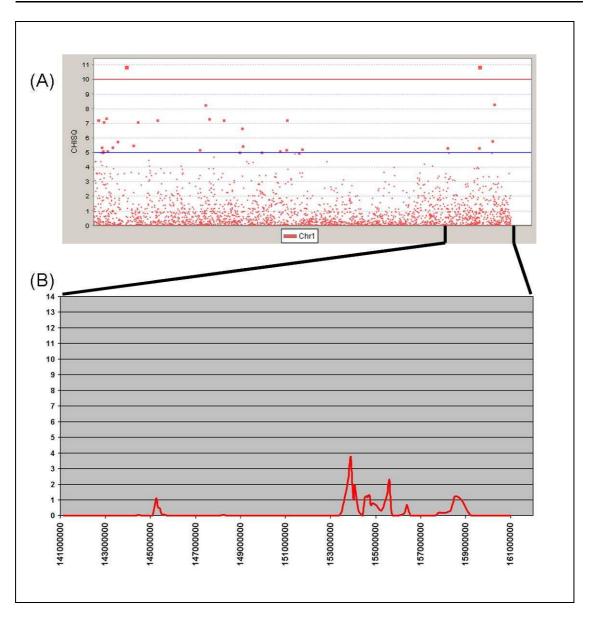


Abbildung 30: Darstellung der verschiedenen Kartierungsstudien auf BTA01; x- Achse Positionen in Basenpaaren, y-Achse χ^2 Werte oder Likelihood-Ratio. (A) Fall/Kontrollstudie mit PLINK. (B) LDL- Analysenergebnis des Ausschnitts des distalen Pols.

In Abbildung 31 A sind die beiden Ausschläge auf BTA05 in Region 10.657.977 - 49.446.398 bp und 110.984.107 - 117.865.856 bp zu sehen. Der Ausschlag im proximalen Bereich konnte nicht bestätigt werden, aber der des distalen Pols. Die LDL- Analysenergebnisse des Ausschnitts des proximalen Pols von BTA05 zeigen LR-Werte von 10,5756, was einem Irrtum von 0,001 entspricht, alle Punkte über 6,63 haben eine Irrtumswahrscheinlichkeit von 0,01 also 1% (Abbildung 31 B).

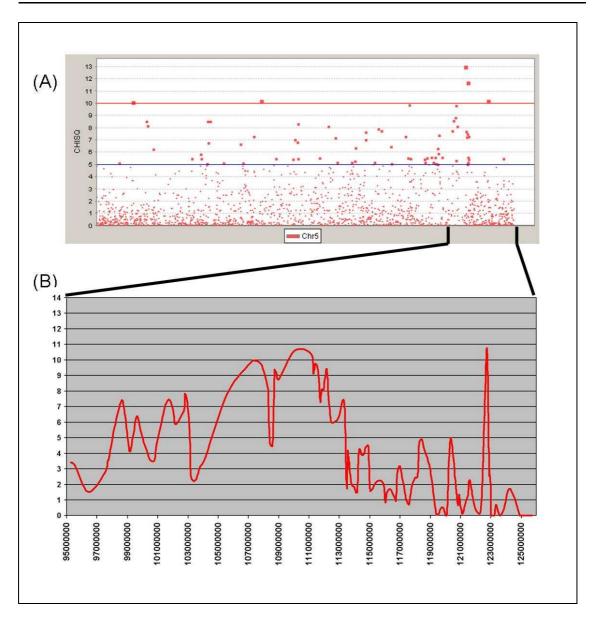


Abbildung 31: Darstellung der verschiedenen Kartierungsstudien auf BTA05; x- Achse Positionen in Basenpaaren, y-Achse χ^2 Werte oder Likelihood-Ratio. (A) Fall/Kontrollstudie mit PLINK. (B) LDL- Analysenergebnis des Ausschnitts des distalen Pols.

Bei BTA06 ist ein Ausschlag im Bereich von 105.402.482 - 120.000.305 bp zu beobachten (Abbildung 32 A). Das LDL-Analysenergebnis des Ausschnitts des proximalen Pols von BTA06 bestätigt dies mit einer Irrtumswahrscheinlichkeit von 0,01, das entspricht einem LR-Wert von 6,6348 (Abbildung 32 B).

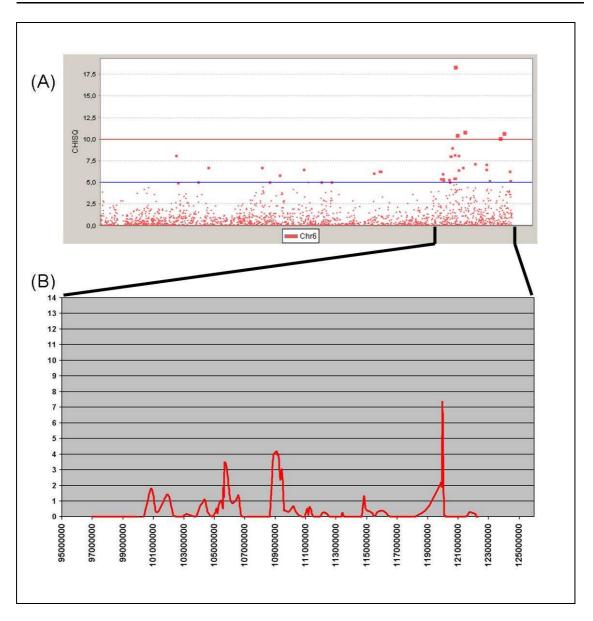


Abbildung 32: Darstellung der verschiedenen Kartierungsstudien auf BTA06; x- Achse Positionen in Basenpaaren, y-Achse χ^2 Werte oder Likelihood-Ratio. (A) Fall/Kontrollstudie mit PLINK. (B) LDL- Analysenergebnis des Ausschnitts des distalen Pols.

In Abbildung 33 A ist das Ergebnis der Fall/Kontrollstudie mit PLINK auf BTA21 mit neun SNPs im Bereich von 677.219 bp- 24.330.010 bp, die über einem χ^2 Wert von 10 liegen, dargestellt. Die Analyse von den im Vater heterozygoten SNPs in diesem Bereich zeigt einen maximalen Wert von 13,9436, was einer Irrtumswahrscheinlichkeit von 0,0002 entspricht (Abbildung 33 B).

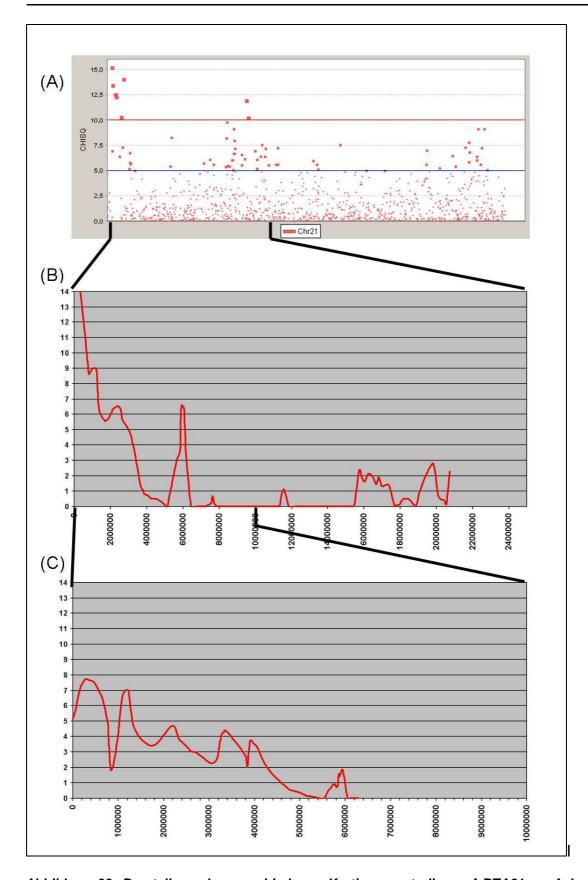


Abbildung 33: Darstellung der verschiedenen Kartierungsstudien auf BTA21; x- Achse Positionen in Basenpaaren, y-Achse χ^2 Werte oder Likelihood-Ratio. (A) Fall/Kontrollstudie mit PLINK. (B) LDL- Analysenergebnis des Ausschnitts des proximalen Pols. (C) weiterführende LDL- Analyse.

Da die Analyse unter optimierten Bedingungen stattgefunden hat, musste dieses Ergebnis abgesichert, beziehungsweise korrigiert werden. Denn bei einer Eingabe von nur heterozygoten SNPs wird die Likelihood-Ratio überschätzt. Deshalb wurde eine weitere LDL- Analyse mit allen SNPs in dem Bereich des Kurvenausschlags wiederholt. Das Signal ist zwar niedriger, was zu erwarten war, konnte aber mit einer Irrtumswahrscheinlichkeit von durchschnittlich 0,01 bestätigt werden (Abbildung 33 C).

Es wurde eine Haplotypenanalyse des Stieres durchgeführt um zu überprüfen, welcher der Haplotypen auf BTA21 mit dem Merkmal der Totgeburt paternal assoziiert ist. Hierfür wurde eine SimWalk Analyse mit 237 Tieren durchgeführt. Die Haplotypenverteilung des Stammbaums des Merkmalsträgers ist in Abbildung 34 dargestellt. Von ihm wurden 103 Söhne auf die Assoziation mit dem Merkmal Totgeburt paternal überprüft. Hierfür wurden die einzelnen Zuchtwertmittelwerte in den beiden Haplotypgruppen überprüft (Tabelle 12) und zur Absicherung ein T-Test berechnet, der einen P-Wert von 0,007 hatte und damit der Einfluss des Haplotypen auf das Merkmal Totgeburt signifikant war. Anhand der Tabelle kann man erkennen, dass der paternale Haplotyp1, derjenige ist, der auf das Merkmal negativen Einfluss nimmt. In der Abbildung 34 ist er beige eingefärbt.

Tabelle 12: Übersicht über die Verteilung der Zuchtwerte des Merkmals Totgeburt paternal im Bezug auf die verschiedenen Haplotypen.

Haplotyp	Anzahl der Individuuen	Mittelwert	Std.abw.	Std.fehler	Minimum	Maximum
1	42	95,8333	9,3988	1,4503	73	113
2	61	101,9000	6,8777	0,8806	84	117

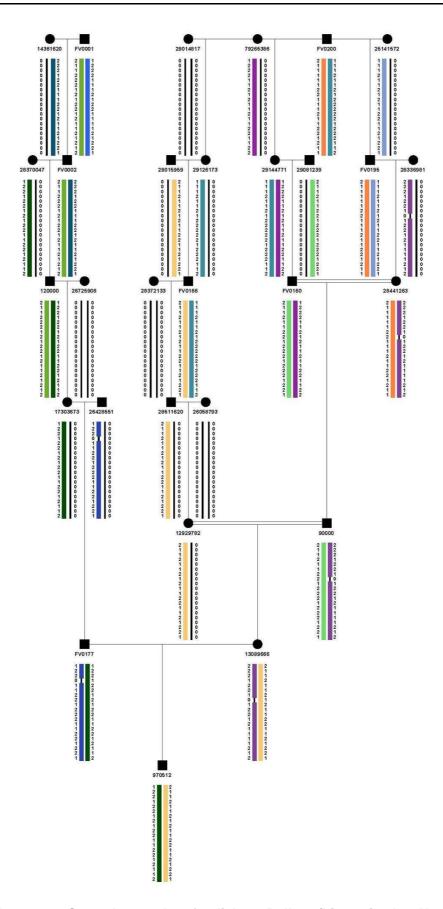


Abbildung 34: Stammbaum des fraglichen Bullen (hier mit der Nummer 970512 gekennzeichnet) mit Verteilung der Haplotypen des proximalen Pols von BTA21. Beige ist der Haplotyp, der mit dem Merkmal Totgeburt paternal assoziiert ist.

5. Diskussion

5.1. *igf2r* als mögliches Kausalgen für Totgeburten paternal in der deutschen Fleckviehpopulation

Der Antagonist von IGR2R IGF2 wird mit bestimmten Krankheiten, wie zum Beispiel dem Beckwith-Wiedemann Syndrom (Feinberg, 1993; Weksberg et al., 1993) und dem Wilms Tumor (Rainier et al., 1993) in Verbindung gebracht. Constancia et al zeigte (2002), dass IGF2 im fetalen Wachstum involviert ist und somit auch indirekt IGF2R.

Ebenso wurde durch die vorhergegangenen Assoziationsstudien (Gomeringer, 2007) ein QTL für Totgeburt beim Rind paternal auf einer Genregion kartiert, in der sich IGF2R befindet und IGF2R mit fetaler Übergröße bei Schafen in Verbindung gebracht wird. (Young et al., 2001). Aus diesen Gründen war *igf2r* ein gutes positionelles und funktionelles Kandidatengen.

Allerdings zeigten die durchgeführten Studien, dass der Insulin ähnliche Wachstumsfaktor nicht mit dem Merkmal Totgeburt paternal in der hier untersuchten Kartierungspopulation assoziiert ist. Zum einen zeigt er in den Mikroarrayexpressionsdaten keine auffallende differentielle Expression. Zum anderen ist die putative Air-RNA durch Sequenzierungen anhand von Tieren mit jeweils dem anderen paternalen Haplotyp des distalen Pols des BTA09 überprüft worden; das heißt, wenn die Air-RNA gebildet wird, dann ohne Unterschiede in der Sequenz. Dies wurde auch durch die Überprüfung des Imprinting des paternalen Allels mit Hilfe des sich in der mRNA befindenden Mikrosatelliten LMU0901 bestätigt. Daher war es nicht notwendig, weitere Analysen durchzuführen, da Übergröße nur dann entstehen würde, wenn das Imprinting des paternalen Allels fehlschlägt (siehe Abbildung 3). Das maternale Allel und somit das exprimierte Gen wurde nicht überprüft, da man in diesem Modell von einem paternal vererbten Merkmal ausgeht. Ebenso wurden keine Hinweise auf ein defektes IGF2R in den Mikroarraydaten gefunden, denn ein Defekt hätte sich auf den Expressionslevel seines Antagonisten IGF2 auswirken müssen. Beide Gene zeigten jedoch keine differentielle Expression. Dies wurde auch durch die nachfolgenden Kartierungsstudien bestätigt, in denen mit keiner

Methode ein Signal im Bereich beider Gene zu verzeichnen war.

5.2. esr1 als mögliches Kausalgen für Totgeburten in der deutschen Fleckviehpopulation

Der Östrogenrezeptor war ein gutes Kandidatengen für das Merkmal Totgeburt paternal. Er wurde bei den Mikroarrayanalysen (siehe 2.6) im Mittelpunkt des Expressionsnetzwerkes gefunden und auch die eQTL's (siehe 2.7) wiesen auf den Östrogenrezeptor als Kausalgen hin. Vor allem aber zeigten ihn vorausgegangene Studien am Menschen als Kandidatengen für Übergröße. Denn der bei Lorentzon et al. (1999) gefundene Polymorphismus im *esr1* sorgt nicht nur für einen Verlust der Knochendichte und einen daraus resultierenden Minderwuchs bei adulten Männern, sondern im Gegenteil auch für einen höheren "Body Mass Index" und einem höheren Fettanteil, wie Okura et al (2003) zeigten.

Allerdings konnte in dieser Arbeit keiner der Hinweise auf den Östrogenrezeptor als Kausalgen für das Merkmal Totgeburt paternal verifiziert werden. So konnte kein nichtsynonymer SNP in den Exons des Genes festgestellt werden und damit kann ein Defekt auf Proteinebene in den hier untersuchten Kartierungspopulationen ausgeschlossen werden. Um das differentielle Expressionsmuster des Rezeptors in den Mikroarraydaten zu erklären, wurde die Promotorregion B des Östrogenrezeptors sequenziert. In ihr wurde für beide paternalen Haplotypen in diesem Bereich kein Unterschied festgestellt. Die zu analysierenden Tiere wurden nicht nur nach Haplotypen, sondern auch nach Mikroarrayexpressionsdaten ausgewählt, das heißt ein Fetus mit Haplotyp 1 und niedriger Expression, der andere mit Haplotyp 2 und maximaler Expression. Da durch die Sequenzierungen kein Unterschied festgestellt werden konnte, wurde eine Real Time PCR durchgeführt, um die Expression des Affymetrixchips zu bestätigen. Die Daten zeigten eine Korrelation von 0,57. Dies könnte aber daran liegen, dass der Affymetrixchip in der 3'- Region der mRNA bindet und für die genauere Real Time PCR Exon überspannende 3'ausgesucht wurden. Die Region mRNA Primer der esr1 überdurchschnittlich lang. Beim Menschen wurde gezeigt, dass diese Region eine schnelle Translation der mRNA initialisiert. Diese sorgt für eine gesamte

Destabilisierung der mRNA, die somit schneller abgebaut (Kenealy et al., 2000) wird. Da der Abbau der mRNA schneller erfolgt und von den beiden Enden ausgeht (Carballo et al., 1998; Stoecklin et al., 2002), kann es somit zu einer Verfälschung des Ergebnisses der Mikroarraydaten kommen, weil sich das Mikroarrayprobeset genau in der schneller abgebauten Region der mRNA befindet. Eine Korrelation der Expressionsdaten der Real Time Analyse und dem Merkmal Totgeburt paternal konnte nicht hergestellt werden, ebenso wenig wie eine Korrelation der verschiedenen paternalen Haplotypen in dieser Region. Das deutet daraufhin, dass die differentielle Expression durch ein Gen hervorgerufen wird, das sich in der Signalkaskade über dem Östrogenrezeptor befindet. Der eigentliche Defekt liegt wahrscheinlich in diesem übergeordnetem Gen. Das wirkt sich dann auf den Östrogenrezeptor aus.

Allerdings konnte eine Korrelation (r = 0.965) zwischen dem bei der Real Time PCR erhaltenen Expressionsmuster des Östrogenrezeptors und der Körpergröße in männlichen Feten hergestellt werden. Die Korrelation konnte nur in den männlichen Feten beobachtet werden, aber nicht in den weiblichen Feten. Hier wurde keine Korrelation zwischen den Expressionsdaten des Östrogenrezeptors alpha und der Körpergröße (r = 0.003) beobachtet.

Beim Menschen ist dieses geschlechterspezifische Muster dadurch erklärbar, dass weibliche Feten eine größere Toleranz durch einen Östrogenspiegel haben, denn humane fetale Ovarien sind ab der 8. Fetalwoche fähig Östrogene zu synthetisieren (George and Wilson, 1978). Die Expression des Östrogenrezeptors alpha wird unter anderem durch Östrogen gesteuert. Da in weiblichen Feten aber ständig ein hoher Östrogenspiegel vorhanden ist, müsste hier ein anderer Regulationsmechanismus eine dominantere Rolle spielen. Im Gegensatz dazu zeigte es sich, dass ein hoher Ostrogenspiegel in männlichen Feten zu einer anormalen Entwicklung der männlichen Genitalien führt (Henderson et al., 1976). Allerdings konnte bisher nicht nachgewiesen werden, ob Ostrogene eine Rolle in der geschlechtsspezifischen Entwicklung besitzen.

Das Merkmal Totgeburt paternal besitzt auch eine Geschlechtsspezifität. Die Verteilung ist zwei Drittel männliche Kälber zu einem Drittel weibliche Kälber (LKV Bayern e.V., 2007).

Das ist ein Indiz dafür, dass der Östrogenrezeptor zwar im fetalen Wachstum

involviert, aber nicht das Merkmal verursachende Gen ist.

Auf Grund der vorliegenden experimentellen Ergebnisse in diesem Modelllaufbau kann der Östrogenrezeptor alpha zwar nicht die unmittelbare Ursache für das Merkmal Totgeburt paternal sein. Aber es ist durchaus ein wichtiges, in der Signalkaskade des eigentlichen Kausalgens involviertes Gen. Diesem Hinweis wird in nachfolgenden Studien nachgegangen werden.

5.3. sod2 als mögliches Kausalgen für Totgeburten in der deutschen Fleckviehpopulation

Ein Defekt in der Superoxiddismutase 2 kann auf Grund ihrer metabolischen Funktion als Radikalfänger zu DNA Schäden führen. Ein defektes Protein würde zu Missbildungen und Fehlbildungen eines Fetus führen und somit zu einem Abort, was zu dem Merkmal Totgeburt zählt (Zhang et al., 2009). Das steht allerdings nicht mit der Ausgangsannahme, dass sich die Größe auf dieses Merkmal auswirkt, im Einklang. Das Gen ist in den Mikroarraydaten sehr differentiell exprimiert und wurde auf Grund dieser Tatsache und den eQTL-Analysen als Kandidatengen ausgewählt (siehe 2.7). Allerdings wurde in beiden Geweben, die eine hohe differentielle Expression zeigten, in der Real Time Analyse keine differentielle Expression gezeigt. Die Werte sind log2 Das heißt ein Wert 1 normalisiert. von bedeutet eine 2-fache Expressionsänderung vom Mittelwert aus. Es wurde eine Abweichung vom Mittelwert von 0,6 beobachtet, was einer 1,2 fachen Erhöhung der Expression entspricht. Vom Minimum aus gesehen ist das noch nicht einmal eine Erhöhung der Expression um das doppelte und somit nicht ausschlaggebend. Die Grenze in verschiedenen Studien für differentielle Expression liegt zwischen einer 1,8- und einer 3,0-fachen Änderung (Mutch et al., 2002).

Allerdings muss sich ein Defekt auf Proteinebene nicht unbedingt im Expressionsmuster widerspiegeln, es sei denn, das Protein besitzt eine Feedbackregelung. Das heißt die Konzentration des zu bildenden Proteins regelt durch Hemmung seine eigene Expression. Bei der Superoxiddismutase ist über eine solche Art der Expressionskontrolle nichts bekannt. Deshalb gehen wir von der Annahme aus, dass es keine Feedbackhemmung gibt bzw. sich die

Mutation an einer Stelle befindet, die sich im Falle einer Feedbackhemmung nicht negativ darauf auswirkt. Ob aber die in der Sequenz entdeckte Mutation ein defektes Protein zur Folge hat, konnte nicht geklärt werden. Im Menschen wurde ähnlicher Basenpaaraustausch entdeckt Aminosäureaustausch von Alanin zu Valin an der Position 16 der Sequenz zur Folge hat (Rosenblum et al., 1996). Im Gegensatz dazu ist Polymorphismus in Bos taurus an Position 14, während an der Position 16 immer Alanin ist (siehe Abbildung 26). Dieser Polymorphismus beim Menschen befindet sich in der Signalsequenz des Proteins, durch Sequenzhomologie wird davon ausgegangen, dass dieser Bereich beim Rind auch als Signalsequenz dient. Das wurde mit dem Programm SignalP (Bendtsen et al., 2004) bestätigt. Signalsequenzen dienen dazu, Proteine zu ihrem Bestimmungsort in der Zelle zu bringen (Blobel, 1980a, b; Blobel and Dobberstein, 1975a, b). Durch die Spaltung des Signalpeptides wird die SOD2 in das Mitochondrium, ihrem Wirkungsort, gebracht. Hiroi et al (1999) zeigten, dass beim Menschen die Spaltung des Signalpeptides des Valin-Typs signifikant geringer war als die vom Alanin-Typ. Deswegen war der Spiegel des Proteins mit Valin an Position außerhalb des Mitochondrium größer als innerhalb. unvollkommene Spaltung kann das Protein nicht an seinen Bestimmungsort in dem Mitochondrium gebracht werden. Der homozygote VV-Genotyp ist mit einer nonfamiliären idiopathischen Kardiomyophatie assoziiert.

Da allerdings der SNP beim Rind an Position 14 und nicht 16 ist, kann somit nur angenommen werden, dass der SNP die Prozessierung des Proteins beeinflusst. Diese Hypothese wurde jedoch nicht bestätigt. Der Polymorphismus konnte auch durch die weiterführenden Kartierungsstudien nicht mit dem Merkmal Totgeburt paternal assoziiert werden. 12% der 234 Tiere der deutschen Fleckviehpopulation wurden homozygot für die Aminosäure Valin genotypisiert. Dabei sind einige für die Fleckviehzucht wichtige Bullen, die lang gelebt haben und Tausende von Nachkommen gezeugt haben.

Es werden weitere Studien nötig sein, um abzuklären, inwiefern dieser SNP mit einem Krankheitsbild oder einer höheren Anfälligkeit für oxidativem Schäden, die zu Missbildungen und Krebs führen, in Zusammenhang gebracht werden kann.

Die Unterschiede in den Mikroarraydaten und den Real Time Ergebnissen

werden dadurch erklärt, dass das Probeset des Affymetrixchips, wie sich später herausstellte, falsch deklariert war (Abbildung 35). Damit kann die differentielle Expression basierend an Mikroarraydaten nicht dem *sod2* zugeordnet werden. Höchstwahrscheinlich handelt es sich hier um eine benachbarte mRNA. Allerdings haben weitere blastn Suchen gegen die EST-, die mRNA und die genomische Datenbank des NCBIs von *Bos taurus* keinerlei Hinweise darauf gebrach, welches Gen hier lokalisiert ist.

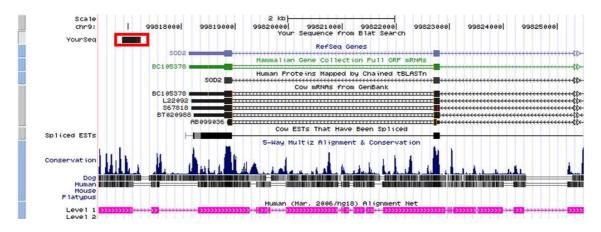


Abbildung 35: Darstellung des Blastergebnisses des von Affymetrixprobesets für SOD2; Das Gen liegt auf dem minus Strang, das Probeset (rot umrahmt) befindet sich in der 3' Region abwärts des Genes, aber nicht mehr in der mRNA.

5.4. Kartierungsstudien

Obwohl der QTL für das Merkmal Totgeburt zuverlässig mit Mikrosatelliten auf BTA09 kartiert wurde (Gomeringer, 2007), konnte er sich durch die Kartierungsstudien mit SNPs in den hier ausgewählten Familien nicht bestätigen. Es wurden vier neue QTL gefunden auf BTA01, BTA05, BTA06 und BTA21.

Auf BTA01, im Bereich von 153 Millionen bis 155 Millionen Basenpaaren, liegen die Gene KCNJ15 (ein Kaliumtransport Kanal), ERG (ein Transkriptionsregulator), EST2 (ein Transkriptionsregulator) und PIK3R4 (eine oder die Phosphoinositid-3-kinase, regulatorische Untereinheit 4). Beim Menschen ist eine akute myeloische Leukämie (AML) beschrieben, die durch eine chromosomale Abberation in *erg* verursacht wird (Ichikawa et al., 1994). Eine andere chromosomale Aberration an dieser Stelle wird mit dem Ewing-

Sarkom in Verbindung gebracht. Hierbei handelt es sich um die zweithäufigste Art von Knochenkrebs (Dunn et al., 1994). Das ETS2 ist an der Entwicklung des gesamten Knochenapparates beteiligt (The_UniProt_Consortium, 2009) und somit ein Kandidatengen für die Körpergröße und dem Gen, welches mit der Größe in Zusammenhang mit dem Merkmal Totgeburt paternal steht. Es wurde von Stone et al (1999) schon ein QTL für Geburtsgewicht zwischen 112 und 148 cM kartiert. Von Casas et al (2003) wurde der Bereich auf 127 – 148 cM eingegrenzt. Es ist der Bereich zwischen den Mikrosatelliten UWCA46 und BMS4041. Die genomische Position des QTL ist von 139 Millionen bis 156 Millionen Basenpaaren. ets2 liegt bei 154 Millionen Basenpaaren, somit genau in diesem Bereich. Diese Kartierungen bestätigen die Ergebnisse dieser Arbeit.

Auf BTA05 liegt im Bereich von 104.000.000 bis 113.000.000 Basenpaaren ein großer Gencluster, der für die Immunabwehr zuständig ist. Bei einem Defekt sind die meisten dieser Gene beim Menschen mit einer akuten myeloischen Leukämie assoziiert (Barjesteh van Waalwijk van Doorn-Khosrovani et al., 2005; Berger et al., 1997). Im Bereich des höchsten Ausschlags von 110.000.000-112.000.000 Basenpaaren befinden sich die Gene GAPDH (Glyzerinaldehyd-3-phosphatdehydrogenase), CD27 (CD27 Antigen), VAMP1 TNFRSF1A (Tumornekrosefaktor), (Vesikle-assoziiertes Membranprotein), MRPL51 (mitochondriales ribosomales Protein L51), TAPBPL (Tapasin-ähnliches Protein), LTBR (Tumornekrosefaktorrezeptor) und SCN1A (Natriumkanalprotein). Hier sind wieder fast alle Gene mit der Immunabwehr assoziiert, keines der Gene mit der Körpergröße. Es wäre möglich, dass in dieses Krankheitsbild zwei verschiedene Aspekte hineinspielen und es deswegen so schwer zu detektieren ist. Auf der einen Seite die Körpergröße, die eine Totgeburt zur Folge hat, auf der anderen Seite aber eine Immuninsuffizienz, die auch eine Totgeburt zur Folge hat. Leider ist beim Erfassungsbogen für das Merkmal Totgeburt nicht genau herausgefiltert, wann das Kalb gestorben ist und wie die körperliche Verfassung war. Auf jeden Fall ist dieser Bereich für weitere Studien sehr interessant, da bei den Mikroarrayanalysen vor allem Immunsystemgene im Herzen differentiell exprimiert waren (Krebs et al, 2009). Bei einer myeloischen Leukämie, bei der die Krebszellen die Bildung der Erythrozyten verhindern (Lowenberg et al.,

1999), wäre es durchaus zu erwarten das die Immunsystemgene im Herzen überexprimiert sind. Im Bereich zwischen 78 Millionen und 104 Millionen Basenpaaren wurde von Schrooten et al (2000) ein QTL für Geburtsgewicht und bei 103 Millionen bis 128 Millionen Basenpaaren ein QTL für die Brustweite in einer deutschen Holstein Population kartiert. In dieser Region wurden auch QTL's für Rumpflänge, Rumpfweite, Hüftweite und Brusttiefe kartiert (Boichard et al., 2003). Obwohl die hier lokalisierten Gene nicht direkt in die Körpergröße mit hineinspielen, lässt sich daraus schließen, dass sie indirekt die Ausbildung des Knochengerüstes beeinflussen.

Auf BTA06 im Bereich von 119 Millionen bis 121 Millionen Basenpaaren liegen acht Gene: Negativer Elongationsfaktor A (NELF-A), HAUS Augmin-ähnlicher Komplex, Untereinheit 3 (HAUS3), MAX Dimerisierungsprotein 4 (MXD4); Ringfingerprotein 4 (RNF4), TNFAIP3 interagierendes Protein 2 (TNIP2); major 10 facilitator superfamily domain containing (MFSD10); NOP14 Nucleolarprotein-Homolog (Saccharomyces cerevisiae) (NOP14) und LDL-Proteinrezeptor-ähnliches Protein assoziiertes Protein 1 (LRPAP1). Als wahrscheinlichstes Kandidatengen für Totgeburt paternal würde sich nelf-a anbieten. Es ist in die Entwicklung des gesamten Organismus involviert (Wright et al., 1999).

In US Holsteins wurde auf BTA06 im Bereich von 99 Millionen bis 110 Millionen Basenpaaren ein QTL für Leichtkalbigkeit (Schnabel et al., 2005) und in deutschen Holsteins wurde bei 44 Millionen ein QTL für Totgeburt paternal (Kuhn et al., 2003) kartiert. Die QTL'S konnten in dieser Studie in diesem Versuchsmodell nicht bestätigt werden.

Auf BTA21 im Bereich von 1 bis 6 Millionen Basenpaaren liegen sechs Gene: Ubiqutinprotein Ligase E3A (UBE3A), γ Aminobuttersäure A Rezeptor, β 3 (GABRB3), γ Aminobuttersäure A Rezeptor, α 5 (GABRA5), Selenoprotein S (SELS), LAG1 homologe Zeramidsynthase 3 (LASS3) und "myocyte enhancer factor 2A" (MEF2A).

Der homologe Bereich des humanen Chromosoms 15 ist beim Menschen mit dem Angelmann-Syndrom oder dem Prader-Willi-Syndrom assoziiert (Kirkilionis et al., 1991; Kishino et al., 1997). Die Gene, die sich in diesem chromosomalen Abschnitt befinden, sind teilweise maternal imprintet, teilweise paternal imprintet (Horsthemke and Wagstaff, 2008). Beim Angelman-Syndrom (Angelman, 1965)

liegt eine Mikrodeletion auf dem maternalen Allel des Chromosom 15 vor (Kishino et al., 1997). Diese Deletion löst ein unvollständiges Imprinting des Genclusters aus, was dazu führt, dass die sonst nur paternal exprimierten Gene auch auf dem maternalen Allel exprimiert werden und das maternal exprimierte Gen auf dem maternalen Allel deaktiviert ist. Das Prader-Willi-Syndrom (Prader, 1956) wird durch eine Mikrodeletion des paternalen Allels verursacht. Was wiederum dazu führt, dass das Imprinting oder die Aktivierung einzelner Gene des paternalen Allels fehlschlägt und zu einer biallelischen Expression oder zu keiner Expression der Gene führt (Horsthemke and Wagstaff, 2008).

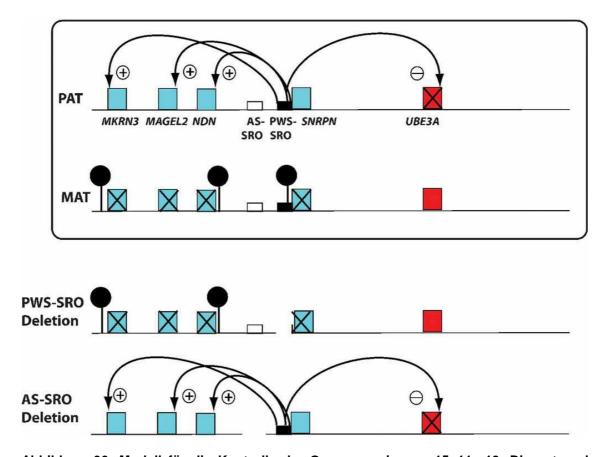


Abbildung 36: Modell für die Kontrolle der Genexpression an 15q11-q13. Die paternal exprimierten Gene sind blau gekennzeichnet, die maternal exprimierten Gene sind rot gekennzeichnet. Die paternale PWS-SRO Region ist nicht methyliert und initiiert die Stilllegung des *ube3a* und die Aktivierung von *mkrn3*, *magel2*, *ndn* und *snrpn*. Die maternale PWS-SRO Region ist methyliert und initiiert somit eine Stilllegung von *mkrn3*, *magel2*, *ndn* und *snrpn*. Bei Prader-Willi-Syndrom verursacht eine Deletion in der PWS-SRO die fehlende Aktivierung der Gene *mkrn3*, *magel2*, *ndn* und *snrpn* und ein fehlendes Imprinting von *ube3a*. Beim Angelman-Syndrom verursacht eine Deletion im AS-SRO die fehlende Methylierung der PWS-SRO, was zu einer Aktivierung der normalerweise nur paternal exprimierten Gene und eines Imprintings von *ube3a* führt (Horsthemke and Wagstaff, 2008).

Da der in dieser Arbeit analysierte Erbgang aber von einem paternal vererbten Defekt ausgeht (Totgeburt paternal), wurde das Angelmann-Syndrom ausgeschlossen.

Insofern kommt nur das Prader-Willi-Syndrom als Ursache in Frage, das von einer Mikrodeletion dieses Bereichs auf dem paternalen Chromosom ausgeht. Der Fetus besitzt eine schlaffe Muskulatur und es sind späte und sehr verminderte Fetalbewegungen zu beobachten (Schinzel, 1986), was zu einer Schwergeburt führen könnte. Allerdings ist dieses Syndrom nicht mit einem übermäßigen Wuchs assoziiert, sondern mit einem Kleinwuchs (Prader, 1956). Da das Prader-Willi-Syndrom eine polygene Erkrankung ist, kann es sein, dass hier der Faktor, der zum Kleinwuchs führt, beim Rind nicht mutiert ist. Jedoch müssen nicht zwangsläufig alle Totgeburten des Founder-Bullen auf große Kälber zurückzuführen sein. Des Weiteren muss man bedenken, dass der Stoffwechsel des Menschen nicht eins zu eins auf das Rind übertragen werden kann und sich eine etwaige Deletion anders auswirken kann.

Der proximale Pol von BTA21 ist beim Rind bislang nicht auf etwaige Deletionen überprüft worden. Allerdings wurde in US Holstein Rindern ein QTL für Leichtkalbigkeit (Schrooten et al., 2000) und ein QTL für Zwillingsgeburten (Cobanoglu et al., 2005) dort kartiert. Zwillinge sind beim Gebären oft problematisch.

Letztendlich ist diese Region von sehr hohem Interesse und es müssen weitere Untersuchen durchgeführt werden. Es muss die Frage geklärt werden, ob überhaupt eine Mutation vorliegt, wenn ja, welche Art von Mutation, wie wirkt sie sich auf den Stoffwechsel des Rindes aus, kann man diese Mutation als kausale Ursache für eine höhere Totgeburtenrate des jeweiligen Trägers bezeichnen. Die Ursachen, die eine Erhöhung der Totgeburtenrate hervorrufen, sind sehr komplex und es wird auf jeden Fall noch weitere Forschungsarbeit erfordern, bis man sie, zum Schutz der Tiere und der Züchter, identifiziert hat und als markergestützen oder direkten Gentest (wie BLAD siehe 2.1) verwenden kann.

5.5. Ausblick

In zukünftigen Arbeiten werden die in dieser Doktorarbeit gefundenen QTL's und ihre dazugehörende Kandidatengene genauerer experimentell untersucht werden. Es muss eine größere Zahl der Tiere mit SNP-Chip familienübergreifend analysiert werden. Chromosomale Regionen, die bestätigt oder neuetabliert werden, könnten durch vergleichbare Studien an Hand einer anderen Rinderrasse wie zum Beispiel Red Holstein oder Braunvieh zu einer Prioritätliste der interessantesten Chromosomen führen. Red Holstein besitzt eine höhere Totgeburtenrate als das Deutsche Fleckvieh, was zu der ursprünglichen Annahme geführt hat, dass zusätzlich einige Totgeburt hervorrufende Gene durch Red Holstein in die Deutsche Fleckvieh Population eingebracht wurden. Red Holstein wurde zur Verbesserung der Milchleistung in die Zweinutzungsrasse eingekreuzt. Bisher konnte jedoch keine Assoziation des Merkmals Totgeburt paternal mit einem in die Population eingekreuzten Red Holstein Haplotyp in Verbindung gebracht werden. Daraus kann man schließen, dass eher durch eine immer strengere Selektion auf Milchleistung in der Deutsche Fleckviehpopulation, ähnliche wie in der Holsteinzucht beobachtet, zu einem Anstieg der Totgeburtenrate führt und ein kleinerer Anteil als eine Variante durch Kreuzung selbst eingeführt wurde. Insofern wäre ein Vergleich der QTL's in beiden Rassen interessant, da man sich so ein Bild machen könnte, ob es orthologe Regionen gibt. Das würde zu dem Schluss führen, dass dieselben Gene dafür verantwortlich sind.

Zusammenfassung 97

6. Zusammenfassung

Aus züchterischen, ökonomischen und tierschützerischen Gründen ist es von hoher Wichtigkeit dem Anstieg der Tot- und Schwergeburtenrate in der deutschen Fleckviehpopulation entgegen zu wirken.

Bei Gomeringer (2007) wurde ein QTL für dieses Merkmal auf dem BTA09 gefunden. Aus dieser Region wurde ein Kandidatengen für dieses Merkmal ausgewählt *igf2r*. Es wurde auf Grund seines Zusammenwirkens mit IGF2, einem Wachstumsfaktor (Cornish et al., 2007), als mögliches Kausalgen betrachtet. In den Kartierungstudien von Gomeringer (2007) wurde ein Bulle als Merkmalsträger ausgewählt. Mit dem Sperma des Bullen wurden 36 Färsen besamt. Sie wurden alle unter den gleichen Bedingungen gehalten, um etwaige Umwelteinflüsse auszuschließen. Die 150 Tage alten Feten der Färsen wurden entnommen und durch Mikroarrayanalysen vom LAFUGA untersucht. Mit Hilfe dieser Daten konnte ein weiteres Kandidatengen für das Merkmal Totgeburt bestimmt werden: *esr1*. Das dritte Kandidatengen *sod2* wurde durch die Expressionsanalysen von fetalem Herzgewebe und nachfolgenden eQTL-Anaylsen bestimmt (Medugorac et al., 2008).

igf2r wurde auf Grund seiner biologischen Regulationsmechanismen auf eine stattfindende Dosiskompensation des Genes durch Imprinting des paternalen Allels untersucht. Die Promotorregion der dafür verantwortlichen antisense RNA (Air) wurde ansequenziert, um etwaige Sequenzabweichungen zu detektieren. Zum Abschluss wurde mit Hilfe des Mikrosatelliten LMU0901 die Inaktivierung des paternalen Allels mit Hilfe eines Vergleichs von genomischer DNA und cDNA überprüft.

Die Kandidatengene *esr1* und *sod2* wurden auf Variationen in ihrer Sequenz oder Expression untersucht. Hierfür wurden bei *esr1* alle Exons untersucht, bei *sod2* die mRNA sequenziert. Beide Gene wurden per Real Time Analyse auf etwaige Abweichungen in ihrer Expression untersucht. Für Lebergewebe wurden beide Gene überprüft, bei Herzgewebe wurde *sod2* analysiert.

igf2r konnte auf Grund der vorliegenden Ergebnisse als Kandidatengen ausgeschlossen werden. Es wurde keinerlei Abweichung in der Sequenz festgestellt und die Inaktivierung des paternalen Alles fand ebenfalls statt.

Zusammenfassung 98

Bei *esr1* konnten drei Mutationen in den Exons I, IV und VIII festgestellt werden. Keine davon verursacht allerdings einen Aminosäureaustausch.

Bei den Real Time-Analysen konnte eine geringfügige Abweichung der Expression festgestellt werden. Dies lässt darauf schließen, dass dieses Gen nicht direkt das Kausalgen für das Merkmal Totgeburt paternal ist, es sich aber in der Signalkaskade des Kausalgenes befindet. In weiteren Studien wird nach einem Kandidatengen, das den Östrogenrezeptor alpha beeinflusst, gesucht werden müssen.

In der Sequenz des *sod2* konnten ebenfalls drei Mutationen festgestellt werden, von denen eine einen Aminosäureaustausch verursacht. Allerdings konnte diese Mutation nicht mit dem Merkmal Totgeburt paternal assoziiert werden. Ob dieser Austausch für das Rind eine Rolle spielt, muss bei weiteren Analysen überprüft werden.

Bei den Analysen der Real Time konnte in beiden Geweben keine differentielle Expression festgestellt werden.

Bei den nachfolgenden genomweiten Assoziations- und Kartierungsstudien wurden vier QTL's auf BTA01, BTA05, BTA06 und BTA21 gefunden. Diese Regionen werden in weiteren Studien untersucht werden.

Summary 99

7. Summary

It is very important to work against the increase of stillbirth and calving difficulties in the German Simmental population from breeding, economics and animal protections point of view.

A QTL for this trait was found on BTA09 by Gomeringer (2007). A candidate gene for this trait was chosen from this region: *igf2r*. It was considered as a possible candidate gene because of its concurrence with the growth factor IGF2 (Cornish et al., 2007). One bull, which carried the trait, was chosen in the studies of Gomeringer (2007). 36 heifers were inseminated. They were kept under same conditions to exclude environmental influences. When they were 150 days old, the fetuses were taken out. Their RNA was analyzed with microarrays at the LAFUGA. From this date another candidate gene was derived: *esr1*. The third candidate gene *sod2* was chosen from results of the eQTL-Analysis (Medugorac et al., 2008).

A candidate gene *igf2r* was examined of its doses compensation through paternal imprinting because of its biological regulation mechanism. The Air region, its antisense RNA, promoter was sequenced to detect possible changes of the sequence. The inactivation of the paternal Allel was proven with the microsatellite LMU0901 in comparison between genomic DNA and cDNA.

The candidate genes *esr1* and *sod2* were tested for variations in their sequences and in their expression. All Exons of *esr1* were analyzed and the mRNA of *sod2* was sequenced. It was searched in both genes for differences in expression rate through Real Time PCR. Liver RNA was analysed for the expression rates of both genes, while the heart RNA was analyzed for *sod2* only.

The candidate gene *igf2r* was excluded from further analyses because of the acquired results. There were no changes in the Air promoter sequences and the imprinting of the paternal Allel was complete.

Three mutations in the *esr1* Exons I, IV and VIII were detected, but none of them leads to an amino acid change.

A little change in the expression rate of *esr1* could be observed by Real Time PCR analyses which suggest its involvement in the signal cascade of the causal

Summary 100

gene for the stillbirth trait. But it is not directly involved. In further studies, it must be looked for a candidate gene which also influences the estrogen receptor alpha.

Three mutations could be detected in the mRNA sequence of *sod2*. One of them causes an amino acid change. However, it could not be associated with the trait of stillbirth. Whether this SNP has an influence on *Bos taurus*, must be examined by further analyses.

In both RNA samples, heart and liver, no change in expression rate of *sod2* through Real Time analyses was detected.

Four QTLs were found in the genome wide association and mapping studies. They are localised on BTA01, BTA05, BTA06 and BTA21. Those regions will be under examination in further analyses.

8. Abbildungsverzeichnis

Abbildung 1: Anordnung des <i>Igrzr</i> Clusters
Abbildung 2: Abhängigkeit von IGF2 und seinem Antagonisten IGF2R16
Abbildung 3: Übersicht über die möglichen Defekte der beiden Gene und ihre Korrelation
Abbildung 4: Übersicht der Promotorregion des Östrogenrezeptors in verschiedenen
Spezies
Abbildung 5: Netzwerk der koexprimierten Gene mit ESR1 im Mittelpunkt22
Abbildung 6: Expressionsdaten von ESR1 regulierten Genen in der Leber23
Abbildung 7: Expressionsdaten von ESR1 regulierten Genen im Herzen24
Abbildung 8: Differentiell exprimierte Gene in der Leber auf BTA0926
Abbildung 9: Differentiell exprimierte Gene im Herzen auf BTA0926
Abbildung 10: Bandendarstellung der beiden DNA-Leitern
Abbildung 11: Amplifizierungskurve der DNA während einer PCR45
Abbildung 12: Anordnung der Exons und Intron 2 des igf2r mit den CpG-Islands 59
Abbildung 13: Übersicht des sequenzierten Stückes im Intron2 60
Abbildung 14: Überprüfung der Inaktivierung des paternalen Allels 14361
Abbildung 15: Überprüfung der Inaktivierung des paternalen Allels 14162
Abbildung 16: Suchergebnis (Programm BLAST) nach der Exon I und II des
Östrogenrezeptors65
Abbildung 17: Suchergebnis der Exon VII und VIII des Östrogenrezeptors
Abbildung 18: Ergebnis des BLAST gegen die WGS- Datenbank des NCBI66
Abbildung 19: Physikalische Klonkarte der CHORI (CH240) - Clone library67
Abbildung 20: BAC- Klone Karte.
Abbildung 21: Basenaustausch (SNP) im Exon1 des esr1 69
Abbildung 22: Basenaustausch (SNP) im Exon4 des esr1 69
Abbildung 23: Basenaustausch (SNP) im Exon8 des esr1 69
Abbildung 24: Real Time PCR Balkendiagramm für die Expression des
Östrogenrezeptors in 5 Feten71
Abbildung 25: Alignment der sod2 mRNAs mit der Referenzsequenz NM_201527.2 73
Abbildung 26: Alignment der zu Proteinsequenzen translatierten mRNAs von FV0328 und
FV0320 mit der Referenzproteinsequenz NP_963285.274
Abbildung 27: Exemplarische Darstellung eines Restriktionsverdaus75
Abbildung 28: Balkendiagramm der Expressionsrate der Superoxiddismutase 2 im
Lebergewebe76
Abbildung 29: Balkendiagramm der Expressionsrate der Superoxiddismutase 2 im
Herzgewebe77
Abbildung 30: Darstellung der verschiedenen Kartierungsstudien auf BTA0180

Abbildung 31: Darstellung der verschiedenen Kartierungsstudien auf BTA05	81
Abbildung 32: Darstellung der verschiedenen Kartierungsstudien auf BTA06	82
Abbildung 33: Darstellung der verschiedenen Kartierungsstudien auf BTA21	83
Abbildung 34: Stammbaum des fraglichen Bullen	85
Abbildung 35: Darstellung des Blastergebnisses des von Affymetrixprobesets fü	r SOD2
	91
Abbildung 36: Modell für die Kontrolle der Genexpression an 15q11-q13	94

Tabellenverzeichnis 103

9. Tabellenverzeichnis

Tabelle 1: Übersicht der gängigsten genetischen Marker	6
Tabelle 2: Liste, der untersuchten 150 Tage alten Feten	29
Tabelle 3: Übersicht der verwendeten Geräte	33
Tabelle 4: Übersicht der verwendeten Software und Datenbanken	34
Tabelle 5: Übersicht, der für die Überprüfung der Reihenfolge der BAC-Klone	
verwendeten Primer	36
Tabelle 6: Übersicht der verwendeten Mikrosatelliten auf BTA09	42
Tabelle 7: Übersicht der für die Real Time verwendeten Primer	46
Tabelle 8: Übersicht der Primer für die Sequenzierung des igf2r CpG-Island im Intror	12 . 49
Tabelle 9: Übersicht des Primerpaares für die Genotypisierungs-PCR von sod2	50
Tabelle 10: Mikrosatellitenanordnung auf BTA09	64
Tabelle 11: Übersicht, der chromosomalen Regionen mit SNPs, die in der PLINK-Stu	die
einen χ² Wert über 10 haben	78
Tabelle 12: Übersicht über die Verteilung der Zuchtwerte des Merkmals Totgeburt	
paternal im Bezug auf die verschiedenen Haplotypen	84

10. Abkürzungsverzeichnis

Air Antisense zu igf2r

BAC bacterial artificial chromosome

(künstliches bakterielles Chromosom)

BLAD bovine Leukozyten-Adhäsions-Defizienz

BLAST basic local alignment search tool

BTA Bos taurus Autosom
DEPC Diethyldicarbonat

DMR differentially methylated region

(verschieden methylierte Region)

DNA Desoxyribonukleinsäure

DTT Dithiothreitol

EDTA Ethylendiamintetraessigsäure eQTL expression quantitative trait loci

ESR1 Östrogenrezeptor alpha
EST expressed sequence tags

FAM 6-Carboxyfluorescein
GAS gengestützte Selektion
GDD grand-daughter-design

GRM genotype-relationship-matrix

HCI Salzsäure

HEX 5-Hexachloro-Fluorescein
IGF2 Insulin like growth factor 2

IGF2R Insulin like growth factor 2 receptor

ITS internal transcribed spacer

KCI Kaliumchlorid

KH₂PO₄ Kaliumdihydrogenphosphat

LAFUGA Laboratory for functional Genome Analysis,

Genzentrum der Ludwigs-Maximilians-Universität

LB lysogeny broth

LDL linkage and linkage desiguillibrium

(Kopplung und Kopplungsungleichgewicht)

LR likelihood ratio

LRT log-likelihood ratio Test

MAS markergestützte Selektion

Na₂HPO₄ Natriumdihydrogenphosphat

NaCl Natriumchlorid NaOH Natronlauge

PBS phosphate buffered saline PCR polymerase chain reaction

(Polymerasekettenreaktion)

QTL quantitative trait loci

(Locus für ein quantitatives Merkmal)

Refseq Referenzsequenz

RFLP Restriktionsfragmentlängenpolymorphismus

RNA Ribonukleinsäure

SDS Natriumdodecylsulfat

SNP single nucleotid polymorphismus

(Einzelnukleotidpolymorphismus)

SOD2 Superoxiddismutase 2

SSLP simple sequence length polymorphism

(einfacher Sequenzlängenpolymorphismus)

SSR simple sequence repeats

(einfache Sequenzwiederholungen)

TAMRA Tetramethylrhodamin
TE Tris und EDTA Puffer

TET 5-Tetrachloro-Fluorescein

Tm Schmelztemperatur eines Oligonukleotid

Tme T-assoziierter maternaler Effekt

Tris 2-Amino-2-hydroxymethyl-propane-1,3-diol

TSA Trichostatin A

TZF Tierzuchtforschung

VNTR variable number of tandem repeats

(variable Anzahl von Tandemwiederholungen)

WGS whole genome sequence

YAC yeast artificial chromosome

(künstliches Hefechromosom)

11. Literaturverzeichnis

Andersen, C. L., Jensen, J. L., and Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res* **64**, 5245-50.

Andersson, L., and Georges, M. (2004). Domestic-animal genomics: deciphering the genetics of complex traits. *Nat Rev Genet* **5**, 202-12.

Angelman, H. (1965). 'Puppet children': a report of three cases. *Dev. Med. Child Neurol.* **7**, 681-688.

Barjesteh van Waalwijk van Doorn-Khosrovani, S., Spensberger, D., de Knegt, Y., Tang, M., Lowenberg, B., and Delwel, R. (2005). Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. *Oncogene* **24**, 4129-37.

Becherini, L., Gennari, L., Masi, L., Mansani, R., Massart, F., Morelli, A., Falchetti, A., Gonnelli, S., Fiorelli, G., Tanini, A., and Brandi, M. L. (2000). Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in postmenopausal Italian women. *Hum Mol Genet* **9**, 2043-50.

Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. *J Mol Biol* **340**, 783-95.

Berger, R., Le Coniat, M., Lacronique, V., Daniel, M. T., Lessard, M., Berthou, C., Marynen, P., and Bernard, O. (1997). Chromosome abnormalities of the short arm of chromosome 12 in hematopoietic malignancies: a report including three novel translocations involving the TEL/ETV6 gene. *Leukemia* **11**, 1400-3.

Blobel, G. (1980a). Intracellular protein topogenesis. *Proc Natl Acad Sci U S A* **77**, 1496-500.

Blobel, G. (1980b). Regulation of intracellular protein traffic. *Harvey Lect* **76**, 125-47.

Blobel, G., and Dobberstein, B. (1975a). Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. *J Cell Biol* **67**, 835-51.

Blobel, G., and Dobberstein, B. (1975b). Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. *J Cell Biol* **67**, 852-62.

Boichard, D., Grohs, C., Bourgeois, F., Cerqueira, F., Faugeras, R., Neau, A., Rupp, R., Amigues, Y., Boscher, M. Y., and Leveziel, H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. *Genet Sel Evol* **35**, 77-101.

Brandeis, M., Ariel, M., and Cedar, H. (1993). Dynamics of DNA methylation during development. *Bioessays* **15**, 709-13.

Carballo, E., Lai, W. S., and Blackshear, P. J. (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. *Science* **281**, 1001-5.

Casas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P., and Stone, R. T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. *J Anim Sci* **81**, 2976-83.

Chakravarti, A. (2001). To a future of genetic medicine. Nature 409, 822-3.

Cobanoglu, O., Berger, P. J., and Kirkpatrick, B. W. (2005). Genome screen for twinning rate QTL in four North American Holstein families. *Anim Genet* **36**, 303-8.

Constancia, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith, A., Fundele, R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., and Reik, W. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. *Nature* **417**, 945-8.

Cornish, J., Callon, K. E., Bava, U., Watson, M., Xu, X., Lin, J. M., Chan, V. A., Grey, A. B., Naot, D., Buchanan, C. M., Cooper, G. J., and Reid, I. R. (2007). Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. *Am J Physiol Endocrinol Metab* **292**, E117-22.

Dunn, T., Praissman, L., Hagag, N., and Viola, M. V. (1994). ERG gene is translocated in an Ewing's sarcoma cell line. *Cancer Genet Cytogenet* **76**, 19-22.

Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. *Science* **240**, 889-95.

Fan, J. B., Oliphant, A., Shen, R., Kermani, B. G., Garcia, F., Gunderson, K. L., Hansen, M., Steemers, F., Butler, S. L., Deloukas, P., Galver, L., Hunt, S., McBride, C., Bibikova, M., Rubano, T., Chen, J., Wickham, E., Doucet, D., Chang, W., Campbell, D., Zhang, B., Kruglyak, S., Bentley, D., Haas, J., Rigault, P., Zhou, L., Stuelpnagel, J., and Chee, M. S. (2003). Highly parallel SNP genotyping. *Cold Spring Harb Symp Quant Biol* **68**, 69-78.

Feinberg, A. P. (1993). Genomic imprinting and gene activation in cancer. *Nat Genet* **4**, 110-3.

Fürst, C., and Egger-Danner, C. (2003). "Zuchtwertschätzung Kalbeverlauf und Totgeburtenrate." ZuchtDataGmbH.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res* **31**, 3784-8.

George, F. W., and Wilson, J. D. (1978). Conversion of androgen to estrogen by the human fetal ovary. *J Clin Endocrinol Metab* **47**, 550-5.

Georges, M. (2007). Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals. *Annu Rev Genomics Hum Genet* **8**, 131-62.

Gerardi, A. S. (1996). Bovine leucocyte adhesion deficiency: a review of a modern disease and its implications. *Res Vet Sci* **61**, 183-6.

Giguere, V., Yang, N., Segui, P., and Evans, R. M. (1988). Identification of a new class of steroid hormone receptors. *Nature* **331**, 91-4.

Gomeringer, V. (2007). QTL-Kartierung und funktionelle Kandidatengenanalyse für das Merkmal Totgeburt in einer fortgeschrittenen Fleckvieh- x Red-Holstein-Rückkreuzungspopulation. Dissertation, Ludwig-Maximillians- Universität, München.

Gomez-Raya, L., Olsen, H. G., Lingaas, F., Klungland, H., Vage, D. I., Olsaker, I., Talle, S. B., Aasland, M., and Lien, S. (2002). The use of genetic markers to measure genomic response to selection in livestock. *Genetics* **162**, 1381-8.

Green, P. (1988). Rapid construction of multilocus genetic linkage maps. I. Maximum likelihood estimation.

Griffiths, A., Wessler, S., Lewontin, R., and Carroll, S. (2008). "Introduction to Genetic Analysis," 9th/Ed. W.H. Freeman and Company.

Haig, D. (2004). Genomic imprinting and kinship: how good is the evidence? *Annu Rev Genet* **38**, 553-85.

Hauge, X. Y., and Litt, M. (1993). A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. *Hum Mol Genet* **2**, 411-5.

Henderson, B. E., Benton, B., Cosgrove, M., Baptista, J., Aldrich, J., Townsend, D., Hart, W., and Mack, T. M. (1976). Urogenital tract abnormalities in sons of women treated with diethylstilbestrol. *Pediatrics* **58**, 505-7.

Hiroi, S., Harada, H., Nishi, H., Satoh, M., Nagai, R., and Kimura, A. (1999). Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. *Biochem Biophys Res Commun* **261**, 332-9.

Horsthemke, B., and Wagstaff, J. (2008). Mechanisms of imprinting of the Prader-Willi/Angelman region. *Am J Med Genet A* **146A**, 2041-52.

Hu, J. F., Balaguru, K. A., Ivaturi, R. D., Oruganti, H., Li, T., Nguyen, B. T., Vu, T. H., and Hoffman, A. R. (1999). Lack of reciprocal genomic imprinting of sense and antisense RNA of mouse insulin-like growth factor II receptor in the central nervous system. *Biochem Biophys Res Commun* **257**, 604-8.

Hu, J. F., Pham, J., Dey, I., Li, T., Vu, T. H., and Hoffman, A. R. (2000). Allelespecific histone acetylation accompanies genomic imprinting of the insulin-like growth factor II receptor gene. *Endocrinology* **141**, 4428-35.

Ichikawa, H., Shimizu, K., Hayashi, Y., and Ohki, M. (1994). An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. *Cancer Res* **54**, 2865-8.

Jensen, E. V. (1962). On the mechanism of estrogen action. *Perspect Biol Med* **6**, 47-59.

Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., and von Mering, C. (2009). STRING 8--a global view on proteins and their functional interactions in 630 organisms. *Nucleic Acids Res* **37**, D412-6.

Kass, S. U., Goddard, J. P., and Adams, R. L. (1993). Inactive chromatin spreads from a focus of methylation. *Mol Cell Biol* **13**, 7372-9.

Kenealy, M. R., Flouriot, G., Sonntag-Buck, V., Dandekar, T., Brand, H., and Gannon, F. (2000). The 3'-untranslated region of the human estrogen receptor alpha gene mediates rapid messenger ribonucleic acid turnover. *Endocrinology* **141**, 2805-13.

Kirkilionis, A. J., Gregory, C. A., and Hamerton, J. L. (1991). Long-range restriction mapping and linkage analysis of the Prader-Willi chromosome region (PWCR). *Genomics* **9**, 524-35.

Kishino, T., Lalande, M., and Wagstaff, J. (1997). UBE3A/E6-AP mutations cause Angelman syndrome. *Nat Genet* **15**, 70-3.

Kos, M., Reid, G., Denger, S., and Gannon, F. (2001). Minireview: genomic organization of the human ERalpha gene promoter region. *Mol Endocrinol* **15**, 2057-63.

Krebs, S., Medugorac, I., Bauernsachs, S., Hiendleder, S., Reichenbach, H., Blum, H., and Wolf, E. (2008). Stillbirth in Cattle: Transcriptome analysis and eQTL mapping reveal candidates for fetal growth regulation. *In* "Genetics", Berlin.

Kuhn, C., Bennewitz, J., Reinsch, N., Xu, N., Thomsen, H., Looft, C., Brockmann, G. A., Schwerin, M., Weimann, C., Hiendleder, S., Erhardt, G., Medjugorac, I., Forster, M., Brenig, B., Reinhardt, F., Reents, R., Russ, I., Averdunk, G., Blumel, J., and Kalm, E. (2003). Quantitative trait loci mapping of functional traits in the German Holstein cattle population. *J Dairy Sci* **86**, 360-8.

Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. (1996). Cloning of a novel receptor expressed in rat prostate and ovary. *Proc Natl Acad Sci U S A* **93**, 5925-30.

Lee, S. H., and van der Werf, J. H. (2004). The efficiency of designs for fine-mapping of quantitative trait loci using combined linkage disequilibrium and linkage. *Genet Sel Evol* **36**, 145-61.

Lee, S. H., Van der Werf, J. H., and Tier, B. (2005). Combining the meiosis Gibbs sampler with the random walk approach for linkage and association studies with a general complex pedigree and multimarker loci. *Genetics* **171**, 2063-72.

Lee, S. H., and Van der Werf, J. H. J. (2005). The Role of Pedigree Information in Combined Linkage Disequilibrium and Linkage Mapping of Quantitative Trait Loci in a General Complex Pedigree. *Genetics* **169**, 455-466.

Lehrer, S., Rabin, J., Stone, J., and Berkowitz, G. S. (1994). Association of an estrogen receptor variant with increased height in women. *Horm Metab Res* **26**, 486-8.

Lerchner, W., and Barlow, D. P. (1997). Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo. *Mech Dev* **61**, 141-9.

Li, E., Beard, C., and Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. *Nature* **366**, 362-5.

Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C., and Epstein, C. J. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. *Nat Genet* 11, 376-81.

LKV Bayern e.V. (2007). Kalbungen. Leistungs- und Qualitätsprüfung in der Rinderzucht in Bayern, 35-41.

Long, J. E., and Cai, X. (2007). Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle. *Gene* **388**, 125-34.

Lorentzon, M., Lorentzon, R., Backstrom, T., and Nordstrom, P. (1999). Estrogen receptor gene polymorphism, but not estradiol levels, is related to bone density in healthy adolescent boys: a cross-sectional and longitudinal study. *J Clin Endocrinol Metab* **84**, 4597-601.

Lottspeich, F., and Engels, J. (2006). "Bioanalytik," 2nd/Ed. Elsevier GmbH, Spektrum Akademischer Verlag.

Lowenberg, B., Downing, J. R., and Burnett, A. (1999). Acute myeloid leukemia. *N Engl J Med* **341**, 1051-62.

McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). *J Biol Chem* **244**, 6049-55.

Medugorac, I., Krebs, S., Gomeringer, V., Hiendleder, S., Wolf, E., and Förster, M. (2008). Stillbirth in Cattle: eQTL detection by combined linkage and linkage disequilibrium mapping in an outbreed population. *In* "Genetics", Berlin.

Mercure, S., Rougeau, N., Montplaisir, S., and Lemay, G. (1993). Complete nucleotide sequence of Candida albicans 5.8S rRNA coding gene and flanking internal transcribed spacers. *Nucleic Acids Res* **21**, 4640.

Meuwissen, T. H., and Goddard, M. E. (2000). Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. *Genetics* **155**, 421-30.

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. *Cold Spring Harb Symp Quant Biol* **51 Pt 1**, 263-73.

Mutch, D. M., Berger, A., Mansourian, R., Rytz, A., and Roberts, M. A. (2002). The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. *BMC Bioinformatics* **3**, 17.

Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J. A. (2001). Mechanisms of estrogen action. *Physiol Rev* **81**, 1535-65.

Okura, T., Koda, M., Ando, F., Niino, N., Ohta, S., and Shimokata, H. (2003). Association of polymorphisms in the estrogen receptor alpha gene with body fat distribution. *Int J Obes Relat Metab Disord* **27**, 1020-7.

Oliphant, A., Barker, D. L., Stuelpnagel, J. R., and Chee, M. S. (2002). BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. *Biotechniques* **Suppl**, 56-8, 60-1.

Petersen, D. N., Tkalcevic, G. T., Koza-Taylor, P. H., Turi, T. G., and Brown, T. A. (1998). Identification of estrogen receptor beta2, a functional variant of estrogen receptor beta expressed in normal rat tissues. *Endocrinology* **139**, 1082-92.

Prader, A. (1956). [Adrenogenital syndrome, adrenogenital salt deficiency syndrome and Cushing's syndrome in childhood.]. *Schweiz Med Wochenschr* **86**, 289-99.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., and Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-75.

Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. (1993). Relaxation of imprinted genes in human cancer. *Nature* **362**, 747-9.

Ramirez-Valverde, R., Misztal, I., and Bertrand, J. K. (2001a). Comparison of threshold vs linear and animal vs sire models for predicting direct and maternal genetic effects on calving difficulty in beef cattle. *J Anim Sci* **79**, 333-8.

Ramirez-Valverde, R., Misztal, I., and Bertrand, K. (2001b). Potential accuracy of genetic evaluation for calving difficulty with incomplete data on calving difficulty and/or birth weight using a bivariate threshold-linear animal model. *J Appl Genet* **42**, 325-33.

Regha, K., Latos, P. A., and Spahn, L. (2006). The imprinted mouse Igf2r/Air cluster--a model maternal imprinting system. *Cytogenet Genome Res* **113**, 165-77.

Rosenblum, J. S., Gilula, N. B., and Lerner, R. A. (1996). On signal sequence polymorphisms and diseases of distribution. *Proc Natl Acad Sci U S A* **93**, 4471-3.

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol* **132**, 365-86.

Scherf, M., Epple, A., and Werner, T. (2005). The next generation of literature analysis: integration of genomic analysis into text mining. *Brief Bioinform* **6**, 287-97.

Schinzel, A. (1986). Approaches to the prenatal diagnosis of the Prader-Willi syndrome. *Hum Genet* **74**, 327.

Schnabel, R. D., Sonstegard, T. S., Taylor, J. F., and Ashwell, M. S. (2005). Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. *Anim Genet* **36**, 408-16.

Schrooten, C., Bovenhuis, H., Coppieters, W., and Van Arendonk, J. A. (2000). Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. *J Dairy Sci* **83**, 795-806.

Schuit, S. C., Oei, H. H., Witteman, J. C., Geurts van Kessel, C. H., van Meurs, J. B., Nijhuis, R. L., van Leeuwen, J. P., de Jong, F. H., Zillikens, M. C., Hofman, A., Pols, H. A., and Uitterlinden, A. G. (2004). Estrogen receptor alpha gene polymorphisms and risk of myocardial infarction. *JAMA* **291**, 2969-77.

Sleutels, F., Tjon, G., Ludwig, T., and Barlow, D. P. (2003). Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. *EMBO J* 22, 3696-704.

Sleutels, F., Zwart, R., and Barlow, D. P. (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. *Nature* **415**, 810-3.

Snelling, W. M., Chiu, R., Schein, J. E., Hobbs, M., Abbey, C. A., Adelson, D. L., Aerts, J., Bennett, G. L., Bosdet, I. E., Boussaha, M., Brauning, R., Caetano, A. R., Costa, M. M., Crawford, A. M., Dalrymple, B. P., Eggen, A., Everts-van der Wind, A., Floriot, S., Gautier, M., Gill, C. A., Green, R. D., Holt, R., Jann, O., Jones, S. J., Kappes, S. M., Keele, J. W., de Jong, P. J., Larkin, D. M., Lewin, H. A., McEwan, J. C., McKay, S., Marra, M. A., Mathewson, C. A., Matukumalli, L. K., Moore, S. S., Murdoch, B., Nicholas, F. W., Osoegawa, K., Roy, A., Salih, H., Schibler, L., Schnabel, R. D., Silveri, L., Skow, L. C., Smith, T. P., Sonstegard, T. S., Taylor, J. F., Tellam, R., Van Tassell, C. P., Williams, J. L., Womack, J. E., Wye, N. H., Yang, G., and Zhao, S. (2007). A physical map of the bovine genome. *Genome Biol* 8, R165.

Sobel, E., and Lange, K. (1996). Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. *Am J Hum Genet* **58**, 1323-37.

Sobel, E., Papp, J. C., and Lange, K. (2002). Detection and integration of genotyping errors in statistical genetics. *Am J Hum Genet* **70**, 496-508.

Sobel, E., Sengul, H., and Weeks, D. E. (2001). Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. *Hum Hered* **52**, 121-31.

Stacey, S. N., Manolescu, A., Sulem, P., Rafnar, T., Gudmundsson, J., Gudjonsson, S. A., Masson, G., Jakobsdottir, M., Thorlacius, S., Helgason, A., Aben, K. K., Strobbe, L. J., Albers-Akkers, M. T., Swinkels, D. W., Henderson, B. E., Kolonel, L. N., Le Marchand, L., Millastre, E., Andres, R., Godino, J., Garcia-Prats, M. D., Polo, E., Tres, A., Mouy, M., Saemundsdottir, J., Backman, V. M., Gudmundsson, L., Kristjansson, K., Bergthorsson, J. T., Kostic, J., Frigge, M. L., Geller, F., Gudbjartsson, D., Sigurdsson, H., Jonsdottir, T., Hrafnkelsson, J., Johannsson, J., Sveinsson, T., Myrdal, G., Grimsson, H. N., Jonsson, T., von Holst, S., Werelius, B., Margolin, S., Lindblom, A., Mayordomo, J. I., Haiman, C. A., Kiemeney, L. A., Johannsson, O. T., Gulcher, J. R., Thorsteinsdottir, U., Kong, A., and Stefansson, K. (2007). Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. *Nat Genet* 39, 865-9.

Stoecklin, G., Colombi, M., Raineri, I., Leuenberger, S., Mallaun, M., Schmidlin, M., Gross, B., Lu, M., Kitamura, T., and Moroni, C. (2002). Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. *EMBO J* 21, 4709-18.

Stoger, R., Kubicka, P., Liu, C. G., Kafri, T., Razin, A., Cedar, H., and Barlow, D. P. (1993). Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. *Cell* **73**, 61-71.

Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M., and Koohmaraie, M. (1999). A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. *J Anim Sci* **77**, 1379-84.

Strachan, T., and Read, A. (2005). "Molekulare Humangenetik," 3rd/Ed. Elsevier GmbH, Spektrum Akademischer Verlag.

Szreder, T., Zelazowska, B., Oprzadek, J., and Zwierzchowski, L. (2008). Expression in promoter variant of the ERalpha gene in bos taurus liver. *Mol Biol Rep* **35**, 65-71.

Szreder, T., and Zwierzchowski, L. (2007). Estrogen receptors and their genes-potential markers of functional and production traits of farm animals. *Mol Biol Rep* **34**, 207-11.

Tariverdian, G., and Buselmaier, W. (2004). "Humangenetik," 3rd/Ed. Springer Verlag.

The_UniProt_Consortium (2009). The Universal Protein Resource (UniProt) 2009. *Nucleic Acids Res* **37**, D169-74.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* **3**, research0034.1 - research0034.11.

Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L., and Squire, J. (1993). Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. *Nat Genet* **5**, 143-50.

Wright, T. J., Costa, J. L., Naranjo, C., Francis-West, P., and Altherr, M. R. (1999). Comparative analysis of a novel gene from the Wolf-Hirschhorn/Pitt-Rogers-Danks syndrome critical region. *Genomics* **59**, 203-12.

Yang, Y., Li, T., Vu, T. H., Ulaner, G. A., Hu, J. F., and Hoffman, A. R. (2003). The histone code regulating expression of the imprinted mouse Igf2r gene. *Endocrinology* **144**, 5658-70.

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. *Nat Genet* **27**, 153-4.

Zhang, Y., Ikeno, Y., Qi, W., Chaudhuri, A., Li, Y., Bokov, A., Thorpe, S. R., Baynes, J. W., Epstein, C., Richardson, A., and Van Remmen, H. (2009). Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. *J Gerontol A Biol Sci Med Sci* 64, 1212-20.

Zuppan, P., Hall, J. M., Lee, M. K., Ponglikitmongkol, M., and King, M. C. (1991). Possible linkage of the estrogen receptor gene to breast cancer in a family with late-onset disease. *Am J Hum Genet* **48**, 1065-8.

Anhangsübersicht 121

12. Anhangsübersicht

13. <i>A</i>	ANHA	NG	122
13.1.	Alig	nment des CpG- Islands im Intron2 des igf2r	122
13.2.	Alig	nments der esr1 Exons	127
13.2	2.1.	Exon1	127
13.2	2.2.	Exon2	128
13.2	2.3.	Exon3	128
13.2	2.4.	Exon4	129
13.2	2.5.	Exon5	130
13.2	2.6.	Exon6	130
13.2	2.7.	Exon7	
13.2	2.8.	Exon8	132
13.3.	Alig	nment der mRNA des Östrogenrezeptors	134
13.4.	Alig	nment der Proteinsequenz des Östrogenrezeptors	138
13.5.	Alia	nment der Promotor B Region des Östrogenrezeptors	139

13. Anhang

13.1. Alignment des CpG- Islands im Intron2 des *igf2r*

CH240-40N2_CpG FV0200_CpG 090000_CpG	ACTCCAGGAGGTTGCTCTGAAAAAAATTTTTTTTTCTCTCGCGACCCAACAGCCTCAGAG ACTCCAGGAGGTTGCTCTGAAAAAAATTTTTTTTTCTCTCGCGACCCCAACAGCCTCAGAG ACTCCAGGAGGTTGCTCTGAAAAAAATTTTTTTTTT	60
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCTGCGGAGGCGGCTCCGGGACCGCGGACAGCGCCCCGCGGCTCCGCCCACTGTGGGCGGCCTGCGGAGGCGCTCCGGGACCGCGGACAGCGCCCCGCGGCTCCGCCCACTGTGGGCGGCCTGCGGAGGCGCCCCGCGGACAGCGCCCCGCGGACCGCGCCCACTGTGGGCGCCCCGCGACCGCGACCGCGACCGCGACCGCGCCCACTGTGGGCGCCCCACCGCGACCGCCCCACCGCGCCCACCGCGCCCACCGCGCCCACCGCGCCCACCGCGCCCACCGCGCCCACCGCGCCCACCGCGCCCCACCGCGCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCCACCGCGCCCCACCGCGCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCGCGCCCCCACCCCCC	120 120 120
CH240-40N2_CpG FV0200_CpG 090000_CpG	TGCCCAGGGAAGCTGGTGACGGGGCGGGGCCTCCCGCGCCCCAGCAGCGCGCGC	180 180 180
CH240-40N2_CpG FV0200_CpG 090000_CpG	AGACTCGGGGCGCAGGAGGTGGGGGGGGGGGGGCTCGGCCAGCGGGAGGCGGTGCGCAC AGACTCGGGCGCAGGAGGTGGGGGGGGGG	240
CH240-40N2_CpG FV0200_CpG 090000_CpG	AGCCGCCAGAAGGGGGCGCTTCCGGGCCATGGCAGGGGGGGG	300 300 300
CH240-40N2_CpG FV0200_CpG 090000_CpG	AAAGACCTCCCCGGGCCTCTGTCCCCCCCAACGGGGGGCCCCATCCGGCCCTGTGCC AAAGACCCTCCCCGGGCCTCTGTCCCCCCAACGGGGGGCGCCCCATCCGGCCCTGTGCC AAAGACCCTCCCCGGGCCTCTGTCCCCCCCAACGGGGGGCCCCATCCGGCCCTGTGCC *************************	360 360 360
CH240-40N2_CpG FV0200_CpG 090000_CpG	CAGAGCTCCCGGGGGCGCCTCATAACTGCTGGGCTCGCCCTGCGCGCAGACCAGACGGGCCAGAGCCCCCCCC	420 420 420
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCTGGCCTTGAGCCGAGACGGACCGGCCGAGCTCCGCGGCCGCGCGCG	480
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGTCCCTCAGCGTCAGGCCCCATCGGCACCGCGCCCGCTCGCCCGTCCAGCCTGCCT	540
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCCGCTCCTCCGCCTACTGGCCAGGACCGATTGCCCACCCCGGCACTCGGCAAGAGGCC GCCCGCTCCTCCGCCTACTGGCCAGGACCGATTGCCCACCCCGGCACTCGGCAAGAGGCC GCCCGCTCCTCCGCCTACTGGCCAGGACCGATTGCCCACCCCGGCACTCGGCAAGAGGCC	600 600 600
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCGGTGCACCGCGGCAGCCCCCGCGGCGGACTCCCGGGCACCCCGGCCAGCCTGGCC GCGGTGCACCGCGGCAGCCCCCGCGGGCGGACTCCCGGCCAGCCTGGCC GCGGTGCACCGCGGCAGCGCCCCGCGGGCGGACTCCCGGCCAGCCTGGCC *******************************	660
CH240-40N2_CpG FV0200_CpG 090000_CpG	GTCCTCCCGGACGAAGGCCGGGCGAGGACTGCGGGGCGGCCAGCACGCCAGGCCCAGGCCCAGCCCCAGGCCCAGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCACGCACGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCA	720
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGGCCAGCTCCCGAGGACGGCGCCAAATGGGCTGGGCCGGCTCGCCGGGCCCGCCAGAT CGGCCAGCTCCCGAGGACGGCGCCAAATGGGCTGGGC	780
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCGCCGGGTCCTCCAGACCGCGCGCCGGGCCCGCCAGACCACGCTCTCCAGGCCGGGCG CGCGCCGGGTCCTCCAGACCGCGCCCGGGCCCGCCAGACCACGCTCTCCAGGCCGGGCG CGCGCCGGGTCCTCCAGACCGCGCCCGGCCCAGACCACGCTCTCCAGGCCGGGCG	840

CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCCAGACCAGACCACACTGGCGGGGCCCCAGCAGACCAGACCGCGCGGGTCCTCCAGG CGCCAGACCAGA	900 900 900
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCGCGCTCTCCAGGCCGGGTCCTCCAGACCGGGCTGCGCGCGC	960 960 960
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGTCTCCCGGCAGGGCCCGCCAGACCAGGCCGCGTCCGCCAGGCCCGCCAGGCCGCCCCGCCAGGCCGCCCAGGCCGCC	102 102 102
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGGTCCTCCAGACCGCGCTCTCCAGGCCGGGTCCGCCAGACCGCGCTGGGTCCTCCAGAC GGGTCCTCCAGACCGCGCTCTCCAGGCCGGGTCCGCCAGACCGCGCTGGGTCCTCCAGAC GGGTCCTCCAGACCGCGCTCTCCAGGCCGGGTCCGCCAGACCGCGCTGGGTCCTCCAGAC *********************************	108 108 108
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCGCGCTCGGCCAACCGGACCGCGCCAGGCCCGCCAGACCGCGCGCGCGGGTCCTCCA CGCGCGCTCGGCCAACCGGACCGCGCCAGGCCCGCGAGACCGCGCGCGCGGGTCCTCCA CGCGCGCTCGGCCAACCGGACCGCGCCAGGCCCGCGAGACCGCGCGCGCGCGCTCCCA	114
CH240-40N2_CpG FV0200_CpG 090000_CpG	GACCACGCTCTCCAGGCCGGGTCCACCAGACCAGGCCGCGCGCG	120 120 120
CH240-40N2_CpG FV0200_CpG 090000_CpG	AGCTCGCGCTCACCGGGCCCACCAGATCGCGCCGGGTCCTCCGGACCGCGCCAGACCGTG AGCTCGCGCTCACCGGGCCCACCAGATCGCGCCGGGTCCTCCGGACCGCCCAGACCGTG AGCTCGCGCTCACCGGGCCCACCAGATCGCGCCGGGTCCTCCGGACCGCCCAGACCGTG **********************************	126 126 126
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCTCCAGGCCCTCCAGATCACGGTCTCCAGGCCGGGTCCTCCAAACGAGGCCACGCGCGCG	
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCAGGCCCACCAGACGGCGCTCTCCAGGCCGGGTCCGCCAGACCAGGCCGAGCTCTCCAA CCAGGCCCACCAGACGGCGCTCTCCAGGCCGGGTCCGCCAGACCAGGCCGAGCTCTCCAA CCAGGCCCACCAGACGGCGCTCTCCAGGCCGGGTCCGCCAGACCAGGCCGAGCTCTCCAA *******************************	138
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCAGGCCACGCCGGGTCCTTCAGACCCTGCGCCCCGGGCCCGCCC	144
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGGCCCGCCAGGCCGCGCGGGTCCTCCAGACGGCGCTCTCCAGGCCAGGTCCGCCAGAC GGGCCCGCCAGGCCGCGCGGGTCCTCCAGACGGCGCTCTCCAGGCCAGGTCCGCCAGAC GGGCCCGCCAGGCCGCGCCGGGTCCTCCAGACGGCCACGTCCGCCAGAC ******************************	150 150 150
CH240-40N2_CpG FV0200_CpG 090000_CpG	CAGGCCGAGCTCACCCGGGCCCACCAGACCAGACAGCACTGGCGAGACCCCACCAGACTA CAGGCCGAGCTCACCCGGGCCCACCAGACCAG	156
CH240-40N2_CpG FV0200_CpG 090000_CpG	GACCGCGCCGGGTCCTCCAGGCCGCGCTCTCCAGGCCGGGTCCTCCAGACCAGGCCGCGCGCACCGCGCCGCGCCGCGCCCGCCG	162
CH240-40N2_CpG FV0200_CpG 090000_CpG	GTCCAGGGCCTGCCAGACCTGTCCGACCGCAGCCTCCAGGCAGAGCCCCCAGACCGAGC GTCCAGGGCCTGCCAGACCTGTCCGACCGCAGCCTCCAGGCAGAGCCCCCCAGACCGAGC GTCCAGGGCCTGCCAGACCTGTCCGACCGCAGCCTCCAGGCAGAGCCCCCCAGACCGAGC **************	168

CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCGCTCGCCTGGGCCCGCCAGACCAAACCGCACTTGCCGAGCCCGCCAGGCAGTGGCGG CGCGCTCGCCTGGGCCCGCCAGACCAAACCGCACTTGCCGAGCCCGCCAGGCAGTGGCGG CGCGCTCGCCTGGGCCCGCCAGACCAAACCGCACTTGCCGAGCCCGCCAGGCAGTGGCGG ********************************	174
CH240-40N2_CpG FV0200_CpG 090000_CpG	GTCCACCCGATCGCGGTCTCCAGGCCGGGGCCGCCAGACCGCGCCGGGTCCGCCAGACCA GTCCACCCGATCGCGGTCTCCAGGCCGGGGCCGCCAGACCGCGCCGGGTCCGCCAGACCA GTCCACCCGATCGCGGTCTCCAGGCCGGGGCCGCCAGACCGCGCGGGTCCGCCAGACCA	180
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCGCTGGGCCCTCCAGACAGCGCTCTCCAGGCCGGGCTCTCCAGGCCGCGCTCGCCCGG CGCGCTGGGCCCTCCAGACAGCGCTCTCCAGGCCGGGCTCTCCAGGCCGCGCTCGCCCGG CGCGCTGGGCCCTCCAGACAGCGCTCTCCAGGCCGGGCTCTCCAGGCCGCCTCGCCCGG	186 186 186
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCCGCCAGACCAGGCCACGTTCACCCGGACCCACCAGACCCGGCCACACGCTACCGGCC GCCCGCCAGACCAGGCCACGTTCACCCGGACCCACACCAGACCCGGCCACACGCTACCGGCC GCCCGCCAGACCAGGCCACGTTCACCCGGACCCACCAGACCCGGCCACACGCTACCGGCC ********************************	192 192 192
CH240-40N2_CpG FV0200_CpG 090000_CpG	AGGCCCCGCGAGGTCCTCCCGACCCTGCACGCCAGGGCTCCCGCCAGGCCACGCTCGCCC AGGCCCCGCGAGGTCCTCCCGACCCTGCACGCCAGGGCTCCCGCCAGGCCACGCTCGCCC AGGCCCCGCGAGGTCCTCCCGACCCTGCACGCCAGGGCTCCCGCCAGGCCACGCTCGCCC ******************************	198 198 198
CH240-40N2_CpG FV0200_CpG 090000_CpG	GAGCCCGTCAGACCCAGCCACGCTCTGCAGCCCGGGCCGCGCGGGTCCTCTCGACCCTG GAGCCCGTCAGACCCAGCCCACGCTCTGCAGCCCGGGCCGCGCGGGTCCTCTCGACCCTG GAGCCCGTCAGACCCAGCCCACGCTCTGCAGCCCGGGCCGCGCGGGTCCTCTCGACCCTG **********************************	204 204 204
CH240-40N2_CpG FV0200_CpG 090000_CpG	CGCGCCAGGGCGCCCGTCCGGCAGCGCTCGCCCGCCCGCC	210 210 210
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCGGCCAGGCCACGCCGGGTCCTGCAGACCCTGCGCGCTCGCCGCGCTCACCAGAGTCC CCGGCCAGGCCA	216 216 216
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCCGACCAGGCCGCGTGCCAGGCCGGCCTCGCCTCGCC	222 222 222
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCGAGCCCGGCCGAGCTCGCAACCCGACCTCGCTGAGGCTGCTCGGCCTGGCGACCGCGCCCGCGAGCCGGCCG	228
CH240-40N2_CpG FV0200_CpG 090000_CpG	CTCCGCCGGCGGCCACGGGGCCCAGCCTGCGGGCGCCGAGCCTTCTCAGCACCTTGCTCA CTCCGCCGGCGGCCCACGCCCAGCCTGCGGGCGCCGAGCCTTCTCAGCACCTTGCTCA CTCCGCCGGCGGCCCACGCCCAGCCTGCGGGCGCCGAGCCTTCTCAGCACCTTGCTCA ***********************************	234
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGGCCTGCCAGCCGGGCCGCTAGCCCTCTGCGACGTGCTCCGGCCAGGCCGCCCCCTCGC GGGCCTGCCAGCCGGGCCGCTAGCCCTCTGCGACGTGCTCCGGCCAGGCCGCCCCCTCGC GGGCCTGCCAGCCGGCCGCCCCTCGCCACGCCCAGGCCGCCCCCTCGC *************************	240
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGAACACGCCCCGCTCTGTTGTATCGTGTCTTTCGACGTGTACCGTTTCGCGTGTTCTTC GGAACACGCCCCGCTCTGTTGTATCGTGTCTTTCGACGTGTACCGTTTTCGCGTGTTCTTC GGAACACGCCCCGCTCTGTTGTATCGTGTCTTTCGACGTGTACCGTTTTCGCGTGTTCTTC ********************	246
CH240-40N2_CpG FV0200_CpG 090000_CpG	GCCAAAAAGAGAACCCCCTGCCCAGCTCTCGCCTCCGCCTCCTGCCTCACCTTTCCGCTC GCCAAAAAGAGAACCCCCTGCCCAGCTCTGGCCTCCGCCTCCTGCCTCACCTTTCCGCTC GCCAAAAAGAGAACCCCCTGCCCAGCTCTCGCCTCCGCCTCCTGCCTCACCTTTCCGCTC	252 252 252

CH240-40N2_CpG FV0200_CpG 090000_CpG	CTCTTTCTATGAACACTCCGCAAGAGATTTCTACTCTGGCTCCTGCCCGCTCAGACCCTC CTCTTTCTATGAACACTCCGCAAGAGATTTCTACTCTGGCTCCTGCCCGCTCAGACCCTC CTCTTTCTATGAACACTCCGCAAGAGATTTCTACTCTGGCTCCTGCCCGCTCAGACCCTC *********************************	258 258 258
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCTCCCTCTAGCCTTGACCACCCCACCACCCTCCCGCCGCCCCCTAACCCCGGAGCCAGCC	264
CH240-40N2_CpG FV0200_CpG 090000_CpG	GTAATTCGCTGCTTTCAGTTTCAAGTCTTTGCTCAAATGTCACTTTCTCAGCAACACCCA GTAATTCGCTGCTTTCAGTTTCAAGTCTTTGCTCAAATGTCACTTTCTCAGCAACACCCA GTAATTCGCTGCTTTCAGTTTCAAGTCTTTGCTCAAATGTCACTTTCTCAGCAACACCCA	270
CH240-40N2_CpG FV0200_CpG 090000_CpG	CCCTGCTGAATATTCCTGAACACACACTCCCAAGGCCCCCTGGCACTCCCGCCTTTCCCG CCCTGCTGAATATTCCTGAACACACACTCCCAAGGCCCCCTGGCACTCCCGCCTTTCCCG CCCTGCTGAATATTCCTGAACACACACTCCCAAGGCCCCCTGGCACTCCCGCCTTTCCCG ************************	276 276 276
CH240-40N2_CpG FV0200_CpG 090000_CpG	TCTTTTCTACAGCATTCATCACAGTCTTAATATCCCACTTAGCCACTGTCTTTCTT	282 282 282
CH240-40N2_CpG FV0200_CpG 090000_CpG	GTGTGCCTCCTTCTCCACTAGAATGTAAGCTCCGTGAGAAAAGGGGTTTTTGTCCGTTTT GTGTGCCTCCTTCTCCACTAGAATGTAAGCTCCGTGAGAAAAGGGGTTTTTGTCCGTTTT GTGTGCCTCCTTCTCCACTAGAATGTAAGCTCCGTGAGAAAAGGGGTTTTTGTCCGTTTT *********************	288 288 288
CH240-40N2_CpG FV0200_CpG 090000_CpG	GGTGACTGATTCAAATATTTGTTACAAATCAATAAATGAGTATTAAGTGTTAGCTG GGTGACTGATTCAAATATTTGTTACAAATCAATAAATGAGTATTAAGTGTTAGCTG GGTGACTGATTCAAATATTTGTTACAAATCAATAAATGAGTATTAAGTGTTAGCTG	294 294 294
CH240-40N2_CpG FV0200_CpG 090000_CpG	TTTTTAAAAAAAAAATTTATACATATATATGTTACGATTTAACCAAGTAAATCAGAA TTTTTTAAAAAAAAAA	
CH240-40N2_CpG FV0200_CpG 090000_CpG	TATACTACAATGTACTGAACTATCCCATGGTTAGGCTGTTTCAGCATATTTGCCACAATT TATACTACAATGTACTGAACTATCCCATGGTTAGGCTGTTTCAGCATATTTGCCACAATT TATACTACAATGTACTGAACTATCCCATGGTTAGGCTGTTTCAGCATATTTGCCACAATT *******************************	305 306 306
CH240-40N2_CpG FV0200_CpG 090000_CpG	TTCAATGCTACGGGGAATTTTTTTTGTACAAAAGTCTATGTACAACAGACGTTACAGGAA TTCAATGCTACGGGGAATTTTTTTTTGTACAAAAGTCTATGTACAACAGACGTTACAGGAA TTCAATGCTACGGGGAATTTTTTTTTGTACAAAAGTCTATGTACAACAGACGTTACAGGAA ********************************	312
CH240-40N2_CpG FV0200_CpG 090000_CpG	TCTAAGTTTTTAAATGTAACAGATAATTCTAGACTATCAGGAGACTCTAAATGAGATAAA TCTAAGTTTTTTAAATGTAACAGATAATTCTAGACTATCAGGAGACTCTAAATGAGATAAA TCTAAGTTTTTTAAATGTAACAGATAATTCTAGACTATCAGGAGACTCTAAATGAGATAAA **************************	318
CH240-40N2_CpG FV0200_CpG 090000_CpG	AATATGAGTTACACCTAGAAGGCAACCAGGTATCACCAGGTATCATCTTATATATCTAAC AATATGAGTTACACCTAGAAGGCAACCAGGTATCACCAGGTATCATCTTATATATCTAAC AATATGAGTTACACCTAGAAGGCAACCAGGTATCACCAGGTATCATCTTATATATCTAAC *******************	324
CH240-40N2_CpG FV0200_CpG 090000_CpG	AGAGTTATATCTTTTTTGAAAATGAAAGATACAAGGCACAAGAAGAAATGGTATTTTCAC AGAGTTATATCTTTTTTGAAAATGAAAGATACAAGGCACAAGAAGAAATGGTATTTTCAC AGAGTTATATCTTTTTTGAAAATGAAAGATACAAGGCACAAGAAGAAATGGTATTTTCAC ******************************	330
CH240-40N2_CpG FV0200_CpG 090000_CpG	ATGTTAAGAGACATGAAAGTAAATCTAGTGATCAACCTGGATTGCTGCTGTAGACTTCTG ATGTTAAGAGACATGAAAGTAAATCTAGTGATCAACCTGGATTGCTGCTGTAGACTTCTG ATGTTAAGAGACATGAAAGTAAATCTAGTGATCAACCTGGATTGCTGCTGTAGACTTCTG	336

CH240-40N2_CpG	TGAATGCACACAGGGATCATTAGGTATAACCTTAAGTTAGGAGTCAGTC	341
FV0200_CpG	TGAATGCACACAGGGATCATTAGGTATAACCTTAAGTTAGGAGTCAGTC	342
090000_CpG	TGAATGCACACAGGGATCATTAGGTATAACCTTAAGTTAGGAGTCAGTC	342
lisas	************	
CH240-40N2 CpG	AATGAAGTCACGTGACCAGCGACTGCAGCTGAATTTCACACTCTGTGCTACCCCCAGGTC	347
FV0200_CpG	AATGAAGTCACGTGACCAGCGACTGCAGCTGAATTTCACACTCTGTGCTACCCCCAGGTC	348
090000_CpG	AATGAAGTCACGTGACCAGCGACTGCAGCTGAATTTCACACTCTGTGCTACCCCCAGGTC	348
NT-1240	**************	
CH240-40N2_CpG	ACCTATAAGAAGCCAGTCAGAATCCCAGGCTTTGGTGGTGAGTAACCTCACTTAACAGTG	353
FV0200_CpG	ACCTATAAGAAGCCAGTCAGAATCCCAGGCTTTGGTGGTGAGTAACCTCACTTAACAGTG	354
090000_CpG	ACCTATAAGAAGCCAGTCAGAATCCCAGGCTTTGGTGGTGAGTAACCTCACTTAACAGTG	354
CH240-40N2_CpG	GGTCTGTTACCTTGGTGAAAGGGG 3563	
FV0200_CpG	GGTCTGTTACCTTGGTGAAAGGGG 3564	
090000_cpG	GGTCTGTTACCTTGGTGAAAGGGG 3564	

13.2. Alignments der esr1 Exons

13.2.1. Exon1

090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	GCTCTTCTTCCAGGTGGCCGGCCGGCTGCTGAGCCCTCTGCCGCGGGGGAGACGGTCTG	48 60 60
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	CGGCCGGCCGCGCCGCTCATCATGACCATGACCCTGCACACCAAAGCGTCCGGCATGG CGGCCGGCCGCGCCGC	108 120 120
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	CCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCTGAACCGCCGCAGCTCAAGA CCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCTGAACCGCCCGC	168 180 180
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	TCCCCTGGAGCGGCCCTGGGCGAGGTGTACATGGACAGCAGCAAGCCCGCCGTGTACA TCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGCAGCAAGCCCGCCGTGTACA TCCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGCAGCAAGCCCGCCGTGTACA TCCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGCAGCAAGCCCGCCGTGTACA TCCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGCAGCAAGCCCGCCGTGTACA ***********************************	228 240 240
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	ACTACCCGAGGGGCGCGGTACGACTTCAACGCCGCGGCCCCGCCTCCGCGCCCGTCT ACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCCCCGCCTCCGCGCCCGCTCT ACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCCCCGCCTCCGCGCCCGTCT ACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCCCCGCCTCCGCGCCCGTCT ***********	
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1		348 360 360
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	GCCTGGGGGCCTTCCCGCCGCTCAACACGCGTGTCTCCCGAGCCCGCTGGTGCTGCTACACC GCCTGGGGGCCTTCCCGCCGCTCAACACGCGTGTCTCCGAGCCCGCTGGTGCTGCTACACC	408 420 420
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	CGCCTCCGCAGCCCCTTCCTCCACCCGCACGGCCAACAGGTGCCCTATTACC CGCCTCCGCAGCCACTCCTGCACCGCACGGCCAACAGGTGCCCTATTACC CGCCTCCGCAGCCACTCCTCGCCTTCCTGCACCGCACGGCCAACAGGTGCCCTATTACC CGCCTCCGCAGCCCCTTCCTGCACCCGCACGGCCAACAGGTGCCCTATTACC CGCCTCCGCAGCCCCTTCCTGCACCCGCACGGCCAACAGGTGCCCTATTACC CGCCTCCGCAGCCCCCTTCCTGCACCCGCACGGCCAACAGGTGCCCTATTACC *****************************	4 6 8 4 8 0 4 8 0
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	TGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGCCCTCCCGCCTACTACAGGT TGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGCCCTCCCGCCTACTACAGGT TGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGCCCTCCCGCCTACTACAGGT TGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGCCCTCCCGCCTACTACAGGT TGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGCCCTCCCGCCTACTACAGGT ***********************************	524 540 540
090000_Exon1 ESR1_Exon1 0970512_Exon1 FV0307_Exon1 FV0314_Exon1	AACCCGCGCCGCCGCCGCCCCG 565 AACCCGCGCCGCCGCCGCCCGG 565 AACCCGCGCCGCCGCCGCCCGG 565	

13.2.2. Exon2

0970512_Exon2 TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTTTTTT	FV0307 Exon2	TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTTTTTT	60
TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTT-GTTTTGTTTT	FV0314 Exon2	TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTTTTTT	60
FV0307_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 FV0314_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 O970512_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 O90000_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 ESR1_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 FV0307_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTCCCAAGGAGACAGATTGGCCA 50 FV0314_Exon2 O90000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTCCCAAGGAGACTCGCTACTGTCCAG 180 O90000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTCCCAAGGAGACTCGCTACTGTCCAG 180 O90000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTCCCAAGGAGACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCCAAATTCAGATCTCCCAAGGAGACTCGCTACTGTCCAG 180 O90000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTCCCAAGGAGACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGACACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCCAAATTCACATTACGGACTTTTTCCCAAGGACACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGACACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTTCCCAAGGACACTCGCTACTGTCCAG 180 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTTCGCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTTCGCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTTCGCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTTCGCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCCCAAGGGCTGTAAGG 240 TTTTTTTTTCCCCAAGGCAAGGAAGTATTCAAGGTAATACTGTTTTCCAAACAACTCATCCCATTTT 298 TTTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCAAGAGAACTCATCCCATTTT 298 TTTTTTTTTCCCCAGGCTACCATTACGGACTTTTCCAAGGCTGAACAACTCATCCCATTTT 298 TTTTTTTTTTCCCCAGGCTACCATTACGGACTTTTTCAAGAGAACTCATCCCATTTT 298 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0970512 Exon2	TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTTTTTT	60
TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 120 FV0314 Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 120 0970512 Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 120 090000 Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 120 ESR1 Exon2 TTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 119 FV0307 Exon2 GTACCAGTGCACAAGGGAAGACATTGGCCA 120 090000 Exon2 GTACCAGTGCAAAGGGAAGCATTGGCCATGTGCAG 180 090000 Exon2 GTACCAGTGACAAGGGAAGCATTGGCCATGGCAATCTGCCAAGGAGACTCGCTACTGTCCAG 180 090000 Exon2 GTACCAGTGACAAGGGAAGCATTGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 180 ESR1 Exon2 GTACCAGTGACAAGGGAAGCATTGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 180 090000 Exon2 GTACCAGTGACAAGGGAAGCATTGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 179 ESR1 Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCCAAGGACTCGCTACTGTCCAG 110 **********************************	090000 Exon2	TTTCTAATGTTAATGGATTCACTGGGTTTTTTTTT-GTTTTGTTTT	59
TTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGATTGGCCA 120 0970512_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 090000_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 ESR1_Exon2 CAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGATTGGCCA 119 FV0307_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 FV0314_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 0970512_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 170 FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCCAGGGCTGTAAGG 240 0970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTGCCAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTTGCCAGGGCTGTAAGG 240 FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTTTCCCAGGGCTGTAAGG 240 FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTTGCCAGGGCTGTAAGG 240 FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCCACCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTTTT	ESR1_Exon2	same received to the control of the	
TTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGATTGGCCA 120 0970512_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 090000_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGATTGGCCA 120 ESR1_Exon2 CAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGATTGGCCA 119 FV0307_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 FV0314_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 0970512_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 179 ESR1_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCAG 110 **********************************	EV0307 Exam?	######################################	120
TTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGCCAGAGATTGGCCA 120 090000_Exon2	(i = 1)		
TTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 119 ESR1_Exon2 TTTTTTTCCCCAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGACATTGGCCA 50 ***********************************			200.000
ESR1_Exon2			
FV0307_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 GV0314_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 0970512_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 180 ESR1Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 179 EV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 0970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 ***********************************	10 -1 2		
GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 0970512_Exon2 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 180 090000_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTCCAG 179 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 179 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 110 **********************************	EDRI_ERONZ		90
O970512_Exon2 O970512_Exon2 O970512_Exon2 ESR1_Exon2 FV0307_Exon2 ESR1_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTTTTGCGAGGGCTGTAAGG TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTTTTGCAGGGCTGTAAGG TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGTCTTTGCGAGGGCTGTAAGG TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGTCTTTGCGAGGGCTGTAAGG O970512_Exon2 O970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGTCTTTGCGAGGGCTGTAAGG TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGTCTTTGCGAGGGCTGTAAGG O90000_Exon2 ESR1_Exon2 FV0307_Exon2 FV0307_Exon2 FV0314_Exon2 O970512_Exon2 O970512_Exon2 O970512_Exon2 O970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTTCAAACACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTCAAACACTCATCCCATTTT OR CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTTTT	FV0307_Exon2	GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG	180
GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG ESR1_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG EFV0307_Exon2 FV0307_Exon2 FV0314_Exon2 O970512_Exon2 O90000_Exon2 ESR1_Exon2 FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACAACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTCAAACAACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTCAAACAACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTCAAACAACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTCAAACAACTCATCCCATTTT 297	FV0314_Exon2	GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG	180
ESR1_Exon2 GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG 110 **********************************	0970512_Exon2	GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG	180
FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 FV0314_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 0970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 239 ESR1_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTTAAACACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTCAAACACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTTGTTTTTTTT	090000_Exon2	GTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGTGCAG	179
FV0314_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 0970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 239 ESR1_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTGTTGCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACAACTCATCCCATTTT 298 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTCAAACAACTCATCCCATTTT 297 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTTTTTTTT	ESR1Exon2		110
0970512_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 240 090000_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 239 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 ***********************************	FV0307_Exon2	TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG	240
TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 239 ESR1_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 ***********************************	FV0314_Exon2	TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG	240
FV0307_Exon2 TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG 170 ***********************************	0970512_Exon2	TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG	240
FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 FV0314_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTTGCAAACAACTCATCCCATTTT 297 ESR1Exon2 CCTTCTTCAAGAGAAGTATTCAAGG	090000_Exon2	TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG	239
FV0307_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 FV0314_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 297 ESR1Exon2 CCTTCTTCAAGAGAAGTATTCAAGG	ESR1Exon2	TGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGTAAGG	170
FV0314_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 297 ESR1Exon2 CCTTCTTCAAGAGAAGTATTCAAGG		***************************************	
0970512_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTGTGCAAACAACTCATCCCATTTT 298 090000_Exon2 CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 297 ESR1Exon2 CCTTCTTCAAGAGAAGTATTCAAGG	FV0307_Exon2	CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 29	98
090000_Exon2	FV0314_Exon2	CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 29	98
ESR1_Exon2 CCTTCTTCAAGAGAAGTATTCAAGG 195	0970512_Exon2	CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 29	8
	090000_Exon2	CCTTCTTCAAGAGAAGTATTCAAGGTAATAGTGTGTTGCAAACAACTCATCCCATTTT 29) 7
*********	ESR1Exon2	CCTTCTTCAAGAGAAGTATTCAAGG1	∌ 5

13.2.3. Exon3

090000_Exon3	TCTGTCCTCTTGCTTTTCATAGGACATAATGACTACATGTGTCCGGCCACCAACCA	60
0970512 Exon3	TCTGTCCTCTTGCTTTTCATAGGACATAATGACTACATGTGTCCGGCCACCAACCA	60
FV0307 Exon3	TCTGTCCTCTTGCTTTTCATAGGACATAATGACTACATGTGTCCGGCCACCAACCA	60
FV0314 Exon3	TCTGTCCTCTTGCTTTTCATAGGACATAATGACTACATGTGTCCGGCCACCAACCA	60
ESR1_Exon3	AGGACATAATGACTACATGTGTCCGGCCACCAACCAGTGC	40

090000_Exon3	ACGATTGATAAAAACAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGCTATGAA	120
0970512_Exon3	ACGATTGATAAAAACAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGCTATGAA	120
FV0307_Exon3	ACGATTGATAAAAACAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGCTATGAA	120
FV0314_Exon3	ACGATTGATAAAAACAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGCTATGAA	120
ESR1_Exon3	ACGATTGATAAAAA CAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGCTATGAA	100

090000 Exon3	GTGGGCATGATGAAAGGCGGTAGGTACCTTGGACCCAGGGCACCCACC	180
0970512 Exon3	GTGGGCATGATGAAAGGCGGTAGGTACCTTGGACCCAGGGCACCCACC	180
FV0307 Exon3	GTGGGCATGATGAAAGGCGGTAGGTACCTTGGACCCAGGGCACCCACC	180
FV0314 Exon3	GTGGGCATGATGAAAGGCGGTAGGTACCTTGGACCCAGGGCACCCACC	180
ESR1 Exon3	GTGGGCATGATGAAAGGCGG	120

13.2.4. Exon4

ESR1_Exon4 090000_Exon4 FV0307_Exon4 0970512_Exon4 FV0314_Exon4		60 60 60
ESR1_Exon4	GAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGACATGAGAGCTGCCAACC GAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGACATGAGAGCTGCCAACC	112 120
FV0307 Exon4	GACATGATGGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGACATGAGAGCTGCCAACC	2000
0970512 Exon4	GACATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGACATGAGAGCTGCCAACC	
FV0314_Exon4	GACATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGACATGAGAGCTGCCAACC	
ESR1_Exon4	TTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGCCCGGTGTTGTCCCTGA	
090000_Exon4	TTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGCCCGGTGTTGTCCCTGA	
FV0307_Exon4	TTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGCCCGGTGTTGTCCCTGA	
0970512_Exon4 FV0314_Exon4	TTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGCCCGGTGTTGTCCCTGA TTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGCCCGGTGTTGTCCCTGA ************************************	
ESR1_Exon4	CAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCCATAATCTATTCTGAGT	232
090000_Exon4	CAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCCATAATCTATTCTGAGT	240
FV0307_Exon4	CAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCCATAATCTATTCTGAGT	240
0970512_Exon4	CAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCCATAATCTATTCTGAGT	240
FV0314_Exon4	CAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCCATAATCTATTCTGAGT **********************************	240
ESR1_Exon4	ATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTGCTGACCAACCTTGCAG	292
090000_Exon4	ATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTGCTGACCAACCTTGCAG	300
FV0307_Exon4	ATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTGCTGACCAACCTTGCAG	300
0970512_Exon4	ATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTGCTGACCAACCTTGCAG	300
FV0314_Exon4	ATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTGCTGACCAACCTTGCAG ***********************************	300
ESR1_Exon4	ACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCAGG	338
090000_Exon4	ACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCAGGTAAGAAGACCAAGC	360
FV0307_Exon4	ACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCAGGTAAGAAGACCAAGC	360
0970512_Exon4	ACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCAGGTAAGAAGACCAAGC	360
FV0314_Exon4	ACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCAGGTAAGAAGACCAAGC	360
ESR1_Exon4		
090000_Exon4	TTGACTTTTATTTTGAAGAGCCATTCACTATTCATGAACAGGTTGCCATACGTACCATGG	420
FV0307_Exon4	TTGACTTTTATTTTGAAGAGCCATTCACTATTCATGAACAGGTTGCCATACGTACCATGG	420
0970512_Exon4	TTGACTTTTATTTTGAAGAGCCATTCACTATTCATGAACAGGTTGCCATACGTACCATGG	
EVO314 Exon4	TTGACTTTTATTTTGAAGACCCATTCACTATTCATGAACAGGTTGCCCATACCTACC	420

13.2.5. Exon5

		12061
FV0307_Exon5	ATTTGAGTCAGGGGAGATTTCTTGTCTCATTTCAGGATTTGTGGATCTGGCCCTCCATGA	60
090000_Exon5	ATTTGAGTCAGGGGAGATTTCTTGTCTCATTTCAGGATTTGTGGATCTGGCCCTCCATGA	60
0970512_Exon5	ATTTGAGTCAGGGGAGATTTCTTGTCTCATTTCAGGATTTGTGGATCTGGCCCTCCATGA	60
FV0314_Exon5	ATTTGAGTCAGGGGAGATTTCTTGTCTCATTTCAGGATTTGTGGATCTGGCCCTCCATGA	60
ESR1_Exon5	CAGGATTTGTGGATCTGGCCCTCCATGA	28

FV0307_Exon5	TCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAGATCCTCATGATTGGTCTTGTCTGGCG	120
090000 Exon5	TCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAGATCCTCATGATTGGTCTTGTCTGGCG	120
0970512 Exon5	TCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAGATCCTCATGATTGGTCTTGTCTGGCG	120
FV0314 Exon5	TCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAGATCCTCATGATTGGTCTTGTCTGGCG	120
ESR1 Exon5	TCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAGATCCTCATGATTGGTCTTGTCTGGCG	88
200 (200) 270 (200)	****************	
FV0307_Exon5	CTCCATGGAGCATCCAGGGAAGCTCCTATTTGCTCCTAACCTTCTCCTGGACAGGTGAGT	180
090000 Exon5	CTCCATGGAGCATCCAGGGAAGCTCCTATTTGCTCCTAACCTTCTCCTGGACAGGTGAGT	180
0970512 Exon5	CTCCATGGAGCATCCAGGGAAGCTCCTATTTGCTCCTAACCTTCTCCTGGACAGGTGAGT	180
FV0314 Exon5	CTCCATGGAGCATCCAGGGAAGCTCCTATTTGCTCCTAACCTTCTCCTGGACAGGTGAGT	180
ESR1 Exon5	CTCCATGGAGCATCCAGGGAAGCTCCTATTTGCTCCTAACCTTCTCCTGGACAGG	143

FV0307 Exon5	GACCTAGCTGTAGCTTGGGGAAAGTACATCCCTGAGAATCACCAGTTTTATACTGAATAC	240
090000 Exon5	GACCTAGCTGTAGCTTGGGGAAAGTACATCCCTGAGAATCACCAGTTTTATACTGAATAC	240
0970512 Exon5	GACCTAGCTGTAGCTTGGGGAAAGTACATCCCTGAGAATCACCAGTTTTATACTGAATAC	240
FV0314 Exon5	GACCTAGCTGTAGCTTGGGGAAAGTACATCCCTGAGAATCACCAGTTTTATACTGAATAC	240
ESR1_Exon5		

13.2.6. Exon6

FV0314_Exon6	TCTTCTGGAATTTTTTTGTGCTTTAATATTTTTGTCTGTGTGTG	60
ESR1_Exon6	AGGAACCAG	9
FV0307_Exon6	TCTTCTGGAATTTTTTTGTGCTTTAATATTTTTGTCTGTGTGTG	60
0970512_Exon6	TCTTCTGGAATTTTTTTGTGCTTTAATATTTTTGTCTGTGTGTG	60
090000_Exon6	TCTTCTGGAATTTTTTTGTGCTTTAATATTTTTTGTCTGTGTGTG	60
FV0314_Exon6	GGAAAA TGTGTGGAAGGCATGGTGGAGATCTTTGACA TGTTGCTGGCTACTTCGTCTCGG	120
ESR1_Exon6	GGAAAATGTGTGGAAGGCATGGTGGAGATCTTTGACATGTTGCTGGCTACTTCGTCTCGG	69
FV0307_Exon6	GGAAAATGTGTGGAAGGCATGGTGGAGATCTTTGACATGTTGCTGGCTACTTCGTCTCGG	120
0970512_Exon6	GGAAAATGTGTGGAAGGCATGGTGGAGATCTTTGACATGTTGCTGGCTACTTCGTCTCGG	120
090000_Exon6	GGAAAATGTGTGGAAGGCATGGTGGAGATCTTTGACATGTTGCTGGCTACTTCGTCTCGG	120

FV0314_Exon6	TTCCGTATGATGAATCTCCAGGGAGAAGAGTTTGTGTGCCTCAAATCCATCATCTTGCTT	180
ESR1_Exon6	TTCCGTATGATGAATCTCCAGGGAGAAGAGTTTGTGTGCCTCAAATCCATCATGTTGCTT	129
FV0307_Exon6	TTCCGTATGATGAA TCTCCAGGGAGAAGAGTTTGTGTGCCTCAAA TCCATCATCTTGCTT	180
0970512_Exon6	TTCCGTATGATGAATCTCCAGGGAGAAGAGTTTGTGTGCCTCAAATCCATCATCTTGCTT	180
090000_Exon6	TTCCGTATGATGAA TCTCCAGGGAGAAGA GTTTGTGTGCCTCAAA TCCA TCATCTTGCTT	180

FV0314 Exon6	AATTCTGGTGAGTGAATCACATGGGAAAATTTAATGCCAAGTTACTGGAAGAAACATTTA	240
ESR1 Exon6	AATTCTGG	137
FV0307 Exon6	AATTCTGGTGAGTGAATCACATGGGAAAATTTAATGCCAAGTTACTGGAAGAAACATTTA	240
0970512_Exon6	AATTCTGGTGAGTGAATCACATGGGAAAATTTAATGCCAAGTTACTGGAAGAAACATTTA	240
090000_Exon6	AATTCTGGTGAGTGAATCACATGGGAAAATTTAATGCCAAGTTACTGGAAGAAACATTTA *******	240

13.2.7. Exon7

090000_Exon7 FV0307_Exon7		60 60
0970512_Exon7	GCACTGTCTCAGTATCACCCCTTATCCGCTTTGAGTCTCTCTC	60
FV0314_Exon7	GCACTGTCTCAGTATCACCCCTTATCCGCTTTGAGTCTCTCTC	60
ESR1_Exon7	ATTC	4

090000_Exon7	AGGAGTGTACACATTTCTGTCCAGCACTCTGAGGTCTCTGGAAGAGAAGGACCACATCCA	120
FV0307_Exon7	AGGAGTGTACACATTTCTGTCCAGCACTCTGAGGTCTCTGGAAGAGAAGAGACCACATCCA	120
0970512_Exon7	AGGAGTGTACACATTTCTGTCCAGCACTCTGAGGTCTCTGGAAGAGAAGGACCACATCCA	120
FV0314_Exon7	AGGAGTGTACACATTTCTGTCCAGCACTCTGAGGTCTCTGGAAGAGAAGGACCACATCCA	120
ESR1_Exon7	TGGAGTGTACACATTTCTGTCCAGCACTCTGAGGTCTCTGGAAGAGAAGGACCACATCCA	64

090000_Exon7	CCGCGTCCTGGACAAGATCACAGACACCTTGATCCATCTGATGGCCAAAGCAGGCCTGAC	180
FV0307_Exon7	CCGCGTCCTGGACAAGATCACAGACACCTTGATCCATCTGATGGCCAAAGCAGGCCTGAC	180
0970512_Exon7	CCGCGTCCTGGACAAGATCACAGACACCTTGATCCATCTGATGGCCAAAGCAGGCCTGAC	180
FV0314_Exon7	CCGCGTCCTGGACAAGATCACAGACACCTTGATCCATCTGATGGCCAAAGCAGGCCTGAC	180
ESR1_Exon7	CCGCGTCCTGGACAAGATCACAGACACCTTGATCCATCTGATGGCCAAAGCAGGCCTGAC	124

090000_Exon7	TCTGCAGCAGCACCGGCGTCTGGCCCAACTCCTCCTCATCCTCTCTCACTTCAGGCA	240
FV0307_Exon7	TCTGCAGCAGCACCGGCGTCTGGCCCAACTCCTCCTCATCCTCTCTCACTTCAGGCA	240
0970512_Exon7	TCTGCAGCAGCACCGGCGTCTGGCCCAACTCCTCCTCATCCTCTCTCACTTCAGGCA	240
FV0314_Exon7	TCTGCAGCAGCACCGGCGTCTGGCCCAACTCCTCCTCATCCTCTCTCACTTCAGGCA	240
ESR1_Exon7	TCTGCAGCAGCACCGGCGTCTGGCCCAACTCCTCCTCATCCTCTCTCACTTCAGGCA	184
090000_Exon7	CATGAGGTGAGGCCTCCTTGGGTTTCTCTCGCAGCAAAGATGTAAGGGAATCCA 294	
FV0307_Exon7	CATGAGGTGAGGCCTCCTTGGGTTTCTCTCGCAGCAAAGATGTAAGGGAATCCA 294	
0970512_Exon7	CATGAGGTGAGGCCTCCTTGGGTTTCTCTCGCAGCAAAGATGTAAGGGAATCCA 294	
FV0314_Exon7	CATGAGGTGAGGCCTCCTTGGGTTTCTCTCGCAGCAAAGATGTAAGGGAATCCA 294	
ESR1_Exon7	CATGAG 190	

13.2.8. Exon8

FV0314_Exon8	TGAGGCTGATCTGAGCGGTCCTGTCTGTCTCCCCTCCTGCAGCAACAAAGGCATGGAG	
ESR1_Exon8	AGCAACAAAGGCATGGAG	18
FV0307_Exon8	TGAGGCTGGTCTGA-CGGTCCTGTCTGTGTCTCCCCTCCTGCAGCAACAAAGGCATGGAG	59
0970512_Exon8	TGAGGCTGRTCTGAGCGGTCCTGTCTGTGTCTCCCCTCCTGCAGCAACAAAGGCATGGAG	60
090000_Exon8	TGAGGCTGRTCTGAGCGGTCCTGTCTGTGTCTCCCCTCCTGCAGCAACAAAGGCATGGAG *********************************	60
FV0314_Exon8	CATCTATACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATG	120
ESR1_Exon8	CATCTATACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATG	78
FV0307_Exon8	CATCTATACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATG	119
0970512_Exon8	CATCTATACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATG	120
090000_Exon8	CATCTATACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATG	120
FV0314_Exon8	CTGGATGCCCACCGCCTGCACGCCCAGCCAACTTTGGGAGCGCACCTCCAGAGGACGTG	180
ESR1_Exon8	CTGGATGCCCACCGCCTGCACGCCCCAGCCAACTTTGGGGAGCGCACCTCCAGAGGACGTG	138
FV0307_Exon8	CTGGATGCCCACCGCCTGCACGCCCCAGCCAACTTGGGGAGCGCACCTCCAGAGGACGTG	
0970512 Exon8	CTGGATGCCCACCGCCTGCACGCCCCAGCCAACTTYGGGAGCGCACCTCCAGAGGACGTG	
090000_Exon8	CTGGATGCCCACCGCCTGCACGCCCAGCCAACTTYGGGAGCGCACCTCCAGAGGACGTG	180
FV0314_Exon8	AATCAGAGCCAGCTGGCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTAC	70000
ESR1_Exon8	AATCAGAGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTAC	198
FV0307_Exon8	AATCAGAGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTAC	
0970512_Exon8	AATCAGAGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTAC	STEEL
090000_Exon8	AATCAGAGCCAGCTGGCCCCACTGGCTCCACTCATCGCATTCCTTGCAAACATATTAC ***************************	240
FV0314_Exon8	ATCACTGGGGAGGCAGAGATTTCCCCAGCACAGTCTGAGAGTTCCCCCGCTCCCCGCCA	
ESR1_Exon8	ATCACTGGGGAGGCAGAGATTTCCCCAGCACAGTCTGAGAGTTCCCCCGGCTCCCCGCCA	
FV0307_Exon8	ATCACTGGGGAGGCAGAGATTTCCCCAGCACAGTCTGAGAGTTCCCCCGCTCCCCGCCA	
0970512_Exon8	ATCACTGGGGAGGCAGAGAATTTCCCCAGCACAGTCTGAGAGTTCCCCCGGCTCCCCGCCA	
090000_Exon8	ATCACTGGGGAGGCAGAGATTTCCCCAGCACAGTCTGAGAGTTCCCCCGCTCCCCGCCA *******************************	300
FV0314_Exon8	AGGTTCTGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTG	
ESR1_Exon8	AGGTTCTGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTG	
FV0307_Exon8	AGGTTCTGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTG	
0970512_Exon8	AGGTTCTGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTG	
090000_Exon8	AGGTTCTGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTG **********************************	360
FV0314_Exon8	$\tt CCCCTGCACACACTCTTGGCATGCACCCACCACGGGCTTTCTGATGTGGATGGCCATTCA$	
ESR1_Exon8	CCCCTGCACACACTCTTGGCATGCACCCACCGGGCTTTCTGATGTGGATGGCCATTCA	
FV0307_Exon8	CCCCTGCACACACTCTTGGCATGCACCCACCGGGCTTTCTGATGTGGATGGCCATTCA	
0970512_Exon8 090000_Exon8	CCCCTGCACACTCTTGGCATGCACCCACCACGGGCTTTCTGATGTGGATGGCCATTCA CCCCTGCACACACTCTTGGCATGCACCCACCACGGGCTTTCTGATGTGGATGGCCATTCA ********************************	
FV0314_Exon8	TTCGCTCACTCAGTTCTACGTGGCACGCCTTGTTTTGGGAACAGCCAAAGGGATTCCAGG	480
ESR1_Exon8	${\tt TTCGCTCACTCAGTTCTACGTGGCACGCCTTGTTTTGGGAACAGCCAAAGGGATTCCAGG}$	
FV0307_Exon8	TTCGCTCACTCAGTTCTACGTGGCACGCCTTGTTTTGGGAACAGCCAAAGGGATTCCAGG	
0970512_Exon8	TTCGCTCACTCAGTTCTACGTGGCACGCCTTGTTTTGGGAACAGCCAAAGGGATTCCAGG	
090000_Exon8	TTCGCTCACTCAGTTCTACGTGGCACGCCTTGTTTTGGGAACAGCCAAAGGGATTCCAGG **********************************	480
FV0314_Exon8	GCTCATTTCTTTGTTACCGTTCTCTCTCTCTCTCTCTCTC	
ESR1_Exon8	GCTCATTTCTTTGTTACCGTTCTCTCTCTCTCTCTCTCTC	
FV0307_Exon8	GCTCATTTCTTTGTTACCGTTCTCTCTCTCTCTCTCTCTC	
0970512_Exon8	GCTCATTTCTTTGTTACCGTTCTCTCTCTCTCTCTCTGCCTTTGCTACCTTACTCAGCACGA	
090000_Exon8	GCTCATTTCTTTGTTACCGTTCTCTCTCTCTCTCTCTTGCTACCTTACTCAGCACGA *******************************	540
FV0314_Exon8	GGATTCACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGC	
ESR1_Exon8	GGATTCACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGC	
FV0307_Exon8	GGATTCACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGC	
0970512_Exon8 090000_Exon8	GGATTCACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGC GGATTCACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGC	

FV0314_Exon8	ACTTTAGCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACG	TGAAG 660
ESR1_Exon8	ACTTTAGCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACG	TGAAG 618
FV0307_Exon8	ACTTTAGCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACG	TGAAG 659
0970512_Exon8	ACTTTAGCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACG	TGAAG 660
090000_Exon8	ACTTTAGCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACG	TGAAG 660
	**************	****
FV0314_Exon8	CACTTTTTAATGGATCTGAGCATCAGCCACAGGAAAGAACTGAAAGTGG 709	
ESR1_Exon8	CAC 621	
FV0307_Exon8	CACTTTTTAATGGATCTGAGCATCAGCCACAGGAAAGAACTGAAAGTGG 708	
0970512_Exon8	CACTTTTTAATGGATCTGAGCATCAGCCACAGGAAAGAACTGAAAGTGG 709	
090000_Exon8	CACTTTTTAATGGATCTGAGCATCAGCCACAGGAAAGAACTGAAAGTGG 709 ***	

13.3. Alignment der mRNA des Östrogenrezeptors

090000_mRNA 0970512_mRNA	GGTGGCCGGCTGCTGAGCCCTCTGC	
NM_001001443.1	CATTTCTGGAAAGACGCTCTTGATCCAGCAGGGTGGCCGGCC	60
FV0307_mRNA FV0314 mRNA	GGTGGCCGGCTGCTGAGCCCTCTGC	29
I VOJIA_NKNA	**************	23
090000_mRNA	$\tt CGCGGGGGGAGACGGTCTGCGGCCGGCCCGCGCCGCTCATCATGACCATGACCCTGCAC$	89
0970512_mRNA	CGCGGGGGGAGACGGTCTGCGGCCGGCCGCGCCGCTCATCATGACCATGACCCTGCAC	89
NM_001001443.1 FV0307_mRNA	CGCGGGGGGAGACGGTCTGCGGCCGGCCGGCCGCTCATCATGACCATGACCCTGCAC CGCGGGGGGGAGACGGTCTGCGGCCGGCCGCCGCCGCTCATCATGACCATGACCCTGCAC	120 89
FV0314_mRNA	CGCGGGGGGAGACGGTCTGCGGCCGGCCCGCGCCGCTCATCATGACCATGACCCTGCAC	89

090000_mRNA	ACCAAAGCGTCCGGCATGGCCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCCTG	
0970512_mRNA NM 001001443.1	ACCAAAGCGTCCGGCATGGCCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCCTG ACCAAAGCGTCCGGCATGGCCCTGCTGCACCAGATCCAACGCCAACGAGCTGGAGCCCTG	149 180
FV0307_mRNA	ACCAAAGCGTCCGGCATGGCCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCCTG	149
FV0314_mRNA	ACCAAAGCGTCCGGCATGGCCCTGCTGCACCAGATCCAAGCCAACGAGCTGGAGCCCCTG ********************************	1900
090000_mRNA	AACCGCCCGCAGCTCAAGATCCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGC	209
0970512_mRNA	AACCGCCCGCAGCTCAAGATCCCCCTGGAGCGGCCCCTGGGCCGAGGTGTACATGGACAGC	209
NM_001001443.1 FV0307_mRNA	AACCGCCCGCAGCTCAAGATCCCCCTGGAGCGGCCCCTGGGCCGAGGTGTACATGGACAGC AACCGCCCGCAGCTCAAGATCCCCCTGGAGCGGCCCCTGGGCCGAGGTGTACATGGACAGC	240
FV0314_mRNA	AACCGCCCGCAGCTCAAGATCCCCCTGGAGCGGCCCCTGGGCGAGGTGTACATGGACAGC	209

090000_mRNA	AGCAAGCCCGCCGTGTACAACTACCCCGAGGGCGCGCGTACGACTTCAACGCCGCGGCC	269
0970512_mRNA	${\tt AGCAA} {\tt GCCCGCCGTGTACAACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCCCGCGCCGCGCCGCGCGCCGCGCGCCGC$	269
NM_001001443.1	AGCAAGCCCGCCGTGTACAACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCC	300
FV0307_mRNA FV0314 mRNA	AGCAAGCCCGCCGTGTACAACTACCCCGAGGGCGCGCGTACGACTTCAACGCCGCGGCC AGCAAGCCCGCCGTGTACAACTACCCCGAGGGCGCCGCGTACGACTTCAACGCCGCGGCC	269 269
I VOJIA_MKNA	****************	203
090000_mRNA	CCCGCCTCCGCGCCCGTCTACGGCCAGTCGGGCCTCCCCTACGGCCCCGGGTCCGAGGCG	
0970512_mRNA NM 001001443.1	CCCGCCTCCGCGCCCGTCTACGGCCAGTCGGGCCTCCCCTACGGCCCCGGGTCCGAGGCG CCCGCCTCCGCGCCCGTCTACGGCCAGTCGGGCCTCCCCTACGGCCCCGGGTCCGAGGCG	329 360
FV0307_mRNA	CCCGCCTCCGCGCCCGTCTACGGCCAGTCGGGCCTCCCCTACGGCCCCGGGTCCGAGGCG	
FV0314_mRNA	CCCGCCTCCGCGCCCGTCTACGGCCAGTCGGGCCTCCCCTACGGCCCCGGGTCCGAGGCG *******************************	329
090000_mRNA	$\tt GCGGCGTTCGGCGCCAACGGCCTGGGGGCCTTCCCGCCGCTCAACAGCGTGTCTCCGAGC$	389
0970512_mRNA NM 001001443.1	GCGGCGTTCGGCGCCAACGGCCTGGGGGCCTTCCCGCCGCTCAACAGCGTGTCTCCGAGC GCGGCGTTCGGCGCCAACGGCCTGGGGGCCTTCCCGCCGCTCAACAGCGTGTCTCCGAGC	389 420
FV0307_mRNA	GCGGCGTTCGGCGCCAACGGCCTGGGGGGCCTTCCCGCCGCTCAACAGCGTGTCTCCGAGC	389
FV0314_mRNA	GCGGCGTTCGGCGCCAACGGCCTGGGGGCCTTCCCGCCGCTCAACAGCGTGTCTCCGAGC *********************************	389
090000_mRNA	CCGCTGGTGCTGCTACACCCGCCTCCGCAGCCACCCCTTCCTGCACCCGCACGGC	449
0970512_mRNA	CCGCTGGTGCTGCTACACCCGCCTCCGCAGCCCTCCTCCTGCCACCGCACGGC	449
NM_001001443.1 FV0307_mRNA	CCGCTGGTGCTGCTACACCCGCCTCCGCAGCCCCTTCTCGCCCCTTCCTGCACCCGCACGGCCCGCTGGTGCTGCTACACCCGCCTCCGCAGCCCCCTTCCTGCACCCGCACGGC	480
FV0314_mRNA	CCGCTGCTGCTACACCCGCCTCCGCAGCCCCTTCCTGCACCCGCACGGC **************************	449
090000_mRNA	${\tt CAACAGGTGCCCTATTACCTGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGC}$	
0970512_mRNA NM 001001443.1	CAACAGGTGCCCTATTACCTGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGC	
FV0307_mRNA	CAACAGGTGCCCTATTACCTGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGC CAACAGGTGCCCTATTACCTGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGC	
FV0314_mRNA	CAACAGGTGCCCTATTACCTGGAGAACGAGTCGAGCGGCTATGCGGTGCGCGAAGCCGGC **************************	
090000_mRNA	CCTCCCGCCTACTACAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGAG	569
0970512_mRNA	CCTCCCGCCTACTACAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGAG	
NM_001001443.1	CCTCCCGCCTACTACAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGAG	
FV0307_mRNA FV0314_mRNA	CCTCCGCCTACTACAGGCCAAATTCAGATAATCGACGCCAAGGTGGCAGAGAGAG	

090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GCCAGTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGT GCCAGTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGT GCCAGTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGT GCCAGTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGT GCCAGTACCAGTGACAAGGGAAGCATGGCCATGGAATCTGCCAAGGAGACTCGCTACTGT ***********************************	629 629 660 629
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GCAGTGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGT GCAGTGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTGGTCTTGCGAGGGCTGT GCAGTGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTTGCGAGGGCTGT GCAGTGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTTGCGAGGGCTGT GCAGTGTGCAATGACTATGCCTCAGGCTACCATTACGGAGTTTTGGTCTTTGCGAGGGCTGT ********************************	689 720 689 689
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	AAGGCCTTCTTCAAGAGAAGTATTCAAGGACATAATGACTACATGTGTCCGGCCACCAAC AAGGCCTTCTTCAAGAGAAGTATTCAAGGACATAATGACTACATGTGTCCGGCCACCAAC AAGGCCTTCTTCAAGAGAAGTATTCAAGGACATAATGACTACATGTGTCCGGCCACCAAC AAGGCCTTCTTCAAGAGAAGTATTCAAGGACATAATGACTACATGTGTCCGGCCACCAAC AAGGCCTTCTTCAAGAGAAGTATTCAAGGACATAATGACTACATGTGTCCGGCCACCAAC	749 749 780 749 749
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CAGTGCACGATTGATAAAA CAGGAGGAA GAGCTGTCAGGCCTGCCGGCTACGCAAGTGC CAGTGCACGATTGATAAAAA CAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGC CAGTGCACGATTGATAAAAA CAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGC CAGTGCACGATTGATAAAAA CAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGC CAGTGCACGATTGATAAAAACAGGAGGAAGAGCTGTCAGGCCTGCCGGCTACGCAAGTGC	809 809 840 809
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	TATGAAGTGGGCATGATGAAA GGCGGATACGGAAA GACCGAAGAGGAGGGAGGATGTTG TATGAAGTGGGCATGATGAAA GGCGGATACGGAAAGACCGAAGAGGAGGGAGGATGTTG TATGAAGTGGGCATGATGAAA GGCGGATACGGAAAGACCGAAGAGGAGGGAGGATGTTG TATGAAGTGGGCATGATGAAAGGCGGGATACGCGAAAGACCGAAGAGGAGGGAG	869 900 869
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	AAGCACAAGCGCCAGAGAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGAC AAGCACAAGCGCCAGAGAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGAC AAGCACAAGCGCCAGAGAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGAC AAGCACAAGCGCCAGAGAGATGATGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGAC AAGCACAAGCGCCAGAGAGATGATGGGGGAGGGCAGGAACGAAGCGGTGCCCTCCGGAGAC	929 929 960 929 929
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	ATGAGAGCTGCCAACCTTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGC ATGAGAGCTGCCAACCTTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGC ATGAGAGCTGCCAACCTTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGC ATGAGAGCTGCCAACCTTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGC ATGAGAGCTGCCAACCTTTGGCCAAGCCCCATCATGATTAAACACACTAAGAAGAACAGC	
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CCGGTGTTGTCCCTGACAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCC CCGGTGTTGTCCCTGACAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCC CCGGTGTTGTCCCTGACAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCC CCGGTGTTGTCCCTGACAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCC CCGGTGTTGTCCCTGACAGCTGACCAGATGATCAGTGCCTTGCTGGAGGCTGAGCCCCCC ******************************	104 108 104
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	ATAATCTATTCTGAGTATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTG ATAATCTATTCTGAGTATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTG ATAATCTATTCTGAGTATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTG ATAATCTATTCTGAGTATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTG ATAATCTATTCTGAGTATGACCCTACCAGACCTTTCAGTGAGGCTTCAATGATGGGCTTG *******************************	110 114 110
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CTGACCAACCTTGCAGACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCA CTGACCAACCTTGCAGACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCA CTGACCAACCTTGCAGACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCA CTGACCAACCTTGCAGACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCA CTGACCAACCTTGCAGACAGGGAGCTGGTACACATGATCAACTGGGCAAAGAGGGTGCCA	116 120 116

090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GGATTTGTGGATCTGGCCCTCCATGATCAAGTCCACCTTTTGGAATGTGCCTGGCTAGAG GGATTTGTGGATCTGGCCCTCCATGATCAAGTCCACCTTTTTGGAATGTGCCTGGCTAGAG GGATTTGTGGATCTGGCCCTCCATGATCAAGTCCACCTTTTTGGAATGTGCCTGGCTAGAG GGATTTGTGGATCTGGCCCTCCATGATCAAGTCCACCTTTTTGGAATGTGCCTGGCTAGAG GGATTTGTGGATCTGGCCCTCCATGATCAAGTCCACCTTTTTGGAATGTGCCTGGCTAGAG **********************************	122 126 122
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	ATCCTCATGATTGGTCTTGTCTGGCGCTCCATGGAGCATCCAGGGAAGCTCCTATTTGCT ATCCTCATGATTGGTCTTGTCTGGCGCTCCATGGAGCATCCAGGGAAGCTCCTATTTGCT ATCCTCATGATTGGTCTTGTCTGGCGCTCCATGGAGCATCCAGGGAAGCTCCTATTTGCT ATCCTCATGATTGGTCTTGTCTGGCGCTCCATGGAGCATCCAGGGAAGCTCCTATTTGCT ATCCTCATGATTGGTCTTGTCTGGCGCTCCATGGAGCATCCAGGGAAGCTCCTATTTGCT *********************************	128 132 128
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CCTAACCTTCTCCTGGACAGGAACCAGGGAAAATGTGTGGAAGGCATGGTGGAGATCTTT CCTAACCTTCTCCTGGACAGGAACCAGGGAAAATGTGTGGAAGGCATGGTGGAGATCTTT CCTAACCTTCTCCTGGACAGGAACCAGGGAAAATGTGTGGAAGGCATGGTGGAGATCTTT CCTAACCTTCTCCTGGACAGGAACCAGGGAAAATGTGTGGAAGGCATGGTGGAGATCTTT CCTAACCTTCTCCTGGACAGGAACCAGGGAAAATGTGTGGGAAGGCATGGTGGAGATCTTT *********************************	134 138 134
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GACATGTTGCTGGCTACTTCGTCTCGGTTCCGTATGATGAATCTCCAGGGAGAAGAGTTT GACATGTTGCTGGCTACTTCGTCTCGGTTCCGTATGATGAATCTCCAGGGAGAAGAGTTT GACATGTTGCTGGCTACTTCGTCTCGGTTCCGTATGATGAATCTCCAGGGAGAAGAGTTT GACATGTTGCTGGCTACTTCGTCTCGGTTCCGTATGATGAATCTCCAGGGAGAAGAGTTT GACATGTTGCTGGCTACTTCGTCTCGGTTCCGTATGATGAATCTCCAGGGAGAAGAGTTT *************************	140 144 140
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GTGTGCCTCAAATCCATCATCTTGCTTAATTCTGGAGTGTACACATTTCTGTCCAGCACT GTGTGCCTCAAATCCATCATCTTGCTTAATTCTGGAGTGTACACATTTCTGTCCAGCACT GTGTGCCTCAAATCCATCATCTTGCTTAATTCTGGAGTGTACACATTTCTGTCCAGCACT GTGTGCCTCAAATCCATCATCTTGCTTAATTCTGGAGTGTACACATTTCTGTCCAGCACT GTGTGCCTCAAATCCATCATCTTGCTTAATTCTGGAGTGTACACATTTCTGTCCAGCACT	146 150 146
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CTGAGGTCTCTGGAAGAGAAGGACCACATCCACCGCGTCCTGGACAAGATCACAGACACC CTGAGGTCTCTGGAAGAGAAGGACCACATCCACCGCGTCCTGGACAAGATCACAGACACC CTGAGGTCTCTGGAAGAAGGACCACATCCACCGCGTCCTGGACAAGATCACAGACACC CTGAGGTCTCTGGAAGAAGGACCACATCCACCGCGTCCTGGACAAGATCACAGACACC CTGAGGTCTCTGGAAGAAGGACCACATCCACCGCGTCCTGGACAAGATCACAGACACC	152 156 152
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	TTGATCCATCTGATGGC CAAA GCA GGCCTGACTCTGCAGCAGCAGCACCCGGCGTCTGGCC TTGATCCATCTGATGGC CAAA GCAGGCCTGACTCTGCAGCAGCAGCACCGGCGTCTGGCC TTGATCCATCTGATGGC CAAA GCAGGCCTGACTCTGCAGCAGCAGCACCGGCGTCTGGCC TTGATCCATCTGATGGC CAAA GCAGGCCTGACTCTGCAGCAGCAGCACCGGCGTCTGGCC TTGATCCATCTGATGGC CAAAGCAGGCCTGACTCTGCAGCAGCAGCACCGGCGTCTGGCC	158 162 158
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	CAACTCCTCCTCATCCTCTCACTTCAGGCACATGAGCAACAAAGGCATGGAGCATCTA CAACTCCTCCTCATCCTCTCACTTCAGGCACATGAGCAACAAAGGCATGGAGCATCTA CAACTCCTCCTCATCCTCTCACTTCAGGCACATGAGCAACAAAGGCATGGAGCATCTA CAACTCCTCCTCATCCTCTCACTTCAGGCACATGAGCAACAAAGGCATGGAGCATCTA CAACTCCTCCTCATCCTCTCACTTCAGGCACATGAGCAACAAAGGCATGGAGCATCTA *********************************	164 168 164
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	TACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATGCTGGAT TACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATGCTGGAT TACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATGCTGGAT TACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATGCTGGAT TACAGCATGAAGTGCAAGAACGTGGTGCCTCTCTACGACCTGCTGCTGGAGATGCTGGAT **********************************	170 174 170
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GCCCACCGCCTGCACGCCCAGCCAACTTTGGGAGCGCACCTCCAGAGGACGTGAATCAG GCCCACCGCCTGCACGCCCCAGCCAACTTTGGGAGCGCACCTCCAGAGGACGTGAATCAG GCCCACCGCCTGCACGCCCAGCCAACTTTGGGAGCGCACCTCCAGAGGACGTGAATCAG GCCCACCGCCTGCACGCCCAGCCAACTTTGGGAGCGCACCTCCAGAGGACGTGAATCAG GCCCACCGCCTGCACGCCCCAGCCAACTTTGGGAGCGCCCTCCAGAGGACGTGAATCAG GCCCACCGCCTGCACGCCCCAGCCAACTTTGGGAGCGCCCTCCAGAGGACGTGAATCAG	176 180 176

090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	AGCCAGCTGGCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTACATCACT AGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTACATCACT AGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTACATCACT AGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTACATCACT AGCCAGCTGGCCCCCACTGGCTGCACTTCATCGCATTCCTTGCAAACATATTACATCACT *********************	182 186
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GGGGAGCAGAATTTCCCCAGCACAGTCTGAGAGTTCCCCGGCTCCCGCCAAGGTTC GGGGAGGCAGAAATTTCCCCAGCACAGTCTGAGAGTTCCCCGGCTCCCGCCAAGGTTC GGGGAGGCAGAATTTCCCCAGCACAGTCTGAGAGTTCCCCGGCTCCCCGCCAAGGTTC GGGGAGGCAGAGAATTTCCCCAGCACAGTCTGAGAGTTCCCCCGCTCCCCGCCAAGGTTC GGGGAGGCAGAGAATTTCCCCAGCACAGTCTGAGAGTTCCCCCGCTCCCCGCCAAGGTTC **********************************	188 188 192 188 188
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	TGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTGCCCCTG TGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTGCCCCTG TGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTGCCCCTG TGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTGCCCCTG TGAGAATCCCTGTTGCACTTTACCCACATCATGCATCACTCTAGCCGAATTCTGCCCCTG	194 198 194
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	${\tt CACACACTCTTGGCATGCACCCACCACGGGCTTTCTGATGTGGATGGCCATTCATT$	200 204
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA		210 206
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	TTCTTTGTTACCGTTCTCTCTCTCTCTCTCTCTCTCTCTC	212
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	ACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGCACTTTA ACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGCACTTTA ACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGCACTTTA ACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGCACTTTA ACCTAGCGCTTCATGACTGAGCTCGGTCTCCCAGCTGGGTTCAGATGACTGTGCACTTTA ********************************	218 222 218
090000_mRNA 0970512_mRNA NM_001001443.1 FV0307_mRNA FV0314_mRNA	GCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACGTGAAGCAC 224 GCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACGTGAAGCAC 224 GCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACGTGAAGCAC 224 GCTATTTGTGACCCGGGCCTGGAGAGTGGACATTTCACCTCCGTGAACGTGAAGCAC 224	46 77 46

13.4. Alignment der Proteinsequenz des Östrogenrezeptors

FV0307	MTMTLHTKASGMALLHQ IQANELEPLNRPQLK IPLERPLGEVYMDSSKPAVYNYPEGAAY	
FV0314 NP_001001443.1	MTMTLHTKASGMALLHQIQANELEPLNRPQLKIPLERPLGEVYMDSSKPAVYNYPEGAAY MTMTLHTKASGMALLHQIQANELEPLNRPQLKIPLERPLGEVYMDSSKPAVYNYPEGAAY	
FV0307	$\tt DFNAAAPASAPVYGQSGLPYGPGSEAAAFGANGLGAFPPLNSVSPSPLVLLHPPPQPLSP$	120
FV0314 NP_001001443.1	DFNAAAPASAPVYGQSGLPYGPGSEAAAFGANGLGAFPPLNSVSPSPLVLLHPPPPQPLSP DFNAAAPASAPVYGQSGLPYGPGSEAAAFGANGLGAFPPLNSVSPSPLVLLHPPPPQPLSP	120 120

FV0307	Flhp hgqqvpyylenessgyavreacppayyrpnsdnrrqggrerlastsdkgsmamesa	180
FV0314	FLHPHGQQVPYYLENESSGYAVREAGPPAYYRPNSDNRRQGGRERLASTSDKGSMAMESA	180
NP_001001443.1	FLHPHGQQVPYYLENESSGYAVREAGPPAYYRPNSDNRRQGGRERLASTSDKGSMAMESA	180
FV0307	KETRYCAVCNDYASGYHYGVWSCEGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQA	240
FV0314	KETRYCAVCNDYASGYHYGVWSCEGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQA	240
NP 001001443.1	KETRYCAVCNDYASGYHYGVWSCEGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQA	
8500 00 10 1 0 3.5.00 00 10 10 10 10 10 10 10 10 10 10 10 1	***************************************	
FV0307	CRLRKCYEVGMMKGGIRKDRRGGRMLKHKRORDDGEGRNEAVPSGDMRAANLWPSPIMIK	300
FV0314	CRLRKCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRNEAVPSGDMRAANLWPSPIMIK	300
NP_001001443.1	CRLRKCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRNEAVPSGDMRAANLWPSPIMIK	With the same

FV0307	HTKKNSPVLSLTADQMISALLEAEPPIIYSEYDPTRPFSEASMMGLLTNLADRELVHMIN	360
FV0314	HTKKNSPVLSLTADQMISALLEAEPPIIYSEYDPTRPFSEASMMGLLTNLADRELVHMIN	360
NP_001001443.1	HTKKNSPVLSLTADOMISALLEAEPPIIYSEYDPTRPFSEASMMGLLTNLADRELVHMIN	360
SANCE MAN COLLA		-01/2020
FV0307		420
FV0314	WAKRVPGFVDLALHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFAPNLLLDRNQGKCVE	
NP_001001443.1	WAKRVPGFVDLALHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFAPNLLLDRNQGKCVE	420
FV0307	CMORTED MILATE CORDANIA CAPPENAL VCTTTI MCCNATET CONTO CI PRADUTUDAT	400
FV0314	GMVE IFDMLLATSSRFRMNIQGEEFVCLKSIILLNSGVYTFLSSTLRSLEEKDHIHRVL	
NP 001001443.1	GMVE IFDMLLATSSRFRMMNLQGEEFVCLKSIILLNSGVYTFLSSTLRSLEEKDHIHRVL	
NP_001001443.1	GMVE IFDMLLATSSRFRMMNLQGEEFVCLKSIILLNSGVYTFLSSTLRSLEEKDHIHRVL	400
FV0307	DKITDTLIHLMAKAGLTLOOOHRRLAQLLLILSHFRHMSNKGMEHLYSMKCKNVVPLYDL	540
FV0314	DKITDTLIHLMAKAGLTLQQQHRRLAQLLLILSHFRHMSNKGMEHLYSMKCKNVVPLYDL	
NP_001001443.1	DKITDTLIHLMAKAGLTLQQQHRRLAQLLLILSHFRHMSNKGMEHLYSMKCKNVVPLYDL	
ALTOS	************************	
FV0307	LLEMLDAHRLHAPANFGSAPPEDVNQSQLAPTGCTSSHSLQTYYITGEAENFPSTV 596	
FV0314	LLEMLDAHRLHAPANFGSAPPEDVNQSQLAPTGCTSSHSLQTYYITGEAENFPSTV 596	
NP_001001443.1	LLEMLDAHRLHAPANFGSAPPEDVNQSQLAPTGCTSSHSLQTYYITGEAENFPSTV 596	
: (1964) 1475-1576 (1964) 1476 (1964) 1476 (1964) 1476 (1964) 1476 (1964) 1476 (1964) 1476 (1964) 1476 (1964)	*************	

13.5. Alignment der Promotor B Region des Östrogenrezeptors

0970512_PromB	GTCAGGTATTCCGTCAGGTGTTTGGGATAGCAATTAAAGCCAAGTAGCGGTTGTATCAGA	60
AY641988.1 FV0307 PromB	GTCAGGTATTCCGTCAGGTGTTTGGGATAGCAATTAAAGCCAAGTAGCGGTTGTATCAGA	60
FV0314_PromB	GTCAGGTATTCCGTCAGGTGTTTGGGATAGCAATTAAAGCCAAGTAGCGGTTGTATCAGA	
0970512_PromB AY641988.1	GTTTATTAGACTGGGGACAAGGAAGTTTATTAAAAAGTATAAACTGTCCATGATTATAGG	120
FV0307_PromB FV0314_PromB	GTTTATTAGACTGGGGACAAGGAAGTTTATTAAAAAGTATAAACTGTCCATGATTATAGG GTTTATTAGACTGGGGACAAGGAAGTTTATTAAAAAGTATAAACTGTCCATGATTATAGG	
0970512_PromB AY641988.1	TGCACAATGTATTTACCATAATTTTTAAATATATATATAT	180
FV0307_PromB FV0314_PromB	TGCACAATGTATTTACCATAATTTTTAAATATATATTATACACATACATTATATATATA TGCACAATGTATTTACCATAATTTTTAAATATATATATAT	
0970512_PromB AY641988.1	CACACATTATATATATAAATTTATTCTAATATATATATA	240
FV0307_PromB FV0314_PromB	CACACATTA TATA TTATATAATTTATTCTAATA TATTATATATA	
0970512_PromB AY641988.1	GAGCAGGTTTAACTTTTAATGCAGTACCAAACTTTTTCCTGTTTCTTTTCAATCTGGAT	300
FV0307_PromB FV0314_PromB	GAGCAGGTTTAACTTTTAATGCAGTACCAAACTTTTTCCTGTTTCTTTTTCAATCTGGAT GAGCAGGTTTAACTTTTAATGCAGTACCAAACTTTTTCCTGTTTCTTTTTCAATCTGGAT	50000000
0970512_PromB AY641988.1	ATTTGAATCTGCATATCCTAGTCCAAAGGAACAGAAAGGCATCACTGACTTTCAAAATTT	360
7V0307_PromB	ATTTGAATCTGCATATCCTAGTCCAAAGGAACAGAAAGGCATCACTGACTTTCAAAATTT	360
FV0314_PromB	ATTTGAATCTGCATATCCTAGTCCAAAGGAACAGAAAGGCATCACTGACTTTCAAAATTT	360
0970512_PromB AY641988.1	GTTGCTGAGATCATCAGTACAACATAATTGCTAAAGATGTGGTTAATGACCTGAGGTTCT	420
FV0307_PromB FV0314_PromB	GTTGCTGAGATCATCAGTACAACATAATTGCTAAAGATGTGGTTAATGACCTGAGGTTCT GTTGCTGAGATCATCAGTACAACATAATTGCTAAAGATGTGGTTAATGACCTGAGGTTCT	
0970512_PromB AY641988.1	GTTTTTTTTATGGAAGGGTCACATTTCATATTCAGTTTTCTGAAGTTCTGGTTGCATAG	480
FV0307_PromB FV0314_PromB	GTTTTTTTTATGGAAGGGTCACATTTCATATTCAGTTTTCTGAAGTTCTGGTTGCATAG GTTTTTTTTATGGAAGGGTCACATTTCATATTCAGTTTTCTGAAGTTCTGGTTGCATAG	
0970512_PromB AY641988.1	TCCGTGGAAAGCATGAAGACCCATGTCCTCCTAACGGAAAGGTTTTGGTAAATCGTCATT	
FV0307_PromB FV0314_PromB	TCCGTGGAAAGCATGAAGACCCATGTCCTCCTAACGGAAAGGTTTTGGTAAATCGTCATT TCCGTGGAAAGCATGAAGACCCATGTCCTCCTAACGGAAAGGTTTTGGTAAATCGTCATT **********************************	540
0970512_PromB AY641988.1 FV0307_PromB FV0314_PromB	CACATTAGAATTCCTAATGGACACAAGTACAGTACTGTGGTCCGACACAGACAAAGCGGG CACATTAGAATTCCTAATGGACACAAGTACAGTAC	108 600
0970512_PromB AY641988.1 FV0307_PromB FV0314_PromB	CCGGGAGAA TCTCGGAAGATCGCGGCTGGAGGCGACCACTTCGGGAGAA TTTTTTAGACG CCGGGAGAA TCTCGCAAGATCGCGGCTGGAGGCGACCACTTCGGGAGAA TTTTTTAGACG CCGGGAGAA TCTCGGAAGATCGCGGCTGGAGGCGACCACTTCGGGAGAA TTTTTTAGACG CCGGGAGAA TCTCGGAAGATCGCGGCTGGAGGCGACCACTTCGGGAGAA TTTTTTAGACG	168 660
	THE WAY A PROPERTY OF THE PROP	

0970512_PromB	AGGGAAACTGAGGTCAGGTAGCACTCTCCTGAA	GGCAAAACTCGGCTCTTCCTATACGTA	720
AY641988.1	AGGGAAACTGAGGTCAGGTAGCACTCTCCTGAA	GGCAAAACTCGGCTCTTCCTATACGTA	228
FV0307_PromB	AGGGAAACTGAGGTCAGGTAGCACTCTCCTGAA	GGCAAAACTCGGCTCTTCCTATACGTA	720
FV0314_PromB	AGGGAAACTGAGGTCAGGTAGCACTCTCCTGAA	GGCAAAACTCGGCTCTTCCTATACGTA	720
	******************	********	
0970512_PromB	CACCTTGAATCTCCGCCCTCTTTCCCCGGATGCC	TGCGATCAGTCTCTGCAGCTGCTAAA	780
AY641988.1	CACCTTGAATCTCCGCCCTCTTTCCCCGGATGCC	TGCGATCAGTCTCTGCAGCTGCTAAA	288
FV0307_PromB	CACCTTGAATCTCCGCCCTCTTTCCCCGGATGCC	TGCGATCAGTCTCTGCAGCTGCTAAA	780
FV0314_PromB	CACCTTGAATCTCCGCCCTCTTTCCCCGGATGCC	TGCGATCAGTCTCTGCAGCTGCTAAA	780
	*****************	**********	
0970512_PromB	TATAGCTGTCTGCACGGGCAACCGCACACCCTAC	CTCTATCTGCCATATCTCAGTTACAGA	840
AY641988.1	TATAGCTGTCTGCACGGGCAACCGCACACCCTAC	CTCTATCTGCCATATCTCAGTTACAGA	348
FV0307_PromB	TATAGCTGTCTGCACGGGCAACCGCACACCCTAC	CTCTATCTGCCATATCTCAGTTACAGA	840
FV0314_PromB	TATAGCTGTCTGCACGGGCAACCGCACACCCTAC	CTCTATCTGCCATATCTCAGTTACAGA	840
	******************	********	
0970512_PromB	GTGGTCCTCCCCAGGGTCATTCTATGTACACAC	FACGTATTTCCAGCCAACGAGGAGCGT	900
AY641988.1	GTGGTCCTCCCC		360
FV0307_PromB	GTGGTCCTCCCCAGGGTCATTCTATGTACACAC	FACGTATTTCCAGCCAACGAGGAGCGT	900
FV0314_PromB			900
0970512_PromB	GAATCAAACAGCACGGGAGACAAACAGAGATAG	933	
AY641988.1		000	
FV0307_PromB	GAATCAAACAGCACGGGAGACAAACAGAGATAG		

Danksagung 141

Danksagung

Für die Überlassung des interessanten Themas meiner Doktorarbeit und seinem fachlichen Rat möchte ich Herrn Univ-Prof. Dr. Dr. habil. Martin Förster danken.

Ebenso meinem Betreuer Herrn Dr. Ivica Međugorac für seine aufschlussreichen und inspirierenden Versuchs- und Lösungsansätze und für die kritische Durchsicht des Manuskripts.

Des Weiteren möchte ich den Angestellten des Instituts für Tierzucht und allgemeinen Landwirtschaftslehre der LMU meinen Dank aussprechen für ihre Arbeit und ihr Verständnis für meine Sorgen und Nöte über die Jahre hinweg.

Vielen Dank auch an alle technischen Assistenten für ihre Unterstützung und ihre hervorragende Arbeit.

Der Tierzuchtforschung Grub e.V. und den beteiligten Besamungsstationen danke ich für die Bereitstellung von Probenmaterial.

Ebenfalls möchte ich mich sehr bei Dr. Stefan Krebs und dem LAFUGA für die Bereitstellung der RNA-Proben und die nette Hilfe bedanken.

Zum Schluss gilt mein Dank meinem Schatz Enver für seine seelische und moralische Unterstützung. Auch meiner Mutter vielen Dank dafür.

Diese Arbeit wurde durch die finanzielle Unterstützung des Projektes "FUGATO-Fertilink", Forschungszentrum, Jülich (Projektnummer 0313388) und durch die Deutsche Forschungsgesellschaft Projektnummer ME3404/1-1 ermöglicht.