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  Summary 

SUMMARY 
 
The endothelium is among the largest organs in the body. Stimuli originating from the blood or 

from neighbouring cells, like inflammatory cytokines (IC), lead to structural and functional 

alterations of vascular endothelial cells (EC). These alterations are often referred to as “EC 

activation”. Activated EC play a key role in different physiological processes like during 

immune response, in menstruation and in pathological processes like inflammation, allergy, 

viral infections, atherosclerosis and tumour angiogenesis. 

The human guanylate binding protein-1 (GBP-1) is a protein of the family of large GTPases. 

GBP-1 is characterized by a high turnover GTPase activity. Previous work showed that GBP-

1 mRNA expression is induced by IC in EC and that GBP-1 is the specific mediator of the 

anti-proliferative effect of IC on EC in vitro. 

The main goals of this work were first, to investigate whether GBP-1 may be a molecular 

marker of IC-activated EC at the protein level in vitro. Second, to investigate GBP-1 

expression in human healthy and/or disease tissues and to determine whether GBP-1 may be a 

molecular marker of IC-activated EC in vivo.  

To this goal mono- and poly-clonal antibodies against GBP-1 were generated. In vitro studies 

showed that GBP-1 expression in EC is induced by IFN-�, IFN-�, IL-1�, IL-1� or TNF-� but 

not by other cytokines, chemokines or growth factors. Moreover, simultaneous addition of 

bFGF and VEGF and IC reduced the IC-induced GBP-1 expression. This indicated that GBP-

1 characterizes cells that are preferentially exposed to IC. 

In vivo studies using immunohistochemistry and immunofluorescence showed that GBP-1 

expression is highly associated with vascular EC in a broad range of human tissues. This was 

confirmed by the simultaneous detection of GBP-1 and the EC-associated marker CD31. 

Notably, GBP-1 expression was undetectable in healthy skin. In contrast, GBP-1 was highly 

expressed in vessels of skin diseases with a high inflammatory component including psoriasis, 

adverse drug reactions and Kaposi’s sarcoma. This indicated that GBP-1 characterizes IC-

activated EC in vivo. Further immunohistochemical studies on Kaposi’s sarcoma 

demonstrated that GBP-1 expression and EC cell proliferation are inversely related. This 

indicated that GBP-1 may also mediate the anti-proliferative effect of IC on EC in vivo. 

Finally, GBP-1 was found to be secreted by EC stimulated with IFN-� and IFN-� in vitro. 

This finding was confirmed by immunoprecipitation of GBP-1 from cell culture supernatants 

and by a novel ELISA developed for the detection of GBP-1 in solution. Further 

characterization of the mechanism of secretion demonstrated that GBP-1 release is due to an 
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energy-dependent mechanism and is not due to cell death. Most importantly, circulating 

GBP-1 could be detected in increased concentrations in the blood of patients that were 

subjected to IFN–�-therapy or in patients with inflammatory diseases. 

These findings indicated that GBP-1 is a novel marker of inflammatory vessel activation. 

Specifically, the serological detection of GBP-1 may open new perspectives for the early 

detection of inflammatory activation of EC in patients with inflammatory diseases. 
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  Introduction 

INTRODUCTION 

 

1 Function of the quiescent endothelium 

 

The endothelium is among the largest organs in the body. In an adult it covers a surface of almost 

1000 m2 with a mass of 720 g (Cines, et al. 1998; Bachetti, et al. 2000). The endothelium is 

located at the interface between the blood and the vessel wall and consists of quiescent 

endothelial cells (EC). 

The endothelium in healthy persons consists of EC that are in close contact and form a non-

adhesive layer that prevents blood cell interaction with the vessel wall as blood moves through 

the vessel lumen (Augustin, et al. 1994; Cines, et al. 1998). In this framework, EC are the only 

cells known to be actively antithrombotic (Tan, et al. 1999). In addition, the endothelium serves 

both as a barrier and as a regulator of transvascular diffusion of liquids and solutes (Augustin, et 

al. 1994; Cines, et al. 1998; Datta, et al. 2001).  

The pathway of liquids and solutes across EC utilises vesicle trafficking (for example 

caveolae), which is regulated by endocytotic and exocytotic events (Niles, et al. 1999). It has 

been shown that the phosphoinositide metabolism regulates endocytosis and that exocytosis is 

regulated by the soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein 

receptors machinery (SNAREs) (Niles, et al. 1999). Most SNAREs are C-terminally anchored 

integral membrane proteins capable of entering into an interaction with other SNARE 

proteins. SNARE proteins are believed to mediate most, if not all, cellular membrane fusion 

events (Tooze, et al. 2001; Schekman 2002). However, the exact mechanisms of endocytosis 

and exocytosis in EC are still unclear.  

In addition, the endothelium has secretory functions (Bachetti, et al. 2000). The trafficking of 

secretory proteins within eukaryotic cells is achieved by the capture of cargo and targeting 

molecules into vesicles. Distinct coat proteins mediate each budding event. These coating 

proteins shape the transport vesicles and select the desired set of cargo molecules (Schekman 

1998; Schekman 2002). Transport vesicles are characterized by such coating proteins and by 

sphingolipid-cholesterol rafts, that are insoluble in the detergent Triton-X100 at 4 °C (Simons, 

et al. 1997). 

Regulated secretion of transmigrated vesicles and the release of EC encoded factors provide a 

mean by which EC can rapidly and selectively alter the microenviroment of individual 

vascular beds and modulate different correlated processes as listed below (Datta, et al. 2001): 
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(1) Coagulation is regulated via secretion of P-selectin, von Willebrand factor, tissue 

plasminogen activator, plasminogen activator inhibitor, nitric oxide and multimerin 

(Hayward, et al. 1998; Hayward, et al. 1999; Datta, et al. 2001; Nilius, et al. 2001). 

(2) Vaso-dilatation and -constriction are regulated via secretion of prostacycline, 

endothelin-1, angiotensin II, superoxide radicals (Harrison, et al. 1995; Bechard, et al. 

2000; Datta, et al. 2001; Nilius, et al. 2001; Wang, et al. 2002).  

(3) Inflammation is regulated via secretion of IL-8, TNF-� and superoxide radicals 

(Kaplanski, et al. 1997; Datta, et al. 2001; Nilius, et al. 2001).  

(4) Cell proliferation is regulated via secretion of aFGF and bFGF (Swinscoe, et al. 1992; 

Friesel, et al. 1999; Tarantini, et al. 2001; Prudovsky, et al. 2002). 

 

This indicates that the endothelium is involved in many different processes in the human 

body. 

Of note, EC have often specialized functions, depending on the tissue in which they are 

located. Therefore, vascular endothelial cells reveal structural and functional heterogeneity 

(Kuzu, et al. 1992; Girard, et al. 1999; Bachetti, et al. 2000). For example, heterogeneity has 

been shown in the activation of micro- and macro-vascular EC in response to growth factors 

with respect to activation of protein kinase C and expression of adhesion molecules (Kuzu, et 

al. 1992; Swerlick, et al. 1992; Mason, et al. 1997).  

 

2 Pathophysiological activation of the endothelium during inflammation 

 

However, the endothelium can react in a dynamic manner and, under appropriate stimulation, EC 

can undergo profound changes leading to structural and functional alterations. These alterations 

are often referred to as "endothelial cell activation" (Pober, et al. 1986; Cotran, et al. 1988; 

Pober 1988; Cotran, et al. 1990; Augustin, et al. 1994). Endothelial cell activation plays a key 

role for example during inflammation. 

Inflammation is an important component in many diseases including atherosclerosis, tumor 

metastasis, infection, trauma, chemical and metabolic injury (Cotran, et al. 1990; Siegel, et al. 

1997; Boehm, et al. 1998; Livni, et al. 1999; Tan, et al. 1999; Baumgartl, et al. 2001; Roesen, 

et al. 2001; Cascieri 2002). 

In the course of inflammation the activation of the endothelium involves a local activation 

response of EC to injury and/or infection (Swerlick, et al. 1993; Siegel, et al. 1997; 

Biedermann 2001). The inflammatory process can be divided in: (i) an acute vascular 
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response within the first seconds of tissue injury characterized by vasodilatation, increased 

capillary permeability and alterations of the vascular endothelium. (ii) An acute cellular 

response within the first hours, characterized by the appearance of granulocytes in the tissue. 

(iii) In the case of severe damage a chronic cellular response of EC is observed within the 

next days, regulating the recruitment of a mononuclear cell infiltrate composed of 

macrophages and lymphocytes to the site of injury. In the case of wound healing sprouting of 

vessels occurs in the damaged area (Tan, et al. 1999; Detmar, et al. 1998). 

Activation of the endothelium is caused by the injurious stimulus itself, or by inflammatory 

cytokines generated in response to the stimulus (Cotran, et al. 1988; Pober 1988; Cotran, et 

al. 1990; Augustin, et al. 1994; Tan, et al. 1999). The goal of inflammatory EC activation is 

to limit the damage induced by the external stimuli (i) via the recruitment of blood cells 

(leukocytes) to the site of injury, (ii) by initiating blood coagulation and (iii) by healing and 

promoting repair for recovery of function (Shimizu, et al. 1992; Swerlick, et al. 1992; 

Luscinskas, et al. 1994; Haraldsen, et al. 1996; Robson, et al. 1997; Jung, et al. 1998; Tan, et 

al. 1999).  

 

2.1 Vessel sprounting (angiogenesis) 

 

Angiogenesis is defined as the process of generating new capillary blood vessels from pre-

existing ones (Folkman 1995; Cines, et al. 1998). Angiogenesis can occur in association with 

inflammation for example during wound healing (Breier, et al. 1992; Folkman 1995; Detmar, 

et al. 1998).  

Key features of the process of angiogenesis are first, EC proliferation induced by angiogenic 

growth factors and second, EC invasion of the extracellular matrix (ECM) (Montesano, et al. 

1986; Schweigerer, et al. 1987b; Sato, et al. 1988; Leung, et al. 1989; Pepper, et al. 1992; 

Melder, et al. 1996). The effect of angiogenic growth factors is described in detail below. 

Invasion of ECM involves both motility of EC and proteolysis of the ECM by proteases 

secreted by EC (Fisher, et al. 1994; Moses 1997; Hiraoka, et al. 1998). Angiogenic 

proteolysis is dependent on matrix metalloproteinases that degrade the tissue in front of the 

sprouting vessels and allow EC to migrate towards the diseased tissue (Pepper, et al. 1992; 

Pepper 2001; Silletti, et al. 2001; Vihinen, et al. 2002). Invasion of EC is accompanied by an 

increased expression of adhesion molecules that in turn increases adhesion of blood cells to 

EC (Klein, et al. 1993; Melder, et al. 1996; Detmar, et al. 1998; Lu, et al. 1999; Kim, et al. 

2001). 
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During the last step in angiogenesis, EC form blood vessels through a process called 

“capillary formation”. Finally, individual blood vessels are connected and a vascular system is 

formed.  

Angiogenic growth factors (AGF) such as basic fibroblast growth factor (bFGF) and vascular 

endothelial growth factor (VEGF) are the most potent modulators of angiogenesis.  

 

2.2 The role of angiogenic growth factors in endothelial cell activation 

 

2.2.1 Basic fibroblast growth factor (bFGF) 

 

bFGF is a non-glycosylated heparin-binding factor. bFGF is produced mainly by EC, in 

particular it is released after tissue injuries and during inflammation (Westermann, et al. 

1990). In vivo, bFGF expression has been detected in different human tumors (Chodak, et al. 

1988; Tanimoto, et al. 1991; Nakamoto, et al. 1992; Dirix, et al. 1997; Chopra, et al. 1998).  

bFGF can induce proliferation, chemotaxis and migration of EC in vitro (Montesano, et al. 

1986; Sato, et al. 1988; Gospodarowicz 1991). However, bFGF does not only activate 

proliferation of EC, but also of many other cells like fibroblasts, myoblasts, osteoblasts, 

neuronal cells, keratinocytes and chondrocytes (Westermann, et al. 1990; Gospodarowicz 

1991). In addition it up-regulates the expression of integrins and proteinases in EC 

(Moscatelli, et al. 1986; Gospodarowicz 1991; Moses 1997).  

In vivo, bFGF has been suggested to play a major role in tumor angiogenesis (Gospodarowicz 

1984; Thomas, et al. 1985; Gospodarowicz 1991). 

 

2.2.2 Vascular endothelial growth factor (VEGF) 

 

VEGF is also an heparin-binding factor. VEGF consists of a family of different factors 

(VEGF-A, -B, -C, -D and PIGF) that are generated by differential splicing (Maglione, et al. 

1991; Grimmond, et al. 1996; Joukov, et al. 1996; Neufeld, et al. 1996; Olofsson, et al. 1996; 

Poltorak, et al. 1997; Yamada, et al. 1997; Neufeld, et al. 1999; Meyer, et al. 1999). 

VEGF is produced by macrophages, lung epithelial cells, kidney epithelial cells, follicular 

cells in the pituitary, corpus luteum cells, aortic smooth muscle cells and tumor cells (Leung, 

et al. 1989; Brown, et al. 1992). In addition, in vivo VEGF is expressed in many different 

human tumors (Dirix, et al. 1997; Fujisaki, et al. 1998; Landriscina, et al. 1998; Salven, et al. 

1998; Samaniego, et al. 1998). 
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VEGF induces proliferation of EC, but in contrast to bFGF it almost selectively activates 

micro- and macro-vascular EC (Folkman, et al. 1987; Keck, et al. 1989; Leung, et al. 1989; 

Wilting, et al. 1993). Moreover, VEGF increases blood vessel permeability  and induces 

chemotaxis and migration of EC and monocytes (Nicosia, et al. 1994; Barleon, et al. 1996; 

Esser, et al. 1998; Thurston, et al. 1999; Kim, et al. 2001). 

VEGF has been shown to regulate angiogenesis in different in vivo models (Phillips, et al. 

1990; Breier, et al. 1992; Kim, et al. 1993; Wilting, et al. 1993; Phillips, et al. 1994; 

Thurston, et al. 1999).  

Notably, bFGF and VEGF interact synergistically in the induction of EC proliferation in vitro 

and in the induction of angiogenesis in vivo (Pepper, et al. 1992; Cornali, et al. 1996; Melder, 

et al. 1996). 

 

2.3 Recruitment of leukocytes 

 

Activated EC play a threefold role in the recruitment of leukocytes to the site of inflammation 

(Swerlick, et al. 1993; Ley 1996). First, activated EC express adhesion molecules that allow 

adhesion of leukocytes at sites of injury like the selectin family of adhesion molecules, 

intercellular adhesion molecules (ICAMs), vascular adhesion molecule-1 (VCAM-1), 

integrines and platelet-endothelial cell adhesion molecule-1 (PECAM-1 or CD31) (Pober, et 

al. 1986; Bevilacqua, et al. 1989; Cavender, et al. 1991; Shimizu, et al. 1992; Luscinskas, et 

al. 1994; Jung, et al. 1998; Tan, et al. 1999). Second, activated EC attract leukocytes via the 

expression of chemokines (Siegel, et al. 1997; Krishnaswamy, et al. 1999). Third, activated 

EC release cytokines (e.g. IL-1, IL-6, IL-8) in response to leukocyte derived molecules. These 

cytokines are activating cells in the surrounding and via this amplify the response of EC 

(Bevilacqua, et al. 1989; Cavender, et al. 1991; Biedermann 2001). 

The cytokines that appear to have the most profound effect on EC during inflammation are the 

inflammatory cytokines (IC): interferon-� (IFN-�), interleukin-1 (IL-1) and tumor necrosis 

factor-� (TNF-�) (Pober 1988; Tan, et al. 1999). IC induce the expression of adhesion 

molecules both on EC and lymphocytes and are potent inhibitors of EC proliferation (Frater-

Schroder, et al. 1987; Friesel, et al. 1987; Schweigerer, et al. 1987a; Cozzolino, et al. 1990; 

Swerlick, et al. 1992; Haraldsen, et al. 1996).  
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2.4 The role of inflammatory cytokines in endothelial cell activation 

 

2.4.1 Interferon-gamma (IFN-�) 

 

IFN-� is a dimeric, glycosylated protein and can exist in a form associated with the 

extracellular matrix [reviewed in (Farrar, et al. 1993; Goodbourn, et al. 2000)]. IFN-� is 

produced mainly by T-cells and natural killer cells, but also by B-cells. The synthesis of 

IFN-� can be induced in these cells by antigens and mitogens like IL-2, bFGF and EGF 

(Fiorelli, et al. 1998; Sirianni, et al. 1998; Cooper, et al. 2001).  

A number of receptors have been described for IFN-� (Rubinstein, et al. 1987; Schreiber, et 

al. 1992; Farrar, et al. 1993; Pestka, et al. 1997; Lambert, et al. 2000). They are expressed on 

all types of human cells with the exception of mature erythrocytes (van Loon, et al. 1991). 

IFN-�/receptor complexes are rapidly internalised by endocytosis (Sadir, et al. 2000).  

IFN-� has antiviral and antiparasitic activities. IFN-� inhibits the proliferation of a number of 

transformed and normal cells. In particular IFN-� inhibits EC proliferation (Friesel, et al. 

1987; Holzinger, et al. 1993; Jaramillo, et al. 1995; Neary, et al. 1996; Anderson, et al. 1999; 

Goodbourn, et al. 2000). In addition, IFN-� increases the adhesion of T-cells by increasing the 

expression of ICAM-1 both on micro- and macro-vascular EC (Ruszczak, et al. 1990; 

Thornhill, et al. 1990). The most abundant IFN-�-induced proteins are two families of 

GTPases of 65-kDa and 47-kDa [reviewed in (Boehm, et al. 1998)]. 

 

2.4.2 Interleukin-1 (IL-1) 

 

IL-1 appears in two functionally almost equivalent forms that are encoded by two different 

genes with identical molecular weight (17 kDa): IL-1� and IL-1� (March, et al. 1985). IL-1� 

and IL-1� are both synthesized as precursors proteins of approximately 35 kDa. The mature 

proteins are released by the precursor protein by proteolytic cleavage (Black, et al. 1989; 

Beuscher, et al. 1990). The IL-1� precursor protein, but not the IL-1�, is biologically active 

(Mosley, et al. 1987; Beuscher, et al. 1990). The intracellular precursors of IL-1� and IL-1� 

do not contain a recognisable hydrophobic secretory signal sequence that may trigger 

secretion of the protein by classical secretory pathways involving the endoplasmic 

reticulum/Golgi apparatus (Rubartelli, et al. 1990; Tarantini, et al. 2001). 
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IL-1 is predominantly secreted by monocytes, but also by activated macrophages from 

different sources (alveolar macrophages, Kupffer cells, adherent spleen and peritoneal 

macrophages) and by many other cells (peripheral neutrophil granulocytes, EC, fibroblasts, 

smooth muscle cells, keratinocytes, Langerhans cells of the skin, osteoclasts, astrocytes, 

epithelial cells of the thymus and the cornea, T-cells, B-cells and NK-cells) (Hober, et al. 

1989; Beuscher, et al. 1990). 

Both forms of IL-1 bind to the same receptor. IL-1� and IL-1� show also very similar 

biological activities and are biologically more or less equivalent (Dower, et al. 1990; Symons, 

et al. 1991; Dinarello 2000).  

IL-1 promotes the proliferation and the synthesis of immunoglobulins of B-cells, supports the 

monocyte-mediated tumor cytotoxicity and induces tumor regression (Norioka, et al. 1994). 

In addition; IL-1 causes many alterations of endothelial functions: it increases the adhesion of 

leukocytes, monocytes, neutrophils and B-cells by enhancing the expression of adhesion 

molecules such as ICAM-1, VCAM-1 and endothelial-leukocyte adhesion molecule (ELAM) 

(Swerlick, et al. 1992; Haraldsen, et al. 1996). IL-1 is also a strong chemo-attractant for 

leukocytes (Pober, et al. 1986; Larrick, et al. 1988; Last-Barney, et al. 1988; Pober 1988; 

Cotran, et al. 1990; Cavender, et al. 1991; Swerlick, et al. 1992; Haraldsen, et al. 1996; 

Dinarello 1996; Biedermann 2001). In addition, IL-1 decreases the expression of von 

Willebrand factor (vWf) and it increases the capability of EC to form tubule-like structures 

(Romero, et al. 1997). In particular IL-1 inhibits EC proliferation in vivo and in vitro 

(Cozzolino, et al. 1990; Holzinger, et al. 1993). In addition, IL-1 promotes thrombotic 

processes and attenuates anti-coagulatory mechanisms for example, by down-regulation of the 

expression of membrane-associated thrombomodulin (Maruyama, et al. 1989; Tan, et al. 

1999) 

Of note, IL-1 can interact synergistically with IFN-� and TNF-� in the regulation of 

inflammatory reactions (Pober, et al. 1986; Last-Barney, et al. 1988; Holzinger, et al. 1993). 

 

2.4.3 Tumor necrosis factor-alpha (TNF-�) 

 

Human TNF-� is a non-glycosylated protein of 17 kDa that is maturated from a 233 amino 

acids precursor protein (Pennica, et al. 1984). TNF-� is secreted by macrophages, monocytes, 

neutrophils, CD4+ T-cells, NK-cells, different transformed cell lines, astrocytes, microglial, 

smooth muscle cells, and fibroblasts after exposure to bacterial lipopolysaccharides (Hober, et 

al. 1989; Vyakarnam, et al. 1991). 

 11



Introduction   
 

Receptors for TNF-� are expressed on all somatic cell types with the exception of 

erythrocytes. In addition, truncated soluble forms of the receptor have been found (Nophar, et 

al. 1990). TNF-receptor densities on the cell surface are decreased by IL-1 and tumor 

promoters such as phorbol esters. In contrast IFN-�, IFN-�, and IFN-� increase 

IFN-�-receptor density on the cell surface (Nedwin, et al. 1985; Pandita, et al. 1992). 

TNF-�, similarly to IL-1, shows a wide spectrum of biological activities [reviewed in 

(Larrick, et al. 1988; Tracey, et al. 1993)]. In combination with IL-1, TNF-� induces many 

different effects on EC. It inhibits anticoagulatory mechanisms and promotes thrombotic 

processes by decreasing the expression of membrane thrombomodulin (Last-Barney, et al. 

1988; Bevilacqua, et al. 1989; Biedermann 2001). TNF-� increases the adhesion of 

leukocytes to the endothelium (Larrick, et al. 1988; Pober 1988; Cotran, et al. 1990). TNF-� 

is also a potent chemoattractant for neutrophils and increases their adherence to the 

endothelium (Haraldsen, et al. 1996). In addition, TNF-� inhibits the growth of EC in vitro 

(Frater-Schroder, et al. 1987; Schweigerer, et al. 1987a). In contrast, TNF-� is a potent 

promoter of angiogenesis in vivo (Frater-Schroder, et al. 1987; Montrucchio, et al. 1994). 

This may be mediated via the recruitment of monocytes that in turn secret VEGF and bFGF. 

TNF-� can interact synergistically with IL-1� in the regulation of inflammatory reactions 

(Pober, et al. 1986; Last-Barney, et al. 1988).  

Altogether, IC are important mediators of inflammatory ructions that have a profound effect 

on the activation of EC. 

 

2.5 The role of inflammatory cytokines in inflammatory skin diseases 

 

Inflammatory processes are clinically most apparent and most easily accessible when they 

occur in the skin. The skin is highly vascularized and each dermal papillae is addressed by a 

single capillary loop with arterial and venous vessels (Figure 1). Therefore in inflammatory 

diseases of the skin commonly an inflammatory activation of the underlying blood vessels is 

observed. 
 
Figure 1: Healthy skin. Cross section of the skin surface. In each 
dermal papillae a loop of capillary vessels is visible. From 
http://sprojects.mmi.mcgill.ca/dermatology/ 
vessels.htm 
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In this work skin diseases with a prominent inflammatory component were analyzed. The 

spectrum of different diseases studied included adverse drug reactions of the skin, psoriasis, 

urticaria, atopic dermatitis, erythema exudativum and Kaposi´s sarcoma. All these diseases 

are characterized by a local inflammatory response involving infiltration of inflammatory 

cells into the tissue and/or a local or systemic increase of IC concentrations. 

 

2.5.1 Adverse drug reactions of the skin 

 

Adverse drug reactions of the skin are mostly due to an allergic reaction to an applied drug. 

An allergic reaction causes an increase of IgE antibodies. IgE antibodies cause release of 

contents of mast cells that in turn activate EC and increase vascular permeability. 

Histologically drug reactions are characterized by vacuolar alteration of the basal layer, 

fibrosis of the papillary dermis and infiltrated lymphocytes (Figure 2). In particular, in 

individuals affected by an adverse drug reaction a strong IL-12 and IFN-� reactivity of 

infiltrated T-cells has been reported (Yawalkar, et al. 2000). 

 
 
Figure 2: Histology of adverse drug reaction of the 
skin. Staining of a skin tissue section by 
hematoxilin/eosin. Blood vessels (black arrow) and 
infiltrated lymphocytes (gray arrow) are indicated. 
Magnification: x 100. With permission from: Atlas 
of dermatology, Feith et al.,  
 

 

 

 

 

2.5.2 Psoriasis 

 

Psoriasis is an inflammatory skin disorder which is characterized by a marked 

hyperproliferation of keratinocytes in association with an increased vascularization of the 

skin, fibroblasts activation and T-cell mediated inflammation. Trigger factors can be stress, 

infections or drugs. Histologically psoriasis is characterized by a thickened epidermis and 

highly vascularized dermal papillae (Figure 3).  

It has been shown that in psoriatic lesions infiltrated leukocytes (mainly activated T-cells) 

produce IFN-�, IFN-� and TNF-� (Gomi, et al. 1991; Kapp 1993; Chodorowska 1998). 
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Moreover, in psoriatic skin also a significant increase of IFN-� producing mast cells has been 

found (Ackermann, et al. 1999). 
Figure 3: Histology of psoriasis. Staining of a 
psoriasis tissue section by hematoxilin/eosin. Blood 
vessels (black arrow) and infiltrated lymphocytes 
(gray arrow) are indicated. Magnification: x 200. 
With permission from: Atlas of dermatology, Feith 
et al.  

 

 

 

 

 

 

 

 

2.5.3 Urticaria 

 

Urticaria is caused by the release of histamine from mast cells that causes leakage of vessels, 

leading to angioedema. Chronic forms of urticaria are sometimes associated with vasculitis 

(an inflammation of the blood vessels that can occur in many other diseases). The aetiology 

can be a hypersensitive reaction to various stimuli: allergic (IgE, food or drugs) or non-

allergic (physical stimuli like cold, or pressure). Histologcally urticaria is characterized by 

angioedema and by a perivascular infiltrate containing neutrophils and/or eosinphiles and an 

increased amount of intradermal mastocytes (Figure 4). It has been shown that in patients with 

drug-induced urticaria the occurrence of positive IFN-� responses of peripheral blood 

lymphocytes to the suspected drug was significantly higher than in controls (Livni, et al. 

1999). 

 
Figure 4: Histology of urticaria. Staining of an 

urticaria tissue section by hematoxilin/eosin. Blood 
vessels (black arrow) and perivascular 
inflammatory cell infiltrate (gray arrow) are 
indicated. Magnification: x 400. With permission 
from: Atlas of dermatology, Feith et al.  
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2.5.4 Atopic dermatitis 

 

Atopic dermatitis is a commonly chronic pruritic inflammation of the epidermis and dermis. 

Atopic dermatitis involves cutaneous hypersensitivity. It is characterized by typically 

distributed eczematous skin lesions of unknown cause. Usually it is accompanied by 

increased IgE levels in the serum and vascular alterations and slight lymphocytic infiltration 

(Figure 5). In addition, the number of mastocytes is sometimes increased. Moreover, it has 

been shown that atopic dermatitis involves IL-4 and IFN-� release from peripheral blood 

mononuclear cells (Kaminishi, et al. 2002) 
 
 
Figure 5: Histology of atopic dermatitis. Staining 
of an atopic dermatitis tissue section by 
hematoxilin/eosin. Blood vessels (black arrow) and 
infiltrated lymphocytes (gray arrow) are indicated. 
Magnification: x 200. With permission from: Atlas 
of dermatology, Feith et al.  
 

 
 
 
. 
 
 
 
 

 

 

 

 

2.5.5 Erythema exudativum 

 

Erythema exudativum (EE) is a skin disease characterized by an eruption of maculae and 

vesicles. It arises in the course of a reaction to various infections or drugs which induce tissue 

damage due to humoral and cell mediated immune response with subsequent release of IC. 

Histologically EE is characterized by an infiltrate of mononuclear cells and neutrophils and by 

vasodilatation and swelling of the vascular endothelium with moderate erythrocyte 

extravasation (Figure 6). 
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Figure 6: Histology of erythema exudativum multiforme 
(EEM). Staining of an EEM tissue section by 
hematoxilin/eosin. Dilated blood vessels are indicated by a 
black arrow. Inflammatory dermal infiltrate (gray arrow) 
and extravasated erythrocytes (red arrow) are indicated. 
Magnification: x 200. With permission from: Atlas of 
dermatology, Feith et al.  

 
 

 

 

 

 

  

 

 

 

2.5.6 AIDS-associated Kaposi´s Sarcoma 

 

Kaposi's sarcoma (KS) is considered a neoplasm of vascular origin. The most aggressive 

form, AIDS-associated KS, is associated with infection of two different viruses: human 

herpes-virus-8 (HHV-8) and human immunodeficiency virus-1 (HIV-1) (Stürzl, et al. 2001). 

KS lesions evolve histologically through three progressive stages characterized by different 

histological presentation and cellular composition. (i) Early patch-stage lesions are flat and 

are characterized by a network of capillary-like vascular structures of different lumina (Figure 

7), extravasion of red blood cells and infiltration of inflammatory cells (T-cells and 

monocytes/macrophage) (Uccini, et al. 1994; Fiorelli, et al. 1998; Sirianni, et al. 1998). These 

infiltrated cells lead to increased local concentrations of IC including IFN-�, IL-1� and TNF-

� (Stürzl, et al. 1995; Fiorelli, et al. 1998; Ensoli, et al. 2000; Guenzi, et al. 2001; Stürzl, et 

al. 2001). This stage has a granulation-tissue like appearance (McNutt, et al. 1983). (ii) In the 

plaque-stage, the lesions evolve into thickened papules characterized by increasing numbers 

of spindle-shaped cells, called "KS spindle cells", and numerous thin-walled vessels filled 

with erythrocytes. The KS spindle cells, considered the tumor cells of KS, are of endothelial 

origin and are consistently infected with HHV-8 (Stürzl et al. 2001, Ensoli and Stürzl 1998). 

These lesions exhibit an hemangiosarcoma-like appearance. (iii) Finally, in the nodular-stage, 

the KS spindle cells are the predominant cell type that lead to a fibrosarcomatous-like 

histological appearance (Stürzl et al. 2001). 

It is a peculiarity of AIDS-KS that it appears at onset simultaneously in multiple lesions at 

several different areas of the body in the absence of metastasis. 
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Figure 7: Histology of KS. Staining of KS tissue 
section by hematoxilin/eosin. Blood vessels (black 
arrows) and extravasated of erythrocytes (gray 
arrow) are indicated. Magnification: x 250. 
 

 
 
 
 
 

 
 
 
 
 

 

 

There is evidence that, in its early stages, KS may be a hyperplastic, cytokine triggered, 

reactive process that only in late stages may transform to a real sarcoma (Brooks 1986; 

Ensoli, et al. 2000; Stürzl, et al. 2001). KS initiates in a context of immune dysregulation 

characterised by CD8+ T cell activation and the production of Th1-type cytokines. Infiltrated 

monocytes are the main source of IC in KS lesions (Stürzl, et al. 1995; Fiorelli, et al. 1998; 

Ensoli, et al. 2000; Guenzi, et al. 2001; Stürzl, et al. 2001). IC induce a generalised activation 

of EC leading to adhesion and tissue extravasation of lympho-monocytes, spindle cell 

formation and angiogenesis. In addition, inoculation of IC in nude mice induces the formation 

of KS-like lesions indicating that inflammatory cytokines can trigger the cascade of events 

leading to KS lesion initiation (Samaniego, et al. 1995). IFN-�, IL-1� and TNF-� are found in 

chronically elevated concentrations in the serum and also in the tissues of AIDS-KS patients 

(Hober, et al. 1989; Emilie, et al. 1990; Vyakarnam, et al. 1991; Stürzl, et al. 1995; Ensoli, et 

al. 1998; Ensoli, et al. 2000; Stürzl, et al. 2001) 

In every stage a prominent vascularization is observed in KS lesions, which is comparable to 

the angiogenic process occurring during the growth of solid tumors (Salahuddin, et al. 1988). 

In fact, it has been shown that the KS spindle cells expressed and released bFGF and VEGF in 

vitro and in vivo and cell culture supernatants of KS spindle cells have been shown to induce 

the formation of KS-like lesions in mice (Salahuddin, et al. 1988; Thompson, et al. 1991; 

Ensoli, et al. 1994; Cornali, et al. 1996; Samaniego, et al. 1995; Samaniego, et al. 1998). Of 

note, expression of both factors was significantly increased in the late stage lesions as 

compared to the early stage lesions (Stürzl, et al. 2001).  
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3 Molecular markers of endothelial cell activation 

 

Endothelial cell activation in the described diseases can be indirectly followed by the 

detection of different markers. Each marker has different peculiarities as described below. 

Adhesion molecules such as VCAM-1 and ICAM-1 indicate EC activation, but they are only 

upregulated by IC for a limited time (less then 24 h). Moreover, these adhesion molecules are 

downregulated by AGF (Swerlick, et al. 1992; Haraldsen, et al. 1996; Wahbi, et al. 1996; 

Zietz, et al. 1996; Kim, et al. 2001a; Kim, et al. 2001b; Lee, et al. 2001; Tilghman, et al. 

2002). Increased expression of adhesion molecules has been observed during sepsis were 

endothelial cell activation and damage occur [reviewed in (Reinhart, et al. 2002)]. 

ICAM-1 is also used as a soluble marker to detect activation of EC. Soluble ICAM 

(sICAM-1) is a marker that indicates IC-activation of EC (Gho, et al. 1999). It has been 

shown that the concentration sICAM-1 is increased in a number of pathological states, 

including inflammation and sepsis. In particular sICAM-1 correlates with the severity of 

inflammation in the course of the disease. In addition sICAM shows persistent elevated 

concentrations over the first week in sepsis patients (Sessler, et al. 1995; Ogawa, et al. 2000). 

However, sICAM is upregulated not only by IC, but also by VEGF (Lu, et al. 1999; Kim, et 

al. 2001).  

Von Willebrand factor (vWF) is also used as a marker suggestive of damage/injury of the 

endothelium (Blann 1991; McGregor, et al. 1994). IL-1� induces secretion of intracellular 

vWF, but IFN-� and TNF-� inhibit the release of vWF from EC (Tannenbaum, et al. 1990). 

vWF expression is up-regulated in EC by angiogenic factors like bFGF and VEGF, which act 

also synergistically (Zanetta, et al. 2000). Increased serum concentrations of vWF have been 

detected in patients with sepsis (Wanecek, et al. 2000; Reinhart, et al. 2002). 

Thrombospondin (TSP) is a further marker of inflammation. TSP production by EC is 

decreased by treatment of the cells with IL-1� and TNF-� alone or in combination (Morandi, 

et al. 1994). By contrast, TSP has been shown to be up-regulated by growth factors like 

epidermal growth factor (EGF) and transforming growth factor-�1 (TGF-�1). TSP secretion 

has been shown to be up-regulated in glomerulopathies (Okamoto, et al. 2002). 

Endothelin-1 is secreted constitutively by EC and participates in the regulation of the vascular 

tone [reviewed by (Wanecek, et al. 2000)]. Endothelin-1 secretion is stimulated by IC, 

endotoxins, and hypoxia (Wang, et al. 2002). By contrast endothelin-1 secretion is inhibited 

by thrombin. Notably, shear stress has opposite effects on endothelin-1 secretion in micro-

vascular EC (increase of endothelin-1 secretion; Wang, et al. 2002) and in macro-vascular EC 
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(decrease of endothelin-1 secretion; McCormick, et al. 2001). Therefore, changes in 

endothelin-1 secretion from micro- and macro-vascular EC can compensate each other 

leading to difficulties in the detection of changes in circulating endothelin-1. The highest 

concentrations of endothelin-1 in the plasma have been observed in patients with sepsis 

(Wanecek, et al. 2000). 

Thy-1 (a cell-surface glycoprotein) has also been discussed as a soluble marker of EC 

activation (Saalbach, et al. 1999). However, not only EC, but also fibroblasts can be the 

source of soluble Thy-1 (Saalbach, et al. 1999). Therefore Thy-1 cannot be used as a 

activated-EC specific marker. 

Also exhaled gas like nitric oxide has been used as a marker of pathologic vasodilatation in 

sepsis (Stewart, et al. 1995). 

Finally, a marker commonly used in histology to study cell proliferation is Ki67. Anti-Ki67 

antibodies rect with a human nuclear cell proliferation-associated antigen that is expressed in 

all active parts of the cell cycle. This nuclear antigen is a well established marker to detect 

proliferating cells in microwave-processed formalin-fixed paraffin sections (Cattoretti, et al. 

1992). However, Ki67 is not specific for endothelial cells. 

 

3.1 Complexity and redundancy of endothelial cell activation 

 

In all of the diseases described above, activation of EC is regulated by a complex network of 

different stimuli like interaction with blood cells, with allergenic substances and with soluble 

factors like IC and AGF originating from the blood or from neighbouring cells. Dependent of 

the activation, EC adapt their function and morphology to the specific requirements in the 

tissue. Such changes can involve proliferation (during angiogenesis), apoptosis, invasion 

(sprouting of vessels during wound healing), migration, adhesiveness towards leukocytes 

(wound healing, atherosclerosis) and secretion of soluble factors. 

Due to the fact that many factors are involved and that the number of different activations is 

limited, it is likely that different factors can lead to the same phenotype of activated EC. 

These factors may be put together in groups with functional homology. For example the two 

AGF, VEGF and bFGF are potent inducers of EC proliferation, while IC like IFN-�, IL-1� 

and TNF-� are all potent inhibitors of EC proliferation and induce leukocyte adhesion. 

At present, the spatial and temporal response of EC to these different stimuli in tissues is only 

poorly characterized. Presently it is not possible to determine when and were different groups 

of factors act on a single EC in tissues. Moreover, the relations between different activation 
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states of EC are unknown as yet. For example it has to be determined if all activation 

phenotypes can be present at the same time in one cell or if, due to cell-biological restrictions, 

the different activation phenotypes are appearing in a temporally or spatially separated 

manner. 

Recent data support the hypothesis of a sequential activation of endothelial cell during 

pathological processes. For example in tumor angiogenesis or in rheumatoid arthritis it has 

been shown that the recruitment of leukocytes precedes the formation of blood vessels 

(Folkman 1995). 

 

3.2 The Guanylate Binding Protein-1: a molecular marker of inflammatory cytokine 

activated endothelial cells 

 

In order to isolate molecular markers that may characterize IC activated EC in tissues this 

laboratory analyzed the gene expression of EC in the presence of IC and AGF by differential 

display RT-PCR (DDRT-PCR). The gene encoding the guanylate binding protein-1 (GBP-1) 

was the only one of several differently expressed genes identified in the DDRT-PCR study that 

was upregulated similarly by IL-1ß, TNF-� and IFN-� at the mRNA level, both in HUVEC and 

in dMVEC (Guenzi, et al. 2001). By contrast, VEGF- or bFGF-treated cells only weakly 

expressed GBP-1 mRNA (Guenzi, et al. 2001). Of note, IC-induced GBP-1 mRNA expression 

was consistently reduced by the simultaneous addition of AGF (Guenzi, et al. 2001). Therefore, 

GBP-1 may be a molecular marker for IC activated EC. Subsequent studies showed that GBP-1 

mediates the antiproliferative effect of IC on endothelial cells without affecting cell adhesiveness 

(Guenzi, et al. 2001).  

GBP-1 belongs to the family of large GTPases. Large GTPases are GTPases of high 

molecular weight that do not need guanine nucleotide exchange factors or GTPase activating 

proteins (GAP) in order to hydrolyse GTP. The unique position of GBP-1 amongst known 

GTPases is further demonstrated by its ability to hydrolyse GTP to GDP and GMP with 

subsequent cleavage of orthophosphate; GDP alone cannot serve as a substrate for GBP-1 

(Schwemmle, et al. 1994; Neun, et al. 1996; Praefke, et al. 1999). In addition, GBP-1 binds 

the guanine nucleotides with weak affinity and has a high turnover GTPase activity that has 

been explained by the involvement of a GAP domain in GBP-1 (Prakash, et al. 2000b). GBP-

1 has also been shown to oligomerize in vitro ( Praefke, et al. 1999, Prakash, et al. 2000a) 

In humans at least five isoforms of GBP are known (summarized in Table 1). All GBPs have 

at least two motifs of the three classical guanylate-binding motifs, GXXXXGKS (T) and 
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DXXG, they bind GMP in addition to GDP and GTP. Whereas there is little primary 

sequence homology to the other large GTPases like dynamin the relationship between the 

proteins becomes evident by the common architecture of the protein domains and by common 

biochemical features like nucleotide-dependent oligomerisation and cooperative GTPase 

activity (Prakash, et al. 2000b). 

 
Table 1: Homologies between GBP-1 and the other members of the family of the large GTPases 
 
Isoform AA 

% 
Nucleotide 

% 
Gene Bank Reference 

GBP-1  100 100 M55542 (Cheng, et al. 1983; Saunders, et al. 1999) 
GBP-2  76 82 M55543 (Nguyen et al. 2002; Neun at al. 1996) 
GBP-3  22 N.s. AF444143 (Luan, et al. 2002); 
GBP-4  50 80 NM_052941.1 (Nguyen, et al. 2002) 
GBP-5  65 78 NM_052942.1  
MxA  N.s. N.s. M30817 (Aebi, et al. 1989) 
Dynamin N.s. N.s. L36983 (Diatloff-Zito, et al. 1995) 
DLP1 (rat) N.s. N.s. L36983 (Yoon, et al. 1998) 
 
AA: percentage of homology comparing amino-acid sequences. DLP1 = dynamin like protein 
Nucleotide: percentage of homology comparing cDNA sequences. N.s. = not significant 
 

 

Other members of the large GTPase protein family are Mx (Aebi, et al. 1989) proteins and 

dynamin (Diatloff-Zito, et al. 1995) (Table 1). These large GTPases have a similar domain 

composition and GTPase activity, but sequence homology is very low (Table 1) (Prakash, et 

al. 2000a).  

Mx proteins are interferon-induced GTPases that accumulate in the cytoplasm of interferon-

treated cells, partly associating with the endoplasmic reticulum. A unique property of Mx 

GTPases is their antiviral activity against a wide range of RNA viruses [reviewed in (Haller, 

et al. 2002), see also (Accola, et al. 2002)]. Mx proteins have two functional domains, an N-

terminal GTP-binding domain and a C-terminal effector region involved in self-assembly and 

viral target recognition (Haller, et al. 2002). 

Mx proteins are key components of the interferon-induced antiviral state against RNA 

viruses; in particular, Mx proteins interfere with the intracellular transport of viral 

components. In the case of bunyaviruses, that have a cytoplasmic replication phase, MxA 

interferes with transport of the viral nucleocapsid protein (N) to the Golgi compartment, the 

site of virus assembly. Association of MxA to the viral nucleocapsid protein leads to the 

sequestration of the viral protein into highly ordered perinuclear complexes and, as a 

consequence, to the inhibition of viral replication and formation of progeny viruses (Haller, et 
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al. 2002, Accola, et al. 2002). In the case of orthomyxoviruses, MxA prevents the incoming 

viral nucleocapsids from being transported into the nucleus, the site of viral transcription by 

interacting with the ribonucleoprotein complex of the virus (Haller, et al. 2002, Accola, et al. 

2002). 

Dynamin is a large molecular weight GTPase that assembles into oligomers, forming rings or 

spirals. It can self-assemble or assemble on other macromolecular structures that result in an 

increase in its GTPase activity (Eccleston, et al. 2002). Dynamin is involved in clathrin-

dependent endocytosis, even the role of dynamin in vesicle formation remains controversial as 

to whether it behaves as a mechanochemical enzyme or as a molecular switch [reviewed in 

(Danino, et al. 2001; Thompson, et al. 2001; Eccleston, et al. 2002)]. In addition, dynamin 

has been involved in other intracellular trafficking events including exocytosis where it has 

been proposed to act as a “pinchase” at the trans-Golgi surface to liberate nascent, clathrin-

coated secretory vesicles; dynamin has also been implicated in the regulation and 

maintenance of cell shape [reviewd in (Eccleston, et al. 2002)] 

As a typical member of the large GTPases, the crystal structure of GBP-1 can be divided into 

two domains with similar size (Figure 8): (i) one compact �-� domain at the N-terminus 

which contains the GTPase domain (Figure 8, pink) and (ii) a long, purely �-helical domain 

(Figure 3, blue-green) (Prakash, et al. 2000a; Prakash, et al. 2000b). Moreover, GBP-1 has a 

potential CAAX isoprenylation motif at its C-terminal end (Figure 3, CAAX) (Asundi, et al. 

1994; Nantais, et al. 1996). In the course of isoprenylation an isoprenyltransferase transfers an 

isoprenyl group to the sulphur atom in the cysteine of the CAAX motif and the terminal 

phosphates of the isoprenyl group are removed. Then a protease removes the terminal three 

amino acids. Finally a carboxy methyltransferase methylates the new exposed C-terminal 

(Dai, et al. 1998; Choy, et al. 1999). Isoprenylation is a post-translational modification of 

proteins that increases the hydrophobicity of proteins and therefore often regulates membrane 

association (Fu, et al. 1999; Hofemeister, et al. 2000). 

Biological functions of GBPs, except for GBP-1, are not known yet. GBP-1 was originally 

discovered as one of the major IFN-�-induced factors (Cheng, et al. 1983; Cheng, et al. 1985; 

Boehm, et al. 1998). It has been shown that GBP-1 mediates the IFN-� antiviral effects against 

the vesicular stomatitis virus and the encephalomyocarditis virus in HeLa cells with an unknown 

mechanisms (Anderson, et al. 1999). Moreover, this laboratory showed that GBP-1 is necessary 

and sufficient to mediate the anti-proliferative effect of IC on EC. Structure-function analysis of 

the GBP-1 molecule demonstrated that the isoprenylation of the protein at the C-terminal end as 

well as the GTPase activity and as the whole globular domain (Figure 8) are not required for the  
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inhibition of cell proliferation (Guenzi, et al. 2001). In contrast, expression of the C-terminal 

helical domain (Figure 8) inhibited AGF-induced proliferation at a similar extent as the wild type 

GBP-1. In addition, inhibition of GBP-1 expression abrogated the inhibitory effect of IC on EC. 

Therefore, the helical domain is the mediator of the GBP-1 antiproliferative activity (Guenzi, et 

al. 2001). The inhibition of cell proliferation by GBP-1 occurs in absence of apoptosis and does 

not affect IC-induced adhesiveness of monocytes on EC (Guenzi, et al. 2001). 

These finding indicated that GBP-1 may be an important marker and regulator of the IC-

activated phenotype of EC. 

GTPase domain

Helical domain

CAAX

GTP

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 8: Crystal structure of GBP-1. GBP-1 protein can be divided into two domains of about the same size. A 
compact globular �-� domain, containing the GTPase activity at the N-terminus (pink, pink circle represents GTP). A 
long, purely �- helical domain (green and blue). Moreover, GBP-1 has a potential isoprenylation motif (CAAX). 
Adapted from (Prakash, et al. 2000a) 
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4. Goals of the project 

 

Until now GBP-1 expression has been investigated only at mRNA level in vitro. Previous 

studies on GBP-1 mRNA indicated that it may be a molecular marker of the IC-activated 

phenotype of EC. IC-activated EC play a key role in inflammatory diseases. GBP-1 

expression at the protein level in vitro has not been investigated so far. Also in vivo the 

expression of GBP-1 in healthy and/or diseased human tissues has not been investigated. 

Therefore the aims of this work were first, to investigate whether GBP-1 may be a molecular 

marker of IC-activated EC at the protein level in vitro. Second, to investigate in which cells 

GBP-1 is expressed in human healthy and/or diseased tissues. Third, to investigate whether 

GBP-1 may be a molecular marker of the IC-activated EC in vivo. Specific goals of the work 

were: 

(1) to purify recombinant GBP-1, 

(2) to generate mono- and poly-clonal antibodies against GBP-1, 

(3) to investigate GBP-1 expression and subcellular localization at the protein level in 

different cell types under different stimuli in vitro, 

(4) to investigate GBP-1 protein expression in different human tissues and in different 

inflammatory skin diseases, 

(5) to investigate if GBP-1 may be secreted, 

(6) to develop a sandwich ELISA for the detection of GBP-1 in solution, 

(7) to detect circulating GBP-1 in the serum of patients with inflammatory diseases. 
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MATERIALS AND METHODS 
 

1 Materials 
 
1.1. Chemical reagents 
Acetic acid       MERCK 
Acrylamid/N,N´Methylenbisacrylamid   BIORAD 
Agarose       FMC BIOPRODUCTS 
Ammoniumpersulfat      SIGMA 
Brefeldin A       SIGMA 
Cicloheximide       SIGMA 
Coomassie Brilliant –Blue (R-250 staining solution) BIORAD 
4',6-diamino-2-phenylindole (DAPI)    MOLECULAR PROBES 
D,l-Dithiothreitol (DTT)     SIGMA 
Dimethylsulfoxid (DMSO)     SIGMA 
EDTA        EDTA 
Ethidium bromide      ROTH 
Gelatine       SIGMA 
Glutamine       GIBCO 
Imidazole       SIGMA 
Isoperpyl-β-D-thiogalaktopyranosid (IPTG)   BIORAD 
Monensin       SIGMA 
Methylamine       SIGMA 
NiNTA Agarose       QIAGEN 
Protein A/G agarose beads     ONCOGENE 
Protein standard      AMERSHAM PHARMACIA 
Tris(2-carboxyethyl)phosphine (TCEP)   SIGMA 
Triton-X100       SIGMA 
Trypton       DIFCO 
Tween 20       MERCK 
Verapamil       SIGMA 
 
1.2 Other solutions 
Antibody diluent with background reducing component DAKO 
3,3'-diaminobenzidine (DAB)    BIOGENEX 
DNA loading buffer      MBI FERMENTAS 
Immumount       SHANDON 
Laemmli loading buffer     BIORAD 
Gill®-3 Haematoxylin      SHANDON 
Percoll        AMERSHAM PHARMACIA 
PNPP        ZYMED 
RIPA        BOEHRINGER MANNHEIM 
Syper-Orange       MOLECULAR PROBES 
Trypsin / EDTA solution      NUNC 
Vector Red       LINARIS 
Western blocking reagent     BOEHRINGER MANNHEIM 
Yeast extract       DIFCO 
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1.3 Olingonucleotides 
Sequence Application 

5'-GGGATCCGGAATTCCTGCATCAGAGATCCACATG-3' GBP-1 cloning (F) 

5'-CTAGATCTGAGCTCGCTTATGGTACATGCCTTTCG-3' GBP-1 cloning (R) 

5'-TTCACCGCAGGAAACTTGCCCAGCTCGA-3' GBP-1 mutagenesis (F) 

5'-TCGAGCTGGGCAAGTTTCCTGCGGTGAACG-3' GBP-1 mutagenesis (R) 

5'-ATGGCATCAGAGATCCACATG-3' GBP-1 sequencing (F) 

5'-TTAGCTTATGGTACATGCCTTTCG-3' GBP-1 sequencing (R) 

5'-CCAACTGTACTATGTGACAGAG-3' GBP-1 sequencing (F) 

5'-CCTGTATCCCCTTCCTCGGTTCC-3' GBP-1 sequencing (R) 

5'-TTGAAACAACTGACTGAGAAGA-3' GBP-1 sequencing (F) 

5'-GAGAGAAGCCCTTTTTCTTTCC-3' GBP-1 sequencing (R) 
 
Bold letters indicate cloning sites in the primers for GBP-1 cloning and the mutated base in 
the primers used for GBP-1 mutagenesis. 
 
1.4 Enzymes and reagents for molecular biology 
Desoxynucleotidetriphosphates (dNTP)   PERKIN ELMER 
DNA standard       BOEHRINGER MANNHEIM 
Ethidium bromid      ROTH 
Restriction enzymes      ROCHE 
rTth DNA polymerase     PERKIN ELMER 
DNA molecular weight standards    MBI FERMENTAS 
 
1.5 Kits 
DC assay       BIORAD 
DNA isolation kit       QIAGEN 
ECL-detection system      AMERSHAM PHARMACIA 
LD-L activity assay      SIGMA 
LIVE/DEAD® Cell Viability Kit    MOLECUAR PROBES 
Gel purification kit      QIAGEN 
QIAquick PCR purification kit    QIAGEN 
Rapid DNA ligation kit     ROCHE 
Silver Quest       INVITROGEN 
Site-directed-mutagenesis kit (Quick-Change)  STRATAGENE 
Vectastain Elite ABC      VECTOR LABORATORIES 
 
1.6 Media and supplements 
Ampicillin       GIBCO 
Bovine skin gelatine, fraction V    SIGMA 
Dulbecco's modified Eagle medium (DMEM)  GIBCO 
Endothelial cell basal medium (EBM-2)    CLONETICS 
Endothelial Cell Growth/Labeling Medium (EGLM-2) CLONETICS 
Fetal bovine serum (FBS)     GIBCO 
Glutamine       GIBCO 
Kanamycin       INVITROGEN 
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35S-Methionine      HARTMANN ANALYTIC 
Penicillin G       GIBCO  
RPMI 1640       GIBCO 
Streptomycin sulphate     GIBCO 
 
1.7 Cytokine and growth factors 
Angiopoietin-2      R&D SYSTEMS 
IFN-�        BIOZOL 
IFN-γ        ROCHE 
IL-1�        PROMOCELL 
IL-1β        ROCHE 
IL-4        ROCHE 
IL-6        ROCHE 
IL-10        ROCHE 
IL-18        MEDICAL & BIOLOGICAL L. 
IP-10        PROMOCELL 
MCP-1       PROMOCELL 
MIP-1�       PROMOCELL 
Oncostatin M       PROMOCELL 
PDGF B/B       ROCHE 
PF4        PROMOCELL 
SDF-1�       PROMOCELL 
TNF-α        ROCHE 
VEGF        R&D SYSTEMS 
bFGF        ROCHE 
 
1.8 Vectors 
PCR-Script       STRATAGENE 
pQE 60       QIAGEN 
pQE9        QIAGEN 
pGEX        AMERSHAM 
 
1.9 Bacterial strains 
 

Name Genotype  

E. coli M15 
F-, NalS, StrS, RifS, Thi-, Lac-, Ara+, 
Gal+, Mtl-, RecA+, Uvr+, Lon+. 
 

QIAGEN 

E. coli XL-1Blue 
F’:Tn10 perA+B+ laclq D(lacZ) 
M15/RecA1 end/A1 gyr 96 
(Nalr)Thi hsdR17 (rk-mk+) supE44 

STRATAGENE 

E. coli DH5� 
F- endA1 hsdR17 (rk -, mk +) 
supE44 thi-1 gyrA96 relA1 80lacZ 
M15/RecA1.(lacZYA-argF) U169 

QIAGEN 
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1.10 Eukaryotic cells 
All cell types were from human origin 
 
Name Description  
dMVEC Primary dermal microvascular endothelial cells CLONETICS 
Fibroblasts Primary dermal fibroblasts Michael Stürzl-GSF 
HaCaT Normal keratinocyte cell line Michael Stürzl-GSF 
HuT 78 Cutaneous T-lymphocyte cell line, lymphoma ATCC # TIB-161 
HUVEC Primary umbilical vein endothelial cells CLONETICS 
JURKAT T-lymphocyte cell line, acute T-cell leukemia ATCC # TIB-152 
Schlicht B-cell line Judith Johnson-LMU 
THP-1 Monocytic cell line, acute monocytic leukemia ATCC # TIB-202 
Michl B-cell line Judith Johnson-LMU 
U937 Monocytic cell line, histiocytic lymphoma ATCC # CRL-1593.2 
 
1.11 Paraffin-embedded Tissues 
Multi-tissue control slides     BIOGENEX 
AIDS-associated Kaposi’s sarcoma    DEPT.DERMATOL., ESSEN 
Pathological tissue      INST. OF PATHOLOGY, LMU 
Skin diseases       DEPT. DERMATOL.,VIENNA 
 
1.12 Blood samples 
Sera and plasma from healthy people   Volunteer donors  
Plasma from melanoma patients    RUHR-UNIVERSITY, BOCHUM 
Plasma from HIV-infected people    RUHR-UNIVERSITY, BOCHUM 
Sera from people with inflammatory skin diseases  DEPT. DERMATOL.,VIENNA 
 
1.13 Antibodies and lectins 
β-actin        SIGMA 
Alexa Fluor conjugates     MOLECULAR PROBES 
Anti rabbit-AP      ZYMED 
AP-1 (c-jun)       ONCOGENE 
Cathepsin-D      R&D 
Caveolin1      R&D 
CD3        DAKO 
CD8        SEROTEC 
CD31        SEROTEC 
CD34        SEROTEC 
CD68        DAKO 
Concanavalin A-Alexa594      MOLECULAR PROBES 
Fab anti-mouse      DIANOVA 
GAPDH      CHEMICON 
Ki67      DAKO 
Lamp-1      R&D 
MMP-1       R&D 
PCNA        R&D 
Normal goat serum      DIANOVA 
Phospho-caveolin      R&D 
Rab5        R&D 
Rab7      SANTA CRUZ 
Sec23      SANTA CRUZ 
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Secondary antibodies coupled to Alexa fluorochromes MOLECULAR PROBES 
TGN38      R&D 
αTubulin      MOLECULAR PROBES 
VCAM-1      SANTA CRUZ 
 
1.14 Columns 
MT5        BIORAD 
Disposable columns (EconoPac)    BIORAD 
Desalting columns (HiTrap deasalting)   AMERSHAM PHARMACIA 
 
1.15 Equipment 
Blotting apparatus      AMERSHAM PHARMACIA 
CCD camera       SONY 
Electroporation apparatus     BIORAD 
ELISA plates (NUNC-immunoplates)   NUNC 
ELISA reader       BIORAD 
Filters-(45 �m)      MILLIPORE 
French-press apparatus     SLM AMINCO 
FPLC device (BioLogic)     BIORAD INVERSE  
Hybond –P membran      AMERSHAM PHARMACIA 
Hyperfilm        AMERSHAM PHARMACIA 
Light scanning microscope (LSM 510)   ZEISS 
Imagequant (Documentation system for gels)  BIORAD 
MICROSCOPE/ epifluorescence    LEIZ 
PCR thermal cycler GeneAmp 2400    PE APPLIED SYSTEMS 
pH meter       HANNA INSTRUMENTS 
Protein fraction collector     BIORAD 
Spectrophotometer       CECIL 
Spectrophotometer (Gene Quant II)    AMERSHAM PHARMACIA 
Filters (Centricon)      AMICON 
Water baths        JULABO 
Weighing machines       METMER 
X-ray film developing machine     AGFA 
 
1.16 Other material 
Boyden chambers 
Chambered cover glasses     NUNC 
Centricons       AMINCON 
Dialysis cassettes      PIERCE 
8-weel chamber slides     BECTON DICKINSON  
Permanox slides      NALGE-NUNC 
Nunc Tubes       NUNC 
Immumount       SHANDON 
Tissue culture flasks      NUNC 
 
1.17 Centrifuges and rotors 
Sorvall RC-5B      DUPONT INSTRUMENTS 
Sorvall RC-5C      DUPONT INSTRUMENTS 
Beckmann J2-21M/E      BECKMANN INSTRUMENTS 
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1.18 Computer programmes 
Corel PhotoPaint 8      COREL CORPORATION 
EndNote4       ISI RESEARCH SOFT 
EXCEL       MICROSOFT 
Illustrator 9.0       ADOBE 
Image Quant 1.2      MOLECELAR DYNAMICS 
LSM5 Image Browser     ZEISS 
Photoshop 5.0       ADOBE 
SPSS 8.0       SPSS ADVANCED STATISTICS 
Windows NT       MICROSOFT 

 

1.19 Buffers 

TAE containing (0.4 M tris base, 0.2 M acetic acid, 0.1 M EDTA; pH 8.4) 

PBS containing (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2PO4, 1.4 mM K2PO4; pH 7.4) 

 

2 Methods 

 

2.1 Cell biological methods 
 

2.1.1 Mammalian cell culture 

All cells were cultivated under aseptic conditions in tissue culture flasks at 37 °C in the 

presence of 5 % CO2. Growth medium was changed every 2-3 days. 

Adherent HeLa cells, human primary fibroblasts and the keratinocyte cell line HaCaT were 

grown with Dulbecco modified Eagle´s medium (DMEM) and supplemented with 10 % FBS, 

2 mM L-glutamine, 50 U/ml penicillin G and 50 µg/ml streptomycin sulphate. Both HUVEC 

and dMVEC were grown in complete endothelial cell basal medium (EBM-2) supplemented 

with 5 % FBS and propagated in cell culture flasks coated with bovine skin gelatin, type B, 

1.5 % in PBS. The T cell lines HuT 78 and Jurkat, the B-cell lines Schlicht and Michl and the 

monocytic cell lines U937 and THP-1 were grown in RPMI 1640 medium supplemented with 

10 % FBS, 50 U/ml penicillin G and 50 µg/ml streptomycin sulphate. 

The cells were split into new culture flasks when they reached 80-90 % confluence. Old 

medium was removed and the cells were washed twice with sterile PBS buffer. Then 2 ml of 

trypsin / EDTA solution (0.025 % trypsin/0.01 % EDTA: 1x, stock solution of 10x diluted in 

PBS) was added. Trypsin/EDTA in excess was discard and the culture flask was incubated at 

RT and observed under the microscope until cells detached from the surface of the flask. Then 

10 ml of fresh medium containing 10 % serum was added to inactivate the activity of trypsin. 
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Cells were centrifuged (except for primary cells) at 400 g for 5 min at RT. Medium was 

discarded and the cells were resuspended in fresh growth medium.  

 

2.1.2 Cell stimulation with different factors 

For cytokine induction cells were maintained ON (16 h) in the appropriate medium with 

0.5 % FBS (low medium, except for PBMCs) in order to synchronise a little the cell cultures. 

The factors were diluted to the stock concentrations recommended by the manufacture in 

BSA 0.1 % in PBS. For further use the cytokines were diluted directly in the cell culture 

medium (low medium, if not otherwise specified). The tips were coated with BSA 0.1 %. For 

stimulation of the cells the needed factor was added in fresh low medium at the indicated 

concentrations and times. Usually as a control cells were stimulated with an equal volume of 

BSA 0.1 % only. 

 

2.1.3 Inhibition of secretory pathways 

For inhibition of different secretory pathways, drugs were added to the cell cultures before 

IFN-� stimulation at the indicated times: monensin (1  nm, 1 h), methylamine (1  nm, 1 h), 

verapamil (500 ng/ml, 30 minutes) and BFA (1 �g/ml, 2 h). The drugs were resuspended in 

water or ethanol, cells were stimulated in equal volume of ethanol as a control. 

 

2.1.4 Freezing of cells 

Cells were harvested from culture flasks as described above (2.1.1). After centrifugation (400 

g, 10 min, RT), the medium was removed. Cells were then resuspended in ice-cold freezing 

medium [the appropriate growing medium supplemented with 20 % (v/v) serum and 10 % 

(v/v) DMSO] at a concentration of 106 / 107 cells/ml. Afterwards, 1 ml aliquots of cell 

suspension were dispensed into criotubes (1.8 ml). The tubes were placed into wells of a brass 

block pre-cooled at 4 °C. The block was then kept at –70 °C for 24 h after which the 

ampoules of cells were transferred to liquid nitrogen for long-term storage. 

For revival of cells a frozen ampoule was thawed rapidly in a 37 °C water bath, disinfected 

and the content was put in a cell culture flask with pre-warmed medium. After 6 hours the 

medium was discarded and fresh pre-warmed medium was added. 

 

2.1.5 Proliferation assay 

Proliferation assay was performed on 24 wells or 6 wells culture dishes. Cells were seeded in 

the appropriate medium in the appropriate number (103 - 104 cells per well) and let grow ON. 
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Cells were plated in triplicate and the cell number in each well was counted twice. Cells were 

washed in low medium and stimulated with the described factors. For long time experiments, 

the medium was changed at day 2 or 3 and fresh factors were added. At day 4 or 6 cells were 

splitted, counted. The results were expressed as the mean of the cell number (± SD).  

 

2.1.6 Chemotaxis assay 

Chemotaxis experiments were performed with HUVEC using Boyden chambers. 

Polycarbonate filters of 8 µm pore size were coated with 1.5 % bovine skin gelatine. Low 

medium (0.5 % FBS) with or without the different factors in the indicated concentrations was 

placed in the lower compartment of the chamber. Then 2 x 104 cells resuspended in low 

medium were added to the upper compartment. After 2 - 4 h incubation at 37 °C the filters 

were harvested and the cells were removed from the upper side. Transmigrated cells at the 

lower side of the filter were fixed with methanol at –20 °C for 4 minutes and stained with 

Gill-3 Haematoxylin. The number of migrated cells was determined under the microscope. 

The results were expressed as the mean number (± SD) of migrated cells in five microscopic 

fields (25 x magnification). Each experiment was performed in triplicate.  

 

2.1.7 Metabolic labeling of cells 

The medium from actively growing cells was aspirated and cells were washed twice with 

PBS. Cells were incubated in EGLM-2 medium (without methionine) for 1 h. Afterwards 

cells were labelled with 35S-Methionine (27.8-50 µCi/ml) for the desired time. 

 

2.1.8 Determination of cell viability 

Cell viability was evaluated by measurement of lactate dehydrogenase (LDH) activity in cell 

culture supernatants. A commercial assay was employed as recommended by the 

manufacturer. Briefly, the assay is based on a redox reaction between lactate and nicotine 

adenin dinucelotide (NAD) to get pyruvate and NADH. The reaction is monitored by 

spectrophotometric analysis. The absorbance is measured at 340  nm. To correlate the result 

of the LDH activity assay with cell viability a standard was used: HUVEC were lysed by 

three cycles of freezing and thawing. Aliquots corresponding to 1 %, 5 %, 7.5 %, 10 % and 

20 % or more of the cell number used in the experiment were added to prewarmed medium 

(37 °C). LDH activity of these standards was measured together with LDH activity of fresh 

cell culture supernatants of the experiment. 
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Cell viability was also tested using the LIVE/DEAD® cell viability kit according to 

manufacturers instructions. The number of dead cells/optical field was compared to the total 

number of cells/optical field. 

 

2.2 Molecular biological methods 
 
2.2.1 Preparation of plasmid DNA 

Preparation of plasmid DNA from E. coli was carried out with the Mini-kit purchased from 

Qiagen. Briefly bacteria were cultivated in 10 ml of LB medium containing 50 µg/ml 

ampicillin ON at 37 °C with agitation. The cells were harvested by centrifugation (4,000 g, 5 

min) and plasmids were extracted according to manufacturer’s instructions. Plasmids were 

eluted by incubation of the columns with 30 �l bidest water at RT. 

 

2.2.2 Restriction digest 

Digestion of DNA with restriction enzymes was performed according to the manufacturer’s 

instructions using recommended buffer systems and at the appropriate reaction temperatures. 

Generally, 1 U of enzyme was needed per µg DNA. Plasmid DNA was usually digested for 1-

2 h. The completion of the reaction was monitored by agarose gel electrophoresis. 

 

2.2.3 Agarose gel electrophoresis  

Electrophoretic separation of DNA was carried out using 0.7-1.5 % (w/v) agarose gels 

containing ethidium bromide (5 µg/ml) in 1x TAE buffer. The gel buffer and running buffer 

were identical. Gels were cast in chambers of various sizes, and the DNA was mixed with 

DNA sample buffer and loaded onto the gels. Separation occurred at 1-5 V/cm. Subsequently 

gels were observed under UV light at 312  nm and pictures were taken with the gel 

documentation system. 

 

2.2.4 Isolation of DNA fragments from agarose gels 

Extraction and purification of DNA from agarose gels in TAE buffer were performed using 

the QIAquick gel extraction kit from Qiagen according to the manufacturer’s instructions. 

Buffers were provided by the kit and all centrifugation steps were carried out at 10,000 g at 

RT in a table-top micro-centrifuge. DNA elution was performed by the addition of 30 µl of 

bidest water, incubation at RT for 1 h followed by centrifuging for 1 min. If needed, DNA 

was concentrated by precipitating with 2 vol. ethanol. 
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2.2.5 Oligonucleotide primers 

All oligonucleotide primers were synthesized from the GSF service and delivered as 

lyophilised forms. The oligonucleotides were dissolved in 100 µl of sterile water. 

Oligonucleotide concentration was determined by measuring the optical density (OD) at 

260 nm. Oligonucleotide primers used for GBP-1 cloning (bold letters show the restriction 

sites), for site directed mutagenesis (bold letters indicate the mutated bases) and for 

sequencing are listed in the section Materials (paragraph 1.3): 

 

2.2.6 Polymerase chain reaction (PCR) 

The coding region of GBP-1 (GeneBank accession number M55542) was amplified by PCR 

from the full length GBP-1 cDNA cloned into the pCR-Script vector available in the 

laboratory. The reaction was performed in 50 µl volume (0.5 µg plasmid DNA, 8 µl dNTP 

mix, 0.3 �M of each primer, 4 U rTth DNA polymerase, 7 �M MgCl2OAc, 5 µl 10X PCR 

buffer) and overlaid with mineral oil at the surface to avoid evaporation.  

The PCR amplification of GBP-1 was performed with following protocol: 

Step Temperature Time N° of cycles 
Initial denaturation 96°C 2 min 1 

Denaturation 94°C 20 sec 

Annealing 52°C 30 sec 

Elongation 68°C 3 min 

5 

Denaturation 94°C 20 sec 

Final elongation 72°C 10 min
20 

  4°C � 1 
 

2.2.7 Purification of PCR products 

PCR products were purified using the QIAquick PCR purification kit following the 

manufacturer’s protocol. Buffers used were provided by the kit and all centrifugation steps 

were performed at 10,000 g at RT using a table-top micro-centrifuge. DNA was eluted by the 

addition of 30 µl of bidest water. 

 

2.2.8 DNA ligation 

DNA fragments were ligated using the rapid DNA ligation kit from Roche according to 

manufacturer’s instruction with a particular attention to the molar ratio of the vector and insert 

DNA fragment. Cohesive-end ligation was carried out at RT for the suggested 4 min.  
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2.2.9 Site-directed mutagenesis  

Site directed mutagenesis was performed within the GBP-1 coding sequence (bp 806) of the 

GBP-1-His construct using the Quick-Change Kit from Qiagen according to manufacture’s 

instruction. Briefly, the nonstrand-displacing Pfu-Turbo polymerase was used. The methylated, 

non mutated parental DNA template was digested with DpnI. The sequence of the mutagenic 

primers were described above (1.3). The created G to A transition deleted the GBP-1 gene 

internal HindIII site. 

 

2.2.10 Cloning of GST-GBP1-His 

The mutated GBP1-His insert was cut with HindIII and EcoRI and cloned into the pGEX 

vector using the techniques described above. 

 

2.2.11 His-GBP-1, His-GBP-2 

These clones were a gift of Martin Schwemmle (Universität Freiburg). The two constructs 

have a 6 x histidine (His) tag in 5’ of the GBP-1 sequence. The clones were tested by 

sequencing. 

 

2.2.12 Preparation of electroporation competent cells 

One litre of LB medium was inoculated with 10 ml of an overnight culture of the E. coli 

strain of choice. The large scale culture was incubated at 37 °C with shaking until an OD600 

of 0.6 was reached. All tubes and solutions used were sterilised and cooled to 4 °C. The cells 

were cooled on ice, harvested by centrifuging (4,000 g, 15 min, 4 °C) and resuspended in 1 l 

of deionized water. Following another centrifugation step, the cells were resuspended in 0.5 l 

of deionized water and pelleted again. Then the cells were washed with 20 ml of 10 % 

glycerol, centrifuged and finally resuspended 3 ml of 10 % glycerol. 200 µl aliquots were 

frozen on dry ice and stored at –80 °C. 

 

2.2.13 Transformation of electrocompetent cells. 

Typically 1 µl of plasmid DNA was added to 100 µl of electrocompetent E. coli on ice. 

Electroshock was performed using a pre-chilled transformation chamber by 1.8 kV. The 

length of the impulse was typically 5 msec. Transformed cell were than incubated with 900 µl 

of pre-warmed SOC medium for 1 h and plated on agar plates. 
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2.2.14 Heat-shock transformation of E. coli. 

For transformation 100 µl of competent E. coli cells were pre-incubated on ice with 1.7 µl 

β-mercaptoethanol (provided by the manufacturer) for 1 min. Typically 1 µl of plasmid DNA 

was added and incubation on ice was performed for 30 more minutes. Cells were than 

incubated for exactly 30 sec at 42 °C in a water bath followed by 2 min incubation on ice. 

Transformed cell were than incubated with 900 µl of pre-warmed SOC medium for 1 h and 

plated on agar plates. 

 

2.2.15 Screening for positive E. coli transformants 

In order to isolate E. coli colonies carrying the desired DNA fragment, colonies were picked 

and mini preparations of plasmid DNA as described above (2.2.1) were performed followed 

by restriction analyses (2.2.2) to determine the correct orientation of the DNA insert. Finally 

the authenticity of the DNA sequence was verified by sequencing. Sequencing was carried out 

using a commercial service (Sequiserve). 

 

2.2.16 E. coli permanent cultures 

Important transformants were preserved as permanent cultures. An inoculum of bacteria was 

concentrated by centrifugation at 400 g and resuspended in 1 ml of LB medium containing 

20 % glycerol. The cells were frozen and stored at –80 °C. 

 

2.2.17 Determination of induction kinetics  

E. coli cultures were grown under different temperatures varying from 25 °C to 37 °C. IPTG 

was added to different concentrations varying from 100 �M to 1 mM. Growth curves were 

determined for every culture by measuring the absorbance at 600  nm at constant time 

intervals. The optimal condition to overexpress the desired recombinant protein was 

determined by comparing the protein yield in the soluble fraction as described below (2.3.7) 

of all cultures and choosing a condition in which the cultures were still growing. 

 

2.2.18 Determination of protein solubility 

The pellet from 2 ml of E. coli cultures were resuspended in 2 ml of bidest water and 

sonicated six times for 10 sec with 10 sec pauses at 200-300 W. Lysed cells were centrifuged 

at 10,000 g for 30 min at 4 °C. The supernatant was collected (soluble fraction). The pellet 

was resuspended in an equal volume of bidest water (insoluble fraction). Soluble and 
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insoluble fractions were separated and analyzed by SDS-PAGE and Coomassie Blue staining 

as described above (2.3.8). 

 

2.3 Biochemical methods 
 

2.3.1 Inhibition of protease activity 

A commercial available cocktail of protease inhibitors (final concentrations: 0.02 mg/ml 

pancreas extract, 5 µg/ml pronase, 0.5 µg/ml thermolysin, 3 µg/ml chymotrypsin and 

0.33 mg/ml papain) was prepared just before use and employed when needed. 

 

2.3.1 Preparation of cellular extracts using RIPA buffer 

Trypsinized cells (2.1.1) were washed twice with ice cold PBS, collected by centrifugation at 

400 g for 3 min at 4 °C. Cells were than resuspended in RIPA buffer (50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 0.1 % SDS, 0.5 % sodium desoxycholate, 1 % Nonidet P-40 and cocktail 

of protease inhibitors) to a final concentration of about 107-108 cells/ml. Cells were incubated 

on ice for 10 min and centrifuged at 10,000 g at 4 °C for 10 min. The supernatant containing 

total cellular proteins was collected and stored at –20 °C. Total protein concentration in the 

supernatant was determined as described below (2.3.4). 

 

2.3.3 Thaw-lysis of cells 

Trypsinized cells (2.1.1) were centrifuged and resuspended in ice cold lysis buffer (10 mM 

HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT and cocktail of protease 

inhibitors) to a final concentration of about 107-108 cells/ml. Successively cells were frozen 

for 5 min in dry ice mixed with ethanol, transferred to a 37 °C water bath and thawed for 

5 min. The freeze/thaw cycle was repeated three times. The cell lysate was cooled on ice and 

centrifuged at 10,000 g for 1-3 hours at 4 °C. The supernatant was collected for further 

analysis.  

 

2.3.4 Triton extraction of cellular proteins 

Extraction of intracellular proteins using the detergent Triton-X100 was performed using a 

protocol adapted from (Volchuk, et al. 2000). 

Cell monolayers were washed twice with ice cold PBS. Afterwards cells were incubated for 

30 min on ice with lysis buffer (1 % Triton-X100, 20 mM HEPES, 100 mM KCl, EDTA 

2 mM, 1 mM DDT and cocktail of protease inhibitors). Cells were scraped from the dish by 
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pipetting the lysate up and down twenty times. The lysate was centrifuged at 10,000 g for 

30 min at 4 °C. Proteins of the supernatants (soluble fraction) were precipitated with TCA 

(2.3.5) and resuspended in a suitable volume of Tris pH 8.8 and in an equal volume of 

Laemmli sample buffer (2X). The pellet (insoluble fraction) was resuspended in Laemmli 

sample buffer (2X). Usually from a T75 cell culture flask 30 �l of both soluble and insoluble 

fraction of proteins were obtained. 

 

2.3.5 Precipitation of proteins by TCA 

For precipitation of proteins TCA 60 % was added to the sample to a 10 % final 

concentration. The sample was incubated on ice for 20 min and centrifuged (10,000 g, 

10 min at 4 °C), the supernatant was discard. The pellet was washed with 300 µl of ice cold 

acetone and centrifuged at 10,000 g for 10 min at 4 °C; if necessary this step was repeated 

twice. Acetone was discarded, the pellet was let dry and resuspended in an appropriate 

volume of Tris pH 8.8 and in an equal volume of Laemmli sample buffer (2X) for analysis by 

SDS-PAGE. 

 

2.3.6 Determination of protein concentration 

Protein concentration was determined using the DC (detergent compatible) protein assay 

from BioRad according to manufacturer’s instructions. This assay is based on the differential 

colour change of an acidic solution of Coomassie Brilliant Blue G-250 when binding to 

proteins occurs. Standards were prepared by serial dilutions of bovine serum albumin in PBS 

or in RIPA buffer. 

In some cases protein concentration was determined by comparison of serial dilutions of 

albumin in PBS and the probe by SDS-PAGE and Coomassie staining. 

 

2.3.7 Western blotting 

Samples were boiled in Laemmli buffer for 5 min, size-separated by SDS-PAGE 10 % if not 

other specified, and electrophoretically transferred to a Hybond-P membrane. Blotting was 

performed using a wet electroblotter at 250 mA for 2 h. The blots were blocked in 1 x 

Western blocking reagent solution in PBS-T (0.1 % Tween 20 in PBS) overnight at 4 °C. 

Then the blots were incubated with the indicated primary antibodies for 1 h at RT. The blots 

were washed and incubated for 45 min with the appropriate secondary antibody coupled to 

horseradish peroxidase (1:5,000). All antibodies were diluted in 0.5 x Western blocking in 
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PBS-T. Detection was performed with the ECL Western blotting detection system according 

to manufacturer’s instructions. Films were usually exposed for 30 sec, 2 min and 5 min. 

 

2.3.8 Coomassie Blue staining of proteins 

Protein samples were boiled in Laemmli buffer for 5 min and size-separated by SDS-PAGE. 

The gels were briefly rinsed in water and stained with Coomassie Brilliant Blue for 30-

60 min. Gels were de-stained using a 45 % methanol, 5 % acetic acid (v/v) solution until the 

background of the gel was clear. Gels were dried between two cellophane sheets for 

documentation. 

 

2.3.9 Syper Orange staining of proteins 

Protein samples were boiled in Laemmli buffer for 5 min and size-separated by SDS-PAGE. 

The gels were briefly rinsed in water and stained with Syper-Orange diluted 1: 5,000 in 

7.5 % (v/v) acetic acid for 40 min. Afterwards gels were rinsed in 7.5 % (v/v) acetic acid and 

photographed using the gel documentation system. This technique can detect up to 500 ng of 

protein per lane. 

 

2.3.10 Silver staining of proteins 

Protein samples were boiled in Laemmli buffer for 5 min and size-separated by SDS-PAGE. 

The gels were briefly rinsed in water and fixed in 30 % methanol and 10 % acetic acid. 

Staining of the gels was performed using a commercial available kit (Silver Quest) according 

to manufacturer's instructions. This technique can detect up to 1 ng of protein per lane 

 

2.3.11 Protein purification through NiTA affinity chromatography 

GBP-1-His, His-GBP-2 and His-GBP-1 were purified under native conditions. E. coli M15 

containing the respective expression plasmids were grown in 500 ml of LB medium 

supplemented with ampicillin (100 ��g/ml) and kanamycin (25 �g/ml) at 37 °C until an A600 

value of 0.6 was reached. Then IPTG was added to a final concentration of 100 �M for the 

GBP constructs and of 200 �M for eGFP-His. The cultures were grown for an additional 4 h 

(for His-GBP-1 and GBP-1-His), 3 h (for eGFP) or 2 h (for His-GBP-2). 

Cells were pelleted and resuspended in 5 ml of buffer (50 mM NaH2PO4, 500 mM NaCl, 

10 % glycerol, 2 mM TCEP, 20 mM imidazole, pH 7.4) and lysed with 2 passages at 1,200 

psi in a French press apparatus. The cell lysates were centrifuged at 37,000 g for 60 min. 

Then the supernatants were filtered (45-�m filters) and loaded onto 5ml NiNTA agarose 
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columns. A FPLC was performed at RT. Proteins were eluted with a 20-500 mM imidazole 

gradient. The elution pick was at 150 mM for GBPs and around 250 mM imidazole for 

eGFP-His. 

 

2.3.12 Protein purification of GST-GBP1-His through NiTA affinity chromatography 

followed by glutathione affinity chromatography 

GST-GBP-1-His was purified under native conditions like in 2.3.11 with slight 

modifications: (i) cultures were grown at 25 °C; (ii) after IPTG addition the culture was 

grown for an additional 3 h. The purified recombinant GST-GBP-1-His eluted from the 

NiNTA FPLC was dialyzed in PBS (pH 7.4) ON. The sample was then loaded on a 

glutathione sepharose column with 2 ml bed volume, washed with 20 ml PBS and eluted with 

2 ml of reduced glutathione (four times for a total of 8 ml) at RT.  

 

2.3.13 Dialysis 

For buffer exchange of different samples, dialysing tubes with a cut-off of 30 kDa or dialysis 

cassettes with a cut-off of 10 kDa were used. Typically dialysis was performed in 2 litres of 

the appropriate ice cold buffer ON at 4 °C, buffer was changed twice.  

 

2.3.14 Desalting 

Desalting was performed using desalting columns according to manufacturer’s instructions. 

 

2.3.15 Immunoprecipitation 

Fresh cell lysates were pre-cleared by incubation with 2 µl of rabbit pre-immunserum and 

25 µl protein A/G agarose beads for at least 3 hours on a rocker platform at 4 °C. After 

pelleting the beads, the supernatant was incubated with 25 µl protein A/G agarose beads and 

1 µl of polyclonal rabbit anti GBP-1 serum overnight on a rocker platform at 4 °C. Beads 

were washed five times in PBS. The beads were then resuspended in 30 µl Laemmli sample 

buffer (2X) and boiled for 5 minutes. The samples were separated on 10 % SDS-PAGE 

followed by Western blot analysis or auto radiography. 

For immunoprecipitation of GBP-1, GAPDH or mMP-1 from cell culture supernatants, 10 ml 

medium were immediately put on ice, centrifuged at 400 g for 5 min and filtered through a 

45 µm filter. If needed a protease inhibitor cocktail was added immediately. From this step 

pre-clearing and immunoprecipitation of the proteins from the supernatants were performed 

as described above for the cell lysate using the appropriate antibodies. 

 40



  Materials and Methods 

2.4 Production of anti GBP-1 antibodies 
 

2.4.1 Monoclonal antibodies 

The production of monoclonal antibodies was performed in collaboration with Elisabeth 

Kremmer, GSF, Munich. Purified recombinant GBP-1 with a his tag at its C-terminal end 

(GBP-1-His, 50 �g) was injected intraperitoneally (i.p.) and subcutaneously (s.c.) into 

LOU/C rats. Two months later a final boost was given i.p. and s.c. three days before 

sacrifice. Fusion of P3X63-Ag8.653 myeloma cells with the rat spleen cells was performed 

according to the standard procedure. Hybridoma supernatants were tested in a solid-phase 

immuno-assay using GST-GBP1-His fusion protein adsorbed to polystyrene microtiter 

plates.  

 

2.4.2 Polyclonal antibodies 

Polyclonal antibodies against GBP-1 were produced using a commercial available service 

“Dr. Pineda”, Berlin, Germany, by immunizing three rabbits with GBP-1-His (500 �g) and 

collecting the antiserum on the ninetieth day after immunization. Pre-bleed serum collected 

at day one was used as a control. 

 

2.5 Immuncyto- and immunohisto-chemistry 
 

2.5.1 Immunohistochemistry on paraffin embedded sections 

Paraffin embedded sections were stained using the Vectastain ABC kit as described by the 

manufacturer. Briefly, paraffin-embedded sections (6 µm) were dewaxed in xylene and 

rehydrated. After antigen retrieval by microwave boiling (3 times at 7 min, 580 W) in the 

appropriate buffer, the slides were treated with 7.5 % hydrogen peroxide for 10 min at RT to 

block endogenous peroxidases. The slides were then incubated for 1 h with the monoclonal 

antibody of choice at the dilution indicated in the results or with the respective isotype 

control antibodies. For controls MAb 1B1 (1 �l) was incubated with 80 �g of purified 

recombinant GBP-1-His for 2 h at RT. Subsequently, the slides were incubated for 30 min 

with biotinylated secondary antibody, followed by 30 min incubation with the avidin-biotin 

complex. The reaction was developed using DAB at RT. Nuclei were counterstained with 

haematoxylin and mounted with Immunomount. Between each step the slides were washed 

twice in Tris (50 mM, pH 7.4) for 5 min. 
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For simultaneous detection of GBP-1 and CD68, the detection of GBP-1 was performed 

using the Vectastain ABC kit as described above. After the development of the colour 

reaction wit DAB, the slides were washed in water for 10 min and then twice in Tris (50 mM, 

Brij 0.5%, pH7.4) for 5 min. Subsequently, slides were incubated with a monoclonal mouse 

anti-CD68 antibody (1:200) and subsequently with a rabbit anti-mouse IgG antibody (1:25) 

and the APAAP (mouse) complex (1:50). VectorRed was used as a substrate for the colour 

reaction. Between each step the slides were washed twice in Tris (50 mM, Brij 0.5%, pH 7.4) 

for 5 min. After the immunohistochemical procedure, sections were counter-stained with 

hematoxylin and mounted with Immunomount. 

 

2.5.2 Indirect immunofluorescence on paraffin embedded sections 

Double immunofluorescence labeling of tissues was carried out as described (Mason, et al. 

2000). Paraffin-embedded sections (6 µm) were dewaxed in xylene and rehydrated. After 

antigen retrieval as described above (2.5.1), the slides were blocked with 10 % normal goat 

serum for 10 min at RT and subsequently incubated overnight at 4 °C with a mixture of the 

appropriate antibodies. Afterwards a mixture of highly cross absorbed secondary antibody 

(dilution 1:500) coupled to the appropriate Alexa fluorochromes was applied for 1 h at RT. 

The slides were mounted in glycerol 50 % in PBS. Between each step the slides were washed 

twice in PBS for 5 min. 

For triple staining of GBP-1, CD31, and Ki67 slides were first stained for GBP-1/CD31 as 

described above and then incubated with 10% normal mouse serum at RT for 40 min. 

Subsequently, the slides were incubated with goat Fab anti-mouse fragments (1:20) at RT for 

40 min. The slides were then incubated with the anti-Ki67 antibody (1:20). After washing the 

slides were incubated with a highly cross-absorbed goat anti-mouse antibody (1:500) coupled 

to the AlexaFluor350 fluorochrome. Between each step the slides were washed twice in PBS 

for 5 min. The slides were mounted in glycerol 50 % in PBS. 

 

2.5.3 Immunocitochemistry 

Cells were plated in 8-chamber glass culture slides and stimulated as described. After 

stimulation the cells were fixed in ethanol (20 min, 4 °C), methanol (4 min, -20 °C) or 

paraformaldehyd (PFA) (4 % ore 2 %, 20 min, RT). PFA fixed cells were permeabilized with 

0.1 % Triton-X100 at RT (2 min). Slides were than stained using the Vectastain ABC kit as 

described in 2.5.1 for paraffin-embedded tissues without the dewaxing and the antigen 

retrieval steps.  
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2.5.4 Indirect immunofluorescence on fixed cells 

Cells were plated in glass 8-chamber culture slides and treated as described in 2.5.3. After 

fixation and permeabilization for PFA-fixed cells, unspecific binding sites were blocked with 

goat normal serum 10 %. Slides were then incubated with the primary antibody at the suitable 

dilutions ON at 4 °C. Afterwards, the slides were incubated with the appropriate secondary 

antibody coupled to AlexaFluor fluorochromes. Nuclei were visualised with DAPI at a final 

concentration of 1 �g/ml. Between each step the slides were washed twice in PBS for 5 min. 

Slides were mounted in glycerol 50 % in PBS. Stainings were observed using a LSM. Serial 

pictures taken along the z-axis where taken using the LSM5 software. 

 

2.6 Enzyme-linked immunoassay (ELISA) 

An ELISA for the detection of soluble GBP-1 was developed (Harlow 1999). The following 

buffers were used: PBS containing 0.1 % Tween 20 (PBS-T) and PBS containing 0.1 % 

Tween 20 and 2 % BSA (PBS-TB). Ninety-six-well immuno-plates were coated with 100 

�l/well of anti-GBP-1 hybridoma supernatant (clone 1B1) diluted 1:5 in PBS for 16 h at 4 °C. 

Plates were rinsed with PBS-T and blocked with PBS-TB for at least 30 min at RT. 

PBS-TB was aspirated and wells were incubated with 100 �l of samples in duplicates or 

triplicates for 2 h at RT. Recombinant purified GBP-1-His protein diluted in cell culture 

medium containing 5 % FBS was used as a standard; as a control for specificity BSA was 

used. Cell culture supernatants were used undiluted. Plasma and serum samples were diluted 

1:2 or 1:8 in PBS in order to reduce the background signal. 

Wells were then rinsed four times with PBS-T. Subsequently, 100 �l of rabbit polyclonal 

antibodies against GBP-1 (1:500 in PBS-TB) were added for 2 h at RT. After the wells were 

rinsed four times with PBS-T, 100 �l of alkaline phosphatase-conjugated anti rabbit antibody 

(1:500 in PBS-TB) were added for 1 h at RT. The wells were rinsed four times with PBS-T 

and incubated with 100 �l of p-nitrophenyl phosphate (PNPP). The absorbance was measured 

at 405  nm using a microplate reader. The concentration was calculated from the standard 

curve obtained from recombinant purified GBP-1-His protein. The concentration was 

calculated as a mean (�SD) of the value of three samples. The intra-assay variability was 

between 2.3 % and 6 %. 

 

2.8 Statistical analysis 

Statistical tests were performed using SPSS 8.0 for Windows. The Kolkogorov-Smirnov test 

was used to test the normal distribution of the data, a value of p < 0.05 was regarded as 
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significant. For normally distributed data differences were tested by a independent-sample 

T-test. A value of p < 0.05 was regarded as significant. Correlation was measured by Pearson 

correlation coefficient. A value of p < 0.05 was regarded as significant. If data were not 

normally distributed, differences between two independent samples were tested by Mann-

Whitney test (2-tailed, if not other specified). A value of p < 0.05 was regarded as significant. 

Correlation was measured by Spearman´s rank correlation test or be Wilcoxon test. A value of 

p < 0.05 was regarded as significant. 
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RESULTS 
 

1 Generation of mono- and polyclonal antibodies against GBP-1  

 

In order to investigate the expression of GBP-1 at the protein level both in vitro and in vivo, 

specific antibodies against GBP-1 were produced. 

 

1.1 Expression cloning and purification of recombinant GBP-1 proteins 

 

Recombinant GBP-1 was purified and used as an immunogen in order to raise rat mono- and 

rabbit polyclonal antibodies. The full length cDNA sequence encoding GBP-1 was cloned 

into prokaryotic expression vectors in frame with a 6 x histidine (His) tag at the C-terminal 

(GBP-1-His) or at the N-terminal end (His-GBP-1). 

In order to obtain a maximal yield of the recombinant proteins, the optimal conditions to 

induce the expression of soluble proteins in E. coli were investigated as described below.  

E. coli cultures containing the prokaryotic expression plasmid encoding for GBP-1-His were 

stimulated with IPTG (100 �M) in order to induce expression of recombinant GBP-1-His 

protein. E. coli cultures were incubated at 37 �C or 25 �C and growth curves were determined. 

Induction of protein expression with IPTG reduced culture growth (data not shown). This 

indicated that overexpression of recombinant protein has a toxic effect on the cultures. This 

effect was more pronounced at 25 °C. 

Subsequently, the soluble and insoluble protein fractions were extracted from IPTG-treated 

(100 �M, induction times indicated in Figure 9) E. coli cultures cultivated at 37 �C (Figure 9). 

The two fractions were analyzed by SDS-PAGE followed by Coomassie staining (Figure 9). 

The highest level of soluble recombinant GBP-1-His was observed at 4 h and 5 h after 

addition of IPTG (Figure 9). 5 h after addition of IPTG only the amount of insoluble GBP-1-

His in the pellet was increased as compared to 4 h after addition of IPTG (Figure 9; compare 

P and S fractions at 5 h with the P and S fractions at 4 h). Therefore, for large scale induction 

of soluble recombinant GBP-1-His an induction time of 4 h was chosen. 

After large scale induction of cultures containing the prokaryotic expression plasmid encoding 

for GBP-1-His, the respective protein was purified through a NiNTA sepharose column using 

fast performance liquid chromatography (FPLC) (Hochuli, et al. 1987). GBP-1-His eluted 

from the column in a single peak as shown by the chromatogram of the FPLC (Figure 10A). 
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Analysis of the elution fractions by SDS-PAGE and Coomassie staining showed that GBP-

His was purified nearly to homogeneity (Figure 10B). 
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Figure 10: Determination of the optimal conditions for the induction and purification of recombinant GBP-1-
His protein. E. coli cultures were incubated at 37°C. GBP-1-His expression was induced using 100 �M IPTG 
for the indicated times. Non induced cultures (-) were used as a control. The soluble (S) and insoluble (P) 
fraction of proteins in IPTG induced (+) or non induced (-) cultures at were analyzed at each time point by SDS-
PAGE and Coomassie staining. The following lysates were loaded as controls: (-), crude lysates of non induced 
cultures; (+), crude lysates of cultures induced with IPTG (100 �M) for 4 h; (M15), crude lysates of cultures 
without the expression vector. GBP-1-His is indicated by an arrow. 
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Figure 10: Analysis of the purification of recombinant GBP-1-His. (A) Chromatogram of the elution fractions 
of GBP-1-His proteins after FPLC and NiNTA sepharose chromatography. An imidazole gradient was used for 
elution of recombinant GBP-1-His (gray line). The protein content was determined by measuring the absorbance 
of the flow through (FT), the wash and the eluted fractions at 280 nm (A280) (blue line). (B) The proteins in the 
collected fractions were separated on SDS-PAGE and stained by Coomassie blue. M15 = lysates from M15 E. 
coli strain without the expression vector. Lys. = crude lysate of E. coli cultures containing the GBP-1-His 
expression vector after IPTG induction. FT = flow through. W1, W2 = wash fractions. Eluates = different 
fractions of the GBP-1-His elution peak represented in (A). 
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In order to screen the specificity of the antibodies with a recombinant GBP-1 protein different 

from the one used for immunization, recombinant His-GBP-1 was purified (His tag at the N-

terminus of GBP-1). For expression of soluble His-GBP-1 in E. coli, cultures were induced 

with 100 �M IPTG for 4 h at 37 �C. His-GBP-1 was purified through a NiNTA sepharose 

column using FPLC. His-GBP-1 eluted from the column in a single peak as shown by the 

chromatogram of the FPLC (Figure 11A). The elution fractions analyzed by Coomassie 

staining after separation on SDS-PAGE showed that His-GBP-1 was purified nearly to 

homogeneity (Figure 11B, eluates). 
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Figure 11: Analysis of the purification of recombinant His-GBP-1. (A) Chromatogram of the elution fractions 
of recombinant His-GBP-1 after FPLC and NiNTA sepharose chromatography. An imidazole gradient was used 
for elution of His- GBP-1 (gray line). The protein content was determined by measuring the absorbance of the 
flow through (FT), the wash and the eluted fractions at 280 nm (A280) (blue line). (B) The proteins in the 
collected fractions were separated on SDS-PAGE and stained by Coomassie blue. M15 = lysates from M15 E. 
coli strain without the expression vector. Lys. = crude lysate of E. coli cultures containing the His-GBP-1 
expression vector after IPTG induction. FT = flow through. W1, W2 = wash fractions. Eluates = different 
fractions of His-GBP-1 elution peak represented in (A). 
 

 

In order to obtain proteins to test the specificity of the antibodies for the GBP-1 isoform, a 

recombinant His-GBP-2 protein was purified. Purification was performed under conditions 

analogue to the one of GBP-1-His (data not shown). 

In order to get a control protein to exclude the possibility that antibodies recognized the His-

tag of the recombinant GBPs, His-eGFP was purified. Expression of eGFP was induced in 

E. coli cultures containing the prokaryotic expression plasmid encoding for His-eGFP with 

IPTG (200 �M). E. coli cultures were incubated at 30 �C (Figure 12A) or 37 �C (Figure 12B) 

for the times indicated in Figure 12. Induction of protein expression with IPTG (200 �M) 
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reduced culture growth indicating that the expression of the recombinant protein has a toxic 

effect on the cultures compared to non-induced cultures (-), this effect was more pronounced 

at 30 °C (data not shown). In order to determine the optimal conditions to obtain a maximal 

yield of soluble recombinant His-eGFP, the soluble and insoluble protein fractions were 

extracted from IPTG-treated (200 �M) E. coli cultures. These cultures were cultivated at 37 

�C (Figure 12A) or 30 �C (Figure 12B). The two fractions were analyzed by SDS-PAGE 

followed by Coomassie staining (Figure 12A and 12B).  
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Figure 12: Determination of the best induction conditions for the purification of recombinant His-eGFP 
protein. E. coli cultures were incubated either at 30 °C (A) or at 37 °C (B). His-eGFP expression was induced 
using IPTG (200 �M, +) for the indicated times. Non induced cultures (-) were used as a control. (B and C): The 
soluble (S) and insoluble (P) fraction of these cultures were analyzed at each time point by SDS-PAGE and 
Coomassie staining. Crude lysates of non induced cultures were loaded as a control (0). His-eGFP is indicated 
by an arrow 
 

 

The highest expression of soluble recombinant His-eGFP was observed at 3 h and 4 h after 

addition of IPTG (Figure 12B). Incubation of the cultures at 37 �C led to a higher expression 

of soluble recombinant His-eGFP (Figure 12B) as compared to incubation of the same 

cultures at 30 �C (Figure 12A). His-eGFP was purified near to homogeneity by FPLC using a 

NiNTA sepharose columns (data not shown).  

 

1.2 Production of anti-GBP-antibodies 

 

Monoclonal anti-GBP-1 antibodies (MAbs) were generated in collaboration with Dr. 

Elisabeth Kremmer (GSF, Munich) by immunization of LOU/C rats with purified 
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recombinant GBP-1 with a His tag in its C-terminal end (GBP-1-His, 50 �g). Four hybridoma 

clones were established. Three clones had an isotype IgG1 (MAb 1B1, 6D9 and 5B9) and one 

clone had the isotype IgG2a (MAb 6F12) (Table 2). Polyclonal anti-GBP-antibodies were 

generated by immunization of rabbits with purified GBP-1-His (500 �g), three antisera were 

obtained. 

 

1.3 Characterization of anti-GBP-1 antibodies 

 

In order to determine the reactivity of the different antibodies, purified His-GBP-1, 

His-GBP-2 and His-eGFP were separated by SDS-PAGE and analyzed by Western blot using 

MAb 1B1 (Figure 13, left panel), MAb 6F12 (Figure 13, right panel), MAb 6D9 and MAb 

5B9 (data not shown). MAb 1B1 (Figure 13A, left panel) and MAb 5B9 (data not shown) 

reacted only with His-GBP-1, but not with His-GBP-2. 

MAb 6F12 (Figure 13, right panel), MAb 6D9 and all polyclonal antibodies (data not shown) 

reacted with both His-GBP-1 and His-GBP-2. None of these antibodies recognized His-eGFP, 

indicating that the His-tag was not recognized by any of these antibodies (Figure 13A).  

In order to investigate whether the antibodies were able to recognize GBP-1 in cell lysates, 

Western blot analysis of protein extracts obtained from HUVEC treated with IFN-� (100 

U/ml) for 16 h was performed. Only MAb 1B1, 6F12 and 6D9 recognized an IFN-�-induced 

protein of 67 kDa in HUVEC (Figure 13B). No protein was recognized in the extracts of 

unstimulated HUVEC (Figure 13B, -). MAb 5B9 did not recognize any protein irrespective 

whether extracts of uninduced or IFN-�-induced HUVEC were used (data not shown). The 

facts that MAb 1B1 (i) reacted specifically with the recombinant His-GBP-1, but not with 

His-GBP-2, (ii) recognized a protein of a molecular weight of 67 kDa that (iii) was selectively 

present in the cell extracts of IFN-� stimulated HUVEC, indicated that the protein recognized 

in HUVEC was GBP-1. For further use of MAb 1B1 in Western blot analysis, its optimal 

dilution was titrated. MAb 1B1 worked best at a dilution 1:500. In this dilution it was able to 

recognize 10 ng of purified His-GBP-1. 

In a next step the capability of the described antibodies to immunoprecipitate GBP-1 from 

cellular extracts was tested. HUVEC were treated with IFN-� (100 U/ml) or BSA (-) for 24 h 

and immunoprecipitation of GBP-1 from the cell lysate was performed using polyclonal 

antibodies (Figure 14). The immunoprecipitate was analyzed by Western blot using MAb 

1B1. GBP-1 could be immunoprecipitated from the cell lysate of stimulated (Figure 14, IFN-

�) but not from the cell lysate of unstimulated HUVEC (Figure 14, -). 
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Figure 13: Western blot analyses with different monoclonal antibodies raised against GBP-1. (A) Purified 
recombinant His-GBP-1, His-GBP-2 and His-eGFP (100 ng each) were separated by SDS-PAGE 10 %. Western 
blot analyses were performed using MAb 1B1 (left panel) and MAb 6F12 (right panel). All three the 
recombinant proteins had a His tag in their N-terminal end. (B) HUVEC were incubated with IFN-� (100 U/ml) 
or BSA (-) for 16 h. 5 �g of total protein extract were loaded per line and separated by SDS-PAGE 10 %. 
Western blot analyses were performed using MAb 1B1, MAb 6F12 and MAb 6D9 as indicated in the figure. 
 
 

Immunoprecipitation was performed to completion as no GBP-1 was detected in the 

supernatant of the immunoprecipitate (Figure 14, Sup.). The respective pre-immunserum did 

not immunoprecipitate GBP-1 from the cell lysate of IFN-� stimulated HUVEC (Figure 14, 

P.I.). In the immunoprecipitates the heavy chain of the antibodies used was detected (Figure 

14, h.c.). None of the monoclonal antibodies was able to immunoprecipitate GBP-1 (data not 

shown). These results indicated that only the polyclonal antibodies worked for 

immunoprecipitation of GBP-1. 

In order to test the ability of the antibodies to recognize GBP-1 at the single cell level, 

immunofluorescence studies were performed. HUVEC were treated with IFN-� (100 U/ml) or 

BSA (-) for 24 h and fixed in methanol. GBP-1 was detected using indirect 

immunofluorescence (Figure 15), nuclei were counterstained with DAPI (Figure 15, blue). 

Unstimulated HUVEC did not show any GBP-1 staining (Figure 15, left panels). A clear 

signal was obtained with the monoclonal antibodies MAb 1B1 (Figure 15, red, right panel), 

MAb 6F12 (Figure 15, red, right panel), and 6D9 (data not shown) in IFN-�-treated HUVEC 

only. No signals were obtained with MAb 5B9. With the polyclonal antibodies a high 

background staining was observed (data not shown). Similar results were obtained when cells 

were fixed in ethanol or paraformaldehyd (data not shown). 
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Figure 14: Western blot analysis of GBP-1 after immunoprecipitation of cellular GBP-1 using polyclonal 
rabbit anti-GBP antibodies. Cellular GBP-1 from HUVEC incubated with IFN-� (100 U/ml) or BSA (-) for 16 h 
was immunoprecipitated using a polyclonal anti GBP-1 antibody. Sup. = Supernatant after removal of the 
immunoprecipitate. P.I. = Immunoprecipitate of IFN-� stimulated HUVEC using pre-immunserum. GBP-1 was 
detected by Western blot using MAb 1B1. The diffused bands are the heavy chains (h.c.) of the antibodies used 
for the immunoprecipitation. 
 

 

The results obtained on the specificity and the applicability of the different antibodies for the 

detection of GBP-1 with different methods are summarized in Table 2. The use of the 

different antibodies for the detection of GBP-1 in tissue sections is presented in detail in 

Paragraph 3. MAb 1B1 was the only antibody that recognized specifically recombinant His-

GBP-1, but not His-GBP-2. In addition, MAb 1B1 was the only GBP-1 specific antibody that 

recognized intracellular GBP-1 in IFN-�-treated HUVEC, both in cell lysates and in fixed 

cells. Therefore, this anti-GBP-1 antibody was used for further analysis of GBP-1 expression 

in cultivated cells in vitro and tissues in vivo. 

 
 -                    IFN-�

6F12

1B1

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Detection of GBP-1 by indirect immunofluorescence in fixed HUVEC. HUVEC were incubated 
with IFN-� (100 U/ml) or with BSA (-) for 24 h and fixed with methanol. Indirect immunofluorescence analysis 
using the indicated MAbs was performed. GBP-1 is stained in red. Nuclei were counterstained with DAPI (blue). 
Scale bar = 10 �m. 
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Table 2: Anti GBP-1 antibodies and their application in different methods.  
 

 Antigen His-GBP-1 His-GBP-2 GBP-1 in cells 
Reactivity Application WB IP IF IHC 

6F12 (IgG2a) + + + - + + 
6D9 (IgG1) + + + - + + 
1B1 (IgG1) + - + - + + 

Rat 
mono-
clonal 
antibodies 

5B9 (IgG1) + - - - - - 
Rabbit 1 + + + + n.d. n.d. 
Rabbit 2 + + + + n.d n.d 

Rabbit 
polyclonal 
antibodies Rabbit 3 + + + + n.d n.d 

 
WB = Western blot, IP = immunoprecipitation, IF= immunofluorescence, IHC = immunohistochemistry, 
Cell lysate. = GBP recognized in cell extracts, n.d. = non determined, + = positive reaction, - = negative 
reaction. The isotype of the respective antibodies is given in branches. 
 

 

2 Characterization of GBP-1 expression in inflammatory cytokine-activated endothelial 

cells in vitro 

 

2.1.1 Effects of inflammatory cytokines on GBP-1 expression 

 

Previous work in this laboratory had shown that GBP-1 mRNA is induced by inflammatory 

cytokines (IC) in EC. Here the MAb 1B1 was used to investigate the expression of GBP-1 

protein under the same conditions. 

HUVEC were stimulated with IFN-� (100 U/ml), IFN-� (100 U/ml), IL-1ß (20 U/ml) and 

TNF-� (300 U/ml) for 24 h. Afterwards, GBP-1 expression was analyzed by Western blot 

(Figure 16). In all IC stimulated HUVEC GBP-1 protein expression was higher as compared to 

non stimulated control cells (Figure 16). IFN-� had the strongest effect, whereas IFN-�, IL-1ß 

and TNF-� had a less pronounced effect on GBP-1 expression (Figure 16). The same results as 

observed in HUVEC were obtained in dMVEC (data not shown). Also lower concentrations of 

these cytokines induced GBP-1 expression in HUVEC: IFN-� (1 U/ml), IL-1ß (2 U/ml) and 

TNF-� (30 U/ml) for 16 h (Figure 17). This indicated that GBP-1 expression in EC may be 

induced already by physiological IC concentrations (Breuer-McHam, et al. 1998). 

In order to investigate the time course of GBP-1 expression, HUVEC were stimulated with 

IFN-� (100 U/ml) and cell extracts were harvested at different times as indicated in Figure 18. 

Western blot analysis of GBP-1 expression indicated that GBP-1 was detectable 4 h after 

stimulation and increased continuously for 24 h after stimulation (Figure 18). 
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Figure 16: Western blot analysis of GBP-1 expression in HUVEC in the presence of IC. HUVEC were 
incubated with IFN-� (100 U/ml), IFN-� (100 U/ml), IL-1� (20 U/ml) and TNF-� (300 U/ml) or BSA (-) for 24 
h. GBP-1 expression was analyzed by Western blot using MAb 1B1. Actin staining shows that similar amounts of 
protein extracts were loaded. 
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Figure 17: Western blot analysis of GBP-1 expression in HUVEC in the presence of low IC concentrations. 
HUVEC were incubated with IFN-� (1 U/ml), IL-1� (2 U/ml), TNF-� (30 U/ml) or BSA (-) for 16 h. GBP-1 
expression was analyzed by Western blot using MAb 1B1. Actin staining shows that comparable amounts of protein 
extracts were loaded. From (Guenzi et al. 2001). 
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Figures 18: Western blot analysis of the kinetic of IFN-�-induced GBP-1 expression in HUVEC. HUVEC 
were incubated with IFN-� (100 U/ml) for the indicated times and GBP-1 expression was analyzed by Western 
blot using MAb 1B1. Actin staining shows that comparable amounts of protein extracts were loaded. 
 

IL-1ß has been shown to stimulate IFN-� expression in natural killer cells (Cooper, et al. 2001). 

Therefore, the possibility that IL-1ß-induced GBP-1 protein expression may be mediated via 

IFN-� was investigated. The amount of IFN-� in the cell culture supernatants of IL-1ß-treated 

HUVEC was measured using a commercial ELISA (Figure 19). A commercial IFN-� standard 
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diluted in endothelial cell medium (EBM-2) was used for quantification (Figure 19, gray bars). 

As a positive control for the ability of the ELISA to detect IFN-� in cell culture supernatants, the 

cell culture supernatant of HuT 78 cells stimulated with IL-12 and IL-18 (10 ng each) for 5 h was 

used. Stimulation of HuT 78 cells with IL-12 and IL-18 has been shown to induce secretion of 

IFN-� (Tripp, et al. 1993; Walker, et al. 1999). IFN-� was detected in the cell culture 

supernatants of IL-12 + IL-18 stimulated HuT 78  cells as expected (Figure 19, black bar). The 

amount of IFN-� in the cell culture supernatants of HUVEC stimulated with IL-1ß for 24 h was 

below of the sensitivity of the ELISA (8 pg/ml corresponding to an OD of 0.06) (Figure 19, red 

line). The same results were obtained when HUVEC were stimulated with the same 

concentrations of IL-1ß for 5 h (data not shown).  

Altogether these data indicated that GBP-1 expression in HUVEC is induced directly by 

IL-1ß and is not due to the induction of IFN-� expression in these cells. 
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Figure 19: Detection of IFN-� in cell culture supernatants by ELISA. A commercial IFN-� ELISA was used to 
measure IFN-� concentrations in the cell culture supernatants of IL-1ß-treated HUVEC. IFN-� standards were 
diluted in endothelial cell medium (EBM-2, gray bars). As a control HuT 78 cells were incubated with IL-12 + 
IL-18 at the indicated concentrations for 5 h (black bar). HUVEC were incubated with the indicated IL-1� 
concentrations for 24 h. OD = corrected optical density (absorbance at 450 nm - absorbance at 570 nm). The 
sensitivity of the ELISA was 8 pg/ml corresponding to an OD of 0.06 (red line).  
 

 

In a next step, the effects of repeated IC stimulation on GBP-1 expression in EC were 

investigated. HUVEC were incubated in low medium for 16 h and then simulated with IL-1ß (20 

U/ml). After 24 h the medium was changed and fresh low medium was added either alone or 

supplemented with IL-1ß for further 32 h. GBP-1 expression was analyzed by Western blot. 
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GBP-1 expression was stable up to 56 h. Notably, in HUVEC that expressed GBP-1 after a first 

IL-1ß stimulation GBP-1 expression could be further induced with a second IL-1ß stimulation 

(data not shown). The same results as observed in HUVEC were obtained in dMVEC in a 

similar experiment. Altogether these results indicated GBP-1 expression is stable for days and 

that repeated IL-1ß treatment of EC is able to stabilize GBP-1 expression. 

 
 
 
2.1.2 Effects of angiogenic growth factors on inflammatory cytokine-induced GBP-1   

expression 

 

Recently it has been shown from this laboratory that IC-induced GBP-1 mRNA is 

downregulated when angiogenic growth factors (AGF) were added simultaneously with IC to 

EC.  

In order to investigate the effect of AGF on IC-induced GBP-1 expression at the protein level, 

GBP-1 expression was analyzed by Western blot in cell lysates of HUVEC and dMVEC, 

incubated with IFN-� (100 U/ml), IL-1� (200 U/ml) and TNF-� (300 U/ml) alone or in the 

presence of AGF (VEGF and bFGF, 10 ng/ml each) for 24 h (Figure 20A and 20B, upper 

panels). 

GBP-1 expression was highly expressed in the presence of IC (Figure 20A and 20B). Notably, 

in presence of AGF the IC-induced GBP-1 expression was significantly lower as compared to 

cells treated with IC alone both in HUVEC (Figure 20A) and in dMVEC (Figure 20B). These 

results confirmed at the protein level that IC-induced GBP-1 expression is inhibited by AGF 

when the factors are present simultaneously. 

In a next step it was investigated wether IC can induce GBP-1 expression in EC that have been 

pre-incubated with AGF. HUVEC were incubated in low medium alone or with AGF (VEGF 

and bFGF, 10 ng/ml each) for 16 h and then incubated with IFN-� (100 U/ml), IL-1ß (20 U/ml) 

or TNF-� (300 U/ml) for 24 h. Subsequently, GBP-1 expression in these cells was analyzed by 

Western blot (Figure 21). No difference was observed in the induction of GBP-1 expression by 

IC, irrespective whether the cells have been pre-incubated with AGF or not. The same results as 

observed in HUVEC were obtained in dMVEC (data not shown).  

Altogether these results confirmed at the protein level that AGF applied simultaneously with 

IC inhibit IC-induced GBP-1 expression, whereas pre-incubation of EC with AGF for 16 h 

does not affect IC-induced GBP-1 expression, both in HUVEC and in dMVEC. 
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Figure 20: Western blot analysis of IC-induced GBP-1 expression in the simultaneous presence of AGF. (A) 
HUVEC and (B) dMVEC were incubated with IFN-� (100 U/ml), IL-1� (200 U/ml) and TNF-� (300 U/ml) alone or 
in the presence of AGF (VEGF and bFGF, 10 ng/ml each) for 24 h. GBP-1 expression was analyzed by Western blot 
using MAb 1B1 (upper panels). Corresponding signal intensities were densitometrically determined (lower panels, 
gray bars). From (Guenzi et al. 2001).  
 

 

 

 

-

- Actin

- GBP-1

IFN
-�

IFN
-�

IL-
1�

IL-
1�

TNF- �

TNF- �
AGF AGF AGF

66-

46-

kDa - - - - -

 

 

 

 

 

 

 
Figure 21: Western blot analysis of IC-induced GBP-1 expression in HUVEC after pre-incubation with AGF. 
HUVEC were pre-incubated for 16 h in presence or absence of AGF (VEGF and bFGF, 10 ng/ml each) and then 
incubated with IFN-� (100 U/ml), IL-1� (20 U/ml), TNF-� (300 U/ml) or BSA (-) for 24 h. GBP-1 expression was 
analyzed by Western blot using MAb 1B1. Actin staining shows that comparable amounts of protein extracts were 
loaded. From (Guenzi et al. 2001). 
 



  Results 

2.1.3 Effects of different factors on GBP-1 expression 

 

In order to investigate which other factors besides IC may induce GBP-1 expression in HUVEC 

the following experiments were performed. HUVEC were treated with IFN-� as a  positive  

control or with different factors including cytokines [IL-1�, IL-1�, TNF-�, IL-4, IL-6, IL-10, 

IL-18, oncostatin M (OSM)], C-C chemokines (MCP-1, MIP-1�), C-X-C chemokines (PF4, 

IP-10, SDF-1�) and growth factors (bFGF, VEGF, Ang-2, PDGF B/B) for 24 h. 

In the concentrations used, each factor induced a clear biological response in HUVEC. VEGF 

and IL-18-induced chemotaxis of HUVEC (Figure 22B). For each chemokine subfamily one 

member was tested for its effect on EC. The C-C chemokine MCP-1 and the C-X-C chemokine 

SDF-1�-induced chemotaxis of HUVEC (Figure 22B). IL-4 and IL-1� up-regulated VCAM-1 

expression in HUVEC (Figure 22C). HUVEC proliferation was activated by Ang-2, VEGF (data 

not shown), bFGF and PDGF B/B (Figure 22D). In contrast, HUVEC proliferation was inhibited 

by OSM (Figure 22D), as well as by IFN-�, IL-1�, IL-6. IL-10 and TNF-� (data not shown), 

(Guenzi, et al. 2001). 

All these findings were in agreement with previously published activities of these factors on 

HUVEC (Folkman, et al. 1987; Bevilacqua, et al. 1989; Ferrara, et al. 1989; Keck, et al. 1989; 

Cavender, et al. 1991; Swerlick, et al. 1992; Holzinger, et al. 1993; Cornali, et al. 1996; 

Haraldsen, et al. 1996; Takashima, et al. 1996; Romero, et al. 1997; Gentilini, et al. 1999; 

Salcedo, et al. 1999; Salcedo, et al. 2000; Guenzi, et al. 2001; Lee, et al. 2001; Park, et al. 2001). 

Western blot analysis of GBP-1 expression in HUVEC under these different conditions revealed 

that GBP-1 expression was selectively induced by IC including IFN-�, IL-1�, IL-1�, and TNF-

�, but by none of the other factors (Figure 22A). Altogether these data indicated that GBP-1 

characterizes IC-activated EC. Notably, all these IC, which induced GBP-1 expression in EC, 

have been shown to inhibit proliferation of these cells (Frater-Schroder, et al. 1987; Friesel, et al. 

1987; Schweigerer, et al. 1987a; Cozzolino, et al. 1990; Ruszczak, et al. 1990; Guenzi, et al. 

2001) 
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Figure 22: Effect of different factors on GBP-1 expression in HUVEC. 
(A) HUVEC were incubated with the indicated factors or with BSA (-) for 24 h. The following concentrations 
were used: IFN-� (100 U/ml), IL-1� (5 ng/ml), IL-1� (200 U/ml), TNF-� (300 U/ml), IL-4 (10 U/ml), IL-6 (50 
U/ml), IL-10 (50 ng/ml), IL-18 (100 ng/ml), OSM, (10 ng/ml), MCP-1 (50 ng/ml), MIP-1� (50 ng/ml), PF4 (25 
ng/ml), IP-10 (50 ng/ml), SDF-1� (200 ng/ml), bFGF (10 ng/ml), VEGF (10 ng/ml), Ang-2 (800 ng/ml) and 
PDGF B/B (100 ng/ml) (Figure 22A). GBP-1 expression was analyzed by Western blot using MAb 1B1. Actin 
staining shows that comparable amounts of protein extracts were loaded. From (Lubeseder-Martellato et al. 
2002). Biological activity of the concentrations of the different factors used in HUVEC is demonstrated in (B - 
D) 
(B) HUVEC were incubated with SDF-1� (200 ng/ml) for 2 h or VEGF (10 ng/ml), IL-18 (100 ng/ml) and MCP-
1 (50 ng/ml) for 4 h. As a control low medium (LM) was used. Briefly chemotaxis experiments were performed 
using Boyden chambers. Polycarbonate filters of 8 µm pore size were coated with 1.5% bovine skin gelatine. 
Low medium with or without the indicated factors was placed in the lower compartment of the chamber. 2 x 104 
cells were added into the upper compartment. After incubation at 37 °C the filters were harvested. The cells 
were removed from the upper side and transmigrated cells at the lower side were fixed with methanol at –20 °C 
for 4 min and stained with Haematoxylin. The numbers of migrated cells was determined under the microscope. 
The results are expressed as the mean number (± SD) of migrated cells/5 microscopic fields (25 x 
magnification). Each experiment was performed in triplicate.  
(C) HUVEC were incubated with IL-4 (10 U/ml), IL-1� (5 ng/ml) or BSA (-) for 24 h. VCAM-1 expression was 
analyzed by Western blot using a polyclonal rabbit antibody. Actin staining shows that comparable amounts of 
protein extracts were loaded. 
(D) HUVEC were incubated with PDGF B/B (100 ng/ml), bFGF (10 ng/ml), OSM (10 ng/ml), or simultaneously 
with PDGF B/B and bFGF or OSM and bFGF at the same concentrations. LM = cells grown in low medium. 
Briefly, proliferation experiments were performed by seeding HUVEC (103 or 104 cells/ml) into 24-well plates. 
Then HUVEC were incubated for 16 h in low medium (t0). Subsequently cytokines and growth factors were 
added at the indicated concentrations. After three days cell numbers were determined. Each stimulation was 
carried out in triplicate. The results are expressed as the mean of the cell numbers (± SD).  
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2.2 Studies of GBP-1 subcellular localization in HUVEC 

 

In order to investigate whether GBP-1 subcellular localization was different in HUVEC 

incubated with different IC, immunocytochemical and immunofluorescence studies were 

performed. In a first approach GBP-1 localization was investigated by immunohistochemistry in 

HUVEC stimulated with IFN-� (100 U/ml) for 16 h (Figure 23, IFN-�). GBP-1 was selectively 

localized in the cytoplasm. No signal was observed in unstimulated cells (Figure 23, -). Identical 

results were observed when HUVEC were stimulated with IL-1� (20 U/ml) or TNF-� (300 

U/ml) (data not shown). 

 

 

- IFN-�

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Immunocytochemical analysis of GBP-1 localization in HUVEC. HUVEC were incubated with IFN-� 
(100 U/ml) or with BSA (-) for 24 h and fixed with methanol. For detection of GBP-1 a standard immunoperoxidase 
staining procedure was used with MAb 1B1. Nuclei were counterstained with hematoxilin (blue), GBP-1 appears as 
a brown cytoplasmic staining. Magnification: x 630. From (Lubeseder-Martellato et al. 2002). 
 

 

In a next set of experiments, GBP-1 localization was investigated by indirect 

immunofluorescence in HUVEC stimulated with IFN-� (100 U/ml), IL-1� (20 U/ml) or TNF-

-� (300 U/ml) for 24 h (Figure 24, see also Figure 15). GBP-1 localized exclusively in the 

cytoplasm of IC-stimulated HUVEC and was present in some granular structures (Figure 

24B-24C, white arrows). Unstimulated cells showed no staining (Figure 24A). 

These results indicated that GBP-1 subcellular localization in HUVEC is the same, 

irrespectively of the cytokine used for induction of GBP-1 expression. 
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Figure 24: Immunofluorescence analysis of GBP-1 subcellular localization in HUVEC. HUVEC were incubated 
with BSA (A), IFN-� (100 U/ml) (B), IL-1� (20 U/ml) (C) or TNF-� (300 U/ml) (D) for 24 h and fixed with methanol. 
For detection of GBP-1 MAb 1B1 was used. Granular structures are indicated by white arrows. Scale bar = 20 �m. 
 

 

2.3 Colocalization studies of GBP-1 with markers for different organelles 

 

In order to investigate whether the granular staining reaction of GBP-1 may be due to 

localization of GBP-1 in intracellular vesicles, double-immunofluorescence studies were 

performed for the detection of GBP-1 and different markers specific for defined organelles. 

GBP-1 expression in HUVEC incubated with IFN-� (100 U/ml) (Figure 25A and 25D) or 

IL-1� (20 U/ml) (Figure 25B and 25C) for 25 h was analyzed by indirect 

immunofluorescence (Figure 25, red). In these cells, GBP-1 was stained using MAb 1B1 

(Figures 25A-D, red arrows). In addition, in these cells caveolae were stained using anti-

caveolin-1 (Figure 25A, green) and anti-P-caveolin antibodies (Figure 25B, green). GBP-1 

granular staining did not colocalize with caveolae (Figures 25A and 25B). In a next step, 

lysosomes were stained using cathepsin-D (Figure 25C; green). GBP-1 granular structures 
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Figure 25: Double 
immunofluorescence 
stainings of IC-stimulated 
HUVEC. HUVEC were 
incubated with IFN-� (100 
U/ml) (A and D) or IL-1� (20 
U/ml) (B and C) for 24 h and 
then fixed with methanol. For 
detection of GBP-1 MAb 1B1 
was used. Red arrows 
indicate GBP-1 granular 
structures. Cellular 
organelles distinct from 
GBP-1 aggregates are 
indicated by a green arrow.  
Caveolae were stained with 
anti-caveolin (Cav, A, green) 
and anti-phospho-caveolin 
antibodies (P-caveolin, B, 
green). (B) Phospho-caveolin 
is concentrated more at the 
periphery of the cell (green 
arrow). Lysosomes were 
stained with cathepsin D Cav, 
B). In (A, B and C) nuclei 
where counterstained with 
DAPI (blue). The 
endoplasmic reticulum was 
tained with ConA (D, 

green). For each staining a 
magnification of the white 
nsert is shown in the right 

panels. In (D) yellow arrows 
ndicate GBP-1 

colocalization with ConA. 
Scale bar = 20 �m. 

 

were also distinct from lysosomes. In addition GBP-1 did not colocalize with stainings 

obtained with anti-Lamp-1 and anti-Rab7 antibodies for lysosomes and anti-TGN38 
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antibodies for the Golgi apparatus (data not shown). Finally the endoplasmic reticulum was 

stained using the lectin concanavalin A (ConA) (Figure 25D, green). ConA binds selectively 

to �-mannopyranosyl and �-glucopyranosyl residues. The latter are two glycans that are 

usually restricted to the rough endoplasmic reticulum and to the perinuclear envelope. In this 

case GBP-1 was partially associated with endoplasmic reticulum (Figure 25D; GBP-1, red 

arrow; ConA, green arrow; colocalization, yellow arrows). Altogether this data indicated that 

IC-induced GBP-1 in HUVEC may associate partially with the endoplasmic reticulum. 

 

2.4 Studies of GBP-1 association with detergent-resistant membranes 

 

In a next step the nature of GBP-1 granular structures was investigated. In eukaryotic cells 

many types of vesicles are surrounded by coating proteins. Such proteins, together with 

sphingolipid-cholesterol rafts make the membranes of these vesicles insoluble in the detergent 

triton-X100 at 4 °C (Schekman, et al. 1996; Simons, et al. 1997; Helms, et al. 1998; 

Schekman 2002). An example of detergent-insoluble vesicles are the one originating from the 

endoplasmic reticulum and surrounded by coating type II (COPII) proteins (Tang, et al. 2000; 

Tang, et al. 2001). It has been shown that acylated proteins are associated with detergent-

insoluble membrane fractions (Melkonian, et al. 1999). Prenylated proteins are largely 

excluded from detergent-resistant membrane fractions; nevertheless some prenylated proteins 

have been found also in detergent-insoluble fractions, for example Rap1 that is a monomeric 

GTPase that is closely related to Ras (Melkonian, et al. 1999). 

GBP-1 has a CAAX isoprenylation motif (Figure 9) (Nantais, et al. 1996). GBP-1 prenylation 

could target GBP-1 to coated vesicles containing detergent-insoluble membranes and may 

cause the granular staining pattern of intracellular GBP-1. Therefore, the localization of 

GBP-1 in the detergent-soluble and/or insoluble fraction of HUVEC extracts was 

investigated. Cell membranes were extracted with the detergent triton-X100 from HUVEC 

incubated with IFN-� (100 U/ml) for 24 h (Figure 26A). GBP-1 was found in both the 

detergent-soluble (Figure 26A, Sol.) and detergent-insoluble (Figure 26A, Ins.) fractions. 

Quantitative analysis of three Western blots indicated that in average 16.7 % of total GBP-1 

protein localized in the detergent-insoluble fraction. 

As a control that the separation of the detergent-soluble and -insoluble fractions was near to 

completion the Sec23 protein [a component of COPII coated vesicles (Tang, et al. 2000; 

Tang, et al. 2001)] was used. Western blot analysis of the same extracts described above 
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showed that Sec23, as expected, was localized exclusively in the detergent-insoluble fraction 

(Figure 26B). 

These data suggested that GBP-1 is localized predominantly in the detergent-soluble fraction 

of proteins of the cytoplasm. However, a significant part of GBP-1 was present also in the 

detergent-insoluble fraction, which suggested a membrane association of the protein.  
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Figure 26: Detergent-extraction of GBP-1 protein from IFN-�-stimulated HUVEC. (A) HUVEC were 
incubated with IFN-� (100 U/ml) for 24 h. Briefly, cell monolayers were incubated for 30 min on ice with lysis 
buffer containing 1 % triton-X100. Cells were scraped off and the lysate was centrifuged. The pellet was the 
insoluble fraction (Ins.). Proteins of the supernatant were precipitated with TCA (soluble fraction, Sol.). The 
GBP-1 content in these two fractions was investigated by Western blot analysis with MAb 1B1. (B) Western blot 
analysis of the same extracts as in A using an anti-Sec23 antibody.  
 

 

2.5 Studies of IFN-�-induced GBP-1 expression in different cell types 

 

GBP-1 mRNA expression has often been used as a marker to demonstrate IFN-� activation of 

cells in culture (Ucer, et al. 1986; van Loon, et al. 1991; Tnani, et al. 1999; Yang, et al. 1999; 

Kumar, et al. 2001). However, GBP-1 protein expression has not been investigated in detail so 

far. 

In order to investigate in which cell types in vitro GBP-1 expression was induced by IFN-� at 

the protein level, a variety of eukaryotic cells including B-cells, T-cells, monocytes, primary 

mononuclear cells (PBMC), keratinocytes, primary fibroblasts and primary endothelial cells 

(HUVEC and dMVEC) were stimulated with IFN-� (100 U/ml) for 16 h. GBP-1 protein 

expression was analyzed by Western blot. GBP-1 expression was up-regulated in all these 

cells with the exception of T-cells (Figure 27). 

These results were in agreement with previous work on the expression of GBP-1 mRNA in 

different cells (Cheng, et al. 1983; Decker, et al. 1989; Saunders, et al. 1999). 
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Figure 27: Western blot analysis of GBP-1 expression in different cell types stimulated with IFN-�. The 
different cell types indicated in the figure were incubated with IFN-� (100 U/ml) or BSA (C) for 16 h. GBP-1 
expression was analyzed by Western blot using MAb 1B1. Actin staining shows that similar amounts of protein 
extracts were loaded. From (Lubeseder-Martellato, et al. 2002). B-cells (Schlicht), T-cells (Hut 78), monocytes 
(U937), keratinocytes (HaCaT) and embryonic fibroblasts (HEF) were cell lines, whereas PBMC (primary 
mononuclear cells), the fibroblasts, HUVEC and dMVEC were primary cells. 
 

Summary of chapters 1 to 2 : IC-induced GBP-1 expression in vitro 

 

In these first paragraphs GBP-1 expression was investigated at the protein level in HUVEC 

and dMVEC. IC (IFN-�, IFN-�, IL-1�, IL-1� and TNF-�) induced GBP-1 expression. 

Notably, none of other chemokines or growth factors induced GBP-1 expression in HUVEC. 

In addition, GBP-1 subcellular localization in HUVEC was the same, irrespective whether 

IFN-�, IL-1� or TNF-� were used to induce GBP-1 expression. Specifically the following 

results qualified GBP-1 as a molecular marker of IC-activated EC. 

(1) It has been shown that stimulation of EC with IC, caused a stable GBP-1 expression. In 

addition, GBP-1 expression could be enhanced in HUVEC already expressing GBP-1. 

(2) It has also been shown that pre-incubation of EC with AGF did not affect IC-induced 

GBP-1 expression, both in HUVEC and in dMVEC. Therefore, EC that are activated by 

IC express GBP-1 independently of a previous stimulation. 

(3) Most importantly, AGF applied simultaneously with IC inhibit IC-induced GBP-1 

expression. Therefore, GBP-1 expression reflects the relative concentrations of IC and 

AGF hat are active on EC.  

Altogether this data qualify GBP-1 as a molecular marker for IC-activated EC in vitro. 
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3 Characterization of IC activation of EC in vivo 

 

GBP-1 expression could be induced by IFN-� in many different cells in vitro (see Figure 27). 

At present, no studies on GBP-1 expression in vivo were performed, due to the lack of 

specific antibodies. In order to investigate which cells may express GBP-1 in human tissues 

an immunohistochemical analysis of GBP-1 expression in paraffin-embedded human tissue 

was performed.  

 

3.1 Expression of GBP-1 in normal human tissue 

 

Immunohistochemical analysis of human tissue sections of spleen, uterus, lung and heart with 

MAb 1B1 demonstrated that GBP-1 was highly associated with endothelial cells (Figures 

28A-D, black arrows). MAb 6F12 that recognized GBP-2 in addition to GBP-1 (see Results, 

paragraph 2.1 and Figure 13) produced similar staining patterns as compared to MAb 1B1 

[compare Figure 28A (MAb 1B1) and Figure 28I (MAb 6F12)]. This indicated that GBP-1 is 

the major isoform expressed in EC. 

In addition to EC, GBP-1 expression was detected in mononuclear cells in the bladder, lung 

(Figure 28C, brown arrows), stomach, colon and liver and in the epithelium in prostate, lung, 

colon, stomach and thyroid as assessed by morphological analysis (summarized in Table 3). 

Notably, GBP-1 was not detected in the skin (Figures 28E and 28F, negative vessels are 

indicated by a white arrow). 

Control stainings with a primary antibody, which had been pre-adsorbed with GBP-1-His 

protein, did not produce any signals (Figure 28G, lung). In addition, no signals were obtained 

when the staining procedure was carried out without the primary antibody (data not shown) or 

with an isotype control antibody (Figure 28H, spleen). 

The results obtained in the immunohistochemical analysis for GBP-1 expression in different 

tissues are summarized in Table 3. 

In order to confirm EC association of GBP-1 in human tissues, double immunofluorescence 

studies were performed. Simultaneous detection of GBP-1 (Figure 29, left panels) and the 

EC-associated antigen CD31 (Figure 29, middle panels) in tissue sections of bladder (Figure 

29A), endometrium (Figure 29B), heart (Figure 29C) and lung (Figure 29D) confirmed that 

GBP-1 was highly associated with EC in human tissues (Figure 29; GBP-1: green, left panel; 

CD31: red, middle panel; co-localization: yellow, right panel, white arrows). 
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All together these data indicated that GBP-1 expression was highly associated with 

endothelial cells in different human tissues in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 28: Immunohistochemical analysis of GBP-1 expression in various human tissues. GBP-1 expression 
in paraffin-embedded sections of human spleen (A ,I), uterus (B), lung (C), heart (D) and skin (E,G) was 
detected using standard immunohistochemical staining with MAb 1B1 (A-F) and MAb 6F12 (I). In control 
stainings MAb 1B1 was pre-adsorbed with an excess (300 molar fold) of purified GBP-1-His (G, lung) or an 
isotype control antibody (H, spleen). Examples of GBP-1 positive (black arrows) and negative (white arrows) 
vessels are indicated. Mononuclear cells expressing GBP-1 are indicated by brown arrows. Magnification: x 
250. From (Lubeseder-Martellato et al. 2002). 
 

 

3.2 GBP-1 expression in EC in diseases of the skin with a high-inflammatory component 

 

Of note, GBP-1 was not expressed in healthy normal skin tissues (Figures 28E and 28F). In 

order to determine whether GBP-1 expression may be induced by IC in EC in vivo, GBP-1 

expression was investigated in different skin diseases with a prominent inflammatory 
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component. AIDS-associated Kaposi’s sarcoma (KS) is a neoplasm of vascular origin which 

expresses high levels of IC (Brooks 1986; Stürzl et al. 1995; Fiorelli et al. 1998; Ensoli et al. 

2000; Guenzi et al. 2001; Stürzl et al. 2001). Adverse drug reactions and psoriasis are both 

characterized by a local inflammatory response involving infiltration of inflammatory cells, 

into the tissue and resulting in a local increase of IC concentration (Gomi, et al. 1991; Kapp 

1993; Chodorowska 1999; Ackermann, et al. 1999; Yawalkar, et al. 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29: Double immunofluorescence staining of GBP-1 and CD31 in human tissues. Indirect 
immunofluorescence staining of tissue sections of bladder (A), endometrium (B), heart (C) and lung (D) for 
GBP-1 (using MAb 1B1) (green, left panels) and the endothelial cell associated antigen CD31 (red, middle 
panels). Merging of the two pictures (right panels) shows co-localization of GBP-1 and CD31 (yellow, white 
arrows). Magnification: x 400. From (Lubeseder-Martellato et al. 2002). 
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Table 3: GBP-1 expression in different human tissues.  
 

Tissue 
 

n GBP-1 positive 
vessels 

Additional GBP-1
positive cells 

    
Spleen  5 + - 
Bladder 5 + +m 
Testis  5 + - 
Prostate 5 + +e 
Ovary 5 + - 
Endometrium 5 + +g 

Uterus 5 + - 
Placenta 5 + - 
Lung 10 + +m,e 
Heart 9 + - 
Colon 6 + +m,e 
Stomach 10 + +m,e 
Thyroid gland 6 + +e 
Brain 3 + - 
Kidney 8 - +gt 
Liver 6 - +m 
Skin 9 - - 

 
n, number of samples; +, positive staining; -, no staining; m, mononuclear cells; g, glands; 
e, epithelium; gt, glomeruli and tubuli. From (Lubeseder-Martellato et al. 2002). 

 

 

Indirect immunofluorescence studies were performed on paraffin-embedded sections from 

different patients affected with KS (n=37, Figures 30B and 30E), adverse drug reactions of 

the skin (n=2, Figure 30C) and psoriasis (n=3, Figure 30D). Notably, GBP-1 was detected in 

all of these inflammatory skin diseases and in Kaposi’s sarcoma (Figures 30B-E, left panels). 

GBP-1 expression was detected in small size vessels in adverse drug reactions of the skin 

(Figure 30C), in intermediate size vessels in KS (Figures 30B and 30E) and in larger vessels 

in psoriasis (Figure 30D). In all specimens GBP-1 expression was restricted to single vessels 

(Figures 30B-E). This is in agreement with the locally restricted expression of IC that has 

been reported in all of these lesions (Gottlieb, et al. 1988; Kapp 1993; Stürzl, et al. 1995; 

Fiorelli, et al. 1998; Ackermann, et al. 1999; Hari, et al. 1999; Ensoli, et al. 2000; Guenzi, et 

al. 2001; Stürzl, et al. 2001). GBP-1 was not detected in healthy skin (Figure 30A, left panel, 

compare also Figures 28E and 28F). In addition, in diseased skin, GBP-1 was selectively 

expressed in EC as indicated by simultaneous detection of GBP-1 and CD31 (Figures 30A-D; 

GBP-1: green, left panel; CD31: red, middle panel; co-localization: yellow, right panel, white 

arrows). 
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Figure 30: GBP-1 expression in vascular EC in skin diseases with a high inflammatory component. Indirect 
immunofluorescence staining of tissue sections of healthy skin (A), Kaposi’s sarcoma (B, E), adverse drug 
reaction of the skin (C) and psoriasis (D) for GBP-1 (green, left panels, A-E) and the EC associated antigen 
CD31 (red, middle panels, A-D). MAb 1B1 was used in A, B and E, MAb 6F12 was used in C and D. Merging of 
the two pictures (right panels) shows co-localization (yellow, white arrows). In (E) the mouse anti-CD31 
antibody was omitted. Magnification A, B, E: x 250 and C, D: x 400. From (Lubeseder-Martellato et al. 2002). 
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An anti-rat antibody coupled to the fluorochrome Alexa488 and the anti-murine antibody 

coupled to the fluorochrome Alexa546 were used as secondary antibodies for the detection of 

GBP-1 and CD31 respectively. The specificity of the cross absorbed secondary antibodies 

was demonstrated by the facts that GBP-1 negative skin sections did not show any green 

fluorescence of the anti-rat-Alexa488 antibody (Figure 30A, left panel). Moreover, KS 

sections that were stained without the anti-CD31 antibody did not reveal any red fluorescence 

of the anti-murine-Alexa546 antibody (Figure 30E, middle panel).  

Altogether these data showed that GBP-1 expression is highly associated with EC in vivo and 

that GBP-1 is selectively upregulated by IC in inflammatory skin diseases. These findings 

suggested that GBP-1 characterizes the IC-activated phenotype of EC in vivo. 

 

3.3 GBP-1 expression in Kaposi´s sarcoma 

 

In order to confirm that GBP-1 expression in vessel endothelial cells of the skin is induced by 

IC, KS was used as in vivo model. As mentioned above KS is a neoplasm of vascular origin 

which expresses high levels of IC, in particular IFN-�, IL-1� and TNF-� that play a crucial 

role in the early stages of KS (Brooks 1986; Ensoli, et al. 2000; Stürzl, et al. 2001). The main 

source of IC in KS lesion are infiltrating monocytes (Stürzl, et al. 1995; Fiorelli, et al. 1998).  

Immunohistochemical studies for the simultaneous detection of GBP-1 and of monocytes 

demonstrated that GBP-1 is selectively expressed in vessels (Figures 31, black arrows) which 

are surrounded by numerous perivascular CD68-positive monocytes (Figures 31, red arrows). 

 

 
Figure 31: Immunohistological detection of 
GBP-1 and monocytes in KS tissue. A KS section 
was stained using standard immunohistochemical 
techniques for the simultaneous detection of GBP-1 
(brown, black arrows) and the monocytic marker 
protein CD68 (pink, red arrows). Magnification: x 
670. From (Guenzi et al. 2001). 
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In addition, GBP-1 expression was analyzed in KS tissue sections in which early (Figure 32, 

upper half) and late (Figure 32, lower half, white circle) developmental stages of KS were 

present simultaneously. 

Early KS stages have been shown to express high concentrations of IC; by contrast in late KS 

stages an increased expression of AGF has been reported (Xerri, et al. 1991; Ensoli, et al. 

1994; Stürzl, et al. 1995; Cornali, et al. 1996; Ensoli, et al. 2000; Stürzl, et al. 2001). 

Simultaneous detection of GBP-1 and CD31 indicated that in these sections GBP-1 was 

predominantly expressed in the areas presenting an early stage histology (Figure 32, upper 

half, yellow arrows). In contrast, in areas with nodular late stage histology, GBP-1 expression 

was clearly lower (Figure 32, lower half, white circle). 

 

3.4 GBP-1 expression in non-proliferating vessel endothelial cells 

 

GBP-1 has been shown to mediate the antiproliferative effect of IC on HUVEC in vitro 

(Guenzi, et al. 2001). In order to investigate whether GBP-1 may mediate the inhibition of EC 

proliferation by IC also in vivo, immunofluorescence stainings of KS tissue sections for the 

simultaneous detection of GBP-1, the endothelial cell-associated antigen CD31 and the 

proliferation-associated antigen Ki67 were performed. 

Simultaneous detection of GBP-1 (Figures 33A and 33D, arrows; 33C and 33F, green) and 

Ki67 (Figures 33B 33E, arrows; 33C 33F, red) indicated that in no case GBP-1 and Ki67 

(Figures 33B and 33E) were co-expressed in the same cell (Figures 33C and 33F). This 

demonstrated that GBP-1 is not expressed in proliferating EC. Specificity of Ki67 staining 

was demonstrated by the positive reaction of proliferating basal cells in the epidermis (Figure 

33C, asterisk). 

To further prove that GBP-1 is only expressed in non-proliferating, but not in proliferating EC 

within KS lesions, triple labeling experiments for the simultaneous detection of GBP-1, Ki67 

and CD31 were performed in the tissue sections. CD31-positive EC surrounding tumor 

vessels were evenly distributed (Figures 33H, arrow and 33J, red cytoplasmic staining). In 

contrast, the highest number of GBP-1- (Figure 33G, arrows and 33J, green cytoplasmic 

staining) or Ki67- (Figure 33I, arrows and 33J, blue nuclear staining) positive EC were 

detected in different areas of the tissue section. Interestingly, areas with many Ki67-

expressing EC (Figure 33J, upper part, blue arrows) revealed only few GBP-1-expressing EC, 

and vice versa, in areas with many GBP-1-expressing endothelial cells (Figure 33J, lower 

part, green arrows) only a few Ki67 positively stained cells were detected. Altogether, these  
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data strongly suggested that GBP-1 mediates the IC-induced inhibition of EC proliferation 

also in vivo. 
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Figure 32: Overview of a KS lesion stained for GBP-1 and CD31. A paraffin-embedded KS section presenting 
late stage (white circle) and early stage histology simultaneously was subjected to immunofluorescence for the 
detection of GBP-1 (green) and the EC-associated antigen CD31 (red). Red arrows: CD31 positive vessels, 
yellow arrows: CD31 positive vessels expressing GBP-1. For the detection of GBP-1 MAb 1B1 was used. This 
overview picture is a composite of three single pictures. Magnification: x 100. 
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Figure 33: Indirect immunofluorescence staining of GBP-1, CD31 and Ki67 in KS lesions. Paraffin-
embedded KS sections were stained by immunofluorescence for the detection of GBP-1 (arrows, A and D) and 
Ki67 (arrows B, E) alone and in combination (GBP-1, green cytoplasmic staining; Ki67, red nuclear staining). 
Ki67 positive basal cells in the epidermis are labeled by an asterisk (C and J). Triple labeling experiment for the 
detection of GBP-1 (green arrow, G), CD31 (red arrow, H) and Ki67 (blue arrow, I) alone or in combination 
(CD31, red; GBP-1, green; Ki67, blue, J). Double positive EC are indicated: Ki67/CD31 (blue arrows) and 
GBP-1/CD31 (green arrows). Magnification: x 250. From (Guenzi et al. 2001) 
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Summary of chapter 3 : 

 

In the previous paragraphs the expression of GBP-1 in vivo has been investigated. It has been 

shown that GBP-1 expression was highly associated with EC in different human tissues in 

vivo, but that GBP-1 was not expressed in healthy normal skin tissues. Investigation of GBP-1 

expression in different skin diseases with a prominent inflammatory component showed that 

GBP-1 expression is selectively upregulated by IC in vivo. 

In particular in KS infiltrating monocytes produce high levels of IFN-�, IL-1� and TNF-�. 

GBP-1 was selectively expressed in vessels that were surrounded by numerous perivascular 

CD68-positive monocytes. In addition, GBP-1 expression was analyzed in KS tissue sections 

in which early and late developmental stages of KS were present simultaneously. In these 

sections GBP-1 was predominantly expressed in the areas presenting an early stage histology 

which have been shown to express high concentrations of IC. By contrast, GBP-1 expression 

in these KS sections was clearly lower in areas with nodular late stage histology in which an 

increased expression of AGF has been reported.  

Altogether these findings suggested that GBP-1 is a novel activation marker that characterizes 

the IC-activated phenotype of EC in vivo. 

In addition, it was investigated whether GBP-1 may mediate the inhibition of EC proliferation 

by IC in vivo. For this purpose double and triple labeling experiments of KS tissue sections 

for the simultaneous detection of GBP-1, CD31 and the proliferation-associated antigen Ki67 

were performed. Areas with many Ki67-expressing EC revealed only few GBP-1-expressing 

EC, and vice versa, in areas with many GBP-1-expressing EC only a few Ki67 positively 

stained cells were detected.  

Altogether, these data strongly suggested that GBP-1 mediates the inhibition of EC 

proliferation by IC also in vivo. 

 

4 Studies of GBP-1 secretion  

 

GBP-1 has been shown to characterize the IC-activated phenotype of EC both in vitro and in 

vivo (see Results, paragraph 2.5 and 3.). Moreover, GBP-1 localized partially in granular 

structures (see figure 30). This suggested that GBP-1 may be secreted. Therefore, the 

possibility that GBP-1 may be secreted and may a be soluble marker of IC activation of EC 

was investigated. 
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In a first step, GBP-1 was immunoprecipitated from the cell culture supernatant of HUVEC 

that have been stimulated with IFN-� (100 U/ml) for 24 h with a polyclonal anti-GBP-1 

antibody. Under these conditions GBP-1 expression was highly induced in these cells (Figure 

34A, cell lysate). Notably, GBP-1 could also be detected in the cell culture supernatants of 

these cells after immunoprecipitation and subsequent Western blot analysis (Figure 34A, Sup, 

IFN-�). In the immunoprecipitates also a smaller protein of about 47 kDa reacted with MAb 

1B1. This protein was only detected in the cell culture supernatants of cells reated with IFN-� 

(Figures 34A, Sup), but not in the cell lysate of the respective cells. GBP-1 was not in the 

supernatants of unstimulated cells (Figure 34A, Sup, -). 
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Figure 34: Detection of GBP-1 in cell culture supernatants of HUVEC. (A) HUVEC were incubated for 24 h 
with IFN-� (100 U/m) or with BSA (-). GBP-1 expression in the cell lysates was detected by Western blot 
analysis using MAb 1B1 (Cell lysate). GBP-1 was immunoprecipited with a polyclonal anti-GBP-1 antibody 
from the cell culture supernatants and then detected by Western blot using MAb 1B1 (Sup). (B) HUVEC were 
transduced with a retroviral vector that expressed a mutated GBP-1 without the CAAX motif (�CAAX) 
constitutively. Untreated wild type HUVEC were used as a control (-). Western blot analysis of the respective 
cells extracts was performed using MAb 1B1. Actin staining shows that comparable amounts of protein extracts 
were loaded. (C) HUVEC were transduced with a retroviral vector that expressed GBP-1 (GBP-1) or expressed 
the same deletion mutant of GBP-1 (�CAAX) as in (B) constitutively. GBP-1 was immunoprecipited with a 
polyclonal anti-GBP-1 antibody from the cell culture supernatants and detected by Western blot using MAb 1B1. 
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In order to investigate if GBP-1 secretion was dependent on IFN-� stimulation, HUVEC were 

transduced with a retroviral vector for constitutive expression of GBP-1. Similarly as 

observed with IFN-� stimulated cells, GBP-1 could be detected in the cell culture supernatant 

of transduced cells by immunoprecipitation with a polyclonal anti-GBP-1 antibody and 

subsequent Western blot analysis; also in this case the 47 kDa fragment could be observed 

(Figure 34B, GBP-1). 

Preliminary experiments were performed using HUVEC transduced with a retroviral vector 

for constitutive expression of a mutated GBP-1 without the CAAX motif (�CAAX) (Guenzi, 

et al. 2001). MAb 1B1 was able to recognize this mutant GBP-1 in Western blot (Figure 34B, 

�CAAX). Interestingly, this GBP-1 mutant could not be detected in the cell culture 

supernatant of these cells (Figure 34C, Sup, �CAAX, compare with GBP-1). 

In a next step, GBP-1 was immunoprecipitated from the cell culture supernatants of HUVEC 

metabolically labeled with 35S-Methionine. HUVEC were either incubated with IFN-� (100 

U/ml, 24 h) (Figure 35, IFN-�) or transduced with a retroviral vector for constitutive 

expression of GBP-1 (Figure 35, GBP-1). GBP-1 was detected by autoradiography in the cell 

lysate of IFN-� treated HUVEC (Figure 35A). Notably, GBP-1 was clearly detected in the 

supernatants of IFN-� treated HUVEC and of HUVEC expressing GBP-1 constitutively 

(Figure 35B). No GBP-1 was detected in the cell lysate or in the supernatant of unstimulated 

control cells (Figure 35, -). This result confirmed the data obtained by immunoprecipitation 

followed by Western blot analysis. 
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Figure 35: Detection of GBP-1 in cell lysates and cell culture supernatants of metabolically labeled HUVEC. 
(A and B) HUVEC were grown for 16 h in low medium, washed twice with PBS and incubated in EGLM-2 
medium (without methionine) for 1 h. Afterwards the cells were labeled with 35S-Methionine (27.8 �Ci/ml) and 
incubated with IFN-� (100 U/ml) or with BSA (-) for 24 h. Alternatively, HUVEC were transduced with a 
retroviral vector that expressed GBP-1 constitutively (GBP-1) before labeling with 35S-Methionine. (A) 
Intracellular GBP-1 was analyzed by SDS-PAGE of the cell extracts and subsequent autoradiography (Cell 
lysate). (B) GBP-1 from the cell culture supernatants (Sup) was immunoprecipited with a polyclonal anti-GBP-1 
antibody. After separation by SDS-PAGE GBP-1 was detected by autoradiography.  
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4.1 Studies of GBP-1 secreted by HUVEC in the absence of cell death 

 

In a next step it was investigated whether the release of GBP-1 into the cell culture supernatant 

may be due to cell death the following experiments were performed. The unspecific exit of 

proteins from the cells can be verified by the presence of non-secreted abundant, cytosolic 

proteins in the cell culture supernatants. 

Therefore, the presence of the abundant cytosolic protein glyceraldehyd phosphate 

dehydrogenase (GAPDH) was investigated in the cell culture supernatant of HUVEC treated 

with IFN-� (100 U/ml) or BSA for 24 h. Immunoprecipitation experiments followed by 

Western blot analysis showed that GAPDH was present in high concentrations in the cell 

lysate of these cells (Figure 36A, Cell lysate). In contrast, GAPDH could neither be detected 

in the cell culture supernatants of untreated (Figure 36A, -) nor of IFN-�-treated cells (Figure 

36A, IFN-�).  
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Figure 36: Detection of GAPDH and LDH in cell culture supernatants. (A) Immunoprecipitation and 
subsequent Western blot analysis of GAPDH of cell lysates and in of cell culture supernatant (Sup) of HUVEC 
incubated with IFN-� (100 U/ml) or with BSA (-) for 24. (B) Lactate dehydrogenase (LDH) activity assay of the 
cell culture supernatants of HUVEC either unstimulated (-), stimulated with IFN-� (100 U/ml, 24 h) or 
transduced with a retroviral vector for the constitutive expression of GBP-1 (GBP-1). LDH activity of a standard 
was measured in order to correlate the result of the LDH activity assay with cell viability. The standard 
contained HUVEC lysed by freezing and thawing in concentrations of 1 %, 5 % or 7.5 % of the cell numbers 
used for in the stimulation described above. 
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In an additional experiment, the presence of lactate dehydrogenase (LDH) in the cell culture 

supernatants was detected by measuring LDH activity. This method is considered as the most 

sensitive approach to detect alterations in cell permeability and non-specific release of 

intracellular proteins (Rubartelli, et al. 1990; Ensoli, et al. 1993; Chang, et al. 1997). LDH 

activity was analyzed in the cell culture supernatants of HUVEC treated with IFN-� (100 

U/ml) or BSA for 24 h (Figure 36B). LDH activity in the respective cell culture supernatants 

showed only a very low activity (Figure 36B, gray bars). LDH activity was not significantly 

increased in IFN-�-treated HUVEC (Figure 36B, gray bar, IFN-�) or in HUVEC transduced 

with a retroviral vector for the constitutive expression of GBP-1 (Figure 36B, gray bar, 

GBP-1) as compared to untreated cells (Figure 36B, gray bar, -). The standard used to 

correlate LDH activity with cell viability contained 1 %, 5 % or 7.5 %, of the cell number of 

HUVEC used for in the stimulation described above lysed by freezing and thawing. 

Comparison of LDH activity of the above described cell culture supernatants with the 

standard (Figure 36B, white bars) indicated that less than 1 % of these HUVEC had a 

damaged plasma membrane that may cause an unspecific exit of proteins. 

In a final experiment, HUVEC treated with IFN-� (100 U/ml) or BSA for 24 h were stained 

with Dead-Red, a membrane-impermeant dye that stains only cells with damaged plasma 

membranes (Figure 37A, red cells, arrows). In agreement with the LDH-analysis, less then 

2 % of the HUVEC exhibited a damaged plasma membrane, irrespectively of IFN-� treatment 

(Figure 37B, black bars). 
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Figure 37: Detection of cell death in IFN-�-treated HUVEC. (A and B) HUVEC were incubated with IFN-� 
(100 U/ml) or with BSA (-) or 24 h. (A) HUVEC were stained with the membrane-impermeant dye Dead-Red 
(red) and with the membrane permeant dye Syto10 (green). Under this conditions living cells are green, whereas 
dead cells or cells with altered membrane permeability are stained in red (arrows). (B) Cells from three optical 
fields like in A were counted. White bars = total number of cells. Black bars = relative amount of cells with 
altered membrane permeability. 
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All of these data indicated that HUVEC expressing GBP-1 constitutively or after IFN-� 

treatment are able to release it actively in the cell culture supernatant, independently from cell 

death. 

In order to determine the relative amount of secreted GBP-1 in comparison to intracellular 

GBP-1, the concentrations of intracellular and extracellular GBP-1 were determined in 

HUVEC incubated with IFN-� (100 U/ml) for 24 h. Proteins in the cell culture supernatant 

were concentrated by TCA precipitation. GBP-1 was detected in the precipitate by Western 

blot analysis. A quantitative determination by comparison of the signal intensities to the 

signals obtained with defined amounts of purified recombinant GBP-1-His was performed. 

The amount of the precipitated GBP-1 was normalized to 1 mg of total cell lysate. By this 

method it could be determined that the cell culture supernatants of these cells contain 53 ng of 

GBP-1 and the cell lysates of the same cells contain 555 ng of GBP-1. This indicated that 

about 10 % of total intracellular GBP-1 was secreted from IFN-�-treated HUVEC into the cell 

culture supernatant. In addition, these results indicated that the amount of GBP-1 found in the 

cell culture supernatants may not be explained by the percentage of dead cells. Therefore, 

these data suggested that extracellular GBP-1 is not due to the release from dead cells but is 

predominantly secreted from intact cells. 

Altogether these results, demonstrated that GBP-1 is released into the cell culture supernatant 

of IFN-�-treated HUVEC or from HUVEC expressing GBP-1 constitutively. This release is 

not due to alterated membrane permeability of the cells, apoptosis or necrosis of the cells.  

 

4.2 Development of an anti-GBP-1 enzyme-linked immunoadsorbent assay (ELISA) 

 

In order to generate a tool for the quantification of GBP-1 in solution, a three-step sandwich-

ELISA for the rapid detection of soluble GBP-1 was developed. Briefly, ELISA plates were 

first coated with anti GBP-1 MAb 1B1 hybridoma supernatants diluted 1:5. Second, after 

addition of the samples, a rabbit anti-GBP-1 antibody was added. Third, an alkaline 

phosphatase (AP)-conjugated anti-rabbit antibody was added. P-nitrophenyl phosphate 

(PNPP) was used as a substrate for the AP. The absorbance was measured at 405 nm (A405). 

For evaluation of this method recombinant purified GBP-1-His protein was used as a 

standard. As a control for specificity of the ELISA, increasing concentrations of BSA were 

used. As shown in Figure 38, the A405 increased in a concentration-dependent manner in the 

presence of GBP-1-His (gray bars), by contrast the A405 did not increase with increasing 

concentration of BSA (white bars).  
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In order to test whether the His-tag affected the sensitivity of the ELISA, the concentrations 

of serially diluted recombinant GBP-1-His and His-GBP-1 standards were measured by the 

ELISA (Figure 38B). No significant difference was observed in the A405 measured from the 

same concentrations of GBP-1-His and His-GBP-1 (Figure 38B). This indicated that the 

sensitivity of the ELISA was not affected by the His-tag. 
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Figure 38: Detection of recombinant GBP-1 by ELISA. (A) A serial dilution of purified recombinant GBP-1-
His diluted in PBS in the indicated concentrations was analyzed by ELISA (gray bars). The same concentrations 
of BSA in PBS were used as a control (white bars). The absorbance was measured at 405 nm (A405). The A405 
increased in a concentration-dependent manner in the presence of GBP-1-His. By contrast the A405 did not 
increase with increasing concentration of BSA. (B) A serial dilution of purified recombinant GBP-1-His (gray 
bars) and His-GBP-1 (white bars) diluted in PBS at the indicated concentrations was analyzed by ELISA. 
Similar results were obtained independently whether the his tag was at the N-terminal or at the C-terminal end 
of recombinant GBP-1.  
 

 

With this ELISA increased concentrations of GBP-1 could be detected in the cell culture 

supernatant of HUVEC treated with IFN-� (100 U/ml) for 24 h (Figure 39A). This result was 

well in agreement with the result obtained by immunoprecipitation (Figure 39B) of GBP-1 

from the same cell culture supernatant: GBP-1 could be detected only in the cell culture 

supernatant of IFN-�-treated (100 U/ml, 24 h) HUVEC, but not in the cell culture supernatant 

of untreated cells (-) (Figure 39). In agreement with the amount of secreted GBP-1 

determined by TCA precipitation, the amount of secreted GBP-1 determined by ELISA was 

in average 50 ng GBP-1/mg of total protein content (Figure 39A).  

In summary, the development of this ELISA allowed the quantitative determination of soluble 

GBP-1 in different samples. 
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Figure 39: Detection of GBP-1 in the cell culture supernatant of HUVEC treated with IFN-�. (A) HUVEC 
were incubated with IFN-� (100 U/ml) or with BSA (-) for 24 h. The concentration of GBP-1 in the cell culture 
supernatant (Sup, gray bars) was measured by ELISA. A dilution series of recombinant purified GBP-1-His was 
used a standard (white bars). The absorbance was measured at 405 nm (A405). (B) GBP-1 was 
immunoprecipitated from the same cell culture supernatant of (A) using a polyclonal anti GBP-1 antibody. After 
SDS-PAGE the immunoprecipitate was analyzed by Western blot using MAb 1B1. GBP-1 and a protein of 47 
kDa could be detected. 
 

 

4.3 Modulation of GBP-1 secretion 

 

In order to investigate the pathway of GBP-1 secretion in IFN-�-treated HUVEC, the effects 

of different culture conditions and different pharmacological agents on GBP-1 secretion were 

analyzed. 

First, a decreased incubation temperature to 20 °C during IFN-� (100 U/ml, 24 h) stimulation 

of HUVEC abrogated GBP-1 secretion as assessed by immunoprecipitation of GBP-1 from 

the cell culture supernatant (Figure 40A, compare IFN-� at 20 °C with IFN-� at 37 °C). This 

result was confirmed by quantification of GBP-1 in the same cell culture supernatant by 

ELISA (Figure 42). Incubation of IFN-�-treated HUVEC at 20 °C did only slightly affect the 

amount of intracellular GBP-1, as assessed by Western blot analysis of the cell lysate (Figure 

40B, upper panel). In addition, subcellular localization of GBP-1 was not affected by the 

decreased incubation temperature (Figure 40B, inserts). This indicated that GBP-1 may be 

released via an active and energy-dependent process. 
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Figure 40: Analysis of the effect of the incubation at 20 °C on GBP-1 secretion. HUVEC were incubated with 
IFN-� (100 U/ml) or with BSA (-) for 24 h at 37 °C or 20 °C respectively. (A) Western blot analysis of GBP-1 
that was immunoprecipited with an anti-GBP-1 polyclonal antibody from the cell culture supernatant (Sup) of 
the same cells as in B. (B) Western blot analysis (upper panel) and immunofluorescence staining (lower panel) 
of intracellular GBP-1. Actin staining shows that comparable amounts of protein extracts were loaded. In both 
cases MAb 1B1 was used. In all immunofluorescence pictures scale bar = 10 �m. 
 

 

Second, brefeldin A (BFA), a well established inhibitor of the classical secretory pathway was 

added to the cells 2 h prior to IFN-� (100 U/ml, 24 h) stimulation (Misumi, et al. 1986; 

Rubartelli, et al. 1990; Jackson, et al. 1995; Chang, et al. 1997; Soderberg, et al. 2000; 

Taraboletti, et al. 2000; Hisadome, et al. 2002). In the classical secretion pathway proteins are 

targeted to the endoplasmic reticulum, then to the Golgi apparatus and finally to secretory 

vesicles [reviewed in (Harter, et al. 2000; Allan, et al. 2002; Joiner, et al. 2002) see also 

(Schekman, et al. 1996; Helms, et al. 1998; Schekman 1998; Kirchhausen 2000; Schekman 

2002)]. The matrix metallo-proteinase-1 (MMP-1) follows the classical secretion pathway 

(Taraboletti, et al. 2000). Therefore, MMP-1 was used as a control for the effectivity of BFA 

treatment. MMP-1 expression was induced in HUVEC by treatment with angiogenic growth 

factors (AGF, VEGF and bFGF, 10 ng/ml each) for 16 h (Figure 41A). Immunoprecipitation 

of MMP-1 from the cell culture supernatant showed that MMP-1 is constitutively secreted 

irrespectively of the stimulation (Figure 41B, - and AGF). However, after treatment with BFA 

(1 �g/ml, 2 h before AGF stimulation), the amount of extracellular MMP-1 was significantly 

reduced (Figure 41B, BFA + AGF). In addition, MMP-1 accumulated in the cell (Figure 41A, 

BFA + AGF). 
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Figure 41: Modulation of MMP-1 and GBP-1 secretion in HUVEC using brefeldin A (BFA). (A and B) Cells 
were incubated with AGF (VEGF and bFGF, 10 ng/ml each), with BSA (-) or with AGF together with BFA (1 
�g/ml, 2 h before addition of AGF) for 16 h (BFA + AGF). (A) Western blot analysis for intracellular MMP-1 
expression. GAPDH staining shows that in the control more of the protein extract was loaded, nevertheless no 
MMP-1 is visible. (B) Western blot analysis of MMP-1 immunoprecipited from the cell culture supernatant of 
the same cells. (C and D) Cells were incubated with IFN-� (100 U/ml), with BSA (-) or with IFN-�  together with 
BFA (1 �g/ml, 2 h before addition of IFN-�) for 24 h (BFA + IFN-�). (C), upper panel: Western blot analysis of 
intracellular GBP-1. (C), lower panel: immunofluorescence staining of GBP-1. In both cases MAb 1B1 was 
used. Actin staining shows that equal amounts of protein extracts were loaded. In all immunofluorescence 
pictures scale bar = 10 �m. (D) Western blot analysis of GBP-1 immunoprecipited with an anti-GBP-1 
polyclonal antibody from the cell culture supernatant of the same cells as in (C).  
 

 

Interestingly in HUVEC the induction of GBP-1 expression by IFN-� (Figure 41C, IFN-�) 

was almost fully inhibited by treatment with BFA (1 �g/ml, 2 h before IFN-� stimulation) as 

shown by Western blot analysis and immunofluorescence staining of intracellular GBP-1 

(Figure 41C, BFA+IFN-�). Therefore, the reduction of GBP-1 in the cell culture supernatant 

(Figure 41B, right panel) could not be attributed to a possible inhibition of GBP-1 secretion 

by BFA.  
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Third, the effects of pharmacological agents (monensin, methylamine and verapamil) that are 

known to inhibit (i) the secretory function of the endoplasmic reticulum/Golgi apparatus, (ii) 

exocytosis and (iii) the multidrug resistance pathway were investigated on GBP-1 secretion 

(Rubartelli, et al. 1990; Jackson, et al. 1995). None of this substances affected membrane 

permeability as assessed by the LDH activity assay (data not shown) in HUVEC incubated 

with IFN-� (100 U/ml, 24 h). Pre-treatment of HUVEC before IFN-� (100 U/ml, 24 h) 

stimulation with monensin (1 nM, 1 h) [an inhibitor of the classical secretion pathway 

(Tartakoff 1983)] or with methylamine (1 nM, 1 h) [a drug able to modulate an alternative 

secretory pathway (Rubartelli et al. 1990)] increased GBP-1 secretion more then 3 fold 

(Figure 42). Pre-treatment (30 min) with verapamil (500 ng/ml) [an inhibitor of volume 

regulated anion channels and from the multidrug resistance pathway (Hisadome, et al. 2002)] 

increased GBP-1 secretion more then 2 fold (Figure 42). Methylamine and verapamil have 

also been shown to increase the secretion of aFGF (Jackson, et al. 1995). Therefore, the 

effects of these drugs on GBP-1 secretion were similar to their effect on aFGF secretion. This 

suggested that GBP-1 and aFGF may follow similar secretion pathways. 
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Figure 42: Modulation of GBP-1 secretion using different pharmacological agents. HUVEC were incubated in 
low medium and then incubated with BSA (-) or with IFN-� (100 U/ml) for 24 h. For modulation of GBP-1 
secretion HUVEC were either incubated with IFN-� and incubated at room temperature (RT) or pre-incubated 
with monensin (Mon., 1 nM, 1 h), methylamine (Met., 1 nM, 1 h), verapamil (Ver., 500 ng/ml, 30 minutes) or 
BFA (1 �g/ml, 2 h). The amount of secreted GBP-1 per mg of total protein content was calculated from the 
amount determined by ELISA and/or TCA precipitation. The values obtained were normalized to the amount of 
GBP-1 secreted from IFN-�-treated EC. The mean of at least three experiments (� SD) is shown. 
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Fourth, decreasing serum concentrations have been shown to affect the secretion of proteins 

(Chang, et al. 1997; Rubartelli, et al. 1990). However, incubation of IFN-� (100 U/ml)-

stimulated HUVEC in low- (0.5% FBS) or full-medium (5% FBS) had no effect on GBP-1 

secretion (data not shown). 

In summary, these results indicated that GBP-1 is actively secreted through an energy-

dependent mechanism, as the secretion could be inhibited by incubation of the cells at 20 �C.  

Analogy of the effects of monensin and methylamine on GBP-1 and aFGF release indicate 

that GBP-1 may be released via a signal peptide independent alternative pathway. 

In a next step, it was investigated whether GBP-1 secretion is also activated by low 

physiological concentrations of IFN-� (1 U/ml = 50 pg/ml) or by IFN-�. 

HUVEC were treated with of IFN-� (1 U/ml), IFN-� (100 U/ml) and with IFN-� (100 U/ml) 

as a positive control for 24 h. In all cases GBP-1 expression was induced in the cells as 

assessed by Western blot analysis (Figure 43, cell lysates). Immunoprecipitation of GBP-1 in 

the respective cell culture supernatants and subsequent Western blot analysis showed that 

GBP-1 was also secreted by HUVEC under this conditions (Figure 43, Sup). Of note, also in 

this case in addition to GBP-1 the 47 kDa fragment could be observed in the cell culture 

supernatants of all stimulated HUVEC (Figure 43, 47 kDa). The same results as observed with 

HUVEC stimulated for 24 h were observed when HUVEC were stimulated for 48 h (data not 

shown), indicating the GBP-1 is stable in the cell culture supernatants. 
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Figure 43: Stimulation of GBP-1 secretion by physiological concentrations of IFN-� and by IFN-�. HUVEC 
were incubated with BSA (-), with IFN-� or with IFN-� at the indicated concentrations for 24 h. Upper panel: 
Western blot analysis of the cell lysates using MAb 1B1. Actin staining shows that comparable amounts of 
protein extracts are loaded. Lower panel: GBP-1 was immunoprecipited with a polyclonal anti-GBP-1 antibody 
from the cell culture supernatants (Sup) and detected by Western blot using MAb 1B1.  
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Release of GBP-1 from cells stimulated with physiological concentrations IFN-� was also 

quantitatively determined by ELISA. HUVEC were incubated with IFN-� (1 U/ml) and with 

IFN-� (100 U/ml) as a positive control for 24 h. The analysis indicated that the amount of 

GBP-1 secreted from HUVEC treated with 1 U/ml IFN-� was only 25 % of the amount 

secreted from HUVEC treated with 100 U/ml of IFN-�. 

Altogether these data indicated that physiological concentrations of IFN-� also induce GBP-1 

secretion and that GBP-1 is also secreted by IFN-� stimulated HUVEC. 

 

4.4 Studies of cell specific GBP-1 secretion 

 

In order to test if GBP-1 secretion is endothelial cell specific, GBP-1 expression and secretion 

were examined in different adherent cell types including dMVEC, fibroblasts, and 

keratinocytes (Figure 44). In all of these cells GBP-1 expression could be induced by IFN-�-

treatment (Figure 44, upper panels; compare also Figure 16). After stimulation with IFN-� 

(100 U/ml) for 24 h, GBP-1 was immunoprecipitated from the cell culture supernatants with a 

polyclonal anti-GBP-1 antibody and analyzed by Western blot. Interestingly, GBP-1 was only 

detected in the cell culture supernatants of dMVEC, but not in those of fibroblasts, or 

keratinocytes (Figure 44A, lower panels).  

Determination of the GBP-1 concentration in the respective cell culture supernatants by 

ELISA confirmed that fibroblasts and keratinocytes did not secret detectable amounts of 

GBP-1 into the cell culture supernatant (Figure 44B). HUVEC secreted GBP-1 (about 50 

ng/mg total protein content), (Figure 44B). The amount of secreted GBP-1 was calculated per 

mg of total protein content, which is a degree of the relative number of cell seeded 

Altogether these data suggested that the capability to secrete GBP-1 may be a specific marker 

of endothelial cells. 

 

4.5 Detection of GBP-1 in blood samples of patients  

 

It has been shown that GBP-1 is a marker of IC-activated EC, in human tissues in vivo (see 

Paragraph 3). Moreover, GBP-1 is secreted in vitro from IC-activated EC (see Paragraph 3.5). 

Therefore, GBP-1 may be a serologically detectable marker of IC-activation of EC in patients. 

In a first step it was investigated whether GBP-1 can be detected in serum samples by ELISA 

and whether freezing of the samples reduced the detection sensitivity. To this goal purified 

recombinant His-GBP-1 was diluted in human serum and the respective concentrations were 
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measured by ELISA (Figure 45, gray bars). Parallel to the decreased amount of GBP-1 added, 

decreasing amounts of GBP-1 were detected by the ELISA. This indicated that GBP-1 can be 

detected in the serum by the ELISA method. In a next step the samples were subjected to 

repeated freezing-thawing. Subsequent detection of His-GBP-1 showed a similar 

concentration dependent decrease (Figure 45, white bars). This indicated that freezing of the 

serum samples does not impair the detection of GBP-1 in the samples. Therefore GBP-1 may 

be detected by ELISA in archived blood samples.  
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Figure 44: Investigation of the presence of GBP-1 in the cell culture supernatants of different cell types.  
(A and B) Primary EC (dMVEC and HUVEC), primary adult fibroblasts and the keratinocytic cell line Hacat 
were incubated with IFN-� (100 U/ml) or with BSA (C) for 24 h. (A, upper panel) GBP-1 expression was 
analyzed in the cell lysates by Western blot using MAb 1B1. Actin staining shows that comparable amounts of 
protein extracts were loaded. (A, lower panel) GBP-1 was immunoprecipitated from the cell culture 
supernatants of the same cells (Sup) using a polyclonal anti-GBP-1 antibody followed by Western blot analysis 
using MAb 1B1. GBP-1 was detected in the supernatant of dMVEC only. In addition a band of about 47 kDa was 
detected. (B) The amount of secreted GBP-1 in the cell culture supernatant from HUVEC, fibroblasts and 
keratinocytes was measured by ELISA.  
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Figure 45: Effect of freeze-thawing on the detection of His-GBP-1 in the serum by ELISA. Purified 
recombinant His-GBP-1 was gradually diluted in human serum (gray bars). The same solutions were frozen and 
thawed two times (white bars). GBP-1 concentrations were measured by ELISA. The absorbance was measured 
at 405 nm (A405). 
 

 

4.5.1 Detection of GBP-1 in the plasma of patients under IFN-� treatment 

 

IFN-� is often used in the clinical therapy of melanoma (Eggermont 2002). In addition, in 

vitro IFN-� has been shown to induce both GBP-1 expression and secretion (Figure 43). 

Therefore, the plasma of melanoma patients under IFN-�-therapy was regarded as an 

appropriate test system to determine whether circulating GBP-1 can be detected in the body 

fluids of patients with increased concentrations of IFN-� in the blood.  

The amount of circulating GBP-1 was measured by ELISA in the plasma of three melanoma 

patients treated with IFN-�. Patients were treated with IFN-� (20�106 U/m2, intravenously) for 

four weeks (five days of treatment followed by two days of interruption). At day nine, the 

GBP-1 content in the plasma of the patients was 101 (� 3) ng/ml and 112 (� 11) ng/ml for two 

patients and was non detectable in one patient (Figure 46, white bars). At day twenty-eight 

after the beginning of the therapy GBP-1 concentrations in the plasma of the same patients 

increased to 168 (� 5) ng/ml, 248 (� 3) ng/ml and 165 (� 17) ng/ml, respectively (Figure 46, 

gray bars). These data indicated that in all patients IFN-�-therapy was accompanied by a 

significant increase of the content of soluble GBP-1 in the plasma (mean of the three patients: 

from 71.7 � 60 ng/ml to 193.7 � 47 ng/ml). 

The detection of circulating GBP-1 at day twenty-eight of the therapy (the second day of 

interruption of IFN-�-treatment in the fourth cycle) indicated that circulating GBP-1 may be 

stable in vivo. 
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Altogether these results indicated, for the first time, that GBP-1 can be detected in the blood 

of patients that are exposed to increased concentrations of IC. 
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Figure 46: Amount of circulating GBP-1 protein in the plasma of IFN-�-treated melanoma patients. Three 
melanoma patients were treated with IFN-� (20�106 U/m2, intravenously) for twenty-eight days (five days of 
treatment followed by two days of interruption). The amount of GBP-1 in the plasma at days nine (white bars) 
and twenty-eight (gray bars) of the therapy was measured by ELISA. 
 

 

4.5.2 Detection of GBP-1 in the plasma of AIDS patients 

 

In AIDS patients IFN-�, IL-1� and TNF-� are found in chronically elevated concentrations in 

the serum (Hober, et al. 1989; Emilie, et al. 1990; Vyakarnam, et al. 1991; Stürzl, et al. 1995; 

Ensoli, et al. 1998). In particular it has been shown that circulating IFN-� is increased in early 

stage HIV-1 patients, but decreases in patients with full-blown AIDS (Ullum, et al. 1997; 

Twigg, et al. 1999; Huang, et al. 2000). Therefore, the plasma of HIV-1-infected patients was 

regarded as an appropriate test system to determine whether circulating GBP-1 can be 

detected in the plasma of patients with increased endogenous IFN-� concentrations in the 

blood. 

Thirty-eight HIV-1-infected patients were divided into groups following the definition of 

progression of the disease according to the U. S. Center for Disease Control (CDC) criteria for 

AIDS diagnosis. The groups were classified according the number of circulating CD4 positive 

cells (CD4+): group 1 = CD4+ cells > 500/mm3 (n=8); group 2 = CD4+ cells 200-499/mm3 

(n=17) and group 3 = CD4+ cells < 200/mm3 (n=13).  

The content of soluble GBP-1 in the plasma of these patients was measured with the GBP-1 

ELISA. A decrease of soluble GBP-1 concentration was observed in correlation with the 
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progression of the disease (median of GBP-1 concentrations. CDC1: 1836.3 ng/ml; CDC2: 

475.1 ng/ml; CDC3: 199 ng/ml) (Figure 47, left panel). The correlation was significant 

(Pearson correlation coefficient, 1-tailed, p < 0.01).  

The same patients were also grouped according to the CDC definition of progression of the 

disease. This definition is based on the appearance of the symptoms: group A = asymptomatic 

patients (n=18); group B = patients with some opportunistic infections (n=8) and group C = 

patients with full blown AIDS (n=4). For eight patients the symptoms at the time of the 

plasma extraction were not clear. 

Also in this case a decrease of soluble GBP-1 concentration was observed in correlation with 

the progression of the disease (median of GBP-1 concentrations. CDC A: 982.0 ng/ml; CDC 

B: 188.9 ng/ml; CDC C:, 199.5 ng/ml) (Figure 47, right panel). Also in this case the 

correlation between decreasing GBP-1 concentrations and progression of the diseases was 

significant (Pearson correlation coefficient, 1-tailed, p < 0.01). 

These results demonstrated that GBP-1 serum concentrations are inversely correlated with 

disease progression in AIDS patients. 
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Figure 47: GBP-1 concentrations in the plasma of HIV-1-infected patients. HIV-infected patients were divided 
into groups according to the CDC definition of progression of the disease. Group 1 = CD4+ cells > 500/mm3 
(n=8). Group 2 = CD4+ cells 200-499/mm3 (n=17). Group 3 = CD4+ cells < 200/mm3 (n=13). Group A = 
asymptomatic patients (n=18). Group B = patients with some opportunistic infections (n=8). Group C = patients 
with full blown AIDS (n=4). GBP-1 concentrations in the plasma of the patients were measured by ELISA. The 
two highest values are out of scale. For each group of patients the median is indicated by a horizontal line. 
Decreases of soluble GBP-1 concentrations correlated significantly with the progression of the disease 
according to CDC criteria for the number of CD4+ cells (left panel) and to CDC criteria for the phenotype of 
the disease (right panel) (in both cases Pearson correlation coefficient, 1-tailed, p<0.01). 
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4.5.3 Detection of GBP-1 in the serum of patients with of inflammatory skin diseases 

 

GBP-1 has been shown to be expressed in the blood vessels in the skin of patients affected by 

inflammatory skin diseases, but not in healthy skin (see Figure 28). In order to investigate 

whether GBP-1 may also be a serological marker of inflammation, GBP-1 concentration was 

determined in the serum of patients affected with different inflammatory skin diseases, 

including adverse drug reactions of the skin (n=16), urticaria (n=4), atopic dermatitis (n=12) 

and erythema exudativum multiforme (e. m.) (n=3). All these diseases are characterized by a 

local inflammatory response involving infiltration into the tissue of inflammatory cells and a 

systemic increase of IC, in particular of IFN-� (Kapp 1993; Chodorowska 1998; Ackermann, 

et al. 1999; Livni, et al. 1999; Yawalkar, et al. 2000; Kaminishi, et al. 2002). As a control 

GBP-1 content in the sera of a group of 11 healthy donors was investigated. 

The amount of circulating GBP-1 in the sera of these patients was measured by ELISA. The 

number of patients affected by each disease was limited. Therefore no reliable statement 

about the statistical distribution of the data could be done. As a consequence, the data were 

analyzed twice, assuming normal distribution (mean, T-test) as well as non-normal 

distribution (median, Mann-Whitney Test) of the data. 

In none of the sera (100 %) of healthy donors GBP-1 could be detected (Figure 48, healthy, 

red circles). In contrast in the diseased group, twenty serum samples contained detectable 

GBP-1 concentrations (20/35 = 57 %) (Figure 48, diseased, black circles). GBP-1 

concentrations in the serum of patients with inflammatory skin diseases (mean 163.1 � 13 

ng/ml, median 13.3 ng/ml) were significant higher (Mann-Whitney test, p < 0.004, one-tailed; 

T-test p < 0.004, two-tailed) as compared to the healthy control group assuming an average 

and median of 4 ng/ml (4 ng/ml is the smallest concentration of recombinant GBP-1 that 

could be detected in sera, see Figure 45) (Figure 48).  

In a final step GBP-1 serum concentrations of each disease group were compared to the 

values obtained from the healthy persons. In almost all cases GBP-1 concentrations were 

significantly increased in the serum of diseased patients as compared to the healthy persons, 

no matter of a normal or non normal distribution of the data was assumed (Figure 49). 

These data indicate that increased GBP-1 concentrations in the blood may be used as a marker 

of inflammatory disease in patients. 
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Figure 48: Amount of circulating GBP-1 in the serum of patient with inflammatory skin diseases. Thirty-five 
patients affected by skin diseases with an inflammatory component including atopic dermatitis, urticaria, 
adverse reactions of the skin and erythema exudative multiforme were included in the diseased group 
(Diseased). The control group was composed of 11 healthy people (Healthy). The concentrations of GBP-1 in 
the serum were measured by ELISA. Red circles: undetectable GBP-1 concentrations. Statistical analysis was 
performed both assuming or non assuming a normal distribution. GBP-1 concentrations in “Diseased”: mean 
163.1 � 13 ng/ml (red line), median 13.3 ng/m (black line). The two highest values are put of scale. The 
difference was significant. Mann-Whitney test, p < 0.004, one-tailed and T-test p < 0.004.  
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Figure 49: Detection of circulating GBP-1 in the serum of patient with inflammatory skin diseases. The same 
35 patients and 11 healthy persons as in figure 48 were analyzed in detail. The number of patients in each group 
was: atopic dermatitis (n = 12), urticaria (n = 4), adverse reactions of the skin (adverse drug r., n = 16) and 
erythema exudativum multiforme (n = 3). The healthy control group contained 11 persons. Red circles: 
undetectable GBP-1 concentrations. Statistical analysis was performed both assuming or non assuming a 
normal distribution of the data. The concentrations of GBP-1 (mean, red line; median, black line) in the serum 
were measured by ELISA. N.d. = non detectable. Me. = mean, significance according to the T-Test: ** p<0.01, 
* p<0.05. Mn. = median, significance according to one-tailed Mann-Whitney Test: ** p<0.01, * p<0.05 
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DISCUSSION 
 

The main goal of this work was to investigate whether GBP-1 may be a novel marker to 

detect IC activation of endothelial cells (EC) in vitro and in vivo, both at the tissue level and 

in serological studies. In this framework, anti-GBP-1 antibodies were generated. The soluble 

recombinant His-GBP-1 used for the immunization of rats and rabbits was purified under 

native conditions, using a one step purification protocol. One of the monoclonal antibodies 

(MAbs) generated, named MAb 1B1, was specific for GBP-1 and did not recognize GBP-2 in 

Western blot analysis. Of note GBP-2 has 76 % homology to GBP-1 at the amino acid level 

(Table 1). In 2002 other GBP isoforms were described: GBP-3, GBP-4 and GBP-5 that share 

22 %, 50 % or 65 % homology with GBP-1 respectively (Table 1). Therefore, it is likely that 

MAb 1B1 does not react with other GBP-1 isoforms and that it reacts specifically with GBP-

1. MAb 1B1 was used for the detection of GBP-1 by immunohistochemistry in human tissue 

sections, which was one of the major goals of this work. Moreover, MAb 1B1 was employed 

for the development of a specific ELISA for the detection of GBP-1 in solution. 

 

1 GBP-1 is a marker of the inflammatory cytokine-activated phenotype of endothelial 

cells in vitro 

 

The gene encoding human GBP-1 was originally discovered among the major IFN-�-induced 

genes (Cheng, et al. 1983; Cheng, et al. 1985; Decker, et al. 1989; Ruszczak, et al. 1990; 

Nantais, et al. 1996; Saunders, et al. 1999). In fact, GBP-1 mRNA expression has often been 

used as a marker to demonstrate IFN-�-activation of cells in culture (Ucer, et al. 1986; van 

Loon, et al. 1991; Tnani, et al. 1999; Yang, et al. 1999; Kumar, et al. 2001). Moreover, 

during previous work in this laboratory it has been shown that not only IFN-�, but also IL-1� 

and TNF-� induce GBP-1 mRNA expression in a dose-dependent manner. In particular, it has 

been shown that GBP-1 mediates the anti-proliferative effect of these IC (IFN-�, IL-1� and 

TNF-�) on EC (see Introduction, paragraph 3.2) (Guenzi, et al. 2001). In the present work the 

results obtained on GBP-1 at the mRNA level were confirmed at the protein level in EC.  

EC express receptors for many different cytokines like IFN�, IL-1�, IL-1�, TNF-�, IL-4, IL-6, 

IL-10, IL-18, C-C chemokines like MCP-1 and MIP-1�, C-X-C chemokines like PF4, IP-10, and 

SDF-1� and growth factors like bFGF, VEGF, Ang-2, PDGF B/B (Thornhill, et al. 1990a; 

Thornhill, et al. 1990b; Maruo, et al. 1992; Plate, et al. 1992; Maisonpierre, et al. 1997; 

Thommen, et al. 1997; Sanders, et al. 1998; Gentilini, et al. 1999; Murdoch, et al. 1999; Vasse, 
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et al. 1999; Salcedo, et al. 2000; Dzenko, et al. 2001; Madge, et al. 2001; Mallat, et al. 2001; 

Moore, et al. 2001). These receptors mediate the phenotypic changes of EC to the respective 

factors. Consequently, several cytokines, chemokines, and growth factors were tested for their 

ability to increase GBP-1 expression in HUVEC. 

In agreement with the results obtained at the mRNA level, IFN-�, IL-1� and TNF-� were found 

to increase GBP-1 expression in EC. In addition, also IL-1� and IFN-� increased GBP-1 

expression in EC, but none of the other factors mentioned above. 

Notably, all of the IC, which induced GBP-1 expression in EC, have been shown to inhibit 

proliferation of these cells (Frater-Schroder, et al. 1987; Friesel, et al. 1987; Schweigerer, et 

al. 1987a; Cozzolino, et al. 1990; Ruszczak, et al. 1990; Guenzi, et al. 2001). Other factors 

known to inhibit EC proliferation like IL-6, IL-10 and OSM, did not induce GBP-1 

expression (May, et al. 1989; Takashima, et al. 1996; Moore, et al. 2001). This indicated that 

GBP-1 may characterize non-proliferating EC activated by IC, such as IFN-�, IFN-�, IL-1�, 

IL-1� or TNF-�. 

EC activation induces structural and functional alterations of the endothelium and plays a key 

role in angiogenesis and inflammation (Pober, et al. 1986; Cotran, et al. 1988; Pober 1988; 

Cotran, et al. 1990; Augustin, et al. 1994; Folkman 1995; Carmeliet, et al. 2000). In 

particular, EC activation in tumour angiogenesis (Nicosia, et al. 1983; Folkman, et al. 1991; 

Plate, et al. 1992; Kim, et al. 1993; Fan, et al. 1995; Folkman 1995; Siegel, et al. 1997; Desai, 

et al. 1999; Carmeliet, et al. 2000; St Croix, et al. 2000), atherosclerosis (Tan, et al. 1999; 

Baumgartl, et al. 2001; Roesen, et al. 2001; Cascieri 2002), adverse drug reaction of the skin 

(Yawalkar, et al. 2000), angioedema (Cotran, et al. 1990; Livni, et al. 1999) or endothelial-

derived tumors like Kaposi’s sarcoma (Ensoli, et al. 1994; Uccini, et al. 1994; Stürzl, et al. 

1995; Ensoli, et al. 1998; Fiorelli, et al. 1998; Samaniego, et al. 1998; Sirianni, et al. 1998; 

Stürzl, et al. 1999; Ensoli, et al. 2000; Ensoli, et al. 2001; Stürzl, et al. 2001) represents a 

time- and dose-integrated response to various stimuli originating from the blood and/or from 

neighbouring cells and tissues. Investigation of the appearance of the different activation 

phenotypes of EC may help to elucidate the complex network of different cellular activations 

in these diseases. 

In vivo, different factors can lead to activated EC. Some of these factors induce the same activity 

and can be put together in groups with functional homology. Two groups that play a major role 

in EC activation, are for example: (i) inducers of EC proliferation like VEGF and bFGF (AGF) 

(Montesano et al. 1986; Folkman, et al. 1987; Folkman and Klagsbrun 1987; Schweigerer et al. 

1987; Leung et al. 1989; Keck et al. 1989; Wilting et al. 1993; Gospodarowicz 1991; Melder et 
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al. 1996), and (ii) inhibitors of EC proliferation and inducers of leukocyte adhesion like IFN-�, 

IL-1� and TNF-� (IC) (Friesel, et al. 1987; Holzinger, et al. 1993; Jaramillo, et al. 1995; Neary, 

et al. 1996). Notably, IC and AGF compete in the induction of a proliferative (mediated by AGF, 

Figure 50, red squares) or a non-proliferative (mediated by IC, Figure 50, blue circles) phenotype 

of EC. 

The suitability of GBP-1 as a marker of IC activation of EC at simultaneous presence of IC and 

AGF was investigated using two approaches: 

(1) Pre-incubation of EC with AGF did not affect IC-induced GBP-1 expression in EC. This 

fact is an advantage for a molecular marker of IC-activated EC. EC that are exposed to 

IC can express GBP-1 independently of a previous stimulation. 

(2) AGF applied simultaneously with IC inhibited IC-induced GBP-1 expression. This kind 

of regulation is also an advantage for a marker of IC-activated EC. In an environment 

were both AGF and IC are present, the level of GBP-1 may indicate the relative 

concentration of IC present in the tissue.  

This demonstrated that GBP-1 may be a suitable marker of IC activation of EC in the presence of 

complex stimulations. In addition, the second point showed that the major activation pathways of 

EC, namely the inflammatory cytokines pathway and the angiogenic growth factor pathway 

converge in the regulation of GBP-1 expression. 

 

 
Figure 50: Model of GBP-1 as a marker to 
dissect the interplay of IC and AGF. EC 
activation is mediated by a variety of soluble 
factors originating from the blood or from 
neighbouring cell. Two groups of factors are: IC 
(blue circles) that induce a non-proliferative, 
adhesion competent phenotype of EC and AGF 
(red squares) that activate EC proliferation. EC 
can switch between a proliferating and a non-
proliferating phenotype. When AGF predominate, 
the IC-induced GBP-1 expression is inhibited, 
and EC proliferate. By contrast, if IC 
predominate, GBP-1 is expressed and EC are in a 
non-proliferating phenotype. 

Non-proliferation           Proliferation
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In addition, repeated stimulation of EC with IL-1� did not result in adaptation but resulted in a 

constantly high expression of GBP-1. This demonstrated that GBP-1 may indicate also long-term 

activation of EC by IC. This further qualifies GBP-1 as a marker of IC-activated EC. 

In this framework the use of GBP-1 as a marker will be useful to determine the temporal and 

spatial appearance of the IC-activated phenotype of EC in inflammatory processes and during 

angiogenesis. This will help to decipher the multicellular and multifactorial interactions 

regulating pathological changes of the endothelium and may provide a platform for the 

development of novel anti- and pro-angiogenic approaches targeting distinct activation 

phenotypes of EC. 

 

2 Subcellular localization of GBP-1 in endothelial cells 

 

GBP-1 localization studies in EC have shown that GBP-1 is a cytoplasmic protein. GBP-1 

localization was the same irrespectively of the cytokine used for the induction of its 

expression. Moreover, GBP-1 partially localized in the endoplasmic reticulum (ER). The 

latter finding was shown by colocalization studies of GBP-1 and the ER marker 

concanavalin A. ER localization of GBP-1 is in agreement with the subcellular localization of 

other large GTPases (see Table 1). For example, the dynamin-like protein-1 DLP-1 has been 

shown to localize in the endoplasmic reticulum and the interferon-induced large GTPase MxA 

has been shown to localize in the smooth endoplasmic reticulum (Yoon, et al. 1998; Pitts, et 

al. 1999; Accola, et al. 2002) 

GBP-1 carries a CAAX isoprenylation motif at its C-terminus (Asundi, et al. 1994; Nantais, 

et al. 1996). Isoprenylation is a post-transcriptional modification that can facilitate association 

of proteins with intracellular membranes. Carboxy methyltransferases (enzymes involved in 

the attachment of an isoprenoid residue to the CAAX isoprenylation motifs) have been shown 

to localize in the ER both in Saccharomyces cerevisiae  and in mammals (Dai, et al. 1998; 

Schmidt, et al. 1998; Choy, et al. 1999). Notably, GBP-1 isoprenylation is compatible with 

the finding that a significant fraction of cellular GBP-1 protein is present in the ER.  

In addition to ER localization, stainings for intracellular GBP-1 revealed a granular pattern. 

This result is well in agreement with the observation of a granular appearance of other large 

GTPases including DLP-1 and GBP-2 (Yoon, et al. 1998; Pitts, et al. 1999; Vestal, et al. 

2000). Notably, the granular pattern of these large GTPases has been attributed to their 

localization in cytoplasmic vesicles (Vestal, et al. 2000; Danino, et al. 2001). However, the 

kind of vesicles containing GBP-2 could not be defined as yet (Vestal, et al. 2000).  
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GBP-1 did not localize in known organelles like caveolae or lysosomes. As mentioned in the 

introduction, intracellular transport vesicles in eukaryotic cells are coated with proteins 

[reviewed in (Kirchhausen 2000), see also (Schekman 1998; Schekman 2002)]. These 

proteins, together with sphingolipid-cholesterol rafts make the membranes of these vesicles 

insoluble in the detergent Triton-X100 at 4 °C (Schekman, et al. 1996; Simons, et al. 1997; 

Helms, et al. 1998; Schekman 1998; Schekman 2002). It has been shown that acylated 

proteins are associated with detergent-insoluble membrane fractions, for example Rap1 that is 

a monomeric GTPase that is closely related to Ras (Melkonian, et al. 1999). By contrast, 

prenylated proteins are largely excluded from detergent-resistant membrane fractions; 

however, some prenylated proteins have also been found in such detergent-insoluble fractions 

(Melkonian, et al. 1999). GBP-1 prenylation could target GBP-1 to coated vesicles containing 

detergent-insoluble membranes and cause the granular pattern observed in GBP-1 subcellular 

localization. Therefore, the detergent solubility of GBP-1 was investigated. Detergent 

extraction experiments showed that about 16.7 % of intracellular GBP-1 could be recovered 

in detergent-insoluble fraction. This result is in agreement with observations on GBP-1 

isoprenylation in the promyelocytic cell line HL-60. In HL-60 cells GBP-1 has been shown to 

be isoprenylated, but only 15 % of isoprenylated GBP-1 was found to be membrane-

associated (Nantais, et al. 1996). The latter finding was demonstrated by subcellular 

fractionating (Nantais, et al. 1996). Therefore, the granular pattern of GBP-1 staining may be 

due to GBP-1 localization in detergent-insoluble vesicles. 

In conclusion, it has been shown that GBP-1 is a cytoplasmic protein that partially localizes in 

the ER. A fraction of GBP-1 is localized in granular structures and may be 

membrane-associated, possibly due to isoprenylation. 

 

3 GBP-1 is a marker of non-proliferating, inflammatory cytokine-activated endothelial 

cells in vivo 

 

A detailed examination of GBP-1 expression in various human tissues demonstrated that 

GBP-1, in contrast to the in vitro situation, is highly associated with vascular EC. Besides EC, 

GBP-1 expression in vivo was detected in some mononuclear cells. The latter findings may be 

explained with the observation that monocytes in vitro are expressing high basal levels of 

GBP-1. The EC-association of GBP-1 was confirmed by double labelling studies for 

simultaneous detection of the endothelial cell-associated antigen CD31 and GBP-1 (Figure 

32).  
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Different control stainings were performed in order to show the specificity of GBP-1 staining. 

First, the staining procedure was carried out without the primary antibody (rat MAb 1B1), no 

signals were obtained indicating that the secondary antibody did not bind unspecifically to the 

tissue sections. Second, staining was performed with a rat isotype control antibody. This 

indicated that the constant chain of the rat antibody did not bind unspecifically to the tissue 

sections. Third, the primary antibody was pre-adsorbed with an excess of purified 

recombinant GBP-1-His protein. Also in this case no signal could be detected, indicating that 

the antibody did not bind to other proteins when the GBP-1 binding sites were selectively 

blocked.  

Altogether these results showed that GBP-1 is highly associated with EC in vivo and 

suggested that the regulation of GBP-1 expression in vivo is more strictly regulated than in 

vitro and that GBP-1 may play an important role in the activation of the endothelium in vivo. 

Notably, EC in healthy skin did not express GBP-1. This was exploited in order to investigate 

whether GBP-1 expression in EC in vivo may be also induced by IC. GBP-1 expression was 

investigated in three different vascularized and IC-regulated diseases of the skin (see 

Introduction, paragraph 2.5), namely KS, psoriasis and adverse drug reactions of the skin 

(Gomi, et al. 1991; Kapp 1993; Chodorowska 1998; Ackermann, et al. 1999; Yawalkar, et al. 

2000; Stürzl, et al. 2001). The skin was chosen because inflammatory processes are clinically 

most apparent and most easily accessible when they occur in the skin. The skin has a rich 

blood supply and inflammatory diseases involving the skin commonly include inflammatory 

activation of the underlying blood vessels. 

In contrast to healthy skin, GBP-1 was detected in each of the three inflammatory diseases of 

the skin. GBP-1 was selectively expressed in vascular EC. These findings, together with the 

described locally restricted expression of IC in these diseases (Gottlieb, et al. 1988; Kapp 

1993; Stürzl, et al. 1995; Fiorelli, et al. 1998; Ackermann, et al. 1999; Hari, et al. 1999; 

Ensoli, et al. 2000; Guenzi, et al. 2001; Stürzl, et al. 2001), indicated that IC may upregulate 

GBP-1 expression. This was further confirmed by a detailed analysis of GBP-1 expression in 

KS. As mentioned above KS is an angio-proliferative disease that initiates in the course of a 

reactive process driven by the same IC which have been shown to induce GBP-1 expression 

(Ensoli, et al. 2000; Stürzl, et al. 2001). Expression of all these cytokines has been 

demonstrated in KS tissue sections (Gottlieb, et al. 1988; Kapp 1993; Stürzl, et al. 1995; 

Fiorelli, et al. 1998; Ackermann, et al. 1999; Hari, et al. 1999; Guenzi, et al. 2001;). The main 

source of IC in KS lesion are infiltrated monocytes (Stürzl, et al. 1995; Fiorelli, et al. 1998). 

Immunohistochemical staining for GBP-1 and monocytes using the monocytic-marker CD68 
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showed that GBP-1 was selectively expressed in vessels that were surrounded by numerous 

perivascular CD68-positive monocytes. This suggested that in KS lesions the IC released by 

infiltrated monocytes may induce GBP-1 expression. 

In addition, GBP-1 expression was analyzed in KS tissue sections in which early and late 

developmental stages of KS were present simultaneously. Simultaneous detection of GBP-1 

and CD31 indicated that in these sections GBP-1 was predominantly expressed in the areas 

presenting an early stage histology. This is in agreement with the higher IC expression in 

these early KS stages (Brooks 1986; Stürzl, et al. 1995; Ensoli, et al. 2000; Stürzl, et al. 

2001). By contrast, in areas with nodular late stage histology, GBP-1 expression was clearly 

lower, which is in agreement with the increased expression of AGF which has been reported 

in late stage KS lesion (Xerri, et al. 1991; Ensoli, et al. 1994; Cornali, et al. 1996;).  

 

As discussed so far, GBP-1 is a marker of IC activation of EC both in vitro and in vivo. IC are 

known to inhibit EC proliferation (Friesel, et al. 1987; Holzinger, et al. 1993; Jaramillo, et al. 

1995; Neary, et al. 1996). In order to investigate whether GBP-1 may characterize IC-

activated non-proliferating EC, double and triple labeling studies for simultaneous detection 

of GBP-1, of the proliferation marker Ki67, and the endothelial cell-associated antigen CD31 

were performed in KS lesions. These immunohistochemical studies showed that GBP-1 

expression is only expressed in non-proliferating vessel EC (CD31-positive, Ki67-negative). 

By contrast, GBP-1 was never detected in proliferating EC (CD31-positive, Ki67-positive). 

GBP-1 expressing vessels were surrounded by numerous infiltrating monocytes. Monocytes 

produce IC that inhibit EC proliferation (Fiorelli, et al. 1998). In contrast, bFGF and VEGF 

are released from the KS spindle cells that are predominantly present in late stage KS lesions 

and activate EC proliferation (Xerri, et al. 1991; Ensoli, et al. 1994; Cornali, et al. 1996).  

In summary, these data indicated that GBP-1 is selectively upregulated by IC in inflammatory 

skin diseases and characterizes the IC-activated non-proliferating phenotype of EC in vivo. 

 

4 GBP-1 is a secreted protein 

 

GBP-1 expression in tissue sections was highly associated with EC and indicated IC 

activation of these cells. In addition, in EC GBP-1 was localized in granular structures, which 

indicated that this protein may be targeted to a secretory pathway and released from the cells. 

Secretion of proteins is important because it provides a mean by which EC can rapidly and 

selectively alter the microenviroment of an individual vascular bed (Datta, et al. 2001, see also 
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Introduction, paragraph 1). Secreted GBP-1 may be a marker of inflammatory activation of 

blood vessels that may be easily accessible and detectable by serological methods. 

GBP-1 was secreted by both micro- and macro-vascular EC under IFN-� and IFN-� stimulation 

as assessed both by immunoprecipitation and ELISA. Notably, GBP-1 was not secreted by 

fibroblasts nor by keratinocytes. This indicated that GBP-1 secretion may be EC-specific.  

Additional experiments with transduced HUVEC that expressed GBP-1 constitutively, 

showed that GBP-1 is also secreted into the cell culture supernatant by these cells. This 

suggested that the mechanism of GBP-1 secretion is independent from IFN-� or IFN-� 

stimulation. Of note, a GBP-1 mutant with a deletion of the CAAX isoprenylation was not 

secreted by these cells. This indicated that isoprenylation may be necessary for GBP-1 

secretion. The latter observation is in analogy with the secretion of the a-factor (one mating 

pheromone of Saccharomyces cerevisiae) that is released via the multidrug resistance (MDR) 

pathway. Also the a-factor, has to be isoprenylated before secretion (Kuchler, et al. 1989; 

McGrath, et al. 1989; Michaelis 1993; Caldwell, et al. 1994).  

GBP-1 secretion occurred independently of cell death as indicated by the following points: 

(1) No increase of the abundant cytosolic proteins GAPDH or LDH could be detected in the 

cell culture supernatants of EC after IFN-� stimulation. This was assessed by 

immunoprecipitation of GAPDH and by the LDH activity assay respectively. 

Measurement of LDH activity is considered as the most sensitive approach to detect 

alterations in cell permeability and non-specific release of intracellular proteins 

(Rubartelli, et al. 1990; Ensoli, et al. 1993; Chang, et al. 1997). 

(2) The amount of secreted GBP-1 was almost 10 % of total intracellular GBP-1. By 

contrast, the number of cells with decreased membrane permeability was only 1 % of 

the total cell number. The number of cells with decreased membrane permeability is too 

small to explain the high concentration of GBP-1 in the cell culture supernatants of 

IFN-�-treated HUVEC. 

(3) In primary adult fibroblasts no GBP-1 could be detected in the cell culture supernatant. 

Primary fibroblasts are sensitive to cell culture conditions. After IFN-� stimulation 

primary fibroblasts expressed comparable amount of GBP-1 as HUVEC. If GBP-1 in 

the cell culture supernatant was due to cell death, it should be detectable also in cell 

culture supernatants of IFN-�-treated fibroblasts. However, this was not the case. 

(4) GBP-1 secretion could be inhibited by incubation of the cells at room temperature, this 

indicated that GBP-1 secretion is an energy-dependent process. In addition, like 

described in point (3), if GBP-1 in the cell culture supernatant was due to dead cells, it 
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should be detectable also in cell culture supernatants of IFN-�-treated HUVEC when 

they are incubated at room temperature. This was not the case, and further supported 

that GBP-1 is actively secreted. 

 

Proteins that are secreted through the classical secretion pathway are targeted to the 

endoplasmic reticulum by a leader peptide signal [reviewed in (Harter, et al. 2000; Allan, et 

al. 2002; Joiner, et al. 2002)]. Afterwards vesicles are budding from the endoplasmic 

reticulum and transport the respective proteins to the Golgi apparatus (Schekman, et al. 1996; 

Schekman 2002). Finally, secretory vesicles bud from the Golgi apparatus and fuse with the 

plasma membrane and reverse the included proteins into the cell culture supernatant (Helms, 

et al. 1998; Schekman 1998; Kirchhausen 2000). Fusion of vesicles from each compartment 

to another involves soluble NSF attachment protein (SNAP) receptors machinery (SNAREs) 

and ADP-ribosylation factors (ARFs) guanine nucleotide-exchange factors (Schekman, et al. 

1996; Helms, et al. 1998; Schekman 1998; Chardin, et al. 1999; Niles, et al. 1999; 

Kirchhausen 2000; Yamaji, et al. 2000; Schekman 2002). Most SNAREs are C-terminally 

anchored integral membrane proteins capable of entering into an interaction with other 

SNARE proteins (Tooze, et al. 2001; Schekman 2002). 

In order to investigate whether GBP-1 may be secreted through the classical secretion 

pathway, first a computer-assisted sequence analysis of GBP-1 was performed. No canonical 

leader signal peptide sequence could be identified. Several physiologically important proteins 

also lack a classical signal sequence. For example the angiogenic factors aFGF and bFGF 

(Prudovsky, et al. 2002) or IL-1� (Rubartelli, et al. 1990). Second, modulation of GBP-1 

secretion was performed using different pharmacological agents. These agents are commonly 

employed for the inhibition of the classical or for alternative secretion pathways. 

For example, monensin and brefeldin A (BFA) are inhibitors of the classical secretion 

pathway (Rubartelli, et al. 1990; Jackson, et al. 1995; Chang, et al. 1997; Soderberg, et al. 

2000; Taraboletti, et al. 2000). 

Monensin binds Na+, K+ and protons, causing hyper-polarisation of the plasma membrane 

without affecting the intracellular pH, ATP pool, nor protein synthesis. Monensin causes 

accumulation of proteins in the Golgi apparatus and a delayed secretion of unprocessed 

proteins. (Table 5). Monensin increased GBP-1 secretion. It has been shown that monensin 

can increase the secretion of proteins that do not follow the classical secretion pathway such 

as IL-1� (Rubartelli et al. 1990) (Table 5). This indicated that GBP-1 may not be secreted by 

the classical secretion pathway. 
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BFA causes a reversible redistribution of Golgi stacks to the ER (Misumi, et al. 1986). 

Moreover, it has been shown that BFA blocks ARF-GDP complexes, creating an abortive 

complex that sequestrates exchange factors necessary for intracellular vesicle fusion processes 

(Table 5) (Sata, et al. 1999). BFA inhibited GBP-1 secretion. However, this effect was not 

due to an effect on GBP-1 secretion but was due on an inhibition of intracellular GBP-1 

expression. In order to explain the effect of BFA on intracellular GBP-1, a computer-assisted 

sequence analysis was performed. BFA is known to bind ARF-GDP-complexes (Sata, et al. 

1999; Yamaji, et al. 2000). Mammalians contain three classes of ARFs with different 

sensitivities to BFA [reviewed in (Chardin, et al. 1999; Yamaji, et al. 2000)]. All known 

ARFs contain a Sec7 domain with a consensus motive that binds BFA in its GTP-binding 

domain (Sata, et al. 1999). The consensus motive in Sec7 has the sequence Asp-X-X-X-X-

Gln-X-X-X-X-Met, where X can be any amino-acid. In the nucleotide binding domain of 

GBP-1 (cap domain) a partially similar sequence can be found: Asp262-X-X-X-X-Gln-Gln-X-

X-X-X-Cys273 (Prakash, et al. 2000a). Of note, Cys like Met is a sulphur-containing amino. 

Therefore, BFA might form a complex with GBP-1 leading to its intracellular degradation. Of 

note, this motif was not found in other members of the large GTPases family like GBP-2, 

dynamin or MxA.  

Methylamine and verapamil are modulators of non classical secretion pathways. Both 

substances have been shown to increase secretion of aFGF (Table 5). aFGF is released form 

the cells through a non-classical secretion pathway with a poorly characterized mechanism 

(Prudovsky, et al. 2002). Methylamine and verapamil also increased GBP-1 secretion. This 

suggested that the secretory pathway of GBP-1 my reveal similar with that of aFGF. 

Moreover, decreasing serum concentrations had no effect on GBP-1 secretion although they 

have been shown to affect the secretion of proteins including the secretion of aFGF and IL-1� 

(Jackson, et al. 1995; Rubartelli, et al. 1990). Therefore, the regulation of GBP-1 secretion 

reveal also distinct differences from that of aFGF. 

These results, together with the analogy to the a-factor [the mating pheromone of 

Saccharomyces cerevisiae which has an isoprenylation-dependent secretion via the MDR 

pathway (Caldwell, et al. 1994)] suggested that GBP-1 secretion does not follow the classical 

secretion pathway. Instead, the mechanism of GBP-1 secretion may have some similarities 

with the ones of IL-1� and aFGF that both are secreted via alternative pathways, independent 

of a leader peptide signal (compare IL-1�, aFGF and GBP-1, Table 5).  
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Table 5: Effects of some pharmacological agents and non standard incubation conditions 
on the secretion of different proteins. 
 

Treatment Protein Effect Cells References Mechanism 
 

MMP-2 � HUVEC Taraboletti, et al. 2000
ATP (HST) � BAEC Hisadome, et al. 2002 
aFGF � NIH 3T3 Jackson, et al. 1995 
Thio. reductase � Monocytes Soderberg, et al. 2000 
IL-1� � Monocytes Rubartelli, et al. 1990 
Albumin � Rat hepat. Misumi, et al. 1986 
Haptoglobin � Rat hepat. Misumi, et al. 1986 
Tat � COS-1 Chang, et al. 1997 

BrefeldinA 
 
(Inhibition of 
the classical 
secretion 
pathway) 
 

GBP-1 �(i) HUVEC  

Redistribution of Golgi stacks to ER. 
 
Reversible effect. 
 
Blocks ARF-GDP complexes, creating 
an abortive complex that sequestrates 
exchange factors necessary for 
intracellular vesicle fusion processes. 

MMP-2 � HUVEC Taraboletti, et al. 2000
IL-1� � Monocytes Rubartelli, et al. 1990 
Thio. reductase � Monocytes Soderberg, et al. 2000 
aFGF �(�) NIH 3T3 Jackson, et al. 1995 
Tat � COS-1 Chang, et al. 1997 

Monensin 
 
(Inhibition of 
the classical 
secretion 
pathway) GBP-1 � HUVEC  

Binds Na+, K+ and protons, causing 
hyper-polarisation of the PM without 
affecting intracellular pH, ATP pool, 
nor protein synthesis. Causes 
accumulation of proteins in the Golgi 
and delayed secretion of unprocessed 
proteins. 

macroglobulin �(c) Swiss 3T3-4 Maxfield 79 
aFGF � NIH 3T3 Jackson, et al. 1995 
IL-1� � Monocytes Rubartelli, et al. 1990 

Methylamine 

GBP-1 � HUVEC  

Inhibition of non classical secretion 
pathway. 

ATP (HST)  � BAEC Hisadome, et al. 2002 
aFGF � NIH 3T3 Jackson, et al. 1995 Verapamil 
GBP-1 � HUVEC  

Inhibits volume regulated anion 
channels and the multidrug resistance 
pathway. 

Tat � COS-1 Chang, et al. 1997 
IL-1� � Monocytes Rubartelli, et al. 1990 
aFGF � NIH 3T3 Jackson, et al. 1995 

Decreased 
incubation 
temperature 

GBP-1 � HUVEC  

Slows down the cellular metabolism 
and reduces intracellular ATP pool. 

Tat � COS-1 Chang, et al. 1997 
IL-1� � Monocytes Rubartelli, et al. 1990 
aFGF � NIH 3T3 Jackson, et al. 1995 

Decreased 
serum 
concentra-
tion GBP-1 � HUVEC  

Different undefined components like 
growth factors influence various 
cellular functions. 

 
MMP-2 = matrix metallo-proteinase 2; HST = heat-shock induced; Thio. = thioredoxin; 
i = intracellular; c = clustering. Hepat. = hepatocytes. PM = plasma membrane. 
� = inhibition. � = increase; � = no effect. 
 

Interestingly, a smaller protein (� 47 kDa) which reacted with MAb 1B1 was detected only in 

the cell culture supernatants of the cells, but not in the cell lysates. This fragment may be a 

processed form of GBP-1. Other proteins that are secreted without a signal peptide undergo 

also processing prior to secretion, for example IL-1� and IL-1�, thioredoxin reductase or 

albumin (Misumi, et al. 1986; Rubartelli, et al. 1990; Soderberg, et al. 2000). Notably, 

proteins exist in which the processed mature form and the precursor form have different 

biological activities like for IL-1�, where only the precursor is able to regulate EC migration 

(McMahon, et al. 1997). Thus both secreted GBP-1 and the 47 kDa fragment should be 

considered for further investigations of the biologically activity of extracellular GBP-1. 
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In summary, GBP-1 has been found to be a secreted large GTPase. GBP-1 likely does not follow 

the classical secretion pathway. GBP-1 secretion pathway reveals some similarities with the 

secretion pathways followed by aFGF and IL-1�. 

 

 

5 GBP-1 in the serum as a serologically accessible marker of IC-activation of endothelial 

cells  

 

GBP-1 expression has been shown to be upregulated in patients with inflammatory skin 

diseases in vivo and to be secreted by EC upon IFNs stimulation in physiological 

concentrations in vitro (Lubeseder-Martellato, et al. 2002). Therefore, circulating GBP-1 in 

the blood may be an easily accessible marker to detect inflammatory activation of blood 

vessels in patients. In addition, in vitro secreted GBP-1 could be detected after 48 h from the 

IFNs induction and GBP-1 was stable in frozen serum samples. These facts, together with the 

availability of the developed GBP-1-ELISA, the limited amount of sample needed to detected 

secreted GBP-1 enables and facilitates the screening of archived blood samples. 

In order to investigate this, in a first approach GBP-1 concentrations were determined in the 

plasma of patients under IFN-�-therapy. IFN-�-therapy is often used in the clinical treatment of 

melanoma (Eggermont 2002). The respective patients were treated with IFN-� (20�106 U/m2, 

intravenously) for four weeks (five days of treatment followed by two days of interruption). 

Continuosly increased systemic IFN-� levels may induce GBP-1 expression in EC and 

subsequent release. In fact, a significant increase of circulating GBP-1 concentration was 

observed from day nine to day twenty-eight of the IFN-�-therapy of the patients (mean of three 

patients: from 71.7 � 60 ng/ml to 193.7 � 47 ng/ml). Notably, GBP-1 could be detected in the 

plasma of these patients at day nine after begin of the therapy (this corresponds to the second day 

after a new intravenous IFN-� cycle). In addition, a constant increase of circulating GBP-1 could 

be detected at day twenty-eight of the therapy (the second day of interruption of intravenous 

IFN-� in the fourth cycle). The latter indicated that circulating GBP-1 may be stable in the blood 

of these patients. Altogether these results showed that GBP-1 is present in increased 

concentrations in the blood of patients treated with IFN-�. Therefore, soluble GBP-1 may be a 

marker of IC activation of EC in vivo.  

In a next step, GBP-1 concentrations were determined in the serum of patients with 

inflammatory skin diseases. The group of patients was suffering of adverse reaction of the 

skin, urticaria, atopic dermatitis and erythema. These disease are all characterized by a local 
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inflammatory reaction (Livni, et al. 1999; Yawalkar, et al. 2000; Kaminishi, et al. 2002). In 

the patient groups a significant increase of GBP-1 in the serum was observed (adverse drug 

reaction of the skin, 155.7 ng/ml; urticaria, 142.4 ng/ml; atopic dermatitis, 189.4 ng/ml; 

erythema, 68 ng/ml) as compared to healthy control group (undetectable GBP-1 amounts). 

This indicated that GBP-1 is secreted in vivo during inflammatory conditions and that it can 

be detected in the blood, although the inflammation was locally restricted. 

Finally, GBP-1 concentrations were determined in the plasma of HIV-infected patients. It has 

been shown that HIV-infected patients have increased serum levels of IC that in turn activate 

the endothelium (Hober, et al. 1989; Emilie, et al. 1990; Vyakarnam, et al. 1991; Stürzl, et al. 

1995; Zietz, et al. 1996; Ensoli, et al. 1998; Ensoli, et al. 2000; Stürzl, et al. 2001). Notably, 

the amount of circulating GBP-1 decreased with the progression of the disease in these 

patients (median: CDC1, 1836.3 ng/ml; CDC2, 475.1 ng/ml; CDC3, 199 ng/ml). It is also has 

been reported that IFN-� concentrations are increased in early stage HIV-1 patients, but 

decreased in patients with full-blown AIDS (Ullum, et al. 1997; Twigg, et al. 1999; Huang, et 

al. 2000). Because chronic inflammatory activation of the blood vessels endothelium has been 

shown to occur in HIV-infected patients, circulating GBP-1 in HIV-infected patients may be 

released by activated EC (Zietz, et al. 1996). 

Altogether these preliminary clinical data indicate that circulating GBP-1 can be detected in 

vivo in a wide variety of inflammatory conditions, for example GBP-1 can be detected in the 

serum of patients affected by inflammatory skin diseases. The concentrations of circulating 

GBP-1 were increased from day 9 to day 28 in melanoma patients under IFN-�-therapy. 

Circulating GBP-1 concentrations decreased in HIV-1 affected patients in correlation with the 

progression of the disease and the reported decrease of circulating IFN-� concentrations in 

these patients. Therefore, circulating GBP-1 may correlate with the IC levels that are present 

in the blood of the patients. This qualifies GBP-1 as a novel serological accessible marker to 

detect inflammatory activation mainly of micro- and macro-vascular EC in vivo. 

 

During inflammation IC concentrations are increased. However, IC are often instable in the 

blood and are difficult to detect in tissues and are present in many different cells. Therefore, 

monitoring the inflammatory EC activation in inflammatory disease via the determination of 

circulating cytokine concentrations is not possible (Chen, et al. 1999; Park, et al. 2001; Mizia-

Stec, et al. 2002).  

An other soluble marker used to detect activation of EC is the intracellular adhesion 

molecule-1 (ICAM-1), which is the major ligand on EC for leukocytes. It has been shown that 
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the concentrations of soluble ICAM-1 (sICAM-1) are increased in a number of pathological 

states, including inflammation and sepsis ( Sessler, et al. 1995; Ogawa, et al. 2000). sICAM-1 

is a marker that indicates IC-activation of EC. In contrast to GBP-1, sICAM is upregulated 

not only by IC, but also by VEGF (Lu, et al. 1999; Kim, et al. 2001). In addition, sICAM is a 

mediator for the adhesion of different cells that in turn leads to an angiogenic activity of 

sICAM-1 (Gho, et al. 1999). Therefore, detection of sICAM does not indicate whether EC 

were activated by IC or VEGF and therefore also does not discriminate between the 

proliferative and non- proliferative phenotype. 

Also Thy-1 has been presented as a soluble marker for EC activation (Saalbach, et al. 1999). 

However, not only EC, but also fibroblasts can be the source of soluble Thy-1 (Saalbach, et 

al. 1999). Therefore Thy-1 detected in the serum does not specifically indicate activation of 

EC. 

Von Willebrand factor (vWF) is also used as a marker suggestive of damage/injury of the 

endothelium (Blann 1991; McGregor, et al. 1994). Increased concentrations of vWF have 

been detected for example in patients with sepsis (Wanecek, et al. 2000; Reinhart, et al. 

2002). Secretion of stored vWF is increased by IL-1�. Whereas IFN-� and TNF-� inhibit the 

release of vWF from EC (Tannenbaum, et al. 1990). In addition, vWF expression is up-

regulated in EC by angiogenic factors like bFGF and VEGF (Zanetta, et al. 2000). Therefore 

vWF cannot discriminate between endothelium damage caused by IC or AGF. 

Thrombospondin (TSP) is a further marker for inflammation. TSP secretion has been shown 

to be up-regulated in glomerulopathies (Okamoto, et al. 2002). TSP production by EC is 

decreased by treatment of the cells with IL-1� and TNF-� alone or in combination (Morandi, 

et al. 1994). By contrast, TSP has been shown to be up-regulated by growth factors like 

epidermal growth factor and transforming growth factor beta 1 (Morandi, et al. 1994). 

Therefore the increased circulating TSP cannot be used a marker for IC-activated EC, as in 

EC its production has been shown to be down-regulated by IC. 

Finally, EC under shear stress secret endothelin-1 (Wang, et al. 2002). Shear-stress has been 

shown to activate EC and to inhibit expression of genes related to EC proliferation (Chen, et 

al. 2001; McCormick, et al. 2001). Micro-vascular EC increase endothelin-1 secretion under 

intermediate levels of shear stress, while macro-vascular EC decrease endothelin-1 secretion 

(McCormick, et al. 2001; Wang, et al. 2002). Therefore, changes in endothelin-1 secretion 

can be difficult to interpret because micro- and macro-vascular EC are reacting differently 

under the same conditions.  
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The use of GBP-1 as a marker of activated EC has many advantages. GBP-1 indicates 

selectively IC-activation of EC. GBP-1 can be used to detect temporal (on the tissue and/or on 

the serological level) and spatial (on the tissue level) appearance of IC-activated EC. GBP-1 

indicates IC-activation also of micro-vascular EC that play an important role in wound 

healing or inflammatory diseases (Cotran, et al. 1988; Cotran, et al. 1990; Kapp 1993; Ensoli, 

et al.; 2000Yawalkar, et al. 2000). GBP-1 can also indicate IC-activation of macro-vascular 

EC, that has been shown to occur in the first phases of atherosclerosis (Cascieri 2002). 

 

6 Possible role of secreted GBP-1 

 

The role of secreted GBP-1 has still to be clarified. Of note, GBP-1 is a large GTPase. The 

GTPase domain could play a role in the function of extracellular GBP-1 by hydrolysing 

extracellular nucleotides (Cheng, et al. 1983; Cheng, et al. 1985; Boehm, et al. 1998; 

Schwemmle and Staeheli 1994; Prakash et al. 2000).  

Extracellular nucleotides regulate a number of activities in many different cells. For example 

ATP triggers IL-1� and TNF-� release of macrophages and GTP regulates Ca2+ release and 

proliferation of B-lymphocytes (Di Virgilio, et al. 2001). Interestingly, in platelets it has been 

shown that ATP and GTP can often exert similar effects because they can bind to the same 

receptor (Greco, et al. 1992). In addition, it has been shown that GTP (but not GDP or GMP) 

enhances neurit outgrowth (Neary, et al. 1996). It has been suggested that an ecto-GTPase, 

may regulate inactivation of this process. Moreover, in trauma or ischemia increased 

concentrations of GTP and ATP were found to remain elevated for days (Neary, et al. 1996). 

It is intriguing to speculate that GBP-1 may be such a postulated ecto-GTPase. 

In addition, a growing family of nucleotide receptors has been described [reviewed in (Di 

Virgilio, et al. 2001)]. Receptors for purines are called P2 purinergic receptors. In mammalian 

twelve P2 receptors are known until now. All immune and inflammatory cells express P2 

receptors (Di Virgilio, et al. 2001). In addition, purinergic receptors have been detected on EC 

(Neary, et al. 1996; von Albertini, et al. 1997). EC in addition express also ATP 

diphosphohydrolases that hydrolyse extracellular ATP adjusting the local ATP concentrations 

at low levels (Robson, et al. 1997). After activation, EC are no more antithrombotic (see 

Introduction, paragraph 1) and increase their adhesiveness for blood cells. In addition EC 

loose the ATP diphosphohydrolases activity. As a consequence, extracellular ATP 

concentrations increase and induce adhesion of blood cells to EC. It has been shown that ATP 

induces E-selectin expression in EC (von Albertini, et al. 1997). This indicates that  
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nucleotide-mediated signalling may have an important role in the regulation of EC activation 

during inflammation. 

GBP-1 has a high turnover GTPase activity and binds GTP with low affinity; in addition to 

GTP, it also binds GDP and GMP (Schwemmle, et al. 1994; Neun, et al. 1996; Praefcke, et 

al. 1999; van der Bliek 1999; Prakash, et al. 2000b). In this context extracellular GBP-1 may 

play a role in inflammation by regulating the extracellular GTP pool. In this framework, the 

results described here may define a platform to investigate novel signalling mechanisms in 

inflammatory diseases. 
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