
Laser-Driven Soft-X-Ray
Undulator Source

Matthias Fuchs

Ludwig-Maximilians-Universität München

August 2010

Matthias Fuchs





Laser-Driven Soft-X-Ray
Undulator Source

Matthias Fuchs

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Matthias Fuchs

aus Ellwangen/Jagst

München, den 04. August 2010



Erstgutachter: Prof. Dr. Florian Grüner
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INTRODUCTION AND ABSTRACT

In order to put the results presented in this thesis into context, a short introduction is
given at this point. A brief summary of the experimental results is given on page (iii).

The discovery of X-ray radiation has shed light on unexplored territories in almost
all disciplines of science, ranging from chemistry, biology, physics, materials science and
medicine to industrial applications. A wavelength in the Ångström range (10−10 m) and
thus on the order of chemical bond lengths enables the radiation to resolve matter on
the atomic scale. In order to simultaneously gain temporal insight into dynamics on the
atomic scale, X-ray pulses with durations on the picosecond to femtosecond scale are
required.

The most powerful sources capable of delivering such pulses are based on synchrotron
radiation. Here, a magnetic field deflects a pulse of ultra-relativistic electrons in a
direction transverse to its propagation. As a result of this acceleration, the electrons
emit bursts of highly-directed synchrotron radiation.

Synchrotrons are well established facilities with excellent control over the beam pa-
rameters. The discovery of synchrotron radiation goes back into the 1940s [Elder et al.,
1947]. Persistent research and a growing user community led the development from par-
asitic operation at high-energy accelerator facilities to dedicated high-brilliance (third
generation) X-ray sources. Brilliance is a measure for the flux, focusability and trans-
verse coherence of the radiation. The increase in brilliance has been due to both the
improvement of the electron beam in terms of emittance and pulse duration as well as
the evolution of the magnetic structures from bending magnets to more sophisticated in-
sertion devices such as undulators or wigglers. The pulse duration of the X-ray emission
is mainly given by that of the electron beam and is on the order of 100 ps for standard
third generation synchrotron sources based on storage rings. It can reach the sub pico-
second scale only with sophisticated techniques [Khan et al., 2006] and a significant loss
in photon flux. The development of sources emitting more brilliant beams has recently
culminated with the impressive demonstration of the world’s first X-ray free-electron
laser (FEL) [Emma, 2009]. FELs emit pulses of coherent radiation with significantly
shorter duration than typical synchrotrons which increases the brilliance by more than
six orders of magnitude. However, both of these sources are based on kilometer-scale
radio-frequency accelerators, which makes them extremely costly and therefore only a
few facilities exist worldwide. This means that they cannot completely serve the large
user community.
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INTRODUCTION AND ABSTRACT

In 1979, Tajima and Dawson laid the theoretical foundation for a new generation of
compact particle accelerators [Tajima and Dawson, 1979]. In this scheme a laser pulse
with an intensity on the order of 1018 W/cm2 and a pulse duration of half the plasma
wavelength (typically a few tens of femtoseconds) is focused into a plasma where it ex-
cites a plasma wave. The wave trails the laser pulse at its group velocity and generates
accelerating electric fields which exceed the strength of those in conventional accelera-
tors by more than three orders of magnitude. Either background plasma electrons or
externally injected electrons can get trapped by these fields and – by “surfing” them –
get accelerated to GeV-scale energies over distances of only a few centimeters.

However, this scheme relies on laser pulses with ultra-high intensities. Therefore, the
field of laser-wakefield acceleration is very strongly dependent on advances in laser tech-
nology. Only the invention of the chirped-pulse amplification (CPA) 1985 [Strickland
and Mourou, 1985] made it possible to generate laser pulses with a sufficiently high
intensity. It took until the mid-1990s for lasers to become mature enough to be used as
drivers allowing for wakefield-acceleration first for externally injected electrons ([Clay-
ton et al., 1993], [Nakajima et al., 1995]), followed soon after by the acceleration of
self-injected electrons [Modena et al., 1995]. In these early experiments, the thermally
shaped electron spectra showed a high-energy cutoff at a few tens of MeV. The experi-
mental developments were supported by advances in the theoretical description such as
analytical models of nonlinear waves, acceleration of electrons in these waves and non-
linear evolution mechanisms for ultra-intense laser pulses in plasmas (see [Esarey et al.,
1996] and references therein).

Developments in laser technology led to a decrease in pulse duration from the pi-
cosecond to the tens of femtoseconds range, while still maintaing the pulse energy and
thus increasing the peak intensity. The application of such laser pulses for wakefield-
acceleration resulted in a further increase in the accelerating gradient to reach 200 MV/m
and extended the high-energy cutoff of the (still thermal) electron spectra to 200 MeV
[Malka et al., 2002]. Meanwhile computational power became large enough to perform
3D simulations including the highly non-linear evolution of the plasma and the laser
pulse which led to a deeper understanding of the processes that occur during the ac-
celeration. 3D particle-in-cell (PIC) simuations (see for example [Dawson, 1983]) led to
the discovery of a new acceleration scheme: the “bubble regime” [Pukhov and Meyer-ter
Vehn, 2002], which predicted the production of quasi-monoenergetic electron beams.

In the experiments described above, electrons were accelerated in the self-modulated
regime (for self-modulation, see section 2.6.4), which means that the laser pulse is longer
than a plasma period. Parts of the laser pulse are interacting with the accelerated elec-
tron bunch which leads to thermal energy spectra. The development of laser pulses with
ultra-high intensities and durations shorter than the plasma period resulted in 2004
in the acceleration of quasi-monoenergetic electron beams with energies of a few hun-
dred MeV and ∼ 100 pC of charge [Faure et al., 2004], [Geddes et al., 2004], [Mangles
et al., 2004]. Although the laser intensities in these experiments were technically not
high enough to operate in the bubble regime, PIC simulations showed that the laser
undergoes nonlinear processes. While propagating through the plasma these processes
significantly increase the laser intensity allowing a pulse with an initially insufficient in-
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tensity to drive an acceleration in the bubble regime. In 2006, electron beams of energies
of 1 GeV were demonstrated using acceleration distances of only 3 cm [Leemans et al.,
2006]. The shot-to-shot reproducibility of LWFA beams has increased in recent years
through careful control over various parameters of the laser pulse [Mangles et al., 2007]
or the gas target. One such control is the steady-state-flow gas cell scheme [Osterhoff
et al., 2008], which is used as the driver for the experiments described in this thesis.
New injection schemes ([Faure et al., 2006], [Geddes et al., 2008]) have the potential
to further increase the stability as well as to significantly improve the electron beam
quality. If sufficiently high beam qualities and staging of several acceleration sections
can be shown, laser-wakefield accelerators could be potential candidates to drive future
ultra-high-energy particle colliders [Schroeder et al., 2009], [Tajima, 2010]

The experimental results described in this thesis demonstrate the successful
synergy between the research fields described above: the development of an undulator
source driven by laser-plasma accelerated electron beams. First efforts in this new field
have led to the production of radiation in the visible to infrared part of the electro-
magnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements,
the experiment described here shows the successful production of laser-driven undulator
radiation in the soft-X-ray range with a remarkable reproducibility. The source pro-
duced tunable, collimated beams with a wavelength of ∼ 17 nm from a compact setup.
Undulator spectra were detected in ∼ 70% of consecutive driver-laser shots, which is
a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high
intensity laser systems. This can be attributed to a stable electron acceleration scheme
as well as to the first application of miniature magnetic quadrupole lenses with laser-
accelerated beams. The lenses significantly reduce the electron beam divergence and its
angular shot-to-shot fluctuations

The setup of this experiment is the foundation of potential university-laboratory-sized,
highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV,
X-ray pulses with an expected duration of ∼ 10 fs and a photon energy of 1 keV could
be produced in an almost identical arrangement. It can also be used as a testbed for
the development of a free-electron laser of significantly smaller dimension than facilities
based on conventional accelerators [Gruener et al., 2007]. Such compact sources have
the potential for application in many fields of science. In addition, these developments
could lead to ideal sources for ultrafast pump-probe experiments due to the perfect
synchronization of the X-ray beam to the driver laser.
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ZUSAMMENFASSUNG

Röntgenstrahlung ist aus den heutigen Disziplinen der Wissenschaft und Technik nicht
mehr wegzudenken. Seit ihrer Entdeckung Ende des 19. Jahrhunderts werden Röntgen-
quellen ständig zur Erzeugung immer brillanterer Strahlung weiterentwickelt. Brillanz
ist dabei ein Mass der Photonenanzahl in einem bestimmten Wellenlängenbereich, der
Quellgrösse und der Divergenz des Strahls.

Solch hochbrillante, durchstimmbare Röntgenstrahlung wird typischerweise von Syn-
chrotronquellen erzeugt. Eine Synchrotronquelle besteht zum Einen aus einem Beschle-
uniger, der Elektronen auf relativistische Energien beschleunigt. Zum Anderen besteht
sie aus einer periodischen magnetischen Struktur, genannt Undulator, die die Elektronen
auf eine sinusförmige Trajektorie zwingt. Aufgrund der dadurch auftretenden Beschle-
unigungen emittieren die Elektronen Röntgenlicht in Form von Synchrotronstrahlung.
Nachteil dieser Synchrotronquellen sind allerdings die kilometergrossen und sehr teuren
Anlagen, die zur Elektronenbeschleunigung benötigt werden.

Ein neuartiger Teilchenbeschleuniger hat kürzlich nach über dreissig jährigen Forschung
hoch-relativistische, quasi-monoenergetischen Elektronenpulsen über eine Beschleuni-
gungsstrecke von nur wenigen Millimetern erzeugt. Diese neue Methode der Laser-
wakefield Beschleunigung basiert auf hochintensiven Laserpulsen im Tera-Watt Leis-
tungsbereich, die in ein Gas fokussiert werden. Dabei werden die Gasatome ionisiert
und es entsteht ein Plasma. Während der Laser durch dieses Plasma propagiert, regt er
eine sogenannte Plasmawelle (eine Welle aus Elektronen) an, die dem Puls, ähnlich einer
Wasserwelle einem Boot, hinterherläuft. Elektronen können nun auf dieser Plasmawelle
“surfen” und auf hochrelativistische Energien beschleunigt werden.

Die Kombination dieser kompakten Beschleunigertypen mit einem Undulator, könnte
eine kompakte Röntgenquelle erzeugen, die sogar in kleineren Laboren Platz finden kann.
Die Experimente, die in dieser Dissertation beschrieben werden, stellen einen Meilenstein
auf dem Weg dorthin dar: die reproduzierbare Messung von weicher Röntgenstrahlung
emittiert von einer Undulatorquelle, die von laser-wakefield beschleunigten Elektronen
getrieben wird. Der Hauptteil der Strahlung wird bei einem Wellenlängenbereich um
17 nm gemessen, der sich bis zu 7 nm erstreckt. Für ein Experiment, das von einem
Hochleistungslaser getrieben wird, stellen spektral aufgelöste Strahlung in 70% aufeinan-
derfolgender Laserschüsse eine bemerkenswerte Stabilität dar. Die emittierte Strahlung
soll aufgrund der voraussichtlichen Elektronenstrahlparametern eine Pulsdauern von
nur 10 fs haben. Da zusätzlich der Laser perfekt zu dieser Strahlung synchronisiert
ist, erfüllt eine solche Quelle mit Strahlung im harten Röntgenbereich alle Vorrausset-
zungen für pump-probe Experimente auf der atomaren Skala. Das Experiment, das
hier beschrieben wird stellt den Grundstein für künftige Entwicklungen von Quellen im
harten Röntgenbereich dar.
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3D representation of a typical detected undulator spectrum.
The undulator radiation is spectrally resolved by a transmission grating and shows
a zeroth (transmitted light) and a positive and negative first diffraction order
(left/right). In each diffraction order the undulator fundamental and second har-
monic peak can be seen.
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1. OVERVIEW AND OUTLINE

The experiment presented in this thesis is a synergy of several different research fields.
It is based on recent experimental successes in the field of laser-wakefield acceleration
and on the highly-developed research fields of conventional electron acceleration and the
synchrotron radiation community. Under this consideration, the thesis is structured as
follows:

The relevant theoretical foundation is presented in chapters 2-4.
The experimental setups and results are described and discussed in chapters 5 & 6
In chapter 7, the experimental results are put into context and a brief overview of

future developments is given.

Chapter 2 gives an overview of the theory of laser-wakefield acceleration (LWFA). The
basic physics of plasma waves, their properties and how they can be harnessed for
electron acceleration is briefly discussed. Current experimental results can be best
explained by an acceleration in the highly non-linear “bubble” regime. So far, this
regime can be mostly only described by intensive computer simulations. Analytical
descriptions are subject to present research and the theory of this regime is not yet
fully represented in textbooks. Therefore, a more detailed discussion of the current
theoretical developments and results are given in this chapter. Additionally, a brief
overview of properties of state-of-the art laser-wakefield accelerators and possible
future developments is given.

Chapter 3 discusses the theory of undulator radiation. Since this is a highly-developed
field, the physical processes can be described by precise analytical theories which
are comprehensively covered in many textbooks. Thus, this part is only discussed
very briefly. However, parts of the theoretical description that are necessary to
explain the experimental findings of this thesis (which are not extensively covered
in textbooks) are discussed in more detail.

Chapter 4 gives a brief overview of the theory of free-electron lasers (FELs) to the
extend that the reader can appreciate possible future developments based on the
experimental results presented in this thesis.

Chapter 5 describes the laser-wakefield accelerator which was used as a driver. Since
the accelerator is still in an experimental status itself, details to its setup and
the experimental finding are given to the extend in which the properties of the
undulator source are concerned.

Chapter 6 describes the experimental observation of soft-X-ray undulator radiation
from a laser-wakefield-driven undulator source. Besides the experimental setup,

1



1. OVERVIEW AND OUTLINE

simulations of undulator radiation that were necessary to explain the experimental
findings are discussed in detail. The experimental results are compared to simula-
tions and to observations of radiation from modified setups in order to gain further
insights into the underlying physical processes. The undulator as a diagnostic tool
is briefly discussed.

Chapter 7 puts the experimental results into context with conventional state-of-the art
sources. It discusses future progress and potential properties of short to long-term
developments.

Artist’s rendering of an electron bunch in an undulator.
Highly-relativistic electrons (yellow) are forced on sinusoidal trajectory by the peri-
odic magnetic field of an undulator. As a result they emit short-wavelength radiation
(red). Courtesy T. Naeser and C. Hackenberger.
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2. LASER-WAKEFIELD
ACCELERATION OF ELECTRONS

2.1. Introduction

The chapter discusses the physics of laser-wakefield acceleration (LWFA) of electrons.
In this scheme, an ultra-short laser pulse with an ultra-high intensity is focused into a
plasma, where it induces electron oscillations. Along the laser propagation direction,
these excitation of longitudinal electron oscillation lead to a resonant collective electron
oscillation: a plasma wave that is trailing the laser pulse at its group velocity. The wave
produces strong electric fields with a longitudinal (accelerating) component, similar to
a traveling wave in radio-frequency (RF) cavities. Whereas the maximum accelerating
gradient of an RF-cavity is limited by the breakdown of the material to ∼ 100 MV/m,
the plasma can sustain significantly larger fields. Owing to its collective behavior, the
electric field produced by the wave are approximately three orders of magnitudes larger
than those in conventional accelerators. Electrons can be either self-injected or injected
externally and can get accelerated to highly-relativistic energies within distances of a
few centimeters. In addition to its compact dimensions, laser-wakefield accelerators are
expected to emit electron bunches with intrinsically short bunch durations (∼ 10 fs).

This chapter is structured as follows:

• Section 2.3 covers a brief description about the plasma fundamentals necessary for
the rest of the chapter. More detailed discussions of plasma physics are covered in
numerous textbooks, for example see [Chen, 1984] or [Goldston and Rutherford,
1995].

• The basic physics of laser-wakefield accelerators is explained by the discussion of
the generation and properties of linear plasma waves (section 2.4). The sections
about laser-driven plasma waves are mainly based on the excellent reviews in
[Esarey et al., 2009], [Gibbon, 2005] and [Tajima, 1985].

• Section 2.5 discusses the physics of nonlinear plasma waves which describes the
plasma response for the laser parameters more closely to those used in the exper-
iment presented below.

• It is followed by a discussion about the trapping of electrons by the plasma wave
and the subsequent acceleration process as well as its limits (section 2.6).

3



2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

• A list of nonlinear effects that dictate the laser evolution in the plasma is given in
section 2.6.4.

• The experimental results of the electron beams used in this thesis are best described
by the physics of the so-called “bubble regime”. A comprehensive theory of this
acceleration scheme is still subject to research and is not yet fully represented in
textbooks. Therefore, a more detailed discussion is presented in section 2.6.5.

• The chapter ends with a list of state-of-the art experimental results and in the
outlook near-term future projects are briefly discussed.

2.2. Overview: The Different Wakefield Regimes

Linear wakefields
Non-linear wakefields
The bubble regime

A laser-wakefield accelerator (LWFA) can be operated in different regimes depend-
ing on the intensity of the driver laser pulse. The laser pulse intensity is determined
by its duration, pulse energy and the focusing geometry. Depending on the intensity,
the laser causes different plasma responses: Laser pulses with a lower intensity (non-
to mildly-relativistic) excite a linear plasma wave which is a sinusoidal plasma density
perturbation that produces a sinusoidal electric wakefield (see section 2.4.1). For pulses
with higher (relativistic) intensities, the structure of the plasma waves changes to a non-
linear, spiked shape with more distinct and longer troughs and an increased (nonlinear)
plasma wavelength (see section 2.5). The compression of the plasma density in the spikes
causes the wakefield to longitudinally change to a “sawtooth-like” shape and to produce
higher accelerating fields. Laser pulses with intensities well above the relativistic limit
drive a highly non-linear plasma wave, where wavebreaking occurs immediately after
the first plasma oscillation. This washes out all the downstream structure after the first
plasma period, leaving behind an electron-free ionic cavity (called “bubble”) which trails
the laser through the plasma as a soliton-like stable structure (see section 2.6.5).
While propagating in plasma, the laser can undergo non-linear effects which can signifi-
cantly alter its shape and intensity (see section 2.6.4). This evolution of the laser pulse
can lead to a transition between LWFA regimes or into a mixture of several regimes.

4



2.3. Fundamentals

2.3. Fundamentals
Calculation methods of plasma waves
Normalized laser intensity
The ponderomotive force
The plasma frequency
Laser propagation in plasmas

This section briefly describes the underlying fundamental definitions and processes
relevant to laser-wakefield acceleration.

2.3.1. Calculation Methods

The exact calculation of laser-driven plasma wakefields is non-trivial because it requires
a self-consistent approach for the computation of the wakefields, the laser fields and the
particles. Therefore, analytical solutions exist only for non-evolving laser pulses in 3D for
linear plasma waves and in 1D for the nonlinear case. In order to solve the 3D nonlinear
problem, usually numerical codes are required and the full 3D case (nonlinear including
the evolution of the laser pulse), can only be calculated by extensive simulations (see
section 2.6.5).

2.3.2. Description of Laser Pulses

Most physical quantities that describe a plasma wakefield driven by a laser can be related
to the intensity of the laser pulse. The most practical way to describe the intensity in
LWFA theory is through the laser strength parameter ~a which is defined by the vector
potential ~A of the laser, normalized by the electron rest mass energy mec

2 as:

~a =
e ~A

mec2
(2.1)

In these normalized units, the intensity of a Gaussian laser pulse can be written as

a2 = a2
0 exp

(
−2r2

r2
s

)
sin2

(πz
L

)
, (2.2)

where r is the transverse and z the longitudinal dimension, rs the laser spot size and L
is the pulse length. The amplitude a0 is given in practical units by

a0 ' λ[µm] ·
√
I0[W/cm2]

1.4× 1018
, (2.3)

with the laser wavelength λ and the peak laser intensity I0. As discussed in the next
section, a0 is a measure for the energy gain of an electron quivering in a laser field:
a0 = 1 marks the transition from sub-relativistic kinetics (a0 � 1) into the relativistic
regime a0 &1.
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.3.3. Laser-Matter Interaction
The Ponderomotive Force

The interaction of an electron with a plane, non-relativistic, electromagnetic wave
results in a harmonic oscillatory motion of the electron, since the restoring force of the
field is linear. In a tightly focused (and hence non-planar) ultrashort laser pulse however,
the light field varies temporally as well as radially. An electron that is placed in such
an inhomogeneous electromagnetic field experiences a nonlinear force which is called the
ponderomotive force:

~Fp = −1

4

e2

meω2
~∇ ~E2 = −mec

2~∇
(
a2

2

)
. (2.4)

The ponderomotive force is directed such that charged particles are expelled from higher
towards lower intensity regions of the laser pulse which is indicated by the ~∇ ~E2-term
in eq (2.4). For a derivation of the ponderomotive force, see the Appendix, section A.1.

The ponderomotive potential (~Fp = ~∇Up) equals the average kinetic energy Ekin that
an electron gains within one oscillation period. In terms of a0, this can be written as

〈Ekin〉 = Up =
a2

0

2
mec

2. (2.5)

It can be seen that for a0 &1, the particle quivering in the field of the laser pulse gains
energy comparable to its rest energy mec

2 and has to be treated relativistically.

2.3.4. Plasmas
Plasma frequency
Plasma wavelength

A plasma is an ionized gas of positively charged ions and free, negatively charged
electrons. A slight displacement of a group of electrons from their equilibrium posi-
tion creates regions of net negative charge and regions of net positive charge. Such a
non-uniform charge distribution produces an electric field which accelerates the elec-
trons in the direction opposite to their displacement. When the electrons arrive at the
equilibrium position, they have gained a kinetic energy equal to the potential energy of
their initial displacement and overshoot. Owing to their much larger mass compared to
electrons, the ions remain essentially stationary on these time-scales. This sets up an
oscillation similar to a harmonic oscillator with the plasma frequency

ωp,e =

√
4πe2n0

〈γ〉me

, (2.6)

where n0 is the electron density and me the electron rest mass and 〈γ〉 the relativistic
factor averaged locally over many electrons. The plasma wavelength is defined as

λp =
2πc

ωp
. (2.7)
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2.4. Generation of Plasma Waves by Laser Pulses

2.3.5. Laser Propagation in Plasmas

Dispersion relation
Laser phase velocity
Laser group velocity

The propagation of an electromagnetic wave with an angular frequency on the order
of the plasma frequency ω ' ωp in plasma can be described by the dispersion relation
which is given by (for a derivation, see Appendix, section A.1.1):

ω2 = ω2
p + c2k2, (2.8)

where k = 2π/λ is the wave number of the electromagnetic wave and c the vacuum
speed of light. The implication of equation (2.8) is that only waves with frequencies
ω > ωp can propagate in plasmas, for which the plasma electron response is too slow to
shield the electro-magnetic field of the laser inside the plasma. For ω < ωp, the plasma
density is overcritical which means that the electromagnetic wave gets either reflected
or attenuated. Thus, an electromagnetic field of frequency ω can propagate in matter
with a density below the critical density which can be calculated by setting ω = ωp and
rewriting 2.6 as

ncrit =
〈γ〉meω

2

4πe2
(2.9)

The plasma index of refraction η can be calculated from the dispersion relation (see
Appendix, section A.1.1) and reads:

η =

√
1−

(ωp
ω

)2

. (2.10)

It is related to the phase velocity vph and the group velocity vg as follows:

vph =
ω

k
=
c

η
(2.11)

vg =
dω

dk
= η · c (2.12)

2.4. Generation of Plasma Waves by Laser Pulses

Physical picture of plasma wave generation
Linear plasma waves

Electromagnetic pulses with a sufficiently high intensity can excite longitudinal plasma
waves in underdense plasmas as their ponderomotive force expels electrons into regions
of lower light intensities. For a short Gaussian laser pulse the plasma electrons are
pushed transverse and forward by the head of the laser pulse and backwards by the tail,

7
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Figure 2.1. | Excitation of a longitudinal electron density wave in a plasma
by a laser pulse. The figure shows a cartoon of the excitation of a plasma wave
through a laser pulse. The vertical axis are time steps and the horizontal axis is the
distance of the plasma in the laser propagation direction. The ponderomotive force
of a laser propagating in a plasma from left to the right displaces electrons from
their initial position. The stationary ion background pulls back the electron which
starts to oscillate with the plasma frequency. The laser displaces the electrons (each
displayed as a pendulum) in such a way that their collective motion resembles a den-
sity wave moving to the right (red dots). From the time evolution of a single elec-
tron (along the vertical dashed line), it can be seen that the electron oscillate around
their initial position. It can be seen that although no matter is transported, a plasma
wave with an electric accelerating field (wakefield) is trailing the laser at its group
velocity. Figure based on [Dawson, 1989].

leaving behind the heavier (and for the relevant timescales inertial) ions. After the laser
pulse has passed, the space-charge forces between the static ions and the electrons pull
back the electrons so that they overshoot and start a longitudinal plasma oscillation.
Each electron oscillates like a pendulum about its initial position. The ponderomotive
force of the laser drives the electrons in phase, such that the superposition of many such
pendulums generates a collective moving density perturbation (see figure 2.1). Laser
pulses with a duration on the order of the plasma wavelength λp can thereby resonantly
set up a large-amplitude plasma wave which, owing to the excitation process, trails the
pulse at the group velocity of the laser. The longitudinal (accelerating) field component
produced by this plasma wave follows the laser pulse and, in analogy to a the wake
produced by a ship on a lake, are called wakefields. External or plasma electrons can be
injected into these large fields where they are rapidly accelerated.
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2.4. Generation of Plasma Waves by Laser Pulses

2.4.1. Linear Plasma Waves
Calculation of linear plasma waves
Longitudinal and transverse wakefields
Non-relativisitic wavebreaking limit

Linear plasma waves are generated by a driver laser that does not have relativistic
intensities (a0� 1). In order to calculate the plasma response for a non-evolving laser
pulse, solutions in 3D can be found by solving the linearized fluid equations: i.e. an
initial background with a small perturbation is assumed (for example for the plasma
density n0 + δn, where δn � n0). The linearized cold, non-relativistic fluid equations
can be written as (see for example [Ruth et al., 1985]):

the continuity equation
∂

∂t
δn+ n0

~∇ · ~u ' 0, (2.13)

the fluid momentum equation

∂~u

∂t
' ∇φ−∇a2

0/2, (2.14)

and Poisson’s equation

∇2φ ' k2
p

δn

n0

, (2.15)

where n0 is the initial plasma density, δn = n − n0 the density perturbation, ~u the
velocity of the perturbation, φ = eΦ/(mec

2) the normalized electrostatic potential and
kp = 2π/λp the plasma wave number. Solving eqs. (2.13), (2.14) and (2.15) for a
Gaussian laser pulse (see Appendix, section A.1.2) leads to a normalized plasma density
perturbation of

δn

n0

= −π
4

a2
0

2

[
1 +

8

k2
pr

2
s

(
1− 2r2

r2
s

)]
exp

(
−2r2

r2
s

)
sin [kp(z − ct)] (2.16)

and the longitudinal electric field produced by the wake

Ez = −π
4

mec ωp
e

a2
0

2
exp

(
−2r2

r2
s

)
cos [kp(z − ct)] , (2.17)

where rs is the laser spot size. It can be seen that the linear plasma wave is a simple sinu-
soidal density perturbation associated with a sinusoidal electric field with a wavelength
of λp, and a phase velocity vp which is approximately the group velocity of the laser vg'c.
Electrons injected into such a structure cannot only get longitudinally accelerated but
are also transversely confined since a plasma wave also produces transverse wakefields.
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Figure 2.2. | Normalized nonrelativistic longitudinal and transverse wake-
fields. The normalized longitudinal (blue) and transverse (red) wakefield amplitude
in the nonrelativistic case is plotted versus the plasma wave phase ξ. The value for
the transverse wakefield amplitude is taken off-axis (r > 0). For electrons, a negative
longitudinal field corresponds to an accelerating force, and a positive transverse field
corresponds to a radially focusing force (in direction −r, see eqs 2.17 & 2.18). The
shaded green area spans a λp/4-phase region of the wakefield which is both longitu-
dinally accelerating as well as transverse focusing.

The transverse focusing force can be calculated by the Panofsky-Wenzel theorem [Panof-
sky and Wenzel, 1956] (which relates the axial and the transverse electromagnetic forces
of a wakefield) and the transverse wakefield reads

Wr ∼
4r

kpr2
s

exp

(−2r2

r2
s

)
sin [kp(z − ct)] . (2.18)

Both the longitudinal and the transverse fields can be seen in figure 2.2.

Properties of linear wakefields

Eqs.(2.17 & 2.18) already describe many properties unique to plasma accelerators:
The maximum electric field that a linear plasma wave will sustain can be estimated

by assuming that all plasma electrons oscillate with the plasma frequency ωp. Solving
the linear Poisson’s equation (eq. (2.15)), assuming δn = n0 (i.e. a maximum density
modulation), results in the cold, non-relativistic wavebreaking amplitude

E0 =
mec ωp
e

(2.19)

or in practical units
E0[V/m] ' 96

√
n0[cm−3] , (2.20)
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2.5. Nonlinear Plasma Waves

which for typical densities of n0 = 5× 1018 is on the order of 200 GV/m.

Intrinsically, a low emittance is expected from the simple estimation (which is
strictly only valid for mono-energetic electron bunches) that at the exit of the plasma
accelerator the emittance ε can be calculated by the product of the electron beam size
σx,y and its divergence σ′x,y. The electron beam size is estimated to be a fraction of
the transverse wakefield dimensions which are on the order of the laser spot spot radii
rs [see eq.(2.17)]. In our case, typical laser foci are '20 µm and from simulations
electron beam sizes are expected to be '2µm. The electron beam divergence can be
experimentally readily determined and it is measured to be 1 mrad (rms) for a 200
MeV electron beam [Osterhoff et al., 2008] which results in a normalized emittance of
εn = γβ · ε ' 0.8 mm mrad.
The transverse focusing forces [eq.(2.18] are zero on-axis and increase radially approx-
imately linearly for a distance of r. rs/4. The (maximum) on-axis field amplitude
depends on the longitudinal distance to the laser pulse ξ, and for electrons changes from
focusing to defocusing after an advance of a distance λp/2. Owing to the linearity of the
transverse fields, the normalized emittance of the accelerated electron beam is preserved.

The electron bunch length is intrinsically only a fraction of one period of the
accelerating structure which from equation (2.17) is shown to be on the order of the
plasma wavelength λp. High-quality electron bunches indicate that they were accelerated
in a region with linear longitudinal and transversely focusing fields, which, due to the
phase shift of a factor of π/2 of the fields is only the case over a distance of λp/4. For
the plasma densities used in the experiment described below, λp ' 15 µm which gives an
estimated upper limit for the electron bunch duration of only a few tens femtoseconds.

2.5. Nonlinear Plasma Waves
Calculation of nonlinear plasma waves
Quasi-static approximation (QSA)
Non-linear plasma wavelength
Maximum non-linear wakefield amplitude for a given driver

Plasma waves that are driven by laser pulses with sufficiently high intensities become
nonlinear. For intensities of a0 > 1, the quiver velocity of the electrons in the laser field
becomes relativistic which also influences the shape of the plasma wave: it is no longer
sinusoidal, but its waveform steepens and the plasma wavelength increases. In compar-
ison to the linear case, this leads to larger electric fields that the wave can sustain, in
which electrons can get accelerated to substantially higher energies. Nonlinear plasma
waves can analytically only be calculated in 1D (corresponding to a transversely in-
finitely extended laser beam size) using the quasi-static approximation (QSA) [Sprangle
et al., 1990]. This approximation assumes that the plasma response does not signif-
icantly change the laser pulse during the time it takes the pulse to transit a plasma
electron. This means that the approximation is valid only for laser pulses with pulse
durations that are shorter than the time it takes for them to evolve in the plasma. In

11



2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

this approximation, the fluid response to a static laser field is calculated at a fixed time,
and in a next step the laser evolution due to this altered plasma fluid is determined by
solving the wave equation. Nonlinear plasma waves can be calculated starting from the
longitudinal parts of the cold relativistic fluid equations [Sprangle et al., 1990]:

the electron fluid momentum equation

d(γβz)

dt
= c

∂φ

∂z
− c

2γ

∂a2

∂z
, (2.21)

and the continuity equation

∂n

∂t
+ c

∂(nβz)

∂z
= 0, (2.22)

where φ = eΦ/(mec
2) is the normalized electrostatic potential, n the plasma density

and a = a(z) the normalized laser pulse intensity. The normalized longitudinal and
transverse plasma fluid velocities are given by βz = vz/c and β⊥ = v⊥/c, respectively.
The relativistic factor associated with the electrons is given by γ = (1−(β2

z+β2
⊥))−1/2 and

the plasma wave propagates with a phase velocity βp. The expressions can be greatly
simplified by a transformation into a frame that is co-moving with the plasma-wave
velocity. With a laser pulse as the driver, the wave moves with the group velocity of the
laser (βp ' βg) and therefore the co-moving frame has the coordinates ξ = z − vgt and
τ = t. The application of the QSA allows the fluid momentum and continuity equations
to be integrated (see Appendix, section A.1.3) which leads to:

γ(1− βgβz)− φ = 1 (2.23)

n(βg − βz) = n0βg (2.24)

These equations, in combination with the Poisson’s equation (eq. 2.15) lead to the qua-
sistatic cold fluid equation for the electrostatic potential φ

∂2φ

∂ξ2
= k2

pγ
2
g

[
βg

(
1− 1 + a2

γ2
g(1 + φ)2

)−1/2

− 1

]
, (2.25)

where γg = (1− β2
g)
−1/2.

In the case of γg � 1 (which means low plasma densities and high laser intensities,
see equation 2.35), this can be simplified to

∂2φ

∂ξ2
=
k2
p

2

(
1 + a2

(1 + φ)2
− 1

)
, (2.26)

and the plasma fluid quantities can be written as

n

n0

=
(1 + a2) + (1 + φ)2

2(1 + φ)2
, (2.27)

12



2.5. Nonlinear Plasma Waves

uz =
(1 + a2)− (1 + φ)2

2(1 + φ)
, (2.28)

βz =
(1 + a2)− (1 + φ)2

(1 + a2
0) + (1 + φ)2

, (2.29)

The properties of a nonlinear plasma wave computed with eqs.(2.26)-(2.29) can be seen
in fig.(2.3). The field of nonlinear waves can exceed that of the cold non-relativistic
wavebreaking limit (E0, eq 2.19) because of their deviation from the sinusoidal shape of
linear waves: the electron density shows sharply peaked crests which are separated by
wide troughs, the electric field shows a characteristic “sawtooth” profile and the plasma
wavelength elongates (see figure 2.3).

Analytically, the general characteristics of nonlinear plasma waves can be de-
termined by solving equation (2.25) in the region behind the driver laser (ξ 6 0). Since
here a= 0, the analysis yields the properties (independent of the driver) of a nonlinear
plasma wave of a given amplitude Emax. The wave becomes nonlinear if its amplitude
is larger than the non-relativistic wavebreaking limit (Emax > E0). The electrostatic
potential produced by the wave oscillates between

φm =
Ê2

max

2
± βp

√√√√
(

1 +
Ê2

max

2

)2

− 1 (2.30)

where Êmax = Emax/E0 and the ± gives the maximum and the minimum values φmax

and φmin at the position ξmax and ξmin, respectively (see fig.(2.4)). The potential has a
periodicity of [Esarey et al., 2009]

λNp = λp





1 +
3

16

(
Emax

E0

2)
for

Emax

E0

� 1

2

π

(
Emax

E0

+
E0

Emax

)
for

Emax

E0

� 1

(2.31)

which is the nonlinear plasma wavelength. Using equation 2.34, this can be written for
a0 � 1 as

λNp '
(

2
√
a0

π

)
λp. (2.32)

The amplitude of the plasma wave Emax depends on the driver. For a linearly polarized
laser with a temporally square pulse profile with an amplitude of a0 and an optimal
length of L ' λNp/2, the maximum amplitude is given by [Esarey et al., 2009]

Êmax =
Emax

E0

=
a2

0/2√
1 + a2

0/2
. (2.33)
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Figure 2.3. | Nonlinear plasma wave properties. The figure shows the plasma
density perturbation δn/n0 = (n0 − n)/n0, the electric field normalized to the cold
wavebreaking limit Ez/E0 and the plasma fluid velocity βz = vz/c of a nonlinear
plasma wave with a phase velocity of βp = 0.95. The graphs are computed by nu-
merically solving eqs (2.26) - (2.29). The co-moving coordinate ξ is normalized to
the non-relativistic plasma wavelength λp. The wave is driven by a Gaussian laser
pulse a2(ξ) centered at ξ = 0 (depicted red in Fig.2.3a) with an amplitude a0 = 2
and a pulse duration of L = k−1

p . The laser pulse is moving to the right.
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2.6. Acceleration of Electrons in Laser Wakefields

2.6. Acceleration of Electrons in Laser Wakefields

2.6.1. Wavebreaking and Maximum Electric Field

Nonlinear wavebreaking field
Laser group velocity in the nonlinear regime

The maximum electric field that a nonlinear plasma wave can sustain is given by the
wavebreaking field EWB. Wavebreaking occurs if the electron fluid velocity of the plasma
vz reaches the velocity of the plasma wave vp, causing the density (eq.(2.24)) to become
singular. This results in the maximum field that a nonlinear wave can sustain before it
breaks of [Akhiezer and Polovin, 1956]

EWB =
√

2(γp − 1) ·E0. (2.34)

The plasma wave velocity γp is approximately the laser group velocity γp which can be
calculated from the nonlinear dispersion relation to be [Decker and Mori, 1994]:

γg =
ω

ωp

√
a2

0 + 2

2
=

√
ncrit

n0

√
a2

0 + 2

2
, (2.35)

where ncrit = (meω
2
p)/(4πe

2) is the critical density (see section 2.3.5). This means that
the velocity depends on both the laser intensity a0 and the plasma density n0. Transverse
(3D) effects of the laser beam, such as Rayleigh diffraction can decrease the longitudinal
laser group velocity to [Esarey and Leemans, 1999]

γg '
(
ω2
p

ω2
+ 2

c2

ω2w2
0

)−1/2

, (2.36)

where w0 is the laser focal spot size. The plasma wave moves with a velocity close to
the laser group velocity γp ' γg and for typical densities in the laser-wakefield regime
γp = 10 ... 100. Such velocities lead to significant increase in accelerating fields in
comparison to linear plasma waves (see eq. 2.34). From equation (2.33) it can be seen
that a sufficiently high laser peak intensity a0 can drive a high amplitude plasma wave
and can even lead to wavebreaking (if Emax > EWB) for a0 > 2

√
γp (assuming a0 � 1

and γp � 1).

2.6.2. Electron Trapping and Acceleration

Phase-space picture of acceleration
Acceleration distance & maximum electron energies
Electron bunch duration
Minimum injection momentum
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

The trapping and acceleration of electrons in a wakefield can be best explained in
the phase-space of the plasma wave. Fig.(2.4) shows the phase-space trajectories of
test electrons with different initial kinetic energies under the influence of the fields of a
plasma wave driven by a laser with the same parameters as in fig.(2.3). The motion of a
test electron is given by (see [Esarey and Pilloff, 1995] and Appendix equation (A.49)):

H(pz, ξ) =
√
p2
z + 1 + a2 − βppz − φ(ξ) (2.37)

The electron orbits are defined by H(pz, ξ)=h0, where h0=const is the initial kinetic
energy of the test electron. Electrons with an initial velocity of at least the plasma wave
velocity (βz & βp) at the position of the potential minimum φmin=φ(ξ=ξmin) (backside
of the bucket) become trapped as discussed below and execute rotations in phase-space
(white-colored trajectories in fig.(2.4)). However, the trapping process itself is not de-
scribed in this model. Electrons with a velocity of exactly βp at ξmin and an energy
of Hs(γs, φ)=H(γp, φmin) move on an orbit called the separatrix (dotted red trajectory
in Fig.(2.4)) which separates trapped from background electrons. Background electrons
(black trajectories in Fig.(2.4)) that do not have a sufficiently high velocity to become
trapped slip backward with respect to the plasma wave, whereas electrons with energies
that are too high cannot interact efficiently with the wave and slowly overtake the wake.
The separatrix is characterized by its width (in the ξ-dimension) which is the distance
between the position of two minima of the potential ξmin and is given by the nonlinear
plasma wavelength λNp, equation (2.31). The height is given by the difference between
the maximum and minimum electron momenta at the position of the potential peak
ξmax which can be calculated by solving equation (2.37) for H=Hs in a region behind
the laser, where a=0. This results in [Esarey et al., 2009]

pm = βpγp(1 + γp∆φ)± γp
√

(1 + γp∆φ)2 − 1 , (2.38)

where + and - stand for the maximum and the minimum momentum, ∆φ = φmax−φmin =
2βp[(1+Ê2

max/2)2−1]1/2 is the difference between the maximum and minimum potential,
derived from equation (2.30). Typically, electrons get trapped at the back of a plasma
period (i.e. at ξ = ξmin), where the plasma density is highest, as discussed below. They
get trapped at this position if they have a minimum momentum of [Schroeder et al.,
2006]

pt = βpγp(1− γpφmin)− γp
√

(1− γpφmin)2 − 1 , (2.39)

which indicates that the minimum initial momentum pt required for electrons to become
trapped by the plasma wave depends on the the plasma density n0 and the laser in-
tensity a0 (implicit through both the potential of the wave (eqs.(2.30)&(2.33)) and the
wave phase velocity γp, equation (2.35)). Thus, for higher laser intensities and higher
plasma densities (and therefore lower γp) electrons with a lower initial momentum be-
come trapped as can be seen in fig.(2.5). This can be understood since for higher plasma
densities the wave velocity is slower and for higher laser intensities the separatrix be-
comes larger both allowing electrons with smaller initial velocities to become trapped.
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Figure 2.4. | Phase space picture of a nonlinear plasma wave. a) Potential of
the plasma wave (blue), driven by the laser pulse (red). The position of the potential
minium φmin is labeled as ξmin, the maximum φmax as ξmax. b) Phase space trajec-
tories of test electrons with different initial kinetic energies. The separatrix shown
as red dashed line separates trajectories of electrons that are trapped (white trajec-
tories) from those that are not trapped (black lines) by the fields of the wave. The
laser and plasma parameters are those of fig.(2.33).Trapping is not included in this
model and therefore electrons that are initially outside the separatrix will continue
to stay outside. As discussed below, trapping occurs if background electrons (with
a momentum p = 0) gain enough energy to get inside the separatrix (for example
by scattering or the field of a second laser beam) or if the separatrix is lowered (for
example by a drop of the plasma wave phase velocity).
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Figure 2.5. | Minimal injection momentum. The initial momentum required for
an electron to become trapped by a plasma wave for different laser intensities a0

plotted against the plasma density n0. The driver laser is assumed to have a central
wavelength of 800 nm.

Electrons that lie on the separatrix reach the highest momentum which in the linear
case can be written as [Esarey and Pilloff, 1995]

γmax ' 4γ2
pÊmax (2.40)

The energy that the electron gains (pmax − pmin, eqn 2.38) is given by γmax ' 2γ2
pÊmax

[Tajima and Dawson, 1979].
For nonlinear waves, the maximum energy is given by [Esarey and Pilloff, 1995]

γmax ' 2γ2
pÊ

2
max, (2.41)

which implies that electrons can gain higher energies if they are trapped in nonlinear
plasma waves. Since γ2

p ∼ n−1
0 (eq 2.35), lower plasma densities allow for higher electron

energies even though for higher densities the accelerating field gradients are larger. This
can be understood by estimating the distance it takes for an electron moving with the
speed of light to outrun the accelerating (back half) part of the the plasma wave (moving
with γp and therefore slightly slower than c ). This distance is called the dephasing
length and in the linear case reads [Tajima and Dawson, 1979], [Esarey et al., 2009]

Ld = γ2
pλp '

λ3
p

λ2
, (2.42)
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which indicates that Ld ∼ n
−3/2
0 .

The maximum energy can be estimated by assuming that the electrons are accelerated
by the maximum field Emax∼n1/2

0 , equation (2.33), over the whole dephasing length
which results in

Wmax = eEmaxLd ∼
1

n0

. (2.43)

Therefore higher electron energies can be achieved by a lower plasma density, but since
the accelerating fields get smaller a longer distance is required.

2.6.3. Limits
Depletion
Dephasing
Diffraction
Beam loading

There are several processes that limit the maximum energy gain of the accelerated
electrons. In the following, each process is discussed including an estimate on the max-
imum acceleration distance that it allows. With this, the maximum possible electron
energies can be roughly estimated by assuming that the electrons experience the maxi-
mum possible accelerating field Emax, equation (2.33), given for a certain plasma density
and laser intensity over the respective acceleration distance Wmax = eEmaxLacc

Electron dephasing. Since the laser beam (and therefore the plasma wave) propagates
in a plasma with a velocity v < c, electrons can get accelerated to higher velocities
than the group velocity of the laser pulse. They can outrun the accelerating
fields of the plasma wave and get decelerated which is called dephasing. Since
the longitudinal (accelerating) and the transverse focusing fields of the plasma
wave are out of phase by a factor of π/2 with respect to each other [Akhiezer and
Polovin, 1956], both linear accelerating and transverse focusing fields only exist in
a quarter of the plasma wave period. Therefore, the dephasing length is reached
after the electron beam outruns the plasma wave by a distance of 'λp/2. The
length can be estimated by assuming an electron moving with c and the plasma
wave moving with the group velocity of the laser: Ld/vp = (Ld + λNp/2)/c. Using
equation 2.35, this leads to

Ld =
λ3

Np

λ2

(
a2

0 + 2

2

)
. (2.44)

This equation can be simplified for a2
0 � 1 and in the case of a2

0 � 1, a lengthy
calculation including relativistic effects leads to [Esarey et al., 2009]:

Ld =





λ3
p

λ2
for a2

0 � 1

√
2

π

λ3
p

λ2

a0

Np

for a2
0 � 1

(2.45)
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and a corresponding maximum energy gain of [Esarey et al., 2009]

∆Wd [MeV] =





1260 · I [W/cm2]

n0 [cm−3]
for a2

0 � 1

1260 · 2

πNp

I [W/cm2]

n0 [cm−3]
for a2

0 � 1,

(2.46)

where Np is the number of plasma periods behind the driver laser.

In the linear regime (a0 � 1), the maximum acceleration distance is mainly limited
by the dephasing length. This can be overcome by using a nonuniform axial (along
the acceleration distance) plasma density. Especially for an axially increasing
plasma density, the phase velocity of the plasma wave also increases [Sprangle
et al., 2001]. This means that the dephasing length (and thus the maximum
energy gain) can be extended. For appropriate tapering of the plasma density, the
acceleration limit is given by the pump depletion (see below).

In the nonlinear regime (a0 � 1), the dephasing and the pump depletion lenghts
become comparable which means that an increase of the dephasing length does not
lead to higher energy gains. Therefore a simpler setup with no density tapering
can be employed, leading to energy gains comparable to the linear gain, but using
higher accelerating gradients and therefore shorter channel lengths.

For the parameters of the experiment described below (laser power P = 20 TW at
a wavelength of 800 nm, laser intensity of I ' 2 · 1018 W/cm2 and correspondingly
a0 ' 1, a plasma density of n0 ' 5 · 1018 cm−3 and correspondingly λp ' 15 µm) the
dephasing length is calculated to be Ld = 5.2 mm and a correspondingly maximum
energy gain of ∆Wd = 500 MeV. However, this has to be considered only as a
coarse approximation since the laser intensity a0 ' 1 which is in between the
limits of the estimations given above (the formula in the limit a0 � 1 has been
used for the calculation).

Laser diffraction. Without any forms of optical guiding, the laser pulse undergoes
Rayleigh diffraction which increases the beam size and correspondingly decreases
the laser intensity. Since a plasma wave can only by driven by a sufficiently intense
laser, the acceleration distance is limited to a few Rayleigh lengths (ZR)

Ldiff ' πZR, (2.47)

where ZR = πw2
0/λ, with λ being the laser wavelength and w0 the rms laser spot

size. In this case, the energy gain is limited to

∆Wdiff [MeV] ' 740
λ

λp

1√
1 + a2

0/2
·P [TW]. (2.48)

To overcome this limitation, the laser pulse can be kept focused beyond the
Rayleigh length by a medium with an index of refraction that is higher on-axis
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than off-axis (∂η(r)/∂r < 0) [Sprangle et al., 1992]. The index of refraction for a
laser pulse in a plasma depends on both the radial plasma density and implicitly
on the radial laser intensity through the relativistic mass increase of the electron
in the laser field:

η(r) =

√
1−

(ωp
ω

)2

' 1− 4πe2

2ω2

n(r)

γ(r)me,0

. (2.49)

This suggests that a radially increasing appropriate plasma density profile n(r)
as well as radially different electron energies γ(r) can form such a channel. The
first possibility can be achieved by a second laser pulse or an electrical discharge
in a gas that ionizes and heats electrons. The hot electrons expand and form a
channel that has a radial plasma density distribution with a minimum (and thus a
maximum index of refraction) on axis. This can be used as a plasma waveguide
to guide the laser beam over several Rayleigh lengths [Butler et al., 2002; Geddes
et al., 2004].

Laser pulses with a sufficiently high powers (P>Pcrit[GW] ' 17.4(ω/ωp)
2) undergo

relativistic self-focusing and can also be guided in a plasma (for relativistic self-
focussing, see section 2.6.4).

A plasma waveguide has several advantages over the relativistic self-guiding regime.
Since the channel does not require a high laser power P>Pcrit, it can be operated
at lower intensities with the advantage of not having to rely heavily on nonlinear
effects which may result in a more stable regime.

In the case of the experimental parameters given above, the limit of the energy gain
given by the laser diffraction is ∆Wdiff = 660 MeV. It can be seen that in this case
the dephasing is limiting the acceleration rather than the diffraction. However,
for a slightly lower plasma density, the dephasing length can be increased and the
maximum energy gain is limited by laser diffraction.

Pump depletion. As the laser excites a plasma wave, it transfers energy to it and starts
to deplete [Horton and Tajima, 1986],[Ting et al., 1990]. The depletion length can
be estimated by assuming that the laser pulse energy is completely transferred to
the plasma wave. In the 1D case, assume a plasma wave with an electric field
of Emax (energy density of E2

max) over a length of Lpd and a laser pulse with a
longitudinal square profile over a pulse length of L = λNp/2 (for λNp, see equation
(2.31)). With a laser electric field EL, this can be computed by: E2

maxLpd ' E2
LL

which results in a depletion length of [Esarey et al., 2009]

Lpd =





2

a2
0

λ3
p

λ2
for a2

0 . 1

√
2 a0

π

λ3
p

λ2
for a2

0 � 1

(2.50)
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and a corresponding maximum energy gain of [Esarey et al., 2009]

∆Wpd [MeV] =





3.4× 1021 · 1

λ [µm]n0 [cm−3]
for a2

0 � 1

400 · I [W/cm2]

n0 [cm−3]
for a2

0 � 1.

(2.51)

Since both the dephasing as well as the diffraction lengths can be extended by either
target engineering or certain physical effects, the pump depletion sets the upper
limit of the single-stage energy gain. In order to run a laser-plasma accelerator
beyond pump depletion, it has to be operated over several stages, each driven by
a “fresh” laser pulse.

For the experimental parameters given above, the depletion length is given by
Lpd ' 12 mm which leads to a maximum energy gain of ∆Wpd ' 850 MeV.

Beam loading. The electric fields of the plasma wave can be significantly modified by
the fields of the highly dense injected electron bunches. This is referred to as beam
loading and can set severe limitations on the number of accelerated electrons, the
quality of the accelerated beam and the efficiency of the process. The maximum
number of electrons that can be loaded into a wave bucket can be estimated by
calculating the number of electrons in a small axial region (� λp) which produce
an electric field that cancels out the accelerating field of the plasma wave. For a
linear wakefield far from wavebreaking (Emax<E0), this number is calculated to be
[Katsouleas et al., 1987]

Nmax ' 5× 105Emax

E0

A[cm2]
√
n0[cm−3] , (2.52)

where A is the cross-sectional area of the bunch (i.e. the transverse area over
which the fields of the bunch and the plasma wave interact. The equation assumes
A� π/k2

p; 1/kp is the skin depth).

The energy spread of an infinitesimally short electron beam can be estimated by
assuming that the front of the bunch is accelerated by the whole electric field
of the plasma wave and gains an energy ∆γmax, whereas the back of the bunch
experiences only the accelerating field shielded by the front and gains an energy of
∆γmin. Since the reduction in accelerating field for the electrons at the back of the
bunch is linear in the number of electrons N contained in the bunch, the relative
energy spread can be estimated as [Katsouleas et al., 1987]

∆γmax −∆γmin

∆γmax

=
N

Nmax

. (2.53)

The efficiency of transferring wake energy into accelerated electron energy can be
estimated by the maximum decrease of the electric field of the plasma wave due to

22



2.6. Acceleration of Electrons in Laser Wakefields

the loaded electron bunch (which is at the back of the bunch) and can be written
as [Katsouleas et al., 1987]

ηb =
N

Nmax

(
2− N

Nmax

)
, (2.54)

which means that for N → Nmax, the efficiency approaches 100% but also the
energy spread approaches 100%. Therefore the electron beam quality sets an
upper limit on the number of accelerated electrons in a bunch. However, these are
only 1D estimations and laser pulses with higher energies over a larger focal spot
(same intensities) can lead to a decrease of the beam loading effect.

2.6.4. Evolution of an Intense Laser Pulse in a Plasma
Self-modulation
Relativistic self-focusing
Ponderomotive self-channeling
Filamentation
Self-steepening

High-intensity laser pulses undergo a substantial evolution as they propagate through
plasma. Owing to their large electric fields, they modify the plasma density and can
accelerate electrons to relativistic energies within a single optical cycle. The propagation
and evolution of a laser beam in a plasma is mainly governed by the index of refraction
η which depends on the electron density ne, the electron relativistic mass γme and the
laser frequency ω as:

η =

√
1−

(ωp
ω

)2

=

√
1− 4πe2

ω2

ne
γme

. (2.55)

The laser group velocity and its phase velocity are given by

vg = η · c and vph =
c

η
. (2.56)

Self-modulation. Long laser pulses with a duration of L > λp undergo self-modulation
since the plasma wave (excited by the laser) has an electron density profile that is
periodic with the plasma wavelength. Along the axis, this leads in regions of lower
plasma density to a higher index of refraction (see eq.[2.55]) and in regions with a
high density to a lower index of refraction compared to the index of refraction of
the undisturbed plasma background. As a consequence, laser pulses that extend
over several plasma periods get transversely diffracted at high density sections and
focused in the electron-void areas. This causes the axial intensity of the pulse to
get modulated with a period of λp and eventually the laser to break up. These
laser beamlets, spaced at λp resonantly excite a large plasma wave. However,
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accelerated electron bunches in these wakefields directly interact with the laser
pulse which causes a growth of the emittance and leads to broad energy spectra.

Relativistic self-focusing. For laser intensities of a0 > 1, the laser transversely acceler-
ates electrons to relativistic velocities which results in an increase of the relativistic
electron mass. For a typical laser pulse, the transverse intensity profile peaks on
axis and drops for a larger radius which leads to the strongest acceleration of elec-
trons on axis (with an associated largest relativistic mass). From equation 2.55, it
can be seen that this translates into a higher index of refraction on axis than off
axis. Correspondingly, the phase fronts of the laser pulse propagate slower on axis
than they do off axis (phase velocity: vph = c/η) which results in a focusing effect.
In this way, a laser with sufficiently high power (P>Pcrit[GW] ' 17.4(ω/ωp)

2) can
undergo relativistic self-focusing which can cancel out the Rayleigh diffraction and
thus the pulse can be guided in a plasma over distances > ZR. However, this does
not work for laser pulses with duration cτL < λp since the ponderomotive force
pushes electrons at the front of the pulse which leads to an increase in electron
density. This cancels out the decrease in plasma frequency due to the relativistic
mass increase and the head of the short pulse starts to erode by diffracting similar
to a low-intensity beam. However, it is possible for the front edge of the laser
to deplete before it starts to diffract which leads to laser pulse etching and can
effectively relativistically guide short pulses (see section 2.6.5)

Ionization-induced defocusing. The ionization of gas atoms changes the plasma den-
sity. For laser intensities that are just slightly above the ionization threshold (for
example lasers that are not yet focused to a diffraction limited spot), the ioniza-
tion probability has both a radial and an axial dependency. The highest (on-axis)
intensity results in the highest ionization yield and therefore the highest plasma
density on-axis. This leads to a transverse gradient of the index of refraction
with a minimum on-axis and therefore to the defocusing of the laser beam. The
effect depends on the type of gas chosen as a target: for hydrogen the required
laser intensity is IH+ = 1.4 × 1014 W/cm2 and the rising edge of the laser com-
pletely ionizes the gas for intensities I > 1015 W/cm2 which leads to a uniform
density distribution and therefore to no defocusing. A higher laser intensity is re-
quired for gases with higher atomic numbers. For example helium fully ionizes at
IHe++ ' 1016 W/cm2. This effect can be mitigated by a preformed plasma channel
or at a well defined vacuum-plasma transition (present for example in gas jets),
where the laser can be focused to a diffraction limited spot in vacuum before it
enters the plasma [Auguste et al., 1994; Gibbon, 2005].

Ponderomotive self-channeling. Owing to its radial ponderomotive force, a laser pulse
expels electrons from the axis, creating a channel with a low plasma density on
axis. This leads to a radial gradient of the refractive index with a maximum on-
axis. However, for laser powers P<Pcrit this effect is not sufficiently strong to
guide the laser by itself, and for P→ Pcrit guiding is achieved predominantly by
relativistic self-focusing but is enhanced by self-channeling [Esarey et al., 2009].
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Filamentation. Through relativistic self-focusing in plasmas of relatively high densities,
lasers with powers significantly above Pcrit can generate not only a single, but mul-
tiple ion channels across the transverse beam profile. The laser expels electrons
and leaves behind a plasma channel. The fields of long laser pulses (cτL > λp)
in combination with the electric fields of the channel and the magnetic fields pro-
duced by the current of electrons that enter into the channel can interact and
accelerate these electrons in forward direction (direct laser acceleration) [Pukhov
et al., 1999]. Owing to the magnetic field produced by these electrons, currents
that have the same propagation directions attract each other and form filaments.
If the transverse laser focal spot is much larger than the skin depth of the plasma
(w0 � 1/kp), small perturbations in the beam current and laser intensity can form
several filaments, each of the size of 1/kp. Due to the background plasma, these fil-
aments are shielded from each other and they do not attract one another. However,
for a slightly smaller laser spot size, the filaments can coalesce and form a single
“super-channel” [Pukhov and Meyer-ter Vehn, 1996]. In order to suppress fila-
mentation and thus a deterioration of the accelerated electrons, short laser pulses
which do not interact with the electron beam are more suited for acceleration.
Experimentally, for the bubble regime it was found in [Thomas et al., 2009] that
a minimum laser spot size in terms of its pulse duration of w0 & cτL is required in
order to suppress filamentation and produce monoenergetic electron beams.

Self-steepening & self-shortening. Self-steepening and self-shortening are the result of
two effects: (1) The increase in relativistic mass of electrons under the influence of
high laser intensities leads to an increase of the index of refraction. For longitudi-
nally varying laser intensity profiles, this leads to regions with different local group
velocities along the laser pulse (a higher intensity part of the laser moves with a
higher group velocity: vg = η · c) [Decker and Mori, 1994; Esarey et al., 2000]. (2)
in regions with a lower plasma density, the index of refraction is increased which
also increases the local group velocity. In the bubble regime (see section 2.6.5)
the laser pushes a compressed electron sheet in front, like a snow-plough, leaving
behind a low plasma density. Thus, the lower-intensity leading edge of the laser
experiences a high electron density (and therfore has a lower local group velocity).
The longitudinal central region of the laser with the peak intensity experiences a
low density. For longitudinal Gaussian laser intensity, both of these effects lead to
a higher local group velocity for the (longitudinal) central part of the pulse com-
pared to the leading edge. This results in a compression of the pulse. It increases
the intensity gradient at the front of the laser pulse (self-steepening) and leads to
a higher overall peak intensity.
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2.6.5. 3D Theory and the Bubble Regime

3D theory
Particle-in-cell (PIC) code
The bubble
3D scalings derived from PIC simulations

The experiments described in this thesis are conducted with an electron accelerator
that is operated in the so-called “bubble”-regime [Pukhov and Meyer-ter Vehn, 2002].
A comprehensive theory of this acceleration scheme is still subject to research and is not
yet fully represented in textbooks. Therefore, a more detailed discussion is presented in
this section.

The bubble acceleration mechanism relies on the non-linear evolution of the laser pulse
and requires a 3D nonlinear description. Since both the motion of electrons under the in-
fluence relativistically intense laser pulses (a0 > 1) and the laser pulse evolution become
highly nonlinear, only few accurate analytical solutions in 1D and 2D exist. Owing to
these non-linearities, numerical simulations generally must be used to describe the phys-
ical processes in 3D and to predict scaling laws for parameters such as electron energy,
energy spread, the accelerated charge, etc with laser intensity and plasma parameters.

Particle-in-Cell (PIC) (eg.: [Dawson, 1983; Hockney and Eastwood, 1988]) codes
are a commonly used tool to simulate plasma accelerators. PIC codes solve the Maxwell’s
equations as well as the relativistic equations of motion for particles in an electro-
magnetic field and are therefore very fundamental, since only very few assumptions
are made. In order to describe the large amount of particles in a plasma, the code rep-
resents their distribution as macro-particles, each of which can be viewed as finite-sized
cloud of an ensemble of many real particles of the same species at the same velocity. In
this description, rather than solving the whole 6D particle phase-space grid at each step,
only regions where particles are present must be solved; only the Maxwell’s equations
are solved on a 3D spatial (configuration) grid. The macro-particles can move continu-
ously under the influence of the electromagnetic field. This creates charge densities and
currents which are used to solve Maxwell’s equations on the discretized configuration
grid, in order to calculate the fields that act on the macro-particles in the next step.
This method allows for a highly parallelized computation, but the high longitudinal res-
olution (given by a fraction of the laser wavelength: ' 1µm) that needs to be resolved,
requires a large amount of computational time for typical laser-plasma accelerators (of
few-cm length and 1018 particles/cm−3) even on large computer clusters.

PIC codes allow one to investigate the properties and scalings even of highly nonlin-
ear wakefields in 3D. In the previous section, nonlinear plasma waves have only been
discussed in the 1D limit which assumes a transverse laser beam size much larger than
the plasma wavelength. However, the 3D shape of a plasma wave driven by a laser
beam of the transverse size rs ≈ λp deviates significantly from a sinusoidal wave form.
Laser beams with a transverse Gaussian intensity distribution that is peaked on-axis
drive a stronger plasma wave on-axis than off-axis. This leads to a longer nonlinear
plasma wavelength [see eq.(2.31)] on-axis than for larger radii, resulting in transversely
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Figure 2.6. | 3D PIC simulation of a laser-wakefield accelerator. The figure
shows a PIC simulation of the plasma-density distribution in a laser-wakefield ac-
celerator. The laser pulse (moving from left to right) can be seen from the rapid
oscillations in plasma density (on the right-hand side of the figure) with a wave-
lengths of one-half of the laser wavelength which are a result of the fast compo-
nent of the ponderomotive force. It is trailed by a plasma wave that shows the
transverse “horseshoe”-like shapes typical for the nonlinear regime. The parameter
chose for this simulation are: ne = 5 · 1018 cm−3, τL = 40 fs (FWHM), a0 = 2.7,
λL = 800 nm, and ω0 = 23 µm (FWHM). Figure courtesy of T. Mehrling.

“horseshoe”-shaped plasma wavefronts (see figure 2.6). Owing to these curved shapes,
the threshold for wavebreaking is lowered, since the wave starts to break transversely
[Bulanov et al., 1997] which can obviously not be described in 1D.

The Bubble Regime

In contrast to the linear (a0 � 1) and the quasi-linear (a0 & 1) regime where electrons
undergo mostly longitudinal plasma oscillations, their oscillations become transverse-
dominated for highly nonlinear laser intensities (a0 � 1). The laser field is so strong
that it radially expels all electrons from a region around the axis, leaving behind a
uniformly-dense column of ions. This regime was first described as the blowout-regime
for electron beams [Rosenzweig et al., 1991] and for lasers [Mora and Antonsen, 1996]
as driver. The ions, which remain stationary on the relevant time scales, pull back
on the electrons causing them to return to the axis after about a plasma period; they
overshoot and thereby create a plasma wave. If the laser intensity is sufficiently high,
the wave breaks after the first oscillation which washes out all downstream features,
leaving behind only a single ionic cavity. This cavity is a stable structure that trails the
laser pulse at approximately its group velocity through the plasma. With the use of 3D
PIC simulations this “bubble”-regime was explored for laser pulses shorter than λp as a
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possibility to produce high-quality, ultrarelativistic electron bunches with small energy-
spreads and low emittances [Pukhov and Meyer-ter Vehn, 2002]. The bubble provides
fields that have ideal focusing and acceleration properties for electrons: at a certain
longitudinal position, the accelerating field is constant with the transverse distance from
the axis (r⊥) and varies linearly with the distance to the laser pulse ξ, whereas the
transverse fields are linear with the the radius r⊥ and constant along ξ. Therefore, the
bubble produces fields that are suited for an emittance-preserving acceleration even for
a transverse finite-sized electron beam. These properties are due to the spherical shape
of the bubble which is filled with a uniform ion background. The fields are given by
[Kostyukov et al., 2004; Lu et al., 2006]

Ez(ξ) '
ξ

2
kpE0 (2.57)

Er(r⊥)−BΘ(r⊥) =
r⊥
2
kpE0 (2.58)

where E0 is the non-relativistic wavebreaking limit (eq 2.19). The maximum axial electric
field is at the bubble radius ξ = R and for a matched laser spot size (eq 2.60) has the
amplitude of Emax/E0 =

√
a0.

Typical pulse lengths and intensities of laser systems used in LWFA experiments
initially do not reach the threshold to operate in the bubble regime. However, during
the pulse propagation in the plasma, the laser undergoes nonlinear evolution, such as
self-steepening, self-shortening and self-focussing (see section 2.6.4) This results in a
significantly higher laser intensity which can lead to a wake in the “bubble-like” regime
with its typical ponderomotive blowout of electrons from the axis. The effect can be
seen in PIC simulations that are explaining recent experimental results (see figure 2.8
and [Faure et al., 2004]).

Self-Injection into the Bubble Fields

Electrons can become self-injected directly into the accelerating phase of the bubble
fields. In order to describe the injection process, electrons originating from different
distances to the laser propagation axis have to be distinguished. Electrons, initially lo-
cated off-axis, are mostly hit by the outer regions of the laser and get scattered outwards,
never to return to the axis which means that they do not contribute to the acceleration
process and their energy is lost. Most electrons that are transversely expelled by the
laser from a region close to the axis wrap around the cavity in half circles. They compose
a highly dense electron sheath of radius R around the bubble center ξ = 0 (see fig.2.7),
that forms the boundary of the bubble. On the backside of the bubble, the trajectories
of these electrons cross, leading to a strongly peaked electron density. For a sufficiently
high laser intensity of a0 & 2, the bubble shape can be approximately modeled as a
sphere [Kostyukov et al., 2004; Lu et al., 2006]. The electric potential produced by this
cavity filled with uniformly dense, positive ions has a minimum at its radius and (in-
creases toward and) peaks at its center. The electron density peak at the backside of the
cavity further decreases this potential which leads to a global minimum, thus making it
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Figure 2.7. | Calculated trajectories of electrons with different initial condi-
tions under the fields of a bubble. The bubble is modeled after [Kostyukov et al.,
2009] as a sphere with a radius R having a uniform ion background (for the equa-
tions of motion, see Appendix section A.2). Electron trajectories under the influence
of the bubble fields are numerically solved for the initial conditions: py = 0, pz = 0
and a distance r > R (blue), r = R (red), r < R (green) at ξ = 0. Only electrons
with an initial position r 6 R and a sufficiently small negative momentum can be-
come trapped. However, since the electron moving on the green trajectory (r < R)
traverses the fields of the bubble in the region ξ > 0, it has negative momentum pz
at ξ = 0 and therefore the probability of getting trapped is decreased. Not consid-
ered in this model is the electric potential from the electron density spike trailing the
bubble. All distances are normalized to kp.

most likely for electrons to get trapped in this region. Since these electrons are strongly
accelerated to longitudinal velocities larger than βp, some of them entering this region
can get scattered into the bubble by the potential of this density peak and wavebreaking
occurs. In order for electrons to get trapped by the bubble, their longitudinal velocity
has to be at least that of the bubble (βz > βp). This condition can be written in terms
of only plasma and bubble parameters, namely the plasma wavelength λp, the bubble
radius R and its phase velocity βp [Kostyukov et al., 2009]

kpR &
√

2 γp, (2.59)

where kp = 2π/λp and γp = (1− β2
p)
−1/2. Therefore, electrons can only get trapped in a

bubble with a sufficiently large radius R which is approximately the same as the laser
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spot size w0. PIC simulations have shown that a laser spot size matched to the laser
intensity and the plasma wavelength oscillates only slightly if [Lu et al., 2007]

kpR ' kpw0 = 2
√
a0 . (2.60)

However, even for bubbles with sufficiently large radii, not all electrons entering the
region of the potential minimum at the cavity backside will get trapped [Kostyukov
et al., 2009]. Depending on their previous trajectories, they have gained different lon-
gitudinal momenta upon their arrival at the back of the bubble. This momentum can
be determined by the electron’s initial distance to the axis rξ at the position ξ = 0,
where it is maximally displaced from the axis, its transverse momentum pr = 0, and it
is about to return toward the axis (see figure 2.7). The equations of motion of electrons
under the influence of the bubble potential (which is modeled as a sphere with a radius
R and a uniform ion background after [Kostyukov et al., 2009]) are numerically solved
for different initial distances to the axis (for the equations see Appendix section A.2).
The results can be seen in figure 2.7.

It can be seen that electrons at a distance r > R at the longitudinal position ξ = 0
are deflected by the electron sheath surrounding the bubble and do not return to the
axis and are lost. In this model, electrons that are located at r = R (initially at rest:
pr = pz = 0) are transversely pulled by the fields of the bubble into its outer rim and
thus into its longitudinally accelerating fields. As they drift back through the bubble
(in the co-moving frame ξ) they are accelerated in forward direction. By the time they
have reached its back side they have gained enough momentum so that their longitudinal
velocity is that of the bubble (βz = βp). These electrons are injected into the bubble and
can be accelerated to high energies by its fields. The electrons get trapped at a position
close to the axis, where their transverse momentum is maximal and thus undergo strong
betatron motion during the acceleration which can be seen in figure 2.7.

Electrons that are inside the perimeter of the bubble (r < R) at the position ξ = 0,
have already traversed parts of the decelerating (accelerating in direction −ξ) region of
the bubble. Therefore, in contrast to the electrons at the border of the bubble, they are
not at rest at the position ξ = 0, but have a momentum in the negative ξ-direction. If the
magnitude of this momentum is too high the electrons cannot reach the phase velocity
of the bubble, and therefore the probability of getting trapped decreases significantly.

This simple model does not consider two important processes that are known to exist
from PIC simulations: (1) The Coulomb scattering of electrons at the potential produced
by the electron density spike at the back of the bubble which can cause electrons that
initially did not have a sufficiently high velocity to get trapped. (2) The space-charge
fields of the captured electrons alter the fields of the bubble (beam loading) which
can either lead to a termination of the injection or a change of its shape and continuous
trapping. Which alternative occurs depends on the initial condition of several parameters
such as the laser intensity, the focal spot size, the plasma density and the interplay
of complex phenomena. Such phenomena include the evolution of the laser, the self-
injection and shape of the trapped electron bunch, and their influence on the wake.
However, a rigorous formalism of these processes is still subject to research and therefore
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Figure 2.8. | 3D PIC simulation of a laser-wakefield accelerator after injec-
tion. The left-hand side of the figure shows the plasma density distribution of a
laser-wakefield accelerator after injection (at a later time step compared to that
shown in figure 2.6, using the same parameters). It can be seen that the laser pulse
which has undergone a significant evolution (for comparison see figure 2.6) drives a
bubble-like accelerating structure. The injected electrons cause the bubble structure
to elongate which leads to a decreased velocity of the backside of the bubble and to
continuous injection (see the main text). The right-hand side of the figure shows the
electron spectrum along the longitudinal bubble coordinate. It can be seen that elec-
trons that got injected at a later time (that are at a distance further back within the
bunch) are accelerated over a shorter distance which causes their energy to be lower.
Electron spectra qualitatively similar to that shown in this figure are detected in the
experiments (see section 5.3), however they cannot be measured time-resolved along
the electron bunch. Figure courtesy of T. Mehrling.

conclusions and parameter scans have to be simulated by PIC codes. If the self-injection
is not terminated, these simulations show that the fields of the trapped electron bunch
cause the back of bubble to elongate. As a result, the backside of the bubble is moving
with a slower velocity than the front which effectively lowers the trapping threshold
(at the backside) causing electrons to be injected continuously throughout the whole
acceleration distance [Kalmykov et al., 2009; Kostyukov et al., 2009] (see figure 2.8).
Electrons that got trapped at different times are accelerated over different distances and
therefore the energy spectrum of the accelerated electron bunch usually consists of a
narrow peak at high energies (electrons that got trapped first) with a broad background.
In the second scenario, the repelling fields of the trapped electrons can also terminate
the injection of additional electrons and the shape of the bubble is only slightly changed
[Kalmykov et al., 2009].

Scalings for the Bubble Regime

By means of PIC simulations, it was found that short laser pulses with matched profiles
in both transverse and longitudinal dimensions, evolve little and can be self-guided over
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many Rayleigh lengths [Decker and Mori, 1994; Lu et al., 2007]. This scheme is based
on relativistic self-guiding and thus the laser power has to be above the critical power
P > Pcrit (see section 2.6.4). Although the front of short pulses is not self-guided
(see section 2.6.4), the laser can efficiently transfer energy to the wakefield and stay
focused over many Rayleigh lengths. This is possible if the leading edge of the pulse
locally pump depletes before it starts to diffract. The body of the pulse is guided in
the low electron density channel. For a laser with a sufficiently high intensity gradient,
the blowout of the plasma electrons happens mostly at the pulse front and, owing to
this energy transfer, gets locally depleted. This causes the front edge to slowly etch
backward resulting in a continuously decreasing pulse duration until the laser is fully
depleted. For the highest efficiency, the time (distance) it takes for the laser to be
completely eroded should be matched to the dephasing length of the electrons which
sets a requirement on the minimal pulse duration. Furthermore, a spherical shape of
the bubble with wakefields ideal for electron acceleration is achieved for intensities of
a0 & 4. Therefore, the duration of the laser pulse needs to be sufficiently long to reach
dephasing but not too long in order not to interact with the accelerated electron bunch.
Additionally, it requires an appropriate (matched) spot size for a large enough bubble to
ensure self-injection as well as a sufficiently high intensity in order to be in the bubble
regime and drive a spherically shaped bubble.

Scalings for the maximum energy gain in the bubble regime can be estimated by
assuming the linear accelerating field [eq.(2.57)] of a spherical bubble over the dephasing
length of the bubble radius R which leads to [Lu et al., 2007]

∆E[GeV] ' 1.7

(
0.8

λ0[µm]

)4/3(
1018

np[cm−3]

)2/3(
P [TW]

100

)1/3

. (2.61)

Similar considerations, based on analytical and numerical studies have lead to [Gordienko
and Pukhov, 2005]

∆E[MeV] ' 0.1

(
cτL
λ0

)√
P [GW], (2.62)

where λ0 is the laser wavelength, np the plasma density, P the laser power and τL
the pulse duration. For the parameters of the experiment described below (laser power
P = 20 TW at a wavelength of λ = 800 nm, a0 = 1, and a plasma density of n0 ' 5 · 1018),
equation 2.61 gives a maximum electron energy gain of ∆E = 340 GeV. An energy of
≈ 220 MeV is detected in the experiments described below (see section 5.3), however the
laser pulses utilized as driver do not fulfill the for equation 2.61 required a0 & 2.

The maximum number of accelerated electrons can be estimated by the energy
balance between the field energy in the first bucket and the energy of N electrons at
maximum kinetic energy. The result given in reference [Lu et al., 2007]

N ' 2.5× 109 λ0[µm]

0.8

√
P [TW]

100
, (2.63)

has similar scaling (differing only in the coefficients) to the result given in reference
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[Gordienko and Pukhov, 2005]

N ' 8.4× 109 λ0[µm]

0.8

√
P [TW]

100
. (2.64)

For the experimental value given above, equation 2.63 leads to N ' 1 · 109 electrons
or a charge of 180 pC (the experiment described below typically show a charge of 10
pC).

These scalings suggest that lower plasma densities lead to higher electron energies.
However, the critical power to get relativistic self-focusing Pcrit (see section 2.6.4) in-
creases with lower density and thus, a higher laser power is needed to ensure enough
self-focusing before the laser diffracts. Furthermore, the bubble velocity increases for a
lower plasma density, resulting in a higher threshold for the electron velocity in order to
get self-injection. Therefore, a separation of the injection and the acceleration by either
external injection or new injection schemes as discussed in the next section may be more
attractive.

Disadvantages of the Bubble Regime

Although the self-injection process in the bubble regime contributes to the simplicity of
the scheme, it comes with some intrinsic disadvantages: the injection mechanism is based
on an interplay of many complex, highly nonlinear processes and therefore it is hard to
control. As a result, the reproducibility of the electron beam and its properties are not
(yet) sufficiently high for certain fields such as high-energy physics or free-electron lasers
(FELs), both of which require short electron bunches with a high amount of charge,
small energy spread and a very low emittance. The relatively high energy spread of a
few percent is mainly caused by several factors:

(1) The not well-defined (sometimes even continuous) injection of electrons into the
bubble field results in an acceleration over different distances and by different accelera-
tion phases for individual electrons, thus leading to a large energy spread.

(2) The transverse injection results in strong betatron oscillations of the electrons
during the acceleration. This leads to emission of synchrotron radiation which can
extend into the hard X-ray range and decreases the electron energy. The radiated power
depends on the transverse focusing force of the bubble fields (which increases linearly
with the distance to the central axis) and thus on the initial transverse momentum of
the electron. Therefore, electrons injected with different transverse momenta move on
betatron trajectories with different amplitudes and emit radiation with different powers.
As a result, even though electrons in a longitudinal slice of the beam experience the same
accelerating field, they lose a different amount of energy through betatron radiation.
This leads to an axially uncorrelated energy spread in the electron bunch which can
increase the normalized energy spread throughout the electron beam [Michel et al.,
2006b]. Furthermore, the transverse trapping leads to high transverse momenta and
therefore to a relatively high transverse emittance.

(3) The electric field of the injected electrons screen the bubble fields for electrons
that are injected at a later point in time (beam loading). This modifies (mainly) the
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accelerating field of the bubble which results in a different energy gain for electrons
at different longitudinal positions in the beam. A trapezoidal density profile of the
accelerated bunch can flatten the accelerating field over the distance of the beam and
thus minimize this effect [Tzoufras et al., 2008]. A larger bubble radius (which requires
a higher laser power, eq.[2.60]) can sustain a higher number of electrons to be trapped
or can mitigate the beam loading effects and thus decrease the energy spread for a more
moderate beam current [Tzoufras et al., 2008].

(4) The extraction point of the electron beam from the accelerating fields and therefore
the plasma is crucial to achieve a small energy spread. The beam should be accelerated
over a distance slightly longer than the dephasing length and should be extracted when
it is longitudinally symmetric about the position of the maximum momentum in phase-
space ξmax (see fig.[2.4]).

A comprehensive understanding of the bubble regime (including the injection mech-
anism) and the feasibility of achieving electron beams with a sufficiently high quality
(enough electrons with a sufficiently small energy spread and a low emittance) is still an
open topic and subject to present-day research.

2.7. Discussion

The estimations and formulas derived in the previous sections for the respective LWFA
regimes can be used for comparison with experimental results. The experiments de-
scribed below (see section 5.3) are usually performed with plasma densities of n0 '
5× 1018 cm−3 which corresponds to a plasma wavelength of λp ' 15µm. With equation
(2.36), the 3D plasma wave phase velocity can be estimated to be γp ' 4.7. In order
to get electron injection for this plasma density in the case of a nonlinear wakefield,
according to 1D theory, the laser has to drive a plasma wave with an amplitude of
Emax ' EWB. Through equations (2.33) & (2.34), this results in a required minimal
laser intensity of a0 ' 4. In order to drive an accelerator in a pure bubble regime and
to get self-injection at these plasma densities, it can be calculated with equation (2.59)
that the bubble radius has to be R > 16µm. In order to drive such a bubble, a laser
intensity of a0 ' 11 is required (see equation (2.60)). However, experiments demonstrate
the acceleration of self-injected electron beams with laser pulses of significantly smaller
intensities.

Current state-of-the art laser systems typically cannot reach the required intensities
to operate in a pure bubble regime. Therefore both the analytical model of the electron
injection in a pure bubble regime (equation (2.59)) and the 1D theory of nonlinear wake-
fields (eqs.(2.33 & 2.34)) cannot completely describe the underlying processes. Addition-
ally, a comprehensive description of multidimensional wavebreaking and its dependence
on various parameters is currently lacking. Therefore, various aspects of the process
can only be described separately or by means of PIC simulations. In 3D, the plasma
wave shows transversely “horseshoe” -shaped plasma wavefronts which lead to transverse
electron trapping [Bulanov et al., 1997], much different from 1D wavebreaking. Specif-
ically, when the curvature radius of the wavefronts is comparable to the electron fluid
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displacement, the injection resembles rather a thermalization [Gordienko and Pukhov,
2005]. PIC simulations show that the threshold can be lowered by almost one order of
magnitude in comparison to longitudinal wavebreaking [Pukhov and Meyer-ter Vehn,
2002]. Furthermore, through the complex nonlinear evolution of a laser pulse in the
plasma (self-focusing, self-steepening, etching, etc, see section 2.6.4) the phase velocity
of the plasma wave can be lower as analytically estimated (equation (2.36)) and the
laser intensity can increase. These effects can lead to a decrease of the required laser
intensity to get electron self-injection. Moreover, the bubble can get elongated through
beam loading which leads to a lower phase velocity of the backside of the bubble, thereby
causing an additional decrease of the injection threshold.

The lack of a comprehensive theory complicates the task of selecting parameters to
achieve the injection and acceleration of high quality electron beams. Therefore, only
constraints on the parameters which arise from the separate descriptions (each with
different underlying physical phenomena) of the whole process, can be given: The upper
limit of the laser beam spot size should be on the order of the plasma skin depth
w0 ' 1/kp in order not to undergo filamentation ([Thomas et al., 2009] & see section
2.6.4). However, the bubble regime requirement for getting electron injection requires a
minimum (matched) beam size of w0 &

√
2 k−1

p γp [Kostyukov et al., 2009]. Furthermore,
the laser pulse duration should be less than the laser focal spot size cτL . w0, in
order for the laser not to interact with the the accelerated electrons and to mitigate
filamentation and the deterioration of the electron beam. The lower boundary for the
pulse duration is given by the maximum energy gain that the electrons can reach before
the laser pump depletes through etching of its front edge (see section 2.6.5). The plasma
density should be chosen high enough to get a sufficiently slow plasma wave phase
velocity in order for electrons to get trapped. On the other hand, the density should
not be chosen too high in order to suppress filamentation and continuous trapping by
a low injection threshold. PIC simulations describe the complete acceleration process,
including dynamic nonlinear effects such as the laser evolution as well as the plasma
feedback onto the laser, and thus can be used for a more detailed selection of parameters.
However, since these simulations are very computationally intensive, it is difficult to do
the extensive parameter scans that are necessary to determine the precise parameters.

2.7.1. Electron Beam Properties and Experimental Results

Electron bunch duration
Electron beam emittance
Maximum accelerated charge & energy spread

The following section gives a brief overview of the electron beam quality and state-of-
the art experimental results.
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Electron Bunch Duration

In addition to the small accelerator dimensions of LWFAs, the accelerated electron
bunches are assumed to be of an intrinsically ultrashort duration, on the order of just a
few femtoseconds. This estimation is based on the fact that the electron bunch length is
a fraction of the accelerating structure which is on the order of the plasma wavelength
(which, depending on the plasma density, is a few tens of femtoseconds). More pre-
cisely, high-quality electron bunches (in terms of few-percent energy spread and small
emittances) indicate a termination of the acceleration process at a phase where both
the longitudinal as well as the transverse electric fields are linear. Since the accelerating
and the transverse focusing fields are out of phase by a factor of π/2, this requirement
is fulfilled for approximately a quarter of the plasma period (see figure 2.2). Therefore
λp/4 '10 fs can be regarded as an estimation for an upper boundary on the electron
pulse duration. This intuitive picture is confirmed by 3D Particle-in-Cell simulation,
from which pulse durations of 10 fs [Lu et al., 2007] and even sub-10 fs [Geissler et al.,
2006; Pukhov and Meyer-ter Vehn, 2002], depending on the laser and plasma parame-
ters, can be deduced. However, the electron bunch duration has not yet been measured
to sufficiently high resolution. Measurements using the electro-optical sampling tech-
nique [Debus et al., 2010; van Tilborg et al., 2006] yield a pulse duration of ∼50 fs, but
this method is limited by the bandwidth of the electro-optical crystals and therefore has
to be considered as an upper boundary. Furthermore, the accelerated electron bunch
is perfectly synchronized to the driver laser which is also true for X-ray radiation of
lightsources driven by these bunches and could thus be used as a low time-jitter trigger
for ultrafast pump-probe experiments.

Transverse Electron Beam Emittance

Simulations and transverse wakefield dimensions (see section 2.4.1) indicate a geometric
(non-normalized) transverse emittance on the order of ε ' 1µm mrad. This estimation
is based on the assumption that the transverse emittance can be determined in the focus
of the beam (αTwiss = 0) by the product of the electron beam size and divergence. The
electron beam size in the plasma accelerator is estimated to be a few µm. Imaging
experiments that use the betatron radiation emitted by the electron bunch suggest a
source size of below 3µm [Mangles et al., 2009]. The divergence of an electron beam with
an energy of 200 MeV after exiting the plasma is measured to be ' 1mrad [Osterhoff
et al., 2008]. This leads to the aforementioned estimate of the transverse emittance.
This assumption is only valid for monoenergetic electron beams as well as a beams with
Gaussian spatial- and transverse-electron-momentum distributions. Due to the linear
transverse wakefields and the immediate coupling of the self-injected electrons to the
accelerating phase, their transverse momentum at the moment of injection is conserved
during the acceleration process which means that the normalized emittance (εn = βγ ε)
is expected to be a constant. However, similar to the bunch duration, the electron beam
emittance has not yet been experimentally measured with sufficiently high precision. An
upper value of εn = 2.7± (0.9) mm mrad for 55 MeV electron beams is given by [Fritzler
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et al., 2004], using the pepper-pot technique. Simulations indicate that an accelerator
driven by laser beams composed of transverse higher-order Hermite-Gaussian modes the
emittance can be lowered. In the quasi-linear regime a0 ' 1, such pulses could be used
to both decrease the transverse momentum of electrons during their injection and tailor
the strong transverse wakefields which can lead to a better control of the transverse
emittance [Michel et al., 2006a].

Charge & Energy Spread

The ultimate limit on the amount of charge accelerated to a certain electron energy
is given by the transfer of driver-laser energy to the electrons via the plasma wave.
However, distortions of the bubble shape and screening of the accelerating fields by other
electrons set a limit on the maximum charge in high-quality electron beams. The shaping
of the injected electron distribution can mitigate the deterioration of the beam quality
(energy spread, emittance, etc) by such effects: The accelerating fields in the bubble
regime are flat over the whole electron bunch for a triangular-shaped bunch density
profile which leads to a low energy spread [Tzoufras et al., 2008]. The maximum number
of electrons in such a triangular-shaped bunch distribution is given by [Tzoufras et al.,
2008]:

Q[nC] = 4.7× 106 E0

Emax

√
1

n0[cm−3]
(kpR)4 ' 7.5× 107

√
1

n0[cm−3]
a

3/2
0 , (2.65)

where a matched laser spot size (eq 2.60) and Emax for a matched laser from equation
(2.57) were used. For an accelerator with a plasma density of n0 = 1.2× 1018cm−3 and
a 200 TW laser (to ensure a pure bubble regime), this leads to an accelerated charge of
550 pC which is just slightly below the value calculated with the scaling found in [Lu
et al., 2007] (eq 2.63).

Experimentally beams with a charge of typically a few hundred pico-Coulomb and
few-percent energy spread have been measured [Faure et al., 2004; Geddes et al., 2004;
Mangles et al., 2004]. The relatively high energy spread due to the electron injection
mechanism can be decreased by separating the injection process from the acceleration
(see section 2.7.2): Experiments with the counter-propagating injection scheme have
shown energy spreads of ' 1% although with a charge of only 10 pC [Rechatin et al.,
2009]. Another scheme with a plasma density downramp as electron injector holds
promise to accelerate electron bunches with 0.1% energy spread [Geddes et al., 2008].

Maximum Energy Gain

Laser diffraction can be overcome by guiding of the pulse (see section 2.6.3). Experiments
using a plasma channel as a guide, resulted in a maximum accelerated electron energy
of 1 GeV [Leemans et al., 2006].
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2.7.2. Advanced Injection Schemes

Counter-propagating pulse injection
Plasma density transitions

Most electron beam parameters in the bubble regime (see section 2.6.5) are determined
by highly nonlinear processes which leads to self-trapping and is therefore difficult to
control. A separation of the injection process from the subsequent acceleration promises
a higher quality in crucial electron beam parameters: (1) A controlled injection could
lead to short electron bunches with a low energy spread, since the trapping occurs at
a well-defined position without any further (continuous) injection. (2) The transverse
emittance can be decreased through a longitudinal rather than a transverse injection. (3)
The control over the injection process gives a possibility to shape the injected electron
beam and thus counteracting beam loading which is a reason for a high energy spread and
a deterioration of the electron beam through a deformation of the accelerating structure.
The subsequent acceleration can be performed in a quasi-nonlinear wakefield (a0 ' 1)
which does not rely that heavily on non-linear effects and thus is easier to control and
stabilize. Additionally, the separate injection schemes require lower laser intensities.

Electron Injection by Colliding Laser Pulses

In this scheme, two counter-propagating laser pulses are employed: a high-intensity
pump pulse that drives a wakefield with an amplitude well below wavebreaking and a
less intense, counter-propagating injection pulse [Esarey et al., 1997]. When the two laser
pulses collide, they form a beat wave with a slow phase velocity. Background electrons
with an initial momentum too low to get trapped are longitudinally accelerated by the
ponderomotive force associated with the slow beat wave. They can gain a sufficiently
high momentum to get trapped in the large amplitude plasma wave driven by the pump
pulse and can get accelerated to high energies. Since the amplitude of the pump pulse
is not high enough to lead to wavebreaking on its own, electron injection occurs only in
the well-defined region, where the colliding pulses overlap.

In this scheme, the duration of the injection and thus the number of injected electrons
as well as their injection momentum can be controlled by the amplitude of the injection
pulses and the duration of the counter-propagating pulse, respectively. The electron
energy gain can be controlled by the delay between the colliding injection pulses and
therefore by the acceleration distance left in the plasma. The control over the injection
can lead to higher beam quality in terms of pulse duration, energy spread and emittance.
First promising results using the two-laser scheme [Faure et al., 2006] have matured into
the acceleration of an electron beam with an FWHM-energy spread of 1%, however with
a relatively low charge of only 10 pC [Rechatin et al., 2009].
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Electron Injection via a Density Downramp

One other promising possibility to get control over the electron injection is to implement
a longitudinal plasma density downramp into the gas target [Bulanov et al., 1998].
The local phase velocity of a plasma wave that is moving through a density downramp
decreases. It can be reduced to approximately the plasma fluid velocity which leads to
the injection of cold background plasma electrons.

The reduction of the phase velocity can be understood by looking at the distance
of the electric potential peak of the plasma wave (ξmax in fig.2.4) with respect to the
driver laser which is approximately at a distance ∆ξ ' λp/2. In the region with the
higher plasma density before the density downramp, the distance ∆ξ is smaller than in
the region of the lower plasma density, since the plasma wavelength gets longer for a
lower density (λp ∼ n

−1/2
e ). Therefore, even though the group velocity of the driver laser

increases for lower densities, the local phase velocity of a plasma wave going through a
density transition decreases. The local phase velocity of the wave is given by [Esarey
et al., 2009]

vp
c
' 1− ξ

2ne

dne
dz

, (2.66)

where ξ < 0 is a distance in the wake, measured from the driving laser pulse. Thus,
for a density downramp (dne/dz < 0), the wake phase velocity decreases. In 3D PIC
simulation it can be seen that a density reduction from 4.4×1018 cm−3 to 2.75×1018 cm−3

over a distance of 10 µm (considering a laser wavelength of 1 µm) leads to trapping of
an abundant number of electrons at the density transition [Brantov et al., 2008].

In order to accelerate electrons to high energies, the plasma density is kept constant
and below the wavebreaking limit after the transition, and thus the accelerator region is
directly connected to the injector. Since the electrons are injected into the accelerating
phase of the wakefield, no external timing or beam transport is needed. The electrons are
injected at a well-defined position with a certain transverse and longitudinal momentum
distribution. Subsequently, they get equally accelerated by the same wakefield phase,
leaving their initial transverse momenta and the absolute longitudinal momentum spread
constant. Since their longitudinal momentum increases, this leads to electron beams with
a small relative energy spread as well as a small transverse emittance.

Experimentally, the downramp-injector part of the scheme has been shown to deliver
low energy electron beams with a relatively low longitudinal and transverse momentum
spread and a high amount of charge [Geddes et al., 2008].

39



2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

2.8. LWFA: List of Symbols

Symbol Description

a0 Amplitude of laser pulse intensity normalized to mec
2

λ, ω Central wavelength, angular frequency of laser pulse
k = 2π/λ Wavenumber of the laser pulse
η Plasma index of refraction
vph, vg Phase/ group velocity of the laser pulse
λp, ωp Plasma period / plasma frequency
λNp Non-linear plasma period
kp = 2π/λp Wavenumber of the plasma wave
n0 Unperturbed plasma (electron) density
δn = n− n0 Plasma density perturbation
ξ = z − vpt Co-moving coordinate (distance from position of laser pulse)
φ = eΦ/(mec

2) Normalized potential of plasma wave
Ez Longitudinal electric field of the plasma wave
E0 Nonrelativistic wavebreaking limit
Emax Maximum electric field amplitude of plasma wave
EWB Wavebreaking limit for nonlinear plasma wave
ξmin, ξmax Position of wakefield potential minimum/maximum
Ld Dephasing length
Ldp Pump depletion length
R Radius of bubble

2.9. Back of the envelope formulas

• plasma frequency:

ωp,0 =

√
e2n0

meε0
= 5.7× 104

√
n0 [cm−3]

• non-relativisitc plasma wavelength:

λp,0[µm] =
2πc

ωp,0
= 3.33× 1010

(
n0[cm−3]

)−1/2

• normalized vector potential of the laser field:

a0 ' λ[µm] ·
√
I0[W/cm2]

1.4× 1018
,

• laser power P = πr2
0I0/2: (r0 is the laser spot size)

P [GW] ' 21.5×
(a0r0

λ

)2
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2.9. Back of the envelope formulas

• cold non-relativistic (linear) wavebreaking limit: (all plasma electrons oscillate
with ωp which corresponds to δn = n0)

E0 [V/m] ' 96
√
n0 [cm−3]

• cold relativistic (nonlinear) wavebreaking limit

EWB =
√

2(γp − 1) ·E0

• plasma wave phase velocity

γp =
ω

ωp

√
a2

0 + 2

2

• critical power for relativistic self-focusing:

Pcrit[GW] ' 17.4

(
ω

ωp,0

)2

• dephasing length (a0 � 1)

Ld '
λ3
p

λ2

• energy gain limited through dephasing (analytical formula) (a0 � 1)

∆Wd ' 1260 · I [W/cm2]

n0 [cm−3]

• energy gain limited through dephasing (numerical, bubble regime) (a0 > 2)

∆E[GeV] ' 1.7

(
0.8

λ0[µm]

)4/3(
1018

np[cm−3]

)2/3(
P [TW]

100

)1/3

• number of accelerated electrons (numerical, bubble regime) (a0 > 2)

N ' 2.5× 109 λ0[µm]

0.8

√
P [TW]

100

plasma density n0 [cm−3] 5× 1018

plasma frequency ωp,0 [Hz] 1.3× 1014

plasma wavelength λp,0 [µm] 15
laser frequency ω [Hz] (λ = 800nm) 2.36× 1015
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2. LASER-WAKEFIELD ACCELERATION OF ELECTRONS

Conversions

• pressure in plasma density (for H):
100 mbar ' 2.5 · 1018 1

cm3

• charge:
1 nC ' 6× 109 electrons

• photon energy Eph to wavelength:
λ[nm] = 1240/Eph[eV]
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3. UNDULATOR RADIATION
THEORY (UR)

3.1. Introduction

The chapter discusses the physics of undulator radiation (UR). The radiation is emitted
from relativistically propagating electrons that get transversely accelerated by a sinu-
soidal magnetic field (produced by an undulator) and emit a brilliant, highly-directed
beam of synchrotron radiation. Undulator radiation can be widely tunable, currently
ranging in wavelength from microwaves, through terahertz radiation and infrared, to the
visible spectrum, to ultraviolet, to X-rays. Additionally, it is linearly polarized and has
a narrow spectral bandwidth.

The properties of this radiation can be calculated by starting from the emission of a
single relativistic electron under any arbitrary motion. In order to get a simple analyt-
ical expression, several approximations that take advantage of the undulator radiation
characteristics can be made: owing to the highly collimated beams, the small-angle and
far-field approximations can be applied. The periodicity of the undulator field leads
to a further simplification (section 3.3). The photon beam size and divergence of the
emission of a single electron or filament electron beam (that is an electron beam in
which all electrons have the same energy and travel along the same trajectory) can be
approximated by Gaussian distributions (section 3.4.1). The radiation from an electron
beam with a finite transverse emittance (“thick” electron beam) can be calculated by
a convolution of the electron beam distribution with the emission of a single electron
(section 3.5.2). The brilliance (section 3.5.1) is a measure of the flux, focusability and
transverse coherence of the undulator radiation. Furthermore, the brilliance can in many
aspects be thought of a photon phase-space distribution. Since it is invariant under any
linear transformation of the phase space, it can be used to propagate the radiation over
a distance or through optical components by the Ray-Transfer Matrix formalism (see
sections 3.5.3, 3.7).

The fundamentals of synchrotron radiation are described only briefly since they are
presented comprehensively in many textbooks, see for example [Onuki and Elleaume,
2003] or [Clarke, 2004]. The properties as well as the propagation of undulator radiation
is discussed in more detail since they are necessary for the explanation of the experi-
mental results. The section about the propagation of the undulator radiation is based
on [Kim, 1989] but slightly extended to give explicit expressions that are necessary for
the model to describes the experimental observations.
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3. UNDULATOR RADIATION THEORY (UR)

3.2. Overview

Undulators are devices that consist of alternating magnetic dipoles which produce sinu-
soidal transverse magnetic fields with amplitude B0 and period λu (see fig 3.1). They
are characterized by the deflection parameter which is defined as [Onuki and Elleaume,
2003]

K =
eB0λu
2πmc2

' 0.93 B0[T]λu[cm] (3.1)

In the rest frame of the relativistic electrons moving through this field, λu is contracted
by the Lorentz factor γ which is defined as the total electron energy E in units of
the electron rest energy moc

2. The undulator field causes the electrons to oscillate
transversely with an amplitude proportional to K, and as a result of this acceleration
to emit radiation. In the laboratory frame, this emission occurs in a narrow cone in
the forward direction. The measured wavelength is once more reduced by a factor of
γ because of the Doppler shift which varies with the detection angle θ. Taking into
account the reduced longitudinal electron velocity caused by the transverse quivering
motion, the detected wavelength for the n-th harmonic is

λn =
λu

2nγ2

(
1 +

K2

2
+ γ2θ2

)
. (3.2)

Typical values are: λu ' few cm, γ ' 10, 000 and K ' 1, leading to an emission
wavelength in the X-ray range.

3.3. Radiation of a Charge under arbitrary Motion

Radiation of a moving charge
Electric field in the near- and the far-field
Approximations for a linear undulator
Electric fields in the time and frequency domain
Undulator harmonics

An electron emits radiation at the time τ and the position ~R(τ). An observer located
at the position ~r detects the electric field at the time t after it has travelled a distance
~D(τ) of

t = τ +
D(τ)

c
, (3.3)

where ~D(τ) is the distance between the electron and the observer at the time τ and n̂
is the normalized unit vector pointing from the electron to the observer:

n̂(τ) =
~r − ~R(τ)

|~r − ~R(τ)|
=

~D(τ)

D(τ)
(3.4)
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3.3. Radiation of a Charge under arbitrary Motion

s
x

y

Figure 3.1. | Coordinate system. An electron is moving along the s-axis through
an undulator on a transverse (in x-direction) sinusoidal trajectory (yellow). Its posi-
tion at the time τ is ~R(τ). An observer at the position ~r detects the radiation emit-
ted by the electron. The undulator has a period of λu.

The emitted electric field of a charged particle under any arbitrary motion moving with
relativistic speeds can be derived from the Liénard-Wiechert potentials [Jackson, 1998]
and in the frequency domain it reads [Onuki and Elleaume, 2003]:

~E(~r, ω) =
ieω

4πcε0

∞∫

−∞

~β − n̂ (1 + ic/(ωD))

D
exp

[
iω

(
τ +

D

c

)]
dτ, (3.5)

where ~β is the velocity of the electron, normalized to the speed of light c. Numerically,
this equation can be efficiently solved using the Fast Fourier Transform algorithm (FFT).
Most simulations that are performed to compare to the experimental results (see section
6.2) are conducted with the code SRW [Chubar and Elleaume, 1998] which evaluates
this near-field equation. Analytical results, however, can be obtained with the far-field
approximation, in which velocity fields are neglected and n̂ is a constant [Onuki and
Elleaume, 2003]. With this approximation, the field can be written in the time domain
as [Feynman et al., 1970; Onuki and Elleaume, 2003]

E(~r, t) =
e

4πε0cD · (1− ~βn̂)

d

dτ

(
n̂× (n̂× ~β)

1− ~βn̂

)∣∣∣∣
ret

=
e

4πε0cD
n̂×

(
n̂× d2

dt2
~R(τ(t))

)
,

(3.6)
where |ret indicates that the expression is evaluated at the retarded time. It can be
seen that the field is proportional to the apparent acceleration of electron as seen by
the observer, projected into the plane normal to the direction of emission n̂. In the
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3. UNDULATOR RADIATION THEORY (UR)

frequency domain, the field can be written as [Onuki and Elleaume, 2003]

~E(~r, ω) =
−ie

2cε0D
exp

(
i
ω

c
n̂~r
)
~H(n̂, ω), (3.7)

where

~H(n̂, ω) =
ω

2π

∞∫

−∞

(n̂− ~β) exp

[
iω

(
τ − n̂ ~R

c

)]
dτ. (3.8)

Most physical quantities, such as the flux, brilliance as well as size and divergence of
the radiation can be described by the dimensionless vector ~H. It can be shown that
equation (3.7) is the Fourier transform of the electric field seen by the observer in time
domain, equation (3.6).

In the case of a periodic structure, such as an undulator, ~H can be decomposed into
a sum, where each term describes a narrow frequency range around the resonance fre-
quency of the corresponding harmonic. In the case of a long undulator (many undulator

periods Nu), ~H can be approximated as [Onuki and Elleaume, 2003]

~H(θx, θz, ω) ' Nu

∞∑

n=1

(−1)n(Nu−1)~hn(θx, θz) sinc

[
πNu

(
ω

ω1

− n
)]

(3.9)

where n is the number of the harmonic of the radiation, sinc(x) = sin(x)/x, and ω1 is

the frequency of the fundamental. In the case of a linear undulator ~hn can be written as

~hn(θx, θz) =
n

λ1

+λu∫

0

(
K/γ cos(2π(s/λu))− θx

−θz

)

× exp

[
i2πn

(
s

λu
+
−2γθxK sin(2π(s/λu)) +K2/4 sin(4π(s/λu))

2π(1 + (K2/2) + γ2(θ2
x + θ2

y))

)]
ds,

(3.10)

where λu is the undualtor period, K the deflection parameter (see equation 3.1) and λ1

the wavelength of the fundamental (see equation 3.2).
The spectral characteristics of the undulator radiation are described by electric fields

in the time and frequency domains (equation 3.6 & 3.7). Owing to the sinusoidal mag-
netic field of the undulator, the electrons are forced onto a sinusoidal trajectory and
thus undergo a periodic acceleration. The electric field seen by an observer (fig 3.2) is

proportional to the acceleration of the apparent motion d2/dt2 ~R(τ) (the acceleration
seen by the observer) of the electron (equation 3.6). The electron executes not only a
transverse oscillation but also a longitudinal oscillation which in the electron rest frame
resembles a figure-eight motion. Thus the emitted electric field in the time domain is not
composed of a pure sinusoidal shape (but for K < 1 the shape is very close). The electric
field in the frequency domain is the Fourier analysis of the field in the time domain. Its
observable, the angular spectral flux, is proportional to | ~H(θx, θz, ω)|2 (equation 3.11).
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3.3. Radiation of a Charge under arbitrary Motion
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Figure 3.2. | Electric fields in the time domain and the corresponding spec-
tral flux density. The left hand side depicts the electric fields of a single electron in
the time domain and the right hand side the associated angular spectral flux for a
K = 0.5 (upper) and a K = 1.5 undulator (lower part of the figure). Both fields are
observed on-axis.

For the largely sinusoidal shape of the temporal field in the case of K < 1, the Fourier
transform mainly consists of the fundamental and has small contributions from higher
harmonics (see upper part of fig 3.2). For K > 1, the figure-eight motion of the electron
gets more pronounced. In this case, the apparent electron trajectory (and acceleration)
and thus the electric field strongly deviate from a pure sinusoidal shape: it exhibits a
spiked temporal structure. Physically, this means that the transverse deflection of the
electron (amplitude ∝ K) is larger than the angle of the radiation emission cone and the
observer only detects short flashes of radiation, similar to wiggling a searchlight beam.
This regime is called the wiggler regime. In order to Fourier analyze this temporal
structure, a higher number of harmonics must be used, as can be seen in the lower
part of fig 3.2. Since the temporal shape of every period of the observed field has a
point-symmetry, the spectrum is made up of only odd harmonics.

However, for radiation that is detected off-axis, the point-symmetry is not valid any-
more. The temporal shape in fig 3.3 shows that the distance between two successive
(positive and negative) peaks becomes asymmetric, since they are emitted at different
distances to the observer. Thus the spectrum also consists of even harmonics. Further-
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Figure 3.3. | Off-axis fields in the time domain and the corresponding spec-
tral flux density. K = 1.5 undulator . Observation angle γθx = 0.5, γθy = 0; ω1 is
the on-axis resonance frequency

more, it can be seen in the spectrum (right hand side in 3.3) that the amplitudes of the
odd components get smaller and are shifted to smaller frequencies with a larger angle,
as can be expected from the resonance condition, equation (3.2).

3.4. Angular Spectral Flux of a Filament Electron Beam

Angular Spectral Flux
Approximation by a Gaussian beam
UR beam size & divergence
On-axis flux
Angle-integrated flux

The angular spectral flux (dΦ/dΩ) is the experimentally observable quantity that
describes the angular and spectral characteristics of the undulator radiation. With
eq.(3.9), it can be shown that the angular spectral flux at a narrow frequency band
around the harmonic frequencies ωn is the sum over angular spectral fluxes of each
harmonic (dΦn/dΩ) [Onuki and Elleaume, 2003]:

dΦ

dΩ
(θx, θz, ω) = α

I

e
| ~H(θx, θz, ω)|2

'
∞∑

n=1

dΦn

dΩ
(θx, θz, ω) (3.11)

where α = 1/137 is the fine-structure constant. The angular spectral flux for each
harmonic n reads

dΦn

dΩ
(θx, θz, ω) = α

I

e
N2 |~hn(θx, θz)|2︸ ︷︷ ︸

lobe function

sinc(πNu (ω/ω1 − n))2

︸ ︷︷ ︸
interference function

, (3.12)
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3.4. Angular Spectral Flux of a Filament Electron Beam

where ω1(θx, θz) is the resonance frequency as a function of the observation angle θ.
The shape of the angular spectral flux for each harmonic is determined by the “lobe

function” |~hn|2 (equation (3.10)) which describes the electric field emitted by a single
undulator period and the “interference function” sinc(x)2 which is the superposition of
the phases of the radiation from each period. Typical (small) errors in a real undulator
field predominantly influence the phases of the radiation from each period and there-
fore the interference term can not be expressed as a sinc(x)2 function. However, for
a mathematically perfect undulator, the interference term is only nonzero in a narrow
bandwidth around frequencies ωn that satisfy the resonance condition (equation (3.2))
which for off-axis angles (Ψ2 = θ2

x+θ2
y) is the case for correspondingly lower frequencies.

The radial symmetry of this term is a consequence of the periodicity of the field and
it is responsible for the circular, cone-shaped angular emission pattern. The radiation
amplitude along these circular emission rings is given by |~hn(θx, θz)|2 which describes
the angular intensity (lobe) structure for each harmonic. This function depends on the
undulator magnetic field.

Thus, the typical parabolic shapes of the angular undulator spectra for each harmonic
(see figure 3.5) are due to the interference term, whereas the intensity distributions (only
odd harmonics on-axis, even harmonics peak only off-axis, and the lobe structure with
nods of higher harmonics) are given by the lobe function. The spectral width of the
radiation is described by the interference term: on axis, the sinc(x)2 shows a narrow
peak at each harmonic with width ' 1/nNu. The height of the harmonics is given by

|~hn(0, 0)|2 (which is zero for even harmonics on axis). The divergence of the radiation
is determined by the angular shape of the flux around the resonance frequencies. It is
also mainly given by the interference function, since it varies much more rapidly with θ
than the lobe function which can be regarded as a constant in this case. Therefore, the
divergence of odd harmonics is the width of the sinc(x)2-term at resonance frequencies
ωn (which depend on the angle through the resonance condition).

At the exact resonance frequencies of each harmonic ωn = nω1, sinc(x) → 1 and the
angular flux can be written as

dΦn

dΩ
(θx, θz, ωn) = α

I

e
N2
u |~hn(θx, θz)|2. (3.13)

3.4.1. Approximation by a Gaussian beam

The analytical description can be simplified by approximating the undulator radiation
beam size and divergence by Gaussian distributions. For resonance frequencies ωn, the
sinc(x) function of the angular spectral flux (equation (3.12)) can be approximated by
a Gaussian distribution exp(−θ2/(2σ2

r′)) which leads for a filament electron beam to a
rms divergence of [Onuki and Elleaume, 2003]

σr′ '
√
λn
2L

=
1

2γ

√
1

nNu

(
1 +

K2

2

)
, (3.14)

where L = Nuλu is the length of the undulator and λn the wavelength of the radiation
(equation (3.2)) . It can be seen that a smaller emission angle results not for only higher
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3. UNDULATOR RADIATION THEORY (UR)

electron energies γ, but also for a higher harmonic number n as well as more undulator
periods Nu. As can already be seen from equation (3.12), undulator radiation is emitted
in a much narrower cone than bending magnet radiation (σr′,bend ' 1/γ) because of the
interference of the radiation from individual undulator periods.

In a similar way, the waist of the photon beam size of a filament electron beam (in
the middle of the undulator at s = 0) at resonance wavelengths can be approximated
by a Gaussian distribution with a standard deviation of

σr '
√
λnL

2π2
. (3.15)

A photon beam emittance for undulator radiation in the Gaussian approximation can
be defined by the product of equation (3.14) and equation (3.15) [Onuki and Elleaume,
2003]

εph = σrσr′ '
λ

2π
. (3.16)

However, equations (3.14 & 3.15) are just approximations. The exact beam size, diver-
gence and photon beam emittance have to be calculated by means of the second order
moments (variance) σ2

x = 〈x2〉 and σ2
x′ = 〈θ2

x〉 which lead to the following definition of
the photon beam emittance [Onuki and Elleaume, 2003]:

εph >
λ

4π
. (3.17)

In the Gaussian approximation, the angular spectral flux can be written as [Clarke,
2004]

dΦ

dΩ
(~Ψ, ωn) =

dΦ

dΩ

∣∣∣∣
~Ψ=0

exp

(
−
~Ψ2

2σ2
r′

)
, (3.18)

where ~Ψ = (θx, θy).
The on-axis flux density (the amplitude in equation 3.18) can be calculated from

equation (3.13) for ω = ωn to be [Onuki and Elleaume, 2003]

dΦ

dΩ

∣∣∣∣
~Ψ=0

=
dΦn

dΩ
(0, 0, ωn) = α

I

e
N2
uγ

2Fn(K), (3.19)

where

Fn(K) =
n2K2

(1 +K2/2)2

[
J(n−1)/2

(
nK2

4 + 2K2

)
− J(n+1)/2

(
nK2

4 + 2K2

)]2

, (3.20)

which can be seen in fig 3.4. For n = 1 and K < 1, it can be approximated as Fn(K) '
K2/(1+K2/2). For a small undulator parameter (K < 1) a formula in practical units for
the on-axis spectral flux of the fundamental in units of [Photons/sec/0.1%b.w./mrad2]
is given by [Onuki and Elleaume, 2003]:

dΦ

dΩ

∣∣∣∣
~Ψ=0

' 1.744× 1014 ·N2
u E

2[GeV] I[Amp]
K2

1 +K2/2
. (3.21)
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3.4. Angular Spectral Flux of a Filament Electron Beam
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Figure 3.4. | Functions Fn(K) and Qn(K). a shows the function Fn(K) and b
the function Qn(K) versus the undulator parameter K for different harmonics n.
For K < 1, Qn(K) can be approximated by Qn(K) ' K2

The total spectral flux for each harmonic can be calculated by integrating equation
(3.12) over all angles

Φn(ω) =

∫ ∞

−∞

∫ ∞

−∞

dΦn

dΩ
(θx, θz, ω) dθx dθz, (3.22)

which in the Gaussian approximation can be written as

Φ(~Ψ, ωn) =
dΦ

dΩ

∣∣∣∣
~Ψ=0

2πσ2
r′ . (3.23)

This leads to an angle-integrated spectral flux at ω = ωn of

Φ|ω=ωn =
π

2
αNu

I

e
Qn(K), (3.24)

where Qn(K) = (1 + K2/2)Fn(K)/n (see fig. 3.4). In practical units for, for the
fundamental and a small undulator parameter (K < 1), this can be written in units of
[Photons/sec/0.1%b.w.] as [Onuki and Elleaume, 2003]:

Φ|ω=ω1 ' 1.431× 1014 ·Nu I[Amp]K2. (3.25)

The integration of equation (3.12) at a frequency slightly below the resonance ω′n =
ωn(1− 1/(nNu)) leads to an angle integrated flux which is almost twice the flux at the
resonance frequency: Φn(ω′n) ' 2 ·Φn(ωn). However, the radiation for smaller frequen-
cies is emitted on a cone with a dip on axis, in the forward direction (see figure 3.5),
leading to a higher divergence. The radiation with the smallest divergence is emitted at
the resonance frequency.
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3.5. Finite-Emittance Electron Beams & Propagation of
Undulator Radiation

Brilliance
Gaussian approximation of single electron brilliance
Brilliance for a thick electron beam
Peak brilliance
UR Beam size & divergence from a thick electron beam
Matching the electron beam size and divergence
Propagation of UR
Example: free drift

A finite-emittance electron beam (“thick” beam) with many electrons can be best
described by its brilliance since the total brilliance is just the sum of the brilliances of
each electron. The brilliance can in many aspects be thought of as a photon phase-space
distribution. For an incoherent source, the total brilliance can be calculated by the
convolution of the electron beam distribution with the single-electron brilliance. Since
it is an invariant under any linear transformation of the phase space, it can be used to
propagate the radiation over a free distance or through optical components and the flux
can be calculated by integrating the brilliance.

3.5.1. Brilliance of a Filament Electron Beam

A radiation source is completely characterized by its brilliance distribution B which can
be described by the Wigner function [Wigner, 1932] and can be interpreted as an analog
of a phase space density for photons.

B(~x, ~Ψ,s, ω) =
ε0ω

2

2π2ch

I

e

∞∫

−∞

∞∫

−∞

(
~E(~x+

~ξ

2
, s, ω)

)(
~E∗(~x−

~ξ

2
, s, ω)

)
exp
(

i
ω

c
~Ψ~ξ
)

d2~ξ,

(3.26)

where ~x = (x, y) and ~ξ a spatial integration variable. However, since the brilliance is
not an observable in the quantum-mechanical sense and for example can be negative, it
cannot strictly be interpreted as a phase-space density. For a more detailed discussion
see [Onuki and Elleaume, 2003].

The brilliance is connected to the spectral angular and spatial flux densities by

dΦ

dΩ
(n̂, ω) =

∫ ∞

−∞

∫ ∞

−∞
B(~x, ~Ψ,s, ω) d2~x (3.27)

dΦ

dS (~x, s, ω) =

∫ ∞

−∞

∫ ∞

−∞
B(~x, ~Ψ,s, ω) d2~Ψ, (3.28)

and to the total flux by

Φ(ω) =

∫ ∞

−∞

∫ ∞

−∞
B(~x, ~Ψ) d2~x d2~Ψ. (3.29)
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Gaussian Approximation of the Brilliance of a Filament Electron Beam

Similar to the flux, the brilliance at resonant odd frequencies ωn can be approximated
by spatial and angular Gaussian distributions. In the undulator middle (s = 0), for a
filament electron beam it can be written as [Kim, 1989]

B0
n(~x, ~Ψ,0, ωn) = B0

n(~o, ~o, 0, ωn) exp

(
− ~x

2

2σ2
r

−
~Ψ2

2σ2
r′

)
, (3.30)

where σr and σr′ are the standard deviations given by equations (3.14 )& (3.15). The
on-axis brilliance B0

n|0 can be written under consideration of equation (3.29 and the
photon emittance (equation (3.16)) in terms of the total flux as

B0
n|0 = B0

n(~o, ~o, 0, ωn) ' Φn(ωn)

(2πσrσr′)2
=

Φn(ωn)

(λ/2)2
, (3.31)

where Φn(ω) is the angle-integrated spectral flux (equation (3.24)).

3.5.2. Brilliance of a Thick Electron Beam

For undulator radiation from an electron beam with a finite transverse emittance (a
“thick” electron beam), the total emitted electric field is given by the sum of the electric
fields emitted by each electron. For an uncorrelated Gaussian electron distribution with
a temporal pulse length much longer than the emitted wavelength (σl � λ), each elec-
tron emits radiation incoherently to that of all other electrons in the beam. As a result,
the brilliance of each electron can simply be added up if all electrons in the bunch (inde-
pendent of their transverse position or angle) are subject to the same acceleration which
is true in the case of undulators. Therefore, the total brilliance, equation (3.26), can be

written as the convolution of the particle distribution f( ~Xe, ~ψe, s) and the brilliance of
a single electron B0 [Kim, 1989]

B(~x, ~Ψ; s) =

∞∫

−∞

∞∫

−∞

B0(~x− ~Xe, ~Ψ− ~ψe; s, ω) f( ~Xe, ~ψe, s) d2 ~Xe d2 ~ψe . (3.32)

In addition to the Gaussian approximation of the brilliance of the single electron
emission (equation (3.30)), the electron beam can also be well approximated by Gaussian
distributions as

f( ~Xe, ~ψe, s) =
1

(2π)2εxεy
exp

(
− x2

2σ2
x

− θ2
x

2σ2
x′
− y2

2σ2
y

− θ2
y

2σ2
y′

)
. (3.33)

The convolution of two Gaussian functions results in a Gaussian function with a standard
deviation that is the root-mean-square of the initial distributions. Thus the brilliance
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of an electron beam with a finite transverse emittance can be approximated as

Bn(~x, ~Ψ,0, ωn) ' Bn(~o, ~o, 0, ωn) exp

(
− x2

2Σ2
x

− θ2
x

2Σ2
x′
− y2

2Σ2
y

− θ2
y

2Σ2
y′

)
, (3.34)

where the photon beam size and divergence of the radiation emitted by a thick electron
beam are

Σx,y =
√
σ2
x,y + σ2

r (3.35)

Σx′,y′ =
√
σ2
x′,y′ + σ2

r′ , (3.36)

with σx,y the horizontal and vertical electron beam size, σr the single-electron undula-
tor beam size (equation (3.15)), σx′,y′ the electron beam divergence and σr′ the single-
electron UR divergence (equation (3.14)). The on-axis brilliance for a thick electron
beam is given by

Bn|0 = Bn(~o, ~o, 0, ω) ' Φn(ω)

(2π)2ΣxΣx′ΣyΣy′
, (3.37)

where Φn(ω) is given by equation (3.24). It can be seen that the effect of a thick electron
beam is to smear out the on-axis brilliance (and thus the on-axis flux density), whereas
the total integrated brilliance (flux) is conserved.

From equation (3.37), it can be seen that the highest peak brilliance for a thick beam
can be achieved, for a matched electron beam size and divergence, given by the following
condition: the electron beam must be focused into the center of the undulator (of length
L) with an electron beam “Rayleigh length” of L/2π [Wiedemann, 2002], resulting in
the Twiss parameters αTwiss = 0 and βTwiss = σr/σr′ = L/(2π). (For a short description
of the Twiss parameters, see section 3.8).

3.5.3. Propagation of Undulator Radiation

The brilliance can in many aspects be thought of as the phase-space distribution of the
undulator radiation photons. Since it is an invariant under any linear transformation of
the phase space, the propagation of the UR through free drifts or optical components
can be calculated by linear operations on the brilliance:

B(~x2, ~ϕ2, s2) = B(~x1, ~ϕ1, s1), (3.38)

where the coordinates are transformed by the transfer matrix M (see section 3.7)

(
~x2

~ϕ2

)
=M

(
~x1

~ϕ1

)
. (3.39)

For example, propagation through a free drift distance is calculated by

B(~x, ~ϕ, s+ `) = B(~x−` · ~ϕ, ~ϕ, s). (3.40)
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3.5. Finite-Emittance Electron Beams & Propagation of Undulator Radiation

The spatial flux density after a free drift of length ` can be calculated by integration
of the brilliance (see equation (3.28)) which leads to (for a detailed calculation: see
Appendix, section B.1)

dΦ

dS =
Φ

2π(σ2
r + `2σ2

r′)
exp

(
− x2 + y2

2(σ2
r + `2σ2

r′)

)
. (3.41)

Inserting the divergence of the UR from a single electron (equation (3.14)), it can be
seen that the photon beam size after a free drift of length ` changes to

σr(s = `) =
√
σ2
r,0 + `2σ2

r′ =

√
λL

2π2
+

λ

2L
`2, (3.42)

where L is the undulator length and λ the wavelength of the emitted radiation. This
is the standard deviation of a Gaussian function resulting from the convolution of the
photon beam size at the undulator center σr,0 and the product of the divergence and
the drift distance, analogous to the propagation of Gaussian beams in optics [Saleh and
Teich, 1991].

UR by a Thick Electron Beam after a Drift

Similarly, UR from thick electrons beams can be propagated. As shown in Appendix,
section B.2, carrying out the convolution in the center of the undulator and propagating
the resulting brilliance is equivalent to first separately propagating the single-electron
brilliance and the electron beam to the observation point and then performing the con-
volution. For a thick electron beam, after a drift of a distance `, the

UR divergence is:

Σx′,y′ =

√
σ2
x′,y′ +

λ

2L
(3.43)

and the UR beam size is:

Σx,y(`) =

√
σ2
x,y(`) +

λL

2π2
+

λ

2L
`2 , (3.44)

where σx′,y′ are the rms electron beam divergences, σx,y(`) the rms electron beam sizes
at the position `, and σ2

r(0) the single-electron rms UR beam size in the undulator center.

The experimentally observable quantity, the on-axis spatial spectral flux, can thus be
written as

dΦ

dS

∣∣∣∣
~x=0

=
Φn

2πΣx(s) Σy(s)
, (3.45)

where Φn is the total flux, given by equation (3.24). Similarly, the the on-axis angular
spectral flux is

dΦ

dΩ

∣∣∣∣
~Ψ=0

=
Φn

2πΣx′Σy′
. (3.46)
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Figure 3.5. | Spatial spectral flux. The figure shows the vertical spatial spec-
tral flux of the undulator fundamental (at horizontal position 0) for a filament and
a finite-emittance electron beam for an undulator with a period of 5 mm and a
K = 0.5. In both cases, an electron beam with an energy of 230 MeV and the same
current have been used. The geometrical emittance in the right-hand side figure is
ε = 1nm rad. Color-coded is the spatial spectral flux which in both cases is normal-
ized to the peak flux of the filament electron beam.

These Gaussian approximations are only valid for radiation at the resonance frequency
ωn. It can be seen that a finite-emittance electron beam smears out (and decreases) the
on-axis flux. However, the integrated total flux is equal to that of an zero-emittance
beam (of the same number of electrons).

3.6. Discussion
Total undulator flux
Undulator divergence and beam size
On-axis flux of zero and finite-emittance beams
Bandwidth of radiation
Longitudinal and transverse coherence

3.6.1. Undulator Flux

The total angle-integrated flux emitted by an electron beam with a current I and an
undulator with a number of periods Nu and an undulator parameter K can be written
for the undulator fundamental and for K < 1 as (see equation 3.24)

Φn =
π

2
αNu

I

e
K2, (3.47)
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3.6. Discussion

where α = 1/137 is the fine-structure constant.
It can be seen that the flux can be linearly increased by a higher number of undulator

periods and a higher number of electrons in the bunch. For K < 1, the flux increases
quadratically with the undulator parameter K. The angle-integrated flux is equal for
a filament (zero-emittance) and a finite-emittance electron bunch (both of the same
charge).

Divergence and Beam Size

The divergence and beam size of the undulator flux in a Gaussian approximation can
be written as

Σx,y =
√
σ2
x,y + σ2

r (3.48)

Σx′,y′ =
√
σ2
x′,y′ + σ2

r′ , (3.49)

where σx,y and σx′,y′ are the respective electron beam size and divergence, and the
intrinsic (single-electron) undulator beam size and divergence are given by

σr =

√
λnL

2π2
(3.50)

σr′ =

√
λn
2L

(3.51)

for an undulator of length L and an emission wavelength λn.

On-Axis Flux for a Zero and Finite-Emittance Beam

In the Gaussian approximation, the angular spectral flux can be written as (~Ψ = (θx, θy))

dΦ

dΩ
(~Ψ, ωn) =

dΦ

dΩ

∣∣∣∣
~Ψ=0

exp

(
− θ2

x

2Σ2
x′
− θ2

y

2Σ2
y′

)
, (3.52)

where the on-axis flux is given by

dΦ

dΩ

∣∣∣∣
~Ψ=0

=
Φn

2πΣx′Σy′
. (3.53)

It can be seen that for a finite-emittance electron beam, the flux gets washed out and
the on-axis flux gets decreased.

Using equations 3.47 and 3.51, it can be seen that for a zero-emittance (filament)
electron beam the on-axis flux (for K < 1) can be written as

dΦ

dΩ

∣∣∣∣
~Ψ=0

= α
I

e
N2
uγ

2 K2

1 +K2/2
, (3.54)

which is equal to equation 3.19.
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3. UNDULATOR RADIATION THEORY (UR)

It can be seen that although the angle-integrated flux does not depend on the electron
energy γ, owing to the smaller emission cones (σr′ ∝ 1/γ) of the radiation at higher
electron energies the on-axis flux scales with γ2. A practical consequence of this can
be seen in the results of the simulations describing the experimental measurements (see
section 6.2) in the shift of the spectral peak of the sum of on-axis fluxes of a range of
electron energies to higher photon energies.

3.6.2. Bandwidth of Undulator Radiation

The bandwidth of the single-electron undulator emission is broadened by several (inde-
pendent) effects and the overall bandwidth can be written as

∆λ

λ
=

√(
∆λ

λ

)2

nat

+

(
∆λ

λ

)2

∆γ

+

(
∆λ

λ

)2

ε

. (3.55)

The natural (single-electron) bandwidth is given by

(
∆λ

λ

)

nat

' 1

nNu

, (3.56)

where Nu is the number of undulator periods and n the harmonic number.

The magnitude of the individual contributions to the broadening can be estimated by
the resonance condition of the emitted wavelength

λ =
λu

2nγ2

(
1 +

K2

2
+ γ2θ2

)
, (3.57)

which leads to the estimation of the broadening due to electron energy spread σγ of

(
∆λ

λ

)

∆γ

= 2 · σγ
γ
. (3.58)

The influence of the electron beam emittance originates from both a finite divergence
and a finite size of the electron beam. Using the last term of equation 3.57, the broad-
ening of the bandwidth by an electron beam with a divergence of σx′ can be estimated
to be (

∆λ

λ

)

σx′

=
(γσx′)2

1 +K2/2
. (3.59)

The increase in bandwidth due to a finite-sized electron beam originates from the fact
that an observer (located sufficiently close to the source) detects the radiation emitted
from various electron under a different angle. This can be estimated with formula (3.59)
by using instead of σx′ an angle of θ = σx/d, where σx is the electron beam size and d
the distance of the observer to the undulator source.
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3.6. Discussion

Typically the undulator spectrum is observed through a finite-sized slit (or corre-
spondingly an acceptance angle of θslit) which increases the bandwidth by

(
∆λ

λ

)

θslit

=
(γθslit)

2

1 +K2/2
. (3.60)

There is a significant difference between the broadening through electron-energy spread
and both the broadening through emittance effects and the observation after a finite-
sized slit: the latter two effects broaden the bandwidth only toward longer wavelengths
than the resonance wavelength, whereas the broadening due to the energy spread is
symmetrically about the resonance wavelength.

For a discussion of the expected undulator bandwidth in the experiment described
below, see section 6.1.1.

3.6.3. Longitudinal and Transverse Coherence

For undulator radiation, the transverse and longitudinal coherence can be considered
separately. In the case of a longitudinal extended monoenergetic (filament) electron
beam, photons from different electrons are coherent with each other, if they are emit-
ted from a region that is smaller than the radiation wavelength. The intensity of the
radiation from a filament beam of uncorrelated electrons with a Gaussian longitudinal
distribution with an rms pulse length of σs can be written as [Onuki and Elleaume, 2003]

| ~H|2 = | ~H0|2
[
Ne +Ne(Ne − 1) exp

(
− σ2

s

(λ/2π)2

)]
, (3.61)

where λ is the wavelength of the radiation. For a bunch length of σs < 0.8λ, the term
proportional to N2

e dominates and the emission is called coherent. In the X-ray range,
the electron pulse length is typically longer than the emitted wavelength, but coherent
emission can nevertheless be achieved by a process called microbunching (see section 4).

For an electron beam with a finite transverse emittance, the degree of coherence can
be determined by the phase-space area occupied by the radiation. The transversely
coherent flux can be written as [Kim, 1989]

Φcoh =

(
λ

2

)2

B|0. (3.62)

It can be seen that the peak brilliance (given by equation (3.37)) is a direct measure of
the transverse coherence which for a thick beam leads to

Φcoh =
σ2
rσ

2
r′

ΣxΣx′ΣyΣy′
Φtot. (3.63)

Thus, the transverse degree of coherence is the ratio of the total radiation to the single
electron phase-space area.
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3. UNDULATOR RADIATION THEORY (UR)

3.7. ABCD-Matrix Formalism

The ABCD-Matrix formalism allows the raytracing of an optical system for paraxial
rays. The rays are described by a vector consisting of their position and angle with
respect to the optical axis. The effect of individual optical components on the rays can
be described by a 2x2 matrix, the ray-transfer matrix.

(
x2

θ2

)
=

(
A B
C D

)(
x1

θ1

)
(3.64)

Since the position and angle of the ray at the input an output plane are related by two
linear algebraic equations, the whole optical system can be described by a the product
of the matrices of each individual optical element:

(
A B
C D

)
=Mn · ... ·M2 ·M1 (3.65)

Some examples of ray-transfer matrices are given for

• a free drift space of length s

Ms =

(
1 s
0 1

)
(3.66)

• a thin lens with focal length f

Mf =

(
1 0
−1/f 1

)
(3.67)

3.8. Twiss Parameters

An electron beam with an emittance ε can be described as an ellipse in phase space as
[Wiedemann, 2007]:

γTwissx
2 + 2αTwissxθ + βTwissθ

2 = ε, (3.68)

where α, β and γ are the so-called Twiss parameters. The electron beam propagating
along a beamline can be described by transforming these parameters, i.e. they describe
the transformation of the phase-space ellipse under the influence of optical components
(dipole magnets, quadrupole magnets, ...) or free-drifts in a beamline. They are related
to each other by

αTwiss(s) = −1

2
β′Twiss(s) (3.69)

γTwiss(s) =
1 + αTwiss(s)

βTwiss(s)
, (3.70)

where s is the distance along the beamline. Their practical meaning can be seen in figure
3.6: The beam size at a position s is given by
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θx(s)
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}

x(s)

σx(s) =
√

β(s)
√

ε

σx′(s) =
√

γ(s)
√

ε

Figure 3.6. | Phase-space representation of an electron beam. The electron
beam size and the beam divergence are given in terms of the Twiss parameters.

σx(s) = x(s)|max =
√
βTwiss(s)

√
ε (3.71)

and the divergence of an electron beam is given by

σx′(s) = θ(s)|max =
√
γTwiss(s)

√
ε (3.72)

The electron beam is in focus for αTwiss = 0, where the beam size and divergence can be
written as:

σxσx′ = ε (3.73)

The electron beam can be propagated through a beam line by transforming the Twiss
parameters using ABCD-transfer-matrices M similar as discussed in section 3.7:

(
β1 −α1

−α1 γ1

)
=M

(
β0 −α0

−α0 γ0

)
MT . (3.74)
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3. UNDULATOR RADIATION THEORY (UR)

3.9. Undulator: List of Symbols

Symbol Description

~D(τ) Distance emitter to observer

n̂ = ~D/| ~D| Normalized emission direction
~x = (x, y) Distances
~E Emitted electric field
~H Dimensionless vector of electric field
~Ψ = (θx, θy) Observation angles
σr , σr′ UR photon beam size, divergence (RMS)
σx,y , σx′,y′ Electron beam size, divergence (RMS)
Σx , Σx′ UR photon beam size, divergence of a thick electron beam (RMS)
n harmonic number
λn Wavelength of n-th harmonic emission
λu Undulator period
K ∝ λuB Undulator parameter
Nu number of undulator periods
Φn Total photon flux of harmonic n
dΦ/dΩ|~x=0 On-axis spatial flux
B Brilliance
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4. FREE-ELECTRON LASER (FEL)
THEORY

This section gives a brief overview over free-electron laser (FEL) theory to the extent rel-
evant for the discussion of future developments of X-ray sources based on the experiment
described in this thesis.

In contrast to conventional lasers where the amplification of the beam is achieved by
transitions of excited electrons in bound atomic or molecular states, FELs use a beam of
relativistic ”free” (unbound) electrons as gain medium. Typical lasers consists of a gain
medium inside an optical cavity which is composed of highly reflective mirrors. However,
since it is extremely difficult to produce mirrors in the X-ray range, FELs have to get
full amplification in a single pass. The basic 1D theory of this single-pass, high-gain
”SASE” (self-amplified spontaneous emission) regime is discussed below.

Although (spontaneous) undulator radiation and FEL radiation originate from a simi-
lar setup (electrons propagating through a sinusoidal magnetic field), FELs emit coherent
radiation whereas the undulator emission discussed in the previous chapter is incoherent.
One of the main advantages of this coherent radiation is the significantly higher brilliance
compared to spontaneous emission as discussed in section 3.6.3: the intensity of coherent
emission scales quadratically with the number of electrons Ne, whereas the spontaneous
radiation scales only linear with Ne. In order for radiation to be emitted coherently, it
has to originate from electrons that are located at a distance smaller than wavelength of
the emitted radiation (see section 3.6.3). The electron pulse duration is typically longer
than the wavelength for radiation in the X-ray range. However, coherent emission can
nevertheless be achieved by “microbunching” where electrons are self-arranged by the
FEL process into sufficiently small regions within the bunch (as discussed below).

The physical processes that take place in an FEL can be best seen in figure 4.1.
Electrons propagating through the undulator interact with the radiation field originating
from electrons further back in the bunch. The energy transfer from the electrons into
the light field can be calculated by [Schmüser et al., 2008]

dW

dt
= ~v · ~F = −evxEx, (4.1)

where vx is the transverse electron velocity and Ex the transverse electric field of the
radiation field. It can be seen that if vx is parallel to Ex, the electron transfers energy
into the light field and gets decelerated. For anti-parallel electron velocity and electric
field vectors, electrons get accelerated by the light field (see figure 4.1a). Through the
interaction between the electrons with its magnetic field, the undulator acts as an energy-
dispersive device: the higher-energy electrons move on “shorter” trajectories since their
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Figure 4.1. | Principle of the FEL process. The interaction of electrons with the
radiation field (a) leads to a correlated change in electron energies. The undula-
tor acts as an dispersive element (b) which results in microbunching of the elec-
tron bunch (c). This leads to an increase in the intensity of the emitted radiation
(d), which in turn causes a stronger modulation of the electron energies (a). An
FEL cycles through these processes every undulator period, which leads to its self-
amplifying, exponentially-growing gain (as can be seen in figure 4.2). The amplifi-
cation process is terminated when the space charge forces of the electrons within
the microbunches balance the forces of the interaction between the electrons and
the radiation field and a maximum possible microbunching of the electron beam is
reached. The graph in (c) is a result of a 1D FEL simulation (courtesy of T. Segge-
brock). Figure (d) is taken from wikipedia.
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Figure 4.2. | Amplitude of FEL radiation field versus distance along undu-
lator. The figure shows the exponential increase of the FEL radiation field ver-
sus the distance along the undulator normalized to the gain length Lg0. A cartoon
of the electron bunch distribution at various positions is shown in red. The radi-
ation amplitude starts out from noise emitted by a randomly distributed electron
bunch. Through the interaction with the radiation field the electron bunch gets mi-
crobunched which leads to an increased emission of radiation and to an exponential
amplification. When the electron bunch is maximally microbunched, the radiation
amplitude reaches saturation. If the electron bunch continues propagating in the
undulator the field starts to transfer energy back into the electron bunch and the
radiation amplitude starts to oscillate.

transverse deflection (and thus the transverse amplitude of the trajectory) is smaller
(transverse amplitude ∝ K/γ [Huang and Kim, 2007]). Additionally, electrons with
a higher energy propagate faster in comparison to lower-energetic electrons and thus
advance in the relative bunch coordinate, whereas the slower electrons fall back within
the bunch.

In the electron bunch, this dispersion leads to regions of increased density with a
periodicity of the wavelength of the electric field (λFEL) separated by regions of decreased
density: the so-called microbunching (see figure 4.1(c)). Owing to this increase in density
of electrons in a region < λFEL, the emitted radiation is coherent to a higher degree
which means that the intensity of the emission is also increased. This leads to a stronger
microbunching and in turn to a stronger emission. This process results in an exponential
growth of the emitted FEL radiation along the undulator length which can be seen in
figure 4.2. In the SASE regime, the FEL starts out from noise (spontaneous undulator
radiation) and reaches saturation after a single pass through the undulator. However,
for X-ray FELs this saturation length requires several tens of meters of undulator.

A mathematical 1D treatment of the process shows that the emitted power grows with

65



4. FREE-ELECTRON LASER (FEL) THEORY

the distance along the undulator s as [Schmüser et al., 2008]

P = exp

(
s

Lg0

)
, (4.2)

where the power gain length Lg0 is defined as

Lg0 =
1

4π
√

3

λu
ρ
. (4.3)

The Pierce parameter ρ is a central parameter in the FEL theory which is defined as

ρ =
1

2γ

[
Ipeak

IA

(
Auλu
2πσr

)2
]1/3

∝ 1

γ

(
Ipeak

IA

)1/3

λ4/3
u , (4.4)

where γ is the relativistic factor, Ipeak/IA is the peak current of the electron bunch nor-
malized to the Alfvén current IA = 17 kA, λu the undulator period and σr the transverse
electron beam size. The Bessel function factor is given by Au = K/

√
2 [J0(ξ)− J1(ξ)]

where Ji are Bessel functions which depend on the undulator K parameter through
ξ = K2/(4 + 2K2). The scaling in equation (4.4) is valid with the assumption of a
constant maximum on-axis magnetic undulator field B0 (K ∝ B0λu) which leads to γ,
λu and Ipeak as free parameters. The electron beam size σr has to be chosen small to
reach a high current density. However, an electron beam size that is too small causes a
high beam divergence which leads to an increase of the transverse electron velocities at
the expenses of the longitudinal velocities and thus results in an effective increase in the
longitudinal energy spread. Bearing these effects in mind, σr has to be optimized under
consideration of a matched electron beam optics and is effectively not a free parameter.

Typically 15 - 25 gain lengths (Lg0) of undulator is required to reach saturation.
With a large Pierce parameter ρ, a small saturation length can be achieved (as can be
seen from equation (4.3)). Laser-wakefield accelerated (LWFA) electron bunches hold
the potential to provide extremely large peak currents. In combination with a small-
period undulator, an FEL driven by LWFA beams with relatively small electron energies
could reach Pierce parameters that are almost an order of magnitude larger than that
of conventional FELs (at similar emission wavelengths). In addition to the the compact
sizes of the laser-wakefield accelerator, this could lead to an FEL with significantly
smaller dimensions than its conventional counterpart.

In order to undergo an FEL process, the amplification of the radiation intensity has to
be large enough to overcompensate any losses (such as diffraction as discussed below).
Especially for a single-pass FEL without an optical resonator, this requires electrons
beams with a sufficiently high peak current but also a sufficiently high beam quality (such
as small energy spread and a small emittance). From a theoretical analysis including
degrading effect such as space charge, diffraction and energy spread the requirements on
the electron beam quality can be quantified. An upper limit for the relative rms electron
beam energy is given by [Schmüser et al., 2008]

σγ
γ
< 0.5 · ρ (4.5)
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In order to quantify the requirements on the transverse electron beam emittance, an elec-
tron beam size matched to get maximum overlap with the FEL radiation is considered.
However, since diffraction losses still occur, a gain length Lg smaller than the Rayleigh
range zR is required. The demand of Lg ≈ zR/2 in combination with the consideration of
an upper limit of transverse electron momenta (that increase the effective energy spread
as discussed above) leads to a maximum tolerable emittance of [Schmüser et al., 2008]

ε <
λFEL

4π
. (4.6)

This is equal to the emittance of the photon beam emittance of a Gaussian beam as
discussed in section 3.4.1. Particularly in the case of short-wavelength FELs, this re-
quirement cannot be fully satisfied which leads to a decrease in transverse coherence
(and thus in brilliance) in comparison to theoretical predictions.

From these requirements, it can be seen that the radiation measured in the experi-
ment described is purely spontaneous undulator emission since the energy spread of the
electron beam (≈ 3.5%) violates the requirement for an FEL process (typical X-ray FEL
parameters are ρ = 0.01% ... 0.5% [Gruener et al., 2007]).
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5. LASER-WAKEFIELD ELECTRON
ACCELERATOR

The chapter describes the laser-wakefield accelerator that was used as driver for the
undulator source described in the next chapter. The experimental setup relevant for the
undulator measurements is described in section 5.1 & 5.2 and the experimental results
in section 5.3. For a more detailed discussion, please refer to [Osterhoff, 2008b].

Affiliated publication

• J. Osterhoff, A. Popp, Zs. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M.
Geissler, R. Horlein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Gruner,
D. Habs, F. Krausz, S. M. Hooker and S. Karsch, Generation of Stable, Low-
Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-
Flow Gas Cell. Phys. Rev. Lett. 101, 085002 (2008)

5.1. Laser System

Pulse energy
Pulse duration
Contrast

The laser-wakefield accelerator (LWFA) is driven by the ATLAS laser facility at the
Max-Planck-Institut für Quantenoptik. The system delivers pulses on target of 850 mJ
energy with a 37 fs FWHM-duration (∼ 20 TW) at a central wavelength of∼ 800 nm with
a repetition rate of 10 Hz. It is based on titanium-doped sapphire crystals and utilizes the
chirped-pulse amplification (CPA) scheme [Strickland and Mourou, 1985], which allows
the creation of laser pulses with ultrahigh intensities: temporally stretched laser pulses
with a (temporally) correlated, linear photon energy distribution (chirp) are amplified to
high intensities without destroying optical components and subsequently (temporally)
compressed to a pulse with an ultrahigh intensity. Additionally, the amplification using
this technique results in a good beam quality since non-linear effects, such as self-phase
modulation or self-focusing are avoided. The contrast of the laser pulse peak intensity to
the amplified spontaneous emission background (ASE) on the few picosecond timescale
is on the order of 10−8 (for further details, see [Osterhoff, 2008b]). The ATLAS laser
system is currently being upgraded to pulses with an energy of ∼ 2 J and a duration of
∼ 20 fs.
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5. LASER-WAKEFIELD ELECTRON ACCELERATOR
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Figure 5.1. | Setup of the laser-wakefield accelerator. The laser pulse(red) is
focused into a gas cell, where it accelerates electrons (blue). After exiting the gas,
the laser can be characterized outside of the vacuum chamber on the diagnostics
table. The diagnostics are: 1: Pulse energy, 2: Alignment diagnostic, 3: Laser spec-
trometer, 4: Laser mode diagnostic. The pointing, divergence and spectrum of the
electron beam can be characterized. Viewgraph taken from [Osterhoff, 2008b].

5.2. Experimental Setup

Focal geometry
Normalized vector potential a0

Laser diagnostics
Electron diagnostics

The laser beam is focused by an off-axis parabola in a f/22- geometry over a distance
of f = 1.54 m to a spot size of 23 µm (FWHM) into the gas cell. The laser energy within
the transverse area of 23 µm diameter was measured to be 61% of the total energy
[Osterhoff, 2008b]. For the laser parameters described in section 5.1, this leads to an
average vacuum FWHM focal intensity of 1.9 × 1018 W/cm2 and to a normalized laser
vector potential of a0 = 0.94.

Before focusing, the laser pulse duration can be characterized by a second-order auto-
correlator (SwampOptics GRENOUILLE) as well as the pulse energy can be measured.
The precise laser alignment and the focus quality are inspected for attenuated beams with
a stationary 8-bit CCD camera using a microscope objective. The pointing fluctuations
of the laser beam at the focus position was measured to be approximately half a focus
spot size.

The laser is focused into the gas cell (see below), where it accelerates electrons and
gets modulated as described in section 2.6.4. The laser beam after the exit of the gas cell
is routinely diagnosed for its beam profile and position, its spectrum as well as its pulse
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Figure 5.2. | Gas cell. The upper part of the figure shows the velocity distribu-
tion of the gas in the gas cell, simulated with the fluid-dynamics code FLUENT. The
lower part of the figure shows the layout of the gas cell. Viewgraph taken from [Os-
terhoff, 2008b].

energy. In order to do so, the laser is reflected out of the chamber onto a diagnostics
table by an uncoated BK7 wedge with a hole of 5 mm, which does not disturb the
electron beam.

The gas cell consists of a cylindrical channel with a diameter 250 µm and 15 mm
length. The hydrogen gas from a reservoir is filled into the channel through 0.6 mm
thick inlets, located at a distance of 1.8 mm from both exits (see figure 5.2). Half-
profiles of the channel and inlets are laser-machined into two sapphire plates, which
are pressed together to form a gas cell. The upper part of figure 5.2 shows the almost
perfectly stationary and homogenous gas density profile between the two inlets. This in
combination with a high stability in laser parameters leads to very reproducible shot-
to-shot experimental conditions, which is a reason for the stable electron beams (see
section 5.3). The gas cell was operated in pulsed mode with ∼ 200 ms filling time to
reach steady-state.

Electron Diagnostics

Two diagnostics at different positions allow the characterization of the accelerated elec-
tron beam: The beam pointing and divergence can be measured with the help of a scin-
tillating phosphor screen, located at a distance of 1.12 m after the exit of the accelerator
(S1 in figure 5.1). This screen can be removed from the beam path in order to ensure
the propagation of undisturbed electron beams for characterization of different proper-
ties. The screen is imaged with an objective lens onto a 12-bit CCD camera (Point Grey
Research Scorpion 1600 x 1200 pixels). The diagnostic is capable of capturing structures
down to ∼ 150 µm.

The electron spectrum can be diagnosed by a second scintillating screen (S2) located
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Figure 5.3. | Deflection of the electron beam after the magnetic dipole. The
figure shows the energy-dependence of the electron-deflection for the spectrometer
setup used in these experiments. An electron entering the dipole magnet with an an-
gle of 0 (blue line) and ±1.4 mrad (red lines) with respect to the defined ∞-energy
axis can lead to different deduced energies. Figure taken from [Osterhoff, 2008b].

after a 37 cm-long dipole magnet with a field of ∼ 450 mT. The screen is imaged
by a 12-bit PCO Pixelfly QE CCD camera. An absolute calibration in charge of the
spectrum diagnostics was performed at a conventional accelerator [Buck et al., 2010].
Since the energy calibration of the setup could not be done with well-defined electron
beams, the electron spectra are deduced from the deflection of the electrons by the dipole
magnet: The fields of the magnet were characterized by a Hall-probe measurement.
These fields were used in a single-particle tracking code to map the electron deflection
onto a corresponding electron energy. However, this method of determining the energy
is conditional on the divergence and the angle of the electron beam with respect to the
defined ∞-energy axis. An analytical model was used in [Osterhoff, 2008b] to estimate
the error in the deduced electron energy of a beam that is entering the spectrometer
under an angle with respect to the ∞-energy axis. The result for a typical value of
±1.4 mrad (which arises from beam pointing measurements at screen S1, directly in
front of the spectrometer entrance) can be seen in figure 5.3.

Since the electrons are energy-dispersed only in the vertical direction, the spectral
properties of the (horizontal) transverse beam structure can be characterized as can be
seen in figure 5.4.
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Figure 5.4. | Time series of energy-dispersed electron beams of consecutive
laser shots. Each vertical line corresponds to a separate electron beam produced by
consecutive driver laser shots. The vertical dimension is the deflection of the electron
beam by the dipole magnet of the spectrometer and corresponds to the energy distri-
bution of the electron beam. Color-coded are the CCD counts, which are normalized
for each shot. The horizontal dimension corresponds to the divergence of the elec-
tron beam. It can be seen that the quasi-monoenergetic features located at around
220 MeV show a significantly smaller divergence than the spectral background. Fig-
ure from [Osterhoff, 2008b].

5.3. Properties of the LWFA Electron Beams

Spectral distribution
Charge
Energy spread of the peaks
Divergence
Shot-to-shot pointing

A stable regime for electron acceleration has been found for a plasma density of
ne ∼ 7.3 × 1018cm−3. In this regime, electron beams that show similar spectra in 80%
of consecutive driver laser shots have been produced. Fluctuations in the laser as well
as the target gas properties in the remaining 20% are responsible for differently shaped
spectra. Typical electron spectra have a quasi-monoenergetic feature at an energy of
∼ 220 MeV on top of a broad background (see figure 5.5). Shots taken in a run over
40 consecutive driver laser shots show that the energy of the peaks varies around 214
MeV with a standard deviation of 6%, whereas the energy of the high-energy cutoff
around 234 MeV has a standard deviation of 3% [Osterhoff et al., 2008]1. The energy
fluctuations agree with the observation that undulator radiation produced by only the
high-energy part of the electron spectra results in a smaller wavelength variation than

1Note that the electron energies given in [Osterhoff et al., 2008] are a factor of 0.93 too low. This has
been found by the wavelength analysis of the undulator radiation, produced by these electrons (see
next chapter). A thorough characterization of the magnetic dipole of the electron spectrometer has
shown a slightly higher average field strength of 458 mT (than 450 mT used in [Osterhoff et al.,
2008]), which leads to higher electron energies for the same electron deflection distance.
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Figure 5.5. | Typical electron beam spectra. The figure shows spectra of some
typical shots of figure 5.4. The left-hand side shows spectra with more pronounced
quasi-monoenergetic features than the spectra on the right-hand side. Any corre-
lation between laser and plasma parameters and the occurrence of the pronounced
quasi-monoenergetic features has not yet been found and is still subject to research.
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Figure 5.6. | Energy-dependent divergence of LWFA beams. The figure shows
the electron spectra (green; scale on right hand side) and the energy-dependent di-
vergence (blue; scale on the left) of the LWFA electron beams used in the experi-
ment described below. It can be seen that the quasi-monoenergetic features of the
beams have the smallest divergence of ∼ 700 µrad (rms).

radiation produced from the spectral region around the quasi-monenergetic features (see
section 6.2). The peaks of the electron spectra show a relative energy spread of 8.2%
(FWHM).

In the spectrally-resolved transverse beam profiles (figure 5.4), it can be seen that the
quasi-monoenergetic features of the beams have a significantly lower divergence than the
background (see also figure 5.6). The integrated charge of the electron beams is 12 pC
with 4 ± 1.6 pC in the peak and 8 ± 2 pC in the background.

The electron beam profile of a single shot can be seen in figure 5.7. An analysis
of 74 consecutive shots shows an average rms-divergence of 0.9 ± 0.2mrad [Osterhoff
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Figure 5.7. | Electron beam divergence. The figure shows the electron beam
profile detected with the scintillating screen S1 at a distance of 1.12 m after the exit
of the accelerator. The divergence of this shot is 0.7 mrad, assuming a Gaussian
profile [Osterhoff et al., 2008]. The white lines in the figure arise from pen markers
used for spatial calibration.
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Figure 5.8. | Shot-to-shot pointing of the electron beam. The figure shows the
signal detected at screen S1, summed up over 74 consecutive electron shots. The
dots correspond to the peak positions of each shot and the color-coding corresponds
to the overall count distribution. From this an rms shot-to-shot pointing fluctuation
of 1.4 mrad (y-axis) and 2.2 mrad (x-axis) can be deduced. [Osterhoff et al., 2008].
The laser polarization is along the x-axis. The white lines in the figure arise from
pen markers used for spatial calibration.

et al., 2008]. Note that this diagnostics is not sensitive to electron energies and thus
the divergence is deduced from the whole transverse beam distribution, which means
that the lower divergent quasi-monenergetic features cannot be distinguished from the
beam background. The shot-to-shot pointing of the electron beam can be seen in figure
5.8. An rms-fluctuation of 2.2 mrad along the axis of the laser polarization and 1.4 mrad
perpendicular to the laser-polarization axis can be deduced from a series of 74 consecutive
shots.

75





6. EXPERIMENTAL UNDULATOR
RADIATION RESULTS

The chapter discusses the experimental observation of soft-X-ray undulator radiation
from a laser-wakefield-driven undulator source. The experimental setup is described in
section 6.1, simulations of undulator radiation that explain the experimental findings
are discussed in section 6.2 and the experimental results compared for different utilized
setups are reported in section 6.3.
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• T. Eichner, F. Grüner, S. Becker, M. Fuchs, D. Habs, R. Weingartner, U. Schramm,
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• R. Weingartner, M. Fuchs, A. Popp, S. Raith, S. Becker, S. Chou, M. Heigoldt, K.
Khrennikov, J. Wenz, B. Zeitler, Zs. Major, J. Osterhoff, F. Krausz, S. Karsch,
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Figure 6.1. | Experimental setup. A laser pulse from the ATLAS laser facility
(red) is focused into a hydrogen-filled gas cell, where it accelerates electrons to
energies of about 200 MeV (yellow). The electron beam is collimated by a pair of
miniature permanent magnetic quadrupole lenses. A 15 µm thick aluminum foil
blocks the laser as well as plasma radiation. The electrons emit soft X-ray radia-
tion by propagating through a 30 cm long undulator. The undulator radiation is
collected and horizontally focused by a spherical gold mirror with a radius of cur-
vature of 10 m in grazing incidence configuration. It is subsequently analyzed by an
X-ray spectrometer consisting of a 1000 lines/mm transmission grating and an X-ray
CCD camera. The pointing and divergence of the electron beam can be diagnosed
by a phosphor screen at a distance of 1.12 m after the exit of the accelerator. The
electron spectrum can be measured by a second phosphor screen (at a distance of
1.94 m from the accelerator) after the electron beam has been energy-dispersed by
a dipole magnet. The distance from the accelerator to the lenses is ≈ 30 cm, from
the lenses to the undulator ≈ 15 cm, from the undulator center to the gold mirror
≈ 1.4 m, from the gold mirror to the grating ≈ 1.04 m and from the grating to the
CCD detector ≈30 cm.

6.1. Setup and Components

The setup of the experiment is shown in figure 6.1. It is composed of three main parts:
(1) the electron accelerator and associated diagnostics, (2) the electron beam transport
to collimate the electron beam and the undulator to produce radiation and (3) the
undulator radiation diagnostics. The components (2) and (3) are described in detail in
the following section, for further information on the LWFA accelerator see the previous
chapter.
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Figure 6.2. | Photograph of magnetic lenses and undulator. The left-hand side
of the figure shows the magnetic quadrupole lenses. They have a magnetic field gra-
dient of ≈ 500 T/m over an inner bore radius of 6 mm and a length of 17 mm and
15 mm, respectively. The green lines depict the quadrupole fields. The right-hand
side shows a photograph of the lower half of the undulator. It has a magnetic field
period of 5 mm over a total length of 30 cm.

6.1.1. Miniature Magnetic Quadrupole Lenses and Undulator

Properties of the miniature magnetic quadrupole lenses
Properties of the short-period undulator
Estimation of the undulator radiation linewidth

Both the miniature permanent magnetic quadrupole lenses (PMQs) and the undulator
have been specifically designed for the experiment described below. The high-gradient
miniature PMQs with a length of only a few centimeters and the 30 cm-long, short-
period undulator are designed to realize a compact overall setup [Eichner et al., 2007].
The small dimensions of the setup are necessary to take full advantage of the unique
properties of laser-wakefield accelerated electron beams, such as their ultrashort pulse
duration. The large intrinsic divergence of the LWFA electron beam causes the bunch
to elongate due to path length differences during the propagation over the distance from
the accelerator to the undulator (see figure 6.7). This can be mitigated by collimating
the beam at a distance as close as possible to the exit of the accelerator. Owing to
their large field gradients, this can be achieved by the compact PMQs. Typical electro-
magnetic lenses have significantly smaller field gradients. Therefore, they have to be
placed further away and have to be of an increased length in order to have the same
collimating effect as the miniature permanent magnetic quads and cannot counteract
the bunch elongation equally well.

The PMQs as well as the undulator have been commissioned at the conventional
electron accelerator facility “Mainzer Mikrotron” (MAMI) [Eichner et al., 2007].

The ≈ 500 T/m magnetic field gradients of the miniature PMQs ensure a sufficiently
high strength to focus electron beams with energies of several hundred MeV to a few
GeV, despite their compact lengths. In order to realize such high gradients, magnetic
fields of 1.5 T at the tip of the poles are produced by NdFeB permanent magnets in
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Figure 6.3. | Measured undulator field. The upper part of the figure shows the
undulator magnetic field for a gap of 1.2 mm measured with a hall probe. The lower
part shows the distribution of the absolute peak value of the amplitude along the
undulator. Note the zoomed-in scale in the lower figure.

a Halbach configuration [Halbach, 1980] over a bore radius of 3 mm. A sophisticated
tuning method of the lenses [Becker et al., 2009] proved to be able to minimize their
higher order magnetic moments. This is important to minimize any deteriorating effect
on the electron beam emittance.

The undulator is built with NdFeB permanent magnets arranged in a Halbach hybrid
geometry which utilizes saturated CoFe plates to guide the magnetic field. It consists
of 60 periods, each with a length of 5 mm. The distance between the poles was set to
1.2 mm which is a tradeoff between a high magnetic field (and thus a high photon yield,
see equation 6.15) and a gap that is sufficiently large to minimize the risk of electrons
hitting the undulator magnets which can thereby lose their magnetization. In such a
configuration the undulator produces an on-axis magnetic field with an amplitude of
B0 ' 1.2 T which results in deflection parameter of K ' 0.55 (3.1). A slight decrease
of magnetic field toward one side of the undulator was observed with a Hall probe
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measurement, leading to a mean field of B0 = 1213 mT with an rms deviation of 29.5
mT (figure 6.3). These field variations can be somewhat flattened by tuning of the
magnetic flux distribution [Eichner, 2007]. However, a 2.4 % fluctuation is tolerable
since the bandwidth of the produced undulator radiation is dominated by other effects:
In our case, the main contributions to the on-axis undulator radiation bandwidth are

∆λ
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where the terms describe broadening due to:
the natural linewidth of a Nu = 60 period undulator
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)

nat

' 1

nNu

= 1.7 % (6.2)

the fluctuations in magnetic field B of 2.4 %, expressed in terms of the undulator de-
flection parameter K

(
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λ

)

∆K,fluct

=
K2

1 +K2/2

∆K

K
= 0.6 %. (6.3)

Furthermore, an electron bunch with a finite transverse beam size experiences different
undulator magnetic field along its vertical axis. The vertical undulator magnetic field
changes according to B(z) = B0 · cosh(2πz/λu) [Wille, 2000] which leads for a typical
electron beam size of 450 µm (see table 6.1) to a magnetic field of 1412 mT at z = 450µm.
This ∆B0/B0 ' 14% over the beam width leads to an increase in the integrated detected
linewidth of (

∆λ

λ

)

∆K,B−var

=
K2

1 +K2/2

∆K

K
= 3.7 %, (6.4)

the electron-energy spread of the quasi-monoenergetic features of ' 8 % FWHM (' 3.4%
(rms)) of the beams utilized in this experiment [Osterhoff et al., 2008]

(
∆λ

λ

)

∆γ

= 2 · σγ
γ
' 6.8 %. (6.5)

The broadening due to emittance effects (∆λ/λ)ε depends on electron beam size and
divergence which owing to the chromaticity of the magnetic lenses vary with the electron
energy (see section 6.2). The linewidth broadening due to this effect for energies around
the peak energy can be deduced from undulator simulations of finite-emittance electron
beams (see section 6.2.5) and are on the order of a few per cent.
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6.1.2. Electron Beam Transport

Setup: Collimation of the electron beam
Effects on the divergence and angular fluctuations of the beam
Energy acceptance of the lens setup
Steering of the electron beam
Suppression of the increase in electron pulse duration

After exiting the plasma accelerator, the electron beam is collimated by a doublet
of miniature permanent magnet quadrupole lenses. The lenses have proven to be a
critical system component for three reasons: (1) They reduce the divergence and the
effective angular shot-to-shot fluctuation of the electron beam (see section below and
figure 6.4). This way, they prevent electrons from hitting the undulator walls and enable
a higher reproducibility of the undulator radiation. Note that collimating the beam does
not modify the intrinsic pointing fluctuations of the LWFA bunch, however, it reduced
the effective spatial shot-to-shot variation on target. (2) The chromatic effects of the
magnetic lenses onto the electron beam leads to an effective energy-band-pass filter
for the undulator radiation (see section 6.2). This decreases both the photon-energy
bandwidth and spectral fluctuations of the radiation. (3) The collimation of the beam
mitigates the elongation of the electron bunch due to path-length differences occurring
in a free drift during the transport from the accelerator to the undulator and thus ensure
the conservation of its ultrashort pulse duration (see figure 6.7).

Collimation

The effect of the collimation of the electron beam through the magnetic lenses in com-
parison to freely drifting beams can be seen in figure 6.4. The lenses were set to col-
limate an electron energy of ' 210 MeV which corresponds to the energy of the quasi-
monoenergetic peak of the spectral electron distribution. Despite the chromatic effects
of the lenses, a clear reduction in divergence and angular shot-to-shot fluctuations can
be seen which results in an increased reproducibility of the beam (for further details, see
[Weingartner et al.]).

Magnetic Quadrupole Lens Setup

In section 3.5.2 it can be seen that the highest brilliance for a thick electron beam can
be achieved, if the electron beam is focused into the undulator center (αTwiss = 0) with
a Twiss parameter of βTwiss = L/(2π) matched to the undulator length L. However,
in order to account for the wide range of energies and the energy fluctuations of the
LWFA electron beams, a setup that collimates the beam was chosen for this experiment.
The energy acceptance of the setup is mainly given by the beam size at the exit of the
undulator which (vertically) has to be smaller than the undulator gap, in order not to
hit the undulator magnets with the electron beam. In figure 6.5, it can be seen, that the
acceptance for the β-matched setup is significantly smaller than that of the (collimating)
setup used in the experiment. An additional drawback of the β-matched setup is that
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Figure 6.4. | Angular shot-to-shot fluctuation. The angular shot-to-shot fluctu-
ations are measured at the pointing diagnostics screen S1 at a distance of 1.12 m
after the exit of the accelerator. Color-coded is the sum over 20 consecutive shots
without lenses (a) and 47 consecutive shots after the collimation with the mag-
netic lenses (b), where the dots indicate the position of the peak of each shot. The
FWHM-fluctuations at this distance are for the free-drifting beam vertically 5.3 mm
and horizontally 5.2 mm, whereas the application of the lenses reduce these values to
0.9 mm (vertical) and 1.2 mm (horizontal) [Weingartner et al.].

the produced undulator radiation is emitted with a relatively high divergence and has
to be focused in both dimensions. In the soft-X-ray range, focusing with relatively high
efficiencies can only be realized by a setup of grazing incidence mirrors which is highly
prone to pointing fluctuations. The magnetic lens setup used in this experiment proved
that it is possible to focus the undulator radiation by means of a convergent electron
beam with a focus at the detector (see section 6.2) and thus, in principle, no additional
mirrors are need for focusing (see chapter 7). However, in order to keep the setup
as simple as possible, only a doublet instead of a triplet of magnetic lenses was used
which leads to an elliptical beam profile with a larger horizontal diameter. These larger
horizontal beam sizes were collected and focused by a grazing incidence gold mirror (see
figure 6.1).

The lenses used in the experiment were a 17 mm long lens with a gradient of 481 T/m
and a 15 mm long lens with a gradient of 485 T/m. The appropriate distances between
the accelerator exit and the first lens (D1) as well as the distance between both lenses
(D2) are found with the help of a code for designing particle optical systems [Makino
and Berz, 1999]. The distances for collimating electron beams of various energies and
the corresponding electron beam sizes and divergences in the undulator center can be
seen table 6.1.

An additional advantage of the magnetic lenses is that they allow to steer the electron
beam (see figure 6.6). This is crucial for the fine alignment of the electron beam with
respect to the undulator.
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Figure 6.5. | Electron beam size for two lens setups. Calculated electron beam
sizes at the undulator exit versus the electron energy for a β-matched lens setup
(blue) and the lenses set to collimate 180 MeV (green) and 220 MeV (red) as used
in the experiment. The undulator gap of 1.2 mm is indicated by the dashed line.

E [MeV] D1 [cm] D2 [cm] h-size [µm] v-size [µm] h-div [µrad] v-div [µrad]

150 20.15 1.00 323.05 148.57 17.17 9.37
160 21.36 1.15 341.52 158.09 15.70 8.41
170 22.57 1.30 360.13 167.71 13.76 7.36
180 23.79 1.46 377.34 176.12 17.10 8.21
190 25.00 1.61 395.99 185.76 15.11 7.09
200 26.20 1.77 413.38 194.36 17.74 7.57
210 27.41 1.92 432.00 203.99 15.74 6.46
220 28.62 2.07 450.60 213.61 13.85 5.50
230 29.82 2.23 468.20 222.23 16.12 5.90
240 31.03 2.38 486.78 231.80 14.35 5.07
250 32.24 2.53 505.34 241.33 12.72 4.45

without lenses 718.73 718.73 1000.00 1000.00

Table 6.1. | Distances of lens setups for different electron energies. The dis-
tance between the accelerator exit and the first lens (D1) and between the two
lenses (D2) for lens setups that collimated an electron beam with an energy E. The
horizontal and vertical beam size (h-size and v-size) as well as the horizontal and
vertical divergences (h-div and v-div) are given in the undulator center for an geo-
metrical emittance of ε = 1 µm mrad.
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Figure 6.6. | Steering of the electron by translation of the magnetic lenses.
Demonstration of the steering of the electron beam through a translation of a few
micrometer of the magnetic lenses in vertical a, b, c and horizontal d direction.
The horizontal black line arises from pen marks used for spatial calibration.

Mitigation of the Increase in Electron Pulse Duration through Beam Transport

Laser-wakefield accelerated electron beams are expected to have an ultrashort pulse
duration on the order of ∼ 10 fs (see section 2.7.1). Since the undulator is positioned
∼ 50 cm after the exit of the accelerator, the influence of degrading effects that elongate
the bunch duration during beam transport, such as space-charge effects, path-length
differences due to angular spread and chromatic effects of the lenses as well as energy
spread have to be taken into account. Figure 6.7 shows the bunch-duration evolution of
a 10 fs (∼ 3 µm) long electron bunch along our setup simulated by a tracking algorithm
[GPT, 2009], which includes all degrading effects mentioned above. According to this
simulation, a bunch with a longitudinal rms-length of 2.95 µm (9.8 fs) elongates to
3.06 µm (10.2 fs) over the distance of our beamline (including the magnetic lenses),
which extends from the exit of the accelerator to the exit of the undulator (at ∼ 0.8 m).

In our case, the predominant effect in the growth of bunch duration is the path length
difference due to a finite emittance electron beam, i.e. the path-length difference of an
electron with a finite divergence in comparison to a on-axis reference electron with zero
divergence. In the case of a free drift (no magnetic lenses, green curve in figure 6.7), the
path difference grows perpetually along the whole setup. For our beamline with lenses
(red curve in figure 6.7), the path difference increases similar to the free drift until the
bunch reaches the first lens. Then it grows rapidly, since the first lens is defocusing in
the horizontal direction which leads to an even larger path-length difference. After the
second lens (which is focusing in the vertical dimension), the electron beam is collimated
(see the yellow envelope in figure 6.16) and therefore no more path length difference is
accumulated which means that the bunch duration remains almost constant. Thus, in
order to conserve the ultrashort pulse durations, the highly-divergent LWFA electron
beams should be collimated as close to the accelerator exit. This is only possible for
thin lenses with a large field gradient such as the miniature magnetic quadrupole lenses
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Figure 6.7. | Simulation of the evolution of the electron bunch duration along
the beamline. The red curve shows the bunch-duration evolution of an electron
bunch that is propagating through the beamline including the magnetic lenses,
(which are positioned at 28 cm and 32 cm; the undulator from 50-80 cm), and the
green curve shows the growth of the duration of a free-drifting bunch. Both curves
are simulated with a tracking code [GPT, 2009] with an initial bunch duration of 10
fs, an initial RMS-divergence of 1 mrad and rms-source size of 2 µm, a charge of 5
pC and an energy of 210 MeV with an rms-energy spread of 3.5 %.

used in this experiment (see section 6.1.1).

An analytical beam-transport calculation of an electron with an initial divergence of
1 mrad (one standard deviation of the divergence distribution) and a zero-divergence
electron, both propagating through the lens setup, leads to a path-length difference of
∼ 0.5 µm (∼ 2.4 fs). A convolution with the whole temporal Gaussian bunch distribution
of 10 fs rms gives an increase in bunch duration of 0.3 fs, which agrees very well with
the simulated results.

The elongation of the bunch duration due to electron-energy spread and the resulting
time of arrival differences for electrons with different energies can be neglected in our
case. The simulated durations for a bunch without energy spread does not significantly
differ from a bunch with an RMS energy-spread of 3.5% (corresponding to the width of
the effective electron spectrum, see section 6.2). An analytical upper limit for two zero-
emittance electrons with energies of 200 and 210 MeV, respectively, yields an arrival-time
difference of 0.8 fs. Simulations for a bunch with a charge of 5 pC show that space-charge
effects also do not have a significant influence on the duration. Space charge primarily
leads to the development of an energy chirp along the bunch hence increase the initial
energy spread [Grüner et al., 2009] as well as increase the initial beam divergence due
to Coulomb explosion. Yet, for the relatively small charge of 5 pC, the transverse bunch
expansion is mainly driven by the initial divergence.
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6.1.3. Undulator Radiation Diagnostics

Transmission curves of XUV and optical band-pass filters
Electron beam scattering through a thin aluminum foil
X-ray spectrometer
Calibration of X-ray spectrometer
Deduction of photon number from CCD counts

Filters

The properties of the undulator radiation were mainly characterized by an X-ray spec-
trometer. Since the X-ray CCD camera used in this spectrometer, is very sensitive to
optical light, the undulator radiation has to be separated from any laser light as well
as from any background radiation. This task was performed by several filters: a 15 µm
thick, several 150 and 450 nm thick aluminum1 as well as several 150 and 450 nm thick
zirconium foils1 which could be used each of its own or in a combination of several foils.
The thick Al foil was used to block the remaining laser light that exits the accelerator as
well as any plasma radiation which in our case has a relatively high intensity in the XUV
range. This mainly originates from recombination radiation of oxygen in the sapphire
(Al2O3) capillary walls. The foil was placed directly in front of the undulator in order
to separate this background radiation from the subsequently produced undulator signal.
Since the laser beam is still very small and intense at that distance, the foil has to be
chosen sufficiently thick, in order to resist puncture by laser ablation which could lead to
a leakage of laser light that could destroy the CCD camera. However, it has to be chosen
thin enough as to not significantly deteriorate the electron beam emittance via multiple
Coulomb scattering as it passes through. The increase of the angular distribution of a
filament electron beam traversing a medium of thickness x with a so-called radiation
length of X0 can be estimated by [Amsler and et al., 2008]

σθ [rad] =
13.6

βE [MeV]

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
, (6.6)

where E and β are the electron energy and the normalized electron velocity, respec-
tively. For an aluminum foil (X0 = 8.9 cm) of the thickness 15µm, the increase in
angular distribution is σθ = 0.54 mrad. However, this drastic increase in emittance does
not significantly influence the result of the experiment described below, since the high
electron energy spread is largest degrading effect, as discussed in section 6.3.2.

The thin (few hundred nm-thick) foils are placed directly in front of the entrance slit
of the X-ray spectrometer. The transmission curves of thin aluminum and zirconium
foils in the soft-X-ray as well as in the optical wavelength range can be seen in figures
6.8 & 6.9.

However, due to XUV radiation emitted from the plasma in the accelerator, the un-
dulator radiation could only be detected without background if the thick Al foil was

1All ultra-thin filters are obtained from Lebow Company, USA
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Figure 6.8. | Transmission curves of zirconium. The experimentally determined
transmission curves of zirconium in the soft-X-ray range for different filter thick-
nesses [CXRO].
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Figure 6.9. | Transmission curves of aluminum. Left-hand side: experimentally
determined transmission curves for Al foil of thickness 150 and 450 mm in the soft-
X-ray range [CXRO]. Right-hand side: calculated transmission curve for a wider
wavelength range with constants used from [Rakić, 1995]

placed in the beam path (the transmission of 15 µm Al in the XUV is about 10−10).
With the thin Al and Zr foils, it could be excluded that the radiation detected in the
diffraction orders of the X-ray spectrometer is scattered optical light and verified to be
in the soft-X-ray range.

A gold mirror was used to collect and horizontally focus the undulator radiation onto
the X-ray CCD camera. It was set up in a grazing incidence configuration with an angle
of α = 9◦ for which the reflection curve can be seen in fig 6.11. In this configuration, the
mirror shows different focusing properties for the meridian plane (in our case horizontal)
and the sagittal plane (vertical). A result of a raytracing of an undulator beam through
the beamline is shown in figure 6.10. The horizontal and vertical focal lengths of the
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Figure 6.10. | Raytracing of the imaging with the spherical mirror. The setup
(a) shows the undulator emission (Source) being focused by a spherical gold mirror
onto the position of the CCD. In order to clearly illustrate the focusing of the mirror,
the size of the mirror is exaggerated with respect to the propagation distances before
(1.4m) and after the mirror (1.35m). The figure shows the raytracing of the source
with the (typical undulator) horizontal and vertical dimensions of σh = 400µm
(rms) and σv = 200µm (rms) (b) and a divergence of 700µrad (rms) through
the beamline with a spherical gold mirror with a radius of curvature of R = 10 m.
The resulting distribution at the position of the CCD (c) clearly shows the focus-
ing in the horizontal dimension. The results were obtained with the raytracing code
SHADOW [Welnak et al., 1994] embedded in the X.O.P. environment [Dejus and del
Rio, 1996].

mirror with a radius of curvature R = 10 m (used in the setup) are given by [Kirkpatrick
and Baez, 1948]:

fh = R
sin(α)

2
= 0.78 m (6.7)

fv =
R

2 sin(α)
= 32m. (6.8)

The distances from the undulator center to the mirror and from the mirror to the CCD
camera are ∼ 1.4 m and ∼ 1.34 m, respectively. This means that the mirror horizontally
images the undulator center approximately in a 1:1 geometry onto the CCD. The image
plane of the setup is ∼ 0.4 m downstream of the CCD position, which is also confirmed by
raytracing. The focal lengths are extremely sensitive to the angle of incidence α which
was not adjusted to a very high accuracy since the mirror was used to compensate
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Figure 6.11. | Reflection of gold mirror. The experimentally determined reflection
of gold in a grazing incidence angle of 9◦ [CXRO]. The cutoff in reflectivity for small
wavelength is around 7.5 nm.

for errors in the setup. The large vertical focal length leads to a virtual image at a
position of −1.46 m. This means that the vertical divergence of the undulator radiation
is practically not changed by the mirror.

X-ray Spectrometer

The X-ray spectrometer consists of an entrance slit with a variable width, a transmission
grating and an X-ray CCD camera. The transmission grating is similar to the ones used
in the Chandra X-Ray Observatory satellite for the Low Energy Transmission Grating
(LETG). It consists of free-standing 1000 lines-per-millimeter gold wires held by a two
support meshes: perpendicular to the grating wires is a “fine” supporting structure of
gold wires with 2.5 µm thickness and a period of 25.4 µm and this whole structure is
held by a triangularly-shaped “coarse” supporting structure made of wires with a width
of 68 µm [Predehl et al., 1992], [CXC, 2009]. This sophisticated structure ensures that
no optical radiation contaminates the diffraction orders of the XUV signal. The whole
grating consists of about 80 of these triangles. From the efficiency curve (fig 6.12), it
can be seen that approximately 10 % of the soft-X-ray radiation is diffracted into the
first diffraction order.

For the detection of the radiation a Princeton Instruments PI-SX:400 back-illuminated
X-ray CCD camera with 1340x400 pixels, each of the size 20x20 µm was used. The
quantum efficiency curve can be seen in fig 6.13.

Wavelength Calibration of the X-ray Spectrometer

XUV radiation from the plasma, filtered through the 450 nm Al was used for the wave-
length calibration of the X-ray spectrometer. The filtered radiation can be seen in figure
6.14 and a lineout integrated over the whole CCD camera in figure 6.15. In order to
minimize the error in the calibration, the slit was closed to a width ∼ 150 µm.
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Figure 6.14. | Spectrally-resolved plasma radiation. The figure shows the
spectrally-resolved radiation originating from the plasma of the accelerator, filtered
by a 450 nm thick aluminum foil.
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Figure 6.15. | Spectrum of the plasma radiation. The blue curve shows the
spectrally resolved radiation originating from the plasma in the accelerator, inte-
grated over the whole CCD (integrated over the vertical CCD distance from pixel
10:100 of figure 6.14). The red line indicates the cutoff of the aluminum filter at
∼ 17.1 nm
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The CCD-pixel to wavelength calibration of the spectrometer was done by defining
the aluminum transmission cutoff at ∼ 17.1 nm for the + and - first diffraction orders.
With this calibration, the diffraction angle α(λ) can be calculated using the diffraction
grating equation

mλ = p sinα, (6.9)

where m is the diffraction order, p = 1 µm is the distance between two individual grating
slits. The deflection distance on the CCD can be determined by the CCD pixel size
(20 × 20 µm) and considering the horizontal binning of a factor of 2 (4 vertical). This
distance x and the diffraction angle α can be used to calculate the distance between the
grating and the CCD chip d with the relation

d =
x

tanα
. (6.10)

The calculation leads to a distance of d = 305 mm, which agrees with the measured
distance of 299 ± 10 mm. Equations (6.9) & (6.10), and a grating-CCD distance of
305 mm were used for calibration and the determination of the corresponding wavelength
to each pixel. Radiation from the plasma below a wavelength of 17 nm was verified by
measuring the spectra with zirconium filters.

Deduction of Number of Photons from CCD Counts

Since the X-ray spectrometer setup could not be absolute calibrated, the number of
photons have to be deduced from the counts of the CCD camera considering the fol-
lowing components and their properties:
the undulator radiation is reflected by the gold mirror in a ∼ 10◦ setup. The reflectivity
of gold in grazing incidence decreases the number of undulator photons Nph by a factor
Rmirror (Rmirror = 0.65 for 17 nm (70 eV) photons, see figure 6.11). A fraction of ηgrating

of these photons are diffracted into the + and - first diffraction order by the transmis-
sion grating (10% total for 17 nm, i.e. 5% is diffracted in each diffraction order) (see
figure 6.12). Photons with an energy of Ephot are detected by the CCD camera with a
quantum efficiency (probability) of QE (for 70 eV, QE ≈ 0.4, see figure 6.13). Photons
with energies of < 70 keV are mainly absorbed by the photo-electric effect. For silicone,
an average energy of 3.65 eV is required to produce an electron-hole pair, i.e. an 70 eV
photon produces 70/3.65 ≈ 19 e− [Inc]. The electronic of the CCD camera was operated
in the low-noise, high-gain mode, in which for each 1.2 e− one ADU (analog-to-digital
unit, or CCD counts) is produced. Considering all these effects, the number of counts
is related to the number of photons by

Ncounts = Nph ·Rmirror · ηgrating︸ ︷︷ ︸
phot in first diffraction order

·QE · Ephot[eV]

3.65

1

1.2︸ ︷︷ ︸
counts in CCD

. (6.11)

For a 70 eV photon, this results in

Ncounts = 0.21 ·Nph (6.12)

Nph = 4.81 ·Ncounts (6.13)
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Figure 6.16. | Influence of magnetic lenses on electron beams with different
energies. The divergence of electron beams with energies of 190 MeV (red), 215
MeV (yellow) and 240 MeV (blue) are shown after propagating through a doublet of
magnetic lenses set to collimate an electron energy of 215 MeV.

6.1.4. Experimental Verification of Soft-X-Ray Undulator Radiation

In order to verify that the detected radiation is in fact undulator radiation in the soft-X-
ray range, several tests have been conducted. In order to distinguish the short wavelength
radiation from any background signal in other wavelength ranges, 150 and 450 nm Al and
Zr filters (see section 6.1.3) were used which both have narrow transmission curves in the
XUV range (figs. 6.8 & 6.9). Additionally a 5 cm long Quartz glass block was used to
filter out any XUV radiation and determine the optical background. By simultaneously
monitoring the signal on the X-ray spectrometer as well as the electron beam for these
filter combinations with the undulator in the beam path and the undulator removed from
the beam path, a soft-X-ray signal originating from the undulator when the electron
beam was present could be verified.

6.2. Magnetic Quadrupole Lenses as Energy-Bandpass
Filter for the Undulator Radiation

Calculation method for the bandpass filter
Analytical calculation
Simulation considering the on-axis flux peaks and beamline
Simulation considering the spectral broadening and overlapping
of the on-axis fluxes
Details of the SRW simulations

A doublet of magnetic quadrupole lenses was used for beam transport from the accel-
erator through the undulator. The lenses are highly chromatic which means that only
electrons with a particular energy are collimated, whereas the divergence of electrons
with different energies is markedly increased (see figure 6.16). As each individual elec-
tron emits its radiation in a narrow cone along its propagation direction, the varying
divergences of the electron beam strongly affect the undulator angular flux and even lead
to an effective energy-bandpass filter as discussed below. In this section, this effect is
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estimated by an analytical model based on a Gaussian approximation (see section 3.4.1)
and computed in more detail by two undulator simulations, each describing different
aspects of the process (sections 6.2.3 & 6.2.4).

Brief Summary: Undulator Flux

For the following sections, it is important to clearly differentiate between the spatial
on-axis undulator flux and the spectrally integrated (total) undulator flux. Therefore, a
quick summary of the formulas is given (for more details, see section 3.6).

The wavelength emitted electrons of energy γ propagating through an undulator with
a periodic field of λu, an deflection parameter K, observed under an angle θ is given by

λ =
λu

2nγ2

(
1 +

K2

2
+ γ2θ2

)
, (6.14)

where n is the harmonic number.
The total angle-integrated flux emitted by an electron beam with a current I and

an undulator with a number of periods Nu and an undulator parameter K can be written
for the undulator fundamental and for K < 1 as

Φn =
π

2
αNu

I

e
K2, (6.15)

where α = 1/137 is the fine-structure constant.

In the Gaussian approximation, the angular spectral flux can be written as (~Ψ =
(θx, θy))

dΦ

dΩ
(~Ψ, ωn) =

dΦ

dΩ

∣∣∣∣
~Ψ=0

exp

(
− θ2

x

2Σ2
x′
− θ2

y

2Σ2
y′

)
, (6.16)

where the total divergence Σx′ can be written in terms of the intrinsic undulator diver-
gence σr′ and the electron beam divergence σx′ as Σx′ =

√
σ2
r′ + σ2

x′ . The on-axis flux is
given by

dΦ

dΩ

∣∣∣∣
~Ψ=0

=
Φn

2πΣx′Σy′
. (6.17)

For a zero-emittance (filament) electron beam, the on-axis flux (for K < 1) can be
written as

dΦ

dΩ

∣∣∣∣
~Ψ=0

= α
I

e
N2
uγ

2 K2

1 +K2/2
, (6.18)

where γ is the electron energy in terms of the electron rest mass mec
2.

It can be seen that the on-axis flux scales quadratically with the electron energy
owing to the smaller emission cones (σr′ ∝ 1/γ) for higher energies. Owing to emittance
effects, the flux gets spatially washed out which leads to a decrease in the on-axis flux (see
equation 6.17). Furthermore, a finite electron beam size and divergence also increases
the on-axis bandwidth toward wavelengths that are larger than the resonance wavelength
as discussed in section 3.6.2. Both these effects can be seen in figures 6.19 & 6.20 which
show the spectrally resolved on-axis flux for varying electron energies and divergences
corresponding to the chromatic effects of the magnetic lenses.
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6.2.1. Analytical Calculation Method for the Bandpass Filter

The influence of the chromatic lenses on the undulator radiation (UR) can be quantified
by the calculation of the radiation emitted by a thick (finite emittance) electron beam
with a varying divergence and beam size. The beam size of the undulator radiation
from a thick electron beam can be determined by a convolution of the single-electron
emission with the electron beam distribution (see section 3.5.2). As described in section
3.4.1), both quantities can be approximated by a Gaussian distribution (which for the
UR is only possible for the resonance frequencies). In this case, the UR beam size of
a thick electron beam resulting from the convolution can be written as the quadratic
sum of the beam size of the single-electron emission and the beam size of the electron
beam. In order to determine the undulator radiation at an observation point after a
free drift, the radiation has to be propagated. As shown in section 3.5.3, carrying out
the convolution in the center of the undulator and propagating the resulting radiation is
equivalent to first separately propagating the single-electron UR and the electron beam
to the observation point and then performing the convolution.

Explicitly, this means that the undulator beam size at the position of the detector can
be calculated by a convolution of the single-electron UR beam size with the electron
beam size, both at the position of the detector which in the Gaussian approximation can
be written as

Σx,y(s) =
√
σ2
x,y(s) + σ2

r(s), (6.19)

where σx,y(s) is the horizontal/vertical electron beam size at the position s measured
from the undulator center. The single-electron UR beam size σr(s) is mainly given by
the natural UR divergence for distances much larger than the undulator length (s� L).
For a free drift, the beam size can be written as (see section 3.5.3)

Σx,y(s) =

√
σ2
x,y(s) +

λL

2π2
+

λ

2L
s2 , (6.20)

where L is the undulator length and λ the wavelength of the undulator emission. For a
given λ and L (which are determined by undulator parameters and the electron energy),
the undulator beam size only varies with the electron beam size at the detector. It can
be seen that the on-axis flux which depends on the undulator beam size (see equation
6.17) thus can be modified by changing the electron beam size. Since the electron beam
size can be adjusted by the magnetic lenses, they implicitly determine the on-axis flux
intensity: The small size of an electron beam focused at the position of the detector leads
to a small UR beam size and thus a high on-axis photon flux. The size of the electron
beam for a particular energy is given by the specific setup of the quadrupole lenses:
in our case the lenses are set-up to collimate a particular energy. Since the undulator
radiation is observed at a relatively long distance (' 3 m) downstream of the last lens,
electron energies, slightly below the energy that is collimated, are focused at the position
of the detector. Owing to the chromaticity of the quadrupole lenses, only electrons in
a small bandwidth around this energy have a small electron beam size and therefore a
small UR beam size at the detector. Both the energy-dependent spatial electron beam
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Figure 6.17. | Electron and undulator beam areas as well as resulting energy
band-pass filter through the effect of the magnetic lenses. a) The electron
beam area (Ael = π σx ·σy) at the position of the detector is calculated for various
electron energies considering the effect of the magnetic lenses (blue). The red curve
shows the undulator beam area analytically calculated by the convolution of the elec-
tron beam size with the size of the single electron emission (AUR = πΣx ·Σy). The
“wiggle” of the blue curve at ≈200 − 215 MeV is due to an astigmatic focus of the
electron beam. b) shows the system response curve of our setup, which corresponds
to the calculated energy-dependent on-axis undulator flux at the position of the de-
tector. The narrow bandwidth filter is due to the energy-dependent electron-beam
divergence introduced by the the magnetic lenses as explained in the main text. The
red curve is the result of the simulation of the undulator code SRW that includes the
focusing effect of the gold-mirror (for details of the calculation refer to sec. 6.2.5).
The green curve is a result of analytical calculations of the on-axis flux after a free
drift using equation 6.17. Both consider the energy-dependent electron beam sizes
given by the effect of the magnetic lenses and the wavelength-dependent UR beam
size given by equation 6.20. In the green curve, the focusing effect of the the mirror
is not included. The red curve has a FWHM-bandwidth of 9% around 211 MeV and
the green curve a bandwidth of 15% FWHM around 209 MeV. Both the curves in
a and in b are calculated for a lens setup that collimates an electron energy of 220
MeV. The natural focusing of the undulator is not considered in these curves.

area (Ael = π σx ·σy) and the spatial undulator beam area (AUR = πΣx ·Σy) at the
position of the detector for a lens setup that collimates an electron energy of 220 MeV
can be seen in figure 6.17a.

Electron bunches with identical beam currents but different electron energies produce
the same angle-integrated undulator spectral flux Φn (as it is independent of the electron
energy (see equation (6.15)). However, the undulator radiation flux from electrons of
energies within the small bandwidth that are focused to a small beam size at the detector
is not as smeared out as that from electrons outside this energy band. This results in a
higher on-axis flux of the radiation emitted by the focused electron energies.
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6. EXPERIMENTAL UNDULATOR RADIATION RESULTS

Figure 6.17b shows the result of computations of this energy-bandpass filter for the
setup used in this experiment: An electron beam with an energy that is focused to the
smallest spot at the detector (for this lens setup ' 210 MeV) yields the highest on-axis
flux, whereas deviations of energies of a few tens of MeV causes the on-axis flux to drop
sharply. In order to determine the undulator spectrum and the (spectral) fraction of
the electron beam that primarily contributes to the measured undulator spectrum, the
detected electron spectrum has to be filtered by this curve (see figure 6.22) which is
therefore called the system response curve.

6.2.2. Comparison between the Utilized Calculation Methods

In the following sections the different utilized calculation methods including their re-
sults are presented. The methods include an analytical description (discussed above)
and two simulations using the undulator code SRW (see section 6.2.5) which each de-
scribes different aspects but not the whole problem due to the restriction of reasonable
computational time. In all three methods, the broad electron spectra are decomposed
and for each electron energy the appropriate beam parameters (size and divergence) are
determined considering the effect of the magnetic lenses. For each electron energy, the
undulator radiation (UR) is calculated and propagated to the detector.

The analytical model uses a Gaussian approximation for the angular flux distribution
which is only valid for the corresponding undulator resonance wavelength (eq 6.14) at
each electron energy. The emittance effects are taken into account by considering the
spatial increase of the electron beam size at the detector (and a corresponding decrease
in on-axis flux). However, the model does not include the spectral broadening of the
bandwidth of the on-axis flux due to emittance effects. For each electron energy, the on-
axis flux is only calculated for one wavelength (the corresponding resonance wavelength).
The distance between the undulator and the detector is taken into account as a free drift
(neglecting the focusing of the gold mirror and the slit in front of the grating).

The first simulation method (see section 6.2.3) computes the undulator radiation
for each electron energy but considers the focusing of the gold mirror and the slit in
front of the detector. However, the code can only propagate a single frequency through
such a beamline (within a reasonable computational time). Therefore, also only the
corresponding resonance wavelength for each electron energy is propagated. The result
in comparison to the analytical model can be seen in figure 6.17b

The second simulation method (see section 6.2.4) only considers a free drift between
the undulator and the detector. This allows to propagate the whole undulator spectrum
(which can be significantly broadened due to emittance effects) for each electron energy.
Owing to this broadening, some of the undulator radiation contribution of different
electron energies spectrally overlap. The resulting computed overall undulator spectrum
(the sum over each energy contribution) leads to a slightly broader shape at a higher
photon energy in comparison to the latter two methods. The comparison between this
simulation and the analytical model can be seen in figure 6.20b.
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6.2.3. Results of Analytical Calculation and Simulation Considering
the Beamline

The shape of the curves in figure 6.17b is determined by multiple calculations of the
on-axis undulator flux at the position of the detector for electron bunches with different
electron energies, each with zero energy spread and consisting of the same amount of
electrons. The calculations of both curves consider the wavelength-dependent natural
undulator divergence and the energy-dependent electron beam size which is determined
by the lens setup as discussed above. The on-axis flux for each electron energy is evalu-
ated only for the corresponding resonance wavelength. The blue curve is calculated using
equations 6.17 & 6.20, and as beamline between undulator and detector only considers
a free drift of ≈ 2.7m after the undulator to the detector.

The red curve is a result of a simulation using the code Synchrotron Radiation Work-
shop (SRW) [Chubar and Elleaume, 1998] that includes the focusing effect of the spher-
ical gold mirror and the slit in front of the X-ray spectrometer (for details of the sim-
ulation, see section 6.2.5). Although the blue curve is calculated using a Gaussian ap-
proximation and does not consider the focusing mirror, both curves give approximately
the same result.

6.2.4. Simulation Considering the Spatial and Spectral Broadening
of the on-Axis Fluxes

The computation methods described above do not consider the spectral broadening of
the on-axis flux bandwidth to lower photon energies resulting from emittance effects.
Therefore, a second simulation was performed, using SRW which calculates the whole
spectrum of the emitted spatial flux for each electron energy (two individual contribu-
tions to the sum can be seen in figure 6.19). Within a reasonable computational time,
the whole bandwidth can only be propagated through a free drift from the undulator to
the detector (and therefore cannot consider the beamline consisting of a focusing mirror
and an aperture). For a more detailed description of the calculation, see sec 6.2.5.

Similar to the methods mentioned above, in this simulation the spatial spectral fluxes
were computed with the same amount of electrons (at zero energy spread) for each
electron energy. Although the highest individual on-axis-flux peak is emitted by electrons
with an energy of 210 MeV (at a corresponding photon energy of 70 eV), the overall flux
peak of the sum of the contributions is at a higher photon energy.

This can be understood by the contributions to the sum of the fluxes from individual
electron energies: An on-axis lineout of the sum over each flux (lineout along vertical
position 0 mm of figure 6.18), as well as lineouts of the individual spatial fluxes produced
by every fifth electron energy step are shown in figure 6.20 a. It can be seen in 6.20 b that
the peak amplitude of each contribution approximately matches the value analytically
calculated for the resonance frequencies in figure 6.17 (blue curve) and that the highest
flux amplitude is emitted by electrons of ' 210 MeV.

However, the peak of the sum over these contributions is at a higher photon energy
than the individual highest on-axis peak flux: in contrast to higher or lower electron
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Figure 6.18. | Simulation of the spatial spectral flux density for a flat-top
electron spectrum with the magnetic lenses set to collimate an energy of
220 MeV. The figure shows the sum of flux densities, each calculated for a mono-
energetic electron beam at equal increments of the electron energy in a range from
100 - 250 MeV, each consisting of the same amount of electrons. The energy depen-
dent electron beam size and divergence given by the lens setup is responsible for the
sharp drop of flux for photon energies < 60 eV. Two individual contributions can be
seen in figure 6.19.

energies, the spectrally narrow on-axis fluxes emitted by electron energies around 210
MeV do not (spectrally) overlap which reduces the sum of their contributions. At higher
and lower electron energies, the electron beam has a larger divergence which spatially,
and more importantly, spectrally washes out the flux to lower photon energies (which
is a result from θ > 0 contributions of the emitted UR wavelength, see equation (6.14)
and can be seen in figure 6.19). This spectral overlap increases the value of the overall
sum over these individual fluxes. As a result, the peak of the sum of the fluxes is at a
photon energy of ≈ 90 eV, whereas the largest amplitude of the on-axis fluxes is at an
energy of ≈ 70 eV.

Although the spectra of the individual on-axis fluxes for photon energies < 70 eV also
overlap, the overall peak of the sum is at higher photon energies. This is because the on-
axis flux (of a filament electron beam) is proportional to the square of the electron energy
(∝ γ2) (see equation 6.18), since it is emitted into a smaller emission cone (σr′ ∝ 1/γ).
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Figure 6.19. | Comparison of the simulation of the 210 MeV and the 240
MeV angular flux. Owing to the small electron beam size at the detector, the 210
MeV contribution closely resembles a filament-beam angular flux distribution. The
240 MeV contribution is both spatially and spectrally washed out. Its peak ampli-
tude is only ≈ 40% of that of the 210 MeV flux (both electron beams contain the
same amount of charge but a different electron beam size and divergence due to the
effect of the magnetic lenses). It can be seen that the 210 MeV contribution has a
more distinct parabolic shape, whereas the high intensity (yellow to red-colored) part
of the 240 MeV contribution rather resembles a vertical line.

Brief Summary

In conclusion, the energy-dependent electron beam divergence induced by the chromatic-
ity of the magnetic lenses acts as an effective band-pass filter for the undulator radiation.
The electrons that primarily contribute to the on-axis flux of the undulator radiation are
determined by the filtering of the electron spectrum with the system response function,
shown figure 6.17). However, the sum of the spectrally spread-out and thus overlapped
on-axis fluxes shift the overall peak of the undulator emission from the highest spectral
on-axis peak to higher photon energies (figure 6.18).

6.2.5. SRW Calculations

The code Synchrotron Workshop (SRW) computes the near-field synchrotron radiation
by numerically solving equation (3.5). Radiation from thick (finite emittance) electron
beams is calculated by a convolution of the radiation of a single electron with the elec-
tron beam distribution, both computed at the observation point. In order to take into
account beamline components, such as mirrors, slits, etc. the single-electron photon
distribution is propagated through these components in the frame of the scalar diffrac-
tion theory using Fourier optics. The distribution of a thick electron beam is taken
into account by a convolution with the electron beam distribution after the propagation
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Figure 6.20. | Simulation results from on-axis lineouts of the sum and indi-
vidual contributions. a) The blue curve shows the on-axis lineout of the sum of the
spatial spectral fluxes of electron energies that are relevant for the experiment (100
- 250 MeV) which is the lineout at vertical position 0 mm of fig 6.18. The simula-
tions include the effects on the electron beam size and divergence of the magnetic
lenses. The on-axis spectral fluxes of every fifth energy step are shown as black lines.
The red-filled contributions are labeled by the corresponding electron energies. The
sharp drop of the lineout of the sum (blue) at photon energies > 100 eV can be ex-
plained by the cutoff of the simulation at a maximum electron energy of 250 MeV
(corresponding to a resonance photon energy of 103 eV). b) shows the comparison
between the simulated spectral fluxes (black) to the analytical calculation (green).
The simulated fluxes (black) are the same as in a and the envelope (green) shows
the peak amplitude of the flux calculated at the resonance photon energy, calculated
for an electron energy range of 100-250 MeV (same curve as in fig 6.17).

which delivers an accurate result in case of the well-defined, small-emittance electron
beams of conventional synchrotrons. In our case, however, parts of the electron beam
with energies that are not focused, have large divergences (see sec 6.2) which means that
the propagation method described above does not yield the correct result for focusing
mirrors and apertures.

In order to include these effects, one simulation was performed by decomposing the
phase-space distribution of the electron beam and thus sampling it by several computa-
tions of the single-electron undulator radiation with different initial positions and angles
which were all added up at the position of the detector. Owing to the chromaticity of
the magnetic lenses, the electron beam size and divergence are different for each electron
energy. Therefore, the electron beam has to be additionally spectrally decomposed and
each phase-space distribution of each electron energy has to be simulated separately.
Since SRW only allows the propagation of one particular photon energy through the
beamline, only the resonance frequency (eq (6.14)) for each electron energy was prop-
agated through the setup. As a result, the red curve in figure 6.17 shows the on-axis
flux after the propagation through the beamline (mirror and slit) only of the resonance
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frequencies for each electron energy.

In order to avoid the difficulties mentioned above, a second SRW simulation that does
not consider the effect of the mirror and the aperture was performed. Here, the thick
electron beam can be calculated by a convolution and the decomposing of the phase-
space is not necessary. Furthermore, not only a single frequency but all photon energies
can be calculated after a free drift. Therefore, this simulation computes for each electron
energy the whole spectrum of the spatial flux at the observation point. However, only
a free drift between the undulator exit and the location of the CCD detector has been
taken into account. The results of these simulations are shown in figures 6.18 & 6.34.

6.3. Measured Undulator Spectra

Measured spectrum with a setup including the magnetic lenses
Comparison of measurement and simulation
Comparison of undulator spectra to a setup lacking the lenses
Comparison of undulator spectra from different lens setups
Tuning of the undulator radiation
Undulator as diagnostic tool

A typical detected undulator spectrum from an electron beam collimated by the mag-
netic lenses (the lenses were set to collimate an electron energy of 220 MeV) can be seen
in figure 6.21. The corresponding detected electron spectrum is shown as a blue curve in
figure 6.22. The undulator spectrum has an energy bandwidth of 22% (FWHM) at the
observation angle θ = 0 (after deconvolving the instrument function, deduced from the
(spatial) width of the zeroth diffraction order). Since the radiation is spectrally resolved
by a transmission grating, the measurements show a zeroth as well as a positive and neg-
ative first diffraction order. Each first diffraction order shows an undulator fundamental
and a second harmonic. The fundamental of the shot shown in figure 6.21 peaks at a
wavelength of 17 nm, the second harmonic peaks at 9 nm. The observation of second
harmonic radiation on axis and the fact that its wavelength is slightly longer than half
the fundamental results from finite-emittance electron beams and the imaging of the
undulator radiation with the spherical mirror: although the spectrum is detected after a
slit, the spherical mirror horizontally focuses off-axis (second harmonic) radiation onto
the axis and thus effectively increases the horizontal width of the slit (vertically, the
divergence of the undulator emission is practically not affected by the spherical mirror,
see section 6.1.3). In contrast to the fundamental, the intensity of second harmonic un-
dulator radiation is peaked off-axis and thus at a longer wavelength (as can be seen from
the resonance condition, eq (6.14)). Owing to the horizontally focusing mirror, these
components are propagated through the slit onto the detector, shifting the peak of the
observed on-axis spectrum to longer wavelengths. Figure 6.31a shows an undulator sim-
ulation of the approximated setup (for details to the approximations, see section 6.3.1)
for a collimated electron beam versus the horizontal observation angle, the green lines
indicate the effective width of the slit. Each horizontal lineout of the measured spectra
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Figure 6.21. | Detected, spatially-resolved single-shot undulator spectrum.
a) shows a smoothed representation of an undulator spectrum measured with the
magnetic lenses set to collimated electrons with an energy of 220 MeV. The figure
shows the vertical observation angle in one dimension and the spectrum of the un-
dulator radiation in the other dimension. The radiation is spectrally dispersed by the
transmission grating and a zeroth (center) and the ± first diffraction orders can be
seen. Each diffraction order shows an undulator fundamental, peaked at 17 nm and
a second harmonic , peaked at 9 nm. The theoretical parabolic dependence of the
wavelength on the observation angle θ for a filament electron beam is shown by the
black solid lines. An electron energy of 207 MeV corresponding to the peak of the
effective electron spectrum of figure 6.22 was used as a parameter. For the differ-
ent emission characteristics of the second harmonic, our simulation yields an on-axis
radiation spectrum peaked at a wavelength of 9.2 nm, which defines the parameter
chosen for the corresponding parabola. It can be seen that the opening angle of the
parabola is half as that of the fundamental as expected by theory. Since the trans-
mission grating is rotated by an angle of 2.5◦ with respect to the slit and the CCD
camera, the black parabola lines have been rotated by the same angle. b) shows a
lineout integrated over 10 pixel rows around θ = 0 (corresponding to an observation
angle of ∆θ ' 300 µrad). The blue line shows the smoothed data and the underly-
ing raw data is shown in red. The smoothed data is obtained by utilizing a thin-plate
smoothing spline algorithm after [Buckley, 1994].
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Figure 6.22. | Electron spectrum corresponding to the undulator radiation of
figure 6.21. The blue curve shows the measured electron spectrum corresponding
to the simultaneously measured undulator spectrum shown in figure 6.21. The red
curve is the system response curve for a magnetic lens setup that collimates an elec-
tron energy of 220 MeV (as described in section 6.2). The curve is peaked at 211
MeV and has a bandwidth of 9% (FWHM). The green curve depicts the electron
spectrum filtered by the system response curve which represents the electrons that
primarily contribute to the undulator emission. This curve is peaked at an energy of
207 MeV and has a bandwidth of 6% (FWHM).

(at a certain vertical observation angle) represents the spectrally-resolved flux integrated
over the effective horizontal slit width. In figure 6.30 the integrated flux through the slit
marked by the green lines in figure 6.31 can be seen. It shows significant second har-
monic radiation at a slightly longer wavelength than half the fundamental which agrees
well with the results obtained in the experiment.

The relatively narrow bandwidth of the undulator radiation is a result of the spectral
band-pass filter effect of the magnetic lenses as described in section 6.2. Without the
band-pass filter, the undulator would be expected to have a bandwidth of ' 65%, corre-
sponding to the width of the measured electron spectrum. The energy bandwidth of the
electrons that are filtered by the magnetic lenses and primarily contribute to the undu-
lator spectrum (green curve in fig 6.22) is 6% (FWHM). Since the emitted wavelength
depends quadratically on the electron energy (see eq (6.14)), an electron beam with an
energy spread of 6% (FWHM) produces undulator radiation with a bandwidth of 12%
(FWHM).

However, as explained in section 6.2.4, the sum over spectrally-broadened emission
lines, leads to a broadening of the overall photon spectrum. The simulated undulator
spectrum computed from the measured electron spectrum (fig 6.22) which considers this
effect, is shown in figure 6.23. The comparison between the simulation and the measured
lineout is shown in figure 6.25. The focusing of the second harmonic on axis (as described
above) is not considered in this simulation. The on-axis lineout of the simulations has an
FWHM-bandwidth of 28% where in order to compare to the measured data, the photon-
energy detection efficiency of the CCD camera is taken into account. A fit over a lineout
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Figure 6.23. | Simulated spatial spectral undulator flux produced by a real
electron spectrum. The figure shows the undulator flux simulated similarly to that
shown in figure 6.18 but instead of a flat-top electron spectrum the radiation from
the measured electron spectrum shown in figure 6.22 has been used. This simulation
does not take into account the horizontal focussing of the spherical mirror.

of the measured data integrated over 10 pixel rows (corresponding to an observation
angle of ∆θ ' 300 µrad) gives a linewidth of 34% (FWHM).

From the measured spectrum shown in figure 6.21 an on-axis flux1 of 16,400 ± 6,200
photons per shot per mrad2 per 0.1% bandwidth can be deduced. The estimated on-axis
flux by equation (6.18) gives for a charge of 1.3 pC in the effective electron spectrum
(green curve in fig 6.22) 9,500 ± 2,100 photons per shot per mrad2 per 0.1% band-
width. However, this estimation is only valid for the resonance frequency. For a photon
frequency ω′ slightly below the resonance frequency, the angle integrated flux is twice
that for the resonance frequency (as discussed in section 3.4.1). For a filament electron
beam, radiation at this frequency is emitted on a cone with a dip on axis. However,
the measured radiation is produced by a finite-emittance electron beam which spectrally
and spatially washes out the radiation. Therefore, the maximum flux is that emitted at
ω′ which is estimated to be ∼ 19, 000 photons per shot per mrad2 per 0.1% bandwidth.

The number of measured photons is deduced from the counts detected by the CCD
camera using equation (6.11). The estimated error is the result of a number of measure-
ment uncertainties: (1) the number of counts is deduced from the first diffraction order
of the CCD image after smoothing and averaging over several pixel rows which leads to
an estimated uncertainty of 20%. (2) the accuracy of the grating efficiency as measured

1The on-axis flux and brilliance given in reference [Fuchs et al., 2009] was underestimated by a factor
of 2 owing to an inaccuracy in the conversion from CCD counts into number of photons
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Figure 6.24. | Lineout of the simulated UR for a flat spectrum and the elec-
tron spectrum of figure 6.22. The blue curve shows a lineout of the system re-
sponse curve for a flat-top electron spectrum (lineout at position 0 of fig 6.18). The
red curve shows a lineout through figure 6.23 at position 0 which is the simulated
undulator flux for the measured electron spectrum, blue in figure 6.22. The cutoff at
high photon energies of the red curve is due to the cutoff in electron energies. The
curve has a FWHM bandwidth of 28%.

30252015105
0

0.2

0.4

0.6

0.8

1.0

Wavelength [nm]

N
or

m
al

iz
ed

 o
n-

ax
is

flu
x

[a
rb

.u
ni

ts
]

Figure 6.25. | Comparison between simulation and experiment. The blue curve
shows the lineout (over 10 pixel) from the measured undulator spectrum shown in
figure 6.21. The red curve is a lineout of a simulation which computes the radiation
from the measured electron spectrum shown in figure 6.22. The green curve consid-
ers the instrument function of the X-ray spectrometer. Second harmonic radiation
is in this simulation not present on axis since the focusing of the gold mirror is not
included.
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6. EXPERIMENTAL UNDULATOR RADIATION RESULTS

for a different grating of the same production series (fig 6.12) is estimated to be 5%. (3)
an uncertainty of the reflection angle (and therefore the reflectivity) of the gold mirror
and the surface roughness of the coating leads to an uncertainty of the reflectivity of
20%. The estimated uncertainty in the case of the simulated photon number is a result
from the accuracy of the measurement of the undulator field (5%), the calibration of
the electron bunch charge measurement (10%) as well as the uncertainty of the exact
position of the magnetic quadrupole lenses which influence the amount of charge in the
effective spectrum (10% error in charge).

The brilliance of the source can be estimated from the photon flux, the estimated
electron beam emittance and the estimated elecron bunch duration. From an electron
beam divergence of 1 mrad and plausibility arguments of the typical dimensions in a
laser-wakefield accelerator which lead to a source diameter of ' 2 µm, the normalized
electron beam emittance in our case (electron energy of 200 MeV) can be estimated to
be εn = βγε ' 0.8 mm mrad. With the settings of the quadrupole lenses, this leads to a
rms photon-beam size in the undulator of 270µm vertically and 630µm horizontally and
respective rms photon-beam divergences of 180µrad and 170µrad. With an assumed
bunch duration of 10 fs, the peak (on-axis) brilliance can be estimated to be (see eq
(3.37)) B|0 ∼ 8 × 1018 photons/(s mrad2 mm2 0.1% b.w.). In reference [Fuchs et al.,
2009], the brilliance (determined by integrating the measured photon flux over 10 pixel
around θ = 0 and the spectral bandwidth of this curve) was estimated to be B ∼ 4× 1017

photons/(s mrad2 mm2 0.1% b.w.). However, this estimation is strictly speaking not the
(on-axis) peak brilliance as defined in section 3.5.2, but a brilliance calculated over an
averaged angular flux which leads to a decreased value.

The setup using the magnetic lenses proved to be very reproducible: over 37 shots of
the run with the lenses set to collimate an energy of 220 MeV, we could observe in 70%
of consecutive laser shots spectrally resolved undulator radiation in the first diffraction
orders which is a very remarkable stability for a LWFA experiment. In the remaining
30% of laser shots, the amount of charge in the effective spectrum was not high enough to
produce enough radiation that could be spectrally resolved. The average charge within
the effective electron spectrum was 0.6 ± 0.3 pC which produced 140, 000 ± 50, 000
photons in the undulator fundamental integrated over a detection cone of K/(2γ) =
±0.7 mrad. The observed spectra show a fundamental wavelength at 18 nm and a second
harmonic peak at 10 nm, with shot-to-shot standard deviations of about 5% which is
discussed in more detail in section 6.3.1.

Verification of the Second Harmonic of the Undulator Radiation

The peak at smaller wavelengths in undulator spectra produced with collimated electron
beams (by magnetic lenses) has been verified to be the second harmonic: spectra of
undulator radiation that is filtered with a 150 nm thick aluminum foil (that filters
out radiation with photon energies of ' 5 − 17 nm, see figure 6.9) do not show any
radiation smaller than 17 nm (see figure 6.26). This means that the features detected
at positions closer to the zeroth diffraction order in fact do have small wavelengths.
Additionally, the ratio of the fundamental peak to the second harmonic peak measured
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Figure 6.26. | Undulator radiation spectrum filtered by a 150 nm thick alu-
minum foil. The figure shows undulator radiation filtered by an aluminum foil,
which has a transmission cutoff at ∼ 17 nm. The lower part of the figure is a line-
out vertically integrated over the whole CCD image. It can be clearly seen that the
radiation closer to the zeroth order diffraction that can typically be seen (see figure
6.21) is filtered by the aluminum foil. This means that this part of the radiation has
in fact wavelengths < 17nm and the second harmonic radiation is not a measure-
ment artifact.

in the experiment is in good agreement with that computed by undulator simulations
(see figure 6.30). Finally, the parabola describing the wavelength dependence on the
observation angle in figure 6.21 shows for the second harmonic half the opening angle
than for the fundamental as it is expected from theory (eq (6.14)).

6.3.1. Comparison of Undulator Spectra from Setups with Different
Lens Settings

Undulator radiation has been detected for different lens setups. The section above
describes in detail radiation emitted by an electron beam that is collimated by the
magnetic lenses set to collimate an energy of 220 MeV. The following sections compare
these results to radiation produced by a diverging electron beam from a setup lacking
the magnetic lenses and a collimated beam with the lenses set to collimate an energy
of 180 MeV. Figure 6.27 shows typical measured undulator spectra for different lens
settings and figure 6.28 the corresponding electron spectra.
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Figure 6.27. | Typical measured undulator spectra for different lens settings.
Typical measured undulator spectra show the vertical position on CCD (at a distance
2.6m after the undulator center) versus the wavelength. Note that the CCD counts
are color-coded and each of the measurements are represented with a different scale.
a shows a spectrum emitted from an electron beam that is collimated by the mag-
netic lenses set to collimate 220 MeV. b shows a spectrum from the same setup but
with the undulator vertically slightly shifted. c shows a spectrum measured with the
lenses set to collimate 180 MeV. d shows the spectrum emitted by a diverging elec-
tron beam from a setup lacking the magnetic lenses.

Comparison of Undulator Spectra Produced by a Divergent and a Collimated
Electron Beam

The undulator spectra produced from a setup lacking the magnetic lenses show a clearly
separated, more distinct second harmonic peak with a higher intensity in comparison to
the fundamental than those produced by a collimated electron beam (see figures 6.27 &
6.29).

The shapes of these vertically-resolved spectra can be explained by the characteristics
of the horizontal distribution of the undulator spectra. Since the detected undulator
spectra are vertically spatially and horizontally energy resolved the lineout at each ver-
tical position shows the spectrally-resolved photon flux horizontally integrated over a
finite horizontal observation angle. Such a lineout is computed by simulating the hor-
izontal undulator spectra at θvert = 0. The results closely resemble the measurements
(see right-hand side of figure 6.30) and give an interpretation of the experimental data
which is discussed below.
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Figure 6.28. | Electron spectra corresponding to the measured undulator
radiation of figure 6.27. The left-hand side of the figure shows the horizontally
angular-resolved spectral distribution of the electrons beams which produced the un-
dulator spectra shown in figure 6.27 (the labels in this figure corresponds to that in
figure 6.27). Color-coded are the CCD counts. The vertical white lines correspond
to an electron energy of 180 and 220 MeV. The right-hand side shows the corre-
sponding electron spectra with a linear energy scale. The electron beams in a and
b are collimated by the magnetic lenses set to collimate an energy of 220 MeV and
have overall integrated charge of 8.4 pC and 4 pC, respectively. The electron beam
in c is collimated by the lenses set to 180 MeV and has an overall charge of 2.8 pC.
d shows the an electron spectrum of a beam propagating through a setup without
lenses and has a charge of 4 pC. Note that these electron spectra are measured at
a different distance to the capillary (1.94 m) than the undulator radiation (∼ 3m)
which means that a different electron energies are focussed at each positions.
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Figure 6.29. | Lineouts of undulator spectra produced in a setup with lenses
and without lenses. a shows a lineout of the undulator spectrum produced by a
beam collimated by the magnetic lenses set to collimate 220 MeV (lineout of figure
6.21). The lineout in b is taken from an undulator spectrum emitted from a diverg-
ing electron beam which propagating through a setup without magnetic lenses (the
spectrum is shown in figure 6.27d. Note that the intensity scale is different in each
plot and that the undulator spectra are produced from electron beams with different
charge (a: 8.4 pC, b: 4pC). Both lineouts are (vertically) integrated over 10 CCD
pixel which corresponds to an observation range of ∆θ ∼ 300 µrad. The spectrum
in a shows a fundamental peaked at a wavelength of 17 nm with a bandwidth of
13.6% (rms) and a second harmonic peaked at 9 nm with a bandwidth of 11.3%
(rms). The spectrum in b shows a fundamental peaked at a wavelength of 20.5 nm
with a bandwidth of 16% (rms) and a second harmonic peaked at 11.9 nm with a
bandwidth of 15.9% (rms).

In order to perform simulations in a reasonable time, the computationally fast convo-
lution algorithms of undulator simulations have been utilized. This is only possible by
approximating some experimental conditions as follows:

(1) The filtering through the magnetic lenses has been taken into account by assuming
a collimated electron beam at 210 MeV with an rms-energy spread of 6%. The energy
spread is chosen slightly larger than the effective spectrum of figure 6.22 in order to take
account for the results obtained from the simulation that includes the spectral overlap
of individual flux distributions from different electron energies (which lead to a slightly
larger bandwidth) which can be seen in figure 6.20. The computation is simplified by
assuming the same collimation (divergence angle distribution) for all electron energies
(and thus neglecting the chromatic effects introduced by the magnetic lenses). For
the simulation of the spectra produced from a beam lacking the lenses, a divergence
of 1 mrad and an energy spread of 4% rms (which is the typical bandwidth of the
quasimonoenergetic peaks of the electron beam, see section 5.3) has been assumed.

(2) The effect of the horizontal focusing of the undulator radiation by the spherical
mirror can be approximated by computing the undulator spectrum after a slit and
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Figure 6.30. | Simulated undulator spectra through a slit for setups with and
without lenses. The left-hand side of the figure shows simulated undulator spectra
from lens setups with (a) and without magnetic lenses (b) versus the photon energy.
The right-hand side shows the corresponding spectra in a linear wavelength scale.
For details of the transformation procedure, see the main text and footnote mark2.
The simulation is performed with the undulator code SPECTRA [Tanaka and Kita-
mura, 2001]. For details of the choice of parameters, see the main text. In the wave-
length representation of the spectra from a collimated electron beam (a, right-hand
side) shows an undulator fundamental peaked at 16.9 nm, a second harmonic peaked
at 8.6 nm and a third harmonic at 5.5 nm, however since the reflectivity-cutoff of
gold is around 7.5 nm (see figure 6.11), these low wavelengths cannot be detected
in the experiment. For the spectrum produced by a divergent electron beam (lack-
ing the magnetic lenses), the peaks are shifted to longer wavelengths (fundamental:
17.9 nm, second harmonic 9.6 nm, third harmonic 5.9 nm) through emittance ef-
fects. The second harmonic is more pronounced in the representation using a linear
wavelengths scale in comparison to the linear photon-energy scale. The broadening
of the measure spectra through the instrument function of the X-ray spectrometer is
not considered in these simulations.
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6. EXPERIMENTAL UNDULATOR RADIATION RESULTS

setting the effective horizontal slit width (the horizontal observation angle) to 1400 µrad.
This horizontal observation angle has been determined through raytracing of the optical
setup for a typical undulator radiation beam size and the maximum divergence which
is imaged to typical transverse dimensions measured in the zeroth order of the spectra
(the raytracing is shown in figure 6.10).

(3) The spectral response of the CCD camera has been taken into account by scaling
the spectra with the photon energy (for further details to the spectral CCD response,
see section 6.1.3).

The simulations assume a beam charge of 10 pC and an geometric emittance of
2 · 10−9 m · rad.

The results of the simulation can be seen in figure 6.30 which shows the undulator
spectrum through a slit versus the photon energy (on the left-hand side) and versus
a linear wavelength scale (as measured in the experiment) on the right-hand side. In
order to ensure the correct transformation of the curve from a linear energy to a linear
wavelength scale (which is inversely proportional to each other), the function has to be
scaled accordingly2. The spectra plotted with a linear wavelength scale (right-hand side
of figure 6.30) show a more pronounced second harmonic radiation which is a result of
the transformation from a linear photon-energy to a linear wavelength scale: the corre-
sponding wavelength bin for an energy bin at a low energy is larger than a corresponding
wavelength bin for the same energy bin width at higher energies (for example: the energy
bin at 50...51 eV corresponds to a wavelength bin width of 0.5 nm, whereas the energy
bin of 100...101 eV corresponds to a wavelength bin width of 0.13 nm).

The reason for the higher intensity ratio of the second harmonic to fundamental inten-
sity for the radiation from the diverging electron beam (no lenses) in comparison to the
collimated beam can be seen from simulation of (horizontal) spatially resolved spectra
which are shown in figure 6.31. The spectra shown in figure 6.30 are integrated over the
horizontal range between the green lines in figure 6.31. The undulator spectra emitted
from the diverging electron beam (fig. 6.31b) are spatially and spectrally washed out to
a higher degree relative to the spectra from collimated electron beams (fig. 6.31 a). This
emittance effect is mainly due to the divergence of the electron beam, which leads to a
finite (observation) angle between the propagation direction of the electron (and thus the
θ = 0 axis) and the observer. As a result, off-axis radiation characteristics of filament
electron beams such as longer wavelengths and a peaked second harmonic emission can
be observed on-axis. This leads to both an increase in bandwidth of the fundamental (to
longer wavelengths) and an increase in the intensity of the second harmonic radiation
on-axis. The undulator radiation produced by the collimated electron beam shows a
spectrum more similar to a filament electron beam. It can be seen that the slit width
(green lines in fig. 6.31) includes only a small portion of the second harmonic radiation
in case of the collimated beam, whereas almost the whole distribution lies inside the
slit in the case of the divergent electron beam. As a second effect, the peak intensity

2it has been ensured that the integral over each energy bin is the same as that over the corresponding
transformed wavelength bin. Mathematically, this requirement can be expressed by

∫
f(E)dE =∫

f [g(λ)] · g′(λ)dλ. The curve f [g(λ)] has to be scaled by the factor g′(λ) = dE/dλ
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6.3. Measured Undulator Spectra

Figure 6.31. | Simulated undulator spectra from a setup with lenses and
without lenses versus horizontal observation angle. a) shows the horizontally-
resolved undulator spectrum for an electron beam collimated by the magnetic lenses
and b) that of a freely-drifting (divergent) electron beam. Electron beam sizes and
divergences typical to those of the experiment were used for the simulation: the
beam sizes in case of the collimated beam are σhor = 400 µm and σvert = 224 µm
with divergences of σ′hor = 18 µrad and σ′vert = 10µrad. In case of b, the beam
sizes are σhor = σvert = 380 µm with a divergence of σ′hor = σ′vert = 1 mrad. In
both cases simulations were performed with the same charge of 10 pC and emittance
of 2 · 10−9 m · rad. The spectrum produced by the collimated electron beam shows
features similar to undulator radiation from a filament electron beam such as sec-
ond harmonic radiation peaked off-axis, a high on-axis intensity of the fundamental
radiation and a pronounced parabolic dependence of photon energy with respect to
the observation angle. In the case of the radiation from a divergent electron beam,
these features are washed out through emittance effects. The green lines show the
size of the effective slit width of ±750 µrad which was used to simulate the angle-
integrated spectra shown in figure 6.30.
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6. EXPERIMENTAL UNDULATOR RADIATION RESULTS

of the fundamental is more washed out in the case of the divergent electron beam in
comparison to the collimated beam. Both of these effects lead to a larger ratio of the
second harmonic to the fundamental in case of the undulator radiation observed through
a slit produced in a setup lacking the magnetic lenses.

In addition to a different ratio of the fundamental to the second harmonic peaks,
the spectra show differences in angular variation in wavelengths: in contrast to the
parabolic shape of the spectrum from the collimated electron beam, the spectrum from
the divergent electron beam does not show such a behavior (see figure 6.27 a & d). The
reason for this are emittance effects which wash out these filament beam features as can
also be seen from the simulation in figure 6.31.

The width of the fundamental peaks of the undulator spectrum from a collimated
electron beam does not correspond to the full width of the detected electron spectrum
since only a part of the electrons contribute to the measured radiation as described in
section 6.2. The undulator spectra produced by the diverging electron beam shows a
bandwidth of 16% (rms) which suggests that the radiation mainly originates from the
“quasimonoenergetic” feature of the electron beam (which has a rms-width of ≈ 7.2%,
see figure 6.28 d). In figure 5.6, it can be seen that the quasimonoenergetic features of the
electron beams have a smaller divergence compared to the spectral plateau background
and contain a higher amount of charge.

The peak of the quasimonoenergetic feature is at 186 MeV (which corresponds to an
emitted undulator wavelength of 21.7 nm), whereas the detected undulator wavelength
peaks at 20.5 nm (corresponding to 192 MeV). However, the (vertical) spatially-resolved
undulator spectrum is detected at the lower end of the CCD camera which means that
the electron beam is pointed vertically “downwards” (has an angle with the ∞-energy
axis of the magnetic spectrometer). An analysis of the magnetic spectrometer shows
that an electron beam with a vertical angle of -1 mrad with respect to the ∞-energy
axis can have an ∼ 10% higher electron energy than actually measured (see section 5.2).

Comparison of Undulator Spectra Produced by a Setup with the Lenses set to
220 MeV and 180 MeV

The following section discusses the comparison between two undulator runs with the
magnetic lenses set to collimate an electron energy of 180 (“180 MeV setup”) as well
as 220 MeV (“220 MeV setup”). The spatially resolved spectra can be seen in figure
6.27 a, b and c. The fundamental and second harmonic of the radiation in both the
positive and negative first diffraction orders each is fitted by a sum of three Gaussian
distribution (for the fundamental, for the second harmonic and for the background). The
properties of the radiation, obtained by averaging the fits of the positive and negative
first orders for each shot are listed in table 6.2. The 180 MeV run consists of 16 shots,
the 220 MeV run of 20 shots with a sufficiently high number of CCD counts in the
diffraction orders. The undulator radiation of both setups was produced by electron
beams with very similar properties, since the runs were measured consecutively. The
characterization of undulator radiation from a setup without the magnetic lenses was
done with significantly less shots due to the high risk of hitting the undulator walls (gap
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6.3. Measured Undulator Spectra

180 MeV 220 MeV

Fundamental

wavelength [nm] 19.2 ± 1.4 (7.3%) 17.8 ± 0.6 (3.5%)
rms width of peak [nm] 3.4 ± 1 (28%) 2.4 ± 0.6 (24%)
bandwidth (rms) 18% ± 5.5% 13.4% ± 3%

Second harmonic

wavelength [nm] 11 ± 1.2 (11%) 10.3 ± 0.8 (7.6%)
rms width of peak [nm] 1.8 ± 0.8 (43%) 1.4 ± 0.4 (28%)
bandwidth (rms) 16% ± 6% 13.7% ± 3%

Table 6.2. | Comparison between the 180 and 220 MeV lens setup. The ta-
ble shows a comparison between the undulator radiation produced in a setup with
the magnetic lenses set to collimate 180 and 220 MeV. Attributes like wavelength,
peak width and relative bandwidth are compared for the two setups. The relative
deviation are given in parenthesis. The values are obtained by averaging fits of each
diffraction order of a 10 pixel lineout (300 µrad observation angle) as discussed in
the main text. The widths are given after the deconvolution of the X-ray spectrom-
eter instrument function which is mainly given by the slit width. The slit width is
deduced by the width of the zeroth order diffraction on the CCD camera.

= 1.2 mm). Therefore, they cannot be compared with the values presented in table 6.2.

The characteristics of the measured undulator radiation produced with the setup in-
cluding the lenses confirm the properties expected from the simulations described above:
The undulator radiation produced by the “220 MeV setup” exhibits a smaller average
wavelength than the “180 MeV setup”. This is also expected from the corresponding
electron spectra, where the focused spectral part of the beam can be seen to clearly
shift in energy for the two setups (see figure 6.28 a,b and c). The undulator peaks
produced by the “220 MeV setup” have a smaller variation in the emitted wavelengths
and additionally smaller peak widths. Both of these effects result from the fact that
the low as well as the high photon-energy cutoff for the 180 MeV band-pass filter are
given by the lens setup and the produced undulator radiation exhibits the fluctuations
of the spectral electron beam properties. In the case of the 220 MeV band-pass filter,
only the low-energy cutoff is given by the lenses, whereas the high-photon energy cutoff
is given by the high-energy cutoff of the electron spectra. The quasi-monoenergetic fea-
tures of the electron beams used in this experiment have a higher fluctuation in energy
(of 6%) than the high-energy cutoff of the beams (3%) [Osterhoff et al., 2008] which
manifests itself in smaller variations in the undulator radiation produced with the “220
MeV setup”. However, since the band-pass of the “180 MeV setup” is at a spectrally
more central part of the electron spectrum, the effective spectrum (electrons that pri-
marily contribute to the undulator radiation) comprises a larger fraction of the electron
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Figure 6.32. | Integrated CCD counts vs charge. The figure shows the CCD
counts integrated over the vertical CCD area of the positive first diffraction order
of the detected undulator spectra versus the integrated charge of the detected elec-
tron spectra. Three different cases are compared: (1) no magnetic lenses (blue),
(2) lenses set to collimate 180 MeV (red) and (3) lenses set to collimate 220 MeV
(black). The lines represent linear fits. It can be seen that the 220 MeV setup filters
out a small part of the electron beam which mainly produces the undulator radiation.
In the case of the setup lacking the lenses, the undulator radiation is mainly pro-
duced by the quasi-mononenergetic features in the electron beam which leads to an
increase in detected CCD counts versus charge in comparison to the 220 MeV setup.
The 180 MeV setup collimates a spectrally more central region of the electron beam
and thus a large amount of electrons emits detectable undulator radiation but in a
larger bandwidth in comparison to the 220 MeV setup (see table 6.2).

beam. This can also be seen in figure 6.32 which shows the number of detected CCD
counts, integrated over the positive first diffraction order versus the integrated charge of
the corresponding (whole) electron beam (not only the charge in the effective spectrum).
The two different lens setups and the setup lacking the magnetic lenses are compared:
The ratio of CCD counts to charge for the “180 MeV setup” is higher than that for
the setup without lenses, because a larger fraction of the electron beam has a relatively
small divergence and thus produces a highly collimated beam. In the electron spectra
detected without lenses (for example fig 6.28, d), only the quasi-monoenergetic features
exhibit relatively small divergences (of ∼ 700 µrad, see LWFA experimental chapter)
and thus mainly contributes to the detected undulator radiation. This fact can also be
seen from the relatively small bandwidth of the undulator radiation which is in good
agreement to the width of the quasi-monoenergetic peak. Since the “220 MeV setup”
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Figure 6.33. | Tuning of the energy-band-pass curve for different lens set-
tings. The figure shows the calculated energy-band-pass curve (see section 6.2) for
a lens settings that collimates an energy of 120 MeV (red), 180 MeV (green) and
220 MeV (blue). The curves are simulated by SRW for the resonance wavelength at
each electron energy and considering the focusing gold mirror (with the method used
to produce the system response curve, red in figure 6.17b).

cuts out only a relatively small (high energy) fraction (see green curve in fig 6.22) of the
electron beam, it exhibits the lowest integrated CCD counts to charge ratio.

In figure 6.27 it can be seen that the parabolic shape of the wavelength-dependence
on the observation angle is most pronounced for the 220 MeV setup. For the setup
lacking the lenses, emittance effects wash out this shape as discussed above. In contrast
to the 180 MeV setup, the 220 MeV setup is set to focus the electron energies of the
quasi-monoenergetic feature and thus the peak of the spectral electron distribution. The
simulation of the spatial spectral fluxes show that an electron energy that is focused at
the position of the detector in comparison to one that is not in focus exhibit a more
distinct parabolic shape in the angular distribution (see figure 6.19). For the 180 MeV
setup, a spectrally more central part of the electron spectrum (and thus not the spectral
peak) is focused which leads to a washing out of the parabolic angular shape into a more
linear structure.

Tuning of the band-pass curve

As can be seen in table 6.2, the undulator wavelength can be tuned by setting the lenses
to collimate a different electron energy. This leads to a tuning of the band-pass curve
which can be adjusted by changing the lens positions according to table 6.1. The tuning
of the system response for different lens settings can be seen in figure 6.33. The result
of a SRW simulation that computes the sum of angular fluxes for each electron energy
in the range of 100-250 MeV (similar to that shown in figure 6.18) but for a lens setting
that collimates an electron energy of 180 MeV can be seen in figure 6.34. A comparison
of the lineouts of the simulations for the 180 MeV and the 220 MeV lens settings can
be seen in figure 6.35.

Owing to the broad spectra of the laser-accelerated electron beams used in this exper-
iment, the tunability could also be quantified. The correlation of the detected undulator
wavelength with the corresponding peak of the effective electron spectrum (after the
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Figure 6.34. | Simulation of the spatial spectral flux density for a flat elec-
tron spectrum with the magnetic lenses set to collimate an energy of 180
MeV. The figure shows the simulated spatial spectral undulator flux density emitted
by an electron beam with a flat-top energy spectrum propagating through a doublet
of magnetic lenses set to collimate an electron energy of 180 MeV. The results were
obtained with the methods described in section 6.2 (similar to that shown in figure
6.18).

band-pass filter due to the magnetic lenses) for different lens setting can be seen in
figure 6.36. Electron beams that are transported by a lens setup that collimates an
electron energy of 180 MeV (marked by blue dots) produce undulator radiation with
an -on average- longer wavelength than electron beams transported by the 220 MeV
setup which demonstrates the tunability of the source. The dependence of wavelength
on the electron energy as predicted by equation (6.14) is in excellent agreement with the
measured data.
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Figure 6.35. | Lineout of the simulated UR for a flat spectrum for different
lens settings. The curves show lineouts at vertical position 0 mm of the simulated
undulator emission (taken from figures 6.18 & 6.34) for a lens setting that collimates
an electron energy of 180 MeV (red) and a setting that collimates 220 MeV (red).
The curve shows the possibility to tune the wavelength of the undulator radiation
with the help of the settings of the magnetic lenses. Between these settings, the
peak can be shifted about 10 eV (or ≈ 1.7 nm). The curves were simulated for for
an energy range of 100-250 MeV which are the electron energies relevant for the
experiment described here. The high-energy cutoff of the blue curve is due to the
cutoff at 250 MeV of the simulation range.

6.3.2. Undulator as Diagnostic Tool

This section discusses the use of an undulator as a diagnostic tool for the electron beam.
More specifically, the discussion focuses on the characterization of laser-accelerated beam
in terms of the electron energy distribution [Gallacher et al., 2009] and the electron beam
emittance.

Since the pointing as well as the energy spectrum can be measured simultaneously,
the spectral characterization of the electron-energy distribution by undulator radiation
is very powerful. This is especially important for laser-wakefield accelerated beams,
because of their large pointing fluctuations (compared to conventional accelerators).
Section 5.2 discusses the error in the deduced electron energy arising from the varia-
tion in electron-beam pointing for a spectrometer based on a magnetic dipole. Since in
undulator spectra the wavelength depends quadratically on the observation angle, the
pointing of the electron beam can be deduced from the position of the smallest wave-
length (θ = 0). Additionally, the electron energy as well as the energy spread of the
electron beam can be deduced from undulator radiation that is spectrally resolved in
one and spatially resolved in the other dimension. Additionally, X-ray spectrometer for
diagnosing the undulator radiation are relatively compact and therefore offer the possi-
bility for an absolute energy and intensity calibration by a defined X-ray source (such as
a synchrotron source). This typically cannot be done for magnetic spectrometer setups
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Figure 6.36. | Undulator wavelength versus electron energy. Detected funda-
mental undulator radiation wavelengths plotted against the corresponding maxima of
the effective electron spectra (determined by the method of figure 6.17). The green
and blue points correspond to consecutive shots with two different positions of the
magnetic lenses, demonstrating the wavelength-tunability of the source (see figure
6.33). The error bars arise from measurement errors of the electron spectrometer,
the X-ray spectrometer, magnetic lens distances and the undulator field. The asym-
metric error bars of the blue points are due to a non-zero angle of the electron beam
with the spectrometer axis. The red points represent shots that lie outside the stable
electron acceleration regime. The theoretical behavior described in equation (6.14) is
shown as a solid line.

that are needed to measure high electron energies since they require very long and strong
magnets in order to achieve a sufficiently high energy resolution. Undulators can be a
much more compact, non-perturbative diagnostic for the characterization of the electron
energy distribution.

The electron beam emittance has a strong influence on the detected undulator spec-
trum: the angular flux of the undulator harmonics gets spatially as well as spectrally
washed out as can be seen in figure 3.5. For an on-axis undulator spectrum, filtered by
a slit, these emittance effects lead to a decrease of the on-axis flux of odd harmonics,
whereas the on-axis flux increases for even harmonics (which for a filament electron beam
are peaked off-axis). A simulated undulator spectrum after a slit for different emittances
can be seen in figure 6.37.

Thus undulator radiation could be used as a diagnostic tool for the electron beams.
However, laser-wakefield accelerated electron beams have a very large initial divergence
and a small source size at the exit of the accelerator. The emittance effects mentioned
above are only significant if the variation in emittance originates from a higher electron
beam divergence rather than a larger source size as can be seen in figure 6.37. The
emittance of LWFA beams can be estimated by the product of the divergence and the
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Figure 6.37. | Simulated undulator flux through a slit for different emit-
tances. The curves show simulations of the undulator spectrum of an electron beam
with an energy of 200 MeV, an energy spread of 0.1% and a charge of 10 pC filtered
by a slit of vertical size of 500 µm and horizontal size of 200 µm at a distance of 1
m for different emittances. The undulator is that used in the experiments described
above (K = 0.55, λu = 5 mm and L = 30 cm. a) shows the spectrum emitted by an
electron beam with a source size of 1 µm and a divergence of 1 mrad, b) the spec-
trum for 10 µm and 1 mrad, and c) for 1 µm and 2 mrad. Note that the flux scales
are different for the curves in a and b in comparison to that in c.

beam size at the accelerator exit. For the beams used in this experiment with a measured
average divergence of ≈ 1 mrad and an estimated source size of 2 µm, this leads to a
geometrical emittance of ε ≈ 2 nm · rad. In figure 6.37, it can be seen that it is difficult
to determine the electron beam source size with the help of undulator radiation: even
a tenfold larger emittance (by increasing the initial electron beam size of a factor of 10,
while leaving the divergence constant at 1 mrad) does not result in a different spectrum
through a slit, whereas the increase of the divergence by a factor of 2 changes the spectral
distribution significantly (see figure 6.37).

The possibility to use the undulator radiation from an electron beam that is collimated
by magnetic lenses is discussed in the following. In order to examine emittance effects
on the spatial spectral flux, SRW calculations for the “220 MeV” lens setup for different
emittances have been conducted: for a “reference” beam with ε = 1 × 10−9 nm (1 µm
initial source size and 1 mrad inital divergence), and for two beams with ε = 10×10−9 nm
(one with 10 µm source and 1 mrad divergence and one with

√
10 µm×

√
10 mrad). The

effects are only simulated for the undulator fundamental. The results can be seen in
figure 6.38. As expected, in comparison to the reference beam, only the spectral flux
emitted by the electron beam with the variation in beam size and the divergence shows a
significantly different flux distribution. In the case of an emittance increase only due to
an increased electron beam source size, the differences in the undulator flux distribution
to the reference beam are insignificant.

In order to get a more detailed understanding of the differences between the fluxes,
each flux distribution has been subtracted from that of the reference beam (see figure
6.39). It can be seen that the difference is only a few-percent effect for a variation in the
source size (and thus the emittance) of a factor of 10. The difference in distribution is
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Figure 6.38. | Simulated spatial spectral undulator flux for beams of three
different emittances. A SRW simulation similar to that shown in figure 6.18 with a
flat-top electron energy spectrum of 100 - 250 MeV and the 220 MeV lens setup is
performed for different emittances: a) shows the spectrum for an electron beam with
an initial beam size and divergence of 1 µm and 1 mrad, b) for 10 µm and 1 mrad
and b) for

√
10 µm and

√
10 mrad. The figures on the right-hand side show a 3D

representation of those on the left-hand side.
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Figure 6.39. | Difference between the undulator flux distributions of the
beams of figure 6.38. a) shows the result of the flux distribution emitted by the
electron beam with a 10 µm source size and 1 mrad divergence subtracted from
the reference beam. b) shows the difference between the flux from the

√
10 µm ×√

10 mrad-beam subtracted from the reference-beam flux distribution. The figures
on the right-hand side show a 3D representation of those on the left-hand side.

mainly in the wings of the parabolic angular shape of the flux emitted by the electron
energy that is focussed at the position of the detector. In contrast to the difference in flux
distribution from the reference beam and the beam with initially

√
10 µm ×

√
10 mrad

which are significantly distinct from each other. The differences can be explained by
the electron beam sizes at the position of the detector: figure 6.40 shows the energy-
dependent electron beam cross-sectional area ( π ·σx ·σy) for the three different cases.

In case of the beam with an equally increased divergence and beam size, the beta
function βTwiss of the system does not change. Since the beam size can be calculated
from σ =

√
βTwiss · ε, this means that both the beam size in focus is larger for the higher

emittance case and its beam size is growing faster with the electron energy than the lower
emittance beam (see black line in figure 6.40). This results in a significantly different
spectral photon flux distribution as can be seen in figure 6.39.
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Figure 6.40. | Electron beam cross-section area. The figure shows the cross-
sectional area (π ·σx ·σy) at the position of the detector of the electron beams with
an initial beam size and divergence of 1 µm and 1 mrad (blue), 10 µm and 1 mrad
(red) and

√
10 µm ×

√
10 mrad (black) propagated through the “220 MeV lens

setup” for a larger electron energy range a and a zoom at the focused beam in b.
The wiggles in the beam area in b originate from the astigmatic focus.

In case of a different electron beam source size (and same divergence as the reference
beam), the beam sizes at the position of the detector are almost identical except for the
size of the focussed (imaged) electron energy (see red and blue curve in figure 6.40b).
In order to determine the beam size of the undulator radiation, the electron beam size
has to be convoluted with the natural undulator beam size which for wavelengths in
the soft-X-ray range dominates over this effect and no significant difference can be seen.
Only the angular spectral flux distribution shows a slight difference (few-percent effect)
in the opening angle of the parabolic angle-wavelength dependence (figure 6.39).

Since the divergence of the electron beam is routinely measured by the determination
of the electron beam size at a defined distance, only the measurement of the electron
beam source size leads to additional information about the emittance. However, since
for the detected undulator radiation, the pixel-to-pixel fluctuations in photon counts
on the CCD is significantly larger than the (few-percent) effect of a tenfold increase in
electron beam source, no significant information about the electron beam emittance can
be deduced from the measurements described above.

Undulator-based emittance measurements that are typically used in conventional syn-
chrotron facilities such as the imaging of the source [Elleaume et al., 1995] require a
detailed knowledge of the beamline (Twiss parameters) and a well-behaved electron
beam with a small energy spread. For LWFA beams these requirements are not given
since it has (in comparison to conventional facilities) a relatively large energy spread
and large shot-to-shot variations in divergence, pointing (which vary the Twiss parame-
ters for a given setup). However, the possibility of single-shot emittance measurements
of LWFA beams using undulator radiation in combination with measurements of the
electron beam properties is currently being investigated.
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The experiments described in this thesis mark a milestone on the path towards a new gen-
eration of undulator-based X-ray sources with dimensions on the university-laboratory
scale: Radiation in the soft X-ray range (with wavelengths down to ∼ 7 nm) was gener-
ated by an undulator source driven by laser-wakefield accelerated electron beams with
energies of ∼ 210 MeV. The radiation was detected and spectrally characterized in 70%
of consecutive driver laser shots which is a remarkable stability for a proof-of-principle
experiment using ultra-high intensity lasers. This high reproducibility is due to both the
stable laser-wakefield accelerator and the electron beam transport consisting of a doublet
of high-gradient miniature magnetic quadrupole lenses. The electron beam collimated
by the magnetic lenses showed significantly decreased effective shot-to-shot pointing
fluctuations on target (however the intrinsic pointing fluctuations of the LWFA beam
cannot be changed with this method). In addition, it was shown that the magnetic
lenses act as an effective spectral-bandpass filter for the undulator radiation: owing to
their chromaticity, the lenses only collimate electrons of a particular energy whereas for
electrons of energies outside this band, the divergences significantly increase. This leads
to a variation in the electron (and thus undulator) beam divergence which results in a
high on-axis undulator flux only for radiation emitted from electrons that are collimated
or slightly converging. These electrons constitute the energy-bandpass. Experimentally
this was verified by the small undulator radiation bandwidth of 20% (FWHM) (where
65% would be expected from the electron spectrum) and small spectral shot-to-shot fluc-
tuations of only 3.5%. By setting the magnetic lenses to collimate a different electron
energy, this effect was used to show the wavelength-tunability of the undulator radiation
within a few nanometers.

Both the detected angular spectral (parabolic) shape of the undulator radiation and
its wavelength dependence on the electron energy are in excellent agreement with the
theoretical prediction. The detected on-axis flux of 16,000 photons per shot per mrad2

per 0.1% bandwidth is emitted by the fraction of the electron spectrum that lies within
the band-pass originating from the spectral filtering through the magnetic lenses. This
part of the electron beam was measured to have a charge of 1.3 pC, which agrees with
theoretical computations of the on-axis flux that estimates a required bunch charge of
1.1 pC.

The pulse duration of an undulator source emitting short-wavelengths is mainly given
by the duration of the electron bunch. In the case of laser-wakefield accelerators it
is predicted by theory and simulations to be only ∼ 10 fs. This implies three orders
of magnitude improvement in temporal resolution compared to third-generation syn-
chrotron sources. The ultrashort pulse duration and their perfect synchronization to
the driver laser makes LWFA-driven sources ideal candidates to provide radiation with
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the properties required for ultrafast four-dimensional imaging using pump-probe tech-
niques. These unique properties, in combination with the compact size holds the promise
for widespread application in university-scale laboratories. However, the ability to per-
form four-dimensional imaging on the atomic scale requires pulses with wavelengths in
the Ångström range, sub-picosecond to a few femtosecond duration and a sufficiently
high flux. In order to provide such pulses with peak brilliances comparable to third-
generation synchrotron sources, the electron beam parameters need to be significantly
improved: the laser-wakefield accelerator must deliver beams with a charge of a few
hundred pico-Coulombs and energies of a few giga-electronvolt and less than a few per-
cent-level energy spreads. Additionally, the shot-to-shot stability in energy, charge and
pointing of the electron beams needs to be increased.

First promising improvements towards this end have already been obtained: LWFA-
accelerated electron beams with an energy of 1 GeV have been shown, however with an
energy spread of 2.5% (rms) and a charge of 30 pC [Leemans et al., 2006]. Charges of
several hundred pico-Coulombs have been reported in [Faure et al., 2004], [Geddes et al.,
2004] & [Mangles et al., 2004] however only at an electron energy of ∼ 100 MeV. Methods
of separating the electron injection mechanism from the acceleration (see section 2.7.2),
such as the density-downramp injection scheme [Bulanov et al., 1998] or the injection by
colliding laser pulses [Faure et al., 2006], have the potential to increase the shot-to-shot
stability and decrease the electron energy spread at the same time. A 1% (rms) energy-
spread has been reported using the latter method [Rechatin et al., 2009], however with
an accelerated charge of 10 pC at energies around ∼ 200 MeV. Additionally, finer control
over laser parameters contributes to a higher shot-to-shot stability.

These developments show the rapid progress in the field of laser-wakefield accelerators
and its potential to realize the aforementioned demands on the beams. Since many
properties of the LWFA electrons can be improved by a higher laser intensity, the fast-
paced advances in laser technology additionally help to move the field forward. For
LWFA-driven lightsources, this means that they could soon be operating in the targeted
regime.

Figure 7.1 shows a plot of brilliances of sources driven by LWFA electron beams
with parameters that can potentially be achieved in the near- to mid-term future. The
brilliances are compared to that of the source presented in this dissertation and to that
of a state-of-the art third generation synchrotron source. It can be seen that a source
driven by LWFA electron pulses of 10 fs duration, 100 pC of charge, an energy of 3 GeV
and an energy spread of 1% could compete with the peak brilliance of a state-of-the
synchrotron (15 ps pulse duration, 40 nC of charge, 6 GeV and 0.1% energy spread).
They both use a 5m undulator, but with different parameters (for parameters see caption
of figure 7.1) From the electron beam parameters it can be seen that the two sources
operate in a completely different regime: in the case of the LWFA driven source, the
high brilliance is reached by a high photon flux and an extremely short pulse duration,
whereas the conventional synchrotrons provide pulses that are more than two orders
of magnitude higher in flux and are produced by electron beams with extremely small
emittance. However, with a duration of these pulses is three orders of magnitude longer
than that of the LWFA pulses. Through sophisticated techniques such as femto-slicing
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Figure 7.1. | Estimated peak brilliances. The estimated peak brilliances of the
undulator fundamental and the third harmonic in using the parameters of the ex-
periment presented in this thesis (blue), electron parameters than can potentially be
reached by LWFA accelerators in the near (red) and in the mid-term future (green)
in comparison to existing state-of-the art third generation synchrotron sources
(black). The LWFA electron beams are assumed to have a pulse duration of 10 fs
and an emittance of 1 nm · rad. The electron energy spread is taken into account by
normalizing the charge of the bunches to 0.1% energy spread. The parameters used
to create these curves are: in the case of this experiment (blue solid lines) an elec-
tron beam with a charge of 10 pC, energy of 210 MeV and energy spread of 10%,
horizontal and vertical beam sizes and divergences of 360 µm, 200 µm, 9 µrad and
7 µrad. The undulator has a period of λu = 5 mm, a length of L = 30 cm with
K = 0.55. The beta-matched case (section 3.5.2, αTwiss = 0, βTwiss = L/(2π))
with beam sizes of 7 µm and divergences of 141 µrad (blue dashed lines). The near-
term LWFA electron beams are assumed to have an energy of 1 GeV with a spread
of 1% and a charge of 100 pC. The same undulator parameters as above are used
but with a length of L1 = 1 m (red solid line) and L2 = 5 m (red dashed line). The
mid-term brilliances assume beams with 3 GeV with a spread of 1% and a charge
of 100 pC and an undulator of 5 m length with a period of 7 mm and K = 1.5.
ESRF (ID23) (black lines): 6 GeV energy and a spread of 0.1%, a bunch charge of
40 nC and 15 ps duration. The horizontal and vertical emittances are 4 nm · rad and
0.03 nm · rad and the undulator parameters are L = 5 m, λu = 42 mm and K = 2.2.
The dashed black line depicts the femtoslicing source at the SLS [Beaud et al., 2007]
with the parameters of 60 A peak current at 2.4 GeV, an emittance of 5 nm · rad, an
undulator with λu = 19 mm, 96 periods and 0.92 T magnetic field.
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[Khan et al., 2006] the pulses of conventional synchrotrons can be shortened to ∼100 fs,
however, with the drawback of a significant loss in bunch charge (for a comparison of
the sources, see figure 7.1).

This means that the X-ray pulses of conventional and LWFA-driven sources are suited
for different applications. With their short pulse durations and the synchronization to
the driver laser, the LWFA-driven sources are perfectly tailored for ultrafast pump-probe
measurements, whereas conventional synchrotron sources are best for applications that
require sheer photon flux. Owing to their high flux per pulse and their high repetition
rates of several hundreds of MHz, the average flux of conventional (storage-ring-based)
undulator sources is orders of magnitude higher than that of LWFA-driven sources.
Typical laser-wakefield accelerators currently operate at a repetition rate of 10 Hz which
is limited by the driver laser. However, advances in laser technology, such as more
efficient pump lasers like diode-pumped solid-state lasers or fiber-based lasers with a
high repetition rate or new amplification schemes such as optical parametric chirped-
pulse amplification (OPCPA) are pushing on this frontier.

In order to apply the X-ray beams of LWFA-based sources in experiments, the di-
vergent undulator radiation needs to be refocused. Focusing systems that are typically
used in synchrotron sources such as Fresnel zone plates, grazing incidence Kirkpatrick-
Baez arrangements or bent crystals require extremely well-defined X-ray beams. The
performance of these focusing methods is markedly degraded if the radiation has a large
spectral bandwidth or fluctuations in photon energy or pointing (as is the case for laser-
driven sources). In order to cope with these properties of current laser-driven sources in
the short-term application, a lossless focusing scheme based on the compact magnetic
lenses described in 6.1.1 is proposed: the lenses are used to produce a convergent elec-
tron beam with a focus located at a short distance after the undulator. As discussed
in chapter (3.24), the photon beam size at target can be calculated by the convolution
of the electron beam size and the natural (single-electron) undulator beam size, both
determined at the position of the target. Thus, a tightly focused electron beam leads
to a focused photon beam. However, this method of focusing is limited by the intrin-
sic undulator radiation divergence which depends on the square root of the emitted
wavelength.

An example is shown in figure 7.2 in the case of an electron beam with an energy of
220 MeV (however with negligible energy spread). The electron beam is focused by a
magnetic-lens triplet to a beam size of 5 µm in both directions at a distance of 0.5m after
the undulator center. An undulator of length 0.3 m and a period of 5 mm emits radiation
with ∼ 15 nm and an intrinsic divergence θ ' 160 µrad. In this setup, this intrinsic
undulator divergence leads to a spot size of 80 µm 0.5 m after the undulator center. This
distance is required to deflect the electrons in order not to hit the target. For a higher
electron energy (and thus a smaller wavelength), the undulator divergence is decreased:
for example, radiation with a wavelength of 1 nm is emitted with a divergence of θ '
40 µrad which leads to a smaller spot size of the undulator radiation. A small undulator
length is required in order to achieve a small electron beam focus and minimize the
increase in undulator beam size due to the intrinsic undulator divergence (the divergence
scales as σr′ ∝ L−1/2 and the beam size at the undulator exit as σ = σr′ ·L/2 ∝

√
L).
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Figure 7.2. | Simulation of electron beam focusing and schematic setup. a)
shows a simulation of an electron beam with an energy of 220 MeV and negligible
energy spread focused by a magnetic lens triplet (courtesy B. Zeitler). b) shows a
schematic drawing of a potential application of such a beam.

Although the beam sizes are on the few tens of micrometers scale, this setup can cope
with fluctuations in pointing and energy that are present in a laser-wakefield accelerator
and does not require lossy X-ray optics.

The experiment described in this thesis can be used as a testbed for future develop-
ments which in the long-term future may culminate in a laboratory-sized X-ray free-
electron laser (FEL). The radiation emitted by an FEL is coherent which leads to a
brilliance that is more than six orders of magnitude larger than that of the incoherent
sources described above. Typical dimensions of conventional X-ray FELs are on the
kilometer-scale. However, the unique properties of laser-wakefield accelerated electron
beams such as an ultrashort pulse duration (and a correspondingly high peak current)
and a relatively low emittance have the potential to significantly decrease the dimensions
of FELs to the university-laboratory scale. The FEL (saturation) length depends on the
peak current density as Lsat ∝ (Ipeak)−1/3, where Ipeak is the peak current (see chapter
4). The increased peak current in the LWFA scenario, along with a different choice of
undulator parameters and a smaller electron beam energy lead to an FEL length that
is one order of magnitude shorter than that of conventional FELs (∼ 10 m instead of
typically ∼ 100 m) [Gruener et al., 2007]. However, the FEL process sets extremely
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high demands on the electron beam properties: Necessitating a bunch charge of several
hundred pico-Coulombs and energy spreads on the sub one-per-cent level makes them
a rather long-term development process. The required parameters for first proof-of-
principle LWFA-driven FELs are currently being investigated.

In order for the FEL process to occur and the radiation to become coherent, the
electron beam has satisfy the conditions [Schmüser et al., 2008]: (1) the electrons energy
must have nearly the same energy, (2) the electron beam size and divergence must be
similar, “matched”, to that of the X-ray beam and (3) since the FEL is relatively long,
the gain in radiation intensity must be large enough to overcome diffraction losses of the
radiation. More specific, the normalized electron beam energy spread has to fulfill the
condition [Schmüser et al., 2008]

σγ
γ
< 0.5ρ, (7.1)

where ρ is the Pierce parameter which is a central parameter in the FEL theory. It is
defined as

ρ =
1

2γ

[
Ipeak

IA

(
Auλu
2πσx

)2
]1/3

, (7.2)

where γ is the relativistic factor, Ipeak/IA is the peak current of the electron bunch nor-
malized to the Alfvén current IA = 17 kA, λu the undulator period and σr the transverse
electron beam size. The Bessel function factor is given by Au = K/

√
2 [J0(ξ)− J1(ξ)]

where Ji are Bessel functions which depend on the undulator K parameter through
ξ = K2/(4 + 2K2).

The properties of laser-accelerated electron beams that could potentially be achieved
on a near-term timescale constitute bunches of 10 fs duration (FWHM), with a charge
of 100 pC (corresponding to a peak current of 10 kA) at an energy of 300 MeV with 1%
energy spread. Focused to a beam size of σx = 25 µm into an undulator with a period
of λu = 10 mm and an on-axis magnetic field of B0 = 1 T (K = 0.93), this leads to

ρ = 0.8%. (7.3)

Under these conditions, such an electron beam would almost fulfill the required condition
on the energy spread (eq. 7.1).

The gain length (e-folding length of the radiation power) can be estimated under
consideration of the degrading effects of space charge, energy spread and emittance in
3D by [Xie, 2000]

Lg = Lg0(1 + Λ), (7.4)

where

Lg0 =
λu

4π
√

3ρ
(7.5)

is the 1D gain length and the correction term Λ is determined by a fit of 3D numerical
studies. Owing to the relatively large energy spread, Λ = 4.8 for the parameters given
above. For such a large correction term, the treatment of the degrading effects as a
perturbation is inaccurate and the results have to be regarded with great caution and
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only as approximate estimates. Nevertheless, electron beams with such parameters are
anticipated to drive demo FELs which might show first signatures of SASE amplification
of a factor of approximately 3-5 from 2-4 gain lengths (Saturation in typical SASE FELs
is achieved after 15 - 25 gain lengths). The determination of parameters for such a demo
FEL requires full 3D FEL simulations (for example with the code described in [Reiche,
1999]).

In order to complete the discussion and show the potential of LWFA-driven FELs,
an electron beam (100 pC, 300 MeV, 10fs) with an energy spread of 0.5% (which might
become accessible through novel injection schemes, as discussed in chapter 2) is assumed.
This drop in energy spread decreases the correction term to Λ = 0.9 which means that
a treatment using the Ming-Xie perturbation methods gives a rough estimate of the
resulting parameters.

The parameters given above lead to a gain length of Lg = 11 cm and an approximate
total length of the undulator (until saturation is reached) of Lsat ≈ 20 ·Lg = 2.2 m.

The radiation is emitted at a wavelength of 20 nm. Its power can be approximately
determined by [Xie, 2000]

Psat ≈ 1.6 · ρ 1

(1 + Λ)2
·Pe−beam, (7.6)

where Pe−beam is the power of the electron beam. For these electron beam properties:
(Pe−beam = 30 mJ/10 fs = 3 TW)

Psat ≈ 10 GW, (7.7)

or correspondingly 1 × 1013 photons per pulse. Considering the bandwidth of the ra-
diation of 2 · ρ and assuming a Gaussian TEM00 mode, this results in a peak brilliance
of

B ≈ 7 · 1029 photons/sec/mm2/mrad2/0.1%b.w. (7.8)

As the wavelength becomes smaller, the requirements on the electron beam become
more stringent. Especially for smaller wavelengths and in order to correctly include
degrading effects numerical simulations are required to compute the FEL process. The
comparison between this estimation and full 3D simulations for a similar and a hard
X-ray case can be seen in table 7.1. In addition, the table shows a comparison between
LWFA-driven FELs and machines based on conventional rf-technology. It can be seen
that laser-driven FELs have the potential to reach peak brilliances similar to conventional
facilities with intrinsically ultra-short pulse durations at a significantly smaller undulator
(saturation) length.

The required laser parameters that can accelerate electron bunches with the properties
described above can -in the bubble regime- be estimated by the following formulas (for
a more detailed discussion of the formulas, refer to chapter 2). In the bubble regime,
the accelerator “knobs” are mainly given by the power of the laser, its focus size and
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Estimation TT-VUV FEL TT XFEL FLASH (fs) LCLS

peak current 10 kA 50 kA 160 kA 1.3 kA 3.5 kA
norm. emitt. 1 µm 1 µm 1 µm 6 µm 0.5 µm
beam size 25 µm 30 µm 30 µm 170 µm
energy 300 MeV 150 MeV 1.74 GeV 461.5 MeV 13.6 GeV
rel. energy spread 0.5% 0.5% 0.1% 0.04% 0.01 %
und. period 10 mm 5 mm 5 mm 27.3 mm 30 mm
wavelength 20 nm 32 nm 0.25 nm 30 nm 0.15 nm
Pierce par. 0.8% 1% 0.15% 0.2%
sat. length 2.2 m 0.8 m 5 m 19 m 60 m
pulse duration 10 fs 4 fs 4 fs 55 fs 70 fs
sat. power 10 GW 2.0 GW 58 GW 0.8 GW 40 GW
photons/pulse 1 · 1013 1.3 · 1012 3 · 1011 1.2 · 1012 2.3 · 1012

brilliance1 7 · 1029 6.3 · 1028 1.6 · 1033 6.7 · 1028 2 · 1033

Table 7.1. | Comparison of FEL parameters. The FEL parameters estimated in
main text for a 100 pC, 10 fs LWFA electron bunch are compared to results of simu-
lations (with different electron beam parameters, denoted as TT-VUV FEL and TT
XFEL) [Gruener et al., 2007]. The results of the 3D estimation have to be consid-
ered as rough estimates since the large degrading effects violate the treatment as a
perturbation. Note that the simulations (TT-VUV FEL and TT XFEL) do not con-
sider wall wakefields and are no start-to-end simulations. The parameters of LWFA-
driven FELs are compared to conventional FELs. The brilliances are estimated as-
suming a Gaussian TEM00 mode.
1brilliance is given in units of [photons/s/mm2/mrad2/0.1%b.w.]

the plasma density. The electron energy depends on the laser power P and the plasma
density np as [Lu et al., 2007]

∆E[GeV] ' 1.7

(
0.8

λ0[µm]

)4/3(
1018

np[cm−3]

)2/3(
P [TW]

100

)1/3

, (7.9)

where λ0 is the laser wavelength. The accelerated charge can be estimated from [Lu
et al., 2007]

N ' 2.5× 109 λ0[µm]

0.8

√
P [TW]

100
. (7.10)

A small energy spread can be achieved by a triangular shaped injected electron bunch
and a maximum charge of [Tzoufras et al., 2008]

Q[nC] ' 7.5× 107

√
1

n0[cm−3]
a

3/2
0 , (7.11)

where

a0 ' λ [µm] ·
√
I0 [W/cm2]

1.4× 1018
(7.12)
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is the normalized laser intensity (I0 is the laser intensity in units of W/cm2).
The plasma density and the laser power are related to each other through the following

equations. For a given plasma density the laser group velocity and thus the plasma wave
velocity is given by [Esarey and Leemans, 1999]

γp '
(
ω2
p

ω2
+ 2

c2

ω2w2
0

)−1/2

, (7.13)

where ω is the laser frequency, ωp the plasma frequency and w0 the laser spot size.
Electron self-injection into the bubble requires the bubble radius R (and thus the laser
spot size) to have the dimension of [Kostyukov et al., 2009]

kpR &
√

2 γp. (7.14)

For an acceleration in the pure bubble regime and for the bubble to exhibit a spherical
shape, the normalized laser intensity has to fulfill the condition of a0 > 4 [Lu et al., 2007].
For each plasma density, the required focus size and the requirement on a0 lead to a
required laser power which in turn leads through equations (7.9 - 7.11) to the electron
energy and the bunch charge.

In order to accelerate an electron bunch with a charge of ' 100 pC to an energy of 300
MeV, a plasma density of 1.4 · 1019 cm−3 and a 110 TW laser pulse focused to a beam
spot of 22 µm are required. The charge scaling at optimum beam loading (leading to a
small energy spread, equation 7.11) leads to a charge of 160 pC.

In order to achieve higher electron energies in the few-GeV range (to produce hard X-
ray FEL radiation), the plasma density has to be lowered, which leads to a higher plasma
wave velocity and thus leads to a larger laser focus size in order to get injection. This
in turn requires a larger laser power to drive an accelerator in the bubble regime. The
additional large bunch charges in the TT XFEL scenario (table 7.1) require few-petawatt
laser systems. For example, a 3 PW system could accelerate an electron bunch of 2.5 nC
(not considering optimal shapes of the injected bunches required to circumvent beam
loading effects which leads to an increased energy spread, equation 7.10) to energies of 3
GeV. These values are in rough agreement with recent particle-in-cell (PIC) simulations
[Lu et al., 2007; Martins et al., 2010].

Since first commercial petawatt laser systems are expected to be developed within the
next few years, this is rather a more mid-term research goal. Novel schemes are currently
being explored in which the electron injection is separated from the acceleration mech-
anism. This could lead to the injection of high quality electrons that can subsequently
be accelerated in a quasi-linear regime by more modest laser pulse powers than those
required by the bubble regime.

Advances in laser-wakefield acceleration, beam transport and undulator design will
lead to a new generation of compact lightsources, based on the results presented in this
thesis. In the short- to mid-term future, we expect this approach to spawn laboratory-
sized ultrafast hard-X-ray undulator sources. In the long term, these developments may
culminate in the development of compact ultra-brilliant X-ray free-electron lasers.
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A. ADDITIONAL DERIVATIONS:
LWFA THEORY

A.1. Ponderomotive Force

The fields of a tightly focused, ultrashort laser pulse vary radially as well as longitudi-
nally. An electron placed in such a field experiences a non-linear transverse acceleration
since the electric field ~E varies with the radius. Furthermore, the electron is accelerated
in the direction of the propagation of the laser pulse due to the ~v× ~B term in the Lorentz
force equation. This acceleration is at a phase of π with the ~E field which means that
when ~E = 0 and the electron has the maximum velocity, that the ~B-field and therefore
the longitudinal acceleration is maximal. In order to quantify these forces which both
are included in the ponderomotive force, we solve the equation of motion for an electron
in electro-magnetically wave with a spatially- and temporally-varying field amplitude
~E0(~r, t). This can be done using the Lorentz force equation

m
d~v

dt
= −e

[
~E(~r, t) + ~v × ~B(~r, t)

]
(A.1)

For a light field that is changing in time and space, this equation can be solved by: (1)

considering the first order term (neglect the ~v× ~B -part) at an initial position ~r0 and then
(2) determine the electric field and velocity at a slightly different position ~r0 + δ~r. For

an electric field of the form ~E = ~E(~r) cos(ωt), the solutions of the first order equation
are (numbers in superscript indicate order):

m
d~v (1)

dt
= −e ~E(~r0) (A.2)

~v (1) = − e

mω
~E(~r0) sin(ωt) =

d~r (1)

dt
(A.3)

δ~r (1) =
e

mω2
~E(~r0) cos(ωt) (A.4)

In order to calculate the second-order equation of motion we need the Taylor expansion
of the electric field around ~r0:

~E(~r) = ~E(~r0) + (δ~r (1) · ~∇) ~E|r=r0 + ...

and the second order ~v (1)× ~B(1) term, where ~B(1) is given by Maxwells equation (~∇× ~E =

−d ~B
dt

):

~B(1) = − 1

ω
~∇× ~E(~r) sin(ωt). (A.5)
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The second-order equation of motion reads:

m
d~v (2)

dt
= −e

[
(δ~r (1) · ~∇) ~E|r=r0 + ~v (1) × ~B(1)

]
(A.6)

with equations (A.3), (A.4) and (A.5) and averaging over one oscillation period, this
becomes:

m

〈
d~v (2)

dt

〉
= − e2

mω2

1

2

[
( ~E(~r) · ~∇) ~E(~r) + ~E(~r)× (~∇× ~E(~r))

]
(A.7)

Rewriting the second term by using the vector identity [~a× (~b×~c) = ~b · (~a ·~c)−~c · (~a ·~b)]
cancels the ( ~E0 · ~∇) ~E0 and the effective non-linear ponderomotive force reads:

~FNL = −1

4

e2

mω2
~∇E(r)2. (A.8)

A.1.1. Dispersion Relation

Derivation after [Goldston and Rutherford, 1998]
Start from relevant Maxwell equation:

~∇× ~E = −∂
~B

∂t
(A.9)

~∇× ~B = µ0
~j +

1

c2

∂ ~E

∂t
(A.10)

just consider plane waves:
~E = ~E0ei(~k~r−ωt)

~B = ~B0ei(~k~r−ωt)

make use of ~∇× ~E = i~k × ~E:

i~k × ~E = iω ~B (A.11)

i~k × ~B = µ0
~j + i

ω

c2
~E (A.12)

k×eqn(A.11), use vector identity A×(B×C) = (A ·C)B−(A ·B)C and insert eqn(A.12)
into eqn(A.11)

k2 ~E − ~k · (~k · ~E) =
ω2

c2

(
~j

iε0ω
+ ~E

)
(A.13)

for e-m waves ~k ⊥ ~E
also: for high frequencies, the ions stay stationary which means that the current results
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just from the electron motion: ~j = −nee~ve and from first order equations of motion

which can be derived with the help of the Lorentz force: ~F = q
(
~E + ~v × ~B

)

me
d~v

dt
= −e ~E (A.14)

the current dependence on the electric field (for a plane wave) can be calculated as:

~j = −nee~v =
nee

2

me

1

iω
~E

using this in (A.13), gives:

(c2k2 − ω2) ~E = − nee
2

meε0
~E (A.15)

where the expression for ω2
p,e is recognizable on the on the right-hand side of the equation.

This gives the dispersion relation for electromagnetic waves propagating in a plasma:
(wave with high frequency in an unmagnetized plasma)

ω2 = ω2
p + c2k2 (A.16)

Light frequencies below the plasma frequency can’t propagate in the plasma but are
reflected or attenuated, because the plasma electrons shield fields which oscillate at a
frequency below ωp. Since the plasma frequency depends on the electron density, a
critical density for ω = ωp can be defined as:

nc =
meε0ω

2

e2

For densities above nc incident light waves are reflected from the plasma. Furthermore,
from equation (A.16) can be seen that the wave number k is imaginary and a wave
decays as

exp

(
−x
√
ω2
p − ω2

c

)

The skin depth

δ = |k|−1 =
c

(ω2
p − ω2)1/2

is defined as the distance over which the field is attenuated by a factor 1/e.
The non-relativisitic index of refraction can also be deduced from the dispersion relation
equation (A.16):

η =
c

vph

=

√
1−

(ωp
ω

)2

where vph = ω/|~k| is the phase velocity of the light wave.
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A.1.2. Linear Plasma Waves

A linear 3D plasma wave excited by a non-evolving laser pulse can be described by the
cold fluid equations, i.e. the continuity equation, the moment equation and Poisson’s
equation:

∂

∂t
δn+ n0

~∇ · ~u ' 0 (A.17)

∂~u

∂t
' ∇φ−∇a2

0/2 (A.18)

∇2φ ' k2
p

δn

n0

(A.19)

Combining these equations results in equations describing a linear plasma wave and
wakefield for an initially uniform plasma:

(
∂2

∂t2
+ ω2

p

)
δn

n0

= c2∇2a
2
0

2
(A.20)

(
∂2

∂t2
+ ω2

p

)
φ = ω2

p

a2
0

2
(A.21)

where δn is the perturbation in electron density and a0 is the normalized intensity of
the driver-laser pulse.

A solution of equations (A.20) and (A.21) for the density perturbation and the asso-
ciated electric field are given by

δn

n0

=
c2

ωp

∫ t

0

dt′ sin[ωp(t− t′)]∇2a
2(~r, t′)

2
(A.22)

~E(~r, t) = −mec
2ωp
e

∫ t

0

dt′ sin[ωp(t− t′)]~∇
a2(~r, t′)

2
(A.23)

more specifically, the solutions for a Gaussian laser pulse a2 = a2
0 exp(−2r2

r2s
) sin2(πξ

L
),

where ξ = z − ct are the co-ordinates of a frame co-moving with the laser pulse are:

δn

n0

= −π
4
a2

0

[
1 +

8

k2
pr

2
s

(
1− 2r2

r2
s

)]
exp

(
−2r2

r2
s

)
sin(kpξ) (A.24)

Ez
E0

= −π
4
a2

0 exp

(
−2r2

r2
s

)
cos(kpξ) (A.25)

A.1.3. Nonlinear Plasma Waves
nonlinear momentum equations
transformation into the comoving frame
simplification for γg � 1
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Symbol Description

φ electrostatic potential
n plasma density
a(z) normalized laser pulse intensity with an amplitude a0

βz = vz/c normalized longitudinal plasma fluid velocity
β⊥ = v⊥/c normalized transverse plasma fluid velocity

γ = 1/(1− ~β2) relativistic factor associated with the electrons1

γz = 1/(1− β2
z ) longitudinal part of the relativistic factor

γ⊥ = (1 + a2) transverse part of the relativistic factor
βp normalized velocity of the plasma wave2

p = γβ electron fluid momentum, normalized to m0c

Table A.1. List of Symbols: Appendix of the LWFA chapter

The cold relativistic fluid equations can be written as [Sprangle et al., 1990]:
longitudinal electron fluid momentum equation

d(γβz)

dt
= c

∂φ

∂z
− c

2γ

∂a2

∂z
(A.26)

continuity equation
∂n

∂t
+ c

∂(nβz)

∂z
= 0 (A.27)

The expressions can be greatly simplified by transforming into a co-moving frame of
reference (a frame moving the group velocity of the laser vg = vz) with the coordinates

ξ = z − vgt and τ = t. (A.28)

The spatial and temporal derivatives become

∂

∂t
=

∂

∂τ
− vg

∂

∂ξ
and

∂

∂z
=

∂

∂ξ
(A.29)

In order to transform the momentum equation into this frame of reference, the total
differential

df

dx
=
∂f

∂x
+
∑

j

(
∂f

∂yj

dyj
dx

)
(A.30)

of the left-hand side of equation (A.26) reads

d

dt
(γβz) =

∂(γβz)

∂t
+
∂(γβz)

∂z
· dz
dt
, (A.31)

1γ = γ⊥γz =
(
1− (β2

⊥ + β2
z )
)−1/2

2for lasers as driver: βp ' βg
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where dz/dt = cβz. The dependence of the relativistic factor on the laser intensity:

γ2 =
1

1− (β2
⊥ + β2

z )
=

1 + a2

1− β2
z

(A.32)

γ⊥ = 1 + a2 leads to

∂a2

∂z
=

∂

∂z

[
γ2 − γ2β2

z − 1
]

= 2γ

(
∂γ

∂z
− β2

z

∂γ

∂z
− γβz

∂βz
∂z

)
. (A.33)

Transforming equation (A.31) using equation (A.29) gives

d

dt
(γβz) =

∂(γβz)

∂τ
− cβg

∂(γβz)

∂ξ
+ cβz

∂(γβz)

∂ξ
. (A.34)

With equation (A.34) and equation (A.31), the fluid momentum equation equation
(A.26) reads

1

c

∂(γβz)

∂τ
=

∂

∂ξ

[
φ− γ(1− βgβz)

]
. (A.35)

In a similar way, the continuity equation equation (A.27)

∂

∂ξ

[
n(βg − βz)

]
=

1

c

∂n

∂τ
, (A.36)

and the Poisson’s equation

∂2φ

∂ξ2
= k2

p

(
n

n0

− 1

)
(A.37)

can be transformed.
In order to integrate the equations, the quasi-static approximation (QSA) has to

be made which means that the plasma fluid quantities are functions only of the co-
moving variable ξ (neglecting the ∂/∂τ derivatives). Taking into account the boundary
conditions for the region ξ > 0 (upstream of the laser pulse), ~a = 0, n = n0, βz = 0 and
γ = 1, gives the integration constants C1 = −1 for equation (A.35) and C2 = n0βg for
(A.36) which leads to the integrated expression:

γ(1− βgβz)− φ = 1 (A.38)

n(βg − βz) = n0βg (A.39)

Using equation (A.39), the Poisson’s equation (eq. A.37) can be written as

∂2φ

∂ξ2
= k2

p

(
βz

βg − βz

)
(A.40)

and with the explicit expression for βz reads [Esarey et al., 2009]

∂2φ

∂ξ2
= k2

pγ
2
g

[
βg

(
1− 1 + a2

0

γ2
g(1 + φ)2

)−1/2

− 1

]
. (A.41)
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These expressions can be further simplified in the case of γg � 1. Equation (A.40)
becomes

∂2φ

∂ξ2
' k2

p

(
βz

1− βz

)
(A.42)

and with the help of equation (A.32), the square of equation (A.38) can be written as

1 + a2
0

(1 + φ)2
' 1 + βz

1− βz
. (A.43)

Since
βz

1− βz
=

1

2

(
1 + βz
1− βz

− 1

)
, (A.44)

the Poisson’s equation equation (A.40) can finally be simplified to

∂2φ

∂ξ2
=
k2
p

2

(
1 + a2

0

(1 + φ)2
− 1

)
(A.45)

Electron Trapping and Acceleration

To get the Hamiltonian of a test electron in phase-space, we start with the fluid momen-
tum equation

H(γz, ξ) = γ(1− βpβz)− φ(ξ) = γ − βppz − φ(ξ). (A.46)

Using equation (A.32)

β2
z = 1− 1 + a2

γ2
(A.47)

and from pz = γβz, we get
γ2 = p2

z + 1 + a2, (A.48)

which substituted into equation (A.46) leads to

H(pz, ξ) =
√
p2
z + 1 + a2 − βppz − φ(ξ) (A.49)

A.2. Electron Trapping in the Bubble Regime

The motion of electrons under the influence of the fields of the bubble in the co-moving
frame can be described by the Hamiltonian [Kostyukov et al., 2004], neglecting the laser
fields, since trapping happens at the back side of the bubble.

H =

√
1 + (~p+ ~A )2 + a2) − βppz − φ, (A.50)

from which the equations of motion can be derived

dpz
dt

= −βz
∂Az
∂ξ
− βy

∂Ay
∂ξ

+
∂φ

∂ξ
, (A.51)
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dpy
dt

= −βz
∂Az
∂y
− βy

∂Ay
∂y

+
∂φ

∂y
, (A.52)

dξ

dt
=
pz
γ
− βp = βz − βp, (A.53)

dy

dt
=
py
γ

= βy, (A.54)

with γ = (1+p2
z+p2

y)
1/2. The electric potential of the bubble is determined by the model

of a sphere with a uniform ion background and the fields in cylindrical coordinates are
given by (2.57) & (2.58). The bubble with a radius R is surrounded by an electron
sheath, that screens its ion field and the resulting fields are given by [Kostyukov et al.,
2009]

Ez = f(r)kp
ξ

2
E0 (A.55)

Ey = Bz = f(r)
y

4
, (A.56)

where f(r) = [tanh(R/d−r/d)−1]/2 describes the electron sheath of the width d. Since
(A.51) & (A.52) are the Lorentz forces and the equations of motion (lengths normalized
to kp and fields to E0) can be written as

dpz
dt

= −f(r)
ξ

2
+ f(r)

py
γ

y

4
, (A.57)

dpy
dt

= −f(r)

(
1 +

pz
γ

)
y

4
, (A.58)

dξ

dt
=
pz
γ
− βp,

dy

dt
=
py
γ
, (A.59)

This set of differential equations can be numerically solved for an electron located on
the radius of the bubble, initially at rest: (at t = 0): ~p = 0, y = R and ξ = 0. pz
depends on the initial radius: for y < R, the electron gains negative momentum due to
the interaction with the “front half” of the bubble fields.
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B. ADDITIONAL DERIVATIONS:
UNDULATOR THEORY

B.1. Propagation of Single-Electron Brilliance: Free
Drift

The propagation of the brilliance through a free drift space of length ` can be calculated
by

B(~x, ~ϕ, s+ `) = B(~x−` · ~ϕ, ~ϕ, s). (B.1)

Starting from s = 0, the brilliance at position ` can be written as

B(~x, ~ϕ, `) = B|0 exp

(
−(x− `ϕ)2

2σ2
r

− ϕ2

2σ2
r′

)
. (B.2)

The spatial flux density at the position ` can be calculated from the brilliance as follows:

dΦ

dx
=

∫
B(~x, ~ϕ, `)dϕ, (B.3)

which leads to

dΦ

dx
= B|0 exp

(
− x2

2σ2
r

)∫
exp

[
−ϕ2

(
`2σ2

r′ + σ2
r

2σ2
rσ

2
r′

)
+ ϕ

`x

σ2
r

]
dϕ. (B.4)

Using
∞∫

−∞

e−ax
2−2bx dx =

√
π

a
e(b2/a) (B.5)

and by doing this for both dimensions (radial symmetry) leads to

dΦ

dS =
2πσ2

rσ
2
r′

σ2
r + `2σ2

r′
B|0 exp

(
− x2 + y2

2(σ2
r + `2σ2

r′)

)
(B.6)

since

B|0 =
Φ

(2πσrσr′)2
(B.7)

the spatial flux density at the longitudinal position ` can be written as

dΦ

dS =
Φ

2π(σ2
r + `2σ2

r′)
exp

(
− x2 + y2

2(σ2
r + `2σ2

r′)

)
. (B.8)

By integrating this expression over the spatial coordinates, it can be seen that the total
flux is conserved.
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B. ADDITIONAL DERIVATIONS: UNDULATOR THEORY

B.2. Equality of Propagation of Convoluted Beam and
the Convolution after Propagation

The beam size after propagation of the radiation from a thick electron beam can be
written as

Σr(`)
2 = Σr(0)2 + Σ2

r′`
2 = σ2

e,0 + σ2
r,0 + `2(σ2

r′ + σ2
e′), (B.9)

which is exactly the beam size computed by propagating each distribution separately to
the position ` and then do the convolution (which corresponds to the quadratic sum of
the standard deviations)

Σr(`)
2 = σ2

r(`) + σ2
e(`) = σ2

r,0 + `2σ2
r′ + σ2

e,0 + `2σ2
e′ = σ2

e,0 + σ2
r,0 + `2(σ2

r′ + σ2
e′) (B.10)
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LEI 2009. AIP Conference Proceedings, 1228, 295-299 (2010)

• Imaging laser-wakefield-accelerated electrons using miniature magnetic
quadrupole lenses
R. Weingartner, M. Fuchs, A. Popp, S. Raith, S. Becker, B. Zeitler, S. Chou, M.
Heigoldt, K. Khrennikov, J. Wenz, Zs. Major, J. Osterhoff, F. Krausz, S. Karsch
and F. Grüner
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Pretzler, D. Habs, F. Grüner, F. Krausz, S. M. Hooker
New Journal of Physics 9, 415 (2007)

• Miniature magnetic devices for laser-based, table-top free-electron lasers
T. Eichner, F. Grüner, S. Becker, M. Fuchs, D. Habs, R. Weingartner, U. Schramm,
H. Backe, P. Kunz, and W. Lauth
Phys. Rev. ST Accel. Beams 10, 082401 (2007)

• Design considerations for table-top, laser-based VUV and X-ray free
electron lasers
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