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1 Abstract 

 

Half a century ago, Reichardt and Hassenstein proposed a model for the detection of 

visual motion. This 'Reichardt detector' describes, in mathematical terms of filtering and 

correlation, how the processing of luminance input to the retina results in a directionally 

selective output. The Reichardt detector was extremely successful in predicting visually 

guided behavior of insects as well as the basic response properties of large-field 

motion-sensitive neurons in their brain. These cellular response properties can be 

explained if we assume that the neurons receive input from large arrays of such 

Reichardt detectors. Interestingly, the animal‟s behavior can then be assumed to be 

guided by the output of the same neurons that supply to motor circuitries to control 

walk and acrobatic flight maneuvers. However, the cellular implementation of the 

Reichardt detector and the function of the „course control center‟ are still not known to 

date. This is mainly due to the small size of the neurons and the complexity of the 

neural circuitry in the optic lobe. Furthermore, it was so far difficult to introduce specific 

functional manipulations to the network and impossible to directly monitor cellular 

responses. In my thesis, I set out to elucidate the cellular implementation of the 

Reichardt detector and the network of large-field motion-sensitive neurons combining 

electrophysiology with genetic intervention in Drosophila.  

 

1. My first achievement was to establish in vivo whole-cell recordings from the large-

field motion-sensitive neurons in the fly lobula plate ('lobula plate tangential cells', 

LPTCs). This allowed, for the first time, a functional characterization of these neurons in 

Drosophila. LPTCs in Drosophila turned out to have similar response characteristics as 

similar neurons in larger fly species: the group of vertically sensitive (VS) cells is 

excited by downward motion and is inhibited by upward motion. Horizontally sensitive 

(HS) cells are excited by front-to-back motion and are inhibited by motion in the 

opposite direction. Moreover, the dependence of the response on image velocity and 

contrast revealed all the signatures that are indicative for receiving input from 

Reichardt detectors.  

 

2. I analyzed the complex receptive field properties of VS- and HS-cells by 

developing a new stimulus paradigm. This stimulus revealed that each morphologically 
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defined VS- and HS-cell possesses a distinct receptive field. Moreover, I could show 

that both lateral VS-cells and the dorsal HS-cell have different preferred directions in 

different parts of their visual field. Interestingly, all VS- and HS-cells showed much 

wider receptive fields than expected from the position and size of their dendrite in the 

retinotopically organized lobula plate. Perfusion of individual cells with Neurobiotin, a 

molecule small enough to pass gap junctions, revealed coupling of neighboring VS- 

and HS-cells, respectively. This finding provides indirect evidence for electric coupling 

as the basis of their large receptive fields. 

 

3. Using cell-specific expression of transgenes encoding for postsynaptic receptors and 

presynaptic molecules tagged with GFP, I contributed to the analysis of the functional 

synaptic organization of LPTCs: Drosophila LPTCs turned out to be postsynaptic in the 

lobula plate and presynaptic in the protocerebrum. The specific localization of 

Acetylcholine- and GABA-receptors suggests that excitatory and inhibitory motion-

sensitive elements with opposite preferred direction provide input onto the fine 

dendritic branches of LPTCs.  

 

4. Finally, I combined whole-cell recording from LPTCs with genetic manipulation of 

neurons within the presynaptic circuitry. Starting at the first relay station of visual 

signals in the fly brain, the lamina, I blocked synaptic transmission from specific lamina 

cell-types. Curiously, blocking any of the cell-types did not severely impede the motion 

response to drifting gratings as measured in the LPTCs. However, specific response 

deficits became obvious when moving edges of single contrast polarity were used as 

visual stimuli instead of gratings. These findings suggest that the visual input stream to 

the motion detection circuitry is segregated into ON- and OFF-channels, carrying 

information about increasing or decreasing image contrast separately.  

 

The combination of whole-cell patch recording from LPTCs with genetic manipulation of 

their presynaptic neurons proved to be an extremely useful paradigm which will be 

instrumental for the functional dissection of the motion detection circuitry and the 

network of motion sensitive interneurons in Drosophila. 

 



13 

 

2 Introduction 

 

 

2.1 General remarks 

The neural mechanisms underlying the control of behavior rely on (i) the 

transformation of environmental stimuli into a neural code, (ii) the transmission of this 

code to the brain where it converges with other sensory information and (iii) the 

decision making necessary to act on the incoming signal. (iv) In a final step, a motor 

program is generated to produce the properly timed and concrete muscle activity we 

recognize as behavior. A textbook example for the generation of such a behavior is 

the visually guided course control in flies. The underlying neural circuit computes 

incoming visual information and controls the acrobatic flight maneuvers. The formidable 

speed and precision of this computation enable the chasing of mates at turning 

velocities of up to 3000 °/s and the initiation of compensatory flight maneuvers with a 

time-lag of less than 30 ms (Land and Collett, 1974; Wagner, 1986). The proper 

functioning of this circuitry is fundamental for orientation and navigation through the 

environment and thus for the survival of the fly. Half a century ago, based on 

behavioral studies of visual motion responses in the beetle Chlorophnus, a model was 

proposed that precisely describes insect‟s optomotor behavior and the 

electrophysiological responses of large field motion sensitive cell in bigger fly species. 

This model became known as the „corretlation-type‟ motion detector or simply as the 

Reichardt detector. The Reichardt detector is thought to be implemented in the insect‟s 

optic lobe. It computes visual motion based on the luminance changes seen by the 

insect‟s eye. In a subsequent processing step this motion information is used by the 

network composed of large field motion sensitive cells to control the course and 

acrobatic performance of flies. The robustness of these computations, its algorithmic 

interpretation and the supposed simplicity of the underlying neuronal network raised 

the hope that the cellular implementation of both the Reichardt detector and the course 

control network will be understood in the near future. Yet, the small size of the majority 

of the constituting neurons and their complex organization presented a formidable 

barrier for functional studies so far. A circumstance anticipated by Ramón y Cajal who 

recognized more than 100 years ago that the insect‟s visual system resembles a “cell 

labyrinth with an understated complexity” (Ramón y Cajal, 1923).  
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In my PhD work I set out to establish an experimental approach to overcome 

mentioned problems by taking advantage of the genetic toolbox available for the 

fruit fly Drosophila melanogaster. Using this approach I could start dissecting the 

network from a cardinal point: the motion selective large tangential cells in Drosophila. 

To guide the reader into the intriguing world of insect visually driven behavior, I will 

summarize the knowledge ranging from insect eye optics to the most novel findings of 

course control computations. I aim to give a comprehensive outline of this fascinating 

field and highlight the need of a novel approach to reach deeper insight into the these 

outstanding brain functions. 

 

2.2 Visual course control in insects 

 

Flies, as most other insects, heavily rely on visual information to guide their 

acrobatic flight maneuvers in space. Flying insects use optic flow patterns induced by 

their self motion to generate motor programs and ultimately execute compensatory 

flight maneuvers that enable them, among other things, to maintain a straight course. 

For example if an insect is displaced from its course by a gust of wind, the image in its 

frontal field of view moves quickly inducing a characteristic optic flow pattern on the 

insect‟s eye. This information is then processed and used to command the flight motor 

system. A counteractive torque can be generated bringing the insect back on course 

(Reichardt, 1957; Srinivasan, 1977). As another example, bees tend to fly through the 

very center of a narrow hole, implying that they can regulate their distance from the 

borders. Intriguingly, the insect eyes are, compared to human ones, positioned much 

closer and possess an extremely low spatial acuity making binocular stereopsis too 

imprecise to account for this behavior (but see (Rossel, 1983)). Bees solve this problem 

by balancing the speed of image motions experienced by the left and right facet-eye 

(Kirchner and Srinivasan, 1989). But such optic course control only works well in a 

symmetrically structured environment. If the insect is facing irregular patches of contrast 

and texture, substantial difference in the computed motion occur between both eyes. 

This arises due to the dependency of the motion computation on the features of the 

visual stimulus itself. A possible way to solve this problem is to sense and balance 

image motion in only a small patch of the visual field. This has been shown for the 

hoverfly that, when flying straight ahead, minimizes image motion within a small visual 

field located in the forward direction (Collett, 1980).  
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Interestingly, visual motion information is not only needed for course 

stabilization. Bees, for examples use the integration of optic flow to correctly estimate 

flight distance (Srinivasan et al., 2000). In contrast to this kind of processing, some 

walking insects do not rely on translational optic flow to estimate distance. The desert 

ant Cataglyphis fortis measures distance by counting steps (Wittlinger et al., 2006), but 

can only register the distance if they can see the sky (Sommer and Wehner, 2005). The 

reason for this is that they use polarized light from the sun, scattered by the 

atmosphere, as a compass to estimate the direction of movement. Combining those two 

sources of information, these ants can compute the shortest way back to the nest after 

having explored their environment for food for hundreds of meters in a random 

fashion. 

 

Considering that the amount of neuronal hardware dedicated to vision in 

insects and especially in flies sum to approximately half of the brain‟s volume 

(Strausfeld, 1976), the dominance of visual input for the insect‟s course control can be 

assumed. Yet, visual information on its own, as exemplified for the desert ant, is not 

sufficient to account for all their astonishing behavior. In flies, an additional flight aid is 

provided by the halteres, small hind-wings that oscillate in antiphase with the main 

wings and act as miniature gyroscopes to provide information about the body‟s 

rotation (Dickinson, 1999). While visually driven compensatory responses deal with 

slower turning velocities, the haltere input can be used to compensate for very rapid 

rotations as shown for yaw rotations (Sherman and Dickinson, 2002). In addition, in 

dragonflies and locust, the visual stabilization of roll and pitch is thought to be 

accomplished by input from the ocelli, three single-lens eyes situated on the top of the 

head. The medial ocellus stabilizes pitch by monitoring the elevation of the horizon, 

whereas the two lateral ocelli monitor the position of the horizon on either side and can 

therefore stabilize roll (Stange, 1981; Stange et al., 2002). However, it has been 

shown in the blowfly that incident dorsal light has only little influence on the optomotor 

roll torque response (Schuppe and Hengstenberg, 1993). 

 

The neuronal circuitry and the computational steps that underlie the robust and 

reproducible behavior are still elusive and have been treated as a „black box‟. Due to 

the small size of the constituting interneurons it has been difficult and in most cases 

impossible to dissect this neural circuitry. Exceptionally, in large flies, mostly Calliphora 

vicina, insights have been gained into the function of large motion sensitive cells in the 
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lobula plate. Likely, these neurons represent the course control center of the fly 

(reviewed in (Borst and Haag, 2002)). To tackle the many problems outlined above, 

new methods are required. A combined physiological and behavioral approach that 

takes advantage of the new genetic toolbox available in Drosophila (reviewed in (Luo 

et al., 2008)), is a timely approach to circumvent previous experimental limitations and 

forms the conceptual framework of this work (reviewed in (Borst, 2009)).  

 

2.3 The fly visual system 

2.3.1 The retina 

 

The processing of visual information starts in the fly‟s compound eyes. Its mosaic 

like structure is composed of repetitive elements called facets or ommatidia (Fig.1A). 

Each ommatidium contains a cluster of 8 photoreceptor cells surrounded by support 

and pigment cells and an individual transparent lens (Fig.1B) 

 

 

Fig.1. The fly’s retina. (A) An electron micrograph of the facet-eye of a blowfly at a magnification of ~ 

375x. (from www.bath.ac.uk/ceos/Insects1; B) A schematic of the fly retina illustrates the basic structure 

of the light capturing device of a fly (adapted from (Hardie, 1984). (C) Schematic of the neuronal 

superposition eye, as encountered in dipteran flies (adapted from Land (1997)). 

 

The basic structures of insect compound eyes can be separated in three groups: 

the apposition, the optical superposition and the neuronal superposition eye. In the 

apposition eye, the group of photoreceptors that reside within an individual 

ommatidium are optically isolated from other ommatidia. In the optical superposition 

eye, the optical apparatus of the facets bundles light from neighboring ommatidia 

acting together as a single optical device. Finally, in the neuronal superposition eyes, 
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the photoreceptors of neighboring omatidia that hold converging optical axes interact 

with the same postsynaptic target to increase sensitivity without sacrificing acuity 

(Fig.1C; Kirschfeld, 1967). Optical superposition eyes are normally found in nocturnal 

insects such as moths to increase their sensitivity to light. In contrast apposition eyes, 

which have better spatial acuity but worse overall sensitivity, can be encountered in 

diurnal insects as grasshoppers and bees. The neuronal superposition eye, which can 

combine the benefits of the previous mentioned eye types, is found in dipteran flies 

(Fig. 1C).  

 

Each ommatidium is composed of two main groups of photoreceptors, the outer 

and inner group. The outer group, sitting on the boarders of each ommatidium, consists 

of the photoreceptors R1-6. R1-6 have wide rhabdomeres, span the whole 

ommatidium and express the opsin Rh1. The inner group is composed of the 

photoreceptors R7 and R8, which are located in the center of each ommatidium. Their 

rhabdomeres only span half of the ommatidium, with R7 sitting on top of R8. R7 

expresses stochastically either the UV sensitive opsin Rh3 or Rh4, whereas R8 express 

either blue or green absorbing opsins Rh5 & Rh6, respectively. Interestingly, the Rh3 

expression in R7 is coupled with the Rh5 expression in R8, as Rh4 is coupled with Rh6, 

defining two functional subtypes of photoreceptors randomly distributed throughout the 

fly‟s eye: pale (Rh3/Rh5) which accounts for 30 % of the facets and yellow (Rh4/Rh6) 

for 70 % (Franceschini et al., 1981). R7 and R8 are known to be fundamental for color 

vision in flies (Gao et al., 2008), but the function of this random distribution is not yet 

well understood. 

 

As an example, the fruit fly‟s compound eye has ~700-800 facets per eye 

with an inter-ommatidial angle of 4.6 °, distributed almost over 180 ° of visual 

surround. Compared to the visual acuity of the human eye, Drosophila’s compound eye 

has a 500 fold lower spacial resolution. 

 

2.3.2 Phototransduction 

 

Invertebrate phototransduction, the process by which light energy is converted 

into a photoreceptor‟s electrical response is based, as in vertebrates, on a G-protein 

signaling cascade. One hallmark of these cascades is their capacity for amplification. 

This allows invertebrate photoreceptors as well as vertebrate rods to respond with 
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quantized events (quantum bumps) to single photons (Fig 2B; Yeandle and Spiegler, 

1973). Once the absorption of a photon triggered the isomerization of the rhodopsin‟s 

(R) 11-cis to all-trans retinal, the amplification cascade is started (Fig.2C) and 

producing a depolarization of the invertebrate photoreceptor potential. This is one of 

the main differences compared to vertebrate photoreceptors, which hyperpolarize in 

response to an increase in illumination due to a „dark current‟ which is turned off by 

light. Another major difference between vertebrates and invertebrates 

phototransduction is the dynamics of their response (Fig2B). While in vertebrates any 

flicker stimulus above 80 Hz is perceived as continuous light, the fly‟s photoreceptor 

potential can still follow up to a flicker frequency of more than 300 Hz (Laughlin, 

1987). One reason is the different process by which R is regenerated. In Drosophila, 

the activated R, called metharhodopsin (M), is thermo-stable and can be reconverted 

into R by long-wavelength light. In contrast, vertebrate M has to be phosporylated 

several times by the rhodopsin kinase that leads to the binding of arrestin and is 

followed by its thermal decay. All-trans retinal is subsequently shuttled to pigment cells 

that, in a series of biochemical reactions regenerate it to 11-cis-retinal, which 

subsequently can bind to free opsin within the photoreceptors (for review (Burns and 

Arshavsky, 2005). This regeneration strategy is more time consuming. Therefore it limits 

the temporal resolution of the system more strongly compared with the reconversion in 

Drosophila based in red light. Interestingly, this explains the red eye-color of most fly 

eyes: the retinal screening pigments are transparent to long wavelength light and 

absorb all other visible wavelength, allowing them to constantly recover back to R by 

ambient light (for details see Fig.2, reviewed in (Hardie and Raghu, 2001)). 

 

The transduction machinery is located in specialized subcellular compartments 

of the photoreceptors, the rhabdomeres (Fig2A). Its structure is dictated by the need to 

maximize the amount of light-absorbing membrane and it is realized by numerous 

tightly packed microvilli.  

 

Since the brain‟s capacity to analyze and interpret information is ultimately 

limited by the input it receives, enhancing the temporal resolution allows insects to 

compute visual information and perform their acrobatic maneuvers despite their coarse 

spatial resolution. 
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Fig.2. Drosophila phototransduction. (A) Photoreceptor in Drosophila. The photoreceptor membrane is 

organized into tightly packed tubular microvilli, each 1-2 m long and ~ 60 nm in diameter, together 

forming a 100 m Rhabdomere. (B) Comparision of quantum-bump kinetics in toad rod outer segment 

and Drosophila. (C) Drosophila phototransduction cascade. (1) Invertebrate phototransduction starts, as in 

vertebrates, when photons are absorbed by the light-sensitive photopigment rhodopsin (R) which 

photoisomerizes to metarhodopsin (M). (2) M can catalyze the exchange of GDP for GTP on the 

heterotrimeric G protein (named Gq in Drosophila and transducin in vertebrates), dissociation of the 

GTP-bound -subunit which subsequently (3) activates the effector enzyme PLC. (4) PLC generates a 

membrane activated second messenger while hydrolizing PIP2 into DAG and InsP3, which in turn activate 

two classes of channels, the TRP and TRPL via an unknown mechanism. DAG is reconverted via a 

multienzmatic pathway into PIP2 while (5) M can be inactivated via phosphorylation by rhodopsin kinase 

(RK) and capped by arrestin, but normally is reactivated by long wave-length light. (6) Finally, G  is 

inactivated by the GTPase activity of the G-Protein, leading to re-association with the G  subunits 

(Modified from Hardie and Raghu (2001)). 

 

2.3.3 The optic lobes 

 

The fly‟s visual ganglia consist of three successive layers of neuropile, the 

lamina, medulla and lobula-complex, where the columnar organization reflects the 

relative position of the ommatidia (Fig. 3A). Therefore, the visual images perceived by 

the eye are retinotopically projected onto sheets of neuropile such that neighborhood 

relationships between image points are conserved within the nervous system (Fig 3B). 

Two chiasms, one between the lamina and the medulla and another one between the 
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medulla and the lobula-complex rotate the retinotopic projection along the antero-

posterior axis. 

 

 

Fig.3. Schematic overview of the visual system of the fly. (A) Dorsal view of the fly‟s visual system, 

including the retina (R), the three main neuropils, the lamina (L), the medulla (M), lobula-complex (lobula 

(L) with lobula plate (LP)), the connective (CC), the inner and outer chiasms (CHI and CHE, respectively) 

and an exemplified HS-cell (From Hausen (1982a)). (B) Schematic overview of the columnar 

organization of the four neuropils. Each layer represents the facets of the retina in a one-to-one fashion 

leading to a retinotopic projection of the visual surround onto the dendrites of the lobula plate 

tangential cells (from Borst and Haag (2002)). 

 

In Drosophila, each column is thought to be composed of approximately 100 

different anatomically described cell types (Fischbach and Dittrich, 1989). With new 

genetic techniques, so far undescribed cell types are still discovered (Shamprasad 

Varija Raghu, personal communication). I will briefly focus on the main characteristics of 

each cell class (for review (Meinertzhagen, 2008)). 

 

Starting form the periphery, as schematically presented in Figure 4, the visual 

pathway begins with the two previously mentioned groups of photoreceptors. While 

R1-6 terminate in the lamina (Meinertzhagen and O'Neil, 1991), the inner group, with 

the photoreceptors R7 & R8, is connected to cells in the medulla. It is known that all 

photoreceptors use the inhibitory neurotransmitter Histamine (Hardie, 1989), which 

opens chloride channels encoded by the gene ort that mediate a hyperpolarizing 

current. 

 

The next neuropile, the lamina, constitutes of 5 different lamina monopolar 

cells, two centrifugal and one T1 cell. Intracellular recordings have been performed in 

indentified L1 and L2 in large flies, showing an inversion and strong high-pass filtering 

of the signals provided by the photoreceptors (Jaervilehto and Zettler, 1971). All 

lamina cells have a stereotyped connectivity pattern in the lamina and between 
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different lamina cells (Meinertzhagen and O'Neil, 1991) and ramify in different layers 

of the medulla (Takemura et al., 2008), connecting to different medullar interneurons. 

In the medulla the exact connectivity is less well understood. 

 

 
 

Fig. 4. Columnar cell types in the optic lobes of Drosophila. Schematic drawing of characteristic 

neuronal subtypes of the fly‟s optic lobe. For clarity, only one type of cell, representative for one 

distinctive class is presented (from (Borst, 2009), modified after (Fischbach and Dittrich, 1989)). 

 

In the medulla, the columnar cell types can be structurally classified into several 

classes (Fig. 4). The medulla intrinsic (Mi) cells ramify exclusively in the medullar 

neuropile whereas transmedulla interneurons (Tm) connect distinct layers of the medulla 

to the lobula with TmY cells having an additional ramification within the lobula plate. 

Finally, the bushy T4-cells connect the innermost layer of the medulla with the lobula 

plate and the bushy T5-cells ramify in the most posterior layer of the lobula as well as 

in the lobula plate. The latter two subtypes are thought to be the main input elements 

of the motion sensitive lobula plate tangential cells (see sec. 2.3.4). Thus, T4 and T5 

are supposed key-players in motion computations (Bausenwein et al., 1992; Douglass 

and Strausfeld, 1996). 
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2.3.4 Motion sensitive interneurons in the lobula plate of large fly species 

 

The lobula plate is a flat structure on the posterior side of the lobula complex. 

Based on electrophysiological work peformed only in big fly species, as Calliphora 

vicina and Musca domestica, the lobula plate is thought to represent the “cockpit” of the 

fly. It is here where the processed motion information is spatially integrated by large 

motion sensitive tangential cells (LPTCs). LPTCs are a group of 60 neurons, each of 

which is individually identifiable based on its characteristic anatomy and response 

properties. Their main response characteristic is that they become excited by motion in 

their preferred direction (PD) and inhibited by motion in the opposite direction, the so 

called null direction (ND; Fig. 5).  

 

LPTCs can be grouped functionally into spiking neurons (e.g. H1-6, V1-3), 

graded potential neurons (CH cells) and neurons with mixed responses (HS, VS and FD-

cells). A different criterion for classification is their primary direction of motion 

sensitivity, vertical (VS and V) or horizontal (H1-6, HS, CH and FD; Fig. 6; reviewed in 

Borst and Haag, 2002). 

 

 

Fig. 5. Intracellular recording of an equatorial horizontal cell (HSE) to moving stimuli. The neuronal 

response to horizontal grating motion from back-to-front (ND) exhibits a hyperpolarization of the 

membrane potential (grating movement is represented by the grey line). When the direction of motion is 

inverted (PD), the cell responds with a strong depolarization superimposed with action potentials of 

irregular amplitude (From Borst and Haag, 2002).  
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Fig. 6. Functional grouping of LPTCs. (A-C) On the left side, a schematic view on frontal brain sections 

with different LPTCs. On the right, their primary response properties to motion in their preferred 

direction (PD; motion stimuli was presented during the black bars). The difference in their functional 

response properties can be clearly seen from (A) purely graded in CH-cells, (B) over mixed responses in 

VS- and HS-cells, to (C) spiking in H1 (adapted from (Borst and Haag, 2002; Hausen, 1976)). 

 

Due to the retinotopic organization of the optic lobes, a map of the fly‟s 

ipsilateral visual field impinges onto the dendrites of the LPTCs, in such a way that 

neighboring locations preserve their relative position to each other (Borst and 

Egelhaaf, 1992; Krapp and Hengstenberg, 1996). Information about local motion, 

computed by the neurons of the lamina and medulla in an unknown way, is fed onto 

these neurons via this dendritic input. LPTCs process this incoming information by their 

interaction in an extensive network composed of ipsilateral and contralateral 

connections between other LPTCs (reviewed in Borst and Haag, 2002). The whole set 

of network computations performed by LPTCs is believed to be central for the course 

control of the fly. Nevertheless, causal evidence in this direction is sparse, but a vast 

amount of loose correlations has been accumulated. The most interesting ones will be 

mentioned next. (i) The Drosophila mutant optomotor-blindH31, where the whole lobula 

plate is missing, lacks almost all optomotor responses (Heisenberg et al., 1978). Since 

this might also be attributed to the lack of other neurons than LPTCs, a dysfunctional 

optic lobe could be expected, making casual interpretations difficult. (ii) Electrical 
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stimulation of different areas of the lobula plate elicits yaw, lift and landing responses, 

similar to those elicited by motion stimuli (Blondeau, 1981). In these experiments, the 

coarse electrical stimulation was rather unspecific and therefore might have activated 

unknown neurons other than LPTCs. (iii) Finally, the most convincing evidence is based 

on optomotor responses which led to the postulation of the „correlation type‟ motion 

detector model (Hassenstein and Reichardt, 1952; Hassenstein and Reichardt, 1956; 

Reichardt, 1957) and that were similarly found in the electric responses of LPTCs 

(Hausen, 1977; Hausen, 1982a). All together, these results led to the widely believed 

idea that these neurons are the main link between visual motion computation and 

optomotor control.  

 

Understanding of the network computations of LPTC has advanced greatly in 

the last few years in Calliphora vicina (Cuntz et al., 2007; Farrow et al., 2005; Farrow 

et al., 2006; Haag et al., 2007; Haag and Borst, 2004; Haag and Borst, 2005; 

Wertz et al., 2008). One interesting example of computation within the LPTC network 

is based on the electrical coupling between VS-cells, a group of 10 LPTCs most 

sensitive to rotational motion around different axes within the equatorial plane (Krapp 

and Hengstenberg, 1996). A set of elegant experiments, combining modeling (Cuntz et 

al., 2007), calcium imaging (Elyada et al., 2009), double recording (Haag and Borst, 

2004), ablation experiments (Farrow et al., 2005) and anatomical studies (Haag and 

Borst, 2005) revealed functional computations performed by the sequentially 

arranged and electrically coupled VS-cells. VS-cells are sequentially organized in the 

lobula plate, receive retinotopic input and are gradually more sensitive for optic flow 

resembling pitch (VS1), roll (VS5) and pitch in the opposite direction (VS10). Due to the 

electrical coupling in their axonal termini, these cells interpolate the signals of 

neighboring cells. This computation in turn is used for the robust detection of the fly‟s 

actual axis of rotation in natural environment with irregular contrast distribution. For all 

those reasons this neural network is thought to be pivotal for steering and course 

correction.  

 

Anatomical studies have shown similarities between the LPTCs found in 

Calliphora (Hausen, 1976) with the ones encountered in Drosophila (Rajashekhar and 

Shamprasad, 2004; Scott et al., 2002). However, functional evidence is fully missing. In 

the work presented here I closesd this gap examining the physiological properties of 

Drosophila’s LPTCs.  
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2.4 The Reichardt detector 

 
Visually guided course control, as a mean to understand the neuronal 

implementation of a control circuitry, began to be a focus of research when Bernhard 

Hassenstein and Werner Reichardt started to do a series of elegant experiments using 

optomotor responses of the beetle Chlorophanus as a behavioral measure (Hassenstein 

and Reichardt, 1952; Fig 7A). These responses represent the animal‟s tendency to 

follow the movement of the visual surround to compensate for its mistaken perception 

of self-motion in the opposite direction. Based on their results Hassenstein and 

Reichardt proposed a model for motion detection that became known as the 

„correlation-type motion detector‟ or simply the „Reichardt model‟ of elementary motion 

detection. The model starts with the idea that a photoreceptor signal simply becomes 

modulated in response to a moving object, according to the brightness difference, no 

matter in what direction the object is moving. Only when at least two photoreceptor 

signals, displaced along the orientation of image motion, are considered can the 

direction and the magnitude of motion be derived by an external observer based on 

the delay of the signals relative to each other (Fig 7B). This is performed by the model 

mainly by two operations, an asymmetrical temporal filtering and a nonlinear 

interaction stage where the low-pass filtered (delayed) signal from one image location 

is multiplied by the high-pass filtered (instantaneous) signal from the neighboring 

image location (Fig 7B). It is the combination of a temporal delay and a multiplication 

that allows this type of detector to measure the degree of coincidence between its 

input channels.  

 

At each image location there exists at least four such subunits with four 

different orientations: one for rightward, one for leftward, one for downward, one for 

upward motion. The difference between the output signals of two complementary 

subunits results in the final detector response. Based on biological evidence, the sum of 

an array of these detectors is used to simulate the retinotopically arranged Reichardt 

detectors build by the neuronal layers of the insect visual system (Fig 7C). 

 

This model can account for many of the properties measured in motion driven 

behaviors, as well as in the electrophysiological responses of LPTCs. In the next 

paragraphs the most important biological correlates will be discussed.  
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Fig 7. The Reichardt detector model (A). Tethered Chlorophanus walking on the Y-maze globe (from 

Hassenstein, 1991). (B) Basic scheme of a Reichardt detector together with its component responses (right 

boxes) to a Gaussian luminescence distribution that moves with a constant velocity from left to right. The 

two mirror symmetric subunits (black and grey subunits) are built up by a delay ( ) and a no-delayed 

line that are combined in a nonlinear manner (M) and, respectively, subtracted into a integrative unit 

( ).The time of stimulation is indicated for each subunit separately (right boxes). „dt‟ is the time needed 

for the object to move from on photoreceptor to the other. The white and red distributions reflect the 

delayed and instantaneous signals at each processing step, respectively. At the multiplication step, the 

black subunit receives the input simultaneously while the grey subunit does it consecutively, enhancing 

and weakening the input signals respectively. After subtraction of these signals, the final output shows 

strong direction selectivity. (C) An array of detectors is used to simulate the neural layers between the 

photoreceptors and tangential cells. The amplitude of the summed responses of all synapses reflects the 

pattern velocity. Note, that in this case, a high- and a low-pass filter were used for the instantaneous 

and delayed line, respectively. In the example shown here pattern motion from left to right is called the 

PD of the motion detector (grating movement is presented by the grey line), while motion in the opposite 

direction will result in a sign-inverted response. This is called the ND of the detector (adapted from Borst 

and Haag (2002)). 

 

2.4.1 Experimental evidence 

 

There are three key predictions of the Reichardt detector model that were 

found in the optomotor response and in the cellular responses of LPTCs:  

 

(i) First of all, the mean response amplitude of elementary motion detectors 

depends on the structure of the presented visual pattern. For a moving visual grating 

the response will depend on the spatial wavelength, its contrast and its overall 

brightness. In particular an increase in velocity will lead to a maximum response. This 

so called velocity-maximum increases linearly with the spatial wavelength of the 

pattern, such that the ratio of the spatial wavelength and velocity is constant, i.e. at the 

same temporal frequency. Such predictable and pattern dependent changes in the 
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optimal velocity have been recorded in LPTCs (Haag et al., 2004; Fig. 8A) and were 

similarly found in compensatory optomotor responses of behaving flies (Buchner, 1976; 

Fermi and Reichardt, 1963; Götz, 1972).  

 

(ii) Second, distinct fingerprints of input from Reichardt detectors to LPTC 

dendrites can be revealed when local signals instead of integrated large–field 

responses are analyzed. According to the Reichardt detector, local signals consist of 

two components, one that is directionally selective and one reflecting the local change 

in luminance. Such oscillations that reflect the modulation in brightness imposed by the 

temporal frequency of the moving grating can be measured when a moving grating is 

presented through a small aperture while recording the axonal membrane potential of 

an LPTC. Alternatively, as shown in Fig. 8B, a whole field moving grating is presented 

while recording local calcium fluctuations in fine dendritic tips (Egelhaaf et al., 1989; 

Haag et al., 2004; Single and Borst, 1998).  

 

 
 

Fig 8. Key evidences for the Reichardt detector model. (A) Temporal frequency tuning recorded from 

the H1 neuron in the blowfly Calliphora vicina using different grating wavelengths . An optimal 

temporal frequency can be seen for all wavelengths presented (adapted from (Haag et al., 2004)). (B; 

Top) A three dimensional reconstruction of a VS1-cell is used as a compartmental model to predict the 

spatiotemporal membrane potential distribution upon stimulation with constant visual motion. The neuron 

is simulated to receive synaptic input from an array of Reichardt detectors. (Bottom) Local membrane 

potential fluctuation in three dendritic areas indicated by the corresponding colors is shown together 

with the axonal membrane potential (lower trace). Although the local dendritic potentials consist of a 

constant response superimposed by temporal modulations of identical frequency but various phase 

offsets, the axon potential is rather smooth. These modeling results resemble the experimentally 

recorded dendritic calcium modulations observed in the same neuron (adapted from (Single and Borst, 

1998)). (C) Motion-dependent response components as derived from the frequency histogram of four 

different apparent motion experiments (On-On, Off-Off, Off-On and On-Off) in H1. Note the response 
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inversion when stimuli were presented with opposing brightness change (bottom two panels; adapted 

from (Egelhaaf and Borst, 1992)) 

 

(iii) Third, using apparent motion experiments, where stepwise changes in local 

luminance were used to excite the cell, the nonlinearity within in the Reichardt detectors 

could be experimentally measured. Presenting luminance changes along the preferred 

direction of H1 (a spiking motion sensitive LPTC), sequences of the same sign (on-on, 

off-off) produced positive motion responses, while mixed sign sequences (on-off, off-

on) resulted in inverted motion responses, as predicted by the model (Egelhaaf and 

Borst, 1992; Fig. 8C). The logic behind this is based on the assumption that Reichardt 

detectors perform a true multiplication that is similarly implemented on the cellular 

level. In mathematical terms an On-response can be stated as +1 and an Off-response 

as -1. When the mentioned stepwise changes are presented following computations 

are performed: +1 x +1= +1; -1 x -1 = +1, -1 x +1 = -1 and +1 x -1 = -1 as seen 

in the recorded signal of the H1 neuron (Fig 8C).  

 

2.4.2 Biological correlates of the motion computation pathway. 

 

Knowledge about the cellular structure of Reichardt detector is poor and rather 

speculative. Nevertheless, circumstantial evidence is steadily increasing with new 

interesting approaches. The known facts will be described next from an anatomical 

point of view, starting from the outer most retina and ending with LPTCs (for an 

anatomical overview see section 2.2).  

 

2.4.2.1  Motion detection in the retina 

 

To reveal the relative locations of the Reichardt detector input channels, 

sophisticated optics were used to present virtual or apparent motion stimuli while 

recording from H1. Sequential stimulation of single ommatidia (Schuling et al., 1989) 

or even single photoreceptors (Franceschini et al., 1989; Riehle and Franceschini, 

1984) revealed that successive stimulation of photoreceptors R1 and R6 within one 

single ommatidium is sufficient to elicit directionally selective responses in H1 

(Franceschini et al., 1989; Riehle and Franceschini, 1984). In addition, interactions 

between individual ommatidia separated by up to eight times the inter-ommatidial 

angle were shown to contribute to the response of the neuron (Schuling et al., 1989).  
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Evidence that suggests that just the information passed on by R1-R6 is 

important for motion detection has come from the Drosophila mutant ora (outer 

rhabdomere absent) and sev (sevenless; Harris et al., 1976; Heisenberg and Buchner, 

1977). sev, which misses its R7 photoreceptor, exhibits qualitatively normal optomotor 

behavior, whereas ora, which lacks R1-R6, is severely affected (Heisenberg and 

Buchner, 1977). This leads to the assumption that color vision in Drosophila is not 

primarily involved in motion vision, since R7/R8 are part of the chromatic and R1-R6 of 

the achromatic system. Further support for this view comes from recent experiments 

where an equiluminant grating of alternating colored stripes elicited zero optomotor 

responses (Yamaguchi et al., 2008). 

 

2.4.2.2  Motion detection in the lamina 

 
Exploring the next cellular neuropile, the lamina, four different channels exist 

that could feed signals from the retina into the motion detection circuitry. There are 

three lamina monopolar cells, L1 to L3, which receive photoreceptor input from R1–6, 

but differ with respect to their postsynaptic partner in the medulla and the T1 cell, 

which receives indirect input from R1–6 via an amacrine cell. Using different cell-

specific driver lines for the monopolar cells a series of elegant experiments was 

performed to dissect their contribution to visual motion detection (Katsov and Clandinin, 

2008; Rister et al., 2007). First, the expression of the temperature-sensitive allele of 

dynamin, called shibirets (Vanderbliek and Meyerowitz, 1991; see also section 2.7), 

blocked synaptic transmission in L1 and L2. Second, rescuing the transmission from   

R1–6 onto either L1 or L2, or both, by selectively expressing the histamine receptor 

encoded by ort in a histamine-receptor null mutant. Any effect of a reconstitution or a 

temperature sensitive block on behavior would indicate sufficiency or necessity of the 

respective pathway. When such flies were used in an optomotor paradigm, it was 

shown that L1 and L2 together are necessary and sufficient for motion detection, thus 

excluding L3 and the amacrine cell-T1 pathway as providing essential input necessary 

for motion detection. Full redundancy of L1 and L2 was only given at high pattern 

contrast. At intermediate pattern contrast L1 and L2 seem to mediate motion vision in 

opposite directions, whereas at very low contrast, both the L1 and L2 pathways were 

needed for motion detection in any direction. Thus, this study demonstrates the 
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significance of L1 and L2 as input lines to the visual motion detection circuitry and 

indicates a differential contribution of L1 and L2.  

 

In Drosophila, L2 innervates the lamina neurons L4 in the same cartridge, which 

reciprocally synapse with two conspicuously backward oriented collaterals onto two L2 

neurons in posterior cartridges. Furthermore the L4 neurons are directly connected to 

all six neighboring L4s (Meinertzhagen and O'Neil, 1991). It has been speculated that 

this circuitry might be specialized in front-to-back motion (Braitenberg and Debbage, 

1974), the prevalent direction in the visual flow-field of fast forward-moving animals. 

A recent behavioral study used cell specific expression of tetanus neurotoxin light chain 

(TNT; Sweeney et al., 1995; see also section 2.7) to block chemical synapses. In this 

study, flies with L4 blocked completely lost optomotor responses but retained wild-type 

phototactic behavior (Zhu et al., 2009). However, this results are drawn into question 

by our experiments (Chapter 7).  

 

2.4.2.3  Motion detection in the in the medulla and lobula 

 

Based on the anatomical analysis of horizontal and vertical sensitive LPTCs, 

four different strata have been found in which these LPTCs extend their dendrites. 

These layers have also been labeled using the 2-deoxy-glucose (2-DG) method 

(Buchner et al., 1984), in which flies were fed with a none-degradable radioactive 

glucose (2-DG) and became stimulated with a moving grating on one eye and a flicker 

stimulus on the other for 4 hours. Combining the analysis of the layers labeled by 2-

DG activity with co-ramification studies of cells located in identical strata of the 

medulla and lobula revealed the neurons that putatively supply input to the LPTCs. 

These are the so called bushy T4- and T5-cells that terminate in each of the four strata 

of the lobula plate (Strausfeld and Lee, 1991). This reasoning led to the proposal of 

two different cellular pathways from the photoreceptors to the LPTCs (Bausenwein et 

al., 1990; Strausfeld, 1984; Fig 9). It needs to be emphasized that to date neither 

physiological nor ultrastructural data exist to solidify these presumptions. The only 

exception is an electron microscopy study in the blowfly that has unequivocally shown 

a chemical synapse between an HS-cell dendrite and a columnar T4-cell (Strausfeld 

and Lee, 1991). 
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2.4.2.4  Motion detection in the in the lobula plate 

 

The subtraction of local motion detector signals with opposite preferred 

direction is supposed to be implemented on the dendrites of LPTCs (Borst and 

Egelhaaf, 1990; Egelhaaf et al., 1990; Gilbert, 1991). This conclusion was drawn from 

experiments using the GABA-receptor antagonist picrotoxin (Egelhaaf et al., 1990) 

and current clamp experiments with negative and positive DC current injections (Borst 

et al., 1995; Borst and Egelhaaf, 1990; Gilbert, 1991) while presenting drifting visual 

gratings to the fly. According to these studies the subtraction stage of the Reichardt 

detectors is implemented as a push-pull mechanism, where excitatory cholinergic (Brotz 

and Borst, 1996) and inhibitory GABAergic (Brotz and Borst, 1996) inputs become 

spatially integrated on the LPTC dendrites.  

 

Fig 9. Different proposed pathways for motion vision. One pathway uses the photoreceptors R1-6 

that impinge onto the lamina neuron L1. L1 in turn activates the intrinsic medulla neuron Mi1 that 

synapses onto T4-cells, which then connects to LPTC dendrites. Another potential pathway, which also 

originates in R1-6, uses the lamina neuron L2. L2 connects to the trans-medulla neuron Tm1, which 

connects to the most posterior stratum of the lobula. There it contacts T5 cells, which bring the information 

onto LPTC dendrites (Bausenwein et al., 1992). 
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2.4.3 Motion computation in other organisms 

 

Directionally selective neurons have been described in the visual cortex of cats 

(Hubel, 1959; Hubel and Wiesel, 1959), the optic tectum of frogs and pigeons (Lettvin 

et al., 1959; Matruana and Frenk, 1963), in retinal ganglion (Barlow et al., 1964) and 

starburst amacrine cells (Euler et al., 2002) of the retina of rabbits, turtles, 

salamanders and mice and in the area MT (Albright et al., 1984; Dubner and Zeki, 

1971) of macaques and many other animals. Intriguingly, the neuronal mechanisms 

underlying motion detection in these cells appear to be based on different neuronal 

implementations. Whereas motion sensitivity in the LPTCs is computed by a “Reichardt 

detector”, motion selectivity in the retina has different fingerprints. The most striking 

difference is that the nonlinearity described by the true „sign‟ multiplication is absent. In 

this case two mechanisms have been proposed: a presynaptic one, based on direction 

selective starburst amacrine cells (Euler et al., 2002; Hausselt et al., 2007), and a 

postsynaptic one (Barlow and Levick, 1965; Fried et al., 2002), based on the interplay 

of inhibitory starburst amacrine cells on postsynaptic direction selective retinal ganglion 

cells (for review (Fried and Masland, 2007; Wassle, 2004)). Moreover, very recently, 

a new directionally selective retinal ganglion cell type was described that does not 

stratify in the starbust amacrine cell layer (Kim et al., 2008), giving rise to the question 

about the cellular implementation of the motion detection pathway.  

 

The ubiquitous presence of motion selective units in the animal kingdom 

supports the notion of the fundamental importance of this computation for survival. 

Nevertheless, the underlying computations are in no case completely understood. Being 

a computationally precisely described problem and being implemented in relatively 

„simple‟ neuronal networks, visual motion detection has emerged as one of the most 

attractive problems to analyze complex computations in the brain. In this regard, 

newly developed genetic tools in the mouse retina (Huberman et al., 2009; Kim et al., 

2008; Siegert et al., 2009) and in Drosophila are opening exciting possibilities in this 

field of research. 

 

2.5 The genetic armory of Drosophila melanogaster 

 
In order to understand the principles of information processing in neural circuits 

a systematic characterization of the participating cell types and their connections is 
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required. Even in the optic lobe of big flies, the small size of the constituting 

interneurons, whose processes can be thinner than 100 nm, and the extremely tight and 

complex cellular network impeded reliable electrophysiological approaches so far (but 

see Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996). One prominent 

exception has been the LPTCs of big flies like Calliphora vicina, which due to their 

larger size are electrophysiologically approachable (see section 2.3.4). Nevertheless, 

their input elements and consequently the network interactions involved in the 

computation of motion information are not understood. To overcome this problem, new 

genetic approaches in Drosophila promise to provide experimental access to such a 

complex neural system. Using the ability to measure and alter neural activity in 

genetically determined populations of neurons is expected to reveal the logic of the 

neural circuits that guide behaviors. In the next paragraph the most important genetic 

tools available in Drosophila will be discussed (reviewed in (Borst, 2009; Luo et al., 

2008)). 

 

The “Swiss army knife” of Drosophila’s genetic toolbox is the two-component 

Gal4/UAS-system for targeted transgene expression (Brand and Perrimon, 1993; Fig. 

10 top). In this system, a genomic enhancer activates the yeast transcription factor 

(Gal4) which can activate and amplify the expression of any gene of interest (in Fig. 

10 noted as “gene X”) that is under control of the appropriate upstream activating 

sequence (UAS; Fig. 10 top). This system can be used to identify, activate or inactivate 

genetically defined cell types, depending on the transgene (“gene X”) expressed. To 

restrict the expression in an even more defined population of neurons, several tricks 

have been invented. One is the Split-Gal4 system (Luan et al., 2006), a combinatorial 

approach in which the DNA-binding domain and the activation domain of Gal4 are 

expressed under the control of different promoters with partly overlapping expression 

patterns. Only in those cells where both Gal4 subunits are expressed functional Gal4 is 

formed. Another approach to reduce the expression pattern is the so called MARCM-

system (Lee and Luo, 1999). This system uses induced mitotic recombination between 

homologous chromosomes to eliminate the Gal4 repressor Gal80 (Lee and Luo, 1999) 

in order to genetically highlight or express a specific gene in single cells or a small 

population of neurons. However, the outcome of the recombination is random, confining 

this technique primarily for anatomical studies. Interestingly, the repressor Gal80 can 

also be used for a genetic reduction of Gal4-expression. Similar to the Split-Gal4 

system, the expression pattern of a specific Gal4 line can be constrained if a partly 
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overlapping Gal80 expression is superimposed. Finally, the most promising approach 

that will enable the expression of an exogenous gene in distinct small subset of the 

adult fly brain has been developed recently. Using a site-specific genomic integration 

methodology to insert thousands of defined enhancer sequences in the fly‟s genome, 

thousands of transgenic fly lines are currently developed to encompass all neurons in 

the brain in a variety of intersecting patterns (Pfeiffer et al., 2008). Highly specific 

and reproducible expression patterns will be cardinal for the clean and exact 

dissection of neuronal circuits the fly brain. 

 

 
 
 

Fig. 10. Genetic toolbox available in Drosophila. (top box) The Gal4-UAS-system allows transgenic 

expression of any gene of choice („Gene X‟) in specific populations of neurons. (Top red arrow) 

Schematic of a ratiometric genetically encoded calcium indicator. This probe allows imaging calcium 

fluctuations as a read-out for neuronal activity in genetically defined populations of cells. (Middle and 

lower red arrows) Genetically encoded photosensitive channels can either excite or inhibit neuronal 

activity when stimulated with light. Disruptors of synaptic release can silence synaptic output in defined 

populations of cells (from (Borst, 2009)). 

 

Three main transgenic effectors can be used to dissect neuronal circuit functions. 

The first one is the transgenic expression of a fluorescent protein, such as GFP (Green 
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Florescent Protein; Chalfie et al., 1994), which allows precise anatomical studies in 

specified groups of cells(REF). Combining GFP with calcium sensing proteins, like 

Troponin or Calmodulin (Heim and Griesbeck, 2004; Miyawaki et al., 1997; Nakai et 

al., 2001), or making GFP pH sensitive (Miesenbock et al., 1998), enabled the use of 

these probes for imaging of neuronal activity (Reiff et al., 2002; Reiff et al., 2005) 

and synaptic release (Ng et al., 2002), respectively (Fig 10. top red arrow). To 

activate or silence neurons, pioneering work has been performed in the last years to 

develop photosensitive channels (Seki et al., 2007; Szobota et al., 2007; Zemelman et 

al., 2002; Zemelman et al., 2003; Zhang et al., 2007). These channels can be 

expressed in defined populations of neurons, allowing functional dissections by light of 

neuronal circuitries in flies (Lima and Miesenbock, 2005; Schroll et al., 2006; Fig. 10 

middle red arrow and bottom red arrow upper insert). Another family of channels that 

can be activated are the temperature sensitive TRP-channels. These channels react to 

cold or heat by changing their conductance and thus can influence neuronal activity 

(Hamada et al., 2008; Peabody et al., 2009). Finally, a set of proteins are known to 

disrupt synaptic output. The most prominent one is shibirets, a dominant negative 

temperature sensitive allele of dynamin, which allows synaptic transmission at a 

permissive temperature and blocks it at around 30 °C (Vanderbliek and Meyerowitz, 

1991; Fig. 10. bottom insert). Another widely used disruptor is tetanus neurotoxin light 

chain (TNT; Sweeney et al., 1995) which cleaves synaptobrevin and thus blocks 

synaptic transmission irreversibly.  

 

Some interesting behavioral and anatomical studies have already taken 

advantage of this set of genetic tools to analyze circuit function in the fly‟s optic lobes 

(Gao et al., 2008; Katsov and Clandinin, 2008; Raghu et al., 2007; Raghu et al., 

2009; Rister et al., 2007; Zhu et al., 2009) and demonstrate the strength of this 

approaches (see section 2.4.2.2 & results, for review (Borst, 2009)).  

 

2.6 Project goals and achievements 

 

The work presented here aims at expanding the current knowledge of visual 

information processing in the fly brain. I focus on the fruit fly‟s motion detection 

network and the subsequent course control circuitry. For this purpose I took advantage 

of Drosophila melanogaster as a genetic amenable organism. Drosophila enables a 

genetic dissection of defined neuronal circuitries. In doing so, I establish for the first 
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time an electrophysiological approach to characterize genetically targeted large-field 

tangential cells in the fruit fly (LPTCs). This allowed me to record the LPTC responses 

that turned out to be motion sensitive. When presenting motion stimuli to the fly two 

different groups of LPTCs, the VS- and HS-cells, responded with a depolarizing 

graded potential shift with superimposed spikelets in their preferred direction and a 

hyperpolarizing graded shift when presenting motion in the opposite direction. 

Moreover, their basic response properties satisfy the predictions of the Reichardt 

detector model. This validates the assumption that in different dipteran flies motion 

vision is accomplished in similar circuitries and according to common algorithmic rules 

(Chapter 4 & 6; Jösch et al., 2008; Schnell et al., submitted). Furthermore, I analyzed 

the complex receptive fields of LPTCs by developing a new stimulus paradigm. I found 

that frontal VS-cells (VS1-VS4) are primarily sensitive to vertical motion and that their 

maximal responses shift from frontal (VS1) to more lateral (VS4). In contrast, VS5 and 

in particular VS6 turned out to be more sensitive to rotational stimuli with the center of 

rotation at 25° and 50°, respectively. HS-cells have their maximal sensitivity in 

different horizontal planes with the most dorsal HSN being most sensitive to dorsal 

motion stimuli and the most ventral HSS to ventral stimuli (Chapter 6 & 7; Schnell et al., 

submitted; Jösch et al., in preparation). Moreover, HS- and VS-receptive fields appear 

to be wider then expected from a scheme that assumes retinotopically organized input. 

We performed Neurobiotin perfusions of single VS- and HS-cells and found indirect 

evidence of electrical connections within cells of each group. In essence, this suggests 

that the expansion of the width of the receptive field arises from electrical coupling. All 

together, these results open the way for further investigations of specific properties of 

the network. An obvious example would be the analysis of the molecular key players 

that mediate the widening of the receptive fields of LPTCs. Moreover, the functional 

relevance of electric coupling can be analyzed by combining genetic manipulation with 

behavioral experiments. Thus, the full approach establishes the link between molecules, 

network function and the animal‟s behavior. Most importantly, the identification of cells 

and cellular mechanisms that accomplish visual motion detection will enable us to 

establish a biophysically realistic model of the Reichardt detector. 

 

In parallel, I contributed important information to two studies that addressed 

the synaptic organization of LPTCs. Using cell-specific expression of transgenes 

encoding receptors and presynaptic molecules both either tagged with GFP or a his-

tag we found that LPTCs are postsynaptic in the lobula plate and presynaptic in the 
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protocerebrum. The expression of Acetylcholine- and GABA-receptors on the fine 

dendritic branches suggests that presynaptic input is provided by excitatory and 

inhibitory input from motion-sensitive elements with opposite preferred direction. 

Interestingly, LPTCs receive additional GABAergic input on their axonal termini in the 

protocerebrum, shaping the output of LPTCs in an unknown way. These functional 

anatomical studies lay the ground for future compartmental models of the motion 

detection network (Chapter 3 & 5; Raghu et al., 2007; (Raghu et al., 2009). 

 

Finally, I could improve the electrophysiological technique and optics to record 

form unlabeled LPTCs. This development allowed me to use the Gal4/UAS system that 

previously was needed to fluorescently highlight LPTCs, to disrupt presynaptic elements 

in the lamina without affecting LPTCs. Using targeted expression of tetanus neurotoxin 

light chain I started blocking synaptic release from specified populations of lamina 

monopolar cells while recording the responses of LPTCs. Disrupting L1,L2 and L3 

caused a complete block of LPTC motion responses. Interestingly, when blocking either 

L1 or L2, no mayor difference was found compared with wild-type responses when 

presenting a moving grating. However, specific response deficits became obvious when 

moving edges of single contrast polarity were used as visual stimuli instead of gratings. 

These findings suggest that the visual input stream to the motion detection circuitry is 

segregated into ON- and OFF-channels, carrying information about increasing or 

decreasing image contrast separately. Moreover, the segregation of the input channels 

is in line with a four quadrant multiplication model (Hassenstein & Reichardt, 1956) 

that challenges the existence of a “true sign” multiplication implemented in the fly‟s 

motion detection circuitry. 

 

In summary, my work paved the way for the cellular and functional analysis of 

motion vision and course control in Drosophila. 
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Abstract 
 

In flies, the large tangential cells of the lobula plate represent an important 

processing center for visual navigation based on optic flow. While the visual 

response properties of these cells have been well studied in blowflies, information 

on their synaptic organization is mostly lacking. Here, we study the distribution of 

presynaptic release and postsynaptic inhibitory sites in the same set of cells in 

Drosophila melanogaster. Making use of transgenic tools and immuno-

histochemistry, our results suggest that HS- and VS-cells of Drosophila express 

GABA receptors in their dendritic region within the lobula plate, thus being 

postsynaptic to inhibitory input there. At their axon terminals in the protocerebrum, 

both cell types express Synaptobrevin suggesting the presence of presynaptic 

specializations there. Superimposed on this synaptic polarity, HS- and VS-cell 

terminals additionally show evidence for postsynaptic GABAergic input. Our 

findings are in line with the general circuit for visual motion detection and 

receptive field properties as postulated from electrophysiological and optical 

recordings in blowflies, suggesting a similar functional organization of lobula plate 

tangential cells in both species. 
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Introduction 
 

Self motion of an observer causes the images of the environment to shift on its retina. 

The resulting distribution of motion vectors in the visual field is called „optic flow‟ and 

represents a rich source of information about the exact type of self motion. Therefore, 

optic flow information is heavily used for navigation and visual course control. 

However, before that, visual motion stimuli need to be processed in a number of steps. 

First, local motion information has to be computed from the time-varying brightness 

values at each retinal location (Reichardt 1961, 1987; Borst and Egelhaaf, 1989). In a 

second step, the spatial distribution of the local motion vectors has to be analyzed in 

order to be indicative for any specific maneuver (Koenderink and van Doorn, 1987).  

 

In flies, the wide field lobula plate tangential cells (LPTCs) present in the posterior part 

of the third optic neuropil called the „lobula plate‟ are specifically tuned for particular 

optic flow patterns. In Calliphora vicina, LPTCs represent a group of about 60 cells per 

hemisphere each of which can be identified individually due to its characteristic 

anatomy and visual response properties (Hausen, 1982a, b, 1984; Hengstenberg et 

al., 1982). Amongst these cells, there exist a group of three cells mostly sensitive to 

horizontal image motion as occurring during rotation around the fly‟s  vertical body 

axis called HS-cells, and another set of 10 cells, sensitive to rotation around different 

axes within the equatorial plane of the fly, called VS-cells (VS1 through 10; 

Hengstenberg et al., 1982; Krapp and Hengstenberg, 1997). In Drosophila 

melanogaster, different VS- and HS-cells as well as all columnar neurons have been 

well described on the morphological level (Scott et al., 2002; Fischbach and Dittrich, 

1989; Heisenberg et al., 1978; Rajashekhar and Shamprasad, 2004). As in 

Calliphora, the dendrites of the different VS-cells cover rather narrow and overlapping 

vertical stripes within the lobula plate. However, in contrast to their large cousins, there 

seem to exist only 6 VS-cell in Drosophila, based on the analysis of the Gal4 line 3A 

(Scott et al., 2002), as opposed to 10 in Calliphora (Hengstenberg et al, 1982; Krapp 

et al., 1998). The HS-system comprises three individually identifiable cells – the 

northern HSN-, the equatorial HSE- and the southern HSS-cell, in Drosophila as well as 

in Calliphora (Hausen, 1982a). The dendrites of these cells cover a rather wide area 

within the lobula plate, resulting in significant overlap of their dendritic fields 

(Fischbach and Dittrich, 1989, Scott et al., 2002). Their axons travel medially and 

terminate in the protocerebrum near the esophagus.  
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Many visual response characteristics of LPTCs, such as their dependence on pattern 

properties like velocity, contrast and spatial frequency, are appropriately described 

by the so-called Reichardt model of local motion detection (Reichardt, 1961, 1987; 

Egelhaaf et al., 1989; Borst and Egelhaaf, 1989). Reichardt detectors provide a 

direction-selective signal by correlating the luminance levels in adjacent retinal 

locations, after they have been temporally filtered in an asymmetric way. At each 

retinal location this correlation process is done twice in a mirror symmetric way, after 

which the signals become subtracted from each other. Such detectors are thought to 

exist along the horizontal as well as along the vertical image axis and to be realized 

by small-field columnar elements in the medulla and lobula, the second and third 

neuropil in the fly optic lobe (Buchner et al., 1984; Douglass and Strausfeld, 1995; 

Brotz and Borst, 1996). Most importantly in the present context, the final stage of local 

processing, i.e. the subtraction of opposing motion signals, is thought to be represented, 

together with the spatial integration of local motion signals, within the large LPTC 

dendrites, by excitatory and inhibitory columnar elements, synapsing onto the 

dendrites of LPTCs in a retinotopic way (Borst and Egelhaaf, 1990; Borst et al., 1995; 

Haag et al., 1992; Single et al., 1997; Single and Borst, 2002). However, this type of 

dendritic input is not sufficient to explain the spatial lay-out of the receptive fields 

observed in LPTCs. In addition, LPTCs turn out to be heavily connected amongst each 

other, both within one hemisphere and between both hemispheres, through chemical as 

well as electrical synapses (Haag and Borst, 2001, 2002, 2003, 2004, 2005). As has 

been demonstrated by single cell ablation experiments, the width of the receptive 

fields of VS-cells is substantially enlarged by the input individual VS-cells receive from 

their neighbors via gap junctions and furthermore shaped by distal VS-cells inhibiting 

each other mutually (Haag and Borst, 2004; Farrow et al., 2005). Being tuned to 

specific optic flow patterns directly through the input onto their dendrites, as well as 

indirectly by their network connectivity with many other tangential cells, LPTCs convey 

this information onto descending neurons in the protocerebral region, which ultimately 

control motor neurons for flight and head movements (Gronenberg and Strausfeld, 

1990; Gilbert et al., 1995).  

 

Many of the neurons of the motion detection pathway have been characterized in 

great anatomical (Hausen 1982a, b; Fischbach and Dittrich, 1989; Strausfeld and 

Bassemir 1985a, b) and physiological details (Douglass and Strausfeld, 1995, 1996; 

Hengstenberg et al., 1982; Hausen, 1984; Gronenberg and Strausfeld, 1990). 
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However studies providing direct anatomical evidence for synaptic contacts between 

these different neurons are relatively sparse. Only three electron microscopic studies 

have been performed so far on the distribution of chemical synapses on different 

LPTCs. They provided evidence for chemical synaptic sites on some VS-, HS-, Col A- 

and CH-cells (Hausen et al.,1980; Gauck et al., 1997) and proved chemical synaptic 

contact between an HS-cell and the small field columnar T4 cell from the medulla 

(Strausfeld and Lee, 1991). Interestingly, the analysis of CH-cells revealed that the 

designation of dendrites and axon terminals as sites of synaptic in- and output, 

respectively, based on their anatomy and orientation along the assumed visual 

pathway does not correspond to their functional properties. CH-cell dendrites within 

the lobula plate possess pre- as well as postsynaptic specializations while their 

protocerebral ramifications turned out to be purely postsynaptic. Pharmacological and 

histochemical studies provided evidence for acetyl choline receptors (Sattelle, 1980) 

and Rdl-type dieldrin resistant GABA receptor subunits (Ffrench-Constant et al., 1990) 

on the dendrites of LPTCs (Brotz and Borst, 1996; Brotz et al., 2001). However, these 

studies did not allow to clearly assign the observed antibody stainings to identified 

single cells, and the protocerebral terminals have not been analyzed.  

 

Drosophila melanogaster offers a number of transgenic tools suitable to precisely 

address such analysis in individual LPTCs. In the following, we focus our studies on the 

distribution of chemical synapses in HS- and VS-cells in Drosophila. We used the Gal4-

UAS system (Brand and Perrimon, 1993) to highlight entire cells and simultaneously 

target different synaptic marker proteins in VS- and HS-cells. Briefly, the system 

consists in crossing a Gal4-driver line determining in which cells a given gene shall be 

expressed with a UAS-reporter line determining which gene is being expressed in 

these cells. The driver line brings in the yeast transcriptional activator Gal4 (for which 

no natural recognition sequence exists in wild-type fly strains) under the control of a 

cell-specific enhancer. The UAS-reporter line houses a transgene cloned right behind a 

Gal4 responsive, upstream activating sequence (UAS). Only in cells that express Gal4 

the transcription of the reporter gene will be activated and the reporter protein will 

ultimately be expressed. To visualize whole cells or different pre- or postsynaptic sites, 

indicator flies were used containing the following DNA constructs, all under control of 

the UAS sequence: i) Whole cells were visualized by using a transmembrane protein 

(mCD8) fused with the green fluorescent protein (GFP). This construct will be called 

‟UAS-mCD8-GFP‟ (Lee and Luo, 1999). ii) To visualize cytoskeletal parts of the cell, we 
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used the DNA for actin fused to the one coding for green fluorescent protein (GFP). 

This construct is called „UAS-actin-GFP‟ (Verkhusha et al., 1999). iii) To mark 

presynaptic release sites, we used a fusion protein which consists of the synaptic vesicle 

protein Synaptobrevin (Trimble et al., 1988; Baumert et al., 1989; DiAntonio et al., 

1993) and the monomeric form of the red fluorescent protein mDsRed. This construct is 

called „UAS- nSyb-mRed‟ (see methods). iv). To mark inhibitory postsynaptic sites, we 

used DNA coding for the Rdl receptor (Ffrench-Constant et al., 1990) fused to a small 

Hem-Agglutinin (HA) tag against which antibodies were directed to visualize them. This 

construct is called „UAS- Rdl-HA‟ (Sa´nchez-Soriano et al., 2005). Small number and 

single cell clones expressing different combinations of these UAS-reporters were 

generated by Mosaic Analysis using a Repressible Cell Marker (MARCM, Lee and Luo, 

1999). The technique is described in great detail elsewhere. In brief, MARCM relies on 

the ubiquitous co-expression of Gal80 which represses Gal4-UAS-mediated gene 

expression. However, the gene encoding Gal80 can be eliminated from dividing cells 

by heat-induced recombinatory events between the homologous chromosomes. As a 

result, a small subset or only a single cell of the primary enhancer - Gal4 pattern will 

execute the UAS-controlled reporter expression. Alternatively, single cells were stained 

by intracellular dye injection. Both methods were combined with antibody stainings 

against the inhibitory neurotransmitter GABA. As a result, the present study suggests 

distinct inhibitory postsynaptic sites on the dendrites of both VS- and HS-cells. In 

contrast to CH-cells in Calliphora, neither VS- nor HS-cells show any signs of 

presynaptic specializations within their dendrites within the lobula plate as revealed 

by the mentioned techniques and laser scanning confocal microscopy. The axon 

terminals of Drosophila VS- and HS-cells, however, show evidence for both pre and 

postsynaptic sites. Thus these cells likely receive chemical input from both the lobula 

plate and the protocerebral region. The chemical output of both cell types, as 

revealed on the non-EM level, is strictly confined to the protocerebral element of these 

cells. These findings about the particular polarity and distribution of inhibitory input to 

VS- and HS-cells will be discussed in the functional context of visual motion detection, 

receptive field properties and visual course control. 
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Materials and methods 
 

Fly culture. Drosophila melanogaster were grown on standard corn medium at 25 ºC, 

12:12 hours dark: light cycle and 60 % humidity. For all experiments flies were kept in 

30 ml - vials containing ~ 10 ml food. All flies behaved entirely normal. The flies did 

not show any obvious deficits and thus no specific tests were done.   

 

Molecular biology, fly strains and MARCM analysis. We used the Gal4-UAS system 

to direct gene expression to defined populations of neurons within the Drosophila brain 

(Brand and Perrimon, 1993). The previously described (Scott et al., 2002) enhancer 

trap line Gal4-3A (kindly provided by M. Heisenberg, Wuerzburg) was crossed to the 

following UAS-reporter fly lines: UAS-mCD8-GFP (Lee and Luo, 1999, kindly provided 

by L. Luo, Stanford), UAS-actin-GFP (Verkhusha et al., 1999, kindly provided by H. 

Oda, Kyoto, Japan), UAS-Rdl-HA (Sa´nchez-Soriano et al., 2005,  kindly provided by 

A. Prokop, Manchester) and UAS-nSyb-mRed. UAS-nSyb-mRed flies were generated 

as follows: the cDNA of neuronal synaptobrevin (nSyb, DiAntonio et al., 1993, cDNA 

kindly provided by D. Deitcher, Ithaca, New York) was amplified via PCR. The stop 

codon was removed and a 3‟ EcoRI and 5‟ NotI site was added. Monomeric DsRed 

(mRed, Campbell et al., 2002, cDNA kindly provided by R.E. Tsien, San Diego) was 

amplified introducing a 3‟ NotI and a 5‟ XbaI site. Both cDNAs were subcloned into the 

pUAST-vector (Brand and Perrimon, 1993) such that mRed was fused to the C-terminal 

end of nSyb. Transgenic flies were generated via standard techniques using P-element 

mediated germ line transfection (Spradling and Rubin, 1982). For all our experiments 

an x-chromosomal UAS-nSyb-mRed insertion was used.    

 

Female experimental flies in which the full Gal4-3A expression pattern was employed 

had the following genotypes: UAS-nSyb-mRed/+; UAS-mCD8-GFP/+; Gal4-3A/+ 

(Coexpression of mCD8-GFP and nSyb-mRed), +/+; UAS-mCD8-GFP/UAS-Rdl-HA; 

Gal4-3A/+ (Coexpression of mCD8-GFP and Rdl-HA) and  +/+; UAS-actin-

GFP/UAS-Rdl-HA; Gal4-3A/+ (Coexpression of actin-GFP and Rdl-HA).   

 

Restricted Gal4-3A expression patterns were created by clonal analysis using the 

MARCM technique (Lee and Luo, 1999). We generated female experimental flies of 

the genotype hs-FLP, UAS-mCD8-GFP/ UAS-nSyb-mRed; FRT40A/FRT40A, tubP-Gal80; 

Gal4-3A/+. For the induction of mitotic recombination eggs were collected at one hour 
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intervals. The emerged larvae were exposed to heat shocks (45 to 60 minutes in a 37 

ºC water bath) two and three days after hatching. A fluorescence stereomicroscope 

(Leica MZ16FA) was used to select three to five day old flies that showed GFP and 

mRed expression.  

 

Immunohistochemistry. Female flies three to five days after eclosure were dissected. 

Their brains were removed and fixed in 4 % paraformaldehyde for 30 minutes at 

room temperature. Subsequently, the brains were washed for 45 - 60 minutes in PBT 

(phosphate buffered saline (pH 7.2) including 1 % Triton X-100). For antibody 

staining, the samples were further incubated in PBT including 2 % normal goat serum 

(Sigma Aldrich, G9023) and primary antibodies (1: 200, overnight at 4 ºC). 

Antibodies were removed by several washing steps (5 x 20 minutes in PBT) and 

secondary antibodies were added (1: 200, overnight at 4ºC). A 5 x 20 minutes 

washing protocol (PBT) was followed by final washing steps in PBS (5 x 20 minutes). 

The stained brains were mounted in Vectashield (Vector Laboratories, Burlingame) and 

analyzed by confocal microscopy (see below).  

 

The following primary and secondary antibodies were used in the present study. 

Primary antibodies: Alexa Fluor 488 rabbit anti-GFP-IgG (catalog number-A-21311, 

lot number-37766A, Molecular Probes; Huang et al., 2005; Reiff et al., 2005), 

monoclonal rat anti-HA (catalog number-11867423, lot number-11928100, Roche; 

Sa´nchez-Soriano et al., 2005) and polyclonal rabbit anti-GABA (Catalog number-

ab8891, lot number-99876, Abcam; Papay et al., 2006; Buijs et al.,1987). The 

specificity of Alexa Fluor 488 rabbit anti-GFP-IgG antibody was tested in brain tissues 

from UAS-mCD8-GFP flies and that of rat anti-HA antibody in UAS-Rdl-HA flies in the 

absence of the Gal4-driver. The GABA antibody was raised in rabbit by immunizing 

with GABA-glutaraldehyde-lysine conjugates. The specificity of this antibody was 

tested in the rat brain previously (Buijs et al., 1987). As a control for specificity of this 

antibody, Drosophila brains were incubated with GABA antibody that was 

preabsorbed with GABA-glutaraldehyde-BSA\GABA-glutaraldehyde-lysine 

conjugates as described by Buijs et al. (1987). The results from all control experiments 

for the primary antibodies are illustrated in the supplementary Fig.1. Secondary 

antibodies: Alexa Fluor 568 goat anti-rat-IgG (catalog number-A11077, lot number-

40136A, Molecular Probes), Alexa Fluor 405 goat anti-rabbit-IgG (catalog number-

A31556, lot number-37764A, Molecular Probes). 
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Intracellular dye filling. UAS-GCaMP1.3 (Reiff et al., 2005) expressing flies (driven 

by Gal4-DB331, kindly provided by R. Stocker, Fribourg) were used to target LPTCs 

for intracellular dye injection. GCaMP1.3 was chosen for its detectable but low 

fluorescence level at resting intracellular calcium. These flies were decapitated and the 

cut heads were fixed in a layer of two-component glue (UHU Plus, 

UHU GmbH & Co. KG, Baden, Germany) with the facet eyes looking downward into 

the glue. After hardening of the glue (~2 min) the specimen were covered with ringer 

solution and the cuticle at the backside of the fly‟s head was removed using sharp 

needles (Neolus, Gx3/4” 0,4 x 20 mm). This procedure allowed direct access to the 

brain and protease XIV (E.C.3.4.24.31, Sigma, Steinheim, Germany) treatment (1 mg / 

ml) to partially digest the neurolemma. After two minutes the protease solution was 

replaced by protease free Ringer solution including several washing steps. Finally the 

main tracheal branches were removed. Dye fillings were performed using quartz 

electrodes (QF 100-60-10, Sutter Instrument) pulled on a laser puller (P-2000, Sutter 

Instrument). Electrodes were filled with a 10 mM  Alexa Fluor 594 solution (A10442, 

Invitrogen GmbH) and backfilled with 2 M KAc / 0,5 M KCl solution. Impailed cells 

were loaded by negative current pulses for few seconds. Subsequently, the brains 

were fixed in 4 % PFA for 30 min and antibody staining was performed as described.   

 

Microscopy and Data Analysis. Serial optical sections were taken at 0.5 µm intervals 

with 1024 x 1024 and 512 x 512 pixel resolution using confocal microscopes (LEICA 

TCSNT and LEICA SP2) and oil-immersion 40X- (n.a. = 1.25), 63X- (n.a. = 1.4) and 

100X- (n.a. = 1.4) Plan-Apochromat objectives. In most cases, coronal sections were 

taken from the posterior side of the brain. For Figure 1c, horizontal sections were taken 

in the dorsal region of the brain. The individual confocal stacks were analyzed using 

Image J (NIH, U.S.A) and Amira 3.1 (Zuse Institute Berlin (ZIB), Berlin) software. The 

size, contrast and brightness of the resulting images were adjusted with Photoshop® 

CS (Adobe Systems, San Jose, CA).   
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Results 

 

The Gal4-3A expression pattern  

 

In the present study we expressed different transgenes in VS- and HS-cells in the 

Drosophila brain. In a first series of experiments the basic expression pattern of Gal4-

3A (Scott et al., 2002) was analyzed in female flies (UAS-mCD8-GFP/UAS-mCD8-

GFP; Gal4-3A/+). The fluorescence of the membrane tagged marker mCD8-GFP was 

enhanced by antibody staining against GFP (see methods). This was done to highlight 

the complete cell population included in the Gal4-3A expression pattern. A wide-

spread GFP-expression was found in the different layers of the optic lobe including 

the medulla (M), lobula (L) and lobula plate (LP; Fig.1). However, due to their massive 

GFP expression six VS- and three HS-cells stand out from the surrounding fluorescence 

and could be easily identified based on a previous anatomical description (Scott et al., 

2002; Fig. 1a and b, arrowheads). Different VS-cells lie serially with their overlapping 

dendrites stretching out along the dorsal-ventral axis of the lobula plate (Fig. 1a). 

Their axons extend to the posterior slope in the peri-esophageal region (Fig. 1d) 

where they bifurcate and give rise to two vertically oriented main branches. These 

vertical branches have few side branches projecting laterally. Anterior to the VS-cells, 

all three HS-cells, HSN, HSE and HSS (Fig. 1b) described in Calliphora and Musca were 

found in the Drosophila lobula plate, as previously shown by Fischbach and Dittrich 

(1989) and Scott et al. (2002). The dendrites of the HS-cells cover the dorsal (HSN), 

medial (HSE) and ventral (HSS) parts of the lobula plate (Fig. 1b).  

 

A horizontal cross section of the optic lobe illustrating the expression pattern of the 

Gal4-3A driver line is shown in Figure 1c. At least two distinct layers can be observed 

in the lobula plate. Dendrites of different VS-cells occupy the posterior layers of the 

lobula plate whereas HS-cell dendrites occupy the anterior most layers (Fig 1c). This is 

in agreement with several different antibody stainings from Brotz et al. (2001) and 

activity dependent labeling patterns obtained with radioactive labeled 2-deoxy-

Glucose  (Buchner et al., 1984). Buchner et al. (1984) could further separate the VS- 

and HS- dendritic layers in layers preferentially responding to the preferred- or null-

direction of a moving visual stimulus. In Fig.1c, the different columnar neurons that are 

included in the Gal4-3A expression pattern might obscure such a subdivision.  
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Fig 1. Expression pattern of the enhancer trap line Gal4-3A. Membrane tagged GFP (UAS-mCD8-

GFP, green, a-c) and neuronal Synaptobrevin-mRed (UAS-nSyb-mRed, magenta, d-f) were coexpressed 

in the optic lobe of Drosophila melanogaster. a: Collapsed image of the posterior part of the optic lobe 

taken from a frontal view. Expression was found in the medulla (M), lobula (L), lobula plate (LP) and the 

central brain. In the posterior part of the lobula plate six serially arranged VS-cells extend their 

overlapping dendrites. b:  similarly generated frontal view of the anterior lobula plate. Three HS-cells 

can be identified, the dendrites of HSN, HSE and HSS cover the dorsal, medial and ventral part of the 

lobula plate, respectively. c: Collapsed image of the optic lobe taken from a horizontal view. Dendrites 

of VS-cells occupy the posterior layer whereas dendrites of HS-cells occupy the anterior most layer of 

the lobula plate. Gal4-3A driven expression can also be seen in many columnar neurons in the medulla 

and lobula. d-f: Different VS- and HS-cells show coexpression of mCD8-GFP and nSyb-mRed. The 

fluorescent protein mRed fused to neuronal synaptobrevin labeles synaptic vesicles and thus the 

presumed sites of activity dependent chemical signal transmission. It is important to notice that 

expression was also driven in a large number of unidentified columnar cells. d: Frontal view of the 

posterior part of the lobula plate. Expression of mCD8-GFP outlines the morphology of different VS-

cells. Protocerebral projections of VS-cells travel dorsally and terminate in the dorsal protocerebrum 

where they bifurcate into two vertical branches from which many lateral branches arises. An HSE-cell 

projection travels more ventrally to the protocerebrum. e: Same section as d. Expression of nSyb-mRed 

shows the presumed chemical output synapses of all cells included in the Gal4-3A expression pattern. f: 

Overlay of (d) and (e). nSyb-mRed expression is most pronounced at the protocerebral ramifications of 

the VS- and HS-cells. A subtle level of nSyb-mRed expression can also be seen in the dendritic region of 

the investigated LPTCs (e and arrowheads in f). nSyb-mRed was also found on LPTC cell bodies and cells 

of the central brain.  Image a, b and c are maximum intensity projections of 20, 22 and 40 images, 

respectively. Images d, e and f are maximum intensity projections of 48 images each. Individual image 

were taken every 0.5 µm along the z-axis, scale Bar: 50 µm. 
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Protocerebral projections of VS- and HS-cells express markers for output synapses  

 

To identify possible regions of synaptic output within VS- and HS-cells, we generated 

UAS-neuronal Synaptobrevin-mRed flies (see methods). Neuronal Synaptobrevin 

(nSyb; Trimble et al., 1988; Baumert et al., 1989) is a small synaptic vesicle 

membrane protein with a conserved N-terminal cytoplasmic domain and a small, highly 

variable, luminal domain to which mRed was fused. nSyb was chosen as it represents a 

widely used marker for presynaptic vesicles across different species due to its high 

level of conservation from mammals to Drosophila (Sudhof et al., 1989; DiAntonio et 

al., 1993). In this construct, the fluorescent protein mRed (Campbell et al., 2002) is 

used to visualize nSyb. Flies co-expressing nSyb-mRed and mCD8-GFP under the 

control of the Gal4-3A driver line were used (UAS-nSyb-mRed/+; UAS-mCD8-GFP/+; 

Gal4-3A/+). The assumed axonal terminals of all VS-cells were found to be located in 

close proximity to each other within the protocerebrum. Here, they showed a high level 

of nSyb-mRed. This observation strongly suggests that the protocerebral projections act 

as the actual sites of axonal output (Fig. 1d-f). nSyb-mRed localization was most 

pronounced at sites where the axon terminals bifurcate into two vertical branches. The 

protocerebral terminals of HS- cells revealed a similar expression pattern (Fig. 1d-f) 

suggesting that these cells, too, have output synapses in the protocerebral region.  

 

MARCM analysis identifies protocerebral projections as sole expression sites of 

presynaptic markers in VS-cells 

 

We did a clonal analysis of small numbers of cells in order to unambiguously allocate 

the nSyb-mRed staining. This was necessary as nSyb-mRed could have been expressed 

in the different compartments of the LPTCs or in columnar and central neurons that are 

included in the Gal4-3A expression pattern (Fig.1). MARCM allowed us to co-express 

mCD8-GFP and nSyb-mRed (hs-FLP, UAS-mCD8-GFP / UAS-nSyb-mRed; 

FRT40A/FRT40A, tubP-Gal80; Gal4-3A/+) in individual VS- or HS-cells, or small groups 

of clonally related cells, in an otherwise unlabeled tissue (Lee and Luo, 1999). Mitotic 

recombination was induced at 37 ˚C at different developmental larval stages. 

Different time intervals for the heat shock were tested to generate clones. We 

succeeded in generating only very few single VS-cell clones. The success rate was 

below 1 %. Only three clones were found in a total of about 400 brains. Both single 
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cell VS-clones (VS2, Fig. 2a-d; VS6, Fig. 2e -h) showed nSyb-mRed exclusively 

localized to the axon terminal. The subtle level of nSyb-mRed observed in the 

presumed dendritic area of both VS- and HS-cells within the lobula plate (Fig. 1f, 

arrowheads) was almost completely eliminated. The few remaining nSyb-mRed spots 

within the lobula plate (Fig. 2b, f) did not colocalize within the mCD8-GFP labeled 

dendrites. The axon terminal of the VS2-cell bifurcates into two vertical branches with 

few laterally projecting side branches that showed prominent nSyb-mRed accumulation 

(Fig. 2c, arrows). Similarly nSyb-mRed was localized to the fine terminal branches of 

the protocerebral VS6-projection (Fig. 2g). The only other site of nSyb-mRed 

expression in HS- and VS-cells was the soma (Fig. 2c, g and k) which most likely refers 

to protein biosynthesis. We generated 3D- reconstructions based on the detected 

mCD8-GFP fluorescence of the VS2- and the VS6-cell (from confocal image stacks 

using iso-surface rendering; Amira 3.1). We overlaid the obtained cells to the nSyb-

mRed fluorescence and erased all nSyb-mRed fluorescence outside the reconstructed 

cells (Fig. 2d and h). This procedure accentuates that (a) the dendrites of the VS-cells 

showed no expression of nSyb-mRed and (b) all staining within the VS-cells, beside the 

soma, is found in the protocerebral axon terminal. 

 

 

 

Fig 2. Elimination of expression in the central brain and in columnar elements allows the 

unambiguous localization of fluorescently labeled Synaptobrevin and suggests chemical output 

synapses on VS- and HS-cell ramifications in the protocerebrum. MARCM clones of different VS-cells 

and one HSE-cell were generated that coexpress membrane tagged GFP (green) and nSyb-mRed 
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(magenta). a-d: VS2-single cell clone, e-h: Single cell clone of a VS6-cell , i-j: multicellular clones.  a, e 

and i: mCD8-GFP allows the  identification of (a) a single VS2-cell, (e) a single VS6-cell and (i) a single 

HSE-cell and a multicellular clone of different VS-cells (VS1, VS2, VS3, VS4) based on their morphology. 

b, f and j: nSyb-mRed expression labels the presumed presynaptic sites on (b) the VS2-cell, (f) the VS6-

cell and (j) the HS-clone and the multicellular VS-clone. c, g and k: overlay of mCD8-GFP and nSyb-

mRed expression. nSyb-mRed is found at the axon terminal (arrows) and in the somata (arrowheads). In 

single or small number cell clones there is no staining colocalizing to the dendrites. d and h: Isosurface 

3D-view of (d) the VS2-cell and (h) the VS6-cell including colocalizing nSyb-mRed only. Images a, b, c 

represents maximum intensity projections of 40 images. e, f, g are build of 50 images and i, j, k are 

build of 46 images ( z-distance 0.5 µm , scale bar: 50 µm). 

 

In the MARCM experiments described above, the probability for successful induction of 

mitotic recombination was extremely low. We increased the duration and number of 

the heat-shock(s) to more frequently generate MARCM clones. However, this only 

resulted in the generation of a brain including two clones amongst them one was 

multicellular (Fig. 2i-k). The VS-clone included 4 cells (VS1, VS2, VS3 and VS4) and the 

HS-clone was a single HSE-cell, that was only weakly stained. The dendrites of the VS-

cells lie serially to each other with the VS1-dendrite occupying the outermost region of 

the lobula plate. The protocerebral terminals are arranged in close proximity. The 

dendrite of the HSE-cell covered the medial part of the lobula plate. nSyb-mRed 

localization in these 5 cells was identical to our description in the single cell clones. In 

summary, the analysis of single and multicellular clones of different VS-cells and an 

HSE-cell indicates that output synapses of these cells are exclusively localized to the 

tips of the protocerebral projections. This result allows to designate these processes as 

chemical output region. The nSyb-mRed expression observed within the lobula plate 

results from columnar elements presynaptic to VS- and HS-cells that are included in the 

Gal4-3A expression pattern (Fig. 1).  

 

Dendritic tips and central projections of all VS-cells show evidence for inhibitory 

input synapses 

 

In the next series of experiments, we studied the localization of presumed inhibitory 

postsynaptic sites within VS- and HS-cells. Based on a series of experiments performed 

in Calliphora (Borst and Egelhaaf, 1989; Borst et al, 1995; Single et al, 1997), 

inhibitory postsynaptic sites were expected to be located on LPTC dendrites of 

Drosophila, too. Their distribution was analyzed by expression of an HA- tagged 
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GABA receptor subunit, called Rdl. Rdl receptors form insecticide (Dieldrin) resistant, 

picrotoxin (PTX) sensitive GABA-gated chloride channels (Ffrench-constant et al., 1993; 

Zhang et al., 1995). The distribution of these receptors has been addressed by 

antibody staining in different layers of the optic lobes of Calliphora (Brotz et al., 

2001). However, no information about single identified cells was given and the 

antibody is no longer available. Thus, we used flies of the genotype UAS-mCD8-

GFP/+; UAS-Rdl-HA/+; Gal4 3A/+ driving expression of both mCD8-GFP and HA-

tagged Rdl (Sa´nchez-Soriano et al., 2005). Anti-HA antibody staining served to 

fluorescently label the tagged receptors (see methods). Rdl-HA (magenta, Fig. 3a -f) 

localized to the assumed dendrites of all VS-cells within the lobula plate. The GFP 

fluorescence shown in green outlines the cell membrane of VS-cells in Figure 3. HA-Rdl 

was concentrated at the fine terminal tips of the dendrites (Fig. 3a - f, arrows). Thus, 

the dendritic tips likely represent the sites of most prominent inhibitory synaptic input. 

Only a subtle level of Rdl-HA expression was observed in the primary and secondary 

shafts of the dendrites (Fig. 3a-f). This was approved in experiments where the 

sometimes rather weak mCD8-GFP expression was replaced by actin-GFP. Compared 

to mCD8-GFP, actin-GFP labeled the dendritic tips more clearly. An example from a 

VS1- cell is shown in Figure 3g – i. Using these flies (+/+; UAS-act-GFP/UAS-Rdl-HA; 

Gal4 3A/+) we confirmed the localization of Rdl receptors to the dendritic tips. In 

addition we proved the absence of processes from columnar elements that might have 

expressed the detected Rdl-HA. This is most obvious in the shown overlay (Fig. 3i). The 

inhibitory GABAergic receptors and the absence of nSyb-mRed on VS-cells 

arborizations in the lobula plate show that these cells have their dendrites here.  

 

In the same set of experiments, the protocerebral projections of different VS-cells were 

examined for Rdl-HA expression (+/+; UAS-mCD8-GFP/+; UAS-Rdl-HA/+; Gal4 

3A/+). From the region where each axon terminal bifurcates to their tips, a high level 

of Rdl-HA expression was observed (Fig. 3j - l). The intensity of the Rdl-HA staining in 

this region was even more pronounced than the one observed in the dendritic region. 

Individual axon terminals could, however, not be identified in this image due to the 

significant overlap of their processes. However, analysis of individual confocal images 

of 0.5 µm thickness (data not shown) suggests that Rdl-HA expression in this region can 

be assigned to all six VS-cells highlighted by the Gal4-3A driver line. These 

experiments suggest a large number of inhibitory synaptic inputs impinging onto VS-

cell axon terminals within the protocerebral region.  
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Fig 3. Distribution of Rdl-type GABA receptors on VS-cells. Gal4-3A was used to drive coexpression 

of tagged GFP (green, UAS-mCD8-GFP or UAS-actin-GFP) and HA-tagged Rdl-type GABA receptors 

(magenta, UAS-Rdl-HA). a-f: coexpression of mCD8-GFP and Rdl-HA on the dendrites of VS-cells. The 

dendritic branches of all six VS-cells express Rdl-HA. Only a subtle level of Rdl-HA was observed in the 

primary and secondary shafts (arrowheads in (c), (e) and (f)). Most receptor protein is localized to the 

tips of the dendrites (arrows). g-i: Close-ups of dorsal dendritic branches show the localization of Rdl 

receptors to the very tips of the dendrites. In these experiments Rdl-HA (h) was co-expressed to actin-

GFP (g). The overlay is shown in (i). j-l: Protocerebral projections of VS-cells are visualized by mCD8-

GFP expression (j) and show massive Rdl-HA accumulation (k). This is also shown in the overlay (l) of both 

channels (arrows). The panels (a – f), (g- i) and (j-l) are maximum intensity projections of 3, 5 and 6 

images, respectively. Individual images were separated by 0.5µm in z-direction. Scale bar: 10 µm in 

(a-i) and 20 µm (j-l). HA-tagged Rdl receptors were visualized by Alexa 568 and antibody staining 

(see methods). 
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Dendritic tips and central projections of the HSE-cell show evidence for inhibitory 

input synapses 

 

One of the horizontally sensitive neurons, an HSE-cell, was examined for the 

distribution of the Rdl-HA protein. Flies co-expressing mCD8-GFP and Rdl-HA (UAS-

mCD8-GFP/+; UAS-Rdl-HA/+; Gal4 3A/+) were used for this analysis. Similar to the 

VS-cells, our data suggests that HSE is postsynaptic to inhibitory GABAergic input in 

the lobula plate (Fig. 4a – c). Rdl-HA localization was mostly confined to terminal 

branches of the dendrite (Fig. 4c, arrows). The protocerebral projection of the HSE-cell 

showed Rdl-HA staining (Fig. 4d - f, arrows in 4f) as well. Processes from columnar 

elements or central neurons can not be seen (Fig.4) and nSyb-mRed was localized to 

the protocerebral part only (Fig. 2k). Compared to the expression level observed in 

VS-cells the HSE cell showed a lower abundance of Rdl receptors. Nevertheless, these 

results indicate inhibitory synaptic input impinging on the HSE-dendrite in the lobula 

plate as well as on its axonal terminal. In HSS- and HSN-cells experiments on 

GABAergic postsynaptic sites were not conclusive due to the very low expression level 

of Rdl-HA and mCD8-GFP (data not shown). 

 

Fig 4. Distribution of Rdl-type GABA receptors on an 

HSE-cell. Gal4-3A was used to drive coexpression of 

tagged GFP (green, UAS-mCD8-GFP) and HA-tagged 

Rdl-type GABA receptors (magenta, UAS-Rdl-HA). a-c: 

All dendritic branches of the HSE-cell show Rdl-HA 

expression. a: mCD8-GFP outlines the morphology of 

the HSE-dendrite. b: Rdl-HA immunolabeling. c: 

Overlay of (a) and (b): Rdl-localization on the HSE-

dendrite suggests inhibitory postsynaptic sites that were 

mostly found at the fine terminal endings (arrows). d-f: 

Protocerebral ramification of an HSE-cell. d: mCD8-

GFP and e: Rdl-HA expression. f: The overlay of (d) 

and (e) shows Rdl-HA expression (arrows) indicative of 

inhibitory input from neighboring neurons or processes. 

The panels (a – c) and (d - f) are maximum intensity 

projections of 5 and 3 images, respectively. Individual 

images were separated by 0.5µm in z-direction. Scale 

bar: 20 µm in (a-c) and 15 µm in (d-f). HA-tagged Rdl-

receptors were visualized by Alexa 568 and antibody 

staining (see methods). 
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Indications for GABAergic input onto LPTCs 

 

Our analysis of probable inhibitory postsynaptic synapses within VS- and HS-cells 

using Rdl-HA might disregard other GABA-receptor subtypes (Harvey et al., 1994; 

Henderson et al., 1993) that could be expressed on the same cells. To complement our 

findings we set out to investigate the corresponding distribution of presynaptic 

GABAergic terminals impinging onto these LPTCs. Different VS- and HS-cells were 

filled with the red fluorescent dye Alexa-Fluor 594 by intracellular injection. 

Subsequently, the brain was stained using an antibody against GABA (see methods). In 

Figure 5, such an analysis of the GABAergic input on the dorsal part of a single VS3-

cell is illustrated. The GABA-immunoreactivity (green) can be located in the 

surroundings of a dendritic branch (magenta, Fig. 5a). In Figure 5b, a close-up of the 

area marked by the white box in Figure 5a is shown. A yz-view (using „voltex‟ and 

„orthoslice‟ plug-ins of Amira 3.1) along the yellow line in Figure 5b shows that the 

green GABA profiles make contacts closely juxtaposed to the dendritic surface. Similar 

analysis of the VS-axon terminals (Fig. 5d,e) and corresponding yz-views showed that 

the green GABA profiles make contacts closely juxtaposed to the axonal surface (Fig. 

5f).     

 

 

Fig 5. Single VS3-cell filled with Alexa-Fluor 594 (magenta) in an anti-GABA (green) 

immunolabeled brain. a: GABAergic input is visible in the surrounding of the VS3-dendrite. Many of 

the GABA-positive profiles are closely juxtaposed to the dendrite. As a result of the projection of 6 

images into a single plane some profiles appear to be superimposed. b: close up of a small dendritic 

branch marked by the white box in (a). c: yz-view along the section marked by the yellow vertical line 

in (b). The yz-view shows that GABAergic profiles are closely juxtaposed to the dendrites but not 

localized within the dendrite. d-e: similar investigation of the immunolabeled GABA-profiles in the 

protocerebral projection of the VS3-cell. d: VS3-terminal filled with Alexa-Fluor 594 and GABA-
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immunoreactive profiles (green) in its surrounding e: close up of the region marked by the white box in 

(d). f: yz-view along the section marked by the yellow vertical line in (e). The yz-view shows that 

GABAergic profiles are closely juxtaposed to the protocerebral VS3-projection but not localized within 

it. Dorsal is left in a-c and up in d-f. Images a, b, d and e are maximum intensity projections of 6 images 

(0.5 µm sections). Scale bar: 10 µm in (a, d) and 5 µm in (b, e).  

 

We did similar GABA-stainings and analysis on brains that contained individual Alexa 

filled HS-cells. A dendritic branch (Fig.6a-c) and an axonal terminal of an HSE-cell are 

shown. As in VS-cells, but less pronounced, presynaptic GABA is closely juxtaposed to 

the dendrite and the axon, respectively. 

 

 
Fig 6. Single HSE-cell filled with Alexa-Fluor 594 (magenta) in an anti-GABA (green) 

immunolabeled brain. a: GABAergic immunoreactivity is visible in the surrounding of the HSE-dendrite 

and individual GABA-positive profiles are closely juxtaposed suggesting presynaptic sites of GABAergic 

input. b: close up of a small dendritic HSE-branch marked by the white box in (a). c: The yz-view along 

the section marked by the yellow vertical line in (b) shows that GABAergic profiles are closely 

juxtaposed to the dendrites but not localized within it. d-e: similar investigation of the immunolabeled 

GABA-profiles in the protocerebral projection of the HSE-cell. d: HSE-terminal filled with Alexa-Fluor 

594 and GABA-immunoreactive profiles (green) in its surrounding e: close up of the region marked by 

the white box in (d). f: yz-view along the section marked by the yellow horizontal line in (e). The yz-view 

shows that GABAergic profiles are closely juxtaposed to the protocerebral HSE-projection but not 

localized within it. Dorsal is left. Images a, b, d and e are the maximum intensity projection of 6 images 

displaced by 0.5 µm in z-direction. Scale Bar: 10 µm in a, d and 5 µm in b, e.  
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Discussion  

 

Connectivity of VS- and HS-cells in the fly visual system  

The synaptic organization and polarity of VS- and HS-cells within their local 

environment provides important information about their function and integration into 

the motion detection circuitry (Hausen, 1982a, b; reviewed in Borst and Haag, 2002). 

Using Drosophila as a model organism we investigated the distribution of genetically 

labeled synaptic proteins on VS- and HS-cells and confirmed our findings by 

immunolabeling of genetically unmanipulated synapses. Focusing on GABAergic 

receptors, the inhibitory transmitter GABA (Meyer et al., 1986) itself and 

Synaptobrevin as a marker for presynaptic vesicles we provide evidence for a 

centripetal flow of information. High resolution confocal light microscopy of 

fluorescently labeled pre- and postsynaptic proteins suggests that both cell types 

extend their elaborated dendrites within the lobula plate where they harbor 

postsynaptic specializations only. Both cell types send long processes to the central 

brain. At the proximal end of these processes the highly specific and well 

characterized synaptic vesicle associated protein Synaptobrevin (Trimble et al., 1988; 

Baumert et al., 1989; Sudhof et al., 1989; DiAntonio et al., 1993) is expressed 

suggesting the presence of presynaptic chemical synapses at the protocerebral 

terminal. Superimposed to this centripetal flow of information we found evidence for 

additional inhibitory input impinging on their axon terminals. Our conclusions were 

drawn from the following findings: (a) Rdl-type GABA receptors were detected on the 

tips of all VS- and HS-cell dendrites in the lobula plate (Fig. 3 and 4) and the cognate 

transmitter GABA was shown to be juxtaposed to the dendrites (Fig. 5 and 6). The 

juxtaposed GABA is indicative of inhibitory release from columnar elements (Buchner et 

al., 1984; Douglass and Strausfeld, 1995; Brotz and Borst, 1996) impinging on LPTC 

dendrites as predicted by a Reichardt-model (Reichardt, 1961, 1987). (b) 

Synaptobrevin was exclusively localized at the terminals of the protocerebral 

projections suggesting that information is passed onto neurons that are postsynaptic to 

VS- and HS-cells in the protocerebrum (Gronenberg and Strausfeld, 1990; Gilbert et 

al. 1995; Chan et al. 1998). The neurotransmitter of this connection still needs to be 

determined. However, based on immunohistochemical experiments we can exclude 

GABA, as GABA is located strictly outside and juxtaposed but not within individual 

visualized VS- and HS-cell terminals (Fig. 5 and 6). (c) Rdl-type GABA receptors were 
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localized to HS- and in particular VS-cell axon terminals (Fig. 3) which is in agreement 

with the juxtaposed GABA-staining (Fig. 5 and 6). This newly described evidence for 

inhibitory input to the axon terminals provides new insights to the anatomical basis of 

the spatial lay out of receptive fields in these cells (Haag and Borst, 2001, 2002, 

2003, 2004, 2005). Experiments on CH-cells demonstrated that the designation of 

axons and dendrites without such information can be misleading. In Calliphora, the 

lobula plate branches of CH-cells posses both post- and presynaptic specializations 

and its protocerebral part proved to be exclusively postsynaptic (Gauck et al., 1997). 

These findings have important functional implications as CH-cells receive their entire 

dendritic input via electric synapses from neighboring ipsilateral HS-cell dendrites 

(Haag and Borst, 2002; Farrow et al., 2003) and receive additional input on their 

protocerebral projections from the H2 neuron (Hausen, 1984; Haag and Borst, 2001). 

Based on these results dendritic image processing and the generation of increased 

motion contrast could be simulated (Cuntz et al., 2003). Our data on synapse 

distribution on VS- and HS-cells will contribute to similar studies in these neurons. 

 

Genetic methods for the analysis of synaptic connectivity 

 

The use of the Gal4-UAS system (Brand and Perrimon, 1993) in Drosophila allowed the 

precise light microscopic localization of identified synaptic proteins that characterize 

pre- and inhibitory postsynaptic sites. This information was used to pinpoint the 

localization of chemical synapses on identified VS- and HS-cells. As elegant as the 

technique is one has to be aware of the fact that ultimate prove of functional synapses 

would require an in depth analysis on both the EM and the electro-/optophysiological 

level. Based on our approach, individual cells or small numbers of neurons could be 

analyzed when Gal4-UAS was part of the MARCM technique (Lee and Luo, 1999). As 

a common principle, both strategies enable the coexpression of two reporter proteins. 

Thus, individual cells can be identified by their overall morphology and specific 

synaptic proteins can be labeled simultaneously within the same cells using different 

marker molecules. In this approach, all obtained information is imperatively coupled to 

a particular cell. Comparable specificity could not be achieved so far in any of the 

electron microscopic (Pierantoni, 1976; Hausen et al., 1980), anatomical (Hausen 

1982a, b; Fischbach and Dittrich, 1989; Strausfeld and Bassemir 1985a, b), 

immunohistochemical (Brotz et al. 2001) or pharmacological (Brotz and Borst, 1996) 

studies. We overcame this problem by combining standard genetic techniques for 
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whole cell labeling (UAS-mCD8-GFP, Lee and Luo, 1999; UAS-actin-GFP, Verkhusha et 

al., 1999) with the expression of HA-tagged Rdl-type GABA-receptors (UAS-Rdl-HA, 

Sa´nchez-Soriano et al., 2005) or fluorescently labeled Synaptobrevin (see methods). 

Only few studies applied a comparable coexpression of differentially labeled 

proteins so far (Otsuna and Ito, 2006). The obtained sparse staining allowed to 

unequivocally allocate even highly abundant proteins like nSyb to subcellular 

compartments of identified cells (Fig. 1-4). In comparison, even antibody stainings of 

less abundant proteins resulted in a massive fluorescence signal in the surrounding 

tissue. Decisions on colocalization versus juxtaposition of labeled protein on individual 

highlighted cells could only be made in small regions and thin sections (Fig. 5 and 6). 

Also we were limited by the availability of specific antibodies. These problems can 

elegantly be bypassed by coexpression studies using MARCM. However, a number of 

limitations of this method have to be considered. First, it can only be used to express 

labeled proteins whose native unlabeled equivalents have previously been 

demonstrated on the cells of interest. For Rdl-receptors (Ffrench-Constant et al., 1990) 

this was shown in several studies in different fly-species (Brotz and Borst, 1996; Brotz 

et al., 2001) and neuronal Synaptobrevin (Trimble et al., 1988; Baumert et al., 1989) 

is a widely used marker for synaptic vesicles in basically all species investigated so far 

including Drosophila (Sudhof et al., 1989; DiAntonio et al., 1993). Second, a 

quantitative interpretation of the obtained staining can not be made. The expression 

level of the labeled protein depends on the efficacy of the expression system and the 

protein will eventually compete with the intrinsic unlabeled protein for translation and 

localization. Third, fluorescent proteins tend to form multimeric complexes. Thus, 

aggregates might form that disrupt proper protein trafficking and localization (Otsuna 

and Ito, 2006). We avoided this problem by fusing nSyb to monomeric DsRed 

(Campbell et al., 2002) instead of the original tetrameric DsRed (Verkhusha et al., 

2001). The resulting construct nSyb-mRed localized in a similar way to the widely used 

nSyb-GFP (Ito et al., 1998; Estes et al., 2000) and was ideally suited to study 

presynaptic vesicle release sites in GFP-labeled neurons.  

 

Evidence for exclusively postsynaptic VS- and HS-cell dendrites in the lobula plate  

 

The detailed anatomical and physiological investigations in the past twenty years 

suggested that VS- and HS-cells are postsynaptic in the lobula plate and presynaptic 

in the protocerebrum (Hausen, 1982a, b, 1984; Hengstenberg et al., 1982; Fischbach 
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and Dittrich, 1989; Strausfeld and Bassemir, 1985 a, b; Gronenberg and Strausfeld, 

1990; Douglas and Straussfeld, 1995, 1996). However, the physiological and 

immunohistochemical characterization of these cells and of their local connections in the 

lobula plate and protocerebrum is still incomplete. Only a few EM-studies provided 

evidence for chemical postsynaptic sites on VS- and HS-cell dendrites in the lobula 

plate. None of these studies showed evidence for vesicle release sites (Hausen et al., 

1980; Strausfeld and Lee, 1991). These results are in accordance with the presence of 

postsynaptic receptors (Fig. 3 and 4) and the absence of vesicle associated 

Synaptobrevin (Fig. 1 and 2) on VS- and HS-cell dendrites. Theoretical arguments for 

their function as dendrites came from the pioneering work of Reichardt and 

Hassenstein (Reichardt, 1961) and the following detailed foundation of Reichardt 

detectors as minimal circuits for the computation of local motion vectors (Reichardt 

1961, 1987; Borst and Egelhaaf, 1989; Egelhaaf et al., 1989). According to this 

model such local motion signals become spatially summed on the elaborated dendrites 

of direction-selective VS- and HS-cells within the lobula plate. In this model GABAergic 

input to Rdl receptors on the dendrites is of particular importance as mirror 

symmetrical subunits of the Reichardt detector (half-detectors with opposite preferred 

direction) generate opposing motion signals. The superposition of excitatory and 

inhibitory synaptic currents in VS- and HS-cell dendrites would correspond to the 

subtraction of the half-detector output signals in the Reichardt model. This mechanism 

provides information about the direction of image motion at each retinal location. 

Although further details about the cellular implementation of Reichardt detectors are 

still elusive, a lot of evidence has been accumulated that such an algorithm is indeed at 

work (Borst and Egelhaaf, 1990; Borst et al., 1995; Borst et al., 2005; Haag et al., 

1992; Haag et al., 2004; Single et al., 1997; Single and Borst, 2002). The found Rdl 

receptor localization strongly suggests that Reichardt detectors impinge on the very 

tips of VS- (Fig.3g-i) and HS-cell dendrites (Fig. 4c). By this way a retinotopic map of 

local motion information is retained that will be lost during the spatial integration of 

simultaneous inputs. The most striking evidence for such a scenario comes from local 

dendritic calcium measurements (Single and Borst, 1998; Haag et al., 2004). In these 

experiments local calcium signals from dendritic tips were shown to consist of a DC 

component indicative of the direction of image motion superimposed by modulations 

reflecting the temporal change of local luminance. These modulations become 

eliminated when integrated and measured in lower order branches as the local 
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modulations are shifted in phase due to the spatial separation of the local inputs along 

the axes of image motion.  

 

In the main dendritic branches calcium accumulates via voltage activated calcium 

channels (Egelhaaf and Borst, 1995; Single and Borst 1998, 2002) whereas in 

dendritic tips, additional calcium influx occurs through nicotinic cholinergic receptors 

(Single and Borst, 2002). These findings strongly suggest that ARD-type cholinergic 

receptors (Brotz et al., 2001) will be found in close proximity to the shown Rdl 

receptors on the tips of VS-and HS-cells. However, this remains to be proven.  

 

Similarly, the identity of the columnar neurons providing excitatory and inhibitory input 

to the LPTCs is not known. Two main groups of columnar neurons, the T4 and T5 cells, 

were proposed to constitute the basic input to LPTCs (reviewed in Borst and Haag, 

2002). This view is based on the following evidence: T4 and T5 cells exist in four 

different subtypes per column each ramifying in one of the four different layers of the 

lobula plate (Fischbach and Dittrich, 1989). The same four layers were labeled by 

activity dependent uptake of 2-deoxy-glucose (Buchner et al., 1984) during visual 

motion presentation. Furthermore, Strausfeld and Lee (1991) showed the existence of 

a chemical synapse between a T4 and an HS-cell dendrite. In the light of these findings 

genetic labeling techniques will be very useful to clarify those columnar neurons that 

provide synaptic input to the LPTCs in the lobula plate.  

 

Evidence for inhibitory input to VS- and HS-cell axon terminals in the 

protocerebrum   

 

In flies, visually guided flight maneuvers and course control rely heavily on the output 

of VS- and HS-cells. This is reflected in the fact that, in the protocerebrum, both cell 

types convey information about optic flow onto descending neurons that in turn connect 

to motoneurons controlling neck and flight muscles (Gronenberg and Strausfeld, 1990; 

Strausfeld and Gronenberg 1990; Gronenberg et al., 1995; Chan et al., 1998, Haag 

and Borst, 2005). The complex receptive fields of VS- and HS-cells are the product of 

retinotopically organized columnar input and various network interactions between 

them. Thus, their output is shaped by both, signals impinging directly onto their dendrite 

as well as by signals processed and communicated by other LPTCs (Haag and Borst, 
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2003, 2004) reaching them, indirectly, onto their dendrite or axon terminal. Some of 

these LPTC-LPTC interactions are brought about by electrical interactions. E.g. Farrow 

et al. (2005) showed that the horizontal extension of the receptive field of VS-cells in 

Calliphora is enlarged by electric synapses between ipsilateral neighboring VS-cells. 

Similarly, the firing rate of H2-cells in response to rotational optic flow becomes scaled 

by electric axonal-axonal coupling to the HSE-cell of the contralateral side of the 

brain (Farrow et al., 2006). Furthermore, ipsilateral dendrites can be electrically 

coupled to provide a blurred and enlarged representation of the stimulus as 

mentioned before for HS- and CH-cells (Haag and Borst, 2002; Farrow et al., 2003).  

 

In the current context, physiological evidence for chemical interactions between LPTCs is 

of particular interest. In flies, evidence for chemical axon-axonal interactions is still 

rare and to our knowledge there is no report on inhibitory input to the terminals of HS-

cells so far. Possible connections might originate from the heterolateral V2-, H2- and 

H4-cell (Strausfeld et al., 1995) as these neurons are GABAergic and provide 

colocalizing ramifications in the protocerebrum. In this study, no evidence was given for 

connections between single identified cells. However, unspecified postsynaptic sites on 

HS-cell terminals were described in Musca (Strausfeld and Bassemir, 1985b). Taken 

together, the functional implication of Rdl receptor localization on HS-axon terminals 

remains to be analyzed. The situation is more conclusive when the tuning of VS-cells to 

rotational flow fields is considered. VS-cells with lateral receptive fields become 

strongly excited by downward motion in the center of their receptive field and are 

excited by upward motion in the frontal part of their receptive field (Krapp et al., 

1998). The anatomical basis of this finding is unknown. If frontal VS-cells were 

connected to an unknown inhibitory interneuron that releases GABA on lateral VS-cells, 

release from inhibition could explain this finding. Besides the fact that VS-cells with 

frontal receptive fields become hyperpolarized by upward motion presented in the 

center of their receptive fields, evidence for such a release from inhibition is rather 

weak. Injection of negative current in VS1 and simultaneous recording of VS7-10 

(Haag and Borst, 2004) showed no clear depolarization of the membrane potential in 

VS7-10. However, in the same set of experiments, a sign reversal of positive current 

injections was observed: positive injection into VS1 caused simultaneous 

hyperpolarization in VS7-10 and vice versa (Haag and Borst, 2004). Such sign 

reversal and inhibition cannot be mediated via electrical coupling. Thus, there is clear 

evidence for inhibitory chemical coupling between VS-cells via unknown other neurons. 
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The Rdl receptors on the VS-cell axons discovered in this study could mediate this 

inhibition. Future work will allow to further untangle the circuitry and to derive a 

generic model of flow-field processing and visual course control in flies.  

 

Supplementary Material 

 

 

 

 

Supplementary Fig 1. Specificity of immunolabeling with GFP-, HA- and GABA-antibodies. For each 

antibody both images were taken at similar conditions and intensities. a: Dendritic region of an HSE cell 

(genotype: +/+; UAS-mCD8-GFP/+; Gal4-3A/+) stained with Alexa Fluor 488 rabbit anti-GFP 

antibody. Only the GFP-expressing HSE cell is recognized by the antibody. b: negative control: no 

immunoreactivity is detected in the same brain area in the absence of the Gal4-driver (genotype: +/+; 

UAS-mCD8-GFP/+; +/+  stained with Alexa Fluor 488 rabbit anti-GFP antibody).  c: Dendritic region 

of an HSE cell (genotype: +/+; UAS-Rdl-HA/+; Gal4-3A/+) stained with monoclonal rat anti-HA 

antibody and Alexa Fluor 568 goat anti rat IgG. Only the Rdl-HA-expressing HSE cell is recognized by 

the antibody. d: negative control: no immunoreactivity is detected in the same brain area in the absence 

of the Gal4-driver (genotype: +/+; UAS-Rdl-HA/+; +/+ stained with monoclonal rat anti-HA antibody 

and Alexa Fluor 568 goat anti rat IgG). e: Anti-GABA immunoreactivity in the lobula of a Drosophila 

wild type fly. The polyclonal rabbit anti-GABA and Alexa Fluor 568 goat anti rabbit IgG (catalog 

number-A11011, lot number-84E2-1, Molecular Probes) labeled individual spots similar to the ones that 

were detected juxtaposed to LPTC in Figure 5 and 6. f:  no staining could be observed in the same brain 
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area when the GABA-antibody was preabsorbed with GABA-glutaraldehyde-BSA conjugates, same 

antibodies used as in (e).   Scale Bar: 20 µm 

Acknowledgements 
 

We are grateful to Wolfgang Essbauer and Christian Theile for excellent technical 

assistance, to Thomas Hendel and Bettina Schnell for comments on the manuscript. We 

thank Yong Choe for discussion and comments, Liqun Luo, Andreas Prokop, Martin 

Heisenberg for providing flies and Roger Tsien for providing DNA.  

 

References 
Baumert, M., P. R. Maycox, F. Navone, P. De Camilli, and R. Jahn (1989) Synaptobrevin: an integral 
membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8:379-384 
 
Borst, A., and M. Egelhaaf (1989) Principles of visual motion detection. Trends Neurosci. 12:297-306 
 
Borst, A., and M. Egelhaaf (1990) Direction selectivity of fly motion-sensitive neurons is computed in a 
two-stage process. Proc. Natl. Acad. Sci. USA 87: 9363-9367 
 
Borst, A., M. Egelhaaf, and J. Haag (1995) Mechanisms of dendritic integration underlying gain control 
in fly motion-sensitive interneurons. J. Comput. Neurosci. 2: 5-18 
 
Borst, A., and J. Haag (2002) Neural networks in the cockpit of the fly. J. Comp. Physiol. 188: 419-437 
 
Borst, A., Flanagin, V.L. and H. Sompolinsky (2005) Adaptation without parameter change: Dynamic 
gain control in motion detection. Proc. Natl. Acad. Sci. USA 102:6172-6176 
 
Brand, A. H., and N. Perrimon (1993) Targeted gene expression as a means of altering cell fates and 
generating dominant phenotypes. Development 118:401–415 
 
Brotz, T. M., and A. Borst (1996) Cholinergic and GABAergic receptors on fly tangential cells and their 
role in visual motion detection. J.Neurophysiol. 76:1786-1799 
 
Brotz, T. M., E. D. Gundelfinger, and A. Borst (2001) Cholinergic and GABAergic pathways in fly motion 
vision. BMC Neuroscience  2:1 
 
Buchner, E., S. Buchner, and I. Bulthoff (1984) Deoxyglucose mapping of nervous activity induced in 
Drosophila brain by visual movement. J.Comp.Physiol. A 155:471-483 
 

Buijs, R. M., E. H. S. van Vulpen and M. Geffard (1987) Ultrastructural localization of GABA in the 
supraoptic nucleus and neural lobe. Neuroscience 20:347-355 
 
Campbell, R.E., O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien 
(2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. U S A 99:7877-7882 
 
Chan, W. P., F. Prete, and M. H. Dickinson (1998) Visual input to the efferent control system of a fly's 
"gyroscope". Science 280:289-292 
 
Cuntz, H., J. Haag, and A. Borst (2003) Neural image processing by dendritic networks. Proc. Natl. 
Acad. Sci. U S A 100:11082-85 
 
DiAntonio, A., R. W. Burgess, A. C. Chin, D. L. Deitcher, R. H. Scheller, and T. L. Schwarz (1993). 
Identification and characterization of Drosophila genes for synaptic vesicle proteins.  J. Neurosci. 
13:4924-4925 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12060735&query_hl=11&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12060735&query_hl=11&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12947039&query_hl=1&itool=pubmed_docsum


66 

 
Douglass, J. K., and N. J. Strausfeld (1995) Visual motion detection circuits in flies: peripheral motion 
computation by identified small-field retinotopic neurons. J. Neurosci. 15:5596-5611 
 
Douglass, J. K., and N. J. Strausfeld (1996) Visual motion detection circuits in flies: parallel direction- 
and non-direction-sensitive pathways between the medulla and lobula plate. J. Neurosci. 16:4551-4562 
 
Egelhaaf, M., A. Borst, and W. Reichardt (1989) Computational structure of a biological motion 
detection system as revealed by local detector analysis in the fly‟s nervous system. J.Opt.Soc.Am.A 
6:1070-1087 
 
Egelhaaf, M., and A. Borst (1995) Calcium accumulation in visual interneurons of the fly: stimulus 
dependence and relationship to membrane potential. J. Neurophysiol. 73:2540-2552 
 
Estes, P.S., G. L. Ho, R. Narayanan, and M. Ramaswami (2000) Synaptic localization and restricted 
diffusion of a Drosophila neuronal synaptobrevin--green fluorescent protein chimera in vivo. J. 
Neurogenet. 13:233-55 

 
Farrow, K., J. Haag, and A. Borst (2003) Input organization of multifunctional motion-sensitive neurons in 
the blowfly. J. Neurosci. 23:9805-9811 
 
Farrow, K., A. Borst, and J. Haag (2005) Sharing receptive fields with your neighbors: Tuning the vertical 
system cells to wide field motion J. Neurosci. 25: 3985-3993 
 
Farrow, K., J. Haag and A. Borst (2006) Nonlinear, binocular interactions underlying flow field 
selectivity of a motion-sensitive neuron. Nat. Neurosci. 9:1312-1320 
 
Ffrench-Constant, R. H., R. T. Roush, D. Mortlock, and G. P. Dively (1990) Isolation of dieldrin resistance 
from field populations of Drosophila melanogaster (Diptera: Drosophilidae). Econ. Entomol. 83:1733-
1737 
 
Ffrench-Constant, R. H., T. A. Rocheleau, J. C. Steichen, and A. E. Chalmers (1993) A point mutation in 
Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451 
 
Fischbach, K. F., and A. P. M. Dittrich (1989). The optic lobe of Drosophila melanogaster. I. A Golgi 
analysis of wild-type structures. Cell Tissue Res. 258:441–475 
 
Gauck, V., M. Egelhaaf, and A. Borst (1997) Synapse distribution on VCH, an inhibitory, motion-sensitive 
interneuron in the fly visual system. J.Comp. Neurol. 381:489-499 
 
Gilbert, C., W. Gronenberg, and N. J. Strausfeld (1995) Oculomotor control in calliphorid flies: Head 
movements during activation and inhibition of neck motor neurons corroborate neuroanatomical 
predictions. J. Comp. Neurol. 361:285–297 
 
Gronenberg, W., and N. J. Strausfeld (1990) Descending neurons supplying the neck and flight motor of 
Diptera: physiological and anatomical characteristics. J.Comp.Neurol. 302:973-991 
 
Gronenberg, W., J. J. Milde, and N. J. Strausfeld (1995) Oculomotor control in calliphorid flies: 
organization of descending neurons to neck motor neurons responding to visual stimuli. J. Comp. Neurol. 
361:267-84 
 
Haag, J., M. Egelhaaf, and A. Borst (1992) Dendritic integration of motion information in visual 
interneurons of the blowfly. Neuroscience Letters 140: 173-176 
 
Haag, J., and A. Borst (2001) Recurrent network interactions underlying flow-field selectivity of visual 
interneurons. J. Neuroscience 21: 5685-5692 
 
Haag, J., and A. Borst (2002) Dendro-dendritic interactions between motion-sensitive large-field neurons 
in the fly. J. Neuroscience 22: 3227-3233 
 
Haag, J., and A. Borst (2003) Orientation tuning of motion-sensitive neurons shaped by vertical-
horizontal network interactions. J.Comp.Physiol. A 189: 363-370 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7666159&query_hl=18&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10858822&query_hl=3&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14586008&query_hl=4&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16964250&query_hl=4&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2124226&query_hl=19&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8543662&query_hl=26&itool=pubmed_DocSum


67 

Haag, J., and A. Borst (2004) Neural mechanism underlying complex receptive field properties of 
motion-sensitive interneurons. Nature Neuroscience 7: 628-634 
 
Haag, J., W. Denk, and A. Borst (2004) Fly motion vision is based on Reichardt detectors regardless of 
the signal-to-noise ratio. Proc. Natl. Acad. Sci. U S A 101:16333-16338 
 
Haag, J., and A. Borst (2005) Dye-coupling visualizes networks of large-field motion-sensitive neurons in 
the fly. J.Comp.Physiol. A 191: 445-454 
 
Harvey, R. J., B. Schmitt, I. Hermans-Borgmeyer, E. D. Gundelfinger, H. Betz, and M. G. Darlison (1994) 
Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal 
extracellular domain. J. Neurochem. 62: 2480-2483 
 
Hausen, K., K. Wolburg-Buchholz, and W. A. Ribi (1980) The synaptic organization of visual interneurons 
in the lobula complex of flies. Cell Tissue Res. 208:371-387 
 
Hausen, K. (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal 

cells: structure and signals. Biol.Cybern. 45:143–156 
 
Hausen, K. (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal 
cells: receptive field organization and response characteristics. Biol. Cybern. 46:67-79 
 
Hausen, K. (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. 
In: Ali MA (ed) Photore-ception and vision in invertebrates. Plenum Press, New York, pp 523-559 
 
Heisenberg, M., R. Wonneberger, and R. Wolf (1978) optomotor-blindH31 Drosophila mutant of the 
lobula plate giant neurons. J.Comp.Physiol. A 124:287–296 
 
Henderson, J. E., D. M. Soderlund, and D. C. Knipple (1993) Characterization of a putative gamma-
aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster Biochem Biophys 
Res. Commun. 193:474-82 
 
Hengstenberg, R., K. Hausen, and B. Hengstenberg  (1982) The number and structure of the giant 
vertical cells (VS) in the lobula plate on the blowfly Calliphora erythrocephala. J.Comp.Physiol. A 
149:163–177 
 
Huang, Z., K. Zang, and L. F. Reichardt (2005) The origin recognition core complex regulates dendrite 
and spine development in postmitotic neurons. J. Cell Biol. 170:527-35 
 
Ito, K., K. Suzuki, P. Estes, M. Ramaswami, D. Yamamoto, and N. J. Strausfeld (1998)  The organization 
of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila 
melanogaster Meigen. Learn. Mem. 5:52-77 
 
Koenderink, J.J., and A. J. van Doorn (1987) Facts on optic flow. Biol.Cybern. 56: 247 -254   
 
Krapp, H. G., and R. Hengstenberg (1997) A fast stimulus procedure to determine local receptive field 
properties of motion-sensitive visual interneurons. Vision Res. 37:225-34 
 
Krapp, H.G., Hengstenberg, B. and Hengstenberg R. (1998) Dendritic structure and receptive-field 
organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79:1902-1917 
 
Lee, T., and L. Luo (1999) Mosaic analysis with a repressible cell marker for studies of gene function in 
neuronal morphogenesis. Neuron 22:451–461 
 
Meyer, E. P., C. Matute, P. Streit, and D. R. Nässel (1986) Insect optic lobe neurons identifiable with 
monoclonal antibodies to GABA. Histochemistry 84:207–216 
 
Otsuna, H., and K. Ito (2006) Systematic analysis of the visual projection neurons of Drosophila 
melanogaster. I. Lobula-specific pathways. J. Comp. Neurol.497:928-58  
 
Papay, R., R. Gaivin, A. Jha, D. F. McCune, J. C. McGrath, M. C. Rodrigo, P. C. Simpson, V. A. Doze, and 
D. M. Perez (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: 
alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J. 
Comp. Neurol. 497:209-22 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15534201&query_hl=24&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8189252&query_hl=6&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7685594&query_hl=9&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16087709&query_hl=14&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10454372&query_hl=11&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16802334&query_hl=23&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16705673&query_hl=2&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16705673&query_hl=2&itool=pubmed_docsum


68 

 
Pierantoni, R. (1976) A look in the cockpit of the fly. The architecture of the lobula plate. Cell Tissue Res. 
171:101-122. 
 
Rajashekhar, K. P., and V. R. Shamprasad (2004) Golgi analysis of tangential neurons in the lobula 
plate of Drosophila melanogaster. J. Biosci. 29: 93-104 
 
Reichardt, W. (1961) Autocorrelation, a principle for the evaluation of sensory information by the 
central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press/Wiley, New York, pp 
377-390 
 
Reichardt, W. (1987) Evaluation of optical motion information by movement detectors. J. Comp. Physiol. 
A 161:533-547 
 
Reiff, D. F., A. Ihring, G. Guerrero, E. Y. Isacoff, M. Jösch, J. Nakai, and A. Borst (2005) In vivo 
performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25:4766–4778 
 

Sattelle, D. B. (1980) Acetylcholine receptors of insects. In: Advances in Insect Physiology. Academic 
Press, London, New York 15: 215-315 
 
Sanchez-Soriano, N., W. Bottenberg, A. Fiala, U. Haessler, A. Kerassoviti, E. Knust,  R. Lohr, and A. 
Prokop (2005) Are dendrites in Drosophila homologous to vertebrate dendrites?. Dev. Biol. 288:126-38 
 
Scott, E. K., T. Raabe, and L. Luo (2002) Structure of the vertical and horizontal system neurons of the 
lobula plate in Drosophila. J. Comp. Neurol. 454:470-481 
Single, S., J. Haag, and A. Borst (1997) Dendritic computation of direction selectivity and gain control in 
visual interneurons. J. Neurosci. 17: 6023-6030 
 
Single, S. and A. Borst (1998) Dendritic integration and its role in computing image velocity. Science 
281:1848-50.  
 
Single, S., and A. Borst (2002) Different mechanisms of calcium entry within different dendritic 
compartments. J. Neurophysiol. 87:1616-1624 
 
Spradling, A. C., and G. M. Rubin (1982) Transposition of cloned P elements into Drosophila germ line 
chromosomes. Science 218:341-347 
 
Strausfeld, N. J., and U. K. Bassemir (1985a) Lobula plate and ocellar interneurons converge onto a 
cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala. Cell 
Tissue Res. 240:617-640 
 
Strausfeld, N. J., and U. K. Bassemir (1985b) The organization of giant horizontal-motion-sensitive 
neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and 
Musca domestica. Cell Tissue Res. 242:531–550 
 
Strausfeld, N. J., and W. Gronenberg (1990) Descending neurons supplying the neck and flight motor of 
Diptera: organization and neuroanatomical relationships with visual pathways. J. Comp. Neurol. 
302:954-972 
 
Strausfeld, N. J., and J. K. Lee (1991) Neuronal basis for parallel visual processing in the fly. Vis. 
Neurosci. 7:13-33 
 
Strausfeld, N. J., A. Kong, J. J. Milde, C. Gilbert, and  L. Ramaiah (1995) Oculomotor control in 
Calliphorid flies: GABAergic organization in heterolateral inhibitory pathways. J.Comp.Neurol. 
361:298–320 
 
Sudhof, T. C., M. Baumert, M. S. Perin, and R. Jahn (1989) A synaptic vesicle membrane protein is 
conserved from mammals to Drosophila. Neuron 2:1475-81 
 
Trimble, W. S., D. M. Cowan, and R. H. Scheller (1988) VAMP-1: a synaptic vesicle-associated integral 
membrane protein. Proc. Natl. Acad. Sci. U S A 85:4538-42 
 
Verkhusha, V. V., S. Tsukita, and H. Oda (1999) Actin dynamics in lamellipodia of migrating border cells 
in the Drosophila ovary revealed by a GFP-actin fusion protein. FEBS Lett. 445:395-401 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16223476&query_hl=23&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16223476&query_hl=23&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=6289435&query_hl=24&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1707069&query_hl=25&itool=pubmed_DocSum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2560644&query_hl=4&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=3380805&query_hl=5&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10094496&query_hl=22&itool=pubmed_DocSum


69 

 
Verkhusha, V. V., H. Otsuna, T. Awasaki, H. Oda, S. Tsukita, and K. Ito (2001) An enhanced mutant of 
red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle 
formation. J. Biol. Chem.276:29621-29624 
 
Zhang, H. G., H. J. Lee, T. Rocheleau, R. H. ffrench-Constant, and M.Y. Jackson (1995) Subunit 
composition determines picrotoxin and bicuculline sensitivity of Drosophila gamma-aminobutyric acid 
receptors. Mol. Pharmacol. 48:835–840 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11408473&query_hl=13&itool=pubmed_DocSum


70 



71 

 

4 Manuscript Nr.2 

 

 

 

Response Properties of Motion-Sensitive Visual Interneurons 

in the Lobula Plate of Drosophila melanogaster.   

 

 

 

This chapter was published in March 2008 in Current Biology, Volume 18, 368-374; 

by Maximilian Jösch, Johannes Plett, Alexander Borst and Dierk F. Reiff.  

 

 
 

Max-Planck-Institute of Neurobiolog 

Department of Systems and Computational Neurobiology 

Am Klopferspitz 18 

D-82152 Martinsried, Germany 

 

 

 

Maximilian Jösch developed the methodology to record from lobula plate tangential cell in vivo and 

performed and analyzed the experiments. Johannes Plett developed the LED-stimulus device. Maximilian 

Jösch , Dierk Reiff and Alexander Borst conceived the experiments. Dierk Reiff, Maximilian Jösch and 

Alexander Borst wrote the manuscript. 

 

 

 

 

 

 

 



72 

Summary 
 

 

The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster 

has made them a model system to study neuronal cell fate determination, axonal path 

finding and target selection. For functional studies, however, the small size of the 

constituting visual interneurons has presented a formidable barrier so far. We have 

overcome this problem by establishing in vivo whole cell recordings [1] from 

genetically targeted visual interneurons of Drosophila. Here, we describe the response 

properties of six motion-sensitive large-field neurons in the lobula plate that form a 

network consisting of individually identifiable, directionally-selective cells most sensitive 

to vertical image motion (VS-cells [2,3]). Individual VS-cell responses to visual motion 

stimuli exhibit all the characteristics that are indicative for presynaptic input from 

elementary motion detectors of the correlation-type [4,5]. Different VS-cells possess 

distinct receptive fields that are arranged sequentially along the eye‟s azimuth, 

corresponding to their characteristic cellular morphology and position within the 

retinotopically organized lobula plate. In addition, lateral connections between 

individual VS-cells cause strongly overlapping receptive fields that are wider than 

expected from their dendritic input. Our results suggest that motion vision in different 

dipteran fly species is accomplished in similar circuitries and according to common 

algorithmic rules. The underlying neural mechanisms of population coding within the VS-

cell network and of elementary motion detection, respectively, can now be analyzed 

by combining electrophysiology and genetic intervention in Drosophila.   
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Results and Discussion 
 

Motion vision in the Drosophila visual system has been considered an ideal model 

system to address the fundamental rules of information processing in neural networks. 

This notion is based on genetic amenability that meets a crystalline-like organization of 

the neural lattice. Moreover, experiments can be guided by a conceptually much 

advanced theoretical background: precisely defined visual stimuli are being used in 

experiments [6] that can be fed into a well established computational model [4]. 

Following the latter idea, cellular responses of giant motion-sensitive cells within the 

lobula plate of large flies have been extensively analyzed [7]. However, these 

experiments were at some point limited by the lack of elaborated genetic tools in 

large flies, whereas in Drosophila similar experiments were so far hampered by 

difficulties in recording from identified neurons in the intact animal during visual 

stimulation. Inspired by the detailed findings in large flies, we focused on experiments 

suitable to address recent as well as classical aspects of visual motion detection such as  

direction-selectivity and orientation tuning (Fig.1), recently described receptive field 

organization and computations within the VS-cell network [8-10] (Fig.2) and various 

hallmarks of the correlation-type model of motion detection (Figs.3,4). We reproduced 

these findings in Drosophila and demonstrate that it is now possible to combine 

functional cellular approaches with the rich repertoire of genetic techniques as 

established in many other studies. This combination promises important insights into the 

neural circuitry underlying elementary motion detection in columnar neurons of the 

second visual ganglion, the medulla, as well as information processing within the VS-

cell network of the lobula plate.     
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Figure 1 Whole cell patch clamp recordings from genetically labeled visual interneurons in the 

lobula plate. (A) Schematic drawing of the fly preparation including recording electrode and stimulus 

presentation in the ventral field of view. (B) View on a in vivo preparation of a fly expressing a 

cytosolic fluorescent marker in a population of lobula plate tangential cells (DB331-Gal4UAS-Yellow 

Cameleon 3.3; wide field epifluorescence image). 6 VS-cells (VS1-VS6) can be identified with their 

dendrites (small white arrowheads) and axons (white arrow). The dendrite of the HSS-cell is also visible 

(large white arrowhead). However, HS-cells are mostly hidden by the more superficial VS-cells. (C) 

View of the lobula plate of an experimental animal immediately after recording of a VS1-cell. The 

expression of a different green fluorescent marker (DB331-Gal4UAS-mcD8-TN-XL-8aa, see 

supplemental material) highlights mostly the somata of LPTCs (white arrow) and a few other cells. The 

recorded cell was perfused with Alexa 568 (red, see methods; collapsed confocal image stack; scale 

bar: 25 µm; VS-1 soma removed during withdrawal of the patch pipette). (D) The recorded membrane 

potential of the VS1-cell shown in (C) displays direction selective responses. Grating motion is indicated 

by the bottom black line (large field sinusoidal horizontal grating, λ = 50 o and v = 50 o / sec; E) 

Orientation tuning of Drosophila VS-cells. 16 recorded VS-cells (VS1-VS4), each being most sensitive to 

stimulation along the vertical axis were averaged. The grating, same as in (D), moved into eight 

different directions indicated by the grey arrows. Data and error bars represent mean  SEM. 
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Whole Cell Patch Recordings Reveal Six Motion Sensitive Drosophila VS-cells (VS1-

VS6).   

 

Recently it has been shown that individual neurons in Drosophila are accessible to 

whole cell patch-clamp recording [1]. Following this approach we report the first single 

unit recordings of motion sensitive, individually identified Drosophila visual interneurons 

(Fig. 1A, see methods). Since the preparation prevents the use of high contrast 

providing optics (like differential interference contrast), we used the Gal4-UAS system 

[11] and water immersion optics to fluorescently target a small population of 

tangential cells within the third visual ganglion of the optic lobe, the lobula plate 

(DB331-Gal4UAS-YC3.3; Fig. 1B). Based on their morphological similarities to the 

corresponding lobula plate tangential cells in Calliphora [7,12,13] these neurons have 

previously been characterized in fruit flies as 3 HS- (HSS-cell: large white arrowhead) 

and 6 more posterior VS-cells (small white arrowheads) [2,3,14,15]. Drosophila VS-

cells extend their closely intermingled axonal projections (Fig. 1B, white arrow) to the 

central brain and possess large dendrites that span large parts of the lobula plate 

tangentially. The six VS-cell dendrites tile the lobula plate sequentially (Fig. 1B, white 

arrowheads; see also Figs. 1C, 2B) with partially overlapping dendritic fields.  

 

In a first set of experiments we investigated direction selectivity and orientation tuning 

in the six anatomically described Drosophila VS-cells. We added a red fluorescent dye 

to the intracellular solution and directed the electrode towards green fluorescent cells. 

Stable whole cell patch-clamp recordings were only feasible from cell bodies, but cell 

bodies were not clearly visible in neurons that expressed cytosolic YC3.3 (Fig. 1B). Thus 

we facilitated visually guided patch-clamp recordings by expression of a green 

fluorescent marker (DB331-Gal4UAS-mCD8-TN-XL-8aa; see supplementary 

information) that predominantly highlights somata (Fig. 1C). Using this marker, 

recordings were obtained from more than 100 VS-cells all individually identified from 

dye fills subsequent to the recording (Fig. 1C; see methods). VS-cells revealed an input 

resistance of 30-40 MΩ, a resting potential of about -45 mV (-55 mV when corrected 

for the liquid junction potential) and showed spontaneous fast membrane fluctuations 

even in the absence of moving visual stimuli. During the presentation of vertically 

moving periodic gratings (velocity v = 50o/sec, spatial wavelength λ = 44 o, as seen 

by the fly) all VS-cells exhibited directionally selective responses, such as shown for a 

VS1-cell (Fig. 1D, Fig. S1). Upward motion (ND = null direction) and downward motion 
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(PD = preferred direction) of a periodic horizontal grating elicited a graded 

hyperpolarization and depolarization of the membrane potential, respectively, 

superimposed by small action potentials of irregular amplitude that can likely be 

attributed to TTX-sensitive fast voltage-activated sodium currents as their main source 

(Fig. S2). These fast events were reduced in frequency and amplitude during upward 

motion and increased during downward motion (Fig. 1D, Fig. S1). Presentation of large 

field grating motion in eight different directions and 4 different orientations separated 

by 45o (Fig. 1E) revealed that all six VS-cell types were indistinguishably sensitive to 

large field stimuli moving along the vertical axis of the animal, thus the responses of 

different VS-cell types were pooled (n = 16, v = 25o/sec, λ = 25o).  

 

Receptive Field Organization and Evidence for a Drosophila VS-cell network.   

 

Because the fly visual system is organized retinotopically, the visual surround is 

mapped onto the individual VS-cell dendrites by their connections to presynaptic 

columnar elements [15]. Six VS-cells (VS1-VS6) have consistently been described in 

Drosophila [2,3,14,15] and each facet eye looks at ~180o elevation and ~180o 

azimuth [16]. Estimating a dendritic overlap of 50% between adjacent cells, each cell 

is supposed to sample local motion detectors from maximally about 60o along the 

azimuth and almost 180o elevation. However, the architecture of the receptive fields 

might be more complex as shown in Calliphora where the visual surround is indeed 

mapped onto the ten VS-cell dendrites in precisely this way, yet the extent of the VS-

cell receptive fields along the azimuth is much broader [8,17,18]. This prompted us to 

analyze how vertical motion in different areas of the visual surround of the fly is 

represented by the six Drosophila VS-cells. A small bar of 6o width was moved up- 

and downwards in the ventral field of view from 0o to -50o ventrally at 28 different 

positions along the azimuth from -60o on the contralateral side to +105o on the 

ipsilateral side (0 o = frontal; Fig. S3). The mean normalized response (PD minus ND) 

of each cell at each position of the moving bar was averaged for VS-cells of the same 

cell type (n = 4, 6, 9, 5, 5, 2 cells, respectively, for VS1-VS6). Dye fills allowed 

unequivocal identification of different VS-cells (Fig. 2A) based and on their distinct 

dendritic branching pattern [2,3]. Plotting the normalized responses for each cell type 

(Fig. 2B) as a function of the azimuth shows that i) each Drosophila VS-cell type 

possesses its distinct receptive field, ii) the receptive field centers of the different VS-

cells are sequentially arranged along the azimuth with VS1 being most frontal and 
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VS6 most lateral (Fig. 2B). Note, however, that we could not characterize the receptive 

field in the dorsal part of the eye due to the arrangement of the fly in the recording 

setup (Fig. 1A). iii) The receptive fields of VS-cells cover more than 100o of visual 

space along the azimuth (half-width of about 80o) which is much wider than expected 

(see above). Only the position of the receptive field center is determined by the 

position of the dendrite while the width of their receptive fields seems to be affected 

by other factors, too. 

  

 

The width and overlap of VS-cell receptive fields as described in Calliphora 

[8,9,17,18] might represent a common organization principle for dipteran VS-cells. 

Figure 2 Receptive fields of the six 

Drosophila VS-cells (VS1-VS6) (A) Alexa 568, 

loaded via the patch pipette, enabled 

reliable identification of the recorded VS-cell 

type (VS1 - VS6; collapsed confocal image 

stacks, scale bar: 25 µm). (B) Average 

receptive fields of VS1 – VS6 (mean SEM). 

The centers of the different VS-cell types are 

sequentially arranged along the azimuth 

showing a surprisingly large overlap. Note 

that, for VS6, the center is located outside 

(posterior) of the stimulated area. (C) Dye 

coupling of neighboring VS-cells. A single, 

genetically labeled (DB331-Gal4UAS-

mCD8-TN-XL-8aa) VS6-cell was perfused with 

a mixture of Alexa-568 (red) and Neurobiotin 

via the patch pipette. The spread of 

Neurobiotin (detected by staining with 

Streptavidin-Alexa-568, in red) to at least 

four neighboring VS-cells reveals an intensity 

gradient with distant cells being stained more 

faintly. 4 - 5 VS-cell axons (white arrow) and 

two clusters of small cell bodies from 

unidentified columnar neurons (white 

arrowheads) are stained (scale bar 50 µm). 

Comparable results were obtained from all 

types of VS-cells in 15 independent 

experiments.  
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According to this view, VS-cells partially inherit their receptive fields from their 

immediate VS-cell neighbors. The emerging VS-cell network is endowed with intricate 

computational properties [10,19] where electrical synapses to neighboring VS-cells 

play a key role. We investigated possible electric coupling in Drosophila VS-cells 

indirectly by perfusion of an individual VS-cell with a mixture of two different dyes, 

Alexa 568 and Neurobiotin, loaded via the same patch pipette (Fig. 2C). As in all 

other experiments Alexa 568 never spread to other cells but remained restricted to 

the recorded one. This allowed the immediate identification of the patched neuron. 

After fixation and labeling of Neurobiotin via Streptavidin-Alexa 568, the diffusion of 

Neurobiotin to other neurons within the lobula plate or the lateral protocerebrum was 

detected in all trials (n = 15, all types of VS-cells analyzed). Typically, Neurobiotin 

labeled the immediate neighbors of the perfused VS-cell. In Figure 2C the axons and 

basal dendrites of 4 VS-cells neighboring to the patched VS6-neuron are strongly 

labeled (white arrow) and additional labeling was observed in cell bodies within the 

cortex of the lobula plate (white arrowheads). Thus, VS-cells in Drosophila show dye 

coupling providing indirect evidence for electric coupling between neighboring VS-cells 

as the basis for their large receptive fields [20].  

 

Computational Structure of the Presynaptic Motion Detection Circuitry 

 

Directionally selective responses in insects are computed locally and in parallel from 

the changing retinal brightness distribution [4,5,21] by correlating, at each image 

location, the brightness values as derived from neighboring photoreceptor signals after 

asymmetric temporal filtering. Doing this twice in a mirror-symmetrical fashion and 

subtracting the output signals of both subunits leads to a fully directional output signal. 

As a hallmark of such a computation, the response of the animal to a drifting sine 

grating is expected to show a velocity optimum, which is a linear function of the 

pattern wavelength resulting in a constant temporal frequency optimum. This has been 

found to hold true in behavioral experiments on the beetle Chlorophanus [21], the 

honeybee Apis [22], the housefly Musca [23,24] as well as in Drosophila [6,25,26]. 

Subsequent work in the blowfly Phaenicia and Calliphora confirmed that, amongst other 

predictions of the Reichardt model [27,28], this response feature is fully retained, too, 

in large-field motion-sensitive neurons in the lobula plate [29,30]. Thus we measured 

the velocity dependence at different spatial wavelengths presenting sine gratings at 

spatial wavelength  = 44o and 22o, respectively, that drifted downward for three 
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seconds at various speeds. Plotting the normalized mean response as a function of 

pattern velocity revealed a response optimum at 44o/sec for the large and at 22o/s 

for the small wavelength pattern (Fig. 3A). When plotted as function of the temporal 

frequency (Fig. 3B), both curves coincide with the same response optimum at 1 Hz. This 

finding makes a strong argument for elementary motion detectors of the correlation-

type providing input to VS-cells in Drosophila. 

 

Figure 3 Velocity tuning (A, B) and step-responses (C, D) of Drosophila VS-cells. (A) Normalized 

responses of VS-cells to PD- motion are plotted against the velocity of the stimulus using two different 

sine wave stimuli (red:  = 22°, black:  = 44°). At each stimulus velocity the first 500 ms of the 

recording trace after motion-onset were normalized to the maximum response. Each cell was measured 

at least 4 times for each stimulus condition, asterisk indicate the maximum of the mean response. Data of 

VS1-VS4 cells are averaged, n = 9 and 10 cells, respectively, mean +/- SEM. (B) Same data as in A, 

but plotted as a function of the temporal frequency (velocity divided by the pattern wavelength). (C) 

After motion onset VS-cells exhibit characteristic oscillations that are imposed by the temporal frequency 

of the moving grating (λ = 50o, 3 Hz, indicated by the grey stripes in the background) if the still grating 

was already present before the onset of motion. A periodic square-wave grating was presented, after 

4 seconds the grating started to move abruptly at a constant velocity of 150 o / s (ft = 3 Hz). 

Experiments were performed at constant mean luminance with 85 % (black), 28 % (red) and 14 % 
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(blue) pattern contrast. The relative magnitude of the oscillations increased with decreasing pattern 

contrast. (D) Only weak oscillations are detectable in the VS-cell response if the still grating prior the 

onset of constant motion is replaced by an equiluminant homogeneous screen (stimulus contrast as in C). 

Bottom panels in c and d show Fast Fourier Transforms (FFT) of the mean response of all experiments in 

(C) and (D). FFT revealed a 3 fold higher power at the temporal frequency of the pattern (3 Hz, black 

arrow) when a static grating was presented prior to motion onset as compared to a homogeneous 

screen (cell types VS1-VS4 averaged, n = 8 cells; 8 to 20 sweeps / cell). 

 

Characteristic step-response transients elicited by the abrupt onset of motion represent 

another key feature of the presynaptic motion detection circuitry [31,32]. In Calliphora 

this step-response consists of initial transient oscillations followed by a plateau-like 

steady state response. The initial oscillations are imposed by the frequency of 

brightness changes of the pattern and do not reflect intrinsic oscillatory dynamics of the 

neural circuitry. However, both components depend on features of the visual stimulus 

itself and precisely match model calculations based on a correlation-type detector 

model [33]. We analyzed step-responses in VS-cells of Drosophila (Fig. 3C). Prior to 

the onset of grating motion, either an identical stationary grating (λ = 50o, Fig. 3C) or 

an isoluminant homogeneous screen (Fig. 3D) was presented to the flies. After 4 

seconds the grating started moving abruptly at a velocity of 150o/s corresponding to 

a temporal frequency of 3 Hz which allowed detection of several oscillation cycles. 

With both types of pre-stimulus conditions experiments were performed at 85, 28 and 

14 % pattern contrast (black, red and green recording traces, respectively, in Fig. 3C 

and D). When starting from a stationary grating, the response oscillated at 3 Hz (Fig. 

3C). The oscillations lasted for several seconds and their amplitude depended on the 

pattern contrast: with increasing contrast the oscillations were damped more quickly 

and gave way to the underlying steady-state response. When a homogeneous green 

screen was presented before the onset of grating movement (Fig. 3D), the oscillations 

tended to have much smaller amplitudes. Small remaining oscillations can most likely 

be attributed to the limited spatial resolution of the LED arena. As expected, under 

these conditions the steady-state component showed a similar positive dependence on 

pattern contrast. The responses of all experiments were used to calculate the power 

spectra of the recordings taken at both pre-stimulus conditions (lower panels in Figs. 3C 

and 3D). With the grating presented prior to motion VS-cell responses oscillated with 

three-fold higher power at the fundamental frequency of the moving grating (3 Hz) 

compared to the homogeneous screen as starting condition. These results are in line 

with the step-responses measured in Calliphora tangential cells [32] and can be 

precisely simulated in a correlation-type model of elementary motion detection that 
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includes two temporal filters [33]. Adaptation of the time-constant of a high-pass filter 

in the cross-arms of the detector can fully reproduce these results whereas other 

models or versions of motion detectors fail.                      

 

One prerequisite of a directionally selective neuron is it‟s capability to encode the 

direction of image motion independent of the sign of contrast. We investigated this 

property by presenting either a black bar moving on a white background or a white 

bar moving on a black background (Fig. 4A). In the different VS-cell types upward 

and downward motion of the bar was always reported by hyperpolarization and 

depolarization of the membrane potential, respectively, independent of the sign of 

contrast. As a further test for the Reichardt-model, we studied the contrast dependence 

of the VS-cell response. Due to the multiplication of luminance values, a quadratic 

contrast dependence of individual correlation-type motion detectors is expected in 

principle [27]. However, as analyzed in all species so far, such a quadratic contrast 

dependence is found for small contrasts only (contrast < 10 %); for higher contrast 

levels, the response strongly saturates [6,34]. We observed a similar saturation 

nonlinearity in Drosophila VS-cells when flies were stimulated with a periodic grating 

drifting at 1 Hz temporal frequency at four different contrast levels (10, 40, 75 and 

100 %). The response increased with increasing pattern contrast and showed clear 

signs of saturation at high luminance contrast (Fig.4B). In agreement with behavioral 

studies on the optomotor response in Drosophila [6], the half-maximum response was 

reached at about 24 % luminance contrast.            
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Figure 4 Further response characteristics of VS-cells. (A) A white bar in front of a black background 

(upper trace) and a black bar in front of a white background (lower trace) were moving up and down. 

Under both conditions the direction of the moving bar was reported similarly by the membrane potential 

during upward and downward motion, respectively, independent of the sign of contrast. (B) A periodic 

grating (λ = 25 o) was moved at constant speed and a temporal frequency of 1 Hz. The normalized 

response of VS-cells increases with increasing pattern contrast and exhibited a saturation characteristic 

with a half-maximum response at 24 % pattern contrast (n = 10, mean +/- SEM). (C) Recording traces 

of a VS-cell in current clamp during PD- and ND-motion reveal that responses evoked by grating motion 

depend on the magnitude and polarity of the injected current. Current was injected permanently (+ 0.5, 

0 and -0.5 nA) while the pattern moved upward or downward. Grating motion is indicated by the black 

line underneath the traces. In (A) and (C) 14 and 10 cells, respectively, were analyzed, in all panels 

data was pooled from VS1-VS4). 

 

 

Last we elucidated the final step in local motion detection, i.e. the subtraction of local 

motion detectors with opposite preferred direction. If this subtraction stage was 

presynaptic to the dendrites of VS-cells (alternative 1), a single type of fully 

directional input would be expected. The synaptic transmitter release of this input 

would be up- and down-regulated according to preferred or null direction motion. If 

the subtraction stage was realized on the dendrites of VS-cells themselves (alternative 

2), two types of inputs with opposite preferred direction should provide inhibitory and 

excitatory input to the VS-cell dendrites, respectively. One can decide between these 

two alternatives in various ways, all of which have been done in tangential cells of 



83 

Calliphora, and all of which provide evidence for the latter situation [35-37]. We 

recorded from VS-cells in current clamp mode and injected DC- current while 

presenting periodic grating motion in preferred and null direction (Fig. 4C). If 

alternative 1 holds true, injection of constant current should affect both preferred and 

null direction response similarly by shifting the membrane potential away from the 

synaptic reversal potential. If, however, alternative 2 is realized, hyperpolarizing the 

postsynaptic cell should decrease the null direction response by reducing the driving 

force and, at the same time, increase the preferred direction response by increasing 

the driving force. Injection of depolarizing current would cause the opposite. Injection 

of -0.5 nA eliminated the hyperpolarization during null direction motion completely 

while the preferred direction response became larger. Depolarizing current injection of 

+ 0.5 nA increased the amplitude of the null direction motion response whereas the 

amplitude of the graded depolarization and the small action potentials during 

preferred direction motion was decreased. These findings provide evidence that VS-

cells in Drosophila receive input from two types of local, motion-sensitive elements: one 

excitatory tuned to downward motion, one inhibitory tuned to upward motion. Thus, in 

terms of the computational structure described above, the subtraction stage of the 

correlation-type motion detector is implemented as a push-pull mechanism between 

excitatory and inhibitory inputs on the dendrites of VS-cells in Drosophila. 

 

In summary, we established Drosophila melanogaster as a model system for the cellular 

analysis of visual motion detection and provide the first account on Drosophila VS-cell 

response properties. By reproducing knowledge in Drosophila VS-cells that was 

originally obtained in large flies like Calliphora we suggest that (i) uniform neural 

mechanisms of visual motion processing exist across different dipteran species, (ii) 

Drosophila qualifies for the analysis of population coding within the VS-cell network, 

and (iii) Drosophila allows to unravel the neural implementation of elementary motion 

detection in columnar neurons of the medulla. This can be achieved by combining the 

expression of genetic tools allowing to activate or inactivate neural function [38,39] in 

genetically targeted columnar neurons while recording from VS-cells during visual 

stimulation.  
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Experimental procedures 
 

Flies. Flies were raised on standard cornmeal-agar medium at a 12 h light / 12 h 

dark cycle, 25˚C and 60 % humidity. We used female experimental flies, one day 

post- eclosion. The DB331-Gal4 line (kindly provided by R. Stocker, Fribourg, 

Switzerland) was used to express Gal4 mostly in tangential cells and a few 

unidentified columnar neurons. UAS-YC3.3 was used in Figure 1B to highlight entire 

cells by cytosolic expression of the reporter molecule. In all other experiments UAS-

mCD8-TN-XL-8aa was used to predominantly stain cell bodies (see supplemental 

material).   

 

Preparation. Flies were anesthetized on ice and waxed on a Plexiglas holder using 

bee wax. The head was bent down to expose the caudal backside of the head 

(Fig.1A) and the extended proboscis was fixed. Occasionally wax was put on the 

thorax and parts of the contra lateral eye to stabilize the preparation. Aluminum foil 

with a hole of ~ 1-2 mm sustained by a ring shaped metal holder was placed on top 

of the fly such that thorax and head tightly fitted into the hole. The aluminum foil 

separated the upper wet part (covered with ringer solution [1]) of the preparation 

from the lower dry part. The foil was aligned to the most dorsal omatidia located in 

the dorsal rim area. Water immersion optics was used from above and visual patterns 

(see below) were presented to dry and intact facette eyes. A small window was cut 

into the backside of the head and during mild protease treatment (protease XIV, 

E.C.3.4.24.31, Sigma, Steinheim, Germany; 1 mg / ml, max 3 min) the neurolemma 

was partially digested and the main tracheal branches and fat body were removed. 

The protease was rinsed off carefully and replaced by ringer solution. A ringer-filled 

cleaning electrode (tip ~ 4 µm) was used to remove the extracellular matrix and to 

expose the VS-cell somata for recording. 

 

Visually guided whole cell recording. Genetically labeled green fluorescent VS-cell 

somata covered by ringer solution [1] were approached with a patch electrode filled 

with a red fluorescent dye (intracellular solution as in [40]; containing additional 5 mM 

Spermine and 30 µM Alexa-Fluor-568-hydrazide-Na, Molecular Probes, adjusted to 

pH = 7.3). Recordings were established under visual control using a 40X water 

immersion objective (LumplanF, Olympus), a Zeiss Microscope (Axiotech vario 100, 

Zeiss, Oberkochen, Germany), fluorescence excitation (100 W fluorescence lamp, heat 
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filter, neutral density filter OD 0.3; all from Zeiss, Germany) and a dual band filter-set 

(EGFP / DsRed, Chroma Technology, Rockingham, USA). During the recordings the 

fluorescence excitation was shut off to prevent blinding of the fly. 5-7 MΩ patch-

electrodes (thin wall, filament, 1.5 mm, WPI, Florida, USA) were pulled on a Sutter-

P97 (Sutter Instrument Company, CA, USA). A reference electrode (Ag-AgCl) was 

immerged in the extra cellular saline (pH 7.3, 1.5 mM CaCl2, no sucrose). Signals were 

recorded on an NPI BA-1S Bridge Amplifier (NPI Electronics GmbH, Tamm, Germany), 

low-pass filtered at 3 kHz and digitized at 10 kHz via a digital-to-analog converter 

(PCI-DAS6025, Measurement Computing, Norton, MA, USA) using Matlab (Vers. 

7.3.0.267, Mathworks Inc., USA). After the recording, several images of each Alexa-

filled LPTC were taken at different depths along the z-axis (HQ-filter-set Alexa 568, 

Chroma Technology, Rockingham, USA) using a CCD camera (Spot Pursuit 1.4 

Megapixel, Visitron Systems GmbH, Puchheim, Germany). These images allowed 

anatomical identification of the recorded cell based on their characteristic branching 

patterns. Additionally, cells were digitized by confocal fluorescence microscopy (see 

next section). The precise position of the fly‟s head was controlled using the deep 

pseudo-pupil technique [41]. Deviations of more than 5° were corrected during the 

data analysis.  

 

Confocal microscopy. Serial optical sections were taken from recorded VS-cells in the 

intact preparation using a Leica confocal microscope (TCSNT, Leica) and a 40X water-

immersion objective (LUMPlanF, Olympus). Images were taken at 1 µm intervals and 

1024 x 1024 pixel resolution. Size, contrast and brightness of the resulting image 

stacks were adjusted using ImageJ (http://rsb.info.nih.gov/ij). 

 

Neurobiotin coupling. VS-cells were targeted and perfused using patch electrodes as 

described above. 3 % Neurobiotin (Vector Labs, Burlingame) was added to the 

intracellular solution. Neurobiotin and Alexa Fluor 568 were co-injected using ± 0.5 nA 

current pulses for up to 10 min. For initial identification the perfused individual VS-cell 

was imaged using the fluorescence microscope and CCD-camera described above. For 

Streptavidin staining, brains were fixed in 4 % PFA (40 min), washed in PBT (45 – 60 

min; PBT: PBS, including 1 % Triton X-100, pH 7.2) and incubated in PBT including 2 % 

normal goat serum (Sigma Aldrich, St. Louis, MO; G9023).  Streptavidin Alexa Fluor 

568 conjugate (Invitrogen) was added at 1:100 overnight (4°C). Streptavidin was 

removed by several washing steps (5 x 20 minutes in PBT) and followed by final 
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washing steps in PBS (5 x 20 minutes). The stained brains were mounted in Vectashield 

(Vector Laboratories, Burlingame, CA) and analyzed by confocal microscopy. Perfusion 

of a single VS-cell never resulted in more than one Alexa-568 filled cell. Only after 

labeling of Neurobiotin using Streptavidin-Alexa-568 conjugate other cells lighted up. 

The second red label was used to prevent spectral overlap with the green fluorescence 

of genetically labeled neurons. 

 

Visual stimulation. Two custom built LED arenas allowed refresh rates of up to ~ 550 

Hz and 16 intensity levels. They covered 170 ° (1.9 ° resolution) and 180 ° (3.2 ° 

resolution) of the horizontal visual field, respectively. The LED arenas were engineered 

and modified based on the open source information of the Dickinson Laboratory 

(www.its.caltech.edu/~mreiser/panels.html). The first LED array consists of seven by 

four individual TA08-81GWA dot matrix displays (Kingbright, City of Industry, CA, 

USA) each harboring eight by eight individual green (568 nm) LEDs. The second arena 

consists of eleven by eight BM-10288MD dot matrix displays each again housing eight 

by eight green (568 nm) LEDs. In both implementations each dot matrix display is 

controlled by an ATmega168 microcontroller (Atmel, San Jose, CA, USA) combined 

with a ULN2804 line driver (Toshiba America Inc, NY, USA) acting as a current sink. All 

panels are in turn controlled via an I2C interface by an ATmega128 (Atmel, San Jose, 

CA, USA) based main controller board which reads in pattern information from a 

compact flash (CF) memory card. Matlab (Vers. 7.3.0.267, Mathworks Inc., USA) was 

used for programming and generation of the patterns as well as for sending the serial 

command sequences via RS-232 to the main controller board. The luminance range of 

the stimuli was 0,5 – 8 cd / m2 for investigation of step-responses and 0 – 8 cd / m2 in 

all other experiments. 

  

Data analysis. Data were acquired and analyzed using the data acquisition and 

analysis toolboxes of Matlab (Vers. 7.3.0.267, The Mathworks, USA). Receptive fields 

were calculate by binning the responses of single VS-cells to vertical stimulation (~5° 

elevation / ~6° azimuth) and subtracting the mean response during null direction from 

the mean response during  preferred direction motion. The data of each individually 

identified cell was normalized to the maximum response. The projection of the 

receptive field on the azimuth was calculated for each VS-cell individually by 

averaging the binned responses at the different elevations at each position along the 
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azimuth. Contrast was calculated as (Imax – Imin) / (Imax + Imin) with an absolute Imin and 

Imax of 0 and 8 cd / m2, respectively.   

 

Supplementary Material 

 

 

Supplementary Figure S1 Recording traces of two VS-cells during presentation of a periodic 

sinusoidal grating (0.2 – 8 cd / m2). The time-course of the membrane potential relative to the 

direction of grating motion designates both neurons as directionally selective prototypic VS-cells similar 

to the ones described in large flies. All recorded cells exhibited a depolarization during constant 

downward grating motion (preferred-direction, PD) and a hyperpolarization during constant upward 

grating motion (null-direction, ND). However, there were differences from cell to cell in the rate at which 

fast membrane fluctuations of irregular amplitude occur. In one type of cells (cell 1) spike-like events are 

basically absent if a still grating is presented (no motion) and during PD-motion fast membrane 

fluctuations are easily detectable that are superimposed on the steady-state depolarization (see close-

ups to the right). The other type of cells is represented by cell 2. Spike-like events are highly abundant 

even in the absence of grating motion. During PD-motion a more pronounced steady-state membrane 

potential depolarization is exhibited during which individual spike-like potential deflections are not 

easily detectable (see close-ups to the right). During ND-motion fast membrane potential fluctuations 

were almost completely suppressed in both types of cells. Both types were observed at similar 

abundance and did not correlate with the specific VS-cell type. Grating motion is indicated by the black 

line underneath the recording traces to the right. Sections of the recording traces at the time marked by 

the grey stripes are shown at increasingly finer time-scale in the panels to the right. It has to be 

mentioned that in big flies membrane potential fluctuations have been shown to be dependent on the 

mean brightness [11]. However, in our experiments this parameter was not changed. 
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Supplementary Figure S2 Active membrane properties in Drosophila VS-cells involve TTX-sensitive 

fast voltage-activated sodium currents. To investigate if such currents are among the ionic repertoire of 

Drosophila VS-cells, -1 nA current was injected for two seconds (indicated by the black bar) turning the 

membrane potential more negative by additional 30 mV. Then, the neuron was released from 

hyperpolarization. All this was done without visual stimulation. The black recording trace shows that the 

fast membrane potential fluctuations are reduced during hyperpolarization. Immediately after being 

released from negative current, the neuron generated a series of high frequency rebound spikes that 

can be considered intrinsic in origin and that were blocked by application of TTX onto the lobula plate 

(grey recording trace). Thus, TTX-sensitive fast voltage-activated sodium currents are likely to be a main 

source of the irregular amplitude high-frequency events. This interpretation would further corroborate 

the idea of common mechanisms and pathways of visual motion detection in Dipteran flies [26-28]. 

Nonetheless we have to consider that the complete block of all fast membrane potential fluctuations by 

TTX might include blocking of action potentials in columnar elements that provide input to VS-cells (TTX: 

500 nM on the lobula plate, grey trace, n = 6; 10 l of a 25 M TTX-ringer solution were added to 0,5 

ml ringer in the bath). 

 

 

 

Supplementary Figure S3 Analysis of receptive field width. Five minutes of a recording of a VS3-cell 

are shown. During the experiment increasingly depolarizing and hyperpolarizing responses are elicited 
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during PD- and ND-motion, respectively, as the bar moves into the center of the receptive field (upper 

trace). These potential deflections disappear again as the bar reaches more frontal positions (see close 

ups, left trace: receptive field center; right trace: off-center). A horizontal bar of 6o width was moved 

upward (ND) and downward (PD) from vertically 0 o to -50 o at successive horizontal positions within the 

ventral field of view. The horizontal positions ranged from ipsilateral +105 o posterior to contralateral -

60 o.  

 

UAS-mCD8-TN-XL-8aa: On it‟s N-terminus the low-affinity calcium indicator TN-XL (Mank et al., 2006) 

was fused to the transmembrane domain mCD8, on it‟s C-terminus a short Glycin-linker was used to 

connect TN-XL to six aminoacids known to bind to the PDZ domain of mint. The inspiration for the cloning 

of this construct came from an article by Maximov & Bezprozvanny (2002) where the authors describe 

the targeting of N-type voltage gated calcium channels in hippocampal neurons. The authors describe a 

binding motif of only 6 amioacids (DQDHWC) located at the C-terminus of the 1B subunit. In their 

account this motif was sufficient to cause specific targeting of a mCD4-GFP construct to axons and 

presynaptic terminals of hippocampal neurons in culture. We used this idea to clone a synaptically 

targeted version of TN-XL. However, axonal targeting was not retained in transgenic flies and the 

calcium sensitivity of the reporter was essentially lost. Instead, at low to medium expression levels 

mCD8-TN-XL-8aa highlights somata efficiently when expressed in neurons of transgenic flies. The protein 

seems to be trapped in the endoplasmatic reticulum. Although initially unintended we made use of this 

expression pattern as somata were much brighter compared with an UAS-GFP-nls construct. In our 

experiments we used a chromosomal insertion on the third chromosome. These flies were crossed to the 

DB331-Gal4 driver. Even flies homozygous for the driver line and the UAS-construct were behaving 

normally and no obvious differences could be observed compared with wt-flies.               

 

Supplementary Reference 

 

Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor 

with fast signal kinetics and high fluorescence change. Biophys. J. 90: 1790-1796. 

 

Maximov A, Bezprozvanny I (2002) Synaptic targeting of N-type calcium channels in hippocampal 

neurons. J. Neurosci. 22: 6939-6952. 
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Abstract 
 

The nervous system of seeing animals derives information about optic flow in two 

subsequent steps. First, local motion vectors are calculated from moving retinal images, 

second the spatial distribution of these vectors is analyzed on the dendrites of large 

downstream neurons. In dipteran flies, this second step relies on a set of motion-

sensitive lobula plate tangential cells (LPTCs) that have been studied in great detail in 

large fly species. Yet, studies on neurons that convey information to LPTCs and 

neuroanatomical investigations that enable a mechanistic understanding of the 

underlying dendritic computations in LPTCs are rare. We investigated the subcellular 

distribution of nicotinic acetylcholine receptors (nAChRs) on two sets of LPTCs, VS and 

HS cells in Drosophila melanogaster. We describe that both cell types express Dα7-

type nAChR subunits specifically on higher order dendritic branches, similar to the 

expression of GABA receptors. These findings support a model in which directional 

selectivity of LPTCs is achieved by the dendritic integration of excitatory, cholinergic 

and inhibitory, GABA-ergic input from local motion detectors with opposite preferred 

direction. Nonetheless, whole cell recordings in mutant flies without Dα7 nAChRs 

revealed that direction selectivity of VS and HS cells is largely retained. In addition, 

mutant LPTCs were responsive to acetylcholine and remaining nAChR receptors were 

labeled by α-bungarotoxin. These results in LPTCs with genetically manipulated 

excitatory input synapses suggest a robust cellular implementation of dendritic 

processing that warrants direction selectivity. The underlying mechanism that ensures 

appropriate nAChR mediated synaptic currents and the functional implications of 

separate sets or heteromultimeric nAChRs can now be addressed in this system.  
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Introduction 
 

Self motion of an animal causes shifting images of the environment on the retina. 

Photoreceptors report these time-varying local brightness values to a relatively small 

neural network of downstream neurons that compute local motion vectors according to 

the correlation-type detector model (Hassenstein & Reichardt, 1956; Reichardt, 1961; 

Borst & Egelhaaf, 1989). The underlying computations involve asymmetric temporal 

filtering and multiplication of the input from two neighboring photoreceptors. This 

process is done twice, once in each of the two mirror symmetrical subunits with opposite 

preferred direction. The output of the two subunits is subtracted which results in a 

directional selective response. Interestingly, the cellular composition of this network and 

the biophysical implementation of the underlying computations are still largely 

unknown.  

 

The output of large arrays of local motion detectors has to be processed in a second 

step to obtain information about optic flow. The latter is an important prerequisite for 

successful navigation. This last step is accomplished by analysis of the spatial 

distribution of local motion vectors (Koenderink & van Doorn, 1987). Studies in 

dipteran flies have shown that this spatio-temporal analysis of local motion vectors 

takes place in the posterior division of the third neuropile of the fly optic lobe, the 

lobula plate (reviewed in Borst & Haag, 2002). Here, about 60 individually 

identifiable motion sensitive neurons reside, the Lobula Plate Tangential Cells (LPTCs). 

Different LPTC exhibit distinct visual responses and are tuned to particular optic flow 

patterns (Hengstenberg, 1982; Hausen, 1982a; Hausen, 1982b; Krapp & 

Hengstenberg, 1996; Borst & Haag, 1996; Haag, Theunissen, & Borst, 1997; Krapp, 

Hengstenberg, & Hengstenberg, 1998; Haag, Vermeulen, & Borst, 1999). Their tuning 

results in first place from the columnar input to their dendrites as described above. As 

a result LPTCs of the vertical system (VS) are most sensitive to vertical motion and 

rotations around different axes within the equatorial plane of the animal. LPTCs of the 

horizontal system (HS) are tuned to horizontal motion and thus to rotations around the 

vertical body axis. However, the receptive field properties of VS and HS cells become 

further modified by numerous connections between LPTCs of the same or different type 

that reside in the ipsi- and contralateral lobula plate (Farrow, Haag, & Borst, 2003; 

Haag & Borst, 2004; Haag & Borst, 2005; Farrow, Borst, & Haag, 2005; Farrow, 

Haag, & Borst, 2006). The axons of both cell types represent important output 
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elements of the lobula plate. They travel medially and terminate in the lateral 

protocerebrum (Hengstenberg, Hausen, & Hengstenberg, 1982; Hausen, 1982a; Scott, 

Raabe, & Luo, 2002; Raghu, Jösch, Borst, & Reiff, 2007) where they synapse on 

dendrites of descending neurons (Haag, Wertz, & Borst, 2007; Wertz, Borst, & Haag, 

2008). The latter instruct motoneurons that control neck and flight muscles (Gronenberg 

& Strausfeld, 1990). Thus, visual control of flight maneuvers is accomplished. 

 

In Drosophila melanogaster, different HS and VS cells as well as most of the columnar 

neurons have been well described based on their morphology (Heisenberg, 

Wonneberger, & Wolf, 1978; Fischbach & Dittrich, 1989; Scott et al., 2002; 

Rajashekhar & Shamprasad, 2004; Raghu et al., 2007). The HS system comprises 

three individually identifiable cells, the northern, equatorial and southern HSN, HSE 

and HSS cell that are similarly present in large flies and Drosophila. Their dendritic 

fields cover a wide dorsal, equatorial, and ventral area within the lobula plate, 

respectively, with significant overlap. Only recently the first electric response 

properties of neurons within the Drosophila lamina (Zheng et al., 2006) and of 

Drosophila VS cells (Jösch, Plett, Borst, & Reiff, 2008) have been reported, too. 

Consistent with anatomical studies the functional investigation of the VS cell system in 

Drosophila revealed six VS cells as compared to 10 in Calliphora (Hausen, 1982a; 

Scott et al., 2002; Raghu et al., 2007; Jösch et al., 2008). Drosophila VS cells exhibit 

directional selective responses and possess distinct receptive fields. Their receptive 

field centers are arranged sequentially along the eye‟s azimuth, corresponding to the 

serial positioning of their partially overlapping dendrites within the retinotopically 

organized lobula plate. The dendrites themselves stretch out along the dorsal-ventral 

axis of this neuropile, similar to the dendrites of HS cells. Experimental evidence 

suggests that the dendrites of both cell types receive direct input from two different 

arrays of antagonistic local, motion-sensitive elements with opposite preferred 

direction. Such antagonistic detector arrays exist for both the horizontal and the 

vertical axis, respectively (Borst & Egelhaaf, 1990; Brotz & Borst, 1996; Brotz, 

Gundelfinger, & Borst, 2001). Yet, their cellular identity has still not been revealed but 

some evidence goes in favor of the bushy T cells, T4 and T5 (Buchner, Buchner, & 

Bülthoff, 1984; Fischbach et al., 1989). Only a single study has shown evidence for 

chemical synapses between an HS cell dendrite and a columnar T4 cells from the 

medulla (Strausfeld & Lee, 1991).  
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Nevertheless, individual VS cell responses in large flies (Haag, Denk, & Borst, 2004) 

and Drosophila (Jösch et al., 2008) exhibit all the characteristics that are indicative of 

presynaptic input from antagonistic elementary motion detectors of the correlation 

type. With respect to the computational structure of the correlation detector (Reichardt, 

1961), the final subtraction stage and spatial integration of the output of local motion 

detectors with opposite preferred direction seems to be implemented on the LPTC 

dendrites. In such a push-pull model excitatory and inhibitory synapses form the input 

to LPTC dendrites (Borst et al., 1990; Gilbert, 1991; Borst, Egelhaaf, & Haag, 1995). 

Pharmacological and histochemical studies on the distribution of dipteran acetylcholine 

receptors (Sattelle, 1980; Schuster, Phannavong, Schroder, & Gundelfinger, 1993; 

Hess, Merz, & Gundelfinger, 1994; Jonas, Phannavong, Schuster, Schroder, & 

Gundelfinger, 1994; Chamaon, Schulz, Smalla, Seidel, & Gundelfinger, 2000; 

Fayyazuddin, Zaheer, Hiesinger, & Bellen, 2006) and Rdl-type dieldrin-resistant 

GABA receptor subunits (ffrench-Constant, Roush, Mortlock, & Dively, 1990) on the 

dendrites of LPTCs (Brotz et al., 1996; Brotz et al., 2001) suggest that these 

antagonistic inputs are cholinergic and GABAergic, respectively. However, a detailed 

description of the subcellular distribution of the cognate receptors on LPTC dendrites is 

still missing. 

 

Here we extend a recent study on the synaptic organization and subcellular 

distribution of inhibitory GABA receptors (Raghu et al., 2007) on Drosophila LPTCs and 

describe the subcellular distribution of excitatory Dα7 nicotinic cholinergic receptors 

(nAChRs) on the same set of cells. Dα7 nAChR subunits belong to a family of ten 

different nAChR genes in Drosophila that encode the subunits Dα1-7 and D 1-3. In the 

prototypic nAChR five subunits of the same or different type assemble to one 

pentameric ligand-gated cation channel (Sattelle et al., 2005; Jones, Brown, & 

Sattelle, 2007). These nAChR channels are key players for fast excitatory 

neurotransmission in the central nervous system of insects (Leech & Sattelle, 1993). 

Only little is known about the interplay of subunit composition and electric channel 

properties (see discussion).   

 

We used genetic, immunohistochemical and electrophysiological techniques and 

describe that Dα7 receptor subunits are exclusively located on higher order branches 

of VS and HS cell dendrites. In the absence of Dα7 receptor subunits direction 

selectivity of VS cells was largely retained. This finding suggests the existence of 
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remaining nAChRs which was corroborated by α-bungarotoxin labeling. The remaining 

nAChRs represent either a separate set of nAChRs that do not involve Dα7 subunits or 

alternatively, nAChRs that are functional in the absence of Dα7 expression.  In both 

cases a regulatory mechanism can be assumed that compensates for the loss of the 

Dα7 nAChR subunit and warrants direction selectivity in cells with genetically 

manipulated excitatory input synapses.   

 

 

 

Materials and Methods 
 

Flies and fly culture. 

 

Flies were raised on standard corn medium at 25 ºC and 60 % humidity. Female flies 

3-5 days after eclosion were used in all experiments. The enhancer trap lines Gal4-

DB331 (Jösch et al., 2008) and Gal4-3A (Scott et al., 2002) were kindly provided by 

R. Stocker (Fribourg, Switzerland) and M. Heisenberg (Wuerzburg, Germany), 

respectively, and used to drive expression in LPTCs. The Dα7 knock out fly line PDΔY6 

(Fayyazuddin et al., 2006) was kindly provided by Hugo Bellen (Texas, USA). UAS-

Dα7-GFP flies were generated by PCR amplification of the Dα7 open reading frame 

from a pAc5.1A Dα7 construct (gift of Amir Fayyazuddin and Hugo Bellen) using the 

primers 5‟ GAGGGACCAGTTTTCATATC 3‟ and 5‟ 

GAGCCTCGAGCTTCGCTTACGGGAAAATGAAATGCG 3‟ and additional XhoI site 6 

bp after the end of the open reading frame. After digesting the PCR product with NotI 

and XhoI the fragment was subcloned into pKS. The EGFP tag was inserted after 

G442 using primer extension PCRs including a duplex linker, using the native HindIII 

and the XhoI site. Finally the tagged construct was transferred into the pUAST vector 

using NotI and XhoI. Detailed protocols and primer sequences for extension PCR on 

request. Female experimental flies of the following genotypes were used for 

immunohistochemistry: Gal4-DB331/+; UAS-mCD8-GFP/+; +/+, Gal4-DB331/+; 

UAS-mCD8-DsRed/+; UAS-Dα7-GFP/+, PDΔY6; UAS-mCD8-GFP; Gal4-3A. 

Electrophysiology was performed on: PDΔY6; UAS-mCD8-GFP; Gal4-3A and 

corresponding control flies +/+; mCD8-GFP/cyo; 3A-Gal4/3A-Gal4. 
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Immunohistochemistry 

 

The brains of female flies were excised, fixed in 4 % Paraformaldehyde for 30 

minutes and  incubated in phosphate-buffered saline (PBS) including 1 % Triton X-100 

(PBT) for 45-60 minutes. The brains were further incubated in PBT with 2 % normal 

goat serum (Sigma Aldrich, St. Louis, MO) for one hour. The primary antibodies Alexa 

Fluor 488 rabbit anti-GFP-IgG (A-21311, Molecular Probes, Eugene, OR) or 

monoclonal rat anti-mCD8 (MCD0800, Caltag laboratories) were added (1:200) 

overnight at 4 C and removed by a series of washing steps in PBT. The secondary 

antibody Alexa Fluor 568 goat anti-rat-IgG (A11077, Molecular Probes) was added 

(1:200) overnight at 4º C and removed by further washing steps in PBT for a total of 

60-90 minutes. Subsequent to a final washing step in PBS for 45-60 minutes the 

stained brains were mounted in Vectashield (Vector Laboratories, Burlingame, CA) and 

analyzed by confocal microscopy. For antibody staining of Dα7 receptor subunits (rat 

anti-Dα7, kindly provided by Hugo Bellen, Texas, USA; Fayyazuddin et al., 2006) the 

brains were fixed either in ice cold 4 % PFA for 5 minutes or in ice cold PFA-Lysine-

Periodate (PLP) fixative (Mclean and Nakane, 1974) for 20 minutes. PFA and PLP 

fixed brains were washed in 1X PBT and 0.4X PBT, respectively. Further processing 

was performed as described above. α-bungarotoxin-Alexa 647 (B35450, Molecular 

Probes) staining was performed at room temperature (1:100, diluted with 1X Tris 

Buffer Saline, TBS) without fixation for 60-90 minutes. Subsequently the brains were 

washed 3-4 times in 1XTBS with 15 minutes intervals. The stained brains were mounted 

in Vectashield and immediately analyzed by confocal microscopy. All steps were done 

at room temperature unless otherwise stated. 

 

Electrophysiology 

 

Visually guided whole cell recordings from highlighted LPTCs (genotypes see above) 

were performed as described recently (Jösch et al., 2008). For visual stimulation 

large–field visual square gratings (spatial wavelength  = 25 deg, velocity  = 25 

deg/sec) were presented to the eyes of the flies. In the pharmacological experiments 

the brains were perfused with ringer (Wilson et al. 2004) at a constant speed of 3 

ml/min. Whole cell recordings were established in Calcium containing ringer and 

visually evoked control responses were recorded. Then the ringer was changed to zero 

Calcium solution with 20 mM Magnesium. In this solution the visually evoked responses 
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were monitored until they disappeared completely. LPTCs were then stimulated by 

perfusion of ringer (zero Calcium, 20 mM Magnesium) with additional 1 mM 

acetylcholine for several seconds. 

 

Data Analysis 

 

Serial optical sections were taken at 0.5 µm intervals with 1024 x 1024 pixel 

resolution using confocal microscopes (LEICA TCSNT and SP2-UV) and oil-immersion 

40X- (NA = 1.25), 63X- (NA = 1.4) and 100X- (NA = 1.4) Plan-Apochromat 

objectives. In all cases, frontal (coronal) sections were taken from the posterior side of 

the brain. The individual confocal stacks were analyzed using Image J (NIH, U.S.A). The 

size, contrast and brightness of the resulting images were adjusted with Photoshop® 

CS (Adobe Systems, San Jose, CA).   
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Results 
 

We investigated the subcellular distribution of Dα7 cholinergic receptor subunits on 

LPTCs and their contribution to direction selectivity of Drosophila LPTCs. In a first set of 

experiments we used a subunit specific antibody against Dα7 cholinergic receptor 

subunits (Fayyazuddin et al., 2006) in flies with genetically labeled fluorescent (UAS-

mCD8-GFP) VS and HS cells (GAL4-DB331 (Raghu et al., 2007; Jösch et al., 2008) or 

Gal4-3A (Scott et al., 2002; Raghu et al., 2007)). Both Gal4 lines drive expression in 

six VS cells and three HS cells of the adult Drosophila brain. The dendrites of these VS 

and HS cells cover wide areas within the lobula plate where they receive input from 

numerous columnar elements from presumably the medulla and the lobula (Fischbach et 

al., 1989; Strausfeld et al., 1991).   

 

Immunolabeling provides evidence for excitatory cholinergic input to the dendritic 

tips of VS and HS cells.  

 

We analyzed the distribution of Dα7 immunoreactivity on VS and HS cells. The 

antibody staining against Dα7 (Fayyazuddin et al., 2006) in brains of female flies 

(Gal4-DB331/+; UAS-mCD8-GFP/+; +/+) required slight modification of the 

published protocol (see Materials and Methods). The used Dα7 antibody recognized 

the cytoplasmic loop between the transmembrane domains M3 and M4 of the Dα7 

subunit. Since this loop varies for different nAChR subunits, the used antibody is highly 

specific (Fayyazuddin et al., 2006). The fluorescence of the transgenically expressed 

membrane tagged marker mCD8-GFP was enhanced by a green fluorescent antibody 

against GFP (see Materials and Methods). The green fluorescence labels the different 

VS cells that lie serially, with their overlapping dendrites stretching out along the 

dorsal-ventral axis of the lobula plate (Fig 1a, arrows). Figure 1a-c shows that Dα7 

immunoreactivity (magenta) is exclusively localized on the dendrites of the different VS 

cells (arrows in 1a-c). High magnification images, such as the dorsal dendritic branch of 

a VS1 cell (Figure 1d-e) reveal Dα7 immunolabeling that is almost exclusively 

localized to the dendritic tips (Fig 1d-e). These experiments suggest a large number of 

Dα7 excitatory synaptic inputs impinging onto the fine dendritic tips of VS cells. 
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Figure 1. Localization of Dα7 immunoreactivity in VS cells of the adult fly visual system. Confocal 

image stacks show Gal4-DB331 driven expression of membrane tagged GFP in dendrites of all VS cells 

in green and Dα7 immunolabeling in magenta. a-c: Collapsed confocal image stack (frontal sections) of 

the posterior lobula plate (slightly posterior to the HS cell layer). mCD8-GFP outlines the six VS cells 

VS1-VS6. The different VS cells lie serially, with their overlapping dendrites stretching out along the 

dorsal-ventral axis of the lobula plate (arrows, in a). There is prominent Dα7 immunoreactivity in the 

area covered by the dendritic branches of all six VS cells (overlay of both channels in c). d-e: The close 

up of a small dendritic branch of a VS1 cell shows that Dα7 immunoreactivity is specifically localized to 

the dendritic tips (arrows). Similar results were obtained for all branches of all VS cells. The required 

PLP fixation resulted in only moderate preservation of the tissue. The shown images represent maximum 

intensity projections of 12 and 2 images in a-c and d-f, respectively. Individual images were separated 

by 0.5µm in z-direction. Scale Bar = 20 µm in a-c and 2 µm in d-f. 

 

Similar experiments were done to address the distribution of Dα7 immunoreactivity 

(magenta) on the dendrites of the three different HS cells (green; Fig 2a-f). The 

dendrites of the HS cells (Fig 2a, arrows) lie anterior to the ones of the VS cells and 

can thus be separated. They cover the dorsal (HSN), medial (HSE) and ventral (HSS) 

part of the lobula plate (arrows in Fig 2a). Dα7 immunolabeling (Fig. 2b) can be 

located to the dendrites of HSN, HSE and HSS cells. A close up of a dorsal part of an 

HSE cell (2d-e, arrows) suggests that also in HS cells the cholinergic excitatory 

synapses are specifically localized on the fine dendritic tips.  

 



103 

In summary, immunolabeling of endogenous Dα7 nAChR subunits suggests that Dα7 is 

expressed in LPTCs and specifically localized to fine dendritic tips of VS and HS cells. 

However, in these experiments the texture of particularly thin terminal structures (Fig. 1 

and 2) was slightly distorted due to the PLP fixation required for the use of the Dα7 

antibody. 

 

Figure 2. Localization of Dα7 immunoreactivity in HS cells of the adult fly visual system. Confocal 

image stacks show Gal4-DB331 driven expression of membrane tagged GFP in dendrites of all three 

HS cells in green and Dα7 immunolabeling in magenta. a-c: Collapsed confocal image stack (frontal 

sections) of the posterior lobula plate anterior to the VS cell layer. mCD8-GFP outlines the dendrites of 

HSN, HSE and HSS that cover the dorsal, medial and ventral part of the lobula plate, respectively. 

There is prominent Dα7 immunoreactivity in the area covered by the dendritic branches of all HS cells 

(overlay of both channels in c). d-e: The close up of a dorsal dendritic branch of an HSE cell shows that 

Dα7 immunoreactivity is specifically localized to the dendritic tips (arrows). Similar results were obtained 

for all branches of all HS cells. The required PLP fixation resulted in only moderate preservation of the 

tissue. The shown images represent maximum intensity projections of 14 and 2 images in a-c and d-f, 

respectively. Individual images were separated by 0.5µm in z-direction. Scale Bar = 20 µm in a-c and 

4 µm in d-f. 

 

D 7-GFP is located to the fine dendritic tips of VS and HS cells.  

 

We bypassed the problem of moderate preservation of PLP-fixed tissue by analyzing 

the Gal4-driven expression of a GFP-tagged Dα7 receptor subunit (see Material and 
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Methods) in genetically labeled LPTCs (Gal4-DB331/+; UAS-mCD8-DsRed/+; UAS-

Dα7-GFP/+) and PFA-fixed tissue. The fluorescence signal of both DsRed labeled cells 

and Dα7-GFP was enhanced further by staining with DsRed and GFP antibodies, 

respectively (see Materials and Methods). Membrane tagged DsRed revealed the 

anatomy of entire VS and HS cells (magenta, Fig 3 and 4) whereas Dα7-GFP (green, 

arrows, Fig 3 and 4) was exclusively localized to the terminal dendritic tips of both cell 

types. This is even more evident in the close ups of VS dendrites (Fig3e-j; with very 

subtle Dα7-GFP expression on the primary dendritic shafts). Similar results were 

obtained for all three HS cells, HSN, HSE and HSS (Fig 4a-c). Again, the expression of 

Dα7-GFP was confined to the fine dendritic tips. These results are in line with the 

immunolabeling of the endogenous Dα7 protein and suggest that cholinergic excitatory 

columnar elements impinge directly onto the terminal dendritic tips of VS and HS cells 

within the lobula plate.  

 

 

 

Figure 3. GFP-tagged Dα7 nAChRs are exclusively localized on dendritic tips of all six VS cells. 

Confocal image stacks show Gal4-DB331 driven expression of membrane tagged DsRed (magenta) 

and Dα7-GFP (green) in the dendrites of all VS cells (frontal sections of the posterior lobula plate and 

the lateral protocerebrum) a: mCD8-DsRed labels all VS cells. Some HS cells, in particular their axonal 

projections to the lateral protocerebrum are also visible in this image collection. The protocerebral 

projections of VS cells travel dorsally and bifurcate into two vertical branches in the protocerebral 

region. b: same section as in a but recorded in the green channel. Dα7-GFP is strongly expressed in the 

entire dendritic region of the VS cells within the lobula plate. c: Overlay of a and b. There is no 

expression of Dα7-GFP in the protocerebral projections. e-j: Dα7-GFP is strictly localized to the fine 

dendritic tips of VS1-VS6. In these experiments fine structures were preserved by PFA fixation. a-c: 
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Maximum intensity projection of 32 images, scale bar = 40 µm. e-j: Maximum intensity projections of 6, 

3, 3, 2, 3 and 2 images, scale bar = 5 µm. Individual images were separated by 0.5 µm in z-direction.  

The protocerebral projections of VS and HS cells that extend to the posterior slope in 

the peri-oesophageal region (Fig 3a, thick arrow in 3c, Fig 5a-e) show no detectable 

Dα7-GFP fluorescence (Fig 5a). This finding is not questioned by the fact that 

individual protocerebral terminals are closely intermingled and could not be identified 

in isolation. Similarly, the protocerebral projections of the horizontally sensitive neurons 

HSN and HSE showed no sign of Dα7-GFP expression (Fig 5b and c). The analysis of 

protocerebral projections of VS and HS cells was complemented by antibody staining 

of endogenous Dα7 protein (Fig 5d-e). We found Dα7 immunoreactivity in the peri-

oesophageal region but the analysis of individual confocal images of 0.5 µm thickness 

revealed no evidence for the presence of Dα7 receptor subunits on the protocerebral 

projections (Fig 5d-e, arrows) of VS and HS cells.  

 

 

 

Figure 4.  GFP-tagged Dα7 nAChRs are exclusively localized on dendritic tips of all three HS cells. 

Membrane tagged DsRed (magenta) and Dα7-GFP (green) label all three HS cells (Gal4-DB-331). The 

confocal images of dendrites of a: HSN, b: HSE and c: HSS show, that distinct spots of green Dα7-GFP 

are specifically localized to the dendritic tips of HS cells. Maximum intensity projection of 4, 4 and 10 

images in a, b and c, respectively. Individual images were separated by 0.5 µm in z-direction. Scale 

bar = 10 µm. 

 

In summary, the first set of experiments identified endogenous Dα7 protein on LPTCs, 

however with slightly limited preservation of the tissue. Nevertheless its localization 

could be assigned to the very distal dendritic branches. In this second set of 

experiments, the subcellular distribution of endogenous Dα7 protein was corroborated 

by a transgenic expression analysis. The transgenic expression of GFP-labeled Dα7 

subunits allowed for the use of PFA for tissue fixation and thus for detecting Dα7 

nAChRs on the finest dendritic tips of VS and HS cells.         
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Figure 5. Dα7 nAChRs are not expressed on the protocerebral branches of VS and HS cells. a-c: 

Transgenic expression of Dα7-GFP (green) combined with mCD8-DsRed (magenta) expression. d-f: 

Immunolabeling of Dα7 nAChRs (magenta) combined with mCD8-GFP (green) expression. The 

protocerebral part of VS and HS cells is free of the cholinergic receptor subunit. Protocerebral 

projections of VS cells (a and d), HSN (b and e) and HSE (c and f) are shown in this complementary 

approach. Maximum intensity projections of 7, 5, and 9 images are shown in a, b and c, respectively. In 

d – f very few white dots can bee seen that are a result of the maximum intensity projections of several 

images (2, 5 and 6 images in d, e and f, respectively). Visual inspection of individual images of 0.5µm 

thickness showed that Dα7 immunoreactivity was always outside of the labeled LPTC processes. 

Individual images were separated by 0.5µm in z-direction. Scale bar = 20µm in a-c and 10µm in d-f. 

Direction selectivity of VS cells is retained in the absence of D 7.   

 

Dα7 mutant flies lack almost the entire ligand-binding domain, the transmembrane 

domain M1 and a part of the pore-lining helix M2. The giant fiber mediated escape 

behavior is disrupted in these flies due to defective cholinergic neurotransmission onto 

the giant fiber neurons (Fayyazuddin et al., 2006). The highly abundant expression of 

Dα7 receptor subunits in all optic neuropiles (Fayyazuddin et al., 2006) and the 

dendritic tips of motion sensitive LPTCs (Fig.1 - 5) suggests a role in motion processing. 
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We made a first attempt to address the specific requirement of the Dα7 nAChR subunit 

by whole cell recording in live animals during visual stimulation (Jösch et al., 2008). VS 

cells were targeted for whole cell recording in Dα7 mutant flies (Fig. 6a and b) using 

Gal4-3A driven expression of UAS-mCD8-GFP (PΔEY6/ PΔEY6; mCD8-GFP/Cyo; 

Gal4-3A/+). The immunolabeling in Figure 6a and 6b shows that the Dα7 antigen was 

reduced to background level in Dα7- flies. Nevertheless, whole cell patch clamp 

recordings revealed no obvious defects in the motion responses of mutant flies 

compared to the responses of wild type flies (Jösch et al., 2008). All recorded VS cells 

in Dα7- flies (n = 7) reported the movement of a large field visual periodic grating 

with directional selective responses. These responses were indistinguishable from what 

we observed in a previous study (Fig. 6c). Upward and downward motion elicited a 

graded hyperpolarization and depolarization, respectively, the latter superimposed 

with spike like events.  

  

  

 

Figure 6. Directional selective responses are largely 

retained in Dα7 mutant flies. Dα7 immunoreactivity in 

the optic lobe in control (a) and Dα7 mutant flies (b). 

Dα7 immunoreactivity (magenta) is completely absent in 

Dα7 mutant flies. Membrane tagged GFP (green) driven 

by Gal4-3A was used to target VS and HS cells for 

whole cell recording. c: VS cells in flies that are mutant 

for Dα7 exhibit canonical directional-selective responses 

(n = 7). A periodic visual grating was moved at a 

temporal frequency of 1 Hz in front of the fly‟s eye. d: 

VS cells in a Dα7 mutant flies respond to acetylcholine in 

preparations with blocked synaptic transmission (see 

methods). 1mM acetylcholine elicited strong 

depolarizations of up to 30 mV that returned to 

baseline after removal of the drug (n = 3). e: α-

bungarotoxin-alexa 647 labeling (magenta) in Dα7 

mutant flies. The higher order branch of a dorsal VS1 

dendrite (Gal4-3A driven mCD8-GFP in green) shows 

that α-bungarotoxin-alexa 647staining is localized to 

the dendritic tips (arrows, scale bar = 3µm). Maximum 

intensity projections of 6 images separated by 0.5 µm in 

z in a and b and of 4 images separated by 0.35 µm in 

z in e.   
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Next we asked if VS cells in Dα7- flies are still responsive to cholinergic input from 

columnar neurons. This was analyzed by decoupling of VS cells from their chemical  

input and direct pharmacological stimulation with ACh. VS cells were isolated from 

their presynaptic chemical input by perfusion with ringer that contained zero Calcium 

and 20 mM Magnesium, an ionic composition that blocks synaptic transmission (Brotz, 

Egelhaaf, & Borst, 1995). After switching to the zero-Calcium high-Magnesium ringer 

the visually evoked responses disappeared completely. However, short pulses of 1 mM 

Ach evoked immediate, strong depolarization up to 30 mV (Fig. 6d). The 

depolarization returned to baseline in the absence of ACh. This experiment was 

performed on three different cells in three different animals, each time with the same 

outcome. Remaining nAChRs with functional binding sites were labeled with fluorescent 

α-bungarotoxin (Fig. 6e). 

 

In the experiments described in the first two paragraphs of our results Dα7 nAChRs 

were shown to possess neuroanatomical characteristics of a molecular key-player in the 

dendritic integration of large field visual motion. However, this last set of experiments 

revealed that flies without the gene for Dα7 nAChR subunits still form nAChRs on LPTC 

dendrites that are responsive to ACh and that bind α-bungarotoxin. Moreover, 

direction selectivity in these genetically manipulated LPTCs was retained. These 

findings suggest a surprisingly robust cellular implementation of the underlying 

dendritic computations: altered subunit composition in the excitatory input channel 

appears largely compensated to warrant proper motion vision. 
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Discussion 
 

We investigated the subcellular distribution of the Dα7 nAChR subunit on large field 

motion sensitive HS and VS cells of the Drosophila lobula plate. Two complementary 

approaches were used, immunolabeling (Fayyazuddin et al., 2006) of endogenous 

Dα7 protein (Fig 1, 2 and 5) and Gal4-UAS driven Dα7-GFP (Fig 3, 4 and 5) 

expression. Both methods showed that Dα7 is specifically localized to the fine dendritic 

tips of VS and HS cells as revealed by confocal microscopy. This finding further 

supports the idea that the dendritic tips of these cells play a key role in the analysis of 

optic flow. Large arrays of directionally selective columnar elements would then 

impinge directly onto these dendrites (Borst et al., 1990). Thus, retinotopically 

organized excitatory cholinergic and inhibitory GABAergic input from local motion 

detectors with opposite preferred direction would be summed up to unequivocally 

derive the direction of large field image motion and optic flow (Borst et al., 1990; 

Brotz et al., 1996; Brotz et al., 2001). Such an  arrangement is consistent with 

physiological experiments in large fly species (Borst et al., 1990; Borst et al., 1995) as 

well as with recent current injection experiments in Drosophila (Jösch et al., 2008) and 

has been interpreted as a biophysical means to implement a velocity gain control 

mechanism. Histochemical studies showed the expression of nAChRs (Sattelle, 1980; 

Jonas, Major, & Sakmann, 1993; Schuster et al., 1993; Hess et al., 1994; Chamaon et 

al., 2000; Fayyazuddin et al., 2006) and Rdl-type GABA receptor subunits (ffrench-

Constant et al., 1990; Enell, Hamasaka, Kolodziejczyk, & Nassel, 2007) in different 

regions of the optic lobe. Moreover, on the subcellular level, we recently demonstrated 

that RDL-type GABA receptors are similarly localized to the dendritic tips of VS and 

HS cells in Drosophila (Raghu et al., 2007). The localization of Dα7 subunits presented 

here corroborates this model. However, our experiments in Dα7- flies suggest, that the 

excitatory input is more complex. Direction selectivity of VS and HS cells was retained 

in Dα7- flies and α-bungarotoxin sensitive nAChRs were still present (Fig.6). Such α-

bungarotoxin sensitive nAChRs might for instance involve ARD subunits (Schloss, 

Hermans-Borgmeyer, Betz, & Gundelfinger, 1988). Thus, visual motion detection and 

LPTCs in Drosophila represent an ideal model system to study the functional 

implications of nAChR subunit composition. 
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In the central nervous system of insects nAChRs are key players for fast excitatory 

neurotransmission (Leech et al., 1993). Structurally, they assemble to pentameric 

membrane protein complexes. The different genes can give rise to receptor assemblies 

with distinct functional properties, however little is known about their physiology in 

Drosophila in vivo. About ten different nAChRs have been described in Drosophila so 

far (Jonas et al., 1993; Schuster et al., 1993; Hess et al., 1994; Chamaon et al., 

2000; Chamaon, Smalla, Thomas, & Gundelfinger, 2002; Wegener, Hamasaka, & 

Nassel, 2004; Sattelle et al., 2005; Fayyazuddin et al., 2006). It was suggested that 

pentameric complexes are formed that consist of either ALS(Dα1) & SBD & Dα2, or 

Dα3 & ARD, or ARD & SBD (Chamaon et al., 2000; Chamaon et al., 2002). More 

recently, Dα5, Dα6 and Dα7 were added to the nAChR subunit arsenal present in 

Drosophila (Grauso, Reenan, Culetto, & Sattelle, 2002). In vertebrates Dα5–7 were 

shown to form homomeric receptors, but to our knowledge no information is currently 

available for Drosophila. 

 

Our experiments on Dα7- flies allow several interpretations that are not mutual 

exclusive. Dα7 subunits might form homomeric nAChRs, an interpretation that might be 

suggested by data from vertebrates. In this case another type or several other types 

of nAChRs are expressed on the VS and HS cell dendrites. Alternatively, Dα7 subunits 

could contribute to homomeric and heteromeric or only heteromeric nAChRs. In any 

case the functional compensation for the absence of Dα7 comes as a surprise and 

opens the way for detailed functional studies that are build on the combination of a 

predictive computational model of visual motion detection, whole cell recording and 

genetic manipulation in Drosophila.              
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Abbreviations 

 
ACh: acetylcholine 

GABA: gamma-aminobutyric-acid  

LPTCs: lobula plate tangential cells  

nAChR: nicotinic acetylcholine receptor  

VS: vertical system  

HS: horizontal system 
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Abstract 

 
Motion vision is essential for navigating through the environment.  Due to its genetic 

amenability, the fruit fly Drosophila has served for long as a model organism for 

studying optomotor behavior as elicited by large-field horizontal motion. However, the 

neurons underlying this behavior have not been studied in Drosophila so far. Here we 

report whole-cell recordings from three types of cells, two were genetically labeled 

and the third was recorded “blindly”. Their shape and position precisely match the 

three cells of the horizontal system (HSN, HSE and HSS) in Drosophila described only 

anatomically so far. HS-cells are tuned to large field horizontal motion in a direction- 

selective way: they become excited by front-to-back motion and inhibited by back-to-

front motion in the ipsilateral field of view. The response properties of HS-cells like 

contrast and velocity dependence are in accordance with the correlation type model 

of motion detection. Neurobiotin injection revealed extensive coupling among 

ipsilateral HS-cells and additional coupling to tangential cells that have their dendrites 

in the contralateral hemisphere of the brain. This connectivity scheme accounts for the 

layout of their receptive fields and explains their sensitivity to ipsilateral as well as to 

contralateral motion. In all these respects, Drosophila HS-cells are similar to their 

counterparts in the blow fly Calliphora. However, we also found substantial differences 

between Drosophila and Calliphora HS-cells with respect to their dendritic structure and 

connectivity. In summary, our study provides important information for the further 

dissection of the circuitry mediating optomotor responses by combining genetics, 

physiology and behavior.  
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Introduction 

 
To navigate safely through the environment flies rely heavily on visual motion 

information (Borst and Haag, 2002). Once airborne, they use the characteristic flow-

fields caused by their self-motion to correct for deviations from a straight flight path. 

The precision and reliability of these so-called optomotor responses combined with the 

small size of their brain make flies an ideal organism to study the underlying neural 

circuitry (Götz, 1964; Heisenberg et al., 1978; Chan et al., 1998; Frye and Dickinson, 

2001; Egelhaaf et al., 2003). 

 

Detailed anatomical maps describing the cell types of the optic lobes (Strausfeld, 

1976; Fischbach and Dittrich, 1989; Scott et al., 2002) are at hand. In the blow fly 

Calliphora, about 60 motion sensitive neurons, the so called Lobula Plate Tangential 

Cells (LPTCs) are supposed to be the main output elements that convey information 

about large- and small-field motion onto descending neurons to ultimately control head 

movement and locomotion (Gronenberg and Strausfeld, 1990; Gilbert et al., 1995; 

Chan et al., 1998).  

 

To analyze neuronal function different approaches were pursued in big and small flies. 

In Calliphora the response properties of LPTCs have been characterized in greatest 

detail by intracellular recording (Borst and Haag, 2002). Among them, cells of the 

vertical system (VS) respond preferentially to vertical motion (Hengstenberg et al., 

1982) and motion elicited by rotation around an axis in the horizontal plane of the 

animal (Krapp et al., 1998). Horizontal system- (HS) cells respond to translation 

(Hausen, 1982a; Hausen, 1982b) and rotational motion around the vertical axis of the 

fly (Krapp et al., 2001). Their tuning to specific optic flow fields can be explained by 

dendritic input from opposing arrays of local motion detectors built from columnar 

elements (Borst and Egelhaaf, 1990; Single and Borst, 1998; Jösch et al., 2008; Raghu 

et al., 2007; Raghu et al., 2009) as well as input from other LPTCs (Haag and Borst, 

2004; Haag and Borst, 2007; Elyada et al., 2009; Haag and Borst, 2008; Farrow et 

al., 2006; Farrow et al., 2005).  

 

In Drosophila, mainly genetic techniques have been used to disrupt parts of the circuitry 

and to compare the behavior of wild type and mutant flies (Götz, 1964; Götz, 1965; 

Heisenberg and Buchner, 1977; Heisenberg, 1972). This approach also allows 
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studying columnar neurons presynaptic to LPTCs that, even in large flies, escaped from 

a rigorous electrophysiological analysis because of their small size.  

 

Recent studies on the behavior of wild type (Tammero et al., 2004; Duistermars et al., 

2007; Mronz and Lehmann, 2008; Fry et al., 2009) and transgenic Drosophila with 

certain types of columnar neurons blocked (Rister et al., 2007; Katsov and Clandinin, 

2008; Zhu et al., 2009) provided new insights into motion vision and optomotor 

behavior. However, these studies also revealed the limitations of behavioral 

experiments as read-out for the functional role of a specific class of neurons. 

Moreover, the interpretation of studies in Drosophila relies heavily on physiological 

data from large flies as a functional description of LPTCs in Drosophila is only 

available for VS-cells (Jösch et al., 2008). 

 

We close this gap by characterizing the response properties of the three HS-cells in 

Drosophila that are supposed to mediate yaw turning behavior. HS-cells are tuned to 

large field horizontal motion and match the predictions of a correlation detector 

model. Their complex receptive fields, contrast dependence and velocity tuning 

corroborate findings on HS-cells in Calliphora. Compared to large flies however, their 

dendritic structure and connectivity to other LPTCs are different.  

   

Materials and Methods 
 

Flies 

Flies were raised on standard cornmeal-agar medium with a 12 hr light / 12 hr dark 

cycle, 25 °C, and 60 % humidity. We used female experimental flies, one day after 

eclosion. The line NP 0282 (NP consortium) expresses Gal4 in two of the three HS-cells 

(HSN and HSE, Fig. 1A) and in unidentified neurons of the central brain. UAS-mCD-

GFP was used to highlight entire cells by cytosolic expression of the reporter molecule. 

UAS-mCD8-TN-XL-8aa (Jösch et al., 2008) was used to predominantly stain cell 

bodies. 

 

Visually Guided Whole-Cell Recording 

Patch-clamp recordings were performed as described previously (Jösch et al., 2008). 

Flies were anesthetized on ice and waxed on a Plexiglas holder. The head was bent 

down to expose the caudal backside of the head, and the extended proboscis was 
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fixed. Aluminum foil with a hole of ~1–2 mm sustained by a ring-shaped metal holder 

was placed on top of the fly and separated the upper wet part (covered with ringer 

solution (Wilson et al., 2004)) of the preparation from the lower dry part. Water-

immersion optics was used from above; visual patterns (see below) were presented to 

dry and fully intact facet eyes. A small window was cut into the backside of the head, 

and during mild protease treatment (protease XIV, E.C.3.4.24.31, Sigma, Steinheim, 

Germany; 2 mg/ml, max 4 min), the neurolemma was partially digested and the main 

tracheal branches and fat body were removed. The protease was rinsed off carefully 

and replaced by ringer solution. A ringer-filled cleaning electrode was used to remove 

the extracellular matrix and to expose the HS-cell somata for recording. 

 

Genetically labeled green fluorescent HS-cell somata were approached with a patch 

electrode filled with a red fluorescent dye (intracellular solution (Wilson and Laurent, 

2005) containing additional 5 mM Spermine and 30 mM Alexa-Fluor-568-hydrazide-

Na, Molecular Probes, adjusted to pH = 7.3). Recordings were established under 

visual control with a 40x water-immersion objective (LumplanF, Olympus), a Zeiss 

Microscope (Axiotech Vario 100, Zeiss, Oberkochen, Germany), fluorescence excitation 

(100 W fluorescence lamp, heat filter, neutral-density filter OD 0.3; all from Zeiss, 

Germany), and a dual-band filter set (EGFP/DsRed, Chroma Technology, Vermont, 

USA). During the recordings, the fluorescence excitation was shut off to prevent 

blinding of the fly. Patch electrodes of 6-8 MΩ resistance (thin wall, filament, 1.5 mm, 

WPI, Florida, USA) were pulled on a Sutter- P97 (Sutter Instrument Company, 

California, USA). A reference electrode (Ag-AgCl) was immerged in the extracellular 

saline (pH 7.3, 1.5 mM CaCl2, no sucrose). Signals were recorded on a NPI BA-1S 

Bridge Amplifier (NPI Electronics GmbH, Tamm, Germany), low-pass filtered at 3 kHz, 

and digitized at 10 kHz via a digital-to-analog converter (PCI-DAS6025, 

Measurement Computing, Massachusetts, USA) with Matlab (Vers. 7.3.0.267, 

Mathworks, Massachusetts, USA). After the recording, several images of each Alexa-

filled LPTC were taken at different depths along the z-axis (HQ-filter set Alexa-568, 

Chroma Technology, USA) with a CCD camera (Spot Pursuit 1.4 Megapixel, Visitron 

Systems GmbH, Puchheim, Germany).  

 

Immunohistochemistry 

Female flies were dissected three to five days after eclosion. Their brains were 

removed and fixed in 4 % paraformaldehyde for 30 minutes at room temperature. 
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Subsequently, the brains were washed for 45 - 60 minutes in PBT (phosphate buffered 

saline (pH 7.2) including 1 % Triton X-100). For antibody staining, the samples were 

incubated in PBT including 2 % normal goat serum (Sigma Aldrich, G9023) for 1 hour 

at room temperature followed by incubation with primary antibodies (1: 200, 

overnight at 4 ºC). Primary antibodies were removed by several washing steps (5 x 20 

minutes in PBT) and secondary antibodies were added (1: 200, overnight at 4 ºC). The 

samples were further washed with PBT (3 x 20 minutes) followed by final washing 

steps in PBS (3 x 20 minutes). The stained brains were mounted in Vectashield (Vector 

Laboratories, Burlingame) and analyzed by confocal microscopy (see below). The 

following primary and secondary antibodies were used: Alexa Fluor 488 rabbit anti-

GFP-IgG (A-21311, Molecular Probes), Mouse anti-Dlg (4F3, Developmental Studies 

Hybridoma Bank (DSHB) and Alexa Fluor 594 goat anti-mouse IgG (A11005, 

Molecular Probes). 

 

Confocal Microscopy & reconstruction 

Serial optical sections were taken at 0.5 µm intervals with 1024 x 1024 pixel 

resolution using confocal microscopes (LEICA TCSNT) and oil-immersion 40x (n.a. = 

1.25) or 63x Plan-Apochromat objectives. The individual confocal stacks were 

analyzed using Image J (NIH, U.S.A) software. The size, contrast and brightness of the 

resulting images were adjusted with Photoshop® CS (Adobe Systems, San Jose, CA). 

Cells were manually traced using previously described custom written software (Cuntz 

et al., 2008) resulting in detailed cylinder models. Lobula plate volumes were 

reconstructed manually by outlining their outer borders in each slice and sampling 

surface meshes. Cylinder and volume models were visualized using the Blender 

animation system (http://www.blender.org). 

 

Neurobiotin Staining 

VS cells were targeted and perfused with patch electrodes as described above. 2 - 4 

% Neurobiotin (Vector Labs, Burlingame) was added to the intracellular solution. 

Neurobiotin and Alexa Fluor-568 were coinjected via ± 0.2 nA current pulses for up to 

10 min. For initial identification, the perfused individual HS-cell was imaged with the 

fluorescence microscope and CCD camera as described above. Staining against 

Neurobiotin with Streptavidin Alexa Fluor-568 conjugate (Invitrogen, 1:100) was 

performed as described above, except that whole fly heads were fixed in 4 % PFA (2 

h) before dissection in PBS. Perfusion of a single HS cell never resulted in more than 
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one Alexa-568-filled cell. Only after labeling of Neurobiotin with Streptavidin- Alexa-

568 conjugate did other cells light up. The second red label was used to prevent 

spectral overlap with the green fluorescence of genetically labeled neurons. 

 

Visual Stimulation 

For visual stimulation a custom built LED arena was used based on the open-source 

information of the Dickinson Laboratory (http://www.dickinson.caltech.edu/PanelsPage). Our 

arena consists of 15 by 8 TA08-81GWA dot matrix displays (Kingbright, California, 

USA), each harboring 8 by 8 individual green (568 nm) LEDs, covering 170° in azimuth 

and 85° in elevation of the fly‟s visual field with an angular resolution of about 1.4° 

between adjacent LEDs. The arena is capable of frame rates above 600 fps with 16 

intensity levels. To measure the velocity tuning and contrast dependency of HS-cells 

precisely, patterns were generated in which four consecutive frames were used to 

define one image. This resulted in 64 equidistant intensity levels available per pixel. 

Each dot matrix display is controlled by an ATmega644 microcontroller (Atmel, 

California, USA) that obtains pattern information from one central ATmega128 based 

main controller board, which in turn reads in pattern information from a compact flash 

(CF) memory card. For achieving high frame rates with a system of this size, each 

panel controller was equipped with an external AT45DB041B flash memory chip for 

local pattern buffering. Matlab was used for programming and generation of the 

patterns as well as for sending the serial command sequences via RS-232 to the main 

controller board and local buffering. The luminance range of the stimuli was 0-8 

cd/m2.  

 

Data Analysis 

Data were acquired and analyzed with the data acquisition and analysis toolboxes of 

Matlab. Receptive fields were calculated by binning the responses of single HS-cells to 

horizontal stimulation (~5.7° elevation and ~5.7° azimuth) and subtracting the mean 

response during null direction from the mean response during preferred direction 

motion. The data of each individually identified cell were normalized to the maximum 

response. The projection of the receptive field on the azimuth was calculated for each 

HS cell individually by averaging the binned responses at the different azimuth at 

each position along the elevation. Contrast was calculated as (Imax - Imin)/(Imax + Imin). 

For analyzing the velocity dependence the mean of the first 500 ms after onset of PD 

motion was taken.  
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Results 
 

Based on anatomical similarity to the three horizontally sensitive LPTCs in blow flies 

(Hausen, 1982a; Hausen, 1982b), the horizontal system of Drosophila has been 

proposed to consist of the three giant output neurons HSN, HSE and HSS (Heisenberg 

et al., 1978; Fischbach and Dittrich, 1989). The dendrites of these cells reside in a thin 

anterior layer of the lobula plate (Fig. 1A) where they cover the dorsal, middle and 

ventral part of this retinotopically organized neuropile, respectively (Heisenberg et al., 

1978; Scott et al., 2002). Their axons project centrally to the lateral protocerebrum 

where they are supposed to synapse onto descending neurons (Eckert and Meller, 

1981; Haag et al., 2007) and thus to control optomotor turning responses induced by 

horizontal optic flow. 

 

We performed the first in-vivo whole cell recordings from the somata of HS-cells and 

characterized their response properties during large field visual motion (Fig. 1B). In the 

first series of experiments reproducible recordings from identified cells were enabled 

using the NP 0282 Gal4 driver line. At the level of the Lobula Plate, NP 0282 

specifically labels HSN and HSE (Fig. 1A). Despite the lack of HSS, NP 0282 was 

chosen to express a green fluorescent marker that highlights the soma (Jösch et al., 

2008) of HSN and HSE under the fluorescence microscope. The recording electrode 

was visualized by adding a red fluorescent dye to the electrode solution which 

allowed directing the electrode under visual guidance towards the green cell bodies. 

Thus, during the recording, the cells became perfused with the red dye and the 

recorded signals could be assigned to the specific cell type. In these recordings, HS-

cells exhibited a resting membrane potential of about -55 mV (corrected for liquid 

junction potential) and an input resistance of 10-20 MΩ (n = 25). At rest, all recorded 

HS cells showed small and rapid spontaneous membrane fluctuations of high frequency 

(Fig 1C).  
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Figure 1. Basic response properties of HS-cells in Drosophila. (A) The Gal4-line NP0282 drives 

expression of the fluorescent marker mCD8-GFP in two neurons of the lobula plate. Based on their 

anatomy and on comparable neurons in large dipteran flies these neurons were previously described as 

the northern (HSN) and equatorial (HSE) cells of the Drosophila HS-system. Their dendrites cover large 

overlapping areas (frontal section) in a thin anterior layer (horizontal section) of the lobula plate (scale 

bars 25 µm). Reliable whole cell recordings from these neurons were done by fluorescent labeling of 

their soma only (see methods). (B) Scheme of the recording setup and preparation of the fly under the 

fluorescence microscope. In the lower dry half of the preparation the fly is looking at moving patterns 

presented on a LED arena. (C) Canonical response of an HSN-cell plotted against time. A vertical sine 

grating (λ = 42.5°) moving horizontally (temporal frequency = 1 Hz) elicits a directionally selective 

response. Large field rotation with an ipsilateral front-to-back component (preferred direction, PD) 

elicits a strong depolarization. Motion in the opposite direction (null direction, ND) elicits a strong 

hyperpolarization of the membrane potential. Small, fast membrane fluctuations increase in size during 
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PD-motion. (D) Directional tuning. Plotted is the mean response amplitude during 5s grating motion (same 

stimulus as in (C)) in four different orientations and a total of eight different directions. HSN and HSE 

respond strongest to horizontal motion. Error bars indicate SEM.  

 

HSN- and HSE are tuned to horizontal motion in a direction-selective way. 

 

When stimulated with a large-field sine grating moving front-to-back in front of the 

ipsilateral eye (including an area of back-to-front motion in the contralateral eye), HS-

cells canonically exhibited a graded depolarization superimposed by spike-like events 

(Fig. 1C). Motion in the opposite direction led to a hyperpolarization of the membrane 

potential and a reduction of the fast spike-like events. Presentation of sine gratings 

moving in four different orientations and a total of eight different directions revealed 

a strong directional tuning of both HSN and HSE (black and grey bars, respectively, 

Fig.1D) to large field horizontal motion, similar to their counterparts in Calliphora. 

Ipsilateral front-to-back motion elicited the strongest activation (preferred direction, 

PD) and back-to-front motion the strongest inhibition (null direction, ND). Typically, ND 

responses were smaller in amplitude than PD responses. Diagonal motion led to 

weaker responses and almost no responses were elicited by vertical motion in either 

direction. Thus, HS-cells in Drosophila are tuned to large field horizontal motion in a 

directional selective way.  

 

HS-cell responses suggest input from correlation-type motion detectors 

 

According to the correlation-type model for elementary motion detection (Reichardt, 

1961; Borst and Egelhaaf, 1989), motion information is extracted from the retinal 

image by a multiplicative interaction of luminance signals from two neighboring 

receptors after delaying one of them in time. Large field directional selectivity of 

LPTCs can then arise from spatial integration of input from two arrays of such 

detectors, one excitatory and the other inhibitory, that compute local motion 

information with opposite preferred direction (Single et al., 1997; Single and Borst, 

1998; Raghu et al., 2007; Raghu et al., 2009; Jösch et al., 2008). The output of such a 

correlation-type model has certain features that we tested for in HS-cell responses. 

These features are the appearance of a velocity optimum (Fig.2A), the dependency of 

this velocity optimum on the spatial wavelength of the moving grating (Fig.2B), the 
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dependence of the response on the magnitude of contrast (Fig.2C) and the 

independence of the sign of contrast (Fig.2D). To characterize the velocity dependence 

of HS-cells in response to PD motion, we presented sine gratings of 22° or 44° spatial 

wavelength (inset Fig.2A) at nine different velocities (Fig.2A). For both patterns the HS-

cell response increased non-linearly, exhibited a maximum response at an angular 

velocity of 22°/s and 44°/s, respectively, and declined at higher velocities (Fig. 2A). 

For both patterns this resulted in a maximal response at around 1Hz (velocity [deg/s] 

divided by spatial wavelength [deg]) which represents the so called temporal 

frequency optimum, a hallmark of the correlation-type detector model (Fig. 2B).  

 

Figure 2. HSN and HSE responses match the predictions of a correlation-type motion detector. (A) 

Velocity dependence. Two sine gratings of different spatial wavelength (λ = 22.4° and λ = 44.8°) 

moving at nine different velocities elicited a velocity optimum that depended on the spatial wavelength 

of the pattern. Plotted is the mean response during the first 500 ms after onset of PD motion, normalized 

to the maximal response for each fly.  N = 10 for each grating, error bar: SEM. (B) Constant temporal 

frequency optimum of 1 Hz. Same data as in (A) plotted against the temporal frequency (tf = velocity / 

λ). (C) Contrast dependence. Square wave gratings (λ=34°) of different contrast moving in PD or ND (tf 

= 1 Hz) were presented. Plotted is the mean response during 5s of motion normalized to the maximal 

response of each HS-cell. Response amplitudes increase with contrast, but exhibit saturation. N = 19, 

error bars: SEM. (D) Independence of the sign of contrast. Example trace of an HS-cell responding to a 

light bar on a dark background and a dark bar on a light background moving in PD and ND (width of 
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the bar: 8.5°, maximal contrast). The direction of motion is reported by the membrane potential 

independent of the sign of contrast. a, b and c and a‟, b‟ and c‟ mark the time points, at which the bar 

occupied the respective positions indicated in the schematic drawing. Note that HS-cells respond to 

motion on the contralateral side (a to b and b‟ to a‟) as well. Ipsilateral motion elicited stronger 

responses (b to c and c‟ to b‟).  

 

The dependency of the response on the magnitude of contrast was shown by 

presenting square-wave gratings (spatial wavelength: 34°) of different contrast 

ranging from 3.3 to 100 % which were moving at a constant velocity of 34°/sec 

(Fig.1C). For both PD and ND motion the response amplitudes increased with pattern 

contrast and PD responses saturated at higher contrast (Fig. 2C). Furthermore, the 

correlation-type motion detector reports the direction of movement independent of the 

sign of contrast. In accordance with this prediction, a moving dark bar on a light 

background or a moving light bar on a dark background evoked depolarizing PD 

responses for front-to-back motion and hyperpolarizing ND responses for back-to-

front motion (Fig. 2D). In these experiments a still bar was presented to the 

contralateral field of view, began to move at time (a), entered the ipsilateral field of 

view at time (b), continued its way and stopped at a lateral position at time (c). From 

there it moved back by reversing the sequence c‟, b‟ and a‟ (Fig. 2D). Regressive 

motion of the bar through the contralateral visual field of view elicited a depolarizing 

response, which was, however, smaller than that caused by ipsilateral progressive 

motion (see below). Taken together, the response properties of HS-cells are indicative 

of presynaptic computations according to the correlation-type model of motion 

detection. 

 

HS-cells of one hemisphere have strongly overlapping, binocular receptive fields 

 
The environment, as scanned by the ipsilateral compound eye, is mapped 

retinotopically onto the columnar elements that are supposed to provide the synaptic 

input to the giant HS-cell dendrites in the lobula plate (Strausfeld, 1984; Braitenberg, 

1970). As a consequence of this layout, the position and the branching pattern of an 

HS-cell within the lobula plate (Fig. 3A) should be predictive of its ipsilateral receptive 

field (Hausen, 1982a; Hausen, 1982b). We reconstructed the dendritic trees of 10 

HSN and HSE cell pairs from confocal image stacks of GFP-labeled cells to analyze 

the dendritic structure in detail. One example is shown in Figure 3A. The dendrites of 

HSN and HSE cover the dorsal and equatorial part of the lobula plate, respectively, 
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with the size of the dendritic spanning field of HSE being about 1.5 times larger than 

that of HSN (data not shown). The overlap of their dendritic spanning fields is very 

large, that of HSE covers on the average about 90 % of that of HSN. A dendritic 

branch of HSE reaches even close to the dorsal most boundary of HSN (Fig. 3A). Any 

deviation of the receptive field from this anatomical map can possibly be attributed to 

input from neurons other than the columnar ones.    

 

We analyzed the receptive fields of HSN and HSE by presenting a small bar (5.6° 

high and 1.4° wide) moving front-to-back and back-to- front at different positions 

subtending 170° along the azimuth  and about 85° of elevation. We binned the 

response within a time window that corresponded to motion of about 5.6° along the 

azimuth, and plotted the normalized response amplitudes (PD - ND) in false color code 

against the position of the bar on the arena (Fig. 3B). As the arena is only curved in the  

horizontal direction, the size of the bar as stated above is only valid for the equatorial 

position and appeared slightly smaller to the fly in the dorsal and ventral part of the 

visual field. Our analysis revealed that HSN- and HSE-cells in Drosophila have large 

receptive fields that cover at their largest extent over 60° of elevation and the entire 

stimulated area covered by the arena along the azimuth (170°). They are most 

sensitive to motion at positions corresponding to their dendritic trees in the Lobula 

Plate, which is dorsal for HSN and equatorial for HSE (Fig. 3A and B). In contrast to 

Calliphora (Hausen 1982b), however, HSE in Drosophila seems to be maximally 

sensitive in the lateral visual field and not in the frontal one. 

 

To estimate the amount of overlap between the receptive fields of HSN and HSE, a 

threshold of 25 % of the maximal response was set. The areas, where the responses of 

HSN, HSE or both cells exceeded this threshold, were colored differently. Based on this 

criterion, the receptive fields of ipsilateral HSE and HSN overlap by about 70 to 80 % 

(Fig. 3D). In particular the receptive field of HSN reaches nearly as far ventrally as 

that of HSE. Small variations of the threshold led to qualitatively similar results in 

several preparations. The huge overlap of the receptive fields of HSN and HSE 

corresponds in part to the huge overlap of their dendritic trees stated above. 

However, the lack of dendritic branches of HSN in the ventral area indicates that the 

ventral extension of the receptive field of HSN can not be explained by direct input to 

the dendrite (compare Fig. 3A and B).  
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Another interesting feature of the receptive fields of HSN and HSE is their sensitivity to 

contralateral motion (Fig. 2D). We presented moving square-wave gratings in either 

the ipsilateral or the contralateral part of the visual field to investigate this in further 

de 

 

Figure 3 Dendritic structure and receptive fields of HSN and HSE. (A) Reconstruction of the dendritic 

arborization of HSN and HSE in the lobula plate. The overlapping dendrites of both cells were 

reconstructed from confocal sections of GFP-labeled cells. (B) Receptive fields of HSN and HSE. Plotted 

are response amplitudes (PD-ND) elicited by a small local bar moving horizontally at different 

elevations normalized to the maximal response. HSN and HSE share a large part of their receptive field 

and are most responsive to motion covered by their own dendritic trees in the lobula plate (that is more 

dorsal for HSN and equatorial for HSE). The ipsilateral receptive fields are much larger than expected 

from the area covered by their dendrites and the cells also respond to contralateral motion. N = 4 for 

HSE and N = 7 for HSN. (C) Sensitivity to contralateral motion. Square wave gratings (λ = 22.4°) were 

presented in either the contra- or the ipsilateral visual field as shown in the schematic drawing (sparing 

the frontal region of binocular overlap). Contralateral back-to-front motion elicited a weak 

depolarization of the membrane potential in HS-cells and a strong depolarization in response to 

ipsilateral front-to-back motion. N = 6, error bar: SEM. (D) Overlap of the receptive fields. The amount 
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of overlap between the receptive fields of HSN and HSE was estimated by applying a threshold of 25 

% of the maximal response in (B). Areas, where the response amplitude of HSN and HSE exceeded this 

threshold are plotted in red; areas where only HSN or HSE responses reach the threshold are plotted in 

green and blue, respectively. Compare to the much smaller overlap of the dendritic trees in (A).  

 

detail. The pattern covered about 56° in azimuth and 85° in elevation. To prevent 

stimulation of the area of binocular overlap (Heisenberg and Wolf, 1984), the pattern 

was displaced by +/- 15° with respect to the frontal gaze of the fly (Fig. 3C). Motion 

in front of the ipsilateral eye elicited canonical PD and ND responses i.e. a 

depolarization for front-to-back and a hyperpolarization for back-to-front motion. 

Contralateral back-to-front motion, however, elicited a robust depolarization whereas 

contralateral front-to-back motion did not elicit a noticeable response. Thus, HSN and 

HSE are tuned to rotational panoramic motion stimuli as they arise from rotation of the 

animal around the vertical body axis. Very importantly, their sensory input is not 

confined to the retinotopically organized columnar neurons that impinge onto their 

dendritic tree. 

 

In the course of our experiments we occasionally recorded form genetically unlabeled 

HS-cells in different genotypes that represented control situations. The recordings of 

these cells were indistinguishable from our previous recordings of labeled HSE and 

HSN and included recordings from HSS-cells that were not highlighted by the Gal4-

driver in the previous experiments. We characterized the receptive fields in further 

detail by presenting in addition to the horizontally moving bar (see above) a local bar 

moving vertically. From the responses to local horizontal and vertical motion we 

calculated response vectors that indicate by their orientation the local preferred 

direction and by their length the strength of the response. All local vectors together 

constitute the optic flow field of a given HS-cell (Fig. 4). All three HS-cells exhibited a 

slight vertical sensitivity. HSN and to a weaker extent HSE depolarize in response to 

upward motion in the fronto-dorsal and fronto-equatorial part of their receptive fields. 

HSS shows a similar sensitivity to upward motion in a more ventro-lateral position. 

Similar to HSN, the receptive field of HSS overlaps quite strongly with that of HSE.  
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Dye-coupling suggests that HS-cells are central to a complex network of electrically 

coupled neurons. 

 

In Calliphora complex receptive fields of VS- and HS-cells arise from electric coupling 

to other LPTCs (Haag and Borst, 2002; 2004; Cuntz et al., 2007). We investigated 

whether this holds also true for HS-cells in Drosophila. For that purpose, Neurobiotin, a 

molecule sufficiently small to pass Innexin-based gap junctions, was added to the 

intracellular solution in the recording electrode. Perfusion with Alexa-568 allowed for 

immediate identification of the recorded neuron. Later, the spread of Neurobiotin was 

Figure 4. Vector fields of HSN (A), 

HSE (B) and HSS (C).  

Local preferred direction and 

response strength of all three HS-cells 

are indicated by the orientation and 

lengths of the motion vectors (arrows). 

The strength of the response is in 

addition indicated by a heat map. 

Vectors were calculated by 

subtracting PD- and ND-responses to 

small bars moving either horizontally 

or vertically at different positions 

(compare Figure 3). Similar to HSN 

and HSE the maximum sensitivity in the 

ventral receptive field of HSS 

corresponds to the area occupied by 

its dendritic tree in the lobula plate 

(not shown). As the other HS-cells, HSS 

responds mainly to horizontal motion. 

However, all HS-cells show a slight 

sensitivity to upward motion in mostly 

the center of their receptive field. All 

responses from HSS (n = 6) and HSE 

(n = 9) were recorded „blind‟ from 

unlabeled cells. HSN vector maps 

were calculated from the local 

responses of labeled (n = 4) and 

unlabeled cells (n = 1).     
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detected by staining with Streptavidin-coupled to Alexa-568 (Jösch et al., 2008). As 

the initially perfused free Alexa-568 never stained other cells except the injected one, 

we concluded that fluorescence after streptavidin-Alexa-568 labeling in other cells is 

due to direct or indirect coupling via electrical synapses to the recorded cell (Fig. 5). 

 

 

Figure 5. Spread of Neurobiotin within the HS-circuitry. The spread of Neurobiotin, which can pass 

through Innexin junctions, provides indirect evidence for electric coupling among HS- and other cells. 

Neurobiotin was injected in either HSE (A) or HSN (B) and (C) and visualized with Streptavidin coupled 

to a red fluorescent dye. Co-staining was detected in: neighboring HS-cells (indicated in (A) to (C)), 

unidentified ipsilateral descending neurons (open triangle), cells projecting to the contralateral 

protocerebrum where HS-cell axons terminate (arrowheads in (A) and (C)), contralateral LPTCs (filled 

arrows in (A) and (C)) and occasionally in unidentified fibers in the same lobula plate (open arrows in 

(A) and (C)). The figure shows composites of maximum intensity projections of confocal image stacks 

taken from neighboring regions of the brain. Scale bars 50µm. 

 

When we injected Neurobiotin into either HSN (Fig. 5A, B) or HSE (Fig. 5C), one or 

both of the remaining HS-cells were typically labeled. In contrast to similar 

experiments in Calliphora (Haag and Borst, 2005), no CH-cells were found to be 

colabeled. From this observation we conclude that HS-cells in Drosophila are directly 

coupled with each other. Nevertheless, we observed additional staining in fibers other 

than the three HS-cells in the same lobula plate (Fig. 5A and C). Unfortunately the 

staining was too weak to enable unequivocal identification of these processes. In these 
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two cases (Fig. 5A and C) the arborization of an LPTC in the contralateral lobula plate 

was also labeled that might belong to the unidentified ipsilateral processes mentioned 

before. This cell represents a possible candidate neuron to provide the contralateral 

input to HS-cells described above (Fig.2 and 3). In addition, HS-cells were extensively 

coupled to descending neurons (Fig. 5A and C) that could not be identified 

individually. One frequently labeled neuron has a prominent arborization on the 

contralateral side and probably connects the output region of HS-cells of both 

hemispheres (arrowhead in Fig. 5A and B). Taken together, HS-cells are at the centre 

of a complicated network of electrically coupled neurons. This network comprises 

descending neurons, HS-cells and LPTCs so far unidentified in Drosophila from the same 

and the contralateral hemisphere. The columnar input to the ipsilateral dendrite and 

the electric coupling to the LPTC network are likely sufficient to explain the entire 

receptive fields of the HS-cells.  

 

Discussion  

Drosophila reacts to horizontally drifting retinal images with compensatory yaw-torque 

responses thought to stabilize straight flight segments (Heisenberg and Wolf, 1984). 

The giant HS-cells in the lobula plate are thought to play a key role in the control of 

this behavior. However, their exact role remains elusive. Patch-clamp recordings in 

Drosophila, an animal that allows for genetic manipulation and behavioral analysis, 

were only established recently (Wilson et al., 2004) and physiological data from HS-

cells were so far not available. We used the Gal4/UAS-system (Brand and Perrimon, 

1993) to fluorescently label two of the three HS-cells, HSN and HSE, which allowed for 

the investigation of their basic anatomy (Fig. 1 and 3) and targeting for reliable 

recordings from the soma (Fig. 1 - 3); neighboring HSS-cells were recorded without the 

use of genetic labeling (Fig. 4). Hence, we describe the response characteristics of all 

three giant neurons of the HS-system in Drosophila, their directional selective output, 

receptive field organization and network interactions.  

 

Basic response properties of Drosophila HS-cells. 

 
Concerning their basic response properties, HS-cells in Drosophila are largely similar to 

their counterparts in Calliphora (Hausen, 1982a; Hausen, 1982b). They respond to 



133 

horizontal motion with graded membrane potential changes in a directional selective 

way (Fig. 1). Their responses are indicative of input from elementary motion detectors 

of the correlation-type (Fig. 2). This is suggested by responses being independent of 

the sign of contrast and by exhibiting a velocity optimum that linearly depends on the 

spatial wavelength of the moving periodic grating. Such a dependency results in a 

single temporal frequency optimum and is a characteristic feature of presynaptic 

computations according to the correlation-type detector model (Reichardt, 1961; Borst 

and Egelhaaf, 1989). The temporal frequency optimum of 1 Hz (Fig. 2) precisely 

matches the results from our previous account on Drosophila VS-cells (Jösch et al., 

2008) and findings from H1-cells in Calliphora (Haag et al., 2004). However, 

recordings from HS-cells in Calliphora resulted in slightly higher values of 2 – 5 Hz  

(Hausen, 1982b), suggesting differences between the two fly species. The quadratic 

dependence of the response on the contrast predicted by a correlation-type detector 

model is generally found only in the low contrast range (Buchner, 1984). At higher 

contrasts, responses saturate probably due to a gain control mechanism (Fig. 2) in 

elementary motion detectors. However, the cellular implementation of elementary 

motion detectors is still an open question in the field.  

 

Anatomical layout of HS-cell dendrites and receptive fields. 

 
The image of the environment is represented by retinotopically organized columnar 

maps in the optic lobes (Strausfeld, 1976; Braitenberg, 1970; Strausfeld, 1984). 

Within this arrangement, the dendrites of HSN and HSE occupy large, highly constant 

areas in the lobula plate. However, the overlap of their dendrites is much larger in 

Drosophila ( Fig. 2A; Heisenberg et al., 1978) than in Calliphora (Hausen, 1982a). Such 

differences in LPTC- anatomy and number have been described among dipteran flies 

and were linked to their flight style and behavior (Buschbeck and Strausfeld, 1997; 

Nordstrom et al., 2008). 

 

The area covered by the dendrites of HSN, HSE and HSS correspond to the centers of 

large dorsal, equatorial and ventral receptive fields, respectively. Yet, the ipsilateral 

receptive field, in particular of HSN, exceeds the area occupied by its dendrite in the 

lobula plate significantly (Fig. 3B). In addition, HSN and HSE are also sensitive to 

contralateral motion. These receptive fields of HS-cells can be explained by assuming 

1) dendritic input from local motion detectors, 2) electric coupling to neighboring HS-
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cells and 3) input from contralateral neurons tuned to regressive motion. The evidence 

for this input organization is discussed below.   

 

(1) Ipsalateral columnar input. 

 

The excitatory and inhibitory responses of HS-cells suggest that Drosophila HS-cells 

inherit their main response characteristics from two specific classes of elementary 

motion half-detectors with opposite preferred direction (Borst and Egelhaaf, 1990; 

Borst et al., 1995; Single and Borst, 1998). Further evidence for this scheme comes 

from the localization of excitatory cholinergic and inhibitory GABAergic synapses on 

the dendritic tips of VS- and HS-cells in Drosophila (Raghu et al., 2007; Raghu et al., 

2009) and the simultaneous integration of excitatory and inhibitory input with 

separate reversal potentials during grating motion (Jösch et al., 2008). Possible input 

elements might be the bushy T4- and T5-cells (Strausfeld, 1976; Bausenwein and 

Fischbach, 1992). 

 

The retinotopic arrangement of the detectors is further supported by our finding that 

HS-cells respond to local motion stimuli with a strong preference for horizontal motion. 

Moreover, gradual changes in local PD with a bias to upward motion were observed in 

the dorsofrontal (HSN and HSE) and ventrolateral (HSS) margins of the receptive field 

(Fig. 4). Sensitivity to vertical motion in parts of the receptive field was also reported 

for HS-cells in Calliphora and was attributed to the arrangement of the ommatidial 

lattice in the corresponding parts of the eye (Hausen, 1982b). This most likely holds 

true also for Drosophila (Heisenberg and Wolf, 1984). HS-cells in Drosophila were not 

coupled to any of the vertically sensitive LPTCs although connections between HSN and 

lateral VS-cells (Haag and Borst, 2005) were reported in Calliphora. However, in 

Calliphora these connections are supplied via the dCH cell (Haag and Borst, 2007) and 

CH-cells could not be found in Drosophila.  

 

(2) Coupling to neighboring HS-cells. 

 
Direct electric coupling between neighboring HS-cells or via descending neurons is 

suggested by the spread of Neurobiotin (Fig. 5) and provides the most plausible 

explanation for the observed broad ipsilateral receptive fields (Fig. 3 and 4). A 

similar ipsilateral coupling has been found in the VS-cell network in Drosophila (Jösch et 
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al., 2008) and within and between the HS- and VS-system of Calliphora (Haag and 

Borst, 2004; Farrow et al., 2005; Haag and Borst, 2007) where lateral connections 

are thought to be responsible for the large receptive fields and, hence, the robustness 

of the response against inhomogeneous contrast distribution in the image (Cuntz et al., 

2007). Moreover, HS-cells in Calliphora are coupled to each other only indirectly via 

the dorsal and ventral CH-cell (Haag and Borst, 2002; Cuntz et al., 2003), which 

receive graded input from HS-cells. In response to large-field motion, CH-cells in turn 

inhibit so-called figure detection neurons, thereby tuning them to small-field motion 

(Warzecha et al., 1993; Cuntz et al., 2003; Egelhaaf, 1985; Haag and Borst, 2002).  

It is unclear how Drosophila solves this problem. The fact that CH-cells were never 

detected in our experiments matches their absence in any of the Gal4 screens and any 

of the detailed anatomical descriptions reported so far in Drosophila (Fischbach and 

Dittrich, 1989). The weakly stained fibers next to HS-cells (Fig. 5) in the ipsilateral 

lobula plate could not be identified due to their week Neurobiotin labeling. The very 

strong and reliable coupling of HS- and CH-cells in Calliphora makes it unlikely that 

these weakly stained fibers represent processes of Drosophila CH-cells. They could 

rather belong to the heterolateral projecting neurons (see below).  

 

(3) Input from neurons with contralateral receptive fields.  

 
In addition to two sources of ipsilateral input, we find sensitivity to contralateral back-

to-front motion in HSN and HSE (contralateral sensitivity of HSS was not systematically 

analyzed). The heterolateral projecting LPTCs detected in the Neurobiotin injection 

(Fig. 4A and C) are good candidates to provide this input. They might correspond to 

either H1 or H2, two heterolateral spiking neurons that provide input to HS-cells in 

Calliphora (Haag and Borst, 2001; Hausen, 1982a; Hausen, 1982b; Horstmann et al., 

2000). Both cells have their dendrites in the contralateral lobula plate where they 

respond to back-to-front motion with an increase in spike frequency. The axonal 

arborization of H1 is in the contralateral lobula plate. H2 axons project to the output 

region of HS-cells in the contralateral protocerebrum where they build electric contacts 

with HS-cells. Due to the many other labeled cells and relatively week labeling of the 

heterolateral neurons we could not determine if Neurobiotin labeled H1, H2 or even 

both.  
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Behavioral relevance 

 
HS-cells are supposed to be key-players for the control of optomotor turning responses 

elicited by horizontal motion. This notion is mostly based on the observation that 

electrical responses of HS-cells in Calliphora and optomotor torque responses in Musca 

and Drosophila show a similar dependence on spatial features of moving visual stimuli 

(Götz and Buchner, 1978; Hausen, 1982a; Hausen, 1982b; Reichardt and Egelhaaf, 

1988; Hausen and Wehrhahn, 1989). In addition, elimination of the HS-system in 

Musca by laser ablation (Geiger and Nässel, 1981) and the omb mutation (largely 

missing HS-cells and many other LPTCs and columnar neurons absent) in Drosophila 

(omb, Heisenberg et al., 1978) lead to severe deficits in the execution of yaw 

optomotor responses.  

 

We found that HS-cells in Drosophila are similarly tuned to binocular rotational motion 

around the vertical body axis (Fig. 3). Their responses exhibit a similar dependency on 

features of the stimulus as optomotor yaw-torque responses, in particular a temporal 

frequency optimum of about 1 Hz (Fig. 2A and B; Götz, 1964; Buchner, 1984). Thus, 

our experiments corroborate their functional contribution to compensatory turning 

behavior. This consent, however, is somewhat questioned by recently published 

behavioral experiments that report an optimum response between 5 and 10 Hz 

(Duistermars et al., 2007; Fry et al., 2009). At this frequency, however, HS-cell 

responses (Fig. 2) and previously measured yaw-torque (Götz, 1964) were reduced to 

less than half of the maximal response. It remains speculative if this discrepancy can be 

attributed to differences in the stimulus presentation. 

 

Further measurements are required to investigate if HS-cells in Drosophila also encode 

information about the structure of the visual surround during translational motion, as is 

suggested from experiments in blowflies (Boeddeker and Egelhaaf, 2005; Kern et al., 

2005). Also, lateral expansion stimuli need to be analyzed as they were reported to 

elicit larger optomotor responses than rotational ones (Tammero et al., 2004; 

Duistermars et al., 2007). In summary, HS-cell output very likely feeds into multisensory 

neural circuits that control different behaviors of the fly (Frye and Dickinson, 2001; 

Frye and Dickinson, 2004).  

 



137 

Concluding remarks 

HS-cells in Drosophila and large dipteran flies have largely similar response properties 

indicative of a correlation-type motion detector model. However, we describe 

substantial differences in the organization of the neural circuitry for the detection of 

horizontal optic flow. The overlap and relative size of ipsilateral HS-cell dendrites is 

larger in Drosophila. CH-cells, that link the HS- and VS-system in Calliphora and that 

are key elements of a circuitry dedicated to the detection of small moving objects, 

were not found in Drosophila. In addition, Drosophila HS-cells exhibit a lower temporal 

frequency optimum than their counterparts in Calliphora. These differences might 

reflect adaptations to different lifestyles, as the basic response properties of large-

field motion-sensitive neurons seem to match differences in flight style (O'Carroll et al., 

1996). Our functional and anatomical characterization of the HS-cell circuitry in 

Drosophila can now serve to dissect (a) the presynaptic motion detection circuitry and 

(b) the exquisite control mechanism of compensatory optomotor responses by 

combining genetic manipulation of neuronal function with physiological recording and 

behavioral analysis. 
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Abstract 
 

Motion vision is a major function of all visual systems, yet the underlying neural 

mechanisms and circuitries are still elusive. In the fruit fly Drosophila melanogaster 

photoreceptor signals from R1-6 split into parallel pathways in the first optic neuropile, 

the lamina1. Lamina cells are known not to be directionally selective2, whereas a few 

synapses downstream in the lobula plate, a group of large field neurons respond to 

visual motion in a directionally selective way3. In between, direction selectivity is being 

computed by an unknown network of elementary motion detectors. In order to address 

the cellular implementation of the circuitry computing directional selectivity, we 

performed whole cell recordings from lobula plate neurons in flies where we disrupted 

the chemical output from lamina cells L1 and L2. When presenting a grating drifting 

either horizontally or vertically, we found that the motion response was reduced 

strongly by blocking L1, and moderately by blocking L2. Interestingly, when using a 

drifting Off-edge (bright-to-dark transition) instead of a grating, the response was 

completely abolished when either L1 or L2 was blocked. Thus, both L1- and L2-cells 

seem to be necessary for the detection of moving Off-edges arguing for an interaction 

between these cells in order to provide the signal specific for brightness decrease. Our 

results support a segregation of luminance information into On- and Off-pathways 

prior to motion computation, as postulated in a cellular model of elementary motion 

detection, the „four quadrant multiplier‟4. 
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Manuscript 
 

Directional selective cells are found in a vast number of animals and brain regions, 

ranging from the retina of rabbits5 to the visual cortex of macaque6. The responses of 

these cells can serve different tasks like object detection based on relative motion, as 

well as orientation and course control based on optic flow analysis7. In flies, such 

motion-sensitive neurons, the lobula plate tangential cells, are found in the caudal part 

of the third neuropile of the optic lobe, the lobula plate3. Their characteristic 

morphology and response properties have made them an excellent model system for 

the study of motion processing7. Lobula plate tangential cells have been demonstrated 

to receive input from an array of local motion detectors of the Reichardt-type8,9. In its 

minimal form, one Reichardt detector consists of two mirror-symmetrical subunits both 

receiving input from the same two neighboring photoreceptors. In each subunit, the 

luminance level derived from one photoreceptor is low-pass filtered and becomes 

subsequently multiplied with the instantaneous signal derived from the neighboring 

photoreceptor. The results of both multipliers are then subtracted giving rise to a fully 

directional output signal. Despite the precise specifications of the computational steps 

of motion detection, the neural mechanisms and circuitry presynaptic to the lobula plate 

tangential cells have escaped so far from a detailed analysis. This is due to the small 

size of the constituting neurons and the high complexity of their neural architecture. We 

set out to elucidate the cellular implementation starting from the most outer neuropile, 

the lamina. For this purpose, we combined electrophysiological recordings of lobula 

plate tangential cells with genetic intervention of presynaptic elements (Fig 1a&b).  

 

Each lamina cartridge comprises five different monopolar cells, two centrifugal cells 

and one T1 cell (Fig. 1c). In this study we focused on lamina cells L1, L2 and L4, 

speculated to be the main input elements for motion vision10-13. We used several 

enhancer-lines with distinct expression in different populations of lamina monopolar 

cells (Fig 1d). One line had targeted expression in L1 (Split-Glu), three lines in L2 

(Split-Cha; ortC3-Gal4; 21-D), one line in L1, L2 and L3 (ortC2-Gal4) and one line in L4 

(Ln-Gal4). Unfortunately, the expression pattern in the optic lobes of these enhancer 

lines also included other medullar cell populations (Fig. 1d), a fact that has to be kept 

in mind for further interpretations. To monitor the effects of the genetic manipulation of 

targeted populations of first-order interneurons, we focused on two previously 
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characterized groups of lobula plate tangential cells, the VS- (Vertical Sensitive)9 and 

 

Fig. 1. Combined electrophysiological and neurogenetic approach. (a) Schematic drawing of a fly 

preparation, including visual stimulus device. A recording electrode is pointing towards a red dye-filled 

VS cell. A tetanus neurotoxin block of synaptic release in a population of lamina cells (represented by 

the green neuronal terminals) is shown by red crosses (b) The Gal4/UAS system is used to express TNT 

under enhancement of e.g. the ort-promoter region. (c) Schematic drawing of different laminar cell 

populations (taken from10). (d) GFP expression pattern in the optic lobes of the different Gal4 lines used 

in this study. Specified layers are visible in the medulla, representing the output regions of different 

lamina cells. Note the expression of other neuronal populations. X denotes an unidentified cell type 

(Scale bar 10 m). 

 

HS-cells (Horizontal Sensitive)14. Drosophila’s VS- and HS-cells are two morphologically 

defined groups of cells preferentially sensitive to vertical and horizontal motion, 

respectively. Exceptionally, VS5 and specially VS6 are tuned to rotational flow fields 

with their center of rotation at around 25 ° and 50 ° azimuth (Suppl. Fig 1). Their main 

response mode is to be excited by motion stimuli in their preferred direction (PD) by a 

graded depolarization of their membrane potential superimposed with spikelets. 
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Motion stimuli in the opposite direction (null direction, „ND‟) elicit a graded 

hyperpolarization9,14 (Fig. 2a). While recording from VS- and HS-cell we took 

advantage of the Gal4/UAS system15 to specifically disrupt the input elements through 

directed tetanus neurotoxin light chain (TNT)16 expression (Fig 1c). TNT cleaves 

synaptobrevin suppressing vesicle release and thus silencing chemical synapses 

irreversible (Fig 1b&c). To optimize the parameters needed to disrupt synaptic release 

via TNT we characterized the block of photoreceptors and lamina monopolar cell 

output (Supp. Material, Supp. Fig. 2). We observed a dramatic change in the 

effectiveness depending on the temperature in which the flies were reared (Sup. Fig. 

2). These results contradict the idea that different kinds of neuronal specific 

synaptobrevins, a TNT cleavable and a non-cleavable one, are localized in different 

populations of neurons in Drosophila17 and rather argue for a temperature depended 

ubiquitous neuronal block via TNT (Supp. Material).  

 

We next analyzed the role of each input channel to motion processing. In a first series 

of experiments, we used a moving sine grating to stimulate the cells (  = 22 °, 

temporal frequency = 1 Hz, mean luminance= 4 cd / m2). Blocking L1 strongly 

reduced the grating response, both for motion in the preferred as well as in the null 

direction (Fig 3a, left; Fig. 3b). Blocking L2 induced a more subtle effect. When the 

output of L2 was disrupted with the Split-Cha line, a moderate reduction in the 

response sensitivity could be seen at all contrast levels (Fig. 3a, second from left; Fig. 

3b). When using the ortC3 line a subtle effect was visible only at low contrast levels 

(Fig. 3a, third from left; Fig. 3b). However, disrupting L2 via the 21D-line showed no 

significant effect (Supp. Fig 3). These flies (21DUAS-TNT) had to be raised at a 

permissive temperature of 25 °C (Supp. Material). At this temperature a decrease of 

the TNT efficacy is expected and thus can explain the lack of any effect. We further 

investigated the input channels for motion detection by blocking the group of lamina 

monopolar cells L1, L2 and L3 with the ortC2-Gal4 line (Fig 1d). Theses flies showed an 

almost 100% block of motion responses in lobula plate tangential cells, even at the 

highest pattern contrast (Fig. 3a, right; Fig 3b). To further constrain the analysis of the 

input elements we tried to block L1 and L2 specifically, taking advantage of lines 

previously used in behavioral studies10,18. Unexpectedly, the most specific laminar cell 

enhancer lines were lethal when combined with TNT at the optimal block temperature 

(Supp. Table 1), making further analysis impossible. We suspect that this lethality is 
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due to an optic lobe unspecific expression pattern in other tissue. Interestingly, we also 

 

Fig. 3. Contrast dependency. (a) Recorded membrane potentials of different VS cells recorded in the 

specified genotypes. Responses to a large field sine-grating (  = 22°, v = 22 °/s). The top traces are 

the control flies; the bottom traces the experimental flies. Grating motion is represented by the bottom 

grey lines. (b) Normalized mean responses (PD-ND) of all analyzed fly genotypes. (Split-Cha: exp. flies 

n = 19; control flies n = 6; ortc3 : exp. n = 7; control n = 7; Split-Glu: exp. n = 8; control n = 6.) 

 

noticed that ortC2-Gal4 flies combined with TNT showed wild type responses if 

recorded directly after hatching (data not shown). This is indicative for a late 

expression start of the ort-promoter and points out that the effects described are not 

due to developmental defects induced by TNT17, but rather to a synaptic block of the 

specified lamina monopolar cell types tested. 

 

A grating stimulus is composed of many simultaneously moving dark-to-bright (On-

edge) and bright-to-dark transitions (Off-edge; Fig. 3a). We therefore investigated if 

the lamina monopolar cells might be involved in the analysis of either one of those 

motion inputs. We found that by blocking either L1 or L2, VS- and HS-cells revealed a 

strong reduction to motion sensitivity towards On-edge motion (Fig 3b). These results 

are in line with the reduction of the contrast dependencies to moving grating (Fig 2b). 

Most interestingly, motion responses to Off-edge stimuli were completely abolished in 
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the L1- and two L2-lines tested (Fig 3b). These findings demonstrate that both L1 

 

Fig. 3. On- and Off-edge motion detection. (a) Schematic example of the stimulus used. A grating, a 

dark edge (Off-edge) and a bright edge (On-edge) are moving downwards. (b) Normalized mean 

responses of truly directional stimuli (PD-ND stimuli) of to either a moving on- or off-edge stimuli (Split-

Cha control n = 7, Split-Cha x TNT n = 23, ortc3 control n = 7, ort c3 x TNT n = 6, Split-Glu control n = 7, 

Split-Glu x TNT n= 11) 

 

and L2 cells are necessary for the detection of Off-motion, suggesting a possible 

interaction between the two cells. In concordance with these findings, we could also 

measure a statistically significant reduction to Off-edge motion responses using the 

third L2 Line (21D; Suppl. Fig 4a&b). Our data indicate that at 25 °C, the combination 

of 21D-Gal4 and TNT could only elicit a partial block of the L2 synapses, resulting in 

an incomplete block of the Off-responses. Interestingly, if the experimental flies were 

raised at room temperature, no reduction in their Off-responses to moving gratings 

could be seen (Suppl. Fig. 4a, striped bar), supporting the notion of a temperature 

sensitive block. 

 

Finally, we tested the possible involvement of the laminar neuron L4 that had been 

speculated to be specialized in front-to-back motion processing13. A recent behavioral 

study found, using cell specific TNT expression, that flies in which L4 cells were blocked 

using the Ln-Gal4 line, completely lose optomotor responses but retain wild-type 

phototactic behavior18. In line with these results, we found that motion responses in VS 

and HS cells were completely abolished (Fig 4a). The conspicuous absence of any light 

responses let us perform ERG experiment to see if the transmission from photoreceptors 

to laminar monopolar cells was affected. At stimulation frequencies equal to the 

temporal frequency of maximal motion responses, i.e. 1 Hz, the lamina transients were 
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undetectable (Fig 4b). This suggests a strong block of photoreceptor‟s output. We 

therefore carefully reexamined the expression pattern and found expression in the 

photoreceptors (Fig 4c). This shows that the absence of motion vision (Fig. 4a) is due to 

a disruption at the photoreceptor output synapse and not due to the specific 

contribution of L4 to motion processing.  

 

 

Fig. 4. TNT expression under the Ln-Gal4 line disrupts photoreceptor output. (a) Mean motion 

responses to vertical sine grating of Ln-G1l4 TNT flies (n=10; grating motion is represented by the 

bottom grey line. (b) ERG of flashes presented at the same temporal frequency as the motion stimuli (1 

Hz). Representative responses of control (upper traces) and experimental (lower traces) flies. A complete 

ablation, especially of the light off lamina peaks are observed (see arrows). (c) Ln-Gal4 expression 

pattern in the flies‟ retina (Ln-Gal4  UAS-GFP). The photoreceptor boundless of each Ommatidium of 

R1-6 can be clearly distinguished. 

 

Based on anatomical studies, two pathways were proposed to be involved in motion 

processing11,12. The first uses L1 and the second L2 to feed information into the motion 

detection circuitry. Several behavioral studies have approached this question with 

different neurogenetic approaches10,18,19. The results of these studies have been 

contradictory proposing different roles for the pathways mentioned above. Our 

experimental results show that the simultaneous block of L1, L2 & L3 completely 

abolishes motion sensitive responses in lobula plate tangential cells, indicating that 

these cells provide input to the motion detection circuitry. Therefore we suggest that the 

absence of any optomotor effect measured in a previous behavioral study18 was due 

to suboptimal experimental constraints, since these flies were kept at room 

temperature. In addition, the main conclusion presented by another behavioral study10 

says that at intermediate contrast L1 and L2 mediate motion vision in opposite 

directions: the L1 pathway mediates front-to-back and the L2 pathway back-to-front 

motion. In our L1 or L2 blocking experiments the response of VS- and HS-cells to 

moving gratings only showed reduced contrast sensitivity. Therefore, our findings are 
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not in accordance that L1 and L2 mediate opposing unidirectional motion detection. 

Taken together, behavioral responses are the result of motion processing and a wide 

range of additional computations. In contrast, the direct measurement of the VS- and 

HS-cell responses primarily represents the output of the motion processing circuitry and 

consequently allows a more precise description of the motion sensitive inputs. We 

speculate that the complexity of behavior superimposed with the unspecific expression 

patterns of the mentioned Gal4 lines outside the optic lobes are the main causes for 

differences between our results and previous behavioral studies.  

 

Finally, our data suggest a segregation of motion pathways that are involved in the 

detection of moving patterns with either increase (On) or decrease (Off) luminance (Fig 

4b). In this respect, an electrophysiological study performed in the fly Calliphora vicina 

has shown that adjacent luminance steps of opposing polarity interact producing a 

motion sensitive response20. This data is indicative for the absence of previously 

suggested separate Reichardt detectors specialized in On- and Off-motion 

detection21, since a clear interaction of On- and Off-stimuli was measured. These 

results led to the hypothesis that the luminance polarity transmitted by each arm of the 

Reichardt detector is conserved and being further processed by a sign-correct 

multiplication20. If this interaction is accomplished by a synaptic interaction between 

two neurons, a postsynaptic signal should be enhanced when both presynaptic inputs 

either simultaneously increase (On) or decrease (Off). To the best of our knowledge, no 

corresponding synaptic mechanism has ever been described to accomplish this. 

However, if the brightness increments or decrements are represented in separate On- 

and Off-channels, each one carrying positive signals only, the synaptic mechanism 

underlying such an interaction is less complex, only requiring a supralinear input-output 

relationship. To fully mimic a sign-corrected multiplication, four subunits take care of all 

possible combinations between the On- and Off- input channels („Four quadrant 

multiplier4‟). Our results are in line with such a four quadrant multiplication model, 

giving the first experimental indication for the input implementation to the motion 

detection circuitry. The future understanding of this implementation and the subsequent 

processing of the signals in the medulla will be key for the complete cellular 

description of motion processing in flies.  



150 

Materials 
 

Flies.  

Flies were raised on standard cornmeal-agar medium at a 12 h light / 12 h dark 

cycle, 25˚C and 60 % humidity. We used female experimental flies, one day post- 

eclosion. For the TNT Experiments, flies were raise at a 12 h light / 12 h dark cycle at 

29˚C. The ortC2-Gal4, ortC3-Gal4, ortC1-3-GAL4AD; + ; cha-Gal4DBD (denoted as 

Split-Cha) and vGlut-dVP16AD/CyO; ortC2-Gal4DBD/TM3 (denoted as Split-Glu) 

lines were kindly provided by Chi-Hon Lee22. The c202-Gal4, 21D-Gal4 and 6298-

Gal4 lines were kindly provided by J. Rister10. Ln-Gal4 was kindly provided by M. 

Fry18. The Rh1-Gal4 lines were obtained from Bloomington Stock center (Stock Nr. 

8688 and 8691). 

 

Preparation.  

Flies were anesthetized on ice and waxed on a Plexiglas holder using bee wax. The 

dissection of the cuticula and exposure of the brain lobula plate was performed as in9.. 

A ringer-filled cleaning electrode (tip ~ 4 µm) was used to remove the extra cellular 

matrix and to expose the LPTC somata for recording, which were recognized by their 

permanent location next to a prominent tracheal branch.  

 

Whole cell recording.  

VS- and HS-cell somata covered by ringer solution23 were approached with a patch 

electrode filled with a red fluorescent dye (intracellular solution as in9). Recordings 

were established under visual control using a 40X water immersion objective 

(LumplanF, Olympus), a Zeiss Microscope (Axiotech vario 100, Zeiss, Oberkochen, 

Germany), illumination (100 W fluorescence lamp, hot mirror, neutral density filter OD 

0.3; all from Zeiss, Germany). To enhance tissue contrast, we used two polarization 

filters, one located as an excitation filter and the other as an emission filter, with slight 

deviation on their polarization plane. For eye protection, we additionally used a 420 

nm LP filter on the light path. For further details of the setup, see9.  

 

Electroretinogram  

Female flies were briefly anesthetized by cooling and were then attached to a holder 

with wax, which was also used to immobilize head and legs. ERGs were obtained by 

placing an indifferent (reference) glass microelectrode in the thorax and a recording 
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glass microelectrode just beneath the cornea of the stimulated eye. Both were filled 

with Drosophila Ringer‟s solution. Recordings were performed at room temperature. As 

stimulus device we used the LED arena with either all panels off or all on at maximal 

intensity. 

 

Confocal microscopy.  

Serial optical sections were taken from recorded VS-cells in the intact preparation 

using a Leica confocal microscope (TCSNT, Leica) and a 40X water-immersion objective 

(LUMPlanF, Olympus). Images were taken at 1 µm intervals and 1024 x 1024 pixel 

resolution. Size, contrast and brightness of the resulting image stacks were adjusted 

using ImageJ (http://rsb.info.nih.gov/ij). 

 

Visual stimulation.  

A custom-built LED arena covered ~170 ° (1.9 ° resolution) of the horizontal and ~ 

100 ° (1.8 ° resolution) vertical visual field, allowing refresh rates of up to 600 Hz 

with 16 intensity levels. The spectral peak of the LEDs was at 568nm and the luminance 

range of the stimuli were between 0 – 8 cd / m2. For technical details see 9. 

 

Data analysis.  

Data was acquired and analyzed using the data acquisition and analysis toolboxes of 

Matlab (The Mathworks, USA). Receptive fields were calculate as in14. The contrast 

was calculated as (Imax – Imin) / (Imax + Imin) with an absolute Imin and Imax of 0.5 and 8 

cd / m2, respectively. The contrast responses was defined as the difference between 

the average response of the preferred and null-motion direction during a 2 s 

stimulation of a square grating ( = 22 °) at 1 Hz temporal frequency. On- and Off-

responses were defined as the difference between the mean response during the 

complete movement of the moving edge and the 500ms average potential prior 

stimulation. The difference between the responses during preferred- and null-motion 

direction was plotted.  

 

http://rsb.info.nih.gov/ij
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Supplementary Material 

 

 

 

Supp. Fig. 1. Receptive field properties of VS cells. Average receptive fields of VS1 – VS6 

recorded from control flies. Normalized vector plots show the maximal direction sensitivity of each cell 

at each point in space. The underplayed color-map represents the magnitude of the responses at each 

given point.  

Temperature sensitivity of TNT 

 

A previous study has suggested that different kinds of neuronal specific 

synaptobrevins, a TNT cleavable and a non-cleavable one, are localized in different 

populations of neurons in Drosophila17. Since this argumentation could invalidate our 

results, we retested this hypothesis and characterized the optimal parameters needed 

to disrupt synaptic release via TNT expression. We found a change in the effectiveness 

depending on the expression level and the expression onset of the driver lines, but 

most dramatically on the temperature in which the flies were reared. We expressed 

TNT in photoreceptors R1-6 using the enhancer line Rh1-Gal4 and tested the strength 

of the photoreceptor block by electroretinogram (ERG)24 recordings. The fly‟s ERG 

represents the summed extracellular components of the photoreceptor and the transient 

laminar membrane potential peaks, which are visible at the onset and offset of the 
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stimuli. Flies that were held at 20 °C for five days only showed a reduction of the 

lamina responses and an increase of the DC component, suggesting a partial block of 

photoreceptor terminals. However, when rearing these flies at 29 °C for two days, the 

laminar transients were completely abolished indicating a strong temperature 

sensitivity of the disruptor (Supp. Fig 2a). These results contradict the hypothesis of a 

second none-cleavable isoforms of synaptobrevin supposed to be present in 

photoreceptors. We further investigated the TNT disruptor using the ortC2-Gal4 line 

that contains the lamina monopolar cells L1, L2 and L3 in its expression pattern, finding 

a temperature sensitive block of motion responses (Supp. Fig. 2b).  

 

 

 

Supp. Fig. 2. Quantitative analysis of TNT block. (a) ERG of Rh1-Gal4 and Rh1-Gal4UAS-TNTE 

flies. A complete reduction of the lamina cell responses was observes after holding the flies for 3 days 

at 29 °C (red trace). If the flies were hold at 20 °C for 5 days, only subtler changes in the laminar peak 

kinetics and the DC component could be observed (green trace). (b) Contrast dependencies of control 

(ortc2-Gal4  UAS-GFP), experimental flies hold at 20 °C (ortc2-Gal4 UAS-TNTE) and at 29 °C (A3). 

A strong reduction in the contrast dependency was observed at higher temperatures (mean +/- SEM). 

 

TNT induced lethality 

 
We controlled for a possible developmental effect co-expressing the temperature 

sensitive variant of the Gal4 repressor Gal80. In this configuration, Gal80 should 

repress the expression of TNT at 20 °C and enable it at 30 °C. In this scenario, the 

same viability was seen for all enhancer lines tested apart of C155 (Supp. Table 1). 

C155 has a strong expression in the complete central nervous system. When crossed to 

TNT, experimental embryos appear to develop normally prior hatching from the egg. 

However, no larva was seen hatching from any egg probably due to dysfunctional 

nervous system. We think that due to the high expression level and wide expression 
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pattern of C155 the suboptimal TNT parameters can still disrupt enough neuronal 

tissue.  

 

For the direct TNT expression experiments, flies were hold at the mentioned 

temperatures during the complete development. Interestingly, young viable flies hold 

at 20 °C died after few days when increasing the incubation temperature to 29 °C, 

enforcing the idea of the temperature sensitivity of TNT. For the Gal80 repression 

experiments, the experimental flies were reared first at 20 °C and after pupal hatch, 

incubated at 29 °C (see Supp. Table 1).  

 

 

 

Supp. Table 1. Viability of different driver lines with TNT. 

 

 

 

 

Supp. Fig 3. Contrast dependence of 21D-Gal4 line. Contrast dependency of both control and 

experimental flies to moving gratings (  = 22 °, = 1 Hz). A not significant tendency was observed at 

the lowest contrast level during PD stimulation (experimental flies n = 5/ control flies n = 5).  
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Supp. Fig 4. On- and Off-edge motion detection of 21D-Gal4 line. (a) Normalized responses of each 

control (21D-Gal4UAS-GFP) and experimental (21D-Gal4  UAS-TNTE) fly (mean +/- SEM). (b) 

Average responses of both groups (mean +/- SEM). A significant reduction of the off-edge motion 

responses could be observed in the TNT experiments (experimental flies n = 8/ control flies n = 9).  
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8 Discussion 

 
 

In this work, a series of electrophysiological, neuroanatomical and 

neurogenetical experiments were conducted to pursue the question of the cellular 

implementation of motion vision and course control in the fly. A new 

electrophysiological approach was developed in Drosophila melanogaster which, in 

combination with Drosophila’s rich repertoire of genetic techniques, represents the 

foundation for the dissection of the fly‟s visual processing circuitries. 

 

8.1 Introduction of Drosophila as a model organism for the analysis of the 

 motion detection circuitry 

 

Morphological studies of columnar interneurons of the lamina and medulla in 

Drosophila have shown similarities to their anatomically characterized counterparts in 

other dipteran flies (Fischbach and Dittrich, 1989; Strausfeld, 1976). Similar 

observations have been made while comparing the morphology of LPTCs, suggesting 

an analogous functional role across fly species (Rajashekhar and Shamprasad, 2004; 

Scott et al., 2002, Hausen, 1976). Though, much larger inter-species variance has been 

reported at the level of LPTCs than at the level of columnar interneurons (Buschbeck 

and Strausfeld, 1996; Buschbeck and Strausfeld, 1997). However, physiological 

evidence for this assumption was missing. To close this gap an electrophysiological 

technique to reliably record from genetically targeted visual interneurons of the lobula 

plate of Drosophila was designed and implemented. Thereby, two prominent groups of 

large-field neurons were analyzed for the first time, the “vertical sensitive” (VS; 

Chapter 4; Jösch et al., 2008) and “horizontal sensitive” (HS) cells (Chapter 6; Schnell 

et al. submitted). Based on this studies, I could show that (1) uniform neuronal 

mechanisms of visual motion processing exist across different dipteran species, (2) 

Drosophila qualifies for the analysis of population coding within the LPTC networks and 

finally (3) Drosophila allows the combined electrophysiological and neurogenetical 

dissection of the cellular implementation of the elementary motion detector as well as 

the functional dissection of the LPTC-network.  
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8.2 Basic response properties of VS- and HS-cells. 

 
The main basic responses of Drosophila’s VS- and HS-cell closely resemble the 

ones described in bigger fly species (Chapter 2, Sec. 2.3.4). VS-cells are excited by 

whole field motion in downward direction (Chapter 5, Fig 1; Jösch et al., 2008), while 

HS-cells by ipsilateral front-to-back motion (Chapter 6, Fig 1). Whole field motion 

stimuli along their preferred direction elicit a depolarization of their membrane 

potential superimposed with spike-like events. In contrast, when presenting motion 

stimuli in the opposite direction the cells strongly hyperpolarize.  

 

8.3 Fingerprints of computations according to the Reichardt detector model 

 of visual motion detection. 

 
To use Drosophila as a model organism for the cellular understanding of motion vision, 

a validation of the knowledge acquired in the last 30 years in this field in bigger flies 

is of great interest (Borst et al., 2003; Götz 1972, 1973, Haag et al., 2004; 

Hassenstein and Reichardt, 1956; Hausen, 1976; Reisenman et al., 2003). Therefore I 

investigated if the characteristics predicted by the Reichardt detector model can be 

found in the responses of Drosophila’s LPTCs. As described previously (Chapter 2, 

section 2.3), the Reichardt detector is based on a multiplicative interaction of 

asymmetrically filtered luminance values measured by neighboring photoreceptors. 

Doing this twice in a mirror-symmetric fashion and subtracting the output signal of both 

subunits leads to a fully directional output signal (Chapter 2, section 2.4; Hassenstein 

and Reichardt, 1956). Intriguingly, I found that the motion responses of LPTCs in 

Drosophila fulfill all predictions of the Reichardt detector.  

 

One hallmark of the Reichardt detector is its‟ temporal frequency optimum: 

When stimulated by a drifting sine grating, the responses are predicted to by maximal 

at a certain velocity. For different spatial wavelength of the stimulus, different velocity 

optima should arise. This velocity optima in turn behave in such a way that when 

divided by the spatial wavelength of the stimulus, a constant temporal frequency in Hz 

appears for all spatial wavelengths presented. This is the case for Drosophila’s VS- 

(Chapter 4, Fig. 3A&B; Jösch et al., 2008) and HS-cells (Chapter 6, Fig 2A&B, these 

experiments were performed by Bettina Schnell). In both cell populations, the 

temporal-frequency optimum coincides at 1 Hz. Interestingly, as shown in behavioral 
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experiments by Karl Götz in the 60‟s, the maximal optomotor response in a tethered 

flying Drosophila is found at the very same contrast frequency (Götz, 1964). Thus, our 

experiments are in line with a functional contribution of these cells to the execution of 

compensatory turning behavior. This result, however, is drawn into question by recently 

published behavioral studies that report an optimum response at 5-10 Hz (Duistermars 

et al., 2007; Fry et al., 2009). In my experiments, VS- and HS-cells miss substantial 

graded responses at grating motion stimulation of temporal frequency of 10 Hz. The 

experiments performed by K. Götz show that at stimulation frequencies of 10 Hz the 

response strength is reduced to less than half in both flying and walking Drosophila 

(Götz, 1964; Götz and Wenking, 1973). It remains speculative if the different optima 

can be attributed to differences in the stimulus presentation like maximal frame rates 

and spatial resolutions of the used stimulus devices.  

 

Another prediction of the multiplicative interaction of the Reichardt model is 

that directional selective neurons encode image motion independent of the sign of 

contrast. This was proven to be the case for VS (Chapter 4, Fig 4A; Jösch et al., 2008) 

as well as for HS-cells (Chapter 6, Fig. 2D; Schnell et al., submitted). In adition, motion 

perception is strongly depended on the contrast of the moving object. We measured a 

strong dependence of the LPTC responses on the contrast of the stimuli. In this respect, 

the Reichardt detector has a quadratic dependence to contrast. However, I found in 

line with previous behavioral experiments in Drosophila (Buchner, 1984), that this 

dependence can only be measured at low contrast levels. At higher contrast, the 

responses saturate probably due to a gain control mechanism in elementary motion 

detectors (Chapter 4, Fig. 4B & Chapter 6, Fig. 2C; Jösch et al., 2008).  

 

Finally, I tested the last step of local motion detection, the subtraction of both 

mirror symmetric subunits. I recorded from VS-cell during visual stimulation while 

injecting negative or positive DC currents. My results show that DC current injections 

changed the driving force for both subunits independently, suggesting that two types 

of inputs with opposite direction provide inhibition and excitation to VS-cell dendrites 

(Chapter 4, Fig. 4C).  

 

In summary, the characteristics of the recorded responses can be described by 

a Reichardt detector model. These findings set the framework for further neurogenetic 

studies that aim to elucidate the cellular implementation of this algorithmic model.  
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8.4 The VS-cell network in Drosophila. 

 
Drosophila VS-cell network is composed of at least 6 individually identifiable, 

directionally selective cells. Each morphological classified VS-cell type possesses a 

distinct receptive field sequentially arranged along the azimuth, with VS1 being most 

sensitive to frontal and VS6 to lateral stimuli (Chapter 4, Fig 2B; Jösch et al., 2008). 

The organization of their dendritic arborization is in concordance with their receptive 

field properties. When analyzing their optic-flow fields a clear sensitivity to vertical 

motion can be observed for the most frontal VS1, VS2, VS3 and VS4 cells. In contrast, 

VS5 and specially VS6 seem to respond strongest to rotational motion at 25 ° and 50 

° azimuth, respectively (Chapter 7, Fig. S. 1; Jösch et al., 2008).  

 

As in the blowfly Calliphora, the receptive fields in Drosophila are wider then 

expected from their retinotopic input. In the blowfly, a sequentially arranged electrical 

coupling between VS-cells was found to be responsible for this observation (Farrow et 

al., 2005; Haag and Borst, 2004). Consistent with these findings, we found evidence 

for electrical coupling of VS-cells in Drosophila too (Chapter 4. Fig. 2C; Jösch et al., 

2008). In concordance with these results, we also observed a very strong 

immunolabeling of innexin 8, an insect gap-junction protein. Innexin 8, also known as 

shakB, co-localizes with the axonal termini of VS- and HS-cells (data not shown). In VS-

cells, this particular wiring has been proposed to be essential for the fly‟s course 

control. It performs a linear interpolation between their output signals, leading to a 

robust representation of the axis of rotation even in the presence of textureless 

patches of the visual surround (Cuntz et al., 2007). In Drosophila, the majority of VS 

cells are less rotationally tuned than Calliphora’s. Only VS5 and VS6 appear to have 

rotational flow-fields (Chapter 7. Fig. S1). Nevertheless, the similarity of both network 

connections suggests a common computational principle which still has to be tested in 

behavior. This appears now to be possible by genetically targeting the gap-junction 

molecule innexin 8. We are currently trying to use diverse RNA interference molecules 

to down-regulate specifically the electrical coupling between VS-cells only. This should 

allow testing this coupling electrophysiologically and in behavior.  
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8.5 Drosophila’s HS cell network 

 
The results of my work and the work of Bettina Schnell in our lab showed that 

Drosophila’s HS-cell network is composed of 3 individually identifiable, directionally 

selective cells, most sensitive to front-to-back motion on their ipsilateral side. Their 

dendritic fields strongly overlap, with HSN being more dorsal, HSE equatorial 

(Chapter 4, Fig. 3A) and HSS ventral (Scott et al., 2002). As for the VS-cells, the 

columnar organization of the medullar elements that provide input to the HS-cell 

dendrites in the lobula plate are retinotopically organized. Interestingly, the overlap 

of their dendritic spanning fields is very large, e.g. that of HSE covers on the average 

about 90 % of that of HSN (Chapter 6, Fig. 3A). This feature can also be observed in 

the receptive field of the HSN-, HSE- and HSS-cell (Chapter 4, Fig. 4), where HSN has 

a strong dorsal, HSE, equatorial and HSS ventral sensitivity. The major overlap of the 

receptive fields also matches their dendritic morphology (Chapter 4, Fig3). Another 

interesting aspect is their sensitivity to contralateral motion (Chapter 4, Fig. 2A). HS-

cells respond to contralateral back-to-front motion with a depolarization of their 

membrane potential. The opposite is found on the ipsilateral side, where front-to-back 

motion elicits a depolarization. This data altogether suggests that HS cells are tuned to 

rotational panoramic motion stimuli.  

 

Performing Neurobiotin perfusion of single HS-cells and tracing the dye in the 

LPTC-circuit, coupling was observed indicating electrical connections (experiments 

performed by B. Schnell). Here two interesting facts were learned. The contralateral 

back-to-front sensitivity probably arises from either H1 or H2 like cells (Chapter 6, Fig 

6). As already described in Calliphora, both cells have dendrites in the contralateral 

lobula plate and respond to back-to-front motion with an increase in the spiking 

frequency (Haag and Borst, 2001; Hausen, 1982a; Hausen, 1982b; Horstmann et al., 

2000). Due to the relatively week labeling of the heterolateral neurons and the vast 

amount of other labeled cells, no precise classification could be done so far. Second, 

HS-cells in Drosophila appear to be directly coupled via gap junction and not, as 

described in Calliphora, via CH-cells (Haag and Borst, 2002; Chapter 6, Fig 6). In 

Calliphora this coupling is important, since CH-cells inhibit the so-called figure detection 

neurons (Egelhaaf, 1985) and thereby tune them to small-field motion (Cuntz et al., 

2003). It is unclear how Drosophila solves this problem. 
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8.6 Synaptic organization of LPTCs in the Drosophila brain  

 
To understand the implementation of a circuit it is important to assess the exact 

location of the inputs it receives. Together with Shamprasad Varija Raghu, we took a 

close look at the synaptic organization of the VS- and HS-cells characterized 

electrophysiologically in my previously mentioned studies. We found that both, VS- 

and HS-cells receive GABAergic and acetylcholinergic inputs on their dendritic tips. This 

was shown by two complementary approaches: First, via immunolabeling of 

endogenous acetylcholine-receptor subunit D 7 (Chapter 5. Fig. 1&2; Raghu et al., 

2009) and the neurotransmitter GABA (Chapter 3, Fig. 5&6). Second, via transgenic 

expression of labeled D 7 subunits (Chapter 5. Fig. 3&4; Raghu et al., 2009) and the 

Rdl-type GABA-receptors (Chapter 3, Fig. 3; Raghu et al., 2007). Our results are in 

accordance with the subtractive step of the Reichardt detector model previously 

described in big fly species (Borst and Egelhaaf, 1990; Egelhaaf et al., 1990; Gilbert, 

1991), which is also implemented as a push-pull mechanism between excitatory and 

inhibitory inputs on the dendrites of Drosophila’s LPTCs (Chapter 4, Fig.4C; Jösch et al., 

2008).  

 

Regarding the excitatory component, it is known that nicotinic acetylcholine 

receptors (nAChR) are key players for fast excitatory neurotransmission in the central 

nervous system of insects (Leech and Sattelle, 1993). Consequently we tried to take 

advantage of the expression of the D 7-nAChR subunit in the optic lobes and 

recorded from VS-cells in D 7-knock-out flies. Surprisingly, no major differences to 

WT motion responses were found (Chapter 5, Fig. 6; Raghu et al., 2009). To test if 

other acetylcholine-receptor subunit might functionally compensate for the missing 

D 7-nAChR subunit, we performed a pharmacological investigation. We found that 

D 7-knock-out flies strongly react to acetylcholine and that Alexa-647 labeled -

bungorotoxin still co-localizes with the dendritic tips of VS-cells in the mutatnt flies. 

nAChR are composed of pentameric protein complexes of different subunits (Tomizawa 

and Casida, 2001). Different subunit compositions can give rise to receptor assemblies 

with distinct functional properties; however little is known about their physiology in 

Drosophila in vivo. One study has already used the same approach to disrupt the 

acetylcholinergic signaling in the giant-fiber mediated escape behavior (Fayyazuddin 

et al., 2006). Thus, our finding suggests an unexpected mechanism in motion vision that 

compensate for the absence of the widely expressed D 7-subunit.  
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Concerning GABAergic inhibitory input onto VS- and HS-cells, an additional 

input region on the axonal termini was found (Chapter 3, Fig. 3, 5 & 6; Raghu et al., 

2007). So far there is no report on inhibitory inputs on HS terminals in any fly species 

and the functional significance of the GABAergic Rdl-receptor expression in the HS-cell 

terminal remains to be analyzed. In VS-cells the axonal inhibition is more conclusive 

when considering the tuning of their receptive fields. VS-cells with lateral receptive 

fields become strongly excited by downward motion in the center of their receptive 

field and by upward motion in the frontal part of their receptive field (Chapter 7, Fig. 

S. 1; Krapp et al., 1998). These findings can be explaind by a release of inhibition, if 

a hypothetical GABAergic inhibitory interneuron would receive input from frontal VS 

cells and connected on lateral VS-cells. Evidence for the existnace of such an inhibitory 

interneuron has been obtained in current injections experiments performed in 

Calliphora (Haag and Borst, 2004). In these experiments positive infection of DC 

current in frontal VS cells caused a simultaneous hyperpolarization in lateral VS cells 

and vice versa. Such sign reversal and inhibition cannot be mediated via the described 

electrical coupling between VS cells (Haag and Borst, 2004). Thus, there is clear 

evidence for inhibitory chemical coupling between VS-cells via unknown other neurons. 

The Rdl receptors on the VS-cell axons discovered in this study could mediate this 

inhibition. Future work will allow to further untangle the circuitry and to derive a 

generic model of flow-field processing and visual course control in flies. 

 

8.7 Chemical release sites of Drosophila VS- and HS-cells 

 
The analysis of chemical release site of single neurons using immunolabeling 

and fluorescent imaging techniques is difficult and ambiguous due to the high amount 

of synapses in brain tissue and the optical resolution limit of light microscopy. To 

overcome this problem, Shamprasad Varija Raghu generated transgenic flies where 

GFP and the fluorescently tagged presynaptic protein n-Syb were expressed in single 

VS-cell clones (Chapter 3, Fig.1&2; Raghu et al., 2007). This experiment allowed 

localizing the presumed presynaptic release site of exclusively VS- and HS-cells while 

ignoring the expression in the rest of the brain. In these single cell clones the 

presynaptic marker n-Syb was found in the axonal termini but not in the dendrites, 

suggesting that the chemical output of VS- and HS-cell are only localized in the axonal 

termini. The neurotransmitters used by VS- and HS-cells are not known. Only one 

histochemical study suggests that HS-cells are glutamatergic (Sinakevitch and 
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Strausfeld, 2004). I performed guided patch clamp experiments in flies expressing 

GFP under the enhancer sequence of choline-acetyltransferase, which specifically 

highlight cholinergic neurons (Salvaterra P.M and Kitamoto, 2001). In these 

experiments GFP-positive VS-cells were recorded (data not shown). This is a strong 

indication that VS cells are acetylcholinergic. Much has been learned about the 

functional role of the electrical coupling in the VS-cell network, but the role of their 

chemical output remains unstudied. This finding opens a new exciting possibility to 

modulate the acetylcholinergic biochemistry to further uncover the VS-cell function in 

visually guided behavior. 

 

8.8 Evidence of a cellular implementation of the Reichardt detector 

 

Despite the precise specifications of the computational steps of motion vision, the neural 

mechanisms and circuitry presynaptic to the LPTCs have escaped so far from a 

detailed analysis. This is due to the small size of the constituting neurons and the high 

complexity of their neural architecture. We set out to elucidate the cellular 

implementation starting from the most outer neuropile, the lamina. Taking advantage 

of the two-component UAS/Gal4 system for targeted transgene expression (Brand 

and Perrimon, 1993), I manipulated different populations on lamina interneurons while 

simultaneously recording form untagged LPTC. By blocking the synaptic output using 

tetanus neurotoxin light chain (TNT; Sweeney et al., 1995), which cleaves 

synaptobrevin to suppress synaptic transmission, I could address the involvement of 

lamina monopolar cells in motion computation.  

 

My first achievement was the improvement of the visualization of LPTCs somatas that 

allowed me to record form unlabeled LPTCs. This technical development enabled the 

use of the Gal4/UAS system to specifically disrupt specified presynaptic populations 

of interneurons leaving the LPTC properties unperturbed. Interestingly, this method 

helped me to reveal a temperature sensitivity of the TNT disruptor, which changes the 

effectiveness of the TNT disruptor dramatically (Chapter 7, Supp.Fig 2).  

 

After having tested the functional parameters of TNT, I continued analyzing the 

involvement of different lamina monopolar cells in motion computation. My 

experimental results show that the simultaneous block of L1, L2 & L3 abolished motion 

sensitive responses, indicating that these cells give input to the motion detection circuitry 
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(Chapter 7, Fig2 & Supp. Fig 2). My results are in line with anatomical studies that 

proposed two pathways, the first using L1 and the second L2, to feed information into 

the motion detection circuitry (Bausenwein et al., 1992; Buchner et al., 1984). In 

accordance with this, a behavioral study observed that the block of L1 and L2 

abolished optomotor responses in Drosophila (Rister et al., 2007). However, 

contradictory results have been published by a newer behavioral work, suggesting 

that that L1 and L2 are not involved in motion vision (Zhu et al., 2009). This study came 

to the mentioned conclusion using TNT as a disruptor. In this respect, I found that TNT 

appears to function optimal only at temperatures above 29 °C. The suboptimal block 

of lamina interneurons is therefore probably the cause of the absence of any effect, 

since the experimental flies of this study were hold at room temperature. In my 

experiments, flies in which the output of either L1 or L2 was blocked, the direction 

selective responses of all VS- and HS-cells tested were preserved for vertical and 

horizontal motion, respectively (Chapter 7, Fig2A). The only fundamental change was a 

reduction of the contrast sensitivity (Chapter 7, Fig2B). These results question the main 

findings presented by Rister et al. (Rister et al., 2007). This study suggests that at 

intermediate contrast L1 and L2 mediate motion vision in opposite directions: the L1 

pathway mediates front-to-back and the L2 pathway back-to-front motion. In this 

work, the authors selectively expressed in either L1 or L2 cells the wild type histamine 

receptor („ort‟; Hardie, 1989) in a histamine-receptor null mutant. In this experimental 

conformation, any rescue seen in behavior after selective restoration would hint 

towards a sufficiency of the respective pathway. Since blocking the output of one 

neuronal subtype is basically the opposite of allowing it to receive input, we assumed 

that blocking either L1 or L2 with TNT is essentially similar to rescuing L2 or L1, 

respectively. This is a risky assumption in a network in which the connectivity between 

lamina neurons is extremely intermingled and where not much is known about the 

postsynaptic medullar interactions (Meinertzhagen and O'Neil, 1991; Takemura et al., 

2008). Nevertheless, the information conveyed by the L1 or L2 synapses to the motion 

circuitry seems not to be in accordance with a unidirectional motion processing model.  

 

In addition to the L1 and L2 pathways, the lamina cell L4 has also been speculated to 

be specialized in front-to-back motion processing (Braitenberg V. and Debbage, 

1974). This is because L4 is the only lamina cell with an asymmetrical connectivity, 

receiving L2 input in one cartridge and impinging through two conspicuously backward  
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oriented collaterals to two L2 neurons in posterior lateral cartridges. A recent 

behavioral study (Zhu et al., 2009) found, using cell specific TNT expression, that flies 

in which L4 were blocked with the same Ln-Gal4 line completely lose optomotor 

responses but retain wild type phototactic behavior. We found that in these flies the 

photoreceptor transmission was strongly disrupted. Therefore no conclusions can by 

drawn from our results and the mentioned behavioral study regarding the involvement 

of L4 in motion processing (Chapter 7, Fig. 4). 

 

Finally, our data suggest a segregation of motion pathways that are involved in the 

detection of moving patterns with either increase (On) or decrease (Off) luminance 

(Chapter 7, Fig 3). In this respect, an electrophysiological study performed in the fly 

Calliphora vicina has shown that adjacent luminance steps of opposing polarity interact 

producing a motion sensitive response (Egelhaaf and Borst, 1992). This data is 

indicative for the absence of previously suggested separate Reichardt detectors 

specialized in On- and Off-motion detection (Franceschini et al., 1989), since a clear 

interaction of On- and Off-stimuli was measured. These results led to the hypothesis 

that the luminance polarity transmitted by each arm of the Reichardt detector is 

conserved and being further processed by a „sign-correct‟ multiplication (Egelhaaf and 

Borst, 1992). If this interaction is accomplished by a synaptic interaction between two 

neurons, a postsynaptic signal should be enhanced when both presynaptic inputs either 

simultaneously increase (On) or decrease (Off). To the best of our knowledge, no 

corresponding synaptic mechanism has ever been described to accomplish this. 

However, if the brightness increments or decrements are represented in separate On- 

and Off-channels, each one carrying positive signals only, the synaptic mechanism 

underlying such an interaction is less complex, only requiring a supra linear input-

output relationship. To fully mimic a sign-corrected multiplication, four subunits take 

care of all possible combinations between the On- and Off- input channels („Four 

quadrant multiplier (Hassenstein and Reichardt, 1956)‟). Our results are in line with 

such a four quadrant multiplication model, giving the first experimental indication for 

the input implementation to the motion detection circuitry. The future understanding of 

this implementation and the subsequent processing of the signals in the medulla will be 

key for the complete cellular description of motion processing in flies.  
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8.9 Concluding remarks 

 
The studies presented here have their roots in the seminal work of Werner 

Reichardt and Bernhard Hassenstein performed half a century ago. Using the 

optomotor response of the beetle Chlorophanus, they developed a model which 

accounts for the optomotor response properties of many insects. In the last 50 years 

many attempts have been performed to understand the cellular implementation of this 

apparently “simple” network. However, the small size of the constituting interneurons 

and the true complexity of the underlying circuitry have hindered any functional 

understanding. The new genetic tools that allow physiological manipulations of 

specified populations of cells in Drosophila are therefore a promising approach to 

overcome some of the previously encountered difficulties. Behavioral experiments have 

already shown the strength of this methodology (Rister et al., 2007). Nevertheless, 

obtaining a precise description of the single computations of a neuronal network is 

extremely difficult with such approaches. This is because behavioral responses are the 

result of motion processing and a wide range of additional computations that give rise 

to the visually guided behavior. In contrast, the direct measurement of the LPTC 

responses primarily represents the output of the motion processing circuitry and 

therefore allows a more precise description of the presynaptic processing. Thus, the 

combination of electrophysiological methods with genetic manipulation of neuronal 

function in Drosophila, as presented in this work, is an encouraging method that 

promises new insights in the cellular processing within circuitries of the fly visual system.  
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