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Zusammenfassung

In seinem Buch “Was ist Leben?” beschreibt Erwin Schrödinger die DNA-Stränge, die die
Erbinformation enthalten, aus der Perspektive eines Physikers als “aperiodische Kristalle”.
Tatsächlich zeichnet sich DNA auf kleinen Längenskalen durch eine zwar irreguläre und
aperiodische, aber dezidiert nicht-zufällige Unordnung in der Basensequenz aus, um als
Träger für genetische Information dienen zu können, während die regelmäßige und daher
kristalline Struktur auf größeren Skalen für die besonderen mechanischen Eigenschaften
dieses Makromoleküls verantwortlich ist. In der vorliegenden Arbeit werden mittels theo-
retischer Modelle aus der biologischen und statistischen Physik die Mechanik und Informa-
tion von Makromolekülen untersucht, im ersten Teil insbesondere die nichtlineare Dynamik
halbsteifer Polymere, im zweiten Teil mit Fokus auf dem maximalen Informationsgehalt
enzymatisch selbst-replizierender Polynukleotide.

Der erste Teil der Arbeit befasst sich mit Biopolymeren relativ großer Biegesteifigkeit.
Dies trifft nicht nur auf DNA, sondern auch auf die Konstituenten des Zellskeletts zu.
Ihre mechanischen Eigenschaften werden ausgezeichnet durch das sogenannte “wormlike-
chain”-Modell beschrieben, in dem die Polymerkontur als kontinuierliche Raumkurve kon-
stanter Länge idealisiert wird. In viskosem Lösungsmittel folgt ihre Brownsche Dynamik
überdämpften Bewegungsgleichungen, die wegen der lokalen Undehnbarkeits-Zwangsbe-
dingung nichtlinear sind. Simple Näherungsverfahren versagen bei plötzlichen äußeren
Störungen aufgrund der vernachlässigten Spannungspropagation. Eine Mehrskalen-Stö-
rungstheorie erlaubt die Berechnung der Spannungsdynamik über eine nichtlineare par-
tielle Integro-Differentialgleichung. Wir verwenden und erweitern diese Methodik, um drei
relevante Szenarien der nichtlinearen Polymerdynamik zu untersuchen. Zuerst behandeln
wir Kräfte transversal zur Kontur, die aufgrund der Undehnbarkeit an die longitudinale
Dynamik koppeln, was sich über eine effektive Randbedingung berechnen lässt. Zweitens
betrachten wir die Relaxation anfänglich gestreckter Polymere, ein Standardexperiment
der Polymerphysik. Unsere Analyse kombiniert Theorie und Computersimulation und zeigt,
dass verschiedene gebräuchliche Streckmethoden (etwa mit mechanischen, elektrischen oder
hydrodynamischen Kräften) zu spezifischer Kurzzeit- und universeller Langzeitdynamik
führen, so dass ein systematischer Vergleich erstmals möglich ist. Drittens untersuchen wir
Mikrostrukturkorrekturen, die wegen endlicher Elastizität oder Diskretisierung der Kon-
tur bei größeren Kräften beobachtet werden. Diese Erkenntnisse sind besonders für den
korrekten Entwurf von Computersimulationen relevant.

Der zweite Teil dieser Arbeit konzentriert sich auf den maximalen Informationsgehalt
selbst-replizierender Polynukleotide wie z. B. RNA. Dieses Molekül enthält genetische In-
formation und kann zugleich enzymatische Funktionen ausführen, weshalb man vermu-
tet, dass die ersten replizierenden Makromoleküle am Ursprung des Lebens aus RNA
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bestanden. Berechnungen innerhalb der Quasispezies-Theorie zeigen, dass ihre maxima-
le Länge, also ihr Informationsgehalt, wegen der unvermeidlich fehlerhaften Replikation
durch die sogenannte Fehlerkatastrophe stark beschränkt ist. Allerdings wurden diese Mo-
delle für nicht-enzymatische Replikation entwickelt, die als autokatalytischer Prozess in ei-
ner präbiotischen Umgebung eher unwahrscheinlich ist. Die plausiblere Replikation durch
RNA-Enzyme ist aber nur dann für das Enzym selbst von evolutionärem Vorteil, wenn
es in einer spezifischen Reaktion vorzugsweise funktionale Substrate repliziert. Wir ana-
lysieren zwei Modelle für spezifische enzymatische Replikation. Im ersten Fall, der eine
gesonderte Spezifizitätsregion des Moleküls berücksichtigt, zeigt sich, dass der maximale
Informationsgehalt deutlich reduziert ist, da die effektive Replikationsrate mit der Kon-
zentration funktionaler Enzyme sinkt. In der zweiten Arbeit werden diese Ergebnisse auf
generelle Spezifizitätsfunktionen verallgemeinert. Techniken aus der statistischen Physik
erlauben eine systematische theoretische Analyse, die die vollständige Abhängigkeit der
maximal zulässigen Fehlerrate von allen Modellparametern liefert. Ihre Zunahme mit dem
Spezifizitätsgrad unterstreicht die Bedeutung spezifischer enzymatischer Replikation. Eine
grobe numerische Abschätzung zeigt, dass auch in diesem Fall die maximale Länge stark
durch die Fehlerkatastrophe beschränkt ist.

Die Arbeit gliedert sich wie folgt: In der Einleitung geben wir einerseits einen Über-
blick der wichtigsten experimentellen und theoretischen Literatur zur Rolle halbsteifer
Biopolymere während der Zellteilung und im Zellskelett, andererseits diskutieren wir ge-
genwärtige Hypothesen und Laborergebnisse zum Ursprung des Lebens, zur Entstehung
selbst-replizierender Moleküle und Protozellen und zur Fehlerkatastrophe. Kapitel 2 be-
handelt die Dynamik von halbsteifen Polymeren und ihre theoretische Beschreibung, und
stellt nach einer kurzen Rekapitulation einer früheren Arbeit die Hauptergebnisse unserer
drei Publikationen zu diesem Themengebiet vor, die am Ende des Kapitels abgedruckt
sind. Die Details zu einigen dieser Rechnungen sind im Anhang ausgeführt. In Kapitel 3
geben wir zuerst eine Einführung in die Quasispezies-Theorie und ihre Vorhersagen für
verschiedene gebräuchliche Fitnesslandschaften, danach betrachten wir die Besonderheiten
enzymatischer Replikation. Schließlich werden unsere beiden Veröffentlichungen zu dieser
Thematik zusammengefasst und am Ende des Kapitels abgedruckt.



Abstract

Erwin Schrödinger describes the DNA strands coding for hereditary information in his
book “What is Life?” as “aperiodic crystals”. On small length scales, DNA indeed shows
an irregular and aperiodic, yet decidedly non-random disorder, thus coding for genetic
information, while the regular and therefore crystal-like structure on larger scales is re-
sponsible for the particular mechanical properties of this macromolecule. In this thesis, we
analyze the mechanics and information of macromolecules by means of theoretical models
from biological and statistical physics. We first concentrate on the nonlinear dynamics
of semiflexible polymers, and focus on the maximal information content of enzymatically
self-replicating polynucleotides in a second part.

The first part of this thesis is concerned with biopolymers of relatively large bending
stiffness, which is the case not only for DNA, but also for the constituents of the cytoskele-
ton. The mechanical properties of these polymers can be described accurately by means of
the so-called “wormlike-chain” model, where the polymer contour is idealized as continuous
space curve of constant length. In a viscous solvent, the Brownian dynamics of these chains
obeys overdamped equations of motion, which are nonlinear due to a local inextensibility
constraint. Simple approximation techniques fail in the case of sudden external perturba-
tions because tension propagation is neglected. An improved multiple-scale perturbation
theory allows to calculate the dynamics of this tension from a nonlinear partial integro-
differential equation. We use and extend this method to investigate three relevant scenarios
of nonlinear polymer dynamics. First, we discuss transverse forces perpendicular to the
contour. As a consequence of the inextensibility constraint, these forces couple nonlinearly
to the longitudinal dynamics, which can be quantified through an effective boundary con-
dition for the tension. Secondly, we address the relaxation of initially straight polymers,
which is a standard experiment in polymer physics. Combining theory and computer sim-
ulations, our analysis shows that different commonly employed stretching methods (such
as mechanical, electrostatic, or hydrodynamic forces) give rise to specific short-time but
universal long-time dynamics, facilitating a systematic comparison of results obtained with
different setups. Finally, we investigate microstructure corrections due to a finite backbone
elasticity or discretization, which become observable for stronger forces. These results are
especially relevant for the proper design of computer simulations.

The second part is concerned with the maximal information content of self-replicating
polynucleotides such as RNA. This molecule both contains genetic information and ex-
hibits catalytic functions, such that the first replicating macromolecules at the origin of
life were presumably made of RNA. Theoretical considerations within quasispecies theory
show that their maximal length, i.e., their information content, is strongly limited due to a
so-called error catastrophe caused by the unavoidably erroneous replication process. How-
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ever, these models were made for non-enzymatic replication, which is as an autocatalytic
process rather unlikely in a prebiotic environment. Replication through RNA enzymes is
more plausible, but is of evolutionary advantage for the enzyme itself only if the reac-
tion specificity guarantees that it replicates preferably functional substrates. We analyze
two models for specific enzymatic replication. In the first case, we consider a distinct
recognition region for specificity. It turns out that the maximal information content is sig-
nificantly reduced, because the effective replication rate decreases with the concentration
of functional enzymes. In our second study, we generalize these results to a broad range
of specificity functions. Using techniques from statistical physics, a systematic theoret-
ical analysis gives the complete dependence of the maximally tolerable error rate on all
model parameters. Generally, it increases with the degree of specificity, highlighting the
importance of specific recognition. A rough numerical estimate indicates that the maximal
length of enzymatic replicators is strongly limited through the error catastrophe as well.

This thesis is organized as follows: In the introduction, we present an overview of the
most important experimental and theoretical findings regarding the role of biopolymers
during cell division and in the cytoskeleton. We also discuss current hypotheses and lab-
oratory results for the origin of life, for the emergence of self-replicating molecules and
protocells, and the error catastrophe. Chapter 2 is devoted to the dynamics of semiflex-
ible polymers and its theoretical description. After briefly summing up previous work,
we present the main results of our three publications in this field, which are reprinted at
the end of the chapter. Some technical details of these calculations are summarized in
the appendix. In Chapter 3, we give an introduction to quasispecies theory and discuss
some commonly used fitness landscapes, before addressing the specific features of enzy-
matic replication. Finally, we summarize our two publications on this subject, which are
reprinted at the end of the chapter.



1. Introduction

A viable definition of “life” encompassing the enormous diversity of the living organisms
we are familiar with as well as the possibly fundamentally different life forms yet to be dis-
covered is notoriously difficult [180], but two major features should certainly be observed if
something is to be classified as “alive”: metabolism and heredity [177]. Metabolic chemical
reactions allow organisms to use extrinsic energy sources for creating their internal struc-
ture and performing vital functions, hence providing the thermodynamic conditions for the
very existence of an organism in a local and temporary non-equilibrium process working
against global and long-term entropy increase. In contrast, heredity comprises the ability
to convey this structural and functional potential to future progeny; supplemented by a
capacity for replication and for introducing heritable variation it enables the organism to
evolve driven by natural selection.

Commonly believed to have originated spontaneously from primitive anorganic chem-
istry, the astounding variation and remarkable complexity of life on earth was generated
by ongoing Darwinian evolution. Some of the underlying evolutionary processes become
more and more understood, others still defy explanation, some are of minor importance,
and some constitute “major transitions in evolution”, as phrased in the book of the same
title by John Maynard Smith and Eörs Szathmáry [177]. The authors count among these

• the organization of single replicating molecules into compartmentalized populations,

• the cooperative integration of independent replicators into chromosomes,

• the development of the genetic code,

• the evolution of eukaryotes from prokaryotes,

• the progression from asexual to sexual replication,

• the invention of differentiated cells in multi-cellular organisms, and of specialized
individuals in large colonies,

• cultural innovations such as language and social behavior.

Especially the first few of these transitions are intimately linked to various properties
of the constituent biological macromolecules, which we will discuss in the two following
sections. From a physicist’s perspective, e.g., the one taken by Erwin Schrödinger in his
book “What is life?” [227], such macromolecules can be classified as “aperiodic crystals”.
For instance, the hereditary information of a DNA molecule is contained in its sequence.
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But this particular aperiodic and highly non-random disorder is linked to and dependent
on a (on a larger scale) quite regular crystal-like structure giving rise to unique mechanical
properties. If this DNA is to provide heredity, both its mechanical integrity as well as its
information content need to be maintained over many rounds of replication, by a replication
apparatus again largely dependent on the specific mechanical properties of certain biopoly-
mers. In this thesis, we investigate different theoretical models for these macromolecular
constituents and discuss generic aspects of their mechanics and information. The remain-
der of this chapter presents a short introduction to the biological systems we are interested
in, concentrating on important experimental evidence and some general theoretical results,
while a more detailed review of the theoretical literature will be presented in Chapters 2
and 3.

1.1. Semiflexible polymers in cell division and the
cytoskeleton

All known life is organized into smaller compartments, a feature that has been evolved at a
very early stage. Compartmentalization, as this essential characteristic is usually labeled,
describes the confinement to a limited volume, bounded by a surface like a lipid membrane,
in order to maintain substances necessary for this “cell” on the inside at sufficiently high
concentrations, and keep unwanted or deleterious material outside. Reproduction thus
implies replication of genome and container in a coordinated manner, a nontrivial task
that has been perfected to a high degree of sophistication in living organisms. Their cell
division has to ensure the proper replication of a very long and typically highly compacted
DNA sequence, while maintaining the intricate cellular organization both in mother and
daughter cells. Many aspects of this remarkable process are now well understood, and it
has been discovered that it is determined to a large extent by the biophysical properties of
various involved biopolymers. We will now review some of the experimental and theoretical
research that has enhanced our understanding of such aspects of cell division.

At the center of cell division stands replication of DNA, schematically depicted in
Fig. 1.1, which is orchestrated by a large number of different protein enzymes. The two
strands are unzipped by a helicase, resulting in the so-called replication fork with lead-
ing and lagging strand, which are decorated by single strand binding proteins to avoid
formation of secondary structure. Because DNA is a helical molecule, unzipping creates
twist, which is released through the action of topoisomerase enzymes. The leading strand
is oriented in the usual direction 5’ to 3’, and a DNA polymerase can therefore produce
the appropriate complementary strand in a straightforward manner. On the lagging strand
with opposite orientation, RNA is added in short separated segments functioning as primer
for another DNA polymerase, producing so-called Okazaki fragments that are finally joined
by a DNA ligase.

Valuable insight into the detailed interaction between DNA and some of these proteins
has been obtained in the last 15 years through single-molecule experiments (for reviews,
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Figure 1.1: The DNA replication fork with the various enzymes that are involved in replication. A
helicase enzyme unwinds the two strands, building up twist that is released through topoisomerase
action. The leading strand is copied by a DNA polymerase in the ordinary 5’ to 3’ direction, while
the lagging strand with its opposite orientation is completed through the sequential ligation of
Okazaki fragments, produced from short intermediate RNA primers. Image source: Wikipedia.
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Ten years of tension:
single-molecule DNA
mechanics 
Carlos Bustamante*†, Zev Bryant* & Steven B. Smith†

*Department of Molecular and Cell Biology, and †Department of Physics and
Howard Hughes Medical Institute, University of California, Berkeley, 
California 94720, USA (e-mail: carlos@alice.berkeley.edu;
zev@alice.berkeley.edu; steve@alice.berkeley.edu)

The basic features of DNA were elucidated during the half-
century following the discovery of the double helix. But it is
only during the past decade that researchers have been able to
manipulate single molecules of DNA to make direct
measurements of its mechanical properties. These studies
have illuminated the nature of interactions between DNA and
proteins, the constraints within which the cellular machinery
operates, and the forces created by DNA-dependent motors.

The physical properties of the DNA double helix are unlike
those of any other natural or synthetic polymer. The
molecule’s characteristic base stacking and braided
architecture lend it unusual stiffness: it takes about 50 times
more energy to bend a double-stranded DNA (dsDNA)

molecule into a circle than to perform the same operation on single-
stranded DNA (ssDNA). Moreover, the phosphates in DNA’s
backbone make it one of the most highly charged polymers known.

The protein machinery involved in copying, transcribing and
packaging DNA has adapted to exploit these unique physical proper-
ties (see article by Alberts, pages 431). For example, RNA polymerases
(which synthesize RNA from a DNA template) and helicases (which
unwind the double helix to provide single-stranded templates for
polymerases) have evolved as motors capable of moving along 
torsionally constrained DNA molecules. DNA-binding proteins can
use the polymer’s electrostatic potential to cling to DNA while 
they diffuse along the molecule in search of their target sequences.
Topoisomerases break and rejoin the DNA to relieve torsional strain
that accumulates ahead of the replication fork.

During the past ten years, direct manipulation of single molecules
of DNA has expanded our understanding of the mechanical interac-
tions between DNA and proteins, following a pattern in which basic
investigations of DNA elasticity have laid the groundwork for 
real-time, single-molecule assays of enzyme mechanism.

DNA as a worm-like chain 
Although mechanical properties vary according to local sequence
and helical structure, the relevant physics of DNA in many biological
contexts is usefully described using a coarse-grained treatment such
as the worm-like chain (WLC) model1, which characterizes a poly-
mer using a single parameter, the flexural persistence length (A). The
WLC model imagines a polymer as a line that bends smoothly under
the influence of random thermal fluctuations. The value of Adefines
the distance over which the direction of this line persists: correlation
between the orientations of two polymer segments falls off exponen-
tially (with decay length A) according to the contour length that 
separates them. For dsDNA in physiological buffer, A!~50 nm.

There is a simple relationship between A and the bending rigidity
" of the polymer represented as an elastic rod2: kBTA!", where kB is

Boltzmann’s constant and T is the temperature. According to this
relation, the energy required to bend a segment of DNA of length L
through an angle # and a radius of curvature R/L is: 

E(#)!!
kB

2
T
R
A

2
L

!!!
kB

2
T
L
A

!#2

This model, therefore, predicts that it is energetically more
favourable to bend the molecule smoothly, spreading the strain over
large distances, than to bend it sharply at discrete locations. This
mechanical property is central to interactions with regulatory 
proteins that bend DNA severely upon binding. The biological 
relevance of these bends is demonstrated by the enhancement of
DNA recombination and gene transcription observed when specific
protein-binding sites for activators are replaced by intrinsically bent
DNA sequences3 or by binding sequences for unrelated DNA-
bending proteins in the presence of these proteins4.

To bend DNA, proteins must convert part of their binding energy
into mechanical work, as illustrated by an experiment in which a bind-
ing sequence was pre-bent towards the major groove by placing it in a
DNA minicircle. The affinity of a transcription factor (TBP) for this
binding site was found to be 300-fold higher (equivalent to a free-
energy change of 3.4 kcal mol–1) when the sequence was pre-bent in the
same direction as TBP-induced bending, relative to pre-bending in the
opposite direction5. This increase can largely be accounted for by the
difference in bending energy between the two initial DNA conforma-
tions, which by the equation above is predicted to be 3.2 kcal mol–1.

The high linear charge density of the double helix provides one
mechanism for converting binding energy into work. DNA’s structure
is pre-stressed by electrostatic self-repulsion, as a result of the negative-
ly charged phosphate backbone of the double helix. Therefore, 
asymmetric neutralization of the DNA helix (for example, by a DNA-
binding protein that presents a positively charged face) can lead to
compression and bending of DNA towards the neutralized face. This
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Figure 1 Single-molecule assays of replication12,13. a, A DNA molecule is stretched
between beads held in a micropipette and a force-measuring optical trap12. The
measured extension is the sum of contributions from the single-stranded DNA
(ssDNA) and double-stranded DNA (dsDNA) segments. b, Force versus extension for
dsDNA and ssDNA molecules, obtained in the instrument in panel a. Arrows show
changes in extension observed at constant tension during polymerization (Poly) or
force-induced exonuclease activity (Exo).
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Figure 1.2: Single-molecule experi-
ments on DNA. (a) A DNA molecule
composed of single-stranded (ss) and
double-stranded (ds) DNA is stretched
by means of beads held between a
micropipette and a force-measuring
optical trap. The activity of en-
zymes bound to the DNA can be
assessed from the respective force-
extension curves shown in part (b)
by the transitions indicated by ar-
rows, e.g., resulting from DNA poly-
merization (Poly) or force-induced ex-
onuclease activity (Exo). Reprinted by
permission from Macmillan Publishers
Ltd: Nature [28], copyright (2003).
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see [28, 29, 31, 173, 252]). Schematically shown in Fig. 1.2, such setups use stretched single-
and double-stranded DNA attached to two beads, which are usually held by a micropipette
and a force-measuring optical trap, respectively. From the force-extension response of the
DNA, the effects of DNA-binding enzymes can be assessed. For instance, it has been found
that the DNA-cleaving activity of restriction enzymes strongly depends on the tension on
the DNA. In this way, conformational changes of the DNA induced by these enzymes [26]
and the influence of DNA looping [82] can be quantified. Further, the details of DNA ligase
action have been elucidated through a single-molecule assay similar to the one shown in
Fig. 1.2, but exploiting signatures of supercoiling dynamics [44]; these experiments also
allow one to study DNA uncoiling by topoisomerases [253], and to detect the obstruction
of this process by antitumor drugs [139]. Finally, DNA polymerase activity has been
investigated, finding its rate strongly tension-dependent [88, 167, 285], and identifying
distinct signals of proofreading dynamics [120].

Not surprisingly, the extraordinary success of these experimental methods would not have
been possible without a thorough and quantitative understanding of DNA mechanics in
the absence of proteins. The first results obtained from DNA stretching experiments using
magnetic tweezers [245] prompted a very successful theoretical analysis of DNA elasticity by
means of the wormlike chain (WLC) model [30]. Dating back to early work by Kratky and
Porod [141], this model provides a simple description of semiflexible polymers as continuous
inextensible space curves r(s) of length L with bending modulus κ. The corresponding
Hamiltonian penalizes bending deformations expressed through changes in the tangent
vectors t(s) = r′(s), where s is the arclength and the prime denotes an arclength derivative:

H =
κ

2

∫ L

0

ds t′2(s). (1.1)

The statistical mechanics of this model was to a great deal developed by Saitô et al. [226],
who exploited an analogy to path integrals well-known in quantum mechanis, in order to
(re)derive a few pertinent observables like the first moments of the end-to-end distance.
Central to these derivations is a very characteristic correlation function, namely the one
for tangent orientations:

〈t(s)t(s′)〉 = e−|s−s′|/`p . (1.2)

It decays over a length scale given by the persistence length `p = κ/kBT , which is a measure
for the bending stiffness of the polymer and can be used to distinguish stiff (L � `p),
semiflexible (L ≈ `p) and flexible polymers (L � `p).

Which of these cases applies to DNA with its persistence length of about 50 nm de-
pends of course on the length of the molecule under consideration. Importantly, however,
the early stretching studies, even though performed on comparably long DNA molecules
(L ≈ 30 µm), clearly indicated that the WLC model for semiflexible polymers provides a
significantly better fit than the freely-jointed chain model (appropriate for many flexible
polymers) [30], in particular because these models have different asymptotes for the force
needed to obtain full stretching (which diverges like (1− r)−2 for the WLC and (1− r)−1

for the freely-jointed chain, where r = R/L is the fractional extension and R the distance
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Figure 1.3: Image of a mitotic spindle
in human cells. Microtubules (green) ex-
tending from organizing centers attach to
chromosomally compacted DNA (blue) by
way of kinetochores (pink) and pull chro-
mosomes apart. Image source: Wikipedia.

between the two ends). By means of the above mentioned path integral methods, Marko
and Siggia rigorously validated this result by computing the full force-extension relation
for DNA [174], which is well approximated by the famous interpolation formula

f`p

kBT
=

1

4(1−R/L)2
− 1

4
+

R

L
, (1.3)

where f is the applied force, kB is Boltzmann’s constant and T is the temperature. Notably,
the exceptional quality of the above cited stretching experiments exceeds the accuracy of
this interpolation formula, which is only about 7% [174] and has later been quantitatively
improved [23].

Many aspects of DNA replication depend strongly on mechanical properties of DNA,
and the association of replication with the enclosing cell also relies heavily on semiflexible
biopolymers. In particular, a reliable and efficient method for a fair distribution of the two
genome replicas to the two container replicas is indispensable for successful cell division.
Segregation of intertwined polymers may be driven largely by entropic repulsion alone [127],
but most organisms have evolved additional means for efficient chromosome segregation
(reviewed in [20]). In prokaryotes, the segregation of the two genome copies is mainly
forced through the growth of semiflexible actin filaments attached at both ends to the DNA
plasmids. In contrast, it is commonly believed that the major evolutionary transition from
prokaryotes to eukaryotes was accompanied by the invention of an intricate chromosome
separation machinery, allowing DNA replication to start simultaneously at several origins
and thus facilitating an increase in genome complexity through more efficient replication
pathways [177]. At the heart of this mechanism lies the mitotic spindle, depicted in Fig. 1.3.
It is composed of a dynamical array of microtubules (a rather stiff class of biopolymers),
which extend from organizing centers at opposite poles of the eukaryotic cell. Attaching
to chromosomes at a protein structure called the kinetochore, these microtubules provide
an outward force of about 5 pN to drive chromosome segregation [20].

Gaining a solid understanding of these biopolymers is not only essential because they
are involved at crucial stages in cell division, but even more because they are integral
constituents of the cytoskeleton, an interconnected network of various semiflexible poly-
mers and many different regulatory proteins (see, e.g., Refs. [18, 68] for reviews). Its main
filamentous constituents are three classes of semiflexible biopolymers, shown in Fig. 1.4:



6 Introduction

Cytoskeletal building blocks
The proteins that make up the cytoskeleton have many similarities to 
LEGO, the popular children’s toy. Both consist of many copies of a few key 
pieces that fit together to form larger objects. Both can be assembled into 
a wide range of structures with diverse properties that depend on how the 
pieces are assembled. And both can be disassembled and reassembled into 
different shapes according to changing needs. But only the cytoskeleton 
fulfils all of these functions through self-assembly.

There are three main types of cytoskeletal polymer: actin filaments, 
microtubules and a group of polymers known collectively as intermediate 
filaments. Together, these polymers control the shape and mechanics of 
eukaryotic cells (Fig. 1). All three are organized into networks that resist 
deformation but can reorganize in response to externally applied forces, 

and they have important roles in arranging and maintaining the integrity 
of intracellular compartments. The polymerization and depolymerization 
of actin filaments and microtubules generate directed forces that drive 
changes in cell shape and, together with molecular motors that move 
along the actin filaments and microtubules, guide the organization of 
cellular components. The architecture of the networks that are formed 
by cytoskeletal polymers is controlled by several classes of regulatory pro-
tein: nucleation-promoting factors, which initiate filament formation; 
capping proteins, which terminate filament growth; polymerases, which 
promote faster or more sustained filament growth; depolymerizing factors 
and severing factors, which disassemble filaments; and crosslinkers and 
stabilizing proteins, which organize and reinforce higher-order network 
structures. Mechanical forces from inside or outside the cell can affect the 
activity of these regulatory factors and, in turn, the local organization of 
filaments in the networks. The most important differences between the 
three main cytoskeletal polymers — the differences that distinguish the 
architecture and function of the networks they form — are their mechani-
cal stiffness, the dynamics of their assembly, their polarity, and the type of 
molecular motors with which they associate.

Microtubules are the stiffest of the three polymers and have the most 
complex assembly and disassembly dynamics. The persistence length of 
microtubules, a measure of filament flexibility that increases with stiff-
ness, is so large (~5 mm) that single microtubules can form tracks that are 
almost linear and span the length of a typical animal cell, although micro-
tubules are known to buckle under the compressive loads in cells6. During 
interphase, the part of the cell cycle during which cells prepare for division, 
many cells take advantage of this stiffness by assembling radial arrays of 
microtubules that function as central hubs and ‘highways’ for intracellular 
traffic. During mitosis, the part of the cell cycle during which cells sepa-
rate chromosomes into two identical sets, the microtubule cytoskeleton 
rearranges itself into a high-fidelity DNA-segregating machine called 
the mitotic spindle. The ability of the mitotic spindle to find and align 
chromosomes depends, in part, on the complex assembly dynamics of 
individual microtubules7. A microtubule can switch between two states: 
stably growing and rapidly shrinking8. This ‘dynamic instability’ enables 
the microtubule cytoskeleton to reorganize rapidly and allows individual 
microtubules to search the cellular space quickly9, up to 1,000-fold faster 
than a polymer that is sensitive only to changes in the cellular concentra-
tion of its constituent subunits or to the actions of regulatory proteins.

Actin filaments are much less rigid than microtubules. But the presence 
of high concentrations of crosslinkers that bind to actin filaments pro-
motes the assembly of highly organized, stiff structures, including iso-
tropic networks, bundled networks and branched networks. Bundles of 
aligned filaments support filopodial protrusions, which are involved in 
chemotaxis (directed movement along a chemical gradient) and cell–cell 
communication. By contrast, networks of highly branched filaments sup-
port the leading edge of most motile cells and generate the forces involved 
in changes in cell shape such as those that occur during phagocytosis. 
Unlike microtubules, actin filaments do not switch between discrete states 
of polymerization and depolymerization; instead, they elongate stead-
ily in the presence of nucleotide-bound monomers. This steady elonga-
tion is well suited to producing the sustained forces that are required to 
advance the leading edge of a migrating cell10. Also unlike the microtu-
bule cytoskeleton, the architecture of which is often determined by one 
or two central organizing centres, the actin cytoskeleton is continually 
assembled and disassembled in response to the local activity of signalling 
systems. For example, protrusive, branched actin-filament networks, such 
as those in crawling leukocytes, are assembled at the leading edge of the 
cell in response to signals downstream of cell-surface receptors that guide 
chemotaxis11. Similarly, the assembly of contractile actin-filament bundles 
known as stress fibres, such as those in adherent fibroblasts, is triggered 
locally when cell-surface adhesion receptors called integrins engage their 
ligands12. And, in the final stages of endocytosis, one of the processes by 
which cells take up extracellular molecules, signals from the invaginating 
plasma membrane trigger actin filaments to assemble locally, helping this 
region of the membrane to become internalized as an endocytic vesicle. In 
addition to the network dynamics discussed here, more complex dynamics 

Figure 1 | Elements of the cytoskeleton. The cytoskeleton of eukaryotic 
cells provides structure and organization, resists and transmits stresses, and 
drives shape change and movement. a, Neurons are specialized eukaryotic 
cells that extend long processes to form connections in the nervous system. 
Like other eukaryotic cells, neurons have a cytoskeleton that consists 
of three main polymers: microtubules (green), intermediate filaments 
(purple) and actin filaments (red). b, A fluorescence micrograph of the 
neuronal growth cone, which migrates in response to chemical cues during 
the development of the nervous system, is shown. Microtubules (green) 
emanate from the axon, and actin-filament networks (red) form sheet-like 
structures and filopodial protrusions at the leading edge. Scale bar, 20 μm. 
(Image reproduced, with permission, from ref. 82.) c, The neuronal axon 
is a long membrane-bounded extension, in which neurofilaments (a class 
of intermediate filament in neurons) form a structural matrix that embeds 
microtubules, which transport materials from the cell body to the axon 
terminals at the synapse. d, The growth cone contains dendritic actin-
filament networks and parallel actin-filament filopodia. e, Microtubules 
consist of 13 protofilaments of tubulin dimers arranged in a hollow tube. 
f, Neurofilaments have flexible polymer arms that repel neighbouring 
neurofilaments and determine the radius of the axon. g, Actin filaments 
are arranged into networks. These networks can have many architectures, 
including the branched structures depicted here, which are formed by 
the Arp2/3 complex (blue). The diameters of microtubules, intermediate 
filaments and actin filaments are within a factor of three of each other; 
the diagrams in e, f and g are drawn approximately to scale. But the 
relative flexibilities of these polymers differ markedly, as indicated by their 
persistence lengths: from least to most flexible, microtubules (5,000 μm), 
actin filaments (13.5 μm) and intermediate filaments (0.5 μm).
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Figure 1.4: Semiflexible polymers in the cytoskeleton. (a) Sketch of a neuronal cell. Its cytoskele-
ton consists of microtubules (green), actin filaments (red) and intermediate filaments (purple).
(c) Intermediate filaments form a structural matrix embedding microtubules in the axon, which
ends in the growth cone containing an actin network (d). The polymers in this structure can
be observed in the fluorescence micrograph shown in part (b) (scale bar: 20 µm; picture re-
produced with permission from Ref. [222]). Schematic drawings of microtubules, intermediate
neurofilaments and actin networks are shown in parts (e), (f), and (g), respectively. Reprinted
by permission from Macmillan Publishers Ltd: Nature [68], copyright (2010).
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stiff microtubules (`p ≈ 5 mm), actin filaments with `p ≈ 15 µm, usually organized into
networks or bundles, and a broad class of more flexible intermediate filaments. This dy-
namic and adaptive structure determines the unique mechanical properties of eukaryotic
cells and their ability to change their shapes, and provides an intracellular transportation
network. The cytoskeleton takes care of the spatial organization of cellular contents, it
supplies physical and biochemical connections to the external environment, is able to gen-
erate coordinated forces, and has even been speculated to realize a form of cytoskeletal
epigenetics by passing on a structural memory of external conditions to future progeny [68].

Under a broad range of conditions, not only DNA but also these cytoskeletal filaments are
well described by the WLC model. Many of its aspects, to be detailed in Chapter 2, have
been studied extensively during the last two decades, and significant progress to under-
stand more complex polymeric structures such as networks and gels has been made. Still,
some quite elementary issues even on the single molecule level remain mysterious, which
is in most cases due to a fundamental nonlinearity casually disregarded in the preceding
paragraphs: the WLC model represents semiflexible polymers as inextensible space curves,
which is a reasonably accurate description for the extremely high stretching stiffness of
these very thin filaments in experimentally relevant parameter regimes. However, this in-
extensibility constraint presents severe complications for theoretical analysis, in particular
if external forces are involved and if the dynamics is of interest. Based on a singular pertur-
bation theory for an appropriate treatment of the resulting nonlinearities [97], we present
our results for some generic scenarios for the nonlinear dynamic response of semiflexible
polymers in Chapter 2.

1.2. Prebiotic self-replication at the origin of life

As heredity and metabolism are two main ingredients in almost any definition of life,
there are correspondingly two different theories of which came first. The proponents
of the “metabolism-first” theory claim that autocatalytic reaction networks, apart from
performing metabolic functions, can replicate by fission and provide hereditary informa-
tion [77, 234, 235]. In contrast, the supporters of the “genes-first” theory hold that these
ensemble replicators provide only limited hereditary potential (their state space is small)
and lack therefore true evolvability [266], while the inherent variability of polynucleotides
is virtually unlimited (there are more possibilities for a sequence of about 140 letters from
a four-letter alphabet than there are atoms in the universe). Assuming the existence of an
abiotic metabolism for the continuous synthesis of necessary energy-rich substrates, this
theory accordingly argues that polynucleotides with their ability for complementary base
pairing constituted the first replicators, just as DNA replication in present-day life oper-
ates through template-directed polymerization (see Fig. 1.5 for an illustration of template-
directed processes). However, DNA replication is catalyzed by protein enzymes such as
DNA polymerases, and these proteins themselves are produced by decoding DNA, such that
neither can arise without the other, resulting in a “chicken-and-egg” problem that was re-
solved by suggesting that RNA functions both as gene (providing heredity) and enzyme
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Figure 1.5: Non-enzymatic template-directed polymerization and ligation reactions. (a) Poly-
merization proceeds via the successive addition of monomers (green) to a primer (orange), which
is complementary to a template (red). This process can also be catalyzed by an RNA polymerase
ribozyme as the one shown in Fig. 1.6. (b) Ligation results from catalyzing the formation of a
backbone bond between two oligomers (orange and green) both complementary to the template
(red). Both schemes can result in chemical self-replication, if the product (the complement of
the template) itself is able to catalyze complementary polymerization or ligation reactions, but
self-replication may be inhibited strongly if template and product strand do not separate quickly
enough in order to be able to catalyze new reactions.

(involved in metabolism and replication). Only after a major evolutionary transition, viz.
the invention of the genetic code, the general-purpose molecule RNA was largely superseded
by a system based on different macromolecules more specialized for these respective tasks,
namely DNA and proteins. The idea that the first self-replicating molecules were RNA-like
polynucleotides, called the “RNA world theory” (see the book [84]) became famous during
the 1980s shortly after remarkable discoveries of enzymatic activity of RNA [85]. Starting
with the initial observation of self-splicing RNA in the organism Tetrahymena [35], a large
number of RNA enzymes (ribozymes) catalyzing diverse chemical reactions were found in
subsequent years (for review see, e.g., Refs. [49, 157]), and more were evolved in vitro [126].

The literature on RNA chemistry and possible self-replication under prebiotic condi-
tions is extensive (see the reviews [125, 206, 207, 208] and the book [84]), and we
will only touch upon the findings most relevant for the theory developed in chapter 3.
Even though it is still unclear how single nucleotides can be synthesized de novo under
prebiotic conditions, their polymerization is with reasonable efficiency catalyzed through
lipids [218], clay [65], or water [129] (which is also a catalyst for ligation [216]), albeit the
resulting sequence repertoire is strongly limited and regio-specificity (i.e., the preference of
3’,5’- over 2’,5’-phosphodiester bonds) is not always properly maintained. Unfortunately,
non-enzymatic template-directed polymerization (see Fig. 1.5(a)), previously hypothesized
as important replication mode, has been demonstrated only for specific sequences [1] or
structures [284], and with discouragingly small rates. A more promising route is based
on template-directed ligation of RNA oligomers catalyzed through the RNA template it-
self [50, 179] (see Fig. 1.5(b)), and if suitable building blocks are provided, this approach
can be upgraded to chemical self-replication [131, 134, 158, 212, 213], even though such
replicators provide only limited heredity and may be affected by product inhibition due to
insufficient separation of template and product strand [132]. Probably the most auspicious
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Figure 1.6: Sequence and secondary
structure of an RNA polymerase. This
ribozyme catalyzes the successive exten-
sion of a primer (orange strand) by up
to 14 nucleotides complementary to an
RNA template (red strand). It was de-
rived from an RNA ligase ribozyme by
18 rounds of in vitro evolution (relevant
changes compared to prior rounds are in-
dicated in pink). Its overall replication
accuracy is 96.7% per nucleotide, and
the rate of nucleotide addition is on the
order of 0.6 nt/hour. From Ref. [124].
Reprinted with permission from AAAS.

development is the recent observation of RNA-catalyzed RNA polymerization on an RNA
template [58, 124, 288]: polymerase ribozymes such as the one depicted in Fig. 1.6 take
the lead in the hunt for a true RNA replicase.

Further experimental research concerns environmental conditions: in dilute solution, the
small concentrations of single monomers and polynucleotides will probably not allow fast
enough polymerization or replication reactions to beat ongoing degradation. As a possible
remedy, hydrothermal vents have recently been shown to cause extreme accumulation of
nucleotides owing to an asymmetric superposition of thermal convection and thermodiffu-
sion [14, 138], and also to frequently initiate convectively driven temperature oscillations,
which could speed up dissociation of template and product strands and reduce the effects
of product inhibition. Low-dimensional or structured environments like mineral surfaces or
porous materials have also been speculated to provide surroundings more favorable for the
spontaneous emergence of replicators. Another direction pursues the demonstration of pre-
biotic compartmentalization by creating protocells with self-replicating genomes contained
in a self-replicating membrane [36, 258] (see Fig. 1.7). Such fatty acid vesicles have been
shown to spontaneously grow and divide [39]. Active genome replication would generate
osmotic pressure [38], leading to membrane growth at the expense of other membranes en-
closing less-efficient replicators [37], complemented by the creation of a pH gradient that in
turn could be used to drive intracellular processes [40]. In this way, a coupling between the
replication of the genome and the replication of the enclosing membrane could be achieved
purely based on physical principles [36].

While the emergence of self-replicating RNA-like polynucleotides under prebiotic con-
ditions has not yet been experimentally demonstrated, a fundamental understanding of
universal principles governing these replicators has been initiated by the pioneering work of
Manfred Eigen. In seminal papers published in the 1970s [52, 55, 56, 57], he presented a the-
oretical framework to describe the self-replication of information-carrying macromolecules
such as polynucleotides. We will discuss this theory, which is based on high-dimensional
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M
odern living organisms are organ-
ized into cells. Fundamentally, a cell
consists of a genome, which carries

information, and a membrane, which separates
the genome from the external environment.
By segregating individual genomes from one
another, cellular organization is thought to be
critical to the evolution of replicating systems
(1, 2). Some of the oldest known rocks on
Earth (~3.5 billion years old) contain biochem-
ical signatures of life and also contain tantaliz-
ing suggestions of cellular fossils (3). But how
did early self-replicating chemicals give rise to
the “cell” as a unified entity? The combination
of a genome and membrane does not constitute
a unified cell unless interactions between the
components result in mutual benefit. Was it a
lucky accident that genomes and membranes
began to cooperate with each other (e.g., evo-
lution of an enzyme to synthesize membrane
lipids)? Or are there simple physicochemical
mechanisms that promote interactions be-
tween any genome and membrane, leading
to the emergence of cellular behaviors? We
explored such mechanisms experimentally,
using model protocells.

A protocell could be constructed by encap-
sulating a self-replicating genome inside a
chemically simple, self-replicating membrane
(1). This minimalist, forward-engineering
approach is akin to early evolution, which must
have also used a minimal set of components.
RNA is a particularly elegant genomic mate-
rial, because it can act as both information car-
rier and enzyme [e.g., as an RNA polymerase
(4)]. The discovery that the ribosome contains
a catalytic ribozyme core lends considerable
weight to the theory that an RNA world pre-
ceded the modern DNA-RNA-protein world
(5–7). For the membrane, fatty acids are sim-
ple amphiphilic molecules that self-assemble
into bilayer vesicles. These vesicles have inter-
esting self-reproducing properties, including
the ability to undergo multiple cycles of
growth and division (8). Fatty acids have been
synthesized under a variety of prebiotic condi-
tions and have been found on meteorites

(9–11). To validate this experi-
mental model, we showed that
the hammerhead ribozyme,
which catalyzes a self-cleavage
(or ligation) reaction, is active
when encapsulated in vesicles
composed of fatty acid (myris-
toleic acid) and its cognate
glycerol monoester (12). 

During the origin of life,
what behavior would demon-
strate the emergence of the
cell as a new level of biological
organization? A defining be-
havior of living systems is Dar-
winian evolution, which may act
at any level, including that of
the gene and the cell. Using model protocells,
we observed a competition between vesicles
encapsulating RNA and empty vesicles (13).
Vesicles encapsulating high concentrations of
RNA experienced substantial osmotic stress,
driving the uptake of fatty acid from un-
stressed membranes. This resulted in the
transfer of ~25% of the membrane from

empty vesicles to vesicles containing RNA,
relieving the membrane tension caused by the
osmotic gradient. The growth of the osmoti-
cally stressed vesicles and the reduction of the
unstressed vesicles were measured by the flu-
orescence resonance energy transfer (FRET)
between fluorescent dyes incorporated into
the membrane. 

We suggest that a similar process took place
during early evolution—vesicles encapsulating
highly active genomic replicators would gener-
ate osmotic pressure, causing them to “steal”
membrane from other vesicles containing less

active sequences. Genomic fit-
ness (i.e., replicative ability)
would be translated into cellular
fitness as the genome and mem-
brane increased together, mov-
ing the evolutionary unit from
the replicating molecule to the
whole cell. As soon as replica-
tors became encapsulated, a
primitive form of competition
could emerge between cells
(see the figure). Remarkably,
this process does not require a
chance increase in complexity
(e.g., addition of a new enzyme),
but instead relies only on the
physical properties of a semi-

permeable membrane encapsulating solute.
In a complementary experiment, we also

demonstrated how membrane fitness (i.e.,
growth) might contribute to cellular fitness.
Fatty acid vesicles can grow spontaneously by
incorporation of a feedstock, such as fatty
acid micelles (14). We found that membrane
growth generated a transmembrane pH gradi-

ent, due to the faster flip-flop of protonated
fatty acid molecules incorporated into the
outer leaflet of the membrane (15). Acidifi-
cation of the vesicle interior was measured by
an encapsulated pH-sensitive fluorescent dye
(pyranine). Thus, a protocell might capture
a substantial fraction (~12%) of the energy
released during membrane growth and store it
in the form of a pH gradient. In modern biolog-
ical systems, pH gradients are widely used for
energy storage and transduction. For a proto-
cell, this energy might even be directly useful
for driving cellular processes, such as the
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Figure 1.7: The emergence of cells during the origin of life. Protocell membranes containing
actively replicating genomes grow at the expense of other cells containing inactive replicators,
spontaneously inducing division. From Ref. [36]. Reprinted with permission from AAAS.

deterministic rate equations for the concentrations of macromolecules with a certain se-
quence, in more detail in Chapter 3 and present only some generic results here. A strongly
simplified version displaying the essential features assumes the existence of an efficiently
self-replicating “master” molecule of L nucleotides, which is present in concentration x0.
Replication occurs with rate r0, and involves stepwise polymerization reactions implying
the incorporation of erroneous nucleotides with a certain mutation probability µ. From
such errors result “mutants”, present in concentration x′ and replicating with reduced rate
r′ < r0, without chance of regaining the master sequence through backmutations (which
are unlikely if L is large). Normalizing the concentrations, x0 + x′ = 1, we can write
x′ = 1− x0, and readily set up the dynamics of the master sequences:

ẋ0 = (1− µ)Lr0x0 − x0[r0x0 + r′(1− x0)]. (1.4)

This equation describes the change in concentration through error-free replication of the
master with rate r0 and probability (1 − µ)L (the probability not to introduce an error
at any of L positions). The second term in brackets involves the mean replication rate
r0x0 + r′x′ and has been subtracted to keep the concentrations normalized at all times.
In the stationary state ẋ0 = 0, we find x0 = [(1 − µ)Lr0 − r′]/(r0 − r′). As function of
mutation rate µ, the concentration of the master sequence x0 is non-negative only if µ is
smaller than a critical value µc. Using that (1 − µ)L ≈ e−µL for large L, this condition
reads

µ < µc =
ln(r0/r

′)

L
. (1.5)

This highly influential result predicts a critical mutation rate, called the “error threshold”,
beyond which faithful replication is no longer possible: if the effective rate (1 − µ)Lr0 of
creating the master sequence falls below the replication rate r′ of the mutants, the master
will be outgrown and ultimately be driven to extinction. Essentially, this implies that the
information content that can reliably be transmitted in the process of self-replication is
limited by the mutation rate.

In a probably oversimplified attempt to quantify these conclusions, we can estimate the
(in the absence of experimental evidence for such self-replicators hardly measurable) loga-
rithmic ratio of master and mutant replication rates in the numerator of Eq. (1.5) casually
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Figure 1.8: Mutation rate
µ per base per genome repli-
cation versus genome size L
for different organisms (log-
log plot). An inverse pro-
portionality µ ∝ L−1 sug-
gesting a relationship to the
error threshold Eq. (1.5)
can clearly be seen. From
Ref. [75]. Reprinted with
permission from AAAS.

Extremely High Mutation Rate of a
Hammerhead Viroid
Selma Gago,1 Santiago F. Elena,1 Ricardo Flores,1 Rafael Sanjuán1,2*

Mutation rates vary by orders of magni-
tude across species (1, 2), with the high-
est rates measured so far corresponding

to RNAviruses (3), but little is known about other
RNA replicons. Viroids are plant
pathogens with minimal non-
protein-coding RNA genomes
replicated by host RNA poly-
merases (4). We estimated the
mutation rate of Chrysanthemum
chloroticmottle viroid (CChMVd),
a 399-nucleotide chloroplastic
viroid with hammerhead ribo-
zymes. Hammerheads are RNA
motifs formed by three double-
helix regions flanking a core of
15 highly conserved nucleotides
critical for catalytic activity (5),
which mediate self-cleavage of
replicative intermediates and,
hence, are essential for viroid
replication. Hammerhead viroids
show elevated genetic variabil-
ity (6), but this variability results
from the combined action of
mutation and selection and there-
fore cannot be used to directly
estimate mutation rates.

To achieve this goal, we in-
oculated plants with an in vitro
transcript of CChMVd (7), and
at the onset of symptoms we
screened for mutations at the 15 core nucleotides
plus the nucleotide preceding the self-cleavage site
in each of the two hammerheads (32 sites).
Considering that these mutations are lethal for
the viroid, their population frequency must equal
the mutation rate because, despite multiple
replication rounds downstream from inoculation,
they have necessarily been generated during the
last one. In three independent experiments, we
found three, seven, and five mutations in 63, 64,
and 61 reverse transcription polymerase chain
reaction (RT-PCR) clones, respectively (188 × 32
= 6016 total target sites), yielding a mutation rate
of 0.0025 T 0.0006 (SEM) per site and replication
cycle, that is, one mutation per 400 nucleotides
(fig. S1).

In a control experiment, we sequenced RT-
PCR clones from the in vitro transcript used for
inoculations and found a single substitution in
6525 sites. This result gives an error rate 17-fold
lower than the estimated CChMVd mutation rate
and discards any significant effect of RT-PCR
artifacts. To confirm the lethality of the hammer-

head mutations sampled in vivo, we recreated the
mutations by site-directed mutagenesis and as-
sayed for infectivity. Northern-blot hybridizations
indicated that plants inoculated with these mutants

had no detectable viroid RNA (fig. S2A). Further,
self-cleavage analyses confirmed that all except
one of the mutant hammerheads showed severely
reduced or null catalytic activity (fig. S2B).

To determine the strength of selection against
mutations elsewhere in the viroid genome, we
competed 24 random-point mutants against the
wild type. Sequencing of 138 RT-PCR clones
revealed that 20/24 mutations had been purged
by selection at the onset of symptoms. In con-
trast, 51 new polymorphisms appeared in this
time interval, showing that genetic variability is
rapidly regenerated because of highly error-prone
replication (fig. S3). We also inferred that ham-
merheads are unlikely to constitute mutational
hotspots because polymorphisms did not map
more frequently in hammerheads than in the rest
of the genome (Fisher exact test, P = 0.963)
whereas the fraction of point mutations that were
selected against was also similar for these two
regions (7/8 and 13/16, respectively).

The CChMVd mutation rate is the highest
reported for any biological entity (Fig. 1). Ham-

merhead viroids are replicated by a proofreading-
deficient chloroplastic DNA-dependent RNA
polymerase that is redirected to use RNA instead
of its native DNA template (4). This, together with
the presence of mutagenic free radicals or un-
balanced nucleotide pools, would lead to extreme-
ly error-prone replication. Viroids can tolerate such
elevated per-site mutation rates owing to their
minimal genomes, whereas more complex ge-
nomes would accumulate an excessive mutational
load (8). Given their genomic simplicity and
autocatalytic activity, hammerhead viroids are
reminiscent of the postulated RNAworld replicons

(9). These primitive replicons
would also resemble hammer-
head viroids in their extremely
error-prone replication. Thus, our
results support the notion that the
emergence of replication fidelity
mechanisms was central to the
evolution of complexity in the
early history of life.
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Fig. 1. Per-site mutation rate versus genome size for CChMVd and other biological
entities [reviewed in (2) and updated with more recent data from (3)]. RNA viruses (left to
right) are tobacco mosaic virus, human rhinovirus, poliovirus, vesicular stomatitis virus,
bacteriophage F6, and measles virus. Single-stranded DNA viruses are bacteriophage
FX174 and bacteriophage m13. Double-stranded DNA viruses are bacteriophage l,
herpes simplex virus, bacteriophage T2, and bacteriophage T4. Bacteria is Escherichia
coli. Lower eukaryotes are Saccharomyces cerevisiae and Neurospora crassa. Higher
eukaryotes are Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and
Homo sapiens. When several estimations were available, the mean value is shown.

6 MARCH 2009 VOL 323 SCIENCE www.sciencemag.org1308
 o

n 
Ap

ril
 1

7,
 2

00
9 

ww
w.

sc
ie

nc
em

ag
.o

rg
Do

wn
lo

ad
ed

 fr
om

 as number of order 1, and invoke thermodynamic arguments to determine a lower bound
on the mutation rate: in equilibrium, the probability of incorporating an (energetically
unfavorable) erroneous nucleotide rather than the preferred complementary one depends
exponentially on the corresponding free energy difference between the two resulting confor-
mations. The inference is a bit more tricky for polynucleotides due to cooperative stacking
interactions between successive base pairs, but measured melting curves place the result-
ing mutation rates above 1% per base and replication [52] (duly, the polymerase ribozyme
shown in Fig. 1.6 has an error rate of about 3%). This has prompted models of “kinetic
proofreading” in order to explain the much lower values observed in living organisms by
energy-consuming non-equilibrium processes [117]. Indeed, most organisms have evolved
such mechanisms for reliable error-correction, yet the inverse proportionality between mu-
tation rate and genome size is still obeyed with remarkable adherence across species, as
shown in Fig. 1.8, even though other explanations for the scaling µ ∝ L−1 may be proposed.
At any rate, with this relatively large value for the mutation rate, the condition Eq. (1.5)
can be read as upper bound on the length of the molecule, which would then be somewhere
on the order of 100 nucleotides (note that the polymerase ribozyme shown in Fig. 1.6 has a
length of 189 nt). Because the absence of enzymatically driven error-correction leads to high
mutation rates, which in turn permit only relatively short genomes, prebiotic ribozymes
will not be able to perform complex enzymatic functions and will therefore replicate with
high mutation rates possibly precluding their very existence, a paradoxical consequence
christened the “catch-22 of molecular evolution” by John Maynard Smith [176].

Whether or not these theoretical arguments have any real implications for prebiotic repli-
cators has been heavily debated, since the conclusions drawn from Eq. (1.4) rest on some
questionable assumptions to be discussed in more detail in Chapter 3, for instance the
premises that the mutants have a finite replication rate r′ and that a deterministic treat-
ment is appropriate. Quantitative interpretations are therefore built on somewhat shaky
grounds and have accordingly largely been ignored in the experimental literature. For the
problems discussed in Chapter 3 more crucial is the assumption that the replication rates
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of master and mutants are fixed numbers depending only on their respective genotypes,
implying either that replication is not catalyzed by any enzymes, or that concentrations
and characteristics of these enzymes are not accounted for. Ignoring essential constituents
is obviously not a feasible way to describe the origin of self-replicating molecules, while
autocatalytic replication, as for instance in Fig. 1.5, does not appear very plausible under
prebiotic conditions given the limited experimental success of non-enzymatic polymeriza-
tion and ligation reactions discussed before. Self-replication catalyzed by ribozymes such
as shown in Fig. 1.6 is the more likely scenario, but it is of evolutionary advantage for the
replicase enzyme itself only if it replicates specifically only functional substrates. Accord-
ingly, we develop a theory of specific enzymatic self-replication in Chapter 3.



2. Nonlinear dynamic response of
semiflexible polymers

In the introduction, we explored some outstanding experimental results for biologically
relevant semiflexible polymers like DNA or cytoskeletal filaments such as microtubules or
actin, and discussed some aspects of a successful theoretical description by means of the
wormlike chain (WLC) model. Proposed in 1949 [141] in order to explain X-ray scattering
results on polymeric solutions, many of the theoretical studies on this model developed
in the following years were in fact concerned with similar collective properties. Since the
1990s, the advent of experimental single-molecule techniques provided an exciting new
application field, as the stretching of single DNA molecules was accomplished by vari-
ous means, among them optical [270] or magnetic [30, 245] tweezers, so-called “molecular
combing” [19], hydrodynamic flows in different geometries [148, 215, 228, 229, 230, 243],
electric fields [168], or a combination of both [15]. At the same time, the growing realization
that complex network structures composed of semiflexible polymers like actin are largely
responsible for the mechanical properties of the cytoskeleton encouraged further research
in network properties (see, e.g., Refs. [18, 68, 72, 73, 74] for reviews). A more detailed
understanding of single-molecule statistics, such as the full distribution function for the
end-to-end distance [277], was complemented by studies of elastic properties of networks
and solutions (see, e.g., Refs. [112, 143, 166, 278]). Of course, the range of applicability of
the WLC model is not without controversy, as there is an ongoing debate on indications
of irregularly high DNA elasticity on small length scales [178, 275, 276, 286] with possi-
bly serious biological implications [78]. Microtubules have as well been shown to exhibit
anomalous fluctuations caused by their non-trivial internal architecture [210, 262].

Following this brief account of some prevailing topics in semiflexible polymer physics,
this chapter will put particular emphasis on the dynamic properties of wormlike chains
(see Ref. [142] for a recent review), and the singularities produced by ordinary perturba-
tion methods in some limits. After summarizing an accordingly improved theory for the
propagation and relaxation of backbone tension in such polymers [97, 98, 99] and discussing
our previous work on the implications for the longitudinal stretching response [203], this
will ultimately lead us to the nonlinear response characteristics investigated in this work:
transverse forces [202], the longitudinal relaxation dynamics [204], and microstructure cor-
rections due to a finite backbone extensibility [200] or discretization effects.
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2.1. Wormlike chain dynamics

A major complication resulting from a description of the polymer contour as inextensi-
ble continuous space curve r(s) is the ensuing condition that s is actually the arclength
coordinate at any moment, i.e., that the tangent vector has always unit length:

|r′(s)| = 1. (2.1)

Whereas the obstacles caused by this constraint can for certain statistical mechanics prob-
lems be removed by interpreting s as time and the tangent t(s) = r′(s) as the position of
a particule on the unit sphere [226], this is approach not possible when the dynamics is
of interest. Early attempts used a global Lagrange multiplier in order to keep the average
total contour length 〈L〉 constant [103, 105, 226], which introduces an effective stretch-
ing elasticity and leads to inconsistent equations of motion [8, 246]. Further, for an only
locally extensible contour, the underlying Gaussian distance statistics is essentially equiv-
alent to that of a Rouse chain with some bending stiffness. Hence, the strict condition
that extensions R > L are unattainable, unless caused by internal structural rearrange-
ments such as the DNA overstretching transition, is violated. This constraint is intrinsi-
cally responsible for the observed divergence in the force-extension relation Eq. (1.3), also
seen in Fig. 1.2(b). In an attempt to account for the necessary contour length conserva-
tion, subsequently developed mean-field theories introduced different additional Lagrange
multipliers in order to fix some suitably defined thermal and/or spatial averages of the
constraint [93, 94, 101, 102, 110, 111, 282]. While these techniques correctly reproduce
the first moments of the end-to-end distance in the absence of external forces, they fail
to describe the properties of stretched polymers, in particular because the characteristic
anisotropy of transverse and longitudinal fluctuations is overlooked (a recent effort to in-
clude these effects arrives at a theory based on 7 Lagrange multipliers that can only be
computed numerically [109]).

2.1.1. Equations of motion

A more systematic approach observes that the local constraint Eq. (2.1) requires a cor-
respondingly local Lagrange multiplier function f(s) [89], which is readily interpreted as
backbone tension preventing the stretching of backbone bonds. Adding a constraint term
to the Hamiltonian Eq. (1.1) and switching to a formulation in terms of position vectors r
instead of tangents gives

H =
1

2

∫ L

0

ds
[
κ r′′2(s) + f(s)r′2(s)

]
. (2.2)

Due to the very small Reynolds numbers associated with these biopolymers, the over-
damped motion of the polymer contour is not affected by inertia. Further, within the
free-draining approximation [48], hydrodynamic interactions between different parts of the
contour give only rise to logarithmic corrections that can be neglected (we will briefly come
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back to this point in Sec. 2.5). This implies local anisotropic dissipation, accounted for in
the friction matrix

ζ = ζ⊥(1− r′r′) + ζ‖r
′r′. (2.3)

For a straight and slender rod of length L and diameter a � L in a solvent with viscosity
η, the transverse and longitudinal friction coefficients ζ⊥ and ζ‖ are given to leading order
in ln(L/a)−1 by [17]

ζ‖ = ζ̂ζ⊥ =
2πη

ln(L/a)
, (2.4)

with ζ̂ ≈ 1/2.
The stochastic equations of motion now result from a balance of viscous forces ζ∂tr,

elastic forces −δH/δr and thermal noise ξ:

ζ∂tr = −κr′′′′ + (fr′)′ + ξ, (2.5)

where the noise correlations are fixed through the fluctuation-dissipation theorem [48]:

〈ξi(s, t)〉 = 0 (2.6a)

〈ξi(s, t)ξj(s
′, t′)〉 = 2kBTζijδ(s− s′)δ(t− t′). (2.6b)

Choice of units. For the remainder of this chapter, we will change units such that all
quantities are powers of a length. Hence, we set κ = ζ⊥ = 1, which makes time a length4

and forces such as the tension f a length−2. Also, kBT = `−1
p in these units.

2.1.2. The weakly-bending limit

The equations of motion Eq. (2.5) are highly nonlinear, given that the Lagrange multiplier
function f(s) has to be determined from the inextensibility constraint Eq. (2.1). Other
authors have dealt with this problem by introducing two constraints (for inextensibility and
connectivity) [161], or by formulating stochastic equations of motion in mode space [189].
A more popular method to tackle these nonlinearities is based on expanding the contour
about a straight line, amounting to a perturbation theory in the weakly-bending limit of
a straight rod [62]. To this end, we decompose the contour into small displacements
transverse and longitudinal to the initial axis, and introduce a small parameter ε to be
defined more precisely below by requiring the relative transverse excursions to be small:

r(s) = (r⊥(s), s− r‖(s))
T with r′2⊥ = O(ε) � 1. (2.7)

Expanding the inextensibility constraint Eq. (2.1) to leading order,

r′‖ = 1
2
r′2⊥ +O(ε2), (2.8)

we recognize that the longitudinal displacements are of higher order than the transverse
ones. Up to order ε, the accordingly decomposed equations of motion Eq. (2.5) read:

∂tr⊥ = −r′′′′⊥ + (fr′⊥)′ + ξ⊥, (2.9a)

ζ̂∂tr‖ + (1− ζ̂)r′⊥∂tr⊥ = −r′′′′‖ − f ′ + (fr′‖)
′ + ξ‖. (2.9b)
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where the longitudinal part obtains a transverse contribution from the anisotropic projec-
tion operators in the friction matrix Eq. (2.3), vanishing for isotropic friction (ζ̂ = 1).

2.1.3. The dynamics on the linear level

Because the longitudinal displacements are subdominant for weakly-bending wormlike
chains, the longitudinal part Eq. (2.9b) reduces in the absence of bulk forces and to leading
order O(ε1/2) to the simple condition

f ′ = 0, (2.10a)

which implies that the tension across the contour is a constant determined by the forces
applied at the polymer’s ends. In this section, we will only discuss the force-free case f = 0.
Further, the transverse part Eq. (2.9a) becomes a linear equation formally equivalent to
the versions used previously, but now resulting from a systematic expansion:

∂tr⊥ = −r′′′′⊥ + ξ⊥. (2.10b)

Quantities of interest such as correlation functions of transverse displacements relevant
for the dynamic structure factor [62, 144, 162] or the shear modulus [86, 185, 186] can now
be obtained by a normal mode decomposition of Eq. (2.10b). Writing

r⊥(s, t) =
∑

n

rn(t)wn(s) (2.11)

with an orthonormal set of eigenfunctions to the biharmonic operator ∂4
s [8, 274], such that

w′′′′
n (s) = q4

nwn(s), the equation of motion for the mode amplitudes is readily solved:

rn(t) =

∫ t

−∞
dt′ξ⊥,n(t′)e−(t−t′)/τn , (2.12)

where the relaxation times τn = q−4
n scale with the fourth power of the wave length. Using

the noise correlation
〈
ξ⊥,n(t)ξ⊥,m(t′)

〉
∝ (`pL)−1δnmδ(t − t′) obtained from accordingly

transforming Eq. (2.6a) gives the spatially averaged correlation function of transverse dis-
placements as:

〈
δr2

⊥(t)
〉
≡
∫ L

0

ds

L

〈
[r⊥(s, t)− r⊥(s, 0)]2

〉
∝ 1

L`p

∑
n

1− e−t/1τn

q4
n

∼ L3

`p

(
t

t⊥L

)3/4

for t � t⊥L .

(2.13)

Approximating the sum by an integral readily yields the characteristic subdiffusive t3/4-
growth of transverse fluctuation amplitudes [91] for times shorter than the longest relax-
ation time t⊥L ' L4.
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Dynamic scaling. Note that Eq. (2.13) can be written on the scaling level as

〈
δr2

⊥(t)
〉
' `⊥(t)3

`p

, (2.14)

if we define a transverse correlation length

`⊥(t) =

{
t1/4, for t � t⊥L ,

L, for t & t⊥L .
(2.15)

A useful interpretation of `⊥(t), which can easily be read off from Eq. (2.10b) as character-
istic dynamic length scale, is that it denotes the length of segments that are equilibrated
up to this time. We can also use the result Eq. (2.14) to obtain one possible definition
of the small parameter ε, by noting that the mean square amplitude of the transverse
modes saturates at a value 〈r2

⊥〉 ' L3/`p. For the relative excursions, this means that
〈r′2⊥〉 ' L/`p ≡ ε, making explicit the intuitive observation that stiff polymers with L � `p

are weakly-bending.

Longitudinal fluctuations. Because longitudinal displacements are of higher order in ε as
a consequence of Eq. (2.8), their mean square amplitudes in equilibrium accordingly must
scale as 〈r2

‖〉 ' L4/`2
p, i.e., they are a factor ε smaller than the transverse ones. Considering

a long filament as chain of L/`⊥ equilibrated segments of length `⊥, their contributions
can be averaged to give a scaling law for the dynamical correlation of the longitudinal
fluctuations 〈

δr2
‖(t)
〉
∼ L`⊥(t)3

`2
p

. (2.16)

The relations (2.14) and (2.16) express on the scaling level the characteristic anisotropy of
transverse and longitudinal fluctuations mentioned at the beginning of this section.

Experimental observations. The success of the WLC model for describing static proper-
ties of semiflexible polymers largely carries over to dynamical features in the linear regime:
the anisotropy of transverse and longitudinal displacements has indeed been measured on
DNA by high-resolution optical-tweezer experiments [181, 217] and by fluorescence corre-
lation spectroscopy [165]. In actin solutions [87, 159] and networks [5], the subdiffusive
t3/4-fluctuations were seen, and also microtubules were found to obey this scaling [34], even
though deviations at small length scales are indicative of their complex architecture caus-
ing nontrivial shear elasticity and internal friction [262]. Finally, calculations along these
lines, but with a more detailed treatment of boundary conditions, give the autocorrelation
function of the end-to-end distance of a free polymer, again in excellent agreement with
experimental observations on actin filaments [152].



18 Nonlinear dynamic response of semiflexible polymers

2.1.4. Failure of the linear theory

A failure of this linear theory for short times has been observed by several authors [2,
25, 60, 185, 186, 236]. We will present the linear response argument made by Everaers
et al. [60] here and briefly discuss another more general derivation in Section 2.3 below.
Their reasoning invokes the fluctuation-dissipation theorem to observe that within linear
response a weak longitudinal force f‖ applied to a filament would produce a longitudinal

displacement δr‖ ' f‖L`3
⊥/`p ' f‖Lt3/4/`p. However, the resulting drag force ζ̂Lδr‖/t

falling off over the filament’s length L exceeds the driving force f‖ for times smaller than

t? ' ζ̂4L8/`4
p [60, 185, 186]. Because a violation of this force balance between friction and

driving force is certainly unphysical, the authors argue that not the whole filament is set
into motion at once, but only a smaller section of length `‖(t). Replacing L → `‖(t) in the
above scaling argument gives a result consistent with the friction balance if this length is
chosen as `‖(t) ' (`p/ζ̂)1/2t1/8 [60, 211].

Accordingly, the difference between transverse and the much weaker longitudinal fluc-
tuations manifests itself in qualitatively different scaling laws: replacing L → `‖(t) in
Eq. (2.16), we find 〈δr2

‖〉 ∝ t7/8 in contrast to the scaling law 〈δr2
⊥〉 ∝ t3/4 for the trans-

verse fluctuations. Moreover, reading `‖(t) as a correlation length for longitudinal fluctua-
tions reveals that these fluctuations live on much larger scales than transverse ones, since
`⊥(t)/`‖(t) ∝ ε1/2 for times on the order of t?.

We emphasize that responsible for the failure of the linear theory is the omission of
longitudinal friction ζ̂∂tr‖ in the linearized equations of motion (2.10). This point has
also been observed by other authors for different scenarios involving stronger forces where
linear response theory is not applicable [2, 25, 236], leading to different scaling laws for
an analogously defined dynamic length scale `‖(t). Because neglecting longitudinal fric-
tion leads to divergencies that can not be removed by including the next-order terms in
Eq. (2.9) [236], an ordinary perturbation expansion of the equations of motion in pow-
ers of ε gives singular results: it is not possible to take the limit t → 0 while holding
ε constant [98]. The above linear response argument indicates that an underlying scale
separation between transverse and longitudinal dynamics causes these problems, and the
next section will present a correspondingly improved “multiple-scale” perturbation theory.

2.2. Tension dynamics for wormlike chains

For an inextensible polymer, the backbone cannot actually be stretched, but the ther-
mally excited transverse excursions discussed above cause the contour to exhibit bending
undulations. These thermal fluctuations can be straightened by applying external forces,
and the tension f , introduced as constraint force, is a measure of the force necessary to
ensure that only fluctuations are straightened but the backbone itself remains at constant
length; accordingly, the tension diverges as the extension approaches the contour length
(cf. Eq. (1.3) with f as tension). Hence, a reciprocal relation between contour length
“stored” in thermal undulations (“stored length”), and tension arises: external forces can
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pull out stored length and create tension; once the thermal undulations are re-introduced,
the tension relaxes.

By Eq. (2.10a), the absence of longitudinal friction and bulk forces means that the
leading-order tension is just a constant and stored length is thus homogeneously distributed
along the contour. If a sudden stretching force is applied, the above introduced correlation
length `‖(t) gains another, much more intuitive interpretation: stored length is pulled out,
but limited by longitudinal friction this happens at first only near the boundary, over
distances of length `‖(t). Likewise, the increased tension induced by the applied force
accordingly penetrates the contour only within a growing region of size `‖(t). In this sense,
the physics missed within the linear theory is entirely contained in a proper description of
the propagation and relaxation of backbone tension.

Realizing these important features, a theory of tension dynamics on the linear level
has been developed by Morse et al. [211, 238], while the case of large force has been
discussed both based on a “taut-string” approximation by Seifert et al. [236], as well as
using the somewhat complementary “quasi-static” approximation by Brochard-Wyart et
al. [25]. Together with accordingly refined mean-field models [153] and other studies based
on scaling arguments [2, 60, 236], “adiabatic” approximations [219, 236] or computer simu-
lations [190, 269], these approaches lead to an incomplete and, due to partly contradicting
assumptions, also somewhat inconsistent picture of tension propagation under different con-
ditions. Aiming to provide a unified and systematic theoretical description, Hallatschek et
al. [97, 98, 99] developed a general theory of tension dynamics in the weakly-bending limit
based on a rigorous multiple-scale perturbation theory (for an introduction to this method
see the book [108]).

2.2.1. Multiple-scale perturbation theory

This approach, explained in detail in Ref. [98], exploits the previously observed scale sepa-
ration `⊥/`‖ ∝ ε1/2 to introduce two different small- and large-scale arclength coordinates
s and s̄ε1/2. Writing dynamic variables such as r(s) and f(s) as an expansion in functions
of these two formally independent variables gives a system of equations of motion in each
power of ε1/2. In order to obtain a uniformly convergent expansion, the coefficients in each
order should be bounded in the formal limit s → ∞. Most importantly, this condition
yields that the tension is a function of the large-scale variable s̄ only. This finding suggests
to spatially average the longitudinal part over small-scale fluctuations, which causes most
terms in Eq. (2.9b) to vanish and results in the simple equations of motion:

∂tr⊥ = −r′′′′⊥ + f̄r′′⊥ + ξ⊥, (2.17a)

ζ̂∂tr′‖ = −∂2
s̄ f̄ , (2.17b)

where the prime is an s-derivative and the overbar denotes the spatial average. The latter
is performed over many uncorrelated segments of length `⊥ and thus effectively produces
an ensemble average [98]. Hence, the longitudinal part Eq. (2.17b) can be written as

∂2
s̄ f̄ = −ζ̂∂t 〈%̄〉 , (2.18)
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where % = 1
2
r′2⊥ ≈ r′‖ is the local density of contour length stored in thermal undulations,

i.e., the stored length density. The transverse equation of motion Eq. (2.17a) for small-
scale transverse fluctuations contains a locally constant tension, whose large-scale arclength
dependence follows from Eq. (2.18), which describes the deviations of the tension profile
from its constant equilibrium value. Integrating over arclength suggests the interpretation
that changes in stored length produce tension gradients against longitudinal friction.

2.2.2. Coarse-grained equation of motion for the tension

Using that Eq. (2.17a) is linear, because the large-scale arclength dependence of the tension
enters only adiabatically, a mode decomposition of r⊥(s, t) in terms of eigenmodes wq(s)
to the eigenvalues −q2[q2 + f̄(s̄, t)] provides a solution via the response function

χ⊥(q; t, t′) = e−2q2[q2(t−t′)+
R t

t′dτ f̄(s̄,τ)]Θ(t− t′). (2.19)

It is the appropriate extension of the function χ0
⊥(q; t, t′) = e−q4(t−t′)Θ(t − t′) used for

solving the linear force-free case Eq. (2.10b) in Sec. 2.1.3. Hence, the expectation value
〈%〉 =

〈
1
2
r′2⊥
〉

is given by

〈%〉 =

〈
1

2

[∑
q

∫ ∞

−∞
dt′ξ⊥,q(t

′)χ⊥(q; t, t′)w′
q(s)

]2〉
. (2.20)

In order to proceed from here, we have to specify the scenarios we will be interested in.
Let us assume that the polymer is for t < 0 equilibrated under a possibly inhomogeneous
tension profile f̄0(s̄) and with a possibly different persistence length θ`p. Further, we
assume that the boundary conditions on the contour are such (e.g., hinged) that a spatial
average over the squared first derivatives of the eigenmodes gives a constant (this point
will be discussed further in Sec. 2.5):

w′2
q (s) ≈ q2

L
. (2.21)

In this case, we can evaluate Eq. (2.20) by using the noise correlation as for Eq. (2.13) to
find the spatially averaged stored length 〈%̄〉 as

〈%̄〉 =
∑

q

[
χ2
⊥(q; t, 0)

Lθ`p[q2 + f̄0(s̄)]
+

2q2

L`p

∫ t

0

dt′χ2
⊥(q; t, t′)

]
. (2.22)

To obtain an explicit coarse-grained equation of motion for the backbone tension from
Eq. (2.18), we switch to the time-integrated tension

F̄ (s̄, t) =

∫ t

0

dt′f̄(s̄, t′). (2.23)
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ℓ‖(t) ℓ‖(t)

R0
‖ + ∆‖(t)

Figure 2.1: Force scenario for the longitudinal response. A filament is equilibrated under a
prestretching force fpre, which is suddenly changed to f‖. The resulting change in projected
length ∆‖(t) arises due to contour straightening, first in boundary layers of size `‖(t).

For most of the scenarios analyzed in the following, we can additionally perform the contin-
uum limit L →∞, because we are interested in time regimes where all relevant length scales
(e.g., correlation lengths) are much smaller than L. Since the small-scale s-dependence has
now been transferred to mode space, we can drop the overbars, and finally find that F (s, t)
obeys a nonlinear partial integro-differential equation:

∂2
sF (s, t) = ζ̂

∫ ∞

0

dq

π`p

[
1− χ2

⊥(q; t, 0)

θ[q2 + f0(s)]
− 2q2

∫ t

0

dt′χ2
⊥(q; t, t′)

]
. (2.24)

Its scenario-specific initial and boundary conditions are discussed in more detail in Refs. [99,
202, 203, 204]. In the remaining sections, we will analyze this equation for different experi-
mentally relevant situations, and also extend the underlying theory by important correction
terms where necessary.

2.3. Longitudinal response

Developing a numerical algorithm to solve the partial integro-differential equation (2.24) for
the tension and analyzing the dynamic longitudinal response of prestretched semiflexible
polymers was the subject of the author’s diploma thesis, later published in Ref. [203].
Here, we recapitulate the essential results, because they provide a thorough understanding
of the asymptotes of Eq. (2.24) in various regimes. Moreover, the scaling laws derived in
Ref. [203] are also relevant for the qualitative discussion of the transverse response in the
next section.

Our setup, schematically shown in Fig. 2.1, is motivated by the observation that the
physics of semiflexible polymers is significantly changed by externally applied prestress.
For instance, the previously discussed transverse mode amplitudes of polymers under
tension follow the anomalously slow growth law t1/2 [91], which has been confirmed ex-
perimentally on prestressed microtubules [34]. More importantly, it has recently been
shown that prestressed actin networks in vitro provide a realistic model for the viscoelas-
ticity of living cells [64, 80, 81, 130], and that stresses generated by the activity of motor
proteins in such networks produce distinct prestress signatures in viscoelastic response
quantities [182, 183]. These observations also prompted other theoretical studies based
on computer simulations [169, 223]. We were additionally encouraged by the predictions
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that the tension propagation length `‖(t) should follow different growth laws for free and
prestressed polymers [25, 236], which were, however, derived by means of contradicting
assumptions.

In order to elucidate the change ∆‖(t) in projected length R‖ in response to a change
of the longitudinal force from fpre to f‖, we first observe that this change has to equal the
amount of stored length %`‖ that has been created in the boundary layer. On the scaling

level, Eq. (2.18) reads f̄/`2
‖ ' ζ̂%/t, where f̄ is the relevant force scale in the filament.

In this case, it is given by the driving force f‖ (remember that Eq. (2.18) is essentially a
friction balance), and the change in projected length reads therefore:

∆‖(t) '
tf‖

ζ̂`‖
. (2.25)

Hence, we only need to determine the scaling of `‖(t). This was done in Ref. [203] by
means of a “blob picture” for stretching dynamics. Inspired by the famous analogon for
flexible polymers [45], this intuitive picture derives from the observation that bending and
tension contributions to the WLC Hamiltonian Eq. (2.2) balance on length scales of the
order of the blob size f−1/2 [133], such that the contour is dominated by bending forces
(i.e., it is essentially free) within blobs, while the tension contributes only on larger scales.
The scaling argument draws again on the notion of equilibration segments of size `⊥ � L,
which, however, now follow from a scaling analysis of Eq. (2.17a) as [97]

`⊥(t) '

{
t1/4, for t � f−2,

(ft)1/2, for t � f−2.
(2.26)

This dynamic force balance between transverse friction forces r⊥/t and bending r⊥/`4
⊥

or tension terms fr⊥/`2
⊥ displays a crossover between “free” (bending-dominated) relax-

ation within blobs and “forced” (tension-driven) relaxation on larger scales. In the more
interesting case fext � fpre, scaling laws for the boundary layer size `‖ follow now from
decomposing the contour into segments of size `⊥. The amount δ by which each of these
segments is stretched depends on whether it is smaller or larger than a blob, because this
determines the relative magnitude of the effective stretching force. Applying the friction
balance to the total stretching (`‖/`⊥)δ of these segments gives:

`‖(t) '


(`p/ζ̂)1/2t1/8 [60, 97, 211], for t � f−2

‖

(`p/ζ̂)1/2(f‖ t)1/4 [2, 97, 236], for f−2
‖ � t � (f‖fpre)

−1

(`p/ζ̂)1/2f 1/4
pre (f‖ t)1/2, for (f‖fpre)

−1 � t.

(2.27a)

(2.27b)

(2.27c)

It turns out that the first asymptote, previously obtained only for small forces [60, 211], is
now always attained for short enough times [97]. The intermediate t1/4-regime emerges only
for vanishing prestretching force or for strong force scale separation f‖ � fpre, and allows
one to apply a so-called “taut-string” approximation [236], where bending and thermal
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Figure 2.2: Regimes of interme-
diate asymptotics for the change
in projected length ∆‖(t) in the
propagation regime `‖(t) � L:
time t in units of f−2

‖ vs. force
ratio fpre/f‖ (log-log-scale). For
simplicity, we use isotropic fric-
tion ζ̂ = 1. For a given force ra-
tio, the time evolution of ∆‖(t)
corresponds to a vertical tra-
jectory through the diagram.
Figure adapted from Fig. 5 of
Ref. [203].

forces can be neglected after the preparation of an initial equilibrium conformation. How-
ever, this simplification is rigorously valid only for fpre = 0. For long times t � (f‖fpre)

−1,
our result has the same t1/2-time scaling as in Ref. [25] but a different force dependence.
These authors used the “quasi-static” assumption of a locally equilibrated tension, but
failed to correctly account for the limit fpre → 0. The inconsistencies arising from the
complementary approaches of Refs. [25, 236] are thus traced back to a relevant subtlety of
the limit of vanishing prestress, underlining its crucial influence.

Using these results gives via Eq. (2.25) readily the scaling laws for the change in projected
length ∆‖(t) shown in Fig. 2.2 (in the case f‖ < fpre, corresponding to a force reduction, the

subdominant force f‖ is largely irrelevant). Here, we have set ζ̂ = 1 for simplicity. Given a
specific ratio between f‖ and fpre, the time evolution of ∆‖(t) corresponds to a vertical cut
through the figure. For instance, stretching a previously unstretched chain (with fpre = 0),

which has been termed “pulling” [97, 236], produces an initial growth ∆‖(t) ' f‖t
7/8/`

1/2
p

for times t � f−2
‖ , corresponding to the growth law obtained through the linear response

argument of Ref. [60] (note, however, that the actual linear response limit f‖ → 0 cannot
be taken just like that because stochastic tension fluctuations neglected to leading order in
the multiple scale perturbation theory become relevant [99]). Afterwards, the longitudinal

extension grows like (f‖t)
3/4/`

1/2
p [236]. In contrast, completely removing the stretching

force (i.e., f‖ = 0), which has been termed “release” [25, 97], gives a corresponding linear

response like growth law for the longitudinal contraction, ∆‖(t) ' −fpret
7/8/`

1/2
p , crossing

over to ∆‖(t) ' −f
1/4
pre t1/2/`

1/2
p at times t ' f−2

pre. If the effective change in force is small

compared to the prestress, |∆f | =
∣∣f‖ − fpre

∣∣ � fpre, the entire calculation can be per-
formed in Fourier space for oscillatory force variations ∆feiωt by means of a linearization
in ∆f , which gives analytical expression for the viscoelastic modulus G∗ = G′ + iG′′ of a
single semiflexible chain [113, 200]. These laws are all valid as long the tension has not
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f⊥

∆⊥(t)

ℓ‖(t) ℓ‖(t)
fpre

fpre

Figure 2.3: Force scenario for the transverse response. A filament is equilibrated under a pre-
stretching force fpre, and a sudden transverse force f⊥ is applied in the middle of the contour,
producing a bulge of height ∆⊥(t) in response. Via an effective longitudinal force f‖(t), this leads
to a straightening of the rest of the contour, at first in small regions of size `‖(t).

yet propagated through the filament, i.e., as long as `‖ � L. Evaluating the condition

`‖(t
‖
L) = L yields a second characteristic crossover time t

‖
L separating the propagation from

the relaxation regime [203].

Our previous study also established the applicability of the weakly-bending approxima-
tion for two different experimentally relevant situations. The case of stiff polymers with
L � `p gives the small parameter ε = L/`p as before, appropriate for microtubules, actin,
or entire chromosomes. In contrast, a prestretching force fpre can significantly straighten
a filament as well. From the force-extension relation Eq. (1.3), we read off the high-force
asymptote 1 − R‖/L ∼ (4`2

pfpre)
−1/2 [174]. Accordingly, the weakly-bending limit for

stretched polymers is expressed through the small parameter ε = f
−1/2
pre /`p, which is easily

attained for forces of about 0.1 pN in the case of DNA. In the outlook Sec. 2.8, we will
briefly discuss another example of weakly-bending polymers: those in strong confinement.

2.4. Transverse response

As a first extension of the theory of tension dynamics outlined in Sec. 2.2, we analyzed the
transverse response of semiflexible polymers. As shown in Sec. 2.1.3, their stiff backbones
lead to the characteristic anisotropy between transverse fluctuation amplitudes (which, in
equilibrium, grow like t3/4/`p), and longitudinal ones (scaling like Lt3/4/`2

p for times larger

than t? ' L8/`4
p, and like t7/8/`

3/2
p before that). However, due to the inextensibility of

the contour, fluctuations in these two directions evolve independently only on the linear
level. This implies a coupling of transverse and longitudinal response for stronger forces,
which was neglected in previous studies of transverse fluctuations and response [5, 274],
because it does not enter the linearized equations of motion Eq. (2.10). We have ana-
lyzed such couplings for the dynamic response of single polymers, and we expect them
to be relevant also for the force transduction in more complex structures such as single
crosslinks [60], crosslinked networks [81], and prestressed “tensegrity” structures: the pe-
culiar elastic properties of the cytoskeleton have been speculated to arise due to its specific
architecture reminiscent of these interconnected networks composed of compressed and
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tensed elements under prestress [121, 122, 271].
The setup analyzed in our study [202], which is reprinted in Sec. 2.9, is shown in Fig. 2.3.

We consider a weakly-bending contour, either for a stiff polymer with L � `p or due to an
externally applied prestretching force fpre � `−2

p . At time t = 0, a transverse point force
f⊥ is applied in the middle of the contour. In response to this force, the contour develops
a bulge of height ∆⊥(t) and width `⊥(t). Because of the backbone’s inextensibility, the
bulge can continue growing only by pulling in contour length stored in thermal undulations
from the filament’s tails. Hence, the transverse force f⊥ translates into an effective time-
dependent longitudinal force f‖(t), which pulls in stored length from the tails, hindered
by longitudinal friction and therefore initially only from limited regions of size `‖(t). This
longitudinal force, in turn, is equivalent to a backbone tension decaying over a length `‖(t),
which feeds back on the dynamics of the bulge growth and tends to slow down the bulge
growth (remember that the transverse fluctuations of prestretched filaments grow more
slowly than those of free chains). In order to quantify these ideas, our study presents
a scaling argument and a rigorous derivation based on the theory of tension dynamics
discussed in Sec. 2.2.

Our scaling argument revisits known growth laws for the linear transverse response with
and without prestress (the latter case can easily be obtained via a fluctuation-dissipation
theorem from Eq. (2.14)) [91]. Since the contour length used for producing the bulge must
have been pulled out from the tails, the resulting friction has to balance the unknown
longitudinal pulling force f‖(t). In a first step, the “athermal” case without thermal contour
undulations is discussed, where the tails are pulled in along their entire length L. Self-
consistent growth laws for the effective longitudinal force f‖(t) and the transverse response
∆⊥(t) indicate that the coupling is irrelevant for times less than a certain crossover time
tf , whereas at later times the growing longitudinal force feeds back onto the transverse
dynamics and slows down the bulge growth. A simple back reference to the longitudinal
response readily yields results for the thermal case, where stored length is pulled out only
from smaller regions of size `‖(t): because the growth laws Eq. (2.27) derived in Ref. [203]
can be generalized to weakly time-dependent forces such as f‖(t), replacing L → `‖(t) gives
self-consistent scaling laws for f‖(t), and therefore also growth laws for ∆⊥(t), summarized
in a phase diagram quite similar to Fig. 2.2, but with numerically less simple fractions in
the exponents. Quantitative estimates for microtubules, actin and DNA indicate that the
nonlinearities due to the coupling of transverse and longitudinal response can be observed
under many experimental circumstances.

A rigorous approach invokes the above developed theory for the dynamics of the tension
along the contour, which can then be related to observables of interest. The essential idea
is to treat the localized perturbation f⊥ as boundary condition on a contour effectively
split in half. Further, because the bulge width `⊥ follows as characteristic length scale
of bending undulations described through the transverse equation of motion Eq. (2.17a),
the stored length contained in the bulge gives actually only a microscopic and therefore
negligible contribution to the spatially averaged quantity 〈%̄〉 entering the right hand side
of the coarse-grained equation of motion for the tension, Eq. (2.18). It is important for
the boundary conditions, though: demanding that the average longitudinal velocity at the
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origin should vanish,
〈
∂tr‖

〉
= 0, the inextensibility constraint implies a relation between

the first derivative of the tension profile at the origin and the integrated difference in
spatially averaged and full stored length density:

∂sf̄ |s=0 = −ζ̂

∫ L

0

ds ∂t 〈%− %̄〉 . (2.28)

This boundary condition for the tension profile (which can explicitly be given in terms of the
response function Eq. (2.19)), quantifies the feedback between “bulge” and “tail” dynamics.
It depends on small-scale contributions to the stored length density % that drop out when
spatially averaged. However, for a singular perturbation like a transverse point force, they
may still be relevant. By way of the analytical methods discussed in the previous section,
it is possible to compute tension profiles in certain intermediate asymptotic regimes, in
order to quantitatively verify the previously obtained scaling laws. Numerical solutions,
using the algorithm presented in Ref. [203], give solutions for intermediate regimes and
more insight into the crossover scenario. In the next section, we will encounter another
example where small-scale contributions to stored length density resulting from boundary
effects have a quantitative influence.

2.5. Relaxation dynamics

Measuring the relaxation of polymer chains from an initially straight conformation is a
standard experiment in polymer rheology (see Ref. [239] for a review on DNA relaxation
dynamics in shear flow). As mentioned at the beginning of this chapter, many different se-
tups have been used to straighten polymers, and for most of them, the relaxation dynamics
has been investigated as well: for DNA straightened by linear elongational flows [214], by
shear flows [170], by electric fields [168] or a combination of fields and flows [15], and for
DNA within nanochannels [220] or other nanostructures [265], or stretched with optical
tweezers [22, 43, 63, 90]. In vivo, relaxation has been observed on stress fibers following
laser severing [146] and on DNA after chromosome breakage [66]. Moreover, different com-
puter simulations have been performed: some authors used an initially perfectly straight
conformation and bead-rod Brownian dynamics simulations [46, 47, 269], others employed
bead-spring models and used shear flows [119, 151] or forces [149, 241] for stretching.
Theoretical studies have modeled these chains by elastic dumbbells [116, 240], as flexible
polymers [24, 104], and as wormlike chains by means of different quasi-static approxima-
tions [22, 25, 43].

Generally, the relaxation of an initially straight polymer is a prime example for the
stretch-coil transition, and so far the analysis concentrated for the most part on determin-
ing how its key identifier, the longest relaxation time tR, is influenced by hydrodynamic
interactions. Here, we are interested in the dynamics on much shorter scales, especially
because the results of Sec. 2.3 suggest that removing a stretching force gives rise to propa-
gation and relaxation of backbone tension: the contour starts to coil up first in boundary
layers of size `‖(t), because building up thermal undulations in the bulk would require to
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Figure 2.4: Possible experimental setups for relaxation experiments. (a) In the “force” scenario,
optical tweezers are used to stretch a filament fixed between two beads with a force fpre. Re-
striction enzymes could be used to cut the filament loose. (b) In the “field” setup, an electric
field of strength E is used to straighten the chain, which remains attached to a bead at one end.
Using linear extensional flow of velocity v for stretching gives rise to largely equivalent relax-
ation dynamics. (c) The “shear” case describes the straightening of polymers by a symmetric
shear flow with shear rate γ̇. (d) In the “quench” experiment, the filament is equilibrated at
low temperature, which is then suddenly increased by a factor θ. Figure adapted from Fig. 1 of
Ref. [204].

pull in the filament’s tails against longitudinal friction. Accordingly, the tension relaxes
from its initially high value at first only near the ends. Primarily, we want to investigate
the influence of the exact initial conditions resulting from the quite different commonly em-
ployed experimental setups, which was previously not discussed. Because exactly straight
initial conditions, repeatedly used in computer simulation [46, 47, 269], cannot be real-
ized in practice due to the presence of thermal noise, relaxation will always start from an
initially only “nearly” straight conformation containing some “memory” of the stretching
mechanism, but in all cases it will be driven exclusively by stochastic forces. To which
extent the initial conditions influence the longitudinal dynamics, and how results obtained
with different setups should be compared, were the main questions addressed in our own
study [204], which is reprinted in Section 2.10.

For the four different setups shown in Fig. 2.4, we employed Brownian dynamics sim-
ulations using a simple free-draining bead-spring model (simulations were carried out by
Wolfram Möbius). We measured two observables: the time-dependent change ∆‖(t) =
R‖(t)−R‖(0) in end-to-end distance projected onto the initial longitudinal axis (note that
it is defined with a minus sign in Ref. [204]; here, we ignore the sign if only the scaling
is of interest), and the bulk tension fb(t) in the filament, which gives a measure of the
bulk stress in a polymer solution. The parameter values for the different setups were cho-
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sen such that the initial extension is approximately identical and close to full stretching,
∆‖(0) ≈ 0.97L (see Appendix A.1 for a simple estimation of force-extension relations for
different setups). Our results show distinct differences between the four setups for short
times and universal scaling for longer times, which can be explained on a qualitative level
based on the results of Sec. 2.3.

The “force” case is identical to the “release” scenario briefly mentioned in Sec. 2.3. While
the bulk tension fb, initially equal to the external force fpre, stays approximately constant

for times t � t
‖
L, the boundary layer size `‖(t) and from Eq. (2.25) also the change in

projected length ∆‖(t) ' tfb(t)/(ζ̂`‖(t)) undergo at tf = f−2
pre a crossover from a linear

regime (∆‖ ∝ t7/8) to a nonlinear regime (∆‖ ∝ f
1/4
pre t1/2), see Fig. 2.1. At time t = t

‖
L,

when the tension has propagated through the filament (`‖(t
‖
L) = L), the dynamics enters

the universal relaxation regime discussed below.
For the “field” and “shear” cases, the initial tension profiles have a different shape (linear

and parabolic, respectively), and we can estimate their magnitude from a force analog f ∗pre:

the total Stokes friction ζ̂vL in a linear flow of velocity v and the total friction ζ̂L2γ̇ in an
extensional shear flow of shear rate γ̇ give a measure of the resulting tension in a filament.
If an electric field is used for stretching, the effective force resulting from the applied field E
is not so easily quantified due to complicated counterion effects [107, 163, 164, 250]. In any
case, the resulting tension dynamics also displays a dynamic crossover at a characteristic
time tf = f ∗−2

pre . However, the longitudinal contraction ∆‖(t) ∝ t scales always linearly in
time, because the filament’s tails have been equilibrated under a flow profile very similar
to the one that is generated as they are “pulled in” with approximately constant speed,
such that tension propagation effects are only subdominant.

The “quench” case, finally, describes an experiment where the filament has been equi-
librated at low temperature, which is then suddenly increased by a large factor θ. Here,
a force analog can only be defined formally to match the resulting crossover time t

‖
L. In

contrast to the other setups, the tension in a quenched filament is initially zero and only
produced because the contour is equilibrated under a different temperature than now ex-
perienced. This tension can be relaxed by reshuffling stored length between short and long
wavelength modes [96], and since it decreases as fb ∝ t−1/2, while `‖ ∝ t1/8, we observe a
new growth law ∆‖ ∝ t3/8 in the longitudinal contraction. Note that because the tension
even diverges as t → 0, microstructure corrections that are subdominant for “realistic”
values of the tension become observable (see Sec. 2.6 for a discussion of these effects).

At time t = t
‖
L, the tension has propagated through the filament and enters the regime

of “homogeneous tension relaxation” [97], where our observables attain the same scaling
in all setups. The universal growth law ∆‖ ∝ t1/3, which has been observed in experiments
on DNA relaxation from shear flow stretching [229], results from a nontrivial influence
of longitudinal friction, which may not be neglected even though the tension is quasi-
statically equilibrated [97]. This growth law can readily be motivated in a simple but
somewhat unphysical picture based on a strongly stretched polymer with instantaneous
extension L −∆‖, where ∆‖ ' Lf

−1/2
b /`p is in a quasi-static approximation given by the

high-force asymptote of the force-extension relation Eq. (1.3) [174]. Assuming that the
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friction ζ̂L∆‖/t resulting from the contraction is balanced by the internal tension fb, we
obtain the scaling laws ∆‖ ∝ t1/3 and fb ∝ t−2/3 [97]. These results for the universal regime
also indicate that for the exactly straight initial condition, which could be realized in all four
setups by sending the control parameters to infinity, the propagation regimes with their
characteristic differences vanish: t

‖
L → 0. At the same time, important microstructure

corrections, discussed in the next section, become very relevant.

These qualitative results can be systematically verified by solving the coarse-grained
equation of motion for the tension, Eq. (2.24), for the respective setups. While the “force”
case has been discussed previously [99, 203], the results for “field”, “shear”, and “quench”
require different approximation techniques. Using corresponding numerical solutions, we
compare these results to simulation data. It turns out that it is necessary to account for
the exact boundary conditions. Our main observable, the longitudinal contraction ∆‖(t),
can be expressed as the amount of stored length that has been created in the contour:

∆‖(t) = −
∫ L

0

ds

∫ t

0

dt′∂t′ 〈%〉 (s, t′)

= ζ̂−1[F ′(L, t)− F ′(0, t)]−
∫ L

0

ds

∫ t

0

dt′∂t′ 〈%− %̄〉 (s, t′).
(2.29)

While the first term involving 〈%̄〉 follows via Eq. (2.18) from the tension profile, the second
term measures the difference between spatially averaged and full stored length density,
which was already relevant for the transverse response (see Eq. (2.28)), but has been
neglected in our scaling arguments for the longitudinal response in Sec. 2.3. Revisiting
the simplification w′2

q (s) ≈ q2/L made in Eq. (2.21), this term can be approximately
computed by using the correct eigenmodes for “free” ends, resulting in a quantitatively
relevant even though on the scaling level subdominant contribution that gives altogether
good quantitative agreement between simulation results and analytical theory over almost
6 decades in time without free parameters.

Moreover, we briefly quantify experimentally relevant time and force scales: e.g., for
typical DNA a stretching force of about 2 pN would be sufficient to see tension propagation
effects on time scales below 50 ms. We also discuss the onset of the stretch-coil transition:
the well-known stem-flower picture by Brochard-Wyart [24] for a flexible polymer predicts a
longitudinal contraction ∆‖(t) ∝ (t/tR)1/2, where tR is the Rouse time, due to the formation
of coil-like “flowers” at the ends of a still relatively straight “stem”. For the dominating
bulk (i.e., stem) relaxation of strongly stretched semiflexible polymers (in the relevant
regime of homogeneous tension relaxation, ∆‖(t) ' (t/tR)1/3), the scaling argument has
to be modified and gives an even more subdominant contraction that scales like (t/tR)2/3.
Finally, we argue that hydrodynamic interactions could be phenomenologically included
by replacing the length L in the logarithms of the denominators of the friction coefficients,
Eq. (2.4), with appropriately time-dependent hydrodynamic correlation lengths.
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2.6. Microstructure corrections

The previous section has shown that corrections to the inextensible continuous WLC model
may become relevant if relatively large stretching forces are involved. In this section, we
present two theoretical approaches to study corrections to nonlinear WLC dynamics due
to a finite backbone extensibility [200] and a discretized backbone, respectively. These
corrections are particularly important when comparing to simulation data: conventional
simulation models for semiflexible polymers are usually not realistic enough to correctly
account for these effects, which are essentially caused by the very microstructure that has
been neglected in the coarse-grained model. Hence, a semi-quantitative understanding
is important for choosing simulation parameters such that microstructure contributions,
which are essentially simulation artefacts, are not observable.

Basically, two different approaches for Brownian dynamics simulations of semiflexible
polymers are commonly used [67, 92, 247]: bead-spring algorithms, which model the poly-
mer as a chain of beads connected by extensible (Hookean or nonlinear) springs, have
the advantage that equations of motion are easily written down and straightforwardly in-
tegrated numerically; however, to correctly account for the actually very large backbone
stiffness of realistic biopolymers, unfeasibly small time steps are necessary in order to
resolve the resulting high-frequency dynamics. In contrast, bead-rod models, where the
beads are connected by strictly inextensible rods, are supposed to avoid this problem, but
the formulation of the resulting “constrained” dynamics is far from trivial [92, 184, 187]
and requires the introduction of unintuitive metric correction forces; moreover, the time
step cannot be chosen as large as desired due to a regrettably poor numerical stability of
available implementations.

In both cases, the necessary trade-off between simulation accuracy and computational ef-
ficiency can lead to an overestimated prominence of extensibility and discretization effects,
and a theoretical account of their quantitative relevance is therefore desirable. Previous
studies have investigated static properties [133, 160] and some aspects of the dynamics in
the linear regime [172], but the nonlinear tension dynamics remain unexplored.

2.6.1. Backbone extensibility

Almost 15 years ago, experiments have shown that DNA is an extensible molecule [42]. If
stretched with forces of about 65 pN, DNA undergoes the so-called overstretching transi-
tion, observable also in Fig. 1.2, which is caused by internal structural rearrangements (the
double helix changes from the B to the S form). This transition has been studied in great
detail experimentally [42, 244] and theoretically [41, 191, 251]. However, even for smaller
forces, DNA exhibits a finite backbone extensibility coupled to its twist elasticity [171, 172].
Other semiflexible polymers like actin are of course also not strictly inextensible [135], even
though the backbone bonds are indeed very stiff.

In the previous sections, we have analyzed the nonlinear dynamic response of semiflexible
polymers and provided a theoretical description based on an interplay of stored length
and backbone tension. If the backbone is extensible, the tension is no longer a formally
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introduced Lagrange multiplier but an actual spring force proportional to the backbone
strain. Although for a stiff backbone the stretching modes connected to longitudinal strain
relax much faster than the bending modes related to stored length [246], they do so against
the background of a potentially inhomogeneous and not necessarily equilibrated stored
length profile, which in turn can still be related to backbone tension. For a non-equilibrium
relaxation experiment like the “force” scenario discussed in Sec. 2.5, the tension dynamics
is thus a reflection of the competition between the creation of thermal stored length and
the relaxation of mechanical backbone strain.

Our study [200], reprinted in Sec. 2.11, presents a systematic theoretical analysis of these
phenomenological ideas. We use an extensible WLC Hamiltonian [172],

H =
1

2

∫ L

0

ds

[
r′′2 +

kx

`p

u2

]
, (2.30)

where the combination kx/`p (which reads kBTkx in real units) is the energetic penalty
for elongational strain u = |r′| − 1, and kx is the stretching elastic constant. Strictly
speaking, s is no longer the proper arclength, but the difference is negligible on our level
of approximations. For a filament under large prestress fpre � `−2

p , this Hamiltonian gives
rise to an asymptotic force extension relation [172]

1−
R‖

L
= −〈u〉+

〈
1
2
r′2⊥
〉

= −`pfpre

kx

+
1

2`pf
1/2
pre

, (2.31)

which suggests to define two small parameters: εth = f
−1/2
pre /`p expresses the weakly-

bending limit of small contour undulations, and εx = `pfpre/kx formalizes a corresponding
“weakly-stretching” asymptote of small longitudinal strain. For our analysis, we assume
that the contribution due to backbone stretching is subdominant against bending, i.e., that
εx � εth � 1. Our theory exploits that stretching modes relax faster than bending modes,
while the effective tension f = kxu/`p varies on spatially larger scales than the bending
modes. Hence, we introduce small- and large-scale spatial coordinates as in Sec. 2.2.1, but
additionally also two independent time variables for the slow bending and fast stretching
dynamics, respectively. Performing a multiple-scale analysis similar to Sec. 2.2.1, we arrive
at a coarse-grained equation of motion for the tension similar to Eq. (2.18):

∂2
s̄ f̄ = −ζ̂∂t[%̄− ū], (2.32)

where the thermal stored length density % = 1
2
r′2⊥ is now reduced by an amount u = `pf/kx

due to the mechanical stretching of backbone bonds.
Our study proceeds to calculate the complex compliance J∗ describing the change in

end-to-end distance ∆‖(t) in response to an oscillatory perturbation f‖ = fpre + δfeiωt,
arriving at scaling laws in intermediate asymptotic regimes, similar to the ones shown in
Fig. 2.1 (cf. also Ref. [113] for the inextensible case). Here, however, we are more interested
in extensibility corrections for the “force” scenario of Sec. 2.5. From Eq. (2.32), we obtain
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a diffusive growth law for short times,

∆‖(t) = −4fpre√
π

√
`pt

ζ̂kx

for t � tX, (2.33)

where the time scale tX = f−2
X is related to a characteristic force scale fX = (kx/`

2
p)

2/3 [133,
270]: if fpre � fX (equivalent to εx � εth), thermal stored length (from bending) con-
tributes more to extension than longitudinal strain, and in this case the dynamics for later
times t � tX is unperturbed by extensibility effects. Given that fX ≈ 50 pN for DNA [172],
which is close to the overstretching transition, extensibility effects are indeed not relevant
for experiments on DNA in reasonable parameter regimes, but the condition fpre � fX is
much harder to obey in bead-spring simulations (see, for instance, Ref. [190]).

2.6.2. Backbone discretization

In order to estimate the relevance of discretization or microstructure effects, which are
generally inevitable in experiments and computer simulations, we introduce an ultravio-
lett mode cutoff qmax ' π/b in the explicit formulation of Eq. (2.18) (see Eq. (2.24) and
Eq. (A.3)), where b � L, `p is an appropriate microscopic length scale. A detailed analysis
of the “force” scenario of Sec. 2.5 is presented in Appendix A.2, where the resulting inter-
mediate asymptotic growth laws are summarized in Table A.1. As noted previously [269],
the maximum “reasonable” stretching force is given by the force scale fD = b−2: larger
forces fpre � fD have a correspondingly smaller blob size f

−1/2
pre � b [203] below the spatial

resolution.
For small enough forces fpre � fD, we find relevant effects only on very short times,

where they contribute a linear growth of the end-to-end distance, masking the predictions
of Ref. [204] for the ideal case:

∆‖(t) = −
√

8

ζ̂`pb
fpret for t � tD, (2.34)

with a characteristic time tD = f−2
D . In contrast, for an exactly straight initial conformation

as in Refs. [46, 47, 269], which we model as the limit fpre → ∞ in Appendix A.2, we
find initially parabolic tension profiles with maximum (bulk) magnitude fb = L2/(`pb

3)
proportional to the squared number of beads (in agreement with Ref. [92]). These results
suggest that for a discrete model any force larger than L2/(`pb

3) amounts to the infinite
force limit.

While for DNA the characteristic force fD ≈ 50 pN is again in the neighborhood of the
overstretching transition, the consequences of these bounds have not always been properly
realized in computer simulations [47, 190]: if fpre � fD, discretization effects dominate the

relaxation for times up to ζ̂L2b3/`p, which can be much larger than the microscopic time
scale `pb

3 associated with the Brownian dynamics of the single beads [92].
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2.7. Conclusions

This chapter presented a theoretical discussion of the nonlinear dynamic response of semi-
flexible polymers. Methodically based on a multiple-scale perturbation theory [97, 98, 99],
developed to systematically account for the failures of the linearized dynamics in the short
time response to sudden perturbations, we summarized in Section 2.3 our previously ob-
tained results for the longitudinal response [203], illuminating the strong and intricate
influence of prestress on the semiflexible polymer response. In the following Section 2.4,
the nonlinear response to transverse forces was analyzed by means of scaling laws, which
shed light on the coupling between transverse and longitudinal response and the resulting
feedback. In a systematic and quantitative calculation, we treated the effects of the trans-
verse point force via a boundary condition on the backbone tension [202]. In Section 2.5,
we discussed a paradigmatic experiment in polymer rheology: the relaxation of a polymer
chain from an initially straight conformation. Comparing different experimental realiza-
tions of “initially straight” (e.g., by forces, fields, or flows), we elaborated the resulting
differences in the relaxation dynamics: while it is scenario-specific for short times, where
tension propagation is relevant, it becomes universal for longer times. Supplemented by
a more accurate treatment of the exact boundary conditions, our parameter-free theory
curves are in good agreement with simulation data from Brownian dynamics simulations.
We also discussed the influence of hydrodynamic interactions, the onset of the stretch-coil
transition, and quantitative implications for experiments [204]. The following Section 2.6
was concerned with microstructure corrections due to a finite backbone extensibility or
a discretized backbone, which are especially relevant for computer simulations. We de-
veloped a theory of tension dynamics for extensible wormlike chains that accounts for the
interplay of bending and stretching modes, and yields critical time and force scales relevant
for simulation design [200]. Further, we analyzed the influence of discretization corrections
by means of a mode cutoff, and found that the relaxation dynamics may be completely
dominated by discretization effects if the stretching force is chosen too large.

2.8. Outlook

Building up on this and previous work, current research on the nonlinear response of
semiflexible polymers focuses on three directions: “glassy” dynamics, confinement and
discretization effects.

“Glassy” dynamics. The “glassy” wormlike chain model has been proposed in order
to account for the slow relaxation of long-wavelength bending modes in polymeric solu-
tions [142, 145, 237]. The complicated collective effects of polymeric interactions and
molecular crowding, giving rise to distinct signatures of “glassy” dynamics [61], are phe-
nomenologically accounted for by an exponential stretching of the relaxation times of all
modes with wavelength longer than a certain cutoff length Λ. This provides an accurate
quantitative description of rheological data from actin solution [237]. Analyzing the longi-
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tudinal and transverse response discussed in Sections 2.3 and 2.4 within this model reveals
distinct signatures beyond a characteristic crossover time tΛ [254].

Confinement. Recent technological advances have allowed to study static and dynamic
properties of single polymers such as actin [140] or DNA [221] confined in micro- or
nanochannels. Theoretical research has so far focused on scaling properties [205] and cer-
tain static observables such as the tangent correlation and the mean end-to-end distance
and its distribution [156, 264, 267]. Several experimental studies also investigated the
dynamic response of confined DNA [15, 16, 221], but the influence of confinement on ten-
sion dynamics remained unexplored. Recent work extends the analysis of the longitudinal
response to polymers in confinement [263], recognizing dynamic signatures reminiscent of
those caused by external prestress. Interestingly, suddenly removing the confinement walls,
as another theoretically conceivable setup to measure the relaxation of an initially straight
filament, leads to a new superlinear growth law ∆‖(t) ∝ t9/8 for the initial longitudinal
contraction.

Discretization effects. Understanding the effects of a finitely discretized backbone is
crucial for the proper design of computer simulations. In order to compare the perfor-
mance and accuracy of bead-spring vs. bead-rod algorithms, we have simulated the “force”
scenario discussed in Sec. 2.5. If simulation parameters are chosen such that the bounds
established in Sec. 2.6 are respected, the resulting differences in ∆‖(t) for these two al-
gorithms are indeed smaller than the error bars. While introducing a suitably adjusted
mode cutoff as in Ref. [111] gives quantitative agreement between simulation and theory
for the autocorrelation function of the end-to-end distance [152], a cutoff within the con-
tinuum approximation as in Sec. 2.6.2 describes the strong short-time deviations expected
for the relaxation from a perfectly straight initial conformation (see Appendix A.2) only
qualitatively [150].
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In tracing back the viscoelasticity of the cell to proper-
ties of its constituents, a detailed understanding of the
mechanical response of single cytoskeletal filaments is
indispensable. Because of their large bending stiffness,
these filaments exhibit highly anisotropic static [1]
and dynamic [2–4] features, such as the anomalous
t3=4-growth of fluctuation amplitudes in the transverse
direction [5,6], i.e., perpendicular to the local tangent.
The related response to a localized transverse driving force
has so far been examined only by neglecting longitudinal
degrees of freedom [6,7], although these polymers are
virtually inextensible, and transverse and longitudinal con-
tour deformations therefore coupled. In this Letter, we
show that longitudinal motion strongly affects the trans-
verse response even for weakly-bending filaments and
leads to relevant nonlinearities beyond a characteristic
time tf .

The physical key factors controlling the transverse re-
sponse may be understood from Fig. 1, which shows a
weakly-bending polymer (bending undulations are exag-
gerated for visualization) shortly after a transverse driving
force f? has been applied in the bulk. In response to this
force, the contour develops a bulge. Because of the back-
bone inextensibility, this bulge can continue growing only
by pulling in contour length from the filament’s tails. This
effectively reduces the thermal roughness of the contour
[8–10] at a rate substantially limited by longitudinal sol-
vent friction. The resulting coupling to the longitudinal
response tends to slow down the bulge growth. In order to
describe this feedback mechanism, we start with a scaling
analysis and treat the simpler athermal case first. To con-
nect to the biologically important situations of prestressed
actin networks [11] and prestretched DNA [12], we then
extend a recent theory of tension dynamics [13] to calcu-
late the nonlinear response for unstretched and pre-
stretched initial conditions.

Consider the overdamped dynamics of an initially
straight stiff rod of total length L. Suddenly applying a
transverse pulling force f?, for simplicity in the center of

the rod, leads to the growth of a bulge deformation. The
generated friction in the transverse and longitudinal direc-
tion needs to be balanced by corresponding driving forces.
Viscous solvent friction is modeled via anisotropic friction
coefficients (per length) �? and �k � ��? with � � 1

2 [7]
for transverse and longitudinal motion, respectively. After
a time t, the resulting bulge has some characteristic height
�?�t� and width ‘?�t�. The transverse force f? balances
the drag force �?‘?�?=t acting on a polymer section of
length ‘? moving transversely with velocity �?=t through
the solvent; hence, �? ’ f?t=��?‘?�. Naturally, the con-
tour length along the deformed rod section is larger than its
longitudinal extent ‘?. Assuming a simple ‘‘triangle’’
geometry as in the blowup in Fig. 1, the difference is
roughly given by �2

?=‘?. In order to provide this stored
(or excess) length, the filament’s tails are pulled in by a
longitudinal force fk. The latter has to balance the longi-
tudinal friction that acts on the filament’s tails of length L

FIG. 1 (color online). A transverse point force f? applied to
the contour r�s� (dark) translates, through the formation of a
bulge of height �? and width ‘?, into a longitudinal pulling
force fk acting on the polymer’s tails. This force induces back-
bone tension f�s� (light) that penetrates the contour within a
region of size ‘k where thermal undulations are straightened.
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moving longitudinally with a velocity given by the tempo-
ral change of the excess contour length contained in the
bulge. Estimating fk ’ �kL�2

?=�‘?t�, we plug in �? from
above and get fk ’ �kLf2

?t=��
2
?‘

3
?�.

The yet unknown time-dependent width ‘?�t� of the
bulge is controlled by the relaxation spectrum of bending
deformations. In the weakly-bending limit, the transverse
displacement field r?�s; t� of an overdamped inextensible
rod with bending stiffness � obeys [5]

 �?@tr? � ��r0000? � fk�t�r
00
?; (1)

in the presence of a longitudinal pulling force fk�t�. Primes
denote derivatives with respect to the arclength coordinate
s 2 �� L

2 ;
L
2�. In the following, we set � and �? to unity,

such that time is a length4 and force a length�2. From a
simple scaling analysis of Eq. (1), r?=t ’ r?�‘�4

? �

fk‘�2
? �, we deduce the growing size ‘?�t� of a bending

deformation (assuming ‘? 	 L). Inserting appropriate
formulas [13] for ‘?�t� into the relations for �? and fk
derived before finally yields the self-consistent scaling
laws for fk�t� and the nonlinear response �?�t� summa-
rized in Table I(a). For short times, the coupling effect is
irrelevant, and �?�t� is linear in f?. However, this requires
the small force fk to pull in more and more contour length
from the tails and increases the longitudinal friction to be
balanced by fk. At the crossover time tf , this force becomes
large enough (typically, fk ’ �f? * f?) to feed back onto
the transverse dynamics, which is manifest in nonlinear
dependencies [14] on f?. In particular, it considerably
slows down the bulge growth, which in turn requires fk
to pull in contour length at a slower rate and eventually
makes it decrease.

The essential difference for nonzero temperatures is the
presence of thermal contour undulations, see Fig. 1, which
are correlated over the persistence length ‘p � �kBT�

�1,
and straightened out by the longitudinal force fk. Still
counteracted by longitudinal friction, this happens first
only within a small but growing region of size ‘k�t� (see

Refs. [3,8–10,13]). Correspondingly, the force fk�t� from
above has to be generalized to a tension field f�s; t�, which
decays over the length scale ‘k�t�. Crossover scaling laws
for ‘k�t�, shown in Table I(b), were derived for constant
external force in Ref. [13] and can be generalized to
(weakly) time-dependent ‘‘external’’ forces such as fk�t�.
The thermal problem is essentially analogous to the athe-
rmal case for late times t > tkL where tkL is defined via
‘k�t

k
L� � L. However, if the region ‘k�t�, where the contour

straightens, does not yet extend to the filament’s ends
(‘k 	 L, or t	 tkL), the ‘‘thermal’’ rod has only an effec-
tive time-dependent length of ‘k�t�. Hence, scaling laws for
the nonlinear response are then obtained simply by replac-
ing L! ‘k in Table I(a), which gives the results summa-
rized in Table I(b). These apply to initially unstretched
filaments while the general case of prestretched initial
conditions is discussed below and summarized in Fig. 3.
Naturally, the replacement L! ‘k affects only the long-
time scaling of the nonlinear response �?�t�—on short
times t	 tf , the transverse dynamics evolves undisturbed
by the longitudinal one. We expect the anomalously slow
long-time response to be observable in many biological
situations. In aqueous solution, we roughly estimate a
crossover time tf � 10�2 s=f? �pN�8=3 for typical micro-
tubules with L � 10 �m [15] (representing the athermal
case). Under thermal conditions, where the ‘‘interesting’’
time window is between tf and tkL, we get tf �
10�3 s=f? �pN�16=7 and tkL � 0:2 s=f? �pN� for (un-
stretched) actin filaments of about 20 �m length [4],
which implies that the actin response to myosin motors
becomes nonlinear on time scales comparable to the dura-
tion of a single power stroke [16]. Filaments in actin net-
works (mesh size � � 1

10L � 0:5 �m) under stresses of

about 1 Pa [11] are usually so short that tf 
 tkL � 10�4 s,
but the coupling nonlinearity should be observable in the
viscoelastic response [3]. Finally, tf � 10�5 s=f? �pN�16=7

and tkL � 0:05 s=��f? �pN���fpre �pN�5=8�� for DNA (L �
20 �m [12]) prestretched with fpre 	 f?.

TABLE I. Summary of crossover scaling laws for an initially unstretched filament. The
crossover time tf is implicitly defined through tf � f�2

k
�tf�, fk�t� is the induced longitudinal

force, �?�t� is the transverse response, and ‘?=k is the transverse/longitudinal correlation length
[8,9,13]. (a) Athermal case. fk pulls in the filament’s tails of length L. tf � ��0f?�

�2 with �0 �

��L�2=3f1=3
? . (b) Thermal case. The filament’s tails have effective length ‘k 	 L. tf � ��f?��2

with � � ��‘p�
2=7f1=7

? .

(a) ‘?�t� fk�t� �?�t�

t	 tf t1=4 �Lf2
?t

1=4 f?t
3=4

t
 tf �tfk�t��
1=2 ��L�2=5f4=5

? t�1=5 ��L��1=5�f?t�
3=5

(b) ‘?�t� ‘k�t� fk�t� �?�t�

t	 tf t1=4 �‘p=��
1=2t1=8 ��‘p�

1=2f2
?t

3=8 f?t
3=4

t
 tf �tfk�t��
1=2 �‘p=��

1=2�tfk�t��
1=4 ��‘p�

2=9f8=9
? t�1=9 ��‘p�

�1=9�f?t�
5=9
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In order to support and quantify the scaling picture
developed above, we proceed with a systematic approach
similar to Ref. [13] based on the length scale separation
‘k�t� 
 ‘?�t�. As long as the dynamics induced by the
transverse force is not influenced by end effects (‘k 	 L),
we consider a semi-infinite arclength interval, s 2 �0;1�,
and represent the transverse force as a boundary condition
at s � 0. In the wormlike chain Hamiltonian, H � 1

2 �R
ds�r002 � fr02�, the tension f�s; t� enforces the local in-

extensibility constraint r02�s; t� � 1. Parametrizing the
contour r�s; t� � �r?; s� rk�T by its transverse and longi-
tudinal displacements from a straight line (see Fig. 1), the
weakly-bending limit of small contour gradients r02? �
O�"� 	 1 is realized for very stiff polymers (" � L=‘p),
alternatively for semiflexible filaments strongly pre-
stretched with a force fpre (" � f�1=2

pre =‘p).
The conformational dynamics in solution follows from a

balance of elastic and tensile forces ��H =�r, thermal
noise �, and anisotropic friction �r0r0 � ��1� r0r0��@tr [7].
Within the weakly-bending limit, transverse and longitu-
dinal fluctuations have strongly different correlation
lengths: ‘?=‘k � O�"1=2�; cf. Table I(b). An adiabatic
approximation (justified via a multiple scale analysis) ex-
ploits this scale separation. The resulting equations of
motion [13] are written in terms of formally independent
rapidly and slowly varying arclength parameters s and
�s"1=2, respectively:

 

@tr? � �@
4
sr? � �f@2

sr? � �? � f?��s���t�; (2a)

@2
�s

�f � ��h@t �%i: (2b)

Equation (2a) gives the small-scale dynamics of the trans-
verse displacements r?�s; t� for locally constant tension
f � �f� �s; t�, cf. Eq. (1). Using a Cosine transform with
respect to s, it is readily solved by the response function

 �?�q; t; t0� � e�q
2�q2�t�t0��

R
t

t0
d� �f��s;�����t� t0�: (3)

Equation (2b) describes the coarse-grained tension varia-
tions on the large scale �s"1=2: it relates curvature in the
tension to (average) changes in stored length density h �%i�

� �s; t� � h12 r
02
?i��s; t�. Averaged both thermally and spatially

(on the small scale s), h �%i inherits its remaining
�s-dependence from the tension �f in Eq. (3):

 h �%i �
�

1

2

�Z 1
0

dq
	

Z t

�1
dt0q�?�q; t; t0��?�q; t

0�

�
2
�
: (4)

Reintroducing a single unique arclength variable, �s � s,
Eqs. (2b) and (4) result in a nonlinear partial integro-
differential equation (PIDE) for �f�s; t� that was analyzed
in Ref. [13] for explicitly prescribed boundary conditions.
In the present case, however, the boundary condition at s �
0 has to be determined implicitly. The polymer’s inexten-
sibility requires that the bulge be created using stored
length from the tails. To formalize this condition, we
demand at any time a vanishing average longitudinal ve-

locity h@trki at the origin where the force is applied, and
also at infinity. Inextensibility (r0

k
� 1

2 r
02
? �O�"2� � %)

gives 0 �
R
1
0 dsh@tr

0
k
i �

R
1
0 dsh@t%i. With @s �fjs!1 � 0

and Eq. (2b), this constraint implies

 @s �fjs�0 � ��
Z 1

0
ds@th%� �%i: (5)

The difference h%� �%i represents the excess length stored
in the bulge on the small length scale ‘?. Consequently, it
did not contribute to Eq. (4) which was spatially coarse-
grained on intermediate scales ‘? 	 l	 ‘k. It can be
obtained, though, from the right hand side of Eq. (4)
upon replacing �? ! �f? sinqs��t�. Evaluating the
s-integral in Eq. (5) to leading order yields our central
analytical result—a boundary condition for the tension
that quantifies the feedback between ‘‘bulge’’ and ‘‘tail’’
dynamics:

 @s �fjs�0 � �
�f2
?

4

Z 1
0

dq
	
@t

�Z t

0
dt0q�?�q; t; t0�js�0

�
2
:

(6)

In terms of the response function �?�q; t; t0� of Eq. (3),
the average displacement �?�t� induced by the transverse
force (i.e., the nonlinear response) reads

 �?�t� � f?
Z 1

0

dq
	

Z t

0
dt0�?�q; t; t0�js�0; (7)

which is evaluated at s � 0 after the tension profiles �f�s; t�
are computed from Eqs. (2b), (4), and (6). To this end, we
introduce two-variable scaling forms [13] that remove any
parameter dependence: �f�s; t� � �f?’�s=sf ; t=tf�, with
the crossover scales tf and sf and � as in Fig. 2.
Numerical solutions are obtained by mapping the PIDE
onto a system of nonlinear equations [17]. Selected tension
profiles are displayed in Fig. 2 and describe one half of

FIG. 2 (color online). Numerical solutions �f�s; t� to Eqs. (2b),
(4), and (6) for fpre � 0, time is increasing from light to dark
color. Inset: log-log plot of the effective longitudinal force
fk�t� � �f�0; t� (dashed line with circles), and of the nonlinear
response �?�t� from Eq. (7) (solid line). Dotted lines indicate
the asymptotes of Table I(b). The crossover scales are tf �
��f?�

�2 and sf � �‘p=��
1=2��f?�

�1=4, with � � ��‘p�
2=7f1=7

? .
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the filament with f? being applied at the origin. Our
analytical approach is based on reducing the scaling
forms ’�s=sf ; t=tf� to one-variable scaling functions ’

�t=tf�


’̂�s=‘k�t�� with ‘k�t� � sf�t=tf�
z in the asymptotic

limits of short and long times. In the latter limit t
 tf , we
recover either the taut-string approximation of Ref. [8] and
may neglect bending and thermal forces, or the quasistatic
approximation of Ref. [10], which lets us treat the tension
as locally equilibrated. Which approximation is valid de-
pends quite strongly on the prestretching force fpre through
the ratio fpre=��f?�, similar to the related scenario of
longitudinal stretching forces applied to prestretched fila-
ments [17]. The resulting intermediate asymptotic scaling
laws for �?�t� are summarized in Fig. 3, including ana-
lytical prefactors. For a given ratio fpre=��f?�, the evolu-
tion of �?�t� corresponds to a vertical path through
Fig. 3. The exact solutions quickly converge to these
asymptotes, as shown in the inset of Fig. 2 for the limiting
case fpre � 0.

In summary, we argue that the coupling between trans-
verse and longitudinal response affects not only single
polymers, but also single crosslinks, crosslinked networks,
and tensegrity structures [3,9,11,18]. For completeness, we
note that our self-consistent approach both for the heuristic
bulge idea as well as for the systematic derivation of
Eq. (6) applies only to the nonlinear [13] response on
sufficiently small times t	 tkL, tc. At tkL, end effects be-
come important, and at tc, the weakly-bending assumption

breaks down: the contour gradients become large when
�? ’ ‘?. We find that tc * tkL for initially weakly-bending
filaments (as those in the above discussed situations) [19].
Our analysis of the generic coupling mechanism is not
constrained by the details of the relaxation regime t
 tkL
(which is similar to the athermal case).
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[9] R. Everaers, F. Jülicher, A. Ajdari, and A. C. Maggs, Phys.

Rev. Lett. 82, 3717 (1999).
[10] F. Brochard-Wyart, A. Buguin, and P. G. de Gennes,

Europhys. Lett. 47, 171 (1999).
[11] M. L. Gardel et al., Proc. Natl. Acad. Sci. U.S.A. 103,

1762 (2006).
[12] Y. Bohbot-Raviv et al., Phys. Rev. Lett. 92, 098101

(2004).
[13] O. Hallatschek, E. Frey, and K. Kroy, Phys. Rev. Lett. 94,

077804 (2005); Phys. Rev. E 75, 031905 (2007); 75,
031906 (2007).

[14] Since the weakly-bending assumption still holds at t � tf ,
longitudinal friction is the only relevant nonlinearity, and
higher-order terms / r3

? in Eq. (2a) are negligible.
[15] F. Pampaloni et al., Proc. Natl. Acad. Sci. U.S.A. 103,

10248 (2006).
[16] M. J. Tyska and D. M. Warshaw, Cell Motil. Cytoskeleton

51, 1 (2002).
[17] B. Obermayer, O. Hallatschek, E. Frey, and K. Kroy, Eur.

Phys. J. E (to be published).
[18] D. E. Ingber, J. Cell Sci. 116, 1157 (2003).
[19] tc ’ �‘p=L�

9tkL if f? 
 ‘�2
p and fpre & ‘�2

p ; otherwise,

tc 
 tkL. For f? 
 ‘3=2
p =L7=2 (fpre 
 ‘2

p=L
4), tkL falls into

the taut-string (quasistatic) regime (cf. Figure 3).

FIG. 3 (color online). Regimes of intermediate asymptotics
(separated by thick black lines) for the nonlinear response
�?�t� (boxed formulas); time t=��f?��2 vs. force ratio
fpre=��f?� (log-log scale). The universal initial regime [5] (light
shaded) is followed by a quasistatic regime (white) with different
force scaling for asymptotically small (< ) and large (> ) [5]
force ratio; in these limits, the respective prefactors are b< 

�8�1�

���
2
p
�2=	3�1=8 and b> 
 	�1=2. An intermediate taut-

string regime (dark shaded) emerges for very small force ratio.
The prefactor is a � �3�2�

���
2
p
�=	2�2=9 if fpre � 0.

PRL 99, 098302 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 AUGUST 2007

098302-4



Freely relaxing polymers remember how they were straightened

Benedikt Obermayer,1 Wolfram Möbius,1,2 Oskar Hallatschek,3 Erwin Frey,1,* and Klaus Kroy4,†

1Arnold Sommerfeld Center and Center of NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37,
80333 München, Germany

2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
3Max Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany

4Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany
�Received 11 June 2008; revised manuscript received 15 December 2008; published 26 February 2009�

The relaxation of initially straight semiflexible polymers has been discussed mainly with respect to the
longest relaxation time. The biologically relevant nonequilibrium dynamics on shorter times is comparatively
poorly understood, partly because “initially straight” can be realized in manifold ways. Combining Brownian
dynamics simulations and systematic theory, we demonstrate how different experimental preparations give rise
to specific short-time and universal long-time dynamics. We also discuss boundary effects and the onset of the
stretch-coil transition.
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I. INTRODUCTION

The mechanical properties of semiflexible polymers,
which form an integral part of the cell structure, are of high
relevance to the understanding of cell elasticity and motility
�1,2�. External stress not only remarkably changes static and
dynamic features �3–5�, but has also important biological
implications, e.g., for enzyme activity on DNA �6–8�. Par-
ticularly intriguing aspects of stress-controlled behavior can
be observed for the relaxation of semiflexible filaments from
initially nearly straight �i.e., highly stressed� conformations.
In recent years, many experimental and theoretical studies
have addressed this paradigmatic problem of polymer rheol-
ogy �see, e.g., Refs. �9–28��, often primarily focused on the
influence of hydrodynamic interactions on the longest relax-
ation time tR, which is a key identifier of the stretch-coil
transition. However, on much shorter times the polymer dy-
namics is predominantly controlled by the highly nontrivial
internal conformational relaxation �29,30�, which plays a rel-
evant role in many biological situations ranging from the
viscoelastic response of polymer networks �31� to molecular
motor kinetics �32� and DNA supercoiling dynamics �27,33�.
This aspect of the relaxation is still poorly understood, the
more so as standard analytical techniques based on linearized
equations of motion fail due to inherent nonlinearities initi-
ated by strong perturbations �34,35�. Further, because a com-
pletely straightened polymer conformation can in practice
not be realized in the presence of thermal noise from the
environment, the short-time dynamics of an initially “nearly”
straight filament will reflect the way it was straightened: fila-
ments can be stretched by optical tweezers �20,26�, by elec-
tric fields �13,17,18,23,36�, or by flows of different geometry
�9,11,13,16,19,22,28,37�, but a straightened contour can also
result from low initial temperatures. In any case the relax-
ation dynamics is driven exclusively by stochastic forces.
This raises the question how results obtained with different

setups should be compared and when the dependence on
initial conditions fades out.

In the following, we present results from computer simu-
lations combined with a thorough and exhaustive theoretical
analysis to explain how fundamental differences in the short-
time relaxation emerge from different experimental prepara-
tion methods but give way to universal long-time relaxation.
Four idealized initial conditions �see Fig. 1� are shown to
lead to qualitatively distinct behavior despite superficial
similarities. “Force” refers to mechanical stretching, i.e., a
strong external stretching force fpre that is suddenly removed
on both ends, for instance, in a setup using �−DNA, optical
tweezers, and restriction enzymes �8�. Second, the term
“field” is used for experiments employing an electric field
�17� of strength E for stretching, where one end is always
kept fixed. Once switched off, such fields give rise to relax-
ation dynamics similar to the one in setups using homoge-
neous elongational flows �9� of velocity v. Further, we de-
note by “shear” the stretching by planar extensional shear
flows of shear rate �̇ in a symmetric geometry �19,22�, see
Fig. 1�c�. Finally, “quench” refers to a scenario where the

*frey@physik.lmu.de
†kroy@itp.uni-leipzig.de

FIG. 1. �Color online� In the “force” scenario �a�, a stretching
force fpre is suddenly removed at both ends. In the “field” setup �b�,
one end is held fixed and the electric field of strength E �or homo-
geneous elongational flow of velocity v� is switched off, similar to
the “shear” case �c� with a symmetric extensional shear flow of
shear rate �̇. In the “quench” experiment �d�, the temperature is
suddenly increased by a large factor � from an initially small value.
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temperature is suddenly increased by a large factor � from a
small value T /� near zero to its final value T. This setup is
more feasible for computer simulations, but the equivalent
sudden drop in persistence length �p might be experimentally
realizable by chemical reactions.

The paper is organized as follows. In Sec. II, we show
results from Brownian dynamics simulations for each of the
four different setups. Section III presents a qualitative dis-
cussion of the underlying theoretical model, resulting in scal-
ing laws for pertinent observables which readily suggest in-
tuitive explanations for the qualitative differences between
the scenarios and their universal long-time asymptote. A de-
tailed and somewhat technical derivation of these asymptotic
scaling laws is contained in Sec. IV, where we also analyze
the effect of different boundary conditions. In Sec. V, we
present a quantitative comparison between simulation results
and theory. At the end of the paper, we discuss experimental
implications including quantitative estimates of control pa-
rameters in typical realizations, the onset of the stretch-coil
transition, and the influence of hydrodynamic interactions.

II. SIMULATION RESULTS

In the Brownian dynamics simulation, we employ the
standard free-draining bead-spring algorithm for wormlike
chains, where different environmental conditions during
equilibration of the chains correspond to the four scenarios
introduced above. The equations of motion for a chain of
total length L=Nb with N+1 beads of size b and mobility �
are given by

�tri − vi = − ��iU + �i�t� , �1�

where the potential U=Us+Ub+Uf contains a stretching part

Us =
kBT�s

2b
�

i

��ri+1 − ri� − b�2, �2�

a bending part

Ub =
kBT�p

b
�

i

�1 − ti+1 · ti� , �3�

and an external potential Uf. Here, �p is the persistence
length, ti=

ri−ri−1

�ri−ri−1� is a normalized tangent vector, and �s is the
stretching elastic constant, which is chosen such as to avoid
visible artifacts from backbone stretching in our simulation
results. We use Gaussian noise with strength ��i�t�� j�t���
=6�kBT�ij��t− t��. The time step is 10−5�0, where �0
=b2 / �kBT�� is the self-diffusion time of the beads. The
chains are equilibrated along the x axis symmetrically to the
origin under the respective stretching mechanism. In the
force case, Uf=−fpre�xN−x0� and vi=0, while Uf=0 and vi
= �v ,0 ,0�T for field setups. For shear, we take vi
= �̇�xi ,−yi ,−zi�T, and in order to prevent the polymer from
diffusing out of the stagnation point, an additional harmonic
potential Uf=

1
2 �̇�−1xCOM

2 drives the center-of-mass coordi-
nate xCOM back to the origin �cf. the feedback control system
in Ref. �19��. In these scenarios, we equilibrate for 104 time
steps, while initial conformations are generated directly us-

ing the equilibrium tangent correlations in the quench case.
In all cases, Uf=0 and vi=0 upon release. Ensemble aver-
ages were taken over 150 realizations.

To characterize the relaxation dynamics, we concentrate
on two observables. One is the time-dependent change
�R	�t�=R	�0�−R	�t� in the ensemble average of the filament’s
end-to-end distance R	, projected onto the initial longitudinal
axis. Note that with this definition, �R	 is positive and in-
creasing, while the actual end-to-end distance shrinks during

relaxation. The second observable is the mean tension f̄b�t�
in the filament, proportional to the bulk stress ��t� in a poly-
mer solution. Figure 2 shows simulation results for �R	�t�,
measured from the projection on the initial longitudinal axis,

and for f̄b�t� �proportional to the sum of the spring displace-
ments from their equilibrium position�. Parameter values are
given in the caption of Fig. 2 and were chosen such that the
initial extension is close to full stretching �R	�0�
0.97L in
all cases�. While the universal scaling for longer times is
evident �the apparent systematic offset in the field case arises
simply because there is only one free end�, substantial dif-
ferences between the scenarios for shorter times are clearly
observable as well.

III. QUALITATIVE THEORETICAL RESULTS

From Fig. 2 it is obvious that the time evolution of �R	�t�
and f̄b�t� does not obey simple power-law scaling. Simplify-
ing approaches based on scaling arguments �10,17�, elastic
dumbbell models �16,22�, or quasiequilibrium approxima-
tions �14,27� have sometimes been used successfully for spe-
cific situations and parameter ranges. In contrast, we employ
a systematic formalism �35� based on the wormlike chain
model, which allows one to generally account for the com-
plex dynamics resulting from different environmental pertur-
bations. Here, we first present qualitative results for all four
scenarios in order to illustrate their differences and discuss
exact analytical and numerical results in the next section.
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FIG. 2. �Color online� Quantitative results: change in projected

length �R	�t� and mean bulk tension f̄b�t� �inset� for computer simu-
lations of a force �squares�, field �triangles�, shear �circles�, and
quench �diamonds� scenario, respectively. Simulation parameters
were L=200b, �p=40b, �s=6000 /b, fpre=10kBT /b, v=0.18b /�0,
�̇=0.0046 /�0, and �=35.7, such that R	�0�
0.97L in all cases.
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In the wormlike chain model �38�, semiflexible polymers
are represented as inextensible smooth space curves r�s , t� of
length L. Bending energy is proportional to the squared local
curvature ��s

2r�2, such that in equilibrium, tangent orienta-
tions are correlated over the persistence length �p=	 /kBT,
where 	 is the bending rigidity. The initially straight polymer
is supposed to be equilibrated at times t
0 and released at
t=0. After that, the longitudinal contraction is driven ener-
getically uphill via the creation of contour undulations by
entropic forces. Considering the conservation of contour
length due to the �near� inextensibility of the backbone
bonds, these transverse wrinkles are conveniently referred to
in terms of their excess contour length, or stored length, with
an associated line density �. Mathematically, the inextensi-
bility is enforced by the backbone tension f which counter-
acts stretching, and the creation of stored length is accompa-
nied by the relaxation of tension. The theory of Refs. �35,39�
relates the tension f�s , t� to the stored length density ��s , t�,
based on the weakly bending limit of small contour devia-
tions from a straight line. In practice, this can easily be real-
ized by choosing the control parameters fpre, E or v, or �̇
sufficiently strong �as in typical experiments�, or the quench-
ing factor � sufficiently large. It also justifies the free-
draining approximation, where hydrodynamic effects are
captured by anisotropic local friction coefficients ��,	 �per
length� for transverse and longitudinal friction, respectively
�40�. However, ordinary perturbation theory is applicable
only for late times t� t���	L8 / �kBT�p

5� �35�, because to low-
est order it allows only a linear spatial dependence of � and
f and neglects longitudinal friction forces �34�. Further, ex-
cept for quite stiff filaments with �p
L, the time t� is usu-
ally larger than the filament’s longest relaxation time tR
��	�pL2 /kBT �41�, which within our approximations is given
by the Rouse time of a polymer with Kuhn length 2�p. Nev-
ertheless, with an improved formalism �35,39� including
nontrivial spatial variations in f and �, the conformational
relaxation at times t� tR can be analyzed even for quite flex-
ible polymers. This leads to the remarkable insight that
weakly bending polymers constitute self-averaging systems:
the small stochastic fluctuations average out along the con-
tour and the coarse-grained tension dynamics follows from
the deterministic relation

�s
2 f̄ = − �	�t��̄� , �4�

where the overbar denotes a �local� spatial average that pro-
duces effectively an ensemble average �denoted by �·�� �39�.
Driven by tension gradients, stored length propagates subdif-
fusively from the filament’s ends into the bulk—limited to
boundary layers of size �	�t� by longitudinal solvent friction.
In more intuitive terms, the filament starts to “coil up” first at
the boundaries, and only later in the bulk, see also Fig. 3.

In general, ��̄� is a nonlinear functional of f̄ , see Eq. �10�
below for a detailed expression. Exact analytical results for

the boundary layer size �	�t�, the bulk tension f̄b�t�, and the
change in projected length �R	�t� will be obtained as leading-
order results of a systematic asymptotic expansion of Eq. �4�
in the next section. However, the scaling of the dominant

part �R̄	�t� of �R	�t�, which is independent of boundary con-

ditions and an effectively deterministic quantity, can be
found from a simple dimensional argument: the change in
end-to-end distance equals the amount of stored length ��	

that has been created in the boundary layer. On the scaling

level, Eq. �4� reads f̄b /�	
2��	� / t, and we obtain

�R̄	 �
t f̄b

�	�	

. �5�

Note that the change �RG�t� in the gyration tensor’s largest
eigenvalue, which is frequently identified with �R	 �21,42�,
obeys a different scaling law �RG� t f̄b / ��	L� for short times
t� tL

	 �43�. Additional subdominant contributions to �R	�t�
from end fluctuations will be analyzed in Sec. IV.

Figure 4 summarizes the scaling results of Sec. IV for

�	�t�, f̄b�t�, and �̄R	�t� in various intermediate asymptotic re-
gimes, which are separated by different crossover times that
have been matched by an appropriate choice of the respec-
tive control parameters for better comparison. Clearly, the
time tL

	 =�	L2�kBT / ��pfpre
3 ��1/2 is of key importance since it

separates scenario-specific and universal relaxation. To un-
derstand the origin of the differences for times t� tL

	 , we will
consider the different scenarios separately before we address
the universal regime t� tL

	 .
�a� Force setup. After the stretching force has been shut

off, the polymer starts to build up contour undulations driven
by thermal noise. These transverse undulations appear first in
growing boundary layers of size �	�t��L near the ends: as-
suming an inextensible backbone, the immediate creation of
undulations in the bulk would require the ends to be pulled
inwards against longitudinal solvent friction with a force ex-
ceeding the actual backbone tension. This phenomenon of
tension propagation ends after a time tL

	 , defined via �	�tL
	 �

=L, where the boundary layers extend over the whole poly-
mer length, see Fig. 3. A more detailed analysis �35� shows
that the longitudinal relaxation depends on whether the inter-
nal tension �initially equal to the stretching force fpre� repre-
sents a relevant perturbation to the transverse conformational
dynamics. The latter undergoes a dynamic crossover from a
bending-dominated regime with �	 � t1/8 �44� for the shortest
times t� tf to a tension-driven regime with �	 � t1/2 �14� for

��(t) ��(t)

t = 0

t � t
�
L

t � t
�
L

fprefpre

R�(t)

f (s, t)

s

s

s

fb

fb

fb

FIG. 3. �Color online� Schematic representation of conforma-
tional �left� and tension relaxation �right� in a force setup. For t
=0, the filament is equilibrated under the force fpre. As the ends are
released, the contour coils up in two growing boundary layers of
size �	�t� where the tension relaxes. At t= tL

	 , the dynamics crosses
over from the propagation to the relaxation regime and the tension
relaxes to zero.
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longer times t� tf, where the dynamics becomes inherently
nonlinear. Here, tf=��kBT�p / fpre

2 is a crossover time that
obeys tf� tL

	 for reasonably large prestress fpre.
�b� Field and shear setup. Similarly, one can define a

force equivalent in field or shear experiments and corre-
sponding expressions for tf and tL

	 : the hydrodynamic equiva-
lent of fpre is simply the total Stokes friction �	vL in a ho-
mogeneous flow, and �	�̇L2 is the longitudinal friction in an
extensional shear flow. Flow conditions may straightfor-
wardly be recast into the equivalent language of external
�e.g., electrical� fields. However, complicated counterion ef-
fects �45–47� prevent the quantitative prediction of the
equivalent electrophoretic field strength E for typical experi-
mental realizations. Although field-type perturbations induce
dynamic crossovers at tf similar to the force case, the change
�R	�t� in projected length increases always linearly with
time. This can be understood by a simple change in perspec-
tive: the polymer’s ends are pulled inwards by an approxi-
mately constant bulk tension, i.e., with roughly constant ve-
locity. This corresponds in the frame of reference of the ends
to an external flow field. The resulting friction forces are
properly balanced and the initial polymer conformations are
already equilibrated under such a flow field in field and shear
setups, in contrast to the force scenario. Tension propagation
is therefore not a dominant effect in the former �Eq. �5�
applies with �	 �L because of the large-scale spatial varia-

tion of the tension�, and the constant drag gives �R̄	 � t.
�c� Quench setup. Here, finally, there is no external force

scale and therefore no dynamic crossover ��	 � t1/8 for t� tL
	 �,

although the parameter combination kBT�p
3�4 /L4 plays the

role of fpre in the crossover time tL
	 . The tension in a

quenched filament is produced solely by the suddenly in-
creased thermal noise from the environment �if the external
temperature increases�, or by the suddenly higher “sensitiv-
ity” to this noise �if the quenching is achieved by a sudden
drop in bending rigidity�. Hence its magnitude depends on
the “mismatch” between the current conformation and an
equilibrium conformation corresponding to the current envi-
ronment. Therefore the quenched filament can relax tension
even in the bulk by reshuffling stored length between long
and short wavelength modes in a way similar to the mechani-
cal stress relaxation in buckled rods �43�, while the bulk

tension stays constant for t� tL
	 in the other setups.

�d� Universal regime. At long times t� tL
	 , when the ten-

sion has propagated through the filament, the dynamics en-
ters the universal regime of homogeneous tension relaxation
�35�. Contrary to previous assumptions �20�, longitudinal
friction may not generally be neglected, but dominates the
dynamics in this regime. The tension has a nontrivial spatial
dependence, but it can for asymptotically large forces be
treated as quasistatically equilibrated �14,35�. The character-
istic universality of the long-time relaxation is then simply a
consequence of the right-hand side of Eq. �4� being indepen-

dent of initial conditions: �̄
�kBT / �4�p f̄��1/2, where we
have used the �static� force-extension relation for wormlike
chains �48�. This asymptote readily implies by Eq. �4� the

scaling f̄ � t−2/3 and by Eq. �5� the characteristic t1/3 growth

of �R̄	�t�, which has indeed been observed in experiments
�22�. As an aside, we note that t�
 tR for stiff polymers with
L��p; the adjoining regime of algebraic relaxation for times

t�� t shows a t1/4 scaling in �R̄	�t� �35,49�.
Let us finally comment on the joint limiting scenario: the

exactly straight initial conformation �as in Ref. �21��. Not
only it is quite artificial from a theoretical and experimental
perspective, it also appears to be ambiguous, since we could
let fpre→� in one of the scenarios involving external forces
as well as �→� for the quench case. Although tL

	 →0 in both
cases, so that only the universal regime survives and the
ambiguity is limited to t=0, it gives rise to observable effects
as soon as one takes into account some microstructure cor-
rections important for real experimental systems and simula-
tion models �50�.

After this qualitative discussion of the relaxation dynam-
ics, we will now present a systematic derivation and analysis
of Eq. �4�, resulting in exact growth laws in various interme-
diate asymptotic regimes for the observables introduced
above. While Ref. �41� only covered the force case, we now
obtain results for the other scenarios as well, and include a
quantitative analysis of different boundary conditions.

IV. QUANTITATIVE THEORETICAL RESULTS

The starting point for our calculations is the wormlike-
chain Hamiltonian

��(t)/L

1
1/8

1/8 1/2

tf t
�
L t

f̄b(t)/fpre

−1/2

−2/3

tt
�
Ltf

1

δR̄�(t)/(L2kBT/(�pfpre))
1/2

3/8
1/3

1/2

1

7/8

tf t
�
L

1

t(b)(a) (c)

FIG. 4. �Color online� Qualitative results. Asymptotic scaling laws for the boundary layer size �p�t� �a�, the mean bulk tension f̄b�t� or

the bulk stress �b�, and for the change in projected length �R̄	�t� �c� in force �solid line�, field �dot-dashed line�, shear �dot-dot-dashed line�,
or quench �dashed line� setups, respectively.
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H =
1

2



0

L

ds�	r�2 + fr�2� , �6�

where the backbone tension f�s , t�, a Lagrange multiplier
function �51�, takes care of the local inextensibility con-
straint r��s�2=1. The equations of motion for the contour
result from balancing elastic forces −�H /�r with stochastic
noise � and anisotropic viscous local friction forces ���tr
−u� with friction matrix �= ���r�r�+�	�1−r�r��� and a ve-
locity field u of the solvent. The friction coefficients �per

length� are �	 = �̂�� with �̂
1 /2 and ��
4�� / ln�L /a� �40�,
where a is the backbone thickness. Note that the absence of
hydrodynamic interactions in our free-draining simulations

results in effectively isotropic friction, and we will use �̂=1
in Sec. V when comparing to simulation data. In all of this
section, we set ��=	�1 for simplicity, keeping 	=kBT�p
constant in the quench scenario. This makes time a length4

and the tension a length−2. Our approach exploits the weakly
bending limit. Parametrizing the contour r= �r� ,s−r	�T in
terms of small transverse and longitudinal displacements
from the straight ground state, this means that r��

2=O���
�1, with �= fpre

−1/2 /�p for force setups �and fpre replaced by its
equivalents in field or shear scenarios� and �=L / ���p� for
quench setups, respectively. Up to order �, the equations of
motion for the contour in absence of external forces and for
u=0 read

�tr� = − r��� + �fr�� �� + ��, �7a�

�̂�tr	 + �1 − �̂�r�� �tr� = − r	�� − f� + �fr	��� + �	 . �7b�

Because in the weakly bending limit the transverse contour
fluctuations are correlated on much shorter length scales than
the longitudinal �=tension� dynamics, we can formally intro-
duce “fast” and “slow” arclength coordinates for the small-
scale transverse and large-scale longitudinal dynamics, re-
spectively �39�. Taking a local �with respect to �	� spatial
average over the small-scale fluctuations �denoted by an
overbar� leads to closed equations:

�tr� = − r��� + f̄r�� + ��, �8a�

�s
2 f̄ = − �̂�t��̄� . �8b�

The longitudinal part Eq. �8b�, where �= 1
2r��

2 is the stored
length density, follows from the self-averaging property of
weakly bending polymers: the spatial coarse graining effec-
tively generates an ensemble average. The transverse part

Eq. �8a� contains a locally constant tension f̄ �its slow
arclength dependence obtained through Eq. �8b� is adiabati-
cally inherited�, and can be solved in terms of appropriate
eigenmodes wq�s� with eigenvalue −q2�q2+ f�t�� via the re-
sponse function

���q;t,t�� = e−2q2�q2�t−t��+�
t�
t

d� f̄����. �9�

Using the noise correlation ����k , t����q , t���=4�p
−1�k,q��t

− t��, we evaluate the expectation value � 1
2r��

2�. The different
preparation mechanisms discussed in the main text constrain

the polymer only for t
0. Including the initial conditions

f̄�s , t
0�= f̄0�s� and �p�t�0���p=�p�t
0� /� gives for the
stored length density

��� =
1

�p
�

q
� ��

2 �q;t,0�

q2� �q2 + f̄0�s��
+ 2


0

t

dt���
2 �q;t,t���wq�

2�s� .

�10�

As only the spatially averaged stored length density ��̄� en-
ters Eq. �8b�, we decompose wq�

2�s� into a spatially constant
and a fluctuating part cq�s� �the latter will average out upon
coarse graining�:

wq�
2�s� =

q2

L
�1 + cq�s�� . �11�

Taking the continuum limit L→� and integrating Eq. �8b�
over time, we find that the integrated tension F̄�s , t�
=�0

t dt� f̄�s , t�� obeys the partial integrodifferential equation

�s
2F̄�s,t� = �̂


0

� dq

��p
�1 − ��

2 �q;t,0�

� �q2 + f̄0�s��
− 2q2


0

t

dt���
2 �q;t,t��� .

�12�

From solutions to this equation in different intermediate
asymptotic regimes presented in the next section, we will
then infer growth laws for the two observables.

A. Asymptotic results for the tension

1. Force setup

This scenario with �=1 and the initial and boundary con-
ditions

f̄�s,t 
 0� = fpre and

f̄�0,t � 0� = 0, f̄�L,t � 0� = 0, �13�

is identical to the “release” scenario which was thoroughly
analyzed in Ref. �41�. We will briefly sketch this analysis in
order to motivate its application to the other setups. From the
response function Eq. �9�, we get the asymptotic scaling for
the wave number Q of the mode that relaxes at time t:

Q ��t−1/4 if F̄2/t � 1 �“linear ” � ,

F̄−1/2 if F̄2/t � 1 �“nonlinear ” � .
� �14�

Examining Eq. �8a�, one infers that in the first case the ten-

sion contribution Q2F̄ is small compared to the bending con-
tribution Q4t and can be treated as perturbation on the linear
level. Since the magnitude of the tension is determined by

the prestretching force, F̄� fpret, this asymptote, called “lin-
ear regime,” can also be formulated as t� tf with tf= fpre

−2 . In
the second case t� tf, the bending contributions are subdomi-
nant which leads to different “nonlinear regimes.”

(a) Linear propagation �t� tf�. We perform an expansion
�52� of the right-hand side of Eq. �12� with respect to the

integrated tension F̄ and to the force fpre:
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�s
2F̄�s,t� 
 �̂


0

� dq

��p
�−

fpre

q4 �1 − e−2q4t� + 2F̄�s,t�

− 4q4

0

t

dt�F̄�s,t��e−2q4�t−t��� . �15�

Using the Laplace transform F̃�s ,z�=L�F̄�s , t��, this reads

�s
2F̃�s,z� = �̂


0

� dq

��p
�−

2fpre

z�z + 2q4�
+ F̃�s,z�

2z

z + 2q4� ,

�16�

which, after performing the q integral, reduces to

�2�s
2F̃ = F̃ −

fpre

z2 . �17�

Here, ��z�=23/8��p / �̂�1/2z−1/8 is a dynamic length scale de-

noting the size of spatial variations in F̃�s ,z�. If L��, the
solution to Eq. �17� varies only close to the boundaries, as it
is characteristic for the propagation regime. Near s=0 �and
correspondingly near s=L�, it simplifies to

F̃�s,z� 

fpre

z2 �1 − e−s/�� , �18�

which can be backtransformed �41� to

F̄�s,t� = fpret�1 − ��s/�	�t��� , �19�

where ����
exp�−2−3/8� /��15 /8�� is a scaling function that
depends only on the ratio �=s /�	�t�. The length scale � is
directly related to the boundary layer size �	�t�
= ��p / �̂�1/2t1/8 �35,41,44�, and the requirement L�� trans-
lates into t� tL

	 .
(b) Nonlinear propagation �tf� t� tL

	 �. In the nonlinear
regime, the Q4t bending contributions are small compared to

the tension terms Q2F̄ if F̄2 / t�1. This results in ���q ; t , t��
being finite only near t�
 t, see Eq. �9�. We can therefore

linearize F̄�s , t�− F̄�s , t��
��tF̄�s , t���t− t�� in the exponent.
The t�-integral in the second term of Eq. �12� is readily per-
formed �41�:

�s
2F̄ 
 �̂


0

� dq

��p
�1 − ��

2 �q;t,0�
q2 + fpre

−
1 − ��

2 �q;t,0�

q2 + �tF̄
�


 �̂

0

� dq

��p
� 1

q2 + fpre
−

1

q2 + �tF̄
�

=
�̂

2�p
�fpre

−1/2 − ��tF̄�−1/2� . �20�

In the second line, we let ��→0 because F̄2 / t�1. This
indicates the underlying “quasistatic” approximation: the rel-
evant modes have already decayed and the tension is quasi-
statically equilibrated. Taking a time derivative gives �14,41�

�s
2 f̄ =

�̂�t f̄

4�p f̄3/2
. �21�

Inspired by the result Eq. �19�, we expect a scaling form

f̄�s , t�= fpre���� with �=s /�	�t� for the tension. Inserting it

into Eq. �21� gives �	�t�= ��p / �̂�1/2fpre
3/4t1/2 �14,35� and

��
2� = −

1

8
��−3/2��� , �22�

with the boundary conditions ��0�=0 and �����→��=0,
i.e., we neglect the presence of the second end, where the
situation corresponds, and assume just a flat profile in the
bulk. Numerical solutions to this equation have been shown
in Refs. �14,41� and give ���→��=1 as expected and
���0�
0.62. The propagation regime ends at tL

	 =L2fpre
−3/2 /�p.

(c) Homogeneous relaxation �tL
	
� t� tR�. After the tension

has propagated through the filament, it is no longer constant

but expected to decay; but as long as F̄2 / t�1 still holds, we

can use Eq. �21�. Hence we try the separation ansatz f̄�s , t�
=g�t�h��� with �=s /L, which gives �41�

g�t� = � �̂L2

�pt
�2/3

, �23�

and

h� = −
1

6
h−1/2 with h�0� = h�1� = 0. �24�

The almost parabolic profile h��� is characterized by �41�

h��0� = 12−1/3, h�1/2� = � 3

128
�2/3

. �25�

Using Eq. �23�, we find that the condition F̄2 / t�1 is violated
for t
 t�=L8 /�p

4, which is already larger than tR if �p�L.
Hence this regime lasts until the weakly bending approxima-
tion breaks down near the ends due to the onset of the
stretch-coil transition.

2. Field setup

For hydrodynamic and/or electrophoretic forces, we find
from the longitudinal equation of motion, Eq. �7b�, a corre-

sponding nonuniform initial tension profile f̄�s , t
0�=g�L
−s� with g= �̂v for flows or g�E for an electric field, where
the generally unknown prefactor is some combination of
electrophoretic and hydrodynamic mobility. This linearly de-
creasing prestress would in principle lead to an additional

term f̄�r�� in Eq. �8a�, and the corresponding eigenfunctions
would be very complicated. However, because large scale
tension variations are irrelevant for the short wavelength
transverse dynamics, we can ignore this term by consistently
exploiting the scale separation which allowed the derivation
of Eq. �8�, and use Eq. �12� with the initial linear profile

f̄0�s�=g�L−s�. The polymer is supposed to be grafted at
s=0 and to have a free end at s=L, i.e., the boundary con-
ditions are
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f̄��0,t � 0� = 0 and f̄�L,t � 0� = 0. �26�

Identifying the force equivalent f
pre
* =gL, we expect a linear

regime for t� tf with tf= f
pre
*−2

and a nonlinear regime for t
� tf, governed by the respective asymptotic differential equa-
tions from the force case.

(a) Linear propagation �t� tf�. Linearizing Eq. �12� in F̄

and f̄0�s� and performing a Laplace transform as in Eqs.
�15�–�17�, we arrive at the solution

F̄�s,t� = gt�L − s� − g�	�t�t��s/�	�t�� , �27�

with �	�t�= ��p / �̂�1/2t1/8 and ����
 23/8 exp�−��17/8��/23/8�
��17/8� . We

find a boundary layer at the fixed end where the tension
relaxes from its initial value gL only by the small amount
g�	. Near the free end, at s=L, we have F�L , t�=0 and
F��L , t�=−gt without any algebraic correction terms. Hence,
because the tension at the free end is already very small and
the contour does not further coil up, there are no boundary
layer effects which would give relevant deviations from the
linear drift towards the grafted end, in contrast to what has
been found in Ref. �17�.

(b) Nonlinear propagation �tf� t� tL
	 �. The assumption

F2 / t�1 leads again to Eq. �21� except for very small regions

near the free end where f̄0�s� in the denominator of the first
term of Eq. �12� is almost zero. Corresponding to the linear
case Eq. �27�, we assume that the tension deviates only

near the fixed end from its initial value f̄0�s�. Hence we

insert f̄�s , t�= f̄0�s�−g�	�t����� with �=s /�	�t� and �	�t�
= ��p / �̂�1/2�gL�3/4t1/2 into Eq. �21�, and expand about f̄0�s
�L�:

��
2���� 


1

8
����� − �������� �28�

with ���0�=−1 and ���→��=0. The solution can be given
in terms of the complementary error function:

���� =
4

��
e−�2/16 − � erfc��/4� . �29�

The propagation regime ends at tL
	 =L2 / ��p�gL�3/2�.

(c) Homogeneous relaxation �tL
	
� t� tR�. The separation

ansatz f̄�s , t�=g�t�h��� with �=s /L in Eq. �21� gives g�t�
= ��̂L2 / ��pt��2/3 as in Eq. �23� and the spatial function h
solves

h� = −
1

6
h−1/2 with h��0� = 0, h�1� = 0. �30�

We find the following characteristics:

h�0� = � 3

32
�2/3

, h��1� = 6−1/3. �31�

The condition F̄2 / t�1 holds until t= tR.

3. Shear setup

In this scenario, the equations of motion ���tr−u�
=−�H /�r+� are modified in the presence of an extensional

shear flow field u= �̇�−r� ,s−r	 −L /2�T, where �̇ is the shear
rate. To lowest order in �, and in the stationary state, we
obtain from Eq. �7b�

− �̂�̇�s −
L

2
� = f̄�. �32�

As before, we treat this nonuniform tension profile only as
large-scale variation and use Eq. �12� with the initial and
boundary conditions

f̄�s,t 
 0� =
1

2
�̂�̇s�L − s� and

f̄�0,t � 0� = f̄�L,t � 0� = 0. �33�

As in the “field” case, the time tf= f
pre
*−2

with the force equiva-

lent f
pre
* = �̂�̇L2 denotes the linear-nonlinear crossover.

(a) Linear propagation �t� tf�. Here the solution to Eq.
�17� reads

F̄�s,t� =
1

2
�̂�̇ts�L − s� −

23/4�̂�̇�	
2t

��9/4�
�1 − ��s/�	�t��� , �34�

with �	 = ��p / �̂�1/2t1/8 as before and ����

exp�−2−3/8��9 /4�� /��17 /8��. We find two small boundary
layers at the ends where the tension is slightly smaller than
initially.

(b) Nonlinear regime �tf� t� tL
	 �. The nonlinear regime

tf� t� tL
	 for the shear setup is quite peculiar: if we try �simi-

lar to the force and field case� a scaling ansatz f̄�s , t�
= 1

2 �̂�̇�s�L−s�+L�	�t���s /�	�t��� or similarly, we get �	�t�
� t2. This unusual result could be explained by the fact that

the “prestress” f̄�s , t
0�
 1
2 �̂�̇sL, which is responsible for

the scaling of �	 in this regime �52�, grows linearly with the
distance from the ends. However, we do not get any physi-
cally meaningful differential equation for � under the bound-
ary conditions Eq. �33�. We conclude that there is no propa-
gation and no observable boundary layers. Looking for a
solution spanning the whole arclength interval from 0 to L
instead, we insert into Eq. �21� an expansion of the form

f̄�s,t� =
1

2
�̂�̇L2��0��� +

t

tL
	 �1��� + O„�t/tL

	 �2
…� �35�

with �=s /L and tL
	 = �̂L2 / ��p��̂�̇L2�3/2�. Solving the resulting

differential equations for successive powers of �t / tL
	 � gives

the leading order terms

�0��� = ��1 − ��, �1��� = − �2��1 − ���3/2. �36�

In contrast to the propagation forms f̄�s , t����s /�	�t�� of the
other scenarios, we now get self-similar and spatially invari-
ant tension profiles. This can probably be attributed to this
specific initial condition which allows for self-similar relax-
ation. Further, to linear order in �t / tL

	 � we do not obtain al-

gebraic corrections to the linear growth law of �R̄	�t�, be-
cause ���1�0�=0. Higher-order terms in the expansion �as far
as they are analytically tractable� turn out to be ill-behaved
near the ends.
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(c) Homogeneous relaxation �tL
	
� t� tR�. The subsequent

regime of homogeneous tension relaxation is exactly equiva-
lent to the one of the force case �see the respective boundary
conditions, Eqs. �13� and �33��, and the results, Eqs. �23� and
�25�, apply here as well.

4. Quench setup

This scenario, with the initial and boundary conditions

f̄�s,t 
 0� = 0 and f̄�0,t � 0� = f̄�L,t � 0� = 0,

�p�t 
 0� = ��p and �p�t � 0� = �p, �37�

has been introduced as “�p-quench” in Ref. �35�. In contrast
to the scenarios discussed above, we lack a quantity provid-
ing a force scale, and the tension attains a simple scaling
form in the propagation and relaxation regimes, i.e., there is
no linear-nonlinear crossover. However, this scaling form
still strongly depends on the value of �. Physically the limit
�→0 corresponds to suddenly switching off thermal forces
for a thermally equilibrated filament, hence purely determin-
istic relaxation �see Ref. �43��. A small quench �
1 will not
induce strong tension, but the limit �→� describes the sce-
nario of a completely straight contour that equilibrates purely
under the action of stochastic forces, and the resulting ten-
sion may be very large at short times. In this case, similar
approximations as employed when discussing the nonlinear

regime in Sec. IV A 1 can be justified. Assuming F̄2 / t�1,
the response function ���q ; t , t�� from Eq. �9� is finite only

near t�
 t which suggests the linearization F̄�s , t�− F̄�s , t��

��tF̄�s , t���t− t�� in the exponent. Performing the t� integral
in the second term of Eq. �12� yields

�s
2F̄ 
 �̂


0

� dq

��p
�1 − ��

2 �q;t,0�
�q2 −

1 − ��
2 �q;t,0�

q2 + �tF̄
� .

In contrast to Eq. �20�, we may not set ��→0 in the first
term because this would produce an IR divergence; but we
can neglect the bending contribution q4t in the exponent of
the first and set ��→0 only in the second term. This gives

�s
2F̄ 
 �̂


0

� dq

��p
� 1 − e−2q2F̄

�q2 −
1

q2 + �tF̄
�

=
�̂

2�p
�2

�
� 2

�
F̄ − ��tF̄�−1/2� . �38�

�a� Propagation �t� tL
	 �. Inserting the scaling ansatz F̄�s , t�

=�t1/2��s /�	�t�� with �	�t�= ��p / �̂�1/2�3/4t1/8 removes the pa-
rameter dependence in Eq. �38�:

��
2���� =� 2

�
���� − �2���� −

1

2
��������−1/2

. �39�

Boundary conditions are ��0�=0 and �����→��=0. From a
numerical solution we obtain ���→��=�� /2 as expected

from Eq. �39� and ���0�
1.44. The assumption F̄2 / t��
�1 is justified for all times t� tL

	 =L8 / ��p
4�6�.

�b� Homogeneous relaxation. �tL
	
� t� tR�. Because we ex-

pect universal long time relaxation in the strong quenching
limit �→� similar to the force case, we try the ansatz

F̄�s , t�= t1/3��̂L2 /�p�2/3���� with �=s /L in Eq. �38�:

��
2� = � �̂L2

�p
�2/3

�−1t−1/6� 2

�
� −� 3

4�


 −� 3

4�
if t �

L8

�p
4�6 = tL

	 . �40�

Because now f̄�s , t�=�tF̄�s , t�=g�t�h��� with g�t�
= ��̂L2 /�pt�2/3 and h���=���� /3 as in Eqs. �23� and �24�, this
regime of homogeneous relaxation is identical to the one in

the force case. The condition F̄2 / t�1 holds until t� t�

=L8 /�p
4=�6tL

	 , which is usually already larger than tR if �p
�L.

B. Results for pertinent observables

The maximum bulk tension fb�t�= f̄�L /2, t� �in the field
case, we prefer to use the grafting force fg�t�= f�0, t�� can be
obtained directly from the tension profiles computed in the
preceding section. The change in end-to-end distance �R	�t�
follows from a simple formula: With the sign convention
used before, this change has to equal the total amount of
stored length that has been created. Hence we integrate the
ensemble averaged change in stored length density �t����s , t�
over s and t:

�R	�t� = 

0

L

ds

0

t

dt��t����s,t�� . �41�

Defining ���= ��̄�+ ��e� in Eq. �10� from the decomposition

equation �11�, we obtain �R	�t�=�R̄	�t�+�R	
e�t�. The first part

obeys the deterministic equation �8b�:

�R̄	�t� = − �̂−1

0

L

ds

0

t

dt��s
2f�s,t��

= − �̂−1��sF̄�L,t� − �sF̄�0,t�� . �42�

It accounts only for the “slow” coarse-grained tension dy-
namics but neglects subdominant and stochastic contribu-
tions �R	

e�t� from “fast” fluctuating boundary segments ana-

lyzed in the next section. Results for �R̄	�t� and fb�t��fg�t��
are summarized in Tables I and II.

C. Boundary effects

Because our theory applies to times t� tR long before the
relaxation of long-wavelength modes becomes relevant, be-
cause Eq. �4� results from a coarse-grained description that
averages over small-scale fluctuations, and finally because
projecting the end-to-end distance onto the longitudinal axis
suppresses some end effects �41�, the dependence of �R	

=�R̄	 +�R	
e on the boundary conditions for the contour r�s� is

only subdominant but still non-negligible. While the “bulk

contribution” �R̄	 is independent of boundary effects and dy-

OBERMAYER et al. PHYSICAL REVIEW E 79, 021804 �2009�

021804-8



namically self-averaging, this stochastic dependence is ac-
counted for by an additional “end contribution” �R	

e, which
stems from the oscillating term cq�s� in Eq. �11�, and decays
rapidly on much smaller length scales than that of tension
variations �39�. We may therefore evaluate this part at the
boundaries under zero tension �i.e., using ���q ; t , t��
=e−2q4�t−t�� instead of Eq. �9��:

�R	
e�t� 
 − 


0

L

ds

0

� dq

��p

q2 − � �q2 + f̄0�s��

q2� �q2 + f̄0�s��
�1 − e−2q4t�cq�s� .

�43�

Consistent with this simplification, we approximate the wq�s�
by eigenfunctions of the biharmonic operator �s

4 �see Ref.

�53��. Again exploiting the scale separation in this integral
over the rapidly fluctuating term cq�s�, we use only the spa-

tial average f̄b of the slowly varying prestress f̄0�s�. This

means fpre→ f̄b= 1
12 �̂�̇L2 for the shear case, and fpre→ f̄b

= 1
2gL for the field setup. Because there is only one free end

in the latter, the contribution to �R	
e is one half of the force

result.
�a� Free ends. If wq�=wq�=0 at s=0,L, we use

wq�s� =
1
�L

� sin qL + sinh qL

cos qL − cosh qL
�sin qs + sinh qs� + cos qs

+ cosh qs� , �44�

where q is a solution of cos qL cosh qL=1. For t� tR, the q
integral in Eq. �43� is dominated by short wavelength contri-
butions, and for the relevant asymptotically large modes the
s integral over cq�s� reads



0

L

dscq�s� =
6

q
+ O�e−qL� . �45�

�b� Hinged ends. For wq=wq�=0 at s=0,L, we obtain

wq�s� =�2

L
sin qs �46�

with sin qL=0. In this case, �0
Ldscq�s�=0.

�c� Clamped ends. Here, wq=wq�=0 at s=0,L, and we
have

wq�s� =
1
�L

�sin qs − sinh qs +
cos qL − cosh qL

sin qL + sinh qL
�cos qs

− cosh qs�� , �47�

with cos qL cosh qL=1 and �0
Ldscq�s��−2 /q. Up to a pref-

actor, the contribution for clamped ends is identical to the
one for free ends.

�d� Torqued ends. If wq�=wq�=0 at s=0,L, the eigenmodes
are

wq�s� =�2

L
cos qs , �48�

with sin qL=0 and �0
Ldscq�s�=0.

Using the asymptotic limit of �0
Lcq�s�ds, we evaluate the

end contributions in the free ends situation of our setups.
�a� Force setup. Here, we obtain

�R	
e =

6fpret

��p
G�fpret

1/2� , �49�

where

TABLE I. Asymptotic scaling laws for the change in projected

length �R̄	�t� from Eq. �42� for the different setups. Units have been
chosen such that 	����1.

�R̄	�t� t� tf tf� t� tL
	 tL

	
� t

Force
25/8fpret

7/8

��15/8��̂1/2�p
1/2

2.48
fpre
1/4t1/2

�̂1/2�p
1/2 �18Lt

�̂�p
2 �1/3

Field gt / �̂ � 9Lt

2�̂�p
2�1/3

Shear �̇tL�1−O��	 /L�� �̇tL �18Lt

�̂�p
2 �1/3

Quench 2.88
�3/4t3/8

�̂1/2�p
1/2 �18Lt

�̂�p
2 �1/3

TABLE II. Asymptotic scaling laws for the maximum bulk ten-

sion fb�t�= f̄�L /2, t� �grafting force fg�t�= f̄�0, t�� for different
setups. Units as in Table I.

fb�t�, fg�t� t� tf tf� t� tL
	 tL

	
� t

Force fpre � 3�̂L2

128�pt
�2/3

Field gL�1−O��	 /L�� � 3�̂L2

32�pt
�2/3

Shear
1

8
�̂�̇L2 1

8
�̂�̇L2�1 − O�t/tL

	 �� � 3�̂L2

128�pt
�2/3

Quench
1

4
�1/2�t−1/2 � 3�̂L2

128�pt
�2/3
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G��� = 

0

�

dk
1 − e−2k4

k3�k2 + ��

= −
1

4�2 �e−2�2
�� erfi�2�2 − Ei�2�2��

+ ln 2�2 + �E − �8��2� , �50�

with erfi the imaginary error function, Ei the exponential
integral, and �E
0.577 Euler’s constant. The asymptotic be-
havior is

�R	
e�t� � �−

3fpret

��p
ln 2fpre

2 t , t � fpre
−2 ,

6t1/2

�2��p

, t � fpre
−2 .� �51�

�b� Quench setup. For free ends, we obtain from Eq. �43�:

�R	
e =

6t1/2

��p
�1 −

1

�
�


0

�

dk
1 − e−2k4

k3 =�18

�

t1/2

�p
�1 −

1

�
� .

�52�

As anticipated �41�, the end contribution �R	
e is zero for

hinged and torqued ends, while it leads to an additional re-
duction of R	 for free ends and has a lengthening effect for

clamped ends. Note that indeed �R	
e��R̄	 is only subdomi-

nant for t� tR, but the quantitative relevance of this contri-
bution becomes evident when it is directly compared to nu-
merical solutions of Eq. �12� and simulation data in
nonasymptotic regimes.

V. COMPARISON TO SIMULATION DATA

The asymptotic scaling laws of Fig. 4 are derived in the
limit fpre→�, and the difference to the numerical solutions
gets smaller than 20% only for fpre
1010kBT�p

3 /L4. While
this can easily be realized in experiments, for instance, on
DNA �cf. Table III�, it is not possible in simulations due to
the usual tradeoff between computational efficiency and ac-

curacy. For a comparison between our theoretical results and
the simulation data of Fig. 2, we therefore compute the bulk

part �R̄	�t� and f̄b�t� using numerical solutions to Eq. �12� as
described previously �52�. Figure 5 shows simulation data
and analytical results for all four scenarios, using �
= ���b�−1 and ��=�	 to relate the �isotropic� mobility of the
beads in the simulation model, which does not include hy-
drodynamic interactions, to the anisotropic friction coeffi-
cients per length for the continuous wormlike chain used in

our theory. The bulk contribution �R̄	�t� �dashed lines�, while
having the correct qualitative behavior, underestimates the
contraction by as much as 50%. Including end fluctuations
with �R	

e�t� �solid lines� gives results for �R	�t� that are
slightly overestimated for longer times. This could be caused
by possibly oversimplifying approximations made when
evaluating Eq. �43�, or by a gradual breakdown of the
weakly bending limit �see also Sec. VI B�.

In the quench case, we observe a strong deviation be-
tween simulation and theory for short times, both in �R	 and

f̄b. While f̄b� t−1/2 diverges as t→0 in our theory, the actual
tension in the simulations is finite. This is due to the exten-
sible backbone of a bead-spring chain: the tension follows
the sudden change in environmental conditions only with a
temporal delay related to the finite propagation speed of lon-

gitudinal backbone strain. Because now f̄b is smaller than
predicted, the contraction �R	�t� is also reduced, see the scal-
ing relation Eq. �5�. It is, however, possible to include a finite
extensibility correction in Eq. �4�. Because this nontrivial
extension is only marginally relevant for the present discus-
sion, which is focused on differences in the relaxation dy-
namics from an initially straight conformation, we present a
detailed discussion elsewhere �50�, and merely show the cor-

rected results for �R	�t� and f̄b�t� for the quench case in Fig.
5�d� �dotted lines�. The analysis of this correction term al-
lowed us to choose parameters such that our results are not
affected by microscopic details, except for the quench case
with its singular short-time behavior. In particular, the elastic
stretching constant �s is large enough that the associated time
scale b / �kBT�s�� is easily resolved by the time discretiza-
tion, and the backbone springs are so stiff that the straight-
ened filament �with a projected length of about �R	�0� /L
�1− �kBT / �4�pfpre��1/2 �48�� is lengthened by less than 1%
due to the mechanical stretching of backbone bonds �the lat-
ter gives a relative contribution of about fpre / �kBT�s��.

Altogether, we now obtain good quantitative agreement
between computer simulation and theory for all four setups
and both observables over six decades in time without ad-
justable parameters. Having reliable theoretical control over
the relaxation dynamics, we will now present quantitative
estimates for the feasible choice of control parameters in
experiments and a qualitative discussion of the influence of
some additional important effects.

VI. EXPERIMENTAL IMPLICATIONS

A. Time and force scales

In Table III we have compiled numerical examples for the
various time and force scales introduced above based on lit-

TABLE III. �a� Characteristic time scales �given a force of fpre

=2 pN� and �b� bounds on control parameters for typical DNA �20�
�L
20 �m, �p
50 nm� and actin �30� �L
20 �m, �p
17 �m�
in solution with viscosity �
10−3 Pa s at room temperature.

DNA Actin

�a�
tf 10−7 s 10−5 s

tL
	 0.05 s 0.003 s

tR 
6 s 
10 s

�b�
fc 0.08 pN 0.2 fN

�c 27 �m /s 72 nm /s

�̇c 6.6 s−1 0.02 s−1
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erature values for DNA �20� and actin �30�. In order to obtain
sufficiently straight initial conformations, a conservative es-
timate for the control parameters fpre, v, and �̇ requires them
to be chosen by a factor of 25 larger than the respective
values fc, vc, and �̇c. The quenching strength � should be
significantly larger than �c=L /�p. The crossover times tL

	

�L2 / fpre
3/2 and tf� fpre

−2 depend strongly on the adjustable quan-
tities L and fpre; hence the time window of interest can be
varied considerably between scenario-specific and universal
relaxation. The algebraic relaxation ends at times near tR, for
which we can give only a rough estimate as the unknown
numerical prefactor is influenced by boundary conditions and
hydrodynamic interactions and may substantially differ from
unity �30�.

B. Onset of the stretch-coil transition

Since experiments are often performed using quite flex-
ible polymers like DNA with �p�L, the weakly bending
approximation will finally become invalid in regions near the
ends, where the contour starts to �literally� coil up as the
tension relaxes. Borrowing ideas from flexible polymer
theory allows one to derive scaling laws accounting for the
onset of the stretch-coil transition. The stem-flower picture
of Brochard-Wyart �10� describes transient relaxation pro-

cesses of flexible polymers with Kuhn length a and friction
coefficient �. Entropic forces on the order of kBT /a arising in
the bulk pull the ends inwards. Balancing these forces with
the associated friction gives the well-known scaling �*
��kBTt /�a�1/2 for the growth of “flowers” leading to an ad-
ditional longitudinal contraction.

In the case of strongly stretched semiflexible polymers,
this correction is negligible on time scales t� tR. Here, the
Kuhn segments are of size �p, and their Rouse-like relaxation
after internal bending modes have equilibrated would gener-
ate flowers of size �*�L�t / tR�1/2. However, in the relevant
universal regime of homogeneous tension relaxation �tL

	
� t

� tR�, the bulk tension fb�kBT�tR / t�2/3 /�p �see Table II� is
much larger than kBT /�p, and the ends are pulled inwards so
fast that a flower of the above size would be too large for the
resulting drag. Observing that the associated roughly para-
bolic tension profiles �41� attain values of about kBT /�p

within distances �*� �L�t / tR�2/3 from the ends, one easily
confirms that this smaller value for the flower’s size indeed
restores the friction balance. Altogether, we find that for
times t� tR the �t / tR�2/3 growth of “flower”-like end regions,
where the weakly bending approximation breaks down, is
subdominant against the �t / tR�1/3 contraction of the remain-
ing weakly bending part of the filament. Only at t� tR, our
assumptions finally cease to hold and more appropriate mod-
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FIG. 5. �Color online� Comparison between theory and simulation data for a force �a�, field �b�, shear �c�, and quench �d� scenario,

respectively, for �R	�t� and f̄b�t� �insets�. Note that the bulk contribution �R̄	�t� from Eq. �42� �dashed lines� underestimates the contraction,
which is corrected for by including the end contribution �R	

e�t� from Eq. �43� �solid lines�. In the simulation of the quench scenario, the
tension follows the sudden change in temperature only with a delay related to the longitudinal propagation of backbone strain, which leads
via Eq. �5� to a different scaling of �R	 at short times. This can be accounted for by a correction term �dotted line� including the finite
backbone extensibility of the bead-spring model �50�. Simulation data and parameters as in Fig. 2.

RELAXATION OF STRAIGHTENED POLYMERS … PHYSICAL REVIEW E 79, 021804 �2009�

021804-11



els, for conformational relaxation as well as hydrodynamic
interactions, need to be employed �see, e.g., Ref. �28��. In
our simulation, we do not expect a pronounced stretch-coil
transition because the number L /�p is not large enough. We
also checked that global rotational diffusion �40�, apparently
reducing the longitudinal projection of the end-to-end dis-
tance, can be neglected.

C. Hydrodynamic interactions

Finally, we want to briefly comment on hydrodynamic
interactions. Their pronounced effects for strongly coiled
polymers reduce to mere logarithmic corrections for rela-
tively straight filaments �40�. As suggested previously �20�,
we speculate that these corrections can be summarily in-
cluded via a phenomenological renormalization L→�eff in
the friction coefficient ��� / ln�L /b� �40�, where � is the
solvent’s viscosity and b the monomer size. Within our
model, this has almost no further consequences than slightly
shifting the time unit, cf. Eqs. �4� and �8�. An appropriate
time rescaling compensates for changes in the friction coef-
ficients and could therefore easily be checked in experi-
ments. The setups of Refs. �26,27�, where initially stretched
DNA relaxes with one end attached to a wall and the other
fixed to a bead, can easily be modeled within our theory by
appropriately adjusting the boundary conditions for the ten-
sion. It turns out that spatial inhomogeneities of the tension
and end fluctuations are suppressed and hydrodynamic inter-
actions �primarily between bead and wall� are enhanced,
such that a simple quasistationary approach describes the
data very well.

VII. CONCLUSION

We have presented a comprehensive theoretical analysis
of the conformational relaxation dynamics of semiflexible
polymers from an initially straight conformation. Special
emphasis has been put on a systematic investigation of four
fundamentally different realizations of “initially straight.”
The sudden removal of the straightening constraint leads in
all cases to strong spatial inhomogeneities of the filaments’

backbone tension. Analyzing two exemplary and easily ac-
cessible observables, we found that for short times, when
these nontrivial spatial variations are restricted to the bound-
aries, the relaxation dynamics crucially depends on the actual
initial conditions: polymers prestretched with forces display
tension propagation effects, in contrast to chains straightened
by fields or flows, and a quench leads to yet other effects. In
the universal relaxation regime at longer times, the tension
becomes quasistatically equilibrated and independent of ini-
tial conditions, but its spatial inhomogeneity remains rel-
evant. Additionally to the derivation of asymptotic growth
laws, we extended the systematic theory of Refs. �35,39,41�
to include the surprisingly important influence of different
boundary conditions. For nonasymptotic parameter values,
quantitative and parameter-free agreement between simula-
tion data and theory could be achieved over six time decades
below the filament’s longest relaxation time. In the quench
case, short-time deviations could be attributed to the finite
backbone extensibility of the bead-spring chains used in the
simulations. Finally, we discussed quantitative implications
for possible experimental realizations, adapted a widely used
scaling argument for the onset of the stretch-coil transition
for flexible polymers to the semiflexible case �dominated by
bending energy�, and commented on hydrodynamic interac-
tions. We hope that our thorough discussion of the nonequi-
librium dynamics of an initially straight polymer will help to
design new quantitative single molecule experiments and
lead to a better understanding of more complex phenomena
such as force transduction and recoil of disrupted stress fi-
bers in cells �54�.
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Tension dynamics and viscoelasticity of extensible wormlike chains
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The dynamic response of prestressed semiflexible biopolymers is characterized by the propagation and
relaxation of tension, which arises due to the near inextensibility of a stiff backbone. It is coupled to the
dynamics of contour length stored in thermal undulations but also to the local relaxation of elongational strain.
We present a systematic theory of tension dynamics for stiff yet extensible wormlike chains. Our results show
that even moderate prestress gives rise to distinct Rouse-like extensibility signatures in the high-frequency
viscoelastic response.

DOI: 10.1103/PhysRevE.80.040801 PACS number�s�: 61.41.�e, 87.15.La, 87.15.H�, 87.15.ad

Recent experiments have successfully linked the vis-
coelastic properties of living cells to the rheological behavior
of prestressed biopolymer networks �1–4�. Single filaments
within these networks are well described by the wormlike
chain �WLC� model, where very stiff backbones are ideal-
ized as inextensible space curves �5�, giving rise to a char-
acteristic f−1/2 divergence of the force f required to attain full
stretching �6�. Here, “stretching” needs to be seen as a
“straightening” of excess length stored in thermal contour
undulations �7�, suggesting the phrase “pulling out stored
length.” If sudden forces are applied, stored length can be
pulled out at first only from growing boundary layers of size
���t� near the ends due to longitudinal friction with the vis-
cous solvent �7–11�. The precise time dependence of ���t� is
influenced in a quite subtle way by the applied prestress �12�,
and a nonhomogeneous distribution of stored length along
the contour corresponds to a nonuniform tension profile.

Modelling prestress as prestretching force applied at the
filament’s ends, a larger prestress clearly implies that an in-
creasing contribution to the longitudinal extension stems
from the microscopic elasticity of the backbone bonds and
less from thermal undulations. Hence, for an extensible
backbone the polymer’s response is characterized by a local
competition between destroying thermal stored length and
creating elongational strain. While it has long been recog-
nized that stretching modes of long and slender elastic rods
relax extremely fast �13�, their local equilibrium value de-
pends on the local tension, which in a nonequilibrium situa-
tion is in turn coupled to the much slower stored length
relaxation. Especially for bead-spring simulations, where re-
alistically stiff backbones often require unfeasibly short time
steps, it is not immediately clear if and how backbone
stretching affects the longitudinal relaxation. In this Rapid
Communication, we present a theory of tension dynamics for
stiff yet finitely extensible wormlike chains. A brief compari-
son of extensible and inextensible polymer models is used to
motivate the ensuing systematic derivation based on the in-
extensible analog presented in Ref. �8�. We then calculate
viscoelastic response properties and show that even moderate
prestress can give rise to distinct extensibility signatures
reminiscent of a Rouse-like dynamics.

In the WLC model, the polymer backbone is idealized as
continuous space curve r�s�. Contour undulations are penal-
ized with a bending energy proportional to the squared local
curvature. Strict inextensibility would require that s be the
arclength such that r��s� is a unit vector, and this hard con-
straint allows exact solutions only for special cases �5�. In
general, Lagrange multipliers of varying sophistication are
used to enforce miscellaneous constraints of different rigidity
�14�. Specifically, for a nonequilibrium scenario with nonuni-
form stored length dynamics, it is inevitable to use a local
constraint �7,8,11,15–18�, which is intuitively interpreted as
backbone tension. In the case of an extensible backbone this
tension arises naturally as a spring force �19–21�, and al-
though it is generally far from trivial �22�, our results will
permit taking the limit from soft to rigid constraints.

For an extensible but very stiff backbone with only small
stretching deformations, the Hamiltonian reads as �19�

H =
kBT

2
�

0

L

ds��pr�2 + kxu2� , �1�

where L is the unstretched contour length, �p is the persis-
tence length, kx is the stretching elastic constant, and
u= �r��−1 is the elongational strain. Our theory relies on the
weakly bending limit r�s�= �s−r� ,r��T of small transverse
and longitudinal contour deviations r� and r� from a straight
line, which gives u�−r��+ 1

2r��
2 to leading order. Observing

that the polymer’s longitudinal extension in the limit of large
prestress f0�kBT /�p is given by �19�

R�

L
= �

0

L ds

L
�1 − r��� = 1 + 	u
 − � 1

2
r��

2� , �2�

we can quantify the simultaneous limits of an only slightly
extensible backbone and a weakly bending contour by re-
quiring that the contributions of longitudinal strain
	u
= f0 / �kBTkx�
�x�1 and of thermal stored length
	 1

2r��
2
= �kBT�p / �4f0��1/2
�th�1, respectively, are both

small. Although these contributions are independent, we will
also assume that the force extension �Eq. �2�� is dominated
by contour straightening instead of backbone stretching, i.e.,
that 	u
� 	 1

2r��
2
, which is easily fulfilled as long as f0� fx,

where fx=kBTkx
2/3 /�p

1/3 is the corresponding crossover force*frey@physik.lmu.de
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scale �20,23�. This assumption is reasonable in most experi-
mental circumstances, considering that fx�75 pN �24� for
actin and fx�50 pN for DNA �19�, which in fact is close to
the overstretching transition. For bead-spring simulations,
however, this condition is much harder to obey �25� because
very small time steps �t�kx

−1 are required. Also, in special
situations such as the relaxation from a low-temperature ini-
tial condition �16�, short-time transients are quite pro-
nounced, and we will show below that even a prestress of
only about 0.01fx gives rise to observable effects.

To quantitatively assess the influence of backbone stretch-
ing on the dynamics, we proceed with a discussion of the
equations of motion ��tr=−�H /�r+�, with the stochastic
noise � and the free-draining friction matrix �=	��r�r�
+ 	̂�1−r�r���, where 	̂�1 /2 accounts for the anisotropy be-
tween transverse and longitudinal friction. To leading order
in �th and �x and in the absence of external forces, we obtain

�tr� = − r�� + kx�ur�� ��/�p + ��, �3a�

	̂�tr� + �1 − 	̂�r�� �tr� = − r�� − kxu�/�p + 
� . �3b�

Here, we have introduced units such that kBT
�p
−1 and

	�=1, which makes time a length4 and force a length−2. In
the following, we are interested in the prototypical rheologi-
cal experiment �1,2,4� where at time t=0 a small time-
dependent force �f�t� is superimposed on a static prestress
f0, which contributes a term �f0+��t��f�t�����L−s�−��s��
on the right-hand side of Eq. �3b�. In the stationary state at
times t�0, this gives kxu /�p= f0, and the combination
kxu /�p plays the role of a tension in Eq. �3a� also at later
times.

If we assume constant u=�pf0 /kx, we find that the trans-
verse part Eq. �3a� is correlated on length scales ���t� with
��� t1/4 if t� f0

−2 and ���t���f0t�1/2 if t� f0
−2 �8,10�. On the

other hand, disregarding the thermal contribution r� to Eq.
�3b� for the moment, we also find that the diffusive dynamics
of the elongational strain u is correlated on length scales
�x�t���kxt /�p�1/2 �19�. Given now that �pf0 /kx=O��x��1,
it turns out that �x��� except for very early times
t� ��p /kx�2, where higher-order terms become relevant.
Hence, after short initial transients the elongational strain u
varies slowly with arclength: stretching modes relax ex-
tremely fast but only to a local equilibrium value, which is
not only nonzero for a prestressed filament but can even
show nontrivial large-scale spatial variations for the previ-
ously mentioned nonequilibrium stretching experiments.
Thus, elongational strain cannot globally equilibrate unless
these tension variations have propagated through the fila-
ment. The latter are linked to the dynamics of thermal stored
length and therefore significantly slowed down by longitudi-
nal friction, and it has been shown that the associated char-
acteristic length scale ���t�
�th

−1/2���t� is much larger than
the one of transverse fluctuations �8�.

Our goal is now to formulate an equation for the elonga-
tional strain u that integrates over transverse fluctuations de-
scribed through Eq. �3a� �on the short length scale ��� but
retains both large-scale spatial variations in the tension
kxu /�p �on the scale ��� as well as the effect of short time

transients stemming from the fast relaxation of elongational
modes. To this end, we employ a multiple scale perturbation
theory both in space and time: small-scale and large-scale
spatial coordinates s and �th

1/2s̄, respectively, account for the
different spatial correlation lengths of transverse and longi-
tudinal contour displacements, while slow and fast time vari-
ables t and �= ��th /�x�t account for long-time stored length
and short-time strain dynamics, respectively. Here, the con-
dition �x��th �resulting from f0� fx� is essential, and it en-
tails that a �-derivative of u is of order �th: transients from
strain relaxation can become comparable to thermal stored
length. We briefly sketch the analysis, which in its technical
details is quite analogous to Ref. �26�. Higher-order terms of
this perturbation scheme can in principle be computed, but
the lowest-order results already yield a sufficiently accurate
description �16�. Taking an s-derivative of Eq. �3b�
and eliminating r��=−u+ 1

2r��
2, we find to zeroth order in

�th :−	̂�tu=�s
4u−kx�s

2u /�p. Since kxu /�p=O�f0� while every-
thing else is O��x�, we find �s

2u=0, and therefore also
�s

4u=�tu=0. This also implies that Eq. �3a� becomes the lin-
ear equation �tr�=−�s

4r�+kxu�s
2r� /�p+
�. To first order in

�th, Eq. �3b� now gives 	̂
1
2 ��sr��2− 	̂�th��u /�x=−kx�s̄

2u /�p

+H�s , s̄�, where H�s , s̄� summarizes s derivatives of terms
nonlinear in r�. These vanish upon coarse graining, i.e.,
when averaging this equation over small-scale variations on
the scale �� �26�. Denoting in such a manner spatially aver-
aged quantities with an overbar and replacing �→ t, we ob-
tain

kx�s̄
2ū/�p = − 	̂�t�� − ū� , �4�

where �= 1
2r��

2 is the local density of contour length stored in
thermal undulations. This relation, which is our main result,
formalizes in an intuitive way the opposing effects thermal
stored length density � and elongational strain ū have on the
backbone tension kxū /�p: if prestress is increased, stored
length is destroyed and elongational strain created and both
lead temporarily to spatial tension inhomogeneities �curva-
ture� and vice versa for decreasing prestress. Further, taking
the “inextensible” limit �x→0 while holding the tension
kxū /�p fixed leads to the inextensible analog derived in Ref.
�8�, and the limit �th→0 of a one-dimensional Rouse chain,
although our assumptions cease to hold, nevertheless gives a
simple diffusion equation for ū.

In order to solve Eq. �4�, we observe that its boundary
conditions are prescribed through the externally applied pre-
stress: ū�0, t�= ū�L , t�=�p�f0+��t��f�t�� /kx. Further, � has
to be computed from Eq. �3a�, which to lowest order depends
only parametrically on ū�s̄ , t�. It is thus effectively linear in
r� and can be solved in Fourier space by means of the re-

sponse function �26� ���q ; t , t��=e−q2�q2�t−t��+kx�Ū�t�−Ū�t���/�p�,

where Ū�t�=�0
t dt�ū�t�� is the time-integrated strain. Because

spatially averaging � over many effectively uncorrelated
segments of length �� produces an ensemble average, the
stored length density is given by �26�

� = �
0

� dq

��p
���

2 �q;t,0�
q2 + f0

+ 2q2�
0

t

dt���
2 �q;t,t��� . �5�

Solutions to Eq. �4� can now be obtained similarly to Refs.
�12,16,26�.
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In the remainder of this Rapid Communication, we focus
on a small oscillatory stress �f�t�=�f sin �t superimposed
on a large prestress f0. This situation has been analyzed in
Ref. �27� for an inextensible filament, and our calculation
proceeds along these lines. While we cannot actually take the
linear response limit �f →0 because then the assumptions
underlying the multiple scale perturbation theory become in-
valid �8�, we can still for small enough �f � f0 linearize Eq.

�5� by writing Ū�s̄ , t�=�pf0t /kx+�Ū�s̄ , t� and find from Eq.

�4� a simple equation for the Laplace transform �Ũ�s̄ ,z�
�26,27�:

�s̄
2�Ũ�s̄,z� = M�z��Ũ�s̄,z� . �6�

The kernel M�z�= 	̂f0
1/2M̂�zf0

−2� /�p is defined as

M̂�ẑ� = �
0

� dk

�
� 2k2

k2 + 1
−

4k4

2k2�k2 + 1� + ẑ
� + �x

3/2ẑ , �7�

and �x= f0 / fx�1 is the ratio of prestress to the critical force
fx=kx

2/3 /�p
4/3. In contrast to the inextensible case treated in

Ref. �27�, where M̂�ẑ�
 ẑ1/4 for all ẑ�1, we obtain now an

additional high-frequency regime M̂�ẑ���x
3/2ẑ for ẑ��x

−2.
Considering that M−1/2�z� is the analog in Laplace space to
the characteristic length scale ���t� for the large-scale spatial
tension variations, we find that ���t���kxt /�p�1/2 �19� shows
a diffusive scaling in the corresponding extensibility-
dominated short-time regime t� tx, only then crosses over to
the well-known growth law ���t���p

1/2t1/8 �10�, before finally
arriving at ���t���p

1/2f0
3/4t1/2 �8,11� for t� f0

−2 �i.e., ẑ�1�.
We emphasize that the scaling of the crossover time
tx=�p

8/3 /kx
4/3= fx

−2 cannot simply be inferred from dimensional
analysis because any combination of the lengths �p and kx

−1

could be used.
The observable of main interest is the change �R��t� in

projected length R�, which is through the force-extension re-
lation �Eq. �2�� related to the integrated change in ū−� and
thus through Eq. �4� to the features of the tension kxū /�p:

�R��t� = �
0

t

dt��
0

L

ds�ū − �� =
kx

	̂�p

��s̄Ū�L,t� − �s̄Ū�0,t�� .

�8�

In Laplace space, we thus obtain from a straightforward so-

lution of Eq. �6� �R̃�z�= 2

	̂z
M1/2�z�tanh� L

2 M1/2�z��� f̃�z�, which
can be backtransformed in the stationary limit t→� �27�:

�R��t� =
�f

	̂Lf0
2
�Ĵ���f0

−2�sin��t� − Ĵ���f0
−2�cos��t�� , �9�

with the dimensionless compliances

Ĵ���̂� =
2

�̂
Im���c

1/2M̂�i�̂�tanh�1

4
�c

1/2M̂�i�̂�� ,

Ĵ���̂� =
2

�̂
Re���c

1/2M̂�i�̂�tanh�1

4
�c

1/2M̂�i�̂�� . �10�

Here, �c= f0 / fc gives the ratio of f0 to the longitudinal criti-

cal force fc=�p
2 / �	̂2L4� and can be used to distinguish “long”

��c�1� and “short” ��c�1� filaments, respectively �12�.
Figure 1 depicts numerical solutions of Eq. �10� for a

fixed value of �x=10−2 and different values of �c, as
well as results for the corresponding viscoelastic modulus

�Ĝ�+ iĜ��= �Ĵ�+ iĴ��−1. It is straightforward to check that Eq.
�10� obeys scaling laws in different intermediate asymptotic
regimes, which are summarized in Table I. Most of these

FIG. 1. �Color online� Plot of Ĵ� , Ĵ� �top� and Ĝ� , Ĝ� �bottom�
from Eq. �10� for �x= f0 / fx=10−2 and for �c=100 �left� and

�c=1 �right�, where �c= f0 / fc with fc=�p
2 / �	̂2L4� and fx=kx

2/3 /�p
4/3.

Solid lines: Ĵ��Ĝ�� and dashed lines: Ĵ��Ĝ��. Short lines indicate
high-frequency scaling laws of Table I.

TABLE I. Asymptotic scaling results �10,17,27–30� for the

compliances Ĵ���̂� and Ĵ���̂� from Eq. �10� with �̂=�f0
−2 for �a�

�c�1 and �b� �c�1, respectively, where �x= f0 / fx and �c= f0 / fc

with fx=kx
2/3 /�p

4/3 and fc=�p
2 / �	̂2L4�.

Ĵ���̂� Ĵ���̂�

�a�
�̂��x

−2 �c
1/4�x

3/4�̂−1/2

�x
−2��̂�1 �c

1/4�̂−7/8

1��̂��c
−1/2 �c

1/4�̂−1/2

�c
−1/2��̂ �c

1/2 �c
1/2�̂1/2

�b�
�̂��x

−2 �c
1/4�x

3/4�̂−1/2

�x
−2��̂��c

−2 �c
1/4�̂−7/8

�c
−2��̂�1 �c

1/2�̂−3/4

1��̂ �c
1/2 �c

1/2�̂1/2
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results have been obtained previously �cf., Refs.
�10,17,27–30��, and we will therefore not comment on them
in detail. We merely emphasize that for low frequencies
�̂�1 the presence of a prestress leads to the well-known
nonlinear response regime with its characteristic 1

2 exponents

�30,31�. The intermediate regime �c
1/2��̂�1 with Ĵ�� Ĵ�

� �̂−1/2 corresponds to the previously discussed regime of
nonlinear tension propagation �8,11� and can only be ob-
served for large �c�1. Also, for small prestress ��c�1�,
there is an intermediate regime with Ĵ�� Ĵ�� �̂−3/4 for
�c

−2��̂�1 equivalent to the force-free case �17,28�.
The predominant effect of an extensible backbone is to

produce a Rouse-like scaling in the new high-frequency re-

gime �� fx
2. Here, we find Ĵ���̂�� Ĵ���̂��21/2�c

1/4�x
3/4�̂−1/2,

corresponding to Ĝ�� Ĝ��2−3/2�c
−1/4�x

−3/4�̂1/2. From Fig. 1

we conclude that a moderate prestress f0 of merely 1% of the
critical force fx suffices to significantly shorten the 7/8-
regime and to produce a distinct Rouse-like signature, espe-
cially if �c is not too large.

In summary, we have presented a systematic theory of
tension dynamics for extensible wormlike chains including
the opposing effects of thermal stored length and elonga-
tional strain relaxation at short times. These produce a
Rouse-like scaling in the high-frequency viscoelastic re-
sponse and are expected to be especially relevant for the
proper design of bead-spring simulations.
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3. Quasispecies theory for specific
enzymatic replication

The RNA world theory [84] hypothesizes that RNA-like polynucleotides served both as
carriers of genetic information and as metabolic enzymes at a very early stage of prebiotic
evolution before these functions were largely split among DNA and proteins, respectively.
For its origins from a “primordial soup”, a series of four steps has been proposed [208]: in
a first step, nucleotides would be synthesized non-enzymatically, and secondly polymerize
into random RNA. After acquiring the potential for non-enzymatic copying or even repli-
cation in the third step, natural selection would act on this more refined pool of RNA
sequences and finally yield a set of functional RNA replicase enzymes, thus initiating Dar-
winian evolution. In the introduction, we discussed some recent findings regarding the
diverse catalytic functions of ribozymes [49], and the experimental progress made so far
towards the creation of self-replicating RNA-based systems in the lab [208, 258]. Many the-
oretical studies are concerned with the origins of evolution as well. The question at which
point chemical kinetics turns into evolution has inspired theories of “prevolution” [198], as
a description of the transition from the non-replicative generation of information-carrying
polymers (“pre-life”) to the appearance of reproductive potential and evolution (“life”).
We also discussed some ideas for the emergence of protocells by means of a reciprocally
advantageous interaction between replicators and enclosing membranes [36, 258]. Such
systems encourage a theoretical analysis by means of group selection models [3, 70].

On the level of single replicating polynucleotides, a brief account of the most relevant
features of Eigen’s quasispecies model revealed that their information capacity is limited by
the mutation rate µ, which must not surpass the error threshold µc. In this chapter, we will
present a more detailed introduction to quasispecies theory, which, as a general evolution
model, has also been applied in other biological contexts such as the population genetics of
RNA viruses [188]. It also had a large influence on theoretical descriptions of many other
dynamical processes, e.g., in chemical kinetics or language or grammar evolution [196],
just to name a few. After discussing generic aspects of the underlying “fitness landscapes”
and formal analogies to statistical mechanics, we will explain why these formulations of
quasispecies theory pertain to “non-enzymatic” replicators, and introduce contrasting “en-
zymatic” models. This will finally lead us to the theory of specific enzymatic replication
investigated in this work, and the two aspects discussed in detail: the phenomenon of
an “escalation of error catastrophe” for highly specific replicators [199], and a systematic
analysis of general specificity functions [201].
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3.1. Eigen’s quasispecies theory

Many different variants of Eigen’s theory, originally proposed in the 1970s [52], exist in
the literature, focusing on quite diverse aspects of evolutionary dynamics (for reviews, see
Refs. [11, 27, 51, 54, 123, 196, 273]). Here, we use the formulation most appropriate for
the ideas discussed in this work. In this case, quasispecies theory is a phenomenological
description of molecular evolution based on deterministic chemical rate equations for the
concentrations of molecules of fixed length L. Each molecule is characterized by the number
of copies Ni and its sequence Si = (σ

(1)
i . . . σ

(L)
i ) with σ

(j)
i taken from some alphabet

with κ letters (for instance, κ = 4 and σ ∈ {A, C, G, U} in the case of RNA), i.e., it
is described through coordinates in the L-dimensional sequence space. These molecules
replicate with replication rates Ri through some pseudo first order reaction not specified
in detail. It is only assumed that the replication of sequence Sj can result in an erroneous
or mutated copy Si with probability Mij. Considering that replication likely involves a
stepwise polymerization reaction with a uniform error probability µ per single nucleotide
and round of replication, the mutation matrix can be explicitly given as:

Mij = (1− µ)L−dij

(
µ

κ− 1

)dij

, (3.1)

where dij is the Hamming distance between the sequences Si and Sj, i.e., the number
of differences. Equation (3.1) expresses the total combinatorial probability to leave L −
dij positions intact, while introducing one of κ − 1 different possible mutations at the
other dij positions. To formulate dynamical equations for the abundances of all different
species, it is further assumed that the numbers Ni (and hence their total N =

∑
i Ni) are

all macroscopically large. In this case the equations are given in terms of their relative
concentrations Xi = Ni/N :

Ẋi =
∑

j

MijRjXj −Xi

∑
j

RjXj. (3.2)

The second term involving the mean replication rate
∑

j RjXj has been subtracted to keep

the concentrations normalized at all times,
∑

i Xi ≡ 1, which makes these κL-dimensional
equations nonlinear. It can also be seen as a constantly applied dilution flux introducing
competition between different species, and has the consequence that a degradation term
−DiXi drops out of Eq. (3.2) if sequence-independent decay rates Di ≡ D are chosen. Mea-
suring time in units of some reference interval like one round of replication, all quantities
are dimensionless numbers.

3.1.1. Fitness landscapes

Many analogies between standard models of population genetics and quasispecies theory
suggest to think of Ri as a fitness landscape, i.e., a mapping from genotype to reproduc-
tive success. More generally, the mapping involves two stages, both possibly influenced by
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interactions with the environment: genotype is expressed as phenotype, which determines
fitness. Within quasispecies theory, we identify genotype (i.e., the sequence Si) with pheno-
type, and the replication rate Ri, which could in principle be a function of all constituents
of the system, depends therefore only on the sequence Si:

Ri = Ai ≡ const. (3.3)

Although this represents a considerable simplification, it is still a complicated mapping
from sequence space into the real numbers (hence, the notion of a “landscape”). Because
replication rates are hardly measurable over substantial regions of genome space, which for
all practical purposes is infinitely large, very little is known about general features of fitness
landscapes, such as the number, distances and relative heights of local optima. Sequence
space is very high-dimensional and figurative intuitions drawn from the landscape metaphor
can be misleading: fitness “peaks” can be separated by deep “valleys” and at the same
time connected through “ridges” of intermediate fitness. In particular, it is unclear whether
these landscapes are “smooth” or “rugged”, i.e., whether single mutations generally have
small or large effects, respectively. Further, the phenomenon of “neutral” networks, a set
of points with identical fitness, has attracted increased interest, because these networks are
expected to percolate sequence space, hence providing traversable paths between virtually
any pair of points in sequence space [11, 118].

In this chapter, we will discuss some consequences of neutrality in Sec. 3.1.5, but other-
wise restrict ourselves to the case of highly symmetrical and simple fitness landscapes. For
more detailed reviews on these topics, see, e.g., Refs. [11, 51, 123].

3.1.2. Formal solution

For constant replication rates Ai, a formal solution to Eq. (3.2) can be obtained by standard
linear algebra methods [54]. Although the rate equation are formally nonlinear due to the
dilution flux term, they can be brought into linear form by means of the transformation

Zi(t) = Xi(t) exp

[∑
j

Aj

∫ t

0

dt′Xj(t
′)

]
. (3.4)

The new concentration variables obey the linear equation

Żi =
∑

j

WijZj, (3.5)

where the square matrix W is given as elementwise product of mutation matrix and fitness
landscape:

Wij = MijAj. (3.6)

Solutions Z̃i(t) = Z̃i(0)eλit to Eq. (3.4) follow by diagonalizing W with an orthogonal
matrix S such that S−1WS = diag(λ0, . . . λκL), Z̃ = S−1Z, and S−1S = ST S = 1. Since
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W is real with positive entries, the Frobenius-Perron theorem asserts that it has a unique
largest positive real eigenvalue λ0, and that the corresponding eigenvector has strictly
positive components. In terms of the original variables Xi(t), we obtain

Xi(t) =
Zi(t)∑
k Zk(t)

=

∑
j SijZ̃j(0)eλjt∑

kj SkjZ̃j(0)eλjt

t→∞−→ Si0∑
k Sk0

, (3.7)

because the eigenvector to the largest eigenvalue λ0 grows faster than all other eigenvectors
(which are the columns of S). From the competitive exclusion principle [100], we would
expect that in the stationary state only the single “fittest” species X∗ with the largest
replication rate A∗ survives. In contrast, here we are left with a whole species distribution,
given by the normalized Frobenius-Perron eigenvector of W . This motivated the notion of a
“quasi-species” as the target of selection (i.e., as the steady-state result of this evolutionary
dynamics), a metaphor for the formation of a cloud of mutants about this fittest sequence
that are continuously generated through mutations albeit their replication rates may be
smaller.

3.1.3. Simple symmetric fitness landscapes

In the following, we introduce a number of strong simplifications that have been made
throughout the theoretical literature, even though their biological justification sometimes
is unclear at best. First, we work only with a two-letter alphabet, σ ∈ {0, 1}, such that
κ = 2. This can be motivated by classifying nucleotides as either pyrimidines (C,U) or
purines (A,G), respectively, or by accounting only for the presence or absence of a certain
mutation. Secondly, we consider fitness landscapes as “simple” if they exhibit only one
single peak at a certain sequence with highest fitness, which is usually called the “master”
sequence. The common biological scenario of having a particular “wildtype” and some
(usually deleterious) “mutants” suggests such a model. Finally, we will mostly restrict
ourselves to the class of “permutation invariant” fitness landscapes, which have been mainly
considered in the theoretical literature (largely because of mathematical convenience). In
these landscapes, fitness is only a function of the number of mutations relative to the
master sequence, but not their positions along the sequence.

Exploiting this symmetry in sequence space, we reduce the original rate equations,
Eq. (3.2), by lumping together sequences with k mutations relative to the master sequence
into “error class” k [4, 195, 256, 283]. For the new variables xk denoting the concentration
of error class k, we obtain rate equations formally analogous to Eq. (3.2):

ẋk =
∑

j

mkjαjxj − xk

∑
j

αjxj. (3.8)

Here, we use lower-case letters for all symmetrized quantities: αj is the replication rate
of error class j and mkj is the symmetrized mutation matrix, denoting the probability of
obtaining a sequence in error class k from mutating a sequence in error class j. It can
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Figure 3.1: Stationary Hamming distance distribution xk from numerical solutions to the sym-
metrized rate equations Eq. (3.8) for sequences of length L = 32: x0 is the concentration of the
master sequence, x1 are the sequences with one mutation, x2 those with two errors, etc. Left: a
multiplicative fitness landscape αk = (1− s)k with s = 0.054, where the population distribution
is binomial, xk =

(
L
k

)
ak(1 − a)L−k. The average Hamming distance a = 〈k〉 /L to the master

sequence, shown in the inset (note the different scale on the abscissa), is given by Eq. (3.11)
(dashed line). Right: the sharply peaked fitness landscape αk = 1 + (α0 − 1)δk,0 with α0 = 6,
where the dashed line depicts the result of the error-tail approximation Eq. (3.13) for x0.

be obtained by adding up all possibilities to appropriately distribute 0 ≤ k − j + 2` ≤ L
mutations [4, 195, 256, 283]:

mkj =
∑

`

(
L− j

k − j + `

)(
j

`

)
(1− µ)L−(k−j+2`)µk−j+2`. (3.9)

The reduced rate equations, Eq. (3.8), have the advantage of being only (L+1)-dimensional
and thus amenable to numerical solution. Figure 3.1 shows the resulting stationary Ham-
ming distance distribution xk under two exemplary fitness landscapes αk.

Multiplicative landscape. If all sites are independent, each additional mutation reduces
fitness by a factor 1− s:

αk = (1− s)k. (3.10)

In other formulations of population genetics, where log αk is used as fitness, this is called
an “additive”, hence linear, landscape; both formulations agree in the case s � 1, which
is most relevant for population genetics. The stationary solution for this landscape can be
obtained analytically [283]: it turns out that the Hamming distances xk =

(
L
k

)
ak(1−a)L−k

are binomially distributed, with a given by

a =
1

2
+ µ

2− s

2s
−
√

(s(1− µ) + 2µ)2

4s2
− µ

s
. (3.11)

This parameter (depicted in the insets of Fig. 3.1) measures the population’s mean Ham-
ming distance to the master: 〈k〉 ≡

∑
k kxk = aL, and thus the width of the population
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distribution. It increases from a = 0 at µ = 0, implying full localization about the master
sequence, to a = 1/2 at µ = 1/2, which means that the population consists of purely
random sequences: in this case the Hamming distance distribution xk = 2−L

(
L
k

)
is equal

to the one obtained by randomly choosing each “bit” of a binary sequence (there are
(

L
k

)
ways of having a distance of k mutations to the master).

Sharply-peaked landscape. In contrast to the above smooth case, the fitness landscape

αk = 1 + (α0 − 1)δk0 (3.12)

attributes a higher replication rate α0 only to the master, while all other sequences have
unit replication rate. Because of its simplicity, this landscape has very often been used
in the literature [4, 13, 32, 52, 76, 195, 225, 232, 256, 261]. A simple approximate result
for the concentration x0 of the master sequence is easily obtained by means of the error-
tail approximation, which was already discussed in the introduction. It considers only
the master sequence, its replication rate α0, and the probability (1 − µ)L not to produce
a mutant. All other sequences are part of the error tail with concentration 1 − x0 and
identical unit fitness. Mutations in the error tail back to the master sequence are neglected,
because they are very unlikely for large sequence length. The rate equations Eq. (3.8) read
ẋ0 = (1 − µ)Lα0x0 − x0[1 + (α0 − 1)x0] as in Eq. (1.4), and in the stationary state, the
solution is

x0 =
α0(1− µ)L − 1

α0 − 1
, (3.13)

in perfect agreement with the numerical solution even for moderately large L, as shown in
the right panel of Fig. 3.1. With increasing mutation rate, the concentration of the master
sequence decreases, while the nearest mutants are more strongly populated. From Fig. 3.1
we infer that in this landscape, compared to the multiplicative one, the population is much
more localized (the mean Hamming distance 〈k〉 is much smaller).

3.1.4. The error threshold

The transition between a regime, where the population is localized about the master se-
quence in a quasispecies distribution, and the delocalized regime of random sequences has
been termed the error threshold, because it implies that above a certain critical muta-
tion rate the information of the master sequence is lost: even though the concentration of
the master sequence itself may be very small near the error threshold, it is still present
as “consensus” sequence of the population, which has at each position the most frequent
letter [123], but beyond the error threshold the consensus sequence becomes random.

For the two landscapes discussed in the previous sections, these transitions are entirely
different: while it appears very smooth for the multiplicative landscape, it is quite abrupt
for the sharply peaked one. In more quantitative terms, we observe that in the mul-
tiplicative case the parameter a as given through Eq. (3.11) increases smoothly from
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a = 0 to a = 1/2. All other observables such as the concentration of the master se-
quence x0 = (1 − a)L, or the population distribution’s mean and variance (〈k〉 = aL and
〈(k − 〈k〉)2〉 = La(1− a), respectively) are also continuous, such that a distinct transition
is absent. In the contrasting sharply-peaked landscape, the concentration of the master
sequence x0, as given through Eq. (3.13), is nonzero only for µ < µc, with the critical
mutation rate given by

µc = 1− α
−1/L
0 ≈ log α0

L
for large L. (3.14)

Of course, the solution Eq. (3.13) is only approximate, because the concentrations in the
stationary state are actually always positive (they are given as the components of the
Frobenius-Perron eigenvector, cf. Sec. 3.1.2). However, a non-smooth transition clearly is
apparent, and it can be seen also in other observables: exact results show that in the limit
L →∞ the mean Hamming distance 〈k〉 ∼ (µ− µc)

−1 diverges at the error threshold [76].

General results. Generally speaking, not all fitness landscapes display an error threshold,
and its characteristics depend to a certain extent on the observable [12, 123, 273]. In the last
decades, considerable progress has been made in determining the existence and signatures
of error thresholds for a variety of fitness landscapes (see Refs. [11, 51, 54, 123, 273] and
references therein), and we will briefly account for some major results. For general bounded
fitness landscapes 0 < αmin ≤ αk ≤ αmax < ∞, the approximation of accounting only for
unidirectional mutations (those increasing the Hamming distance to the master) gives a
bound on the error threshold [273]:

µc ≤
ln(αmax/αmin)

L
, (3.15)

implying that µc generally depends inversely on sequence length and logarithmically on
the selective advantage of the master (the fitness ratio relative to the “worst” mutants).
Accordingly, the maximal sequence length is limited by the inverse of the mutation rate.
Note, however, that the approximate result Eq. (3.15) is at variance with the absence
of a threshold for the multiplicative landscape: from Eq. (3.15), we would obtain µc ≤
− ln(1− s), and in Fig. 3.1 we actually chose the numerical value of s such that this result
for µc is identical with the one for the sharply-peaked case. Because the criterion Eq. (3.15)
clearly is not completely satisfactory, another necessary (but not sufficient) condition for
the existence of an error threshold has been found in requiring the presence of positive
epistasis, meaning that the contributions of different sites to fitness are not independent;
in particular, that additional mutations do not affect fitness as much as the first one does
(for the sharply-peaked fitness landscape, they have no effect at all) [12, 123, 273].

Truncation fitness. The condition Eq. (3.15) fails in the presence of lethal mutations,
which means that certain sequences do not reproduce at all (i.e., that αmin = 0), and
the underlying calculation shows that there is no error threshold in this case [273]. Be-
cause quasispecies theory has been applied frequently to RNA viruses, which presumably
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evolve so close to the error threshold that pharmaceutically increasing their already high
mutation rates might even serve as antiviral strategy [53, 188], this finding has been very
controversially discussed [27, 255, 279]. Within quasispecies theory, error thresholds for
truncation landscapes have been found in cases where lethality is only encountered far
away from the master sequence [224], or in densely connected genome spaces [259]. In
contrast, the quasispecies distribution is known as “mutation-selection” balance within
population genetics theory. However, the error threshold is often confused with the re-
lated, but qualitatively different phenomenon of “Muller’s ratchet” [95], which describes
the irreversible loss of the fittest genotype due to stochastic number fluctuations in a finite
population. The assumption of an infinite population size is certainly a major shortfall
of quasispecies theory, because it misses the probably most essential evolutionary driving
force: genetic drift due to the random sampling of offspring. These finite-size effects are
generally unavoidable, given that the number of different sequences is enormously larger
than any realistic population size. However, the distinct quasispecies distribution is seen
also when accounting for finite populations [4, 195], and quasispecies theory is formally
equivalent to common models in population genetics, such that these two formulations are
in principle compatible, even though the error threshold concept might be unsuitable for
RNA viruses [279].

The error threshold as a phase transition. The observation that the stationary qua-
sispecies distribution can be obtained by diagonalizing a high-dimensional matrix (see
Eq. (3.7)) prompted physicists to seek analogies to statistical and quantum mechanics in
order to profit from the sophisticated methods developed for these fields. In general, this
is possible if the matrix W in Eq. (3.6) has the same symmetries as the Hamiltonian of
a known physics problem. Although fitness has frequently been identified with (negative)
energy, it is a priori not at all obvious that these evolution models should have the same
symmetries as a physical system. For instance, fitness can be a complicated function of
all sequence letters and does not arise only via next-neighbor interactions (but note that
exactly this feature also implies that mean-field approximations might be exact [10]).

The first analogy found was to an anisotropic two-dimensional Ising model [154, 155],
where one direction corresponds to sequence and the other one to time. Exploiting trans-
fer matrix methods, the error threshold for a sharply-peaked landscape arises through a
first-order phase transition on the “stationary” surface t →∞ [261]. A more tractable cor-
respondence is the one to a directed polymer in a random medium [76], which gives exact
results for the sharply-peaked fitness landscape. It exhibits a first-order phase transition
at the error threshold in the thermodynamic limit L →∞, if the mean Hamming distance
is used as order parameter, in agreement with other authors [71]. Hence, although the
observable x0 for the sharply-peaked fitness landscape (see the right panel of Fig. 3.1) is
continuous at the error threshold, the order parameter 〈k〉 (shown in the inset) is actu-
ally discontinuous for L →∞ and only significantly smoothened due to finite-size effects.
Later, a different formulation of the rate equations has been mapped to an Ising quan-
tum chain [10, 12], finding second-order transitions for some other landscapes. Recently,
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these different approaches based on Ising models were united using so-called “maximum
principles” that are essentially based on a saddle-point approximation [106, 225].

3.1.5. Neutrality in fitness landscapes

The notoriously difficult problem how a realistic fitness landscape should be defined has
been simplified considerably, even though by far not solved, in the case of RNA by the
development of efficient secondary structure folding algorithms (see, e.g., Ref. [231] for a
review). In contrast to the protein case, RNA folding is largely determined by secondary
structure (and only little by tertiary structure), which can be decomposed into indepen-
dent energetic contributions of single structural elements like hairpins, loops, etc. Hence,
the computation of the partition sum of all secondary structures for a particular RNA
sequence can be done efficiently by means of recursion relations, with computational time
scaling (only) as the third power of sequence length. If secondary structure is taken as
phenotype, and (in a heuristic approach) some function of a suitably defined difference to
a specific target structure as fitness, the evolution of RNA structures can be studied in
silico [69, 118]. The adaptative evolution towards the target then appears as a discon-
tinuous process of major innovation steps (corresponding to structural rearrangements)
separated by stationary phases, where the population diffuses randomly within a specific
neutral network, which is the set of sequences that fold into a given structure (and hence
have identical fitness). Because the number of possible structures of a certain length is ex-
ponentially smaller than the corresponding number of sequences, the genotype-phenotype
map for RNA displays the remarkable and potentially quite generic feature that the vast
majority of possible phenotypes is accessible with just a few mutations from virtually any
genotype [231]. On the one hand, the possibility of finding within the neutral network of
any given structure a suitable starting point for a short transition to the neutral network
of any other structure provides adaptability. On the other hand, the presence of neutral
networks also yields mutational robustness, i.e., an insensitivity to deleterious mutations.
Theoretical calculations show that populations evolving on neutral network tend to max-
imize robustness [194]. Especially at enhanced mutation rates, high robustness at lower
fitness can even be more favorable than high fitness at lower robustness, a phenomenon
that has been termed “survival of the flattest” [281].

In general, the degree of neutrality around a certain sequence depends on the location
in sequence space. For theoretical studies, two main scenarios have been discussed. In one
case, fitness is insensitive to a certain number of mutations. This comes from the biophysics
of transcription factor binding [83], where the contributions of different letters to binding
energy are additive, but fitness is proportional to the resulting binding probability. The
latter is given by a Fermi function of binding energy with its characteristic plateau and
allows therefore for a small number of mismatches (usually between 2 and 4). A theoretical
analysis within quasispecies theory attributes the observed “fuzziness” of binding motifs
to the underlying quasispecies-like sequence distribution [83]. In the second case, fitness
is insensitive to mutations at certain positions. This notion results from the observation
that exchanging certain nucleotides within an RNA sequence does not necessarily affect
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the structure (for instance, those in loops). Recent mutation experiments indicate that
ribozymes tolerate mutations at about 25% of their positions without loss of function [147].
A full theoretical analysis of this scenario is difficult because the fitness landscape is not
permutation invariant. Within a simple estimate, we can assume that if a fraction λ of all
positions is selectively neutral, the effective mutation rate is only (1 − λ)µ, because the
chance to hit a non-neutral site is 1−λ (assuming that the neutral positions are uniformly
distributed and that λ and µ are small, such that multiple mutations are independent) [260].
Using this argument leads to “phenotypic error thresholds” [260], which are accordingly
increased by a factor 1−λ, just as one would get if the sequence length L(1−λ) effectively
accounted only for the non-neutral positions [54].

3.2. Enzymatic catalysis

The previous section was concerned with the results of quasispecies theory for a variety
of static fitness landscapes, but it is important to note that fitness is never simply a fixed
quantity. The complicated and poorly understood mapping from genotype via phenotype
to fitness involves a myriad of interactions with other components of the system. In every
ecosystem, the fitness of one species depends on the environment, including other species
whose abundances depend on their own fitness, which in turn is a function of the whole
system etc. Exemplary ecosystems include catalytic networks of reacting chemicals, highly
diversified food webs, and even the behavioral strategies of different interacting species. In
all those cases, ongoing evolution is probably more often than not caused by adaptation
to a changed environment instead of independently improved reproductive success.

Of course, realistic models for changing fitness are hard to come by. In the abstract and
idealized framework of quasispecies theory, some authors studied sharply-peaked fitness
landscapes with temporally oscillating or fluctuating peak height [193, 280], with the result
that populations follow slow changes in fitness, while they adapt to its time-averaged
value for fast changes. Further, a sharply-peaked fitness landscape was studied where the
peak location changed by a single mutation at regular time intervals [192]: besides the
usual error threshold, another critical mutation rate was found below which the population
lacks sufficient adaptability to remain close enough to the fitness peak. Motivated by
the coevolution of virus and immune system, a model developed in the following had the
peak location change as result of adaptation of a second population, finding a similar
adaptation threshold [128]. In this work, however, we are not so much interested in the
time dependence of fitness but in its concentration dependence, as will become clear in the
following.

3.2.1. Non-enzymatic vs. enzymatic replication

We recall that quasispecies theory originated as a description for the prebiotic evolution of
self-replicating polynucleotides (see Sec. 1.2). As evolutionary model, it has been applied
also to more complex species (such as bacteria or higher organisms), which create the
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sophisticated apparatus necessary for reproduction from scratch, using just the instructions
given in the genetic code and substrates taken up from the environment, in order to produce
all the protein components involved in replication. To a first approximation, their fitness
thus depends indeed only on their genotype, and a model using fitness landscapes as in
Eq. (3.3) is appropriate.

In contrast, a single replicating molecule has to perform these functions all by itself,
i.e., it is genotype (template for the replication) and catalyst at the same time. Because
it is not a reasonable hypothesis in a prebiotic scenario, we exclude the possibility that
external replicase enzymes are present (such as the protein replicases used for in vitro
evolution of ribozymes [126]). Hence, non-enzymatic self-replication is an autocatalytic
process (no external enzymes are involved). Given that advanced catalytic functions cannot
be expected from simple ribozymes, such molecules would have to rely on the spontaneous
template-directed polymerization and ligation reactions illustrated in Fig. 1.5. As we
discussed in the introduction, however, the polymerization reactions work reasonably well
only for short molecules with rather specific sequences [1, 284]. Self-replication by ligation
reactions can produce more complicated molecules [131, 134, 158, 212, 213], but only if
the appropriate building blocks (which are also RNA oligomers) are provided, such that
variations are rarely introduced and not heritable. In any case, Darwinian evolution has not
been observed so far. One hypothesis suggested that fluidity or flexibility of RNA structures
could allow template-directed polymerization at one part of the sequence to be catalyzed
by another part of the same molecule [209]. These speculative ideas notwithstanding, it
remains highly questionable how a single molecule should literally copy itself [126, 258].

We have illustrated the (pseudo first order) reaction scheme of non-enzymatic replication
in Fig. 3.2(a). In contrast, we argue that enzymatic replication (shown in part (b)) is a
far more likely scenario [206]. Here, the enzymatic replication of a certain sequence Si is
catalyzed by another molecule Sj, which could be an improved version of the polymerase
ribozyme shown in Fig. 1.6. While the rate Ai of the non-enzymatic (or autocatalytic)
reaction depends only on the template sequence, in the enzymatic case both genotypes
(of substrate and enzyme) are potentially relevant, and the higher order rate constant is
accordingly given by the matrix Bij, which measures how efficiently the enzyme Sj catalyzes
the replication of the template Si. The important difference to the non-enzymatic case is
that the enzyme Sj is an explicit part of the evolutionary model.

3.2.2. The replicator-mutator equation

In this section, we will set up a quasispecies model for the replication of sequence Si

through either non-enzymatic or enzymatic replication reactions. The former case gives a
contribution Ẋi = AiXi as in Eq. (3.2), while the latter case involves enzymatic catalysis.
At the low concentrations to be expected in a dilute prebiotic environment, we assume that
these reactions are diffusion limited, such that the change Ẋi through enzymatic replication
is given by

∑
j BijXiXj, i.e., it is proportional to the concentrations Xj of all potential

enzymes and their characteristics (entering through Bij). Note that we defined the pseudo
second order rate constants Bij such that an additional volume dependence drops out
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Si + Sj
BijMik−→ Si + Sj + Sk

Si
AiMij−→ Si + Sj

(a) non-enzymatic replication

(b) enzymatic replication

Figure 3.2: Non-enzymatic vs. enzymatic replication. In the former case (see part (a)), a molecule
replicates itself autocatalytically, using only necessary substrates from the environment (no en-
zymes are involved). The rate Ai thus depends only on the genotype Si, and replication may
result in a different sequence Sj with probability Mij . (b) The case of enzymatic replication
involves (at least) two molecules: one is the template with sequence Si, the other one (Sj) is the
enzyme, catalyzing the creation of a possibly erroneous copy Sk. The rate constant Bij depends
therefore on both genotypes.

(recall that the concentration variables Xi = Ni/N have been introduced as dimensionless
quantities in Sec. 3.1).

Inserting the resulting replication rates Ri = Ai +
∑

j BijXj into the quasispecies equa-
tions, Eq. (3.2), which also account for mutations through the mutation matrix Mij dis-
played in Eq. (3.1), gives the so-called replicator-mutator equation:

Ẋi =
∑

j

Mij

[
Aj +

∑
k

BjkXk

]
Xj −Xi

∑
j

[
Aj +

∑
k

BjkXk

]
Xj. (3.16)

Due to concentration-dependent replication rates, this equation is inherently nonlinear
(linearization through the transformation Eq. (3.4) is not possible). In population genetics,
this type of nonlinearity is called frequency-dependent fitness, which is usually caused by
ecological interactions. It has indeed been observed for RNA viruses [59, 287].

In the contexts of ecological models and evolutionary game theory [115], where similar
equations have been used, the different species Si are not necessarily characterized by
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a sequence, and the mutation matrix need not have the form Eq. (3.1). In most cases,
the simpler replicator equation has been discussed, for which Mij = δij and Ai = 0. It
lives in the concentration simplex

∑
i Xi = 1 and can be mapped to a Lotka-Volterra

equation [115]. If the “pay-off matrix” Bij is symmetric, this equation can be written as a
so-called Shahshahani gradient of the Lyapunov function 1

2

∑
ij BijXiXj, and if there is a

fixed point in the interior in the simplex (implying coexistence of all species, i.e., positive
concentrations Xi > 0), it is also unique and globally stable [115].

Introducing mutations can significantly change this picture. For small mutation rates,
the rest point migration theorem predicts some fixed points to move into the interior of
the simplex, while others are pushed to the unphysical outside; the phase portrait may
thus be simplified considerably [249]. Further, also the replicator-mutator equation can
be written as a gradient for special mutation matrices Mij = Mi, where rates depend
only on the target [114]. This simplification, which excludes nontrivial dynamics like limit
cycles, has been used for models of grammar evolution, where the success of different
grammatical variants depends on their frequency in the population and their similarity
to other grammars, and new variants are chosen randomly [136, 137, 197]. In general,
however, larger mutation rates such as those given in Eq. (3.1) can lead to complicated
bifurcation scenarios, multiple equilibria, and even the appearance of limit cycles. Some
low-dimensional examples for generic catalytic networks have been discussed in Ref. [248].

3.2.3. Hypercycles

Even the replicator equation as such gives rise to complex dynamics in cases where the
matrix Bij is not symmetric. One such example is the hypercycle, which has been sug-
gested by Eigen and Schuster in the late 1970s as a possible remedy against the error
catastrophe [55, 56, 57]. They imagined a specific network of n different species Si, each of
which replicates autocatalytically with rate Ai, but also catalyzes the replication of other
molecules Sj with rate Bij. The name “hypercycle” was chosen because a circular network
topology was proposed, where each species catalyzes the replication of its next neighbor in
the network, such that Bij ∝ δi,i+1. Because a sequence containing all the information of
n molecules might be too long to obey the error threshold, whereas n independently repli-
cating shorter molecules compete with each other and cannot coexist, mutualistic catalytic
interactions between different species could help to maintain their combined information
content even in the presence of error-prone replication. Although this model was proposed
as a means to beat the error threshold, mutations were initially not taken into account.
In this case, it is easy to see that the resulting replicator equation admits an interior fixed
point. For simplicity, we assume that all rates are equal: Ai ≡ α, Bij = βδi,i+1, in which
case the central fixed point is given by Xi ≡ 1/n. Its stability follows by analyzing the
eigenvalues of the Jacobian, which is a circulant matrix and can easily be diagonalized. It
turns out that the central fixed point loses stability for n > 4, giving rise to stable limit
cycles with large concentration oscillations.

For a number of reasons, this model was strongly critized. Especially John Maynard
Smith raised doubts whether natural selection would actually favor the emergence and



70 Quasispecies theory for specific enzymatic replication

the permanence of this quite artificial catalytic network [175]. For instance, mutations
that increase the efficiency of the cycle as a whole (for instance, by making Si a better
replicase for Si+1) are selected for only if they also lead to a more efficient replication of the
mutated component (i.e., if the replicase Si−1 prefers to replicate the new Si instead of the
old one). Essentially, catalyzing the replication of other molecules is an altruistic property
that evolves only if some higher-level selection is present, such as the one resulting from
compartmentalization, which couples the growth of single species to the growth of the whole
ensemble [257]. Similarly, the altruistic cooperation necessary for enzymatic replication can
be exploited by parasites, i.e., molecules that are being replicated but do not catalyze the
replication of others. In the hypercycle, parasites are easily created by mutations that
destroy enzymatic function while retaining template potential. The spiral wave patterns
that emerge from the oscillatory dynamics for n > 4 in a spatial hypercycle model have
been shown to generate some resistance against parasites [9]. However, during the periods
of very small concentrations, which are associated with these large-amplitude limit cycles,
the single components of the hypercycle are very sensitive to stochastic fluctuations and
may go extinct, causing the collapse of the entire cycle.

Interestingly, the deleterious effects of mutations that motivated the hypercycle concept
in the first place were not investigated until many years later, when models were set up
based on the error-tail approximation (see Sec. 3.1.3). Here, replication of each species
results in an erroneous non-functional copy with probability 1− (1−µ)L [6, 7, 33, 79, 242].
It turns out that the resulting error threshold decreases logarithmically with the number
of different species, such that the information capacity of a hypercycle is not as large
as initially thought. Also, mutations that affect the catalytic couplings (for instance, by
generating parasites) were not taken into account.

3.3. Specific enzymatic replication

The previous section has introduced some models for enzymatically catalyzed replication.
Apart from the mathematical difficulties associated with the replicator-mutator equation
discussed in Sec. 3.2.2, the enzymatic replication mode shown in Fig. 3.2(b) requires to
specify the catalytic matrix Bij, which is obviously much harder than choosing a realistic
fitness landscape Ai. Trying to model how efficiently an enzyme Sj catalyzes the repli-
cation of a substrate Si raises the question whether replication efficiency (or fitness) is a
property of the enzyme or the substrate. If it depends only on the enzyme, mutations
that improve its efficiency will not be selected for, because the enzyme replicates non-
functional templates just as well as itself. On the other hand, if fitness is a property of
the substrate, mutations that are advantageous for the substrate do not necessarily create,
maintain, or improve enzymatic function. As discussed in Sec. 3.2.3, these issues are due
to the fact that enzymatic function is an altruistic property, and it is therefore not clear
how it should evolve in the first place, given that it is not necessarily of advantage for
the enzyme itself [175]. Compartmentalization certainly is a plausible way to ensure that
efficient replicators are preferentially enclosed in the same environment in order to sustain
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their function, but it requires a simultaneous and coordinated evolution of protocells and
replicators [36, 258]. In any case, we argue that enzymatic replicators should be good
enzymes and good substrates at the same time. Enzymes should preferentially replicate
functional substrates, and substrates should rather be replicated by efficient enzymes. As
a possible means to enforce these necessary propensities, we propose specific recognition,
implying that replication efficiency depends strongly on the interaction between enzyme
and substrate. This hypothesized property of prebiotic replicators is not unlikely, given
that ribozyme catalysis (e.g., of ligation, cleavage, or template-directed polymerization)
is often strongly substrate-dependent [124, 126]. Unspecific recognition, in contrast, re-
quires sophisticated substrate-binding properties that are probably a later evolutionary
innovation [124].

In this section, we develop idealized quasispecies models for specific enzymatic replication
and analyze various aspects in order to address two main questions: how can specific
enzymatic replicators benefit from the altruistic property of giving catalytic help, and how
does this affect the error threshold? In the first part (see Sec. 3.3.1), we investigate how
highly specific recognition could be mediated via an otherwise neutral recognition region
by means of a simple model. This work has been published in Ref. [199], which is reprinted
in Sec. 3.6. The second part (see Sec. 3.3.2) generalizes these ideas by allowing specificity
to be an arbitrary function of the Hamming distance between enzyme and substrate. Our
results for error thresholds under general specificity functions, reprinted in Sec. 3.7, are
published online [201] and submitted for publication in the Journal of Theoretical Biology.

3.3.1. Recognition regions and high specificity

Our study [199] is motivated by the experimental observation that catalytic and recog-
nition regions of ribozymes such as the RNA component of RNaseP are often clearly
separated [157]. Also, terminal tRNA-like structures have been speculated to act as ge-
nomic “tags” for the initiation of RNA replication [272]. While we do not actually model
secondary structure in order to facilitate theoretical analysis, we assume that the corre-
sponding sequence regions fold into distinct structural elements with either catalytic or
recognition functions. We also suppose that catalytic function gives an essential contri-
bution to non-enzymatic replication rate and that a molecule is only functional if the
structural region is equal to the one of a master sequence S∗, as in a sharply-peaked fitness
landscape. This catalytic property is unaffected by mutations in the recognition region,
which is therefore essentially neutral. For enzymatic replication, we require that enzyme
and substrate, apart from having catalytic function, also be identical in the recognition
region, without specifying any particular optimal sequence. Hence, the replication rate of
sequence Si is given as

Ri =

{
α + γXi if Si|struc = S∗|struc,

1 otherwise.
(3.17)

Here, α > 1 is the selective advantage, γ is the second order rate constant, and S|struc

denotes the restriction of the sequence S to the structural sites. Clearly, we also assume
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that structural and recognition region are somehow coupled in order to ensure that non-
functional substrates (those with mutations in the structural region) cannot properly be
recognized by functional enzymes.

We proceed with a stochastic simulation based on the algorithm discussed in Ref. [280].
Starting with a population of functional sequences with random recognition regions, we
observe stochastic fluctuations leading at some point to the emergence of a randomly cho-
sen master sequence in the recognition region, surrounded by a quasispecies distribution
of mutants. Even though initially all functional sequences have the same concentration,
and by Eq. (3.17) the same replication rates, stochastic fluctuations imply fitness advan-
tages which can lead to the “fixation” of one particular sequence (which we call the master
sequence for simplicity), similar to the phenomenon of consensus formation in language
evolution [21]. Hence, highly specific recognition allows enzymatic self-replicators to con-
serve their information content.

These results are quantitatively analyzed by means of the error-tail approximation, where
we distinguish enzymatic replicators (functional molecules with a recognition sequence
equal to that of the master), non-enzymatic replicators (functional molecules with random
recognition sequence) and an error-tail. Mutations are only considered if they lead to
the less-fitter class. Because the recognition sequence of the non-enzymatic replicators
is neutral, these molecules are mutationally more robust. From this analysis, we obtain
two error thresholds: one at a mutation rate µc,n separates the non-enzymatic regime
from the delocalized state, and is similar to the “phenotypic” error threshold discussed in
Sec. 3.1.5. The other one (µc,e) delineates the enzymatic regime. For large γ � α, we find
asymptotically µc,e ∼ ln γ/(2L). Compared to the usual case in a static fitness landscape
(where µc ≈ ln α/L, see Eq. (3.14)), the error threshold is reduced by a factor of 2, if
we choose the values of the logarithms numerically equal (correspondingly, the two error
thresholds are comparable only if γ = O(α2) is quite large). We explain this essential
difference by an “escalation of the error catastrophe”: because the fraction of enzymatic
replicators with the correct recognition sequence declines as the mutation rate is increased,
their replication rate, Eq. (3.17), decreases as well, leading to an even stronger reduction
in their concentration. At the error threshold, the concentration of suitable enzymes is
not large enough to have them replicate with sufficient efficiency to be maintained at a
macroscopic level. A similarly discontinuous transition in the concentration of the master
sequence has been found in related models [33, 268].

Finally, we generalize these results to a simple hypercycle model, where different species
catalyze each other’s replication if they specifically recognize each other. Analogously to
the traditional case discussed in Sec. 3.2.3, we find a central coexistence fixed point, which
is stable only for n ≤ 4. Also, specific recognition via a recognition sequence can be main-
tained only below the error threshold, which asymptotically is given by µc,e ∼ ln(γ/n)/(2L).
As an illustration, this implies that the supposedly larger mutational tolerance of a two-
member hypercycle with two sequences of length L is actually only about equal to that of
one single sequence of length 2L because of the reduced error threshold.
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3.3.2. General specificity functions

The results discussed in the preceding section revealed that frequency-dependent replica-
tion rates give qualitatively different error thresholds, viz., a discontinuous transition of
the concentration of the master sequence. We were motivated by the question how spe-
cific recognition can serve to maintain the altruistic property of catalytic function in these
replicators. In our second study [201], we generalize the above model, which allowed en-
zymatic replication only for identical molecules, to arbitrary specificity functions, in order
to elucidate how our findings depend on the degree of specificity.

To this end, we consider only recognition regions (the structural regions largely behave
as in a simple fitness landscape) and assume that the catalytic matrix is a function of the
Hamming distance dij between enzyme Sj and substrate Si, while the non-enzymatic rate
is a constant:

Ri = α +
∑

j

βf(dij)Xj. (3.18)

Hence, we assume that replication efficiency (which could depend on both genotypes of en-
zyme and substrate) is only a function of the mismatches between the respective recognition
regions, similar to the case of transcription factor binding briefly discussed in Sec. 3.1.5 [83],
and that non-enzymatic replication rates are so small that their genotype dependence is
irrelevant. Our choice implies that enzymatic function and template potential are both
intrinsically coupled to the quality of recognition.

Although is is not a priori clear whether the associated replicator-mutator equation
has a stable fixed point in the interior with all species present (cf. Sec. 3.2.2), we assume
that stochastic fluctuations cause the formation of a quasispecies about a randomly chosen
master sequence as in the previous section. The localization about one specific sequence
allows then to perform a symmetrization of the rate equations in terms of error classes as in
Sec. 3.1.3, resulting in reduced rate equations formally equivalent to the replicator-mutator
equation, Eq. (3.16), with accordingly symmetrized mutation and catalytic matrices (for
the former, see Eq. (3.9)). Note, however, that our frequency-dependent fitness, given
through Eq. (3.18), is not strictly permutation invariant: replication rates depend on the
Hamming distance between two arbitrary sequences and their respective concentrations, a
complication that can be resolved by assuming that the error classes are homogeneously
populated, which is justified by the excellent agreement with results from stochastic sim-
ulations.

In a first part, we concentrate on a specificity function for self-specific replication: fs(d) =
(1−d/L)p, with some exponent p > 0. While the limit p →∞ of high specificity relates to
the situation addressed in the previous section, and corresponds to the generalized Schlögl
model of autocatalytic replication partly analyzed in Ref. [248], the limit p → 0 results
in very low specificity (yet it is finite, because always fs(L) = 0). It turns out that both
cases allow localization about a master sequence for small enough mutation rates µ < µc.
Localization is not observed if specificity is completely absent (fs ≡ 1), because unspecific
enzymes do not have a selective advantage. In general, stronger specificity constraints
(i.e., larger p) give larger error thresholds, because the population distributions are more
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localized, and the escalation of the error catastrophe is thus better controlled. However, a
larger specificity degree also gives rise to bistability with the delocalized regime for mutation
rates larger than a second threshold µ̃c. Utilizing a moment closure approximation, where
we assume the population distribution to be binomially distributed in order to calculate
the mean Hamming distance a = 〈k〉 /L for arbitrary specificity functions, we find that
a pitchfork bifurcation is responsible for this effect: bistability is found in the subcritical
situation where β is smaller than a critical value β∗, for which we give an explicit expression.
We also analyze the case α = 0 of vanishing non-enzymatic replication rate, where we find
macroscopic (length-independent) values for the error threshold, which is a consequence of
the subtleties of truncation landscapes discussed in Sec. 3.1.4.

In the second part, we analyze cross-specific replication with fc(d) = (d/L)p, where en-
zyme and substrate should be complementary, as an example for a two-member hypercycle.
By means of analogous moment closure calculations, we find that the expected localization
about complementary sequences is possible only if p > 1, i.e., if catalytic rates increase
stronger than linearly with Hamming distance. In the strong-specificity limit p → ∞, we
obtain two equivalent and effectively independent populations, which justifies the use of
the error-tail approximation in simplified models such as the one discussed in the previous
section.

Although our analytical results have been obtained by means of a heuristic moment clo-
sure approximation, they are in good agreement with numerical solutions of the reduced
rate equations for finite L. Further, our results for the error threshold µc are exact for a
supercritical pitchfork bifurcation, and the asymptote of the subcritical case for p → ∞
and large β agrees with the value obtained by the error-tail approximation, such that we
have no reason to believe that our results should fail in the limit L → ∞. Finally, we
extrapolate from experimentally measured non-enzymatic and enzymatic polymerization
rates to obtain a rough estimate for the maximum length Lc of the recognition region that
can be used to reliably discriminate appropriate and infeasible enzymes and substrates,
respectively. Depending on the degree of specificity, we find that Lc is between 11 and 33
nucleotides, given the mutation rates of about 3% observed on polymerase ribozymes [124],
which implies that the error threshold severely constrains the information content of en-
zymatic replicators as well.

3.4. Conclusions

This chapter presented a theoretical discussion of quasispecies models for specific enzymatic
self-replication. After reviewing the main results of quasispecies theory for different fitness
landscapes, we argued that enzymatically catalyzed replication with frequency-dependent
fitness is the more likely scenario under prebiotic conditions. However, enzymatic cata-
lysis is an altruistic trait that is not necessarily advantageous for the enzyme itself. We
propose that specific recognition could help to ensure that enzymes replicate preferentially
functional substrates. We analyzed in Sec. 3.3.1 a simplified model, where specific recog-
nition is mediated through an otherwise neutral recognition region. Our results show that
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stochastic fluctuations lead to the emergence of a quasispecies-like mutant distribution
about a randomly chosen master sequence. Its information content can be maintained for
mutation rates smaller than an error threshold which is significantly reduced compared to
the value for non-enzymatic replication due to an escalation of the error catastrophe. In
Sec. 3.3.2, we generalized our model to allow for arbitrary specificity functions that de-
pend only on the Hamming distance between enzyme and substrate. We find that a small
degree of self-specificity suffices to localize a population about a master sequence, and
that stronger specificity gives larger error thresholds. By means of an analytical moment
closure technique, we were able to analyze the full phase diagram of localization regimes.
We also analyzed the case of cross-specific replication and found that specificity needs to
increase stronger than linearly with Hamming distance to allow for simultaneous localiza-
tion about complementary sequences. Finally, we obtained rough numerical estimates for
the maximum length of the recognition sequence permitted by the error catastrophe.

3.5. Outlook

Because the high mutation rates of RNA viruses and their enormous population sizes lead
to a considerable genetic diversity even within a single host [188], the evolutionary dy-
namics of RNA viruses has often been described within quasispecies theory. In addition
to speculations that mutagenic agents could drive these viruses into the error catastro-
phe [53], this approach also motivates an analysis of the coevolutionary dynamics between
the virus population and the host’s immune system. Previous studies have modeled the
effect on the adaptive immune response as causing a shift in the location of the fitness
peak for the virus [128], neglecting the essentially frequency-dependent fitness interaction
between host and parasite. Similar to our work discussed in Sec. 3.3.1, this dynamics can
be modeled within the error-tail approximation. It turns out that stochastic noise should
not be neglected because of an intruiging interplay with slowly decaying deterministic
oscillations [233].
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Introduction. – According to the RNA world
hypothesis [1], prebiotic biochemical life is thought
to have emerged through four steps: starting from
the primordial non-enzymatic synthesis of nucleotides
and their subsequent non-enzymatic polymerization
into random RNA, which in a third step would non-
enzymatically replicate, natural selection would finally
produce a set of functional RNA enzymes (ribozymes),
establishing exponential growth and initiating RNA evolu-
tion. Despite considerable experimental progress [2,3],
as of today no truely self-replicating system has been
evolved according to this hypothetic schedule. To assess
its intrinsic plausibility, theory has mainly focused on
the third step, usually based on the Eigen model [4] for
prebiotic evolution: here, auto-catalytic self-replication
of L-nucleotide sequences proceeds non-enzymatically
via stepwise template-directed polymerization, with a
non-negligible error probability µ per single nucleotide.
Assuming that one specific “master” template replicates
with the highest rate α> 1, while all other sequences have
unit replication rate, it is found that faithful replication
of the master is possible only for error probabilities
smaller than a critical value µc ≈ lnα/L. In this regime,
the population in sequence space is concentrated about
the master in a rather broad distribution, giving rise to
the notion of a “quasispecies”. Larger values µ> µc lead
to a delocalized state with completely random sequences
in the population. Many aspects of the Eigen model

(a)E-mail: frey@physik.lmu.de

depend to a large extent on the chosen fitness landscape,
which assigns replication rates to genotypes. In the case
of RNA, it displays a considerable degree of neutrality,
because the mapping of sequences to secondary structures
is decidedly many-to-one [5]. Still, although not universal,
the existence of a critical mutation rate µc is a compara-
tively robust phenomenon [6,7]. It has been termed “error
catastrophe” [8], because it puts possibly irreconcilable
simultaneous constraints on maximally tolerable error
probability and minimal functional sequence length.
Lacking actual observations of freely self-replicating

RNA and hence reliable estimates for replication rates,
these theoretical limitations of non-enzymatic RNA
replication are not yet reasonably quantitative. However,
biochemical issues [9] raise severe doubts about its
plausibility as well. Although ribozymes have been
discovered that catalyze most of the necessary reaction
steps [2,3,10,11], it remains questionable how a ribozyme
should literally copy itself [10,12]. Enzymatic replication
seems the far more likely scenario, in the sense that
a ribozyme copies other molecules. Presumably and
most effectively, it would copy only those molecules
that are exact replicas of itself, not only because known
ribozymes act very substrate-specific, but also because
unspecific recognition does not give a selective advantage
to the replication enzymes themselves; this would require
compartmentalization in vesicles to keep closely related
molecules together [12]. Further, it has recently been
suggested that the spontaneous emergence of RNA poly-
merases even without previous non-enzymatic replication
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could be promoted by a significant increase of functional
complexity in a pool of random RNA due to the likely
appearance of ligase activity [13].
In order to comparatively analyze non-enzymatic and

enzymatic replication, their competition and their respec-
tive tolerance against mutations theoretically and by
means of stochastic simulations, we employ a simplified
quasispecies model, where sequences replicate both non-
enzymatically and enzymatically, the latter with high
specificity. We find a coexistence regime of these two repli-
cation modes, and an escalation of the error catastrophe
in the enzymatic case: because the replication rate of the
fittest molecules decreases with the fraction of functional
enzymes, the maximally tolerable mutation rate is signif-
icantly reduced. To make contact to models of modular
evolution and catalytic networks, where complex function
is assumed to emerge through independent selection of
small functional motives, thereby circumventing the error
catastrophe [14,15], we then extend our analysis to the
case of hypercycles [8,16,17].

Model. – Motivated by the observation that catalytic
and recognition regions are often clearly separated in
ribozymes like the RNA component of RNaseP [11], we
assume that the specific recognition mediating enzymatic
replication involves only a small fraction λ of otherwise
selectively neutral sites. This means that the majority of
sites forms the proper secondary structure of the mole-
cule and builds its active center, which catalyzes the
polymerization reactions. Although secondary structure
folding algorithms provide an improved genotype-fitness
mapping through an excellent approximation to RNA
phenotypes, our model is formulated in terms of sequences
instead of structures to allow for analytical treatment.
We hence distinguish between “structural sites” and a
“recognition region” on the sequence level (see fig. 1 for
a schematic illustration of our model). For the former, we
use a sharply-peaked fitness landscape: a master sequence
S∗ has the highest non-enzymatic replication rate α> 1,
while all other sequences replicate with unit rate defin-
ing the time scale. We ignore possibly neutral sites in the
structural region, because on our level of approximations
this merely renormalizes their total number, or, equiva-
lently, the mutation probability (see below). However, we
do account for mutations in the recognition region, which
do not affect non-enzymatic replication but the specificity
of enzymatic replication: idealizing “highly specific”, we
require the recognition regions of enzyme and substrate to
be identical for enzymatic replication to take place. Hence,
ribozymes replicate only exact copies of themselves, with
γ the associated rate constant. Note that we do not make
any restrictions on the specific sequence of the recogni-
tion region: any molecule with the correct sequence for the
structural sites can replicate enzymatically if it recognizes
a suitable enzyme.
In the following, we formalize this model in the

framework of quasispecies theory [4], where molecules are

α

γ

1
× × × × × × × × × × × × × × × ×

× × × ×∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

L

λL

Fig. 1: Schematic illustration of the model. Left: Molecules with
correct structure can replicate non-enzymatically with rate
α> 1. These molecules can also replicate enzymatically with
rate γ, if they bind specifically to an identical partner within
an otherwise selectively neutral recognition region of λL sites
(dots). Misfolding mutant molecules replicate with unit rate.
This model is formulated in terms of sequences rather than
structures, as shown on the right panel: we distinguish correct
“structural” nucleotides (∗), matching sites in the recognition
region (�) and unmatching or random nucleotides (×).

represented by sequences Si = (σ
(i)
1 σ

(i)
2 . . . σ

(i)
L ) of L

binary nucleotides σj ∈ {0, 1}. Their concentrations xi
evolve in the L-dimensional hypercube according to the
deterministic rate equations

ẋi =
∑
k

mikrkxk−xi r̄, (1)

where rk is the replication rate of Sk, mik = µ
dik(1−

µ)L−dik is the mutation probability between sequences
Si and Sk with Hamming distance dik, and µ is the
single-nucleotide mutation probability. The second term
in eq. (1) involves the mean replication rate r̄=

∑
k rkxk

and ensures the normalization
∑
k xk = 1. According to

the above-defined model, the replication rates read

rk =

{
α+ γxk, if Sk|struc = S∗|struc,
1, otherwise.

(2)

In eq. (2), Sk|struc denotes the restriction of the sequence
Sk to the structural sites, and S

∗|struc is the corresponding
master sequence. While replication rates are usually taken
as functions only of the genotype, with one single peak
at the master sequence [4,6,7,18–20], our model leads to
frequency-dependent selection, which has only rarely been
analyzed because it leads to mathematically challenging
replicator-mutator equations (see, e.g., ref. [21]).

Stochastic simulation. – For a realization of the full
2L-dimensional system eq. (1) in a finite population of
N sequences, we employ the straightforward stochastic
simulation algorithm used in ref. [22]. At each time t
each sequence Sk, present in nk copies, has a probability
p0,k = nk/

∑
i ni(1+ ri) to be copied without mutations

into the population at time t+1, and a probability
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tim

e

master sequence

genotypes of recognition region

Fig. 2: Exemplary run of the stochastic simulation in a popu-
lation of N = 103 sequences for L= 32, α= 5, γ = 10, λ= 1/4,
and µ= 0.005. All sequences have been initialized with correct
structural region but random recognition region. Their concen-
tration is shown in gray level as a function of time and geno-
type in the recognition region (linearly arranged by reading bit
strings as integer numbers). Spontaneous concentration fluctu-
ations lead to the establishment of a quasispecies of enzymatic
replicators centered about one specific yet randomly chosen
master sequence. Neighboring sequences are indicated by thin
lines.

pmut,jk =mjkrknk/
∑
i ni(1+ ri) to be selected and

mutated into sequence Sj . The population is initialized
uniformly at the master sequence, but with random
recognition sequences. Because the sites of the recognition
sequence are effectively neutral, a state with all possible
recognition sequences present in equal concentration
is stable for large sequence length [21]. But if number
fluctuations sufficiently increase the concentration of one
particular yet randomly chosen sequence, this conveys
via eq. (2) a selective advantage, and its concentration
will thus increase, up to the extent that mainly this
sequence and its next mutational neighbors are present,
in a quasispecies distribution very much like the one
obtained in usual fitness landscapes. Figure 2 shows an
example of this outcome, which is somewhat reminiscent
of a fixation event. While its detailed dependence on the
specific formulation of the underlying stochastic process
and the parameter values is left for future research, the
localization itself turns out to be a robust phenomenon. In
the following, we will therefore without loss of generality
assume that the recognition region of the most populated
sequence is equal to the one of the master sequence S∗.

Results. – While analytic solutions to the 2L-
dimensional system eq. (1) are hard to obtain, we can
use the so-called “error-tail” approximation [19]: here,
we introduce three different classes of molecules. In xe,
we gather enzymatic replicators identical to the master
sequence, with a replication rate re = α+ γxe. We use a
second class xn for non-enzymatic replicators, with struc-
tural sites identical to the master sequence but random
recognition sequences. Their replication rate is rn = α:
although they are capable of enzymatic replication,

the fraction of suitable enzymes with the appropriate
recognition region is negligible. Finally, 1−xe−xn is the
error-tail of molecules with incorrect structural sites and
unit replication rate. The main approximation of the
error-tail approximation is to consider only those muta-
tions that lead into a less-fitter class, with the probability
not to have such a mutation abbreviated as “quality
factor” Q. This approximation is generally valid for
large sequence length but may fail if peaks in the fitness
landscape are very dense [7]. The enzymatic replicators
in xe have Qe = (1−µ)L ≡Q, because a single error in L
nucleotides suffices to destroy either structural or recog-
nition region. The non-enzymatic replicators in xn have
a larger quality factor Qn = (1−µ(1−λ))L ≈Q1−λ >Q:
because the presence of λL neutral sites in the recognition
region reduces the effective mutation probability, these
sequences are mutationally more robust [23–25]. Further,
with probability Q1−λ−Q mutations in xe will hit a site
of the recognition region and thus contribute to xn. Hence,
the dynamical system in the error-tail approximation is
given by

ẋe = reQxe−xer̄,
ẋn = rnQ

1−λxn+ re(Q1−λ−Q)xe−xnr̄,
(3)

where the mean replication rate reads r̄=
(re− 1)xe+(rn− 1)xn+1. Solutions to the stationary
state ẋe = ẋn = 0 of eq. (3) for different mutation prob-
abilities µ are shown in fig. 3, together with results from
a stochastic simulation of the full system with the repli-
cation rates eq. (2) in a population of N = 104 sequences,
where we initialized the sequences uniformly at the master
sequence to reduce noise resulting from the intrinsically
stochastic “fixation” events shown in fig. 2, and averaged
the results over time after reaching a stationary state.
Obviously, approximating the deterministic rate equations
with the simplified eq. (3) gives an excellent description
of the stochastic system. We can clearly distinguish three
different regimes, separated by two error thresholds.
For high mutation probability, the population is delocal-

ized over sequence space and only the error tail is signif-
icantly populated (xe = xn = 0). For smaller values of µ,
we find a “non-enzymatic regime”, where sequences with
correct structural region are present, but a stable recog-
nition sequence cannot be maintained, such that enzy-
matic replication is not possible. Explicitly, we find xe = 0
and xn = (αQ

1−λ− 1)/(α− 1). The two regimes exchange
stability at Q= α−1/(1−λ), corresponding to µ= µc,n ≈
lnα/(L(1−λ)). This is the familiar “phenotypic error
threshold” [24,25]: the presence of neutral sites renor-
malizes the effective mutation probability, equivalent to
having a shorter sequence [4].
For smaller mutation probabilities µ< µc,e the “enzy-

matic regime” becomes stable. Here, the fraction xe of
enzymatic replicators is nonzero, but xn > 0 as well,
because this class is fed from xe through mutations in the
recognition region. Solving a third-order polynomial for xe
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Fig. 3: (Color online) Comparison between simulation results
for xe (circles) and xn (squares) in a population of N = 10

4

sequences and solutions to eq. (3) for L= 32, α= 5, γ = 10 and
λ= 1/4. The two error catastrophes occur at µc,e ≈ lnQ−1c /L
with Qc a solution of eq. (4) and µc,n ≈ lnα/(L(1−λ)). The
inset shows the average Hamming distance 〈d〉 to the master
sequence, which increases in two steps, the first one at µc,e
discontinuous, the second one at µc,n continuous.

and xn, we find this regime is stable when the correspond-
ing discriminant is positive, which yields a critical value
Q=Qc from the condition

4
[
3γ(1+αQc(Q

−λ
c − 2))− (γQc+Q−λc −α)2

]3
+
[
9γ(α− γQc−Qc−λ)(1+αQc(Q−λc − 2))

+27αγ(αQc− 1)(1−Q−λc ) +2(γQc+Q−λc −α)3
]2
= 0.

(4)

Asymptotic solutions are given by

Qc ∼



1− γ

4αλ
, if γ� α,

2
√
γ− 1
γ

+
λ

γ
ln
2
√
γ− 1
γ

+O(λ2), if γ� α.
(5)

Note that the large-γ-limit is Qc ∼ 2/√γ, which implies
for the corresponding critical value µc,e ≈ lnQ−1c /L≈
ln γ/(2L). This significant reduction by a factor of 2
can be phrased as “escalation of error catastrophe”: as
the fraction xe of enzymatically replicating sequences
drops with higher mutation probability, their replication
rate re = α+ γxe decreases as well, leading to an even
stronger reduction in xe. Beyond the critical value µc,e, the
fraction of molecules with the correct recognition sequence
becomes so small that their replication rate is not large
enough for them to be maintained in the population at a
macroscopic level.
An important difference between the transitions at µc,n

and µc,e can be observed not only in the fraction xe, but
also in the width of the population distribution (measured
as average Hamming distance to the master sequence),
shown in the inset of fig. 3: while the delocalization
transition at µ= µc,n is continuous, the transition at µc,e
is discontinuous. In the former case, this property depends

non enzymatic enzymatic non enzymatic

enzymatic
delocalized

delocalized

�

�

c,e

�c,n

ln � ln �
ln�

ln �
1 L

Fig. 4: (Color online) Phase diagram of stability regimes
of eq. (3) in the ln γ-µ-plane: the critical value µc,n (thick
dashed line) separates the delocalized regime (above) and
the non-enzymatic regime (below). Enzymatic replication is
stable below µc,e (thick solid line) and becomes mutationally
more robust than non-enzymatic replication if γ > γ∗ =O(α2)
(vertical line).

also on the choice of observable [7], but in the latter case,
the discontinuity results from bistability: together with the
enzymatic regime, also the non-enzymatic regime or the
delocalized phase may be stable, depending on whether µ
is larger or smaller than µc,n, and if µ> µc,e the enzymatic
regime vanishes. The phase diagram in fig. 4 summarizes
these various regimes. Note that µc,e = µc,n at a critical
value

γ∗ = α(α− 1)+2λ1/2α
√
2α(α− 1) lnα+O(λ). (6)

This result implies that very large rates γ =O(α2) are
required if enzymatic replication is to be more error-
tolerant than non-enzymatic replication [16]. Although
this possibility is not contained in the approximate eq. (3),
we find that in the bistability region µ<min(µc,e, µc,n)
the enzymatic regime is easily populated by selectively
advantageous concentration fluctuations from the non-
enzymatic regime by randomly choosing a “master”
sequence for the recognition region as shown in fig. 2.

Extension to hypercyclic couplings. – The realiza-
tion that replication errors limit the maximum complexity
of self-replicating molecules to a possibly paradoxical
extent has lead to theories of modular evolution, where
complex functions emerge through catalytic interactions
of smaller independently selected motifs [14,15], thereby
also speeding up evolution by facilitating the search
for complexity. While arbitrarily complex interaction
networks between different modules or molecular species
are conceivable, the simplest case applicable to the above
system with its two-molecule interactions is the hyper-
cycle [8]. Here, n species are arranged in a circular directed
graph, where each species enzymatically catalyzes the
replication of its next neighbor. This network gives rise
to coexistence of all species, in a stable fixed point for
n� 4 and via periodic orbits for larger n. In contrast to
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previous approaches accounting for replication errors in a
hypercycle [16,17], we consider distinct error tails for all
species: each is present in an enzymatically active variant
xe,i with replication rate re,i = αi+ γixe,i+1 together
with its non-enzymatic error tail xn,i with replication
rate rn,i = αi. In addition, there is the global error
tail of misfolding mutants. For simplicity, we assume a
symmetric setup with identical rate constants αi ≡ α and
γi ≡ γ. This gives the rate equations
ẋe,i = re,iQxe,i−xe,ir̄,
ẋn,i = rn,iQ

1−λxn,i+ re,i(Q1−λ−Q)xe,i−xn,ir̄,
(7)

where indices are taken modulo n and the mean
fitness is now given by r̄= (α− 1)∑i(xe,i+xn,i)+
γ
∑
i xe,ixe,i+1+1. It is easy to see that this system

reduces to eq. (3) if we assume that xe,i ≡ x∗e/n and
xn,i ≡ x∗n/n and replace γ→ γ/n. Then, the “enzymatic”
solution of eq. (3) corresponds to the inner fixed point
of the hypercycle, where all species are present in equal
concentration. Replication errors can be tolerated only
if µ< µc,e, where µc,e ∼ ln(γ/n)/(2L) for large γ (see
also ref. [16]). We emphasize that in contrast to ref. [14],
where the results of unspecifically ligating functional
motifs did not affect replication rates, in our model
specific recognition between different species leads to
frequency-dependent replication rates. This reduces the
error threshold by roughly a factor of 2, which in a two-
member hypercycle would cancel the putative complexity
gain resulting from using two subunits of half the sequence
length.
Moreover, increasing the number of hypercycle members

beyond n= 4 changes the stability of the central fixed
point. Observing that the Jacobian matrix of eq. (7) is
block-circulant [26] (every block is a 2× 2-matrix for the
two concentration variables xe,i and xn,i per species), its
crucial eigenvalues with possibly non-negative real part are
given by 1

n
γQx∗ee2imπ/n, where m= 0, . . . , n− 1 and x∗e is

the enzymatic solution of eq. (3) with γ→ γ/n. Hence,
these eigenvalues are proportional to the n different
n-th roots of unity. In close correspondence to the error-
free hypercycle (and in contrast to ref. [16], where a
stability region for n= 5 was found), the central fixed
point loses stability for n> 4, giving rise to limit cycles
with large concentration oscillations, which are vulnerable
to extinction via stochastic fluctuations.
Note that the stable inner fixed point corresponding

to the enzymatic regime implies coexistence of different
species. However, in the non-enzymatic regime of eq. (3),
the different error tails do compete against each other.
As soon as the hypercycle breaks down, e.g., because the
recognition sequence is lost due to stochastic fluctuations,
one error tail will drive the others to extinction, due to
the competitive exclusion principle encountered in usual
quasispecies theory [4]. This makes the reverse process,
i.e., a fluctuation that establishes a closed cycle, extremly
unlikely.

Conclusion. – In summary, we have analyzed a simple
quasispecies model for the non-enzymatic and enzymatic
replication of ribozymes, where specific recognition is
mediated via otherwise neutral sites. We find that the
frequency-dependent replication rates associated with
specific enzymatic replication lead to a discontinuous
transition at the error threshold due to bistability with a
partly delocalized phase. Further, hypercyclic couplings
enable coexistence of at most four different species and
their respective error tails in a stable fixed point.
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Abstract

The information content of a non-enzymatic self-replicator is limited by Eigen’s
error threshold. Presumably, enzymatic replication can maintain higher com-
plexity, but in a competitive environment such a replicator is faced with two
problems related to its twofold role as enzyme and substrate: as enzyme, it
should replicate itself rather than wastefully copy non-functional substrates,
and as substrate it should preferably be replicated by superior enzymes instead
of less-efficient mutants. Because specific recognition may provide a solution, we
thoroughly analyze an idealized quasispecies model for enzymatic replication,
with replication rates that are either a decreasing (self-specific) or increasing
(cross-specific) function of the Hamming distance between the recognition or
“tag” sequences of enzyme and substrate. We find that very weak self-specificity
suffices to localize a population about a master sequence and thus to preserve its
information, while simultaneous localization about complementary sequences in
the cross-specific case is more challenging. A surprising result is that stronger
specificity constraints allow longer recognition sequences, because the popula-
tions are better localized. Extrapolating from experimental data, we obtain
rough quantitative estimates for the maximal length of the recognition or tag
sequence that can be used to reliably discriminate appropriate and infeasible
enzymes and substrates, respectively.

Keywords: origin of life, quasispecies theory, enzymatic self-replication,
higher-order catalysis

1. Introduction

The acclaimed experimental finding (Cech, 1990) that RNA not only stores
genetic information but also provides catalytic function has inspired the RNA
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world scenario (Gilbert, 1986), a hypothesis for the starting point of Dar-
winian evolution at the origin of life through self-replication of RNA-like polynu-
cleotides. Substantial progress over the last decades demonstrates the capability
of RNA enzymes (ribozymes) to catalyze diverse chemical reactions (Doudna and Cech,
2002; Lilley, 2005; Joyce, 2007), among them the polymerization of as many as
20 nucleotides to a template molecule (Johnston et al., 2001; Zaher and Unrau,
2007), and even replication through template-directed ligation reactions involv-
ing short RNA oligomers as building blocks (Lincoln and Joyce, 2009). However,
the currently known systems are not yet capable of Darwinian evolution, lacking
either the ability to replicate molecules as long and complex as themselves or
to introduce heritable variation.

For theorists, the focus has mainly been on whether the information content
of a self-replicating molecule can be maintained in the presence of replication
errors, usually employing Eigen’s well-known quasispecies theory (Eigen et al.,
1989) for the non-enzymatic replication of L-nucleotide sequences. In this
model, replication errors occur with an error probability µ per single nucleotide,
and the replication rates are taken as functions only of the template sequence.
A large number of such so-called fitness landscapes in genotype space, of-
ten with a single peak at one particular “master” sequence have been ana-
lyzed (Swetina and Schuster, 1982; Leuthäusser, 1986; Schuster and Swetina,
1988; Woodcock and Higgs, 1996; Galluccio, 1997; Hermisson et al., 2002; Peliti,
2002; Saakian and Hu, 2006; Saakian et al., 2009). Most of these landscapes
lead to a generic result (Wiehe, 1997; Jain and Krug, 2005): the population in
sequence space is characterized by a broad mutant distribution (a quasispecies)
localized about the master sequence for mutation probabilities smaller than a
critical value µc (the error threshold), while it consists of random sequences
(it is delocalized) for larger values. Because the error threshold µc ∼ 1/L is
usually inversely proportional to sequence length, the problem arises whether
the maximally sustainable complexity of a self-replicator suffices to perform the
complex task of self-replication (Eigen and Schuster, 1978).

In a prebiotic context, it is important to emphasize that using a fitness
landscape pertains to non-enzymatic rather than enzymatic replication, be-
cause in the latter case the replication rates also depend on the concentra-
tions and the characteristics of involved enzymes. For RNA, the potential for
non-enzymatic replication is questionable, given that template-directed poly-
merization or ligation seems limited to short molecules with rather specific
sequences (v Kiedrowski, 1986; Acevedo and Orgel, 1987; Wu and Orgel, 1992;
Orgel, 2004), and although there have been speculations (Pace and Marsh, 1985),
it remains unclear how a single more complex RNA should literally copy it-
self (Joyce, 2007; Szostak et al., 2001).

Enzymatic replication is more plausible (Orgel, 1992), but raises the question
whether high replication efficiency (high fitness) is a property of the substrate
or the enzyme. In the latter case, a superior replicase does not enjoy a selective
advantage, because it replicates non-functional mutant templates just as well
as itself, while it is not guaranteed in the former case that a superior template
is functional at all. Likewise, mutations generate substrates that are replicated
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less efficiently, but they also produce less-efficient enzymes (Maynard Smith,
1979), thus affecting the replication rates of all potential substrates. On theo-
retical grounds, one should expect that a superior replicator is a good enzyme
and a good substrate at the same time. As enzyme, it should therefore replicate
only functional substrates, and as substrate, it should be replicated preferably
by efficient enzymes. These propensities, necessary for survival in a competitive
environment, could be enforced by a form of group selection, e.g., via compart-
mentalization in vesicles, to keep similar molecules closely together (Alves et al.,
2001; Fontanari et al., 2006), but this requires a simultaneous and coordinated
emergence of replicators and protocells (Szostak et al., 2001). Another possibil-
ity is specific recognition, i.e., if replication efficiency depends strongly on the
interaction between enzyme and substrate. After all, known ribozymes act with
moderately or even strongly substrate-specific efficiency (Joyce, 2007), and un-
specific reactions require sophisticated substrate-binding properties that could
well have been a rather late invention in prebiotic evolution (Johnston et al.,
2001).

In this paper, we investigate the effects of specificity for enzymatic self-
replication to address the consequences for the error threshold. Similar to mod-
els for the evolution of regulatory DNA motifs (Gerland and Hwa, 2002), we
assume that specificity depends on the quality of binding to some recognition
or tag sites (Weiner and Maizels, 1987). Idealizing this condition, we use repli-
cation rates that depend on the Hamming distance between these sequence
regions of enzyme and substrate via a decreasing (self-specific) or increasing
(cross-specific) function. After formulating the model, we show for these two
scenarios results from stochastic simulations and numerical solutions of reduced
deterministic rate equations. By means of a moment closure approximation, we
analytically discuss the resulting localization conditions, error thresholds and
the phase diagram. In our conclusion, we use experimental values for polymer-
ization rates to obtain simple estimates for the maximum number of nucleotides
that can be used for recognition.

2. Model

In the framework of quasispecies theory, each molecule is characterized by its

sequence Si = (σ
(i)
1 . . . σ

(i)
L ) of L binary nucleotides σ

(i)
ℓ ∈ {0, 1}. In an infinitely

large population, its concentration Xi evolves according to the deterministic rate
equations (Eigen et al., 1989)

Ẋi =
∑

j

MijRjXj −Xi

∑

j

RjXj . (1)

Here, Mij = µdij (1 − µ)L−dij is the mutation probability between sequences

Si and Sj with Hamming distance dij =
∑

ℓ |σ
(i)
ℓ − σ

(j)
ℓ |, where µ is the er-

ror probability per single nucleotide (usually called “mutation rate”), and the
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replication rate Ri of sequence Si is given by:

Ri = Ai +
∑

j

BijXj . (2)

Whereas the non-enzymatic rate Ai depends only on the genotype Si, the second
term implies frequency-dependent selection and makes our model intrinsically
nonlinear. It encodes the catalytic interactions of two molecules: Bij mea-
sures how well Sj catalyzes the replication of Si. This matrix is also known as
payoff matrix in evolutionary game theory (Hofbauer and Sigmund, 1998) and
a related matrix has been used to describe the evolutionary compatibility of
different grammars (Nowak et al., 2001; Komarova, 2004). Note that the sec-
ond term in Eq. (1) ensures the normalization

∑

j Xj = 1, and a degradation
term −DiXi therefore drops out of Eq. (1) since we assume that the decay rate
Di ≡ D is sequence-independent for simplicity.

To capture the essentials of a situation where replicase enzymes prefer to
replicate themselves instead of their competitors, we assume that the quality
of specific recognition influences catalytic rates more strongly than the actual
genotypes of enzyme and substrate. Hence, we effectively only model the recog-
nition regions of ribozymes, which are often clearly separated from the cat-
alytic domains (Lilley, 2005), and neglect the consequences of mutations in
the latter (see (Obermayer and Frey, 2009) for a simple model that includes
these effects). We thus restrict the sequence length L to the number of nu-
cleotides that take part in recognition. Mediated via specific base-pairing in-
teractions (Doudna and Cech, 2002), the quality of recognition can be taken
as function of the number of mismatches between the binding sites of enzyme
and substrate, and we let the catalytic matrix Bij therefore depend via a speci-

ficity function f(d) only on the Hamming distance dij between enzyme and
substrate. Further, because rate enhancements through ribozyme catalysis can
be substantial (Doudna and Cech, 2002), such that non-enzymatic replication
rates are comparably small (if nonzero at all), we neglect their genotype depen-
dence altogether and choose a flat fitness landscape for Ai:

Ai ≡ α, Bij = βf(dij). (3)

Because we are interested in the stationary state, the parameter α (if nonzero)
merely sets the time scale while β measures the selection strength. A decreas-
ing function f(d) corresponds to self-specific replication, while an increasing
function f(d) is the cross-specific case, where enzymes preferably catalyze the
replication of complementary substrates.

A localized state is necessary to preserve the information content of one
particular sequence S∗, but this localization is not a priori obvious, especially
since the possibility of periodic orbits and chaos cannot be excluded for general
replicator-mutator equations like Eq. (1) (Stadler et al., 1995). We did not find
any signs on non-trivial dynamical behavior in our simulations, though, and one
can easily convince oneself that the delocalized state, where all sequences have
the same concentration and therefore identical replication rates, can lead to lo-
calization: Since replication rates are essentially proportional to concentration,
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stochastic concentration fluctuations imply higher rates and can induce a tran-
sition to a state localized about some randomly chosen master sequence, which
then also has the highest replication rate (see (Obermayer and Frey, 2009) for
a visualization). Such “fixation” events are very similar to the phenomenon of
consensus formation, e.g., in language dynamics (Blythe, 2009). Note that our
idealized replication rates depend only on Hamming distances and do not pre-
determine any specific master sequence for localization. This symmetry would
be broken in a full model where replication rates depend on the full genotypes
of enzyme and substrate (and not just the Hamming distance between their
recognition regions).

Given localization about some “master” sequence S∗, we can significantly re-
duce the dimensionality of Eq. (1) by lumping all sequences Si with a Hamming
distance k to S∗ together into “error class” k. Without loss of generality, we
assume that S∗ = (00 . . . 0). This well-known procedure (Schuster and Swetina,
1988; Woodcock and Higgs, 1996) allows one to formulate reduced rate equa-
tions formally equivalent to Eq. (1) in terms of new variables xk denoting the
concentration of error class k in the population:

ẋk =
∑

ji

mkj [ajδji + bjixi]xj − xk

∑

ji

[ajδji + bjixi]xj . (4)

In our model Eq. (3) for the replication rates, ai ≡ α. The accordingly reduced
mutation matrix and the catalytic matrix depend only on the Hamming distance
between pairs of sequences in different error classes (measured with respect to
the master sequence), which allows us to combinatorically assess all possibilities
for their relative distance. The total probability of distributing 0 ≤ k−j+2ℓ ≤ L
mutations to move a sequence from error class j into error class k is given
by (Woodcock and Higgs, 1996)

mkj =
∑

ℓ

(

L− j

k − j + ℓ

)(

j

ℓ

)

(1− µ)L−(k−j+2ℓ)µk−j+2ℓ. (5)

The replication rate Eq. (2) also depends on the frequency of each sequence in
each error class. With the homogeneity assumption that all

(

L
j

)

sequences in
class j are equally populated, this complication can be resolved, and the reduced
matrix bij reads analogously

bij = β
∑

n

(

L− i

j − i + n

)(

i

n

)

f(j − i + 2n)
(

L
j

) . (6)

Numerical solutions to the (L + 1)-dimensional rate equations given in Eq. (4)
can easily be found by means of standard algorithms, while the full 2L-dimensional
system Eq. (1) can be analyzed using stochastic simulations in a finite popula-
tion of N sequences. Here, we employ the straightforward stochastic simulation
algorithm used by Wilke et al. (2001). At time t each sequence Sk, present
in Nk copies, has a probability p0,k = Nk/

∑

i Ni(1 + Ri) to be copied with-
out mutations into the population at time t + 1, and a probability pmut,jk =
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MjkRkNk/
∑

i Ni(1+Ri) to be selected and mutated into sequence Sj . Follow-
ing initialization, the time averaged Hamming distance distribution xk and its
mean 〈k〉 =

∑

k kxk and variance
〈

∆k2
〉

=
∑

k(k − 〈k〉)2xk are measured after
reaching a stationary state.

3. Results and Discussion

3.1. Self-specific replication

Our first scenario is concerned with self-specific replication, where replication
rates increase with similarity of enzyme and substrate. In a convenient choice
for the specificity function

fs(d) = (1− d/L)p, (7)

the degree of specificity is tunable via a parameter p ≥ 0. Figure 1 shows results
for the stationary Hamming distance distribution xk from stochastic simula-
tions, where we initialized all sequences at the master in order to avoid noise
from the intrinsically stochastic “fixation” events, together with numerical solu-
tions to the reduced rate equations, Eq. (4). For different degrees of specificity,
from the linear case p = 1 to complete self-specificity p →∞, where enzyme and
substrate have to be identical, we find excellent agreement between stochastic
simulation results and the deterministic theory, which justifies the homogeneity
assumption made in symmetrizing the specificity matrix (see Eq. (6)).

The limit p →∞ with fs(d) → δd,0, depicted in Fig. 1(c), leads to a general-
ized Schlögl model of auto-catalytic replication, which has been partly analyzed
by Stadler et al. (1995). Here we can employ the well-known “error-tail” ap-
proximation (Schuster and Swetina, 1988): we define x0 as the concentration
of the master sequence, α + βx0 its replication rate and (1 − µ)L the proba-
bility not to have a mutation. All other sequences are lumped together in the
error tail with concentration 1 − x0 and replication rate α (the concentration
of suitable replication enzymes is so small that the frequency-dependent term
in the replication rate does not contribute). Neglecting back mutations from
the error tail into x0 (corresponding to the large-genome limit), we obtain the
simple equation

ẋ0 = (α + βx0)(1− µ)Lx0 − x0r̄, (8)

with r̄ = (α + βx0)x0 + α(1 − x0) the mean replication rate. In the stationary
state, we easily find that the delocalized state x0 = 0 is stable for all µ, while a
branch of solutions with nonzero x0 emerges for (1−µ)L > 2(

√

α(α + β)−α)/β
through a discontinuous transition (see also (Campos et al., 2000; Obermayer and Frey,
2009; Wagner et al., 2009) for similar results in related models). Whereas for
the somewhat related sharply-peaked fitness landscape, where only the master
sequence has a higher replication rate, the error threshold arises through a con-

tinuous bifurcation (Baake and Wiehe, 1997), the discontinuity observed here
expresses the qualitatively different behavior we previously termed “escalation
of error catastrophe” (Obermayer and Frey, 2009): as the mutation rate grows,
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Figure 1: Solutions for self-specific replication with fs(d) = (1− d/L)p. Stationary Hamming
distance distribution xk as function of mutation rate µ from numerical solutions to the reduced
rate equations Eq. (4) (straight lines) and a stochastic simulation of the full system Eq. (1)
in a population of N = 104 sequences of length L = 32 (dots) for α = 1, β = 5 and (a) p = 1,
(b) p = 5, and (c) p = ∞ (here, the dashed line shows the error-tail approximation for x0).
The insets depict the average Hamming distance a = 〈k〉 /L to the master sequence.
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the proportion of fittest sequences, i.e., of the necessary replication enzymes, is
diminished and therefore their replication rate. This in turn reduces their con-
centration, until at the error threshold the concentration of enzymes x0 is not
large enough to have them replicate with an efficiency sufficient for localization.

While Eq. (8) approximates the exact result for x0 very well (see the dashed
line in Fig. 1(c)), it is valid only for L → ∞ (because back mutations are ne-
glected) and p → ∞ (because the replication rate of the error-tail is taken as
concentration-independent). A more general perspective and more detailed un-
derstanding can be obtained from the population distribution’s normalized first
moment a = 〈k〉 /L = 〈σ〉, which as the mean Hamming distance to the mas-
ter S∗ = (00 . . . 0) characterizes the width of the distribution and measures the
mean value 〈σ〉 of each sequence’s binary nucleotides. Writing down an equation
for the first moment of Eq. (4) requires a hierarchy of expressions for higher mo-
ments, which can be truncated by means of a moment closure technique. Here,
we assume that the stationary Hamming distance distribution is approximately
binomial, xk ≈

(

L
k

)

ak(1 − a)L−k, because this reproduces the expected dis-
tribution in the limits a → 0 (complete localization about one sequence) and
a → 1/2 (the delocalized state, where the binary nucleotides are random num-
bers). Moreover, it solves the rate equations Eq. (1) exactly for linear fitness
landscapes without epistasis (Woodcock and Higgs, 1996) and for an extension
of the quasispecies model to a game theory setting (Lässig et al., 2003). With
this binomial ansatz, a is the population distribution’s only parameter, and for
our model of the replication rates Eq. (3), it obeys the equation

(1− 2a)
{

µL [α + βS(1 − 2a(1− a))]

− a(1− a)(1 − 2µ)βS′(1− 2a(1− a))
}

= 0. (9)

This equation for a, which is one of our main analytical results (see Appendix A.1
for a derivation), holds for any specificity function f(d), which enters via the
auxiliary function

S(x) =
∑

k

(

L

k

)

f(k)xL−k(1− x)k. (10)

While Eq. (9) can be solved for a(µ) exactly only in a few special cases (see
Appendix A.2), we can easily solve for µ(a) and invert graphically to obtain an
approximate bifurcation diagram:

µ(a) =

[

2 +
α + βS(1− 2a(1− a))

βa(1− a)S′(1− 2a(1− a))

]

−1

. (11)

A comparison between the exact solution a(µ) obtained from the reduced rate
equations Eq. (4) via numerical continuation1 and Eq. (11) is shown in Fig. 2 for

1AUTO software package available via http://indy.cs.concordia.ca/auto/.
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Figure 2: Bifurcation diagram of Eq. (4) for the normalized mean Hamming distance a =
〈k〉 /L with L = 8, α = 1, β = 1 and different values of the specificity degree p. Thick lines
indicate stable branches, dashed lines unstable branches and thin dotted lines the results of
the binomial closure approximation Eq. (9), which is barely visible for p = 1/10 and p = 1.
Circles indicate critical mutation rates µc where the localized regime vanishes, crosses show
values µ̃c where the delocalized state changes stability (horizontal branches corresponding to
delocalized states are drawn slightly shifted for visualization).

L = 8, α = β = 1 and different values of p in the specificity function Eq. (7). Re-
calling the symmetry of the original model, Eq. (3), namely that the population
can localize about any sequence, the remaining reflection symmetry a → 1 − a
about the delocalized solution a = 1/2 indicates that after symmetrization lo-
calization is only possible about the master sequence or its complement. The
stable branches associated with localized solutions start for µ = 0 at a = 0 (or
a = 1), i.e., full localization about one sequence (or its complement), and higher
mutation rates give rise to broader distributions with larger mean, until these
localized regimes disappear at critical mutation rates µc denoted by circles. The
delocalized solutions, on the other hand, gain stability at finite mutation rates
µ̃c (denoted by crosses), and we find bistability for µ̃c < µ < µc. A similar
situation is encountered in models of grammar evolution (Nowak et al., 2001;
Komarova, 2004), which are, however, mathematically considerably simpler due
the lack of a metric in “grammar space” and the resulting simpler forms for the
matrices Mij and Bij in Eqs. (1) and (3).

Explicit expressions for the error threshold µc = maxµ(a) are available
when S(x) in Eq. (11) has a simple form (see Appendix A.2). For instance,
µc = β/(4αL + 2β(L + 1)) for p = 1, where specificity decreases linearly with
the distance between enzyme and substrate. Although an error threshold is ab-
sent for linear fitness landscapes without epistasis (Woodcock and Higgs, 1996),
here the intrinsically nonlinear model gives a transition even in this apparently
similar case. For very strong specificity p → ∞ we find µc = W [β/(eα)]/(2L)
using Lambert’s W-function, and we recover the result µc = ln(β/α)/(2L) that
can also be obtained from the error-tail approximation in the limit β ≫ α.
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Further, the delocalized state a = 1/2 is the only solution of Eq. (9) in the com-
plete absence of specificity (fs(d) ≡ 1), supporting the intuition that unspecific
replication does not suffice to preferentially maintain the information of one
particular sequence. Interestingly, taking p → 0 in Eq. (7) gives the finite even
though exponentially small value µc = β/(2L+1(α + β)). This result implies
that limited localization is possible even for very weak specificity (if p = 0 in
the specificity function Eq. (7), enzymes replicate everything except their exact
complement, because always fs(L) = 0).

From the bifurcation diagram obtained via Eq. (11), we easily read off ex-
act results for the value µ̃c = µ(1/2) where the delocalized state gains stabil-
ity. E.g., for the generalized Schlögl model p → ∞, we get µ̃c = β/(α2L+1 +
4β) (Stadler et al., 1995). This exponentially small yet finite value is consistent
with our previous conclusion that the delocalized regime is stable for all values
of µ within the error-tail approximation, Eq. (8), which holds for L →∞. Fur-
ther, we find that the two critical values µ̃c and µc are identical for p = 0, 1, 2.
Recognizing that Fig. 2 describes a pitchfork bifurcation at a = 1/2 and µ = µ̃c,
we infer that the two critical mutation rates are equal (µc = µ̃c) whenever the
pitchfork is supercritical, whereas bistability between localized and delocalized
states for intermediate mutation rates µ̃c < µ < µc is possible in the subcritical
case, leading to the discontinuous transition observed in Fig. 1. The bistabil-
ity regime vanishes as the curvature µ′′(1/2) in the bifurcation diagram changes
sign, which gives from Eq. (11) an approximate expression for the corresponding
critical value of β:

β∗ = α

[

S′2(1/2)

S′′(1/2)− 2S′(1/2)
− S(1/2)

]−1

. (12)

This generally applicable result can readily be evaluated for our specificity func-
tion Eq. (7), predicting bistability for all values β < β∗ = α 2L−1(L − 2) for
strong specificity p →∞, and no bistability for weak specificity because β∗ ≤ 0
for p < pmin = 2 +O(L−1).

The results of the binomial closure approximation Eq. (9) are summarized
in the phase diagram Fig. 3, where the two critical mutation rates µc and µ̃c

are shown as functions of the selection strength β and the specificity degree p
for α = 1. The thick line denoted β∗ indicates the boundary of the bistability
regime µc > µ̃c. Fig. 2 indicates that the binomial approximation is quantita-
tively excellent in the supercritical situation β > β∗, and qualitatively correct
otherwise, where the values for µc are somewhat underestimated: near the er-
ror threshold, the variance of the population distribution is considerably larger
than that of a binomial. The performance of the binomial closure approximation
can be appreciated in more detail from the projected phase diagrams shown in
Fig. 4.

A remarkable feature of these phase diagrams is that the error thresh-
old µc increases for stronger specificity p (see Fig. 4(b)), which implies that
higher mutation rates can be tolerated, i.e., that longer sequences can be main-
tained. This seems at first counter-intuitive, because weaker specificity con-
straints on the recognition sequence should allow more mutational “freedom”.
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Figure 3: Phase diagram of localization regimes in the parameter space of mutation rate µ,
selection strength β and specificity degree p (log-log-log scale) obtained from Eq. (9) for L = 8
and α = 1: below the upper plane µc, a localized solution exists, while above the lower plane
µ̃c the delocalized state becomes stable. Bistability (µc > µ̃c) is possible only for β < β∗(p).

Figure 4: Projected phase diagrams of localization regimes for self-specific replication with
L = 8 and α = 1: (a) as function of β with p = 10 fixed; (b) as function of p with β = 10
fixed. Below µc (thick line), a localized solution exists, while above µ̃c (thick dashed line)
the delocalized state becomes stable. The dotted lines denote the result for µc obtained via
the binomial closure approximation. Bistability (µc > µ̃c) is possible only for β < β∗(p) (or
p > p∗(β)).
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However, as shown in Fig. 2 and Fig. 1, smaller values for p lead to much
broader distributions: mutants are still reasonably well replicated by master
enzymes, but the master is only moderately well (but not quite as efficiently)
replicated by the mutants. The resulting broadening of the distribution effec-
tively reduces the replication rate of the master and escalates the error catastro-
phe (Obermayer and Frey, 2009). Thus, the necessity for an enzymatic replica-
tor to discriminate not only between functional and non-functional substrates,
but also between efficient and unproductive enzymes, is again emphasized.

We finally want to remark on the case α = 0, i.e., no background level
for the non-enzymatic replication rate. Most of the above results obtained
from the binomial closure approximation can be simply evaluated for α = 0
(note that then β sets the timescale and drops out), but the strong speci-
ficity limit p → ∞ deserves extra attention. The error-tail approximation
indicates that the error threshold vanishes (µc → 1), but from Eq. (9) we
find µc = µ̃c = 1/6 for L ≫ 1, i.e., a macroscopic yet finite value (see
Appendix A.2). This remarkable result can be explained by recalling that the
traditional result µc ≈ ln r/L (Eigen et al., 1989) for the error threshold depends
on the replication advantage r of the master relative to a possibly small but finite
value for the mutants. In our case, rates are directly proportional to concen-
tration, and because the master sequence has a concentration of order 1, while
in an infinitely large population distant mutants have concentrations of order
2−L, this relative advantage itself is of order 2L, and cancels the length depen-
dence of the error threshold. In the corresponding non-enzymatic case, results
for so-called “truncation” fitness landscapes have lead to some debate about
the applicability of the error threshold concept in the presence of lethal mu-
tations (Wilke, 2005; Summers and Litwin, 2006; Takeuchi and Hogeweg, 2007;
Saakian et al., 2009). Accordingly, we should cautiously note that our results
for α = 0 will probably be affected when accounting for the effects of finite
populations and the full dependence of the replication rates on the genotypes
of enzyme and substrate.

3.2. Cross-specific replication

To increase the information content of replicating systems beyond the limited
complexity of a single replicator, auto-catalytic reaction networks such as Hy-
percycles (Eigen and Schuster, 1978; Stadler et al., 1995) have been proposed,
where different molecular species catalyze each other’s replication in a possibly
complex interaction graph. Only very little is known for these systems regard-
ing the issue of reaction specificity and the cross-interactions of each species’
mutant clouds. The simplest conceivable networks are 2-member cross-catalytic
hypercycles, which could rely on complementary base-pairing for recognition.
This suggests to analyze a specificity function where replication rates increase
with Hamming distance between enzyme and substrate:

fc(d) = (d/L)p. (13)

If enzyme and substrate should be complementary for efficient replication, we
expect the formation of two sub-populations localized about complementary
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Figure 5: Hamming distance distribution xk as function of mutation rate µ as in Fig. 1, but
for cross-specific replication with α = 1, β = 10, L = 32, and (a) p = 5 or (b) p = ∞. The
insets show the variance

〈

∆k2
〉

=
∑

k(k − 〈k〉)2xk (in a symmetric population, 〈k〉 = L/2).

sequences, each catalyzing the replication of the other. The main question
to be answered is how specificity affects coexistence. In the standard Eigen
model (Swetina and Schuster, 1982), quasispecies coexistence is prevented by
competitive exclusion except in degenerate cases, because the “fittest” individ-
uals take over the population. In our case, we expect non-trivial coexistence
results, because each subpopulation depends on the presence of the other for
efficient replication, but it is unclear how the possibly broad distributions influ-
ence each other.

From numerical solutions to the reduced rate equations and simulation re-
sults, where we initialized the population split between the master sequence and
its complement (see Fig. 5), we find that localization is only possible for p > 1.
The case p → ∞ essentially looks like having two equivalent self-specifically
replicating subpopulations, in the sense that in the localized state the sum
xk + xL−k of the cross-specific case is equal to xk in the self-specific situation
once we replace β → β/2. We will now corroborate these two findings using the
binomial closure approximation.

Two equivalent subpopulations localized about complementary sequences
correspond to a superposition of binomial distributions: xk ≈ 1

2

(

L
k

)[

ak(1 −
a)L−k + (1 − a)kaL−k

]

. To obtain an equation similar to Eq. (9) for their
mean widths a, we cannot use the first moment of the reduced rate equations
(it is constant by construction, because the distribution is symmetric about
a = 1/2), but use the second moment, leading to a lengthy result explicitly
given in Appendix B.1 (see Eq. (B.5)). Most importantly, for p = 1 we obtain
only the solution a = 1/2. Because the complementary distributions overlap
too much if catalytic rates increase only linearly with Hamming distance, the
populations are not localized strongly enough to ensure coexistence.

The resulting bifurcation diagram µ(a) (see Appendix B.2) is shown in com-
parison with the exact result in Fig. 6 for different values of p. We obtain infor-
mation about a from the variance, in the case of two complementary binomials
given by

〈

∆k2
〉

= L2/4−L(L−1)a(1−a). Using this expression gives very good
agreement between binomial closure approximation and exact numerical results
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especially for small p, because now the first two moments are correct. The
critical mutation rates µc and µ̃c can be found from the bifurcation diagram,
e.g., µc = W [β/(2αe)]/(2L) for p →∞, which is identical to the corresponding
result for self-specific replication if we replace β → β/2. Hence, in this limit we
obtain two clearly separated binomial distributions representing two equivalent
and catalytically coupled populations, and the “coupling constant” is only half
as large because only one half of the population is available as enzymes for the
other. In particular, the negligible interaction between the respective mutant
clouds allows one to employ the error-tail approximation assuming independent
species and error tails as in (Campos et al., 2000; Obermayer and Frey, 2009).
Further, we find that the pitchfork bifurcation is always subcritical, i.e., that
µc > µ̃c. We summarize our main results by plotting projected phase diagrams
of µc and µ̃c as functions of p− 1 and β in Fig. 7. This confirms that both crit-
ical mutation rates µc and µ̃c vanish linearly with p− 1, because µ(a) ∝ p− 1
as p → 1, which gives the sharp bound p > 1 for coexistence of two popula-
tions. Finally, the case α = 0 of zero non-enzymatic replication rate is similar
the self-specific case: the slight chance of distant mutants to find an appropri-
ate enzyme gives an enormous replication advantage to the mainly populated
master sequences and therefore macroscopic values for the error threshold (see
Appendix B.3 for details).

4. Conclusion

Because enzymatic replication provokes the necessity for enzymes to favor
functional substrates and for substrates to prefer efficient enzymes, we analyzed
a model of specific replication, where replication rates depend on the Hamming
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Figure 7: Projected phase diagrams of localization regimes as in Fig. 4, but for cross-specific
replication with L = 8 and α = 1: (a) as function of β with p = 10 fixed; (b) as function of p
with β = 10 fixed.

distance between recognition regions of enzyme and substrate via an adjustable
degree of specificity. Combining stochastic simulations, numerical solutions of
reduced rate equations and analytical solutions to a binomial closure approxi-
mation, we could analyze the entire phase diagram and assess how mutation rate
µ, selection strength β and specificity degree p influence the localization about
a master sequence in order to preserve its information content. We found that
for self-specific replication very weak specificity suffices for localization, whereas
stronger specificity gives more tolerance against mutations but leads to bistabil-
ity with the delocalized regime of random sequences. In particular, the binomial
closure approximation allows one to obtain analytical expressions for the bifur-
cation diagram and an upper bound β∗ for the bistability regime, which can
be evaluated for any specificity function fs(d). Apart from our special choice,
Eq. (7), a mesa-shaped function would also be conceivable, in correspondence to
fitness landscapes for transcription factor binding allowing for some “fuzziness”
or neutrality in the binding sequence (Gerland and Hwa, 2002). Preliminary re-
sults indicate that in this case the binomial closure approximation gives at least
qualitative agreement as well. While our approximation is not restricted to large
L, this limit can probably be more systematically be described using the max-
imum principle employed previously in quasispecies theory (Hermisson et al.,
2002; Saakian and Hu, 2006). In the case of cross-specificity, we found that co-
existence of subpopulations localized about complementary sequences is possible
only if replication rates increase faster than linearly with Hamming distance.

Although our model is based on idealizing assumptions, we can extrapolate
from currently available experimental data to obtain rough quantitative esti-
mates for the maximal length Lc of the recognition or tag sequences that can be
used by replication enzymes to specifically and reliably discriminate appropri-
ate and useless templates (and vice versa). Considering that non-enzymatic
template-directed polymerization rates are on the order of several hours to
days per base (Acevedo and Orgel, 1987; Wu and Orgel, 1992), while ribozyme-
catalyzed polymerization gives rates in the hour range (Johnston et al., 2001;
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Zaher and Unrau, 2007), we can estimate the ratio β/α somewhere near 5-20
if polymerization is the rate-limiting step. Assuming a self-specific enzymatic
replicator with a mutation rate on the order of 3% as in (Johnston et al., 2001),
we obtain a critical length Lc = 11-15 for weak specificity p = 1, and a larger
value Lc = 18-33 for p →∞, because stronger specificity constraints allow longer
sequences due to better localization. These values are significantly smaller than
the lengths of, e.g., the 154-nucleotide specificity domain of Bacillus subtilis

RNase P (Lilley, 2005) or the tRNA-like structures supposed to act as “ge-
nomic tags” for the replication of RNA viruses (Weiner and Maizels, 1987).
Many of the nucleotides in these instances have a structural role, which makes
them effectively redundant or neutral in our model, and only a minority is ac-
tually involved in recognition. Also, recent research indicates that “stalling” of
polymerization after mismatch incorporation might significantly reduce the er-
ror threshold (Rajamani et al., unpublished). Nevertheless, our result suggests
that the error threshold puts hard constraints on the information content of
enzymatic replicators as well.
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Appendix A. Self-specific replication

Appendix A.1. Derivation of Eq. (9)

To obtain Eq. (9), we compute the first moment
∑

k kẋk of the reduced rate

equations Eq. (4) under the assumption that xk = xb
k ≡

(

L
k

)

ak(1 − a)L−k is
binomially distributed. This gives four terms

T1 =
∑

jk

k mkjajx
b
j T2 =

∑

ijk

k mkjbjix
b
i xb

j

T3 = −
∑

k

k xb
k

∑

j

ajx
b
j T4 = −

∑

k

k xb
k

∑

ij

bjix
b
i xb

j .
(A.1)

The reduced mutation matrix mkj and the catalytic matrix bij are given in
Eqs. (5) and (6). Note that although not immediately obvious, the catalytic
matrix bij = bji is symmetric, because the binomial in the denominator of
Eq. (6) normalizes it to the single sequence level. We further keep in mind that
(

n
k

)

= 0 if k < 0 or k > n if n and k are integer, so we do not need to keep track
of the summation limits in the following calculations.

While it is straightforward to find T1 = αL(a + µ(1− 2a)) and T3 = −αaL,
we concentrate first on T4, which reads after performing the summation over k

T4 = −βaL
∑

ijn

(

L− j

i− j + n

)(

L

j

)(

j

n

)

fs(i− j + 2n)ai+j(1− a)2L−(i+j). (A.2)

16



Replacing i′ = i− j + 2n and rearranging
(

L−j
i′−n

)(

L
j

)(

j
n

)

=
(

L−i′

j−n

)(

L
i′

)(

i′

n

)

, we can
sum over j and n, and are left with

T4 = −βaL
∑

i′

(

L

i′

)

fs(i
′)(1 − 2a(1− a))L−i′(2a(1− a))i′

= −βaLS(1− 2a(1− a)).

(A.3)

The term T2 can after similar rearrangements be written as the product of two
generalized Vandermonde matrices:

T2 = β
∑

i′

(

L

i′

)

fs(i
′)

∑

jk

k

[

µ 1− µ
1− µ µ

]

L−k,j

[

(1− a)2 a(1 − a)
a2 a(1 − a)

]

j,i

,

(A.4)
where the Lth Vandermonde matrix with parameters a, b, c, and d is defined as

[

a b
c d

]

i,j

≡
∑

ℓ

(

L− j

i− ℓ

)(

j

ℓ

)

aL+ℓ−i−jbj−ℓci−ℓdℓ. (A.5)

This allows us to use a nice multiplication identity (Rawlings and Sze, 2005) for
these matrices:

[

a b
c d

] [

e f
g h

]

=

[

ae + bg af + bh
ce + dg cf + dh

]

, (A.6)

which gives:

T2 =β
∑

i′

(

L

i′

)

fs(i
′)

∑

k

k

[

a2 + µ(1− 2a) a(1− a)
(1 − a)2 − µ(1− 2a) a(1− a)

]

L−k,i′
(A.7)

=β
[

L(a + µ(1− 2a))S(1− 2a(1− a)) (A.8)

− (1− 2a)a(1− a)(1− 2µ)S′(1− 2a(1− a))
]

. (A.9)

Adding up T1 + T2 + T3 + T4 = 0 gives Eq. (9).

Appendix A.2. Solutions of Eq. (9)

This equation can be solved whenever S(x), defined in Eq. (10), assumes a
simple form. For fs(d) = (1− d/L)p as in Eq. (7), S(x) is a polynomial of order
L, except for integer 0 < p < L, where it is of order p. A few instances for
L > 2 are given by

S(x) =



















1− (1− x)L, p = 0,

x, p = 1,
1
Lx + L−1

L x2, p = 2,

xL, p = ∞.

(A.10)

To find solutions a(µ) 6= 1/2, we write x = a(1− a) and solve Eq. (9) for x:

x =



















1
2

(

2µα+β
β

)1/L

, p = 0
α+β

β
µL

1+2µ(L−1) , p = 1

µ− 1
2LW

(

− 2αµL
β e2µL

)

, p = ∞.

(A.11)
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For the last case, we approximated (1 − 2x)L ≈ e−2xL and µ/(1 − 2µ) ≈ µ
for the important asymptote L ≫ 1 with µL fixed, and used Lambert’s W-
function. A more complicated expression is obtained for p = 2. The solution
a = 1

2

(

1±
√

1− 4x
)

is then easily computed, and the error thresholds µc follow
from evaluating the condition x = 1/4 (for p = 0, 1, 2), or from requiring the
W-function to give a real result (for p = ∞):

µc =























β
α+β 2−(L+1), p = 0,

β
4αL+2β(L+1) , p = 1,

β
4αL+β(L+3) , p = 2,

1
2LW

(

β
eα

)

, p = ∞.

(A.12)

Finally, it is easy to evaluate the bifurcation diagram at a = 1/2 to get the
critical mutation rate µ̃c = µ(1/2):

µ̃c =
βS′(1/2)

2βS′(1/2) + 4L(α + βS(1/2))
. (A.13)

For our specificity function fs(d) = (1− d/L)p, we obtain explicitly

µ̃c =























2−(L+1) β
α+β , p = 0

β
4αL+2β(L+1) , p = 1

β
4αL+β(L+3) , p = 2

β
α2L+1+4β , p = ∞.

(A.14)

Note that µc = µ̃c for p ≤ 2.
While most of these results can be evaluated also for α = 0, the case p →∞

is special. Here, Eq. (9) gives x = µ/(1−2µ) if we again approximate (1−2x)L ≈
e−2xL, hence the error threshold is µc = 1/6, independent of β and L.

Appendix B. Cross-specific replication

Appendix B.1. Derivation of an equation for a

To obtain an equation for the parameter a, we compute the second moment
∑

k k2ẋk of the reduced rate equations under the assumption that xk = xc
k ≡

1
2

(

L
k

)

[ak(1 − a)L−k + aL−k(1 − a)k] is a sum of two complementary binomials,
because in this case the first moment vanishes by construction. The four terms
T1-T4 are defined and evaluated analogously to Eq. (A.1), and after some algebra
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we find:

T1 =
1

2
αL

[

L− 2(L− 1)(a(1 − a)(1− 2µ)2 + µ(1− µ))
]

(B.1)

T2 =
1

2
β
[

L(L− 2(L− 1)(a + µ(1− 2a))(1− a− µ(1− 2a)))C(1 − 2a(1− a))

+ 2a(1− a)(1− 2a)2(1 − 2µ)2(L− 1)C′(1 − 2a(1− a))

+ 2(a(1− a)(1 − 2a)(1− 2µ))2C′′(1− 2a(1− a))
]

(B.2)

T3 =− 1

2
αL[L− 2(L− 1)a(1− a)] (B.3)

T4 =− 1

2
βL[L− 2(L− 1)a(1− a)]C(1− 2a(1− a)). (B.4)

Here, we have defined C(x) = 1
2

∑

k

(

L
k

)[

fc(k)+fc(L−k)
]

xL−k(1−x)k. Adding
up T1 + T2 + T3 + T4 = 0 gives the condition

(1− 2a)2

{

µ(1− µ)L(L− 1)
[

α + βC(1 − 2a(1− a))
]

− βa(1 − a)(1− 2µ)2
[

(L− 1)C′(1− 2a(1− a))

+ a(1− a)C′′(1− 2a(1− a))
]

}

= 0. (B.5)

Most importantly, Eq. (B.5) reads for p = 1 in the specificity function fc(d) =
(d/L)p:

− (1− 2a)2L(L− 1)µ(1− µ)(α + β/2) = 0, (B.6)

which has only the solution a = 1/2.

Appendix B.2. Bifurcation diagram

Solving Eq. (B.5) for µ gives the bifurcation diagram:

µ(a) = 1
2

[

1±
(

1 +
4βa(1−a)[(L−1)C′(1−2a(1−a))+a(1−a)C′′(1−2a(1−a))]

L(L−1)[α+βC(1−2a(1−a))]

)

−1/2
]

,

(B.7)
where we take the negative sign and the positive root to obtain values µ near
zero (values near unity imply complementary replication and give equivalent
results for cross-specific replication).

We readily find that µ′′(1/2) > 0 if β > 0, which implies that the pitchfork
bifurcation described through Eq. (B.7) is always subcritical.

Appendix B.3. Solutions of Eq. (B.5)

The auxiliary function C(x) can be evaluated for small integer p as in
Eq. (A.10). There is no solution to Eq. (B.5) except a = 1/2 for p = 1, and the
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expression for p = 2 is quite lengthy. For p = ∞ and α > 0, we get

x = a(1− a) = µ− 1

2L
W

(

4αµL

β
e2µL

)

, (B.8)

which is exactly the result for the self-specific case if we replace β → β/2.
Accordingly, we get µc = W [β/(2eα)]/(2L) for the error threshold.

Observing that C′(1/2) = 0, the critical mutation rate µ̃c = µ(1/2) is given
by

µ̃c =
1

2

[

1−
(

1 +
βC′′(1/2)

4L(L− 1)(α + βC(1/2))

)

−1/2
]

, (B.9)

which reads explicitly

µ̃c =























0, p = 1

1
2

[

1−
(

1 + 2β
4αL2+βL(L+1)

)

−1/2
]

, p = 2

1
2

[

1−
(

1 + β
α2L+β

)

−1/2
]

, p = ∞.

(B.10)

We can simply take α = 0 in most of the above expressions to investigate the
case of zero non-enzymatic replication rate. In the limits p → ∞ and L → ∞,
we find that the bifurcation diagram µ(a) converges towards

µ(a) → a(1 − a), (B.11)

except for a region near a = 1/2, where µ(a) has to coincide with the exact
value µ̃c = (2 −

√
2)/4. Because this region becomes infinitesimally small as

L →∞, we conclude that µc → 1/4 in this limit.
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A. Calculation details for Chapter 2

This appendix compiles some technical calculations for the nonlinear dynamic response of
semiflexible polymers discussed in Chapter 2.

A.1. Asymptotic force-extension relations

In the stationary state at t < 0, the stored length density for scenarios involving an external
force follows as high-force asymptote from Eq. (2.22) as

〈%̄〉 (s) =
1

2`p

√
f0(s)

− `p

kx

f0(s), (A.1)

while % = L/(6θ`p) for the “quench” case. Fortunately, the potential singularity of
Eq. (A.1) near force-free ends is unproblematic. For the setups analyzed in Ref. [204]
we have therefore

R‖

L
= 1− 1

L

∫ L

0

ds 〈%̄〉 (s) =



1− 1

2`p

√
fpre

+
`pfpre

kx

, “force”,

1− 1

2`p

√
1
4
ζ̂vL

+
1
2
ζ̂vL`p

kx

, “field”,

1− 1

2`p

√
1

2π2 ζ̂ γ̇L2

+
1
12

ζ̂ γ̇L2`p

kx

, “shear”,

1− L

6θ`p

, “quench”.

(A.2a)

(A.2b)

(A.2c)

(A.2d)

This allows to choose the control parameters such as to have comparable initial extension
R‖: for instance, for an inextensible filament (kx → ∞) one would take fpre = 1

4
ζ̂vL =

1
2π2 ζ̂ γ̇L2 = (3θ/L)2.

A.2. Discretization effects

In order to include discretization effects, we assume that the mode decomposition of
Eq. (2.17a) is cut off at some highest mode qmax ' π/b, where b is a microscopic length scale
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(the polymer thickness, the bond length, the bead size, the rod length, etc.), which is as-
sumed to be small enough (N = L/b � 1) to justify the approximation L−1

∑
q ≈ π−1

∫
dq.

For a “force” scenario as in Sec. 2.5, Eq. (2.24) reads

∂2
sF (s, t) = ζ̂

∫ π/b

0

dq

π`p

[
1− χ2

⊥(q; t, 0)

q2 + fpre

− 2q2

∫ t

0

dt′χ2
⊥(q; t, t′)

]
. (A.3)

From the response function Eq. (2.19), we get the asymptotic scaling for the wave number
Q ' `−1

⊥ of the mode that relaxes at time t:

Q '

{
t−1/4, if F 2/t � 1 (“linear”)

F−1/2, if F 2/t � 1 (“nonlinear”)
(A.4)

Normally, we would expect relevant discretization effects only in the regime Q � π/b,
when the cutoff mode π/b suppresses essential parts of the response function χ⊥. In this
case, the longitudinal relaxation is dominated by normal diffusive relaxation of (compared
to Q) long wavelength modes, which are essentially uninhibited by the elastic (bending
and tension) forces that would otherwise lead to anomalous diffusion. But the initial
mode spectrum 1/[q2 + fpre] in the first term on the right hand side of Eq. (A.3) behaves
differently, depending on the magnitude of fpre. It turns out that discretization effects are
much more relevant than normally expected for larger forces fpre � b−2, see Table A.1.

A.2.1. Small force (fpre � b−2)

In the case Q � π/b � f
1/2
pre , we can perform an expansion of the right hand side of

Eq. (A.3) with respect to the integrated tension F and to the force fpre [99, 203]:

∂2
sF (s, t) ≈ ζ̂

∫ π/b

0

dq

π`p

[
−fpre

q4

(
1− e−2q4t

)
+ 2F (s, t)− 4q4

∫ t

0

dt′ F (s, t′)e−2q4(t−t′)

]
.

(A.5)
Using the Laplace transform F̃ (s, z) = L{F (s, t)}, this reads

∂2
s F̃ (s, z) = ζ̂

∫ π/b

0

dq

π`p

[
− 2fpre

z(z + 2q4)
+ F̃ (s, z)

2z

z + 2q4

]
, (A.6)

which, after performing the q-integral, reduces to:

λ2 ∂2
s F̃ = F̃ − fpre

z2
. (A.7)

Since initially Q ' t−1/4 ' z1/4 and therefore bz1/4 � 1, the characteristic length is given
by λ = [`pb/(2ζ̂)]1/2 independent of z. The solution in real space reads

F (s, t) = fpret

(
1− cosh[(L− 2s)/(2λ)]

cosh[L/(2λ)]

)
. (A.8)
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The tension profile f(s, t) = ∂tF (s, t) is stationary, there is no propagation. For polymers
with `p < L (or sufficiently fine discretization b � L2/`p otherwise), we find that λ � L.
In this case, the change in end-to-end distance is given by

∆‖(t) = −
√

8

ζ̂`pb
fpret for t � b4 (A.9)

At t = b4, there is a crossover to the linear propagation regime b4 � t � f−2
pre, where

discretization effects are irrelevant.

A.2.2. Intermediate force (b−2 � fpre � L2/(`pb
3)).

In the case Q, f
1/2
pre � π/b, we can also linearize Eq. (A.3) in F , but not in fpre as before

in Eq. (A.6). The leading order terms are

∂2
sF ≈ ζ̂

∫ π/b

0

dq

π`p

[
2q2F

fpre

− 2q2t

]
= λ−2 [F − fpre t] , (A.10)

with the solution Eq. (A.8), but a different length λ = [3`pfpreb
3/(2ζ̂π2)]1/2. Again, there

is no propagation. The change in end-to-end distance is given by

∆‖(t) = −
√

8fpreπ2

3ζ̂`pb3
t for t � b2

fpre

, (A.11)

and Q ' π/b at t = b2/fpre � f−2
pre.

In the following regime, π/b � Q ' F−1/2 holds, and we find the response function
χ⊥(q; t, t′) from Eq. (2.19) finite only near t′ ≈ t. We can thus linearize F (s, t)−F (s, t′) ≈
[∂tF (s, t)](t − t′) in the exponent. In contrast to the case Q � π/b, where we expanded
the exponential of the response function Eq. (2.19) in a series, we now set it to zero:

∂2
sF ≈ ζ̂

∫ π/b

0

dq

π`p

[
1

q2 + fpre

− 1

q2 + ∂tF

]
. (A.12)

The integrals have different asymptotes, depending on the products bf
1/2
pre and b[∂tF ]1/2,

i.e., even for t � fpre/b
2 discretization effects may be important.

Intermediate time regime. Initially F ' fpret, and because fpre � b−2 was assumed, we
find from Eq. (A.12)

∂2
sF ≈ ζ̂

`pb

[
f−1

pre − (∂tF )−1
]
. (A.13)

Taking a time derivative gives

∂2
sf =

ζ̂

`pb

∂tf

f 2
. (A.14)
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This can be solved in two limits. During the propagation regime t � t
‖
L, the scaling ansatz

f(s, t) = fpreϕ(s/`‖(t)) with a growing boundary layer `‖(t) = (`pb/ζ̂)1/2fpret
1/2 gives

∂2
ξ ϕ(ξ) = −1

2
ξϕ−2(ξ)∂ξϕ(ξ), (A.15)

with boundary conditions ϕ(0) = 0, ϕ(ξ → ∞) = 1. A numerical solution yields ϕ′(0) ≈
4.501, and the change in end-to-end distance follows as:

∆‖(t) ≈ −18

√
t

ζ̂`pb
. (A.16)

At t = ζ̂L2/(`pbf
2
pre) when `‖ = L, this propagation regime ends. For the relaxation

regime, we choose the asymptotic separation ansatz f(s, t) = [ζ̂L2/(`pbt)]
1/2h(s/L) where

h(ξ) solves

h′′ = − 1

2h
with h(0) = h(1) = 0. (A.17)

Unfortunately, near the boundaries this equation gives a pathological singularity: Although
we obtain a finite value h(1/2) = (4π)−1/2, the slope at the boundary diverges, h′(0) →∞,
such that we cannot find a reasonable numerical prefactor for the growth law of the change
in projected length:

∆‖(t) = −4h′(0)

√
t

ζ̂`pb
. (A.18)

This complication arises because the condition b[∂tF ]1/2 � 1 for the asymptotic Eq. (A.13)
is violated very close to the boundary where ∂tF = f is near zero. However, our numer-
ical solutions to Eq. (A.3) agree excellently with this scaling and they further suggest a
numerically stable value of about h′(0) ≈ 1.9. We conclude:

1. The crossover at t = t
‖
L does not change the scaling of ∆‖(t).

2. The condition b[∂tF ]1/2 � 1 holds up to times t = ζ̂L2b3/`p � b4.

3. Discretization effects matter therefore for much longer times than in the case of small
force.

4. This time regime b2/fpre � t � L2b3/`p is formally equivalent to the regime of

nonlinear propagation (f−2
pre � t � L2/(`pf

3/2
pre )) of the “force” setup if b → f

−1/2
pre is

replaced.

Long-time regime. For times t � L2b3/`p, the tension becomes so small that b[∂tF ]1/2 �
1. In this case, Eq. (A.12) reads

∂2
sF ≈ ζ̂

2`p

[
2

fpreb
− (∂tF )−1/2

]
. (A.19)
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(a)
t � b4 b4 � t � tf tf � t � t

‖
L t

‖
L � t

fpret

(ζ̂`pb)1/2

fpret7/8

(ζ̂`p)1/2

f
1/4
pre t1/2

(ζ̂`p)1/2

(
Lt

ζ̂`2p

)1/3

(b)
t � b2

fpre

b2

fpre
� t � L2b3

`p
L2b3

`p
� t

f
1/2
pre t

(ζ̂`pb3)1/2

t1/2

(ζ̂`pb)1/2

(
Lt

ζ̂`2p

)1/3

(c)
t � `pb5

L2

`pb5

L2 � t � L2b3

`p
L2b3

`p
� t

Lt
b3`p

t1/2

(ζ̂`pb)1/2

(
Lt

ζ̂`2p

)1/3

Table A.1: Asymptotic scaling laws for the change in projected length
∣∣∆‖(t)

∣∣ for a “force”
setup, including discretization effects for (a) fpre � b−2, (b) b−2 � fpre � L2/(`pb

3), and (c)
L2/(`pb

3) � fpre.

Again taking a time derivative, we arrive at:

∂2
sf =

ζ̂∂tf

4`pf 3/2
. (A.20)

Here, we try the separation ansatz f(s, t) = g(t)h(ξ) with ξ = s/L, which gives [99]

g(t) =

(
ζ̂L2

`pt

)2/3

, (A.21)

and the function h(ξ) solves

h′′ = − 1

6h1/2
with h(0) = h(1) = 0. (A.22)

For the almost parabolic profile h(ξ) we find the characteristics [99]

h′(0) = 12−1/3, h(1/2) =
(

3
128

)2/3
. (A.23)

A.2.3. Large force (fpre � L2/(`pb
3)).

For large forces fpre � L2/(`pb
3), the characteristic length λ = [3`pbfpre/(2ζ̂π2)]1/2 � L in

the initial regime described by Eq. (A.10), is very large, and the tension profile Eq. (A.8)
therefore simply parabolic. This gives

∆‖(t) ' −
2π2Lt

3b3`p

(A.24)
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for times up to t = b5`p/L
2 when Q ' π/b. The following regimes are similar to the case of

intermediate force: Eq. (A.13) holds, but its solution yields Eq. (A.18). At t = ζ̂L2b3/`p,
finally, this regime is followed by the regime of homogeneous tension relaxation, similar to
Eqs. (A.21), (A.22), (A.23). Since there is no dependence on fpre left, we conclude that

forces larger than ζ̂L2/(`pb
3) are equivalent to infinite forces, i.e., an exactly straight initial

conformation, where initially parabolic tension profiles are to be expected [92].
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[2] A. Ajdari, F. Jülicher, and A. Maggs, “Pulling on a filament”, J Phys I, 7, 823 (1997)

[3] D. Alves, P. R. A. Campos, A. T. C. Silva, and J. F. Fontanari, “Group selection
models in prebiotic evolution”, Phys Rev E, 63, 011911 (2001)

[4] D. Alves and J. F. Fontanari, “Error threshold in finite populations”, Phys Rev E,
57, 7008 (1998)

[5] F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis, and S. Leibler, “Subdiffusion
and anomalous local viscoelasticity in actin networks”, Phys Rev Lett, 77, 4470
(1996)
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