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„Science is a game we play with God 

to find out what his rules are.“ 

 

(Krasel, Cornelius)



Summary 

Against the background of an ongoing demand on faster, more cost-effective and more 

sensitive analysis methods particularly in the area of DNA analytics, innovative analytic 

developments are necessary. Miniaturized laboratories on electrically driven chip devices 

present an example of such sophisticated technologies. Their application gains increasing 

importance in medical diagnostics as well as in the forensics field of research, most notably as 

often only a small amount of sample material is available which in addition requires to be 

analyzed free of contamination. In this work a multifunctional lab-on-a-chip system is 

presented, that is generally applicable to a wide variety of small-scale sample material. The 

lab-on-a-chip is characterized by a modular design. The single working units used for sample 

retrieval, processing and detection were optimized concerning their capacity. The 

applicability of the lab-on-a-chip in forensic DNA analytics was exemplified on several actual 

scientific problems. After contamination-free microdissection retrieved sample material was 

analyzed on a chip-based DNA amplification unit. On a chemically structured planar chip 

surface virtual reaction tubes were built in form of small droplets, that were stabilized by the 

liquid’s surface tension. The facilitated miniaturization of the reaction volume to just 1 µl in 

total enabled analyses of smallest amounts of sample material free of contamination. In that 

manner, a higher sensitivity than in voluminous plastic tube-based reactions could be 

achieved. The miniaturized reaction volume permitted a decrease of analysis time to  

15 seconds per PCR cycle. The required amount of starting material for a significant genetic 

analysis could be reduced to a minimum of 25 pg. 

Based on reliable, reproducible and highly sensitive analyses using purified standard DNA the 

applicability of the lab-on-a-chip was tested on various samples of forensic relevant materials, 

liquid ones as well as solid ones. (1) Using just 1% (v/v) of unpurified whole blood in PCR-

based analysis, full allelic DNA profiles for the generation of genetic fingerprints could be 

determined. (2) Dried blood spots were analyzed over a specific period of time ranging from 

several minutes up to three months of age. In dependence on the status of the drying and 

coagulation process, up to 92% full detectable DNA profiles could be attained. (3) 

Microdissected tissue particles of pathological relevant tissues could directly be subjected to 

PCR-based gender determining analysis and related to male and female individuals, while no 

additional DNA extraction steps were needed prior to analysis. (4) The self-posted demand on 

performing highly sensitive and contamination-free analyses was demonstrated using ancient 

bone tissue material derived from Egyptian mummy material. After laser microdissection 



 

DNA fragments of up to 297 bp in length could be amplified in PCR-based analyses using 

just 60 pg of ancient DNA starting material. The authenticity of amplified fragments could be 

verified when compared to sequences recalled from current genome databases, showing 

identities of up to 98% concerning the DNA sequence. (5) This innovative laser 

microdissection-based nanotechnological approach for ancient DNA analysis of bone material 

could after all be highlighted versus a conventionally performed pathological technique for 

sample retrieval. The traditional method was based on pulverization of bone material. In using 

the novel technology considerably more authentic ancient DNA molecules could be isolated 

while simultaneously impacts of destructive factors could be eliminated.  



 

Zusammenfassung 

Vor dem Hintergrund eines ständig wachsenden Bedarfs an schnelleren, kostengünstigeren 

und sensitiveren Nachweisverfahren, insbesondere im Bereich der DNA Analytik, sind 

innovative Entwicklungen unerlässlich. Miniaturisierte Labore auf elektrischen Chips sind ein 

Beispiel solcher hochentwickelten Technologien. Ihr Einsatz gewinnt sowohl in der 

medizinischen Diagnostik als auch in der Forensik zunehmend an Bedeutung, vor allem 

deshalb, weil häufig nur sehr geringe Probenmengen zur Verfügung stehen und diese zudem 

kontaminationsfrei analysiert werden müssen. In dieser Arbeit wird ein multifunktionales 

Chiplabor vorgestellt, das zur Analyse kleinster Mengen sehr unterschiedlicher 

Probenmaterialien eingesetzt werden kann. Das Chiplabor zeichnet sich durch einen 

modularen Charakter aus. Die einzelnen Einheiten zur Probengewinnung, Prozessierung und 

Detektion wurden hinsichtlich ihrer Leistungsfähigkeit optimiert. Die Anwendbarkeit des 

Chiplabors in der forensischen DNA-Analytik wurde am Beispiel mehrerer aktueller 

wissenschaftlicher Fragestellungen demonstriert. Nach kontaminationsfreier 

Lasermikrodissektion wurden die gewonnenen Proben auf einer chip-basierten DNA-

Vervielfältigungseinheit verarbeitet. Auf einer chemisch strukturierten planaren 

Chipoberfläche wurden virtuelle, durch Oberflächenspannung stabilisierte Reaktionsgefäße in 

Form kleiner Flüssigkeitströpfchen gebildet. Die dadurch ermöglichte Miniaturisierung des 

Reaktionsvolumens auf nur 1 µl ermöglichte kontaminationsfreie Analysen geringster 

Mengen von Probenmaterial. Auf diese Weise konnte eine höhere Sensitivität als in 

großvolumigen Plastikgefäß-basierten Reaktionen erzielt werden. Das miniaturisierte 

Reaktionsvolumen erlaubte eine Reduktion der PCR-Zykluszeiten auf 15 Sekunden pro 

Zyklus. Die für aussagekräftige genetische Analysen benötigte Menge an Ausgangsmaterial 

ließ sich auf eine minimale Menge von 25 pg DNA reduzieren. 

Ausgehend von verlässlichen, reproduzierbaren und hoch sensitiven Analysen mit gereinigter 

Standard DNA, wurde die Anwendbarkeit des Chiplabors auf verschiedenartige, flüssige 

sowie feste Proben von forensisch relevantem Material getestet. (1) Bei Einsatz von nur 1% 

(v/v) ungereinigtem Vollblut konnten in PCR-basierter Analyse vollständige DNA-Profile zur 

Generierung genetischer Fingerabdrucke ermittelt werden. (2) Getrocknete Blutstropfen 

wurden über einen Zeitraum von mehreren Minuten bis zu drei Monaten untersucht. In 

Abhängigkeit vom Status des Trocknungs- und Koagulationsprozesses ließen sich bis zu 92% 

vollständig nachweisbare DNA-Profile gewinnen. (3) Mikrodissektierte Gewebepartikel aus 

pathologisch relevanten Geweben konnten direkt in PCR-basierter 



 

Geschlechtsbestimmungsanalyse ohne vorherige DNA Extraktion männlichen und weiblichen 

Individuen zugeordnet werden. (4) Der selbst gestellte Anspruch, hochsensitive, 

kontaminationsfreie Analysen durchführen zu können, wurde an sehr altem Knochengewebe 

aus ägyptischem Mumienmaterial demonstriert. Nach Lasermikrodissektion konnten aus einer 

Startmenge von nur 60 pg historischen DNA Materials in PCR-basierten Analysen DNA-

Fragmente von bis zu einer Länge von 297 bp vervielfältigt werden. Die Authentizität der 

vervielfältigten Fragmente konnte in Vergleichen mit gängigen Genom-Datenbanken 

bewiesen werden, mit einer Übereinstimmung hinsichtlich der DNA-Sequenzen bis zu 98%. 

(5) Die Vorzüge dieses innovativen, auf Lasermikrodissektion basierenden, 

nanotechnologischen Ansatzes zur DNA-Analyse aus Knochenmaterial wurden schließlich 

durch Vergleich mit Untersuchungen belegt, bei denen eine herkömmliche pathologische 

Technik zur Probengewinnung eingesetzt wurde. Die konventionelle Technik basierte auf 

einer Pulverisierung des Knochenmaterials. Mit der neuen Technologie konnten deutlich 

mehr authentische alte DNA Moleküle isoliert und gleichzeitig Einflüsse von schädlichen 

Faktoren vermieden werden. 
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1.  Introduction 

During the past decade, molecular biologic genetic analysis tended to be performed at a high-

resolution level, where only microscopically small amounts of sample material were needed 

for analysis. In this way, the handling of such small samples needs sophisticated miniaturized 

tools. The field of developing miniaturized and specified sample processing platforms has a 

highly interdisciplinary character. A convergence of several disciplines at the nanoscale must 

be achieved, namely engineering, electronics, informatics, biology, chemistry and physics. In 

order to find a way for adapting all necessary operations for sample handling onto a small 

device, one needs to combine technical skills with biological know-how. While a variety of 

sample materials need to be considered for application, they all need to be tracked down to 

the basic material used for analysis, which is the DNA molecule. The following paragraphs 

outline some fundamental knowledge of genetics and DNA analysis. Afterwards an overview 

is given over the present status of the efforts undertaken to integrate sample-processing steps, 

in particular the polymerase chain reaction, in microfluidic structures. 

1.1  DNA analysis 

Over the past years DNA analysis became one of the most fascinating fields of research and 

gained enormous importance in all areas of life: in ancestry research, prenatal diagnosis and 

criminalistics, diagnosis of diseases as well as in determination of paternity or natural 

abilities. Due to the great efforts, which had been made during 1990 and 2003 by the 

international Human Genome Project (HGP), the information kept in the DNA molecule 

became especially accessible and usable for well-directed analysis. The primary goal of the 

HGP was to determine the sequence of the three billion chemical base pairs, which make up 

human DNA and to identify approximately 30,000-35,000 genes in human DNA 

(http://ornl.gov/sci/techresources/Human_Genome/home.shtml). 

The DNA, which stands for deoxyribonucleic acid (DNA), represents the unique molecule 

housing the total construction plan of living organisms. Together with structural proteins 

DNA is organized in complex structures called chromosomes, which are stored in the nucleus, 

the biggest cellular organelle in eukaryotic cells. Each human cell contains exactly 46 

chromosomal DNA molecules differing in size and in their informational content. From the 

molecular side the DNA molecule is composed of two complementary strands described as 

double-helix (figure 1 A), each consisting of a sugar-phosphate backbone (blue strands in 
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figure 1 A) carrying a definite sequence of four nucleotide bases adenine (A), guanine (G), 

thymine (T) and cytosine (C) (green and violet pairs in figure 1 A). These nucleotides, and 

thus both DNA strands, are connected via hydrogen bonds, while A and T form a dual bond 

and C and G a triple bond. Solely via the defined sequence of these four nucleotide bases, 

having a fixed order within three billion base pairs in total, the biologic information of 

approximately 30,000-35,000 genes is encoded. Genes are defined as domains of the genome 

that encode specific structural information for building polypeptide chains for the assembly of 

proteins. Among humans, the nucleotide sequence of each gene is fixed. However, areas 

encompassing genes coding for proteins comprise just 2% of the whole DNA genome. The 

information stored in the remaining non-coding 98% of the DNA, also called “junk DNA” 

(Venter JC et al., 2001), provides no genetic information, does not code for proteins, but 

contains useful marker loci for DNA profiling, linkage information and recognition sequences 

for the DNA polymerase enzyme to start replication. The four nucleotides A, T, G and C in 

these non-coding parts of the DNA are organized in sequences of repeated tandem array 

modules. Several non-coding elements are known to be located there, for instance 

pseudogenes, transposons like Alu repeats, as well as microsatellite and minisatellite modules, 

which are simple sequence repeats also known as short tandem repeats (STRs). The number 

of these repeating units is highly variable among individuals as they inherited differing 

numbers of these allelic repeat units from their parents. 

 
Figure 1. The structure of DNA and the principle of PCR analysis. A) The DNA is a macromolecule shaped 
in form of a twisted step-ladder named double-helix, which is 2 nm in width. Four nucleotide bases A, T, G, C 
are arrayed along two complementary strands (blue), bound via hydrogen bonds (two between A and T, three 
between C and G) and house genomic information. The DNA double helix is further coiled around nucleosomes 
and then twisted several times in a helical way to pack the amount of information into a single compact molecule 
(from Mange EJ and Mange AP, 1999). B) Schematic principle of the polymerase chain reaction. One PCR 
cycle is shown characterized via three particular temperatures effecting amplification. The three important steps 
are 1) DNA denaturation at 94°C to convert a double- into a single-stranded molecule, 2) primer annealing at 
50°C and 3) primer extension to a complementary strand at 72°C by the action of a thermostable DNA 
polymerase. Repeated cycling for 30-45 times results in an exponential increase in the amount of DNA material 
that is supposed to be amplified. 
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Thus, nowadays, these STR fragments provide the standard method for DNA profiling via a 

PCR-based method called STR fragment length analysis. DNA profiling kits generally test for 

10-16 STR markers and a sex marker. The probability of a stochastical match between 

unrelated individuals is on average less than one in a billion, which makes DNA profiling 

very reliable. 

There is a wide spectrum of procedures that have been established up to now to analyze 

genomic DNA, and all these procedures basically follow the same elementary steps. As DNA 

is stored in the cells of biological sample material, DNA molecules need to be made 

accessible and must be extracted, purified from cell debris and often concentrated prior to 

genetic analysis. As usually the amount of isolated DNA is not sufficient for direct detection, 

an amplification step is mandatory, like e.g. via the polymerase chain reaction. 

The technique of polymerase chain reaction (PCR) was one of the greatest scientific 

discoveries in the last century. It is nowadays one of the most commonly used standard 

methods applied in modern biomolecular analytics to amplify segments of double-stranded 

DNA when only a small amount is available. Since its development in 1983 by Kary Mullis, 

who was honored with a Nobel prize in chemistry in 1993 for that, the PCR has 

revolutionized molecular biology (Saiki RK et al., 1985; Mullis KB et al., 1994). The PCR is 

an enzyme-catalyzed process, which makes use of the DNA polymerase, an enzyme 

catalyzing DNA replication within cells for purposes of DNA duplication and cell division. 

For performing PCR, besides enzymatic activity also a pair of primers is needed, that flank 

the DNA fragment that is to be amplified. Primers are short oligonucleotides that are designed 

to comprise a sequence complementary to the end parts of the DNA segment going to be 

amplified (Saiki RK et al., 1988). The PCR is a temperature-dependent process, where three 

steps are mandatory to amplify a template DNA sample, namely denaturation, annealing and 

extension (figure 1 B). As the DNA polymerase can only work on single-stranded molecules, 

in the denaturation step both DNA strands are separated by overcoming binding forces and 

breaking the hydrogen bonds between base pairs at 94°C. After denaturation, temperatures 

between 50-65°C facilitate primer binding for bordering the target sequence. The specific 

annealing temperature is dependent on the primer length and its composition. This generated 

short double-stranded sequence provides the fundament for the DNA polymerase to start 

primer extension at a temperature of about 72°C, synthesizing a complementary DNA 

segment. Due to the high temperatures especially during the denaturation step, heat-stable 

variants of the DNA polymerase are utilized, originating from thermophile bacteria, like e.g. 

the Taq DNA polymerase from Thermus aquaticus (Saiki RK et al., 1988). Repeated cycling 
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through these three temperatures, each doubling the amount of DNA theoretically, results in 

an exponential increase in the number of copies of a specific DNA sequence, relative to the 

original number of DNA template copies. Due to this exponential duplication, PCR is highly 

sensitive as theoretically one single DNA strand is sufficient to produce up to 1012 identical 

molecules. Sometimes the annealing and extension steps are combined into one step and 

performed at the annealing temperature comprising a 2-step PCR procedure in contrast to the 

generally performed 3-step protocols. During PCR, transition times between temperatures 

should be kept as short as possible to avoid formation of non-specific byproducts and to 

reduce the thermal stress on the DNA polymerase. Thus, fast cooling and heating times are 

mandatory. Since its conception, the PCR has become one of the main laboratory tools in the 

life sciences, and has revolutionized many applications including molecular biological-, 

clinical diagnostic-, medical-, biomedical-, forensic-, or agricultural-related analysis (Auroux 

PA et al., 2002; Auroux PA et al., 2004; Vilkner T et al., 2004; Chen L et al., 2007).  

1.2  Micro total analysis systems 

During the last decade, the miniaturization of bioanalytical processes has become a broad 

field of research due to the related enormous advantages. For instance, scaling down analyte 

volumes saves costs. Improving sample throughput through parallelization and automation is 

a further major advantage. 

Miniaturization became possible by the development of microfabrication technology for 

generating micro-electro-mechanical-systems (MEMS), which was acquired from the rapidly 

evolving electronics industry in the early 1990s. This technology allowed the production of 

microfluidic devices that are capable of handling, manipulating and processing small amounts 

of liquid. An envisioned integration of all sample-processing steps to one single microdevice 

established growing interest in this field of research. In the 1990s the term “micro total 

analysis system (µTAS)” was introduced describing the idea to operate whole processes on 

microfluidic platforms serving as a “lab-on-a-chip” (Manz A et al., 1990; Auroux PA et al., 

2002; Reyes DR et al., 2002; Vilkner T et al., 2004; Dittrich PS et al., 2006). A µTAS device 

was projected being capable of incorporating many macroscale techniques like sample 

handling, analysis, and detection altogether onto just one single miniature microfluidic 

instrument. These µTAS-related features were envisioned to enhance selectivity and 

sensitivity of analytical performances as well as enabling a more economical consumption of 

sample material, reagents, chemicals and reaction volumes. Within the last decade, the area of 
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microfluidic technology associated with µTAS has been a rapidly developing field (Craighead 

H, 2006; deMello AJ, 2006; El-Ali J et al., 2006; Janasek D et al., 2006, Whitesides GM, 

2006; Yager P et al., 2006). A huge variety of excellent publications concerning µTAS can be 

found in literature (for a broad overview see reviews of Reyes DR et al., 2002; Auroux PA et 

al., 2002; Roper MG et al., 2005; Dittrich PS et al., 2006; Zhang CS et al., 2006; Horsman 

KM et al., 2007; Zhang C and Xing D, 2007; Chen L et al., 2007; Zhang Y and Ozdemir P, 

2009). Almost day after day novel articles concerning miniaturized analysis systems are 

published online and the area of micro total analysis systems is still growing rapidly. 

The rapid development of microdevices over the past decade has pioneered the interest for 

their application in forensic genetic analysis (Jin LJ et al., 2001; Huang Y et al., 2002; for a 

broad overview see Horsman KM et al., 2007). In improving the particular macroscale sample 

processing steps, like e.g. sample preparation, yielding, cell sorting, DNA extraction, DNA 

quantitation, PCR amplification and DNA separation, microdevices are envisioned to become 

“the” technology in future forensic DNA laboratories. In this way, microdevices have the 

potential to revolutionize even forensic DNA testing with state-of-the-art analytical 

technology. In particular, great effort has been put into the miniaturization of genetic tests 

(Auroux PA et al., 2004; Kricka LJ and Wilding P, 2003; Zhang C and Xing D, 2007), 

especially with regard to the miniaturization of the polymerase chain reaction. As the original 

cellular material available for genetic analysis is often extremely limited, miniaturized PCR 

gives the advantage of low reagent and sample consumption. Besides microchip PCR, 

miniaturizing labor-intensive preparative steps of biological material has brought some 

advancement as well, but still remains a delicate task due to complexity of methods and 

variety of target sample materials. Comparable efforts have been made in miniaturizing post-

PCR product detection methods, like the size-dependent separation of DNA fragments in 

restriction fragment length polymorphism (RFLP) or STR analysis for purposes like DNA 

fingerprinting or DNA profiling.  

Modular, single-process devices as well as totally integrated microfluidic systems are in 

development to fill both high-throughput batched and complete single-sample analysis niches. 

However, the standardization, commercialization and final manifestation of microdevices in 

forensics will surely take another decade.  
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1.2.1  Miniaturization of PCR technology 

Enormous efforts have been undertaken to integrate the polymerase chain reaction in fluidic 

microdevices due to its universal importance for fast gene-based analytics and the advantages 

of miniaturization.  

Conventionally, PCR is performed in thin-walled plastic tubes comprising reaction volumes 

in the range of 2-50 µl, which are inserted into a chambered temperature-controlled metal 

block for performing material amplification. This setup bears a number of issues being 

disadvantageous for a fast analysis performance. As not only the PCR mixture needs to be 

heated up and cooled down, but also the whole chambers, traditional PCR systems are 

characterized by a large thermal mass, leading to slow heating and cooling rates and lengthy 

PCR reactions. The key to faster thermocycling was either increasing the heat transfer rate or 

decreasing the thermal mass, or both. The long transition times and the high power 

consumption of these conventional bulky systems eliminate the possibility of making a 

battery-operated and portable PCR system. In addition, the reaction tubes are large and the 

required amount of PCR reagents makes the whole process expensive. As the detection of 

PCR products has generally to be done off-line, i.e. in another instrument, additional costs can 

be listed. 

In comparison, the miniaturization of PCR devices offers numerous remarkable advantages 

over current conventional macroscopic technologies. First, the volume of PCR mixture 

thermocycled is reduced by several orders of magnitude, having PCR chambers with reaction 

volumes on the order of microliters to nanoliters. For microchip PCR this means a low 

reagent as well as sample consumption, decreasing the costs for genetic analysis dramatically. 

Second, due to the small dimension of microfluidic technology much faster analysis times can 

be achieved. As just the microchip substrate or the reaction solution undergoes heating and 

cooling procedures, the thermal mass is reduced massively providing a rapid heat transfer. As 

cycling rates depend on rapid heating and cooling rates of the device, microdevice PCR 

benefits with increased speed of thermocycling. Microchip PCR not only affords much 

shorter assay times, but also favors less power consumption and a great potential of 

integrating multiple processing modules for high-throughput purposes. High-throughput is 

one of the most important issues in fabricating PCR microdevices. As most conventional 

thermocyclers hold 24 to 96 polypropylene tubes, multiple PCR chambers for simultaneous 

reactions (most importantly positive and negative controls) and multiplex amplifications must 

also be integrated into microchip PCR devices. 
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Besides these quantitative advantages, analytical microchips offer further significant benefits 

over existing methods concerning quality of analysis. Due to the dramatic decrease in reaction 

volumes, these include enhanced analysis sensitivity and efficiency as well as increased 

quality of assays with respect to sample tracking and reproducibility due to the potential of 

automation (Auroux PA et al., 2002; Reyes DR et al., 2002; Vilkner T et al., 2004; Dittrich 

PS et al., 2006). Decreased sample handling due to automation of nearly all necessary 

processes, from sample preparation to outcome of analysis results, is also a remarkable 

attribute. This is a key feature particularly for the forensics community, providing less facility 

for sample contamination during processing steps. In order to eliminate cross-contamination 

between samples, the safest way is by using a disposable system (as reported and realized by 

Neuzil P et al., 2006 (a+b)), while at the very least the part of the device, which comes into 

contact with the sample, should be disposable. A further attractive feature of miniaturized 

PCR is its portability, making it useful for in-the-field analysis.  

Despite an enormous number of published and patented PCR microchips and miniaturization 

methods for integrating PCR into microdevices, only a few of them have been 

commercialized (Kricka LJ and Wilding P, 2003). One example is the miniature analytical 

thermal cycling instrument (MATCHI) (Ibrahim MS et al., 1998; Northrup MA et al., 1998). 

However, the market for PCR-on-chip systems is still triggered by the increasing demand for 

such systems in molecular diagnostics, for applications such as blood screening for infectious 

diseases, but also for forensics, paternity, food-safety, agri-diagnostics and veterinary 

applications. 

1.2.2  Modes of microchip-based PCR 

Numerous designs of PCR microdevices became popular varying in basic chip substrates 

(Reyes DR et al., 2002), surface treatments to prevent sticking of biomolecules, chip 

architectures and purposes of being modular systems or integrated ones. The architecture of a 

microdevice is certainly the most important feature as it defines its function, reaction speed, 

reaction volume and the sequence of actions taking place on the device. Some devices were 

just concentrating on on-chip preparative steps, while PCR analysis of sample material was 

performed off-chip. Others just focused on on-chip PCR followed by on-chip detection 

methods like e.g. capillary electrophoresis or microarray, while applying pre-purified DNA 

sample material. The technically most challenging lab-on-a-chip devices integrated all sample 

processing steps. A review about these features was provided by Zhang C and Xing D (2007). 

Concerning the architecture, three modes of microchip PCR technologies have been 
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established for fitting to a small chip. 3-dimensional approaches were realized as a) stationary 

cavity-based or b) continuous flow-through devices, while a 2-dimensional solution was 

provided in c) virtual reaction chamber-based ones. All three methods comprise special 

developed chip architectures, including various designs of PCR chambers and heating 

technologies (figure 2). The three modes of microchip-based PCR technology are described 

in brief in the following paragraphs. 

 
Figure 2. Modes of performing microchip PCR. A) Stationary chamber-based PCR. The PCR sample is 
thermocycled via heating the whole chamber. B) Continuous-flow or flow-through PCR. The PCR sample is 
thermocycled via being pumped along an unidirectional channel system through different temperature zones. C) 
Virtual reaction chamber PCR. The PCR sample is thermocycled via heating the chip surface locally. Figures 
were adapted from Thalhammer S (2009). 

a) Stationary cavity- or chamber-based PCR microdevices. Stationary cavity-based PCR is 

performed in single or multiple miniaturized PCR chambers. The PCR solution is kept 

stationary within the cavity, while the temperature of the reaction chamber is cycled between 

PCR relevant temperatures. The first chamber-based PCR microdevice was presented by 

Northrup MA et al. (1993), followed by several similar approaches (Wilding PJ et al., 1994; 

Waters LC et al., 1998; Lagally ET et al., 2001). In the following years, simple functions on 

microfabricated devices have been reported that can perform analysis of nucleic acids (Yang J 

et al., 2002; Sethu P and Mastrangelo CH, 2004; Chung YC et al., 2004) as well as detection 

of pathogenic bacteria and genotyping (Liu RH and Grodzinski P, 2003; Liu RH et al., 2004; 

Liu Y et al., 2003; Lagally ET et al., 2004; Lagally ET et al., 2001). The most straightforward 

stationary cavity-based PCR approaches fabricated integrate an array of reaction chambers of 

micro-, nano- or even picoliter volumes for parallel PCR reactions (Burns MA et al., 1998; 

Krishnan M et al., 2004; Lee DS et al., 2004; Liu J et al., 2003; Northrup MA et al., 1998; 

Woolley AT et al., 1996). Recently, a channel-based three-dimensional arrayed micro 

droplet-in-oil microfluidic easy-to-handle PCR platform was introduced by Zhang Y et al. 

(2009). It was used as efficient tool for DNA analysis, performing 108 reactions in parallel.  

A distinct advantage of stationary systems is the fact that only the temperature of the chamber 

needs to be cycled in order to modify the temperature of the PCR solution, while an external 
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pumping system or other means to move the PCR sample around are not required. However, 

due to complex architectures, very complicated microfluidic control modules were usually 

incorporated. These require experienced operational skills and thus are difficult to handle as 

well as difficult to fit into routine biological laboratories and clinical settings. Additionally, 

heating the whole chamber is quite disadvantageous, as that attributes a large total thermal 

mass to these PCR chips and heat transfer from the heater to the sample is a limiting factor for 

fast systems.  

b) Continuous flow-through PCR microdevices. This mode of microchip PCR features a 

dynamic process, where the solution is continuously pumped through a microfluidic channel 

system into differently heated temperature zones. The first flow-through PCR device was 

introduced in 1994 (Nakano H et al., 1994) and has been refined in subsequent approaches 

(Kopp MU et al., 1998; Köhler JM et al., 1998; Chiou J et al., 2001; Liu J et al., 2002; Chen 

ZY et al., 2004; Hashimoto M et al., 2004; Wang H et al., 2006; Mohr S et al., 2007). The 

latest developments of continuous-flow microfluidic PCR are summarized in a review of 

Zhang Y and Ozdemir P (2009).  

The prominent advantage of flow-through systems is that they typically comprise zones at 

three constant temperatures, so that only the sample needs to change temperature by moving 

between zones. In this way the thermal mass is reduced to a minimum and cycling can be 

performed at high speeds. Based on this principle, an elegant solution was provided by 

infrared radiation (IR) as heat source (Oda RP et al., 1998; Hühmer AFR and Landers JP, 

2000; Giordano BC et al., 2001 (a)). The IR light source was used to selectively heat the 

water in solution rather than the microdevice substrate, resulting in extremely rapid cycling 

times. The type of flow-through PCR is faster than the first one, but it requires an 

implementation of a mechanism to move the sample around. In both cases, the heaters are 

integrated with the PCR system, so it is not economical to dispose the device to avoid cross-

contamination after performing only a single test. Another prominent disadvantage is the 

requirement of an external bulky syringe pump for moving the fluid, which negatively affects 

the development of compact, portable and integrated continuous-flow PCR chips. 

Additionally, high fabrication cost and difficulties controlling the continuous liquid flow have 

been reported, and parallelization cannot easily be realized as it complicates chip architecture. 

c) Virtual reaction chamber PCR microdevices. In virtual reaction chamber (VRC) PCR 

devices, miniaturization is realized by performing PCR in free micro droplets on chemically 

modified surfaces. Using a hydrophobic and oleophobic structured planar surface providing 
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fluid confinement, small-scale droplets themselves function as virtual test tubes held together 

by surface tension of the liquid and surface chemistry of the substrate. To prevent evaporation 

and cross-contamination, droplets are covered by mineral oil in an old-fashioned way. The 

first virtual reaction chamber PCR device was introduced in 2005 (Guttenberg Z et al., 2005), 

which has been advanced in several ways (Neuzil P et al., 2006 (a); Neuzil P et al., 2006 (b); 

Pipper J et al., 2007; Pipper J et al., 2008). Actuating droplets on the planar surface rely on 

electrowetting (Srinivasan V et al., 2004), dielectrophoresis (Gascoyne PRC et al., 2004), 

(electro-)magnetic forces in combination with superparamagnetic particles (Lehmann U et al., 

2006), or surface acoustic waves (Guttenberg Z et al., 2005).  

An open and planar PCR microdevice excels a lot of advantages over conventional 3-

dimensionally fabricated devices, following practicability issues. 1) While stationary chamber 

and flow-through PCR devices have complex three-dimensional architectures and are based 

on complicated MEMS processes, a planar VRC PCR device can be fabricated much simpler. 

2) Especially the manipulation of individual droplets on a planar surface offers an attractive 

option for µTAS devices with regard to flexibility purposes. The open chamber design 

provides easy access to surface modification and post-PCR sample retrieval for downstream 

analysis.  3) As the majority of micro PCR chips comprise closed chamber systems, requiring 

filling up the entire reaction chamber with reaction mixture, the reaction volume is 

indispensable defined by the chamber size once the device is fabricated. In open, planar, 

virtual reaction chamber devices, the reaction volume can be further reduced using the same 

device (Guttenberg Z et al., 2005). 4) As reaction droplets are completely isolated from 

contaminating environmental influences due to hydrophobic coverage, the chance of 

contamination is minimized. 5) The temperature control box can be physically separated from 

the PCR reaction chip and reused, so that just the microchip needs to be replaced for each new 

reaction (Neuzil P et al., 2006). Such kinds of disposable PCR chips are the most 

straightforward approach in order to eliminate sample-to-sample cross-contaminations in PCR 

microdevices. Since 2005, this slide-based virtual reaction chamber microPCR technology 

has been optimized for parallel processing, and became also known as low-volume PCR. Via 

chemical surface treatment 48-60 hydrophilic PCR reaction spots were generated on one 

single glass slide and arranged in an array-like manner. Several applications of this low-

volume PCR based devices were reported, mostly employed in the forensics field of research 

(Proff C et al., 2006; Schmidt U et al., 2006; Lutz-Bonengel S et al., 2007; Schmidt U et al., 

2008).  
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1.3  Scope of this work 

When starting this work the presented lab-on-a-chip comprised two stand-alone units, a laser 

microdissection module for sample retrieval and a planar chip-based DNA amplification unit 

operating the virtual reaction chamber PCR technology. In course of this thesis, the two basic 

modules were combined to a whole modular lab-on-a-chip system by adding three more units 

(in collaboration with cooperative project partners). The implemented modules include a 

transfer system for loading the analysis chips of the DNA amplification unit with 

microdissected sample material, a PCR product detection unit and an automatic fluid 

dispensing device serving the planar analysis chip. 

After integration, the aim of the presented work was to test the developed modular lab-on-a-

chip system for its use in forensic genetic DNA analysis. The focus was to identify the 

smallest amount of sample material allowing for a fast, reliable and sensitive analysis. 

Furthermore, the analytical procedures for operating at the minimum level of contamination 

had to be explored. These features are especially important in forensic genetic DNA analysis, 

in which case the amount of available sample material is often very small. The approach 

described here also serves to minimize the time and cost of analyses.  
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2.  Materials and Methods 

2.1  Sample materials and preparation 

In the following short paragraphs all kinds of sample materials utilized for genetic analyses 

are summarized. The particular procedures of sample preparation prior to analysis are 

described as well. 

2.1.1  Male and female human genomic reference DNA 

Male and female control DNA was extracted using the peqGOLD Tissue DNA Mini Kit 

(PeqLab Biotechnologie GmbH, Erlangen, Germany) to provide purified DNA material 

serving as reference samples. Female DNA was extracted from HeLa cells (cultivated in 

DMEM medium and kindly provided by a collaborative laboratory of the Ludwig-

Maximilians-University, Munich, Germany), while male DNA was extracted from a fresh 

heparin-treated male blood sample originating from a laboratory member. DNA extraction 

was performed according to the respective protocols for blood or cultured cells, recommended 

by the manufacturer. Concentration of purified eluates was measured via UV 

spectrophotometry (NanoDrop ND-1000, PeqLab Biotechnologie GmbH, Erlangen, 

Germany) and reached values from 291.1 ng/µl to 459.5 ng/µl concerning the female 

reference sample and values from 5 ng/µl to 10 ng/µl concerning the male reference sample. 

Using sterile water for dilution (Ampuwa, Fresenius, Bad Homburg, Germany), small 

aliquots of male and female reference DNA were prepared to known concentrations of  

100 ng/µl, 10 ng/µl, 5 ng/µl and 1 ng/µl and stored in sterile 0.5 ml PCR-tubes (Eppendorf 

AG, Hamburg, Germany). 

2.1.2  Paraffin-embedded human intestine, mamma and bladder tissue 

Eight tissue samples of three human tissues were examined and were derived from male and 

female individuals. Tissues originated in one case from bladder tissue (named tissue3), in one 

case from mamma tissue (named tissue6) and in 6 cases from intestine tissue of individuals 

(named tissue1, tissue2, tissue4, tissue5, tissue7 and tissue8). Tissue pieces of about 2x2 cm 

in diameter were embedded into square paraffin blocks. Microtome-cut tissue sections of  

2-4 µm were placed on an ultra thin 2 µm polyethylene-naphthalate laser supporting carrier 



2. Materials and Methods 
 

 18 

membrane (PEN), mounted on 1.00 mm thick standard microscope object slides 

(MicroDissect GmbH, Herborn, Germany). These paraffin-embedded tissue sample slides 

were kindly provided by the Institute of Pathology (Klinikum Bogenhausen, Munich, 

Germany). Deparaffinization was achieved by xylene incubation (Merck KGaA, Darmstadt, 

Germany) for 30 min and subsequent decreasing alcohol series (100% EtOH for 5 min, 90% 

EtOH for 2 min and 70% EtOH for 2 min; Merck KGaA, Darmstadt, Germany) at room 

temperature. After drying, tissue material, fixed on 2 µm PEN carrier membrane coated 

slides, was used for laser microdissection. 

2.1.3  Anticoagulant treated whole blood 

Whole blood samples from four individuals were examined, two male (named 1 and 2) and 

two female ones (named 3 and 4). Blood specimens were collected into EDTA K treated 

blood collection tubes (Monovettes, SARSTEDT AG & Co., Nümbrecht, Germany), to 

inhibit blood clotting and coagulation. Small 100 µl aliquots of 100% whole blood and 10% 

blood (v/v), diluted with sterile water (Ampuwa, Fresenius, Bad Homburg, Germany), were 

stored in sterile 0.5 ml PCR-tubes (Eppendorf AG, Hamburg, Germany). Consistently 0.1 µl 

of 100% and diluted 10% whole unpurified blood samples was used per 1 µl LV-PCR 

reaction volume, resulting in final dilutions of 10% and 1% blood (v/v) per reaction. 

2.1.4  Time dependant setup of degrading dried blood spots 

Whole blood specimens from a female individual were collected into conventional plastic 

syringes (Becton Dickinson GmbH, Heidelberg, Germany), without adding anticoagulants. 

Immediately after extraction, several blood spots of 1 µl of volume were spread onto pre-

cleaned and decontaminated object slides (Carl Roth GmbH, Karlsruhe, Germany) and dried 

at room temperature. Before use, object slides were cleaned with 70% EtOH (Merck KGaA, 

Darmstadt, Germany) and decontaminated using a UVC light source (PCR Workstation, 

PeqLab Biotechnologie GmbH, Erlangen, Germany) for at least 60 min. For analysis, samples 

of dried blood spots were taken after 0 min, 30 min, 60 min, 120 min, 6 h, 24 h, 2 days, 4 

days, 7 days, 2 weeks, 3 weeks, 4 weeks and 3 months. For sample take-up, single dried blood 

spots of 1 µl were resolved in 10 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, 

Germany) on the surface of the object slide. Final dilutions of 10% blood (v/v) were 

transferred into sterile 0.2 ml PCR-tubes for storage (Eppendorf AG, Hamburg, Germany). 
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Using consistently 0.1 µl of this diluted 10% blood samples for analysis resulted in a final 

dilution of 1% blood (v/v) per 1 µl LV-PCR reaction volume. 

2.1.5  Ancient bone tissue material 

Bone tissue samples from four ancient Egyptian mummies of the ‘Mummy Collection of 

Munich’ were examined and derived from an independent laboratory after anthropological 

and archaeological study. The mummies originally originated from the so-called ‘Tombs of 

the Nobles’, the huge necropolis of Thebes-West that had been mainly built during the New 

Kingdom (NK) (c. 1550 – 1070 BC) and which had been used during the Third Intermediate 

Period (TIP) until the Late Period (LP) (ca. 500 BC). According to the collection records, the 

long bones originated from mummies found in four different tombs of the necropolis of 

Thebes-West. The four specimens were all long bone samples and comprised of a fibula 

(named mummy1), a distal part of a tibia (named mummy2), a distal part of a humerus 

(named mummy3) and a tibia diaphysis (named mummy4).  

Paraffin-embedded ancient bone tissue material. Bones were first cleaned with sodium 

hypochlorite (0.5% solution) and subsequently the outer surface was removed mechanically 

with appropriate sterile tools. To avoid external contamination, several tissue samples were 

taken exclusively from the inner parts of the bones in a nested way using sterile blades. A 

tissue block from each of the four bone samples was removed and subsequently rehydrated 

(Parsche F and Nerlich A, 1997). For paraffin-embedding procedures, decalcification of bone 

particles was achieved by 0.1 M EDTA-solution, pH 7.4, followed by post-fixation with 4% 

buffered formaldehyde. After paraffin-embedding of nested isolated tissue blocks, sections of 

3-5 µm in size were cut via microtome and placed on a 2 µm ultra thin polyethylene-

naphthalate (PEN) laser supporting carrier membrane, mounted on 0.17 mm thin microscope 

cover glass slides (MicroDissect GmbH, Herborn, Germany). Prepared paraffin-embedded 

bone tissue sample slides were kindly provided by the Institute of Pathology (Klinikum 

Bogenhausen, Munich, Germany). Deparaffinization was achieved by xylene (Merck KGaA, 

Darmstadt, Germany) incubation for 30 min and subsequent decreasing alcohol series (100% 

for 5 min, 90% EtOH for 2 min and 70% EtOH for 2 min; Merck KGaA, Darmstadt, 

Germany) at room temperature. After drying, sample material, fixed on 2 µm PEN carrier 

membrane coated slides, was used for laser microdissection. 
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DNA extracts from pulverized ancient bone tissue material. Bones were first cleaned with 

sodium hypochlorite (0.5% solution) and subsequently the outer surface was removed 

mechanically with appropriate sterile tools. Bone particles of the four bone samples were 

pulverized using a mixer mill (MM200, Retsch, Haan, Germany). Pulverized bone specimens 

were subjected to conventional pathological DNA extraction (Zink A et al., 2003). DNA 

extraction was tested by UV spectrophotometry (NanoDrop ND-1000, PeqLab 

Biotechnologie GmbH, Erlangen, Germany), measuring the DNA concentration of extracted 

mummy DNA material. DNA amounts of 2.1 to 10.0 ng/µl were measured from 1 g of 

pulverized bone tissue. Amounts of 50 pg respectively 100 pg of this conventionally extracted 

mummy DNA material were used for LV-PCR analysis. 

2.1.6  Genomic sample material of individuals 

Genomic sample material was extracted from scientific staff for DNA profiling purposes in 

anticipation of introduced external contaminating events, in particular in regard to ancient 

sample materials. Saliva samples were taken from archaeologist/excavator of Egyptian 

mummy material, technical assistance staff, laboratory members and involved scientists, 

simply all people who have been knowingly in contact with laboratory equipment and 

consumables and any kind of mummy material used. In the following these individuals are 

termed ‘scientific staff’. Sample material of scientific staff as potential contaminators was 

extracted from saliva via sterile cotton buds (Nuova Aptaca, Canelli (AT), Italy) and dried for 

20 min at 37°C. To isolate DNA out of dried saliva samples the First-DNA All-tissue DNA 

kit (Gen-ial, Troisdorf, Germany) was used according to the manufacturer’s protocol. To 

release saliva cell material from cotton buds, tips of cotton buds were transferred into 450 µl 

of lysis solution. Finally, pellets were diluted with sterile water (Ampuwa, Fresenius, Bad 

Homburg, Germany) to a final volume of 20 µl. For DNA typing reactions of scientific staff, 

1 µl of these DNA extracts was used in LV-PCR analysis. 

2.2  Experimental techniques 

The following sections summarize all techniques that were used for processing sample 

materials. Pre-PCR and post-PCR applications are described as well as all kinds of hardware 

devices utilized. 
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2.2.1  Temperature measurement 

Temperature measurements were performed on the CytoCycler PCR module of the lab-on-a-

chip system to test for heat transfer capabilities. The CytoCycler and its components were 

fabricated by the company Advalytix AG/Beckman Coulter Biomedical GmbH (Munich, 

Germany). It was a module of the lab-on-a-chip (LOC) system and provided the basis for 

performing PCR analysis. It comprised a chip-holder including a cavity for installing LOC 

chips, a temperature control device, a high frequency (HF) generator (FC 1201 HF) serving as 

SAW control device as well as particular software for programming PCR protocols. 

Temperatures for thermal cycling were provided by a Peltier element, controlled via the 

appropriate software “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany). To validate the temperature transfer from the Peltier element to LOC chip 

surface, temperature measurements were carried out using an adapted measurement LOC 

chip. The measurement LOC chip comprised a Pt100 temperature sensor fixed on the LOC 

chip surface, exactly positioned on reaction center B, centered to the middle of the Peltier 

element when implemented into the chip-holder. Connected to a temperature measurement 

device (Präzisionsthermometer GMH 3710, Greisinger electronic GmbH, Regenstauf, 

Germany), the heat transfer from the Peltier element through the glass substrate to the surface 

of the measurement LOC chip was analyzed. On the one hand, increasing temperatures steps 

comprising a temperature increment of +5°C per step were measured, starting from 25°C to 

105°C. Each temperature was kept for a hold time of 30 sec, before raised to the next 

temperature level. On the other hand, temperature steps and hold time of each temperature 

were measured in a way relevant for PCR analysis, simulating repeated PCR temperature 

cycling. Starting at 95°C for 10 min, the measurements were continued by 3 to 5 cycles of the 

representative temperatures 94°C, 60°C and 72°C, each kept for a hold time of 30 sec. The 

duration of temperature steps was controlled using an alarm timer in parallel. Comparing 

input temperature of the software and output temperature of the temperature measurement 

device, differing temperatures were adapted in the software to fit the output. Data was 

evaluated by using graphically software (OriginPro 7.5 SR0, OriginLab Corporation, 

Northhampton, MA, USA). The latter measurements simulating thermal PCR cycling were 

performed on the AmpliSpeed slide cycler as well (Advalytix AG/Beckman Coulter 

Biomedical GmbH, Munich, Germany). In all applications of the lab-on-a-chip system, the 

AmpliSpeed slide cycler was used as reference LV-PCR device, validating the results of the 

LOC CytoCycler as providing reference, negative and positive controls. Measurements were 

repeated several times for validation. 
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2.2.2  Laser-based microdissection 

Recovery and isolation of sample material out of paraffin-embedded fixed biological material 

was achieved by laser-based microdissection using a modified UVA-laser system (CryLaS 

GmbH, Berlin, Germany) integrated into an inverted optical microscope (Axio Obsever.Z1, 

Carl Zeiss GmbH, Jena, Germany), based on the basic principle reported by Thalhammer S et 

al. (2003) and Thalhammer S et al. (2004). 

Specimens and biological material destined for laser microdissection were applied directly 

onto a 2 µm ultra thin polyethylene-naphthalate (PEN) laser supporting carrier membrane. 

The PEN membrane was mounted on 0.17 mm thin microscope cover glass slides or on  

1.00 mm thick standard microscope object slides (MicroDissect GmbH, Herborn, Germany) 

serving as supporting backbone for cutting and isolation of material while lowering adhesion 

forces. Before utilization, PEN membrane coated slides were decontaminated in a sterile 

environment by treatment with ultraviolet light using a UVC light source (PCR Workstation, 

PeqLab Biotechnologie GmbH, Erlangen, Germany) for at least 30 min, in order to exclude 

DNA contamination. Microdissection operations were optically controlled by either a color 

firewire camera (PixeLINK, BFI Optilas, Munich, Germany) or a black & white CCD camera 

(Rolera-XR, QImaging, Surrey BC, Canada) and appropriated software (QCapture Pro 6.0, 

QImaging, Surrey BC, Canada). The laser energy as well as the laser focus was regulated 

exactly to the focal plane of the PEN carrier membrane, providing a thin and sharp cutting 

line without scattering. When 0.17 mm thin microscope cover glass slides were used, the 

numerical aperture of the objective was adjusted to 1.5 for tuning the laser focus to the 

focused object plane. The numerical aperture was set to 1.0 when 1.00 mm thick standard 

microscope object slides were used. Biological material of interest was visualized using 5x, 

10x, 40x or 63x magnifying objectives. For microdissection, the pulsed laser beam was 

directed from below through the objective lens and the microscope glass slide to the PEN 

membrane, on which the sample resided. Using 0.5-0.6 µJ/pulse laser energy, sample material 

of interest was separated from its surrounding by moving the microscope XY-stage and 

ablating unwanted material. Extraction blanks, microdissecting PEN carrier membrane devoid 

of sample material, were always included in every procedure. 

After laser microdissection isolated material was extracted and transferred via a low-pressure 

operated transfer device named SPATS (single particle adsorbing transfer system) (XYZ High 

Precision, Darmstadt, Germany), integrated at the microscope. The SPATS provided a totally 

new approach for controlled horizontal material transfer after laser microdissection directly 

onto any planar microdevice (Woide D et al., 2009; EU patent 08150662.8). The SPATS 
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device consisted of a copper collection grid, having a diameter of 500 µm. The grid was 

attached to a transparent glass capillary tube, comprising the adsorbing head. The glass 

capillary tube was fixed to a carrier device, providing both a connection to a micrometer step 

motor for XY-directed movements and a connection to a pressure-supplying pneumatic 

picopump (PLI-100 pressure control unit, Harvard Apparatus, Holliston, US). For 

contamination reasons, adsorbing heads were exchanged for every single isolation procedure, 

when sample material was diverse. Otherwise, grids were cleaned by 70% EtOH (Merck 

KGaA, Darmstadt, Germany) treatment and decontaminated using a UVC light source (PCR 

Workstation, PeqLab Biotechnologie GmbH, Erlangen, Germany) for at least 30 min when a 

new procedure on the same sample material was started. Via the micrometer step motor the 

low-pressure transfer device SPATS was fixed to the inverted optical microscope used for 

microdissection purposes (Axio Obsever.Z1, Carl Zeiss GmbH, Jena, Germany). 

Biological material destined for SPATS transfer was mounted on 2 µm ultra thin PEN carrier 

membrane mounted glass slides (MicroDissect GmbH, Herborn, Germany), as already 

described for laser microdissection. The PEN carrier membrane served as carrier substrate, 

favoring SPATS-mediated particle transfer out of surrounding material while keeping 

adhesion forces of the subjacent glass slide at a minimum. For sample uptake, the adsorbing 

head was approached to the sample surface keeping a distance of about 100 µm or less. The 

collection grid was centered to the sample shape for optimal sample uptake. Applying low-

pressure (0–0.75 kPa) adsorbed single particles to the collection grid, while grid-directed low-

pressure suction needed to surpass adhesion forces of the glass slide surface. Dissected 

particles in the range of 5–500 mm were selectively be adsorbed under optical control. 

Smaller particles fell below the diameter of the grid meshes, and larger ones exceeded the 

visible adsorption zone. For transfer, the adsorbing head was raised up again and moved 

vertically and horizontally to a desired, predefined unloading position. During material 

transfer low-pressure was maintained to avoid loosing the sample. Release of sample material 

was controlled with µm-precision either onto the surface of any planar analysis microdevice 

or into a tube. Release was managed by approaching the grid to about 100 µm to the surface 

predefined for sample release and simply switching from low-pressure operation to a short 

high-pressure impulse (413 kPa, 2 milliseconds). After release, sample material was available 

for further biochemical processing. Optimally, sample unloading was performed into a small 

volume of fluid, prepared on the surface supposed for sample release. Droplet volumes on 

planar chip surfaces for sample uptake ranged between 0.2-1.0 µl, while sterile water as well 

as directly PCR reaction mix was used. By this means sample material was adsorbed, 
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transferred and released in a highly precise, safe, reliable and gentle way at a predefined, 

designated position on a planar surface. 

Laser microdissection and transfer of human intestine, mamma and bladder tissue 

material. Small tissue particles of about 500 µm in diameter were microdissected and then 

isolated out of tissue sections and transferred via the SPATS device. Sample material was 

transferred onto a planar multi LV-PCR microdevice comprising 48 hydrophilic reaction sites 

for performing virtual reaction chamber PCR (AmpliGrid AG480F, Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany). Sample material was released 

directly into 0.5 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) prepared 

on hydrophilic reaction sites and dried at room temperature for subsequent LV-PCR analysis. 

In an analogous manner, sample material was applied to the hydrophilic reaction center B of 

LOC chips and directly released into 1.0 µl of LV-PCR master mix.  

Laser microdissection, particle transfer and DNA extraction from ancient Egyptian 

mummy bone tissue material. Single osteon areas in the range of 350 µm in diameter were 

microdissected, and then isolated out of bone tissue material and transferred via the SPATS 

device. Osteon bone particles were released directly into a sterile 0.5 ml PCR-tube 

(Eppendorf AG, Hamburg, Germany) containing 112.5 µl of lysis solution for subsequent 

DNA extraction using the First-DNA All-tissue DNA kit (Gen-ial, Troisdorf, Germany) 

according to the manufacturer’s protocol. In a final step, extracted DNA was pelleted and 

resolved in 10 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) serving as 

total extraction solution. Concentration of extracted ancient DNA was about 60 pg/µl as 

measured using real-time PCR (chapter 2.3.2). Amounts of 60 pg of the extracted mummy 

DNA material were used for LV-PCR analysis. 

2.2.3  Polyacrylamide gelelectrophoresis and DNA silver staining 

Horizontal polyacrylamide gelelectrophoresis (PAAGE) followed by DNA silver staining was 

used for standard detection of PCR products. Via polyacrylamide gelelectrophoresis, charged 

molecules were separated according to their size. Due to their charge these molecules were 

forced to migrate through the polyacrylamide gel, serving as support medium, in an electric 

field under controlled conditions of temperature, pH, voltage, and time. As PCR products 

were negatively charged due to the sugar-phosphate backbone of DNA, migration happened 

towards the anode and PCR fragments were separated according to their size-dependant 
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charge. For PAAGE precast 10% polyacrylamide DNA gels (CleanGel 10% or CleanGel 

HyRes, ETC GmbH, Kirchentellinsfurt, Germany) were utilized. Before use, gels were 

rehydrated in appropriate buffers: 10% CleanGels for 1.5 h in Delect Gel Buffer and HyRes 

CleanGels for 2.0 h in DNA HyRes Buffer (ETC GmbH, Kirchentellinsfurt, Germany). 

PAAGE was performed using a horizontal gel electrophoresis device (GenePhor 

electrophoresis unit, Amersham Biosciences Europe GmbH, Freiburg, Germany), a power 

supply (Electrophoresis Power Supply EPS 601, Amersham Biosciences Europe GmbH, 

Freiburg, Germany) and appropriated anode and kathode buffers, provided with the 

CleanGels by the manufacturer: (-) Delect Cathode Buffer and (+) Delect Anode Buffer for 

10% CleanGels and (+/-) DNA HyRes Buffer for HyRes CleanGels. Using 10% CleanGels 

electrophoretic separation was performed using 580 V for about 60 min. Settings for HyRes 

CleanGels were 180 V for 40 min followed by 360 V for about 60 min. 

For DNA staining via silver nitrate a prepared silver staining system was used (DNA silver 

staining kit, GE Healthcare, Uppsala, Sweden). According to the manufacturer’s protocol, 

CleanGels were first incubated in 1x Fixing Solution (35 min for 10% CleanGels, 45 min for 

HyRes CleanGels), washed 3x for 10 min in H2O
dd, incubated in 1x Staining Solution (35 min 

for 10% CleanGels, 45 min for HyRes CleanGels), washed 2x for 1 min in H2O
dd, followed 

by applying 1x Developing Solution (time depended on the staining grade) and final 

incubation for 30 min in 1x Stopping & Preserving Solution. Stained CleanGels were scanned 

for documentation and sealed in plastic bags for long time storage. 

2.2.4  Capillary electrophoresis and STR fragment length analysis 

Fully automated capillary electrophoresis (CE) was used for fast and sensitive separation of 

PCR amplified STR fragments for genetic profiling purposes. Short tandem repeats (STRs), 

located in non-coding DNA domains, are short sequences of DNA which are repeated in 

tandem several times, while the number of repeats varies between complementary DNA 

strands and between individuals. In CE, small-diameter capillaries, a little larger than the 

width of a human hair and about 20 centimeters in length, are used to separate the various 

STR fragments due to electroosmotic flow. The surface of the capillary contains negatively 

charged functional groups, while positively charged ions migrate towards the negative 

electrode and carry solvent molecules in the same direction. Positively charged ions move 

faster and negatively-charged ones slower, thus separation of PCR products happens via their 

size-dependant charge. Due to fluorescently labeled STR primers amplified DNA fragments 

are fluorescently tagged and excited by a laser beam. As data analysis is performed by a 
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computer with appropriate software, capillary electrophoresis allows a higher resolution than 

gel electrophoresis, a greater sensitivity and on-line detection of PCR products, displayed as 

electropherograms. 

PCR reactions of amplified STR fragments were diluted 1:5 with sterile water (Ampuwa, 

Fresenius, Bad Homburg, Germany). An aliquot of 1 µl of this dilution was mixed with  

12.7 µl of Hi-Di Formamide (Applied Biosystems GmbH, Darmstadt, Germany) and 0.3 µl 

of GeneScan-500LIZ size standard (Applied Biosystems GmbH, Darmstadt, Germany) in 

a 96-well plate (ABgene PCR Plates, Thermo Scientific, Epsom, Surrey, UK). In 

experimental setups using the AmpF/STR SEfiler PCR amplification kit, 1 µl of the 

AmpF/STR SEfiler Allelic Ladder (Applied Biosystems GmbH, Darmstadt, Germany) 

was run in parallel. Amplified STR fragments were analyzed via a 3130xL Genetic Analyzer 

(Applied Biosystems GmbH, Darmstadt, Germany). Data was either interpreted using 

GeneScan 3.7 software in combination with Genotyper 3.7 software for EDTA K treated 

blood samples, Egyptian mummy and scientific staff samples, or using GeneMapper ID 

v.3.2 software for dried blood spot analysis (Applied Biosystems GmbH, Darmstadt, 

Germany). The signals of the fluorescent dyes incorporated into each amplicon through a 5’-

end labeled oligonucleotide primer, was a measure of quantity of the amplified target. Sample 

peak heights, in relative fluorescent units (rfu), of all true alleles were used for quantitative 

analysis and heterozygous peak ration calculations. The minimum peak height threshold was 

set at 50 rfu to allow for detection of all peaks clearly above background. This mode of data 

analysis, that signals below 50 rfu were not evaluated, is accepted as general accreditation-

threshold, validating authentic marker peaks. 

2.3  Molecular biological methods 

In the following sections utilized molecular biological reactions are summarized. All kinds of 

PCR analyses performed, especially the application of low-volume PCR, are described as 

well as real-time PCR, array-based approaches and general precautions, which were taken to 

eliminate risks of contamination. 

2.3.1  Polymerase chain reaction 

Conventional polymerase chain reaction (PCR) was performed as well as low-volume PCR. 

The technique of low-volume PCR (LV-PCR, also “virtual reaction chamber PCR (VRC 
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PCR)”, Guttenberg Z et al., 2005), performed on microdevices, is based on a chemically 

structured surface providing hydrophilic reaction sites surrounded by hydrophobic 

background. LV-PCR was performed on two microfabricated devices, in fact a multi LV-PCR 

microdevice (AmpliGrid AG480F, Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) and LOC chips designed for the lab-on-a-chip system (Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany). The AmpliGrid AG480F is a 

commercially available multi LV-PCR microdevice, offering 48 hydrophilic reaction sites 

with 1.6 mm in diameter, each surrounded by a hydrophobic circle to hold 1 µl of aqueous 

PCR master mixes in place. A short-distanced hydrophilic ring comprising 3 mm in diameter 

and surrounding the hydrophilic reaction site, centers 5 µl of mineral oil cover solution 

(Sealing Solution, Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) to 

the aqueous droplet. For performing thermal reactions, the AmpliGrid AG480F slide was 

placed on a corresponding thermal cycler (AmpliSpeed slide cycler, Advalytix AG/Beckman 

Coulter Biomedical GmbH, Munich, Germany). LOC chips present a single LV-PCR 

microdevice. For PCR performance, these chips offer one hydrophilic reaction site with 500 

µm in diameter, surrounded by a hydrophobic circle to keep 1 µl aqueous PCR master mixes 

in place (named reaction center B). A short-distanced intermitted hydrophilic ring comprising 

3 mm in diameter and surrounding the hydrophilic reaction site, centers 5 µl of mineral oil 

cover solution (Sealing Solution, Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) to the aqueous droplet. For performing thermal cycling reactions, LOC 

chips were installed into the LOC CytoCycler. For all experiments, LOC chips of the Cyto3 

design were used. 

Setup of LV-PCR reactions. LOC chips and multi LV-PCR microdevices were 

decontaminated for 15-20 min using a UVC light source prior to use (PCR Workstation, 

PeqLab Biotechnologie GmbH, Erlangen, Germany). Additionally, LOC chips were 

preheated for 15 min at 95°C prior to PCR for adapting the material to heat and to eliminate 

material stress when starting the initial denaturation step of a PCR. LV-PCR reactions were 

setup in the following way: after master mixes were mixed thoroughly, 1 µl of prepared 

master mix was placed on reaction center B of LOC chips or on reaction sites of the multi 

LV-PCR microdevice and was immediately covered with 5 µl of Sealing Solution to prevent 

evaporation and external cross-contamination. Evaporation might inhibit LV-PCR due to loss 

of reactants, loss of volume and increase of salt concentrations present in the reaction mix. As 

LOC chips offer only one reaction site for performing VRC PCR, reactions were run on the 

multi LV-PCR microdevices in parallel for validation and as a reference system. In addition, 
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positive and negative controls were included. When using fluorescently tagged primers like 

D7S1824, D9S302, D10S2325, AmpF/STR SEfiler Primer Set, Amel1-f-Cy3 or SYBR 

Green I-based LV-PCR setups, reactions were performed in darkness by capping PCR cyclers 

with light impermeable stuff to exclude ambient light and to inhibit bleaching effects. 

Amelogenin and ββββ-actin LV-PCR on reference DNA for evaluating the minimum amount 

of target material needed for cycling on the lab-on-a-chip integrated CytoCycler. To test the 

sensitivity and to analyze the product detection limit of the LOC CytoCycler PCR 

amplification device, LV-PCR was performed on purified human genomic male and female 

reference DNA. PCR reactions were performed using the QuantiFast SYBR Green I PCR 

kit for 2-step PCR (QIAGEN GmbH, Hilden, Germany) according to the protocol 

recommended by the manufacturer, but reaction volumes were adapted to low-volume PCR 

applications. 1 µl total PCR reaction mix contained 0.5 µl of 2x QuantiFast SYBR Green I 

PCR Master Mix (final 1x), 0.1 µl of 10 µM primer solutions β-Actin up and β-Actin down or 

Amel1 and Amel2 respectively (final 1 µM per primer), 0.2 µl of sterile water (Ampuwa, 

Fresenius, Bad Homburg, Germany) as well as 0.1 µl of 10x concentrated input DNA (final 

1x). Primer sequences were listed in the appendix, chapter 9.2. For input target DNA 

concentrations of 10 ng/µl, 5 ng/µl, 1 ng/µl, 500 pg/µl, 250 pg/µl, 125 pg/µl and 100 pg/µl 

were used, resulting in final concentrations of 1 ng, 500 pg, 100 pg, 50 pg, 25 pg, 12.5 pg and 

10 pg present in 1 µl total reaction mix. 1 µl of prepared master mix was placed on reaction 

center B of LOC chips or on reaction sites of a multi LV-PCR microdevice and was 

immediately covered with 5 µl of Sealing Solution to prevent evaporation and external cross-

contamination. 2-step PCR cycling conditions recommended by the manufacturer’s protocol 

were slightly changed concerning temperature hold times: 5 min initial denaturation at 95°C, 

followed by 40 cycles of 95°C for 30 sec and 60°C for 60 sec (instead of 95°C for 10 sec and 

60°C for 30 sec). PCR products were analyzed on polyacrylamide gels (CleanGel 10% or 

CleanGel HyRes, ETC GmbH, Kirchentellinsfurt, Germany) and subsequent DNA silver 

staining (DNA silver staining kit, GE Healthcare, Uppsala, Sweden) (chapter 2.2.3). Blank 

and negative controls (containing no DNA) were included in every reaction batch and all 

experiments were performed in multiplicates. 

Amelogenin and ββββ-actin LV-PCR on reference DNA for cycling efficiency tests of the lab-

on-a-chip integrated CytoCycler. To test the cycling efficiency of the LOC CytoCycler PCR 

amplification device, LV-PCR was performed on purified human genomic male reference 

DNA. PCR reactions were performed using the QuantiFast SYBR Green I PCR kit for 2-
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step PCR (QIAGEN GmbH, Hilden, Germany) as well as the QIAGEN Fast Cycling PCR 

kit for 3-step PCR (QIAGEN GmbH, Hilden, Germany). Kits were used according to the 

protocol recommended by the manufacturer, but reaction volumes were adapted to low-

volume PCR applications. Furthermore, temperature hold-times were scaled down, speeding 

up cycling times to amplification limits. 

Using the QuantiFast SYBR Green I PCR kit, 1 µl of total PCR reaction mix contained  

0.5 µl of 2x QuantiFast SYBR Green I PCR Master Mix (final 1x), 0.1 µl of 10 µM primer 

solutions β-Actin up and β-Actin down or Amel1 and Amel2 respectively (final 1 µM per 

primer), 0.2 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) and 0.1 µl of 

10x concentrated input DNA (final 1x). Primer sequences were listed in the appendix, 

chapter 9.2. For input target DNA 5 ng/µl male reference DNA was used, resulting in a final 

concentration of 500 pg present in 1 µl total reaction mix. 1 µl of prepared master mix was 

placed on reaction center B of LOC chips or on reaction sites of a multi LV-PCR microdevice 

and was immediately covered with 5 µl of Sealing Solution to prevent evaporation and 

external cross-contamination. The 2-step PCR protocol was adapted to shorter cycling times, 

starting with 95°C for 5 min, 40 cycles of 95°C for 30 sec and 60°C for 60 sec to 95°C for  

5 min, 40 cycles of 95°C for 10 sec and 60°C for 30 sec.  

Using the QIAGEN Fast Cycling PCR kit, 1 µl of total PCR reaction mix contained 0.5 µl of 

2x QIAGEN Fast Cycling PCR Master Mix (final 1x), 0.06 µl of 5x Q-Solution (final 0.3x), 

0.1 µl of 10 µM primer solutions β-Actin up and β-Actin down or Amel1 and Amel2 

respectively (final 1 µM per primer), 0.14 µl of sterile water (Ampuwa, Fresenius, Bad 

Homburg, Germany) and 0.1 µl of 10x concentrated input DNA. Primer sequences were listed 

in the appendix, chapter 9.2. For input target DNA 5 ng/µl, 1 ng/µl, 500 pg/µl and 250 pg/µl 

male reference DNA was used, resulting in final concentrations of 500 pg, 100 pg, 50 pg and 

25 pg present in 1 µl total reaction mix. 1 µl of prepared master mix was placed on reaction 

center B of LOC chips or on reaction sites of a multi LV-PCR microdevice and was 

immediately covered with 5 µl of Sealing Solution to prevent evaporation and external cross-

contamination. The 3-step PCR protocol was adapted to shorter cycling times, starting with a) 

95°C for 5 min, 30 cycles of 94°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec, and 1 min 

final extension at 72°C, to b) 95°C for 5 min, 30 cycles of 94°C for 10 sec, 60°C for 10 sec, 

72°C for 10 sec, and final extension for 1 min at 72°C and finally c) 95°C for 5 min, 30 cycles 

of 94°C for 5 sec, 60°C for 5 sec, 72°C for 5 sec, and final extension for 30 sec at 72°C.  

PCR products were analyzed on polyacrylamide gels (CleanGel 10%, ETC GmbH, 

Kirchentellinsfurt, Germany) and subsequent DNA silver staining (DNA silver staining kit, 
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GE Healthcare, Uppsala, Sweden) (chapter 2.2.3). Blank and negative controls (containing 

no DNA) were included in every reaction batch and all experiments were performed in 

multiplicates. 

Amelogenin LV-PCR on human intestine, mamma and bladder tissue material. For LV-

PCR analysis of tissue material, performed on a multi LV-PCR microdevice, the QIAGEN 

Fast Cycling PCR kit was used for 3-step PCR (QIAGEN GmbH, Hilden, Germany) 

according to the protocol recommended by the manufacturer, but reaction volumes were 

adapted to low-volume PCR applications. Dried tissue fragments, fixed on reaction sites of a 

multi LV-PCR microdevice, were covered with 1 µl of PCR reaction mix. 1 µl of total PCR 

reaction mix contained 0.5 µl of 2x QIAGEN Fast Cycling PCR Master Mix (final 1x),  

0.2 µl of 5x QIAGEN Q-Solution (final 1x), 0.1 µl of 10 µM primer solutions Amel1 and 

Amel2 (final 1 µM per primer) and 0.1 µl of sterile water (Ampuwa, Fresenius, Bad 

Homburg, Germany). Primer sequences were listed in the appendix, chapter 9.2. 1 µl of 

positioned master mix was immediately covered with 5 µl of Sealing Solution to prevent 

evaporation and external cross-contamination. 3-step PCR cycling conditions recommended 

by the manufacturer’s protocol were slightly changed concerning temperature hold times: 20 

min initial denaturation and cell lysis at 97°C, followed by 40 cycles of 94°C for 30 sec, 60°C 

for 30 sec and 72°C for 30 sec, and final product extension at 72°C for 1 min. PCR products 

were analyzed on polyacrylamide gels (CleanGel HyRes, ETC GmbH, Kirchentellinsfurt, 

Germany) and subsequent DNA silver staining (DNA silver staining kit, GE Healthcare, 

Uppsala, Sweden) (chapter 2.2.3). Blank and negative controls (containing no DNA) were 

included in every reaction batch and all experiments were performed in multiplicates. Positive 

controls comprising male and female reference DNA were included as well. 

For LV-PCR analysis of tissue5, performed on a LOC chip, the QIAGEN Fast Cycling PCR 

kit was used for 3-step PCR (QIAGEN GmbH, Hilden, Germany) according to the protocol 

recommended by the manufacturer, but reaction volumes were adapted to low-volume PCR 

applications. Fragments of tissue5 were released directly into 1 µl of LV-PCR master mix on 

reaction center B of LOC chips after microdissection. 1 µl of total PCR reaction mix 

contained 0.5 µl of 2x QIAGEN Fast Cycling PCR Master Mix (final 1x), 0.06 µl of 5x Q-

Solution (final 0.3x), 0.1 µl of 10 µM primer solutions Amel1 and Amel2 (final 1 µM per 

primer) and 0.24 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany). Primer 

sequences were listed in the appendix, chapter 9.2. 1 µl of sample-loaded master mix was 

immediately covered with 5 µl of Sealing Solution to prevent evaporation and external cross-
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contamination. Adding volumes of 1 µl of master mix and 5 µl of Sealing Solution was 

performed using the automatic dispensing device BioSpot and appropriate software 

“BioSpot” (BioFluidix GmbH, Freiburg, Germany). PipeJet1 was used for applying the 

master mix, while PipeJet3 provided the oil coverage just by dispensing the liquid onto the 

chip surface. 3-step PCR cycling conditions recommended by the manufacturer’s protocol 

were slightly changed concerning temperature hold times: 20 min initial denaturation and cell 

lysis at 97°C, followed by 40 cycles of 94°C for 30 sec, 60°C for 30 sec and 72°C for 30 sec, 

and final product extension at 72°C for 1 min. PCR products were analyzed on 

polyacrylamide gels (CleanGel 10%, ETC GmbH, Kirchentellinsfurt, Germany) and 

subsequent DNA silver staining (DNA silver staining kit, GE Healthcare, Uppsala, Sweden) 

(chapter 2.2.3). Blank and negative controls (containing no DNA) were included in every 

reaction batch and experiment was performed in triplicate. 

Amelogenin and ββββ-actin LV-PCR on ancient Egyptian mummy bone tissue material. For 

LV-PCR analysis of extracted mummy DNA samples, microdissected as well as 

conventionally extracted ones, the QIAGEN Fast Cycling PCR kit (QIAGEN GmbH, 

Hilden, Germany) was used for 3-step PCR according to the protocol recommended by the 

manufacturer, but reaction volumes were adapted to low-volume PCR applications. 1 µl of 

extracted mummy DNA sample solution was dried up either on reaction center B of LOC 

chips or on reaction sites of a multi LV-PCR microdevice at 30°C for 10 min. Dried input 

DNA sample material, comprising 60 pg of microdissected mummy DNA or 50-100 pg of 

pulverized mummy DNA, was covered with 1 µl of PCR reaction mix. 1 µl of total PCR 

reaction mix contained 0.5 µl of 2x QIAGEN Fast Cycling PCR Master Mix (final 1x),  

0.2 µl of 5x QIAGEN Q-Solution (final 1x), 0.1 µl of 10 µM primer solutions β-Actin up 

and β-Actin down, or Amel1 and Amel2 respectively (final 1 µM per primer) and 0.1 µl of 

sterile water (Ampuwa, Fresenius, Bad Homburg, Germany). Primer sequences were listed 

in the appendix, chapter 9.2. 1 µl of positioned master mix was immediately covered with 5 

µl of Sealing Solution to prevent evaporation and external cross-contamination. 3-step PCR 

cycling was performed as recommended by the manufacturer’s protocol: 5 min initial 

denaturation at 95°C, followed by 40 cycles of 94°C for 30 sec, 60°C for 30 sec and 72°C for 

30 sec, and final product extension at 72°C for 1 min. PCR products were analyzed on 

polyacrylamide gels (CleanGel 10% and CleanGel HyRes, ETC GmbH, Kirchentellinsfurt, 

Germany) and subsequent DNA silver staining (DNA silver staining kit, GE Healthcare, 

Uppsala, Sweden) (chapter 2.2.3). Blank and negative controls (containing no DNA) were 
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included in every reaction batch and all experiments were performed in multiplicates. Positive 

controls comprising male and female reference DNA were included as well. 

Multiplex STR PCR on ancient Egyptian mummy bone tissue material and DNA of 

scientific staff. For DNA profiling analysis on extracted mummy material as well as on 

extracted genomic material of scientific staff, PCR typing reactions were performed using two 

PCR setups amplifying distinct STR marker combinations. The QIAGEN Multiplex PCR kit 

(QIAGEN GmbH, Hilden, Germany) was used for 3-step PCR amplifying STR markers 

D7S1824, D9S302 and D10S2325. The AmpF/STR SEfiler PCR amplification kit 

(Applied Biosystems GmbH, Darmstadt, Germany) is a STR multiplex assay that 

simultaneously co-amplifies 11 STR loci and the amelogenin locus. Kits were used according 

to the protocol recommended by the manufacturer, but concerning the QIAGEN Multiplex 

PCR kit reaction volumes were adapted to low-volume PCR applications, while AmpF/STR 

SEfiler reaction volumes were just scaled down to 16.5 µl for conventional PCR 

performances. 

Using the QIAGEN Multiplex PCR kit, 1 µl of total PCR reaction mix contained 0.5 µl of 

2x QIAGEN Multiplex PCR Master Mix (final 1x), 0.2 µl of 5x QIAGEN Q-Solution (final 

0.33x), 0.12 µl of AdvaGold (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany), 0.2 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) and 0.04 

µl of 50 pmol STR primer-pair solutions D7S1824-F/R and D9S302-F/R and D10S2325-F/R 

(final 2 pmol = 2 µM per primer-pair solution). Primer sequences were listed in the appendix, 

chapter 9.2. 1 µl of extracted DNA sample solution from mummy and scientific staff was 

dried up on reaction sites of a multi LV-PCR microdevice at 30°C for 10 min. Dried input 

DNA sample material, comprising 60 pg of microdissected mummy DNA or several ng of 

scientific staff DNA, was covered with 1 µl of PCR reaction mix. 1 µl of positioned master 

mix was immediately covered with 5 µl of Sealing Solution to prevent evaporation and 

external cross-contamination. For PCR cycling a „touch-down“ protocol was used comprising 

the following conditions: 15 min initial denaturation at 95°C, 14 cycles of 94°C for 30 sec, 

64°C to 50°C for 60 sec (temperature increment -1°C per cycle), 72°C for 30 sec, continued 

by 25 cycles of 94°C for 30 sec, 50°C for 30 sec, 72°C for 30 sec, and a final product 

extension at 72°C for 7 min. Blank and negative controls (containing no DNA) were included 

in every reaction batch and all experiments were performed in multiplicates. Data acquisition 

was performed via STR fragment length analysis (chapter 2.2.4). 
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Using the AmpF/STR SEfiler PCR amplification kit, DNA typing reactions were 

performed according to the manufacturer’s recommendations, but reaction volumes were 

scaled down to 16.5 µl for conventional PCR performances. 16.5 µl of total PCR reaction 

volume, prepared in sterile 0.2 ml PCR-tubes (Eppendorf AG, Hamburg, Germany), 

contained 10 µl AmpF/STR PCR Reaction Mix, 5 µl of AmpF/STR SEfiler Primer Set, 

0.5 µl of AmpliTaq Gold DNA Polymerase 5U/µl (final 2.5 U) and 1 µl of DNA sample 

solution from mummy and scientific staff. 3-step PCR cycling was performed as 

recommended by the manufacturer’s protocol of the AmpF/STR SEfiler PCR 

amplification kit: 11 min initial denaturation at 95°C, 28 cycles of 94°C for 60 sec, 59°C for 

60 sec, 72°C for 60 sec, followed by a final product extension at 60°C for 45 min. Data 

acquisition was performed using STR fragment length analysis (chapter 2.2.4). 

Multiplex STR PCR on anticoagulant treated whole blood and degrading dried blood spots. 

For LV-PCR analysis of whole blood a combined setup of the AmpF/STR SEfiler PCR 

amplification kit (Applied Biosystems GmbH, Darmstadt, Germany) and the KOD Xtreme 

Hot Start DNA Polymerase PCR system (Novagen, Merck, Darmstadt, Germany) was used 

for 3-step PCR and reaction volumes were adapted to low-volume PCR applications. The 

AmpF/STR SEfiler PCR amplification kit is a STR multiplex assay that simultaneously 

co-amplifies 11 STR loci and the amelogenin locus. 1.12 µl of total PCR reaction mix 

contained 0.5 µl of 2x Xtreme Buffer (final 1x), 0.2 µl of Xtreme dNTPs (2 mM each), 

0.02 µl of KOD Xtreme Hot Start DNA Polymerase 1U/µl (final 0.02U), 0.3 µl of 

AmpF/STR SEfiler Primer Set and 0.1 µl of 10x concentrated blood sample (either EDTA 

K treated blood or resolved blood spots). For input blood samples concentrations of 100% 

whole blood or 10% whole blood were used, resulting in final concentrations of 10% or 1% 

whole blood present in 1 µl total reaction mix. According to Ganong WF (2003), 1 µl of 

whole blood target material contains 4000 to 11000 leukocytes. That means 400 to 1100 

leukocytes present in 10% blood typing reactions and equivalently 40 to 110 leukocytes 

present in 1% blood typing reactions, representing a target DNA amount of 2.8 to 7.0 ng or 

280 to 700 pg respectively. 1 µl of prepared master mix was placed on reaction center B of 

LOC chips or on reaction sites of a multi LV-PCR microdevice and was immediately covered 

with 5 µl of Sealing Solution to prevent evaporation and external cross-contamination. 3-step 

PCR cycling was performed as recommended by the manufacturer’s protocol of the 

AmpF/STR SEfiler Plus PCR amplification kit: 11 min initial denaturation and cell lysis 
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at 95°C, 28 cycles of 94°C for 60 sec, 59°C for 60 sec and 72°C for 60 sec, followed by a 

final product extension at 60°C for 45 min.  

Blank, negative (containing no DNA) and positive controls (AmpF/STR SEfiler Plus 

Control DNA 9947A, Applied Biosystems GmbH, Darmstadt, Germany) were included in 

every reaction batch and all experiments were performed in multiplicates. 100 pg of the 

AmpF/STR SEfiler Control DNA 9947A was amplified simultaneously via LV-PCR as 

positive control (named “PK-1”). Additionally, Control DNA 9947A was amplified in a 

conventional in-tube PCR reaction using a standard thermocycler (Cyclone25, PeqLab 

Biotechnologie GmbH, Erlangen, Germany) and the recommended PCR protocol of the 

AmpF/STR SEfiler kit as a pure positive control (named “SE-PK-2”). Reaction volumes, 

prepared in sterile 0.2 ml PCR-tubes (Eppendorf AG, Hamburg, Germany), were scaled down 

to about 5.5 µl of total PCR reaction volume, containing 2.7 µl of AmpF/STR PCR Reaction 

Mix (final 1x), 1.35 µl of AmpF/STR SEfiler Primer Set, 0.45 µl of AmpliTaq Gold 

DNA Polymerase 5U/µl (final 2.25U) and 1 µl of AmpF/STR SEfiler Control DNA 

9947A 100 pg/µl (final 100 pg). Blank and negative controls (containing no DNA) were 

included in every reaction batch and experiments were performed in multiplicates. Total data 

acquisition was performed via STR fragment length analysis (chapter 2.2.4). 

2.3.2  Real-time PCR 

Real-time PCR (RT-PCR) is a special form of PCR, quantifying the amount of amplified 

DNA present after each round of PCR cycling via measuring fluorescence signals (Wilhelm J 

and Pingoud A, 2003). As the fluorescence increases proportional with the amount of DNA, 

after each cycle the amount of DNA can be detected in the exponential phase. Signals are 

either indicated by fluorescently tagged PCR primers or a DNA-intercalating fluorescent dye 

is added to the PCR mixture, of which the most popular is SYBR Green I binding to double-

stranded DNA. A big drawback of the SYBR Green I method is the low specificity as no 

differentiation between PCR products can be achieved. Only when performing an additional 

melting point analysis after PCR, the fragment lengths and thus the specificity of the PCR 

products can be detected and authentic PCR products can be distinguished from occurring 

unspecific primer dimers. During a melting point analysis DNA is melted via raising the 

temperature continuously from 50°C to 95°C. At fragment-specific melting temperatures the 

double-stranded DNA molecules denature, whereas the fluorescence dye is released and a 
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decrease in fluorescence intensity is detected. As specific PCR products have a higher melting 

point as unspecific primer dimers, a differentiation is possible. 

Real-time PCR using the Stratagene Mx 3000P thermocycler. Real-time PCR was applied 

on microdissected ancient bone samples of Egyptian mummy material. RT-PCR was 

performed to quantify the amount of extracted DNA originating from microdissected ancient 

bone samples of Egyptian mummy material. Real-time PCR was applied to sample mummy4, 

exemplary for all of four mummy samples, in a Stratagene RT-PCR cycler (Stratagene Mx 

3000P, Stratagene, La Jolla, CA, USA) using the QuantiFast SYBR Green I PCR kit 

(QIAGEN GmbH, Hilden, Germany) for 2-step PCR according to the protocol recommended 

by the manufacturer. RT-PCR DNA amplification rates of sample mummy4, were compared 

to RT-PCR amplification rates of 1 ng/µl, 500 pg/µl, 100 pg/µl, 50 pg/µl and 20 pg/µl male 

and female starting DNA target material concentrations serving as reference probes and 

internal target amount standards. 1 µl of these standard concentrations was used for analysis, 

while just 0.5 µl of extracted mummy DNA was used due to the scarcity of mummy material. 

The mummy sample was filled up to 1 µl with sterile water (Ampuwa, Fresenius, Bad 

Homburg, Germany). In a 96-well plate (ABgene PCR Plates, Thermo Scientific, Epsom, 

Surrey, UK) 1 µl of DNA sample solution was mixed with 24 µl of RT-PCR master mix, 

containing 12.5 µl of 2x QuantiFast SYBR Green I PCR Master Mix (final 1x), 2.5 µl of 

10 µM primer solutions Amel1 and Amel2 (final 1 µM per primer) and 6.5 µl of RNase-Free 

water. Primer sequences were listed in the appendix, chapter 9.2. 2-step PCR conditions were 

used according to the manufacturer’s protocol recommending 5 min initial denaturation at 

95°C, followed by 40 cycles of 95°C for 10 sec and 60°C for 30 sec and subsequent melting 

curve analysis. Conditions for generating these dissociation curves were 95°C for 1 min, 55°C 

for 30 sec, slowly ramping the temperature from 55°C to 95°C, and final denaturation time of 

95°C for 30 sec. Data was obtained during ramping, while continuously fluorescence data was 

collected. Data analysis was performed via appropriate software for the Stratagene Mx 3000P 

“MxPro – Mx3000P v3.00” (Stratagene, La Jolla, CA, USA). 

Real-time PCR using the lab-on-a-chip integrated Fluorescence Reader. The Fluorescence 

Reader module of the lab-on-a-chip system comprised a blue LED (λmax = 470±2 nm) for 

excitation light (LUXEON Rebel LXML-PB01-0023, 3.4 V forward bias, 0.7 A operating 

current), filter sets, a self-made LED power control box, a trigger signal break-out box (NI 

SCB-68 with the PCI ADC/DAC, Quick Reference Label, S-Series Devices, National 

Instruments Germany GmbH, Munich, Germany) and a CCD camera as detection device for 
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capturing emitted light (Rolera-XR, QImaging, Surrey BC, Canada). Filter sets included an 

excitation filter with λmax = 482 nm (spread 36 nm = 464-500 nm excitation spectrum) and an 

emission filter with λmax = 536 nm (spread 40 nm = 516-556 nm emission spectrum) 

(Interferenzfilter of BrightLine series, AHF Analysentechnik AG, Tübingen, Germany). For 

automatic picture taking, a self-programmed LabVIEW-based software was used 

“Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI” (LabVIEW 8.6, 

National Instruments Germany GmbH, Munich, Germany). The software was adapted for 

taking pictures manually (named “Norbert.VI”). For real-time PCR operations, excitation and 

emission devices of the Fluorescence Reader were directed to reaction center B on the LOC 

chip surface. 

Calibration of fluorescence intensities. The fluorescence signal was calibrated using the 

QuantiFast SYBR Green I PCR kit (QIAGEN GmbH, Hilden, Germany). Decreasing 

amounts of DNA were used to synthesize dilution series, whereas 0.1 µl of 10x concentrated 

DNA was mixed with 0.9 µl of 2x QuantiFast SYBR Green I PCR Master Mix. DNA 

concentrations of 100 ng/µl, 50 ng/µl, 10 ng/µl, 5 ng/µl and 1 ng/µl of male and female 

reference DNA were used, resulting in final concentrations of 10 ng, 5 ng, 1 ng, 500 pg and 

100 pg present in prepared dilutions. 1 µl of each dilution was placed on reaction center B of 

a LOC chip, covered with 5 µl of Sealing Solution (Advalytix AG/Beckman Coulter 

Biomedical GmbH, Munich, Germany) and centered to the detection path of the CCD camera. 

This whole setup was darkened by capping it totally with a black cloth in order to exclude 

interfering ambient light. Pictures were taken manually via LabVIEW-based software 

“Norbert.VI”. Increasing exposure times were chosen starting with 200 ms, to 400 ms,  

600 ms, 1000 ms, 2000 ms and 4000 ms. Measurements were performed at room temperature 

as well as at 55°C and 72°C. Measurements were repeated several times and pictures 

concerning fluorescence intensity were analyzed visually. 

Experimental setups of performing real-time PCR. Real-time PCR was performed using the 

QuantiFast SYBR Green I PCR kit for 2-step PCR (QIAGEN GmbH, Hilden, Germany) 

according to the protocol recommended by the manufacturer, but reaction volumes were 

adapted to low-volume PCR applications. 1 µl total LV-PCR reaction mix contained 0.5 µl of 

2x QuantiFast SYBR Green I PCR Master Mix (final 1x), 0.1 µl of 10 µM primer 

solutions β-Actin up and β-Actin down or Amel1 and Amel2 respectively (final 1 µM per 

primer), 0.2 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) and 0.1 µl of 

10x concentrated input DNA (final 1x). Primer sequences were listed in the appendix, 

chapter 9.2. For input male and female reference target DNA concentrations of 10 ng/µl,  
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5 ng/µl and 1 ng/µl were used, resulting in final concentrations of 1 ng, 500 pg and 100 pg 

present in 1 µl total reaction mix. 1 µl of prepared master mix was placed on reaction center B 

of a LOC chip, covered with 5 µl of Sealing Solution (Advalytix AG/Beckman Coulter 

Biomedical GmbH, Munich, Germany) and centered to the detection path of the CCD camera. 

This whole setup was darkened by capping it totally with a black cloth in order to exclude 

interfering ambient light. 2-step PCR cycling conditions recommended by the manufacturer’s 

protocol were slightly changed concerning temperature hold times: 5 min initial denaturation 

at 95°C, 40 cycles of 95°C for 30 sec and 60°C or 55°C respectively for 60 sec. Increasing 

fluorescence intensities were recorded by taking pictures at the end of each annealing and 

extension step at 55°C or 60°C during 35-45 cycles in total. Pictures were either taken 

manually via LabVIEW-based software “Norbert.VI” or automatically via LabVIEW-based 

software “Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI”. Chosen 

exposure times chosen ranged from 200 ms, to 400 ms and 600 ms. PCR reactions were 

repeated several times and pictures concerning fluorescence intensity were analyzed visually. 

Real-time PCR was also performed using the QuantiTect SYBR Green I PCR kit for 3-

step PCR (QIAGEN GmbH, Hilden, Germany) according to the protocol recommended by 

the manufacturer, but reaction volumes were adapted to low-volume PCR applications. 1 µl 

total LV-PCR reaction mix contained 0.5 µl of 2x QuantiTect SYBR Green I PCR Master 

Mix (final 1x), 0.1 µl of 10 µM primer solutions β-Actin up and β-Actin down or Amel1 and 

Amel2 respectively (final 1 µM per primer), 0.2 µl of sterile water (Ampuwa, Fresenius, 

Bad Homburg, Germany) and 0.1 µl of 10x concentrated input DNA (final 1x). 3-step PCR 

cycling conditions recommended by the manufacturer’s protocol were slightly changed 

concerning temperature hold times: 15 min initial denaturation at 95°C, 35-45 cycles of 95°C 

for 30 sec, 55°C for 60 sec, 72°C for 30 sec, and final product extension at 72°C for 7 min. 

Conditions for picture taking and real-time PCR performances were according to the 2-step 

PCR performance just described. 

2.3.3  Microarray hybridization 

In microarray applications biological probes are arrayed onto planar surfaces and slides 

through the use of a robotic array spotter, while biological probes comprise short single 

stranded DNA oligonucleotides. PCR-amplified DNA fragments in solution are subjected to 

hybridization with these surface coupled complementary strands, providing information on 

the corresponding nucleotide sequence (Schena M, 1999). Hybridization happens specifically 
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via the building of hydrogen bonds between complementary sequences of probes and 

amplified DNA fragments. Due to the small size, a huge amount of probes detecting for 

thousands of gene fragments can be arrayed, just dependent on the size of the supporting 

surface. As fluorescently tagged primers were utilized, e.g. tagged with chromogenic dyes 

“Cy3” or “Cy5”, PCR products are fluorescently labeled as well. Detection of hybridization 

events between surface-bound probes and primer-labeled fluorescent PCR products is 

performed via on-line detection methods. 

Spot array design. A 2x2 spot array was designed for the determination of PCR-amplified 

male and female sample material, according to gender determining approaches used in 

forensic research. Probes of the microarray were designed in a way, to detect a 6 bp insertion 

sequence AAAGTG between male and female PCR-amplified amelogenin fragments. So 

either probes matched the 106 bp X-chromosomal sequence or were complementary to the 

112 bp Y-chromosomal sequence. Three different probes were designed for hybridization 

providing distinct sites for specific PCR product hybridization. Probes Amelo1(Y) and 

Amelo3(Y) were designed for binding male amelogenin PCR products having the 6 bp insert, 

while probe Amelo2(X) was destined for hybridizing to female PCR products lacking the  

6 bp insert (probe sequences were listed in the appendix, chapter 9.2). Successful 

hybridization events of fluorescently labeled PCR products were detected via the intensity of 

fluorescence signals. 

For microarray applications, probes were spotted on reaction sites (∅ 1.6 mm) of a multi LV-

PCR microdevice (AmpliGrid AG480F, Advalytix AG/Beckman Coulter Biomedical 

GmbH, Munich, Germany; chapter 2.3.1) and on reaction center B (∅ 500 µm) of LOC chips 

(chapter 2.3.1). Probes were spotted in a 2x2 array structure using a Nadelspotter (spotting 

operations were performed by Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany). There were 6 different array designs spotted. Each array consisted of 4 spots, 

while full arrays were spotted with 4 spots having the same probe content (array designs 1-3), 

and split arrays where only 2 spots had the same probe content (array designs 4-6). Array 

designs were as follows: (1) 4 spots of Amelo1(Y), (2) 4 spots of Amelo2(X), (3) 4 spots of 

Amelo3(Y), (4) 2 spots of Amelo1(Y) + 2 spots of Amelo2(X), (5) 2 spots of Amelo2(X) + 2 

spots of Amelo3(Y), (6) 2 spots of Amelo1(Y) + 2 spots of Amelo3(Y). Spot size was about 

120 µm (100-160 µm) with a spot distance of about 160 µm, comprising an array diameter of 

about 400 µm. Spotting solution contained 50 µM oligonucleotide probe solution dissolved in 

1x Advalytix spotting buffer AT100. Spotting, washing and passivation steps after spotting 

were done by Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany as well. 
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PCR and hybridization of male and female human genomic reference DNA. For PCR 

amplification prior to hybridization and for detection of hybridized PCR products, a Cy3 

fluorescently labeled primer Amel1-f-Cy3 was used in combination with an unlabeled primer 

Amel2. Primer sequences were listed in the appendix, chapter 9.2. For amplification and 

hybridization, the QIAGEN Fast Cycling PCR kit (QIAGEN GmbH, Hilden, Germany) was 

used for 3-step PCR. 1 µl total reaction volume contained 0.5 µl of 2x QIAGEN Fast 

Cycling PCR Master Mix (final 1x), 0.2 µl of 5x QIAGENQ-Solution (final 1x), 0.1 µl of  

10 µM primer solutions Amel1-f-Cy3 and Amel2 (final 1 µM per primer) and 0.1 µl of sterile 

water (Ampuwa, Fresenius, Bad Homburg, Germany) for negative controls or 0.1 µl of 10x 

concentrated input DNA. For input DNA concentrations of 1 ng male or female reference 

DNA was used, resulting in a final concentration of 100 pg present in 1 µl total reaction mix. 

1 µl of prepared master mix was placed on spotted reaction center B of LOC chips or on 

spotted reaction sites of a multi LV-PCR microdevice and was immediately covered with 5 µl 

of Sealing Solution to prevent evaporation and external cross-contamination. 3-step PCR 

cycling was performed according to the manufacturer’s protocol: 5 min initial denaturation at 

95°C, 40 cycles of 94°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec, and final product 

extension at 72°C for 1 min. PCR performance was subsequently followed by a hybridization 

protocol comprising 3 min denaturation at 95°C and 40°C hybridization for 30-60 min. 

Washing protocol. After hybridization, Sealing Solution was washed away from reaction sites 

using sterile water and array chips were subjected to the following washing protocol 

(originally provided by Alopex (Kulmbach, Germany) for using the “Chromo Chip System”) 

comprising washing solutions Wash 1 and Wash 2 (table 1) (washing solutions were taken 

from the Medical Genetic Center, Munich). Washing procedures removed the Sealing 

Solution efficiently as well as unbound PCR products. 

Table 1. Washing protocol and compositions of washing buffers Wash 1 and Wash 2 after PCR and array 
hybridization. Buffers Wash 1A and Wash 2 needed to be autoclaved at 120 °C for 20 min prior to use. Washing 
procedures were performed at room temperature. 
 
Washing solutions Composition Concentrated Buffer Solutions 

1.0 l     Wash 1 
(working solution) 

 100 ml     Wash 1A (10x) 
   20 ml     Wash 1B (5x) 
 880 ml     H2O

dest. 

Wash 1A (10x) = 3 M NaCl 
                             0.3 M Na3 Citrate 2H2O 
                             pH 7.0 
Wash 1B (5x) = 10% (w/v) Natriumdodecylsulfate (SDS) 

1.0 l     Wash 2 
(working solution) 

 100 ml     Wash 2 (10x) 
 900 ml     H2o

dest. 

Wash 2 (10x) = 0.3 M NaCl 
                          30 mM Na3 Citrate 2H2O 
                          pH 7.0 

Washing protocol     
                                   

5x    1 min    Wash 1 
2x    1 min    Wash 2 
1x    3 min    Wash 2 
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For washing the multi LV-PCR microdevice an automated washing station appropriate for 

these slides was utilized (AdvaWash, Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany). LOC chips were washed manually by applying a 10 µl overlay of buffers 

onto the hybridization reaction center B of the chips. After washing, array chips were dried 

for 5 min at 37°C until slide surfaces were totally dry and stored in darkness for the scanning 

process (max. 3 h).  

Detection. The multi LV-PCR microdevice was scanned for hybridized PCR products using 

an automated PMT laser-based microarray scanner system (ProScanArray Microarray 

Analysis System, PerkinElmer Life and Analytical Sciences, Shelton, CT, USA) and 

appropriate software (ProScanArray Scanner Software, PerkinElmer Life and Analytical 

Sciences, Shelton, CT, USA). LOC chips were scanned using an inverted optical microscope 

(Axio Obsever.Z1, Carl Zeiss GmbH, Jena, Germany) with integrated fluorescence unit for 

excitation and appropriate filters for excitation, emission and detection. Excitation was done 

using a HBO 100 high-pressure mercury lamp (HBO 100, Leistungselektronik JENA GmbH, 

Jena, Germany). Due to the Stokes-transition between the absorption and emission spectrum, 

it is possible to separate the bright excitation light from the weak fluorescence light in the 

light path of the microscope via using appropriate filter sets. Pictures of fluorescence 

intensities were taken using a CCD camera (Rolera-XR, QImaging, Surrey BC, Canada) and 

QCapture Pro 6.0 imaging software (QImaging, Surrey BC, Canada). 

2.3.4  Solid phase amplification 

Solid phase amplification (SPA) was performed as a special form of arrayed on-chip 

amplification using directly surface-bound primers forming a very dense carpet like probes in 

microarray applications (Bing DH et al., 1996; Adessi C et al., 2000; Nickisch-Rosenegk M 

et al., 2005; Fedurco M et al., 2006).  Amplification can occur via two processes. First 

“interfacial amplification”, where freely diffusing DNA target molecules attach to surface-

bound primers, primers are elongated to complementary DNA copies and these ssDNA 

molecules stay attached to the surface, while the initial DNA molecule returns to the solution 

after the annealing step. Second “surface amplification”, where the free end of the attached 

ssDNA copy hybridizes to a sequence-complementary surface-attached primer in immediate 

proximity. This time primer elongation leads to building bridges between primers, as both 

elongated DNA molecules stay attached to the surface. SPA thus leads to the generation of a 

colony of molecules attached to the surface and located in the same region. Synthesized PCR 
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products can be visualized either by confocal microscopy or fluorescence microscopy using 

Cy5-dye fluorescence of modified primers, or the fluorescence of intercalating dyes. 

Spot array design. For solid phase amplification applications, 3 different surface-bound 

primer-pairs were spotted on reaction center B (∅ 500 µm) of LOC chips (chapter 2.3.1). 

Primer-pairs were spotted in a 2x2 spot array structure using a Nadelspotter (spotting 

operations were performed by Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany). The following array design was spotted: the array consisted of 4 spots, while each 

spot comprised a different primer-pair content. On one spot primer-pairs DY-fw and DY-rv 

for amplifying male locus DYS392 were spotted, on a second spot primer-pairs DX-fw and 

DX-rv for amplifying female locus DXS10134, on a third spot primer-pairs AM-fw and AM-

rv for amplifying human amelogenin as a positive control and on the forth spot primers DY-

fw and DX-fw as negative control, providing no complementary sequences after 

amplification. Primer sequences were listed in the appendix, chapter 9.2. Spot size was about 

120 µm (100-160 µm) with a spot distance of about 160 µm, comprising an array diameter of 

about 400 µm. Spotting solution contained 50 µM oligonucleotide probe solution dissolved in 

1x Advalytix spotting buffer AT100. Spotting, washing and passivation steps after spotting 

were done by Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany as well. 

Solid phase amplification PCR reactions. For performing solid phase amplification on LOC 

chips the QuantiFast SYBR Green I PCR kit was used for 2-step PCR (QIAGEN GmbH, 

Hilden, Germany). Several PCR protocols were tested as described in the following, first only 

“SPA PCR” using genomic DNA and second a “combined PCR setup” using preamplified 

PCR products. Before PCR, array-spotted LOC chips were preheated for 15 min at 95°C for 

adapting the material to hot temperatures (chapter 2.3.1).  

Using “SPA PCR”, 1 µl of total reaction mix contained 0.5 µl of 2x QuantiFast SYBR 

Green I PCR Master Mix (final 1x), 0.3 µl of sterile water (Ampuwa, Fresenius, Bad 

Homburg, Germany) and 0.2 µl of 10x concentrated input DNA. For input DNA 5 ng/µl of 

male or female reference DNA was used, resulting in a final concentration of 1 ng reference 

DNA present in 1 µl total reaction volume. 1 µl of prepared master mix was placed on primer-

array spotted reaction center B of LOC chips and was immediately covered with 5 µl of 

Sealing Solution to prevent evaporation and external cross-contamination. 2-step SPA PCR 

cycling conditions were 5 min initial denaturation at 95°C, followed by 35 cycles of 95°C for 

30 sec and 60°C for 60 sec. 
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Using the “combined PCR setup”, preamplified PCR products were used as input DNA. For 

preamplification the QuantiTect SYBR Green I PCR kit was used for 3-step PCR 

(QIAGEN GmbH, Hilden, Germany), while 10 µl of total PCR reaction mix contained 5 µl of 

2x QuantiTect SYBR Green I PCR Master Mix (final 1x), 1 µl of 10 µM primer solutions 

(DYS392-fw and DYS392-rv or DXS10134-fw and DXS10134-rv or Amel1 and Amel2; final 

1 µM per primer), 2 µl of sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) and  

1 µl of 10x concentrated input DNA. For input DNA 5 ng/µl of male and female reference 

DNA was used, resulting in a final concentration of 500 pg reference DNA present in 10 µl 

total reaction volume. Primer sequences were listed in the appendix, chapter 9.2. Reactions 

were performed in sterile 0.2 ml PCR-tubes (Eppendorf AG, Hamburg, Germany) using a 

conventional in-tube PCR thermocycler (advanced Primus 96, PeqLab Biotechnologie GmbH, 

Erlangen, Germany). 3-step PCR cycling conditions were 15 min initial denaturation at 95°C, 

followed by 35 cycles of 94°C for 30 sec, 55°C for 60 sec, 72°C for 30 sec, and final product 

extension at 72°C for 7 min. PCR products were analyzed on polyacrylamide gels (CleanGel 

10%, ETC GmbH, Kirchentellinsfurt, Germany) and subsequent DNA silver staining (DNA 

silver staining kit, GE Healthcare, Uppsala, Sweden) (chapter 2.2.3). Blank and negative 

controls were included in every reaction batch. For 0.1 µl input DNA in the following 

“combined PCR setup”, 0.033 µl of each preamplified PCR product tube DYS392, 

DXS10134, Amel for male or female DNA was utilized. The “combined PCR setup” 

comprised three reaction steps performed consecutively on LOC chips, which were 

summarized in table 2, while the QuantiFast SYBR Green I PCR kit was used for 2-step 

PCR (QIAGEN GmbH, Hilden, Germany).  

Table 2. Combined PCR setup. Interfacial amplification, surface amplification and a hybridization step were 
performed consecutively on the LOC chip’s surface for optimizing solid phase amplification output. 
 
Order of performance Composition of reaction mix Thermal cycling conditions 

1. Interfacial 
    amplification 

1 µl total reaction mix contained 0.5 µl of 2x 
QuantiFast SYBR Green I PCR Master Mix 
(final 1x), 0.4 µl of sterile water (Ampuwa, 
Fresenius, Bad Homburg, Germany) and 0.1 µl of 
preamplified PCR products. 

2-step PCR protocol: 5 min 
initial denaturation at 95°C, 
followed by 30 cycles of 
95°C for 30 sec and 55°C for 
60 sec. 

2. Surface 
    amplification 

1 µl total reaction mix contained 0.5 µl of 2x 
QuantiFast SYBR Green I PCR Master Mix 
(final 1x) and 0.5 µl of sterile water (Ampuwa, 
Fresenius, Bad Homburg, Germany). 

2-step PCR protocol: 5 min 
initial denaturation at 95°C, 
followed by 30 cycles of 
95°C for 30 sec and 55°C for 
60 sec. 

3. Hybridization 
1 µl total reaction mix contained 0.5 µl of 2x 
QuantiFast SYBR Green I PCR Master Mix 
(final 1x) and 0.5 µl of preamplified PCR products. 

Hybridization protocol: 3 
min denaturation at 95°C, 
followed by 40°C 
hybridization temperature for 
30-60 min. 
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Washing protocol and detection. After finishing “SPA PCR” or “combined PCR setup”, 

Sealing Solution was washed away from reaction center B using sterile water and array chips 

were subjected to the washing protocol described in table 1. Washing procedures removed the 

Sealing Solution efficiently as well as unbound PCR remainings. LOC chips were washed 

manually by applying a 10 µl overlay of buffers onto the SPA reaction center B of the chips. 

After washing, array chips were dried for 5 min at 37°C until slide surfaces were totally dry 

and stored in darkness for the scanning process (max. 3 h). LOC chips were scanned using an 

inverted optical microscope (Axio Obsever.Z1, Carl Zeiss GmbH, Jena, Germany) with 

integrated fluorescence unit for excitation and appropriate filters for emission and detection. 

Excitation was done using a HBO 100 high-pressure mercury lamp (HBO 100, 

Leistungselektronik JENA GmbH, Jena, Germany). Due to the Stokes-transition between the 

absorption and emission spectrum, it is possible to separate the bright excitation light from the 

weak fluorescence light in the light path of the microscope via using appropriate filter sets. 

Pictures of fluorescence intensities were taken using a CCD camera (Rolera-XR, QImaging, 

Surrey BC, Canada) and QCapture Pro 6.0 imaging software (QImaging, Surrey BC, Canada). 

Additionally, fluorescence signal were detected using the lab-on-a-chip integrated 

Fluorescence Reader and appropriate software “Norbert.VI” for manual picture taking 

(LabVIEW 8.6, National Instruments Germany GmbH, Munich, Germany). Pictures were 

taken with exposure times of 1000 ms, 2000 ms and 4000 ms at room temperature as well as 

at 40°C and 60°C. Furthermore, to check for detached primers and PCR products in the SPA 

reaction solution, reaction mixes were analyzed on polyacrylamide gels (CleanGel 10%, ETC 

GmbH, Kirchentellinsfurt, Germany) and subsequent DNA silver staining (DNA silver 

staining kit, GE Healthcare, Uppsala, Sweden) (chapter 2.2.3). 

2.3.5  Sequencing of amplified ancient sample material 

Sequencing was performed on PCR products of microdissected ancient bone tissue sample 

mummy4, exemplary for all of four microdissected mummy samples. For subsequent 

sequencing, PCR was performed using the QIAGEN Fast Cycling PCR kit (QIAGEN 

GmbH, Hilden, Germany) for 3-step PCR according to manufacturer’s recommendations. 

Reaction volumes were scaled down to 20 µl, prepared in sterile 0.2 ml PCR-tubes 

(Eppendorf AG, Hamburg, Germany). Cycling was performed in a conventional PCR 

thermocycler (Cyclone 25, PeqLab Biotechnologie GmbH, Erlangen, Germany). 20 µl total 

PCR reaction mix contained 10 µl of 2x QIAGEN Fast Cycling PCR Master Mix (final 1x),  

4 µl of 5x QIAGEN Q-Solution (final 1x), 2 µl of 10 µM primer solutions Amel1 and Amel2, 
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or primer solutions β-Actin up and β-Actin down respectively (final 1 µM per primer), 1 µl of 

sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) and 1 µl extracted mummy 

DNA (corresponds to 60 pg). Primer sequences were listed in the appendix, chapter 9.2. 3-

step PCR cycling was performed as recommended by the manufacturer’s protocol: 5 min 

initial denaturation at 95°C, followed by 40 cycles of 94°C for 30 sec, 60°C for 30 sec and 

72°C for 30 sec, and final product extension at 72°C for 1 min.  For product purification and 

sequencing analysis, PCR products were sent to GENEART AG sequencing service 

(Regensburg, Germany). 

2.3.6  Precautions to prevent contamination in ancient sample material analysis 

During experiments, numerous precautions were taken to minimize the risk of contamination, 

which were summarized by Pääbo S et al. (2004). Furthermore, to exclude possible cross-

contaminations between ancient sample material and scientific staff, DNA typing reactions 

were performed using selected STR markers D7S1824, D9S302, D10S2325 and also the 

AmpF/STR SEfiler PCR amplification kit (chapter 2.3.1). DNA profiling of extracted 

mummy material as well as genomic material of involved scientists, archaeologist/excavator, 

technical assistance staff, laboratory personnel and all people who had been knowingly in 

contact with any kind of mummy material (including bone particles, paraffin-embedded tissue 

blocks, tissue slides and mummy DNA extracts) and also with laboratory equipment (e.g. 

laboratory working places and laboratory working tools like laser microdissection 

microscope, DNA extraction accessory and the PCR thermocyclers) was accomplished. 
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3.  Description of the Lab-on-a-chip System 

The existing lab-on-a-chip (LOC) system was designed as a modular composition comprising 

five independent working modules (figure 3). There were two modules for sample 

preparation prior to PCR analysis, in fact a laser-based microdissection unit (chapter 3.1) for 

retrieval of sample material as well as a particle transfer module (SPATS, chapter 3.2) 

providing an interface to the PCR unit after microdissection. The PCR module CytoCycler 

(chapter 3.3) represented the core of the LOC system encompassing a progressive microchip 

design, flexible and open for a huge amount of sample types and analytical applications 

including sample processing, amplification and detection. For informational output, a 

Fluorescence Reader was integrated for post-PCR product detection methods like real-time 

PCR and array applications (chapter 3.5). Following the envisioned automation of all 

sample-processing steps, additionally an automatic fluid-dispensing device was integrated 

compensating manual pipetting operations (BioSpot, chapter 3.4). While each unit was 

handling important sample processing functions individually and totally software controlled, 

altogether these modules combined comprehensively to a universal and programmable micro 

total analysis system. Due to an intelligent slide rail-based integration of all modules sterical 

interferences of modules, while serving the small LOC chip surface, could successfully be 

circumvented. 

 
Figure 3. Overview of the complete lab-on-a-chip system. The modular design includes a laser-based 
microdissection unit for sample retrieval and a transfer unit SPATS for loading the PCR-CytoCycler with sample 
material. While being served by an automatic liquid dispensing unit BioSpot, the CytoCycler PCR 
amplification unit and the fluorescence detection unit provide all necessary equipment for genetic analysis of 
sample material. 
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During the last years, this lab-on-a-chip system was referred in a couple of scientific articles 

(Thalhammer S et al., 2007; Woide D et al., 2008; Thalhammer S et al., 2008; Thalhammer 

S, 2009; Thalhammer S et al., 2009), conference sessions (Woide D et al., 2008, Actuator 

2008, Bremen; Woide D et al., 2008, Science Day 2008, Linz) as well as most notably in a 

professorial dissertation (Thalhammer S, 2009). In the following sections an overview over 

the total LOC system as well as technical features and functional operations of each particular 

modular unit is illustrated. Detailed descriptions of laboratory internal operating procedures of 

each individual LOC module were summarized in the appendix (chapter 9.1) and are 

available on an external media. 

3.1  Laser microdissection module 

During the last decade, laser-based systems have become state-of-the-art technologies for 

precise and non-contact micromanipulation of biological material in biology and medicine. 

However, the initiation of using focused light for micromanipulation goes back to 1912, when 

Tschachotin focused the light of a bulb lamp through the microscope objective onto an object 

plane (“Strahlenstich” method, Tschachotin S, 1912). After the invention of lasers in 1960, 

the first laser was coupled into a microscope to achieve much smaller laser focal spots for 

manipulation purposes (Bessis M et al., 1962). Since then, laser technologies were developed 

further for a broad area of medical applications, while in 1987 optical tweezers as well as 

pulsed UV-lasers integrated in optical instruments began to revolutionize micromanipulation 

of cells and particles without any mechanical contact (Ashkin A et al., 1987; Ashkin A and 

Dziedzic JM, 1987; Srinivasan R, 1986; for a general overview refer to Thalhammer S et al. 

(2003) and Thalhammer S et al. (2004)). Today, modern molecular research and diagnosis 

rely increasingly on the capability to isolate pure single sample particles and their precise 

positioning for further biochemical analysis. Non-contact manipulation techniques based on 

laser microdissection provide not only highly selective isolation and extraction but also the 

precise manipulation of smallest fractions of genetic material due to laser ablation with 

microbeams and with minimum risk of contamination.  

The available laser microdissection unit at hand comprised a modified UVA-laser system 

integrated into an inverted optical microscope. For material isolation the principle of material 

ablation was utilized based on a pulsed nitrogen UVA laser beam (λ = 337 nm) having a 

maximal pulse frequency of 30 Hz and a pulse-duration of 3 ns (pulse energy >270 µJ). For 

laser ablation the laser was coupled via the epifluorescence path into the light path and was 
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focused through the microscope objective to less than one micrometer in diameter. Diameters 

of the laser focus were set via the numerical aperture of the objective. The force of the 

focused, near diffraction limited pulsed UVA laser light was utilized for microdissection of 

biological material with high spatial resolution. As only UVC light (λ = 200-290 nm) was 

identified to cause DNA damage, as the main absorption peaks of DNA and proteins are 

located at 260 nm for DNA and 280 nm for proteins, the 337 nm wavelength was well outside 

of the DNA damaging region. Biological material within the focal spot of the laser was 

ablated due to photofragmentation, a photochemical process without heat transformation into 

the surroundings (“cold-ablation”), also called “ablative photodecomposition” (APD) (details 

in Thalhammer S et al., 2003). Within the focal spot of the laser an extreme photon density 

was achieved (intensity of more than 1 Megawatt/cm2), photofragmenting unwanted cut 

material into small molecules and atoms, which were blown away at supersonic velocities. As 

the ablative force was restricted to the minute laser focal spot only, directly aside of the laser 

focus spot the photon density was not sufficient to cause ablation, leaving the adjacent 

specimen entirely intact (Srinivasan R, 1986). 

The total system for laser-based microdissection included the inverted optical microscope 

with laser interface, motorized and joystick-controlled microscope XY-scanning stage as well 

as particular software “Nanosauger”. The laser interface was a one-box device, which housed 

the laser and all necessary optics to guide the laser into the microscope and to bring the laser 

focus coincide with the optical focus of the microscope at the object plane. The well-directed 

positioning of object slides with nano- and micrometer precision was possible via stepping-

motor-controlled XY-scanning stage while joystick movements were translated into two 

dimensional stage displacements. The stage speed could be adapted software-controlled. Via 

an external control board the laser focus as well as cut energy could be set at the object plane. 

Thus, the laser focus could be changed into z-direction independently from the microscope 

focus. For adjusting the focus plane to the object plane, a telescopic device was applied in the 

light path, while the focus point could also be leveled above/beneath the object via a lens, 

which was especially necessary when working with different objectives or varying sample 

thickness. The beam focus was dependent on the beam quality of the laser, the numerical 

aperture of the focusing objective and the absorption behavior of the specimen (Thalhammer 

S et al., 1997). The nitrogen laser emitted fixed laser energy; for energy settings a grey wedge 

filter was fixed behind the laser coupling out, absorbing the remaining energy. This allowed 

adjusting the laser energy continuously without beam displacement. For documentation there 

were two cameras available, a black & white CCD camera and a color firewire camera. 
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3.2  SPATS particle transfer module 

Based on PEN-membrane supported laser ablation using a pulsed UVA laser, a special 

approach for material extraction was developed for being integrated into the lab-on-a-chip 

system. The device was called “SPATS” meaning single particle adsorbing transfer system 

and facilitated horizontal single particle transfer to any planar devices after UVA laser-based 

microdissection like e.g. on the LOC system, gently controlled via low-pressure technology. 

The device was reported as a novel approach for horizontal transfer of single particles after 

laser microdissection and EU patented (EU patent 08150662.8), published (Woide D et al., 

2009) and tested for various scientific relevant applications (Mayer V et al., 2009; Woide D et 

al., 2010). 

The SPATS was fabricated by the company XYZ High Precision (Darmstadt, Germany) and 

consisted of several components combining mechanical, optical, pneumatical and electronic 

components. Due to its modular character, the SPATS was fixed to the inverted optical 

microscope via a micrometer stepping motor, which provided movements in XY-direction for 

horizontal as well as vertical particle transfer with µm-precision. The SPATS sample take-up 

device comprised a copper collection grid with meshes, attached to a bended transparent glass 

capillary tube, both comprising the adsorbing head, which is connected to the moving part of 

the device, the collection arm (figure 4). For transfer of various samples, adsorbing heads 

could be exchanged by an “easy-to-fit” click system. The glass capillary tube had an external 

diameter of 1.7-2.0 mm, an internal diameter of 500 µm and a length of 60 mm. The 

collection grid was biologically inert, antistatic and UV-C resistant, comprised a diameter of 

500 µm with meshes of 5 µm in diameter. Fixed at the micrometer stepping motor, the 

collection arm was connected to a pneumatic picopump. Low- and high-pressure adaptors 

allowed fine-tuning of both low-pressure and high-pressure for sample take-up and release. 

All functions and parameters of hardware components like scanning microscope XY-scanning 

stage (for positioning sample uptake), camera (for optical control), SPATS device movement 

and pressure-supply box were controlled by particular software “Nanosauger”.  

The new approach was based on the laser pressure catapulting method using a PEN 

supporting membrane for material extraction, but progressive low-pressure technology was 

utilized for sample take-up and release instead of laser shot and formation of a microplasma 

(Thalhammer S et al., 2003). The SPATS device was qualified for extraction and transfer of 

hard material, like e.g. bone tissue particles (Woide D et al., 2010), as well as soft material, 

like tissue sections, single cells (Mayer V et al., 2009) or chromosomes (figure 4 B). 
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Figure 4. SPATS device. A) Closeup of the sample take-up device “single particle adsorbing transfer system” 
SPATS. The adsorbing head comprised a bended glass capillary tube (insert 1, 500 µm internal diameter) and a 
copper collection grid (insert 2 and 3, 500 µm in diameter with meshes of 5 µm in diameter). Insert 2 shows a 
view on the whole adsorption area, while insert 3 provides a view through the microscope onto the sample 
collecting area. B) Workflow of sample transfer. Via applied low-pressure technology the SPATS was capable 
of transferring soft material like e.g. single cells (20 µm in diameter, picture 1-3), or cellular components like 
nuclei and chromosomes (1-10 µm in size, pictures 4-6) as well as hard material like e.g. bone tissue particles 
(about 350x250 µm in size). A typical workflow consisted of material isolation via laser microdissection 
(pictures 1 and 4), adsorption to the collection grid (pictures 2 and 5) and followed by release into a small 
amount of fluid (pictures 3 and 6). 

Microdissected particles in the range from 5-500 µm in diameter could be transferred, 

whereas the adsorption limit of 5 µm however applied only to the size of microdissected 

PEN-membrane carrier fragments. Smaller particles fell below the diameter of the grid 

meshes, and larger ones exceeded the visible adsorption zone. The size of the biological 

sample isolated could be smaller (e.g. a single metaphase chromosome). Particle shape should 

be planar and particle weight depended on the applied pressure and the suction volume 

according to the grid diameter. Due to the chemical composition of the supporting membrane, 

the PEN membrane was stable up to 155°C and did not interfere with subsequent PCR 

analysis. Low-pressure was used to attach isolated material to the collection grid, allowing 

precisely controlled positioning for sample release to any desired predefined target position 

into test tubes as well as onto any planar microchip device. During the transfer process, the 

sample was neither changed morphologically, chemically nor biologically. The SPATS was 

the first device enabling gentle horizontal and highly precise transfer of microdissected 

material, thus emerging a high potential for sample handling in regard to lab-on-a-chip 

technologies. Using virtual reaction chamber microdevices like the lab-on-a-chip system 

described here, small amounts of microdissected material could be directly transmitted and 

immediately used for analysis. 
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3.3  CytoCycler PCR module 

The CytoCycler represented the microfluidic component of the total lab-on-a-chip system, 

driven by surface acoustic wave (SAW) actuation and controlled via interdigital transducers 

(IDT). The CytoCycler PCR device could be considered the core of the whole lab-on-a-chip 

system, providing all necessary equipment for performing virtual reaction chamber PCR 

amplification of genetic sample material. It included LOC chips providing the platform for 

sample analysis, a chip-holder, a temperature control device, a high frequency (HF) generator 

for SAW control via joystick, and particular software “CytoCycler”. The whole CytoCycler 

equipment was fabricated and provided by the company Advalytix AG/Beckman Coulter 

Biomedical GmbH (Munich, Germany). The software “CytoCycler” controlled PCR 

performances via the temperature control device and a temperature sensor at the chip-holder, 

and also transmitted trigger signals to the trigger signal break-out box of the Fluorescence 

Reader (chapter 3.5). The temperature control device was software-controlled, while the HF 

generator and thus droplet actuation via SAW was controlled via joystick operations. 

LOC chip design. LOC chips were designed as virtual reaction chamber (VRC) low-volume 

LV-PCR chips, according to the basic principle of a virtual reaction chamber PCR chip as 

introduced in 2005 (Guttenberg Z et al., 2005). The device was fabricated from piezoelectric 

LiNbO3 as basic material followed by a metal gold layer for the SAW interdigital transducers 

(IDTs), contact wires and gold contacts. Epoxy groups were used to make the surface 

hydrophilic at distinct reaction areas and to form virtual hydrophilic tracks. This surface was 

chemically treated via hydrophobic/oleophobic fluorsilane coating to present an epoxysilane 

hydrophilic tracksystem surrounded by hydrophobic/oleophobic background (figure 5 A). 

The chemically heterogeneous structured fluorsilane/epoxysilane surface of the LiNbO3 chip 

was produced in a structuring process by coating with silanes (Brzoska JB et al., 1994) 

followed by applying photolithography on the resulting organic film (Xia Y and Whitesides 

GM, 1998). The track system included hydrophilic reaction centers, providing high contact 

areas for fluids for fixation and optimal heat transfer. The complete chip was protected with 

sputtered silicon dioxide, which was removed above the gold contact pads. All these 

hydrophilic/hydrophobic structures were patterned by photolithography (figure 5 B). An 

aqueous droplet, e.g. containing sample material and reaction solution, formed a virtual 

reaction chamber when placed on the structured surface. This virtual confinement, forming an 

own wall- and tube-free virtual test tube, was achieved due to surface tension of the liquid and 

surface chemistry of the substrate (figure 7). Depending on the kind of chemical surface 
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modification, droplets with high contact angle could slide on the surface (hydrophilic droplet 

on hydrophobic surface) or the liquid could wet the surface due to low contact angles 

(hydrophilic droplet on hydrophilic surface). Each chip had three reaction centers comprising 

low contact angles and 10 track lanes served by 10 separately addressable SAW transducers 

on crossover directions for aligning the droplets on the heater structures and for fusing 

droplets in reaction centers (figure 5 B). Opposing transducers had different spatial periods to 

avoid crosstalk.  

 
Figure 5. LOC chip design and structuring lithography. A) The chip architecture comprised a layer-by-layer 
design based on LiNbO3 as basic substrate. After a metallization layer including IDTs and gold contacts surface 
chemistry provided the basis for functional compartments. B) Hydrophilic areas (hydrophilic reaction centers 
A+B+C and guiding tracks for the oil droplet movement, orange pattern) were patterned on the chip with 
positive photoresist, while an organic layer of a hydrophobic perfluoroalkylsilane was bound to the whole 
surface (blue pattern). After removing the photoresist, epoxysilane was grafted from an organic solution. Small 
inlets show electron microscopy images of the various functional structures on the chip surface like interdigital 
transducers, reaction points, tracks and gold contacts. Hydrophilic tracks were about 15 µm in width for side 
tracks and 200 µm for the main track from A to C. Reaction centers A and B comprised a diameter of 500 µm, 
while center C was designed as a square with 1x1 mm2 in size. Small anchor spots at sidetracks comprised about 
40 µm in diameter. 

Chip-holder. The chip-holder itself provided a cavity for installing a LOC chip in contact 

with a Peltier element and with a load resistor heating, a temperature sensor, and a contacting 

lid for the high frequency support of the IDTs (figure 6 A). The contacting lid housed gold 

contact pins for contacting the gold contact pads on the chip surface, thus transferring the high 

frequency signal from the HF generator to the designated transducers on the chip surface. At 

the transducers, electrical high frequency signals were converted into mechanical vibrations, 

propagating as surface acoustic waves on the surface (figure 6 B). Heat transfer from the 

Peltier element to the LOC chips was achieved by close contacting of the Peltier element’s 

surface with the chip’s undersurface, thus providing direct heat transfer. 

Heating structures and reaction centers. There were 3 hydrophilic reaction centers (A, B, C) 

chemically generated on the chip surface being heated by two heating devices located within 

the cavity of the chip-holder to contact the chip’s undersurface (figure 6 B). Heating devices 

were a load resistor heating (2x2 mm2 in size) for isothermal cycling and a Peltier element  

(1x1 cm2 in size) with an integrated temperature sensor for thermal PCR cycling. Hydrophilic 
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reaction center A comprised 500 µm in diameter and was thermally served by the load resistor 

heating for isothermal reactions. Hydrophilic reaction center B comprised 500 µm in diameter 

and was thermally served by the Peltier element for PCR and microarray applications (figure 

6 and figure 7 C). Hydrophilic reaction center C comprised a square of 1 x 1 mm2 and was 

designed for array applications, while being thermally served by the Peltier element as well. 

In the area around the heaters, the temperature dropped fast. Heating rates for the load resistor 

heating could be adjusted to 0.01 – 10 K s-1, while heating rates for the Peltier were fixed to  

3 K s-1 and cooling rates to 4 K s-1. To avoid disturbing air streams and dust on the chip 

surface, the reaction area cavity was covered with a glass slide during PCR performances.  

 
Figure 6. Chip-holder and heating elements of the CytoCycler. A) Basis of the chip-holder: the cavity for 
installing a LOC chip is shown (2.5 x 2.0 cm2), as well as the two heating devices, a load resistor heating  
(2x2 mm2, marked with an “A”) and a Peltier element (1x1 cm2, marked with a “B”). B) Assembled chip-holder 
with a transparent LOC chip installed. The contacting lid held gold pins, which were in contact with gold contact 
pads on the chip surface. Via this contacting, HF signals were transmitted to the interdigital transducers and 
transformed into surface acoustic waves propagating on the chip surface. 

SAW droplet actuation. Actuation for moving droplets on the surface of the piezoelectric 

substrate was done by surface acoustic waves (SAW) (Shiokawa S et al., 1989; Uchida T et 

al., 1995) for to bring reagents into contact and to reaction centers. Surface acoustic waves 

were generated by interdigital transducers, which were patterned on the planar LiNbO3 

substrate (figure 5 B and figure 7 C). Electrical signals, sent by the HF generator, were 

conducted via the gold contact pins of the lid to the gold contact pads on the chip surface. 

Gold contacts on the chip served IDTs, where electrical signals were transferred into 

mechanical vibrations propagating on the surface substrate as acoustic sound waves (also 

called acoustic streaming (Moroney RM et al., 1991; Wixforth A, 2003)). When a SAW 

coupled into a droplet, this led to a pressure gradient in the liquid. Depending 1) on the size of 

the gradient, namely the applied HF power, as well as depending on 2) the wetting angle of 

the liquid (namely its contact angle on hydrophilic/-phobic substrate) and on 3) the angle with 

which the wave coupled into the fluid, the droplet either started an internal streaming (small 

gradient) or was pushed to move forward (large gradient) in the same direction as the sound 
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wave (Guttenberg Z et al., 2004; Nyborg WL, 1998). Internal streaming could e.g. be used for 

mixing and a large gradient e.g. for moving droplets as well as for dispensing small droplets 

out of a larger volume (Strobl CJ et al., 2004).  

The LOC chips comprised 10 IDTs located around the chip to serve each lane of the 

tracksystem (figure 5 B and figure 7 C). The high frequency generator was operated via a 

joystick, controlling the actuation of each particular SAW transducer on the chip. Using this 

joystick, droplets could be actuated in a very precise manner in either direction following the 

virtual track system on the chemically structured chip surface. Thus, an exact alignment on 

reaction centers could be achieved. On the chip, SAW provided the connection of subsequent 

sample processing steps, like e.g. moving sample-loaded droplets to various reaction areas on 

the chip surface. SAW were used for providing the oil coverage by simply fusing an aqueous 

sample-containing droplet with a larger-volume mineral oil droplet as well. 

Performing virtual reaction chamber LV-PCR. Reactions were performed on the open 2-

dimensional planar chemically structured surface of the microfluidic chip device. To prevent 

external cross-contamination and evaporation of PCR reagents and sample material at high 

temperatures, the aqueous droplet (including e.g. reaction solution and sample material) was 

encapsulated within a droplet of mineral oil (figure 7).  

 
Figure 7. Principle of virtual reaction chamber PCR. A) Schematic drawing of virtual reaction chamber PCR. 
An aqueous droplet of reaction mix is placed on a chemically modified surface and covered by mineral oil to 
prevent evaporation. A proper arrangement of both droplets was achieved by chemical surface treatment via 
photolithography. A hydrophilic reaction center (500 µm in diameter) is enclosed by a hydrophobic ring, holding 
the reaction mix in place; a surrounding hydrophobic area keeps the cover oil (3 mm in diameter) in place. B) 
Surface chemistry provided virtual confinement on LOC chip surfaces. The different surface tensions of both 
liquids kept the spherical phase separation. For visualizing phase separation, a small droplet of 1 µl of dyed 
aqueous solution was covered with 5 µl of mineral oil. C) Gold contact pads were located around the chip, 
serving the IDTs to generate SAWs in any desired direction on the tracksystem. Via surface acoustic waves VRC 
droplets could be moved between reaction centers and both heater devices, the load resistor heating and the 
Peltier element. The whole chip comprises a size of 2.5 x 1.8 cm2.  

The different surface tensions of the two liquids provided the spatial separation, while still 

retaining the ability to be moved by SAW actuation (figure 7 B). This kind of fluid 

arrangement was transported in single oil covered droplets on a chemically modified surface 

using surface acoustic waves (SAW) on the piezoelectric LiNbO3 substrate (figure 7 C). 
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Benefits of the planar virtual reaction chamber microdevice. The main purpose of a lab-on-

a-chip system is to simplify and automate labor intensive, time consuming and costly 

laboratory procedures. However, conventional 3-dimensionally constructed microfluidic 

systems are using channel networks, in which the liquid is controlled with external or 

integrated miniaturized pumps and valves or via electrocapillary forces bearing some major 

problems (as already described in the introductory part). As the pressure required for moving 

the liquid scales inversely with the channel dimension (Brody JP et al., 1996), the power of 

the pumps therefore has to be increased in the same way the size is reduced, which 

complicates integration into a complete system. According to the channel diameter only 

laminar flow is possible due to low Reynolds numbers. The Reynolds number characterizes 

the tendency of a fluid to develop turbulence. Low Reynolds numbers involve high viscosity 

and laminar flow, while high Reynolds numbers involve low viscosity and turbular streaming. 

But laminar flow is useless for biochemical reactions as this leads to insufficient mixing and 

diffusion takes too much time. For generating turbular flow in channel systems, actuators, 

mixers, sensors and all that stuff are needed. With hydrophilic channels that are filled by 

capillary forces no pumps are needed, but the fluid control is delicate. Furthermore, when a 

biological solution is pumped through a narrow tube, the risk of reagent loss by adhesion to 

the wall is large due to unfavorable surface to volume ratio. Other problems are that small 

channels get easily clogged and that surface modification and functionalization is difficult to 

control. Furthermore, channels are hard to clean so one has to deal with contamination. 

Otherwise these complex structures were too expensive in fabrication to be disposables. 

To overcome all these problems, using a virtual reaction chamber device beared a lot of 

benefits. The fluid actuation was done on a planar surface via SAW generated by IDTs via HF 

signals, so no external pumps and no large pressure were needed. Furthermore, no channels 

were needed, as fluids were confined in virtual test tubes in form of free droplets due to 

surface tension and surface chemistry. Small amounts of liquid did not need to be confined in 

tubes or trenches, they formed their own test tubes held together by surface tension, but 

dependent on the wettability of the surface substrate. There was no large pressure needed, as 

the droplet-in-oil arrangement was easily moved via SAW power. Tracks and reaction 

chambers were defined by a chemically modified surface. As chips could be made cheap and 

served as disposables, even contamination or channel clogging did not play a role.  
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3.4  BioSpot fluid-dispensing module  

The BioSpot device was a nano pipetting system for non-contact liquid handling and was 

fabricated and provided with appropriate software by the company BioFluidix GmbH 

(Freiburg, Germany). It comprised several parts featuring a) a PipeJet dispenser moving in 

Z-directions for liquid uptake and delivery, b) a sample slay fixed on a slide rail moving in X-

directions and c) a power control box also housing a syringe pump supporting aspiration and 

dispension of liquid. Onto the sample slay the chip-holder device of the CytoCycler device 

was installed, carrying a flask-filled reservoir device (figure 10 A). The slide rail was about 

70 cm in length and guided the chip-holder with an accuracy of ±50 µm, thus enabling a 

seamless motion of LOC chips to a sample take-up position close to the microscope, to the 

dispensing PipeJet module and to the Fluorescence Reader (figure 8). 

 
Figure 8. Overview of the particular units of the whole LOC system. The five modules of the lab-on-a-chip 
are shown namely the microscope combining laser microdissection and SPATS transfer, the chip-holder of the 
CytoCycler fixed on a moving slay, the BioSpot dispensing device and components of the Fluorescence 
Reader. The slide rail enabled X-directed motion of the chip-holder, thus providing an elegant connection 
between individual LOC modules. The housing for all the optical components of the Fluorescence Reader as 
well as this graphical overview picture was designed in a computer aided design (CAD) program (SolidWorks 
2006, Solid Works Corp.) and was kindly provided by G. Lieckfeld.  

The BioSpot operating unit consisted of three PipeJets named PipeJet1 (PJ1), PipeJet2 

(PJ) and PipeJet3 (PJ3) executing all aspiration, dispension and shooting operations. The 

PipeJets were equipped with a tube reservoir, which was connected to a syringe pump for 

handling the aspiration and dispension of liquids. PJ1 and PJ2 could handle aqueous liquids 

up to 50 µl, while PJ3 could handle up to 1 ml of mineral oil for droplet coverage when 

performing virtual reaction chamber PCR. Each PipeJet housed an elastic polymer tube, 
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which was actuated by a piezostack driven piston supporting shooting operations. Polymer 

tubes were of low cost and could be used as disposables. “Shooting” meant a sequential 

dispension of liquids at tiniest amounts of a few nl. Squeezing the tube via the piston resulted 

in a fast displacement of the filled liquid to both, the open end of the tube and the end 

connected to the reservoir (figure 9). Thereby a small droplet of about 22.5 nl of liquid was 

dispensed to the designated surface or reservoir, forming droplets of a few µl when repeated 

several times. Dosage volumes could be controlled by the amplitude of the piezo actuator, 

while other parameters involved in the dispensing process could be defined via the freely 

programmable software “BioSpot”. 

 

Figure 9. Dosage principle of the BioSpot’s PipeJet modules. The figure shows the piston driven actuation 
of a polymer tube as housed in PipeJets PJ1, PJ2 and PJ3, resulting in the bidirectional dispension of nanoliter 
droplets. Via a principle of fast displacement and slow release, smallest droplet sizes of 22.5 nl could be loaded 
precisely on the chip surface (BioFluidix GmbH, Freiburg, Germany; Lindemann T et al., 2004). 

The BioSpot provided the easiest way to combine all LOC modules due to the 70 cm long 

slide apparatus, included with the BioSpot, and furthermore it will provide the important 

interface for enabling automation of the total LOC system. As a modular unit of the lab-on-a-

chip system, the BioSpot was used as a dispenser for various liquids needed for the 

molecular biological analysis executed on the LOC chip surface. The BioSpot, as a 

computer-controlled dispensing platform, was capable of unloading reagents at any destined 

domain on the LOC chip surface. The z-axis, where the PipeJets were attached to, allowed 

movements of up to 40 cm, while y-positions of the PipeJets needed to be adjusted 

manually. The distance between the three PipeJets provided enough space that each 

PipeJet could reach the chip surface. 

The software gave access to four single active control windows for operating the whole 

BioSpot device, namely (1) Axis Control and Axis Movement, (2) PipeJet Control, (3) 

Valve Control and Pump Control and (4) Batch Mode. A total operating procedure of the 

BioSpot started with dispensing e.g. 1 µl of master mix to reaction center B on the LOC chip 
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surface for sample uptake. For that, the designated PipeJet was approached to a reservoir 

flask (figure 10 A and B), was driven to aspirate a distinct amount of fluid and was moved to 

the chip surface for unloading (figure 10 C). Subsequently, the chip-holder was moved to the 

microscope, waiting for sample uptake after microdissection and SPATS transfer. Sample 

material, released into predispensed fluid, was immediately covered by mineral oil. For that, 

the chip-holder was moved back to the designated PJ3 for applying Sealing Solution either 

directly by dropping onto the liquid droplet or by dispensing onto the LOC chip surface 

(figure 10 D), while droplet fusion was achieved by surface acoustic wave actuation.  

 
Figure 10. Workflow of the BioSpot applied on the lab-on-a-chip system. A) Via the slide rail the flasks-
holding reservoir device was centered to the PipeJets. B) A distinct amount of fluid was aspirated by one of 
the PipeJets. C) The designated PipeJet was approached to the LOC chip surface and centered to reaction 
center A for liquid dispension. D) Via the piston actuation a small volume of 1 µl of liquid was dispensed onto 
the chip surface (red arrow), which was going to be covered with 5 µl of pre-dispensed mineral oil (green arrow) 
for forming a virtual reaction chamber PCR droplet arrangement. 

Pipetting workflows like this could either be performed manually by operating the various 

active control windows of the software or automatically by executing pre-programmed 

operations using the “Batch mode” setting of the software. 
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3.5  Fluorescence Reader module 

For PCR-based systems, detection of amplified products is surely the most important thing to 

fulfill requirements of an entire modular “sample-in-answer-out” µTAS device, while optical 

detection methods still dominate over others due to sensitivity purposes. However, for 

complexity reasons in most µTAS the optical detection is commonly accomplished using a 

microscope located off-chip. Due to the modular and “open” character of the LOC comprising 

a perfect accessibility to chips installed in the CytoCycler PCR device, a fluorescence 

detection unit “Fluorescence Reader” could be integrated easily as not being part of any 

fabrication process. The Fluorescence Reader consisted of a commercially available CCD 

camera and control equipment. A similar simple, portable and modular fluorescence detection 

system for lab-on-a-chip applications was developed by Novak L et al. (2007). 

The Fluorescence Reader module of the lab-on-a-chip system typically consisted of a) a light 

source for emitting light at a suitable wavelength range (blue LED λmax = 470±2 nm with 

collimating optics (inhibiting power losses over the length of the optical path), b) an 

ET482/35 excitation and ET536/40 emission filter set (λmax ex = 482 nm, λmax em = 536 nm), c) 

a CCD camera as detector for signal processing (capturing emitted light), d) external 

electronics like a LED power supply control box and a trigger signal break-out box and e) 

software for image data analysis. The optical path of excitation light and emission light was 

designed in a 45° arrangement for the optical separation of excitation and emission channels 

(figure 12). A LED was chosen as light source as fluorescence systems based on light 

emitting diodes (LEDs) became popular in the last few years for their low cost, due to their 

long lifetime and that LED’s light output can be modulated (Dasgupta PK et al., 2003). 

Additionally, traditionally used light sources like mercury lamps and lasers, were too bulky 

and expensive for combination with the LOC devices. Due to collimation, the stray light of 

the LED was minimized, in order to reduce the signal-background relation. The optical 

system including LED and filter set was adapted to the fluorescence requirements of SYBR 

Green I providing a typical standard fluorescence detection system. SYBR Green I is a 

fluorescence dye intercalating into double-stranded DNA molecules, absorbing blue light at 

an absorption maximum of 498 nm and emitting green light at an emission maximum of  

521 nm (figure 11). Accordingly, integrated filter sets included an excitation filter with a 

transmission of  λmax = 482 nm (spread 36 nm = 464-500 nm) and an emission filter with a 

transmission of λmax = 536 nm (spread 40 nm = 516-556 nm). 
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Figure 11. SYBR Green I spectra. Excitation and emission curves of the DNA intercalating fluorescence dye 
SYBR Green I are shown (from Fluorescence Dye and Filter Database at www.micro-shop.zeiss.com). The dye 
comprised an emission maximum of 521 nm when enlightened with excitation light at a maximum of 498 nm. 

The Fluorescence Reader was positioned stationary in the middle of the LOC slide, between 

microscope and BioSpot (figure 12). For excitation the LED as light source was placed at an 

angle of 45° shining to the sample positioned on reaction center B on the LOC chip surface. 

LED collimated light was filtered by an exciter ET482/35, exciting the SYBR Green I dye to 

produce fluorescing light. Fluorescent light was detected passing through an emission filter 

ET536/40, followed by the collection of light by a CCD camera (figure 12). 

 
Figure 12. Design of the Fluorescence Reader including CCD camera detector, LED light source and filter 
sets. The Fluorescence Reader was integrated on the LOC slide, located between microscope and BioSpot. A 
fluorescent sample was positioned to reaction center B of a LOC chip installed in the CytoCycler. For detection 
of fluorescent sample signals, an angled arrangement of excitation and emission devices including appropriate 
filters was chosen. Thus the optical part could be split into two paths: excitation light was directed in an angular 
way to a fluorescent sample (blue light path), while emitted fluorescing light was detected and captured direct 
vertically by the CCD camera positioned above (green light path). CAD (SolidWorks 2006, Solid Works Corp.) 
image was kindly provided by G. Lieckfeld.  
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The basic setup of the Fluorescence Reader, including LED light source, filter set, LED 

power control box, trigger signal break-out box and CMOS (Complementary Metal Oxide 

Semiconductor) sensor as fluorescence signal detector was developed in the context of a 

diploma thesis (“Fluoreszenzreader zur Detektion von Biomolekülen auf einem ‘Lab-on-a-

chip’/Fluorescence reader for detecting biomolecules on a lab-on-a-chip device”, submitted 

by Taner Sari, April 2008). This work dealed with the coupling of an optical Fluorescence 

Reader to a “lab-on-a-chip”, whereas DNA molecules (enriched with fluorescent marker) 

were optically excited and quantitatively detected via a detection unit. The setup was 

optimized to the actual state in the context of an internship program (“RT-PCR automation 

for lab-on-a-chip using LabVIEW”, submitted by Muhammad Atyab Imtaar in January 2009), 

where an appropriate LabVIEW-based detection software was written 

(“Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI”) for automatic 

picture taking and the CMOS chip detection unit was exchanged by a CCD camera for 

sensitivity and resolution purposes. Additionally, this software was adapted for manual 

picture taking purposes (“Norbert.VI”).  

For performing fluorescence detection, the chip-holder of the hardware heating-device 

CytoCycler needed to be centered to the Fluorescence Reader (figure 12). The temperature 

control box of the CytoCycler provided the connecting to the software control, but also was 

programmed to give trigger signals to the trigger signal break-out box of the Fluorescence 

Reader. Trigger signals were produced for indicating the end of a PCR cycle. There were 

three trigger signal output-plugs at the backside of the temperature control device named 1, 2 

and 3, representing the three periodically-repeated temperature steps of a PCR protocol. 

Outlet 1 gave a signal after the denaturation step, outlet 2 after the annealing step and outlet 3 

after the extension step. Which of these outlets was connected to the Fluorescence Reader 

depended on the kind of PCR performed. In 2-step PCR, when annealing and extension were 

combined in one step, outlet 2 was the choice, in 3-step PCR outlet 3 needed be connected. 

The trigger signal break-out box captured the trigger signal from the temperature control box 

and activated the image capture and image processing process controlled by the particular 

LabVIEW-based software. The LED was turned on to illuminate the sample for fluorescence 

and a picture of the sample was captured by the CCD camera arrangement (figure 13).  
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Figure 13. Illumination of a fluorescent sample during a PCR cycle. The inserts show the software captured 
images at the specific temperatures of a PCR cycle. The optical units for excitation of a fluorescent sample and 
detection of emitted fluorescence signal were placed above reaction center B of the LOC chip in a 45° design. 
For excitation of the fluorescing dye in the sample through a blue LED, the optical excitation path was focused 
through the oil into the aqueous reaction mix solution.  A) When the sample droplet was enlightened at 94°C 
during the denaturation step, no fluorescence was emitted from the fluorescent dye inside the oil-covered sample 
droplet. This was due to the denatured DNA strands, being single-stranded and thus eliminating binding of the 
fluorescent dye SYBR Green I. Thus, software captured images showed no fluorescence signals. B) When the 
sample droplet was enlightened at 60°C during the annealing and extension step of a 2-step PCR performance, 
green fluorescence signals were emitted from the SYBR Green I dyed sample and captured by the optical 
detection unit. This was due to the double-stranded DNA molecules at the end of this temperature step, enabling 
the incorporation of the fluorescent dye. 

Taken pictures were stored in a separate folder and fluorescence intensities produced at the 

end of each cycle were plotted graphically by the software. At the end, an excel file was 

generated summarizing all the collected and measured intensities. There were two kinds of 

pictures generated, “original” ones as well as “processed” ones. “Original” pictures 

represented the real image, while “processed” pictures represented subtracted fluorescence 

intensities. The previous image was subtracted from current image, so just the fluorescence 

increase was displayed. 
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4.  Technical Evaluation of the Lab-on-a-chip System 

In this section, the performance of the individual LOC elements as well as their interplay was 

characterized concerning operating efficiency. Especially the capability of the PCR 

amplification device CytoCycler was analyzed in several biochemical reactions concerning 

amplification efficiency and detection sensitivity of a small amount of sample material. 

4.1  Reliability of heat transfer  

Temperature measurements were performed by installing an adapted measurement LOC chip 

into the chip-holder of the CytoCycler. Input temperatures, controlled by the software and 

measured by the chip-holder’s temperature sensor, were compared to output temperatures 

measured on reaction center B of the measurement LOC chip by a temperature sensor. Thus, 

the heat transfer from the software to the Peltier element and finally onto the chip surface was 

validated. Various temperatures in a PCR relevant temperature range from 25°C up to 100°C 

were tested. Additionally, the performance of an AmpliSpeed slide cycler was tested as a 

reference PCR system. 

The first temperature profile comprised measurements with increasing temperatures, starting 

from 30°C, and followed by stepwise temperature increments of +5°C up to 100°C, while 

each temperature was held for about 30 sec. There were slight negative deviations detectable 

in the upper temperature range from 70-100°C at an average of -0.243°C, but rather randomly 

distributed than in an increasing linear manner. In the lower temperature range from 30°-

65°C, however, decreasing positive deviations were measured at an average of +0.527°C. 

Results derived for the CytoCycler were summarized in table 3. 

The second temperature profile comprised measurements with temperatures simulating 3-step 

thermal PCR cycling, starting from 95°C held for 10 min, followed by 3-5 cycles of 94°C for 

30 sec, 60°C for 30 sec and 72°C for 30 sec. Two independent runs were performed. 

Temperature measurement results derived for the CytoCycler at each specific temperature 

were summarized in table 3. In both runs there were slight but tolerable positive temperature 

deviations detectable. At 95°C, simulating an initial denaturation step, the averaged positive 

deviation was about +0.90°C. At 94°C, simulating the denaturation steps at each PCR cycle, 

positive deviations were measured at an average of +0.98°C. At 60°C, simulating the 

annealing step at each PCR cycle, the positive deviations were at an average of +0.26°C. And 
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at 72°C, simulating the extension step of each PCR cycle as well as the final product 

extension step, averaged positive deviations were about +0.67°C.  

Table 3. Temperature deviations between input and output temperature measured at the CytoCycler device. The 
particular deviations at each measured temperature are given in brackets and are marked with a delta sign (∆). 
 

Input 
temperature by 
software [°C] 

Averaged output 
temperature on chip 

surface [°C] 

Input 
temperature by 
software [°C] 

Averaged output 
temperature on 

chip surface [°C] 

Averaged output 
temperature on 

chip surface [°C] 
Temperature increment +5°C Simulating PCR cycling 
30 31.05 (∆ +1.05)  Run 1 Run 2 
35 35.92 (∆ +0.92) 95 95.21 (∆ +0.21) 96.60 (∆ +1.60) 
40 40.73 (∆ +0.73) 94 94.47 (∆ +0.47) 95.02 (∆ +1.02) 
45 45.59 (∆ +0.59) 60 60.21 (∆ +0.21) 60.32 (∆ +0.32) 
50 50.43 (∆ +0.43) 72 72.51 (∆ +0.51) 72.86 (∆ +0.86) 
55 55.26 (∆ +0.26) 94 94.28 (∆ +0.28) 95.37 (∆ +1.37) 
60 60.19 (∆ +0.19) 60 60.37 (∆ +0.37) 60.28 (∆ +0.28) 
65 65.05 (∆ +0.05) 72 72.64 (∆ +0.64) 72.68 (∆ +0.68) 
70 69.89 (∆ -0.11) 94  95.23 (∆ +1.23) 
75 74.69 (∆ -0.31) 60  60.22 (∆ +0.22) 
80 79.73 (∆ -0.27) 72  72.67 (∆ +0.67) 
85 84.84 (∆ -0.16) 94  95.26 (∆ +1.26) 
90 89.87 (∆ -0.13) 60  60.22 (∆ +0.22) 
95 94.78 (∆ -0.22) 72  72.70 (∆ +0.70) 
100 99.50 (∆ -0.50) 94  95.23 (∆ +1.23) 

  60  60.18 (∆ +0.18) 
  72  72.63 (∆ +0.63) 

Values of input temperatures were plotted against output temperatures and illustrated in a 

graphical image (figure 14 A). The distinct deviation values were related to measured 

temperatures and were shown graphically in an additional plot (figure 14 B). 

 
Figure 14. Temperature measurements of the LOC CytoCycler. A) Graphical display of measured input 
temperature (via software) versus output temperature (via hardware on the chip surface). Slight deviations could 
be detected at each measuring point. The drift of both graphs clearly showed positive deviations at lower 
temperatures and negative deviations at higher temperatures. B) Graphical illustration of the deviations of each 
particular temperature. Input temperatures were plotted against measured temperature deviations. 
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The PCR-simulated temperature profile of 94°C, 60°C and 72°C was applied to the 

AmpliSpeed slide cycler as well. Slight deviations of constantly about ±0.5°C were recorded 

for the slide cycler, featuring this cycler as an ideal reference system for the LOC system, 

especially for performing negative and positive control reactions during PCR performances.  

According to an optimal setup based on contacting surfaces of the Peltier element and the 

chip underside, the CytoCycler provided a stable heat transfer onto the chip surface. Besides 

an efficient and optimal temperature transfer, a stable temperature support could be provided 

by this setup. Repeated temperature measurements were performed in two independent runs. 

Temperature output was quite constant at simulated PCR cycling any time tested, accounting 

for reproducible temperature measurements. In several independent measuring approaches, 

constantly slightly positive temperature deviations close to the desired input temperature were 

detected. These positive temperature deviations represented an optimal temperature transfer 

effectivity from the Peltier element to the LOC chip surface. This optimal temperature output 

on the chip surface validated the CytoCycler for reliable PCR performances on the LOC 

system. This setup of direct contact between the heating element and the microchip was 

comparable to the used multi LV-PCR microdevices, which were applied on conventional 

thermocycler devices using an appropriate in situ adapter, like e.g. reported in Schmidt U et 

al. (2006), Proff C et al. (2006), Lutz-Bonengel S et al. (2007) and Schmidt U et al. (2008). 

This contacting setup was also applied in the special thermocycler designed for slide-based 

PCR (AmpliSpeed slide cycler, Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany). This commercially available AmpliSpeed slide cycler device provided a 

comparable contact heating method for performing low-volume PCR amplification reactions 

using a multi LV-PCR microdevice. Thus, it was taken as reference system for all conducted 

measurements. As temperature measurement results were quite comparable between both 

devices, the AmpliSpeed slide cycler was taken as a permanent reference PCR system for 

validating the results obtained from the LOC CytoCycler PCR performances. 

4.2  Evaluating the minimum amount of target material 

The CytoCycler was characterized for product detection limits of amplification using 

decreasing amounts of input DNA for low-volume PCR (LV-PCR) analysis. The effectivity 

of the PCR was tested by reducing template concentrations until no successful amplification 

product could be detected after a large number of cycles. The minimum amount of target 

material was detected, thus validating the detection limit of PCR analysis performed on the 
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CytoCycler. Thermal cycling performances of LOC chips on the CytoCycler were validated 

against reference performances of a multi LV-PCR microdevice (AmpliGrid AG480F) on 

an AmpliSpeed slide cycler during parallel cycling including positive and negative controls. 

Concentrations for input DNA were 1 ng, 500 pg, 100 pg, 50 pg, 25 pg and 12.5 pg of 

purified human female genomic reference DNA material. Amplifications were performed on a 

297 bp fragment of the human high copy gene β-actin as well as on 106/112 bp fragments of 

the human gender determining gene amelogenin. As a 106 bp fragment is amplified from the 

X-chromosome and a 112 bp fragment from the Y-chromosome, a determination of male and 

female samples was possible. 

Concerning the upper range of input DNA, performances of LOC chips and the multi LV-

PCR microdevice were quite comparable in β-actin amplification (figure 15). Both devices 

revealed positive and reliable product detection data starting from 1 ng down to 25 pg of 

human genomic female input DNA, whereas product bands produced by the multi LV-PCR 

microdevice were always slightly stronger. Amplification results of 1 ng and 500 pg were not 

shown due to most stable performances and thus lack of comparability. While the multi LV-

PCR microdevice could successfully amplify even 12.5 pg of genomic input DNA (figure 15 

D), the minimal amount of genomic starting material which gave still a reproducible result for 

LOC chip amplification was 25 pg (figure 15 C). Amplification of 10 pg of genomic input 

DNA failed in both devices (figure 15 A). For a better overview, results of sensitivity tests 

were summarized in a schedule (table 4). 

 

Figure 15. PAAGE data of detection limits for PCR amplification of a 297 bp ββββ-actin fragment. Validation 
of the amplification efficiency of LOC chips compared to a multi LV-PCR microdevice is shown. Decreasing 
concentrations of genomic female reference DNA were used as input DNA. M = molecular length standard  
(100 bp DNA ladder, New England BioLabs, Beverly, MA, USA). NC = negative control. A) Amplification of 
100 pg and 10 pg target DNA material. Lane 1: 100 pg on LOC chip; lane 2: 100 pg on multi LV-PCR 
microdevice; lane 3: NC on multi LV-PCR microdevice; lane 4: 10 pg on LOC chip; lane 5: 10 pg on multi LV-
PCR microdevice; lane 6: NC on multi LV-PCR microdevice. B) Amplification of 50 pg target DNA material. 
Lane 1: 50 pg on LOC chip; lane 2: 50 pg on multi LV-PCR microdevice; lane 3: NC on multi LV-PCR 
microdevice. C) Amplification of 25 pg target DNA material. Lane 1: NC on multi LV-PCR microdevice; 
lane 2: 25 pg on multi LV-PCR microdevice; lane 3: 25 pg on LOC chip. D) Amplification of 12.5 pg target 
DNA material. Lanes 1+2: 12.5 pg on multi LV-PCR microdevice; lane 3: 12.5 pg on LOC chip; lane 4: NC on 
multi LV-PCR microdevice. 



4. Technical Evaluation of the Lab-on-a-chip System 
 

 66 

In amelogenin amplification, performances of LOC chips and the multi LV-PCR microdevice 

were comparable as well (figure 16). Both devices revealed positive and reliable product 

detection data starting from 1 ng down to 50 pg of genomic female input DNA, whereas again 

product bands produced by the multi LV-PCR microdevice were always slightly stronger. 

Amplification results of 1 ng and 500 pg were not shown due to most stable performances and 

thus lack of comparability. At lower DNA concentrations, the multi LV-PCR microdevice 

could successfully amplify 25 pg of genomic input DNA, but failed in amplifying 12.5 pg. 

For amelogenin, a reliable LOC chip performance was detected down to 50 pg. As LOC chips 

failed in amplifying 25 pg and 12.5 pg of genomic input DNA, the minimal amount of 

genomic starting material which gave still a reproducible result indicating a reliable LOC chip 

amplification performance was 50 pg. According to the previous results, the amplification of 

10 pg was not even tried. For a better overview, results of sensitivity tests were summarized 

in a schedule (table 4). 

 
Figure 16. PAAGE data of detection limits for PCR amplification of 106 bp amelogenin fragments. 
Validation of the amplification efficiency of LOC chips in comparison to a multi LV-PCR microdevice is 
shown. Decreasing concentrations of genomic female reference DNA were used as input DNA. M = molecular 
length standard (Superladder-low 100 bp ladder with ReddyRun, Thermo Scientific, ABgene, Epsom, Surrey, 
UK). NC = negative control. A) Amplification of 100 pg and 50 pg target DNA material. Lane 1: 100 pg on 
LOC chip; lane 2: 100 pg on multi LV-PCR microdevice; lanes 3+4: NC on multi LV-PCR microdevice; lane 5: 
50 pg on LOC chip; lane 6: 50 pg on multi LV-PCR microdevice. B) Amplification of 25 pg target DNA 
material. Lane 1: 25 pg on LOC chip; lane 2: NC on multi LV-PCR microdevice; lanes 3+4: 25 pg on multi LV-
PCR microdevice. C) Amplification of 25 pg and 12.5 pg target DNA material. Lane 1: 25 pg on multi LV-
PCR microdevice; lanes 2+4: NC on multi LV-PCR microdevice; lane 3: 25 pg on LOC chip; lane 5: 12.5 pg on 
LOC chip; lanes 6+7: 25 pg on multi LV-PCR microdevice. D) Amplification of 12.5 pg target DNA material. 
Lane 1: 12.5 pg on LOC chip; lanes 2+3: 12.5 pg on multi LV-PCR microdevice; lane 4: NC on multi LV-PCR 
microdevice. 

At higher concentrations from 1 ng to 50 pg, results of PCR performances were always 

constantly positive and quite comparable between both cyclers and both amplification 

performances, β-actin as well as amelogenin. There were just slight differences in the 

thickness of bands in the PAAGE gel data.  

As summarized in table 4, for LOC chips 25 pg genomic input DNA was the detection limit 

for amplifying β-actin gene fragments and 50 pg for the amplification of amelogenin 
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fragments. Below these thresholds, no bands could be detected reliably any more. In 

comparison, the multi LV-PCR microdevice managed to amplify 12.5 pg of genomic DNA 

reliably in β-actin application and 25 pg in amelogenin PCR, thus having a slightly better 

detection limit than LOC chips.  

Table 4. Summary of detection limits of LOC chips compared to a multi LV-PCR microdevice. Positive PCR 
products were marked with a “+”, while failed amplifications were marked with a “-“. 
 

 1 ng 500 pg 100 pg 50 pg 25 pg 12.5 pg 10 pg 
 β-actin PCR amplification detection limit 

LOC chip + + + + + - - 
Multi LV-PCR microdevice + + + + + + - 

 Amelogenin PCR amplification detection limit 
LOC chip + + + + - - / 

Multi LV-PCR microdevice + + + + + - / 

Differences in the various detection limits of LOC chips and the multi LV-PCR device when 

amplifying β-actin and amelogenin gene fragments could be attributed to the nature of these 

genes amplified. The β-actin gene is known as a gene having a high copy number distributed 

throughout the whole genome in pseudogenes (Ng SY et al., 1985), thus presenting a much 

higher amount of target material, which is going to be amplified. Amelogenin, in contrast, is 

only located on gender chromosomes (Lau EC et al., 1989) and thus presents a less amount of 

target sequences that potentially can be amplified during PCR.  

General differences in detection limits between LOC chips and the multi LV-PCR 

microdevice could be related to the diverse architectures of reaction centers and the associated 

capability of heat transfer. The multi LV-PCR device comprised hydrophilic reaction centers 

of 1.6 mm in diameter, where attached liquids had a low contact angle and could wet the 

substrate in a way that they are forced to form a semicircular shape. Reaction center B of 

LOC chips offered just a hydrophilic area of 500 µm in diameter, where attached liquids had a 

higher contact angle and could wet the substrate less efficiently forming an almost circular 

shaped droplet. This design might seem kind of suboptimal, but it was definitely needed for 

sustaining the capability of actuating and moving droplets by the power of surface acoustic 

waves. The multi LV-PCR microdevice could provide a better heat transfer into the oil-

covered master mix droplet, as having a larger contact area to the heated surface of the 

microdevice. As LOC chips provided a smaller contact area of the almost roundly shaped 

master mix droplet to the heated chip surface, the heat transfer was less efficient and resulted 

in a less sensitive amplification threshold. Additionally, the design of the outer hydrophilic 

ring, which keeps the mineral oil centered to the aqueous droplet, was different and could also 

had an effect on cycling efficiency. While this ring completely surrounded the reaction 
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centers on the multi LV-PCR microdevice, on LOC chips these border was intermitted by the 

virtual tracks to all four sides providing access to the reaction center for SAW actuated 

droplets. However, these four gaps favored a movement of the oil in some cases, interfering 

with the shape of the covered PCR droplet and enabling evaporation effects. These possible 

evaporation events could also have shrinked the sensitivity limit of LOC chip PCR 

performances. However, despite these little handicaps, the PCR performance on LOC chips 

was quite promising, as a DNA amount of about 7 human genome copies (about 50 pg) was 

enough for a reliable amplification of amelogenin fragments. In β-actin PCR only a DNA 

amount of 3-4 human genome copies (about 25 pg) was sufficient due to the high-copy 

character of this gene. 

Furthermore, amplification was done on human genomic DNA, which can be considered a 

“difficult” template as it has a high sequential and spatial complexity. In genomic DNA 

analysis a well-known problem of PCR is the lack of specificity for the desired product 

resulting in a number of longer or smaller fragments that can also be detected after the 

process. As can be seen in figure 15 and figure 16, there were some unspecific products, 

some smear bands, detected besides the authentic product, especially when higher input DNA 

concentrations were used. Side products were reduced when less DNA was used, accounting 

again for a more specific analysis when using just a small amount of genomic target DNA, as 

favored in LV-PCR analysis. However, these stained smears were also detected in lanes of 

negative controls, where demonstrably no specific product was detected. As these smears 

were not stronger in these blank lanes, this accounts still for staining artifacts as well as a 

highly specific amplification, when real input DNA was available, as otherwise blank band 

strengths were expected to be stronger due to less competition for target DNA. Generally, 

these side products can be suppressed when analysis conditions get optimized concerning 

temperatures and cycling times. However, also reducing the amount of target material could 

reduce these side products, as was shown especially for the β-actin cycling results (figure 15). 

An enhanced sensitivity and efficiency of analysis when using low-volume PCR was reported 

several times in literature when departing from big voluminous standard reaction volumes 

(Guttenberg Z et al., 2005; Schmidt U et al., 2006; Proff C et al., 2006; Lutz-Bonengel S et 

al., 2007; Schmidt U et al., 2008). In such a small reaction volume of just 1 µl in total, 

sensitivity is believed to increase especially due to a higher impact probability between 

reactants present in the biochemical reaction mixture. As reactants are in closer contact and 

valuable target material gets less diluted in microfluidic devices (Gaines ML et al., 2002; 

Kloosterman AD and Kersbergen P, 2003; Kricka LJ and Wilding P, 2003; Leclair B et al., 
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2003; Proff C et al., 2006; Schmidt U et al., 2006) also the highest sensitivity within a PCR 

device could be reached. The successful amplification of a single DNA template was shown 

for a glass microchamber (Lagally ET et al., 2000; Lagally ET et al., 2001), however, just 

pre-purified DNA material was used. As the ultimate achievement of a micro total analysis 

system is to analyze crude unpurified samples of low-copy number down to a single cell, low-

volume PCR applied on microdevices provides a good basis for that.  

4.3  Ultimate speed of cycling 

The effectivity of the CytoCycler PCR device was characterized for product detection limits 

of amplification using decreasing cycling times as well as decreasing DNA amounts of input 

DNA for low-volume PCR (LV-PCR) analysis. Thus, the ultimate speed of cycling 

performances was determined. Cycling times were reduced starting from 30 sec to 10 sec and 

down to a minimum of 5 sec temperature hold-time per PCR temperature step, while the 

number of cycle repetitions was constantly set to 30 cycles in total. Amplifications were 

performed on a 297 bp fragment of the human high copy gene β-actin as well as on  

106/112 bp fragments of the human gender determining gene amelogenin. A 2-step PCR 

protocol as well as a 3-step protocol was tested, using DNA amounts of 500 pg, 100 pg, 50 pg 

and 25 pg of human genomic male reference input DNA. Thermal cycling performances of 

LOC chips on the CytoCycler were validated against reference performances of a multi LV-

PCR microdevice (AmpliGrid AG480F) on an AmpliSpeed slide cycler during parallel 

cycling including positive and negative controls. 

Concerning the 2-step PCR procedure, temperature hold-times could successfully be adapted 

to a fast PCR performance, speeding up total cycling times for the amplification of β-actin as 

well as amelogenin fragments. Denaturation time in each cycle was performed at 95°C for  

10 sec instead of 30 sec, while combined annealing and extension times were shortened to  

30 sec in total instead of 60 sec standard PCR protocol (figure 17 A). Despite a lot of side 

products, fragments could successfully be amplified from 500 pg human genomic male 

reference input DNA and the total PCR amplification time for LOC chips was reduced from 1 

h 30 min to about 1h, and for the multi LV-PCR microdevice from 1 h 45 min to about  

1h 15 min. Results of speeding up reactions were summarized in table 5. 
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Figure 17. PAAGE data of cycling efficiency concerning temperature hold-times. Validation of the 
amplification efficiency of LOC chips in comparison to a multi LV-PCR microdevice is shown. Decreasing 
cycling times for LV-PCR amplification of 297 bp β-actin and 106/112 bp amelogenin gene fragments were 
tested, while male and female reference DNA was used, in concentrations ranging from 500 pg to 100 pg, 50 pg 
and 25 pg. M = molecular length standard (ReddyRun Superladder-low 100 bp ladder, Thermo Scientific, 
ABgene, Epsom, Surrey, UK). NC = negative control. A) Lanes 1-6 = 2-step PCR, 500 pg input DNA. Lane 1: 
500 pg β-actin on LOC chip; lane 2: 500 pg β-actin on multi LV-PCR microdevice; lane 3: NC on multi LV-
PCR microdevice; lane 4: 500 pg amelogenin on LOC chip; lane 5: 500 pg amelogenin on multi LV-PCR 
microdevice; lane 6: NC on multi LV-PCR microdevice. Lanes 7-11 = 3-step PCR, 500 pg input DNA. Lane 7: 
500 pg β-actin on LOC chip (10 sec); lane 8: 500 pg β-actin on multi LV-PCR microdevice (10 sec); lane 9:  
500 pg amelogenin on LOC chip (10 sec); lane 10: 500 pg amelogenin on multi LV-PCR microdevice (10 sec); 
lane 11: NC on multi LV-PCR microdevice. B) Lanes 1-16 = 3-step PCR on amelogenin. Lanes 1-3 = 500 pg 
input DNA.  Lane 1: 500 pg on LOC chip (5 sec); lane 2: 500 pg on multi LV-PCR microdevice (5 sec); lane 3: 
NC on multi LV-PCR microdevice (5 sec). Lanes 4-7 = 100 pg input DNA. Lane 4: 100 pg on LOC chip  
(10 sec); lane 5: 100 pg on multi LV-PCR microdevice (10 sec); lane 6: 100 pg on LOC chip (5 sec); lane 7:  
100 pg on multi LV-PCR microdevice (5 sec). Lanes 8-11 = 50 pg input DNA. Lane 8: 50 pg on LOC chip  
(10 sec); lane 9: 50 pg on multi LV-PCR microdevice (10 sec); lane 10: 50 pg on LOC chip (5 sec); lane 11:  
50 pg on multi LV-PCR microdevice (5 sec); lane 12: NC on multi LV-PCR microdevice (5 sec). Lanes 13-16 = 
25 pg input DNA. Lane 13: 25 pg on LOC chip (10 sec); lane 14: 25 pg on multi LV-PCR microdevice (10 sec); 
lane 15: 25 pg on LOC chip (5 sec); lane 16: 25 pg on multi LV-PCR microdevice (5 sec). 

Concerning the 3-step PCR procedure, temperature hold-times could successfully be adapted 

to a fast PCR performance, speeding up total cycling times for the amplification of β-actin as 

well as amelogenin fragments. In each cycle, temperature hold-times for the denaturation, 

annealing and extension steps were reduced to a duration of 10 sec as well as 5 sec in total for 

each temperature instead of 30 sec standard PCR protocol (figure 17 A and B). Additionally, 

the final product extension time was shortened from 60 sec to 30 sec. In the 10 sec protocol, 

fragments could successfully be amplified for 500 pg down to 25 pg on both devices, while 

only amplification of 100 pg on the multi LV-PCR microdevice failed. In the 5 sec protocol, 

input DNA amounts from 500 pg down to 25 pg succeeded in amplification on both devices, 

LOC chips as well as the multi LV-PCR microdevice (figure 17 B). The “10 sec”-based total 

3-step PCR amplification time for LOC chips could be reduced from 1 h 30 min to about  

33 min, and for the multi LV-PCR microdevice from 1 h 45 min to about 54 min. The  

“5 sec”-based total PCR amplification time for LOC chips was successfully reduced from 1 h 

30 min to about 26 min, and for the multi LV-PCR microdevice from 1 h 45 min to about  

47 min. Results of speeding up reactions were summarized in table 5. 
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Table 5. Overview of PCR amplifications performed while shrinking down cycling times. Positive PCR 
products were marked with a “+”, while failed amplifications were marked with a “-“. Amelogenin 
amplifications were marked as “am”, and β-actin ones as “act”. 
 

PCR kit 
Original PCR 

protocol 
Adapted PCR 

protocol LOC chips 
Multi LV-PCR 

microdevice 

QuantiFast 
SYBR Green 

I PCR kit 
(2-step PCR) 

95°C   5 min 
40 x 

95°C   30 sec 
60°C   60 sec 

95°C   5 min 
40 x 

95°C   10 sec 
60°C   30 sec 

500 pg - act 
500 pg - am 

+ 
+ 

500 pg - act 
500 pg - am 

+ 
+ 

500 pg - act 
500 pg - am 

+ 
+ 

500 pg - act 
500 pg - am 

+ 
+ 

100 pg - am + 100 pg - am - 

50 pg - am + 50 pg - am + 

QIAGEN  Fast 
Cycling PCR 

kit 
(3-step PCR) 

95°C   5 min 
30 x 

94°C   30 sec 
60°C   30 sec 
72°C   30 sec 
72°C   60 sec 

95°C   5 min 
30 x 

94°C   10 sec 
60°C   10 sec 
72°C   10 sec 
72°C   30 sec 25 pg - am + 25 pg - am + 

500 pg - am + 500 pg - am + 

100 pg - am + 100 pg - am + 

50 pg - am + 50 pg - am + 

QIAGEN  Fast 
Cycling PCR 

kit 
(3-step PCR) 

95°C   5 min 
30 x 

94°C   30 sec 
60°C   30 sec 
72°C   30 sec 
72°C   60 sec 

95°C   5 min 
30 x 

94°C   5 sec 
60°C   5 sec 
72°C   5 sec 
72°C   30 sec 25 pg - am + 25 pg - am + 

An optimal heat transfer to the sample as well as fast heating and cooling rates of the 

microdevice are main characteristics for rapid cycling times and fast reaction performances, 

as focused in microdevice application. Heating and cooling rates are mainly featured through 

the thermal mass of the device destined for thermal control. Compared to LOC chips, the heat 

transfer to the sample was ensured in a more optimal way in the multi LV-PCR device due to 

the architecture of reaction centers, as discussed in chapter 4.2. Thus, band strength was 

again stronger in multi LV-PCR microdevice applications for 2-step PCR cycling times up to 

30 sec combining annealing and extension steps. However, for shorter cycling times in  

“10 sec”- and “5 sec”-based 3-step PCR performances, band intensity of LOC chip 

amplification products was slightly stronger. These benefits in effectivity could be attributed 

to faster heating and cooling rates of the LOC CytoCycler. As the AmpliSpeed slide cycler 

device applied on the multi LV-PCR microdevice comprised heating and cooling rates of  

3 K s-1, the LOC CytoCycler comprised a heating rate of 3 K s-1 as well but also a faster 

cooling rate of 4 K s-1. The faster cooling rate is due to the lower thermal mass of the 1x1 cm2 

sized heating area of the Peltier element of the LOC CytoCycler in comparison to the larger 

7.6 x 2.5 cm2 sized heating area of the AmpliSpeed slide cycler. This lower thermal mass 

resulted in more efficient and specific amplification reactions when cycling times of PCR 

were speeded up and of course in a more rapid amplification performance as well. As both 

heating devices, the CytoCycler as well as the AmpliSpeed slide cycler had notedly a lower 
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thermal mass and higher heating and cooling rates as conventional thermal cyclers, which are 

around 1-2 K s-1, times needed for amplification reactions could successfully be reduced to  

5 sec per temperature step. Surely, the LOC CytoCycler system is inferior to other PCR 

microdevices using flow-through applications or IR-heating, designed for setting kind of 

world records in PCR cycling within 1.7 min (Hashimoto M et al., 2004), 5 min (Oda RP et 

al., 1998; Hühmer AFR and Landers JP, 2000; Giordano BC et al., 2001 (a) + (b)) or 6 min 

total time (Obeid PJ et al., 2003). However, mostly high concentrations of input DNA were 

used there and the LOC CytoCycler was not designed for ultra-fast reaction performances. 

Here, higher values were rather set on a) providing a modular solution capable of accepting 

various kinds of tiny sample materials, b) on a universal applicability for pre- and post-PCR 

sample processing based on a planar surface device and c) on disposability purposes, which 

are the reasons for having chosen the Peltier element-based design. 

Additionally, there were other virtues favoring rapid operations in LV-PCR applications. 

Faster cycling times further provide a minimized risk of possible evaporation effects 

influencing the PCR results, which were reported to occur to 10% (v/v) in virtual reaction 

chamber LV-PCR amplifications (Guttenberg Z et al., 2005). Short process times also have a 

positive effect on the effectivity of the polymerase in the PCR solution, as the lifetime of the 

enzyme is reduced during the high temperature states. And finally, fast cycling times hold the 

potential to prevent temperature gradients and thus to reduce the generation of unwanted and 

unspecific side products and smear bands during PCR amplification. Compared to 

amplification results shown in chapter 4.2, where a lot of smear could be detected, shorter 

cycling times as shown in this chapter were capable of eliminating these kinds of genomic 

side products almost totally due to less genomic target material used on the one side, and 

optimized analysis conditions on the other side.  

4.4  Sensitivity of the Fluorescence Reader 

Besides the evaluation of sensitivity and efficiency of reactions that can be performed on the 

LOC CytoCycler, the capacity (namely the operating efficiency) or respectively the sensitivity 

of the LOC integrated Fluorescence Reader was analyzed. SYBR Green I treated sample 

droplets of 1 µl total volume were positioned on reaction center B on LOC chips installed in 

the CytoCycler, were covered with mineral oil and illuminated via the Fluorescence Reader 

setup after eliminating ambient light. When enlightened with blue exciting light, green 

fluorescence signals were emitted from the sample by the dsDNA intercalating dye SYBR 
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Green I, present in sample droplets. The intensity of the emission depended on the amount of 

double-stranded DNA present in the solution, because its quantum yield increased by orders 

of magnitude when it intercalated. Interpretation of pictures, concerning fluorescence quantity 

and quality, was performed visually by image data analysis.  

Calibration of fluorescence intensities was performed according to the DNA amount present 

in 1 µl reaction volume. Decreasing standard concentrations of 10 ng, 5 ng, 1 ng, 500 pg and 

100 pg of reference DNA were mixed with fluorescent SYBR Green I dye. Fluorescence 

intensities were recorded as image data using LabVIEW-based software at exposure times of 

200 ms, 400 ms, 600 ms, 1000 ms, 2000 ms and 4000 ms at room temperature as well as at 

55°C and 72°C. Latter temperatures were chosen as simulating relevant temperatures of 

picture taking during PCR performances. Image data of calibration tests performed at room 

temperature was summarized in figure 18. Strong fluorescence signals at nearly each 

exposure time were provided by samples containing concentrations of 10 ng, 5 ng and 1 ng 

DNA, and also the sample containing 500 pg DNA showed clear intensities down to an 

exposure time of 200 ms. The 100 pg loaded sample, however, gave just hardly detectable 

signals at exposure times of 200 ms and 400 ms, but stronger signals from 600 ms on. Thus, 

600 ms was considered the best-suited exposure time used for validation of subsequent real-

time PCR performances due to two reasons. First, at 600 ms a clear signal was achieved even 

when using a small amount of target DNA material like e.g. 100 pg input DNA. And second, 

exposure times were aimed to be kept as short as possible to avoid dye bleaching, thus longer 

exposure times could be neglected. Image data of calibration tests performed at simulated 

PCR cycling times 55°C and 72°C was summarized in figure 19. Only image data of using an 

exposure time of 600 ms is shown, as this setting was considered most relevant for real-time 

PCR performances. At 55°C and 72°C strong fluorescence signals could be detected using 

input DNA concentrations of 10 ng and 5 ng present in the sample droplet. Lower 

concentrations of 1 ng, 500 pg and 100 pg produced weaker but still reliably detectable 

signals at 55°C. However, at 72°C these lower concentrations were even harder to detect. As 

signal intensities dropped dramatically, 500 pg and 100 pg DNA concentrations could no 

more be detected reliably as a clear fluorescence signal.  
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Figure 18. Calibration of fluorescence intensities measured at room temperature. Pictures of evaluated 
fluorescence intensities of various decreasing standard DNA concentrations from 10 ng down to 100 pg are 
shown at exposure times from 200 ms to 1000 ms. Longer exposure times like 2000 ms and 4000 ms just 
provided even stronger signals, but this data was not shown due to unrealistic applicability when regarding 
bleaching effects of fluorescing dyes over time. 

 
Figure 19. Calibration of fluorescence intensities measured at 55°C and 72°C. Pictures of evaluated 
fluorescence intensities of various decreasing standard DNA concentrations from 10 ng down to 100 pg are 
shown at an exposure time of 600 ms, as most relevant for PCR performances. Measurements were performed at 
PCR relevant temperatures of 55°C simulating an annealing/extension step at 2-step PCR performances and 
72°C simulating the extension step when using 3-step PCR performances. 
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Experimentally, real-time PCR was carried out on the LOC CytoCycler using a SYBR Green 

I-based fluorescence detection system. In real-time PCR, the direct observation of the amount 

of DNA present in the reaction mix after each cycle is facilitated. Increasing fluorescence 

signals in dependence of increasing amounts of amplified DNA products are detected, 

indicating a successful amplification. As the amount of dsDNA is highest at the end of each 

extension phase during PCR, at this point the intensity was captured, pictures were taken and 

the ratio of cycle number to intensity signal was plotted to a graph in the software screen. The 

actual state of the PCR during the temperature cycles was continuously displayed by 

LabVIEW-based software. Different amounts of male and female human genomic reference 

input DNA comprising 1 ng, 500 pg and 100 pg were amplified via LV-PCR on the chip 

surface. Amplified products were detected both via conventional PAAGE and as image data 

using LabVIEW-based software. Both, 2-step and 3-step PCR performances were analyzed 

for validation, while exposure times were 200 ms, 400 ms and 600 ms. In 2-step PCR 

performances, pictures were taken at 55°C or 60°C, while in 3-step PCR pictures were taken 

at 55°C and 72°C for comparability reasons.  

Exemplarily for a broad range of real-time PCR amplification reactions performed, 2-step 

ones as well as 3-step ones, which all showed quite comparable results, the image data of 

three amplification reactions were shown. In figure 20 the amplification of β-actin fragments 

using 500 pg input DNA and a 2-step PCR procedure was illustrated. Pictures were taken at 

60°C after the combined annealing/extension step. By trend, an increase in fluorescence 

intensity against increasing cycle numbers could be detected via software and a graph was 

plotted. About the same proportional rise in fluorescence intensities were detected when 

starting amounts of 1 ng or 100 pg were used. Additionally, amplified β-actin products could 

successfully be detected via PAAGE afterwards. 

In figure 21 the amplification of amelogenin fragments using 500 pg input DNA in a 2-step 

PCR procedure is demonstrated. Pictures were taken at 55°C after the combined 

annealing/extension step. Again, a considerable increase in fluorescence intensity could be 

detected continuously by software and a graph was plotted. Comparable results were obtained 

when 1 ng or 100 pg input DNA was used. Additionally, PAAGE was applied on amplified 

amelogenin products. In different approaches, some positive bands could be detected 

successfully, while in other approaches no positive amplification bands could be detected at 

all despite a software-recorded increasing fluorescence (figure 21 J).  
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Figure 20. Image data of 2-step ββββ-actin real-time PCR. The amplification of 500 pg input DNA starting 
material was used in a 2-step PCR protocol amplifying a 297 bp fragment of the human β-actin gene. Pictures 
were taken at the end of the combined annealing/extension steps at 60°C at an exposure time of 600 ms. A-J) 
The summarized picture alignment shows the increase in fluorescence intensity over cycling times, taken at the 
end of each PCR cycle. Pictures of every fifth cycle out of 40 cycles in total are shown. K)  The graph of the RT-
PCR reaction is shown, which was plotted by the LabVIEW-based software according to the measured values at 
each cycle. The graph displayed very fluctuating values up to 0.4 of mean light intensity, while only hardly an 
increase in fluorescence intensity values could be detected.  

 
Figure 21. Image data of 2-step amelogenin real-time PCR. The amplification of 500 pg input DNA target 
material was used in a 2-step protocol amplifying 106/112 bp fragments of the human amelogenin gene. Pictures 
were taken at the end of the combined annealing/extension steps at 55°C at an exposure time of 600 ms. A-H)  
Aligned pictures show the increase in fluorescence intensity over cycling times, taken at the end of each PCR 
cycle. Pictures of every fifth cycle out of 35 cycles in total are shown. J) PAAGE image data of amplified 
amelogenin PCR products. Either there were positive bands detectable after real-time PCR performed on LOC 
chips (lanes 5-8), or there were no bands detectable on the gel for real-time PCR performed on LOC chips (lanes 
1-4). M = Molecular length standard (ReddyRun Superladder-low 100 bp ladder, Thermo Scientific, ABgene, 
Epsom, Surrey, UK). Lane 1: 500 pg on LOC chip; lanes 2+3: 500 pg on multi LV-PCR microdevice (positive 
controls); lane 4: negative control on multi LV-PCR microdevice. Lane 5: 500 pg on LOC chip; lanes 6+7:  
500 pg on multi LV-PCR microdevice (positive controls); lane 8: negative control on multi LV-PCR 
microdevice. K)  The graph of the RT-PCR reaction is shown, which was plotted by the LabVIEW-based 
software according to the measured values at each cycle. The graph displayed a plane run, with relatively stable 
values around zero mean light intensity, while no increase in fluorescence intensity values could be detected. 
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In figure 22 the amplification of amelogenin fragments using 1 ng input DNA in a 3-step 

PCR procedure is presented. Pictures were taken at 55°C after the annealing step as well as at 

72°C after the extension step for validation of fluorescence intensities compared to 2-step 

procedures. Thereby, the duration of the annealing step was chosen that long as performed in 

2-step PCR, where annealing and extension times were combined in one step. At 55°C, the 

rising of fluorescence intensity could be detected continuously by the software. At 72°C, there 

could no increase in fluorescence intensity be detected. A graph counting measured values for 

55°C and 72°C directly afterwards was plotted by the software (figure 22 V). Comparable 

results were obtained when 500 pg or 100 pg input DNA was used. In subsequent PAAGE 

application, no amplified products could be detected on gel data at all.  

 
Figure 22. Image data of 3-step amelogenin real-time PCR. The amplification of 1 ng input DNA target 
material was used in a 3-step protocol amplifying 106/112 bp fragments of the human amelogenin gene. Pictures 
were taken at the end of annealing steps at 55°C as well as at the end of extension steps at 72°C, using an 
exposure time of 1000 ms. A-K)  Aligned pictures show the increase in fluorescence intensity over cycling times, 
taken at the end of each annealing step at 55°C. Pictures of every fifth cycle out of 45 cycles in total are shown. 
L-U)  The picture alignment shows the increase in fluorescence intensity over cycling times, taken at the end of 
each extension step at 72°C. Pictures of every fifth cycle out of 45 cycles in total are shown. V) Graphical 
illustration of measured fluorescence intensities during 3-step amelogenin real-time PCR. The graph of the RT-
PCR reaction is shown, which was plotted by the LabVIEW-based software according to the measured values at 
55°C and subsequently 72°C during each cycle of 45 cycles in total. The graph displayed a plane run, with 
relatively stable values around zero mean light intensity, while no increase in fluorescence intensity values could 
be detected. Even fluctuations between values measured at 55°C and those measured at 72°C were illustrated as 
tiniest differences in fluorescence intensity, absolutely not matching the pictured fluorescence intensities 
recorded at these temperatures. 
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Graphical images plotted by the LabVIEW-based software always showed unordinary 

characteristics. Graphs were never increasing, never reached a plateau phase. Graphs were 

very inconsistent as either some kind of “mountain range”-like run was displayed with values 

fluctuating up and down (figure 20) or a quite plane distribution of fluorescence intensity 

values (figure 21 and figure 22). Thus, measured values plotted by the software were not 

reliable at all, and just showed some measurement inaccuracies instead of a real graph 

following the principle of real-time PCR. Definitely, there were some cumulative 

fluorescence signals pictured from the beginning to the end of real-time PCR cycling, but the 

values of those signals did not conform to the characteristics of a real-time PCR curve. 

Generally, during a successful experiment, the signal curves away from the plateau of the 

background at a certain cycle number and increases until saturation is reached. The start point 

of the signal change depends on the template concentration. Such a value distribution could 

never be reached for the real-time PCR experiments performed with the Fluorescence Reader. 

The recorded fluorescence intensities in the graph did definitely not fit to the amount of 

amplified products. As shown in figure 21, there was a strong band for amelogenin fragments 

detectable via PAAGE, and there must have been a strong increase detectable via the 

software-plotted graphical illustration. However, there was no increase detectable as the graph 

just showed a plane run without rising signals. Moreover, the expected really big increase in 

fluorescence especially at the end of the PCR for reaching saturation was totally missing even 

when a huge amount of 45 cycles of PCR was performed (figure 20 and figure 22). 

Additionally, pictures of increasing fluorescence intensities did not always match the results 

when detecting amplified PCR products via PAAGE application. Gel images showed quite 

inconsistent amplification products. For instance, in one approach there were clear positive 

amplification bands detectable on a polyacrylamide gel after real-time PCR, indicating a 

successful PCR performance, while in another approach no bands could be detected after real-

time PCR. However, in fluorescence pictures of foregoing real-time PCR, both approaches 

showed quite the same increasing fluorescence intensities, which in the end accounted for an 

unreliable performance of the total Fluorescence Reader device (figure 20 and figure 21). 

The same phenomenon was observed when 3-step PCR was performed and fluorescence 

signals were recorded by the software, but no amplification bands could be detected via 

PAAGE afterwards to verify the authenticity of fluorescence signals via detection of 

amplified products (figure 22). As the recorded fluorescence intensity was always quite the 

same in pictures taken at 55°C and almost invisible at pictures taken at 72°C, no matter if 

there was a band detectable on the PAAGE gel or not, was a clear evidence, that the whole 
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Fluorescence Reader setup needed really to be optimized. There were some discrepancies 

supposed to be in the total setup, which are described in the following.  

First, the utilized filter set was supposed to be somehow suboptimal for SYBR Green I 

applications and needed to be optimized. The chosen filter set indeed covered the excitation 

and emission spectrum of SYBR Green I. For the excitation a range from 464 – 500 nm was 

provided by the filter ET482/36, while the excitation maximum of the filter lied at 482 nm. 

The excitation maximum of SYBR Green I, however, is around 498 nm, thus just within the 

range of the filter, but clearly too far away from its maximum. This could have led to losses in 

excitation power and thus could have shrinked the excitation signal from the beginning on. 

Comparably, the emission filter ET536/40 provided a range between 515 – 556 nm, having its 

maximum at 536 nm, while the emission maximum of SYBR Green I is around 521 nm, thus 

as well within the range but far aside the maximum. Thus, both filters were not optimally 

suited for the SYBR Green I dye. However, according to the manufacturer, these filters were 

capable of not loosing fluorescence intensity within their range, so that at the marginal filter 

range still a signal with sufficient intensity is guaranteed to be generated. Ordered filters were 

considered having a wide bandwidth, serving almost their whole range. However, as tested 

several times, there might definitively had been a loss in fluorescence intensity, which was 

more important than expected and made the detection of fluorescence signals during PCR 

quite hard. 

Second, the interaction of trigger signals, software and LED control was supposed to be 

somehow deranged and not perfectly coordinated in interacting timings. Maybe the cross-talk 

between the software, the trigger and the camera was affected. 

Third, the values for fluorescence intensities recorded by the software during RT-PCR were 

subjected to a deficient calculation as those values did not really match the pictures. Similar 

values were e.g. given for fluorescence intensities when 10 ng standard DNA was measured 

and was compared to maybe 500 pg afterwards. Independent of utilized amounts of DNA, the 

values for fluorescence intensity were always quite the same and were fluctuating around 

zero. Thus, values were believed to count anything else, but no usable fluorescence 

intensities. Graphical illustrations plotted by the software according to those values were 

always far away from an authentic real-time PCR curve showing the characteristic curvature. 

The software also included a function of generating processed images that the actual picture is 

going to be subtracted from the previous one. Maybe the software did some strange 

calculation in behind and gave values counted from irreproducible calculations. This value 

data definitely needed to be optimized. 
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Forth, the area on the chip surface, where the picture was taken, was maybe chosen too large 

and too wide. Actual, just almost the whole chip surface was focused and recorded when 

pictures were taken, showing a large dark area having just a small fluorescent droplet in the 

middle. Maybe this large black background was the reason, that measured values arranged 

always around zero as small changes in fluorescence intensity could only hardly be detected. 

An additional refinement of the picture taking area would definitely improve measurements, 

even if this could not explain the strange values and the missing increase in fluorescence 

intensity. 

Fifth, special software was utilized to validate the fluorescence intensities of taken pictures, 

integrating the fluorescence intensity over each pixel of the fluorescing droplet sphere. 

Integrated pixel intensities were combined to a total fluorescing droplet, and this was done for 

the fluorescence intensity picture of each PCR cycle. However, even this software did not 

generate an authentic real-time PCR curve according the calculations. The graph looked 

similar to the one generated by the LabVIEW-based software. Thus, something must be 

wrong in the total setup of picture taking. The problems could not be attributed to the PCR 

mix, as there were products detectable on the polyacrylamide gel. It was not a problem of the 

fluorescence dye, as reactions performed in a conventional real-time PCR cycler (Stratagene 

Mx 3000P) worked perfectly well. Problems were not due to the utilized CCD camera, as it 

worked always brilliant when used at the optical inverted microscope. Additionally, it was not 

a problem of the LED, as light was emitted at the correct time points at the end of a PCR 

cycle. Additionally, the camera, the software, the LED and the trigger were somehow 

working well when used individually, but together the whole setup did not match and was not 

sensitive enough to be used for valuable and most importantly reliable real-time PCR 

performances on the LOC. 

Finally, as the software was just written for taking pictures of fluorescence, the analysis of 

fluorescence results was not reliable at all. Originally, the software was written for a 

prototype application of real-time PCR using the dsDNA intercalating dye SYBR Green I. 

Generally, when SYBR Green I is used for the online detection of the DNA amplification, no 

specific information about the kind of dsDNA in the solution is given. As this dye binds to 

specific PCR products as well as to unspecific ones, there was no possibility included in the 

software to differentiate between real positive product and false positive products or 

unspecific side products, as any amplified product’s fluorescence was detected. Thus, the 

software needed an additional update implementing a subsequent melting curve analysis after 

real-time PCR performance to determine the specificity of PCR products using SYBR Green I 



4. Technical Evaluation of the Lab-on-a-chip System 
 

 81 

(Fixman M and Freire JJ, 1977; Rutledge RG, 2004), which is performed by conventional 

real-time PCR cyclers as well. It is the standard procedure and the method of choice to 

identify the desired product, capturing the transition temperature from ssDNA to dsDNA, 

which is dependent on the length and sequence of the product. As this step is completely 

missing in our system of RT-PCR performance the system could not really be validated. 

However, with a few improvements the system could be made competitive to fluorescence 

readers like reported and shown by Guttenberg Z et al. (2005) and Novak L et al. (2007) for 

microdevice applications. Guttenberg Z et al. (2005) provided an elegant solution, indeed, but 

this device was fixed to just one part of the chip. It was a fluorescence detection device, 

which was integrated into the fabrication of the chip and thus was fixed in application, not 

separable from the PCR device and just one specific area of the chip surface could be 

analyzed. Our Fluorescence Reader, in comparison, is free of focusing a sample anywhere on 

the chip surface due to a very flexible modular design. Additionally, our device can easily be 

extended to an approach using several kinds of filter sets, analyzing various kinds of 

fluorescence signals and thus various kinds of differently labeled PCR products. 

4.5  Viability of microarray hybridization 

Besides the detection of PCR products directly on the chip surface via real-time PCR, on-chip 

LV-PCR was also combined with a kind of microarray for on-chip hybridization. Thus, the 

feasibility of microarray applications on the lab-on-a-chip was evaluated. Arrayed on-chip 

hybridization was performed by hybridization of fluorescently labeled primer specific PCR 

products to complementary probes predefined on the LOC chip surface. On-chip 

hybridization arrays were designed for gender determination of sample material via amplified 

gene amelogenin, as used in forensics research. Amelogenin is generally used as gender 

determining gene, as its genetic sequence is located on the X- as well as on the Y-

chromosome, while having particular sequence dissimilarities, which can be detected due to 

varying length of PCR products. The most commonly used PCR primer set for amplifying 

amelogenin fragments spans a region encompassing a 6 bp difference AAAGTG between 

male and females, thus generating 106/112 bp fragments in male and 106 bp fragments in 

female individuals (figure 23). 
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Figure 23. Sequence data and sequence BLAST (Basic Local Alignment Search Tool) of amelogenin 
fragments. Sequence alignment of amplified X- (106 bp) and Y-chromosome (112 bp) specific amelogenin 
fragments, showing a 6 bp difference at a particular genomic location within the amelogenin gene sequence. 
Sequences were taken from the UCSC Genome Browser (http://genome.ucsc.edu). Sequence alignment was 
performed at the webpage of the European Bioinformatics Institute (www.ebi.ac.uk). 

Based on the well-established amelogenin system (Lau EC et al., 1989; Shadrach B et al., 

2004), amplification of X- and Y-chromosomal fragments of the amelogenin gene was 

performed, which were hybridized to surface-bound probes Amelo1(Y) and Amelo3(Y) 

matching Y-chromosomal fragments and Amelo2(X) complementary to X-chromosomal 

products (figure 24). For amplification, purified male and female human genomic reference 

DNA was used.  

 
Figure 24. Design of microarray probes Amelo1(Y), Amelo2(X) and Amelo3(Y). The area of interest, 
namely the 6 differing base pairs AAAGTG between X- and Y-chromosomal sequences, is marked explicitly in 
each scheme. Hybridization probe Amelo1(Y) was spanning a domain of 20 bp named “Hybridization sequence 
1”, whereas the sequence of the 6 relevant bases CACTTT for hybridizing to AAAGTG was located directly in 
the middle, thus marking a male binding probe. Hybridization probe Amelo2(X) was spanning an area of 20 bp 
named “Hybridization sequence 2”, where the 6 relevant bases for hybridization were missing, marking a female 
binding probe. Hybridization probe Amelo3(Y) was spanning an area of 20 bp named “Hybridization sequence 
3”, where the sequence of the 6 relevant bases CACTTT for hybridizing to AAAGTG was located at the 3’-end, 
marking a male binding probe. 

On a multi LV-PCR microdevice 6 different array designs were spotted comprising not only 

single probes Amelo1(Y), Amelo2(X), or Amelo3(Y), but also combined setups of these 

probes in configurations like Amelo1(Y)/Amelo2(X), Amelo3(Y)/Amelo2(X) or 

Amelo1(Y)/Amelo3(Y) (figure 25).  
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Figure 25. Amelogenin-based microarray data of the multi LV-PCR microdevice. Rows 1-12 were divided 
into 6 array fields, each comprising various combinations of hybridization probes. Probe names were shortened 
in the scheme for better overview, while “Am” was always short for “Amelo”, displaying Am1(Y) for probe 
Amelo1(Y), Am2(X) for probe Amelo2(X) and Am3(Y) for probe Amelo3(Y). Constantly, line A contained 
male input DNA in amplification reactions, while line B contained female input DNA and line C and D no DNA, 
serving as negative controls. 

As can be seen in figure 25, on-chip hybridization after PCR worked quite well for the 

established amelogenin system. The various array designs showed quite interpretable results 

of the different array designs. Negative controls were negative at all times, thus contaminating 

effects could be excluded. Array Amelo1(Y) showed positive signals for male DNA in line A, 

as well as for female DNA in line B, but signals in line B were slightly weaker than those in 

line A. Normally, there was no direct binding expected for female PCR products to male 

probe Amelo1(Y). This indefinite and ambiguous signal for probe Amelo1(Y) was 

inapplicable for an analysis differentiating between male and female PCR products. Array 

Amelo2(X) showed positive signals for male DNA in line A as well as for female DNA in 

line B, with both signals having about the same intensity. As X-specific fragments were 

expected in male as well as in female PCR products, theses positive hybridization signals 

were taken as an internal positive control, showing a successful working performance. Array 

Amelo3(Y) showed a stronger positive signal for male DNA in line A, and just a very weak 

signal for female DNA in line B. This could be taken as a more reliable probe for gender 

differentiation compared to probe Amelo1(Y), as here sequence differences between male and 

female PCR products revealed clear varying fluorescence signals.  

The combined array with the Amelo1(Y)/Amelo2(X) design showed no real differences 

between male and female hybridization signals. All 4 spots of an array showed the same 

fluorescence intensity, while probe Amelo1(Y) should have given a stronger signal when 

male DNA was amplified and hybridized. Hybridization results were quite ambiguous, thus 

array design and hybridization conditions needed be optimized for a reliable gender 
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determining analysis. The combined array with the Amelo3(Y)/Amelo2(X) design showed a 

quite good differentiation between male DNA in line A and female DNA in line B. Male 

DNA in rows 7 and 8 showed strong signals for male probe Amelo3(Y), and weak signals for 

female probe Amelo2(X), while female DNA in these two rows showed just weak signals for 

both probes, Amelo3(Y) and Amelo2(X). These results were considered as a promising basis 

for a differentiating analysis between male and female DNA. However, these two rows 

showed just 60% positive results, as row 9 showed just completely different results. Here, 

male as well as female DNA showed strong signals for female probe Amelo2(X) and weak 

signals for male probe Amelo3(Y). Thus, 30% of the experiment showed completely different 

results. This might be due to the annealing temperature, and means, that temperature of 

hybridization needs to be optimized. However, these results were quite promising, despite 

those varying results, as at least 60% of the experiment gave good results with expected 

signals for male and female hybridization. The combined array with the 

Amelo3(Y)/Amelo1(Y) design showed a quite good differentiation between male DNA in 

line A and female DNA in line B. Male DNA in rows 11 and 12 showed strong signals for 

both male probes Amelo3(Y) as well as Amelo1(Y), while female DNA in these rows showed 

just very weak signals. These results could be considered as a real evidence for a 

differentiating analysis between male and female DNA. However, again, the results of these 

two rows showed just 60% positive results, as row 10 showed just completely different 

results. Here, male as well as female DNA showed strong signals for male probe Amelo1(Y) 

and weak signals for male probe Amelo3(Y). Thus, 30% of the experiment showed 

completely different results. This might again be due to the annealing temperature, and 

means, that temperature of hybridization needs to be optimized. However, these results were 

quite promising, despite those varying results, as at least 60% of the experiment gave good 

results with expected signals for male and female hybridization products. Finally, considering 

probe combinations, combined designs Amelo1(Y)/Amelo2(X) and Amelo3(Y)/Amelo2(X) 

were detected as the most reliable ones for application on the multi-LV-PCR microdevice.  

According to results of the multi LV-PCR microdevice, on LOC chips 2 different array 

designs were spotted on reaction center B comprising combined configurations of probes 

Amelo1(Y)/Amelo2(X) and Amelo3(Y)/Amelo2(X) (figure 26). Results of hybridization 

events of amplified male and female PCR products are summarized in figure 27.  
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Figure 26. Array designs for microarray application on LOC chips. Array designs were spotted on reaction 
center B. Combined array designs are shown, comprising both probes for X-chromosomal as well as Y-
chromosomal amelogenin PCR product hybridization. Probe names were shortened in the scheme for better 
overview, while “1, 2 and 3” were short for probes Amelo1(Y), Amelo2(X) and Amelo3(Y). Letters “X” and 
“Y” in the right scheme just simplify the particular hybridization pattern provided by the three probes. 

 
Figure 27. Amelogenin-based microarray data of LOC chips. A) Original, unhybridized microscopy image 
of a probe array spotted on reaction center B on a LOC chip. B) Hybridization signals of 100 pg amplified male 
sample on array design Amelo2(X)/Amelo1(Y). C) Hybridization signals of 100 pg amplified female sample on 
array design Amelo2(X)/Amelo1(Y). D) Hybridization signals of 100 pg amplified male sample on array design 
Amelo3(Y)/Amelo2(X). E) Hybridization signals of 100 pg amplified female sample on array design 
Amelo3(Y)/Amelo2(X). 

On-chip hybridization on LOC chips could successfully be performed and different 

hybridization pattern could clearly be detected according to the gender of amplified male or 

female sample material. Male samples showed strong fluorescence signals when amplified Y-

chromosomal amelogenin products were hybridized to probes Amelo1(Y) and Amelo3(Y). 

Female samples never showed a strong fluorescence for male determining probes Amelo1(Y) 

and Amelo3(Y). Amplified X-chromosomal fragments of male and female samples showed 

consistently homogenous fluorescence signals with intensities below those of Y-chromosomal 

fragments. On LOC chips, for both array designs a clear differentiation between male and 

female sample products could successfully be detected.  

On-chip hybridization was performed on a multi LV-PCR microdevice as well as on LOC 

chips, while applications on LOC chips generated more reliable results. On the multi LV-PCR 

microdevice, hybridization signals within a single probe were quite inconsistent despite an 

analogous performance. And in combined array designs, fluorescence signal intensities could 

not reliably been attributed to successful hybridization events, as e.g. female samples showed 

fluorescence signals for male probes Amelo1(Y) or Amelo3(Y). In contrast, on-chip 

hybridization performed on LOC chips revealed absolutely reliable signals, contributing to a 
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well-defined gender determination between male and female samples. Hybridization on the 

chip worked reproducible with low background fluorescence and high specificity to clearly 

detect bp differences via varied fluorescence intensities between a male and a female sample. 

Solely, the Fluorescence Reader setup needed to be optimized, to get usable for microarray 

applications. However, successful on-chip hybridization validated the lab-on-a-chip for 

further array-based applications, like e.g. those performed by Guttenberg Z et al. (2005), 

where a single bp deletion was detected between wildtype and mutant DNA via a simple on-

chip microarray application. Furthermore, a successful microarray performance further 

featured the lab-on-a-chip for combining PCR analysis with a highly sensitive downstream 

product detection application, representing a big step toward the envisioned automation of all 

steps from sample extraction to final product detection performed on just one single chip. 

4.6  Operability of solid phase amplification 

Besides conventional on-chip amplification in combination with on-chip hybridization, as just 

described in the previous microarray-related chapter, an extended and more sophisticated 

array application was performed on the surface of LOC chips. Solid phase amplification 

(SPA), also known as “bridge amplification” is based on the principle of performing a local 

PCR via surface-bound primers. Four amplification spots were spotted on the chip surface, 

locally defined and arranged in a 2x2 array-like structure, while each spot was loaded with a 

different kind of primer-pair (figure 28). Thus, the feasibility of locally performed PCR 

applications on the lab-on-a-chip was evaluated. 

 
Figure 28. Design of the primer array for performing solid phase amplification. The scheme shows the four 
array spots, comprising each a different primer-pair for providing simultaneous local PCR amplification of four 
different PCR products. Primer-pairs were immobilized on a plane chip surface and covered by the same master 
mix in a 1 µl total reaction volume droplet. Spot 1 was loaded with primers amplifying the Y-chromosomal STR 
marker DYS392, while spot 2 and 3 served as positive controls, amplifying the X-chromosomal STR marker 
DXS10134 as well as fragments of the amelogenin gene. The forth spot served as negative control containing a 
pair of forward primers, thus eliminating a bridge-based amplification due to non-matching of amplified 
sequences. 
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Four primer pairs were spotted on distinct, separate array spots, while forward and reverse 

primers were spotted simultaneously and equally concentrated into single spots. Just 1 µl of 

PCR reaction mix was used to serve all 4 primer spots with reagents necessary for performing 

SYBR Green I-based real-time PCR, thus enabling 4 different amplification reactions at a 

time to take place in just 1 droplet. Again, the arrayed layout of on-chip SPA amplification 

was designed for forensic relevant determination and differentiation of male and female PCR 

products, when binding to and amplified by the appropriate XY-specific primer-pair. LOC 

chips with spotted SPA array were applied on male and female human genomic reference 

DNA. Results of solid phase amplification reactions were summarized in figure 29. Solid 

phase amplification as well as various amplification, annealing and hybridization procedures, 

including combined and separated “interfacial amplification” and “surface amplification” was 

tested on several LOC chips A12, A03, A21 and A01.  

Using spotted LOC chip A12 (figure 29 A-C), a 2-step SPA PCR with 1 ng of female 

reference input DNA was carried out. Due to the female nature of the DNA, two fluorescent 

signal spots were expected. As can be seen in figure 29 C, there were 4 fluorescent spots 

detectable, indicating a totally wrong array result. However, due to the geometry of the array 

(figure 29 A), at least 2 fluorescent signal spots out of these four fluorescent spots did not 

match the pattern. Spot arrangement was somehow out of alignment. The most possible 

authentic spots seemed to be the upper one and the outer right one. These were supposed to 

represent spots for the locus DXS10134 and Amelogenin, and thus the right and expected loci 

for a female sample. But there were a lot of non-specific fluorescent spots detectable outside 

the array area as well (figure 29 B), so the result of the array area still remained quite 

unreliable. 

Using spotted LOC chip A03 (figure 29 D-F), the same SPA PCR procedure as applied on 

chip A12 was performed, using 1 ng of female reference input DNA, intended to repeat the 

previous experiment and to confirm the detected result. Again, due to the female input DNA, 

just two fluorescent spots were expected. As can be seen in figure 29 F, there were just two 

fluorescent spots detectable, one in the upper left area and one in the lower right area. Again, 

both spots seemed to present the expected result, but those spots did definitely not match to 

the quadratic geometry of the array and seemed somehow displaced (figure 29 D). 

Additionally, after washing steps there were a lot of precipitates detected present on the chip 

surface (figure 29 E), which could have influenced the amplification reaction and led to non-

working reactions on the right array positions.  
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Using spotted LOC chip A21 (figure 29 G-J), a 2-step SPA PCR with 1 ng of male reference 

input DNA was carried out. Due to the male nature of the DNA, three fluorescent signal spots 

were expected. As can be seen in figure 29 J, there were just 2 fluorescent spots detectable. 

However, due to the geometry of the array (figure 29 G), these 2 fluorescent signal spots did 

not match the pattern at all. Spots were detected close to the borders of the reaction center and 

were arranged in a non-square manner. The most possible authentic spot seemed to be either 

the upper one or the outer right one. These were supposed to represent spots for the locus 

DXS10134 or Amelogenin, and thus the right and expected loci for a male sample. But still, 

the third male spot for the DYS392 locus was missing which should be located in the lower 

left area, thus all three spots forming an “L”-like shape. However, no such pattern could be 

detected at all, and it was very questionable, if any of these two spots represented an authentic 

signal. There were a lot of precipitates present after the PCR (figure 29 H) and a lot of non-

specific fluorescent spots detectable outside the array area as well (figure 29 J), so the result 

of the array area still remained quite unreliable and questionable. 

As those normal solid phase amplification reactions did not turn out the expected results, or 

reliable results at all, another approach was tested. Instead of human genomic input DNA, 

preamplified PCR products were used to enhance the starting amount of input DNA, thus 

facilitating more interfacial amplification reactions to take place on the chip surface. For 

amplification, a combined 3-step PCR procedure was applied encompassing a) a SPA PCR 

with preamplified PCR products, followed by b) a reaction where just PCR master mix was 

applied, to enhance surface amplification, and finally c) a hybridization of preamplified PCR 

products, to cover single amplified strands bound to the surface but having failed to form 

bridges. The combined setup was tested on used chips A03 and A21, but did not bring an 

optimized result compared to conventional SPA PCR performed previously. No male or 

female specific fluorescence pattern could be detected on these chips. Combined PCR 

reactions with preamplified PCR products were repeated with chip A01 (figure 29 K-O). As 

the master mix contained male and female specific PCR products, a male result was expected, 

showing an “L”-like pattern. After reactions, there were a lot of precipitates visible on the 

chip surface (figure 29 L), while fluorescence detection revealed four fluorescent signals 

(figure 29 M). The signals, however, showed no quadratical arrangement and did not match 

the square-like pattern of the spotted array at all (figure 29 K). Even after an additional 

washing procedure, there was still some precipitation visible on the surface (figure 29 N), 

which, however, did not improve fluorescence signal output (figure 29 O). Thus, even these 

combined PCR procedures did not reveal a successful performance.  
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Figure 29. Image data of solid phase amplification. Amelogenin, X-chromosomal and Y-chromosomal 
fragments were amplified from male and female human genomic reference DNA in SYBR Green I-based SPA 
reactions. Array spots comprised each a diameter of about 100-150 µm and were spotted within the hydrophilic 
area of 500 µm of reaction spot B (marked by red arrows). Spotted 2x2 primer arrays were pictured before use 
via stereo microscope (A, D, G, K, P). A-C) SPA array chip A12. Images of fluorescence signals taken after 
SPA PCR using the Fluorescence Reader (B) or the fluorescence microscope (C). D-F) SPA array chip A03. 
Image of precipitates visible on the chip surface after SPA PCR (E). Image of fluorescence signals (F). G-J) 
SPA array chip A21. Image of precipitates visible on the chip surface after SPA PCR (H). Image of fluorescence 
signals (J). K-O) SPA array chip A01. Images of precipitates visible on the chip surface after SPA PCR (L) and 
hybridization (N). Images of fluorescence signals taken after SPA PCR (M) or hybridization (O). P) SPA array 
chip A11. The array structure of this chip was analyzed via atomic force microscopy prior to use (figure 30). 
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After SPA, reaction mixes were also applied to PAAGE, to check for the presence of PCR 

products. Those could have been generated via detached primers in the reaction solution that 

could also have destroyed a working SPA performance. However, no PCR products were 

detected on polyacrylamide gels, accounting for a stable coupling of primers to surfaces.  

To check for a proper structure of array spots, besides using a stereomicroscope for optical 

detection, atomic force microscopy was applied to a new and unused LOC chip A11. Atomic 

force microscopy (AFM) is a technique for mapping the atomic-scale topography of a sample 

surface by means of the repulsive electronic forces between the surface and the tip of a 

microscopic probe moving above the surface. AFM imaging was done and supported by D. 

Adigüzel (research participate), and images were kindly provided. An AFM image of a 

possible spot of the 2x2 spot array, located in the supposed area of reaction center B, was 

generated (figure 30). It comprised a spot size of about 100 µm in diameter with a height of 

about 6.5 µm, but revealed a strange shape of the array spot. The spot height was not 

distributed equally throughout the spot size, but could only be measured in an area within the 

diameter, where the spotting solution was concentrated while the rest of the spot area was 

plane.  

 
Figure 30. Image data of atomic force microscopy applied to a single array spot. A) The AFM image 
represented the shape, size and structure of a possible spot of the 2x2 spotted primer array, located in the 
supposed area of reaction center B on LOC chips. B) Cross section of the pictured spot revealed an elevation of 
about 6.5 µm, which is about 70 µm in length, while the whole spot was supposed to be 100 µm in diameter. 

Despite the strange shape of the array spot detected via AFM, the measured spot diameter of 

about 100 µm fitted perfectly well with the supposed total size of this array. According to the 

spotting protocol of the company, which performed the spotting (Advalytix AG/Beckman 

Coulter Biomedical GmbH, Munich, Germany), spot size was supposed to be between 100-

150 µm, while spot-spot distance was fixed to 160 µm in both dimensions. Thus, a total array 

diameter of about 400-500 µm was spotted, fitting perfectly well within the hydrophilic 
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reaction center on reaction spot B, comprising a diameter of about 500 µm. However, due to 

the strange shape of the spot, it seemed like as the spotting solution has somehow contracted 

after the spotting process, as it comprised just an area of 70 µm in length while a wide area of 

originally about 100 µm in diameter was indicated on the surface through the remainings of 

spotting solution. This shrinking could be an explanation why hybridization and solid phase 

amplification did not work well, as probably the reactive site, the primers on the surface, 

could not be contacted properly by the target DNA material, as they were somehow 

condensed. For further application, the spotting process as well as the interplay of spotting 

solution with LOC chip surface must be checked for optimization. Additionally, concerning 

the precipitations after PCR performance, the interaction between spotting solution as well as 

PCR reaction mix must be improved in a way that mostly saltless aqueous solutions were 

utilized to eliminate precipitations. 

Besides the accumulated structure of the surface of the array spot, a general problem of 

performing SPA on LOC chip surface could have been the design of the array. Due to spotted 

primer-pairs, the amplification products for the male STR locus DYS392 were supposed to be 

290-323 bp, for the STR locus DXS10134 240-291 bp and for amelogenin 106 bp and 112 bp. 

Product lengths of STR loci were amongst the longest used for DNA profiling applications on 

sex chromosomes (www.chrx-str.org; www.yhrd.org) and used as standard STR loci in 

forensic DNA profiling kits worldwide. However, possibly the PCR products generated by 

STR loci as well as amelogenin were chosen too short and thus no “bridge-building” via 

surface amplification was possible in solid phase amplification reactions, but only interfacial 

amplification to surface bound primers. Compared to the literature, in successful SPA only 

quite long PCR products of about 427 bp (Fedurco M et al., 2006), 545 bp (Bing DH et al., 

1996), or 666 bp and 800 bp (Adessi C et al., 2000) were reported to having been applied. 

Additionally, SPA reactions were performed in reaction volumes of 25-100 µl in total, while 

either plasmid DNA (Nickisch-Rosenegk M et al., 2005) or preamplified DNA fragments 

were used (Bing DH et al., 1996; Adessi C et al., 2000). The products used for LOC chip 

SPA comprised just about 300 bp in maximum, and reactions were performed in just 1 µl total 

reaction volume using human genomic DNA, which has never been reported for SPA 

application before. Maybe a possible solution could also be the use of labeled primers, like 

used for microarrays, which are going to be spotted on the surface. To attribute difficulties to 

input DNA, primers, chip surface, reaction volume, master mix, failing interfacial or surface 

amplification, and to definitely judge on a successful working performance of SPA on LOC 

chips, applications according to cited articles remain to be tested on LOC chips. 



5. Applications of the Lab-on-a-chip System in Forensic Sciences 
 

 92 

5.  Applications of the Lab-on-a-chip System in Forensic Sciences 

The developed lab-on-a-chip system (LOC) incorporated several working units that were 

combined to one total system in a modular way. Due to the unique flexible character of the 

open, planar lab-on-a-chip system, it provided all qualifications being used as a stand-alone 

enabling technique for applications in various fields of molecular biological diagnostics. 

Based on the characterization and validation of the working performance and the efficiency in 

low-volume PCR amplification of purified human genomic DNA material, the capability of 

the lab-on-a-chip system for applicability on various forensically relevant sample materials 

was tested. 

5.1  Gender determination of human intestine, mamma and bladder tissue 

In forensic pathology, pieces of internal soft tissues are generally used to yield information 

about sex, age, and medical conditions of the inspected sample material. Thereby, the 

separation of various cell types and extraction of distinct cell clusters is most important in 

forensic analysis to guarantee for a detailed, sensitive and reliable analysis. The introduction 

of laser-based microdissection techniques in this field of research has greatly improved the 

capability to select distinct areas of interest out of surrounding tissue material, while reducing 

the risk of any cross-contamination. The use of microscopic instrumentation supported by a 

focused laser beam provides an elegant solution for direct visualization and dissection of 

defined cells and tissue sections out of microscope object slides (Schütze K and Lahr G, 

1998). In the field of forensic medicine, laser microdissection has been reported e.g. for 

isolation of sperm cells and dissection of tissue sections (Elliott K et al., 2003; Sanders CT et 

al., 2006; Bauer M et al., 2002; Di Martino D et al., 2004 (a)) as well as on cells isolated 

from single hair follicles (Di Martino D et al., 2004 (b)) which have successfully been typed 

by STR profiling. Thus, sensitive material amplification methods are necessary as well to 

generate reliable PCR products from that very few amount of individual cell material.  

An enhancement of short tandem repeat (STR) analysis sensitivity could be achieved by 

downscaling reaction volumes, as was shown several times on chemically structured slides to 

have improved genotyping success (Proff C et al., 2006; Schmidt U et al., 2006; Lutz-

Bonengel S et al., 2007; Schmidt U et al., 2008). For instance, complete STR profiles from as 

little as 32 pg of genomic DNA have been reported when performing virtual reaction 

chamber-based low-volume PCR on chemically structured chips (Schmidt U et al., 2006). 
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Thus, linking laser microdissection and low-volume on-chip PCR together, as realized on the 

lab-on-a-chip, was supposed to be a valuable tool for most sensitive analysis. Fixed and 

paraffin-embedded tissue sample material was applied to LV-PCR after microdissection to 

validate the applicability of the LOC system to unpurified sample material, as often used in 

medical genetic analysis, like e.g. cytogenetics, cancer research and forensic pathology. As 

most lab-on-a-chip systems were designed for accepting just minor sample amounts of a 

specific type, preferably purified DNA material, here genetic analysis was performed directly 

on tiny tissue particles after laser microdissection without DNA extraction. 

Laser microdissection was applied to paraffin-embedded tissue pieces, originating from three 

different human tissue types, that were intestine, bladder and mamma tissues (figure 31).  

 
Figure 31. Paraffin-embedded tissue slides comprising various tissue types. Tissues were named tissue 1-8, 
while tissue 1 (A), 2 (B), 4 (E), 5 (F), 7 (H) and 8 (D) originated from intestine tissue, tissue 3 (C) from bladder 
tissue and tissue 6 (G) from mamma tissue. 

After deparaffinization, small pieces of eight masked human soft tissue samples were 

successfully isolated via laser microdissection. Single tissue particles of about 500 µm in 

diameter were microdissected and were gently separated from histological tissue sections. 

Using the SPATS device, dissected tissue islets were extracted out of the surrounding tissue 

material via low-pressure supported adsorption to the SPATS-related collection grid (figure 

32 A-C). Tissue particles were transferred horizontally and released exactly into a 0.5 µl 

droplet of H2O, while controlled with µm-precision. Droplets for sample material take-up 

were placed directly on chemically defined reaction sites of a multi LV-PCR microdevice or 

on reaction center B of LOC chips (figure 32 D). A total of eight different tissue samples, 

released in a highly precise manner exactly onto reaction sites, was successfully tested for 

gender determination using directly LV-PCR analysis on primer-specific amelogenin 

fragments. 
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Figure 32. Workflow of the tissue transfer process via low-pressure single particle adsorbing transfer 
system. Scale bar in every illustration is about 100 µm. A) Laser microdissection of tissue material and isolation 
of a tissue fragment in the range of about 500 µm in diameter out of surrounding histological material. B) Low-
pressure uptake and subsequent transfer of single microdissected tissue fragments were visually controlled via 
adsorption to the collection grid of the SPATS-related adsorbing head. C) The area of tissue fragment extraction 
out of surrounding tissue material is shown. D) Precisely controlled release of adsorbed sample material was 
performed into a small droplet of 0.5 µl of H2O via operated high-pressure impulse. The fluid was placed 
directly onto a reaction site of a LV-PCR microdevice, defined via a chemically modified surface. 

As access to DNA enclosed in the cellular material was achieved by incorporating an 

extended initial heat step in the PCR protocol for cell lysis, no additional precedent DNA 

purification was necessary. After PAAGE four out of eight masked tissue samples turned out 

to originate from a male, and the other 50% of the tissue samples turned out to originate from 

a female individual (figure 33 A-C). Intestine tissues 1, 2 and 5 as well as bladder tissue 3 

showed 106/112 bp male-specific amelogenin amplification products, while intestine tissues 

4, 7 and 8 as well as mamma tissue 6 showed 106 bp female-specific amelogenin products. 

Clear and sharp amplification bands could be detected on polyacrylamide gels, without any 

unspecific or contaminating bands and side products of larger or smaller size being present.  

 
Figure 33. PAAGE data of LV-PCR amplification applied on eight microdissected human tissue samples. 
LV-PCR of amelogenin fragments for sex determination purposes were performed on a multi LV-PCR 
microdevice. M: molecular length standard (O’GeneRuler DNA Ladder, ultra low range, Fermentas, St. Leon-
Rot, Germany). A) Intestine tissue 1 and intestine tissue 2. Lane 1: tissue 1, showing 106/112 bp male 
amelogenin fragments; lane 2: tissue 2, showing 106/112 bp male amelogenin fragments; lanes 3+4: negative 
controls (PCR master mix, H2O control); lanes 5+6: positive controls (standard 106/112 bp male and 106 bp 
female human genomic reference DNA). B) Bladder tissue 3, intestine tissue 4 and intestine tissue 5. Lanes 
1+2: positive controls (standard 106 bp female and 106/112 bp male human genomic reference DNA); lane 3: 
negative control (PCR master mix); lane 4: tissue 4, showing 106 bp female amelogenin fragments; lane 5: tissue 
3, showing 106/112 bp male amelogenin fragments; lane 6: tissue 5, showing 106/112 bp male amelogenin 
fragments. C) Mamma tissue 6, intestine tissue 7 and intestine tissue 8. Lane 1: tissue 6, showing 106 bp 
female amelogenin fragments; lane 2: tissue 7, showing 106 bp female amelogenin fragments; lane 3: negative 
control (PCR master mix); lane 4: tissue 8, showing 106 bp female amelogenin fragments; lanes 5+6: positive 
controls (standard 106 bp female and 106/112 bp male human genomic reference DNA). 
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Tissue experiments for amplifying crude, unpurified fixed sample material were also 

performed on LOC chips. Sample extraction, transfer of dissected tissue particles as well as 

LV-PCR amplification was performed in a comparable performance. However, due to the 

integrated BioSpot device, manual pipetting operations could successfully be neglected. 1 µl 

of master mix for sample material uptake and performing LV-PCR on the chip surface as well 

as 5 µl of mineral oil cover solution were provided by means of the automatic dispensing 

device BioSpot. A whole workflow procedure of the lab-on-a-chip system could 

successfully be run, including microdissection-based sample isolation, SPATS transfer onto 

the LOC chip surface and finally LV-PCR (figure 34), while handling of fluids was 

completely done using the automatic pipetting functions of the BioSpot device. Small 

particles of about 600 µm in diameter were successfully microdissected out of male intestine 

tissue 5 and transferred directly into 1 µl of master mix, which had afore been dispensed on 

reaction center B of the LOC chip by using PipeJet1 of the BioSpot (figure 34 A-D). 

After sample take-up, the master mix droplet could immediately successfully be covered by 

about 5 µl of Sealing Solution (figure 34 E and F). A proper amount of Sealing Solution was 

dispensed by operating PipeJet3 of the BioSpot, as this PipeJet was designated for 

handling viscous fluids like the mineral oil. Successful amplification of male specific 106/112 

bp fragments of the amelogenin gene could be detected for tissue 5 via PAAGE (figure 34 

K ).  

 
Figure 34. Workflow of laser microdissection, SPATS transfer and LV-PCR amplification performed on 
the lab-on-a-chip. Results were shown for male sample tissue 5, exemplarily for all of eight tissues. A) Isolation 
of a tissue particle with about 600 µm in diameter via laser microdissection. B) Transfer of dissected particle via 
low-pressure operated SPATS. The particle was adsorbed to a sample collection grid. C) Control of successful 
particle extraction out of surrounding tissue. D) Release of tissue particle directly into 1 µl of master mix, 
prepared on the chip surface via BioSpot-operated fluid dispension. E+F) 1 µl of master mix containing tissue 
was covered with 5 µl of mineral oil and was thus prepared for subsequent PCR analysis. The oil cover was 
provided via dispensing functions of the BioSpot. G) Low-volume PCR performance: image was taken during 
the first cycles of PCR via the CCD camera associated with the Fluorescence Reader. H+J) Images taken 
directly after PCR, to control the proper arrangement of particle, master mix and covering oil. K)  PAAGE image 
data of amplified PCR products. M = molecular length standard (Superladder-low 100 bp ladder with 
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ReddyRun, Thermo Scientific, ABgene, Epsom, Surrey, UK). Lane 1: tissue 5, showing 106/112 bp male 
amelogenin fragments; lane 2: negative control on multi LV-PCR microdevice. 

Performing genetic analysis directly from fixed, paraffin-embedded tissue material without 

preceding DNA purification could successfully be achieved by LV-PCR application. Genders 

of eight different masked human tissue samples were reliably determined via amplification of 

human amelogenin fragments. No matter if LV-PCR was applied on a multi LV-PCR 

microdevice or on LOC chips, clear bands of amplified PCR products could be detected on 

polyacrylamide gels. Amplification results of gender determination were validated with 

existing data sets about these samples, provided by the Institute of Pathology (Klinikum 

Bogenhausen, Munich, Germany). These data sets confirmed the results obtained in our 

laboratory. These successful amplification results accounted not only for the successful 

application of the LOC modules, but also for successful lysis of cellular material via an 

additional performed heat step, thus making any external DNA purification and extraction 

procedures invalid. However, concerning the results of the LOC-based procedure, the band 

representing the larger 112 bp fragment originating from the Y-chromosome showed just a 

very weak signal compared to the 106 bp band of the smaller X-chromosomal fragment. This 

might more probably be due to inhomogeneous staining rather than to an imbalanced 

amplification performance, thus presented results for the LOC chip performance could 

nevertheless be attributed to a reliable, sensitive and unambiguous analysis.  

However, there was a lot of bubbling observed in master mixes during the initial denaturation 

and cell lysis step of the LOC-based PCR performance. Generally, when performing VRC 

LV-PCR, causing air bubbles was avoided during the preparation of the master mix solution, 

as smallest air bubbles in the aqueous master mix were known to expand when treated with 

heat. In the master mix prepared on the chip surface, there were seemingly a lot of air bubbles 

present. The air bubbles leaking from the master mix ruined the proper arrangement of virtual 

reaction chamber PCR, causing the master mix to evaporate while the oil was bubbling. The 

dimension of destroyed reactions was about three ruined reactions out of five. This 

phenomenon of bubbling reaction mixes on the LOC chip surface might be due to the 

automatic dispensing process performed by the BioSpot, where 5 nl droplets of master mix 

were shot onto the chip surface building a droplet of 1 µl after a certain amount of repeats. 

When a liquid droplet present on the chip surface was shot by several tiniest droplets at high 

speed, this meant an enormous mixture, stirring and agitation inside this droplet. This 

extensive actuation was supposed to have generated smallest invisible bubbles in dispensed 

master mix droplets, which might have spread during PCR performance, when the master mix 

was heated to hot temperatures. The same phenomenon was reported and happened, when 
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stirring the master mix extensively with a pipet, by pipetting up and down for mixing 

reagents. Thus, the automatic dispension performance definitely needed further improvement 

to circumvent extensive agitation especially of aqueous master mix solutions.  

Anyway, several LOC units like e.g. laser microdissection, SPATS transfer, CytoCycler-

based material lysis and amplification as well as using the BioSpot for loading reaction 

volumes onto the chip surface, could for a first time successfully be joined in a whole 

interplay. This performance showed a promising first application to perform a combined run 

of independently operating modules of the lab-on-a-chip system. Especially the coupling of a 

pipetting robot like the BioSpot upgraded the whole performance, as manual sample 

handling between single analysis steps could be eliminated totally, thus reducing the risk of 

introducing external contaminations, which is quite important in every field of genetic 

analysis. And additionally, the successful material isolation via laser microdissection, particle 

extraction and transfer via SPATS, as well as successful LV-PCR DNA amplification, 

represented the applicability of the various LOC modules on forensic or forensic pathological 

relevant sample material, either working apart from each other as well as in a combined 

performance. No comparable system has been reported up to now, which can fulfill all of 

these processing steps on one microfluidic device, and definitely not with such kind of crude 

solid sample material. No comparable system exists, which combines laser microdissection 

with low-volume PCR, both highly predestined approaches, serving the needs of handling 

smallest amounts of sample material. Thus, this lab-on-a-chip system provides highest 

potential for becoming integrated and utilized in research areas, where genetic analyses are 

dependent on other sample materials than liquid ones. 

5.2  DNA profiling of whole blood 

Microdissected fixed tissue sample material was shown to perform well when directly applied 

to LV-PCR genetic analysis. No additional DNA purification or preprocessing steps were 

needed as cell lysis was achieved by a simple extended initial heat step, to get access to 

genetic material. However, there, relevant sample material had to be prepared for laser 

microdissection purposes and needed to be fixed and applied onto PEN carrier-membrane 

mounted object slides. Though, for a real fast, sensitive and reliable analysis, a lab-on-a-chip 

must be capable of accepting crude, untreated, authentic sample material, solid specimen as 

well as liquid ones, like e.g. whole blood. 
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Blood samples or traces are excellent evidences used for genetic analysis. PCR is a well 

described powerful tool for molecular genetic analysis of blood samples, currently applied for 

diagnostic purposes in medical analysis as well as ancestry surveys and human identification 

in forensics. However, one of the major limitations with PCR-based analysis is the sensitivity 

of Taq DNA polymerases to inhibitory substances present in crude specimens such as blood 

(Panaccio M and Lew A, 1991; Al-Soud WA et al., 1998; Al-Soud WA and Radström P, 

2000; Kermekchiev MB et al., 2009). Generally, whole blood cannot be used for direct 

genetic testing, due to several characterized PCR inhibitors influencing the Taq DNA 

polymerase activity. Inhibitory effects were either attributed to natural components of blood 

like mainly the heme from hemoglobin, lactoferrin, immunoglobulin G (IgG), or to added 

anticoagulants such as EDTA and heparin. Therefore complex and extensive DNA 

purification procedures are mandatory prior to PCR to generate PCR-usable material. 

However, generally these additional pretreatment steps are time-consuming, labor-intensive, 

and may further lead to loss of target nucleic acids during processing and unlike may remove 

inhibitors subtotal. Indeed, there are several reports about thermal or chemical treatments of 

blood sample or PCR mixture prior to PCR to overcome purification procedures and the 

inhibitory effects of blood on Taq DNA polymerase (Schwartz EI et al., 1990; Mercier B et 

al., 1990; McCusker J et al., 1992; Burckhardt J, 1994; Park SJ et al., 2008). However, 

despite these remedies, the application of this enzyme in whole blood amplifications remains 

still quite controversial. AmpliTaq Gold DNA polymerase, currently the standard enzyme in 

several multiplex short tandem repeat (STR) kits worldwide, was found to be among the most 

sensitive to inhibition (Al-Soud WA and Radström P, 1998). This underlines the importance 

of meticulous sample handling and DNA purification when using this polymerase in STR 

analysis. To overcome all these limitations associated with Taq DNA polymerases, the choice 

of using a non-Taq DNA polymerase was reported to have a huge impact on resistance to 

inhibition. These DNA polymerases were shown to have less sensitivity to inhibitors, could 

tolerate higher concentrations of whole blood (Panaccio M and Lew A, 1991; Katcher HL and 

Schwartz I, 1994; Wiedbrauk DL et al., 1995; Al-Soud WA and Radström P, 1998) and 

outperformed AmpliTaq Gold as recently reported (Hedman J et al., 2009). 

Besides a good interaction between DNA quality and used DNA polymerase, a high 

sensitivity of analysis is desirable. Enhancement of sensitivity can to some extend be 

achieved by simply reducing the reaction volume (Gaines ML et al., 2002; Kloosterman AD 

and Kersbergen P, 2003; Leclair B et al., 2003), as adding less crude target material to the 

amplification is proven to improve performances greatly. Low-volume PCR (LV-PCR), 
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performed in 1 µl total reaction volume, provided enhanced sensitivity when applied to 

commercial multiplex STR assays (Proff C et al., 2006; Schmidt U et al., 2006; Lutz-

Bonengel S et al., 2007; Schmidt U et al., 2008). For instance, low copy number samples 

produced 27% complete allelic profiles in LV-PCR, while in-tube PCR just revealed 

incomplete allelic profiles (Schmidt U et al., 2008). Unfortunately, there, purification 

procedures were used prior to typing analysis.  

To overcome these Taq-related problems of inhibition and purification, a more appropriate, 

less-sensitive thermostable non-Taq DNA polymerase was used for LV-PCR based DNA 

profiling directly from whole unpurified blood. By using a KOD DNA polymerase-based 

PCR system, predestined for amplification of crude sample material, tube-less low-volume 

PCR was performed in extremely small reaction volumes of maximum 1 µl on chemically 

structured microdevices. EDTA K treated fresh and aged whole blood samples as well as 

time-dependently aged dried blood spots were taken as sample material and used for DNA 

typing via STR fragment length analysis. No previous pretreatment or preparation steps were 

applied besides dilution. Anticoagulant treated blood was directly used for LV-PCR in 10% 

or 1% dilutions and dried blood spots were directly resolved and used in 1% dilutions. 

Whole blood DNA typing was performed on blood samples with added anticoagulant EDTA 

K. Direct DNA STR profiling could be performed repeatedly successful and reliably in 1 µl 

low-volume PCR reactions using as little as 0.1 µl of unpurified blood samples as target 

material. A small detail of typing profiles can be seen in figure 35. Typing of four individual 

blood samples gave reproducible results for 10% as well as 1% reaction batches, showing a 

clear effect of decreasing peak intensities with decreasing blood concentrations (figure 35, 

vertical black arrows). For instance, here peak intensities of 3000 rfu could be reached for 

10% blood samples, while 1% blood samples showed just peak heights of 300 rfu. Peak 

heights reached from 2000 to 8000 rfu maximum and 300 to 1000 rfu minimum in 10% blood 

samples and from 80 to 400 rfu maximum and 50 to 400 rfu minimum for 1% blood samples. 

Fragment peaks were unsoiled, showing no contamination profiles and no stutter peaks and 

had sufficient heights, indicating values clearly above the general accepted detection 

threshold of 50 rfu. An overview of typing results is given in table 6, displaying averaged 

percentages of loci drop out, allelic drop out as well as complete allelic profiles obtained. 

Concerning the 10% blood samples, the rate of complete allelic profiles observed ranged from 

83.4% to 89% on average. Regarding the 1% blood samples, this rate ranged at an average 

from 61.2% to 87.6%. Allelic drop out simulating homozygosity as well as drop out of 
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individual STR systems was found randomly distributed. Although the sensitivity was 

enhanced in those 1 µl low-volume PCR reactions, drop out of loci and single alleles were 

observed more often in 1% reactions, which probably occurred as a consequence of a higher 

dilution factor and thus could be interpreted as stochastic effects due to pipetting of very 

small volumes as already reported by Kloosterman AD and Kersbergen P (2003).  

Table 6. Typing results of 4 individual EDTA K treated blood samples using LV-PCR. Data analysis of every 
single sample was performed in triplicates in two independent approaches leading to 6 peak profiles per sample. 
Only peak signals above 50 rfu were counted. The percentages represented the averaged rate of loci drop out, 
allelic drop out and of complete allelic profiles obtained in samples 1-4 as well as positive controls PK-1 and 
SE-PK-2. 
 
 Age of blood 

sample 
AmpF/STR SEfiler kit  
(11 STR loci + amelogenin) 

Material  EDTA K treated blood samples;  
2 male (1, 2) and 2 female  
(3, 4) samples 

1 = 3 months 
 
2, 3, 4 =  
1-3 weeks 

Loci 
drop 
out 

Allelic  
drop 
out 

Complete 
allelic 
profiles 

PCR-Kits - KOD Xtreme Hot Start DNA 
  Polymerase kit  
- AmpF/STR SEfiler PCR 
  amplification kit 

1-10% 
2-10% 
3-10% 
4-10% 

16.6 % 
13.8 % 
16.6 % 
  8.3 % 

     - 
     - 
     - 
2.7 % 

83.4 % 
86.2 % 
83.4 % 
   89 % 

Preparation Blood samples of 100% and 10% 
(diluted with sterile water) 

1-1% 
2-1% 
3-1% 
4-1% 

11.1 % 
  8.3 % 
36.1 % 
11.1 % 

1.3 % 
8.3 % 
2.7 % 
5.5 % 

87.6 % 
83.4 % 
61.2 % 
83.4 % 

Starting 
amount of 
blood for 
PCR 

10% or 1% blood in 1 µl reaction mix  
(= 0.1µl of 100% or 10% blood sample) 

PK-1 
SE-PK-2 

  3.1 % 
     - 

     - 
     - 

96.9 % 
 100 % 

Negative controls were included in every reaction batch and were consistently negative 

(figure 35). Two kinds of positive controls were performed using control DNA. On the one 

hand, control DNA was amplified using LV-PCR, the KOD Xtreme PCR reaction mix and 

the AmpF/STR SEfiler Primer Set, the same setup as used for whole blood sample 

analysis (named PK-1). On the other hand, control DNA was amplified using a standard 

thermocycler and the original AmpF/STR SEfiler PCR Reaction Mix, as recommended by 

the manufacturer’s kit manual (named SE-PK-2). This pure positive control validated results 

obtained in the mixed kits’ setup, as using just the AmpF/STR SEfiler Primer Set, without 

the recommended PCR system provided with the AmpF/STR SEfiler kit, might have 

changed the optimized PCR setup of the kit. As can be seen in figure 35, the KOD Xtreme 

master mix matched well with the AmpF/STR SEfiler Primer Set. Clear peaks were 

detectable and allelic profiles could be obtained from the LV-PCR-based positive controls 

PK-1 showing a rate of 96.9% compared to a rate of 100% of complete allelic profiles, 
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obtained with SE-PK-2 (table 6). Slight drop out of loci in PK-1 compared to SE-PK-2 could 

again be attributed to stochastic effects due to pipetting of very small volumes (Kloosterman 

AD and Kersbergen P, 2003).  

 
Figure 35. Blood typing allelic profiles of 10% and 1% (v/v) EDTA K-treated whole blood samples using 
LV-PCR.  The figure represents just an except, exemplarily for all four individual typing profiles and loci of 
samples 1-4. Allelic profiles for the amelogenin locus (A…), as well as for 2 STR loci (D8S1179, SE33) were 
shown, derived from two blood samples, a female (sample 4) and a male (sample 2) one, as well as negative 
control and two positive controls (PK-1, SE-PK-2). Samples yielded clear allelic profiles, comprising pure peaks 
without contamination or stutter peaks and displaying concentration dependant peak heights (vertical black 
arrows). PK-1, showing complete allelic profiles, validated that the KOD Xtreme PCR master mix in 
combination with the AmpF/STR SEfiler Primer Set harmonized well. Fragment sizes of PK-1 compared to 
SE-PK-2 clearly showed the 1 bp-shifting caused by using the KOD DNA polymerase (horizontal red arrows). 
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The conventionally cycled positive control SE-PK-2, using the complete SEfiler PCR setup, produced peaks 
matching perfectly with the provided SEfiler Allelic ladder, as AmpliTaq Gold DNA polymerase was used. 

Besides the described positive profiling results, it has to be noted that the AmpF/STR 

SEfiler Allelic ladder peaks were displaced exactly 1 bp to sample peaks of LV-PCR-based 

analysis (figure 35, horizontal red arrows). Allelic ladder peaks just matched perfectly well 

with the positive control SE-PK-2, cycled according to manufacturer’s recommendations 

using AmpliTaq Gold DNA polymerase (figure 35, horizontal red arrows). This fragment 

size shifting was due to the used polymerases. AmpliTaq Gold DNA Polymerase, provided 

by the kit, catalyzed the addition of a single nucleotide (predominately adenosine) to the 3’ 

ends of double-stranded PCR products (Clark JM, 1988; Magnuson VL et al., 1996). This 

non-template adenylation was not performed by the KOD DNA polymerase therefore all 

fragment lengths of LV-PCR products, including PK-1, were 1 bp shorter. Generating an 

appropriate allelic ladder using the KOD DNA polymerase would solve this discrepancy. 

Whole blood DNA typing was performed on dried blood specimens over time without added 

anticoagulants. Dried blood spots were resolved in sterile water after several time intervals 

and 1% blood (v/v) was used for DNA typing analysis in a total reaction volume of 1 µl, to 

check for successful allelic profiling in dependence of sample age (figure 36). Allelic profiles 

were obtained for up to 3 months old blood spots.  

 
Figure 36. Sample preparation and low-volume amplification of dried blood spots (DBS). A) Preparation of 
dried blood spots. Fresh blood was spotted in 1 µl drops on a pre-cleaned object slide (76 x 26 mm) and dried at 
room temperature. After distinct periods of time samples were taken: a 1 µl dried blood spot was resolved in 
sterile water and 10% blood solutions were then used for LV-PCR typing analysis, comprising a final 
concentration of 1% blood (v/v) present in 1 µl total reaction mix. B) Low-volume virtual reaction chamber 
PCR: 1 µl total blood containing reaction mix (red enclosed solution, 500 µm in width) was covered by 5 µl of 
Sealing Solution (transparent covering oil, 3 mm in width) to prevent evaporation and external contamination as 
well as cross-contamination. 

The obtained data of sample analysis are summarized in table 7, showing typing results in 

averaged percentages grouped into loci drop out, allelic drop out and complete allelic profiles 

obtained. In the “0 min” samples one single locus dropped out completely, resulting in 98% 

successful typing of untreated fresh blood samples. Sample analysis after a drying time from 
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30 to 360 min showed quite inconsistent allelic peaks. At these time intervals allelic profiles 

ranged between no allelic profiles at all as well as a huge amount of loci drop out and allelic 

drop out, either producing no signals or peaks going below the threshold. Here, rates of 

successful typing reached from 56.8% to 20.9% on average. In samples dried for 1 day, 2 

days, 4 days and 1 week minor fluctuations concerning typing efficiency were detected, 

ranging at an average from 90% to 70%, which might be due to a terminated drying process, 

while blood components still have unchanged properties. Here, a few loci drop out were 

observed that were very randomly distributed over all of the loci. 2 weeks, 3 weeks and 4 

weeks old samples showed consistent marker peaks, most stable in appearance and height. 

They ranged from 89% to 91.7%, whereas locus drop out occurred preferably in one 

particular locus. Concerning the 3 months old samples, the obtained complete allelic profile 

rate was about 85.9% on average. Drop out of single loci or alleles may be due to pipetting 

artifacts, as a volume of 0.1 µl blood sample is a random mixture of solid particles like e.g. 

lymphocytes out of the sample, so stochastic effects could be expected (Kloosterman AD and 

Kersbergen P, 2003). To obtain statistically reliable results, LV-PCR was performed in three- 

to sixfold series. In most instances 2-4 complete profiles could be obtained, while 1 or 2 

samples showed enhanced drop out due to pipetting artifacts. Allelic drop out, as a 

consequence of a higher dilution factor, was randomly distributed and not correlated to size of 

missing alleles. Thereby, getting usable DNA typing profiles with clear marker peaks was 

successful even after 3 months of storage of dried blood spots and DNA remained very stable 

in dried blood. 

Table 7. Typing results of dried blood spots using low-volume PCR. Data analysis of every single time interval 
was performed in multiplicates (double to threefold runs) in two independent approaches leading to 3 to 6 peak 
profiles per time point. Only peak signals above 50 rfu were counted. The percentages represented the averaged 
rate of loci drop out, allelic drop out and of complete allelic profiles obtained. 
 
 Age of blood 

sample 
AmpF/STR SEfiler kit  
(11 STR loci + amelogenin) 

Material  Untreated blood  
(w/o anticoagulants) 

Fresh blood,  
dried at room 
temperature 

Loci 
drop 
out 

Allelic  
drop 
out 

Complete 
allelic 
profiles 

PCR-Kits - KOD Xtreme Hot Start DNA 
  Polymerase kit  
- AmpF/STR SEfiler PCR 
  amplification kit 

    0 min 
  30 min 
  60 min 
120 min 
360 min 

     2 % 
41.6 % 
   60 % 
61.6 % 
79.1 % 

- 
1.6 % 

- 
1.6 % 

- 

    98 % 
 56.8 % 
    40 % 
 36.8 % 
 20.9 % 

Preparation Blood spots of 1 µl dried at RT on glass 
slide; samples taken after time intervals 
of 0, 30, 60, 120 min, 6 h, 24 h,  
2 d, 4 d, 7 d, 2 we, 3 we, 4 we, 3 months 

    1 day 
    2 days 
    4 days 
    7 days 

   10 % 
15.2 % 
   20 %  
   30 % 

- 
1.3 % 

- 
- 

    90 % 
 83.5 % 
    80 % 
    70 % 
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Starting 
amount of 
blood for 
PCR 

- 1µl blood spot dissolved in  
  10µl H2O (10% blood solution) 
- final 1% blood in 1 µl reaction mix  
  (0.1µl of 10% blood spot solution) 

    2 weeks 
    3 weeks 
    4 weeks 
    3 months 

  8.3 % 
  8.3 % 
  8.3 % 
13.3 % 

- 
- 

2.7 % 
0.8 % 

 91.7 % 
 91.7 % 
    89 % 
 85.9 % 

Blood DNA profiling analysis of dried blood spots could successfully be applied to a multi 

LV-PCR microdevice as well as on LOC chips. Results of loci drop out, allelic drop out and 

full allelic profiles obtained were quite comparable at each distinct time point during 3 

months of aging. However, signal intensities of allelic profiles obtained were always stronger 

when using a multi LV-PCR device. Peak heights reached from 120 rfu up to 600 rfu, as 

illustrated in allelic profiles of dried blood spots obtained after 4 weeks of aging (figure 37). 

 
Figure 37. Fragment length analysis of dried blood spots after 4 weeks of drying using a multi LV-PCR 
microdevice. Peak heights reached values clearly above the generally accepted threshold of 50 rfu, signaling 
authentic marker peaks. Clear marker peaks without contaminating effects could be detected. Values of 120 rfu 
at minimum and 600 rfu at maximum were obtained for 4 weeks old dried blood spots, analyzed on a multi LV-
PCR microdevice. 

Concerning blood samples analyzed on LOC chips, peak heights were well below the ones 

obtained when a multi LV-PCR microdevice was used. Exemplarily, in figure 38 profiling 

peaks from dried blood spots aged for 3 months were shown, reaching signal intensities from 

20 rfu up to 350 rfu. Despite partly marker peaks below the accepted threshold of 50 rfu were 
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detected, these peaks could clearly be identified as authentic and reliable profiling peaks, as 

background signals were perfectly low. No interfering allelic peaks, no competing stutter 

peaks and no fluctuating background signal could influence a clear data analysis in distorting 

authentic signals. Thus, profiling peaks, even when detected below threshold level, could 

successfully be applied for an unambiguous validation. 

 
Figure 38. Fragment length analysis of dried blood spots after 3 months of drying analyzed on LOC chips. 
Peak heights reached not constantly values clearly above the generally accepted threshold of 50 rfu, signaling 
authentic marker peaks. Values of 20 rfu at minimum and 350 rfu at maximum were obtained for 3 months old 
dried blood spots, analyzed on LOC chips. However, clear marker peaks without contaminating effects could be 
detected.  

A non-inhibitory PCR performance on whole EDTA K-treated blood as well as age-

dependent typing of dried blood spots could successfully be demonstrated. As a KOD DNA 
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polymerase operated PCR system was used, predestined for amplification of crude sample 

material, allelic profiles could be obtained in dependence of age and alteration of blood spots 

during the drying and coagulation process. Blood DNA typing was performed in 1 µl total 

reaction volume containing only 1% whole blood (v/v) on a chemically structured surface, 

using a multi LV-PCR microdevice as well as LOC chips. Due to this one step procedure no 

additional purification steps were necessary while increasing analysis sensitivity by reduced 

target material. 

As validated in chapter 4.2, again the LV-PCR performance concerning PCR product output 

was more efficient in multi LV-PCR microdevice-based amplifications. STR profiling peaks 

reached clearly higher signal intensities compared to LOC chip-based operations. This 

phenomenon could again be due to a less optimal LV-PCR setup concerning the contacting of 

master mix droplet to surface area, resulting in a less efficient heat transfer. Despite LOC-

chip-based amplification peaks were partially below an accepted 50 rfu-threshold of authentic 

peak signals, clear STR profiles could be obtained due to a highly unsoiled background 

signal. Authentic peaks could unambiguously be separated from background fluctuations. As 

contamination effects could successfully be eliminated, peak signals could clearly be detected 

and typing results were interpretable at all, the applicability of a lab-on-a-chip based approach 

for a sensitive forensic relevant analysis like this could definitely be demonstrated. Successful 

LV-PCR DNA amplification on whole unpurified blood represented the applicability of the 

lab-on-a-chip for forensic relevant applications like e.g. blood DNA profiling. Allelic profiles 

were obtained reproducibly and concentration dependencies could be detected. A reliable 

experimental performance could be noted and savings in time and cost could be highlighted 

due to eliminated purification steps prior to PCR. Preparative steps could be neglected, as 

only a very small amount of sample material was needed for LV-PCR and a special DNA 

polymerase was used, which could tolerate inhibitory effects better than Taq polymerases. 

In conclusion, the use of DNA polymerases resistant to PCR-inhibitory components in 

combination with the use of appropriate facilitators of analysis efficiency (like LV-PCR), 

could, to some extent, eliminate the need for extensive processing of blood samples prior to 

PCR. Furthermore, the relative concentration of PCR inhibitors in this low reaction volume, if 

present, is probably less critical. As could be reported in the next application (chapter 5.3), 

LV-PCR is a valuable tool for highly sensitive analysis of ancient DNA material (Woide D et 

al., 2010) as well as single cell analysis (Mayer V et al., 2009), as reported earlier, while 

providing reliable contamination free performances. Reagent-saving LV-PCR also provides 

considerable economies. As genetic analysis trends to get smaller-volume, faster, more cost-



5. Applications of the Lab-on-a-chip System in Forensic Sciences 
 

 107 

efficient and most sensitive, a contamination-free lab-on-a-chip procedure like this might 

signify a big benefit. It can be used with commercially available PCR amplification kits, 

allows validation and comparison with existing data sets and is capable of being integrated 

easily into laboratory routine. Cost-effectiveness is especially important when using these 

costly commercially available PCR amplification kits and most economic when applying the 

highly priced and costly multiplex STR DNA profiling kits. 

Generally, the applicability of blood on a chip seems to be easier when using a planar open 

processing surface, like the virtual reaction chamber concept. For most cavity- and channel-

based lab-on-a-chip systems it is hard to accept whole blood as crude sample material for 

analysis, and thus a lot of pre-purification steps were necessary to make blood samples chip-

compatible. Another promising approach for blood analysis on a planar chip including 

purification, cell separation and PCR amplification, was introduced by Pipper J et al. (2007). 

Superparamagnetic particles were utilized for sample tracking and DNA amplification was 

performed using virtual reaction chamber low-volume PCR in a clockwork lab-on-a-chip 

principle. However, here blood purification was included prior to PCR analysis. As shown in 

the previous experiments described here, PCR amplification on a planar chip can be 

performed much easier. When just a small amount of blood is applied to reactions (like e.g. 

1% blood (v/v)) and an appropriate DNA polymerase is used, more resistant to inhibiting 

effects related with whole blood, labor-intensive purification procedures can be circumvented 

and eliminated, speeding up reaction performances. 

5.3  Nanotechnological analysis of ancient bone tissue material 

The best opportunity to validate the capability of a PCR system is to test for a highly sensitive 

analysis on low-copy number sample material (LCN). LCN samples are generally defined as 

samples having a very low amount of amplifiable DNA material, generally less than 100 pg 

like e.g. single cells comprising about 7 pg of DNA target material, as well as samples 

containing degraded DNA. DNA degradation means fragmentation of DNA strands due to 

environmental influences, preparative sample treatment steps or simply age dependent effects 

on the DNA material. LV-PCR analysis was performed on ancient bone tissue material 

originating from Egyptian mummy material. This kind of sample material was definitively 

expected to be affected by several DNA degradation events, qualifying it perfectly as 

„difficult-to-analyze“ sample material to determine the potential of LV-PCR for sensitive 

analysis on pathological relevant material. However, LV-PCR analysis was applied on 
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purified mummy DNA material after DNA extraction, which was performed off-chip, due to 

complexity of DNA extraction from hard sample materials like bone tissue. 

The study of ancient DNA plays an important role in archaeological and palaeontological 

research as well as in pathology and forensics. Molecular archaeology, which was first 

described in the early eighties, is a particularly promising emerging archaeometric discipline 

for dealing with molecular biological analyses of human remains (Pääbo S, 1985). For 

instance, sex determination of human findings can easily be defined using small amounts of 

remains such as bones and teeth via i.e. polymerase chain reaction (PCR) (Hummel S and 

Herrmann B, 1991; Faerman M et al., 1995; Faerman M et al., 1997). For a significant 

genetic analysis usually 1 to 2 grams of bone or tooth material are adequate. This material is 

purified and pulverized, and ancient DNA (aDNA) is then chemically extracted. Here, the co-

extraction of humic acids, these are organic compounds originating from the soil, being 

present in soil buried bones and teeth, and having the same chemical characteristics as DNA 

can cause a problem inhibiting enzymatic reactions like PCR (Goodyear PD et al., 1994). 

Various ancient DNA extraction methods are currently in use, which rely on different 

principles like spin column, alcohol precipitation or silica binding. All of these methods aim 

to maximize DNA yields, while minimizing the co-extraction of PCR inhibitors. No single 

method has been shown to outbalance the others therefore no standardized procedure exists so 

far. 

Microdissection techniques, performed on tissue structures from histological preparations, 

enable the precise manipulation and isolation of genetic material in the range of several 

micrometers (Greulich KO and Leitz G, 1994; Thalhammer S et al., 2004). These techniques 

can be combined with subsequent analysis of DNA in these microdissectants. Several 

dissection techniques such as extraction via glass needle (Weimer J et al., 2001), laser capture 

(Simone NL et al., 1998), laser pressure catapulting (Thalhammer S et al., 2003), laser 

impulse (Kirschner J and Plaschke-Schluetter A, 2007) or via gravity effects (Di Martino D et 

al., 2004 (a+b)) are commonly in use. Recently, we could introduce the novel LOC-related 

technique based on the combination of laser microdissection and low-pressure technology 

(Woide D et al., 2009). This technique enabled gently controlled extraction and horizontal 

transfer of a smallest amount of isolated material.  

The reduction in target material requires an additional enhancement of analysis sensitivity, 

which can be achieved by reducing the reaction volume of PCR reactions (Gaines ML et al., 

2002; Kricka LJ and Wilding P, 2003; Leclair B et al., 2003). It is believed that this enhanced 

sensitivity may result from the better contact between primer or polymerase molecules and 
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the DNA because the overall amount of DNA is less diluted than in a higher volume (Proff C 

et al., 2006; Schmidt U et al., 2006). Thus, using low-volume PCR (LV-PCR) technology in 

combination with the laser-based DNA extraction method, offers the opportunity to further 

reduce the amount of DNA starting material needed while retaining sensitive genetic analysis. 

DNA of four mummy samples was extracted in two independent approaches, where a novel 

laser microdissection-based method was highlighted compared to a conventionally used 

extraction technique. Main results concerning target DNA amount as well as PCR 

amplification were summarized in table 8. Laser microdissection, SPATS transfer and LV-

PCR were applied on mummy material, presenting a pathological applicability of the modular 

lab-on-a-chip system. The contamination-free performance comprised extraction of smallest, 

best preserved amounts of paraffin-embedded bone particles via laser microdissection and 

subsequent gentle low-pressure mediated transfer of particles into PCR-tubes containing 

DNA extraction buffer. The amount of microdissected DNA was checked via real-time PCR. 

This laser-based DNA extraction method was compared to a conventional DNA extraction 

technique used in pathology, operating with pulverization of whole bone tissue pieces. 

Extracted DNA amounts of pulverized samples were detected by UV spectrophotometry. 

After DNA extraction, amelogenin and β-actin fragments were amplified using LV-PCR to 

check DNA quality and preparation-dependant PCR efficiency of both DNA extraction 

methods. For validation of results, sequencing was performed on microdissected PCR 

products as well as DNA typing via STR fragment length analysis. Thus, possible DNA 

contamination of mummy sample material with recent DNA originating from scientists or 

else could clearly be excluded. 

DNA extraction. In our laboratories, strict precautions were taken during all molecular 

genetic analysis minimizing the hazard of amplifying contaminating modern DNA in ancient 

specimens, and controls performed at all steps were consistently negative. Based on the 

results of DNA typing analysis, we were able to widely exclude contamination and cross-

contamination of the ancient bone samples. Ancient DNA could successfully be extracted out 

of pulverized mummy bone material via DNA precipitation (Zink A et al., 2003). DNA 

extraction using 1 g of pulverized bone tissue material of each mummy sample revealed DNA 

amounts of 2.1-10.0 ng/µl, as measured via UV spectrophotometry. For the laser 

microdissection-based approach, nested isolation of bone tissue pieces was performed (figure 

40 A) to reduce the risks of external contaminating effects. After paraffinization, microtome-
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cuts of paraffin-embedded bone tissue slices were prepared on PEN-membrane coated object 

slides (figure 39).  

Several single osteon islets comprising 150 to 350 µm in diameter could successfully be 

isolated out of mummy bone tissue via laser microdissection (figure 40 B). 

 
Figure 39. Preparation of mummy sample material for laser microdissection. Nested bone tissue pieces 
were paraffin-embedded and paraffin blocks were cut to 3-5 µm thin slices. Microtome-cut slices were mounted 
onto PEN-carrier membrane coated object slides and were applicable for laser microdissection after 
deparaffinization. The images show paraffin-embedded tissue blocks and microtome-cut tissue slices of A) 
mummy1, B) mummy2, C) mummy3 and D) mummy4. 

Tissue material was taken exclusively from the inner parts of the bone tissue slices for 

subsequent conventional DNA extraction. Thus, tissue pieces were pooled from several 

sections in order to enrich the material. Osteons, about 50 to 500 µm in diameter, are 

composed of concentric layers of mineralized matrix surrounding a Haversian canal, which is 

20 to 150 µm in diameter. Particle transfer was mediated via the low-pressure operated 

SPATS device, and sample material was released directly into a small amount of DNA 

extraction buffer (figure 40 C-F). Numerous blank extraction controls, containing PEN 

carrier-membrane but no tissue sample material, were processed in parallel and were 

consistently negative. 

 
Figure 40. Preparation and collection of smallest amounts of target material from ancient bone tissue. A) 
For sample extraction, the outer surface was removed from bone material and tiny tissue blocks were prepared 
out of the inner bone tissue parts (arrow). B-F) Workflow of bone particle isolation as performed in the laser-
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based extraction method. The isolated particle could be tracked along the entire isolation and transfer process. B) 
Laser microdissection-based isolation of an osteon bone particle comprising 300 µm in diameter. The laser cut, 
isolating the osteon particle from its surrounding, was marked by an arrow. C) SPATS mediated sample take-up 
is shown, where isolated bone material was adsorbed to a collection grid via applied low-pressure technology. 
D) The sample extraction area after successful particle isolation is displayed. E) Release of the low-pressure 
transferred particle into a 0.2 µl droplet of lysis solution. F) Magnification of the isolated and released bone 
particle. 

Due to the fact that osteons consist to the greatest extent of concentric layers of mineralized 

matrix and that the Haversian canal enclosed forms just a minor part, the DNA amount 

extracted from microdissected mummy osteon material was approximately 60 pg of DNA 

present in 1 µl of extracted mummy sample material, as revealed via real-time PCR (figure 

41). Real-time PCR was performed on sample mummy4, exemplarily for all of four mummy 

samples. Simultaneously, standard concentrations of 5 ng, 1 ng, 500 pg, 100 pg, 50 pg and  

20 pg were co-amplified as reference DNA concentrations. For validation of amplification 

results of mummy4, its amplification plot was related to the plots of standard DNA 

concentrations (figure 42).  

 
Figure 41. Amplification plots of real-time PCR performed on microdissected mummy DNA. 
Amplification plots of RT-PCR analysis of sample mummy4 compared to cycled standard concentrations of  
5 ng, 1 ng, 500 pg, 100 pg, 50 pg and 20 pg of human genomic reference DNA. The graphs show the cycle 
number from cycle 1 to 40 plotted against fluorescence intensity from 0 dRn to 0.8 dRn. The plot of mummy4 
clearly revealed a DNA starting amount between 50 pg and 20 pg DNA, as located between these two standard 
curves. Negative control represents a reaction where no input DNA was present during RT-PCR cycling. 

The exact DNA concentration of sample mummy4 was detected via standard curve, plotting 

the initial DNA quantity to the particular Ct-value of each amplification curve (figure 42). 

The Ct-value is described as the value, at which the DNA concentration in the RT-PCR 
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reaction mix reached an amplification threshold. Higher starting concentrations reach this 

threshold earlier than lower ones. Thus the Ct-value can be taken as measure for initial DNA 

concentrations, when reference specimens are present. Data analysis revealed the following 

Ct-values of 1 µl of reference DNA concentrations, as plotted in the standard curve:  

30.83 dRn for 1 ng, 32.20 dRn for 500 pg, 34.81 dRn for 100 pg, 35.22 dRn for 50 pg and 

35.89 dRn for 20 pg. For sample mummy4 a Ct-value of 35.82 dRn was obtained, 

representing a DNA amount of 29.41 pg. As only 0.5 µl of mummy4 DNA were applied to 

the real-time PCR, data analysis revealed a DNA amount of 29.41 pg present in 0.5 µl of 

extracted mummy material. When translating these results to 1 µl of extracted microdissected 

mummy material, this meant a final DNA concentration of about 60 pg present in 1 µl of 

extracted microdissected DNA material of mummy4. 

 
Figure 42. Standard curve of real-time PCR analysis. Initial DNA concentrations of human genomic 
reference DNA samples were plotted against measured Ct-values [dRn]. The standard curve of RT-PCR analysis 
revealed an extraction amount of approximately 60 pg DNA present in 1 µl of extracted microdissected mummy 
material. 

Amplification of ββββ-actin and amelogenin gene fragments using low-volume PCR. DNA 

amplification experiments were performed using low-volume PCR in 1 µl total reaction 

volume covered with 5 µl of mineral oil. The reliability of this method was 90-95%, apart 

from 1-2 reaction batches out of about 20. These reactions were accidentally destroyed by 

bubbling reaction mixes, which might be due to evaporating gas bubbles present in the 

aqueous master mix. This was either caused by too extensive mixing of reagents or by inferior 

surface chemistry of the slides. Amplification was performed on 106/112 bp fragments of the 

amelogenin gene for gender determination, as well as on a larger fragment of the human β-

actin gene comprising 297 bp. DNA was extracted from each of the four mummy samples at 

least twice in separate preparations. Each mummy DNA extract was tested at minimum of 
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five to eight times via PCR for amplifiable β-actin and amelogenin gene fragments. Amplified 

gene fragments were rated as reproducible and authentic only after a) five PCR reactions 

showed consistent fragment determination, b) this result could be reproduced in another 

extract from the same mummy sample and c) all controls were negative. 

a) LV-PCR amplification of pulverized samples. When amplifying small gene fragments of 

106/112 bp of the amelogenin gene, two out of the four mummy samples revealed a 

successful amplification of sex specific fragments (table 8). While samples mummy3 and 

mummy1 showed no positive PCR products (figure 43 C and D), sample mummy2 revealed 

female specific 106 bp fragments (figure 43 A) and sample mummy4 revealed male specific 

fragments of 106 bp respectively 112 bp in size (figure 43 B). Amplification of a 297 bp 

fragment of the β-actin gene was less successful. Despite repeated efforts, samples mummy1 

and mummy4 revealed inconstant positive amplification products, while mummy2 and 

mummy3 revealed no positive amplification product at all (table 8). Sample mummy1 

showed an amplification rate of about 2:4, revealing a positive β-actin PCR product in two 

out of six reactions. The amplification rate of sample mummy4 was about 1:5, having just one 

positive PCR product in six reaction batches. All extraction and PCR negative controls 

including lysis mix, PEN supporting membrane, H2O control and the PCR master mix 

containing no DNA, were consistently negative (figure 43). 

b) LV-PCR amplification of microdissected samples. Microdissected samples mummy1-4 

were tested for the existence of amplifiable nuclear DNA, in respect to isolated osteon islets, 

comprising a very minute tissue amount of just a few micrometers (corresponding to 1 to  

5 µg) compared to standard amounts of 1 to 2 g of bone tissue material. All of four mummy 

samples revealed successful amplification products of 106/112 bp male and female 

amelogenin fragments (table 8). While samples mummy2 and mummy1 showed female  

106 bp segments (figure 43 A and D), samples mummy4 and mummy3 produced male 

segments of 106 bp and 112 bp (figure 43 B and C). Concerning the larger 297 bp segment 

of the human β-actin gene, in each approach human β-actin fragments could successfully and 

constantly be amplified and detected in each of the microdissected samples mummy1-4 

(figure 43; table 8). All extraction and PCR negative controls like lysis mix, PEN supporting 

membrane, H2O control and PCR master mix, containing no DNA, were consistently negative 

in all cases (figure 43). 
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Figure 43. Polyacrylamide gel electrophoresis data of isolated and via LV-PCR amplified mummy DNA. 
Four different mummy samples were examined. PCR was performed on fragments of the human gene β-actin 
(297 bp) and the sex specific amelogenin gene (female specific 106 bp fragment, male specific 106/112 bp 
fragments). M: 100 bp molecular length standard (PeqLab Biotechnologie GmbH, Erlangen, Germany). A) LV-
PCR results of sample mummy2. Lane 1: ∼60 pg female mummy2 DNA (amelogenin PCR, laser 
microdissection-based DNA extraction method); lane 3: 50 pg female mummy2 DNA (amelogenin PCR, 
conventional DNA extraction method); lane 5+6: 100 pg female and male human reference DNA (amelogenin 
PCR, positive control); lanes 2, 7, 4, 8: PEN carrier membrane, lysis buffer, PCR master mix and H2O control 
(amelogenin PCR, negative controls); lane 9: ∼60 pg mummy DNA (β-actin PCR, laser microdissection-based 
DNA extraction method); lane 10: PCR master mix (β-actin PCR, negative control). B) LV-PCR results of 
sample mummy4. Lane 8: ∼60 pg male mummy4 DNA (amelogenin PCR, laser microdissection-based DNA 
extraction method); lane 7: 100 pg male mummy4 DNA (amelogenin PCR, conventional DNA extraction 
method); lane 2+3: 100 pg male and female human reference DNA (amelogenin PCR, positive control); lanes 6, 
5, 4, 1: PEN carrier membrane, lysis buffer, PCR master mix and H2O control (amelogenin PCR, negative 
controls); lane 9: ∼60 pg mummy DNA (β-actin PCR, laser microdissection-based DNA extraction method); 
lane 10: PCR master mix (β-actin PCR, negative control). C) LV-PCR results of sample mummy3. Lane 2: 
∼60 pg male mummy3 DNA (amelogenin PCR, laser microdissection-based DNA extraction method); lane 1: 
100 pg male mummy3 DNA (amelogenin PCR, conventional DNA extraction method); lane 7+8: 100 pg male 
and female human reference DNA (amelogenin PCR, positive control); lanes 3, 4, 5, 6: PEN carrier membrane, 
lysis buffer, PCR master mix and H2O control (amelogenin PCR, negative controls); lane 9: ∼60 pg mummy 
DNA (β-actin PCR, laser microdissection-based DNA extraction method); lane 10: PCR master mix (β-actin 
PCR, negative control). D) LV-PCR results of sample mummy1. Lane 5: ∼60 pg female mummy1 DNA 
(amelogenin PCR, laser microdissection-based DNA extraction method); lane 4: 100 pg female mummy1 DNA 
(amelogenin PCR, conventional DNA extraction method); lane 1+2: 100 pg male and female human reference 
DNA (amelogenin PCR, positive control); lanes 6, 8, 7, 3: PEN carrier membrane, lysis buffer, PCR master mix 
and H2O control (amelogenin PCR, negative controls); lane 9: ∼60 pg mummy DNA (β-actin PCR, laser 
microdissection-based DNA extraction method); lane 10: PCR master mix (β-actin PCR, negative control). 

Table 8. Summary of the compared DNA extraction methods and results of LV-PCR amplification. The 
preparation part shows a comparison of the standard extraction method and the novel microdissection-based one 
in relation to the extraction amounts of the ancient material. The analysis part presents a summary of the 
obtained aDNA LV-PCR results according to the applied extraction method. The nested paraffin-embedding 
procedure combined with most precise material extraction made the working performance highly sensitive, 
reducing contaminations compared to the traditional method using pulverized whole bone tissue pieces. 
 

Sample Preparation Analysis 
 Starting amount of 

sample material for 
DNA extraction 

DNA concentration 
after extraction 

procedures 

Fragment amplification via low-volume PCR 
on chemically structured object slides 

Laser-based DNA 
extraction method  
(∼60 pg of target DNA 
present in 1 µl total 
reaction volume) 

Powder-based DNA 
extraction method  
(50-100 pg of target 
DNA present in 1 µl 
total reaction volume) 

 
Laser-
based 
DNA 

isolation 
method 

Powder-
based 
DNA 

isolation 
method 

Laser-
based 
DNA 

isolation 
method 

Powder-
based 
DNA 

isolation 
method amelogenin 

106/112 bp  
β-actin 
297 bp 

amelogenin 
106/112 bp 

β-actin 
297 bp 

Mummy1 female + - 
+/- 

(2:4) 
Mummy2 female + female - 
Mummy3 male + - - 

Mummy4 

Several 
150-350 

µm 
osteon 
islets 

1 g of 
bone 

powder 

∼ 60 
pg/µl 

2.1 – 
10.0 
ng/µl 

male + male 
+/- 

(1:5) 
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c) Performance on LOC chips. Comparable to amplification reactions performed on the multi 

LV-PCR microdevice, LV-PCR has been performed on LOC chips as well. Amelogenin PCR 

has been performed on extracted microdissected material of sample mummy4. Fragments of 

amelogenin gene amplification could successfully be detected via PAAGE (figure 44), 

verifying sample mummy4 to originate from a male individual as 106/112 bp fragments were 

obtained.  

 
Figure 44. PAAGE image data of LOC chip-performed LV-PCR amelogenin amplification of sample 
mummy4. M = molecular length standard (ReddyRun Superladder-low 100 bp ladder, Thermo Scientific, 
ABgene, Epsom, Surrey, UK). A) Overview of PAAGE data. No contaminating bands were detected, no side 
products and no genomic DNA smear, accounting for a highly sensitive analysis. Solely the molecular length 
standard showed a bad run having thick and split marker bands. B) Closeup view of obtained gender determining 
PCR products. Clear bands were detected. Lane 1: 100 pg human genomic male reference DNA showing male 
characteristic 106/112 bp fragments (performed on multi LV-PCR microdevice); lane 2: 100 pg human genomic 
female reference DNA showing female characteristic 106 bp fragments (performed on multi LV-PCR 
microdevice); lane 3: negative control (performed on multi LV-PCR microdevice); lane 4: 60 pg male DNA of 
sample mummy4 showing male characteristic 106/112 bp fragments (performed on LOC chips). 

Sequencing of PCR products from a microdissected mummy sample. Sequencing analysis 

was performed on amelogenin and β-actin PCR products, amplified from the microdissected 

male mummy sample mummy4, exemplarily for all of four mummy samples. Sequencing 

results were aligned to human nucleotide sequences, recalled from the human genomic 

database of NCBI (www.ncbi.nlm.nih.gov). Sequencing 106/112 bp amelogenin PCR 

products showed sequence identities to amelogenin loci of 90% for the Y-fragmental 

sequence and 97% for the X-fragmental sequence. Sequencing the 297 bp β-actin PCR 

product showed sequence identities to the β-actin data of 96-98% (figure 45). Via the 

sequencing analysis, successfully the authenticity of PCR products could be verified. False 

positive PCR products originating from suboptimal PCR conditions as well as external 

contamination of extracted ancient DNA could clearly be excluded. 
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Figure 45. Sequencing results of ββββ-actin fragments amplified from sample mummy4. Amplified 297 bp 
long fragments were sequenced from both sites using both primers, and were named sequence 1 and sequence 2. 
Sequence alignments were investigated using the particular operation at www.ncbi.nlm.nih.gov, housing 
references sequences of a huge amount of human genes. 

Typing mummies and scientific staff. To further verify absent external contamination of 

extracted aDNA, which might have been caused by people having been in close contact with 

any kind of mummy material, DNA typing was performed in two independent approaches. 

DNA typing reactions were accomplished using heterozygotic marker loci on extracted 

mummy material as well as genomic DNA of archaeologist/excavator, technical assistance 

staff, laboratory members and involved scientists, simply all people who have been 

knowingly in contact with laboratory equipment and consumables and any kind of mummy 

material used. In the following these typed individuals are referred to as ‘scientific staff’. For 

DNA profiling analysis, particularly mummy DNA originating from the laser 

microdissection-based DNA extraction method was used. DNA typing experiments were 

performed by STR marker analyses using three selected heterozygotic STR markers 

D7S1824, D9S302, D10S2325 and in addition the AmpF/STR SEfiler PCR amplification 

kit on all mummy samples, all people who worked in the laboratory and those who have been 
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in contact with examined bone samples, paraffin-embedded tissue blocks, tissue slides, 

laboratory working places and laboratory working tools like optical inverted microscope, 

DNA extraction equipment and PCR thermocyclers. Hereby, the focus was not on typing 

mummy material perfectly, but rather on obtaining allelic profiles of involved scientific staff 

for excluding extraneous contamination of mummy material. 

Typing via selected three heterozygotic STR markers D7S1824, D9S302 and D10S2325 

provided very usable results on typed scientific staff’s DNA material (figure 46 A). PCR 

analyses revealed mostly heterozygotic marker fragments, which could reliably be used for 

DNA typing as no allelic or loci drop out could be detected. On the contrary, typing mummy 

DNA material revealed just scattered marker peaks and none whole typing profile (figure 46 

B). As only 2 or 3 peaks were detectable, allelic and loci drop out effects were clearly visible, 

making a reliable DNA profiling analysis impossible. However, as these sparely detected 

peaks and thus the fragment’s lengths did not match any of the scientific staff’s genetic 

profile, cross-contamination could definitely be excluded. 

 
Figure 46. Genotyping performed via heterozygotic STR markers D7S1824, D9S302 and D10S2325. 
GeneScan 3.7 software electropherograms showing the PCR amplification results for the three STR loci 
selected and analyzed on an ABI PRISM 3130 XL Genetic Analyzer. A) Genotyping laboratory members as 
well as involved scientists, archaeologist/excavator and technical assistance staff, named “scientific staff 1-8”. 
B) Genotyping ancient mummy material, which was obtained through the laser microdissection-based DNA 
extraction method. 



5. Applications of the Lab-on-a-chip System in Forensic Sciences 
 

 118 

Typing present DNA material of scientific staff via the AmpF/STR SEfiler PCR 

amplification kit also produced usable results in all 12 STR loci, whereas mummy DNA 

material could just severely be typed (figure 47). Allelic profiles of scientific staff again 

showed no allelic drop out or loci drop out effects, but clear and unsoiled STR marker peaks, 

several hundred rfu in height, indicating reliable individual allelic genetic profiles obtained. 

Mummy material revealed just partly allelic profiles, accompanied with a lot of allelic and 

loci drop out events, while peak heights were consistently close to or even below the 

validation threshold of 50 rfu. Incomplete mummy typing profiles might be due to the very 

low amounts of mummy target DNA available and used for analyses. However, in amplifying 

also an amelogenin marker, at least the AmpF/STR SEfiler kit confirmed the determined 

genders of mummy samples. 

 
Figure 47. Except of DNA typing analysis using a multiplex STR PCR amplification kit.  Peak data of seven 
out of 12 amplified STR marker loci are shown. Genotyping of ancient mummy material as well as 
archaeologist/excavator and most relevant involved scientists (named “scientific staff 1, 6, 8”) is shown, 
performed via the AmpF/STR SEfiler PCR amplification kit. Genotyper 3.7 software electropherograms 
showing an except of the AmpF/STR SEfiler PCR amplification kit results for six STR loci and the 
amelogenin locus analyzed on an ABI PRISM 3130 XL Genetic Analyzer. 

In these two autonomous DNA profiling approaches, external contamination could explicitly 

be excluded. As a result, we were able to widely exclude contamination and cross-

contamination of the ancient bone samples. Despite we did not obtain full allelic profiles from 

mummy sample material, the most important information obtained by those typing 
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experiments was that no cross-contamination was detectable at all. As shown by these results, 

typing of all people who have been in contact with mummy material worked quite fine and 

gave reliable results. Every DNA typing profile was individual and every marker peak 

combination was unique among all tested scientific staff and mummy samples (figure 46 and 

figure 47). As no peak combination of present material could clearly be detected in mummy 

typing profiles (table 9), contamination of ancient mummy samples by recent DNA of 

scientists, archaeologist, technical assistance staff and laboratory members could be 

eliminated successfully. Typing results received from mummy material clearly showed that 

cross-contamination from people involved in experiments did not occur and thus could widely 

be excluded. 

Table 9. DNA profiling. Results of typing DNA of mummy material compared to scientific staff’s genomic 
material. Characteristic fragment sizes of amplified STR markers are shown. 
 

 
DNA profiling using STR 
markers 
D7S1824  D9S302  D10S2325 

DNA profiling of several STR fragments using the 
AmpF/STR SEfiler PCR amplification kit: 
D3S1358 vWA D16S539 D2S1338 A D8S1179   SE33 

Scientific staff 1 116/148    180/188      258/314 17/ -        16/17      11/ -       19/25    X    14/15   29.2/32.2 
Scientific staff 2 126/131    188/200      238/254 - 
Scientific staff 3 126/136    168/172      263/267 - 
Scientific staff 4 116/131    171/176      262/266 - 
Scientific staff 5 131/136    163/200      273/281 - 
Scientific staff 6 142/153    167/188      262/ - 16/18      17/18       9/11       21/24   XY  12/ -       18/28.2 
Scientific staff 7 121/148    167/175      297/305 - 
Scientific staff 8 131/136    167/188      267/271 14/17      17/18       9/12       17/18   X     13/14  26.2/28.2 
Mummy1     - / -           - /179      270/ -   - / -       15/18       12/ -         - / -    X       - / -         - / - 
Mummy2     - /164    180/ -         270/ -   - / -       16/ -          - / -         - / -    X       - / -         - / - 
Mummy3 142/ -           - / -             - /313 17/ -         - / -          - / -         - / -    XY    - / -         - / - 
Mummy4     - / -           - /198      270/ -   - / -       18/ -          - / -         - / -    XY    - / -         - / - 

To enhance our analysis sensitivity, all aDNA PCR analyses were performed by virtual 

reaction chamber low-volume PCR, using 1 µl total reaction volume. One can easily imagine 

that there is a much higher impact probability between reactants and DNA template enclosed 

in small volume assays (1 µl) than in macroscopic samples like e.g. in 25 µl standard reaction 

volumes. Using this low-volume PCR method further enabled us to significantly reduce the 

starting amounts of extracted ancient DNA sample material needed for PCR reactions. This is 

an important reason for using virtual reaction chamber lab-on-a-chip systems dealing with 

reaction volumes in the micro- and nanoscopic range. As plastics were identified as potential 

sources of bioactive environmental contaminants, it will be an advising step to depart from 

plastic PCR-tubes to analysis devices fabricated of modified glass substrates. Moreover, it 

was also reported that processing agents from laboratory plastic ware could be leaking into 

biological media and solvents, particularly during storage (McDonald GR et al., 2008). Due 
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to these criteria, PCR-tubes, even when declared as “sterile”, were assumed to contain 

leaching agents and facilitate contamination of PCR reactions when heated. However, as 

reported several times, working with aDNA originating and extracted from soil buried bones 

and teeth is by itself associated with problems like low DNA quantity, high DNA 

degradation, the presence of PCR inhibitors and most importantly DNA contamination 

(Primorac D et al., 1996; Alonso A et al., 2001).  

Extraneous contamination can arise from adjacent treatments such as the handling of the 

remains by excavators and laboratory staff, airborne contaminants and contaminants present 

within laboratory reagents or on consumable items (Tuross N, 1994). Soil type and microbial 

community characteristics can adversely affect DNA recovery (Zhou J et al., 1996). The total 

DNA extraction from soil entails co-extraction of humic substances, mainly humic acid, as 

well as DNA originating from external organisms like bacteria and fungi (Tsai YL and Olson 

BH, 1992; Tebbe CC and Vahjen W, 1993; Kreader CA, 1996; Zhou J et al., 1996). These 

interferences can provide false-negative results in case of PCR inhibition (Zhou J et al., 1996; 

Zipper H et al., 2003) or false-positive ones (like non-specific products) in case of 

contamination, greatly reducing the information, which can be attained.  

The expansive variety of DNA extraction techniques being employed (as reported by 

Anderung C et al. (2008) and Rohland N and Hofreiter M (2007)), highlights that all of these 

procedures are affected by the problems and limitations concerning DNA quality, quantity 

and co-extracted PCR inhibitors as mentioned above. As an effort to minimize these 

interfering troubles as efficiently as possible, in the present study the surface of bone tissue 

sample fragments was carefully decontaminated. First by chemical cleaning with DNA-

degrading sodium hypochlorite, which was followed by a mechanical removal of the outer 

layers of the bone fragments before sample processing procedures. However, post mortem 

contaminations can hardly be removed completely as reported by Gilbert MTP et al. (2005 

and 2006). Nevertheless, there seems to be a significant correlation between the sector of 

extraction, outer versus inner sectors of bones, and the amount of DNA present in resulting 

samples (Kaiser C et al., 2008). The outer sectors, adjacent to the soil, were shown to have 

higher DNA concentrations than the inner ones, due to the presence of bacteria and fungi 

DNA. Furthermore, it was shown that the localization within the bone piece influences its 

degree of degradation. This is the result of varying degrees of protection against destructive 

environmental influences like temperature, humidity, pH and the geochemical properties of 

the soil including presence of microorganisms, UV irradiation and radioisotopes (Burger J et 

al., 1999). Since the outer surface is significantly more influenced by the direct contact to the 
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environmental soil, DNA is best preserved in the inner part of bones (Kaiser C et al., 2008). 

Based on laser microdissection of internal bone areas, the present study thus introduced a 

promising method for contamination-reduced bone tissue particle isolation and subsequent 

aDNA extraction. With respect to extracted aDNA quality, the grade of DNA degradation, 

and interfering destructive factors, the laser microdissection-based approach significantly 

excelled the traditional method. While the current DNA extraction operating procedure used 

whole bone tissue particles for pulverization and subsequent DNA extraction, the laser-based 

method concentrated on internal bone areas including osteon systems. The focus of bone 

particle isolation was on tissue areas containing these osteon systems in order to isolate 

fragments with the highest probability of preserved vascular cell material. Thus, several 

osteon areas were microdissected exclusively from the inner parts of the bones where surface 

contamination and inhibitor influences were least possible to occur. Despite higher DNA 

recovery and extraction rates in the classical extraction methods, the DNA quality was 

supposed to be considerably worse. This was most likely caused by present interfering 

substances and less authentic DNA provided by the pulverization method. For the higher 

DNA amount was little informative about the source of DNA and provided probably a 

mixture of desired mummy DNA and DNA of bacterial and fungal origin. In contrast, the 

advantages of the laser microdissection-based technique included a) minimization of 

contamination during handling of specimens, b) sample extraction exclusively from internal 

bone parts with a minimization of degradation effects and co-extraction of inhibiting 

substances and c) a reduction in the amount of starting material down to single osteon islets 

allowing maximum preservation of ancient material. 

X- and Y-chromosomal amelogenin fragments of 106/112 bp in length as well as a 297 bp-

sized fragment of the human multicopy gene β-actin were amplified by LV-PCR. In 

amplification reactions, particular attention was paid to the quality of extracted DNA, 

including possible effects of degradation or PCR inhibitors. In microdissection-based mummy 

samples, the amplification of amelogenin gene as well as β-actin gene fragments resulted in 

reproducible, constantly positive PCR products using only about 60 pg of DNA starting 

material (figure 43). When amplified on LOC chips instead of a multi LV-PCR microdevice, 

mummy DNA could successfully be detected as well in a reliable manner (figure 44). This 

successful amplification clearly qualified the complete lab-on-a-chip system for a reliable 

applicability on highly sensitive and „difficult-to-analyze“ sample material like e.g. necessary 

in the pathological research area. In contrast, PCR results of samples based on pulverized 

bone tissue showed just 50% success in amplifying amelogenin gene fragments (mummy2 
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and mummy4; figure 43 A and B) and no reliable positive amplification products for β-actin 

fragments using 100 pg of DNA starting material. These lower yields of PCR products may 

be due to poorer DNA quality, consistence or state because of degradation effects. Taking into 

account that also primer dimerization occurred during PCR, the failing amplification may 

more likely be attributed to DNA degradation than to present inhibiting substances. 

Moreover, here, especially the inconsistent amplification of 297 bp β-actin fragments was in 

agreement with a general amplification limit discussed for aDNA. Propagating amplification 

fragments longer than 200 bp are very unlikely due to degradation processes (Pääbo S, 1989). 

Here, amplification success correlated negatively with the length of the amplicon. This was 

supposed to be the result of contaminating outer bone layers, where extensive DNA 

degradation could have occurred. However, this larger β-actin fragment could be amplified 

reliably in microdissection-based samples, where the analyzed bone segments originated from 

the more preserved inner part of bone particles. 

Furthermore, sequencing of amelogenin and β-actin PCR products was performed on one 

male microdissection-based mummy sample (mummy4). This enabled us to confirm authentic 

PCR products and eliminate possible false positives, which may indeed show the right lengths 

of the wanted amelogenin and β-actin fragments while presenting a different sequence of 

DNA base pairs. Analysis of the sequencing data for both the 106/112 bp X- and Y-

chromosomal amelogenin fragments and the 297 bp β-actin fragment definitively identified 

them as human amelogenin and β-actin sequences once aligned to gene sequences from the 

human genomic database of NCBI (figure 45). Furthermore, sequencing results were also 

important to invalidate the possibly occurring phenomenon of jumping PCR, induced by 

damaged template DNA and resulting in the production of a chimeric sequence, as first 

reported by Pääbo S et al. (1990). Thus, via sequencing, the authenticity of the amplified 

DNA could be confirmed. Both, the successful amplification of a fragment significantly 

longer than 200 bp and the successful sequence alignment results of β-actin gene fragments 

highlighted the advantage of laser microdissection for ancient material extraction. 

Overall, we always obtained higher yields of PCR products by using laser microdissected 

samples than by amplifying samples being extracted via the classical method. This may be 

attributed to a better DNA quality present in microdissected samples due to less exposure to 

degradation effects. These results implicated that isolation of tiny target tissue material by 

laser microdissection combined with standard kit DNA extraction methods was sufficient for 

aDNA extraction and successful amplification. Combined with low-volume PCR using planar 
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microdevices, our method enabled the amplification of minute amounts of laser-

microdissected material in extremely small reaction volumes. 

Results of analyzing ancient bone tissue originating from Egyptian mummy material strongly 

highlighted the combination of laser microdissection and low-volume PCR as a promising 

new technique in ancient DNA analysis. The combination of several modules of the lab-on-a-

chip like e.g. laser microdissection, SPATS transfer and LV-PCR provided a wealthy 

platform for highly sensitive genetic analysis with minimum risk of contamination. Ancient 

mummy DNA could successfully be amplified in a highly sensitive and reliable analysis, 

while the risk of contamination could dramatically be minimized due to the application of 

novel techniques and technologies. Macroscopically, contamination effects could be 

eliminated via intelligent nested sample preparation followed by highly precise laser 

microdissection-based material isolation. The benefit of the laser microdissection-based 

extraction method was the chance of exact sample extraction, directly from the more 

preserved inner parts where authentic ancient DNA was most possible to occur, while 

circumventing co-extraction of PCR inhibitors or external bacterial or fungal DNA, 

interfering strongly with PCR analyses. Microscopically, contamination events could be 

eliminated through the utilization of highly sensitive virtual reaction chamber low-volume 

PCR on chemically treated PCR microdevices. The presented nanotechnological approach 

provided an adequate tool for reliable and highly sensitive DNA analysis, ensuring the 

optimum use of limited evidence material. This approach could adapt the preparative and 

extraction procedures to the low amount of preserved ancient DNA, thus offering the 

possibility to increase the amount of extracted, less degraded and less contaminated, authentic 

genetic material and decreasing the effect of destructive factors. In this approach, for the first 

time isolation, amplification and detection of ancient DNA in smallest sample amounts 

circumventing pulverization could be demonstrated. This new tool for aDNA analysis, which 

overcame contamination problems, DNA degradation and the negative effects of PCR 

inhibitors while reducing the amount of starting target material in the picogram range, was 

presented in a paper (“PCR analysis of minimum target amount of ancient DNA”, Woide D et 

al., 2010). The reported clash of new fashion technologies with ancient sample material is a 

fascinating starting point for revolutionizing and optimizing archaeological research on 

ancient sample material while employing high fashion lab-on-a-chip technology. 
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5.4  Critical assessment of the analytical power of the lab-on-a-chip 

Diagnostic testing especially for the forensic research area has emerged a lot of analysis 

methods due to various forensic relevant problems. Of particular importance are diagnostic 

tests for genetic diseases, microbial and viral infections, forensic analyses like blood typing or 

blood banking, as well as forensic human DNA identification. Typical target materials in 

forensic and pathological analyses are soft materials like e.g. pieces of dermal tissue, blood 

spots or other dried body fluids like saliva or sperm, but also hard materials such as bones and 

teeth. Preparing these samples for laboratory analysis is labor-intensive, time- and cost-

consuming, particularly when handling hundreds of samples per day during routine laboratory 

work. Additionally, sample material is a valuable property and the amount of target sample 

material used for analysis needs to be reduced to a minimum to be utilized as economically as 

possible. The lowest amount, which is aimed to be used for analysis, is surely the DNA 

content of just one single cell, comprising about 7 pg target DNA material. Due to the scarcity 

of material available and possible material contamination, the most important thing in DNA 

analysis is a sensitive, reliable and unfailing performance, while excluding risks of 

contamination during sample handling. 

Based on the needs to be able to reproducibly and reliably handle, process and analyze 

microscopic amounts of sample material and due to the tendency of standard laboratory 

analysis to become “smaller”, “faster”, “cheaper” and “more sensitive”, µTAS are becoming 

more and more relevant to be the right platform serving these purposes and revolutionizing 

human genetic analysis. After a longer developmental period, nowadays, micro total analysis 

systems are on their way to reach a state of applicability. Miniaturization of analysis systems 

yields an enormous saving in time and cost in regard to parallelization, automatization, waste 

of test tubes and biochemical reagents. Automation can render analysis more economic and 

reliable, and a smaller reaction volume favors low material consumption and implies an 

enhanced analysis sensitivity and homogeneity of detection. Furthermore, designed as 

disposables, microdevices can circumvent possible sample-to-sample cross-contaminations.  

However, the majority of developed lab-on-a-chip microdevices is fixed to just one specific 

application and can accept only one kind of sample material, thus lacking flexibility. Lab-on-

a-chips, combining all sample processing steps on one single device, are technically most 

challenging. And if realized, up to now they consist of complex 3-dimensionally architectured 

integrated systems, fixed to just one particular biological problem and additionally struggling 

with too expensive fabrication and sales costs to be used as disposables. However, an 

integrated system holds the distinct advantage of minimal manual sample handling, thus 
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decreasing the risk of possible cross-contaminations originating from laboratory sources. Due 

to complexity, lab-on-a-chip systems with “sample-in-answer-out” capabilities are up to now 

sparely reported in literature (Burns MA et al., 1998; Roper MG et al., 2005; Easley CJ et al., 

2006 (b); Lien KY et al., 2007). And with a few exceptions (Chen L et al., 2007; Zhang CS et 

al., 2006; Panaro NJ et al., 2005; Pipper J et al., 2007) most of the reported miniaturized 

devices for nucleic acid amplification are integrated stand-alone systems replacing only the 

role of a conventional PCR thermocycler. Additionally, they are based on template DNA, that 

has already been processed off-chip by using established bench-scale procedures.  

As especially the forensic research area is in the need of practical, time, costs, labor and 

material saving micro total analysis systems, here, a unique modular lab-on-a-chip system 

with “open” applicability was introduced. Due to its modular character, the lab-on-a-chip 

provided a broad range of sample processing applications performed on separate devices, 

including sample material isolation, DNA amplification as well as product detection. The 2-

dimensional architecture of the presented lab-on-a-chip system’s operating chip platform gets 

the user away from fixed applications being performed. Due to its open accessible chip 

surface, it was flexible in application and capable of accepting a broad range of biological 

input materials. Those were liquids ones, such as purified DNA material and also whole 

blood, as well as solid ones like e.g. crude sample material like fixed microdissected tissue 

particles. However, using hard sample material like bone tissue pieces still needed 

preprocessing steps performed off-chip, as those procedures for DNA extraction were highly 

specific and could not be done on the microscale yet. Anyway, this µTAS provides a 

promising platform of enabling nanotechnologies for the forensic field of research due to 

several reasons. 1) Due to the modular character, the whole system or at least parts of it can 

easily be integrated into laboratory routine. 2) Benefitting from a planar “open accessible” 

chip design, it can accept a wide variety of sample materials, which was never realized and 

reported in literature before. Loading the sample onto the chip can either happen via laser-

microdissection and SPATS transfer for solid sample materials or via the automatic 

dispensing device BioSpot for liquid sample materials. 3) As the analysis chip is separate 

from all modular equipment providing the technical support, it can simply be used as a 

disposable. The CytoCycler chip-holder itself houses all electronic devices for temperature 

support and SAW actuation. LOC chips can easily be replaced for analysis, eliminating cross-

contamination between reactions in subsequently performed operations. 4) PCR product 

detection can be performed by a variety of individually selectable detection methods. Open 

access is provided to sample material and PCR droplets at any time due to the open planar 
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surface design of the amplification unit. Thus, detection can be conduced either on-chip like 

e.g. via real-time PCR or array technologies, or even off-chip in electrophoresis-based 

techniques. 5) It is predestined to work free of contamination due to a) sample loading based 

on laser microdissection and SPATS transfer and b) performed low-volume PCR. Sample 

isolation via laser microdissection and contamination-free particle transfer via the low-

pressure operated SPATS device is an important tool for validating the presented lab-on-a-

chip system for being capable of highly sensitive analysis. Several contamination-free 

applications have been reported, like e.g. isolation and transfer of single cells (Woide D et al., 

2009; Mayer V et al., 2009) as well as soft tissue material and ancient bone material (Woide 

D et al., 2010). Blank and negative controls, of e.g. co-microdissected and transferred PEN 

carrier-membrane, also validated a contamination-free transfer process. Due to low-volume 

PCR, the lab-on-a-chip is operating small-scale reaction volumes, which were profitable as 

increasing analysis sensitivity while reducing the amount of input sample material needed. In 

utilizing virtual reaction chamber PCR, for reliable analyses only 25 pg of DNA input 

material were needed, and reproducible PCR performances were obtained using just smallest 

microdissected tissue particles or 1% of whole blood. In general, such planar virtual reaction 

chamber-based microdevices bear the highest chance for being integrated into laboratory 

routine. As droplet-based virtual reaction chamber PCR needs just an easy scale-down of 

biochemical protocols applied to benchscale systems (Mukhopadhyay R, 2006), this 

flexibility cannot be matched by chamber- or flow-through-based architectures (Daw R and 

Finkelstein J, 2006). And scaling reaction volumes down is especially important for cost 

savings when pricy PCR amplification kits are used. 6) Each module can be operated 

independently and integrated into laboratory routine apart from the other units, but most 

importantly, all modules can be combined together in a whole workflow-process, providing 

the basis for complete automation. Thus, the presented lab-on-a-chip comes very close to the 

scientific demands for a micro total analysis system, as being applicable for many kinds of 

sample materials, utilizing smallest sample amounts, providing highly sensitive PCR analysis 

and detection, while excluding any risk of external contamination during sample handling. 

All in all, the presented lab-on-a-chip presents a step forward towards a universal micro total 

analysis system. It fulfills key features like cost savings and enhanced analysis sensitivity in 

applying low reaction volumes and disposable microchips. Major drawbacks are surely the 

bulky devices needed for operating chip performances as well as no highspeed analysis times. 

Certainly, due to low-volume PCR reaction times were faster than those of conventional 

thermocyclers, but not comparable to heating methods other than a Peltier element, like e.g. 
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via IR heating. Additionally, reaction volumes used were still in the microliter range and not 

in the nanoliter range as realized in several other devices, reaching from 280 nl (Easley CJ et 

al., 2006 (a), down to 200 nl (Lagally ET et al., 2004; Guttenberg Z et al., 2005), 100 nl 

(Neuzil P et al., 2006 (b)), 40 nl (Matsubara Y et al., 2004; Matsubara Y et al., 2005), 33 nl 

(Morrison T et al., 2006), 29 nl (Koh CG et al., 2003), 3 nl (Liu J et al., 2003), 0.45 nl 

(Marcus JS et al., 2006) and astonishing 85 pl (Nagai H et al., 2001). However, up to now, 

there is no definitive correlation between PCR volume and e.g. PCR cycling time. Only chip 

architecture and the mode of heating can transform the advantages of small-volume reaction 

systems into fast temperature transition and thus rapid analysis times and more efficient PCR 

amplifications. Thus, the detected 5 sec minimal cycling time per PCR cycle step provides a 

good basis for a fast analysis. However, the presented lab-on-a-chip system was not 

developed for the purposes, to be the fastest or the smallest one, but rather to provide highest 

flexibility in performed analyses and applied sample materials instead. Though, the biggest 

drawback can be attributed to the single reaction center presented on the chip surface. The 

design of the chip surface must be updated to provide several reaction centers. This would 

render the analysis chip to be capable of performing several reactions in parallel, as most 

importantly negative and positive controls are on demand to be included on-chip. 
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6.  Conclusion and Outlook 

Due to its universal applicability, a modular lab-on-a-chip like the presented one could 

definitely provide solutions and gain value in the scientific fields dealing with highly sensitive 

analysis, like e.g. in cytogenetics, forensics, legal medicine and pathology. Especially the way 

of contamination-free sample isolation via laser microdissection combined with highly 

sensitive LV-PCR amplification using smallest amounts of sample material provide tools of 

high-resolution analysis for scientific relevant questions, like e.g application on the single cell 

level e.g. in cancer diagnostics. This system is worldwide unique in its modular design, there 

are no competitive devices on the market combining these techniques. As up to now most 

developed microdevice chips are dependent on the capability of accepting either prepurified 

or completely liquid sample materials, the presented convergence of high fashion lab-on-a-

chip technology with „difficult-to-handle“-scientific relevant sample material represented an 

important step towards sophisticated micro total analysis systems’ application.  

However, as the developmental focus is especially on automation, working speed and high 

mobility of the devices for providing on-site analysis, some improvements would support an 

even better performance. Up to now, there are integrated systems reported, providing even 

faster analysis times, possibilities for parallel processing as well as smallest chip architectures 

in total being capable of being used as fast on-site portable analytic system. However, no 

modular system has been reported up to now providing any of these features. In the presented 

modular system, PCR performance is fixed to the heating rate capacity of the Peltier element 

and the architecture suffers from bulky devices like the microscope and the BioSpot while 

all modules require a huge power supply. Even if the miniaturization of bulky devices 

remains difficult, at least heating rates could be optimized via an even more sophisticated 

design of the heating device. Additionally, a definite improvement of the presented system 

would be an upgrade of chip architecture to provide multiple reaction centers for performing 

several reactions at a time. This would allow parallelization, high-throughput and automation 

as via automatization the reproducibility would also be enhanced to a big amount. As the 

system is totally software controlled, the first step towards automation is done building a base 

for further improvement. However, besides some drawbacks, the scientific progress described 

in this work presents a big step forward towards the generation of an ultimate micro total 

analysis device. 
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9.  Appendix 

9.1  Laboratory-internal operating procedures 

Laboratory-internal operating procedures (LOP) were written for general laboratory 

applications concerning the lab-on-a-chip system.  

LOPs were written for handling laser microdissection as well as the SPATS transfer system 

(chapter 9.1.1 and chapter 9.1.2), for the CytoCycler split into LOC chips (chapter 9.1.3) 

and LV-PCR (chapter 9.1.4), as well as for the BioSpot automatic dispensing device 

(chapter 9.1.5) and the Fluorescence Reader (chapter 9.1.6). 

LOP protocols are provided on a separate data medium (CD) enclosed to this work. 
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9.1.1 LOP of building adsorbing heads for the SPATS 

“Protocol for the fabrication of adsorbing head devices for the SPATS” 

A. Material  

• Universal compressed gas can (210g/400ml) + pistol adaptor for compressed gas can 

(Propan/Butan gas can with thread, Art. Nr. 52109, CFH Löt- und Gasgeräte GmbH, 

Offenau, Germany) 

• Glass capillary tube (Kapillaren zur Schmelzpunktbestimmung, open at both sides, 

AD 1,75 LG 100mm, 1000 pieces, Hirschmann Laborgeräte GmbH & Co.KG, 

Eberstadt, Germany) 

• Metal block device with fixed conventional micrometer step motor for high-precision 

XY-adjustment; metal block for bending of glass capillary tubes 

• Sharp/spiky item (e.g. needle or other) used for applying the adhesive 

• Glass Petri dish used as platform for applying the adhesive 

• Scalpel/tiny slotted screwdriver for adjusting screws of devices (screw threads) 

• Copper hole-rings (AGAR scientific Ltd., Stansted, Essex, U.K.; ordered from 

PLANO GmbH, Wetzlar, Germany) 

G2605C   1500µm   hole   copper   3.05mm 

G2600C   1000µm   hole   copper   3.05mm 

G2680C     800µm   hole   copper   3.05mm 

G2660C     600µm   hole   copper   3.05mm 

G2630C     300µm   hole   copper   3.05mm 

• Copper meshes (G2786C   2000   square mesh   copper   3.05mm, AGAR scientific 

Ltd., Stansted, Essex, U.K.; ordered from PLANO GmbH, Wetzlar, Germany) 

• UV lamp 220V 50Hz, 230V 60Hz (System Papst-Motor Typ 8550, Papst-Motoren 

GmbH & Co.KG, St. Georgen, Germany) 

• Adhesive = Norland optical adhesive (ultraviolet curing) 88, LOT 164 (Norland 

products Inc., Cranbury, NJ, USA) 

            (This adhesive, which is a single-package system, contains no solvent and cures by exposure to long 

              wave ultraviolet light (320-400nm). It is suitable for fast precision bonding to glass, metal, and many 

               plastics. Use it in any application that requires critical alignment or exact positioning.) 
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B. Operating procedure 

 

I. Bending of glass capillary tubes 

• Glass capillary tube is inserted into borehole of metal block (a centered, straight 

positioning should be achieved; use screw thread!) (figure 1 A, red arrow). 

• Start melting/bending of glass capillary tube by heating the desired kink using a 

compressed gas can; most precise and straight bending is achieved when heating from 

above (vertical heating is ideal for eliminating unwanted sloped kinks). 

• In an optimum way, bended glass capillary tube comprises a bending angle of exact 

90° (figure 1 B), a straight bending without narrowing or squeezing diameter of glass 

capillary tube or angling the course of the glass capillary tube. 

• Glass capillary tube needs to cool down before further processing! 

 

 
Figure 1. Bending of glass capillary tubes. A) Metal block for bending of glass capillary tubes to an angle of 
90°. Borehole in the upper part, centered (red arrow), provides fixation of glass capillary tube (screw thread); 
centered metal plate in front (anchored via 2 screws, blue arrow) supports achieving an exact bending of the 
glass capillary tube to an optimum angle of 90° (B). 
 

II. Attachment of hole-rings and meshes 

• Long end of glass capillary tube is fixed into a borehole of the small metal block, 

which is connected to micrometer step motor (use screw thread) (figure 2 B); bended 

short end of glass capillary tube is pointing bottom-up first, to apply the adhesive. 

• A tiny amount of adhesive is squeezed onto the surface of the glass Petri dish. 

• Apply a tiny amount of adhesive to bended short end of glass capillary tube, exactly at 

the cutting site/cut surface; use any spiky metal item for applying the adhesive. 
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• Hole-ring needs to be exactly attached to the cut surface of the glass capillary tube; 

hole of hole-ring and hole of cut surface should match perfectly. (Caution: diameter of 

glass capillary tube may not be narrowed by inclined/leaned hole-ring AND adhesive 

may not seal hole!). For attachment either the micrometer step motor plus supporting 

tip hole surface as ring-holder can be used, or attaching the hole-ring can be 

performed manually (figure 2 A, red arrow, and figure 2 C). 

• For curing of adhesive capillary glass tube needs to be exposed to an UV light source 

for 1-2 min. 

 

• Glass capillary tube needs to be readjusted into small metal block, connected to the 

micrometer step motor (using screw thread); bended short end of glass capillary tube 

points bottom-up for applying the adhesive. 

• A tiny amount of adhesive is applied to the outmost edge of hole-ring (use any spiky 

metal item for applying adhesive). (Caution: adhesive may not contact hole of hole-

ring, as in this case adhesive would seal mesh and interfere with low-pressure 

efficiency!). 

• Mesh needs to be exactly attached to hole-ring; shapes of both rings should match 

perfectly! (Do not move mesh extensively; avoid spreading adhesive!). 

• For curing of adhesive capillary glass tube needs to be exposed to an UV light source 

for 1-2 min. 

 

 
Figure 2. Working platform for applying hole-rings and meshes. A) Micrometer step motor fixed at a big 
metal block for XY-fine-positioning; small metal block with fitted supporting surface for attaching hole-rings 
and meshes (tip hole, arrow); UV curing adhesive; glass Petri dish as application platform for a tiny amount of 
adhesive; sharp/spiky item (metal tip) used for dosage and application of adhesive. B) Small metal block (fixed 
at the micrometer step motor) encompassing 2 boreholes for fixing the long end of bended glass capillary tube 
(screw thread); the short bended end of the glass capillary tube is facing the supporting surface (tip hole). C) 
Glass capillary tube after attaching hole-ring or mesh, respectively. D) Constituent parts of an adsorbing head 
device: glass capillary tube, hole-ring and mesh forming the sample take-up device. 
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9.1.2 LOP of LMD (laser microdissection) & SPATS transfer 

“Transfer of microdissected material via low-pressure SPATS device” 

A. Material  

• New adsorbing head (glass tube, hole ring, lattice/grid according to chapter 9.1.1) 

• Sample material fixed on PEN carrier membrane coated object slides (2 µm PEN-

slides; MicroDissect GmbH, Herborn Germany) 

• UVC light source (PCR Workstation, PeqLab Biotechnologie GmbH, Erlangen, 

Germany) 

• Laser control box (CryLaS FTSS 355-50, CryLaS GmbH, Berlin, Germany) 

• Softwares “Nanosauger 2.5/2.6/2.7” (XYZ High Precision, Darmstadt, Germany) 

• Color firewire camera (PixeLINK, Megapixel Firewire Camera, BFI Optilas, Munich, 

Germany) 

• Black & white CCD camera (Rolera-XR, QImaging, Surrey, BC, Canada) 

• Softwares “QCapture” or “QCapture Pro 6.0” (QImaging, Surrey BC, Canada) 

• Pressure-supplying pneumatic picopump (PLI-100 pressure control unit, Harvard 

Apparatus, Holliston, US) 

 

B. Operating procedure 

 

I. Preparations 

 

• Switch on computer, microscope power supply box 231 and microscope button. 

• Switch on laser control box → switch key to from “0” to “1”, a green light appears 

(left side) → now the laser lamp is getting pre-warmed → wait until the second green 

light turns on (right side) → now the laser can be started by pressing the red button 

located between both green lights (“Laser On/Off”) → when right green light turns to 

red, laser is ready to use. 
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II. Laser microdissection (LMD) 

 

• Decontaminate adsorbing head by using a UVC light source. 

• Make sure, that the arm of the transfer device is positioned out of the working area, on 

the right side of the XY-stage as a) this position favors an easy installation/fixation of 

the adsorbing head into the low-pressure supporting arm and b) the arm has enough 

space above to move up, as the software “Nanosauger” performs a calibration run of 

the XY-stage and the SPATS carrier arm when getting started. 

• Either use the color firewire camera for colored images, or switch on the black & 

white CCD camera for black and white images. 

• Run software “Nanosauger 2.5” (desktop) for fast working procedures (figure 1) and 

“Nanosauger 2.6” (desktop) for slow working procedures, both without using 

autofocus unit, or “Nanosauger 2.7” for working with implemented autofocus function 

(desktop). Softwares “Nanosauger” serve the color firewire camera, while for utilizing 

the black & white CCD camera additionally the software “QCapture” or “QCapture 

Pro 6.0” needs to be started. 

• Optionally the stage movement direction can be adjusted via clicking “Control Via 

Buttons” and then clicking “Inverted X-Direction” as well as “Inverted Y-Direction”; 

re-activate the box “Control Via Joystick”. 

• Speed of stage movement and up/down-direction of SPATS arm can be set by clicking 

“Control Via Buttons”, then the speed can be adjusted by moving the mode controller 

in the box “Speed” (settings 1-7); re-activate the box “Control Via Joystick”. 

• The SPATS arm can be move up/down by turning the joystick knob to the left and 

right; it can be moved left/right by pressing the arrow buttons in the box “Rotation”, 

the speed of sideways movement can be adjusted by clicking “Low Speed”, “Medium 

Speed” or “High Speed”; the length of the SPATS arm can be adjusted by turning the 

rotary knob located at the micrometer step motor. 

• Test, if lattice is centered to the view field of the microscope by approaching the 

adsorbing head to the 10x objective; if not, center grid for easier sample take-up. 

• For microdissection of single particles use the 40x objective; set microscope to “DL 

auf” (Durchlicht function is activated); laser can be switched on by operating the 

footswitch, or by activating the silver switch at the laser control box (“TRIGGER 

INT/EXT”) to “INT” position; set microscope to “AL auf” (Auflicht function is 
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activated) calibrate the laser beam by focusing it onto the level of the PEN-carrier 

membrane, adjust laser focus and cut energy → a thin focused cut line is desired. 

• Isolate single areas by keeping laser running and moving the microscope’s XY-stage. 

• To switch off laser, either loosen footswitch or turn silver switch (“TRIGGER 

INT/EXT”) to “EXT” position. 

 

 
Figure 1. Screenshot of software “Nanosauger 2.5”. Via the panel “XY Control unit” settings of the XY-stage 
can be changed. Activating the panel “Rotation” can move the SPATS device horizontally and various speed 
settings can be adjusted. The “Camera Properties” window allows taking pictures and provides several settings 
for optimized image taking. Via operating the “Nanosauger” panel, the low-pressure operation can be started 
(Suc Start/Suc Stop), stopped and a short impulse of high pressure can be applied by pressing “Clear”. 
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III. Single particle adsorbing transfer system (SPATS) 

 

• Use the 10x objective for controlled extraction/transfer via the SPATS device. 

• Switch on pressure-supplying pneumatic picopump and turn on compressed air. 

• Approach the grid/lattice of the adsorbing head to the surface of the isolated particle, 

start low-pressure process by clicking “Suck Start” (figure 1); check if particle is 

fixed to the grid and that the area of PEN-membrane is empty where isolation 

happened. 

• Move SPATS up and transfer particle to a tube, planar device or else; release particle 

by pressing “Suck Stop” and “Clear” for providing a short impulse of high-pressure. 

• Check particle release by having a look at the grid; for doing so, move adsorbing head 

back to the 10x objective and approach grid to objective lens. 

• To quit operations, move SPATS arm out of the working area, to the right side of the 

XY-stage; remove adsorbing head and store it accurately; switch off microscope, 

switch off microscope power supply box, turn off laser by pressing the red button at 

laser control box (“Laser On/Off”), switch off laser control box via moving the key 

from “1” to “0” position, quit software, turn off camera, shut down computer. 
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9.1.3 LOP of LOC chips 

“Application of LOC chips and of the LOC system” 

A. Material  

• LOC chips Cyto1, Cyto2, Cyto3 (Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) 

• Ultrasonic cleaner (VWR International, Leuven, Belgium) 

• UVC light source (PCR Workstation, PeqLab Biotechnologie GmbH, Erlangen, 

Germany) 

• CytoCycler (PCR device incl. chip-holder, temperature control device, SAW control 

high frequency (HF) generator, particular software “CytoCycler” (Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany)) 

• HF generator (FC 1201 HF, Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) 

• Software “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany) 

• Tickopur (DR. H. STAMM GmbH, Berlin, Germany) 

• Acetone (Merck KGaA, Darmstadt, Germany) 

• EtOH 100% (Merck KGaA, Darmstadt, Germany) 

• PCR master mix (free of choice) and mineral oil cover (Sealing Solution, Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 

• Sterile 0.2 ml PCR tubes (Eppendorf AG, Hamburg, Germany) 

 

B. Cleaning of  LOC chips (1-2x) in ultrasonic cleaner 

 

• Clean chips with 70% EtOH, remove EtOH with paper towel (carefully tap the chip). 

• Wash chips for about 5 min in 2% Tickopur solution using ultrasonic cleaner. 

• Rinse chips thoroughly with H2O
dd. 

• Clean chips for 2-3 min in H2O
dd (ultrasonic cleaner); blow dry with N2. 

• Clean chips for 2-3 min in acetone (ultrasonic cleaner); blow dry with N2. 

• Clean chips for 2-3 min in 100% EtOH (p.A. grade) (ultrasonic cleaner); blow dry 

with N2. 
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• Incubate chips for 20 min using a UVC light source for decontamination. 

• Successful cleaning can be tested by performing a negative control reaction on cleaned 

chips followed by detection via PAAGE ⇒ PCR should reveal no PCR product! 

 

Important: as counting scale (graduation) at ultrasonic cleaner begins at “1” and not at “0” as 

written, add +1 min of time when starting the run (for 5 min put 6 min instead). 

 

C. General information concerning LOC chips 

 

• Currently, there are 4 different designs of LOC chips: Cyto1, Cyto2, Cyto2 plus 

microarray, Cyto3 plus microarray (figure 1 C-E). 

• Cyto1 = original design, July 2007; hydrophilic reaction points A and B comprising a 

diameter of 40 µm and a hydrophilic track width of 15 µm (figure 1 C).  

• Cyto2 = design for cell culture applications, January 2008; hydrophilic reaction point 

A comprises a larger diameter of 500 µm, instead of 40 µm as so far, for to let cells 

grow on the surface (the rest of the chip remained unchanged). Additionally, this chip 

charge was designed with a hydrophilic array field of 1x1 mm2 next to reaction center 

B, for supporting microarray applications (figure 1 D). 

• Cyto3 = totally new design, January 2009; hydrophilic track width was broadened to 

200 µm instead of 15 µm as so far, especially concerning main track between reaction 

centers A and B (between transducer 10 and 5), and all tracks leading to reaction 

center B (between transducer 3 und 7); diameters of almost all reaction points (A, B 

and centers in front of IDT 3 and 7) are comprising 500 µm instead of 40 µm (red 

circles in figure 1 E); additionally, an intermittent hydrophilic circle is surrounding 

reaction point B to keep the oil cover more fixed to the surface (same design as used 

for the AmpliGrid AG480F, but with 4 gaps of 500 µm width). This chip charge 

was also designed with a hydrophilic array field of 1x1 mm2 next to reaction center B, 

for supporting microarray applications. 

• Spotting of oligonucleotide probes for microarray applications was performed using a 

“Nadelspotter” which can spot 100 µm spots, while the minimal distance between 

spots should be 50 µm. The 1x1 mm2 array field (reaction point C) comprises 

dimensions of 1x1 mm2, thus 36 spots can be arranged in a 6x6 array. Spotting can 

also be performed in reaction spot B, while there only a 3x3 array is possible due to 

smaller diameter.  
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Figure 1. Design of LOC chips. A) Design and dimensions of chip charge Cyto1. B) Electromicroscopy images 
of hydrophobic/hydrophilic track system and reaction points. C) Layout of Cyto1: ∅ point A 40 µm, ∅ point B 
40 µm, track width 15 µm. D) Layout of Cyto2, with microarray: ∅ point A 500 µm, ∅ point B 40 µm, 1x1 mm 
array field (point C), track width 15 µm. E) Layout of Cyto3 with microarray: ∅ point A 500 µm, ∅ point B 500 
µm, 1x1 mm array field (point C), track width of red lined tracks 200 µm. 
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• Chips were manufacturer and provided by Advalytix AG/Beckman Coulter 

Biomedical GmbH, Munich, Germany; spotting operations were done there as well.  

• The basic material of each chip is LiNbO3. Each chip comprises 10 interdigital 

transducers (IDTs) with service connections and gold contact pads. Big IDTs for 

serving the main track should provide an aperture of 3 mm to be capable of moving 5 

µl of oil, the smaller ones for moving droplets an aperture of 1 mm. There must be at 

least 4 different SAW frequencies to operate 4 IDTs at a time. A homogeneous 

passivation using SiO2 enables chemical modification. The surface chemistry features 

hydrophobic and hydrophilic areas. Hydrophilic areas provide tracks for controlled 

droplet movement by surface acoustic wave operation (SAW) and distanced reaction 

centers, which enable independent temperature control. 

 

D. Installation of LOC chips into the CytoCycler device and setting frequencies/channels 

at the FC 1201 HF generator for the particular chip charge 

 

• The FC 1201 HF generator distributes according to the joystick settings high 

frequency signals in the range from 120-170 MHz to one of four channels. The 

maximal power/capacity comprises 35 dBm and is controlled continuously from 7 

dBm to maximum via the deflection of the joystick. The HF generator has 3 different 

switching-status options, marked via grouping into A, B and C (figure 2 A). The 

particular switching status is displayed in the upper middle of the front panel (figure 2 

A, blue arrow). States can be switched by tripping the left joystick button. By tripping 

the right joystick button, the generator switches to maximum power in the direction 

the joystick is moved along the main track. By pressing the “fire” button on top of the 

joystick, maximum power in the appropriated direction is provided, while the 

maximum corresponds to the set value. Each switching status operates 4 different HF 

channels and connected SAW transducers by moving the joystick (figure 2 A, red 

arrow). The relation of each transducer to the single groups in shown in figure 2 C. 

• When installing chips into the chip-holder of the CytoCycler, the temperature control 

device must be switched off – otherwise the temperature sensor and the whole device 

will get damaged! Additionally, the HF generator (SAW control box) may not be run 

without a chip installed! (HF channels may not be run with “open end” respectively 

without connected SAW LOC chip). 
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Figure 2. Operations on a LOC chip. A) Switching-status options A, B and C displayed at the panel (blue 
arrow). Joystick deflection shows operating HF channels (A, red arrow and B). C) The image shows the 
relation of transducers and switching status grouping. The arrows display the movement capacities/facilities 
of a droplet under the influence of the transducers of this group. 
 

• For installing a chip, the contacting lid for the high frequency support of the chip-

holder is opened by turning both screws and release the click-fastening mechanism 

(figure 3, red arrows); carefully remove SAW control lid and put in a chip preferably 

fixed to the left corner of the cavity for being optimally connected to IDTs by gold 

contacts and gold contact pins. 

 

 
Figure 3. Installation of LOC chips. Chips are inserted into the chip-holder via screw-operated “click-
fastening mechanism”. 
 

• Re-attach SAW control lid and fasten screws. 

• For each chip-charge, a report is provided telling the numbers of the chips, the number 

of single defect transducers as well as dedicated frequencies/channels for being tuned 

at the HF generator. 

• Those frequencies/channels and the power level then need to be set at the front panel 

of the HF generator due to the following scheme (figure 2 A): the four control 

elements on the left side are valid for area A on the chip, while the four control 

elements on the right side are valid for area B as well as area C. Always 4 transducers 

must be operable by joystick at a time. So an 8-channel HF generator is used, whereby 
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2 channels at a time should provide the same frequency. The joystick provides a 

switch to shift between the first 4 and the second 4 channels. The HF generator 

provides a PC-interface to enable software-controlled droplet movement. Thereby the 

upper left control element represents values for “up”, the lower left one for “down”, 

upper right one for “left” and the lower right one for “right” ( figure 2 B); given 

directions are related to the tracks in the respective area in which the droplets are 

moved according to the acting IDTs. Thus, directions display the agitation facilities of 

a droplet being under the influence of these interdigital transducers. Currently droplet 

movement can only be carried out manually via joystick, but not yet via software. 

Important: changed values need to be saved, validated and transferred to the SAW 

control unit by activating the “Set” button. For details about the connection of IDTs 

and 1201 HF generator please refer to the “FC 1201 HF-Generator Manual” provided 

by Zeno Guttenberg (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany) in 2006. Important: in case of a non-working joystick (shown by blinking 

lights at the front panel), the joystick needs to be re-adjusted. This can be done by 

opening the joystick covering at the rear side and measuring the co-current flow of the 

contacts for joystick deflections. The measured value should be set around 2.5 V. 

• The chip-holder is sometimes also named “CytoCycler”. It has a cavity for installing a 

single chip. The contacting lid for the high frequency support, which must be removed 

and reassembled for installing a chip, provides power connections for 10 transducers 

including 20 gold contact pins. 

 

E. Operating the CytoCycler for performing PCR 

 

• Install a new chip in the LOC chip-holder; important: the temperature control device 

may only be switched on when a chip is inserted – otherwise it might be damaged! 

• Start computer, switch on temperature control device (black heating device), run 

software “CytoCycler” (desktop). For a detailed description of the software and the 

different program cards please refer to the “CytoCycler Software Manual” provided 

by Zeno Guttenberg in 2006 (Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany). 

• The software provides different register cards, where programs for the load resistor 

heating (serving reaction point A) as well as the Peltier element (serving reaction point 

B and the array field C) can be saved; required register cards can be activated/marked 
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in the box “Status” (working procedure then happens from A1 to B3); for performing 

a normal PCR, simply register card B2 is required, where a complete PCR program 

can be typed in, saved and changed via “Save” or “Save as”. Saved programs can be 

changed and activated by “Load”→ “All Files“ → choose program. Single boxes in 

the cards, where the duration was set as “0” s, are going to be ignored. 

• Load resistor heating accepts temperatures from 20°(room temperature)-90°C, with a 

heating rate of 0.01-10 K/s; duration of temperature steps can be set to up to 16 h 

(60000 sec). The Peltier element accepts temperatures from 4°-105°C, with a 

heating/cooling rate of 0.01-5 K/s (cards A1, A2, B1) and a fixed heating rate of 3 K/s 

and cooling rate of 4 K/s. Cycling times can be chosen up to 200 s per temperature 

step, and times for pre-annealing or post-elongation up to 3000 s. Temperature 

increments can be set from 0.1-5 K, and time increments from 0.1-5 sec. The number 

of cycles can be adjusted from 0-60. 

• Load a saved program file: “Load” → “All Files” → choose program; parameters can 

be changed individually; run program by clicking “Start Process”; after chosen 

parameters have been checked by the software, a message box appears (“B2 

Kommentar”) to definitely start the reaction by clicking “Ok”; each program can be 

stopped by clicking “Abort Process”. 

• Before starting a PCR, each new chip which is installed into the chip device, needs to 

be pre-heated to 95°C for about 15 min C (during this procedure, the material of the 

chip expands due to the high temperature – this prevents the droplet afterwards, when 

starting the initial denaturation step of the PCR at 95°C, to be moved/deformed due to 

material stress); afterwards, let the chip cool down completely. 

• For performing PCR, first, add 1 µl of master mix onto reaction point B, then cover 

the reaction by adding 5 µl of mineral oil (Sealing Solution) to prevent evaporation 

and cross-contamination. Evaporation might inhibit the amplification reaction, as via 

evaporation the salt concentration of the reaction solution gets enhanced. 

• Start PCR by “Start Process”. 

• Let chip CytoCycler cool down after PCR is finished (wait until ventilation stops). 

• Transfer 1 µl PCR into a sterile 0.2 ml PCR tube for storage (e.g. add 1 µl of 6x gel-

loading-dye as well as 4 µl of water, then extract 6 µl volume from PCR tube for 

PAAGE application). 
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• Clean used LOC chips immediately with 70% EtOH and H2O
dd, then store in water for 

a distinct period of time to remove dried PCR remains; continue with cleaning 

procedure (paragraph A of this LOP). 

• Insert a “dummy chip” into the cavity of the chip-holder serving as a placeholder, as 

CytoCycler device may never be assembled without a chip inside!! 

 

 
Figure 4. Screenshot of software “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 
Germany). Several working sheets N-B3 comprising various PCR programs and protocols are independently 
addressable and operable. In the upper left corner a steady overview is provided concerning cycle number, 
temperature and activated working sheet. The temperature profile of the passed 20 minutes is shown graphically 
as well. 
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9.1.4 LOP of LV-PCR (low-volume PCR) 

“Low-volume (LV-PCR) for application on AmpliGrid  AG480F and the LOC system” 

A. Material  

• AmpliGrid AG480F or LOC chips Cyto1, Cyto2, Cyto3 (Advalytix AG/Beckman 

Coulter Biomedical GmbH, Munich, Germany) 

• AmpliSpeed slide cycler (Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) 

• UVC light source (PCR Workstation, PeqLab Biotechnologie GmbH, Erlangen, 

Germany) 

• CytoCycler (PCR device incl. chip-holder, temperature control device, SAW control 

high frequency (HF) generator, particular software “CytoCycler” (Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany)) 

• HF generator (FC 1201 HF, Advalytix AG/Beckman Coulter Biomedical GmbH, 

Munich, Germany) 

• Software “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany) 

• Sealing Solution (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany) 

• Sterile 0.2 ml PCR tubes (Eppendorf AG, Hamburg, Germany) 

• Purified DNA material or crude sample material for direct cell lysis, but not more than 

1 ng target DNA material – this might overload the reaction volume! 

• Master mix (MM) for performing PCR including buffer for DNA polymerase, dNTPs, 

MgCl2, oligonucleotids (primers), DNA polymerase: it is important to use an 

appropriate MM, which DOES NOT mix/fuse with the cover oil (Sealing Solution)!! 

Most suitable turned out to be PCR kits provided by QIAGEN GmbH (Hilden, 

Germany) like e.g. QIAGEN Fast Cycling PCR kit; QIAGEN Multiplex PCR kit; 

QuantiFast SYBR Green I PCR kit; QuantiTect SYBR Green I PCR kit). 

• Master mixes need to be calculated down to exactly 1 µl of total reaction volume per 

reaction; there are two possibilities: a) calculate master mixes (w/o DNA) to 1 µl per 

reaction point excluding volume of target DNA, as target DNA or the tissue 
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sample/cell respectively has already been placed at the reaction point and dried at 

room temperature; b) master mixes are calculated to 1 µl per reaction including 

volume of target DNA (standard procedure). Caution: drying sample material at room 

temperature on LOC chips worked always suboptimal and caused a lot of bubbling 

master mixes when applied to the sample; thus, just procedure b) should be used for 

LOC chips. On the AmpliGrid AG480F, both procedures worked comparable well! 

• AmpliGrid AG480F PCR: all cycling times for PCR need to be extended a bit, as 

slide cycler needs some time to reach the desired temperature (each temperature step 

about 20 sec longer); use higher concentration of polymerase (1U/µl); some kits 

perform better when scaled down, others worse (best: PCR kits by QIAGEN GmbH 

can be scaled down 1:1); primer concentration about 0.2 µM in PCR; use a DNA 

starting amount of about 100-200 pg, 1 ng at maximum; concentration of Mg2+ about 

1-5 mM; initial denaturation step as well as final elongation step each about 5-10 min. 

• 1 µl of PCR reaction master mix is generally covered with 5.0 µl of Sealing Solution. 

When using microdissected material, the PEN-carrier membrane might interfere 

amplification; thus, time of initial denaturation could be extended to 15 min. When 

droplets next to each other merge, less oil needs to be used (4.8-5.0 µl) (figure 1). 

 

 
Figure 1. Principle of low-volume PCR (LV-PCR). A) Schematic overview: 1 µl of hydrophilic master mix is 
placed on a hydrophilic reaction spot and kept in place by a surrounding hydrophobic ring; hydrophobic oil 
coverage prevents evaporation and is kept in place by a surrounding hydrophilic ring. B) Close-up of the droplet-
in-oil principle of LV-PCR on chip. C) LOC chip presenting a placed PCR reaction, comprising 1 µl droplet of 
master mix (red colored as containing blood) covered by 5 µl of mineral oil. 
 

B. Operating procedure 

 

I. Preparing the master mix 

 

• Clean room (use overshoes, gloves, lab coat): all PCR reagents are stored at -20°C in 

the freezer, EXCEPTING DNA!!! 

• 1 µl LV-PCR master mix for β-actin or amelogenin PCR respectively (QIAGEN Fast 

Cycling PCR kit): 0.5 µl 2x QIAGEN Fast Cycling PCR Master Mix (final 1x), 0.1 µl 
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10 µM forward primer (final 1 µM), 0.1 µl 10 µM reverse primer (final 1 µM), 0.0-0.3 

µl sterile water (Ampuwa, Fresenius GmbH, Bad Homburg, Germany) (depends on 

DNA amount/volume used or if DNA was dried on chip). Amelogenin primers (stock 

solution 100 pmol/µl) = ‘Amel1’ (5’-CCC-TGG-GCT-CTG-TAA-AGA-ATA-GTG-

3’) and ‘Amel2’ (5’-ATC-AGA-GCT-TAA-ACT-GGG-AAG-CTG-3’); β-actin 

primers (stock solution 100 pmol/µl) = ‘β-Actin up’ (5’-TCA-CCC-ACA-CTG-TGC-

CCC-ATC-TAC-GA-3’) and ‘β-Actin down’ (5’-CAG-CGG-AAC-CGC-TCA-TTG-

CCA-ATG-G-3’). 

• Calculate at least 1 negative control (just MM w/o DNA) and 1 extra reaction per 

reaction batch (as reserve, that there will be enough master mix for all reactions – 

note, that there are pipetting inaccuracies due to natural measurement error of pipets 

and MM sticking to filter tips and tubes!). 

• Important: mix reactants of master mix just by ‚agitating/stirring the pipet’, DON’T 

mix up and down!!! Extensive mixing might create smallest air bubbles in the master 

mix, which could lead to the generation of big bubbles in the reaction mix while 

heated to 95°C (Loss of reactants! Loss of volume! Change of concentrations!). 

 

II. Setting up a LV-PCR 

 

• Decontaminate AmpliGrid AG480F and LOC chips for 15-20 min using a UVC 

light source. 

• Position negative control first and then add DNA to the mix (in case that DNA has not 

been air dried at reaction points). 

• Add 1 µl MM per reaction point (volume can even be scaled down to 200 nl [1]), then 

cover droplets by using 4.8-5.1 µl of Sealing Solution to prevent evaporation and 

cross-contamination (figure 1). Evaporation might inhibit the amplification reaction, 

as via evaporation the salt concentration of the reaction solution gets enhanced. 

• Important item when pipetting: empty pipet just until the first pressure point is 

reached!!! Emptying pipet down to the second pressure point can cause bubble 

formation in maser mix and Sealing Solution due to the additionally blown off dead 

volume (enhanced pressure)!! 
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III. Standard PCR programs 

 

• β-actin and amelogenin PCR: 5-15 min at 95°C initial denaturation (depends on MM 

and required activation time of HotStart DNA polymerase), 35-40 cycles of 94°C for 

30 sec, 60°C for 30 sec, 72°C for 30 sec and final extension at 72°C for 1 min (cycling 

times and temperatures can be adjusted individually). 

• “Touch down PCR” for DNA typing using primers D7S1824, D9S302, D10S2325: 

10-15 min at 95°C initial denaturation (depends on MM and required activation time 

of HotStart DNA polymerase), 14 cycles of 94°C for 30 sec, 64°-50°C for 60 sec 

(temperature increment -1°C per cycle), 72°C for 30 sec, followed by 25 cycles of 

94°C for 30 sec, 50°C for 30 sec, 72°C for 30 sec, final extension at 72°C for 7 min. 

• AmpF/STR SEfiler PCR amplification system (Applied Biosystems, Darmstadt, 

Germany): 11 min at 95°C initial denaturation for HotStart AmpliTaq Gold DNA 

polymerase (5-15 min, depends on MM and required activation time of HotStart DNA 

polymerase), 28 cycles of 94°C for 1 min, 59°C for 1 min, 72°C for 1 min, followed 

by 60°C for 45 min final extension (for AmpliTaq Gold DNA Polymerase mediated 

non-template adenylation) or respectively 15 min (for KOD Xtreme DNA 

Polymerase = blunt ends, normal extension). 

 

C. Operating the AmpliSpeed (LV-PCR on AmpliGrid AG480F) 

 

• Switch on AmpliSpeed slide cycler; log in as ‘Administrator’; wait until self-test and 

calibration is done (display changes from “Self test” to “Idle”). 

• Load a saved program file: “File” → “Load” → “PROTOKOLLE” → choose program 

→ click “Ch. Dir”, which stands for “ok”. 

• For changing some parameters of the selected program: address/click on the parameter 

(e.g. time, temperature or cycle number) using the touch screen, change settings using 

the arrow buttons; when starting the changed program, automatically the software 

calls for saving the changed program – this can be confirmed, otherwise the changed 

program can be save using a new file name. 

• Position the AmpliGrid AG480F onto the heating area of the AmpliSpeed slide 

cycler and close the lid. 

• Run program by activating the “Start” button (arrow button). 

• After PCR has finished, stop program by clicking the “Stop” button (square button). 
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D. Operating the chip system (LV-PCR on CytoCycler) 

 

• Install a new chip in the LOC chip-holder (important: the temperature control device 

may only be switched on when a chip is inserted – otherwise it might be damaged) 

(see detailed description in the “LOP of LOC chips”, chapter 9.1.3). 

• Start computer, switch on black temperature control box, run software “CytoCycler” 

(desktop). 

• Load a saved program file: “Load” → “All Files” → choose program; parameters can 

be changed individually; run program by clicking “Start Process”; after chosen 

parameters have been checked by the software, a message box appears (“B2 

Kommentar”) to definitely start the reaction by clicking “Ok”; each program can be 

stopped by clicking “Abort Process”. 

• Before starting a PCR, each new chip which is installed into the chip-holder, needs to 

be pre-heated to 95°C for about 15 min C (during this procedure, the material of the 

chip expands due to the high temperature – this prevents the droplet afterwards, when 

starting the initial denaturation step of the PCR, to be moved/deformed due to material 

stress); afterwards, let the chip cool down completely. 

• First, add 1 µl of master mix onto reaction point B, then cover the reaction by adding 5 

µl of mineral oil (Sealing Solution) to prevent evaporation and cross-contamination 

(figure 1). Start PCR. 

• Let chip CytoCycler cool down after PCR is finished (wait until ventilation stops). 

• Transfer 1 µl PCR into a 0.2 ml sterile PCR tube for storage (e.g. add 1 µl of 6x gel-

loading-dye as well as 4 µl of water, then extract 6 µl volume for PAAGE 

applications). 

• Clean used LOC chips immediately with 70% EtOH and H2O
dd, then store in water for 

a distinct period of time to remove dried PCR remains; continue with cleaning 

procedure (see “LOP of LOC-chips”, chapter 9.1.3). 

• Insert a “dummy chip” into the cavity of the chip-holder serving as a placeholder, as 

CytoCycler device may never be assembled without a chip inside. 
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9.1.5 LOP of BioSpot (PipeJet) 

“Application of BioSpot  for automatic spotting of solutions onto the LOC” 

A. Material  

• BioSpot dispenser and software “BioSpot” (BioFluidix GmbH, Freiburg, Germany) 

• 0.2 ml sterile PCR tubes (Eppendorf AG, Hamburg, Germany) used as 

reservoirs/flasks for fluids (e.g. master mix, Sealing Solution, SSC washing solutions 

after hybridization/array amplification, etc...) 

• e.g. master mix solution (without DNA, to not contaminate tips/PipeJets of 

BioSpot), filled into 0.2 ml Eppendorf reaction tubes, for reaction center A or B 

• Sealing Solution (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany), filled into 0.2 ml Eppendorf reaction tubes, for reaction point C 

• e.g. washing solutions (various concentrations of SSC), filled into 0.2 ml Eppendorf 

reaction tubes, for reaction center A or B 

 

B. Protocols 

 

I. Starting the Biospot (Nanodispenser) 

 

• Start computer, switch on hardware (piezo control unit & movement control), start 

software “BioSpot” (drive C:\\Program Files/BioSpot/software/BioSpot.exe or via 

shortcut “BioSpot” on desktop) → at first, automatically LOC-slide and PipeJets 

move to parking position (reference position) at x=0 or z=0 respectively (initial 

position). 

• Adjust speed/velocity of x- and z-axis in control window “Axis Control“: Xvel = 500, 

Zvel = 500, press “Set Axis Speed“ to validate changed settings; adjust the trackbar 

below for “Step width (mm)“ to smallest values as well (= 0.01 mm) ⇒ by adjusting 

these settings the motor gets prohibited of slippage/wheelspin when movement 

settings for x-position are changed from 0 to increasing values. In case of wheelspin, 

recalibrate the system by “Search Reference”. 
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II. Description of single active control windows (figure 1) 

 

• Window “(1) Axis Control and Axis Movement”: for movement of LOC-slide on x-

axis and of PipeJets on z-axis. For manual handling just the following settings are 

needed: “Move to Pos“ for moving the LOC-slide and PipeJets in desired positions 

on the x- or z-axis respectively. Simply set desired numbers and start application with 

“Move“ (black arrow buttons can only be used for movement when window “Enable 

Keyboard Control“ is activated, but are not needed necessarily. Buttons “Search 

Reference“, “Stop Search“ and “Move to Parking Position“ (x = 0, z = 0) are not 

needed for normal application as well). All of the following values given in table 1 

are valid for 0.2 ml Eppendorf reaction tubes, set into the various flasks. Initially 1.5 

ml flasks are set into the desired position A, B, C or D of the flask holder, into there 

0.5 ml reaction tubes are set, and into there, finally 0.2 ml reaction tubes. That “tube-

in-tube”-application is used to keep applied pipetting volumes as small as possible, to 

get PipeJets deeper into tubes and to not waste much fluid just for filling up the big 

1.5 ml tubes. Standard values for x- and x-movement are give in table 1. 

 

Table 1. Functions and values for using the BioSpot. 
 

LOC application Position x-axis [mm] Position z-axis [mm] 
Aspiration PJ1 (flask A) 280 33-37 
Aspiration PJ1 (flask B) 266.5 33-37 
Aspiration PJ1 (flask C) (best centered) 253.5 33-37 
Aspiration PJ1 (flask D) 240.05 33-37 
Aspiration PJ2 (flask A) 280 33-37 
Aspiration PJ2 (flask B) 266.5 33-37 
Aspiration PJ2 (flask C) (best centered) 253.5 33-37 
Aspiration PJ2 (flask D) 240.05 33-37 
Aspiration PJ3 (flask A) (best centered) 280 33-37 
Aspiration PJ3 (flask B) 266.5 33-37 
Aspiration with PJ3 using flask C and D is not 
applicable due to steric interference with 
cable/wire below the flask holder 

  

Dispensing PJ1 to reaction center A (H2O) 62 - 62.5 30 
Dispensing PJ2 to reaction center B (H2O) 114.2 (115) 30 (28) 
Dispensing PJ3 to reaction center C (oil) 164-166 25-28 
   
To check, if tip of PipeJet PJ1, PJ2 or PJ3 is 
centered to flasks A, B, C or D 

Flask position 28 

SPATS Position (for sample release) 700 - 
Fluorescence Reader 459 - 460 - 
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• Window “(3) Valve Control and Pump Control” : to open and close valves of single 

PipeJets and to connect pump with valves, or with air or valves with air (bypass). 

The valve, which is going to be used to “Aspirate”, must be open and connected to the 

pump (button “Valves (2)”), the other valves must be closed. The speed „PSpeed“ for 

„Aspirate“ or „Dispense“ respectively can remain unchanged at 20 ms. The volume 

„PVol“ can be adjusted: e.g. to 30 µl for H2O, master mix and washing solution (PJ1 + 

PJ2), to 40 µl for oil (PJ3). After „Aspirate“ valves can remain connected to the pump, 

avoiding a low-pressure to occur. The “Dispense” function is needed only to totally 

empty the valves and to dispense remaining liquids back into the flasks. 

• Window “(2) PipeJet Control” : various settings for automatic shooting of a 

definite volume using single PipeJets. There are just slight changes to be validated 

as most parameters are set as standard values and remain unchanged. Standard 

settings: Istroke = 36 µm, vdown = 200 µm/ms, thold = 10 µs, vup = 2 µm/ms, n = 5, 

delay = 100 ms. Just the “Istroke“ is recommended to be changed to 20 µm instead of 

36 µm, and the number “n“ from 5 to 20 repetitions, when 1 µl is going to be shot. 

Any changes in the settings need to be validated by “Set PJ“. A volume of about 1 µl 

is shot, when having aspirated a volume of about 30 µl with PJ1 or PJ2 and when 

starting the shoot-function by “Shoot PJ“. Buttons “Detect mode“ as well as 

„Dispense mode“ do not have a specific function defined by the software and can be 

neglected. 

• Window “(4) Batch Mode”: for programming and saving complex operations (in an 

excel-sheet). Thereby, a numerical code is applied. In the control window „(1) Axis 

Control and Movement“ x-position values indicate a movement of the LOC-slide, z-

position values indicate a movement of the PipeJets. In the control window „(3) 

Valve and Pump Control“ for valves V1, V2, V3 a “0“ indicates open valves and a “1“ 

means closed ones. For using the pump, at “PPos” a “0“ stands for “Bypass”, that is 

the connection of „Valve with Air“, “1“ indicates a connection “Pump with Air“ and 

“2“ means the connection “Pump with Valves“. Volumes for “Aspirate“ are indicated 

at “PVol“ using a “-“ for negative values, volumes for “Dispense“ using a “+” for 

positive values. Errors during the operation can be checked and detected by “Check 

Batch“. The operating process can be started with “Batch execute“ and can be paused 

with “Pause” or aborted with “Stop execution”. When the “Stop execution” function is 

activated, the total batch process stops immediately and the execution is cancelled. 

When pressing “Batch execute” again, the system will try to get back to the initial 
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starting positions of the actual batch file (the first line), and x-axis as well as z-axis 

will move simultaneously. Thus, to avoid PipeJets hitting the LOC-slide, use the 

“(1) Axis Control and Axis Movement” box to get the PipeJets (firstly) as well as 

the LOC-slide (secondly) manually back to the initial positions at z=0 and x=0, before 

starting “Batch execute” again. When “Pause” is pressed, a window “Batch Processing 

Paused” will appear. Now it is possible to change settings manually in window (1), (2) 

and (3), and to perform extra performances. However, the system will be back to the 

actual position in the batch mode and continue, after pressing “Ok”. So click “Ok” to 

continue. 

 

 

Figure 1. Screenshot of software “BioSpot” (BioFluidix GmbH, Freiburg, Germany). The software is used 
for operating the automatic dispensing device BioSpot. There are four single active control windows namely 
“(1) Axis Control and Axis Movement”, “(2) PipeJet Control”, “(3) Valve Control and Pump Control” for 
manually operated applications, as well as “(4) Batch Mode” for automatically operating protocols. (1) allows a 
regulation of speed and x-position of the slide rail and z-position of PipeJets. (2) allows an adaption of depth 
of penetration, displacement speed, release speed and holding time of the piezostack driven piston, as well as 
number of repetitions and delay time. (3) allows opening and closing of PipeJet valves, connections to the 
syringe pump as well as setting speed and volumes for aspiration and dispension and to start these operations. (4) 
allows programming complete sequences, which can be run automatically. 
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III. Manually performed spotting of 1µl of master mix onto reaction point A (PipeJet1,PJ1) 

 

• (1) “Move” LOC-slide to x-position 253.5 = flask C; “Move” PJ1 to z-position 33-37. 

• (3) “Connect” pump to valves, “Open” valve1, “Close” valves 2 and 3; PSpeed = 20, 

PVol = 30 µl; press button „Aspirate“ (watch, if fluid is aspirated into the tube); pump 

stays connected to valve1. 

• (1) “Move” PJ1 to z-position 0; “Move” LOC-slide to x-position 62 = reaction center 

A; “Move” PJ1 to z-position 30. 

• (2) Adjust the following settings at PJ1: Istroke = 20 µm, vdown = 200 µm/ms, thold 

= 10 µs, vup = 2 µm/ms, n = 20, delay = 100 ms; validate settings with „Set PJ1“; start 

spotting with “Shoot PJ1“; about 1 µl will be spotted onto the chip surface. 

• (3) After shooting, “Close” valve1 and “Connect” pump to air. 

• (1) “Move” PJ1 to z-position 0. 

• SAW-Control: 1 µl of fluid can now be move via SAW on the chip surface. 

• (1) “Move” LOC-slide to x-position 253.5; “Move” PJ1 to z-position 28-30. 

• (3) Release of fluid remains or of the over-aspirated volume from PJ1 back into the 

reservoir flask C: “Connect” pump to valves, “Open” valve1, activate button 

“Dispense“ as long as no liquid will be released any more or until the pump is out of 

range (“Plunger out of range“). In the case that there is still remaining liquid inside the 

tube, again aspirate some air using pump, and then dispense this volume via valve1: 

“Move” PJ1 to z-position 0, “Connect” pump to air, “Aspirate” (1-2x 30 µl), 

“Connect” pump to valves, “Move” PJ1 to z-position 28-30, “Dispense” (as long as all 

liquid is removed from the tube and pump reaches the initial position), “Close” 

valve1. 

• (1) “Move” PJ1 to z-position 0. 

• Trouble shooting: (3) when “aspirating“ about 30 µl, and then want to “Dispense“ just 

5 µl, unfortunately not 5 µl reached the chip surface, but only 1.5 µl. When 3x 

“dispensing” 5 µl, 11.5 µl reached the chip surface... thus, dispensing an exact volume 

did not work well..... 
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IV. Manually performed spotting of 1µl of master mix onto reaction point B (PipeJet2,PJ2) 

 

• (1) “Move” LOC-slide to x-position 253.5 = flask C; “Move” PJ2 to z-position 33-37. 

• (3) “Connect” pump to valves, “Open” valve2, “Close” valves 1 and 3; PSpeed = 20, 

PVol = 30 µl; press button “Aspirate“ (watch, if fluid is aspirated into the tube); pump 

stays connected to valve2. 

• (1) “Move” PJ2 to z-position 0; “Move” LOC-slide to x-position 115 = reaction center 

B; “Move” PJ2 to z-position 30. 

• (2) Adjust the following settings at PJ2: Istroke = 20 µm, vdown = 200 µm/ms, thold 

= 10 µs, vup = 2 µm/ms, n = 20, delay = 150 ms; validate settings with “Set PJ2“; start 

spotting with “Shoot PJ2“; about 1 µl will be spotted onto the chip surface. 

• (3) After shooting, “Close” valve2 and “Connect” pump to air. 

• (1) “Move” PJ2 to z-position 0. 

• SAW-Control: 1 µl of fluid can now be move via SAW on the chip surface. 

• (1) “Move” LOC-slide to x-position 253.5; “Move” PJ2 to z-position 28-30. 

• (3) Release of fluid remains or of the over-aspirated volume from PJ2 back into the 

reservoir flask C: “Connect” pump to valves, “Open” valve2, activate button 

“Dispense“ as long as no liquid will be released any more or until the pump is out of 

range (“Plunger out of range“). In the case that there is still remaining liquid inside the 

tube, again aspirate some air using pump, and then dispense this volume via valve2: 

“Move” PJ2 to z-position 0, “Connect” pump to air, “Aspirate” (1-2x 30 µl), 

“Connect” pump to valves, “Move” PJ2 to z-position 28-30, “Dispense” (as long as all 

liquid is removed from the tube and pump reaches the initial position), “Close” 

valve2. 

• (1) “Move” PJ2 to z-position 0. 

 

V. Manually performed spotting of 5µl Sealing Solution onto reaction point C 

(PipeJet3,PJ3) 

 

• (1) “Move” LOC-slide to x-position 280 = flask A; “Move” PJ3 to z-position 33-37. 

• (3) “Connect” pump to valves, “Open” valve3, “Close” valves 1 and 2; PSpeed = 20, 

PVol = 25 µl; press button “Aspirate“ (watch, if fluid is aspirated into the tube); pump 

stays connected to valve3. 
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• (1) “Move” PJ3 to z-position 0; “Move” LOC-slide to x-position 164 = reaction center 

C; “Move” PJ3 to z-position 28. 

• (3) “Connect” valves to air = “Bypass“, thus, automatically a droplet is generated at 

PJ3 due to declined low-pressure, which drops automatically onto the chip surface due 

to gravity; as soon as the droplet reaches the surface, immediately “Connect” the 

pump to valves, to generate the low-pressure again and to stop the dispensing directly. 

OR: “Close” valve3, “Connect” valves to air (“Bypass“), “Open” valve3, wait for 

droplet touching the chip surface, “Close” valve3. 

• (1) “Move” PJ3 to z-position 0. 

• SAW-Control: 5 µl of Sealing Solution can now be moved via SAW on the chip. 

• (1) “Move” LOC-slide to x-position 280; “Move” PJ3 to z-position 28-30. 

• (3) Release of fluid remains or of the over-aspirated volume from PJ3 back into the 

reservoir flask A: “Connect” pump to valves, “Open” valve3, activate button 

“Dispense“ as long as no liquid will be released any more or until the pump is out of 

range (“Plunger out of range“). In the case that there is still remaining liquid inside the 

tube, again aspirate some air using pump, and then dispense this volume via valve3: 

“Move” PJ3 to z-position 0, “Connect” pump to air, “Aspirate” (1-2x 25 µl), 

“Connect” pump to valves, “Move” PJ3 to z-position 28-30, “Dispense” (as long as all 

liquid is removed from the tube and pump reaches the initial position), “Close” 

valve3. 

• (1) “Move” PJ3 to z-position 0. 

• Trouble shooting: (3) when “aspirating” about 25 µl, and then want to dispense 4x 5 

µl, only 2.5 µl were dispensed... thus, dispensing did not work well with oil as well. 

• Trouble shooting: (2) the “Shoot PJ3“-function did not work very well with oil... 

during “Shoot PJ3” single oil droplets were spread over the chip surface and did not 

combine to an increasing droplet volume. Furthermore, it was not possible to “shoot” 

more than about 2 µl – it seems that in that case the PJ-valve ran empty/out of liquid, 

as the stored fluid in the tube could not flow fast enough into the emptied PJ tip.... 

especially when valve was still connected to pump; but when connecting the valve to 

air, too much liquid was released and no shooting was possible..... 

• (2) Additionally, parameter changes were tested, but did not succeed. Changes in “n“ 

= 20, 30, 40, 100 produced just a volume of maximum 2 µl when using “Shoot PJ3“. 

Changes in “delay“ of 100, 200, 500, 1000 and 2000 did not produce a larger 

dispensed volume than just 2 µl when using “Shoot PJ3“. 
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VI. To program automatic pipetting operations using the “(4) Batch mode” 

 

• Write a working procedure first: step-by-step, what to do (example in table 2). 

• Final instructions can then be typed into an Excel-sheet in the software according to 

the “Batch mode”-code (figure 2), or respectively, an already existing program can be 

loaded via “Open file” and then be changed (save changes via “Save file”). 

• Via “Batch execute” the list of orders will be run line-by-line. 

• The generated working sheet of the „Batch mode“ is saved with a .csv ending – this 

ending can simply be opened by Excel. 

• Working sheets generated in Excel can easily be saved as .xls as well as .csv ending 

files, and thus can easily be opened in the “Batch mode”. 

 

Table 2. Step-by-step operating procedure of moving PJ1 to reaction center A and PJ3 to reaction center C, 
which can be transferred to an Excel file and translated according to the “Batch mode”-code. 
 
 PJ1 = e.g. for master mix: use flask C (best centered) 

PJ3 = e.g. for Sealing Solution: use flask A (best centered) 
 Axis Control settings: 
(1) “Xvel“ / “Zvel“ = 500 steps/s; press “Set Axis Speed“ to validate new settings (Axis Control) 
(1) “Step width“ = 0.01 mm (Axis Control) 
 To “Aspirate” and “Dispense” the Sealing Solution/mineral oil (PipeJet3): 
(1) 1. “Move” LOC-slide to x = 280 mm to aspirate oil (Axis Movement) 
(1) 2. “Move” PJ position to z = 33 mm (Axis Movement) 
(3) 3. “Open” valve3 (V3) and keep the others closed (Valve Control) 
(3) 4. “Connect” pump to valves by pressing “Valves“ (Pump Control) 
(3) 5. Set “PVol“ to 25 µl (Pump Control) 
(3) 6. Press “Aspirate“ (Pump Control) 
(1) 7. “Move” PJ to the initial position, z = 0 mm (Axis Movement) 
(1) 8. “Move” LOC to x = 164 mm to dispense the oil in the reaction center C (Axis Movement) 
(1) 9. “Move” PJ to z = 28 mm (Axis Movement) 
(3) 10. To dispense the oil, “Connect” the valves to air by pressing “Bypass“ (Pump Control) 
(3) 11. Immediately after that the oil droplet reaches the chip surface, “Connect” the pump to valves by 

      pressing “Valves“ (Pump Control) 
(1) 12. “Move” PJ to z = 0 mm (Axis Movement) 
 To “Aspirate” and “Dispense” the master mix, H2O, or else (PipeJet1): 
(1) 13. “Move” LOC-slide to x = 253.5 mm to pipette the master mix (Axis Movement) 
(3) 14. “Open” valve1 (V1) and “close” valve3 (V3) (Valve Control) 
(1) 15. “Move” PJ to z = 33 mm (Axis Movement) 
(3) 16. Set “PVol“ to 30 µl (Pump Control) 
(3) 17. Press “Aspirate“ (Pump Control) 
(1) 18. “Move” PJ to z = 0 mm (Axis Movement) 
(1) 19. “Move” LOC-slide to x = 62 mm to dispense the master mix in the reaction center A (Axis 

       Movement) 
(1) 20. “Move” PJ to z = 30 mm (Axis Movement) 
(2) 21. Change PJ1 settings (PipeJet Control): 

      Istroke(20µm); vdown(200µm/ms); thold(10µs); vup(2µm/ms); n(20); delay(100ms) 
(2) 22. Press “Set PJ1“ to validate the modifications (PipeJet Control) 
(2) 23. Press “Shoot PJ1“ (PipeJet Control) 
(1) 24. “Move” PJ to z = 0 mm (Axis Movement) 
(1) 25. “Move” LOC-slide to x = 300 for SAW control and PCR performance (Axis Movement) 
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Operating procedure written into the Excel working-sheet: “Batch mode”-code (figure 2) 

 

To open a “Batch mode” file, press “Open file”. To save setting changes in a file or to save a 

new created one, press “Save file”. Saved files are stored in the folder “Methods” (drive 

C:\\Program Files/Biospot/Methods). 

 

For typing any instructions into an Excel-sheet, the following settings have to be considered, 

providing the “Batch mode”-code: 

 

A-D = (1) Axis Control and Axis Movement (target position of axis system) 

• X (A) and Z (B) = position of LOC-slide on x- and of PipeJets on z-axis 

• Xvel (C) and Zvel (D) = speed of x-axis and z-axis (500 steps/s = standard) 

 

E-J = (3) Valve Control and Pump Control (pumping behavior, valve position, valve 

            velocity, volume) 

• V1-3 (E,F,G) = valve 1-3 (1 = closed, 0 = open); keep all the valves closed until the 

aspiration or dispensing process is desired 

• PPos (H) = connection of pump/air/valves (0 = bypass (valves/air), 1 = pump/air, 2 = 

pump/valves) 

• PSpeed (I) = speed of aspiration/dispensing process (20 ms = standard) 

• PVol (J) = volume of aspiration/dispensing in [µl]: (-) = aspiration, (+) = dispensing,  

0 = standard (no pipetting activity) 

 

K-R = (2) PipeJet Control (stroke, downstroke velocity, holdtime, upstroke velocity) 

• PJ (K) = number of PJ, which is used to „shoot“ (1, 2 or 3) 

• Istroke (L) = penetration depth of piezo (5-36 µm, standard = 30 µm) 

• Vdown (M) / vup (O) = down-/upstroke speed of piezo during dispensing process 

(downstroke 100-250 µm/ms (standard = 200), upstroke 1-10 µm/ms (standard = 1; in 

use = 2)) 

• thold (N) = adjustment of piezo holding time (10-1000 µs; standard = 10 µs) 

• n (P) = number of repetitions of dispensing process (1-1000); 0 = standard = no 

“shooting” activity!!! 

• delay (Q) = delay time between each repetition (1-2000 ms; standard = 100) 

• Changes must be verified by pressing “Set PJ“ button 
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  A                                            B  

Figure 2. Programming operating procedures in “Batch Mode”. Operating procedures can be written into an 
Excel working-sheet. Parameters can be typed into the columns according to the desired operation to be 
performed. A+B) Operating procedures for pipetting 1 µl of fluid to reaction point A (A) or B (B) and 
dispensing 5 µl of Sealing Solution to reaction center C, expressed according to the “Batch mode”-code. 



9. Appendix 
 

 174 

9.1.6 LOP of Fluorescence Reader 

“Fluorescence detection for applications like RT-PCR or microarray on the LOC 

system” 

 

A. Material  

 

• BioSpot device and software “BioSpot” (BioFluidix GmbH, Freiburg, Germany) 

• CytoCycler (PCR device incl. chip-holder, temperature control device, SAW control 

high frequency (HF) generator, particular software “CytoCycler” (Advalytix 

AG/Beckman Coulter Biomedical GmbH, Munich, Germany)) 

• Electronics (electronic control): LED power control box (self made), trigger signal 

break-out box (NI SCB-68 with the PCI ADC/DAC capture the trigger signal, 

activates the image capture and image processing process; Quick Reference Label, S-

Series Devices, National Instruments Germany GmbH, Munich, Germany) 

• Optics: - black & white CCD camera (Rolera-XR, QImaging, Surrey BC, Canada) 

                  - Filter sets (Interferenzfilter of BrightLine series, AHF Analysentechnik AG, 

                     Tübingen, Germany): excitation filter λmax = 498 nm (spread 35 nm = 464 

                     500 nm); emission filter λmax = 536 nm (spread 40 nm = 516-556 nm); both) 

                  - light source: blue LED (λmax = 470±2 nm LUXEON Rebel LXML-PB01 

                     0023, 3.4 V forward bias, 0.7 A operating current) 

• Software: “QCapture” or “QCapture PRO 6.0” (QImaging, Surrey BC, Canada), 

“LED_Switch.VI”, “Norbert.VI”, “Grand_NIVision_Intensity_Consec_Subtract_ 

Loopback_NewCamera.VI” (LabVIEW 8.6, National Instruments Germany GmbH, 

Munich, Germany) 

 

B. Operating procedure 

 

I. Start BioSpot (for moving LOC chip-holder to CCD camera (Fluorescence Reader)) 

 

• Prepare a test chip into the LOC chip-holder with a droplet in place (1 µl of water 

covered with 5 µl of mineral oil (Sealing Solution) at reaction center B) (see detailed 

description of chip installation in the “LOP of LOC chips”, chapter 9.1.3). 
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• Switch on BioSpot control device, start software “BioSpot” (desktop; see “LOP of 

BioSpot”, chapter 9.1.5). 

• Move CytoCycler (LOC chip-holder slide) to CCD camera (x-axis position = 460). 

• Leave “BioSpot” software open, stored in the background. 

 

II. Run “QCapture” (optimize chip position and camera settings) 

 

• Transfer CCD camera from the microscope and fix it to the holder (big golden screw). 

• Switch on CCD camera and connect to computer via firewire connection. 

• Start software “QCapture” (desktop; figure 1). 

• Click “Acquire” for activating window “Live Preview” (the software provides a live 

image of the chip surface). 

• Center camera image to the test droplet, optimize settings like magnification as well as 

focus (the image from the camera has to be focused sharply). 

• OR start software “QCapture Pro 6.0” (desktop; figure 2); click on the camera symbol 

for activating a settings box, where by clicking the “Preview” button a live preview is 

provided. 

 

 
Figure 1. Screenshot of software “QCapture”. Via activating the button “Acquire” (red arrow) a window 
opens providing a live preview image. 
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Figure 2. Screenshot of software “QCapture Pro 6.0”. Via activating the “Camera” symbol (red arrow), a 
window opens providing settings for the live preview. Operating the button “Preview” in these settings window 
provides then the live image of the camera. 
 

III. Run “LED_Switch” (check LED state) 

 

• Switch on LED power control box (red button at the grey self-made box). 

• Start software “LED_Switch” (desktop; figure 3). 

• Run program by clicking the white arrow symbol; activate the center switch for 

turning blue LED light on and off; adjust LED illumination (the focused light must be 

centered onto the middle of the test droplet); turn LED off. 

 

 
Figure 3. Screenshot of software “LED_Switch.VI”. The white arrow button, the red-circle button and the 
centered switch are needed to operate the LED light illumination. 
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• Stop program by clicking the red-circle button; quit software “LED_Switch” as well 

as the “QCapture” software. 

 

Important: after these preliminary steps the “QCapture” software as well as the 

“LED_Switch” software need to be stopped, as only one procedure at a time can have access 

to the camera as well as to the LED light source (so either “QCapture+LED_Switch” OR 

“Norbert.VI/Grand_NIVision...” can be run). 

Thereafter, the test chip can be removed out of the cavity of the CytoCycler device and a new 

chip has to be fixed in place, whereon the PCR shall take place. 

 

IV. Run LabVIEW program 

 

• Switch on CCD camera and connect to computer via firewire connection. 

• Switch on LED power control box (red button at the grey self-made box). 

 

During PCR, images taken via the LabVIEW programs are stored in folder D://pic (file name 

= OriginalXX.tiff / OriginalXX.jpeg) → after the PCR these images need to be stored in a 

separate folder, otherwise images will be overwritten by new saved images when image 

taking programs are re-opened and run again. The software “Grand_NIVision...” also 

generates images named ProcessedXX.tiff / ProcessedXX.jpeg – these pictures represent 

subtracted images showing the calculated difference in fluorescence intensity when 

subtracting the previous image from the actual image. During PCR, values of fluorescence 

intensity are stored continuously in the domain named “Array”; additionally, at the 

“Grand_NIVision...” software, an excel file is generated storing these values when the 

program is stopped.  

 

Assure that the trigger signal from the PCR CytoCycler is fed into the trigger signal break-out 

box which itself must be connected to the interface board placed in a computer slot. From the 

break-out box another two lines have to be connected to the LED power control box. They 

provide the trigger signal for the LED to be switched on and off. The LED power control box 

must be switched on as well (red button).  
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Run “Norbert.VI” (for manual image taking) 

 

• Start software “Norbert.VI” (desktop; figure 4). 

• Set exposure time (in milliseconds) to desired values like e.g. 100, 200, 400, 1000, 

and so on in the box “Exposure” (figure 4, red arrow 1). 

• Run program by clicking the white arrow symbol (figure 4, red arrow 2); now images 

can be taken manually at any time point by clicking the button “Take picture” (figure 

4, red arrow 3). 

• Run PCR (see issue V “Start CytoCycler”). 

• Stop program by clicking the red-circle button (figure 4, red arrow 4); quit software 

“Norbert.VI”. 

• Save images stored in folder D://pic to a separate folder, as otherwise they will be 

overwritten. 

 

 
Figure 4. Screenshot of software “Norbert.VI” for taking pictures manually. The white arrow button, the 
red-circle button and the “Take Picture” button are needed to operate the software, while exposure time needs to 
be set as well. Measured fluorescence intensities of taken images are shown in the box “Mean Intensity” and are 
stored consecutively in domains arranged in an array-like manner below the starting button. 
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or “Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI” (for automatic 

image taking) 

 

• Start “Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI”  

            (desktop; figure 5). 

• Set exposure time (in milliseconds) to desired values like e.g. 100, 200, 400, 1000, 

and so on in the box “Exposure” (figure 5, red arrow 1). 

• Run program by clicking the white arrow symbol (figure 5, red arrow 2); now images 

are taken automatically at distinct time points; time points depend on the position 

(front view: left = 1.step of PCR cycle, middle = 2.step, right = 3.step), where the 

trigger signal break-out box is connected to the backside of the temperature control 

box for performing 2-step or 3-step PCR: plug 2/middle = images taken at the end of 

the second temperature step during PCR (around 60°C), plug 3/right = images taken at 

the end of the third temperature step during PCR (around 72°C)). 

• Run PCR (see issue V “Start CytoCycler”); the program now waits for the trigger 

signals from the PCR CytoCycler. 

 

 
Figure 5. Screenshot of “Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI” 
software for taking pictures automatically. The white arrow button and the red-circle button are needed to 
operate the software, while exposure time needs to be set as well. Measured fluorescence intensities of taken 
images are shown in the box “Mean Intensity” and are stored consecutively in domains arranged in an array-like 
manner below the starting button. 
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• Stop program by clicking the red-circle button (figure 5, red arrow 3); quit software 

“Grand_NIVision...”. 

• After the PCR, automatically an Excel file is generated showing a summary of 

measured values of fluorescence intensity. 

• Save images stored in folder D://pic to a separate folder, as otherwise they will be 

overwritten. 

 

V. Start “CytoCycler” (performing PCR) 

 

• Install new chip in LOC chip-holder device; switch on temperature control box, start 

software “CytoCycler” (desktop) and choose PCR program/settings (see “LOP of 

LOC chips”, chapter 9.1.3 and “LOP of LV-PCR”, chapter 9.1.4). 

• Pre-heat each chip for about 15 min to 95°C (during this procedure, the material of the 

chip expands due to the high temperature – this prevents the droplet afterwards, when 

starting the initial denaturation step of the PCR, to be moved/deformed due to material 

stress). 

• Run PCR using 1 µl of master mix, covered by 5 µl of Sealing Solution (see “LOP of 

LV-PCR”, chapter 9.1.4). 
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9.2  Table of oligonucleotides 

Table 10. Sequences and expected fragment sizes of oligonucleotides for PCR and array hybridization assays. 
Forward primers are marked with “F” or “fw”, while reverse primers are marked with “R” or “rv”. All 
oligonucleotides, primers as well as probes for hybridization arrays were ordered and purchased from Metabion 
GmbH, Martinsried, Germany. 
 
PCR primer Fragment size *Tm [°C] Oligonucleotide sequence 

Amel1 (1) 106 bp / 112 bp 65.0 
5’-CCC-TGG-GCT-CTG-TAA-AGA-ATA-GTG-3’ 
forward 

Amel2 (1) 106 bp / 112 bp 64.0 
5’-ATC-AGA-GCT-TAA-ACT-GGG-AAG-CTG-3’ 
reverse 

Amel1-f-Cy3 (1) 106 bp / 112 bp 65.0 
5’-Cy3-CCC-TGG-GCT-CTG-TAA-AGA-ATA-GTG-3’ 
forward 

β-Actin up (2) 297 bp 71.0 
5’-TCA-CCC-ACA-CTG-TGC-CCC-ATC-TAC-GA-3’ 
forward 

β-Actin down (2) 297 bp 71.0 
5’-CAG-CGG-AAC-CGC-TCA-TTG-CCA-ATG-G-3’ 
reverse 

DYS392-fw 290-323 bp 60.0 5’-TAG-AGG-CAG-TCA-TCG-CAG-TG-3’ 

DYS392-rv 290-323 bp 59.0 5’-GAC-CTA-CCA-ATC-CCA-TTC-CTT-3’ 

DXS10134-fw 240-291 bp 60.0 5’-CCT-GGG-TGA-CAT-AGA-GAG-AC-3’ 

DXS10134-rv 240-291 bp 59.0 5’-CTT-TCG-TCC-CCG-AGT-TGG-T-3’ 

STR marker Fragment size *Tm [°C] Oligonucleotide sequence 

D7S1824-F (3) 163-199 bp 56.0 5’-Hex-GCA-CCT-GTT-TGA-TTC-AGT-CA-3’ 

D7S1824-R (3) 163-199 bp 60.0 5’-CCA-GCC-TGT-GTG-ACT-ATG-TG-3’ 

D9S302-F (3) 258-316 bp 63.0 5’-Fam-GGG-GAC-AGA-CTC-CAG-ATA-CC-3’ 

D9S302-R (3) 258-316 bp 58.0 5’-GCG-ACA-GAG-TGA-AAC-CTT-GT-3’ 

D10S2325-F (3) 119-154 bp 58.0 5’-Fam-CTC-ACG-AAA-GAA-GCC-TTC-TG-3’ 

D10S2325-R (3) 119-154 bp 60.0 5’-GAG-CTG-AGA-GAT-CAC-GCA-CT-3’ 

Array probes Fragment size *Tm [°C] Oligonucleotide sequence 

Amelo1(Y) 112 bp 64.0 
5’-C6-Aminolink-(T)13-GA-GAA-ACC-ACT-TTA-TTT-
GGG-3’ 

Amelo2(X) 106 bp 64.0 
5’-C6-Aminolink-(T)13-CT-TGA-GAA-ACA-TTT-
GGG-ATG-3’ 

Amelo3(Y) 112 bp 64.0 
5’-C6-Aminolink-(T)13-AC-CAC-TTG-AGA-AAC-
CAC-TTT-3’ 

DYfw 290-323 bp 68.0 
5’-C6-Aminolink-(T)13-TA-GAG-GCA-GTC-ATC-
GCA-GTG-3’ 

DYrv 290-323 bp 67.0 
5’-C6-Aminolink-(T)13-GA-CCT-ACC-AAT-CCC-ATT-
CCT-T-3’ 

DXfw 240-291 bp 68.0 
5’-C6-Aminolink-(T)13-CC-TGG-GTG-ACA-TAG-
AGA-GAC-3’ 

DXrv 240-291 bp 67.0 
5’-C6-Aminolink-(T)13-CT-TTC-GTC-CCC-GAG-TTG-
GT-3’ 

AMfw 106 bp / 112 bp 70.0 
5’-C6-Aminolink-(T)13-CC-CTG-GGC-TCT-GTA-
AAG-AAT-AGT-G-3’ 

AMrv 106 bp / 112 bp 69.0 
5’-C6-Aminolink-(T)13-AT-CAG-AGC-TTA-AAC-
TGG-GAA-GCT-G-3’ 



9. Appendix 
 

 182 

 
(1) Primers Amel1 and Amel2 for amplifying 106/112 bp fragments of the human sex determining gene 
amelogenin were reported by Shadrach B et al. (2004). Amelogenin is a protein of dental enamel whose DNA 
sequence is present on human X- and Y-chromosomes (Lau EC et al., 1989), generating different lengths 
products in males and females. Most commonly used amelogenin primer sets span a 6 bp deletion on the X-
chromosome, resulting in a 112 bp fragment from the Y-chromosome and a 106 bp fragment of the X-
chromosome. Therefore male individuals show X/Y PCR products of 106/112 bp while females give X/X single 
amplification products of 106 bp. 
 
(2) Primers β-Actin up and β-Actin down for amplifying a 297 bp fragment of the human multicopy gene β-actin 
were reported by Taylor TB et al. (1997).  
 
(3) Primer-pair sequences of D7S1824, D9S302 and D10S2325 were taken from www.ncbi.nlm.nih.gov using the 
link to UniSTS primer database. 
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9.3  Material list including source of supplier 

Hardware 

• 3130xL Genetic Analyzer (Applied Biosystems GmbH, Darmstadt, Germany) 
• AdvaWash (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 
• AmpliSpeed slide cycler (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 
• BioSpot dispenser device (BioFluidix GmbH, Freiburg, Germany) 
• Black & white CCD camera (Rolera-XR, QImaging, Surrey BC, Canada) 
• Color firewire camera (PixeLINK, BFI Optilas, Munich, Germany) 
• CytoCycler PCR device incl. chip-holder, temperature control device, SAW control high frequency 

(HF) generator, particular software “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, 
Munich, Germany) 

• Electrophoresis Power Supply EPS 601 (Amersham Biosciences Europe GmbH, Freiburg, Germany) 
• Filter set ET482/35 and ET536/40 (Interferenzfilter of BrightLine series, AHF Analysentechnik AG, 

Tübingen, Germany) 
• GenePhor electrophoresis unit (Amersham Biosciences Europe GmbH, Freiburg, Germany) 
• HBO 100 high-pressure mercury lamp (HBO 100, Leistungselektronik JENA GmbH, Jena, Germany) 
• HF generator (FC 1201 HF, Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 
• Inverted optical microscope (Axio Obsever.Z1, Carl Zeiss GmbH, Jena, Germany) 
• Laser control box (CryLaS FTSS 355-50, CryLaS GmbH, Berlin, Germany) 
• LED (blue, λmax = 470±2 nm) (LUXEON Rebel LXML-PB01-0023, 3.4 V forward bias, 0.7 A 

operating current) 
• LED power control box (self-made) 
• Microarray scanner system (ProScanArray Microarray Analysis System, PerkinElmer Life and 

Analytical Sciences, Shelton, CT, USA) 
• PCR thermocycler (advanced Primus 96, PeqLab Biotechnologie GmbH, Erlangen, Germany) 
• PCR thermocycler (Cyclone25, PeqLab Biotechnologie GmbH, Erlangen, Germany) 
• Pressure-supplying pneumatic picopump (PLI-100 pressure control unit, Harvard Apparatus, Holliston, 

US) 
• Stratagene Real-time PCR cycler (Stratagene Mx 3000P, Stratagene, La Jolla, CA, USA) 
• Temperature control device (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 
• Temperature measurement device (Präzisionsthermometer GMH 3710, Greisinger electronic GmbH, 

Regenstauf, Germany) 
• Trigger signal break-out box (NI SCB-68 with the PCI ADC/DAC, Quick Reference Label, S-Series 

Devices, National Instruments Germany GmbH, Munich, Germany) 
• Ultrasonic cleaner (VWR International, Leuven, Belgium) 
• UV lamp 220V 50Hz, 230V 60Hz (System Papst-Motor Typ 8550, Papst-Motoren GmbH & Co.KG, 

St. Georgen, Germany) 
• UV spectrophotometry (NanoDrop ND-1000, PeqLab Biotechnologie GmbH, Erlangen, Germany) 
• UVA-laser system (Laser control box, CryLaS FTSS 355-50, CryLaS GmbH, Berlin, Germany) 
• UVC light source (PCR Workstation, PeqLab Biotechnologie GmbH, Erlangen, Germany) 

Software 

• “BioSpot” (BioFluidix GmbH, Freiburg, Germany) 
• “CytoCycler” (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) 
• “GeneMapper ID v.3.2” (Applied Biosystems GmbH, Darmstadt, Germany) 
• “GeneScan 3.7” (Applied Biosystems GmbH, Darmstadt, Germany) 
• “Genotyper 3.7” (Applied Biosystems GmbH, Darmstadt, Germany) 
• “Grand_NIVision_Intensity_Consec_Subtract_Loopback_NewCamera.VI” (LabVIEW 8.6, National 

Instruments Germany GmbH, Munich, Germany) 
• “LED_Switch.VI” (LabVIEW 8.6, National Instruments Germany GmbH, Munich, Germany) 
• Microarray scanner software (ProScanArray Scanner Software, PerkinElmer Life and Analytical 

Sciences, Shelton, CT, USA) 



9. Appendix 
 

 184 

• “MxPro – Mx3000P v3.00” (Stratagene, La Jolla, CA, USA) 
• “Nanosauger 2.5” (XYZ High Precision, Darmstadt, Germany) 
• ”Nanosauger 2.6” (XYZ High Precision, Darmstadt, Germany) 
• “Nanosauger 2.7” (XYZ High Precision, Darmstadt, Germany) 
• “Norbert.VI” (LabVIEW 8.6, National Instruments Germany GmbH, Munich, Germany) 
• “OriginPro 7.5 SR0” (OriginLab Corporation, Northhampton, MA, USA) 
• “QCapture Pro” (QImaging, Surrey BC, Canada) 
• “QCapture Pro 6.0” (QImaging, Surrey BC, Canada) 

Chemicals 

• Acetone (Merck KGaA, Darmstadt, Germany) (Cat. No. 1.00014.2500) 
• EtOH 100% (Merck KGaA, Darmstadt, Germany) (Cat. No. 1.00983.2500) 
• Tickopur TR 14 (DR. H. STAMM GmbH, Berlin, Germany) (Cat. No. 090328) 
• Xylene (Merck KGaA, Darmstadt, Germany) (Cat. No. 1.08685.2500) 

Consumables 

• 100 bp DNA ladder (New England BioLabs, Beverly, MA, USA) (Cat. No. N3231S) 
• 96-well plate (ABgene PCR Plates, Thermo Scientific, Epsom, Surrey, UK) (Cat. No. AB-0600) 
• Adhesive = Norland optical adhesive 88 (ultraviolet curing), (Norland products Inc., Cranbury, NJ, 

USA) (Cat. No. 100613-1) 
• AmpliGrid AG480F (multi LV-PCR microdevice) (Advalytix AG/Beckman Coulter Biomedical 

GmbH, Munich, Germany) (Cat. No. OAX04503) 
• Anode and kathode buffers: (-) Delect Cathode Buffer and (+) Delect Anode Buffer for 10% CleanGels 

and (+/-) DNA HyRes Buffer for HyRes CleanGels) (ETC GmbH, Kirchentellinsfurt, Germany) (Cat. 
No. 1002-11, 1002-11, 1002-21) 

• Copper collection grids (Copper meshes, 2000 square mesh copper 3.05mm, AGAR scientific Ltd., 
Stansted, Essex, U.K.; ordered from PLANO GmbH, Wetzlar, Germany) (Cat. No. G2786C) 

• Copper hole-rings, 3.05 mm (AGAR scientific Ltd., Stansted, Essex, U.K.; ordered from PLANO 
GmbH, Wetzlar, Germany) (Cat. No. G2600C/G2660C) 

• Cotton buds, sterile (Nuova Aptaca, Canelli (AT), Italy) (Cat. No. H087) 
• Delect Gel Buffer for 10% CleanGels and DNA HyRes Buffer for HyRes CleanGels (ETC GmbH, 

Kirchentellinsfurt, Germany) (Cat. No. 1002-11 and 1002-21 and xxx) 
• EDTA K treated blood collection tubes 1.3 ml (Monovettes, SARSTEDT AG & Co., Nümbrecht, 

Germany) (Cat. No. 41.1504.008) 
• GeneScan-500LIZ size standard (Applied Biosystems GmbH, Darmstadt, Germany) (Cat. No. 

4322682) 
• Glass capillary tube, transparent (Kapillaren zur Schmelzpunktbestimmung, open at both sides, outer 

diameter 1.75 mm, length 100 mm, 1000 pieces, Hirschmann Laborgeräte GmbH & Co.KG, Eberstadt, 
Germany) (Cat. No. 9201710) 

• Heparin-Natrium (B. Braun Melsungen AG, Melsungen, Germany) (Cat. No. 2047217) 
• Hi-Di Formamide (Applied Biosystems GmbH, Darmstadt, Germany) (Cat. No. 4311320) 
• LOC chips Cyto1, Cyto2, Cyto3 (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, 

Germany) 
• Microscope object slides (Carl Roth GmbH, Karlsruhe, Germany) (Cat. No. H871) 
• PCR tubes, sterile, 0.2 and 0.5 ml (Eppendorf AG, Hamburg, Germany) (Cat. No. 0030124.332 and 

0030121.023) 
• PEN mounted slides (ultra thin 2 µm polyethylene-naphthalate laser supporting carrier membrane 

(PEN), mounted on 0.17 mm thin microscope cover glass slides or on 1.00 mm thick standard 
microscope object slides; MicroDissect GmbH, Herborn, Germany) (Cat. No. MDG3P4A) 

• Plastic syringes 10 ml (Becton Dickinson GmbH, Heidelberg, Germany) (Cat. No. 110025158) 
• Primers, oligonucleotides, probes (Metabion GmbH, Martinsried, Germany; see list in appendix, 

chapter 9.2) 
• Polyacrylamide DNA gels (CleanGel 10% or CleanGel HyRes, ETC GmbH, Kirchentellinsfurt, 

Germany) (Cat. No. 1001-03 or 1001-27) 
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• Sealing Solution (Advalytix AG/Beckman Coulter Biomedical GmbH, Munich, Germany) (Cat. No. 
OAX04207) 

• Sterile water (Ampuwa, Fresenius, Bad Homburg, Germany) (Cat. No. 40676.00.00) 
• ReddyRun Superladder-low 100 bp ladder (Thermo Scientific, ABgene, Epsom, Surrey, UK) (Cat. No. 

SLL-100S/LD) 

DNA analysis kits 

• AmpF/STR SEfiler Allelic Ladder (Applied Biosystems GmbH, Darmstadt, Germany) (Cat. No. 
4373674) 

• AmpF/STR SEfiler PCR amplification kit (Applied Biosystems GmbH, Darmstadt, Germany) incl. 
AmpF/STR PCR Reaction Mix, AmpF/STR SEfiler Primer Set, AmpliTaq Gold DNA 
Polymerase 5U/µl, AmpF/STR SEfiler Control DNA 9947A (Cat. No. 4335129) 

• First-DNA All-tissue DNA kit (Gen-ial, Troisdorf, Germany) incl. buffers Lyse 1, Lyse 2, Lyse 3, and 
enzyme Proteinase K 20 mg/ml (Cat. No. D0502000) 

• KOD Xtreme Hot Start DNA Polymerase PCR system (Novagen, Merck, Darmstadt, Germany) 
incl. 2x Xtreme Buffer, Xtreme dNTPs (2 mM each), KOD Xtreme Hot Start DNA Polymerase 
1U/µl (Cat. No. 71975) 

• peqGOLD Tissue DNA Mini Kit (PeqLab Biotechnologie GmbH, Erlangen, Germany) incl. DNA Lysis 
Buffer T, DNA Binding Buffer, DNA Wash Buffer, Elution Buffer (10 mM Tris-HCl, pH 9.0), 
Proteinase K, RNase A (20 mg/ml), 10 mM TE Buffer, PerfectBind DNAColumns, 2 ml Collection 
Tubes (Cat. No. 12-3396-01) 

• QuantiFast SYBR Green I PCR kit (QIAGEN GmbH, Hilden, Germany) incl. 2x QuantiFast 
SYBR Green I PCR Master Mix (HotStarTaq Plus DNA Polymerase, QuantiFast SYBR Green PCR 
Buffer, dNTP mix, SYBR Green I, ROX passive reference dye), RNase-Free water (Cat. No. 204052) 

• QuantiTect SYBR Green I PCR kit (QIAGEN GmbH, Hilden, Germany) incl. 2x QuantiTect 
SYBR Green I PCR Master Mix (HotStarTaq DNA Polymerase, QuantiTect SYBR Green PCR 
Buffer, dNTP mix incl. dUTP, SYBR Green I, ROX passive reference dye, 5 mM MgCl2), RNase-Free 
water (Cat. No. 204143) 

• QIAGEN Fast Cycling PCR kit (QIAGEN GmbH, Hilden, GmbH) incl. 2x QIAGEN Fast Cycling 
PCR Master Mix (HotStarTaq Plus DNA Polymerase, QIAGEN Fast Cycling PCR Buffer, dNTP 
mix), 10x CoralLoad Fast Cycling Dye, 5x QIAGEN Q-Solution, RNase-Free water (Cat. No. 203743) 

• QIAGEN Multiplex PCR kit (QIAGEN GmbH, Hilden, Germany) incl. 2x QIAGEN Multiplex PCR 
Master Mix (HotStartTaq DNA Polymerase, Multiplex PCR buffer (6mM MgCl2), dNTP mix), 5x 
QIAGEN Q-Solution, RNase-Free water (Cat. No. 206143) 

• Silver staining system (DNA silver staining kit, GE Healthcare, Uppsala, Sweden) including 5x Fixing 
Solution (Benzene sulphonic acid (3.0% w/v in 24% v/v ethanol)), 5x Staining Solution (Silver nitrate 
(1.0% w/v), Benzene sulphonic acid (0.35% w/v)), 5x Sodium carbonate solution (Sodium carbonate 
(12.5% w/v)), 5x Stopping & Preserving Solution (Acetic acid (5% v/v), Sodium acetate (25% w/v), 
Glycerol (50% v/v)), Formaldehyde (37% w/v in water), Sodium thiosulphate (2% w/v in water) (Cat. 
No. 17-6000-30) 


