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Zweitgutachter: Priv.-Doz. Dr. Johanna Erdmenger

Tag der mündlichen Prüfung: 21. Juli 2010
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Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit Anwendungen der Anti-de-
Sitter/Konforme-Feldtheorie (AdS/CFT) -Korrespondenz. Die AdS/CFT Korres-
pondenz ist eine mutmaßliche Dualität in der Superstringtheorie zwischen einer
stark gekoppelten vier-dimensionalen N = 4 superkonformen Yang-Mills-Theorie
und einer schwach gekoppelten Typ IIB Stringtheorie in einer fünf-dimensionalen
AdS-Raumzeit. Diese Dualität liefert eine leistungsfähige Methode um stark
gekoppelte vier-dimensionale Systeme im Niederenergiebereich zu untersuchen,
in der die nötigen Berechnungen stellvetretend in einer schwach gekoppelten fünf-
dimensionalen Supergravitation ausgeführt werden. In dieser Arbeit benutzen wir
die AdS/CFT Korrespondenz um drei verschiedene stark gekoppelte Systeme zu
erforschen, nämlich eine Branenwelt, die eine stark gekoppelte Feldtheorie be-
herbergt, ein stark gekoppeltes Fluid, das auf einer Drei-Sphäre propagiert, und
eine stark gekoppelte Supraflüssigkeit mit p-Symmetrie. In allen drei Fällen bein-
haltet die duale Supergravitationsbeschreibung geladene Schwarze Löcher in der
AdS-Raumzeit.

Das erste hier untersuchte System ist eine Randall-Sundrum-artige Branen-
welt, die sich im Hintergrund eines fünf-dimensionalen nicht-extremalen Schwarzen
Lochs der geeichten N = 2 Supergravitation bewegt. Es stellt sich heraus, dass
die Bewegungsgleichungen der Brane den Friedmann-Robertson-Walker (FRW)-
Gleichungen für ein geschlossenes Universum entsprechen. Das geschlossene Bra-
nenuniversum hat spezielle thermodynamische Eigenschaften. Die Energie der
Branenfeldtheorie weist einen subextensiven Casimir-Anteil auf, und die Entropie
kann durch eine Cardy-Verlinde-artige Formel ausgedrückt werden. Es wird ge-
zeigt, dass beide Größen in einer Form geschrieben werden können, die jeweils
den zwei FRW-Gleichungen ähnelt. Am Ereignishorizont des Schwarzen Lochs
verschmelzen diese beiden Sets von Gleichungen sogar miteinander, was auf die
Existenz einer gemeinsamen zugrundeliegenden Theorie schließen lassen könnte.
Zusätzlich finden wir, als Nebenresultat, dass die nicht-extremalen Schwarze-
Loch-Lösungen eine alternative Beschreibung durch Differentialgleichungen er-
ster Ordnung, sogenannter Flussgleichungen, zulassen. Ähnliche Flussgleichun-
gen sind bekannt vom Attraktor-Mechanismus extremaler Schwarzer Löcher in
der Stringtheorie.



Das zweite hier zu erforschende System ist ein konformes Fluid, das auf einer
Drei-Sphäre propagiert. Durch das endliche Volumen der Drei-Sphäre enthält
die Gesamtenergie des Fluids wieder einen subextensiven Casimir-Anteil. Wir
untersuchen mögliche Korrekturen zur bekannten Rate aus Scherviskosität und
Entropiedichte η/s = ~/(4πkB) im Falle von Fluiden auf einer Drei-Sphäre.
Dazu konstruieren wir verschiedene deformierte Schwarze-Loch-Lösungen im AdS-
Raum im Rahmen des STU-Modells in der geeichten N = 2 Supergravitation.
Diese neuen Lösungen sind dual zu verschiedenen Fluiden mit einem bestimmten
Geschwindigkeitsfeld. Dann berechnen wir die entsprechenden Energie-Impuls-
Tensoren der Fluide. Dabei stellt sich heraus, dass die Scherviskosität in der drit-
ten Ordnung der Gradientenentwicklung des Energie-Impuls-Tensors eine positive
Korrektur erhält, die proportional zur Krümmung der Drei-Sphäre ist.

Das dritte hier zu untersuchende System ist eine Supraflüssigkeit mit p-Sym-
metry. Dazu konstruieren wir numerisch die duale nicht-Abelsche Schwarze-Loch-
Lösung in der SU(2)- Einstein-Yang-Mills-Theorie mit flachem Horizont im AdS-
Raum. Dabei berücksichtigen wir die komplette Kopplung der Eichfelder an die
Hintergrundgeometrie. Für eine ausreichend niedrige Temperatur entwickelt diese
Schwarze-Loch-Lösung Vektor-Haare, was in der dualen Feldtheorie einem Über-
gang in eine supraflüssige Phase mit spontan gebrochener Rotationssymmetrie
entspricht. Die Einstein-Yang-Mills-Theorie hat einen einzigen freien Parameter,
den wir mit α bezeichnen, nämlich die Rate aus der fünf-dimensionalen Gravi-
tationskonstante und der Yang-Mills-Kopplungskonstante. Es zeigt sich, dass sich
der Phasenübergang für Werte von α über einem kritischen Wert αc = 0.365 ±
0.001 von einem Übergang zweiter Ordnung zu einem Übergang erster Ordnung
ändert.

Diese Doktorarbeit basiert auf der Forschungsarbeit der Autorin am Max-
Planck-Institut für Physik in München zwischen März 2007 und Mai 2010. Diese
wurde in den Publikationen [1–3] veröffentlicht.



Abstract

In this thesis, we deal with different applications of the Anti-de Sitter/Conformal
Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which
is also more generally referred to as gauge/gravity duality, is a conjectured duality
in superstring theory between strongly-coupled four-dimensional N = 4 super-
conformal Yang-Mills theory and weakly-coupled type IIB string theory in five-
dimensional AdS spacetime. This duality provides a powerful method to investi-
gate strongly-coupled low-energy systems in four dimensions by substitutionally
carrying out calculations in five-dimensional weakly-coupled supergravity. In this
work, we use the AdS/CFT correspondence to explore three different strongly-
coupled systems, namely a brane world accommodating a strongly-coupled field
theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave
superfluid. In all these cases, the dual supergravity descriptions involve charged
AdS black holes.

The first system studied here is a Randall-Sundrum brane world moving in
the background of a five-dimensional non-extremal black hole of N = 2 gauged
supergravity. The equations of motion of the brane are found to be equal to the
Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed
brane universe has special thermodynamic properties. The energy of the brane
field theory exhibits a subextensive Casimir contribution, and the entropy can be
expressed as a Cardy-Verlinde-type formula. We show that the equations for both
quantities can take forms that strongly resemble the two FRW equations. At the
horizon of the black hole, these two sets of equations are shown to even merge with
each other which might suggest the existence of a common underlying theory. In
addition, as a by-product result, the non-extremal black hole solutions considered
here are found to admit an alternative description in terms of first-order flow
equations similar to those which are well-known from the attractor mechanism of
extremal black holes in string theory.

The second system to explore here is a conformal fluid propagating on a three-
sphere. Due to the finite volume of the three-sphere the total energy again contains
a subextensive Casimir contribution. We investigate possible corrections to the
famous ratio of shear viscosity to entropy density η/s = ~/(4πkB) in case of fluids
on a three-sphere. For this purpose, we construct different deformed black hole



solutions on the basis of the AdS-STU black holes of N = 2 gauged supergravity.
These new black hole solutions are dual to different fluids with a specified fluid
flow. Then, we compute the corresponding fluid energy-momentum tensors. It
turns out that the shear viscosity receives a positive correction at third order in
the derivative expansion of the energy-momentum tensor which is proportional to
the curvature of the three-sphere.

The third system, which we investigate, is a p-wave superfluid. For this pur-
pose, we numerically construct the dual non-Abelian AdS black hole solution with
a flat horizon in SU(2) Einstein-Yang-Mills theory, taking the full back-reaction
of the gauge fields on the geometry into account. For sufficiently low tempera-
ture, this black hole solution develops vector hair which in the dual field theory
corresponds to a phase transition to a superfluid state with spontaneously bro-
ken rotational symmetry. The bulk theory has a single free parameter, the ratio
of the five-dimensional gravitational constant to the Yang-Mills coupling con-
stant, which we denote as α. We find that for values of α above a critical value
αc = 0.365± 0.001, the transition changes from second to first order.

This thesis is based on work which was carried out by the author between
March 2007 and May 2010 at the Max-Planck Institute for Physics in Munich,
and which was published in [1–3].
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Chapter 1

Introduction and overview

The long-term objective of particle physics research is to understand the fun-
damental building blocks of matter and their interactions. Today, four basic
interactions are known: the electromagnetic interaction acting between electri-
cally charged particles, the weak interaction which is responsible for the nuclear
beta decay, the strong interaction holding together the constituents of protons
and neutrons, and gravity as the attractive force between masses. Through their
infinitely long range, the electromagnetic and the gravitational interactions enter
everyday life, and have therefore already been known for a long time. In contrast,
the weak and the strong interactions are with 10−16 cm and 10−13 cm very short-
ranged and therefore discovered later. Compared to the strong interaction, the
electromagnetic interaction is 137 times weaker, the weak interaction is 105 times
weaker and gravity is on the order of 1039 times weaker1. Despite their immense
differences in range and strength, physicists believe that all interactions might be
described by a single underlying theory and that a more complete understanding
of the physical laws of nature goes along with the discovery of such a theory.

To date, a verified universal theory treating all interactions in the same man-
ner is still far from being discovered. Nevertheless, there have been a number of
important achievements since the first attempt in the 1920’ies when Kaluza and
Klein proposed a model to unify the classical theories of gravity and electromag-
netism [4, 5]. When quantum mechanics came into play in the 1940’ies, the task
turned out to be much more difficult. An intermediate result of this quest for a
unified theory is our current fundament of theoretical physics which is formed of
the standard model of particle physics combining the electromagnetic, the weak
and the strong interactions, and Einstein’s general theory of relativity describing
gravity. The main difference between these two is that the standard model is
a quantum theory while general relativity is a classical theory which fails to be
quantized by means of the usual procedure. This fact strongly suggests that there

1The exact strengths depend on the particles and the energies involved.
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must exist another more fundamental theory unifying quantum theory with grav-
ity. A promising candidate which seems to accomplish this is string theory [6, 7].
So far, string theory is merely a highly developed ansatz which has to be confirmed
experimentally in the future to become a complete theory. Despite this, it has
afforded several interesting concepts to solve some of the problems of the stan-
dard model. Probably the most successful new concept is the conjecture of the
Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [8, 9]. The
AdS/CFT correspondence has two remarkable features. First, in its strongest
form, it is conjectured to be an exact relation between non-perturbative string
theory, including gravity, and quantum field theory without gravity at all. Sec-
ond, in a well-controlled low-energy limit, it relates a strongly-coupled quantum
field theory to weakly-coupled classical gravity. Thus, in a strong-coupling regime
in which perturbation theory usually fails to be applicable, AdS/CFT provides
an effective description of the strong-coupling dynamics. This was not achieved
before, and so the feature of the weak/strong coupling duality has already been
extensively exploited in various applications of the AdS/CFT correspondence in-
volving strongly-coupled systems. Some of these applications, which are discussed
in this thesis, are strongly-coupled thermal field theories such as those which de-
scribe the recently-discovered Quark-Gluon Plasma (QGP) [10] produced at heavy
ion colliders. Another striking field of application are quantum critical condensed
matter systems [11–13], possibly including high-Tc superconductors2. The third
application is the theory of brane worlds [14] which suggests that our world is a
four-dimensional membrane moving in a five-dimensional space.

Before explaining in section 1.4 the aims and results of the research presented
in this thesis, the underlying theories and concepts are introduced. In section
1.1 we give a rough idea of the standard model and general relativity and argue
why these theories are not fundamental. In section 1.2, we briefly introduce
string theory and argue that this might be a promising candidate to unify the
standard model and gravity. Section 1.3 gives a rough overview of the AdS/CFT
correspondence.

1.1 Standard model and general relativity

The standard model of particle physics is a quantum field theory with gauge
group SU(3) × SU(2) × U(1). It contains the electroweak theory with gauge
group SU(2)×U(1) unifying the electromagnetic and the weak interaction as well
as Quantum Chromodynamics (QCD) with gauge group SU(3) describing the
strong interaction. The particle content of the standard model comprises on the
one hand the force mediators which are the photon of the electromagnetic force,

2Here Tc denotes the critical temperature were the superfluid transition occurs.
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the W and Z bosons of the weak force and the gluons of the strong force. These
are all spin-1 bosons. On the other hand, there are matter particles including
three generations of leptons and quarks. In addition, there is strong evidence for
a scalar particle, the Higgs boson, which still lacks experimental confirmation, but
might be found in the near future at the Large Hadron Collider (LHC) at CERN.
Apart from that, the standard model has been tested to very high precision and
proves to be valid for thirty years.

The standard model is supplemented by Einstein’s general theory of relativity
describing gravity. General relativity is a classical theory unifying special rela-
tivity and Newtonian gravity. In general relativity, the gravitational interaction
is mediated by the geometry of the spacetime. Thus, masses/energy cause the
surrounding spacetime to curve. The geometry is measured in terms of the metric
field playing the role of the gravitational field. In a quantized version of general
relativity, the quanta of the metric field are represented by a spin-2 gauge bo-
son, the graviton, which in analogy to the standard model interactions mediates
the gravitational force. Unfortunately, the usual quantization procedure fails to
be consistent, since general relativity is non-renormalizable. That is, it cannot be
treated within the framework of perturbation theory which is only applicable in an
energy regime where the coupling constant is small. Normally, at higher orders of
the perturbative expansion of interacting quantum field theories, divergent terms
appear which can be absorbed by a finite number of counterterms. However, in
case of quantized general relativity, an infinite number of such divergent terms are
produced which cannot be canceled by a finite number of counterterms.

General relativity proves to be valid in astrophysical and cosmological obser-
vations, such as the gravitational red-shift or the gravitational lens effect, whereas
at very small distances it breaks down, since quantum effects have to be taken into
account. In contrast, the standard model governs the physics on nuclear scales,
but does not include gravity which becomes important on very large scales. De-
spite the successes of both theories in their different regimes of validity, it remains
unsatisfying that phenomena such as the Big Bang singularity or certain properties
of black holes, where both types of interactions simultaneously become important,
cannot be exhaustively described. Probably the most prominent puzzle in a quan-
tum mechanical description of black holes is the information loss paradox which
states that information forever disappears behind a black hole horizon implying
that all states inside a black hole horizon are the same. Connected to this puzzle
is the question, whether the black hole entropy, given by the Bekenstein-Hawking
formula, has an explanation in terms of the number of microstates as in statistical
mechanics.

In addition, the standard model has further shortcomings on its own. For
instance, the standard model has about twenty free parameters which have to be
put in by hand letting the theory appear somehow arbitrary. Moreover, as a per-
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turbative quantum field theory, it relies on small coupling constants. However, the
coupling constants are not true constants, but depend on the energy scale. This
implies that the standard model only provides correct results at a certain energy
scale, namely for which the coupling constant remains small. In particular, the
coupling constant of QCD grows large for small energies, leading to confinement
of quarks and gluons, and small for very large energies at which the quarks and
gluons are asymptotically free. Thus, confinement is difficult to study whereas
asymptotic freedom can be studied easily using QCD.

The incompatibility of the standard model and general relativity as well as
their own shortcomings point to the possible existence of a more fundamental
theory in view of which both theories have to be considered as effective theories
at different energy scales.

1.2 String theory

A promising candidate for a theory of everything incorporating gravity and the
standard model interactions is string theory. It is named after its most striking
feature, which is the fact that particles are represented by vibrational modes of a
one-dimensional object, a string, with a length on the order of the Planck length,
lP = 1.6 × 10−33 cm. These strings can be open or closed. While closed strings
can move everywhere in space, open strings are attached to hyperplanes called
branes along which they can move freely

To date, string theory is not a verified theory yet, it can rather be regarded
as a prototype of a complete theory. Nevertheless, string theory already affords a
number of interesting and revolutionary concepts suggesting solutions to some of
the problems mentioned in the preceding section.

General relativity is included in string theory as an effective theory arising at
low energies and large distances. In string theory, gravity is UV finite such that
divergencies at higher orders in the perturbative expansion of gravity do not occur.
In addition, string theory contains Yang-Mills gauge theories of the type of the
standard model. However, an explanation of why SU(3)×SU(2)×U(1) is singled
out in nature is still missing. Moreover, in contrast to the standard model, string
theory has no adjustable dimensionless free parameters, and is therefore unique
in contrast to the standard model.

String theory admits a very promising duality relation, known as AdS/CFT
correspondence, which equates string theory with conformal field theory. The
AdS/CFT correspondence tries to solve several outstanding problems of quantum
theory and gravity. For instance, it was suggested that AdS/CFT could explain
the information loss paradox [15]. Moreover, the AdS/CFT correspondence is
a weak/strong coupling duality and therefore, in principle, qualifies to describe
confinement in QCD.
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String theory has still more interesting implications. A major prediction is the
existence of supersymmetry which is an appealing symmetry relating bosons and
fermions, and which is likewise conjectured to exist outside string theory. Further-
more, string theory exhibits extra dimensions. Supersymmetric string theories are
only consistent in ten dimensions which contradicts experimental experience. For-
tunately, at low energies or large distances these extra dimensions can be hidden,
such that string theory looks effectively four-dimensional. In this case, the extra
dimensions are regarded as compactified on spaces with very special topological
properties, such as Calabi-Yau spaces. By means of including extra dimensions,
the entropy of black holes, which was hitherto given by the Bekenstein-Hawking
formula, could be shown to admit a description in terms of microstates [16].

In total, five different supersymmetric string theories are known to be consis-
tent in ten dimensions. These are type I, type IIA/B and two heterotic theories
with gauge groups SO(32) and E8 × E8, respectively. However, these theories
are not independent. It is believed that they arise as different limits of a unique
eleven-dimensional theory called M-theory.

In summary, string theory or, equivalently, M-theory provides promising sug-
gestions to solve problems in quantum gravity. Nevertheless, it is still incomplete
and has to be verified by experiments to become a generally accepted theory in the
future. The AdS/CFT correspondence may accelerate the progress in narrowing
the gap between string theory and experiments.

1.3 AdS/CFT correspondence

As originally conjectured by Maldacena in 1997 [17], there exists a duality within
string theory, relating a CFT to type IIB superstring theory in AdS space. This
is known as the AdS/CFT correspondence. The conformal field theory entering
the correspondence is given by four-dimensional N = 4 super Yang-Mills theory
which is a gauge theory including four supersymmetries. Anti-de Sitter space is
a five-dimensional maximally symmetric space with constant negative curvature.
In its strongest form, the AdS/CFT correspondence claims to constitute an exact
relation between non-perturbative string theory including gravity and a quantum
field theory without gravity at all. Besides this first remarkable fact, a second
remarkable fact is, that in a well-controlled low-energy limit, this correspondence
is a duality between classical weakly-coupled supergravity and a strongly-coupled
quantum field theory. For this form of the correspondence, an explicit dictio-
nary can be formulated translating between the two dual theories. In this re-
spect, AdS/CFT qualifies to effectively describe quantum field theories at strong
coupling similar to the confined phase of QCD. Outside AdS/CFT, effective de-
scriptions of strongly-coupled systems in general do not exist. This is the reason
why AdS/CFT is of significance for physicists of different research areas such as
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high-energy physics as well as condensed matter physics.

The AdS/CFT correspondence can also describe conformal field theory at finite
temperature [18] and finite charge density. For that purpose, the five-dimensional
AdS space is modified by a black hole sitting in its center which heats the field
theory up to finite temperature through Hawking radiation. Finite charge density
in the field theory is obtained by assigning conserved charges to the black hole. In
this way, the thermodynamic properties of the conformal field theory are related
to the thermodynamic properties of the black hole. A prominent example for
a realistic strongly-coupled thermal field theory is given by the QGP which is
described by QCD near the confinement-deconfinement temperature. This system
is similar to the special Yang-Mills theory entering the AdS/CFT and thus might
be investigated by means of the AdS/CFT correspondence, at least by drawing
parallels between the two theories.

However, despite the similarity between the conformal field theory involved in
the AdS/CFT correspondence, N = 4 super Yang-Mills theory, and QCD, there
are essential differences between the two theories. In addition, no modification
of the correspondence is known to directly include QCD, rendering quantitative
statements about QCD impossible. Nevertheless, there seem to exist properties
which are universal for a larger class of strongly-coupled theories, including QCD
and N = 4 super Yang-Mills theory. Thus, it might be at least possible to
qualitatively extract information about QCD by investigating N = 4 super Yang-
Mills theory via AdS/CFT. There is strong evidence that an example of such a
universal property is the ratio of the shear viscosity of a strongly-coupled plasma
to its entropy density. This quantity was measured for the QGP at the Relativistic
Heavy Ion Collider (RHIC) and found to be very similar to the value which was
predicted by AdS/CFT on the basis of N = 4 super Yang-Mills theory.

Another interesting observation is that the AdS/CFT correspondence can be
interpreted as a realization of the holographic principle [19, 20]. AdS space is
infinite in extent, but nevertheless exhibits a boundary. It can be argued that the
dual field theory can be considered to live on the four-dimensional boundary of
the five-dimensional AdS space. Then, by virtue of the correspondence, the five-
dimensional physics inside the AdS boundary is captured by the four-dimensional
CFT on the boundary.

During the last years, the AdS/CFT correspondence has found many inter-
esting fields of application involving strongly-coupled systems. Some of these
are covered in this thesis such as holographic brane worlds, hydrodynamics of
strongly-coupled fluids and holographic superconductors. The extensions and nu-
merous applications of AdS/CFT are today often combined under the generic
term gauge/gravity dualities. These gauge/gravity dualities not only provide in-
teresting new insights into strongly-coupled systems, but also into the physics of
black holes. For instance, new black hole solutions are constructed in order to
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describe special types of dual field theory systems.

Finally, it is worth mentioning, that in view of the similarity between the
AdS/CFT prediction and the measurement of η/s for the QGP, we might spec-
ulate whether in the future gauge/gravity dualities could provide a channel for
experimental verification of the AdS/CFT correspondence or even string theory.

1.4 Overview of the research projects covered in

this thesis

The aim of the research presented in this thesis is to be suggestive of the broad
range of applications of the AdS/CFT correspondence, to conduct further theoret-
ical tests of the AdS/CFT correspondence and simultaneously obtain new insights
into strongly-coupled systems at finite temperature which were hardly accessible
before the discovery of such a weak/strong coupling duality. For that purpose,
three different applications are considered, namely holographic brane cosmology
(see 1.4.2), the fluid/gravity correspondence (see 1.4.3) and holographic super-
conductors (see 1.4.4). A large part of the work consists in finding black hole
solutions as well as studying their properties. This can also lead to interesting
results in black hole physics itself. For instance, in investigating special aspects of
holographic brane cosmology and the fluid/gravity correspondence we make use of
a special background geometry which is given by the non-extremal charged static
black hole solutions of N = 2 gauged supergravity in five dimensions. Therefore,
before dealing with applications of AdS/CFT, we study a special aspect of these
black hole solutions, namely whether they can be derived by means of first-order
differential equations instead of the usual second-order equations of motion (see
1.4.1).

1.4.1 First-order flow equations for non-extremal black
holes

Besides a detailed review of the five-dimensional non-extremal charged static black
hole solutions of N = 2 gauged supergravity [21] in chapter 3, we uncover a new
convenient feature of these solutions, namely that they admit a description in
terms of first-order differential (flow) equations [1].

Since the advent of gauge/gravity dualities there has been renewed interest
in gauged supergravity theories in various dimensions. In this thesis, we are
primarily interested in five-dimensional N = 2 gauged supergravity [22] which
has AdS space as a vacuum solution. The five-dimensional supergravity can be
derived from the eleven-dimensional supergravity, which is the low-energy limit
of M-theory, by compactifying six extra dimensions [23–25]. Moreover, a special
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truncation of the aforementioned black hole solutions can be embedded into type
IIB string theory, for which reason these can be investigated in the context of the
AdS/CFT correspondence.

These non-extremal AdS black hole solutions were first constructed in [21] by
solving the equations of motion derived from the N = 2 gauged supergravity
action. As is shown in chapter 3, they can be alternatively derived by solving a
set of first-order differential (flow) equations.

First-order flow equations are well-known from the attractor mechanism which
is a feature of a class of black hole solutions in supergravity. General black hole
solutions of supergravity are supported by neutral scalar fields. In attractive black
hole backgrounds, these scalar fields are driven to values which are completely de-
termined by the charges carried by the black hole, regardless of their values at
infinity. Here, the radial evolution, from infinity to the horizon of the black hole,
follows a set of first-order differential equations, which constitute a gradient flow
on the target space of the scalar fields, governed by a generalized superpotential.
The attractor mechanism was first observed for the special case of supersymmetric
black holes [26–29] for which the flow equations are implied by supersymmetry. In
this case, the superpotential is expressed through the central charge. In contrast,
for non-supersymmetric black holes, the flow equations are no longer guaranteed
to exist. For some non-sypersymmetric extremal black holes first-order flow equa-
tions were derived in [30, 31]. Non-extremal black holes never exhibit attractor
behavior [32,33] and are therefore a priori not expected to admit a description in
terms of first-order flow equations.

However, for the special non-supersymmetric non-extremal black hole solu-
tions we look at, such first-order flow equations exist, even though they are not
attractive. The first-order equations can be shown to be consistent with the equa-
tions of motion, and thus provide an alternative and, in addition, easier derivation
of the non-extremal black hole solutions.

1.4.2 Holographic brane cosmology

In chapter 4, a Randall-Sundrum-type brane world [34] with vanishing cosmo-
logical constant is considered in the context of the AdS/CFT correspondence to
investigate a surprising relation between thermodynamic properties of the brane
world and its cosmological evolution equations. Such a brane world is essentially a
three-brane moving in the background of a five-dimensional static AdS black hole.
In the Randall-Sundrum brane-world picture all the standard model fields and also
four-dimensional gravity are confined to the three-brane. It was proposed to be
an alternative to compactification in the sense that our four-dimensional world
arises from a higher-dimensional theory while the extra dimensions stay large but
inaccessible from the four-dimensional world.

It was suggested that this construction can be viewed in light of the AdS/CFT
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correspondence relating the brane theory to the bulk theory [35]. The main differ-
ence to the usual AdS/CFT prescription is that five-dimensional gravity couples
to the brane. This enables the bulk black hole to influence the brane metric dur-
ing its motion. The metric of the spherical brane turns out to take the standard
Friedmann-Robertson-Walker (FRW) form and its equations of motion are the
Friedmann equations3 for a closed universe. Via AdS/CFT, the cosmological evo-
lution can also be regarded as being driven by the dual field theory on the brane
which can be imagined as follows. The brane starts to expand inside the black
hole and passes the horizon. The expansion goes on up to some turning point at
which it starts to recontract, and finally it falls again through the horizon of the
black hole.

According to the usual AdS/CFT prescription, the entropy of the CFT on
the brane is given by the Bekenstein-Hawking entropy of the black hole [18]. In
addition, Verlinde made the interesting proposal that the Cardy formula for the
entropy of a (1+1)-dimensional CFT can be generalized to arbitrary dimensions
[36]. He showed that by choosing a specific normalization, the generalized Cardy
formula is equal to the Bekenstein-Hawking entropy. Furthermore, Verlinde found
out that, when written as a generalized Cardy formula, the entropy of the CFT
takes a form that is similar to the first Friedmann equation, while the Casimir
energy of the CFT takes a form that is similar to the second Friedmann equation
[37]. Moreover, at the moment when the brane passes the horizon both sets of
equations, the thermodynamic equations and the cosmological equations, even
coincide. These two moments in the evolution of the brane universe, when it
crosses the black hole horizon, seem to be special, since the entropy satisfies
a cosmological bound proposed by Verlinde [36]. This merging suggests that
there might exist an underlying theory relating the Friedmann equations to the
entropy and the Casimir energy. This phenomenon seems to be independent of
the equation of state characterizing the matter on the brane, and it was already
probed for different types of matter [38–41].

The question which is answered in chapter 4 is, whether the merging of the
Friedmann equations with the entropy and the Casimir energy still holds for the
exotic brane field theory dual to the non-extremal static electrically charged black
hole solution of N = 2 gauged supergravity [1]. For that purpose, we derive the
equations of motion of a brane with vanishing cosmological constant in this black
hole background, and show that these take the form of the standard Friedmann
equations for a closed universe with an energy density exhibiting a complicated
scaling behavior. Then, we check that the entropy of such a field theory can be
written as a Cardy-Verlinde-type formula modified by two functions of the scalar
fields supporting the black hole solution. Furthermore, we compute the Casimir
energy and the extensive energy by using an analog of the Smarr formula. Finally,

3In the following, the Friedmann equations are often referred to as FRW equations.
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when comparing both sets of equations at the black hole horizon, we find that they
again coincide.

Toward the end of chapter 4, we try to further generalize these findings by in-
cluding higher-derivative curvature terms in the five-dimensional action. However,
such a generalization turns out to be difficult, since the notion of a Cardy-Verlinde
formula in the context of higher-derivative gravity is unclear.

1.4.3 Fluid/gravity correspondence

In chapter 5, we deal with the fluid/gravity correspondence [42, 43] which essen-
tially means the application of the finite-temperature AdS/CFT correspondence
to strongly-coupled field theories in the hydrodynamic regime. This regime can
be accessed by focussing on near-equilibrium dynamics and restricting to long
wavelengths. The energy-momentum tensor of a fluid belongs to a special class
of conserved energy-momentum tensors which are determined by only four pa-
rameters. Therefore, only a special class of AdS black holes is suitable to model
strongly-coupled fluids. These are the boosted black hole solutions in Eddington-
Finkelstein coordinates, which are four-parameter families of solutions that are
regular at the black hole horizon. The fluid/gravity correspondence constitutes a
concrete relation between fluid dynamics and black holes.

Exploring the fluid/gravity correspondence is of significance for theoretical as
well as experimental physics. On the one hand, fluid dynamics provides many
interesting and yet unmanageable long-term challenges as for instance the search
for globally regular solutions to the Navier-Stokes equations for non-relativistic
incompressible viscous fluids, or a detailed understanding of turbulence in the
fluid dynamical evolution. A holographic mapping of the fluid dynamical system
to classical gravitational dynamics may shed new light on these issues [44–46].

On the other hand, the fluid/gravity correspondence opens a new perspective
on the physics of black holes by means of fluid dynamics. It provides an algorithm
to systematically construct regular black hole solutions whenever a solution to the
fluid equations of motion is given. Moreover, the stability and aspects of the phase
structure of black holes may be understood through the fluid model.

The strongest motivation, however, for investigating the fluid/gravity corre-
spondence is its relevance for real systems which can be studied in experiments.
In particular, it proves to be useful in describing the dynamics of the QGP. The
QGP is a state of matter consisting of quarks and gluons. It is believed that,
originally, this kind of matter existed shortly after the Big Bang. Nowadays, it
can be produced and studied at heavy ion colliders, for instance at RHIC. There,
the QGP was created at a temperature just above the confinement-deconfinement
temperature Tc ≈ 170MeV. RHIC data reveals that the QGP is strongly coupled
and suggests that it behaves like a nearly perfect fluid. Moreover, it will soon
be investigated more intensely at the LHC at CERN at a temperature of about
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5Tc [47].

A description of the dynamics of the strongly-coupled QGP is difficult, since
conventional techniques such as perturbation theory, which only makes sense for
weakly- coupled theories, or lattice QCD, which is useful for calculating equilib-
rium properties, are not applicable. In contrast, the AdS/CFT correspondence as
a tool to describe strongly-coupled field theories is more successful. Even though
the QGP is qualitatively very different from the field theory described by the
AdS/CFT correspondence, it is believed that these differences become less crucial
for a temperature T ≈ Tc, and that there exist universal properties. A quantity
that seems to be universal is given by the shear viscosity to entropy density ratio,
η/s. In [48], it was conjectured by means of the AdS/CFT correspondence that the
lowest possible value for η/s is given by that of a strongly-coupled superconformal
Yang-Mills plasma in the large N , large λ limit, which is

η

s
=

~
4πkB

≈ 0.08
~
kB

. (1.1)

First calculations based on RHIC data show that the lowest value for the QGP is
η/s ≈ 0.1(~/kB) [10, 49] which is remarkably close to (1.1). The bound (1.1) was
tested under different conditions [50–52]. It turned out that away from the large
N limit it can be violated.

So far, the dual fluid was assumed to propagate in a flat spacetime. In chapter
5, we ask the question, how is the ratio η/s corrected, if we slightly move away
from the hydrodynamic limit and consider the fluid to propagate on a three-
sphere [2]. From chapter 4, we know that the energy of a field theory on a
three-sphere has a Casimir contribution. Since the ratio η/s is proportional to
the total energy we in fact expect a correction proportional to the Casimir energy.
In order to investigate this issue, we construct dynamical black hole solutions and
map these to the energy-momentum tensors of fluids by means of the AdS/CFT
correspondence. The shear viscosity can be read off from the shear term in the
energy-momentum tensor. This analysis is repeated for different special cases
of the charged black hole solutions of N = 2 gauged supergravity supported by
scalar fields. We find that the corrections to η/s are positive in all cases, and
proportional to the Casimir energy in the special cases in which the scalar fields
are constant. In case of non-trivial scalar fields the corrections differ from the
Casimir energy.

1.4.4 Holographic superconductors

In chapter 6, we deal with the application of the AdS/CFT correspondence to su-
perconductors, a field which is referred to as holographic superconductors. Holo-
graphic superconductors can be defined as strongly-coupled field theories which
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undergo a superconducting phase transition at some critical temperature and
which have a gravity dual in the sense of the AdS/CFT correspondence [53–55].

Usually, conventional superconductors are extremely well explained by the
BCS (Bardeen-Cooper-Schrieffer) theory and its extensions. In these theories a
charged composite operator condenses at sufficiently low temperature due to the
attraction of two fermionic quasiparticles. These composite operators are called
Cooper pairs and the attractive force is mediated by phonons. However, BCS
theory fails to describe non-conventional superconductors such as high-Tc super-
conductors. A reason for that is, that such systems are strongly coupled above the
critical temperature of the superconducting phase transition, and therefore do not
admit a weakly-interacting quasi-particle description. A microscopic description
of this type of superconductors is still lacking and the search for it is an active
research area in theoretical physics.

Recently, new light on this question was shed by the AdS/CFT correspon-
dence. It was found that AdS/CFT can be used to model some sort of high-Tc
superconductors. This is reasonable, since high-Tc superconductors behave similar
to quantum critical systems which at zero temperature exhibit spacetime scale in-
variance. Moreover, quantum critical systems are strongly coupled and therefore
very similar to the strongly-coupled CFT entering the AdS/CFT correspondence.
The term quantum critical system derives from the fact that such systems undergo
a quantum phase transition at zero temperature. These transitions are driven by
quantum fluctuations rather than thermal fluctuations. The position in the phase
diagram at which a quantum phase transition occurs is referred to as quantum
critical point. It is believed that quantum critical points can influence the system
at finite temperature.

However, to date, AdS/CFT can only provide an effective description of toy-
model superconductors, since AdS/CFT itself is most powerful in a specific low-
energy limit, and exact gravity duals to realistic superconductors are not known
yet. Nevertheless, it constitutes an attractive method to calculate observables in a
strongly-coupled superconducting system which has many properties in common
with realistic superconductors. The general hope in investigating such holographic
superconductors is to finally get closer to a full microscopic description of non-
conventional superconductors which comprises the effective AdS/CFT description
as a specific limit, analogous to BCS theory from which the phenomenological
Landau-Ginzburg theory of superconductivity can be derived.

In general, a superconductor is a material in which electromagnetic gauge in-
variance is broken. Within the framework of gauge field theory, this is expressed
as the spontaneous breaking of a U(1) gauge symmetry. Spontaneous symmetry
breaking occurs, if an operator charged under the U(1) acquires a non-zero expec-
tation value which is referred to as the operator condensing. The simplest bulk
action that can describe such a transition is Einstein-Maxwell theory coupled to
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a charged scalar which is zero in the normal phase of the system and non-zero in
the superconducting phase. It is worth noting that the field theory dual to the
bulk Einstein-Maxwell-scalar system does not have a dynamical photon, thus it
is more accurately called a superfluid.

AdS/CFT can also describe superfluid states in which the condensing operator
is a vector and hence rotational symmetry is broken, that is, p-wave superfluid
states [56, 57]. Here the CFT has a global SU(2) symmetry and for a sufficiently
large charge density for some U(1) subgroup of SU(2), the charge current operator
associated to this U(1) condenses. In this case not only the U(1) is broken, but
spatial rotational symmetry is also broken to some subgroup.

Previous analyses of holographic p-wave superfluids have employed the probe
limit which means that the influence of the gauge fields on the background geome-
try was neglected. In contrast to that, in chapter 6 we consider an Einstein-Yang-
Mills system to construct a holographic p-wave superfluid with full back-reaction
of the gauge fields on the bulk background [3]. For that purpose, we numeri-
cally find a new non-Abelian AdS black hole solution with a flat horizon which
for sufficiently low temperature has a non-zero vector field. The strength of the
back-reaction is measured by the ratio α = κ5/ĝ, where κ5 is the gravitational
constant and ĝ is the Yang-Mills coupling constant. Moreover, we investigate the
phase structure of these solutions and find that the superfluid transition is second
order for some value of α below a critical value αc. Above this critical value, we
find that the phase transition becomes first order.

1.5 Outline of this thesis

The main part of this thesis is structured as follows.
In chapter 2, we give an introduction to the AdS/CFT correspondence in

view of the applications discussed in chapter 4, 5 and 6. Therefore, of particular
importance is the extension to finite temperature and finite density as well as the
correspondence in case of global Anti-de Sitter space. In this case, the dual field
theory is considered to live on a three-sphere exhibiting special thermodynamic
properties due to the finite volume. We show that on a three-sphere the total
energy of the field theory receives a Casimir contribution and the entropy can be
written as a Cardy-Verlinde formula.

In chapter 3, we review non-extremal charged static black hole solutions of
N = 2 gauged supergravity in five dimensions as well as the emergence of five-
dimensional N = 2 gauged supergravity from eleven-dimensional supergravity. In
addition, it is shown that the non-extremal black hole solutions in question admit
a description in terms of first-order flow equations. This calculation was carried
out by the author of this thesis in collaboration with Gabriel Lopes Cardoso and
was published in [1]. At the end, we explain how a subset of these black hole
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solutions can be embedded into type IIB string theory.
Chapter 4 deals with a holographic spherical brane universe which is inves-

tigated in the context of the black hole solutions of chapter 3. We show that
the cosmological evolution equations of this brane universe are in a mysterious
way related to the Casimir energy and the Cardy-Verlinde entropy formula of the
brane field theory. This chapter is based on work which was done by the author of
this thesis in collaboration with Gabriel Lopes Cardoso and which was published
in [1].

In chapter 5, we study the fluid/gravity correspondence in the context of the
black hole solutions of chapter 3. In particular, we construct new deformed black
hole solutions and analyze the ratio η/s with regard to finite-size and curvature
effects in case of the dual fluid living on a three-sphere. This chapter is based on
work which was done by the author of this thesis in collaboration with Gabriel
Lopes Cardoso and Gianguido Dall’Agata, and which was published in [2].

Chapter 6 deals with a holographic p-wave superfluid. We construct new
non-Abelian charged AdS black hole solutions with flat horizons including the
full back-reaction of the gauge fields. These solutions are shown to undergo a
superconducting phase transition. In addition, we investigate the phase structure
of these solutions. This chapter is based on work which was done by the author
of this thesis in collaboration with Martin Ammon, Johanna Erdmenger, Patrick
Kerner and Andy O’Bannon, and which was published in [3].

Chapter 7 contains a summary of the results found within this thesis and a
conclusion.



Chapter 2

The AdS/CFT correspondence

This chapter is intended to review the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence in view of the research projects presented in this the-
sis. Therefore, the emphasis lies on ingredients which are relevant for the chapters
4, 5 and 6.

The structure of this review, which is mainly based on [8,9], is as follows. After
a short overview, we start with introducing the two participating theories. Section
2.2 presents basic facts about N = 4 super Yang-Mills theory [58–60], and 2.3
reviews type IIB superstring theory [6,7] including p-branes, D-branes [61–63] and
Anti-de Sitter space. Section 2.4 presents the original Maldacena conjecture which
is then made more precise with regard to explicit mappings between the two the-
ories in section 2.5. Section 2.6 deals with important extensions of the AdS/CFT
correspondence. In particular, section 2.6.1 explains how finite-temperature CFT
can be included. In section 2.6.2, based on [36], we present some special properties
of thermal CFTs in finite volume which play a major role in chapter 4 and 5. In
particular, the Casimir energy of a thermal CFT and the Cardy-Verlinde entropy
formula are introduced. Section 2.6.3 deals with the extension of the correspon-
dence to CFTs at finite charge density. Finally, section 2.7 briefly summarizes the
chapter and gives an outlook on the subsequent chapters.

2.1 What is AdS/CFT?

One of the most exciting discoveries in modern theoretical physics is the duality
between gravity and gauge theory. The prototype example of such a duality is
the correspondence of superconformal Yang-Mills theory in four flat dimensions
and type IIB string theory on five-dimensional Anti-de Sitter space commonly
known as AdS/CFT correspondence [17]. Similar dualities also exist for other
dimensions, however in this thesis we exclusively deal with the correspondence in
four and five dimensions.
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Besides the remarkable fact that, in its strongest form, the AdS/CFT cor-
respondence claims to relate a quantum theory to gravity, it is simultaneously
a weak/strong coupling duality meaning that if one of the two dual theories is
strongly coupled, the other one is weakly coupled and vice versa. In strongly-
coupled theories explicit calculations are difficult, since perturbation theory is not
applicable. The key feature of the AdS/CFT correspondence is that it might
function as a tool to obtain results in the strongly-coupled theory by performing
calculations in the weakly-coupled theory. The case which is of most interest in
view of the search for new tools to study strongly-coupled field theories like the
confinement in QCD is that of a strongly-coupled CFT dual to weakly-coupled su-
pergravity. In this thesis, we take this perspective to investigate different strongly-
coupled systems.

Moreover, the AdS/CFT correspondence can be considered as a realization of
the holographic principle [19,20]. It becomes obvious in this chapter that just like
in conventional holograms in which the information of a system in three spatial
dimensions is stored on a two-dimensional plate, the information about a five-
dimensional gravitational theory is stored in a CFT on a four-dimensional space.

Since its invention, the AdS/CFT correspondence was further extended and
usefully applied to various systems. Some interesting applications are strongly-
coupled fluids [42, 43] similar to the QGP, quantum critical condensed matter
systems which are believed to include, for instance, non-conventional supercon-
ductors [11, 12], as well as the connection of brane worlds with the AdS/CFT
correspondence [14]. These applications are dealt with in chapter 4, 5 and 6.

2.2 N = 4 super Yang-Mills theory

One of the two theories participating in the AdS/CFT correspondence is N = 4
super Yang-Mills theory. This is a highly symmetric gauge theory with N = 4
supersymmetries relating a particle to its four superpartners, for instance a boson
to four fermions. The complete global symmetry is given by the supergroup
PSU(2, 2|4) containing the bosonic subgroup SU(2, 2)×SU(4). Here SU(2, 2) ∼=
SO(2, 4) is the group of conformal transformations which are diffeomorphisms
preserving the metric up to an overall coordinate-dependent scale factor as well
as all angles,

gµν(x)→ Ω2(x)gµν(x) . (2.1)

There are two types of conformal transformations, the scale transformations

xµ → λxµ , (2.2)

and the special conformal transformations

xµ → xµ + aµx2

1 + 2xνaν + a2x2
. (2.3)
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The second part of the bosonic subgroup is the R-symmetry group SU(4) ∼=
SO(6) which is an internal symmetry rotating the supercharges into one another.
It commutes with all other symmetry generators. In addition, the supergroup
contains 32 fermionic generators.

The field content of N = 4 super Yang-Mills theory is given by a gauge
multiplet containing a gauge field Aµ, four left Weyl fermions λaα with a = 1, ..., 4
as well as six scalars X i with i = 1, ..., 6. Under the SU(4) R-symmetry, Aµ
transforms as a singlet, λaα as a 4 and X i as a rank-two anti-symmetric 6.
N = 4 super Yang-Mills theory is a conformally invariant theory. This has

been proved to be true also at the quantum level and is not only a property of the
classical theory. The theory can be defined at all energy scales whereas, however,
the coupling constant is not running, thus independent of the energy scale. This
implies that, due the absence of scales in CFTs, the coupling constant of N = 4
super Yang-Mills theory can be chosen either such that the theory appears strongly
coupled or such that it appears weakly coupled. In section 2.4, it becomes clear
that the coupling constant of N = 4 super Yang-Mills theory and that of the dual
string theory are inversely related by virtue of the AdS/CFT duality.

Moreover, the trace of the energy-momentum tensor of a CFT vanishes, which
follows directly from Noether’s theorem.

So far, we have collected the facts about N = 4 super Yang-Mills theory
which are necessary for understanding the AdS/CFT correspondence in view of
the research work presented in chapter 4, 5 and 6. In the following section, we
present the second theory participating in the correspondence in more.

2.3 Type IIB string theory and supergravity

String theory has the remarkable feature that it incorporates quantum theory and
gravity. The most simple type of string theory is the bosonic string. This theory
describes open and closed strings in 26 spacetime dimensions. The closed string
spectrum contains, among others, a symmetric traceless state which transforms
as a massless spin-2 particle under the 24-dimensional Lorentz group SO(24) and
which is identified with the graviton. However, this theory is unsatisfactory in two
respects. First, the ground states of both the open and the closed string spectrum
are tachyonic. Tachyons have negative (mass)2 and thus constitute an instability
of the ground state. The second shortcoming is the absence of fermionic states and
thus the absence of supersymmetry. It turned out that both deficiencies can be
remedied by imposing supersymmetry as well as the successive application of the
Ramond-Neveu-Schwarz (RNS) formalism and the Gliozzi-Scherk-Olive (GSO)
projection. In the RNS formalism the bosonic string action is modified by intro-
ducing new world-sheet fermions which are subject to certain boundary conditions.
The resulting theory is the RNS string which lives in ten spacetime dimensions as
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required by causality. Afterwards, the GSO projection truncates the RNS spec-
trum in a specific way which eliminates the tachyon and simultaneously leads to
two different spacetime supersymmetric theories in ten dimensions. These are the
non-chiral type IIA and the chiral type IIB string theory describing closed strings
with N = 2 supersymmetry.

In this thesis we draw our attention to the IIB theory, since it is involved in the
AdS/CFT correspondence. The IIB string spectrum splits into the bosonic NS-
NS sector whose massless fields are the metric Gµ̂ν̂ , where µ̂ = 1, ..., 10, the scalar
dilaton φ, a rank-two anti-symmetric tensor field Bµ̂ν̂ , the bosonic R-R sector
whose massless fields are a scalar C0, a two-form field C2 and a four-form field C4

with a self-dual five-form field strength F5 = ?F5 as well as the fermionic NS-R
and R-NS sectors each containing a spin-3/2 gravitino and a spin-1/2 dilatino.
The maximal number of supercharges present in type IIB string theory is 32.

String theory can be considered as a double expansion in two parameters. One
parameter is the dimensionless string coupling constant gs which is the expecta-
tion value of the exponentiated dilaton. The expansion in gs corresponds to an
expansion in the number of string loops, or equivalently, in the genus of the string
world sheet. The second parameter is the Regge slope α′. This parameter appears
in the string tension per unit length

T =
1

2πα′
, (2.4)

which is also referred to as mass of the string per unit length. Furthermore, α′ is
related to the string length as α′ = l2s . The expansion in α′ can be viewed as an
expansion in the stringiness about the point-particle limit. Since α′ has dimensions
of (length)2, dimensionless expansion parameters are α′E2 or α′/L2 in spaces with
an additional characteristic length scale L. The limit of α′E2 � 1 or α′/L2 � 1
is the supergravity limit of string theory. Thus at energies or inverse distances
much smaller than the string scale 1/l2s string theory is well approximated by the
dynamics and interactions of its massless modes which represent the field content
of type IIB supergravity.

The bosonic part of the ten-dimensional type IIB supergravity action reads [6]

16πG10SIIB =

∫
d10x
√
−Ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
−1

2

∫
d10x
√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
−1

2

∫
C4 ∧H3 ∧ F3 ,

(2.5)
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where G10 = 8π6g2
s(α

′)4 is the ten-dimensional Newton constant and

F1 = dC0 , H3 = dB , (2.6)

F3 = dC2 , F̃3 = F3 − CH3 , (2.7)

F5 = dC4 , F̃5 = F5 −
1

2
A2 ∧H3 +

1

2
B ∧ F3 . (2.8)

In addition the self-duality condition

F̃5 = ?F̃5 (2.9)

for the five-form field strength F̃5 has to be imposed as a constraint which sup-
plements the equations of motion following from the action (2.5).

Type IIB supergravity in a flat background exhibits N = 2 supersymmetry
with 32 supercharges as the original superstring theory.

In addition to one-dimensional strings, string theory was discovered to admit
solutions corresponding to higher-dimensional extended objects which are called
D-branes, where D stands for Dirichlet. These objects are defined to be higher-
dimensional hypersurfaces on which open strings can end, thus satisfying Dirichlet
boundary conditions. Hence, type II string theory which was originally defined
as a theory of closed strings only, additionally contains open strings. D-branes
are believed to be different descriptions of certain supergravity solutions called
p-branes which are introduced in the following section.

2.3.1 p-branes, D-branes and Anti-de Sitter space

Classical solutions to supergravity with non-trivial (p + 1)-form Ap+1 charge are
referred to as p-branes. Here p stands for the spatial dimension of the brane. A
p-brane can be visualized as the generalization of a two-dimensional membrane to
arbitrary dimensions. A p-brane moving in time cuts out a (p + 1)-dimensional
world volume with geometry Rp+1.

An anti-symmetric (p+1)-form gauge field Ap+1 naturally couples to the (p+1)-
dimensional world volume Σp+1 of the p-brane by the diffeomorphism invariant
action

Sp+1 = µp

∫
Σp+1

Ap+1 . (2.10)

Here µp is one unit of the electric charge and given by the electric flux through a
(p + 2)-dimensional sphere Sp+2 which can be determined by Gauss’s law, µp =∫
Sp+2 Fp+2, where Fp+2 is the gauge invariant (p+2)-form field strength. The flux is

conserved by virtue of the Bianchi identity dF = 0. In addition, this implies that
the field strength F is closed. It has a Poincaré dual (d−p−2)-form Fd−p−2 which
is referred to as magnetic dual field strength. It has a (d− p− 3)-form gauge field
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Ad−p−3 which again couples to a (d− p− 4)-brane. Therefore, a (d− p− 4)-brane
is said to be the magnetic dual of a p-brane.

In type IIB supergravity, the branes to which the anti-symmetric gauge fields
couple are distinguished as follows. The NS-NS sector contains the anti-symmetric
two-form gauge field Bµν which couples to a one-brane. This is the fundamental
string F1 and its magnetic dual is the five-brane NS5. The branes to which the
R-R sector gauge fields couple are generally known as Dp-branes. According to
the given rules above, the zero-form field C0 should couple to a D(−1)-brane. This
can be interpreted as a D-instanton, since it is localized in time and space. Its
magnetic dual is a D7-brane. The two-form gauge field C2 couples electrically to
a D1-brane, which is also called D1-string, and magnetically to a D5-brane. The
four-form gauge field C4 couples both electrically and magnetically to a D3-brane.
These D3-branes are the same and carry self-dual charge µ3, since the five-form
field strength F5 = ?F5 is self dual.

The geometry of a p-brane is that of a flat hypersurface with Poincaré invari-
ance group Rp+1 × SO(1, p). The transverse space is (d− p− 1)-dimensional. A
p-brane is rotationally SO(d − p − 1)-symmetric in the transverse space. Thus,
p-branes in type IIB supergravity are solutions with symmetry group Rp+1 ×
SO(1, p)× SO(d− p− 1). The line element for the Dp-brane solution expressed
in the string frame reads [8]

ds2 = f(y)−1/2dxµdx
µ + f(y)1/2dyady

a , eΦ = gsf(y)(3−p)/4 , (2.11)

where the xµ with µ = 0, ..., p are the coordinates on the brane, the ya with
a = p + 1, ..., 10 are the coordinates in the transverse directions and gs is the
string coupling constant. The function H(y) is given by the harmonic function

f(y) = 1 +
L7−p

|~y|7−p
, (2.12)

where L denotes the radius of the Dp-brane which is given by

L7−p = µpgs(4π)(5−p)/2Γ((7− p)/2)(α′)(7−p)/2 . (2.13)

The solution (2.11) with (2.12) has a coordinate singularity at ~y = 0 which thus
constitutes a horizon of the Dp-brane. For |~y| → ∞, and thus far away from
the brane, (2.12) tends to f(y) = 1 and (2.11) becomes the Minkowski-space line
element. In addition, instead of a single Dp-brane there are also multi-center solu-
tions corresponding to a number i of parallel branes separated by some distance.
The total R-R charge of this stack of p-branes is the sum N =

∑
i µpi over the

single charge units µpi. In the limit of vanishing separation distance, the branes
are said to be coincident.

The p-brane solutions presented here are solutions of classical supergravity.
Let us investigate the domain of validity of the p-brane solution for the case of
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(a) (b)

Figure 2.1: (a) Open strings attached to D-branes. (b) D-branes are sources of closed
strings. (figure taken from [9])

p = 3. The supergravity description is appropriate as long as the curvature of the
p-brane geometry is small compared to the string length l2s . Since the curvature
scale of the D3-brane geometry is set by L = (4πgsN)1/4ls, this requires L � ls
which implies gsN � 1. In addition, to neglect string loop corrections the effective
string coupling eφ is required to be small. For the D3-brane, the dilaton is constant
and eφ can be made small everywhere in the D3-brane geometry by setting gs < 1.
Thus combining both conditions leads to

1� gsN < N . (2.14)

However, it is believed that p-brane solutions can also be generalized to solutions
of superstring theory. The involved fields may then be subject to α′ corrections
as the string length is no longer negligible. Nevertheless, the string coupling gs
may still be weak. In this limit, string perturbation theory is applicable provid-
ing a description of the weak-coupling limit of the α′-corrected Dp-branes. In this
description, the Dp-branes were originally defined as (p+1)-dimensional hypersur-
faces in flat ten-dimensional spacetime on which open strings can end (see figure
2.1(a)). The end points are tied to the brane, thus satisfying Dirichlet boundary
conditions in directions perpendicular to the brane, but can move freely along
the brane, which corresponds to Neumann boundary conditions parallel to the
brane. Moreover, D-branes are considered to be sources of closed strings (see
figure 2.1(b)), for instance in scattering processes of closed strings and D-branes.

The perturbative string theory and the supergravity description of D-branes
are believed to be different descriptions of the same object. This can be seen again
in the context of the D3-brane example. Whereas the supergravity description is
valid in the supergravity limit (2.14), the string theory description is appropriate
in the weak-coupling limit

1� gsN , (2.15)

which is complementary to the regime (2.14).
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p-branes are also called soliton solutions. Such solutions are said to be interpo-
lating between different vacua. For instance, the D3-brane interpolates between
ten-dimensional Minkowski space at infinity and AdS5 × S5 near the horizon as
becomes clear in section 2.3.1. Furthermore, the p-brane solution (2.11) is called
extremal, since its mass satisfies the relation

M =
µp

(2π)pgsl
p+1
s

. (2.16)

If the mass exceeds the right hand side of (2.16), we speak of non-extremal black
p-branes which are described in section 2.6.1. Thus, the above mass relation
constitutes a lower bound on the mass of p-branes. For Dp-branes in type II su-
pergravity, it coincides with the Bogomolnyi-Prasad-Sommerfield (BPS) bound,
M ≤ Z, where Z is the central charge of N = 2 supersymmetry, dictated by
supersymmetry. When the mass equals the central charge one half of the super-
charges present in the original theory vanishes. Those p-brane solutions which
satisfy the bound, thus extremal branes, are also called BPS branes. Hence, in
the presence of an extremal Dp-brane the number of supercharges is reduced from
32 to 16.

The low-energy effective theory of open strings on the (p + 1)-dimensional
world volume of a Dp-brane is U(N) gauge theory [64]. Thus on a stack of
several Dp-branes each with R-R charge unit µpi located at ~yi, the gauge group is
U(µp1) × U(µp2) × ... . If all these branes coincide, the gauge group is promoted
to U(N) with total charge N =

∑
i µpi. The gauge group U(N) is essentially

equivalent to the product group SU(N)× U(1). The U(1) vector supermultiplet
contains six scalars describing the center of mass motion of the branes which, in
general, can be consistently set to zero leaving an SU(N) gauge theory on the
brane world volume.

D3-branes

From now on, we specify to the case of D3-branes, since these enter the AdS/CFT
correspondence. Its solution reads [9]

ds2 =f(r)−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f(r)1/2

(
dr2 + r2dΩ2

5

)
, (2.17)

gs =eφ , C = const. , (2.18)

Bµν =A2µν = 0 , (2.19)

F5 =(1 + ?)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1 . (2.20)

The metric of the D3-brane is here given in terms of a special coordinate system.
It consists of the four-dimensional flat brane part which is written in Cartesian
coordinates t, x, y, z and which is multiplied by the inverse of the square root
of the harmonic function f , and of the six-dimensional transverse part which is
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Minkowskian flat limit

throat limit

Figure 2.2: Near-horizon geometry of the D3-brane. The directions on the S5 as well
as the time and one Minkowski direction are suppressed. (figure taken from [8])

written in spherical coordinates and which is multiplied by the square root of the
harmonic function f . Here, dΩ5 denotes the volume element of the five-sphere S5

and r is a radial coordinate. The harmonic function only depends on the radial
coordinate r and reads

f(r) = 1 +
L4

r4
, (2.21)

where L = (4πgsN)1/4ls denotes the radius of the D3-brane solution. In case of a
stack of several coincident D3-branes, the solution is the same as (2.17) together
with (2.21) and N =

∑
i µ3i.

The solution (2.17) has several features. Its world volume has four-dimensional
Poincaré invariance and the scalar fields, axion and dilaton, are constant. More-
over, it has a self-dual field strength implying that it carries both electric as well
as magnetic charge.

Let us study the geometry (2.17) in more detail by considering different limits.
For r � L, we recover flat Minkowski spacetime. For r � L, the line element
(2.17) reduces to the product spacetime,

ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 + L2dΩ2

5 . (2.22)

There are two components, a five-dimensional Anti-de Sitter space AdS5 whose
line element is r2/L2(−dt2 + dx2

1 + dx2
2 + dx2

3) + L2/r2dr2 and a five-sphere S5

with the line element L2dΩ2
5. Therefore, the geometry is denoted by AdS5 × S5.

Both components have identical radius L. The geometry (2.22) is referred to as
the near-horizon limit, since it describes the geometry close to the brane at r ∼ 0.
Figure 2.3 depicts the AdS5 part of the near-horizon geometry. In the following,
we elucidate the geometry of Anti-de Sitter space, since its symmetry structure
plays an important role in the AdS/CFT correspondence.
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τ

r=∞r=∞

Figure 2.3: In R3, AdS2 is represented by a hyperboloid. τ denotes the time direction
which has SO(2) symmetry representing closed time-like curves. (figure taken from [8])

The geometry of Anti-de Sitter space

Anti-de Sitter space (AdS) is a maximally symmetric space with constant negative
curvature and Lorentz symmetry group SO(2, 4). Five-dimensional AdS space can
be embedded in six-dimensional Minkowski space through the equation

X2
0 +X2

5 −
4∑
i=1

X2
i = L2 , (2.23)

which describes a hyperboloid with radius L. Its metric reads

ds2 = −dX2
0 − dX2

5 +
4∑
i=1

dX2
i . (2.24)

AdS has maximal Lorentz invariance group SO(2, 4), and is homogeneous and
isotropic. The embedding equation (2.23) can be solved in terms of global coor-
dinates of AdS. The circle S1 is identified with the time direction which leads to
closed time-like curves. Unwrapping S1, thus mapping the time coordinate to the
interval ] − ∞,∞[, gives the universal covering of AdS which is causal. In the
following, we always have this space in mind when referring to AdS5.

A global coordinate system on AdS5 which covers the whole hyperboloid is
given by (t, r, αi) in which the metric (2.24) becomes

ds2 = −
(
k +

r2

L2

)
dt2 +

1(
k + r2

L2

)dr2 + r2dΩ2
3 , (2.25)

where k = 1, αi with i = 1, 2, 3 are the angles parametrizing a unit three-sphere S3

and dΩ3 denotes the corresponding volume element. Another set of coordinates
on AdS5 are Poincaré coordinates (u, t, xi) with i = 1, ..., n. These coordinates
cover one half of the hyperboloid (2.23), in which its metric takes the form

ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 , (2.26)
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which equals the first part in (2.22).
AdS space has a conformal boundary. The location of the boundary is de-

termined by the second-order pole of the metric. The AdS metric (2.26) has a
second-order pole at r = ∞, and thus the boundary is located at r = ∞. Since
(2.26) blows up at r = ∞, it does not induce a metric on the boundary itself.
Otherwise a metric on the boundary is given by

g(x) = z(r)2G(r, x)|r=∞ , (2.27)

where z(r) is positive in the bulk of AdS, but has a first-order zero at the bound-
ary, and G denotes the AdS metric which is evaluated at the boundary at r =∞.
However, g is only defined up to conformal transformations. Thus, the AdS met-
ric induces a conformal structure on the boundary which means a metric up to
conformal transformations. In Poincaré coordinates, the boundary consists of
Minkowski space, parametrized by {t, x, y, z}, together with a point added at in-
finity such that the action of the conformal group SO(2, 4), which is the isometry
group of AdS, on the boundary is well-defined.

The isometry group SO(2, 4) of AdS5 can be promoted to a supergroup. Since
AdS preserves as many supersymmetries as flat space, N = 2, 4, 6, 8 supergravities
are realizable in AdS5. Thus, whereas in general the D3-brane background breaks
one half of the supersymmetries, in the near-horizon region with topology AdS5×
S5 the number of supercharges is preserved. In this thesis we are interested in the
case of N = 2 supergravity with 32 supercharges.

Having collected all necessary ingredients entering the AdS/CFT correspon-
dence, we are prepared to discuss the Maldacena conjecture in the following sec-
tion.

2.4 The Maldacena conjecture

In the preceding two sections, two different theories were presented. One is

• four-dimensional N = 4 super Yang-Mills theory in Minkowski space with
gauge group SU(N) and Yang-Mills coupling gYM in its superconformal
phase

and the second one is

• type IIB superstring theory with string coupling constant gs on curved
AdS5 × S5, with equal radius L, and where the self-dual five-form F5 has
integer flux N =

∫ 5

S
F5.

The AdS/CFT correspondence now states that these both theories are equivalent
[17], or dual, where the following parameters are identified

g2
YM = gs , L4 = 4πgsN(α′)2 . (2.28)
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How this correspondence comes about can be imagined as follows [17]. Let us
consider a single D3-brane separated from a stack of N coincident D3-branes by
a distance r. The background geometry is generated by the stack of N D3-branes
and the influence of the single D3-brane on this background can be neglected. In
addition to the six scalar fields corresponding to the position of the branes in the
transverse space, there exist two kinds of perturbative excitations in this geometry.
On the one hand, there are closed strings which are excitations of the bulk. On
the other hand there are open strings stretching between the single brane and the
stack exciting the D3-branes. The masses of the open strings are proportional to
r/α′ = r/l2s which in the field theory gives a Higgs expectation value to one of the
scalar fields corresponding to the position of the branes in one of the transverse
directions. For low energies, the theory on the D3-branes decouples from the
bulk by virtue of the vanishing of the interaction Lagrangian relating bulk and
D3-brane. However, here we want to take a limit where the full spectrum on
the brane is kept. For this purpose, we apply the limit α′ → 0 while keeping
all dimensionless parameters, as for instance gs and N , as well as the energy
r/α′ fixed. The latter requires to take also r → 0. In doing so, the single brane is
brought closer to the stack of branes while the masses, or equivalently the effective
tensions, of the strings remain fixed. The resulting theory on the world volume
of the D3-branes is four-dimensional N = 4 super Yang-Mills theory with gauge
group U(N). This U(N) gauge theory is essentially equivalent to SU(N)×U(1),
at which the U(1) degrees of freedom are the six scalar fields mentioned above.
These scalar fields decouple from all other fields and can therefore be excluded
leaving an SU(N) super Yang Mills theory.

Instead of considering this system from the brane field theory perspective, we
can investigate what happens on the bulk gravitational theory side. Consider the
D3-brane solution (2.17). Then the limit α′ → 0 and r → 0 with r/α′ = const.
coincides with the limit r � L discussed in section 2.3.1. In this near-horizon
limit with all other dimensionless parameters, including gs and N , kept fixed,
the line element (2.17) takes the form (2.22). String theory on the near-horizon
background now decouples from the theory near infinity. Thus, we now have
string theory in the background of AdS5 × S5 rather than in the full D3-brane
background. This brings us to the above conjecture that N = 4 super Yang-Mills
in four-dimensional flat space is dual to type IIB superstring theory in AdS5×S5.

How the decoupling of string theory in the near-horizon geometry from the
bulk theory is achieved can be visualized as follows. The energy measured by an
observer somewhere in the bulk of the geometry (2.17) is red-shifted compared
to the energy measured by an observer at infinity. This is because the proper
time with respect to which the proper energy is measured changes with r as can
be seen from the r-dependent tt-component of the metric (2.17). Thus the same
energy E ∼ 1 measured at infinity arises twofold. The energy of an object close
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to the horizon appears to be E ∼ rEp ∼ 1. Close to the horizon r is very small
and thus Ep is very large. The energy of an object near infinity is measured to
be E = (1 + L4/r4)−1/4Ep ∼ 1. In this case, r is nearly infinite and therefore Ep
must be of order one. These two kinds of excitations decouple from one another.
The near-horizon modes cannot escape to infinity, since the red-shift constitutes
a potential well in the direction to the bulk which they cannot overcome. The
bulk modes decouple from the near-horizon modes, since their wavelengths are
too large to be absorbed by the D3-branes.

The Maldacena decoupling limit is constructed such that the full spectrum
of N = 4 super Yang-Mills theory is captured by type IIB string theory on
AdS5 × S5. Furthermore, from the red-shift factor E = (r/α′)

√
α′Ep in the near-

horizon region we see that keeping the proper energy Ep in the bulk and α′ fixed,
we obtain higher and higher energies E on the gauge theory side when we tend
against the boundary of AdS5 × S5. This is known as the UV-IR relation [65]
which reveals that small distances from the D3-branes correspond to large-scale
physics, or small energies E, in the field theory while large distances from the D3-
branes correspond to small-scale physics, or large energies E, in the field theory.
Thus, the radial bulk coordinate can be interpreted as an energy scale in the gauge
theory which in the coordinates of (2.22) becomes E ∼ r. Moreover, since the full
gauge theory spectrum without any truncation to low energies shall be described
by string theory in the near-horizon geometry, the gauge theory is considered to be
located at the boundary of AdS5×S5. In that sense, the AdS/CFT correspondence
constitutes a realization of the holographic principle which states that all physics
within a volume can be described by the physics on the boundary enclosing this
volume.

The above formulation is the strong form of the Maldacena conjecture, since no
approximation in gs or N is made. However, in practice this strong form is of not
much use, since non-perturbative quantum string theory on a curved background is
still out of reach. Thus, it is interesting to consider the following non-trivial limits
which lead to weaker, but more tractable forms of the Maldacena conjecture. The
’t Hooft limit [66] is applied by keeping the ’t Hooft coupling λ ≡ g2

YMN = gsN
fixed and taking N →∞. On the N = 4 super Yang-Mills side, this corresponds
to an expansion in Feynman diagrams such that only planar diagrams are taken
into account. On the string theory side, this is interpreted as weak-coupling string
perturbation theory, since gs = λ/N → 0. A further simplification is achieved by
the limit λ → ∞ and N → ∞. In this limit, N = 4 super Yang-Mills theory is
strongly coupled and cannot be treated by perturbative methods. However, on
the string theory side this corresponds to the supergravity approximation, since
λ ∼ L4

(α′)2
→∞, which means that the curvature of the string theory background

is taken to be small compared to the string length l2s = α′.
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In taking the latter limit, we obtain the weakest form of the AdS/CFT cor-
respondence between strongly-coupled N = 4 super Yang-Mills theory with large
N SU(N) gauge group in four-dimensional flat space and classical type IIB su-
pergravity on weakly-curved AdS5×S5. In the subsequent chapters of this thesis,
we exclusively work in this limit.

In the following section, a working recipe is developed to apply the correspon-
dence to explicit examples.

2.5 A more precise correspondence

The conjectured correspondence between N = 4 SU(N) super Yang-Mills theory
in four-dimensional flat spacetime and type IIB string theory on AdS5 × S5 pre-
sented in the preceding section is generally imposed and only of qualitative nature.
Therefore, in this section, we are interested in more precise relations between
the two theories to be able to extract quantitative results from the AdS/CFT
correspondence. These explicit relations are often referred to as the AdS/CFT
dictionary.

First, the various coupling constants of both theories are related as in (2.28).
The parameterN was defined to be the flux of the type IIB five-form field strength.
In the gauge theory N corresponds to the parameter of the SU(N) gauge group.

Second, the symmetry groups of the two theories agree and are given by the
supergroup PSU(2, 2|4) with the bosonic subgroup SU(2, 2)×SU(4). As already
mentioned in section 2.3.1, on the string theory side AdS5 has the spacetime
symmetry group SO(2, 4) ∼= SU(2, 2) and the S5 has isometry SO(6) ∼= SU(4).
Moreover, AdS5×S5 realizes all 32 supercharges of the type IIB string theory. On
the gauge theory side, we have a conformally invariant quantum field theory with
conformal group SO(2, 4). The SU(4) symmetry of the S5 arises on the gauge
theory side as a global SU(4) R-symmetry of the 32 supercharges.

Third, the field content of both theories should be explicitly related in order
to perform calculations on the supergravity side and to transfer the results to the
strongly-coupled field theory side where calculations are difficult. Such explicit
mappings between supergravity fields φ and gauge-invariant operators O of the
CFT were provided by Witten [67] and also by Gubser, Klebanov and Polyakov
[68]. According to these works, the boundary values of supergravity fields are
considered to be sources which couple to operators in the dual gauge theory, and
the supergravity partition function is identified with the generating functional of
gauge theory correlation functions,〈

e
R
d4xφ0O

〉
CFT

= ZS[φ0] , (2.29)

where the left hand side is the generating functional containing the coupling of
a gauge theory operator to the boundary value φ0 of a supergravity field φ. The
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right hand side is the supergravity partition function evaluated at the boundary
which can be computed via the classical supergravity action IS,

ZS(φ0) = e−IS(φ)
∣∣∣
φ=φ0

. (2.30)

With relation (2.29) at hand, we can compute correlation functions of O simply by
taking functional derivatives of the classical supergravity action with respect to φ0.
The formula (2.29) applies in general such that each field propagating in the bulk is
in a one-to-one correspondence with an operator in the gauge theory. However, the
supergravity action diverges, because of the infinite volume of the AdS5 spacetime
and thus needs to be appropriately renormalized. A renormalization procedure
was developed in [69, 70] which consists in adding covariant counterterms to the
divergent action yielding a finite action. Furthermore, as in any background with
boundary, the action has to be supplemented by a Gibbons-Hawking term [71]
which is a boundary term rendering the variational problem well-defined. Finally,
the resulting five-dimensional renormalized action Sren consists of three terms,

Sren = Sbulk + SGH + Scounter , (2.31)

where SGH denotes the Gibbons-Hawking term and Scounter includes the necessary
counterterms. Evaluating this action on the solution then yields the renormalized
on-shell action.

The general solution of the bulk field equations has to satisfy Dirichlet bound-
ary conditions. An ansatz for the supergravity fields is given by the decomposition
with respect to a basis of spherical harmonics Y∆ on the S5 [8],

φ(r, x, y) =
∞∑

∆=0

φ∆(r, x)Y∆(y) , (2.32)

where r, x and y denote the coordinates on AdS5 and on S5, respectively. Now,
the fields φ∆(r) are effectively defined on AdS5

1. Asymptotically, the supergrav-
ity fields φ∆(r) are free and satisfy the free field equations of motion. The S5

compactification contributes to the masses of the fields. Thus, for instance, for a
scalar field this yields the mass relation [67]

m2 = ∆(∆− 4) , (2.33)

1It is important to note, that the truncation of ten-dimensional supergravity on AdS5 × S5

to supergravity on AdS5 is not evident, since the usual Kaluza-Klein method is not applicable.
Kaluza-Klein compactification consists in dimensional reduction on a space of very small radius
which leads to large masses of the Kaluza-Klein modes. In a low-energy approximation, these
Kaluza-Klein modes decouple from the low-energy states. However, in the case of AdS5 × S5

both spaces have equal radius L which spoils the usual Kaluza-Klein argument. Nevertheless,
there is a consistent truncation to N = 2 supergravity on AdS5. Examples are given in [72–74].
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and the asymptotic solution for r →∞ takes the form

φ∆(r∞, x) = r∆−4φ0(x) + r−∆〈O(x)〉 , (2.34)

where x denotes coordinates along the boundary of AdS5. Since the supergrav-
ity field φ∆ is dimensionless, the operator O has dimension ∆. The boundary
condition on the supergravity field becomes φ0 = limr→∞ r

∆−4φ0(x) [67]. Similar
relations exist for non-scalar fields such as fermions and tensor fields on AdS.
Thus, the boundary condition is determined such that the mass of the supergrav-
ity and the conformal dimension of the gauge theory operator match in a certain
way.

In this thesis, we are only concerned with one-point functions of operators O
in the presence of sources. Thus we ask questions as given a supergravity field to
which operator does it correspond on the gauge theory side. The answer is given
by the computation rule [69,70],

〈O(x)〉 =
1√
G0(x)

δSren

δφ0(x)
, (2.35)

where Sren is now the renormalized on-shell action.
Examples of the field-operator mappings (2.35) are, for instance, the relation

between the metric field GMN on the supergravity side and the energy-momentum
tensor Tµν on the gauge theory side, as well as the relation between a gauge field
AM on the supergravity side and a current Jµ on the gauge theory side which are
given by

AM(r, x)→〈Jµ(x)〉 =
1√
G0(x)

δSren

δA0µ(x)
, (2.36)

GMN(r, x)→〈Tµν(x)〉 =
2√
G0(x)

δSren

δG0µν(x)
. (2.37)

So far, we have seen how the correspondence is implemented. In the following
section, we explain how the correspondence is extended to describe CFTs at finite
temperature as well as in the presence of a finite charge density.

2.6 Extensions of the correspondence

As we have seen so far, the AdS/CFT correspondence provides a technique to de-
scribe strongly-coupled N = 4 super Yang-Mills gauge theories. However, these
field theories are far from being real field theories present in our world such as
QCD. Therefore, a great desire of the AdS/CFT experts is to approximate real
field theories as good as possible. An important step in this direction is to intro-
duce temperature in the field theory. This locally breaks the conformal invariance
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of the field theory while globally it is still preserved, as well as supersymmetry,
leaving a far more realistic field theory to investigate.

How finite temperature comes into play is explained in the following section.
Moreover, we work out some special properties of thermal CFTs in finite volume
in section 2.6.2. An additional extension is to turn on a chemical potential in the
field theory which is demonstrated in section 2.6.3.

2.6.1 Finite temperature

In the context of the AdS/CFT correspondence, a thermal field theory on the
boundary of AdS is obtained by embedding a black hole in AdS. Thus, the bound-
ary theory is considered as a field theory in the background of an AdS black hole
radiating with sufficiently high temperature. The temperature of the field theory is
identified with the Hawking temperature [75] of the black hole [18]. This situation
is obtained as follows. The role of the ten-dimensional extremal D3-brane in the
zero temperature AdS/CFT correspondence is here played by a ten-dimensional
black D3-brane which can be viewed as a higher dimensional analog of an ordinary
black hole with flat horizon. These black D3-branes are non-extremal, since they
have a mass which is larger than the BPS mass satisfying the BPS bound.

The line element of the black D3-brane reads [9]

ds2 = −f+(r)f−(r)−1/2dt2 + f−(r)1/2dxidxi + f+(r)−1f−(r)−1dr2 + r2dΩ2
5 , (2.38)

where xi with i = 1, 2, 3 are the spatial Poincaré coordinates along the brane, r
is the radial coordinate perpendicular to the D3-brane, dΩ5 denotes the volume
element of the S5 and f± is given by

f± = 1−
(r±
r

)4

, (2.39)

where r± are the outer and inner horizon, respectively. The extremal limit follows
from setting r+ = r−. In this case, (2.38) reduces to (2.17).

Now, taking again the decoupling limit α′ → 0, r → 0 and r/α′ = const. yields
the near-horizon line element

ds2 =
r2

L2

(
−hdt2 + dxidxi

)
+
L2h

r2
dr2 + L2dΩ2

5 , (2.40)

with

h = 1− r4
0

r4
. (2.41)

Here r0 denotes the horizon radius of the non-extremal black brane which is pro-
portional to the mass. The resulting line element is that of the AdS5-Schwarzschild
black brane in Poincaré coordinates with flat horizon times an S5. The correspond-
ing spacetime is asymptotically AdS5 times S5, whereas in the bulk of AdS5 the
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geometry is dominated by the black brane. The boundary at r = ∞ has the
topology R×R3. This is identified with the field theory domain. Since the metric
on the boundary is defined only up to conformal transformations, we can choose
coordinates such that the CFT time equals the AdS time. In this case the field
theory domain has the volume V = L3.

A global version of (2.40) with boundary topology R× S3 is given by

ds2 = − r
2

L2
hdt2 +

L2

r2h
dr2 + r2dΩ2

3 + L2dΩ2
5 , (2.42)

where dΩ3 is the volume element of the S3 and the function h now has the form

h = 1− r4
0

r4
+
L2

r2
, (2.43)

where here r0 is again proportional to the mass of the black hole, but does not
coincide with the horizon radius. It can be expressed in terms of the horizon
radius as

r4
0 = r4

h + r2
hL

2 . (2.44)

The line element (2.42) is that of the usual AdS5-Schwarzschild black hole with
spherical horizon times an S5. The CFT time and the AdS time coincide, since
the three-sphere has radius L.

The two line elements (2.40) of the black brane and (2.42) of the black hole
are related by a specific limit. Namely, taking r4

0, which is proportional to the
mass of the black hole (2.42), to be very large yields the line element of the black
brane (2.40). This can be seen by first rescaling the black hole line element as
r → (r0/L)r and t→ (L/r0)t as well as taking r4

0 →∞. Second, we locally have
to set dΩ2 =

∑
i dx

i, and finally rescaling xi → (L/r0)xi yields (2.40).
The Hawking temperature of the AdS-Schwarzschild black hole (2.42) is de-

rived by introducing a Euclidean time coordinate τ = −it in (2.40) and requiring
the periodicity of τ to be such that there is no conical singularity at the horizon
rh. This period β is interpreted as the inverse of the Hawking temperature which
is

T =
rh

2πL2

(
1 +

r4
0

r4
h

)
. (2.45)

Thus, the temperature of a thermal field theory on the three-sphere dual to an
AdS black hole is given by (2.45). In the limit of very large mass as described
above, (2.45) reduces to T = rh/(2πL

2) which is the Hawking temperature of the
black brane (2.40), and simultaneously the temperature of the dual field theory
in flat space.

The thermodynamic properties of the AdS-Schwarzschild black hole can be
described within the canonical ensemble. The partition function of the canonical
ensemble is given by

Zbh = e−I ≡ e−βFbh , (2.46)
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where I denotes the five-dimensional Euclidean renormalized on-shell action, β =
1/T is the inverse temperature and Fbh = Ebh− TSbh is the free energy with Ebh

being the total energy and Sbh the entropy of the black hole. Given the partition
function (2.46), we can compute the total energy and the entropy of the AdS black
hole (2.42),

Ebh =
∂I

∂β
=

3πr4
0

8G5L2
, (2.47)

Sbh =βEbh − I =
Vh

4G5

, (2.48)

where the five-dimensional Newton constant is related to the ten-dimensional
Newton constant by G5 = L5G10 and Vh = r3

hvol denotes the horizon area with
vol being the unit volume of the spatial three-dimensional space. The energy
(2.47) derived from the thermodynamic partition function does not always coincide
with the ADM energy which is determined by the asymptotic behavior of the
geometry. In case of the spherical AdS black hole (2.42), the ADM energy exhibits
an additional contribution, E0 = 3πL2/32G5, which is interpreted as the ground-
state energy of global AdS. However, we are only interested in energies relative to
this ground-state energy and therefore ignore this term in the total energy. For
the flat black brane, thus in the large mass limit, this term is absent. The entropy
is the usual Bekenstein-Hawking entropy [76].

According to the dictionary of the AdS/CFT correspondence (cf. section 2.5)
we set the canonical partition function (2.42) equal to the partition function of
the thermal field theory. Therefore we can identify Fbh, Ebh, Sbh with the free
energy F , the energy E and the entropy S of the field theory [67]. Thus, after
conversion of bulk theory coupling constants to field theory coupling constants
(G5 = πL3/(2N2)) we obtain for the energy of a field theory on a three-sphere
dual to the AdS-Schwarzschild black hole

E =
3N2r4

0

4L5
. (2.49)

In case of the black brane, r0 given by (2.44) reduces to the horizon radius rh which
can be expressed in terms of the Hawking temperature as r0 = TπL2. Rewriting
(2.49) in terms of the temperature leads to E = 3/8π2V N2T 4 which exhibits
the familiar energy-temperature relation following the Stefan-Boltzmann law for
radiation. By the way, the ground-state energy of global AdS mentioned above
can be interpreted as a vacuum energy [77] resulting from the Casimir effect [78]
of quantum field theories in finite volume. This effect is absent for a CFT on the
non-compact boundary of a flat black brane.

In case of the black hole, r0 has two contributions scaling inhomogeneously
with the horizon radius rh.
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The entropy (2.48) expressed in field theory quantities reads

S =
π2

2
N2V T 3 , (2.50)

where V = L3vol. This result was obtained in the large N and large λ limit and
is believed to be the correct value for the entropy of the strongly-coupled thermal
CFT. However, the result is hard to check, since a dual field theory computation
is only possible for small coupling λ. The result of the perturbative small λ
computation differs from (2.50) by a factor of 4/3 [79].

2.6.2 Thermal conformal field theory in finite volume

A field theory in finite volume has special thermodynamic properties.
The total energy of a quantum field theory in finite volume is not a purely

extensive quantity. Thus regarded as a function of the entropy and the volume,
E(S, V ) is not a homogeneous function of degree one, thus E(λS, λV ) 6= λE(S, V ).
The energy contains an additional subextensive contribution scaling with a power
smaller than one. This subextensive contribution is caused by a finite-temperature
analog of the Casimir effect mentioned before. Note that the finite-temperature
Casimir energy must not be confused with the zero-temperature Casimir energy
addressed above, and from now on we exclusively mean the former when referring
to the Casimir energy. The Casimir energy is well-known in (1 + 1)-dimensional
CFT where it is proportional to the central charge c.

The Casimir energy can be defined as the violation of the thermodynamic
Euler relation [36] which is essentially given by the integrated first law of ther-
modynamics. Thus, for a system satisfying the first law dE = TdS + pdV the
Casimir energy is given by

Ec = 3(E + pV − TS) , (2.51)

where p = (1/3)(E/V ) is the pressure. The factor of 3 was inserted for later
convenience. The total energy E of the boundary field theory can be written as a
sum of extensive energy Ee and subextensive Casimir energy Ec

E = Ee +
1

2
Ec , (2.52)

where again the factor of 1/2 was inserted for later convenience. This is ex-
actly the form of the total energy (2.49) with (2.44) of the CFT dual to the
AdS-Schwarzschild black hole (2.42). There, the extensive energy contribution is
proportional to r4

h and can be written as

Ee =
3

vol

(
π4

4N2

)1/3
S4/3

V 1/3
, (2.53)
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with vol = vol(S3) being the unit volume of the S3 and where we used that
r4
h = S4/3(4G5)4/3/(vol)4/3. Observe, that Ee scales as Ee → λEe under the

simultaneous rescaling S → λS and V → λV . The Casimir energy contribution
is proportional to r2

h and can be written as

Ec = 3

(
π2N2

16vol

)1/3
S2/3

V 1/3
. (2.54)

Observe, that Ec scales as Ec → λ1/3Ec under the simultaneous rescaling S → λS
and V → λV . Furthermore, it can be verified that (2.54) is actually the Casimir
energy according to the definition (2.51) by inserting the Hawking temperature
(2.45), the entropy (2.48) as well as the energy (2.49) into the Euler relation
(2.51).

Due to the two different energy contributions, the entropy of a strongly-coupled
CFT, which has a gravity dual, living on a three-sphere with radius L can be
written in the very special form,

S =
2πL

n

√
Ec(2E − Ec) , (2.55)

where n denotes the number of spatial dimensions which here is n = 3. This is
known as the Cardy-Verlinde formula [36] which is the higher-dimensional gener-
alization of the Cardy formula [80] for the entropy of a (1 + 1)-dimensional CFT.
Identifying EL = L0, EcL = c/12, where L0 is the Virasoro generator and c the
central charge of the CFT, and setting n = 1 leads to the Cardy formula

S = 2π

√
c

6

(
L0 −

c

24

)
. (2.56)

While the formula (2.55) is applicable in finite volume, it also has a well-defined
flat limit. Expressing the Casimir energy Ec in terms of the extensive energy Ee
and then taking the total energy E to be large reduces to (2.50).

The relation between the Casimir energy Ec and the central charge c, in the
text above (2.56) suggests that the higher-dimensional generalization of the central
charge is proportional to the Casimir entropy which is the Bekenstein entropy
SB = (2π/3)EL of a CFT on a three-sphere with radius L at an energy E = Ec.
This makes sense, since both quantities can be interpreted as counting degrees of
freedom of the theory [36].

2.6.3 Finite density

The AdS/CFT correspondence can be extended to describe CFTs at a finite charge
density. For instance, a U(1) gauge symmetry in the AdS black hole background
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is dual to a global U(1) symmetry in the field theory. U(1) gauge fields in AdS5

naturally arise in the S5 compactification of the ten-dimensional spinning near-
horizon brane. These branes rotate in three independent rotation planes of the
S5 breaking the SO(6) Lorentz symmetry down to U(1)× U(1)× U(1), which is
the maximal Abelian subgroup of SO(6). The three remaining U(1) isometries on
the AdS side become three independent global U(1) symmetries on the CFT side.
The massless gauge fields AAM in AdS correspond to currents JAµ of conformal
dimension four in the dual CFT, according to relation (2.33) of the AdS/CFT
dictionary. These currents are considered as the three remaining U(1) R-currents
stemming from the broken SO(6) R-symmetry.

Black holes which are charged under U(1)×U(1)×U(1) gauge symmetry are
often referred to as STU black holes. In chapter 3, we give a detailed description
of the five-dimensional AdS-STU black holes and how they arise from S5 com-
pactifications of spinning branes. In chapter 4 and 5, we make use of this kind of
background.

Instead of U(1) charge density, we can also add SU(2) charge density to the
CFT. In this case, the dual supergravity solution is a non-Abelian AdS black hole
and the field theory currents of the global SU(2) symmetry are dual to the gauge
fields of the SU(2) gauge symmetry in AdS. The non-Abelian AdS black hole is
considered in chapter 6.

Furthermore, in all cases, we work with a fixed chemical potential. The chem-
ical potential µ is defined as the difference in the electric potential At at the
boundary of AdS r = rb and the horizon at r = rh [72],

µ = At(rb)− At(rh) . (2.57)

Under this condition the thermodynamic properties of the field theory can be
extracted from the grand potential of the grand canonical ensemble,

Ω = E − TS − µQ , (2.58)

where Q is the total charge. The grand potential plays the same role as the free
energy of the canonical ensemble at zero charge density in section 2.6.1. Thus, in
the grand canonical ensemble we can identify

βΩ = I . (2.59)

2.7 Summary and outlook on subsequent chap-

ters

In this chapter, we reviewed basic facts about the AdS/CFT correspondence which
constitutes the common basic principle behind the research results presented in
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chapter 4, 5 and 6. First, we introduced the two theories participating in the
correspondence, namely N = 4 superconformal Yang-Mills theory and type IIB
supergravity in Anti-de Sitter space. After that, we presented the conjecture as
well as a heuristic argument in favor of the AdS/CFT correspondence. Moreover,
the extension of the correspondence to include CFTs at finite temperature as well
as at finite density was presented. The upshot of this was that temperature is
turned on on the field theory side by replacing the extremal D3-brane by a non-
extremal black D3-brane in the bulk which emits Hawking radiation heating up the
field theory on the boundary. A charge density is induced on the field theory side
by charging the black hole under some gauge symmetry. Moreover, we pointed out
that strongly-coupled thermal CFTs which are dual to a spherical black hole, and
thus live on a three-sphere possessing a finite volume, show special thermodynamic
properties. In this case, the entropy can be written as a Cardy-Verlinde formula in
terms of the total energy and the Casimir energy. According to that, the Casimir
entropy seems to play the role of a higher-dimensional generalization of the central
charge of CFTs in (1 + 1) dimensions.

In the rest of this thesis, we mainly make use of the AdS/CFT correspondence
at finite temperature and at finite charge density to describe strongly-coupled
charged thermal systems. In chapter 4 and 5, we consider the field theory to live
on a three-sphere, whose special thermodynamic properties lead to interesting
effects. Additionally, we turn on finite U(1)×U(1)×U(1) charge in the field theory.
The associated dual charged black hole solutions are, for that purpose, studied
in detail in chapter 3. Chapter 6 deals with thermal CFTs in the presence of
SU(2) charge density and the associated dual black hole solutions are numerically
derived in the same chapter.
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Chapter 3

Black holes in five-dimensional
N = 2 gauged supergravity

This chapter is partly intended to be a review on the static black hole solutions of
N = 2 gauged supergravity in five dimensions. In addition, it contains a calculation
by the author in section 3.3, namely the derivation of first-order differential (flow)
equations from the five-dimensional gauged N = 2 supergravity action in the
context of non-extremal electrically charged static black hole solutions.

The chapter is structured as follows. After a short overview of the content
of the chapter, in section 3.2 we review how five-dimensional N = 2 gauged
supergravity is derived from eleven-dimensional supergravity. For this purpose,
the compactification of eleven-dimensional supergravity on a Calabi-Yau three-
fold as well as the gauging of the resulting five-dimensional theory are explained.
Moreover, relevant elements of the very special geometry of the scalar fields of
N = 2 gauged supergravity are shortly reviewed. In section 3.3, we derive the
first-order flow equations for five-dimensional non-extremal electrically charged
black holes of N = 2 gauged supergravity by combining the flow equations for
ungauged extremal electrically charged static black holes and gauged flat domain
walls. Then we solve the flow equations and recover the solutions of [21]. In section
3.4, the generalN = 2 gauged supergravity is truncated to the STU model and the
corresponding action as well as the AdS-STU black hole solutions are presented.
The STU model allows for four special simplifying cases which are worked out for
later use. The last section 3.5 sketches the embedding of the AdS-STU black hole
in type IIB supergravity by compactifying a spinning D3-brane on a five-sphere.

The derivation of the first-order flow equations is part of the work which was
done by the author of this thesis in collaboration with Gabriel Lopes Cardoso and
which was published in [1].
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3.1 Overview

TheN = 2 gauged supergravity action in five dimensions was derived in [22] in the
mid 1980’ies. Since the advent of gauge/gravity dualities there has been renewed
interest in gauged supergravity theories in various dimensions. An explicit solution
to five-dimensional N = 2 supergravity was found in [21] in the context of the
STU model, which arises as a certain truncation of the full theory, by solving
the associated equations of motion. These solutions correspond to non-extremal
static AdS black holes charged under three U(1) gauge symmetries. Special cases
of these black holes have been discussed in [31,72,73,81–85].

The general five-dimensional supergravity action can be derived by compactify-
ing eleven-dimensional supergravity on a Calabi-Yau three-fold [23–25] and gaug-
ing the resulting five-dimensional theory [22]. This can be further truncated to
the STU model. Fortunately, the STU model can also be embedded into type
IIB string theory by performing a Kaluza-Klein reduction on a five-sphere and
truncating the resulting theory to N = 2 supersymmetry [72–74]. This enables us
to study different applications of the AdS/CFT correspondence in the AdS black
hole background found in [21], what we exploit in chapter 4 and 5.

A convenient feature of the supergravity action is that when we specialize to
backgrounds which describe electrically charged static black hole solutions, it can
be written, up to total derivative terms, as a sum of squares of expressions which
are of first-order in derivatives. When these expressions are put to zero we obtain
first-order differential (flow) equations which are consistent with the second-order
equations of motion and which are, in addition, easier to solve. First-order flow
equations are well-known from the attractor mechanism [26–29] of extremal solu-
tions, such as [30, 31]. Therefore, it is very surprising that there exist classes of
non-extremal solutions that also allow for such a description, since non-extremal
black holes do not exhibit attractor behavior [32, 33]. First-order flow equations
for non-extremal AdS-Einstein-Maxwell black holes have been discussed in the
past in [86] and more recently in [87,88] in the context of Einstein-dilaton-p-form
systems. In this chapter we find flow equations for general non-extremal elec-
trically charged black holes in N = 2 gauged supergravity and we rederive the
solution of [21].

3.2 N = 2 supergravity on AdS5

In this section, the five-dimensional N = 2 gauged supergravity action is de-
rived in two steps. First, eleven-dimensional supergravity is compactified to five-
dimensional ungauged supergravity on a Calabi-Yau three-fold. After that the
theory is gauged yielding supergravity which has AdS space as a solution. In the
following, we refer to this supergravity as the AdS supergravity.
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3.2.1 Calabi-Yau compactification of eleven-dimensional
supergravity

By definition, a Calabi-Yau n-fold is a Kähler manifold having n complex dimen-
sions and vanishing first Chern class1,

c1 =
1

2π
[R] = 0 . (3.1)

The latter implies that a Calabi-Yau manifold may be endowed with a Ricci flat
Kähler metric. A Calabi-Yau n-fold is characterized by its Hodge numbers hp,q
which count the number of independent harmonic (p, q) forms on the manifold.
However, not all of the hp,q are independent, but related by symmetries and du-
alities. Let us list the non-zero Hodge numbers for the special case of n = 3
which is of interest in this chapter. Any compact connected Kähler manifold,
which applies to Calabi-Yau manifolds, has h0,0 = 1 corresponding to constant
functions. Then Poincaré duality gives h3,3 = 1. Furthermore, the Calabi-Yau
condition requires that there exists a nowhere vanishing holomorphic three-form,
thus h3,0 = 1. Complex conjugation then gives h0,3 = 1. In addition, there are two
more independent non-zero Hodge numbers, h2,1 = h1,2 and h1,1, which have differ-
ent values for different Calabi-Yau three-folds and which specify their cohomology
structure. The full set of Hodge numbers can be displayed in the Hodge diamond
(figure 3.1). The characterization in terms of Hodge numbers is not unique. Some

Figure 3.1: Hodge numbers of a Calabi-Yau three-fold. (figure taken from [6])

Calabi-Yau manifolds with the same hp,q can be related by deformations of their
metrics. These deformations are proportional to a linear combination of the har-
monic (p, q) forms whose coefficients are called moduli. These moduli determine
the size and shape of the manifold. In this sense, the moduli space is a continuous
family of Calabi-Yau spaces. In the case of a Calabi-Yau three-fold the moduli
space is (2h2,1 + h1,1)-dimensional.

1More information on Calabi-Yau manifolds can be found in [89–91].
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Let us now come back to the compactification of eleven-dimensional super-
gravity on a Calabi-Yau three-fold. The eleven-dimensional supergravity action
was derived in [92]. Its bosonic part reads

16 π G11 S =

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4 , (3.2)

where R is the scalar curvature, F4 = dA3 is the four-form field strength associated
with the three-form gauge field A3. G11 denotes the eleven-dimensional Newton
constant and G is the determinant of the eleven-dimensional metric Gµ̂ν̂ . The
quantity |F4|2 is defined by

|F4|2 =
1

4!
Fα̂β̂γ̂δ̂F

α̂β̂γ̂δ̂ . (3.3)

The compactification is performed according to the usual Kaluza-Klein reduction
which was invented in [4,5]. In doing so, we compactify all the eleven-dimensional
fields in (3.2) to five dimensions and then truncate to the massless sector2. Keeping
only the massless modes of the fields is reasonable, since assuming the size of the
compactification space is very small (on the order of the Planck length) the massive
modes are too heavy to participate in the low-energy dynamics of the fields. The
field content of the resulting five-dimensional theory depends strongly on the
structure of the Calabi-Yau, and thus on its Hodge numbers. It consists of the
gravity mulitplet, whose bosonic part comprises the graviton and the graviphoton,
h1,1 − 1 vector multiplets each with a bosonic part comprising a one-form gauge
field and a real scalar field, and h2,1 + 1 hyper multiplets each with a bosonic part
comprising two complex scalar fields [23–25]. The theory can be further truncated
by setting the hyper-multiplet fields to zero.

So far, the five-dimensional N = 2 supergravity action does not contain a
cosmological constant which is, however, necessary to have AdS5 as a vacuum
solution. How this comes into play is explained in the following section.

3.2.2 Gauged supergravity

The supersymmetry algebra of N = 2 supergravity in five-dimensional flat space
contains an SU(2) R-symmetry. The AdS supergravity is obtained by gauging
the U(1) subgroup of the SU(2) group, which breaks SU(2) down to U(1). The
gauging is achieved by introducing a linear combination of the Abelian vector fields
already present in the ungauged theory, i.e. Aµ = hAA

A
µ , with a coupling constant

g. The hA are constants. The coupling of the fermionic fields to the U(1) vector
field breaks supersymmetry. In order to preserve N = 2 supersymmetry, gauge-
invariant g-dependent terms have to be added. In a bosonic background, these

2For an introduction into Kaluza-Klein theory see [93].
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additional terms give a scalar potential [22]. The bosonic part of the resulting
effective gauged supersymmetric N = 2 action describing the coupling of vector
multiplets to supergravity reads

16π G5 S =

∫
d5x
√
−G

(
R− Gij ∂Mϕi∂Mϕj −

1

2
GAB FA

MNF
BMN − Vpot

)
+
κ

3

∫
CABC F

A ∧ FB ∧ AC ,
(3.4)

where now, R is the five-dimensional Ricci scalar, G is the determinant of the
five-dimensional metric GMN , ϕi are the real vector-multiplet scalar fields with
i = {1, ..., h1,1 − 1}, Gij denotes the metric of the scalar-field target space and
FA = dAA is the two-form field strength associated with the one-form gauge
field AA with A = {1, ..., h1,1}. The CABC are given by the triple intersection of
the (1, 1)-forms on the Calabi-Yau space. The term Vpot is the scalar potential
defined below. It contains a constant part which gives a cosmological constant.
Furthermore, G5 denotes the five-dimensional Newton constant and the coefficient
in front of the Chern-Simons term κ = −1/(2

√
3) is the Chern-Simons coupling

constant.
The above action can be rewritten in terms of h1,1 scalar fields XA which

satisfy the constraint
1

6
CABC X

AXBXC = 1 . (3.5)

Their target space metric GAB is given by

GAB = −1

2
CABC X

C +
9

2
XAXB , (3.6)

where

XA =
1

6
CABC X

BXC . (3.7)

Observe that XAXA = 1 in view of (3.5). In addition,

XA ∂iX
A = 0 , (3.8)

where XA = XA(ϕi) and ∂iX
A(ϕ) = ∂XA/∂ϕi. The scalar fields ϕi have the

target space metric
Gij = GAB ∂iXA ∂jX

B . (3.9)

The indices A are raised and lowered using GAB according to

GABXB =
3

2
XA ,

GAB ∂iXB =− 3

2
∂iXA .

(3.10)
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The potential Vpot is expressed in terms of the superpotential

W = hAX
A (3.11)

and reads

Vpot = g2

(
Gij ∂iW ∂jW −

4

3
W 2

)
= g2

(
hA GAB hB − 2W 2

)
, (3.12)

where in the second step we used

Gij ∂iXA ∂jX
B = GAB − 2

3
XAXB . (3.13)

The gauge coupling constant g is identified with the inverse of the curvature radius
of AdS5, g = L−1.

From (3.4) we can derive the equations of motion for the metric

RMN =Gij ∂Mϕi ∂Nϕj

+ GAB
(
FA
MP F

B
N
P − 1

6
GMN F

A
PQF

BPQ

)
+

1

3
GMN Vpot ,

(3.14)

for the gauge fields

∇N
(
GAB FB

NM

)
=

1

16
CABC εM

NPQR FB
NP F

C
QR (3.15)

and for the physical scalar fields ϕi

2∇M
(
Gij∇Mϕ

j
)
− (∂iGjk) ∂Mϕj ∂Mϕk

− 1

2
(∂iGAB)FA

MN F
BMN − ∂iVpot = 0 . (3.16)

In terms of the real scalar fields XA, (3.16) reads

∂iX
A
[
2∇M

(
GAB ∂MXB

)
− (∂AGBC) ∂MX

B ∂MXC

−1

2
(∂AGBC)FB

MN F
CMN − ∂AVpot

]
= 0 . (3.17)

The way to solve the scalar field equations of motion (3.17) is to construct XA

that solve the equations

2∇M
(
GAB ∂MXB

)
− (∂AGBC) ∂MX

B ∂MXC

− 1

2
(∂AGBC)FB

MN F
CMN − ∂AVpot = 0 (3.18)

up to leftover terms proportional to XA. These are then projected out by the
constraint XA ∂iX

A = 0.
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3.3 First-order flow equations

The equations of motion (3.14), (3.15) and (3.16) allow for various classes of
solutions that have a description in terms of first-order flow equations. In the un-
gauged case (g = 0) one such class consists of electrically charged static extremal
black hole solutions with line element [29,94,95]

ds2
5 = −e−4U dt2 + e2U dr2 + e2U r2 dΩ2

3 . (3.19)

The metric factor e2U and the scalar fields ϕi supporting the spherically symmetric
black hole solution only depend on the radial coordinate r. They satisfy the first-
order flow equations

de2U

dξ
=

1

3
Z , (3.20)

dϕi

dξ
= −1

2
e−2U Gij ∂jZ , (3.21)

where ξ denotes the variable ξ = 1/r2 and where Z = qAX
A. These flow equations

can be combined into

X ′A + 2U ′XA = −2

3
e−2U qA

r3
, (3.22)

where ′ = d/dr. Indeed, contracting (3.22) with XA results in the flow equation
for e2U , while contracting with ∂jX

A yields the flow equation for ϕi in view of the
very special geometry relations (3.8) and (3.10).

The flow equations (3.20) and (3.21) are solved in terms of harmonic functions
HA,

e2U =
1

3
HAX

A , (3.23)

e2U XA =
1

3
HA , (3.24)

where HA = cA + qA/r
2, and where the cA denote arbitrary integration constants.

In the gauged case (g 6= 0) a well-known class of solutions admitting a descrip-
tion in terms of first-order flow equations are flat domain wall solutions with line
element [96–105]

ds2
5 = e2A ηµν dx

µdxν + dρ2 , (3.25)

where ηµν denotes the four-dimensional Minkowski metric. The metric factor e2A

and the scalar fields ϕi supporting the domain wall solution only depend on the
radial coordinate ρ. They satisfy the first-order flow equations

dA

dρ
=

1

3
gW , (3.26)

dϕi

dρ
=− gGij ∂jW . (3.27)
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Changing the radial variable from ρ to r such that dρ/dr = (g r e2U(r))−1, with
eA(ρ) = g r eU(r), yields the line element in the form

ds2
5 = e−4U f ηµν dx

µdxν + e2U f−1 dr2 , (3.28)

where
f = g2 r2 e6U . (3.29)

The flow equations (3.26) and (3.27) now take the form

U ′ r =
1

3
e−2U W − 1 , (3.30)

X ′
A

=
e−2U

r

(
2

3
W XA − GABhB

)
, (3.31)

where ′ = d/dr. Here we have displayed the flow equation for the XA. The flow
equation for the ϕi,

ϕi′ = −e−2U

r
Gij ∂jW , (3.32)

follows from the flow equation for XA by contracting it with GAB ∂jXB.
The electrically charged black hole solutions of ungauged supergravity de-

scribed above satisfy first-order flow equations based on Z = qAX
A, whereas

the flat domain wall solutions of gauged supergravity just described satisfy first-
order flow equations based on W = hAX

A. We may ask whether there exist
charged solutions to gauged supergravity satisfying both sets of first-order flow
equations (3.22) and (3.30), (3.31)3. That charged extremal solutions exist in
gauged supergravity based on first-order flow equations was demonstrated in [31],
where various examples with one real scalar field and one Abelian gauge field
were discussed. Non-extremal electrically charged static black hole solutions were
constructed in [21] by solving the equations of motion. Here we show that these
solutions have a first-order flow description based on the two sets (3.22) and (3.30),
(3.31), by rewriting the five-dimensional action (3.4) in terms of these equations.
Then, the compatibility of the flow equations (3.22) and (3.30), (3.31) requires
identifying the integration constants cA appearing in the solution (3.23), (3.24)
with hA, so that now

HA = hA +
qA
r2

. (3.33)

Following [21] we consider the ansatz for a non-extremal electrically charged
static black hole solution

ds2
5 =− e−4U f dt2 + e2U f−1 dr2 + e2U r2 dΣ2

k , (3.34)

f =k − µ

r2
+ g2 r2 e6U , (3.35)

3Common features of black hole and domain wall solutions were recently discussed in [30].
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where U = U(r), f = f(r). Here dΣ2
k denotes the line element of a three-

dimensional space of constant curvature with metric ηkij, either flat space (k = 0),
hyperbolic space (k = −1) or a unit three-sphere S3 (k = 1). The presence of a
non-vanishing parameter µ is necessary in order for the solutions to have a hori-
zon. Observe that the line elements (3.19) and (3.28) are special cases of (3.34).
In the following, we will always consider the case k = 1, but we keep k in the for-
mulae as a book-keeping device. The scalar fields and the gauge fields supporting
the solutions are taken to be functions of r, only. Inserting the line element (3.34)
into the action (3.4) yields

16π G5 S = S0 + S2 + Std , (3.36)

where S0 and S2 comprise the contributions to order g0 and g2, respectively, and
where Std contains total derivative terms. S0 and S2 read

S0 =

∫
d5x
√
ηk
[
3µ

e−2U

r3
qAGAB

(
2XB −

1

3
e−2U HB

)
− 9

4

(
k − µ

r2

)
r3

×
(
X ′A + 2U ′XA +

2

3
e−2U qA

r3

)
GAB

(
X ′B + 2U ′XB +

2

3
e−2U qB

r3

)
+r3 e4U

(
FA
tr − e−4U GACQC

r3

)
GAB

(
FB
tr − e−4U GBDQD

r3

)]
,

S2 =g2

∫
d5x
√
ηk [

4

3
r3 e2U

(
W − 3 e2U (U ′r + 1)

)2

− r5 e6U

(
X ′

A − e−2U

r

(
2

3
W XA − GAChC

))
GAB

×
(
X ′

B − e−2U

r

(
2

3
W XB − GBDhD

))]
,

(3.37)

where ′ = d/dr. Observe that the Chern-Simons term proportional to the intersec-
tion numbers CABC vanishes, since in the static case there are no magnetic fields
present. In the expression for S0, the physical electric charges QA are related to
the qA by

QAGABQB = k qAGABqB + µ qAGABhB , (3.38)

and HA is given by (3.33). Std reads

Std =

∫
d5x
√
ηk
[
2QA F

A
tr +

(
6µU − 2(k − µ

r2
) (r3 U ′ + e−2U qAX

A)
)′

+g2
(
−8r5 e6U U ′ − 8r4 e6U + 2r4 e4U W

)′]
.

(3.39)

Observe that S0 and S2 are given in terms of squares of first-order differential
equations, with the exception of the first term of S0, which is proportional to
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the parameter µ. Under variation with respect to U or with respect to XA, the
contribution from the first term of S0 vanishes provided that

XA =
1

3
e−2U HA . (3.40)

Thus, extremizing S0 and S2 with respect to the fields U , XA and FA
tr yields the

relation (3.40), the first-order flow equations (3.22) and (3.30), (3.31) as well as

FA
tr = e−4U GACQC

r3
. (3.41)

The flow equations (3.22) and (3.30), (3.31) are solved by (3.23), (3.24) with
cA = hA, as discussed above, and the solution agrees with (3.40).

We take hA and qA in (3.33) to be positive to ensure that HA > 0. We also take
XA > 0, so that e2U > 0 along the flow. We impose the normalization e2U = 1 at
r =∞. The asymptotic value of XA is then 1

3
hA. Denoting the asymptotic value

of the XA by hA, we have 1
3
hA hA = 1 in view of (3.5). We introduce the dual

superpotential W̃ as
W̃ = hAXA , (3.42)

for later convenience.
Summarizing, the line element (3.34) together with (3.23), (3.24), (3.33), (3.41)

and (3.38) describe non-extremal electrically charged static black hole solutions
to first-order flow equations. It can be checked that they solve the equations of
motion (3.14), (3.15) and (3.17).

On the solution, the total derivative terms (3.39) can be written as

Std =

∫
d5x
√
ηk
[
6µU ′ − 2

(
r3 f U ′ + r2(f − k)

)′]
, (3.43)

while the first term of S0 yields

−
∫
d5x
√
ηk 6µU ′ . (3.44)

Thus, on the solution, the action (3.4) evaluates to

16π G5 S = −2

∫
d5x
√
ηk
(
r3 f U ′ + r2(f − k)

)′
, (3.45)

in agreement with [106].
The electric field FA

tr is determined in terms of the potential φA(r), i.e. FA
tr =

−∂rφA(r). In the following, we compute the contraction QA φ
A. To this end, we

differentiate (3.20) and obtain

U ′′ = −1

3
e−2U

(
−2U ′

Z

r3
− 3

Z

r4
+
qAX

′A

r3

)
. (3.46)
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Using (3.22) we compute

X ′
A

= −3

2
GABX ′B = 2U ′XA + e−2U GABqB

r3
. (3.47)

Then, using (3.46) and (3.47) gives

U ′′ +
3

r
U ′ = −1

3
e−4U qAGABqB

r6
. (3.48)

With the help of (3.20), (3.38) and (3.48) we obtain

−3
[
r3
(
k − µ

r2

)
U ′
]′

= e−4U QAGABQB

r3
, (3.49)

which equals QA F
A
tr , as can be seen from (3.41). Hence we establish that

QA φ
A = −

(
k − µ

r2

)
e−2U qAX

A + k qAh
A , (3.50)

where we used (3.20) once more. We chose the integration constant in such a way
that QA φ

A vanishes at spatial infinity, as in [107]. In the context of the AdS/CFT
correspondence [17, 67, 68] this means that the potentials φA associated with the
U(1) charges QA approach the boundary at a vev rate [31,108].

The quantity appearing in the first law of black hole mechanics, dM = TH dS+
φA dQA, is not (3.50) but a rescaled one given by [72]

QA φ
A =

2

3w5

(
−
(
k − µ

r2

)
e−2U qAX

A + k qAh
A
)
, (3.51)

where

w5 =
16π

3

G5

vol
. (3.52)

Here, vol =
∫
d3x
√
ηk denotes the volume of the three-dimensional space of con-

stant curvature with line element dΣ2
k. For k = 1 this space is a unit three-sphere

S3 with volume vol = vol(S3). As already stated, here and in the following, the
focus lies on the case k = 1, but we nevertheless keep k in the formulae as a
book-keeping device.

Next, we compute the coefficient of the 1/r2-term in the metric factor −e−4U f
of the line element (3.34). We denote this coefficient by w5M . Expanding e2U =
1 + κ/r2 + . . . as well as XA = hA + βA/r2 + . . . and using (3.23) results in
κ = 1

3

(
hA qA + hA β

A
)
. On the other hand, inserting the expansion of XA into

(3.5) yields hA β
A = 0. It follows that the coefficient w5M is given by

w5M = µ+ 2k κ = µ+
2

3
k hA qA . (3.53)

M denotes the mass of the black hole relative to the ground state energy of the
AdS space (cf. section 2.6.1).
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3.4 STU black hole solutions

In many cases, we further truncate the theory (3.4) by restricting the index A
to values in the set A = {1, 2, 3}. In this case, there are only three scalar fields,
S = X1, T = X2, U = X3, which are parametrized in terms of the physical scalar
fields ϕ1 and ϕ2 as, for instance,

X1 = e
− 1√

6
ϕ1− 1√

2
ϕ2

, X2 = e
− 1√

6
ϕ1+ 1√

2
ϕ2

, X3 = e
− 2√

6
ϕ1

. (3.54)

The intersection numbers CABC reduce to one independent intersection number
C123 = 1, such that the constraint (3.5) becomes

X1X2X3 = 1 (3.55)

and the metric GAB is now given by

GAB =
1

2
δAB

(
XA
)−2

, (3.56)

where here there is no summation over A. The superpotential (3.11) and the dual
superpotential (3.42) become

W =
3∑

A=1

XA , W̃ =
3∑

A=1

XA , (3.57)

where we set hA = hA = 1. Consequently, the bulk action (3.4) simplifies to

16π G5 S =

∫
d5x
√
−G

(
R− 1

2

(
∂ϕ1

)2 − 1

2

(
∂ϕ2

)2
+ 4g2

3∑
A=1

(
XA
)−1

− 1

4

3∑
A=1

(
XA
)−2 (

FA
MN

)2 −
√

3

2
κCABC ε

MNOPQ FA
MNF

B
OPA

C
Q

)
.

(3.58)

The solutions to the equations for the metric function e6U (3.23) and the scalar
fields XA [94] read

e6U = H = H1H2H3 , XA = H−1
A H

1/3 , XA =
1

3
HAH−1/3 . (3.59)

Inserting the solution for the metric function e6U into the ansatz (3.34) and (3.35)
yields the line element of the AdS-STU black hole solution

ds2
5 =−H−2/3fdt2 +H1/3f−1dr2 +H1/3r2dΣ2

k

f =k − µ

r2
+ g2r2H .

(3.60)
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The gauge field corresponding to the charged AdS-STU black hole solution (3.60)
reads [106]

AA = −QA

r2
H−1
A dt , (3.61)

where there is no summation over A, and the QA are given by the square root of
(3.38).

The STU model allows for four special cases for which calculations become
relatively simple. These are deduced in the following subsections.

3.4.1 The Schwarzschild case (q1 = q2 = q3 = 0)

The Schwarzschild case is obtained by setting the two physical scalar fields to
ϕ1 = ϕ2 = 0 as well as the charges to q1 = q2 = q3 = 0. Consequently, the
scalar fields as well as the harmonic functions reduce to XA = 1 and HA = 1,
such that H = 1. For the superpotential, we then have W = 3 and for the dual
superpotential, we have W̃ = 1. Applying these simplifications to the line element
(3.60) with k = 1 and the gauge field (3.61) yields the known AdS-Schwarzschild
black hole solution with the ADM mass

w5M = µ . (3.62)

An event horizon exists as long as µ > 0.

3.4.2 The Maxwell case (q1 = q2 = q3 = q)

The Maxwell case is obtained by setting the two physical scalar fields to ϕ1 =
ϕ2 = 0, and all the charges equal, q1 = q2 = q3 = q. In this case, the scalar
fields again reduce to XA = 1 and the harmonic functions become all equal,
HA = H = 1 + q/r2, such that H = H3. The superpotential and the dual
superpotential again become W = 3 and W̃ = 1. Applying these simplifications
to the line element (3.60) with k = 1 and the gauge field (3.61) yields the AdS-
Reissner-Nordström solution with the ADM mass and the electric energy4

w5M = µ+ 2q , QA φ
A =

2

w5

q(µ+ q)

q + r2
. (3.63)

The horizon radius is given by the largest positive root of f(r) of (3.60).

4More precisely, the true electric energy of the black hole is QAφA evaluated at the black
hole horizon.
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3.4.3 Two equal charges (q1 = q2 = q, q3 = 0)

The case of two equal charges corresponds to setting ϕ1 = ϕ and ϕ2 = 0, and
simultaneously q1 = q2 = q, q3 = 0. We then have for the harmonic functions
H1 = H2 = H = 1 + q/r2 , H3 = 1 such that H = H2, and consequently for

the scalar fields X1 = X2 = H
−1/3
1 , X3 = H

2/3
1 . For the superpotential and the

dual superpotential, we obtain W = 2H−1/3 +H2/3 and W̃ = 1
3

(
2H1/3 +H−2/3

)
.

The corresponding two-charge AdS black hole solution resulting from (3.60), with
k = 1, together with (3.61) has the ADM mass and the electric energy

w5M = µ+
4

3
q , QA φ

A =
4

3w5

q(µ+ q)

q + r2
. (3.64)

The existence of a horizon shielding the singularity at r = 0 requires taking
µ > g2 q2. There is no inner horizon [31,83].

3.4.4 One charge (q1 = q, q2 = q3 = 0)

Finally, the case of one non-zero charge is obtained by setting ϕ1 = ϕ and ϕ2 =√
3ϕ1, and simultaneously q1 = q, q2 = q3 = 0. We then have for the harmonic

functions H1 = H = 1 + q/r2, H2 = H3 = 1, such that H = H, and for the
scalar fields X1 = H−2/3, X2 = X3 = H1/3. The superpotential and the dual
superpotential become W = H−2/3 + 2H1/3 and W̃ = 1

3

(
H2/3 + 2H−1/3

)
. The

corresponding one-charge AdS black hole solution resulting from (3.60), with k =
1, together with (3.61) has the ADM mass and the electric energy

w5M = µ+
2

3
q , QA φ

A =
2

3w5

q(µ+ q)

q + r2
. (3.65)

The solution has a single horizon shielding the singularity at r = 0 whenever
µ > 0 [31,83].

3.5 Embedding of the AdS-STU black hole into

type IIB supergravity

In section 3.2, it was shown how five-dimensional N = 2 supergravity can be
derived from eleven-dimensional supergravity by compactifying on a Calabi-Yau
three-fold. However, in order to justify the use of the theory (3.58), which is a
truncation of the full N = 2 supergravity, within the AdS/CFT correspondence,
it should be embeddable into type IIB string theory. This is actually possible.
In [72–74], it was shown that the AdS-STU black hole (3.60) arises from the
compactification of a spinning D3-brane of type IIB supergravity as is explained
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in the following. Starting from a static black D3-brane as (2.38), we can turn
on three different angular momenta in the six-dimensional transverse space such
that the rotation axes lie in three independent planes. This breaks the SO(6)
rotational symmetry of (2.38) to U(1)×U(1)×U(1). Next we take a decoupling
limit of this spinning D3-brane similar to the one in section 2.4, where the radial
coordinate r and α′ are sent to zero while r/α′ and the rotation parameters li,
i = 1, 2, 3, are kept fixed. The resulting line element of the near-horizon spinning
D3-brane becomes a product space consisting of a five-dimensional asymptotically
AdS5 part and a deformed S5 part,

ds2
10 =

√
∆̃ds2

5 +
1

g2
√

∆̃

3∑
A=1

(
XA
)−1
(
dµ2

A + µ2
A

(
dφA + gAA

)2
)
. (3.66)

The five-dimensional line element ds2
5 is now given by the line element (3.60) with

k = 0 of the AdS-STU black brane by virtue of the identification of the rotation
parameters l2A with the charges qA. Thus, from the five-dimensional point of
view the three rotations of the S5 correspond to three Abelian U(1) gauge fields
associated with the three charges qA.

The quantity ∆̃ is given by

∆̃ =
3∑

A=1

XAµ2
A , (3.67)

and g in (3.66) again denotes the gauge coupling constant which is equal to the
inverse AdS radius L−1.

The XA are the scalar fields introduced in (3.54). Here the S5 is parametrized
by the three parameters µA which are expressed in terms of angles on a two-sphere,

µ1 = sin θ , µ2 = cos θ sinψ , µ3 = cos θ cosψ , (3.68)

and which satisfy
∑

A µ
2
A = 1, as well as three angles φA. In (3.66), the S5

is deformed by three one-form gauge fields, associated with the three rotation
parameters lA, given by

AA =

√
µ lA

r2
H−1
A dt , HA = 1 +

l2A
r2
, (3.69)

where there is no summation over A and µ = r4
0 denotes the non-extremality

parameter5 of the near-horizon black brane solution. Identifying
√
µ lA = −QA

yields the gauge fields (3.61) associated with the AdS-STU black hole with k = 0.

5The non-extremality parameter µ must not be confused with the chemical potential µ in-
troduced in section 2.6.3.
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Note, that the near-horizon spinning D3-brane (3.66) exhibits the form of the
reduction ansatz for dimensional reduction on the S5. As we know from chapter
2 the D3-brane solution is supported by a constant dilaton equal to the string
coupling gs as well as the self-dual five-form field strength F̃5. All other fields
of type IIB supergravity vanish. Inserting the ansatz (3.66) and an appropriate
reduction ansatz for the five-form field strength into the ten-dimensional equations
of motion yields five-dimensional equations of motion which can be derived from
the action (3.58).

Thus, the embedding of the AdS-STU black hole solution (3.60) with k = 0
gives a ten-dimensional solution which is precisely the decoupling limit of the
spinning D3-brane. The parameters of the rotation in the compact directions
are identified with the charges of the five-dimensional black hole. Finally, the
k = 1 AdS-STU black hole is obtained by transforming the AdS5 part to global
coordinates.

In chapter 4 and 5, we use the asymptotically AdS5 background (3.60) and its
special cases introduced in sections 3.4.1-3.4.4 to study different applications of
the AdS/CFT correspondence.

3.6 Summary

In this chapter, we reviewed the non-extremal charged static black hole solutions
of five-dimensional N = 2 gauged supergravity. For that purpose, we derived the
action of five-dimensional N = 2 gauged supergravity from eleven-dimensional
supergravity by compactifying on a Calabi-Yau three-fold. Then, the resulting
action was gauged to obtain the gauged supergravity action which admits AdS
space as a solution.

In addition, we presented a calculation carried out by the author of this thesis,
namely the derivation of first-order flow equations from the five-dimensional N =
2 gauged supergravity action in the context of non-extremal electrically charged
static black holes. It turned out that these equations are given by the combination
of the flow equations that were derived earlier for the electrically charged black
hole solutions of ungauged supergravity, which are based on the central charge
Z = qAX

A, as well as for flat domain wall solutions of gauged supergravity,
which are based on the superpotential W = hAX

A. The compatibility of these
two sets of flow equations for the non-extremal charged black hole solutions of
gauged supergravity requires to identify the integration constants cA appearing
in the solution to the central-charge based flow equations with the coefficients hA
appearing in the superpotential W . Moreover, it can be shown that these flow
equations are consistent with the equations of motion and that they admit the
solutions found in [21]. A striking advantage of first-order flow equations is that
they are easier to solve compared to the second-order equations of motion.
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After that, we reviewed the special case of the AdS-STU black hole solution
which constitutes a full solution to the five-dimensional gauged supergravity. This
solution, in turn, can be further specialized to four different relatively simple
solutions, the AdS-Schwarzschild, the AdS-Maxwell, the two-charge AdS and the
one-charge AdS black hole.

Finally, we demonstrated that the five-dimensional AdS-STU black hole can
be embedded into type IIB string theory for which reason this solution qualifies
for being investigated in the context of the AdS/CFT correspondence. We exploit
this fact in chapter 4 and 5.
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Chapter 4

Holographic brane cosmology vs.
entropy and Casimir energy

In this chapter, a four-dimensional Randall-Sundrum-type brane universe is stud-
ied in the context of the AdS/CFT correspondence. The bulk background is taken
to be the static non-extremal charged AdS black hole solution of N = 2 gauged
supergravity in five dimensions introduced in chapter 3. The thermal field theory
that is dual to the AdS black hole is assumed to live on the brane, representing
the matter content of the brane universe. The equations of motion of the brane
are shown to be equal to the Friedmann equations, which are in the following
often referred to as Friedmann-Robertson-Walker (FRW) equations, of a closed
universe expressed in terms of bulk N = 2 supergravity quantities. The entropy
of the brane field theory is shown to take the form of a Cardy-Verlinde-type for-
mula modified by the presence of N = 2 supergravity quantities. At the horizon
of the black hole, the equations for the entropy and the Casimir energy of the field
theory surprisingly merge with the two FRW equations. This might indicate that
both sets of equations stem from a single more fundamental theory.

The outline of the chapter is as follows. Section 4.1 gives a brief introduction
to brane-world holography. In section 4.2, the bulk-brane system is viewed from
the bulk perspective. The brane action is presented and the equations of motion
are derived. Then, a Cardy-Verlinde-type formula for the entropy is derived and
the Casimir energy is computed in terms of bulk black hole quantities. In section
4.3, the system is viewed from the brane perspective and the merging of the
equations for the entropy and the Casimir energy with the two FRW equations
at the black hole horizon is demonstrated. In section 4.4, an outlook on how
to extend the analysis to a five-dimensional theory including higher-derivative
curvature terms is given. As an explicit example, a Gauss-Bonnet term is added
to the five-dimensional action and the first FRW equation is derived. The last
section 4.5 contains a summary and a discussion of the results.

The present chapter is based on work which was done by the author of this
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thesis in collaboration with Gabriel Lopes Cardoso and which was published in [1].

4.1 Introduction

The notion of a brane universe, which we also refer to as brane world, implies that
the observable part of our world, as for instance all standard model fields, are
restricted to a 3-brane with four-dimensional world-volume which is embedded in
a higher-dimensional space. However, gravity is not bounded to the brane and
may propagate in the extra dimensions. Such brane worlds were first investigated
in [109–112].

In [34, 113], Randall and Sundrum proposed a model with one single infinite
dimension transverse to the brane universe. The resulting five-dimensional space
is AdS5 whose radial direction represents the extra dimension. Only gravity is, in
principle, allowed to act in this dimension. However, it was shown that there exists
a normalizable zero-mode bound state which is localized on the brane. Thus, four-
dimensional gravity is effectively also confined to the brane in accordance with
Newton’s law [34]. This way of dimensional reduction to obtain a four-dimensional
spacetime from a higher-dimensional spacetime is different from the Kaluza-Klein
idea where all extra dimensions are considered to be small and compact compared
to the observed extended four dimensions. Therefore, it can be viewed as an
alternative to compactification as it was first termed by its inventors.

The scenario of [34] can also be viewed in light of the AdS/CFT correspon-
dence. This is sometimes referred to as brane-world holography [14], since the
four-dimensional brane field theory is considered to be dual to the five-dimensional
bulk theory. In spite of this, brane-world holography differs in some respects from
the usual AdS/CFT correspondence. The five-dimensional bulk theory is dual to
the four-dimensional theory on the brane which is, however, not considered to be
at infinity of the radial direction, but at some finite IR cut-off. From the UV/IR
relation we know that an IR cut-off in the bulk corresponds to a UV cut-off in
the brane field theory. Thus, the brane theory is not conformally invariant due
to the presence of a scale set by the cut-off. This, in turn, is cured, if the brane
is sent to infinity where the true boundary of the AdS space is situated. In spite
of the broken conformal symmetry, in the following we often stick to the term
CFT for the brane field theory. Another departure is that the bulk theory couples
to gravity on the brane. This is possible, since here the metric does not blow
up at the position of the brane along the radial direction which is given by the
IR cut-off rather than infinity as in the original AdS/CFT construction. Thus,
from the brane point of view, the energy red-shift, which presents a potential well
for the bulk theory modes in the direction to the brane, is finite allowing a bulk
graviton to reach the brane and couple to the brane field theory.

In addition, such a holographic brane world can now be shown to behave like
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a standard FRW universe1. Putting the brane in the background of an AdS black
hole turns on a temperature in the brane field theory. Then making the position
of the brane time-dependent enables the brane to move in this background. The
motion of the brane turns out to be exactly described by the FRW equations of a
closed universe [35]. The size of the universe corresponds directly to the distance
between the brane and the black hole singularity. The matter content of the
universe is represented by the finite-temperature field theory on the brane dual to
the supergravity theory in the bulk. From the five-dimensional perspective there
are two special moments in the history of the universe, namely when the brane
coincides with the black hole horizon during the expansion phase and again during
the recontraction phase. At these moments, the entropy and the Casimir energy
of the brane field theory surprisingly merge with the two FRW equations [36,37].
The main goal of this chapter is to investigate this phenomenon for the case of
the non-extremal charged black holes with spherical horizons (k = 1) in N = 2
gauged supergravity supported by scalar fields which were introduced in chapter
3. Earlier investigations for an AdS-Schwarzschild and an AdS-Maxwell black hole
can be found in [36–41].

A key ingredient to observe this merging is that the entropy can be written
as a Cardy-Verlinde-type formula for conformal field theories presented in section
2.6.1. This expresses the square of the entropy S in terms of the product of the
extensive part Ee of the energy and the Casimir energy Ec on the brane. As
already shown in section 2.6.1, the energies Ee and Ec behave as

Ee a ∝ S4/3 , Ec a ∝ S2/3 , (4.1)

where now a denotes the radius of the spherical brane. For brane theories dual to
AdS-Schwarzschild or AdS-Maxwell black holes, the proportionality coefficients in
(4.1) are independent of a and S. However, in case of the general AdS black hole
solution of N = 2 supergravity, non-trivial scalar fields are present which show up
in the proportionality coefficients of (4.1) in terms of the superpotentials (3.11)
and (3.42). These superpotentials do not have a simple dependence on extensive
quantities. The Cardy-Verlinde formula in the context of the STU model (see
section 3.4) was also discussed in [116,117]. We show that the two FRW equations,
describing the motion of the brane in the charged black hole background, take a
form that is similar to the Cardy-Verlinde-type formula and to the equation for the
Casimir energy on the brane, respectively. Then, as the brane crosses the event
horizon of the black hole, these two sets of equations coincide. This merging
of the two a priori unrelated sets of equations indicates that there might be a
common origin relating the entropy and the energy of a CFT with the standard
FRW equations [36,37].

1This topic is not reviewed here. The reader interested in some more details is referred
to [114,115] for an introduction.
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brane

r

Figure 4.1: Randall-Sundrum construction. Two identical copies of AdS5 are sepa-
rated by a 3-brane at some position r along the common radial direction. The true
boundaries of both AdS spaces are thus cut off by the 3-brane. (figure taken from [14])

In [36] it was argued that the entropy of a thermal CFT with a gravity dual is
always less than the Bekenstein entropy [118]. The Bekenstein entropy is propor-
tional to the energy and the linear size of the system. For a radiation dominated
universe, it is constant throughout the entire evolution. Thus, as long as the en-
tropy of the CFT does not change, the Bekenstein bound is satisfied at all times.
We investigate the Bekenstein bound on the entropy [36, 118] for special cases of
the AdS-STU black hole solution introduced in section 3.4.

4.2 The bulk perspective

In the first part of this section, we derive the FRW equations for a closed universe
from the motion of a 3-brane in the background of the static black hole solution
(3.34) of gauged N = 2 supergravity. For this purpose, we take the bulk point
of view and express all equations in terms of black hole quantities. In the second
part, it is shown that for any model (3.5) the entropy of a charged AdS black hole
(3.34) can be written as a Cardy-Verlinde-type formula [36]. This has already
been discussed in [38,40,41,116,117] for various black holes in the context of the
STU model. In contrast to the AdS-Schwarzschild black hole or the AdS-Maxwell
black hole considered in the analysis of [37,38], the black hole solutions (3.34) are
supported by non-trivial scalar fields which complicate the situation significantly.

4.2.1 FRW cosmology on the brane

The Randall-Sundrum model [34] can be roughly described as consisting of two
identical copies of AdS5 separated by a 3-brane at some position near the true
boundaries of the two AdS spaces, respectively (see figure 4.1). The brane has
constant tension which is fine-tuned against the bulk cosmological constants such
that the brane cosmological constant vanishes. In this chapter, we focus on one
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half of the spacetime depicted in figure 4.1. Thus, following [35, 37, 119], we
consider AdS5 which is cut off by the 3-brane near its true boundary and do not
care about the region beyond the cut-off brane. Furthermore, similar to [120], we
do not take the brane tension to be constant, but allow it to vary along the radial
direction. This is necessary for the vanishing of the cosmological constant of a
brane moving in the background of the AdS black hole (3.34).

The total action describing the bulk-brane system is given by the bulk-spacetime
action (3.4) and the brane action consisting of a Gibbons-Hawking term [71],
the coupling to the scalar fields through the superpotential as well as a four-
dimensional Einstein term,

− 1

8π G5

∫
Σ

d4x
√
−γ
(
K +

W

L
+
L

4
R
)
, (4.2)

where Σ denotes the brane world-volume, R denotes the Ricci scalar on the brane,
K is the Gibbons-Hawking term and W is the superpotential defined in (3.11).
The latter depends on the scalar fields XA(r) yielding a brane tension W/L that
changes with r. In case of the AdS-Schwarzschild or the AdS-Maxwell black
hole, the superpotential becomes a constant, W = 3, yielding a constant brane
tension. In the context of the original AdS/CFT correspondence where the 3-
brane coincides with the true boundary of the AdS space at r = ∞, the second
and the third term are counterterms [77, 106, 121, 122]. These ensure that the
combined action of (3.4) and (4.2) is finite when the brane is moved to infinity as
explained in section 2.5. Observe that since we focus on the case k = 1 for which
the boundary topology is R × S3, the holographic trace anomaly [123] vanishes
and no further counterterms are required [121,124].

The extrinsic curvature K is given by

K = γMN KMN , KMN = γM
P γN

Q∇(P nQ) . (4.3)

Here the tensor γMN = GMN − nM nN = diag(0, γµν) denotes the projection
of GMN onto Σ, so that the induced metric γµν on Σ is given by the tangential
components of γMN . We note that γMN = GMN−nM nN and K = ∇M nM , where
nM = GMN nN . The vector n = nM ∂M is the unit normal to Σ, i.e. nM nM = 1.

We view the brane as a dynamical entity [35, 37] moving in a background of
the form

ds2
5 = GMN dx

M dxN = −A(a) dt2 +B(a) da2 + a2 dΣ2
k , (4.4)

where the spatial three-sphere has radius a. Note that the black hole metric (3.34)
is of this type with

a = r eU (4.5)

and

A = e−4U f , B =
1

(1 + r U ′)2 f
, U ′ =

dU

dr
, (4.6)



62 4. Holographic brane cosmology vs. entropy and Casimir energy

where A and B are related by

A =

(
3

W

)2
1

B
(4.7)

by virtue of equation of (3.30).
We take the induced metric γµν on the brane to have the form of a standard

FRW metric with cosmic scale factor a(τ) [37],

ds2
4 = −dτ 2 + γij dx

idxj = −dτ 2 + a2(τ) dΣ2
k . (4.8)

Comparing (4.8) with (4.4) shows that the induced metric is obtained from the
bulk metric by requiring

−A
(
dt

dτ

)2

+B

(
da

dτ

)2

= −1 . (4.9)

This results in
dt

dτ
= A−1

√
A+ AB ȧ2 , ȧ =

da

dτ
. (4.10)

In the limit r → ∞, where (4.4) becomes the AdS metric, the left equation
simplifies to dt/dτ = L/a for the line element (3.34). It provides a conversion
factor to translate between the AdS time t and the CFT time τ , and thus becomes
important when translating bulk energy and temperature into brane energy and
temperature. From this we see that both time-coordinates coincide, if the radius
a of the spatial S3 is equal to the AdS radius L.

To compute the associated vector nM , we follow [125] and introduce the ve-
locity vector vM (vM vM = −1),

vM =
dxM

dτ
= (

dt

dτ
, ȧ,~0) . (4.11)

Using
vM nM = 0 , (4.12)

we find that the unit normal vector nM is given by

nM = ± 1√
AB

(B ȧ,
√
A+ AB ȧ2,~0) . (4.13)

Below we see that we have to take the minus sign for consistency.
Next, proceeding as in [120], we vary the combined action (3.4) and (4.2)

with respect to the metric GMN . Setting the variation to zero results in the
equations [77,120,126]

Kµν −
(
K +

W

L

)
γµν = 0 (4.14)
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and

Rµν −
1

2
R γµν = 8π G4 T

matter
µν . (4.15)

Here we have split the brane equation of motion into two equations, where the
first one (4.14) is given in terms of the extrinsic curvature, while the second one
(4.15) is given in terms of the Ricci tensor on the brane Σ. This splitting can
be motivated by noting that the five- and four-dimensional Newton constants are
related by [35]

G5 =
1

2
G4 L , (4.16)

as can be seen from (4.2). Then, the terms in (4.15) stem from those terms in
the action (4.2) that are proportional to G−1

4 and hence are intrinsically four-
dimensional, whereas the terms in (4.14) come from terms in (4.2) that are mul-
tiplied by powers of G5 and L in such a way that these factors do not com-
bine into powers of G4 only. Thus, W only contributes to (4.14), and there is
no induced cosmological constant on the brane (cf. equation (4.29)) [37]. Note
that in order for the two equations (4.14) and (4.15) to be consistent with each
other, we have to supplement the action (4.2) with terms describing the non-
gravitational degrees of freedom on the brane. This results in the presence of
an energy-momentum tensor Tmatter

µν in (4.15) that is homogeneous and isotropic,
i.e. Tmatter

µν = diag(−ρeff , peff , peff , peff), and that is conserved,

dρeff

dτ
= −3H (ρeff + peff) , (4.17)

where

H =
ȧ

a
(4.18)

denotes the Hubble parameter2.
Tracing (4.14) yields

Kµν = −W
3L

γµν , (4.19)

which we now evaluate. We first compute the ij-component of Kµν . Using the
definition (4.3) as well as (4.13) we obtain

Kij =
1

2
na∂aγij = a−1na γij = ±

√
A+ ABȧ2

√
AB a

γij , (4.20)

and hence we get from (4.19),

±
√
A+ ABȧ2

√
AB a

= −W
3L

. (4.21)

2H should not be confused with the HA defined in (3.33).
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Since the right hand side is negative, we take the minus sign in (4.13). Then,
squaring (4.21) results in

H2 =

(
W

3L

)2

− 1

B a2
. (4.22)

This is the Friedmann equation describing the dynamics of the scale factor a(τ).
Next, we compute the ττ -component of (4.19) using the method of [120,127],

which we now review. We express Kττ as

Kττ = KMN v
M vN = −nN AN , (4.23)

where we used (4.12) and where AN = vM ∇M vN . Since vN vN = −1 we have
vN AN = 0, and hence AN is proportional to the normal nN , i.e. AN = ÂnN .
To compute Â we use the fact that the black hole metric (3.34) has a timelike
Killing vector l = lM ∂M = ∂t. We compute ∂τ

(
lM vM

)
= vN ∇N

(
lM vM

)
=

lN AN = lN n
N Â, where we used the Killing equation ∇M lN = −∇N lM once.

Hence [120,127]

Kττ = −
∂τ
(
lM vM

)
lN nN

= −∂τvt
nt

. (4.24)

Thus, the ττ -component of (4.19) yields

∂τvt =
W

3L
nt . (4.25)

Using (4.7), (4.10) and (4.22), we find that (4.25) results in

Ḣ +H2 =

(
W

3L

)2(
1 +

a

W

∂W

da

)
+

1

2B2 a

∂B

∂a
, (4.26)

where Ḣ = dH/dτ . This equation is precisely the τ -derivative of (4.22).
Finally, we compute Kτi = KMi v

M using (4.3) and find Kτi = 0, which is
consistent with (4.19). Thus, we conclude that the equations (4.19) consistently
reduce to the Friedmann equation (4.22) and its τ -derivative.

The Friedmann equation (4.22) can be rewritten in terms of the black hole
data M and QA φ

A as follows. Using (4.5) as well as (4.45) we obtain

e2U =
W

3 a2 − qAXA
a2 . (4.27)

Using (4.27), QA φ
A given in (3.51) becomes

QA φ
A =

2

3w5

(
−3k

qAX
A

W
+ k

(
qAX

A
) (
qBX

B
)

Wa2
+ µ

qAX
A

a2
+ k qAh

A

)
. (4.28)



4.2 The bulk perspective 65

1 2

0.5

1

rh
2

L-2

Figure 4.2: The horizon radius rh is displayed as a function of the square of the
inverse AdS radius L−2 for the solution of section 3.4.3 with µ = q = 1. For L−1 > 1,
rh becomes negative. Thus, a horizon exists for L−1 < 1.

Inserting (4.6), (3.30) and (4.27) into (4.22) and using (4.28) yields

H2 = −k W W̃

3 a2
+
w5W

3 a4
M − w5W

6 a4
QA φ

A . (4.29)

It is instructive to check whether H2 ≥ 0 along the motion of the brane in
the AdS black hole background. For this purpose, let us consider the black hole
background of section 3.4.3 for concreteness. We set µ = q = 1 (in appropriate
units). The existence of a horizon then requires taking L−1 < 1, as shown in
figure 4.2. Picking the value L−1 = 0.30 we find that the horizon is at rh = 0.64
and that H2 vanishes at r = 1. In figure 4.3, H2 is displayed as a function of r
using (4.29). We find that H2 ≥ 0 in the outside region between the horizon and
the turning point at r = 1. The brane thus expands until it reaches its maximal
radius at r = 1 after which it recontracts and falls through the horizon.

4.2.2 A Cardy-Verlinde-type formula for charged black
holes

Now, we show that for any model (3.5) the entropy of a charged spherical black
hole (3.34) can be written as a Cardy-Verlinde-type formula [36] which has already
been discussed in [38,40,41,116,117] for various black holes in the context of the
STU model.

In the coordinates (3.34), the exterior horizon rh of the black hole is located
at the largest real positive root of

f(rh) = 0 . (4.30)

Remember that we assume e−4U(rh) 6= 0 (cf. section 3.3). The associated Hawking
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Figure 4.3: The square of the Hubble constant H2 is displayed as a function of the
radial coordinate r for the solution of section 3.4.3 with µ = q = 1. At the point where
H vanishes, the expansion of the brane universe breaks down. After that, the universe
recontracts. Thus, the physical range is r ≤ 1, and the horizon is at rh = 0.64.

temperature TH is given by [106]

TH =
1

4π
f ′(rh) e−3U(rh) . (4.31)

The Bekenstein-Hawking entropy of the black hole is given by a quarter of the
area Vh = a3

hvol(S
3) of the event horizon which is a three-sphere with radius

ah = rh eU(rh),

S =
Vh

4G5

=
4π

3w5

a3
h , (4.32)

with w5 given by (3.52). Hence

TH S =
1

3w5

f ′(rh) r
3
h , (4.33)

which we now compute. Using (3.20) we obtain

f ′(r) r3 = 2µ+ 2
2

L2
r4 e6U

(
1− e−2U qAX

A

r2

)
. (4.34)

At the horizon, it follows from (4.30) that

µ− k r2
h =

1

L2
r4
h e6U(rh) , (4.35)

and hence

TH S =
2

3w5

[
2µ− k r2

h +

(
k − µ

r2
h

)
e−2U(rh) qAX

A
h

]
. (4.36)
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Next, let us consider the Smarr-type combination

4

3
M − TH S −QA φ

A
h , (4.37)

with QA φ
A
h given by (3.51) and evaluated at the horizon. This combination is the

gravitational counterpart of the Casimir energy Ec/3 on the brane. Ec is defined
as the violation of the thermodynamic Euler relation [36], as we have learned in
section 2.6.2. The combination (4.37) can also be motivated by exhibiting its
relation to the Smarr formula, as follows. In the absence of charges, the area
Vh of the event horizon is determined in terms of the mass parameter µ and the
AdS radius L using (4.35). We can view this as a relation µ = µ(Vh, L). Under
the simultaneous rescaling rh → λ rh and L → λL we have Vh → λ3 Vh as well
as λ2 µ = µ(λ3 Vh, λ L). Differentiating with respect to λ, setting λ = 1 and
multiplying with w−1

5 results in

2M = 3TH S + L
∂M

∂L
, (4.38)

where we used the first law of black hole thermodynamics, dM = TH dS. Using
(4.35), we compute

L
∂M

∂L
= −2M +

2k

w5

r2
h . (4.39)

Inserting (4.39) into (4.38) we obtain

4

3
M − TH S =

2k

3w5

r2
h . (4.40)

This is the result for the Smarr-type combination (4.37) for uncharged black holes.
In the ungauged case (L−1 = g = 0)3, we have k r2

h = µ and (4.40) yields the Smarr
formula 2

3
M = TH S [128].

In analogy to [36], we denote the Smarr-type combination (4.37) by Ẽc/3.
Using (3.53), (4.36) and (3.51) we obtain

Ẽc =
2 k

w5

(
r2
h +

1

3
hAqA

)
. (4.41)

On the other hand, contracting (3.40) with hA gives

r2e2U hAXA = r2 +
1

3
hAqA , (4.42)

3In chapter 3, we explained that the inverse AdS radius L−1 is identified with the gauge
coupling constant g of gauged supergravity. In the ungauged case L−1 = g = 0, the vacuum
solution is Minkowski space, instead of AdS space in the gauged case, where L−1 = g is finite.
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and hence

Ẽc =
2 k

w5

W̃h a
2
h , (4.43)

where W̃h denotes the dual superpotential (3.42) evaluated at the horizon. The
quantity Ẽc is thus non-vanishing for a horizon of spherical topology. Observe
that a2

h ∝ S2/3 (cf. equation (4.1)). In the ungauged case (L−1 = g = 0), we
have k r2

h = µ as well as Ẽc = 2M − QA φ
A
h , and (4.37) yields the Smarr formula

2
3
M = TH S + 2

3
QA φ

A
h [107,128].

In the gauged case (L−1 = g 6= 0), the combination 2M − QA φ
A
h − Ẽc is no

longer vanishing. We find

2M −QA φ
A
h − Ẽc =

2

3w5

(µ− k r2
h)

(
3− e−2U(rh) qAX

A
h

r2
h

)
, (4.44)

where we used (3.53), (3.51) and (4.41). With the help of (3.23) and (3.11) we
have

qAX
A

r2
= 3e2U −W , (4.45)

so that

2M −QA φ
A
h − Ẽc =

2

3w5

(µ− k r2
h) e−2U(rh)Wh , (4.46)

where Wh denotes (3.11) evaluated at the horizon. Using (4.35) this can be written
as

2M −QA φ
A
h − Ẽc =

2

3L2w5

Wh a
4
h , (4.47)

which is positive. Observe that a4
h ∝ S4/3 (cf. equation (4.1)). We denote this

combination by 2 Ẽe, and we note that 2M = 2 Ẽe + Ẽc +QA φ
A
h .

It follows that we can express the square of the entropy (4.32) as

kWh W̃h S
2 =

8π2L2

3
Ẽe Ẽc =

4π2L2

3
Ẽc

(
2M −QA φ

A
h − Ẽc

)
. (4.48)

This is a Cardy-Verlinde-type formula for charged AdS black holes, here expressed
in terms of gravitational quantities. It makes use of both W and W̃ evaluated at
the horizon. Using (3.13), we note the relation

W W̃ = 3

(
1 +

1

2
Gij ∂iW ∂jW̃

)
, (4.49)

which shows that in general Wh W̃h 6= 3.
Summarizing, we find that three combinations are naturally expressed in terms

of the superpotential quantities W and W̃ , namely (4.43), (4.47) and (4.48).
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AdS CFT

M E = M L/a
TH T = TH L/a

QA φ
A
h QA Φ̂A = QA φ

A
h L/a

QA φ
A QA ΦA = QA φ

A L/a
S S

Table 4.1: Relation between black hole and field theory data.

4.3 The brane perspective

As we have learned in chapter 2, the AdS/CFT correspondence states that the bulk
theory provides a dual description of the CFT on the brane, at least if it resides at
the true boundary of the AdS space. According to this, the results obtained in the
preceding section can be transferred to the CFT side which reveals new insights
about the properties of the CFT on the brane. In the first part of this section, a
Cardy-Verlinde-type formula for the brane field theory is presented, derived from
the bulk counterpart (4.48). We also convert the FRW equation (4.29) and its
time-derivative, which are expressed in bulk quantities, into the standard form in
terms of four-dimensional brane quantities. The second and third part present the
merging between the first FRW equation and the Cardy-Verlinde-type formula,
and between the second FRW equation and the Casimir energy of the brane field
theory.

4.3.1 Dual description on the brane

The mass M , the Hawking temperature TH and the entropy S of the black hole are
related to the energy E of the field theory on the brane, to its temperature T and
to its entropy S [18]. The relation makes use of a conversion factor determined by
the asymptotic behavior of dt/dτ = A−1/2 [37], which arises due to the different
time-coordinates on the brane and in the bulk. For the line element (3.34) it is
given by L/a. In the charged case, the black hole and field theory data are thus
related as in table 4.1 [37,38,40], where QA φ

A
h denotes the horizon value of (3.51).

The spatial volume of the brane is given by

V = a3 vol , (4.50)

with vol described in the text below (3.52). The energy density ρ of the radiation
is

ρ =
E

V
(4.51)
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and its pressure satisfies p = 1
3
ρ. As already explained in section 2.6.1 the energy

E of a CFT on a three-sphere is not a purely extensive quantity. It contains a
subextensive part called the Casimir energy defined by [36]

Ec = 3
(
E + p V − T S −QA Φ̂A

)
. (4.52)

Here we have defined Ec in terms of Φ̂A rather than ΦA. The Casimir energy (4.52)
denotes the violation of the thermodynamic Euler relation. The Euler relation for
a system based on the first law of thermodynamics dE = T dS − p dV + Φ̂A dQA

states that if the energy E(S, V,Q) is extensive, i.e. if it satisfies E(λS, λ V, λQ) =
λE(S, V,Q), then the energy takes the form E = T S − p V + QA Φ̂A. This
relation is derived by differentiating once with respect to λ, then setting λ = 1
and subsequently using the first law of thermodynamics.

The gravitational counterpart of the quantity Ee and of the Casimir energy
Ec is given in (4.47) and (4.43), respectively. Using table 4.1, we obtain

Ee =
L

a
Ẽe =

1

4π

(
2G4

vol

)1/3
Wh

L2/3

S4/3

a
,

Ec =
L

a
Ẽc =

3k

2π

(
vol

2G4

)1/3

L2/3 W̃h
S2/3

a
,

(4.53)

where we employed (4.16) to rewrite (3.52) in terms of G4. Observe that Wh and
W̃h do not have a simple scaling behavior under a → λ1/3 a , S → λS,Q → λQ.
Observe that, if the charges are absent, the superpotentials reduce to Wh = 3 and
W̃h = 1. In this case, the energies (4.53) become identical to (2.53) and (2.54),
if the radius of the three-sphere is set to a = L, that is, if the AdS time and the
CFT time coincide.

Then, it follows that the entropy relation (4.48) can be written as

kWh W̃h S
2 =

8π2a2

3
EcEe =

4π2a2

3
Ec

(
2E −QA Φ̂A − Ec

)
(4.54)

in terms of field theory data on the brane. This is of the type of the Cardy-Verlinde
formula [36] introduced in section 2.6.1. Observe that it reduces to (2.55), if the
charges are absent and the radius of the three-sphere is set to a = L.

In [36], it was proposed that the entropy S of a CFT with an AdS-dual de-
scription satisfies the bound S ≤ SB, where SB = 2

3
π aE denotes the Bekenstein

entropy [118]. To analyze whether this also holds for the expression (4.54) is not
straightforward due to the presence of the factor Wh W̃h, which satisfies the rela-
tion (4.49). For the specific STU models 3.4.3 and 3.4.4, however, it is possible to
check that the bound holds. For these models, we have 3W W̃ = 5+2H−1

1 +2H1 =
9 + 2q2/(r4H1) > 9, since H1 > 0. It follows that Wh W̃h > 3. From (3.64) and
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(3.65) we see that the quantity QA Φ̂A is positive. Therefore, it follows that
S < 2

3
π a
√
Ec (2E − Ec), which has a maximum at E = Ec for a given energy

E [36], and hence the bound S ≤ SB is satisfied for these two models.
Now, we write the Friedmann equation (4.29) in terms of field theory data

(cf. table 4.1). Introducing the charge density

ρA =
QA

V
(4.55)

we obtain

H2 = −k W W̃

3 a2
+

8π G4

9
W

(
ρ− 1

2
ρA ΦA

)
, (4.56)

where we used the relation (4.16) to express the Friedmann equation in terms of
four-dimensional quantities. Observe that for any model (3.5), W , W̃ and ΦA are
generically complicated functions of a. Defining

ρeff =
W

3
ρ− W

6
ρA ΦA + k

(3−W W̃ )

8π G4 a2
, (4.57)

yields the Friedmann equation in the usual form,

H2 = − k

a2
+

8π G4

3
ρeff . (4.58)

This is the form following from (4.15) with a suitably chosen Tmatter
µν . Due to the

presence of the charges, the effective energy density does not have a standard
uniform scaling behavior with a constant equation of state parameter w, for which
ρ ∝ a(τ)−3(1+w) [114]. This is different to, for instance, radiation scaling as a(τ)−4

or dust scaling as a(τ)−3. If we restrict ourselves to the STU model and set all
the three remaining charges equal (Maxwell case of 3.4.2), the effective energy
density on the brane reduces to that of stiff matter [38]. This term is used for
matter whose equation of state parameter equals w = 1. In the uncharged case,
we obtain ρeff = ρ showing a scaling behavior as radiation, ρeff ∝ a(τ)−4.

Next, we differentiate the Friedmann equation (4.56) with respect to proper
time τ to obtain

Ḣ =
dH

dτ
=k

W W̃

3 a2
− 4π G4W

3
(ρ+ p)− k

6 a

d

da

(
WW̃

)
+

4π G4 a

9

(
dW

da
ρ− 1

2

d

da

(
W ρA ΦA

))
,

(4.59)

where we used that
dρ

dτ
= −3H (ρ+ p) . (4.60)
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The equation for Ḣ can be written in the standard FRW form following from
(4.15),

Ḣ =
k

a2
− 4π G4 (ρeff + peff) , (4.61)

with ρeff given by (4.57) and with peff given by

peff =
W

3
p+

W

6
ρA ΦA +

k

24π G4 a2

(
a
d

da

(
WW̃

)
+WW̃ − 3

)
− a

9

(
dW

da
ρ− 1

2

d

da

(
W ρA ΦA

))
.

(4.62)

We see that similar to the expression for the effective energy density, the expression
for the effective pressure is very complicated due to the presence of different
charges. In addition, peff and ρeff are related by an equation of state, peff = wρeff ,
where w again turns out to be non-constant. This again shows that the matter
content considered here is not of any standard form as, for instance, radiation
with w = 1/3 or dust with w = 0. Restricting to the Maxwell case of the STU
model with all three charges set equal, peff and ρeff satisfy the equation of state
for stiff matter with w = 1. If all charges are set to zero, the effective pressure
reduces to peff = p which together with the corresponding effective energy density
satisfies the equation of state for radiation with w = 1/3.

Observe that Tmatter
µν is, in general, not traceless,

Tµ
µ matter = −ρeff + 3peff =

2

3
W ρA ΦA + k

(WW̃ − 3)

4π G4 a2
+

k

8π G4 a

d

da

(
WW̃

)
− a

3

(
dW

da
ρ− 1

2

d

da

(
W ρA ΦA

))
.

(4.63)

Since ρeff is not one of the known standard matter forms, we now check that
ρeff > 0 in the example considered before describing the motion of the brane in
the black hole background of section 3.4.3 with the parameters µ, q set to the
values µ = q = 1. We find that ρeff > 0 for r > 0, as shown in figure 4.4. The
behavior of the pressure peff for the same values of the parameters is displayed in
figure 4.5. It is positive throughout. We also find that outside of the horizon, the
trace of the energy-momentum tensor a4 Tµ

µ matter only vanishes asymptotically.
This is displayed in figure 4.6.



4.3 The brane perspective 73
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Ρeff

Figure 4.4: The effective energy density ρeff is displayed as a function of the radial
coordinate r for the solution of section 3.4.3 with µ = q = 1. ρeff is positive throughout
the r interval.

0.25
r

50

100
peff

Figure 4.5: The effective pressure peff is displayed as a function of the radial coordinate
r for the solution of section 3.4.3 with µ = q = 1. peff is positive throughout the r
interval.

4.3.2 Correspondence between the first FRW equation and
the entropy

The Friedmann equation (4.56), when written as

kW W̃

(
9V 2

4G2
4W

2
H2

)
=

4π2

3
a2

(
k

3V W̃

4π G4 a2

) (
2E −QA ΦA − k 3V W̃

4π G4 a2

)
,

(4.64)
has a structure that is similar to that of the Cardy-Verlinde-type formula (4.54).
Moreover, when the brane crosses the event horizon, both equations coincide.
Namely, at the horizon where f(rh) = 0, (4.22) yields

H2
h =

(
Wh

3L

)2

, (4.65)
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a4T
Μ

Μ matter

Figure 4.6: The rescaled trace of the energy-momentum tensor a4 Tµ matter
µ is displayed

as a function of the radial coordinate r for the solution of section 3.4.3 with µ = q = 1.
It vanishes only asymptotically.

which can be used to express the AdS radius L in terms of Hh and Wh [37].
Inserting this relation into the expression for the entropy (4.32) gives

S2 =
9V 2

h

4G2
4W

2
h

H2
h , (4.66)

where Vh denotes the volume (4.50) evaluated at the horizon, and where we used
the relation (4.16). On the other hand, at the horizon the Casimir energy Ec can
be written as

Ec,h = k
3Vh

4π G4

W̃h

a2
h

(4.67)

by virtue of (4.66). Inserting the expressions (4.66) and (4.67) into (4.64) then
yields the Cardy-Verlinde-type formula (4.54).

4.3.3 Correspondence between the second FRW equation
and the Casimir energy

Now, we rewrite the second FRW equation (4.59) in order to exhibit its similarity
with equation (4.52) for the Casimir energy Ec. Using (3.24) and (4.27) we obtain

W̃ =e−2U +
qA h

A

3 a2
,

W W̃ =3− qAX
A

a2
+
W

3

qA h
A

a2
,

(4.68)

while using (3.51) and (4.27) we get

d
(
ρA ΦA

)
da

= −6

a
ρA ΦA+

1

4π G4 a5

(
2k qA h

A − 6k
qAX

A

W

−
(
k − µ

a2
e2U
)

e−2U a qA
dXA

da

)
.

(4.69)
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Inserting (4.68) and (4.69) into (4.59) and rearranging the terms we find that the
second FRW equation (4.59) can be written as

k
3V W̃

4π G4 a2
=3

(
E + p V −QA ΦA

+
3V

4π G4W

(
1

9 a

(
k − µ

a2
e2U
)

e−4U W
dW

da
+ Ḣ

)) (4.70)

by virtue of the relation HA dX
A/da = 0, which holds due to (3.24) and the very

special geometry relation (3.8).
Now, let us consider the Casimir energy Ec. Following [37], we first relate

the brane temperature T to Ḣ. Using equation (3.30), the Hawking temperature
(4.31) can be written as

TH =
1

12π

[
df

da
e−4U W

]
h

. (4.71)

Then, taking the τ -derivative of (4.22) and using that at the horizon f(rh) = 0
as well as (4.65), we obtain for the temperature on the brane,

T = TH
L

a
=

ah
2π a

[
|H|
W

a
dW

da
− Ḣ

|H|

]
h

. (4.72)

Inserting the expressions (4.66), (4.67) and (4.72) into the defining relation (4.52)
yields the equation for the Casimir energy in the form

k
3Vh W̃h

4π G4 ah a
= 3

(
E + p V −QA Φ̂A +

3Vh ah
4π G4Wh a

[
−H

2

W
a
dW

da
+ Ḣ

]
h

)
.

(4.73)
Comparing (4.70) with (4.73) shows that both equations have a similar structure.
Moreover, they coincide at the event horizon of the black hole, since[

−H
2

W
a
dW

da

]
h

=

[
1

9 a

(
k − µ

a2
e2U
)

e−4U W
dW

da

]
h

, (4.74)

where we used (4.65) as well as f(rh) = 0.

4.4 Comments about the inclusion of higher-cur-

vature terms

It would be interesting to extend the analysis above to a modified five-dimensional
supergravity action including higher derivative curvature terms4. These terms are

4See also [129–133] for related discussions.
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naturally present in, for instance, the effective low-energy actions of superstring
theories. In the context of the AdS/CFT correspondence, these are viewed as
corrections in the large N expansion of the dual field theory. In general, it is very
difficult to find non-trivial exact analytical solutions of the Einstein equations
with higher derivative terms. An exact analytical solution is known for Einstein
gravity with a negative cosmological constant supplemented by a Gauss-Bonnet
term [134–136]. This combination consists of squares of the curvature scalar,
the Ricci tensor and the Riemann tensor. The associated coupling is not fixed,
but depends on a scalar field. The presence of higher curvature terms leads to
further subextensive contributions that modify the form of the Cardy-Verlinde-
type formula, the Casimir energy and the FRW equations. The Friedmann equa-
tion for a spherical brane moving in this black hole background has been derived
in [137–139]. The bulk action is given by

S =
1

16π G5

∫
d5x
√
−g
[
R− 2Λ + α

(
R2 − 4RMNRMN +RMNPQRMNPQ

)]
,

(4.75)
where Λ = −6/L2, which corresponds to setting W = 3 in (3.12). In the context
of string theory, α is proportional to the Regge slope parameter α′. The associated
black hole solution with a spherical horizon has the line element [134–136]5

ds2
5 = −fdt2 + f−1dr2 + r2 dΩ2

3 , f = 1 +
r2

4α

(
1−

√
1 + 8α

(
µ

r4
− 1

L2

))
,

(4.76)
where dΩ2

3 denotes the line element of a unit three-sphere. The horizon of the
black hole is located at f(rh) = 0, which yields

µ =
r4
h

L2
+ r2

h + 2α . (4.77)

The mass of the black hole is M = µ/w5. The Gauss-Bonnet corrected entropy
reads [135,140]

S =
4π

3w5

(
r3
h + 12α rh

)
, (4.78)

and the Hawking temperature TH is given by

TH =
1

4π
f ′(rh) =

1

2π rh

(
1 +

2

L2

r4
h − 2L2α

r2
h + 4α

)
. (4.79)

The relation (4.78) can be inverted to express the horizon radius rh in terms of
the entropy,

rh(s) =
−8α + 21/3

(
s+
√
s2 + 256α3

)2/3

22/3
(
s+
√
s2 + 256α3

)1/3
, (4.80)

5We use the notation of [139].
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where

s =
3w5

4π
S . (4.81)

Using (4.77) and (4.80) the mass M can be expressed as a power series in s. At
quadratic order in α, this gives

M =
1

w5

(
1

L2
s4/3 +

(
1− 16

α

L2

)
s2/3 − 6α

(
1− 16

α

L2

)
+ 16α2 s−2/3

)
, (4.82)

where the first term proportional to s4/3 is the only extensive contribution. In
addition, the Gauss-Bonnet term induces an infinite series of subextensive cor-
rections expressed in powers of α s−2/3. Thus, we see that in contrast to the
two-derivative case, it is not straightforward to read off the contribution of the
Casimir energy to the total energy, because of the infinite series of subextensive
contributions. The total energy seems to exhibit further subextensive corrections
which might or might not be caused by the Casimir effect. Therefore, it is not
clear whether the entropy of the field theory on the brane can still be written as
a Cardy-Verlinde-type formula, and thus as a product of the Casimir energy and
the extensive energy, in the presence of higher curvature terms. For this reason,
we leave the problem of finding a generalized Cardy-Verlinde-type formula for a
future project and restrict ourselves here to present the Gauss-Bonnet corrected
Friedmann equation.

As it was the case at the two-derivative level, the bulk action (4.75) needs to
be supplemented by both boundary terms [141] and counterterms. The latter are
given by [139]

− 1

8π G5

∫
Σ

d4x
√
−γ
(
c1 +

c2

2
R
)
, (4.83)

where

c1 =
1 + 8 α

L2 −
√

1− 8 α
L2

2
√
α
√

1−
√

1− 8 α
L2

, c2 =

√
α
(
3− 8 α

L2 − 3
√

1− 8 α
L2

)(
1−

√
1− 8 α

L2

)3/2
. (4.84)

Inspection of (4.83) shows that the five- and four-dimensional Newton constants
are related by

G5 = c2G4 . (4.85)

In the limit α→ 0, we recover both the counterterms in (4.2) and (4.16).
The equation of motion for the brane moving in the black hole background

(4.76) is expressed in terms of both the extrinsic curvature tensor KMN and the
Riemann tensor on the brane [139]. As in the two-derivative case (see equation
(4.14) and (4.15)), we separate the term proportional to the Einstein tensor on
the brane from the other terms. We take the induced metric on the brane to
have the form of a standard FRW metric (4.8) with scale factor a(τ) = r(τ) and
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Hubble parameter H = ṙ/r, where ṙ = dr/dτ . The resulting Friedmann equation
takes the form [137,138](

H2 +
f

r2

)(
3 + 8α

(
H2 +

1

r2

)
+ 4α

(1− f)

r2

)2

= c2
1 . (4.86)

It can be checked that there is no induced cosmological constant on the brane.
Indeed, dropping all the terms that involve powers of µ/r4 and of H2 + 1/r2 in
(4.86) yields a perfect cancellation of all the remaining terms.

At quadratic order in α, (4.86) yields

H2 = − 1

r2
+

(
1− 4

α

L2
+ 8

α2

L4

)
µ

r4
− 2α

(
1− 20

α

L2

) µ2

r8
+ 8α2 µ

3

r12
. (4.87)

The energy E on the brane is related to the mass M by a conversion factor which is
determined by the asymptotic behavior of dt/dτ = f−1/2 [37]. For the line element
(4.76) this yields the conversion factor L/r(1−α/L2− 5

2
α2/L4) at quadratic order

in α. Using this as well as (4.85), the Friedmann equation (4.87) can be expressed
in terms of the energy density ρ (4.51) on the brane,

H2 = − 1

r2
+

8π G4

3
ρ− 2α

(
1− 16

α

L2

) (8π G4

3
ρ

)2

+ 8α2

(
8π G4

3
ρ

)3

. (4.88)

Observe that the coefficient of the term linear in ρ does not receive α-corrections.
It would be interesting to show that the equation for the entropy on the brane,
expressed as a Cardy-Verlinde formula, and the equation for the Casimir energy
have a structure that is similar to (4.88) and its τ -derivative.

4.5 Summary and discussion

In this chapter, a four-dimensional brane universe moving in the background of
a five-dimensional AdS black hole of N = 2 supergravity was investigated in
the light of the AdS/CFT correspondence. In contrast to the original AdS/CFT
prescription, the AdS space is cut off by a 3-brane which here accommodates
the dual field theory. Since this introduces a UV cut-off in the field theory, the
conformal symmetry is broken yielding an exotic type of matter on the brane. It
was shown that the induced metric on the brane can take the standard FRW form,
where the time-coordinate differs from the AdS time by a factor of lima→∞ dt/dτ =
L/a, and the radius of the spatial S3 is given by the cosmic scale factor a(τ). The
motion in the five-dimensional background turned out to be governed by the FRW
equations for a closed universe whose matter content is represented by the exotic
field theory on the brane. The evolution of the brane universe can be imagined
as follows. Starting out in the center of the black hole, the brane first expands
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until it reaches a maximal radius after which it recontracts and falls through
the horizon. The effective energy density took a complicated form, expressed in
N = 2 supergravity quantities, which is therefore not of the standard form. After
reducing the number of electric charges to three and setting all equal (Maxwell
case), the effective energy density became that of stiff matter, whereas in the case
where all charges vanish (Schwarzschild case) the effective energy density reduced
to that of radiation.

Due to the differing time-coordinates, the energy and temperature in the bulk
and on the brane are related by a conversion factor L/a which makes these quanti-
ties dependent on the size of the universe. The entropy, however, is independent of
such a conversion factor and thus remains constant during the cosmological evolu-
tion. In addition, it respects the Bekenstein bound which was conjectured to hold
for CFTs with a gravity dual. The energy of the brane field theory exhibits two
different contributions. The one proportional to the superpotential W is called
the extensive energy in analogy to the uncharged case. Similarly, the contribution
proportional to W̃ is called the Casimir energy. Making use of this splitting, the
entropy was shown to take a form that is similar to the Cardy-Verlinde formula
for CFTs. The departure compared to the original Cardy-Verlinde formula [36]
consists in the presence of the non-constant superpotentials W and W̃ .

However, the main result of this chapter is the miraculous merging of the first
FRW equation and the Cardy-Verlinde-type formula as well as that of the second
FRW equation and the equation for the Casimir energy of the field theory at
the horizon of the black hole. How this arises can be seen as follows. First, the
right hand side of the first FRW equation written in the form (4.64) is already
similar to the right hand side of the Cardy-Verlinde formula. The left hand side is
actually proportional to the Hubble entropy SH = (V H)/(2G4) [142] for a closed
universe which was defined in the context of the pre-Big-Bang scenario [143]. Here
V = VHnH and VH denotes the volume of a causally connected Hubble region and
nH is the number of Hubble regions in the universe. The Hubble entropy thus
establishes the connection between entropy and Hubble parameter. At the horizon
of the five-dimensional black hole, where V = Vh, with Vh being the area of the
black hole horizon, the Hubble entropy of the brane universe becomes equal to the
Bekenstein-Hawking entropy of the five-dimensional black hole which is, according
to the AdS/CFT correspondence, simultaneously the entropy of the brane field
theory. Second, the connection between the equation for the Casimir energy (4.52)
and the second FRW equation is essentially established through the Hawking
temperature which can be expressed in terms of the Hubble parameter and its
time derivative. It was suggested in [36] that this merging exists independently of
the kind of matter contained in the brane universe. Our analysis further supports
this idea.

In the last section, an outlook was given on how to possibly extend the analysis
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of this chapter to a higher-derivative curvature bulk gravity. For this purpose, a
Gauss-Bonnet term consisting of curvature squares was added to the action. For
simplicity, all charges were set to zero and the first FRW equation expressed in
brane quantities was computed. However, a higher-derivative curvature general-
ization of the Cardy-Verlinde-type formula could not be found, since the total
energy this time contained an infinite series of subextensive corrections which
could not be simply grouped in an extensive and a Casimir part. Therefore, it
is not clear whether the entropy can still be written at all as being proportional
to the product of a Casimir energy part and an extensive energy part. For this
reason, we leave the problem of finding a generalized Cardy-Verlinde-type formula
for a field theory dual to Gauss-Bonnet gravity for future investigations.



Chapter 5

Fluid dynamics on the
three-sphere from gravity

In this chapter, we deal with another application of the AdS/CFT correspondence
which is the fluid/gravity correspondence. This correspondence is used to compute
subextensive corrections, which are proportional to the shear tensor, to the energy-
momentum tensor of fluids on three-spheres. The dual configurations we consider
are charged black hole solutions of N = 2 gauged supergravity theories in five
dimensions.

The chapter is organized as follows. In section 5.2, we explain the fluid/gravity
correspondence and how it emerges from the AdS/CFT correspondence. Section
5.3 reviews relevant background material about relativistic fluid dynamics, and
an a-priori argument is presented how the ratio η/s might be corrected due to
the finite size and the curvature of the three-sphere accommodating the fluid. In
section 5.4, the fluid/gravity correspondence is used to construct different five-
dimensional deformed AdS black hole solutions which are dual to incompress-
ible viscous conformal fluids on the three-sphere. These are the deformed AdS-
Schwarzschild black hole and three special cases of the deformed AdS-STU black
hole of N = 2 supergravity, namely with three equal charges (Maxwell), with two
equal charges and with one non-zero charge. For all these black hole solutions,
the energy-momentum tensor of the dual fluid is computed and corrections to
η/s are obtained. Section 5.6 contains a summary and conclusions. For the sake
of comparison with the deformed solutions in section 5.4, various known rotat-
ing solutions of the STU model are summarized in appendix B.1, B.2 and B.3.
Appendix C contains an example calculation of the boundary energy-momentum
tensor for one of the black hole solutions of the STU model.

This chapter is based on work which was done by the author of this thesis in
collaboration with Gabriel Lopes Cardoso and Gianguido Dall’Agata, and which
was published in [2].
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5.1 Introduction

The fluid/gravity correspondence [144–146]1 arises by taking a specific limit of the
AdS/CFT correspondence in which the dynamics of the boundary conformal field
theory simplifies to effective classical conformal fluid dynamics2. This hydrody-
namic limit consists in focussing on near-equilibrium dynamics and restricting to
long-wavelength fluctuations. On the bulk side, this requires to consider dynami-
cal black hole solutions which must be regular in order to meet the requirements
for the fluid dynamical stress tensor. Thus, the fluid/gravity correspondence con-
stitutes a concrete relation between the physics of fluids and that of gravity.

Exploring the fluid/gravity correspondence is of important significance for the-
oretical as well as experimental physics. First, fluid dynamics provides many in-
teresting and yet unmanageable long-term challenges as for instance the search
for globally regular solutions to the Navier-Stokes equations for non-relativistic
incompressible viscous fluids, or a detailed understanding of turbulence in fluid
dynamical evolution. A holographic mapping of the fluid dynamical system to
classical gravitational dynamics opens a new perspective on these issues [44–46].

Second, the fluid/gravity correspondence provides a new way to understand the
physics of black holes, namely in terms of fluid dynamics. The idea of modeling
black holes by fluids living on a lower-dimensional brane was developed even
before in the works on the membrane paradigm [147]. In this description any
black hole has a fictitious fluid living on its horizon, whose dynamics constitutes
an analogy to qualitatively understand the physics of the black hole. In contrast
to this, the fluid/gravity correspondence is a true duality between fluid dynamics
and gravitational dynamics. It provides an algorithm to systematically construct
regular black hole solutions whenever a solution to the fluid equations of motion is
given. Thus every fluid flow in the boundary field theory is mapped to a black hole
solution in the bulk with a regular event horizon. This enables us to understand
the phase structure and the stability of the black hole solutions in terms of the
fluid model.

Third, the fluid/gravity correspondence makes contact with real world physics.
In particular, it proves to be useful in describing the dynamics of the QGP which
is a state of matter consisting of quarks and gluons and which is believed to have
existed shortly (≈ 10−33 s) after the Big Bang. Nowadays, it can be produced at
heavy-ion colliders and has been studied, for instance, at the Relativistic Heavy
Ion Collider (RHIC) in Brookhaven. There, QGP was created at a temperature
between 200 and 300 MeV which is just above the confinement-deconfinement tem-
perature Tc = 170 MeV. However, although the quarks and gluons are deconfined,
experimental data reveals that the QGP is still strongly coupled. Furthermore,

1For an introduction on this topic see [42,43].
2The hydrodynamic limit is a feature of quantum field theories in general, not only of con-

formal field theories.
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the data suggests that it behaves like an almost perfect fluid. Soon, the QGP
will be more intensely studied at the Large Hadron Collider (LHC) at CERN at
a temperature of about 5Tc [47].

The hydrodynamic regime is characterized by a set of transport coefficients
which can be determined either by measurements or by computations on the ba-
sis of a microscopic theory. For a strongly-coupled fluid these coefficients cannot
be computed using conventional techniques such as perturbation theory or Lattice
QCD. However, the AdS/CFT correspondence provides a theoretical framework
to understand the qualitative features of the hydrodynamics seen in the QGP
by providing information about the hydrodynamics of strongly-coupled super-
conformal theories. In fact, QCD and large N superconformal field theories are
qualitatively different, since QCD is an SU(3) gauge theory, not supersymmetric,
not conformal and has confinement. However, it is expected that these differ-
ences become less crucial for high enough temperatures T & Tc, such that large
N superconformal fluids can serve as toy-models for the QGP. An example for a
qualitative feature which seems to be universal for all strongly-coupled fluids is
the behavior of the shear viscosity. The shear viscosity is defined as a measure
for the dissipation of momentum in a fluid transverse to the velocity flow. In [48],
it was conjectured that for conformal fluids in the limit of an infinite number of
colors N and infinite ’t Hooft coupling λ, and which are dual to black branes, the
ratio of shear viscosity to entropy density is always given by [48]

η

s
=

~
4πkB

. (5.1)

where ~/(4πkB) ≈ 0.06 × 10−11 K s. Furthermore, it was argued that (5.1) con-
stitutes a lower bound on the viscosity of fluids in general implying that a fluid
cannot be arbitrarily close to being a perfect fluid. Thus, for any fluid holds

η

s
≥ ~

4πkB
. (5.2)

This is far below the value for any laboratory liquid. In units where ~ = kB = 1
(5.1) becomes η/s = 1/(4π) ≈ 0.08, whereas at a temperature T = 20◦C water
has η/s ≈ 30.01 [148]. In figure 5.1 [48], the ratio η/s is depicted in units of
~/(4π), where kB = 1, for three different real liquids at different pressures, helium
at 0.1 MPa, nitrogen at 10 MPa and water at 100 MPa. The ratio η/s is always
substantially larger than the value (5.1) which is represented by the red horizontal
line. First calculations based on RHIC data show that the lowest value for η/s
for the QGP also respects (5.2) and is with η/s ≈ 0.1, in units where ~ = kB = 1,
quite close to 1/(4π) ≈ 0.08 [10,49]. The bound (5.2) was probed and proved true
for different charged and uncharged conformal fluids [144–146,149–159].

The bound (5.2) was derived on the basis of certain conditions, namely that
λ and N are infinite, the fluctuations of the hydrodynamic variables as well as
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Figure 5.1: The ratio 4πη/(~s) versus the temperature for helium, nitrogen and water,
each at a different pressure, is shown. The ratio is always larger than its value in theories
with gravity duals represented by the red horizontal line. (figure taken from [48])

the background curvature are of long wavelength and the volume accommodating
the fluid is of infinite size. Relaxing these conditions might lead to deviations
from the bound (5.2). For instance, the first correction in the case of finite λ was
computed in [50,51]. This correction is positive and thus in accordance with (5.2).
Finite N corrections at infinite λ were first considered in [160]. Those came out
negative indicating that away from the N → ∞ limit, (5.2) can be violated. In
addition to that, including background curvature and finite-size effects might also
lead to deviations from (5.2). For instance, curvature effects on η/s for fluids on
hyperbolic spaces were discussed in [52].

The intention of the research presented in this chapter is to investigate the
ratio η/s for the N = 4 super Yang-Mills plasma3 at infinite N and infinite λ,
and including background curvature as well as finite-size effects by assuming the
fluid to propagate on a three-sphere. We consider both effects, finite size and
curvature, simultaneously, since our method is not able to distinct between the
two effects. The three-sphere constitutes the asymptotic boundary of a spherical
AdS black hole. For that purpose, we use the fluid/gravity correspondence as a
tool to find new solutions to the fluid-dynamical equations on the three-sphere by
constructing dual black hole solutions with spherical horizons.

3With N = 4 super Yang-Mills plasma, we mean the hydrodynamic effective description of
N = 4 super Yang-Mills theory.
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5.2 The nature of the fluid/gravity correspon-

dence

The conformal fluid/gravity correspondence relates the hydrodynamic regime of
strongly-coupled four-dimensional conformal field theories to regular black brane
solutions in asymptotically AdS5 backgrounds. In the hydrodynamic regime, any
quantum field theory can be effectively described by fluid dynamics. The hydro-
dynamic regime is characterized by certain conditions. The system under study
is assumed to be in local thermal equilibrium at each point in space, even though
the energy and the charge density may vary over large distances. This means that
the length scales on which the thermodynamic variables and the curvature of the
manifold vary are large compared to the equilibration length scale, or in other
words the mean free path lmfp, of the fluid.

On the gravity side, these conditions are met whenever the horizon rh of the
dual black hole is large compared to the AdS radius L [161]. This includes for
instance all non-extremal black holes whose temperature is large compared to
unity. It is then possible to expand the formulae of black hole mechanics in a power
series in L/rh ∼ lmfp. The leading order term of this expansion is mapped under
the AdS/CFT correspondence to the results of fluid dynamics. At subleading
orders, deviations from the predictions of classical fluid dynamics can appear.
Thus, black hole solutions in AdS provide exact near-equilibrium solutions to the
equations of fluid dynamics to all orders in lmfp. In addition, the study of higher-
order corrections of these solutions away from the limit lmfp � 1 might yield useful
information about the nature of the fluid dynamical approximation of quantum
field theories.

In practice, the expansion in the parameter L/rh is implemented as an expan-
sion in field theory derivatives of the fluid velocity and thermodynamic variables.
The energy-momentum tensor of the fluid is then likewise expanded in powers
of derivatives. In [144, 161–163] a formalism was developed to systematically
construct AdS black hole solutions in a derivative expansion. According to the
dictionary of the AdS/CFT correspondence, those black hole solutions are then
mapped to the derivative expansion of the fluid’s energy momentum tensor. This
simultaneously determines all possible transport coefficients at each order in the
gradient expansion which can be simply read off from the expansion of the energy-
momentum tensor. This black hole approach to the hydrodynamics of strongly-
coupled field theories was also generalized to charged black holes [156, 157] and
to black holes in arbitrary dimensions [164, 165]. In all these cases, the energy-
momentum tensor for an arbitrary fluid flow was computed up to second order in
derivatives. At this subleading order, novel terms appear which are linearly inde-
pendent of the first-order terms. These terms are accompanied by novel transport
coefficients which are not necessarily known in classical hydrodynamics. In prin-



86 5. Fluid dynamics on the three-sphere from gravity

ciple, the whole construction can be extended to arbitrary orders in the derivative
expansion albeit, in general, with increasing computational complexity. Besides
obtaining new transport coefficients, the coefficients of lower orders might receive
corrections at higher orders. At second order, this is not the case and thus, in
particular, the ratio η/s is still given by (5.1). However, in general it is conceivable
that the shear viscosity and consequently η/s receives corrections.

In section 5.4, we use the black hole approach to construct four different black
hole solutions, namely the deformed AdS-Schwarzschild black hole and three de-
formed differently charged AdS-STU black holes. By mapping each of these black
hole solutions to the energy-momentum tensor of the corresponding fluid higher-
order terms appear in the gradient expansion. Actually, the shear viscosity turns
out to receive contributions from a third-order term which leads to a correction
of the ratio η/s.

This black hole approach is not the first technique for the computation of hy-
drodynamic transport coefficients by means of the fluid/gravity correspondence.
The first calculation of this kind was the computation of the shear viscosity of a
super Yang-Mills fluid dual to a near-extremal black three-brane solution [145].
There, the shear viscosity was related to the absorption cross section of low-
energy gravitons by the near-extremal black three-brane. In general, hydrody-
namic transport coefficients can be expressed in terms of correlation functions of
the corresponding currents through Kubo relations. In [146, 166], a recipe was
formulated to compute Minkowski-space correlation functions from gravity which
are then used in the Kubo relations. This technique also works beyond the first
order in derivatives, but only for linear fluctuations, and is therefore less general
compared to the black hole approach. In [167], non-linear hydrodynamics was
considered in the context of the Bjorken boost-invariant flow [168]. The results
of [167] are in agreement with those found in [144], wherein the authors made
use of the black hole approach. However, the black hole approach again is more
general in this respect since the computations can be done for an arbitrary fluid
flow.

5.3 Elements of relativistic fluid dynamics

In this section, a few selected facts about fluid dynamics are reviewed which are
relevant for the considerations here. For a comprehensive introduction to the
subject, see [169,170].

In contrast to the dynamics of point particles which is described by field theo-
ries, fluid dynamics as an effective theory describes the motion of fluid elements.
A fluid element is an infinitesimal volume element in the fluid which still contains
sufficiently many fluid particles such as molecules or atoms. In this sense, fluid
dynamics governs the collective motion of several fluid particles. The state of a
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fluid is completely characterized by the velocity field uµ = γ (1, ~v(t, x, y, z)) as
well as two thermodynamic quantities, for instance the pressure p(t, x, y, z) and
the energy density ρ(t, x, y, z). The factor γ normalizes the velocity four-vector
such that gµνuµuν = −1, where gµν denotes the metric of the space in which the
fluid propagates. In classical fluid dynamics, gµν = ηµν is the Minkowski metric,
whereas in general gµν can be arbitrary.

The equations of fluid dynamics are the equations of local conservation of
the energy-momentum tensor T µν , the charge currents Jµi as well as the entropy
current Jµs

∇µT
µν =0 , (5.3)

∇µJ
µ
i,s =0 , (5.4)

supplemented by thermodynamic constitutive relations that express these currents
in terms of the fluid dynamical variables. For an arbitrary metric, ∇ denotes
the spacetime covariant derivative. In the following, we focus on the energy-
momentum tensor and its conservation equation (5.3).

5.3.1 The energy-momentum tensor

As was explained in section 5.2, the equations of fluid dynamics can be expanded
in a derivative expansion. The energy-momentum tensor to zeroth order in deriva-
tives corresponds to the ideal fluid part

T µνideal = ρ uµuν + pP µν , (5.5)

where ρ is the total energy density, p is the pressure and P µν = gµν + uµuν

is the projection tensor which projects four-vectors onto the three-dimensional
submanifold orthogonal to uµ.

The ideal fluid approximation neglects energy dissipative effects such as fric-
tion among fluid elements, heat conduction and charge diffusion. Including inner
friction leads to viscous fluids whose energy-momentum tensor is (5.5) plus the
viscous part

T µνvisc = −ζ ϑP µν − 2η σµν . (5.6)

The viscous part is first order in the derivative expansion, since the shear tensor
σµν and the quantity ϑ are both proportional to first derivatives of the velocity
[144,162,165],

σµν =
1

2

(
P µλ∇λu

ν + P νλ∇λu
µ
)
− 1

3
ϑP µν , (5.7)

ϑ = ∇µu
µ . (5.8)

The transport coefficients ζ and η are called bulk and shear viscosity, respectively,
and are generally considered to be constants. The bulk viscosity of a fluid measures
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the inner friction during volume changes, whereas the shear viscosity is a measure
for momentum dissipation transverse to the fluid flow.

For an incompressible fluid, ϑ is zero and the first term in (5.6) as well as the
last term in (5.7) vanishes.

Transport coefficients of strongly-coupled fluids can be determined either by
measurements or by microscopic computations by means of the fluid/gravity cor-
respondence as was explained in section 5.2.

5.3.2 Conformal fluids

A conformal field theory in the hydrodynamic regime is often referred to as
conformal fluid. Conformal invariance further restricts the form of the energy-
momentum tensor. Since, for a conformal fluid, the trace of the energy-momentum
tensor vanishes4, the pressure and the energy density are related as ρ = 3p and
the bulk viscosity ζ is zero.

5.3.3 A first glance on finite-size effects

Before constructing the black hole solution dual to a fluid on a three-sphere and
computing its energy-momentum tensor, we present an a-priori argument whether
and how the finite volume of the three-sphere might effect the ratio η/s.

The ratio η/s can be computed using the definition of the momentum diffusion
constant

D =
η

ρ+ p
, (5.10)

which can be read off from the linearized hydrodynamic equations as follows.
Consider an incompressible conformal fluid in thermal equilibrium such that the
energy-momentum tensor is constant. Now, let the velocity vector fluctuate
slightly transversally to the flow direction and in time. For a small fluctuation we
can expand the hydrodynamic equations to linear order,

∇tT
tj +∇iT

ij = 0 . (5.11)

The constitutive equation

T ij = −η
(
∇iuj +∇jui

)
= − η

ρ+ p

(
∇iT tj +∇jT ti

)
, i 6= j (5.12)

4In general, in curved space the scaling symmetry of N = 4 super Yang-Mills theory is broken
due to the Weyl anomaly of the energy-momentum tensor. In four dimensions, the trace of the
energy-momentum tensor is given by [77,123]

Tµµ = − L3

8πG4

(
−1

8
RµνRµν +

1
24
R2

)
. (5.9)

On the three-sphere, the right hand side is zero such that Tµν is traceless.



5.3 Elements of relativistic fluid dynamics 89

expresses the spatial components T ij of the energy-momentum tensor through the
momentum density T tj. Inserting (5.12) in (5.11) yields a diffusion equation for
the momentum density T tj,

∂tT
tj −D~∇2T tj = 0 , (5.13)

with the momentum diffusion constant D = η/(ρ+ p).
In [146], the momentum diffusion constant was computed for the N = 4 super

Yang-Mills plasma in the limit of an infinite number of colors N and infinite ’t
Hooft coupling λ dual to an uncharged black brane solution. Using two-point
correlation functions of the energy-momentum tensor, the diffusion constant was
determined in terms of the temperature as

D =
1

4πT0

, (5.14)

where T0 = rh
πL2 . The computation of (5.14) is only valid up to first order in the

gradient expansion and (5.14) might receive corrections at higher orders. Such
corrections have not yet been considered. For this reason, we assume for now the
first-order value (5.14) to be valid at all orders and keep this issue in mind when
considering the sphere case.

Expressing (5.14) in terms of the entropy density s = 4π r3
h as

D = π1/3/(42/3s1/3) , (5.15)

it follows from (5.10) that
η

s
=
π1/3

42/3

ρ+ p

s4/3
. (5.16)

Note that we use units where L = 16πG5 = 1. For a conformal fluid in flat
space, (5.16) equals η/s = 1/(4π), since for the total energy density we have
ρ = 3 p = 3 s4/3/(4π)4/3. Thus, the fluid in question satisfies the bound (5.2).

In contrast to fluids in flat space, the energy of a fluid on a three-sphere is not a
purely extensive quantity [36,37]. It contains additional subextensive parts as for
instance the Casimir energy Ec introduced in section 2.6.2 which is proportional
to the curvature of the three-sphere. Remember that this energy was defined as
the violation of the thermodynamic Euler relation such that

1

3
Ec =

4

3
M − TH S −Qφ . (5.17)

We may ask whether this non-extensivity results in a correction of the coefficient η
in front of the shear tensor and hence in a deviation from the value η/s = 1/(4π).
For instance, consider the conformal fluid dual to an AdS-Schwarzschild black
hole. Its total energy density reads [1]

ρ = ρe +
1

2
ρc = 3

( s

4π

)4/3

+ 3k
( s

4π

)2/3

, (5.18)
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where k is the inverse radius of the three-sphere. Here ρe ∝ s4/3 denotes the
extensive part and ρc ∝ s2/3 denotes the subextensive part proportional to k of
the total energy density. Taking the flat-space relation (5.16) at face value then
suggests that

η

s
=

1

4π

(
1 +

1

2

ρc

ρe

)
(5.19)

=
1

4π

(
1 +

k

a2
h

)
, (5.20)

where we used that a2
h = (s/4π)2/3. Thus the ratio η/s receives a correction

proportional to the normalized curvature k of the three-sphere. This reflects the
indistinguishability between finite size and curvature effects. While we can argue
that the correction in (5.20) appears due to a Casimir contribution Ec in the
energy of the fluid, which is a true finite-size effect, in (5.20) it appears to be a
curvature effect, since k is proportional to the curvature scalar of the three-sphere.

In section 5.5, we use the black hole approach described in section 5.2 to
compute corrections to η/s and to probe (5.20) as well as its universality. It is
shown that (5.20) indeed holds for conformal fluids dual to AdS-Schwarzschild
black holes as well as for charged fluids dual to AdS-STU black holes with three
equal charges. Furthermore, we look at charged fluids dual to the AdS-STU black
hole with two equal charges and with one non-zero charge.

5.4 The boosted black hole solution in N = 2

supergravity

In this section, we construct static black hole solutions with spherical horizons of
N = 2 supergravity in AdS5. These black holes are dual to fluids near equilibrium
living on the four-dimensional boundary of global AdS5 which is a three-sphere.

We search for black hole solutions to the Einstein equations of motion (3.14).
As explained in chapter 3, one class of solutions are the electrically charged static
black hole solutions (3.34) with dΣ2

k = dΩ2
3,

ds2 = GMN dx
MdxN

= −e−4U(r) p(r) dt2 + e2U(r) p−1(r) dr2 + e2U(r) r2 dΩ2
3 ,

(5.21)

where

p(r) = k − µ

r2
+

e6U r2

L2
, k > 0 . (5.22)

The line element dΩ2
3 of the three-sphere can be written as

dΩ2
3 = gij dx

idxj = k−1
(
dθ2 + sin2 θ dφ2 + cos2 θ dψ2

)
, (5.23)
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with 0 ≤ θ ≤ π/2 , 0 ≤ φ < 2π , 0 ≤ ψ < 2π. The curvature tensor of the
three-sphere is Rij = 2 k gij, and the associated curvature scalar is R = 6 k.
These black hole solutions are supported by scalar fields XA(r) which satisfy the
relation (3.24). A definition of the various quantities of N = 2 supergravity can
be found in chapter 3.

The solution (5.21) is written in Schwarzschild-type coordinates which is not a
proper coordinate system for a dual description of fluid dynamics. The reason for
that is that Schwarzschild coordinates are not regular everywhere away from the
curvature singularity at r = 0, since there is a coordinate singularity at the horizon
at r = rh where p−1(rh) =∞. Regularity of the black hole solution is necessary to
obtain a fluid dynamical energy-momentum tensor [42] which belongs to a special
class of conserved energy-momentum tensors. For instance, the energy-momentum
tensor of an uncharged fluid in four dimensions has four degrees of freedom, the
velocity and the temperature, and hence is completely determined by the four
fluid dynamical equations of motion (5.3). In contrast, the singular solution (5.21)
would lead to a general traceless, symmetric energy-momentum tensor with nine
degrees of freedom resulting in an underdetermined system of fluid dynamical
equations. This is successfully circumvented by the regular boosted black hole
solution whose field theory degrees of freedom match those of the fluid energy-
momentum tensor. In order to construct the boosted black hole solution we have
to transform (5.21) to Eddington-Finkelstein coordinates.

Inspection of the line element (5.21) shows that the radius of the three-sphere
is eU r in units of 1/

√
k. It is thus convenient to introduce a new radial coordinate

a = eU r. We also introduce the function

f = e−4U p

a2
=

1

L2
+ e−4U k

a2
− e−2U µ

a4
. (5.24)

Then, using the flow equation (3.30) involving the superpotential W defined in
(3.11), the line element takes the form

ds2 = −a2 f(a) dt2 + 9
(
a2 f(a)W 2(a)

)−1
da2 + a2 dΩ2

3 . (5.25)

Next, we introduce Eddington-Finkelstein type coordinates by

v = t+ g(a) ,
dg

da
=

3

W (a) a2 f(a)
, (5.26)

so that the line element (5.25) becomes

ds2 = −a2 f(a) dv2 +
6

W (a)
dv da+ a2 dΩ2

3 . (5.27)

Following [144, 161], we define boundary coordinates xµ = (v, θ, φ, ψ) and
we introduce the associated four-dimensional metric gµν = (gvv, gij) = (−1, gij),
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which is kept fixed throughout. Then, the static black hole metric (5.27) can be
written as

ds2 = −a2 f(a)uµ uν dx
µ dxν − 6

W (a)
uµ dx

µ da+ a2 Pµν dx
µ dxν , (5.28)

where here uµ denotes the four-vector uµ = (−1, 0, 0, 0) and where

Pµν = gµν + uµ uν . (5.29)

The line element (5.28) is the boosted black hole solution of N = 2 supergravity
which is regular throughout the r interval except for the black hole singularity at
r = 0 and can thus be mapped to solutions of fluid dynamics. The four-vector uµ
denotes the velocity vector of the dual fluid. Indices of boundary tensor quantities
are lowered or raised using the boundary metric gµν and its inverse gµν , such as,
for instance, uµ = gµν uν .

In the following, we set L = 1 for convenience. Following [162, 165], we in-
troduce the Schouten tensor Sµν = 1

2

(
Rµν − 1

6
Rgµν

)
. Here Rµν and R are the

four-dimensional Ricci tensor and Ricci scalar computed from the metric gµν .
Then, the line element (5.28) can also be expressed as

ds2 = − 6

W (a)
uµ dx

µ da+
[
a2 gµν + e−4U u(µ Sν)λ u

λ + e−2U µ

a2
uµ uν

]
dxµ dxν ,

(5.30)
where a(µ bν) = aµ bν + aν bµ. Observe that (5.30) is invariant under the global
rescaling [162,165]

a→ e−χ a , gµν → e2χ gµν , uµ → eχ uµ ,

eU → eU , µ→ e−4χ µ , (5.31)

which also implies the rescaling

W → W , qA → e−2χ qA , k → e−2χ k ,

w5M → e−4χw5M , QA → e−3χQA . (5.32)

For later convenience, we note that the scaling symmetry can be used to rescale
the radial coordinate as a/ah = ρ.

5.5 Deformed black hole solution

In the following, the static solutions described in the previous section is deformed
by a slowly varying velocity field uµ(x) of the form

uµ = (1, ε βθ(x), ε βφ(x), ε βψ(x)) . (5.33)
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Here, the deformation β is multiplied with a small parameter ε. Thus, the defor-
mation βi is taken to be small in amplitude. We work at linear order in ε. At this
order, uµ satisfies the normalization condition uµ uµ = −1.

In addition, and following [144], a counting parameter δ is introduced by per-
forming the rescaling xµ → δ xµ, so that an expansion in powers of δ counts
covariant derivatives. For instance, the curvature tensor Rij of the three-sphere,
which is referred to as the background curvature tensor in the following, then
comes multiplied by a factor δ2.

The boundary energy-momentum tensor Tµν of the deformed solutions contains
a term proportional to the shear tensor σµν , with a coefficient denoted by η. We
are interested in computing corrections to the ratio η/s due to the background
curvature scalar R = 6k. These corrections, if present, give rise to deviations
from the value 4π η/s = 1, which are written as 4π η/s − 1 =

∑
p≥1 α2p δ

2p. To
compute these corrections, the perturbations of the black hole metric are organized
in powers of ε and δ. In this work, we are only interested in the first subleading
correction α2 δ

2. It corresponds to a term of the type k σµν , and hence of order ε δ3,
in the boundary energy-momentum tensor Tµν . Thus, only terms in the perturbed
line element are kept that are at most of order ε δ3.

First, the Schwarzschild case is considered which corresponds to setting W = 3
and eU = 1 in (5.30). The static Schwarzschild line element contains a term
proportional to the background curvature scalar R = 6k. Thus, it contains a
term of order ε0 δ2. The deformed Schwarzschild solution, on the other hand,
contains terms that are of order ε and higher. Its line element has been worked
out in [164, 165] at order δ2, and there are only two perturbations that are also
of order ε, namely the shear tensor σµν and the perturbation proportional to
uµRνλ u

λ. The latter contains the term utRij u
j, which is of order ε δ2. At order

δ3, new perturbations have to be added to the line element. Out of these, only
perturbations that are proportional to the shear tensor σµν can contribute to η.
At order ε δ3 there is only one such term, namely Rσµν , which for constant R
can be absorbed into the term proportional to σµν at order δ. Thus, up to order
ε δ3, the metric perturbations may be restricted to those involving σµν and to
one particular perturbation of order δ2 associated with the background curvature,
namely uµRνλ u

λ.

Next, deformed charged black hole solutions are discussed. In this case there
are new perturbations present at each order in δ. For instance, the case of the
electrically charged Maxwell black hole corresponds to setting W = 3 and e6U =
H1H2H3 = H in (5.30) where HA is the harmonic function defined in (3.33). The
new perturbations in the Maxwell case were computed up to order δ2 in [156,157].
Rather than taking all of these new terms into account, we follow the same strategy
as in the Schwarzschild case. Namely, we start with the deformed solution at order
δ and add one particular perturbation of order δ2 to its line element, namely the
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one proportional to uµRνλ u
λ.

Now that we have clarified the ingredients we need, we make a solution ansatz
using these and solve the associated equations of motion up to first order in ε.
However, the equations of motion are not expanded in field theory derivatives.
In other words, the solution we thus construct at order ε is an exact solution
containing all field theory derivatives. It is determined in terms of a specific
velocity field that is slowly varying in a certain coordinate range. Computing
the associated boundary energy-momentum tensor, we find a correction to η/s
proportional to the background curvature k. The addition of further deformations
to the line element presumably results in a modified solution that contributes
additional terms to η/s. If present, these new contributions should be qualitatively
different from the one we compute here.

The ratio η/s should not receive corrections in ε, since that would make it
depend on the amplitude ε of the velocity field. Indeed, using the results of [165],
we have checked that for the Schwarzschild black hole, the second order metric
perturbations that are of order ε2 δ2 do not contribute to η.

The solutions constructed at order ε are based on the specific velocity field

uµ = (1, 0, ε βφ(θ), ε βψ(θ)) , (5.34)

which is a justified ansatz for a viscous (ui(xj)) 6= 0), incompressible (θ = 0) and
slightly fluctuating (order ε) fluid. As a consequence of linearity in velocities, the
Weyl connection5

Aµ = uν ∇νuµ −
1

3
(∇νu

ν)uµ (5.35)

introduced in [162] vanishes. The second term in (5.35), which is proportional to ϑ
introduced in (5.8), is absent for an incompressible fluid. In addition, we demand
that the mass and the charges of the black hole solution are kept constant at order
ε δ2.

In the following four subsections, the case of the deformed Schwarzschild black
hole is discussed, followed by three deformed special STU black holes of N = 2
gauged supergravity which were defined in 3.4.2, 3.4.3 and 3.4.4.

5.5.1 Deformed Schwarzschild black hole

The construction of a black hole solution dual to a conformal fluid starts from a
stationary black hole solution in Eddington-Finkelstein coordinates, which then
gets deformed by a slowly varying velocity field [144]. Let us consider the static
Schwarzschild solution in Eddington-Finkelstein coordinates which, according to
(5.30), is given by

ds2 = −2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +
µ

a2
uµ uν

]
dxµ dxν , (5.36)

5Here the covariant derivative ∇µ is computed using the boundary metric gµν .
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where uµ = (−1, 0, 0, 0). Observe that the term proportional to the Schouten
tensor is of order ε0 δ2. The associated function f reads f = 1 +k/a2−µ/a4. The
event horizon is at f(ah) = 0. It is useful to introduce rescaled variables ρ = a/ah
and m = µ/a4

h, in terms of which f is given by

f(ρ) = 1 +
k

a2
h ρ

2
− m

ρ4
. (5.37)

The event horizon is at ρ = 1 and m satisfies m = 1 + k/a2
h.

Now, (5.36) is deformed by taking the velocity field to be non-trivial. The
perturbed line element is then written in terms of Weyl covariant combinations
[162, 165]. We work at first order in ε, and we take the velocity field to be of
the form (5.34), for which the Weyl connection vanishes at first order in ε. The
vanishing of the latter implies that the Weyl-covariantized Schouten tensor Sµν
coincides with the ordinary Schouten tensor Sµν .

In general, when deforming the static black hole solution, not only the velocity
field uµ but also the mass µ becomes a slowly varying function of xµ [144]. For the
velocity field (5.34), inspection of equation (C.1) in [165] shows that µ remains
constant at order ε δ2 provided thatDνσνµ = 0. HereD denotes the Weyl covariant
derivative introduced in [162], and the shear tensor σµν is defined below. Using
this information, we make an ansatz for the line element that captures effects of
order ε δ2, and we take µ to be constant.

(5.36) is deformed by adding a term proportional to the shear tensor σµν
defined in (5.7). For the velocity field (5.34) this yields σµν = 1

2
(∇µuν +∇νuµ) to

first order in ε. Thus we make the following ansatz for the perturbed line element
at order ε,

ds2 =− 2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +
µ

a2
uµ uν

]
dxµ dxν

+ 2
a2

ah
F (a)σµν dx

µ dxν .
(5.38)

Here, F has Weyl weight zero, so that (5.38) is invariant under the rescaling (5.31).
Observe that according to the counting described above, σµν is of order ε δ, while
u(µ Sν)λ u

λ contains the deformation term u(µRν)λ u
λ which is of order ε δ2.

Imposing the condition Dνσνµ = 0 we find the following expression for the
velocity field,

βφ(θ) =ω1 + c1

(
−1

4
log[cos θ] +

1

4
log[sin θ] +

1

8 cos2 θ

)
,

βψ(θ) =ω2 + c2

(
−1

4
log[cos θ] +

1

4
log[sin θ]− 1

8 sin2 θ

)
, (5.39)

with constants ω1, ω2, c1, c2. Observe that in obtaining (5.39) we have not resorted
to any approximation, i.e. at order ε (5.39) solves Dνσνµ = 0 exactly. The small
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amplitude approximation, however, breaks down at θ = 0, π/2, where the norm
of the velocity field diverges. Therefore, the range of θ has to be restricted to
be consistent with the small amplitude expansion. This may be achieved by
restricting θ to be in the range λ < θ < π/2− λ with ε << λ2.

In case that both the ci (i = 1, 2) vanish, (5.38) describes an uncharged sta-
tionary black hole solution (at order ε) with σµν = 0. In the following, we are
interested in non-stationary solutions, and hence we take at least one of the ci to
be non-vanishing. Using (5.39), and inserting the ansatz (5.38) into the Einstein
equations of motion, we find that they are satisfied to first order in ε provided
that F satisfies the differential equation

d

dρ

(
ρ5 f(ρ)

d

dρ
F (ρ)

)
= −

(
3ρ2 +

k

a2
h

)
. (5.40)

When solving the Einstein equations, we do not resort to any truncation. Thus,
(5.39) and (5.40) yield an exact solution to the Einstein equations at first order
in ε.

Integrating (5.40) once gives

ρ5 f(ρ)
d

dρ
F = −

(
ρ3 +

k

a2
h

ρ− ζ
)
, (5.41)

where the integration constant ζ is set to the value ζ = 1 + k/a2
h so as to account

for the vanishing of f(ρ) at the horizon ρ = 1. Note that (5.41) can be written as

d

dρ
F = − (ρ2 + ρ+ ζ)

ρ(ρ+ 1)(ρ2 + ζ)
. (5.42)

Integrating (5.42) once results in

F (ρ) =

∫ ∞
ρ

du
(u2 + u+ ζ)

u(u+ 1)(u2 + ζ)
, (5.43)

which is well-behaved as long as ρ > 0. In the limit of large ρ this yields

F (ρ)

ah
=

1

a
− η

4 a4
, (5.44)

where
η = ζ a3

h = a3
h + k ah (5.45)

is in fact the shear viscosity as is shown below.
Next we consider the fluid on a three-sphere dual to (5.38). Its energy-

momentum tensor Tµν can be computed using standard techniques [77, 106, 121],
see appendix C. We obtain

16πG5 〈Tµν〉 =
1

4

(
RαβR

α β
µ ν −

R2

12
gµν

)
+ µ (gµν + 4uµ uν)− 2 η σµν .

(5.46)
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The terms in the first line of this expression denote the contribution to the energy-
momentum tensor of global AdS5 [77, 163], while the terms proportional to µ
denote the perfect fluid contribution6. The last term is the shear term with
the shear viscosity η determined by (5.45). Thus, at order δ3 in the derivative
expansion of the energy-momentum tensor, η receives a positive correction of order
δ2 proportional to the curvature of the three-sphere. Consequently, this leads to
a positive correction of order δ2 in the ratio η/s. In units where L = 16πG5 = 1
the entropy density s of the fluid on a unit three-sphere is s = S/vol(S3) = 4π a3

h,
so that the ratio η/s reads

η

s
=

1

4π

(
1 +

k

a2
h

)
. (5.47)

This result is in accordance with the prediction in section 5.3.3. Thus, η/s for a
fluid dual to a Schwarzschild black hole receives a positive correction due to the
finite size of the three-sphere.

5.5.2 Deformed Maxwell black hole

Next, we consider the Maxwell black hole in the context of the STU model intro-
duced in section 3.4.2. Remember that the scalar fields are set to X1 = X2 =
X3 = 1 and the gauge fields are set to A1 = A2 = A3 = 2A/

√
3. Then, from

(5.30), we obtain the following line element for the static Maxwell black hole,

ds2 = −2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +

(
w5M

a2
− Q2

a4

)
uµ uν

]
dxµ dxν .

(5.48)
The Maxwell gauge potential reads

Aµ = −
√

3

2

Q

a2
uµ , Aa = 0 , (5.49)

where uµ = (−1, 0, 0, 0). The function f in (5.24) reads f(a) = 1 + k/a2 −
w5M/a4+Q2/a6. The location ah of the outer event horizon is given by the largest
positive root of f(a). In terms of the rescaled variables ρ = a/ah, m = w5M/a4

h

and Q = Q/a3
h, the function f is given by

f(ρ) = 1 +
k

a2
h ρ

2
− m

ρ4
+
Q2

ρ6
. (5.50)

The outer event horizon is at ρ = 1 and m satisfies m = 1 + k/a2
h +Q2.

Now, the static Maxwell solution is deformed by taking the velocity field to
be of the form (5.34) with βφ and βψ given by (5.39). We work at first order in ε,

6µ is related to the pressure p = M/(3 vol(S3)) by µ = 16πG5 p.
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as before. The results of [156, 157] show that at order ε δ2, the electric charge Q
can be kept constant when M is constant. In the following, we take both M and
Q to be constant.

We construct a solution to the combined Einstein-Maxwell equations of motion
as follows. We take the gauge potential to be of the form (5.49) with the velocity
field given by (5.39). Inserting this ansatz into the equations of motion, we find
that we can solve the combined system at first order in ε and to all orders in δ
with the following line element,

ds2 =− 2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +

(
w5M

a2
− Q2

a4

)
uµ uν

]
dxµ dxν

+

[
2
√

3κ
Q

a2
u(µ lν) + 2

a2

ah
F (a)σµν

]
dxµ dxν

+ 4
√

3κ
Q

a4 f(a)
lµ dx

µ da ,

(5.51)

where we recall that u(µ lν) = uµ lν + uν lµ, and where [156,157,163]

lµ =
1

2
εµνλσ u

ν Dλuσ =
1

2
εµνλσ u

ν ∇λuσ , (5.52)

with εµνλσ = eµ
a eν

b eλ
c eσ

d εabcd. Observe that lµ and F (a) have Weyl-weight zero,
and that the associated terms in (5.51) are of order ε δ, while u(µ Sν)λ u

λ contains
the deformation term u(µRν)λ u

λ which is of order ε δ2. The line element (5.51) is
invariant under the rescaling (5.31) and (5.32).

The quantity F now satisfies the differential equation

d

dρ

(
ρ5 f(ρ)

d

dρ
F (ρ)

)
= −

(
3ρ2 +

k

a2
h

)
, (5.53)

with f(ρ) given by (5.50). Integrating (5.53) once gives

ρ5 f(ρ)
d

dρ
F = −

(
ρ3 +

k

a2
h

ρ− ζ
)
, (5.54)

where the integration constant ζ is set to the value ζ = 1 + k/a2
h so as to account

for the vanishing of f(ρ) at the outer horizon ρ = 1. Note that (5.54) can be
written as

d

dρ
F = − ρ (ρ2 + ρ+ ζ)

(ρ+ 1)(ρ4 + ζ ρ2 −Q2)
. (5.55)

Integrating (5.55) once results in

F (ρ) =

∫ ∞
ρ

du
u (u2 + u+ ζ)

(u+ 1)(u4 + ζ u2 −Q2)
. (5.56)
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Here ρ should be taken to be larger than the largest positive root of u4 +ζ u2−Q2

to avoid a singularity in F (ρ). In the limit of large ρ this yields

F (ρ)

ah
=

1

a
− η

4 a4
, (5.57)

where
η = ζ a3

h = a3
h + k ah (5.58)

is in fact the shear viscosity as is shown below.
The line element (5.51) is not in the customary gauge gaµ = −uµ [165]. It can

be brought into this gauge by the following coordinate transformation at order ε,

dxµ → dxµ − h(a) lµ da−
(∫ a

h(b) db

)
dlµ , (5.59)

where h(a) = 2
√

3κQ/(a6 f(a)). Here the term proportional to lµ is of order ε δ,
while the term proportional to dlµ is of order ε δ2. The resulting line element is
then regular at the outer horizon f(ah) = 0 of the undeformed static black hole
solution.

In the stationary case, the velocity field has the form (5.39) with ci = 0. Due
to the curvature k of the background, lµ is non-vanishing but constant and given
by lµ =

√
k (0, 0,−ω2,−ω1). Then the second term in (5.59) vanishes, and the

line element takes the form

ds2 =− 2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +

(
w5M

a2
− Q2

a4

)
uµ uν

+2
√

3κ
Q

a2
u(µ lν)

]
dxµ dxν

(5.60)

in the gauge gaµ = −uµ. It is straightforward to relate this line element to the
usual one [171] written in Boyer-Lindquist-type coordinates, to linear order in ω1

and ω2, see appendix B.1.
Next we compute the associated boundary energy-momentum tensor Tµν of

the fluid dual to (5.51), see appendix C. We obtain

16πG5 〈Tµν〉 =
1

4

(
RαβR

α β
µ ν −

R2

12
gµν

)
+ w5M (gµν + 4uµ uν) + 8

√
3κQu(µ lν) − 2 η σµν .

(5.61)

Again we see that the quantity determined in (5.58) is indeed the shear viscosity
which receives a correction of order δ2 proportional to the curvature of the three-
sphere. In units where L = 16πG5 = 1, and using that the entropy density s of
the fluid on a unit three-sphere is s = S/vol(S3) = 4π a3

h, the ratio η/s reads

η

s
=

1

4π

(
1 +

k

a2
h

)
, (5.62)
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as in the Schwarzschild case. We note that the correction to η/s = 1/(4π) pro-
portional to the curvature is determined by the coefficient of the uRu-term in
the line element (5.51).

In the stationary case, where σµν = 0, Tµν takes the form given in [172]. It
contains additional non-dissipative terms proportional to lµ associated with the
rotation of the fluid in a background of constant curvature k.

In [156,157], the authors constructed charged black brane solutions up to order
δ2. At order δ, their solution is based on the gauge field

Aµ = −
√

3Q

2 a2

(
uµ − 2

√
3κ

Q

w5M
lµ

)
, Aa = 0 . (5.63)

For the sake of comparison, let us construct a black hole solution based on (5.63)
with the velocity field given by (5.39). Inserting this ansatz into the equations
of motion, we find that they can be solved exactly at first order in ε with the
following line element,

ds2 =− 2uµ dx
µ da+

[
a2 gµν + u(µ Sν)λ u

λ +

(
w5M

a2
− Q2

a4

)
uµ uν

]
dxµ dxν

+

[
− 6κ2Q2

w5M a2
u(µRν)λ u

λ +
2
√

3κQ3

w5M a4
u(µ lν) + 2

a2

ah
F (a)σµν

]
dxµ dxν

+

[
4
√

3κQ3

w5M a6 f
lµ −

12κ2Q2

w5M a4f
Rµλ u

λ

]
dxµ da ,

(5.64)

with lµ defined as in (5.52). The quantity F satisfies the differential equation
(5.53). The line element (5.64) is invariant under the rescaling (5.31) and (5.32).
It is again not in the customary gauge gaµ = −uµ [165]. It can be brought into
this gauge by the coordinate transformation (5.59) at order ε. The resulting line
element is then regular at the outer horizon f(ah) = 0 of the undeformed static
black hole solution.

We may ask whether the two line elements (5.51) and (5.64) can be transformed
into each other. The associated gauge fields are related by the shift uµ → uµ −
2
√

3κ Q
w5M

lµ. Applying this shift to the line element (5.51) induces terms that

are of order ε δ3. The resulting line element thus has terms of different order in δ
than the line element (5.64). A matching of these two line elements is thus only
expected to occur when the full set of ε δ3-terms is taken into account. However,
in the stationary case (ci = 0), the solution (5.51) is mapped into (5.64) at order
ε by the shift of uµ described above, under which li → li −

√
3κ Q

w5M
Rij u

j. The
two line elements are then identical in the gauge gaµ = −uµ, as expected.

Let us now compare the line element (5.64) with the one obtained in [156,
157]. Since the gauge field (5.63) is at most of order ε δ, the comparison is only
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meaningful up to this order. Since the terms in (5.64) proportional to Rµν are
of order ε δ2 they should be dropped in the comparison. Then, by going into the
gauge gaµ = −uµ via the coordinate transformation (5.59) (and dropping the term
proportional to dlµ which is also of order ε δ2) we find that the line element (5.64)
goes over into the one obtained in [156,157].

Computing the associated boundary energy-momentum tensor Tµν we obtain

16πG5 〈Tµν〉 =
1

4

(
RαβR

α β
µ ν −

R2

12
gµν

)
+ w5M (gµν + 4uµ uν)−

24κ2Q2

w5M
u(µRν)λ u

λ − 2 η σµν ,

(5.65)

with η/s given by (5.62). It contains non-dissipative terms proportional to the
background curvature tensor Rµν . In the stationary case, the boundary energy-
momentum tensor (5.61) matches (5.65) under the constant shift uµ → uµ −
2
√

3κ Q
w5M

lµ discussed above.

5.5.3 Deformed black hole solutions supported by scalar
fields

Next, we consider black hole solutions in the STU model that are supported by
non-trivial scalar fields, and that carry either one or two non-vanishing charges. In
the two-charge case, the charges are taken to be equal, for simplicity. We deform
the static solutions in the manner described above. We find that the scalar fields
do not need to be deformed at order ε.

Two equal charges

We begin by first considering the case of two equal charges defined in section 3.4.3.
The line element of the static solution is given by (5.28) and the gauge potentials
and scalar fields are

A1
µ =A2

µ = −Q
a2
H−

1
3 uµ , A3

µ = 0 , Aia = 0 , i = 1, 2, 3 ,

X1 =X2 = H−
1
3 , X3 = H

2
3 ,

(5.66)

where uµ = (−1, 0, 0, 0). A definition of the various quantities involved can be
found in chapter 3. The function f(a) appearing in (5.28), when expressed in
terms of the rescaled coordinates ρ = a/ah, reads

f(ρ) = 1 + e−4U k

a2
h ρ

2
− e−2U m

ρ4
, m =

µ

a4
h

=

(
1 +

k

a2
h

e−4U(ah)

)
e2U(ah) . (5.67)

The outer horizon is at ρ = 1.
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This static solution is perturbed by again taking the velocity field to have
the form (5.34) and (5.39). This results in a modification of the line element,
and it also induces a non-vanishing A3. We find that at first order in ε, but no
approximation otherwise, the combined system of equations of motion is solved
by

ds2 =− a2 f(a)uµ uν dx
µ dxν − 6

W (a)
uµ dx

µ da+ a2 Pµν dx
µ dxν

+
1

2
H−

1
3 u(µRν)λ u

λ dxµ dxν + 2
a2

ah
F (a)σµν dx

µ dxν ,

A1
µ =A2

µ = −Q
a2
H−

1
3 uµ , A3

µ = − q

a2
H

2
3 lµ , Aia = 0 , i = 1, 2, 3

(5.68)

with the scalar fields given as in (5.66). Here lµ and the velocity field are again
given by (5.52) and (5.39), respectively. The stationary limit of this solution can
be easily related to the solution found in [173] written in Boyer-Lindquist type
coordinates, to linear order in rotation parameters (see appendix B.2).

The quantity F now satisfies the differential equation

1

3

d

dρ

(
ρ5W (ρ) f(ρ)

d

dρ
F (ρ)

)
= −

(
3ρ2 +

k

a2
h

e−U (1− U ′ρ)

)
, (5.69)

where U ′ = dU/dρ, with e3U = H. We note the appearance of the superpotential
W (a) on the left hand side which takes the constant value W (a) = 3 in both the
Schwarzschild and the Maxwell case. The right hand side of (5.69) can be easily
integrated by noting that the second term is a total derivative,

e−U (1− U ′ρ) dρ = d
(
ρ e−U

)
. (5.70)

Thus, integrating (5.69) once gives

1

3
ρ5W (ρ) f(ρ)

d

dρ
F (ρ) = −

(
ρ3 +

k

a2
h

e−Uρ− ζ
)
. (5.71)

The integration constant ζ is set to the value ζ = 1 +
(
k e−U(ah)

)
/a2

h to allow for
the vanishing of (5.69) at the outer horizon ρ = 1, where f = 0. Then, integrating
(5.71) once results in

F (ρ) =∫ ∞
ρ

du

W (u)

3
(
u3 + u (ζ − 1) eU(ah) e−U − ζ

)
u5 + u3 (ζ − 1) eU(ah) e−4U − u (e2U(ah) + (ζ − 1) e−U(ah)) e−2U

.

(5.72)
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For large ρ we have e3U = H ≈ 1 + q /(a2
h ρ

2), and hence we obtain

F (ρ)

ah
=

1

a
− η

4 a4
, (5.73)

where

η = ζ a3
h = a3

h + k e−U(ah) ah (5.74)

is in fact the shear viscosity η as is shown below.

Computing the associated boundary energy-momentum tensor we obtain (see
appendix C)

16πG5 〈Tµν〉 =
1

4

(
RαβR

α β
µ ν −

R2

12
gµν

)
+ w5M (gµν + 4uµ uν)−

2 q

3
u(µRν)λ u

λ − 2 η σµν .

(5.75)

Again we see that the quantity determined in (5.74) is indeed the shear viscosity
which receives a correction of order δ2 proportional to the curvature of the three-
sphere. Furthermore, (5.75) contains a non-dissipative term proportional to the
background curvature tensor Rµν . In units where L = 16πG5 = 1, the ratio η/s
reads

η

s
=

1

4π

(
1 +

k e−U(ah)

a2
h

)
. (5.76)

We note that the correction to η/s = 1/(4π) is determined by the coefficient of the
uRu-term in the line element (5.68). Observe that compared to the Schwarzschild
and the Maxwell case the correction to η/s comes multiplied with the factor e−U(ah)

and thus differs from the prediction in section 5.3.3. A reason for that might be
that now in the presence of non-trivial scalar fields, higher-order corrections to the
diffusion constant are involved which were neglected in section 5.3.3. This together
with the subextensive contribution in the energy then leads to the correction
(5.76).

One charge

Next, we consider the case of one non-vanishing charge defined in section 3.4.4.
Proceeding as before, i.e. taking the velocity field to be given by (5.39), we find
that at first order in ε, but no approximation otherwise, the perturbed solution
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to the combined system of equations of motion is given by

ds2 =− a2 f(a)uµ uν dx
µ dxν − 6

W (a)
uµ dx

µ da+ a2 Pµν dx
µ dxν

+
1

2
H

1
3 u(µRν)λ u

λ dxµ dxν + 2
a2

ah
F (a)σµν dx

µ dxν ,

A1
µ =− Q

a2
H−

2
3 uµ , A2

µ = A3
µ = 0 , Aia = 0 , i = 1, 2, 3 ,

X1 =H−
2
3 , X2 = X3 = H

1
3 .

(5.77)

The stationary limit of this solution can be related to the solution found in [174,
175], to linear order in rotation parameters (see appendix B.3). The quantity F
satisfies the differential equation

1

3

d

dρ

(
ρ5W (ρ) f(ρ)

d

dρ
F (ρ)

)
= −

(
3ρ2 +

k

a2
h

e2U (1 + 2U ′ρ)

)
, (5.78)

where U ′ = dU/dρ, with e6U = H. The right hand side of (5.78) can be easily
integrated by noting that the second term is a total derivative,

e2U (1 + 2U ′ρ) dρ = d
(
ρ e2U

)
. (5.79)

Integrating (5.78) once gives

1

3
ρ5W (ρ) f(ρ)

d

dρ
F (ρ) = −

(
ρ3 +

k

a2
h

e2Uρ− ζ
)
. (5.80)

The integration constant ζ is set to the value ζ = 1 +
(
k e2U(ah)

)
/a2

h to allow for
the vanishing of (5.78) at the outer horizon ρ = 1, since f = 0 there. Then,
integrating (5.80) once results in

F (ρ) =∫ ∞
ρ

du

W (u)

3
(
u3 + u (ζ − 1)e−2U(ah)e2U − ζ

)
u5 + u3(ζ − 1)e−2U(ah)e−4U − u (e2U(ah) + (ζ − 1)e−4U(ah)) e−2U

.

(5.81)

For large ρ, we have e6U = H ≈ 1 + q/(a2
h ρ

2), and hence we obtain

F (ρ)

ah
=

1

a
− η

4 a4
, (5.82)

where
η = ζ a3

h = a3
h + k e2U(ah) ah (5.83)
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is in fact the shear viscosity as is shown below.
Computing the associated boundary energy-momentum tensor yields

16πG5 〈Tµν〉 =
1

4

(
RαβR

α β
µ ν −

R2

12
gµν

)
+ w5M (gµν + 4uµ uν) +

2 q

3
u(µRν)λ u

λ − 2 η σµν .

(5.84)

Again we see that the quantity determined in (5.83) is indeed the shear viscosity
which receives a correction of order δ2 proportional to the curvature of the three-
sphere. In units where L = 16πG5 = 1, the ratio η/s reads

η

s
=

1

4π

(
1 +

k e2U(ah)

a2
h

)
. (5.85)

Note that the correction to η/s = 1/(4π) proportional to the curvature is deter-
mined by the coefficient of the uRu-term in the line element (5.77). Similar as in
the two-charge case, the correction to η/s is multiplied by a factor of e2U(ah) which
deviates from the prediction in section 5.3.3. This seems to imply that corrections
to the diffusion constant are involved.

5.6 Summary and discussion

In this chapter, the black hole approach was used to construct deformed spherical
AdS-STU black hole solutions of N = 2 supergravity which are dual to incom-
pressible viscous conformal charged fluids, in the infinite N and infinite λ limit,
propagating on a three-sphere. In particular, the deformed AdS-Schwarzschild
black hole, the deformed AdS-STU black hole with three equal charges, with two
equal charges and with one non-zero charge were constructed, and the ratio η/s
for the corresponding fluids was computed. In all these cases, we found a pos-
itive deviation from the value η/s = 1/4π proportional to the curvature of the
three-sphere at third order in the derivative expansion of the energy-momentum
tensor.

As mentioned in the introduction, the energy of a perfect fluid on a three-
sphere dual to a static black hole is not a purely extensive quantity [36, 37]. It
contains a subextensive piece, the Casimir energy Ec, which is defined as the
violation of the thermodynamic Euler relation. In the context of N = 2 gauged
supergravity theories, the ratio of ρc and the extensive part ρe of the energy
density, when expressed in terms of black hole data, reads (in units where L =
16πG5 = 1) [1]

ρc
ρe

=
6 k

a2
h

W̃h

Wh

, (5.86)
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where ah denotes the horizon radius, and W̃h as well as Wh denote the superpo-
tentials evaluated at the horizon. The Schwarzschild and the Maxwell black hole
both satisfy Wh = 3, W̃h = 1. For these two black holes, the ratio η/s can be
written as

η

s
=

1

4π

ρe + 1
2
ρc

ρe
=

1

4π

(
1 +

3 k

a2
h

W̃h

Wh

)
. (5.87)

The ratio displayed in (5.87) takes a form that is written in manifest N = 2
language and that could, a priori, be applicable to any black hole in an N =
2 model. However, inspection of the two-charge result (5.76) and of the one-
charge result (5.85) shows that they are not simply captured by (5.87). These two
cases involve non-trivial scalar fields, and it is conceivable that additional terms
involving these have to be added to (5.87) in order to obtain an expression that
is valid for a general N = 2 model.

Let us now discuss the diffusion coefficient D, defined as in (5.10). Let us
first consider the Schwarzschild case, for which (5.87) implies that the ratio D =
η/(ρ+ p) = 3η/(4ρ) equals D = π1/3/(42/3 s1/3), as in the black brane case (5.16).
Thus, when viewed as a function of s, D does not change its functional form.
On the other hand, if D is viewed as a function of the temperature (the energy),
then D changes its functional form due to the subextensive contribution ρc ∝ k
to the total energy, i.e. D is not any longer simply given in terms of the inverse
of the temperature. Either way, η = D (ρ + p) receives a correction proportional
to ρc ∝ k (see (5.86)).

Next, let us consider the Maxwell case. Viewing D as a function of s, we
find that D is not any longer given by D = π1/3/(42/3 s1/3). This can be un-
derstood as follows. The total energy of the system is not simply ρe + 1

2
ρc, but

rather ρe + 1
2
ρc + 1

2
ρ̃A φ

A
h , where φAh denote the electrostatic potentials at the

horizon [1] and ρ̃A the charge densities. The contribution ρ̃A φ
A
h is a subexten-

sive contribution that is distinct from the contribution ρc, since the former is
more subleading in the hydrodynamic expansion than the latter. Furthermore,
ρ̃A φ

A
h is proportional to the square of the charge, while ρc is proportional to k.

Using (5.87), we find that the diffusion coefficient D is proportional to the ratio
(ρe+ 1

2
ρc)/(ρe+ 1

2
ρc+ 1

2
ρQA φ

A
h ). At order (L/ah)

2 in the expansion of the diffusion
coefficient, the correction proportional to k cancels out, while the term propor-
tional to ρ̃A φ

A
h can be neglected. Thus, when D is viewed as a function of s, it

does not receive a correction of order k. However, if D is viewed as a function of
the temperature (the energy), then D changes its functional form (at first order
in k) due to the subextensive contribution ρc to the total energy. Either way,
η = D (ρ+ p) receives a correction proportional to ρc ∝ k.

And finally, in the case of charged black holes with scalar fields, we find that
D, when viewed as a function of s, receives a correction of order k, since in these
cases the term proportional to k in η does not equal ρc, and hence it differs from
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the contribution ρc contained in the total energy.
The corrected shear viscosity at third order in the hydrodynamic expansion

of the energy-momentum tensor can be viewed as an effective shear viscosity in
curved space. In all the cases we considered, the correction proportional to k
stems from a term in the black hole line element of the form uRu which on the
fluid side transforms to a third-order term in the energy-momentum tensor Tµν of
the form Rσµν , where R denotes the curvature scalar which for the three-sphere
is proportional to k. Thus our result, that at third order the shear viscosity
receives corrections proportional to the curvature of the space on which the fluid
propagates, might be true not only on the three-sphere, but also on generally
curved backgrounds.

The third-order corrections in all the cases we considered are positive and
therefore respect the bound (5.2).

In deriving the expressions for η/s we restricted ourselves to corrections of
order k. Higher corrections in k are in principle also possible. For simplicity,
we took the velocity field uµ of the fluid to be of the specific form (5.39). Our
expressions for η/s should, however, be independent of this particular choice of
the velocity field.
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Chapter 6

A holographic p-wave superfluid
with back-reaction

In this chapter, the AdS/CFT correspondence is applied to study the strongly-
coupled CFT dual to a non-Abelian AdS black hole in SU(2) Einstein-Yang Mills
theory. For sufficiently low temperature, these black hole solutions develop vector
hair which in the dual field theory corresponds to a phase transition to a superfluid
state with spontaneously broken rotational symmetry. Such a state is called a p-
wave superfluid state. While numerically constructing the non-Abelian AdS black
hole solution with a flat horizon we also take the back-reaction of the gauge fields
into account. The bulk theory has a single free parameter, the ratio of the five-
dimensional gravitational constant to the Yang-Mills coupling, which we denote
as α. Previous analyses have shown that in the probe limit, where α goes to zero,
and hence the gauge fields are ignored in the Einstein equations, the transition
to the superfluid state is second order. We construct fully back-reacted solutions,
where α is finite and the gauge fields are included in the Einstein equations, and
find that for values of α above a critical value αc = 0.365± 0.001, the transition
becomes first order.

The outline of the chapter is as follows. After a brief introduction, in section 6.2
the action of the model is presented and the ansatz for the bulk fields is discussed.
In section 6.3 we describe how to extract thermodynamic information from the
solutions. In section 6.4 the numerical results are presented demonstrating that
increasing α changes the order of the phase transition. Section 6.5 contains a
conclusion.

This chapter is based on work which was done by the author of this thesis
in collaboration with Martin Ammon, Johanna Erdmenger, Patrick Kerner and
Andy O’Bannon and which was published in [3].
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6.1 Introduction

The AdS/CFT correspondence [17] as a novel method for studying strongly-
coupled systems at finite density may have useful applications in condensed matter
physics. Especially suitable are quantum critical low-temperature systems1. Such
systems undergo a quantum phase transition at zero temperature. These transi-
tions are driven by quantum fluctuations rather than thermal fluctuations and can
be accessed by varying a physical parameter. The position in the phase diagram
where the transition occurs is referred to as quantum critical point. Near these
points the system becomes scale-invariant. Moreover, quantum critical points can
dominate regions away from the zero temperature limit, and it is believed that
the scale invariant field theory at zero temperature can be generalized to describe
the behavior of the system in the quantum critical region at finite temperature.
Quantum critical systems are not purely theoretical: the thermodynamics of some
high-Tc superconductors may be controlled by a quantum critical point. By now
AdS/CFT can model many basic phenomena in condensed matter physics, such
as the quantum Hall effect [176], non-relativistic scale-invariance [177, 178], and
Fermi surfaces [179,180].

The AdS/CFT correspondence can also describe phase transitions to superfluid
states. These are phase transitions in which a sufficiently large U(1) charge density
triggers spontaneous breaking of the U(1) symmetry: an operator charged under
the U(1) acquires a nonzero expectation value [53–55]. We refer to this as the
operator condensing. The simplest bulk action that can describe such a transition
is Einstein-Maxwell theory coupled to a charged scalar. In the bulk, a charged
black hole is said to develop scalar hair which means that the black hole solution
is supported by a scalar field. In the CFT, this charged scalar field operator
condenses.

A simple bulk action has one great virtue, namely a kind of universality: the
results may be true for many different dual CFTs, independent of the details of
their dynamics. For the Einstein-Maxwell-scalar case, a fruitful exercise is to study
various functional forms for the scalar potential and to scan through values of
couplings in that potential [181–183]. Generally speaking, scanning through values
of these parameters corresponds to scanning through many different dual CFTs.
As shown in [181–183], such changes can have a dramatic effect, for example, the
phase transition can change from second to first order.

AdS/CFT can also describe superfluid states in which the condensing operator
is a vector and hence rotational symmetry is broken, that is, p-wave superfluid
states [56, 57]. Here the CFT has a global SU(2) symmetry and hence three
conserved currents Jµa , where a = 1, 2, 3 label the generators of SU(2). For a

1For an introduction on the application of AdS/CFT methods to quantum critical condensed
matter systems see for example [11–13] and references therein.
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sufficiently large charge density for some U(1) subgroup of SU(2), say a sufficiently
large 〈J t3〉, holographic calculations reveal that, of the known available states,
those with lowest free energy have a nonzero 〈Jx1 〉. Not only is the U(1) broken,
but spatial rotational symmetry is also broken to some subgroup.

On the AdS side, a simple bulk action that can describe such a transition is
Einstein-Yang-Mills theory with gauge group SU(2). CFT states with nonzero
〈J t3〉 are dual to black hole solutions with nonzero vector field A3

t (r) in the bulk,
where r is the radial coordinate of AdS space. States with nonzero 〈Jx1 〉 are dual
to black hole solutions with a nontrivial A1

x(r). The superfluid phase transition
is thus dual to charged AdS black holes developing vector hair. A string theory
realization for this model is given in [184–187].

Unlike the Einstein-Maxwell-scalar case, SU(2) Einstein-Yang-Mills theory has
only a single free parameter, α ≡ κ5/ĝ, where κ5 is the five-dimensional gravita-
tional constant and ĝ is the Yang-Mills coupling. The Yang-Mills source terms
on the right hand side of the Einstein equations are proportional to α2. To date,
most analyses of the holographic p-wave superfluid transition have employed the
probe limit, which consists in taking α→ 0 so that the gauge fields have no effect
on the geometry, which becomes simply AdS-Schwarzschild. The probe limit was
sufficient to show that a superfluid phase transition occurs and is second order.

Our goal is to study the effect of finite α, that is, to study the back-reaction
of the gauge fields on the metric. We work with five-dimensional SU(2) Einstein-
Yang-Mills theory, with finite α. We numerically construct asymptotically AdS
charged black hole solutions with vector hair2. Our principal result is that for
a sufficiently large value of α the phase transition becomes first order. More
specifically, we find a critical value αc = 0.365± 0.001, such that the transition is
second order when α < αc and first order when α > αc.

We can provide some intuition for what increasing α means, in CFT terms,
as follows. Generically, in AdS/CFT 1/κ2

5 ∝ c, where c is the central charge of
the CFT [77, 123], which, roughly speaking, counts the total number of degrees
of freedom in the CFT. Correlation functions involving the SU(2) current are
generically proportional to 1/ĝ2 [11–13]. We may, again roughly, think of 1/ĝ2 as
counting the number of degrees of freedom in the CFT that carry SU(2) charge.
Intuitively, then, in the CFT increasing α means increasing the ratio of charged
degrees of freedom to total degrees of freedom.

2For similar studies see [188–190].
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6.2 Holographic setup

We consider SU(2) Einstein-Yang-Mills theory in five-dimensional asymptotically
AdS space. The action is

S =

∫
d5x
√
−G

[
1

2κ2
5

(R− Λ)− 1

4ĝ2
F a
MNF

aMN

]
+ Sbdy , (6.1)

where κ5 is the five-dimensional gravitational constant, Λ = − 12
L2 is the cosmo-

logical constant, with L being the AdS radius, and ĝ is the Yang-Mills coupling
constant. The SU(2) field strength F a

MN is

F a
MN = ∂MA

a
N − ∂NAaM + εabcAbMA

c
N , (6.2)

where M,N = {t, r, x, y, z}, with r being the AdS radial coordinate, and εabc is
the totally antisymmetric tensor with ε123 = +1. The AaM are the components
of the matrix-valued gauge field, A = AaMτ

adxM , where the τa are the SU(2)
generators, which are related to the Pauli matrices by τa = σa/2i. Sbdy includes
boundary terms that do not affect the equations of motion, namely the Gibbons-
Hawking boundary term as well as counterterms required for the on-shell action
to be finite. We write Sbdy explicitly in section 6.3.

The Einstein and Yang-Mills equations derived from the above action are

RMN +
4

L2
GMN = κ2

5

(
TMN −

1

3
TP

PGMN

)
, (6.3)

∇MF
aMN = −εabcAbMF cMN , (6.4)

where the Yang-Mills energy-momentum tensor TMN is

TMN =
1

ĝ2
tr

(
FPMF

P
N −

1

4
GMNFPOF

PO

)
. (6.5)

Following [56], to construct charged black hole solutions with vector hair we
choose a gauge field ansatz

A = φ(r)τ 3dt+ w(r)τ 1dx . (6.6)

The motivation for this ansatz is as follows. In the field theory we introduce a
chemical potential for the U(1) symmetry generated by τ 3. We denote this U(1)
as U(1)3. The bulk operator dual to the U(1)3 density is A3

t , hence we include
A3
t (r) ≡ φ(r) in our ansatz. We want to allow for states with a nonzero 〈Jx1 〉, so in

addition we introduce A1
x(r) ≡ w(r). Solutions with nonzero w(r) preserve only an

SO(2) subgroup of the SO(3) rotational symmetry, so our metric ansatz respects
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only SO(2). We also pattern our metric ansatz after the ones used in [190] since
these tame singular points in the equations of motion. Our metric ansatz is

ds2 = −N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2f(r)−4dx2 + r2f(r)2

(
dy2 + dz2

)
, (6.7)

with N(r) = −2m(r)
r2

+ r2

L2 . For our black hole solutions we denote the position of
the horizon as rh. The AdS boundary is at r →∞.

Inserting our ansatz into the Einstein and Yang-Mills equations yields five
equations of motion for m(r), σ(r), f(r), φ(r), w(r) and one constraint equation
from the rr component of the Einstein equations. The dynamical equations can
be recast as (prime denotes ∂

∂r
)

m′ =
α2rf 4w2φ2

6Nσ2
+
α2r3φ′2

6σ2
+N

(
r3f ′2

f 2
+
α2

6
rf 4w′

2

)
,

σ′ =
α2f 4w2φ2

3rN2σ
+ σ

(
2rf ′2

f 2
+
α2f 4w′2

3r

)
,

f ′′ = −α
2f 5w2φ2

3r2N2σ2
+
α2f 5w′2

3r2
− f ′

(
3

r
− f ′

f
+
N ′

N
+
σ′

σ

)
,

φ′′ =
f 4w2φ

r2N
− φ′

(
3

r
− σ′

σ

)
,

w′′ = − wφ2

N2σ2
− w′

(
1

r
+

4f ′

f
+
N ′

N
+
σ′

σ

)
.

(6.8)

The equations of motion are invariant under four scaling transformations,

(I) σ → λσ, φ→ λφ,

(II) f → λf, w → λ−2w,

(III) r → λr , m→ λ4m, w → λw , φ→ λφ,

(IV ) r → λr , m→ λ2m, L→ λL , φ→ φ
λ
, α→ λα,

where in each case λ is some real positive number. Using (I) and (II) we can set the
boundary values of both σ(r) and f(r) to one, so that the metric is asymptotically
AdS. We are free to use (III) to set rh to be one, but we retain rh as a book-keeping
device. We use (IV) to set the AdS radius L to one.

A known analytic solution of the equations of motion is an asymptotically
AdS Reissner-Nordström black hole, which has φ(r) = µ− q/r2, w(r) = 0, σ(r) =

f(r) = 1, and N(r) =
(
r2 − 2m0

r2
+ 2α2q2

3r4

)
, where m0 =

r4h
2

+ α2q2

3r2h
and q = µr2

h.

Here µ is the value of φ(r) at the boundary3, which in CFT terms is the U(1)3

chemical potential.

3Note that in this chapter µ has a different meaning than in chapter 3, 4 and 5. In particular,
it is not related to the non-extremality of a black hole solution.



114 6. A holographic p-wave superfluid with back-reaction

To find solutions with nonzero w(r) we resort to numerics. We solve the
equations of motion using a shooting method. We vary the values of functions at
the horizon until we find solutions with suitable values at the AdS boundary. We
thus need the asymptotic form of solutions both near the horizon r = rh and near
the boundary r =∞.

Near the horizon, we define εh ≡ r
rh
−1� 1 and then expand every function in

powers of εh with some constant coefficients. Two of these we can fix as follows.
We determine rh by the condition N(rh) = 0, which gives that m(rh) = r4

h/2.
Additionally, we must impose A3

t (rh) = φ(rh) = 0 for A to be well-defined as
a one-form (see for example [191]). The equations of motion then impose rela-
tions among all the coefficients. A straightforward exercise shows that only four
coefficients are independent, {

φh1 , σ
h
0 , f

h
0 , w

h
0

}
, (6.9)

where the subscript denotes the order of εh, so, for instance, σh0 is the value of
σ(r) at the horizon. All other near-horizon coefficients are determined in terms
of these four.

Near the boundary r = ∞ we define εb ≡
(
rh
r

)2 � 1 and then expand every
function in powers of εb with some constant coefficients. The equations of motion
again impose relations among the coefficients. The independent coefficients are{

mb
0, µ, φ

b
1, w

b
1, f

b
2

}
, (6.10)

where here the subscript denotes the power of εb. All other near-boundary coeffi-
cients are determined in terms of these.

We used scaling symmetries to set σb0 = f b0 = 1. Our solutions also have
wb0 = 0 since we do not want to source the operator Jx1 in the CFT, the U(1)3

gets spontaneously broken). In our shooting method we choose a value of µ and
then vary the four independent near-horizon coefficients until we find a solution
which produces the desired value of µ and has σb0 = f b0 = 1 and wb0 = 0.

In what follows, we often work with dimensionless coefficients by scaling out
factors of rh. We thus define the dimensionless functions m̃(r) ≡ m(r)/r4

h, φ̃(r) ≡
φ(r)/rh and w̃(r) ≡ w(r)/rh, while f(r) and σ(r) are already dimensionless.

6.3 Thermodynamics

Next, we describe how to extract thermodynamic information from our solutions.
Our solutions describe thermal equilibrium states in the dual CFT. We work in
the grand canonical ensemble, with fixed chemical potential µ.
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We can obtain the temperature and entropy from horizon data. The temper-
ature T is given by the Hawking temperature of the black hole,

T =
κ

2π
=

σh0
12π

(
12− α2 (φ̃h1)

2

σh0
2

)
rh . (6.11)

Here κ =
√
∂µξ∂µξ

∣∣
rh

is the surface gravity of the black hole, with ξ being the
norm of the timelike Killing vector. In the second equality we write T in terms of
near-horizon coefficients. In what follows we often convert from rh to T simply by
inverting the above equation. The entropy S is given by the Bekenstein-Hawking
entropy of the black hole,

S =
2π

κ2
5

Vh =
2πV

κ2
5

r3
h =

2π4

κ2
5

V T 3 123σh0
3(

12σh0
2 − (φ̃h1)

2
α2
)3 , (6.12)

where Vh denotes the area of the horizon and V =
∫

d3x.
The central quantity in the grand canonical ensemble is the grand potential

Ω. In AdS/CFT we identify Ω with T times the on-shell bulk action in Euclidean
signature. We thus analytically continue to Euclidean signature and compactify
the time direction with period 1/T . We denote the Euclidean bulk action as I
and Ion-shell as its on-shell value, and similarly for other on-shell quantities. Our
solutions are always static, hence Ion-shell always includes an integration over the
time direction, producing a factor of 1/T . To simplify expressions, we define
I ≡ Ĩ/T . Starting now, we refer to Ĩ as the action. Ĩ includes a bulk term, a
Gibbons-Hawking boundary term, and counterterms,

Ĩ = Ĩbulk + ĨGH + ĨCT . (6.13)

Ĩon-shell
bulk and Ĩon-shell

GH exhibit divergences, which are canceled by the counterterms
in ĨCT. To regulate these divergences we introduce a hypersurface r = rbdy with
some large but finite rbdy. We always ultimately remove the regulator by taking
rbdy →∞. Using the equations of motion, for our ansatz Ĩon-shell

bulk is

Ĩon-shell
bulk =

V

κ2
5

1

2f 2
rNσ(r2f 2)′

∣∣∣
r=rbdy

. (6.14)

For our ansatz, the Euclidean Gibbons-Hawking term is

Ĩon-shell
GH = − 1

κ2
5

∫
d3x
√
γ∇Mn

M = − V
κ2

5

Nσr3

(
N ′

2N
+
σ′

σ
+

3

r

) ∣∣∣
r=rbdy

, (6.15)

where γ is the induced metric on the r = rbdy hypersurface and nMdxM =

1/
√
N(r) dr is the outward-pointing normal vector. The only divergence in Ĩon-shell

bulk +
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Ĩon-shell
GH comes from the infinite volume of the asymptotically AdS space, hence,

for our ansatz, the only nontrivial counterterm is

Ĩon-shell
CT =

3

κ2
5

∫
d3x
√
γ =

3V

κ2
5

r3
√
Nσ
∣∣∣
r=rbdy

. (6.16)

Finally, Ω is related to the on-shell action, Ĩon-shell, as

Ω = lim
rbdy→∞

Ĩon-shell. (6.17)

The chemical potential µ is simply the boundary value of A3
t (r) = φ(r). The

charge density 〈J t3〉 of the dual field theory can be extracted from Ĩon-shell by

〈J t3〉 =
1

V
lim

rbdy→∞

δĨon-shell

δA3
t (rbdy)

= −2π3α2

κ2
5

T 3 123σh0
3(

12σh0
2 − (φ̃h1)

2
α2
)3 φ̃

b
1 . (6.18)

Similarly, the current density 〈Jx1 〉 is

〈Jx1 〉 =
1

V
lim

rbdy→∞

δĨon-shell

δA1
x(rbdy)

= +
2π3α2

κ2
5

T 3 123σh0
3(

12σh0
2 − (φ̃h1)

2
α2
)3 w̃

b
1 . (6.19)

The expectation value of the energy-momentum tensor of the CFT is [69,77]

〈Tµν〉 = lim
rbdy→∞

2
√
γ

δĨon-shell

δγµν
= lim

rbdy→∞

[
r2

κ2
5

(
−Kµν +Kλ

λγµν − 3 γµν
)]

r=rbdy

,

(6.20)
where µ, ν, λ = {t, x, y, z} and Kµν = 1

2

√
N(r) ∂rγµν is the extrinsic curvature.

We find

〈Ttt〉 = 3
π4

κ2
5

V T 4 124σh0
4(

12σh0
2 − (φ̃h1)

2
α2
)4 m̃

b
0 ,

〈Txx〉 =
π4

κ2
5

V T 4 124σh0
4(

12σh0
2 − (φ̃h1)

2
α2
)4

(
m̃b

0 − 8f b2
)
,

〈Tyy〉 = 〈Tzz〉 =
π4

κ2
5

V T 4 124σh0
4(

12σh0
2 − (φ̃h1)

2
α2
)4

(
m̃b

0 + 4f b2
)
.

(6.21)

Notice that 〈Ttx〉 = 〈Tty〉 = 〈Ttz〉 = 0. Even in phases where the current 〈Jx1 〉 is
nonzero, the fluid has zero net momentum. Indeed, this result is guaranteed by
our ansatz for the metric, which is diagonal.
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Figure 6.1: (a) The dimensionless gauge field components φ̃(r) (red dashed) and w̃(r)
(green dot-dashed) and the dimensionless metric function m̃(r), scaled down by a factor
of 10, (black solid) versus the AdS radial coordinate r for α = 0.316 at T ≈ 0.45Tc.
(b) The dimensionless metric functions σ(r) (red dashed) and f(r) (green dot-dashed)
versus the AdS radial coordinate r for α = 0.316 at T ≈ 0.45Tc.

For m̃b
0 = 1

2
+α2µ̃2

3
, σh0 = 1, φ̃h1 = 2µ̃, f b2 = 0, and φ̃b1 = −µ̃ we recover the correct

thermodynamic properties of the Reissner-Nordström black hole, which preserves
the SO(3) rotational symmetry. For example, we find that 〈Txx〉 = 〈Tyy〉 = 〈Tzz〉
and Ω = −〈Tyy〉. For solutions with nonzero 〈Jx1 〉, the SO(3) is broken to SO(2).
In these cases, we find that 〈Txx〉 6= 〈Tyy〉 = 〈Tzz〉. Just using the equations above,
we also find Ω = −〈Tyy〉. In the superfluid phase, both the nonzero 〈Jx1 〉 and the
energy-momentum tensor indicate breaking of SO(3).

Tracelessness of the energy-momentum tensor implies 〈Ttt〉 = 〈Txx〉 + 〈Tyy〉 +
〈Tzz〉, which is indeed true for eq. (6.21), so in the dual CFT we always have a
conformal fluid. The only physical parameter in the CFT is thus the ratio µ/T .

6.4 Phase transitions

In this section, we present our numerical results. We scanned through values of
α from α = 0.032 to α = 0.548. Typical solutions for the metric and gauge field
functions appear in figure 6.1. The solutions for other values of α are qualitatively
similar. Notice that all boundary conditions are met: at the horizon φ̃(r) vanishes,
and at the boundaryf b0 = σb0 = 1 and w̃b0 = 0.

For every value of α that we use, we find Reissner-Nordström solutions for all
temperatures, and for sufficiently low temperatures we always find additional so-
lutions, with nonzero w(r), that are thermodynamically preferred to the Reissner-
Nordström solution. In other words, for every value of α that we use, we find a
phase transition, at some temperature Tc, in which a charged black hole grows
vector hair, which in the CFT is a p-wave superfluid phase transition. Our nu-
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Figure 6.2: The order parameter 〈Jx1 〉, multiplied by κ2
5/(2π

3α2T 3
c ), versus the rescaled

temperature T/Tc for different α: α = 0.032 < αc (green dotted), α = 0.316 < αc (blue
solid) and α = 0.447 > αc (red dashed). The black dot-dashed curve is the function
a(1−T/Tc)1/2 with a = 160. The green dotted curve is scaled up by a factor of 8 while
the red dashed curve is scaled down by a factor of 5 such that a, which depends on
α, coincides for the green dotted and blue solid curves. If we decrease T toward Tc,
entering the figure from the right, we see that the blue solid and the green dotted curves
rise continuously and monotonically from zero at T = Tc, signaling a second-order phase
transition. The close agreement with the black dot-dashed curve suggests that these
grow from zero as (1− T/Tc)1/2. In the α = 0.447 case, the red dashed curve becomes
multi-valued at T = 1.061Tc. In this case, at T = Tc, the value of κ2

5〈Jx1 〉/(2π3α2T 3
c )

jumps from zero to the upper part of the red dashed curve, signalizing a first-order
transition.

merical results show that the phase transition is second order for α < αc and first
order for α > αc where αc ≈ 0.365± 0.001.

For example, for α = 0.316 < αc, we only find solutions with 〈Jx1 〉 = 0 until a
temperature Tc where a second set of solutions, with nonzero 〈Jx1 〉, appears. Figure
6.2 shows that 〈Jx1 〉 rises continuously from zero as we decrease T below Tc. Figure
6.4 (a) shows the grand potential Ω, divided by π4V T 4

c /κ
2
5, versus the rescaled

temperature T/Tc for α = 0.316. The blue solid curve in figure 6.4 (a) comes
from solutions with 〈Jx1 〉 = 0 and the red dashed curve comes from solutions with
〈Jx1 〉 6= 0. We see clearly that for T < Tc the states with 〈Jx1 〉 6= 0 have the lower
κ2

5Ω/ (π4V T 4
c ) and hence are thermodynamically preferred. We thus conclude

that a phase transition occurs at T = Tc. The nonzero 〈Jx1 〉 indicates spontaneous
breaking of U(1)3 and of SO(3) rotational symmetry down to SO(2), and hence
is an order parameter for the transition. Figure 6.4 (b) shows the entropy S,
divided by 2π4V T 3

c /κ
2
5, versus the rescaled temperature T/Tc for α = 0.316. The

blue solid curve and the red dashed curve have the same meaning as in figure
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Figure 6.3: (a) κ2
5Ω/

(
π4V T 4

c

)
versus the rescaled temperature T/Tc for α = 0.316.

The blue solid curve comes from solutions with 〈Jx1 〉 = 0 while the red dashed curve
comes from solutions with nonzero 〈Jx1 〉. For T > Tc, we have only the blue curve, but
when T ≤ Tc the red dashed curve appears and has the lower κ2

5Ω/
(
π4V T 4

c

)
, indicating

a phase transition at T = Tc. κ2
5Ω/

(
π4V T 4

c

)
is continuous and differentiable at T = Tc.

(b) κ2
5S/

(
2π4V T 3

c

)
versus T/Tc for α = 0.316. The blue solid and red dashed curves

have the same meanings as in (a). κ2
5S/

(
2π4V T 3

c

)
is continuous but not differentiable

at T = Tc, indicating a second-order transition.

6.4 (a). Here we see that κ2
5S/ (2π4V T 3

c ) is continuous but has a kink, i.e. a
discontinuous first derivative, clearly indicating a second-order transition. For
other values of α < αc, the figures are qualitatively similar.

A good question concerning these second-order transitions is: what are the
critical exponents? In the probe limit, α = 0, an analytic solution for the gauge
fields exists for T near Tc [185], which was used in [57] to show that for T . Tc,

〈Jx1 〉 ∝ (1− T/Tc)1/2. In other words, in the probe limit the critical exponent
for 〈Jx1 〉 takes the mean-field value 1/2. Does increasing α change the critical
exponent? Our numerical evidence suggests that the answer is no: for all α < αc,
we appear to find 〈Jx1 〉 ∝ (1− T/Tc)1/2 (see figure 6.2).

As α increases past αc = 0.365 ± 0.001, we see a qualitative change in the
thermodynamics. Consider for example α = 0.447. Here again we only find
solutions with 〈Jx1 〉 = 0 down to some temperature where two new sets of solutions
appear, both with nonzero 〈Jx1 〉. In other words, three states are available to the
system: one with 〈Jx1 〉 = 0 and two with nonzero 〈Jx1 〉. Figure 6.2 shows that as
we cool the system, 〈Jx1 〉 becomes multi-valued at T = 1.061Tc. To determine
which state is thermodynamically preferred, we compute the grand potential Ω.
Figure 6.4 (a) shows κ2

5Ω/ (π4V T 4
c ) versus T/Tc. The blue solid curve and the red

dashed curve have the same meanings as in figure 6.4. We immediately see the
characteristic “swallowtail” shape of a first-order phase transition. If we decrease
T , entering the figure along the blue solid curve from the right, we reach the
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Figure 6.4: (a) κ2
5Ω/

(
π4V T 4

c

)
versus the rescaled temperature T/Tc for α = 0.447.

The blue solid and red dashed curves have the same meanings as in figure 6.3. For
T > Tc we have only the blue solid curve. At T = 1.061Tc, the red dashed curve
appears and κ2

5Ω/
(
π4V T 4

c

)
becomes multi-valued. When T ≤ Tc the red dashed curve

has the lowest κ2
5Ω/

(
π4V T 4

c

)
, indicating a phase transition at T = Tc. κ2

5Ω/
(
π4V T 4

c

)
is continuous but not differentiable at T = Tc, signalizing a first-order transition. (b)
κ2

5S/
(
2π4V T 3

c

)
versus T/Tc for α = 0.447. κ2

5S/
(
2π4V T 3

c

)
is not continuous at T = Tc,

but rather jumps from the blue solid curve to the lowest branch of the red dashed curve,
indicating a first-order transition.

temperature T = 1.061Tc where the new solutions appear (as the red dashed
curve). The blue solid curve still has the lowest κ2

5Ω/ (π4V T 4
c ) until T = Tc. If we

continue reducing T below Tc, then the red curve has the lowest κ2
5Ω/ (π4V T 4

c ).
The transition is clearly first order: κ2

5Ω/ (π4V T 4
c ) has a kink at T = Tc. We can

also see from the entropy that the transition is first order. Figure 6.4 (b) shows
κ2

5S/ (2π4V T 3
c ) versus T/Tc. The entropy, like the grand potential, is multi-valued,

and jumps discontinuously from the blue solid curve to the lowest part of the red
dashed curve at T = Tc, indicating a first-order transition.

Notice that a crucial difference between α < αc (second order) and α > αc (first
order) is that for α > αc the critical temperature Tc is not simply the temperature
at which 〈Jx1 〉 becomes nonzero. We need more information to determine Tc when
α > αc, for example we can study Ω.

A good question is: how does increasing α change Tc? Figure 6.5 depicts the
phase diagram4 of the p-wave superfluid showing α2 as a function of the tem-
perature T/µ. The blue curve divides the diagram into a lower left (blue-shaded
area) and an upper right (uncoloured and red-shaded area) part. In the lower left
part, the Reissner-Nordström solution is unstable. In the upper right part, the
Reissner-Nordström solution is metastable in the red-shaded area and stable in

4This phase diagram is part of the work subsequent to [3] which was done in collaboration
with Martin Ammon, Johanna Erdmenger, Patrick Kerner and Andy O’Bannon. The phase
diagram of the p-wave superfluid was first presented in [192].
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Figure 6.5: The phase diagram of the p-wave superfluid showing α2 as a function
of T/µ. The superfluid transition occurs at Tc/µ = 1/4π ≈ 0.796 [57]. Increasing α
decreases Tc/µ. For α2 < α2

c ≈ 0.133 the transition is second order and coincides with
the occurrence of the instability (blue curve). For α2 < α2

c ≈ 0.133 the transition is
first order (red dotted curve) and occurs at a higher temperature than the instability
(blue curve). At zero temperature, the transition occurs at α2 ≈ 0.394 (red dot) and is
still first order as was shown in [192], and the instability occurs at α2 ≈ 1/3 (blue dot)
as was shown in [189].

the uncoloured area. In the probe limit, α = 0, the superfluid phase transition
sets in at Tc/µ = 1/4π ≈ 0.796 [57]. Then, increasing α further decreases the
temperature Tc/µ. As long as α2 < α2

c ≈ 0.133, the transition is second order
and coincides with the occurrence of the instability, whereas for α2 > α2

c ≈ 0.133
the transition is first order (red dotted curve) and sets in at a higher temperature
than the instability. For α2 ≈ 0.394, the transition occurs at zero temperature
and is still first order which is in accordance with [192]. The instability at zero
temperature occurs for α2 ≈ 1/3 which is in accordance with [189]. In the green
shaded area our numerics is not trustable.

6.5 Discussion

We studied asymptotically AdS charged black holes in five-dimensional SU(2)
Einstein-Yang-Mills theory with finite α = κ5/ĝ, that is, with back-reaction of
the gauge fields. Our numerical solutions show that, for a given value of α, as
the temperature decreases the black holes grow vector hair. Via AdS/CFT, this
process appears as a phase transition to a p-wave superfluid state in a strongly-
coupled CFT. We have shown that the order of the phase transition depends on
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the value of α: for values below αc = 0.365±0.001, the transition is second order,
while for larger values the transition is first order. Moreover, the temperature
Tc/µ for which a phase transition occurs seems to decrease down to T = 0 as α
is increased. This is in accordance with the results of [192]. The second-order
phase transition occurs due to an instability of the gauge field in the Reissner-
Nordström background [56]. This instability only exists for α < 1/

√
3 as found

in [189]. For α > 1/
√

3 and T = 0 the Reissner-Nordström solution becomes
metastable, and hence a phase transition occurs at temperatures above those
where the instability appears. Above α > 0.628 there is no phase transition and
the Reissner-Nordström solution is stable.

The superfluid condensate, which is given by the SU(2) current 〈J1
x〉, should

not be interpreted as a current of massive charge carriers, since the superfluid
has zero spatial momentum. We might speculate and possibly think of 〈J1

x〉 as
the current of constant spin changes along the x-direction similar as the varying
alignment of magnetic moments in spiral magnets.

As we mentioned in section 6.1, intuitively we may think of increasing α as
increasing the ratio of charged degrees of freedom to total degrees of freedom in the
CFT. To make that intuition precise, we can consider a specific system. One string
theory realization of SU(2) gauge fields in AdS space is type IIB supergravity
in five-dimensional AdS space times a five-sphere plus two coincident D7-branes
that provide the SU(2) gauge fields [184–187]. The dual field theory is N = 4
supersymmetric SU(Nc) Yang-Mills theory5, in the limits of large Nc and large ’t
Hooft coupling, coupled to a number Nf = 2 of massless N = 2 supersymmetric
hypermultiplets in the Nc representation of SU(Nc), i.e. flavor fields. The global
SU(Nf ) = SU(2) is an isospin symmetry. Translating from gravity to field theory
quantities, we have 1/κ2

5 ∝ N2
c and 1/ĝ2 ∝ NfNc, hence α ∝

√
Nf/Nc, which

supports our intuition. We must be cautious, however. In the field theory, the
probe limit consists in neglecting quantum effects due to the flavor fields because
these are suppressed by powers of Nf/Nc. If Nf/Nc becomes finite, then, for
example, in the field theory the coupling would run, the dual statement being
that in type IIB supergravity the dilaton would run, which is an effect absent in
our model. We should not draw too close an analogy between our simple model
and this particular string theory system.

5Here the index c in SU(Nc) stands for color.



Chapter 7

Summary of results and
conclusion

The aim of the research presented in this thesis was to be suggestive of the broad
range of applications of the AdS/CFT correspondence. For that purpose the
AdS/CFT correspondence was applied to three different strongly-coupled systems
at finite temperature and finite charge density: a brane world, a fluid on a three-
sphere and a p-wave superfluid. These three applications were investigated in
detail in view of specific questions. This uncovered interesting new insights into
these systems as well as into the physics of the dual black holes. In addition, these
applications simultaneously functioned as tests of the usability of the AdS/CFT
correspondence.

To investigate strongly-coupled systems on the field theory side we always
started on the gravity side and used the supergravity set up to substitutionally
carry out computations. The results of these computations were then translated to
the field theory side. This reveals that a broad knowledge of black hole physics, in
particular the knowledge of various black hole solutions and their thermodynamic
properties, is essential for the work with holographic techniques. Since we strongly
made use of the non-extremal charged static black hole solutions (3.34) of N = 2
gauged supergravity in chapter 4 and 5, in chapter 3 we first presented some
background material and then studied these solutions in more detail. Surprisingly,
we found out that the gauged N = 2 supergravity action admits a rewriting in
terms of squares of first-order differential (flow) equations in the context of the
non-extremal solutions (3.34). Such a rewriting is well-known from the attractor
mechanism of extremal black holes.

In chapter 4, the non-extremal charged static black hole background (3.34)
was employed to describe the cosmological evolution of a spherical brane world.
The total energy on the brane receives a subextensive Casimir contribution due
to finite-size effects. This additional energy contribution enables to express the
entropy of the brane as a Cardy-Verlinde-type formula. We then investigated a
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possible merging of the two Friedmann equations, governing the brane evolution,
with the Cardy-Verlinde-type formula and the Casimir energy on the brane. In
the last section, we investigated whether this merging can also be observed when
the bulk theory is modified by a Gauss-Bonnet curvature term.

In chapter 5, a conformal fluid dual to the non-extremal charged static black
hole solution (3.34) was investigated assuming that it propagates on a three-
sphere. The total energy of the fluid again receives a Casimir contribution. We
investigated the question whether this Casimir energy could lead to a correction
of the ratio η/s. For that purpose, we constructed different new deformed black
hole solutions on the basis of special cases of the general static black hole solu-
tion (3.34). Then, we computed the boundary energy-momentum tensors corre-
sponding to these solutions and extracted the shear viscosity from their derivative
expansions.

In chapter 6, we modeled a holographic p-wave superfluid and investigated
its phase structure. For that purpose, we considered an SU(2) Einstein-Yang-
Mills system and we numerically constructed new non-Abelian AdS black hole
solutions including the back-reaction of the gauge fields. The strength of the
back-reaction depends on the parameter α = κ5/ĝ. We investigated the superfluid
phase transition by scanning through different values of α.

For the three applications, the AdS/CFT correspondence seems to provide
reasonable results. The main new results of the chapters 3 to 6 are listed below.

Chapter 3: First-order flow equations for non-extremal black holes

• In the context of the non-supersymmetric non-extremal electrically charged
static black hole solutions (3.34), the N = 2 gauged supergravity action
admits a rewriting in terms of first-order differential (flow) equations. These
are consistent with the second-order equations of motion. The black hole
solutions (3.34) can thus be alternatively derived by solving the first-order
equations.

Chapter 4: Holographic brane cosmology and thermodynamics

• The equations of motion of the spherical brane in the background of the
charged static black hole with the line element (3.34) of N = 2 gauged
supergravity are the Friedmann (FRW) equations for a closed universe. The
effective energy density and the effective pressure entering the Friedmann
equations show a very complicated behavior under the rescaling of the cosmic
scale factor. This indicates that the matter content represented by the brane
field theory is not of the standard form, but of some exotic type.

• The entropy on the brane can be written as a Cardy-Verlinde-type formula
which differs from the original Cardy-Verlinde formula by the appearance
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of two functions in the prefactor, namely the superpotentials which depend
on the scalar fields supporting the black hole solution. The generalized
Casimir energy as well as the generalized extensive energy also contain these
functions.

• The first and the second FRW equation take forms that are similar to
the Cardy-Verlinde-type formula for the entropy and the equation for the
Casimir energy, respectively. At the horizon, these two sets of equations
even coincide. This phenomenon was first discovered by Verlinde in [36]
for a brane in a Schwarzschild black hole background. Here we have shown
that this phenomenon still exists for a brane in the background of a general
charged black hole of N = 2 gauged supergravity.

• Including a Gauss-Bonnet curvature term in the five-dimensional bulk action
produces an infinite series of subextensive contributions in the total energy
on the brane. In this case, it is unclear whether the entropy can be written
at all as a Cardy-Verlinde formula.

Chapter 5: Fluid dynamics on the three-sphere from gravity

• New deformed regular black hole solutions with spherical horizons were con-
structed on the basis of special cases of the charged static black hole solutions
(3.34), namely AdS-Schwarzschild, AdS-Maxwell, the two-charge AdS black
hole and the one-charge AdS black hole. All these special solutions were
found to be dual to special incompressible viscous fluids, in the large N ,
large λ limit, propagating on the three-sphere. Moreover, we computed the
energy-momentum tensors of these fluids.

• For all these fluids we found that the ratio η/s receives a positive correc-
tion ∆ proportional to the curvature of the three-sphere. The correction
corresponds to a third-order term in the derivative expansion of the fluid’s
energy-momentum tensor. In case of constant scalar fields, it amounts to
∆ = (1/4π)(k/a2

h), in which ~ = kB = 1. If the scalars are non-trivial,
the correction becomes ∆ = (1/4π)(k/a2

h)e
−U(ah) in the two-charge case and

∆ = (1/4π)(k/a2
h)e

2U(ah) in the one-charge case where eU(a) is positive defi-
nite and ah denotes the horizon radius.

Chapter 6: A holographic p-wave superfluid with back-reaction

• New non-Abelian AdS black hole solutions were numerically constructed
including the full back-reaction of the gauge fields. We showed that for a
given value of α and sufficiently low temperature these black hole solutions
develop vector hair. On the dual field theory side, this process corresponds
to a phase transition to a p-wave superfluid state.
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• The superfluid condensate is represented by the vev of the SU(2) current
〈J1

x〉 which breaks the rotational symmetry in the superfluid phase. Thus,
the x-direction is singled out as the direction in which superfluidity occurs.

• The order of the superfluid transition was found to be second order for
α < αc = 0.365 ± 0.001 and first order for α > αc. Moreover, the critical
temperature Tc/µ, at which a phase transition occurs, seems to decrease
down to T = 0 as α is increased which is in accordance with the results
of [192].

Let us comment on these results in the following paragraphs. The fact that
first-order flow equations exist for non-extremal black holes is rather surprising,
since such flow equations were first thought to be strictly connected to the at-
tractor mechanism of extremal black holes. However, non-extremal black holes
cannot be attractive [32,33], since the distance to the horizon, which is covered by
the scalar fields, is finite leaving not enough “time” to forget about the “initial”
conditions at infinity. In contrast, for extremal black holes, the distance to the
horizon is infinite, because of the infinite throat geometry which guarantees that
the information about the values of the scalar fields at infinity gets lost. Thus, the
existence of first-order flow equations is not necessarily tied to attractor behavior.
A striking advantage of the first-order equations is that they are easier to solve
than the second-order equations of motion.

The merging of the FRW equations with the Cardy-Verlinde formula and the
equation for the Casimir energy of the brane world can be understood as follows.
First, the right hand side of the first FRW equation written in the form (4.64)
is already similar to the right hand side of the Cardy-Verlinde formula. The left
hand side is actually proportional to the Hubble entropy SH = (V H)/(2G4) [142]
for a closed universe which was defined in the context of the pre-Big-Bang sce-
nario [143]. Here V = VHnH and VH denotes the volume of a causally connected
Hubble region and nH is the number of Hubble regions in the universe. The
Hubble entropy thus establishes the connection between entropy and Hubble pa-
rameter. At the horizon of the five-dimensional black hole, where V = Vh with Vh
being the area of the black hole horizon, the Hubble entropy of the brane universe
then becomes equal to the Bekenstein-Hawking entropy of the five-dimensional
black hole which is, according to the AdS/CFT correspondence, simultaneously
the entropy of the brane field theory. Second, the connection between the equa-
tion for the Casimir energy (4.52) and the second FRW equation is essentially
established through the Hawking temperature which can be expressed in terms
of the Hubble parameter and its time derivative. It was suggested in [36] that
this merging exists independently of the kind of matter contained in the brane
universe. Our analysis further supports this idea. In case of higher-derivative
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gravity in the five-dimensional bulk theory, it turned out to be difficult to write
the entropy of the brane field theory as a Cardy-Verlinde-type formula, since an
infinite series of subextensive energy contributions appears in the total energy.
Thus, for the future, it remains to clarify whether the entropy can be written at
all as a Cardy-Verlinde formula and whether, if this is the case, this finally still
merges with the first FRW equation at the black hole horizon.

The corrections to the shear viscosity to entropy density ratio η/s, that were
obtained for different fluids on a three-sphere dual to AdS-STU black hole solu-
tions, all turned out to be positive. This is in accordance with the lower bound on
η/s which was conjectured in [48] to be universal for all fluids. These corrections
stem from a third-order term in the derivative expansion of the energy-momentum
tensors of the fluids and are all proportional to the curvature of the three-sphere.
In the Schwarzschild and Maxwell case these seem to be caused by a subexten-
sive Casimir contribution in the total energy of the fluid, which is a finite-size
effect. However, in the presence of scalar fields additional effects, are involved,
since the corrections take forms that are not purely related to the Casimir energy.
An additional effect might be possible higher-order corrections to the shear dif-
fusion constant, whose form is not known yet and which we therefore neglected
in our considerations in section 5.3.3. Thus, maybe a combination of this effect
together with the Casimir energy leads to the correction of η/s when scalar fields
are involved.

The fluid flow (5.39) on the three-sphere that we constructed by means of the
AdS/CFT correspondence arose as a very special solution of some components of
the Einstein equations and depends only on the angular coordinate θ. It would
be interesting to solve the Einstein equations for a more general fluid flow on the
three-sphere which might depend on time and all spatial coordinates and which
might not be restricted to incompressibility and small amplitudes. Nevertheless,
the correction to η/s should be independent of the specific form of the fluid flow.

The description of the p-wave superfluid constructed here by means of the
AdS/CFT correspondence can be viewed as an effective description comparable
with Landau-Ginzburg theory which describes the macroscopic phenomena of su-
perconductivity near the superconducting phase transition without explaining the
microscopic degrees of freedom. As in this theory, we can deal with currents and
order parameters, but we cannot reveal the pairing mechanism or the Lagrangian
for the degrees of freedom that form the Cooper pairs.

The superfluid condensate, which is given by the SU(2) current 〈J1
x〉, should

not be interpreted as a current of massive charge carriers, since the superfluid has
zero spatial momentum. We might speculate and possibly think of 〈J1

x〉 as the
current of constant spin changes along the superfluid x-direction similar as the
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periodically varying alignment of magnetic moments in spiral magnets.
With our fully back-reacted solution at hand, many questions still remain to

investigate. For instance, it would be interesting to study the transport proper-
ties of the dual conformal fluid, for example the electrical conductivity, which at
zero temperature should exhibit a “hard gap”, as explained in [189]. Moreover,
we could turn on superfluid velocities and study the fluid’s response. In similar
systems, sufficiently large superfluid velocities also changed the transition from
second to first order [193,194]. A further question is, what is the speed of sound.
In a p-wave superfluid this question is not so easy to answer, since the speed of
sound need not be the same in all directions due the broken rotational symmetry.
In addition, we could study the speeds of second and fourth sounds [57,195,196].

In conclusion, this thesis has shown that the AdS/CFT correspondence use-
fully applies to various systems at strong coupling. While the first application
dealing with a brane universe in the context of the AdS/CFT correspondence is
more of theoretical nature, the other two applications, in some sense are relevant
for experiments. Although the systems which can be described by the AdS/CFT
correspondence are all more or less toy-models of realistic systems, there seem
to exist properties, as for instance the ratio η/s, which are universal for a larger
class of strongly-coupled systems and which therefore can be investigated by holo-
graphic techniques. For the future, it would be desirable to discover further uni-
versal quantities, for instance a quantity related to condensed matter physics,
which can be explored by the AdS/CFT correspondence. Nevertheless, already
at the present stage, the AdS/CFT correspondence has achieved what could not
be done before. It provides a tool to calculate non-equilibrium observables in
strongly-coupled systems.



Appendix A

Notation and conventions

In this thesis the following notation and conventions are employed. The four-
dimensional Minkowski metric is taken to be

ηµν = diag(−1, ηij) = diag(−1, 1, 1, 1) , (A.1)

where µ, ν = {0, ..., 3} are four-dimensional Lorentz indices, and i, j = {1, 2, 3}
denote spatial directions.

The metric of a three-dimensional space of constant curvature is generally denoted
by ηkij. This includes three-dimensional flat space (k = 0), three-dimensional hy-
perbolic space (k = −1) and the unit three-sphere (k = 1).

The four-dimensional AdS boundary metric is denoted by

gµν = diag(−1, gij) , (A.2)

where µ, ν are spacetime indices tangential to the boundary and i, j denote the
corresponding spatial directions. The induced metric on a four-dimensional slice
tangential to the AdS boundary is denoted by γµν .

The five-dimensional spacetime metric is denoted by GMN where M,N = {0, ..., 4}
are five-dimensional Lorentz indices.

The ten-dimensional spacetime metric occurring only in chapter 2 and the eleven-
dimensional spacetime metric occurring only in chapter 3 are both denoted by
Gµ̂ν̂ where µ̂, ν̂ run from 0 to 9 and 0 to 10, respectively.

The target space metric of the moduli fields ϕi occurring in chapter 3 is denoted
by Gij with i, j = {1, ..., h1,1− 1}. The target space metric of the scalar fields XA

is denoted by GAB with A,B = {1, ..., h1,1}.
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The totally antisymmetric Levi-Civita tensor, whose components are ±
√
|G| or

0, is given by
εµ1...µd

=
√
|G|εµ1...µd

, (A.3)

where εµ1...µd
is the totally antisymmetric Levi-Civita tensor density with

εµ1...µd
≡ (+1, −1, 0) , (A.4)

depending on whether µ1...µd is an even permutation of the canonically-ordered
set of index values, an odd permutation or no permutation at all.

A p-form A is defined as

A =
1

p!
Aµ1...µpdx

µ1 ∧ ... ∧ dxµp . (A.5)

The Hodge ? operator transforms a p-form A into a q = (d− p)-form B according
to

B = ?A =
1

p!q!
ε µ1...µp
ν1...νq

Aµ1...µpdx
ν1 ∧ ... ∧ dxνq . (A.6)
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Rotating AdS-STU black hole
solutions

B.1 Rotating Maxwell black hole in Eddington-

Finkelstein-type coordinates

The general non-extremal rotating black hole solution in minimal five-dimensional
gauged supergravity was derived in [171] in Boyer–Lindquist type coordinates. At
linear order in angular velocities ε ω1 and ε ω2 and with w5 = L = k = 1

ds2 =

(
−(1 + a2) +

Σ

a4

)
dt2 +

a2

∆a

da2 + a2dθ2 + a2
(
sin2 θ dφ2 + cos2 θ dψ2

)
− 2

a4

(
ε ω2 Σ + ε ω1Qa

2
)

cos2 θ dψ dt− 2

a4

(
ε ω1 Σ + ε ω2Qa

2
)

sin2 θ dφ dt ,

A =

√
3Q

a2

(
dt− ε ω1 sin2 θ dφ− ε ω2 cos2 θ dψ

)
,

(B.1)

where

∆a = a2(1 + a2) +
Q2

a2
−M , Σ = M a2 −Q2 . (B.2)

The line element in (B.1) can be rewritten in terms of Eddington-Finkelstein-type
coordinates by applying the following transformations,

dt→ dt− a2

∆a

da , dφ→ dφ− ε ω1

∆a

(
1 + a2

)
da , dψ → dψ − ε ω2

∆a

(
1 + a2

)
da .

(B.3)
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Then, at first order in ε, the line element becomes

ds2 =− ∆a

a2
dt2 + a2 dΩ2

3 + 2 dt da

+
2 ε

a4

(
ω1Q

2 − ω1M a2 − ω2Qa
2
)

sin2 θ dt dφ

+
2 ε

a4

(
ω2Q

2 − ω2M a2 − ω1Qa
2
)

cos2 θ dt dψ

+ 2 ε sin2 θ

(
ω2Q

∆a

− ω1

)
da dφ+ 2 ε cos2 θ

(
ω1Q

∆a

− ω2

)
da dψ ,

(B.4)

while the gauge field is still given by (B.1). Rewriting the five-dimensional line
element (B.4) in terms of the four-dimensional quantities uµ = ( 1, 0, ε ω1, ε ω2),
lµ = ( 0, 0, −ε ω2, −ε ω1) and gµν = diag(−1, 1, sin2 θ, cos2 θ) yields the line ele-
ment (5.51) with σµν = 0 and κ = −1/(2

√
3).

B.2 A two-charge rotating STU black hole in

Eddington-Finkelstein-type coordinates

A rotating version of the static two-charge STU black hole solution (5.66) has
been constructed in [173]. At linear order in rotation parameters ε ω1 and ε ω2, it
reads

ds2 =H−
4
3

[
−X
r2
dt2 +

2 ε

r2

(
X − f3

r2

) (
ω1 sin2 θ dt dφ+ ω2 cos2 θ dt dψ

)
+

f 2
3

r6

(
sin2 θ dφ2 + cos2 θ dψ2

)]
+H

2
3

[
r2

X
dr2 + r2 dθ2

]
,

H =1 +
µ s2

r2
,

X =r2 − µ+ g2 (r2 + µ s2)2 ,

f3 =r4 + µ s2 r2 ,

(B.5)

where1

s = sinh δ , c = cosh δ . (B.6)

The associated gauge potentials are

A1 =A2 =
µ s c

r2H

(
dt− ε (ω1 sin2 θ dφ+ ω2 cos2 θ dψ)

)
,

A3 =
µ s2

r2
ε
(
ω2 sin2 θ dφ+ ω1 cos2 θ dψ

)
.

(B.7)

1Here, s should not be confused with the entropy density in the main text.
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Setting g2 = 1, µ s2 = q, µ s c = Q as well as changing the radial coordinate to
a = r H

1
3 and performing the transformations

dt→dt− 3 a2H
2
3

XW (a)
da ,

dφ→dφ+ ε ω1

(
dt− 3H−

1
3

a4f(a)W (a)
da

)
,

dψ →dψ + ε ω2

(
dt− 3H−

1
3

a4f(a)W (a)
da

)
,

(B.8)

where f(a) is given in (5.24) with k set to k = 1 and with e3U = H, yields (B.5)
and (B.7) in Eddington-Finkelstein-type coordinates at first order in ε,

ds2 =− a2 f(a) dt2 +
6

W (a)
da dt− 6

W (a)
ε
(
ω1 sin2 θ dφ+ ω2 cos2 θ dψ

)
da

+ a2 dΩ2
3 + 2 ε

(
a2 f(a) + a2 −H−

1
3

) (
ω1 sin2 θ dφ+ ω2 cos2 θ dψ

)
dt ,

A1 =A2 = −Q
a2
H−

1
3 uµ dx

µ , A3 = − q

a2
H

2
3 lµ dx

µ ,

(B.9)

where W (a) = 2H−
1
3 + H

2
3 is the superpotential. Then, rewriting the five-

dimensional line element (B.9) and the gauge potentials (B.7) in terms of the
four-dimensional quantities uµ = ( 1, 0, ε ω1, ε ω2), lµ = ( 0, 0, −ε ω2, −ε ω1) and
gµν = diag(−1, 1, sin2 θ, cos2 θ) yields (5.68) with σµν = 0.

B.3 Three-charge rotating STU black hole with

equal rotation parameters in Eddington-Fin-

kelstein coordinates

A rotating three-charge STU black hole with equal rotation parameters ω1 = ω2 =
ω̃ has been constructed in [174]. At first oder in the rotation parameter ε ω̃, it
reads

ds2 =− Y

R2
dt2 +

r2R

Y
dr2 +RdΩ2

3 −
2 f2

R2
dt
(
sin2 θ dφ+ cos2 θ dψ

)
,

Ai =
µ

r2Hi

(
si ci dt+ ε ω̃ (ci sj sk − si cj ck)

(
sin2 θ dφ+ cos2 θ dψ

))
,

X i =
R

r2Hi

, i = 1, 2, 3 , i 6= j 6= k 6= i ,

(B.10)
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where

Y =R3 + r4 − µ r2 ,

R =r2

(
3∏
i=1

Hi

) 1
3

, Hi = 1 +
µ s2

i

r2
,

f2 =ε ω̃

(
−γ R3 + µ

(∏
i

ci −
∏
i

si

)
r2 + µ2

∏
i

si

)
,

si = sinh δi , ci = cosh δi .

(B.11)

Changing the radial coordinate to a = r eU = r (H1H2H3)
1
6 and applying the

transformation

dt→ dt− 3

W (a) a2 f(a)
da , (B.12)

yields the line element (B.10) in the form

ds2 =− a2 f(a) dt2 +
6

W (a)

(
dt+

ε ω̃ h(a)

a2 f

(
sin2 θ dφ+ cos2 θ dψ

))
da

+ a2 dΩ2
3 − 2 ε ω̃ h(a)

(
sin2 θ dφ+ cos2 θ dψ

)
dt ,

(B.13)

where

h(a) = −γ a2 +
µ

a2
e−2U

(∏
i

ci −
∏
i

si

)
+
µ2

a4

∏
i

si . (B.14)

For later convenience, we define ω = γ ω̃ and h̃ = γ−1 h such that ω h̃ = ω̃ h.
Then carrying out the transformations

dφ→dφ+ ε ω

dt− 3
(
a2f(a) + h̃(a)

)
a4 f(a)W (a)

da

 ,

dψ →dψ + ε ω

dt− 3
(
a2f(a) + h̃(a)

)
a4 f(a)W (a)

da


(B.15)
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yields (B.10) in Eddington-Finkelstein-type coordinates at first order in ε,

ds2 =− a2 f(a) dt2 +
6

W (a)

(
dt− ε ω

(
sin2 θ dφ+ cos2 θ dψ

))
da

+ a2 dΩ2
3 + 2 ε ω

(
a2 f(a) + a2 −

(
a2 f(a) + h̃(a)

)) (
sin2 θ dφ+ cos2 θ dψ

)
dt ,

Ai =
µ

a2Hi

e2U

(
si ci dt+ ε

ω

γ
(ci sj sk − si cj ck)

(
sin2 θ dφ+ cos2 θ dψ

))
,

X i =
1

Hi

(
3∏
i=1

Hi

) 1
3

, i = 1, 2, 3 , i 6= j 6= k 6= i .

(B.16)

The line element in (B.16) is related to the various line elements used in the
main text, as follows. Let us first consider the stationary limit of the Maxwell
solution (5.51) with ω1 = ω2 = ω. It is obtained from (B.16) by setting δ1 = δ2 =
δ3 = δ, W (a) = 3 and ∆a = fa4 with f given by f(a) = 1+k/a2−M/a4 +Q2/a6.
Then, the function h becomes (with si = s, ci = c)

h(a) = −γ a2 +
µ

a2
e−2U

(
c3 − s3

)
+
µ2

a4
s3 , (B.17)

which can also be written as

h(a) = γ h̃(a) = (c− s)
(
−a2 +

µ

a2
e−2U (c2 + s2 + c s) +

µ2

a4
s3 (c+ s)

)
. (B.18)

Setting M = µ+ 2µ s2, Q = µ s c and e−2U = (a2 − µ s2)/a2 gives

h̃(a) = −a2 f(a) + 1 +
Q

a2
. (B.19)

The terms in this expression are related as follows to the ones in (5.51): the second
term is the coefficient of the uRu-term, while the third term is the coefficient of
the u l-term.

Next, let us consider the stationary limit of the two-charge solution (5.68). It
is obtained from (B.16) by setting δ1 = δ2 = δ, δ3 = 0, γ = 1 and H = e3U . Then
the function h becomes

h(a) = h̃(a) = −a2 f(a) + e−U , (B.20)

with f given by (5.24). In this expression, the second term is the coefficient of
the uRu-term in (5.68).

And finally, the stationary limit of the one-charge solution (5.77) is obtained
from (B.16) by setting δ1 = δ and δ2 = δ3 = 0. Now the function h reads (with
c1 = c)

h(a) = −γ a2 +
µ

a2
e−2U c . (B.21)
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This can be written as

h(a) = γ h̃(a) =
1

c

(
−a2 +

µ

a2
e−2U c2

)
. (B.22)

Setting γ = c−1, and with H = e6U , we obtain

h̃(a) = −a2 f(a) + e2U , (B.23)

with f given by (5.24). In this expression, the second term is the coefficient of
the uRu-term in (5.77).
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Boundary energy-momentum
tensor for the STU black hole

Here we compute the boundary energy-momentum for the STU black hole carrying
two equal charges. A similar calculation applies to the other cases discussed in the
main text, namely no charge (the Schwarzschild case), one non-vanishing charge
and three equal charges (the Maxwell case).

The boundary energy-momentum tensor is given by [77,106,121]

8πG5 〈Tµν〉 = lim
a→∞

[
a2

(
Kµν −K γµν −

W (a)

L
γµν +

L

2
Gµν

)]
, (C.1)

where the boundary metric γµν is read off from the bulk metric written in the
form

ds2 = N2da2 + γµν (dxµ + nµda) (dxν + nνda) , (C.2)

Gµν = Rµν [γ] − 1
2
γµν R[γ] is the four-dimensional Einstein tensor of γµν , and the

extrinsic curvature tensor is given by [164]

Kµν = − 1

2N
(∂aγµν −∇µ[γ]nν −∇ν [γ]nµ) , (C.3)

with K = γµν Kµν . Here nµ = γµν n
ν , and W (a) is the superpotential.

Imposing the tracelessness of Tµν results in K = −4W (a)/(3L) − LR[γ]/6,
and reinserting this into (C.1) yields

8πG5 〈Tµν〉 = lim
a→∞

[
a2

(
Kµν +

W (a)

3L
γµν +

L

2

(
Rµν [γ]− 1

6
γµν R[γ]

))]
. (C.4)

In the following we set L = 1.
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Comparing (C.2) with the line element (5.68) for the deformed STU black
hole, and using (5.73), we infer that for large a,

nµ =− 3

W (a)
uµ , N2 = − 9

W (a)2
γµν uµ uν ,

γµν =a2gµν −
(

e−4U k − e−2U µ

a2

)
uµ uν +

1

2
e−U

(
uµRνλ u

λ + uν Rµλ u
λ
)

+
(

2a− η

2a2

)
σµν .

(C.5)

Here W (a) ≈ 3 + q2/(3 a4) and the exponential functions e−χU in γµν behave as
e−χU ≈ 1− χ q/(3 a2) so that

γµν =a2gµν −
(
k − w5M

a2

)
uµ uν +

1

2

(
1− q

3 a2

) (
uµRνλ u

λ + uν Rµλ u
λ
)

+
(

2a− η

2a2

)
σµν ,

(C.6)

where w5M = µ + 4
3
k q is the physical mass. At first order in ε and at large a,

the inverse metric γµν is then given by

γµν =
1

a2
gµν +

k

a4
uµ uν − 1

2a4

(
uµRν

λ u
λ + uν Rµ

λ u
λ
)
− 2

a3
σµν , (C.7)

where the indices on the right hand side are raised with the metric gµν .
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Computing the terms in (C.4) for large a and at first order in ε, we obtain

W (a) =3 +
q2

3 a4
,

N−1 =a+
k

2a
− k2

8a3
− w5M

2a3
+

q2

9a3
,− 1

2N
∂aγµν +

W (a)

3
γµν

=
1

2a2

(
k2

4
gµν + w5M (gµν + 4uµ uν)− 2 η σµν

)
− k

2
(gµν + 2uµ uν) +

(
a− k

2a

)
σµν

+

(
1

2
− q

3 a2

)(
uµRνλ u

λ + uν Rµλ u
λ
)
,

Γγαβ[γ] =Γγαβ +
1

a
gγλ (∇ασλβ +∇βσαλ −∇λσαβ) ,

∇µ[γ]nν =−∇µ uν ,

Rµν [γ] =Rµν +
4k

a
σµν ,

R[γ] =
R

a2
,

Rµν [γ]− 1

6
γµνR[γ] =Rµν − kgµν +

k2

a2
uµ uν

− k

2a2

(
uµRνλ u

λ + uν Rµλ u
λ
)

+
2k

a
σµν .

(C.8)

Inserting these expressions into (C.4) yields the energy-momentum tensor (5.75).
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