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Abstract

Diffusion processes are a promising instrument to realistically model the time-continuous
evolution of natural phenomena in life sciences. However, approximation of a given system
is often carried out heuristically, leading to diffusions that do not correctly reflect the true
dynamics of the original process. Moreover, statistical inference for diffusions proves to be
challenging in practice as the likelihood function is typically intractable.

This thesis contributes to stochastic modelling and statistical estimation of real problems
in life sciences by means of diffusion processes. In particular, it creates a framework
from existing and novel techniques for the correct approximation of pure Markov jump
processes by diffusions. Concerning statistical inference, the thesis reviews existing practices
and analyses and further develops a well-known Bayesian approach which introduces
auxiliary observations by means of Markov chain Monte Carlo (MCMC) techniques. This
procedure originally suffers from convergence problems which stem from a deterministic
link between the model parameters and the quadratic variation of a continuously observed
diffusion path. This thesis formulates a neat modification of the above approach for general
multi-dimensional diffusions and provides the mathematical and empirical proof that the
so-constructed MCMC scheme converges.

The potential of the newly developed modelling and estimation methods is demonstrated
in two real-data application studies: the spatial spread of human influenza in Germany and
the in vivo binding behaviour of proteins in cell nuclei.





Zusammenfassung

Diffusionsprozesse eignen sich besonders für die realistische Modellierung des zeitstetigen
Verlaufs von natürlichen Vorgängen in den Lebenswissenschaften. Bei der Approximation
eines gegebenen Systems wird jedoch häufig heuristisch vorgegangen, was zu Diffusions-
modellen führt, welche die Dynamik des ursprünglichen Prozesses nicht wirklichkeitsgetreu
widerspiegeln. Auch die statistische Inferenz stellt sich in der Praxis im Allgemeinen als
anspruchsvoll heraus, da die Likelihoodfunktion meist nicht in analytisch expliziter Form
bekannt ist.

Diese Arbeit untersucht und konzipiert Methoden zur stochastischen Modellierung und
statistischen Inferenz auf Basis von Diffusionsprozessen für Anwendungen in den Lebenswis-
senschaften. Dazu werden existierende Verfahren zur korrekten Approximation von Markov-
Sprungprozessen durch Diffusionsprozesse zusammengestellt, erweitert und durch neue
Ansätze ergänzt. Zur statistischen Inferenz wird ein Überblick über vorhandene Konzepte
gegeben und insbesondere eine etablierte bayesianische Methodik anschaulich erklärt und
weiterentwickelt. Dieser Ansatz fügt zusätzliche Datenpunkte zu bereits vorhandenen
Beobachtungen mittels Markov Chain Monte Carlo (MCMC) Verfahren hinzu. In ihrer
ursprünglichen Form ist diese Technik nur begrenzt einsetzbar, da sie einer Konvergenz-
problematik unterliegt, welche durch einen deterministischen Zusammenhang zwischen den
Modellparametern und der quadratischen Variation eines in stetiger Zeit beobachteten
Diffusionspfades verursacht wird. Diese Arbeit modifiziert das Verfahren für allgemeine
mehrdimensionale Diffusionsprozesse so, dass dieses Problem gelöst wird. Dies wird sowohl
analytisch als auch durch Simulationsstudien empirisch bewiesen.

Die Einsatzmöglichkeiten der neu entwickelten Modellierungs- und Schätzverfahren werden
anhand von zwei Anwendungen gezeigt: bei der räumlichen Ausbreitung von Influenza in
Deutschland und am Bindungsverhalten von Proteinen in Kernen von lebenden Zellen.
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Chapter 1

Introduction

Life sciences cover a diverse spectrum of scientific studies of life, ranging from intracellular
processes at molecular level up to the worldwide spread of infectious diseases in humans.
Mathematical models are an indispensable tool for the understanding of such complex
natural phenomena.

In order to describe the time-continuous evolution of a given system, deterministic models
are often favoured as they allow comparatively simple simulation and estimation techniques.
Such models, however, do not capture the randomness of the underlying dynamics and
therefore turn out to be inadequate in many applications. The utilisation of exact individual-
based stochastic models, on the other hand, typically proves to be infeasible in practice
when the considered organism involves large numbers of objects. A natural and powerful
compromise is the application of stochastic differential equations (SDEs) whose solutions
are given by diffusion processes. Hence, diffusions have become an increasingly important
tool for the statistical analysis of real world phenomena.

However, approximation of a given dynamic system is often done heuristically in the
literature, leading to diffusions that do not correctly mirror the true dynamics of the
original process. Furthermore, the statistical inference for diffusions typically turns out to
be demanding in real data situations as described below. Hence, the statistical estimation
of complex diffusion models as applied to real datasets is not widely spread. These issues
are addressed in the present thesis as described in the following.

1.1 Aims of this Thesis

The main objectives of this thesis are threefold: First of all, given a dynamical system of
interest with the aim to describe its temporal evolution by means of a diffusion process,
one needs to construct this process such that it appropriately mirrors the characteristics
of the considered real phenomenon. In applications in life sciences, the original process
typically concerns whole numbers of objects such as the numbers of infectious individuals
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in a population or the numbers of proteins in a cell nucleus. Since the paths of diffusion
processes are almost surely continuous, a representation in terms of diffusions automatically
involves an approximation of the exact dynamics. The transition from discrete to continuous
state space causes internal fluctuations which appear as a noise term in the characterising
SDEs. These disturbances are small when the system is large. Depending on the underlying
problem, their correct specification may be a challenging task. As authors typically work
through specific examples, there is no universal standard procedure. One objective of this
thesis is to investigate the systematic derivation of diffusion approximations with the aim
to provide a general framework which is both mathematically well-founded and attainable
for practitioners. Moreover, according procedures are required also for the case when the
underlying system is characterised by more than one size parameter. This problem is
investigated in this thesis for the first time as well.

Next, assume that a diffusion model for some problem of interest is given in parametric form
as the solution of an SDE. Provided time-discrete observations of the underlying dynamics,
one often wishes to statistically infer on the model parameters. In a first step, the present
thesis investigates the state of the art concerning this objective. As a consequence, maximum
likelihood estimation would be the first choice as it yields consistent and asymptotically
efficient estimates. However, the likelihood function of the time-continuous diffusion
process is typically unknown when the process is observed discretely in time, and hence
maximum likelihood estimation is not an option. There is comprehensive literature on
alternative frequentist methodology concerning statistical inference for diffusions. However,
the application of most such methods becomes problematic either when inter-observation
times are large or non-equidistant, or for multi-dimensional diffusion processes, or when
some components of the state vector are latent or measured with error. Unfortunately,
many datasets in life sciences possess at least one of these properties. A powerful technique
to overcome this problem is to estimate the model parameters in a Bayesian framework. A
well-known approach is based on the idea to introduce auxiliary data points as additional
observations. These are estimated by application of Markov chain Monte Carlo (MCMC)
techniques which alternately update the auxiliary data and the model parameter. However,
there is one notorious convergence problem caused by a close link between the model
parameters and the quadratic variation of the diffusion path. A practical solution for this
problem has not yet been proven for multi-dimensional diffusion processes. This open
question is addressed in this thesis.

Finally, a third aim of the present work is the application of the above theoretical investiga-
tions to real datasets from life sciences. In particular, the spatial spread of human influenza
and the in vivo binding behaviour of molecules in a cell nucleus shall be statistically analysed.
These are of large interest for life scientists. The considered datasets comprise several of
the above mentioned properties such that the utilisation of the newly developed Bayesian
estimation technique is required.
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1.2 Outline of this Thesis

In accordance with the just formulated aims, the main chapters of this thesis can be
structured in three groups as illustrated in Table 1.1: Chapters 2 to 5 deal with modelling
especially by means of diffusions, Chapters 6 and 7 concern the statistical inference for
such models, and Chapters 8 and 9 contain the two just mentioned application studies,
combining the former theoretical contributions.

Chapter 2 introduces the reader to mathematical modelling in life sciences, with the focus
on human epidemiology and molecular biology as two emerging fields. Typical modelling
approaches are explained, where emphasis is put on the importance of using stochastic as
opposed to deterministic models. Examples from this chapter are recurrently employed
throughout the entire thesis. For instance, the application studies in Chapters 8 and 9
originate from the above two research areas.

As a basis for the stochastic analysis of diffusions, which will be carried out in the remainder
of this thesis, Chapter 3 provides a compact introduction to diffusion processes and their
characterising SDEs. The contents of this overview are oriented towards the needs of this
thesis. The reader who is familiar with stochastic calculus may skip this chapter and refer
to it when required.

Chapter 4 addresses the above mentioned approximation of Markov jump processes by
diffusions. For the first time, it provides a detailed overview of such techniques in a multi-
dimensional context. To that end, established methods from the literature are supplemented
by new formulations and extended to multi-dimensional diffusion processes where necessary.
Moreover, this chapter extends all approaches to a more advanced framework, where the
dimension of a system is characterised through multiple size parameters rather than a single
one.

1. Introduction

Stochastic
Modelling

2. Stochastic Modelling in Life Sciences
3. Stochastic Differential Equations and Diffusions in a

Nutshell
4. Approximation of Markov Jump Processes by Diffusions
5. Diffusion Models in Life Sciences

Statistical
Inference

6. Parametric Inference for Discretely-observed Diffusions
7. Bayesian Inference for Diffusions with Low-frequency

Observations

Applications 8. Application I: Spread of Influenza
9. Application II: Analysis of Molecular Binding
10. Conclusion and Outlook

A.-D. Appendix

Table 1.1: Outline of this thesis.
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The theoretical investigations from Chapter 4 are illustrated in Chapter 5, where diffusion
approximations for distinguished models from epidemiology are derived. More specifically,
this chapter considers a standard model for the spread of infectious diseases and proposes
an extension which allows for host heterogeneity. The resulting diffusion processes form the
basis of Chapter 8.

Statistical inference for discretely-observed diffusion processes is a challenging task. As
indicated before, maximum likelihood estimation is possible only in rare cases which usually
do not match the complex dynamics of processes in life sciences. Chapter 6 introduces
the reader to the theoretical background of parametric inference for discretely-observed
diffusions and reviews frequentist methods from this highly developing research area. The
techniques of this and the following chapter are of course also applicable to datasets from
other scientific areas than life sciences.

Most techniques that are presented in Chapter 6 struggle when inter-observation times
of the considered phenomenon are large. Datasets in life sciences, however, may well
be of such low-frequency type. For the first time, Chapter 7 reviews in detail MCMC
techniques which base on the introduction of missing data such that the union of missing
values and observations forms a high-frequency dataset. Such techniques are also suitable
for irregularly spaced observation intervals, multivariate diffusions with possibly latent
components and for observations that are subject to measurement error. However, as
already described in the aims of this thesis, the considered concept suffers from convergence
problems which are due to strong dependence structures between the model parameters
and the quadratic variation of the diffusion path. As a consequence, the MCMC algorithm
experiences arbitrarily slow mixing. As one of the main contributions of this thesis,
Chapter 7 formulates a modified technique for conditioned diffusions on infinite-dimensional
state spaces and provides the mathematical proof that the so-constructed MCMC scheme
converges. For practical usability, the proposed scheme is also formulated in algorithmic
form. All algorithms are implemented in R, which is a freely distributed software available
at http://www.r-project.org. Simulation studies certify moderate computing times and
a sound performance of the proposed scheme.

Finally, with the modelling and estimation tools from Chapters 2 to 7 at hand, it is now
possible to statistically analyse complex dynamics in life sciences. Applying the diffusion
approximations derived in Chapter 5 and the Bayesian estimation techniques developed
in Chapter 7, Chapter 8 investigates the spread of human influenza, which is one of the
most common and severe diseases worldwide. More precisely, statistical inference is carried
out for a well-known dataset on an influenza outbreak in a British boarding school and for
the spatial spread of influenza in Germany during the season 2009/10. The latter dataset
is of particular interest due to the circulation of the ‘swine flu’ virus in that season. Spatial
mixing of individuals is derived based on commuter data. This chapter provides the first
application of statistical parameter estimation for spatial epidemic models by utilisation of
diffusion approximations.

As a second application, Chapter 9 investigates the binding behaviour of the protein Dnmt1
to chromatin. This protein plays a major role in the maintenance of DNA methylation
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patterns and is hence of great interest. Suitable data is extracted by application of a
fluorescence microscopy technique called FRAP. Appropriate kinetic models are derived as
diffusion processes by means of the techniques from Chapter 4, and statistical inference
is performed by application of the techniques from Chapter 7. This analysis supplies new
insight into cell cycle dependent kinetic properties of Dnmt1. It is the first application of
diffusion approximations in the FRAP literature, where deterministic models are prevalent.

Chapter 10 briefly concludes this thesis and gives an outlook on projects which can be
based on its contributions.

Supplementary material for the main chapters is provided in Appendices A–D. In order
to mention just one of their contents, Section B.1 newly introduces a definition of difference
operators of any order and proves a number of statements for them. These considerations
have already proved useful in contexts other than this thesis. An overview of the employed
notation is given on pages 391 ff.
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Chapter 2

Stochastic Modelling in Life Sciences

The dynamics of natural phenomena such as the growth of populations of species, the
spread of epidemics, changes in gene frequencies or the course of chemical reactions are
all subject to random variation. Their evolution is not exactly predictable. However, the
application of mathematical models enables insight into such complex processes.

This chapter motivates and reviews representative application fields from life sciences and
appropriate mathematical models. These applications and models will recur throughout
the entire thesis. They give rise to the model constructions in Chapters 3 to 5 and the
investigation and development of estimation procedures in Chapters 6 and 7. Moreover,
they form the basis for the application studies in Chapters 8 and 9.

The emphasis of this and the following chapters is on the important role of chance. In the
literature, there is a vast number of works for modelling the mentioned dynamics where
randomness is not taken into account. Such deterministic models provide a convenient and
sometimes also appropriate way to represent a situation of interest. For comparison purposes,
this deterministic approach is also introduced here. In general, however, deterministic
models are not able to capture the natural stochastic behaviour of a real-world phenomenon.
For instance, a deterministic model for the spread of an infectious disease may predict
a major outbreak in a marginal situation and possibly prove wrong (cf. Section 2.2).
Deterministic models for the dynamics of chemical reactions typically fail when the number
of reactants is small (e. g. McQuarrie, 1967). As another example, Lande, Engen, and Sæther
(2003) invoke harvest strategies, say in fishery, which may do harm to small populations
of endangered species when they are based on deterministic models. For that reason,
this thesis particularly focuses on the application of stochastic models. These account for
random fluctuations of the considered processes and assign probabilities to critical events.

The structure of the present chapter is as follows: Section 2.1 introduces the very general
class of compartment models. From such a model, both deterministic and stochastic
processes can be derived. Sections 2.2 and 2.3 provide introductions to two emerging
fields of life sciences, namely to models for the spread of infectious diseases and to models
for processes in molecular biology, biochemistry and genetics. Both sections start from a
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compartmental representation and then consider three types of models. These are stochastic
jump processes, deterministic continuous processes and stochastic diffusion processes. The
first type of process mirrors the exact dynamics of the compartmental system, whereas the
second and third can be considered as approximations of the first. The development of
an exact simulation algorithm for the jump process in 1976 hence meant a considerable
advancement in the field of statistical modelling. This algorithm is presented in Section 2.4.
In many situations, however, its application is computationally costly. Hence, numerical
approximation algorithms for the second and third type of process are outlined as well.
Section 2.5 concludes this chapter.

2.1 Compartment Models

In a compartment model, all objects involved in a system of interest are arranged in a finite
number of compartments, i. e. in groups of objects that are defined through certain specified
properties (Jacquez, 1972). The compartments are mutually disjoint, and the assignment
of each object to a compartment is unambiguous. The elements of each compartment are
assumed to be homogeneous and well-mixed. Interaction between different compartments
happens through the exchange of objects which is described by transition equations. Such
passages are assigned with some rate that typically depends on the concentrations of objects
from the distinct compartments. In this thesis, the considered compartmental systems are
usually closed, i. e. there is no flow of objects to and from the environment.

The classification of objects into different compartments may, for example, be due to the
location of animals or humans in a geographical region, the kinetic properties of molecules,
or the age or physical conditions of individuals that are susceptible to a disease. Figures 2.1
and 2.2 display two compartment models from the fields of applications that are considered
in Sections 2.2 and 2.3.

A compartment model is a convenient fundament for a dynamical system one wishes to
represent. From this model, different types of processes can be derived, all of them standing
for the same considered phenomenon. This thesis will consider the following three kinds:
pure Markov jump process, deterministic processes with continuous sample paths, and
diffusion processes. First examples are shown in the next two sections.

susceptible

individuals

infectious

individuals

infection removed

individuals

recovery

Figure 2.1: Compartmental representation of the susceptible–infectious–removed (SIR) model
that will be investigated in Section 2.2.2. In this model, a population of interest is classified into
susceptible, infectious and removed individuals. Transitions between these three groups are due
to infections and recoveries.
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NO2 N2O4

dimerisation

dissociation

Figure 2.2: Compartmental representation of the dimerisation of nitrogen dioxide. In this model,
all nitrogen dioxide (NO2) and dinitrogen tetroxide (N2O4) molecules in a gas are summarised in
two compartments. Depending on the temperature and pressure, two of the NO2 molecules may
dimerise, yielding one N2O4 molecule. The other way round, an N2O4 molecule may dissociate
into two NO2 molecules.

2.2 Modelling the Spread of Infectious Diseases

Epidemics of infectious diseases have shaped the history of humankind. They have directly
affected economy, politics and demography, the course of wars, social behaviour and
religious beliefs (McNeill, 1976, Cunha, 2004, Smallman-Raynor & Cliff, 2004, Sherman,
2006, Oldstone, 2010).

Devastating historic epidemics and pandemics include the Black Death in 1347-50 with
25 million deaths in Europe, where there was up to 50 percent mortality of the urban
population in England and Southern Europe; outbreaks of smallpox, measles and typhus
in Mexico in 1518-20 with 2-15 million deads out of a population of 20 million; several
cholera epidemics in India during the 17th century with more than 20 million deaths; and
the Spanish influenza pandemic in 1918-20 with estimated numbers of worldwide deaths
lying between 25 and 50 million (Dobson & Carper, 1996, Smallman-Raynor & Cliff, 2004,
Vasold, 2008).

Present-day pandemics comprise for instance the acquired immunodeficiency syndrome
(AIDS) caused by the human immunodeficiency virus (HIV) which was identified in the 1980s.
It is assumed that in 2008 there were 2.7 million new infections, 2 million AIDS-related
deaths and 33.4 million people living with the virus worldwide (UNAIDS, 2009). Most
recently, in 2009, an influenza pandemic spread from Mexico over the whole world within a
few months. The exact extent of this pandemic is still unknown. However, the number of
cases in the United States, for example, is estimated to be 57 million with 11,700 deaths
between April 2009 and January 2010 (Reed et al., 2009, CDC, 2010). During the early
stages of the epidemic, one even feared much higher mortality. Hence, the spread of diseases
is still a serious concern in both the developed and developing world.

The elimination of infectious disease epidemics is desirable not only from a humane viewpoint
but also regarding economic factors such as manpower and public health costs. Even for
diseases with relatively mild courses, it is generally favourable to invest in prevention rather
than cure. Considerable progress in understanding the propagation of infectious diseases
from a medical point of view has been achieved by Louis Pasteur (1822-1895) and Robert
Koch (1843-1910), who discovered the cause of infections by microorganisms. Targeted



10 2. Stochastic Modelling in Life Sciences

intervention against the spread of diseases, such as vaccination or isolation, however requires
an overall comprehension of the typically complex dynamics of an epidemic. This is achieved
by application of mathematical modelling (Brauer, 2009).

The objectives of this section are the following: First, to introduce basic models for the
spread of infectious diseases, and second, to motivate the utilisation of stochastic rather
than deterministic models. This presentation is oriented towards the needs of subsequent
chapters. For further information, the reader is referred to Bailey (1975), Anderson (1982),
Becker (1989), Anderson and May (1991), Daley and Gani (1999), Andersson and Britton
(2000), Diekmann and Heesterbeek (2000) and Keeling and Rohani (2008).

2.2.1 History of Epidemic Modelling

Detailed statistics on disease counts go back to John Graunt (1620-1674) who recorded
weekly death counts in London together with their causes. The first mathematical model
for the spread of infectious diseases, however, is generally accredited to Daniel Bernoulli
in 1760, but epidemic modelling has not received much attention until the beginning of the
20th century. Early works include En’ko (1889), Hamer (1906), Ross (1915) and Kermack
and McKendrick (1927). Detailed historical accounts on the development of mathematical
epidemiology can be found in Bailey (1975), Dietz (1967), Anderson and May (1991)
and Daley and Gani (1999).

In the early stages of epidemic modelling, the spread of diseases was generally formulated as
a deterministic process. According to Bailey (1975), the first author who included a random
component in an epidemic model was McKendrick (1926), but that particular approach was
only continued twenty years later. Instead, the class of chain binomial models, independently
introduced by Lowell Reed and Wade Hampton Frost (see Abbey, 1952, or Costa Maia,
1952) and Greenwood (1931), established itself. A model of this type considers the evolution
of an epidemic at discrete time points. To that end, the number of susceptible and infectious
individuals in a population is assumed to be binomially distributed, conditioned on the
state of the epidemic at the previous time point. An overview about chain binomial models
is given in Becker (1989) and Daley and Gani (1999).

In subsequent years, both stochastic and deterministic models were refined and their
mathematical analysis was extended; see e. g. Isham (2004) for a review. The class of
susceptible–infective–removed (SIR) models, which is introduced in the next section, emerged
as the most prominent description of the spread of infectious disease epidemics.

While the comprehension of disease dynamics and the development of mathematical tools
progressed, the general framework of modelling the spread of diseases changed as well: First
of all, the increased mobility of humans raises the risk of fast spreading pandemics. On
the other hand, detailed medical knowledge of infection processes and improved hygienic
conditions in many countries help prevent transmission of diseases. Modern epidemiolog-
ical models take into account travel, social behaviour, the effect of intervention such as
vaccination or isolation, and many other aspects.
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The following section introduces a standard model from epidemiology which serves as the
basis for many extensions, as indicated in Section 2.2.3 and implemented in Chapter 5.
This section concentrates on infectious diseases for humans. The considered diseases are
assumed to be directly transmittable rather than vector-borne, i. e. transmitted for example
by insects.

2.2.2 SIR Model

An SIR model (Kermack & McKendrick, 1927, Bartlett, 1949) classifies a population of
fixed size N into susceptible (S), infectious (I) and removed (R) individuals. Transitions
between these classes are

S©+ I© α−→ 2 I© and I© β−→ R© . (2.1)

The first transition means that each contact between a susceptible and an infectious
individual will cause an infection with rate α ∈ R+, resulting in two infectious individuals.
The second transition denotes that each of these infectious individuals will be removed
with rate β ∈ R+ due to being recovered and immune, or quarantined, or dead. The
parameter α is the contact rate of an infectious individual for spreading the disease, and β is
the reciprocal average infectious period. Some authors also refer to α and β as the infection
rate and removal rate, respectively.

Modifications of the SIR model e. g. disregard recovery (SI), allow a return to the susceptible
status (SIS, SIRS), or incorporate a latent/exposed period (SLIR/SEIR). For simplicity, we
assume in this section that an individual is infectious as soon as it is infected. The terms
infected, infectious and infective are considered interchangeable.

The SIR model is conveniently described as a time-homogeneous Markov process. Unless
otherwise stated, we assume the population closed during the time of consideration, ignoring
births, non-related deaths, and migration. Furthermore, the population is presumed to mix
homogeneously.

Different constructions of the SIR model can be found in the literature, see for exam-
ple Andersson & Britton (2000) for an overview. The following paragraphs present three of
the most common descriptions.

Representation as Pure Markov Jump Process

Denote by S and I the absolute numbers of susceptible and infectious individuals in the
population under consideration. Due to the fixed population size N , the current state of an
SIR process is completely described by the tuple (S, I)′, which is an element of the state
space D = {(S, I)′ ∈ [0, N ]2 ∩N2

0 |S + I ≤ N}; the number of removed individuals can be
calculated as R = N − S − I.
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Hence, let (S, I)′ ∈ D be the state of the process at time t ∈ R0. Assuming that at most
one event can occur within a small time interval of length ∆t, there are three possibilities
for the state of the process at time t+ ∆t:

1. (S − 1, I + 1)′ in case one infection occurs,

2. (S, I − 1)′ in case one recovery occurs,

3. (S, I)′ in case nothing happens.

These transitions come up with probabilities

p1 = αSI/N ∆t+ o(∆t), p2 = βI ∆t+ o(∆t) and p3 = 1− p1 − p2, (2.2)

respectively, where o(∆t)/∆t→ 0 as ∆t→ 0. See Section 5.1.2 for the derivation of (2.2).
For (S, I)′ 6∈ ([0, N−1]× [1, N−1])∩D, the above target states may not be an element of D.
In those cases, however, the respective transition probabilities leading to them are o(∆t).
For an initial condition (S0, I0)′ ∈ D, the process can therefore never leave the admissible
state space.

A Markov process with the above described dynamics is also termed the general stochastic
epidemic. Section 2.4.1 describes how an according Markov chain can exactly be simulated.
Figure 2.3(a) shows a realisation of such a Markov chain.

A notable insight into the dynamics of the general stochastic epidemic is the following
stochastic threshold result: Let (S0, I0)′ ∈ D denote the initial state of the process and
define R0 = α/β. Then, in large populations, a major outbreak will occur with probability
tending to

1−
(

min
{

1, N
S0
R−1

0

})I0
as N and S0 = N − I0 grow to infinity for fixed I0 (Whittle, 1955, Williams, 1971, and Ball,
1983). This probability is positive if and only if the relative removal rate R−1

0 is smaller
than the initial fraction of susceptibles S0/N . In this formulation, the term major outbreak
means that the fraction S/N of susceptibles will fall below R−1

0 roughly as far as it was
above this threshold before, provided that the difference between S0/N and R−1

0 is not too
large. For more details, see for example Daley & Gani (1999, Chapter 3.4). R0 is called the
basic reproductive ratio and interpreted as the average number of infections caused by an
infectious individual during its entire infectious period, provided that the infective enters a
totally susceptible population.

Representation through a System of Ordinary Differential Equations

Another possibility to describe the infection dynamics in the SIR model is a deterministic
representation via the set of ordinary differential equations (ODEs)

ds/dt = −αsi, di/dt = αsi− βi, (2.3)
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Figure 2.3: Illustration of SIR model for parameters α = 0.5, β = 0.25 and population
size N = 100. (a) Temporal evolution of numbers of susceptible, infective and removed individuals
in the stochastic SIR model with transition probabilities (2.2) for initial value (S0, I0)′ = (95, 5)′.
The graphs have been simulated by application of Gillespie’s Algorithm, i. e. Algorithm 2.1 on
page 23. (b) Temporal evolution of fractions of susceptible, infective and removed individuals in
the standard deterministic SIR model (2.3) for initial value (s0, i0)′ = (0.95, 0.05)′. The graphs
have been obtained by application of the standard Euler scheme with step length 0.025. The
vertical line marks the instant at which the fraction of susceptibles falls below R−1

0 = β/α = 0.5.
The fraction of infectives reaches its maximum at this point. (c) Temporal evolution of fractions
of susceptible, infective and removed individuals in the SIR diffusion model (2.4) for initial
value (s0, i0)′ = (0.95, 0.05)′. The graphs have been obtained by application of the Euler-Maruyama
scheme from Section 6.3.2 with step length 0.025.

where s = S/N and i = I/N denote the fractions of susceptible and infectious individuals.
In this description, the state space C = {(s, i)′ ∈ [0, 1]2 ∩ R2

0 | s + i ≤ 1} is considered
continuous, which is an eligible assumption for large populations. The remaining fraction
r = R/N can again be obtained as r = 1−s−i. The ODEs (2.3) are subject to an initial
condition (s0, i0)′ ∈ C. See Section 5.1.4 for their formal derivation.

Figure 2.3(b) shows the typical evolution of an epidemic following the deterministic de-
scription (2.3). While recovery follows a linear process, infections occur at high rate only
when both the fractions of susceptibles and infectives are sufficiently large. As the ODEs
are not explicitly solvable, the trajectories have been obtained numerically by application
of the standard Euler scheme (cf. Section 2.4.2). Figure 2.4 displays the course of the
deterministic SIR process for different values of α and β.

The first equation in (2.3) implies that the fraction of susceptibles is strictly decreasing
as long as both s and i are non-zero. Solving di/dt < 0 leads to s < β/α. That means,
when R−1

0 := β/α is greater than the initial fraction of susceptibles s0, no epidemic will
develop. Otherwise, the epidemic will fall off as soon as the fraction s drops below this
threshold. This is the famous threshold theorem by Kermack and McKendrick (1927). An
obvious strategy to eradicate an epidemic is hence to vaccinate the population until the
latter requirement is met. The vertical line in Figure 2.3(b) indicates the first time point
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Figure 2.4: Fractions of susceptibles (dashed) and infectives (solid lines) in an SIR epidemic
following the deterministic model (2.3) for different values of α and β and initial value (s0, i0)′
equal to (0.99, 0.01)′. The graphs have been obtained by application of the standard Euler scheme
with step length 0.025 for solving the ODE system. In both graphics, the parameters correspond
to R0 = α/β ∈ {1.5, 2.0, 2.5}.

at which the fraction of susceptibles falls below R−1
0 . Apparently, this mark agrees with

the time point at which the epidemic reaches its maximum with respect to the number of
infected individuals.

Representation through a System of Stochastic Differential Equations

A third variant to express the SIR dynamics (2.1) as a mathematical process is by a
stochastic differential equation (SDE)

(
ds
di

)
=
(
−αsi

αsi− βi

)
dt+ 1√

N

( √
αsi 0

−
√
αsi

√
βi

)(
dB1
dB2

)
. (2.4)

In this equation, s and i denote again the fractions of susceptible and infectious individuals
in the population. The right hand side of the differential equation (2.4) consists of a
deterministic and a stochastic component, that is the first and the second summand,
respectively. B1 and B2 are independent Brownian motions, representing stochasticity in
disease transmission and recovery. As for the multivariate ODE (2.3), an appropriate initial
condition has to be specified for the SDE (2.4).

Stochastic differential equations and their solutions, which are typically diffusion processes,
will be formally introduced in Chapter 3. Diffusion processes possess extremely wiggly but
almost surely continuous trajectories. Figure 2.3(c) displays the course of an SIR epidemic
as described by Equation (2.4).
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Concluding Remarks

This section introduced three different representations of the standard SIR model. There
naturally arises the question which type of process is the most appropriate one. The
pure Markov jump process, considered first, mirrors the exact dynamics following the
transitions (2.1). In many cases, however, this type of process is rather inconvenient for
the purpose of simulation and statistical inference. The ODE representation, considered
next, has the advantage of a non-individual-based view point. It facilitates interpretation
and mathematical analysis, but unfortunately ignores possible variation by chance. In
particular, the ODEs (2.3) do not even take into account the population size N and hence
unrealistically predict identical fractions of infectives and susceptibles in small and large
populations. Finally, the representation of the SIR model in terms of a multivariate SDE
consists of both a deterministic and a stochastic component and this way compromises on
the former two processes. For this reason, the utilisation of SDEs is favourable in many
contexts. Their statistical analysis is the subject of this thesis. A more elaborate discussion
concerning the three above representations is the topic of Chapter 4.

In order to further ellucidate the impact of random events in the SIR model, recall the
above deterministic and stochastic threshold results. Both the stochastic model with
transition probabilities (2.2) and the deterministic model following the ODEs (2.3) possess
the same threshold R−1

0 = s0. The interpretation of this threshold, however, differs
substantially in these two models: In the deterministic case, a major epidemic will always
occur whenever R−1

0 < s0. In the stochastic case, a major outbreak does not necessarily
happen if R−1

0 < s0. The probability for this event lies strictly between zero and one.
Figure 2.5 illustrates that different realisations of the course of an epidemic may clearly
differ in a stochastic framework. A deterministic simulation for the same model parameters
is displayed in Figure 2.3(b). A further investigation of the SDE (2.4) requires its formal
definition, which is the subject of Chapter 3. An illustration of this model is for example
given in Section 5.1.5.

Epidemics will usually terminate due to a lack of infectives, not due to a lack of susceptibles,
i. e. at the end of an epidemic outbreak not all individuals will typically have suffered from
the disease. According to the above thresholds, major epidemics occur or have positive
probability, respectively, when R0 < s. Suppose that this is the case. Then, there are three
general measures to weaken the strength of an epidemic: First, to reduce the number of
susceptibles, typically by vaccination, i. e. to decrease the fraction s. Second, to reduce the
number of potentially infectious contacts, possibly by closing schools or simply invoking
caution, i. e. to decrease α. Third, to reduce the time until an infectious individuals goes
over to the removed class, for example by isolation, i. e. to reduce the average infectious
period β−1. Each of these three strategies aims at lowering the difference between R0 = α/β
and s, at best accomplishing R0 > s. The fact that an epidemic does not start or fades out
after sufficiently many individuals have left the susceptible state is known as herd immunity.
The subject of herd immunity, including many examples, is discussed by Anderson and May
(1985) and Fine (1993), corresponding control strategies by Morton and Wickwire (1974).
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Figure 2.5: Different courses of stochastic SIR model with transition probabilities (2.2). The
simulations base on parameters α = 0.5, β = 0.25, population size N = 100 and initial
value (S0, I0)′ = (95, 5)′. The graphs have been obtained by application of Gillespie’s Algo-
rithm (Algorithm 2.1).

2.2.3 Model Extensions

So far, the SIR model considered in the previous section is fairly simplistic, assuming a
homogeneously mixing population, homogeneity of individuals and a time-homogeneous
course of an epidemic. In most contexts, some modifications are necessary in order to adapt
the mathematical model to a real life situation in which an epidemic develops. Some of
these aspects are outlined in the following.

First of all, one very often experiences heterogeneity in contacts among the population. In
those cases, individuals typically mix homogeneously in certain subgroups but not with
respect to the entire population. It is then meaningful to incorporate patterns into the
model such as the age structure of the population e. g. for childhood diseases, a risk structure
e. g. for sexually transmitted infections, a geographical structure like an assignment of
individuals to different cities or countries, or social structures such as households, schools
or circles of friends.

Moreover, there is typically heterogeneity among individuals in the population. For example,
susceptible persons may differ in their degree of susceptibility, such as children or elderly
people that possibly have a weaker immune system, or individuals that have acquired
partial immunity to a disease due to previous epidemics.

In some cases, it is also appropriate to extend an epidemic model such that it accounts for
time-varying background conditions. For example, the weather and temperature may well
have an effect on the susceptibility of individuals. Furthermore, there may be changes in
social behaviour, either independently or dependently on the course of an ongoing epidemic,
leading to a variation of contact rates. When observing the spread of a disease over a long
period of time, demographic changes such as births and non-related deaths may be included
in the model. Other models consider endemic components, i. e. the sustained presence of a
certain number of infectious cases in the population, or the presence of carriers that are
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apparently healthy but infective.

Ample examples and references for the above model extensions are given by Isham (2004)
and Keeling and Rohani (2008). In order to mention just a few of them, multipopulation
epidemics are for example investigated by Rushton and Mautner (1955), Ball (1986),
Sattenspiel (1987), Sattenspiel and Dietz (1995) and Ball, Mollison, and Scalia-Tomba
(1997). Such models can often be applied to any kind of contact heterogeneity but are in
most cases described for the division of a population into several communities in distinct
geographical areas. Chapter 5 in this thesis introduces a multitype SIR model for arbitrary
contact heterogeneities as well. Concerning the remaining model modifications mentioned
above, Hethcote (2000) takes into account the age of individuals, and Hethcote (1994) gives
many references for models which take into account varying population sizes. Neal (2007)
analyses an epidemic model where individuals differ with respect to both their susceptibility
and infectivity. Ireland, Mestel, and Norman (2007) consider seasonality in birth-rates
of hosts. Riley (2007) reviews some recent approaches for spatial modelling. Finally,
Lloyd-Smith, Schreiber, Kopp, and Getz (2005) and Galvani and May (2005) investigate the
impact of the presence of superspreaders, that are individuals that communicate a disease
in a substantially greater extent than other individuals.

Appropriate modifications of the basic SIR model improve the compatibility between the
model assumptions and reality and hence increase the applicability of the model. On the
other hand, each extension automatically requires additional information such as community
sizes or contact patterns between groups. One should hence balance carefully between
complex and oversimplistic models. Stochastic models typically get along with fewer details
as minor aspects can be covered by random fluctuations. Chapters 5 and 8 in this thesis
derive and statistically infer on a probabilistic multitype model for the spread of an infectious
disease.

2.3 Modelling Processes in Molecular Biology, Bio-
chemistry and Genetics

Understanding the mechanisms of heredity and variation of living organisms, senescence
and the emergence of diseases such as cancer has fascinated mankind within living memory.
Nowadays one knows that these phenomena are based on chemical processes in living
organisms and the structures and functions of living cells.

This section briefly considers mathematical modelling in the overlapping areas of molecular
biology, biochemistry and genetics. These fields comprise an enormous variety of different
applications and models, the complete review of which would be far beyond the scope
of this thesis. Hence, this section exemplarily addresses one specific branch of the above
research areas: That is, applications which utilise the framework of chemical reactions for
the modelling of selected key processes. This section hence starts with historical background
information and a mathematical review on that subject in Sections 2.3.1 and 2.3.2, followed
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by an outline of cross connections to other disciplines in Section 2.3.3.

2.3.1 History of Chemical Reaction Modelling

The first landmark in the development of chemical reaction modelling was set in 1850 by
Ludwig Wilhelmy, who empirically derived a mathematical expression for the progress of
the inversion of cane sugar in the presence of acids (McQuarrie, 1967, Arnaut, Formosinho,
& Burrows, 2007). In several articles published between 1864 and 1879, Cato Maximilian
Goldberg and Peter Waage proposed the law of mass action, which says that the hazard of
an elementary reaction is proportional to the product of the concentration of all reactants;
cf. Section 2.3.2 for details. Important further contributions to the understanding of the
order and temperature dependence of chemical reactions were made between 1865 and 1889
by Augustus Harcourt, William Esson, Jacobus Henricus van’t Hoff, Wilhelm Ostwald and
Svante Arrhenius (Laidler, 1993). Until 1940, many mathematical models were formulated
which described the mechanism of a chemical reaction in a deterministic way. According to
McQuarrie (1967), Kramers (1940) was the first author who applied the theory of stochastic
processes to chemical reactions models.

Nowadays, detailed knowledge about molecular structures and mechanisms is available,
in addition to sophisticated mathematical and statistical modelling tools. This enables
the description and analysis of complex chemical networks. A detailed historical review
on chemical kinetics is provided by Arnaut et al. (2007). McQuarrie (1967) considers this
subject from a statistician’s point of view.

2.3.2 Chemical Reaction Kinetics

Chemical reactions are typically specified by reaction equations of the form

a1A1 + . . .+ akAk −→ b1B1 + . . .+ blBl. (2.5)

This equation describes a reaction in which k different reactants A1, . . . , Ak are transformed
into l distinct products B1, . . . , Bl. The numbers ai, i = 1, . . . , k, and bj, j = 1, . . . , l, are
the stoichiometries of the reaction and denote the numbers of reactants Ai and products Bj

involved. They are assumed to be natural numbers with greatest common divisor equal to
one. In this chapter, equations like (2.5) are declared to represent elementary reactions, i. e.
reactions that do not consist of several intermediate steps. Equation (2.1) on page 11 was
of type (2.5) as well.

As in the context of modelling the spread of infectious diseases in the previous section,
there are various approaches to mathematically describe the dynamics of a process in which
reactions such as (2.5) occur. In what follows, three possibilities are briefly introduced in
the same order as for the SIR model in Section 2.2.2. All representations have in common
that they assume the underlying system well-stirred and the process to be Markovian and
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time-homogeneous. In particular, external parameters such as temperature and pressure
are presumed to be constant.

Representation as Pure Markov Jump Process

The sets of reactants {A1, . . . , Ak} and products {B1, . . . , Bl} are typically non-disjoint
subsets of a collection {C1, . . . , Cm} of particles that are present in the considered system.
The reaction equation (2.5) can hence be rewritten as

c1C1 + . . .+ cmCm −→ c̃1C1 + . . .+ c̃mCm, (2.6)

where

ci =
aj if Ci = Aj

0 if Ci 6∈ {A1, . . . , Ak}
and c̃i =

bj if Ci = Bj

0 if Ci 6∈ {B1, . . . , Bl}.

For i ∈ {1, . . . ,m}, let Xi denote the number of particles Ci in the system and de-
fine (X1, . . . , Xm)′ as the state variable of a stochastic process describing the system
dynamics. The chemical reaction (2.6) then causes a state change

X1
...
Xm

 −→

X1 − (c1 − c̃1)

...
Xm − (cm − c̃m)

 . (2.7)

In real applications, one typically has several chemical reactions such as (2.6), each causing
a transition like (2.7). Every reaction is associated with a reaction rate indicating the
hazard with which the specific reaction is going to occur within the next infinitesimal time
interval. These rates are assumed to depend on the left hand side of (2.6) only. Wilkinson
(2006) exemplarily states the following reactions and associated reaction rates, where the
current state of the process is (X1, . . . , Xm)′:

Ci −→ c̃1C1+ . . .+ c̃mCm (first-order reaction) with rate k1Xi (2.8)

Ci + Cj−→ c̃1C1+ . . .+ c̃mCm (second-order reaction) with rate k2XiXj (2.9)

2Ci −→ c̃1C1+ . . .+ c̃mCm (second-order reaction) with rate k3Xi(Xi−1)/2. (2.10)

In the second equation, one requires i 6= j. The variables k1, k2, k3 ∈ R+ are called rate
constants. They are usually unknown and hence the subject of statistical inference based
on available experimental data. The remaining parts of the reaction rates result from com-
binatorial considerations, counting the number of possible collisions between the reactants,
and the fact that the hazard of two specific particles colliding is constant (Gillespie, 1992).

As a consequence of the above specified reaction rates, the probability that, for example,
reaction (2.8) will occur within a time interval of length ∆t, provided that the current
number of particles Ci is Xi, equals k1Xi∆t + o(∆t), where o(∆t)/∆t → 0 as ∆t → 0.
Without any other reactions taking place, the expected time until the occurence of this
reaction is exponentially distributed with mean k1Xi.
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Representation through a System of Ordinary Differential Equations

A different possibility to describe the state of a system which is subject to elementary
chemical reactions of type (2.6) is via the rates of change of the concentrations of all reaction
participants. To that end, consider the concentrations x1, . . . , xm of the particlesX1, . . . , Xm.
These concentrations are considered continuous rather than discrete quantities. The chemical
reaction (2.6) induces a change of the current state (x1, . . . , xm)′ which is typically described
by a set of ordinary differential equations (ODEs): For all i = 1, . . . ,m, one has

dxi/dt = k̄ (c̃i − ci)xc11 · . . . · xcmm
for some positive (stochastic) rate constant k̄. This equation results from the law of mass
action, which was already mentioned in Section 2.3.1. The sum of exponents c1 + . . .+ cm
is called the order of the reaction (McQuarrie, 1967). The right hand side of the ODE
is positive if ci < c̃i, i. e. if the chemical reaction described by (2.6) increases the amount
of particles Xi in the system. It is negative or equal to zero if the reaction decreases
the number Xi or leaves it unaltered, respectively. If there is more than one possible
reaction, each reaction is assigned a different rate constant, and the ODEs resulting from
each reaction equation are added in order to arrive at a description for the whole reaction
dynamics. For example, consider the following set of coupled reactions for m = 2, which is
a special case of Equations (2.8) to (2.10):

C1 −→ c̃
(1)
1 C1 + c̃

(1)
2 C2 (2.11)

C1 + C2 −→ c̃
(2)
1 C1 + c̃

(2)
2 C2 (2.12)

2C2 −→ c̃
(3)
1 C1 + c̃

(3)
2 C2. (2.13)

For these reactions, one obtains the ODEs

dx1/dt = k̄1
(
c̃

(1)
1 − 1

)
x1 + k̄2

(
c̃

(2)
1 − 1

)
x1x2 + k̄3c̃

(3)
1 x2

2 (2.14)

dx2/dt = k̄1c̃
(1)
2 x1 + k̄2

(
c̃

(2)
2 − 1

)
x1x2 + k̄3

(
c̃

(3)
2 − 2

)
x2

2 (2.15)

for appropriate rate constants k̄1, k̄2, k̄3 > 0. Additionally, a suitable initial state of the
process needs to be specified. The constants k1, k2, k3 in Equations (2.8) to (2.10) and
the constants k̄1, k̄2, k̄3 in (2.14) to (2.15) depend on the units of the X1, X2 and x1, x2,
respectively, and are not necessarily the same. See Wilkinson (2006, Chapter 6.6) for the
conversion from ki to k̄i in case the concentrations are measured in moles per litre.

Representation through a System of Stochastic Differential Equations

Finally, a third way to represent the evolution of a system which is subject to chemical
reactions utilises stochastic differential equations (SDEs). In case of the reactions (2.11)
to (2.13), the multi-dimensional SDE reads(

dx1
dx2

)
=
k̄1

(
c̃

(1)
1 − 1

)
x1 + k̄2

(
c̃

(2)
1 − 1

)
x1x2 + k̄3c̃

(3)
1 x2

2

k̄1c̃
(1)
2 x1 + k̄2

(
c̃

(2)
2 − 1

)
x1x2 + k̄3

(
c̃

(3)
2 − 2

)
x2

2

 dt+
(
σ11 σ12
σ21 σ22

)(
dB1
dB2

)
,
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where σ11, σ12, σ21 and σ22 are functions of the state variables, rate constants and stoi-
chiometries not explicitly given here. The first summand on the right hand side represents
the deterministic component of the process and agrees with Equations (2.14) and (2.15).
The second summand stands for the probabilistic component with B1 and B2 being two
independent Brownian motion processes. SDEs and Brownian motion will formally be
defined in Chapter 3.

2.3.3 Reaction Kinetics in the Biological Sciences

Reaction equations and their associated mathematical theory are convenient tools also
in the biological sciences. They are particularly used to describe the natural laws which
underlie the functioning of cells. This section gives some examples.

Chemical work can be performed by cells only if there is enough energy available. Such
energy is gained through cellular catabolism, which is a mechanism consisting of a series of
enzymatic reactions like

enzyme + substrate ←→ complex −→ enzyme + product,

where the enzyme acts as a catalyst (Keener & Sneyd, 1989). Double-sided arrows mean
that the reaction can take place in both directions. Kinetic models for metabolic systems
are, for example, developed by Demin et al. (2005).

Within each cell, there are several thousand types of interacting proteins. Depending on its
environment, a cell determines the required amount of each protein by means of transcription
networks (Alon, 2007). Transcription is one out of several regulatory mechanisms in genetic
networks and can be described by a set of coupled elementary reactions (Wilkinson, 2006).
At a less detailed level, transcription and other key processes can be assembled to construct
genetic networks. For example, the following components of a prokaryotic auto-regulatory
network are summarised by Wilkinson (2006):

g −→ g + r (transcription)
g + P2 ←→ g · P2 (repression)
r −→ r + P (translation)

2P ←→ P2 (dimerisation)
r −→ ∅ (mRNA degradation)
P −→ ∅ (protein degradation).

In these equations, P stands for a protein, P2 for the compound of two of these proteins,
g for a gene and r for a transcript of g. The empty set ∅ indicates that the product of a
reaction is not part of the model, and a dot represents the compound of two components.

The close connection between models for chemical reactions and genetic mechanisms is
hardly surprising as genetics is based on the chemistry of nucleid acids. There are, however,
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also cases of compartmental systems in cellular biology where reaction equations represent
transitions other than chemical reactions. In the application in Chapter 9, for example,
the location of a diffusing protein between a bleached and an unbleached part of the cell
nucleus is observed. This can be written as

Xbleached ←→ Xunbleached.

A molecule that undergoes this transition does not change any of its chemical or kinetic
properties but only its location, so the compartments reflect the spatial dimension of the
problem here.

Plenty of further applications are, for example, presented in Jacquez (1972) and McQuarrie
(1967). Ehrenberg et al. (2003) give a brief overview about current research questions in
systems biology. For general reviews on mathematical models in biology, see Goel and
Richter-Dyn (1974), Renshaw (1991), Allen (2003) or Lande et al. (2003).

Though representing entirely different natural phenomena, the above mentioned applications
have in common that they are intrinsically stochastic. A number of papers is devoted to
the importance of the utilisation of probabilistic instead of deterministic models in systems
biology, biochemistry and genetics, see for example Kimura (1964), Zheng and Ross (1991),
Arkin et al. (1998), Sveiczer et al. (2001), Rao et al. (2002), Bahcall (2005), Tian, Xu, et
al. (2007), and Boys et al. (2008). In agreement with this point of view, the present thesis
motivates, constructs and statistically infers on stochastic models from life sciences.

2.4 Algorithms for Simulation

In Sections 2.2 and 2.3, different kinds of processes were considered to represent the
dynamics of different phenomena in life sciences. For the simulation of these processes,
one requires algorithms for the exact or approximate generation of according sample paths.
Such algorithms have already been applied for the generation of Figures 2.3, 2.4 and 2.5.

2.4.1 Simulation of Continuous-time Markov Jump Processes

Continuous-time pure Markov jump processes can always be exactly simulated. An according
algorithm is presented in what follows.

Consider a system consisting of n different types of objects such as molecules in a fluid,
predator and prey in a specified region or susceptibles and infectives in a population. Assume
that the time-continuous evolution of these objects can be described by a time-homogeneous
stochastic Markov process with state variable X(t) = (X1(t), . . . , Xn(t))′ ∈ Zn, where Xi(t)
is the number of type i objects at time t ∈ R+. Suppose that there are m possible
events k ∈ {1, . . . ,m} like chemical reactions or interactions within a population, each
causing a change ∆k ∈ Zn \ {0} in the state variable. Let λk = fk(X) denote the hazard
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for event k, where fk is an appropriate function depending on the state X. That means,
the probability that a type k event will occur within the next time interval of length ∆t
conditioned on the current state X is λk∆t + o(∆t), where o(∆t)/∆t → 0 as ∆t → 0.
The objective is to exactly simulate realisations of the considered process, that means to
successively draw pairs (τ, k) ∈ R+ × {1, . . . ,m}, where τ is the waiting time until the
occurrence of the next event, and k is the type of event happening at that time.

Denote by p(τ, k) the joint probability density function of τ and k. Under the assumption
that only one event can happen at the same time, Gillespie (1976) shows that

p(τ, k) = λk exp
−τ m∑

j=1
λj

 = λk exp(−λτ) for τ ∈ R+ and k ∈ {1, . . . ,m},

where λ = ∑m
j=1 λj. This joint density can be expressed as p(τ, k) = p(τ)p(k|τ), where

p(τ) =
m∑
k=1

p(τ, k) = λ exp(−λτ), i. e. τ ∼ Exp(λ),

and
p(k|τ) = p(τ, k)

p(τ) = λk
λ

(2.16)

are the density of τ and the conditional probability function of k, respectively.

This leads to an exact and efficient method to obtain sample trajectories of the considered
process on a time interval [tmin, tmax]. The procedure has been called stochastic simulation
algorithm (SSA) by its originator, but is usually known as Gillespie’s algorithm:

Algorithm 2.1 (Gillespie’s Algorithm, Gillespie, 1976).

1. Set t = tmin and initialise X(t).

2. While t < tmax:

i. Calculate λk for all k and their sum λ. Terminate if the system has reached an
absorbing state, i. e. λ = 0.

ii. Draw τ ∼ Exp(λ). Set τ = min{τ, tmax − t}.

iii. Draw k from (2.16).

iv. Set X(s) = X(t) for all s ∈ (t, t+ τ) and X(t+ τ) = X(t) + ∆k.

v. Set t = t+ τ .

Estimates of the average or the variation of the sample paths can be obtained by respective
Monte Carlo statistics. For further details and experimental results, see Gillespie (1976,
1977). Extensions, later elaborations and improvements with respect to computing time
are contained in Gillespie (2007). Manninen, Linne, and Ruohonena (2006) provide ample
references for different implementations of the Gillespie algorithm, such as the next reaction
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method by Gibson and Bruck (2000), and alternative approaches, for example the StochSim
algorithm by Le Novère and Shimizu (2001). Another good review is Wilkinson (2006,
Chapter 8).

2.4.2 Simulation of Solutions of ODEs and SDEs

When a system consists of a large number of objects, the just described simulation of a pure
Markov jump process becomes expensive in terms of computing time. In contrast, the most
convenient process with respect to its simulation is the deterministic process described by a
set of ODEs, because this process has no random component. If there is an analytically
explicit solution of the ODEs available, one can simply calculate the according multivariate
sample path without any approximation error. Otherwise, numerical schemes such as the
Euler scheme can be applied to obtain approximate trajectories. Such algorithms can be
found in any standard textbook on numerical mathematics.

Similarly, a stochastic process described by a set of SDEs can be exactly simulated if an
explicit solution for the differential equations is known. Otherwise, numerical approximation
schemes are utilised. The consideration of respective procedures is postponed to Section 3.3
in the next chapter, because this subject requires a preliminary introduction to stochastic
calculus. The numerical approximation of a solution of an ODE arises as a special case of
the algorithm for an SDE.

2.5 Conclusion

Assessment of key mechanisms in life sciences cannot be imagined without the application
of mathematical models. Moreover, real situations can particularly be rendered by the
consideration of random events. This chapter provided an introduction to established models
in life sciences, starting with the general class of compartment models in Section 2.1 and then
proceeding to applications in mathematical epidemiology and biology in Sections 2.2 and 2.3.
To that end, three types of processes were considered, namely stochastic jump processes,
deterministic continuous processes and stochastic diffusion processes, the simulation of
which is the subject of Section 2.4. The latter type of process emerges as a convenient
compromise between the former two, and hence this thesis focuses on diffusion processes.

However, diffusions have not been defined formally yet. For that reason, Chapter 3
introduces the theory of stochastic calculus to an extent which is oriented towards the
needs of subsequent chapters. Chapter 4 discusses the application of the three above
process classes and considers the derivation of diffusion processes from the compartmental
description of some phenomenon. This methodology is applied in Chapter 5, where a
multitype SIR model for heterogeneous contact patterns is developed.

Until that point, this thesis is mainly concerned with the construction of models, which
enables the simulation of a considered mechanism for given sets of model parameters. In
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practice, however, such parameters are unknown and hence to be estimated statistically
based on available observations. Therefore, Chapters 6 and 7 consider the important subject
of statistical inference for diffusion processes.

The methodology of all preceding parts is applied in Chapters 8 and 9 on the example
of modelling the spread of influenza and the binding behaviour of molecules, respectively.
These chapters also point out challenges arising from typical data situations such as partial
observations or measurement errors.
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Chapter 3

Stochastic Differential Equations and
Diffusions in a Nutshell

Stochastic differential equations are a powerful and natural tool for the modelling of complex
systems that change roughly in continuous time. Application areas include econometrics
and finance (Robinson, 1959, Black & Scholes, 1973, Merton, 1976, Cox et al., 1985a, Bibby
& Sørensen, 2001, Elerian et al., 2001, Eraker, 2001, Chiarella et al., 2009), physics (van
Kampen, 1965, 1981b, Ramshaw, 1985, Tuckwell, 1987, Seifert, 2008), biology (Leung,
1985, Elf & Ehrenberg, 2003, Sjöberg et al., 2009), systems biology (Golightly & Wilkinson,
2005, 2006b, 2008), medicine (Walsh, 1981a, Fogelson, 1984, Capasso & Morale, 2009),
epidemiology (Barbour, 1974, Clancy & French, 2001, Hufnagel et al., 2004, W.-Y. Chen &
Bokka, 2005, Alonso et al., 2007), population biology (Ferm et al., 2008), genetics (Kimura,
1964, Fearnhead, 2006, Tian, Burrage, et al., 2007), social sciences (Cobb, 1981, de la Lama
et al., 2006), geostatistics (Duan et al., 2009) and traffic control (McNeil, 1973).

This chapter provides a short introduction to stochastic differential equations and their
solutions, which under regularity conditions agree with the class of diffusion processes. The
contents of this primer are selected according to the needs of the remaining parts of this
thesis; it by no means claims to cover completely the theory of stochastic calculus. Thorough
works include Arnold (1973), Stroock and Varadhan (1979), Gardiner (1983), Karatzas and
Shreve (1991), Revuz and Yor (1991), Kloeden and Platen (1999) and Øksendal (2003).

Generally speaking, a stochastic differential equation (SDE) is a differential equation — i. e.
an equation relating a process to one or several of its derivatives — which involves any kind
of randomness. This might be because of random coefficients, a random initial value or
some dependence on a stochastic force.

However, a reasonable further classification as in Arnold (1973), Gard (1988) or
Kloeden and Platen (1999) distinguishes between the driving force being a regular or
irregular process. In the former case, solution processes of such equations have differentiable
sample paths and do not differ substantially from ordinary differential equations. Such
equations are referred to as random differential equations and are of no further interest
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here. The second class contains stochastic differential equations in the strict sense. These
are forced by some irregular noise process — the notion of which will be explained in
Section 3.1.3 —, and the sample paths of corresponding solution processes are almost surely
nowhere differentiable.

Section 3.1 conceives Brownian motion and Gaussian white noise as the key processes
of stochastic calculus. In Section 3.2, the introduction of the stochastic integral allows
the formal definition of stochastic differential equations, whose solutions turn out to be
essentially diffusion processes. For these, fundamental formulas are stated. Section 3.3
deals with the simulation and numerical approximation of diffusion sample paths; the latter
is especially necessary due to the usual absense of explicitly attainable solutions of SDEs.

Throughout this chapter let (Ω,F∗,F ,P) be a filtered probability space with sample space Ω,
σ-algebra F∗, F = (Ft)t≥0 the natural filtration and P a probability measure on (Ω,F∗).
The σ-algebra of Lebesgue subsets of R will be denoted by L. We will consider continuous
jointly L × F∗-measurable stochastic processes

X :
{
T × Ω → X
(t, ω) 7→ X(t, ω)

with state space X ⊆ Rd, d ≥ 1, and non-empty time set T ⊆ R0, but omit the de-
pendency on ω in the notation X = (X t)t∈T . We will generally assume that for all
subsets {t0, . . . , tn} ⊆ T and {xt0 , . . . ,xtn} ⊆ X the joint distribution of X t0 , . . . ,X tn has
a probability density and that conditional probabilities and densities can be defined in the
usual way.

3.1 Brownian Motion and Gaussian White Noise

This section defines elementary modules of stochastic calculus on which subsequent consid-
erations are based.

3.1.1 Brownian Motion

A real-valued F-adapted process B = (Bt)t≥0 is defined to be Brownian motion — also
called a Wiener process1 — if

(i) B0 = u almost surely for u ∈ R fixed,

(ii) all paths are almost surely continuous,

(iii) all paths have independent and stationary increments,

(iv) Bt ∼ N (0, σ2t) for all t ≥ 0 and constant volatility parameter σ ∈ R+.
1Some authors denote by a Wiener process the mathematical description given above while Brownian

motion stands for the physical movement of a diffusing particle. In this thesis, both terms are used
interchangeably.
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Figure 3.1: Discrete sample path realisations of (a) one-dimensional standard Brownian motion,
(b) two-dimensional standard Brownian motion, (c) a Brownian (0, 0, 10, 0)-bridge with volatility
parameter σ = 1 and (d) standard Gaussian white noise for equidistant time steps of size 0.005.

The process is called standard for u = 0 and σ = 1. A vector-valued process is said to be
d-dimensional (standard) Brownian motion if its d components are mutually independent
one-dimensional (standard) Brownian motions. The existence of such a process was first
proven by Wiener (1923). The probability law induced by standard Brownian motion is
thus called Wiener measure. Figure 3.1(a)–(b) shows typical discrete-time sample path
realisations of one- and two-dimensional standard Brownian motion.

Although the paths of one-dimensional Brownian motion are almost surely continuous,
almost all paths are nowhere Lipschitz continuous and hence nowhere differentiable. As a
consequence, almost all paths are of unbounded total variation on any time interval [s, t]
on the positive real line, i. e.

sup
Zn

h(n)∑
i=1
|B(n)

ti −B
(n)
ti−1| =∞,

where the supremum is taken over all partitions Zn = (s = t
(n)
0 < t

(n)
1 < . . . < t

(n)
h(n) = t)

of [s, t] into h(n) subintervals for arbitrary n and h. However, the sample paths have finite
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quadratic variation 〈B,B〉; more precisely,

〈B,B〉[s,t] = lim
δ(Zn)↓0

h(n)∑
i=1

(
B

(n)
ti −B

(n)
ti−1

)2
= (t− s)σ2 in L2 (3.1)

(and hence also in probability), where δ(Zn) denotes the fineness of the partition Zn of [s, t].
If ∑∞n=1 δ(Zn) <∞, for instance for t(n)

k = s+ 2−nk(t− s), k = 0, . . . , h(n) = 2n, we even
obtain almost sure convergence in (3.1) (Arnold, 1973). All properties naturally hold for
each component of multi-dimensional Brownian motion.

3.1.2 Brownian Bridge

If standard Brownian motion is further conditioned on some end point Bt = v, then
the conditioned process (Bτ )τ∈[0,t] is called a Brownian bridge. More generally, Brownian
motion (Bτ )τ∈[s,t] conditioned on Bs = u and Bt = v will be referred to as a Brown-
ian (s,u, t,v)-bridge. Like Brownian motion, Brownian bridges are Gaussian processes, but
without independent increments. See Figure 3.1(c) for a discrete sample path realisation of
a Brownian bridge, obtained with the sampling algorithm introduced in Section 3.3.2.

3.1.3 Gaussian White Noise

In many life sciences applications, a system is disturbed by external fluctuations which
vary much more rapidly than the system itself; the memory of the environment seems to be
short compared to the memory of the system. In the idealized case, the environment is
considered memoryless, and the according disturbances are called white noise. The paths
of such a white noise process are uncorrelated at any two distinct time instants2 and are
extremely irregular.

Formally, white noise is defined as a continuous-time stationary process with mean zero
and autocorrelation function proportional to the Dirac delta function. Such a process
does not exist in the usual sense but belongs to the class of generalised processes (see e. g.
Arnold, 1973). If the single values of the paths of the white noise process are normally
distributed, we speak of Gaussian white noise. In that case uncorrelatedness implies
independence. In analogy to the definition of Brownian motion, d-dimensional white noise
consists of d mutually independent one-dimensional white noise processes.

The choice of white noise as a model for the disturbances — i. e. the choice of a memoryless
environment — yields the advantage of retaining the Markov nature of the system. Gaussian
white noise can formally be interpreted as the generalised derivative of the (nowhere
differentiable) Brownian motion (see e. g. Kloeden & Platen, 1999). In the next section, we

2This choice of autocorrelation implies a constant non-zero power spectral density of the process, defined
as the Fourier transform of its autocorrelation function. That explains the term white noise in analogy to
white light, where all visible frequencies occur in equal amounts.
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will hence use the notation dBt = ξtdt for standard Brownian motion B and a standard
Gaussian white noise process ξ = (ξt)t≥0, i. e. Var(ξtdt) = Idt for all t with I being the
identity matrix. It is this process that we referred to when we defined stochastic differential
equations to be driven by an irregular stochastic process at the beginning of this chapter.
Figure 3.1(d) shows a discrete-time simulation of Gaussian white noise. For a detailed
discussion of this process see Horsthemke and Lefever (1984).

3.1.4 Excursus: Lévy Processes

The integration of Brownian motion as a source of noise is generally reasonable for models
of perturbed systems in many contexts; the resulting diffusion processes (see Section 3.2.5)
are called Brownian-driven.

However, such models turned out to be unsatisfactory in some applications in finance. In
these cases more general driving forces are taken, inducing the Lévy processes. These are
defined as processes whose sample paths almost surely start in zero, are continuous in
probability and have independent and stationary increments (Protter, 1990). Special cases
are the Poisson process and Brownian motion with initial value zero.

Unlike the trajectories of diffusion processes, the paths of such Lévy-driven processes may
experience jumps. One famous example is the jump-diffusion model by Merton (1976).
However, the focus of this thesis lies on diffusion processes as the appropriate model in many
applications in life sciences; therefore, Brownian-driven processes are considered exclusively
in the following.

3.2 Itô Calculus

Inclusion of white noise as a source of randomness in differential equations leads to difficulties
in the application of classical calculus. The need for a new integral definition arises, resulting
in stochastic calculus with the Itô calculus as a prominent representative. This is introduced
in the following.

3.2.1 Stochastic Integral and Stochastic Differential Equations

Differential equations are eminently appealing for the modelling of phenomena that evolve
continuously in time as they express the rates of change. In order to adequately include
random fluctuations — which are present in all natural contexts — there is a need to include
a stochastic component. As motivated in Section 3.1.3, we consider stochastic differential
equations of the form

dX t

dt
= µ(X t, t) + σ(X t, t) ξt , X t0 = x0, (3.2)
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with jointly measurable functions µ : X × T → Rd, σ : X × T → Rd×m and m-dimensional
standard Gaussian white noise ξ. That means the differential of X = (X t)t≥t0 is composed
of a systematic component µ and zero-mean random disturbances ξ intensified by σ. The
noise ξ is called additive if σ is constant in space and multiplicative otherwise. Using the
notation dBt = ξtdt for standard Brownian motion B, we get a differential

dX t = µ(X t, t)dt+ σ(X t, t)dBt , X t0 = x0, (3.3)

or, equivalently, an integral

X t = X t0 +
t∫

t0

µ(Xs, s)ds+
t∫

t0

σ(Xs, s)dBs. (3.4)

The first integral can be treated as an ordinary Lebesgue integral, but due to the almost
surely unbounded total variation of the sample paths of Brownian motion (see Section 3.1.1),
the second integral cannot be understood as a Lebesgue-Stieltjes integral. Instead, it is
defined by taking advantage of the finite quadratic variation of the Brownian motion
paths as follows: Let D∗[t0,t] be the class of non-anticipating jointly F∗ × L-measurable
functions f : Ω× [t0, t]→ Rk×l for appropriate k and l with

E‖f(ω, s)‖2 <∞ for all s ∈ [t0, t] and
t∫

t0

E‖f(ω, s)‖2ds <∞, (3.5)

where ‖A‖2 = tr(A′A) denotes the Euclidean norm for a vector or matrix A. This and
the following statements shall hold for all ω ∈ Ω. For step functions f ∈ D∗[t0,t] with jumps
occurring at t1 < . . . < tn−1, define

t∫
t0

f(ω, s)dBs : =
n∑
i=1
f(ω, ti−1)

(
Bti −Bti−1

)
(3.6)

for tn = t. For all f ∈ D∗[t0,t], there exists a sequence of step functions fn ∈ D∗[t0,t] which
approximates f in the sense that

lim
n→∞

t∫
t0

E‖f(ω, s)− fn(ω, s)‖2ds = 0. (3.7)

With such a sequence {fn}n∈N, the Itô (stochastic) integral is now defined for all f ∈ D∗[t0,t]
as the mean-square limit of the integrals of the step functions, i. e.

t∫
t0

f(ω, s)dBs := lim
n→∞

t∫
t0

fn(ω, s)dBs in L2. (3.8)

The value of this integral does not depend on the particular choice of the fn. If f covers
only

t∫
t0

‖f(ω, s)‖2ds <∞ a.s. (3.9)
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rather than condition (3.5), then there exists a sequence of functions fn from this larger
class D[t0,t] so that

lim
n→∞

t∫
t0

‖f(ω, s)− fn(ω, s)‖2ds = 0 a.s.

The Itô integral of such f is defined as in (3.8) with the convergence in L2 replaced by
convergence in probability.

From now on let µ,σ ∈ DT for any T ⊂ R, where µ fulfils (3.9) also for non-squared norm
and both coefficients depend on ω ∈ Ω through X(ω), so (3.4) is well-defined.

3.2.2 Different Stochastic Integrals

Like the classical Lebesgue-Stieltjes integral, the general stochastic integral is the limit
(now in mean-square) of a sequence of partial sums, but with the crucial difference that the
value of the limit depends on the selection of evaluation points within the partition of the
time axis. Different choices of evaluation points lead to different stochastic integrals. The
most common ones are the above Itô integral and the Stratonovich integral, introduced in
Itô (1944, 1946) and Stratonovich (1966). As in (3.6), the Itô integral takes the left end
point of each subinterval as the evaluation point, whereas the Stratonovich integral uses the
midpoint of each subinterval. The Itô integral has the most convenient property of being a
martingale but does not — unlike the Stratonovich integral — meet the transformation
rules of classical calculus (cf. Section 3.2.10).

For this thesis, only the Itô interpretation is of relevance, and we will restrict our attention
to that. However, it is possible to switch between the Itô and the Stratonovich calculi
whenever it is advantageous (see e. g. Øksendal, 2003, Chapter 6, for a respective formula).

3.2.3 Existence and Uniqueness of Solutions

With the definition of the stochastic integral, an F-adapted stochastic process X is now
defined to be the solution of the stochastic differential equation (3.3) if and only if X
satisfies the stochastic integral equation (3.4) almost surely. Then X is Markovian and
called an Itô process.

Such a solution exists pathwise uniquely if µ and σ are Lipschitz continuous. Then, by
definition, there exists a constant C > 0 such that for all t ∈ T (in case of T = [t0,∞) for
all t ∈ T ′ for all finite subsets T ′ ⊂ T ) and x,y ∈ X

‖µ(x, t)− µ(y, t)‖+ ‖σ(x, t)− σ(y, t)‖ ≤ C‖x− y‖. (3.10)

The solution will be non-explosive with finite second moments if E‖X t0‖2 <∞ and there
is a constant D > 0 with

‖µ(x, t)‖2 + ‖σ(x, t)‖2 ≤ D
(
1 + ‖x‖2

)
(3.11)
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for all t and x.

Pathwise uniqueness means that if there are two solutions X and X̃ with the same initial
value, then

P

(
sup
t∈T
‖X t − X̃ t‖ > 0

)
= 0,

which implies equivalence of X and X̃. Such a pathwise unique solution is called a strong
solution. It can be interpreted as a general functional of the Wiener process. Under weaker
assumptions (e. g. Kloeden & Platen, 1999, Chapter 4), an SDE may only have a weak
solution which is obtained for a particular Wiener process. A weak solution is unique if all
solutions have the same probability law.

Every strong solution has an almost surely continuous separable version, hence without loss
of generality we can assume this property for X in the sequel. However, it is generally not
possible to find an explicit solution of an SDE; instead, numerical approximation methods
are applied (see Section 3.3).

Example 3.1. One of the few cases in which an explicit strong solution is available is
given by the SDE

dXt = αXtdt+ σXtdBt , X0 = x0, (3.12)

with parameters α ∈ R, σ ∈ R+ and state space X = R+ for x0 ∈ R+. This SDE is solved
by the geometric Brownian motion X = (Xt)t≥0 with

Xt = x0 exp
((
α− 1

2 σ
2
)
t+ σBt

)
(3.13)

for all t ≥ 0. This process is described in more detail in Section A.1 in the appendix.

3.2.4 Transition Density and Likelihood Function

The assumptions made on page 28 regarding the existence of conditional probabilities
and densities particularly ensure the existence of the transition density p(s,x, t,y) defined
through

P(X t ∈ A|Xs = x) =
∫
A

p(s,x, t,y)dy (3.14)

for all F∗-measurable sets A ⊆ X . p(s,x, t,y) is the density of a Markov process X for
going from state x ∈ X at time s ≥ 0 to y ∈ X at time t > s. For s = t, we define

p(t,x, t,y) = δ(x− y),

where δ denotes the Dirac delta function. If X is homogeneous in time, i. e. the transition
density depends on s and t solely through their difference t− s, we also write p(t−s;x,y).
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In many applications, the transition density further depends on a parameter θ from a
parameter space Θ. For discrete observations xt0 , . . . ,xtn at time points t0 < . . . < tn, the
likelihood function of θ reads

L(θ) =
n−1∏
i=0

pθ(ti,xti , ti+1,xti+1) =
n−1∏
i=0

pθ(ti+1 − ti;xti ,xti+1)

for a time-homogeneous Markov process and all θ ∈ Θ. The case of continuous observations
is regarded in Section 6.1.1. Estimation of θ is the focus of this thesis and will thoroughly
be treated in Chapters 6 and 7.

3.2.5 Itô Diffusion Processes

A diffusion process is defined as a Markov process whose transition probability function p
meets the following three properties for all x ∈ X and s ≥ 0:

1. For all ε > 0 we have uniformly

lim
t↓s

1
t− s

∫
‖y−x‖>ε

p(s,x, t,y)dy = 0, (3.15)

i. e. large jumps are improbable over small time intervals, that means the process has
almost surely continuous sample paths.

2. For all ε > 0 the uniform limit

µ(x, s) = lim
t↓s

1
t− s

∫
‖y−x‖≤ε

p(s,x, t,y)(y − x)dy (3.16)

exists. The vector-valued function µ is called the drift and describes the instantaneous
rate of change of the conditional expectation of the increments.

3. For all ε > 0 the uniform limit

Σ(x, s) = lim
t↓s

1
t− s

∫
‖y−x‖≤ε

p(s,x, t,y)(y − x)(y − x)′dy (3.17)

exists. The symmetric and positive semi-definite matrix-valued function Σ is called
the diffusion matrix and reflects the instantaneous rate of change of the conditional
covariance of the increments. A matrix σ with Σ = σσ′ is called the diffusion
coefficient.

Such a decomposition exists due to the positive semi-definiteness of Σ, but is not
necessarily unique, i. e. there might be matrices σ 6= σ̃ with σσ′ = σ̃σ̃′ = Σ which do
not even agree in their number of columns. However, as Stroock and Varadhan (1979,
Chapter 5.3) show, the particular choice of the diffusion coefficient does not influence
the distribution of the process X as long as it is a square root of the diffusion matrix.
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An F -adapted process X satisfying the Itô SDE

dX t = µ(X t, t)dt+ σ(X t, t)dBt , X t0 = x0, (3.18)

is an Itô diffusion with drift µ and diffusion matrix Σ = σσ′ if the coefficients µ and σ fulfil
the Lipschitz condition (3.10) and growth bound (3.11) and are continuous in time. The
other way round, if the transition density of an Itô diffusion with starting value X t0 = x0
is uniquely determined by the drift µ and positive semi-definite diffusion matrix Σ = σσ′,
where again µ and σ satisfy (3.10) and (3.11), it is a solution of the Itô SDE (3.18) (Arnold,
1973, Chapter 9.3).

3.2.6 Sample Path Properties

For non-vanishing diffusion coefficient, diffusion processes look like Brownian motion locally
in time. Hence many characteristic sample path properties such as the infinite total variation
and non-differentiability are inherited from the driving Brownian motion. As the integral
exerts a smoothing effect, diffusion processes have almost surely continuous sample paths.
Similarly to (3.1), the quadratic variation of the above Itô diffusion process on a time
interval [s, t] is

〈X,X〉[s,t] = lim
δ(Zn)↓0

h(n)∑
i=1

(
X

t
(n)
i
−X

t
(n)
i−1

)(
X

t
(n)
i
−X

t
(n)
i−1

)′
=

t∫
s

Σ(Xτ , τ)dτ (3.19)

in probability (and almost surely for sufficiently smooth Σ), where δ(Zn) is the fineness of
a partition Zn of [s, t]. This turns out to be of great importance in parameter estimation if
observations are continuous or on a sufficiently fine time scale (see Sections 6.1.1 and 7.3).

3.2.7 Ergodicity

For any ε > 0 and x ∈ X , denote by Uε(x) a spherical neighbourhood of radius ε around x.
Assume that at time t0, a time-homogeneous diffusion process X is in state x0 ∈ X . Let

Tε(x) = inf
t≥t0

{
X t ∈ Uε(x)

}
be the first time at which the process enters Uε(x). The process is called recurrent if this
time is almost surely finite, irrespectively of x0 and x, i. e.

∀ ε > 0 ∀x0,x ∈ X P
(
Tε(x) <∞

∣∣∣X t0 = x0
)

= 1.

Furthermore, the process is called positive recurrent or ergodic if the expected value of this
time point is finite, i. e.

∀ ε > 0 ∀x0,x ∈ X E
(
Tε(x)

∣∣∣X t0 = x0
)
<∞.
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The diffusion process then possesses a stationary distribution (Klebaner, 2005).

For one-dimensional diffusion processes, the following statements hold: The scale function
and speed measure of a time-homogeneous diffusion process

dXt = µ(Xt)dt+ σ(Xt)dBt , Xt0 = x0,

with positive diffusion Σ = σ2 are defined as

s(x) = exp
−2

x∫
x0

µ(z)Σ−1(z)dz
 and m(x) = 1

s(x) Σ−1(x)

for all x ∈ X . The process is recurrent if and only if

lim
x→−∞

x∫
x0

s(z)dz = −∞ and lim
x→∞

x∫
x0

s(z)dz =∞.

It is positive recurrent if and only if ∫
X

m(z)dz <∞.

If these two conditions are fulfilled, the diffusion process is ergodic, i. e. there exists a
stationary (or invariant) density π : X → R such that for a random variable ξ ∼ π and
any measurable function h with E|h(ξ)| <∞ one has almost surely

lim
t→∞

1
t− t0

t∫
t0

h(Xs)ds = Eh(ξ). (3.20)

Equation (3.20) relates the long-term time average of the paths to the spatial average with
respect to π. The stationary density results as

π(x) = m(x)
/∫
X

m(x)dx

(Kutoyants, 2004, Chapter 1.2). Several of the inference techniques in Chapter 6 require
the existence of a stationary distribution. For ergodicity conditions for multi-dimensional
diffusion processes, see Klebaner (2005, Chapter 6).

3.2.8 Kolmogorov Forward and Backward Equations

Suppose the transition density p of an Itô diffusion process

dX t = µ(X t, t)dt+ σ(X t, t)dBt , X t0 = x0,
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is smooth enough such that the derivatives in the following partial differential equations
exist and are continuous. Then p satisfies the Kolmogorov forward equation

∂p(s,x, t,y)
∂t

= −
d∑
i=1

∂
[
µi(y, t)p(s,x, t,y)

]
∂y(i) + 1

2

d∑
i,j=1

∂2
[
Σij(y, t)p(s,x, t,y)

]
∂y(i)∂y(j) (3.21)

for fixed x and s and the Kolmogorov backward equation

−∂p(s,x, t,y)
∂s

=
d∑
i=1

µi(x, s)
∂p(s,x, t,y)

∂x(i) + 1
2

d∑
i,j=1

Σij(x, s)
∂2p(s,x, t,y)
∂x(i)∂x(j) (3.22)

for fixed y and t, where x,y ∈ X and t > s ≥ 0, and i, j denote the respective components
of x, y, µ and Σ = σσ′. Remarkably, each of these equations uniquely determines
the transition density p (subject to an appropriate initial condition), and hence diffusion
processes are, like Gaussian processes, already completely defined by their instantaneous
mean and variance µ and Σ. Furthermore, if the transition density of a stochastic process
fulfils the Kolmogorov forward or backward equation, then it is an Itô diffusion process.

Equations (3.21) and (3.22) are sometimes also called the forward and backward diffusion
equations. The terms forward and backward arise from the equations describing the evolution
of the process with respect to a later and former state, respectively. The Kolmogorov
forward equation is additionally known as the Fokker-Planck equation. For shorter notation,
introduce the two operators LFµ,Σ and LBµ,Σ such that

∂p

∂t
= LFµ,Σ p and − ∂p

∂s
= LBµ,Σ p. (3.23)

The Kolmogorov forward and backward equations are important tools in the approximation
of pure Markov jump processes by diffusions as considered in Chapter 4. The above
equations correspond to diffusion equations of the Itô type. Stratonovich (1989) deals with
counterparts of (3.21) in other stochastic calculi.

3.2.9 Infinitesimal Generator

The infinitesimal generator G of a Markov process X is defined by

Gf(x, t) = lim
∆t↓0

1
∆t E

(
f
(
X t+∆t, t+ ∆t

)
− f

(
x, t

)∣∣∣X t = x
)

for all measurable bounded functions f : X × T → R for which the uniform limit exists.
That is the expected infinitesimal rate of change of f(X t, t) given X t = x. Like the
Kolmogorov forward and backward equations, G uniquely determines a diffusion process for
a given initial value. The infinitesimal generator of a diffusion X with drift vector µ and
diffusion matrix Σ is related to the Kolmogorov backward operator (3.23) through

Gp̃ =
(
∂

∂s
+ LBµ,Σ

)
p̃
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with p̃(x, s) = p(s,x, t,y) and t and y fixed. Hence, if one is able to derive the infinitesimal
generator of a diffusion process, one can directly read out its drift vector and diffusion
matrix. We will make use of this in Chapter 4 when deriving diffusion approximations from
Markov jump processes.

3.2.10 Itô Formula

Let X = (X t)t∈T be an Itô process with state space X ⊆ Rd and g : X × T → Rl a jointly
measurable function that is twice continuously differentiable in space and once in time.
Then Y = (Y t)t∈T with Y t = g(X t, t) is again an Itô process, and for its kth component
we get the Itô formula

dY
(k)
t = ∂g(k)(X t, t)

∂t
dt+

d∑
i=1

∂g(k)(X t, t)
∂x(i) dX

(i)
t + 1

2

d∑
i,j=1

∂2g(k)(X t, t)
∂x(i)∂x(j) dX

(i)
t dX

(j)
t (3.24)

for k = 1, . . . , l, where the upper indices denote the respective component numbers. The
terms dX(i)

t dX
(j)
t are to be calculated according to the mean-square rules

(dt)2 = dt · dB(i)
t = dB

(i)
t · dt = 0 and dB

(i)
t dB

(j)
t = δijdt , (3.25)

where δij is the Kronecker delta, in combination with the SDE defining X t.

Formula (3.24) is the Itô stochastic counterpart of the deterministic chain rule in classical
calculus (and also in Stratonovich calculus), where the second sum is absent.

3.2.11 Lamperti Transformation

An application of Itô’s formula is the following: Consider a one-dimensional Itô diffu-
sion (Xt)t≥0 with time-homogeneous diffusion coefficient, i. e.

dXt = µ(Xt, t)dt+ σ(Xt)dBt , Xt0 = x0,

and its Lamperti transform Y = (Yt)t≥0, where

Yt = g(Xt) =
Xt∫
a

du

σ(u)

for any a in the state space. Then Y fulfils the Itô SDE

dYt =
(
µ(g−1(Yt), t)
σ(g−1(Yt))

− 1
2
∂σ

∂x
(g−1(Yt))

)
dt+ dBt , Yt0 = g(x0),

i. e. it has unit diffusion. This is a convenient property in the context of parameter estimation,
and hence this transformation will frequently be used in the methods covered in Chapters 6
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and 7. Unfortunately, there is no such transform for general multi-dimensional diffusion
processes X with diffusion matrix Σ. A transformation Y = g(X) with unit diffusion
requires g : X → Rl to be an invertible function fulfilling the conditions of the Itô formula
and

5g(Xt)Σ(X t)5g(Xt)′ = I,

where

5g =


∂g(1)

∂x(1) · · ·
∂g(1)

∂x(d)
... . . . ...

∂g(l)

∂x(1) · · ·
∂g(l)

∂x(d)


(Papaspiliopoulos, Roberts, & Sköld, 2003). Such g cannot be found in general. Aït-Sahalia
(2008), however, provides a necessary and sufficient condition for the availability of an
appropriate transform.

3.2.12 Girsanov Formula

Let Pσ be the probability measure induced by the solution of the Itô SDE

dXτ = µ(Xτ , τ)dτ + σ(Xτ , τ)dBτ

for τ ∈ [t0, t] and a fixed starting value at time t0, and let Wσ be the law of the respective
driftless process. Suppose that Σ = σσ′ is invertible and µ fulfils the Novikov condition

EPσ

 exp
1

2

t∫
t0

‖µ(Xτ , τ)‖2dτ

 <∞.

Then Pσ and Wσ are equivalent measures with Radon-Nikodym derivative given by
Girsanov’s formula

dPσ
dWσ

(
X [t0,s]

)
= exp

 s∫
t0

µ′ Σ−1dXτ −
1
2

s∫
t0

µ′ Σ−1µ dτ

 (3.26)

for all s ∈ [t0, t] and X [t0,s] = (Xτ )τ∈[t0,s]. The coefficients µ and Σ in the integrals are
evaluated at Xτ and τ .

The right-hand side of (3.26) is a Wσ-martingale and states the density of the law of X
with respect to Wσ. For continuous observation of X and known diffusion coefficient,
(3.26) serves as the likelihood of the parameters entering the drift function (cf. Section 6.1.1).
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3.3 Approximation and Simulation

If the solution of a diffusion process is explicitly known, it is straightforward to sample
from its distribution at discrete time instants since the increments of the driving Brownian
motion process are just Gaussian random variables. However, as mentioned before, solutions
of SDEs are usually unattainable in closed form. Sections 3.3.1 and 3.3.2 hence deal with
numerical methods to approximate the Itô diffusion process

dX t = µ(X t, t)dt+ σ(X t, t)dBt , X t0 = x0, (3.27)

on a discrete time grid t0 < t1 < . . . < tn, where the Lipschitz and growth bound condi-
tions (3.10) and (3.11) are assumed to be fulfilled and E‖X t0‖ <∞. These approximation
techniques immediately yield approximate sampling algorithms. Section 3.3.2 also covers
the exact simulation of Brownian bridges, whose probability distributions are explicitly
known.

In the sequel, an approximation or simulation of X(tk) will be denoted by Y k, k = 0, . . . , n.
Moreover, introduce the increments ∆tk = tk+1− tk and ∆Bk = Btk+1 −Btk ∼ N (0,∆tkI)
for k = 0, . . . , n−1 and the maximum time step ∆ = maxk ∆tk. The resulting approximation
or exact realisation Y is considered a time-continuous process although the according
sampling schemes naturally yield values only for a collection of discrete time instants.
Intermediate data is usually obtained by linear interpolation. However, as mentioned in
Section 3.2.6, the paths of a diffusion process are extremely irregular, which cannot be
reproduced this way.

3.3.1 Convergence and Consistency

As for the definition of the stochastic integral, one has to take care when deriving a stochastic
approximation method from its deterministic counterpart. As e. g. shown in Fahrmeir (1976),
such generalisations might for instance result in wrong drift coefficients. It is hence crucial
to evaluate approximation schemes through their convergence and consistency properties.
For stochastic differential equations, these exist in a weak and a strong sense, where the
first concerns distributional and the second pathwise approximations. In this thesis, we
only consider the latter.

With the above notations, an approximation Y of a process X on a time interval [t0, tn] is
said to converge strongly of order p > 0 if there exist positive constants C and ∆0 such that

E‖X tn − Y n‖ ≤ C∆p

for all ∆ ∈ (0,∆0). It is called strongly consistent if there exists a non-negative function γ(∆)
which tends to zero as ∆→ 0 such that for all k = 0, . . . , n− 1

E
∥∥∥∆−1

k E (Y k+1 − Y k|Ftk)− µ(Y k, tk)
∥∥∥2
≤ γ(∆)
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and
∆−1
k E ‖Y k+1 − Y k − E (Y k+1 − Y k|Ftk)− σ(Y k, tk)∆Bk‖2 ≤ γ(∆).

Note that the order of strong convergence can be higher in special cases, e. g. for constant
drift and diffusion coefficients.

3.3.2 Numerical Approximation

An obvious way to obtain numerical approximation methods is to employ a truncated
version of the Itô-Taylor expansion (Kloeden & Platen, 1991)

X t = X t0 + µ(X t0 , t0)
t∫

t0

ds+ σ(X t0 , t0)
t∫

t0

dBs +R3

with a remainder term R3 with ith component

R
(i)
3 =

m∑
j=1

m∑
l=1

d∑
r=1

σrj(X t0 , t0)
(
∂σil
∂x(r) (X t0 , t0)

) t∫
t0

s∫
t0

dB(j)
u dB(l)

s + . . . ,

where the sub- and superscripts denote the components of σ ∈ Rd×m, x ∈ Rd and B ∈ Rm.
The following Euler and Milstein methods are applications of this. The Milstein scheme is
of higher order of strong convergence than the Euler approximation but involves the more
elaborate computation and evaluation of derivatives of the diffusion coefficient. The latter
is avoided by the Runge-Kutta scheme which is introduced thereafter. All approximations
converge to the solution of (3.27) in the Itô sense.

Figure 3.2 shows discrete approximations of geometric Brownian motion — represented
by the explicitly solvable SDE (3.12) on page 34 — obtained with the Euler, Milstein and
Runge-Kutta schemes in comparison with exact simulation for different step sizes.

There are several more numerical approximation methods (Fahrmeir & Beeck, 1974, Rümelin,
1982, Chang, 1987, Newton, 1991, Kloeden & Platen, 1999, and the references therein), but
the selection made here covers the needs of this thesis.

Euler Scheme

The Euler approximation (also called Euler-Maruyama approximation) of X is obtained by
setting Y 0 = x0 and then successively3

Y k+1 = Y k + µ(Y k, tk)∆tk + σ(Y k, tk)∆Bk (3.28)

for k = 0, . . . , n− 1. It is strongly consistent and has strong order of convergence p = 0.5.
3Contrarily to common matrix notation, but consistently with the differential equation representation,

the scalar ∆tk is multiplied with the vector µ from the right — a consetude that will be kept throughout
this thesis.
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Figure 3.2: Discrete realisations of geometric Brownian motion, defined through SDE (3.12)
or its explicit solution (3.13) on page 34, for x0 = 1, α = 0.5 and σ = 0.9: Exact sampling
(solid lines), Euler approximation (dashed), Milstein approximation (dotted) and Runge-Kutta
approximation (dash-dotted) for equidistant time steps 0.2 (left), 0.05 (middle) and 0.01 (right),
each with respect to the same driving Brownian motion.

Milstein Scheme

The Milstein method yields approximate values by setting Y 0 = x0 and then successively
for the ith component

Y
(i)
k+1 = Y

(i)
k + µi(Y k, tk)∆tk +

m∑
j=1

σij(Y k, tk)∆B(j)
k

+
m∑
j=1

m∑
l=1

d∑
r=1

σrj(Y k, tk)
(
∂σil
∂x(r) (Y k, tk)

) tk+1∫
tk

s∫
tk

dB(j)
u dB(l)

s

for k = 0, . . . , n− 1. For j = l (and thus especially for one-dimensional Brownian motion)
the double integral simplifies to

tk+1∫
tk

s∫
tk

dB(j)
u dB(l)

s = 1
2

((
∆B(j)

k

)2
−∆tk

)
,

but otherwise its computation is generally more demanding (cf. e. g. Kloeden & Platen,
1999). Suppose that µ and σ are twice continuously differentiable with uniformly Lip-
schitz continuous derivatives. Then the Milstein scheme is strongly consistent and strongly
convergent of order p = 1.
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Runge-Kutta Scheme

One possible alternative to the computation of the derivative of the diffusion coefficient in
the Milstein scheme is the application of finite differences as in the Runge-Kutta method

Ỹ k,j = Y k + µ(Y k, tk)∆tk + σ•j(Y k, tk)
√

∆tk

Y
(i)
k+1 = Y

(i)
k + µi(Y k, tk)∆tk +

m∑
j=1

σij(Y k, tk)∆B(j)
k

+ 1√
∆tk

m∑
j=1

m∑
l=1

(
σil(Ỹ k,j, tk)− σil(Y k, tk)

) tk+1∫
tk

s∫
tk

dB(j)
u dB(l)

s

for k = 0, . . . , n− 1, j = 1, . . . ,m and i = 1, . . . , d, where σ•j denotes the jth column of σ.
This derivative-free approximation is strongly consistent and of strong order p = 1 if the
coefficients are twice continuously differentiable with uniformly bounded derivatives.

3.3.3 Simulation of Brownian Bridge

In Section 3.1.2 a Brownian (s,u, t,v)-bridge B̃ = (B̃τ )τ∈[s,t] was defined as Brownian
motion conditioned on B̃s = u and B̃t = v. This process can exactly be sampled at
discrete time instants as follows (Beskos, Papaspiliopoulos, Roberts, & Fearnhead, 2006):

1. Simulate Brownian motion at times s = t0 < t1 < . . . < tn = t. This is done by
setting B0 = 0 and then successively drawing for fixed σ ∈ R+

Bk+1 ∼ N (Bk, σ
2∆tkI) for k = 0, . . . , n− 1.

2. Construct a Brownian (s,0, t,0)-bridge B̄ from the Brownian motion seeds via

B̄k = Bk −
tk − s
t− s

Bn for k = 0, . . . , n.

3. Transform this to a Brownian (s,u, t,v)-bridge B̃ through

B̃k = B̄k + t− tk
t− s

u+ tk − s
t− s

v for k = 0, . . . , n.

3.4 Concluding Remarks

This chapter gives an overview of stochastic differential equations and diffusion processes
to the extent which is required as a basis for the remaining parts of this thesis. It covers
the motivation and introduction of stochastic integrals opposed to the classical Lebesgue-
Stieltjes integral, the definition of diffusion processes, material properties and formulas
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from stochastic calculus and finally numerical approximation and exact sampling methods.
References to monographs on these subjects were provided at the beginning of this chapter.

Regularity conditions were stated whenever necessary. For the purposes of this thesis, let
the following assumptions from now on hold unless otherwise stated: µ and σ denote jointly
F∗ × L-measurable drift and diffusion coefficients of a diffusion process. Dependence on a
parameter θ will be included in the notation later in this thesis. Both µ and σ are supposed
to be such that the stochastic integral is well-defined (cf. Section 3.2.1), to fulfil the Lipschitz
condition (3.10) and growth bound (3.11), and to be twice continuously differentiable with
respect to all arguments. The diffusion matrix Σ = σσ′ is assumed positive definite and
invertible. These regularity conditions are usually fulfilled in applications in life sciences.

The following Chapters 4 to 7 show how to utilise diffusion processes for modelling phe-
nomena in life sciences and how to perform inference on the model parameters. This is
implemented in two applications in Chapters 8 and 9.
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Chapter 4

Approximation of Markov Jump
Processes by Diffusions

In many applications in life sciences one is concerned with the time-continuous evolution
of numbers of individual objects such as the number of molecules in a gas, the number of
infectives in a population, the number of animals in some region, the number of bacteria
in a microscopic field etc. These numbers are stochastic quantities, and the state space
of an according stochastic process is a subset of the set of integers or a multi-dimensional
equivalent. If the process possesses the Markov property, transitions from one state to
another are most adequately described by a so-called master equation. That is a differential-
difference equation, i. e. a first order differential equation in the continuous time variable and
difference equation in the discrete space variable. The discrete state space naturally implies
discontinuity of the trajectories. The considered processes are Markov jump processes.

However, the sizes of the jumps are often infinitesimally small compared to the total size
of the system. An approximation of the discontinuous paths by continuous curves is then
justified. For example, consider a large number of different types of molecules which
move around randomly, and assume that there is at most one collision possible within an
infinitesimally small time interval. If the collision causes a reaction, the numbers of the
involved types of molecules will change. On a macroscopic view of the according trajectories,
however, these individual jumps will hardly be noticeable.

This chapter deals with the approximation of such Markov jump processes by Markov
processes with continuous state space and almost surely continuous sample paths. The
reward is the replacement of the master equation by a partial differential equation that is
more convenient to deal with in a sense that will be elaborated soon. In order to maintain
the strong Markov character of the original jump processes, we employ as approximations
the only class of stochastic processes that are both strongly Markovian and have almost
surely continuous sample paths. These are the diffusion processes introduced in the previous
chapter. The counterparts of the master equations are the Kolmogorov equations discussed
in Section 3.2.8.
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The crucial point in the approximating procedure is that the sources of both the systematic
and fluctuating part of the resulting stochastic differential equation are bound to agree with
the initial description of the jump process. This is a complicated matter which has been
the subject of numerous modelling attempts and source of considerable confusion (see van
Kampen, 1965, Chapter 1.C, for an overview). While it is often straightforward to derive the
drift of the approximating diffusion process correctly, it is difficult to determine the strengths
of the noise terms that arise from internal fluctuations. Hence, several authors avoid a
rigorous mathematical derivation and set up the noise terms using heuristic arguments.
The present chapter reviews and further develops proper approximation techniques in order
to take remedial action.

This chapter is organised as follows: Section 4.1 categorises the key processes of this
survey and important properties of their transition densities. The necessity of diffusion
approximations and the intention of this chapter are emphasised in Section 4.2. Different
techniques for the transition from a Markov jump process to a diffusion process are
presented in Section 4.3 in detail. To that end, established methods from the literature are
supplemented by new formulations and constructive algorithms in this thesis. Furthermore,
results are presented in a multi-dimensional framework in this chapter — in contrast to
the existing literature, where formulas are usually derived for the one-dimensional case. To
the author’s knowledge, there is no textbook which provides a comparable overview. As a
novelty, Section 4.4 extends the approaches from Section 4.3 to a more general framework,
where the size of the considered system is characterised through multiple rather than a single
size parameter. Section 4.5 discusses the appropriateness of different stochastic integrals
for the considered modelling purposes. The outcomes of the entire chapter are summarised
and collated in Section 4.6. For a reader who is primarily interested in explicit formulas
for diffusion approximations rather than in the ideas of the underlying approximating
procedures, it might suffice to work through this conclusion.

The methods of this chapter establish an indispensable part of this thesis as they are utilised
in Chapters 5 and 9 for the approximation of jump models in life sciences. The resulting
diffusion approximations, in turn, form the basis of Chapters 8 and 9, where the spread of
influenza and the molecular binding behaviour of proteins are analysed.

For demonstration purposes, the epidemic susceptible–infected (SI) model is employed as
a running example to which the various approximation techniques are applied after their
derivation. This model is briefly introduced in Example 4.1. It arises as a special case of the
susceptible–infected–removed (SIR) model, which is extensively considered in Section 5.1, if
one sets the recovery rate equal to zero. Owing to the detailed and illustrative application
of all approximation techniques in Chapter 5, the examples in the current chapter are
restrained to the statement of intermediate results. For full calculations, the reader is
referred to the next chapter.
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4.1 Characterisation of Processes

We start with a brief note on the three classes of stochastic models which we will deal with
in the course of this chapter: Markov jump processes, deterministic Markov processes with
continuous sample paths, and diffusions. These are characterised through the transition
density p(t0,x0, t,x) for the process arriving at state x at time t conditioned on an initial
state x0 at time t0. In the following we will fix t0 and x0 and also use the notation p(t,x)
for p(t0,x0, t,x). p is assumed to fulfil the initial condition p(t0,x0, t0,x) = δ(x− x0) and
to be smooth enough such that the derivatives in this chapter exist.

Gardiner (1983, Chapter 3.4) derives a differential equation for p, which he calls the
(forward) differential Chapman-Kolmogorov equation. It is valid for all Markov processes in
the interior of the state space X ⊆ Rn and reads

∂p(t,x)
∂t

=
∫
X

[
W (t,y,x− y)p(t,y)−W (t,x,y − x)p(t,x)

]
dy

−
n∑
i=1

∂
[
µi(x, t)p(t,x)

]
∂xi

+ 1
2

n∑
i,j=1

∂2
[
Σij(x, t)p(t,x)

]
∂xi∂xj

,

(4.1)

where W is the transition rate, µ = (µi)i=1,...,n the drift vector and Σ = (Σij)i,j=1,...,n the
diffusion matrix. These are defined for all ε > 0 and i, j = 1, . . . , n as

W (t,x,y − x) = lim
∆t↓0

1
∆t p(t,x, t+ ∆t,y) (4.2)

µi(x, t) = lim
∆t↓0

1
∆t

∫
‖y−x‖≤ε

(yi − xi)p(t,x, t+ ∆t,y)dy

Σij(x, t) = lim
∆t↓0

1
∆t

∫
‖y−x‖≤ε

(yi − xi)(yj − xj)p(t,x, t+ ∆t,y)dy

(compare with the definitions in Section 3.2.5). Higher order terms such as

lim
∆t↓0

1
∆t

∫
‖y−x‖≤ε

(yi − xi)(yj − xj)(yk − xk)p(t,x, t+ ∆t,y)dy

vanish. An analogous backward differential Chapman-Kolmogorov equation is

∂p(τ,u, t,x)
∂τ

=
∫
X

W (τ,u,y − u)
[
p(τ,u, t,x)− p(τ,y, t,x)

]
dy

−
n∑
i=1

µi(u, τ) ∂p(τ,u, t,x)
∂ui

− 1
2

n∑
i,j=1

Σij(u, τ) ∂
2p(τ,u, t,x)
∂ui∂uj

.

(4.3)

Gardiner highlights three classes of Markov processes. These are
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• pure jump processes, where µ = 0 and Σ = 0. In this case, Equation (4.1) reduces to
the (forward) master equation

∂p(t,x)
∂t

=
∫
X

[
W (t,y,x− y)p(t,y)−W (t,x,y − x)p(t,x)

]
dy, (4.4)

Equation (4.3) to the backward master equation

∂p(τ,u, t,x)
∂τ

=
∫
X

W (τ,u,y − u)
[
p(τ,u, t,x)− p(τ,y, t,x)

]
dy. (4.5)

Processes of this type have piecewise constant sample paths with finite jumps at
discrete time points. The paths can only be continuous if W (·, ·, z) disappears
for z 6= 0.

• deterministic processes, where W (·, ·, z) = 0 for all z 6= 0, Σ = 0 and µ 6= 0.
Equations (4.1) and (4.3) become the first order partial differential equations

∂p(t,x)
∂t

= −
n∑
i=1

∂
[
µi(x, t)p(t,x)

]
∂xi

(4.6)

and

∂p(τ,u, t,x)
∂τ

= −
n∑
i=1

µi(u, τ) ∂p(τ,u, t,x)
∂ui

,

respectively. Formula (4.6) is called Liouville’s equation. These deterministic processes
are the only Markov processes with continuous and differentiable sample paths.

• diffusion processes, where W (·, ·, z) = 0 for all z 6= 0, Σ is non-zero and µ may be
zero or non-zero. Equations (4.1) and (4.3) then equal the Kolmogorov (forward)
equation (or Fokker-Planck or forward diffusion equation)

∂p(t,x)
∂t

= −
n∑
i=1

∂
[
µi(x, t)p(t,x)

]
∂xi

+ 1
2

n∑
i,j=1

∂2
[
Σij(x, t)p(t,x)

]
∂xi∂xj

(4.7)

and Kolmogorov backward equation (or backward diffusion equation)

∂p(τ,u, t,x)
∂τ

= −
n∑
i=1

µi(u, τ) ∂p(τ,u, t,x)
∂ui

− 1
2

n∑
i,j=1

Σij(u, τ) ∂
2p(τ,u, t,x)
∂ui∂uj

from Section 3.2.8.

Figure 4.1 illustrates these three classes of processes on the example of the epidemic SI
model, which is investigated in the following Example 4.1. If not further specified, the
terms master equation, Kolmogorov equation and diffusion equation usually refer to the
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(a) pure jump process
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(b) deterministic process
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(c) diffusion process
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Figure 4.1: Simulation of the course of an epidemic according to the SI model from Example 4.1
with parameters N = 11 and λ = 1. The model is described by three different classes of
Markov processes: (a) Representation as a pure Markov jump process according to the master
equations (4.9) or (4.10). The realisation is obtained using Gillespie’s algorithm (cf. Section 2.4.1).
(b) Representation as a deterministic Markov process with continuous sample paths according to
Liouville’s equation (4.11) or its backward version (4.12). Equation (4.30) on page 64 provides
an explicit formula for the course of the process whose transition density fulfils these equations.
(c) Representation as a diffusion process according to the Kolmogorov equations (4.13) or (4.14).
The simulated path approximation is obtained by transferring these equations to an SDE and
then using the Euler scheme from Section 3.3.2 with constant time step 10−3.

forward version. Not included in the above selection are for example general Lévy processes
like the jump-diffusion process from Section 3.1.4.

If p is a probability instead of a density, it is more convenient to write the forward and
backward master equations (4.4) and (4.5) as the sums over all possible jumps ∆, i. e.

∂p(t,x)
∂t

=
∑
∆

[
W (t,x−∆,∆)p(t,x−∆)−W (t,x,∆)p(t,x)

]
(4.8)

and
∂p(τ,u, t,x)

∂τ
=
∑
∆
W (τ,u,∆)

[
p(τ,u, t,x)− p(τ,u+ ∆, t,x)

]
,

respectively. See Section 4.3.1 for the derivation and interpretation of these formulas.

Example 4.1. Consider a population of fixed size N within which an epidemic spreads
according to the susceptible–infected (SI) model as follows: Assume that all individuals
can be classified as either susceptible or infected. Denote by S(t) the number of susceptible
individuals at time t ∈ R0; the number of infecteds then results as N − S(t). The only
possible transition in the SI model is an infection, which reduces the number of susceptibles
by one and accordingly increments the number of infecteds. Assume that at time zero
the population consists of N − 1 susceptibles and one infected. Furthermore, suppose
that all individuals mix homogeneously and that the number of new infections within a
short time ∆t is approximately proportional to the product of numbers of susceptibles and
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infecteds. The discrete state space of the according time-homogeneous Markov jump process
is {0, 1, . . . , N−1}. The only possible jump is ∆1 = −1 with rate W (t, S,−1) = λS(N−S),
where λ ∈ R+ stands for the infection rate. Let p(τ, S∗, t, S) denote the probability that
the process is in state S at time t conditioned on the state S∗ at time τ ≤ t. The shorter
form p(t, S) = p(0, S0, t, S) refers to the initial state S0 = N − 1. The probability p is
assumed zero outside the considered state space. Then the Markov jump process is fully
described by its forward master equation

∂p(t, S)
∂t

= λ(S + 1)(N − S − 1)p(t, S + 1)− λS(N − S)p(t, S) (4.9)

or backward master equation

∂p(τ, S∗, t, S)
∂τ

= λS∗(N − S∗)
[
p(τ, S∗, t, S)− p(τ, S∗− 1, t, S)

]
(4.10)

for S∗, S ∈ {0, 1, . . . , N − 1}. For an approximate description in terms of differential
equations one assumes a continuous state space [0, N). The deterministic behaviour of the
according process can then be described by Lioville’s equation

∂p(t, S)
∂t

= ∂λS(N − S)p(t, S)
∂S

(4.11)

or its backward analogue

∂p(τ, S∗, t, S)
∂τ

= λS∗(N − S∗)∂p(τ, S
∗, t, S)

∂S∗
. (4.12)

The stochastic dynamics is given by the Kolmogorov forward equation

∂p(t, S)
∂t

= ∂λS(N − S)p(t, S)
∂S

+ 1
2
∂2λS(N − S)p(t, S)

∂S2 (4.13)

or Kolmogorov backward equation

∂p(τ, S∗, t, S)
∂τ

= λS∗(N − S∗)∂p(τ, S
∗, t, S)

∂S∗
− 1

2 λS
∗(N − S∗)∂

2p(τ, S∗, t, S)
∂(S∗)2 . (4.14)

In these equations, p(τ, S∗, t, S) denotes the transition density of the process and fulfils the
initial condition p(0, S) = δ(S − N + 1). The remaining chapter explains how to obtain
the differential equation descriptions (4.11)–(4.14). Figure 4.1 shows realisations of the SI
model according to the three different representations.

4.2 Motivation and Purpose

The just introduced types of Markov processes — pure jump processes, deterministic
processes and diffusions — represent three essential types of models that are used to
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level description process

microscopic master equations pure Markov jump process

mesoscopic diffusion equations,
Kolmogorov equations diffusion process

macroscopic Liouville’s equation and
backward analogue

deterministic Markov process
with continuous sample paths

Table 4.1: Scheme of considered modelling levels with according equations fulfilled by the
transition density and resulting types of processes.

describe the dynamics of natural phenomena in life sciences. Reflecting a system by a
master equation, Liouville’s equation or a diffusion equation is also referred to as modelling
on a microscopic, macroscopic and mesoscopic level, respectively (e. g. Gillespie, 1980).
Table 4.1 gives a schematic overview over these three types of models.

Jump processes are the most reliable models when numbers of discrete objects are counted
as described at the beginning of this chapter. The according master equations are exact;
they contain full information on both the macroscopic and microscopic behaviour of the
system. For small systems, one would hence stick to the master equation description (see
e. g. the references in Ferm et al., 2008). For large systems, however, both simulation (using
Gillespie’s algorithm, Section 2.4.1) and parameter estimation (using Monte Carlo methods)
from the master equation turn out to be computationally costly (Rao et al., 2002, Sjöberg
et al., 2009). The master equation is usually not analytically solvable, but even if a solution
was known, it would generally still not provide a decomposition into a systematic and a
fluctuating part (cf. the discussion at the beginning of Section 4.3.3).

Many authors hence go over to the second class of processes, the deterministic ones,
which are included in e. g. Pielou (1969), Eigen (1971), Bailey (1975), Anderson and May
(1991), Busenberg and Martelli (1990) and Keeling and Rohani (2008). For this passage,
the discontinuous sample paths of the original process are approximated by continuous
smooth curves, and the macroscopic behaviour of the process is described by ordinary
differential equations. This representation facilitates both simulation and statistical inference
substantially. It also contributes to the comprehension of complex systems. However, as
many phenomena in life sciences are intrinsically stochastic, such deterministic processes do
not provide entirely realistic models. As Gillespie (1976, 1977) emphasises, their formulation
may be invalid in the neighbourhood of instabilities of the system. See Rao et al. (2002) for
a review article on the urgent need for stochastic models in molecular biology or the ample
references in the introduction of McQuarrie (1967) on the same subject in chemical kinetics.

The reconsiliation between the desire to seize a convenient model and the demand to
maintain the stochastic properties results in the third class of processes, the diffusions.
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Although the characterising diffusion equations are again intractable, they provide broader
possibilities for simulation and interpretation. They immediately reveal the composition of
the stochastic process of a deterministic and a stochastic component and enable modest
calculation of other interesting quantities. Sensitivity analysis and bifurcation theory
become applicable (Rao et al., 2002). In the infectious diseases literature, for example,
diffusion approximations are further utilised for the analysis of the duration (Barbour,
1975b) or maximum size (Daniels, 1974, Barbour, 1975c) of an epidemic. Consequently,
diffusion models are more and more applied in life sciences as also shown by the references
at the beginning of Chapter 3.

However, to set up an approximating diffusion process to an underlying Markov jump
process is a demanding task. There actually seems to be no standard procedure; authors
usually work through the specific examples which they cover in their works. Unfortunately,
such derivations are not always performed very carefully; models are not seldomly motivated
by convenience rather than by probabilistic considerations.

The purpose of this chapter is to provide a detailed but compact overview of multi-
dimensional diffusion approximation techniques on a level that is both mathematically
well-founded and amenable for practitioners. To this end, methods are kept general, and
assumptions and full derivations are provided. On the other hand, the design is informal
where too much mathematical detail would make the matter incomprehensible. For example,
the existence of certain partial derivatives is assumed rather than proved, even for probability
functions which are only defined on a discrete state space. Convergence properties of some
series and the interchange of certain limits are treated similarly. Indications are given where
procedures are heuristic.

A precise mathematical treatment of the approximation of pure Markov jump processes by
diffusions involves operator semigroup convergence theorems, martingale characterisations
of Markov processes or the convergence of solutions of stochastic equations. Such techniques
are explored in Barbour (1972), Kurtz (1981) and Ethier and Kurtz (1986). Further
references on weak convergence theory are e. g. Billingsley (1968) and Pollard (1984). More
general limit theorems, including higher order approximations, convergence to deterministic
models, discrete time models and convergence of non-Markovian processes, are treated
in Barbour (1974), Kurtz (1970, 1971) and Norman (1974, 1975). Furthermore, there
are some papers in which a rigorous derivation of diffusion approximations concentrates
on specific models, for example Feller (1951) on Markov branching processes with an
application in genetics, Daley & Kendall (1965, 1999) on rumours, McNeil (1973) on traffic
control, Barbour (1975a) on birth and death processes, Guess and Gillespie (1977) on
population growth, Pollett (1990) on a biological model and Andersson & Britton (2000,
Chapter 5), Clancy and French (2001), Clancy, O’Neill, and Pollett (2001) and Nåsell (2002)
on epidemic models.

To the author’s knowledge, there is no such thorough survey on diffusion approximations
as the present chapter in the literature. The monographs of Gardiner (1983) and van
Kampen (1997) contain several diffusion approximation methods but dispense with general
multi-dimensional formulas, which are for the first time derived in this chapter. Kepler and
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Elston (2001) review the diffusion approximation of gene regulation models but with the
emphasis on different model specifications rather than on distinct approximation approaches.
Adressing scientists from biology, Gibson and Mjolsness (2001) briefly sketch the different
ideas of the transition from ordinary to stochastic differential equations in an informal
way without detailed formulas or derivations. This chapter is new in its completeness
and compactness. New techniques and multi-dimensional formulas are shown, heuristic
transitions are evaluated critically, and the framework is extended to settings with multiple
system size parameters. References for applications of the various approximation techniques
are provided in the respective sections.

4.3 Approximation Methods

This section introduces methods for the systematic derivation of an approximating diffusion
process to a Markov jump process X. The central assumption in all approaches is that
occurring jumps of the approximated process are somehow small. However, the state space
ofX is usually a subset of the multi-dimensional integer lattice, i. e. the lengths of the jumps
are bounded below by one. Hence, a constant parameter N is introduced that appropriately
measures the size of the system in the sense that the jump sizes of the extensive variable X
do not depend on N , but the jumps of the intensive variable x = X/N become smaller as N
grows larger. This might for example be the number of molecules in a fluid or the carrying
capacity of a population. In the limit N → ∞, the sample paths of x become smooth
continuous curves. In real applications, however, the jumps of x are of some finite size. The
scaled process x is approximated by a diffusion process, where the system size N still enters
the diffusion coefficient. The resulting process is hence called a diffusion approximation
rather than a diffusion limit, which would correspond to a deterministic idealisation of the
original jump process.

When considering a stochastic system, one distinguishes between two different kinds of
noise (Horsthemke & Lefever, 1984, Sancho & San Miguel, 1984): External fluctuations
have their sources in the environment of the system and can in some cases be controlled by
the experimenter. Such disturbances are not investigated here. Internal fluctuations are
caused by the discrete nature of particles in the system. They come up when the system is
approximated by a continuous process and are thus treated in this chapter. Internal forces
are expected to be small when the system size N is large. They usually have an effect of
order O(N−1/2) on the macroscopic behaviour of the system and hence vanish as the system
size tends to infinity. External forces, on the other hand, do not scale with the system size.

Every diffusion equation can be approximated by a master equation, but the reverse is not
true (e. g. Gardiner, 1983, Chapter 7.2.1). Roughly speaking, the approximation is only
possible if there is some scale parameter δ such that both the average step size and the
variance of the step size are proportional to δ, and such that the jump probabilities increase
as δ decreases. These conditions reflect the defining properties (3.15)–(3.17) of a diffusion
process with t− s set to δ and hence ensure consistency. The prototype for a jump process
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Figure 4.2: Realisations of a scaled Poisson process (black) with jump size ε = 10−5 and
intensity parameter λ = 0.1 compared to realisations of the diffusion approximation (grey)
dxt = ελdt+ ε

√
λdBt, obtained by the methods in Sections 4.3.1 to 4.3.5. The SDE has the exact

solution xt = ελt + ε
√
λBt with x0 = 0. The Poisson process does not fulfil the criteria that

ensure a satisfactory diffusion approximation.

that cannot be approximated by a diffusion is the univariate Poisson process with step
size ε, where the jump probability is constant, the average step size is proportional to ε
and the variance of the step size is proportional to ε2. Figure 4.2 compares sample path
realisations of such a Poisson process with those of a diffusion approximation as obtained
by the techniques in Sections 4.3.1 to 4.3.5.

In the following, let X = (X t)t≥t0 be a stochastic jump process with state space DN ⊆ Zn
whose memory is so small that a Markov model is appropriate. In most applications in
life sciences one has DN ⊆ Nn

0 , but the above more general state space also allows for
e. g. modelling the decrease of a concentration by defining the initial state as state zero.
The sample paths of X are assumed to be right-continuous and to have left hand limits.
Division by the constant system size N yields the scaled process x = (xt)t≥t0 = X/N .
At time t0, the two processes are in states X0 and x0 = X0/N , respectively. Depending
on the context, X and x may also just denote a state of the extensive or intensive
process. For fixed N , denote by PN and pN the transition probabilities of X and x,
respectively. Similarly, WN and wN are the respective transition rates (compare with (4.2)),
and DN and CN = N−1DN are the state spaces of X and x. It is essential to require
that wN (t,x,∆) is peaked around x, i. e. there exists a bound δ such that wN (t,x,∆) ≈ 0
for all ‖∆/N‖ > δ, i. e. large jumps ∆/N of the intensive process are improbable within a
small time interval. Furthermore, we assume that wN(t,x,∆) varies slowly with x such
that Taylor expansions with respect to x are justified.

Different diffusion approximation techniques are now introduced as follows: The first method
(Section 4.3.1) starts with the setup of the forward master equation of the jump process,
expresses it as a sum of difference quotients and considers its approximation by the forward
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diffusion equation of a corresponding diffusion approximation. In the second approach
(Section 4.3.2), convergence of the infinitesimal generator of the jump process is investigated.
The Langevin approach (Section 4.3.3) establishes a diffusion approximation as the sum
of the deterministic process and a fluctuating term. In the Kramers-Moyal expansion
(Section 4.3.4), the master equation is expanded in a Taylor series with successive terms
corresponding to their order of nonlinearity. The diffusion approximation is then chosen
such that the corresponding forward diffusion equation equals the terms up to order two
of the Taylor series. Van Kampen’s expansion (Section 4.3.5) criticises this procedure and
suggests a different Taylor series in powers of N−1/2 to ensure that the neglected coefficients
are small. Under certain regularity conditions, all methods yield the same approximating
diffusion process. A detailed comparison of the different outcomes follows in Section 4.6.
A deterministic model is again an approximation of the stochastic one for N →∞.

4.3.1 Convergence of the Master Equation

The line of this procedure is as follows: We start by setting up the transition probabili-
ties PN of the stochastic process in which we count the numbers of individual objects for
fixed system size N . The state space of this process is discrete, and the evolution of the
transition probabilities is described by the master equation. We then consider a sequence
of discrete state space processes in which the state variables denote the intensive variables,
i. e. the fractions of different classes of objects. For the system size tending to infinity, this
sequence converges to a process with state variables changing continuously in space. The
limit of the according sequence of master equations is approximated by a forward diffusion
equation which is taken as a description for the limiting process. The limit is obtained by
replacing difference quotients by the respective derivatives.

This technique has been used e. g. by Goel and Richter-Dyn (1974) for the approximation
of the univariate birth and death process. Gillespie (1980) in a way reverses the method
by considering an approximation legitimate only if its discretised version reduces to the
master equation; to that end, derivatives are replaced by difference quotients.

The approximation method introduced in this section may seem obvious; however, it
apparently has not been formulated in generality in the literature before. The following
hence presents a new procedure. Due to space constraints, only main results are shown
here. Some newly proved statements which enable this proceeding have been moved to
Section B.1 in the appendix.

Assuming that at most one event can occur during a small time interval of length ∆t,
we can establish an equation for PN(t + ∆t,X) by summing over all possible nonzero
jumps ∆X 6= 0 to arrive at state X ∈ DN at time t+ ∆t:

PN(t+ ∆t,X) =
∑
∆X

PN(t,X −∆X, t+ ∆t,X)PN(t,X −∆X)

+
(

1−
∑
∆X

PN(t,X, t+ ∆t,X + ∆X)
)
PN(t,X).
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The probability PN(·,X1, ·,X2) is assumed zero here for all X1,X2 6∈ DN . The first line
collects all possibilities for transitions to the desired state at the desired time. The second
line is the probability that the process has already been in state X at time t and remained
there during the considered time interval. That is why the master equation, which results
out of this equation, is also called a gain-loss equation. Subtract PN(t,X) on both sides,
divide by ∆t and let ∆t→ 0. We then obtain

∂PN(t,X)
∂t

=
∑
∆X

(
WN(t,X −∆X,∆X)PN(t,X −∆X)−WN(t,X,∆X)PN(t,X)

)

with transition rates

WN(t,X,∆X) = lim
∆t↓0

1
∆t PN(t,X, t+ ∆t,X + ∆X)

as a description for the continuous time process with discrete state space. This is the forward
master equation (4.8). For an uncountable set of possible jumps, the sum could easily be
replaced by an integral. The functional form of WN is determined by the jump ∆X. For
an alternative notation, one can assign to each possible jump an index i from a set I and
write WN,i(t,X) = WN(t,X,∆i) for the corresponding jump ∆i, resulting in

∂PN(t,X)
∂t

=
∑
i∈I

(
WN,i(t,X −∆i)PN(t,X −∆i)−WN,i(t,X)PN(t,X)

)
. (4.15)

Instead of the extensive variableX we now regard the intensive variable x = X/N . Consider
a sequence of processes with (still discrete) state spaces CN = N−1DN corresponding to a
sequence of numbers N which tends to infinity. The master equation for each process is

∂pN(t,x)
∂t

=
∑
i∈I

(
wN,i(t,x−ε∆i)pN(t,x−ε∆i)− wN,i(t,x)pN(t,x)

)
(4.16)

with pN(τ,x, t,y) = PN(τ,Nx, t, Ny), wN,i(t,x) = WN,i(t, Nx) and ε = N−1. In order
to approximate the jump process by a diffusion process, this master equation should be
approximated by a Kolmogorov equation. That again means that the difference terms
in (4.16) should be replaced by derivatives with respect to the components of x. The single
summands in (4.16) are not of the form of difference quotients though, so this step is not
immediately admissible. However, it is always possible to express each of these summands
by a collection of difference quotients of some order. This is proven in Lemma B.3 in
Section B.1 in the appendix. Then, the master equation becomes

∂pN(t,x)
∂t

=
∑
i∈I

∑
k∈Ii

D
|k|
k (wN,i · pN)(t,x) =

∑
i∈I

∑
k∈Ii

ε|k|
D
|k|
k (wN,i · pN)(t,x)

ε|k|
, (4.17)

where the notation D|k|k stands for difference operators as introduced in Definition B.1, the Ii
are appropriate sets of vectors k = (0, k1, . . . , kn)′ as used in Lemma B.3, and |k| = ∑n

j=1 kj .
The first component of k is zero because t is fixed on the right hand side of Equation (4.17),
i. e. there is no differentiation with respect to the time variable.
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It seems feasible now to approximate the difference quotients D|k|k /ε|k| by proper derivatives
as ε goes to zero. However, the consideration of ε tending to zero, i. e. N tending to infinity,
involves two limiting procedures: First, convergence of the difference quotients, and second,
convergence of the functions pN and wN,i. Accurate mathematical treatment of this limit is
elaborate and beyond the purpose of this chapter. However, in many examples the scaled
function wi = N−1wN,i does not depend on N anymore. We assume that this is the case
here (at least asymptotically), so that Equation (4.16) equals (if necessary, asymptotically)

∂pN(t,x)
∂t

=
∑
i∈I

wi(t,x−ε∆i)pN(t,x−ε∆i)− wi(t,x)pN(t,x)
ε

. (4.18)

Furthermore, it seems plausible that Equation (4.17) remains true if pN is replaced by its
limit function p (which is assumed to exist), so Equation (4.17) turns into

∂p(t,x)
∂t

=
∑
i∈I

∑
k∈Ii

ε|k|−1D
|k|
k (wi · p)(t,x)

ε|k|
.

Provided that p and the wi are sufficiently often differentiable, it follows that — regarding
the limits of the difference quotients as ε tends to zero — the master equation becomes

∂p(t,x)
∂t

=
∑

k=(k1,...,kn)′
ε|k|−1

(
∂|k|fk(t,x)p(t,x)
∂xk1

1 · · · ∂xknn

)
(4.19)

for some finite set of differentiable functions fk, k ∈ Nn
0 . Assume that the derivatives

are bounded. After restriction to terms up to order O(ε), i. e. ignoring smaller terms
with |k| ≥ 3, Equation (4.19) can then be rewritten as

∂p(t,x)
∂t

= −
n∑
j=1

∂
[
µj(x, t)p(t,x)

]
∂xj

+ 1
2N

n∑
j,k=1

∂2
[
Σjk(x, t)p(t,x)

]
∂xj∂xk

, (4.20)

where µj and Σjk with j, k = 1, . . . , n are the components of a vector µ and a matrix Σ.
These can be determined according to Algorithm B.1 and Example B.1 in the appendix.
In some special cases, there are also explicit formulas for µ and Σ — see for instance
Example B.2.

Heuristically, the space-continuous limit of the initial jump process is described by Equa-
tion (4.20). That is the forward diffusion equation (4.7) if Σ is positive definite. This
equation corresponds to a diffusion process with drift vector µ and diffusion matrix Σ/N ,
i. e. the intensive Markov jump process can be approximated by a diffusion satisfying the
SDE

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0,

where σ is a square root of Σ, i. e. Σ = σσ′. The matrix σ is not necessarily unique as
already discussed on page 35.
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Strictly speaking, since the Kolmogorov equation has been obtained using heuristic argu-
ments, the Lipschitz continuity of µ and σ needs to be checked at this point in order to
ensure the existence of a solution to the above SDE (cf. Section 3.2.3). Note that such a
solution is an approximation and not a limit as the system size parameter N is still part of
the diffusion matrix.

The expansion of the backward master equation can be performed similarly and is a special
case of the approximation of the infinitesimal generator considered in the next section.

Example 4.2. Recall the SI model from Example 4.1 on page 51. The stochastic process
counting the absolute number S of susceptibles in a population of size N is described by
the master equation (4.9). Now consider the fraction s = S/N of susceptible individuals
and define α = λN . Let pN (t, s) denote the transition probability of the according intensive
process, wN,1(t, s) = WN (t, Ns,−1) = Nαs(1−s) the transition rate and w1(t, s) = αs(1−s)
the scaled transition rate, i. e. wN = Nw1. Then the master equation of the intensive jump
process reads

∂pN(t, s)
∂t

= w1(t, s+ ε)pN(t, s+ ε)− w1(t, s)pN(t, s)
ε

,

where ε = N−1. This corresponds to Equation (4.18) above. The right hand side of the
master equation is already of the form of a difference quotient with respect to a fixed
vector (·, ε)′,

∂pN(t, s)
∂t

=
D1

(0,1)′,(·,ε)′(w1 · pN)(t, s)
ε

.

The dot in the vector (·, ε)′ of small parameters means that it is needless to fix its first
component as no derivative with respect to the first argument of w1 · pN is considered.
According to Example B.1, the above quotient should not be approximated by (∂/∂s)(w1 ·
p)(t, s) but by Formula (B.7), i. e.

∂p(t, s)
∂t

= ∂(w1 · p)(t, s)
∂s

+ ε

2
∂2(w1 · p)(t, s)

∂s2 , (4.21)

where pN has been replaced by its limit function p. This is the Kolmogorov forward equation
that has already been stated by Equation (4.13) for the extensive process. The Kolmogorov
equation (4.21) corresponds to a diffusion process with drift µ(s, t) = −w1(t, s) = −αs(1−s)
and diffusion N−1Σ(s, t) = εw1(t, s) = αs(1− s)/N , i. e. to the solution of the SDE

dst = −αst(1− st)dt+ 1√
N

√
αst(1− st)dBt (4.22)

with an appropriate initial value. For N →∞, (4.21) and (4.22) reduce to

∂p(t, s)
∂t

= ∂(w1 · p)(t, s)
∂s

and
dst = −αst(1− st)dt.
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4.3.2 Convergence of the Infinitesimal Generator

In this method, we aim to approximate the infinitesimal generator G of the diffusion
approximation by the limit of the infinitesimal generator GN of the intensive jump pro-
cess x = (xt)t≥t0 . The generator G allows us to directly read out the drift vector and
diffusion matrix of a corresponding diffusion approximation as seen in Section 3.2.9. This
idea follows the line of the very theoretical work of Kurtz (1981), where the weak conver-
gence of sequences of processes is related to the convergence of corresponding generators as
characterising semigroups. In the constructive form presented here, however, the contents
of this subsection are novel.

Let f : C × T → R be a measurable twice continuously differentiable function, where C is
the state space of the approximating diffusion process and T is the time set. Note that the
state space CN of x is a subset of C. The infinitesimal generator of x is defined as

GNf(u, t) = lim
∆t↓0

1
∆t EN

(
f
(
xt+∆t, t+ ∆t

)
− f

(
u, t

)∣∣∣xt = u
)

(4.23)

for u ∈ CN and t ∈ T , where EN denotes the expectation with respect to the transition
probability pN of x. Now proceed as for the approximation of the master equation in
Section 4.3.1: Label each possible jump (now including the jump of length zero) with an
index i from an eligible set I and define

wi(t,u) = w(t,u,∆i) = N−1wN(t,u,∆i) = lim
∆t↓0

N−1 pN
(
t,u, t+ ∆t,u+ ε∆i

)
∆t ,

where it is again assumed that the transition rate w does not depend on N . For ε = N−1,
the generator (4.23) agrees with

lim
∆t↓0

1
∆t

∑
i∈I

(
f
(
u+ ε∆i, t+ ∆t

)
− f

(
u, t

))
pN
(
t,u, t+ ∆t,u+ ε∆i

)
lim
∆t↓0

1
∆t

∑
i∈I

(
f
(
u+ ε∆i, t+ ∆t

)
− f

(
u+ ε∆i, t

)
+ f

(
u+ ε∆i, t

)
− f

(
u, t

))
pN
(
t,u, t+ ∆t,u+ ε∆i

)
=
∑
i∈I

∂f(u+ ε∆i, t)
∂t

lim
∆t↓0

pN
(
t,u, t+ ∆t,u+ ε∆i

)
+
∑
i∈I

wi(t,u)
f
(
u+ ε∆i, t

)
−f

(
u, t

)
ε

.

Note that lim∆t↓0 pN(t,u, t+ ∆t,u+ ε∆i) equals one if ε∆i = 0 and zero otherwise, i. e.

GNf(u, t) = ∂f(u, t)
∂t

+
∑
i∈I

wi(t,u)
f
(
u+ ε∆i, t

)
−f

(
u, t

)
ε

. (4.24)

For each i, expand f(u+ ε∆i, t)− f(u, t) as in Section 4.3.1 (or Section B.1, respectively)
and consider the resulting difference quotients as ε tends to zero. Then

GNf(u, t) = ∂f(u, t)
∂t

+
∑

k=(k1,...,kn)′
ε|k|−1

∑
i∈Ik

wi(t,u)
 ∂|k|f(u, t)
∂uk1

1 · · · ∂uknn
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for a finite number of vectors k ∈ Nn
0 and appropriate sets Ik ⊆ I. Assume that these

derivatives are bounded and neglect all terms of order higher than O(ε). The result can be
taken as an approximation of the infinitesimal generator G and in that case attains the form

Gf(u, t) = ∂f(u, t)
∂t

+
n∑
j=1

µj(u, t)
∂f(u, t)
∂uj

+ 1
2N

n∑
j,k=1

Σjk(u, t)
∂2f(u, t)
∂uj∂uk

i. e.
G = ∂

∂t
+ LBµ,Σ/N .

As in the preceding Section 4.3.1, there are no explicit formulas for µ = (µj)j=1,...,n
and Σ = (Σjk)j,k=1,...,n, but this thesis provides a constructive algorithm for their derivation
by Algorithm B.1 in Section B.1 in the appendix. If Σ is positive definite, LBµ,Σ/N is the
Kolmogorov backward operator from Section 3.2.8 with drift µ and diffusion matrix Σ/N .
This generator can be associated to the Itô diffusion approximation

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0,

where σ is a square root of Σ.

Under regularity conditions, the obtained µ and Σ agree with those from Section 4.3.1.
The same is true for the results from the following sections. Differences and similarities are
discussed in the conclusion in Section 4.6.

Example 4.3. Consider again the process describing the fractions of susceptibles during
an epidemic which evolves according to the SI model. With the notation from Example 4.2,
the infinitesimal generator GN of this process fulfils

GNf(s, t) = ∂f(s, t)
∂t

+ w1(t, s)f(s− ε, t)−f(s, t)
ε

for a measurable twice continuously differentiable function f : [0, 1] × R0 → R. The
difference f(s− ε, t)− f(s, t) can be written as D1

(1,0)′,(−ε,·)′f(s, t) with the notation from
Definition B.1. As before, the dot in the subscript indicates that the respective argument
does not have to be specified here. With the approximation rule (B.7), one obtains

Gf(s, t) = ∂f(s, t)
∂t

− w1(t, s) ∂f(s, t)
∂s

+ ε

2 w1(t, s) ∂
2f(s, t)
∂s2 ,

where G denotes the infinitesimal generator of the limiting space-continuous process. This
generator agrees with the Kolmogorov backward operator with drift µ(s, t) = −w1(t, s) and
diffusion N−1Σ(s, t) = εw1(t, s). This results in the same diffusion approximation as in
Example 4.2.
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4.3.3 Langevin Approach

In the Langevin approach we postulate rather than derive that the process X can be
represented by a diffusion approximation. It should however be ensured that this postulation
is justifiable in the sense that occurring jumps of the sample paths are sufficiently small.
Therefore consider again the scaled process x = X/N and require that it fulfils the Itô
SDE

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0. (4.25)

Equation (4.25) is also referred to as Langevin equation, and dBt is called Gaussian Langevin
force in this context. The original way to obtain the coefficients µ and σ is as follows
(see e. g. van Kampen, 1981b, 1997, Chapter 9): The deterministic behaviour of x is often
known by the macroscopic equation (or phenomenological law)

dExt = µ̃
(
Ext, t

)
dt (4.26)

for some function µ̃. The drift function of (4.25) is then set to be identical with µ̃, and the
diffusion coefficient is chosen such that it appropriately represents the fluctuations of the
trajectories around the deterministic course. On the other hand, the master equation yields
the exact cohesion

dExt = Eµ
(
xt, t

)
dt (4.27)

with
µ(u, t) = lim

∆t↓0

1
∆t E

(
xt+∆t − xt

∣∣∣xt = u
)

for u ∈ CN (van Kampen, 1997, Chapter 5.8). For nonlinear µ, the terms µ(Ext, t)
and Eµ(xt, t) do not coincide. To be more precise, expanding µ(xt, t) around Ext in a
Taylor series and then taking expectations on both sides yields

Eµ
(
xt, t

)
= µ

(
Ext, t

)
+ 1

2 µ
′′
(
Ext, t

)
· E
(
(xt − Ext)(xt − Ext)′

)
+ . . . , (4.28)

where the prime denotes differentiation with respect to the state variable. This means
that Eµ(xt, t) and µ(Ext, t) might differ by a term which is of the same order as the
fluctuations. If one is only interested in the macroscopic behaviour of x, these additional
terms are neglected anyway. If one however takes fluctuations into account, identification
of µ with µ̃ might result in a wrong diffusion coefficient. Figure 4.3 exemplarily displays
the deviation between the determinstic course and the expectation of the stochastic course
of a susceptible–infected epidemic. A detailed overview of difficulties arising from the above
inconsistency and the attempts of different authors to correct for this has been given by
van Kampen (1965); see also Hänggi (1982) or the example in Section 4.6.

Example 4.4. Once more, turn to the epidemic SI model and consider the process that
counts the absolute numbers of susceptible individuals. The following formulas allow a direct
comparison of the deterministic process S̄ and the expectation of the stochastic process S̃.
These are taken from Renshaw (1991, Chapter 10), who again refers to Haskey (1954).
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Figure 4.3: Comparison of the deterministic course S̄(t) (solid line) and stochastic mean
course ES̃(t) (dashed line) of an epidemic following the SI model. Displayed are the numbers of
susceptibles plotted against time. The population size equals N = 11 with one infected individual
at time 0, and the infection rate is λ = 1. The explicit formulas for S̄(t) and ES̃(t) are shown in
Example 4.4. As suspected from Equation (4.28), the two curves do not coincide.

In the deterministic setting, the number S̄(t) of susceptibles at time t can be modelled
through the ODE

dS̄(t) = −λ S̄(t) (N − S̄(t))dt , S̄(0) = N − 1, (4.29)

assuming a continuous state space. This representation corresponds to Equation (4.26) with

µ̃(S̄(t), t) = −λ S̄(t) (N − S̄(t)).

The explicit solution of the differential equation (4.29) is given by

S̄(t) = N(N − 1)
N − 1 + exp(Nλt) (4.30)

for all t ∈ R0. The stochastic course of the epidemic, on the other hand, is best expressed
via the master equation

∂PN(t, S)
∂t

= λ(S + 1)(N − S − 1)PN(t, S + 1)− λS(N − S)PN(t, S)

for S = 0, 1, . . . , N − 1, where PN (t, S) denotes the probability that there are S susceptibles
at time t ∈ R0 given that there were N − 1 susceptibles at time 0. This has already been
stated in Equation (4.9) on page 52. For even N − 1, the expected number of susceptible
individuals at time t is then explicitly given by

ES̃(t) = λ

N−1
2∑
j=1

(N − 1)! exp
(
−λj(N − j)t

)
(N − j − 1)!(j − 1)!

(N−2j)2λt+ 2− (N−2j)
N−j−1∑
k=j

1
k

. (4.31)
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An explicit representation of the function µ in Equation (4.27) is not directly available for
general t ∈ R0. However, graphical analysis is possible: Figure 4.3 compares the graph of the
deterministic variable S̄(t) in Equation (4.30) with the expectation ES̃(t) in Formula (4.31)
for N = 11 and λ = 1. The discrepancy is considerable. This is due to the deviation shown
in Equation (4.28).

An improved approach is the following one (see e. g. Walsh, 1981b, Allen, 2003, Lande et
al., 2003): From the definition of diffusion processes (see Section 3.2.5) one has

µ(u, t) = lim
∆t↓0

1
∆t E

(
xt+∆t − xt

∣∣∣xt = u
)
, (4.32)

N−1Σ(u, t) = lim
∆t↓0

1
∆t E

(
(xt+∆t − xt)(xt+∆t − xt)′

∣∣∣xt = u
)

(4.33)

= lim
∆t↓0

1
∆t Cov

(
xt+∆t − xt

∣∣∣xt = u
)
,

where Σ = σσ′. As in Section 4.3.1, assume that there is a countable set of possible
transitions for the process X causing jumps ∆i ∈ Zn — i. e. jumps of sizes ∆i/N for the
process x —, where i ∈ I for some index set I. Then, consulting again the transition
rates wN,i(t,x) = WN(t, Nx,∆i) from the previous sections, (4.32) and (4.33) arise as

µ(u, t) = N−1∑
i∈I

wN,i(t,u)∆i, (4.34)

N−1Σ(u, t) = N−2∑
i∈I

wN,i(t,u)∆i∆′i. (4.35)

This result can also be illustrated as follows (see e. g. Golightly & Wilkinson, 2005, 2006b,
2010): The transition rates wN,i represent the hazards of the respective events to occur.
Hence, if the current state of x at time t is u and all transitions happen independently of
each other, the waiting time until the occurrence of the next event of type i is exponentially
distributed with rate wN,i(t,u). As a consequence, the number Zi of type i events within
the small time interval (t, t+ ∆t] is Poisson distributed with rate wN,i(t,u)∆t. Hence,

µ(u, t) = lim
∆t↓0

1
∆t

∑
i∈I
E(ZiN−1∆i|xt = u) = N−1∑

i∈I
wN,i(t,u)∆i,

N−1Σ(u, t) = lim
∆t↓0

1
∆t

∑
i∈I

Cov (ZiN−1∆i|xt = u) = N−2∑
i∈I

wN,i(t,u)∆i∆′i.

Note that in this approach the consideration of N tending to infinity entered only in the
assumption that jumps are sufficiently small. In most cases, the functions N−1wN,i converge
to bounded functions wi which do not depend on N . In the limit, we have then established
a drift vector and diffusion matrix of order O(1) and O(N−1), respectively.

The Langevin approach has been applied in numerous fields such as finance (Bouchaud &
Cont, 1998), genetics (Tian, Burrage, et al., 2007), systems biology (Golightly & Wilkinson,
2005, 2006b, 2008), physics (Ramshaw, 1985, Kleinhans et al., 2005, Pierobon et al., 2005,
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Seifert, 2008, Song et al., 2008) and medicine (Capasso & Morale, 2009). Be aware that
some of these authors also use general instead of Gaussian Langevin forces.

Example 4.5. In the SI model, the only possible jump is ∆1 = −1 with according transition
rate wN,1(t, s) = Nαs(1 − s); this has been determined in Example 4.1 on page 51. The
drift and diffusion of an according diffusion approximation follow immediately with the
above formulas (4.34) and (4.35) as

µ(s, t) = N−1wN,1(t, s)∆1 = −αs(1− s),
N−1Σ(s, t) = N−2wN,1(t, s)∆2

1 = αs(1− s)/N.

This approximation agrees again with those from the previous examples.

4.3.4 Kramers-Moyal Expansion

This section introduces another, widely used approach to approximate the forward master
equation

∂pN(t,x)
∂t

=
∑
∆

(
wN(t,x−ε∆,∆)pN(t,x−ε∆)− wN(t,x,∆)pN(t,x)

)
for the transition probability pN of the process x = X/N , where the sum is again taken over
all possible jumps ∆ = (∆1, . . . ,∆n)′ of the trajectories of X, and ε = N−1. Expansion
of wN(·,x− ε∆, · )pN(·,x− ε∆) in a Taylor series around x yields

∂pN(t,x)
∂t

= −
∞∑
m=1

(−ε)m−1 ∑
k∈Km

 n∏
j=1

1
kj!

 ∂m

∂xk1
1 · · · ∂xknn

am,k(t,x)pN(t,x) (4.36)

with
Km =

{
k = (k1, . . . , kn)′ ∈ Nn

0

∣∣∣ |k| = m
}

(4.37)
and the Kramers-Moyal moments

am,k(t,x) =
∑
∆

 n∏
j=1

∆kj
j

N−1wN(t,x,∆) (4.38)

for all m ∈ N0. Equation (4.36) is called Kramers-Moyal expansion as it has first been
derived by Kramers (1940) and further been developed by Moyal (1949, Chapter 8). Note
that the derivatives of pN with respect to state variables are formally not defined as pN is
a discrete probability measure. However, as already elucidated in Section 4.2, the above
expansion is to be seen as a heuristic approximation of the master equation as the system
size tends to infinity, and hence the notation is left imprecise in this respect.

Terminating the right hand side of (4.36) after m = 2 and letting pN tend to p (assuming
that this limit exists) results in

∂p(t,x)
∂t

= −
n∑
i=1

∂

∂xi
a1,i(t,x)p(t,x) + 1

2N

n∑
i,j=1

∂2

∂xi∂xj
a2,(i,j)(t,x)p(t,x) (4.39)
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with a1,i = a1,ei and a2,(i,j) = a2,ei+ej . In the heuristic framework of this chapter, this is a
description of the continuous state space process, i. e. for

µ(x, t) = (a1,i(t,x))i=1,...,n = N−1∑
∆
wN(t,x,∆)∆ (4.40)

and positive definite

Σ(x, t) = (a2,(i,j)(t,x))i,j=1,...,n = N−1∑
∆
wN(t,x,∆)∆∆′, (4.41)

Equation (4.39) is equivalent to representing the process x by the diffusion approximation

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0,

where σ is a square root of Σ.

Pawula’s theorem (Pawula, 1967a, 1967b) states that the Kramers-Moyal expansion either
terminates after m = 1 or m = 2, or it contains infinitely many terms. That leads to the
fact that the accuracy of the approximation of the master equation does not necessarily
improve when the truncation is done after some m ≥ 3, although this might be true in
special cases: For example, Risken and Vollmer (1987) show that the careful inclusion of
more than only the first two terms yields better approximation results for the Poisson
process than the truncation after the second term (compare also with the discussion of the
Poisson process on page 56).

The Kramers-Moyal expansion has been applied in various areas such as physics (Kishida et
al., 1976, Robertson et al., 1996, Naert et al., 1997), geophysics (Strumik & Macek, 2008),
finance (Karth & Peinke, 2003) and infectious disease epidemiology (Hufnagel et al., 2004).
Risken (1984, Chapter 4.2) also contains an analogous Kramers-Moyal backward expansion.

Example 4.6. The formulas (4.40) and (4.41) for the drift and diffusion of an approx-
imation through the Kramers-Moyal expansion are exactly the same as Equations (4.34)
and (4.35) in the Langevin approach. Hence, see the previous Example 4.5 for the approxi-
mation of the SI epidemic process using the Kramers-Moyal expansion.

4.3.5 Van Kampen Expansion

Equation (4.39) is obtained under the assumption that am,k is sufficiently small for m ≥ 3
and large N , which has explicitly been demanded by Moyal (1949). However, the smallness
of these coefficients is not generally guaranteed. This lack has been criticised by van Kampen
and gave rise to the method in this section — now known as van Kampen expansion —,
where the master equation is systematically expanded in powers of a small parameter. It
has been introduced in van Kampen (1961), but is more comprehensively described in van
Kampen (1965, Chapter 3.D, 1997).
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Although the expansion has been applied to multi-dimensional settings (e. g. Gardiner, 1983,
Chapter 7.6, van Kampen, 1997, Chapter 10.5, W.-Y. Chen & Bokka, 2005, Alonso et al.,
2007), it seems that it has not been derived in a general multi-dimensional framework in the
literature. This is considerably more elaborate than a univariate analysis — as described in
Gardiner (1983, page 266): „This is so complicated that it will not be explicitly derived
here.“ The following paragraphs develop the van Kampen expansion for multi-dimensional
processes. This constitutes one of the major novel results of this chapter.

As before, let PN be the transition probability function of the extensive variable X.
Define φ(t) = (φ1(t), . . . , φn(t))′ with φ(t0) = x0 as the solution of an ordinary differential
equation describing the dynamics of the intensive variable x = X/N deterministically in a
sense that is specified more precisely in Equation (4.53) below. The probability function
PN(t,X) is peaked around Nφ(t) with width proportional to N 1

2 . In order to ease this
dependence on N , introduce z = (z1, . . . , zn)′ as the time-dependent transformation

z = X −Nφ(t)
N

1
2

= N
1
2
(
x− φ(t)

)
with probability function πN satisfying

PN(t,X) = PN(t, Nφ(t) +N
1
2z) = πN(t, z). (4.42)

Equating the total differentials with respect to time, i. e. dPN(t,X)/dt = dπN(t, z)/dt,
yields

∂PN(t,X)
∂t

= ∂πN(t, z)
∂t

−N
1
2

n∑
j=1

dφj(t)
dt

∂πN(t, z)
∂zj

(4.43)

as
dzj
dt

= −N 1
2
dφj(t)
dt

(4.44)

for all j. Note that the symbol d is used for the total differential and ∂ for partial derivatives
(cf. the notation table on page 391). The comments from Section 4.3.4 on derivatives of
discrete probability functions apply here as well. Assume that there are functions Φl

for l ∈ N0, which do not depend on N , and a positive function f such that

WN(t,X,∆) = f(N)
∞∑
l=0

N−l Φl

(
t, N−1X,∆

)
. (4.45)

The factor f(N) represents the fact that large systems evolve slowlier than small systems.
For most cases such as the examples in Chapter 5 it would actually suffice to consider a
function Φ with WN(t,X,∆) = NΦ(t, N−1X,∆) (as has been done in the methods in
Sections 4.3.1 to 4.3.4), but the above setting leaves the method more general. As before,
the transition probability PN fulfils the master equation

∂PN(t,X)
∂t

=
∑
∆

(
WN(t,X−∆,∆)PN(t,X−∆)−WN(t,X,∆)PN(t,X)

)
,
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where the sum is taken over all possible jumps of size ∆ = (∆1, . . . ,∆n)′. With (4.45), this
equation now becomes

∂PN(t,X)
∂t

= f(N)
∑
∆

∞∑
l=0

N−l
[
Φl

(
t,
X−∆
N

,∆
)
PN(t,X−∆)

− Φl

(
t,
X

N
,∆

)
PN(t,X)

]
.

(4.46)

Using (4.42) and (4.43), this expression can be written in terms of πN as

∂πN(t, z)
∂t

−N
1
2

n∑
j=1

dφj(t)
dt

∂πN(t, z)
∂zj

= f(N)
∑
∆

∞∑
l=0

N−l
[
Φl

(
t,φ(t) +N−

1
2 (z −N− 1

2 ∆),∆
)
πN(t, z −N− 1

2 ∆)

− Φl

(
t,φ(t) +N−

1
2z,∆

)
πN(t, z)

]
= f(N)

∑
∆

∞∑
l=0

N−l
[
Ψl

(
z −N−

1
2 ∆

)
−Ψl (z)

]
(4.47)

with Ψl(z) = Φl(t,φ(t) + N−
1
2z,∆)πN(t, z) for all l ∈ N0 and fixed ∆ and t. Taylor

expansion of Ψl(z −N−
1
2 ∆) around z yields

Ψl(z −N−
1
2 ∆) =

∞∑
m=0

(−1)mN−m2
∑
k∈Km

 n∏
j=1

∆kj
j

kj!

 ∂mΨl(z)
∂zk1

1 · · · ∂zknn
(4.48)

with Km defined as in (4.37). The combination of (4.47) and (4.48) yields

∂πN(t, z)
∂t

−N
1
2

n∑
j=1

dφj(t)
dt

∂πN(t, z)
∂zj

= f(N)
∑
∆

([
Ψ0

(
z −N−

1
2 ∆

)
−Ψ0 (z)

]
+N−1

[
Ψ1

(
z −N−

1
2 ∆

)
−Ψ1 (z)

]
+O

(
N−2

))

= f(N)
∑
∆

([
−N−

1
2

n∑
j=1

∆j
∂Ψ0(z)
∂zj

+ 1
2N

−1
n∑
j=1

n∑
k=1

∆j∆k
∂2Ψ0(z)
∂zj∂zk

+O
(
N−

3
2
)]

+N−1
[
O
(
N−

1
2
)]

+O
(
N−2

))
.

This measurement in powers of N is possible due to (4.45) and because πN and the Φl are
assumed not to be too irregular. Similarly to (4.38), define

ã1,j(t, z) =
∑
∆

∆jΦ0
(
t, z,∆

)
and ã2,(j,k)(t, z) =

∑
∆

∆j∆kΦ0
(
t, z,∆

)
(4.49)



70 4. Approximation of Markov Jump Processes by Diffusions

(often called first and second jump moments) for all j, k = 1, . . . , n and resubstitute Ψl(z)
for Φl(t,φ(t) +N−1/2z,∆)πN(t, z). We then obtain

∂πN(t, z)
∂t

−N
1
2

n∑
j=1

dφj(t)
dt

∂πN(t, z)
∂zj

= f(N)
(
−N−

1
2

n∑
j=1

∂

∂zj
ã1,j

(
t,φ(t) +N−

1
2z
)
πN
(
t, z

)

+ 1
2N

−1
n∑
j=1

n∑
k=1

∂2

∂zj∂zk
ã2,(j,k)

(
t,φ(t) +N−

1
2z
)
πN
(
t, z

)
+O

(
N−

3
2
))
.

Rescale the time such that N−1f(N)t = s, i. e. apply dπN/ds = (dπN/dt) · (dt/ds). Then

∂πN(s, z)
∂s

−N
1
2

n∑
j=1

dφj(s)
ds

∂πN(s, z)
∂zj

= −N 1
2

n∑
j=1

∂

∂zj
ã1,j

(
s,φ(s) +N−

1
2z
)
πN
(
s, z

)

+ 1
2

n∑
j=1

n∑
k=1

∂2

∂zj∂zk
ã2,(j,k)

(
s,φ(s) +N−

1
2z
)
πN
(
s, z

)
+O

(
N−

1
2
)
.

Taylor expansion of ã1,j(s,φ(s) +N−1/2z) and ã2,(j,k)(s,φ(s) +N−1/2z) around φ(s) yields

∂πN(s, z)
∂s

−N
1
2

n∑
j=1

dφj(s)
ds

∂πN(s, z)
∂zj

(4.50)

= −N 1
2

n∑
j=1

∂

∂zj

[
ã1,j (s,φ(s)) +N−

1
2

n∑
i=1

zi ã
(i)
1,j(s,φ(s)) +O

(
N−1

)]
πN
(
s, z

)
(4.51)

+ 1
2

n∑
j=1

n∑
k=1

∂2

∂zj∂zk

[
ã2,(j,k)(s,φ(s)) +O

(
N−

1
2
)]
πN
(
s, z

)
+O

(
N−

1
2
)
, (4.52)

where ã(i)
1,j denotes the first derivative of ã1,j with respect to the ith component of the state

variable. The terms of order N 1
2 cancel if

n∑
j=1

dφj(s)
ds

∂πN(s, z)
∂zj

=
n∑
j=1

ã1,j(s,φ(s)) ∂πN(s, z)
∂zj

,

i. e.
dφj(s)
ds

= ã1,j(s,φ(s)) (4.53)

for all j = 1, . . . , n. This is assumed to be fulfilled by definition of φ. Furthermore, φ is
supposed to be the unique stable solution of (4.53), and ã1,j shall fulfil certain regularity
conditions such that all solutions of (4.53) converge to φ fast enough (van Kampen, 1997,
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Chapter 10.3). As N tends to infinity, only the terms of order O(1) in (4.50) to (4.52)
remain. These are
∂πN(s, z)

∂s
= −

n∑
i,j=1

ã
(i)
1,j(s,φ(s)) ∂zi πN(s, z)

∂zj
+ 1

2

n∑
j,k=1

ã2,(j,k)(s,φ(s)) ∂
2πN(s, z)
∂zj∂zk

, (4.54)

which is a linear forward diffusion equation for πN , i. e. the drift term is linear and the
diffusion term constant. The solution of such an equation is a Gaussian density (van Kampen,
1997, Chapter 8.6). Presumably, Formula (4.54) remains true when the probability πN
is replaced by the density π of the continuous variable z. In the following we will show
that (4.54) is then equivalent to a diffusion equation for p(t,x), the transition density
of x = φ(t) +N−1/2z, where both z and x are treated as continuous variables. Equating
the total differentials dp(s,x)/ds = N

1
2dπ(s, z)/ds, one obtains

∂p(s,x)
∂s

= N
1
2

∂π(s, z)
∂s

+
n∑
j=1

∂π(s, z)
∂zj

dzj
ds

 .
Plugging in (4.44), (4.53) and (4.54) with πN replaced by π yields

∂p(s,x)
∂s

= N
1
2

− n∑
j=1

n∑
i=1

ã
(i)
1,j(s,φ(s))∂zi π(s, z)

∂zj
+ 1

2

n∑
j=1

n∑
k=1

ã2,(j,k)(s,φ(s))∂
2π(s, z)
∂zj∂zk


− N

n∑
j=1

ã1,j(s,φ(s))∂π(s, z)
∂zj

= −N
n∑
j=1

∂

∂zj

[
ã1,j(s,φ(s)) +N−

1
2

n∑
i=1

ziã
(i)
1,j(s,φ(s))

]
π(s, z)

+ 1
2 N

1
2

n∑
j=1

n∑
k=1

∂2

∂zj∂zk

[
ã2,(j,k)(s,φ(s))

]
π(s, z)

= −N 1
2

n∑
j=1

∂

∂zj

[
ã1,j(s,φ(s)) +N−

1
2

n∑
i=1

ziã
(i)
1,j(s,φ(s))

]
p(s,φ(s)+N− 1

2z) (4.55)

+ 1
2

n∑
j=1

n∑
k=1

∂2

∂zj∂zk

[
ã2,(j,k)(s,φ(s))

]
p(s,φ(s)+N− 1

2z). (4.56)

The expressions in the square brackets in (4.55) and (4.56) are the first terms of a Taylor
expansion of ã1,j(s,φ(s) +N−1/2z) and ã2,(j,k)(s,φ(s) +N−1/2z) around φ(s). The missing
terms can be added since they are of order O(N−1) and O(N−1/2), respectively, and will
vanish anyway in the limit N →∞. We can hence regard

∂p(s,x)
∂s

=−N
n∑
j=1

∂ã1,j
(
s,φ(s)+N− 1

2z
)
π(s, z)

∂zj
+1

2N
1
2

n∑
j,k=1

∂2ã2,(j,k)
(
s,φ(s)+N− 1

2z
)
π(s, z)

∂zj∂zk
.

Changing the time scale from s back to t and differentiation with respect to z to differenti-
ation with respect to x yields

∂p(t,x)
∂t

= −
n∑
j=1

∂

∂xj
ã1,j(t,x)p(t,x) + 1

2N

n∑
j=1

n∑
k=1

∂2

∂xj∂xk
ã2,(j,k)(t,x)p(t,x). (4.57)
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This is a forward diffusion equation for p(t,x) with drift

µ(x, t) = (ã1,j(t,x))j=1,...,n =
∑
∆

Φ0(t,x,∆)∆ (4.58)

and diffusion matrix

N−1Σ(x, t) = N−1(ã2,(j,k)(t,x))j,k=1,...,n = N−1∑
∆

Φ0(t,x,∆)∆∆′ (4.59)

if Σ is positive definite. Thus, heuristically, the process x approximately follows a stochastic
differential equation

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0,

with σσ′ = Σ.

Van Kampen’s expansion is frequently applied, especially in life sciences, for instance in
molecular and cell biology (Leung, 1985, Elf & Ehrenberg, 2003, Paulsson, 2004, Sjöberg
et al., 2009), microbiology (Hsu & Wang, 1987), social sciences (de la Lama et al., 2006),
physics (van Kampen, 1961), infectious disease epidemiology (W.-Y. Chen & Bokka, 2005,
Alonso et al., 2007) or more generally in population biology (McKane & Newman, 2004,
Ferm et al., 2008).

Example 4.7. In the SI model, we have observed that the only possible jump is ∆1 = −1
with transition rate WN(t, Ns,−1) = wN,1(t, s) = Nαs(1 − s). Van Kampen’s expansion
requires that WN can be written in the canonical form (4.45). This is fulfilled for f(N) = N ,
Φ0(t, s,−1) = N−1wN,1(t, s) = w1(t, s) and Φl ≡ 0 for all l ≥ 1. The drift and diffusion of
an approximation to the intensive process are given by Formulas (4.58) and (4.59). With
the above choices, these are

µ(s, t) = Φ0(t, s,−1)∆1 = w1(t, s)∆1 = −αs(1− s),
N−1Σ(s, t) = N−1Φ0(t, s,−1)∆2

1 = N−1w1(t, s)∆2
1 = αs(1− s)/N.

Once more, this resembles the results from the previous examples.

4.3.6 Other Approaches

A number of further approximation techniques is proposed by different authors, especially
in the physics literature and most often in the context of physical processes:

Drummond et al. (1981) review quasiprobability methods for transforming master equations
into generalised diffusion equations. In these approaches, positivity of the probability or
positive-definiteness of the diffusion matrices cannot always be guaranteed. A prominent
example for such a quasiprobability method is the Poisson representation (Gardiner &
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Chaturvedi, 1977, Chaturvedi & Gardiner, 1978) which expands the probability distribution
of the process in Poisson distributions.

Under the assumption of the asymptotic form p(x, t) ∝ exp (Nψ(x, t)) for some function ψ,
Kubo et al. (1973) approximate the transition density p by a Gaussian distribution whose
parameters are expressed through the cumulants of x. (In statistical thermodynamics, if
the system is in equilibrium, ψ equals the standardised negative free energy for a unit of
the system whose size is determined by N .)

Walsh (1981b) suggests a well-timed diffusion approximation in the sense that the approx-
imating process X̃ = (X̃ t)t≥t0 is a diffusion in which the jump process X = (X t)t≥t0
can be embedded, and there are stopping times (Tt)t≥0 with ETt = t for all t ≥ 0 such
that (X t)t≥t0 and (X̃Tt)t≥t0 have the same distribution. In other words, the sample paths
of both processes cover the same space (in distribution) at the same speed.

A variety of papers is devoted to the problem of processes with special properties like
irreversibility or nonstability. Grabert et al. (1983) suggest a technique for the derivation of
the forward diffusion equation for models which take into account pressure and temperature
fluctuations. The so-obtained drift coefficient differs from that of the Kramers-Moyal expan-
sion only by O(N−1), but the difference between the two diffusion matrices is proportional
to the deviation from steady states as measured by a thermodynamic force. Hänggi et
al. (1984) show that for bistable systems the Kramers-Moyal expansion overestimates the
transition rates between deterministically stable states, while the approach by Grabert et al.
(1983) estimates them correctly. Further specialised approximation methods are developed
or reviewed in e. g. Green (1952), Grabert and Green (1979, 1980), Hänggi and Jung (1988),
Shizgal and Barrett (1989) and Muñoz and Garrido (1994).

4.4 Extensions to Systems with Multiple Size Param-
eters

Section 4.3 has introduced diffusion approximation methods for systems whose size is
sufficiently described by a single parameter N ∈ N. In some applications, however, a
more reasonable characterisation is given by an entire set {N1, . . . , Nd} ⊂ Nd, d ∈ N, of
system size parameters. An example for such an application is the multitype SIR model
which will be presented in Section 5.2, where Ni may stand for the population size of a
geographical region labelled i. In these cases, the considered approximation techniques
need to be adjusted. Such investigation is novel and represents another main result of this
chapter.

As before, consider a pure Markov jump process which in its extensive form is denoted
by X. Let X = (X ′1, . . . ,X ′d)′ be a partition of the state variable such that the vector X i

is characterised by the size variable Ni, i = 1, . . . , d. Then x = (N−1
1 X ′1, . . . , N

−1
d X

′
d)′

specifies the respective intensive jump process where occurring jumps are small if the
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system sizes are large. Define the (invertible) diagonal matrix M such that X = Mx,
and let N = ∑d

i=1Ni. If D(d)
N ⊆ Zn denotes the state space of the extensive process,

C(d)
N = M−1D(d)

N = {M−1X |X ∈ D(d)
N } is the state space of the intensive one. (This nota-

tion is used although the sum N naturally does not determine the individual sizes N1, . . . , Nd

unless their ratios are fixed.) Once more, depending on the context, X and x may inter-
changeably stand for the whole process or a single state.

For appropriate I, let {∆i | i ∈ I} and {∆̃i | i ∈ I} = {M−1∆i | i ∈ I} denote the sets of
nonzero jumps of the extensive and intensive process, respectively. Adopt the notation
for the transition probabilities PN , pN and transition rates WN,i, wN,i from Section 4.3.
Sections 4.4.1 to 4.4.5 present how the techniques from Sections 4.3.1 to 4.3.5 can be modified.
For examples of these approximation procedures, the reader is referred to Chapter 5.

4.4.1 Convergence of the Master Equation

According to Equation (4.15), the forward master equation for X reads

∂PN(t,X)
∂t

=
∑
i∈I

(
WN,i(t,X −∆i)PN(t,X −∆i)−WN,i(t,X)PN(t,X)

)
.

The forward master equation for x is then

∂pN(t,x)
∂t

=
∑
i∈I

(
wN,i(t,x− ∆̃i)pN(t,x− ∆̃i)− wN,i(t,x)pN(t,x)

)
.

Replace pN by its limit function p and assume that there are functions wi and small but
positive δi such that wN,i = δ−1

i wi for all i ∈ I. Suppose that the wi depend on {N1, . . . , Nd}
only through some statistic T for which T ({N1, . . . , Nd}) = T ({cN1, . . . , cNd}) holds for
all c ∈ N. In other words, wi does not change for N → ∞ as long as the proportions
between the single population sizes remain constant. This facilitates the following limiting
procedure between lines (4.61) and (4.62) (compare with the explanation on page 59). The
master equation becomes

∂p(t,x)
∂t

=
∑
i∈I

δ−1
i

(
wi(t,x− ∆̃i)p(t,x− ∆̃i)− wi(t,x)p(t,x)

)
. (4.60)

As in Section 4.3.1, the bracketed terms can be rewritten by sums of difference operators,
resulting in

∂p(t,x)
∂t

=
∑
i∈I

δ−1
i

 ∑
ki=(0,ki,1,...,ki,n)′

D
|ki|
ki,εi

wi(t,x)p(t,x)
 (4.61)

≈
∑
i∈I

δ−1
i

 ∑
ki=(ki,1,...,ki,n)′

ε
ki,1
i,1 · · · ε

ki,n
i,n

∂|ki|wi(t,x)p(t,x)
∂x

ki,1
1 · · · ∂xki,nn

 , (4.62)
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where εi = (0, εi,1, . . . , εi,n)′ with |εi,k|−1 ∈ {N1, . . . , Nd} for all i ∈ I and k = 1, . . . , n.
Typically, δ−1

i cancels with one of the εi,k (at least up to a finite constant) for all i. Once
more, restrict the master equation to terms up to order O(max{N−1

1 , . . . , N−1
d }). Then,

one again arrives at

∂p(t,x)
∂t

= −
n∑
j=1

∂
[
µj(x, t)p(t,x)

]
∂xj

+ 1
2

n∑
j,k=1

∂2
[
Σ̃jk(x, t)p(t,x)

]
∂xj∂xk

for some vector µ = (µj)j=1,...,n and matrix Σ̃ = (Σ̃jk)j,k=1,...,n. These can be derived by
application of Algorithm B.1 in Section B.1 in the appendix. If Σ̃ is positive definite, these
are the drift vector and diffusion matrix of the diffusion process approximating the jump
process x.

4.4.2 Convergence of the Infinitesimal Generator

In analogy to Equation (4.24), for the infinitesimal generator of the intensive jump process x
in the new setting one obtains

GNf(x, t) = ∂f(x, t)
∂t

+
∑
i∈I

wN,i(t,x)
(
f(x+ ∆̃i, t)− f(x, t)

)
,

where f : C × T → R is a measurable twice continuously differentiable function, C the
continuous state space of the diffusion approximation, x ∈ C and t ∈ T . In a similar manner
as above,

GNf(x, t) = ∂f(x, t)
∂t

+
∑
i∈I

δ−1
i wi(t,x)

(
f(x+ ∆̃i, t)− f(x, t)

)
(4.63)

= ∂f(x, t)
∂t

+
∑
i∈I

δ−1
i wi(t,x)

 ∑
ki=(ki,1,...,ki,n,0)′

D
|ki|
ki,εi

f(x, t)


with εi = (εi,1, . . . , εi,n, 0)′ and |εi,k|−1 ∈ {N1, . . . , Nd}. Hence,

GN ≈
∂

∂t
+
∑
i∈I

δ−1
i wi(t,x)

 ∑
ki=(ki,1,...,ki,n)′

ε
ki,1
i,1 · · · ε

ki,n
i,n

∂|ki|

∂x
ki,1
1 · · · ∂xki,nn

 .
Again, take out δ−1

i for one of the εi,k, k = 1, . . . , n, and neglect all terms of order higher
than O(max{N−1

1 , . . . , N−1
d }). Then, GN can be approximated by

G = ∂

∂t
+

n∑
j=1

µj(x, t)
∂

∂xj
+ 1

2

n∑
j,k=1

Σ̃jk(x, t)
∂2

∂xj∂xk

for a vector µ = (µj)j=1,...,n and matrix Σ̃ = (Σ̃jk)j,k=1,...,n. Once again, these can be
determined using Algorithm B.1. For positive definite Σ̃, this operator can be seen as the
generator of the diffusion approximation, i. e. the drift vector and diffusion matrix are given
by µ and Σ̃, respectively.
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4.4.3 Langevin Approach

Suppose the intensive jump process x can be approximated by the solution of an SDE with
drift vector µ and diffusion matrix Σ̃. In the Langevin approach, the formulas for µ and Σ̃
immediately follow from their definitions

µ(u, t) = lim
∆t↓0

1
∆t E

(
xt+∆t − xt

∣∣∣xt = u
)
,

Σ̃(u, t) = lim
∆t↓0

1
∆t E

(
(xt+∆t − xt)(xt+∆t − xt)′

∣∣∣xt = u
)

for u ∈ C (compare with Equations (4.32) and (4.33)), i. e.

µ(u, t) =
∑
i∈I

wN,i(t,u)∆̃i,

Σ̃(u, t) =
∑
i∈I

wN,i(t,u)∆̃i∆̃′i.

Note that in this formula the ∆̃i, i ∈ I, denote the jumps of the intensive jump process.

4.4.4 Kramers-Moyal Expansion

In the Kramers-Moyal expansion, the master equation

∂pN(t,x)
∂t

=
∑
i∈I

(
wN,i(t,x− ∆̃i)pN(t,x− ∆̃i)− wN,i(t,x)pN(t,x)

)

of the intensive jump process x is approximated by a Taylor expansion in orders of
nonlinearity. As before, let ∆̃i = (∆̃i,1, . . . , ∆̃i,n)′, i ∈ I, denote the jumps of x. By
expansion of wN,i(·,x− ∆̃i)pN(·, ∆̃i) around x one obtains

∂pN(t,x)
∂t

=
∑
i∈I

∞∑
m=1

∑
k∈Km

 n∏
j=1

(−∆̃i,j)kj
kj!

 ∂m

∂xk1
1 · · · ∂xknn

wN,i(t,x)pN(t,x),

where for all m ∈ N0

Km =
{
k = (k1, . . . , kn)′ ∈ Nn

0

∣∣∣ |k| = m
}
.

Replace pN by its limit p and terminate the above expansion after m = 2. Then

∂p(t,x)
∂t

= −
n∑
j=1

∑
i∈I

∆̃i,j
∂

∂xj
wN,i(t,x)p(t,x) + 1

2

n∑
j,k=1

∑
i∈I

∆̃i,j∆̃i,k
∂2

∂xj∂xk
wN,i(t,x)p(t,x).

That means, the forward master equation can be approximated by

∂p(t,x)
∂t

= −
n∑
j=1

∂
[
µj(x, t)p(t,x)

]
∂xj

+ 1
2

n∑
j,k=1

∂2
[
Σ̃jk(x, t)p(t,x)

]
∂xj∂xk
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with
µ(x, t) = (µj)j=1,...,n =

∑
i∈I

wN,i(t,x)∆̃i

and
Σ̃(x, t) = (Σ̃jk)j,k=1,...,n =

∑
i∈I

wN,i(t,x)∆̃i∆̃′i.

For positive definite Σ̃, this is a forward diffusion equation leading to a diffusion approxi-
mation with drift vector µ and diffusion matrix Σ̃.

4.4.5 Van Kampen Expansion

Like van Kampen’s expansion in the context of one system size parameter N , its extension
to a set {N1, . . . , Nd} of system sizes considers the fluctuations of the process x around a
deterministic process φ(t) = (φ1(t), . . . , φn(t))′ describing the macroscopic behaviour of x.

LetMj stand for the jth main diagonal element of the diagonal matrixM , that isXj = Mjxj
for j = 1, . . . , n. In the multiple size parameter setting, the probability function PN(t,X)
is peaked around Mφ(t) with width proportional to M1/2

j in the jth component. Hence,
consider the time-dependent transformation

z = (z1, . . . , zn)′ = M
1
2
(
x− φ(t)

)
and the probability function πN of z, which fulfils

PN(t,X) = PN(t,Mφ(t) +M 1
2z) = πN(t, z).

Analogously to the procedure in Section 4.3.5, equate the total differentials of PN and πN
to obtain

∂PN(t,X)
∂t

= ∂πN(t, z)
∂t

−
n∑
j=1

M
1
2
j

dφj(t)
dt

∂πN(t, z)
∂zj

.

For the main diagonal elements ofM one has Mj ∈ {N1, . . . , Nd} for all j. For v = 1, . . . , d,
define

Jv =
{
u ∈ {1, . . . , n}

∣∣∣Mu = Nv

}
. (4.64)

Without loss of generality, let Nj 6= Nk for j 6= k. Then J1, . . . , Jd is a partition of {1, . . . , n},
i. e. a division into pairwise disjoint sets. Hence

∂PN(t,X)
∂t

= ∂πN(t, z)
∂t

−
d∑
v=1

N
1
2
v

∑
u∈Jv

dφu(t)
dt

∂πN(t, z)
∂zu

,

corresponding to Equation (4.43) in the previous considerations. Recall from page 74 the
notation {∆i | i ∈ I} for the set of all nonzero jumps of the extensive variable X. In order
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to appropriately modify the canonical form (4.45), assume that there are functions Φl,
l ∈ N0, and a partition I1, . . . , Id of I such that for all i ∈ I and j = 1, . . . , d

WN(t,X,∆i) = f(Nj)
∞∑
l=0

N−lj Φl

(
t,M−1X,∆i

)
if i ∈ Ij. (4.65)

Plugging this in into the general form of the forward master equation

∂PN(t,X)
∂t

=
∑
i∈I

(
WN(t,X−∆i,∆i)PN(t,X−∆i)−WN(t,X,∆)PN(t,X)

)
yields

∂PN(t,X)
∂t

=
d∑
v=1

f(Nv)
∑
u∈Iv

∞∑
l=0

N−lv

[
Φl

(
t,M−1(X−∆u),∆u

)
PN(t,X−∆u)

−Φl

(
t,M−1X,∆u

)
PN(t,X)

]
as the equivalent of Equation (4.46). Follow the transformations on pages 69 to 70 to arrive
at an expression corresponding to (4.50)–(4.52). That is

∂πN(s, z)
∂s

−
d∑
v=1

N
1
2
v

∑
u∈Jv

dφu(s)
ds

∂πN(s, z)
∂zu

(4.66)

=−
d∑
v=1

N
1
2
v

n∑
j=1

∂

∂zj

[
ã1,j,v (s,φ(s)) +N

− 1
2

v

n∑
i=1

zi ã
(i)
1,j,v(s,φ(s)) +O

(
N−1
v

)]
πN
(
s, z

)
(4.67)

+1
2

d∑
v=1

n∑
j=1

n∑
k=1

∂2

∂zj∂zk

[
ã2,(j,k),v(s,φ(s)) +O

(
N
− 1

2
v

)]
πN
(
s, z

)
+

d∑
v=1
O
(
N
− 1

2
v

)
, (4.68)

where

ã1,j,v(t, z) =
∑
u∈Iv

∆u,jΦ0
(
t, z,∆u

)
and ã2,(j,k),v(t, z) =

∑
u∈Iv

∆u,j∆u,kΦ0
(
t, z,∆u

)

for j, k = 1, . . . , n, v = 1, . . . , d and ∆u = (∆u,1, . . . ,∆u,n)′, and ã
(i)
1,j,v denotes the first

derivative of ã1,j,v with respect to the ith component of the state variable. Furthermore, let

ã1,j(t, z) =
∑
u∈I

∆u,jΦ0
(
t, z,∆u

)
=

d∑
v=1

ã1,j,v(t, z)

for j = 1, . . . , n (compare with (4.49)). The terms of order N1/2
v in lines (4.66)–(4.68) cancel

if ∑
u∈Jv

dφu(s)
ds

∂πN(s, z)
∂zu

=
n∑
j=1

ã1,j,v(s,φ(s)) ∂πN(s, z)
∂zj

(4.69)

for all v = 1, . . . , d. Assume

ã1,j,v(t, z) = 0 if j 6∈ Jv. (4.70)
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This trivially implies
ã1,j,v(t, z) = ã1,j(t, z) if j ∈ Jv,

which means that the jumps ∆u with u ∈ Iv are sufficient to determine the first jump
moment of the jth component of X if j ∈ Jv. Under this assumption, condition (4.69)
turns into ∑

u∈Jv

dφu(s)
ds

∂πN(s, z)
∂zu

=
∑
u∈Jv

ã1,u,v(s,φ(s)) ∂πN(s, z)
∂zu

,

i. e.
dφu(s)
ds

= ã1,u,v(s,φ(s)) for all u ∈ Jv,

and that in turn is equivalent to

dφu(s)
ds

= ã1,u(s,φ(s)) for all u = 1, . . . , n.

This requirement again is fulfilled due to the definition of φ(t); compare with Equation (4.53).
Hence, the expression (4.66)–(4.68) reduces to

∂πN(s, z)
∂s

=
d∑
v=1

− n∑
i,j=1

ã
(i)
1,j,v(s,φ(s)) ∂zi πN(s, z)

∂zj
+ 1

2

n∑
j,k=1

ã2,(j,k),v(s,φ(s)) ∂
2πN(s, z)
∂zj∂zk


as Nv tends to infinity for all v = 1, . . . , d. Like Equation (4.54), this is a linear forward
diffusion equation for πN . As shown on page 71, one can (heuristically) transform it to a
forward diffusion equation for p, which is the density of the intended diffusion approximation
process. The result is, according to (4.57),

∂p(t,x)
∂t

=
d∑
v=1

− n∑
j=1

∂

∂xj
ã1,j,v(t,x)p(t,x) + 1

2Nv

n∑
j=1

n∑
k=1

∂2

∂xj∂xk
ã2,(j,k),v(t,x)p(t,x)

 .
Overall, provided that the diffusion matrix is positive definite, the diffusion approximation
can be described by an SDE with drift vector

µ(x, t) =
(

d∑
v=1

ã1,j,v(t,x)
)
j=1,...,n

= (ã1,j(t,x))j=1,...,n =
∑
u∈I

Φ0(t,x,∆u)∆u (4.71)

and diffusion matrix

Σ̃(x, t) =
(

d∑
v=1

N−1
v ã2,(j,k),v(t,x)

)
j,k=1,...,n

=
d∑
v=1

N−1
v

∑
u∈Iv

Φ0(t,x,∆u)∆u∆′u. (4.72)

This result holds under the assumption of the existence of a canonical form (4.65), condi-
tion (4.70) and further rather weak regularity conditions as in Section 4.3.5.
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4.5 Choice of Stochastic Integral

Sections 4.3 and 4.4 introduced several techniques for the approximation of Markov jump
processes by solutions of stochastic differential equations. An immediate issue in this
context is the question of appropriateness of different stochastic calculi with the Itô and
Stratonovich calculus as their most prominent representatives, see Section 3.2.2. As a
rule of thumb, one usually chooses the Itô interpretation as an appropriate model if the
random force is assumed to be exactly Gaussian white noise. If the white noise process is
only an idealisation, the Stratonovich representation should be employed (Arnold, 1973,
Chapter 10.3).

In applications in life sciences, the memory of a system is usually short but nonzero. In
those cases the noise is called coloured, and the Stratonovich interpretation is the suitable
choice of integral. On the other hand, in some models the underlying dynamics might be
best described in discrete time with discrete but uncorrelated noise forces, for example
in population dynamics if successive generations do not overlap in time. The white noise
in the continuous model can then be considered as exact, and the Itô calculus applies
(Horsthemke & Lefever, 1984, Chapter 5.4, Kloeden & Platen, 1999, Chapter 6.1).

An argument supporting the Stratonovich interpretation is the following Wong-Zakai
Theorem (Wong & Zakai, 1965): Let B(n) = (B(n)

t )t≥t0 , n ∈ N, be a sequence of processes
with continuous state space, bounded variation, piecewise continuous derivatives and
Brownian motion as almost surely uniform limit as n tends to infinity. Then the solutions
of the random differential equations

dX
(n)
t = µ

(
X

(n)
t , t

)
dt+ σ

(
X

(n)
t , t

)
dB

(n)
t , X(n)

t0 = x0,

converge sample-pathwise uniformly to the solution of the Stratonovich SDE with (suf-
ficiently regular) drift µ, diffusion coefficient σ and initial value x0. In the context of
approximating a given process by the solution of a stochastic differential equation, the
Stratonovich interpretation hence seems more natural.

In the present chapter, the choice of calculus is superfluous as the interpretation is already
fixed by construction: The approaches in Sections 4.3.1, 4.3.2, 4.3.4 and 4.3.5 lead to
forward or backward diffusion equations of the Itô type; compare with Section 3.2.8. In
Section 4.3.3, the interpretation is determined by the assumption that the process satisfies
an Itô SDE. The same holds for the extended methods in Section 4.4.

Howsoever, both the Itô and the Stratonovich interpretations are mathematically correct.
Processes of these two types generally differ in their drifts but coincide in their random
fluctuations; transformation from one to the other is straightforward (see also Section 3.2.2).
Hence, the true question is not which calculus to follow but how to correctly determine
the drift coefficient of the approximating process. Braumann (2007) illustrates this on
the example of modelling random population growth. Results should be evaluated by
comparison of analytical insight with experimental data. See van Kampen (1981a) for
further discussion.
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4.6 Discussion and Conclusion

This chapter motivates and explains the approximate representation of pure Markov jump
processes by ordinary or stochastic differential equations: A jump process X occurs
whenever numbers of countable objects are observed, which is frequently the case in life
sciences applications such as genetics, systems biology, population dynamics or physics.
Suppose the size of a system can satisfyingly be described by a single parameter N . If N is
comparatively large, a state-continuous approximation for the evolution of the intensive
process x = X/N seems appropriate. Section 4.2 lists the benefits arising from such an
approximation in detail. The model then changes its characteristics as follows: In the
original discrete state space model, the probability for the process to stay in a given state
during a short time interval of length ∆t tends to one as ∆t approaches zero. In the
continuous state space approximation, on the other hand, this probability tends to zero.

Section 4.1 reviews the characteristics of jump processes, diffusions and deterministic pro-
cesses with continuous sample paths, as the latter two are the solutions to the approximating
differential equations. The three types of processes correspond to models on a microscopic,
mesoscopic and macroscopic level, respectively. The macroscopic features of a process
are determined by the average of all particles of the system. The mesoscopic description
additionally takes into account internal fluctuations which are caused by the discrete nature
of matter. These are small when the system is large. A microscopic model is exact but
usually too expensive to work with except for small systems. Indisputably, the stochastic
(mesoscopic) approximation is more realistic than the deterministic (macroscopic) one;
the chapter hence concentrates on the derivation of approximating diffusion processes.
A deterministic model is then again an approximation of the stochastic one.

The concrete derivation of such a diffusion model, however, is complicated especially for
nonlinear fluctuations and has caused substantial confusion in the literature as authors
obtained different, but all plausible, results for identical problems. The reason is that
nonlinear processes cannot exactly be described by second order differential equations for
their transition densities, i. e. the description by Kolmogorov equations is generally not
free from error (van Kampen, 1965). Under relatively mild regularity conditions, however,
approximate descriptions of jump processes by diffusions are possible, and Section 4.3
introduces several approaches to obtain these. The framework is kept heuristic in order to
achieve comprehensibility also for practitioners. The reader interested in more mathematical
detail is referred to the according references in Section 4.2. In all approaches, one arrives
for the intensive process x at a stochastic differential equation

dxt = µ(xt, t)dt+ 1√
N
σ(xt, t)dBt , xt0 = x0, (4.73)

with some drift vector µ and diffusion matrix N−1Σ = N−1σσ′. The Itô lemma implies

dX t = Ndxt , X t0 = Nxt0 ,

in accordance with the results of the single algorithms when applied directly to the extensive
process X. The diffusion matrix of (4.73) scales with the inverse system size, losing ground
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in large systems. As mentioned before, Equation (4.73) is a diffusion approximation rather
than a diffusion limit. The latter corresponds to a deterministic model and can be obtained
by ignoring the stochastic part of (4.73).

The results of the approaches in Section 4.3 are as follows: In the rearrangement of the
master equation (Section 4.3.1) and of the infinitesimal generator (Section 4.3.2), the
drift and diffusion matrix are assembled as sums of limits of difference quotients; explicit
formulas for µ and σ are not available except for special cases as in Example B.2 in the
appendix. However, Algorithm B.1 describes their derivation for the general case. The two
approximation approaches assume that the transition rate wN of x fulfils

wN(t,x,∆) = Nw(t,x,∆) (4.74)

for all t, x and ∆ and a function w which does not depend on N . This situation applies,
at least approximately, in most examples in life sciences. In the Langevin approach
(Section 4.3.3) and Kramers-Moyal expansion (Section 4.3.4), µ and Σ are obtained as

µ(x, t) = N−1∑
∆
wN(t,x,∆)∆

Σ(x, t) = N−1∑
∆
wN(t,x,∆)∆∆′,

(4.75)

where the sum is over all nonzero jumps ∆ of the extensive jump process X. With
Equation (4.74) fulfilled, these simplify to

µ(x, t) =
∑
∆
w(t,x,∆)∆

Σ(x, t) =
∑
∆
w(t,x,∆)∆∆′.

Van Kampen’s method (Section 4.3.5) replaces condition (4.74) by the less restrictive canon-
ical form

wN(t,x,∆) = f(N)
∞∑
l=0

N−l Φl (t,x,∆) (4.76)

for a positive function f and appropriate functions Φl. The expansion results in

µ(x, t) =
∑
∆

Φ0(t,x,∆)∆

Σ(x, t) =
∑
∆

Φ0(t,x,∆)∆∆′.
(4.77)

Certainly, there are similarities in the results: The main difference between the representation
of the master equation through difference operators and the Kramers-Moyal expansion
lies in when to perform certain critical large N considerations which are possible only in
a heuristic framework. For example, in the former method derivatives appear as late as
possible, whereas in the Kramers-Moyal expansion they already form the first step. The
same parallels apply for the approximation of the infinitesimal generator and a Kramers-
Moyal backward expansion as contained in Risken (1984, Chapter 4.2). Example B.2 shows
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that under certain requirements on the possible jumps the techniques from Sections 4.3.1
to 4.3.4 yield identical results.

Furthermore, if Equation (4.74) is true, then f(N) = N , Φ0 = w and Φl ≡ 0 for l ≥ 1
in (4.76), i. e. van Kampen’s expansion yields the same result as the Langevin approach
and the Kramers-Moyal expansion. However, there are cases where the outcomes (4.75)
and (4.77) differ: Plugging in the canonical form (4.76) into Formula (4.75) from the
Langevin and Kramers-Moyal approach produces

µ(x, t) = f(N)N−1∑
∆

[
Φ0 (t,x,∆) +N−1Φ1 (t,x,∆) + . . .

]
∆

Σ(x, t) = f(N)N−1∑
∆

[
Φ0 (t,x,∆) + . . .

]
∆∆′.

(4.78)

Horsthemke and Brenig (1977) cite an example where (4.77) and (4.78) yield different
results: Consider the chemical reactions

A©+ X© k1−→ 2 X© , 2 X© k2−→ A©+ X© , B©+ X© k3−→ C©

with rates k1, k2 and k3, where the numbers of particles of types A and B are kept constant
and particles of type C are immediately removed. The de facto transitions are thus

A©+ X© k1−→ A©+ 2 X© , 2 X© k2−→ X© , B©+ X© k3−→ B© .

Denote by a and b the fractions of type A and B particles in the system of size N . The
resulting forward diffusion equations for the transition densities p(t, x) for fractions x of
type X particles at time t are

∂p(t, x)
∂t

= − ∂

∂x

(
k1a− k2x− k3b

)
x p(t, x) + 1

2N
∂2

∂x2

(
k1a+ k2x+ k3b

)
x p(t, x)

according to van Kampen, Formula (4.77), and

∂p(t, x)
∂t

= − ∂

∂x

(
k1a−k2x−k3b+ k2

N

)
x p(t, x)+ 1

2N
∂2

∂x2

(
k1a+k2x+k3b

)
x p(t, x) (4.79)

due to Langevin and Kramers-Moyal, Formula (4.78) (and, by the way, also as a result of
the approximation procedures from Section 4.3.1 and 4.3.2). The reason for this deviation is
that the Langevin approach models the fluctuating part of x, whilst van Kampen considers
the fluctuations around the deterministic solution φ(t). The above example illustrates that
the Formulas (4.75) and (4.77) shall not be applied uncritically: Detailed analysis of the
diffusion equation (4.79) shows that its only stationary solution is p(t, x) = δ(x) with the
Dirac delta function δ; the state x = 0 is an absorbing boundary that is reached in finite
time. This result agrees with the master equation description. Improvident transition
to stochastic differential equations, on the other hand, erroneously suggests fluctuations
around the non-zero stationary state of the macroscopic equation

dxt =
(
k1a− k2xt − k3b

)
xtdt.
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In fact, the regularity assumptions for van Kampen’s expansion, which were mentioned on
page 71, are not fulfilled in the above example, i. e. the method is not applicable. All other
approaches have to be applied with care as well. See Horsthemke and Brenig (1977) for a
more detailed discussion and further examples. Section 4.3.6 covers some methods which
are to be favoured if one wishes to determine quantities that sensitively depend on the
equilibrium properties. Gitterman and Weiss (1991) however emphasise that no technique
can reproduce all characteristics of the original model.

In the usual case, where the methods from Sections 4.3.1 to 4.3.5 are applicable, all of them
are asymptotically equivalent. Differences between the Kramers-Moyal expansion (4.36)
and van Kampen’s expansion occur only when higher moments are included in the model;
see van Kampen, 1997, Chapter 10.6 for the univariate van Kampen expansion including
higher moments. The representations of the master equation or infinitesimal generator
through difference operators seem appealing if the forward or backward master equation
are given and one does not want to reproduce the single transition rates W . Otherwise, the
Langevin, Kramers-Moyal and van Kampen approach provide immediate formulas for the
drift and diffusion matrix and are hence more convenient and widely used.

In some applications, the limitation to a single size parameter N does not suffice to com-
pletely characterise the dynamics of a system. Instead, multiple size parameters N1, . . . , Nd

are applied. As a new result, Section 4.4 performs the adjustment of the methods from
Sections 4.3.1 to 4.3.5 to the advanced setting.

Immediately involved with the application of stochastic differential equations is the choice
of stochastic integral. Section 4.5 discusses this matter with the plain conclusion that the
application of both the Itô and the Stratonovich interpretation is correct as long as an
analysis of the SDE follows the same calculus as the approximation procedure.

In any case, the validity of a diffusion approximation should always be judged by comparison
of numerical results from the master equation and the diffusion approximation model or, if
available, by comparison of numerical and analytical characteristics. This has been done
by Ewens (1963), Gillespie (1980), Hayot and Jayaprakash (2004), Ferm et al. (2008) and
Sjöberg et al. (2009). A comparison between stochastic and deterministic models has been
performed by Nåsell (2002). See Grasman and Ludwig (1983) for an investigation of the
accuracy of diffusion approximations.

Diffusion approximations are not always possible; requirements to the original model are
sketched at the beginning of Section 4.3. See Pollett (2001) for comments on cases in
which diffusion models are inappropriate as certain assumptions are not fulfilled. In any
circumstances, such approximations are only legitimate for large system sizes. For medium
sized systems that are too small for diffusion approximations but too large for Monte Carlo
evaluation of the master equation, different methods are proposed; see for example Ohkubo
(2008) and the references therein.

To summarise, this chapter offers a survey of methods to model a pure Markov jump
process by a diffusion approximation. This collection is novel in its completeness and
comprehensiveness; it supplements the variety of known approaches by new formulations
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and fills the gap of general multi-dimensional formulas, which partly do not appear in
the existing literature. A further novelty is the extension of approximation techniques to
systems with multiple size parameters. Assumptions and derivations are provided for all
approaches to allow for critical evaluation. Various references guide the reader to more
detailed information. In all, this chapter allows scientists with a moderate mathematical
background to easily apply diffusion approximation methods to a broad class of jump
processes in order to gain full advantages from that modelling approach.
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Chapter 5

Diffusion Models in Life Sciences

This chapter investigates representative models from life sciences which typically involve
large populations. These models are in a first step formulated in terms of pure Markov
jump processes. However, as motivated in Section 4.2, a more convenient representation
is obtained by the transition to diffusion approximations. This facilitates simulation and
statistical inference. Hence, in a second step, the jump processes are approximated by
diffusions. The purpose of this chapter is on the one hand to illustrate the methods from
Chapter 4. On the other hand, the presented models and their diffusion approximations
are the basis for Chapter 8, where Bayesian inference is performed on them.

The considered models are from the field of epidemiology, which represents one important
branch of life sciences. In particular, Section 5.1 covers the standard susceptible–infected–
removed (SIR) model from Section 2.2.2 for describing the spread of infectious diseases.
Section 5.2 proposes an extension of this standard model in order to allow for host het-
erogeneity. Further diffusion approximations are derived in Chapter 9, where the binding
behaviour of proteins is investigated in living cells.

In both Sections 5.1 and 5.2, the respective model is first introduced via a compartmental
representation and then described in terms of a Markov jump process. Afterwards, the
approximation approaches from Chapter 4 are applied. If one is only interested in the
resulting diffusion approximations rather than in the approximation procedures, it is
sufficient to only read the then following summaries. Each section concludes with some
illustration of the respective model. Section 5.3 investigates the existence and uniqueness of
solutions of the stochastic differential equations derived in Sections 5.1 and 5.2. Section 5.4
concludes this chapter.

It has already been discovered in Section 4.6 that under certain conditions the results of
different approximation procedures coincide. This is actually the case also for the models
considered here; it is hence redundant to apply more than one approximation method.
However, in order to provide examples for the theoretical investigations from Chapter 4,
each approach is considered separately.
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The asymptotic behaviour of the standard SIR model as the population size tends to infinity
has been treated by several authors, e. g. by Nagaev and Startsev (1970), Barbour (1974),
Wang (1977), Kurtz (1981), Andersson and Britton (2000) and Allen (2003). The case of
open populations is investigated by Clancy et al. (2001). Moreover, Alonso et al. (2007)
take into account demographic changes.

Similar multitype SIR models have been considered in the literature as well, for instance
by Ball (1986), Bailey (1975), Daley and Gani (1999) and Andersson and Britton (2000).
In most cases, but not exclusively, these are formulated in terms of deterministic processes.
Diffusion processes for non-standard SIR models have been treated, for example, by Hufnagel
et al. (2004) and Sani, Kroese, and Pollett (2007). To the author’s best knowledge, a
diffusion approximation for the particular multitype SIR model considered in this chapter
has not been published before. There are, however, similar approaches (e. g. McCormack &
Allen, 2006).

5.1 Standard SIR Model

The following considerations introduce the standard SIR model in Section 5.1.1, charac-
terise it as a jump process through its master equation in Section 5.1.2 and describe its
approximation through a diffusion process in Section 5.1.3. The results are summarised in
Section 5.1.4, and the diffusion process is illustrated in Section 5.1.5.

5.1.1 Model

Consider a population of size N in which individuals are either susceptible to a disease,
infected, or removed. The population is assumed to be closed, i. e. the size parameter N
remains fixed, ignoring demographical changes that are not related to the epidemic.

Recall from Section 2.2.2 the standard SIR model with the following transitions:

(i) The contact between a susceptible and an infectious individual causes an infection:

S©+ I© α−→ 2 I© , (5.1)

where α ∈ R+ is the contact number of an infectious individual sufficient to spread
the disease.

(ii) An infective recovers:
I© β−→ R© , (5.2)

where β ∈ R+ is the reciprocal average infectious period.

The variables above the arrows indicate which model parameters enter the probability for
the respective event to occur. As explained in Section 2.2.2, an appropriate state space for
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a process following these transitions is

DN = {(S, I)′ ∈ [0, N ]2 ∩N2
0 |S + I ≤ N}.

The vector of model parameters is θ = (α, β)′.

This model has been widely adopted in infectious disease modelling due to its simplicity
and generality (see e. g. Keeling & Rohani, 2008 for a monograph). However, a central
assumption in this formulation is that the population mixes homogeneously. Surely, this
situation is not given in many applications, for example when one considers the nationwide
or even worldwide spread of a disease. The multitype SIR model in Section 5.2 corrects for
this.

5.1.2 Jump Process

There are two possible nonzero jumps of the Markov process following the transitions (5.1)
and (5.2) that can occur within an infinitesimal time interval. These are

∆1 =
(
−1

1

)
for an infection and ∆2 =

(
0
−1

)
for a recovery.

Throughout this section, let S and I denote the absolute numbers of susceptible and
infective individuals. The process is considered time-homogeneous, and all individuals
are assumed to be mutually independent. Given the current state X = (S, I)′ ∈ DN , the
probability PN (∆t,X,X+∆1) for an infection to happen within time ∆t is as follows: Each
of the I infectives has α potentially infectious contacts per time unit. On average, α ·S/N of
these contacts will be with a susceptible individual and actually cause an infection.4 The
probability of an infective contact in the considered time interval is hence I ·αS/N ·∆t+o(∆t),
where o(∆t)/∆t→ 0 as ∆t→ 0. Similarly, the probability PN (∆t,X,X+∆2) of a recovery
is βI∆t+ o(∆t). The transition rates

WN,j(X) = WN(X,∆j) = lim
∆t↓0

1
∆t PN(∆t,X,X + ∆j)

are thus

WN,j(X) = WN,j(S, I) =

α

N
SI if j = 1,

βI if j = 2.

Let PN(t,X) = PN(t;S, I) denote the probability that within time t the extensive process
arrives at state X = (S, I)′ ∈ DN (subject to some initial condition). Outside the state

4More precisely, the number is α · S/(N − 1) as self-infections are excluded. However, this difference is
compensated by adequate choice of α and marginal for large N anyway. Division by N instead of N − 1 is
the standard notation.
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space, this probability is assumed zero. The master equation (4.8) of the jump process X
is then given by

∂PN(t;S, I)
∂t

= α

N
(S + 1)(I − 1)PN(t;S + 1, I − 1) + β(I + 1)PN(t;S, I + 1)

−
(
α

N
SI + βI

)
PN(t;S, I).

In terms of the intensive variable x = X/N = (s, i)′ ∈ CN = N−1DN , the transition rates
read

wN(x,∆j) = wN,j(x) = wN,j(s, i) = WN,j(Ns,Ni) =
Nαsi if j = 1,
Nβi if j = 2,

(5.3)

i. e. one has wN = Nw, where

w(x,∆j) = wj(x) = wj(s, i) =
αsi if j = 1,
βi if j = 2.

(5.4)

5.1.3 Diffusion Approximation

This section now applies the diffusion approximation methods from Chapter 4 to the
standard SIR model. As the size of the system is completely characterised by the single
parameter N , the appropriate techniques are those from Section 4.3. As indicated earlier,
all approximation approaches yield the same diffusion process for the model considered here.
It is hence sufficient to restrain this section to the application of one single approximation
method. As an illustration for the theoretical derivations in Chapter 4, however, all
techniques are applied here. The reader who is rather interested in the results than in the
procedures can skip this section and continue with the summary in Section 5.1.4.

Convergence of the Master Equation

The first approximation approach to look at is the representation of the master equation
through a collection of difference quotients (cf. Section 4.3.1). The standard SIR model is
actually already covered by Example B.2 in Section B.1 in the appendix. Nevertheless, the
derivation is repeated here for illustration purposes.

Let pN(t; s, i) = pN(t,x) = PN(t;Nx) be the probability that the intensive process is in
state x = (s, i)′ after time t with respect to a fixed predefined initial state and initial time.
For ε = N−1, the forward master equation (4.18) from page 59 for this process reads

∂pN(t,x)
∂t

= w1(x−ε∆1)pN(t,x−ε∆1)− w1(x)pN(t,x)
ε

+ w2(x−ε∆2)pN(t,x−ε∆2)− w2(x)pN(t,x)
ε

.
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Transferring this cohesion to the limit function p of pN yields

∂p(t; s, i)
∂t

= w1(s+ ε, i− ε)p(t; s+ ε, i− ε)− w1(s, i)p(t; s, i)
ε

(5.5)

+ w2(s, i+ ε)p(t; s, i+ ε)− w2(s, i)p(t; s, i)
ε

. (5.6)

We seek to write the right hand side of this equation in terms of difference quotients
in order to be able to approximate it in terms of derivatives of the respective functions.
The master equation then attains the form of a Kolmogorov equation. The nominators
of (5.5) and (5.6) are not yet of the required difference form as stated in Definition B.1 in
Section B.1. However, Algorithm B.1 describes how they can neatly be expanded. For the
nominator of the first term (5.5), this is as follows:

(w1 · p)(t; s+ ε, i− ε)− (w1 · p)(t; s, i)
= (w1 · p)(t; s+ ε, i− ε)− (w1 · p)(t; s+ ε, i)− (w1 · p)(t; s, i− ε) + (w1 · p)(t; s, i)
+ (w1 · p)(t; s+ ε, i)− (w1 · p)(t; s, i)
+ (w1 · p)(t; s, i− ε)− (w1 · p)(t; s, i),

(5.7)

where the notation (w1 · p)(t; s, i) is short for w1(s, i)p(t; s, i). With the difference operator
notation from Definition B.1, (5.7) can be expressed as(

D2
(1,1)′,(ε,−ε)′ +D1

(1,0)′,(ε,·)′ +D1
(0,1)′,(·,−ε)′

)
(w1 · p)(t; s, i). (5.8)

Again, the dot in the subscript means that the respective component does not have to be
specified. Following the remarks from Example B.1 and especially Equation (B.7), rewrite
Equation (5.8) as

D2
(1,1)′,(ε,−ε)′(w1 · p)(t; s, i)

+ 1
2 D

2
(2,0)′,(ε,·)′(w1 · p)(t; s− ε, i) + 1

2 D
1
(1,0)′,(2ε,·)′(w1 · p)(t; s− ε, i)

+ 1
2 D

2
(0,2)′,(·,−ε)′(w1 · p)(t; s, i+ ε) + 1

2 D
1
(0,1)′,(·,−2ε)′(w1 · p)(t; s, i+ ε)

=− ε2D
2
(1,1)′,(ε,−ε)′

−ε2 (w1 · p)(t; s, i)

+ ε2

2
D2

(2,0)′,(ε,·)′

ε2 (w1 · p)(t; s− ε, i) + ε
D1

(1,0)′,(2ε,·)′

2ε (w1 · p)(t; s− ε, i)

+ ε2

2
D2

(0,2)′,(·,−ε)′

ε2 (w1 · p)(t; s, i+ ε) − ε
D1

(0,1)′,(·,−2ε)′

−2ε (w1 · p)(t; s, i+ ε).

All quotients in this expression have the difference quotient form (B.1). It can hence be
approximated by(

−ε2 ∂2

∂s∂i
+ ε2

2
∂2

∂s2 + ε
∂

∂s
+ ε2

2
∂2

∂i2
− ε ∂

∂i

)
(w1 · p)(t; s, i). (5.9)
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The nominator of the second term (5.6) is simply

(w2 · p)(t; s, i+ ε)− (w2 · p)(t; s, i)

= D1
(0,1)′,(·,ε)′(w2 · p)(t; s, i)

=
(
ε2

2
D2

(0,2)′,(·,ε)′

ε2 + ε
D1

(0,1)′,(·,2ε)′

2ε

)
(w2 · p)(t; s, i− ε)

≈
(
ε2

2
∂2

∂i2
+ ε

∂

∂i

)
(w2 · p)(t; s, i). (5.10)

Combining (5.9) and (5.10), an approximate representation of the forward master equation
is the Kolmogorov forward equation

∂p(t,x)
∂t

= −
2∑
j=1

∂
[
µj(x)p(t,x)

]
∂x(j) + 1

2N

2∑
j,k=1

∂2
[
Σjk(x)p(t,x)

]
∂x(j)∂x(k) , (5.11)

where x = (x(1), x(2))′ = (s, i)′, and µj and Σjk are the components of

µ(x) =
(

−w1(x)
w1(x)− w2(x)

)
=
(
−αsi

αsi− βi

)
(5.12)

and
Σ(x) =

(
w1(x) −w1(x)
−w1(x) w1(x) + w2(x)

)
=
(

αsi −αsi
−αsi αsi+ βi

)
. (5.13)

The diffusion matrix N−1Σ is positive definite for all positive s and i. Hence, the original
intensive Markov jump process can be approximated by a diffusion process which is the
solution of

dxt = µ(xt)dt+ 1√
N
σ(xt)dBt , xt0 = x0,

where x0 is the initial value of the jump process at time t0, and Σ = σσ′. The decomposition
of Σ is not unique; one possible diffusion coefficient is given by

1√
N
σ(x) = 1√

N

( √
αsi 0

−
√
αsi

√
βi

)
. (5.14)

A different diffusion coefficient is contained in Allen (2003, Chapter 8.11.3).

Convergence of the Infinitesimal Generator

In this paragraph, a diffusion approximation of the jump process is obtained by approxi-
mating the respective infinitesimal generator (cf. Section 4.3.2).

Let f : C×T → R be a measurable twice continuously differentiable function, where C ⊃ CN
denotes the continuous state space of the diffusion approximation, and T ⊆ R0 is the time
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set. According to Formula (4.24) on page 61 and the considerations in Section 5.1.2, the
infinitesimal generator GN of the intensive jump process equals

GNf(x, t) = ∂f(x, t)
∂t

+ w1(x)
f
(
x+ ε∆1, t

)
−f

(
x, t

)
ε

+ w2(x)
f
(
x+ ε∆2, t

)
−f

(
x, t

)
ε

for x = (s, i)′ ∈ CN , t ∈ T and ε = N−1. In terms of the variables s and i, this is

GNf(s, i; t) = ∂f(s, i; t)
∂t

+ w1(s, i)
f
(
s− ε, i+ ε; t

)
−f

(
s, i; t

)
ε

+ w2(s, i)
f
(
s, i− ε; t

)
−f

(
s, i; t

)
ε

.

(5.15)

Analogously to the expansions in the previous approximation approach (or in Example B.2),
one has

f(s− ε, i+ ε; t)− f(s, i; t) =
(
f(s− ε, i+ ε; t)− f(s− ε, i; t)− f(s, i+ ε; t) + f(s, i; t)

)
+
(
f(s− ε, i; t)− f(s, i; t)

)
+
(
f(s, i+ ε; t)− f(s, i; t)

)
=
(
D2

(1,1)′,(−ε,ε)′ +D1
(1,0)′,(−ε,·)′ +D1

(0,1)′,(·,ε)′

)
f(s, i; t)

≈
(
−ε2 ∂2

∂s∂i
+ ε2

2
∂2

∂s2 − ε
∂

∂s
+ ε2

2
∂2

∂i2
+ ε

∂

∂i

)
f(s, i; t)

and
f(s, i− ε; t)− f(s, i; t) = D1

(0,1)′,(·,−ε)′f(s, i; t) ≈
(
ε2

2
∂2

∂i2
− ε ∂

∂i

)
f(s, i; t).

Altogether,

GN ≈
∂

∂t
+ w1(s, i)

[
− ∂

∂s
+ ∂

∂i
+ 1

2N
∂2

∂s2 −
1
N

∂2

∂s∂i
+ 1

2N
∂2

∂i2

]
+ w2(s, i)

[
− ∂
∂i

+ 1
2N

∂2

∂i2

]

= ∂

∂t
+

2∑
j=1

µj(x) ∂

∂x(j) + 1
2N

2∑
j,k=1

Σjk(x) ∂2

∂x(j)∂x(k) (5.16)

for x = (x(1), x(2))′ = (s, i)′ and

µ(x) =
(
−αsi

αsi− βi

)
and Σ(x) =

(
αsi −αsi
−αsi αsi+ βi

)
. (5.17)

That means, the generator GN of the considered jump process approximately coincides
with ∂/∂t+LBµ,Σ/N , where the latter is the Kolmogorov backward operator. Regarding this
as the generator of the approximating diffusion process, we again arrive at the SDE

dxt = µ(xt)dt+ 1√
N
σ(xt)dBt , xt0 = x0,

as a description of the diffusion approximation. Once more, σ is a square root of Σ, compare
with Equation (5.14).
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Langevin Approach, Kramers-Moyal Expansion and van Kampen Expansion

In the Langevin approach (Section 4.3.3), Kramers-Moyal expansion (Section 4.3.4) and
van Kampen’s expansion (Section 4.3.5), the diffusion approximation of the intensive jump
process is given by the solution of

dxt = µ(xt)dt+ 1√
N
σ(xt)dBt , xt0 = x0, (5.18)

where explicit formulas for the drift µ and diffusion matrix N−1σσ′ are provided. In
Section 5.1.2, Equations (5.3) and (5.4), it has been observed that the transition rate wN of
the jump process fulfils the condition wN = Nw for some function w that does not depend
on the population size N . As already discovered in the discussion of Chapter 4 on page 83,
in this case the three approximation approaches yield the same result, which is

µ(x) =
∑
j=1,2

wj(x)∆j and Σ(x) =
∑
j=1,2

wj(x)∆j∆′j

for x = (s, i)′ ∈ CN . Hence, in the standard SIR model, the diffusion approximation is
given by Equation (5.18) with

µ(x) = αsi

(
−1

1

)
+ βi

(
0
−1

)
=
(
−αsi

αsi− βi

)
and

Σ(x) = αsi

(
1 −1
−1 1

)
+ βi

(
0 0
0 1

)
=
(

αsi −αsi
−αsi αsi+ βi

)
.

As announced earlier, that reproduces the result from the previous methods.

5.1.4 Summary

To summarise the results so far, Section 5.1.1 introduced the standard SIR model, Sec-
tion 5.1.2 characterised it as a jump process through its master equation, and Section 5.1.3
applied the various approaches from Section 4.3 to derive a diffusion approximation for
it. Let x = (s, i)′, where s and i denote the fractions of susceptible and infectious indi-
viduals of the total population of size N . The master equation of the jump process with
transitions (5.1) and (5.2) is

∂pN(t; s, i)
∂t

= Nα(s+ ε)(i− ε)pN(t; s+ ε, i− ε) + Nβ(i+ ε)pN(t; s, i+ ε)

− N(αsi+ βi)pN(t; s, i),

where pN is the transition probability of x, and ε = N−1. All considered approximation
approaches arrive at the same stochastic differential equation, the solution of which is the
desired diffusion approximation process. This SDE reads(

ds
di

)
=
(
−αsi

αsi− βi

)
dt+ 1√

N

( √
αsi 0

−
√
αsi

√
βi

)(
dB1
dB2

)
, (5.19)
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where B1 and B2 are independent Brownian motions, and dB1/dt and dB2/dt can hence
be interpreted as Gaussian white noise forces (see Section 3.1.3) accounting for fluctuations
in transmission and recovery. The continuous state space of x is the simplex

C =
{

(s, i)′ ∈ [0, 1]2 ∩R2
0 | s+ i ≤ 1

}
. (5.20)

The differential equation is subject to an appropriate initial condition xt0 = (s0, i0)′ ∈ C.
Note that the process given by the solution of (5.19) is not a diffusion limit but a diffusion
approximation as it still contains the size parameter N . In the limit N →∞, one obtains
the ordinary differential equation (

ds
di

)
=
(
−αsi

αsi− βi

)
dt (5.21)

as a deterministic description of the dynamics of the system. However, in the context
of infectious disease epidemiology, one is dealing with processes that are highly sensitive
to disturbances. Although the ODE (5.21) mirrors the macroscopic behaviour of the
system, the stochastic and the deterministic process may differ substantially regarding
single realisations. Stochasticity becomes particularly important when the initial fraction
of infectives is small and the occurrence of an outbreak is not obvious. The SDE (5.19) is
hence clearly to be preferred.

5.1.5 Illustration

Graphical illustrations of the standard SIR model were shown in Section 2.2.2, where
Figure 2.3 on page 13 displayed sample paths for the three considered types of Markov
processes, and Figures 2.4 and 2.5 demonstrated the role of the basic reproductive ratio
R0 = α/β and the impact of stochasticity. Figure 5.1 in this section contrasts the trajectories
of the diffusion process defined through (5.19) and the deterministic process given by (5.21).
Figure 5.1(a) shows how the stochastic sample paths (thin lines) fluctuate around the
deterministic course (thick lines). Figures 5.1(b) and 5.1(c) display empirical pointwise
95%-confidence bands for the trajectories of the diffusion process, where the population size
equals N = 1000 and N = 10,000, repectively. As obvious from (5.19), the width of the
confidence band decreases for larger N . Figure 5.1(b) particularly elucidates that the paths
of a diffusion process do generally not fluctuate around their deterministic counterpart
in a symmetric manner. Moreover, variation is obviously non-constant. This reveals the
weaknesses of an estimation approach where one assumes independent and identically
distributed deviations of the observations from the deterministic prediction.

5.2 Multitype SIR Model

After having extensively considered the standard SIR model, we now turn to a multitype
extension of it. The standard SIR model does not allow for host heterogeneity. It is
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(c) N = 10,000
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Figure 5.1: Simulation of the standard SIR diffusion process with α = 0.5 and β = 0.25. The
trajectories have been obtained by application of the Euler scheme from Section 3.3.2 with time
step 0.025 and initial value (s0, i0)′ = (0.99, 0.01)′ at time zero. (a) Five realisations of the diffusion
process (thin lines) in comparison to the deterministic course (thick lines) for N = 1000. The
sample paths for the fractions of susceptibles are plotted in black, the paths for the fractions of
infectives in red. (b) Empirical pointwise 95%-confidence bands for the trajectories, represented by
the grey areas. These have been obtained from another one hundred realisations of the diffusion
process with N = 1000. The black and red lines show the paths of the deterministic model.
(c) Confidence bands for N = 10,000.

therefore appropriately modified in what follows. The extended model is introduced in
Section 5.2.1, formulated as a jump process through its master equation in Section 5.2.2
and approximated by a diffusion process in Section 5.2.3. Again, a summary is provided in
Section 5.2.4, and the model is further analysed in Section 5.2.5.

5.2.1 Model

In the multitype modelling approach, the population under consideration is partitioned
into pairwise disjoint clusters j = 1, . . . , n of sizes Nj, i. e. N = ∑n

j=1Nj. Such clusters
might for example correspond to different geographic regions or age classes. Individuals
of each type are divided into n groups according to their cluster such that Sj, Ij and Rj

denote the respective numbers of susceptible, infective and removed individuals in cluster j.
Define S = ∑n

j=1 Sj, I = ∑n
j=1 Ij and R = ∑n

j=1Rj.

Within each cluster the population is assumed to mix homogeneously — i. e. the infection
dynamics within the cluster follows again the standard SIR model (5.1)–(5.2) — but with
a certain rate γNjk individuals from cluster j are involved in the infection dynamics of
cluster k rather than of their own cluster j. These rates are summarised in a network
matrix γN = (γNjk)j,k=1,...,n with row sums equal to one. The entries on the main diagonal
are the rates with which individuals are part of the infection processes of their own clusters.

In case the clusters represent geographical regions like rural and urban districts, individuals
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might be divided into n groups according to their (unique) home region. The network
matrix might then describe the traffic of commuters having their social environment in
their region of residence but being away from home while working in a different region. If
the clusters refer to different age classes, they might represent homogeneous groups that
gather for example in school, at work or in homes for the aged. The network matrix then
stands for social contacts between these age groups.

Since the travelling or contact behaviour of individuals may depend on their medical state,
we further introduce the network matrices γS = (γSjk)j,k=1,...,n and γI = (γIjk)j,k=1,...,n for
susceptibles and infectives, respectively.

The transitions in this model are for all clusters j, k,m = 1, . . . , n:

(i) A susceptible from cluster k gets infected in cluster j by an infective from cluster m
(where k and m might be equal to j):

S©k + I©m

αj , γ•j−→ I©k + I©m . (5.22)

The parameter αj ∈ R+ is the contact number in cluster j, and γ•j is short for the
jth columns γS•j, γI•j and γN•j of γS,γI and γN , respectively.

(ii) An infective individual from cluster j recovers:

I©j

βj−→ R©j , (5.23)

where βj ∈ R+ is the reciprocal average infectious period in cluster j.

Note that the critical contact number depends on the cluster where the infection takes
place. For example, if the clusters represent geographical regions, the risk for a contagious
contact strongly depends on parameters such as the population density or the use of public
transport. In case the clusters refer to age groups, infectious contacts depend for example on
contact behaviour of the individuals at a certain age. In comparison, the average infectious
period is determined by the cluster of the recovering individual. To illustrate this on the
above examples, in case of geographical clusters recovery is subject to the medical standards
at the place of residence. For age groups, infectious periods depend on physical shapes.

In order to keep Nj constant for all j = 1, . . . , n, changes in cluster affiliation — such as
changes of places of residence or ageing — are ignored during the presumably relatively
short period of an epidemic outbreak. The numbers of removed individuals in each cluster j
can then be obtained as Rj = Nj − Sj − Ij at any time point such that

D(n)
N :=

{
(S1, . . . , Sn, I1, . . . , In)′ ∈ [0, N ]2n ∩N2n

0

∣∣∣Sj + Ij ≤ Nj for all j = 1, . . . , n
}

is an eligible state space for a process following the multitype SIR model. The model
parameter is θ = (α,β,γS,γI ,γN) with α = (α1, . . . , αn)′ and β = (β1, . . . , βn)′.
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5.2.2 Jump Process

The transitions of the multitype SIR model are given by Equations (5.22) and (5.23).
For j = 1, . . . , n, let Sj and Ij be the numbers of susceptible and infective individuals in
cluster j, which has a total population of size Nj . Then, the state space of the jump process
is D(n)

N as defined above. The size of the system is described by the set of population
sizes {N1, . . . , Nn}. Denote by ej = (0, . . . , 1, . . . , 0)′ the jth unit vector and by 0 the null
vector of dimension n. Assuming that at most one event can happen within a short time
interval of length ∆t, possible steps of the jump process are

∆1,j =
(
−ej
ej

)
for an infection and ∆2,j =

(
0
−ej

)
for a recovery

of an individual from cluster j ∈ {1, . . . , n}. All transition probabilities are considered
homogeneous in time. Given the current state X = (S1, . . . , Sn, I1, . . . , In)′ ∈ D(n)

N , the
probability of an infection of a susceptible from cluster j in cluster k (where j, k = 1, . . . , n)
within time ∆t is Πjk(X)∆t+ o(∆t) with

Πjk(X) = αk
(number of infectives in cluster k) · (number of susceptibles from j in k)

total number of individuals in cluster k ,

that is

Πjk(X) = αk

n∑
m=1

γImkIm

n∑
m=1

γNmkNm

γSjkSj.

The probability of the recovery of an infective from cluster j is Υj(X)∆t+ o(∆t) with

Υj(X) = βjIj.

Therefore, the transition rates of the process X are for all j

WN,r,j(X) = WN(X,∆r,j) =


n∑
k=1

Πjk(X) if r = 1,

Υj(X) if r = 2.

Let PN(t,X) denote the probability that within time t the extensive process arrives at
state X ∈ D(n)

N conditioned on a prespecified intial state. The master equation of the
extensive process is

∂PN(t,X)
∂t

=
n∑
j=1

 n∑
k=1

Πjk(Sj + 1, Ij − 1)PN(t;Sj + 1, Ij − 1)

+ Υj(Sj, Ij + 1)PN(t;Sj, Ij + 1)

−
(

n∑
k=1

Πjk(Sj, Ij) + Υj(Sj, Ij)
)
PN(t;Sj, Ij)

.
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For better readability, only the relevant components of X are displayed here as arguments
of Πjk, Υj and PN . Now consider the intensive variable

x = (s1, . . . , sn, i1, . . . , in)′ = (N−1
1 S1, . . . , N

−1
n Sn, N

−1
1 I1, . . . , N

−1
n In)′ = M−1X

with M = diag (N1, . . . , Nn, N1, . . . , Nn)′. The state space of the according intensive jump
process is C(n)

N = M−1D(n)
N = {M−1X |X ∈ D(n)

N }, i. e.

C(n)
N =

{
(s1, . . . , sn, i1, . . . , in)′ ∈ [0, 1]2n ∩M−1N2n

0

∣∣∣ sj + ij ≤ 1 for all j = 1, . . . , n
}
.

Possible nonzero jumps of x are

∆̃1,j = 1
Nj

(
−ej
ej

)
and ∆̃2,j = 1

Nj

(
0
−ej

)

for j = 1, . . . , n. Define

πjk(x) = N−1
j Πjk(Mx) = αk

n∑
m=1

γImk
Nm
Nk

im

n∑
m=1

γNmk
Nm
Nk

γSjksj

and
υj(x) = N−1

j Υj(Mx) = βjij.

Then, for j = 1, . . . , n,

wN(x,∆r,j) = wN,r,j(x) = WN,r,j(Mx) =

Nj

n∑
k=1

πjk(x) if r = 1,

Njυ
j(x) if r = 2.

Thus wN,r,j = Njwr,j with

w(x,∆r,j) = wr,j(x) =


n∑
k=1

πjk(x) if r = 1,

υj(x) if r = 2.

This function depends on the population sizes N1, . . . , Nn only through their mutual
ratios Nm/Nk, where k,m = 1, . . . , n.

5.2.3 Diffusion Approximation

We now want to approximate the multitype SIR model by a diffusion. Clearly, this model
does not fit in the rather simple framework of the approximation methods from Section 4.3;
in order to completely describe its dynamics, one needs to employ a whole set of size
parameters N1, . . . , Nn. Hence, for the derivation of a diffusion approximation for the
multitype SIR model, the extended techniques from Section 4.4 are applied.
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Convergence of the Master Equation

The master equation of the multitype SIR process can be approximated by a Kolmogorov
forward equation as follows (cf. Section 4.4.1).

As before, denote by p the transition density of the approximating diffusion process x.
Following Equation (4.60), it roughly fulfils

∂p(t,x)
∂t

=
n∑
j=1

[
Nj

(
w1,j(x− ∆̃1,j)p(t,x− ∆̃1,j)− w1,j(x)p(t,x)

)

+Nj

(
w2,j(x− ∆̃2,j)p(t,x− ∆̃2,j)− w2,j(x)p(t,x)

)]
.

For the sake of better readability, suppress non-involved components of x. With εj = N−1
j ,

one then has

∂p(t,x)
∂t

=
n∑
j=1

w1,j(sj + εj, ij − εj)p(t; sj + εj, ij − εj)− w1,j(sj, ij)p(t; sj, ij)
εj

(5.24)

+ w2,j(sj, ij + εj)p(t; sj, ij + εj)− w2,j(sj, ij)p(t; sj, ij)
εj

. (5.25)

Close similarity to Equations (5.5) and (5.6) on page 91 is unmistakable. Hence, in complete
analogy to Equations (5.11) to (5.13), a diffusion approximation of the multitype SIR model
is described by the Kolmogorov forward equation

∂p(t,x)
∂t

= −
n∑
j=1

[
∂µSj (x)p(t,x)

∂sj
+
∂µIj (x)p(t,x)

∂ij

]

+ 1
2

n∑
j=1

∂2Σ̃SS
jj (x)p(t,x)
∂s2

j

+
∂2Σ̃II

jj (x)p(t,x)
∂i2j

+ 2
∂2Σ̃SI

jj (x)p(t,x)
∂sj∂ij


with the following coefficients: The drift vector and diffusion matrix of the diffusion
approximation are given by

µ(x) =
(
µS(x)
µI(x)

)
and Σ̃(x) =

(
Σ̃SS(x) Σ̃SI(x)
Σ̃IS(x) Σ̃II(x)

)
. (5.26)

The components of µS(x) = (µSj (x))j=1,...,n and µI(x) = (µIj (x))j=1,...,n are in turn

µSj (x) = −w1,j(x) = −
n∑
k=1

πjk(x), (5.27)

µIj (x) = w1,j(x)− w2,j(x) =
n∑
k=1

πjk(x)− υj(x), (5.28)
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and Σ̃ consists of the diagonal matrices Σ̃SS, Σ̃II and Σ̃SI = Σ̃IS with main diagonal
elements

Σ̃SS
jj (x) = N−1

j w1,j(x) = N−1
j

n∑
k=1

πjk(x), (5.29)

Σ̃II
jj (x) = N−1

j

(
w1,j(x) + w2,j(x)

)
= N−1

j

(
n∑
k=1

πjk(x) + υj(x)
)
, (5.30)

Σ̃SI
jj (x) = −N−1

j w1,j(x) = −N−1
j

n∑
k=1

πjk(x) (5.31)

for j = 1, . . . , n. The matrix

σ̃(x) =
(
σ̃SS(x) 0
σ̃SI(x) σ̃II(x)

)

with diagonal matrices σ̃SS, σ̃II , σ̃SI , zero matrix 0 and

σ̃SSjj (x) =
√√√√ n∑
k=1

πjk(x)
Nj

, σ̃IIjj (x) =

√√√√υj(x)
Nj

, σ̃SIjj (x) = −
√√√√ n∑
k=1

πjk(x)
Nj

for all j is a square root of Σ̃. Denote by C(n) the continuous analogue of C(n)
N . The diffusion

matrix Σ̃(x) is positive semi-definite for all x ∈ C(n) as

y′Σ̃(x)y =
(
σ̃′(x)y

)′(
σ̃′(x)y

)
≥ 0 for all y ∈ R2n.

Σ̃(x) is positive definite if furthermore all sj and ij are nonzero since(
σ̃′(x)y

)′(
σ̃′(x)y

)
= 0 ⇔ σ̃′(x)y = 0 ⇔ y = 0.

The last equivalence is true because σ̃′(x) has nonzero determinant (in case all components
of x are positive) and is hence of full rank. Therefore, the intensive jump process can be
approximated by a diffusion process that is the solution of the SDE

dxt = µ(xt)dt+ σ̃(xt)dBt , xt0 = x0,

where x0 is the state of the jump process at time t0. Note that, in contrast to the SDE (5.19)
for the approximation of the standard SIR model, there is no universal scaling factor N−1/2

for the diffusion coefficient here. Instead, individual factors N−1/2
j are included directly in

the components of σ̃.

Example 5.1. In case of one group, i. e. n = 1, the network matrices γS, γI and γN

consist of the single entry γ11 = 1. The diffusion approximation for the multitype SIR has
drift

µ(s1, i1) =
(

−π11(s1, i1)
π11(s1, i1)− υ1(s1, i1)

)
=
(
−α1s1i1

α1s1i1 − β1i1

)
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and diffusion coefficient

σ̃(s1, i1) =


√
π11(s1, i1)

N1
0

−
√
π11(s1, i1)

N1

√
υ1(s1, i1)

N1

 = 1√
N1

( √
α1s1i1 0

−
√
α1s1i1

√
β1i1

)
.

This complies with the standard SIR model in Section 5.1. For n = 2, the drift and diffusion
coefficient are

µ(x) =


−π11(x)− π12(x)
−π21(x)− π22(x)

π11(x) + π12(x)− β1i1
π21(x) + π22(x)− β2i2


and

σ̃(x) =



√
π11(x) + π12(x)

N1
0 0 0

0
√
π21(x) + π22(x)

N2
0 0

−
√
π11(x) + π12(x)

N1
0

√
β1i1
N1

0

0 −
√
π21(x) + π22(x)

N2
0

√
β2i2
N2


with

π11(x) = α1
γI11i1 + γI21

N2
N1
i2

γN11 + γN21
N2
N1

γS11s1, π12(x) = α2
γI12

N1
N2
i1 + γI22i2

γN12
N1
N2

+ γN22
γS12s1,

π21(x) = α1
γI11i1 + γI21

N2
N1
i2

γN11 + γN21
N2
N1

γS21s2, π22(x) = α2
γI12

N1
N2
i1 + γI22i2

γN12
N1
N2

+ γN22
γS22s2.

An illustration of the multitype SIR model follows in Section 5.2.5.

Convergence of the Infinitesimal Generator

This section deals with the approximation of the infinitesimal generator of the jump
process x as described in Section 4.4.2.

Consider a measurable twice continuously differentiable function f : C(n)×T→R, where C(n)

is the state space of the diffusion approximation, and T is the time set. Equation (4.63)
from page 75 reads for the multitype SIR model

GNf(x, t) = ∂f(x, t)
∂t

+
n∑
j=1

2∑
r=1

wr,j(x) f(x+ ∆̃r,j, t)− f(x, t)
εj
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for x ∈ C(n)
N , t ∈ T and εj = N−1

j . In order to simplify notation, non-involved components
of x are dropped. Then

GNf(x, t) = ∂f(x, t)
∂t

+
n∑
j=1

[
w1,j(x) f(sj − εj, ij + εj; t)− f(sj, ij; t)

εj

+ w2,j(x) f(sj, ij − εj; t)− f(sj, ij; t)
εj

]
.

Once more, this resembles the derivation of a diffusion approximation for the standard SIR
model, specifically Equation (5.15) on page 93. Hence, the results (5.16) and (5.17) can be
adopted for the present model. That yields

GN ≈
∂

∂t
+

n∑
j=1

[
µSj (x) ∂

∂sj
+ µIj (x) ∂

∂ij

]

+ 1
2

n∑
j=1

[
Σ̃SS
jj (x) ∂2

∂s2
j

+ Σ̃II
jj (x) ∂

2

∂i2j
+ 2Σ̃SI

jj (x) ∂2

∂sj∂ij

]
,

where
µ(x) =

(
µS(x)
µI(x)

)
and Σ̃(x) =

(
Σ̃SS(x) Σ̃SI(x)
Σ̃SI(x) Σ̃II(x)

)
.

The vector µ has components

µSj (x) = −w1,j(x) , µIj (x) = w1,j(x)− w2,j(x),

and Σ̃ consists of the diagonal matrices Σ̃SS, Σ̃II and Σ̃SI with main diagonal elements

Σ̃SS
jj (x) = N−1

j w1,j(x) , Σ̃II
jj (x) = N−1

j

(
w1,j(x) + w2,j(x)

)
, Σ̃SI

jj (x) = −N−1
j w1,j(x).

Apply the approximation of GN as the generator of the diffusion approximation. One thus
obtains a diffusion process with drift µ and positive definite diffusion matrix Σ̃. This is the
same result as obtained in the previous approximation approach.

Langevin Approach and Kramers-Moyal Expansion

Also in the framework of multiple size variables N1, . . . , Nn, the Langevin approach (Sec-
tion 4.4.3) and Kramers-Moyal expansion (Section 4.4.4) give explicit formulas for the
drift µ and diffusion matrix Σ̃ of a diffusion approximation of a given jump process. These
are for the multitype SIR model

µ(x) =
n∑
j=1

Nj

(
w1,j(x)∆̃1,j + w2,j(x)∆̃2,j

)

=
n∑
j=1

(
w1,j(x)

(
−ej
ej

)
+ w2,j(x)

(
0
−ej

))



104 5. Diffusion Models in Life Sciences

and

Σ̃(x) =
n∑
j=1

Nj

(
w1,j(x)∆̃1,j∆̃′1,j + w2,j(x)∆̃2,j∆̃′2,j

)

=
n∑
j=1

N−1
j

(
w1,j(x)

(
diag (ej) −diag (ej)
−diag (ej) diag (ej)

)
+ w2,j(x)

(
0 0
0 diag (ej)

))

for x ∈ C, where C is the appropriate state space of the diffusion approximation. These
findings agree with those from the two preceding procedures, i. e. with Equations (5.26)
to (5.31).

Van Kampen Expansion

Finally, consider the approximation of the multitype SIR model using the extended version
of van Kampen’s expansion as developed in Section 4.4.5.

This technique is applicable if the transition rate WN can be written in the canonical
form (4.65) and if condition (4.70) holds. The former requirement is fulfilled as

WN(X,∆r,j) = Nj w(M−1X,∆r,j)

for all r = 1, 2 and j = 1, . . . , n, i. e. the terms in Formula (4.65) are to be chosen as
Φ0(x,∆) = w(x,∆), Φl = 0 for l ≥ 1,

Ij =
{

(r, j)
∣∣∣ r = 1, 2

}
with I =

n⊎
j=1

Ij =
{

(r, j)
∣∣∣ r = 1, 2 and j = 1, . . . , n

}
,

and f is the identity function. Because of M = diag (N1, . . . , Nn, N1, . . . , Nn)′, one has
Jv = {v, v + n} (compare with definition (4.64)). Hence, the second condition is also true
since

ã1,j,v(x) =
∑
u∈Iv

(∆u)j Φ0(x,∆u) = (∆1,v)j w1,v(x) + (∆2,v)j w2,v(x)

=
(
−ev
ev

)
j

w1,v(x) +
(

0
−ev

)
j

w2,v(x),

which equals zero if j 6∈ {v, v + n}. The drift vector and diffusion matrix of the diffusion
approximation can thus be obtained by using Formulas (4.71) and (4.72), that is

µ(x) =
∑
u∈I

Φ0(x,∆u)∆u

=
n∑
j=1

(
w1,j(x)∆1,j + w2,j(x)∆2,j

)

=
n∑
j=1

(
w1,j(x)

(
−ej
ej

)
+ w2,j(x)

(
0
−ej

))
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and

Σ̃(x) =
n∑
v=1

N−1
v

∑
u∈Iv

Φ0(x,∆u)∆u∆′u

=
n∑
j=1

N−1
j

(
w1,j(x)∆1,j∆′1,j + w2,j(x)∆2,j∆′2,j

)

=
n∑
j=1

N−1
j

(
w1,j(x)

(
diag (ej) −diag (ej)
−diag (ej) diag (ej)

)
+ w2,j(x)

(
0 0
0 diag (ej)

))

in line with the results from all other approximation methods considered in this section.

The fact that van Kampen’s expansion resembles the result of the Langevin approach and
the Kramers-Moyal expansion is not only — as in the single size parameter case — in
consequence of the special canonical form

wN(x,∆r,j) = Nj Φ0(x,∆r,j),

but also due to the structure of the possible jumps: Because of ∆u = Nv∆̃u for u ∈ Iv,
Formula (4.72) turns into

Σ̃(x) =
d∑
v=1

∑
u∈Iv

N−2
v wN(x,∆u)∆u∆′u =

∑
u∈I

wN(x,∆u)∆̃u∆̃′u.

5.2.4 Summary

The previous paragraphs dealt with the formulation as a jump process and the derivation
of a diffusion approximation for the multitype SIR model. As the size of this system
is best characterised through a collection of size parameters N1, . . . , Nn, the appropriate
approximation techniques are the modified ones from Section 4.4.

Let x = (s1, . . . , sn, i1, . . . , in)′ denote the vector of fractions of susceptible and infectious
individuals in the n distinct clusters. The master equation of the jump process with
transitions (5.22) and (5.23) equals

∂pN(t,x)
∂t

=
n∑
j=1

Nj

 n∑
k=1

πjk(sj + εj, ij − εj)pN(t; sj + εj, ij − εj)

+ υj(sj, ij + εj)pN(t; sj, ij + εj)

−
(

n∑
k=1

πjk(sj, ij) + υj(sj, ij)
)
pN(t; sj, ij)

,
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where εj = N−1
j ,

πjk(x) = αk

n∑
m=1

γImk
Nm
Nk

im

n∑
m=1

γNmk
Nm
Nk

γSjksj and υj(x) = βjij

for all j and k. Note that for clarity only the relevant arguments of πjk, υj and of the
transition probability pN of x are displayed.

As for the standard SIR model, all approximation methods yield identical diffusion processes.
Together with an appropriate initial condition, this is the solution of the SDE

dxt = µ(xt)dt+ σ̃(xt)dBt, (5.32)

where
µ(x) =

(
µS(x)
µI(x)

)
and Σ̃(x) = σ̃(x)σ̃′(x) =

(
Σ̃SS(x) Σ̃SI(x)
Σ̃SI(x) Σ̃II(x)

)

for vectors µS and µI and diagonal matrices Σ̃SS, Σ̃II and Σ̃SI . The single components of
these are

µSj (x) = −
n∑
k=1

πjk(x),

µIj (x) =
n∑
k=1

πjk(x)− υj(x)

and

Σ̃SS
jj (x) = N−1

j

n∑
k=1

πjk(x),

Σ̃II
jj (x) = N−1

j

(
n∑
k=1

πjk(x) + υj(x)
)
,

Σ̃SI
jj (x) = −N−1

j

n∑
k=1

πjk(x)

for j = 1, . . . , n. The matrix

σ̃(x) =
(
σ̃SS(x) 0
σ̃SI(x) σ̃II(x)

)

with diagonal matrices σ̃SS, σ̃II , σ̃SI and

σ̃SSjj (x) =
√√√√ n∑
k=1

πjk(x)
Nj

, σ̃IIjj (x) =

√√√√υj(x)
Nj

, σ̃SIjj (x) = −
√√√√ n∑
k=1

πjk(x)
Nj
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for all j is a square root of Σ̃. The state space of the diffusion approximation is

C(n) =
{

(s1, . . . , sn, i1, . . . , in)′ ∈ [0, 1]2n ∩R2n
0

∣∣∣ sj + ij ≤ 1 for all j = 1, . . . , n
}
. (5.33)

The 2n-dimensional Brownian motion B in Equation (5.32) represents disturbances in
transmission, recovery, and migration. A corresponding deterministic description of the
model dynamics is given by

dxt = µ(xt)dt.
An illustration of the multitype SIR model follows in the next section.

5.2.5 Illustration and Further Remarks

In order to briefly demonstrate the dynamics of the multitype SIR model, the course of an
epidemic is simulated for network matrices

γN = γS = γI =


1− (n− 1)a a · · · a

a 1− (n− 1)a · · · a
... ... . . . ...
a a · · · 1− (n− 1)a

 ∈ Rn×n (5.34)

with 0 ≤ a ≤ (n − 1)−1 describing the strength of contacts between clusters. Figure 5.2
shows the evolution of the fractions of infectives during an epidemic with n = 5 clusters
which agree in all parameters but the initial numbers of infectives. In the graphic on the

(a) no migration (a = 0) (b) weak migration (a = 0.0025) (c) strong migration (a = 0.25)

Figure 5.2: Evolution of the fractions of infectives in n = 5 clusters. These agree in all
parameters but the initial fractions of infectives. In particular, αj = 0.5, βj = 0.25 and Nj = 1000
for j ∈ {1, . . . , 5}. The initial numbers of infectives vary from one to five percent of the population.
Contacts between clusters occur according to the network matrix (5.34). There is no connection
(a = 0) between clusters in Figure (a), weak contact (a = 0.0025) in Figure (b), and strong
influence (a = 0.25) in Figure (c). The thick lines show the deterministic evolution, the thin lines
are simulations of the diffusion process. All paths have been obtained by application of the Euler
scheme with time step 0.025, see Section 3.3.2.
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Figure 5.3: Evolution of the fractions of infectives in n = 5 clusters between which people
have contacts according to the network matrix (5.34) with a = 0.0025. The clusters agree in
all parameters but the initial numbers of infectives, which vary from one to five percent of the
population. As in Figure 5.2, one has αj = 0.5, βj = 0.25 and Nj = 1000 for j ∈ {1, . . . , 5}.
The thick curves show the deterministic evolution, the thin lines are stochastic simulations of
the diffusion process. The dotted vertical lines indicate the instants at which the fractions of
susceptibles in the deterministic course fall below R−1

0 . The dashed vertical lines mark the actual
turning points of the deterministic course of the epidemic, that are the time instants where the
fractions of infectives reach their maximums. Without contacts between clusters, these lines would
agree within each community. The sample paths have been obtained by application of the Euler
scheme with time step 0.025, introduced in Section 3.3.2.

very left there is no contact between clusters (a = 0), while there is strong exchange on
the right (a = 0.25). Apparently, with increasing contacts of individuals between clusters,
the courses of the epidemics synchronise. This fact is again illustrated in Figure 5.3, where
the dotted vertical lines mark the instants at which the fractions of susceptibles in the
deterministic course fall below R−1

0 , while the dashed lines indicate the actual turning points
of the deterministic course of the epidemics, defined as the instants where the maximum
amounts of infectives are reached. For clusters with initially high fractions of infectives, the
actual turning point lies before the one that is valid for the model without exchange; for
clusters with relatively few cases, the opposite situation applies.

The definition of a multitype counterpart to the basic reproductive ratio R0 in the standard
SIR model with one homogeneous population is for example discussed by Andersson
and Britton (2000) and Isham (2004). Moreover, M. Roberts and Heesterbeek (2003)
and Heesterbeek and Roberts (2007) define and analyse a type-reproduction number as an
alternative threshold quantity. This number coincides with R0 for homogeneous populations.

A possible modification of the multitype SIR model in this section is to consider movement of
individuals between clusters instead of cross-infection. That means, individuals can change
the cluster which they are associated with, and infection occurs only within clusters. This
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case is for example investigated by Dargatz, Georgescu, and Held (2006). A disadvantage
of that approach, however, is that population sizes of the distinct clusters do not remain
constant, and the model is not immediately applicable to, for example, the case where
clusters represent age groups.

In Chapter 8, the multitype SIR model is applied for modelling the spatial spread of
influenza in Germany. Other models involving local and global infection dynamics are
developed in Hufnagel et al. (2004), Germann et al. (2006), Débarre, Bonhoeffer, and Regoes
(2007), Dybiec et al. (2009) and Ball et al. (2010). Watts et al. (2005) consider mixing on
even more than two scales.

5.3 Existence and Uniqueness of Solutions

When considering an SDE as a model for some natural phenomenon, one implicitly assumes
the existence of a solution of this SDE. Section 3.2.3 specified the Lipschitz condition (3.10)
under which a strong solution of an SDE exists pathwise uniquely. This solution is non-
explosive when it satisfies the growth condition (3.11).

For the standard and the multitype SIR models, the Lipschitz condition is actually not
fulfilled as demonstrated in Section B.2 in the appendix. Importantly, conditions (3.10)
and (3.11) are sufficient but not necessary for the unique existence and non-explosiveness.
Some authors describe weaker conditions, see e. g. Kloeden & Platen (1999, pages 134–135).
Further references include Kushner (1972), who studies the existence of a solution of an
SDE when the drift function is not Lipschitz continuous, Abundo (1991), who considers the
existence of solutions for a predator-prey model, and Kusuoka (2010), who investigates the
existence of densities of solutions in case the Lipschitz condition is not fulfilled. Related to
this general problem, Kaneko and Nakao (1988), Marion, Mao, and Renshaw (2002) and
Berkaoui, Bossy, and Diop (2005) deal with conditions under which numerical schemes
converge to the true but unknown solution in case the Lipschitz condition is violated.
Alternatively, one could settle for weak instead of strong solutions as distinguished in
Section 3.2.3; this requires weaker assumptions.

In this thesis, the question of the existence of a strong solution for the considered SIR
models on the entire state space is not completely answered as it is not the focus of this
work. For our purposes, it suffices to consider the standard and multitype SIR models on a
slightly restricted state space such that all fractions of susceptible and infectious individuals
are bounded from below by an arbitrarily small but fixed positive constant ε. This does
not limit the practical applicability of the diffusion models. The original state spaces C
and C(n) from Equations (5.20) and (5.33) on pages 95 and 107 then become

Cε =
{

(s, i)′ ∈ [ε, 1]2 ∩R2
0 | s+ i ≤ 1

}
and

C(n)
ε =

{
(s1, . . . , sn, i1, . . . , in)′ ∈ [ε, 1]2n ∩R2n

0

∣∣∣ sj + ij ≤ 1 for all j = 1, . . . , n
}
,
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respectively. This modification has the effect that the drift vectors and diffusion coefficients
fulfil the Lipschitz and growth bound conditions as shown in Section B.2, i. e. there uniquely
exist non-explosive strong solutions of the SDEs on the modified state spaces.

Independently of the investigation of the existence of a solution, diffusion approximations
for the SIR model are considered problematic anyway when there are only few infectious
individuals (e. g. Andersson & Britton, 2000). The above proposed restriction of the state
spaces of the diffusion approximations does hence not impose a serious constraint. An
alternative approximation of the general stochastic epidemic during the initial and final
phase of an epidemic is for example provided by Barbour (1976) and Andersson & Britton
(2000, Chapter 3.3).

5.4 Conclusion

The description of the spread of infectious diseases in terms of diffusion processes enables
convenient simulation of the random course of an epidemic even for large populations. In
this chapter, diffusion approximations for the standard SIR model and a multitype extension
were derived. On the one hand, these served as illustrations for the theoretical investigations
in Chapter 4. On the other hand, the present chapter provides the basis for Chapter 8,
where an influenza outbreak in a boarding school and the geographical spread of influenza
in Germany are statistically analysed. Another application of diffusion approximations in
life sciences is presented in Chapter 9. There, the in vivo binding behaviour of proteins is
investigated as an example from molecular biology.

When applying the multitype SIR model in practice, several difficulties arise: First of
all, one will typically want to prespecify the network matrices γN , γS and γI , or at least
supply some information on their structure. That requires knowledge about, for example,
transportation or social networks, depending on the definition of the clusters. In Chapter 8,
commuter data from Germany is taken in order to estimate the geographical dispersal of the
population. References for further examples for the utilisation of transportation networks
are given in that chapter. Social contact networks may, for example, be approximated by
the evaluation of contact diaries of similar surveys (Edmunds et al., 1997, 2006, Beutels et
al., 2006, Wallinga et al., 2006, Mossong et al., 2008).

Another issue concerns the data about disease counts which is most often incomplete as many
cases are not reported. In general, one also does not know the exact times at which infections
occurred, and data is aggregated over periods of time. This is, of course, also problematic
in case of one homogeneous population, but worsens in case of multiple communities. For
example, Uphoff et al. (2004) summarise several difficulties arising from data aggregation
over large geographical areas, ranging from dissimilar consultation behaviour to differences
in physicians’ opening hours, which limit the comparability of disease counts in distinct
regions. These examples represent only some out of many challenges which epidemiologists
are facing. Dealing with them is the subject of active research.



Chapter 6

Parametric Inference for
Discretely-observed Diffusions

As we have seen in Chapter 3, diffusion processes provide a widely-used and powerful
modelling tool, and their mathematics is well understood. Chapter 4 described how to
construct a diffusion approximation to a given stochastic phenomenon. This diffusion
model is then known in parametric form. In practice, one usually wishes to furthermore
estimate the parameters of this model. Statistical inference for diffusion processes, however,
is a challenging problem. Difficulties arise from the fact that observations are typically
discrete while the underlying diffusion model is continuous in time. In case of time-discrete
observations, the likelihood function for the model parameters is generally unknown, and
hence maximum likelihood estimation is not immediately possible.

This chapter provides a review on more sophisticated approaches to parametric inference for
discretely-observed diffusion processes. The literature already provides a variety of different
estimation techniques, but this subject is also still a highly developing research area. The
present chapter concentrates on frequentist methodology and serves as an overview and
introduction to statistical inference for diffusions. The emphasis of this thesis, however,
lies on Bayesian techniques, which show even more attractive characteristics. These are
presented and further developed in Chapter 7.

Throughout this chapter, we consider the time-homogeneous Itô diffusion X = (X t)t≥0 sat-
isfying the stochastic differential equation

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt , X t0 = x0, (6.1)

with state space X ⊆ Rd, starting value x0 ∈ X at time t0 = 0 and m-dimensional
standard Brownian motion B = (Bt)t≥0. The drift function µ : X ×Θ→ Rd and diffusion
coefficient σ : X × Θ → Rd×m are assumed to be known in a parametric form. The
statistical estimation of the possibly vector-valued parameter θ from an open set Θ ⊆ Rp is
the objective of the methods introduced in this chapter.
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We assume that µ, σ and the diffusion matrix Σ = σσ′ fulfil the regularity conditions
stated in Section 3.4 for all θ ∈ Θ; in particular, it is provided that an almost surely
pathwise unique solution of the differential equation (6.1) exists for all parameters on a
respective filtered probability space (Ω,F∗,F ,Pθ), cf. Section 3.2.3. The state space X
is the same for all values of θ. The true parameter value is denoted by θ0 ∈ Θ, and Eθ
and Varθ stand for the expectation and variance with respect to Pθ, respectively. For some
estimation approaches it is furthermore required that the diffusion process is ergodic. Such
assumptions are indicated in the respective sections. Observations of the diffusion path are
always considered to be measured without error.

This chapter is organised as follows: In order to provide the theoretical background,
Section 6.1 starts with the formulation of the estimation problem for continuous-time
observations and then goes over to discrete time under the assumption that the likelihood
function of the parameter is known. Both scenarios are not directly applicable in practice.
Section 6.2 hence presents a first attempt to obtain a feasible approximate maximum
likelihood estimator. This approach, however, leads to asymptotically biased estimators.
The remaining techniques covered in this chapter are more elaborate. They are grouped into
three categories, in particular into approximations of the likelihood function in Section 6.3,
alternatives to maximum likelihood estimation in Section 6.4 and a recent approach called
the Exact Algorithm in Section 6.5. A comparison of the presented estimation techniques
by means of a simulation study is beyond the scope of this thesis. However, a discussion
follows in Section 6.6 including a summary and references to evaluation studies from the
literature.

Other surveys on inference for discretely-observed diffusion processes are given by Prakasa
Rao (1999), Nielsen, Madsen, and Young (2000), H. Sørensen (2004), Jimenez, Biscay, and
Ozaki (2006), Hurn, Jeisman, and Lindsay (2007) and Iacus (2008). None of these, however,
covers all approaches described in this chapter. Furthermore, whenever an estimation
technique is formulated for multi-dimensional diffusion processes in the original work, or the
extension to multi-dimensional diffusions is obvious, this chapter presents the more general
multi-dimensional case. Observation times are assumed non-equidistant even though the
simpler equidistant setting is common in the original literature. The present review is thus
more general with respect to these two points than the above mentioned surveys (apart
from Prakasa Rao, 1999, Nielsen et al., 2000, and Jimenez et al., 2006, who consider multi-
dimensional processes as well). Overall, the emphasis of this chapter is on the presentation
of ideas and not on technical detail. For the latter, the reader is referred to the references
given along the way.

The present review omits nonparametric inference. References for this topic include
Florens-Zmirou (1993), Aït-Sahalia (1996), Jiang and Knight (1997), Soulier (1998), Jacod
(2000), Hurn, Lindsay, and Martin (2003), Nicolau (2003) and Comte, Genon-Catalot, and
Rozenholc (2007). An introduction to the subject is given in Iacus (2008, Chapter 4.2), a
detailed overview by Prakasa Rao (1999).
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6.1 Preliminaries

Crucially different situations occur depending on whether a diffusion process is observed
continuously or discretely in time. Time-continuous observation is obviously impossible
in practical applications. Still, the corresponding well-established theory is discussed
in Section 6.1.1 for the sake of completeness and further understanding of subsequent
asymptotic considerations. It forms the basis for the investigations in Section 7.3 in the next
chapter, for example. In real data situations, one naturally has to deal with time-discrete
observations. Section 6.1.2 briefly presents the challenges of parameter estimation for this
setting. This is the starting point for the remainder of this chapter. Finally, Section 6.1.3
specifies the data situation which is considered in subsequent sections.

6.1.1 Continuous Observation

Facing the hypothetical situation of continuous observation of a trajectory of X on a finite
time interval [s, t], parameter estimation can be carried out in two steps. This procedure
has been described by Le Breton (1974) for linear SDEs and is explained for general SDEs
in what follows: Split θ into one part θ1 already uniquely determined by the value of Σ(·,θ)
and the remaining part θ2. That means, if Σ(X t,θ) = S for some matrix S, then there
exists a unique deterministic function g such that θ1 = g(S,X t). This does not necessarily
imply that θ1 enters only the diffusion matrix and θ2 enters only the drift function.

Without loss of generality, let θ = (θ′1,θ′2)′. Since X has been observed continuously, it is
straightforward to calculate its quadratic variation

〈X,X〉[s,t] = lim
n→∞

2n∑
k=1

(
X

t
(n)
k

−X
t
(n)
k−1

)(
X

t
(n)
k

−X
t
(n)
k−1

)′
=

t∫
s

Σ(Xτ ,θ)dτ,

where t(n)
k = s+ k 2−n(t− s) for k = 0, . . . , 2n, and the second equality holds in probability

and almost surely (see Section 3.2.6). As a first step of the estimation procedure, the
parameter θ1 can then be determined through the limits in probability

Σ(X t,θ) = d〈X,X〉[s,t]
dt

= lim
n→∞

〈X,X〉[s,t] − 〈X,X〉[s,t−2−n]

2−n
= lim

n→∞
2n
(
X t−X t−2−n

)(
X t−X t−2−n

)′
by definition of θ1 (see also Polson & Roberts, 1994). Figure 7.25 on page 204 in the
next chapter illustrates how the diffusion coefficient of an Ornstein-Uhlenbeck process can
precisely be determined from a sample path with small inter-observation time intervals.

In a second step, the remaining parameter θ2 is now usually estimated using likelihood
inference. In Section 3.2.4, the likelihood function with respect to Lebesgue measure
was already considered for discrete observations. This function is generally unknown. If,
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however, the parameter θ1 has already been determined as described above, and hence the
diffusion coefficient is known as a function of X t, one can change the dominating measure
such that the likelihood becomes available. In that case, the log-likelihood function of θ2
reads

`cont(θ2) =
t∫
s

µ′(Xτ ,θ)Σ−1(Xτ ,θ)dXτ −
1
2

t∫
s

µ′(Xτ ,θ)Σ−1(Xτ ,θ)µ(Xτ ,θ)dτ, (6.2)

where θ = (θ′1,θ′2)′ is composed of the fixed θ1 and the argument θ2 of the log-likelihood
function. Equation (6.2) is the Radon-Nikodym derivative dPσ/dWσ from Girsanov’s
formula in Section 3.2.12, where Pσ is the law of X defined by (6.1), and Wσ is the
law of the respective driftless process. The crucial point why it is possible to employ
expression (6.2) as the log-likelihood is that the dominating measure Wσ does not depend
on θ2 by definition of θ2. Then maximisation of either dPσ/dWσ or dPσ/dL, where L
denotes Lebesgue measure, yields the same estimate for θ2 irrespectively of the dominating
measure. See also Kutoyants (2004, Chapter 1.1) or Liptser and Shiryayev (1977, Chapter 7,
and 1978, Chapter 17) on this topic.

In practice, Equation (6.2) would be replaced by its discretisation

n−1∑
k=0
µ′(X tk ,θ)Σ−1(X tk ,θ)

(
X tk+1 −X tk

)

−1
2

n−1∑
k=0
µ′(X tk ,θ)Σ−1(X tk ,θ)µ(X tk ,θ)

(
tk+1 − tk

) (6.3)

according to the Itô interpretation of stochastic integrals, where s = t0 < t1 < . . . < tn = t
are observation times.

6.1.2 Discrete Observation

In practice, however, the paths of a diffusion process cannot be observed continuously in
time; due to the extremely wiggly trajectories (cf. Section 3.2.5), observations can never be
complete but always have a smoothing character. Estimation of θ will hence be based on
observed states x1, . . . ,xn of X at discrete times t1 < . . . < tn as well as on the starting
value x0 at time t0 = 0. The Kullback-Leibler distance between the continuous-time and
the discrete-time model has been investigated by Dacunha-Castelle and Florens-Zmirou
(1986) as a function of the time step between observations.

The focus of interest for discrete-time observations now lies on the transition densi-
ty pθ(s,x, t,y) with respect to Lebesgue measure, introduced in Section 3.2.4, which
is defined by

Pθ(X t ∈ A|Xs = x) =
∫
A

pθ(s,x, t,y)dy
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for all measurable sets A, t > s ≥ 0 and x,y ∈ X . As diffusion processes are Markovian,
the log-likelihood function of θ with respect to Lebesgue measure is

`n(θ) =
n−1∑
k=0

log pθ
(
∆tk;xk,xk+1

)
(6.4)

with ∆tk = tk+1−tk for k = 0, . . . , n−1. Under regularity conditions, Dacunha-Castelle and
Florens-Zmirou (1986) prove consistency, asymptotic normality and asymptotic efficiency of
the corresponding maximum likelihood estimator as n tends to infinity for one-dimensional
ergodic diffusion processes and arbitrary equidistant time step.

However, the transition probability and hence the log-likelihood function are intractable
unless the diffusion process is analytically explicitly solvable, which is rarely the case. Hence,
in most situations, alternative methods need to be employed; this chapter gives an overview
of the most established ones.

6.1.3 Time Scheme

In the remainder of this chapter, we assume that the diffusion process under consideration
is observed at non-random discrete instants t1 < . . . < tn yielding a dataset x1, . . . ,xn.
Furthermore, the initial state x0 at time t0 = 0 is required to be known.

Let ∆ := maxk ∆tk be the maximum time step and T = ∑n−1
k=0 ∆tk = tn the time horizon.

Three different experimental designs have been regarded in the literature for increasing
number of observations, i. e. n→∞; the following names are adopted from Iacus (2008):

1. Large-sample scheme: The inter-observation times ∆tk remain fixed and T tends to
infinity.

2. High-frequency scheme: Observations become denser, i. e. ∆ goes to zero, and T re-
mains constant.

3. Rapidly increasing design: The maximum time step ∆ tends to zero while T grows to
infinity at the same time.

From a theoretical point of view, the high-frequency scheme and the rapidly increasing
design appear most convenient because they correspond to continuous observation in the
limit. The setup of consistent estimators for the model parameter is often facilitated in
these situations. For example, in some cases one can abandon regularity assumptions such
as ergodicity of the diffusion process. However, the more complicated large-sample scheme
seems to be most realistic in practice since observations typically arrive at fixed intervals.
Like most authors cited in this review, we will hence base the following sections on that
design. Some considerations of the other two schemes can for example be found in Prakasa
Rao (1999) and Iacus (2008).
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6.2 Naive Maximum Likelihood Approach

As discussed in Section 6.1.2, the exact log-likelihood function (6.4) of the parameter θ
for a discretely-observed diffusion process is usually unknown. Approximate maximum
likelihood estimation would, however, be possible if an appropriate approximation of the
transition density was available. A first attempt to implement this idea is described in the
following.

Section 3.3.2 introduced the Euler scheme

Y k+1 = Y k + µ
(
Y k,θ

)
∆tk + σ

(
Y k,θ

)
N
(
0,∆tkI

)
, (6.5)

where k = 0, . . . , n− 1, for approximately sampling the process (X tk)k∈N0 = (Y k)k∈N0 at
discrete time points t1 < . . . < tn for given parameter θ and initial value X t0 = Y 0 = x0.
This scheme becomes more accurate as the maximum distance between two consecutive
time instants tends to zero. Hence, for small ∆tk, we can assume Y k+1 conditional on Y k to
be approximately normally distributed. The conditional mean and variance can be obtained
from (6.5) as

Eθ
(
Y k+1

∣∣∣Y k = xk
)

= xk + µ
(
xk,θ

)
∆tk (6.6)

and
Varθ

(
Y k+1

∣∣∣Y k = xk
)

= Σ
(
xk,θ

)
∆tk. (6.7)

The probability density pθ(∆tk;xk,xk+1) can thus be approximated by a Gaussian density
with mean and variance according to (6.6) and (6.7). In case Σ does not depend on θ, the
so-resulting log-likelihood function

`Eulern (θ) =
n−1∑
k=0
µ′(xk,θ)Σ−1(xk)(xk+1 − xk)−

1
2

n−1∑
k=0
µ′(xk,θ)Σ−1(xk)µ(xk,θ)∆tk (6.8)

corresponds to the Riemann-Itô approximation (6.3) of the log-likelihood (6.2) based on
continuous observation. As a general convention, additive constants not depending on θ
are suppressed in the log-likelihood function.

Maximisation of the approximated log-likelihood function leads to an approximate or naive
maximum likelihood estimator, sometimes also referred to as quasi maximum likelihood
estimator (e. g. Honoré, 1997). This estimator has good asymptotic properties in case of
decreasing time step, in particular in the rapidly increasing design as defined in Section 6.1.3,
see for example Florens-Zmirou (1989) or Yoshida (1992). The more realistic case, however,
is that the time step is fixed. Lo (1988) provides a simple example where the naive maximum
likelihood estimator is inconsistent for fixed observation intervals. More generally, Florens-
Zmirou (1989) shows for ergodic diffusion processes with constant diffusion coefficient that
the naive maximum likelihood estimator for the drift parameter has an asymptotic bias
of the order of the equidistant fixed time step. This deficiency is not due to the Gaussian
nature of the approximated transition density but because of the generally misspecified
mean and variance of this normal density.
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Unfortunately, in many applications in life sciences the time steps ∆tk are rather large. The
fairly simple maximum likelihood approach considered in this section is hence not expected
to yield satisfactory results in those cases. More advanced estimation procedures are
required in order to address this problem. The following sections present such techniques.

6.3 Approximations of the Likelihood Function

The previous section concluded that in practical applications, where time steps between
observations are large, the transition density of a diffusion process cannot satisfyingly
be approximated by plain application of one of the standard numerical schemes from
Section 3.3.2. This section hence introduces several more advanced approaches to ap-
proximate the transition density. These can be utilised to derive approximations of the
log-likelihood (6.4). Maximisation of the so-obtained approximate log-likelihood then leads
to an approximate maximum likelihood estimator.

6.3.1 Analytical Approximation of the Likelihood Function

The first more advanced approach considered in this review was originated by Aït-Sahalia
(2002) and involves the expansion of the transition density in a Gram-Charlier series, which
will be specified below. The result is a closed-form expression which is shown to converge
to the true likelihood as more and more correction terms are included.

The method works for one-dimensional diffusion processes under fairly weak regularity
conditions; see the original paper for details. Suppose the target process X satisfies the
SDE

dXt = µX(Xt,θ)dt+ σX(Xt,θ)dBt , X0 = x0,

for t ≥ 0. In general, the transition density of this process is not suitable for the expansion
that is intended in this section as particularised below. The original process X is hence
transformed to an appropriate process Z. The approximation of the transition density of Z
can then be transferred to the transition density of X. The transformation from X to Z
takes place in two invertible steps as follows.

The first operation transforms the diffusion X to a diffusion Y with unit diffusion coefficient.
This is done with Lamperti’s transformation described in Section 3.2.11. Then Y fulfils the
SDE

dYt =
(
µX(Xt,θ)
σX(Xt,θ) −

1
2
∂σX
∂x

(Xt,θ)
)
dt+ dBt , Y0 = y0, (6.9)

for t ≥ 0, where ∂/∂x denotes differentiation with respect to the state variable. Let pX,θ
and pY,θ denote the transition densities of X and Y , respectively. Aït-Sahalia (2002)
demonstrates that the tails of pY,θ are thin enough for the considered expansion. Overall,
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however, the density pY,θ(∆t; y0, y) is still not suitable as the function is peaked around y = y0
for small ∆t. Hence, one performs a second transformation

Zt = Yt − y0√
t

for all t ≥ 0. Naturally, the initial value of this new process equals z0 = 0. Aït-Sahalia shows
that for fixed ∆t the transition density pZ,θ(∆t; z0, z) of Z fulfils the necessary criteria;
specifically, it can appropriately be expanded in a convergent series around a standard
normal density.

Hence, one writes the function pZ,θ as a Gram-Charlier series (e. g. Kendall, Stuart, & Ord,
1987, Chapter 6), that is

pZ,θ
(
∆t; z0, z

)
= φ(z)

∞∑
j=0

ηj
(
∆t,θ, y0

)
Hj(z). (6.10)

In this expression, φ is the standard normal density, Hj are Hermite polynomials

Hj(z) = exp
(
z2

2

)
∂j

∂zj
exp

(
−z

2

2

)
for j ∈ N0,

and

ηj(∆t,θ, y0) = 1
j!

∞∫
−∞

pZ,θ
(
∆t; z0, z

)
Hj(z)dz = 1

j! Eθ
(
Hj(Z∆t)

∣∣∣Z0 = z0
)
. (6.11)

Kendall et al. actually define the Hj with alternating sign; that, however, does not
change (6.10). The notation here follows Aït-Sahalia (2002).

The expected value in (6.11) can be rewritten via Taylor expansion (e. g. Gard, 1988,
Chapter 7) such that

ηj
(
∆t,θ, y0

)
= 1

j! Eθ

Hj

Y∆t − y0√
∆t

∣∣∣∣∣∣Y0 = y0


= 1

j!

∞∑
k=0

(∆t)k
k!

GkθHj

Y∆t − y0√
∆t


Y∆t=y0

, (6.12)

where Gθ is the infinitesimal generator (cf. Section 3.2.9) of the diffusion process Y with
parameter θ, i. e.

Gθf = µY (·,θ)f ′ + 1
2f
′′

for any sufficiently regular function f . The function µY denotes the drift of Y as apparent
from (6.9).
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Because of η0 ≡ 1 and H0 ≡ 1, the expansion (6.10) has leading term φ(z), i. e. the
transition density of Z is expanded around a standard normal density. The change of
variables theorem yields

pY,θ
(
∆t; y0, y

)
= (∆t)− 1

2pZ,θ
(
∆t; z0, z

)
(6.13)

and
pX,θ

(
∆t;x0, x

)
= (σX(x,θ))−1pY,θ

(
∆t; y0, y

)
. (6.14)

Findings for pZ,θ can thus be transferred to pX,θ.

Equation (6.10) provides an explicit closed-form expression for the transition density pZ,θ.
The infinite sums in (6.10) and (6.12), however, can certainly not be computed in practice.
Thus truncate these sums to obtain

p
(J,K)
Z,θ

(
∆t; z0, z

)
= φ(z)

J∑
j=0

η
(K)
j

(
∆t,θ, y0

)
Hj(z) (6.15)

with

η
(K)
j

(
∆t,θ, y0

)
= 1
j!

K∑
k=0

(∆t)k
k!

GkθHj

Y∆t − y0√
∆t


Y∆t=y0

as approximations to the true density pZ,θ(∆; z0, z). Define p(J,K)
Y,θ and p(J,K)

X,θ as transforma-
tions of p(J,K)

Z,θ analogously to (6.13) and (6.14). Aït-Sahalia proves that there exists ∆̃ > 0
such that for all ∆t ∈ (0, ∆̃), θ ∈ Θ and x0, x ∈ X one has

p
(J,∞)
X,θ

(
∆t;x0, x

)
−→ pX,θ

(
∆t;x0, x

)
as J →∞.

Equation (6.15) provides a closed-form approximation to the transition density of Z but
involves the fairly complex coefficients η(K)

j . For example, one has

η
(3)
1

(
∆t,θ, y0

)
= − (∆t) 1

2µY −
1
2(∆t) 3

2
(
µY µ

′
Y + 1

2µ
′′
Y

)
− 1

6(∆t) 5
2
(
µY (µ′Y )2 + µ2

Y µ
′′
Y + µY µ

′′′
Y + 3

2 µ
′
Y µ
′′
Y + 1

4 µ
′′′′
Y

)
,

where the µY are all evaluated at (y0,θ). Aït-Sahalia however demonstrates that the
approximation is sufficiently accurate already for a small number of terms.

An extension of the above approximation procedure for multi-dimensional diffusion processes
is described by Aït-Sahalia (2008). It is applicable whenever the process can be transformed
to one with unit diffusion; cf. the remarks at the end of Section 3.2.11. Singer (2004)
chooses an approach for one-dimensional processes which is related to the one described
here but expresses the coefficients of the expansion in terms of conditional moments of the
diffusion process.
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6.3.2 Numerical Solutions of the Kolmogorov Forward Equation

Section 3.2.8 introduced the Kolmogorov forward equation which uniquely determines the
transition density of a diffusion process with respect to a given initial condition. Poulsen
(1999) makes use of this description and approximates the transition density by numerically
solving this deterministic partial differential equation. This approach has already been
pursued by Lo (1988) who applies this idea to particular (jump-)diffusion processes but
does not develop a general procedure.

The following considerations assume a one-dimensional diffusion process whose transition
density fulfils the Kolmogorov forward equation

∂pθ(t;x0, x)
∂t

= −
∂
[
µ(x,θ)pθ(t;x0, x)

]
∂x

+ 1
2
∂2
[
σ2(x,θ)pθ(t;x0, x)

]
∂x2 (6.16)

for t ≥ 0 and x0, x ∈ X . The diffusion is assumed stationary and ergodic (cf. Section 3.2.7).
Indications for handling multi-dimensional diffusion processes are given in the paper by
Poulsen (1999).

By the product rule, Equation (6.16) is identical with

∂pθ(t;x0, x)
∂t

= a(x,θ)pθ(t;x0, x) + b(x,θ) ∂pθ(t;x0, x)
∂x

+ c(x,θ) ∂
2pθ(t;x0, x)

∂x2 , (6.17)

where

a(x,θ) = −∂µ(x,θ)
∂x

+ 1
2
∂2σ2(x,θ)

∂x2 ,

b(x,θ) = −µ(x,θ) + 2σ(x,θ) ∂σ(x,θ)
∂x

,

c(x,θ) = 1
2 σ

2(x,θ).

These coefficients are known as functions of x and θ since µ and σ are known in parametric
form. Poulsen (1999) approximates Equation (6.17) by application of the Crank-Nicolson
method (Crank & Nicolson, 1947). In the following, some more detail on this is given
than in Poulsen (1999). The reader who is rather interested in the conceptual idea of the
estimation procedure, however, may directly proceed to the last paragraph of this section.

In the Crank-Nicolson technique, Equation (6.17) is approximated by

pxt+∆t − pxt
∆t = 1

2

(
apxt + b

px+∆x
t − px−∆x

t

2∆x + c
px+∆x
t − 2pxt + px−∆x

t

(∆x)2

)
(6.18)

+ 1
2

(
apxt+∆t + b

px+∆x
t+∆t − px−∆x

t+∆t
2∆x + c

px+∆x
t+∆t − 2pxt+∆t + px−∆x

t+∆t
(∆x)2

)
. (6.19)

In this equation, pxt = pθ(t;x0, x) for all t ≥ 0 and x ∈ X , i. e. the lower index of pxt
denotes the time variable, the upper index denotes the state at this time, and θ and x0 are
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kept fixed. Furthermore, a = a(x,θ), b = b(x,θ) and c = c(x,θ). The bracketed term in
line (6.18) corresponds to an Euler forward approximation of the right hand side of (6.17),
and line (6.19) stems from an Euler backward approximation. The Crank-Nicolson method
is hence the average of these two schemes. With the notation from Definition B.1 on
page 343 in the appendix, as a side note, the last equation reads

D1
(1,0)′,(∆t,·)′p

x
t

∆t = 1
2

apxt + b
D1

(0,1)′,(·,2∆x)′p
x−∆x
t

2∆x + c
D2

(0,2)′,(·,∆x)′p
x−∆x
t

(∆x)2


+ 1

2

apxt+∆t + b
D1

(0,1)′,(·,2∆x)′p
x−∆x
t+∆t

2∆x + c
D2

(0,2)′,(·,∆x)′p
x−∆x
t+∆t

(∆x)2

 ,
where t is considered the first and x the second argument of pxt . Now assume that
states x0, x1, . . . , xn of the diffusion process have been observed at times t0, t1, . . . , tn.
Adapted to this setting, the expressions (6.18)–(6.19) read

pxitj − p
xi
tj−1

tj − tj−1
= 1

2

(
a(xi,θ)pxitj−1

+ b(xi,θ)
p
xi+1
tj−1 − p

xi−1
tj−1

xi+1 − xi−1
+ c(xi,θ)

p
xi+1
tj−1 − 2pxitj−1 + p

xi−1
tj−1

(xi+1 − xi)(xi − xi−1)

)

+ 1
2

(
a(xi,θ)pxitj + b(xi,θ)

p
xi+1
tj − pxi−1

tj

xi+1 − xi−1
+ c(xi,θ)

p
xi+1
tj − 2pxitj + p

xi−1
tj

(xi+1 − xi)(xi − xi−1)

)

for i = 1, . . . , n− 1 and j = 1, . . . , n. Rearrangement yields

Aijp
xi−1
tj +Bijp

xi
tj

+ Cijp
xi+1
tj = qi,j−1, (6.20)

where

Aij = b(xi,θ)
2(xi+1 − xi−1) −

c(xi,θ)
2(xi+1 − xi)(xi − xi−1) ,

Bij = 1
tj − tj−1

− a(xi,θ)
2 + c(xi,θ)

(xi+1 − xi)(xi − xi−1) ,

Cij = − b(xi,θ)
2(xi+1 − xi−1) −

c(xi,θ)
2(xi+1 − xi)(xi − xi−1) ,

qi,j−1 =
(
− b(xi,θ)

2(xi+1 − xi−1) + c(xi,θ)
2(xi+1 − xi)(xi − xi−1)

)
p
xi−1
tj−1

+
(

1
tj − tj−1

+ a(xi,θ)
2 − c(xi,θ)

(xi+1 − xi)(xi − xi−1)

)
pxitj−1

+
(

b(xi,θ)
2(xi+1 − xi−1) + c(xi,θ)

2(xi+1 − xi)(xi − xi−1)

)
p
xi+1
tj−1 .

In order to approximate the log-likelihood function `n(θ) as shown in (6.4) for given θ,
one has to approximately determine all elements of {pθ(∆tk;xk, xk+1) | k = 0, . . . , n− 1}.
For k = 0, this can be done as follows: Summarise Equation (6.20) as the tridiagonal
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system



D
(1)
j D

(2)
j 0 0 · · · 0 0 0

A1j B1j C1j 0 · · · 0 0 0
0 A2j B2j C2j · · · 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 · · · An−1,j Bn−1,j Cn−1,j

0 0 0 0 · · · 0 D
(3)
j D

(4)
j





px0
tj

px1
tj

px2
tj

px3
tj...

p
xn−1
tj

pxntj


=



q0,j−1
q1,j−1
q2,j−1
q3,j−1

...
qn−1,j−1
qn,j−1


, (6.21)

where D(1)
j , D(2)

j , D(3)
j , D(4)

j , q0,j−1 and qn,j−1 have to be determined separately from the
boundary conditions. Derive pxit0 and qi0 for all i according to the initial conditions. Finally,
solve (6.21) for j = 1. For different values of k, i. e. different initial states and times,
adapt (6.21) accordingly and successively solve the resulting system for j = 1, . . . , k + 1.
See Poulsen (1999) for technical details considering the initial and boundary conditions.
Note that this numerical procedure determines several more values of the transition density
than actually needed for the approximation of `n(θ).

Poulsen (1999) shows that the so-obtained approximation ˆ̀
n(θ) of the log-likelihood

function `n(θ) satisfies

ˆ̀
n(θ) = `n(θ) + h2g(1)

n (θ, x0, . . . , xn) + o(h2)g(2)
n (θ, x0, . . . , xn),

where g(1)
n and g(2)

n are appropriate functions and h > 0 is chosen such that the computing
time for the approximated log-likelihood is at most of order n/h2.

6.3.3 Simulated Maximum Likelihood Estimation

This section describes an approach by Pedersen (1995a) and Santa-Clara (1995) which is
known as simulated maximum likelihood estimation (SMLE). It is based on the observation
that by the Chapman-Kolmogorov equation the transition density can be expressed as

pθ(s,x, t,y) =
∫
X

pθ(s,x, t− δ, z)pθ(t− δ, z, t,y)dz = Eθ
(
pθ(t− δ,X t−δ, t,y)

∣∣∣Xs = x
)

for all x,y ∈ X , t > s ≥ 0 and 0 < δ < t − s. For small δ, usually δ � t − s, the
function pθ(t− δ, ·, t, ·) can be replaced by a Gaussian density, and hence an approximation
of the above expectation can be obtained by Monte Carlo integration through repeated
(approximate) simulation of X t−δ|{Xs = x}.

In the following, we concentrate on the work by Pedersen (1995a) who defines the first-order
approximation

p
(1)
θ (s,x, t,y) = φ

(
y
∣∣∣x+ (t− s)µ(x,θ), (t− s)Σ(x,θ)

)
(6.22)
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of pθ like in the naive maximum likelihood approach in Section 6.2. Once again, the
notation φ(z|ν,Λ) refers to a multivariate Gaussian density with mean ν and variance Λ
evaluated at z. As further refinements of p(1)

θ , Pedersen introduces for numbers N ≥ 2

p
(N)
θ (s,x, t,y) =

∫
X

· · ·
∫
X

N−1∏
k=0

p
(1)
θ (τk, ξk, τk+1, ξk+1) dξ1 . . . dξN−1, (6.23)

where τk = s + k(t − s)/N for k = 0, . . . , N , ξ0 = x and ξN = y. Pedersen proves that,
under weak regularity conditions,

lim
N→∞

p
(N)
θ (s,x, t,y) = pθ(s,x, t,y) in L1.

Then, for observed states x1, . . . ,xn at times t1 < . . . < tn, the so-approximated log-
likelihood function converges in probability to the true log-likelihood function (6.4):

lim
N→∞

`(N)
n (θ) := lim

N→∞

n−1∑
k=0

log p(N)
θ

(
tk,xk, tk+1,xk+1

)
= `n(θ) in probability under Pθ0 .

Pedersen (1995b) proves consistency and asymptotic normality of the estimator θ̂(N)
n which

is obtained through maximisation of `(N)
n . Note that N → ∞ refers to decreasing time

steps due to imputed intermediate states ξ1, . . . , ξN−1, i. e. it does not correspond to the
high-frequency time scheme defined in Section 6.1.3.

It would be computationally too costly to integrate out all unobserved variables ξ1, . . . , ξN−1
in (6.23), but, as indicated before, we can alternatively write the integral as

p
(N)
θ (s,x, t,y) = Eθ

(
p

(1)
θ (τN−1,XτN−1 , t,y)

∣∣∣Xs = x
)

=
∫
X

p
(1)
θ (τN−1, zN−1, t,y)dP(N)

N−1(zN−1), (6.24)

where P(N)
N−1 is the law of a random variable that is generated by N − 1 Euler steps with

equidistant time step (t− s)/N and starting point x at time s. Pedersen (1995a) hence
proposes to draw M independent random variables zmN−1, m = 1, . . . ,M , from P

(N)
N−1 and

to estimate p(N)
θ (s,x, t,y) by

p̂
(N,M)
θ = 1

M

M∑
m=1

p
(1)
θ (τN−1, z

m
N−1, t,y). (6.25)

Since each of theM realisations zmN−1 requires N−1 Euler steps, the computational demand
of this estimation is of order O(MN). It is hence desirable that (6.25) converges quickly.
Unfortunately, this is not the case for the just proposed sampling scheme.

The reason for the poor convergence has been pointed out by Durham and Gallant (2002)
as follows: Expression (6.24) can be rewritten as

p
(N)
θ (s,x, t,y) =

∫
X

p
(1)
θ (τN−1, zN−1, t,y)ρ(zN−1) dQ(N)(zN−1), (6.26)



124 6. Parametric Inference for Discretely-observed Diffusions

where ρ = dP
(N)
N−1/dQ

(N) is the Radon-Nikodym derivative of P(N)
N−1 with respect to a

probability measure Q(N), where P(N)
N−1 is absolutely continuous with respect to Q(N).

(6.26) can then be estimated by importance sampling as

1
M

M∑
m=1

p
(1)
θ (τN−1, z̃

m
N−1, t,y)ρ(z̃mN−1),

where z̃1
N−1, . . . , z̃

M
N−1 are independent draws from Q(N). Good results are obtained in finite

time if Q(N) has large probability mass where the integrand is large. Figure 6.1 displays
the results of a small simulation study which indicate that this property is not met by
Pedersen’s choice Q(N) = P

(N)
N−1: Since P

(N)
N−1 is not conditioned on the end point X t = y, it

produces trajectories which are usually quite unlikely due to relatively large jumps between
the states at times τN−1 and t. This becomes apparent in Figures 6.1(a) and 6.1(c).

One proposal for Q(N) by Durham and Gallant (2002) is to replace the normal densities

π(zk+1|zk) = φ
(
zk+1

∣∣∣zk + µ(zk,θ)δ,Σ(zk,θ)δ
)

in the Euler scheme by densities which are further conditioned on the end point, i. e. by

π(zk+1| zk, zN) ∝ π (zk+1| zk) π (zN |zk+1)
= φ

(
zk+1| zk + µ(zk,θ)δ,Σ(zk,θ)δ

)
· φ
(
zN | zk+1 + (N−k−1)µ(zk+1,θ)δ, (N−k−1)Σ(zk+1,θ)δ

)
≈ φ

(
zk+1| zk + µ(zk,θ)δ,Σ(zk,θ)δ

)
· φ
(
zN | zk+1 + (N−k−1)µ(zk,θ)δ, (N−k−1)Σ(zk,θ)δ

)
∝ φ

(
zk+1

∣∣∣ zk + zN − zk
τN − τk

δ,
τN − τk+1

τN − τk
Σ(zk,θ)δ

)
,

where δ = (t− s)/N . Then, if trajectories are sampled by setting z0 = x and successively
drawing

zk+1 ∼ N
(
zk + y − zk

N − k
,
N−k−1
N−k

Σ(zk,θ) δ
)

(6.27)

for k = 0, . . . , N − 2, the resulting zN−1 is a realisation from Q(N). Durham & Gallant call
this sampling pattern the modified bridge. The modified bridge will also play a central role
in the Bayesian estimation approaches in Chapter 7.

Figure 6.1(b) displays trajectories from this improved scheme. They seem more likely than
the sample paths in Figure 6.1(a) which are simulated as proposed by Pedersen (1995a).
Figures 6.1(c)–(d) confirm this impression: These show the empirical sampling densities
corresponding to Figures (a) and (b), respectively. Whereas the empirical sampling density
in (c) clearly differs from the integrand p(1)

θ , the sampling density in (d) obviously draws
from regions where the integrand p(1)

θ ρ is large.
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Figure 6.1: Illustration of importance sampling for intermediate states of Cox-Ingersoll-Ross
(CIR) process dXt = 0.06(0.5 − Xt)dt + 0.15

√
XtdBt starting in x = 0.08 at time s = 0 and

ending in y = 0.11 at time t = 1/12 = 0.08. The time interval [s, t] is further divided into N = 10
equidistant subintervals. This setting corresponds to the example in Section 5 of Durham and
Gallant (2002). The CIR process is introduced in Section A.3 in the appendix of this thesis.
(a) Simulation of M = 30 independent discretised sample paths {zm1 , . . . , zmN−1}, m = 1, . . . ,M ,
by application of the Euler scheme, i. e. as in Pedersen (1995a). Apparently, there occur relatively
large jumps between the states zmN−1 and y. (b) Simulation of M = 30 independent discretised
sample paths as in (6.27), i. e. following Durham and Gallant (2002). These appear more
likely. (c) Comparison of the integrand p(1)

θ (9/120, zN−1, 1/12, y) in (6.24) (solid line) and the
empirical sampling density corresponding to the M realisations zmN−1 in Figure (a) (dashed line).
(d) Comparison of the integrand p

(1)
θ (9/120, zN−1, 1/12, y)ρ(zN−1) in (6.26) and the empirical

sampling density corresponding to the M realisations zmN−1 in Figure (b). The density ρ has been
obtained by Monte Carlo estimation with sample sizes 105. This graphic shows the logarithms of
the densities.
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There is a number of suggestions how to further improve the SMLE approach. One idea is to
change the first-order approximation (6.22) in order to reduce the estimation bias without
having to increase the number of subintervals N . Elerian (1998), for example, replaces the
Euler scheme by the Milstein scheme as introduced in Section 3.3.2. Durham and Gallant
(2002) consider the application of a higher order Itô-Taylor expansion as in Kessler (1997)
and the local linearisation method described in Section 6.3.4 below. They furthermore
suggest various variance-reduction techniques like the use of antithetic variates. The latter
is also applied by Brandt and Santa-Clara (2001). Stramer and Yan (2007) investigate the
trade-off between increasing the number of auxiliary time points and increasing the number
of simulated diffusion paths.

6.3.4 Local Linearisation

The idea of the local linearisation method (Shoji & Ozaki, 1998a) is to approximate
the considered diffusion process by a linear one. Like all linear diffusions, the resulting
approximation is explicitly solvable (e. g. Kloeden & Platen, 1999, Chapter 4.2), i. e. its
transition density is available and can serve as an approximation to the true transition
density of the original process. The local linearisation constitutes an improvement of
the Euler scheme: While the Euler approximation sets the drift and diffusion coefficient
piecewise constant, the local linearisation method considers them piecewise linear.

For one-dimensional diffusions, the local linearisation is performed as follows (Shoji, 1998,
Shoji & Ozaki, 1998a): Assume that the process X of interest fulfils the SDE

dXt = µ(Xt,θ) + σ(θ)dBt, X0 = x0. (6.28)

In case the diffusion coefficient σ depends on the state variable, the process can be converted
to this form using Lamperti’s transform from Section 3.2.11. The local linearisation method
usually allows the drift to also depend on time; the focus of this chapter, however, is on
time-homogeneous diffusion processes.

For X satisfying the SDE (6.28), Itô’s formula from Section 3.2.10 yields

dµ(Xt,θ) =
(
∂µ

∂x

)
(Xt,θ) dXt + 1

2

(
∂2µ

∂x2

)
(Xt,θ)σ2(θ) dt,

where ∂/∂x denotes differentiation with respect to the state variable. Assume that ∂µ/∂x
and ∂2µ/∂x2 are constant in Xt for t ∈ [s, s+ ∆s), where s ≥ 0 and ∆s > 0. Then

µ(Xt,θ)− µ(Xs,θ) =
(
∂µ

∂x

)
(Xs,θ) (Xt −Xs) + 1

2

(
∂2µ

∂x2

)
(Xs,θ)σ2(θ) (t− s)

for all t ∈ [s, s+ ∆s). With this, the drift function of X can be written as

µ(Xt,θ) = C(1)
s Xt + C(2)

s t+ C(3)
s
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for appropriate constants C(1)
s , C(2)

s and C(3)
s that depend only on s and Xs. The resulting

SDE
dXt =

(
C(1)
s Xt + C(2)

s t+ C(3)
s

)
dt+ σ(θ)dBt (6.29)

for t ∈ [s, s + ∆s) has a linear drift function and a constant diffusion coefficient. As
indicated above, an explicit solution to such an SDE is generally available. See Shoji (1998),
Shoji and Ozaki (1998a) or Kloeden & Platen (1999, Chapter 4.2) for the specific solution
of (6.29).

Shoji and Ozaki (1998b) describe this linearisation procedure also for multi-dimensional
processes. The method is, however, only applicable where a transformation to constant
diffusion coefficient is possible; cf. the remarks in Section 3.2.11.

6.4 Alternatives to Maximum Likelihood Estimation

Unlike all estimating techniques investigated so far in this chapter, the approaches in this
section do not try to set up or approximate the likelihood function of the parameter. Instead,
they match certain statistics of the model with that of the data. These statistics may be
the moments of the process (as in Section 6.4.1) or their sample analogues (Sections 6.4.2
and 6.4.3) or some functions derived from auxiliary models (Sections 6.4.4 and 6.4.5). The
model parameter is then estimated by the candidate which produces the best conformity.

6.4.1 Estimating Functions

This section briefly describes how the general concept of estimating functions (Godambe,
1991, Heyde, 1997) can be applied to diffusion processes. For a detailed review on this topic
see Bibby, Jacobsen, and Sørensen (2009).

Let X be an ergodic diffusion which is the solution of the SDE (6.1), and assume one has
observations x0,x1, . . . ,xn of X at times 0 = t0 < t1 < . . . < tn. An estimating function
for the parameter θ is a function Gn(θ;x0, . . . ,xn) which depends on the parameter and
the data. When dependence on the observations is clear, we simply write Gn(θ). An
estimate θ̂n for θ is obtained as a solution of

Gn(θ) = 0.

Once more, let θ0 denote the true parameter value. One usually requires that the estimating
function is (at least asymptotically) unbiased, that means

Eθ(Gn(θ)) = 0,

and that the parameter is uniquely identifiable, i. e.

Eθ0(Gn(θ)) = 0 ⇔ θ = θ0.
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The most prominent representative for an unbiased estimating function is the score function

sn(θ) = ∂`n(θ)
∂θ

=
n−1∑
k=0

∂

∂θ
log pθ

(
∆tk;xk,xk+1

)
,

where the equation sn(θ) = 0 is solved by the maximum likelihood estimator. However,
as discussed before, the score function is usually not available. In that case, one tries to
imitate it by adapting the general form

Gn(θ;x0, . . . ,xn) =
n−1∑
k=0

g(θ,∆tk,xk,xk+1). (6.30)

In all estimating functions introduced below, the function g, in turn, is of type

g(θ,∆t,x,y) =
J∑
j=1

aj(θ,∆t,x)hj(θ,∆t,x,y) (6.31)

for some J ∈ N, where the aj are called the weights of the functions hj . The most common
estimating functions that appear in the literature can be categorised in the following
non-disjoint classes.

Martingale Estimating Functions

Martingale estimating functions satisfy the martingale property

Eθ
(
Gn(θ;X t0 , . . . ,X tn)

∣∣∣Fn−1
)
= Gn−1(θ;X t0 , . . . ,X tn−1) (6.32)

for all n ∈ N, where Fn is the σ-algebra generated by {X t0 , . . . ,X tn}. If the function g
in (6.30) attains the form (6.31), the condition (6.32) is fulfilled if and only if

Eθ
(
hj(θ,∆t,x,X∆t)

∣∣∣X0 = x
)

= 0 (6.33)

for all j ∈ {1, . . . , J}, θ ∈ Θ, ∆t ∈ R+ and x ∈ X . An obvious choice is

hj
(
θ,∆t,x,y

)
= fj

(
y,θ

)
− Eθ

(
fj(X∆t,θ)

∣∣∣X0 = x
)

(6.34)

for base functions fj which are regular enough such that the expected values exist.
Then (6.33) is trivially fulfilled. Examples for functions of type (6.34) are given in the
polynomial estimating functions below.

Martingale estimating functions appear as a natural choice of an estimating function since
the score function possesses the martingale property as well. Furthermore, the well-known
martingale theory allows for immediate asymptotic results as n → ∞. Unbiasedness is
directly implied by (6.33).

For given hj, j = 1, . . . , J , the weights αj can be chosen in an optimal way such that the
resulting estimator of θ has smallest asymptotic variance within the class of estimating
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functions satisfying (6.31) with the specified hj (e. g. M. Sørensen, 2007, Bibby et al., 2009).
The choice of the hj is, however, more subtle. For asymptotic properties of martingale
estimating functions, and in particular for asymptotic variances, which are typically of
sandwich type and depend on the true parameter, see M. Sørensen (2008) or Bibby et al.
(2009).

Polynomial Estimating Functions

Polynomial estimating functions employ the form (6.34) with fj being a polynomial. They
hence form a subgroup of the above martingale estimating functions. Unlike the true score
function, polynomial estimating functions do not require knowledge of the whole transition
density but only of the first few conditional moments. They are hence more robust to
misspecification. When the conditional moments are analytically not available, they may be
obtained e. g. by Monte Carlo simulation. Kessler and Paredes (2002) describe the impact
of such simulation on the resulting estimator of θ.

A linear estimating function utilises (6.31) with J = 1, h1 as in (6.34) and f1(y,θ) = y,
i. e.

h1
(
θ,∆t,x,y

)
= y − Eθ

(
X∆t

∣∣∣X0 = x
)
.

This estimating function is appropriate when the diffusion coefficient does not depend on θ;
otherwise, a higher order polynomial should be employed. A quadratic estimating function
uses J = 2, h1 as above and f2(y,θ) = h1(θ,∆t,x,y)h′1(θ,∆t,x,y), i. e.

h2
(
θ,∆t,x,y

)
= h1

(
θ,∆t,x,y

)
h′1
(
θ,∆t,x,y

)
− Varθ

(
X∆t

∣∣∣X0 = x
)
.

When the diffusion process is one-dimensional, higher order polynomial estimating functions
usually employ

fj(y,θ) = ykj

for suitable kj ∈ N0. Examples for particular linear and quadratic estimating functions are
given in Examples 6.1 and 6.2 below.

Estimating Functions based on Eigenfunctions

The class of estimating functions based on eigenfunctions has been investigated e. g. by
Kessler and Sørensen (1999). Let Gθ denote the infinitesimal generator, introduced in
Section 3.2.9, of a one-dimensional diffusion process X which solves the SDE (6.1). A twice
differentiable function η(x,θ) is an eigenfunction of Gθ with eigenvalue λ(θ) ∈ R0 if

Gθη(x,θ) = −λ(θ)η(x,θ)

for all x ∈ X . Kessler and Sørensen (1999) show that under mild regularity conditions one
has

Eθ
(
η(X∆t,θ)

∣∣∣X0 = x
)

= exp
(
−λ(θ)∆t

)
η(x,θ).
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Hence, if η1, . . . , ηK are eigenfunctions of Gθ with eigenvalues λ1, . . . , λK , the choice (6.31)
with J = K and

hj(θ,∆t, x, y) = ηj(y,θ)− exp
(
−λj(θ)∆t

)
ηj(x,θ),

i. e. hj being as in (6.34) with
fj(y,θ) = ηj(y,θ),

yields a martingale estimating function. This estimating function is explicit in the sense
that the hj are known in explicit form. Kessler and Sørensen (1999) determine the optimal
weights for this function and prove consistency and asymptotic normality for the resulting
estimators. For eigenfunctions of the generator of a multi-dimensional diffusion process
see Bibby and Sørensen (1995).

Simple Estimating Functions

In the class of simple estimating functions, the function g in (6.30) depends on one state
variable only, in particular

g(θ,∆t,x,y) = g̃(θ,x) or g(θ,∆t,x,y) = ḡ(θ,y)

for some functions g̃ and ḡ. Simple estimating functions have the advantage that they are
often explicitly available. On the other hand, they do not take into account the dependence
structure between successive observations.

For example, let πθ denote the invariant density of the ergodic diffusion process as introduced
in Section 3.2.7. Then (6.30) with

g(θ,∆t,x,y) = ḡ(θ,y) = ∂ log πθ(y)
∂θ

(6.35)

forms a simple estimating function which is based on the assumption that x1, . . . ,xn
are independent and identically distributed draws from πθ (Kessler, 2000). In that case,
Gn would equal the score function of θ. Utilisation of this estimating function is only
reasonable when the process has reached stationarity. Furthermore, it is only applicable for
the estimation of those parameters that enter the invariant measure.

As another example, Kessler (2000) constructs simple estimating functions by application
of the infinitesimal generator Gθ for one-dimensional diffusion processes. In particular, he
sets

g̃(θ, x) = Gθρ(x,θ) = µ(x,θ)∂ρ(x,θ)
∂x

+ 1
2 Σ(x,θ)∂

2ρ(x,θ)
∂x2 (6.36)

for a sufficiently regular function ρ and shows that under certain assumptions the result-
ing estimating function leads to a consistent and asymptotically normal estimator of θ.
Estimating functions with g of type (6.36) are also discussed by H. Sørensen (2001).
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That completes the collection of those classes of estimating functions which are considered
in this section. Combinations are possible, that means different estimating functions can be
used for different parameter components as for example for drift parameters and diffusion
parameters. See Bibby and Sørensen (2001) for several examples.

Jacobsen (2001) investigates the problem of finding optimal or asymptotically optimal
estimating functions in the sense that the resulting parameter estimate has smallest variance
within a certain class of functions.

This section is concluded with the following two examples as an illustration of the just
introduced classes of estimating functions.

Example 6.1. In what follows, a linear martingale estimating function is constructed as
in Bibby and Sørensen (1995): For Σ not depending on θ, the Euler approximation of
the log-likelihood function is shown in (6.8). Derivation of this function with respect to θ
yields the according score function. For n observations x1, . . . ,xn in addition to the initial
value x0, it reads

sEulern (θ) =
n−1∑
k=0

(
∂µ(xk,θ)

∂θ

)′
Σ−1(xk)

(
xk+1 − xk − µ(xk,θ)∆tk

)
,

where ∂µ/∂θ is a d× p-dimensional matrix. This score function is biased and hence not
appropriate as an estimating function. An unbiased function can however be obtained as

Gn(θ) = sEulern (θ)− Cn(θ),

where Cn is the compensator of sEulern . This can be constructed as C0(θ) = 0 and

Cn(θ) =
n−1∑
k=0
Eθ
(
sEulerk+1 (θ)− sEulerk (θ)

∣∣∣Fk)

=
n−1∑
k=0

(
∂µ(xk,θ)

∂θ

)′
Σ−1(xk)

(
Eθ
(
X tk+1

∣∣∣Fk)− xk − µ(xk,θ)∆tk
)

for n ∈ N, where sEuler0 (θ) = 0. Overall, one has

Gn(θ) =
n−1∑
k=0

(
∂µ(xk,θ)

∂θ

)′
Σ−1(xk)

(
X tk+1 − Eθ

(
X tk+1

∣∣∣Fk)),
which is an unbiased linear martingale estimating function with weight

a1(θ,∆t,x) =
(
∂µ(x,θ)

∂θ

)′
Σ−1(x). (6.37)

Unbiasedness does not rely on the fact that the diffusion matrix does not depend on the
parameter. Hence, the same estimating function can be employed when it does.
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Bibby and Sørensen (1995) show that the optimal estimating function within this class, i. e.
the one leading to an estimator with smallest asymptotic variance, is the one with weight

ã1(θ,∆t,x) =
(
∂

∂θ
Eθ
(
X∆t

∣∣∣X0 = x
))′(

Varθ
(
X∆t

∣∣∣X0 = x
))−1

.

The linear estimating function with the previous weight (6.37) is hence not optimal, but it
is approximately optimal for small time steps. Both estimating functions lead to consistent
and asymptotically normal estimators (Bibby & Sørensen, 1995).

Example 6.2. A well-known quadratic martingale estimating function is derived as follows
(see e. g. M. Sørensen, 2008): Assume that the increments of a one-dimensional diffusion
process with parameter θ are approximately Gaussian, in particular

Xtk+1

∣∣∣ {Xtk = xk} ∼ N
(
Ek(θ), Vk(θ)

)
,

where

Ek(θ) = Eθ
(
Xtk+1

∣∣∣Xtk = xk
)

and Vk(θ) = Varθ
(
Xtk+1

∣∣∣Xtk = xk
)
.

The according score function for data x0, . . . , xn equals

sn(θ) =
n−1∑
k=0


(
∂
∂θ
Ek(θ)

)
Vk(θ)

(
xk+1 − Ek(θ)

)
+ 1

2

(
∂
∂θ
Vk(θ)

)
V 2
k (θ)

(
(xk+1 − Ek(θ))2 − Vk(θ)

) .
This is a quadratic martingale estimating function of the form (6.30)–(6.31) with J = 2,
h1 and h2 as in (6.34), weights

a1(θ,∆t, x) =
∂
∂θ
Eθ(X∆t|X0 = x)

Varθ(X∆t|X0 = x) and a2(θ,∆t, x) =
∂
∂θ
Varθ(X∆t|X0 = x)

2Varθ(X∆t|X0 = x)2

and polynomials

f1(y,θ) = y and f2(y,θ) =
(
y − Eθ(X∆t|X0 = x)

)2
.

This estimating function is approximately optimal (M. Sørensen, 2008).

6.4.2 Generalised Method of Moments

Related to the theory of estimating functions in the previous section is the generalised
method of moments (GMM) as developed by Hansen (1982). In this approach, one considers
functions ψ1, . . . , ψJ depending on the parameter θ and the process X, where

Eθ
(
ψj(θ;X)

)
= 0 (6.38)



6.4 Alternatives to Maximum Likelihood Estimation 133

for j = 1, . . . , J . Equations (6.38) for all j are called the moment conditions. These
are employed in order to estimate the parameter θ. For p-dimensional parameter θ, one
requires J ≥ p moment conditions. The functions ψj usually depend on only one or two
state variables in addition to the parameter. This case is also assumed in the following.

Consider a one-dimensional ergodic diffusion process with true parameter θ0 starting in x0
at time t0, and assume that there are observations x1, . . . , xn at times t1 < . . . < tn of
this process which are i.i.d. draws from its invariant measure πθ0 . Denote by Xs and Xt

two independent random variables with density πθ0 . The expected value of ψj(θ;Xs, Xt)
for θ ∈ Θ is usually not available but can be approximated through the method of moments
estimator

1
n

n−1∑
k=0

ψj
(
θ;xk, xk+1

)
. (6.39)

The GMM estimator θ̂n is obtained as the minimiser of a norm of this expression. In
particular,

θ̂n = argmin
θ∈Θ

(
1
n

n−1∑
k=0
ψ
(
θ;xk, xk+1

))′
Cn

(
1
n

n−1∑
k=0
ψ
(
θ;xk, xk+1

))
, (6.40)

where ψ = (ψ1, . . . , ψJ)′ and Cn ∈ RJ×J is a positive semi-definite weight matrix. Under
certain conditions (Hansen, 1982), θ̂n is consistent and asymptotically normal. Hansen
(1982) determines the optimal weight matrix yielding an asymptotically efficient estimator,
but as this matrix involves the unknown parameter θ0, it cannot be used in practice.

In what follows, we look at two examples. Once again, denote by Gθ the infinitesimal
generator of the considered diffusion process with parameter θ as introduced in Section 3.2.9.
Let g and h be two functions for which Gθ g and Gθ h are well-defined. Hansen and Scheink-
man (1995) utilise the two moment conditions

Eθ
(
Gθ g(Xt)

)
= 0 (6.41)

and
Eθ
(
Gθ g(Xt)h(Xs)− g(Xt)Gθ h(Xs)

)
= 0 (6.42)

for all t > s ≥ 0. The latter equation holds for time-reversible processes (Kent, 1978),
which includes all one-dimensional ergodic diffusions. The above moment conditions (6.41)
and (6.42) lead to method of moments estimators (6.39) with functions

ψ(θ;x, y) = Gθ g(y)

and
ψ(θ;x, y) = Gθ g(θ, y)h(θ, x)− g(θ, y)Gθ h(θ, x),

respectively. These are investigated for example by Jacobsen (2001).

The above elucidations refer to one-dimensional diffusions only. For the generalisation to
multi-dimensional processes see Hansen and Scheinkman (1995) or Jacobsen (2001).
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6.4.3 Simulated Moments Estimation

Simulated moments estimation (SME) as carried out by Duffie and Singleton (1993) bases
on the same idea as the just considered generalised method of moments: In the previous
section, a norm of (6.39) was minimised. Due to the moment conditions (6.38), this is
exactly the same as minimising a norm of

1
n

n−1∑
k=0

ψj
(
θ;xk, xk+1

)
− Eθ

(
ψj(θ;Xs, Xt)

)
(6.43)

for some t > s ≥ 0. The generalised method of moments could hence theoretically be
extended to functions ψj(θ;Xs, Xt) with non-zero expectation as long as this expectation
is known. When it is unknown, the SME is still appropriate as it replaces the analytical
expected value in (6.43) by the sample mean based on m + 1 additionally simulated
values z0, z1, . . . , zm from the invariant density πθ. The simulated moments estimator is
obtained as the minimiser of the norm of

1
n

n−1∑
k=0

ψj
(
θ;xk, xk+1

)
− 1
m

m−1∑
i=0

ψj
(
θ; zi, zi+1

)

in an analogous manner as in (6.40) above. Duffie and Singleton (1993) supply conditions
for the consistency and asymptotic normality of the simulated moments estimator.

6.4.4 Indirect Inference

In indirect inference, the parameter of a model of interest is estimated indirectly via the
parameter of an auxiliary model (Gourieroux, Monfort, & Renault, 1993). This is convenient
whenever statistical inference for the original model is complicated and the auxiliary model
is chosen such that its parameter can easily be estimated.

LetMθ denote the original model with parameter θ ∈ Θ ⊆ Rp, and Aρ be the auxiliary
model with parameter ρ ∈ R ⊆ Rh, where h ≥ p. BothMθ and Aρ are assumed to be
known in parametric form. Suppose one has observations x0, . . . ,xn fromMθ0 for some
unknown θ0 ∈ Θ. The objective is the estimation of θ0. If simulation fromMθ is (at least
approximately) possible, this can be performed by indirect inference as follows:

In a first step, obtain an estimator ρ̂obsn of ρ by treating x0, . . . ,xn as observations from
the auxiliary model Aρ. Under regularity conditions, this estimator ρ̂obsn tends to a
parameter ρ0 = g(θ0) for some invertible unknown function g as n→∞.

In a second step, determine θ such that simulated data from Mθ associated with Aρ
leads to an estimate of ρ that is close to ρ̂obsn : For fixed θ, (approximately) simulate K
datasets z(θ,k) = {z(θ,k)

0 , . . . ,z(θ,k)
n }, k = 1, . . . , K, fromMθ. Denote by ρ̂(θ,k)

n the estimator
of ρ that is obtained when z(θ,k) is treated as observed from Aρ. Then, if certain assumptions
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are fulfilled, ρ̂(θ,k)
n tends to g(θ) for all k and n → ∞. The indirect estimator θ̂n of θ is

now chosen such that ρ̂simn (θ) = K−1∑K
k=1 ρ̂

(θ,k)
n is close to ρ̂obsn . In particular,

θ̂n = argmin
θ∈Θ

(
ρ̂obsn − ρ̂

sim
n (θ)

)′
Dn

(
ρ̂obsn − ρ̂

sim
n (θ)

)
, (6.44)

where Dn is a positive definite matrix converging to a deterministic positive definite
matrix D as n→∞. Under assumptions stated in Gourieroux et al. (1993), θ̂n consistently
estimates θ0.

In the context of estimating the parameter θ of a stationary and ergodic diffusion process,
the auxiliary model is most conveniently chosen as a time-discretisation of the original SDE
as considered in Section 3.3.2. The parameters θ and ρ then have the same dimension and
interpretation. The auxiliary parameter ρ is estimated by maximum likelihood methodology.
In that case, the indirect estimator is independent of Dn in (6.44), and ρ̂obsn = ρ̂simn (θ̂n)
(Gourieroux et al., 1993).

The following describes the indirect inference procedure for the parameter θ of an SDE

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt , X t0 = x0, (6.45)

for observations x0, . . . ,xn at times 0 = t0 < t1 < . . . < tn = T . The auxiliary model is
chosen to be the Euler discretisation

Y k+1 = Y k + µ(Y k,ρ)∆tk + σ(Y k,ρ)N (0,∆tkI) , Y 0 = x0,

with ∆tk = tk+1 − tk. For observations x0 = y0,y1, . . . ,yn, the log-likelihood function of ρ
for the auxiliary model is

q(ρ;y0, . . . ,yn) =
n−1∑
k=0

log φ
(
yk+1

∣∣∣yk + µ(yk,ρ)∆tk,Σ(yk,ρ)∆tk
)
,

where φ(z|ν,Λ) is the Gaussian density with mean ν and variance Λ evaluated at z,
and Σ = σσ′. Now proceed as follows.

Step 1: Calculate the maximum likelihood estimator ρ̂obsn of ρ given the observations from
the original model,

ρ̂obsn = argmax
ρ∈R

q
(
ρ;x0, . . . ,xn

)
.

Step 2: Determine the indirect estimator θ̂n of θ0 by (numerically) solving

ρ̂obsn = ρ̂simn
(
θ̂n
)
,

where ρ̂simn (θ) is determined for all θ ∈ Θ as follows:
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(i) For k = 1, . . . , K, simulate the original diffusion process X with parameter θ at
times t0, . . . , tn. Denote the simulated values by z(θ,k)

0 , . . . ,z(θ,k)
n . If exact simulation

from (6.45) is inconvenient or impossible, apply one of the numerical approximation
schemes from Section 3.3.2 on a time grid that is much finer than the grid of observation
times. Gourieroux et al. (1993) emphasise that in this simulation, the same random
seeds should be employed for all values of θ.

(ii) For k = 1, . . . , K, obtain the maximum likelihood estimators

ρ̂(θ,k)
n = argmax

ρ∈R
q
(
ρ; z(θ,k)

0 , . . . ,z(θ,k)
n

)
. (6.46)

(iii) Calculate the average of these estimators,

ρ̂simn (θ) = 1
K

K∑
k=1
ρ̂(θ,k)
n .

Under fairly general assumptions, the indirect estimator θ̂n is a consistent and asymptotically
normal estimator of θ. See Gourieroux et al. (1993) for further asymptotic properties and
fields of application.

Broze, Scaillet, and Zakoïan (1998) discuss the fact that approximate instead of exact
simulation in item (i) introduces a simulation bias. In case of approximate simulation, they
hence refer to the above method as quasi-indirect inference. Monte Carlo experiments,
however, show good performance of this approach for moderate sample sizesK. Furthermore,
the authors remark that estimation results do not improve if the Milstein instead of the
Euler scheme is employed for the approximate simulation. Overall, the resulting estimator
is asymptotically unbiased also for quasi-indirect inference (Gourieroux et al., 1993, Broze
et al., 1998).

6.4.5 Efficient Method of Moments

A conceptually similar approach to the indirect inference in the previous section is the
efficient method of moments (EMM) (Gallant & Tauchen, 1996). In this technique, the
criterion (6.44) is replaced by

θ̂n = argmin
θ∈Θ

Q(θ)′EnQ(θ) (6.47)

for an appropriate positive definite matrix En, where

Q(θ) = 1
K

K∑
k=1

∂q

∂ρ

(
ρ̂obsn ; z(θ,k)

0 , . . . ,z(θ,k)
n

)
and q is the log-likelihood function of ρ in the auxiliary model. For certain choices of Dn

and En, the estimators θ̂n obtained through (6.44) and (6.47) are asymptotically equivalent
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(Gourieroux et al., 1993). The EMM is generally more efficient than indirect inference as the
computationally possibly demanding calculation of the maximum likelihood estimator ρ̂(θ,k)

n

in Equation (6.46) is not required. For details on the EMM, see Gallant and Tauchen
(1996).

6.5 Exact Algorithm

A recent development in the simulation and estimation of diffusion processes is the intro-
duction of the Exact Algorithm which enables exact simulation of diffusion paths without
any time discretisation error. By now, the algorithm is available in the different variants
EA1 (Beskos & Roberts, 2005), EA2 (Beskos, Papaspiliopoulos, & Roberts, 2006) and EA3
(Beskos, Papaspiliopoulos, & Roberts, 2008). Its implementation is easy and computation-
ally efficient. A drawback, however, is its limited applicability which is formulated in detail
below. This section explains the EA1, which is the earliest and simplest version of the
Exact Algorithm. The following first discusses the simulation of diffusion paths and then
the estimation of parameters.

Consider a one-dimensional diffusion process X = (Xt)t≥0 with unit diffusion coefficient,
i. e. satisfying an SDE

dXt = µ(Xt,θ)dt+ dBt , X0 = x0. (6.48)

The EA1 applies only to this class of diffusions. However, transformation of a general one-
dimensional diffusion to (6.48) can be obtained with Lamperti’s transform, see Section 3.2.11.

Simulation

The EA1 aims to draw exact time-discrete skeletons of the diffusion process on the time
interval [0, T ], where T ∈ R+ is fixed. The algorithm is based on the rejection sampling
scheme (see e. g. Grimmett & Stirzaker, 2001) which works as follows:

Algorithm 6.1 (Rejection Sampling on R). Consider two equivalent probability measures ρ
and ν on R with bounded Radon-Nikodym derivative, i. e. there exists κ ∈ R+ such that for
all z ∈ R one has κ · (dρ/dν)(z) ≤ 1. Suppose one is able to sample from ν. Perform the
following steps:

1. Draw Z ∼ ν.

2. Accept Z with probability κ · (dρ/dν)(Z). Otherwise, return to step 1.

Then Z ∼ µ.

In our case, we do not wish to sample a real random variable from ρ but a diffusion process
from a probability measure Pθ induced by (6.48). In order to apply the rejection sampling
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algorithm to this situation, we are looking for a probability measure Zθ which fulfils the
following requirements:

(i) It is possible to sample from Zθ.

(ii) Pθ and Zθ are equivalent.

(iii) The Radon-Nikodym derivative dPθ/dZθ is bounded from above.

(iv) It is possible to exactly apply the acceptance probability in step 2 of Algorithm 6.1.

Beskos and Roberts (2005) found out that an appropriate candidate for Zθ is the law of
Brownian motion starting in x0 and conditioned on an end point which is drawn from a
probability distribution with density

h(u) ∝ exp
(
A(u)− u2

2T

)
,

where A(u) =
∫ u

0 µ(y)dy for all u ∈ R. In addition to the general assumptions at the
beginning of this chapter, they require the following conditions to hold:

• The drift coefficient µ is everywhere differentiable.

• The integral
∫
R exp(A(u)− u2/2T )du is finite.

• There exist constants k1, k2 ∈ R such that k1 ≤ 0.5(µ2(u) + µ′(u)) ≤ k2 for all u ∈ R.

• The time horizon T is small enough such that 0 ≤ ϕ(u) ≤ T−1 for all u ∈ R, where
ϕ(u) = 0.5(µ2(u) + µ′(u))− k1.

Beskos & Roberts show that the above choice of Zθ fulfils the requirements (ii) and (iii).
In particular,

dPθ
dZθ

(
X[0,T ]

)
= κ exp

(
−H(X[0,T ])

)
, (6.49)

where H(X[0,T ]) =
∫ T
0 ϕ(Xt)dt. In a rejection sampling algorithm, the right hand side

of Equation (6.49) can be taken as the acceptance probability with κ = 1 because of
exp(−H(X[0,T ])) ≤ 1.

Naturally, it is not possible to sample infinite-dimensional objects from Zθ. However,
assumption (i) is fulfilled in the sense that one can obtain exact finite skeletons from Zθ
by first drawing the end point XT from the density h and then constructing a Brownian
bridge skeleton at discrete time points as described in Section 3.3.3.

This skeleton from Zθ then has to be accepted or rejected as a draw from Pθ with
probability exp(−H(X[0,T ])). Assumption (iv) requires that this is possible. The value
of H(X[0,T ]) cannot be calculated as this requires knowledge of the full path X[0,T ]. One
can however circumvent this calculation; to that end, note that a decision with acceptance
probability H(X[0,T ]) =

∫ T
0 ϕ(Xt)dt can be made as follows: First, draw a uniformly

distributed point (t, y) ∼ U([0, T ]×[0,M ]), whereM is an upper bound of ϕ (e. g.M = T−1).
Next, simulate the value Xt of the diffusion path at time t. Accept if y ≤ ϕ(Xt), reject
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otherwise. In order to simulate an event with probability exp(−H(X[0,T ])), Beskos &
Roberts expand the probability in a Taylor series and express the event as the countable
union of a sequence of increasing events and as the countable intersection of another
sequence of decreasing events. With this construction, they are able to come to an accept or
reject decision on the basis of a finite skeleton of the diffusion path. For details, see Beskos
and Roberts (2005).

Beskos, Papaspiliopoulos, and Roberts (2006) replace this last mechanism by a simpler
and more efficient procedure that is based on the following observation: Let Ψ be a
homogeneous marked Poisson process of unit intensity on [0, T ] × [0,M ]. That means
Ψ = {(t1, y1), . . . , (tk, yk)}, where t1 < . . . < tk are the jump times of a homogeneous
Poisson process with intensity one on the time interval [0, T ], and y1, . . . , yk ∼ U([0,M ])
are i.i.d. marks at these instants. Given a diffusion path X[0,T ], let N be the number of
marks below the graph (t, ϕ(Xt)), where t ∈ [0, T ]. The total number of marks in the
rectangle [0, T ] × [0,M ] is Poisson distributed with intensity one. Thus N is Poisson
distributed with intensity H(X[0,T ]) =

∫ T
0 ϕ(Xt)dt, and

P
(
N = 0

∣∣∣X[0,T ]
)

= exp
(
−H(X[0,T ])

)
.

The number N can be determined given the discrete skeleton of X[0,T ]. That means, there
is a simple possibility to make an accept/reject decision with the required acceptance
probability (6.49). The resulting algorithm is the following.

Algorithm 6.2 (EA1).

1. Simulate a homogeneous marked Poisson process Ψ = {(t1, y1), . . . , (tk, yk)} of unit
intensity on [0, T ]× [0,M ], i. e. t1, . . . , tk ∈ [0, T ] are the jump times of the Poisson
process and y1, . . . , yk ∼ U([0,M ]) are the i.i.d. marks.

2. Draw a skeleton from Zθ at times t1, . . . , tk, i. e.

(a) Simulate the ending point XT ∼ h of the diffusion path.

(b) Simulate the values Y1, . . . , Yk at times t1, . . . , tk of a Brownian (0, x0, T,XT )-
bridge as described in Section 3.3.3.

3. If ϕ(Yi) ≤ yi for all i ∈ {1, . . . , k}, accept the skeleton. Otherwise, reject and return
to step 1.

Then S = {(0, x0), (t1, Y1), . . . , (tk, Yk), (T,XT )} can be regarded as a time-discrete sample
from Pθ.

Once a skeleton is accepted as a sample from Pθ, it can be amended by further draws
from Zθ at additional time instants (Beskos, Papaspiliopoulos, & Roberts, 2006).

The EA1 requires the function ϕ to be bounded. The EA2 (Beskos, Papaspiliopoulos, &
Roberts, 2006, Beskos, Papaspiliopoulos, Roberts, & Fearnhead, 2006) extends the above
methodology such that it is applicable also to diffusions where either lim supu→−∞ ϕ(u) <∞



140 6. Parametric Inference for Discretely-observed Diffusions

or lim supu→∞ ϕ(u) <∞. The algorithm starts by simulating the infimum of the diffusion
path and the (maximum) time when this infimum is achieved. Then, the diffusion path is
composed of two Bessel processes. This construction makes sure that these path segments
do not fall below the infimum. The EA3 (Beskos et al., 2008) even removes the just stated
requirements on the bounds of ϕ by including in the analysis not only the infimum but
the whole range of the diffusion path. The decision about acceptance or rejection in both
EA2 and EA3 is again under consideration of a marked Poisson process. Generalisations to
time-inhomogeneous and multivariate diffusions are discussed in Beskos et al. (2008).

Estimation

The Exact Algorithm enables simple Monte Carlo maximum likelihood estimation for those
diffusions where the algorithm is applicable. This is described in the following for the EA1
(Algorithm 6.2). Hence assume that the assumptions required by EA1 are fulfilled.

The objective is the estimation of the transition density pθ(t;x0, x) of the diffusion process
solving (6.48) for any x ∈ R. Inference based on EA1 utilises the fact that

pθ(t;x0, x) = Eθ
(
pθ(t;x0, x|S)

)
,

where pθ(t;x0, x|S) is the usual transition density pθ further conditioned on a skeleton
S = ((0, x0), (t1, Y1), . . . , (tk, Yk), (T,XT )) which has been constructed with EA1 for T > t.
Because of the Markov property of diffusion processes, conditioning on the whole skeleton
reduces to conditioning on the left and right neighbours (tl, Yl) and (tr, Yr) of (t, x), i. e.

pθ(t;x0, x|S) = pθ(t;x0, x|Yl, Yr),

where Yl and Yr are the values in the skeleton at times

tl = max{ti | ti < t, i = 0, . . . , k + 1} and tr = min{ti | ti > t, i = 0, . . . , k + 1} (6.50)

with t0 = 0 and tk+1 = T . It has already been noted above that, conditioned on the skeleton,
the diffusion process has the same law as a Brownian bridge. Hence,

pθ(t;x0, x|Yl, Yr) = φ

(
x
∣∣∣Yl + t− tl

tr − tl
(Yr − Yl) ,

(t− tl)(tr − t)
tr − tl

)
(6.51)

(Beskos, Papaspiliopoulos, & Roberts, 2006); this formula can be derived from the construc-
tion of Brownian bridges in Section 3.3.3. That means, the transition density pθ(t;x0, x) can
be estimated by Monte Carlo evaluation of the expected value of (6.51). This is described
by the following algorithm.
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Algorithm 6.3 (Monte Carlo Likelihood Estimation using EA1).

1. For j = 1, . . . , J , perform the following steps:

(a) Using EA1, draw a skeleton S from Pθ on [0, T ], where T > t.

(b) Identify tl and tr as defined in (6.50) and the corresponding values Yl and Yr.

(c) Compute (6.51) and store the result in pj.

2. Calculate the mean of all pj to obtain a Monte Carlo estimate of pθ(t;x0, x).

Algorithm 6.3 yields an unbiased estimate of the transition density. It can be utilised to
obtain pθ for different values of the possibly multi-dimensional parameter θ. The maximum
likelihood estimator can then for example be found by grid search methods.

More advanced techniques for statistical inference on the basis of the Exact Algorithm
are extensively discussed in Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006)
and Beskos, Papaspiliopoulos, and Roberts (2009).

6.6 Discussion and Conclusion

This chapter reviews a variety of frequentist methods for the parameter estimation of
discretely-observed diffusion processes. Sections 6.1 and 6.2 introduce techniques which are
applicable only in an ideal situation where the diffusion process is observed continuously in
time, or the exact transition density is known, or observations are available at very dense
time points. Sections 6.3 to 6.5, in contrast, cover more sophisticated estimation approaches
which are capable to cope with larger observation intervals even when the transition density
of the diffusion process in unknown.

An ultimate grading of the various approaches is not clear cut as each technique has its
own strengths and weaknesses. In practice, the choice of an appropriate method is typically
problem-specific. First of all, it may depend on the form of the drift or diffusion coefficient,
or on the knowledge of eigenfunctions, or on the fact whether the observed diffusion process
is ergodic. Furthermore, the number of observations, the data frequency, the dimension
of the parameter and of the process, or available computing power possibly influence the
decision for or against a certain estimating technique.

However, some general advantages and disadvantages of the presented techniques can be
identified: Approximations of the likelihood function as considered in Section 6.3 yield
the approximated function as a convenient by-product. The Hermite expansion from
Section 6.3.1 is generally appraised to be fairly efficient; unfortunately it is also quite
complex and barely transparent. The latter property also applies to the Crank-Nicolson
method from Section 6.3.2. Conveniently, the Crank-Nicolson method and the simulated
maximum likelihood estimation from Section 6.3.3 are generic approaches, i. e. the drift
function and diffusion coefficient just have to be plugged in. In practice that means that
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these approaches need to be implemented only once in order to apply them to different
models. However, simulation-based techniques such as the simulated maximum likelihood
approach, the simulated moments estimation from Section 6.4.3, the indirect inference from
Section 6.4.4 and the efficient method of moments from Section 6.4.5 are computationally
demanding. The estimating functions from Section 6.4.1 are less hard to compute. Moreover,
they are robust to misspecification when only the moments of the diffusion process are
matched. On the other hand, important information may be wasted when only moments are
considered. The quality of estimates obtained by the indirect inference from Section 6.4.4
and the efficient method of moments from Section 6.4.5 severely depends on the choice
of the auxiliary model. Finally, the Exact Algorithm from Section 6.5 yields unbiased
estimators and is the most efficient technique of this chapter unless the exact likelihood
is available. Unfortunately, its applicability is yet quite restricted; the EA1, for example,
requires the diffusion process to be univariate with unit diffusion coefficient and a drift
function fulfilling the assumptions listed on page 138.

A critical comparison of the presented estimation approaches by means of a simulation study
is beyond the scope of this thesis. Some evaluations can, however, be found in the literature,
shortly summarised in the next three paragraphs. A documentation of the R-package sde,
which implements several of the techniques considered in this chapter, is contained in Iacus
(2008).

Jensen and Poulsen (2002) numerically evaluate several estimation approaches on the
example of specific one-dimensional diffusion processes. The considered techniques are the
Hermite expansion from Section 6.3.1, the Crank-Nicolson method from Section 6.3.2, a
binomial approximation technique as for example considered by Nelson and Ramaswamy
(1990), and the naive maximum likelihood approach from Section 6.2. Concerning the
trade-off between speed and accuracy of the approximations, these approaches turn out
to be clearly ranked in the above order with the Hermite expansion showing the best
performance.

Honoré (1997) applies the naive maximum likelihood approach from Section 6.2, the
generalised method of moments from Section 6.4.2 and the simulated maximum likelihood
estimation from Section 6.3.3 to a specific model from financial economics. Based on the
outcomes of a simulation study, he labels the first two methods as inappropriate due to
large estimation bias, whereas the third approach is found to be practical.

In another simulation study, Hurn et al. (2007) evaluate most of the approaches considered
in this chapter with respect to the ease of the implementation, time exposure of the
estimation method and accuracy of the resulting estimates. Briefly summarised, the
estimating functions based on eigenfunctions from Section 6.4.1 and the Hermite expansion
from Section 6.3.1 are most satisfying considering time exposure and accuracy at the same
time. The authors however emphasise that the diffusion models in the simulation study
suit these two estimation techniques.

The application of most methods in this chapter becomes problematic as soon as a diffusion
process is only partially observed, i. e. some components of the state vector are latent, or
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observations are measured with error. For example, in case of latent variables, the Markov
property of consecutive observations may no longer hold, and the approximations of the
likelihood function in Section 6.3 may not be applicable anymore. Partial and/or noisy
observations are for example considered by Gloter & Jacod (2001a, 2001b) and Jimenez et
al. (2006).

A powerful approach to overcome this problem is to estimate the model parameters in
a Bayesian framework. Such a procedure is able to handle multi-dimensional diffusion
processes which are partially observed and measured with error. This way, it outperforms
the majority (if not all) of the methods presented in this chapter and enables the statictical
analysis of the complex applications in Chapters 8 and 9. Large samples or stationarity of
the underlying process are not required. As an appreciated by-product, the technique also
estimates the sample path at intermediate observation times. The presentation and further
development of such a method is one of the main contributions of this thesis and is the
subject of the next chapter.
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Chapter 7

Bayesian Inference for Diffusions
with Low-frequency Observations

The previous chapter considered a variety of frequentist procedures to infer on the parameters
of a diffusion process. The difficulty that underlies all approaches is the general intractability
of the transition density for discrete-time observations. Most techniques struggle when
inter-observation times are large. Datasets in life sciences, however, may well be of low-
frequency type. Examples are plant surveys with yearly assessment, epidemics where public
health reporting considers new infections per week, or cost-intensive and hence infrequent
measurements in genetics. Even in finance, where high-frequency measurements are often
available, it may be advantageous to work with a thinned dataset; for instance, asset price
data can be corrected for certain microstructure effects this way (Jones, 1998).

The present chapter introduces Bayesian inference methods which all base on introducing
missing data such that the union of missing values and observations forms a high-frequency
dataset. This facilitates approximation of the transition density and hence enables paramet-
ric inference even for large inter-observation times. Moreover, the techniques are suitable
for irregularly spaced observation intervals, multivariate diffusions with possibly latent
components and for observations that are subject to measurement error. They even apply
when different components of the state space are observed nonsynchronously. Stationarity
and ergodicity of the diffusion are generally not required. As a Bayesian method, the
estimation procedure is not indispensably dependent on large samples.

The introduction of intermediate data between every two observations implies the estimation
of the missing values in addition to the model parameters, where both the missing data and
the parameters are treated as random variables. This task is performed by application of
Markov chain Monte Carlo (MCMC) techniques which alternately update the imputed data
and the model parameter and are usually feasible within moderate computing time. The
following considerations require familiarity with basic MCMC ideas. Introductory texts on
this topic can be found in Gilks, Richardson, and Spiegelhalter (1996), Robert and Casella
(2004) and Gamerman and Lopes (2006).
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As in Chapter 6, the focus of interest lies on the time-homogeneous Itô diffusion process
X = (X t)t≥0 satisfying

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt , X t0 = x0, (7.1)

with state space X ⊆ Rd, starting value x0 ∈ X at time t0 = 0 and m-dimensional
standard Brownian motion B = (Bt)t≥0. The drift function µ : X ×Θ→ Rd and diffusion
coefficient σ : X ×Θ→ Rd×m are assumed to be known in a parametric form, and θ ∈ Θ
for an open set Θ ⊆ Rp is the model parameter. X is the same for all θ ∈ Θ. Once again,
we assume that µ, σ and the diffusion matrix Σ = σσ′ fulfil the regularity conditions
stated in Section 3.4 for all θ ∈ Θ.

This chapter is organised as follows: Section 7.1 comprehensively explains the basic concept
of Bayesian data augmentation for diffusions. Proposal distributions for both the diffusion
path and the parameter are introduced and illustrated in a simulation study. This is
done under the assumption of complete observations at discrete time points without
measurement error. As the latter assumption is not necessarily fulfilled in applications in
life sciences, Section 7.2 extends the methodology to a latent data framework which also
allows for observation error. This section is especially helpful for practitioners, but it is
not a premise for the comprehension of the remaining chapter and may hence be skipped.
Whilst Sections 7.1 and 7.2 treat the imputed path segments as countable sets of discrete
data points, Sections 7.3 and 7.4 are dedicated to the consideration of continuous data.
This reveals a well-known convergence problem caused by a close link between the model
parameters and the quadratic variation of the diffusion path, pointed out in Section 7.3.
In practice, this dependency causes arbitrarily slow mixing of the Markov chains when
large amounts of auxiliary data are imputed. In Section 7.4, different approaches are hence
presented which aim at overcoming this difficulty. Special focus is on the innovation scheme
in Section 7.4.4, whose consideration in a continuous observation framework is a main
contribution of this thesis.

This chapter is novel in its detailedness and comprehensiveness. It brings together approaches
from different authors on estimation via Bayesian data augmentation in a multivariate
framework and evaluates them both analytically and computationally. A new sampling
scheme is suggested where existing methods do not lead to success, and its universal
applicability is proven. The contents of this chapter address both practicioners who wish
to implement the estimation schemes and theoreticians who are interested in convergence
proofs. The methods are deployed in Chapters 8 and 9 where they enable statistical
inference in complex models in life sciences.

7.1 Concepts of Bayesian Data Augmentation for Dif-
fusions

The idea of parameter estimation based on Bayesian data augmentation is similar to the
concept of the simulated maximum likelihood estimation (SMLE) approach which was
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introduced in Section 6.3.3: In order to perform inference on the model parameter θ,
one tries to approximate the true transition density pθ of the diffusion process by the
Euler scheme or one of the higher-order numerical schemes from Section 3.3.2. This is
eligible only if inter-observation times of the observed data Xobs are small. Since such a
requirement is usually not fulfilled in applications in life sciences, additional data X imp at
intermediate time points is introduced. To this end, a Markov chain Monte Carlo (MCMC)
approach is employed to construct a Markov chain {θ(i),X imp(i)}i=1,...,L of length L whose
elements are samples from the joint posterior density π(θ,X imp|Xobs) of the parameter θ
and the imputed dataX imp conditioned on the sample path observationsXobs. The Markov
chain {θ(i)}i=1,...,L is then regarded as a draw from the marginal density π(θ|Xobs). The
imputed data {Xobs(i)}i=1,...,L is a convenient by-product of the estimation procedure.

For the construction of the Markov chain {θ(i),X imp(i)}i=1,...,L, the following two steps are
alternately executed:

Path Update: Draw X imp(i) ∼ π
(
X imp(i)

∣∣∣Xobs,θ(i−1)
)
.

Parameter Update: Draw θ(i) ∼ π
(
θ(i)

∣∣∣Xobs,X imp(i)
)
.

(7.2)

This procedure has been proposed and shown to converge by Tanner and Wong (1987),
though not in the context of diffusions. The underlying idea is similar to the one for
the expectation-maximisation (EM) algorithm by Dempster, Laird, and Rubin (1977).
In general, however, direct sampling is possible neither from π(X imp|Xobs,θ) nor from
π(θ|Xobs,X imp). Hence, in both steps the Metropolis-Hastings algorithm is used. This is
further specified in Section 7.1.2 for the path update and in Section 7.1.3 for the parameter
update.

The concept of Bayesian data imputation as a tool in inference for diffusions has been
utilised by a number of authors including Jones (1998), Elerian et al. (2001), Eraker (2001),
G. Roberts and Stramer (2001), Chib, Pitt, and Shephard (2004) and Golightly & Wilkinson
(2005, 2006a, 2006b, 2008).

7.1.1 Preliminaries and Notation

As it is common practice in Bayesian analysis, let π generically denote all posterior densities.
In particular, the exact meaning of π is implied by the occurrence, order and number of its
arguments. If these differ for two densities, the two functions are generally not the same.
However, for notational brevity, according subscripts are suppressed. The interpretation
of π depends on the context but is always apparent from its arguments. Analogously, let p
generically denote all prior densities and q all proposal densities. In sampling instructions
such as (7.2), the variables on which one conditions are usually not shown on the left of the
tilde if their appearance is clear.

We basically aim to approximate the posterior density

π(θ|Xτ1 , . . . ,XτM ) ∝ π(Xτ1 , . . . ,XτM |θ)p(θ)
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Figure 7.1: Illustration of a one-dimensional path segment consisting of discrete data
points Y0, . . . , Ym at times t0, . . . , tm. The observed data Y0, Ym is labelled with crosses, the
imputed data Y1, . . . , Ym−1 with circles.

of the parameter θ based on discrete observations Xτ1 , . . . ,XτM of a diffusion process. In
the present and the following subsections we assume that all observations are complete, i. e.
there are no latent or unobserved components for all observations Xτi = (Xτi,1, . . . , Xτi,d)′.
Since diffusion processes possess the Markov property, such complete observations divide a
sample path into segments that are mutually independent conditioned on θ. The likelihood
of θ factorises as

π
(
Xτ1 , . . . ,XτM

∣∣∣θ) = π
(
Xτ1

∣∣∣θ) M∏
i=2

π
(
Xτi

∣∣∣Xτi−1 ,θ
)
.

It is hence sufficient to consider the theory of Bayesian data imputation for a single path
segment between two consecutive complete observations; the generalisation to more observed
data points is then straightforward and clarified in Section 7.1.4. In the following, we
will hence restrict our attention to diffusions on a time interval [0, T ], where the starting
value X0 = x0 and the final value XT = x are completely observed and all intermediate
data is unknown. As we consider time-homogeneous diffusions here, the starting time zero
is not a constraint.

As motivated above, the time interval is divided intom subintervals which are not necessarily
equidistant. The end points of these intervals are 0 = t0 < t1 < . . . < tm−1 < tm = T ,
implying the time steps ∆tk = tk+1 − tk for k = 0, . . . ,m− 1. The diffusion process X is
in state X tk at time tk, but these values are unknown for k = 1, . . . ,m− 1 and are hence
treated as missing data. An example for a path segment consisting of discretely observed
and imputed data is shown in Figure 7.1. For shorter notation, introduce Y k = X tk

for k = 0, . . . ,m. In particular, Y 0 = x0 and Ym = x. Collect the observed data
as Y obs = {Y 0,Ym} and the imputed data as Y imp = {Y 1, . . . ,Ym−1}. Furthermore,
refer to subsets of the imputed data by Y imp

(a,b) = {Y a+1, . . . ,Y b−1} for a, b ∈ {0, . . . ,m}
and a ≤ b. For b − a < 2, Y imp

(a,b) is the empty set. Define the complement of Y imp
(a,b)

as Y imp
−(a,b) = Y imp \ Y imp

(a,b). Note that later in this chapter X imp
(ta,tb) will refer to continuous

observation (X t)t∈(ta,tb) and will hence substantially differ from the countable set Y imp
(a,b).
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7.1.2 Path Update

We now investigate how to appropriately perform the path update step in (7.2). As
indicated above, direct sampling from the posterior distribution of the imputed data given
the observed data and the parameter is usually not possible; this option comes into question
only if the underlying SDE is analytically solvable or when the conditions for the Exact
Algorithm in Section 6.5 apply. We hence utilse the Metropolis-Hastings algorithm for the
general implementation of this step.

Satisfying convergence results are often achieved by application of update strategies where
at each iteration only a subset of the imputed data instead of the whole path segment is
renewed. For this, as a first step of the path update one chooses a time interval (ta, tb)
with a, b ∈ {0, . . . ,m} and b−a ≥ 2 in whose interior the path is to be updated. An update
of the entire imputed data corresponds to (ta, tb) = (0, T ), i. e. a = 0 and b = m. The
choice of (ta, tb) may be deterministic or random with fixed or varying interval length tb− ta.
Possible options are considered in Section 7.1.6.

Having decided about the block update strategy, select an appropriate proposal distribution
for Y imp

(a,b) with density q which possibly depends on the observed data Y obs, the current
imputed data Y imp and the parameter θ. In particular, q may be conditioned on (subsets
of) both the previously imputed data Y imp

(a,b) and the unaltered imputed data Y imp
−(a,b). From

this distribution, draw a proposal Y imp∗
(a,b) = {Y ∗a+1, . . . ,Y

∗
b−1} for the subset of the imputed

data which is to be updated. Accept Y imp∗
(a,b) with probability

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

π
(
Y imp∗

(a,b) ,Y
imp
−(a,b)

∣∣∣Y obs,θ
)
q
(
Y imp

(a,b)

∣∣∣Y imp∗
(a,b) ,Y

imp
−(a,b),Y

obs,θ
)

π
(
Y imp

(a,b),Y
imp
−(a,b)

∣∣∣Y obs,θ
)
q
(
Y imp∗

(a,b)

∣∣∣Y imp
(a,b),Y

imp
−(a,b),Y

obs,θ
) .

Otherwise, discard the proposal and keep the previous data Y imp
(a,b). Due to the Markov

property of diffusions, one has

π
(
Y imp∗

(a,b) ,Y
imp
−(a,b)

∣∣∣Y obs,θ
)

π
(
Y imp

(a,b),Y
imp
−(a,b)

∣∣∣Y obs,θ
) =

b−1∏
k=a

π
(
Y ∗k+1

∣∣∣Y ∗k ,θ)
π
(
Y k+1

∣∣∣Y k,θ
) =

b−1∏
k=a

pθ
(
∆tk,Y ∗k ,Y ∗k+1

)
pθ
(
∆tk,Y k,Y k+1

) ,

where Y ∗a = Y a and Y ∗b = Y b. The time steps ∆tk in pθ are now supposed to be small
enough such that an approximation with the Euler scheme is allowed, i. e. pθ may be
replaced by

πEuler
(
Y k+1

∣∣∣Y k,θ
)

= φ
(
Y k+1

∣∣∣Y k + µ(Y k,θ)∆tk , Σ(Y k,θ)∆tk
)
. (7.3)

Here, as before, φ(z|ν,Λ) denotes the possibly multivariate normal density with mean ν
and covariance Λ at z. In the following, we hence apply

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

b−1∏
k=a

πEuler
(
Y ∗k+1

∣∣∣Y ∗k ,θ)
πEuler

(
Y k+1

∣∣∣Y k,θ
)
 q

(
Y imp

(a,b)

∣∣∣Y imp∗
(a,b) ,Y

imp
−(a,b),Y

obs,θ
)

q
(
Y imp∗

(a,b)

∣∣∣Y imp
(a,b),Y

imp
−(a,b),Y

obs,θ
) (7.4)
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with Y ∗a = Y a and Y ∗b = Y b as the acceptance probability for the proposal Y imp∗
(a,b) . The

choice of the proposal density q is discussed in what follows, where a number of possible
schemes is presented.

Euler Proposal

The most naive proposal for Y imp
(a,b) is to simply apply the Euler sampling scheme from

Section 3.3.2, i. e. to successively draw

Y ∗k+1 ∼ N
(
Y ∗k + µ(Y ∗k ,θ)∆tk , Σ(Y ∗k ,θ)∆tk

)
(7.5)

for k = a, . . . , b− 2, where Y ∗a = Y a. In this case the proposal density equals

qE
(
Y imp∗

(a,b)

∣∣∣Y a,θ
)

=
b−2∏
k=a

qE
(
Y ∗k+1

∣∣∣Y ∗k ,θ) =
b−2∏
k=a

πEuler
(
Y ∗k+1

∣∣∣Y ∗k ,θ),
and the acceptance probability (7.4) for the proposal Y imp∗

(a,b) reduces to

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

b−1∏
k=a

πEuler(Y ∗k+1|Y ∗k ,θ)
πEuler(Y k+1|Y k,θ)

b−2∏
k=a

πEuler(Y k+1|Y k,θ)
πEuler(Y ∗k+1|Y ∗k ,θ)


= 1 ∧ πEuler(Y b|Y ∗b−1,θ)

πEuler(Y b|Y b−1,θ) ,

where Y ∗b = Y b. The Euler proposal (7.5) conditions on the starting point Y a of the path
segment but is independent of its end point Y b. Hence, a problematic situation arises which
is similar to the difficulties in Pedersen’s SMLE approach in Section 6.3.3: Transitions
from Y ∗b−1 to Y b are improbable if the according jumps are large. This is most likely the
case if one does not condition on the end point; see also the typical path proposals in
Figures 7.2 and 7.3 on pages 156 and 157. The acceptance probability for Y imp∗

(a,b) is then
typically small, leading to low acceptance probabilities, i. e. inefficient MCMC samplers
due to large numbers of rejections. The following proposal densities condition on both Y a

and Y b.

Double-sided Euler Proposal

One way to obtain more likely path proposals is to update Y imp
(a,b) from the left to the right,

where for all k the proposal distribution of Y ∗k+1 is conditioned on the already updated
preceding value Y ∗k and the subsequent value Y k+2. This approach is referred to as double-
sided Euler proposal in the following. It has been employed by Golightly and Wilkinson
(2005) for equidistant time steps and, with some further modification, by Eraker (2001).
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In order to derive an appropriate proposal density, consider

π(Y k+1|Y k,Y k+2,θ) ∝ π(Y k+2 |Y k+1,θ)π(Y k+1|Y k,θ)
≈ φ(Y k+2 |Y k+1 + µ(Y k+1,θ)∆tk+1,Σ(Y k+1,θ)∆tk+1)
· φ(Y k+1 |Y k + µ(Y k,θ)∆tk,Σ(Y k,θ)∆tk),

which follows by exploitation of the Markov property of diffusion processes and application
of the Euler approximation. Replace µ(Y k+1,θ) and Σ(Y k+1,θ) by µ(Y k,θ) and Σ(Y k,θ),
respectively, which is especially justified for small ∆tk. Then, after some calculation, one
obtains that π(Y k+1|Y k,Y k+2,θ) is approximately proportional to

exp
−∆t−1

k+1 + ∆t−1
k

2

Y ′k+1Σ(Y k,θ)−1Y k+1

−2Y ′k+1Σ(Y k,θ)−1
(
Y k+ Y k+2 − Y k

∆tk+1 + ∆tk
∆tk

).
The obtained expression is an unnormalised Gaussian density. The according proposal
for Y imp

(a,b) is to successively draw

Y ∗k+1 ∼ N
(
Y ∗k + Y k+2 − Y ∗k

tk+2 − tk
∆tk ,

tk+2 − tk+1

tk+2 − tk
Σ(Y ∗k ,θ)∆tk

)
(7.6)

for k = a, . . . , b− 2 and Y ∗a = Y a. The acceptance probability for a so-proposed path is

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

 b−1∏
k=a

πEuler
(
Y ∗k+1|Y ∗k ,θ

)
πEuler

(
Y k+1|Y k,θ

)
 qE2

(
Y imp

(a,b)

∣∣∣Y a,Y b,θ
)

qE2
(
Y imp∗

(a,b)

∣∣∣Y a,Y b,θ
)

with Y ∗b = Y b and proposal density

qE2

(
Y imp∗

(a,b)

∣∣∣∣Y a,Y b,Y
imp
(a,b),θ

)
=
b−2∏
k=a

qE2

(
Y ∗k+1

∣∣∣∣Y ∗k ,Y k+2,θ
)

=
b−2∏
k=a

φ
(
Y ∗k+1

∣∣∣∣Y ∗k + Y k+2 − Y ∗k
tk+2 − tk

∆tk ,
tk+2−tk+1

tk+2 − tk
Σ(Y ∗k ,θ)∆tk

)
.

For evenly spaced time intervals, i. e. tk = t0 + k∆t for some ∆t and all k = 1, . . . ,m, the
density qE2 simplifies to

qE2

(
Y ∗k+1

∣∣∣∣Y ∗k ,Y k+2,θ
)

= φ
(
Y ∗k+1

∣∣∣∣ 1
2
(
Y ∗k + Y k+2

)
,

1
2 Σ(Y ∗k ,θ)∆t

)
.

A possible variant of this Metropolis-Hastings update of Y imp
(a,b) is the following Metropolis-

within-Gibbs procedure: Starting with k = a, propose Y ∗k+1 as in (7.6) above. Immediately
after this proposal, accept or reject Y ∗k+1 with acceptance probability

ζ
(
Y ∗k+1,Y k+1

)
= 1 ∧

πEuler
(
Y k+2|Y ∗k+1,θ

)
πEuler

(
Y ∗k+1|Y ∗k ,θ

)
πEuler

(
Y k+2|Y k+1,θ

)
πEuler

(
Y k+1|Y ∗k ,θ

) qE2
(
Y k+1

∣∣∣Y ∗k ,Y k+2,θ
)

qE2
(
Y ∗k+1

∣∣∣Y ∗k ,Y k+2,θ
) ,
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where Y ∗a = Y a. Proceed similarly for k = a+ 1, . . . , b− 2. At the end, accept the entire
so-constructed path Y imp∗

(a,b) .

With both the pure Metropolis-Hastings and the Metropolis-within-Gibbs version of this
double-sided Euler proposal one obtains high acceptance rates as each proposed data point
only means a minor change. On the other hand, the proposed paths are quite stiff as
there is not much tolerance for major changes. This lack of flexibility is evident from
Figures 7.2 and 7.3 on pages 156 and 157, which display representative trajectories that
have successively been sampled from (7.6) without any intermediate acceptance or rejection.
The result is again slow convergence and high serial correlation of the elements of the
Markov chain.

The following proposals dispose of the difficulty of high dependency between Y imp
(a,b) and Y

imp∗
(a,b)

as they neglect the previously imputed data Y imp
(a,b). Instead, the attempt is to appropriately

bridge the gap between Y a and Y b. As it is generally not possible to exactly sample
diffusion bridges, that are diffusion processes conditioned on a starting and an end point,
the proposals are approximations to such processes.

Modified Bridge Proposal

A flexible way to propose a diffusion bridge is to condition the proposal distribution of Y ∗k+1
on the preceding value Y ∗k and on the right end point Y b of the path segment to be updated.
The resulting proposal (7.7) has been applied by Durham and Gallant (2002), though not
in a Bayesian framework, who call it the modified bridge. Chib and Shephard (2002) discuss
its utilisation in Bayesian analysis.

In analogy to the derivations for the double-sided Euler proposal above, regard
π(Y k+1|Y k,Y b,θ) ∝ π(Y b |Y k+1,θ)π(Y k+1|Y k,θ)

≈ φ(Y b |Y k+1 + µ(Y k+1,θ)∆+,Σ(Y k+1,θ)∆+)
· φ(Y k+1 |Y k + µ(Y k,θ)∆tk,Σ(Y k,θ)∆tk),

where ∆+ = tb − tk+1 is the distance between the right end point of the update inter-
val and the time point of the currently considered imputed value. The approximation
of π(Y b |Y k+1,θ) by the Euler density is rough unless ∆+ is small, and hence the length
of the interval [ta, tb] should not be chosen too large. As before, approximate µ(Y k+1,θ)
and Σ(Y k+1,θ) by µ(Y k,θ) and Σ(Y k,θ). Then π(Y k+1|Y k,Y b,θ) is approximately
proportional to

exp
−∆−1

+ + ∆t−1
k

2

Y ′k+1Σ(Y k,θ)−1
(
Y k+1 − 2

(
Y k+ Y b − Y k

∆+ + ∆tk
∆tk

)),
i. e. we again obtain a Gaussian density. The corresponding proposal for Y imp

(a,b) is to
iteratively draw

Y ∗k+1 ∼ N
(
Y ∗k + Y b − Y ∗k

tb − tk
∆tk ,

tb − tk+1

tb − tk
Σ(Y ∗k ,θ)∆tk

)
(7.7)
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for k = a, . . . , b− 2 and Y ∗a = Y a. The proposed path will be accepted with probability

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

 b−1∏
k=a

πEuler
(
Y ∗k+1|Y ∗k ,θ

)
πEuler

(
Y k+1|Y k,θ

)
 qMB

(
Y imp

(a,b)

∣∣∣Y a,Y b,θ
)

qMB
(
Y imp∗

(a,b)

∣∣∣Y a,Y b,θ
) ,

where Y ∗b = Y b and

qMB

(
Y imp∗

(a,b)

∣∣∣∣Y a,Y b,θ
)

=
b−2∏
k=a

qMB

(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)

=
b−2∏
k=a

φ
(
Y ∗k+1

∣∣∣∣Y ∗k + Y b − Y ∗k
tb − tk

∆tk ,
tb − tk+1

tb − tk
Σ(Y ∗k ,θ)∆tk

)
.

For equidistant time intervals with tk = t0 + k∆t, the proposal density reduces to

qMB
(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)

= φ

(
Y ∗k+1

∣∣∣∣Y ∗k + Y b − Y ∗k
b− k

,
b− k − 1
b− k

Σ(Y ∗k ,θ)∆t
)
.

Diffusion Bridge Proposal

Apart from the prefactor of the diffusion matrix, the modified bridge proposal (7.7) corre-
sponds to the Euler sampling scheme for the SDE

dX t = X tb −X t

tb − t
dt+ σ(X t,θ) dBt , X0 = x0, (7.8)

where σσ′ = Σ. This scheme has been applied by Chib et al. (2004) as a proposal for Y imp
(a,b),

i. e. they successively sample

Y ∗k+1 ∼ N
(
Y ∗k + Y b − Y ∗k

tb − tk
∆tk , Σ(Y ∗k ,θ)∆tk

)
(7.9)

for k = a, . . . , b− 2 and Y ∗a = Y a. Method (7.9) is termed diffusion bridge hereafter. The
so-obtained candidate Y imp∗

(a,b) is accepted with probability

ζ
(
Y imp∗

(a,b) ,Y
imp
(a,b)

)
= 1 ∧

 b−1∏
k=a

πEuler
(
Y ∗k+1|Y ∗k ,θ

)
πEuler

(
Y k+1|Y k,θ

)
 qDB

(
Y imp

(a,b)

∣∣∣Y a,Y b,θ
)

qDB
(
Y imp∗

(a,b)

∣∣∣Y a,Y b,θ
) ,

where Y ∗b = Y b and

qDB

(
Y imp∗

(a,b)

∣∣∣∣Y a,Y b,θ
)

=
b−2∏
k=a

qDB

(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)

=
b−2∏
k=a

φ
(
Y ∗k+1

∣∣∣∣Y ∗k + Y b − Y ∗k
tb − tk

∆tk , Σ(Y ∗k ,θ)∆tk
)
.

For equidistant time intervals with tk = t0 + k∆t, the proposal density equals

qDB
(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)

= φ

(
Y ∗k+1

∣∣∣∣Y ∗k + Y b − Y ∗k
b− k

, Σ(Y ∗k ,θ)∆t
)
.
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Remark. In this special case where the true process — satisfying the SDE (7.1) — and the
proposal process — satisfying (7.8) — coincide in their diffusion matrices, the acceptance
probability is available in explicit form by application of a generalisation of Girsanov’s
formula from Section 3.2.12. Let P̃θ be the law induced by (7.1) conditioned on X ta, X tb

and θ, and let Qθ be the law induced by (7.8). Then

ζ
(
X imp∗

(ta,tb),X
imp
(ta,tb)

)
= 1 ∧

dP̃θ
dQθ

(
X imp∗

(ta,tb)

)/dP̃θ
dQθ

(
X imp

(ta,tb)

), (7.10)

where X imp
(ta,tb) and X imp∗

(ta,tb) refer to continuous path segments on (ta, tb). Delyon and Hu
(2006) show that P̃θ is absolutely continuous with respect to Qθ (notation: P̃θ � Qθ) for
all θ ∈ Θ, i. e. the above Radon-Nikodym derivatives exist and are finite. In practice, a
time-discretisation of (7.10) is used. Similar considerations follow in Sections 7.3 and 7.4.

Gaussian and Student t Proposal

For one-dimensional diffusion processes, Elerian et al. (2001) suggest to find the mode y of
the Euler approximated log-density of Y imp

(a,b) given Ya and Yb, that is

y = argmax
Y imp

(a,b)

(
b−1∑
k=a

log πEuler
(
Yk+1

∣∣∣Yk,θ)
)
,

and to work with the Gaussian proposal

Y imp∗
(a,b) ∼ N

(
y,V (y)

)
, (7.11)

where V (y) is the negative inverse Hessian of the above density evaluated at y,

V (y) = −


∂2

b−1∑
k=a

log πEuler
(
Yk+1

∣∣∣Yk,θ)
∂Y imp

(a,b)∂Y
imp

(a,b)
′

∣∣∣∣∣∣∣∣∣∣∣
Y imp

(a,b)= y



−1

. (7.12)

The mode y can for example be computed by numerical schemes such as the Newton-
Raphson method. Naturally, the according proposal density is

qG
(
Y imp∗

(a,b)

∣∣∣Ya, Yb,θ) = φ
(
Y imp∗

(a,b)

∣∣∣y,V (y)
)
.

A major advantage of this proposal distribution is that it allows simultaneous sampling of
all components of Y imp∗

(a,b) . In case of thin tails of qG, Elerian et al. (2001) and Chib et al.
(2004) propose to replace the Gaussian by Student’s t distribution, resulting in the Student
t proposal

Y imp∗
(a,b) ∼ tν

(
y ,

ν − 2
ν

V (y)
)

(7.13)



7.1 Concepts of Bayesian Data Augmentation for Diffusions 155

with proposal density

qt
(
Y imp∗

(a,b)

∣∣∣Ya, Yb,θ)=
Γ
(
ν+b−a−1

2

)
|V (y)|− 1

2

Γ
(
ν
2

)
(π(ν − 2)) b−a−1

2

1+

(
Y imp∗

(a,b) −y
)′
V (y)−1

(
Y imp∗

(a,b) −y
)

ν − 2


− ν+b−a−1

2

,

where ν > 2 denotes the degrees of freedom and |A| is the determinant of a square matrix A.

Hurn et al. (2007, Section 2.5) point out that in practice the Hessian matrix in (7.12) might
computationally not be positive-definite and propose an appropriate numerical correction.

Other Proposals

Recent further approaches include the following: Delyon and Hu (2006) suggest to draw
path proposals from the Euler discretisation of the SDE

dX t =
(
µ(X t,θ) + X tb −X t

tb − t

)
dt+ σ(X t,θ) dBt , X0 = x0. (7.14)

The motivation of this choice is as follows: The proposed process should imitate the
behaviour of the original process satisfying the SDE (7.1) with an appropriate end point
condition as closely as possible. For µ ≡ 0 and σσ′ ≡ I, the SDE (7.14) describes a
Brownian bridge starting in X0 and ending in X tb , and (7.1) refers to Brownian motion.
Hence in that case the two SDEs induce the same law if the target SDE (7.1) is further
conditioned on the end point X tb .

For geometrically ergodic (Gilks et al., 1996, Chapter 3.3, G. Roberts & Rosenthal, 1997)
diffusions, Fearnhead (2008) introduces a mixture of the Euler proposal (7.5) and the
modified bridge proposal (7.7),

qF
(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)

= c1
(
1− e−c2∆◦

)
qE
(
Y ∗k+1

∣∣∣∣Y ∗k ,θ)+ e−c2∆◦qMB
(
Y ∗k+1

∣∣∣∣Y ∗k ,Y b,θ
)
,

where c1 and c2 are constants and ∆◦ = tb − tk+1. This construction puts large weight on
the Euler proposal for k close to a, and for k close to b it puts more weight on the modified
bridge proposal. For c1 = 1, the according proposal scheme is

Y ∗k+1 ∼ N (ηk,Λk)

with
ηk = Y ∗k +

((
1− e−c2∆◦

)
µ(Y ∗k ,θ) + e−c2∆◦Y b − Y ∗k

tb − tk

)
∆tk

and
Λk =

(
1− e−c2∆◦ ∆tk

tb − tk

)
Σ(Y ∗k ,θ)∆tk.
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Figure 7.2: 50 path proposals for the Ornstein-Uhlenbeck process (A.2) on the time interval [0, 1]
fulfilling the SDE dXt = −0.5dt+ dBt. All proposals are conditioned on X0 = 0 and X1 = 2. The
number of subintervals of [0, 1] is m = 10. In row-wise order, the paths are proposed according to
the Euler proposal (7.5), the double-sided Euler proposal (7.6), the modified bridge proposal (7.7),
the diffusion bridge proposal (7.9), the Gaussian proposal (7.11) and the Student t proposal (7.13).
The double-sided Euler proposal starts with a linear interpolation between X0 and X1 and then
iteratively conditions on the previously proposed path. The t proposal uses ν = 3 degrees of
freedom.
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Figure 7.3: 50 path proposals as in Figure 7.2, this time with m = 100 subintervals.
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Similarly, a respective mixture of the Euler proposal and the diffusion bridge proposal (7.7)
leads to

Y ∗k+1 ∼ N (ηk,Σ(Y ∗k ,θ)∆tk) .

That is the Euler discretisation of the SDE

dX t =
((

1− e−c2∆◦
)
µ(X t,θ) + e−c2∆◦X tb −X t

tb − t

)
dt+ σ(X t,θ) dBt , X0 = x0

(Suda, 2009). The proposal variants in this paragraph are not further considered in this
chapter as the previous ones already form a representative selection.

As an illustration, Figures 7.2 and 7.3 show path proposals for the Ornstein-Uhlenbeck
process, introduced in Section A.2, that are generated according to the above methods
for m = 10 and m = 100 intermediate time intervals. The different proposals are applied in
Section 7.1.7 in a simulation study to estimate the parameters of an Ornstein-Uhlenbeck
process. A discussion follows in Section 7.1.8.

7.1.3 Parameter Update

We now turn to the second of the two alternating steps in the scheme (7.2): the parameter
update. In most cases, direct sampling from the posterior distribution of the parameter θ
is impossible, thus once more the Metropolis-Hastings algorithm is utilised. To that end,
choose a suitable proposal distribution with density q for the parameter θ which may be
conditioned on the observed and imputed data Y obs and Y imp and on the current value of
the parameter. From this distribution, draw a parameter proposal θ∗ and accept it with
probability

ζ(θ∗,θ) = 1 ∧
π
(
θ∗
∣∣∣Y obs,Y imp

)
q
(
θ
∣∣∣θ∗,Y obs,Y imp

)
π
(
θ
∣∣∣Y obs,Y imp

)
q
(
θ∗
∣∣∣θ,Y obs,Y imp

) . (7.15)

Otherwise, reject the proposal θ∗ and keep the previous value θ. As in the path update,
one may decide to only update parts of the components of θ at a time. In that case,
the argument of the proposal density q might be adjusted respectively. However, the so-
obtained proposal density is proportional to the proposal density for the whole parameter.
Thus, we in the following denote by θ∗ the proposal for the entire parameter, even if some
components agree with the according parts of the previous value θ. With Bayes’ theorem,
the probability (7.15) becomes

ζ(θ∗,θ) = 1 ∧
π
(
Y obs,Y imp

∣∣∣θ∗)p(θ∗)q(θ ∣∣∣θ∗,Y obs,Y imp
)

π
(
Y obs,Y imp

∣∣∣θ) p(θ) q
(
θ∗
∣∣∣θ,Y obs,Y imp

)
= 1 ∧

m−1∏
k=0

pθ∗
(
∆tk,Y k,Y k+1

)
pθ
(
∆tk,Y k,Y k+1

)
 · p(θ∗)

p(θ) ·
q
(
θ
∣∣∣θ∗,Y obs,Y imp

)
q
(
θ∗
∣∣∣θ,Y obs,Y imp

) ,
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where p denotes the prior density of the parameter and pθ is the exact transition density
of the diffusion process given the model parameter. As in the path update, one can
approximate pθ with the Euler scheme since the time steps ∆tk are assumed to be small for
all k. Hence, in the following we employ the acceptance probability

ζ(θ∗,θ) = 1 ∧
m−1∏
k=0

πEuler
(
Y k+1

∣∣∣Y k,θ
∗
)

πEuler
(
Y k+1

∣∣∣Y k,θ
)
 · p(θ∗)

p(θ) ·
q
(
θ
∣∣∣θ∗,Y obs,Y imp

)
q
(
θ∗
∣∣∣θ,Y obs,Y imp

) (7.16)

for the parameter proposal θ∗. The prior density p may be proper or improper and usually
depends on the considered diffusion model. For improper priors one however has to ensure
that the joint posterior distribution of all parameters is well-defined. The choice of the
proposal density q is model-specific and discussed in the following.

Full Conditional Proposal

An often favoured choice of proposal density is the exact full conditional proposal

qeFC
(
θ
∣∣∣Y obs,Y imp

)
= π

(
θ
∣∣∣Y obs,Y imp

)
∝ p(θ)

m−1∏
k=0

pθ
(
∆tk,Y k,Y k+1

)
. (7.17)

If the normalising constant of this expression can be determined, one can perhaps sample
a proposal θ∗ from qeFC. However, as pθ is usually unknown, one may rather utilise the
approximate full conditional proposal

qaFC
(
θ
∣∣∣Y obs,Y imp

)
∝ p(θ)

m−1∏
k=0

πEuler
(
Y k+1

∣∣∣Y k,θ
)
, (7.18)

which possibly results in a known distribution. If the exact transition density pθ is available
and sampling from the exact full conditional proposal is performed, one can replace πEuler
by pθ in (7.16). Otherwise, Equation (7.16) remains unchanged. Hence, for both exact and
approximate full conditional proposals the acceptance probability is equal to one, i. e. Gibbs
sampling is performed.

Cano, Kessler, and Salmerón (2006) show the weak convergence of the approximate posterior
density to the true posterior under fairly general assumptions. They however also give an
example where the requirements are not fulfilled; that is the Ornstein-Uhlenbeck process
satisfying the SDE (7.20) displayed on page 165 with β = 0, σ2 = 1 and a non-informative
prior for α.

An example where both the exact and approximate full conditional densities can be obtained
and sampling from them is uncomplicated is shown in Section 7.1.7. If sampling from
neither qeFC nor qaFC is possible, different proposal schemes like the following one have to
be considered.
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Random Walk Proposal

A frequently used idea is a random walk proposal which is independent of the imputed
and observed data and works as follows: Without loss of generality, assume that for
some r ∈ {0, . . . , p} the components θ1, . . . , θr take values on the real line, and θr+1, . . . , θp
are strictly positive. For j = 1, . . . , r, simply propose

θ∗j ∼ N
(
θj, γ

2
j

)
for some predefined γj ∈ R+. Then

qRW
(
θ∗j
∣∣∣ θj) = φ

(
θ∗j
∣∣∣ θj, γ2

j

)
= φ

(
θ∗j − θj

∣∣∣ 0, γ2
j

)
.

For j = r + 1, . . . , p, draw
log θ∗j ∼ N

(
log θj, γ2

j

)
.

This corresponds to the log-normal distribution, i. e.

θ∗j ∼ LN
(
log θj, γ2

j

)
and

qRW
(
θ∗j
∣∣∣ θj) = 1

θ∗j
φ
(
log θ∗j

∣∣∣ log θj, γ2
j

)
= 1
θ∗j
φ
(
log(θ∗j/θj)

∣∣∣ 0, γ2
j

)
for j = r + 1, . . . , p. Altogether, one has

qRW(θ |θ∗)
qRW(θ∗|θ) =

 r∏
j=1

φ(θj − θ∗j | 0, γ2
j )

φ(θ∗j − θj | 0, γ2
j )

 p∏
j=r+1

θ∗j φ(log(θj/θ∗j ) | 0, γ2
j )

θj φ(log(θ∗j/θj) | 0, γ2
j )

.
Because of the symmetry of φ(z | 0, γ2) around z = 0, the functions φ cancel in this
expression. The acceptance probability (7.16) reduces to

ζ(θ∗,θ) = 1 ∧
m−1∏
k=0

πEuler(Y k+1

∣∣∣Y k,θ
∗)

πEuler(Y k+1

∣∣∣Y k,θ)

 · p(θ∗)
p(θ) ·

 p∏
j=r+1

θ∗j
θj

 .
The parameters γ2

j of the proposal distributions should be chosen deliberately: A small
variance usually causes higher acceptance rates; the resulting Markov chain may exhibit
high autocorrelation though. A large variance may induce many rejections, but the Markov
chain generally shows better mixing.

The above assumption about the components of θ being either real or positive applies in
most applications. However, generalisations are possible and often straightforward. For
example, if for some j the component θj is negative, consider −θj and proceed as above. In
case of θj ∈ [u, v], one might apply the generalised logit function and its inverse, that is

logit :
 [u, v] → R

x 7→ log
(
x− u
v − x

) and logit−1 :


R → [u, v]

y 7→ u+ (v − u) exp(y)
1 + exp(y) .

(7.19)
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Figure 7.4: Illustration of a one-dimensional path consisting of the initial value and M discrete
observations at times τ0, . . . , τM (labelled with crosses) and imputed data (labelled with circles).

With this,
θ∗j ∼ logit−1

(
N
(
logit(θj), γ2

j

))
would be an appropriate proposal. Furthermore, all proposals can certainly be extended
by introducing dependencies between the single components of θ. The update of the
parameters can also be performed blockwise, i. e. the components of θ are devided into
subsets which are proposed and accepted or rejected separately. This may lead to better
mixing, but the repeated evaluation of the acceptance probability also implies an additional
computational effort. Such strategies are not treated here.

A simulation study and evaluation of the three parameter proposals introduced above
follows in Sections 7.1.7 and 7.1.8.

7.1.4 Generalisation to Several Observation Times

As argued in Section 7.1.1, the imputation concepts considered so far are easily extendable
to the general case where more observations are available than just the starting and the end
point of a sample path of a diffusion process. Suppose there are — in addition to the initial
value xτ0 — M complete observations xτ1 , . . . ,xτM at times 0 = τ0 < τ1 < . . . < τM = T .
For i = 0, . . . ,M−1, divide each inter-observation interval [τi, τi+1] into mi sufficiently small
subintervals with boundaries τi = ti,0 < ti,1 < . . . < ti,mi−1 < ti,mi = τi+1. Impute auxiliary
data at the newly introduced time points. In the following, observations on [τi, τi+1] are
labelled Y i,0 = xτi and Y i,mi = xτi+1 , and the imputed data is referred to as Y i,1, . . . ,Y i,mi−1.
Thus, one has observed data Y obs = {Y 0,0,Y 1,0, . . . ,YM−1,0,YM−1,mM−1} and overall im-
puted data Y imp = {Y i,1, . . . ,Y i,mi−1 | i = 0, . . . ,M − 1}. This notation is illustrated in
Figure 7.4.
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The update scheme (7.2) is adapted to the generalised setting as follows: The likelihood of
the entire discretely observed diffusion path changes to

M−1∏
i=0

mi−1∏
k=0

pθ
(
ti,k+1 − ti,k,Y i,k,Y i,k+1

)
≈

M−1∏
i=0

mi−1∏
k=0

πEuler
(
Y i,k+1

∣∣∣Y i,k,θ
)

and is to be deployed accordingly in all occurring acceptance probabilities. In case an
interval (ta, tb) contains one or more observation times τi, . . . , τj , a path proposal on (ta, tb)
decomposes into independent path proposals on (ta, τi), (τi, τi+1), . . . , (τj, tb) with the data at
times ta, τi, τi+1, . . . , τj, tb remaining fixed. These proposals are either collectively accepted
or rejected.

7.1.5 Generalisation to Several Observed Diffusion Paths

Assume one has K ∈ N independent observation sets Xobs,1, . . . ,Xobs,K of a diffusion
process fulfilling the SDE

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt , X t0 = x0,

with identical parameter θ ∈ Θ. This is for example the case in the application in Chapter 9
where a biological experiment is carried out several times under the same conditions
and hence there are multiple series of observations of the same dynamics available. The
observation sets may differ with respect to the numbers of observations, observation times
and lengths of inter-observation intervals. In this case, each observation set should be
augmented with auxiliary data at appropriate auxiliary time points, and inference on θ can
be performed by repeated execution of

Update of Path 1: Draw X imp,1 ∼ π
(
X imp,1

∣∣∣Xobs,1,θ
)
.

...
Update of Path K: Draw X imp,K ∼ π

(
X imp,K

∣∣∣Xobs,K ,θ
)
.

Update of Parameter: Draw θ ∼ π
(
θ
∣∣∣Xobs,1,X imp,1, . . . ,Xobs,K ,X imp,K

)
.

Due to the assumption of independent paths, one has

π
(
θ
∣∣∣Xobs,1,X imp,1, . . . ,Xobs,K ,X imp,K

)
∝ p(θ)

K∏
h=1

π
(
Xobs,h,X imp,h

∣∣∣θ)
in the last step.

7.1.6 Practical Concerns

For the implementation of the considered MCMC scheme, some further issues have to be
considered. These are the choice of the update interval, the number of auxiliary time points,
and the handling of path proposals which lie outside the admissible state space.
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Choice of Update Interval

Selection of the update interval (ta, tb) in whose interior the imputed data is to be renewed
may be of high relevance. Path updates on intervals containing large numbers of imputed
data points cause major changes and may speed up convergence of the Markov chain. On
the other hand, proposals for large data sets are more likely to be rejected. Furthermore,
the modified bridge proposal is a good approximation to the path segment only if (ta, tb) is
not too large.

Assume we have S + 1 observed or imputed consecutive data points Y 0,Y 1, . . . ,Y S and
we wish to bound the number of updated data points for each iteration by R ≤ S − 1. As
before, let the update interval (a, b) correspond to a proposal for {Y a+1, . . . ,Y b−1}. The
term update refers to both accepted and rejected proposals here. An obvious procedure to
draw (a, b) with a, b ∈ {0, . . . , S} and 2 ≤ b− a ≤ R + 1 is the following:
Algorithm 7.1.

1. Draw a ∼ U({0, . . . , S − 2}).

2. Draw b ∼ U({a+ 2, . . . ,min{a+R + 1, S}}).

However, the sampling algorithm for (a, b) should ensure that all data points Y 1, . . . ,Y S−1
have the same probability to be updated; Algorithm 7.1 discriminates data points Y j

with j close to 0 or S as there are fewer intervals (a, b) fullfilling the above requirements
at the boundaries than in the centre of (0, S). A more detailed reasoning is included in
Section B.3 in the appendix. A corrected algorithm, proposed by this thesis, is the following.
Section B.3 provides the proof that with this algorithm the probability to be updated is
the same for all Y 1, . . . ,Y S−1.
Algorithm 7.2.

1. Draw a∗ ∼ U({1−R, . . . , S − 2}).

2. Draw b∗ ∼ U({a∗ + 2, . . . ,min{a∗ +R + 1, S +R− 1}}).

3. Set a = max{a∗, 0} and b = min{b∗, S}.

4. In case of b− a < 2, repeat the above steps.

Alternatively, Elerian et al. (2001) suggest a blockwise update of the entire data Y 1, . . . ,Y S−1
with proposals for adjacent blocks with Poisson distributed sizes for some fixed intensity
parameter λ ∈ R+:
Algorithm 7.3.

1. Set c0 = 0 and j = 1.

2. While cj−1 < S:

i. Draw Z ∼ Po(λ) and set cj = min{cj−1 + Z, S}.

ii. Increment j.
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The path is then successively updated on (tc0 , tc1), (tc1 , tc2) etc. The individual proposals
are independently accepted or rejected.

The decision whether to employ Algorithm 7.2 or 7.3 is problem-specific. Algorithm 7.3
updates the sample path more rigorously but is therefore more time-consuming than
Algorithm 7.2. The choice might hence depend on the amount of imputed data or the
severeness of measurement error (cf. Section 7.2.2). The simulation study in Section 7.1.7
uses Algorithm 7.3 as the subsequent evaluation includes the calculation of inefficiency
factors; this is meaningful only if in each iteration of the MCMC scheme all data points are
investigated.

Sampling Strategy

The number mi of subintervals between every two consecutive observations at times τi
and τi+1, i = 0, . . . ,M − 1, crucially influences the estimation results. A small number of
intermediate time points degrades the accuracy of the Euler approximation (7.3) to the true
posterior density and may hence cause a discretisation bias. Large numbers of auxiliary
time points, on the other hand, are computationally costly. Hence, the numbers mi of
subintervals should be chosen both sufficiently large and sustainably small. In general, they
will be identified empirically.

Eraker (2001) suggests to start with small mi and to subsequently increase these numbers
after convergence of the Markov chain has been achieved. This procedure is pursued until
further increases of mi have negligible impact on the estimation results.

However, too large amounts of imputed data can also deteriorate the behaviour of the
whole procedure. Section 7.3 deals with the convergence of the constructed Markov chains
as the mi tend to infinity.

Validity of Path Proposals

The random walk proposal for the parameter update in Section 7.1.3 automatically generates
proposals from the parameter space Θ. For the path update in Section 7.1.2, however, there
is no guarantee that the path proposals maintain the boundaries of the state space. There
are two general solutions to this problem:

The first possibility is to consider transformations of the process such that the transformed
sample paths are unrestricted. An SDE describing the transformed process can be obtained
using Itô’s formula, which was provided in Section 3.2.10. For example, Elerian et al.
(2001) consider the logarithm of the one-dimensional Cox-Ingersoll-Ross process, which has
non-negative state space and is introduced in Section A.3 in the appendix.

An alternative solution to these possibly complicated calculations is to include an appropriate
indicator function in the acceptance probability of the path proposal, i. e. invalid proposals
are simply rejected.
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7.1.7 Example: Ornstein-Uhlenbeck Process

In this section, the implementation of the above methodology is illustrated on the example of
a specific diffusion. Consider the one-dimensional Ornstein-Uhlenbeck process X = (Xt)t≥0
which is described by the SDE

dXt = α(β −Xt)dt+ σdBt , X0 = x0, (7.20)

for parameters β ∈ R, α, σ2 ∈ R+ and initial value x0 ∈ R. The solution of this process is
a Gaussian process, i. e. the exact transition density is available. A detailed description
of the Ornstein-Uhlenbeck process is included in Section A.2 in the appendix. The full
conditional densities of the parameters are given in what follows. To the author’s best
knowledge, these have not been published before. Complete derivations are provided in
Section B.4 in the appendix.

Be aware that in case of improper or partially improper prior distributions it is not
guaranteed that the joint posterior density of all parameters is proper even if the full
conditional densities are. Hence an analysis of the joint posterior should precede the
application of the full conditional distributions in an MCMC algorithm. Section B.4
investigates in which cases the posterior density is proper. It turns out that for fixed α ∈ R+
this is true even for flat priors for β and σ2.

Exact Full Conditional Proposal

Assume we have observed or imputed data Y0, Y1, . . . , Ym at time points t0, t1, . . . , tm. Since
the transition density of the Ornstein-Uhlenbeck process is explicitly known, the full
conditional densities of the model parameters α, β and σ2 can immediately be written in
an unnormalised form. For β and σ2, these are of the following types: For flat priors

p(β) ∝ 1 for β ∈ R and p(σ2) ∝ 1 for σ2 ∈ R+, (7.21)

one has

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

,

σ2

2α
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

 ,

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 − 1 , α
m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1− e−α∆tk

))2

1− e−2α∆tk

 .
For conjugate priors

β ∼ N
(
β0, ρ

2
β

)
and σ2 ∼ IG

(
κ0, ν0

)
(7.22)
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with hyperparameters β0 ∈ R and ρβ, κ0, ν0 ∈ R+, one obtains

β
∣∣∣α, σ2, Y0, . . . , Ym∼N


σ2β0

2αρ2
β

+
m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

σ2

2αρ2
β

+
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

,

σ2

2α
σ2

2αρ2
β

+
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

, (7.23)

σ2
∣∣∣α, β, Y0, . . . , Ym∼ IG

m2 +κ0 , ν0+α
m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1−e−α∆tk

))2

1− e−2α∆tk

, (7.24)
where IG denotes the inverse gamma distribution (see the notation tables on pages 391 ff.).
For ρβ =∞, κ0 = −1 and ν0 = 0, this corresponds to the results above for the flat priors.
The full conditional density of α,

π
(
α
∣∣∣ β, σ2, Y0, . . . , Ym

)
∝

p(α)αm/2 exp

− α

σ2

m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1− e−α∆tk

))2

1− e−2α∆tk


m−1∏
k=0

√
1− e−2α∆tk

,

cannot be recognised to be of any standard distribution type. Naturally, as β and σ2 are a
priori independent in both (7.21) and (7.22), the above posterior distributions remain valid
if a mix of flat and conjugate priors is chosen. Full derivations of the posterior densities are
included in Section B.4 in the appendix.

Approximate Full Conditional Proposal

In the general case, where the transition density of the diffusion process is not available,
approximate full conditional densities may be employed instead. These are for the Ornstein-
Uhlenbeck process as follows: For flat priors

p(α) ∝ 1 for α ∈ R+, p(β) ∝ 1 for β ∈ R, p(σ2) ∝ 1; for σ2 ∈ R+,

one has

α
∣∣∣ β, σ2, Y0, . . . , Ym ∼ Ntrunc


m−1∑
k=0

(Yk+1 − Yk)(β − Yk)

m−1∑
k=0

(β − Yk)2∆tk
,

σ2

m−1∑
k=0

(β − Yk)2∆tk

,

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


Ym − Y0

α
+

m−1∑
k=0

Yk∆tk

tm − t0
,

σ2

α2(tm − t0)

,

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 − 1 , 1
2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk

,
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where Ntrunc denotes the normal distribution truncated at zero, which generates Gaussian
random numbers on the positive real line (see also the notation tables on pages 391 ff.).
The conjugate priors

α ∼ Ntrunc
(
α0, ρ

2
α

)
, β ∼ N

(
β0, ρ

2
β

)
, σ2 ∼ IG

(
κ0, ν0

)
lead to

α
∣∣∣ β, σ2, Y0, . . . , Ym∼Ntrunc


ρ2
α

m−1∑
k=0

(Yk+1 − Yk)(β − Yk) + α0σ
2

ρ2
α

m−1∑
k=0

(β − Yk)2∆tk + σ2
,

σ2ρ2
α

ρ2
α

m−1∑
k=0

(β − Yk)2∆tk + σ2

,

β
∣∣∣α, σ2, Y0, . . . , Ym∼N


α2ρ2

β

(
Ym−Y0

α
+
m−1∑
k=0

Yk∆tk
)

+σ2β0

α2ρ2
β(tm−t0)+σ2 ,

σ2ρ2
β

α2ρ2
β(tm − t0) + σ2

, (7.25)

σ2
∣∣∣α, β, Y0, . . . , Ym∼ IG

m2 + κ0 , ν0 + 1
2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk

. (7.26)

Setting ρα =∞, ρβ =∞, κ0 = −1 and ν0 = 0 in these formulas yields the full conditional
densities which were obtained using flat priors. Again, the calculations of these posterior
densities are provided in Section B.4.

Random Walk Proposal Densities

Assume that the current value of the parameter is θ = (α, β, σ2)′. Due to the range of
admissible values for the parameter components, the following random walk proposals are
apparent: Draw

logα∗ ∼ N
(
logα, γ2

α

)
β∗ ∼ N

(
β, γ2

β

)
(7.27)

log σ2∗ ∼ N
(
log σ2, γ2

σ

)
(7.28)

for some predefined positive constants γα, γβ and γσ. The acceptance probability for a
so-obtained proposal θ∗ = (α∗, β∗, σ2∗)′ is

ζ(θ∗,θ) = 1 ∧
m−1∏
k=0

πEuler(Y k+1

∣∣∣Y k,θ
∗)

πEuler(Y k+1

∣∣∣Y k,θ)

 · p(θ∗)
p(θ) ·

α∗σ2∗

ασ2 .

Simulation Study

In the following, we generate exact discrete realisations {xτ1 , . . . , xτM} of the Ornstein-
Uhlenbeck process at times τ1, . . . , τM given the parameter θ = (α, β, σ2)′ = (0.5, 0.9, 1)′
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and the initial value x0 = 0. Given the observed data, we apply the estimating schemes
described in this section in order to infer on θ. All functions have been implemented in R.

To be more precise, in all experiments the employed dataset is a subset of the discretely
sampled diffusion path displayed in Figure 7.5. Inter-observation intervals are chosen evenly
spaced, i. e. τi = i/M for i = 0, . . . ,M . Each interval [τi, τi+1] is then again partitioned
into m equidistant intervals with boundaries ti,j = (i + j/m)/M for i = 0, . . . ,M − 1
and j = 0, . . . ,m.

The parameter α = 0.5 is considered known whilst β and σ2 are supposed unknown. The
synthetic data setting, however, allows for comparison of simulation results with the true
parameter values β = 0.9 and σ2 = 1.

For the path and parameter proposals, all considered approaches are studied. Their
abbreviations and repective formulas are summarised in Table 7.1. For β and σ2, the
conjugate priors (7.22) with β0 = 0, ρ2

β = 1 and κ0 = ν0 = 3 are applied. The a priori
expectations and variances of the parameters are thus E(β) = 0, Var(β) = 1, E(σ2) = 1.5
and Var(σ2) = 2.25.

The estimation procedure performs the following steps:

1. Initialise Y imp by linear interpolation.

2. Draw initial values for β and σ2 from (7.22) with β0 = 0, ρ2
β = 1 and κ0 = ν0 = 3.

3. Repeat the following steps 105 times:

Path update:

(i) Choose an interval (ta, tb) using Algorithm 7.3 with λ = 5.

(ii) Draw a proposal Y imp∗
(a,b) according to the investigated method; accept or

reject.

Parameter update:
If full conditional proposals are applied:

(i) Draw a proposal β∗ (conditioned on the current σ2) and accept.

(ii) Draw a proposal σ2∗ (conditioned on the new β∗) and accept.

If random walk proposals are applied:

(i) Draw a proposal β∗ with γβ = 0.5.

(ii) Draw a proposal σ2∗ with γσ = 0.5.

(iii) Accept both or none.

Results for T = 25, M = 25 and m = 2 are shown in Figures 7.6 to 7.11. Figures 7.12
to 7.17 display results for T = 25, M = 25 and m = 10. These are summarised in Tables 7.2
to 7.5 and Figure 7.19. A discussion follows in Section 7.1.8.
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Abbreviation Path Proposal Y imp
(a,b)

E Euler (7.5)
E2-MH Double-sided Euler (Metropolis-Hastings) (7.6)
E2-MG Double-sided Euler (Metropolis-within-Gibbs) (7.6)
MB Modified Bridge (7.7)
DB Diffusion Bridge (7.9)
G Gaussian (7.11)
t Student t (7.13)

Abbreviation Parameter Proposal β σ2

eFC Exact Full Conditionals (7.23) (7.24)
aFC Approximate Full Conditionals (7.25) (7.26)
RW Random Walk (7.27) (7.28)

Table 7.1: Abbreviations and formulas for parameter and path proposals used for the parameter
estimation in Figures 7.6 to 7.20 and Tables 7.2 to 7.5. The parameter priors are chosen as
in (7.22). Hyperparameters are β0 = 0, ρ2

β = 1 and κ0 = ν0 = 3.
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Figure 7.5: Exactly sampled diffusion path at times 0, 0.1, 0.2, . . . , 25 of an Ornstein-Uhlenbeck
process satisfying (7.20) with parameter θ = (0.5, 0.9, 1)′. The estimation results in this section
condition on subsets of these observations.
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Figure 7.6: Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as described
on pages 167 to 168. The MCMC scheme conditions on observed data at times 0, 1, . . . , 25 and
introduces m = 2 subintervals in between every two observations. This figure shows the trace
plots of β. The Markov chains have length 105 but have been thinned by factor 50. The true
value for β equals 0.9 and is indicated by the red horizontal line. Abbreviations for the path and
parameter proposals are listed in Table 7.1.
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Figure 7.7: Estimation results as described in Figure 7.6. This figure shows the trace plots
for σ2. The true parameter value for σ2 equals 1 and is indicated by the red horizontal line.
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Figure 7.8: Estimation of the posterior density of β based on the results from Figure 7.6. Density
estimation takes into account the full Markov chain, i. e. without thinning, after having discarded
a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.9: Estimation of the posterior density of σ2 based on the results from Figure 7.7.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.10: Autocorrelation plots for β based on the results from Figure 7.6. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.11: Autocorrelation plots for σ2 based on the results from Figure 7.7. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.12: Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as in Figure 7.6,
this time introducing m = 10 subintervals in between every two observations. This figure shows
the trace plots of β. The Markov chains have length 105 but have been thinned by factor 50. The
true value for β equals 0.9 and is indicated by the red horizontal line.
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Figure 7.13: Estimation results as described in Figure 7.12. This figure shows the trace plots
for σ2. The true parameter value equals σ2 = 1 and is indicated by the red horizontal line.
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Figure 7.14: Estimation of the posterior density of β based on the results from Figure 7.12.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.15: Estimation of the posterior density of σ2 based on the results from Figure 7.13.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.16: Autocorrelation plots for β based on the results from Figure 7.12. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.17: Autocorrelation plots for σ2 based on the results from Figure 7.13. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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eFC aFC RW

E β : 0.84, (-0.01,1.71)
σ2: 1.45, ( 0.66,2.45)

β : 0.89, (0.20,1.59)
σ2: 0.87, (0.48,1.35)

β : 0.89, (0.20,1.58)
σ2: 0.87, (0.47,1.34)

E2-MH β : 0.84, (-0.02,1.70)
σ2: 1.44, ( 0.65,2.44)

β : 0.90, (0.19,1.58)
σ2: 0.87, (0.47,1.35)

β : 0.89, (0.19,1.57)
σ2: 0.87, (0.47,1.36)

E2-MG β : 0.84, (-0.02,1.71)
σ2: 1.44, ( 0.65,2.44)

β : 0.89, (0.22,1.61)
σ2: 0.87, (0.47,1.34)

β : 0.90, (0.22,1.61)
σ2: 0.87, (0.46,1.35)

MB β : 0.84, (-0.03,1.69)
σ2: 1.43, ( 0.66,2.44)

β : 0.89, (0.20,1.59)
σ2: 0.87, (0.47,1.35)

β : 0.90, (0.20,1.58)
σ2: 0.88, (0.48,1.37)

DB β : 0.84, (-0.02,1.71)
σ2: 1.45, ( 0.65,2.46)

β : 0.89, (0.19,1.58)
σ2: 0.87, (0.47,1.35)

β : 0.89, (0.19,1.58)
σ2: 0.87, (0.48,1.38)

G β : 0.92, (0.29,1.55)
σ2: 0.70, (0.44,1.00)

β : 0.94, (0.38,1.49)
σ2: 0.55, (0.35,0.77)

β : 0.94, (0.38,1.48)
σ2: 0.55, (0.35,0.77)

t β : 0.93, (0.35,1.53)
σ2: 0.62, (0.40,0.87)

β : 0.95, (0.41,1.48)
σ2: 0.50, (0.32,0.69)

β : 0.94, (0.43,1.47)
σ2: 0.50, (0.33,0.70)

Table 7.2: Estimation results as in Figures 7.6 and 7.7 with T = 25, M = 25 and m = 2. This
table displays the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase. The
latter are computed according to M.-H. Chen and Shao (1999). The true values of the parameters
are β = 0.9 and σ2 = 1. The hpd intervals are also shown in Figure 7.19 on page 185.

eFC aFC RW

E β : 0.80, (-0.14,1.73)
σ2: 1.77, ( 0.77,3.08)

β : 0.88, (0.15,1.63)
σ2: 1.02, (0.53,1.58)

β : 0.88, (0.14,1.63)
σ2: 1.05, (0.56,1.65)

E2-MH β : 0.79, (-0.16,1.74)
σ2: 1.86, ( 0.76,3.30)

β : 0.88, (0.14,1.62)
σ2: 1.01, (0.54,1.55)

β : 0.89, (0.11,1.61)
σ2: 1.00, (0.55,1.56)

E2-MG β : 0.80, (-0.13,1.74)
σ2: 1.79, ( 0.78,3.10)

β : 0.88, (0.12,1.60)
σ2: 1.02, (0.55,1.58)

β : 0.87, (0.12,1.63)
σ2: 1.02, (0.53,1.55)

MB β : 0.80, (-0.14,1.74)
σ2: 1.81, ( 0.78,3.12)

β : 0.88, (0.12,1.61)
σ2: 1.01, (0.56,1.58)

β : 0.88, (0.14,1.62)
σ2: 1.00, (0.52,1.55)

DB β : 0.80, (-0.14,1.74)
σ2: 1.81, ( 0.78,3.13)

β : 0.88, (0.12,1.62)
σ2: 1.02, (0.55,1.57)

β : 0.87, (0.13,1.64)
σ2: 1.04, (0.57,1.58)

G β : 1.00, (0.68,1.32)
σ2: 0.17, (0.14,0.20)

β : 1.00, (0.69,1.31)
σ2: 0.16, (0.13,0.19)

β : 1.00, (0.72,1.31)
σ2: 0.16, (0.13,0.19)

t β : 1.01, (0.73,1.29)
σ2: 0.13, (0.11,0.16)

β : 1.01, (0.73,1.28)
σ2: 0.13, (0.10,0.15)

β : 1.01, (0.74,1.28)
σ2: 0.13, (0.11,0.15)

Table 7.3: Estimation results as in Figures 7.12 and 7.13 with T = 25, M = 25 and m = 10.
This table displays the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase.
The true values of the parameters are β = 0.9 and σ2 = 1. The hpd intervals are also shown in
Figure 7.19 on page 185.
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Figure 7.18: Inefficiency factors for imputed data generated by the MCMC scheme as described
in the simulation study on pages 167 to 168. The estimation procedure conditions on observed
data at times 0 and 1 and introduces m = 10 subintervals in between these two observations.
This figure shows the inefficiency factor ι(Yk) for k = 1, . . . ,m − 1 as described in Section B.5,
where t0 = 0 and tm = 1. The Markov chains have length 105 less a discarded burn-in phase
of 10%.
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eFC aFC RW

E m = 2 : 62%
m = 10: 46%

m = 2 : 57%
m = 10: 44%

m = 2 : 57%
m = 10: 45%

E2-MH m = 2 : 88%
m = 10: 67%

m = 2 : 88%
m = 10: 67%

m = 2 : 88%
m = 10: 67%

E2-MG m = 2 : 92%
m = 10: 98%

m = 2 : 92%
m = 10: 98%

m = 2 : 92%
m = 10: 98%

MB m = 2 : 88%
m = 10: 97%

m = 2 : 88%
m = 10: 97%

m = 2 : 88%
m = 10: 97%

DB m = 2 : 79%
m = 10: 72%

m = 2 : 79%
m = 10: 72%

m = 2 : 79%
m = 10: 72%

G m = 2 : 53%
m = 10: 37%

m = 2 : 53%
m = 10: 37%

m = 2 : 53%
m = 10: 37%

t m = 2 : 52%
m = 10: 36%

m = 2 : 52%
m = 10: 36%

m = 2 : 52%
m = 10: 36%

Table 7.4: Acceptance rates for the path update corresponding to the experiments in Figures 7.6,
7.7, 7.12 and 7.13.

RW

E m = 2 : 29%
m = 10: 16%

E2-MH m = 2 : 29%
m = 10: 16%

E2-MG m = 2 : 29%
m = 10: 16%

MB m = 2 : 29%
m = 10: 16%

DB m = 2 : 29%
m = 10: 16%

G m = 2 : 25%
m = 10: 9%

t m = 2 : 25%
m = 10: 8%

Table 7.5: Acceptance rates for the random walk parameter update corresponding to the Markov
chains displayed in Figures 7.6, 7.7, 7.12 and 7.13. The acceptance rates for the exact and
approximate full conditional proposals are 100% due to the construction of the algorithm.
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7.1.8 Discussion

In this section, a variety of path and parameter proposals were introduced as modules
in the general MCMC scheme (7.2) to alternately estimate the model parameter and
imputed sample path of a diffusion process. To the author’s knowledge, there is no such
comprehensive comparison in the literature. The different proposals were applied to infer
on the parameters of an Ornstein-Uhlenbeck process whose solution is available in explicit
form. The evaluation of each proposal technique is the objective of the following.

To begin with, consider the seven different path proposal schemes from Section 7.1.2; these
are the Euler proposal, the double-sided Euler proposal (in a Metropolis-Hastings and
a Metropolis-within-Gibbs version), the modified bridge proposal, the diffusion bridge
proposal, the Gaussian proposal and the Student t proposal. The most important criterion
to rate an estimation scheme is certainly to consider whether the parameter estimates
approximately match the true values. In short, the Euler proposal, double-sided Euler
proposal (in both versions), modified bridge proposal and diffusion bridge proposal yield
satisfying estimation results with respect to the obtained 95% highest probability density

ββ
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Figure 7.19: 95% highest probability density intervals for β (left) and σ2 (right) as displayed in
Tables 7.2 and 7.3.



186 7. Bayesian Inference for Diffusions with Low-frequency Observations

intervals. The Gaussian and Student t proposals, on the other hand, fail on exactly this
account as they obviously do not correctly estimate the parameters of the diffusion coefficient
in the considered example. This is apparent in Figure 7.19.

A further issue is the investigation of the acceptance rates for the path and parameter
update which are listed in Tables 7.4 and 7.5. For m = 10, these are apprehensively low
for the random walk parameter update in combination with the Gaussian and Student t
proposals. The acceptance rates for the other path proposal schemes seem inconspicuous yet
but should possibly be further evaluated for higher amounts of imputed data. In particular,
the rates for the Euler proposal are expected to further decrease as m increases as this
proposal distribution does not condition on the end point of the path segment.

There remains the question why the Gaussian and Student t proposals perform so poorly
although the simulated paths in Figures 7.2 and 7.3 on pages 156 and 157 do not appear
to substantially differ from those obtained with the modified or diffusion bridge proposal.
Empirical investigations yield that within the MCMC procedure, the Gaussian and Student t
proposals seem to be unable to reproduce the shape of a diffusion path. This is illustrated
in Figure 7.20 under consideration of one characteristic property of diffusion paths: the
quadratic variation. This attribute was introduced in Section 3.2.6 for time-continuous
data. In the present situation, we estimate the quadratic variation of the discrete skeleton
Y = {Y0, . . . , YK} of the Ornstein-Uhlenbeck process as

〈̂Y, Y 〉[0,T ] =
K−1∑
i=0

(
Yi+1 − Yi

)2
. (7.29)

If the grid of time points is sufficiently fine, one should obtain 〈̂Y, Y 〉[0,T ]/T ≈ σ2 = 1
for σ2 = 1. The left column of Figure 7.20 shows trace plots of the quadratic variation of
the diffusion paths obtained with the usual MCMC scheme considered in this chapter so
far, where T = 1, M = 10 and m = 10. In a second experiment, the MCMC algorithm
was modified such that the parameter θ is fixed to its true value and only the imputed
data is updated. The resulting trace plots of the quadratic variation are shown in the
middle column. The last column shows the quadratic variation of a series of diffusion path
proposals conditioned on the true parameter value without any accept/reject mechanism.
Apparently, the Gaussian and Student t proposals do in fact propose diffusion paths that
match the required quadratic variation. However, these paths seem to generally be rejected
in the MCMC procedure even when they are conditioned on the true model parameter.

As these are empirical results, the Gaussian and Student t proposals may work better for
different models like those considered in Elerian et al. (2001). In any case, the experiments
in that paper are not comparable to the simulation study here with respect to the numbers
of observations, which are 500 in Elerian et al. (2001) and 25 here. However, there are
other reasons speaking against the Gaussian and Student t proposals: Chib and Shephard
(2002) already point out the computational cost which is necessary to search for the mode
of the Gaussian or t distribution for large numbers of missing data points. In fact, even in
the relatively simple simulation study in Section 7.1.7, these two approaches turned out
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Figure 7.20: Trace plots of quadratic variation (7.29) of discretely sampled diffusion paths
obtained by three different experiments. Left: By application of the MCMC scheme as described
in the simulation study for unknown β and σ2 with T = 1, M = 10 and m = 10. Middle: By
application of the same MCMC scheme, but for known β and σ2. Right: By proposing paths
conditional on the true value of θ but without any accept/reject mechanism. All Markov chains
have length 105 but have been thinned by factor 50. The true value of the quadratic variation
equals 1 and is indicated by the red horizontal line.
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to be computationally much more costly than other proposal schemes. In the context of
importance sampling, by the way, Eraker (2002) notices that the Gaussian proposal does
generally not meet the regularity conditions which are required for the convergence of the
related SMLE scheme in Section 6.3.3.

Now consider the remaining five path proposal schemes, that are the Euler proposal, double-
sided Euler proposal (two versions), modified bridge proposal and diffusion bridge proposal.
Figures 7.10, 7.11, 7.16 and 7.17 show autocorrelation plots for the parameters β and σ2.
Figure 7.18 displays the inefficiency factors of the serially correlated imputed data; see
Section B.5 in the appendix for details on inefficiency factors. The modified bridge and
diffusion bridge proposals show best performance concerning the autocorrelation of both
the parameter and the imputed data. Thereby, the modified bridge proposal seems to work
slightly better. It hence emerges from the simulation study as the first choice of a path
proposal scheme.

For the update of the model parameter, three different proposal schemes were considered
in Section 7.1.3: the exact full conditional proposal, the approximate full conditional
proposal, and the random walk proposal. The first one comes into question only if the
transition density of the considered diffusion process is known in closed form; in practice,
this is seldomly the case, and hence this proposal cannot generally be selected. Moreover,
even if the transition density was tractable and the full conditional densities could be
determined up to a normalising constant, this would be of practical use only if one was able
to generate random variates from this density. In Section 7.1.7, the exact full conditional
densities of the parameters β and σ2 could be associated with a normal and inverse gamma
distribution, respectively. The full conditional distribution of the parameter α, however,
was not recognised to be of any standard distribution type.

The approximate full conditional density can be computed for all diffusion processes up to
the normalising constant. The above comments on the practical usability, however, apply
here as well: There is no benefit of the approximate full conditional density kernel unless a
possibility to sample from it is at hand. Furthermore, the calculations on pages 165 to 167
and in Section B.4 in the appendix show that the derivation of both the exact and the
approximate full conditional densities can be quite elaborate even for a fairly standard
diffusion process.

The random walk proposal, in contrast, is always available, easy to implement and not
problem-specific apart from the domain of the parameter.

The approximate full conditional proposal and the random walk proposal yield similar
posterior means for the parameters in Tables 7.2 and 7.3 and highest probability density
(hpd) intervals in Figure 7.19. For all but the Gaussian and Student t path updates, these
posterior means match the true parameter values quite well for m = 10. The exact full
conditional proposal, on the other hand, underestimates β, overestimates σ2 and produces
fairly large hpd intervals unless it is combined with the Gaussian or Student t proposal.
Therefore, the approximate full conditional and random walk proposals should be preferred
for the parameter update.
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For the specific random walk variances γ2
β and γ2

σ, the random walk proposal causes higher
autocorrelation in the Markov chains for β and σ2 in Figures 7.10, 7.11, 7.16 and 7.17
than the full conditional proposals. Yet the universal and convenient employability of the
random walk overweighs this last issue. Overall, the random walk is the favourite parameter
proposal scheme.

To summarise, this section introduces the general methodology of Bayesian inference for
diffusions via data augmentation. The implementation of the general procedure is extensively
discussed by considering specific path and parameter proposal schemes and other practical
concerns. The methodology is illustrated on a simulation study for the one-dimensional
Ornstein-Uhlenbeck process. To that end, all algorithms have been implemented in R. As
expected, for those update schemes which were classified appropriate techniques in this
dicussion, estimation results improve as the amount of imputed data increases from m = 2
to m = 10 intermediate subintervals. Overall, the modified brigde proposal for the missing
data in combination with the random walk proposal for the parameter turn out to show
best performance. Hence the following section concentrates on these two approaches and
extends them to a more general framework than considered in this section.

7.2 Extension to Latent Data and Observation with
Error

The previous section introduced general concepts of parameter estimation for diffusions
using data augmentation schemes. Observations of the diffusion paths at discrete time
points were assumed both complete and without measurement error. In applications in life
sciences, however, these conditions are seldomly fulfilled. Section 7.2.1 therefore extends
the algorithms from Section 7.1 to latent data. Section 7.2.2 additionally adapts them to
observation with error. Some of the calculations in this section have also been carried out
by Golightly & Wilkinson (2006a, 2008) for equidistant time steps. There are however
some slight mistakes in their results. These are corrected and indicated in the respective
formulas derived in this thesis.

7.2.1 Latent Data

It often occurs in applications in life sciences that the state variable of a diffusion pro-
cess (X t)t≥0 is not fully observable and hence consists of an observed and an unobserved
latent part: In infectious disease epidemiology, for example, one reports the numbers of
infected individuals in a population but usually does not know the numbers of susceptibles.
In chemical kinetics, one may observe the sum of the concentrations of two species but
possibly cannot measure the single concentrations. Typical examples outside of life sciences
are stochastic volatility models being composed of an observed asset price and a latent
volatility.
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This section extends the estimation schemes from Section 7.1, which alternately perform
a path and a parameter update, to a latent data framework. To that end, the parameter
update can be adopted from Section 7.1.3 without change. The path update, however,
needs to be modified for the latent data framework. This section hence deals with path
proposals in the presence of incomplete observations.

As before, assume that there are observations of the state of the process available at
times 0 = τ0 < τ1 < . . . < τM = T . In order to reduce the lengths of inter-observation time
intervals, impute mi − 1 auxiliary time points in between every two observation times τi
and τi+1 for i = 0, . . . ,M − 1. Then, in all, there are K + 1 observation and auxiliary times,
where K = m0 + . . .+mM−1. Figure 7.21 shows a discretised two-dimensional diffusion path
which consists of a one-dimensional observable part V and a one-dimensional latent part L,
where auxiliary data has been imputed. The indices in the notation are as in Figure 7.4 on
page 161.

To simplify notation, label all observed and auxiliary time points in ascending order by tk,
k = 0, . . . , K. Define O = {k ∈ {0, . . . , K} | tk ∈ {τ0, . . . , τM}}, that is the set of indices
of observation times. Like in the previous section, let Y k = X tk for all k = 0, . . . , K.
For k 6∈ O, Y k is completely unobserved and needs to be fully investigated in the path
update. For k ∈ O, Y k is partially observed, i. e. its components can be rearranged
in a way such that Y k = (V ′k,L′k)′ ∈ Rd for observed V k ∈ Rd1 and latent Lk ∈ Rd2 ,
where d = d1 + d2. In that case, the path update changes Lk but leaves V k unaltered. For
simplicity, suppose that the decomposition of Y k into V k and Lk is the same for all k ∈ O,
although this assumption is not necessary for the path proposal schemes considered in the
following.

In what follows, we first investigate the general path update procedure and afterwards
provide the required proposal distributions. Adapated acceptance probabilities are presented
on pages 196 ff.

Choose an update interval (ta, tb) such that |{a+ 1, . . . , b− 1} ∩O| ≤ 1, i. e. there is not
more than one observation time in the interior of (ta, tb). The following situations may now
occur:

1. One has |{a+ 1, . . . , b− 1} ∩O| = 0, i. e. there is no observation time in the interior
of (ta, tb). In this case path proposals are obtained as in Section 7.1.2.

2. One has |{a+1, . . . , b−1}∩O| = 1, i. e. there is exactly one observation time tr in the
interior of (ta, tb). As in the framework without latent data in Section 7.1.2, there are
various possibilities to propose the path segment between ta and tb. The discussion in
Section 7.1.8 showed that satisfactory results can be achieved by application of the
modified bridge proposal. Hence this approach is extended to the latent data case in
the following. There are two strategies for this extension:

(i) First, propose L∗r |Y a,V r,Y b,θ as in (7.31) below, that is the latent vector at the
intermediate observation time tr. Then, generate two conditionally independent
proposals on (ta, tr) and (tr, tb) conditioned on Y a,V r,L

∗
r,Y b,θ as in item 1.
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Figure 7.21: Illustration of a two-dimensional path with an observable component V and a
latent component L. As in Figure 7.4 on page 161, the observed part of the path consists of the
initial value at time τ0 and M discrete observations at times τ1, . . . , τM . Observed data is labelled
with crosses, imputed data with circles. The latent components are imputed at all observation
and auxiliary times and hence also labelled with circles.

This approach is illustrated in Figure 7.22.

(ii) Update the path segment from the left to the right. More precisely:

• For k = a, . . . , r − 2, propose Y ∗k+1 |Y ∗k ,V r,Y b,θ as in (7.35) below, where
Y ∗a = Y a. Alternatively — and computationally less costly —, propose
Y ∗k+1 |Y ∗k ,V r,θ as in (7.33).

• For k = r − 1, propose L∗r |Y ∗r−1,V r,Y b,θ as in (7.31) below.

• For k = r, . . . , b − 2, propose Y ∗k+1 |Y ∗k ,Y b,θ as in item 1, where Y ∗r is
composed of V r and L∗r.

This procedure is shown in Figure 7.23.

Special situations occur when a = 0 or b = K: Usually, the imputed data is updated
merely on the interior of (ta, tb) such that Y a and Y b remain unaltered. If, however,
Y 0 or YK are only partially observed, their update has to be included in the update
of adjoining path segments. Under the assumption that |{a + 1, . . . , b − 1} ∩ O| = 0,
this involves drawing from L(L0|V 0,Y b,θ), L(LK |YK−1,VK ,θ) and L(Y k+1|Y k,VK ,θ),
where L denotes the distribution of a random variable. The first two distributions are
provided in (7.37) and (7.39) below. The third one corresponds to (7.33) with r replaced
by K.
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Exact sampling of the above mentioned conditional distributions is generally not possible,
but they can be approximated under consideration of the Euler scheme and some further
simplifications. Hence, the distributions that have not yet been investigated in Section 7.1.2
are now approximated in order to provide appropriate proposal distributions for the diffusion
paths. Most results are based on standard multivariate normal theory. Derivations of the
approximate distributions of Y k+1|Y k,V r,θ and Y k+1|Y k,V r,Y b,θ for k < r − 1 have
also been performed by Golightly and Wilkinson (2006a) for equidistant observation and
auxiliary times; there are some minor mistakes in their results though. It will be pointed
out in the following where our formulas are different. For the sake of brevity, only the
outcomes are shown here. Full derivations are given in Section B.6 in the appendix.

For shorter notation, abbreviate µk = µ(Y k,θ) and Σk = Σ(Y k,θ) for all k in the following.
Furthermore, decompose µ and Σ into

µ =
(
µv

µl

)
and Σ =

(
Σvv Σvl

Σlv Σll

)

such that µv ∈ Rd1 , µl ∈ Rd2 , Σvv ∈ Rd1×d1 and Σll ∈ Rd2×d2 .
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red: data to be updated blue: data to condition on

Figure 7.22: Illustration of update strategy (2i) on page 190 for a two-dimensional process: The
objective is the update of a discretised path segment on the time interval (ta, tb) in presence of an
intermediate observation time tr. The path consists of a one-dimensional observable component V
(lower curve) and a one-dimensional latent component L (upper curve). Under the assumption
that a 6= 0 and b 6= K, the end points La and Lb are fixed. Crosses indicate observed values, stars
label unobserved but fixed values, and circles stand for unobserved values that are still to be
considered in the path update. This figure shows the first step of strategy (2i): Update Lr (red)
conditional on Va, La, Vr, Vb and Lb (blue). In the second step, which is not shown here, Lr is
considered fixed and the path is updated on (ta, tr) and (tr, tb) as considered in Section 7.1.2.
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Figure 7.23: Illustration of update strategy (2ii) on page 191 for a two-dimensional process: The
objective is the update of a discretised path segment on the time interval (ta, tb) in presence of an
intermediate observation time tr. The path consists of a one-dimensional observable component V
and a one-dimensional latent component L. Under the assumption that a 6= 0 and b 6= K, the
end points La and Lb are fixed. Crosses indicate observed values, stars label unobserved but
fixed values, and circles stand for unobserved values that are still to be considered in the path
update. This figure shows the single steps of strategy (2ii): (a) Update the path from the left to
the right, i. e. start by investigation of the data at time ta+1. As ta+1 is an auxiliary time point,
both Va+1 and La+1 (red coloured) are to be updated. The proposals are conditioned on Va, La,
Vr, Vb and Lb (blue). (b) Continue with the update of the data at time ta+2 (red). The just
updated Va+1 and La+1 are now considered fixed, hence condition on these and Vr, Vb, Lb (blue).
(c) As Vr is observed, update only the latent component Lr (red) conditioned on Vr−1, Lr−1, Vr,
Vb and Lb (blue). (d) Last, update Vb−1 and Lb−1 (red) conditioned on its direct left and right
neighbours (blue).
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Approximation of L
(
Lr |Y k, V r, Y b, θ

)
for k < r

Let a ≤ k < r. The derivations in Appendix B.6 yield that the joint distribution of V r

and Lr conditioned on Y k, Y b and θ can be approximated as

(
V r

Lr

) ∣∣∣∣Y k,Y b,θ ∼ N



V k + V b − V k

∆kb

∆kr

Lk + Lb −Lk
∆kb

∆kr

 ,
∆rb∆kr

∆kb

(
Σvv
k Σvl

k

Σlv
k Σll

k

) , (7.30)

where ∆kr = tr − tk, ∆rb = tb − tr and ∆kb = tb − tk. Further conditioning on V r yields

Lr |Y k,V r,Y b,θ ∼ N
(
ηk , Λk

)
(7.31)

with
ηk = Lk + Lb −Lk

∆kb

∆kr + Σlv
k

(
Σvv
k

)−1
(
V r − V k −

V b − V k

∆kb

∆kr

)
and

Λk = ∆rb∆kr

∆kb

(
Σll
k −Σlv

k

(
Σvv
k

)−1
Σvl
k

)
.

Approximation of L
(
Y k+1 |Y k, V r, θ

)
for k < r − 1

Let a ≤ k < r − 1. Appendix B.6 shows that one has approximately(
Y k+1
V r

) ∣∣∣∣Y k,θ ∼ N
((
Y k + µk∆tk
V k + µvk∆kr

)
,

(
Σk∆tk D′k∆tk
Dk∆tk Σvv

k ∆kr

))
, (7.32)

where ∆tk = tk+1 − tk, ∆kr− = tr − tk+1, ∆kr = ∆kr− + ∆tk = tr − tk and Dk = (Σvv
k ,Σvl

k ).
This implies

Y k+1 |Y k,V r,θ ∼ N (ρk,Γk) (7.33)

with

ρk =


V k + V r − V k

∆kr

∆tk

Lk + µlk∆tk + Σlv
k (Σvv

k )−1
(
V r − V k

∆kr

− µvk

)
∆tk


and

Γk =
(

Σvv
k ∆kr− Σvl

k ∆kr−
Σlv
k ∆kr− Σll

k∆kr−Σlv
k (Σvv

k )−1Σvl
k ∆tk

)
∆tk
∆kr

.

The result by Golightly and Wilkinson (2006a) differs in the second component of ρk. In the
non-equidistant setting here, this difference corresponds to multiplying µvk by ∆kr−/∆kr.
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Approximation of L
(
Y k+1 |Y k, V r, Y b, θ

)
for k < r − 1

The next extension is to further condition (7.33) on Y b in order not to lose this end point
information. As demonstrated in Appendix B.6, the conditional joint distribution of Y k+1,
V r and Y b readsY k+1

V r

Y b

 ∣∣∣∣Y k,θ ∼ N


Y k + µk∆tk
V k + µvk∆kr

Y k + µk∆kb

 ,

Σk∆tk D′k∆tk Σk∆tk
Dk∆tk Σvv

k ∆kr Dk∆kr

Σk∆tk D′k∆kr Σk∆kb


 (7.34)

with ∆kb = tb − tk and the notation introduced so far. Golightly and Wilkinson (2006a)
obtain Dk∆tk as the covariance of V r and Y b instead, and that mistake propagates to the
following formulas for ξk and Ψk. From the version (7.34) above, it follows that

Y k+1 |Y k,V r,Y b,θ ∼ N (ξk,Ψk) (7.35)

with

ξk = Y k + µk∆tk +
(
D′k∆tk,Σk∆tk

)(Σvv
k ∆kr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
V r − V k − µvk∆kr

Y b − Y k − µk∆kb

)

and

Ψk = Σk∆tk −
(
D′k∆tk,Σk∆tk

)(Σvv
k ∆kr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
Dk∆tk
Σk∆tk

)
.

Simulation from this distribution is computationally more elaborate than drawing from (7.33)
as (7.35) involves the inversion of larger matrices.

Approximation of L
(
L0 |V 0, Y b, θ

)
Consideration of

Y 0 |Y b,θ ∼ N
(
Y b − µb∆0b,Σb∆0b

)
(7.36)

with ∆0b = tb − t0 immediately yields

L0 |V 0,Y b,θ ∼ N (χ,Ξ) (7.37)

with
χ = Lb − µlb∆0b + Σlv

b (Σvv
b )−1

(
V 0 − V b + µvb∆0b

)
and

Ξ =
(
Σll
b −Σlv

b (Σvv
b )−1Σvl

b

)
∆0b.
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Approximation of L
(
LK |YK−1, VK, θ

)
Analogously,

YK |YK−1,θ ∼ N
(
YK−1 + µK−1∆tK−1,ΣK−1∆tK−1

)
(7.38)

implies
LK |YK−1,VK ,θ ∼ N (κ,Π) (7.39)

with
κ = LK−1 + µlK−1∆tK−1 + Σlv

K−1(Σvv
K−1)−1

(
VK − VK−1 − µvK−1∆tK−1

)
and

Π =
(
Σll
K−1 −Σlv

K−1(Σvv
K−1)−1Σvl

K−1

)
∆tK−1.

Conclusion

Now that all required proposal distributions are at hand, we are able to write down the
adapted acceptance probability for the proposed imputed data opposed to the current
imputed data. We do this for the more complicated update strategy (2ii) on page 191. The
acceptance probability for strategy (2i) can then easily be obtained.

First assume |{a+ 1, . . . , b− 1} ∩O| = 1 and a 6= 0, b 6= K, i. e. there is one observation
time tr ∈ (ta, tb). Then the acceptance probability reads

ζ
(
{Y imp∗

(a,r) ,L
∗
r,Y

imp∗
(r,b) }, {Y

imp
(a,r),Lr,Y

imp
(r,b)}

)
= 1 ∧

π
(
Y imp∗

(a,r) ,L
∗
r,Y

imp∗
(r,b)

∣∣∣Y a,V r,Y b,θ
)

π
(
Y imp

(a,r),Lr,Y
imp
(r,b)

∣∣∣Y a,V r,Y b,θ
) · q

(
Y imp

(a,r),Lr,Y
imp
(r,b)

∣∣∣Y a,V r,Y b,θ
)

q
(
Y imp∗

(a,r) ,L
∗
r,Y

imp∗
(r,b)

∣∣∣Y a,V r,Y b,θ
) .

The components of this acceptance probability are

π
(
Y imp∗

(a,r) ,L
∗
r,Y

imp∗
(r,b)

∣∣∣Y a,V r,Y b,θ
)
∝

b−1∏
k=a

πEuler
(
Y ∗k+1

∣∣∣Y ∗k ,θ)
and

q
(
Y imp∗

(a,r) ,L
∗
r,Y

imp∗
(r,b)

∣∣∣Y a,V r,Y b,θ
)

=
r−2∏
k=a

q
(
Y ∗k+1

∣∣∣Y ∗k ,V r,Y b,θ
)

· q
(
L∗r
∣∣∣Y ∗r−1,V r,Y b,θ

)
·

b−2∏
k=r

q
(
Y ∗k+1

∣∣∣Y ∗k ,Y b,θ
),

where Y ∗a = Y a, Y ∗b = Y b and Y ∗r = (V ′r,L∗r
′)′. For |{a+ 1, . . . , b− 1} ∩O| = 0 and a = 0,

b 6= K, the acceptance probability is

ζ
(
{L∗0,Y

imp∗
(0,b) }, {L0,Y

imp
(0,b)}

)
= 1 ∧

π
(
L∗0,Y

imp∗
(0,b)

∣∣∣V 0,Y b,θ
)

π
(
L0,Y

imp
(0,b)

∣∣∣V 0,Y b,θ
) · q

(
L0,Y

imp
(0,b)

∣∣∣V 0,Y b,θ
)

q
(
L∗0,Y

imp∗
(0,b)

∣∣∣V 0,Y b,θ
)
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with

π
(
L∗0,Y

imp∗
(0,b)

∣∣∣V 0,Y b,θ
)
∝

b−1∏
k=a

πEuler
(
Y ∗k+1

∣∣∣Y ∗k ,θ)
π(Y ∗0 ∣∣∣θ)

and

q
(
L∗0,Y

imp∗
(0,b)

∣∣∣V 0,Y b,θ
)

= q
(
L∗0
∣∣∣V 0,Y b,θ

)b−2∏
k=0

q
(
Y ∗k+1

∣∣∣Y ∗k ,Y b,θ
),

where Y ∗0 = (V ′0,L∗0
′)′ and π(Y ∗0 |θ) ∝ π(L∗0|V 0,θ) is some model-specific density for the

initial value. Similarly, for |{a+ 1, . . . , b− 1} ∩O| = 0 and a 6= 0, b = K one has

ζ
(
{Y imp∗

(a,K),L
∗
K}, {Y

imp
(a,K),LK}

)
= 1 ∧

π
(
Y imp∗

(a,K),L
∗
K

∣∣∣Y a,VK ,θ
)

π
(
Y imp

(a,K),LK
∣∣∣Y a,VK ,θ

) · q
(
Y imp

(a,K),LK
∣∣∣Y a,VK ,θ

)
q
(
Y imp∗

(a,K),L
∗
K

∣∣∣Y a,VK ,θ
)

with

π
(
Y imp∗

(a,K),L
∗
K

∣∣∣Y a,VK ,θ
)
∝

K−1∏
k=a

πEuler
(
Y ∗k+1

∣∣∣Y ∗k ,θ)
and

q
(
Y imp∗

(a,K),L
∗
K

∣∣∣Y a,VK ,θ
)

=
K−2∏
k=a

q
(
Y ∗k+1

∣∣∣Y ∗k ,VK ,θ
)q(L∗K ∣∣∣Y ∗K−1,VK ,θ

)

with Y ∗a = Y a. This concludes the extension of the MCMC scheme (7.2) to a latent data
framework.

7.2.2 Observation with Error

Another issue that is of importance in practice is that observations are often measured with
error, i. e. one has for all tk

vk = V k + εk, εk ∼ N
(
0,Υk

)
, (7.40)

where V k ∈ Rd1 is the observable part of X tk , vk is the measurement of V k, and εk is the
observation error with mean zero and positive definite covariance matrix Υk. Observation
errors are considered independent for unequal observation times. This is a setting that also
underlies Kalman filters (e. g. Maybeck, 1979). The Υk are either assumed known from
empirical data, or their estimation is included in the inference procedure for the diffusion
path and the model parameter. In the latter case, let θ stand for the collection of all
parameters to estimate including the Υk. This section adapts the MCMC scheme from
Section 7.2.1 to also handle observation errors in addition to latent data.

As before, suppose there are K + 1 observation and auxiliary times t0 < t1 < . . . < tK , and
let O = {k ∈ {0, . . . , K} | tk ∈ {τ0, . . . , τM}} be the set of indices of observation times. As
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observations are assumed to be subject to measurement error, the vectors V k have to be
updated also for k ∈ O now.

The posterior density of the entire diffusion path {Y k}k=0,...,K conditional on the observa-
tions {vk}k∈O and the parameter θ then equals

π
(
{Y k}k=0,...,K

∣∣∣ {vk}k∈O,θ) ∝ π
(
{vk}k∈O

∣∣∣ {Y k}k=0,...,K ,θ
)
π
(
{Y k}k=0,...,K

∣∣∣θ)
=

∏
k∈O

φ
(
vk
∣∣∣V k,Υk

)K−1∏
k=0

π
(
Y k+1

∣∣∣Y k,θ
)π(Y 0

∣∣∣θ).
The posterior of the parameter θ conditioned on both the estimated and observed path is

π
(
θ
∣∣∣ {Y k}k=0,...,K , {vk}k∈O

)
∝

∏
k∈O

φ
(
vk
∣∣∣V k,Υk

)K−1∏
k=0

π
(
Y k+1

∣∣∣Y k,θ
)π(Y 0

∣∣∣θ)p(θ).

The path proposal distributions from Section 7.2.1 have to be adjusted to the new setting.
In particular, the observable parts V k need to be updated for k ∈ O in consideration
of (7.40). The new path update algorithm is as follows.

Choose an update interval (ta, tb) such that |{a+ 1, . . . , b− 1} ∩O| ≤ 1, i. e. there is not
more than one observation time in the interior of (ta, tb). The following situations may
occur:

1. One has |{a+ 1, . . . , b− 1} ∩O| = 0, i. e. there is no observation time in the interior
of (ta, tb). In this case path proposals are again obtained as in Section 7.1.2.

2. One has |{a+ 1, . . . , b− 1} ∩O| = 1, i. e. there is exactly one observation time tr in
the interior of (ta, tb). The two strategies from Section 7.2.1 now read as follows.

(i) Propose Y ∗r |Y a,vr,Y b,θ as in (7.41) below. Then, generate two conditionally
independent proposals on (ta, tr) and (tr, tb) conditioned on Y a,Y

∗
r ,Y b,θ as in

item 1.

(ii) Update the path segment from the left to the right. More precisely:

• For k = a, . . . , r − 2, propose Y ∗k+1 |Y ∗k ,vr,Y b,θ as in (7.43) below, where
Y ∗a = Y a. Alternatively, propose Y ∗k+1 |Y ∗k ,vr,θ as in (7.42).

• For k = r − 1, propose Y ∗r |Y ∗r−1,vr,Y b,θ as in (7.41) below.

• For k = r, . . . , b− 2, propose Y ∗k+1 |Y ∗k ,Y b,θ as in item 1.

The special cases a = 0 and b = K involve drawing from L(Y 0|v0,Y b,θ), L(YK |YK−1,vK ,θ)
and L(Y k+1|Y k,vK ,θ) under the assumption that |{a+ 1, . . . , b− 1} ∩O| = 0. The first
two distributions are provided in (7.44) and (7.45). The third one corresponds to (7.42)
with r replaced by K.

The following shows the required approximate proposal distributions. Some of these
calculations have similarly been done in the appendix of Golightly and Wilkinson (2008).
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There is again one minor mistake in those results; this is corrected here. The notation is
adopted from Section 7.2.1.

Approximation of L
(
Y r |Y k, vr, Y b, θ

)
for k < r

With (7.30), one obtains

π
(
Y r

∣∣∣Y k,vr,Y b,θ
)
∝ φ

(
vr
∣∣∣V r,Υr

)
φ
(
Y r

∣∣∣∣Y k + Y b − Y k

∆kb

∆kr,
∆rb∆kr

∆kb

Σk

)
,

which results in
Y r |Y k,vr,Y b,θ ∼ N

(
η̃k, Λ̃k

)
(7.41)

with

η̃k = Λ̃k

((
Υ−1
r vr
0

)
+ ∆kb

∆rb∆kr

Σ−1
k

(
Y k + Y b − Y k

∆kb

∆kr

))

and

Λ̃k =
((

Υ−1
r 0
0 0

)
+ ∆kb

∆rb∆kr

Σ−1
k

)−1

.

Approximation of L
(
Y k+1 |Y k, vr, θ

)
for k < r − 1

Use (7.32) and vr = V r + εr to obtain
(
Y k+1
vr

) ∣∣∣∣Y k,θ ∼ N
((
Y k + µk∆tk
V k + µvk∆kr

)
,

(
Σk∆tk D′k∆tk
Dk∆tk Σvv

k ∆kr + Υr

))
.

That yields
Y k+1 |Y k,vr,θ ∼ N (ρ̃k, Γ̃k) (7.42)

with
ρ̃k = Y k + µk∆tk +D′k

(
Σvv
k ∆kr + Υr

)−1(
vr − V k − µvk∆kr

)
∆tk

and
Γ̃k =

(
Σk −D′k

(
Σvv
k ∆kr + Υr

)−1
Dk∆tk

)
∆tk .

This formula corresponds to (7.33) in the case of no observation error, in which there
was a disagreement between our result and the one by Golightly and Wilkinson (2006a).
Equation (7.42), on the other hand, is provided in the appendix of Golightly and Wilkinson
(2008) as shown here.
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Approximation of L
(
Y k+1 |Y k, vr, Y b, θ

)
for k < r − 1

Analogously, with (7.34),Y k+1
vr
Y b

 ∣∣∣∣Y k,θ ∼ N


Y k + µk∆tk
V k + µvk∆kr

Y k + µk∆kb

 ,

Σk∆tk D′k∆tk Σk∆tk
Dk∆tk Σvv

k ∆kr + Υr Dk∆kr

Σk∆tk D′k∆kr Σk∆kb


 ,

and hence
Y k+1 |Y k,vr,Y b,θ ∼ N (ξ̃k, Ψ̃k) (7.43)

with

ξ̃k = Y k + µk∆tk +
(
D′k,Σk

)(Σvv
k ∆kr + Υr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
vr − V k − µvk∆kr

Y b − Y k − µk∆kb

)
∆tk

and

Ψ̃k =
Σk −

(
D′k,Σk

)(Σvv
k ∆kr + Υr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
Dk

Σk

)
∆tk

∆tk.

As in Equation (7.34), the conditional covariance of vr and Y b is misspecified in Golightly
and Wilkinson (2008), so the distribution here is different from their result.

Approximation of L
(
Y 0 | v0, Y b, θ

)
Equation (7.36) implies

π
(
Y 0

∣∣∣v0,Y b,θ
)
∝ φ

(
v0

∣∣∣V 0,Υ0
)
φ
(
Y 0

∣∣∣∣Y b − µb∆0b , Σb∆0b

)
,

which leads to
Y 0 |v0,Y b,θ ∼ N (χ̃, Ξ̃) (7.44)

with

χ̃ = Ξ̃
((

Υ−1
0 v0
0

)
+ Σ−1

b

Y b − µb∆0b

∆0b

)
and Ξ̃ =

((
Υ−1

0 0
0 0

)
+ Σ−1

b

∆0b

)−1

.

Approximation of L
(
YK |YK−1, vK, θ

)
Finally, with (7.38), one gets

YK |YK−1,vK ,θ ∼ N (κ̃, Π̃) (7.45)

with

κ̃ = Π̃
((

Υ−1
K vK
0

)
+ Σ−1

K−1
YK−1 + µK−1∆tK−1

∆tK−1

)
and Π̃ =

((
Υ−1
K 0
0 0

)
+ Σ−1

K−1
∆tK−1

)−1

.
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Conclusion

Altogether, the path proposal density for partial observations with error according to the
update strategy (2ii) on page 198 equals for a 6= 0, b 6= K and |{a+ 1, . . . , b− 1} ∩O| = 1

q
(
Y imp∗

(a,b)

∣∣∣Y a,vr,Y b,θ
)

=
r−2∏
k=a

q
(
Y ∗k+1

∣∣∣Y ∗k ,vr,Y b,θ
)

· q
(
Y ∗r

∣∣∣Y ∗r−1,vr,Y b,θ
)
·

b−2∏
k=r

q
(
Y ∗k+1

∣∣∣Y ∗k ,Y b,θ
),

where Y ∗a = Y a. For a = 0, b 6= K and |{a+ 1, . . . , b− 1} ∩O| = 0, the proposal density is

q
(
Y imp∗

[0,b)

∣∣∣v0,Y b,θ
)

= q
(
Y ∗0

∣∣∣v0,Y b,θ
)b−2∏

k=0
q
(
Y ∗k+1

∣∣∣Y ∗k ,Y b,θ
).

Similarly, for b = K, a 6= 0 and |{a+ 1, . . . , b− 1} ∩O| = 0, one has

q
(
Y imp∗

(a,K]

∣∣∣Y a,vK ,θ
)

=
K−2∏
k=a

q
(
Y ∗k+1

∣∣∣Y ∗k ,vK ,θ)
q(Y ∗K ∣∣∣Y ∗K−1,vK ,θ

)

with Y ∗a = Y a.

This concludes the extension of the MCMC concepts from Section 7.1 to latent data and
observation with error.

7.3 Convergence Problems

Now return to the simulation study from Section 7.1.7, i. e. consider again the situation
where discrete-time observations are complete and without measurement error. In these
experiments, relatively low amounts of auxiliary data were imputed; time intervals between
every two observations were divided into m = 2 and m = 10 subintervals only. Standard
computers can easily deal with much higher numbers. Figure 7.24 thus shows the trace plots
of β and σ2 for M = 25 observations and m ∈ {10, 100, 1000}. This time, only the modified
bridge proposal for the imputed data and the random walk proposal for the parameter are
applied as these turned out to perform best in the discussion in Section 7.1.8. By increasing
the number m of subintervals, one hopes to further improve the results for m = 10 in
Figures 7.12 and 7.13.

However, Figure 7.24 shows astonishing behaviour of the MCMC output: Instead of reducing
the estimation bias and delivering steadily improving parameter estimates, mixing of the
Markov chain for σ2 becomes substantially worse as m increases. Acceptance rates for θ
decrease from 16% (m = 10) to 5% (m = 100) and 2% (m = 1000). Inference for β, on the
other hand, appears relatively unaffected.
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This section aims to investigate the above phenomenon. Its understanding is essential for
the remaining chapter. It was first analysed by G. Roberts and Stramer (2001) and has
been addressed by a number of researchers since then. The outcomes of this section are the
basis for Section 7.4 which provides improvements of the MCMC procedure investigated so
far.

Without loss of generality, consider a time-homogeneous diffusion process X on a time
interval [0, T ], where the initial value X0 = x0 is known and the final value XT = x is
completely observed, i. e.Xobs = {x0,x}. The remaining path segmentX(0,T ) = (X t)t∈(0,T )
is unobserved. Section 7.1.1 explains why the restriction to this setting is sufficient and can
easily be generalised to more observations.

In order to get to the bottom of the problem of this section, assume that the missing
path segment can be imputed continuously. That means, X imp = X(0,T ) is an infinite-
dimensional object rather than a countable collection of discrete data points as considered
in the previous sections. One will not face this situation in practice; however, it corresponds
to increasing the number m of subintervals of [0, T ] to infinity in the discrete framework.

m = 10 m = 100 m = 1000
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Figure 7.24: Estimation of parameters of the Ornstein-Uhlenbeck process (7.20) as described on
pages 167 to 168. The path and parameter are updated via the modified bridge and random walk
proposals. The MCMC scheme conditions on data points at times 0, 1, . . . , 25 (i. e. M = 25) which
are observed without error and introduces m ∈ {10, 100, 1000} subintervals in between every two
observations. This figure shows the trace plots of β and σ2. The Markov chains have length 105

but have been thinned by factor 50. The true values β = 0.9 and σ2 = 1 are indicated by the red
horizontal lines. Update intervals are sampled with Algorithm 7.3.
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The key to the explanation for the diminishing convergence as m grows larger is the
quadratic variation identity for diffusion processes,

〈X,X〉[0,T ] = lim
δ(Zn)↓0

h(n)∑
i=1

(
X

t
(n)
i
−X

t
(n)
i−1

)(
X

t
(n)
i
−X

t
(n)
i−1

)′
=

T∫
0

Σ(Xτ ,θ)dτ, (7.46)

which was introduced in Section 3.2.6. In this equation, δ(Zn) denotes the fineness of
a partition Zn = (0 = t

(n)
0 < t

(n)
1 < . . . < t

(n)
h(n) = T ) of [0, T ] into h(n) subintervals for

arbitrary n and h. Equation (7.46) holds in probability and, for sufficiently smooth Σ,
almost surely. Papaspiliopoulos et al. (2003) label very similar properties which tie the
data and the parameters an ergodicity constraint.

G. Roberts and Stramer (2001) point out that this equality implies that the quadratic
variation 〈X,X〉[0,T ] of the path and the diffusion matrix Σ are unavoidably linked together:
As soon as the full path X [0,T ] = Xobs ∪ X imp is known, the diffusion matrix can be
calculated rather than estimated via (7.46); and the other way round, a fixed diffusion
matrix determines a path with the appropriate quadratic variation. See Polson and Roberts
(1994) for a detailed elaboration. In Section 6.1.1, this connection was emphasised as a
convenient property as it theoretically allows feasible identification of those model parameters
that are uniquely determined by the value of Σ. In the context of the present chapter,
however, this characteristic limits the performance of the MCMC scheme. The crucial
difference is that in Section 6.1.1 the diffusion path was assumed continuously observed.
Here, it is considered continuously imputed.

Mathematically, the problem can also be formulated as follows: Let Pθ denote the probability
measure induced by the diffusion process fulfilling the SDE

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt , X t0 = x0,

for fixed parameter θ ∈ Θ. Denote by Wθ the measure for the respective driftless version,

dX̃ t = σ(X̃ t,θ)dBt , X̃ t0 = x0.

Conditioned on the path X [0,T ], the distribution of the diffusion matrix is just a point
mass at the value implicated by the quadratic variation link (7.46). For Σ(·,θ) 6= Σ(·,θ∗),
where θ,θ∗ ∈ Θ, the measures Wθ and Wθ∗ are thus mutually singular, i. e. they have
disjoint support. This is denoted by Wθ ⊥ Wθ∗ . The two measures Pθ and Wθ are
equivalent according to Girsanov’s theorem in Section 3.2.12, that means they have identical
null sets. Hence, Pθ ⊥ Pθ∗ as well. For the likelihood of θ with respect to Lebesgue
measure L,

L(θ;X) = dPθ
dL

(
X
)
,

this implies

∀X∈X ∀ θ,θ∗∈Θ
(
Σ(·,θ) 6= Σ(·,θ∗) ⇒ L(θ;X) = 0 ∨ L(θ∗;X) = 0 a.s.

)
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Figure 7.25: Kernel density estimates of joint densities of σ2 and the quadratic variation per
time 〈̂Y, Y 〉[0,25]/25, where Y is an exactly sampled discrete skeleton of an Ornstein-Uhlenbeck
process on the time interval [0, 25] satisfying (7.20) on page 165. The quadratic variation is
calculated as in Equation (7.29) on page 186. Density estimation is based on skeletons for 25000
uniformly sampled σ2 ∼ U([0.5, 5.0]) with α = 0.5 and β = 0.9 fixed. The skeletons are simulated
on an equidistant time grid with step lengths 0.1 (left), 0.01 (middle) and 0.001 (right).

and

∀X,X∗∈X ∀ θ∈Θ
(
〈X,X〉 6= 〈X∗,X∗〉 ⇒ L(θ;X) = 0 ∨ L(θ;X∗) = 0 a.s.

)
.

Now consider the updating scheme (7.2) on page 147, where both the path update and the pa-
rameter update are performed using the Metropolis-Hastings algorithm. These update steps
use acceptance probabilities including the factors π(X∗|θ)/π(X|θ) = L(θ;X∗)/L(θ;X)
(path update) and π(X|θ∗)/π(X|θ) = L(θ∗;X)/L(θ;X) (parameter update), where the
asterisk tags the proposals. Presumably, the previous state (X,θ) of the Markov chain is
consistent and has positive likelihood. Then, unless Σ(·,θ) = Σ(·,θ∗), the nominators in
both acceptance probabilities involve the factor zero, i. e. the proposals X∗ and θ∗ will be
rejected. The update scheme is degenerate.

In practice, we do not come into contact with either continuous observation or continuous
imputation. However, the above considerations imply that the algorithm slows down as
more and more data points are imputed and is even degenerate in the limit. This explains
the decreasing acceptance rates mentioned at the beginning of this section. Even worse, the
Markov chain runs a risk of appearing to converge when in fact it is trapped in a consistent
combination of X imp and θ.

Figure 7.25 shows empirical joint densities for σ2 and the quadratic variation per time,
〈̂Y, Y 〉[0,25]/25, of a discrete path skeleton Y of an Ornstein-Uhlenbeck process with diffusion
coefficient σ. Due to (7.46), one expects 〈̂Y, Y 〉[0,25] ≈ 25σ2. The quadratic variation
is estimated as in (7.29) on page 186. The time steps 0.1, 0.01 and 0.001 in the three
graphics correspond to M ·m = 250, 2500, 25000 observed and auxiliary data points on the
time interval [0, 25], respectively; that matches the situations in Figure 7.24. Figure 7.26
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Figure 7.26: Joint trace plots of σ2 and 〈̂Y, Y 〉[0,25]/25 corresponding to iterations 80,000
to 85,000 (without thinning) of the Markov chains shown in Figure 7.24. The quadratic variation
is calculated as in Equation (7.29) on page 186.

shows joint trace plots of σ2 and 〈̂Y, Y 〉[0,25]/25 for the MCMC experiments considered in
Figure 7.24.

Altogether, one faces the dilemma that on the one hand it is essential to increase the amount
of imputed data in order to reduce the estimation bias, but on the other hand this action
results in arbitrarily slow mixing of the Markov chains. This difficulty is well-observed
in Figure 7.24. The algorithm can even arrive in a deadlocked situation where both the
imputed data and the model parameter remain almost unaltered.

The following section reviews and develops novel improvements on the MCMC algorithm in
order to establish convergence that is not constrained by disturbing dependence structures.

7.4 Improvements of Convergence

The previous section described the bad mixing behaviour of the MCMC scheme considered
in Sections 7.1 and 7.2 which originates from the close connection between the quadratic
variation of a diffusion path and the parameters determined by the diffusion matrix. Since
the discovery of this cause by G. Roberts and Stramer (2001), several authors have attempted
to modify the basic MCMC scheme (7.2) in such a way that it is not degenerate in the
limit m→∞.

This section reviews some of these approaches, in particular a change of factorisation of
the dominating measure in Section 7.4.1, time change transformations in Section 7.4.2 and
particle filters in Section 7.4.3. The first two approaches fall into the class of reparame-
terisations that cause a priori independence between the parameter and the missing data;
these are called (partially) non-centred parameterisations (Papaspiliopoulos et al., 2003).
The third approach modifies the MCMC scheme in such a way that updates of the path
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and the parameter happen simultaneously rather than alternately.

The just mentioned approaches work well for general one-dimensional diffusion processes
but are, however, not applicable or not appropriate for many multi-dimensional diffusion
processes in life sciences such as those considered in Chapters 8 and 9. Details are given in
the respective sections.

Hence, as one of the main contributions of this thesis, Section 7.4.4 develops a novel
concept for infinite-dimensional state spaces which is applicable to general multi-dimensional
diffusions under fairly general regularity conditions. We adopt the name innovation scheme
for this method due to similar but different approaches which are pointed out in Section 7.4.4.
The convergence of the innovation scheme is proven, and its computational efficiency is
demonstrated in a simulation study.

7.4.1 Changing the Factorisation of the Dominating Measure

The approach described in this section is based on a parallel, drawn by G. Roberts and
Stramer (2001), between a suitable reparameterisation of a diffusion process and the change
of factorisation of the dominating measure. The latter should not depend on the parameter
to estimate.

Consider a one-dimensional diffusion X satisfying the SDE

dXt = µ(Xt)dt+ σdBt, X0 = x0, (7.47)

where σ ∈ R+ is the volatility parameter to be estimated and the drift function µmay depend
on a parameter θ not containing σ. In the current context, θ is of lower priority and hence
not included in the notation. Denote by Pσ the law induced by (7.47), and let Wσ be the
law of Brownian motion with volatility parameter σ and initial value x0 (recall Section 3.1.1
for the definition). Pσ andWσ are equivalent measures and their Radon-Nikodym derivative
dPσ/dWσ(X) = G(X;µ, σ) is available. However, as noticed in Section 7.3, Wσ is not
suitable as dominating measure due to the mutual singularity Wσ ⊥Wσ∗ for σ 6= σ∗.

The reparameterisation suggested by G. Roberts & Stramer is motivated by the following
construction of Brownian motion B[0,T ] with volatility parameter σ and initial value b0:
First, draw the end point b ∼Wσ conditional on b0. Next, simulate a Brownian (0, 0, T, 0)-
bridge B̃(0,T ) with volatility parameter 1 as defined in Section 3.1.1. Imagine that this
was possible in continuous time. Last, transform this bridge to appropriate volatility and
boundary points as in step 3 in Section 3.3.3 and utilise it as the path segment B(0,T ). This
procedure is a purely theoretical consideration; in practice, simulation of Brownian motion
at discrete time points would be performed as in step 1 in Section 3.3.3. However, the
above construction illustrates that the measure Wσ can be factorised as

Wσ

(
B[0,T ), b

)
=
(
B(0,b0,T,b)
σ ⊗Wσ

)(
h−1(B̃[0,T );σ, b0, b), b

)
,

where B̃ = h(B;σ, b0, b), and B denotes the law of a Brownian bridge with the volatility
parameter as subscript and the boundary specification as superscript.
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The idea is now to decompose Pσ in a corresponding manner. To that end, consider the
two transformations

Ẋt = h1(Xt;σ) = 1
σ
Xt

X̃t = h2(Ẋt; ẋ0, ẋ) = Ẋt −
(T − t)ẋ0 + tẋ

T

for t ∈ [0, T ]. The function h1 transforms X to a diffusion process which is the solution of

dẊt = µ(σẊt)
σ

dt+ dBt, Ẋ0 = x0

σ
, (7.48)

according to Itô’s lemma in Section 3.2.10. Note that this process has unit diffusion and
does therefore not experience the difficulties investigated in Section 7.3 concerning the
quadratic variation. However, the original process X cannot simply be replaced by Ẋ as our
inference conditions on the observed end point x. Knowledge of ẋ = h1(x;σ) = x/σ then
again requires knowledge of σ. Hence, the second function h2 transforms the unit volatility
process Ẋ[0,T ] such that it starts and ends at zero. The concatenation of h1 and h2 carries
out the same transformation as the function h in the Brownian motion construction above:

B̃ = h
(
B;σ, b0, b

)
= h2

(
h1(B;σ);h1(b0;σ), h1(b;σ)

)
.

This implies
dPσ
dWσ

(
X[0,T )

∣∣∣x) = dH

dB
(0,0,T,0)
1

(
X̃[0,T )

∣∣∣ ẋ),
where H denotes the law of X̃. That means that conditional on the final point x, the
dominating measure can be written independently of σ. Moreover,

dPσ
dWσ

(
X[0,T ), x

)
= dQ

dB
(0,ẋ0,T,ẋ)
1

(
Ẋ[0,T ), ẋ

)
= G(Ẋ; µ̇, 1)

with Q being the law of Ẋ, and µ̇ being defined as the drift function in (7.48). This means
that the likelihood of Ẋ is of known form.

Based on this reparameterisation one can now develop MCMC algorithms which achieve
improved convergence results. See G. Roberts and Stramer (2001) for details. As the trans-
formation is invertible, back-transformation to the original diffusion path is straightforward.

Unfortunately, this method cannot be applied to general multi-dimensional diffusion pro-
cesses. Although some extensions are possible (G. Roberts & Stramer, 2001, Kalogeropoulos,
2007, Kalogeropoulos, Dellaportas, & Roberts, 2007), an appropriate transformation re-
quires reparameterising to unit diffusion coefficient. It was already noted in Section 3.2.11
that in the multi-dimensional case such a transform does generally not exist.
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7.4.2 Time Change Transformations

An alternative approach to reparameterise a diffusion process such that there is a dom-
inating measure which does not depend on the volatility parameters is via time change
transformations as suggested by Kalogeropoulos, Roberts, and Dellaportas (2007). This
method has been developed for several but not all possibly multi-dimensional diffusion
processes. The central tool in this procedure is the following time change formula which
can be obtained from a more general theorem in Øksendal (2003, Chapter 8.5); see also
Klebaner (2005, Chapter 7): Let X = (X t)t∈[0,T ] be a diffusion process fulfilling the SDE

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt, X0 = x0,

and

h(t) =
t∫

0

c(τ)dτ for t ∈ [0, T ]

be a time change with positive time change rate c : [0, T ]→ R+. Note that the function h is
strictly increasing and hence invertible. Define another diffusion process Z = (Zs)s∈[0,h(T )]
on a new time scale such that s = h(t) and Zs = X t = Xh−1(s) for all t ∈ [0, T ]
and s ∈ [0, h(T )]. Then Z satisfies the SDE

dZs = µ(Zs,θ)
c(h−1(s)) ds+ σ(Zs,θ)√

c(h−1(s))
dBs, Z0 = x0.

The following illustrates the idea by Kalogeropoulos, Roberts, and Dellaportas (2007) to
utilise the time change transformation for our purposes on the example of a one-dimensional
diffusion process satisfying the SDE

dXt = µ(Xt,θ)dt+ σdBt, X0 = x0,

where t ∈ [0, 1]. In this representation, the diffusion coefficient σ ∈ R+ is considered as one
component of θ. Let PX be the measure induced by the process X and WX the measure
of a respective driftless version dMt = σdBt. Suppose that X1 = x. Then, similarly to
the considerations in the previous section, we can write WX(X[0,1]) = WX

1,x(X[0,1))WX(x)
with WX

1,x being the measure WX further conditioned on the end point x at time 1. Then

dPX

d(WX
1,x ⊗ L)

(
X[0,1), x

)
= G(X[0,1),θ)fσ(x),

where the function G is obtained via Girsanov’s formula from Section 3.2.12, and fσ is
the Lebesgue density of the end point X1 under WX . In this expression, the dominating
measure WX

1,x ⊗ L clearly depends on σ as WX
1,x is the law of a Brownian bridge with

volatility parameter σ. Hence consider the following time change transformation which
reparameterises the SDE to unit diffusion coefficient: Let

s = h1(t) = σ2t
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and consider the process

Us =
Xh−1

1 (s) for 0 ≤ s ≤ σ2

Mh−1
1 (s) for s > σ2.

With the above time change formula we obtain

dUs =


µ(Us,θ)
σ2 ds+ dBs for 0 ≤ s ≤ σ2

dBs for s > σ2.

Clearly, the process U has unit diffusion, and Uσ2 = X1 = x. Let PU be the probability
measure induced by U and WU the driftless counterpart. Then

dPU

d(WU
σ2,x ⊗ L)

(
U[0,σ2), x

)
= G(U[0,σ2),θ)fσ(x),

where WU
σ2,x is the law of the driftless version of U conditioned on Uσ2 = x. Although

the parameter σ has been eliminated from the diffusion coefficient, it is still included in
the time point σ2 where U reaches the state x. That means that again the dominating
measure WU

σ2,x ⊗ L in the above expression depends on σ. Therefore introduce a second
time change

u = h2(s) = s

σ2(σ2 − s)
for s ∈ [0, σ2) and apply this in the transformation

Zu = 1
σ2 − s

(
Us −

(
1− s

σ2

)
x0 −

s

σ2 x
)

for u ∈ [0,∞).

In the following let x0 = x = 0. Then

Zu = 1 + uσ2

σ2 Uh−1
2 (u).

For better understanding of the derivation of an SDE for Z, introduce an intermediate
process Z̃ such that Z̃u = Uh−1

2 (s) and Zu = (1+uσ2)Z̃u/σ2 for all u ∈ [0,∞) and s ∈ [0, σ2).
Then, with

∂h2(s)
∂s

= 1
(σ2 − s)2 , i. e. ∂h2

∂s

(
h−1

2 (u)
)

= ∂h2

∂s

(
uσ4

1 + uσ2

)
= (1 + uσ2)2

σ4 ,

the time change formula yields

dZ̃u = σ4

(1 + uσ2)2
µ(Z̃u,θ)
σ2 du+ σ2

1 + uσ2 dBu.

Next, Itô’s formula from Section 3.2.10 leads to

dZu = Z̃udu+ 1 + uσ2

σ2 dZ̃u =
µ

(
σ2Zu

1 + uσ2 ,θ

)
+ σ2Zu

1 + uσ2 du+ dBu.
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Note that Uσ2 = 0 implies Z∞ = 0. Hence, if PZ denotes the law of Z and WZ
∞,0 is the law

of a unit diffusion process starting in state zero at time u = 0 and reaching state zero at
time u =∞, then

dPZ

d(WZ
∞,0 ⊗ L)

(
Z[0,∞), 0

)
= G(Z[0,∞),θ)fσ(0).

Kalogeropoulos, Roberts, and Dellaportas (2007) prove that WZ
∞,0 is standard Wiener

measure. In other words, the dominating measure WZ
∞,0 ⊗ L does not depend on σ. One

can hence perform inference for Z using the MCMC schemes from Sections 7.1 and 7.2
without the risk of bad mixing. As all transformations above are invertible, estimation
results for Z can easily be transferred to the original diffusion process X.

The above concept of time change transformations is generalised by Kalogeropoulos, Roberts,
and Dellaportas (2007) to certain higher-dimensional stochastic volatility models. The
extension to general multi-dimensional diffusion processes with state-dependent diffusion
coefficients, however, is still the subject of ongoing research. The approach described in
this section hence cannot be applied to the high-dimensional applications from life sciences
which are considered in Chapters 8 and 9.

7.4.3 Particle Filters

Another idea to overcome disturbing dependencies between the parameter and the quadratic
variation of the diffusion path is the use of particle filters, where the path and the parameter
are updated simultaneously rather than alternately. The proposed path and parameter are
then consistent at any time. The principle of particle filters for diffusions is described in
the following.

Suppose there are M partial observations v1, . . . ,vM of the diffusion in addition to the
initial value v0 at times τ0 < τ1 < . . . < τM . These observations may be subject to
measurement error. A particle filter successively performs inference for the parameter and
the diffusion path concentrating on the time interval [τk, τk+1] for k = 0, . . . ,M−1. Certainly,
estimation results for different path segments shall not be independent; when focusing
on [τk, τk+1] for fixed k, findings for [τ0, τk] are taken into account by conditioning on a set
of particles {X(i)

τk
,θ(i)}i=1,...,I for some large I ∈ N. These particles are considered as draws

from π(Xτk ,θ|v0, . . . ,vk). For k = 0, they are generated from some initial distribution. In
case of complete observations without measurement error, one has X(i)

τk
= vk for all i.

Joint inference for X [τk,τk+1] and θ is now accomplished as follows: Based on the parti-
cles {X(i)

τk
,θ(i)}i=1,...,I , a discrete probability function π̂k is obtained as an estimate of the

density π(Xτk ,θ|v0, . . . ,vk). This could for example be the empirical probability function
putting equal weight on all particles. Next, a new Markov chain {X(i)

[τk,τk+1],θ
(i)}i=1,...,I is

constructed conditional on the observations v0, . . . ,vk+1. Previous estimation results are
incorporated by using π̂k in

π
(
X [τk,τk+1],θ

∣∣∣v0, . . . ,vk+1
)

= π
(
X(τk,τk+1]

∣∣∣Xτk ,θ,v0, . . . ,vk+1
)
π
(
Xτk ,θ

∣∣∣v0, . . . ,vk
)
.



7.4 Improvements of Convergence 211

Discarding X(i)
[τk,τk+1) for all i yields a Markov chain {X(i)

τk+1
,θ(i)}i=1,...,I which can be

regarded as a set of draws from π(Xτk+1 ,θ|v0, . . . ,vk+1) because of

π
(
Xτk+1 ,θ

∣∣∣v0, . . . ,vk+1
)

=
∫
X∞

π
(
X [τk,τk+1],θ

∣∣∣v0, . . . ,vk+1
)
dX [τk,τk+1).

This is the set of particles used for inference on the subsequent interval [τk+1, τk+2].

Golightly & Wilkinson (2006a, 2006b) implement such particle filters by using MCMC
techniques based on a discretisation of the path segment X [τk,τk+1] and its transition density
as in Sections 7.1 and 7.2. In that case, the set of particles can for each k be obtained as a
Markov chain after thinning and discarding a burn-in phase. Fearnhead, Papaspiliopoulos,
and Roberts (2008) propose particle filters for diffusions based on the Exact Algorithm
from Section 6.5, thus not requiring any time-discretisations. Filtering for (jump-)diffusions
has also been applied e. g. by Del Moral, Jacod, and Protter (2001), Chib et al. (2004)
and Johannes, Polson, and Stroud (2006).

The crucial point why a particle filter theoretically solves the convergence problems discussed
in Section 7.3 is that the parameter θ and the path segment X [τk,τk+1] are always generated
in a way such that they are consistent. In particular, first a parameter θ∗ and state X∗τk are
drawn from π̂k(Xτk ,θ|v0, . . . ,vk), and the remaining path segment X∗(τk,τk+1] conditions
on these. In the MCMC context, then either both (θ∗,X∗τk) and X∗(τk,τk+1] are accepted or
none.

As a convenient by-product, the particle filter enables online estimation, i. e. it does not
have to discard previous estimation results when new observations become available at
times larger than τM . That means, a Monte Carlo sampler does not have to be restarted but
simply continues the procedure conditional on the new observations. Online estimation is
especially in demand in real-time analysis, i. e. in applications where instantaneous action is
required and results of time-consuming estimation procedures cannot be awaited. Examples
are the monitoring of the spread of an infectious disease or modelling asset prices at the
stock market.

However, whilst fixing one problem, the use of particle filters brings up other difficulties in
practice: One issue is that poor approximations to the particles {X(i)

τk
,θ(i)}i=1,...,I propagate

poor approximations to subsequent sets of particles. Second, the use of MCMC methods in
combination with particle filters as in Golightly & Wilkinson (2006a, 2006b) are generally
exposed to fairly low acceptance probabilities and hence slow mixing of the Markov chains.
Therefore the methodology is not appropriate for the inherently computer-intensive data
augmentation of high-dimensional processes that may occur in life sciences; see for example
the application in Chapter 8.

7.4.4 Innovation Scheme on Infinite-dimensional State Spaces

This section now develops a novel and widely applicable update scheme which works for any
multi-dimensional diffusion process under fairly general regularity conditions. In particular,
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no special form of the diffusion coefficient such as a unit diffusion matrix is required. The
MCMC method is computationally efficient and experiences satisfying acceptance rates for
any amount of imputed data. Most importantly, it does not break down as the amount of
imputed data grows to infinity.

In the form presented here, the method is newly investigated in this thesis. There are however
related approaches in the literature as described forthcoming. Adopting the notation from
corresponding references, the introduced method will be referred to as innovation scheme
in the following.

The idea of the innovation scheme can be motivated by means of the parameter update
for a diffusion process X on the time interval [0, T ] as follows: As in Section 7.3, restrict
the following considerations to the case where the initial value X0 = x0 and the final
value XT = x are known and the remaining path segment X(0,T ) is unknown. Once more,
denote the measure of the target diffusion by Pθ, that is the measure induced by a diffusion
satisfying

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt, X0 = x0.

Assume that σ is invertible. Then, given X = (X t)t∈[0,T ] ∼ Pθ, the process B = (Bt)t∈[0,T ]
with

dBt = σ−1(X t,θ)
(
dX t − µ(X t,θ)dt

)
, B0 = 0, (7.49)

is d-dimensional standard Brownian motion. In particular, B has unit volatility and hence
possesses a property which is desirable in the context of the general data imputation scheme
considered in this chapter.

The above equations mean that there is a deterministic link between the target process X
and the parameter-free Brownian motion process B. This relationship however conditions
on the parameter. Define a function h such thatX t = h(Bt,θ) for all t ∈ [0, T ] and given θ.
This function is invertible in its first argument, i. e. there is another function h−1 such
that h−1(X t,θ) = Bt. The connection betweenX and B can be exploited in the parameter
update of the MCMC scheme (7.2) by conditioning the acceptance or rejection decision
on B instead of X. In particular, one updates θ|Bimp,x0,x rather than θ|X imp,x0,x,
where Bimp = h−1(X imp,θ).

For given θ, x0, x and X imp, the parameter update could then look as follows:

1. Draw θ∗ ∼ q(θ∗|θ).

2. Compute Bimp = h−1(X imp,θ).

3. Accept θ∗ with probability

ζ(θ∗,θ) = 1 ∧ π(θ∗ |Bimp,x0,x)q(θ |θ∗)
π(θ |Bimp,x0,x)q(θ∗ |θ )

,

otherwise keep θ.

4. If θ∗ was accepted, replace X imp by X imp∗ = h(Bimp,θ∗).
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Note that the order of steps 1 and 2 could be exchanged. The path correction in step 4
is new in comparison with the update schemes considered in Sections 7.1 and 7.2. Due
to this step, the just presented algorithm overcomes the degeneracy problems explored
in Section 7.3, because the parameters θ and θ∗ are consistent with X imp = h(Bimp,θ)
and X imp∗ = h(Bimp,θ∗), respectively.

The algorithm however experiences a different drawback: The acceptance of θ∗ implies
the just mentioned path correction from X imp to X imp∗ = h(Bimp,θ∗). The observed
end point x, however, remains the same. As h(h−1(x,θ),θ∗) 6= x for θ 6= θ∗, there is no
guarantee that X imp∗ satisfyingly bridges the gap between x0 and x. One may trust in the
Metropolis-Hastings algorithm rejecting all unlikely proposals in a discrete-time framework.
A more reliable and desired tool is however an efficient algorithm for which convergence in
the continuous-time setting is proven.

In the following we hence introduce a similar but different update mechanism and prove its
convergence in a continuous-time framework.

Related Work

The idea to base the parameter update on a parameter-independent Brownian motion
process has already been mentioned by Chib et al. (2004). They consider it in a framework
where there is not necessarily an end point condition for the imputed diffusion process. The
above accentuated difficulty does hence not appear. Although the modified update scheme
is applied in a simulation study, the authors do not give details for the calculation of the
Brownian motion construct.

Golightly & Wilkinson (2008, 2010) seize the general concept of Chib et al. and apply it to
the parameter update as it is also investigated in this thesis. They however do not consider
a continuous-time framework as done here but exclusively concentrate on discrete-time
skeletons. In particular, Equation (7.49) is replaced by

B̊k+1 = B̊k + σ−1(Y k,θ)
(
Y k+1 − Y k − µ(Y k,θ)∆tk

)
(7.50)

for appropriate indices k, ∆tk = tk+1 − tk and B̊0 = 0. To emphasise this difference, the
notation B̊k = Btk and Y k = X tk is used here for observation and auxiliary times tk. The
back-transformation happens via

Y k+1 = Y k + σ(Y k,θ)
(
B̊k+1 − B̊k

)
+ µ(Y k,θ)∆tk. (7.51)

As this construction does not satisfyingly handle possible end point conditions, Golightly &
Wilkinson also consider other deterministic links between B̊ and Y . To that end, define a
function f such that Y k = f(B̊k,θ) and B̊k = f−1(Y k,θ) for k = 1, . . . ,m and tm = T .
When conditioning the parameter update on this transformation, the acceptance probability
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for the parameter becomes by change of variables

ζ(θ∗,θ) = 1 ∧
π
(
θ∗
∣∣∣ B̊0, . . . , B̊m

)
q
(
θ
∣∣∣θ∗)

π
(
θ
∣∣∣ B̊0, . . . , B̊m

)
q
(
θ∗
∣∣∣θ )

= 1 ∧
m−1∏
k=0

π
(
B̊k+1

∣∣∣B̊k,θ
∗
)

π
(
B̊k+1

∣∣∣B̊k,θ
)
 · p(θ∗)

p(θ) ·
q
(
θ
∣∣∣θ∗)

q
(
θ∗
∣∣∣θ)

= 1 ∧
m−1∏
k=0

∣∣∣J(f(B̊k+1,θ
∗)
)∣∣∣∣∣∣J(f(B̊k+1,θ)
)∣∣∣
m−1∏

k=0

π
(
Y ∗k+1

∣∣∣Y ∗k ,θ∗)
π
(
Y k+1

∣∣∣Y k,θ
)
 · p(θ∗)

p(θ) ·
q
(
θ
∣∣∣θ∗)

q
(
θ∗
∣∣∣θ) ,

where Y ∗0 = Y 0, Y ∗k = f(B̊k,θ
∗) for k = 1, . . . ,m, and

J
(
f(B̊k+1,θ)

)
=
∣∣∣∣∣∂f(B̊k+1,θ)

∂B̊k+1

∣∣∣∣∣
is the Jacobian determinant of f . In this acceptance probability, the nominators and
denominators differ in both parameter and sample path, i. e. a critical situation as described
in Section 7.3 should not occur. There, however, remains to be proven that the acceptance
probability behaves nicely as part of the MCMC algorithm as the time step between two
consecutive imputed data points tends to zero.

The above approach has been explicitly designed for discrete path skeletons. Golightly and
Wilkinson (2010) emphasise that B̊ can in principal be any deterministic transformation
of Y and that f does actually not have to be related to the original diffusion process.
They point out that certain transformations such as the modified bridge from page 152 are
however advantageous with respect to the end point condition of an imputed path segment.

In contrast to that, we in the following consider a specific transformation of the original
infinite-dimensional diffusion process. We employ this transformation in both the parameter
and the path update and show that the resulting MCMC scheme works when applied to
continuously imputed path segments. This proceeding also supplies further insight on the
method by Golightly & Wilkinson. See the conclusion on pages 247 ff. for corresponding
remarks.

Contribution of this Thesis

In the remainder of this section, we present an MCMC mechanism for infinite-dimensional
imputed path segments and show that it does not experience the degeneracy problems
pointed out in Section 7.3. To that end, we investigate both the parameter update and the
path update in continuous time. We derive explicit formulas for the involved acceptance
probabilities so that these can be used in practice. The performance of the new approach is
illustrated afterwards in a simulation study.
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The general concept of the proposed update mechanism is as follows: As before, let Pθ
denote the law induced by a diffusion satisfying the SDE

dX t = µ(X t,θ)dt+ σ(X t,θ)dBt, X0 = x0,

and let P̃θ be the law of the same process but further conditioned on the end point XT = x.
In this section, a number of probability measures is introduced. For better lucidity, these
are summarised in Table 7.6.

Once more, assume that the diffusion coefficient σ is invertible. For X ∼ P̃θ, define a
process Z = (Zt)t∈[0,T ] through

dZt = σ−1(X t,θ)
(
dX t −

x−X t

T − t
dt

)
, Z0 = 0, (7.52)

= dBt + σ−1(X t,θ)
(
µ(X t,θ)− x−X t

T − t

)
dt.

Pθ : dX t = σ(X t,θ) dBt + µ(X t,θ) dt

P̃θ : dX t = σ(X t,θ) dBt + µ(X t,θ) dt , XT = x

D0,θ : dX t = σ(X t,θ) dBt + x−X t

T − t
dt

Dµ,θ : dX t = σ(X t,θ) dBt +
(
µ(X t,θ) + x−X t

T − t

)
dt

Wθ : dX t = σ(X t,θ) dBt

W̃θ : dX t = σ(X t,θ) dBt , XT = x

W : dX t = dBt

W̃ : dX t = dBt , XT = x

Zθ : dZt = σ−1(X t,θ)
(
dX t −

x−X t

T − t
dt

)
, Z0 = 0, X t ∼ P̃θ

Table 7.6: Overview of introduced probability measures. All measures assume X0 = x0, and B
is d-dimensional standard Brownian motion.
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Let Zθ denote the law of Z, and define a function g which is invertible in its first argument
such that X = g(Z,θ) and Z = g−1(X,θ). In terms of the process Z, the respective SDE
for this back-transformation reads

dX t = σ(X t,θ)dZt + x−X t

T − t
dt, X0 = x0.

The initial value x0 and the final point x of X are considered fixed and are hence not
included in the notation P̃θ, Zθ and g.

Like the process B defined in (7.49) above, Z has unit diffusion. Moreover, the construction
of Zθ explicitly involves the end point x of X. It ensures that g(g−1(x,θ),θ∗) = x even
for θ 6= θ∗. This can be seen from the following informal argument: Because of XT = x,
the time-discretisation of (7.52) at time T for a small time step ε,

ZT −ZT−ε = σ−1(XT−ε,θ)
(
XT −XT−ε −

x−XT−ε

ε
ε

)
,

implies that ZT = ZT−ε. As a consequence, the back-transformation at time T ,

X∗T −X∗T−ε = σ(X∗T−ε,θ∗)
(
ZT −ZT−ε

)
+ x−X∗T−ε

ε
ε,

yields X∗T = x also for θ 6= θ∗. A formal reasoning is postponed to the proof of Lemma 7.3
on page 220.

Figure 7.27 displays back-transformations of a one-dimensional diffusion path X based
on the processes B = h−1(X,θ) and Z = g−1(X, θ) defined through the SDEs (7.49)
and (7.52). Note that for all diffusion processes X one has X = g(g−1(X,θ),θ∗) if θ∗ is
such that σ(·,θ) = σ(·,θ∗) even for θ 6= θ∗. This is a meaningful characteristic of the
transformation as the degeneracy issues from Section 7.3 involve only those components
of θ which enter the diffusion coefficient.

The process Z is not Brownian motion, but the corresponding measure Zθ is absolutely
continuous with respect to Wiener measure as will be shown in Lemma 7.2 on page 220.
As Z imp has unit diffusion, it qualifies to take over the role of Bimp = h−1(X imp,θ) in the
idea presented at the very beginning of the present Section 7.4.4. Indeed, the construction
of Z can be seen as an attempt to mimic Brownian motion. We hence adopt the notation
from Chib et al. (2004) and call Z an innovation process. Moreover, an update algorithm
based on Z imp = g−1(X imp,θ) will be referred to as innovation scheme in the following. The
idea is to update θ|Z imp,x0,x and Z imp|θ,x0,x instead of θ|X imp,x0,x andX imp|θ,x0,x,
respectively. We suggest that the algorithms for the parameter and path updates then look
as follows:
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Figure 7.27: Back-transformation of a sample path: The thick black line shows an exact
discrete-time realisation of a one-dimensional Ornstein-Uhlenbeck process X satisfying the SDE
dXt = −αXtdt + σdBt with X0 = 0 and θ = (α, σ2)′ = (0.5, 1)′. The time grid consists of
100 equidistant time points in the interval [0, 1]. The path is transformed to B = h−1(X,θ)
and Z = g−1(X,θ) defined through (7.49) and (7.52). Formulas for the discrete-time setting
are given in (7.50), (7.51), (7.68) and (7.69). The thin blue lines show the back-transformations
with respect to different parameters. Using the transform function h, the back-transformations
do not hit the original end point of the diffusion path. (a) Back-transformations h(B,θ∗)
for θ∗ = (0.5, σ2∗)′ with σ2∗ ∈ {0.1, 0.2, . . . , 1.5}. (b) Back-transformations h(B,θ∗) for
θ∗ = (α∗, 1)′ with α∗ ∈ {0.1, 0.2, . . . , 1}. (c) Back-transformations g(Z,θ∗) for θ∗ = (0.5, σ2∗)′ with
σ2∗ ∈ {0.1, 0.2, . . . , 1.5}. For θ∗ = (α∗, 1)′ with arbitrary α∗, the back-transformation equals the
original process, i. e. X = g(Z,θ∗).

Algorithm 7.4 (Parameter Update). Given θ, x0, x and X imp, perform the following
steps:

1. Draw θ∗ ∼ q(θ∗|θ).

2. Compute Z imp = g−1(X imp,θ).

3. Accept θ∗ with probability

ζ(θ∗,θ) = 1 ∧ π(θ∗ |Z imp,x0,x)q(θ |θ∗)
π(θ |Z imp,x0,x)q(θ∗ |θ )

, (7.53)

otherwise keep θ.

4. If θ∗ was accepted, replace X imp by X imp∗ = g(Z imp,θ∗).

Note that in step 1, the proposal density for the parameter is chosen such that it does
neither depend on the observed nor on the imputed data.
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Algorithm 7.5 (Path Update). Given θ, x0, x and X imp, perform the following steps:

1. Compute Z imp = g−1(X imp,θ).

2. Draw Z imp∗ ∼ q(Z imp∗|Z imp,x0,x,θ) such that it has unit diffusion.

3. Accept X imp∗ = g(Z imp∗,θ) with probability

ζ(Z imp∗,Z imp) = 1 ∧ π(Z imp∗|x0,x,θ)q(Z imp|Z imp∗,x0,x,θ)
π(Z imp|x0,x,θ)q(Z imp∗|Z imp,x0,x,θ)

, (7.54)

otherwise keep X imp.

A concluding correction of the parameter corresponding to step 4 in Algorithm 7.4 is not
necessary in the path update as the quadratic variation of both X imp and X imp∗ should be
consistent with θ. Be aware that X imp∗ has different definitions in the two algorithms: In
the parameter update, it is constructed as X imp∗ = g(Z imp,θ∗), and in the path update
as X imp∗ = g(Z imp∗,θ).

In the remainder of this section, we will show for both the parameter and the path update

(i) that the algorithms converge and

(ii) that explicit formulas for the acceptance probabilities can be derived.

Assumptions

For the purposes of this section, we assume that the drift function µ and the diffusion
coefficient σ are bounded and that σ is invertible with bounded inverse σ−1. We generally
consider time-homogeneous diffusions in this section, but in the following some results will
also be proven for time-dependent drift and diffusion coefficient. In that case, µ and σ are
not only supposed to be twice continuously differentiable with respect to the state variable
but also continuously differentiable with respect to time. These derivatives are required to
be bounded as well.

Parameter Update

The acceptance probabilities (7.53) and (7.54) have been formulated using a rather in-
formal generic notation where π denotes a collection of Lebesgue densities; compare
with Section 7.1.1. In the following, we will distinguish between the densities of X imp

and Z imp = g−1(X imp,θ) by writing

π(X imp |x0,x,θ) = dP̃θ
dL

(
X imp

)
and π(Z imp |x0,x,θ) = dZθ

dL

(
Z imp

)
,

where L is Lebesgue measure. Define fθ and f̃θ to be the Lebesgue densities under Pθ
and P̃θ, respectively, i. e.

dPθ = fθ dL and dP̃θ = f̃θ dL.
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Then the acceptance probability (7.53) for the parameter becomes

ζ(θ∗,θ) = 1 ∧ dZθ∗(Z imp) fθ∗(x) p(θ∗) q(θ |θ∗)
dZθ(Z imp) fθ(x) p(θ) q(θ∗|θ )

. (7.55)

Two objectives are considered in the following: First, show that this acceptance probability
behaves nicely as part of the MCMC algorithm. Second, obtain explicit expressions for (7.55)
such that it is of practical use. We assume that p and q are known, sufficiently regular and
can be evaluated.

Corollary 7.1. The quotient (dZθ∗/dZθ)(Z imp) does not degenerate as described on
pages 203 to 204; both its nominator and denominator are finite.

Proof. Introduce the probability measure D0,θ which is induced by a diffusion fulfilling the
SDE

dX t = σ(X t,θ) dBt + x−X t

T − t
dt, X0 = x0. (7.56)

For an overview, Table 7.6 on page 215 lists all measures defined in the context of the
innovation scheme. D0,θ defines a diffusion process which almost surely reaches the state x
at time T (Delyon & Hu, 2006, Lemma 4). For Σ = σσ′ not depending on the state
variable, one has D0,θ = W̃θ. In particular, for Σ ≡ I the measure D0,θ reduces to W̃, that
is the law of a d-dimensional Brownian (0,x0, T,x)-bridge (e. g. Karatzas & Shreve, 1991,
Chapter 5.6).

The function g which connects X imp and Z imp is chosen such that the relationship be-
tween P̃θ and Zθ is the same as the link between D0,θ and Wiener measure W, i. e.

Z ∼ Zθ ⇔ g(Z,θ) ∼ P̃θ (7.57)

and

B ∼W ⇔ g(B,θ) ∼ D0,θ. (7.58)

Consequently, the change of variables theorem yields

dZθ
dL

(
Z imp

)
=
∣∣∣J(g(Z imp,θ)

)∣∣∣ dP̃θ
dL

(
g(Z imp,θ)

)
(7.59)

and
dW

dL

(
Z imp

)
=
∣∣∣J(g(Z imp,θ)

)∣∣∣ dD0,θ

dL

(
g(Z imp,θ)

)
, (7.60)

where

J
(
g(Z imp,θ)

)
=
∣∣∣∣∣∂g(Z imp,θ)

∂Z imp

∣∣∣∣∣
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is the Jacobian determinant of g. Then

dZθ∗(Z imp)
dZθ(Z imp)

=
dZθ∗

dW

(
Z imp

)
dZθ
dW

(
Z imp

) =

dP̃θ∗

dD0,θ∗

(
g(Z imp,θ∗)

)
dP̃θ
dD0,θ

(
g(Z imp,θ)

) =

dP̃θ∗

dD0,θ∗

(
X imp∗

)
dP̃θ
dD0,θ

(
X imp

) . (7.61)

In the last expression, the nominator and denominator differ in both parameter and imputed
data. A situation as described on pages 203 to 204, where always either the nominator
or denominator of the acceptance probability is zero, does therefore not occur. Under
the assumptions on page 218 regarding µ and σ, Delyon & Hu (2006, Theorem 6) prove
that P̃θ is absolutely continuous with respect to D0,θ for all θ. Hence, both the nominator
and denominator of the last fraction in (7.61) are finite.

We are now in the position to show the following two propositions which were already
mentioned earlier in this section.

Lemma 7.2. Zθ is absolutely continuous with respect to W.

Proof. In the proof of Corollary 7.1 it was pointed out that P̃θ is absolutely continuous
with respect to D0,θ, where the latter is induced by the solution of (7.56). As these two
measures are linked with the measures Zθ andW in the same deterministic way — see (7.57)
and (7.58) —, this also proves that Zθ is absolutely continuous with respect to W.

Lemma 7.3. The back-transformation X∗ = g(g−1(X,θ),θ∗) for X ∼ P̃θ hits the required
end point X∗T = x.

Proof. Let Z ∼ Zθ and B ∼ W. As Zθ � W, the process X∗ = g(Z,θ∗) induces a
law Qθ,θ∗ which is absolutely continuous with respect to the law D0,θ∗ of g(B,θ∗). More
precisely, D0,θ∗(X∗) = 0 implies Qθ,θ∗(X∗) = 0. Under D0,θ∗ , the diffusion process almost
surely hits the desired end point x. Consequently, this must be true also under Qθ,θ∗ .
Hence g(g−1(x,θ),θ∗) = x as was to be shown.

Be aware that the imputed data X imp consists of all values X t for t ∈ (0, T ). It is crucial
that XT does not belong to X imp. The starting value x0 is formally not included in X imp

either. This value is however inherent in all measures considered in this section (compare
with Table 7.6) and does not depend on θ. It is hence reasonable to incorporate the initial
value in the integrals on the following pages. For convenience, let X imp = (X t)t∈(0,T−ε] for
a small but positive constant ε. This is also abbreviated as X(0,T−ε].

The utilisation of the acceptance probability (7.55) in an MCMC algorithm requires an
explicit formula such that it can be evaluated in practice. Hence consider the following
corollary.
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Corollary 7.4. An explicit expression for (dZθ∗/dZθ)(Z imp) · (fθ∗/fθ)(x) as part of the
acceptance probability (7.55) is available.

Proof. Consider the relationship between P̃θ and Pθ. These two measures differ by the end
point condition of P̃θ. Heuristically, one has

dP̃θ
dL

(
X imp

)
= f̃θ(X imp) = fθ(x|X imp)fθ(X imp)

fθ(x) = fθ(x|XT−ε)
fθ(x)

dPθ
dL

(
X imp

)
. (7.62)

Hence

dZθ∗(Z imp) fθ∗(x)
dZθ(Z imp) fθ(x)

=

(
dP̃θ∗

dPθ∗

dPθ∗

dD0,θ∗

)(
X imp∗

)
fθ∗(x)(

dP̃θ
dPθ

dPθ
dD0,θ

)(
X imp

)
fθ(x)

=

dPθ∗

dD0,θ∗

(
X imp∗

)
fθ∗(x|X∗T−ε)

dPθ
dD0,θ

(
X imp

)
fθ(x|XT−ε)

.

There is no analytically explicit form for fθ(x|XT−ε); that is the Lebesgue density for
the transition from XT−ε to x within time ε, where X ∼ Pθ. However, for small ε,
an approximation via e. g. the Euler scheme should be possible. For the calculation
of dPθ/dD0,θ = (dPθ/dWθ)(dWθ/dD0,θ), Girsanov’s formula from Section 3.2.12 seems
appropriate. The drift term (x−X t)/(T − t) under D0,θ, however, explodes as t→ T and
hence Novikov’s condition in Section 3.2.12 may not be fulfilled. Nevertheless, Delyon & Hu
(2006, Theorem 1) prove a generalisation of Girsanov’s formula which holds under weaker
conditions and which is applicable in the present case. With this theorem, one obtains the
same result as under uncritical application of (3.26); that is

log
(
dPθ
dD0,θ

(
X imp

))
= log

(
dPθ
dWθ

(
X imp

))
+ log

(
dWθ

dD0,θ

(
X imp

))

=
T−ε∫
0

µ(X t,θ)− x−X t

T − t

′Σ−1(X t,θ) dX t

− 1
2

T−ε∫
0

µ′(X t,θ)Σ−1(X t,θ)µ(X t,θ)− (x−X t)′Σ−1(X t,θ)(x−X t)
(T − t)2

dt.
(7.63)

All integrands in this expression are explicitly known as functions of X and θ.

Corollary 7.1 proves that both the nominator and denominator of (7.61) are finite. Since
all other components of (7.55) are supposed to be sufficiently regular, this property carries
forward to the entire quotient in the acceptance probability (7.55). A further desirable
property would be that the nominator and denominator are even bounded. Otherwise, for
a bounded proposal density q, the Markov chain generated by the Metropolis-Hastings
algorithm with acceptance probability (7.55) may dwell too long in single states and show
bad mixing behaviour. For instance, Tierney (1994) and Mengersen and Tweedie (1996)
show that an independence sampler with target density π and proposal density q is uniformly
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ergodic if there exists a constant c > 0 such that q(y)/π(y) ≥ c for all y in a possibly
multi-dimensional real state space. Otherwise, the algorithm is not even geometrically
ergodic. For details, see the original papers or the book by G. Roberts and Tweedie (2010).
Analogous statements for the framework of this section are, however, beyond the scope of
this thesis.

The proof of Corollary 7.4 provides an explicit formula for the critical part of the acceptance
probability (7.55); because of the term (T − t)2 in the denominator of the last term of (7.63),
it is however not evident whether the exponential function of this expression, together with
the factor fθ(x|XT−ε), is bounded. In the following we hence rearrange the above terms in
an appropriate way. To that end, we follow the line of the proof of Theorem 5 in Delyon
and Hu (2006) who derive expressions for dP̃θ/dDµ,θ and dP̃θ/dD0,θ, where Dµ,θ is defined
in Table 7.6 on page 215 and employed in the path update below. The outcomes are one of
the key contributions of this section.

Corollary 7.5. One has

dP̃θ
dDµ,θ

(
X(0,T−ε]

)
= exp

−T−ε∫
0

D1(X t,θ) +D2(X t,θ) +D3(X t,θ)
2(T − t)

(T
ε

)− d(d−1)
2

·
φ
(
x
∣∣∣x0, TΣ(x0,θ)

)
fθ(x)

|Σ(x0,θ)| 12
|Σ(XT−ε,θ)| 12

(7.64)

and

dP̃θ
dD0,θ

(
X(0,T−ε]

)
= exp

−T−ε∫
0

D2(X t,θ)+D3(X t,θ)
2(T − t)


· exp

T−ε∫
0

µ′(X t,θ)Σ−1(X t,θ)dX t−
1
2

T−ε∫
0

µ′(X t,θ)Σ−1(X t,θ)µ(X t,θ)dt


·
φ
(
x
∣∣∣x0, TΣ(x0,θ)

)
fθ(x)

|Σ(x0,θ)| 12
|Σ(XT−ε,θ)| 12

(
T

ε

)− d(d−1)
2

,

(7.65)

where

D1(X t,θ) = −2(x−X t)′Σ−1(X t,θ)µ(X t,θ)dt
D2(X t,θ) = (x−X t)′

(
dΣ−1(X t,θ)

)
(x−X t)

D3(X t,θ) = −
d∑
i=1

d∑
j=1

(x−X t)′
(
∂Σ−1(X t,θ)

∂x(j) ei + ∂Σ−1(X t,θ)
∂x(i) ej

)
T − t

dX
(i)
t dX

(j)
t .

In these formulas, φ(y|ν,Λ) is the multivariate Gaussian density with mean ν and co-
variance matrix Λ evaluated at y, and |A| denotes the determinant of a square matrix A.
Furthermore, ei is the ith unit vector of dimension d, dX(i)

t is the ith component of dX t,
and ∂/∂x(i) denotes differentiation with respect to the ith component of the state variable.
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Proof. The calculations are carried out using the heuristic approach (7.62). Due to space
restrictions, they are moved to Section B.7 in the appendix.

Remark. Under the regularity conditions from page 218, Delyon & Hu derive very similar
expressions for dP̃θ/dDµ,θ and dP̃θ/dD0,θ. However, their results are obtained in a different
context than here; applied toX [0,T ], the formulas are provided up to proportionality constants
which do not depend on X(0,T ) but on θ, x0 and x. In particular, Delyon & Hu (2006,
Theorems 5 and 6) show that

dP̃θ
dDµ,θ

(
X [0,T ]

)
∝ exp

− T∫
0

D1(X t,θ) +D2(X t,θ) +D3(X t,θ)
2(T − t)


and

dP̃θ
dD0,θ

(
X [0,T ]

)
∝ exp

− T∫
0

D2(X t,θ)+D3(X t,θ)
2(T − t)


· exp

 T∫
0

µ′(X t,θ)Σ−1(X t,θ)dX t−
1
2

T∫
0

µ′(X t,θ)Σ−1(X t,θ)µ(X t,θ)dt
,

where proportionality constants contain θ, x0 and x. In this section, however, we want to
apply the Radon-Nikodym derivatives to X(0,T−ε] instead of X [0,T ], which leads to additional
changes of the above formulas. In order to obtain all components of the derivatives which
are relevant in the present context, the derivations including all constants were performed
in this thesis.

The results in Corollary 7.5 require that ε is chosen arbitrarily small such that for the
transition from XT−ε to x one can simply assume a Gaussian increment

XT |XT−ε,θ ∼ N
(
XT−ε, εΣ(XT−ε,θ)

)
.

Otherwise, the multiplicative correction term

fθ
(
x
∣∣∣XT−ε

)
φ
(
x
∣∣∣XT−ε, εΣ(XT−ε,θ)

) ≈ φ
(
x
∣∣∣XT−ε + εµ(XT−ε,θ), εΣ(XT−ε,θ)

)
φ
(
x
∣∣∣XT−ε, εΣ(XT−ε,θ)

)
= exp

(
µ′(XT−ε,θ)Σ−1(XT−ε,θ)

(
x−XT−ε −

ε

2 µ(XT−ε,θ)
))

(7.66)

should be included. Respective results as in Corollary 7.5 also hold if µ and σ are
time-dependent. These are likewise derived and provided in Section B.7.

Overall, we arrive at the following concluding theorem.
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Theorem 7.6. The parameter update can be performed by application of Algorithm 7.4 on
page 217 with acceptance probability

ζ(θ∗,θ) = 1 ∧

dP̃θ∗

dD0,θ∗

(
g(Z imp,θ∗)

)
fθ∗(x) p(θ∗) q(θ |θ∗)

dP̃θ
dD0,θ

(
g(Z imp,θ)

)
fθ(x) p(θ) q(θ∗|θ )

. (7.67)

An explicit formula for this probability is available due to Corollary 7.5. The acceptance
probability is regular in the sense that both the nominator and denominator of the quotient
in (7.67) are bounded. A degenerate situation as described on pages 203 to 204 cannot
occur.

Proof. Formula (7.67) is straightforward using (7.55) and (7.61). All constituents of ζ are
known due to the derivative (7.65) obtained in Corollary 7.5. In particular, the unknown
functions fθ(x) and fθ∗(x) cancel with respective corresponding parts. All integrals in (7.65)
are well-defined (Delyon & Hu, 2006, Lemma 4), and the quotient of determinants is bounded
as Σ and Σ−1 are bounded. The terms (T/ε)−d(d−1)/2 in (7.65) cancel when plugged in
into the acceptance probability (7.67). It follows from Corollary 7.1 that the acceptance
probability is non-degenerate.

The implementation of the parameter update is described in the following paragraph, and
its performance is shown in a simulation study on pages 231 ff.

Remark. Equation (7.65) shows that the acceptance probability (7.67) is sufficiently regular.
An explicit form of this acceptance probability, however, would also have been available
without (7.65) but under consideration of (7.63). These different representations lead to
identical functions in the continuous case. They however differ once discretised as will be
seen on page 226.

Implementation of Parameter Update

The above considerations showed that the parameter update algorithm proposed in this
section converges in a continuous-time framework. In practice, however, discretisations of
the diffusion paths are considered. Suppose one has a path segment with fixed starting
value X0 = x0 at time t0 = 0 and observed end point XT = x at time tm = T . Assume
that data X t1 , . . . ,X tm−1 at times 0 < t1 < . . . < tm−1 < T is imputed. During the
update mechanism, the variable X t will be transformed to a variable Zt. For shorter
notation, let X tk = Y k and Ztk = Z̊k for all k = 0, . . . ,m. As argued on page 220, include
the starting value x0 in the imputed data. Hence define Y imp = {Y 0,Y 1, . . . ,Ym−1}
and Y imp∗ = {Y ∗0 ,Y ∗1 , . . . ,Y ∗m−1}. Then Algorithm 7.4 adapted to the discretised data
reads as follows.
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Algorithm 7.6 (Parameter Update for Discretised Data). Given θ, Y imp and Ym = x,
perform the following steps:

1. Draw θ∗ ∼ q(θ∗|θ).

2. Successively compute for k = 0, . . . ,m− 2

Z̊k+1 = Z̊k + σ−1(Y k,θ)
Y k+1 − Y k −

x− Y k

T − tk
∆tk

, (7.68)

where Z̊0 = 0, Y 0 = x0 and ∆tk = tk+1 − tk. Furthermore, obtain the back-
transformation with respect to the proposed parameter θ∗,

Y ∗k+1 = Y ∗k + σ(Y ∗k ,θ∗)
(
Z̊k+1 − Z̊k

)
+ x− Y ∗k

T − tk
∆tk (7.69)

for k = 0, . . . ,m− 2, where Y ∗0 = Y 0.

3. Accept θ∗ with probability

ζ(θ∗,θ) = 1 ∧ H(Y imp∗,θ∗)p(θ∗)q(θ |θ∗)
H(Y imp,θ)p(θ)q(θ∗ |θ )

,

where

logH(Y imp,θ)

=− 1
2

m−2∑
k=0

(x− Y k)′
(
Σ−1(Y k+1,θ)−Σ−1(Y k,θ)

)
(x− Y k)

T − tk
(7.70)

− 1
2

m−2∑
k=0

d∑
i,j=1

(x− Y k)′
(
∂Σ−1(Y k,θ)

∂y(j) ei + ∂Σ−1(Y k,θ)
∂y(i) ej

)
T − tk

∆Y (i)
k ∆Y (j)

k (7.71)

+
m−1∑
k=0

µ′(Y k,θ)Σ−1(Y k,θ)
(

∆Y k −
1
2µ(Y k,θ)∆tk

)
(7.72)

+ log φ
(
x
∣∣∣x0, TΣ(x0,θ)

)
+ 1

2
(
log |Σ(x0,θ)| − log |Σ(Ym−1,θ)|

)
(7.73)

with x0 = Y 0 and ∆Y k = Y k+1 − Y k with components ∆Y (i)
k . Otherwise keep θ.

4. If θ∗ was accepted, replace Y imp by Y imp∗.

The function H equals the time-discretisation of Equation (7.65) times fθ(x) without
multiplicative constants but including the correction term (7.66). The latter corresponds
to k = m− 1 in line (7.72). Note that lines (7.70) and (7.71) disappear when Σ does not
depend on the state variable. The same holds for the second summand in line (7.73).
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It was required on page 218 that Σ−1 is differentiable. In case the derivatives of Σ−1 are
not analytically available, one can approximate them through difference quotients, i. e. one
uses in line (7.71)(

∂Σ−1(Y k,θ)
∂y(j) ei + ∂Σ−1(Y k,θ)

∂y(i) ej

)
∆Y (i)

k ∆Y (j)
k

≈
(
Σ−1(Y k,[j],θ)−Σ−1(Y k,θ)

)
ei∆Y (i)

k +
(
Σ−1(Y k,[i],θ)−Σ−1(Y k,θ)

)
ej∆Y (j)

k ,

where the components of Y k,[j] are defined as Y (i)
k,[j] = Y

(i)
k for i 6= j and Y (j)

k,[j] = Y
(j)
k+1.

Because of dX(i)
t dX

(j)
t = Σij(X t,θ)dt as shown by Equation (B.28) on page 366, the term

∆Y (i)
k ∆Y (j)

k in line (7.71) could furthermore be replaced by Σij(Y k,θ)∆tk, where Σij is the
component in the ith row and jth column of Σ.

An alternative representation of the acceptance probability in Algorithm 7.6 follows the
discretisation of (dPθ/dD0,θ)(X imp)fθ(x|XT−ε) according to Equation (7.63); compare
with the remark on page 224. Then

logH(Y imp,θ)

=
m−2∑
k=0

µ(Y k,θ)− x− Y k

T − tk

′Σ−1(Y k,θ)∆Y k

−1
2

m−2∑
k=0

µ′(Y k,θ)Σ−1(Y k,θ)µ(Y k,θ)− (x− Y k)′Σ−1(Y k,θ)(x− Y k)
(T − tk)2

∆tk

+ log φ
(
x
∣∣∣Ym−1 + ∆tm−1µ(Ym−1,θ),∆tm−1Σ(Ym−1,θ)

)
.

(7.74)

If the diffusion coefficient does not depend on the state of the process, this formula yields
the same acceptance probability as the one in Algorithm 7.6.

Path Update

We now turn to the path update, i. e. the imputation of the missing data. Algorithm 7.5
on page 218 already proposed how to utilise the one-to-one relationship between the
target process X and the unit diffusion process Z in that context. At the end, the
following elaborations provide the mathematical proof that the modified bridge proposal
from page 152, the diffusion bridge proposal from page 153 and the proposal by Delyon &
Hu from page 155 work in the continuous-time framework, i. e. for an infinite amount of
imputed data.

Recall the suggested Algorithm 7.5 which generates a proposal Z imp∗ with unit diffusion and
transforms this to a candidate X imp∗ = g(Z imp∗,θ) as an alternative choice to the current
data X imp = g(Z imp,θ). We require that the target measure Zθ of the innovation process
is absolutely continuous with respect to the proposal measure for Z imp∗, i. e. the target
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measure P̃θ of the diffusion process is absolutely continuous with respect to the proposal
measure for X imp∗ = g(Z imp∗,θ). Only in that case all possible paths are (theoretically)
proposed and the acceptance probability is non-degenerate. An obvious choice is to
propose Z imp∗ ∼W, i. e. to let q = dW/dL be the Lebesgue density under Wiener measure.

Corollary 7.7. The path update can be performed by application of Algorithm 7.5 on
page 218, where the innovation process Z imp∗ is proposed from W and accepted with
probability

ζ(Z imp∗,Z imp) = 1 ∧
 dP̃θ
dD0,θ

(
g(Z imp∗,θ)

)/ dP̃θ
dD0,θ

(
g(Z imp,θ)

). (7.75)

This algorithm is non-degenerate.

Proof. In terms of the probability measures introduced in this section, the acceptance
probability (7.54) from page 218 reads

ζ(Z imp∗,Z imp) = 1 ∧
dZθ
dL

(Z imp∗) q(Z imp|Z imp∗,x0,x,θ)
dZθ
dL

(Z imp) q(Z imp∗|Z imp,x0,x,θ)
. (7.76)

Change of variables as in (7.59) and (7.60) yields

dZθ
dL

(Z imp∗)
dZθ
dL

(Z imp)
=

(
dZθ
dW

dW

dL

)(
Z imp∗

)
(
dZθ
dW

dW

dL

)(
Z imp

) =

dP̃θ
dD0,θ

(
g(Z imp∗,θ)

)dW
dL

(
Z imp∗

)
dP̃θ
dD0,θ

(
g(Z imp,θ)

)dW
dL

(
Z imp

) .

Plugging in q = dW/dL into (7.76) yields (7.75). This acceptance probability is non-
degenerate as due to the construction in Algorithms 7.4 and 7.5 the quadratic variation of
both X imp = g(Z imp,θ) and X imp∗ = g(Z imp∗,θ) is consistent with θ. An explicit formula
for (7.75) is available using Equation (7.65) on page 222.

These considerations show that for suitable proposal measures the detour around the
innovation process Z is actually not necessary in the path update: Instead of sampling Z imp∗

from a measure QZθ and then deterministically calculating X imp∗ = g(Z imp∗,θ), one can
directly obtain X imp∗ from the resulting measure QXθ — if this measure is known and
simulation from it is possible. The only requirement is that Zθ � QZθ , i. e. P̃θ � QXθ .

Two appropriate choices for QXθ are D0,θ and Dµ,θ; recall the definitions from Table 7.6 on
page 215. As already mentioned before, these measures fulfil P̃θ � D0,θ and P̃θ � Dµ,θ
(Delyon & Hu, 2006). Approximate simulation is possible via e. g. the Euler scheme.
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Theorem 7.8. The path update can be performed by application of Algorithm 7.5 with
acceptance probabilities

ζ(X imp∗,X imp) = 1 ∧
 dP̃θ
dD0,θ

(
X imp∗

)/ dP̃θ
dD0,θ

(
X imp

) (7.77)

for proposals X imp∗ ∼ D0,θ and

ζ(X imp∗,X imp) = 1 ∧
 dP̃θ
dDµ,θ

(
X imp∗

)/ dP̃θ
dDµ,θ

(
X imp

) (7.78)

for proposals X imp∗ ∼ Dµ,θ. For both choices, the algorithm is non-degenerate.

Proof. Both equations are obvious if one considers the path update directly for X imp

without regarding Z imp. The acceptance probability (7.77) is naturally also the same
as (7.75). Section B.8 in the appendix briefly shows the according derivation for (7.78).
Explicit expressions for (7.77) and (7.78) are available with (7.64) and (7.65), in which all
integrals are well-defined (Delyon & Hu, 2006, Lemma 4). The reasoning of the regularity
of the above acceptance probabilities follows the line of the proof of Theorem 7.6.

The proposal measures D0,θ and Dµ,θ have already been considered in Section 7.1 as the
diffusion bridge proposal (page 153) and a proposal due to Delyon and Hu (page 155).
The proposal measure D0,θ is also covered by the limit of the modified bridge proposal
(page 152) as the amount of imputed data tends to infinity. This section hence proves that
these proposals from the discrete-time framework also work in continuous time.

The following paragraph describes the practical implementation of the path update with the
two options D0,θ and Dµ,θ as proposal measures. Afterwards, the entire modified MCMC
algorithm is applied in a simulation study on pages 231 ff.

Implementation of Path Update

As in the implementation of the parameter update, consider a discrete path skeleton
consisting of observed and imputed data x0 = X t0 ,X t1 , . . . ,X tm−1 ,X tm = x at time
points 0 = t0 < t1 < . . . < tm−1 < tm = T . Let X tk = Y k for all k = 0, . . . ,m and
define Y imp = {Y 0,Y 1, . . . ,Ym−1} and Y imp∗ = {Y ∗0 ,Y ∗1 , . . . ,Y ∗m−1}.

For the path proposal measure D0,θ, the path algorithm 7.5 adapted to the discretised data
reads as follows.
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Algorithm 7.7 (Path Update for Discretised Data I). Given θ, Y imp and Ym = x, perform
the following steps:

1. Draw an approximate discrete skeleton Y imp∗ ∼ D0,θ, i. e. successively simulate

Y ∗k+1 = Y ∗k + x− Y ∗k
T − tk

∆tk + σ(Y ∗k ,θ)N
(
0,∆tkI

)

for k = 0, . . . ,m− 2, where Y ∗0 = Y 0 = x0 and ∆tk = tk+1 − tk.

2. Accept Y imp∗ with probability

ζ(Y imp∗,Y imp) = 1 ∧ H̃(Y imp∗,θ)
H̃(Y imp,θ)

,

where

log H̃(Y imp,θ)

=− 1
2

m−2∑
k=0

(x− Y k)′
(
Σ−1(Y k+1,θ)−Σ−1(Y k,θ)

)
(x− Y k)

T − tk
(7.79)

− 1
2

m−2∑
k=0

d∑
i,j=1

(x− Y k)′
(
∂Σ−1(Y k,θ)

∂y(j) ei + ∂Σ−1(Y k,θ)
∂y(i) ej

)
T − tk

∆Y (i)
k ∆Y (j)

k (7.80)

+
m−1∑
k=0

µ′(Y k,θ)Σ−1(Y k,θ)
(

∆Y k −
1
2µ(Y k,θ)∆tk

)
− 1

2 log |Σ(Ym−1,θ)| (7.81)

with ∆Y k = (∆Y (1)
k , . . . ,∆Y (d)

k )′ = Y k+1 − Y k. Otherwise keep Y imp.

The function H̃ is the discretisation of Equation (7.65) times fθ(x) without constants
but again incorporating the correction (7.66). As in Algorithm 7.6, this correction term
corresponds to k = m− 1 in line (7.81), and lines (7.79) and (7.80) disappear when Σ does
not depend on the state variable. The previous remarks on possibly required approximations
of the derivatives of Σ−1 naturally apply here as well.

For the path proposal measure Dµ,θ, the algorithm includes the discretisation of Equa-
tion (7.64) and hence reads as follows.
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Algorithm 7.8 (Path Update for Discretised Data II). Given θ, Y imp and Ym = x,
perform the following steps:

1. Draw an approximate discrete skeleton Y imp∗ ∼ Dµ,θ, i. e. successively simulate

Y ∗k+1 = Y ∗k +
(
µ(Y ∗k ,θ) + x− Y ∗k

T − tk

)
∆tk + σ(Y ∗k ,θ)N

(
0,∆tkI

)
for k = 0, . . . ,m− 2, where Y ∗0 = Y 0 = x0 and ∆tk = tk+1 − tk.

2. Accept Y imp∗ with probability

ζ(Y imp∗,Y imp) = 1 ∧ H̄(Y imp∗,θ)
H̄(Y imp,θ)

,

where

log H̄(Y imp,θ)

=
m−2∑
k=0

(x− Y k)′Σ−1(Y k,θ)µ(Y k,θ)
T − tk

∆tk

−1
2

m−2∑
k=0

(x− Y k)′
(
Σ−1(Y k+1,θ)−Σ−1(Y k,θ)

)
(x− Y k)

T − tk

−1
2

m−2∑
k=0

d∑
i,j=1

(x− Y k)′
(
∂Σ−1(Y k,θ)

∂y(j) ei + ∂Σ−1(Y k,θ)
∂y(i) ej

)
T − tk

∆Y (i)
k ∆Y (j)

k

−1
2 log |Σ(Ym−1,θ)|+ µ′(Ym−1,θ)Σ−1(Ym−1,θ)

(
x− Ym−1 −

∆tm−1

2 µ(Ym−1,θ)
)

with ∆Y k = (∆Y (1)
k , . . . ,∆Y (d)

k )′ = Y k+1 − Y k. Otherwise keep Y imp.

The performance of these two algorithms is shown and compared with one another in a
simulation study on pages 231 ff.

Generalisation to Several Observation Times, Latent Data and Observation
Error

The previously described methodology can easily be generalised to several observation
times, latent data settings and observations with error. The first is briefly described in the
following.

In the above considerations, in order to ease notation, the initial and final times 0 and T and
the initial and final states x0 and x were not included in the symbol P̃θ of the conditioned
measure of the target diffusion satisfying

dX t = µ(X t,θ) dt+ σ(X t,θ) dBt , XT = x.
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In case of several observations at possibly non-equidistant time points, this specification is
however required. Hence use the notation P̃(0,x0,T,x)

θ for the measure induced by the above
SDE. Furthermore, let P(0,x0,T )

θ be the respective unconditioned target measure and f (0,x0,T )
θ

the Lebesgue density of the end point XT under P(0,x0,T )
θ .

Now suppose that for the target diffusion there are the fixed initial value xτ0 and M
observations xτ1 , . . . ,xτM at times τ0 < τ1 < . . . < τM available. For i = 0, . . . ,M − 1,
impute auxiliary data X imp

i in the time interval [τi, τi+1]. The posterior density of the
parameter θ with respect to Lebesgue measure then equals

π
(
θ
∣∣∣X [τ0,τM ]

)
∝

M−1∏
i=0

dP̃
(τi,xτi ,τi+1,xτi+1 )
θ

dL

(
X imp

i

)
f

(τi,xτi ,τi+1)
θ (xτi+1)

 p(θ).

The likelihood of θ is most conveniently written as

π
(
X [τ0,τM ]

∣∣∣θ) ∝ M−1∏
i=0

dP
(τi,xτi ,τi+1)
θ

dL

(
X(τi,τi+1]

)
.

With this, the previously described algorithms for the path and parameter update are easily
generalised to several observation times. An extension of the parameter update to latent
data and observation errors as considered in Section 7.2 is straightforward as well.

Simulation Study

The simulation study in Section 7.1.7 demonstrated the performance of the standard MCMC
algorithms from Section 7.1 on the example of a one-dimensional Ornstein-Uhlenbeck
process X = (Xt)t≥0 satisfying the SDE

dXt = α(β −Xt)dt+ σdBt , X0 = x0, (7.82)

for parameters β ∈ R, α, σ2 ∈ R+ and initial value x0 = 0. Based on an exactly simulated
realisation with θ = (α, β, σ2)′ = (0.5, 0.9, 1.0)′, estimation was carried out for β and σ2

with α considered known. The simulated sample path is displayed in Figure 7.5 on page 169.

The following simulation study revives the same example in order to evaluate the proficiencies
of the innovation scheme. Results are compared with the outcomes for those schemes that
worked best in Section 7.1.7; these are the modified bridge proposal for the path update and
the random walk proposal for the parameter update. Again, all methods are implemented
in R.

In all approaches in the present simulation study, the parameters β and σ2 have again a
priori distributions

β ∼ N
(
0, 1

)
and σ2 ∼ IG

(
3, 3

)
.

Given the current values β and σ2, new parameters β∗ and σ2∗ are proposed via a random
walk

β∗ ∼ N
(
β, 0.025

)
and log σ2∗ ∼ N

(
log σ2, 0.025

)
.
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Figure 7.28: Acceptance rates for the parameter update corresponding to the simulated Markov
chains displayed in Figures 7.29–7.30 (M = 25, left graphic) and Figures 7.35–7.36 (M = 250,
right graphic). The m-values are plotted on a log scale to the base 10.

The three competing MCMC schemes in the simulation study differ from each other with
respect to the path update and the acceptance mechanism of the parameter update as
follows.

• Standard Algorithm: The acceptance probability for the proposed parameter
θ∗ = (β∗, σ2∗)′ is as in Equation (7.15) on page 158. The diffusion path is updated
via the modified bridge proposal as described on page 152.

• Innovation Scheme I: The proposed parameter θ∗ is accepted or rejected according
to Algorithm 7.6 on page 225. The path update employs Algorithm 7.7 on page 229.

• Innovation Scheme II: The proposed parameter θ∗ is accepted or rejected according
to Algorithm 7.6 on page 225. The path update employs Algorithm 7.8 on page 230.

The update intervals are chosen with Algorithm 7.3 on page 163 with mean length λ = 5.
Different values for λ have been investigated as well but have not led to different conclusions.

Figures 7.28 to 7.41 and Tables 7.7 to 7.8 show the performance of the above three schemes
for an increasing amount of imputed data and 105 iterations. In particular, Figures 7.29
to 7.34 display trace plots, posterior density estimates and autocorrelation plots for the
MCMC procedure when observations of the diffusion path are available at times 0, 1, . . . , 25.
With the notation from Section 7.1, this corresponds to the maximum time T = 25
and M = 25 observations. Figures 7.35 to 7.40 show these outcomes when the MCMC
scheme conditions on observations at times 0, 0.1, . . . , 25, i. e. T = 25 and M = 250. All
data is assumed to be measured without error. Figure 7.28 displays the acceptance rates of
the parameter update in all experiments. Tables 7.7 and 7.8 summarise the posterior means
and 95%-hpd intervals for β and σ2. The hpd intervals are also shown in Figure 7.41.
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standard algorithm innovation scheme I innovation scheme II

m = 2 β : 0.90, (0.20,1.58)
σ2: 0.88, (0.48,1.37)

β : 0.90, (0.19,1.61)
σ2: 0.87, (0.47,1.34)

β : 0.89, (0.20,1.59)
σ2: 0.87, (0.48,1.36)

m = 5 β : 0.89, (0.15,1.62)
σ2: 0.98, (0.52,1.52)

β : 0.88, (0.11,1.59)
σ2: 0.98, (0.53,1.51)

β : 0.89, (0.16,1.62)
σ2: 0.98, (0.54,1.52)

m = 10 β : 0.88, (0.14,1.62)
σ2: 1.00, (0.52,1.55)

β : 0.88, (0.13,1.63)
σ2: 1.02, (0.56,1.57)

β : 0.89, (0.15,1.65)
σ2: 1.02, (0.55,1.59)

m = 100 β : 0.88, (0.15,1.66)
σ2: 1.09, (0.66,1.61)

β : 0.88, (0.10,1.62)
σ2: 1.06, (0.56,1.65)

β : 0.88, (0.13,1.65)
σ2: 1.05, (0.57,1.64)

m = 1000 β : 0.90, (0.24,1.60)
σ2: 0.90, (0.73,1.02)

β : 0.91, (0.16,1.65)
σ2: 1.05, (0.57,1.63)

β : 0.86, (0.12,1.63)
σ2: 1.07, (0.57,1.65)

Table 7.7: Estimation results as in Figures 7.29 and 7.30, i. e. for T = 25 and M = 25. This
table displays the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase. The
latter are computed according to M.-H. Chen and Shao (1999). The true values of the parameters
are β = 0.9 and σ2 = 1. The hpd intervals are also shown in Figure 7.41.

standard algorithm innovation scheme I innovation scheme II

m = 2 β : 0.91, (0.27,1.57)
σ2: 0.80, (0.67,0.93)

β : 0.89, (0.22,1.60)
σ2: 0.92, (0.77,1.09)

β : 0.90, (0.23,1.61)
σ2: 0.92, (0.77,1.08)

m = 5 β : 0.89, (0.16,1.54)
σ2: 0.94, (0.77,1.11)

β : 0.90, (0.18,1.62)
σ2: 0.94, (0.78,1.10)

β : 0.89, (0.17,1.59)
σ2: 0.94, (0.77,1.10)

m = 10 β : 0.91, (0.18,1.57)
σ2: 0.94, (0.78,1.10)

β : 0.88, (0.14,1.57)
σ2: 0.94, (0.78,1.11)

β : 0.89, (0.19,1.60)
σ2: 0.94, (0.79,1.11)

m = 100 β : 0.92, (0.38,1.55)
σ2: 0.64, (0.55,0.78)

β : 0.90, (0.19,1.62)
σ2: 0.94, (0.79,1.12)

β : 0.90, (0.21,1.65)
σ2: 0.94, (0.79,1.12)

Table 7.8: Estimation results as in Figures 7.35 and 7.36, i. e. for T = 25 and M = 250. This
table displays the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase.
The true values of the parameters are β = 0.9 and σ2 = 1. The hpd intervals are also shown in
Figure 7.41.

The simulation results clearly demonstrate that the standard algorithm struggles when
large amounts of data are imputed: The trace plots show poor mixing for m ∈ {100, 1000},
high autocorrelation and crucially decreasing acceptance rates in the parameter update.
In those cases, the standard scheme experiences severe difficulties to satisfyingly estimate
the diffusion coefficient. The performance of the innovation scheme, in contrast, remains
equally satisfactory for all values of m.

Further empirical investigations, which are not shown here, yield similar results for the
MCMC scheme when the diffusion path is updated according to the modified bridge proposal
on page 152 or diffusion bridge proposal on page 153 as long as the parameter update
follows Algorithm 7.6.
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Figure 7.29: Estimation of parameters of the Ornstein-Uhlenbeck process (7.82) as described on
pages 231 ff. The MCMC scheme conditions on observed data at times 0, 1, . . . , 25 and introducesm
subintervals in between every two observations. This figure shows the trace plots of β. The
realisations of the Markov chains have length 105 but have been thinned by factor 50. The true
value for β equals 0.9 and is indicated by the red horizontal line.
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Figure 7.30: Estimation results as described in Figure 7.29. This figure shows the trace plots
for σ2. The true parameter value for σ2 equals 1 and is indicated by the red horizontal line.
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Figure 7.31: Estimation of the posterior density of β based on the results from Figure 7.29.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.32: Estimation of the posterior density of σ2 based on the results from Figure 7.30.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.33: Autocorrelation plots for β based on the results from Figure 7.29. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.34: Autocorrelation plots for σ2 based on the results from Figure 7.30. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.35: Estimation of parameters of the Ornstein-Uhlenbeck process (7.82) as in Figure 7.29,
this time with the MCMC scheme conditioning on observed data at times 0, 0.1, . . . , 25. The
procedure introduces m subintervals in between every two observations. This figure shows the
trace plots of β. The Markov chains have length 105 but have been thinned by factor 50. The
true value for β equals 0.9 and is indicated by the red horizontal line.
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Figure 7.36: Estimation results as described in Figure 7.35. This figure shows the trace plots
for σ2. The true parameter value equals σ2 = 1 and is indicated by the red horizontal line.
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Figure 7.37: Estimation of the posterior density of β based on the results from Figure 7.35.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.38: Estimation of the posterior density of σ2 based on the results from Figure 7.36.
Density estimation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase. The true value of the parameter is indicated by the vertical line.
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Figure 7.39: Autocorrelation plots for β based on the results from Figure 7.35. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.40: Autocorrelation plots for σ2 based on the results from Figure 7.36. Calculation of
the autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 7.41: 95% highest probability density intervals for β (left) and σ2 (right) as displayed in
Tables 7.7 (top) and 7.8 (bottom).
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Conclusion

To summarise, this section seizes the general idea from Chib et al. (2004) to base the
MCMC algorithms considered in this chapter on an innovation process Z rather than on
the original diffusion process X. The innovation process is constructed such that it has
unit diffusion and hence does not obstruct the convergence of the algorithms.

This idea has already been investigated by Chib et al. (2004) for diffusion paths that are
not conditioned on an end point and by Golightly & Wilkinson (2008, 2010) for discrete
path skeletons, i. e. on finite-dimensional state spaces. This thesis considers conditioned
diffusion paths on infinite-dimensional state spaces.

The important improvement in our approach is that we first assess the methodology in a
continuous-time framework and then discretise resulting formulas for practical use. This is
a more reliable method than starting from a discrete-time framework and then investigating
its behaviour for decreasing time step. The former general concept is hence also favoured by
G. Roberts and Stramer (2001) for MCMC sampling and by Papaspiliopoulos and Roberts
(2009) in the context of importance sampling.

This section proves that the newly proposed innovation scheme for conditioned diffusion
paths on infinite-dimensional state spaces is non-degenerate. In short, our algorithm
for the parameter update works because of the following two reasons: First of all, the
construction in Algorithm 7.4 ensures consistency within {X,θ} and {X∗,θ∗}. Second,
the innovation process Z induces a law Zθ which is absolutely continuous with respect to
Wiener measure W for all values of θ. Moreover, there exists a law D0,θ which dominates
both the law P̃θ of X and the law of the back-transformed process X∗ = g(Z,θ∗). The
jusitification of the path update is based on similar arguments.

For decreasing time steps, the modified bridge construct from page 152 tends to the Euler
approximation of the SDE inducing D0,θ. Hence, our considerations eventually provide the
proof that the parameter update proposed by Golightly and Wilkinson (2008), described on
page 213, works also in a continuous-time framework under the assumptions of this section
when using the modified bridge transformation. This proposition is however not true for
general deterministic links between the original process and the innovation process. Different
constructs or a violation of the regularity conditions should carefully be investigated in a
continuous-time setting.

In order to be able to apply the innovation scheme in practice, explicit formulas for all
involved acceptance probabilities are obtained. In particular, this comprises the derivation
of the Radon-Nikodym derivatives dP̃θ/dD0,θ and dP̃θ/dDµ,θ including all factors which
depend on the model parameter and the imputed data. These derivatives have also been
utilised by Delyon and Hu (2006) and Papaspiliopoulos and Roberts (2009), though in a
different representation than in this thesis, in the context of the simulation and importance
sampling for conditioned diffusions. These applications, however, require different knowledge
about factors which are proportional with respect to the parameter. Papaspiliopoulos &
Roberts, for example, evaluate the proportionality constants as shown in (B.30) and (B.31)
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on page 368 through Monte Carlo estimation. This measure would be impracticable in the
context of this chapter.

Applied to discrete-time skeletons of diffusion paths, the discretised innovation scheme
overcomes the convergence problems explained in Section 7.3 as the amount of imputed
data increases. It is hence possible to raise the number of imputed data points in between
every two observations in order to reduce an estimation bias. All algorithms have been
implemented in R. A simulation study illustrates that the innovation scheme initially
improves as the number of imputed data points grows larger and then remains stable. It
clearly outperforms standard schemes with respect to its mixing behaviour, serial correlation
and acceptance rates.

To conclude, the innovation scheme on infinite-dimensional state spaces presented in this
thesis provides an efficient and widely applicable MCMC mechanism which is appropriate
for the parameter estimation also of high-dimensional diffusion processes. As it overcomes
disturbing dependence structures which are inherent in most diffusion processes, convergence
is guaranteed and practitioners are not restrained to bounded amounts of imputed data.
The innovation scheme is applied in Chapters 8 and 9 to high-dimensional applications in
life sciences.

7.5 Discussion and Conclusion

This chapter introduces and comprehensively delves into the concept of Bayesian inference
for diffusion processes via the imputation of auxiliary data. The introduction of this
additional data reduces the distance between every two consecutive time points where
observed or imputed data is available. This way it enables the approximation of the
transition density of the diffusion process via the Euler scheme. It is then possible to
construct an MCMC algorithm which alternately updates the imputed data and the model
parameter. The resulting Markov chain can be utilised to infer on the parameter.

Section 7.1 reviews general concepts for the update of the diffusion path and the update of
the parameter and addresses related practical issues. To the author’s knowledge, there is no
such comprehensive review in the literature. In short, the path update involves proposing
a new path segment which bridges the gap between given initial and final states. Naive
proposal schemes ignore the end-point information and are hence inefficient. Improved
techniques condition on the end point and respectively tie down the proposal distribution.
For the parameter update, problem-specific full conditional densities or more general random
walk proposals are employed. Empirical and analytical investigations show that for the
path update the modified bridge proposal and for the parameter update the random walk
proposal perform best.

The considerations in Section 7.1 are based on the assumption of complete observations
without measurement error. As these requirements are typically not met in applications in
life sciences, Section 7.2 adapts the previously introduced update schemes to the case of
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non-observed latent states and observations with error. Formulas required for the practical
implementation are provided in that section.

Certainly, the MCMC schemes from Sections 7.1 and 7.2 can also be used without introducing
auxiliary time points. This has been done by Eraker et al. (2003), Eraker (2004), Asgharian
and Bengtsson (2006) and Jacquier et al. (2007) for jump-diffusion processes in order
to model prices at financial markets. In that context, dense data is available, hence no
augmentation is necessary. The MCMC procedure then estimates the model parameters
and latent variables. Kim et al. (1998) likewise apply the scheme to infer on parameters
and latent variables for stochastic volatility models without imputing data; they however
also touch the introduction of missing values.

Improvements of the update procedures in Sections 7.1 and 7.2 may for example be obtained
by replacing the Euler scheme, which is used for the approximation of the transition density
based on the augmented dataset, by any higher order numerical scheme such as those
presented in Section 3.3.2. For instance, Elerian (1998) considers the application of the
Milstein scheme. This measure, however, does not solve a general conceptual convergence
problem that appears as the amount of imputed data increases: For a time-continuously
imputed diffusion path, the imputed data and the diffusion matrix are deterministically
linked. Resulting difficulties for the update mechanisms from Sections 7.1 and 7.2 are
described in detail in Section 7.3. In practice, data is certainly never imputed continuously.
However, this corresponds to the limiting case of steadily enhanced amounts of imputed
data. The behaviour of the MCMC algorithm on an infinite-dimensional state space is
hence an appropriate indicator for the behaviour of the MCMC scheme in the case where
finite but increasing amounts of data are imputed. The consequence is poor mixing of the
Markov chains, especially for those parameters determined by the diffusion matrix.

Some authors mention that such convergence issues are not a relevant problem in their
practical applications when low numbers of auxiliary time points are introduced (see e. g.
Eraker, 2001). A crucial amount of imputed data may however easily be reached for
low-frequency datasets or multi-dimensional diffusions. Moreover, in real data applications,
where the true values of the parameters are unknown, it may be difficult to determine the
threshold value for the number of imputed data points beyond which estimates deteriorate.
In any case, it is desirable to have a reliable tool which guarantees that it does not break
down as the amount of imputed data grows.

Thus, starting from the convergence problems of naive MCMC algorithms pointed out
in Section 7.3, Section 7.4 reviews and develops update techniques which are neatly
modified such that they circumvent the sources of poor convergence. These methods are
a change of factorisation of the dominating measure of the diffusion process, time change
transformations, particle filters and the innovation scheme on infinite-dimensional state
spaces. As the utilisation of the former three methods is inappropriate for the applications
in Chapters 8 and 9, this thesis concentrates on the innovation scheme. This method
has been utilised before for unconditioned diffusion paths by Chib et al. (2004) and on
finite-dimensional state spaces by Golightly & Wilkinson (2008, 2010). Its application to
conditioned diffusions on infinite-dimensional state spaces, as contributed by this thesis, is
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however notably different.

In particular, as one of the main contributions of this thesis, Section 7.4.4 designs the innova-
tion scheme for conditioned diffusions on infinite-dimensional state spaces and provides the
mathematical proof that the so-constructed MCMC scheme converges. Consequently, this
algorithm is non-degenerate also for arbitrarily large but finite sets of observed and imputed
data. For practical usability, explicit formulas for all involved acceptance probabilities
are derived. The modified parameter and path updates are described in algorithmic form
including the time-discretisations of these acceptance probabilities. All algorithms are
implemented and employed in a simulation study which certifies moderate computing times
and verifies that the innovation scheme does not break down as the number of auxiliary
data points increases. The enhanced innovation scheme hence outperforms the techniques
introduced in Section 7.1.

To conclude, this chapter offers a detailed and critical inspection of Bayesian inference
methods for diffusion processes based on data augmentation. To the author’s best knowledge,
there is no comparable review published yet. The considered techniques are suitable for
large and irregularly spaced observation intervals, multivariate diffusions with possibly
latent components and for observations with error. Throughout the chapter, importance
was attached to an understandable presentation of the update schemes and the convergence
problems that arise in standard algorithms when more and more data is imputed. For the
first time, this thesis surveys improved update schemes in Section 7.4 which aim to overcome
the previously described convergence difficulties. These methods are all appropriate wherever
their assumptions are true or where the considered diffusion process is low-dimensional,
respectively. They however cannot be used for fairly complex and partly high-dimensional
applications as investigated in Chapters 8 and 9. In these cases, the enhanced innovation
scheme is required. Its convergence has been proven and its practical implementation
formulated in this chapter.



Chapter 8

Application I: Spread of Influenza

Influenza is a contagious disease caused by the influenza virus that affects mammals and
birds. Human influenza morbidity and mortality is a major concern of public health
institutions. According to recent assessments, the annual number of infected people lies
between five and fifteen percent of the worldwide population, with 250,000 to 500,000
deaths every year (e. g. Russell et al., 2008).

This chapter deals with the statistical estimation of parameters in models for the spread
of human influenza. To that end, the standard and multitype SIR models, which were
introduced in Chapter 5, are applied. Out of the various mathematical representations
considered in that chapter, the diffusion processes are chosen as the most appropriate ones
here. Statistical inference is accomplished by means of the innovation scheme developed
in Chapter 7. To the author’s best knowledge, this is the first application of statistical
parameter estimation for epidemic models by utilisation of diffusion approximations.

To start with, a simulation study with synthetic datasets is carried out in Section 8.1. This
gives an idea about the performance of the innovation scheme when applied to datasets
of certain sizes and levels of completeness. In Section 8.2, the standard SIR model is
applied to a dataset on an influenza outbreak in a British boarding school in 1978. Finally,
in Section 8.3, the spatial spread of influenza in Germany is considered. To that end,
the multitype SIR model is utilised with clusters corresponding to different geographic
regions. Model parameters are estimated for a dataset on influenza occurrences in the
season 2009/10. This study aims to be an initial analysis which can be extended in different
directions in further investigations. Section 8.4 concludes and gives an outlook on such
future work.

8.1 Simulation Study

This simulation study investigates three synthetic datasets: One dataset for the standard
SIR model and two datasets for the multitype SIR model with n = 3 and n = 10 clusters,
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respectively. Both models were introduced in Sections 5.1 and 5.2. The most relevant
properties of the resulting diffusion approximations are summarised in Sections 5.1.4
and 5.2.4 on pages 94 and 105, respectively. In particular, the stochastic differential
equations are given in (5.19) and (5.32) in these summaries. The notation in this chapter
is adopted from Chapter 5.

8.1.1 Data

The sample paths from the three just mentioned datasets are shown in Figure 8.1. They
are generated by application of the Euler scheme from Section 3.3.2 with time step 0.025 on
the time interval [0.63]. In order to reflect the observation interval in a real data situation,
observations are provided only at time points 0, 7, 14, . . . , 63 in the simulation study. The
model parameters and other variables are chosen as follows:

• Dataset 1 (standard SIR model): The population size equals N = 1000 with initial
state x0 = (s0, i0)′ = (0.99, 0.01)′ at time zero. The model parameter, consisting of
the contact rate α and the reciprocal length of the infectious period β, is chosen as
θ = (α, β)′ = (0.325, 0.15)′. For consistent notation with datasets 2 and 3, the
standard SIR model is also referred to as a multitype SIR model with n = 1 cluster
in the next section. The parameter α is then denoted as α1.

• Dataset 2 (multitype SIR model with n = 3 clusters): There are three clusters with iden-
tical population sizes Nj = 1000, j ∈ {1, 2, 3}. The state variable of the diffusion pro-
cess is x = (s1, s2, s3, i1, i2, i3)′ with initial value x0 = (0.95, 0.95, 0.95, 0.05, 0.05, 0.05)′
at time zero, i. e. the initial fractions of susceptibles and infectives are identical in all
three clusters. Contacts between clusters occur according to the network matrix

γN =

0.80 0.10 0.10
0.10 0.85 0.05
0.10 0.05 0.85

 ,
where γN = γS = γI , which means that susceptible, infective and removed individuals
show equal contact behaviour. This matrix is considered known, i. e. it is not
statistically estimated in the following simulation study. The contact rates αj are
assumed to depend on the corresponding cluster j, while the average infectious
period β−1 is assumed identical for the three groups. The model parameter hence
equals θ = (α1, α2, α3, β)′. It is chosen to be θ = (0.6, 0.5, 0.4, 0.2)′.

• Dataset 3 (multitype SIR model with n = 10 clusters): The assumptions here are
similar to dataset 2 but adopted to ten clusters. In particular, one has population
sizes Nj = 1000 for j ∈ {1, . . . , 10}, state variable x = (s1, . . . , s10, i1, . . . , i10)′ with
initial value

x0 = (0.97, 0.93, 0.97, 0.93, 0.97, 0.93, 0.97, 0.93, 0.97, 0.93,
0.03, 0.07, 0.03, 0.07, 0.03, 0.07, 0.03, 0.07, 0.03, 0.07)′
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at time zero, a contact matrix

γN = γS = γI =



0.80 0.05 0.05 0.03 0.03 0.02 0.01 0.01 0 0
0.05 0.85 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.05 0.03 0.85 0.03 0.02 0.02 0 0 0 0
0.03 0.01 0.03 0.90 0.01 0.01 0.01 0 0 0
0.03 0.01 0.02 0.01 0.85 0.03 0.02 0.02 0.01 0
0.02 0.01 0.02 0.01 0.03 0.75 0.06 0.05 0.05 0
0.01 0.01 0 0.01 0.02 0.06 0.75 0.08 0.01 0.05
0.01 0.01 0 0 0.02 0.05 0.08 0.80 0 0.03

0 0.01 0 0 0.01 0.05 0.01 0 0.80 0.12
0 0.01 0 0 0 0 0.05 0.03 0.12 0.79


and a model parameter θ = (α1, . . . , α10, β)′ with

θ = (0.6, 0.6, 0.55, 0.55, 0.5, 0.5, 0.45, 0.45, 0.4, 0.4, 0.2)′.
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Figure 8.1: Synthetic datasets used in the simulation study in this section. The top row shows
the fractions of susceptibles, the bottom row the fractions of infected individuals. Simulations
have been obtained by application of the Euler scheme from Section 3.3.2 with time step 0.025 and
settings as described in the main text. Observations are assumed to be available at equidistant
time steps of length 7 such that there are 10 observations on the time interval [0, 63].
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8.1.2 Parameter Estimation

Chapter 7 presented methods for the Bayesian estimation of the parameters of diffusion
processes by means of data augmentation. Special emphasis was put on the innovation
scheme, which was presented and further developed in Section 7.4.4. This scheme is now
applied to the just specified synthetic datasets in order to estimate the parameters αj,
j ∈ {1, . . . , n}, and β. The notation is adopted from Chapter 7.

For all datasets, αj and β are assumed to be a priori exponentially distributed with expected
values 0.5. In the MCMC algorithm, new proposals α∗j and β∗ are drawn according to

logα∗j ∼ N
(
logαj, 0.0009

)
and log β∗ ∼ N

(
log β, 0.0009

)
for j = 1, . . . , n, where αj and β represent the current values.

Consider dataset 1 first. To start with, both the fraction s of susceptibles and the fraction i
of infectives are assumed to be given at the observation times. Figures 8.2 and 8.3 on
page 256 display trace plots, posterior density estimates and autocorrelation plots for α
and β produced by the innovation scheme. In particular, the parameter update is performed
according to Algorithm 7.6 on page 225, and the diffusion path is updated with a modified
bridge proposal as described in Section 7.1. The simulated Markov chains have length 105

but have been thinned by factor 50. The innovation scheme imputes data such that there
are m ∈ {7, 14} intermediate subintervals in between every two observation times.

In practice, the fraction of susceptible individuals is typically unknown. Hence, the
above estimation procedure is carried out again with i observed and s considered latent.
The modified diffusion bridge update in the presence of latent components is described in
Section 7.2. Figures 8.4 and 8.5 on page 257 show the obtained estimation results. This time,
because of a large burn-in, the simulated Markov chains have length 106 and are thinned
by factor 500. Table 8.1 lists the posterior means and 95%-hpd intervals corresponding to
the MCMC outputs from Figures 8.2 to 8.5.

For datasets 2 and 3, parameter estimation is performed in an analogous manner as for
dataset 1. The outcomes are summarised in Tables 8.2 and 8.3. All results in these tables

para- true s observed s latent
meter value m = 7 m = 14 m = 7 m = 14

α 0.325 0.317 0.318 0.306 0.315
(0.29, 0.34) (0.29, 0.34) (0.26, 0.35) (0.27, 0.36)

β 0.15 0.145 0.144 0.143 0.144
(0.13, 0.16) (0.13, 0.16) (0.13, 0.16) (0.13, 0.16)

Table 8.1: Estimation results for dataset 1 as in Figures 8.2 to 8.5. This table displays the
posterior means and posterior 95%-hpd intervals after a 10% burn-in phase. The latter are
computed according to M.-H. Chen and Shao (1999). The true values of the parameters are
displayed in the second column.
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para- true s observed s latent
meter value m = 7 m = 14 m = 7 m = 14
α1 0.6 0.57 0.58 0.43 0.45

(0.52, 0.62) (0.53, 0.63) (0.39, 0.48) (0.40, 0.49)
α2 0.5 0.47 0.48 0.45 0.46

(0.43, 0.51) (0.44, 0.52) (0.41, 0.49) (0.42, 0.50)
α3 0.4 0.40 0.41 0.44 0.45

(0.37, 0.44) (0.37, 0.45) (0.40, 0.48) (0.41, 0.49)

β 0.2 0.20 0.20 0.20 0.20
(0.19, 0.21) (0.19, 0.21) (0.19, 0.21) (0.19, 0.21)

Table 8.2: Estimation results for dataset 2 as described in the main text. This table displays
the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase. The true values
of the parameters are displayed in the second column.

para- true s observed s latent
meter value m = 7 m = 14 m = 7 m = 14
α1 0.60 0.60 0.60 0.43 0.44

(0.55, 0.65) (0.54, 0.65) (0.39, 0.47) (0.40, 0.48)
α2 0.60 0.64 0.63 0.39 0.41

(0.59, 0.69) (0.59, 0.68) (0.36, 0.42) (0.37, 0.45)
α3 0.55 0.54 0.54 0.42 0.48

(0.50, 0.59) (0.49, 0.58) (0.39, 0.46) (0.44, 0.52)
α4 0.55 0.56 0.54 0.39 0.40

(0.51, 0.60) (0.50, 0.58) (0.36, 0.42) (0.37, 0.44)
α5 0.50 0.54 0.53 0.45 0.44

(0.50, 0.58) (0.49, 0.57) (0.41, 0.49) (0.40, 0.48)
α6 0.50 0.49 0.48 0.42 0.41

(0.44, 0.54) (0.44, 0.53) (0.38, 0.47) (0.37, 0.45)
α7 0.45 0.45 0.45 0.45 0.40

(0.41, 0.50) (0.41, 0.49) (0.41, 0.49) (0.36, 0.45)
α8 0.45 0.42 0.42 0.43 0.42

(0.38, 0.46) (0.38, 0.46) (0.39, 0.47) (0.38, 0.46)
α9 0.40 0.39 0.39 0.45 0.49

(0.35, 0.43) (0.35, 0.43) (0.41, 0.50) (0.45, 0.53)
α10 0.40 0.39 0.39 0.43 0.38

(0.35, 0.43) (0.35, 0.43) (0.39, 0.48) (0.33, 0.42)

β 0.20 0.20 0.19 0.19 0.19
(0.19, 0.20) (0.19, 0.20) (0.19, 0.20) (0.18, 0.19)

Table 8.3: Estimation results for dataset 3 as described in the main text. This table displays
the posterior means and posterior 95%-hpd intervals after a 10% burn-in phase. The true values
of the parameters are displayed in the second column.
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Figure 8.2: Bayesian estimation of parameters of the standard SIR model when applied to
dataset 1 with both s and i being observed. Details of the estimation procedure are described
in the main text. The MCMC scheme introduces m ∈ {7, 14} subintervals in between every two
observations. This figure shows the trace plots of α (left column) with corresponding posterior
density estimates (middle column) and autocorrelation plots (right column). The Markov chains
have length 105 but have been thinned by factor 50 in the trace plots. Red horizontal lines in
the trace plots and black vertical lines in the density plots indicate the true parameter values.
Estimation of posterior densities and autocorrelation takes into account the full Markov chain, i. e.
without thinning, after having discarded a 10% burn-in phase.
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Figure 8.3: Estimation results as described in Figure 8.2, this time for the parameter β.
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Figure 8.4: Estimation results as described in Figure 8.2, this time with the component s being
latent.
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Figure 8.5: Estimation results as described in Figure 8.4, this time for the parameter β.
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are based on simulated Markov chains of length 105. Due to space restrictions, trace plots,
posterior density estimates and autocorrelaton plots are exemplarily displayed for the model
with n = 10 clusters and observed fraction s in Figures C.1 and C.2 in the appendix.

Overall, the simulation study revealed that satisfactory estimation results for the contact
rates αj and the reciprocal infectious period β are obtained when both the fraction s
of susceptibles and the fraction i of infective individuals are observed. All derived hpd
intervals contain the true parameters, and in case of multiple clusters, the order of the
estimated contact rates α̂j resembles the order of the true values. In practice however, the
component s is latent, which makes parameter estimation more difficult. For the standard
SIR model, estimation of both α and β is still possible. In case of the multitype SIR model,
however, the contact rates αj can obviously not be distinguished. Instead, one obtains
similar confidence intervals for all j = 1, . . . , n. These intervals cover a range which is
approximately the average of all true αj values. The parameter β, on the other hand, is
satisfyingly estimated even for multiple clusters and s being observed. This raises hope
that the infectious period can also be approximated precisely in the real data example in
Section 8.3. In order to improve estimation of the contact rates, further information on the
susceptible population is sought and might enter later work.

8.2 Example: Influenza in a Boarding School

In 1978, the British Medical Journal (BMJ News and Notes, 1978) published a report on
an influenza outbreak in a boys’ boarding school in Britain, which occured in January and
February 1978. The first case of influenza was introduced by a boy from Hong Kong who
returned to school from holidays. Out of the 763 boys visiting the boarding school, 512 were
infected within 14 days, while the approximately 130 teachers, house matrons and other
adults remained unaffected with only one exception. The boys were immediately confined
to bed as soon as they showed any symptoms of illness. As they furthermore lived in a
closed community, where the susceptible population did obviously not include the adults,
this influenza outbreak provides an ideal data situation. It has hence also attracted the
attention of other authors: For example, Murray (2002) and Keeling and Rohani (2008)
approximate the contact rate and infectious period in a deterministic SIR model by least
squares estimation. W.-Y. Chen and Bokka (2005) utilise the resulting values from that
book for the simulation of stochastic SIR epidemics. In this section, the influenza outbreak
is modelled by the standard SIR diffusion process, and the model parameters are estimated
by application of the innovation scheme. For comparison purposes, least squares estimation
for the deterministic model is carried out as well.

8.2.1 Data

The original paper (BMJ News and Notes, 1978) graphically displays over a period of two
weeks the daily number of pupils confined to bed. The exact counts are not available, but
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Table 8.4 shows numbers which are reconstructed from the graph. The observed fractions
of infected boys are plotted in Figure 8.6 on page 260.

date number of boys
confined to bed

21 January 1
22 January 3
23 January 6
24 January 25
25 January 73
26 January 221
27 January 294
28 January 257
29 January 236
30 January 189
31 January 125
1 February 67
2 February 26
3 February 10
4 February 3

Table 8.4: Daily number of boys confined to bed, reconstructed from the graphic displayed in
the original publication (BMJ News and Notes, 1978). The total number of boys visiting the
school was N = 763. The fractions of infective boys are plotted in Figure 8.6.

8.2.2 Parameter Estimation

In the following, the contact rate α and the inverse infectious period β are estimated by
application of the standard SIR model to the above dataset. The fraction of susceptibles is
considered latent.

Least Squares Estimation

As mentioned above, Murray (2002) applies the deterministic model (5.21) from page 95 to
the boarding school data and infers on the model parameters by least squares estimation.
Translated to the parameterisation of this chapter, he obtains the estimates α̂ = 1.66
and β̂ = 0.44. For comparison purposes, least squares estimation is also carried out here,
yielding α̂ = 1.67 and β̂ = 0.45. The small deviations are only natural as the original data
is given graphically and the read out numbers will most probably differ by small amounts.
The estimated basic reproductive ratio R̂0 = α̂/β̂ for the data from Table 8.4 equals 3.71,
which explains the observed major outbreak.
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Figure 8.6: The crosses show the observed fractions of infected boys in the boarding school as
given in Table 8.4, where day 0 corresponds to 21 January. The solid line is the fitted deterministic
course, based on the least squares estimates α̂ = 1.67 and β̂ = 0.45. This curve has been calculated
with the standard Euler scheme with step length 0.02 and initial value (s0, i0)′ = (762/763, 1/763)′.
The resulting mean sum of squared residuals equals 5 · 10−4.

The above estimates have been obtained by application of the Nelder-Mead algorithm (Nelder
& Mead, 1965). To that end, the trajectories of the deterministic process described by (5.21)
have been calculated with the standard Euler scheme with step length 0.02 and initial
value (s0, i0)′ = (762/763, 1/763)′. The estimated curve for the fraction of infectives is shown
in Figure 8.6, the corresponding mean sum of squared residuals equals 5 · 10−4. The optimisa-
tion procedure yields 95%-confidence intervals [0.065, 42.798] for α and [0.0002, 799.45] for β.
For their derivation, the inverse Fisher information of logα and log β has been evaluated at
the point estimates, and the resulting confidence intervals have been back-transformed to
the original scale.

Bayesian Estimation

A more realistic model for the influenza outbreak than the just considered deterministic
process is the diffusion approximation given by the SDE (5.19) on page 94 since this model
accounts for random fluctuations. As in the simulation study in Section 8.1, the innovation
scheme is applied in order to estimate the parameters α and β. Again, these parameters are
assumed to be a priori exponentially distributed with expected values 0.5. New proposals α∗
and β∗ are drawn in the MCMC scheme according to

logα∗ ∼ N
(
logα, 0.0009

)
and log β∗ ∼ N

(
log β, 0.0009

)
with α and β denoting the current values. Figures 8.7 and 8.8 show resulting trace plots,
posterior density estimates and autocorrelation plots for α and β. The simulated Markov
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Figure 8.7: Bayesian estimation of parameters of the standard SIR model as described in
Section 8.2.2, applied to the boarding school data. The MCMC scheme conditions on the observed
data from Table 8.4 and introduces m ∈ {2, 20} subintervals in between every two observations.
This figure shows the trace plots of α (left column) and the corresponding estimated posterior
densities (middle column) and autocorrelation plots (right column). The Markov chains have
length 106 but have been thinned by factor 500 in the trace plots. Estimation of posterior densities
and autocorrelation takes into account the full Markov chain, i. e. without thinning, after having
discarded a 10% burn-in phase.
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Figure 8.8: Estimation results as described in Figure 8.7, this time for the parameter β.



262 8. Application I: Spread of Influenza

innovation
scheme

m = 2 α: 1.82, (1.63,2.02)
β: 0.49, (0.45,0.52)

m = 20 α: 1.85, (1.63,2.07)
β: 0.49, (0.45,0.52)

least squares α: 1.67, (0.06,42.80)
β: 0.45, (0.0002,799.45)

Table 8.5: Estimation results as in Figures 8.6, 8.7 and 8.8. The first two rows display
the posterior means and posterior 95%-hpd intervals of α and β from the MCMC estimation
with m ∈ {2, 20} imputed inter-observation intervals after a 10% burn-in phase. The hpd intervals
are computed according to M.-H. Chen and Shao (1999). For comparison purposes, the third row
shows the least squares estimates of α and β with 95%-confidence intervals as obtained from the
inverse Fisher information of logα and log β evaluated at the point estimates.

chains have length 106 but have been thinned by factor 500. In order to decrease inter-
observation time intervals, the innovation scheme imputes data such that there are m
intermediate subintervals in between every two observation time points. Figures 8.7 and 8.8
show estimation results for m = 2 and m = 20. An increase of m should reduce a potential
estimation bias. Since the outcomes for m = 2 and m = 20 are very similar, this variable is
considered large enough.

Table 8.5 lists the posterior means and 95%-hpd intervals as obtained from the innovation
scheme with m = 2 and m = 20. While the point estimates of the Bayesian and the
least squares estimation approach are comparable, the Bayesian confidence intervals are
much smaller and seem more reasonable than the one obtained through the inverse Fisher
information. Thus, concerning the estimation of variation in the two considered approaches,
the application of the stochastic model seems to be the more reliable approach.

8.3 Example: Influenza in Germany

As an example for the application of the multitype SIR model, this section investigates the
spatial spread of influenza in Germany. To that end, administrative divisions of Germany
are chosen to be represented by clusters. Contacts between geographical regions are
approximated through data on daily commuter traffic from the German Federal Agency for
Work. The contact rates and infectious periods for each cluster are statistically estimated
based on available disease counts that were transferred to the Robert Koch Institute Berlin
due to the German infection protection act.

The investigations in this section are intended to be a preliminary analysis for future
research. To start with, the statistical inference focuses on the geographical area of Bavaria
as one out of sixteen states in Germany. Possible extensions are pointed out throughout
the entire section and in the conclusion in Section 8.4.
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The choice of geographical regions, the setup of the contact matrix and the data on cases
of influenza are described in Section 8.3.1. Statictical inference on the model parameters is
carried out in Section 8.3.2.

8.3.1 Data

This section describes the spatial structure, network matrix and data which are used for
the statistical analysis in Section 8.3.2.

Geographical Regions

Germany is divided into the following administrative regions: At highest level, there are
16 states (Bundesländer). These are further partitioned into overall 40 counties (Regierungs-
bezirke). At an even finer level, there are 439 rural and urban districts (Landkreise,
Stadtkreise). In the datasets in this section, the island of Rügen is generally excluded,
leading to only 438 districts. Due to reforms concerning the administrative organisation,
the actual counties and districts of Germany are different today. The commuter data and
disease counts described below, however, are available for the above mentioned regions.

As a proof of concept, the statistical analysis in Section 8.3.2 focuses on the seven counties of
Bavaria. These are listed in Table 8.6 together with their population sizes. As an additional
region, all remaining counties of Germany are summarised in one compartment, yielding an
overall number of n = 8 geographical areas. These are illustrated in Figure 8.9.

ID name population size
91 Oberbayern 4,138,402
92 Niederbayern 1,185,467
93 Oberpfalz 1,085,609
94 Oberfranken 1,113,788
95 Mittelfranken 1,698,343
96 Unterfranken 1,340,912
97 Schwaben 1,767,193
— other counties 68,036,193

Table 8.6: IDs, names and population sizes of the seven counties in Bavaria and of all remaining
counties in Germany. A map of these regions is shown in Figure 8.9.

Connectivity Matrix

The connectivity matrix γN = (γNjk)j,k=1,...,n reflects the traffic across the borders of the n geo-
graphical regions: γNjk stands for the average percentage of the population of region j
travelling to region k per day. Rows sums are equal to one such that the entries on the
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Figure 8.9: Map of the eight regions for which disease counts are analysed in Section 8.3.2:
Considered are the seven counties in Bavaria (right graphic). Each region is labelled with an
ID, and the corresponding names are listed in Table 8.6. The eighth region is the union of all
remaining states in Germany (left graphic).

main diagonal represent the rates with which individuals stay in their home region. In order
to account for different contact behaviour of susceptible, infected and removed individuals,
the multitype SIR model further involves the contact matrices γS and γI . This refinement
is neglected here such that γN = γS = γI .

The analysis in Section 8.3.2 requires such a network matrix representing the contacts
between individuals living in the seven counties of Bavaria and in the remaining parts of
Germany. Certainly, there is no exact data about daily migration between the different
regions available. However, the daily flow of commuters seems to be a sensible indicator
for such a network. This approach is especially meaningful on the district level because it
is typically the urban districts which attract many commuters from surrounding suburbs,
and it is also these urban regions which usually provide social facilities such as educational
institutions, extended medical infrastructure, shopping areas and cultural events for people
living in near rural areas.

In the following, we hence investigate data on commuter traffic which was purchased from
the German Federal Agency for Work. This dataset takes into account the districts of
residence and the locations of the employing companies as of 30 June 2006 for all employees
who are subject to compulsory social insurance. The dataset includes 26,207,317 persons,
that is 31.8% of the total German population. Out of these, 9,896,745 people (37.8%)
are commuters, i. e. they work in a district other than the one they live in. The resulting
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Figure 8.10: Daily commuter traffic between the rural and urban districts of Germany. The
thickness of each line represents the strength of migration between two regions.

γN
Ober- Nieder- Ober- Ober- Mittel- Unter- Schwa- other
bayern bayern pfalz franken franken franken ben counties

Oberb. 0.880 0.019 0.005 0.001 0.008 0.002 0.026 0.059
Niederb. 0.239 0.628 0.108 6 · 10−5 0.006 6 · 10−5 0.003 0.016
Oberpf. 0.066 0.054 0.693 0.045 0.114 0.002 0.002 0.023
Oberfr. 0.021 2 · 10−4 0.031 0.673 0.214 0.024 5 · 10−4 0.035
Mittelfr. 0.041 0.001 0.018 0.026 0.841 0.011 0.009 0.053
Unterfr. 0.017 5 · 10−5 0.001 0.034 0.025 0.716 0.001 0.206
Schwaben 0.170 0.001 0.001 9 · 10−5 0.008 0.001 0.620 0.199
other 0.009 3 · 10−4 0.001 0.003 0.003 0.004 0.004 0.976

Table 8.7: Entries of the connectivity matrix for the seven counties in Bavaria and the union
of all other counties. The places of residence are listed rowwise, the locations of the employing
companies columnwise. The entries of each row sum up to one.

network on the district level is shown in Figure 8.10. The contact matrix for the counties of
Bavaria can easily be derived from it by aggregation. Its entries are displayed in Table 8.7.

Since the employment rates vary within Germany, the commuter dataset is probably less
representative for some regions than for others. Moreover, the commuter data naturally
involves only certain age groups. These imprecisions are considered negligible here but may
be refined in future work.
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Disease Counts

Data about occurrences of influenza in Germany is taken from the Robert Koch Institute:
SurvStat, http://www3.rki.de/SurvStat, as of 29 July 2010. This database contains
weekly case counts on the district, county and state level since 2001. However, contact
and recovery rates typically vary between seasons (Dushoff et al., 2004) such that it is
not always meaningful to base parameter estimation on a collection of data from different
seasons. The statistical analysis in Section 8.3.2 considers the counts from week 40 in the
year 2009 until week 5 in 2010. This influenza season is not only the latest available data;
it has also started uncommonly early in the year and attracted particular attention because
of the circulation of the ‘swine flu’ virus. The utilised dataset contains weekly counts for
the eight specified regions over the considered period of 19 weeks. Only cases categorised as
influenza A are considered since it was the influenza A virus that was most responsible for
the national influenza epidemic in that season. The resulting fractions of infected persons
are plotted in Figure 8.11.

The above data suffers from high underreporting. The dataset is hence not immediately
appropriate for the estimation of contact and recovery rates. It seems, however, interesting to
study the outcomes of a statistcal analysis to the above data. Such inference is accomplished
in Section 8.3.2. Another point of interest concerns the changes in the parameter estimates
when modifying the underlying data. Just as an example, assume that ten percent of
the German population was affected by influenza during the season 2009/10. That would
correspond to approximately 8.2 million infected people, but the SurvStat database contains
only about 150,000 cases between week 17/2009 and 16/2010. In order to correct for this,
the original dataset is multiplied by factor 55, and the statistical inference in Section 8.3.2
is repeated for the modified dataset.
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Figure 8.11: Weekly fractions of influenza A cases for week 40/2009 until week 5/2010 obtained
from SurvStat.
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In practice, the multiplication with a uniform factor for each region is presumably not
appropriate as the levels of underreporting typically depend on region-specific reporting
behaviour and also on the severity of the epidemic in the respective area. Advanced
corrections may be investigated in future work.

Another difficulty, apart from the uncertainty in the numbers of infected individuals,
concerns the number of susceptible persons. These numbers are generally unknown. In
case of influenza, an infected individual acquires immunity to the strain he was affected by
and can hence not become susceptible during the same wave of influenza again. However,
there are steadily new antigen mutants of the influenza virus coming up (Stephenson &
Nicholson, 2001), which is why at the beginning of the next epidemic the individual is
typically susceptible again. A person might, however, also have acquired partial immunity
though. For simplicity, it is assumed in the investigations in Section 8.3.2 that there are no
removed individuals at the beginning of the epidemic. The initial fractions of susceptibles
in each region can hence be calculated from the fractions of infected persons. Again, more
refined assumptions may be applied in the future.

8.3.2 Parameter Estimation

Inference on the parameters of the SIR diffusion model is now carried out as described in
the simulation study in Section 8.1. The estimation is based on the original and modified
datasets described in Section 8.3.1. The fractions of susceptibles are treated as latent
variables.

Table 8.8 displays resulting posterior means and 95%-hpd intervals for α1, . . . , α8 and β in
the multitype SIR model. The underlying simulated Markov chains have length 105, and
the innovation scheme introduces m = 7 intermediate subintervals in between every two
observations.

As expected, the results show substantial differences in parameter estimates between the
original and the modified dataset. This emphasises the need for more precise data on
influenza occurrences. While the estimated values for α1, ..., α8 are all at about the same
range for the modified dataset, there is large variation in the estimated contact rates for
the original dataset. Concerning estimation of β, there is again a large difference between
the two datasets. As the time unit is one day, the value 0.34−1 ≈ 2.9 for the modified
data seems much more plausible as an approximation of the length of the infectious period
than 8.23−1 ≈ 0.12, which results from the original data.

For comparison purposes, in a further experiment, the above applied influenza dataset is
aggregated over the eight distinct regions, yielding a one-dimensional time series for the
entire area of Germany. The standard SIR model is applied to this dataset, again both in its
original and a modified form, in order to evaluate the differences in the resulting parameter
estimates. The according posterior means and hpd intervals are given in Table 8.9. There
are again m = 7 subintervals introduced by the innovation scheme, and the simulated
Markov chains have length 5 · 105.
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para- original modified
meter dataset dataset
α1

5.198 0.225
(3.784, 5.621) (0.221, 0.228)

α2
0.735 0.236

(0.675, 0.768) (0.224, 0.244)
α3

0.699 0.194
(0.450, 0.776) (0.188, 0.196)

α4
0.180 0.201

(0.150, 0.198) (0.195, 0.207)
α5

4.036 0.198
(2.035, 4.808) (0.193, 0.201)

α6
0.031 0.249

(0.028, 0.041) (0.244, 0.254)
α7

0.144 0.261
(0.132, 0.156) (0.257, 0.262)

α8
12.025 0.358

(11.769, 12.500) (0.356, 0.359)

β
8.230 0.343

(6.214, 8.741) (0.343, 0.344)

Table 8.8: Estimation results for the parameters of the multitype SIR model applied to the
influenza datasets described in Section 8.3.1. The second column contains estimates for the
original dataset, the third column shows those for the modified dataset, that is the original dataset
multiplied by factor 55. The table displays the posterior means and posterior 95%-hpd intervals
after a 10% burn-in phase. The underlying simulated Markov chains have length 105, and the
innovation scheme introduced m = 7 subintervals in between every two observation time points.

para- original modified
meter dataset dataset

α
1.106 0.109

(1.095, 1.125) (0.109, 0.110)

β
1.100 0.072

(1.092, 1.107) (0.071, 0.072)

Table 8.9: Estimation results for the parameters of the standard SIR model applied to the
influenza dataset aggregated over all regions. The second column contains estimates for the
original aggregated dataset, the third column shows those for the modified dataset, that is the
original dataset multiplied by factor 55. The table displays the posterior means and posterior
95%-hpd intervals after a 10% burn-in phase. The underlying simulated Markov chains have
length 5 · 105, and the innovation scheme introduced m = 7 subintervals in between every two
observation time points.
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Unsurprisingly, the estimates obtained from the multitype SIR model and the estimates
from the standard model do not match, neither concerning the cluster-specific contact rates
nor the global infectious period. The standard model cannot imitate the outcomes of the
multitype model. This motivates the application of the more refined modelling approach.

8.4 Conclusion and Outlook

This chapter investigated the statistical estimation of parameters in epidemic diffusion
models. To the author’s best knowledge, this is the first spatial modelling of the spread of
an infectious disease by means of a diffusion process with parameters estimated through
application of statistical methods. For carrying out these estimations, the newly developed
techniques from Chapter 7 were required.

In this chapter, parameters were both estimated in a simulation study with synthetic datasets
and in two applications with real data. The simulation study served as a benchmark for
the quality of parameter estimates. It turned out that the contact and recovery rates in the
standard and multitype SIR models can be estimated precisely as long as information on the
fraction of susceptible individuals is provided. Otherwise, the estimates of the contact rates
have to be considered with care, but estimation of the average infectious period seemed
reliable.

In real data situations, one faces multiple difficulties, some of them have already been
pointed out in the course of this chapter. These concern mainly the data on infectious cases
and knowledge about the susceptible population. The solution of this problem requires the
collaboration of data-collecting institutions and statisticians. An interesting approach has
recently been proposed by Ginsberg et al. (2008) who utilise influenza-related queries to
online search engines instead of relying on notified visits to the doctor.

Geographic modelling of epidemic outbreaks requires the specification of the spatial mixing
of individuals. Possible advancements in the design of the connectivity matrix might be
achieved by combinations of different data sources. In the literature, for example, there
are several considerations of transportation networks: Baroyan and Rvachev (1967) and
Baroyan, Rvachev, and Ivannikov (1977) analysed the Russian train network for modelling
the spread of influenza, and Rvachev and Longini (1985) extended this work to worldwide
considerations. More recently, Grais et al. (2003), Brownstein et al. (2006) and Colizza et al.
(2006a,2006b) worked out the impact of air travel and other modes of transportation on the
spread of diseases today. Crépey and Barthélemy (2007) analysed influenza pandemics in
the United States and France with respect to transmission channels via air and train traffic.
A different approach was implemented by Brockmann, Hufnagel, and Geisel (2006) who
drew conclusions about the travelling behaviour of humans within the United States from
the dispersal of dollar notes, tracked through the website http://www.wheresgeorge.com.
For a recent monograph on geographic models for the spread of diseases, see Sattenspiel
(2009).
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Future investigations of the influenza data in Section 8.3 will certainly involve the incor-
poration of further external information in the parameter estimation. For example, the
contact rates are possibly correlated with the population densities of the respective regions,
so these densities could be used as a priori knowledge. Alternatively, in order to reduce
the number of unknown variables, administrative regions could be categorised as rural or
urban with identical contact rates within each category. Concerning the contact matrix,
the distinction between matrices γS and γI for susceptibles and infectives are particularly
meaningful for travel routes of relatively large distances, i. e. contacts between non-adjacent
regions. Further extensions such as the consideration of age groups have been mentioned
throughout the chapter and in Section 2.2.3.

The ultimate objective of research on the spread of infectious diseases is typically the
development of efficient intervention policies; see for example the discussion by Medlock
and Galvani (2009) on control strategies like optimal vaccine distributions or the review
article by Cauchemez et al. (2009) on the various aspects of school closure as part of an
intervention plan. In case of a spatial multitype model such as the one considered in this
chapter, additional options arise which correspond to modifications of the connectivity
matrix. A change of connectivity can for example be accomplished by restriction of travel
connections such as airport closures (e. g. Hufnagel et al., 2004).

Analysing epidemics using statistical inference techniques has shown the potential to provide
more accurate estimates than available before. Several directions for future work have been
pointed out.



Chapter 9

Application II: Analysis of Molecular
Binding

The genetic material of humans and mammals is mainly contained in their cell nuclei,
where most genome regulatory processes like DNA replication or transcription take place.
These processes are controlled by complex protein networks. Hence, the comprehension of
procedures like protein binding interactions in the nucleus are of large interest, and their
investigation is the subject of active research. See for example Gorski and Misteli (2005)
for an explanation of the importance of understanding this field.

Many findings about the behaviour of chromatin-binding proteins are based on in vitro
experiments, i. e. on studies which are performed in an artifical environment outside a living
organism. In vivo experiments, on the other hand, are carried out in a living cell and
differ from in vitro settings with respect to, for example, binding sites and environmental
conditions. It is desirable, though more challenging, to analyse data from in vivo experiments
(Phair, Gorski, & Misteli, 2004, Mueller, Wach, & McNally, 2008).

A suitable tool for the analysis of in vivo molecular binding is fluorescence microscopy. In
this method, the protein of interest is labelled with a green fluorescent protein (GFP). The
spatio-temporal distribution of GFP-tagged molecules can then be observed in the living
cell.

This chapter analyses the cell cycle dependent kinetics of the particular protein Dnmt1.
Data is extracted by application of fluorescence microscopy. Kinetic compartment models for
the dynamics of the protein are established and translated into stochastic and deterministic
processes. Parameters of interest can then be estimated by application of appropriate
estimation techniques to the model and the data.

In particular, the contents of this chapter are as follows: Section 9.1 presents the research
questions of this chapter and tools for data acquisition. In Section 9.2, primary characteris-
tics of the data are analysed which form the basis for the subsequent model construction.
Based on biochemical principles, appropriate kinetic models are developed and further
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extended in Sections 9.3 to 9.5. In particular, all kinetic models are initially designed as
compartment models and then further approximated by stochastic and deterministic differ-
ential equations. The stochastic approximation is particularly important as it accounts for
the apparently present randomness in the observed process. Simulation studies demonstrate
the performance of suitable parameter estimation techniques and model choice criteria.
Before applying these inference methods to real datasets, Section 9.6 discusses and further
develops the preliminary preparation of the raw measurements from fluorescence microscopy
experiments. Finally, Section 9.7 investigates the research problems of this chapter by
means of the methodology from the previous sections applied to a variety of real datasets.
Section 9.9 concludes and outlines future projects.

The contents of this chapter are novel in particular with respect to the utilised stochastic
models and techniques for statistical inference. To the author’s best knowledge, no diffusion
approximations or comparable stochastic models have been used in the literature for the
analysis of observations from fluorescence microscopy experiments. Instead, deterministic
differential equations are employed, and model parameters are approximated by least squares
estimation. This approach, however, does not account for stochasticity and furthermore
violates some of the basic model assumptions as outlined in Section 9.3.4. For comparison
purposes, the latter procedure is contained in this thesis as well. A number of formulas and
properties of the deterministic model are derived here. The emphasis of this work, however,
lies on the application of Bayesian estimation techniques as developed in Chapter 7.

The focus of this chapter is on the presentation of mathematical models and the application
of statistical estimation techniques to the collected data. Basic biological background
information is given to an extent that suits the motivation and basic comprehension of the
application. For details on biological aspects, the reader is referred to Schneider (2009)
and Schneider, Dargatz et al. (2010).

9.1 Problem Statement

An important cellular process is DNA methylation, which is a DNA modification with diverse
biological objectives. Proper cell function is only possible if the DNA methylation pattern
is maintained over many cell cycles. Otherwise, the formation of tumor cells is one potential
consequence. It has been shown that the protein DNA (cytosine-5)-methyltransferase 1, in
short Dnmt1, plays a central role in the maintenance of DNA methylation patterns (see
Kuch et al., 2008, and the references therein). Despite its importance, the dynamics of
Dnmt1 is still unclear. In this chapter, we investigate the kinetic behaviour of Dnmt1 in
living mice.

The following paragraphs describe the data acquisition process and the research questions
that will be investigated in this chapter.



9.1 Problem Statement 273

9.1.1 Data Acquisition by Fluorescence Recovery after Photo-
bleaching

A popular technique for the analysis of the dynamics of molecules is fluorescence recovery
after photobleaching (FRAP) (e. g. Sprague & McNally, 2005), which is illustrated in
Figure 9.1. In this experiment, all chromatin proteins of interest in the cell nucleus are
initially fluorescently labelled (image A). Then, one part of the nucleus is irreversibly
bleached by a short laser pulse such that fluorescent emission of the proteins in that
section becomes extinct (B). During a subsequent recovery phase, the fluorescent and
non-fluorescent proteins diffuse (C to F) until they are uniformly mixed in the nucleus (G).
The course of this diffusion and the duration until complete recovery allow conclusions
about the mobility of the protein of interest.

All data was acquired in the context of a diploma thesis (Schneider, 2009). Materials
and methods concerning the preparation of cell cultures, the acquisition of images and
subsequent image analysis are described in that work. General overviews can also be found
in Phair, Gorski, and Misteli (2004) and McNally (2008).

Figure 9.1: (modified from Schneider, 2009) Series of images obtained in a fluorescence recovery
after photobleaching (FRAP) experiment: Initially, all chromatin proteins of interest in the cell
nucleus are fluorescently labelled (image A). Then, one part of the nucleus is irreversibly bleached
by a short laser pulse such that fluorescent emission of the proteins in that section becomes
extinct (B). During a subsequent recovery phase, the fluorescent and non-fluorescent proteins
diffuse (C to F) until they are uniformly mixed in the nucleus (G).

9.1.2 Research Questions

The following questions arise in the context of analysing the dynamic properties of Dnmt1
and will be statistically investigated in this chapter.

Estimation of Kinetic Parameters

Dnmt1 diffuses randomly through the cell nucleus until it binds to chromatin at a likewise
random time point. The protein remains at this binding site for a stochastic time period
until it unbinds and continues to diffuse. This procedure recurs throughout the whole
experiment.
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In order to be able to characterise the dynamics of Dnmt1, a fundamental issue is to
determine the impacts of diffusion and binding on the recovery curves. Furthermore, it is
important to have an estimate of the affinity of Dnmt1 to enter the bound state and of the
average residence time that the protein remains at the binding site.

To that end, a preliminary analysis is performed in Section 9.2 to clarify the role of diffusion
and binding. Kinetic models are formulated in Sections 9.3 to 9.5. These incorporate
the unknown measures as model parameters whose statistical estimation is the purpose of
Section 9.7.

Number of Mobility Classes

There is possibly more than one type of binding partner for Dnmt1, i. e. the protein may
sometimes associate to a partner of one type and sometimes to a partner of another type.
These partners may differ with respect to the affinity of Dnmt1 to enter the bound state
and the mean residence times in this state. All binding partners with identical or similar
kinetic properties are gathered in one mobility class. This term seems more appropriate
than classes of binding sites (e. g. Phair, Scaffidi, et al., 2004) because different sites with
identical kinetic properties cannot be distinguished using FRAP data (Schneider, 2009).
The number of mobility classes could hence be smaller than the number of different binding
partners.

The number of mobility classes for Dnmt1 is of great interest. Related to that is the
question about associated binding affinities and mean residence times for each class as well
as the average fraction of free molecules and bound molecules of each type.

To that end, the kinetic model for one mobility class is extended to several mobility classes
in Section 9.5. The identification of numbers of mobility classes from the FRAP curves is
approached by model choice criteria in Section 9.7.

Figure 9.2: (from Schneider, 2009) Cell cycle dependent distribution of GFP-tagged Dnmt1
proteins (green) and replication sites (red) in a nucleus.
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Cell Cycle Dependence

A eukariotic cell passes through a number of phases between every two cell divisions. These
are part of the cell cycle, which is composed of a first gap phase (G1 phase) in which the
cell grows, a synthesis phase (S phase) in which the DNA is duplicated, a second gap phase
(G2 phase) where the cell grows further, and finally the mitosis phase (M phase) in which
the cell divides. The S phase can further be partitioned into an early S phase, a mid S
phase and a late S phase. The G1, S and G2 phases are again summarised as the interphase.
Figure 9.2 depicts images of a cell nucleus during a part of the cell cycle.

This chapter is concerned with the cell cycle dependent kinetics of Dnmt1. In particular,
FRAP data is collected during G1, early S and late S phases. The time series are displayed
in Figure 9.3. This chapter investigates whether Dnmt1 shows different binding behaviour
depending on the phase, both with respect to binding affinities and mean residence times
and regarding the number of mobility classes.

To that end, models are estimated for time series from distinct phases in Section 9.7, and
the results are analysed with respect to cell cycle dependent statistical differences.
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Figure 9.3: Fluorescence intensities of GFP-tagged Dnmt1 measured in the bleached section of
the nucleus during G1, early S and late S phases. The data is processed according to the triple
normalisation described in Section 9.6.1 on pages 313 ff.

9.2 Preliminary Analysis

The design of an appropriate kinetic model crucially depends on two factors: the impact
of binding and the impact of diffusion on fluorescence recovery. These issues have to be
clarified experimentally before formulating a mathematical model and statistically inferring
on its parameters. This will be investigated in the following.
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9.2.1 Impact of Binding

In order to determine whether binding interactions affect the fluorescence recovery dynamics
of the protein of interest, Sprague and McNally (2005) suggest to compare several FRAP
curves of this GFP-tagged protein with those of unconjugated, non-binding GFP. If recovery
of the considered protein is substantially slower than recovery of GFP alone, binding events
obviously influence the dynamics.

Figure 9.4 displays FRAP curves of unconjugated GFP and of GFP-labelled Dnmt1. The
difference in the speed of recovery is apparent. Hence, the kinetic models developed in this
chapter take binding transactions into account.

9.2.2 Impact of Diffusion

There are two basic scenarios that one usually proceeds from: diffusion-coupled or diffusion-
uncoupled FRAP (Sprague & McNally, 2005). In a diffusion-coupled situation, the molecules
diffuse across the nucleus with a rate that is of the same order as the rate with which
binding occurs. In case of diffusion-uncoupled recovery, diffusion happens much faster than
binding. Utilisation of the wrong pattern may entail misleading interpretation of the results.

Intuitively, one may assume that slow recovery indicates slow binding compared with
the speed of diffusion, resulting in the diffusion-uncoupled case. However, as Sprague
and McNally (2005), Beaudouin et al. (2006) and Lambert (2009) point out, a diffusion-
uncoupled scenario is not necessarily implied by a long duration of the recovery phase.
Instead, fluorescence recovery should be observed in different zones of the bleached section
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Figure 9.4: Fluorescence intensities of GFP (black) and GFP-tagged Dnmt1 (red) measured in
the bleached section of the nucleus during different phases of the cell cycle. The data is processed
according to the triple normalisation described in Section 9.6.1 on pages 313 ff.
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(Phair, Gorski, & Misteli, 2004) and for varying bleach spot sizes (Sprague & McNally,
2005). Diffusion-uncoupled FRAP can be assumed if recovery is independent of the location
of the zone and size of the spot.

For the application in this chapter, such control experiments have been carried out but
initially gave no definite answer (Schneider, 2009); there are indications for both scenarios.
In the following sections, the mathematical models are based on diffusion-uncoupled recovery
dynamics. Such investigations are of course also of interest for many proteins other than
Dnmt1.

To be on the safe side, however, the data should also be analysed under the assumption of
diffusion-coupled recovery. Respective kinetic models have been developed in the literature
only for circular and line bleaching yet (e. g. Mueller et al., 2008). The data used in
this chapter, in contrast, has been obtained by half-nucleus FRAP experiments, i. e. by
bleaching (approximately) one half of the nucleus rather than a circle or strip. An according
compartmental model is outlined in Section 9.8. Statistical analysis of this model is the
subject of ongoing work.

9.3 General Model

In this section, a general kinetic model for the dynamics of a protein in a cell nucleus is
derived under the assumptions discussed in Section 9.2. The same compartmental model is
utilised by, for example, Phair, Gorski, and Misteli (2004), Phair, Scaffidi, et al. (2004)
and Beaudouin et al. (2006), who translate it into a set of ordinary differential equations.
However, more realistic models are achieved by the introduction of randomness. The
importance of incorporating stochasticity into models for natural phenomena in life sciences
has been emphasised throughout this thesis and in particular in Chapter 4. In the context
of the application in this chapter, the presence of uncertainty is obvious from the time
series displayed in Figure 9.3 on page 275 as the recovery curves clearly deviate from each
other even within the same cell cycle.

For that reason, after having defined the compartmental model in Section 9.3.1, it is
approximated by a diffusion process in Section 9.3.2 which mirrors the stochastic nature of
the recovery dynamics. To the author’s best knowledge, diffusion approximations have not
been applied to FRAP kinetics before. For the sake of comparability with the analyses of
other authors, the deterministic analogue is given in Section 9.3.3. In Section 9.3.4, the
virtues of the stochastic model are demonstrated in a simulation study.

9.3.1 Compartmental Description

The following model describes the behaviour of a protein of interest in a cell nucleus which
has partly been bleached by a laser pulse. For shorter notation, this protein is simply
referred to as molecule, ignoring all other types of molecules in the nucleus that are not
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directly expressed in the model. Fluorescent molecules are either fluorescent themselves or
fluorescently labelled.

The molecule of interest has three properties:

(i) It is bleached or unbleached.

(ii) It is located in the bleached section or in the unbleached section.

(iii) It is free or bound.

Property (i) is an unchangeable attribute, i. e. a bleached or unbleached molecule remains
bleached or unbleached, respectively, throughout the entire observation period. Bleached
and unbleached molecules are assumed to behave identically, and therefore it suffices to
focus on one type only. The following considerations model the dynamics of the unbleached
molecules as these are visible through their fluorescence.

Properties (ii) and (iii) are changeable attributes, i. e. a molecule can change its location
among the bleached and the unbleached section, and it can change its state among the free
and the bound status: The cell nucleus is partitioned into a bleached and an unbleached area,
determined by the bleaching laser pulse. Each molecule is located in either of these. When
a molecule is free, it can diffuse freely within the nucleus. While it is bound, its location is
fixed. Binding sites are assumed to be at fixed locations. Due to the diffusion-uncoupled
scenario assumed in Section 9.2.2, diffusion of the free molecules happens so rapidly that
their concentration is identical in the bleached and in the unbleached section. Hence, it is
not necessary to model the location of a free molecule.

The above considerations motivate a kinetic model whose variables and transitions are
described in the following. The model is illustrated in Figure 9.5.

Variables

The unbleached molecules are divided into three disjoint groups, whose sizes are represented
through
U free : the number of unbleached free molecules,
Ubound
bl : the number of unbleached bound molecules in the bleached section,

Ubound
unbl : the number of unbleached bound molecules in the unbleached section.

These three variables sum up to the constant system size parameter
NU : the number of unbleached molecules.

Hence, it is sufficient to model the time-evolution of two out of the three above quantities;
the third variable is then easily obtained as the difference to NU . The proportion of bleached
molecules is expressed by
fbl : the fraction of bleached molecules with respect to all molecules.
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Figure 9.5: Compartmental representation of the general kinetic model: The unbleached
molecules in the nucleus are divided into three groups, namely into molecules that are free,
molecules that are bound in the bleached section and molecules that are bound in the unbleached
section. Due to the assumption of diffusion-uncoupled recovery (cf. Section 9.2.2), the location
of a free molecule is not explicitly modelled. Four non-trivial transitions are possible: (1) A
free molecule binds in the bleached section with rate kon. (2) A bound molecule in the bleached
section unbinds with rate koff. (3) A free molecule binds in the unbleached section with rate kon.
(4) A bound molecule in the unbleached section unbinds with rate koff. fbl and 1−fbl express the
fractions of molecules in the bleached and unbleached sections, respectively.

The number of bleached molecules in the nucleus equals the number of molecules in the
bleached section at the time of bleaching. The number of molecules in the bleached section
is assumed approximately constant over time. Hence, fbl is also the fraction of (bleached or
unbleached) molecules in the bleached section with respect to all molecules in the nucleus.
Moreover, fblU free is the number of unbleached free molecules in the bleached section at
any positive time, and (1 − fbl)U free is the number of unbleached free molecules in the
unbleached section. The number of unbleached molecules is NU = (1− fbl)N , where N is
the total number of molecules in the nucleus.

Note that the structure of cell nuclei is such that the spatial distribution of the molecules is
non-uniform. Thus, the parameter fbl does not exactly express the fraction of the bleached
area as measured in square micrometres.

Transitions and Parameters

We consider a kinetic model with the following non-trivial transitions (cf. Figure 9.5):

1. An unbleached free molecule binds in the bleached section.
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2. An unbleached bound molecule in the bleached section unbinds.

3. An unbleached free molecule binds in the unbleached section.

4. An unbleached bound molecule in the unbleached section unbinds.

Binding of a particular molecule occurs with association rate kon ∈ R+, unbinding with
dissociation rate koff ∈ R+, irrespectively of the state of the other molecules. In particular,
it is assumed that there are always sufficiently many binding sites available such that the
occurrence of the first and third transition is independent of their number. To be more
precise, the association rate is the product of an actual binding rate and the concentration
of available binding sites. This product is assumed constant as the molecules are supposed
to be in equilibrium (cf. e. g. Sprague & McNally, 2005).

The expected time until a free molecule enters the bound state and the mean residence time
of a molecule at a binding site are computed as 1/kon and 1/koff, respectively. The objective
is to statistically estimate the parameters kon and koff. The fraction fbl is determined by
image analysis via the loss of total fluorescence after bleaching.

Representation as Markov Jump Process

As pointed out above, the dispersion of unbleached molecules in the cell nucleus is completely
described by two out of the three numbers U free, Ubound

bl and Ubound
unbl . In the following, we

model a homogeneous Markov process with state (U free, Ubound
bl )′ and state space

D = {(U free, Ubound
bl )′ ∈ [0, NU ]2 ∩N2

0 |U free + Ubound
bl ≤ NU}.

Under the assumption that at most one event can occur within a small time interval of
length ∆t, this process is subject to transitions

1. (U free, Ubound
bl )′ → (U free− 1, Ubound

bl + 1)′ with prob. konfblU
free∆t+ o(∆t),

2. (U free, Ubound
bl )′ → (U free+ 1, Ubound

bl − 1)′ with prob. koffU
bound
bl ∆t+ o(∆t),

3. (U free, Ubound
bl )′ → (U free− 1, Ubound

bl )′ with prob. kon(1−fbl)U free∆t+ o(∆t),
4. (U free, Ubound

bl )′ → (U free+ 1, Ubound
bl )′ with prob. koffU

bound
unbl ∆t+ o(∆t),

where o(∆t)/∆t→ 0 as ∆t→ 0. If none of these events occurs within time ∆t, the process
remains in state (U free, Ubound

bl )′.

9.3.2 Diffusion Approximation

So far, the considered dynamics in the cell nucleus has been modelled as a pure Markov
jump process with discrete state space. Chapter 4, however, comprehensively motivated
to alternatively use diffusion processes in case of large numbers of particles as given here.
This facilitates the interpretation, simulation and statistical inference for the kinetic model.
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In the following, a diffusion approximation for the jump process with the above transitions
is derived.

The first step is to convert the extensive state variables U free, Ubound
bl and Ubound

unbl into
intensive variables ufree = U free/NU , uboundbl = Ubound

bl /NU and uboundunbl = Ubound
unbl /NU . These

sum up to one. The new state space

C = {(ufree, uboundbl )′ ∈ [0, 1]2 ∩R2
0 |ufree + uboundbl ≤ 1} (9.1)

is considered continuous.

Section 4.3 introduced various techniques for the derivation of diffusion approximations.
Under regularity conditions, which are met here, all methods yields the same result. In
the following, we apply the Langevin approach from Section 4.3.3. According to this, the
diffusion process with state variable (ufree, uboundbl )′ solves the stochastic differential eqation
(SDE) (

dufree

duboundbl

)
= µ

(
ufree, uboundbl

)
dt+N

− 1
2

U σ
(
ufree, uboundbl

)
dBt, (9.2)

subject to an initial condition (ufree0 , uboundbl,0 )′ ∈ C at time t0 > 0. In this equation,
B = (Bt)t≥t0 is two-dimensional Brownian motion representing fluctuations in binding and
unbinding. In the Langevin approach, the drift vector µ is obtained as

µ
(
ufree, uboundbl

)
= konfblu

free
(
−1

1

)
+ koff u

bound
bl

(
1
−1

)
+ kon(1− fbl)ufree

(
−1

0

)
+ koff u

bound
unbl

(
1
0

)

=
(
−(kon + koff)ufree + koff
konfblu

free − koff uboundbl

)
,

where uboundbl + uboundunbl has been replaced by 1− ufree. The diffusion coefficient σ is a square
root of the diffusion matrix Σ, i. e. Σ = σσ′, where

Σ
(
ufree, uboundbl

)
= konfblu

free
(

1 −1
−1 1

)
+ koff u

bound
bl

(
1 −1
−1 1

)

+kon(1− fbl)ufree
(

1 0
0 0

)
+ koff u

bound
unbl

(
1 0
0 0

)

=
 (kon−koff)ufree + koff −konfblufree − koff uboundbl

−konfblufree− koff uboundbl konfblu
free + koff u

bound
bl

 .
The square root σ of Σ is not unique. One possible candidate is

σ(ufree, uboundbl )=


√
kon(1−fbl)ufree + koff(1−ufree−uboundbl ) −

√
konfblufree + koffuboundbl

0
√
konfblufree + koffuboundbl

.
The particular choice of σ has no impact on the distribution of the diffusion process, cf.
Section 3.2.5.
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Observed Variable

The typical observation in a FRAP experiment is the mean grey value in the bleached
section, measured over time. The value zero corresponds to the bleached section being
completely dark, and the value one corresponds to it being completely lucid. Light colour
is caused by the fluorescent, i. e. by the unbleached molecules. Hence, the observed value
can be modelled as

number of unbleached molecules in the bleached section
total number of molecules in the bleached section ,

that is
fblU

free + Ubound
bl

fblN
= fblu

free + uboundbl
fblN/NU

= fblu
free + uboundbl
fbl

(1− fbl).

This value would be equal to one if all molecules in the bleached section were unbleached.
In practice, this will not be the case: At the time of bleaching, the number of unbleached
molecules in the bleached section is zero. In the following course, the bleached and
unbleached molecules will diffuse and eventually reach a state where the concentrations
of bleached and unbleached molecules are identical in the bleached and the unbleached
section, namely

number of unbleached molecules in the nucleus
total number of molecules in the nucleus = 1− fbl.

As a consequence, the final level of the observed value depends on the fraction fbl of the
bleached section. This value typically varies in each experiment and hence complicates the
comparison of distinct experimental outcomes. For this reason, the measured mean grey
value is divided by the normalising constant 1−fbl such that it will finally level off at value
one, irrespectively of fbl. Overall, one arrives at the normalised observation

q = fblu
free + uboundbl
fbl

. (9.3)

Note that the variable q is subject to stochastic disturbances, i. e. it will finally fluctuate
around the value one, and this level is not an upper bound. Theoretically, one rather
has 0 ≤ q ≤ r for some r ≤ (1− fbl)−1.

Transformation of Diffusion Approximation

With q being the only observed variable, both components of the process (ufree, uboundbl )′ are
latent. For statistical inference on the parameters kon and koff, it would be possible to, for
example, estimate ufree and then to calculate a quasi-observed value of uboundbl conditioned
on the observed value of q and the estimated value of ufree through Equation (9.3). A more
convenient approach, however, is to take q as one out of two state variables. Hence, we in
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the following consider a diffusion process with state (q, ufree)′ with observed component q,
latent component ufree and state space

C̃ = {(q, ufree)′ | (ufree, fbl(q − ufree))′ ∈ C}

with C defined as in (9.1). An SDE for this process can be obtained with Itô’s formula from
Section 3.2.10. Calculations have been moved to Section D.1.1 in the appendix. The result
is (

dq
dufree

)
=
(

koff(1− q)
−(kon + koff)ufree + koff

)
dt+ 1√

NU

(
σ̃11 σ̃12
σ̃21 σ̃22

)
dBt (9.4)

with

σ̃11 = σ̃21 =
√
koff (1− fblq) + (kon− koff) (1− fbl)ufree

σ̃12 =
(
f−1
bl − 1

)√
kofffblq + (kon−koff) fblufree

σ̃22 = −
√
kofffblq + (kon−koff) fblufree

and initial condition (q0, u
free
0 )′ ∈ C̃ at time t0. The diffusion matrix for (q, ufree)′ reads

1
NU

koff(f−1
bl −2

)
q + (kon − koff)

(
f−1
bl −1

)
ufree + koff koff (1− q)

koff (1− q) (kon−koff)ufree + koff

 .
This diffusion approximation can now be employed in order to statistically infer on kon
and koff by application of the Bayesian estimation techniques described in Chapter 7. Before
analysing experimental FRAP data in Section 9.7, the performance of the procedure and
its benefits compared to a deterministic approach are demonstrated in a simulation study
in Section 9.3.4.

Initial Conditions

Some remarks on the initial conditions for the process (q, ufree)′ are expedient. That is,
on the one hand the number of unbleached molecules in the bleached compartment is
assumed to be zero at time t = 0, i. e. at the time of bleaching. In particular, the number of
unbleached free molecules in the bleached section is zero at time t = 0. On the other hand,
the number of unbleached free molecules in the bleached part of the nucleus is modelled
as fblU free > 0 at any positive time. That means, one has ufree(0) 6= limt→0+ ufree(t), i. e.
ufree is not right-continuous in t = 0, and hence q(t) is not right-continuous in t = 0 either.

Diffusion processes are processes with almost surely continuous sample paths, and the
deterministic differential equations in the next section refer to processes with even continuous
sample paths. It is hence reasonable to formulate the initial conditions for all differential
equations in this chapter for an initial time t0 > 0. This poses no restriction on the
applicability of the models as the first postbleach FRAP image is acquired at a positive
time point, anyway.
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9.3.3 Deterministic Approximation

For the purpose of comparing the performances of the diffusion approximation approach
considered in this thesis and the deterministic approach generally employed in the literature,
the deterministic counterpart of the above model is given here as well. That is, taking the
limit NU →∞ in the stochastic differential equation (SDE) (9.4), one obtains the ordinary
differential equation (ODE)(

dq
dufree

)
=
(

koff(1− q)
−(kon + koff)ufree + koff

)
dt (9.5)

as a deterministic description of the FRAP dynamics. The starting values are again
(q0, u

free
0 )′ ∈ C. This model represents the macroscopic behaviour of the recovery process

but, however, does not incorporate stochastic fluctuations. For this reason, the diffusion
approximation model is clearly to be preferred.

Interestingly, the two-dimensional ODE (9.5) consists of two independent one-dimensional
ODEs

dq = koff(1− q)dt (9.6)
and

dufree =
(
−(kon + koff)ufree + koff

)
dt. (9.7)

Since ufree is unobserved, Equation (9.7) cannot directly be employed for estimation purposes.
Instead, the FRAP curves are fitted to simulations from Equation (9.6). The parameter kon
does not appear in this equation. That means, it cannot be estimated from recovery curves
in the deterministic approach.

As a side note, Equations (9.6) and (9.7) possess the explicit solutions

q(t) = 1 + (q0 − 1) exp
(
−koff (t− t0)

)
(9.8)

and
ufree(t) = koff

kon + koff
+
(
ufree0 − koff

kon + koff

)
exp

(
−(kon + koff)(t− t0)

)
, (9.9)

where t ≥ t0 > 0. As a consequence, for fitting the deterministic model to the observed data,
there is no need to employ computationally demanding schemes for numerically solving the
above ODE (9.6) as obviously done by several authors.

Equation (9.9) immediately allows an approximation of the deterministic fractions f free
and fbound = 1 − f free of free and bound molecules. That is, f free is the limit of ufree(t)
as t→∞, hence

f free = koff
kon + koff

and fbound = kon
kon + koff

.

If the nucleus is in chemical equilibrium at the time of bleaching, then ufree is constant, and
hence ufree(t) = koff/(kon + koff) for all t ≥ t0.
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(c) (kon, koff)′ = (3.8, 0.2)′
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(d) (kon, koff)′ = (0.3, 0.2)′
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(e) (kon, koff)′ = (0.3, 0.2)′
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Figure 9.6: Synthetic datasets used in the simulation study in this section. Simulations
have been obtained by application of the Euler scheme from Section 3.3.2 with time step 0.025
and initial value (q0, u

free
0 )′ = (0.07, 0.05)′ at time t0 = 0.15. Observations are assumed to be

available at equidistant time steps of length 0.15 such that there are 600 observations on the time
interval [0.15, 90]. The fraction of the bleached area equals fbl = 0.4, and the number of molecules
is N = 10,000. (a) Sample paths for q and ufree (black lines), simulated for kon = 3.8 and koff = 0.2.
The grey areas represent empirical pointwise 95%-confidence bands for the trajectories. These
have been obtained from another one hundred realisations of the diffusion process. (b) The same
data as in (a), but as the component ufree is unobserved in practice, this dataset does only contain
the discretely sampled path for q and the initial value of ufree. (c) The same data as in (b) but
with additional information about the final value of ufree. (d) Sample paths for q and ufree (black
lines), simulated for kon = 0.3 and koff = 0.2. The grey areas display confidence bands as in (a).
(e) The same data as in (d), but this dataset does only contain the discretely sampled path for q
and the initial value of ufree. (f) The same data as in (e) but with additional information about
the final value of ufree.

9.3.4 Simulation Study

Before applying estimation procedures to real datasets in Section 9.7, this section first
investigates the performance of the statistical methods in a simulation study. This allows a
direct comparison of parameter estimates with the true values used for the generation of
synthetic data.
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We use two datasets for the process (9.4) which have been simulated with initial value
(q0, u

free
0 )′ = (0.07, 0.05)′ and parameters (kon, koff)′ = (3.8, 0.2)′ and (kon, koff)′ = (0.3, 0.2)′,

respectively. The sample paths of q and ufree are displayed in Figures 9.6(a) and 9.6(d).
The same plots display empirical pointwise 95%-confidence bands for the trajectories of the
diffusion process which have each been obtained from one hundred simulated sample paths.
Observations in the synthetic datasets are assumed to be given on the time interval [0.15, 90]
with an equidistant time step equal to 0.15, i. e. there are 600 observations including the
initial value of the process. This roughly corresponds to the situation given in the real
datasets in Section 9.7. The fraction of the bleached area is chosen to be fbl = 0.4, and
the number of molecules is set equal to 10,000. As the sample path for ufree approximately
remains at the same level in the first dataset, i. e. in Figure 9.6(a), this dataset resembles
the real data situation most.

Bayesian Estimation

Chapter 7 introduced Bayesian methods for statistical inference on diffusion processes by
means of data augmentation. In particular, the innovation scheme was presented and
further developed in Section 7.4.4. This scheme is now applied to the two synthetic datasets
in order to estimate the parameters kon and koff. The notation is adopted from Chapter 7.

A priori, kon and koff are assumed to be exponentially distributed with expected val-
ues E(kon) = 4 and E(koff) = 0.1 in the first dataset and E(kon) = 0.2 and E(koff) = 0.1
in the second dataset. In the MCMC algorithm, new proposals k∗on and k∗off are drawn
according to

log k∗on ∼ N
(
log kon, 0.0009

)
and log k∗off ∼ N

(
log koff, 0.0009

)
,

where kon and koff represent the current values. Figure 9.7 displays trace plots for kon and koff
produced by the innovation scheme. In particular, the parameter update is performed
according to Algorithm 7.6 on page 225, and the partially latent diffusion path is updated
with a modified bridge proposal as described in Section 7.2. The simulated Markov chains
in 9.7(a)–(e) have length 105 but have been thinned by factor 50; because of a large burn-in,
the chain in 9.7(f) has length 106 and is thinned by factor 500. For all estimations, data
has been imputed such that there are m = 5 intermediate subintervals in between every
two observation times.

When applied to the complete datasets from Figures 9.6(a) and 9.6(d), the innovation
scheme estimates kon and koff vary precisely as shown in Figures 9.7(a) and 9.7(d). In
practice, however, the component ufree is unobserved and the datasets are as in Figures 9.6(b)
and 9.6(e). When no information on ufree is given apart from its initial value, the innovation
scheme can still roughly estimate koff but experiences severe difficulties in the estimation
of kon. This is demonstrated in Figures 9.7(b) and 9.7(e). If, however, the endpoint of ufree
is added to the set of observations, as it is done in Figures 9.6(c) and 9.6(f), it is again
possible to obtain satisfactory estimation results for both kon and koff, see Figures 9.7(c)
and 9.7(f). In practice, one expects ufree to be approximately constant as the cell nucleus is
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(f) based on Figure 9.6(f)
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Figure 9.7: Estimation of parameters of the diffusion process (9.4) by application of the
innovation scheme based on the synthetic datasets displayed in Figure 9.6. The MCMC algorithm
introduces m = 5 subintervals in between every two observations. This figure shows the trace
plots of kon and koff. The Markov chains in (a)–(e) have length 105 but have been thinned by
factor 50; because of a large burn-in, the chain in (f) has length 106 and is thinned by factor 500.
The true value of kon equals 3.8 in Figures (a) to (c) and 0.3 in Figures (d) to (f). The true value
of koff is 0.2. These are indicated by the red horizontal lines.
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true values estimates from
Figures 9.7(a)/(d)

estimates from
Figures 9.7(b)/(e)

estimates from
Figures 9.7(c)/(f)

kon = 3.8,
koff = 0.2

kon: 3.78, (3.59,3.97)
koff: 0.20, (0.19,0.21)

kon: 0.66, (0.56,0.85)
koff: 0.21, (0.20,0.22)

kon: 3.55, (3.30,3.80)
koff: 0.20, (0.19,0.21)

kon = 0.3,
koff = 0.2

kon: 0.29, (0.28,0.31)
koff: 0.20, (0.19,0.20)

kon: 0.79, (0.68,0.93)
koff: 0.19, (0.18,0.20)

kon: 0.30, (0.28,0.32)
koff: 0.20, (0.19,0.20)

Table 9.1: Estimation results as in Figure 9.7. This table displays the posterior means and
posterior 95%-hpd intervals after a 10% burn-in phase. The latter are computed according to M.-H.
Chen and Shao (1999). The true values of the parameters are displayed in the first column.

modification estimates for dataset
from Figure 9.6(a)

N = 5,000 kon: 2.83, (2.64,3.02)
koff: 0.15, (0.14,0.16)

N = 20,000 kon: 4.37, (4.22,4.52)
koff: 0.23, (0.22,0.24)

modification estimates for dataset
from Figure 9.6(c)

level of ufree set
equal to 0.025

kon: 7.29, (6.53,8.12)
koff: 0.20, (0.19,0.21)

Table 9.2: Estimation results under modified assumptions. In the left table, estimates for kon
and koff are obtained based on the data from Figure 9.6(a) but presuming N = 5,000 and
N = 20,000 instead of the true value N = 10,000. In the right table, estimation is carried out
based on the data from Figure 9.6(c) with the starting value and endpoint of ufree set equal
to 0.025 instead of approximately 0.05. The tables display the posterior means and posterior
95%-hpd intervals after a 10% burn-in phase of the MCMC algorithm with 105 iterations. The
true values of the parameters are kon = 3.8 and koff = 0.2.

supposed to be in chemical equilibrium; approximations for the fraction ufree are therefore
possible also in real applications as explained in Section 9.7. Table 9.1 displays the posterior
means and 95%-hpd intervals for kon and koff corresponding to the trace plots in Figure 9.7.

Parameter estimation by application of the innovation scheme requires knowledge of the
initial value of the latent component ufree and of the number of molecules N . Wrong
assumptions about these two measures bias the estimation results as demonstrated in
Table 9.2: First, the innovation scheme is applied based on the data from Figure 9.6(a)
but presuming N = 5,000 and N = 20,000 instead of the true value N = 10,000. Second,
estimates are obtained based on the data from Figure 9.6(c) with the starting value and
endpoint of ufree set equal to 0.025 instead of approximately 0.05. Both modifications
especially affect the estimates of kon. It is hence important to carefully choose the value
of N and ufree0 as also discussed in Section 9.7.

Least Squares Estimation

An alternative approach to the Bayesian estimation procedures in combination with a
stochastic diffusion model is least squares estimation based on the deterministic model
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from Section 9.3.3. The latter approach is prevalent in the literature on the analysis
of molecular binding. For comparison purposes, it is also considered here. It should
however be emphasised that the least squares approach violates two model assumptions
which result directly from the original compartmental formulation. These concern the
correspondence between least squares estimation and the assumption of independent and
identically distributed deviations from the deterministic course. Neither independence nor
homoscedasticity is given in the original model.

Let x(t) denote the observed fluorescence intensity at time t and qkoff(t) its simulated
counterpart based on the parameter koff. As pointed out before, the value of kon has
no impact on the deterministic course of q. In order to estimate the parameter koff, the
function qkoff(t) is computed from Equation (9.8) for different values of koff with q0 = 0.07
at time t0 = 0.15. A least squares estimate for koff is obtained as

k̂off = argmin
koff∈R+

mSSR, where mSSR = 1
n+ 1

n∑
i=0

(
qkoff(ti)− x(ti)

)2
(9.10)

is the mean sum of squares residuals, and t0, . . . , tn are the observation times. Such an
estimate k̂off can be determined by application of an optimisation method such as the
Nelder-Mead algorithm (Nelder & Mead, 1965), which is also chosen here. Applied to the
datasets from Figures 9.6(a)-(c), the procedure yields k̂off = 0.20072. For the data from
Figures 9.6(d)-(f), the least squares estimate equals k̂off = 0.19443. In both datasets, the
true value is koff = 0.2. The resulting mean sums of squared residuals are 0.00012 in both
cases. Figure 9.8(a) displays the agreement between the first synthetic curve q and its
estimated counterpart.
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Figure 9.8: (a) Deterministic course of q for koff = 0.20072 (black) compared to the (synthetic)
observation from the dataset in Figure 9.6(a) (green). The mean sum of squared residuals for
this fit equals 0.00012. (b) Estimation of kon according to Equation (9.11) for koff = 0.20072 and
different values of ufree.



290 9. Application II: Analysis of Molecular Binding

An alternative to keeping the starting value q0 = 0.07 fixed is to estimate this parameter as
well. The Nelder-Mead algorithm can then be applied to find a tuple (q̂0, k̂off) such that the
mean sum of squared residuals is minimised. For the datasets from Figures 9.6(a)-(c), this
procedure yields q̂0 = 0.07542 and k̂off = 0.19953. For the data from Figures 9.6(d)-(f), the
least squares estimates are q̂0 = 0.06285 and k̂off = 0.19593. In both cases, the mean sum of
squared residuals is decreased by only less than 10−6 compared to the model with fixed q0.

As mentioned above, Equation (9.7) cannot directly be used for parameter estimation
as ufree is unobserved. However, the nucleus is assumed to be in chemical equilibrium such
that the fraction of free molecules (and also the fraction of unbleached free molecules) is
approximately constant. In the deterministic model, this refers to dufree/dt = 0. Solving
this equation yields

kon = koff

( 1
ufree

− 1
)
. (9.11)

Hence, an approximation of kon is possible if estimates are available for koff and ufree. For
the least squares estimate k̂off = 0.20072 and the true value ufree0 = 0.05, one obtains
indeed k̂on = 3.81368, which is close to the true value kon = 3.8. However, the value
of 0 ≤ ufree0 ≤ q0 is unknown in practice. Figure 9.8(b) shows estimates for kon according
to (9.11) for koff = 0.20072 and different values of ufree.

Conclusion

To summarise, both the Bayesian and the least squares estimation approaches are capable
to correctly estimate the parameter koff from the recovery curves in a FRAP experiment.
Estimation of kon is possible if information about ufree is available. Least squares estimation
employs a deterministic model which does not account for random fluctuations of the recovery
curves and erroneously assumes independence and homoscedasticity of the deviations
between the observations and the determinstic course. Point estimates are, however,
comparable to the Bayesian posterior means.

Before applying the estimation procedures to real datasets in Section 9.7, some further
improvements of the kinetic model are considered in the next two sections.

9.4 Refinement of the General Model

While the parameters kon and koff shall be estimated statistically, the fraction fbl of bleached
molecules is determined experimentally: It is measured via the loss of fluorescence in the
whole nucleus. We assume the value fbl to be identified correctly, i. e. fbl is indeed the
fraction of bleached molecules with respect to all molecules. However, there is good reason
for believing that the contour of the bleached section of the nucleus is determined with
error: The free molecules diffuse vary rapidly such that unbleached molecules presumably
invade the bleached section in the short but non-zero time interval between the bleaching
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Figure 9.9: Due to rapidly diffusing molecules, the border of the bleached section is presumably
determined with error such that the actual bleached section is actually larger than the defined
bleached section. The actual fraction fbl of bleached molecules is assumed to be correctly identified.
The size of the indefinite intermediate area is denoted by fint. The fraction of molecules in the
defined bleached section results as f∗bl = fbl − 0.5 fint.

pulse and the first postbleach image. As a consequence, there arises an intermediate area
in the nucleus which neither clearly belongs to the bleached section nor to the unbleached
section. For this reason, we in the following distinguish between the actual and the defined
bleached section of the nucleus. This is illustrated in Figure 9.9.

The kinetic model can be adapted according to these considerations by introduction of a
parameter

f ∗bl = fbl −
1
2fint ,

where fint with 0 < fint � 2fbl is a small positive constant called the intermediate fraction.
This parameter stands for the magnitude of the intermediate area and may be determined
experimentally or estimated statistically. f ∗bl represents the number of molecules in the
defined bleached section with respect to all molecules in the cell nucleus. The number of
unbleached free molecules in the defined bleached section is f ∗blU free.

The observed value q, given in Equation (9.3) on page 282, refers to spatially averaged grey
values in the defined bleached section, that is

number of unbleached molecules in the defined bleached section
total number of molecules in the defined bleached section . (9.12)
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9.4.1 Compartmental Description

In order to be able to adequately model the fraction (9.12), (re-)introduce the following
variables:
U free : the number of unbleached free molecules,
Ubound
bl : the number of unbleached bound molecules in the actual bleached section,

Ubound
bl∗ : the number of unbleached bound molecules in the defined bleached section,

Ubound
unbl : the number of unbleached bound molecules in the actual unbleached section,

Ubound
unbl∗ : the number of unbleached bound molecules in the defined unbleached section.

One has U free + Ubound
bl + Ubound

unbl = U free + Ubound
bl∗ + Ubound

unbl∗ = NU = (1 − fbl)N , where N
is the total number of molecules in the nucleus. It is hence reasonable to normalise the
above numbers by dividing through NU to obtain ufree, uboundbl , uboundbl∗ , uboundunbl and uboundunbl∗
with ufree + uboundbl + uboundunbl = ufree + uboundbl∗ + uboundunbl∗ = 1.

9.4.2 Diffusion Approximation

The observed mean grey value can now be expressed as

f ∗blU
free + Ubound

bl∗
f ∗blN

= f ∗blu
free + uboundbl∗
f ∗blN/NU

= f ∗blu
free + uboundbl∗
f ∗bl

(1− fbl).

This value has been normalised by the experimenter by dividing through (1−fbl). Hence,
the new target variable is represented by

q∗ = f ∗blu
free + uboundbl∗
f ∗bl

. (9.13)

Similarly to the variable q, the observed values of q∗ will eventually level off at value one,
and the theoretical range of the target variable remains 0 ≤ q∗ ≤ r for some r ≤ (1− fbl)−1.

The modified target variable q∗ requires modelling the process (ufree, uboundbl∗ )′ instead
of (ufree, uboundbl )′ with unaltered state space C. A respective SDE can be obtained from (9.2)
on page 281 by simply replacing uboundbl and fbl by uboundbl∗ and f ∗bl, respectively, in the drift
and diffusion coefficients.

Analogously, a diffusion approximation can be set up from previous calculations for (q∗, ufree)′
with state space

C̃∗ = {(q∗, ufree)′ | (ufree, f ∗bl(q∗ − ufree))′ ∈ C},

where C has been defined in (9.1) on page 281. Now, if fint and hence f ∗bl is to be estimated
statistically, the state space of the process is not anymore independent of the unknown
parameter. Independence has been one of the requirements for the estimation techniques in
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Chapter 7. In the present case, however, the dependence of C̃∗ on fint does not impose any
practical restrictions: Because of 0 ≤ uboundbl∗ ≤ 1− ufree, one has

ufree ≤ q∗ ≤ (f ∗bl − 1)ufree + 1
f ∗bl

.

This theoretical upper bound for q∗ is, for realistic values of ufree and f ∗bl, much larger than
its practical upper bound, which lies somewhat above one. The admissible upper value
for q∗ can hence confidently be replaced by the smaller ((fbl − 1)ufree + 1)/fbl, which is
independent of the parameters to estimate.

An SDE for (q∗, ufree)′ then follows from Equation (9.4) on page 283 by replacing q and fbl
by q∗ and f ∗bl, respectively. In particular, one obtains

(
dq∗

dufree

)
=
(

koff(1− q∗)
−(kon + koff)ufree + koff

)
dt+ 1√

NU

(
σ̃∗11 σ̃∗12
σ̃∗21 σ̃∗22

)
dBt (9.14)

with an initial condition (q∗0, ufree0 )′ ∈ C̃∗ at time t0 > 0 and

σ̃∗11 = σ̃∗21 =
√
koff (1− f ∗blq∗) + (kon− koff) (1− f ∗bl)ufree

σ̃∗12 =
(

1
f ∗bl
− 1

)√
kofff ∗blq

∗ + (kon−koff) f ∗blufree

σ̃∗22 = −
√
kofff ∗blq

∗ + (kon−koff) f ∗blufree .

The diffusion matrix for (q∗, ufree)′ reads

1
NU

koff((f ∗bl)−1−2
)
q∗ + (kon − koff)

(
(f ∗bl)−1−1

)
ufree + koff koff (1− q∗)

koff (1− q∗) (kon−koff)ufree + koff

 .

9.4.3 Deterministic Approximation

Like in Section 9.3.3, the stochastic description in terms of a diffusion approximation
immediately allows to read out a deterministic model as its limit. Here, we obtain a
one-dimensional ODE with explicit solution

q∗(t) = 1 + (q∗0 − 1) exp
(
−koff (t− t0)

)
. (9.15)

Once more, this equation does not contain the association rate kon, and it does neither
incorporate the intermediate fraction fint. These parameters can therefore not be estimated
by fitting the FRAP data to (9.15).
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Figure 9.10: Top row: Synthetic datasets for the diffusion model (9.14), obtained by application
of the Euler scheme with time step 0.025 and initial value (q∗0, ufree0 )′ = (0.07, 0.05)′ at time t0 = 0.15.
Observations are assumed to be available at equidistant time steps of length 0.15 such that there are
600 observations on the time interval [0.15, 90]. The fraction of the bleached area equals fbl = 0.4,
and the number of molecules is N = 10,000. (a) Sample paths for q∗ and ufree, simulated
for kon = 3.8, koff = 0.2 and fint = 0.05. (b) The same data as in (a), but as the component ufree
is unobserved in practice, this dataset does only contain the discretely sampled path for q∗ and
the initial value of ufree. (c) The same data as in (b) but with additional information about the
final value of ufree. Remaining rows: Estimation of parameters of the diffusion process (9.14) by
application of the innovation scheme based on the synthetic datasets displayed in the top row.
The MCMC algorithm introduces m = 5 subintervals in between every two observations. This
figure shows the trace plots of kon, koff and fint. The Markov chains have length 105 but have
been thinned by factor 50. The true values are indicated by the red horizontal lines.
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9.4.4 Simulation Study

The following considerations investigate the statistical estimation of the parameter fint. As
pointed out in the previous section, this is not possible by application of the deterministic
approximation as the underlying model for the recovery curve. Hence, the diffusion model
coupled with the innovation scheme is utilised.

A synthetic dataset is generated by application of the Euler scheme with all settings
as described in Section 9.3.4. The parameters chosen for this simulation are kon = 3.8,
koff = 0.2 and fint = 0.05, and the starting value of the diffusion process equals once
more (q∗0, ufree0 )′ = (0.07, 0.05)′. The innovation scheme is applied to the data with the
same preferences as in Section 9.3.4. A priori, the new parameter fint is assumed to be
exponentially distributed with expectation E(fint) = 0.05. It is updated according to

log f ∗int ∼ N
(
log fint, 0.0001

)
.

As before, estimation is carried out for different subsets of the simulated data which are
shown in the top row of Figure 9.10. The remaining graphics in this figure display trace
plots for the parameters kon, koff and fint.

Briefly summarised, estimation of fint turns out to be difficult even if the component ufree is
considered observed as in the dataset in Figure 9.10(a). On the other hand, the introduction
of the additional parameter fint does not seriously obstruct estimation of kon and koff in
comparison to the results shown in Figure 9.7. This is also demonstrated by the experiments
in Figures 9.11 and 9.12: Here, the general model (9.4), i. e. the model without the correction
parameter fint, is related to the dataset from Figure 9.10(a) with fint = 0.05, and the
other way round, the refined model (9.14) is related to the dataset from Figure 9.6(a) not
incorporating the parameter fint. In both cases, estimation of kon and koff works well, and
the value of fint in Figure 9.12 is correctly estimated to approach zero.
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Figure 9.11: Estimation results for kon and koff, where the general model (9.4), i. e. the
model without the correction parameter fint, is related to the dataset from Figure 9.10(a)
with fint = 0.05. Estimates are obtained by application of the innovation scheme. The MCMC
algorithm introduces m = 5 subintervals in between every two observations. The Markov chains
have length 105 but have been thinned by factor 50. The true values equal kon = 3.8 and koff = 0.2
and are indicated by the red horizontal lines.
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Figure 9.12: Estimation results for kon, koff and fint, where the refined model (9.14), i. e. the model
with correction parameter fint, is related to the dataset from Figure 9.6(a) without fint. Estimates
are obtained by application of the innovation scheme. The MCMC algorithm introduces m = 5
subintervals in between every two observations. The Markov chains have length 105 but have been
thinned by factor 50. The true values equal kon = 3.8, koff = 0.2 and fint = 0 and are indicated by
the red horizontal lines.

Precise estimation of fint is subject to current research but not further considered in this
thesis. In the application in Section 9.7, approximations for fint are obtained by image
analysis. In the statistical estimation of fint, these can be employed as a priori knowledge.
If the correction by fint is neglected, the parameter is simply set equal to zero.

9.5 Extension of the General Model to Multiple Mo-
bility Classes

One of the research questions listed in Section 9.1.2 was the investigation of the cell cycle
dependent number of mobility classes of binding partners for Dnmt1 (cf. page 274). If
there is more than one mobility class, the protein binds and unbinds to different classes of
binding partners with different association and dissociation rates. The kinetic models in
Sections 9.3 and 9.4 allow for one mobility class only. They are hence extended to multiple
classes in this section. The same compartmental extension has been carried out by Phair,
Gorski, and Misteli (2004) and Phair, Scaffidi, et al. (2004), who arrive at a system of
ordinary differential equations describing the dynamics within the cell nucleus.

9.5.1 Compartmental Description

Suppose there are M ∈ N classes of kinetically different binding partners for the molecule
of interest. Label these classes with numbers i ∈ {1, . . . ,M} and refer to a molecule
that is bound to a partner from class i as bound of type i, type i-bound or similarly. For
i = 1, . . . ,M , define the following variables:
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U free : the number of unbleached free molecules,

Ubound,i
bl∗ : the number of unbleached type i-bound molecules in the bleached section,

Ubound,i
unbl∗ : the number of unbleached type i-bound molecules in the unbleached section.

For shorter notation, the terms bleached section and unbleached section now refer to the
defined areas detected by image analysis (cf. the distinction between defined and actual
areas in Section 9.4). The number of all unbleached molecules equals

U free +
M∑
i=1

(
Ubound,i
bl∗ + Ubound,i

unbl∗

)
= NU = (1− fbl)N

with N again being the number of all bleached and unbleached molecules in the nucleus.
Let (

U free, Ubound,1
bl∗ , . . . , Ubound,M

bl∗ , Ubound,1
unbl∗ , . . . , Ubound,M

unbl∗

)′
be the state of a time-homogeneous Markov process with discrete state space. As all
components add to NU , one of them could actually be left out. However, the following
notation is more comprehensive with a state vector as defined above.

The following transitions are possible for i = 1, . . . ,M . For M = 2, these are illustrated in
Figure 9.13.

i1. An unbleached free molecule binds of type i in the bleached section with rate kon,i.

i2. An unbleached type i-bound molecule in the bleached section unbinds with rate koff,i.

i3. An unbleached free molecule binds of type i in the unbleached section with rate kon,i.

i4. An unbleached type i-bound molecule in the unbleached section unbinds with rate koff,i.

The parameters kon,i ∈ R+ and koff,i ∈ R+ denote the association and dissociation rates
corresponding to the ith mobility class. The transitions correspond to the following changes
of the state variable:

∆i1 =

−1
ei
0

 for transition i1, which occurs with rate kon,if
∗
blU

free,

∆i2 =

 1
−ei

0

 for transition i2, which occurs with rate koff,iU
bound,i
bl∗ ,

∆i3 =

−1
0
ei

 for transition i3, which occurs with rate kon,i(1− f ∗bl)U free,

∆i4 =

 1
0
−ei

 for transition i4, which occurs with rate koff,iU
bound,i
unbl∗ ,
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Figure 9.13: Compartmental representation of the kinetic model with M = 2 mobility classes:
The unbleached molecules in the nucleus are divided into five groups, namely into molecules that
are free, molecules that are type 1-bound in the bleached section, molecules that are type 1-bound
in the unbleached section, molecules that are type 2-bound in the bleached section, and molecules
that are type 2-bound in the unbleached section. Due to the assumption of diffusion-uncoupled
recovery (cf. Section 9.2.2), the location of a free molecule is not explicitly modelled. Eight
non-trivial transitions are possible: (11) A free molecule binds of type 1 in the bleached section
with rate kon,1. (12) A type 1-bound molecule in the bleached section unbinds with rate koff,1.
(13) A free molecule binds of type 1 in the unbleached section with rate kon,1. (14) A type 1-bound
molecule in the unbleached section unbinds with rate koff,1. (21) A free molecule binds of type 2 in
the bleached section with rate kon,2. (22) A type 2-bound molecule in the bleached section unbinds
with rate koff,2. (23) A free molecule binds of type 2 in the unbleached section with rate kon,2.
(24) A type 2-bound molecule in the unbleached section unbinds with rate koff,2. f∗bl and 1−f∗bl
express the fractions of molecules in the defined bleached and unbleached sections, respectively.

where ei = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ RM denotes the ith unit vector and 0 ∈ RM the null
vector. This expresses the compartmental kinetic model in terms of a pure Markov jump
process.

9.5.2 Diffusion Approximation

As motivated before, a desirable representation of the above model dynamics is by means
of a diffusion approximation. An according process shall be specified in this section.

To that end, devide the numbers U free, Ubound,i
bl∗ and Ubound,i

unbl∗ by NU to obtain the frac-
tions ufree, ubound,ibl∗ and ubound,iunbl∗ for all i. These fractions sum up to one. The observed
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variable in the FRAP experiment is the mean grey value in the bleached compartment,
that is

q∗ = ufree + 1
f ∗bl

M∑
i=1

ubound,ibl∗ . (9.16)

This variable should be one of the components of the diffusion process. The proceeding is
therefore as follows: First, one derives a diffusion approximation for the (2M+1)-dimensional
state variable

u =
(
ufree, ubound,1bl∗ , . . . , ubound,Mbl∗ , ubound,1unbl∗ , . . . , ubound,Munbl∗

)′
with state space

CM =
u ∈ [0, 1]2M+1

∣∣∣∣∣∣ufree +
M∑
i=1

(
ubound,ibl∗ + ubound,iunbl∗

)
= 1

 . (9.17)

The resulting diffusion process is then transformed to a process with 2M -dimensional state
variable (

q∗, ufree, ubound,1bl∗ , . . . , ubound,M−1
bl∗ , ubound,1unbl∗ , . . . , ubound,M−1

unbl∗

)′
(9.18)

with an appropriate state space resulting from (9.16) and (9.17). Due to space restrictions,
intermediate steps have been moved to Section D.1.2 in the appendix. The resulting drift
vector and diffusion matrix for (9.18) are


µq

µf

µb

µu

 and 1
NU


Σqq Σqf Σqb Σqu

Σfq Σff Σfb Σfu

Σbq Σbf Σbb Σbu

Σuq Σuf Σub Σuu

 .

The components of the drift vector are

µq ∈ R with µq = koff,M
(
1− q∗

)
+

M−1∑
i=1

(
koff,i − koff,M

)(
ubound,i − ubound,ibl∗

f ∗bl

)

µf ∈ R with µf =−
((

M∑
i=1

kon,i

)
+ koff,M

)
ufree+ koff,M+

M−1∑
i=1

(
koff,i−koff,M

)
ubound,i

µb=(µbi ) ∈ RM−1 with µbi = kon,if
∗
blu

free − koff,iubound,ibl∗

µu=(µui ) ∈ RM−1 with µui = kon,i(1− f ∗bl)ufree − koff,iu
bound,i
unbl∗ ,

where i = 1, . . . ,M − 1 and ubound,i = ubound,ibl∗ + ubound,iunbl∗ . The main diagonal components of
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the diffusion matrix are

Σqq ∈ R with Σqq = koff,M

(
1
f ∗bl
− 2

)
q∗ + koff,M +

(
1
f ∗bl
− 1

)((
M∑
i=1

kon,i

)
−koff,M

)
ufree

+
M−1∑
i=1

(
koff,i−koff,M

)ubound,iunbl∗ +
(

1
f ∗bl
−1

)2

ubound,ibl∗



Σff ∈ R with Σff =
((

M∑
i=1

kon,i

)
− koff,M

)
ufree + koff,M +

M−1∑
i=1

(
koff,i − koff,M

)
ubound,i

Σbb = (Σbb
ij ) ∈ R(M−1)×(M−1) with Σbb

ii = kon,if
∗
blu

free + koff,iu
bound,i
bl∗

and Σbb
ij = 0 for i 6= j

Σuu = (Σuu
ij ) ∈ R(M−1)×(M−1) with Σuu

ii = kon,i(1−f ∗bl)ufree + koff,iu
bound,i
unbl∗

and Σuu
ij = 0 for i 6= j,

where i, j = 1, . . . ,M − 1. The remaining components of the diffusion matrix are

Σqf = Σfq ∈ R with Σqf= koff,M
(
1− q∗

)
+
M−1∑
i=1

(
koff,i − koff,M

)(
ubound,iunbl∗ +

(
1
f ∗bl
−1

)
ubound,ibl∗

)

Σqb = (Σbq)′ ∈ RM−1 with Σbq
i =

(
1
f ∗bl
− 1

)(
kon,if

∗
blu

free + koff,iu
bound,i
bl∗

)
Σqu = (Σuq)′ ∈ RM−1 with Σuq

i = −kon,i
(
1− f ∗bl

)
ufree − koff,iubound,iunbl∗

Σfb = (Σbf)′ ∈ RM−1 with Σbf
i = −Σbb

ii

Σfu = (Σuf)′ ∈ RM−1 with Σuf
i = −Σuu

ii

Σbu = (Σub)′ ∈ R(M−1)×(M−1) with Σub = 0.

For M = 1, these formulas simplify to those derived in Section 9.4.2.

9.5.3 Deterministic Approximation

The drift function of the above diffusion approximation represents a deterministic description
of the model dynamics involving M mobility classes. One obtains a set of 2M ODEs which
are linear in each component, but other than in the case of one mobility class, these functions
are not mutually independent when M ≥ 2.

Nevertheless, some simple modifications allow exact simulation of the fluorescence intensity:
In a deterministic setting, one can assume that the fractions of unbleached type i-bound



9.5 Extension of the General Model to Multiple Mobility Classes 301

molecules are constant such that ubound,i = fi(1−ufree) for appropriate constants f1, . . . , fM
with f1 + . . .+ fM = 1.

Plugging this in into the ODE for ufree, the function ufree(t) becomes independent of
the remaining components of the state variable. For given fi, i ∈ {1, . . . ,M}, and an
appropriate initial condition, a realisation of ufree can then be obtained by calculating

ufree(t) =
(
ufree0 − B

A

)
exp(−A(t− t0)) + B

A
,

where

A = koff,M +
M−1∑
i=1

fi
(
koff,i − koff,M

)
+

M∑
i=1

kon,i

B = koff,M +
M−1∑
i=1

fi
(
koff,i − koff,M

)
.

Once more, assume that ufree(t) = ufree0 = B/A for all t ≥ t0. Then the ODE for ubound,ibl∗ is
explicitly solved by

ubound,ibl∗ (t) =
(
ubound,ibl∗,0 − kon,i

koff,i
f ∗blu

free
0

)
exp

(
−koff,i(t− t0)

)
+ kon,i
koff,i

f ∗blu
free
0 ,

where ubound,ibl∗,0 denote suitable starting values. This equation ist also true for i = M . Finally,
with (9.16), one obtains

q∗(t) =
(

1 +
M∑
i=1

kon,i
koff,i

)
ufree0 +

M∑
i=1

ubound,ibl∗,0

f ∗bl
− kon,i
koff,i

ufree0

 exp
(
−koff,i(t− t0)

)
.

This curve can be fitted to the observed data. For M = 1, it reduces to (9.15). Note
that the above formulas dispose of the state variables ubound,iunbl∗ but introduce the additional
parameters fi, i ∈ {1, . . . ,M}. Algorithm D.1 on page 378 in the appendix demonstrates
how q∗(t) can be calculated when only kon,1, koff,1, . . . , koff,M , ubound,1bl∗,0 , f1, . . . , fM−1 and the
initial value q∗0 are known.

An alternative, though computationally more costly, proceeding to the just described exact
simulation of q∗ is of course to solve the set of 2M ODEs numerically.

9.5.4 Simulation Study

Another simulation study is carried out in this section in order to evaluate the Bayesian
and least squares estimation procedures on the kinetic model with multiple mobility
classes. To that end, another four synthetic datasets are generated by the diffusion model
with M ∈ {1, . . . , 4} mobility classes. The sample paths of q∗ are displayed in Figure 9.14.
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Figure 9.14: Synthetic datasets used in the simulation study in this section. Sim-
ulations have been obtained by application of the Euler scheme from Section 3.3.2
with time step 0.025 to the diffusion model with M ∈ {1, . . . , 4} mobility classes.
This figure displays the sample paths for the fluorescence intensity q∗. The model
parameters and initial values at time t0 = 0.15 are (kon, koff)′ = (3.8, 0.2)′ and
(q∗0, ufree0 )′ = (0.1, 0.05)′ for M = 1 mobility class, (kon,1, kon,2, koff,1, koff,2)′ = (2.5, 1.3, 0.25, 0.15)′

and (q∗0, ufree0 , ubound,1bl∗,0 , ubound,1unbl∗,0 )′ = (0.1, 0.05, 0.01, 0.45)′ for the model with M = 2
mobility classes, (kon,1, kon,2, kon,3, koff,1, koff,2, koff,3)′ = (3, 2.5, 1.3, 0.5, 0.4, 0.2)′ and
(q∗0, ufree0 , ubound,1bl∗,0 , ubound,2bl∗,0 , ubound,1unbl∗,0 , u

bound,2
unbl∗,0 )′ = (0.1, 0.05, 0.005, 0.005, 0.2, 0.45)′ for M = 3,

and (kon,1, kon,2, kon,3, kon,4, koff,1, koff,2, koff,3, koff,4)′ = (1.9, 1.0, 1.8, 0.2, 0.5, 0.2, 0.1, 0.01)′

and (q∗0, ufree0 , ubound,1bl∗,0 , ubound,2bl∗,0 , ubound,3bl∗,0 , ubound,1unbl∗,0 , u
bound,2
unbl∗,0 , u

bound,3
unbl∗,0 )′ set equal to

(0.1, 0.05, 0.004, 0.004, 0.004, 0.3, 0.2, 0.4)′ for M = 4. Observations are assumed to be
available at equidistant time steps of length 0.15 such that there are 600 observations on the time
interval [0.15, 90]. The fraction of the bleached area equals fbl = 0.4, the intermediate fraction is
set to fint = 0, and the number of molecules is N = 10,000.

Details about the simulation, initial values and true parameter values are given in the
caption of this figure.

In order to ensure identifiability of the distinct mobility classes, the additional restriction
koff,1 > koff,2 > . . . > koff,M is introduced to the model. It is assumed that the values
of koff,1, . . . , koff,M are mutually different because otherwise the model might be reduced to
one with fewer mobility classes.

Bayesian Estimation

Like in the previous simulation studies, the innovation scheme from Section 7.4.4 is
applied to the synthetic datasets in order to estimate the parameters kon,1, . . . , kon,M
and koff,1, . . . , koff,M . A priori, kon,i and koff,i are gamma distributed with expected val-
ues E(kon,i) = 2 for all i and E(koff,i) as specified in Table 9.3. The prior variances are
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para- prior expectation
meter M = 1 M = 2 M = 3 M = 4
koff,1 0.2 0.3 0.3 0.30
koff,2 — 0.1 0.3 0.20
koff,3 — — 0.1 0.10
koff,4 — — — 0.05

Table 9.3: Prior expectations for koff,1, . . . , koff,M in the model with M mobility classes assumed
for the Bayesian inference as described in the main text.

chosen to be one tenth of the respective prior expectation. The koff,i are furthermore subject
to the above restriction concerning their order.

The MCMC algorithm draws new proposals k∗on,i and k∗off,i according to

log k∗on,i ∼ N
(
log kon,i, 0.0009

)
for i = 1, . . . ,M

log k∗off,1 ∼ N
(
log koff,1, 0.0009

)
logit

(
k∗off,i

)
∼ N

(
logit

(
min{koff,i, k∗off,i−1}

)
, 0.0009

)
for i = 2, . . . ,M,

where kon,i and koff,i represent the current values. The logit function has been defined in
Equation (7.19) on page 160. It is chosen here with boundaries u = 0 and v = k∗off,i−1 such
that the proposed k∗off,i values automatically fulfil the assumption on their order.

For all estimations carried out in this section, the innovation scheme imputes data such that
there are m = 5 subintervals in between every two observations, and it simulates Markov
chains of length 105. Due to space restrictions, the resulting trace plots, empirical posterior
densities and autocorrelation plots are not shown here. Posterior means and 95%-hpd
intervals are presented in Tables 9.4 and 9.5: Table 9.4 shows the results for the case where
every model, i. e. each of the models with M ∈ {1, . . . , 4} classes, is applied to the dataset
which has been generated by this model. Here, all components of the diffusion process
are considered observed at the specified time points. The figures in Table 9.5, on the
other hand, result from estimations where only the fluorescence intensity was considered
observed and all other components were latent. It is hence possible here to apply each
model to each dataset. Information on the end point of ufree was provided similarly to
the proceeding in the simulation study in Section 9.3.4. The logarithm of the marginal
likelihood, log π

(
Y obs|MM

)
, in Table 9.5 is required for Bayesian model selection and

explained in Equation (9.19) on page 309.

It turns out that satisfyingly precise estimation of the model parameters is possible forM = 1
and M = 2 when all components of the diffusion process are observed at discrete time
points. For M = 3, estimates are more biased, and for M = 4, inference proves to be
problematic. For that reason, the model and dataset with four mobility classes are omitted
in the more challenging framework of Table 9.5. In that table, estimation of the model
parameters in the correct datasets are still satisfactory although less information is provided
than for the estimates in Table 9.4. Interestingly, the posterior mean of kon,1 in the model
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model parameter true value estimates

M = 1
kon,1 3.80 3.91 (3.72, 4.11)
koff,1 0.20 0.21 (0.20, 0.22)

M = 2

kon,1 2.50 2.54 (2.40, 2.67)
kon,2 1.30 1.32 (1.26, 1.37)
koff,1 0.25 0.26 (0.24, 0.27)
koff,2 0.15 0.15 (0.15, 0.16)

M = 3

kon,1 3.00 2.81 (2.64, 2.98)
kon,2 2.50 2.41 (2.28, 2.55)
kon,3 1.30 1.52 (1.46, 1.58)
koff,1 0.50 0.47 (0.44, 0.50)
koff,2 0.40 0.38 (0.36, 0.41)
koff,3 0.20 0.23 (0.22, 0.24)

M = 4

kon,1 1.90 1.77 (1.72, 1.83)
kon,2 1.00 1.48 (1.42, 1.56)
kon,3 1.80 4.75 (4.60, 4.86)
kon,4 0.20 2.49 (2.43, 2.57)
koff,1 0.50 0.45 (0.44, 0.47)
koff,2 0.20 0.29 (0.27, 0.30)
koff,3 0.10 0.27 (0.26, 0.27)
koff,4 0.01 0.27 (0.26, 0.27)

Table 9.4: Results of the Bayesian estimation procedure as described in the main text. More
specifically, the parameters of the kinetic model withM ∈ {1, . . . , 4} mobility classes are estimated
by application of the innovation scheme to the dataset which has been generated with the same
number of classes. All components of the diffusion process are considered observed. The MCMC
algorithm simulates Markov chains of length 105. The rightmost column displays the posterior
means and 95%-hpd intervals of the parameters after a 10% burn-in phase.

with M = 1 mobility class approximately equals the sum of the true kon,i values for all
datasets. Moreover, the mean of all koff,i point estimates approximates the mean of all
true koff,i values, no matter which model is applied to which dataset. When applying the
model with M = 3 classes to the datasets with M = 1 and M = 2 classes, one obtains
adjoining or even overlapping hpd intervals for kon,1 and kon,2 and for koff,1 and koff,2. This
suggests that both datasets do not require the model with three classes. Different model
choice criteria are also considered later in this section.
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model parameter dataset
M = 1 M = 2 M = 3

true
values

kon,1 3.800 2.500 3.000
kon,2 — 1.300 2.500
kon,3 — — 1.300
koff,1 0.200 0.250 0.500
koff,2 — 0.150 0.400
koff,3 — — 0.200

M = 1

kon,1
4.00 3.86 6.72

(3.60, 4.43) (3.34, 4.36) (5.99, 7.59)

koff,1
0.20 0.20 0.35

(0.19, 0.21) (0.19, 0.21) (0.33, 0.37)
log π(Y obs|M1) 14847.22 14835.48 14026.66

M = 2

kon,1
2.29 2.52 3.63

(2.03, 2.50) (2.22, 2.87) (3.30, 4.04)

kon,2
1.93 1.65 1.84

(1.74, 2.11) (1.47, 1.81) (1.66, 2.00)

koff,1
0.23 0.26 0.43

(0.21, 0.24) (0.23, 0.29) (0.39, 0.46)

koff,2
0.17 0.15 0.23

(0.15, 0.18) (0.13, 0.16) (0.21, 0.25)
log π(Y obs|M2) 14841.64 14780.84 13994.29

M = 3

kon,1
2.24 2.29 2.80

(1.92, 2.53) (2.03, 2.54) (2.38, 3.35)

kon,2
1.87 1.92 2.30

(1.63, 2.01) (1.78, 2.05) (2.04, 2.51)

kon,3
1.36 1.42 1.98

(1.23, 1.51) (1.27, 1.55) (1.78, 2.18)

koff,1
0.28 0.27 0.43

(0.25, 0.32) (0.23, 0.31) (0.36, 0.54)

koff,2
0.24 0.23 0.35

(0.22, 0.25) (0.21, 0.25) (0.32, 0.38)

koff,3
0.13 0.13 0.23

(0.12, 0.15) (0.12, 0.14) (0.21, 0.25)
log π(Y obs|M3) 14719.6 14738.16 14035.09

Table 9.5: Results of the Bayesian estimation procedure as in Table 9.4, but this time with
only the fluorescence intensity considered observed and all other components of the diffusion
process regarded to be latent. It is hence possible here to apply each model to each dataset. The
MCMC algorithm simulates Markov chains of length 105. This table displays the posterior means
and 95%-hpd intervals for each parameter after a 10% burn-in phase. It furthermore shows the
logarithm of the marginal likelihood, log π

(
Y obs|MM

)
. This quantity is required for Bayesian

model selection and explained in Equation (9.19) on page 309.
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Least Squares Estimation

The parameters of the model with multiple mobility classes are now also approximated by
least squares estimation. As for the general kinetic model on pages 288 ff., the Nelder-Mead
algorithm is applied in order to find a combination of parameter values which minimises
the mean sum of squared residuals (mSSR) in Equation (9.10). For the model with M
mobility classes, the parameters are kon,1, . . . , kon,M and koff,1, . . . , koff,M . Algorithm D.1
on page 378 in the appendix demonstrates how q∗ can be calculated from knowledge
of kon,1, koff,1, . . . , koff,M , ubound,1bl∗,0 and f1, . . . , fM−1. That means that there are 2M + 1 free
parameters. Additionally, the initial value q∗0 of the recovery curve may either be kept fixed
or estimated as well.

As distinguished from the case of one mobility class, the output of the Nelder-Mead method
depends on the initial guesses of all unknown variables when M ≥ 2. Hence, several
thousand initial guesses are randomly drawn and passed to the Nelder-Mead algorithm.
Then, from the resulting return values, that estimate is chosen which produces the minimum
mSSR.

Table 9.6 displays such estimation results, where the model with M ∈ {1, . . . , 4} mobility
classes is applied to each of the datasets generated forM ∈ {1, . . . , 4} classes, and the initial
value q∗0 = 0.1 is kept fixed. Table 9.7 contains according estimates when q∗0 is determined
by the Nelder-Mead procedure. Combinations of parameter values which produce similarly
small values of mSSR as the optimal estimate show that there is relatively small variation
in the koff,i values but large variability in the kon,i values. Hence, Tables 9.6 and 9.7 do not
list approximations of kon,i. Figure D.2 on page 380 in the appendix presents the fittings of
the deterministic curves to the observed data according to the estimates in Table 9.6.

Two issues becomes apparent when considering the results in Tables 9.6 and 9.7: The first
is that, for any dataset, a model with M ′ mobility classes should theoretically produce a
smaller mSSR than a model with M < M ′ classes because the former is a generalisation
of the latter. For the same reason, the model with q∗0 being a free variable should yield
a smaller mSSR than the same model with fixed q∗0 when applied to the same dataset.
However, this is not always the case in Tables 9.6 and 9.7, especially not for the model with
four mobility classes. This indicates that the optimal estimates have not always been found
for the models with larger numbers of mobility classes.

The second issue is that some parameter estimates contain almost identical koff,i values, see
for instance the estimate (k̂off,1, . . . , k̂off,4)′ = (0.5878, 0.4834, 0.4832, 0.1615)′ in Table 9.6
for the model with four mobility classes applied to the dataset with three classes. In this
example, one may ask whether the parameters koff,2 and koff,3 should be summarised as one
parameter, yielding the (true) model with three mobility classes. An obvious approach
to answer this question is to investigate whether the confidence intervals of the estimates
of the single components overlap. However, in the considered context, the mSSR is an
extremely irregular function of the unknown variables such that a first investigation by
means of the inverse Fisher information evaluated at the parameter estimates does not
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model para- dataset
meter M = 1 M = 2 M = 3 M = 4

true
values

koff,1 0.200 0.250 0.500 0.500
koff,2 — 0.150 0.400 0.200
koff,3 — — 0.200 0.100
koff,4 — — — 0.010

M = 1 koff,1 0.198 0.200 0.338 0.179
mSSR 1.05 · 10−4 2.26 · 10−4 4.01 · 10−4 3.17 · 10−3

M = 2
koff,1 0.286 0.244 0.521 0.343
koff,2 0.158 0.108 0.169 6.71 · 10−5

mSSR 9.33 · 10−5 1.71 · 10−4 3.02 · 10−4 7.08 · 10−4

M = 3

koff,1 0.795 0.245 0.523 0.312
koff,2 0.334 0.238 0.521 0.266
koff,3 0.162 0.098 0.169 0.002
mSSR 9.23 · 10−5 1.70 · 10−4 3.02 · 10−4 6.60 · 10−4

M = 4

koff,1 0.297 0.262 0.5878 0.622
koff,2 0.288 0.246 0.4834 0.271
koff,3 0.176 0.239 0.4832 0.260
koff,4 0.156 0.117 0.1615 0.024
mSSR 9.33 · 10−5 1.71 · 10−4 3.03 · 10−4 1.07 · 10−3

Table 9.6: Estimation results determined by least squares estimation applied to the deterministic
model from Section 9.5.3 in combination with the synthetic data from Figure 9.14. This table
displays estimates for koff,1, . . . , koff,M and the corresponding mean sum of squared residuals (mSSR)
as introduced in Equation (9.10) on page 289. For the models with M ≥ 2 mobility classes, the
output of the Nelder-Mead algorithm depends on the initial guesses for the unknown variables.
Hence, several thousand initial guesses are randomly drawn and passed to the optimisation
procedure. From the resulting return values, that estimate is chosen which produces the minimum
mSSR. The results in this table have been obtained for q∗0 = 0.1 kept fixed. Table 9.7 contains
estimates where q∗0 is a free parameter.

come to a practical conclusion. This issue is hence left for future work. Model choice is
carried out as described in the following.

Model Choice

So far, parameter estimates and resulting fits of the model to the data have been considered
for different numbers of mobility classes. Better agreement between observed and predicted
values is achieved when using models with larger numbers of mobility classes (unless an
appropriate estimate has not been found, as it is obviously the case for some of the least
squares estimates, see the above comments). This is because the models are nested, i. e.
the model with M mobility classes is a special case of any model with M ′ > M mobility
classes. Furthermore, an additional approximation of the initial value q∗0 yields improved fits
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model para- dataset
meter M = 1 M = 2 M = 3 M = 4

true
values

q∗0 0.100 0.100 0.100 0.100
koff,1 0.200 0.250 0.500 0.500
koff,2 — 0.150 0.400 0.200
koff,3 — — 0.200 0.100
koff,4 — — — 0.010

M = 1
q∗0 0.111 0.114 0.153 0.233
koff,1 0.195 0.197 0.316 0.147
mSSR 1.03 · 10−4 2.23 · 10−4 3.77 · 10−4 2.91 · 10−3

M = 2

q∗0 0.092 0.085 0.094 0.261
koff,1 0.312 0.262 0.534 0.256
koff,2 0.161 0.117 0.170 0.006
mSSR 9.28 · 10−5 1.69 · 10−4 3.02 · 10−4 1.04 · 10−3

M = 3

q∗0 0.092 0.083 0.094 0.193
koff,1 0.314 0.272 0.576 0.407
koff,2 0.164 0.241 0.504 0.194
koff,3 0.160 0.106 0.166 3.17 · 10−4

mSSR 9.31 · 10−5 1.68 · 10−4 3.02 · 10−4 6.92 · 10−4

M = 4

q∗0 0.099 0.085 0.093 0.179
koff,1 0.906 0.279 0.605 0.632
koff,2 0.312 0.255 0.573 0.276
koff,3 0.197 0.218 0.506 0.212
koff,4 0.134 0.101 0.180 0.019
mSSR 9.27 · 10−5 1.69 · 10−4 3.02 · 10−4 1.02 · 10−3

Table 9.7: Estimation results as in Table 9.6 but with q∗0 being a free parameter.

because once again this setting is a generalisation of the model with a fixed starting value.
However, the introduction of extra mobility classes or other variables involves an increase
of model complexity. Parameter estimation becomes computationally more demanding in
that case.

In what follows, well-established resources to balance between the accuracy of the fit and the
complexity of the model are applied to the estimation results. In particular, Bayes factors
(Jeffreys, 1961) are utilised for selection of an appropriate diffusion model, and Akaike’s
information criterion (AIC) (Akaike, 1973) and the Bayesian information criterion (BIC)
(Schwarz, 1978) are employed for choosing a deterministic model.

Bayes Factors

LetMk andMl denote two models which come into question to have generated a set Y obs

of observations. The Bayes factor in favour of Mk is defined as the ratio of marginal



9.5 Extension of the General Model to Multiple Mobility Classes 309

likelihoods

Bkl =
π
(
Y obs

∣∣∣Mk

)
π
(
Y obs

∣∣∣Ml

) ,
that is the posterior odds π(Mk|Y obs)/π(Ml|Y obs) in case of identical a priori beliefs
p(Mk) = p(Ml). This ratio reflects the evidence in the data in favour of the modelMk as
opposed toMl. An indication forMk is given when Bkl > 1. See, for example, Kass and
Raftery (1995) for detailed interpretation schemes for the value of Bkl.

Unfortunately, the marginal likelihood π(Y obs|M) of the observed data Y obs given an
underlying modelM is not always available. Hence, Chib (1995) investigates its approxima-
tion from MCMC output, also in the presence of imputed data. The following considerations
adopt these ideas; a similar approach has also been chosen by Elerian et al. (2001).

Let θ denote the vector of parameters in the modelM. One has

π
(
Y obs

∣∣∣M)
=
π
(
Y obs

∣∣∣θ,M)
π
(
θ
∣∣∣M)

π
(
θ
∣∣∣Y obs,M

) , (9.19)

which holds for all values of θ (Chib, 1995). This ratio is best approximated at a high
density value of θ. Hence, choose an appropriate value θ∗ such as the mode from the
empirical posterior density of θ and evaluate the right hand side of (9.19) at θ∗. To that
end, π(θ∗|Y obs,M) can be obtained through kernel density estimation from the MCMC
output. The prior density π(θ∗|M) has been chosen by the experimenter in the MCMC
procedure. Eventually, the likelihood can be approximated as

π
(
Y obs

∣∣∣θ∗,M)
≈ 1
K

K∑
k=1

π
(
Y obs,Y imp(k)

∣∣∣θ∗,M)
(9.20)

for some large K ∈ N, where Y imp(1), . . . ,Y imp(K) is imputed data from the MCMC
procedure. On the right hand side of this equation, the time grid of observed and imputed
data is dense enough such that an Euler approximation of the true density is appropriate.

In the application in this chapter, different models refer to different numbers of mobility
classes and hence to different dimensions of the diffusion process. Independently of the
model, the only observed component of the process is the fluorescence intensity, i. e. the
number of latent components and hence the amount of auxiliary data increases with each
additional mobility class. In order to consider comparable quantities of imputed data
on the right hand side of Equation (9.20), the marginal likelihood π(q∗obs, q∗imp(k)|θ∗,M)
of the observed and imputed values for q∗ is employed in the calculations below instead
of π(Y obs,Y imp(k)

∣∣∣θ∗,M). This is straightforward as the latter is a Gaussian density.

Polson and Roberts (1994) point out that, in case of two diffusion modelsMk andMl with
different diffusion matrices, the Bayes factor Bkl degenerates when an infinite amount of
data is imputed. This difficulty has the same source as the convergence problems described
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in Section 7.3. In the context of the relatively small amounts of imputed data in this
chapter, however, this issue seems to be of no practical concern.

Table 9.5 on page 305 contains approximations of log π(Y obs|MM) for M ∈ {1, 2, 3},
whereMM denotes the model with M mobility classes. These approximations are based
on the parameter estimates from that table and the imputed data which was simulated in
the course of the according estimation procedures.

Consider the logarithm of the Bayes factor, logBkl = log π(Y obs|Mk) − log π(Y obs|Ml)
in favour of the model with k classes. For the dataset generated by the model with one
mobility class, one has logB12 = 5.58, logB13 = 127.62 and logB23 = 122.04. That means
that for this dataset the Bayes factor correctly favours the model with one mobility class.
According to Kass and Raftery (1995), these values show very strong evidence in favour
ofM1 againstM2 andM3, and also very strong evidence in favour ofM2 againstM3. For
the dataset generated by the model with two mobility classes, however, the Bayes factors
show the same ranking of models, i. e. the true model is not chosen here. For the data
simulated with three classes, the favoured model is again the true model, i. e. the model
with M = 3.

AIC and BIC

Let q∗ρ̂(t) denote the fluorescence intensity in the bleached region at time t as predicted
by the deterministic model with parameter ρ̂, and let x(t) denote the value at time
t ∈ {t0, . . . , tn} that has actually been observed. The vector ρ does not only contain the
original model parameters kon,1, . . . , kon,M and koff,1, . . . , koff,M but also all other unknowns
ubound,1bl∗,0 , . . . , ubound,M−1

bl∗,0 , f1, . . . , fM−1 and possibly q∗0. Assume that x(t) = q∗ρ̂(t) + ε(t) for
mutually independent ε(t) ∼ N (0, σ2) with unknown variance σ2 > 0. Then, omitting
additive constants, the AIC and BIC read

AIC = (n+1) log
(

1
n+1

n∑
i=0

(
q∗ρ̂(ti)− x(ti)

)2
)

+ 2 dim(ρ) (9.21)

and

BIC = (n+1) log
(

1
n+1

n∑
i=0

(
q∗ρ̂(ti)− x(ti)

)2
)

+ log(n+1) dim(ρ) (9.22)

(e. g. Fahrmeir et al., 2009). These indices evaluate the accuracy of the fit (measured by
a small first summand) against the complexity of the model (measured by a large second
summand). The latter is more pronounced in the BIC. At the end, one chooses the model
with smallest AIC or BIC.

Tables 9.8 and 9.9 list the AIC and BIC for the estimation results from Tables 9.6 and 9.7,
where n+ 1 = 600. The comparison is of course redundant for those cases where no better
agreement is found for a more complex model than for a simpler model. The minimum
AIC or BIC in each column is printed in bold, showing that for all datasets the AIC and



9.5 Extension of the General Model to Multiple Mobility Classes 311

dataset
model dim(ρ) M = 1 M = 2 M = 3 M = 4

M = 1 q∗0 fixed 1 -5495 -5035 -4691 -3450
q∗0 free 2 -5504 -5041 -4726 -3500

M = 2 q∗0 fixed 6 -5558 -5192 -4851 -4340
q∗0 free 7 -5556 -5197 -4849 -4107

M = 3 q∗0 fixed 10 -5556 -5188 -4843 -4374
q∗0 free 11 -5548 -5193 -4841 -4344

M = 4 q∗0 fixed 14 -5542 -5176 -4833 -4077
q∗0 free 15 -5540 -5181 -4833 -4102

Table 9.8: AIC as defined in Equation (9.21) for the estimation results from Tables 9.6 and 9.7.
The minimum AIC in each column is printed in bold, marking the model that is chosen by the AIC.

dataset
model dim(ρ) M = 1 M = 2 M = 3 M = 4

M = 1 q∗0 fixed 1 -5491 -5031 -4687 -3446
q∗0 free 2 -5496 -5032 -4717 -3491

M = 2 q∗0 fixed 6 -5531 -5166 -4825 -4313
q∗0 free 7 -5525 -5167 -4818 -4076

M = 3 q∗0 fixed 10 -5512 -5144 -4799 -4330
q∗0 free 11 -5499 -5145 -4793 -4295

M = 4 q∗0 fixed 14 -5480 -5115 -4772 -4016
q∗0 free 15 -5474 -5115 -4767 -4036

Table 9.9: BIC as defined in Equation (9.22) for the estimation results from Tables 9.6 and 9.7.
The minimum BIC in each column is printed in bold, marking the model that is chosen by the BIC.

BIC consistently select the same model, but not necessarily the one that was used for the
generation of the respective dataset. It should, however, be emphasised that the model
choice is sophisticated by the fact that optimal estimates for the model with four mobility
classes have obviously not been identified.

Conclusion

To summarise, this simulation study showed that estimation of kinetic parameters in a
FRAP experiment is possible even when a complex model with multiple mobility classes
is assumed. Bayesian estimates proved to be much more promising than least squares
estimates. In particular, it was not possible to determine reliable approximations of the kon,i
values by least squares estimation. Moreover, the MCMC procedure applied in this section
provided appropriate confidence intervals for all parameters. This was not feasible for the
least squares estimates by standard procedures due to the extremely wiggly character of the
target function. When combining a model and a dataset which involve different numbers of
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mobility classes, the average of the estimated posterior means still correctly approximated
the average of the true values of the koff,i.

Model choice was carried out by application of Bayes factors, the BIC and the AIC. These
rules did not always select the correct model, indicating that differences between models with
different numbers of mobility classes are not substantial as long as reasonable parameters
are chosen. As another criterion, one should investigate whether there are similar estimates
for different kon,i or koff,i parameters and one could hence reduce the model by one class.
In case of Bayesian estimation, overlapping confidence intervals were obtained where the
model involved more classes than the dataset.

Overall, the kinetic model and estimation techniques are qualified for the statistical analysis
of experimental FRAP data in Section 9.7. Before starting such investigation, the following
section explains the preprocessing of the measurements.

9.6 Data Preparation

The previously described kinetic models start from the assumption of an idealised data
situation in a sense that is particularised in what follows. In practice, this presumption is
typically not met. Therefore, the raw measurements are to be normalised in an appropriate
way before parameter estimation techniques are applied to the data.

This section explains three different normalisation procedures: single normalisation and
double normalisation as described by Phair, Gorski, and Misteli (2004), and triple normalisa-
tion as developed in Schneider, Dargatz et al. (2010). The single and double normalisations
are specialisations of the triple normalisation; hence, we start with the presentation of
the latter in Section 9.6.1 and then proceed with the double and single normalisations
in Sections 9.6.2 and 9.6.3, respectively. Comparisons between the three approaches are
drawn in the course of this section. In the application in Section 9.7, all datasets are triple
normalised. The impact of the triple normalisation on statistical inference as opposed to
double normalisation is briefly evaluated in Section 9.7.3.

Throughout this section, let ITt , IBt , IUt and Ibgt denote the intensities measured at time t in
the total nucleus, in the bleached section, in the unbleached section and in a background
area. See Figure 9.15(a) for an illustration. Define t = 0 as the instant when the nucleus
is exposed to the bleaching pulse. Consequently, negative values of t represent the time
before bleaching, and positive values of t stand for the time after bleaching. In the idealised
mathematical description, the bleaching by laser exposure is considered to be completed
within a time interval of length zero. In practice, bleaching lasts for a short but positive
time span, but this difference does not restrict the validity of the model. Figure 9.15(b)
displays a dataset of unnormalised intensities measured in the four considered regions.
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Figure 9.15: (a) (modified from Schneider, 2009) Illustration of the total, bleached, unbleached
and background regions where the intensities ITt , IBt , IUt and Ibgt are measured, respectively.
(b) Dataset of unnormalised intensities in these four regions.

9.6.1 Triple Normalisation

Briefly summarised, the triple normalisation procedure consists of five steps which correct
for

(T.i) the background intensity,

(T.ii) the gain or loss of fluorescence due to natural processes and bleaching by acquisition,

(T.iii) the fact that not all proteins in the bleached section are bleached by the laser pulse,

(T.iv) the heterogeneity of structure and binding site distribution within the nucleus,

(T.v) the loss of fluorescence due to bleaching.

The above corrections are subsequently performed in the given order. They are motivated
and specified in what follows. To that end, it suffices to consider the normalisation of the
intensities in the total area and in the bleached section. The intensities in the unbleached
section are normalised analogously to those in the bleached section, but for the sake of
brevity, this is not shown here.

(T.i) Even in the absence of fluorescent proteins, the cell would not have zero intensity.
This is due to read out noise of the camera and autofluorescence of the sample.
The model, however, assumes that the mean gray value is zero when there are no
fluorescent proteins in a considered region. Hence, subtract the background value
from the measured intensities for all t:

IB
′

t = IBt − I
bg
t and IT

′

t = ITt − I
bg
t .

Here and in the following, each dash denotes one normalisation step that has been
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applied to the original variable. Figure 9.16(a) displays a background-subtracted
dataset together with the original raw data.

(T.ii) While time elapses, there is variability in the total fluorescence due to flux of
fluorescent particles into or out of the analysed cellular compartment and because of
bleaching by acquisition. The model, in contrast, assumes a constant total amount
of fluorescence apart from the loss due to the bleaching pulse at time zero. Therefore,
all intensities are multiplied with an appropriate factor such that for t < 0 the
total fluorescence equals some prebleach reference value IT′pre, and for t > 0 the total
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(d) before/after step (T.v)

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

time

in
te

ns
iti

es

total area before step (T.v)
total area after step (T.v)
bleached section before step (T.v)
bleached section after step (T.v)

Figure 9.16: Illustration of triple normalisation: (a) Intensities in the total area and bleached
section before and after application of normalisation step (T.i). (b) Intensities before and after
application of step (T.ii). (c) Intensities before and after application of step (T.iii). Furthermore,
replacing the vertical axis on the left by the vertical axis on the right approximately corresponds
to step (T.iv). (d) Intensities before and after application of step (T.v).
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fluorescence equals a postbleach reference value IT′post:

IB
′′

t =


IB
′

t ·
IT
′

pre

IT
′

t

for t < 0

IB
′

t ·
IT
′

post

IT
′

t

for t > 0
and IT

′′

t =


IT
′

pre for t < 0

IT
′

post for t > 0.

Figure 9.16(b) illustrates the effect of this normalisation step.

The prebleach and postbleach reference values IT′pre and IT
′

post have to be chosen with
care: During prebleach acquisition, an initial drop of intensity is typically observed
until a steady state is reached. This pattern is due to the transition of a small
fraction of GFP molecules to a non-fluorescent state (triplet state, Garcia-Parajo et
al., 2000) and visible in Figure 9.16(a). Hence, the initial data points are discarded.
To account for noise dependent intensity fluctuations, the prebleach reference value
is then chosen as the mean of the last few prebleach values. In the application in
this chapter, IT′pre is defined as the mean of the last five background-subtracted total
intensities IT′t before bleaching.

Directly after bleaching, one usually observes a short increase of the total intensity;
compare with Figure 9.16(a). This phenomenon is due to a small fraction of
molecules that have been reversibly bleached by the laser rather than irreversibly.
Hence, the postbleach reference value should be chosen around the maximum
intensity within a short period after bleaching. In this chapter, IT′post is set equal
to the mean of the background-subtracted total intensities in the 10th to 20th
postbleach images.

Remark. Yet another modification is as follows: The just described initial increase
of the total intensity is caused by reversibly bleached molecules that continue to
fluoresce after a short interruption caused by the bleaching pulse. Directly after
bleaching, these molecules are all located in the bleached section of the nucleus.
Hence, the intensity curve for this section should be corrected more extensively than
the total intensity curve. This holds for the time interval starting at the time τ0+ of
the first postbleach image until a time point τpost where the total intensity reaches
its maximum. An appropriate rescaling is

IB
′′

t = IB
′

t ·
IT
′

post

IT
′

t

· ν(t)
fbl

for t ∈ [τ0+ , τpost],

where ν : [τ0+ , τpost]→ [fbl, 1] is a strictly decreasing function fulfilling ν(τ0+) = 1
and ν(τpost) = fbl, for example

ν(t) = fbl exp
(
− log(fbl) ·

(
t− τpost
τ0+ − τpost

)a)

for suitable a ∈ N. This accounts for the progressive mixing of bleached and
unbleached molecules and ensures that the intensity curve IB′′t remains continuous



316 9. Application II: Analysis of Molecular Binding

at t = τpost. In the present stage of the normalisation procedure, the value fbl is
yet unknown as it will be determined in Equation (9.23) below. One might hence
use an approximation of fbl here as for example obtained by double normalisation
or triple normalisation without the just discussed refinement. The normalisation
variant described in this remark is not utilised in this thesis.

(T.iii) A small fraction of proteins remains unbleached though being located in the bleached
section at the time of bleaching. Consequently, the variable uboundbl is not zero
at t = 0+, the time directly after bleaching. Moreover, the value of uboundbl at this
time point differs in each experiment. In order to correct for this, subtract IB′′0+

from all intensities. The value IB′′0+ is, however, unknown due to the rapid invasion
of unbleached free proteins into the bleached section. Hence, let b̂0 be an estimate
of IB′′0+ . For the datasets considered in this chapter, b̂0 is measured in an appropriate
subregion of the bleached area, distral to the bleach border, in the first postbleach
picture. The result is

IB
′′′

t = IB
′′

t − b̂0 and IT
′′′

t = IT
′′

t − b̂0

for all t. Figure 9.16(c) shows the changes in the data caused by this normalisation
step. It is important that it is carried out after the correction for the loss of
fluorescence in step (T.ii) because this loss also affects the proteins that escaped
the laser. In particular, the estimate b̂0 has to be obtained from the data which is
already corrected according to (T.i) and (T.ii).

(T.iv) Due to structural heterogeneity in the cell nucleus, caused for example by localised
binding site clusters, the mean fluorescence in the bleached and unbleached sections
may differ even before bleaching. As a consequence, their values also deviate from
the intensity in the total area. The model, on the other hand, assumes homogeneity.
Hence, modify all intensities such that their average levels before bleaching equal
one, i. e.

IB
′′′′

t = IB
′′′

t

IB
′′′

pre
and IT

′′′′

t = IT
′′′

t

IT
′′′

pre

for all t. As in step (T.ii), the reference values IB′′′pre and IT′′′pre are typically chosen to
be the mean of the last few prebleach values IB′′′t and IT′′′t , respectively.

In Figure 9.16(c), this step approximately corresponds to replacing the vertical axis
on the left by the vertical axis on the right, where IT′′′pre on the left corresponds to
the value one on the right.

(T.v) The bleaching pulse abruptly decreases the fluorescence of the nucleus, but the
model assumes the total intensity being one throughout the experiment. Hence,
normalise as follows:

IB
′′′′′

t = IB
′′′′

t

IT
′′′′

t

and IT
′′′′′

t = 1

for all t. This step is illustrated in Figure 9.16(d).
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Altogether, one has for t > 0

IB
′′′′′

t =
(IBt − I

bg
t ) ·

ITpost − I
bg
post

ITt − Ibgt
− b̂0

IB
′′

pre − b̂0
·
ITpre − Ibgpre − b̂0

ITpost − Ibgpost − b̂0
.

The above considerations also make clear how to determine the size fbl of the bleached
section: The average postbleach level of total fluorescence after step (T.iv) equals IT′′′′post.
The only adjustment remaining to be done at that point is to correct for the intentional
loss of fluorescence caused by the bleaching laser pulse. Consequently, 1−fbl corresponds
to this level, i. e. one sets

1− fbl = IT
′′′′

post =
IT
′′′

post

IT
′′′

pre
. (9.23)

In the subsequent application in Section 9.7, estimation techniques are applied to triple
normalised datasets, and the value fbl is determined according to (9.23).

9.6.2 Double Normalisation

A simplification of the triple normalisation in the previous section is the double normalisation
as described for example by Phair, Gorski, and Misteli (2004); see also McNally (2008).
This procedure is described here for the sake of completeness and because a comparison of
estimation results based on triple normalised and double normalised data is carried out in
Section 9.7.3. In short, double normalisation corrects for

(D.i) the background intensity as in step (T.i),

(D.ii) the heterogeneity of structure and binding site distribution within the nucleus as in
step (T.iv),

(D.iii) the loss of fluorescence due to bleaching and the gain or loss due to natural processes
as in steps (T.ii) and (T.v).

The order of these items slightly differs from that in the triple normalisation, but this does
not change the outcome as steps (D.ii) and (D.iii) both consist of multiplicative operations.
All corrections are motivated as in the triple normalisation. Hence, the following description
of the double normalisation merely displays the respective formulas. For more details, turn
back to Section 9.6.1.

(D.i) Subtract the background intensity from all measured values for all t:

IB
′

t = IBt − I
bg
t and IT

′

t = ITt − I
bg
t .

(D.ii) Modify all intensities such that their average levels before bleaching equal one, i. e.

IB
′′

t = IB
′

t

IB
′

pre
and IT

′′

t = IT
′

t

IT
′

pre
.
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As before, the prebleach reference values IB′pre and IT
′

pre are typically chosen as the
mean of the last few prebleach intensities IB′t and IT′t , respectively.

(D.iii) Scale all intensities such that the total fluorescence is equal to one for all t, i. e.

IB
′′′

t = IB
′′

t

IT
′′

t

and IT
′′′

t = 1.

Altogether, one has

IB
′′′

t =
(IBt − I

bg
t )(ITpre − Ibgpre)

(IBpre − I
bg
pre)(ITt − Ibgt )

.

Similarly as for the triple normalised data, the above details indicate how to determine
the size fbl of the bleached section from the measured intensities: Let IT′′post denote an
appropriate reference value for the postbleach level of total fluorescence. This may for
example be the mean of IT′′t as determined from the 10th to 20th postbleach images. Then,
this reference level corresponds to 1−fbl, i. e. one sets

1− fbl = IT
′′

post =
IT
′

post

IT
′

pre
.

Figure 9.17 displays a time series of the intensity measured in the bleached region, modified
according to the double and triple normalisation and the single normalisation explained
in the next section. The curves for the double and triple normalisation especially differ
during the recovery phase until t ≈ 20. The first postbleach intensities are 0.258 after
double normalisation and 0.051 after triple normalisation. The estimates for fbl are 0.605
and 0.663, respectively. Corresponding values for other datasets are listed in Tables D.1
and D.2 in the appendix.

9.6.3 Single Normalisation

This section explains the single normalisation according to Phair, Gorski, and Misteli (2004),
which corrects for

(S.i) the background intensity as in step (T.i),

(S.ii) the heterogeneity of structure and binding site distribution within the nucleus as in
step (T.iv).

In contrast to the double and triple normalisations, the single normalisation considers the
intensities in the bleached and unbleached sections rather than the measurements in the
bleached and total compartments. The modifications are described in what follows. Once
more, the reader is referred to Section 9.6.1 for a detailed explanation.
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Figure 9.17: Comparison of single, double and triple normalised data: The plot displays
intensities measured in the bleached region, modified according to the single (dark blue), double
(red) and triple (black) normalisation. The single normalised curve does not level off around one
but equalises with the single normalised intensity in the unbleached region (light blue). The double
and triple normalised curves especially differ during the recovery phase until t ≈ 20. The first
postbleach intensities are 0.258 after double normalisation and 0.051 after triple normalisation.
The estimates for fbl are 0.605 and 0.663, respectively.

(S.i) Subtract the background intensity from the all measured values for all t:

IB
′

t = IBt − I
bg
t and IU

′

t = IUt − I
bg
t .

(S.ii) Modify the intensities in the bleached and unbleached section such that the average
levels before bleaching equal one, i. e.

IB
′′

t = IB
′

t

IB
′

pre
and IU

′′

t = IU
′

t

IU
′

pre
.

To that end, the reference values IB′pre and IU
′

pre are determined as the mean of the
last few prebleach values of IB′t and IU′t , respectively.

Altogether, one has

IB
′′

t = IBt − I
bg
t

IBpre − I
bg
pre

and IU
′′

t = IUt − I
bg
t

IUpre − I
bg
pre

.

Other than double and triple normalisation, single normalisation does not correct for the
intentional and unintentional loss of fluorescence over time, i. e. it does not scale the data
such that the average postbleach level in the total area equals one. Hence, the data still
contains information about the fraction of bleached molecules. The kinetic models in
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this chapter assume that all intensities are scaled such that the value in the bleached
compartment will eventually level off around one. Thus, the models are not directly
applicable to single normalised datasets.

Figure 9.17 displays a single normalised time series of intensities measured in the bleached
and unbleached section of a nucleus.

In the following application in Section 9.7, all datasets are triple normalised as this technique
is the most accurate one. For comparison purpooses, statistical inference is also carried for
double normalised data in Section 9.7.3.

9.7 Application

This section analyses the kinetic behaviour of the protein Dnmt1, which was introduced in
Section 9.1, based on the observations from FRAP experiments (cf. Section 9.1.1).

In Sections 9.3 to 9.5, dedicated stochastic and deterministic models were constructed,
and the performances of suitable estimation techniques were evaluated for these models
in several simulation studies. Section 9.6 investigated how to appropriately process raw
measurements from FRAP experiments such that the considered inference methods can
be applied to the resulting time series. With the tools from Sections 9.3 to 9.6 at hand,
the present section deals with the investigation of the research questions presented in
Section 9.1.2. These concern the estimates of the model parameters and the number of
mobility classes, both depending on the phase of the cell cycle.

Section 9.7.1 describes the datasets that are available for statistical inference. In Sec-
tions 9.7.2 and 9.7.3, Bayesian and least squares estimation in carried out. Section 9.7.4
concludes.

9.7.1 Data

There is a number of measurements from FRAP experiments available for the statistical
investigation of the research questions of this chapter. The data has been acquired in the
context of a diploma thesis (Schneider, 2009) as described in Section 9.1.1. A protocol of
the experimental setup is provided in that thesis.

In order to enable a cell cycle dependent analysis of the dynamic behaviour of Dnmt1, data
has been collected during different phases of the cycle. In particular, there are 10 time series
from G1 phase, 26 series from early S phase and 11 from late S phase. Each time series
contains the measured intensities q∗ in the bleached section of the nucleus over time, but no
information on any other components of the multi-dimensional processes is provided. Unless
otherwise stated, the data is triple normalised as described in Section 9.6.1. Figure 9.3 on
page 275 displays the 47 normalised recovery curves.
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The observation times for the datasets are given by the exposure time of the laser plus a
delay time such that data is available at equidistant time intervals of length 0.154. The
number of measurements in each time series is typically around 780; exact numbers are
listed in Tables D.1 and D.2 on pages 382–383 in the appendix. The same tables also
display the starting values q∗0 of the recovery curves and experimentally determined values
of the bleached fraction fbl and the intermediate fraction fint.

9.7.2 Bayesian Estimation

In the following, the kinetic models described in this chapter are estimated based on the
47 provided datasets. The proceeding is as in the previous simulation studies in this
chapter, especially as in Section 9.5.4. Estimation based on the diffusion model requires
an approximation of the number N of molecules in the nucleus. This number has not
been determined experimentally, and hence a statistical approximation is proposed in what
follows. Estimation results for the parameters are presented afterwards.

Numbers of Molecules

The strength of random fluctuations in the stochastic model is controlled by the factor N−1
U

in the diffusion matrix, where NU = (1− fbl)N is the number of unbleached molecules in
the nucleus: Larger numbers of molecules correspond to a smaller impact of stochasticity.
It has been demonstrated in Section 9.3.4 that wrong assumptions about NU may cause
wrong estimates for koff and kon. One hence requires a careful approximation of NU .

In the following, the number NU is extracted from the measured fluorescence intensities
as follows: On the one hand, in the simplest case of one mobility class, the entry of the
diffusion matrix corresponding to the fluctuations of q∗ equals

1
NU

(
koff
(
f−1
bl −2

)
q∗ + (kon − koff)

(
f−1
bl −1

)
ufree + koff

)
(9.24)

as derived in Section 9.4.2. On the other hand, for obervations q∗t0 , . . . , q∗tn at times t0, . . . , tn,
this part of the diffusion matrix can be approximated empirically by

1
n

n∑
k=1

(
q∗tk − q

∗
tk−1

)2

tk − tk−1
, (9.25)

which is motivated by Equation (3.17) on page 35. An estimate for (9.24) can be obtained
when focusing on those measurements of q∗ after the intensity has reached a stable plateau.
Then the variable q∗ in (9.24) may be replaced by the mean of all values on this plateau.
f ∗bl can be obtained from image analysis, and kon, koff and ufree can be estimated by
application of the deterministic techniques as discussed in the previous sections. Calculation
of (9.25) should base on the same set of observations as (9.24) does. Equating (9.24)
and (9.25) then gives an estimate of NU = (1−fbl)N .
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Applied to the synthetic datasets from Sections 9.3.4 to 9.5.4, the just described procedure
approximates the number of molecules surprisingly well, yielding values that deviate from
the true value N = 10,000 by less than two percent.

Tables D.1 and D.2 in the appendix contain approximations of N for the real datasets
considered in this section. In practice, numbers of molecules typically lie between 10,000
and 100,000 per nucleus (Phair, Scaffidi, et al., 2004). In Tables D.1 and D.2, notably
smaller numbers appear for some time series. The variation in the approximations is already
apparent from the recovery curves, see Figure D.1 on page 379 for an example. Small values
of N are most probably caused by measurement noise that is not corrected for by the data
normalisation presented in Section 9.6. Hence, these numbers do not really represent the
amounts of molecules in the nucleus but rather a lower bound. They however reflect the
strength of fluctuations in the respective time series, and hence these values are employed
for the subsequent Bayesian inference procedures.

Results

The innovation scheme is applied to the FRAP data with all settings as specified in
Section 9.5.4. In particular, for each time series the model with M ∈ {1, 2, 3} mobility
classes is estimated. Table 9.10 exemplarily shows the results for two selected datasets.
More specifically, it presents the estimated posterior means and posterior 95%-hpd intervals
for kon,1, . . . , kon,M and koff,1, . . . , koff,M . Furthermore, the table displays the logarithms
of the marginal likelihoods for each model as introduced in Equation (9.19) on page 309.
Carrying out model choice by application of Bayes factors, one will clearly favour the
modelM3 with three classes for the upper dataset and the modelM1 for the lower dataset.
However, considering the confidence intervals for the upper dataset and M = 3, one notices
that these intervals overlap for both kon,1, kon,2 and for koff,1, koff,2. Hence, the estimated
model may be reduced to two mobility classes and hence be excluded from the range of
appropriate models. In that case, again utilising the Bayes factor, one would favourM1.

For a more concise representation, Figure 9.18 plots the estimated 95%-hpd intervals
for a number of arbitrarily selected datasets. There are obviously several time series
where the confidence intervals overlap for some parameters. Table 9.11 on page 325
lists the approximated logarithm of the marginal likelihoods for each of the models and
datasets. The table furthermore indicates for M = 2 and M = 3 the numbers of distinctly
estimated association and dissociation parameters, derived from potential intersections of
the confidence intervals displayed in Figure 9.18. When taking this criterion into account,
the model choice obtained through Bayes factors is influenced only in two cases.

The representation of confidence intervals in Figure 9.18 allows a direct comparison of
the locations of the intervals. A cell cycle dependent impact is especially obvious for the
parameter koff in the modelM1, indicating that molecules remain in the bound state for a
longer time period during G1 phase than in S phase.
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phase index parameter model chosen
M = 1 M = 2 M = 3 model

G1 1

kon,1
2.86 0.90 1.31

M3
(M1)

(2.51, 3.19) (0.74, 1.06) (1.06, 1.61)

kon,2 — 2.20 1.03
(1.99, 2.46) (0.85, 1.25)

kon,3 — — 2.25
(2.01, 2.49)

koff,1
0.20 0.37 0.18

(0.19, 0.21) (0.32, 0.40) (0.15, 0.20)

koff,2 — 0.13 0.16
(0.11, 0.15) (0.14, 0.18)

koff,3 — — 0.13
(0.12, 0.14)

log π(Y obs|MM) 5969.52 5646.06 7044.44

late S 3

kon,1
2.31 1.45 2.43

M1

(1.93, 2.72) (1.09, 1.82) (2.13, 2.72)

kon,2 — 2.14 1.55
(1.74, 2.52) (1.31, 1.87)

kon,3 — — 1.73
(1.39, 2.04)

koff,1
0.09 0.09 0.17

(0.08, 0.10) (0.08, 0.11) (0.15, 0.20)

koff,2 — 0.07 0.09
(0.06, 0.08) (0.08, 0.11)

koff,3 — — 0.04
(0.03, 0.04)

log π(Y obs|MM) 15019.27 5219.35 4965.65

Table 9.10: Bayesian estimation results for two selected real datasets. The first two columns
specify the phase of the cell cycle and an index labelling the time series. Columns four to six
list the posterior means and 95%-hpd intervals for the parameters defined in the third column.
Moreover, they contain approximated logarithms of the marginal likelihoods log π(Y obs|MM ) for
each modelMM , M ∈ {1, 2, 3}. These can be used for model choice by means of Bayes factors;
the respective selected models are shown in the last column. For the upper dataset, the selected
modelM3 however estimates overlapping confidence intervals for kon,1, kon,2 and koff,1, koff,2. As
discussed in the main text, one might hence excludeM3 and chooseM1 instead.
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(f) modelM3, parameters koff,1, koff,2, koff,3
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Figure 9.18: Estimated 95%-hpd intervals for the parameters kon,1, . . . , kon,M and koff,1, . . . , koff,M
in the kinetic models with M ∈ {1, 2, 3} mobility classes. The labels on the left indicate the phase
of the cell cycle and an index marking the time series.
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phase index log π(Y obs|MM) estimated class numbers
model
choice

M2 M3
M = 1 M = 2 M = 3 kon,i koff,i kon,i koff,i

G1 1 5969.5 5646.1 7044.4 2 2 2 2 M3 (M1)
G1 3 14699.1 15215.1 15050.2 2 1 2 3 M2
G1 5 15539.5 15954.3 17271.4 2 1 3 2 M3
G1 6 13050.5 13455.5 4455.2 2 2 2 2 M2
G1 7 14818.0 4828.1 5086.3 1 2 2 2 M1
G1 8 13892.1 14537.6 14415.8 2 1 2 2 M2
G1 9 15289.7 17004.1 16125.3 2 1 2 2 M2
G1 10 12140.4 12266.9 4067.0 2 2 3 3 M2

early S 1 16352.3 16598.5 15850.7 1 2 1 2 M2
early S 2 16372.4 15999.4 16271.4 1 2 1 2 M1
early S 4 14956.2 15968.9 4988.7 2 1 2 3 M2
early S 5 14895.9 14717.3 4797.9 1 2 1 3 M1
early S 6 16381.8 5580.6 5318.9 2 1 1 2 M1
early S 7 16050.2 5292.4 16114.2 2 2 2 2 M3 (M1)
early S 9 5091.5 5093.5 4962.5 1 2 2 3 M2
early S 10 13458.9 -658.3 1081.3 2 2 2 2 M1
late S 1 15689.3 15574.0 5486.4 1 2 2 2 M1
late S 3 15019.3 5219.4 4965.6 1 1 2 3 M1
late S 5 15553.0 5271.2 5203.9 1 2 2 2 M1
late S 6 15583.3 5122.6 5301.2 1 2 2 3 M1
late S 8 15723.1 5306.6 5241.6 1 2 2 3 M1
late S 9 14486.3 4764.0 4949.4 1 2 3 2 M1
late S 11 14987.6 4962.2 4966.6 1 2 2 3 M1

Table 9.11: Bayesian estimation results for real datasets. The first two columns specify the
phase of the cell cycle and an index labelling the time series. Columns three to five contain
the approximated logarithms of the marginal likelihoods log π(Y obs|MM ) for each modelMM ,
M ∈ {1, 2, 3}. These can be used for model choice by means of Bayes factors; the respective
selected models are shown in the last column. As discussed in the main text, however, some of
the estimated confidence intervals overlap, and hence the according model may be reduced to one
with fewer classes. Columns six to nine display the number of distinctly estimated association and
dissociation parameters, derived from potential intersections of the confidence intervals displayed
in Figure 9.18. A model might be rejected when there are non-disjoint confidence intervals for
both the association and dissociation parameters. Taking this criterion into account, the model
choice obtained through Bayes factors is influenced only in two cases. The alternatively selected
models are shown in parentheses in the last column.
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9.7.3 Least Squares Estimation

In the following, the results of the least squares estimation are presented. The estimation
procedure is as in the simulation study in Section 9.5.4.

Figure 9.19 displays the least squares estimates for koff,1, . . . , koff,M , based on the triple
normalised datasets with fint = 0 and fixed starting value q∗0 as displayed in Tables D.1
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Figure 9.19: Least squares estimates for koff,i, based on the triple normalised datasets with
intermediate fraction fint = 0 and fixed starting value q∗0 as displayed in Tables D.1 and D.2.
Figures (a)–(d) display the estimates for the parameters koff,1, . . . , koff,M in the deterministic
kinetic model with M = 1, . . . , 4 mobility classes. In each plot, the distinct time series are ordered
according to their phase and index as in Tables 9.12 and 9.13, and the respective results are
presented from the left to the right. If a model is chosen by the BIC as listed in Tables 9.12
and 9.13, the respective estimates are represented by a cross; otherwise, they are marked by a
circle.
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phase index BIC chosen
M = 1 M = 2 M = 3 M = 4 model

G1 1 -3455 -4225 -4201 -4136 2
G1 2 -7798 -9456 -9603 -9577 3
G1 3 -6100 -7965 -7916 -7846 2
G1 4 -3512 -4389 -4369 -4316 2
G1 5 -5688 -8340 -8433 -8287 3
G1 6 -6299 -7199 -7216 -7163 3
G1 7 -5875 -7965 -8118 -7959 3
G1 8 -6092 -7166 -7302 -7307 4
G1 9 -6571 -8304 -8178 -8009 2
G1 10 -6096 -6875 -6848 -6800 2

late S 1 -5198 -8155 -8362 -8261 3
late S 2 -5112 -7200 -7420 -7316 3
late S 3 -4846 -7127 -7432 -7275 3
late S 4 -5127 -6986 -7292 -7338 4
late S 5 -5100 -7691 -7904 -7856 3
late S 6 -5072 -7691 -8128 -7994 3
late S 7 -5005 -7707 -7949 -7687 3
late S 8 -5302 -7829 -8046 -7969 3
late S 9 -4807 -7319 -7468 -7394 3
late S 10 -4777 -7200 -7375 -7338 3
late S 11 -4718 -7754 -7884 -7756 3

Table 9.12: BIC as defined in Equation (9.22) for the least squares estimates from Figure 9.19.
The first and second columns specify the phase of the cell cycle and a consecutive index for each
dataset. The next four columns list the BIC as defined in Equation (9.22) on page 310 for the
kinetic models with M ∈ {1, . . . , 4} mobility classes. The last column states the number of classes
that is chosen by the BIC.

and D.2 on pages 382 and 383 in the appendix. These parameters are estimated for the
kinetic model with M ∈ {1, . . . , 4} mobility classes. The BIC, which was introduced in
Equation (9.22) on page 310, is used to select the model with the most appropriate number
of classes; results are listed in Tables 9.12 and 9.13. This model choice is also visible in
Figure 9.19, where the estimates for koff,i in a selected model are marked with a cross, and
with a circle otherwise. Figure D.3 in the appendix presents the fittings of the estimated to
the observed recovery curve for one particular dataset and M ∈ {1, . . . , 4}.

Concerning the estimated values of koff,1, . . . , koff,M , there is obviously a difference between
the phases of the cell cycle when considering the model withM = 1 mobility class, especially
between G1 phase and the two S phases. This difference becomes less apparent for M = 2
and seems to disappear for M ∈ {3, 4}. For none of the datasets, the BIC chooses the
model with one mobility class. For G1 phase, it typically selects M = 2 or M = 3, and for
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phase index BIC chosen
M = 1 M = 2 M = 3 M = 4 model

early S 1 -5126 -8504 -8686 -8602 3
early S 2 -4743 -7819 -7812 -7785 2
early S 3 -5657 -7392 -7366 -7307 2
early S 4 -5480 -7157 -7434 -7296 3
early S 5 -5177 -7747 -7986 -7935 3
early S 6 -4822 -8236 -8478 -8325 3
early S 7 -4552 -8174 -8391 -8287 3
early S 8 -5086 -7747 -7756 -7729 3
early S 9 -5089 -7760 -7734 -7689 2
early S 10 -4934 -9091 -9430 -9261 3
early S 11 -5805 -8378 -9168 -9037 3
early S 12 -5037 -7485 -7623 -7581 3
early S 13 -4448 -7461 -7774 -7747 3
early S 14 -5028 -6677 -6789 -6773 3
early S 15 -5154 -7605 -7578 -7470 2
early S 16 -4565 -8174 -8313 -8216 3
early S 17 -5887 -8551 -9168 -8864 3
early S 18 -5741 -7899 -8575 -8407 3
early S 19 -4903 -6990 -7207 -6905 3
early S 20 -4589 -6910 -7084 -7137 4
early S 21 -5452 -6984 -7432 -7289 3
early S 22 -5637 -6760 -6907 -6880 3
early S 23 -6571 -7942 -8089 -8009 3
early S 24 -5446 -7510 -7852 -7677 3
early S 25 -5333 -7350 -7593 -7538 3
early S 26 -4817 -7650 -7738 -7711 3

Table 9.13: Continuation of Table 9.12.

early S phase and late S phase the BIC mostly distinguishes M = 3 classes.

In the previous sections, different variants of the above used datasets and estimation
settings were discussed: First, the triple normalisation from Section 9.6.1 could be replaced
by the double normalisation from Section 9.6.2. Second, the intermediate fraction fint
was introduced as a correction factor in Section 9.4. This variable could be set equal to
experimentally obtained values as listed in Tables D.1 and D.2 in the appendix. Third, the
starting value q∗0 of the recovery curve could be fitted by least squares estimation instead of
being kept fixed to the first observed value.

Figures D.4, D.5 and D.6 on pages 386 ff. in the appendix show the changed estimates
for koff,1, . . . , koff,M due to these three modifications. Tables D.3 and D.4 display the numbers
of mobility classes chosen by the BIC with respect to these changes. It turns out that
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the largest impact on all outcomes originates in the third modification, where the starting
value of the FRAP curve is estimated by least squares. Furthermore, for all modifications,
deviations are more apparent for M ∈ {3, 4} than for M ∈ {1, 2}, but this may be due to a
generally larger variability in the estimates for largerM . In practice, the third variation, i. e.
estimation of q∗0, is probably not eligible as it seems more important to find good agreement
between the estimated and the observed curve for the initial phase rather than for the final
phase of recovery.

9.7.4 Conclusion

The objective of this section was to investigate the research questions formulated in
Section 9.1.2 on the cell cycle dependent binding behaviour of Dnmt1. To that end, the
kinetic models and estimation techniques from Sections 9.3 to 9.5 were applied to real
datasets obtained from FRAP experiments.

Statistical inference on the model parameters was carried out both by Bayesian and least
squares estimation. Resulting estimates are presented in the tables and figures in this
section. The simulation studies in the previous sections demonstrated that precise estimation
is possible especially for the dissociation rates koff,i, with more reliable outcomes being
produced by the Bayesian techniques.

Cell cycle dependent differences in parameter estimates were especially observed between
G1 phase and the two S phases: Both the Bayesian and the least squares procedure produce
estimates for the dissociation rates which tend to be larger than those in S phase. This
difference is obvious for M = 1 from the graphics in Figures 9.18 and 9.19 on pages 324
and 326.

Concerning the numbers of mobility classes in the three cell cycles, the considered model
choice criteria yield contradictory statements: While the Bayes factor tends to choose more
mobility classes in G1 phase than in early or late S phase, the BIC behaves the other way
round. Model choice already proved to be problematic in the simulation studies carried out
earlier in this chapter. Apart from that, a possible explanation for the indefinite outcomes
is that one might have diffusion-coupled rather than diffusion-uncoupled FRAP for Dnmt1.
This idea is pursued in ongoing work (Schneider, Dargatz et al., 2010). The kinetic model
is briefly considered in the following section.

9.8 Diffusion-coupled FRAP

The role of diffusion of molecules in fluorescence recovery has been discussed in Sec-
tion 9.2.2, where one has distinguished between diffusion-coupled and diffusion-uncoupled
FRAP. Throughout this chapter, diffusion-uncoupled dynamics has been assumed for the
construction of all kinetic models, because this scenario turned out to be eligible in control
experiments. For the sake of completeness, however, one should also set up a model for
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diffusion-coupled recovery and estimate it for the datasets in this chapter. Respective
kinetic models have been developed in the literature only for circular and line bleaching yet
(e. g. Mueller et al., 2008). An according model for half-nucleus FRAP, as required in the
context of this chapter, is proposed for one mobility class in the following. It is illustrated
in Figure 9.20. Its extension to multiple mobility classes is shown in Section D.4.

In the diffusion-coupled model, one assumes that spatial diffusion of the GFP-tagged
molecules across the cell nucleus happens at a rate that is of the same order as the rates for
binding and unbinding. In that case, other than in case of diffusion-uncoupled FRAP, it is
required to explicitly model the location of a free molecule within the nucleus. An obvious
approach is to divide the number U free of unbleached free molecules into the number U free

bl
of unbleached free molecules in the bleached section and the number Ubound

unbl of unbleached
free molecules in the unbleached section. The state of all unbleached molecules in the
nucleus is then represented by U free

bl , U free
unbl, Ubound

bl and Ubound
unbl . As these variables sum up

to the number NU of all unbleached molecules, complete information is provided when
considering a Markov process with three-dimensional state vector (U free

bl , U
free
unbl, U

bound
bl )′ in

the state space

{(U free
bl , U

free
unbl, U

bound
bl )′ ∈ [0, NU ]3 ∩N3

0 |U free
bl + U free

unbl + Ubound
bl ≤ NU}.

Binding and unbinding events are supposed to happen analogously to those in the general
diffusion-uncoupled model in Section 9.3. Diffusion of free molecules between the bleached
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free 
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Figure 9.20: Compartmental representation of the kinetic model for diffusion-coupled FRAP:
The unbleached molecules in the nucleus are divided into four groups, namely into molecules that
are free in the bleached section, molecules that are free in the unbleached section, molecules that
are bound in the bleached section and molecules that are bound in the unbleached section. As
opposed to the diffusion-uncoupled model in Figure 9.5 on page 279, the location of a free molecule
is explicitly modelled. Free molecules can diffuse from the bleached section to the unbleached
section and the other way round. Diffusion occurs with diffusion rate kdiff.
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and unbleached section is assumed to occur with a diffusion rate kdiff. Every two molecules
that are located at the same distance from the bleaching border are supposed to cross this
border within a certain time interval with the same probability, no matter whether the
direction of diffusion is from the bleached to the unbleached area or the other way round.
If, however, the bleached fraction fbl is not equal to one half, the sizes of the bleached and
unbleached sections differ. Then, due to the geometry of the bleached area, several of the
molecules in the larger section are located further away from the bleaching border than the
molecules in the smaller area. In order to account for this disbalance, the diffusion events
in the two possible directions are assumed to occur with the following rates:(

U free
bl , U

free
unbl, U

bound
bl

)′
→
(
U free
bl +1 , U free

unbl−1 , Ubound
bl

)′
with rate kdiff fbl U

free
unbl,(

U free
bl , U

free
unbl, U

bound
bl

)′
→
(
U free
bl −1 , U free

unbl+1 , Ubound
bl

)′
with rate kdiff (1−fbl)U free

bl .

The value of kdiff depends on the geometry of the cell and is hence not immediately
eligible for interpretation purposes. A diffusion approximation with the intensive state
variable (ufreebl , u

free
unbl, u

bound
bl )′ results as the solution of an SDE with drift

−konufreebl + koffu
bound
bl + kdiff

(
fblu

free
unbl − (1−fbl)ufreebl

)
−konufreeunbl + koff

(
1− ufreebl − ufreeunbl − uboundbl

)
− kdiff

(
fblu

free
unbl − (1−fbl)ufreebl

)
konu

free
bl − koffuboundbl


and diffusion matrix

1
NU

 Σ11 Σ12 −Σ33
Σ12 Σ22 0
−Σ33 0 Σ33

 ,
where

Σ11 = konu
free
bl + koffu

bound
bl + kdiff

(
fblu

free
unbl + (1−fbl)ufreebl

)
Σ22 = konu

free
unbl + koff

(
1− ufreebl − ufreeunbl − uboundbl

)
+ kdiff

(
fblu

free
unbl + (1−fbl)ufreebl

)
Σ33 = konu

free
bl + koffu

bound
bl

Σ12 = −kdiff
(
fblu

free
unbl + (1−fbl)ufreebl

)
.

The initial value for this SDE is an element of the state space
{(ufreebl , u

free
unbl, u

bound
bl )′ ∈ [0, 1]3 ∩R3

0 |ufreebl + ufreeunbl + uboundbl ≤ 1}.
The observed variable is the fluorescence intensity

q = ufreebl + uboundbl
fbl

.

In case of kdiff � kon, koff, i. e. for diffusion-uncoupled FRAP, the drift function can be
approximated by 

kdiff
(
fblu

free
unbl − (1−fbl)ufreebl

)
−kdiff

(
fblu

free
unbl − (1−fbl)ufreebl

)
0


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until the process reaches a state where the elements of this vector are small, that is
fblu

free
unbl ≈ (1−fbl)ufreebl . This equality corresponds to ufreebl ≈ fblu

free and ufreeunbl ≈ (1−fbl)ufree,
where ufree = ufreebl + ufreeunbl. That is the basic assumption of the diffusion-uncoupled scenario.

The consideration of an intermediate fraction fint is not meaningful in a diffusion-coupled
model, because there is no assumption of a rapid invasion of unbleached molecules into
the bleached area before acquisition of the first postbleach image. On the other hand, the
diffusion-coupled model may be designed such that it can be applied to a more refined
dataset containing the fluorescence recovery in several slices instead of just two regions of
the nucleus.

9.9 Conclusion and Outlook

This chapter showed a second application of diffusion models in life sciences. It introduced
a number of research questions concerning the binding behaviour of proteins within cell
nuclei and described the FRAP technique as a convenient tool for data acquisition. Various
stochastic and deterministic kinetic models for the dynamics of fluorescence recovery were
derived. The application of diffusion models had not been considered in the FRAP literature
before. The performances of Bayesian and least squares estimation techniques were analysed
based on synthetic datasets in several simulation studies, and statistical model choice criteria
were evaluated. An enhanced processing of raw FRAP measurements was proposed, and its
impact on parameter estimation was investigated.

New insight could be gained especially concerning the cell cycle dependent average residence
times of Dnmt1 remaining at binding sites, which were estimated as the inverse dissociation
rates for each mobility class. Improved parameter estimates were achieved by utilisation
of stochastic diffusion models in combination with Bayesian inference techniques. These
were newly introduced to the field of FRAP analysis, where the application of deterministic
models is prevalent.

Ongoing work (Schneider, Dargatz et al., 2010) deals with the estimation of diffusion-coupled
models for the Dnmt1 data. An according model for diffusion-coupled half-nucleus FRAP
has been proposed in this thesis for the first time. In the diffusion-coupled scenario, it is
also meaningful to divide the cell nucleus into several slices with different distances from
the bleaching border and hence to apply the model to a richer dataset. This could yield
more accurate parameter estimates.

Further analyses concern the biological interpretation of the estimation and model choice
results. To that end, fluorescence recovery curves are investigated for mutants of Dnmt1,
where certain binding interactions with DNA are possibly disturbed (Schneider, 2009).

The present chapter was focused on the cell cycle dependent kinetic behaviour of the
particular protein Dnmt1. Model derivations, statistical inference techniques and data
processing have, however, been formulated in a universal context. The contents of this
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chapter hence provide a general framework for the kinetic analysis of a multitude of proteins
of interest.
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Chapter 10

Conclusion and Outlook

Stochastic modelling and statistical estimation are important tools for the understanding
of complex processes in life sciences. This thesis motivated the use of diffusion processes
for both purposes and contributed to their applicability in practice. The following section
summarises the achievements of this thesis, oriented towards the initially set aims which
were formulated in Section 1.1. Section 10.2 points out directions for future work.

10.1 Conclusion

Starting from a specific real-world phenomenon, one often requires a mathematical Markov
model which appropriately represents the time-continuous dynamics of the considered
system. To that end, many authors either choose a computationally costly exact description
in terms of stochastic jump processes or an over-simplistic state-continuous deterministic
model. A convenient trade-off between these two extremes is provided by diffusion processes.
These are both stochastic and state-continuous but mathematically more sophisticated.

In particular, there are no general guidelines for practitioners which describe the correct ap-
proximation of stochastic jump processes by diffusions. More specifically, existing approaches
are partly formulated for one-dimensional diffusions, and they always assume systems whose
dimension is sufficiently characterised by one single size parameter. Both of these properties
do not match the requirements of, for example, the multitype susceptible–infected–removed
(SIR) model considered in this work. Chapters 2 and 3 of the present thesis motivate the
application of diffusion models in life sciences and provide a compact overview of their
mathematical background. Chapter 4 elucidates the derivation of diffusion approximations
and complements existing approaches by new formulations, multi-dimensional extensions
and the generalisation to systems which involve multiple size parameters. Importantly
for practitioners, this chapter for the first time presents a systematic procedure for the
derivation of diffusion approximations in a universal framework. The methodology is further
exemplified in Chapter 5.
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With a diffusion model at hand, which is represented in parametric form as the solution of a
stochastic differential equation, the next objective is to statistically estimate its parameters
based on time-discrete observations of the process. Chapter 6 investigates and reviews
established frequentist methodology on this subject in a multi-dimensional framework. It
turns out that the application of such techniques is problematic, if not impossible, in typical
data situations in life sciences, which can involve sparse and non-equidistant observations,
measurements with error and unobserved components of multi-dimensional processes. An
appropriate alternative to tackle this problem, however, is given by the application of a well-
known Bayesian approach which introduces auxiliary data points as additional observations.
These are estimated by application of Markov chain Monte Carlo (MCMC) techniques
which alternately update the auxiliary data and the model parameter. For the first time,
Chapter 7 reviews this idea in detail. Unfortunately, the procedure suffers from convergence
problems which originate in a deterministic relationship between the model parameters and
the quadratic variation of a continuously observed diffusion path. A practical solution for
this problem has not yet been proven for multi-dimensional diffusion processes. As one
of the main contributions of this thesis, Chapter 7 formulates a neat modification of the
Bayesian approach for conditioned diffusions on infinite-dimensional state spaces. This
thesis provides the mathematical proof that the so-constructed MCMC scheme converges.
Its performance is proven in several simulation studies.

In order to show the potential of modelling and estimation by means of diffusions, Chapters 8
and 9 utilise the theoretical insights gained in the previous chapters for the statistical
investigation of real problems from life sciences. Chapter 8 analyses the spread of influenza
among humans, based on one dataset containing the numbers of occurrences of influenza
in a British boarding school in 1978 over a period of two weeks, and a second dataset
concerning the latest influenza epidemic in Germany in 2009/10. Spatial modelling is
carried out in the latter case by using an extension of the standard SIR model, developed
in Chapter 5, which allows for host heterogeneity. In another application, Chapter 9
explores the kinetic properties of the protein Dnmt1 which is an important factor for
DNA methylation. Appropriate data is acquired by use of fluorescence microscopy. The
statistical investigations of Chapter 9 provide new insights into the understanding of the
binding behaviour of Dnmt1. Both Chapters 8 and 9 are the first applications of diffusion
approximations in combination with statistical parameter estimation to the respective
problems.

10.2 Outlook

Based on the contributions of this thesis, diffusion processes can more easily and more
efficiently be applied for modelling and estimation purposes in life sciences. Future perspec-
tives of this work mainly concern the utilisation of the developed methods to further areas
of applications, the variety of which is manifold. Practitioners should feel encouraged to
dare apply diffusion processes in their research areas: This thesis provides general guidelines
for the setup of appropriate diffusion models, and it supplies adequate information for their
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statistical inference. Thanks to the contributions of this thesis, the considered Bayesian
estimation approach is not limited by convergence problems anymore. For practical usability,
the proposed scheme has been formulated in algorithmic form. All algorithms have been
implemented in R. Their provision as a software package is one of the future projects.

Concerning the two fields of applications considered in this thesis, several possible extensions
have already been pointed out in the respective chapters. Hence, only a few perspectives
shall be commented on here.

The utilisation of diffusion approximations coupled with statistical inference techniques in
the spatio-temporal modelling of the spread of infectious diseases is new. Hence, research is
in the early stages, and multiple enhancements are conceivable. These could for example
concern the choice of clusters and their connectivities, the specification of model parameters
and the quality of the underlying data. Such advancements will help improving the
comprehension and prediction of epidemic outbreaks. This thesis provides a first step in
that direction.

In the second application, diffusion models and their statistical inference have also been
newly introduced to the analysis of fluorescence microscopy data. The next stated aim in this
study is the investigation of diffusion-coupled recovery, which was explained in Chapter 9.
Furthermore, in close collaboration with scientists from molecular biology, comparisons
between wild type proteins and appropriate mutants will be drawn by application of
statistical methods.

Overall, the combined application of diffusion modelling and statistical inference promises
to supply new insight in many exciting areas of life sciences in the future. This thesis has
demonstrated the potential of this approach.
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Appendix A

Benchmark Models

This chapter briefly introduces well-known diffusion processes that serve as benchmark
models in this thesis. In particular, for each process, the characterising stochastic differential
equation (SDE) and the transition density as defined in (3.14) on page 34 are given. From
that, it follows immediately how to simulate paths of the processes.

A.1 Geometric Brownian Motion

One-dimensional geometric Brownian motion X = (Xt)t≥0 is defined through the SDE
dXt = αXtdt+ σXtdBt , X0 = x0, (A.1)

with parameters α ∈ R, σ ∈ R+ and state space X = R+ for x0 ∈ R+. In financial
mathematics, it generally serves as a model for asset prices with interest rate α and
volatility σ and forms the basis of the famous Black-Scholes model (Black & Scholes, 1973,
Merton, 1973).

SDE (A.1) has the explicit solution

Xt = x0 exp
((
α− 1

2 σ
2
)
t+ σBt

)
for all t ≥ 0. The transition density reads

p(s, x, t, y) = 1√
2π(t− s)σy

exp

−
(
log y − log x− (α− 1

2σ
2)(t− s)

)2

2σ2(t− s)


for x, y ∈ X and t > s ≥ 0; that is the density of a log-normal distribution, i. e.

Xt|{Xs = x} ∼ LN
(

log x+
(
α− 1

2σ
2
)

(t− s) , σ2(t− s)
)
.

The conditional expectation and variance of the state of the process are
E(Xt|Xs = x) = xeα(t−s) and Var(Xt|Xs = x) = x2e2α(t−s)

(
eσ2(t−s) − 1

)
.
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A.2 Ornstein-Uhlenbeck Process

The one-dimensional time-homogeneous Ornstein-Uhlenbeck process X = (Xt)t≥0 with state
space X = R is described by the SDE

dXt = α(β −Xt)dt+ σdBt , X0 = x0, (A.2)

for parameters β ∈ R and α, σ ∈ R+. It was first used by Uhlenbeck and Ornstein (1930)
to describe the movement of a diffusing particle, where β = 0, α is the friction coefficient
divided by the mass of the particle, and σ stands for the strength of the fluctuations.
Vasicek (1977) applied this model later to interest rates with long-run equilibrium value β,
speed of adjustment α and volatility σ.

The solution of SDE (A.2) is

Xt = x0e−αt + β
(
1− e−αt

)
+ σ

∫ t

0
e−α(t−τ)dBτ

for all t ≥ 0. Due to the deterministic integrand, this is a Gaussian process with transition
density

p(s, x, t, y) = φ(µ(t−s;x),Σ(t−s;x))(y)

for all x, y ∈ X and t > s ≥ 0; that is the normal density with mean

µ(t− s;x) = E(Xt|Xs = x) = xe−α(t−s) + β
(
1− e−α(t−s)

)
and variance

Σ(t− s;x) = Var(Xt|Xs = x) = σ2

2α
(
1− e−2α(t−s)

)
evaluated at y.

A.3 Cox-Ingersoll-Ross Process

The one-dimensional Cox-Ingersoll-Ross (CIR) process, also called square-root process, fulfils
the SDE

dXt = α(β −Xt)dt+ σ
√
XtdBt , X0 = x0,

with positive parameters α, β, σ, state space X = R0 and x0 ∈ R+. It was introduced
by Cox, Ingersoll, and Ross (1985b) to model a randomly moving interest rate, where the
model parameters are interpreted as in the Ornstein-Uhlenbeck model (Section A.2). It is
reasonable to assume 2αβ > σ2 since then X = R+.

Under this assumption the transition density of the process is

p(s, x, t, y) = c
(
v

u

) ν
2

exp (−(u+ v)) Iν
(
2
√
uv
)

(A.3)
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for t > s ≥ 0, where

c = 2α
σ2(1− e−α(t−s)) , u = cxe−α(t−s), v = cy, ν = 2αβ

σ2 − 1 .

Iν denotes the modified Bessel function of the first kind of order ν, i. e.

Iν(z) =
∞∑
k=0

(
z

2

)2k+ν 1
k! Γ(k + ν + 1)

for z ∈ R, where Γ is the Gamma function.

Formula (A.3) implies that Yt = 2cXt conditioned on Ys = 2cx has the non-central chi-
square distribution with non-centrality parameter 2cx exp(−α(t− s)) and 4αβ/σ2 degrees
of freedom. The conditional expectation and variance of the state of the original process are

E(Xt|Xs = x) = 2 αβ
cσ2 + xe−α(t−s) and Var(Xt|Xs = x) = 2

c

(
αβ

cσ2 + xe−α(t−s)
)
.
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Appendix B

Miscellaneous

This chapter contains several auxiliary definitions, proofs and calculations which are required
in the course of this thesis. They are not contained in the main material because they do
not stand at the core of this work.

B.1 Difference Operators

The following definitions and lemmas are used in the context of expanding the master
equation and infinitesimal generator of a Markov jump process in Sections 4.3.1, 4.3.2,
4.4.1 and 4.4.2. The notation, proofs and further results are entirely new but moved to the
appendix due to space restrictions.

Definition B.1. Let f : Rn → R be an infinitely often differentiable function which is
smooth enough such that the order of differentiation with respect to different arguments does
not matter. For fixed ε = (ε1, . . . , εn)′ ∈ Rn, define the difference operator Dm

k of order m
with k = (k1, . . . , kn)′ ∈ Nn

0 and |k| = ∑n
i=1 ki = m recursively as follows:

D0
0f(x) = f(x) , D1

ei
f(x) = f(x+ ei � ε)− f(x) , Dm+1

k+eif(x) = D1
ei
Dm
k f(x)

for m ≥ 0, where ei = (0, . . . , 1, . . . , 0)′ denotes the ith unit vector of dimension n and
u � v = (u1v1, . . . , unvn)′ for arbitrary u,v ∈ Rn. If the fixed parameter ε is ambiguous,
attach it as a second subscript to the operator, i. e. write D|k|k,ε.

The difference operator allows the notation of difference quotients in correspondence to
according derivatives: As εi tends to zero for all i = 1, . . . , n,

Dm
k f(x)

εk1
1 · · · εknn

−→ ∂mf(x)
∂xk1

1 · · · ∂xknn
. (B.1)

The following lemmas concern explicit formulas for these difference operators.
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Lemma B.2. The difference operator can be expressed as

Dm
k f(x) =

k1∑
j1=0
· · ·

kn∑
jn=0

(−1)m−
∑n

i=1 ji

(
k1

j1

)
· · ·

(
kn
jn

)
f(x+ j � ε) (B.2)

=
m∑
l=0

∑
j∈Kl

(−1)m−l
(
k1

j1

)
· · ·

(
kn
jn

)
f(x+ j � ε), (B.3)

where

Kl =
{
j = (j1, . . . , jn)′ ∈ Nn

0

∣∣∣ |j| = l and 0 ≤ ji ≤ ki for all i = 1, . . . , n
}

for l = 0, . . . ,m and fixed k.

Proof. Formula (B.3) follows directly from (B.2), whose validity in turn is proven by
complete induction on m = |k|: Equation (B.2) trivially holds for m = 0 and m = 1.
Assume that it is true for any fixed m. Then, by definition and induction hypothesis,

Dm+1
k+eif(x) = D1

ei
Dm
k f(x)

=
k1∑
j1=0
· · ·

ki∑
ji=0
· · ·

kn∑
jn=0

(−1)m−
∑n

h=1 jh

(
k1

j1

)
· · ·

(
ki
ji

)
· · ·

(
kn
jn

)
f(x+ (j + ei) � ε)

−
k1∑
j1=0
· · ·

ki∑
ji=0
· · ·

kn∑
jn=0

(−1)m−
∑n

h=1 jh

(
k1

j1

)
· · ·

(
ki
ji

)
· · ·

(
kn
jn

)
f(x+ j � ε)

for any i ∈ {1, . . . , n}. With an index shift of ji in the second line, this becomes

k1∑
j1=0
· · ·

ki−1∑
ji−1=0

ki+1∑
ji+1=0

· · ·
kn∑
jn=0

(−1)m+1−
∑

h 6=i jh

(
k1

j1

)
· · ·

(
ki−1

ji−1

)(
ki+1

ji+1

)
· · ·

(
kn
jn

)
×

f(x1 + j1ε1, . . . , xi, . . . , xn + jnεn) +
ki∑
ji=1

(−1)−ji
[(

ki
ji − 1

)
+
(
ki
ji

)]
f(x+ j � ε)

+ (−1)−(ki+1)f(x1 + j1ε1, . . . , xi + (ki + 1)εi, . . . , xn + jnεn)
,

which equals
k1∑
j1=0
· · ·

k1+1∑
ji=0
· · ·

kn∑
jn=0

(−1)m+1−
∑n

h=1 jh

(
k1

j1

)
· · ·

(
ki + 1
ji

)
· · ·

(
kn
jn

)
f(x+ j � ε).

This proves the proposition.

Lemma B.3. Each expression of the form f(x+k � ε)− f(x) can be expanded as the sum
of differences Dm′

k′ f(x) with |k′| = m′ ≤ m = |k|. In other words, for each k there is a
set Ik ⊆ Nn

0 with
k′ ∈ Ik ⇒ |k′| ≤ |k|
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such that
f(x+ k � ε)− f(x) =

∑
k′∈Ik

D
|k′|
k′ f(x).

Proof. The proposition is again shown by complete induction on m. The statement is true
for m = 1 as

f(x+ ei � ε)− f(x) = D1
ei
f(x)

for any i ∈ {1, . . . , n}. Presume that it holds for all m′ ≤ m. Let k = (k1, . . . , kn)′ arbitrary
but fixed with |k| = m+ 1 and

Kl =
{
j = (j1, . . . , jn)′ ∈ Nn

0

∣∣∣ |j| = l and 0 ≤ ji ≤ ki for all i = 1, . . . , n
}

(B.4)

for l = 0, . . . ,m+ 1. Then, with Lemma B.2,

f(x+ k � ε)− f(x)

=
m+1∑

l=0

∑
j∈Kl

(−1)m+1−l
(
k1

j1

)
· · ·

(
kn
jn

)
f(x+ j � ε)


−

 m∑
l=0

∑
j∈Kl

(−1)m+1−l
(
k1

j1

)
· · ·

(
kn
jn

)
f(x+ j � ε)

− f(x)

= Dm+1
k f(x)−

 m∑
l=0

∑
j∈Kl

(−1)m+1−l
(
k1

j1

)
· · ·

(
kn
jn

)[
f(x+ j � ε)− f(x)

] (B.5)

−

1 +
m∑
l=0

∑
j∈Kl

(−1)m+1−l
(
k1

j1

)
· · ·

(
kn
jn

)f(x). (B.6)

Line (B.5) is the sum of differences of order less than or equal to m+ 1 due to the induction
hypothesis. Line (B.6) equals zero since

1 +
m∑
l=0

(−1)m+1−l ∑
j∈Kl

(
k1

j1

)
· · ·

(
kn
jn

)
=

m+1∑
l=0

(−1)m+1−l
(
m+ 1
l

)
= 0,

using the generalised Vandermonde’s identity and the binomial formula. This concludes
the proof.

The proof of Lemma B.3 already indicates how to expand an expression f(x+k � ε)− f(x)
with |k| = m in order to obtain a representation as the sum of differences Dm′

k′ .

Algorithm B.1. This algorithm converts an expression f(x+ k � ε)− f(x) to a sum of
differences that can each be expressed by the difference operator from Definition B.1. In the
following, the variable C stands for the already converted part of this expression, and R
denotes the remaining part which still has to be converted. At any time, the remainder R
consists of terms f(x+ j � ε) with |j| ≤ |k|, and C +R = f(x+ k � ε)− f(x).

Initially, one has C = 0 and R = f(x+ k � ε)− f(x). While R 6= 0, execute the following
steps:
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• Select the term αf(x+ k∗ � ε) of R which has highest order |k∗|. If this choice is not
unique, choose any term of highest order. Set

a← f(x+ k∗ � ε)

and choose α ∈ Z \ {0} according to the prefactor of a in R.

• Set

b←
m∗−1∑
l=0

∑
j∈K∗

l

(−1)m∗−l
(
k∗1
j1

)
· · ·

(
k∗n
jn

)
f(x+ j � ε)

with m∗ = |k∗| and K∗l defined as in (B.4) with ki replaced by k∗i .

• Set

C ← C + α(a+ b) = C + αDm∗

k∗ f(x)

and

R← R− α(a+ b).

When R = 0, the variable C has the desired form. This algorithm terminates in finite time
since the summands of b are of order less than |k∗|.

Lemma B.3 does not ensure uniqueness of the expansion of f(x+ k � ε)− f(x). If there is
more than one possible representation, all of them are equally correct. In the context of
the expansions in Chapter 4, however, caution is advised: There, we are not taking full
limits but include in the result all terms up to a certain order of a small parameter. To be
more precise, terms of the form

Dm
k f(x) = εk1

1 · · · εknn
Dm
k f(x)

εk1
1 · · · εknn

≈ εk1
1 · · · εknn

∂mf(x)
∂xk1

1 · · · ∂xknn

with ε1, . . . , εn ∈ {−ε̃, ε̃} for some small positive ε̃ are considered. In order to take
limits of the difference quotients consistently, all differences should be expanded over
intervals [a1, b1]×. . .×[an, bn] with identical sums of lengths |b1−a1|+. . .+|bn−an|. According
to Lemma B.2, Dm

k f(x) covers an interval with cumulated length k1|ε1|+ . . .+ kn|εn| = mε̃,
i. e. Dm

k f(x) and Dm′

k′ f(x) do not fulfil the required uniformity for m 6= m′.

Example B.1. In Chapter 5, the above expansions of terms of the form f(x+k �ε)−f(x)
are employed in order to derive diffusion approximations for Markov jump processes. There,
we especially deal with models where |k| ≤ 2 for all differences. In such cases proceed as
follows: As proposed in Definition B.1, attach the parameter ε as a second subscript to
the difference operator. Where both difference operators D1

k,ε and D2
k′,ε′ with |εj| = |ε′j| for

all j = 1, . . . , n appear, the first order difference operator can again be expanded as

D1
ei,ε
f(x) = 1

2

[
D1
ei,ε
f(x) +D1

ei,−εf(x)
]

+ 1
2

[
D1
ei,ε
f(x)−D1

ei,−εf(x)
]

= 1
2D

2
2ei,εf(x− ε) + 1

2D
1
ei,2εf(x− ε)
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for arbitrary i ∈ {1, . . . , n}. The last row consists of expansions over intervals with
cumulated lengths identical to that of the one covered by D2

k′,ε′. The according approximation
is

D1
ei,ε
f(x) = ε2

i

2
D2

2ei,εf(x− ε)
ε2
i

+ 2εi
2
D1
ei,2εf(x− ε)

2εi
≈ ε2

i

2
∂2f(x)
∂x2

i

+ εi
∂f(x)
∂xi

. (B.7)

Proceed similarly even in the absence of second order differences (e. g. for the expansion of
the master equation of the Poisson process, which cannot satisfyingly be approximated by a
diffusion though).

Example B.2. Consider a jump process with state variable x = (x1, . . . , xn)′ and possible
jumps

{
∆ = (∆1, . . . ,∆n)′

∣∣∣∆i ∈ {−ε, 0, ε} for all i = 1, . . . , n and
n∑
i=1
|∆i| ∈ {ε, 2ε}

}
for some fixed ε > 0. Section 4.3.1 describes how to approximate the so-called master
equation of this jump process by a partial differential equation. Let f : Rn → R be a twice
differentiable function. The occurring difference terms in the approximation procedure are
the following:

• For ∆ = εei:

f(xi − ε)− f(xi) = D1
ei,−∆f(x)

(B.7)
≈ ε2

2
∂2f(x)
∂x2

i

− ε ∂f(x)
∂xi

,

where only the component xi of interest is displayed as an argument of f .

• For ∆ = ε(ei + ej), where i 6= j:

f(xi − ε, xj − ε)− f(xi, xj)
=

[
f(xi − ε, xj − ε)− f(xi, xj − ε)− f(xi − ε, xj) + f(xi, xj)

]
+
[
f(xi, xj − ε)− f(xi, xj)

]
+
[
f(xi − ε, xj)− f(xi, xj)

]
=

(
D2
ei+ej ,−∆ +D1

ej ,−∆ +D1
ei,−∆

)
f(x)

(B.7)
≈

(
ε2 ∂2

∂xi∂xj
+ ε2

2
∂2

∂x2
j

− ε ∂

∂xj
+ ε2

2
∂2

∂x2
i

− ε ∂

∂xi

)
f(x).

• Similarly, for ∆ = ε(ei − ej), where i 6= j:

f(xi−ε, xj+ε)−f(xi, xj) ≈
(
−ε2 ∂2

∂xi∂xj
+ ε2

2
∂2

∂x2
j

+ ε
∂

∂xj
+ ε2

2
∂2

∂x2
i

− ε ∂

∂xi

)
f(x).

• For ∆ = −εei and ∆ = −ε(ei + ej), replace ε by −ε above.
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In Section 4.3.1, the role of f is taken by the product of the scaled transition rate w = εwN
and the transition density p of the process. The above difference terms are summed up,
devided by ε and rearranged such that one arrives at the partial differential equation (4.20),
that is

∂p(t,x)
∂t

= −
n∑
i=1

∂
[
µi(x, t)p(t,x)

]
∂xi

+ ε

2

n∑
i,j=1

∂2
[
Σij(x, t)p(t,x)

]
∂xi∂xj

.

The above jumps contribute to the unknown vector µ(x, t) = (µi(x, t))i=1,...,n and ma-
trix Σ(x, t) = (Σij(x, t))i,j=1,...,n as follows:

jump add to µ(x, t) add to Σ(x, t)

∆1 = εei eiw(t,x,∆1) eie
′
iw(t,x,∆1)

∆2 = −εei −eiw(t,x,∆2) eie
′
iw(t,x,∆2)

∆3 = ε(ei + ej) (ei + ej)w(t,x,∆3) (ei + ej)(ei + ej)′w(t,x,∆3)

∆4 = −ε(ei + ej) −(ei + ej)w(t,x,∆4) (ei + ej)(ei + ej)′w(t,x,∆4)

∆5 = ε(ei − ej) (ei − ej)w(t,x,∆5) (ei − ej)(ei − ej)′w(t,x,∆5).

This result coincides with the one that would have been obtained by application of the
Langevin approach or Kramers-Moyal expansion, which are introduced in Sections 4.3.3
and 4.3.4. It is also valid for the approximation of the infinitesimal generator, considered
in Section 4.3.2.

B.2 Lipschitz Continuity for SIR Models

A most tractable way to prove the existence and uniqueness of a strong solution of a
given SDE is to verify Lipschitz continuity of the drift µ and diffusion coefficient σ (cf.
Section 3.2.3). One thus has to show that there is a positive constant C such that for all t
in the time set and all x,y in the state space

‖µ(x, t)− µ(y, t)‖+ ‖σ(x, t)− σ(y, t)‖ ≤ C‖x− y‖, (B.8)

where ‖A‖2 = tr(A′A) denotes the Euclidean norm. The solution is non-explosive if

‖µ(x, t)‖2 + ‖σ(x, t)‖2 ≤ D
(
1 + ‖x‖2

)
(B.9)

for all t and x. These two properties are investigated in the following for the diffusion
models derived in Chapter 5. The results are discussed in Section 5.3.
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B.2.1 Standard SIR Model

Let x1 = (s1, i1)′ and x2 = (s2, i2)′ denote arbitrary elements of the state space of the
standard SIR model. Formula (B.8) is true if and only if there are positive constants C1
and C2 such that for all t

‖µ(x1, t)− µ(x2, t)‖2 ≤ C1‖x1 − x2‖2 and ‖σ(x1, t)− σ(x2, t)‖2 ≤ C2‖x1 − x2‖2.

The first inequality is

2α2(s1i1−s2i2)2−2αβ(s1i1−s2i2)(i1−i2)+β2(i1−i2)2 ≤ C1

(
(s1−s2)2+(i1−i2)2

)
. (B.10)

In what follows, the three summands on the left are considered separately. First, one has

(s1i1 − s2i2)2 =
(
(s1 − s2)i1 + s2(i1 − i2)

)2

≤ (s1 − s2)2 + (i1 − i2)2 + 2i1s2(s1 − s2)(i1 − i2).

The product (s1 − s2)(i1 − i2) is either negative and can be ignored, or it is positive and
less than or equal to max{(s1 − s2)2, (i1 − i2)2}. In any case, there is a constant κ1 > 0
such that

2α2(s1i1 − s2i2)2 ≤ κ1

(
(s1 − s2)2 + (i1 − i2)2

)
. (B.11)

For the second summand on the left of (B.10), one has

−(s1i1 − s2i2)(i1 − i2) = −(s1 − s2)(i1 − i2)i1 − s2(i1 − i2)2 ≤ (s2 − s1)(i1 − i2)i1.

The product is of importance only if (s2 − s1)(i1 − i2) is positive. In that case, one has
(s2 − s1)(i1 − i2)i1 ≤ max{(s1 − s2)2, (i1 − i2)2}, and hence

−2αβ(s1i1 − s2i2)(i1 − i2) ≤ κ2

(
(s1 − s2)2 + (i1 − i2)2

)
for an appropriate κ2 > 0. The third summand on the left of (B.10) can trivially be
bounded by the term on the right. Altogether, the inequality (B.10) is satisfied, i. e. the
drift vector µ fulfils the required Lipschitz condition.

For Lipschitz continuity of the diffusion coefficient σ, one needs to show

1
N

(
2α
(√

s1i1 −
√
s2i2

)2
+ β

(√
i1 −
√
i2
)2
)
≤ C2

(
(s1 − s2)2 + (i1 − i2)2

)
. (B.12)

It is, however, well known that the function f(x) =
√
x is not Lipschitz continuous in x = 0.

Hence, the inequality (B.12) cannot be true for any of the variables s1, s2, i1, i2 being equal
to zero. If, on the other hand, one requires s1, s2, i1, i2 > ε for some small but positive
fixed ε, Lipschitz continuity is given as shown in the following. In that case, one has

(√
s1i1 −

√
s2i2

)2
=
(

s1i1 − s2i2√
s1i1 +

√
s2i2

)2

≤ (s1i1 − s2i2)2

4ε2

(B.11)
≤ κ3

(
(s1 − s2)2 + (i1 − i2)2

)
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for suitable κ3 > 0. Similiarly, there is some κ4 > 0 such that

(√
i1 −
√
i2
)2

=
(

i1 − i2√
i1 +
√
i2

)2

≤ (i1 − i2)2

4ε ≤ κ4

(
(s1 − s2)2 + (i1 − i2)2

)
.

That proves (B.12).

Provided that a solution of an SDE exists, it does not explode when (B.9) is true. This condi-
tion is met for the considered SIR model as shown next: For x = (s, i)′, the inequality (B.9)
reads

2α2s2i2 − 2αβsi2 + β2i2 + 2αsi+ βi

N
≤ D

(
1 + s2 + i2

)
.

Because of s, i ∈ [0, 1], the left hand side of this expression is bounded, and the inequality
is trivially fulfilled.

B.2.2 Multitype SIR Model

Instead of formally proving conditions (B.8) and (B.9) also for the multitype SIR model,
this section heuristically motivates why Lipschitz continuity must hold for this model on
the restricted state space, and why the solution does not explode. That is because the
components of the drift vector µ and diffusion coefficient σ in the multitype SIR model have
the same structure as those in the standard SIR model. In particular, all components of µ
and σ contain the fractions of susceptibles and infectives either linearly or as a product sjim
with j,m ∈ {1, . . . , n}. Hence, the validation of (B.8) and (B.9) works as in Section B.2.1
but is definitely more elaborate.

B.3 On the Choice of the Update Interval

This section deals with the appropriate choice of an update interval for a sample path in
the context of the MCMC scheme introduced in Section 7.1. The choice of the update
interval is discussed in Section 7.1.6.

Assume we have S+ 1 observed or imputed consecutive data points Y 0,Y 1, . . . ,Y S. Setting
the update interval equal to (a, b) implies proposing new values for {Y a+1, . . . ,Y b−1}. The
interval (a, b) should be chosen in a way such that a, b ∈ {0, 1, . . . , S} and b − a ≥ 2.
Furthermore, the number of points in (a, b) shall be bounded by R ≤ S − 1. Algorithm 7.1
on page 163 presents a simple procedure to randomly draw such an interval (a, b). However,
this strategy updates data points near the boundaries of the time interval less frequently
than those in the centre. This fact is elucidated in the following.
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Let 1 ≤ k ≤ S − 1. The probability that k is included in the interior of (a, b) equals

P
(
k ∈ (a, b)

)
=

k−1∑
i=0

S∑
j=k+1

P
(
a = i ∧ b = j

)

=
k−1∑
i=0

S∑
j=k+1

P
(
a = i

)
P
(
b = j

∣∣∣ a = i
)

=
k−1∑
i=0

S∑
j=k+1

1
S − 1 ·

1
(
i+ 2 ≤ j ≤ min{i+R + 1, S}

)
min{i+R + 1, S} − (i+ 1)

= 1
S − 1

k−1∑
i=0

min{i+R+1,S}∑
j=k+1

1
min{i+R + 1, S} − (i+ 1) , (B.13)

where 1 denotes the indicator function, i. e. 1(A) equals one if A is true and zero otherwise.
The inner sum in (B.13) equals zero if min{i+R+ 1, S} < k+ 1, that is i < k−R. Hence,
one has

min{i+R+1,S}∑
j=k+1

1
min{i+R + 1, S} − i− 1 =


0 if i < k −R,

min{i+R + 1, S} − k
min{i+R + 1, S} − i− 1 otherwise.

Overall,

P
(
k ∈ (a, b)

)
= 1
S − 1

k−1∑
i=max{0,k−R}

min{i+R + 1, S} − k
min{i+R + 1, S} − i− 1 .

This probability is constant for R ≤ k ≤ S − R, that is where max{0, k − R} = k − R
and min{i + R + 1, S} = i + R + 1 for all i = 0, . . . , k − 1. For k < R or k > S − R,
however, the probability is generally lower, because the number of possible intervals (a, b)
covering points near the boundaries of (0, S) is less than the number of intervals covering
points in the centre. To correct for this disparity, extend both boundaries of (0, S) by R− 1
and draw an interval (a∗, b∗) within (1−R, S +R− 1). If a∗, b∗ 6∈ {0, . . . , S}, adjust them
respectively. The corrected procedure is carried out by Algorithm 7.2. The achievement is
that P(k ∈ (a, b)) is constant for k = 1, . . . , S − 1.

B.4 Posteriori Densities for the Ornstein-Uhlenbeck
Process

This section provides the calculation of the exact and approximate full conditional densities
for the model parameters of the one-dimensional Ornstein-Uhlenbeck process. These are
utilised in Chapter 7 for the illustration of the MCMC scheme considered there.

The Ornstein-Uhlenbeck X = (Xt)t≥0 process is the solution of the SDE

dXt = α(β −Xt)dt+ σdBt , X0 = x0,
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for parameters β ∈ R, α, σ ∈ R+ and initial value x0 ∈ R. This is a Gaussian process; its
explicit form and transition density are shown in Section A.2.

In the following we consider both proper and improper priors for the model parameters.
When improper priors are involved, the joint posterior density of all parameters might be
improper as well even if the full conditional densities are not. In that case the posterior
distribution is not well-defined. We hence start with the joint posterior density and
investigate for which priors its integral is finite.

Exact Posterior Density

Assume we have observations Y0, . . . , Ym of an Ornstein-Uhlenbeck process at times t0, . . . , tm,
where Y0 is the predefined initial value. Then the exact joint posterior density of α, β
and σ2 is

π
(
α, β, σ2

∣∣∣Y0, . . . , Ym
)
∝ π

(
Y0, . . . , Ym

∣∣∣α, β, σ2
)
p(α, β, σ2)

∝
(
m−1∏
k=0

π
(
Yk+1

∣∣∣Yk, α, β, σ2
))

p(α, β, σ2)

=
(
m−1∏
k=0

φ
(
Yk+1

∣∣∣µ(∆tk, Yk, α, β),Σ(∆tk, Yk, α, σ)
))

p(α, β, σ2),

where φ denotes the Gaussian density and

µ(∆tk, Yk, α, β) = Yke−α∆tk + β
(
1− e−α∆tk

)
and Σ(∆tk, Yk, α, σ) = σ2

2α
(
1− e−2α∆tk

)
.

The joint posterior density π(α, β, σ2|Y0, . . . , Ym) of all parameters is hence proportional to

p(α, β, σ2) exp

− α

σ2

m−1∑
k=0

(
Yk+1−Yke−α∆tk − β

(
1−e−α∆tk

))2

1− e−2α∆tk


(
σ2

α

)m/2 m−1∏
k=0

√
1− e−2α∆tk

. (B.14)

Suppose that a priori the model parameters are mutually independent. More specifically,
let

β ∼ N (β0, ρ
2
β) and σ2 ∼ IG(κ0, ν0) (B.15)

for β0 ∈ R, ρβ ∈ R+ ∪ {+∞} and (κ0, ν0) ∈ R2
+ ∪ {(−1, 0), (0, 0)}. With these parameter

ranges we explicitly include the improper priors p(β) ∝ 1, p(σ2) ∝ 1 and p(σ2) ∝ σ−2. The
choice of p(α) will be considered later.

We want to investigate if the joint posteriori density (B.14) is proper for our choice of prior
densities, i. e. whether the integral of (B.14) over all α, β and σ2 is finite. Consider first
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the joint marginal posterior density of α and β,

π
(
α, β

∣∣∣Y0, . . . , Ym
)

=
∞∫
0

π
(
α, β, σ2

∣∣∣Y0, . . . , Ym
)
dσ2

∝ p(α, β)αm
2

m−1∏
k=0

√
1− e−2α∆tk

∞∫
0

(
σ2
)−(m2 +κ0+1) exp

(
−K + ν0

σ2

)
dσ2,

where

K = α
m−1∑
k=0

(
Yk+1 − Yke−α∆tk − β(1− e−α∆tk)

)2

1− e−2α∆tk
.

The integrand is the unnormalised density of an inverse gamma distribution with parame-
ters m/2 + κ0 and K + ν0. As m is usually greater than two, both parameters are positive.
Hence,

π
(
α, β

∣∣∣Y0, . . . , Ym
)
∝ p(α, β)αm

2

m−1∏
k=0

√
1− e−2α∆tk

(
ν0 +K

)−(m2 +κ0)
.

Next, integrate out β. One has

π
(
α
∣∣∣Y0, . . . , Ym

)
=

∞∫
−∞

π
(
α, β

∣∣∣Y0, . . . , Ym
)
dβ

∝ p(α)αm
2

m−1∏
k=0

√
1− e−2α∆tk

∞∫
−∞

exp
(
−(β − β0)2

2ρ2
β

)(
ν0 +K

)−(m2 +κ0)
dβ.

The first factor in the integrand is less than or equal to one for all choices of β0 and ρβ. It
can hence be omitted when we are interested only in an upper bound for the posterior of α.
The second factor can be rewritten as

(
ν0 +K

)−(m2 +κ0) =
(
ν0 + α

m−1∑
k=0

(β − βk)2

ck

)−(m2 +κ0)
,

where
βk = Yk+1 − Yke−α∆tk

1− e−α∆tk
and ck = 1 + e−α∆tk

1− e−α∆tk
.

Further rearranging yields

(
ν0 +K

)−(m2 +κ0) =

1 + 1
m+ 2κ0 − 1 ·

m+ 2κ0 − 1
ν0
a1α

+ a3
a1
− a2

2
a2

1

·
(
β − a2

a1

)2

−m+2κ0

2

(B.16)
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with

a1 =
m−1∑
k=0

1
ck

, a2 =
m−1∑
k=0

βk
ck

and a3 =
m−1∑
k=0

β2
k

ck
.

This is the unnormalised density of the univariate t-distribution with mean a2/a1, scale
parameter

√
m+ 2κ0 − 1−1

√
ν0/a1α + a3/a1 − a2

2/a
2
1 and m+ 2κ0 − 1 degrees of freedom.

The scale parameter is well-defined as a1a3 − a2
2 ≥ 0 due to the Cauchy-Schwarz inequality.

The integral of (B.16) over all β is proportional to the scale parameter, i. e.

π
(
α
∣∣∣Y0, . . . , Ym

)
≤ C p(α)

(
m−1∏
k=0

√
α

1− e−2α∆tk

) √√√√ ν0

a1α
+ a3

a1
− a2

2
a2

1
(B.17)

for some constant C ∈ R+. For α ∈ R+ fixed, i. e. p(α) = δ(α− α0) being the Dirac delta
function with positive α0, the integral of this expression is finite, that means the joint
posterior density of α, β and σ2 is proper. Otherwise, a sufficient criterion to obtain a
proper posterior is that (B.17) is normalisable.

In the simulation study in Section 7.1.7, the parameter α ∈ R+ is considered fixed. In that
case, one obtains a proper posterior if β and σ2 are chosen according to (B.15). The latter
explicitly includes improper priors.

Exact Full Conditional Densities

We now derive the full conditional densities for the three parameters of the Ornstein-
Uhlenbeck process. The existence of a proper full conditional density does however not
automatically imply a proper joint posterior distribution. That is why the following formulas
should only be applied in an MCMC algorithm after one has confirmed that the chosen
combination of prior distributions implies a proper posterior.

All full conditional densities are proportional to the joint posterior density and hence
to the expression (B.14). They are obtained by dropping all multiplicative terms which
are constant with respect to the considered parameter. Suppose that a priori the model
parameters are mutually independent. Then the full conditional density for the parameter β
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is

π
(
β
∣∣∣α, σ2, Y0, . . . , Ym

)
∝ p(β) exp

− α

σ2

m−1∑
k=0

(
Yk+1 − Yke−α∆tk − β

(
1− e−α∆tk

))2

1− e−2α∆tk


∝ p(β) exp

− α

σ2

β2
m−1∑
k=0

(
1− e−α∆tk

)2

1− e−2α∆tk
− 2β

m−1∑
k=0

(
Yk+1 − Yke−α∆tk

)(
1− e−α∆tk

)
1− e−2α∆tk




= p(β) exp

−
1
2 ·

2α
σ2

(
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

)β2 − 2β

m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk



 .

In case of a flat prior p(β) ∝ 1 for β ∈ R, this is an unnormalised Gaussian density,

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

,

σ2

2α
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

 . (B.18)

For β ∼ N (β0, ρ
2
β) with β0 ∈ R and ρβ ∈ R+, the full conditional density becomes

π
(
β
∣∣∣α, σ2, Y0, . . . , Ym

)
∝ exp

(
−1

2

[
β2
(

1
ρ2
β

+ 2α
σ2

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

)
− 2β

(
β0

ρ2
β

+ 2α
σ2

m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

)])

= exp

−
1
2

(
1
ρ2
β

+ 2α
σ2

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

)β2 − 2β

β0

ρ2
β

+ 2α
σ2

m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

1
ρ2
β

+ 2α
σ2

m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk



 .

The resulting density is again Gaussian, in particular

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


σ2β0

2αρ2
β

+
m−1∑
k=0

Yk+1 − Yke−α∆tk

1 + e−α∆tk

σ2

2αρ2
β

+
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

,

σ2

2α
σ2

2αρ2
β

+
m−1∑
k=0

1− e−α∆tk

1 + e−α∆tk

 .

Note that for ρβ =∞ this expression equals Equation (B.18). For the parameter σ2, the
full conditional density fulfils

π
(
σ2
∣∣∣α, β, Y0, . . . , Ym

)
∝ p(σ2)σ−mexp

− α

σ2

m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1− e−α∆tk

))2

1− e−2α∆tk

 .
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If one chooses a flat prior p(σ2) ∝ 1 for σ2 ∈ R+, the above is an unnormalised inverse
gamma density of

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 − 1 , α
m−1∑
k=0

(
Yk+1 − Yke−α∆tk − β

(
1− e−α∆tk

))2

1− e−2α∆tk

 .
For σ2 ∼ IG(κ0, ν0) for κ0, ν0 ∈ R+, the full conditional density is proportional to

(
σ2
)−(m/2+κ0+1)

exp

− 1
σ2

ν0 + α
m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1− e−α∆tk

))2

1− e−2α∆tk


 ,

that is

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 + κ0 , ν0 + α
m−1∑
k=0

(
Yk+1 − Yke−α∆tk − β

(
1− e−α∆tk

))2

1− e−2α∆tk

 .
For κ0 = −1 and ν0 = 0, one again arrives at the result derived for the flat prior. The full
conditional density of α,

π
(
α
∣∣∣ β, σ2, Y0, . . . , Ym

)
∝

p(α)αm/2 exp

− α

σ2

m−1∑
k=0

(
Yk+1−Yke−α∆tk−β

(
1− e−α∆tk

))2

1− e−2α∆tk


m−1∏
k=0

√
1− e−2α∆tk

,

cannot be recognised to be of any standard distribution type.

Approximate Posterior Density

The exact transition density is usually unknown, but can for small ∆tk be approximated by
application of the Euler scheme

Yk+1 ∼ N
(
Yk + α(β − Yk)∆tk, σ2∆tk

)
for k = 0, . . . ,m− 1. The approximate joint posterior density of α, β and σ2 then is

π
(
α, β, σ2

∣∣∣Y0, . . . , Ym
)
∝
(
m−1∏
k=0

φ
(
Yk+1

∣∣∣Yk + α(β − Yk)∆tk, σ2∆tk
))

p(α, β, σ2)

∝p(α, β, σ2)σ−m exp

−1
2

m−1∑
k=0

(
Yk+1−Yk−α(β−Yk)∆tk

)2

σ2∆tk

 . (B.19)
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The remarks on proper and improper posterior densities on page 352 naturally also apply
for the approximate densities. Thus, we first consider in which cases the approximate
posterior is normalisable before deriving the approximate full conditional distributions.

Choose the prior densities as in (B.15). Integrating the joint posterior density over all σ2

yields

π
(
α, β

∣∣∣Y0, . . . , Ym
)
∝ p(α, β)

∞∫
0

(σ2)−(m2 +κ0+1) exp
(
− 1
σ2 · (ν0 +K)

)
dσ2,

where

K = 1
2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk
.

The integrand is an unnormalised inverse gamma density with parameters m/2 + κ0
and ν0 + K. As in the consideration of the exact posterior density on page 353, these
hyperparameters are usually well-defined. Therefore,

π
(
α, β

∣∣∣Y0, . . . , Ym
)
∝ p(α, β)

(
ν0 +K

)−m+2κ0
2 .

Now integrate this expression over all β, that is

π
(
α
∣∣∣Y0, . . . , Ym

)
∝ p(α)

∞∫
−∞

exp
(
−(β − β0)2

2ρ2
β

)(
ν0 +K

)−m+2κ0
2 dβ.

The exponential function in the integrand is less than or equal to one for all values of β0
and ρβ. Suppress this factor to obtain an upper bound of the integral. Furthermore, rewrite

(
ν0 +K

)−m+2κ0
2 =

(
ν0 + α2

2

m−1∑
k=0

∆tk(β − βk)2
)−m+2κ0

2

with βk = Yk + (Yk+1 − Yk)/α∆tk, and furthermore

(
ν0 +K

)−m+2κ0
2 =

1 + 1
m+ 2κ0 − 1 ·

m+ 2κ0 − 1
2ν0
b1α2 + b3

b1
− b22

b21

·
(
β − b2

b1

)2

−m+2κ0

2

with
b1 =

m−1∑
k=0

∆tk , b2 =
m−1∑
k=0

∆tkβk and b3 =
m−1∑
k=0

∆tkβ2
k .

This is the unnormalised density of a univariate t-distribution with mean b2/b1, scale
parameter

√
m+ 2κ0 − 1−1

√
2ν0/b1α2 + b3/b1 − b2

2/b
2
1 and m+ 2κ0 − 1 degrees of freedom.

Once again, one can easily verify with the Cauchy-Schwarz inequality that the scale
parameter is well-defined. Thus there exists a constant C ∈ R+ such that

π
(
α
∣∣∣Y0, . . . , Ym

)
≤ C p(α)

√√√√ 2ν0

b1α2 + b3

b1
− b2

2
b2

1
.
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If p(α) is chosen such that the integral of this expression over all α is finite, the joint posterior
distribution of all model parameters is proper. In the simulation study in Section 7.1.7 this
condition is fulfilled as α is considered fixed.

Approximate Full Conditional Densities

In case the prior densities are chosen such that the posterior distribution is proper, the
full conditionals are proportional to (B.19). Let the prior densities of all parameters be
independent. Then for the full conditional density of α one obtains

π
(
α
∣∣∣ β, σ2, Y0, . . . , Ym

)
∝ p(α) exp

−1
2

α2
m−1∑
k=0

(
β − Yk

)2
∆tk

σ2 − 2α
m−1∑
k=0

(
Yk+1 − Yk

)(
β − Yk

)
σ2




= p(α) exp

−
1
2

m−1∑
k=0

(
β − Yk

)2
∆tk

σ2


α2 − 2α

m−1∑
k=0

(
Yk+1 − Yk

)(
β − Yk

)
m−1∑
k=0

(
β − Yk

)2
∆tk



 .

If p(α) ∝ 1 for α ∈ R+, this corresponds to the truncated Gaussian distribution

α
∣∣∣ β, σ2, Y0, . . . , Ym ∼ Ntrunc


m−1∑
k=0

(Yk+1 − Yk)(β − Yk)

m−1∑
k=0

(β − Yk)2∆tk
, σ2

(
m−1∑
k=0

(β − Yk)2∆tk
)−1

 ,

and for α ∼ Ntrunc(α0, ρ
2
α) one obtains

α
∣∣∣ β, σ2, Y0, . . . , Ym ∼ Ntrunc


ρ2
α

m−1∑
k=0

(Yk+1 − Yk)(β − Yk) + α0σ
2

ρ2
α

m−1∑
k=0

(β − Yk)2∆tk + σ2
,

σ2ρ2
α

ρ2
α

m−1∑
k=0

(β − Yk)2∆tk + σ2

.

For ρα =∞, this is the result for a flat prior. The full conditional density of β equals

π
(
β
∣∣∣α, σ2, Y0, . . . , Ym

)
∝ p(β) exp

(
−1

2

m−1∑
k=0

α2(β − Yk)2∆tk − 2(Yk+1 − Yk)α(β − Yk)
σ2

)

∝ p(β) exp
(
− 1

2σ2

[
β2

m−1∑
k=0

α2∆tk − 2β
m−1∑
k=0

(
α(Yk+1 − Yk) + α2Yk∆tk

)])

= p(β) exp
(
− 1

2σ2 α
2(tm − t0)

[
β2 − 2β 1

tm − t0

(
Ym − Y0

α
+

m−1∑
k=0

Yk∆tk
)])

.
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With a flat prior p(β) ∝ 1 for β ∈ R, this leads to

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


Ym − Y0

α
+

m−1∑
k=0

Yk∆tk

tm − t0
,

σ2

α2(tm − t0)

 ,

for β ∼ N (β0, ρ
2
β) to

β
∣∣∣α, σ2, Y0, . . . , Ym ∼ N


α2ρ2

β

(
Ym − Y0

α
+

m−1∑
k=0

Yk∆tk
)

+ σ2β0

α2ρ2
β(tm − t0) + σ2 ,

σ2ρ2
β

α2ρ2
β(tm − t0) + σ2

 .

Again, this expression yields the same result as for the flat prior when setting ρβ = ∞.
Eventually, the full conditional density of σ2 fulfils

π
(
σ2
∣∣∣α, β, Y0, . . . , Ym

)
∝ p(σ2)σ−m exp

− 1
2σ2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk

 .
If p(σ2) ∝ 1 for σ2 ∈ R+, it follows immediately that

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 − 1 , 1
2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk

 ,
and in case of σ2 ∼ IG(κ0, ν0) one obtains

σ2
∣∣∣α, β, Y0, . . . , Ym ∼ IG

m2 + κ0 , ν0 + 1
2

m−1∑
k=0

(
Yk+1 − Yk − α(β − Yk)∆tk

)2

∆tk

 .
For κ0 = −1 and ν0 = 0, this expression is the outcome for a flat prior for σ2.

B.5 Inefficiency Factors

In order to graphically represent the serial correlation of consecutive draws of an imputed
data point Y k from MCMC schemes as in Chapter 7, Elerian et al. (2001) utilise the
inefficiency factor

ι(Y k) = 1 + 2
∞∑
j=1

ρj(Y k)
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of according posterior estimates, where ρj(Y k) is the autocorrelation of Y k at lag j. The
inefficiency factor is the factor by which one has to multiply the length of an MCMC chain
in order to achieve equivalent results as from i.i.d. draws. Elerian et al. estimate ι as

ι̂(Y k) = 1 + 2n
n− 1

κ∑
j=1

K
(
j

κ

)
ρ̂j(Y k),

where n is the length of the Markov chain, κ is an appropriate bandwidth until which the
autocorrelation significantly contributes to the serial dependence, ρ̂j is an estimate of ρj,
and K is the Parzen kernel, that is (Parzen, 1964)

K(u) =


1− 6u2 + 6|u|3 for |u| ≤ 1

2
2(1− |u|)3 for 1

2 < |u| ≤ 1
0 otherwise.

B.6 Path Proposals in the Latent Data Framework

In this section, appropriate proposal densities for diffusion paths are derived as required in
Section 7.2.1. The notation is adopted from there. In short, the following considerations
avail proposing a path segment {Y a+1, . . . ,Y r−1,Lr,Y r+1, . . . ,Y b−1}, where the vector
Y r = (V ′r,L′r)′ consists of an observed part V r ∈ Rd1 and a latent part Lr ∈ Rd2 .

For shorter notation, abbreviate µk = µ(Y k,θ) and Σk = Σ(Y k,θ) for all k. Furthermore,
decompose µ and Σ into

µ =
(
µv

µl

)
and Σ =

(
Σvv Σvl

Σlv Σll

)

such that µv ∈ Rd1 , µl ∈ Rd2 , Σvv ∈ Rd1×d1 and Σll ∈ Rd2×d2 .

Approximation of L
(
Lr |Y k, V r, Y b, θ

)
for k < r

Let a ≤ k < r. Similarly to the derivation of the modified bridge proposal on page 152, one
has

π(Y r|Y k,Y b,θ) ∝ π(Y b |Y r,θ)π(Y r|Y k,θ)
≈ φ(Y b |Y r + µr∆rb,Σr∆rb) · φ(Y r |Y k + µk∆kr,Σk∆kr),

where ∆rb = tb − tr and ∆kr = tr − tk. The Gaussian densities φ stem from the Euler
approximation (7.3). Approximate µr and Σr by µk and Σk. Then π(Y r|Y k,Y b,θ) is



B.6 Path Proposals in the Latent Data Framework 361

approximately proportional to

exp
−1

2

(Y r −
(
Y b − µk∆rb

))′Σ−1
k

∆rb

(
Y r −

(
Y b − µk∆rb

))

+
(
Y r −

(
Y k + µk∆kr

))′Σ−1
k

∆kr

(
Y r −

(
Y k + µk∆kr

))
∝ exp

−1
2

Y ′r((∆−1
rb + ∆−1

kr

)
Σ−1
k

)
Y r − 2Y ′r Σ−1

k

Y b − µk∆rb

∆rb

+ Y k + µk∆kr

∆kr


∝ exp

−1
2

∆kb

∆rb∆kr

Y ′r Σ−1
k

(
Y r − 2 ∆krY b + ∆rbY k

∆kb

),
where ∆kb = ∆kr+∆rb = tb−tk. This is the unnormalised density of the normal distribution

Y r |Y k,Y b,θ ∼ N
(
Y k + Y b − Y k

∆kb

∆kr ,
∆rb∆kr

∆kb

Σk

)
,

i. e. (
V r

Lr

) ∣∣∣∣Y k,Y b,θ ∼ N



V k + V b − V k

∆kb

∆kr

Lk + Lb −Lk
∆kb

∆kr

 ,
∆rb∆kr

∆kb

(
Σvv
k Σvl

k

Σlv
k Σll

k

) .
The conditional distribution of Lr given V r (and Y k,Y b,θ) follows from this joint distribu-
tion by application of multivariate normal theory. That is

Lr |Y k,V r,Y b,θ ∼ N
(
ηk , Λk

)
with

ηk = Lk + Lb −Lk
∆kb

∆kr + Σlv
k

(
Σvv
k

)−1
(
V r − V k −

V b − V k

∆kb

∆kr

)
and

Λk = ∆rb∆kr

∆kb

(
Σll
k −Σlv

k

(
Σvv
k

)−1
Σvl
k

)
.

Approximation of L
(
Y k+1 |Y k, V r, θ

)
for k < r − 1

Let a ≤ k < r − 1. Application of the Euler scheme yields

Y k+1 |Y k,θ ∼ N
(
Y k + µk∆tk,Σk∆tk

)
V r |Y k+1,Y k,θ ∼ N

(
V k+1 + µvk+1∆kr−,Σvv

k+1∆kr−
)
,

where ∆tk = tk+1 − tk and ∆kr− = tr − tk+1. Approximate µk+1 and Σk+1 by µk and Σk,
respectively, such that

Y k+1 |Y k,θ ∼ N
(
Y k + µk∆tk,Σk∆tk

)
V r |Y k+1,Y k,θ ∼ N

(
V k+1 + µvk∆kr−,Σvv

k ∆kr−
)
.
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The joint distribution of Y k+1 and V r conditioned on Y k and θ is again Gaussian. The
conditional expected value and variance of (Y ′k+1,V

′
r)′ can be obtained as follows: The

iterated expectation theorem yields
E
(
V r

∣∣∣Y k,θ
)

= E
(
E
(
V r

∣∣∣Y k+1
) ∣∣∣Y k,θ

)
= E

(
V k+1 + µvk∆kr−

∣∣∣Y k,θ
)

= V k + µvk∆kr,

where ∆kr = ∆kr− + ∆tk = tr − tk. Furthermore, the variance decomposition formula (law
of total variance) leads to

Var
(
(Y ′k+1,V

′
r)′
∣∣∣Y k,θ

)
= Var

(
E
(
(Y ′k+1,V

′
r)′
∣∣∣Y k+1

) ∣∣∣Y k,θ
)

+ E
(
Var

(
(Y ′k+1,V

′
r)′
∣∣∣Y k+1

) ∣∣∣Y k,θ
)

= Var
((

Y k+1
V k+1 + µvk∆kr−

) ∣∣∣∣Y k,θ

)
+ E

((
0 0
0 Σvv

k ∆kr−

) ∣∣∣∣Y k,θ

)

=
(

Σk∆tk D′k∆tk
Dk∆tk Σvv

k ∆kr

)
,

where Dk = (Σvv
k ,Σvl

k ). Altogether,(
Y k+1
V r

) ∣∣∣∣Y k,θ ∼ N
((
Y k + µk∆tk
V k + µvk∆kr

)
,

(
Σk∆tk D′k∆tk
Dk∆tk Σvv

k ∆kr

))
. (B.20)

This implies
Y k+1 |Y k,V r,θ ∼ N (ρk,Γk)

with

ρk = Y k + µk∆tk + ∆tk
∆kr

D′k(Σvv
k )−1

(
V r − V k − µvk∆kr

)

=


V k + V r − V k

∆kr

∆tk

Lk + µlk∆tk + Σlv
k (Σvv

k )−1
(
V r − V k

∆kr

− µvk

)
∆tk


and

Γk =
(

Σk −
∆tk
∆kr

D′k(Σvv
k )−1Dk

)
∆tk

=
(

Σvv
k ∆kr− Σvl

k ∆kr−
Σlv
k ∆kr− Σll

k∆kr−Σlv
k (Σvv

k )−1Σvl
k ∆tk

)
∆tk
∆kr

.

Approximation of L
(
Y k+1 |Y k, V r, Y b, θ

)
for k < r − 1

Let a ≤ k < r − 1. Application of the Euler scheme yields approximately
Y k+1 |Y k,θ ∼ N

(
Y k + µk∆tk,Σk∆tk

)
V r |Y k+1,Y k,θ ∼ N

(
V k+1 + µvk∆kr−,Σvv

k ∆kr−
)

Y b |Y k+1,Y k,θ ∼ N
(
Y k+1 + µk∆kb−,Σk∆kb−

)
,
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where ∆tk = tk+1 − tk, ∆kr− = tr − tk+1 and ∆kb− = tb − tk+1. As in the preceding
derivations, µk+1 and Σk+1 have been replaced by µk and Σk here. Conditionally on Y k

and θ, the three random vectors Y k+1, V r and Y b are jointly Gaussian distributed. The
joint distribution of Y k+1 and V r is already known from (B.20). The remaining distribution
parameters can be achieved as above by application of the iterated expectation theorem
and the variance decomposition formula. In particular,

E
(
Y b

∣∣∣Y k,θ
)

= E
(
E
(
Y b

∣∣∣Y k+1
) ∣∣∣Y k,θ

)
= E

(
Y k+1 + µk∆kb−

∣∣∣Y k,θ
)

= Y k + µk∆kb,

where ∆kb = ∆tk + ∆kb− = tb − tk, and

Var
(
(Y ′k+1,Y

′
b)′
∣∣∣Y k,θ

)
= Var

(
E
(
(Y ′k+1,Y

′
b)′
∣∣∣Y k+1

) ∣∣∣Y k,θ
)

+ E
(
Var

(
(Y ′k+1,Y

′
b)′
∣∣∣Y k+1

) ∣∣∣Y k,θ
)

= Var
((

Y k+1
Y k+1 + µk∆kb−

) ∣∣∣∣Y k,θ

)
+ E

((
0 0
0 Σk∆kb−

) ∣∣∣∣Y k,θ

)

=
(

Σk∆tk Σk∆tk
Σk∆tk Σk∆kb

)
.

In order to derive the conditional covariance of V r and Y b, consider the approximate
distributions

Y r |Y k,θ ∼ N
(
Y k + µk∆kr,Σk∆kr

)
Y b |Y r,Y k,θ ∼ N

(
Y r + µk∆rb,Σk∆rb

)
with ∆rb = tb − tr. Then

Var
(
(Y ′r,Y ′b)′

∣∣∣Y k,θ
)

= Var
(
E
(
(Y ′r,Y ′b)′

∣∣∣Y r

) ∣∣∣Y k,θ
)

+ E
(
Var

(
(Y ′r,Y ′b)′

∣∣∣Y r

) ∣∣∣Y k,θ
)

=
(

Σk∆kr Σk∆kr

Σk∆kr Σk∆kb

)
.

In summary,Y k+1
V r

Y b

 ∣∣∣∣Y k,θ ∼ N


Y k + µk∆tk
V k + µvk∆kr

Y k + µk∆kb

 ,

Σk∆tk D′k∆tk Σk∆tk
Dk∆tk Σvv

k ∆kr Dk∆kr

Σk∆tk D′k∆kr Σk∆kb


 .

The resulting conditional distribution of Y k+1 reads

Y k+1 |Y k,V r,Y b,θ ∼ N (ξk,Ψk)

with

ξk = Y k + µk∆tk +
(
D′k∆tk,Σk∆tk

)(Σvv
k ∆kr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
V r − V k − µvk∆kr

Y b − Y k − µk∆kb

)
and

Ψk = Σk∆tk −
(
D′k∆tk,Σk∆tk

)(Σvv
k ∆kr Dk∆kr

D′k∆kr Σk∆kb

)−1 (
Dk∆tk
Σk∆tk

)
.
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B.7 Derivation of Radon-Nikodym Derivatives

This section provides the proof of Corollary 7.5 on page 222. In particular, it derives
explicit expressions for the Radon-Nikodym derivatives dP̃θ/dDµ,θ and dP̃θ/dD0,θ, where
the measures P̃θ, Dµ,θ and D0,θ are defined in Table 7.6 on page 215. These derivatives
are employed as parts of acceptance probabilities in Section 7.4.4. Their representations
as obtained here cannot be found in the literature; the corresponding calculations are
however shifted to this appendix due to space restrictions. The notation here is adopted
from Section 7.4.4.

Under the assumptions from page 218, Theorems 5 and 6 in Delyon and Hu (2006) prove
that P̃θ � Dµ,θ and P̃θ � D0,θ, i. e. the requested derivatives exist. The assumptions
are supposed to hold here as well. In particular, σ is assumed to be invertible and is
hence a square matrix. Delyon & Hu also provide explicit formulas for dP̃θ/dDµ,θ(X [0,T ])
and dP̃θ/dD0,θ(X [0,T ]), but these are up to proportionality constants which depend on
the parameter θ, the initial value X0 = x0 and the final value XT = x. These constants
are required in the context of Section 7.4.4. Furthermore, the derivatives shall be applied
to X(0,T−ε] instead of X [0,T ], where ε > 0 is a small but fixed time step. This causes further
changes in the resulting formulas.

In Chapter 7, solely time-homogeneous diffusions are considered, i. e. the drift function µ,
diffusion coefficient σ and diffusion matrix Σ of the target diffusion do not depend on
time t. The following results can however be obtained also for time-inhomogeneous diffusions
without relevant additional overhead. Hence, in this section, the time variable is included in
the notation µ(X t, t), σ(X t, t) and Σ(X t, t). Dependence on the parameter θ, on the other
hand, is suppressed because the parameter is considered fixed in the following derivations.
The parameter is however easily re-incorporated in the notation as an argument of µ, σ
and Σ.

In the following, we will show that

dP̃θ
dDµ,θ

(
X(0,T−ε]

)
= exp

−T−ε∫
0

D1(X t, t) +D2(X t, t) +D3(X t, t)
2(T − t)

(T
ε

)− d(d−1)
2

·
φ
(
x
∣∣∣x0, TΣ(x0, 0)

)
fθ(x)

|Σ(x0, 0)| 12
|Σ(XT−ε, T − ε)|

1
2

and

dP̃θ
dD0,θ

(
X(0,T−ε]

)
= exp

−T−ε∫
0

D2(X t, t)+D3(X t, t)
2(T − t)

 φ
(
x
∣∣∣x0, TΣ(x0, 0)

)
fθ(x)

(
T

ε

)− d(d−1)
2

· exp
T−ε∫

0

µ′(X t, t)Σ−1(X t, t)dX t−
1
2

T−ε∫
0

µ′(X t, t)Σ−1(X t, t)µ(X t, t)dt
 |Σ(x0, 0)| 12
|Σ(XT−ε, T − ε)|

1
2
,
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where

D1(X t, t) = −2(x−X t)′Σ−1(X t, t)µ(X t, t)dt
D2(X t, t) = (x−X t)′

(
dΣ−1(X t, t)

)
(x−X t)

D3(X t, t) = −
d∑
i=1

d∑
j=1

(x−X t)′
(
∂Σ−1(X t, t)

∂x(j) ei + ∂Σ−1(X t, t)
∂x(i) ej

)
T − t

dX
(i)
t dX

(j)
t .

In these formulas, fθ(x) is the Lebesgue density of the final point x under the unconditioned
law Pθ (defined in Table 7.6 on page 215), φ(y|ν,Λ) is the multivariate Gaussian density
evaluated at y with mean ν and covariance matrix Λ, ei is the ith unit vector of dimension d,
|A| is the determinant of a square matrix A, dX(i)

t is the ith component of dX t, and ∂/∂x(i)

denotes differentiation with respect to the ith component of the state variable.

We start with the derivation of dP̃θ/dDµ,θ(X(0,T−ε]) = (dP̃θ/dPθ)(dPθ/dDµ,θ)(X(0,T−ε]).
First, investigate the relationship between P̃θ and Pθ. As already shown in Equation (7.62)
on page 221, one heuristically has

dP̃θ
dPθ

(
X(0,T−ε]

)
= fθ(x|XT−ε)

fθ(x) . (B.21)

So continue with the derivation of dPθ/dDµ,θ. Delyon & Hu (2006, Theorem 1) provide a
generalisation of Girsanov’s formula which holds under weaker conditions than those in
Section 3.2.12 and which is applicable in the present case. With this theorem, we however
obtain the same result as under blind application of (3.26) to (dPθ/dWθ)(dWθ/dDµ,θ),
where Wθ is the driftless analogue of Pθ (cf. Table 7.6); that is

log
(
dPθ
dDµ,θ

)(
X(0,T−ε]

)

= −
T−ε∫
0

(
x−X t

T − t

)′
Σ−1(X t, t)dX t +

T−ε∫
0

(
x−X t

T − t

)′
Σ−1(X t, t)µ(X t, t)dt

+ 1
2

T−ε∫
0

(
x−X t

T − t

)′
Σ−1(X t, t)

(
x−X t

T − t

)
dt. (B.22)

The integral in (B.22) is now rewritten as in the proof of Theorem 5 in Delyon and Hu
(2006). This is as follows: Consider dg(t,X t), where

g(t,X t) = 1
T − t

(x−X t)′Σ−1(X t, t)(x−X t).

With the Itô formula from Section 3.2.10 we obtain

dg(t,X t) = ∂g(t,X t)
∂t

dt+
d∑
i=1

∂g(t,X t)
∂x(i) dX

(i)
t + 1

2

d∑
i=1

d∑
j=1

∂2g(t,X t)
∂x(i)∂x(j) dX

(i)
t dX

(j)
t (B.23)
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with

∂g(t,X t)
∂t

dt = (x−X t)′Σ−1(X t, t)(x−X t)
(T − t)2 dt

+
(x−X t)′

∂Σ−1(X t, t)
∂t

(x−X t)
T − t

dt, (B.24)

∂g(t,X t)
∂x(i) dX

(i)
t =− 2(x−X t)′Σ−1(X t, t)ei

T − t
dX

(i)
t

+
(x−X t)′

∂Σ−1(X t, t)
∂x(i) (x−X t)
T − t

dX
(i)
t (B.25)

1
2
∂2g(t,X t)
∂x(i)∂x(j) dX

(i)
t dX

(j)
t =−

(x−X t)′
∂Σ−1(X t, t)

∂x(j) ei

T − t
dX

(i)
t dX

(j)
t

−
(x−X t)′

∂Σ−1(X t, t)
∂x(i) ej

T − t
dX

(i)
t dX

(j)
t

+
(x−X t)′

∂2Σ−1(X t, t)
∂x(i)∂x(j) (x−X t)
2(T − t) dX

(i)
t dX

(j)
t (B.26)

+ e′iΣ−1(X t, t)ej
T − t

dX
(i)
t dX

(j)
t . (B.27)

The following simplifications are possible: Summarise the expressions in lines (B.24), (B.25)
and (B.26) including the summation signs as in (B.23) as

(x−X t)′
(
dΣ−1(X t, t)

)
(x−X t)

T − t

according to Itô’s formula. Furthermore, apply the mean-square rules (3.25) from page 39
to obtain

dX
(i)
t dX

(j)
t =

(∑
k

σik(X t, t)dB(k)
t

)(∑
k

σjk(X t, t)dB(k)
t

)
=
∑
k

σik(X t, t)σjk(X t, t)dt = Σij(X t, t)dt,
(B.28)

where dB(i)
t is the ith component of dBt, and σij and Σij denote the entries of σ and Σ in
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row i and column j. With this, line (B.27) simplifies to dt/(T − t). Overall,

d
(x−X t)′Σ−1(X t, t)(x−X t)

T − t

= (x−X t)′Σ−1(X t, t)(x−X t)
(T − t)2 dt+

(x−X t)′
(
dΣ−1(X t, t)

)
(x−X t)

T − t

−
d∑
i=1

2(x−X t)′Σ−1(X t, t)ei
T − t

dX
(i)
t + d2 · dt

T − t

−
d∑
i=1

d∑
j=1

(x−X t)′
(
∂Σ−1(X t, t)

∂x(j) ei + ∂Σ−1(X t, t)
∂x(i) ej

)
T − t

dX
(i)
t dX

(j)
t .

The first summand on the right hand side of this equation equals the integrand in (B.22).
Hence use this expression to obtain

log
(
dPθ
dDµ,θ

)(
X(0,T−ε]

)

= −
T−ε∫
0

(
x−X t

T − t

)′
Σ−1(X t, t)dX t +

T−ε∫
0

(
x−X t

T − t

)′
Σ−1(X t, t)µ(X t, t)dt

+ 1
2

T−ε∫
0

d
(x−X t)′Σ−1(X t, t)(x−X t)

T − t
− 1

2

T−ε∫
0

(x−X t)′
(
dΣ−1(X t, t)

)
(x−X t)

T − t

+
T−ε∫
0

(x−X t)′Σ−1(X t, t)
T − t

dX t −
d2

2

T−ε∫
0

dt

T − t

+ 1
2

d∑
i=1

d∑
j=1

T−ε∫
0

(x−X t)′
(
∂Σ−1(X t, t)

∂x(j) ei + ∂Σ−1(X t, t)
∂x(i) ej

)
T − t

dX
(i)
t dX

(j)
t .

This leads to

log
(
dPθ
dDµ,θ

)(
X(0,T−ε]

)

= −
T−ε∫
0

(
D1(X t, t) +D2(X t, t) +D3(X t, t)

2(T − t)

)
− d2

2 log
(
T

ε

)

+ 1
2

(
(x−XT−ε)′Σ−1(XT−ε, T−ε)(x−XT−ε)

ε
− (x−x0)′Σ−1(x0, 0)(x−x0)

T

)
(B.29)

with D1, D2 and D3 as defined on page 365. The last line equals the logarithms of two
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unnormalised Gaussian densities. That implies

dPθ
dDµ,θ

(
X(0,T−ε]

)
= exp

− T−ε∫
0

D1(X t, t) +D2(X t, t) +D3(X t, t)
2(T − t)

(T
ε

)− d22

·
φ
(
x
∣∣∣x0, TΣ(x0, 0)

)
φ
(
x
∣∣∣XT−ε, εΣ(XT−ε, T − ε)

) · (T
ε

) d
2 |Σ(x0, 0)| 12
|Σ(XT−ε, T − ε)|

1
2
.

As ε > 0 is typically small, one can assume fθ(x|XT−ε) ≈ φ(x|XT−ε, εΣ(XT−ε, T − ε)).
Then, with Equation (B.21),

dP̃θ
dDµ,θ

(
X(0,T−ε]

)
= exp

− T−ε∫
0

D1(X t, t) +D2(X t, t) +D3(X t, t)
2(T − t)

(T
ε

)− d2 (d−1)

·
φ
(
x
∣∣∣x0, TΣ(x0, 0)

)
fθ(x)

|Σ(x0, 0)| 12
|Σ(XT−ε, T − ε)|

1
2
.

This is the first of the two formulas which were claimed at the beginning of this section.
Utilise this result for the derivation of (dP̃θ/dD0,θ)(X(0,T−ε]): The generalised Girsanov
formula from Delyon & Hu (2006, Theorem 1) yields

log
(
dDµ,θ
dD0,θ

)(
X(0,T−ε]

)

=
T−ε∫
0

µ′(X t, t)Σ−1(X t, t)dX t −
1
2

T−ε∫
0

µ′(X t, t)Σ−1(X t, t)µ(X t, t)dt+
T−ε∫
0

D1(X t, t)
2(T − t) .

Hence
dP̃θ
dD0,θ

(
X(0,T−ε]

)
=
(
dP̃θ
dDµ,θ

dDµ,θ
dD0,θ

)(
X(0,T−ε]

)

= exp
− T−ε∫

0

D2(X t, t) +D3(X t, t)
2(T − t)

 · φ
(
x
∣∣∣x0, TΣ(x0, 0)

)
fθ(x)

|Σ(x0, 0)| 12
|Σ(XT−ε, T − ε)|

1
2

· exp
 T−ε∫

0

µ′(X t, t)Σ−1(X t, t)dX t −
1
2

T−ε∫
0

µ′(X t, t)Σ−1(X t, t)µ(X t, t)dt
(T

ε

)− d2 (d−1)
.

That was to be shown.

Remark. Delyon and Hu (2006) utilise the first summand in (B.29) with ε→ 0 to perform
a transition from expectations with respect to Pt to expectations with respect to P̃t. This
way they arrive at

dP̃θ
dDµ,θ

(X [0,T ]) =
exp

− T∫
0

D1(X t, t) +D2(X t, t) +D3(X t, t)
2(T − t)


EDµ,θ

exp
− T∫

0

D1(X t, t) +D2(X t, t) +D3(X t, t)
2(T − t)

 (B.30)
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and

dP̃θ
dD0,θ

(
X [0,T ]

)
=

exp
− T∫

0

D2(X t, t)+D3(X t, t)
2(T − t) +D∗(X [0,T ])


ED0,θ

exp
− T∫

0

D2(X t, t)+D3(X t, t)
2(T − t) +D∗(X [0,T ])

 , (B.31)

where

D∗(X [0,T ]) =
T∫

0

µ′(X t, t)Σ−1(X t, t)dX t −
1
2

T∫
0

µ′(X t, t)Σ−1(X t, t)µ(X t, t)dt.

Be aware that the denominators of (B.30) and (B.31) depend on the parameter θ.

B.8 Derivation of Acceptance Probability

This section aims to derive the acceptance probability (7.78) from page 228 as an implication
of Equation (7.76). The notation here is the adopted from those formulas.

LetX imp∗ ∼ Dµ,θ. Then Z imp∗ = g−1(X imp∗,θ) induces some law Hθ. The proposal density
for Z imp∗ is hence q = dHθ/dL. Then(

dZθ/dL
)
(Z imp∗)

q(Z imp∗|Z imp,x0,x,θ)
=
(
dZθ
dW

dW

dL

dL

dHθ

)
(Z imp∗) =

(
dZθ
dW

dW

dHθ

)
(Z imp∗)

=
(
dP̃θ
dD0,θ

dD0,θ

dDµ,θ

)
(X imp∗) = dP̃θ

dDµ,θ
(X imp∗).

The change of measures follows with the same argument as in (7.59) and (7.60) on page 219.
Plug in the above equality into the acceptance probability (7.76) on page 227 to obtain

ζ(Z imp∗,Z imp) = 1 ∧
 dP̃θ
dDµ,θ

(X imp∗)
/ dP̃θ

dDµ,θ
(X imp)

 .

That agrees with (7.78).
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Appendix C

Supplementary Material for
Application I

This appendix contains supplementary material for the analysis of the spread of influenza
as investigated in Chapter 8.

C.1 Estimation Results

Figures C.1 and C.2 on the following two pages show estimation results for the multitype
SIR model with n = 10 clusters applied to dataset 3 as defined in Chapter 8. More
specifically, the graphics display trace plots, estimated posterior density estimates and
autocorrelation plots. The fraction s of susceptible individuals has been considered observed,
and the MCMC algorithm imputes auxiliary data such that there are m = 14 subintervals in
between every two observation time points. The simulated Markov chains are of length 105.
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Figure C.1: Bayesian estimation of parameters of the multitype SIR model with n = 10
clusters when applied to dataset 3 with both s and i being observed. Details of the estimation
procedure are described in the main text. The MCMC scheme introduces m = 14 subintervals in
between every two observations. This figure shows the trace plots of all parameters (left column)
with corresponding posterior density estimates (middle column) and autocorrelation plots (right
column). The Markov chains have length 105 but have been thinned by factor 50 in the trace plots.
Red horizontal lines in the trace plots and black vertical lines in the density plots indicate the
true parameter values. Estimation of posterior densities and autocorrelation takes into account
the full Markov chain, i. e. without thinning, after having discarded a 10% burn-in phase.
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Figure C.2: Continuation of Table C.1.
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Appendix D

Supplementary Material for
Application II

This chapter contains additional calculations, figures and tables for the analysis of molecular
binding in Chapter 9.

D.1 Diffusion Approximations

In this section, two diffusion approximations are derived which are utilised as kinetic models
in Chapter 9.

D.1.1 One Mobility Class

In Section 9.3.2, the SDE(
dufree

duboundbl

)
=
(
µ1
µ2

)
dt+ 1√

NU

(
σ11 −σ22
0 σ22

)(
dB1(t)
dB2(t)

)
was derived, where

µ1 = −(kon + koff)ufree + koff

µ2 = konfblu
free − koffuboundbl

σ11 =
√
kon(1−fbl)ufree + koff(1−ufree−uboundbl )

σ22 =
√
konfblufree + koffuboundbl .

(D.1)

In the following, this SDE is transformed into one for the process (q, ufree)′ by application
of Itô’s formula from Section 3.2.10, where

q = ufree + 1
fbl

uboundbl .
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Itô’s formula yields

dq = dufree + 1
fbl

duboundbl

=
(
µ1 + 1

fbl
µ2

)
dt+ 1√

NU

(
σ11dB1(t) +

(
1
fbl
− 1

)
σ22dB2(t)

)
.

Thus, one has(
dq
dufree

)
=

(
µ̃1
µ̃2

)
dt+ 1√

NU

(
σ̃11 σ̃12
σ̃21 σ̃22

)(
dB1(t)
dB2(t)

)

=
(
µ1 + µ2/fbl

µ1

)
dt+ 1√

NU

(
σ11

(
f−1
bl − 1

)
σ22

σ11 −σ22

)(
dB1(t)
dB2(t)

)
.

Hence, the components of the drift vector and diffusion coefficient of the transformed
process (q, ufree)′ can easily be obtained from (D.1). In these formulas, however, the
variable uboundbl is to be replaced by fbl(q − ufree). Then

µ̃1 = koff
(
1− q

)
µ̃2 = −

(
kon + koff

)
ufree + koff

σ̃11 = σ̃21 =
√
koff (1− fblq) + (kon− koff) (1− fbl)ufree

σ̃12 =
(

1
fbl
− 1

)√
kofffblq + (kon−koff) fblufree

σ̃22 = −
√
kofffblq + (kon−koff) fblufree .

The diffusion matrix of (q, ufree)′ equals

1
NU

(
Σ̃11 Σ̃12
Σ̃21 Σ̃22

)
,

where

Σ̃11 = koff

(
1
fbl
− 2

)
q +

(
kon − koff

)( 1
fbl
− 1

)
ufree + koff

Σ̃12 = Σ̃21 = koff
(
1− q

)
Σ̃22 =

(
kon−koff

)
ufree + koff.

D.1.2 Multiple Mobility Classes

In what follows, the Markov jump model from Section 9.5.1 is translated into a diffusion
process. To that end, a diffusion approximation for a process with (2M+1)-dimensional
state variable (

ufree, ubound,1bl∗ , . . . , ubound,Mbl∗ , ubound,1unbl∗ , . . . , ubound,Munbl∗

)′
. (D.2)
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is formulated. Afterwards, this process is transformed to a diffusion approximation for the
2M -dimensional state variable(

q∗, ufree, ubound,1bl∗ , . . . , ubound,M−1
bl∗ , ubound,1unbl∗ , . . . , ubound,M−1

unbl∗

)′
. (D.3)

The notation in this section is adopted from Section 9.5.2.

With the Langevin approach from Section 4.3.3, one arrives at a diffusion process for (D.2)
with drift vector and diffusion matrix µ̃

f

µ̃b

µ̃u

 and 1
NU

 Σ̃ff Σ̃fb Σ̃fu

Σ̃bf Σ̃bb Σ̃bu

Σ̃uf Σ̃ub Σ̃uu

 .
More precisely, the components of the drift vector are

µ̃f ∈ R with µ̃f = −
(
M∑
i=1

kon,i

)
ufree +

M∑
i=1

koff,iu
bound,i

µ̃b = (µ̃bi ) ∈ RM with µ̃bi = kon,if
∗
blu

free − koff,iubound,ibl∗

µ̃u = (µ̃ui ) ∈ RM with µ̃ui = kon,i(1− f ∗bl)ufree − koff,iu
bound,i
unbl∗ ,

where i = 1, . . . ,M and ubound,i = ubound,ibl∗ + ubound,iunbl∗ . The components of the diffusion
matrix are

Σ̃ff ∈ R with Σ̃ff =
(
M∑
i=1

kon,i

)
ufree +

M∑
i=1

koff,iu
bound,i

Σ̃bb = (Σ̃bb
ij ) ∈ RM×M with Σ̃bb

ii = kon,if
∗
blu

free + koff,iu
bound,i
bl∗

and Σ̃bb
ij = 0 for i 6= j

Σ̃uu = (Σ̃uu
ij ) ∈ RM×M with Σ̃uu

ii = kon,i(1− f ∗bl)ufree + koff,iu
bound,i
unbl∗

and Σ̃uu
ij = 0 for i 6= j,

where i, j = 1, . . . ,M . Furthermore,

Σ̃fb = (Σ̃bf)′ ∈ RM with Σ̃bf
i = −Σ̃bb

ii

Σ̃fu = (Σ̃uf)′ ∈ RM with Σ̃uf
i = −Σ̃uu

ii

Σ̃bu = (Σ̃ub)′ ∈ RM×M with Σ̃ub
ij = 0 for all i, j.

When proceeding from the state variable (D.2) to (D.3), the components ubound,Mbl∗ and ubound,Munbl∗
are to be replaced by

ubound,Mbl∗ = f ∗bl
(
q∗ − ufree

)
−

M−1∑
i=1

ubound,ibl∗
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and
ubound,Munbl∗ = 1− f ∗blq∗ + (f ∗bl − 1)ufree −

M−1∑
i=1

ubound,iunbl∗ ,

which implies

ubound,M = 1− ufree −
M−1∑
i=1

ubound,i.

The above drift vector and diffusion matrix for (D.2) can then be transformed to a drift
vector and diffusion matrix

µq

µf

µb

µu

 and 1
NU


Σqq Σqf Σqb Σqu

Σfq Σff Σfb Σfu

Σbq Σbf Σbb Σbu

Σuq Σuf Σub Σuu


for (D.3). The lengthy calculations are not shown here, but the results are given in
Section 9.5.2.

D.2 Calculation of Deterministic Process

The following algorithm shows how the fluorescence intensity q∗ can be calculated from
knowledge of kon,1, koff,1, . . . , koff,M , ubound,1bl∗,0 and f1, . . . , fM−1. That means that there
are 2M+1 free parameters plus the initial value q∗0 which may either be kept fixed or
estimated as well.

Algorithm D.1. Assume that the variables kon,1, koff,1, . . . , koff,M , ubound,1bl∗,0 , f1, . . . , fM−1
and the initial value q∗0 are known. The fluorescence curve q∗(t) can then be determined for
all t ≥ 0 as follows:

1. Calculate fM = 1− f1 − . . .− fM−1.

2. For i = 2, . . . ,M , derive
ubound,ibl∗,0 = ubound,1bl∗,0

fi
f1

.

3. Set
ufree0 = q∗0 −

1
fbl

M∑
i=1

ubound,ibl∗,0 .

4. Obtain the sum of all kon,i through
M∑
i=1

kon,i = B · 1− ufree0

ufree0
,

where
B = koff,M +

M−1∑
i=1

fi
(
koff,i − koff,M

)
.
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5. Derive the values ubound,ibl∗,∞ = limt→∞ u
bound,i
bl∗ (t) as

ubound,1bl∗,∞ = kon,1
koff,1

fbl u
free
0 and ubound,ibl∗,∞ = ubound,1bl∗,∞ · fi

f1

for i = 2, . . . ,M .

6. Calculate
kon,i =

ubound,ibl∗,∞ koff,i

fbl u
free
0

for i = 2, . . . ,M .

7. Finally, determine the fluorescence intensity via

q∗(t) =
(

1 +
M∑
i=1

kon,i
koff,i

)
ufree0 +

M∑
i=1

ubound,ibl∗,0

f ∗bl
− kon,i
koff,i

ufree0

 exp
(
−koff,i(t− t0)

)
.

D.3 Estimation Results

This section shows additional estimation results for the application in Section 9.7. These
are integrated in the main text in that section.

(a) G1 phase, index 2
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(b) early S phase, index 14
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Figure D.1: Two out of the 47 datasets used in the application in Section 9.7, namely the second
dataset in G1 phase, Figure (a), and the fourteenth dataset of early S phase, Figure (b). The
curves substantially differ with respect to their roughness. Consequently, they produce notably
different estimates for the number N of molecules (cf. Section 9.7.2). These are 38,453 in (a)
and 180 in (b) as also displayed in Tables D.1 and D.2.
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Figure D.2: Fittings of the predicted deterministic curve (black) to the observed data (green)
according to the estimates in Table 9.6 on page 307.
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(a) M = 1
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(b) M = 2
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(c) M = 3
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(d) M = 4
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Figure D.3: Fittings of the predicted deterministic curve (black) to the observed data (green) for
the eleventh dataset in late S phase. The data was triple normalised, the intermediate fraction fint
set to zero, and the starting value of the FRAP curve was kept fixed. Least squares estimation
was carried out for the kinetic model with (a) M = 1, (b) M = 2, (c) M = 3 and (d) M = 4
mobility classes. The according mean sums of squared residuals (mSSR) from Equation (9.10) on
page 289 are (a) 0.002, (b) 4.4 · 10−5, (c) 3.6 · 10−5 and (d) 4.1 · 10−5. The BIC chooses M = 3.
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phase index # data triple normalised double normalised
points N q∗0 fbl fint N q∗0 fbl fint

G1 1 390 11702 0.074 0.623 0.027 13303 0.152 0.603 0.026
G1 2 778 38453 0.106 0.493 0.059 45828 0.127 0.426 0.059
G1 3 778 2059 0.093 0.613 0.035 2334 0.171 0.596 0.034
G1 4 480 784 0.106 0.585 0.039 1017 0.251 0.552 0.038
G1 5 778 3727 0.062 0.707 0.015 5447 0.295 0.663 0.015
G1 6 778 778 0.082 0.577 0.031 973 0.226 0.556 0.030
G1 7 778 2208 0.076 0.625 0.023 2675 0.206 0.612 0.022
G1 8 778 1157 0.076 0.679 0.017 1583 0.273 0.655 0.017
G1 9 778 3877 0.051 0.663 0.013 5411 0.258 0.622 0.013
G1 10 778 446 0.077 0.631 0.026 632 0.286 0.592 0.027

late S 1 779 1790 0.062 0.427 0.032 1875 0.095 0.425 0.032
late S 2 779 402 0.052 0.464 0.028 436 0.104 0.456 0.028
late S 3 779 1243 0.064 0.536 0.035 1708 0.260 0.502 0.035
late S 4 779 476 0.033 0.446 0.024 599 0.174 0.427 0.024
late S 5 779 1034 0.119 0.574 0.054 1223 0.238 0.559 0.054
late S 6 779 2097 0.089 0.591 0.033 2701 0.247 0.564 0.033
late S 7 779 1650 0.054 0.479 0.035 1995 0.183 0.462 0.035
late S 8 779 1111 0.097 0.491 0.050 1139 0.097 0.479 0.050
late S 9 779 967 0.121 0.459 0.052 1277 0.311 0.452 0.052
late S 10 779 543 0.075 0.568 0.028 745 0.276 0.537 0.028
late S 11 777 911 0.073 0.554 0.093 1164 0.229 0.527 0.093

Table D.1: Key figures for the real datasets in Chapter 9: The first and second columns specify
the phase of the cell cycle in which the FRAP experiment has been carried out and a consecutive
index for each dataset. The third column lists the number of observations in the respective time
series. Columns four to seven show some quantities for the triple normalised data, columns eight
to eleven display the same for the double normalised datasets. These figures are the estimated
number N of molecules in the nucleus (see Section 9.7.2 for details and further remarks), the
starting value q∗0 of the recovery curve, the fraction of bleached molecules fbl and the intermediate
fraction fint as obtained by image analysis.
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phase index # data triple normalised double normalised
points N q∗0 fbl fint N q∗0 fbl fint

early S 1 778 3155 0.072 0.599 0.030 3672 0.158 0.573 0.030
early S 2 778 1709 0.031 0.506 0.017 1989 0.095 0.468 0.016
early S 3 778 858 0.040 0.520 0.018 925 0.095 0.515 0.016
early S 4 778 1688 0.085 0.667 0.029 1907 0.163 0.650 0.029
early S 5 778 1647 0.069 0.554 0.031 1776 0.114 0.543 0.031
early S 6 778 3038 0.048 0.591 0.019 3436 0.119 0.569 0.018
early S 7 778 2105 0.040 0.487 0.020 2391 0.107 0.464 0.020
early S 8 778 2673 0.024 0.638 0.013 3259 0.139 0.597 0.013
early S 9 774 962 0.028 0.611 0.012 1083 0.095 0.585 0.012
early S 10 778 26892 0.037 0.550 0.017 30425 0.099 0.522 0.016
early S 11 778 33914 0.050 0.622 0.020 39914 0.136 0.586 0.019
early S 12 778 723 0.035 0.516 0.018 834 0.117 0.493 0.018
early S 13 778 1016 0.056 0.530 0.028 1181 0.145 0.510 0.028
early S 14 778 180 0.058 0.577 0.027 203 0.123 0.554 0.027
early S 15 778 4038 0.054 0.642 0.057 4920 0.173 0.608 0.057
early S 16 778 1584 0.043 0.495 0.021 1739 0.098 0.481 0.020
early S 17 778 11799 0.055 0.606 0.007 13392 0.121 0.578 0.007
early S 18 778 17827 0.055 0.569 0.024 20431 0.133 0.545 0.023
early S 19 778 233 0.014 0.628 0.011 283 0.133 0.593 0.011
early S 20 778 267 0.073 0.607 0.029 477 0.365 0.524 0.026
early S 21 754 2128 0.037 0.627 0.024 3470 0.294 0.548 0.024
early S 22 778 6443 0.040 0.656 0.017 7931 0.136 0.602 0.017
early S 23 778 1883 0.101 0.632 0.041 2135 0.131 0.578 0.041
early S 24 778 1076 0.080 0.532 0.029 1429 0.259 0.513 0.026
early S 25 778 901 0.079 0.570 0.026 1148 0.238 0.553 0.025
early S 26 778 1105 0.085 0.575 0.031 1376 0.232 0.560 0.031

Table D.2: Continuation of Table D.1.
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phase index
fint = 0 fint > 0

triple double triple double
fixed free fixed free fixed free fixed free

G1 1 2 2 2 2 2 2 2 2
G1 2 3 3 3 3 3 3 3 3
G1 3 2 2 2 2 2 2 2 2
G1 4 2 2 2 2 2 2 2 2
G1 5 3 3 3 3 3 3 3 3
G1 6 3 2 3 2 3 2 2 2
G1 7 3 3 3 3 3 3 3 3
G1 8 4 2 3 3 3 3 3 3
G1 9 2 2 2 2 2 2 2 2
G1 10 2 2 2 2 2 2 2 2

late S 1 3 3 3 3 3 3 3 4
late S 2 3 3 3 3 3 3 3 3
late S 3 3 3 3 3 3 4 3 3
late S 4 4 3 3 3 3 3 3 3
late S 5 3 3 3 4 3 3 3 4
late S 6 3 4 3 3 3 4 3 3
late S 7 3 3 4 3 3 3 3 4
late S 8 3 3 4 3 3 3 3 3
late S 9 3 3 3 4 3 3 3 4
late S 10 3 3 3 3 3 4 3 3
late S 11 3 3 3 3 3 3 3 3

Table D.3: Model choice by means of BIC as defined in Equation (9.22) on page 310 for different
modifications of the least squares estimation in Section 9.7.3: First, the datasets may be either
triple normalised or double normalised as described in Sections 9.6.1 and 9.6.2, respectively.
Second, the intermediate fraction fint, introduced in Section 9.4, may be either set to zero or
equal to the experimentally obtained values from Tables D.1 and D.2. Third, the initial value q∗0
of the recovery curves may either be kept fixed or treated as a free parameter. This table displays
the number of mobility classes chosen by the BIC.
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phase index
fint = 0 fint > 0

triple double triple double
fixed free fixed free fixed free fixed free

early S 1 3 3 3 3 3 3 3 3
early S 2 2 2 3 2 3 2 3 2
early S 3 2 2 2 2 2 2 2 2
early S 4 3 3 3 4 3 3 4 3
early S 5 3 3 4 4 3 3 3 3
early S 6 3 3 3 3 3 3 3 3
early S 7 3 3 3 3 3 3 3 3
early S 8 3 2 3 2 3 2 3 2
early S 9 2 2 2 2 2 2 2 2
early S 10 3 3 3 3 3 3 3 3
early S 11 3 3 3 3 3 4 3 3
early S 12 3 3 4 3 3 3 3 3
early S 13 3 3 3 3 3 3 3 3
early S 14 3 2 4 2 3 2 3 2
early S 15 2 2 2 2 2 2 2 2
early S 16 3 2 3 2 3 2 3 3
early S 17 3 3 3 3 3 4 3 3
early S 18 3 3 3 3 3 3 3 3
early S 19 3 3 3 2 3 3 3 2
early S 20 4 3 4 3 4 3 3 3
early S 21 3 3 3 3 4 4 4 3
early S 22 3 2 3 2 4 3 3 4
early S 23 3 3 3 3 4 3 3 3
early S 24 3 3 4 3 3 4 3 3
early S 25 3 3 3 3 4 3 3 4
early S 26 3 3 3 3 3 3 3 3

Table D.4: Continuation from Table D.3.
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(c) M = 3
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(d) M = 4
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Figure D.4: Least squares estimates for koff,i with fint = 0 and fixed starting value q∗0. The
underlying datasets are triple normalised (according estimates are marked with a cross) or double
normalised (estimates are represented by a circle). The figures display the estimates for the
parameters koff,1, . . . , koff,M in the deterministic kinetic model with M = 1, . . . , 4 mobility classes.
In each plot, the distinct time series are ordered according to their phase and index as in Tables D.1
and D.2, and the respective results are presented from the left to the right.
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Figure D.5: Least squares estimates for koff,i, based on triple normalised datasets with fixed
starting value q∗0. The intermediate fraction fint is either set to zero (according estimates are
marked with a cross) or equal to the values from Tables D.1 and D.2 (estimates are represented by
a circle). The figures display the estimates for the parameters koff,1, . . . , koff,M in the deterministic
kinetic model with M = 1, . . . , 4 mobility classes. In each plot, the distinct time series are ordered
according to their phase and index as in Tables D.1 and D.2, and the respective results are
presented from the left to the right.
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Figure D.6: Least squares estimates for koff,i, based on triple normalised datasets with fint = 0.
The starting value q∗0 of the recovery curve is either kept fixed (according estimates are marked
with a cross) or free, i. e. determined by the optimisation procedure (estimates are represented by
a circle). The figures display the estimates for the parameters koff,1, . . . , koff,M in the deterministic
kinetic model with M = 1, . . . , 4 mobility classes. In each plot, the distinct time series are ordered
according to their phase and index as in Tables D.1 and D.2, and the respective results are
presented from the left to the right.
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D.4 Diffusion-coupled Model

In Section 9.8, a kinetic model for diffusion-coupled FRAP was derived. In that section,
the dynamics is represented by a compartmental description, as a diffusion approximation
and as a deterministic process. The model can be extended to the case of multiple mobility
classes in the same manner as for diffusion-uncoupled recovery in Section 9.5.

The following presents a deterministic description for diffusion-coupled FRAP in case
of M mobility classes. The proceeding in the derivation of this model is analogous to
that in Section 9.5 and hence not shown here. The derivation of a corresponding diffusion
approximation is straightforward as well along the lines of Chapter 4.

Let ufreebl denote the fraction of unbleached free molecules in the bleached section of the
nucleus and ufreeunbl the fraction of unbleached free molecules in the unbleached section.
Furthermore, for i = 1, . . . ,M , define ubound,ibl as the fraction of unbleached type i-bound
molecules in the bleached section and ubound,iunbl as the fraction of unbleached type i-bound
molecules in the unbleached section. These variables are non-negative and sum up to one.
Given suitable initial values, their dynamics can be described by the set of ODEs

dufreebl
dt

= −ufreebl

M∑
i=1

kon,i +
M∑
i=1

koff,iu
bound,i
bl + kdiff

(
fblu

free
unbl − (1− fbl)ufreebl

)
dufreeunbl
dt

= −ufreeunbl

M∑
i=1

kon,i +
M∑
i=1

koff,iu
bound,i
unbl − kdiff

(
fblu

free
unbl − (1− fbl)ufreebl

)
dubound,ibl

dt
= kon,iu

free
bl − koff,iu

bound,i
bl

dubound,iunbl
dt

= kon,iu
free
unbl − koff,iu

bound,i
unbl ,

where i = 1, . . . ,M . The observed variable is the fluorescence intensity

q = ufreebl +∑M
i=1 u

bound,i
bl

fbl
.

The process is fully described by, for example, the state vector(
q, ufreebl , u

free
unbl, u

bound,1
bl , . . . , ubound,M−1

bl , ubound,1unbl , . . . , ubound,M−1
unbl

)′
.
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Notation

Symbols

• N = {1, 2, 3, . . .} : the natural numbers

• N0 = N ∪ {0}

• Z : the whole numbers

• Q : the rational numbers

• R : the real numbers

• R+ : the strictly positive real numbers

• R0 = R+ ∪ {0}

• x : a column vector

• x′ : the transpose of x

• 0 = (0, . . . , 0)′ : the null vector

• ei = (0, . . . , 1, . . . , 0)′ : the ith unit vector

• I : the identity matrix

• diag (A) : the main diagonal of the quadratic matrix A

• diag (a) : quadratic matrix with main diagonal a and zero entries otherwise

• |a| : the absolute value of a ∈ R

• ‖A‖ : Euclidean distance, i. e. ‖A‖2 = tr(A′A) for a vector or matrix A

• |k| = ∑n
i=1 ki, where k = (k1, . . . , kn)′ (in the context of Section B.1)

• u � v = (u1v1, . . . , unvn)′, where u = (u1, . . . , un)′ and v = (v1, . . . , vn)′

• (Ω,F∗,F ,P) : a filtered probability space with sample space Ω, σ-algebra F∗, natural
filtration F = (Ft)t≥0 and probability measure P

• L : the σ-algebra of Lebesgue subsets of R
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• L : Lebesgue measure

• W : Wiener measure

• P1 � P2 : the measure P1 is absolutely continuous with respect to P2

• P1 ⊥ P2 : the measures P1 and P2 are mutually singular, i. e. they have disjoint
support

• P1 ⊗ P2 : factorisation of measures

• L(X) : the distribution of the random variable X

• 1(A) : indicator function; equal to one if A is true and zero otherwise

• δ(x− y) : Dirac delta function; equal to ∞ if x = y and zero othrwise

• a = o(h) ⇔ limh→0(a/h) = 0

• ⊎n
i=1Ai : disjoint union of sets A1, . . . , An

• Γ : Gamma function, defined as Γ(x) =
∫∞

0 tx−1 exp(−t)dt

• d/dt : total derivative, i. e.

d

dt
f(t, ξ1, . . . , ξm) = ∂f(t, ξ1, . . . , ξm)

∂t
+

n∑
j=1

∂f(t, ξ1, . . . , ξm)
∂ξj

dξj
dt

• ∂/∂t : partial derivative, where all other arguments remain constant

Distributions

• normal distribution: X ∼ N (µ,Σ) with µ ∈ Rn, Σ ∈ Rn×n symmetric and positive
definite

• log-normal distribution: X ∼ LN (µ, σ2) ⇒ log(X) ∼ N (µ, σ2)

• truncated normal distribution : X ∼ Ntrunc(µ, σ2); generates random numbers from
N (µ, σ2) restricted to the positive real line, i. e. the density f(x) of this distribution
is proportional to the density of N (µ, σ2) for x > 0 and zero otherwise

• multivariate t distribution : X ∼ tν(µ,Σ) with ν ∈ R+ degrees of freedom, µ ∈ Rn,
Σ ∈ Rn×n symmetric und positive definite and density

f(x) =
Γ
(
ν+n

2

)
Γ
(
ν
2

)
(νπ)n/2

|Σ|−
1
2

(
1 + 1

ν
(x− µ)′Σ−1(x− µ)

) ν+n
2

for x ∈ R

• uniform distribution : X ∼ U(A) for a discrete or continuous set A
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• Poisson distribution : X ∼ Po(λ) with λ ∈ R+

• exponential distribution : X ∼ Exp(λ) with λ ∈ R+

• gamma distribution : X ∼ Ga(a, b) with a, b ∈ R+ and density

f(x) = ba

Γ(a) x
a−1 exp(−bx) for x ∈ R+

• inverse gamma distribution : X ∼ IG(a, b) ⇔ 1/X ∼ Ga(a, b)
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