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 1 Introduction 

1 Introduction 
 

1.1 Anatomy of the retina 
 

The retina represents the light sensing part of the eye. It lines the back of the eye overlying 

the choroid layer. One characteristic of the vertrebrate inverse retina is the fact that light has 

to pass the nerve cell layer until it reaches the photoreceptor cells. The latter consist of rods 

and cones and represent the light detecting part of the retina. The outer segments of 

photoreceptors are embedded in the light collecting pigment epithelium. In the adjacent outer 

nuclear layer (ONL) the cell bodies of rods and cones are located. Next to the ONL, in the 

outer plexiform layer (OPL) the synapses of rods and cones as well as of bipolar and 

horizontal cells are arranged. They are followed by the inner nuclear layer (INL) which is 

composed of cell bodies of bipolar, horizontal, and amacrine cells. Synaptic connections of 

bipolar cells to ganglion cells are situated in the inner plexiform layer (IPL). The cell bodies of 

the ganglion cells form the ganglion cell layer (GCL). The axons of the ganglion cells 

converge to the optic nerve and transmit the final output of the percepted light to the brain 

(Fig. 1). 

 

 

 

Fig. 1 Schematic representation of the retinal stru cture. Adapted from 
http://webvision.med.utah.edu/sretina.html. 

 



 2 Introduction 

1.2 Anatomy of rods  
 

Rods and cones are the primary light sensitive cells of the retina. In contrast to cones which 

are specialized to the perception of daylight and colours (photopic system), rods are 

responsible for dim light vision (scotopic system). The schematic structure of a rod 

photoreceptor cell is shown in Fig. 2. A rod cell consists of an outer segment, an inner 

segment, the cell body and the synapse. The outer and inner segments are connected with a 

cilium that represents the bottleneck road for the transport of cargo from the cell body to the 

outer segments. Light detection and the downstream signalling transduction take place in the 

outer segments. Their interior space is filled with stacks of membranes called discs. The 

outer membrane encloses the outer segments and is the place of generation of the rod 

membrane potential. 

 

 

 

 

Fig. 2  Schematic view of a rod photoreceptor.  Rods are composed of an outer segment that is 
connected to the inner segment via a connecting cilium. The outer segment is filled with discs which 
contain some members of the visual transduction cascade. The inner segment is composed of an 
ellipsoid (containing the mitochondria and the endoplasmic reticulum), the cell body and the synaptic 
terminal. The latter is filled with synaptic vesicles which converge on ribbon synapses and release the 
rod transmitter glutamate.  
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1.3 Signalling transduction in rods 
 

Rods are able to detect even a single photon. This extremely high light sensitivity requires a 

massive signal amplification within the phototransduction cascade.  

In dark, constitutively active gyanylate cyclases (GCs) produce high cGMP levels. High 

cGMP levels in turn keep the cGMP sensitive cyclic nucleotide-gated (CNG) channel in its 

open state and give rise to the influx of Na+ and Ca2+, respectively. This depolarises the rod 

cell up to -40 mV resulting in a “dark current”. Finally, this depolarisation triggers a sustained 

transmitter release at the synapse.  

Photons are absorbed by retinal, a chromophore that is covalently attached to the G protein 

coupled receptor rhodopsin [1]. After absorption, retinal isomerizes from the 11-cis form to 

the all-trans form. This results in conformational changes of rhodopsin (bleaching). One of 

the intermediates of this bleaching process called metarhodopsin II (Rh*) activates the G 

protein transducin which stimulates the cGMP phosphodiesterase (PDE6) to hydrolyse 

cGMP to GMP. The decrease in cGMP concentration in turn leads to the closure of the CNG 

channel. As a consequence, the outer membrane hyperpolarises to -70 mV [2] and gives rise 

to the switch-off of transmitter release to bipolar cells. Thus, the light signal information finally 

sent to the brain is generated by the termination (and not by the generation) of transmitter 

release.  

In order to regenerate the dark current, the rod cell has to restore the cGMP concentration to 

the dark level. This process is regulated by the Ca2+ concentration and by the action of 

gyanylate cyclases (GC-E/F). The latter are controlled by gyanylate cyclase activating 

proteins (GCAPs). In their inactive form, GCAPs bind Ca2+ molecules. During light response, 

the CNG channel is closed and the Ca2+ levels are low [3]. The decrease in Ca2+ levels 

converts GCAP to the active form which then stimulates GCs to produce cGMP. High cGMP 

levels finally lead to opening of CNG channels and to the restoration of the dark current  

(Fig. 3 A).  

Several other mechanisms ensure the inactivation of the signalling cascade and influence 

the photoresponse kinetics. One of them includes the inactivation of Rh* by phosphorylation. 

This step is catalyzed by the rhodopsin kinase [4]. Another protein called arrestin binds to 

phosphorylated rhodopsin and prevents it from activation of transducin [5]. Subsequently, all-

trans retinal is replaced by 11-cis retinal and rhodopsin becomes dephosphorylated. This 

finally gives rise to the recurrence of rhodopsin to its inactive state (Fig. 3 B).  
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Fig. 3 Signalling transduction in rods.  A) Molecular mechanisms occurring in the rod outer 
segments upon light induced rhodopsin activation. B) Phosphorylation of Rh* by rhodopsin kinase 
(GRK1) gives rise to binding of arrestin which prevents rhodopsin from sustained activation of 
transducin. For details, see text. NCKX, Na+/Ca2+/K+ exchanger; Gt, transducin; CaM, calmodulin.   

 

1.4 CNG channels 
  

Cyclic nucleotide-gated channels are nonselective cation channels that translate changes in 

the concentration of cAMP or cGMP into an electrical response and/or an intracellular  

Ca2+-signal. Although CNG channels are expressed in different tissues, their function in 

vertebrates has been well characterised only in photoreceptors and olfactory sensory 

neurons so far. Native CNG channels are heterotetramers consisting of A and B subunits 

which together form the central ion conducting pore. The subunit expression and composition 

of CNG channels is tissue dependent. As depicted in Fig. 4, CNG channels from rods are 

composed of three CNGA1 and one CNGB1a subunit [6-8]. In contrast, the cone CNG 

channel comprises two CNGA3 and two CNGB3 subunits [9], and in the olfactory epithelium, 

two CNGA2, one CNGA4 and one CNGB1b form the native CNG channel [10].  
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Fig. 4 Subunit composition of CNG channels. 

 

 

1.4.1 Topology and structural features of CNG chann els 

 

CNG channels belong to the superfamily of voltage-gated ion channels. The members of this 

channel group consist of an intracellular N-terminus, six transmembrane domains (S1-S6) 

and an intracellular C-terminus. Transmembrane segments of CNG channels are connected 

to each other by short loops. The last loop located between S5 and S6 forms the pore region. 

The C-terminal domain is subdivided into three functional domains: C-linker, cyclic 

nucleotide-binding domain (CNBD) and the distal C-terminus [11, 12].  

CNG channels are structurally and evolutionary related to hyperpolarisation activated cyclic 

nucleotide-gated (HCN) channels. Recently, the crystal structure of the C-terminus of HCN 

channels consisting of the C-linker and the CNBD was determined (Fig. 5, [13]). The 

comparison of the CNBD of HCN channels to that of other cyclic nucleotide-binding proteins 

like the gene activator protein (CAP, [14]) and cAMP dependent protein kinase (PKG1, [15]) 

reveals that these proteins share very similar folding properties. The C-linker comprises six 

α-helices (A’-F’) followed by an α-helix of the CNBD and a β-roll consisting of eight β-strands 

(1-8). Another short α-helix (called P-helix) is located between β-strands 6 and 7. The last β-

strand is followed by two additional α-helices (B- and C-helix, respectively). 

C-linker and CNBD have been extensively analysed and have been shown to be involved in 

channel gating processes. In contrast, the function of the distal C-terminus has been less 

well-characterised so far. However, this domain has been shown to play an important role in 

channel targeting to the outer membrane of the rod outer segments [16, 17]. 
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Fig. 5 Topology of CNG channels. Left: representative topology of a CNG subunit consisting of the 
intracellular N- and C-terminus and six transmembrane domains (1-6). Right: 3D model of the C-
terminus of CNGB1a based on the molecular dynamics (MD) simulation performed by the group of 
Prof. Dr. Klaus T. Wanner, Department of Chemistry, Ludwig Maximilians Universität München. MD 
simulation was based on the recently identified crystal structure of the C-terminus of HCN2 [13]. For 
details, see text. 

 

1.4.2 Gating of CNG channels  
 

As mentioned above, CNG channels principally can be activated by both cGMP and cAMP. 

However, the ligand affinity, efficacy, open probability, ion permeability or adaptation strongly 

depend on the respective subunit compositions. For example, olfactory CNG channels show 

a similar sensitivity to cAMP and cGMP whereas in rod photoreceptors, the sensitivity of the 

CNG channel to cGMP is much higher compared to cAMP [18, 19]. Electrophysiological 

measurements indicate that gating of CNG channels occurs in a cooperative manner. 

Additionally, it has been shown that the binding of only two ligands is sufficient to fully 

activate the channel. Binding of the remaining two ligands is proposed to have only 

stabilising effects on the open conformation of the channel [20]. Moreover, a preferential 

order of ligand binding to the single subunits also seems to exist, as demonstrated recently 

for olfactory CNG channels [21]. Ligand binding to CNGB1b subunit was proposed to occur 

after the binding of the first two ligands to CNGA4 and CNGA2, respectively. Thus, it was 

concluded that CNGB1b is not involved in the initial opening of the channel but rather in 

stabilising its open state.  
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1.5 Role of CNGB1 in rod CNG channels 
 

1.5.1 Characteristics of the CNGB1 locus 
 

The CNGB1 locus is a complex gene giving rise to the transcription of at least four different 

variants due to alternative splicing. In rod photoreceptors, three transcripts deriving from the 

CNGB1 gene and encoding CNGB1a, GARP1 and GARP2 could be identified [22-24]. In 

olfactory sensory neurons, only CNGB1b is expressed [25]. This splice isoform lacks the 

most part of the long amino terminus which is present in CNGB1a. 

In contrast to CNGA1, CNGB1a subunit is not able to form functional channels when 

expressed alone in heterologous expression systems. However, when coexpressed with 

CNGA1 the CNGB1a subunit confers several characteristic properties to the heteromeric 

channel [24]. For example, heteromeric CNGA1/CNGB1a channels show an increased 

sensitivity to cAMP and are efficiently blocked by L-cis-diltiazem. Furthermore, 

CNGA1/CNGB1a heteromers show a typical single channel flickering behaviour, an 

increased inhibition by calmodulin (CaM), and a decreased block by extracellular Ca2+ [11, 

12, 26, 27].  

The involvement of CNGB1 in the transport of heteromeric channels to their final destination 

represents another important function of this subunit. In the CNGB1 KO model, the transport 

of CNGA2 and CNGA4 to the olfactory cilia as well as the transport of CNGA1 to the outer 

segments is strongly impaired [28, 29]. Recently, some aspects of the molecular 

mechanisms regarding the transport of CNG channels to olfactory cilia and outer segments 

of rod phororeceptors could be clarified. It has been shown that the distal  

C-terminus of CNGB1a plays a crucial role in this process [17, 30].  

 

1.5.2 Retinitis pigmentosa mutations in the CNGB1 gene 
 

Retinitis pigmentosa (RP) is a severe hereditary eye disorder characterised by progressive 

degeneration of photoreceptors and subsequent loss of vision. Degeneration of rod 

photoreceptors is accompanied by loss of dim light vision and by an impairment of contrast 

perception. In later stages of the disease, as a secondary effect, cone photoreceptors often 

also undergo degeneration leading to total blindness. Depending on the affected gene and/or 

the kind of the corresponding mutation, the inheritance of RP may be dominant or recessive. 

In human patients, numerous mutations in different genes have been shown to be causative 

for RP. Many of the RP causing genes encode for members of the signalling transduction 

cascade. Among the rod CNG channel subunits, the vast majority of RP associated 

mutations were identified in the CNGA1 subunit. There are also two reports linking mutations 
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in the CNGB1 locus to recessive form of RP [31, 32]. One of these mutations (c.3444+1G>A) 

represents a splice site mutation positioned on the donor site of Exon 32, the other one 

(c.2978G>T; p.G993V) represents a point mutation located in the CNBD of CNGB1. 

However, so far no functional analysis of these two mutations was performed in order to 

verify their pathogenicity or to decipher the molecular mechanism leading to the RP 

phenotype. 

 

1.6 Role of GARP in rods 
 

The exact molecular functions of the glutamic acid rich proteins, GARP1 and GARP2 (herein 

referred to as GARPs) have not been well characterised so far. GARPs are soluble proteins 

and represent alternatively spliced isoforms of the CNGB1 gene (see chapter 1.5.1). The 

protein sequence of GARPs is almost completely identical to the respective region of the  

N-terminus of CNGB1a. In contrast to GARP1, GARP2 lacks the negatively charged glutamic 

acid rich region and is expressed at high levels in rod outer segments [23, 24, 33].  

Disc rims are regions of the rod disc membranes adjacent to the rod plasma membrane. It 

has been reported that GARP2 interacts with different disc rim associated proteins, like 

peripherin-1 or PDE6 [33-35]. Some of the proposed functions of GARPs arising from these 

studies are the fine-tuning of the cGMP signalling and scaffolding functions, like the 

maintenance of the disc rim integrity and tethering of CNG channels to disc rims. Most 

probably because of their high content of charged glutamic acids, GARPs were also shown 

to have features of natively unfolded proteins [33].  

In contrast to CNGB1 KO mice which do not lack GARPs [28], CNGB1 KO mice deficient for 

both, CNGB1a and GARPs show an impaired structure of outer segments and a spoiled 

discs morphogenesis [36]. However, there are no specific GARP1 or GARP2 KO mice 

available so far.  
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1.7 Goals of this study 
 

This study was set out to address two important  questions: 

1) How do specific mutations in the CNGB1 gene result in RP? 

2) What is the role of CNGB1a in gating of rod CNG channels? 

The main focus of this study was to answer these questions by functional analysis of the two 

RP causing mutations in the CNGB1 gene.  

As described in chapter 1.5.2, the first mutation (c.3444+1G>A) represents a splice site 

mutation positioned on the donor site of Exon 32. This mutation could impact CNGB1a on 

mRNA and on protein level and was therefore tested for splicing and expression in HEK293T 

cells.  

The second mutation (c.2978G>T; p.G993V) is a point mutation located in the CNBD of 

CNGB1a. Since this domain is crucial for proper gating of the CNG channel, the p.G993V 

mutation harbours the potential to impair the gating of these channels. The effects of this 

mutation on channel gating were analysed by different computational, electrophysiological, 

and protein biochemical experiments. 

 

 

 

 

Fig. 6 RP mutations in CNGB1a. Blue box marks the CNBD, green circle shows the position of the 
cGMP binding pocket, and the red arrow the position of the G993V mutation. Since the c.3444+1G>A 
mutation is a splice site mutation located on the donor site of exon 32, its position cannot be marked 
on protein level. Instead, the region in CNGB1a encoded by exon 32 (flanked by two red dashed lines) 
is shown. GARP, glutamic acid rich protein domain. 
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2 Materials and methods 
 

2.1 Molecular biology 

 

2.1.1 Plasmids 

 

pcDNA3.1 vector 

pcDNA3.1 (Invitrogen) represents a commonly used mammalian expression vector. It 

consists of following elements: 

- Cytomegalovirus (CMV) promoter, capable of driving heterologous gene 

expression in mammalian cell lines. 

- Simian virus (SV40) origin of replication (ori), allowing for replication in 

mammalian cells. 

- Colicinogenic factor E1 (ColE1) ori, responsible for replication in prokaryotes. 

- Filamentous phage (f1) ori which allows recovery of single stranded plasmids in 

prokaryotes. 

- Multiple cloning site (MCS) for introduction of genes or gene fragments of interest. 

- Polyadenylation signal (pA) of the bovine growth hormone (BGH). 

- Neomycin resistance (NeoR) under the control of SV40 promotor for selection of 

stable mammalian cell lines.  

- Ampicillin resistance (AmpR) for selection of recombinant bacterial cells. 

 

pCRII®-TOPO® vector 

This vector was used for subcloning of PCR products (see chapter 2.1.8). It contains a lacZ 

promoter followed by the MCS and lacZ reporter gene. Thus, insertion of constructs into the 

MCS disrupts the expression of β-galactosidase and can be used for selection of 

recombinant bacterial clones on X-gal containing plates. Additionally, this vector contains a 

f1 ori and pUC ori for plasmid replication in prokaryotes. For selection of recombinant 

bacteria, kanamycin and ampicillin resistance (AmpR) are included in this vector.  

 

pIRESeGFP vector 

pIRESeGFP vector allows the gene of interest and enhanced green fluorescent protein 

(eGFP) to be expressed simultaneously but separately from a bicistronic mRNA. This is 

assured by the presence of an internal ribosome entry site (IRES) of encephalomyocarditis 

virus (EMCV) located between the MCS and coding region of GFP. Additionally, this vector 

contains following elements: 
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CMV promoter, SV40 pA, SV40 promotor, SV40 ori, f1 ori, KanR, NeoR, pUC ori and the 

herpes simplex virus thymidine kinase (HSV-TK) pA.  

 

2.1.2 Polymerase chain reaction (PCR) 

 

The conditions of each PCR reaction were adjusted to the respective application. Table 1 

shows an overview about the standard PCR conditions of different polymerases used in this 

study: 

 

Table 1 Standard PCR conditions for different polym erases. 

Polymerase  Taq Pfu (Stratagene)  Herculase 

(Stratagene) 

Phusion 

(Finnzymes) 

Initial den aturation  95°C 1 min 95°C 1 min  95°C 1 min  98°C 30 sec  

Denaturation  95°C 30 sec 95°C 45 sec  95°C 20 sec  98°C 10 sec 

Annealing   X °C 30 sec  X °C 45 sec  X °C 20 sec  X °C 30 sec  

Elongation  72°C 30 sec/kb 72°C 1 min/kb 72°C 30 sec/kb 72°C 30  sec/kb 

Final elongation  72°C 5 min 72°C 5 min  72°C 5 min  72°C 5 min  

Storage  10°C ∞ 10°C ∞ 10°C ∞ 10°C ∞ 

 

The pipetting scheme of the PCR was adapted from the manual of the respective 

manufacturer. 

 

2.1.3 Purification of DNA fragments 
 

After PCR amplification, the PCR products may be purified for further applications. The 

purification was performed using the PureLinkTM Quick Gel Extraction Kit (Invitrogen) 

accoriding to manufacturar’s protocol. All solutions needed for this procedure were provided 

with the kit. Briefly, fivefold amount of solubilization buffer was added to the PCR product and 

the solution was loaded on the column. The latter was placed in 2 mL Eppendorf tubes and 

was centrifuged at max. speed for 45 sec at room temperature. The flow through was 

discarded and 700 µL wash buffer was added to the column following by an additional 

centrifugation at identical conditions. After discarding the flow through, the column was spun 

at max. speed for 2 min at room temperature in order to remove all ethanol present in the 

wash buffer. Now, 30 µL ddH2O or elution buffer was added on the center of the column 

which was allowed to incubate 10 min at room temperature. Finally, the DNA was eluted into 

a fresh 1.5 mL Eppendorf tube by centrifugation at max. speed for 45 sec at room 

35 x 
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temperature. To check for proper purification, 5 µL of the purified DNA were loaded on 

agarose gel.  

 

2.1.4 Restriction analysis and preparation of sampl es for cloning 

 

Restriction enzymes were purchased from New England BioLabs (NEB) or from Fermentas. 

Restriction analysis conditions were performed following the manufacturer’s instructions.  

For cloning applications, the amount of DNA in the restriction reaction was 3-5 µg. After the 

incubation time, the cut DNA was loaded on the appropriate agarose gel and was allowed to 

run until sharp bands could be cut off from the gel. Then, the cut piece of gel was weighed 

and the threefold volume of gel solubilization buffer (PureLinkTM Quick Gel Extraction Kit, see 

chapter 2.1.3) was added (i. e. if the gel piece weighed 200 mg, the amount of gel 

solubilization buffer was 600 µL). Now, the sample was incubated at 55°C for 5-10 min or 

until the gel was completely solved. This solution was loaded on the columns from the Quick 

Gel Extraction Kit and the the same procedure as described in chapter 2.1.3 was performed. 

 

2.1.5 Ligation and dephosphorylation 
 

Ligation reaction was performed using following pipetting scheme: 

 

x   µL vector DNA 

y   µL insert DNA 

2   µL T4 ligase buffer (NEB) 

1   µL T4 ligase (NEB) 

20 µL total volume 

 

This reaction was incubated for 30 min - 2 h at room temperature. The vector-to-insert ratio 

was variable and was determined empirically for each ligation considering the amount of the 

respective DNA observed on the check agarose gel after the DNA purification. After the 

ligation vector DNA was dephosphorylated by following protocol: 

3 µL of the Fast AP buffer and 2 µL of Fast AP (Fermentas) were added to the ligation 

reaction which was then incubated at 37°C for 10 mi n. Subsequently, the enzyme was heat 

inactivated by incubating the reaction at 65°C for 15 min.  
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2.1.6 Transformation 

 

For transformation different chemically competent E.coli strains were used depending on the 

application. First, 100 µL aliquots of competent cells (stored at -80°C) were thawed on ice. 

Then, 1-3 µL DNA (i. e. ligation reaction) were added to the cell suspension which was gently 

swirled and was allowed to incubate on ice for 5 min. Now, a heat pulse was applied by 

incubating the cells for 30 sec at 42°C in a water bath. Immediately after this, the cell 

suspension was placed on ice for 2 min. If the resistance for selection of the plasmid DNA 

was ampicillin, the cells were directly plated on the appropriate agar plates. In cases of 

chloramphenicol or kanamycin resistance, 900 µL prewarmed LB(+) medium was added to 

the cells. The latter were incubated for 1 h at 37°C with shaking followed by an centrifugation 

at 3500 rpm for 5 min at room temperature. Approx. 800 µL of the supernatant was removed 

and the cells were resuspended in the remaining part of the LB(+) medium. Finally, the cells 

were plated on the respective agar plates and incubated over night at 37°C.  

 

LB(+) medium    LB(+) Agar  

 

Pepton  10 g   Agar 15 g   

Yeast extract   5 g   LB(+) medium ad 1 L 

NaCl    5 g    autoclave 

Glucose   1 g   for preparing resistant agar plates, cool the LB(+) agar  

ddH2O  ad 1 L   medium to 55°C and add the appropri ate resistance in 

adjust pH to 7.2 - 7.5   concentrations described in chapter 0. 

autoclave 

 

2.1.7 Inoculation of bacterial cells and isolation of plasmid DNA (alkaline lysis)  
 

Bacterial clones were picked from the plate and were transferred to 10 mL polypropylene 

tubes containing the LB(+) medium with the appropriate resistance (ampicillin: 100 µg/mL, 

kanamycin: 30 µg/mL, chloramphenicol: 30 µg/mL). Then, the suspension was incubated 

over night at 37°C with shaking (225 rpm). On the n ext day, the cells were spun at 1000 x g 

for 10 min at room temperature or at 4°C and were r esuspended in 250 µL resuspension 

buffer. This solution was transferred into 2 mL Eppendorf tubes. After adding 250 µL lysis 

buffer the cell suspension was inverted several times and was allowed to incubate for max. 5 

min at room temperature. Now, 250 µL neutralization solution was added to the mix, was 

inverted, and was incubated for 5 min at room temperature. Next, the suspension was 

centrifuged at rpm max. for 15 min at 4°C or at roo m temperature. The supernatant 
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containing the plasmid DNA was transferred into fresh 1.5 mL Eppendorf tubes. To 

precipitate DNA, 520 µL 100 % isopropanol was added to the mix. After vortexing, the mix 

was spun at rpm max. for 15 min at 4°C. Subsequentl y, the pellet was washed with 70 % 

ethanol and the solution was centrifuged at rpm max. for 5 min at 4°C. Then, the supernatant 

was discarded and the pellet was dried in a vacuum centrifuge at room temperature for  

5 min. Now, the pellet was suspended in 30 µL of ddH2O and 1 µL of this plasmid DNA 

solution was used for control restriction analysis. If the expected results were obtained from 

this restriction analysis, the corresponding plasmid DNA was send for sequencing without 

further purification.  

To yield plasmid DNA in larger amounts and in higher purity, PureYieldTM Plasmid Midiprep 

System (Promega) was used. For that purpose, colonies were inoculated in 100-200 mL 

LB(+) medium and similar procedure as described above was performed following the 

manufacturer’s instructions.  

 

2.1.8 TOPO cloning 

 

TOPO cloning (TOPO TA Cloning® Kit Dual Promotor, Invitrogen) represents a rapid and 

convenient cloning method for PCR products. Topoisomerase I from Vaccinia virus [37] 

attached to the pCRII®-TOPO® vector allows for covalent bonding of PCR products to this 

vector. However, this reaction only takes place if the respective PCR product posesses a 

deoxyadenosine (A) on it’s 3’ end. In contrast to most polymerases with proof reading activity 

(i.e. Pfu-polymerase), conventional Taq polymerase has terminal transferase activity that 

adds a single “A” to the 3´ ends of the PCR products.  

First, PCR products which were amplified using a polymerase without terminal transferase 

activity were purified by standard procedures as described in chapters 2.1.3 and 2.1.4. Then, 

following components were added to 8 µL of the purified PCR product: 

0.5 µL dNTP (10 mM each) 

1 µL Taq buffer (containing 2.5 mM MgCl2)  

0.5 µL Taq-Polymerase 

This reaction was incubated for 30 min at 72°C and was placed on ice. TOPO cloning 

reaction was performed using following pipetting scheme: 

4.5  µL of the Taq polymerase reaction product 

1 µL salt solution (provided with the kit) 

0.5 µL TOPO vector (provided with the kit) 

The mix was incubated for 20 min at room temperature and 2-3 µL were used for 

transformation of chemically competent bacterial cells as described in chapter 2.1.6.  
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2.1.9 In-Fusion cloning 

 

For some cloning applications, as a alternative to mutagenesis PCR and/or overlap-PCR,  

In-FusionTM Advantage PCR Cloning Kit (Clontech) was used. PCR products sharing a 15 bp 

homology with the sequence at the ends of the linearized vector can be covalently attached 

to the vector giving rise to circular plasmid DNA. The In-Fusion enzyme provided with the kit 

catalyzes this covalent bounding.  

The In-Fusion reaction was set up as follows: 

≈ 100 ng purified PCR product 

≈ 200 ng purified vector 

       2 µL 5 x In-Fusion reaction buffer 

       1 µL In-Fusion enzyme 

Ad 10 µL ddH2O 

If larger volumes of vector or insert were used, the volume of buffer, of the enzyme and the 

total volume were doubled. The In-Fusion mix was now incubated at 37°C for 15 min 

following by an incubation at 50°C for 15 min. Then , the reaction was placed on ice and 

diluted in TE buffer (pH 8.0) up to a volume of 50 µL. Finally, 3-5 µL of this solution were 

used for a standard transformation protocol. 

 

TE Buffer  

 

10 mM Tris-HCl pH 8.0 

  3 mM EDTA   

 

2.1.10 Introduction of mutations in DNA constructs 

 

In most cases, mutations were introduced by means of site directed mutagenes. Site directed 

mutagenesis PCR was performed using the QuickChange XL Site-Directed Mutagenesis Kit 

(Stratagene) according to manufacturer’s instructions or by overlap-PCR. The latter requires 

a two-step PCR reaction. Thereby, the choice of appropriate overlap primers allows for 

deletion or insertion of desired DNA sequences. In the first PCR reaction, two separate PCR 

products were amplified which share a sequence homology (“overlap”) at their 3’ ends. After 

the purification of the PCR products by gel extraction, they were used as DNA template for 

the second PCR reaction. Routinely, in this study overlap PCR was performed using the Pfu 

polymerase.  
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2.1.11 Reverse transcription (RT) 

Reverse transcription was performed using the ThermoScriptTM RT-PCR System Kit 

(Invitrogen) following the instructions of the manufacturer. During the cDNA synthesis, 

random hexamers as well as oligo(dT) primer were added to the reaction. After the cDNA 

synthesis, herculase (Stratagene) was used for the subsequent PCR. 

 

2.1.12 Cloning of CNG channels 

 

Cloning of the rat CNGB1a/CNGB1b and CNGA2/CNGA4 subunits was described previously 

[25, 38, 39]. Bovine CNGA1 was a gift of Dr. U. Benjamin Kaupp (Caesar Bonn). As far as 

not otherwise mentioned, all experiments from the electrophysiological and biochemical 

recordings described in chapter 3.2 were obtained using rat CNGB1 an bovine CNGA1 

channels. Human CNG channels were PCR amplified from retinal cDNA, were subcloned 

into the pcDNA3.1 and/or pIRESeGFP vector and sequenced.   

 

2.2 Cell culture 

 

2.2.1 Cultivation and transfection of mammalian cel l lines 

 

For most in vitro transfections in this study, HEK293T cells were used. They were cultivated 

in DMEM + GlutaMAXTM-I medium (+ 4,5 g/L glucose, - pyruvate + 10 % FBS + 1 % 

penicillin/streptomycin) at 37°C with 10 % CO 2. COS7 cells were cultivated under same 

conditions in DMEM + GlutaMAXTM-I medium (+ 4,5 g/L glucose, + pyruvate + 10 % FBS +  

1 % penicillin/streptomycin). 

Transient transfections of HEK293T cells or COS7 cells were performed using the calcium 

phosphate technique [40] or with FuGENE® (Promega). The calcium phosphate based 

transfection was performed by adding following solutions to a 15 mL Falcon tube: 

10   µg DNA,  

50   µL 2,5 M CaCl2 

ad 500 µL ddH2O  

While vortexing this mix, 2 x BBS solution was added drop wise. Then, the mix was 

incubated for max. 5 min at room temperature. This mixture was added drop wise to the  

40-70 % confluent cells which subsequently are incubated at 37°C with 3-5 % CO 2. 8-16 h 

after the transfection, medium was replaced and the cells were incubated at 37°C with  

10 % CO2 until harvesting. The amounts of different components described above 
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correspond to ∅ 10 cm plates. For ∅ 15 cm plates, the volume of all solutions was doubled 

and the amount of DNA was increased to 25-30 µg.  

Transfection with FuGENE® (Roche) was performed for subsequent immunocytochemical 

and electrophysiological applications. For 16-well plates 30 ng DNA was used per well, for  

∅ 3.5 cm plates 3 µg DNA was used. First, fresh GlutaMAXTM-I medium (without FBS and 

without penicillin/streptomycin) was added to cryo tubes followed by the addition of DNA. 

Thereby, tenfold volume of medium related to the total volume on DNA was added (i. e. 1 µL 

DNA corresponds to 10 µL medium). After the 5 min incubation, FuGENE was added directly 

to the reaction which was mixed subsequently by pipetting up and down. In this case, 

threefold volume of FuGENE in µL was used related to the amount of DNA in µg (i. e. 1 µg 

DNA corresponds to 3 µL FuGENE). This reaction was allowed to incubate for 30 min at 

room temperature and was then added directly to the medium of the cells. The latter were 

incubated at 37°C with 10 % CO2 until proceeding wi th the respective application.  

 

2 x BBS Solution  

 

10,65  g BES 

16,35  g NaCl 

  0,21  g Na2HPO4 · 2H2O 

ad 950 mL H2O 

adjust to pH 6,95 with NaOH 

ad 1L ddH2O 

steril filtrate  

 

2.3 Protein biochemistry 
 

2.3.1 Isolation and quantification of proteins  

 

Proteins were isolated from cultured mammalian cells by the following protocol: 

48 h after transfection, medium was removed and the cells were harvested in a 1.5 mL 

Eppendorf tube. Then, the suspension was centrifuged at 4°C for 5 min at 1000 x g. 

Hereafter, the pellet was resuspended in lysis buffer and was rotated at 4°C for 30 min. 

Subsequently, the cells were spun at 4°C for 10 min  at rpm max. and the supernatant was 

transferred into a fresh 1.5 mL Eppendorf tube.  

For protein isolation from mouse tissue, the latter was suspended in lysis buffer containing 

the proteinase inhibitor cocktail mix (Roche) and the tissue disruption was performed using 

the Potter S homogenizer (B. Braun Biotech International). Then, the suspension was 
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centrifuged at 4°C at rpm max. and the supernatant was transferred into fresh 1.5 mL 

Eppendorf tubes.  

To determine the concentration of isolated proteins, Bradford assay was performed [41]. 

Thereby, 5 µL of the protein solution (5 µL lysis buffer were used as blank control) were 

transferred into 1 mL plastic cuvettes followed by an addition of 95 µL 0.15 M NaCl solution. 

Then, 1 mL coomassie blue solution was added and was allowed to incubate for 2 min at 

room temperature. Immediately after the incubation time, protein concentration was 

measured using the Bradford assay program on the BioPhotometer (Eppendorf).  

 

1 x Lysis Buffer     Coomassie Blue Solution  

 

  2.5 mL Triton X-100    50 mg coomassie brilliant blue G250  

   15 mL 5 M NaCl    25 mL 95 % ethanol 

 400 µL  2.5 M CaCl2    50 mL 85 % phosphoric acid (H3PO4) 

      ad 500 mL ddH2O 

2.3.2 Membrane preparations 

 

For enrichment of membrane proteins, preparations of cell membranes were performed. For 

this purpose, 1-2 mL of the 1 x membrane preparation buffer containing the proteinase 

inhibitor cocktail mix was added to the harvested HEK293T cells or mouse tissue and the 

breakup of cell or of the tissue was performed using the Potter S homogenizer. Then, the 

suspension was centrifuged at 4°C for 10 min at 500 0 x g. The supernatant was transferred 

into 6 mL ultracentrifuge tubes and 1 x membrane preparation buffer was added to a final 

volume of 4 mL. Ultracentrifugation was performed at 4°C for 45 min at 30000 rpm (Beckman 

45 Ti rotor). Pellet was suspended in 50-100 µL 1 x membrane preparation buffer and 5 µL 

were used for determination of the protein concentration as described in chapter 2.3.1.  

 

3 x Membrane Preparation Buffer:    

   

3,15     g  MOPS  

   77     g  Sucrose 

     6     mL  0.5 M EDTA (pH 7.4) 

ad 250 mL   ddH2O                          
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2.3.3 Western blotting 

 

Western blotting was performed by standard procedures. After the protein transfer to the 

PVDF membrane, the latter was shortly equilibrated with methanol and was blocked in  

5 % milk powder for 1 h at room temperature with shaking. Then, the incubation of the 

membrane with the appropriate primary antibody was performed. The optimal incubation time 

and the optimal antibody concentration were determined empirically. Hereafter, the 

membrane was washed three times in TBST for 5 min followed by an 1-2 h incubation with 

the secondary antibody at room temperature with rotation. Now, the membrane was washed 

3-4 times with TBST for 5 min and once in ddH2O. After the incubation with the luminol 

reagent according to manufacturer’s protocol (Millipore or Santa Cruz), the membrane was 

put into a film cassette and was exposed to a x-ray film (Fuji). The optimal exposure time 

was determined empirically. 

  

10 x TBS     1 x TBST   

 

12.1 g Tris    100 mL TBS 

80.2 g NaCl    0.1 % Tween 

ad 1 L ddH2O    protect from light  

 

2.3.4 Co-immunoprecipitation 
 

To analyse protein-protein interactions, co-immunoprecipitation experiments using protein G 

dynabeads (Invitrogen) were performed. First, approx. 5 µg antibody and PBS were added to 

30 µL dynabeads up to a final volume of 500 µL. This solution was rotated for 30 min at 4°C    

and subsequently, the supernatant was removed on the magnet followed by a wash step with 

200 µL PBS. Then, 1 mg of the protein lysate was added to the beads and the reaction was 

filled up with PBS to a final volume of 500 µL. Now, the suspension was rotated for 30 min at 

4°C followed by three washing steps with PBS. After  the last wash, the suspension was 

transferred into fresh 1.5 mL Eppendorf tubes and the supernatant was removed completely. 

Beads were resuspended in 6 x Lämmli buffer (with or without DTT, depending on the 

application) and were incubated at 70°C for 15 min.  Finally, the supernatant was loaded on 

the appropriate SDS PAGE gel.   

In some cases, the antibody and IgG’s of protein G were crosslinked to the beads by means 

of irreversible, non-cleavable crosslinker BS3 (Thermo Scientific). For this purpose, after the 

coupling of the antibody to the beads, BS3 was added to the reaction in a final concentration 

of 5 mM. Then, the suspension was incubated for 30 min at room temperature and was 
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quenched subsequently by adding Tris-HCl pH 7.5 (final concentration 50 mM) and 

incubating the reaction for 15 min at room temperature. Then, protein lysate was added and 

the reaction was processed as described above. 

 

6 x Lämmli      6 x Lämmli + DTT  

 

7  mL 4 x Tris-HCl/SDS pH 6.8  = 6 x Lämmli 

3  mL glycerol    + 930 mg DTT 

1  g    SDS 

1.2   mg bromphenolblue  

ad 10  mL ddH2O 

 

2.3.5 Biotinylation assay 

 

Biotinylation represents a commonly used method for detection of cell surface proteins [42].  

48 days after transfection, medium was removed from HEK293T cells which then were 

washed with PBS. Cell surface biotinylation was performed using 0.8 mM of non-cell 

permeable sulfo-NHS-SS-biotin (Pierce, Rockford) in PBS for 30 minutes at 4°C. The 

reaction was stopped with 10 mM glycine and the cells were transferred into fresh 50 mL 

Falcon tubes. After 2 wash steps with PBS (each time pelleting the cells by centrifugation at 

4°C for 5 min at 1500 x g), the cell pellet was sol ubilised in 1 x lysis buffer with the proteinase 

inhibitor cocktail mix (see chapter 2.3.1). Then, biotinylated proteins were precipitated on 

Neutravidin agarose resin (Pierce) using 80 µL of neutravidin beads per reaction. First, 

beads were washed with 200 µL PBS and centrifuged after each wash step at 4°C for 1 min 

at 2500 x g. Biotinylated protein lysate (400 µg/reaction) was added to the washed beads 

and was rotated for 2 h at 4°C. Next, the suspensio n was washed 4 additional times with 

PBS containing 1 % NP-40 under the same centrifugation conditions as described above.   

Finally, elution was performed by adding 40 µL of elution buffer to the beads. Samples were 

incubated 10 min at 70°C before loading them on the  SDS PAGE gel.  

 

Elution Buffer  

 

280 µL  PBS 

  40 µL 10 % NP-40  

  80 µL  6 x Lämmli buffer + DTT 
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2.4 Förster resonace energy transfer (FRET)   
 

FRET represents a commonly used tool for the analysis of molecular dynamics such like 

protein-protein interactions [43]. This method is based on the energy transfer between two 

fluorophores located in a defined spatial proximity to each other (Typically, less then 10 nm). 

Thereby, the emission spectrum of the first fluorophore (donor) is partially absorbed by the 

second fluorophore (acceptor) giving rise to a decrease in the emmision spectrum of the 

donor and an increase of the acceptor emission spectrum. This spectral shift is finally 

measured as FRET signal. However, a prerequisite for a FRET signal is a spectral overlap of 

the donor and the acceptor. Based on this, for biological use the most commonly used pair of 

fluorophors is the combination of CFP as donor and YFP as acceptor. Interaction of proteins 

of interest can be studied by coupling them to these fluorophores, by coexpressing them in 

an appropriate cell line and by subsequent measurement of the FRET signal. In this study, 

FRET was used to analyse the assembly of CNGB1a subunits carrying the GV mutation with 

the CNGA1 subunit using following protocol: 

HEK293 cells were transfected with CNGA1-CFP or soluble CFP (negative control) and 

wildtype or mutant YFP-CNGB1a. A CFP-YFP tandem construct served as FRET positive 

control [44]. Fluorescent images were captured 48-72 h after transfection on an Axioplan 2 

microscope (Zeiss, Oberkochen, Germany) equipped with a Plan Neofluar 40 x objective 

(numeric aperture 0.75), a HMRc ccd camera and an AttoArc HBO100 mercury lamp 

illumination unit. Three fluorescent images per cell were collected using the CFP HC filter, 

YFP HC filter and FRET CFP-YFP HC filter sets (Semrock, Rochester). Fluorescence 

images were processed using the FRET plus macro (Zeiss) and the FRET efficiency was 

calculated as N-FRET using the method described by Xia and Liu [45]. 

 

2.5 Electrophysiological recordings 

 

All experiments obtained from electrophysiological recordings in this study were performed 

by PD Dr. Xiangang Zong as described previously [25, 46, 47]. Maximal channel open 

probability (Pmax) was determined from the ratio of currents at saturating cGMP (1 mM) in the 

absence and the presence of 1 µM Ni2+ as described previously [48, 49]. The following 

adjustments to the solutions were made for these experiments: KCl or NaCl with less than 

0.01 ppm Ni2+ was used and HEPES concentration was lowered to 5 mM. EGTA / EDTA 

were omitted from the extracellular solution. The pipette solution contained 200 mM EDTA 

and 500 mM niflumic acid. 
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2.6 Statistics  

 

All values are given as mean ± S.E., and n is the number of experiments. An unpaired 

Student's t test was performed for the comparison between two groups. Values of p < 0.05 

were considered significant. 
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3 Results 
 

3.1 Splicing analysis of the c.3444+1G>A mutation i n CNGB1 
 

As described in chapter 1.5.2 the c.3444+1G>A splice site mutation in CNGB1 has been 

associated with RP [32]. This mutation is located at the donor site of exon 32 and has been 

proposed to result in a frameshift and truncation of the last 28 amino acids (aa) of the 

corresponding protein. However, this ambiguous conclusion was not verified by experimental 

data. Therefore, the effects of c.3444+1G>A on splicing were reexamined by in silico and  

in vitro experiments. 

 

3.1.1 In silico splicing analysis of c.3444+1G>A 
 

In order to reconstruct the mechanism by which c.3444+1G>A could lead to truncation of the 

last 28 aa of CNGB1a, in silico analysis was performed using the NNSplice 0.9 splice site 

prediction software (http://www.fruitfly.org/seq_tools/splice.html) (Fig. 7). The DNA sequence 

used for this analysis starts with exon 32 and ends with the stop codon of CNGB1. A 

plausible explanation for the splicing scenario proposed by the original study would be the 

use of cryptic donor sites.  

 

 

Fig. 7 Donor site prediction of a CNGB1 genomic DNA fragment encompassing exon 32-33 
(3911 bp in length) using the NNSplice 0.9 splice s ite prediction software 
(http://www.fruitfly.org/seq_tools/splice.html). The respective positions of the predicted donor sites 
on genomic DNA are shown as blue arrowheads, the position of the c.3444+1G>A mutation is marked 
by a black arrowhead. In the lower part of the figure, start and end positions of the DNA sequence 
flanking the donor site as well as the corresponding score values are shown. Donor site is highlighted 
in upper case (blue font). 
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As shown in Fig. 7, the DNA sequence analysed herein harbours seven potential cryptic 

donor sites. Use of the cryptic donor site in exon 33 would indeed delete the sequence that 

encodes the last 28 aa. However, it would also lead to retention of intron 32. In this case, due 

to an intronic stop codon 171 bp after exon 32, the corresponding protein would lack all 97 

aa encoded by exon 33. 

 

3.1.2 Creation of wild type and mutant minigene con structs 
 

In conclusion, no possible splice scenario could be reconstructed that would give rise to the 

deletion of only the last 28 aa of the CNGB1 protein. Therefore, the splicing of the construct 

containing the c.3444+1G>A mutation was analysed experimentally. For this purpose, a DNA 

fragment starting from the last 55 bp of intron 30 and ending with the last 42 bp after the stop 

codon within exon 33 of CNGB1 was amplified by PCR from human genomic DNA and was 

sequenced. For cloning convenience, a 7.1 kb fragment of intron 31 flanked by XbaI sites 

was deleted. The final 6.4 kb minigene construct was subcloned into the pcDNA3 vector. The 

c.3444+1G>A mutation was inserted using standard site directed mutagenesis (Fig. 8).  

 

 

 

Fig. 8 Schematic representation of the minigene con struct used for the exon trapping 
experiment showing the position of the deleted intr onic XbaI-fragment.  pcDNA3 vector backbone 
sequence is depicted in green.  
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3.1.3 Exon trapping experiments in HEK293T cells 
 

Wild type and mutant minigene constructs were transfected in HEK293T cells and after 48 h, 

cells were harvested followed by total RNA isolation. After cDNA synthesis and PCR 

amplification with vector specific primers the splicing products derived from the minigenes 

were sequenced (Fig. 9).  

 

 

 
 
Fig. 9 Exon trapping experiment from transfected HE K293T cells. On the left, revese transcriptase 
PCR from HEK293T cells transfected with mutant and wild type minigene constructs is depicted. The 
electropherogram for the c.3444+1G>A mutant shows the skipping of exon 32. Wild type construct 
was spliced correctly (data not shown). On the right, schematic representation of the splice products is 
shown. The length of the respective PCR products is indicated by double arrows. WT: wild type, Mut: 
c.3444+1G>A mutation. 

 

As shown in the upper figure, the c.3444+1G>A mutation results in skipping of exon 32 

thereby leading to a frameshift after exon 31. As a result, the regular coding region of 

CNGB1a stops after amino acid 1075 followed by 68 unrelated amino acids. The deleted part 

of CNGB1a encompasses 170 aa and covers the complete distal C-terminus including the 

last 10 aa of the αC helix within the CNBD (Fig. 10). 
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Fig. 10 Schematic comparison of the WT and mutant p rotein demonstrating the lack of the 
entire distal C-terminus and the last 10 aa of the ααααC helix in the context of the c.3444G>A 
mutation. Skipping of exon 32 causes a frameshift which results in addition of 68 unrelated amino 
acids after aa position 1075 of the CNGB1a protein (highlighted in grey). The numbers represent the 
length of the respective proteins (1245 aa for WT and 1143 for the mutant). S1-S6: transmembrane 
segments. 

 

3.1.4 In vitro expression of wild type and mutant rod CNG channels  
 
To investigate the consequences of skipping of exon 32 on the full length protein the human 

full-length mutant CNGB1a was coexpressed in HEK293T cells with human CNGA1. The  

full-length mutant CNGB1a cDNA was obtained by deleting the exon 32 of the full-length wild 

type CNGB1 cDNA. For western blotting experiments membrane proteins were isolated from 

HEK293T cells transfected with CNGA1 and wild type or mutant CNGB1a.  
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Fig. 11 Western blot of membranes isolated from HEK 293T cells transfected with CNGA1 and 
wild type or mutant CNGB1a probed with anti-B1 (top  panel) or anti-ATPase (bottom panel). The 
weaker expression of the mutant protein was normalized in the presence of the proteasome inhibitors 
MG-132 and ALLN. The blot was probed with an antibody directed against the N-terminus of CNGB1a 
(PPc6N, [23]). As loading control anti-ATPase antibody (1:1000, clone α6F, developed by D.M. 
Fambrough, obtained from the Developmental Studies Hybridoma Bank, Iowa) was used. In 
proteasome inhibition experiments MG-132 and ALLN (25 µM each, Calbiochem) were added directly 
to the cells sixteen hours prior to harvesting. 

 

As shown in Fig. 11, in the western blot analysis using an antibody directed against the N-

terminus of CNGB1a the expected 240 kDa band for the wild type CNGB1a could be 

detected. As anticipated, the mutant CNGB1a protein was smaller than the wild type 

counterpart. Furthermore, the expression level of the mutant CNGB1a was considerably 

reduced compared to the wild type CNGB1a. Since this difference in expression could be 

reversed by the addition of the proteasome inhibitors MG-132 and ALLN, respectively, the 

conclusion can be drawn that the mutant protein is partially degraded by the proteasome.  

In summary, the c.3444+1G>A mutation was shown to result in skipping of exon 32 on 

mRNA level thereby leading to a frameshift after exon 31 and a premature stop codon. On 

protein level this mutation gives rise to deletion of the last 170 aa of the mutant protein 

including 10 aa of the αC helix within the CNBD. Finally, in vitro results from HEK293T cells 

after coexpression of the mutant CNGB1a with CNGA1 have shown that the mutant CNGB1a 

is prone to proteasomal degradation.  
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3.2 Functional analysis of the G993V mutation in CNGB1 

 

As described in chapter 1.7, this part of the study addressed the role of the CNGB1a subunit 

on the activation process of the heteromeric rod CNG channel. For this purpose, a naturally 

occurring point mutation in the human CNGB1 gene that leads to a glycine-valine exchange 

at position 993 in the CNBD of CNGB1a (CNGB1aGV) was analysed. This mutation was 

identified in a French family suffering from retinitis pigmentosa (RP) [31].  

 

 

3.2.1 In silico analysis  

 

To examine the effects of the G993V mutation computationally, two approaches were 

performed. The first approach included the analysis of the evolutionary conservation of the 

glycine residue at position 993 among different proteins known to have very similar cyclic 

nucleotide-binding domain structure (see chapter 1.4.1). In the second approach, to analyse 

the consequences of the GV mutation on the conformation of the CNBD in CNGB1a, a 

molecular dynamics (MD) simulation was performed by the group of Prof. Wanner, 

Department of Chemistry, Ludwig Maximilians Universität München (Fig. 12). As template 

coordinates the crystal structure of the CNBD of the sea urchin HCN channel was used [50]. 
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Fig. 12 In silico analysis of the G993V mutation . A) Sequence alignment of the β2-αC region of the 
CNBD of human CNGB1a, human CNGA1, E. coli CAP, sea urchin (sp) HCN1 and human PKG1. 
Invariant residues are highlighted in red. The invariant glycine residue within the β2-β3 loop that is 
mutated to valine (GV mutation) in the CNGB1a subunit of RP patients is marked with an asterisk. 
Residues identified in the crystal structure of HCN channel CNBDs to participate in cyclic nucleotide-
binding [51] are marked with arrowheads. B) Predicted structure of the cGMP binding pocket of 
CNGB1a (left) and CNGB1aGV (right). The sequences were threaded onto the crystal structure of the 
CNBD of spHCN [51] by using Modeller [52] and analysed using molecular dynamics simulations. The 
glycine and the valine residue in the β2-β3 loop of CNGB1a and CNGB1aGV, respectively, are 
represented as space filling spheres. Residues in the β6 and β7 strands as well as in the C helix 
participating in cGMP-binding are shown as sticks. Only one monomer is shown for clarity.  

 

As outlined in Fig. 12, the GV mutation in the CNBD of CNGB1a refers to a glycine residue in 

the β2-β3 connecting loop that is strictly conserved throughout evolution. The available 

crystal structures of CNBDs indicate that the glycine is not directly involved in cGMP binding 

but that it is essential for the integrity of the overall fold of the CNBD [53]. As is evident from 

Fig. 12, the GV mutation induces major structural alterations in the CNBD. These 

rearrangements lead to the occlusion of the cGMP binding cavity and a reduction of the 

cGMP binding site volume.  
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3.2.2 Expression of CNGA1GV 
 

Based on the findings from the in silico analysis, the GV mutation could have the potential to 

impair cGMP binding and, hence, channel activation. To test this hypothesis the GV mutation 

was introduced into the CNBD of CNGA1 and the expression as well as the 

electrophysiological properties of the mutant CNGA1 were analysed (Fig. 13).  

 
Fig. 13 CNGA1GV is expressed on the plasma membrane  of transfected HEK293 cells. A) Top 
panel: Western blot of membranes from HEK293 cells transfected with CNGA1-CFP or CNGA1GV-
CFP, respectively. The blot was probed with anti-GFP antibody. Bottom panel: membranes probed 
against the ATPase α subunit. (B) Representative current traces elicited by 1 mM cGMP and voltage 
steps (2 s each) to -80 mV and +80 mV in excised patches from HEK293 cells expressing CNGA1 
(A1), or CNGA1GV (A1GV), CNGA1GV/CNGB1a (A1/B1a) and CNGA1GV/CNGB1b (A1/B1b). 

 

As shown in Fig. 13, the GV mutation had no consequences on protein expression level. 

However, as predicted, CNGA1GV channels were functionally inactive even in the presence 

of 1 mM cGMP. Coexpression of CNGB1a or the olfactory CNGB1b subunit that lacks the 

GARP domain failed to rescue channel activity. 
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3.2.3 Electrophysiological measurements of heterome ric CNGA1/CNGB1aGV 
channels 

 

Next step was to analyse the effects of the GV mutation in CNGB1a on the heteromeric 

channel complex. To this end, CNGA1 was coexpressed together with either wild type or 

mutant CNGB1a and the properties of the resulting currents were compared to currents 

induced by CNGA1 alone (Fig. 14).  

 

 

 

Fig. 14 Electrophysiological characterisation of he teromeric CNGA1/CNGB1GV channels. 
Single-channel currents induced at +60 mV by 3 µM cGMP in excised patches of HEK293 cells 
transfected with CNGA1 (A1), CNGA1/CNGB1a (A1/B1a) or CNGA1/CNGB1aGV (A1/B1aGV). (B) 
Current-voltage relation of A1, A1/B1a and A1/B1aGV in the presence of 2 mM Ca2+ and 1 mM Mg2+ in 
the extracellular solution. Current was normalized to the current at +60 mV. (C) Inhibition of A1, 
A1/B1a and A1/B1aGV currents by 100 µM Ca2+ / 250 nM calmodulin in the bath solution. Currents 
were induced at +80 mV by 100 µM cGMP. (D) L-cis-diltiazem (10 µM) block of A1, A1/B1a and 
A1/B1aGV currents induced by 300 µM cGMP at +80 mV. Number of experiments is given in brackets. 
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Surprisingly, currents obtained after coexpression of CNGA1 and CNGB1aGV did not exhibit 

typical CNGB1a-mediated features but were indistinguishable from currents of homomeric 

CNGA1 channels (Fig. 14 A-D). While single channel currents of heteromeric CNG channels 

are characterised by very brief open-closed transitions (single channel flicker), single channel 

currents obtained after coexpression of CNGA1 and CNGB1aGV displayed long openings 

which is typical of homomeric CNGA1 channels (Fig. 14 A). In addition, the strong outwardly-

rectifying current-voltage relation of channels obtained after coexpression of CNGA1 and 

CNGB1aGV in the presence of extracellular divalent ions was virtually identical to that of the 

homomeric CNGA1 channel, but clearly differed from that of weakly rectifying wild type 

heteromeric channels (Fig. 14 B). In contrast to wild type CNGB1a, CNGB1aGV did not 

increase Ca2+/CaM sensitivity if coexpressed with CNGA1 (Fig. 14 C). Probably the most 

indicative feature resulting from the presence of the CNGB1 subunit is the generation of a 

high affinity site for block by L-cis-diltiazem [26]. Indeed, unlike homomeric CNGA1 channels, 

heteromeric CNGA1/CNGB1a channels were efficiently blocked by this drug. By contrast, 

currents obtained after coexpression with CNGB1aGV were not sensitive to L-cis-diltiazem 

(Fig. 14 D).  

 

3.2.4 Coassembly and cell surface expression of CNG A1/CNGB1aGV heteromers 
 

The total absence of CNGB1a-mediated properties in conjunction with the complete 

correspondence with the biophysical properties of homomeric CNGA1 currents indicated that 

currents measured after cotransfection of CNGA1 and CNGB1aGV were purely caused by 

CNGA1 homomers. A possible explanation for this result would be that after cotransfection of 

CNGA1 and CNGB1aGV only homomeric CNGA1 channels are present in the membrane 

because CNGA1/CNGB1aGV heteromers are not assembled, are rapidly degraded or fail to 

be transported to the plasma membrane. To test these options, biotinylation,  

co-immunoprecipitation and FRET experiments on CNGA1/CNGB1GV heteromers were 

performed (Fig. 15). 
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Fig. 15 Cell-surface expression and assembly of CNG A1/CNGB1GV heteromers.   A) Biotinylation 
of non-transfected (ø), CNGA1/CNGB1a (WT) and CNGA1/CNGB1aGV (GV) transfected HEK293 
cells probed with anti-B1 (top panel) or anti-tubulin (tub, bottom panel) antibodies. B) Co-
immunoprecipitation (co-IP) from lysates of HEK293 cells co-transfected with myc-tagged CNGA1 and 
wild type CNGB1a or CNGB1aGV, respectively. Top panel: immunoprecipitation (IP) using anti-myc 
for pulldown and anti-B1 for detection. Bottom panel: Western blots showing the starting material for 
the co-IP probed with anti-myc (left) or anti-B1 antibodies (right). C) N-FRET ratios calculated from 
HEK293 cells co-transfected with CNGA1-CFP and YFP-CNGB1a (WT) or YFP-CNGB1aGV, 
respectively. HEK293 cells transfected with CFP and YFP-CNGB1a or a CFP-YFP tandem were used 
for the calculation of negative (neg) and positive (pos) control N-FRET values, respectively. Number of 
experiments is given in brackets. 

 

As is evident from Fig. 15 A, cell surface biotinylation experiments using membrane 

impermeable amine-reactive biotin showed that both wild type and mutant channels were 

present at the membrane of transfected cells. In addition, CNGB1aGV could be co-

immunoprecipitated with CNGA1 indicating the formation of stable heteromers (Fig. 15 B). 

Finally, assembly of CNGA1 with CNGB1aGV was also verified by Förster resonance energy 

transfer (FRET) (Fig. 15 C). 
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3.2.5 Identification of inhibitory domains in CNGB1 a 

 

Another explanation for the selective detection of homomeric CNGA1 currents in HEK293 

cells transfected with CNGA1 and CNGB1aGV may be that homomeric and mutant 

heteromeric CNG channels do coexist in the plasma membrane but in contrast to homomeric 

CNGA1 channels mutant heteromers cannot be activated by cGMP and, thus, do not 

contribute to any measurable current. In an attempt to identify structural determinants 

conferring an inhibitory action of CNGB1aGV the GV mutation was introduced into the 

olfactory CNGB1b subunit that differs from CNGB1a by lacking the GARP domain. This new 

mutant was coexpressed with CNGA1 and patch clamp recordings were performed (Fig. 16).  

 

 

 
Fig. 16 Identification of N-terminus of CNGB1a (her ein referred to as “GARP domain”) as the 
inhibitory domain. The GV mutation does not impair channel function in the context of the olfactory 
CNGB1b isoform lacking the GARP domain. Top panel: Schematic representation of CNGB1a and 
CNGB1b subunits. The position of the GV mutation is highlighted by an asterisk. Amino acid position 
555 is highlighted since starting from this position CNGB1a and CNGB1b are identical. Bottom panel: 
Summary graph showing the L-cis-diltiazem sensitivity of various homo- or heteromeric channels. 
Currents were elicited by 300 µM cGMP at +80 mV. L-cis-diltiazem was used at 50 µM for A2, A2/A4, 
A2/A4/B1b and A2/A4/B1bGV and at 10 µM for all other channels.  
S1-S6, transmembrane domains; CNBD, cyclic nucleotide-binding domain. Scale bar marks 100 
amino acids. 
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Surprisingly, as shown in Fig. 16, L-cis-diltiazem sensitive currents were now obtained with 

both wild type and mutant CNGB1b subunits. Sensitivity to L-cis-diltiazem was also 

consistently observed when the GV mutation was introduced into the native olfactory CNG 

channel complex consisting of CNGA2/CNGA4 and CNGB1b. Like for CNGA1 the wild type 

but not the mutant CNGB1a subunit induced L-cis-diltiazem sensitivity when coexpressed 

together with CNGA2. These results indicated that the GARP domain mediates the dominant 

negative effect of CNGB1aGV. To identify the inhibitory determinants within the GARP 

domain, a systematic mutation screening was performed by deleting specific regions of this 

domain. The respective constructs were coexpressed with CNGA1 in HEK293 cells followed 

by electrophysiological measurements of L-cis-diltiazem mediated CNG current inhibition. 

Fig. 17 shows a summary of the most important mutation constructs analysed in this 

approach.   

 

 

Fig. 17 Mutagenesis screen within the GARP domain.  Top panel: cartoon showing the CNGB1a 
subunit. The two sequences conferring most of the inhibitory effect are highlighted in grey. Bottom 
panel: graphic overview on N-terminal truncation constructs (left) and summary graph comparing the 
effect (% inhibition) of 10 µM L-cis-diltiazem on cGMP currents (300 µM, +80 mV, right) measured 
from HEK293 cells co-transfected with CNGA1 and various N-terminal truncated CNGB1aGV mutants 
or a B1aGV chimera in which the N-terminus was replaced by the yellow fluorescent protein (YFP). 
Number of experiments is given in brackets. * = p < 0.05, ** = p < 0.01, *** = p < 0.005. Scale bar 
marks 100 amino acids. S1-S6, transmembrane helices. 
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As is evident from Fig. 17, study of mutants with deletions in the GARP domain identified two 

regions (residues 214-253 and 364-481) of CNGB1a that confer most of the inhibitory effect. 

Fusion of an unrelated peptide (YFP) to the N-terminus of CNGB1bGV did not result in 

channel inhibition excluding unspecific effects which could be mediated merely by the length 

of the N-terminal domain.  

 

As described in chapter 2.1.12, the experiments shown so far were obtained using rat 

CNGB1a and bovine CNGA1 channels. To examine if inhibitory effects of the GARP domain 

can be obtained using CNG channels from other species, the GV mutation was introduced 

into the human CNGB1a (hCNGB1a) subunit containing and lacking the GARP domain. After 

coexpression with human CNGA1 (hCNGA1), L-cis-diltiazem sensitivity was measured for 

these channels. The results are shown in Fig. 18. 

 

 
Fig. 18 Effects of the GV mutation and of the GARP domain on human rod CNG channels.  
Percent inhibition by 10 µM L-cis-diltiazem of currents obtained after cotransfection of human CNGA1 
with wild type or mutant human CNGB1a lacking or containing the GARP domain in presence of 300 
µM cGMP. hB1a#452-1245 corresponds to the rat CNGB1a construct B1a#556-1339 (see i.e. Fig. 17 
and Fig. 19). Number of experiments is shown in brackets.  

 

As shown in Fig. 18 the GV mutation as well as the GARP domain of the human rod 

channels show very similar electrophysiological characteristics regarding the L-cis-diltiazem 

sensitivity as described above for rat CNGB1a and bovine CNGA1 channels, respectively. 

This indicates that the observed effects of the GARP domain represent a general mechanism 

transferable to rod channels of all species.    
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3.2.6 Coexpression of GARP as soluble protein  
 

To test whether the GARP domain can act inhibitory as an autonomous protein it was 

coexpressed as separate protein (B1a#1-555) together with CNGA1 and a CNGB1a 

truncation construct (B1a#556-1339, see cartoon in Fig. 19 A).  

 

 

 
Fig. 19 GARP acts as an autonomous unit when coexpr essed as soluble protein . A) Schematic 
representation of the truncated B1a#556-1339 GV channel and the protein corresponding to the 
GARP domain. B) Percent inhibition by 10 µM L-cis-diltiazem of currents obtained after cotransfection 
of CNGA1 with various CNGB1a-derived constructs as indicated. Number of experiments is given in 
brackets. ** = p < 0.01 

 

Currents obtained from the coexpression of CNGA1 with B1a#556-1339 were sensitive to L-

cis-diltiazem. By contrast, coexpression of the GARP domain, CNGA1 and CNGB1a#556-

1339GV again abolished the block by L-cis-diltiazem (Fig. 19 B). This finding suggested that 

the GARP domain exerts its inhibitory effect even if it is not covalently linked to the CNGB1 

core.  
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To test if the inhibitory effect of GARP is mediated by direct binding of this domain to the 

CNGB1a or CNGA1 subunit, co-imunoprecipitation experiments were performed (Fig. 20).   

 

 

 
Fig. 20  Co-immunoprecipitation of the GARP domain (B1a#1-55 5) with CNGA1 (myc-tagged) or 
CNGB1a#556-1339 WT or GV . A) Schematic representation of the truncated B1a#556-1339 GV 
channel and the protein corresponding to the GARP domain (B1a#1-555) and binding sites of the B1a-
specific antibodies used for experiments shown in B and C, respectively. B) Co-IP using the anti-myc 
antibody capable of the immunoprecipitation of myc tagged CNGA1 C) Co-IP using anti CNGB1 
directed against the C-terminus of this protein.  
1, coexpression of A1 + B1a#1-555; 2, A1 + B1a#1-555 + B1a#556-1339; 3, A1 + B1a#1-555 + 
B1a#556-1339GV; 4, B1a#1-555 + B1a#556-1339. Anti-B1, rabbit polyclonal antibody directed against 
the C-terminus of CNGB1a. PPc6N, rabbit polyclonal antibody directed against the N-terminus of 
CNGB1a. IP, immunoprecipitation.  
 

 

As is evident from Fig. 20 B and C, the soluble GARP domain formed stable protein 

complexes with both CNGA1 and either mutant or wild type CNGB1a#556-1339. Therefore, 

the inhibitory action of GARP on the channel is probably due to direct binding of this domain 

to the channel core.  
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3.2.7 Role of a functional CNBD of CNGB1 for CNG ch annel activation 
 

Results shown in Fig. 20 indicate that the GARP domain binds to both CNGA1 and CNGB1 

subunits in the heteromeric CNG channel complex. In wild type heteromers the identified 

GARP-channel interaction does not interfere with cGMP-dependent activation. By contrast, in 

the presence of the GV mutation the GARP domain completely shuts down channel activity. 

Based on MD simulations (Fig. 12) the conclusion can be drawn that the inhibitory effect of 

GARP may be causally linked to the inability of CNGB1aGV to bind cGMP. To test this 

hypothesis the effects of GARP in the presence of a double mutation in the β7 strand of the 

CNBD (R1042E and T1043A, herein after referred to as RT>EA) that is well known to abolish 

cyclic nucleotide-binding in CNG and HCN channels [13, 51] were analysed (Fig. 21).  

 

 

 
Fig. 21 Summary graph comparing the L-cis-diltiazem  sensitivity of heteromeric channels 
containing wild type and cyclic nucleotide-binding deficient (RT>EA) B1a or B1b subunits.  
RT>EA: substitution of arginine and threonine within the β7-sheet of the CNBD by glutamate and 
alanine, respectively. Number of experiments is given in brackets. 

 

As anticipated, in the backbone of CNGB1b the double mutation did not interfere with the 

formation of functional heteromeric (L-cis-diltiazem sensitive) channels. However, when 

introduced into CNGB1a the mutation fully blocked heteromeric channel activity and only the 

residual homomeric (L-cis-diltiazem insensitive) CNGA1 channel was detected (Fig. 21). 

Thus, with respect to its functional effect on heteromeric channels containing or lacking the 

GARP domain, the RT>EA mutation was indistinguishable from the GV mutation.  
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3.2.8 Opening probability of channels containing or  lacking the GARP domain  

 

The experiments shown so far indicated that the GARP domain blocks gating of heteromeric 

CNG channels which contain a CNGB1 subunit deficient for cGMP binding. The next 

question was whether the GARP domain could also interfere with the gating of wild type 

heteromeric channels containing a functional CNBD. If so, differences in some 

electrophysiological parameters should also be detectable when comparing wild type 

CNGA1/CNGB1a with CNGA1/CNGB1a#556-1339 channels lacking GARP. To test one of 

these parameters, cGMP sensitivity for both channel types was measured but no apparent 

differences were detectable in this experiment (data not shown). However, the analysis of the 

maximal open probability for cGMP (Pmax) showed that heteromeric channels containing the 

GARP domain had a significantly lower Pmax compared to channels lacking this domain  

(Fig. 22). 

 

 

Fig. 22 Summary graph comparing the maximal open pr obability for cGMP (P max) of wild type 
homomeric A1, heteromeric A1/B1a and A1/B1a#556-133 9 channels . (Pmax(cGMP): CNGA1/CNGB1a 
= 0.86 ± 0.02 (n=7), CNGA1/CNGB1a#556-1339 = 0.93 ± 0.02 (n=11), p < 0.05). 
 

The finding that the presence of the GARP domain lowers the opening probability of CNG 

channels strongly supports the notion that the GARP domain acts as gating inhibitor in the 

rod photoreceptor channel.  
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Based on the results described in chapters 3.2.1-3.2.8, a final model was worked out in order 

to explain the observed effects (Fig. 23). 

 

 

 
Fig. 23 Model of the action of the GARP domain in w ild type and mutant heteromeric CNG 
channels.  A) In wild type rod channels, GARP domain serves as a gating inhibitor. Binding of cGMP 
to CNGB1a subunit releases the tonic inhibition mediated by the GARP domain giving rise to channel 
opening. For reasons of clarity, the contempable intermediates (i. e. if only one or two cGMP are 
bound to CNGA1) are not included in this model. B) GV mutation in CNGB1a probably prevents cGMP 
binding to this subunit. Therefore, the tonic inhibition of GARP may not be released and the channels 
remain in the closed state. C) If the GARP domain is removed from the mutant CNGB1 subunit the 
heteromeric channels are able to open in the presence of cGMP for two reasons. The first reason is 
the fact that binding of two cGMP was shown to be sufficient for maximal opening of olfactory CNG 
channels (see chapter 1.4.2). The second reason is the absence of the GARP domain as gating 
inhibitor.   

 

The final conclusion that can be drawn from the model shown in Fig. 23 is that binding of 

cGMP to the CNGB1a subunit serves as a prerequisite for opening of rod CNG channels 

because of the inhibitory effect of the GARP domain on the gating process.  
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4 Discussion 
 

4.1 Splicing analysis of the c.3444+1G>A mutation i n CNGB1 
 
 

In this part of the study, the pathogenic effect of a previously reported splice site mutation in 

CNGB1 could be verified experimentally. Initial in silico analysis suggested that no splicing 

scenario would lead to “a frameshift and truncation of the last 28 aa” of CNGB1a as 

postulated by the original study [32]. Using in vitro exon trapping experiments it could be 

shown that this mutation gives rise to skipping of exon 32. However, due to the limitation of 

exon trapping experiments, the possibility that in photoreceptors the mutation may have 

other effects on splicing cannot be completely excluded.  

Based on the results obtained in HEK293T cells in this study, the c.3444+1G>A mutation 

may lead to the RP phenotype by negatively affecting the  

i) Channel expression. The expression of the mutant CNGB1a is compromised by the action 

of the proteasome. This may also be the case in rod photoreceptors resulting in reduction or 

in complete loss of channel. Mutations that result in premature stop codons are known to 

trigger nonsense mediated mRNA decay (NMD) [54]. Since skipping of exon 32 gives rise to 

a premature stop codon, it seems possible that c.3444+1G>A mutant transcripts are affected 

by NMD in vivo, which would also negatively affect channel expression.  

(ii) Channel targeting. Recently, it has been shown that the distal C-terminus of CNGB1a 

contains an ankyrin G binding motif responsible for the proper targeting of the channel to rod 

outer segments [17]. This domain is located within the deleted sequence in the mutant 

CNGB1a. Thus, if the channel is expressed, its targeting to rod outer segments may be 

affected by the mutation.  

(iii) Channel function. It has been shown that the structural integrity of the αC helix of the 

CNBD is crucial for proper channel gating [48, 55, 56]. Since the c.3444+1G>A mutation 

results in loss of the last 10 aa of the αC helix, the mutant channel, even if expressed at 

normal levels in rod outer segments, would be most probably non-functional. Which of these 

parameters (and to which extent) contributes to the disease in affected patients remains to 

be determined.  

A comparison of the clinical investigations performed on patients which are affected by the 

c.3444+1G>A mutation with those affected by the c.2978G>T (p.G993V) mutation would be 

helpful in order to gain some insights into functional consequences of these two mutations  

in vivo. However, since clinically relevant parameters (i. e. electroretinogram) were examined 

only for one patient in the respective studies [31, 32], this comparison appears to be rather 

unreasonable at this point.  
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4.2 Functional analysis of the G993V mutation in CNGB1 

 

In this part of the study the role of the CNGB1a subunit in the cGMP-dependent activation 

process of the rod photoreceptor CNG channel was examined. The CNBD of CNGB1a 

contains all canonical residues required for high affinity cGMP binding [26, 47, 57-59] and 

was shown in photoaffinity labeling experiments to bind cGMP [60]. While these findings 

suggest that CNGB1a contributes to channel activation, the analysis of the role of CNGB1a 

in this process has been hampered by the fact that CNGB1a does not form functional 

homomeric channels. The results of this study have shed new light on this issue by analyzing 

a naturally occurring mutation in CNGB1a of RP patients (GV mutation) that impairs the 

structural integrity and/or cGMP binding capability of the CNBD. It was found that this 

mutation exerts a strong dominant negative effect leading to a complete functional silencing 

of heteromeric channels. Surprisingly, however, the impact of the GV mutation was strictly 

dependent on the presence of the proximal part of the N-terminus of CNGB1a (GARP 

domain) and was not observed for the short CNGB1b subunit. Unlike homomeric CNGA1 or 

heteromeric CNGA1/CNGB1aGV channels, channels containing CNGB1bGV displayed high 

sensitivity to block by L-cis-diltiazem which is the pharmacological hallmark of a functional 

CNGB1 subunit. The different effect of the two CNGB1 isoforms was also observed for 

another extensively characterised mutation impairing cGMP binding (RT>EA mutation) and 

was found when CNGB1a/b were assembled with another CNG A-subunit (CNGA2). Two 

important conclusions can be drawn from these findings. Firstly, in the absence of the GARP 

domain binding of cGMP to CNGB1 is not required for principal activation of heteromeric 

channels. This is in good agreement with a recent study showing that in the homomeric 

CNGA2 channel only two subunits of the tetrameric complex must bind a cyclic nucleotide to 

fully activate the channel [20]. Secondly, however, the presence of the GARP domain 

fundamentally interferes with the activation process, transforming cyclic nucleotide-binding to 

CNGB1 from a non-essential process to a prerequisite of channel activation. An inhibitory 

effect of the GARP domain on channel gating is supported by the finding that wild type rod 

channels have a lower open probability than rod channels lacking the GARP domain in 

CNGB1a. Therefore, it can be concluded that GARP is an autoinhibitory domain that controls 

channel activation. In the native rod CNG channel the GARP domain interacts with the 

channel complex (CNGA1 and CNGB1). Binding of cGMP to CNGA1 and CNGB1a relieves 

the inhibitory effect of GARP leading to channel opening. In channels containing a CNGB1a 

subunit that is deficient for cGMP binding the autoinhibitory impact of GARP cannot be 

removed, and CNGB1a stays locked in its closed state. This prevents the opening transition 

of the tetrameric channel complex even if cGMP is bound to the three CNGA1 subunits. In 
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the absence of the GARP domain there is no longer a constraint on channel gating. Now, 

binding of cGMP to the CNGA1 subunits is sufficient for full activation. The exact molecular 

mechanism underlying the action of the GARP domain remains to be determined. However, 

the co-immunoprecipitation experiments indicate that GARP can directly bind to both CNGA1 

and CNGB1 suggesting that a direct protein-protein interaction underlies the effect of GARP. 

The GARP domain was shown to have a flexible, largely unordered structure in solution [61]. 

It seems possible that like other unstructured proteins such as bacterial FlgM [62] GARP can 

gain structure in the presence of specific binding partners. The identification of two 

sequences within the GARP domain that are responsible for most of its inhibitory effect 

supports the notion that GARP specifically interacts with the CNG channel. However, 

deletion of one of these regions alone was not sufficient to prevent the inhibitory effect 

(chapter 3.2.5). Since in this study GARP was shown to interact with both CNGB1 and 

CNGA1 it seems plausible that one of these regions is involved in binding to CNGB1, the 

second one for binding to CNGA1. Therefore, both interactions have to be disrupted to 

completely remove the inhibitory effect mediated by the GARP domain.  

One common feature of the two inhibitory regions is the fact that they posses a unusually 

high percentage of negatively charged amino acids, especially glutamate. This part of the 

GARP domain may interfere with the N-terminus of CNGA1 that contains a positively 

charged lysine-rich region. The αC helix of CNGB1 also harbours a high amount of positively 

charged residues making it a good candidate for the interaction with the GARP domain. 

However, the exact mechanism how the negative charge interferes with channel gating is 

beyond the scope of this study and remains to be determined. 

In this study it could also be shown that GARP acts inhibitory if expressed as separate 

protein indicating that it forms an autonomous folding unit. The latter finding is important 

since it indicates that soluble GARP1 and GARP2 that are coexpressed together with 

CNGB1a in rod outer segments also can inhibit channel gating. It was proposed that the 

GARP domain of CNGB1a tethers the heteromeric CNG channel to the disc rim of outer 

segments by interacting with peripherin-2 [35, 61]. It is not known whether or not the GARP-

peripherin-2 interaction competes with the interaction between GARP and the channel 

complex. However, even if this is the case, free soluble GARPs could still bind to the 

channel. This is particularly relevant for the major GARP isoform, GARP2, that contains one 

of the sequences conferring channel inhibition and is present in about 25 fold molar excess 

with respect to CNGB1a [61].  

Currently, one can only speculate on physiological implications arising from the GARP-

mediated inhibition of the unliganded CNG channel. Given that homomeric CNGA1 channels 

have a very small but detectable spontaneous open probability [63, 64] the inhibitory effect of 

GARP may have evolved to reduce current noise resulting from openings of CNG channels 
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in the absence of cGMP to the lowest possible levels. In rod outer segments only 

approximately 1 % of CNG channels are open in the dark and this percentage even 

decreases upon light-induced cGMP hydrolysis [65]. Thus, it is tempting to speculate that 

GARP domains to some extent contribute to the low percentage of open CNG channels and, 

hence, increase the sensitivity and precision of rod phototransduction. In agreement with this 

hypothesis, GARP domains are not present in cone photoreceptors that are much less 

sensitive to light.  

In CNGB1a/CNGB1b KO mice [28, 29] GARP1 and GARP2 remain intact and the 

morphology of the rod photoreceptors is not affected by the lack of the CNGB1a subunit 

alone. In contrast, CNGB1 KO mice deficient for both CNGB1a and GARPs show an 

impaired structure of outer segments and a spoiled discs morphogenesis [36]. This supports 

the assumption that GARPs also function as scaffolding proteins. However, since no specific 

GARP1 or GARP2 KO mice are available so far, synergistic effects contributing to this 

phenotype cannot be excluded. Potential mutations within the GARP region in the CNGB1 

locus have been identified in some patients suffering from autosomal recessive RP [36]. 

However, the affected families were too small to establish a causative relationship between 

the mutation and the disease.   

Finally, this part of the study explains the clinical phenotype of patients carrying the GV 

mutation. Since heteromeric CNGA1/CNGB1aGV channels are inactive, rod photoreceptors 

of the patients cannot respond to light-induced changes in the cGMP concentration. 

Importantly and unlike in HEK293 cells, in rod photoreceptors CNG channel activity cannot 

be conferred by homomeric CNGA1 channels since these channels are not targeted to outer 

segments [28, 36]. Thus, the phenotype of CNGB1aGV patients is equivalent to a total 

knockout of the CNGB1 subunit that also results in RP [28]. However, despite the fact that 

GV mutation does not show any trafficking defects in HEK293 cells as shown in  

Fig. 15, it cannot be excluded that this mutation may cause targeting deficits in vivo. 

Therefore, to finally confirm the effects of the GV mutation on the pathogenesis of RP in vivo, 

generation of appropriate knock-in animals would be inevitable.    
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5 Summary 
 

Rod CNG (cyclic nucleotide-gated) channels are heterotetrameric ion channels consisting of 

three CNGA1 and one CNGB1a subunit. To analyse the role of CNGB1a within the rod 

channel complex, functional consequences of two pathogenetically relevant mutations in the 

CNGB1 gene were characterised. Both mutations are associated with retinitis pigmentosa 

(RP), a congenital progressive eye disease.  

The first mutation (c.3999G>A) represents a donor site G>A transversion in exon 32 and has 

been proposed to result in a frameshift and truncation of the last 28 aa of the corresponding 

protein. However, no experimental evidence was provided for this assumption. Based on 

this, in a previous study it has been shown that last 28 aa of CNGB1a harbour a motif 

required for the proper targeting of this subunit to rod photoreceptor outer segments. This 

suggests defective targeting to be the major cause for the RP phenotype in affected patients. 

However, using exon trapping experiments, in this study it could be demonstrated that in 

contrast to the assumption described above the c.3999G>A mutation leads to skipping of 

exon 32 resulting in loss of the last 170 aa of CNGB1a. The 170 aa deletion covers the 

complete distal C-terminus including the last 10 aa of the important alpha αC helix within the 

CNBD. When expressed in HEK293T cells the corresponding mutant full-length CNGB1a 

subunit was susceptible to proteosomal degradation. Based on these findings, apart from the 

defective targeting other mechanisms may be responsible for the RP phenotype in affected 

individuals.  

The second RP associated mutation in the CNGB1 gene (c.2978G>T; p.G993V) represents 

a glycine to valine exchange at the highly conserved position 993 in CNGB1a. Molecular 

dynamics simulations suggested that this mutation leads to major rearrangements in the 

cyclic nucleotide-binding domain (CNBD) that impair cGMP binding. Heteromeric 

CNGA1/CNGB1aGV channels were normally expressed in the plasma membrane but were 

functionally inactive. However, when the long N-terminal glutamic acid-rich protein (GARP) 

domain of CNGB1a was deleted, functional heteromeric currents were obtained in the 

presence of the GV mutation. Coexpression of GARP as soluble protein with the mutant 

heteromeric channel complex again abolished channel function. Two regions within the 

GARP domain that confer most of the inhibitory effect could be identified, and it could be 

shown that the GARP domain directly binds to the heteromeric channel complex. In 

conclusion, in the absence of the GARP domain binding of cGMP to CNGB1 is not required 

for principal activation of heteromeric CNG channels. By contrast, in the native rod 

photoreceptor channel, cGMP binding to CNGB1a is indispensable to relief tonic inhibition 

imposed by the GARP domain. 
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Zusammenfassung 
 

Zyklonukleotid-aktivierte CNG (cyclic nucleotide-gated) Kanäle aus Stäbchen sind 

heterotetramere Ionenkanäle bestehend aus drei CNGA1 und einer CNGB1a Untereinheit. 

Zur Analyse der Rolle der CNGB1a Untereinheit im Stäbchen-Kanalkomplex wurden in 

dieser Arbeit die funktionellen Konsequenzen von zwei pathogenetisch relevanten 

Mutationen im CNGB1 Gen untersucht. Beide Mutationen sind mit Retinitis Pigmentosa (RP), 

einer erblichen degenerativen Augenerkrankung, assoziiert.  

Bei der ersten Mutation (c.3999G>A) handelt es sich um eine G>A Transversion an der 

Donorstelle des Exons 32. Diese Mutation wurde ursprünglich als eine 

Leserasterverschiebung kategorisiert und es wurde behauptet, dass sie in einer Trunkation 

der letzten 28 Aminosäuren des korrespondierenden Proteins resultiert. Basierend auf dieser 

experimentell nicht bestätigten These wurde in einer anderen Studie gezeigt, dass die letzten 

28 Aminosäuren von CNGB1a ein Motiv beherbergen, das für den Transport dieser 

Untereinheit in die Außensegmente der Stäbchen wichtig ist. Dies lässt vermuten, dass dem 

durch die c.3999G>A Mutation hervorgerufenen RP Phänotyp ein gestörter Transport von 

CNGB1a zu Grunde liegt. Mit Hilfe von Exon-Trapping-Experimenten konnte jedoch in dieser 

Arbeit nachgewiesen werden, dass im Gegensatz zur obigen Behauptung die c.3999G>A 

Mutation zum Überspringen von Exon 32 und infolgedessen zum Verlust der letzten 170 

Aminosäuren von CNGB1a führt. Die Deletion der 170 Aminosäuren umfasst den kompletten 

distalen C-terminus und die letzten 10 Aminosäuren der funktionell wichtigen αC-Helix 

innerhalb der CNBD. Die Expressionsstudie in HEK293T Zellen zeigte zudem, dass die 

mutierte CNGB1a Untereinheit für proteosomalen Abbau anfällig ist. Basierend auf diesen 

Experimenten kann geschlussfolgert werden, dass abgesehen vom gestörten Transport auch 

andere Mechanismen als Ursache von RP bei betroffenen Individuen in Frage kommen.  

Bei der zweiten mit RP assoziierten Mutation im CNGB1 Gen (c.2978G>T; p.G993V) handelt 

es sich um einen Glyzin zu Valin Austausch an der hochkonservierten Position 993 in 

CNGB1a. Ergebnisse der molekulardynamischen Simulation zeigten, dass diese Mutation zu 

einer ausgeprägten Umstrukturierung innerhalb der Bindedomäne für Zyklonukleotide 

(CNBD, cyclic nucleotide binding domain) führt, was mit einer Okklusion der cGMP 

Bindungstasche einherging. Trotz der im Vergleich zu Wildtyp-Kanälen unveränderten 

Plasmamembran-Expression waren die heteromeren CNGA1/CNGB1aGV Kanäle funktionell 

inaktiv. Nach Entfernung der langen N-terminalen glutamatreichen GARP (glutamic acid-rich 

protein) Domäne von CNGB1a erlangten die mutierten Kanäle jedoch ihre volle Funktion 

zurück. Koexpression der GARP Domäne als lösliches Protein mit dem mutierten 

heteromeren Kanalkomplex führte erneut zur Aufhebung der Funktion dieser Kanäle. Es 

wurden zwei Regionen innerhalb der GARP Domäne identifiziert, die für den größten Teil 

des inhibitorischen Effektes verantwortlich sind. Darüber hinaus konnte eine direkte Bindung 
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der GARP Domäne an den heteromeren Kanalkomplex nachgewiesen werden. 

Zusammenfassend lässt sich schlussfolgern, dass die cGMP Bindung an CNGB1 in 

Abwesenheit der GARP-Domäne für die prinzipielle Aktivierung heteromerer CNG Kanäle 

nicht notwendig ist. Im Gegensatz dazu stellt die Bindung von cGMP an CNGB1a im nativen 

Stäbchen-Kanäl die Voraussetzung für die Aufhebung der tonischen Inhibition dar, welche 

durch die GARP Domäne vermittelt wird. 

 



 49 Appendix 

6 Literature 
 

6.1 Cited publications 
 

1. Hargrave, P.A. and J.H. McDowell, Rhodopsin and phototransduction: a model 
system for G protein-linked receptors. FASEB J, 1992. 6(6): p. 2323-31. 

2. Barnes, S., After transduction: response shaping and control of transmission by ion 
channels of the photoreceptor inner segments. Neuroscience, 1994. 58(3): p. 447-59. 

3. Fain, G.L., et al., Adaptation in vertebrate photoreceptors. Physiol Rev, 2001. 81(1): 
p. 117-151. 

4. Chen, C.K., et al., Abnormal photoresponses and light-induced apoptosis in rods 
lacking rhodopsin kinase. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3718-22. 

5. Xu, J., et al., Prolonged photoresponses in transgenic mouse rods lacking arrestin. 
Nature, 1997. 389(6650): p. 505-9. 

6. Zhong, H., et al., The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B 
stoichiometry. Nature, 2002. 420(6912): p. 193-8. 

7. Zheng, J., M.C. Trudeau, and W.N. Zagotta, Rod cyclic nucleotide-gated channels 
have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron, 
2002. 36(5): p. 891-6. 

8. Weitz, D., et al., Subunit stoichiometry of the CNG channel of rod photoreceptors. 
Neuron, 2002. 36(5): p. 881-9. 

9. Peng, C., E.D. Rich, and M.D. Varnum, Subunit configuration of heteromeric cone 
cyclic nucleotide-gated channels. Neuron, 2004. 42(3): p. 401-10. 

10. Zheng, J. and W.N. Zagotta, Stoichiometry and assembly of olfactory cyclic 
nucleotide-gated channels. Neuron, 2004. 42(3): p. 411-21. 

11. Kaupp, U.B. and R. Seifert, Cyclic nucleotide-gated ion channels. Physiol Rev, 2002. 
82(3): p. 769-824. 

12. Matulef, K. and W.N. Zagotta, Cyclic nucleotide-gated ion channels. Annu Rev Cell 
Dev Biol, 2003. 19: p. 23-44. 

13. Zagotta, W.N., et al., Structural basis for modulation and agonist specificity of HCN 
pacemaker channels. Nature, 2003. 425(6954): p. 200-5. 

14. Su, Y., et al., Regulatory subunit of protein kinase A: structure of deletion mutant with 
cAMP binding domains. Science, 1995. 269(5225): p. 807-13. 

15. Weber, I.T., et al., Crystal structure of a cyclic AMP-independent mutant of catabolite 
gene activator protein. J Biol Chem, 1987. 262(12): p. 5630-6. 

16. Trudeau, M.C. and W.N. Zagotta, An intersubunit interaction regulates trafficking of 
rod cyclic nucleotide-gated channels and is disrupted in an inherited form of 
blindness. Neuron, 2002. 34(2): p. 197-207. 

17. Kizhatil, K., et al., Ankyrin-G promotes cyclic nucleotide-gated channel transport to 
rod photoreceptor sensory cilia. Science, 2009. 323(5921): p. 1614-7. 

18. Altenhofen, W., et al., Control of ligand specificity in cyclic nucleotide-gated channels 
from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci U S A, 1991. 
88(21): p. 9868-72. 

19. Varnum, M.D., K.D. Black, and W.N. Zagotta, Molecular mechanism for ligand 
discrimination of cyclic nucleotide-gated channels. Neuron, 1995. 15(3): p. 619-25. 

20. Biskup, C., et al., Relating ligand binding to activation gating in CNGA2 channels. 
Nature, 2007. 446(7134): p. 440-3. 

21. Waldeck, C., et al., Activation and desensitization of the olfactory cAMP-gated 
transduction channel: identification of functional modules. J Gen Physiol, 2009. 
134(5): p. 397-408. 

22. Ardell, M.D., et al., Genomic organization of the human rod photoreceptor cGMP-
gated cation channel beta-subunit gene. Gene, 2000. 245(2): p. 311-8. 



 50 Appendix 

23. Colville, C.A. and R.S. Molday, Primary structure and expression of the human beta-
subunit and related proteins of the rod photoreceptor cGMP-gated channel. J Biol 
Chem, 1996. 271(51): p. 32968-74. 

24. Korschen, H.G., et al., A 240 kDa protein represents the complete beta subunit of the 
cyclic nucleotide-gated channel from rod photoreceptor. Neuron, 1995. 15(3): p. 627-
36. 

25. Sautter, A., et al., An isoform of the rod photoreceptor cyclic nucleotide-gated channel 
beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A, 1998. 95(8): 
p. 4696-701. 

26. Chen, T.Y., et al., A new subunit of the cyclic nucleotide-gated cation channel in 
retinal rods. Nature, 1993. 362(6422): p. 764-7. 

27. Finn, J.T., M.E. Grunwald, and K.W. Yau, Cyclic nucleotide-gated ion channels: an 
extended family with diverse functions. Annu Rev Physiol, 1996. 58: p. 395-426. 

28. Huttl, S., et al., Impaired channel targeting and retinal degeneration in mice lacking 
the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci, 2005. 25(1): p. 130-
8. 

29. Michalakis, S., et al., Loss of CNGB1 protein leads to olfactory dysfunction and 
subciliary cyclic nucleotide-gated channel trapping. J Biol Chem, 2006. 281(46): p. 
35156-66. 

30. Jenkins, P.M., et al., PACS-1 mediates phosphorylation-dependent ciliary trafficking 
of the cyclic-nucleotide-gated channel in olfactory sensory neurons. J Neurosci, 2009. 
29(34): p. 10541-51. 

31. Bareil, C., et al., Segregation of a mutation in CNGB1 encoding the beta-subunit of 
the rod cGMP-gated channel in a family with autosomal recessive retinitis 
pigmentosa. Hum Genet, 2001. 108(4): p. 328-34. 

32. Kondo, H., et al., A homozygosity-based search for mutations in patients with 
autosomal recessive retinitis pigmentosa, using microsatellite markers. Invest 
Ophthalmol Vis Sci, 2004. 45(12): p. 4433-9. 

33. Korschen, H.G., et al., Interaction of glutamic-acid-rich proteins with the cGMP 
signalling pathway in rod photoreceptors. Nature, 1999. 400(6746): p. 761-6. 

34. Pentia, D.C., S. Hosier, and R.H. Cote, The glutamic acid-rich protein-2 (GARP2) is a 
high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that 
modulates its catalytic properties. J Biol Chem, 2006. 281(9): p. 5500-5. 

35. Poetsch, A., L.L. Molday, and R.S. Molday, The cGMP-gated channel and related 
glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod 
photoreceptor disc membranes. J Biol Chem, 2001. 276(51): p. 48009-16. 

36. Zhang, Y., et al., Knockout of GARPs and the beta-subunit of the rod cGMP-gated 
channel disrupts disk morphogenesis and rod outer segment structural integrity. J 
Cell Sci, 2009. 122(Pt 8): p. 1192-200. 

37. Shuman, S., Novel approach to molecular cloning and polynucleotide synthesis using 
vaccinia DNA topoisomerase. J Biol Chem, 1994. 269(51): p. 32678-84. 

38. Biel, M., et al., Primary structure and functional expression of a cyclic nucleotide-
gated channel from rabbit aorta. FEBS Lett, 1993. 329(1-2): p. 134-8. 

39. Sautter, A., M. Biel, and F. Hofmann, Molecular cloning of cyclic nucleotide-gated 
cation channel subunits from rat pineal gland. Brain Res Mol Brain Res, 1997. 48(1): 
p. 171-5. 

40. Graham, F.L. and A.J. van der Eb, A new technique for the assay of infectivity of 
human adenovirus 5 DNA. Virology, 1973. 52(2): p. 456-67. 

41. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 
72: p. 248-54. 

42. Luna, E.J., Biotinylation of proteins in solution and on cell surfaces. Curr Protoc 
Protein Sci, 2001. Chapter 3 : p. Unit 3 6. 

43. Roda, A., et al., Nanobioanalytical luminescence: Forster-type energy transfer 
methods. Anal Bioanal Chem, 2009. 393(1): p. 109-23. 



 51 Appendix 

44. Griessmeier, K., et al., Calmodulin is a functional regulator of Cav1.4 L-type Ca2+ 
channels. J Biol Chem, 2009. 284(43): p. 29809-16. 

45. Xia, Z. and Y. Liu, Reliable and global measurement of fluorescence resonance 
energy transfer using fluorescence microscopes. Biophys J, 2001. 81(4): p. 2395-
402. 

46. Biel, M., et al., Another member of the cyclic nucleotide-gated channel family, 
expressed in testis, kidney, and heart. Proc Natl Acad Sci U S A, 1994. 91(9): p. 
3505-9. 

47. Biel, M., et al., Molecular cloning and expression of the Modulatory subunit of the 
cyclic nucleotide-gated cation channel. J Biol Chem, 1996. 271(11): p. 6349-55. 

48. Pages, F., et al., Coexpression of alpha and beta subunits of the rod cyclic GMP-
gated channel restores native sensitivity to cyclic AMP: role of D604/N1201. Biophys 
J, 2000. 78(3): p. 1227-39. 

49. Sunderman, E.R. and W.N. Zagotta, Sequence of events underlying the allosteric 
transition of rod cyclic nucleotide-gated channels. J Gen Physiol, 1999. 113(5): p. 
621-40. 

50. Flynn, G.E., et al., Structure and rearrangements in the carboxy-terminal region of 
SpIH channels. Structure, 2007. 15(6): p. 671-82. 

51. Zhou, L. and S.A. Siegelbaum, Gating of HCN channels by cyclic nucleotides: residue 
contacts that underlie ligand binding, selectivity, and efficacy. Structure, 2007. 15(6): 
p. 655-70. 

52. Eswar, N., et al., Comparative protein structure modeling using MODELLER. Curr 
Protoc Protein Sci, 2007. Chapter 2 : p. Unit 2 9. 

53. Shabb, J.B. and J.D. Corbin, Cyclic nucleotide-binding domains in proteins having 
diverse functions. J Biol Chem, 1992. 267(9): p. 5723-6. 

54. Chang, Y.F., J.S. Imam, and M.F. Wilkinson, The nonsense-mediated decay RNA 
surveillance pathway. Annu Rev Biochem, 2007. 76: p. 51-74. 

55. Matulef, K. and W. Zagotta, Multimerization of the ligand binding domains of cyclic 
nucleotide-gated channels. Neuron, 2002. 36(1): p. 93-103. 

56. Mazzolini, M., M. Punta, and V. Torre, Movement of the C-helix during the gating of 
cyclic nucleotide-gated channels. Biophys J, 2002. 83(6): p. 3283-95. 

57. Biel, M. and S. Michalakis, Cyclic nucleotide-gated channels. Handb Exp Pharmacol, 
2009(191): p. 111-36. 

58. Kaupp, U.B. and R. Seifert, Cyclic nucleotide-gated ion channels. Physiol. Rev., 
2002. 82(3): p. 769-824. 

59. Körschen, H.G., et al., A 240 kDa protein represents the complete beta subunit of the 
cyclic nucleotide-gated channel from rod photoreceptor. Neuron, 1995. 15(3): p. 627-
36. 

60. Brown, R.L., et al., Cyclic GMP contact points within the 63-kDa subunit and a 240-
kDa associated protein of retinal rod cGMP-activated channels. Biochemistry, 1995. 
34(26): p. 8365-70. 

61. Batra-Safferling, R., et al., Glutamic acid-rich proteins of rod photoreceptors are 
natively unfolded. J Biol Chem, 2006. 281(3): p. 1449-60. 

62. Dedmon, M.M., et al., FlgM gains structure in living cells. Proc Natl Acad Sci U S A, 
2002. 99(20): p. 12681-4. 

63. Ruiz, M.L. and J.W. Karpen, Single cyclic nucleotide-gated channels locked in 
different ligand-bound states. Nature, 1997. 389(6649): p. 389-92. 

64. Tibbs, G.R., E.H. Goulding, and S.A. Siegelbaum, Allosteric activation and tuning of 
ligand efficacy in cyclic-nucleotide-gated channels. Nature, 1997. 386(6625): p. 612-
5. 

65. Luo, D.G., T. Xue, and K.W. Yau, How vision begins: an odyssey. Proc Natl Acad Sci 
U S A, 2008. 105(29): p. 9855-62. 

 
 

 



 52 Appendix 

6.2 Own publications  

 

Accepted publications  
 

Becirovic, E. , et al., The retinitis pigmentosa mutation c.3444+1G>A in CNGB1 results in 
skipping of exon 32. PLoS One, 2010. 5(1): p. e8969. 
 

Schaeferhoff K, Michalakis S, Tanimoto N, Fischer MD, Becirovic E , Beck SC, Huber G, 
Rieger N, Riess O, Wissinger B, Biel M, Seeliger MW, Bonin M 
Induction of STAT3 related genes in fast degenerating cone photoreceptors of cpfl1 mice 
Cellular and Molecular Life Science, 2010, May 14 
 
Becirovic E , Ebermann I, Nagy D, Zrenner E, Seeliger MW, Bolz HJ. 2008. Usher syndrome 
type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing. 
Hum Mutat, 2008. 29(3): p. 452. 
 
Ebermann I, Scholl HP, Charbel Issa P, Becirovic E , Lamprecht J, et al. 2007. A novel gene 
for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with 
retinitis pigmentosa and sensorineural hearing loss. Hum Genet, 2007. 121(2): p. 203-11. 
 
Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic 
E, Bai L,Huber G, Beck S C, Fahl E, Büning H, Paquet-Durand F, Zong X, Gollisch T, Biel M, 
Seeliger MW 
Restoration of cone vision in a mouse model of congenital complete lack of cone 
photoreceptor function 
Molecular Therapy, 2010 Jul 13 
 
 
Publications under review or under revision  
 

Michalakis S*, Zong X*, Becirovic E *, Hammelmann V, Wein T, Wanner KT, Biel M 
The role of the GARP domain in rod photoreceptor CNG channel activation 
Submitted 

* contributed equally 

 
Michalakis S, Kleppisch T, Wotjak C, Rammes G, Matt L, Becirovic E,  Biel M 
Altered synaptic plasticity and behavioral abnormalities in CNGA3-deficient mice 
Under revision by Genes, Brain and Behavior 
 
Paquet-Durand F, Beck S, Michalakis S, Goldmann T, Huber G, Mühlfriedel R, Trifunovic D, 
Fischer MD, Fahl E, Duetsch G, Becirovic E , Wolfrum U, van Veen T, Biel M, Tanimoto N, 
Seeliger M 
A key role for cyclic nucleotide-gated (CNG) channels in cGMP-related retinitis pigmentosa 
Submitted 



 53 Appendix 

 
7 Appendix  

 

7.1 Supplementary tables and figures 
 
           ATGTTGGGCTGGGTCCAAAGGGTGCTGCCTCAGCCTCCGGGGACCCCCCAGAAGACTGA 
1           M  L  G  W  V  Q  R  V  L  P  Q  P  P  G  T  P  Q  K  T  E 
 
          AGAGGGAGCAGGACCACAGCCAGAAACAGAGTCAAAGCCTGAGGCAAATCCACAACCCGA 
21          E  G  A  G  P  Q  P  E  T  E  S  K  P  E  A  N  P  Q  P  E  
 
          GCCAGAGGTTCAGCCGGAACCAGAGCCGGAACCGGAACCAGAGCCGGAACCGGAACCAGC 
41          P  E  V  Q  P  E  P  E  P  E  P  E  P  E  P  E  P  E  P  A  
 
          ACCTGAAGAGGCTGCACCAGAGGTCCAGACCCTGCCACCAGAGGAACCAGTGGAAGGAGA 
61          P  E  E  A  A  P  E  V  Q  T  L  P  P  E  E  P  V  E  G  E  
 
          GGATGTGGCTGAGGCTGGCCCTAGCCTTCAAGAGACCCAGGAAGCTGACCCTCCTCAGCC 
81          D  V  A  E  A  G  P  S  L  Q  E  T  Q  E  A  D  P  P  Q  P  
 
          CACCTCCCAGGCCCAGGTTGCTGTTGTCAAGGTGAACAGGCCCAGCTCCTGGATGTTGAG 
101         T  S  Q  A  Q  V  A  V  V  K  V  N  R  P  S  S  W  M  L  S  
 
          CTGGTTCTGGAAGGGCATGGAGAAGGTCGTGCCACAGCCTGTCTACAGCAGCAGTGGGGG 
121         W  F  W  K  G  M  E  K  V  V  P  Q  P  V  Y  S  S  S  G  G  
 
          CCAGAACCTGGCTGCCGGAGAGGGAGGCCCAGATCAGGATGGAGCACAGACCCTGGAGCC 
141         Q  N  L  A  A  G  E  G  G  P  D  Q  D  G  A  Q  T  L  E  P  
 
          CTGTGGCACTGGAGACCCAGGGTCTGAAGATGGCTCAGATAAAACTTCCAAGACTCAAGA 
161         C  G  T  G  D  P  G  S  E  D  G  S  D  K  T  S  K  T  Q  D  
 
          CACTGAGCCCAGCCTGTGGCTACTCAGGTGGCTTGAGCTGAATCTGGAGAAGGTGCTACC 
181         T  E  P  S  L  W  L  L  R  W  L  E  L  N  L  E  K  V  L  P  
 
          TCAGCCCCCTACGCCTTCCCAGGCCTGGAAAGTTGAACCTGAGGGTGCTGTCTTGGAACC  
201         Q  P  P  T  P  S  Q  A  W  K  V  E  P  E  G  A  V  L  E  P  
  
          AGATCCTCCAGGAACCCCTATGGAAGTGGAGCCCACAGAGAACCCCTCCCAGCCTAATCC 
221         D  P  P  G  T  P  M  E  V  E  P  T  E  N  P  S  Q  P  N  P  
 
          TGGACCCGTGGAGCCTGAGGAGGAGCCAGCCGCAGAGCCCCAGCCTGGCTTTCAAGCCTC 
241         G  P  V  E  P  E  E  E  P  A  A  E  P  Q  P  G  F  Q  A  S  
 
          TTCCCTGCCACCACCTGGGGACCCTGTCAGGCTGATCGAGTGGCTCCTACACAGGCTGGA 
261         S  L  P  P  P  G  D  P  V  R  L  I  E  W  L  L  H  R  L  E  
 
          GATGGCCCTGCCTCAGCCTGTGCTCCATGGGAAGGCTGCAGAGCAGGAGCCCAGCTGCCC 
281         M  A  L  P  Q  P  V  L  H  G  K  A  A  E  Q  E  P  S  C  P  
 
          TGGGACGTGTGACGTACAGACCATCAGCATCCTCCCTGTGGAACAGGCGGAACATGATCT 
301         G  T  C  D  V  Q  T  I  S  I  L  P  V  E  Q  A  E  H  D  L  
 
          TGTCCTCGAGGATGTGGACTCTTGCTGGGAGGACACCCAGCAGGAAGATGGTGCCAGCCT 
321         V  L  E  D  V  D  S  C  W  E  D  T  Q  Q  E  D  G  A  S  L  
 
          GCAGGAGACAGAGTTGGCTCCCATTTATGAAGACGAGAGTGAGGCCATGGTGGAGATGCC 
341         Q  E  T  E  L  A  P  I  Y  E  D  E  S  E  A  M  V  E  M  P  

inhibitory  

domain 1 
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S1 

 
          CAGGGAGCTGCCACAGATTCAAGAGCAGCAGGAAGAGGAGAATGAAGAGAAAGAAGAAGA 
361         R  E  L  P  Q  I  Q  E  Q  Q  E  E  E  N  E  E  K  E  E  E  
           
          GGAAGAAGAGAAGGAAGAGAAGGAAGAGAAGGAAGAGGAGGAAGAGAAGGAAGAGGAGGA 
381         E  E  E  K  E  E  K  E  E  K  E  E  E  E  E  K  E  E  E  E  
 
          GAAGAGGGAGGAAGAGAAGAAGAAAGAGAAGGAAGAGGAGAAGAAAGAGAAGGAAGAAGA 
401         K  R  E  E  E  K  K  K  E  K  E  E  E  K  K  E  K  E  E  E  
 
          GGAGAACGGGGAGGAAGAAGAGAAGGAAGAGAAGGAAGAAAAGGAAGAGGAGGAGGGGAA 
421         E  N  G  E  E  E  E  K  E  E  K  E  E  K  E  E  E  E  G  K  
 
          GGAAGAGAAGGAAGAGAAGGAAGAGAAGGAAGAAAAAGAAGAGGAGGAGAAGGAAGAAAA 
441         E  E  K  E  E  K  E  E  K  E  E  K  E  E  E  E  K  E  E  K  
 
          AGAAGAGGAGGAGAAGGAAGAAAAAGAAGAGGAGGAAGAGGAAGAGGAGGAAGAGGAGGA 
461         E  E  E  E  K  E  E  K  E  E  E  E  E  E  E  E  E  E  E  E  
 
          AGAGGAGCCTATTGTCCTGCTGGATAGCTGTTTGGTGGTGCAGGCTGATGTGGACCAGTG 
481         E  E  P  I  V  L  L  D  S  C  L  V  V  Q  A  D  V  D  Q  C  
 
          CCAGCTAGAAAGGGCACAGCCAGAGACAGCATCGATCCAGGAGTTACCAGAAGAAGAAGA 
501         Q  L  E  R  A  Q  P  E  T  A  S  I  Q  E  L  P  E  E  E  E  
 
          GGAGAAGGAGGAAGAGAAGAAGGAGGAGGAAGAGGAGAAGGAGGAGGAGGAAGAGAAGGA 
521         E  K  E  E  E  K  K  E  E  E  E  E  K  E  E  E  E  E  K  E  
 
          AGAGGAAGAGGAGAAGGAGGAGGAGGGGGAGGCCACAAACTCAACAGTACCAGCCACGAA 
541         E  E  E  E  K  E  E  E  G  E  A  T  N  S  T  V  P  A  T  K  
 
          AGAGCACCCGGAGCTCCAGGTGGAAGACACAGATGCCGAAGCTGGCCCCCTCATCCCAGA 
561         E  H  P  E  L  Q  V  E  D  T  D  A  E  A  G  P  L  I  P  E  
 
          GGAGACGATCCCGCCACCTGAGAGACCACCAGTGTCTCCCGCCAAGTCTGACACCCTCGC 
581         E  T  I  P  P  P  E  R  P  P  V  S  P  A  K  S  D  T  L  A  
 
          GGTTCCCAGCGCAGCAACCCACAGGAAGAAGCTACCTTCTCAGGATGATGAGGCTGAAGA 
601         V  P  S  A  A  T  H  R  K  K  L  P  S  Q  D  D  E  A  E  E  
 
          ACTCAAGGCCCTGTCACCGGCTGAGTCCCCAGTGGTTGCCTGGTCAGACCCCACCACCCC 
621         L  K  A  L  S  P  A  E  S  P  V  V  A  W  S  D  P  T  T  P  
 
          ACAGGAGGCTGATGGCGAGGACCGTGCGGCCTCCACAGCCAGCCAGAACAGTGCCATCAT 
641         Q  E  A  D  G  E  D  R  A  A  S  T  A  S  Q  N  S  A  I  I  
 
          CAACGACCGGCTCCAGGAGCTGGTGAAGATGTTCAAGGAGCGGACAGAGAAGGTGAAGGA 
661         N  D  R  L  Q  E  L  V  K  M  F  K  E  R  T  E  K  V  K  E  
 
          GAAGCTCATTGACCCTGACGTCACCTCCGATGAGGAGAGCCCCAAGCCCTCCCCAGCCAA 
681         K  L  I  D  P  D  V  T  S  D  E  E  S  P  K  P  S  P  A  K  
 
          GAAGGCCCCAGACTCAGCCCCAGCCCAGAAGCCGGCGGAGGCAGAGGCGGCAGAGGAGGA 
701         K  A  P  D  S  A  P  A  Q  K  P  A  E  A  E  A  A  E  E  E  
 
          GCACTACTGTGACATGCTCTGCTGCAAATTTAAGCGCAGGCCCTGGAAGATGTACCAGTT 
721         H  Y  C  D  M  L  C  C  K  F  K  R  R  P  W  K  M  Y  Q  F  
           
          CCCCCAGAGCATCGACCCACTGACCAACCTCATGTACATCCTGTGGCTGTTCTTCGTGGT 
741         P  Q  S  I  D  P  L  T  N  L  M  Y  I  L  W  L  F  F  V  V  
           
          GCTGGCCTGGAACTGGAACTGCTGGCTGATTCCTGTGCGCTGGGCCTTCCCGTACCAGCG 
761         L  A  W  N  W  N  C  W  L  I  P  V  R  W  A  F  P  Y  Q  R  

inhibitory  

domain 2 
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S2 

S2 

S3 

S3 S4 

S4 

S5 

S5 

S6 

S6 

 
          GGCAGACAACATCCACCTCTGGCTGCTCATGGACTACTTGTGCGACTTCATCTACCTCCT 
781         A  D  N  I  H  L  W  L  L  M  D  Y  L  C  D  F  I  Y  L  L  
 
          GGACATCACCGTGTTCCAGATGCGTCTCCAGTTTGTCAAAGGCGGGGACATCATTACAGA 
801         D  I  T  V  F  Q  M  R  L  Q  F  V  K  G  G  D  I  I  T  D  
 
          TAAGAAGGAGATGCGTAATAATTACCTGAAGTCTCAACGATTTAAGATGGACTTGCTCTG 
821         K  K  E  M  R  N  N  Y  L  K  S  Q  R  F  K  M  D  L  L  C  
  
          CCTTTTGCCTTTGGATTTTCTCTACTTGAAACTTGGCGTGAACCCCCTTCTTCGCCTGCC 
841         L  L  P  L  D  F  L  Y  L  K  L  G  V  N  P  L  L  R  L  P  
  
          CCGCTGCCTGAAGTACATGGCCTTCTTTGAGTTTAATAACCGTCTGGAAGCCATCCTCAG 
861         R  C  L  K  Y  M  A  F  F  E  F  N  N  R  L  E  A  I  L  S  
  
          CAAAGCCTACGTTTACAGGGTTATCAGGACCACCGCCTACCTGCTGTATAGCTTGCATCT 
881         K  A  Y  V  Y  R  V  I  R  T  T  A  Y  L  L  Y  S  L  H  L  
  
          CAACTCCTGTCTTTACTACTGGGCGTCGGCCTTCCAGGGCATCGGTTCCACTCACTGGGT 
901         N  S  C  L  Y  Y  W  A  S  A  F  Q  G  I  G  S  T  H  W  V  
 
          TTATGACGGCGTGGGGAACAGCTACATTCGATGCTACTACTGGGCTGTGAAAACTCTCAT 
921         Y  D  G  V  G  N  S  Y  I  R  C  Y  Y  W  A  V  K  T  L  I  
  
          CACCATCGGAGGACTGCCCGACCCCCAGACGCTCTTTGAGATCGTCTTCCAGCTGCTGAA 
941         T  I  G  G  L  P  D  P  Q  T  L  F  E  I  V  F  Q  L  L  N  
 
          TTATTTTACAGGTGTCTTCGCTTTCTCTGTGATGATTGGACAGATGAGAGATGTGGTGGG 
961         Y  F  T  G  V  F  A  F  S  V  M  I  G  Q  M  R  D  V  V  G  
 
          GGCCGCCACGGCAGGGCAGACGTACTACCGCAGCTGCATGGACAGCACGGTGAAGTACAT 
981         A  A  T  A  G  Q  T  Y  Y  R  S  C  M  D  S  T  V  K  Y  M  
 
          GAACTTCTACAAGATCCCCAGGTCTGTGCAGAACCGCGTCAAGACCTGGTACGAATACAC 
1001        N  F  Y  K  I  P  R  S  V  Q  N  R  V  K  T  W  Y  E  Y  T  
 
          CTGGCACTCACAAGGCATGCTGGATGAGTCAGAGCTGATGGTTCAGCTTCCGGACAAGAT 
1021        W  H  S  Q  G  M  L  D  E  S  E  L  M  V  Q  L  P  D  K  M  
 
          GCGTCTGGACCTGGCCATTGACGTAAACTACAACATTGTCAGCAAAGTGGCGCTCTTCCA 
1041        R  L  D  L  A  I  D  V  N  Y  N  I  V  S  K  V  A  L  F  Q  
 
          GGGCTGCGACCGGCAGATGATCTTCGACATGCTCAAGCGACTTCGCTCAGTCGTCTACCT 
1061        G  C  D  R  Q  M  I  F  D  M  L  K  R  L  R  S  V  V  Y  L  
 
          ACCCAATGACTATGTGTGCAAGAAGGGGGAGATTGGCCGAGAGATGTATATTATCCAGGC 
1081        P  N  D  Y  V  C  K  K  G  E  I  G  R  E  M  Y  I  I  Q  A  
 
          GGGGCAGGTGCAGGTGCTGGGCGGCCCAGATGGAAAGGCTGTCCTGGTGACACTCAAAGC 
1101        G  Q  V  Q  V  L  G  G  P  D  G  K  A  V  L  V  T  L  K  A  
          
          CGGATCGGTGTTTGGAGAGATAAGCTTGCTGGCTGTCGGGGGCGGTAACAGGCGCACGGC 
1121        G  S  V  F  G  E  I  S  L  L  A  V  G  G  G  N  R  R  T  A  
           
          CAATGTGGTGGCCCACGGCTTCACCAATCTCTTCATTCTGGATAAGAAGGACTTGAATGA 
1141        N  V  V  A  H  G  F  T  N  L  F  I  L  D  K  K  D  L  N  E  
 
          GATTTTGGTGCATTACCCTGAATCTCAGAAGCTGCTCCGGAAGAAGGCCAGGCGCATGCT 
1161        I  L  V  H  Y  P  E  S  Q  K  L  L  R  K  K  A  R  R  M  L  
 
          CAGAAACAACAACAAACCCAAGGAGGAGAAGAGTGTGCTCATCCTGCCCCCACGTGCGGG 
1181        R  N  N  N  K  P  K  E  E  K  S  V  L  I  L  P  P  R  A  G  
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          CACCCCGAAGCTCTTCAATGCTGCCCTGGCTGCAGCAGGAAAGATGGGCCCCAGGGGAGC 
1201        T  P  K  L  F  N  A  A  L  A  A  A  G  K  M  G  P  R  G  A  
 
          CAAGGGCGGCAAGCTCGCCCACCTGAGAGCCAGGCTCAAAGAACTGGCTGCACTGGAGGC 
1221        K  G  G  K  L  A  H  L  R  A  R  L  K  E  L  A  A  L  E  A  
 
          AGCCGCACGACAGCAGCAGCTGCTGGAACAGGCCAAGAGCTCGCAAGAAGCCGGGGGAGA 
1241        A  A  R  Q  Q  Q  L  L  E  Q  A  K  S  S  Q  E  A  G  G  E  
 
          GGAGGGCTCTGGAGCCACAGACCAACCTGCACCCCAGGAGCCGTCAGAGCCCAAGGAGCC 
1261        E  G  S  G  A  T  D  Q  P  A  P  Q  E  P  S  E  P  K  E  P  
 
          CCCGGAGCCCCCAGCCCCGAGTTCTCCACCGCCAGCCTCAGCAAAGCCCGAGGGAAGCAC 
1281        P  E  P  P  A  P  S  S  P  P  P  A  S  A  K  P  E  G  S  T  
 
          GGAGGAGGCCGCAGGGCCGCCGGAGCCTTCAGTGAGGATCCGTGTGAGTCCAGGCCCTGA 
1301        E  E  A  A  G  P  P  E  P  S  V  R  I  R  V  S  P  G  P  D  
 
          TCCCGGGGAACAGACACTATCGGTGGAGATGCTGGAAGAGAAGAAGGAGGAGGTGGAG 
1321        P  G  E  Q  T  L  S  V  E  M  L  E  E  K  K  E  E  V  E 
 
 
Suppl. Fig.  1  Structural features of the rat CNGB 1a. Shown are the two regions within the GARP 
domain which confer the most part of the inhibitory effect as measured by L-cis-diltiazem sensitivity 
(cf. Fig. 17). For better orientation, six transmembrane domains (S1-S6) and cyclic nucleotide binding 
domain (CNBD, blue font) are also highlighted within the sequence. Numbers on the left refer to the 
amino acid positions at the beginning of each line.  

 

 

Suppl. Table 1 List of primer used for the synthesi s of different mutagenesis constructs. 1+2: 
mutagenesis for CNGB1aGV, 3+4 B1a#556-1339, 5+6 ∆214-555, 5+7 B1a#1-555, 8+10 ∆1-481, 9+10 
∆1-363.  

 Name  Gene Sequence 5‘ -3‘ 
1 B1_MutG-V_F Rat CNGB1 ATGTGTGCAAGAAGGTGGAGATTGGCCGAG 
2 B1_MutG-V_R Rat CNGB1 CTCGGCCAATCTCCACCTTCTTGCACACAT 
3 Oligo HindXho1 Rat CNGB1 AGCTTGAATTCGCCACCATGGTAC 
4 Oligo HindXho2 Rat CNGB1 CATGGTGGCGAATTCA 
5 B1aKpnfor Rat CNGB1 CTATAGGGAGACCCAAGCTTGG 
6 KpnAAErev Rat CNGB1 CCGGTACCTCTGCGGCTGGCTCCTCC 
7 B1aTNSTXbarev Rat CNGB1 CCTCTAGAGCTGTTGAGTTTGTGGCCT 
8 KpnKzkEPIV_F Rat CNGB1 CCGGTACCGCCACCATGGAGCCTATTGTCCTGCTGG 
9 KpnKzkPQIQfor Rat CNGB1 CCGGTACCGCCACCATGCCACAGATTCAAGAGCAGC 
10 B1BsrGIrev Rat CNGB1 CGAAGAACAGCCACAGGATG 
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Suppl. Table 2 List of primer used for amplificatio n of different human CNG channel 
constructs. 

 Name  Gene Sequence 5‘ -3‘ 
1 hB1aKzkBamfor Human 

CNGB1 
CCGGATCCACCGCCATGTTGGGCTGGGTCCAGAG 

2 hB1Xhorev Human 
CNGB1 

GGCTCGAGTCCGCCTTCTCCTCCCTTTC 

3 KpnKzkhB1adNTfor Human 
CNGB1 

CCGGTACCGCCACCATGGTGCCTGCCACGAAACAGC 

4 hA1KzkEcofor Human 
CNGA1 

CCGAATTCACCGCCATGAAACTATCCATGAAGAAC 

5 hA1Salrev Human 
CNGA1 

CCGTCGACTATGTAGAGTCGATGGGCC 

6 hB1G993Vfor Human 
CNGB1 

ACTATGTGTGCAAGAAGGTGGAGATCGGCCGTGAGAT 

7 hB1G993Vrev Human 
CNGB1 

ATCTCACGGCCGATCTCCACCTTCTTGCACACATAGT 

8 KzkhdNT9for Human 
CNGB1 

GCCACCATGTCCCGGATTGAAGAGGAGAAAG 

9 KzkhdNT8for Human 
CNGB1 

GCCACCATGGTGACTGAGGTGCTGCTGG 

 
 
 
Suppl. Table 3 List of primer used for the synthesi s of FRET constructs. 1+2, YFP-CNGB1a. 3+4 
CNGA1-CFP.  

 Name  Gene Sequence 5‘ -3‘ 
1 YFPKpnfor Rat CNGB1 GTCGGTACCATGGTGAGCAAGGGCG 
2 YFPB1rev Rat CNGB1 GACCCAGCCCAACATCTTGTACAGCTCGTCCATGCC 
3 InfmA1CFPfor Bovine CNGA1 GGGGAAAGTGGGCCCACAGACTCTACACAGGAC 
4 InfmA1CFPrev Bovine CNGA1 CTATAGAATAGGGCCCTCTAGATGCATGC 
 
 
 
Suppl. Table 4 Primer used for PCR amplification of  minigene constructs and splice products 
(1-4). Numbers 5-6 represent the primer used for site directed mutagenesis (introduction of the 
c.3444+1G>A mutation). 

 Name  Gene/Vector  Sequence 5‘ -3‘ 
1 hB1a_in30F Human CNGB1 CGAAACGGCAGTCTCTGAAGG 
2 hB1a_e33R Human CNGB1 CACACCTGCTGGAACTGC 
3 pcDNA3_F pcDNA3 CTAGAGAACCCACTGCTT  
4 pcDNA3_R pcDNA3 GCACAGTCGAGGCTGATC  
5 hB1aKondoF Human CNGB1 GAGTTGGTGGAACAGATAATGTGGTTGGGAAC 
6 hB1aKondoR Human CNGB1 GTTCCCAACCACATTATCTGTTCCACCAACTC 
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Suppl. Table 5 Antibodies used in this study. 
 
Antibody  Source  Dilution  Secondary 

antibody 
Dilution  

anti-ATPase 
clone α6F 

Developed by D.M. Fambrough, obtained 
from the Developmental Studies Hybridoma 
Bank 

1:1000 anti-mouse 1:2000 

anti-CNGB1 Hüttl 2005 J Neurosci 1:10000 anti-rabbit 1:2000 
anti-GFP Clontech, Mountain View 1:1000 anti-mouse 1:2000 
anti-myc clone 
9B11 

New England Biolabs 1:1000 anti-mouse 1:2000 

PPc6N Colville CA, Molday RS [23] 1:1000 anti-rabbit 1:2000 
anti-tubulin Dianova, Hamburg, Germany 1:400 anti-mouse 1:2000 
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7.2 Abbreviations 
 
aa  amino acids 
BES  N-N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid 
bp   base pairs  
BSA   bovine serum albumin 
cAMP  cyclic adenosine monophosphate 
CAP  catabolite gene activator protein 
cDNA   complementary DNA 
CFP  cyan fluorescent protein 
cGMP  cyclic guanosine monophosphate 
CMV  cytomegalovirus 
CNBD  cyclic nucleotide-binding domain 
CNG   cyclic nucleotide-gated 
ddH2O  double deionized water  
DEPC   diethyl pyrocarbonate 
DMEM  Dulbecco's modified eagle medium 
DMSO  dimethylsulfoxide 
DNA   deoxyribonucleic acid 
dNTP  2’-desoxynucleoside-5’-triphoshate (dATP, dCTP, dGTP, dUTP or dTTP) 
DTT   dithiothreitol 
E. coli   Escherichia coli 
EDTA   ethylenediaminetetraacetic acid 
GFP  green fluorescent protein 
FBS  fetal bovine serum 
h   hour 
HCl   hydrochloric acid 
HCN  hyperpolarisation activated cyclic nucleotide-gated channel 
HEK293  human embryonic kidney cells 
HRP   horseradish peroxidase 
IgG  immunoglobulin G 
kb   kilobase pairs  
kDa   kilodalton 
KO   knockout 
LB broth  Luria-Bertani broth 
mA   milliampere 
MD  molecular dynamics 
MCS  multiple cloning site 
mg   milligram 
min   minute 
mL   milliliter  
MOPS  3-[N-Morpholino]propanesulfonic acid 
mRNA  messenger RNA 
µg   microgram 
NMD  nonsense mediated mRNA decay 
NP-40  nonyl phenoxylpolyethoxylethanol 
Ori  origin of replication 
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PBS   phosphate buffered saline 
PCR   polymerase chain reaction 
PFA   Paraformaldehyde 
PKA  cAMP dependent protein kinase 
Pmax  maximal channel open probability 
pmol   picomol 
PVP   polyvinylpyrrolidone 
RNA   ribonucleic acid 
RNase  ribonulease 
RP   retinitis pigmentosa 
Rpm  rotations per minute 
RT-PCR  reverse transcriptase PCR 
SDS   sodium dodecylsulfate 
sec   second 
TEMED  N,N,N',N'-TetramethyIethylendiamine 
TRIS   tris(hydroxymethy1)aminomethane 
UV  ultraviolet 
WT   wild type 
YFP  yellow fluorescent protein 
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