
Gauge/Gravity Duality applied to
Condensed Matter Systems

Martin Matthias Ammon

München 2010





Gauge/Gravity Duality applied to
Condensed Matter Systems

Martin Matthias Ammon

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von

Martin Matthias Ammon

aus Roth, Mittelfranken.

München, den 31. Mai 2010



This thesis is based on the author’s work partly published in [1–9] conducted from
November 2007 until May 2010 at the Max-Planck-Institut für Physik (Werner-
Heisenberg-Institut), München under supervision of Priv.-Doz. Dr. Johanna Karen
Erdmenger.

Erstgutachter: Priv.-Doz. Dr. Johanna Karen Erdmenger

Zweitgutachter: Prof. Dr. Dieter Lüst
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Zusammenfassung

In der hier vorliegenden Arbeit werden mit Hilfe der AdS/CFT-Korrespondenz Phänomene
stark gekoppelter quantenkritischer Systeme untersucht, wie sie beispielsweise in Syste-
men der kondensierten Materie auftreten. Die AdS/CFT-Korrespondenz ist dabei eine
aus der Stringtheorie hervorgegangene Dualität zwischen Eich- und Gravitationstheorien,
die Rechnungen in starker Kopplung auf der Eichtheorieseite in perturbative Rechnun-
gen auf der Gravitationsseite übersetzt. Dabei setzt die ursprüngliche, von Maldacena
im Jahr 1997 entwickelte Vermutung vierdimensionale, N = 4 supersymmetrische Yang-
Mills-Theorie und Typ IIB-Supergravitation im fünfdimensionalen Anti-de Sitter-Raum
in Beziehung. Diese Vermutung kann auf verschiedene Weise verallgemeinert werden. So
können auf der Eichtheorieseite Zustände mit endlicher Temperatur und Dichte betrachtet
werden oder Freiheitsgrade hinzugefügt werden, die sich in der fundamentalen Darstellung
der Eichgruppe transformieren, die sogenannten Flavor-Freiheitsgrade
Diese Deformationen der Korrespondenz werden in der hier vorliegenden Arbeit verwen-
det, um stark gekoppelte Systeme in der Nähe von quantenkritischen Punkten besser zu
verstehen. Wir approximieren hierbei die Feldtheorie am quantenkritischen Punkt durch
N = 4 supersymmetrische Yang-Mills-Theorie. Die Ladungsträger des Systems werden
durch supersymmetrische Flavor-Felder eingeführt. Dieses Modell ist der Ausgangspunkt
von vielen Überlegungen und Untersuchungen, die im Rahmen der Dissertation durch-
geführt wurden.
Beispielsweise wird in der hier vorliegenden Arbeit im Fall von zwei Flavor Feldern, die die
gleiche Masse haben, ein chemisches Potential für den Isospin betrachtet und das Phasen-
diagramm untersucht. Das Isospin-chemische Potential bricht hierbei den nicht-Abelschen
Anteil der Flavor-Symmetrie, SU(2), auf U(1). Wird ein kritischer Wert des Isospin-
chemischen Potentials überstiegen, so zeigt unsere Rechnung, dass das stark-gekoppelte
System gegenüber Fluktuationen instabil wird. Es bildet sich ein neuer thermodynamisch
favorisierter Zustand aus. Dieser Zustand bricht die restliche U(1) Flavorsymmetrie spon-
tan und kann daher als eine Supraflüssigkeit angesehen werden. Ist nun die U(1) geeicht,
erhält man auf diese Weise einen Supraleiter. Die Wechselstrom-Leitfähigkeit geht in der
supraleitenden Phase für kleine Frequenzen gegen Null. Die Gleichstrom-Leitfähigkeit je-
doch ist unendlich, wie das auch von einem Supraleiter erwartet wird. Da der Supraleiter
stark gekoppelt ist, kann dieser nicht durch die BCS Theorie beschrieben werden. Des
Weiteren berechnen wir auch die Fermifläche in der supraleitenden Phase und beobach-
ten, dass diese auf vier ausgezeichnete Punkte kollabiert.
Außerdem wird eine holographische Methode zur Berechnung der Leitfähigkeit des Gleich-
stroms auf beliebige konstante elektrische und magnetische Felder weiterentwickelt. Hierbei
wird die Leitfähigkeit nicht mit Hilfe von Linearer-Antwort-Theorie beschrieben, sondern
ist selbst vom elektrischen Feld abhängig.
Schließlich wird auch ein zweites Modell für die Feldtheorie am quantenkritischen Punkt,
eine Chern-Simons-Materie Theorie in (2+1)-Dimensionen, genauer untersucht. Die Chern-
Simons-Materie Theorie hat dynamische Freiheitsgrade und kann als Niederenergie-Limes
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von (2+1)-dimensionalen Membranen, sogenannter M2-Branen, aufgefasst werden. Auf
verschiedene Weisen werden in der vorliegenden Arbeit auf der Eichtheorieseite Ladungs-
träger in Form von fundamentalen supersymmetrischen Feldern hinzugefügt und die effek-
tive Kopplung an die Felder der Chern-Simons-Materie bestimmt. Auf der Gravitations-
seite werden dabei höherdimensionale Membranen und andere nicht-perturbative Objekte,
sogenannte KK-Monopole, in M-Theorie bzw. dessen Typ IIA Limes eingebettet.
Insgesamt erhoffen wir uns von diesen Untersuchungen an Modelltheorien, die sowohl
Berechnungen bei starker als auch bei schwacher Kopplung zulassen, neue Impulse für
die Theorie der kondensierten Materie. Dabei haben wir insbesondere quantenkritische
Systeme, wie beispielsweise Hochtemperatur-Supraleiter, im Blick.
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1
Introduction and Overview

In the twentieth century, physicists made much progress in the theoretical understanding
of many phenomena in nature, related to quantum theory and gravity. The basic build-
ing blocks of the physical world are particles and their interactions. Today, four basic
interactions are known: the electromagnetic force, gravity, the weak and strong nuclear
forces. Except gravity, the remaining three interactions, as well as the matter fields, can
be formulated in terms of a quantum field theory, known as the standard model of particle
physics. Up to now, the standard model of particle physics has been very well tested at
least up to energies of 100 GeV. Every high energy physics experiment has yielded results
consistent with the Standard Model.

All quantized forces, which are incorporated in the standard model, can be described in
terms of exchange particles. For example, the electromagnetic force is described by the
exchange of massless spin-1 particles, called photons, which we denote as γ. The quan-
tized theory of electrodynamics, Quantum Electrodynamics (QED), is very precise. The
theoretical prediction for the anomalous magnetic moment of the electron, for example,
agrees with the measured value up to one part in 1010.

The weak nuclear force is described by three exchange particles, W± and Z0. In contrast
to the photon, the W± and Z are massive spin-1 gauge bosons, and therefore the force is
short-ranged. The weak force is responsible for nuclear beta decay, for example. Although
the electromagnetic and weak forces seem to be very different, they can be formulated
in a unified theory, called the electro-weak theory, in terms of a SU(2) × U(1)Y gauge
theory. The electro-weak symmetry breaking mechanism breaks the SU(2)×U(1)Y gauge
symmetry to the electromagnetic U(1)em group, leaving only the photon massless and
giving mass to the W± and Z boson. This symmetry breaking mechanism also predicts
the existence of a massive scalar particle, called the Higgs boson. At colliders, such as the
Large Hadron Collider (LHC) at CERN, experimentalists aim at discovering this Higgs
boson.

Finally, the strong nuclear force can be described by Quantum Chromodynamics (QCD),
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which is an SU(3) gauge theory. The corresponding exchange particles, gluons, are mass-
less spin-1 gauge bosons that carry color charge. Although we know the Lagrangian of
QCD, the strong nuclear force remains mysterious, since QCD is an asymptotically free
theory, i.e. the coupling strength decreases if the renormalization scale increases, and vice
versa. Therefore, particles, scattering with a large momentum transfer, interact more and
more weakly. Such processes can be described by perturbation theory. In the opposite
situation, however, i.e. for particle-scattering at small momentum transfer, the interac-
tion strength is large and we cannot trust perturbation theory. Therefore QCD cannot be
solved analytically in the infrared, i.e. for small energies. Physicists started to investigate
strongly-coupled gauge theories by discretizing spacetime onto a lattice. This approach
is called Lattice Gauge Theory. Though lattice gauge theories are not exactly solvable,
they can be studied using simulations on a computer. The behavior of the theory defined
on the continuum spacetime may be recovered by performing simulations on larger and
larger lattices, while making the lattice spacing smaller.

To summarize, the Standard Model of particle physics is a gauge theory with gauge group
SU(3) × SU(2) × U(1)Y . It also includes matter particles of fermionic nature, which can
be grouped into six quarks (up, down, strange, charm, bottom and top) and six leptons
(electron, electron neutrino, muon, muon neutrino, tau and tau neutrino). Whereas quarks
carry color charge and hence interact via the strong interaction, the leptons are not charged
under the strong force. Quarks and the electrically charged leptons also carry weak and
electric charge. Moreover, the quarks and the leptons can each be grouped into pairs since
the corresponding particles exhibit similar physical behavior. Therefore we have three
different copies of matter particles, called first, second and third generation.

The standard-model described above has also some shortcomings. So far, the Higgs boson
and therefore also the electro-weak symmetry breaking mechanism has not been verified
experimentally. It is not quite a complete description of leptons either, because it does
not describe nonzero neutrino masses. Moreover, we do not understand QCD at low
energies: For example, it is very difficult to find the low-energy spectrum built up of
quarks. Experimentally we know that only bound states, namely baryons and mesons,
exist which do not carry any color charge. But so far we have no theoretical understanding
of this phenomena, referred to as color confinement.

Finally, due to the strong coupling, our understanding of many features of QCD remains
incomplete. In fact, a combination of results taken from lattice QCD and analytical efforts
have allowed theorists to map out parts of the phase diagram. We know that for extremely
high temperature and/or density a new phase exists, the Quark-Gluon plasma. In this
phase, quarks and gluons are deconfined and behave as nearly free particles. However,
current experiments at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider
(RHIC) observe a strongly coupled Quark-Gluon Plasma slightly above the confinement-
deconfinement temperature, i.e. between 175 MeV and 250 MeV. In this phase, quarks
and gluons are neither confined nor free particles. The appropriate description is in terms
of hydrodynamics. For the hydrodynamic description we have to determine the transport
coefficients, such as bulk and shear viscosity, for QCD at strong coupling and finite density.
A reliable calculation cannot be done with either lattice QCD or perturbative methods.

So far, we have not discussed the fourth fundamental interaction, namely gravity. Gravity,
the most mysterious of the four fundamental interactions, is incorporated in the standard
model only as a classical theory. We do not know how to quantize gravity in a consistent
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fashion since gravity is perturbatively non-renormalizable. But this is not the only prob-
lem. We have no idea why the cosmological constant Λ is so small and what dark energy
really is. Gravity is also very surprising from a different point of view. For black holes,
which are an exact solutions of gravity, the entropy scales like the area of the horizon and
not like the volume. This fact is the first evidence of a holographic principle in gravity: the
description of space may be encoded on a boundary to that region. In a larger and more
speculative sense, this holographic principle suggests that the information of the whole
(3+1)-dimensional universe is stored on a (2+1)-dimensional hypersurface, for example
the cosmological horizon.

String theory may resolve some of the problems mentioned above. String theory states that
all particles are not point-like objects, but rather one-dimensional extended objects. The
vibrations of the string correspond to different elementary particles. String theory does not
only contain scalar fields and gauge fields as well as fermions, but also a spin-2 excitation,
which is the graviton. The low-energy effective action, derived in string theory, includes
the usual Einstein-Hilbert term of general relativity. Moreover, string theory has only one
dimensionful scale, the characteristic string length. Therefore string theory is considered
to be a step towards the correct fundamental description of nature. In particular, string
theory is the first viable candidate for a theory of everything, describing all known forces
and matter in a mathematically consistent system. Note that string theory is very difficult
to test experimentally, like every other theory of quantum gravity, since the Planck length
is very small. Moreover, string theorists have not succeeded in constructing the standard
model within string theory, although they are very close to it. This is also due to the fact
that string theory requires the existence of six extra dimensions, which are not observable,
in addition to the usual four spacetime dimensions.

But let me bring you back to earth. Besides particle physics, gravity and cosmology,
there are also other very interesting areas of research, e.g. condensed matter physics.
Condensed matter physics deals with the macro- and microscopic physical properties of
matter. It investigates the many-body interactions and collective phenomena in condensed
phases of material, i.e. liquids and solids. In the last few decades, condensed matter
physics has evolved and expanded to an area that encompasses frontiers in fundamental
physics as well as to an interdisciplinary research field including laser cooled atoms, nano-
science, spintronics and even biophysics. Since condensed matter theory can be applied
to real-world systems, you may be even more surprised that there is a connection between
condensed matter physics and string theory. In this thesis we claim that we can get
new insights into condensed matter physics using string theory. In particular, we use
the holographic techniques mentioned above to investigate strongly correlated electron
systems, such as High-Tc superconductors and Non-Fermi liquids.

1.1 String Theory and strongly coupled systems

In the preceding section we mentioned that string theory is one of the most promising can-
didates for a theory of everything. The elementary particles should be viewed as vibrations
of one-dimensional extended objects, called strings. Besides strings, string theory contains
also higher-dimensional objects, Dirichlet-branes, in its spectrum. The strings propagate
in ten-dimensional spacetime. In fact, in ten dimensions there exists five consistent string
theories. All these string theories are related by dualities. Some are strong-weak coupling
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dualities, i.e. one of the theories is strongly coupled whereas the other theory is weakly
coupled.

By taking certain limits of string theory, we can establish a holographic duality between a
weakly-coupled theory of gravity in asymptotically Anti-de Sitter spacetime (AdS) and a
strongly-coupled conformal field theory (CFT) living on the boundary of that spacetime.
This duality is called Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT)
[10–12].

The most prominent example of the AdS/CFT correspondence arises from the study of
D3-branes in flat space. Here the gravity theory is type IIB supergravity in the near-
horizon geometry of D3-branes, which is AdS5 × S5, and the dual strongly-coupled CFT
is (3+1)-dimensional N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory in the ’t
Hooft limit Nc →∞ and additionally with large ’t Hooft coupling λ ≡ g2

YMNc →∞.

The AdS/CFT correspondence is a very useful tool since it relates a strongly-coupled field
theory to a weakly-coupled gravity theory. Therefore we can make predictions for strongly
coupled field theories by computations on the weakly-coupled gravity side. AdS/CFT is
especially useful if other conventional methods are not applicable. In this thesis we apply
the AdS/CFT correspondence to strongly-coupled field theories at finite density and finite
temperature. In particular, we determine the phase diagram of such theories and calculate
real-time transport coefficients, such as conductivities.

By construction, perturbation theory, which is essentially an expansion in small coupling, is
not applicable for strongly-coupled systems. Further note that at finite density, approaches
such as lattice field theory break down. Moreover it is very difficult within lattice field
theory to calculate transport coefficient in the real-time formalism.

The methods developed in this thesis can be used to study a variety of systems, such as the
strongly-coupled Quark-Gluon plasma and Condensed matter systems. In this thesis, we
concentrate on the latter one. Let us therefore review the basic facts of strongly coupled
condensed matter systems.

1.2 Strongly coupled condensed matter systems

The conventional approach of condensed matter theory is built on two conceptual cor-
nerstones: Landau’s symmetry breaking theory of phase transitions and the Fermi liquid
theory (for a review see [13]). The Landau theory for phase transitions of matter clas-
sifies different phases of matter by their symmetries. In particular, phase transitions are
associated with changes in symmetry. Fermi liquid theory treats properties of electrons
in solids as small perturbations of the ground state which consists of filled single-particle
energy levels.

These cornerstones of condensed matter theory are no longer valid when certain emerg-
ing phenomena in modern topics of condensed matter theory are studied. For instance,
strongly correlated systems such as high temperature superconductors [14, 15], heavy
fermion compounds [16,17], fractional quantum hall liquids in effectively two-dimensional
electron gas [18–20] and Luttinger liquids in one-dimensional conducting systems [13,21–
23], all involve properties which are beyond the underlying perturbative description of
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conventional Fermi liquid theory. The Landau theory of phase transitions may be also
not applicable to fractional quantum hall states and spin liquids [24–26]. In these sys-
tems, phase transitions are not associated with the breaking of symmetries. Rather, the
transitions among different topological or quantum orders can occur without changing the
corresponding symmetries.

Hence, new conceptional ideas are needed to describe these emerging areas of condensed
matter physics. Let us discuss two examples of strongly correlated electron systems: heavy
fermion compounds and high-Tc superconductors.

Let us first consider heavy fermion compounds. Heavy fermion compounds are a specific
type of metallic compound in which the effective charge carrying quasiparticles have a mass
of order 100 to 1,000 times of the bare electron mass. Therefore the specific heat at low
temperatures is up to 1,000 times larger then the value of the expected free-electron theory.
The typical phase diagram of heavy fermion compounds, depending on the pressure and
the temperature, is shown in figure 1.1(a). By changing the pressure, we obtain different
phases. For small pressure and small temperature, the material is antiferromagnetic. If we
further increase the pressure and cool the system below 2 K, the material is superconduct-
ing. This superconducting phase is controlled by a zero temperature phase transition [27].
Indeed, the superconductivity is magnetically mediated, not phonon-mediated as in the
usual BCS theory. Since the normal-conducting phase above the superconducting dome
shows non-Fermi liquid behavior, we might conclude that a perturbative quasiparticle
approach is not applicable [28].

The second example are high-Tc superconductors. High-Tc superconductors are materials
that have a superconducting transition temperature Tc above 30 K. The first high-Tc

superconductors were discovered by Karl Müller and Johannes Bednorz in 1986, for which
they were awarded the Nobel price in physics in 1987. In 1986, the cuprate superconductors
LaBaCuO and La2−xSrxCuO4 were discovered. Until the discovery of Fe-based high-Tc

superconductors in 2008, only cuprate superconductors were known to be high-Tc.

After more than twenty years of intensive research, the origin of high-temperature super-
conductivity is still not clear. High-Tc superconductors differ fundamentally from conven-
tional BCS superconductors since they are doped Mott Insulators. For example, La2CuO4

is not superconducting but rather antiferromagnetic at low temperatures. By reducing the
number of conducting electrons per Cu atom in the copper oxide planes, e.g. by chemical
substitution to La2−xSrxCuO4, the compound superconducts at low temperatures for suf-
ficiently large doping x. For LaCuO4, the optimal doping is given by x ≈ 3/20 yielding a
critical temperature Tc ≈ 40 K. For larger values of x, the compound is called over-doped,
whereas for smaller values, the compound is under-doped. The schematic phase diagram
is given in figure 1.1(b).

Note that in the over-doped region for temperatures T > Tc, the material behaves as
a Fermi liquid. In contrast, in the under-doped region for T > Tc, we are in the still
mysterious pseudogap region where the material has non-Fermi liquid properties. It is
speculated that in high-Tc superconductors, there is zero temperature phase transition
hidden beneath the superconducting dome. Note that also if this phase transition exists, we
have to confirm that it is continuous and relevant for the dynamics in the superconducting
and in the pseudogap region.

Even more mysterious is a new universal law for high-Tc superconductors. In high-Tc
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(a) (b)

Figure 1.1: The phase diagram of two non-BCS superconductors. In both pictures, under the
superconducting dome, a quantum critical point may be hidden. Figure (a) shows the phase
diagram of the heavy fermion compound CePd2Si2 as a function of temperature and pressure.
Note that the bottom left phase is antiferromagnetically ordered and the bottom middle phase
is superconducting. Figure (b) shows the simplified doping-dependent phase diagram of cuprate
superconductors for hole doping. The phases shown are the antiferromagnetic (AF) phase which
is close to zero doping, the pseudogap, the Fermi liquid and the superconducting phase close to
optimal doping. In the white area of the phase diagram, the system behaves as a strange metal.
Figures taken from [29,30].

superconductors we can measure the critical temperature Tc, the superconducting den-
sity close to zero temperature, ns, and the electrical resistivity ρdc, measured just above
the critical temperature. Surprisingly, Homes’ law [31–34] states that in cuprate high-Tc
superconductors these three quantities satisfy a relation of the form

ns · ρdc ≈ 4.4Tc . (1.2.1)

Note that this is an experimental result. Since many novel superconductors are anisotropic,
the resistivity and the superconducting density depend on the crystal direction along which
these quantities are measured. Therefore both quantities have to be measured along the
same direction. The constant 4.4 does neither depend on the crystal direction nor on the
particular material. The expression (1.2.1) assumes that the conductivity and temperature
have both been recast in units of cm−1 (or s−1), and that the superfluid density has units
of cm−2 (or s−2). For BCS superconductors in the dirty limit, a similar relation holds.
Only the universal constant is slightly larger, namely 8.1 [32].

There is evidence that the dynamics of both mentioned non-BCS superconductors, one
of which is a high-Tc superconductor, are controlled by quantum critical points. Let me
explain why quantum critical points are relevant.1 A quantum critical point is a continuous
phase transition at zero temperature. Whereas finite temperature phase transitions are
driven by thermal fluctuations, zero temperature phase transitions are due to a non-
analyticity in the ground state, as we vary the coupling constant g. In real-world systems,

1This discussion follows closely [35].
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Figure 1.2: Schematic plot of a phase diagram near a continuous quantum critical point. Here, g
is a coupling constant of the theory, changing the dynamics of the system. Examples for g include
the doping parameter, a magnetic field or the pressure. On the vertical axis, the temperature T
is plotted. For zero temperature at g = gc a quantum phase transition occurs. The two blue lines
are phase transitions whereas the dotted lines are cross-overs. The dotted lines define also the
quantum critical region, denoted by QCR. Taken from [30].

the coupling constants are doping parameters, magnetic fields or pressure. The non-
analyticity may be a crossing of the energy levels of the first excited state and the ground
state, when we vary the coupling constant, or, in the case of a system with infinite volume,
it can also be traced back to an avoided crossing of the energy levels.

Typically, if we approach the continuous quantum critical point, the energy of fluctuations
about the ground state, ∆, vanishes2 whereas the coherence length,3 ξ, diverges. Let gc
be the critical value for the coupling constant g, then ξ and ∆ scale as

ξ ∼ |g − gc|−ν , ∆ ∼ |g − gc|zν . (1.2.2)

Combining both equations, we obtain

∆ ∼ ξ−z . (1.2.3)

z is called the dynamical scaling exponent. Note that energy, i.e. ∆, and distance, i.e.
ξ, need not be inversely related. The theory at the quantum critical point itself is scale-
invariant. We call this theory a quantum critical theory. For z = 1 the quantum critical
theory is relativistic, whereas for z 6= 1 it is non-relativistic.

Near classical critical points, the critical fluctuations are limited to a narrow region around
the phase transition. However, the influence of a quantum critical point is felt over a wide
range of temperatures above the quantum critical point. The region where the quantum
critical point dominates is called the quantum critical region (QCR). In the quantum
critical region, the deformation away of criticality, measured by ∆, is less important than
the scale of temperature, i.e. ∆≪ T. Hence, we can describe the system in the quantum
critical region by a finite temperature quantum critical theory. Note also that quantum
critical theories are strongly coupled. There is no a priori reason why the phase transition
should occur when g ≪ 1.

2You might think of the energy gap as the difference of the energies between first excited state and the
ground state.

3Second order phase transitions invariably have a characteristic length scale, such as the length scale
determing the exponential decay of equal-time correlators.
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1.3 AdS/CFT and condensed matter systems

In the last two years, scientists have begun to merge the ideas introduced in section 1.1,
the AdS/CFT correspondence, and in section 1.2, transport in quantum critical regions,
in order to get new insights into phenomena of strongly correlated electron systems [30,
36–38], often called Anti-de Sitter/Condensed matter theory or AdS/CMT.

Quantum critical theories are the natural place to start investigating condensed matter
systems using the AdS/CFT correspondence for several reasons. First, quantum critical
theories are scale invariant and therefore allow for a holographic description by the sim-
plest versions of AdS/CFT. Second, quantum critical theories are difficult to investigate
using traditional methods due to a lack of a description in terms of weakly-coupled quasi-
particles. In fact, there are no models for quantum critical theories in (2+1)- and higher
dimensions for which analytical results for processes like transport can be obtained.4 The
AdS/CFT correspondence, however, provides a set of exact solutions for the quantum
critical transport in 2+1 dimensions [42,43].

In section 1.2 we considered quantum critical theories. Some examples of quantum critical
theories can effectively be described by O(N)-models (with N = 2 or N = 3, for more
details see [35]). Here, in order to use the machinery of the AdS/CFT correspondence, we
consider instead of O(N)-models strongly-coupled supersymmetric large N field theories
which are dual to some gravity theories on asymptotically AdS spacetimes. For a concrete
example we have in mind (3+1)-dimensional N = 4 supersymmetric SU(Nc) Yang-Mills
theory in the large-Nc limit.

Let me emphasize that we do not claim to make quantitative predictions for quantum
critical theories in this thesis. Note that the models of quantum critical theories are
rather artificial since such models incorporate maximal supersymmetry as well as a large
N-limit of the gauge group. Instead, the aim of the AdS/CFT correspondence is different.
AdS/CFT may give us evidence for which phenomena can occur at strong coupling. By
comparing the results to a weak-coupling analysis, we may get new insights into quantum
critical points, which are inherently strongly coupled. We hope that the solutions provided
by the AdS/CFT correspondence, lead to a significant progress in formulating a (more
general) theory of quantum critical transport. Using the experience from holographic
calculations of the Quark-Gluon Plasma, we also might hope to find quantitative universal
behaviors in the condensed matter systems of interest. For example, it is interesting to
find the explanation in the dual gravitational theory for Homes’ law mentioned in section
1.2.

Within AdS/CMT, there are two different approaches to describe condensed matter sys-
tems, the bottom-up and the top-down approach. Let us first describe the bottom-up
approach. In order to describe strongly-coupled field theories at finite temperature and
density the bottom-up approach studies effective gravitational systems in the background
of charged black holes. In particular, the effective gravitational system is given by Einstein-
Hilbert gravity, where sometimes also higher-order terms are added, with other ingredients
like scalar fields, vector fields and fermions added to the theory.

4There exists a theory for the quantum critical transport [39–41] of models, such as the superfluid-
insulator transition in the lattice boson models and the transition between antiferromagnetic and spin
gap states in Mott insulators. The theory is based on insights from various weak-coupling perturbative
renormalization group analyses and is limited to a narrow range of physical parameters.
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In the bottom-up approach we consider an unspecified strongly-coupled field theory with
a global U(1) symmetry. Moreover, we consider finite-temperature states with a finite
U(1) chemical potential. On the gravity side, the corresponding minimal ingredients are
gravity, given by an Einstein-Hilbert term, and a U(1) gauge field. The bulk geometry
corresponding to a finite U(1) chemical potential is a Reissner-Nordström black hole. With
very standard gravitational systems it is possible to describe various examples of condensed
matter phenomena including superfluidity (or superconductivity) as well as (Non-)Fermi
liquids. Both systems are reviewed in the following.

Review: Holographic superconductors in the bottom-up approach

The bulk theory can describe a phase transition to s-wave superfluid states, if a scalar
charged under the U(1) is present [44–46]. On the gravity side, the Reissner-Nordström
black hole grows scalar hair at low temperature, that is, a solution with a non-trivial scalar
becomes thermodynamically preferred to Reissner-Nordström. In the dual field theory,
the thermodynamically-preferred state includes a nonzero expectation value for a scalar
operator charged under the global U(1), which we refer to as the operator condensing.
The phase transition is second order with mean-field exponents [45,46].

Gauge-gravity duality can also describe p-wave superfluids, that is, superfluids in which
the condensing operator is a vector charged under the U(1), thus breaking not only the
U(1) but also rotational symmetry to some subgroup [47]. On the gravity side, the minimal
ingredients are gravity and non-Abelian gauge fields. The simplest case is an AdS geometry
and SU(2) gauge fields, AaM , with Lorentz index M and a = 1, 2, 3 labels the SU(2)
generators τa. Here the U(1) is a subgroup of SU(2), for example the U(1) in the τ3
direction, which we call U(1)3. At high temperature the thermodynamically preferred
geometry is Reissner-Nordström with nonzero A3

t . At low temperature, the charged black
hole grows vector hair: the preferred solution has non-trivial A1

x. The dual field theory has
three conserved currents, Jµa , dual to the gauge fields. A chemical potential, producing
a finite density 〈J t3〉, explicitly breaks SU(2) to U(1)3, and the transition occurs at large
chemical potential, where the thermodynamically preferred state has nonzero 〈Jx1 〉.

Review: Holographic fermions in the bottom-up approach

Of central importance for potential condensed matter applications is the holographic de-
scription of a Fermi surface5 [49–52]. On the field theory side, we consider some fermionic
operator, charged under the U(1), in a zero temperature state. Holographic calculations
of the fermionic spectral function, as a function of frequency and momentum, reveal a pole
at zero frequency but finite momentum, which defines the Fermi momentum. The pole
represents an excitation about a Fermi surface.

On the gravity side, we have to add some bulk Dirac fermion charged under the U(1).
This bulk fermion is dual to the fermionic operator. The bulk fermion is propagating
in a Reissner-Nordström black hole. The spectral function of the operator is extracted
from solutions of the linearized bulk equation of motion, the Dirac equation. These Fermi
liquids are, generically, not Landau Fermi liquids, although the exact properties depend

5For an alternative approach, see [48].
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on the mass and charge of the bulk fermion.

Note that we can also consider fermions in a superconductor by using fermions and scalar
fields (or non-Abelian gauge fields). Holographic calculations of fermionic spectral func-
tions in zero-temperature s-wave superfluid states exhibit the so-called peak-dip-hump
structure [53], expected to be relevant in high-Tc superconductors [54], as well as, for suit-
able mass and charge of the bulk fermion, continuous bands of poles [55] and, for suitable
coupling to the bulk scalar, a gap, i.e. poles in the spectral function at nonzero momentum
and nonzero frequency [56].

Generally, the bulk actions used in holographic constructions of superconductors and Fermi
liquids are not derived from any particular string theory construction. In other words, they
are basically ad hoc models built from the minimal ingredients needed to capture the essen-
tial physics. On the one hand, simple models have one big advantage, besides simplicity,
namely a kind of universality: the results may be the same for many different theories,
parametrized by the masses and couplings of the fields we added by hand, regardless of
the details of their dynamics.

On the other hand we cannot identify the dual field theory explicitly. This is a major
drawback. For example, the holographic results obtained from a bottom-up approach may
tell us that a superfluid phase transition occurs, but may not tell us why. Is a nonzero
〈Jx1 〉 the result of some pairing mechanism? If so, is the pairing mechanism the same in
every dual theory? Knowing an exact dual theory may help to answer such questions, for
example by providing some weak -coupling intuition. Moreover, if we have not identified
the degrees of freedom and their dynamics, it is impossible to compare the effects of the
strongly coupled field theory, calculated in the dual gravitational system, to the effects in
the weakly coupled regime of the field theory.

Therefore it is very important to know the detailed dynamics of a specific dual theory.
Finding a dual Lagrangian means embedding the bulk theory into a full string or super-
gravity construction. This is the goal of the top-down approach. In this thesis we aim to
find embeddings of the holographic superconductor and holographic (non-)Fermi liquids
into a string theory.

The theory we study here involve a in general massive sector of U(1) charge carriers, in a
state of non-vanishing charge density 〈J t〉 6= 0, interacting among themself and dissipating
energy and momentum in a larger set of neutral quantum critical degrees of freedom. This
situation is schematically shown in figure 1.3. In particular, in our setup the quantum
critical theory with relativistic scale-invariance is given by (3+1)-dimensional strongly-
coupled N = 4 supersymmetric Yang-Mills theory with gauge group SU(Nc) in the large
Nc ’t Hooft limit. It is straightforward to add a sector of charge carriers by adding
Nf hypermultiplets or chiral multiplets to the theory, transforming in the fundamental
representation of the gauge group. If Nf ≪ Nc, the dynamics of the charge carrier does
not backreact on the underlying quantum critical field theory. The new charge carriers
introduce a U(1) global symmetry – the baryon or charge carrier number – under which
only the new fields are charged. Transport phenomena, associated with the global U(1)
charge carrier number, are dominated by the dynamics of the charge carriers which are
strongly interacting with the quantum critical degrees of freedom. To be precise, the
charge carriers are SU(Nc) gauge invariant and bound states, bilinear in the fields of the
hyper- or chiral multiplet. In analogy to QCD, these fields are sometimes called mesons
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Figure 1.3: Schematic picture of our setup. The quantum critical degrees of freedom are given
by N = 4 supersymmetric Yang-Mills theory in (3+1)-dimensions. The charge carrier sector
corresponds to hypermultiplets or chiral multiplets on the field theory side.

or mesinos, depending on their bosonic or fermionic nature.

Note that the charge carriers do not necessarily propagate in (3+1)-dimensions. The
charge carriers can also be confined to a plane, a line or even a point. Such theories are
called defect theories. These defect theories are common in condensed matter applications
since many real condensed matter systems are effectively (2+1)-dimensional degrees of
freedom interacting with ambient (3+1)-dimensional degrees of freedom.

Let us now construct the embedding of the setup considered above into string theory. The
gravity dual description of N = 4 supersymmetric Yang-Mills theory is given by type IIB
supergravity in AdS5×S5. The charge carriers are realized by embedding hyperplanes into
string theory. These hyperplanes, known as Dp-branes, have dynamical degrees of freedom,
such as scalars, vector and fermions, living on their worldvolume. These dynamical degrees
of freedom play the role of the charge carriers. Since we consider Nf hypermultiplets
or chiral multiplets on the field theory, we have to embed Nf Dp-branes. In the limit
Nf ≪ Nc, we may ignore the backreaction on the metric as well as other fields of type IIB
supergravity. The global symmetry U(1), under which the charge carriers are charged,
corresponds to the overall U(1) factor of the U(Nf ) gauge group associated with Nf

coincident Dp-branes.

After reviewing the two possible approaches to AdS/CMT, the bottom-up and the top-
down approach, and discussing their advantages and disadvantages, we present the results,
which I obtained using probe branes in the top-down approach.

Achievements of this thesis

Studying the probe branes introduced above, we obtain the following results:

• Calculation of the direct-current conductivity tensor

We compute the direct-current conductivity tensor associated with the transport of
baryon number in arbitrary constant electric and magnetic fields to all orders in
these fields.

• P-wave superconductors
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We embed holographic p-wave superconductors in string theory by considering two
different kinds of mass-degenerate charge carriers, giving rise to a SU(2) global
symmetry. Moreover, we turn on a SU(2) isospin chemical potential, breaking SU(2)
to U(1). The two kinds of charge carriers have opposite chemical potentials. Above
a critical value of the chemical potential, a non-vanishing condensate is generated
breaking the remaining U(1) spontaneously.

• Fermions and (Non-)Fermi liquids

We embed fermions into string theory by considering the fermionic part of the probe
Dp-brane action. In particular, we map the fermionic field theory operators to
bulk fermions living on the worldvolume of the Dp-brane. Moreover, we study
the fermionic response in the p-wave superconductor mentioned above. We find
that for low temperatures a Fermi surface emerges, which collapses to points in the
superconducting phase.

• Towards non-relativistic theories and their transport properties

We study the transport properties of non-relativistic field theories. In particular, we
deform N = 4 super Yang-Mills theory by an irrelevant operator breaking the rela-
tivistic conformal group down to the Schrödinger group, which has non-relativistic
scale invariance with dynamical exponent z = 2. Introducing charge carriers as well
as a finite number density, we compute the associated DC and AC conductivities
using the dual gravitational description of probe D7-branes in an asymptotically
Schrödinger spacetime.

• Adding charge carriers to (2+1)-dimensional Chern-Simons-Matter theories

We add charge carriers to (2+1)-dimensional conformal Chern-Simons-Matter the-
ory, which can also be used as a model of the quantum critical theory. In particular,
we calculate the effective couplings of the charge carriers to the Chern-Simons-Matter
theory on the field theory side and determine the dual gravity descriptions in terms
of D-branes or other non-perturbative objects.

• Holographic renormalization of fermions

As an added bonus, we also perform, to our knowledge for the first time, holographic
renormalization for fermions in AdS. Holographic renormalization is a technique to
cancel IR divergences on the gravity side and therefore to get finite partition func-
tions as well as one-point functions. More precisely, we study a single free fermion
in any space that asymptotically approaches Euclidean-signature AdS and deter-
mine the counterterms needed to render the on-shell action finite without spoiling
the stationarity of the action. Our results rigorously justify many of the ad hoc
prescriptions used in the literature, where divergences of the on-shell action were
simply discarded.

• Retarded Green’s function for coupled bulk fermions: An efficient way

We develop a method to compute the retarded Green’s function for bulk fermions
coupled to one another. Our method is actually very general, i.e. applicable to any
system of coupled bulk fermions, not just to fermions on the worldvolume of probe
Dp-branes, and is especially convenient for numerical analysis.
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1.4 Plan of the thesis

To conclude the introductory remarks, the thesis covers four main topics: the embed-
ding of holographic superconductors and of (non-)Fermi liquids into string theory, the
calculation of AC & DC conductivities near quantum critical points with non-relativistic,
z = 2 Schrödinger symmetry and the construction of quantum critical theories with charge
carriers for (2+1)-dimensional Chern-Simons theories.

The main content of the thesis is summarized below:

• The present chapter 1 gives an introduction to condensed matter systems near quan-
tum critical points and explains the goals and the strategy of applying AdS/CFT to
condensed matter systems.

• In chapter 2 we present an introduction to the AdS/CFT correspondence. In the
first two sections we motivate and state the AdS/CFT correspondence. Moreover,
the holographic renormalization of fermions in asymptotically AdS spacetimes is
discussed. Finally, the AdS/CFT correspondence is generalized to finite temperature
and fundamental matter degrees of freedom by adding probe Dp-branes.

• Chapter 3 is devoted to the response of external fields. First, we review linear
response theory and the holographic calculation of the retarded Green’s function. In
particular, we show how to compute the conductivity tensor of alternating currents
holographically as well as fermionic correlators. We also extend the analysis of
fermionic correlators to the case of coupled bulk fermions and give an efficient recipe.
At the end of the chapter, we calculate the direct-current conductivity tensor for
arbitrary constant electric and magnetic fields to all orders in these fields.

• In chapter 4 we embed holograhic p-wave superconductors in a string theory setup.
After explaining the field theory, we find a superconducting condensate on the gravity
side. Finally, we give a string theory picture of the superconducting condensate.

• In chapter 5 fermions are introduced in AdS/CFT. In particular, we consider the
fermions on the worldvolume of Dp-branes and determine their quantum numbers.
Finally, we study the fermionic response in the p-wave superconducting state intro-
duced in chapter 4.

• In chapter 6, we generalize the embedding of probe branes to non-relativistic systems
with a Schrödinger symmetry. We apply this result to calculate the conductivity for
alternating and direct currents.

• Chapter 7 is devoted to add probe branes to a (2+1)-dimensional conformal Chern-
Simons-Matter theory.

• In Chapter 8 we give a more detailed discussion of the results and we comment on
open questions and further developments in the future.





Part I

Foundations of AdS/CFT





2
The Anti-de Sitter/Conformal Field Theory

Correspondence

The Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT) is one of the most
exciting discoveries in modern theoretical physics in the last two decades. The AdS/CFT
correspondence discovered by Maldacena in 1997 [10], and more generally gauge-gravity
dualities, are dualities between theories of gravity in some spacetime and field theories
living on the ”boundary” of that spacetime. Due to that property the AdS/CFT corre-
spondence is a concrete realization of the holographic principle. We can map operators of
the field theory side of the duality to fields of the gravity theory and relate the generating
functional of the field theory to the partition function of the gravity side [11, 12]. More-
over, in a particular limit, the AdS/CFT correspondence is an example of a strong/weak
coupling duality: if the field theory is strongly coupled, the dual gravity theory is weakly
curved. For that reason the AdS/CFT correspondence is a very promising approach to
study strongly coupled field theories. Certain questions become computationally tractable
on the gravity side and also conceptionally more clear.

This chapter provides a brief introduction to the AdS/CFT correspondence. In particular
we emphasize facts which are highly relevant for the subsequent chapters of this thesis.
For more details we refer to the standard reviews [57, 58]. The outline of the chapter is
as follows. In section 2.1 we first state and then motivate a particular example of the
AdS/CFT correspondence. In particular we work out the precise mapping between op-
erators on the field theory side and fields on the gravity side in section 2.2, as well as
the prescription how to match the generating functional and the partition function. After
explaining in section 2.3 how to renormalize holographically, i.e. how to get a finite parti-
tion function and vacuum expectation values, we generalize the AdS/CFT correspondence
towards more realistic field theories. In section 2.4 we explain the implementation of finite
temperature on the field theory side in the dual gravity theory. Finally, we add flavor de-
grees of freedom in section 2.5 which transform in the (anti-) fundamental representation
of the corresponding gauge group.
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2.1 Review: The origin of AdS/CFT

There are many interesting examples of AdS/CFT correspondences available nowadays,
relating gravity theories on asymptotically Anti-de Sitter spacetimes to Conformal Field
Theories. However, for simplicity, we discuss in this chapter only the most prominent
example of the AdS/CFT correspondence: between the maximally supersymmetric gauge
theory in 3+1 dimensions and a certain five-dimensional gravity theory in asymptotically
Anti-de Sitter spacetime. Since a four-dimensional conformal field theory, denoted by
CFT4, is mapped to a gravity theory in AdS5, we denote it by AdS5/CFT4 correspondence.
After explicitly writing down the strongest form of the AdS5/CFT4 correspondence and
explaining the main ingredients in section 2.1.1, we motivate the correspondence in section
2.1.2 by considering a certain limit of D-branes, which are (non-perturbative) ingredients
of string theory.1 In section 2.1.3 different limits of the AdS5/CFT4 correspondence are
discussed which are more useful for explicit calculations.

2.1.1 The AdS5/CFT4 correspondence

The strongest form of the AdS5/CFT4 correspondence states that

N = 4 supersymmetric Yang-Mills (SYM) theory
with gauge group SU(Nc) and Yang-Mills coupling constant gYM

is dynamically equivalent to

type IIB superstring theory (with string length ls =
√
α′ and coupling constant gs)

on AdS5 × S5 with radius of curvature L and Nc units of F(5) flux on S5.

The two free parameters on the field theory side, i.e. gYM and Nc are mapped to the
free parameters gs and L/

√
α′ of the string theory side by

g2
YM = 2πgs, and 2Ncg

2
YM = L/

√
α′. (2.1.1)

Note that only the ratio L/
√
α′ is important and not the characteristic length scale of

AdS, i.e. the radius of curvature L, and the string length ls =
√
α′ separately. Therefore

we quite often use the freedom to set the radius of curvature, L, to one. At the end, the
dependence of L can easily be restored.

What does it mean that both theories are dynamically equivalent? The correspondence
states that both theories, i.e. N = 4 SYM and type IIB string theory on AdS5 × S5, are
identical and therefore describe the same physics from two very different perspectives. In
particular, if AdS5/CFT4 is true, one can map all the physics of one description onto all
the physics of the other description. This is very peculiar since one can map a possible
candidate for a theory of quantum gravity, i.e. type IIB string theory, to a field theory

1For those readers who are not familiar with string theory, we give a short introduction into technical
terms relevant for this discussion and later chapters of the thesis. The glossary may be found in appendix
A. For a more careful treatment of string theory I recommend the introductory book [59] as well as the
standard textbooks [60–67].
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without any gravitational degrees of freedom. Moreover, the AdS/CFT correspondence is
a realization of the holographic principle: the information of the five-dimensional theory,
which is the Kaluza-Klein reduction of type IIB string theory on S5, is mapped to a
four-dimensional theory which lives on the ”boundary” of the five-dimensional spacetime.

2.1.1.1 The N = 4 supersymmetric Yang-Mills theory

Before we motivate the correspondence in section 2.1.2, it is useful to discuss the technical
terms of the conjecture in more detail. Let us start with the field theory involved, N = 4
supersymmetric Yang-Mills theory (SYM) in four spacetime dimensions.

Supersymmetry is an extension of the Poincaré symmetry including also anticommuting
generators, the spinorial supercharges Q, which relate bosonic and fermionic fields. In
four dimensions, the spinorial supercharges Q are left-handed Weyl spinors. N denotes
the number of those supercharges. Since a Weyl spinor in four dimensions consists of
two complex components, the total number of real supercharges is 2× 2×N , i.e. 16 real
supercharges in the case of N = 4.2

The supercharges act as lowering and raising operators on the helicities/spins of the fields.
If N > 4, we have to include degrees of freedom with helicity/spin greater than 1. Since
we are only interested in field theories which contain only elementary fields with spin
less (or equal) to one, N = 4 is the maximal number of supercharges in four spacetime
dimensions.3

The supersymmetry algebras also have global symmetry rotating the supercharges into
each other. This so-called R-symmetry is given by U(N )R for four-dimensional field
theories.

N = 4 supersymmetry in four dimensions is very restrictive. For example, there is only
one multiplet containing only degrees of freedom with helicity ≤ 1, the N = 4 vector
multiplet. This vector multiplet consists of a gauge boson Aµ, four (left-handed) Weyl
fermions λA, A ∈ {1, . . . , 4} as well as six real scalars Xk, k ∈ {1, . . . , 6}, which can be
grouped in three complex scalars Φk = X2k−1 + iX2k, k ∈ {1, 2, 3}. Since the gauge field
transforms in the adjoint representation of the gauge groups and all other fields of the
multiplet are related to the gauge field by supersymmetry, all fields have to transform in
the adjoint representation of the gauge group. Under the R-symmetry, the gauge field
transforms as a 1, whereas the Weyl fermions λA are in the 4 and the scalars Xi are in
the 6 representation of SU(4)R. The field content of N = 4 SYM is summarized in table
2.1. In this table we decomposed the N = 4 multiplet into a N = 2 vector multiplet and
a N = 2 hypermultiplet. These N = 2 multiplets can be further decomposed into N = 1
multiplets: the N = 2 vector multiplet may be decomposed into a N = 1 vector multiplet
Wα containing λ4 and Aµ and into a N = 1 chiral multiplet Φ3 with the real scalar fields
X5 and X6 as well as the fermion λ3. The N = 2 hypermultiplet can be obtained by two
N = 1 chiral multiplets each containing two real scalars and a fermion.

In order to convince ourselves that we really know the Lagrangian of the field theories

2The algebra of symmetries of the N = 4 SYM contains another set of spinorial supercharges. To
distinguish both sets, Q are called the Poincaré supercharges.

3Therefore N = 4 SYM in four dimensions is also called maximally supersymmetric Yang-Mills theory.
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N = 2 components spin SU(4)R ∆

(Wα, Φ3) Aµ 1 1 1
vector λ3, λ4 1/2 4 3/2

(X5,X6) 0 6 1

(Φ1,Φ2) λ1, λ2 1/2 4 3/2
hyper X1,X2,X3,X4 0 6 1

Table 2.1: Fields of the N = 4 vector multiplet and their quantum numbers under the R-symmetry
group as well as their conformal dimension ∆. Note that we have not assigned quantum numbers
to the abelian part of R-symmetry. Although the supersymmetry algebra for N = 4 SYM in four
dimensions is invariant under U(4)R, the symmetry is broken to SU(4)R by the action (2.1.2).

studied in this thesis, we now write down the Lagrangian of N = 4 SYM:

SN=4 =

∫

d4x tr

[

− 1

2g2
YM

FµνF
µν +

Θ

8π2
Fµν F̃

µν − i
4∑

A=1

λ̄Aσ̄µDµλA −
6∑

i=1

DµX
iDµXi

+
g2
YM

2

∑

i,j

[Xi,Xj ]2 + gYM
∑

A,B,i

(CABi λA[Xi, λB ] + h.c.)



 (2.1.2)

=

∫

d4x Im tr τ

[∫

d4θ Φ̄Ie
V ΦIe

−V +

(∫

d2θWαW
α + ǫIJKΦIΦJΦK + h.c.

)]

,

where τ is the usual complex coupling and Wα is the chiral spinor field constructed from
the vector field V,

τ =
Θ

2π
+ i

4π

g2
Y M

, Wα = −1

4
D̄2
(
e−VDαe

V
)
. (2.1.3)

Moreover, the constants CABi are related to the Clifford Dirac matrices for SO(6)R ∼
SU(4)R. In the last line of equation (2.1.2) we finally expressed the action of N = 4 super
Yang-Mills theory, SN=4, in N = 1 superspace language. Besides the usual spacetime
coordinates, the superspace contains also Grassmanian valued coordinates which we denote
by θ. The fields ΦI , V and Wα are superfields and Dα, D̄

α̇ are superderivatives acting on
these superfields. You can find more details on superspace in standard textbooks about
supersymmetry, such as [68].

As you can see, the precise dynamics of N = 4 supersymmetric Yang-Mills theory is
almost entirely dictated by supersymmetry and the large R-symmetry group at the level
of a renormalizable Lagrangian. Besides choosing the gauge group, we have the freedom
to adjust the Yang-Mills gauge coupling gYM and the Θ parameter. The Θ parameter
breaks CP invariance and is set to zero from now on.

Let us list here several important facts about N = 4 supersymmetric Yang-Mills theory
in four spacetime dimensions.

• Since the coupling constant is dimensionless and all fields are massless, the action
of N = 4 SYM is classically scale invariant. It is quite remarkable that the theory
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is also scale invariant after quantization.4 In fact, scale invariance is part of a
larger symmetry, the conformal symmetry group SO(4, 2). Moreover, the Lagrangian
is also invariant under N = 4 supersymmetry with R-symmetry group SU(4)R.
Combining the conformal symmetry and supersymmetry, N = 4 SYM is invariant
under the superconformal symmetry given by the supergroup PSU(2, 2|4). Note that
the bosonic subgroups of PSU(2, 2|4), the conformal group SU(2, 2) ∼ SO(4, 2) and
the R-symmetry group SU(4)R ≃ SO(6)R, are precisely the isometry groups of
AdS5 and S5, respectively.

• Using perturbative quantization, it can be shown that N = 4 SYM has no ultra-
violet divergences in the correlation functions of elementary fields. Since also the
corrections of instantons are finite, the theory is believed to be UV finite.

• Furthermore, Monotonen and Olive et. al. conjectured [69–71] that N = 4 SYM
is invariant under the S-duality group SL(2,Z) acting on the complex coupling
constant τ as

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (2.1.4)

This S-duality is quite remarkable since it implies a strong-weak duality: the coupling
constant is given by τ = 4πi/g2

Y M . Let us now apply the S-duality transformation
with b = −c = 1, a = d = 0. This transformation changes the coupling constant gYM
to 4π/gY M .

• The N = 4 SYM has two different classes of vacua. Since the scalar potential must
vanish in the supersymmetric ground state and each interaction term [Xi,Xj ]2 is
non-negative, the scalar fields have to be constant and have to satisfy [Xi,Xj ] =
0 for any pair of indices i, j ∈ {1, . . . , 6}. This condition can be satisfied in two
different ways. Either the vacuum expectation values of Xi vanish, which is called
the superconformal phase, or there exists at least one scalar Xi for which the vacuum
expectation value is non-zero. The latter case is called the Coulomb phase. In
this phase, conformal invariance is broken since a length scale

〈
Xi
〉

is introduced.
Moreover, the gauge symmetry is also broken down to a subgroup. For example, for
gauge group SU(Nc) the gauge symmetry may generically be broken to U(1)Nc−1.

2.1.1.2 The geometry of AdS spaces

Let us also collect a few important properties of Anti-de Sitter spacetime which we need in
later chapters of the thesis. (d+ 1)-dimensional Anti-de Sitter space, AdSd+1 for short, is
the unique maximally symmetric space with constant negative curvature. AdSd+1 can be
embedded into (d + 2)-dimensional Minkowski spacetime (X0,X1, ...,Xd,Xd+1) ∈ Rd,2,

4Of course, every four-dimensional gauge theory with only massless flavor fields is scale invariant at the
classical level. However, quantum effects dynamically generate a scale since we must specify the value of
the coupling constant at some renormalization scale. If we change this energy scale, the strength of the
coupling will change, i.e. the coupling runs. Therefore classical scale invariance is broken at the quantum
level. This is true for pure Yang-Mills theory and also for QCD. However, N = 4 SYM theory is scale
invariant also at the quantum level. This is connected to the fact that N = 4 SYM is believed to be a UV
finite theory and that the β-function vanishes exactly to all orders in perturbation theory.
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with signature diag(−,+,+, . . . ,+,−), by the defining equation

−
(
X0
)2

+

d∑

i=1

(
Xi
)2 −

(

Xd+1
)2

= −L2 , (2.1.5)

where L is the radius of curvature of the Anti-de Sitter space, as we will see later. From
the embedding (2.1.5) we can easily read of the isometry group SO(d, 2) of AdSd+1, which
agrees with the conformal group of d-dimensional Minkowski spacetime. We do not review
here extensively the geometrical properties of Anti-de Sitter spacetimes. For more details
see [72]. Let us now introduce a particular parameterization of the hyperboloid (2.1.5).
In the following we use the coordinates t, ~x = (x1, . . . , xd−1) ∈ Rd−1 as well as r > 0. The
parameterization in these coordinates is given by

X0 =
L2

2r

(

1 +
r2

L4

(
~x2 − t2 + L2

)
)

, (2.1.6)

Xi =
rxi

L
for i ∈ {1, . . . , d− 1} , (2.1.7)

Xd =
L2

2r

(

1 +
r2

L4

(
~x2 − t2 − L2

)
)

, (2.1.8)

Xd+1 =
rt

L
. (2.1.9)

Due to the restriction r > 0, we cover only one half of the AdSd+1 spacetime. These local
coordinates are called Poincaré patch coordinates. In the Poincaré patch, the metric of
AdSd+1 space reads

ds2 =
L2

r2
dr2 +

r2

L2

(
−dt2 + d~x2

)
≡ L2

r2
dr2 +

r2

L2
(ηµνdx

µdxν) , (2.1.10)

where µ = 0, . . . , d, x0 = t and ηµν = diag(−1,+1, ...,+1). An explicit calculation of

the Ricci Scalar for AdSd+1 gives R = −d(d+1)
L2 , i.e. the curvature is indeed negative and

constant.5 This also confirms that L is the radius of curvature.

We can view (d + 1)-dimensional Anti-de Sitter spacetime in the Poincaré patch as flat
spacetime, parametrized by the coordinates t, ~x, plus an extra warped direction, which
is denoted by r. For a fixed value of r, the d-dimensional transverse spacetime is flat
Minkowski spacetime, i.e. Rd−1,1. A cartoon of Anti-de Sitter space is shown in figure 2.1.
The vertical direction in the figure 2.1 displays the radial direction r of Anti-de Sitter
spacetime. At the bottom of the figure 2.1, r is zero, whereas at the top r goes to infinity.
As we see now, these are two special values of the radial direction.

For r → 0, i.e. at the bottom of figure 2.1, we find a horizon due to gtt → 0. This is
the location of the Poincaré horizon, which has zero area since also gxixi → 0 for r → 0.
Note that the Poincaré horizon is only a coordinate singularity: on the other side of the
horizon, i.e. for r < 0, there is another Poincaré patch, which is needed to cover the whole

5The Riemann tensor can be written in the form

Rµνρσ =
R

d(d+ 1)
(gνσgµρ − gνρgµσ) = − 1

L2
(gνσgµρ − gνρgµσ) .

Therefore we see that Anti-de Sitter spacetime is maximally symmetric.
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Figure 2.1: A cartoon of Anti-de Sitter spacetime, taken from [73].

AdS spacetime. It is also possible to find global coordinates which cover the whole AdSd+1

space, but these coordinates are not important in the later chapters.

Note that the metric (2.1.10) has a ”second order pole” for r → ∞, i.e. gxixi diverges
quadratically for r→∞. Indeed, it is possible to show that every metric of asymptotically
Anti-de Sitter spaces has always such a quadratic divergence for a particular value r⋆ of
the radial direction. The slice of spacetime for fixed r = r⋆ is called the (conformal)
boundary of AdS. In the coordinates (see equation (2.1.10)) used above, the (conformal)
boundary is located at r →∞, i.e. at the top in figure 2.1.

In order to continue the metric also on the boundary of AdS, we have to multiply the
metric by a defining function g(r, t, ~x) which can be constructed as follows. g(r, t, ~x) has
to be a positive smooth function of the coordinates r, t and ~x. Moreover, g(r, t, ~x) must
have a second-order zero at r =∞. An example of a defining function g(r, t, ~x) is given by
g(r, t, ~x) = L2/r2ω(t, ~x) where ω is a smooth and positive function of ~x and t. Multiplying
the metric (2.1.10) with g and taking the limit r → ∞, we can define a finite boundary
metric given by ds2∂AdS = ω(t, ~x)(−dt2+d~x2). Different choices of ω(t, ~x), or more generally
different choices of g(r, t, ~x), can give rise to different boundary metrics. Therefore the
bulk metric determines a whole class of boundary metrics which are related by conformal
transformations. Hence, the boundary of Anti-de Sitter spacetimes is called conformal.

Whereas in the defining equation (2.1.5) the isometry group SO(d, 2) of AdSd+1 is ob-
vious, only the following subgroups of SO(d, 2) are manifest for the metric in Poincaré
coordinates:

• ISO(d− 1, 1), i.e. all Poincaré transformations acting on the t, ~x coordinates,

• SO(1, 1) acting on t, ~x and r in the following way

(t, ~x, r)→ (λt, λ~x, r/λ) . (2.1.11)

We see that we can identify the elements of ISO(d−1, 1) with the Poincaré transformations
on the conformal boundary of AdS. But how does the other generators of the isometry
group of AdSd+1 act on the conformal boundary of AdS? One can show that the isometry
group SO(d, 2) acts on the boundary as the conformal group of Minkowski space. In
particular the subgroup SO(1, 1) is identified with the dilatation D of the conformal
symmetry group of Rd−1,1.
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Sometimes it is more convenient to invert the r-coordinate by defining u = L2

r . As opposed
to the r-coordinates given by (r, t, ~x), the conformal boundary in the u-coordinates (u, t, ~x)
is located at u = 0, whereas the Poincaré horizon is at u → ∞. It is easy to verify that
the induced metric in u-coordinates reads

ds2 =
L2

u2

(
du2 − dt2 + d~x2

)
=
L2

u2

(
du2 + ηµνdx

µdxν
)
. (2.1.12)

To formulate the AdS/CFT correspondence, we also need to define a Euclidean-signature
version of (d + 1)-dimensional Anti-de Sitter space which we denote by EAdSd+1. To de-
fine EAdSd+1, we simply Wick rotate the component X0 in the defining equation (2.1.5).
Therefore the isometry group of EAdSd+1 is given by SO(d+1, 1) instead of SO(d, 2). Fi-
nally, for the metric in the Poincaré coordinates we have to replace ηµν by δµν in equations
(2.1.10) and (2.1.12). Here δ is the standard Kronecker symbol.

2.1.2 Derivation of the AdS5/CFT4 correspondence

In this section we motivate the AdS/CFT correspondence within the framework of su-
perstring theory. Superstring theory is much more than just a theory of closed strings.
Besides fundamental strings, superstring theory also contains various non-perturbative
soliton-like higher-dimensional objects known as Dirichlet branes, or D-branes for short.6

As we review in section A.3 of the glossary, D-branes can be viewed from two different
perspectives: the open string and the closed string perspective. Which perspective is most
convenient depends on the value of the string coupling constant gs.

7

• the open string perspective (reliable for gs ≪ 1):

D-branes may be visualized as higher-dimensional objects where open strings can
end. At low energies, the dynamics of the open strings are described by a supersym-
metric gauge theory living on the worldvolume of the D-branes.

• the closed string perspective (reliable for gsNc ≫ 1):

D-branes may be viewed as soliton-like solutions of the low-energy theory of super-
string theory, i.e. of supergravity. You may consider D-branes as sources for the
gravitational field which curve the surrounding spacetime. In the case of Nc coinci-
dent D-branes, the characteristic length scale of the curved spacetime is proportional
to gsNc. Note that the characteristic length scale should be large in order to trust
the supergravity approximation.

These two perspectives on D-branes allow us to motivate AdS5/CFT4 correspondence.
In the following discussion we consider Nc coincident D3-branes in type IIB superstring
theory.

6In the following, for indicating the number of spatial dimensions of the D-brane, we use the short-hand
notation Dp-brane where p stands for the number of spatial dimensions. A Dp-brane is also extended
along a timelike direction. For example, a D-brane with three spatial and a timelike dimension is called
D3-brane.

7The string coupling constant gs controls the interaction strength between open and closed strings.
Strictly speaking, the word ”constant” is wrong in this context since the string coupling gs is related to the
expectation value of the dilaton field, as reviewed in section A.1 of the glossary, and therefore is dynamical.
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First, let us consider the open string perspective. As mentioned above, the Nc coincident
D3-branes may be viewed as a four-dimensional hyperplane in ten-dimensional flat space-
time. The D3-branes support open strings which can interact with closed strings. By
taking a particular low-energy limit, the so-called Maldacena limit,

α′ → 0 with u =
r

α′ kept fixed, (2.1.13)

where r is any distance, we can decouple open and closed strings.8 At low energies
we can effectively describe the open string dynamics by a supersymmetric gauge theory
living on the worldvolume of the D3-branes.9 In the case of Nc coincident D3-branes, the
effective low-energy description of open strings is given by four-dimensional maximally
supersymmetric Yang-Mills theory with gauge group U(Nc). The coupling constant gYM
may be expressed in terms of the string coupling constant gs by g2

YM = 2πgs (see also
equation (A.3.77) of section A.3). The closed strings present in this configuration give rise
to supergravity in flat ten-dimensional spacetime. Let us now take the strong coupling
limit. This implies in particular that N = 4 SYM is strongly coupled.

In order to motivate the AdS5/CFT4 correspondence, let us now interchange the two
limits, i.e. the strong coupling and the low-energy limit. Consider the Nc D3-branes in
the strongly coupled limit gs →∞.10 Then, we have to take the closed string perspective.
The Nc D3-branes may be viewed as massive charged objects sourcing various fields of
type IIB supergravity, and therefore also of type IIB string theory. In this background
closed strings of type IIB superstring theory will propagate.

The supergravity solution of Nc D3-branes preserving SO(3, 1)×SO(6) isometries of R9,1

and half of the supercharges of type IIB supergravity, i.e. 16 out of the 32 supercharges,
is given by

ds2 = H3(r)
−1/2ηµν dx

µdxν +H3(r)
1/2δij dy

idyj , (2.1.14)

exp(2φ(r)) = g2
s , (2.1.15)

C(4) =
(
1−H3(r)

−1
)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.1.16)

where µ, ν = 0, . . . , 3 and i, j = 4, . . . , 9 and H3(r) = 1 +
(
L3
r

)4
The radial coordinate r

is defined by r2 =
∑9

i=4 y
2
i and L4

3 = 4πgsNα
′2. From now on we just write H(r) and

L instead of H3(r) and L3. Next we introduce spherical coordinates (r,Ω5) ∈ R+ × S5

instead of (y4, . . . y9) ∈ R6 by

δij dy
idyj = dr2 + r2dΩ2

5 . (2.1.17)

On the left side of the equation the summation is implicit.

The background consists of two different regions: a near-horizon region and an asymptot-
ically flat region. Therefore we have two different types of closed strings: closed strings

8The second condition ensures that all dimensionful physical quantities, such as Higgs values, are kept
constant in the Maldacena limit.

9For the precise low energy effective action for a single D-brane, as well as generalizations to coincident
D-branes, see section A.3. At lowest non-trivial order in α′ the action indeed reduces to Yang-Mills theory.

10We can achieve this for finite N by gs → ∞. Since a non-perturbative formulation of string theory is
not known up to now, we cannot do explicit calculations in this parameter regime. But we see in section
2.1.3 that there is a weaker form of the AdS/CFT conjecture in which we consider the limit Nc → ∞ but
gs ≪ 1 such that gsNc → ∞. In this case, the following statements are true although gs is small.
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propagating in flat ten-dimensional spacetime and closed strings propagating in the near-
horizon region. The dynamics of the closed strings in asymptotically flat spacetime are
described by type IIB string theory in ten-dimensional flat spacetime. Taking the low-
energy limit (2.1.13) we can decouple both types of closed strings from each other.

Note that in this limit

L4

r4
= 4πgsNc

α′ 2

r4
= 4πgsNc

α′ 4

r4
︸︷︷︸

const.

·α′−2
︸︷︷︸

→∞
→∞ , (2.1.18)

i.e. we effectively zoom into the near-horizon region. Therefore the Maldacena limit
(2.1.13) is sometimes also called the near-horizon limit.

Due to equation (2.1.18), we can approximate H(r) by H(r) ≃ L4

r4
. Thus we obtain11 for

the metric and the four form potential C(4)

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5 , (2.1.19)

C(4) =
L4

r4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.1.20)

The metric reduces to AdS5 × S5 by taking the near-horizon limit. The radius of the
sphere S5 and of AdS5 are equal and given by

L4 = 4πgsNcα
′ 2 . (2.1.21)

In both pictures, the open and the closed string perspective, we found two decoupled
effective theories in the low-energy limits:

• closed string perspective: type IIB string Theory on AdS5 × S5 and type IIB string
theory on R9,1.

• open string perspective: N = 4 SYM on flat four-dimensional spacetime and type
IIB string theory on R9,1.

Both perspectives should be equivalent descriptions of the same physics, and type IIB
string theory on R9,1 is present in both perspectives. Therefore Maldacena conjectured
in [10] that N = 4 super Yang-Mills theory with gauge group12 SU(Nc) in four dimensions

11To be on the safe side, we should work only with coordinates which are kept fixed while the Maldacena
limit is taken. Hence, it is useful to introduce the coordinate w = r

α′ and rewrite the metric and the
four-form potential in terms of w. One obtains

α′ds2 =
w2

L̃2
ηµνdx

µdxν +
L̃2

w2
dw2 + L̃2dΩ2

5 ,

α′ 2C(4) =
L̃4

w4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 .

where L̃ = L√
α′

= 4πgsNc.
12In the discussion so far we argued that the gauge group is U(Nc). However, it turns out that the overall

U(1) ⊂ U(Nc) degrees of freedom decouple from the SU(Nc) degrees of freedom. The U(1) degrees of
freedom correspond to singleton fields in the gravity theory which are only located at the boundary and
cannot propagate into the bulk of AdS5.
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is equivalent to type IIB string theory on AdS5 × S5, although the fundamental degrees
of freedom on both sides are very different. A first obvious check of the conjecture are the
symmetry groups on both sides which have to agree. As explained in section 2.1, N = 4
super Yang-Mills theory has an SU(4)R ≃ SO(6)R R-symmetry group and is conformal,
i.e. invariant under SO(4, 2) transformations. The isometry groups of AdS5 and S5 are
given by SO(4, 2) and SO(6), respectively. The matching of the symmetries will help us in
section 2.2 to determine the one-to-one mapping between operators on the gauge theory
side and bulk fields on the gravity side.

2.1.3 Different versions of the AdS5/CFT4 correspondence

Although the strongest form of the AdS5/CFT4 correspondence, discussed in section 2.1.1
and motivated in section 2.1.2, is very interesting and stimulates new ideas, it is very
difficult to do explicit calculations. Moreover, it is not known how to define string theory
in RR-backgrounds rigorously. Therefore it is necessary to lessen the strength, but not
the importance, of the AdS/CFT correspondence by taking certain limits on both sides.
We will see that we obtain more tractable forms of the AdS5/CFT4 correspondence.

Since we currently only understand string theory in the perturbative regime, it is useful
to specialize the string theory side of the correspondence to weak coupling, i.e. to gs ≪ 1.
At leading order in gs, the AdS side reduces to classical string theory in the sense that
we do not have to take into account the whole string genus expansion but only tree-level
diagrams in string perturbation theory.

The question is whether we should fix Nc, which also set the characteristic length, L/
√
α′,

while taking gs → 0, or if we should keep gsNc fixed. Let us see what happens if we fix Nc

and take the limit gs → 0. In this case gsNc goes to zero and therefore also the radius of
curvature of AdS5 in string units, i.e. L/

√
α′ → 0. Although we only have to take tree-level

diagrams in string perturbation theory into account, this limit is very complicated since
the string is propagating on a highly curved target space.

Alternatively, we can take the limit gs → 0 with Nc →∞ such that λ = g2
YMNc = 2πgsNc

is fixed, and thus also the radius of curvature of AdS5 is kept constant. On the field
theory side this limit is known as the ’t Hooft limit [74]. Hence, the field theory in the
large Nc-limit, with the ’t Hooft coupling λ = g2

YMNc fixed, corresponds to tree-level
type IIB string theory on AdS5 × S5. A 1/Nc expansion on the field theory side can be
mapped to an expansion in the genus of the string worldsheet on the string theory side
since 1/Nc = gs/λ.

After taking the ’t Hooft limit, there is only one free parameter on both sides: on the field
theory side we can tune the ’t Hooft coupling λ, whereas on the string theory side the radius
of curvature L/

√
α′ is a free parameter. Both parameters are related by L/

√
α′ = 2λ.

Since we are interested in strongly-coupled field theories, we take the limit λ→∞ on the
field theory side which corresponds to

√
α′/L → 0. The string length is then very small

compared to the radius of curvature. Therefore we can take a ”point particle limit” of
type IIB string theory which is given by type IIB supergravity on AdS5×S5. In this limit
we get an example of a strong/weak duality in the sense that we can map strongly-coupled
N = 4 SYM to type IIB supergravity on weakly-curved AdS5 × S5 space. In this thesis
we always use this weak form of the AdS/CFT duality. Nevertheless, we get interesting
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insights into strongly-coupled gauge theories from this weak form.

2.2 Review: The AdS/CFT Dictionary

In the last section, we motivated a particular example of the AdS/CFT correspondence
which we called AdS5/CFT4. If this conjecture holds, we should be able to map every
bulk field of the gravity side to some gauge invariant operator of the field theory. To
establish the one-to-one mapping between operators of the conformal field theory and
fields on the gravity side, various symmetries serve as a guideline. In N = 4 super Yang-
Mills theory, operators fall into multiplets of the full PSU(2, 2|4) symmetry group. We
can also group the excitations of type IIB supergravity on AdS5 × S5 into multiplets of
the corresponding symmetries of AdS5 and S5. Since these symmetries are identical on
the field theory and gravity side, it may be possible to establish a one-to-one mapping
between the representations of local gauge invariant operators on the field theory side and
representations showing up in the Kaluza-Klein tower of type IIB supergravity on AdS5,
reduced on S5. For the concrete mapping see chapter 5.6 of [58]. On the gravity side
one has to expand the ten-dimensional supergravity fields into spherical harmonics of S5.
The supergravity fields may become massive five-dimensional fields. Their mass m can
be mapped to the conformal dimension ∆ of the dual operator. For the AdSd+1/CFTd
correspondence we obtain the following mapping:

type of field relation between m and ∆

scalars, massive spin two fields m2L2 = ∆(∆− d)
massless spin two fields m2L2 = 0,∆ = d
p-form fields m2L2 = (∆− p)(∆ + p− d)
spin 1/2, spin 3/2 |m|L = ∆− d/2

Note that in order to satisfy the unitarity bound ∆ ≥ d−2
2 we also have to consider fields

with negative m2. In asymptotically AdS spacetimes tachyonic, i.e. negative mass squares,
are allowed. Breitenlohner and Freedman showed in [75] that for scalar fields with mass
given by m2L2 ≥ −d2/4, a quantization exists for which O has dimension ∆+, which is the
larger root of the equation m2L2 = ∆(∆−d). When −d2/4 < m2L2 < −d2/4+1, a second
quantization exists for which the dual operator has conformal dimension ∆− (which is the
smaller root). These two quantizations correspond to two different field theories, one of
which (the one with ∆ = ∆−) is unstable against a relevant deformation by a double-trace
operator of O, and flows to the other, stable, theory. For more details see [76]. When
m > 0, the dual operator is irrelevant, i.e. ∆ > d. The operator is marginal for m = 0.

Note that there is no straightforward recipe how to obtain the one-to-one mapping between
operators and fields. Most of the time, however, it is enough to know the conformal
dimension and the symmetries of the operator on the field theory side to determine the
dual field on the gravity side.

The precise statement of the correspondence equates the partition function of type IIB
string theory with the generating functional of connected CFT correlation functions. Let
φ be a field propagating in the bulk and let φ0 be the value at the conformal boundary.
For simplicity, we ignore all indices, i.e. φ can be a scalar, a vector or even the metric.
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The bulk field φ is dual to a gauge-invariant operator O on the field theory side. The
AdS/CFT correspondence is the statement that [11,12]

〈

ei
∫
d4xOφ0

〉

SYM
= ZIIB, string(φ→ φ0) . (2.2.22)

In the partition function ZIIB, string we integrate over all possible field configurations of φ
as well as over all metrics that have a double pole (at the conformal boundary) and induce
a given conformal structure.

Up to now it is not known how to calculate the partition function of type IIB superstring
theory. Therefore let us from now on use a weaker form of the AdS/CFT correspondence
(see section 2.1.3) in the rest of the thesis. If we use the weakest form of the AdS/CFT
correspondence, we can argue that a saddle point to the superstring partition function
ZIIB, string is given by type IIB supergravity. Thus we can approximate the string partition
function ZIIB, string(φ→ φ0) by

ZIIB, string(φ→ φ0) ≈ exp
(
iSIIB, sugra(φ̄→ φ0)

)
, (2.2.23)

where φ̄ denotes the solution of type IIB supergravity with leading asymptotic behavior
φ0 near the conformal boundary. In the weakest form, the AdS/CFT correspondence
therefore equates

〈

ei
∫
d4xOφ0

〉

SYM
= exp

(
iSIIB, sugra(φ̄→ φ0)

)
. (2.2.24)

The on-shell bulk action, SIIB, sugra, acts as the generating functional for correlators in-
volving the operator O. In other words, to compute renormalized correlators of the oper-
ator O, we take functional derivatives of SIIB, sugra with respect to the source φ0.

The precise recipe to calculate correlation functions of the operator O by AdS/CFT meth-
ods is as follows:

(i) Determine the bulk field φ which is dual to the operator O.

(ii) Solve the supergravity equations of motion for φ. The solution is denoted by φ̄.

(iii) Insert the solution φ̄ into the supergravity action and exponentiate the result.

(iv) Take variational derivatives with respect to the source φ0 which is the leading asymp-
totic behavior of φ̄.

For example the connected correlator of the operator O, i.e. 〈O〉c , is given by

〈O〉c =
〈O〉SYM
〈1〉SYM

= i
δ

δφ0
SIIB, sugra . (2.2.25)

Generically, both the on-shell bulk action and the CFT generating functional diverge.
On the bulk side, the divergences arise from the infinite volume of AdS, i.e. they are
long-distance or infrared (IR) divergences. In the field theory, the divergences are short-
distance ultraviolet (UV) divergences. To make the AdS/CFT correspondence meaningful
we must regulate and renormalize these divergences. In the next section we discuss how
to obtain a finite value for the action SIIB, sugra, when we insert in the solution to the
equations of motion.
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2.3 Holographic renormalization for fermions

In this section, we discuss holographic renormalization, a procedure which guarantees a
finite partition function as well as finite one-point functions. The method presented here
can not only be applied to the AdS5/CFT4 correspondence, but also to more general
versions. In particular, we do not have to restrict the AdS/CFT correspondence to four-
dimensional field theories. Hence, in this section we use the more statement that a theory
of dynamical gravity13 on AdSd+1 is equivalent to a d-dimensional CFT that lives on the
boundary of AdSd+1.

The standard example for which the holographic renormalization is discussed are massive
scalar fields in asymptotically AdS spacetimes (see [77, 78] and references therein). The
details of holographic renormalization are well-known for various other species of bulk
fields, for example for the metric [77] and gauge fields [79].14 Here we study the holographic
renormalization of a Dirac fermion in spaces that asymptotically approach AdSd+1. We
work in Euclidean-signature AdSd+1, unless stated otherwise. We assume that the bulk
metric asymptotically approaches AdSd+1, but, unlike in the previous sections, we leave
the number of spatial dimensions d unconstrained.

Holographic renormalization proceeds as follows. We first regulate the on-shell bulk action
by introducing a cutoff on the integration in the radial direction of AdS. Using the coordi-
nates (2.1.12), we do not integrate to u = 0 but rather to some value u = ǫ. We then add
counterterms on the u = ǫ surface to cancel any terms that diverge as we remove the reg-
ulator by taking ǫ→ 0. Generically, the form of the counterterms is fixed by symmetries,
and the coefficients of the counterterms are adjusted to cancel the divergences. Once the
counterterms are known, we can proceed to compute functional derivatives of the on-shell
bulk action, always taking ǫ→ 0 in the end, thus obtaining renormalized CFT correlation
functions in a way that is manifestly covariant and preserves all symmetries.

The form of the counterterms is fixed by symmetries (in particular Lorentz invariance on
the u = ǫ surface) and by the requirement that they cancel divergences of the on-shell
action. Moreover, for fermions we have an additional constraint. The counterterms can
be built only from one component of Ψ, Ψ− = 1/2(1−γu)Ψ. This component is held fixed
under variations, and hence does not spoil the stationarity of the action.

Otherwise, the procedure for fermions very closely parallels that for scalars. Our main
results of this section are the counterterms in equations (2.3.58) and (2.3.66), and the
renormalized on-shell actions in equations (2.3.70), (2.3.71), and (2.3.72).

Let me emphasize that these are new results. The following discussion is based on work
done in collaboration with Johanna Erdmenger, Matthias Kaminski and Andy O’Bannon
and was published in [8].

13In the strongest form, the theory of dynamical gravity is a version of superstring theory, whereas in
weaker forms it may be supergravity.

14To our knowledge, the only detailed analysis of holographic renormalization for fermions was in the
(more complicated) context of non-relativistic gauge-gravity duality, in [80].
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2.3.1 Review: Free Fermions

We begin by studying a single free fermion in AdS space. In particular we review how
to extract the field theory fermionic two-point function from a solution for a bulk Dirac
fermion, following [49,51,81].

In this section we work mainly with Euclidean-signature AdS space, with the metric of
equation (2.1.12).15 From now on, we set the characteristic radius of AdSd+1, i.e. L, to
one. The metric therefore reads

ds2 = gAB dx
AdxB =

du2

u2
+

1

u2
δij dx

idxj . (2.3.26)

We study a bulk Dirac spinor Ψ. The Dirac action (plus boundary terms) is

S =

∫

dd+1x
√
g
(
Ψ̄ /DΨ−m Ψ̄Ψ

)
+ Sbdy, (2.3.27)

where, picking one of the spatial directions to be time, with corresponding γt, we define
Ψ̄ = Ψ†γt. We write the AdSd+1 Dirac operator /D below. Here, Sbdy includes boundary
terms that do not affect the equation of motion.

Varying the above action, we obtain the bulk equation of motion, the Dirac equation,

eMA γ
ADMΨ−mΨ = 0, (2.3.28)

where eMA = u δMA are the inverse vielbeins associated with the metric in equation (2.1.12).16

The curved-space covariant derivative is

DM = ∂M +
1

4
(ωM )AB

[
γA, γB

]
, (2.3.29)

where (ωM )AB is the spin connection associated with the metric in equation (2.1.12). The
only nonzero components of the spin connection are (ωi)uj = 1

u δij , so that Du = ∂u and
the other components of DM are

Di = ∂i +
1

4

1

u

[
γu, γi

]
. (2.3.30)

We can now simplify the Dirac equation,

0 = eMA γ
ADMΨ−mΨ

= u γM∂MΨ +
1

4
γi
[
γu, γi

]
Ψ−mΨ

=

[

u γM∂M −
d

2
γu −m

]

Ψ. (2.3.31)

We work with a single Fourier mode, so we let Ψ→ eikx Ψ, where, without loss of generality,
we have chosen the momentum to point in the x̂ direction.17 The Dirac equation is then

[

uγu∂u + ik u γx − d

2
γu −m

]

Ψ = 0. (2.3.32)

15Capital Latin letters A,B, . . . always denote the AdSd+1 directions, including the radial direction u,
while lower-case Latin letters denote field theory directions: i, j = 1, . . . d.

16Recall that for inverse vielbeins, the upper index is general coordinate and the lower index is local
Lorentz. The γA obey the usual algebra {γA, γB} = 2 δAB.

17 In a p-wave superfluid phase, rotational symmetry is broken. So there, to study the most general
case, we must use a momentum with nonzero components in different directions, as we discuss in section
5.2.
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2.3.2 Solving the Equation of Motion

In order to describe the asymptotic behavior of Ψ most succinctly, we define Ψ± =
1
2 (1± γu)Ψ so that γuΨ± = ±Ψ±. In terms of Ψ±, the equation of motion becomes

(

u∂u −
d

2
−m

)

Ψ+ + kuσ3Ψ− = 0, (2.3.33)

(

u∂u −
d

2
+m

)

Ψ− + kuσ3Ψ+ = 0. (2.3.34)

These first-order equations give rise to the second-order equations

[

∂2
u −

d

u
∂u +

1

u2

(

−m2 ±m+
d2

4
+
d

2

)

− k2

]

Ψ± = 0. (2.3.35)

We can solve equation (2.3.35) exactly. The form of the solution depends on the value of
m.

First, suppose m is not a half-integer. The solution of equation (2.3.35) is then

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

, (2.3.36)

where the J’s denote Bessel functions of the first kind18 and C±
1 (k) and C±

2 (k) are spinors
of the same chirality as Ψ±, which may depend on k, as indicated.

When m is half-integer, m± 1
2 is an integer and hence the order of the Bessel functions is

an integer. In that case the two Bessel functions are not linearly independent: if the order
n of Jn(x) is an integer, then Jn(x) obeys the special identity J−n(x) = (−1)nJn(x), so in
that case Jn(x) and J−n(x) are obviously linearly related.19 When m is half-integer, we
must introduce a Bessel function of the second kind, Yn(x), which is linearly independent
from Jn(x). When m is half-integer, the solution thus becomes

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) +C±
2 (k)Ym∓ 1

2
(
√

−k2 u)
]

. (2.3.37)

Notice that if the order n of Yn(x) is an integer, then Yn(x) obeys a relation similar to
that for Jn(x), namely Y−n(x) = (−1)nYn(x).

The key difference between the Bessel functions of the first and second kinds that will be
important for us is that the small-x expansion of Jn(x) involves only powers of x, whereas

18Notice also that since the arguments of the Bessel functions are imaginary, we could equally well write
them using the modified Bessel functions In(x) and Kn(x). For our asymptotic analysis, the distinction is
not important. If the space was pure AdSd+1 (not just asymptotically AdSd+1), however, equation (2.3.36)
is the solution for all u, and regularity in the bulk would force us to discard the In(x) solution.

19The Wronskian

W (Jn(x), J−n(x)) = − sinnπ

πx
,

clearly vanishes when n is integer, indicating linear dependence. The Wronskian

W (Jn(x), Yn(x)) =
2

πx
,

for any n.
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the expansion of Yn(x) involves both powers of x and logarithms of x. Indeed, Jn(x) has
a series expression (for any n),

Jn(x) =
(x

2

)n
∞∑

k=0

(−1)k

k! Γ(k + n+ 1)

(x

2

)2k
, (2.3.38)

from which we can immediately read the expansion for small x. Yn(x) has a series expres-
sion, when n is a non-negative integer,

Yn(x) =
2

π
Jn(x) log

x

2
− 1

π

(x

2

)−n n−1∑

k=0

(n − k − 1)!

k!

(x

2

)2k

− 1

π

(x

2

)n
∞∑

k=0

(−1)k

k!(n+ k)!
[ψ(n + k + 1) + ψ(k + 1)]

(x

2

)2k
, (2.3.39)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function. We can obtain the series form of Y−n(x)

simply from Y−n(x) = (−1)nYn(x). The two features to notice are that the logarithmic
terms in Yn(x) are simply of the form Jn(x) log x, and Yn(x) also includes terms with
inverse powers of x, from the x−n multiplying the first sum.

Using the series expressions for the Bessel functions, we can rewrite the solutions in a
form useful for our purposes (and introduce some notation to keep expressions simple and
compact). First, consider m not-half-integer. We write

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

, (2.3.40)

= u
d+1
2

[

c±1 (k)um∓ 1
2
(
1 + s±a (u, k)

)
+ c±2 (k)u−(m∓ 1

2)
(
1 + s±b (u, k)

)]

,

= c±1 (k)u
d
2
+m∓ 1

2
+ 1

2
(
1 + s±a (u, k)

)
+ c±2 (k)u

d
2
−m± 1

2
+ 1

2
(
1 + s±b (u, k)

)
,

where in the second line we have absorbed various factors into C±
1 (k) and C±

2 (k), which
we then relabeled as c±1 (k) and c±2 (k), and we have defined the series

s±a (u, k) ≡
∞∑

j=1

a±j (m)
(
−k2

)j
u2j , a±j (m) ≡ (−1)j

j! 22j

Γ
(
1 +

(
m∓ 1

2

))

Γ
(
j + 1 +

(
m∓ 1

2

)) , (2.3.41)

and s±b (u, k) and b±j (m) are defined similarly, but with
(
m∓ 1

2

)
→ −

(
m∓ 1

2

)
. We have

isolated the leading powers of u near the boundary u→ 0: the sums s±a (u, k) and s±b (u, k)
involve sub-leading powers of u (each sum starts at order u2). Written separately (to
facilitate counting powers of u), Ψ± are

Ψ+ = c+1 (k)u
d
2
+m
(
1 + s+a (u, k)

)
+ c+2 (k)u

d
2
−m+1

(
1 + s+b (u, k)

)

Ψ− = c−1 (k)u
d
2
+m+1

(
1 + s−a (u, k)

)
+ c−2 (k)u

d
2
−m (1 + s−b (u, k)

)
. (2.3.42)

The coefficients in equation (2.3.42) are actually not independent. If we return to equa-
tion (2.3.32) and insert Ψ = Ψ+ + Ψ−, using our solutions for Ψ±, then we find, upon
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generalizing kγx → 6k and collecting powers20 of u,

0 =
[
(−2m+ 1) c+2 (k) + i6k c−2 (k)

]
u

d
2
−m+1

+
[
−(2m+ 1) c−1 (k) + i6k c+1 (k)

]
u

d
2
+m+1 +O

(

u
d
2
−m+2

)

. (2.3.43)

We thus conclude that

c−1 (k) =
1

2m+ 1
i6k c+1 , c+2 (k) =

1

2m− 1
i6k c−2 (k). (2.3.44)

When m is half-integer, we can insert the series expressions for the Bessel functions in
equations (2.3.38) and (2.3.39) into the solutions for Ψ±, and rearranging various terms,
we can write

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) + C±
2 (k)Ym∓ 1

2
(
√

−k2 u)
]

,

= u
d+1
2

[

c±1 (k)um∓ 1
2 (lnu)

(
1 + s±a (u, k)

)
+ c±2 (k)u−(m∓ 1

2)
(
1 + s±d (u, k)

)]

,

= c±1 (k)u
d
2
+m∓ 1

2
+ 1

2 (lnu)
(
1 + s±a (u, k)

)
+ c±2 (k)u

d
2
−m± 1

2
+ 1

2
(
1 + s±d (u, k)

)
,

where in the second line we have absorbed various factors into C±
1 (k) and C±

2 (k), which
we then relabeled as c±2 (k) and c±1 (k). Notice in particular that we exchanged the indices
1 and 2. Recall that we are using units in which the radius of AdSd+1 is equal to one.
The arguments of the logarithms include factors of the AdSd+1 radius to render them
dimensionless. The sums s±a (u, k) are defined in equation (2.3.41), while the sums s±d (u, k)
are

s±d (u, k) =

∞∑

j=1

d±j (m,k)(−k2)ju2j, (2.3.45)

where the coefficients d±j (m,k) are not particularly illuminating to see, so we will not
write them down. They can be derived straightforwardly from equations (2.3.38) and
(2.3.39). That derivation also shows that they can depend not only on m but also on k,
as indicated. We have defined our notation to isolate the leading powers of u near the
boundary u→ 0, and also to show that the solutions are identical in form to those for the
m-not-half-integer case in equation (2.3.40), except for an extra logarithmic factor in the
c±1 (k) terms. Written separately (to facilitate counting powers of u), Ψ± are

Ψ+ = c+1 (k)u
d
2
+m (lnu)

(
1 + s+a (u, k)

)
+ c+2 (k)u

d
2
−m+1

(
1 + s+d (u, k)

)

Ψ− = c−1 (k)u
d
2
+m+1 (lnu)

(
1 + s−a (u, k)

)
+ c−2 (k)u

d
2
−m (1 + s−d (u, k)

)
.(2.3.46)

Here again, the coefficients in equation (2.3.46) are not independent. Inserting the so-
lutions for Ψ± into the Dirac equation, equation (2.3.32), and generalizing kγx → 6k,
produces

0 =
[
−(2m+ 1) c−1 (k) + i6k c+1 (k)

]
u

d
2
+m+1 lnu+O

(

u
d
2
+m+2 lnu

)

+(−2m+ 1) c+2 (k) u
d
2
−m+1

(
1 + s+d (u, k)

)
+ i6k c−2 (k)u

d
2
−m+1

(
1 + s−d (u, k)

)

+c+1 (k)u
d
2
+m + c+2 (k)u

d
2
−m+1

[
u∂us

+
d (u, k)

]
+O

(

u
d
2
−m+2

)

, (2.3.47)

20When m is an integer, another term of order u
d
2
+m+1 appears in equation (2.3.43), with a coefficient

proportional to b+m(m)c+2 (k) + b−m(m)i6k c−2 (k). This term has opposite chirality from the term shown in
equation (2.3.43), hence we set them to zero independently. Using the definition of the b±j (m), we then

recover exactly the same relation between c+2 (k) and c−2 (k) as in equation (2.3.44), so we obtain no new
information.
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where in the first line we have indicated the sub-leading order of terms involving powers
and the logarithm of u, while in the third line we have indicated the sub-leading order of

terms involving just powers of u. When m 6= 1/2, the vanishing of the u
d
2
+m+1 lnu and

u
d
2
−m+1 terms in equation (2.3.47) requires

c−1 (k) =
1

2m+ 1
i6k c+1 , c+2 (k) =

1

2m− 1
i6k c−2 (k), (2.3.48)

which are identical to what we found in the m non-half-integer case, equation (2.3.44).
In what follows, we will also need to write c+1 (k) in terms of c−2 (k). We thus turn to

higher-order terms in equation (2.3.47). When m 6= 1/2, the u
d
2
+m term will always

have the same power of u as u
d
2
−m+1 times a particular term in the summations s+d (u, k),

s−d (u, k) and u∂us
+
d (u, k). Recall that these summations involve powers of u2. Some term

in the summations, say the jth term, will have j = m − 1
2 . Recalling the definition of

the summations in equation (2.3.45), we find from the second and third lines in equation
(2.3.47)

c+1 (k) = −
[

c+2 (k)(−2m + 1)d+
j (m,k) + i6k c−2 (k)d−j (m,k) + c+2 (k)d+

j (m,k) 2j
] (
−k2

)j
,

= −i6k c−2 (k) d−
m− 1

2

(m,k)
(
−k2

)m− 1
2 , (2.3.49)

where we inserted j = m − 1
2 into the first line, so that the two c+2 (k) terms canceled,

producing the second line. The factor of 2j = 2m − 1 in the first line is crucial for
the cancellation: it comes from the u∂u acting on s+d (m,k) in the third line of equation

(2.3.47). The m = 1/2 story is similar: u
d
2
−m+1 and u

d
2
+m become the same power u

d
2
+ 1

2 .
Thus, from the second and third lines in equation (2.3.47), we immediately find

c+1 (k) = −i6k c−2 (k) . (2.3.50)

In the following subsections we restrict to positive values of m unless stated otherwise.
We can recover results for negative m as follows. For m not-half-integer, if m < 0, then
we can insert m = −|m| in equation (2.3.36) to obtain

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

,

= u
d+1
2

[

C±
1 (k)J−(|m|± 1

2)
(
√

−k2 u) + C±
2 (k)J|m|± 1

2
(
√

−k2 u)
]

. (2.3.51)

To obtain results for negative m, we can work with positive m and then in all formulas
take m→ |m| and exchange C±

1 (k)↔ C∓
2 (k), which means

c±1 (k)→ c∓2 (k), c±2 (k)→ c∓1 (k), m not-half-integer. (2.3.52)

For m half-integer, if m < 0, then we can insert m = −|m| in equation (2.3.37) to obtain

Ψ± = u
d+1
2

[

C±
1 (k)Jm∓ 1

2
(
√

−k2 u) + C±
2 (k)Ym∓ 1

2
(
√

−k2 u)
]

,

= u
d+1
2

[

C±
1 (k)J−(|m|± 1

2
)(
√

−k2 u) + C±
2 (k)Y−(|m|± 1

2
)(
√

−k2 u)
]

,

= (−1)|m|± 1
2 u

d+1
2

[

C±
1 (k)J|m|± 1

2
(
√

−k2 u) + C±
2 (k)Y|m|± 1

2
(
√

−k2 u)
]

,

where in the third equality we have used J−n(x) = (−1)nJn(x) and Y−n(x) = (−1)nYn(x).
To recover results for negative m, we can work with positive m and then in all formulas
take m→ |m|, C±

1 (k)→ (−1)|m|∓ 1
2C∓

1 (k), and C±
2 (k)→ (−1)|m|∓ 1

2C∓
2 (k), which means

c±1 (k)→ (−1)|m|∓ 1
2 c∓1 (k), c±2 (k)→ (−1)|m|∓ 1

2 c∓2 (k), m half-integer. (2.3.53)
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2.3.3 Determining the Counterterms

As reviewed in section 2.2, the AdS/CFT dictionary equates the exponential of (minus)
the on-shell supergravity action with the generating functional of field theory correlation
functions. For the action in equation (2.3.27), clearly the bulk term vanishes when evalu-
ated on a solution. The only nonzero contribution to the on-shell action comes from the
boundary terms. We split Sbdy into two terms,

Sbdy = Svar + SCT , (2.3.54)

where Svar are terms required for the variational principle to be well-posed [82,83].

Since Ψ+(u, k) and Ψ−(u, k) are not independent [83,84], each one determines the canonical
momentum associated with the other (see for example [81]). In the bulk Dirichlet problem,
then, we cannot fix their asymptotic values c±(k) simultaneously, but can fix only one, the
coefficient of the dominant term, c−(k), and then vary the field. As shown in [83], for the
action to remain stationary under such variations, we must add the following boundary
term to the action,

Svar =

∫

ddx
√
γ Ψ̄+Ψ−, (2.3.55)

where the integration is over the u = ǫ hypersurface,
√
γ = ǫ−d is the square root of the

determinant of the induced metric at u = ǫ, and Ψ± are evaluated at u = ǫ.

We insert the solutions for Ψ± into Svar and isolate any terms that diverge as ǫ→ 0. We
then introduce into SCT any terms necessary to cancel the divergences and hence render
the on-shell action finite. The terms in SCT must respect the symmetries of the on-shell
Svar and must be built only from Ψ−, to preserve stationarity of the action, as explained
above.

For m not half-integer (and positive), if we insert the solutions for Ψ± from equation
(2.3.42) into equation (2.3.55), we find21

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (1 + fa+b−(ǫ, k)) + c̄+2 c
−
1 ǫ

d+2 (1 + fa−b+(ǫ, k)) (2.3.56)

+ c̄+1 c
−
1 ǫ

d+2m+1 (1 + fa+a− (ǫ, k)) + c̄+2 c
−
2 ǫ

d−2m+1 (1 + fb+b− (ǫ, k))
]

,

where we have introduced one more piece of notation: we have defined

fa+a−(ǫ, k) = s+a (ǫ, k) + s−a (ǫ, k) + s+a (ǫ, k) s−a (ǫ, k),

and similarly for fb+b−(ǫ, k), fa+b−(ǫ, k), and fa−b+(ǫ, k), all of which are summations in
powers of ǫ2, starting with ǫ2. We now ask what happens to each of the terms in the
brackets in equation (2.3.56) as ǫ → 0. The first term clearly remains finite (the ǫd’s
cancel). The second and third terms vanish as ǫ2 and ǫ2m+1, respectively. The fate of the
fourth term depends on m. Ifm < 1/2, then the fourth term vanishes as ǫ−2m+1, and so we
are done: no divergences appear and no counterterms are necessary. If m > 1/2, however,
then the fourth term may have one or more divergent terms, with the leading divergence
going as ǫ−2m+1, so we must add counterterms. Starting now, we assume m > 1/2. Using

21Starting now, we drop the k dependence in the coefficients: c±1 (k) → c±1 and c±2 (k) → c±2 .
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equation (2.3.44), we can write the on-shell Svar as

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d +
1

2m− 1
c̄−2 i6k c−2 ǫd−2m+1 (1 + fb+b− (ǫ, k)) +O

(

ǫd+2
)]

.

(2.3.57)

Having isolated the divergences in Svar, we now must write an SCT that obeys the following
constraints: it must cancel all divergences, while respecting all symmetries of, the on-shell
Svar, and must be built only from the boundary value of Ψ−. The SCT that does the job
is

SCT =

∫

ddx
√
γ

∞∑

j=0

αj(m) Ψ̄− 6∂ǫ �j
ǫΨ− =

∫

ddx
1

ǫd

∞∑

j=0

ǫ1+2j αj(m) Ψ̄− 6∂�
jΨ−,

(2.3.58)
where 6∂ǫ = ǫ 6∂ (the power of ǫ comes from the inverse vielbein evaluated at u = ǫ) and
�
j
ǫ is some power j of the scalar Laplacian �ǫ on the u = ǫ surface (so the derivatives

act only in field theory directions), which in our case is simply �ǫ = ǫ2 ∂2. When we take
Ψ→ eikxΨ, the counterterms become

SCT =

∫

ddx
1

ǫd

∞∑

j=0

ǫ1+2j αj(m) Ψ̄− i6k
(
−k2

)j
Ψ−, (2.3.59)

so that, inserting in the solutions for Ψ±, we find

SCT =

∫

ddx
1

ǫd

∞∑

j=0

ǫ1+2j αj(m) (2.3.60)

×
[

ǫd+2m+2 c̄−1 i6k (−k2)j c−1 (1 + fa−a−(ǫ, k)) + ǫd+1 c̄−1 i6k (−k2)j c−2 (1 + fa−b−(ǫ, k))

+ǫd+1 c̄−2 i6k (−k2)j c−1 (1 + fb−a−(ǫ, k)) + ǫd−2m c̄−2 i6k (−k2)j c−2 (1 + fb−b−(ǫ, k))
]

.

Among the terms in the bracket, the one that is potentially divergent when ǫ → 0 goes
as ǫd−2m. All of the other terms vanish when ǫ → 0. We fix the coefficients αj(m) by
demanding that the divergent terms in equations (2.3.57) and (2.3.60) cancel each other,
which means that the quantity

1

2m− 1
(1 + fb+b−(ǫ, k)) +

∞∑

j=0

αj(m)(−ǫ2k2)j (1 + fb−b−(ǫ, k)) (2.3.61)

must vanish order-by-order in −ǫ2k2, up to order ǫ2m−1. We immediately see that α0(m) =
− 1

2m−1 , and we can write a formal recursive solution for all the other αj(m) (here we drop
the dependence on m for notational clarity, so αj(m)→ αj, etc.),

αj = − 1

(2m− 1)

[

b+j + b−j +
∑

i=1

b+i b
−
j−i

]

−
∑

i<j

αi

[

2 b−j−i +
∑

k=1

b−k b
−
j−i−k

]

, (2.3.62)

where we define b±j (m) ≡ 0 if j ≤ 0. The first four αj(m) are

α0 = − 1

2m− 1
, α1 = − b−1 + b+1

(2m− 1)
− α0 2b−1 ,

α2 = −b
−
2 + b+2 + b−1 b

+
1

(2m− 1)
− α1 2b−1 − α0

(
2b−2 + b− 2

1

)
,

α3 = −b
+
3 + b−3 + b+2 b

−
1 + b+1 b

−
2

(2m− 1)
− α2 2b−1 − α1

(
2b−2 + b− 2

1

)
− α0

(
2b−3 + 2b−1 b

−
2

)
.
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Inserting in the explicit forms for the b±j (m) (which are just the a±j (m) from equation

(2.3.41) with m∓ 1
2 → −

(
m∓ 1

2

)
), we can write these explicitly:

α0(m) = − 1

2m− 1
, α2(m) =

2

(2m− 1)3(2m− 3)(2m − 5)
, (2.3.63)

α1(m) = − 1

(2m− 1)2(2m− 3)
, α3(m) =

17− 10m

(2m− 1)4(2m− 3)2(2m− 5)(2m − 7)
.

We have thus determined the counterterms when m is not half-integer.

We now consider half-integer m, in which case the solutions for Ψ± appear in equation
(2.3.46). Once again, to determine the divergences, we insert the solutions for Ψ± into
Svar, with the result

Svar =

∫

ddx
√
γ Ψ̄+Ψ− (2.3.64)

=

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (ln ǫ) (1 + fa+d−(ǫ, k)) + c̄+2 c
−
1 ǫ

d+2 (ln ǫ) (1 + fa−d+(ǫ, k))

+ c̄+1 c
−
1 ǫ

d+2m+1 (ln ǫ)2 (1 + fa+a− (ǫ, k)) + c̄+2 c
−
2 ǫ

d−2m+1 (1 + fd+d− (ǫ, k))
]

where fa+d−(ǫ, k), fa−d+(ǫ, k) and fd+d− (ǫ, k) are defined similarly to fa+a− (ǫ, k). We now
ask what happens to each of the terms in brackets in equation (2.3.64) when ǫ→ 0. The
first term diverges as ln ǫ. The second and third terms vanish as ǫ2 ln ǫ and ǫ2m+1 (ln ǫ)2,
respectively. The fate of the fourth term depends on m. If m = 1/2, then the fourth
term is finite. The first term still diverges, however, so in this case we need counterterms
(in contrast to the m-not-half-integer cases). If m > 1/2, then the fourth term may have
one or more power-law divergent terms, with the leading divergence going as ǫ−2m+1.
Notice, however, that the fourth term will also always produce something finite, since the
sum fd+d−(ǫ, k) will always have a term that goes as ǫ2m−1 which will cancel the ǫ−2m+1.
When m 6= 1/2, we can use equations (2.3.48) and (2.3.49) to rewrite the Svar in equation
(2.3.64) as

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (ln ǫ) (1 + fa+d−(ǫ, k))

+c̄+2 c
−
2 ǫ

d−2m+1 (1 + fd+d− (ǫ, k)) +O
(

ǫd+2 ln ǫ
)]

=

∫

ddx
1

ǫd
c̄−2 i6k c−2

[

−d−
m− 1

2

(m,k)
(
−k2

)m− 1
2 ǫd ln ǫ (1 + fa+d−(ǫ, k)) (2.3.65)

+
1

2m− 1
ǫd−2m+1 (1 + fd+d−(ǫ, k)) +O

(

ǫd+2 ln ǫ
)]

.

The m = 1/2 case is similar, except in the third line d−
m− 1

2

(m,k)
(
−k2

)m− 1
2 → 1, and the

fourth line remains identical to the first line.

We now include logarithmic terms in SCT ,

SCT =

∫

ddx

∞∑

j=0

(αj(m,k) + βj(m,k) ln ǫ)
√
γ Ψ̄− 6∂ǫ�j

ǫΨ−. (2.3.66)
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Inserting the solutions for Ψ± into SCT , we find

SCT =

∫

ddx
1

ǫd

∞∑

j=0

(αj(m,k) + βj(m,k) ln ǫ) ǫ2j ǫd−2m+1

×
[

c̄−2 i6k
(
−k2

)j
c−2 (1 + fd−d−(ǫ, k)) +O

(
ǫ2m+1 ln ǫ

)]

. (2.3.67)

In this equation we have just isolated the potentially divergent terms. All other terms
vanish for ǫ→ 0. We now compare equation (2.3.65) and equation (2.3.67), and adjust the
coefficients αj(m,k) and βj(m,k) such that all divergences cancel.

We first consider the logarithmically-divergent terms. For these we must adjust the coef-
ficients βj(m,k) such that

−d−
m− 1

2

(m,k)
(
−k2

)m− 1
2 +

∞∑

j=0

βj(m,k)(−k2)jǫ2j−2m+1 = 0. (2.3.68)

We thus conclude that all βj(m,k) are zero except for one, βm− 1
2
(m,k) = d−

m− 1
2

(m,k). If

m = 1/2, the result is that only β0(m,k) = 1 is nonzero.

Next we consider the power-law divergences, which appear when m 6= 1/2. For these we
adjust the coefficients αj(m,k) such that the quantity

1

2m− 1
(1 + fd+d−(ǫ, k)) +

∞∑

j=0

αj(m,k)(−ǫ2k2)j (1 + fd−d−(ǫ, k)) (2.3.69)

vanishes order-by-order in −ǫ2k2, up to order ǫ2m−3, to guarantee that all divergences
cancel. The αj(m,k) are thus straightforward to obtain, indeed, they are identical in
form to the αj(m,k) in equation (2.3.62), but with b±j (m) → d±j (m,k). We have thus
determined the counterterms when m is half-integer.

Notice that when m is half-integer, a finite counterterm is also possible: we may introduce
a nonzero αm−1/2, producing a finite counterterm proportional to c̄−2 i6k (−k2)m−1/2 c−2 .
Something similar happens for scalars [78]. The scalar equation of motion has Bessel-
function solutions, and for certain values of the scalar mass m the linearly-independent
solutions are Bessel functions of the first and second kind, which means the asymptotic
expansion includes logarithmic terms. In those cases, a finite counterterm also appears,
and is proportional to the matter conformal anomaly of the dual CFT [78] (and references
therein). Here, we are simply seeing the fermionic version of the scalar story.

To summarize: for the action in equation (2.3.27), clearly the bulk term vanishes when
evaluated on a solution. The only nonzero contribution to the on-shell action comes from
the boundary terms, hence S = Sbdy on-shell. Generically, Sbdy diverges and we must add
counterterms. When m is not half-integer, the resulting on-shell action is22

S =

∫

ddx c̄+1 c
−
2 +O

(
ǫ2
)
, (2.3.70)

22Recall once again that we restricted to positive m. At the end of the last subsection we explained how
to recover results for negative m from the results for positive m.
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while when m is half-integer but m 6= 1/2 (here we take d±j (m,k)→ d±j ),

S =

∫

ddx c̄+2 c
−
2

(

d+
m− 1

2

+ d−
m− 1

2

+
∑

i=1

d+
i d

−
m− 1

2
−i

)

(
−k2

)m− 1
2 +O

(
ǫ2 ln ǫ

)
, (2.3.71)

and for m = 1/2,

S =

∫

ddx c̄+2 c
−
2 +O

(
ǫ2 ln ǫ

)
. (2.3.72)

These on-shell actions remain finite as ǫ→ 0, and hence, upon functional differentiation,
will produce renormalized field theory correlators, as we next discuss.

2.3.4 Computing Renormalized Correlators

The field Ψ in the bulk is dual to some fermionic operator O. As reviewed in section 2.2,
the renormalized on-shell bulk action, Sren = limǫ→0 S, acts as the generating functional
for correlators involving O. In other words, to compute renormalized correlators of O, we
take functional derivatives of S with respect to some source. We identify the source for
O as the coefficient of the dominant term in Ψ’s near-boundary expansion. In equations

(2.3.42) and (2.3.46), the dominant term is the u
d
2
−m term, hence we identify c−2 (k) as the

source for O. More formally, we equate

e−Sren[c−2 ,c̄
−
2 ] =

〈

exp

[∫

ddx
(
c̄−2 O + Ō c−2

)
]〉

, (2.3.73)

where the left-hand-side is the exponential of minus the on-shell bulk action in equation
(2.3.27), and the right-hand-side is the generating functional of the dual field theory, with
c−2 (k) acting as the source for the operator O. Upon taking minus the logarithm of both
sides, we find that the on-shell bulk action is the generator of connected correlators.

For any value of the bulk fermion’s mass m, a quantization exists for which O has di-
mension ∆ = d

2 + |m|. Like in the case of a scalar field, when |m| ∈ [0, 1/2), a second

quantization exists for which ∆ = d
2 − |m|. These two quantizations correspond to two

different field theories, one of which (the one with ∆ = d
2 − |m|) is unstable against a rel-

evant deformation by a double-trace operator of O, and flows to the other, stable, theory,
as in the scalar case [76]. When |m| > d/2, the dual operator is irrelevant: ∆ > d.

When d is even, O will be an operator of definite chirality since in that case γu is the
chirality operator of the field theory and c−2 (k) has definite chirality. Notice that taking

m→ −m takes c−2 (k) → c+1 (k) when m is not half-integer and c−2 (k) → (−1)|m|+ 1
2 c+2 (k)

when m is half-integer, and hence switches the chirality of O.

Let us calculate the renormalized one- and two-point functions for fermions. For simplicity,
we only consider the case m positive and not half integer. Therefore the renormalized
action reads

Sren =

∫

ddx c̄+1 c
−
2 . (2.3.74)

We can now easily compute the renormalized connected correlators of O and Ō by taking
functional derivatives of Sren. For example, the renormalized one-point function of Ō is

〈
Ō
〉

ren
= −δSren

δc−2
= −c̄+1 . (2.3.75)
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If we use the fact that the on-shell bulk action must be Hermitian, S = S†, then we also
have

Sren = S†
ren =

∫

ddx
[
c̄+1 c

−
2

]†
=

∫

ddx c̄−2 c
+
1 ,

hence we also find, as we should,

〈O〉ren = −δSren
δc̄−2

= −c+1 . (2.3.76)

We can obtain two-point functions via second functional derivatives, for example

〈
O Ō

〉

ren
= − δ2Sren

δc−2 δc̄
−
2

= −δc
+
1

δc−2
. (2.3.77)

Let us consider the simplest case to calculate this two-point function: pure AdSd+1 with m
positive and not half-integer. The solution in equation (2.3.36) is then the solution for all
u, not just the asymptotic solution as u→ 0. We need to write c+1 in terms of c−2 . To do so,
we impose a regularity condition in the bulk of AdSd+1. Deep in the interior of AdSd+1,

where u → ∞, the solution in equation (2.3.36) diverges unless C+
1 = (−1)m+1/2 C+

2 .
Translating that condition into a condition on c+1 and c+2 is trivial, once we recall the
definition of c+1 and c+2 in equation (2.3.40). We find

c+1 = −2−2m (2m− 1)
Γ
(

1
2 −m

)

Γ
(

1
2 +m

) k2m−1 c+2 . (2.3.78)

We then use equation (2.3.44) to write c+2 in terms of i6k c−2 . We finally obtain for the
two-point function,

〈
O Ō

〉

ren
= 2−2m Γ

(
1
2 −m

)

Γ
(

1
2 +m

) k2m−1 i6k, (2.3.79)

which agrees with the result in [83–85] and, up to normalization, is the correct momentum-
space form for the two-point function of a quasi-primary operator of dimension ∆ =
d/2 +m. Similar arguments work when m is half-integer, where again we find the correct
momentum-space form for a quasi-primary operator of dimension ∆ = d/2 +m. In that
case we can also adjust the normalization to any value we like using the finite counterterm.

2.4 Review: Generalization to finite temperature

The generalization of the AdS/CFT correspondence to finite temperature is very intuitive.
In order to generate finite temperature and entropy, we have to consider Nc black three-
branes instead of Nc coincident extremal D3-branes (and their supergravity solution).
This leads us to an asymptotically Anti-de Sitter Schwarzschild black hole (AdS-Sch BH)
background on the gravity side (instead of ordinary Anti-de Sitter spacetime). In [86]
Witten showed that we can identify the Hawking temperature TH and the Bekenstein-
Hawking Entropy SBH of the Schwarzschild black hole with the temperature T and the
entropy S on the field theory side.23

23Therefore we drop the labels BH and H from the entropy S and the temperature T from now on.
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Let us consider asymptotically AdS Schwarzschild black holes in more detail. The five-
dimensional metric of the AdS Schwarzschild black hole may be written as 24

ds2 =
1

u2

(
du2

f(u)
− f(u) dt2 + d~x2

)

, with f(u) = 1− u4

u4
h

, (2.4.80)

where u ∈]0, uh[. Recall that the conformal boundary is at u = 0. The S5 part is not
modified by finite temperature. The temperature is related to the location of the horizon,
uh, by

uh =
1

πT
. (2.4.81)

Note that in comparison to equation (2.1.12) we only have to add the function f(u). Taking
the limit uh →∞, we recover the ordinary Anti-de Sitter metric.

Another useful coordinate system for AdS Schwarzschild black holes is given by

ds2AdS5
=
L2

u2

(

du2 − (1− u4/u4
h)

2

1 + u4/u4
h

dt2 + (1 + u4/u4
h) d~x

2

)

. (2.4.82)

The conformal boundary is still at u = 0 and the horizon is at u = uh with

uh =

√
2

πT
. (2.4.83)

If we are interested in thermodynamics, we must Wick rotate the metric to Euclidean
signature by analytic continuation τ = it. Moreover, we have to compactify the time
direction into a circle of circumference T−1, as it is well-known from thermal field theory.

It is worth mentioning that if the temperature is the only scale we introduce on the field
theory side, no thermal phase transition can happen. Once we have characterized the state
of the theory at a particular temperature, we know the state of the system at any other
temperature. Since we have only one dimensionful scale in our system, the temperature T,
the dependence of the free energy F, the entropy S or any other thermodynamic quantity
is fixed by dimensional analysis. It is very easy to guess the entropy density s for N = 4
super Yang-Mills theory with gauge group SU(Nc) in the large-Nc limit,

s = f(λ)N2
c T

3 , (2.4.84)

where f is a function which depends on the ’t Hooft coupling constant λ. The factors of
N2
c is very intuitive since we have N2

c − 1 degrees of freedom and we work in the large-Nc

limit. A perturbative calculation gives

lim
λ→0

f(λ) =
π2

2
. (2.4.85)

Let us now calculate the entropy for N = 4 SYM at strong coupling using the machinery of
AdS/CFT. As reviewed in section 2.2, the partition function Z for Euclidean signature25

is given by
Z(φ0) = exp

(
−SIIB, sugra(φ̄→ φ0)

)
, (2.4.86)

24Note that we set the characteristic radius of AdS space, L, to one.
25In section 2.2 the equation was written for Minkowskian signature. Note that we have to replace i by

−1 in the exponent for Euclidean signature.
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where φ0 are dual to sources (like finite densities, magnetic and electric fields,...) on the
field theory side. Note that we have to add appropriate boundary terms to the action
SIIB, sugra in order to regulate the partition function.

The free energy F is then given by

F(φ0) = −T lnZ(φ0) = TSIIB, sugra(φ̄→ φ0) . (2.4.87)

From the free energy we can compute the entropy density s for N = 4 SYM at strong
coupling. Surprisingly, the supergravity result for s is precisely 3/4 of the free field value
[87].

2.5 Review: Adding fundamental flavor

So far, we have considered a particular example of AdS/CFT correspondences, AdS5/CFT4,
which arises from the study of Nc D3-branes in flat spacetime. The dual field theory is
(3+1)-dimensional N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory. The de-
grees of freedom of N = 4 SYM transform only in the adjoint representation of the gauge
group SU(Nc). In order to model more realistic systems, we have to extend the AdS/CFT
correspondence to theories with degrees of freedom transforming in the fundamental rep-
resentation of the gauge group.

To introduce fundamental flavor fields, we return to D3-branes in flat space and introduce
additional open string degrees of freedom, i.e. a stack of Nf Dp-branes, which we call
flavor branes. In addition to 3-3 strings beginning and ending on the stack of D3-branes
there are other types of strings present: 3-p beginning on the stack of D3 branes and
ending on the stack of Dp-branes as well as p-3 and p-p strings. The latter ones begin
and end on the stack of Dp-branes. We see later that the p-p strings decouple from p-3,
3-p and 3-3 strings. But the endpoints of 3-p and p-3 strings act as pointlike excitations
in the Nc or N̄c of SU(Nc) on the D3-branes’ worldvolume.

By now a large literature exists on the physical properties of these gauge/gravity models
with flavor, beginning with [88–91] (for a review see [92]). Therefore we only review the
facts relevant for the subsequent chapters of the thesis.

We review in section 2.5.1 all known candidates for flavor branes giving rise to supersym-
metric flavor fields. In particular, we consider the properties of the brane intersections
and deduce the field theory. Moreover, we consider two examples of flavor branes in more
detail which are highly relevant for the discussion in the thesis. The standard example
of flavor branes are D7-branes that intersect the D3-branes along their (3+1)-dimensional
worldvolume [88]. We will see that the additional 3-7 and 7-3 strings can effectively be
described by N = 2 hypermultiplets. In the thesis we also consider cases in which the
flavor fields are confined to a lower-dimensional defect. For example, a supersymmetric
D3/D5 intersection can give rise to supersymmetric flavor fields confined to propagate
only in (2+1)-dimensions of the (3+1)-dimensional theory, i.e. along a codimension-one
defect [93–95].26 Since in this thesis the top-down approach is emphasized,27 we want

26However note that the adjoint degrees of freedom, described by the open 3-3 strings, can propagate in
all 3+1 dimensions.

27Note that a major drawback of the bottom-up approach is the missing knowledge of the dual field
theory.
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to convince the reader that we know the dual field theory. Therefore we extensively re-
view the field theory and write down the mesonic operators in full detail for a particular
example.

In section 2.5.2 the dual gravity theory is constructed. We simplify the gravity side by
neglecting the backreaction of the Nf Dp-branes to the AdS5×S5 background created by
Nc D3-branes. This can be justified in the large-Nc limit if we fix the number of flavors,
Nf since then Nf ≪ Nc. Finally, we write down the action of D-branes, and we show that
gauge-invariant operators involving flavor fields, in particular mesons, can be mapped to
fluctuations of the Dp-branes.

In section 2.5.3 we review a recipe how to generalize AdS/CFT to finite densities and chem-
ical potentials. Finally, in section 2.5.4 we give a short overview of the phase transitions
present in D3/Dp systems.

2.5.1 D3/Dp systems and the dual field theory

Let us add a stack of Nf Dp-branes to the stack of Nc D3-branes which are extended
along the spacetime directions x0, x1, x2 and x3. For simplicity, we refer to the 0,1,2 and
3 direction, respectively.

Since we consider type IIB string theory, we can add Dp-branes with p odd. However,
we consider only D3-, D5- and D7-branes. D(-1)-branes do not introduce flavor degrees
of freedom on the D3-brane worldvolume, and D9-branes are unstable without orientifold
planes, so we will not consider these cases. Although D1-branes are present in type
IIB string theory we cannot use them for flavor branes since the 1-1 strings, i.e. the open
strings which begin and end on the stack of D1-branes will be dynamical and therefore not
decouple in the Maldacena limit. Besides theN = 4 vector multiplet and the flavor degrees
of freedom (given by the 3-1 and 1-3 strings), we therefore have unwanted additional
degrees of freedom, namely gauge bosons due to 1-1 strings.28

In table 2.2 we list all possible flavor Dp-branes satisfying the following conditions:

(i) the D3/Dp brane intersection is supersymmetric, i.e. the number of Neumann-
Dirichlet directions is 0,4 or 8.

28To judge whether the gauge theory arising from p-p strings are non-dynamical, we have to compare
the ’t Hooft coupling λDp of the flavor Dp-brane to that of the color D3-branes. For the color D3-branes
we obtain (see equation (A.3.76) of appendix A)

λD3 = NcgY M,D3 = 2πgs Nc ,

whereas for the flavor Dp-brane

λDp = NfgY M,Dp = (2π)p−2 α′ (p−3)/2gsNf .

Therefore the quotient reads
λDp

λD3
=
Nf

Nc
(2π)p−3α′ (p−3)/2 .

For p > 3 the quotient vanishes in the Maldacena limit α′ → 0, i.e. the p-p strings are non-dynamical in
this limit. For p < 3 it clearly diverges, i.e. we have to take gauge bosons into account which arise due to
p-p strings. For p = 3 the quotient is finite. However, since we work in the limit Nf ≪ Nc, we can treat
the p-p strings to be non-dynamical.
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0 1 2 3 4 5 6 7 8 9

NcD3 • • • • - - - - - -
Nf D7 • • • • • • • • - -
Nf D7 • • - - • • • • • •
Nf D5 • • • - • • • - - -
Nf D5 • - - - • • • • • -
Nf D3 • • - - • • - - - -

Table 2.2: List of all possible flavor branes satisfying the conditions discussed in the main text.
Directions which are wrapped by the D-brane are marked by •. If the D-brane does not wrap the
direction we use the symbol -.

D3/Dp Intersection # ND Reference(s)

D3/D7 (3+1) 4 [92]

D3/D7 (1+1) 8 [96–98]

D3/D5 (2+1) 4 [94,95]

D3/D5 (0+1) 8 [99]

D3/D3 (1+1) 4 [100]

Table 2.3: known Field Theories of D3/Dp Systems listed in table 2.2.

(ii) The flavor Dp-branes wrap the timelike direction, i.e. x0.

(ii) The branes wrap at least one of the six extra dimensions, i.e. y4, y5, . . . , y8 or y9.
This condition is necessary since the flavor branes should wrap the radial direction

of AdS5, r defined by r =
√
∑9

i=4(y
i)2. Otherwise the flavor degrees would be only

present for one particular energy scale.

Fortunately, for many examples the D3/Dp theory is already known. The table 2.3 lists
various D3/Dp systems for which the field theory has been determined explicitly. The first
column indicates the D3/Dp system. The second column indicates the dimension of the
intersection (the subspace of the D3-brane worldvolume in which the flavor fields propa-
gate). In the third column the number of Neumann-Dirichlet (ND) directions is displayed.
The fourth column lists references in which the D3/Dp theory is written explicitly. Note
that all of the systems listed in table 2.3 preserve 8 (of the 32) real supercharges.

Every Dp-brane in table 2.2 is described by one of the theories above. If the D3/Dp
intersection has 4 Neumann-Dirichlet (ND) directions then the corresponding flavor fields
(from 3-p and p-3 strings) produce non-chiral flavor, simply because the fields are arranged
in hypermultiplets [62], whereas with 8 ND directions we can obtain chiral flavor, as occurs
for the 8 ND D3/D7 intersection [96–98].

Let us consider two examples of brane intersections in more detail which are highly relevant
for the subsequent chapters of the thesis: the supersymmetric codimension zero D3/D7
intersection and the supersymmetric codimension one D3/D5 intersection.
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2.5.1.1 The supersymmetric D3/D7 intersection

The D3-branes are extended along 0123 whereas the D7-branes wrap 01234567. The
configuration preserves 1/4 of the total amount of supersymmetry in type IIB string theory
(corresponding to 8 real supercharges) and has an SO(4)×SO(2) isometry in the directions
transverse to the D3-branes. The SO(4) rotates x4, x5, x6, x7, while the SO(2) group acts
on x8, x9. Separating the D3-branes from the D7-branes in the 89 direction by a distance
L explicitly breaks the SO(2) group. We will confirm that these geometrical symmetries
are also present in the dual field theory.

The dual field theory is (3+1)-dimensional N = 4 super Yang-Mills theory coupled to
flavor fields preserving N = 2 supersymmetry. The Lagrangian of this field theory can
conveniently be written down in N = 1 superspace formalism. As reviewed in section
2.1.1.1 the N = 4 vector multiplet decomposes into the vector multiplet Wα and the three
chiral superfields Φ1, Φ2, Φ3 under N = 1 supersymmetry. The vector multiplet Wα and
one of the three chiral superfields (e.g. Φ3 without loss of generality) can be grouped into
a N = 2 vector multiplet. The remaining two chiral multiplets Φ1 and Φ2 are components
of a N = 2 hypermultiplet. Moreover, the flavor fields are given in terms of the N = 1
chiral multiplets Qr, Q̃r (r = 1, ..., Nf ). The Lagrangian is thus given by

L = Im

[

τ

∫

d4θ
(

tr (Φ̄Ie
V ΦIe

−V ) +Q†
re
VQr + Q̃†

re
−V Q̃r

)

+ τ

∫

d2θ(tr (WαWα) +W ) + c.c.

]

, (2.5.88)

where the superpotential W is

W = tr (εIJKΦIΦJΦK) + Q̃r(m+ Φ3)Q
r , (2.5.89)

and τ is the complex gauge coupling as given in equation (2.1.3). m is the mass of the
hypermultiplet of flavor fields.

For massless flavor fields, i.e. for m = 0, the Lagrangian is classically invariant under
conformal transformations SO(4, 2).29 Moreover, if we assign the quantum numbers listed
in table 2.4 to the components of the N = 1 superfields, the theory is invariant under the
following global symmetries: the R-symmetries SU(2)R and U(1)R as well as SU(2)Φ.
The global symmetry SU(2)Φ rotates the scalars in the adjoint hypermultiplet. Note that
the mass term in the Lagrangian breaks the U(1)R symmetry explicitly.

If all Nf flavor fields have the same mass m, the field theory is invariant under a global
U(Nf ) flavor group. The baryonic U(1)B symmetry is a subgroup of the U(Nf ) flavor
group. The fundamental superfields Qr (Q̃r) are charged +1 (−1) under U(1)B , while the
adjoint fields are inert.

These symmetries of the field theory side can be mapped to symmetries of the D3/D7 brane
intersection and hence also to the dual gravity description. The U(Nf ) flavor symmetry
and therefore also the baryonic U(1)B symmetry are realized by the gauge group of Nf

29However note that the scale-invariance is broken at the quantum level since the beta function is
proportional to Nf/Nc and therefore non-vanishing. In the limit Nc → ∞ with Nf being fixed, which we
will use in later chapters, the beta function is approximately zero, i.e. we can treat the theory as being
scale-invariant also at the quantum level.
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N = 2 components spin SU(2)Φ × SU(2)R U(1)R ∆ U(Nf ) U(1)B
(Φ1,Φ2) X4,X5,X6,X7 0 (1

2 ,
1
2) 0 1 1 0

hyper λ1, λ2
1
2 (1

2 , 0) −1 3
2 1 0

(Φ3, Wα) XA
V = (X8,X9) 0 (0, 0) +2 1 1 0

vector λ3, λ4
1
2 (0, 1

2) +1 3
2 1 0

Aµ 1 (0, 0) 0 1 1 0

(Q, Q̃) qm = (q, ¯̃q) 0 (0, 1
2) 0 1 Nf +1

fund. hyper ψi = (ψ, ψ̃†) 1
2 (0, 0) ∓1 3

2 Nf +1

Table 2.4: Fields of the D3/D7 low-energy effective field theory and their quantum numbers under
the global symmetries. Note that U(1)B ⊂ U(Nf). Taken from [92] with slight modifications.

D7-branes, U(Nf ). The U(1)R symmetry corresponds to the SO(2) symmetry of rotations
in the 89-plane. An evidence for the matching of these symmetries is the fact that both
symmetries are only present for massless flavor fields, i.e. if the D3- and D7-branes are
not separated in the transverse 89-plane. The SO(4) rotational invariance in the 4567-
subspace can be decomposed into two SU(2) groups, denoted SU(2)L and SU(2)R. The
SU(2)R symmetry of the brane intersection is mapped to the N = 2 R-symmetry SU(2)R
on the field theory side. Finally, the global SU(2)L symmetry of the brane intersection is
identified with SU(2)Φ.

We do not discuss here the corresponding mesonic operators. The explicit form of these
operators may be found in [89,101] and are reviewed in [92].

2.5.1.2 The supersymmetric D3/D5 codimension one intersection

Now we consider the supersymmetric D3/D5 codimension one intersection. In the follow-
ing we list the field content and map the symmetries of the brane intersection with the
symmetries of the field theory. Then, we construct the mesonic operators in full detail.
Note that I wrote down the explicit form of the mesino operators for the first time.30 For
simplicity, we restrict ourselves to Nf = 1. At the end of this section we will generalize
the operators to the case Nf > 1.

The D3-branes are extended along 0123 whereas the D5-branes wrap the subspace 012456.
The brane intersection preserves 8 of the 32 real supercharges. Hence the dual field
theory is (3+1)-dimensional N = 4 SYM coupled to defect flavor fields preserving (2+1)-
dimensional N = 4 supersymmetry (eight real supercharges). Here, we will not write
down the Lagrangian of the field theory. The couplings of the theory were determined
in [94, 95]. Coupling the defect fields to the ambient fields requires decomposing the
(3+1)-dimensional N = 4 multiplet into two (2+1)-dimensional N = 4 multiplets, a
vector multiplet and a hypermultiplet. The bosonic content of the (3+1)-dimensional
N = 4 multiplet is the vector Aµ and six scalars X4,X5, . . . ,X9. The bosonic content
of the (2+1)-dimensional vector multiplet is the (2+1)-dimensional vector field Ak and
the three scalars XV = (X7,X8,X9). The bosonic content of the (2+1)-dimensional

30We later use this result and compare the quantum numbers with the fluctuations of the fermionic
D5-brane action. See chapter 5 for more details. The results were obtained in collaboration with Johanna
Erdmenger, Matthias Kaminski and Andy O’Bannon and were published in [8].
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Mode Spin SU(2)H SU(2)V SU(Nc) ∆

Ak 1 0 0 adj 1
XA
V 0 0 1 adj 1
A3 0 0 0 adj 1
XI
H 0 1 0 adj 1

λim 1
2

1
2

1
2 adj 3

2
qm 0 1

2 0 N 1
2

ψi 1
2 0 1

2 N 1

Table 2.5: The field content of the D3/D5 theory, adapted from [94]. Here, Ak, XA
V , A3, X

I
H and

λim are the adjoint fields of (3+1)-dimensional N = 4 SYM decomposed into (2+1)-dimensional
N = 4 multiplets. Ak and XA

V are the bosons in a (2+1)-dimensional vector multiplet while A3 and
XI

H are the bosons in a (2+1)-dimensional hypermultiplet. qm and ψi are the (2+1)-dimensional
flavor fields, which are in an N = 4 hypermultiplet.

Operator ∆ SU(2)H SU(2)V Operator in lowest multiplet

Jl l + 2 l, l ≥ 0 0 iq̄m
←→
Dk qm + ψ̄iρkψi

El l + 2 l, l ≥ 0 1 ψ̄iσ
A
ijψj + 2q̄mXAa

V T aqm

Cl l + 1 l + 1, l ≥ 0 0 q̄mσImnq
n

Dl l + 3 l − 1, l ≥ 1 0 —

Table 2.6: The bosonic mesonic operators of the field theory corresponding to the D3/D5 system
and their quantum numbers, adapted from [94].) Here σ are Pauli matrices, T a are the generators
of SU(2)V , and ρk are the (2+1)-dimensional Γ-matrices.

hypermultiplet is the scalar A3 and the three scalars XH = (X4,X5,X6). The flavor fields
form a (2+1)-dimensional hypermultiplet with two fermions (quarks) ψ and two complex
scalars (squarks) q.

The classical Lagrangian preserves (2+1)-dimensional SO(3, 2) conformal symmetry for
massless flavor degrees but breaks the SO(6)R R-symmetry down to a subgroup SU(2)H×
SU(2)V , under which the scalars in XH transform in the (1, 0) representation and the
scalars in XV transform in the (0, 1). We use an upper index to denote these representa-
tions: XA

V and XI
H . The adjoint fermions λim transform in the (1/2, 1/2) representation.

Here, i is the SU(2)V index and m is the SU(2)H index. The quarks ψi transform in the
(1/2, 0) and the squarks qm transform in the (0, 1/2). In table 2.5 (borrowed from [94]), we
summarize the field content and quantum numbers, including the conformal dimensions
of the fields.

Let us now consider the mesonic operators in the field theory dual to the D3/D5 inter-
section which can be arranged into a (2+1)-dimensional massive N = 4 supersymmetric
multiplet. The bosonic operators and their quantum numbers are summarized in table
2.6, whereas the fermionic operators are listed in table 2.7. In the text we write down
explicitly the form of the fermionic operators.

Let us first review the meson multiplets. All operators with the same l are in one multiplet.
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Operator ∆ SU(2)H SU(2)V
Fl l + 3/2 l + 1/2, l ≥ 0 1/2
Gl l + 5/2 l − 1/2, l ≥ 1 1/2

Table 2.7: The fermionic mesonic operators and their quantum numbers. The explicit form of the
fermionic operators Fl and Gl are given in the text.

Note that we have to distinguish two cases: the l = 0 multiplet which will be short and
the l > 0 multiplets.

The lowest multiplet, i.e. l = 0, already appeared in [94] including the fermionic operators.
According to tables 2.6 and 2.7, the operator CI0 = q†mσImnq

n, where σI are the Pauli
matrices of SU(2)H , is the lowest chiral primary in the multiplet since all other operators
dual to D5-brane fluctuations have larger conformal dimensions. C0 transforms in the
(1, 0) representation of SU(2)H × SU(2)V . We can thus construct all operators in the
same multiplet as C0 by applying supersymmetry generators to C0. The supersymmetry
generators form a 2× 2 matrix of Majorana spinors ηim, which transforms like λim, i.e. in
the representation (1/2, 1/2) of SU(2)H×SU(2)V . Applying the supersymmetry generators
to C0 we obtain the fermionic operator F im0 = ψ̄iqm+q†mψi with conformal dimension ∆ =
3/2 and SU(2)H×SU(2)V quantum numbers (1/2, 1/2). Applying another supersymmetry
generator to F im0 , we obtain either J0 or E0, the forms of which appear in table 2.6. Both
J0 and E0 have conformal dimension ∆ = 2 and are singlets under SU(2)H but can be
distinguished by their SU(2)V quantum number: J0 is a singlet whereas E0 is a triplet
under SU(2)V .

Now we discuss the general multiplet dual to the higher-l mesonic operators. As in the
l = 0 case, we construct the multiplet by applying supersymmetry generators to the
lowest chiral primary in the multiplet, Cl. According to [94], the lowest chiral primary is

CI0I1...Ill = C
(I0
0

(
X l
H

)I1...Il) , where (X l
H) stands for the traceless symmetric product of l

copies of the field XI
H . Cl has conformal dimension ∆ = l + 1 and is in the (l + 1, 0)

representation of SU(2)H × SU(2)V . Applying a supersymmetry generator to Cl we find
the fermionic operator Fl with conformal dimension ∆ = l+3/2. Fl is in the (l+1/2, 1/2)
representation of SU(2)H × SU(2)V . Explicitly, Fl is of the form

FI1...Il iml = ψ̄i
(

X l
H

)I1...Il
qm + q†m

(

X l
H

)I1...Il
ψi . (2.5.90)

Applying another supersymmetry generator to Fl, we obtain Jl or El, which have the same
conformal dimension ∆ = l + 2, but differ in the SU(2)H × SU(2)V representation. Jl
transforms in the (l, 0) representation whereas El has quantum numbers (l, 1). To obtain the
precise form of Jl or El, we insert the operator X l

H into the operator J0 or E0, respectively.

In contrast to the l = 0 multiplet, other operators also appear in the multiplet for l ≥ 1,
which we construct by applying three or four supersymmetry generators to Cl: a fermionic
operator Gl and a bosonic operator Dl. Gl has conformal dimension ∆ = l + 5/2 and
SU(2)H × SU(2)V quantum numbers (l − 1/2, 1/2). Explicitly, Gl has the form

GI1...Il−1 im
l = ψ̄j

(

X l−1
H

)I1...Il−1

λim ψj + q†n
(

X l−1
H

)I1...Il−1

λimXH,I σ
I
np q

p . (2.5.91)

Finally, Dl has conformal dimension ∆ = l+ 3 and SU(2)H × SU(2)V quantum numbers
(l − 1, 0).
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We have constructed the supermultiplet for the cases l = 0 and l ≥ 1. For l = 0 they
multiplet consists of the bosonic operators C0,J0 and E0 and of the fermionic operator
F0. The multiplet includes eight bosonic and eight fermionic degrees of freedom. The
multiplet containing Cl, l ≥ 1 has 16l + 1 fermionic and bosonic degrees of freedom:

• One real scalar Cl in the (l + 1, 0) representation with ∆ = l + 1,

• One spinor Fl in the (l + 1/2, 1/2) representation with ∆ = l + 3/2,

• One massive vector Jl in the (l, 0) representation with ∆ = l + 2,

• One real scalar El in the (l, 1) representation with ∆ = l + 2,

• One spinor Gl in the (l − 1/2, 1/2) representation with ∆ = l + 5/2,

• One real scalar Dl in the (l − 1, 0) representation with ∆ = l + 3.

Moreover, we mapped the operators in the supermultiplet to the fluctuations of the probe
brane summarized in tables 2.6 and 2.7.

Finally, we consider Nf > 1 coincident D5-branes. The dual field theory then has Nf

flavors with the same mass giving rise to a global U(Nf ) flavor symmetry. The overall
U(1) we identify as baryon (more accurately quark) number, while the SU(Nf ) subgroup
we identify as isospin. The mesino operators Fl and Gl of course have zero baryon number
charge and are valued in the adjoint of SU(Nf ). For example, in our case with Nf = 2
the mesinos acquire an SU(2) isospin index, Fal and Gal .

2.5.2 Probe Dp-branes in AdS5 × S5

In order to construct the gravity dual, we have to determine the supergravity solution
for the various D3/Dp systems. This is very difficult. For simplicity, we therefore keep
the number Nf of Dp-branes fixed as Nc → ∞, so that Nf ≪ Nc. In this limit we may
neglect the Dp-branes’ contribution to the stress-energy tensor, and hence we may ignore
their effect on the metric.31 This limit is called the probe limit because in this limit the
Dp-brane cleanly probes the geometry without deforming it.

The limit is clearest on the field theory side: since the geometry encodes the gauge config-
uration in which the quarks move, we are simply neglecting diagrams with quark (and/or
squark) loops in the language of perturbation theory. This limit is well-known in field
theory and is sometimes called the quenched approximation. In this approximation we
may ignore quantum effects due to the flavor, such as the running of the coupling, be-
cause these effects are suppressed by Nf/Nc. Therefore the Nf flavor degrees of freedom
appear in the supergravity description as a number Nf of Dp-branes [88] embedded in the
AdS5 × S5 background generated by Nc D3-branes.

2.5.2.1 Embedding in AdS5

Let us first study the embedding of the probe Dp-branes into AdS5 × S5. As we will see,
the probe Dp-branes are extended along AdSP × SQ with 2 ≤ P ≤ 5 and 1 ≤ Q ≤ 5.

31Analogous statements apply for the other fields of type IIB supergravity.
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D3/Dp system Intersection worldvolume geometry

D3/D7 3+1 AdS5 × S3

D3/D7 1+1 AdS3 × S5

D3/D5 2+1 AdS4 × S2

D3/D5 0+1 AdS2 × S4

D3/D5 1+1 AdS3 × S1

Table 2.8: Worldvolume geometry of probe Dp-branes. The first column lists the various D3/Dp
systems considered in table 2.3. In the second column the dimension of the intersection on the
field theory side is displayed. Finally, the induced worldvolume geometry on the probe Dp-brane
is indicated in the last column.

Moreover, in order to preserve supersymmetry we have to require |P −Q| = 2 [102].

Let us determine all possible pairs P and Q for a Dp-brane. The induced worldvolume
geometry can be guessed in the following way.32 The worldvolume coordinates giving rise
to the induced AdSP factor are the coordinates of the intersection on the field theory side
as well as the radial direction of AdS spacetime. The dimension of the sphere wrapped by
the probe Dp-brane can easily figured out since the number of dimensions of the Dp-brane
has to agree with the dimension of the induced geometry. Therefore, Q = p+ 1− P. The
result is summarized in table 2.8.

Let us specify now the precise embedding. The supergravity solution includes a ten-
dimensional metric with a (4+1)-dimensional AdS-Schwarzschild factor and an S5 factor.
We use an AdS-Schwarzschild metric

ds2AdS5
= guu du

2 + gtt dt
2 + gxx d~x

2, (2.5.92)

where u is the AdS radial coordinate. When we need an explicit metric, we use the metric
components (2.4.80) and (2.4.82) in the case of finite temperature.33 The Dp-brane wrap
the radial coordinate u of AdS5 and the time t as well as P − 2 of the three spatial
coordinates ~x.

For the sphere S5 we use a metric of the form

ds2S5 = dθ2 + sin2 θ ds2S4−Q + cos2 θ ds2SQ , (2.5.93)

where θ is an angle between zero and π/2 and ds2
S4−Q and ds2

SQ are metrics for the (4−Q)-
dimensional and the Q-dimensional sphere, respectively. The probe Dp-brane wrap the
Q-dimensional sphere SQ. The supergravity solution also includes Nc units of five-form
flux through the S5 given by equation (2.1.20).

The embedding of a hyperplane (in our case of the probe Dp-brane) is determined by the
transverse coordinates which are in general functions of all worldvolume coordinates. But
using the symmetries present in the dual D3/Dp system, only the transverse coordinate
θ can be a non-trivial function of the radial coordinate u, i.e. θ = θ(u). In this case the
induced metric on the worldvolume of the probe Dp-brane reads

ds2Dp ≡
(
Guudu

2 +Gttdt
2 +Gxxd~x

2
)

+ cos2 θ(u)ds2SQ , (2.5.94)

where Guu = guu + θ′(u)2 and Gtt = gtt, Gxx = gxx.

32However, note that we use a particular embedding into AdS5×S5 which is described in the text below.
33Here we are using units in which the radius of AdS is equal to one. In these units, we convert from

string theory to SYM theory quantities using α′−2 = 2λ.
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2.5.2.2 Effective D-brane action

In this section we discuss how to determine the embedding function θ(u). For this we need
the effective action for a Dp-brane,34 specialized to the supergravity background discussed
above. In the thesis only the Dirac-Born-Infeld part of the D-brane action is important35

SDp = −Nfτp

∫

Dp
dp+1ζ e−Φ

√

−det (P[g + B]ab + (2πα′)2Fab) , (2.5.95)

where P[g +B]ab are the pullback of gµν and Bµν . ζ
a are the worldvolume coordinates of

the Dp-brane. In the supergravity background Φ and Bµν are zero. Fab is the U(1) field
strength tensor

Fab = ∂aAb − ∂bAa (2.5.96)

of the gauge field A living on the Dp-brane.

Since the gauge fields and the scalars should only depend on the radial coordinate of
AdS spacetime (and not on the coordinates of the spacetime and of the sphere), we can
integrate over these coordinates. Starting now we divide by the volume of the field theory,
i.e. of RP−2,1, such that SDp actually denotes an action density,

SDp = −N
∫

du
√

−det (P[g]ab + (2πα′)2Fab) , (2.5.97)

where we have to integrate from u = 0 to u = uh. The constant N is given by

N = NfτpV ol(S
Q) = 4NfNc(2λ)

p−3
4 (2π)−p+1 π

Q+1
2

Γ(Q+1
2 )

. (2.5.98)

In the last step, we used α−2 = 2λ and gs = 2πg2
Y M = 2πλ/Nc to rewrite N in terms

of field theory quantities. Note that SDp is only of order Nc compared to the type IIB
supergravity action which is of order N2

c . In particular, for the D3/D7 codimension zero
flavor brane, we obtain

N =
2NfNcλ

(2π)4
. (2.5.99)

We set the field strength tensor Fab to zero in this section and consider a non-vanishing
worldvolume scalar field θ = θ(u). In order to determine the embedding we have to solve
the equations of motion for θ(u). The action in the metric (2.4.80) reads

SDp = −N
∫

duu−P (cos θ(u))Q
√

1 + θ′(u)2 u2f(u) , (2.5.100)

Note that the action of the probe brane, SDp, is divergent due to integration all the way
to the AdS5 boundary at u = 0, and thus requires renormalization. The general recipe for
holographic renormalization of the Dp-brane action appears in [103–106].

34For more details see section A.3.
35We can slightly generalize the configuration by considering Nf coincident Dp-branes. The massless

effective degrees of freedom of Nf coincident Dp-branes are a U(Nf ) valued gauge field living on the brane
as well as U(Nf ) valued scalars transversal to the Dp-brane. If we are only interested in the dynamics of
the overall U(1) subgroup of U(Nf ), then we can use the action (2.5.95). Therefore we included a factor
of Nf infront of the action (2.5.95).
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The field θ(u) is holographically dual to an operator that is given by taking ∂
∂m of the

SYM Lagrangian. We denote the operator by Om. The operator Om is a supersymmetric
version of the quark bilinear, and it takes the schematic form

Om = ψ̄ψ + q†Φ3q +mq†q , (2.5.101)

where Φ3 is one of the adjoint scalars and q, ψ are the flavor fields. m is the mass of the
flavor fields.

We do not explicitly write down the equations of motion for θ(u). We can read off the
boundary asymptotics of θ(u) by expanding the Lagrangian (2.5.100) since θ(u) is very
small at the boundary. Hence, we obtain the Lagrangian of a canonically normalized scalar
with mass M2 = −Q. Therefore the boundary asymptotics of θ(u) reads

θ(u) = θ1u
P−1−∆+ + θ2u

∆+ + . . . , (2.5.102)

where dots indicate higher order terms in u. The exponent ∆+ is the larger root of the
equation M2 = ∆(∆−P+1). Recall that the field theory is effectively (P−1)-dimensional.
∆+ is also the conformal dimension of the dual operator. The parameters θ1 and θ2 can
be mapped to the mass m and the expectation value 〈Om〉. The precise mapping depend
on the dimension of the flavor brane and the precise embedding. Therefore we will now
discuss only the case of a codimension zero D3/D7 brane. As shown in [103, 104], we
identify the mass as m ∝ θ1 and the expectation value as 〈Om〉 ∝ −2θ1 + 1

3θ
3
2. From the

point of view of field theory the expectation value 〈Om〉 is fixed, if m is fixed. But how
can we relate these two parameters on the gravity side?

We cannot derive such a relation by a near-boundary analysis. But θ1 and θ2 are related
due to a condition we have to impose at or near the horizon. In fact there are two
topologically distinct ways to embed the Dp-brane in the AdS-Schwarzschild background.

The first type of embedding is a Minkowski embedding, in which the worldvolume SQ

shrinks as we move along the Dp-brane away from u = 0 and eventually collapses to a
point at some u = u′ outside the horizon, u′ < uh. We then have the boundary conditions
θ(u′) = π

2 , such that cos θ(u′) = 0 and the SQ has zero volume, and θ′(u′) = ∞, so
that the Dp-brane does not develop a conical singularity when the SQ collapses to zero
volume [104]. The Dp-brane then does not extend past u′, but rather appears to end
abruptly at u′.

The second type of embedding is a black hole embedding, in which the SQ shrinks but
does not collapse, and the Dp-brane intersects the horizon. We can then choose the value
of θ(u) at the horizon, θ(uh) ∈ [0, π2 ), while for the derivative we must have θ′(uh) = 0 for
the embedding to be static.

A discontinuous (first order) transition between the two types of embeddings occurs as
a function of m/T . The transition has been studied in great detail [91, 104, 107–112].
Roughly speaking, large values of m/T (above a critical value) correspond to Minkowski
embeddings while small values of m/T correspond to black hole embeddings.

Finally, let us consider θ(u) in two limits. The first limit is m = 0, which corresponds to
the trivial solution θ(u) = 0 and hence has θ(uh) = 0. The second limit is m→∞, where
θ(uh)→ π

2 .
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Operator l Fluctuation

Jl l ≥ 0 bkl
El l ≥ 0 φl

Cl l ≥ 0 (b+ z)
(−)
l+1

Dl l ≥ 1 (b+ z)
(+)
l−1

Fl l ≥ 0 Ψ−
l

Gl l ≥ 1 Ψ+
l−1

Table 2.9: Mapping of operators in the field theory of D3/D5 codimension one intersection to
fluctuations of the D5-brane. The fluctuations are explained in the text.

2.5.2.3 Mapping between fluctuations and mesonic operators

In this section we show how to map fluctuations of a probe Dp-brane to mesonic operators
on the field theory side. We will not do this in generality but rather study an example:
the D3/D5 codimension one intersection. In particular we map the mesino operators, i.e.
fermionic mesonic operators, to the fluctuations of the fermionic part of the D5-brane
action which we investigate in section 5.2.1. Let me emphasize that this result is new and
was obtained in collaboration with Johanna Erdmenger, Matthias Kaminski and Andy
O’Bannon.36

First, consider the bosonic fluctuations of the D5-brane, as studied in [94, 113, 114].37

The bosonic fluctuations consists of three real scalars, which in the notation of [94] are

φl, (b+z)
(−)
l and (b+z)

(+)
l , as well as a vector bkl . Here φl corresponds to fluctuations of the

embedding in the S5 directions (transverse to the S2), (b+ z)
(−)
l and (b+ z)

(+)
l are linear

combinations of the fluctuations of the S2 components of the worldvolume gauge field and

of the fluctuation of the embedding in AdS5 transverse to AdS4. Note that (b + z)
(+)
l is

not present in the lowest multiplet with l = 0. Finally, bkl (k = 0, 1, 2) corresponds to
fluctuations of the worldvolume gauge field in the AdS4 directions.

Let us borrow here a result from chapter 5. The fermionic fluctuations of the D5-brane
consists of two real spinors Ψ±

l with two components. Their quantum numbers are deter-
mined in section 5.2.1. The fluctuations Ψ−

l with l ≥ 0 transform in the (l + 1/2, 1/2)
representation of SU(2)H × SU(2)V and are dual to operators with conformal dimension
∆ = l + 3/2. The fluctuations Ψ+

l−1 with l ≥ 1 are in the (l − 1/2, 1/2) representation of
SU(2)H × SU(2)V and correspond to operators with conformal dimension ∆ = l + 5/2.

Since we already mapped the symmetries of the gravity side to the field theory side, we
can work out the mapping between the fluctuations and the mesonic operators discussed
in the previous section. The results are summarized in table 2.9.

36The result is published in [8].
37The notation is borrowed from [94] but slightly modified. Notice that our definition of l differs from

that in [94]. In our notation, fluctuations with the same l have the same mass.
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2.5.3 Finite baryon number density

In this section we discuss how to generalize gauge/gravity dualities derived from D3/Dp
intersections to describe plasmas with finite density/chemical potential for the U(1) baryon
number.

Recall that the U(Nf ) gauge invariance of the coincident Dp-branes is dual to the U(Nf )
symmetry of the mass-degenerate flavor fields in the SYM theory. We identify the U(1) ⊂
U(Nf ) subgroup as baryon number, U(1)B . The D7-brane worldvolume Abelian gauge
field Aµ is dual to the SYM U(1)B current Jµ. Hence to introduce a finite U(1)B density
in the SYM theory, we must introduce a non-zero worldvolume gauge field At.

As in the case of the worldvolume scalar θ(u), we use symmetry arguments to constrain
the dependence on the worldvolume fields. Preserving rotational and time-translation
invariance, At should not depend on the field theory coordinates. Moreover, it should
also not depend on coordinates of the sphere SQ. Therefore the remaining option for At
is to depend on the radial direction of AdS spacetime, i.e. At = At(u). Since we work in
a gauge with Au = 0, the only non-vanishing component of the field strength tensor is
Fut = ∂uAt(u). This may be interpreted as an electric field on the Dp-brane pointing in
the radial direction of AdS spacetime.

As in the previous section 2.5.2, we now have to solve the equations of motions for the
action (2.5.97). For simplicity, we consider a massless embedding of the flavor branes
corresponding to θ(u) = 0.

The action (2.5.97) in the coordinates (2.4.80) with trivial embedding θ(u) = 0 reads

SDp = −N
∫

du
1

uP

√

1 + (2πα′)2u4A′
t(u)

2 . (2.5.103)

Since the action does not explicitly depend on At(u), the equations of motion can be
written in the form

∂L
∂A′

t(u)
= −Nu4−P (2πα′)2

A′
t(u)

√

1 + (2πα′)2u4A′
t(u)

2
= const. . (2.5.104)

This constant of motion can be identified with the baryon number density
〈
J t
〉

on the
field theory side by38

〈Jµ〉 = − ∂L
∂A′

µ(u)
. (2.5.105)

Let us now expand the equation (2.5.104) near the boundary u→ 0.We obtain A′
t(u)u

4−P =
const. and therefore

At(u) = µ− dt uP−3 + . . . , (2.5.106)

where . . . represent terms that decay faster than uP−3 as u → 0. Here, the constant µ is
the chemical potential39 of the field theory side and dt is a constant which is related to

38Since we have to renormalize (due to the infinite volume of AdS space), the precise expression for 〈Jµ〉
is

〈Jµ〉 = lim
ǫ→0

(
1

ǫ4
1√−γ

δSreg

δAµ(ǫ)

)

,

where γ is the determinant of the induced metric on the u = ǫ hypersurface and Sreg denotes the regulated
action Sreg = SDp + SCT .

39To be precise, µ is the chemical potential (associated with the baryon number) of the quarks. The
chemical potential of the baryons, denoted by µb is given by µb = Ncµ.
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〈Jt〉 by

〈J t〉 = N
(
2πα′)2 dt , (2.5.107)

where N is the constant (2.5.98).

In order to relate dt and µ or, equivalently, density 〈J t〉 and the chemical potential µ, we
have to impose a condition for At(u) on the horizon which were discussed in [115] (see also
appendix A of [116]): since the Killing vector corresponding to time translations becomes
degenerate at the horizon, we have to impose

At(uh) = 0 , (2.5.108)

such that the gauge field remains well-defined as a one-form at the horizon.

Let us discuss now what happens if we allow for massive flavor degrees of freedom at finite
density. In this case we have to solve the equations of motion for θ(u) and for At(u). But
as we will see in the next paragraph, not every solution is also meaningful.

As argued in [115], for finite density, i.e. when At(u) is a non-trivial function of u, only
black hole embeddings are allowed, for a simple physical reason. With nonzero At(u),
the Dp-brane has a worldvolume electric field pointing in the u direction, Ftu. What
source produces the electric field? The simplest possible source is a density 〈J t〉 of strings
ending on the Dp-brane. Such a picture is nicely consistent with the field theory picture
of a U(1)B density 〈J t〉. A straightforward analysis then shows that the force the strings
exert on the Dp-brane is greater than the tension of the Dp-brane [115]. We thus expect
the strings to pull the Dp-brane into the black hole, producing a Dp-brane black hole
embedding with electric field lines in the u direction.

2.5.4 Phase Transitions at finite baryon density

Next, we consider phase transitions in the D3/Dp systems which arise when we consider
a finite baryon number density. We specialize to the case of the D3/D7 system at finite
temperature. The flavor fields have mass m. Moreover, we also consider a finite U(1)B
baryon density. Therefore we have three independent parameters in our system: the
temperature T, the chemical potential µ and the mass of the flavor fields m. Since our
system is conformal, the phase diagram depends only on two ratios, e.g. m/T and µ/m.

In order to determine the phase diagram (and possibly phase transitions), we need a ther-
modynamical potential. Since we work at fixed chemical potential µ, i.e. in the grand
canonical ensemble,40 we calculate the grand potential Ω. The grand potential is propor-
tional to the Euclidean renormalized on-shell action of the probe Dp-branes,41

Ωfl.(T,m, µ) = −T lnZfl. = TSEDp,ren+onshell . (2.5.109)

40We can also consider the canonical potential in which the baryon number density 〈Jt〉 is kept fixed.
The canonical potential is given by the Legendre transformed on-shell action of probe Dp-branes.

41To be precise, we should use the action of the whole system, i.e. of type IIB supergravity and of the
probe Dp-brane. Note that the type IIB supergravity action is not sensitive to the parameters since we
neglect the backreaction of the gauge fields. Therefore we can calculate the contribution of the flavor fields
to the thermodynamic potentials. For example the grand potential for the whole system is

Ω(T,m, µ) = ΩN=4 SY M (T ) + Ωfl.(T,m, µ).
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Figure 2.2: The phase diagram for the D3/D7 system in the µ/m - T/m plane. The blue line is a
phase transition from a zero density phase (〈J t〉 = 0) to a finite density state (〈J t〉 6= 0).

The phase diagram of the system is shown in figure 2.2. In the blue shadowed region of
the phase diagram, the baryon number density 〈J t〉 is zero, whereas in the white area, the
baryon number density is non-zero.

There is a phase transition between the areas with zero and finite baryon number density
〈J t〉. For 〈J t〉 6= 0, we only have black hole embeddings, whereas for 〈J t〉 = 0 the Minkowski
embeddings are preferred. Note that at the bottom of the separation line between the
phases with 〈J t〉 = 0 and 〈J t〉 6= 0 there exists a multi-valued region. This multi-valued
region is not resolved here. For more details, see the original paper [117].

An interesting question is the order of the phase transition. For small values of the chemical
potential (and in particular for vanishing chemical potential) the phase transition is first
order [104,107–112]. However, above a critical value of the chemical potential, the phase
transition is third-order [118]. In [118], it is argued that the third order phase transition
is driven by the condensation of worldsheet instantons. The third order and first order
phase transitions are separated by a tricritical point. When the chemical potential equals
the mass of the quarks, i.e. for µ/m = 1, the phase transition is second order [119].

It is also possible to study the phases in the presence of non-vanishing electric and magnetic
fields. For more details see [120–123]. In particular something interesting happens, if
a finite baryon density of fundamental matter is exposed to an external magnetic field
[124, 125]. There exists an isolated critical point in the phase diagram of the D3/D7
model at zero temperature depending on the magnetic field B, the bare mass m of the
quarks and the finite density 〈J t〉. The quantum phase transition is second order with
mean field exponents.

As shown in figure 2.3, the quantum phase transition occurs for zero mass of the flavor
fields. The phase transition arises due to a competition between finite density and magnetic
fields. The order parameter of the transition is 〈Om〉, i.e. the chiral condensate. It is well-
known from the field theory point of view that a magnetic field at zero density triggers
chiral symmetry breaking, i.e. 〈Om〉 6= 0. In contrast, at finite density but no magnetic
field, the vacuum is chiral symmetric, 〈Om〉 = 0.

We can generalize these results in various ways. For example, we can consider other
D3/Dp systems. For condensed matter applications also codimension one and two sys-
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Figure 2.3: The phase diagram for the D3/D7 system in the m/µ - B/µ2 plane at zero temperature,
taken from [124]. The red dot indicates the critical point mentioned in the text. The blue line
indicates the phase transition to a zero density phase, 〈J t〉 = 0, located which is located in the
upper right hand side of the diagram. The numerics of [124] suggest that the phase transition is
at least second order (or higher) away from B = 0.

tems are relevant. One example is the D3/D5 system which is studied in this thesis.
The thermodynamics and hydrodynamics were studied in [126–132]. It is interesting to
investigate this system at nonzero density and magnetic field [133,134]. Also in this config-
uration a quantum critical point exists which is the first holographic example of a quantum
Berenzinskii-Kosterlitz-Thouless (BKT) phase transition in two spatial dimensions.

Another possibility is to consider a finite isospin chemical potential instead of a baryon
chemical potential. Although a part of the phase diagram is similar to figure 2.2, we will
see in chapter 4 that there is an unstable phase. This instability leads to condensation of
mesons which breaks the remaining U(1) flavor symmetry spontaneously.

2.6 Other examples of gauge/gravity dualities

So far, we only considered one example of the AdS/CFT correspondence which can be
derived from the near-horizon limit of coincident D3-branes in flat Minkowski spacetime.
The dual field theory is given by four-dimensional N = 4 supersymmetric Yang-Mills
theory with gauge group SU(Nc). Similar gauge/gravity dualities may also be derived [135]
by taking the corresponding limit for Dp-branes with p < 6.42 The dual field theory
is maximally supersymmetric Yang-Mills in a (p+1)-dimensional Minkowski spacetime.
However, note that only in the case p = 3, i.e. for D3-branes, the dual field theory is
conformal. For p 6= 3 the coupling constant gYM of the dual gauge theory is dimensionful.
Moreover, the effective coupling constant for Nc Dp-branes satisfies a power-law running

g2
eff = g2

YM Nc (r/α′)p−3 , (2.6.110)

where r is the radial coordinate transverse to the Dp-brane which can be interpreted as the
energy scale on the field theory side. In the bulk, the absence of conformality on the field

42For Dp-branes, with p ≥ 6, there exists no decoupling limit between the field theory and the bulk as
shown in [135].
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theory side is manifest in the variation of the string coupling constant gs (or equivalently
the dilaton field) and the spacetime curvature in the radial direction. In particular the
spacetime is not asymptotically AdS. We can also add fundamental degrees of freedom to
the super Yang-Mills theory by considering probe branes in the background generated by
Dp-branes. The mesons in those backgrounds were studied in [113].

An very important example for a top-down approach towards a dual description of QCD
was discussed by Sakai and Sugimoto in [136]. The background is generated by D4-
branes wrapped on a circle S1. The boundary conditions implemented on the circle break
supersymmetry. Moreover, Sakai and Sugimoto added D8- and anti-D8-branes giving rise
to left- and right-handed quarks. Many interesting features of QCD can also be found in
this holographic model.

In this thesis, however, we are interested in scale-invariant field theories since we aim to
describe condensed matter field theories near quantum critical points. Therefore the Sakai-
Sugimoto model and the near-horizon limit of Dp-branes (with p 6= 3) play no role in this
thesis. Besides D3-branes also solitonic solutions of M-theory are interesting. In particular
the near-horizon limit of multiple M2-branes and M5-branes provide holographic duals for
2+1 and 5+1-dimensional supersymmetric conformal field theories.

The low-energy description of multiple M2-branes at a C4/Zk singularity is a (2+1)-
dimensional N = 6 supersymmetric U(Nc) × U(Nc) Chern-Simons matter theory, the
ABJM theory [137]. In the large-Nc limit, its holographic dual is supergravity in AdS4 ×
S7/Zk. In chapter 7 we study various ways to add fields that transform in the fundamental
representation of the gauge groups, i.e. flavor fields, to the ABJM theory. We work in a
probe limit and perform analyses in both the supergravity and field theory descriptions. In
the supergravity description we find a large class of supersymmetric embeddings of probe
flavor branes. In the field theory description, we present a general method to determine
the couplings of the flavor fields to the fields of the ABJM theory. We then study two
different examples43 in detail: codimension-zero N = 3 supersymmetric flavor, described
in supergravity by Kaluza-Klein monopoles or D6-branes and codimension-one N = (0, 6)
supersymmetric chiral flavor, described by D8-branes. Finally, we discuss special physical
equivalences between brane embeddings in M-theory, and their interpretation in the field
theory description.

Finally, we can also generalize the AdS/CFT correspondence to scale-invariant but non-
relativistic field theories. These theories are relevant for the description of a quantum
critical point with a dynamical scaling exponent z 6= 1. In chapter 6 we explain how
to obtain the dual gravity description for such field theories. There we discuss how to
embed D7-branes into a background with Schrödinger symmetry and how to calculate
conductivities for flavor fields.

43In the paper [6] you will also find two other examples in full detail: codimension-one N = (3, 3)
supersymmetric non-chiral flavor, described by M5/D4-branes and codimension-two N = 4 supersymmetric
flavor, described by M2/D2-branes.
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3
Response to external fields

In the preceding chapter we reviewed the AdS/CFT correspondence and its generaliza-
tions to finite temperature and density. In particular in section 2.5.4 we reviewed the
thermodynamics of probe branes, i.e. equilibrium properties of the dual field theory.

Let us consider now small space- and time-dependent perturbations about equilibrium.
This is the domain where we can apply linear response theory. Within the linear response
approximation, it is possible to investigate interesting physical processes, such as transport
and spectroscopy, which are accessible in experiments.

We first review linear response theory in section 3.1. In particular we determine conduc-
tivities of alternating currents. In section 3.2 the holographic calculation of the retarded
Green’s function is explained. In particular we consider the conductivity tensor for alter-
nating currents (section 3.2.2) and the linear response of fermions (section 3.2.3). More-
over, we present simple prescription in section 3.2.4 how to compute the matrix-valued
retarded two-point function from bulk solutions for coupled fermions.

In section 3.3 we calculate the direct current conductivity tensor for flavor fields in ar-
bitrary constant electric and magnetic fields. By using a peculiar property of the Dirac-
Born-Infeld action, we are able to calculate the conductivity tensor to all orders in the
electric and magnetic fields.

3.1 Review: Linear response & retarded Green’s functions

In this section we consider the linear response of the system at equilibrium to weak space-
and time-dependent perturbations. In the following we denote the weak external fields by
φI(x) where x is a short-hand notation for the time t and the space ~x. The corresponding
operators to which the external fields couple are called OI(x). The interaction between
the external fields φI(x) and the corresponding operators OI(x) are taken into account by
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adding the term1

δĤ = −
∫

dd~xφI(t, ~x)OI(t, ~x) (3.1.1)

to the Hamiltonian Ĥ of the system. Using standard methods of time-dependent pertur-
bation theory, one can show that a weak external perturbation causes a change in the
vacuum expectation value of OI(x) of the form

δ〈OI(x)〉 =

∫

dd+1x′ GRIJ(x, x′)φJ(x′) + . . . , (3.1.2)

where the dots indicate that we have omitted terms which are higher order in φJ . Here,
GRIJ(x, x′) is the retarded Green’s function given by

GRIJ(x, x′) = iθ(t− t′)
〈{

ÔI(x), ÔJ (x′)
}

±

〉

. (3.1.3)

The bracket {·, ·}± denotes a commutator in the case of bosonic fields and a anticommu-
tator in the case of fermionic fields.

If the system is invariant under spacetime translations, the Green’s function GRIJ(x, x′)
depends only on the difference x − x′, and not separately on x and x′. Moreover, in
translational invariant systems it can be convenient to decompose the external fields in
Fourier components. Using the Fourier transformed retarded Green’s function

G̃RIJ(k) =

∫

dd+1xGRIJ(x, 0) e−ik·x , (3.1.4)

we can rewrite equation (3.1.3) in the form

δ〈OI(k)〉 = G̃RIJ(k)φJ (k) + . . . . (3.1.5)

In equation (3.1.3) we see explicitly that the retarded Green’s function is causal since
δ〈OI(x)〉 is only influenced by sources φI(t′, ~x) with t′ < t. Causality implies that the
momentum-space Green’s function G̃RIJ(ω,~k) is analytic in ω for Imω > 0. Assume there is
a pole at ω⋆ in the upper half plane of complex frequencies. This leads to an exponentially
growing mode

GRIJ(t,~k) ∼ e−iw⋆t ∼ e|Imω⋆|t , (3.1.6)

which indicates that the vacuum (in which the Green’s function has been computed) is
instable against perturbations.

In the retarded Green’s function important information is encoded. For example, the spec-
tral function RIJ is defined as the anti-Hermitian part of the retarded Green’s function,

RIJ(ω, ~q) ≡ i
(

G̃RIJ(ω, ~q)− G̃R†IJ (ω, ~q)
)

. (3.1.7)

The external sources φI(t, ~x) do work on the system. The time-averaged rate of change of

the total energy, dW
dt , in leading order of the (time-varying) external sources is measured

by the spectral function RIJ . To be precise, the dissipation of the system is captured by
the spectral function times iω where ω is the frequency of the external source.

1Note that δĤ is not the variation of the Hamilton operator Ĥ.
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Stability requires the eigenvalues of RIJ , and hence both the diagonal elements of RIJ
and the spectral measure, i.e. the sum of the eigenvalues, to be strictly non-negative.
Otherwise, if we perturb the medium with one of the operators appearing in the spectral
function, the resulting excitation would experience negative energy dissipation into the
medium, i.e. the excitation would extract energy from the medium, signaling an instability.
The eigenvalues of the spectral function are a direct measure of the states of the theory that
have an overlap with the relevant operators. The off-diagonal elements of RIJ , however,
need not obey any positivity requirement.

Note that in the case of only one source (or more sources which do not couple to each
other), the spectral function RIJ can be written in the simple form

R(ω, ~q) = −2 Im G̃R(ω, ~q). (3.1.8)

3.1.1 AC-conductivities

Let us rephrase Ohm’s Law in this language. Ohm’s Law states that for a spatially
constant electric field ~E(ω), which may oscillate in time with frequency ω, the spatial part
of the charge current response, J i(ω), is determined by

〈Ji(ω)〉 = σij(ω)Ej(ω) . (3.1.9)

σij(ω) is the conductivity tensor for alternating currents. In the language of the previous
paragraphs, we consider an external vector potential Aµ(x) (playing the role of φJ(x)) and
a conserved current Jµ(x) which corresponds to the operator OJ . In the gauge At = 0,
the electric field Ek is given by Ek = −∂tAk. Fourier decomposing Ak ∼ e−iwt, we obtain
for the electric field Ek = iωAk. Comparing Ohm’s Law (3.1.9) to the definition of the
retarded Green’s function (3.1.5), we obtain a simple expression for the conductivity tensor
of alternating currents,

σij(ω) =
G̃Rij(ω,~0)

iω
. (3.1.10)

Here, G̃Rij are the components of the retarded correlator of currents in Fourier space. Note
that the spatial momentum ~q is set to zero.

3.2 Holographic Calculation: Linear response

In the last section we saw that retarded Green’s functions play an important role in linear
response theory. In this section we first give a general recipe how to calculate the retarded
Green’s function. We apply this recipe to two examples: correlators of currents, which
are important for the calculation of the conductivity tensor for alternating currents, and
fermionic correlators.

3.2.1 The retarded Greens function: A general recipe

In principle some real-time Green’s functions can be deduced from the Euclidean Green’s
function by analytical continuation. This is the case for the advanced and retarded real-
time Green’s functions. However, it is very difficult to calculate the quantity of interest.
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In particular we are interested in the hydrodynamic limit (small ω and small ~q of the
retarded Green’s function GR(ω, ~q). This limit of real-time correlators is very difficult to
extract from Euclidean correlators since we need to perform an analytical continuation
from a discrete set of points in Euclidean frequencies, the so-called Matsubara frequencies
ω = 2πinT, n ∈ N. The smallest frequency is therefore |ω| = 2πT.

Therefore we need a real-time AdS/CFT prescription which allows us to directly compute
the real-time retarded Green’s function of the operator O. φ is the bulk field dual to the
operator O. Let us briefly review the recipe presented in [138]:

(i) Find the part of the action which is quadratic in φ.

(ii) Linearize the equations of motion for φ and solve them in Fourier space (ω, ~q). It is
convenient to split the solution φ(u, ω, ~q) into a function φ0(ω, ~q), depending on the
frequency ω and the momentum ~q, and a function f(ω,~q)(u),

φ(u, ω, ~q) = φ0(ω, ~q) · f(ω,~q)(u) . (3.2.11)

At the boundary, horizon, f(ω,~q) is one. At the horizon f(ω,~q) has to satisfy in-falling
wave boundary condition, i.e. f(ω,~q)(u) ∼ (uh − u)−iωα, where α is a real positive
number.

(iii) The action, evaluated for the solution of the form (3.2.11), reduces to a surface
integral

S =

∫
dω d~q

(2π)4
φ0(−ω,−~q)F(ω, ~q, u)φ0(ω, ~q)

∣
∣u=uh

u=0
. (3.2.12)

Remember that the conformal boundary in the u-coordinates is located at ub = 0.

(iv) The retarded Green’s function is given by

G̃R(ω, ~q) = −2F(ω, ~q, u = 0) . (3.2.13)

A more advanced analysis is performed in [139], using the Schwinger-Keldysh formalism
which reduces to the same result.

Let us illustrate this recipe by three examples. First we consider AC conductivities which
can be calculated using current-current correlators. In the second example the recipe is
extended to fermionic correlators. Finally, we generalize the calculation of the retarded
Green’s function to operators which mix in the renormalization group flow. In this case,
the retarded Green’s function is promoted to a matrix with entries G̃RIJ(ω, ~q).

3.2.2 Example I: AC conductivities

In this section we review the recipe how to determine the AC conductivity associated with
charge carriers. Therefore we have to apply the recipe provided in the previous section to
retarded Green’s functions of current-current correlators. In the dual gravity picture, the
conserved current Jµ couples to gauge field Aµ.

In particular we consider Nf probe Dp-branes in AdS5 × S5. The induced metric on the
world-volume of the probe Dp-brane is given by equation (2.5.94). For simplicity, we
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set the world-volume scalar θ(u) to zero, i.e. we only study massless flavor degrees. We
derive the Green’s function for the conserved U(1) baryon current Jµ, which is dual to the
diagonal U(1) gauge field on the world-volume of Nf Dp-branes. We may choose a gauge
in which Au = 0. Moreover, the gauge field components on the sphere vanish. Therefore
only the Dirac-Born-Infeld part of the Dp-brane action is relevant for our discussion, which
is given by

SDp = −N
∫

du dt d~x
√

−det (P[g]ab + (2πα)′ 2Fab) . (3.2.14)

Note that we have not integrated over the spacetime coordinates t and ~x. In comparison to
equation (2.5.97), which is an action density, equation (3.2.14) describes an action (since
we have not divided by the spacetime volume).

In order to introduce a finite density of charge carriers, we allow for a non-trivial gauge
field At(u) as discussed in section 2.5.3 and solve the equations of motion. To determine
the retarded Green’s function GR, we now investigate small fluctuations of the background
field configuration, given by At(r). Therefore we add small fluctuations Ã to the gauge
field of the background, Ā. Since only Āt is non-vanishing, we can write

Aµ(t, ~x, u) = δtµĀt(u) + Ãµ(t, ~x, u) . (3.2.15)

The field strength tensor of the fluctuations and the background add up, i.e. F = F̄ +
F̃ , where F̄ is the field strength of the background and F̃ is the field strength of the
fluctuations. In the next step we derive the linearized equations of motion for Ã in the
background of Ā. Transforming the fluctuations to momentum space,

Ãµ(t, ~x, u) =

∫
dωd~q

(2π)4
e−iωt+i~q·~xÃµ(ω, ~q, u) , (3.2.16)

the solution of the linearized equations of motion can be written in the form

Ãµ(ω, ~q, u) = f(ω,~q)(u)Ã
(0)
µ (ω, ~q) . (3.2.17)

Note that fω,~q is only a function of u, the radial coordinate of AdS. The index indicates

that the precise form of the function f depends on the parameters ω and ~q. Ã
(0)
µ (ω, ~q) does

not depend on the radial direction of AdS space. In fact, later we will vary two times with

respect to Ã
(0)
µ (ω, ~q), in order to obtain the retarded Green’s function GR(ω, ~q). Since we

are interested in the AC conductivity, which is related to the retarded correlator of the
current for zero spatial momentum, we can set ~q to zero.

The function f(ω,~q) asymptotes f(ω,~q) ∼ (uh−u)±iωα near the horizon u→ uh. Here, α is a
positive real number. These two solutions correspond to infalling and outgoing waves at the
horizon. In order to determine the retarded Green’s function we have to use the infalling
wave-boundary conditions at the horizon, as reviewed in section 3.2.1. Choosing outgoing-
wave boundary conditions corresponds to computing the advanced Green’s function.

After imposing the correct boundary conditions and solving the linearized equations of
motion, we insert the solution of the fluctuations Ãµ into the action (3.2.14). If we rewrite
the action in the form (3.2.12), we can easily read of the retarded Green’s function given
by (3.2.13). Finally, the AC-conductivity is then given by (3.1.10).



68 Chapter 3. Response to external fields

3.2.3 Example II: Fermionic response

In this section we discuss how to obtain the Green’s function for massive fermions. The
general case for arbitrary values of the mass m is complicated. For simplicity, we therefore
restrict our discussion to values of m that are positive and not half-integer. Our arguments
are easy to generalize to any other value of m.

In this section we will also restrict to four- and five-dimensional AdS spaces, which we
will collectively denote as AdSd+1 with d = 3, 4, primarily for pedagogical reasons: in
these cases the bulk Dirac spinor has four complex components, and we can write explicit
4× 4 bulk Dirac Γ-matrices. Additionally, we note that AdSd+1 spaces with d ≤ 4 are the
cases most relevant for condensed matter applications (as opposed to, say, AdS7). The
generalization to other dimensions is straightforward.

We use an explicit basis for the Γ-matrices. It is convenient to choose a basis in which all
the Γ-matrices are Hermitian,

γu =

(
−σ3 0
0 −σ3

)

, γt =

(
σ1 0
0 σ1

)

, γx =

(
−σ2 0
0 σ2

)

, (3.2.18)

where σ1, σ2 and σ3 are the usual Pauli matrices,

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (3.2.19)

Next we define two sets of projectors. The first set is

Π+ =
1

2
(1 + γu) =







0
1

0
1






, Π− =

1

2
(1− γu) =







1
0

1
0






. (3.2.20)

We use these to define Ψ± = 1
2 (1± γu)Ψ so that γuΨ± = ±Ψ±. This set has been

already used in section 2.3. The second set of projectors is very useful for the numerical
calculation presented in chapter 5,

Π1 =
1

2

(
1 + iγuγtγx

)
=







0
0

1
1






, Π2 =

1

2

(
1− iγuγtγx

)
=







1
1

0
0






.

(3.2.21)
To make converting between Ψ± and Ψ1,2 easy, we explicitly write Ψ first as Ψ+ +Ψ− and
then as Ψ1 + Ψ2,

Ψ =







0
Ψ+u

0
Ψ+d







+







Ψ−u
0

Ψ−d
0







=







0
0

Ψ1u

Ψ1d







+







Ψ2u

Ψ2d

0
0






, (3.2.22)

where the subscripts u and d indicate the up and down components of the effectively
two-component Ψ± and Ψ1,2. Identifications such as Ψ+u = Ψ2d are then obvious.
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We have a choice of whether to use Ψ± or Ψ1,2, although of course, we can easily translate
between the two options using equation (3.2.22). We choose whatever is most convenient
for a given question.

For example, the projectors Π1,2 commute with the operator in equation (2.3.32), which
tells us that, for a free fermion, the equations for Ψ1,2 decouple. That makes Ψ1,2 especially
attractive for numerical analysis, hence we employ them in sections 5.2 and 5.3. Explicitly,
the equations for Ψ1,2 are

[

u∂u −
d

2
+mσ3 − ku

]

Ψ1 = 0, (3.2.23)

[

u∂u −
d

2
+mσ3 + ku

]

Ψ2 = 0. (3.2.24)

On the other hand, the asymptotic behavior of Ψ is most succinctly described using Ψ±.
Therefore we used these projectors in section 2.3. Recall that the leading asymptotic
behaviors of Ψ± are

Ψ± = c±(k)u
d
2
±m +O

(

u
d
2
+1±m

)

, (3.2.25)

where c±(k) are spinors that obey Π±c±(k) = ±c±(k), and which may depend on k, as
indicated.

As reviewed in section 2.3.4, to compute renormalized correlators of the dual operator O,
we take functional derivatives of S with respect to some source. We identify the source
for O as the coefficient of the dominant term in Ψ’s near-boundary expansion, i.e. as the
term that grows most quickly as u→ 0. From equation (3.2.25), we see that the dominant

term is the u
d
2
−m term, hence we identify c−(k) as the source for O.

More formally in equation (2.3.73), we have equated the generating functional of the dual
field theory with the saddle point of the partition function given by the exponential of
minus the action in equation (2.3.27), evaluated on a solution and properly renormalized.

The connected one- and two-point correlators are given by equations (2.3.75) and (2.3.77).
In order to calculate the renormalized two-point function, we need a relation between c+
and c−.

This relation can be obtained from the equations of motion plus some regularity condition
in the interior of the spacetime. The equation is linear, hence the relation will be linear:
c+ = −G(k) γt c−, for some matrix G(k) which will turn out to be the Euclidean Green’s
function. We include a factor of γt because, as discussed in [49,51], the Euclidean Green’s
function is actually

〈
OO†〉

ren
, which differs from

〈
O Ō

〉

ren
by a factor of γt. We indeed

find
〈
O Ō

〉

ren
= G(k) γt,

〈

OO†
〉

ren
= G(k). (3.2.26)

In general, we must extract G(k) γt from a solution by imposing some regularity condition
in the bulk of the spacetime (in our coordinates, the u → ∞ region), which fixes c+
in terms of c−. We have already calculated the Euclidean Green’s function in equation
(2.3.79).

Let us switch to Ψ1,2 which we will need in chapter 5. We reproduce the formulas used
in [49, 51]. In that case, the equations for Ψ1 and Ψ2 decouple for a free fermion, hence
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in the Green’s function the Π1 and Π2 subspaces will not mix. Writing c+ = −G(k) γt c−
explicitly, we will have (suppressing the k dependence of c±(k))







0
c+u
0
c+d







= −
(
G22(k)12

G11(k)12

)







0 1
1 0

0 1
1 0













c−u
0
c−d
0







(3.2.27)

= −
(
G22(k)12

G11(k)12

)







0
c−u
0
c−d






, (3.2.28)

where blank entries represent zero, 12 is the 2×2 identity matrix, and G11 and G22 represent
the components of the Green’s function in the Π1 and Π2 subspaces, respectively. Given a
bulk solution for Ψ, we obtain the Green’s functions simply by reading off the asymptotic
values of c+(k) and c−(k) and then constructing

G22(k) = −c+u
c−u

, G11(k) = −c+d
c−d

. (3.2.29)

Finally, we review the prescription of [81] to compute the retarded two-point function in the
finite-temperature, Lorentzian-signature case. Here the geometry is AdS-Schwarzschild,
with a horizon at some position uh. To obtain the retarded two-point function, we require
that, near the horizon, the bulk solution for Ψ has the form of wave traveling into the
horizon (out of the spacetime), i.e. an in-going wave. The asymptotic form for Ψ near the
boundary is the same as in equation (3.2.25) (for positive, non-half-integer m). Following
[81], in the regime of linear response, we have

c+(ω, k) = −iGR(ω, k) γt c−(ω, k), (3.2.30)

where GR(ω, k) is the retarded Green’s function. Notice that here we distinguish the
frequency ω from the momentum k, and γt is now anti-Hermitian,

γt =

(
iσ1 0
0 iσ1

)

. (3.2.31)

Equation (3.2.30) is essentially just an analytic continuation from the Euclidean case:
γt → iγt. For a free fermion, we obtain (see also equation (A17) of [51])

GR22(ω, k) =
c+u
c−u

, GR11(ω, k) =
c+d
c−d

. (3.2.32)

3.2.4 Holographic Operator mixing: Coupled Fermions

We now consider multiple bulk fermions, say N of them, Ψa with a = 1, . . . , N , coupled to
one another. The fact that the linearized fluctuation of the Ψa couple in the bulk is dual
to the statement that the fermionic operators in the field theory mix with one another
under renormalization group flow.

Here, we will develop a method how to obtain the retarded Green’s function in a simple
way. Let me emphasize that this section reviews my own work done in collaboration with
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Andy O’Bannon, Johanna Erdmenger and Matthias Kaminski. It is originally published
in [8].

In particular, we will work in Lorentzian signature, and finite temperature, so that the
bulk geometry is AdS-Schwazrschild, with a horizon at some position uh. We consider
fermions with quadratic couplings of the form (with implicit summation over a, b)

S = i

∫

dd+1x
√
g
(
Ψ̄a /DΨa − Ψ̄aΛabΨb

)
+ Sbdy, (3.2.33)

for some matrix Λab that need not be diagonal in either the a, b indices or the spinor
indices.2

For the following arguments, we do not need to know any details about the equations of
motion. We will only exploit one important feature. Using the Π± projectors, we will
always obtain equations similar to equations (2.3.33) and (3.2.24). We will then always
be able to write these equations in the form

∇ab±Ψb± = Mac±Ψc∓, (3.2.34)

where ∇ab± is some differential operator, involving in particular ∂u, and Mac± is a matrix
representing the couplings among not only the Ψa, which come from Λab, but also the
terms from /DΨa that produce couplings between Ψa+ and Ψa−, for example the terms
proportional to the momentum k in equations (2.3.33) and (3.2.24). The key feature is
that only the Ψa± are on the left-hand-side, while only the Ψa∓ are on the right-hand-side.

In practical terms, the total number of complex functions for which we must solve is 4×N ,
since each Ψa has four complex components. In other words, we need to decompose the Ψa

not only into Ψa+ and Ψa−, but also into the up and down components, Ψa+u, Ψa+d, Ψa−u,
and Ψa−d. When convenient, we may sometimes think of equation (3.2.34) as equations
describing these 4×N coupled functions, which we may sometimes refer to as fields.

Clearly, if we solve for all the Ψa, insert the solutions into the bulk action, and take
functional derivatives, we obtain field theory retarded Green’s functions that are matrices,
GRab (ω, k). In principle, we may be able to diagonalize the equations of motion and obtain
decoupled equations, in which case the Green’s function is diagonal. Given the bulk
solutions for the Ψa, we then extract the elements of GRab (ω, k) using equation (3.2.32). In
some cases, however, diagonalizing the equations of motion may be prohibitively difficult,
i.e. practically impossible. We can always resort to numerics to find solutions, but we will
then be forced to compute elements of the un-diagonalized GRab (ω, k). We thus need to
know what combinations of the asymptotic values ca+ and ca− give an arbitrary element
GRab(ω, k).

We will describe a prescription to obtain the matrix GRab(ω, k), assuming we have bulk
solutions for the Ψa. The method is a hybrid of the methods in [140, 141] and [50, 82].
[140,141] described a general method to construct a retarded Green’s function for coupled
bulk scalar and gauge fields, while [50,82] described general methods for computing Green’s
functions from fermions in the bulk.

2As a concrete example, in chapter 5 we will introduce a bulk SU(2) gauge field AM and a bulk
fermion valued in the adjoint of SU(2). The indices a, b are then SU(2) indices, hence we will have three
bulk fermions (for τ1, τ2, and τ3) with a coupling, coming from the gauge-covariant derivative, of the
form ǫabcΨ̄a e

M
Aγ

A (AM )b Ψc, which is obviously not diagonal in either SU(2) indices or in spinor indices
(because of the γA).
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The first observation is that we can construct second-order equations for the bulk fields,
the Ψa±, that is similar to equation (2.3.35). We actually don’t care about the exact
form of these equations. We only need to know that such equations exist. We thus
have a system of 2N second-order linear equations, for which we expect 2× 2N linearly-
independent solutions. We must therefore fix two boundary conditions for each field to
specify a solution for the entire system. Following [141], we fix these boundary conditions
near the horizon uh. For example, the Ψa+u have the near-horizon form

Ψa+u = na+u (u− uh)iα + . . . , (3.2.35)

where na+u and α are constants, independent of u, and . . . represents terms that decay
faster, as u → uh, than the terms shown. The two constants na+u and α are the two
degrees of freedom we have to specify the solution. Generically, the equation of motion
will only be satisfied for two values of α, one describing an in-going wave and the other
describing an out-going wave. As reviewed in section 3.2.1, to obtain the retarded Green’s
function, we must use an in-going wave. We still need to choose the normalization na+u.
As shown in [49,51], for fermions, once we choose an in-going wave solution, if we use the
projectors Π1,2, then when we fix the normalization of the up component Ψa1u to be na1u,
the equation of motion fixes the down component Ψa1d to have normalization i times na1u.
The same applies to the up and down components of Ψa2. Switching to the Π± projectors
(recall equation (3.2.22)), the statement is that once we fix the normalization of Ψa−d to
be na−d, then Ψa+d must have normalization i times na−d. The same statement applies
to Ψa−u and Ψa+u.

We thus need only fix 2N normalizations, for the up and down components of the Ψa−.
Let us arrange these normalizations into a row vector ~n

~n = (n1−u, n1−d, n2−u, n2−d, . . . , nN−u, nN−d) . (3.2.36)

Following [141], we use these horizon normalizations to construct a basis of solutions as
follows. We solve the equations of motion 2N times, each time with a different choice
of ~n. The first time we use ~n = (+1,+1,+1, . . . ,+1,+1), the second time we use ~n =
(+1,−1,+1, . . . ,+1,+1), the third time we use ~n = (+1,+1,−1, . . . ,+1,+1), and so on.
We label these choices ~n(i), with i = 1, . . . , 2N . For each choice of normalizations, we

obtain solutions Ψ
(i)
a±. We now have a basis of solutions, so we can write any particular

solution as a linear combination of these. To do so, we construct matrices that we call
P̃±
aj(u, ω, k) from the basis solutions, where each row corresponds to a field and each column

corresponds to a choice of normalization, the i index. For example, suppressing the Ψa−’s
dependence on all variables,

[

P̃−
aj(u, ω, k)

]

=








Ψ
(1)
1− Ψ

(2)
1− . . . Ψ

(2N)
1−

Ψ
(1)
2− Ψ

(2)
2− . . . Ψ

(2N)
2−

. . . . . . . . .

Ψ
(1)
N− Ψ

(2)
N− . . . Ψ

(2N)
N−







, (3.2.37)

with P̃+
aj(u, ω, k) defined similarly. The P̃±

aj(u, ω, k) are 2N × 2N matrices. For later
convenience, we factor out the leading asymptotic behavior of the solutions, defining new
matrices P±

aj(u, ω, k),

P̃±
aj(u, ω, k) ≡ u

d
2
±m P±

aj(u, ω, k). (3.2.38)
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We can now write any solution as a linear combination of the basis solutions:

Ψa+(u, ω, k) = u
d
2
+m P+

aj(u, ω, k)
(
P+(ǫ, ω, k)−1

)

jb
cb+(ω, k),

Ψa−(u, ω, k) = u
d
2
−m P−

aj(u, ω, k)
(
P−(ǫ, ω, k)−1

)

jb
cb−(ω, k), (3.2.39)

with a summation over the j index. Notice that we take the solutions Ψa± to be linear
in the sources, ca±. As emphasized in [141], equation (3.2.39) is simply saying that the
sources ca± will source various linear combinations of fields in the bulk, and that we can
write those linear combinations as linear combinations of our basis solutions. Notice that
when we evaluate the solutions at u = ǫ, we reproduce the leading asymptotic form,

Ψa± ∼ ca± u
d
2
±m.

Now we arrive at the main difference between bulk fermions and bulk bosons: ca+ and ca−
are not independent. The equation of motion relates them [83,84]. Indeed, we saw above
that only the ca− are sources, while the ca+ give one-point functions. To relate them, we
follow [50, 82]. We return to the equation of motion as written in equation (3.2.34). We
focus only on the equation with Ψa+ on the left-hand-side, and simply insert solutions as
written in equation (3.2.39) (suppressing all ω and k dependence)

∇ab+ u
d
2
+mP+

bj (u)
((
P+(ǫ)−1

)

jd
cd+

)

= Mae+ u
d
2
−mP−

ej(u)
((
P−(ǫ)−1

)

jf
cf−
)

, (3.2.40)

where the parentheses separate u-dependent factors from u-independent factors. We now
observe that the matrices P±

aj also solve the equation of motion, by construction, since
they are built from solutions. We thus have

∇ab+ u
d
2
+mP+

bj (u) = Mac+ u
d
2
−mP−

cj (u). (3.2.41)

Here we have a free j index, so we actually have 2N such equations. Recall that the index
j labels the choice of normalization vector ~n. The above equation is just the statement
that one column of the P±

aj matrices solves the equation of motion. We are free to act on

the right with the vector
(
P+(ǫ)−1

)

jd
cd+, so that we obtain

∇ab+ u
d
2
+mP+

bj (u)
((
P+(ǫ)−1

)

jd
cd+

)

= Mac+ u
d
2
−mP−

cj (u)
((
P+(ǫ)−1

)

jd
cd+

)

. (3.2.42)

We now simply compare equations (3.2.40) and (3.2.42). The left-hand sides are identical,
so we may equate the right-hand sides. Acting on the left with some inverse matrices, we
obtain the desired relation between the ca+ and ca−,

ca+ = P+(ǫ)aj
(
P−(ǫ)−1

)

jb
cb−. (3.2.43)

Invoking equation (3.2.30), we now just need to perform two operations to extract the
retarded two-point function GRab(ω, k) from P+(ǫ)aj

(
P−(ǫ)−1

)

jb
: we take ǫ→ 0 and then

act on the right with −iγt.

The effect of taking ǫ → 0 is easy to understand. From the definition of the P̃±
aj(u) in

equation (3.2.37) and the definition of the P±
aj(u) in equation (3.2.38), we can identify the

ǫ→ 0 limit of the P±
aj(u) as

lim
ǫ→0

[

P−
aj(ǫ)

]

=








c
(1)
1− c

(2)
1− . . . c

(2N)
1−

c
(1)
2− c

(2)
2− . . . c

(2N)
2−

. . . . . . . . .

c
(1)
N− c

(2)
N− . . . c

(2N)
N−







, (3.2.44)
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and similarly for limǫ→0 P
+
aj(ǫ). In short, the matrices P±

aj , when evaluated at the boundary,
are simply matrices of the ca+ and ca−.

Notice that the P−(ǫ)−1 matrix introduce a factor of detP−(ǫ) in the denominator of the
Green’s function. Generically, then, if detP−(ǫ) has a zero, the Green’s function has a
pole, which means a quasi-normal mode appears in the bulk spectrum, as in the bosonic
cases of [141]. Given the identification in equation (3.2.44), then, to identify quasi-normal
modes we need only identify the zeroes of the matrix of c−’s.

Understanding how γt acts on P+(ǫ)aj
(
P−(ǫ)−1

)

jb
is a little tricky. Luckily, the way

we have written P+(ǫ)aj
(
P−(ǫ)−1

)

jb
means that −iγt acts trivially. To see that, notice

that equation (3.2.43) is written in a two-component form: here ca± are two component
spinors. To restore them to four-component form, we take a direct product,

ca+ =

(
ca+u
ca+d

)

→ ca+ ⊗
(

0
1

)

=







0
ca+u

0
ca+d






, ca− =

(
ca−u
ca−d

)

→ ca− ⊗
(

1
0

)

=







ca−u
0

ca−d
0






.

(3.2.45)
To restore the P±

aj matrices to the same four-component form, we recall equation (3.2.37),
which shows that we should perform exactly the same direct products (suppressing the
dependence on all variables):

P+
aj → P+

aj ⊗
(

0
1

)

, P−
aj → P−

aj ⊗
(

1
0

)

, (3.2.46)

which implies (P−)
−1
ja → (P−)

−1
ja ⊗

(
1 0

)
. Equation (3.2.43) thus becomes

ca+ ⊗
(

0
1

)

=

{[

P+(ǫ)aj
(
P−(ǫ)−1

)

jb

]

⊗
(

1 0
0 0

)} [

cb− ⊗
(

1
0

)]

. (3.2.47)

We now simply observe that, in such a representation, −iγt = 1N ⊗ σ1. In the N × N
subspace, −iγt merely acts as the identity.

In summary, the retarded Green’s function for coupled bulk fermions is

GRab(ω, k) = lim
ǫ→0

(

P+(ǫ)aj P
−(ǫ)−1

jb

)

, (3.2.48)

with the matrices P±
aj defined in equation (3.2.38).

Finally, as an important check, let us use our prescription to reproduce the result for free
fermions, equation (3.2.32). For illustration, we consider N = 2, so we have two bulk
fermions, which we call Ψa and Ψb. We return to the equation of motion as written in
equation (3.2.34), and assume the equations for Ψa and Ψb decouple, so that ∇ab± and
Mab± become diagonal in the a and b indices. We can further decouple the equations of
motion by using the projectors Π1,2. Acting with these, we obtain equations similar to
equation (3.2.23). We thus find four decoupled equations, for Ψa1, Ψa2, Ψb1 and Ψb2.

We now solve the equations 2N = 4 times, each time with a different normalization vector
~n for the Ψa− and Ψb− fields. In the first solution, all four fields have normalizations
~n = (na−u, na−d, nb−u, nb−d) = (+1,+1,+1,+1). In the second solution, we use ~n =
(+1,−1,+1,+1). The key observation is that the field Ψa−d whose normalization we
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change is Ψa−d = Ψa1u (recall equation (3.2.22)), and hence couples only to Ψa1d = Ψa+d.
The change in normalization thus leaves the other three fields, Ψa−u, Ψb−u, and Ψb−d
unchanged. The solutions for these fields thus is identical to what they were using the
original +1 normalizations. The P−

aj matrix thus takes the form (here we must write the
up and down components explicitly)

[

P̃−
aj(u, ω, k)

]

=








Ψ
(1)
1−u Ψ

(1)
1−u Ψ

(1)
1−u Ψ

(1)
1−u

Ψ
(1)
1−d Ψ

(2)
1−d Ψ

(1)
1−d Ψ

(1)
1−d

Ψ
(1)
2−u Ψ

(1)
2−u Ψ

(3)
2−u Ψ

(1)
2−u

Ψ
(1)
2−d Ψ

(1)
2−d Ψ

(1)
2−d Ψ

(4)
2−d







, (3.2.49)

with P̃+
aj(u, ω, k) being identical except all − subscripts become +. The main feature

here is that all the superscripts are the same, except on the diagonal. A straightforward
exercise (especially simple for 2 × 2 matrices) then shows that taking the inverse (P−)

−1
ja

and then contracting with P+
aj , and taking ǫ→ 0, reproduces exactly the purely diagonal

c+u/c−u and c+d/c−d form of equation (3.2.32).

In summary: by combining the methods of [140, 141] and [50, 82], we have provided a
relatively simple prescription to compute the matrix-valued retarded two-point function
from bulk solutions for coupled fermions. We simply solve the equations of motion (typi-
cally numerically) 2N times, using a different normalization vector ~n each time, use those
solutions to construct the matrices P±

aj(ǫ), and then take limǫ→0 P
+(ǫ)aj

(
P−(ǫ)−1

)

jb
.

Using this method we calculate the fermionic response in a p-wave superconductor in
chapter 5.

3.3 Holographic calculation: Beyond linear response

The first sections of the chapter dealt with linear response theory. For example we gave a
recipe how to calculate the conductivity tensor for probe brane in linear response. In this
section we demonstrate that it is possible to do explicit calculations beyond linear response.
The method presented here uses peculiar properties of the effective action of probe branes,
in particular of the Dirac-Born-Infeld action, to calculate the DC conductivity to all orders
in the electric field ~E and in the magnetic field ~B.

This section is based on my own work done in collaboration with Hai Ngo and Andy
O’Bannon and was published in [5].

We consider flavor fields propagating through an N = 4 SYM plasma with finite U(1)B
density. In particular we calculate the DC conductivity for the flavor fields to completely
arbitrary (constant) electric and magnetic fields generalizing the results of [105, 106].
Though we focus on probe D7-branes, i.e. on N = 2 supersymmetric hypermultiplets
which may propagate in all (3+1) spacetime dimensions, our analysis easily extends to
other probe Dp-brane systems.

For an arbitrary configuration of constant electric and magnetic fields, we may sum all the
electric fields into a single vector, and similarly for the magnetic fields. The most general
configuration is thus an electric field ~E pointing in some direction, which we take to be x̂,
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and a magnetic field ~B that may be decomposed into two components, one along x̂, which
we call Bx, and one perpendicular to it, along the ẑ direction, which we call Bz.

3

Let us briefly summarize the main results of the section: we calculate all components of the
direct current conductivity tensor of flavor fields at finite temperature. The conductivity
tensor σij measures the electrical response of a conducting medium to externally applied
fields. It is defined by

〈Ji〉 = σij Ej,

where Ej are the components of externally applied electric fields and 〈Ji〉 are the compo-
nents of electrical currents induced in the medium. Using the most general configuration
introduced above the components σxx, σxy and σxz of the conductivity tensor are given by
equations (3.3.71). In particular we notice that σxz ∝ σxx. Moreover, σxx and therefore
also σxz consist of two terms adding in quadrature. One of the term is proportional to
the finite density ρ. This contribution to the conductivity tensor can be traced back to
the finite density of charge carriers. The other contribution to σxx depends on the mass
of the flavor fields. We give several arguments indicating that this term arises due to pair
production. Note that in linear response theory such a term cannot be present since the
electric field has to be a small perturbation.

Introducing a nonzero ~E · ~B is worthwhile for a number of reasons:

• With perpendicular electric and magnetic fields E and Bz, we expect a current 〈Jx〉
parallel to the electric field (because it pushes the charges) and a Hall current 〈Jy〉
orthogonal to both the electric and magnetic field. With nonzero Bx, we expect
a current 〈Jz〉, and hence we can compute a new transport coefficient, σxz. More
generally, we can compute the entire conductivity tensor and determine its depen-
dence on Bx. We find that, generically, Bx enhances the contribution from the
pair-produced charges.

• Additionally, in a Lorentz-invariant system, we can build two Lorentz-invariant quan-
tities from ~E and ~B, namely | ~E|2− | ~B|2 and ~E · ~B. When ~E · ~B = 0, and | ~B| > | ~E|,
we can boost to a frame where the electric field is zero, which immediately tells us
that all the physics must be equilibrium. For example, as reviewed in [142], the form
of the Hall conductivity is fixed by Lorentz invariance to be 〈J t〉/Bz . When ~E · ~B is
non-zero, we can no longer boost to a frame in which the electric field is zero, hence
the physics cannot be purely equilibrium.

• Many (though not all) previous gauge-gravity calculations of conductivities were in
(3+1)-dimensional AdS space, so that the boundary CFT was (2+1)-dimensional [42,
43,142,143], which precludes the existence of ~E · ~B. Another drawback of the systems
studied in [42, 43, 142, 143] was translation invariance, which implies momentum
conservation. The system thus has no way to dissipate momentum, so the DC
transport behavior was singular. For example, the DC conductivity at finite density
is infinite because the charge carriers, in the presence of an external electric field but
without frictional forces, accelerate forever.

Let us also emphasize that the probe limit allows our system to mimic a dissipative
system. As explained in more detail in [73, 105, 106, 116], and as we review below,

3Stated simply, then, we generalize the results of [105,106,116] to include a magnetic field with nonzero
x̂ component, or equivalently a nonzero ~E · ~B ∼ F ∧ F .
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the charge carriers do indeed transfer energy and momentum to the N = 4 plasma,
but the rates at which they do so are of order Nc. That means that only at times
of order Nc the charge carriers have transferred order N2

c amounts of energy and
momentum to the plasma, and hence the motion of the N = 4 SYM plasma is
no longer negligible. For earlier times, we may treat the N = 4 SYM plasma as
a motionless reservoir into which the charge carriers may dump their energy and
momentum, thus providing the charge carriers with an (apparent) mechanism for
dissipation.

3.3.1 Holographic setup

In this section we present the holographic setup of massive hypermultiplets propagating
through an N = 4 SYM plasma with finite U(1)B density and in the presence of external
electric and magnetic fields. In particular we introduce Nf coincident probe D7-branes in
a Schwarzschild AdS black hole as described in section 2.5.2. The induced metric on the
worldvolume of the D7-branes reads

ds2D7 = Guudu
2 +Gttdt

2 +Gxxd~x
2 + cos2 θ(u)ds2S3 . (3.3.50)

The embedding profile is specified by the function θ = θ(u). The most convenient metric
for the computation of the direct current conductivity is given by equation 2.4.82 which
we use in the subsequent discussion (if needed). Therefore Guu, Gtt and Gxx are given by

Guu =
1

u2
+ θ′(u)2, Gtt = − 1

u2

(1− u4/u4
h)

2

1 + u4/u4
h

, Gxx =
1

u2

(
1 + u4/u4

h

)
, (3.3.51)

where prime denotes differentiation with respect to u.

As we are interested only in the U(1) part of the U(Nf ) worldvolume gauge field, the
relevant part of their action is the usual Abelian Dirac-Born-Infeld term as discussed in
section 2.5.2.

In order to describe a plasma at finite density 〈J t〉, we have to consider a non-trivial gauge
field component At(u). Electric and magnetic fields, and the resulting currents 〈Jx〉, 〈Jy〉,
and 〈Jz〉 are introduced by the following ansatz for the gauge field components

Ax(t, u) = −Et+ fx(u), Ay(x, u) = Bz x+ fy(u), Az(y, u) = Bx y + fz(u).
(3.3.52)

In each case, the leading term is a non-normalizable mode that introduces an external
field into the SYM theory. Choosing a gauge in which Au = 0, we can write the nonzero
elements of Fab

Ftx = −E, Fxy = Bz, Fyz = Bx, (3.3.53)

Fut = A′
t, Fux = A′

x, Fuy = A′
y, Fuz = A′

z. (3.3.54)

As explained in section 2.5.2, since the fields in our ansatz depend only on u, we can
immediately perform in the Abelian D7-brane action the integration over the SYM theory
directions (t, x, y, z) and over the S3 directions.
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We plug our ansatz into the Abelian DBI action density (2.5.97),

SD7 = −N
∫

du cos3 θ
√

GuuGttG3
xx −GxxA2 −A4, (3.3.55)

where N is the constant given in equation (2.5.99). A2 and A4 contain terms with two or
four factors of F̃ab, respectively,4

A2 = GuuGxxẼ
2 +GttGuu(B̃

2
x + B̃2

z ) +G2
xxÃ

′2
t +GttGxx

(

Ã
′2
x + Ã

′2
y + Ã

′2
z

)

, (3.3.56)

A4 = GxxẼ
2
(

Ã
′2
y + Ã

′2
z

)

+GxxÃ
′2
t

(

B̃2
x + B̃2

z

)

+GuuẼ
2B̃2

x +GttB̃
2
z Ã

′2
z +GttB̃

2
xÃ

′2
x

+2GttB̃xB̃zÃ
′
xÃ

′
z − 2GxxẼB̃zÃ

′
tÃ

′
y. (3.3.57)

The action only depends on the u derivatives of At, Ax, Ay, and Az, so the system has four
constants of motion. As shown in section 2.5.3, we can identify these as the components
of the U(1)B current density in the SYM theory5

〈Jµ〉 = − δL

δA′
µ

, (3.3.58)

where L denotes the Lagrangian density, SD7 ≡
∫
duL. Our ansatz thus allows for a

nonzero U(1)B density 〈J t〉 as well as U(1)B currents 〈Jx〉, 〈Jy〉, and 〈Jz〉. Given these
constants of motion, we can solve algebraically for the derivatives of the gauge field, the
field strength components:

A′
t(u) = −

√

Guu|Gtt|
G2
xx + B̃2

x

〈J t〉ξ −Bza1
√

ξχ− a21
G2

xx+B̃2
x

+
a22

GttGxx−Ẽ2

, (3.3.59a)

A′
x(u) =

√

Guu
|Gtt|

1

Gxx

〈Jx〉ξ −Bxa2
√

ξχ− a21
G2

xx+B̃2
x

+
a22

GttGxx−Ẽ2

, (3.3.59b)

A′
y(u) =

√

Guu
|Gtt|

1

Gxx

〈Jy〉ξ + Ea1
√

ξχ− a21
G2

xx+B̃2
x

+
a22

GttGxx−Ẽ2

, (3.3.59c)

A′
z(u) =

√

Guu|Gtt|
GttGxx − Ẽ2

〈Jz〉ξ −Bza2
√

ξχ− a21
G2

xx+B̃2
x

+
a22

GttGxx−Ẽ2

, (3.3.59d)

where we have defined

ξ = |Gtt|g3
xx −G2

xxẼ
2 +GttGxx

(

B̃2
x + B̃2

z

)

− Ẽ2B̃2
x, (3.3.60a)

4A tilde over a quantity denotes a factor of (2πα′), for example, F̃ab ≡ (2πα′)Fab.
5Strictly speaking the action is not finite due to the infinite volume of AdS5. Therefore holographic

renormalization (see section 2.3) is required, i.e. we have to add counterterms SCT to the action. In
the Bx = 0 case, the counterterms appearing in SCT were computed in [106]. A straightforward analysis
reveals that no new counterterms are necessary with non-zero Bx and that, as in [106], the counterterms do
not contribute to 〈Jµ〉. Equation (3.3.58) then follows for on-shell Aµ. For more details, see the appendix
of [106].
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χ = GttG
2
xxN 2(2πα′)4 cos6 θ − (2πα′)2(〈Jx〉2 + 〈Jy〉2) (3.3.60b)

+(2πα′)2
(

GttGxx

G2
xx + B̃2

x

〈J t〉2 − GttGxx

GttGxx − Ẽ2
〈Jz〉2

)

,

a1 = (2πα′)2
(

GttGxxBz〈J t〉+
(

G2
xx + B̃2

x

)

E〈Jy〉
)

, (3.3.60c)

a2 = (2πα′)2
((

GttGxx − Ẽ2
)

Bx〈Jx〉+GttGxxBz〈Jz〉
)

. (3.3.60d)

Notice that ξ is the value of −det (Gab + (2πα′)Fab) in the (t, x, y, z) subspace.

We can obtain θ(u)’s equation of motion in two ways. We can find its Euler-Lagrange
equation of motion from the original D7-brane action, equation (3.3.55), and then plug
into that equation of motion the solutions for the field strengths in equation (3.3.59).
Equivalently, we can plug the solutions for the field strengths into the D7-brane action,
equation (3.3.55), to obtain an effective action for θ(u), perform a Legendre transform,
and then find the Euler-Lagrange equation of motion. Plugging the solutions in equation
(3.3.59) into SD7, we find

SD7 = −N 2(2πα′)2
∫

du cos6 θ Gxx
√

GuuGtt
ξ

√

ξχ− a21
G2

xx+B̃2
x

+
a22

GttGxx−Ẽ2

. (3.3.61)

The Legendre-transformed on-shell action, ŜD7, is then

ŜD7 = SD7 −
∫

du

(

A′
t

δSD7

δA′
t

+A′
x

δSD7

δA′
x

+A′
y

δSD7

δA′
y

+A′
z

δSD7

δA′
z

)

= − 1

(2πα′)2

∫

duG−1
xx

√

Guu
|Gtt|

√

ξχ− a2
1

G2
xx + B̃2

x

+
a2

2

GttGxx − Ẽ2
. (3.3.62)

To complete our solution, we must specify boundary conditions for the worldvolume fields,
namely θ(u) and the gauge fields.

The boundary condition for the time-like component of the gauge field, At(u), is discussed
in section 2.5.3: we must impose At(uh) = 0. What about the other components of the
gauge field? The key point is that the calculation of the next section implicitly fixes
the values of these components at the horizon. In the next section we demand that the
on-shell Lagrangian remains real for all u. For given values of E, Bx, Bz and 〈J t〉, that
only happens for particular values of 〈Jx〉, 〈Jy〉 and 〈Jz〉. For those values of 〈Jx〉, 〈Jy〉,
and 〈Jz〉, the solutions for Ax, Ay and Az are fixed by our solutions above, and hence
we can then (working backwards) infer their values at the horizon. In other words, we
implicitly choose the values of Ax, Ay, and Az at the horizon to produce exactly the values
of 〈Jx〉, 〈Jy〉 and 〈Jz〉 such that the Lagrangian remains real for all u. Unfortunately, our
solution for Ax(t, u) diverges at the horizon. The conductivity tensor does not depend on
the values of the gauge fields at the horizon, so it is safe from the divergence.6

Let us now turn to the boundary conditions on θ(u). The boundary conditions for θ(u)
are discussed in section 2.5.2. Please note that our calculation of the conductivity rely

6The stress-energy tensor does depend on the values at the horizon, but as explained in [116], these
divergences (suitably regulated) have a sensible interpretation in the field theory as rates of energy and
momentum loss. For more details see section 4 of my paper [5].
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on the fact that the D7-brane intersects the horizon, so our results should be applicable
in any region of the phase diagram whose description in supergravity is a D7-brane black
hole embedding (in the language of section 2.5.2).

But the phase diagram of our system has not been explored for all values of T , m, 〈J t〉, E,
Bz, and Bx. To date, only certain regions, with some subset of the parameters nonzero,
have been explored [91,104,107–112,115,117–123,129,144–148].

Nevertheless we expect that for finite density black hole embeddings are favored, i.e. we
can apply our method to any value of T , m, 〈J t〉, E, Bz, and Bx. Crucially, however,
as shown in [120–123], for the case with Bz nonzero but 〈J t〉, E and Bx zero, an infinite
number of solutions describing m = 0 exist, and all but one are unstable. The stable
solution is not the trivial solution θ(u) = 0. On general grounds, we expect that the same
should be true for our solution, which has nonzero 〈J t〉, E and Bx. Nevertheless, whenever
we consider the zero mass limit, we use the trivial solution as a simple example.

3.3.2 The Conductivity tensor

In order to compute the conductivity tensor, we have to fix the horizon conditions for
the gauge fields Ax, Ay and Az. We do not specify explicitly the conditions. Rather, we
demand that the Lagrangian of the on-shell action (3.3.61) is real for all values of the
radial coordinate u. This will implicitly fix the gauge fields Ax, Ay and Az at the horizon.
Let us justify this method in the next few paragraphs.

For simplicity, consider first (9+1)-dimensional Minkowski space. Now introduce Nf coin-
cident probe D7-branes,7 and consider a solution in which the only nontrivial worldvolume
field is a constant U(1) electric field Ftx = −E.

Our ansatz for the gauge field involves only the (u, t, x) directions,8 hence we may write SD7

as a (3+1)-dimensional DBI action times some extra factors, with the (3+1)-dimensional
part being the (u, t, x, y) subspace:

SD7 = −NfTD7

∫

d8x

√

1− 1

2
F̃ 2 − 1

4

(

F̃ ∧ F̃
)2

= −NfTD7

∫

d8x
√

1− (2πα′)2E2. (3.3.63)

Clearly when the electric field is greater than the string tension, E > 1/ (2πα′), the
DBI action becomes imaginary. That signals the well-known tachyonic instability of open
strings in an electric field [149–151]. The electric field pulls the endpoints of an open
string in opposite directions. When the electric field is large enough to overcome the
tension of the string, it rips the string apart. Another way to say the same thing is that
the electric field reduces the effective tension of open strings. The instability appears
when that effective tension becomes negative. Notice that if we additionally introduce a

7Strictly speaking, to avoid constraints on the number of D7-branes we should set the string coupling
to be precisely zero. Many of the arguments that follow rely only on the form of the DBI action, rather
than any properties unique to D7-branes, however.

8Later we also turn on a constant magnetic field Fxy = Bz. This magnetic field can be obtained from
the gauge field configuration Ay(x) = Bzx. The analysis presented here can also be extended to the most
general configuration of constant electric and magnetic fields considered above.
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magnetic field Fxy = Bz orthogonal to the electric field, then the DBI action becomes

SD7 = −NfTD7

∫

d8x
√

1− (2πα′)2 (E2 −B2
z ). (3.3.64)

If E > Bz we can boost to a frame in which the magnetic field vanishes, and the arguments
above still apply. If E ≤ Bz then the instability never appears. Indeed, in that case we
can boost to a frame where the electric field is zero.

Now instead of flat space consider AdS5-Schwarzschild times S5, as in equation (3.3.51).
Here the effective tension of strings already decreases as a function of u, going to zero
at the horizon. Probe D7-branes with a constant worldvolume electric field will reduce
the effective tension by the same amount at every value of r. We thus expect that for
any nonzero E the effective tension will go to zero at some radial position u∗ outside the
horizon, and to be negative between u∗ and the horizon. With an asymptotically AdS
space, however, we have a dual field theory, so we can use our field theory intuition to
guess the endpoint of the instability. The endpoint of a string looks like a quark. The
electric field ripping a string apart should look like a Schwinger pair-production process.
We should thus see a current.

The current stabilizes the system. Note that the instability in equation (3.3.63) occurs
if the Lagrangian becomes imaginary, i.e. the term under the square root changes sign.
Therefore we have to adjust the currents in such a way that the term under the square
root (in equation (3.3.61)) is always positive.

We now calculate the conductivity tensor by demanding that the Lagrangian of the on-
shell action (3.3.61) is real for all values of the radial coordinate u. But let us make two
important comments beforehand.

First, note that from equation (3.3.60a), we see that ξ is negative at the horizon but
positive at the boundary, thus ξ must change sign at some value of u, which we call u∗.
We can straightforwardly calculate u∗ from the equation9 ξ(u∗) = 0,

u4
∗
u4
h

= G−
√

G2 − 1, (3.3.65)

with

G ≡ e2 − b2z − b2x +

√

(e2 − b2z)2 + (b2x + 1) (b2x + 1 + 2 (e2 + b2z)), (3.3.66)

where we have introduced the dimensionless quantities

e ≡ πα′u2
hE =

E
π
2

√
2λT 2

, bz ≡ πα′u2
hBz =

Bz
π
2

√
2λT 2

, bx ≡ πα′u2
hBx =

Bx
π
2

√
2λT 2

.

(3.3.67)
Moreover, we need later G2

xx evaluated at u∗ in order to translate our result for the
conductivity tensor into SYM theory quantities. Using equation (3.3.65), we find

G2
xx(u)|u=u∗ =

π4T 4

2
(1 +G) ≡ π4T 4F(e, bx, bz), (3.3.68)

9We actually find four solutions for u4
∗/u

4
h. The one we present is the only one for which u4

∗/u
4
h takes

physical values, between 0 and 1.
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where in the last step we removed a factor of π4T 4 and defined the rest to be F(e, bx, bz),
which will appear in our result for the conductivity tensor. A useful limit is e = 0, where
G = 1 and hence F = 1.

Following [105, 106], we now focus on the on-shell action, equation (3.3.61), and in par-
ticular we focus on the square root in the denominator of equation (3.3.61), which we
reproduce here for convenience,

√

ξχ− a2
1

G2
xx + B̃2

x

+
a2

2

GttGxx − Ẽ2
,

and which also appears in the solutions for the field strengths A′
µ(u) for µ = t, x, y, z, equa-

tion (3.3.59), as well as the Legendre-transform of the on-shell action, equation (3.3.62).
We will argue that the four functions ξ, χ, a1 and a2, must all vanish at u∗ in order for
the above square root, and hence the on-shell action, to remain real for all u.

When ξ = 0 the a2
2 term is negative, because the equation ξ(u∗) = 0 itself tells us that

(

GttGxx − Ẽ2
)

= − GttGxxB̃2
z

(G2
xx+B̃2

x)
< 0 at u∗. To avoid an imaginary action at u∗ we must

have a1(u∗) = a2(u∗) = 0.

Arguing why χ has to vanish at u∗ is more subtle. χ has the same behavior as ξ: it is
positive at the boundary and negative at the horizon, so it must have a zero at some u
value, which we will call uχ. If u∗ and uχ are not the same, so that ξ and χ have distinct
zeroes, then the product ξχ will be negative on the interval between u∗ and uχ. The
crucial question then is whether the a2

2 term is positive or negative on that interval. If it
is positive (and sufficiently large) it could keep the action real. The sign of the a2

2-term

is determined by
(

GttGxx − Ẽ2
)

, which (like ξ and χ) is positive at the boundary and

negative at the horizon, and hence must have have a zero at some value of u that we

will call uE2. We showed above that
(

GttGxx − Ẽ2
)

is negative at u∗, so the zero must

obey uE2 < u∗ (it is closer to the boundary than u∗). Now suppose χ changes sign at
uχ > u∗. As we just showed, the a2

2 term is negative there, so the on-shell action would be
imaginary on the interval (u∗, uχ), hence we demand uχ ≤ u∗. We exclude the possibility
that uχ < u∗. We know that uE2 is also less than u∗, so we must compare uχ and uE2. If
uχ < uE2, then the on-shell action is imaginary on the interval (uE2, u∗), and if uχ > uE2 ,
the action is imaginary on the interval (uχ, u∗). In order for the on-shell action to remain
real for all u, then, we demand that uχ = u∗.

The upshot is that we obtain four equations, ξ(u∗) = χ(u∗) = a1(u∗) = a2(u∗) = 0, for
four unknowns, u∗, 〈Jx〉, 〈Jy〉, and 〈Jz〉. The equation ξ(u∗) = 0 gives us u∗, as we
explained above. We will now solve for the currents 〈Jx〉, 〈Jy〉, and 〈Jz〉.

The equation a1(u∗) = 0 gives us 〈Jy〉, while the equation a2(u∗) = 0 gives us 〈Jz〉. We
then plug the results for 〈Jy〉 and 〈Jz〉 into χ(u∗) = 0 to find 〈Jx〉. The result for the
current in each case includes an overall factor of E, so invoking Ohm’s law 〈J i〉 = σixE,
we identify the components of the conductivity tensor

σxx =
G2
xx + B̃2

x

Gxx

(

G2
xx + B̃2

x + B̃2
z

)

√

N 2(2πα′)4Gxx
(

G2
xx + B̃2

x + B̃2
z

)

cos6 θ(u∗) + (2πα′)2〈J t〉2 ,

(3.3.69a)
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σxy =
(2πα′)B̃z〈J t〉
G2
xx + B̃2

x + B̃2
z

, (3.3.69b)

σxz =
B̃xB̃z

G2
xx + B̃2

x

σxx , (3.3.69c)

where all functions of u are evaluated at u∗. In analogy with equation (3.3.67), we define

ρ ≡ πα′u2
h 〈J t〉 =

〈J t〉
π
2

√
λT 2

. (3.3.70)

We then use the result for G2
xx(u∗) in equation (3.3.68) to write the components of the

conductivity tensor in terms of SYM theory quantities

σxx =

√

N2
fN

2
c T

2

16π2

(F + b2x)
2

√
F(F + b2x + b2z)

cos6 θ(u∗) +
ρ2(F + b2x)

2

F(F + b2x + b2z)
2
, (3.3.71a)

σxy =
ρ bz

F + b2x + b2z
, (3.3.71b)

σxz =
bx bz
F + b2x

σxx . (3.3.71c)

As in [105,106], the result for σxx includes two terms adding in quadrature. As discussed
in [105,106,116], these two terms have different physical interpretations. The system has
two types of charge carriers. First we have the density of charge carriers we introduced
explicitly in 〈J t〉, whose contribution appears as the second term under the square root in
σxx. Even when 〈J t〉 = 0 we find a nonzero σxx and hence a nonzero current, however, so
the system must have some other source of charge carriers.

The other type of charge carriers come from pair production in the electric field. Their
contribution appears as the term in σxx with the cos6 θ(u∗) factor. We have two pieces of
evidence that suggests the cos6 θ(u∗) term represents pair production. First is the behavior
of the pair-production term as a function of the mass m. When m→∞, so that the pair
production should be suppressed, we indeed have cos6 θ(u∗) → 0, while when m → 0, so
that the pair production should be maximal, we have cos6 θ(u∗) → 1. Second, as shown
in [116] for the case with Bx = 0, when the density 〈J t〉 = 0 the flavor fields have zero
momentum in the x̂ direction, which is consistent with pair production: the oppositely-
charged particles in each pair move in opposite directions, producing a finite 〈Jx〉 but
zero net momentum. For our case, with Bx 6= 0, we see that σxz ∝ σxx, so both types of
charge carriers contribute to 〈Jz〉, too. Using the stress-energy tensor as calculated in [5],
in particular for 〈T tx〉 and 〈T tz〉, we can show that when 〈J t〉 = 0, the flavor fields have
zero momentum in the x̂ and ẑ directions, so we again find a nicely consistent picture.

3.3.3 Interesting limits of the conductivity tensor

We will check now our result in the classical quasi-particle limit. More specifically, we
take m to be much larger than any other scale in the problem, which includes not only T
but also the scale of thermal corrections to the energy of a heavy quark, 1

2

√
λT [152]. We
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will call this the “m →∞” limit. As explained in section 2.5.2.2 in that limit, θ(u) → π
2

and hence cos6 θ(u∗)→ 0.

In this limit, we expect the charge carriers to behave as classical quasi-particles experienc-
ing a drag force due to the N = 4 SYM plasma and a Lorentz force due to the external
electric and magnetic fields. Our answer for the conductivity should then reduce to the
Drude form. Let us briefly review what the Drude result is. Consider a density 〈J t〉 of
massive quasi-particles propagating through an isotropic, homogeneous, dissipative neu-
tral medium. In the rest frame of the medium we introduce an electric field ~E in the x̂
direction, and a magnetic field ~B with a component Bz in the ẑ direction and a component
Bx in the x̂ direction. The force on a quasi-particle is then

d~p

dt
= ~E + ~v × ~B − µ~p, (3.3.72)

where our quasi-particle has charge +1 and µ is a drag coefficient. We replace the mo-
mentum with the velocity using ~p = M~v for quasi-particle mass M . We then replace the
velocity with the induced current using ~v = 〈 ~J〉/〈J t〉. Imposing the steady-state condition
d~p
dt = 0 and solving for 〈 ~J〉 yields

σxx = σ0
(Bx/µM)2 + 1

| ~B|2/(µM)2 + 1
, σxy = σ0

(Bz/µM)

| ~B|2/(µM)2 + 1
, σxz = σ0

(Bx/µM)(Bz/µM)

| ~B|2/(µM)2 + 1
,

(3.3.73)
where σ0 = 〈J t〉/µM is the conductivity when ~B = 0.

To show that our answer reduces to the Drude result, equation (3.3.73), when m→∞, we
need to know what µM is for our charge carriers, that is, we must compute the drag force
on the charge carriers, following [105,106]. We begin by rewriting the force law equation
(3.3.72), in the steady state, as

µ|~p| =

√

E2 + |~v × ~B|2 + 2~E · (~v × ~B)

=
√

E2 + v2
y(B

2
x +B2

z ) + (vzBx − vxBz)2 + 2ExvyBz . (3.3.74)

As m → ∞, pair creation will be suppressed and only the charge carriers in 〈J t〉 will
contribute to 〈 ~J〉, hence we may write 〈 ~J〉 = 〈J t〉~v, where we drop the cos θ(u∗) terms in
〈Jx〉 and 〈Jz〉, as these vanish in our m → ∞ limit. Notice that all components of the
conductivity tensor are then proportional to 〈J t〉, so from our answer for the conductivity
tensor we find the components of ~v = 〈 ~J〉/〈J t〉 as functions of E, Bx and Bz. What is more
instructive, however, is to use the original equations ξ(u∗) = χ(u∗) = a1(u∗) = a2(u∗) = 0
to write ~v in terms of Gxx(u∗) and Gtt(u∗). For example, the speed of the heavy charge
carriers is

|~v| =
√

|Gtt|
Gxx

∣
∣
∣
∣
∣
∣
u∗

, (3.3.75)

which is the local speed of light at u∗. The drag force is

µ|~p| = 1

2πα′
√

|Gtt(u∗)|Gxx(u∗), (3.3.76)

which is simply the Nambu-Goto Lagrangian (density) for a string extended in the x̂
direction, sitting at fixed radial position u∗. Following [105, 106, 152, 153], if we employ
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the relativistic relation |~p| = γMv with γ = 1√
1−v2 and M the quasi-particle mass, then

we find

µM =
1

2πα′
√

Gxx(u∗)2 − |Gtt(u∗)|Gxx(u∗) =
π

2

√
λT 2 , (3.3.77)

which is identical to the zero-density result of [152, 153] and the finite density results
of [105,106], but now with nonzero Bx. That we recover the same answer is not surprising
in the probe limit Nf ≪ Nc. In the probe limit, the flavor excitations are too dilute to
experience a significant number of collisions with one another. Most of their energy loss
comes from their interactions with the N = 4 SYM plasma, rather than with other flavor
excitations, hence the drag force is independent of 〈J t〉. See [73, 106] for more detailed
explanations.

We can now compare to the Drude form (3.3.73). We take m→∞, so that cos6 θ(u∗)→ 0
in the conductivity tensor. We also linearize in the electric field, that is, we consider the
regime of linear response, where the currents are linear in E and hence the conductivity is
constant in E. (Recall that the Drude form relies on Maxwell’s equations, which are linear.)
In practical terms, that means setting E = 0 in our result for the conductivity. That means
we take F(e = 0, bx, bz) = 1 as explained above. Lastly, using our identification of µM in
equation (3.3.77), we can write

ρ =
〈J t〉

π
2

√
λT 2

=
〈J t〉
µM

, (3.3.78)

and similarly for bx and bz (recall equation (3.3.67)). We immediately find that our result
for the conductivity tensor is identical to the Drude form, equation (3.3.73).

Finally, given that the novelty of our result is the presence of Bx, we can take limits that
highlight the effects of Bx. For example, we can show that, generically, Bx enhances the
process of pair production. We first linearize in the electric field again, so F = 1, and
then isolate the pair production term by taking zero density (〈J t〉 = 0, hence ρ = 0). The
result for σxx is then

σxx =
NfNcT

4π

1 + b2x
√

1 + b2x + b2z
cos3 θ(u∗). (3.3.79)

If we further consider bx ≫ bz, then we see that σxx has a
√

1 + b2x factor. Clearly,
increasing Bx increases the contribution to 〈Jx〉 from pair production. Conversely, if we
suppress the pair production by taking m → ∞, so that cos6 θ(u∗) → 0, while keeping
〈J t〉 finite, then σxx reduces to

σxx = ρ
1 + b2x

1 + b2x + b2z
, (3.3.80)

(which is of course the Drude result from equation (3.3.73)) so that now taking bx ≫ bz we
find that σxx → ρ. Increasing Bx does not enhance the contribution to 〈Jx〉 coming from
the net density 〈J t〉 of charge carriers. By contrast, the limit bz ≫ bx clearly suppresses
both contributions to the current.

3.3.4 The Stress-Energy tensor

In addition to the results presented here we also used our holographic setup to compute the
contribution that the flavor fields make to the expectation value of the stress-energy tensor
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of the field theory. We will call this contribution 〈T µν〉. We identified certain divergences
in the stress-energy tensor which are related to the rates of energy and momentum loss
of the charge carriers, the flavor fields. Moreover, we were able to identify two special
quantities that are free from these IR divergences.10

The detailed calculations and results may be found in the paper [5] written in collaboration
with Hai Ngo and Andy O’Bannon.

10These results are a direct extension of the work published in [116] to include nonzero Bx.



4
Holographic Superconductors

So far we have considered only one species of flavor fields and a finite U(1) baryon chemical
potential for the flavor fields. In this chapter we generalize the approach to Nf = 2 species
of flavor fields, with equal masses, which we call u and d. Moreover, we turn on a non-
vanishing isospin chemical potential µI , which breaks the SU(2) flavor symmetry to U(1)3.

We find a phase transition at a critical value of the isospin chemical potential µI . For
larger values of the chemical potential we observe a condensation of a gauge-invariant
bilinear of the flavor fields, i.e. a meson. This condensation breaks the remaining U(1)3
flavor symmetry spontaneously. The phase transition is second order with mean field val-
ues. Since the order parameter of the phase transition is a vector and the signatures are
similar to those of superconductors, we call the new phase a holographic p-wave super-
fluid/superconductor.

Note that the setup presented in this chapter may be viewed as the first embedding of
holographic superconductors in string theory [2]. As reviewed in section 1.3, physicists
investigated superconductors using phenomenological models in the bottom-up approach.
Here, we investigate superconductors in the top-down approach. In particular, we investi-
gate a consistent embedding of such models in string theory using probe Dp-branes. This
enables us to identify explicitly the degrees of freedom which become unstable for suffi-
ciently large isospin chemical potential. The gravity setup also allows for a dual string
theory picture of the instability and the resulting condensation process. Finally, since the
configuration is rather generic, we identified a whole class of string theory embeddings
with superconducting phases.

This chapter is based on my own work done in collaboration with Johanna Erdmenger,
Viviane Grass, Matthias Kaminski, Patrick Kerner and Andy O’Bannon. The work is
published in [2, 3, 7, 8].



88 Chapter 4. Holographic Superconductors

4.1 Introduction and summary

As discussed in section 1.3 of the introduction, the holographic realization of superconduc-
tors were first realized using phenomenological models in the bottom-up approach. The
starting point is Einstein-Hilbert gravity with negavite cosmological constant coupled to
a U(1) gauge field. Superconductors can be built by adding new fields to this holographic
setup, which may condense for low temperatures. In particular, to model s- or p-wave
superconductors, we add a scalar field to the theory or promote the U(1) gauge field to a
non-abelian SU(2) gauge field.

As a new result, we propose in this chapter a model which represents a stringy realization of
superfluidity/superconductivity in a relativistic framework.1 A string theory realization of
holographic superconductors has two advantages compared to the bottom-up approaches
discussed in the introduction of the thesis: First, we embed holographic superconductors
in a consistent string background. Second, we know the dual field theory side explicitly
and we are able to write down the corresponding Lagrangian. Therefore it is possible to
identify the condensate in terms of elementary fields and to compare the results found
in the holographic description at strong coupling with the corresponding results at weak
coupling.

For the stringy realization, we use Nf = 2 coincident probe Dp-branes in the supergravity
background of Nc D3-branes which correspond to two different species of fundamental
matter having the same mass. Moreover, we consider a finite isospin chemical potential
µI for the two species of fundamental matter. The dual field theory is described in section
4.2. In particular we argue that mesons have to condense above a critical value of the
isospin chemical potential (or, equivalently, below a critical temperature Tc).

The precise holographic setup is described in section 4.3.1. In order to determine the
dynamics of the flavor degrees of freedom, we have to use a non-Abelian version of the
effective action for Dp-branes. However, note that such an effective action is not known
beyond F 4. Therefore we have to modify the effective action. We use three different
approximations: (1) truncate the action to the lowest non-trivial order in the field strength
tensor, i.e. to F 2, (2) truncate the action to the largest order in the field strength tensor
(which we trust), i.e. to F 4 and (3) use an effective action which captures all orders in
the field strength tensor. Although we used these three different approximations for the
effective Dp-brane action, it is amazing that the results agree qualitatively.

In all three approaches, we find a second order phase transition with mean field values
between a phase with no meson condensate, i.e. 〈Jx1 〉 = 0, and phase in which the meson
condenses, 〈Jx1 〉 6= 0. Note that the order parameter of the phase transition is a vector
(here we choose the vector to be in x-direction). Hence, the phase transition breaks the ro-
tational invariance and is called p-wave. Furthermore, the vacuum expectation value 〈Jx1 〉
breaks the remaining U(1)3 flavor symmetry spontaneously. We can draw the following
analog: the U(1)3 flavor symmetry can be related to the gauge group U(1)em of electro-
magnetism and Jx1 can be identified with the superconducting condensate. Therefore this
phase has properties well-known from superfluids and superconductors. In section 4.3.4
we also calculate the frequency dependent ac conductivity σ(ω) and find a gap in the
superconducting phase for small frequencies ω. Moreover, the dc conductivity is infinite.

1Other String (and M-) theory embeddings of holographic s-wave superfluids appear in [154–156].
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Figure 4.1: Phase diagram for two N = 2 supersymmetric hypermultiplets with mass m coupled
to a N = 4 supersymmetric vector multiplet at finite temperature T and finite isospin chemical
potential µI . This field theory is dual to two probe D7 branes in AdS5 × S5. The phase diagram
was obtained with the adapted symmetrized trace prescription: In the blue phase, in which the
isospin density is zero, the mesons are stable, i.e. the decay width is zero. In the other phases, the
mesons have a finite decay width. We refer to this as meson melting. The new superfluid phase
is green. In the yellow phase we cannot trust our numerics since we ignore the backreaction. The
dotted curves correspond to lines at finite mass. These curves are parametrized by the density d̃3

t .
Along the blue curves the field A1

x is zero while along the red ones the field A1
x is non-zero. The

endpoints of the red curves determine the second order phase transition to the superconducting
phase. The dotted, red curves diverge inside the superconducting phase since the backreaction of
the condensate on the background is not considered. This divergence determines the boundary of
the orange region which is not reachable without backreaction. Figure made by Patrick Kerner.

Although we refer to the new phase as a holographic p-wave superconductor, the sponta-
neous breaking of a global U(1) corresponds, strictly speaking, to a superfluid. To view
our system as a superconductor, it would be necessary to gauge the global U(1)3 flavor
symmetry which is broken spontaneously in our model. However, many features of su-
perconductivity do not depend on whether the U(1)3 is gauged. One exception to this is
the Meissner-Ochsenfeld effect. To generate the currents expelling the magnetic field, the
U(1)3 symmetry has to be gauged.

Indeed we find a remnant of the Meissner-Ochsenfeld effect [3]. Since the spontaneously
broken U(1)3 flavor symmetry is global, magnetic fields cannot be expelled by the system.
We note that a constant magnetic field reduces the critical temperature [3]. We can argue
as follows: if we weakly gauge the global U(1)3 symmetry, i.e. if we promote the global
symmetry to a local symmetry and introduce the corresponding U(1) gauge bosons, the
superconducting current 〈Jx1 〉 generates a magnetic field opposite to the constant external
field. Thus the phase observed in [3] is a necessary condition, in the case of a global
symmetry, to find the Meissner-Ochsenfeld effect, if the symmetry is gauged. Hence, after
gauging the local U(1)3 symmetry, the phase is superconducting.

Furthermore, in section 4.4 we present a string-theoretical picture, why the system is
instable above a critical value of the isospin chemical potential. Moreover, we identify
the condensate 〈Jx1 〉 as condensing D7-D7 strings in this picture and therefore have a
geometrical understanding of the superconducting condensate.2

2This phenomena can also be viewed as the dynamical generation of meson masses.
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The main result of this chapter can be summarized in figure 4.1. This figure shows
the phase diagram for two N = 2 supersymmetric hypermultiplets with mass m. The
hypermultiplets are coupled to the N = 4 super Yang-Mills theory as described in section
2.5.1.1 and can propagate in 3+1-dimensions. The dual gravity theory consists of two
coincident D7-branes wrapping asymptotically AdS5 × S3. We consider this field theory
at finite temperature T and finite isospin chemical potential µI .

We can compare figure 4.1 to the phase diagram for baryon chemical potential (see figure
2.2). Besides the green and yellow areas, both figures agree. In both figures, the charge
density is zero in the blue phase: 〈J t〉 = 0 for the baryon case and 〈J t3〉 = 0 for the isospin
case. In both blue shadowed phases, the mesons are stable, i.e. the decay width is zero.
In the rest of the phase diagram, there exists a finite charge density and the mesons have
a finite lifetime. We refer to those phases as meson melting phases. Let us discuss the
new phase: in the yellow and green areas mesons condense. For sufficiently large, but
not too large, values of the isospin chemical potential, only vector mesons condense, i.e.
〈Jx1 〉 6= 0. If we further increase the isospin chemical potentials, other mesons may also
condense. The yellow and green shadowed phases are superconducting since the remaining
U(1)3 flavor symmetry is spontaneously broken due to a finite meson condensate 〈Jx1 〉.

4.2 Field theory description

Before we discuss the holographic setup, we investigate the field theory side in more detail
in the this section. We consider a strongly-coupled N = 4 supersymmetric Yang-Mills
theory with gauge group SU(Nc) in the large-Nc limit coupled to Nf = 2 species of flavor
fields (called u and d) with the same mass m, which may be confined to a defect. We
study thermal equilibrium states with temperature T , and introduce an isospin chemical
potential µI as a source of the operator J t3. The hypermultiplets u (d) have a positive
(negative) chemical potential, respectively. Note that the U(2) flavor symmetry of the
theory is broken to U(1)B × U(1)3 by considering a non-vanishing chemical potential.
Here, U(1)B is the usual baryon symmetry, acting schematically as u→ eiαu, d→ eiαd. In
contrast, the symmetry U(1)3 acts as u → eiαu, d → e−iαd. The global symmetry U(1)3
plays a crucial role in this chapter.

For sufficiently large µI , the system develops a nonzero 〈Jx1 〉. The operator Jx1 is a gauge-
invariant bilinear in the flavor fields, valued in the adjoint of U(Nf ). The precise form of
the operator Jx1 depends on the details of the flavor fields. For example, for two N = 2
supersymmetric hypermultiplets,3 called u = (qu, ψu) and d = (qd, ψd), the operators J t3
and Jx1 read

J t3 = ψ̄σ3γtψ + qσ3∂tq̄ = ψ̄uγ
tψu − ψ̄dγtψd + bosons = nu − nd , (4.2.1)

Jx1 = ψ̄σ1γxψ + qσ1∂xq̄ = ψ̄uγ
xψd + ψ̄dγ

xψu + bosons .

Here, nu and nd are the charge density of the isospin fields, q = (qu, qd) and ψ = (ψu, ψd).
σi are the usual Pauli matrices.

The operator Jx1 is precisely what we call a vector meson, and the phase transition ap-
pears to be vector meson condensation. To be precise, the spectrum of the D3/Dp the-
ory includes gauge-invariant bound states of flavor fields. We refer to such bosonic or

3For more details see section 2.5.1.1.



4.3. Dual Gravity picture 91

fermionic bound states as mesons or mesinos, respectively. For massive flavor fields, these
mesons/mesinos are typically the lightest flavor degrees of freedom in the theory [89,113].
We may thus imagine writing an effective theory for these degrees of freedom, analogous to
the chiral Lagrangian of QCD. An isospin chemical potential µI acts as a negative mass-
squared for any mesons/mesinos charged under U(1)3. If we make µI sufficiently large,
then we expect Bose-Einstein condensation of mesons. In QCD, we expect the lightest
charged mesons, the pions, to condense first producing a scalar condensate (and hence an
s-wave superfluid), while the heavier vector mesons may condense at higher µI [157,158].
Which mesons condense first in D3/Dp systems depends on the details of the system.4

The general lesson from these D3/Dp systems is that the p-wave superfluid phase tran-
sition appears to be vector meson condensation, which is in line with our weak-coupling
intuition.

Moreover, thinking of the p-wave states as a Bose-Einstein condensate makes many po-
tentially confusing features of the p-wave state transparent. For example, the p-wave
transition appears to involve the spontaneous generation of a persistent current 〈Jx1 〉, that
is, at high density charges begin moving without experiencing dissipation.5 While not
impossible, such a scenario naturally raises some questions. Why do charges start mov-
ing? How does that lower the free energy? Vector meson condensation neatly accounts
for all of the physics: we merely see Bose-Einstein condensation, i.e. bosons populating a
zero-momentum state, the main novelty being that the bosons are vectors, not scalars.

4.3 Dual Gravity picture

4.3.1 Holographic setup

We study N = 4 super Yang-Mills coupled to Nf = 2 species of massless flavor degrees
of freedom at finite temperature. The flavor degrees of freedom may be constrained to a
defect. Moreover, we turn on a non-vanishing isospin chemical potential.

In the dual holographic setup the N = 4 SYM degrees of freedom are given by the
background supergravity solution including a metric and Ramond-Ramond five-form. In
order to describe a state with finite temperature, the spacetime is (4+1)-dimensional AdS-
Schwarzschild times S5 with metric (2.4.80).6

The flavor fields are introduced by two coincident probe Dp-branes, extended along AdSP×
SQ. In this section we consider only the trivial embedding of the Dp-branes, i.e. we
consider solutions in which all the Dp-branes’ worldvolume scalars, including scalars in

4In other holographic models which are more realistic for describing QCD, such as the Sakai-Sugimoto
model [136], holographic calculations suggest that indeed the pions condense first and the vector mesons
second, as we increase µI [159,160].

5Crucially, however, no net momentum is flowing. In holographic calculations, in both the probe and
fully back-reacted cases [7,161,162], the Yang-Mills stress-energy tensor and the metric are diagonal, and
indeed the bulk spacetime is static, which indicates that the expectation value of the field theory stress-
energy tensor is strictly diagonal. The system thus has zero net momentum. If charges are moving, they
must be doing so in pairs that move in opposite directions. A static bulk spacetime also indicates that the
energy density of the field theory is not changing in time: the system is not heating up, consistent with
the fact that the moving charges experience no dissipation.

6In our units, where the AdS radius is one, we can convert between string theory and field theory
quantities using α′−2 = 4πgsNc = 2gY MNc = 2λ.
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AdS5 directions, are zero. The dual flavor fields are then massless. The induced metric
on the Dp-branes reads

ds2Dp =
1

u2

(
du2

f(u)
− f(u)dt2 + d~x2

)

+ ds2SQ , (4.3.2)

where now d~x2 represents the (P − 2)-dimensional Euclidean metric.

The dynamics of the flavor degrees of freedom is encoded in the non-Abelian effective
action for Dp-branes. The precise form is not known as reviewed in section A.3.1. The
action

SDBI = −τpStr

∫

Dp
dp+1ξ

√

detQ

[

det
(

Pab

[
Eµν+Eµi(Q

−1−δ)ijEjν

]
+2πα′Fab

)
] 1

2

(4.3.3)

is only correct up to order F 4 in the field strength.7

4.3.2 Truncation to α′ 2

Therefore we have to use an approximation. In this section we truncate the action to
leading non-trivial order in α′, i.e. to order α′ 2. The action (4.3.3) reduces then to a
U(Nf ) non-Abelian Yang-Mills theory in AdSP × SQ

SDp = −τpNf

∫

dp+1ξ
√

−GDp
[

1 + (2πα′)2
1

2
Tr (FµνF

µν)

]

.

Here, the integral is over the worldvolume coordinates ξµ, Nf = 2, GDp is the determinant
of the induced metric, and the trace is taken over gauge indices. We use SU(2) generators
τa = 1

2σa such that, with ǫ123 = +1,

[τa, τb] = i ǫabc τc. (4.3.4)

The field strength Fµν = F aµν τa is given by

F aµν = ∂µA
a
ν − ∂νAaµ + ǫabcAbµA

c
ν . (4.3.5)

Since we turn on a non-vanishing isospin chemical potential, we consider the following
ansatz for the gauge fields

A = A1
x(u) τ1 dx+A3

t (u) τ3 dt , (4.3.6)

where the chemical potential is the leading order of A3
t (u) in a near-boundary expansion.

We also have included a gauge field component A1
x(u) which describes the non-zero meson

condensate. Inserting the ansatz (4.3.6) into the action (4.3.4) and using the explicit form
of the metric components (2.4.80), the action density reads

SDp = −(2πα′)2N
4

∫
du

uP

(

1− u4
(
A3 ′
t (u)

)2
+ u4f(u)

(
A1 ′
x (u)

)2 − u4

f(u)

(
A1
x(u)A

3
t (u)

)2
)

,

(4.3.7)

7For more details, in particular for the precise definition of Q and E, please consult section A.3.1 of the
appendix A.
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where N is given by equation (2.5.98).

For numerics, it is better to use the dimensionless quantities χ = u
uh

and Ã3
t = uhA

3
t ,

Ã1
x = uhA

1
x. The action density in these quantities is given by

SDp = −(2πα′)2N
4uP−1

h

∫ 1

0

dχ

χP

(

1− χ4
(
∂χA

3
t

)2
+ χ4f(χ)

(
∂χA

1
x

)2 − χ4

f(χ)

(
A1
xA

3
t

)2
)

,

(4.3.8)
where f(χ) = 1 − χ4. The equations of motion for the gauge fields Ã3

t (χ) and Ã1
x(χ) are

given by

∂2
χÃ

3
t (χ) +

4− P
χ

∂χÃ
3
t (χ)− 1

f(χ)
Ã3
t (χ)

(

Ã1
x(χ)

)2
= 0, (4.3.9a)

∂2
χÃ

1
x(χ) +

(
4− P
χ

+
∂χf(χ)

f(χ)

)

∂χÃ
1
x(χ) +

1

f(χ)2

(

Ã3
t (χ)

)2
Ã1
x(χ) = 0. (4.3.9b)

The equations of motion near the boundary χ→ 0 determine the asymptotic forms of the
solutions,

Ã3
t (χ) = c̃3t − d̃3

t χ
P−3 + . . . , Ã1

x(χ) = d̃1
x χ

P−3 + . . . , (4.3.10)

where . . . represent terms that decay faster than χP−3 as χ → 0. Note that there is no
constant term in Ã1

x. In principle, such a term would be allowed. However, we do not
source the operator 〈Jx1 〉 on the field theory side. Therefore we set the parameter c̃1x to
zero.

The constants c̃3t , d̃
3
t and d̃1

x are related to the chemical potential µI , to the finite isospin
density 〈J t3〉 and to the meson condensate 〈Jx1 〉, respectively. The precise mapping is given
by

c̃3t = µIuh =
µI
πT

, (4.3.11)

d̃3
t = uP−2

h N−1
(
2πα′)−2 〈J t3〉 (4.3.12)

=
〈J t3〉 Γ((Q+ 1)/2)

4NfNc(2λ)(P+Q−8)/4(2π)−P−Q+4π(Q+1)/2(πT )P−2
=

〈J t3〉
ÑP,QTP−2

,

where in the second equality we converted to field theory quantities. Similarly,

〈Jx1 〉 = ÑP,Q TP−2 d̃3
t ∼ NfNcT

P−2 d̃1
x. (4.3.13)

NP,Q is given by

ÑP,Q =
4NfNc(2λ)(P+Q−8)/4(2π)−P−Q+4π(Q+1)/2πP−2

Γ
(
Q+1

2

) . (4.3.14)

Notice that ÑP,Q and therefore also 〈J t3〉 and 〈Jx1 〉 are proportional to NfNc.

One solution of equations (4.3.9) has Ã1
x(χ) = 0 and Ã3

t (χ) = c̃3t (1 − χP−3), i.e. A3
t (u)

reads

A3
t (u) = µI

(

1− uP−3

uP−3
h

)

. (4.3.15)
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Such a solution corresponds in the field theory to the normal phase, in which the chemical
potential µI explicitly breaks the SU(2) isospin symmetry down to the U(1)3 flavor sym-
metry, but no spontaneous symmetry breaking occurs. These solutions exist for all values
of µI .

For sufficiently low temperatures T or equivalently,8 for sufficiently large isospin chemical
potential µI , other solutions of equation (4.3.9) exists in which Ã1

x(χ) is nonzero. These
solutions correspond in the field theory to superfluid states, with nonzero 〈J1

x〉, so U(1)3
is spontaneously broken. For P ≥ 4, the field theory’s spatial rotational symmetry9 is also
broken from SO(P − 2) down to SO(P − 3).
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Figure 4.2: The superconducting condensate 〈Jx
1 〉 as a function of the temperature T/Tc for (a)

D7-branes wrapping AdS5 × S3 and for (b) D5-branes wrapping AdS4 × S2. Tc is the critical
temperature where the phase transition happens. Note that for T → 0 we obtain a finite value for

〈Jx
1 〉. Near Tc the superconducting condensate 〈Jx

1 〉 behaves as 〈Jx
1 〉 ∝ (1− T/Tc)

1/2
. Therefore

the critical exponent of the phase transition is 1/2. Figures made by Patrick Kerner.

For temperatures below a critical temperature Tc, we have two solutions, so we need to
determine which is thermodynamically preferred. Therefore we Wick-rotate our setup to
Euclidean signature. In order to calculate the grand potential, we have to compute the
Euclidean on-shell action of probe Dp-branes,

Ωfl.(T, µI) = −T lnZfl. = TSE⋆ Vol(R1,P−2) . (4.3.16)

Here, SE⋆ denotes the on-shell value of the renormalized action density in Euclidean sig-
nature. In order to get the action, and not the action density, we have to include a factor
of Vol(R1,P−2). Recall that the time is compactified on a circle with circumference T−1.
This factor cancels the explicit temperature dependence in equation (4.3.16).

8Notice that these D3/Dp theories in the probe limit are scale-invariant since in the probe limit we
neglect the quantum effects that would cause the N = 4 SYM coupling to run, and we are working with
massless flavor fields. The theory is thus in a limit where no intrinsic scale appears. Therefore the only
meaningful physical quantity is µI/T , so fixing T and increasing µI is equivalent to fixing µI and reducing
T . We think in terms of the latter. Any transition must occur at a temperature Tc set by the chemical
potential, Tc ∝ µI .

9When P = 3 the flavor fields are confined to a (1+1)-dimensional defect and hence have no spatial
rotational symmetry. Notice that in such cases the large Nc limit is what permits spontaneous symmetry
breaking to occur, by suppressing the fluctuations that would destroy long-range order.
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Using the explicit form of the action density (4.3.8), we obtain

Ωfl.(T, µI) =
ÑP,Q
4π

TP−1

∫ 1

0

dχ

χP−4

(

−
(
∂χĀ

3
t

)2
+ f(χ)

(
∂χĀ

1
x

)2 − 1

f(χ)

(
Ā1
xĀ

3
t

)2
)

.

(4.3.17)
Here, Ā3

t (χ) and Ā1
x(χ) are solutions of the equations of motion (4.3.9) with boundary

asymptotics (4.3.10) corresponding to an isospin chemical potential µI . This expression
for the grand potential can be simplified by integration by parts and by using the equations
of motion. We obtain

Ωfl.(T, µI) =
ÑP,Q
4π

TP−1

(

(P − 3)c̃3t d̃
3
t −

∫ 1

0

dχ

χP−4
f(χ)

(
∂χĀ

1
x

)2
)

. (4.3.18)

Let us discuss now two cases in more detail: two coincident D7-branes with P = 5 and
Q = 3 and two coincident D5-branes with P = 4 and Q = 2. We will see that the results
are qualitatively the same although the field theories are different. In the case of the D5-
branes, the hypermultiplets can only propagate in 2+1 dimensions, whereas in the case of
D7-branes there is no defect. The results are summarized in figures 4.2 and 4.3.

Let us discuss the case of two coincident D7-branes with P = 5, Q = 3 first. In figure
4.2 (a) we plot 〈Jx1 〉 versus the rescaled temperature T/Tc. Note that Tc is defined being
the highest temperature below which a non-zero condensate 〈Jx1 〉 exists. Therefore the
blue curve, corresponding to the superconducting phase with 〈Jx1 〉 6= 0, exists only for
T/Tc ≤ 1.
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Figure 4.3: The rescaled grand potential Ωfl. for the D7-brane (with P = 5 and Q = 3) as
a function of the temperature T/Tc. We see that the grand potential for the superfluid phase
(blue curve) is smaller than for the normal phase (red curve). Therefore the superfluid phase is
thermodynamically preferred. Note that the grand potential is differentiable for T = Tc. Moreover,
we also plot the second derivative of the grand potential which is discontinuous. Figure made by
Patrick Kerner.

To determine which is the thermodynamically preferred phase, we plot the grand potential
Ωfl. as a function of the temperature T/Tc in figure 4.3. We see that the grand potential
of the superconducting phase, given by the red curve, is smaller than of the normal phase.
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Therefore the superconducting phase is thermodynamically preferred. We can also read
off the order of the phase transition. The second derivative is discontinuous but not the
first derivative.

From figure 4.2 (a) we can determine the critical exponent by fitting near the critical
temperature. It turns out that the critical exponent is 1/2, i.e.

〈Jx1 〉 ∝ (1− T/Tc)1/2 . (4.3.19)

In summary, the phase transition is second order with a mean field exponent of 1/2.

Finally, the story for the case of two coincident D5-branes with P = 4 and Q = 2 is
qualitatively the same. For µI ≥ 3.81 × (πT ) the state with nonzero 〈J1

x〉 has lower free
energy. In other words, Tc = µI/(3.81×π). In figure 4.2 (b) we plot 〈Jx1 〉/(T 2

c Ñ4,2) versus
the rescaled temperature T/Tc. Near the transition, 〈Jx1 〉 appears to have a mean-field
exponent of 1/2 as in the D7-brane case.

4.3.3 Beyond the probe limit: backreaction

Notice that these D3/Dp systems give rise to probe gauge fields, as defined in section 2.5.2,
rather than gauge fields coming from the supergravity sector. The probe limit is sufficient
to study many properties of the p-wave phase transition, however, the probe limit is known
to fail at low temperatures. The solutions with nonzero A1

x(u) have a field strength that
increases as we cool the system. Hence, we can no longer neglect the backreaction. To
reach zero temperature, we must solve the fully coupled equations of motion.

In [7] we have included the backreaction of the gauge fields for a toy-model. We considered
the action (4.3.7) (with P = 5, Q = 3) and coupled it to the usual Einstein-Hilbert term
with negative cosmological constant. Note that this is only a toy-model for the case of
coincident D7-branes since D7-branes would also source other fields, such as RR-potentials
and the dilaton, in type IIB supergravity.

The only free parameter in [7] is the ratio α of the gravitational constant, κ5 and the
Yang-Mills coupling constant, ĝ,

α =
κ5

ĝ
. (4.3.20)

Since 1/ĝ2 ∝ NfNc and 1/κ2
5 ∝ N2

c , α
2 is proportional to Nf/Nc. Therefore the probe

limit corresponds to α→ 0.

In [7] we construct the backreacted solution for different values of α and confirm that the
superconducting phase is thermodynamically preferred below a critical temperature. For
small α, including the probe limit, the phase transition is second order. Above the critical
value αc = 0.365 ± 0.001, the phase transition is first order.

Moreover, we find10 that the zero-temperature limits of the bulk hairy black hole solutions
involves a domain wall interpolating between two regions, one near the boundary and one
deep in the interior of the spacetime. The geometry interpolates between a near-boundary
AdS space and an interior AdS space with a different radius of curvature and speed of
light [154,162–165]. In field theory language, the interior AdS space represents an emergent

10We have not yet published this calculation. Similar results for AdS4 may be found in [161].
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conformal symmetry at low temperature and finite charge density. In other words, the
emergent AdS represents a quantum critical point.

4.3.4 Beyond F 2 and massive embeddings

So far we have only discussed the truncation to order α′ 2 and considered massless flavor
fields. In [3] we extended our analysis for two coincident D7-branes with P = 5, Q = 3
to massive flavor fields and by including higher order terms of the field strength tensor.
Since the non-Abelian version of the Dirac-Born-Infeld action is known only up to order
F 4, we use the two following prescriptions:

(i) we truncate the non-Abelian Dirac-Born-Infeld action (4.3.3) to order F 4,

(ii) we incorporate all higher order terms in the field strength tensor F. For simplicity, we
change the prescription of the symmetrized trace which is denoted by Str: we omit
all commutators of the generators σi and use (σi)2 = 1. We call this approximation
the adapted symmetrized trace prescription.

Although these two prescriptions for the non-Abelian Dirac-Born-Infeld action (4.3.3) are
not related in an obvious way, the results obtained in both prescriptions agree qualitatively.
In both prescriptions, the superconducting phase exists below a critical temperature Tc,
and is thermodynamically preferred. Moreover, the phase transition is second order with
mean field values for the critical exponent.

The main results of [3] are the phase diagram in figure 4.1, which we already discussed in
the introductory section 4.1, and the retarded Green’s function for a particular component
of the currents. As explained in section 3.1.1, we can calculate the ac conductivity from
the retarded Green’s function of the currents

σ(ω) =
G̃R(ω,~0)

iω
. (4.3.21)

Here we consider the component Jy3 of the current. Note that Jy3 is charged under the U(1)3
symmetry and therefore is influenced by the spontaneous symmetry breaking. Moreover,
the current is transverse to the superconducting condensate in spacetime.

The calculation of the frequency-dependent conductivity for alternating currents in the
gravity setup is reviewed in section 3.2.2. Here we only list the results obtained in [3]. The
real part of the ac conductivity, Reσ(ω), is presented in figure 4.4 for the symmetrized trace
prescription. It shows the appearance and growth of a gap in the frequency as we decrease
the temperature below the critical temperature Tc. The conductivity gap originates in a
pseudo gap already present right above Tc, as can be seen from the red curve in figure 4.4.
By a pseudo gap we mean a well-defined gap in the ac conductivity at low frequency ω
in which the conductivity is not identically zero [166]. If the mass of the hypermultiplet
is zero we also find prominent peaks in the ac conductivity. If we increase the mass m
of the hypermultiplets from zero to a finite value, as shown in figures 4.4 and 4.5, these
prominent peaks become sharper which we may interpret as mesonic excitations. Note
that the prominent peaks in figure 4.5 are inside the gap.

Since we obtained the results numerically, we cannot resolve the value of the conductivity
at ω → 0. However, for small frequencies ω, the imaginary part of the conductivity behaves
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Figure 4.4: Real part of conductivity, Re σ, in units of NfNcT/(16π) versus the dimensionless
frequency w = ω/(2πT ) for massless quarks computed from the adapted symmetrized trace pre-
scription. Distinct curves correspond to T/Tc =∞ (black), 1(red), 0.5 (orange) and 0.28 (brown).
By decreasing the temperature below the critical one, a gap where the conductivity is approxi-
mately zero appears which is a characteristic feature of a superconductor. In addition prominent
peaks arise. Figure made by Matthias Kaminski and Patrick Kerner.
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Figure 4.5: Real part of conductivity, Re σ, in units of NfNcT/(16π) versus the dimensionless
frequency w = ω/(2πT ) for massive quarks at fixed µ/Mq = 3 computed from the adapted sym-
metrized trace prescription. Distinct curves correspond to T/Tc = 10 (black), 1(red), 0.6 (green)
and 0.5 (orange). As in figure 4.4 a gap appears. Moreover, we observe a prominent peak inside
the gap where the conductivity is approximately zero in the green and orange curves. Figure made
by Matthias Kaminski and Patrick Kerner.

as

Imσ(ω) ∼ ns
ω

for ω → 0 . (4.3.22)

Here, ns is a real parameter. Using the Kramers-Kronig relations, which connects the real
and imaginary part of the conductivity, we therefore find a delta peak at ω = 0 in the real
part of the conductivity,

Re σ(ω) ∼ πnsδ(ω). (4.3.23)

Therefore ns is the density of the superconducting condensate. The corresponding behav-
ior of the imaginary part of the conductivity (multiplied by ω) is visualized in figure 4.6.
Taking the limit ω → 0, we can read off the superconducting density ns from figure 4.6.

As expected from Ginzburg-Landau theory, our numerics show that the superconducting
density ns vanishes linearly at the critical temperature, ns ∝ (1 − T/Tc) for T ≈ Tc. As
expected, for decreasing temperature T, the superconducting density ns increases.
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Figure 4.6: Scaled imaginary part of conductivity wIm σ in units of NfNcT/(16π) versus the
dimensionless frequency w = ω/(2πT ) for massless quarks computed from the adapted symmetrized
trace prescription. Distinct curves correspond to T/Tc =∞ (black), 1 (red), 0.9 (blue), 0.6 (green),
0.5 (orange) and 0.28 (brown). This figure has been scaled to asymptote to a constant at w = 0.
This constant determines the superconducting density ns. Figure made by Matthias Kaminski and
Patrick Kerner.

Both calculational prescriptions – the adapted symmetrized trace prescription and the
expansion of the DBI action to fourth order in the field strength – yield qualitatively very
similar results. Therefore we have only present the results obtained from the symmetrized
trace prescription.

The only difference are the prominent peaks as seen in figures 4.4 and 4.5. From the
Dirac-Born-Infeld action expanded to fourth order we obtain less prominent peaks. These
peaks do not appear until we approach small temperatures. For the truncation to α′ 2,
i.e. for the Yang-Mills approximation of the Dirac-Born-Infeld action we do not see any
prominent peaks in the ac conductivity. Therefore we conclude that the terms higher order
in the field strength dominate the generation of the prominent peaks.

4.4 String Theory Picture

In this section we discuss why a non-zero gauge field A1
x stabilizes the system for large

chemical potentials. For simplicity, we use the D3/D7 model. However, the arguments,
presented in this section, can be generalized to other D3/Dp systems.

In the string context, the non-zero fields A3
t and A1

x induce two non-zero flavorelectric
SU(2) fields E2

x = F 2
tx = A3

tA
1
x and E3

u = F 3
tu = −∂uA3

t as well as a non-zero flavormag-
netic field B1

xu = F 1
xu = −∂uA1

x on the D7-branes where u is the radial AdS direction.
These fields are generated by D7-D7 strings stretched between the two probe branes and
by strings stretched from the D7-branes to the horizon. In order to balance the flavorelec-
tric and gravitational forces, the D7-D7 strings, which are responsible for the symmetry-
breaking condensate, move from the horizon into the bulk and thus distribute the isospin
charge. This stabilizes the system.

Let us discuss this stabilization mechanism in more detail. First we describe the unstable
configuration in absence of the field A1

x. As known from [115,119,147], the non-zero field A3
t

is induced by fundamental strings which are stretched from the D7-brane to the horizon
of the black hole. Since the tension of these strings would increase as they move to
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Figure 4.7: Sketch of our string setup: Strings spanned from the horizon of the AdS black hole to
the D7-branes (green and blue plane) induce a charge at the horizon [115, 119, 147]. In the setup
considered here, there are also D7-D7 strings present as shown in the figure. These D7-D7 strings
are distributed along the AdS radial coordinate u, since they have to balance the flavorelectric
and gravitational, i.e. tension forces. Thus these D7-D7 strings distribute the charges along the
AdS radial coordinate, leading to a stable configuration of reduced energy. This corresponds to a
superconducting condensate given by the Cooper pairs. Figure made by Patrick Kerner.

the boundary, they are localized at the horizon, i.e. the horizon is effectively charged.
By increasing their density, the charge on the D7-brane at the horizon and therefore the
energy of the system grows. In [147], the critical density was found beyond which this setup
becomes unstable. In this case, the strings would prefer to move towards the boundary
due to the repulsive force on their charged endpoints generated by the field E3

u.

The setup is now stabilized by the new non-zero field A1
x. This field is induced by D7-D7

strings moving in the x direction. This may be interpreted as a current in x direction
which induces the magnetic field B1

xu = −∂uA1
x.

Let us now explain the mechanism by which the D7-D7 strings may propagate into the
bulk. Due to the non-Abelian structure, the field E3

u and the magnetic field B1
xu induce

the field E2
x, corresponding to an interaction between the two string types. This field

E2
x stretches the D7-D7 strings in the x direction. The position of the string in the u

coordinate is fixed such that the gravitational force induced by the change in tension
balances the force induced by the field E3

u. This means that the energy of the setup is
minimized. Our numerical calculations show that this is the case.

The double importance of the D7-D7 strings is given by the fact that they are both
responsible for stabilizing the new phase by lowering the charge density, as well as being
the dual of the Cooper pairs since they break the remaining U(1)3 flavor symmetry.

In summary, in this chapter we have embedded a p-wave superconductor into string the-
ory using probe Dp-branes. We have determined the holographic setup on the gravity
side and have solved the equations of motions numerically. We find that below a critical
temperature two solutions exit in the gravity theory, one with a non-vanishing gauge field
component A1

x. We confirm that the solution with non-zero A1
x is thermodynamically pre-

ferred by calculating the grand potential. Since A1
x breaks the remaining U(1)3 symmetry

spontaneously, we can view the system as a superconductor or, more precisely, as a super-
fluid. The phase transition separating the normal phase and the superconducting phase
is second order with a mean field critical exponent of 1/2. The non-vanishing gauge field
A1
x can be identified as a meson condensate on the field theory side.
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Moreover, we have also determined the response to electric fields. In particular, we are
interested in the conductivity of alternating currents in the superconducting phase. We
find a gap in the AC conductivity for small frequencies and, by using Kramers-Kronig
relations, a delta peak in the direct-current conductivity. In the next chapter, we study
the response of fermionic operators in the background constructed here.





5
Fermions in AdS/CFT

Of central importance for potential condensed matter applications is the holographic de-
scription of fermions, in particular of Fermi liquids. Since a proper theoretical understand-
ing on Non-Fermi liquids is lacking, we investigate a new class of (non-)Fermi liquids using
techniques of the AdS/CFT correspondence.

In this chapter we compute spectral functions of fermionic operators in a strongly-coupled
(defect) field theory. In particular we consider the defect field theory discussed in chapter
4. We map the fluctuations of the fermionic part of the D-brane action to the dual field
theory operators corresponding to the superpartners of the mesons, i.e. to mesinos and
compute the spectral function for certain mesinos in the p-wave state.

We identify an emergent Fermi surface in the superfluid phase. As we cool down the system
through the superfluid phase transition, we find strong evidence of Fermi surfaces: gapless
fermionic excitations for discrete values of the momentum. Due to the p-wave symmetry
of the superconducting condensate, the rotational symmetry in the spectral functions is
broken. For sufficiently low temperature, the Fermi surface is comprised of isolated points.
This signature can also be observed in p-wave superfluids in real-world systems, like in
ruthenate compounds. Moreover, the properties of low-energy excitations about the Fermi
surface, in particular the scaling behavior, differs significantly from Landau liquid theory.

This chapter of the thesis is based on work done in collaboration with Johanna Erdmenger,
Matthias Kaminski and Andy O’Bannon and was published in [8].

5.1 Introduction and Summary

In this chapter we embed the fermions into string theory by considering supersymmetric
probe Dp-branes in the supergravity background of Nc coincident D3-branes. The probe
Dp-branes are extended along AdSP×SQ, where supersymmetry requires |P−Q| = 2 [102],
as reviewed in section 2.5.2. For simplicity, we study only trivial embeddings of such



104 Chapter 5. Fermions in AdS/CFT

Dp-branes, that is, we study only solutions in which all Dp-brane worldvolume scalars are
trivial. This also implies that the flavor degrees of freedom are massless. Our bulk fermions
are the Dp-branes’ worldvolume fermions. These fermions are in a supermultiplet with
the worldvolume scalars and gauge field, hence they are in the adjoint of the worldvolume
U(Nf ), and couple to the gauge field via the gauge-covariant derivative.1 In other words,
supersymmetry determines the charges of the fermions. For example, we use Nf = 2,
where we find three fermions with charges +1, −1 and 0 under U(1)3.

To compute fermionic spectral functions we need the linearized equations of motion, the
Dirac equation, for these fermions. Fortunately, the fermionic part of the D-brane action,
for a D-brane in arbitrary backgrounds (including RR fields) is known to quadratic order in
the fermionic fields [167–169]. The form of the action is determined by supersymmetry and
T-duality [169], as we review in section 5.2. For our Dp-branes extended along AdSP ×SQ,
we perform a reduction on the SQ to obtain a Dirac equation in AdSP , following [101]
very closely. The spectrum of AdSP fermion masses are fixed by P , Q and the coupling
to the background RR five-form.

We emphasize a major difference between our systems and the models of of the bottom-up
approach described in the introduction: in our embedding of the Dirac equation into string
theory, the mass and charge of the fermions are fixed by supersymmetry and T-duality.
Therefore we are not free to dial the values of the mass and charge, unlike in the models
of the bottom-up approach.

Much of our analysis is valid for any supersymmetric Dp-brane extended along AdSP×SQ,
with P ≥ 3,2 but one particular Dp-brane is attractive for a number of reasons, namely
the D5-brane extended along AdS4×S2 (P = 4 and Q = 2). From the bulk point of view,
this D5-brane is the only Dp-brane with a massless worldvolume fermion, as we show in
section 5.2.1. That makes both our numerical analysis, and comparison to [49, 51] (in
which the fermions were massless), much easier. The dual field theory and in particular
the explicit form of the fermionic operators dual to the D5-branes’ worldvolume fermions
was discussed in section 2.5.1. These fermionic operators are mesinos, the supersymmetric
partners of mesons.

On a technical level, we consider more than oneDp-brane giving rise to the flavor degrees of
freedom. The dynamics of coincident Dp-branes is described by a non-Abelian Dirac-Born-
Infeld action (as well as a non-Abelian version of the Chern Simons action which vanishes in
the background considered). However note that the precise form of the non-Abelian Dirac-
Born-Infeld action is only known up to F 4. Therefore we truncated the Dirac-Born-Infeld
action to α′ 2 in section 4.3.1. In section 4.3.1 we studied two isospin charged flavor degrees
at finite isospin chemical potential µI . Above a critical value of the chemical potential (or
equivalently, for low temperatures) we identified a second order phase transition. The order
parameter is a rho-meson condensate which breaks the remaining U(1) spontaneously. The
gravity dual of the symmetry broken phase is given by a non-vanishing component A1

x.

Here, we use this gravity background considered in section 4.3.1 and study the fermionic
fluctuations therein. In order to be consistent we also truncate the fermionic part of the
Dp-brane action to α′ 2. Hence, the equations of motions are given by a Dirac equation for

1Like all worldvolume fields, they are not charged under the diagonal U(1) ⊂ U(Nf ). However, note
that in the fermionic D-brane action proposed in [167–169] there are also dipole-like couplings present.

2We focus on P ≥ 3, since only in those cases is a vector condensate 〈Jx
1 〉 possible. One exception is a

D5-brane along AdS2 × S4, which we study in section 5.2.1 (but not in p-wave states).
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a fermion in the adjoint of SU(2) confined to an AdSP submanifold of (4+1)-dimensional
AdS-Schwarzschild. For any Dp-brane, the three worldvolume fermions decouple in the
normal (non-superfluid) phase, where A1

x is zero, but couple to one another in the su-
perfluid phase, where A1

x is nonzero. These couplings indicate that, in the field theory,
the dual fermionic operators experience operator mixing under renormalization group
flow [140, 141]. In the field theory, the retarded Green’s function, and hence the spectral
function, becomes a matrix with off-diagonal entries.

For the P = 4, Q = 2 D5-brane, using our method for coupled bulk fermions (see sec-
tion 3.2.4), we numerically compute spectral functions for mesinos as we cool the system
through the p-wave superfluid phase transition. Due to the operator mixing, or equiva-
lently the coupling of the fermions in the bulk, we see that the spectral function of even
a neutral fermion develops a nontrivial feature, a peak, as the system enters the p-wave
phase.

Furthermore, as we lower the temperature,3 the zero-frequency spectral measure, which is
defined as the trace of the spectral function, is clearly no longer rotationally invariant. In
fact at the lowest temperatures we can reliably access in the probe limit, the main features
of the spectral measure are five largely isolated peaks in the (kx, ky) plane, two on the kx
axis, two on the ky axis, and one at the origin.4

We cannot resist drawing an analogy between our system and certain experimentally-
realized p-wave superconductors (see also [170]).5 In that context, a reduction of the
Fermi surface to certain points in momentum space has been proposed for the ruthenate
compound Sr2RuO4 [171]: the p-wave state is supported by ferromagnetic fluctuations
that increase the propensity for electrons to form spin triplet Cooper pairs, with an odd
(p-wave) Cooper pair wave function.6 Scattering channels with momentum transfer Q =
(0, 0), as is the case in a ferromagnet, should be enhanced in the system, as opposed
to scattering channels of Q = (π, π), which is the case in an anti-ferromagnet. Small
momentum transfer is best accomplished by a strongly-peaked density of states at the
Fermi level, as occurs for example with van Hove singularities, where the density of states
diverges. This lies at the heart of the strong suspicion that a Fermi surface localized to
certain points with a high density of states may account for a suitable setup to support
p-wave pairing.

The chapter of the thesis is organized as follows. In section 5.2 we write the fermionic
part of the Dp-brane action, perform the reduction of the worldvolume Dirac equation
to AdSP , and, for the P = 4, Q = 2 D5-brane, we match bulk fermions to the dual
field theory operators discussed in section 2.5.1.2. In section 5.3 we present our numerical

3As always in the probe limit, note that we cannot access the zero temperature ground state with finite
chemical potential.

4These results are very similar to the T = 0 results of [161], where the bulk theory was gravity and
SU(2) gauge fields in (3+1)-dimensions, in the T = 0 vector-hairy black hole geometry. In that case, for
a fermion in the fundamental representation of SU(2), the spectral measure consisted of two points on
the kx axis, located symmetrically about the origin. The prediction of [161] for fermions in the adjoint
representation would be three points on the kx axis, one at the origin and two at finite kx, positioned
symmetrically about the origin. At finite temperature we see five points emerging, but we strongly suspect
that, if we could access the T = 0 limit, we would indeed see only three points, as we discuss in section
5.3.

5I want to thank Ronny Thomale for many useful conversations about real p-wave superconductors.
6This is rather particular, bearing in mind that a large number of generic spin interactions, for example

induced by superexchange processes, favor antiferromagnetic fluctuations.
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results for the fermionic retarded Green’s functions using the P = 4, Q = 2 D5-brane.

5.2 Worldvolume Fermions of Dp-branes

We study fluctuations of fermionic operators of the D3/D5 theory with finite temperature
and isospin chemical potential, in the two phases described in section 4.3.1, i.e. the normal
(non-superfluid) phase and the superfluid phase. On the field theory side, we study mesino
operators which are valued in the adjoint representation of the SU(2) isospin symmetry.
As we will see below, we thus have three mesinos, two with equal and opposite charges
under the U(1)3, and one that is neutral. The precise form of the mesino operator for the
field theory dual to the supersymmetric D3/D5 intersection is discussed in section 2.5.1.

To be specific, we compute holographically the retarded two-point function of mesinos
as a function of frequency and momentum. On the gravity side, that means studying
fermionic fluctuations of the Dp-branes, and in particular solving their linearized equation
of motion in the background we found in section 4.3.2. The geometry is (4+1)-dimensional
AdS-Schwarzschild and the D5-branes have non-trivial worldvolume gauge fields. As for
all supersymmetric Dp-branes, the worldvolume fermions are in a supermultiplet with the
worldvolume gauge field and scalars, and hence are in the adjoint of the worldvolume
SU(2) gauge group, which is dual to the statement that the mesinos are in the adjoint of
the isospin symmetry.7

As we will see, in the normal phase the three bulk fermions decouple, which is dual to the
statement that the retarded Green’s function is diagonal. In the superfluid phase, however,
where A1

x(u) is nonzero, the three fermions couple, indicating that the dual operators mix
under renormalization group flow in the field theory. The Green’s function is then a 6× 6
matrix, where the 6 is the number of fermions times the two components of the fermions
(two, using the Π1,2 projectors which are defined in equation 3.2.21). We thus have a
perfect testing ground for the method we developed in section 3.2.4 for computing Green’s
functions from coupled bulk fermions.

The fermionic part of general Dp-brane actions, to quadratic order in the fermionic fields
and in backgrounds with non-trivial RR forms, was determined in [167–169]. The general
couplings were derived by starting with the action for a supermembrane in M-theory,
written in a superspace formalism, expanding the action to second order in the Grassmann
variables, reducing to type IIA supergravity, and then performing a T-duality to type
IIB. The form of the quadratic fermionic action on the Dp-brane worldvolume is thus
determined completely by supersymmetry and T-duality.

Using the worldvolume fermion actions of [167–169], the spectra of mesinos in the D3/D7
theory (for the D7-brane with P = 5 and Q = 3) and in the Sakai-Sugimoto model were
determined in [101,172]. We will very closely follow the D7-brane analysis of [101], which
in turn was the fermionic generalization of the analysis of [89] for mesons. For a Dp-brane
extended along AdSP ×SQ, we consider a worldvolume spinor that is a spherical harmonic
on the SQ. We reduce the worldvolume spinor on the SQ, obtaining an effective Dirac
action in AdSP . This procedure fixes the masses of the bulk fermionic excitations, which

7Obviously, the mesinos carry no baryon number, which is dual to the statement that the worldvolume
fermions, like all of the worldvolume fields, do not couple via a gauge-covariant derivative to the diagonal
U(1) part of the worldvolume gauge field.
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allows us to identify the dimensions of the dual mesinos, and more generally to map bulk
fluctuations to mesino operators. As emphasized in [101], the coupling to the RR five-form
is crucial to obtain the correct bulk masses.8

5.2.1 Equation of Motion I: Reduction to AdS

In this section we now reduce the fermionic action of a Dp-brane extended along AdSP×SQ
to an effective Dirac action in AdSP , with emphasis on D5-branes with P = 4 and Q = 2.9

The quadratic action for fermionic fluctuations of the Dp-branes truncated to second order
in α′ is (for more details see [101,169])

SDp = NfTDp

∫

dp+1ξ
√
−gDp

1

2
Tr

[

ˆ̄ΨP−ΓÂ
(

DÂ +
1

8

i

2 ∗ 5!
FN̂ P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂ

)

Ψ̂

]

.

Here, Ψ̂ is a ten-dimensional positive-chirality Majorana-Weyl spinor of type IIB super-
gravity, the ΓÂ are the pullback of the ten-dimensional Γ-matrices to the Dp-brane world-

volume, ΓÂ = ΓM̂∂Âx
M̂ (we use a trivial embedding, so the pullback is trivial), P− is a

κ-symmetry projector that ensures κ-symmetry invariance of the action, DA is a (gauge
and curved-space) covariant derivative, and FN̂P̂ Q̂R̂Ŝ is the five-form of the background.
Notice that here FN̂ P̂ Q̂R̂Ŝ is not the pullback of the five-form to the Dp-brane worldvolume,
rather, it is the five-form evaluated on the submanifold spanned by the Dp-brane. Indeed,

no part of the expression FN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂Ŝ involves a pullback. Here Â, B̂, . . . denote all
worldvolume indices, while below A,B, . . . denote AdS-Schwarzschild coordinates which
are wrapped by the probe brane. Moreover, the indices of the coordinates on the sphere
SQ are labelled by a, b, . . . . Notice that the fermion Ψ̂ is in the adjoint representation of
SU(2).

The equation of motion for the fermion is

[

ΓÂDÂ +
1

8

i

2 ∗ 5!
ΓÂFN̂ P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂ

]

Ψ̂ = 0 , (5.2.1)

where we have suppressed gauge indices. We reduce the equation of motion for the fermion
to a Dirac equation in AdSP , following [101] very closely. First we decompose every ten-
dimensional spinor and Γ-matrix into parts associated with AdS5 and S5. In a local
Lorentz frame, the Γ-matrices decompose as

ΓM = σ2 ⊗ 14 ⊗ γM , Γm = σ1 ⊗ γm ⊗ 14, (5.2.2)

where 14 is the 4 × 4 identity matrix, the index M runs over AdS5 directions, which we
generically call 01234, and the index m runs over S5 directions, which we call 56789. The
γ-matrices are five-dimensional, obeying the usual relations

{
γM , γN

}
= 2ηMN , {γm, γn} = 2δmn. (5.2.3)

8The authors of [173] appear to omit the coupling to the five-form when they study fermionic fluctuations
of the probe D3-brane extended along AdS3 × S1.

9In section 4.3.1 we were interested in p-wave states and hence required P ≥ 3. In this subsection we
relax that constraint. Our results thus also apply for D5-branes extended along AdS2 × S4, which were
used in [174] to construct a holographic model of fermions at lattice sites (that can pair to form dimers).
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Given the above decompositions, we then have

Γ01234 = iσ2 ⊗ 14 ⊗ 14, Γ56789 = σ1 ⊗ 14 ⊗ 14, (5.2.4)

Γ11 = Γ0123456789 = σ3 ⊗ 14 ⊗ 14. (5.2.5)

The ten-dimensional spinor Ψ̂ has positive chirality, Γ11Ψ̂ = Ψ̂, and decomposes as

Ψ̂ =↑ ⊗χ⊗Ψ, (5.2.6)

where ↑=
(

1
0

)

, and χ and Ψ are four-component spinors of SO(5) and SO(4, 1), which

act on the tangent spaces of S5 and AdS5, respectively. The spinor χ further decomposes
as χ = χ‖⊗χ⊥, where χ‖ is a spinor associated with the SQ that the Dp-brane wraps and

χ⊥ is associated with the S5 directions transverse to the SQ.

We parameterize the five-form in terms of the volume forms of AdS5 and S5, which we
denote as ΩAdS5 and ΩS5,

FNPQRS = 4 (ΩAdS5)NPQRS , Fnpqrs = 4 (ΩS5)npqrs .

Using the decomposition of the type IIB spinor in equation (5.2.6) and of the γ-matrices
in equation (5.2.2) we obtain

Γa
(
Γ01234 + Γ56789

)
Γa (↑ ⊗χ⊗Ψ) = 2 ↓ ⊗χ⊗Ψ ,

ΓA
(
Γ01234 + Γ56789

)
ΓA (↑ ⊗χ⊗Ψ) = −2 ↓ ⊗χ⊗Ψ , (5.2.7)

In equation (5.2.7) we have not summed over a or A. Using this result we can simplify the
coupling of the spinor to the five-form,

1

8

i

2 ∗ 5!
ΓÂFN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂΨ̂ =

i

4
ΓÂ ((σ1 + iσ2)⊗ 14 ⊗ 14) ΓÂΨ̂ (5.2.8)

= − i
2
(P −Q) (↓ ⊗χ⊗Ψ) ,

where here we do sum over Â. We can also extract the SQ and the AdSP part of the
derivative terms as

ΓÂDÂΨ̂ = ΓADAΨ̂ + ΓaDaΨ̂

=
((
σ2 ⊗ 14 ⊗ γADA

)
+ (σ1 ⊗ γaDa ⊗ 14)

)
(↑ ⊗χ⊗Ψ)

=
(
i
(
12 ⊗ 14 ⊗ γADA

)
+ (12 ⊗ γaDa ⊗ 14)

)
(↓ ⊗χ⊗Ψ)

≡ (i∆AdSP
+ ∆SQ) (↓ ⊗χ⊗Ψ) , (5.2.9)

where ∆AdSP
and ∆SQ are the Dirac operators of AdSP and SQ, respectively. The Dirac

operator on a sphere SQ has spinor spherical harmonics χ±
ℓ that obey

∆SQχ±
ℓ = ∓ i

RQ

(

ℓ+
Q

2

)

χ±
ℓ , (5.2.10)

where ℓ ≥ 0 and RQ is the radius of the SQ. In our units, RQ = 1. For Q = 3, relevant
for the D7-brane along AdS5 × S3, the spinors χ+

ℓ are in the
(
ℓ+1
2 , ℓ2

)
representation of
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the SO(4) that acts on S3, while the spinors χ−
ℓ are in the

(
ℓ
2 ,

ℓ+1
2

)
representation. For

Q = 2, relevant for the D5-brane along AdS4 × S2, the spinors χ±
ℓ are in the

(
ℓ+ 1

2

)
of

the SU(2) ≃ SO(3) that acts on S2.

Inserting everything into equation (5.2.1), we find

(

∆AdSP
∓
(

ℓ+
Q

2

)

− 1

2
(P −Q)

)

Ψ±
ℓ =

{ (
∆AdSP

−
(
ℓ+ 1

2P
))

Ψ+
ℓ(

∆AdSP
+
(
ℓ− 1

2P +Q
))

Ψ−
ℓ

}

= 0.

(5.2.11)
The fermions10 Ψ± thus have masses

m+
ℓ = ℓ+

P

2
, m−

ℓ = −
(

ℓ+Q− 1

2
P

)

. (5.2.12)

Note that we use units, where the radius of AdS is one. We collect the values of m±
ℓ for

our Dp-branes of interest in the table 5.1.

Dp P Q [ψ] [q] m+
ℓ = ℓ+ P/2 ∆+

ℓ |m−
ℓ | = ℓ+Q− P/2 ∆−

ℓ

D7 5 3 3/2 1 ℓ+ 5/2 ℓ+ 9/2 ℓ+ 1/2 ℓ+ 5/2

D7 3 5 1/2 - ℓ+ 3/2 ℓ+ 5/2 ℓ+ 7/2 ℓ+ 9/2

D5 4 2 1 1/2 ℓ+ 2 ℓ+ 7/2 ℓ ℓ+ 3/2

D5 2 4 0 - ℓ+ 1 ℓ+ 3/2 ℓ+ 3 ℓ+ 7/2

D3 3 1 1/2 0 ℓ+ 3/2 ℓ+ 5/2 ℓ− 1/2 ℓ+ 1/2

Table 5.1: Masses of fermionic excitations on the worldvolume of a Dp-brane extended along
AdSP ×SQ inside AdS5×S5. We list Dp-branes that are known to preserve eight real supercharges
(at zero temperature and density), in which case |P − Q| = 2. Here, ψ denotes a generic quark
field and q denotes a generic squark field. ∆±

ℓ denotes the dimension of the operator dual to the
bulk fermion with mass m±

ℓ , with ∆±

ℓ = P−1
2 + |m±

ℓ |. For the D3-brane, the values of m−

ℓ and ∆−

ℓ

shown are for ℓ ≥ 1 only, whereas for ℓ = 0, |m−

0 | = 1/2 and ∆−

0 = 3/2.

Notice that since P and Q are integers, the m±
ℓ are always integer or half-integer. As

we reviewed in section 2.3.1, a bulk fermion with an integer or half-integer mass m is
dual to a fermionic operator of dimension ∆ = P−1

2 + |m|. We include the values of
∆±
ℓ = P−1

2 + |m±
ℓ | in the table.

To get a rough idea of which operators correspond to which bulk fermion, we can do some
dimension counting. Let us denote a generic quark as ψ, a generic squark as q, a generic
adjoint Majorana fermion as λ, and a generic adjoint real scalar as X. The dimensions of
the fields are [ψ] = P−2

2 , [q] = P−3
2 , [λ] = 3/2, [X] = 1.

For the D7-brane extended along AdS5 × S3, the D5-brane along AdS4 × S2, and the
D3-brane along AdS3 × S1, all of which have P −Q = 2, the dual flavor fields comprise a
supermultiplet with both quarks ψ and squarks q. In these cases, we can build a gauge-
invariant mesino in two ways [101]. One way is to construct an operator of the form
ψ̄λψ + q†Xλq, with dimension ∆ = P − 1/2. We can additionally include some number
ℓ of adjoint scalars11 as ψ̄λXℓψ + q†XλXℓq, so that the dimension is ∆ = ℓ + P − 1/2.

10The ± superscript here refers to the sign of the eigenvalue of the Dirac operator in equation (5.2.10),
not to the projectors Π± defined in section 2.3.1.

11Notice these are not necessarily all the same scalar, i.e. Xℓ could represent ℓ distinct scalars. At the
moment we are just counting dimensions, ignoring this subtlety.
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Inspecting the table, these are precisely the ∆+
ℓ , so apparently these kinds of mesinos are

dual to the bulk fermions with masses m+
ℓ . The other way to build a mesino is to construct

ψ̄Xℓq (plus the Hermitian conjugate), with dimension ∆ = ℓ + P − 5/2. For Dp-branes
with P −Q = 2, these dimensions are precisely the ∆−

ℓ , so apparently mesinos of this type
are dual to the fermions with masses m−

ℓ .

The mesino operators for the D5-brane along AdS4 × S2 were already studied in section
2.5.1. The explicit form of the fermionic operators Fl and Gl are given by equation (2.5.90)
and equation (2.5.91), respectively. Furthermore, in section 2.5.2 we used the quantum
numbers of the fluctuations Ψ±

ℓ of the fermionic D5-brane action to establish a mapping
between the fluctuations of the D5-brane and the operators Fl and Gl. The matching is
summarized in table 2.9.12

For the D7-brane extended along AdS3 × S5 and D5-brane along AdS2 × S4, which have
P−Q = −2, the dual flavors fields are quarks alone, with no squarks [96–99]. The mesinos
with dimensions ∆+

ℓ are of the same form, ψ̄λXℓψ, but the mesinos with dimensions ∆−
ℓ

must obviously have a different form. We leave a detailed study of these mesinos for the
future.

Looking at the table, we immediately notice that the D5-branes are special: for these, the
masses of the worldvolume fermions are integers. The reason is that the D5-branes wrap
even-dimensional spheres, so the eigenvalue in equation (5.2.10) is ±i times an integer.

In the next subsection we focus on two coincident D5-branes extended along AdS4×S2. We
calculate the spectral function for the mesino operators with lowest conformal dimension,
i.e. for F0. In the dual gravitational description the mesino F0 corresponds to worldvolume
fermions with mass m−

0 = 0 (since ∆ = 3/2, see section 2.5.1.2). Since the fermion’s
mass is zero the numerical analysis is much simpler and a massless fermion requires no
counterterms (as we showed in section 2.3). Moreover, with a massless bulk fermion we can
directly compare to the results of [49,51], where most of the analysis focused on massless
bulk fermions.

5.2.2 Equation of Motion II: Gauge Couplings

In this section we return to the equation of motion for the worldvolume fermions, equation
(5.2.11), and specialize to our case of interest, namely two coincident Dp-branes in (4+1)-
dimensional AdS-Schwarzschild with trivial worldvolume scalars but non-trivial worldvol-
ume gauge fields A3

t (u) and A1
x(u). More specifically, we explicitly unpack the gauge-

and curved-space covariant Dirac operator ∆AdSP
for the AdSP submanifold of (4+1)-

dimensional AdS-Schwarzschld and see how, whenA1
x(u) is nonzero, the three worldvolume

fermions couple to one another. In this subsection we assume P ≥ 3.

The linearized equation of motion for the worldvolume fermions in equation (5.2.11) is13

(
∆AdSP

−m±
l

)
Ψ±
l = 0 , (5.2.13)

where the masses m±
l appear in equation (5.2.12). To simplify the notation we write m

12In this chapter we use the subscript ℓ, while in the sections 2.5.1 and 2.5.2 we used a subscript l. For
Ψ−

ℓ the two are identical, i.e. ℓ = l whereas for Ψ+
ℓ we take ℓ = l − 1.

13Here the ± does not refer to the projectors Π± of section 2.3.1, but rather to the ± sign labeling the
eigenvalues of the Dirac operator of SQ in equation (5.2.10).



5.2. Worldvolume Fermions of Dp-branes 111

instead of m±
l as well as Ψ instead of Ψ±

l . ∆AdSP
= eMAγ

ADM is the gauge and curved-
space covariant Dirac operator. The index A runs over the worldvolume directions inside
AdS5. Notice that here eMA are the inverse vielbeins. The γA are the Γ-matrices of (4+1)-
dimensional Minkowski space, which obey

{
γA, γB

}
= 2 ηAB .

The nonzero vielbeins of (4+1)-dimensional AdS-Schwarzschild (2.4.80) are (recall that
upper index is local Lorentz, and the lower index is general coordinate),

euu =
1

u
√
f
, ett =

√
f

u
, eij =

1

u
δij. (5.2.14)

The spin connection ω of (4+1)-dimensional AdS-Schwarzschild then has the nonzero
components

ωtu =

(
f(u)

u
− f ′(u)

2

)

dt, ω~xu = −
√

f(u)

u
d~x, (5.2.15)

where ω~xu indicates the three components ωxu, ωyu, and ωzu.

For the Dirac operator, we have (here a is a gauge index)

[(∆AdSP
−m) Ψ]a = u

(
√

f γu ∂u +
1√
f
γt ∂t + γi ∂i +

[

−P − 1

2u

√

f +
1

4

f ′√
f

]

γu
)

Ψa

+ eMA i γ
A [AM ,Ψ]a −mΨa, (5.2.16)

where f ′ = ∂uf . When T = 0 and hence f(u) = 1, the operator in parentheses on the
right-hand side in the first line is the Dirac operator of AdSP . At finite temperature, where
f(u) = 1−u4/u4

h, the operator is that of an AdSP submanifold of (4+1)-dimensional AdS-
Schwarzschild.14 The coupling to the gauge field in the second line is of course fixed by
gauge invariance.

We need an ansatz for Ψa. For the coordinate dependence, our ansatz is similar to the
one in [49–51],

Ψ = Ψa σa = u(P−1)/2 f−
1
4 eikµxµ

ψa(u) τa, (5.2.17)

where µ runs over field theory directions, the ψa(u) are three spinor functions for which

we must solve, and we extract a factor of u(P−1)/2 f−
1
4 to make the Dirac equation look

nice later.

Using our ansatz for the fermion in equation (5.2.17) and the ansatz for the gauge field in
equation (4.3.6), we find three Dirac equations,

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ1 +
A3
t (u)√
f

γt ψ2, (5.2.18)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ2 −
A3
t (u)√
f

γt ψ1 +A1
x(u) γ

x ψ3, (5.2.19)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 − A1
x(u) γ

x ψ2. (5.2.20)

In what follows we use the Lorentzian-signature γA from section 2.3.1, in which all the γA

14For a general (d+1)-dimensional AdS-Schwarzschild space, f(u) = 1 − ud/ud
h.
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are Hermitian except for γt, which are anti-Hermitian:15

γu =

(
−σ3 0
0 −σ3

)

, γt =

(
iσ1 0
0 iσ1

)

, (5.2.21)

γx =

(
−σ2 0
0 σ2

)

, γy =

(
0 σ2

σ2 0

)

. (5.2.22)

We also use the projectors Π1,2, which in Lorentzian signature are defined as

Πα ≡
1

2

(
1− (−1)α γuγtγx

)
, (5.2.23)

with α = 1, 2.

5.2.2.1 Normal Phase

First consider the normal phase, where A1
x(u) = 0. In that case, ψ3 decouples from ψ1

and ψ2, and its equation of motion becomes that of a free neutral fermion, as expected.
We can then simplify the remaining two equations by taking linear combinations of them.
Defining16 ψ± ≡ ψ2 ± iψ1, we find three decoupled equations,

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ+ + i
A3
t (u)√
f

γt ψ+, (5.2.24)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ− − i
A3
t (u)√
f

γt ψ−, (5.2.25)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 (5.2.26)

which are precisely the equations of motion for fermions (in the fundamental represen-
tation of the unbroken U(1)3 ⊂ SU(2)) with charges q = ∓1, 0. As in section 5.2, we
emphasize that, because we consider a particular embedding of the Dirac equation into
string theory, the allowed values of the mass and charge of the fermions are constrained
by supersymmetry and T-duality.

We now follow appendix A of [51] to simplify the equation of motion further. First we
rewrite the equation as17

(
√

f γu∂u −
1

u
m

)

ψ + iKµ(u)γ
µψ = 0, (5.2.27)

Kµ(u) = (−v(u), ki) , v(u) =
1√
f

(ω + qAt(u)) , (5.2.28)

where the index i runs over spatial directions, q = ∓1 for ψ± and q = 0 for ψ3. Notice
that near the boundary, v(u) → ω + qµ, so the frequency ω is measured relative to (q
times) the chemical potential.

15We only need γy when P ≥ 4.
16Here the ± index refers to linear combinations of the worldvolume fermions that diagonalize the

equations of motion when A1
x(u) = 0. Nowhere in this subsection or the next do we use a ± index to refer

to the projectors Π± of section 2.3.1 or to the eigenvalues of the Dirac operator on SQ of equation (5.2.10).
17Starting now, we use the notation ψ to refer to any of our three fermions, when we are making general

statements.
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The system is rotationally invariant, so without loss of generality we can take only kx
to be nonzero. Obviously, this is not the case in the superfluid phase, where rotational
symmetry is broken. The fermion’s equation of motion then depends only on γu, γt and
γx, so the projectors Πα commute with the operator acting on the ψ in equation (5.2.27),
hence the equations for φα ≡ Παψ decouple from one another. In terms of the φα, the
equation of motion becomes

(

∂u +
1

u
√
f
mσ3

)

φα +
1√
f

(−iv(u)σ2 − (−1)α kxσ1)φα = 0. (5.2.29)

We thus obtain six decoupled equations, four for the φ±α and two for the φ3α.

Equation (5.2.29) is almost identical to equation (A14) of [51]. The biggest difference is
the function f(u), which for us is the f(u) of (4+1)-dimensional AdS-Schwarzschild and
in [51] was the f(u) of (3+1)-dimensional AdS-Schwarzschild. Given that we solve nearly
identical equations of motion, we obtain qualitatively similar finite-temperature results.
As mentioned above, however, we cannot reach T = 0 within the probe approximation,
so we are not able to reproduce the T = 0 results of [49, 51], including in particular the
influence of an emergent AdS2.

5.2.2.2 Superfluid Phase

In the solution corresponding to the superfluid phase, where A1
x(u) is nonzero, we cannot

write linear combinations of ψ1, ψ2 and ψ3 to diagonalize the system and produce three
decoupled equations. To make comparison to the normal phase easier, we again work with
ψ± = ψ2 ± iψ1, so that equations (5.2.18)-(5.2.20) become

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ+ + i
A3
t (u)√
f

γt ψ+ +A1
x(u) γ

x ψ3, (5.2.30)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ− − i
A3
t (u)√
f

γt ψ− +A1
x(u) γ

x ψ3, (5.2.31)

0 =

(
√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 −
1

2
A1
x(u) γ

x (ψ+ + ψ−) . (5.2.32)

Clearly the three fermions ψ± and ψ3 couple to one another via a nonzero A1
x(u). Here

we have a concrete example of the couplings described in section 3.2.4 (especially around
equation (3.2.34)). We simplify the ψ+ and ψ− equations again by writing them as

0 =

(
√

f γu∂u −
1

u
m

)

ψ+ + iKµ(u)γ
µψ+ +A1

x(u) γ
x ψ3, (5.2.33)

0 =

(
√

f γu∂u −
1

u
m

)

ψ− + iKµ(u)γ
µψ− +A1

x(u) γ
x ψ3, (5.2.34)

0 =

(
√

f γu∂u −
1

u
m

)

ψ3 + iKµ(u)γ
µψ3 −

1

2
A1
x(u) γ

x (ψ+ + ψ−) , (5.2.35)

where Kµ is defined the same way as in equation (5.2.28). Recall that ψ+ has charge
q = −1, ψ− has charge q = +1 and ψ3 has charge q = 0.

Now we come to a big difference from the solution corresponding to the normal phase,
at least for Dp-branes wrapping AdSP with P ≥ 4. In the solution corresponding to the



114 Chapter 5. Fermions in AdS/CFT

superfluid phase, rotational symmetry is broken from SO(P − 2) to SO(P − 3). Using the
SO(P − 3) rotational symmetry, the most general momentum we can pick has nonzero kx
and nonzero ky. The equations for ψ+ and ψ− then depend on γu, γt, γx and now also γy,
hence the Πα projectors no longer commute with the operators acting on the fermions in
the equations of motion, and the equations for the φα ≡ Παψ do not decouple from each
other. Upon acting with the projectors Πα, the equations of motion become

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ+α

− ky√
f
σ1 (−1)α+1 ǫαβφ+ β −

A1
x√
f

(−1)α iσ1φ3α, (5.2.36a)

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ−α

− ky√
f
σ1 (−1)α+1 ǫαβφ− β −

A1
x√
f

(−1)α iσ1φ3α, (5.2.36b)

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ3α

− ky√
f
σ1 (−1)α+1 ǫαβφ3β +

1

2

A1
x√
f

(−1)α iσ1 (φ+α + φ−α) . (5.2.36c)

Here ǫαβ is antisymmetric with ǫ12 = +1. Notice that when ky is nonzero, the φ1 and φ2

couple.

Equation (5.2.36) is the result for any Dp-brane extended along AdSP × SQ. What will
change from one Dp-brane to another are the allowed values of m and the solutions for
A3
t (u) and A1

x(u). In the next section we specialize to the D5-brane extended along
AdS4 × S2 (P = 4 and Q = 2), and to the massless worldvolume fermion.

5.3 Emergence of the Fermi surface

5.3.1 Properties of the Spectral Function

For the probe D5-brane worldvolume fermions of the last section, we solved the linearized
equations of motion, equations (5.2.36), numerically, and used these solutions to extract
the fermionic spectral functions. In this section we present a selection of our numerical
results.

We work with two D5-branes extended along (when T = 0) AdS4 × S2 inside AdS5 × S5.
As shown in section 5.2.1, we have many worldvolume fermions to choose from, with
many different masses. In our numerical analysis we work exclusively with the massless
worldvolume fermion. The dual operator is then the l = 0 case of the mesino operator
Fl written explicitly in equation (2.5.90). These mesinos are valued in the adjoint of the
SU(2) isospin symmetry, so we actually have three mesinos, F+

0 , F−
0 , and F0

0 , where the
superscript denotes the charge under U(1)3. These are dual to the three fermions ψ± and
ψ0 in subsection 5.2.2.2.
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In more detail, our procedure is as follows. We first choose the values of T and µ that
we want, and solve for the background SU(2) gauge field functions A3

t (u) and A1
x(u), as

in section 4.3.1. Plugging the gauge field solution into equations (5.2.36), we then solve
for the bulk fermions. Near the horizon the fermions have the form of an in-going wave,
equation (3.2.35), with the α in that equation being α = ω

4πT for our system. When A1
x(u)

is nonzero, the fermions couple to one another, hence we employ the technique of section
3.2.4 to compute the retarded Green’s function, which then gives us the spectral function,
as we explain below.

The normalization of our Green’s functions is fixed by the normalization of the fermionic
part of the D5-brane action, equation (5.2.1). The normalization includes various numer-
ical factors, and in particular depends on the normalization of the S5 spinor χ defined
in equation (5.2.6). We omit the details, but we mention that the normalization includes
a factor of Nf TD5 ∝

√
λNfNc. In what follows we rescale our Green’s functions by the

overall normalization. In other words, we divide the action by the normalization factor,
so that we obtain an effective AdS4 Dirac action with a Lagrangian of the form iΨ̄∆Ψ.

As explained in section 3.2.4, with three bulk fermions, the field theory retarded Green’s
function is a 6 × 6 matrix. In the normal phase where the three bulk fermions decouple,
the Green’s function is diagonal in isospin indices and in the subspaces defined by the
Π1,2 projectors defined in equation (3.2.21) (see also equation (3.2.22)). Explicitly, the
retarded Green’s function has the form

[
GRAB(ω, kx, ky)

]
= diag

(
GR−2, G

R
−1, G

R
+2, G

R
+1, G

R
02, G

R
01

)
, (5.3.37)

with A,B = 1, . . . , 6, so that A = 1 corresponds to the components of the F−
0 mesino in

the Π2 subspace, A = 2 corresponds to F−
0 in the Π1 subspace, A = 3 corresponds to the

components of the F+
0 mesino in the Π2 subspace, and so on. In the superfluid phase, due

to the bulk couplings, for generic momenta all the off-diagonal elements become nonzero.

In section 3.1 we defined the spectral function Rab as the anti-Hermitian part of the
retarded Green’s function,

RAB(ω, kx, ky) ≡ i
(

GRAB(ω, kx, ky)−GR†AB(ω, kx, ky)
)

. (5.3.38)

As review in section 3.1, stability requires that the eigenvalues of RAB are positive and
note an arbitrary component of the matrix R. In particular the off-diagonal elements
RAB with A 6= B can be negative. But the diagonal elements of the matrix R have to be
positive and therefore also the spectral measure R(ω, kx, ky) which is defined as the trace
over RAB(ω, kx, ky) (a trace over both flavor and spinor indices),

R(ω, kx, ky) ≡ trRAB(ω, kx, ky). (5.3.39)

We have confirmed that our numerical result for the spectral function obeys the following
symmetries in both the normal and superfluid phases (in each case, any argument not
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shown is invariant):

R11(−ω) = R44(ω) , R22(−ω) = R33(ω), (5.3.40)

R55(−ω) = R66(ω) , (5.3.41)

R11(−kx) = R22(kx), R33(−kx) = R44(kx), (5.3.42)

R55(−kx) = R66(kx) , (5.3.43)

R11(−ω,−ky) = R44(ω, ky), R22(−ω,−ky) = R33(ω, ky), (5.3.44)

R55(−ω,−ky) = R66(ω, ky) . (5.3.45)

An example for frequency and momentum symmetries in the off-diagonal elements is

RAB(−ky) = (−1)A+BRBA∗(ky) , (5.3.46)

which is also true for all diagonal elements, stating their invariance under ky → −ky. We
have also confirmed that our numerical results obey

RAB = RBA∗ , (5.3.47)

which follows directly from the definition of the spectral function in equation (5.3.38).

Lastly, notice that because we study a fermionic operator of dimension 3/2, the retarded
Green’s function, and hence the spectral function and measure, are dimensionless.

5.3.2 Numerical Results

First we compute the spectral function for temperatures below Tc but in the normal (non-
superfluid) phase, which we know is thermodynamically disfavored. We do so for two
reasons: first, to compare later to the superfluid phase, and second, to reproduce some of
the finite-temperature results of [49], as a check of our methods. In practical terms, we
use the solution for the gauge field with A3

t (u) (from equation (4.3.15) with P = 4) and
zero A1

x(u). Figure 5.1 shows two diagonal spectral function components, RAA(ω, kx, ky)
with A = 1, 5, as functions of kx/πT , with ω = ky = 0, for T ≤ Tc in the normal phase.

Figure 5.1 (a) shows the component R11, which corresponds to the components of the
mesino F−

0 in the Π2 subspace, at temperature T = 0.61Tc. For the moment, our main
point is that figure 5.1 (a) is qualitatively similar to figure 4 of [49]. As we lower the
temperature, the peaks in the figure move to larger momenta and additional peaks appear
near zero momentum. In fact, in figure 5.1 (a), R11 along negative momenta (dashed blue
curve) already displays a small bump near kx/πT = 0, which grows into a peak as we cool
the system. Similar effects were observed in [49], and were interpreted as the emergence of
multiple Fermi surfaces at different momenta. Additionally, the spectral functions for our
other charged fermions in the low-temperature normal phase are similar to those in [49,51],
so we do not present them.

Figure 5.1 (b) shows the component R55, which corresponds to the neutral operator F0
0 ,

in the Π2 subspace, at temperatures T = Tc, 0.75Tc, and 0.61Tc. R55 is featureless
here, but will not be so in the p-wave phase. Notice that R55 also does not change as
the temperature decreases, or equivalently as the chemical potential increases, since when
q = 0 the chemical potential does not enter the relevant bulk fermion’s equation of motion:
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Figure 5.1: Two spectral function components RAA(ω, kx, ky), for A = 1, 5, plotted versus the
rescaled momentum kx/πT , with ω = ky = 0, at temperatures T ≤ Tc but in the normal (non-
superfluid) phase, i.e. in the thermodynamically disfavored phase. (a) R11, corresponding to the
fermionic operator with charge q = −1, at T = 0.61Tc. The two curves are for positive momentum
kx (solid red curve) and negative momentum −kx (dashed blue curve), the latter case being equal
to R22(ω, kx, ky) at positive momentum due to the symmetries of the spectral function. Multiple
peaks are visible, just as in [49]. (b) R55, corresponding to a fermionic operator with charge q = 0,
at temperatures T = Tc (solid curve), T = 0.75Tc, (grey dotted curve), T = 0.61Tc (dashed curve).
The curves remain coincident since changing the chemical potential does not affect the uncharged
operator.

see equation (5.2.28). Next we plot the essentially the same thing as in figure 5.1, but now
in the thermodynamically favored superfluid phase. More precisely, figure 5.2 shows two
diagonal spectral function components, RAA(ω, kx, ky) with A = 1, 5, as a function of the
rescaled momentum kx/πT , with ω = ky = 0, for T ≤ Tc in the superfluid phase, i.e. now
with nonzero A1

x(u). Figure 5.2 (a) shows the same component of the spectral function as
in figure 5.1 (a), R11, again with T = 0.61Tc. Figure 5.2 (b) shows the same component of
the spectral function as in figure 5.1 (b), R55, at the same temperatures T = Tc, 0.75Tc,
and 0.61Tc.

The operator mixing is obvious in figure 5.2: the spectral function for a neutral fermion,
R55, develops a bump that grows into a small peak located at the same momentum as the
peak in R11, kx/πT = 3.87. In bulk terms, the coupling between φ3 and φ± in equation
(5.2.36) is allowing the peak in the charged fermions’ spectral functions to “leak” into the
spectral functions of the neutral fermions. That coupling is proportional to A1

x(u), hence
the peak should grow as the temperature decreases and A1

x(u) grows, which is indeed
what we see in figure 5.2 (b). The method we developed in section 3.2.4 for computing
retarded Green’s functions for coupled bulk fermions seems to work very well. As another
comparison between the normal and broken phases when T ≤ Tc, we focus on the pole in
the retarded Green’s function GR11(ω, kx, ky), for the mesino with charge q = −1 in the Π2

subspace, that is closest to the origin of the complex frequency plane, ω = 0, and follow
the movement of the pole in the frequency plane as we change the momentum.18

Figure 5.3 (a) shows the movement of the pole in the normal phase when T = 0.91Tc
for values of kx/πT ∈ [2.579, 12.580], which in the figure corresponds to starting at the

18Poles in the retarded Green’s function are holographically equivalent to the bulk fermion’s quasi-
normal modes [138,175,176]. As explained in section 3.2.4, we can detect these quasi-normal modes from
the vanishing of detP−(ǫ), where the matrix P− is defined in equations (3.2.37) and (3.2.38).



118 Chapter 5. Fermions in AdS/CFT

0 1 2 3 4 5
0

2

4

6

8

R11

kx/πT

(a)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

R55

kx/πT

(b)

Figure 5.2: Two spectral function components RAA(ω, kx, ky) plotted versus the rescaled momen-
tum kx/πT with ω = ky = 0 in the superfluid phase. (a) Exactly the same spectral function as in
figure 5.1 (a), R11, at the same temperature T = 0.61Tc, but now in the superfluid phase. The two
curves correspond to positive momentum kx (solid red curve) or negative momentum −kx (dashed
blue curve). (b) Exactly the same spectral function component as in 5.1 (b), R55, at the same
temperatures Tc (solid curve), T = 0.75Tc (grey dotted curve), T = 0.61Tc (dashed curve). Here
we see operator mixing: a feature develops in the neutral fermion’s spectral function in the p-wave
phase. A bump grows into a peak at the same momentum kx/πT ≈ 3.87 as the peak in R11.

point nearest Re[ω/πT ] = 0 and moving toward the upper left. The pole asymptotically
approaches the real frequency axis Imω/πT = 0, as kx increases.

At a temperature T ∗ ≈ 0.6Tc, however, the distance to the real axis develops a local
minimum. Figure 5.3 (b) shows the movement of the same pole as figure 5.3 (a) at a
temperature T = 0.48Tc < T ∗, still in the normal phase. Here we see that the distance
to the real frequency axis has a local minimum at (Reω/πT, Imω/πT ) = (−1.79,−7.21×
10−6) when kx/πT = 8.15. Such behavior persists to lower temperatures, and indeed, the
distance to the real frequency axis decreases. The lowest temperature we studied was T =
0.19Tc, where the local minimum occurred at (Reω/πT, Imω/πT ) = (5.32, 2.64 × 10−18)
when kx/πT = 23.22.

We seem to be seeing the emergence of a Fermi surface, which, as in [49], would occur at
T = 0 when the pole would reach the origin of the complex frequency plane at some finite
momentum kF , the Fermi momentum. Let us consider low temperature, and define k∗

as the value of momentum where the closest approach to the real frequency axis occurs.
When T = 0, k∗ would be the Fermi momentum, k∗ = kF . At our lowest temperature,
T = 0.19Tc, k

∗
x/πT ≡ 23.22, and the closest approach to the real frequency axis occurs

at an ω∗ given by (Reω∗, Imω∗) = (5.32, 2.64 × 10−18)πT . Letting k∗ play the role of kF ,
we see behavior similar to the results of [49]: for small but nonzero temperature, as we
change the momentum the frequency of the pole behaves as

ω − ω∗ ∼ (k − k∗)z , (5.3.48)

where our numerical results indicate that the exponent z = 1.00 ± 0.01, and the spectral
function behaves as

R11 ∼ (k − k∗)−α , (5.3.49)

where our numerical results indicate that the exponent α = 2.0±0.1. In fact, these results
are rather robust: we find the same z and α for many values of T < T ∗, and for several
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Figure 5.3: The movement of the pole in the retarded Green’s function GR
11(ω, kx, ky), for a mesino

of charge q = −1, that is closest to ω = 0, as a function of momentum, for T < Tc, in both the
normal, thermodynamically disfavored, phase and superfluid, thermodynamically favored, phase.
(a) The movement of the pole in the normal phase at T = 0.91Tc, for kx/πT ∈ [2.58, 12.58]. As the
momentum increases, the pole moves from the lower right, near Reω/πT = 0, toward the upper
left. The same applies for the following three figures. The pole asymptotically approaches the
real frequency axis, Imω/πT = 0, as kx increases. (b) The movement of the pole in the normal
phase at T = 0.48Tc, for kx/πT ∈ [6.15, 16.15]. Here we see that the distance to the real axis
does not decrease monotonically, but rather a local minimum develops at (Reω/πT, Imω/πT ) =
(−1.79,−7.21× 10−6) when kx/πT = 8.15. (c) The movement of the pole in the superfluid phase
at T = 0.91Tc, for kx/πT ∈ [2.49, 12.29] and ky = 0. The movement is qualitatively similar to (a).
(d) The movement of the pole in the superfluid phase at T = 0.48Tc, for kx/πT ∈ [4.83, 8.98] and
ky = 0. The movement is again qualitatively similar to (a), in particular, the distance to the real
frequency axis does not develop a local minimum, in contrast to the normal phase result in (b).
We see qualitatively similar behavior when we set kx = 0 and increase ky.
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other poles. These results suggest that the low-temperature normal phase may not be a
Landau Fermi liquid, which would have z = α = 1.

Figures 5.3 (c) and (d) show the movement of the same pole, at the same temperatures,
but in the superfluid phase.19 Figure 5.3 (c) shows the movement of the pole at T = 0.91Tc
for kx/πT ∈ [2.49, 12.29] and ky = 0. Figure 5.3 (d) shows the movement of the pole at
T = 0.48Tc for kx/πT ∈ [4.83, 8.98] and ky = 0. Unlike the normal phase result, here the
distance to the real frequency axis does not develop a local minimum. In other words,
here we do not see a Fermi surface emerge in the same fashion as in the normal phase.

To see the emergence of the p-wave superfluid Fermi surface, we study the spectral mea-
sure, which as mentioned above, provides a direct measure of the density of states that
have overlap with our fermionic operators.

Our main results concern the evolution of the spectral measure R(ω, kx, ky) as we cool
the system through the superfluid phase transition. In the spectral measure we see the
breaking of rotational symmetry as we take T below Tc, and we see the emergence of the
Fermi surface as we approach T = 0, although in the probe limit we do not reach T = 0.
Our results agree qualitatively with the T = 0 results of [161], in which the Fermi surface
in the p-wave phase consists of isolated points.
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Figure 5.4: The evolution of the spectral measure R(ω, kx, ky) = trRAB(ω, kx, ky) in the
(kx/πT, ky/πT ) plane at ω = 0, as we lower the temperature. (a.) The position of peaks in
the spectral measure R are indicated by the curves as we lower the temperature from Tc (black
curve) through 0.7Tc (green curve) to 0.43Tc (dashed grey curve). The T = 0.43Tc case exhibits a
small bump rather than a sharp peak, except for points on the kx and ky axes. We have indicated
the bump with the grey dashed curve and the peaks with red and blue dots, including the blue dot
at the origin. (b.) The spectral measure R plotted for a representative slice of the (kx/πT, ky/πT )
plane (still with ω = 0), namely along the line given by the polar angle φ = π/8 drawn in (a.). We

plot R versus the magnitude of the momentum |k| =
√

k2
x + k2

y divided by πT , at T = Tc (black

curve), T = 0.7Tc (green curve), and T = 0.43Tc (dashed grey curve).

Figure 5.4 provides a road map for the evolution of the spectral measure as we lower the

19Our independent calculations in the normal and superfluid phases yield the same position for the pole
at T = Tc to within 0.1%.
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temperature. Here we set ω = 0, so we are studying fluctuations with zero energy above
the chemical potential. Figure 5.4 (a) indicates the locations of peaks in the spectral
measure, in the (kx/πT, ky/πT ) plane, with solid lines and the locations of small bumps
as the dashed grey line. At T = Tc we see rotational symmetry: the black solid line
indicates peaks for any values of (kx/πT, ky/πT ) on the black circle. At T = 0.7Tc the
rotational symmetry is mildly broken: the green line is not a perfect circle. At T = 0.43Tc,
sharp peaks only appear at isolated points on the axes, denoted by the red and blue dots
(and also at the blue dot at the origin), while the dashed line indicates a small bump,
rather than a sharp peak. Here we are clearly seeing the emergence of the Fermi surface
at isolated points.

To illustrate what the peaks and bumps look like, we choose a representative slice of the
(kx/πT, ky/πT ) plane, namely the line given by the polar angle φ = π/8, which is drawn
in figure 5.4 (a), and plot the (ω = 0) spectral measure versus the magnitude of the

momentum |k| =
√

k2
x + k2

y divided by πT . In figure 5.4 (b) a distinct peak is visible for

both T = Tc (black curve) and T = 0.7Tc (green curve), while for this generic (off-axis)
value of φ the only feature of the spectral measure at T = 0.43Tc (dashed grey curve) is
a small bump. On the axes (φ = 0, π/2), the picture is similar, except the bump becomes
a sharp peak, corresponding to the red or blue dots in figure 5.4 (a).

To illustrate the evolution of the spectral measure in more detail, we present three-
dimensional plots of R(ω, kx, ky), for ω = 0, over the (kx/πT, ky/πT ) plane, for tem-
peratures T = Tc (figure 5.5 (a)), T = 0.91Tc (figure 5.5 (b)), T = 0.69Tc (figure 5.5 (c))
and T = 0.4Tc (figure 5.5 (d)). In figure 5.5 (a) we see the peaks corresponding to the
black circle in figure 5.4 (a). Clearly here the spectral measure is rotationally symmetric.
When we cool the system to T = 0.69Tc (figure 5.5 (c)), we clearly see the emergence of
five distinct peaks, two on the kx/πT axis, two on the ky/πT axis, and one at the origin.
The circle of peaks corresponds to the green circle in figure 5.4 (a). When we further cool
the system to T = 0.4Tc, the five peaks are still present, although the resolution of our
three-dimensional plot is insufficient to resolve the two on the ky/πT axis away from the
origin.

Although these peaks have a much smaller footprint in the (kx/πT, ky/πT ) plane than the
peaks on the kx/πT axis, they are much taller. The spectral measure R is of order 5×105

at the peaks on the ky/πT axis, but only order 102 at the peaks on the kx/πT axis, and
order 5× 104 at the peak at the origin. Apparently a large number of states are piling up
at two precise locations on the ky/πT axis.

For a bulk theory with SU(2) gauge fields and fermions in the fundamental representation,
a combination of analytic and numerical results reveal that the ω = 0 spectral measure
at T = 0 consists of two isolated points on the kx axis, located symmetrically about the
origin [161]. The analytic arguments of [161] indicate that, for the same bulk theory but for
fermions in the adjoint representation, the ω = 0 spectral measure at T = 0 should consist
of three isolated points, one at the origin and two on the kx axis, located symmetrically
about the origin.

What we see is at least consistent with the results of [161]. The main obstacle to a direct
comparison is the probe limit, which restricts us to finite temperatures: we do not know
which peaks in our spectral measure persist to T = 0. Nevertheless, given that we see
the three peaks on the kx/πT that we generically expect, and that the two peaks on the
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(a) T = Tc, ω = 0 (b) T = 0.91 Tc, ω = 0

(c) T = 0.69 Tc, ω = 0 (d) T = 0.43 Tc, ω = 0

Figure 5.5: Three-dimensional plots of the spectral measure R(ω, kx, ky) in the superfluid phase
over the (kx/πT, ky/πT ) plane at zero frequency, ω = 0, and for distinct temperatures T ≤ Tc.
(a) The T = Tc case, which is clearly rotationally invariant. The peaks correspond to the black
circle in figure 5.4 (a). (b) The T = 0.91Tc case, where the spectral measure does not yet display
any dramatic breaking of rotational symmetry. Notice the peak a the origin of the (kx/πT, ky/πT )
plane. (c) The T = 0.69Tc case, where the breaking of rotational symmetry is obvious. We see
that the “cylinder” of (a) breaks into five distinct peaks on the kx/πT and ky/πT axes. The peaks
correspond to the green circle in figure 5.4 (a). (d) The T = 0.4Tc case, which still has five peaks,
labeled by the red and blue dots in figure 5.4 (a). The peaks along the ky/πT axis are too narrow
to appear in the three-dimensional plot with the resolution we use.
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ky/πT axis have a shrinking footprint as we cool the system, we have good reason to
believe that the results of [161] may apply to our system. To answer the question fully
requires computing the back-reaction of the D5-branes in the bulk. Whether that produces
a domain-wall geometry of the kind used in [161] is not guaranteed.

We begin to explore the ω dependence of the spectral measure R(ω, kx, ky) in figure 5.6.
Figure 5.6 (a) simply reproduces the T = 0.4Tc part of figure 5.4 (a), where ω = 0. Figure
5.6 (b) shows the spectral function along three lines in the (kx/πT, ky/πT ) plane: along
the positive kx/πT axis (red curve), along the positive ky/πT axis (blue curve), and along
the line given by the polar angle φ = π/8 in figure 5.4 (a). Here we see explicitly the
difference in widths of the peaks on the kx/πT and ky/πT axes (the red and blue peaks).

To explore the ω dependence, we choose a few representative points in the (kx/πT, ky/πT )
plane and, for each point, plot the spectral measure versus ω. For these points, we consider
not only T = 0.4Tc, as in figure 5.6 (a), but also the slightly higher temperature T = 0.55Tc,
in order to study the behavior as we cool the system.

Our points are similar to those in figure 8 of [161], where the same quantities were plotted
(for the slightly different system of [161]): the spectral measure versus ω for fixed kx and
ky. We thus compare our results to those of figure 8 of [161] along the way.

In figure 5.6 (1) we plot the ω dependence of R(ω, kx, ky) for the point (1) labeled in figure
5.6 (a). The dotted line is for T = 0.55Tc and the solid line is for T = 0.40Tc. Here we see
that as we cool the system, a small gap (a depletion of states) opens near ω = 0, while a
sharp peak emerges near ω/πT ≈ 1.7. Such behavior at least appears to be approaching
that of figure 8 (1) in [161], where a genuine gap (zero states) appeared at ω = 0.

In figure 5.6 (2) we plot the ω dependence of R(ω, kx, ky) for the point (2) labeled in
figure 5.6 (a). The dotted line is for T = 0.55Tc and the solid line is for T = 0.40Tc. Here
we see that a sharp peak near ω/πT ≈ 1.5 when T = 0.55Tc shrinks and begins moving
toward ω = 0 as we lower the temperature to T = 0.4Tc. Moreover, the small peak near
ω/πT ≈ 3.5 when T = 0.55Tc grows much sharper at T = 0.4Tc. As in [161], here we seem
to see the emergence of the well-known “peak-dip-hump” shape, with the peak being at
ω/πT ≈ 3.5, the dip being at ω/πT ≈ 5.2, and the hump being at ω/πT ≈ 6.5.

In figure 8 (2) of [161], a gap was present in the spectral measure for small frequencies,
except for a single genuine delta-function peak at finite frequency, and at larger frequency
a continuum of states appears (the “hump”). As argued in [161], at finite temperature
the delta-function peak acquires a finite width and merge with the hump, producing the
peak-dip-hump. Our spectral measure appears to be approaching the form of the spectral
measure in figure 8 (2) of [161] (with the usual caveat that we cannot actually reach
T = 0).

In figure 5.6 (3) we plot the ω dependence of R(ω, kx, ky) for the point (3) labeled in figure
5.6 (a), which is sitting right on top of the peak on the positive kx/πT axis. The dotted
line is for T = 0.55Tc and the solid line is for T = 0.40Tc. At the higher temperature (the
dotted line), the primary feature is the peak near ω/πT ≈ 1.2, which moves toward ω = 0
and also shrinks (the peak is lower) as we lower the temperature, becoming the peak in the
solid line. Assuming such a trend continues, our results would be consistent with figure 8
(3) of [161], where, sitting right on top of the peak on the kx axis, the spectral measure
went to a finite constant at ω = 0.
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Figure 5.6: (a) Peaks in the ω = 0 spectral measure in the ( kx

πT ,
ky

πT ) plane at T = 0.4Tc. The
labeling is the same as figure 5.4 (a). (b) The ω = 0 spectral measure along three lines in (a):

along the kx

πT axis (red curve) and the
ky

πT axis (blue curve), so the peaks at nonzero momenta
correspond to (3) and (4) in (a), respectively, and along the polar angle φ = π/8 (dashed grey
curve), drawn in figure 5.4 (a), so the bump corresponds to where φ = π/8 intersects the dashed
grey line in (a). In each case the peak at zero momentum corresponds to (0) in (a). (1) R as a
function of ω/πT for the point labeled (1) in (a). The dotted and solid lines are for T = 0.55Tc

and T = 0.4Tc, respectively. (2) and (3) show the same thing for the corresponding points (2)
and (3) in (a).
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Figure 5.7: The spectral measure R(ω, kx, ky) as a function of ω/πT for (kx/πT, ky/πT ) values
corresponding to points (0) (dotted blue curve) and (4) (solid blue curve) in figure 5.6 (a). These
points sit right on top of the peaks at the origin and on the positive ky/πT axis, respectively. Here
T = 0.4Tc.

Figure 5.7 shows R(ω, kx, ky) versus ω/πT for the points (0) and (4) in figure 5.6 (a),
sitting right on top of the peaks at the origin and on the positive ky/πT axis, respectively.
Here we use only T = 0.4Tc. We clearly see a gap developing at low frequency in both
cases. Such behavior is similar to the gap that develops in the spectral function of vector
fluctuations (see section 4.3.4), which is immediately related (via a Kubo formula) to a gap
in the conductivity. Whether these two gaps are related is unclear, but deserves further
study.

Finally, to explore further the ω dependence of R(ω, kx, ky), we do not restrict to points
in the (kx/πT, ky/πT ) plane, but rather restrict to a single nonzero value of frequency,
ω/πT = 0.25, and plot the spectral measure over the entire (kx/πT, ky/πT ) plane. The
result appears in figure 5.8, where (a) is for T = Tc, (b) is for T = 0.91Tc, (c) is for
T = 0.54Tc and (d) is for T = 0.4Tc. We see a number of differences from the ω = 0
case of figure 5.5. At the transition, T = Tc, the spectral measure is again rotationally
symmetric, but now with two concentric “cylinders.” By the time we cool the system to
T = 0.54Tc, we see a number of peaks clumped near the momentum axes. If we compare
the spectral measure at T = 0.4Tc at ω = 0 and ω/πT = 0.25, figures 5.5 (d) and 5.8 (d),
respectively, then we see that the ω = 0 peaks on the ky/πT axis each split into a number
of peaks at ω/πT = 0.25 which then move apart along the kx/πT axis.

To summarize, in the superfluid phase we observe isolated peaks in the spectral measure,
whose locations appear to be consistent with the p-wave nature of the condensate, as well
as with the fact that our fermions are in the adjoint representation of SU(2). Such a
structure suggests nodes in the energy gap on the normal-phase Fermi surface. We plan
to investigate this further in the near future, for instance by identifying the appropriate
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(a) T = Tc, ω/πT = 0.25 (b) T = 0.91 Tc, ω/πT = 0.25

(c) T = 0.54 Tc, ω/πT = 0.25 (d) T = 0.43 Tc, ω/πT = 0.25

Figure 5.8: Three-dimensional plots of the spectral measure R(ω, kx, ky) in the superfluid phase
over the (kx/πT, ky/πT ) plane at ω/πT = 0.25, and for distinct temperatures T ≤ Tc. The four
plots are arranged in a similar fashion as in figure 5.5. (a) is the T = Tc case, (b) is the T = 0.91Tc

case, (c) is the T = 0.54Tc case, and (d) is the T = 0.4Tc case. The main differences from figure
5.5 are that the “cylinder” we saw in figure 5.5 (a) is now two concentric cylinders, and the peaks
along the ky/πT axis each split into multiple peaks which then move away from one another along
the kx/πT axis as we cool the system.
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Dirac cones and by studying the spectral measure for fixed values of ω, as well as for
further values of fixed kx, ky.

This concludes the chapter about fermions and (Non-)Fermi liquid behavior in the AdS/CFT
correspondence. Therefore let me recall briefly what we have achieved. First, we have em-
bedded fermions in the top-down approach of AdS/CMT using probe branes and the
fermionic part of their effective action. In particular, we have calculated the masses of
the bulk fields and determined the conformal dimension of the dual operator. Finally, we
studied the fermionic response in the superconducting state, which we found in section
4.3.2.





6
Non-relativistic systems: AC & DC conductivities

So far we have considered only relativistic systems. As reviewed in section 1.2, the dynam-
ical scaling exponent z of quantum critical theories does not have to be one. In this chapter
we consider the gravity dual description of non-relativistic quantum critical theories with
z 6= 1. In particular we compute conductivities associated with a finite density of charge
carriers in a strongly-coupled theory with non-relativistic symmetry. The theory is N = 4
SYM theory deformed by a dimension-five operator that breaks the relativistic conformal
group down to the Schrödinger group, with dynamical scaling exponent z = 2, and the
charge carriers are comprised of a finite baryon density of massive N = 2 supersymmetric
hypermultiplets.

In this chapter, we calculate the conductivity of alternating currents in linear response
theory. Moreover, we determine the conductivity tensor of direct currents to all orders in
the electric field using the holographic methods presented in section 3.3. We find that,
generally speaking, both the DC and AC conductivities exhibited relativistic scaling, with
temperature or frequency, in the IR and non-relativistic scaling, with z = 2, in the UV.
These results are in accord with our expectations, given the origin of the non-relativistic
symmetry via an irrelevant deformation of the theory.

This chapter of the thesis is based on work done in collaboration with Carlos Hoyos, Andy
O’Bannon and Jackson Wu and was published in [9].

6.1 Introduction and Summary

In the chapters so far we studied theories with relativistic scaling to get novel insights into
low-temperature systems controlled by quantum critical points. As reviewed in section
1.2, quantum critical theories are invariant under scale transformations of the form

t→ λzt, ~x→ λ~x, (6.1.1)
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where λ is some real, positive scaling parameter, z is the dynamical scaling exponent, and
we have assumed spatial isotropy. If rotations, space translations, and time translations
are also symmetries, then the theory is invariant under the so-called Lifshitz symmetry
algebra.

This Lifshitz symmetry algebra can be extended for two particular values of z. When
z = 1 the Lifshitz algebra may be enhanced to the usual relativistic conformal algebra.
When z = 2 the Lifshitz algebra may be generalized to the Schrödinger symmetry. The
Schrödinger symmetry includes time translations, spatial translations, spatial rotations,
and Galilean boosts, as well as scale transformations with z = 2, a special conformal
transformation, and a number symmetry with generator N , which is a central element
of the Schrödinger algebra. An example for a theory invariant under the Schrödinger
symmetry [177,178] are fermions at unitarity, which can be realized experimentally using
cold atoms.

In this chapter we study transport coefficients in a particular strongly-coupled field theory
with Schrödiner symmetry. In particular we are interested in AC and DC conductivities.
Our methods presented in this chapter can be used to engineer a holographic model for
fermions at unitarity. Since we are able to calculate transport coefficients at strong cou-
pling we might get interesting new insights into the theory of cold atoms. To construct
such a holographic model, we first of all need a gravitational dual description for theories
with Schrödinger symmetry.

First, note that the Schrödinger algebra is in fact easy to obtain from the relativistic
conformal algebra in one higher spatial dimension. If we use the extra spatial dimension
to form light-cone coordinates, x±, and then retain only those generators that commute
with the translation generator in the x− direction, P−, the resulting algebra is precisely the
Schrödinger algebra, if we make some identifications, including identifying the relativistic
generator P+ with the non-relativistic Hamiltonian (generator of time translations) and
P− with the number operator N . Notice that if the spectrum of eigenvalues of N should
be discrete, which is the case for a non-relativistic theory, then we must compactify x−.
In other words, if we begin with a relativistic conformal theory, break the symmetry group
down to the subgroup that commutes with P− (via some deformation), and then perform a
Discrete Light-Cone Quantization (DLCQ), then we obtain a non-relativistic theory with
Schrödinger symmetry, in one lower spatial dimension.

Some gravitational duals for theories with Schrödinger symmetry were discovered. Via
the gauge-gravity dictionary, the Schrödinger symmetry group translates into the isometry
group of the metric. We thus call such spacetimes Schrödinger spacetimes [179, 180]. A
direct method to obtain Schrödinger spacetimes is to apply a solution-generating technique
of type II supergravity, the Null Melvin Twist (NMT), to known solutions [181–183]. We
review the NMT in section 6.2.2. We apply the Null Melvin Twist to our basic example,
type IIB supergravity on AdS5 × S5, where AdS5 is (4+1)-dimensional anti-de Sitter
space and S5 is a five-sphere. We obtain Sch5 × S5, where Sch5 is (4+1)-dimensional
Schrödinger spacetime. The solution also includes a non-trivial Neveu-Schwarz (NS) two-
form, B. The dual theory is then N = 4 SYM deformed by a particular dimension-five
operator that breaks the relativistic conformal group down to the Schrödinger group. We
may then additionally compactify x−.1 The generalization to thermal equilibrium states

1Note that doing so makes the supergravity approximation to string theory unreliable since x− is a null
circle [182].



6.1. Introduction and Summary 131

with temperature T is straightforward [181–183].

In this background we introduce charge carriers by considering probe branes. For sim-
plicity, we restrict ourself to D7-branes. Moreover, we introduce a finite baryon number
density, 〈J t〉. We then compute (holographically) both the DC and AC conductivities as-
sociated with baryon number transport. In the relativistic case these computations were
reviewed in sections 3.3 and 3.2.2, respectively. As holographic models of fermions at
unitarity, these systems have various advantages and disadvantages, some of which we
review below. We mention here two of the biggest disadvantages, however. First, the
NMT does not produce a genuinely non-relativistic theory, but rather a deformation of a
relativistic theory which then has Schrödinger symmetry. Second, as emphasized in [184],
the U(1) number symmetry generated by N is not spontaneously broken in any of the
known supergravity solutions, whereas real systems are typically superfluids.

Our study is complementary to that of [185], where the DC and AC conductivities of probe
flavor were computed holographically using probe branes in Lifshitz spacetimes, that is,
spacetimes whose isometry group is the Lifshitz group, with general z. Two of the main
results of [185] were that at temperatures low compared to the density and mass the DC
conductivity σ scales as 〈J t〉T−2/z (for all z) and the AC conductivity σ(ω) scales as

σ(ω) ∝







〈J t〉z/2 ω−1 for z < 2,

〈J t〉 (ω log ωΛ)−1 for z = 2

〈J t〉ω−2/z for z > 2,

(6.1.2)

Here Λ is a dimensionful scale that renders the argument of the logarithm dimensionless.
The authors of [185] then suggested that, by introducing a scalar field, such as a dilaton,
with nontrivial dependence on the holographic radial coordinate, the powers of T and
ω in the DC and AC conductivities, respectively, can be engineered to take essentially
any value we like. In such a fashion we can produce holographic systems with scalings
that match any number of real strongly-coupled electron systems. Moreover, with varying
scalars we can even engineer flows in which the scalings change between the ultraviolet
(UV) and infrared (IR). An example of such a flow, with an exponent z = 2 in the UV
and z = 1 in the IR, produced by a marginally relevant deformation of Lifshitz spacetime,
appears in [186].

Using Schrödinger instead of Lifshitz spacetime, we find that, in appropriate limits, for
example low-temperature and large mass, the scalings with temperature or frequency in
the IR are relativistic, meaning z = 1, while in the UV the scalings are non-relativistic,
meaning z = 2. That is precisely what we expect in the dual (relativistic) field theory, in
the presence of an irrelevant operator that, roughly speaking, produces z = 2 in the UV.
Schrödinger spacetime is thus a good example of a flow from non-relativistic scaling in the
UV to relativistic scaling in the IR.

Our results suggest that the NMT may be a useful tool for the kind of model-building
proposed in [185]. We can imagine starting with a relativistic bulk system, introducing
a scalar and engineering whatever exponents we like, and then performing a NMT. We
generically obtain a theory with Schrödinger symmetry, and exponents that flow from UV
values, presumably with z = 2, to the IR values we gave them in the original relativistic
setting. Such an approach of engineering scaling exponents directly in a relativistic system
may be technically easier than engineering them in a non-relativistic system.2

2AdS space is a solution of Einstein gravity plus a negative cosmological constant. Gravity alone cannot
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The chapter is organized as follows. In section 6.2 we review how to add probe D7-branes
to AdS5×S5, review the NMT and Sch5 solution, and then discuss how the NMT affects
the D7-branes’ action, the Dirac-Born-Infeld (DBI) action. In section 6.3 we compute the
DC conductivity and in section 6.4 we compute the AC conductivity.

6.2 Adding Flavor to Schrödinger Spacetime

In this section we review how to obtain Schrödinger spacetime from a NMT of AdS5×S5,
and review the field theory dual to supergravity on Schrödinger spacetime. Our new
ingredient are probe D7-branes. We discuss in general terms what effect the NMT has on
the D7-branes’ worldvolume action.

6.2.1 Review: D7-Branes in AdS

In type IIB supergravity, the solution describing the near-horizon geometry of non-extremal
D3-branes is given by AdS5-Schwarzschild times S5. We use the metric in the coordinates3

(2.4.80)

ds2 = grr dr
2 + gtt dt

2 + gyy dy
2 + gxx d~x

2 + ds2S5 (6.2.3)

=
1

r2

(
dr2

f(r)
− f(r)dt2 + dy2 + d~x2

)

+ (dχ+A)2 + ds2CP3 , (6.2.4)

where we have singled out one field theory spatial direction, y, for use in the NMT below.
Moreover, we have written the S5 metric as a Hopf fibration over CP3, with χ the Hopf
fiber direction. A gives the Kähler form J of CP3 via dA = 2J . To write the metric ofCP3 and A explicitly, we introduce CP3 coordinates α1, α2, α3, and θ and define the
SU(2) left-invariant forms

σ1 =
1

2
(cosα2 dα1 + sinα1 sinα2 dα3) ,

σ2 =
1

2
(sinα2 dα1 − sinα1 cosα2 dα3) ,

σ3 =
1

2
(dα2 + cosα1 dα3) , (6.2.5)

so that the metric of CP3 is

ds2CP3 = dθ2 + cos2 θ
(
σ2

1 + σ2
2 + sin2 θ σ2

3

)
, (6.2.6)

and A = cos2 θ σ3. The full solution also includes a nontrivial five-form, but as shown
in [181–183] that is unaffected by the NMT, so we ignore it.

produce Lifshitz or Schrödinger spacetime, however. These require matter fields. In the Schrödinger case,
the NMT takes AdS and generates the needed matter fields, in particular the NS two-form B. Introducing
scalars in a theory of gravity alone and then doing the NMT may be easier than introducing scalars in a
theory with gravity and other matter fields.

3In equation (2.4.80) we denoted the radial coordinate of AdS by u. Here, we switch our notation and
use r instead. Moreover, in this chapter we also denote the induced metric by gab instead of Gab. Note
that only Grr, the component of the induced metric in r-direction, differs from grr, the metric of the
background. In order to avoid confusion, we call Grr in this chapter gD7

rr .
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As discussed in section 2.5, we introduce a number Nf of probe D7-branes into the above
geometry. The D7-branes are extended along AdS5-Schwarzschild times an S3 ⊂ S5. More
specifically, the D7-branes are extended along the three angular directions α1, α2 and α3.
The two worldvolume scalars are then θ and χ.

To study transport, we need to introduce a finite charge density following section 2.5.3.
Therefore we consider a non-trivial gauge field component At(r). An electric field in x-
direction can be implemented by a non-vanishing field strength tensor Ftx. The resulting
current 〈Jx〉 is given by a non-trivial gauge field Ax(r).

The D7-brane action describing the dynamics of the worldvolume fields is the DBI action
plus Wess-Zumino (WZ) terms. For our ansatz with θ(r) and only the Abelian worldvol-
ume gauge field, we only need the Abelian D7-brane action. Additionally, for our ansatz
the WZ terms vanish because the relevant form fields do not saturate the D7-branes’
indices.

Since our ansatz for the gauge field involves only the (r, t, x) directions, hence we may
write SD7, given by equation (2.5.97), as a (3+1)-dimensional DBI action times some
extra factors, with the (3+1)-dimensional part being the (r, t, x, y) subspace:

SD7 = −N
∫

dr cos3 θ(r) g1/2
xx

√

−g − 1

2
gF̃ 2 − 1

4

(

F̃ ∧ F̃
)2
. (6.2.7)

The square root factor is the characteristic form of a (3+1)-dimensional DBI action, in
our case in the (r, t, x, y) subspace, so that g is the determinant of the induced metric
(2.5.94) in that subspace. Starting now, primes denote ∂

∂r and tildes denote factors of

(2πα′), for example F̃ab = (2πα′)Fab. We also performed the trivial integration over the
field theory directions and divided both sides by this (infinite) volume, so now SD7 is
actually an action density. We use that convention in what follows. More explicitly, for
our ansatz the DBI action is

SD7 = −N
∫

dr cos3 θ(r) gxx

√

|gtt|gxxgD7
rr − (2πα′)2

(

gxxA
′2
t + gD7

rr Ȧ
2
x − |gtt|A′2

x

)

,

(6.2.8)
where dots denote ∂

∂t . We define a Lagrangian L via SD7 =
∫
drL.

6.2.2 The Null Melvin Twist

Following [181–183], we now apply the NMT to the supergravity solution in equation
(6.2.3). The NMT is a species of TsT (T-duality, shift, T-duality) transformation that
produces new supergravity solutions from old ones. The input is some solution with two
commuting U(1) isometries. The output is a new solution with different asymptotics. In
our case, we begin with AdS5-Schwarzschild times S5, using the Hopf fiber direction χ
and the field theory spatial direction y as isometry directions, and find a new solution for
which the metric is asymptotically Schrödinger. The steps of the NMT are:

(1) Boost by an amount γ in y,

(2) T-dualize in y,

(3) Shift in the χ direction dχ→ dχ+ αdy,
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(4) T-dualize in y,

(5) Boost by −γ in y,

(6) Take a limit: γ →∞ and α→ 0 keeping β = 1
2αe

γ fixed.

Steps (2), (3), and (4), are the TsT part of the NMT. We do not write the explicit result of
each step (for that, see [183]), but we make some generic comments about each step. The
first step changes gtt and gyy and generates a dy dt term in the metric. The second step
produces a nontrivial NS B-field, with dy ∧ dt component, and dilaton, and also changes
gtt and gyy. The third step changes gyy and also introduces a dχ +A and dy cross-term
in metric, but leaves the B-field and dilaton unchanged. The fourth step changes gtt, gyy,
gty, and the (dχ+A)2 term in the metric, and generates a (dχ+A)∧dy term in B. In the
end, the metric that results from the NMT is asymptotically Sch5. Explicitly, the final
result for the metric is

ds2 =
1

r2

(
dr2

f(r)
− f(r)

1 + β2r−2

K(r)
dt2 +

1− β2r−2f(r)

K(r)
dy2 − 2β2r−2f(r)

K(r)
dt dy + d~x2

)

+
1

K(r)
(dχ+A)2 + ds2CP3 ,

=
1

r2

(

dr2

f(r)
− f(r)

r2K(r)
dx+2 +

2

K(r)
dx+dx− +

1− f(r)

2K(r)

(
dx+

√
2β
−
√

2βdx−
)2

+ d~x2

)

+
1

K(r)
(dχ+A)2 + ds2CP3 , (6.2.9)

where

f(r) = 1− r4

r4H
, K(r) = 1 +

β2r2

r4H
, (6.2.10)

and in the second equality of equation (6.2.9) we have introduced light-cone coordinates
X±,

X+ = t+ y, X− =
1

2
(−t+ y) , (6.2.11)

which we then rescaled by factors of β to produce the light-cone coordinates x±,

x+ = β (t+ y) , x− =
1

2β
(−t+ y) . (6.2.12)

We discuss the utility of this rescaling at the end of this subsection. The solution also
includes the NS two-form field

B = − β

r2K(r)
(dχ+A) ∧ (f(r) dt+ dy) ,

= − 1

2r2K(r)
(dχ+A) ∧

(
(1 + f(r)) dx+ + (1− f(r)) 2β2dx−

)
(6.2.13)

and a dilaton

Φ = −1

2
logK(r). (6.2.14)

Notice that if we take β → 0 then we recover the pre-NMT solution.

The metric in equation (6.2.9) has a horizon at r = rH , with some associated Hawking
temperature T . We obtain T = 0 by sending rH → ∞, which sends f(r) → 1 and
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K(r)→ 1. The resulting metric is then the metric of Sch5 (not just asymptotically Sch5),
which is essentially the metric of AdS5 × S5 with an extra term −dx+2/r4,

ds2 =
1

r2

(

dr2 − β2

r2
dX+2 + 2dX+dX− + d~x2

)

+ ds2S5

=
1

r2

(

dr2 − 1

r2
dx+2 + 2dx+dx− + d~x2

)

+ ds2S5 . (6.2.15)

Notice that the dx+2 term diverges faster as r → 0 than the metric of AdS5. When T = 0
the geometry includes an S5, however, the NS B-field breaks the SO(6) isometry of the
S5 down to SU(3) × U(1), which is the isometry group of CP3. The T = 0 solution also
breaks all supersymmetry4 [182] and has a singularity at r = ∞ [183]. When T is finite
the geometry is only asymptotically Sch5, the S5 is deformed, the singularity is hidden
behind a horizon, and the dilaton becomes non-trivial.

What is the field theory dual to type IIB supergravity on Sch5? Equivalently, we can ask
what field theory operation is dual to the NMT? Put briefly, the NMT is dual to adding
an irrelevant operator to the N = 4 SYM theory Lagrangian. We can easily see this as
follows. Given the solution above, if we perform a Kaluza-Klein reduction5 on the S5

the NS B-field gives rise to a massive vector in Sch5 whose dual operator is a vector of
dimension five, in the antisymmetric tensor representation of the SU(4) R-symmetry. The
dual operator, which we denote Oµ, is a linear combination of operators of the form [181]

OIJµ = Tr

(

F ν
µ Φ[IDν ΦJ ] +

∑

K

DµΦ
KΦ[KΦIΦJ ]

)

+ fermion terms, (6.2.16)

where ΦI are the adjoint scalars of N = 4 SYM transforming in the 6 of SU(4), Fµν is
the field strength, and Dµ is the covariant derivative. To be precise, recall that the 15 of
SU(4) decomposes into representations of SU(3) as 15 = 8+3+3̄+1, so that we can write
Oµ = MIJOIJµ where MIJ is an SU(4) matrix that, after the decomposition, is in the 1 of
SU(3). In short, the NMT generates an NS B-field whose presence indicates an irrelevant
deformation of N = 4 SYM: we have added O+ to the N = 4 SYM Lagrangian. Indeed,
adding O+ breaks the relativistic conformal group down to the algebra of generators
that commute with P+ ∝ P−, producing the Schrödinger group, and breaks the SU(4)
R-symmetry down to SU(3) × U(1). As an irrelevant deformation, we also expect the
geometry to be deformed near the boundary, which is indeed the case: we see explicitly in
equation (6.2.15) that the effect of the deformation (the β2 term) grows near the boundary
r → 0.

The number generator N of the Schrödinger algebra is dual to the isometry of the x−

direction. If the eigenvalues of N should be discrete, we must compactify x−, that is,
we must perform a DLCQ. When T = 0 a DLCQ of the above geometry produces a null
circle. Any closed string that wrap the null circle is massless, hence when T = 0 and we
compactify x− the supergravity approximation becomes unreliable [182]. As emphasized
in [182], if the spacetime has momentum in the x− direction then the x− circle is no longer

4Supersymmetric Sch5 solutions do exist [187, 188], obtained by using different directions of the S5

(besides the Hopf fiber) in the TsT transformation, which are very similar in form to the solution above.
We leave a thorough analysis of probe branes in those backgrounds for the future.

5For details of the reduction, which is in fact consistent, see [182].
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null, and supergravity is reliable in most of the spacetime, although x− becomes null again
near the boundary r → 0.

The finite-T solution in fact has x− momentum, since the NMT involves boosts, so with
finite T the x− direction is no longer null (as is obvious from equation (6.2.9)). The dual
field theory is in a state with a finite number density N , or equivalently a finite chemical
potential [181, 183]. As shown in [181, 183], the field theory temperature T and chemical
potential6 µ are

T =
1

πrH

1

β
, µ = − 1

2β2
. (6.2.17)

The dual field theory has the correct equation of state for a scale-invariant, non-relativistic
theory with z = 2 in two spatial dimensions (here we are performing a DLCQ), ǫ = P , with
ǫ the energy density and P the pressure. The NMT does not change the area of horizons
[189], so the metrics in equations (6.2.3) and (6.2.9) have the same horizon area, although
the conversion to field theory quantities and interpretation differs in the two cases. Of
central importance is the fact that the entropy, and other thermodynamic quantities, such
as the free energy density, scale with negative powers of µ/T , and hence diverge in the limit
µ/T → 0. Such odd singular behavior appears to be a direct consequence of the DLCQ:
exactly the same scalings occur in a gas of non-interacting, non-relativistic Kaluza-Klein
particles [190]. Type IIB supergravity in Schrödinger spacetime is apparently not dual to
a theory of fermions at unitarity.7

Notice that the bulk theory is relativistic, so that under a scale transformation the co-
ordinates transform as r → λr, t → λt, ~x → λ~x for some real positive number λ. The
parameter β has units of length and hence scales as β → λβ. Rescaling the X± in equation
(6.2.11) by powers of β produces the light-cone coordinates x± in equation (6.2.12), such
that under scalings x+ → λ2x+ while x− is invariant. Once we perform the DLCQ and
interpret x+ as the time coordinate, the resulting theory indeed exhibits the scaling of
equation (6.1.1) with z = 2. The fact that x− is invariant indicates that the conjugate
momentum P− is also invariant, which makes sense: after DLCQ we identify P− with
the number operator N , which is a central element of the algebra, and in particular must
commute with the dilation generator.

For a theory with d spatial dimensions, if we assign momentum to have scaling dimension
one, then for a given value of z we have the following scaling dimensions for a density 〈J t〉,
current 〈Jx〉, electric field E, magnetic field B, chemical potential µ and temperature T :

[
〈J t〉

]
= d, [〈Jx〉] = d+ z − 1, [E] = z + 1, [B] = 2, [µ] = [T ] = z. (6.2.18)

From Ohm’s law, 〈Jx〉 = σE, we find that the conductivity has dimension [σ] = d − 2.
Our system has z = 2 and, after DLCQ, d = 2. From equation (6.2.17) we see that the
factors of β are essential to produce a T and µ with scaling dimension two.

6For us µ always denote the chemical potential associated with the U(1) along the compact x−, not the
chemical potential associated with the U(1) baryon number of the flavor fields.

7Curiously, however, at T = 0 and µ = 0, the three-point functions computed holographically from
Sch5 agree exactly, up to normalization, with the three-point functions of fermions at unitarity [191,192].
As in a relativistic conformal theory, the Schrödinger symmetry fixes the form of two-point functions but
the three-point functions are only partially fixed, and so contain dynamical information. The fact that the
Sch5 result agrees with fermions at unitarity is thus a non-trivial statement about the dynamics of the
dual theory.
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In the field theory we also have background gauge fields, dual to the gauge fields on the
D7-branes, such as the (relativistic) electric field Ftx = Ȧx in equation (6.2.8). Here again,
appropriate factors of β produce gauge fields with the correct scaling dimensions. From
equation (6.2.17) we have β ∝ (−µ)−1/2, so we may interpret all rescalings by powers of β
as rescalings by appropriate powers of the chemical potential µ. Recalling that the gauge
field is a one-form, we have

Atdt+Aydy =
1

2β
(At +Ay)dx

+ + β(−At +Ay)dx
− ≡ A+dx

+ +A−dx
− , (6.2.19)

so that A+ has scaling dimension two while, after DLCQ, A− is a dimensionless scalar.
An electric field F+x = ∂+Ax − ∂xA+ then indeed have scaling dimension z + 1 = 3.
Recalling the relativistic coupling AµJ

µ, from the coupling A+J
+ we see that J+ has

scaling dimension two, so that A+ and J+ have the correct scaling dimensions of a chemical
potential and charge density, respectively, for z = 2 and d = 2. The coupling A−J−

indicates that after DLCQ J− is a scalar with scaling dimension four.

6.2.3 Twisting with Probe D7-branes

We now ask what happens to our probe flavor when we perform the NMT. The field
theory side is easy, so we start there: we simply write the Lagrangian of N = 4 SYM
theory coupled to massive N = 2 supersymmetric hypermultiplets in the fundamental
representation of the gauge group, and then add the operator O+. The flavors break the
SU(3)×U(1) symmetry to the same SO(4)×U(1) as in the relativistic case. In the probe
limit, massless flavors preserve the Schrödinger symmetry, while a finite mass explicitly
break scale invariance.

Now we ask what happens on the gravity side, that is, we ask what happens to probe
D7-branes when we perform the NMT. The effect of the boost in steps 1 and 5 is straight-
forward. In the T-dualities of steps 2 and 4, the D7-branes are converted into D6-branes
and then back to D7-branes. The component Ay of the worldvolume gauge field is con-
verted into a scalar, Φy, which is then converted back into Ay. Crucially, however, the
DBI action is consistent with T-duality [193]. That means that when we T-dualize, the
metric, NS B-field, and dilaton may change, and we replace Ay → Φy, but the quantity

L ≡ e−Φ
√

det (P [G+B]ab + (2πα′)Fab), (6.2.20)

evaluates to the same function of r, though now with Φy replacing Ay. If Ay is non-trivial,
so that after T-duality Φy is non-trivial, then the shift in step 3 may change the pullback
of the metric to the D6-branes, and hence potentially change L. If Ay is trivial, however,
then the TsT part of the NMT transformation leaves L unchanged.

The most general statement we can make is: if L is initially invariant under boosts in the
y direction, then the entire NMT has no effect on L. In such cases the boosts in steps
1 and 5 and the TsT transformation each individually leave L unchanged. For boosts
to be a symmetry requires T = 0, and all worldvolume fields must be invariant under
boosts in y.8 For example, we may introduce the worldvolume scalar θ(r), as well as

8In the Sakai-Sugimoto model [136], which is a system of intersecting D4-branes and D8-branes, the
NMT seems to have no effect on the probe D8-branes’ action, even in the black hole background and with
nonzero At(r) [194].
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the gauge field Ax(r), both of which are clearly invariant under boosts in y. In the field
theory we have flavor fields with a finite mass and some current in the x direction, 〈Jx〉.9
Using the asymptotically Schrödinger background and these worldvolume fields, we find
that the action SD7 is identical to the asymptotically AdS case in equation (6.2.8), with
A′
t = Ȧx = 0. We may also add field strengths describing electric and magnetic fields

pointing in the y direction, such as Fty, which are invariant under boosts.10 The NMT
leaves L invariant in all such cases.

A number of conclusions follow from the invariance of SD7 for y-boost-invariant configu-
rations. For example, suppose that, at T = 0, we introduce only the worldvolume scalar
θ(r). After the NMT we find exactly the AdS result, equation (6.2.8), with all gauge fields
set to zero. The equation of motion for θ(r) is then identical to the AdS case, hence the
solution is also identical: θ(r) = arcsin(cr), where c is a constant that determines the
mass m of the flavor fields via m = c/(2πα′) [88].11 The counterterms written in [103],
needed to render the on-shell action finite, are then also identical to the relativistic case.
Furthermore, in the T = 0 AdS case, solutions with nonzero θ(r) and Ax(r) were found
in [119]. These solutions will also be identical for D7-branes in Sch5.

Given that the embedding of the D7-branes, θ(r), is identical in the T = 0 AdS and
Schrödinger cases, a natural question is whether the spectra of linearized fluctuations of
worldvolume fields are also the same. These spectra are dual to the spectra of mesons
in the field theory. In general, the spectrum of mesons are not the same. The simplest
way to see that is to consider the fermionic mesons, dual to fermionic fluctuations of
the D7-branes [101]. The linearized equation of motion for these fermionic fluctuations
is simply the Dirac equation. The Dirac operator is different in AdS and Schrödinger
spacetimes [80]. More generally, the differential operators appearing in the fluctuations’
equations of motions, for example the scalar Laplacian, differ from their AdS counterparts,
so the spectrum generically is different. Some subsector of the meson spectrum may be
unchanged, for example the sector with zero momentum in x− and zero charge under the
R-symmetry that corresponds to the Hopf fiber isometry. We leave a detailed investigation
of the meson spectrum for the future.

When T is nonzero the NMT changes L, even when all the worldvolume fields are trivial.
Introducing non-trivial worldvolume fields will then obviously not restore L to its AdS
form. In what follows, we are interested in finite T solutions with worldvolume fields that
are not invariant under boosts in y, such as electric fields Ftx, so we will not be able to
exploit the T = 0 invariance of L.

In what follows we study transport. We should, however, first study thermodynamics, to
determine the ground state of the system for all values of the parameters (mass, density,
etc.). In the relativistic case, a variety of phase transitions do indeed occur as the param-
eters change. The thermodynamics has been reviewed in section 2.5.4. For more details

9 As mentioned in [119] in the field theory at T = 0 such a current is not dissipate. We may introduce
it simply as an external parameter.

10If we introduce an electric field Fty in the field theory, then we expect a resulting current in the y
direction, 〈Jy〉, which breaks the boost invariance. A bulk solution with Fty and no 〈Jy〉 would probably
be pathological, exhibiting an instability of the kind that we discuss in section 6.3.1, for example.

11In AdS the θ(r) = arcsin(cr) solution is supersymmetric, but here the background breaks all super-
symmetry already, so we need not bother checking the supersymmetry of the D7-branes’ embedding. A
good question, though, is whether supersymmetric embeddings could be found for the supersymmetric
Schrödinger solutions of [187,188].
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see [91,92,109,115,123, 145,147,195] and references therein. We leave a detailed analysis
of the non-relativistic case for the future. In the following, in the field theory we always
assume that the D7-branes intersect the horizon, hence our results for the conductivity is
only be valid when such D7-branes describe the ground state of the field theory.

6.3 DC Conductivity of Probe Flavor

In this section we compute holographically the DC conductivity associated with transport
of baryon number charge. We use the method presented in section 3.3, which captures
effects beyond those of linear response. Our background spacetime is asymptotically Sch5

rather than asymptotically AdS5. One of the major differences between these is that in
Sch5 we use light-cone coordinates x±, compactify x−, and in the dual non-relativistic
theory interpret x+ as the time coordinate.

6.3.1 In the DLCQ of AdS

Suppose we perform a DLCQ both in the bulk and in the field theory. To do so, we first
write the AdS part of the metric in equation (6.2.3) in the light-cone coordinates X± of
equation (6.2.11),

ds2 = grrdr
2 + g++dX

+2 + g−−dX
−2 + 2g+−dX

+dX− + gxxd~x
2

=
1

r2

(
dr2

f(r)
+

1

4
(1− f(r)) dX+2 + (1− f(r)) dX−2 + (1 + f(r)) dX+dX− + d~x2

)

,

Notice that when T = 0 and f(r) = 1, the metric, and its inverse, in the light-cone
directions is strictly off-diagonal, g++ = g−− = 0 and g++ = g−− = 0.

After the DLCQ, we interpret X+ as the new time coordinate. The boundary value of the
D7-brane worldvolume field A+ acts as a source for the field theory operator J+. In the
DLCQ we assume all physical quantities are independent of X−, that is, that ∂− acting
on any quantity gives zero. After the DLCQ, the relativistic equation for conservation of
the current, ∂µ〈Jµ〉 = 0, reduces to ∂+〈J+〉 + ∂i〈J i〉 = 0, with i the index for the spatial
directions. We thus interpret 〈J+〉 as the charge density after DLCQ.

To study states in the field theory with finite 〈J+〉 our ansatz for the worldvolume fields
always includes A+(r), or equivalently F+r(r) = −A′

+(r). Suppose for the moment we
also introduce A−(r). The DBI action will then involve terms of the form

1

2
gF̃ 2 ⊃ grrD7 g

++A′
+(r)2 + grrD7 g

−−A′
−(r)2 + 2grrD7 g

+−A′
+(r)A′

−(r). (6.3.21)

Taking variational derivatives and using equation (2.5.105), we see that a nontrivial A′
+(r)

not only produces a finite 〈J+〉 in the field theory but also a finite 〈J−〉. In other words, in
the field theory, if we introduce 〈J+〉, we must introduce 〈J−〉. We discuss the meaning of
this, from the field theory point of view, shortly. Furthermore, when T = 0 and g++ = 0,
a nontrivial A′

+(r) produces only a nonzero 〈J−〉. To obtain a nonzero 〈J+〉 at T = 0, we
thus also introduce A−(r). Notice that if we return to the original coordinates, with just
At(r), then we obtain both A+(r) and A−(r).
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We also need a constant electric field, which after DLCQ should be F+x = −E. Introducing
F+x alone doing does not produce an instability of the DBI action, however. When T = 0,
for example, the inverse metric component g++ = 0, hence if we introduce only F+x then
the DBI action does not depend on the electric field at all, since gF̃ 2 ∝ gxxg++F 2

+x = 0.
Converting back to the original coordinates reveals what is happening: F+x describes
perpendicular electric and magnetic fields Ftx and Fyx of equal magnitude, such that
gF̃ 2 ∝ E2 − B2 = 0. We thus also introduce F−x, in which case the DBI action depends
on both F+x and F−x, and exhibits the expected instability. Introducing both F+x and
F−x is the same as introducing Ftx and Fxy. Similarly to the story with A+(r) and A−(r),
in what follows we begin with Ftx and then switch to light-cone coordinates.

In summary, our ansatz for the worldvolume gauge field is identical to the relativistic case,
with Frt = A′

t(r), Frx = A′
x(r) and constant Ftx, but converted to light-cone coordinates.

The bulk field A− is dual to the field theory operator J−. Given that we are working with
a nontrivial A−(r) in the bulk and states with nonzero 〈J−〉 in the field theory, a natural
question is, from the field theory point of view, what is J−?

After the DLCQ, A− is a bulk scalar and J− is a scalar operator. To gain some intuition
for the physical meaning of A− and J− after DLCQ, consider a complex scalar field in the
relativistic theory that carries the U(1) charge associated with the current Jµ, which in
our case means the scalars in the N = 2 hypermultiplet. Consider in particular the kinetic
terms, written in light-cone coordinates and with a covariant derivative Dµ = ∂µ − iqAµ
involving the background gauge field Aµ, with q the charge of the scalar under the U(1).
Explicitly, we have (here ∂± are derivatives with respect to X±)

gµν |DµΦ|†DνΦ = g+− |D+Φ|†D−Φ + g−+ |D−Φ|†D+Φ + . . .

= ∂+Φ† (∂− − iqA−)Φ + (∂− + iqA−) Φ†∂+Φ + . . . .

If we work with fixed X− momentum N ,

Φ
(
X−,X+, ~x

)
= e−iNX

−
φ
(
X+, ~x

)
, (6.3.22)

then we obtain

gµν |DµΦ|†DνΦ = (N + qA−) i
[

φ†∂+φ−
(

∂+φ
†
)

φ
]

+ . . . . (6.3.23)

Recalling that after DLCQ we interpret N as the particle number quantum number,12 we
see that a nonzero A− looks like a shift in the particle number N . Indeed, that is true for
any U(1): if we introduce a nonzero A−, any fields charged under the U(1) appear to have
a shifted N . That makes sense since, after DLCQ, a nonzero A− produce a Wilson loop
in the x− direction, effectively shifting the momentum P−, and hence shifting N . Both N
and qA− couple to the operator representing x+ momentum,

P+ = i
[

φ†∂+φ−
(

∂+φ
†
)

φ
]

. (6.3.24)

As mentioned in the introduction (and [179]), after the DLCQ, P+ plays the role of the
Hamiltonian in the Schrödinger algebra. We thus see that A− couples to the operator
J− = qP+, or q times the Hamiltonian. The statement above that a nonzero 〈J+〉 must
be accompanied by a nonzero 〈J−〉 is thus easy to understand: from the perspective of the
non-relativistic theory, a finite density of particles must be accompanied by some energy.

12Here N denotes the eigenvalue of the number operator, which we also called N above.
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6.3.2 In Schrödinger Spacetime

Having explained the method for computing the DC conductivity, and some of the sub-
tleties of working in light-cone coordinates, we proceed to the case where the background
spacetime is the asymptotically Sch5 metric of equation (6.2.9).

First, we must be careful with factors of β (see the end of section 6.2.2). As explained
above, our ansatz is the same as in the relativistic case of section 6.2.1, with At(r),
Ftx = −E, andAx(r), but converted to the (rescaled) light-cone coordinates x± of equation
(6.2.12). We also rescale the gauge field components as in equation (6.2.19), so that our
A± obey non-relativistic scaling. Explicitly, our ansatz for the worldvolume gauge field is

A+(x, r) = Eβ x+ h+(r) , A−(x, r) = −2β2Eβ x+ h−(r) , Ax = Ax(x
+, r) , (6.3.25)

where we have redefined the electric field to be Eβ = E/(2β) such that Eβ scales non-
relativistically, i.e. [Eβ] = 3, and h±(r) are functions for which we most solve. We also
recall the other scaling dimensions of equation (6.2.18), with d = z = 2,

[A+] = 2, [J+] = 2, [A−] = 0, [J−] = 4, [Ax] = 1, [Jx] = 3, (6.3.26)

and the conductivity is dimensionless, [σ] = d− 2 = 0.

We now insert our ansatz for the worldvolume fields into the DBI action, equation (2.5.95),
using the background metric, B-field, and dilaton of equations (6.2.9), (6.2.13), and
(6.2.14), respectively. To write the action succinctly, let us introduce some notation.
We define

G̃i1...in ≡
1

sin2α1
det(P [g +B]ab) , a, b = i1, . . . , in , (6.3.27)

i.e. G̃i1...in is the determinant of the n× n submatrix of P [g +B]ab containing only rows
and columns indexed by i1, . . . , in. All such sub-determinants are functions of r times a
factor of sin2 α1, hence we divide by sin2 α1 to make G̃i1...in a function of r only. Similarly
we define the 3× 3 submatrix determinant (divided by sin2 α1):

G̃B ≡
1

sin2α1
det





g+− B+α2 B+α3

−B−α2 gα2α2 gα3α2

−B−α3 gα2α3 gα3α3



 . (6.3.28)

Explicitly, the submatrix determinants we need are

G̃α2α3 =
cos2θ(r) +K(r) sin2θ(r)

16K(r)
cos4θ(r) ,

G̃+α2α3 =
r6 − 4r4Hβ

2f(r) sin2θ(r)

64r4r4Hβ
2K(r)

cos4θ(r) , G̃−α2α3 =
K(r)− 1

16K(r)
cos4θ(r) ,

G̃B =
1 + f(r)

32r2K(r)
cos4θ(r) , G̃+−α2α3 = −f(r) cos4θ(r)

16r4K(r)
. (6.3.29)

We note for later use that G̃+−α2α3 vanishes at the horizon r = rh and otherwise is strictly
negative, while G̃α2α3 is strictly positive. We also define the shorthand notation

G̃3 ≡ G̃−α2α3 + 4β4G̃+α2α3 + 4β2G̃B =
β2[r2 − β2f(r) sin2θ(r)]

4r4K(r)
cos4θ(r) . (6.3.30)
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Plugging our gauge field ansatz equation (6.3.25) into the D7-brane action, we obtain

SD7 = −NfTD7

∫

dr d3αe−Φ
√

−det (P [g +B]ab + (2πα′)Fab)

= −N
∫

dr
√

−K(r) detMab , (6.3.31)

where the matrix Mab has determinant

detMab ≡ gxx gα1α1

{

grr

[

E2
β G̃3 + gxxG̃+−α2α3

]

+ G̃+−α2α3(A
′
x)

2 + E2
β G̃α2α3(2β

2A′
+ +A′

−)2

+ gxx

[

G̃−α2α3(A
′
+)2 + G̃+α2α3(A

′
−)2 − 2G̃BA

′
+A

′
−
]}

. (6.3.32)

Using equation (2.5.105) we obtain the current components

〈J+〉 = NKgxx gα1α1√−KdetMab

[

(2β2E2
β G̃α2α3 − gxxG̃B)A′

− ,+(4β4E2
β G̃α2α3 + gxxG̃−α2α3)A

′
+

]

(6.3.33a)

〈J−〉 = NKgxx gα1α1√−KdetMab

[

(2β2E2
β G̃α2α3 − gxxG̃B)A′

+ + (E2
β G̃α2α3 + gxxG̃+α2α3)A

′
−
]

,

(6.3.33b)

〈Jx〉 = NKgxx gα1α1√−KdetMab
G̃+−α2α3A

′
x . (6.3.33c)

Solving equations (6.3.33) for A′
± and A′

x and plugging the solutions back into the action,
we obtain the on-shell action

SD7 = −N 2

∫

drK(r)gxxg
1/2
rr gα1α1

√

gxx|G̃+−α2α3 | − E2
β G̃3

U(r)− V (r)
(6.3.34)

where

U(r) =
〈Jx〉2

G̃+−α2α3

+N 2K(r) gxx gα1α1 , (6.3.35a)

V (r) =
E2
β G̃α2α3(〈J+〉 − 2β2〈J−〉)2 + gxx

(

G̃+α2α3〈J+〉2 + G̃−α2α3〈J−〉2 + 2G̃B〈J+〉〈J−〉
)

gxxG̃α2α3(gxx|G̃+−α2α3 | − E2
β G̃3)

.

(6.3.35b)

We now focus on the square root factor in the on-shell action in equation (6.3.34), and
demand that the action remain real for all r, as in the relativistic case of section 6.3.1.
First, notice that as a function of r, the factor in the numerator, gxx|G̃+−α2α3 |−E2

β G̃3, is
negative at the horizon, r = rH , and positive near the boundary r → 0, and hence must
have a zero at some r = r∗,

[

gxx|G̃+−α2α3 | − E2
β G̃3

]

r∗
= 0 =⇒ 1

E2
β

=
4r2∗β

2

f(r∗)

[
r2∗ − β2f(r∗) sin2 θ(r∗)

]
. (6.3.36)

Similarly, the denominator U(r) − V (r) is negative at the horizon and positive at the
boundary, and so must have a zero also at some value of r. As in the relativistic AdS case
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reviewed above, the two zeros must coincide to avoid an imaginary action, so we require
U(r∗) − V (r∗) = 0. Now consider V (r), which has a factor of gxx|G̃+−α2α3 | − E2

β G̃3 in
its denominator. If the numerator of V (r) is finite at r∗, then V (r) diverge at r∗. Notice,
however, that U(r) is not divergent at r∗. The only way to achieve U(r∗) − V (r∗) =
0 is thus to demand that the numerator of V (r) vanish at r∗ (at least as quickly as
gxx|G̃+−α2α3 |−E2

β G̃3). Setting the numerator of V (r) to zero at r∗, we obtain (after some
algebra)

〈J−〉 = −G̃B + 2β2G̃+α2α3

2β2G̃B + G̃−α2α3

∣
∣
∣
∣
r∗

〈J+〉 . (6.3.37)

Notice that equation (6.3.37) has no explicit dependence on the current 〈Jx〉, and depends
on the electric field only implicitly through r∗. In the absence of the electric field, equation
(6.3.37) becomes 〈J−〉 = −〈J+〉/(2β2), which is independent of the temperature. Recalling
the statements at the end of the last subsection, here we see that, indeed, we cannot
introduce 〈J+〉 without also introducing 〈J−〉.

Now the condition U(r∗) = V (r∗), combined with equation (6.3.37), fixes the current to
be

〈Jx〉2 = E2
β

[

N 2Kgα1α1G̃3 +
G̃2

3〈J+〉2
g2
xx(G̃−α2α3 + 2β2G̃B)2

]

r∗

(6.3.38)

= E2
β

f(r∗)
64E2

β r
6∗

[

N 2 cos6 θ(r∗) +
16〈J+〉2r2∗f(r∗)

β4E2
β

]

, (6.3.39)

which gives the DC conductivity, σ, through Ohm’s law 〈Jx〉 = σEβ,

σ =

√

N 2
f(r∗)

64E2
βr

6∗
cos6 θ(r∗) +

f(r∗)2

4β4r4∗E
4
β

〈J+〉2. (6.3.40)

Note that σ is dimensionless, as it should be. Notice that once we fix T , Eβ and 〈J+〉,
reality of the action determines 〈J−〉 and 〈Jx〉.

As in the relativistic case, the result for σ consists of two terms adding in quadrature. Once
again, the second term, proportional to 〈J+〉2, describes the contribution to the current
from the charge carriers we introduced explicitly via the net density 〈J+〉. The first term,
again proportional to cos6 θ(r∗), appears to describe the contribution from charge-neutral
pairs. We suspect that, as in the relativistic case, these pairs come from Schwinger and/or
thermal pair production. From the field theory point of view, such pair production at first
seems counter-intuitive, since in a non-relativistic theory, the number of particles should
not change. Recall, however, that we are actually studying a relativistic theory which we
deform in two ways, first by introducing an irrelevant operator and then by performing a
DLCQ. From that perspective, nothing is wrong with pair production. Notice also that
what plays the role of the number of particles is the eigenvalue of N ∼ P−, the momentum
in the x− direction, which is indeed fixed.

We now take two different limits to explore the scaling of the conductivity. The two limits
depend on the relative strengths of Eβ and T . In the limit of a very weak electric field,
E2
ββ

2r4H ≪ 1, or equivalently Eβ ≪ βT 2, we have from equation (6.3.36) r∗ → rH , and
the conductivity takes the form

σ ≈
√

π2N 2 cos2 θ(r∗)
16

T 2β4 +
4〈J+〉2
π4β4T 4

=

√

π2N 2 cos2 θ(r∗)
64

T 2

µ2
+

16

π4

〈J+〉2
T 2

µ2

T 2
, (6.3.41)
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where in the second equality we have replaced β with µ using equation (6.2.17). At low
temperatures or large masses, i.e. T/µ→ 0 or cos θ(r∗)→ 0, the pair-production term is
suppressed, in which case the conductivity approaches

σ ≈ 4

π2

〈J+〉
T

(−µ)

T
. (6.3.42)

In a scale-invariant theory with dynamical exponent z, the conductivity should behave as
σ ∼ 〈J+〉T−2/z. Here we see that, if we fix the chemical potential µ, then we obtain the
dynamical exponent of a relativistic theory, z = 1. On the other hand, if we hold fixed the
ratio µ/T as we vary the temperature, then we find non-relativistic scaling, with z = 2.

The opposite limit is strong electric field, E2
ββ

2r4H ≫ 1, or equivalently Eβ ≫ βT 2. If the
mass is small, so that θ(r∗) ≈ 0 and hence sin θ(r∗) ≈ 0, then equation (6.3.36) implies
that r∗ ∼ (2Eββ)−1/2, and we find

σ ≈
√

N 2 cos6 θ(r∗)
8

Eββ3 +
〈J+〉2
E2
ββ

2
=

√

N 2 cos6 θ(r∗)
83/2

Eβ

(−µ)3/2
+ 2
〈J+〉2 (−µ)

E2
β

. (6.3.43)

If we set the mass and density to zero, so cos θ(r∗) = 1 and 〈J+〉 = 0, then we obtain a
finite conductivity,

σ ≈ N
83/4

√

Eβ

(−µ)3/2
, (6.3.44)

We indeed find a nonzero current, which must come from Schwinger pair production. The
bulk mechanism is exactly the same as in the relativistic case: the worldvolume electric
field is ripping strings apart. If we fix the value of µ, then σ ∝

√
Eβ , which is the

same scaling with the electric field as in the T = 0 relativistic case. If we fix the ratio
Eβ/ (−µ)3/2 as we vary Eβ, however, then the conductivity is a constant, which we expect
for a (2+1)-dimensional theory with non-relativistic scale invariance, if the only scale is
the electric field.

If the electric field is small, then the second term under the square root in equation (6.3.43)
dominates. We then find

σ ≈ 〈J
+〉 (−2µ)1/2

Eβ
, (6.3.45)

Switching back to relativistic coordinates,

〈J+〉 = β(〈J t〉+ 〈Jy〉) =
1

(−2µ)1/2
(〈J t〉+ 〈Jy〉) , (6.3.46)

we find that, for a fixed µ, the equation for the current becomes

〈Jx〉 = 〈J t〉+ 〈Jy〉 , (6.3.47)

which is similar to the AdS result at zero temperature (see Appendix A of [116]). The
physics here is simply that at zero temperature the charge carriers are accelerated to the
speed of light, so the system is not really stationary. If we fix the ratio Eβ/ (−µ)3/2, so

that we can use (−µ)1/2 ∼ E1/3
β , then

σ ∝ 〈J
+〉

E
2/3
β

, (6.3.48)
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which is the appropriate dependence on the electric field for a two-dimensional non-
relativistic conformal theory with a finite density.

To summarize: of the two scales Eβ and T , we can take one to be large relative to the
other. If we hold the larger scale fixed relative to the scale set by µ, then we obtain
non-relativistic scaling. If on the other hand we hold µ fixed and vary the larger scale, we
obtain relativistic scaling.

We can understand our results in terms of the geometry as follows. Consider for example
the case in which we can neglect the electric field, so the temperature is the larger scale.
The conductivity is then evaluated at r∗ ≃ rH . Fixing µ/T is the same as fixing rH/β.
We are thus probing the geometry on the scale of the deformation β, so intuitively we
expect to obtain non-relativistic behavior. Indeed, in this case the conductivity in (6.3.42)
behaves in a non-relativistic way. If instead we fix µ as we take T/µ → 0 (see the text
above equation (6.3.42)), then the ratio rH/β → ∞ and the horizon enters the region
where the geometry is similar to AdS-Schwarzschild. In that case (6.3.42) indeed exhibits
relativistic scaling.

6.4 AC Conductivity of Probe Flavor

We now proceed to compute the frequency-dependent conductivity in the linear response
approximation. In the field theory we consider thermal equilibrium states with tempera-
ture T and massive flavor fields with a finite density 〈J+〉 and finite 〈J−〉, but now, unlike
the last section, no constant electric field.

In the holographic dual the system at equilibrium is described by probe D7-branes in
the asymptotically Schrödinger black hole geometry of equation (6.2.9), with nontrivial
worldvolume fields A+(r) and A−(r). We can obtain the solution for these in exactly the
same way as the last section: each has an associated constant of motion, 〈J+〉 and 〈J−〉
from equation (2.5.105), so we obtain equations similar to those in equations (6.3.33),
which we then algebraically invert to find A+(r) and A−(r) in terms of 〈J+〉 and 〈J−〉.
We do not present these solutions explicitly, but we record that, in the absence of a
constant worldvolume electric field, we have from the last section that r∗ = rH and
〈J−〉 = −〈J+〉/(2β2) (see equations (6.3.36) and (6.3.37)). Notice also that, as always
with a nontrivial A+(r) (or At(r)), the D7-branes must extend all the way to the black
hole horizon [115]. We also consider a nontrivial embedding θ(r), whose form we discuss
in detail below.

To obtain the conductivity in the regime of linear response, we consider a small, frequency-
dependent perturbation of the worldvolume electric field about the background solution
(which has A+(r), A−(r), and θ(r)),

Ax(x
+, x−, r) = Re

[

e−iω(x++2β2x−)ax(r, ω)
]

. (6.4.49)

For simplicity we work with zero spatial momentum. Here we note that, in fact, remov-
ing all x− dependence does not qualitatively change our results for the behavior of the
conductivity with frequency.

To quadratic order, the Lagrangian density for the perturbation is

L2 = α++f
2
+x + α−−f2

−x + 2α+−f+xf−x − αrrf2
xr, (6.4.50)
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where fαβ = ∂αAβ−∂βAα is the field strength associated with the fluctuation in equation
(6.4.49). The equation of motion for the fluctuation is then

a′′x +
α′
rr

αrr
a′x + ω2α++ + 4β4α−− + 4β2α+−

αrr
ax = 0 . (6.4.51)

Here the α are r-dependent coefficients that depend on the background solutions for A+(r)
and A−(r) about which we are perturbing. To write these succinctly, let us introduce some
notation. We define

ks(r) ≡ 1 +
sin2 θ(r)β2r2

r4H
, ρ(r) ≡ 1 + r2f(r)θ′2 , (6.4.52)

Q2 ≡ 64〈J+〉2
β2

, γ2(r) ≡ cos6 θ(r)ks(r) +Q2r4(r2 + β2 sin2 θ(r)) . (6.4.53)

The coefficients in the quadratic Lagrangian density are then

αrr(r) =
N

16r
√

ks(r)ρ(r)
f(r)γ(r) ,

α++(r) =
N

16r4Hf(r)γ(r)
β2r3

(
Q2r2r4H + cos6 θ(r)

)√

ks(r)ρ(r) ,

α−−(r) =
N

64β2r3f(r)γ(r)

[

Q2r8 + cos6 θ(r)

(
r6

r4H
− 4 sin2 θ(r)β2f(r)

)]
√

ks(r)ρ(r) ,

α+−(r) =
N

32rf(r)γ(r)

[

Q2r6 − cos6 θ(r)

(
r4

r4H
− 2

)]
√

ks(r)ρ(r) . (6.4.54)

We follow the now-standard procedure to compute transport coefficients, in the regime
of linear response, holographically (for a review see [30, 36, 37]). We must first solve the
linearized equation of motion for the fluctuation ax(r, ω) with the boundary condition that
near the horizon the solution has the form of a traveling wave moving into the black hole,
i.e. an in-going wave. We then insert that solution into the action, which then acts as a
generating functional for field theory correlators. Taking two functional derivatives of the
on-shell action gives us the retarded Green’s function. We then extract the conductivity
from the retarded Green’s function via a Kubo formula. Ultimately, we find

σ(ω) ∝ lim
r→0

[
αrra

′
x(r, ω)

ωax(r, ω)

]

, (6.4.55)

where, because we are primarily interested in σ(ω)’s scaling behavior with ω, we omit the
overall prefactor.

Crucially, notice that the result depend on the background solution θ(r) describing the
embedding of the D7-brane. In general, with finite temperature T and density 〈J+〉, we
can only solve for θ(r) numerically. We leave a complete numerical solution for future
work. Here we focus on regimes of physical interest, applying some approximations to
obtain analytic results for σ(ω)’s scaling with ω.

We are interested in a regime dominated by the physics of a zero-temperature critical
point. Remember that the Schrödinger geometry interpolates between a UV critical point
with z = 2 and an IR critical point with z = 1. The scale that separates the two regimes
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is the chemical potential (β in the metric). In order to eliminate thermal effects, we work
in a limit where the temperature is much smaller than any other scale, which in particular
means ω ≫ T . We then expect that we can explore both regions by taking µ≫ ω for the
IR regime and µ≪ ω for the UV.

In the probe approximation the critical behavior is not spoiled by a nonzero mass or charge
density for the flavors. The sector described by the probe D7-branes is sensitive to these
quantities, however, so we expect deviations from scale invariance whenever ω ∼ 〈J+〉z/d
or ω ∼ m2. In order to avoid such deviations we only explore frequencies below these
scales, which means 〈J+〉z/d ≫ µ and m2 ≫ µ.

Instead of computing the exact current-current correlator in the holographic description,
we use the radial coordinate as an approximation to the frequency scale, following [185].
We call r0 the reference scale around which we give an estimate of the conductivity. More
precisely, we define a local conductivity σ(ω, r0) to be the quantity in brackets in equation
(6.4.55), evaluated at r = r0,

σ(ω, r0) ≡
[
αrra

′
x(r, ω)

ωax(r, ω)

]

r0

. (6.4.56)

If we think about the charge carriers as strings attached to the brane, the length of the
string from r0 to the horizon,13 times the string tension, is, roughly speaking, the energy
of the charge carriers we are exciting when we apply an oscillating electric field, which is
on the order of 1/r20 . The holographic conductivity evaluated at r0 should thus give us a
rough idea of the response of the system to an external field with a fixed frequency of the
order 1/r20 . Notice that in such a picture we would expect to produce pairs if the energy
is of the order of, or larger than, the mass. That is another good reason why we only
explore scales much below the mass. Notice also that in the Lifshitz case of [185], both
σ(ω, r0) and σ(ω) had the same scaling with frequency in the limit that ωrz ≪ 1.

In terms of the quantities in our formulas, for frequencies small relative to the chemical
potential (the IR) we should set r0 ≫ β while for large frequencies (the UV) we should
set r0 ≪ β. In the low temperature limit we should send rH → ∞ relative to any other
scale, and by large mass and density we mean rΛ ≪ r0 and 〈J+〉 ≫ 1/r20 .

We show in the following subsection that, with some assumptions, the D7-branes have
a very simple embedding that we can compute analytically in our regimes of interest.
Using our analytic results for θ(r), we analytically compute the ω-dependence of σ(ω)
in the subsequent subsections and compare the ω scaling with the results from Lifshitz
backgrounds, equation (6.1.2).

6.4.1 D7-brane Embeddings

To determine analytic forms for θ(r), we return to the DBI action of equation (2.5.95) and
insert our ansatz for the worldvolume fields: A+(r), A−(r), and θ(r), using the background
metric, NS B-field and dilaton of equations (6.2.9), (6.2.13), and (6.2.14), respectively.
The result is precisely equation (6.3.31), if in equation (6.3.31) we take Eβ = A′

x(r) = 0.

13We are using black hole embeddings only, in which case the endpoint of a string at r0 would be free
to move along the D7-brane and into the horizon. Our statements about the physical meaning of r0 are
meant only to provide intuition.
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Writing SD7 = −
∫
drL (recall the text below equation (6.2.8)), we find

−L =
N
8r5

cos3 θ(r)

√

a0 − b0 cos2 θ(r) + r2f(r)θ′2 ≡ N
8r5

cos3 θ(r)L̂ , (6.4.57)

where for later convenience we defined a reduced Lagrangian L̂. Here a0(r) and b0(r)
are functions of the U(1) field strength, not yet evaluated on any solution for the field
strength.14

a0(r) = 1 + [1 + f(r)]r4A′
+(r)A′

−(r) + r2A′
−(r)2

(

f(r)− r6

4β2r4H

)

− r8β2

r4H
A′

+(r)2

b0(r) = r2f(r)A′
−(r)2 (6.4.58)

The equation of motion for θ(r) is

(
cos3 θ(r)r3f(r)θ′

L̂

)′
− sin θ(r)

r5

(

3 cos2 θ(r)L̂− b0 cos4 θ(r)

L̂

)

= 0 . (6.4.59)

Solving for the gauge fields by inverting equation (6.3.33), with the charge density fixed,
and plugging the solutions into a0(r) and b0(r), we find the on-shell values of a0(r) and
b0(r),

a0(r) =
cos6 θ(r)ks(r)

2

γ2(r)ks(r)
+

Q2r4f(r)

γ2(r)ks(r)

[

β2 cos2 θ(r)

− r2θ′2
(

β2 r
4

r4H
− β2 cos(2θ(r)) + r2

(

1 +
β4 sin4 θ(r)

r4H

))]

,

(6.4.60)

b0(r) = Q2β
2r4f(r)

γ2(r)

ρ(r)

ks(r)
, (6.4.61)

and the action evaluated on the solution is proportional to L̂ = cos3 θ(r)
√

ks(r)ρ(r)/γ(r).

As we reviewed in section 6.2.1, when At(r), or A+(r), is zero, the D7-brane can end at
some value of the radial coordinate rΛ, but when At(r) or A+(r) is nontrivial, the D7-
brane must extend all the way to the horizon, and has a spike when rΛ ≪ rH . Along
the spike and far from the horizon, rΛ < r ≪ rH , θ(r) is approximately constant. Such
a region in r corresponds to scales below the mass gap of the charge carriers, where scale
invariance is approximately restored.

Let us consider the limits r ≪ rH and Qr3 ≫ 1, corresponding to low temperature and
large density, as explained in the last subsection. If we take the IR limit β ≪ r, we find

γ2(r) = cos6 θ(r)

(

1 +
β2 sin2 θ(r)r2

r4H

)

+Q2r4(r2+β2 sin2 θ(r)) ≈ cos6 θ(r)+Q2r6 ≈ Q2r6 .

(6.4.62)
In the UV limit β ≫ r we find

γ2(r) ≈ cos6 θ(r) +Q2r4β2 sin2 θ(r) ≃ Q2β2 sin2 θ(r)r4 . (6.4.63)

14Alternatively, we can derive θ(r)’s equation of motion by first solving for the gauge fields, plugging
the results into L, performing a Legendre transform with respect to the gauge fields, and then finding the
Euler-Lagrange equations of motion [115].
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The IR and UV limits of all the quantities that appear in the equation of motion equation
(6.4.59) are similarly straightforward to determine. In addition, we can assume that
r2θ′2 ≪ 1 as long as rΛ ≪ r, so we take 1+r2fθ′2 ≈ 1, sin θ(r) ≈ sin θ0 and cos θ(r) ≈ cos θ0
with θ0 a constant.

We then find that in the IR limit, to leading order, the equation of motion for θ(r) equation
(6.4.59) becomes

θ′′ +
β2 sin θ0 cos θ0

r4
= 0 , (6.4.64)

while in the UV limit, the equation of motion becomes
(
θ′

r

)′
+

cot θ0
r3

= 0 . (6.4.65)

The solutions in the IR and UV limits are

IR θ(r) = θ0 −
β2

6r2
sin θ0 cos θ0, (6.4.66)

UV θ(r) = θ0 +
1

2
cot θ0 log

r

r0
, (6.4.67)

where, following [185], and as discussed above, we have introduced the reference scale r0
obeying rΛ < r0 ≪ β, which makes the argument of the logarithm in the UV solution
dimensionless. Notice that in order to satisfy the condition r2θ′2 ≪ 1 in the UV solution,
we need | cot θ0| ≪ 1, meaning a narrow spike and probably a large mass gap rΛ ≪ r0. The
expansion is also limited to a region around the reference scale r0, such that | log(r/r0)| ≪
1. Otherwise these results are consistent with all the approximations we have made.

6.4.2 AC conductivity in the IR

In the IR limit the equation of motion for the gauge field fluctuation, equation (6.4.51),
becomes simply

a′′x +
2

r
a′x + 4β2ω2ax = 0 , (6.4.68)

with solutions

ax(r, ω) = a0
x

e±2iβωr

r
, (6.4.69)

with a0
x a constant. The in-going solution corresponds to the positive sign in the expo-

nential.

Next we follow the procedure described in [185] for probe branes in Lifshitz geometries.
As mentioned above, we do not directly apply the formula equation (6.4.55) in our case
because the r → 0 limit takes us out of the regime of our approximations. Instead
we compute the local conductivity σ(ω, r0) at a reference scale r0 such that βωr0 ≪ 1.
Plugging the solution into equation (6.4.56) and expanding the result with βωr0 ≪ 1, we
find that at leading order the local conductivity is

σ(ω, r0) ∝
N〈J+〉r0

2β
ω−1 . (6.4.70)

The ω−1 scaling is consistent with the result of [185], our equation (6.1.2), for the rela-
tivistic case with dynamical exponent z = 1.
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6.4.3 AC conductivity in the UV

In the UV the equation of motion for the gauge field fluctuation equation (6.4.51) also
takes a simple form. Using sin θ0 ≃ 1, we find

a′′x +
1

r
a′x + 4r2ω2ax = 0 . (6.4.71)

The general solutions are Bessel functions. The solution describing an in-going traveling
wave at the horizon is a Hankel function,

ax(r, ω) = a0
x H

(1)
0

(
ωr2
)
, (6.4.72)

where again a0
x is a constant. Notice that equations (6.4.71) and (6.4.72) coincide with the

equations in [185] for a fluctuation of a probe brane’s worldvolume gauge field in Lifshitz
spacetime with dynamical exponent z = 2. As before, we choose a cutoff r0 such that
ωr20 ≪ 1. Plugging the solution into equation (6.4.55) and expanding the result in powers
of ωr20, we obtain

σ(ω, r0) ∝
N〈J+〉

16

(
ω log

(
ωr20
))−1

, (6.4.73)

which is indeed the same scaling with ω as obtained from a probe brane in a Lifshitz
spacetime with z = 2, see equation (6.1.2).

In summary: taking the temperature scale to be very low and the mass and density scales
to be very high, we find that in the IR, meaning ω ≪ µ, the AC conductivity exhibits
relativistic scaling with frequency, while in the UV, meaning ω ≫ µ, we find that the
AC conductivity exhibits non-relativistic scaling with dynamical exponent z = 2. These
results clearly confirm our intuition on the bulk side, where the space is similar to AdS deep
in the interior but not asymptotically, and in the field theory, where we have introduced an
irrelevant deformation to N = 4 SYM that breaks the relativistic conformal group down
to the Schrödinger group.
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7
Adding Flavor to AdS4/CFT3

In this chapter we study another explicit realization of the Anti-de Sitter / Conformal
Field Theory correspondence relating a (2+1)-dimensional superconformal field theory
(denoted by CFT3) to a gravity theory on AdS4, which is therefore called AdS4/CFT3

correspondence. AdS4/CFT3 may be derived from the near-horizon limit of M2-branes.
As we review in section 7.3, the low energy theory of Nc M2-branes is given by maximally
supersymmetric Chern-Simons matter theory with gauge group U(Nc)×U(Nc) in (2+1)-
dimensions which is to eleven-dimensional supergravity on AdS4 × S7/Zk.
The AdS4/CFT3 correspondence is interesting from two different point of views. We
can use this correspondence to study purely (2+1)-dimensional quantum critical theories,
described by Chern-Simons theories. Note that Chern-Simons theories are very common
in condensed matter physics. The AdS4/CFT3 correspondence sheds also some light on
M2-branes and their interactions, and therefore is important for the further development
of M-theory.

After an introduction to M-theory and its basic objects in section 7.2, we review shortly
AdS4/CFT3 in section 7.3. In the remaining sections we add flavor degrees to that cor-
respondence which are confined to 2+1 and 1+1 dimensions. In particular we derive the
Lagrangian and the symmetries of the field theory side and determine the embedding of the
flavor branes in the dual gravity theory. Note that this chapter contains technical studies,
parts of which may be found in appendix B. The field theories discussed in this chapter
and their dual gravitational description are important for further studies of condensed
matter theories using the AdS/CFT correspondence.

This chapter of the thesis is mainly based on work done in collaboration with Johanna
Erdmenger, Réne Meyer, Andy O’Bannon and Timm Wrase and was published in [6].
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7.1 Introduction and summary

So far we studied only one particular example of the AdS/CFT correspondence. In section
2.1 we reviewed that the near-horizon limit of Nc D3-branes gives rise to a one-to-one map-
ping between N = 4 supersymmetric Yang-Mills theory in four-dimensional Minkowski
spacetime and type IIB string theory on AdS5 × S5. Later we added flavor degrees of
freedom transforming in the fundamental representation of the gauge group. The flavor
degrees were allowed to propagate in four dimensions (in the case of flavor D7-branes)
or can be confined to a lower-dimensional defect. Such a defect theory is realized by a
supersymmetric D3/D5 intersection. The probe D5-brane is aligned along AdS4 × S2 in-
side AdS5 × S5 which describes supersymmetric flavor fields confined to propagate only
in (2+1)-dimensions of the (3+1)-dimensional theory, i.e. along a codimension-one defect.
Therefore from the point of view of the flavor degrees of freedom the theory is effectively
(2+1)-dimensional.

Note that defect theories are very common in condensed matter systems as it was empha-
sized in the introduction, particularly in section 1.3. However, sometimes it is also useful
to understand strongly coupled field theories which are purely (2+1)-dimensional theo-
ries. A natural candidate to derive a gauge/gravity duality involving a superconformal
2+1-dimensional field theory is to look at the near-horizon limit of M2-branes, which are
one of the basic objects of M-theory.

Given Nc M2-branes at a C4/Zk singularity, when we take Nc → ∞ we can replace
the M2-branes with their near-horizon geometry, which is (3+1)-dimensional AdS space
times a Zk orbifold of a seven-sphere, AdS4 × S7/Zk. The natural conjecture was that
the low-energy theory of M2-branes, in the large-Nc limit, is dual to eleven-dimensional
supergravity on AdS4 × S7/Zk. The exact low-energy theory of multiple M2-branes was
unknown before [137], however.

In [137]1 it was proposed that Nc coincident M2-branes probing a C4/Zk singularity have
a low-energy description as a particular N = 6 supersymmetric Chern-Simons-matter
theory. We refer to the theory of [137] as the ABJM theory.

Let us summarize here the main content of the chapter.

First, a short introduction to M-theory and its basic objects is given in section 7.2 for
readers not familiar with the subject. In particular the properties of M2- and M5-branes
are discussed. We work out the near-horizon geometry of M2- and M5-branes, whose
metric is given by AdS4 × S7 (in the case of M2-branes) and AdS7 × S4 (for M5-branes),
respectively.

In section 7.3 we follow [137] and derive the N = 6 supersymmetric Chern-Simons-matter
theory, and its relation to M2-branes, from a particular brane construction in type IIB
string theory. The initial configuration includes two stacks of Nc D3-branes, an NS5-
brane, and a (1, k)5-brane. At this stage we can identify the low-energy theory of the
D3-branes as a (2+1)-dimensional N = 3 supersymmetric Chern-Simons-matter theory
with product gauge group U(Nc)×U(Nc) and with equal but opposite Chern-Simons levels
k and −k for the two gauge groups, which we denote as U(Nc)k × U(Nc)−k. Performing

1Following the work of [196–202].
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a T-duality, an uplift to M-theory, and a certain kind of “near-horizon” limit,2 we obtain
M2-branes probing C4/Zk. A supersymmetry enhancement occurs in the “near-horizon”
limit, from N = 3 to N = 6 supersymmetry. The low-energy theory of the M2-branes (the
ABJM theory) is thus an N = 6 supersymmetric U(Nc)k × U(Nc)−k theory with adjoint
and bifundamental fields. Upon taking Nc → ∞ and replacing the M2-branes with their
near-horizon geometry, the appropriate description is eleven-dimensional supergravity on
AdS4 × S7/Zk. We may then take k → ∞, where the appropriate description becomes
type IIA supergravity on AdS4 ×CP3.

The aim of the chapter is to deform the ABJM theory by introducing fields in the fun-
damental representation of the gauge groups, i.e flavor fields. We study flavor fields both
in the brane construction and also in the field theory. In particular, for a given brane
construction, we present a general recipe to determine the couplings of the flavor fields to
the fields of the ABJM theory. We then apply our general recipe to two examples,3 for
which we write down explicitly the field theory Lagrangians. Moreover, we compare the
symmetries of the string/gravity description and the field theory.

To add supersymmetric flavor to the ABJM theory, we add supersymmetric flavor branes
in the type IIB brane construction of the ABJM theory in section 7.4.1 (see also appendix
B.1). We begin by listing all supersymmetric Dp-branes that are extended along the
coordinate axes in the type IIB construction (see table 7.1 in section 7.4.1). We then
perform a T-duality, a lift to M-theory, and the “near-horizon” limit to determine where
these branes end up in M-theory onC4/Zk, and we compute the amount of supersymmetry
the object (brane or Kaluza-Klein (KK) monopole) preserves (table B.2 in appendix B.3.1
lists a few examples). Lastly we take Nc → ∞ and determine where the objects end
up in M-theory on AdS4 × S7/Zk, and for a few examples we compute the amount of
supersymmetry the objects preserve (see appendix B.3.2).

All of the above analysis occurs on the gravity side of the AdS/CFT correspondence. How
do we determine the dual field theory, including the flavor fields? As a systematic approach
to construct the field theory, we start a few steps before ABJM’s type IIB construction. We
begin in type IIB with just a D3/Dp intersection, where the Dp-brane is the flavor brane.
The actions for many D3/Dp systems are known (see for example [88,94–100]). We then
follow what happens to the action, step-by-step, during ABJM’s type IIB construction.
Two steps are crucially important in this procedure. The first is the addition of the
NS5-branes, which impose boundary conditions that set to zero some of the degrees of
freedom, as explained in [203, 204]. The second is when we take the “near-horizon” limit
(after T-dualizing in x6 and lifting to M-theory). In the field theory, this corresponds to
taking a low-energy limit and writing an effective theory valid on scales below the Chern-
Simons mass scale g2

YMk/(4π) (with gYM the Yang-Mills coupling of the (2+1)-dimensional
theory). Roughly speaking, the action will be the known D3/Dp action after 1.) imposing
the NS5-brane boundary conditions and 2.) taking the low-energy limit. The resulting
action is the answer for the field theory, and should have the correct symmetries. As we
will see, however, this procedure is not always easy to implement in concrete examples.

2Throughout this paper we use quotation marks to distinguish this “near-horizon” limit, which we
explain in detail below, and the usual near-horizon limit of a stack of branes, for example the near-horizon
limit of M2-branes, which produces AdS4 (see section 7.2). We define the “near-horizon” limit precisely
in section 7.3.3, and perform the limit explicitly in appendix B.2.

3Another two interesting examples as well as more examples of SU(4) equivalence are studied in [6].
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We apply our general procedure to two examples. We will add two different flavor branes
in type IIB, which become two objects (branes or KK monopoles) in M-theory on C4/Zk.
The two branes, and the type of flavor fields they describe, are as follows:

• A D5-brane that becomes a D6-brane in type IIA and a KK monopole in M-theory,
and which introduces codimension-zero N = 3 supersymmetric flavor fields.

• A D7-brane that becomes a D8-brane in type IIA and an M9-brane4 in M-theory, and
which introduces codimension-one, chiral, N = (0, 6) supersymmetric flavor fields.

In particular for both cases we describe the location of the object in M-theory on C4/Zk,
calculate the number of supercharges it preserves, and identify the isometries of the back-
ground that it preserves. Moreover we write the field theory Lagrangian describing the
coupling of the flavor fields to the fields of the ABJM theory and match the symmetries
between the field theory and supergravity descriptions.

In our analysis of section 7.7 we find that many different Dp-branes in type IIB, for example
Dp-branes with different embeddings or even Dp-branes of different dimensionality, become
the same object in M-theory. Furthermore, the embeddings of many such M-theory objects
may be mapped into one another via an SU(4) isometry transformation (as first noted
in [206]). When that occurs, we call the two objects SU(4)-equivalent. A natural question
is what SU(4) equivalence means in the field theory. In simple terms, SU(4) equivalence
occurs when two different theories flow to the same low-energy fixed point (corresponding
to two type IIB Dp-branes becoming the same object after the “near-horizon” limit). We
will discuss SU(4) equivalence in more detail, and provide an explicit example, below.

Throughout this paper we work in the probe limit whenever applicable. In other words,
whenever we have Nf flavor branes and we take Nc →∞, we will keep Nf fixed, such that
Nf ≪ Nc. We will always consider Nf coincident flavor branes; we will never separate the
flavor branes from one another. We will also consider only massless flavor fields.

7.2 A M-theory Primer

So far we considered only type IIB string theory (see also the glossary in appendix A.2.3).
Besides type IIB string theory there are well known four other consistent string theories
in ten spacetime dimensions, called type IIA string theory, type I string theory, heterotic
SO(32) and heterotic E8×E8 string theory. All five consistent string theories are connected
by a web of dualities. Examples of dualities are T-duality and S-duality. Whereas S-duality
is a duality between a strongly coupled string theory and a (not necessarily different)
weakly coupled string theory, T-duality (or target space duality) denotes the equivalence
between two superstring theories compactified on different background spacetimes. In this
chapter we will exploit the fact that type IIA superstring theory on a circle with radius
R and type IIB superstring theory on a circle with radius α′/R are equivalent. In fact,
S-duality and T-duality can be embedded into a larger duality group, U-duality [207].

4Here, and throughout the paper, M9-brane will refer to the still-mysterious M-theory description of
D8-branes. The only part of the M-theory description that we really use is the name M9-brane, however.
In most cases, thinking of this object as a D8-brane in type IIA suffices. For more on the conjectured
M9-brane, see [205] and references therein.
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By using this U-duality, it was realized in 1995 that the strong coupling regime of all five
consistent string theories in ten spacetime dimensions is mapped to some weakly coupled
limit of another theory ( [208], for a review see [209]). For this picture to be self-contained,
one has to include also eleven-dimensional supergravity. In fact, it is believed that all five
consistent string theories can be unified into an eleven-dimensional parent theory, called
M-theory. In other words, the five different versions of string theory are just M-theory
expanded around different vacua. Although up to now a precise definition of M-theory is
not available, we know that the low-energy effective action of this theory is given by the
unique eleven-dimensional supergravity.

The bosonic field content of eleven-dimensional supergravity is very: a graviton5 GMN

and a three-form potential A(3) (with components AMNP ). There is a deep connection
between M-theory and type IIA superstring theory: the low-energy limit of type IIA
superstring theory, which is given by type IIA supergravity, can be obtained by a Kaluza-
Klein reduction of eleven-dimensional supergravity on a circle S1 as reviewed in section
7.2.2.

7.2.1 Membranes in M-theory

Since eleven-dimensional supergravity has only an antisymmetric tensor field A(3) of rank
three, the possible branes are very restricted: a 2-brane, called M2 and the magnetic dual,
a M5-brane. Here we will discuss the supergravity solution of a M2-brane.

A stack of N coincident M2-branes sources the following fields

ds2 = h(r)−2/3
(
−dt2 + dx2

1 + dx2
2

)
+ h(r)1/3

(
dr2 + r2dΩ2

7

)
, (7.2.1)

G(4) = dt ∧ dx1 ∧ dx2 ∧ dh(r)−1 ,

where G(4) = dA(3). h(r) and L are given by

h(r) = 1 +
L6

r6
, L6 = 32π2Nl6p . (7.2.2)

lp is the Planck length of the eleven-dimensional theory. Taking the near-horizon limit,
i.e. r/L→ 0, the metric reduces to

ds2 = L2

(
1

4
ds2AdS4

+ ds2S7

)

. (7.2.3)

ds2AdS4
and ds2S7 are the metrics of AdS4 and S7 with radius one. Note that due to the

different prefactors in equation 7.2.3, the radii of S7 and of AdS4 are not equal.

For the strongly coupled theory of N M2-branes, the AdS/CFT correspondence predicts
an interesting feature: the number of degrees of freedom scales like N3/2. This feature has
not been completely understood yet. In contrast for N D3-branes the number of degrees
of freedom scales like N2 as expected from a gauge theory. The peculiar scaling N3/2 can
be understood in terms of a gauge theory where not all degrees of freedom are dynamical.
Note that N coincident M5-branes are even mysterious since the degrees of freedom scale
like N3.

5The Latin indices M,N and P label the eleven dimensions. Later we will perform a Kaluza-Klein
reduction to ten dimensions. In ten dimensions we use greek indices µ, ν, . . . .
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7.2.2 Relation to type IIA supergravity

A Kaluza-Klein reduction to D = 10 is performed by putting the eleventh coordinate
X10 on a circle of radius R10. Decomposing the fields with respect to the ten-dimensional
Lorentz group, we can identify the field content of type IIA supergravity. The metric GMN

and three-form potential A(3) of eleven-dimensional supergravity is related to the dilaton
φ, to the metric gµν and to the R-R-potentials C(1) and C(3) in the following schematic
way, symbolized by ∼:

GMN → φ ∼ G10 10,

Cµ ∼ Gµ 10,

gµν ∼ Gµν ,
AMNP → Bµν ∼ Aµν 10,

Cµνρ ∼ Aµνρ, (7.2.4)

where µ, ν, ρ = 0, . . . , 9. Moreover, the ten-dimensional fields are independent of the
eleventh, internal coordinate X10. The Planck length lp of M-theory is related to the
string length ls =

√
α′ and the string coupling constant gs by

lp = g1/3
s ls. (7.2.5)

Finally, the radius R10 of the compactified direction reads

R10 = g2/3
s lp = gsls. (7.2.6)

For small string coupling constant gs the radius R10 of the compactified direction in units
of the string length is small and the spacetime is effectively ten-dimensional. For large
string coupling constants the spacetime is eleven-dimensional.

However, the relation between type IIA supergravity and M theory is much deeper. Let
us match non-perturbative objects on both sides. In the non-perturbative part of its
spectrum eleven-dimensional supergravity has M2- and M5-branes, which are are charged
under the four-form field strength G(4) = dA(3). The non-perturbative spectrum of type
IIA supergravity contain stable Dp-branes with p even as well as NS5-branes.

Let us consider some examples to see how D-branes and M-branes are related. The
fundamental string and D2-branes can be related to M2-branes by dimensional reduction
along the circle X10: In the case of the fundamental string the M2-brane is wrapped
on the compactified coordinate X10. Performing a dimensional reduction we obtain a
fundamental string. If the M2-brane is not wrapped along the compactified dimension
we get a D2-brane. In addition D4- and NS5-branes can be mapped to M5-branes of M
theory. D0-branes correspond to Kaluza Klein particles. For further details see [210].

In recent years there has been a lot of progress in the understanding of the interactions
of coincident M2-branes despite not having a fundamental perturbative description. In
particular, we know the low-energy effective action for M2-branes, which is called the
ABJM theory. In section 7.3 we will review the derivation of the low-energy effective
action following [137].



7.3. Review of ABJM Theory 159

7.3 Review of ABJM Theory

In this section we review the ABJM theory [137]. In particular, we discuss its field con-
tent, Lagrangian, and symmetries. We also review the type IIB (and type IIA) brane
construction of the theory, and its large-N supergravity dual.

7.3.1 The Gauge Theory

Let us begin by writing the Lagrangian and reviewing the symmetries of the ABJM theory.
The theory is a U(Nc) × U(Nc) gauge theory with a Chern-Simons term for each gauge
group factor. The two Chern-Simons terms have equal but opposite levels, k and −k,
which we denote by U(Nc)k × U(Nc)−k.

The nicest way to write the Lagrangian is in N = 2 superspace. Our conventions are
those of [211]. We use a mostly-plus Minkowski metric. The (2+1)-dimensional N = 2
supersymmetry algebra includes two Majorana spinors, which we will combine into a single
complex spinor6 θα, and its complex conjugate θ̄α, with α = 1, 2 the spinor index. The
superspace covariant derivatives are then

Dα =
∂

∂θα
+ i
(
γµθ̄

)

α

∂

∂xµ
, D̄α = − ∂

∂θ̄α
− i (θγµ)α

∂

∂xµ
, (7.3.7)

where γ0 = iσ2, γ
1 = σ1, and γ2 = σ3, with σ1, σ2, and σ3 the usual Pauli matrices. A

chiral superfield φ obeys D̄αφ = 0.

The ABJM theory includes the following fields:

(i) Two N = 2 vector superfields Vi, one for each gauge group, hence i = 1, 2 labels
the U(Nc) factor. An N = 2 vector superfield includes a vector potential Aµ, a real
scalar field σ, two real (Majorana) gauginos, and an auxiliary real scalar field D, all
in the adjoint representation of the gauge group.

(ii) Two N = 2 chiral superfields Φi, each of which is in the adjoint representation. An
N = 2 chiral superfield includes two real (Majorana) fermions, two real scalars, and
a complex auxiliary scalar F .

(iii) Four N = 2 chiral superfields, A1, A2, B1 and B2, where A1 and A2 are in the bifun-
damental (Nc,Nc) representation and the B1 and B2 are in the anti-bifundamental
(Nc, Nc) representation.

We will divide the action into three pieces,

SABJM = SCS + Sbifund + Spot, (7.3.8)

6We can obtain the (2+1)-dimensional N = 2 supersymmetry algebra via dimensional reduction of
the (3+1)-dimensional N = 1 supersymmetry algebra. θα is precisely the single complex spinor of the
(3+1)-dimensional N = 1 supersymmetry algebra.
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where, in N = 2 superspace,

SCS = −i k
4π

∫

d3x d4θ

∫ 1

0
dtTr

(
V1D̄

α
(
etV1Dαe

−tV1
)

−V2D̄
α
(
etV2Dαe

−tV2
))
, (7.3.9)

Sbifund = −
∫

d3x d4θTr
(
Āae

−V1Aae
V2 + B̄ae

−V2Bae
V1
)
, (7.3.10)

Spot =

∫

d3x d2θW + c.c., (7.3.11)

with the superpotential

W = − k

8π
Tr
(
Φ2

1 − Φ2
2

)
+ Tr (BaΦ1Aa) + Tr (AaΦ2Ba) . (7.3.12)

In Sbifund and the superpotential, summation over a = 1, 2 is implicit. All traces are taken
in the fundamental representation. Without the superpotential the action has N = 2 su-
persymmetry. The chiral superfields Φi combine with the corresponding Vi to form N = 4
vector multiplets, although the Chern-Simons terms only preserve N = 3 supersymmetry.
The form of the superpotential is completely fixed by N = 3 supersymmetry (see for
example [212]).

The fields Φi have no kinetic terms, hence at low energy they can be integrated out,
yielding the superpotential

WABJM =
2π

k
εab εȧḃ Tr

(
AaBȧAbBḃ

)
, (7.3.13)

which clearly exhibits an SU(2) symmetry acting on Aa and a separate SU(2) symmetry
acting on Bȧ. We denote this symmetry as SU(2)A × SU(2)B . The R-symmetry of the
theory, SO(3)R ≡ SU(2)R, does not commute with the SU(2)A × SU(2)B : under the
SU(2)R symmetry, (A1, B

∗
1) and (A2, B

∗
2) are each a doublet. We thus conclude that

the full symmetry is SU(4), under which (A1, A2, B
∗
1 , B

∗
2) transforms as a 4. As argued

in [137], the supercharges also transform under the SU(4), hence the full R-symmetry is
SU(4)R ≡ SO(6)R, and hence the theory is in fact N = 6 supersymmetric.

We emphasize that at low energy the supersymmetry is enhanced, where by low energy
we mean energies lower than the mass, g2

YMk/(4π) (here we use a normalization for the
kinetic terms of the vector multiplet with a 1/g2

Y M in front), of the fields in the N = 4
vector multiplet.7 We will see this supersymmetry enhancement again shortly, in the brane
construction of the theory.

The theory additionally has a U(1)b baryon number symmetry under which Ai → eiαAi
and Bi → e−iαBi. Remarkably, the theory also has a parity symmetry, which involves
inverting one spatial coordinate (say x1 → −x1), exchanging the two gauge groups, and
performing charge conjugation on all of the fields.

Finally, as shown in [137], the moduli space of the theory is C4/Zk, where the Zk acts as
(A1, A2, B

∗
1 , B

∗
2) → e2πi/k(A1, A2, B

∗
1 , B

∗
2), where here Aa and Ba denote only the scalar

component of the corresponding superfields.

7When we integrate out the fermions in the vector multiplets, we may worry that the Chern-Simons
level will change: the adjoint fermions have the same mass with the same sign within the U(Nc) multiplet,
but with the opposite sign of fermions in the other U(Nc), so the Chern-Simons level should be shifted by
±Nc. The massive gauge fields cancel that shift, however [213].
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7.3.2 Type IIB Construction

In this section we review the type IIB brane construction (of [137]) leading to the N =
6 Chern-Simons-matter theory with gauge group U(Nc)k × U(Nc)−k described above.
Consider the following brane setup in type IIB string theory

0 1 2 3 4 5 6 7 8 9

NS5 • • • • • • – – – –
NS5′ • • • • • • – – – –
Nc D3 • • • – – – • – – –
k D5 • • • • • – – – – •

where the x6 direction is a circle. The NS5- and NS5′-branes are separated in the x6

direction. The Nc D3-branes, which are extended in the x6 direction, break on the NS5-
branes. The k D5-branes and the NS5′-brane are coincident in x6.

The D3-branes, together with the NS5- and NS5′-branes, give rise to an N = 4 supersym-
metric (2+1)-dimensional U(Nc) × U(Nc) Yang-Mills theory [203]. The bosonic part of
the N = 4 vector multiplet in each U(Nc) gauge group consists of the (2+1)-dimensional
components of the D3-brane worldvolume gauge field together with the three real scalars
describing each D3-brane’s position in the (x3, x4, x5) ≡ (345) directions. Recall from the
last subsection that each N = 4 vector multiplet consists of an N = 2 vector multiplet
Vi and an N = 2 chiral multiplet Φi. The real scalars are the two real scalars in Φi plus
the real scalar σi in Vi, which thus form a vector representation of SO(3)R. Similarly, the
auxiliary fields D and F form a vector of the R-symmetry.

The theory also has (anti-)bifundamental N = 2 chiral multiplets, coming from strings
stretched between the two stacks of D3-branes. These are the fields Aa and Ba of the last
subsection, with a = 1, 2.

The k D5-branes coincident with the NS5′-branes introduce massless D3/D5 strings, and
break the supersymmetry toN = 2. The field theory thus has k masslessN = 2 chiral mul-
tiplets in the fundamental and k massless N = 2 chiral multiplets in the anti-fundamental
of each U(Nc) factor.

What does any of this have to do with Chern-Simons theory? If we can give the fundamen-
tal and anti-fundamental fields the same mass, then via the parity anomaly these fields
will produce Chern-Simons terms at low energy. More precisely, we need real masses of
equal sign. As argued in [214] (see also [215]), the deformation that produces such masses
is to bind the k D5-branes to the NS5′-brane, producing a (1, k)5-brane. To preserve
N = 2 supersymmetry, the (1, k)5-brane must be tilted at an angle θ in the (59) plane,
which we denote by [5, 9]θ . The angle θ depends on the complex axion-dilaton τ = i

gs
+ χ

as θ = arg(τ)− arg(k + τ). In what follows, we will always set τ = i. Such a deformation
actually gives the fundamental and anti-fundamental fields infinite mass. Integrating out
these fields then produces Chern-Simons terms with levels k and −k for the two U(Nc)
gauge groups. Moreover, we can enhance the supersymmetry to N = 3 if we additionally
rotate the (1, k)5-brane by the same angle θ in the (37) and (48) planes. We thus arrive
at the brane construction
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0 1 2 3 4 5 6 7 8 9

NS5 • • • • • • – – – –
(1, k)5 • • • [3, 7]θ [4, 8]θ [5, 9]θ – – – –
Nc D3 • • • – – – • – – –

We will henceforth refer to the final brane configuration above as the type IIB setup of
the ABJM theory. The field theory associated with this setup is an N = 3 U(Nc)k ×
U(Nc)−k Yang-Mills theory with Chern-Simons terms and four massless bifundamental
matter multiplets (Aa, Bb). We saw above that this theory flows in the infrared (meaning
energies below g2

YMk/(4π)) to theN = 6 superconformal U(Nc)k×U(Nc)−k Chern-Simons
theory with the same bifundamental matter content. The easiest way to see that happen
in the brane setup is to T-dualize and then lift to M-theory.

7.3.3 Type IIA and M-theory Descriptions

If we perform a T-duality along x6 then the type IIB brane setup above turns into the
following type IIA configuration: the Nc D3-branes become Nc D2-branes in the (012)
directions. The NS5-brane along (012345) becomes a KK monopole associated with the
x6 circle. The (1, k)5-brane becomes a KK monopole in the (0123) [3, 7]θ [4, 8]θ [5, 9]θ di-
rections associated with the x6 circle. Normally k D5-branes would appear as k D6-branes
in type IIA string theory. Here the k D5-branes bound into the (1, k)5-brane appear as
D6-brane flux on the KK monopole. The configuration in type IIA string theory is thus

0 1 2 3 4 5 6 7 8 9

Nc D2 • • • – – – – – – –
KK monopole • • • • • • – – – –

KK monopole with D6-brane flux • • • [3, 7]θ [4, 8]θ [5, 9]θ – – – –

We can now lift the configuration to M-theory, introducing a second circle direction, which
we will denote x♯. The D2-branes become M2-branes, whereas the KK monopole associated
with the x6 circle remains unchanged. Normally a D6-brane would lift to a KK monopole
associated with the x♯ circle, hence the KK monopole with D6-brane flux becomes a KK
monopole associated with a circle on the (6, ♯) torus. Notice that the two 5-branes in
the type IIB picture, i.e. the NS5-brane and the (1, k)5-brane, lift to pure geometry in
M-theory.

The spacetime is now R1,2 × X8, where the M2-branes are extended along R
1,2 and X8

is the spacetime generated by the KK monopoles. The space X8 preserves 3/16 of the 32
supersymmetries of M-theory. (Adding the M2-branes (with the right orientation) does
not break any additional supersymmetries.) We thus expect the M2-branes’ worldvolume
theory to have N = 3 supersymmetry.

The enhancement of supersymmetry that we saw in the field theory occurs when we take
a “near-horizon” limit, which we define as follows. At the intersection point of the two
KK monopoles, the singularity of the space X8 is locally C4/Zk. Denoting the complex
coordinates of C4 by zi, the action of the Zk is zj → e2πi/kzj. The “near-horizon” limit
means retaining only the C4/Zk singularity of the full X8 space. We will often refer to
this as zooming in on the singularity. C4/Zk preserves 12 supersymmetries, or 3/8 of the
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32 supersymmetries of M-theory. We write the metric of X8, and take the “near-horizon”
limit, explicitly in appendix B.2.

Note that 12 real supercharges is of course the correct amount for a (2+1)-dimensional
N = 6 supersymmetric theory. Recall also that the moduli space of the N = 6 Chern-
Simons-matter theory is precisely C4/Zk. Furthermore, C4 ∼= R8 has an SO(8) isometry,
of which only SU(4) × U(1) remains after the Zk orbifold. These symmetries match the
SU(4)R × U(1)b symmetry of the N = 6 Chern-Simons theory. The central conclusion
of [137] was therefore that the N = 6 superconformal U(Nc)k × U(Nc)−k Chern-Simons
matter theory of section 7.3.1 describes the low-energy dynamics of Nc coincident M2-
branes at the C4/Zk singularity.

Recalling that, in the field theory, the Zk acts on the bifundamentals as

(A1, A2, B
∗
1 , B

∗
2)→ e2πi/k(A1, A2, B

∗
1 , B

∗
2) , (7.3.14)

and also that they transform as a 4 of SU(4)R, we can (roughly) identify (z1, z2, z3, z4)
with (A1, A2, B

∗
1 , B

∗
2), where here Aa and Ba represent the bosonic components of the

corresponding superfields. The U(1)b symmetry of the field theory thus appears as a phase
shift zi → eiαzi (which is equivalent to shifts in the x♯ circle, as we show in appendix B.2).

7.3.4 The Dual Gravity Theory

Consider Nc M2-branes at the C4/Zk singularity. If we take Nc → ∞, we can replace
the M2-branes with their near-horizon geometry, AdS4 × S7/Zk. The natural conjecture
then is that eleven-dimensional supergravity on AdS4 × S7/Zk is holographically dual to
the N = 6 supersymmetric U(Nc)k × U(Nc)−k Chern-Simons-matter theory at large Nc.
The AdS4 radius of curvature L is related to the ’t Hooft coupling λ = Nc/k and the
Chern-Simons level k as (with ℓp the eleven-dimensional Planck length),

L3

ℓ3p
= 4π

√

2kNc = 4πk
√

2λ. (7.3.15)

We can thus trust the M-theory description in the strong ’t Hooft coupling limit λ→∞.
If we write the S7 as a circle fibration over CP3, then the Zk orbifold acts on the fiber
direction. The radius of the circle in Planck units is on the order of L/kℓp ∝ (Nck)

1/6/k,
so we can only trust the solution when Nc ≫ k5. In short, when Nc → ∞ such that
Nc ≫ k5 (which implies λ = Nc/k →∞), the N = 6 supersymmetric U(Nc)k × U(Nc)−k
Chern-Simons-matter theory is dual holographically to eleven-dimensional supergravity
on AdS4 × S7/Zk.
When k5 ≫ Nc ≫ k, where again λ → ∞, the circle becomes small and the appropriate
description is in terms of type IIA supergravity on the spacetime AdS4 ×CP3.

7.4 General Analysis of Probe Flavor

In this section we discuss how to add flavor to the ABJM theory in general terms. We
first discuss the gravity analysis and then the field theory analysis. More specifically, we
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explain in this section exactly what we compute on the gravity side and what we want to
compute on the field theory side.

Our general approach is to add flavor branes in the type IIB setup and follow what happens
to them, in both the gravity and field theory descriptions, in the construction of the ABJM
theory (T-duality, lift to M-theory, etc.). Why start with type IIB? The main reason is
that the brane description in type IIB provides an easy starting point for constructing the
field theory.

7.4.1 Gravity Analysis

On the gravity side, we introduce flavor branes in the type IIB setup. To limit our search
for supersymmetric probe branes, we impose four constraints. First, we consider only D1-,
D3-, D5- and D7-branes. D(-1)-branes do not introduce flavor degrees of freedom on the
D3-brane worldvolume, and D9-branes are unstable without orientifold planes, so we will
not consider these cases. Second, we do not separate any probes from the D3-branes in
overall transverse directions. Third, when we consider multiple probes, i.e. Nf > 1, we do
not separate them from each other, so that they retain a U(Nf ) symmetry. Fourth, we
consider only probes aligned along the coordinate axes. More generally the probe brane
could be at an angle with respect to these axes. We studied a few special cases of probes
at angles (see appendix B.1) and found that all such probes appeared to preserve as much
as, or less, supersymmetry, as the probes listed below, i.e. they never exhibit enhanced
supersymmetry.

The counting of supercharges left unbroken by our probes in this background is a straight-
forward exercise, the details of which appear in appendix B.1. The main result of appendix
B.1 is table 7.1, which appears below. Table 7.1 lists the flavor Dp-branes we study, ex-
actly where they are located in the type IIB setup, and the number of real supercharges
each Dp-brane preserves. Although for specific calculations we focused on the Dp-branes
listed in table 7.1, most of our comments in this section will be applicable more generally.

A very important fact (mentioned in appendix B.1) is that when k = 0, such that the
type IIB setup includes just NS5-branes and no (1, k)5-brane, all of our flavor branes
preserve 4 real supercharges, except for two cases that preserve 8 supercharges. The first
case preserving 8 supercharges is D3-branes along (0126), which are of course coincident
with the D3-branes whose low-energy dynamics we are interested in. The second case
preserving 8 supercharges is D5-branes along (012789), which were first studied in [203].
For all cases, table 7.1 indicates the number of supercharges that remain unbroken after
forming the (1, k)5-brane.

The first column of table 7.1 lists the type of brane in the type IIB construction while
the second column lists the resulting type IIA description, obtained by T-dualizing in
x6, and the third column lists the M-theory description, obtained by lifting to eleven
dimensions. A type IIB D-brane that becomes a D6-brane in type IIA will lift to a KK
monopole associated with the M-theory circle, which we have indicated with KK. The
fourth column lists the codimension of the defect to which the flavor fields will be confined
in the (2+1)-dimensional Chern-Simons-matter theory. The fifth column indicates the
directions in which the probe brane is extended in the IIB construction. The SO(3)
symmetry that acts simultaneously on the directions (345) and (789) gives rise to other
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supersymmetric branes, related to the ones in the table by SO(3) transformations. We
have indicated this by (). For example, the first brane could extend along (07), (08) or
(09). The last two columns of the table indicate the number of real supercharges preserved
by the probe brane or anti-brane. Recall that for codimension-zero branes the number of
preserved supercharges must be even, but for higher codimension the brane may preserve
an odd number of real supercharges.

Type IIB Type IIA M theory codim wrapping SUSY SUSY (anti)

D1 D2 M2 2 0(7) 2 2

D3 D2 M2 0 0126 6 0

D3 D4 M5 1 01(37) 3 3

D3 D4 M5 1 01(38) 2 2

D3 D2 M2 2 0(34)6 2 2

D3 D2 M2 2 06(78) 2 2

D5 D6 KK 0 012(347) 2 2

D5 D6 KK 0 012(349) 4 2

D5 D6 KK 0 012789 6 0

D5 D4 M5 1 013456 3 3

D5 D4 M5 1 01(378)6 2 2

D5 D4 M5 1 01(389)6 3 3

D5 D6 KK 2 0(34)789 2 2

D7 D6 KK 0 0126(3478) 2 4

D7 D6 KK 0 0126(3479) 2 2

D7 D8 M9 1 01345789 3 3

Table 7.1: List of D-branes (extended along the coordinate axes) that we can add to the type IIB
construction while still preserving some supersymmetry.

As reviewed in section 7.3.2, to go from the type IIB setup to M2-branes on C4/Zk,
we T-dualize in x6, lift to M-theory, and take the “near-horizon” limit. We can easily
determine what type of object the flavor Dp-branes become in M-theory: we obtain M2-,
M5-, and M9-branes or KK monopoles. More difficult to determine is the exact position
of the object on C4/Zk. To find that, we take the straightforward approach. We compute
explicitly the coordinate transformations from the type IIB coordinates to the coordinates
(z1, z2, z3, z4) ofC4/Zk. We present the details of the computation in appendix B.2. Given
the embedding of a Dp-brane in type IIB, we can then immediately write the embedding
of the corresponding object in M-theory on C4/Zk.
Once we know the location of the M-brane or KK monopole in C4/Zk, we can compute
the amount of supersymmetry and the isometries that the object preserves. The details
of those calculations, for a subset of our examples, appear in appendix B.3.1. Our results
are summarized in table B.2 in appendix B.3.1. The locations of our objects on C4/Zk are
more complicated to explain, however, so we will not reproduce table B.2 here. We also
studied a few examples of M-branes or KK monopoles in the near-horizon geometry of very
many M2-branes, AdS4 × S7/Zk. The details of those calculations appear in appendix
B.3.2. Knowing what symmetries the object preserves is, of course, extremely helpful
when constructing the dual field theory.

In our analysis of objects on C4/Zk, we make use of a helpful tool, originally used in [206],
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which we call SU(4)-equivalence. The basic idea is that two different Dp-branes in type
IIB can become the same object in M-theory on C4/Zk. More specifically, two Dp-branes
of different dimensionality and/or located in different places in the type IIB setup (and
hence possibly preserving different symmetries) can actually become the same object in
M-theory. At work here is the “near-horizon” limit, which erases many of the details of
the type IIB embedding.8 To be still more precise, the two Dp-branes can become the
same type of object, two M5-branes for example, but located in two different places, i.e.
with two different embeddings into C4/Zk. If we can rotate one object into the other
via an SU(4) isometry, however, then the two objects are physically equivalent. We may
thus work with either one, and any physical results will be valid for both. On a technical
level, some things may be easier to calculate for one embedding than for the other, for
example the calculation of the number of preserved supercharges. We will present an
explicit example of SU(4) equivalence, and discuss its field theory meaning, in section 7.7.

7.4.2 Field Theory Analysis

Eleven-dimensional supergravity on AdS4×S7/Zk is dual to the ABJM theory with Chern-
Simons level k, and Nc large (such that Nc ≫ k5). What is the dual field theory when
we add one of our flavor M-branes or KK monopoles, however? If the object preserves a
large amount of symmetry, then that symmetry may be enough to determine the form of
the field theory action. That will not always be the case, of course, so we want a more
general method to determine the field theory. We will now describe a general recipe, one
that is actually very straightforward and, in principle at least, is guaranteed to give the
correct field theory for any flavor Dp-brane in the type IIB setup. Our recipe actually
begins a few steps before the type IIB setup. We begin with D3-branes alone (so no NS5-
or (1, k)5-branes) and flavor Dp-branes, which we considered in section 2.5. The recipe
then consists of four steps, as follows.

Step 1: Construct the D3/Dp Theory

In type IIB consider D3-branes alone in flat space, so let x6 be non-compact and remove
the NS5- and (1, k)5-branes. We then add supersymmetric flavor Dp-branes. In general,
we next need to determine the low-energy theory living on the D3-branes, including the
couplings to the (defect) flavor fields. We will generically call that theory the D3/Dp
theory. Fortunately, for many examples the D3/Dp theory is already known. In fact
we discussed the field theory for various D3/Dp systems in section 2.5.1. Moreover we
presented in table 2.3 a complete list of D3/Dp systems for which the field theories have
been written explicitly in the published literature.

Every Dp-brane in table 7.1 is described by one of the theories mentioned in table 2.2,
except for the D3/D1 system. Recall that if the D3/Dp intersection has 4 Neumann-
Dirichlet (ND) directions then the corresponding flavor fields (from 3-p and p-3 strings) will
produce non-chiral flavor, simply because the fields are arranged in hypermultiplets [62],
whereas with 8 ND directions we can obtain chiral flavor, as occurs for the 8 ND D3/D7
intersection [96–98].

8That of course was an essential feature in the brane construction of the ABJM theory: the erasure

produced the (super)symmetry enhancement.
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Step 2: Add the NS5-branes

Now we ask what happens when we construct the ABJM theory from the D3-branes. First
we introduce the NS5- and NS5′-branes along (012345) and separated in x6 (which for now
is still non-compact), and let the D3-branes end on them in x6. From a field theory point
of view, adding the NS5-branes has two effects. The first effect is that on the D3-brane
worldvolume the x6 direction is now finite in extent, so the low-energy effective theory on
the D3-brane worldvolume will be a (2+1)-dimensional field theory. In other words, we
must perform a dimensional reduction in the x6 direction. The (3+1)-dimensional N = 4
multiplet decomposes into two (2+1)-dimensional N = 4 multiplets, a vector multiplet and
a hypermultiplet. The second effect of the NS5-branes is to impose boundary conditions
that kill (i.e. set to zero) the adjoint (2+1)-dimensional N = 4 hypermultiplet [203,204].
We will call these the NS5-brane boundary conditions. We must thus take the D3/Dp
action we wrote in Step 1 and perform a dimensional reduction in x6 and then determine
what couplings remain after we impose the NS5-brane boundary conditions.

For this procedure, a crucial distinction is whether the flavor Dp-brane is extended in x6

or not. If not, then we need only dimensionally reduce and impose boundary conditions
on the fields of the (3+1)-dimensional N = 4 supersymmetric Yang-Mills theory. If the
flavor Dp-brane is extended in x6, then we must also perform a dimensional reduction and
impose boundary conditions on the flavor fields. In this paper we study examples in which
we can avoid doing these operations explicitly.

We will also mention an alternative, but entirely equivalent, way to perform Step 2, namely
to perform two T-dualities, one along x6 and another along one of the directions 3, 4 and
5 (along the NS5-branes but transverse to the D3-branes). Strictly speaking, here we
must assume that x6 is compact, and that we have two stacks of D3-branes, giving rise
to two U(Nc) gauge groups, as in the type IIB construction of the ABJM theory. The
NS5-branes ultimately become the orbifold space C2/Z2 ×C, the D3-branes become D3-
branes located at the orbifold singularity, and the flavor branes become some Dq-branes
(with q = p, p+ 2, or p− 2), which may be wrapping some part of C2/Z2 ×C [216–218].
We can then use well-known machinery for studying D-branes on orbifolds (see [216–219]
and references therein) to determine the field theory.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory

Now we compactify x6 and add another stack of D3-branes, so that the gauge group of
the D3-branes’ worldvolumes is U(Nc)× U(Nc). If the flavor Dp-brane is localized in x6,
then in this paper we will always introduce two stacks of flavor Dp-branes, each with Nf

Dp-branes, located at opposite sides of the x6 circle, away from the NS5-branes. We will
thus obtain open strings stretched from each stack of Dp-branes to the corresponding stack
of D3-branes, and hence we obtain massless fields in the fundamental representation of
each gauge group factor. We then introduce the k D5-branes along (012349), bind them to
the NS5′-brane to form a (1, k)5-brane, and then rotate the (1, k)5-brane. None of these
operations affect the form of the action in our flavor sector: they correspond to adding
additional flavor fields, which then acquire mass terms and are integrated out, producing
the Chern-Simons terms. The action in our flavor sector, i.e. the coupling to adjoint
fields, coming from 3-p and p-3 strings, is unchanged.9 We then T-dualize to type IIA
and lift to M-theory. The action in the flavor sector is unchanged in those two steps. In

9We can make a more direct argument for why these operations do not affect our flavor action, for flavor
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particular, notice that the symmetries will be unchanged. We thus arrive in M-theory on
the manifold X8 mentioned in section 7.3.3.

Step 4: Take the low-energy limit

In the supergravity description, the last step is to zoom in on the C4/Zk singularity of
X8, which appears in the field theory description as a low-energy limit. More precisely,
we are doing effective field theory: we want to write a theory valid on scales below the
mass of the N = 4 vector multiplet, g2

YMk/(4π). Following the rules of effective field
theory, in the low-energy action we must write all terms consistent with the symmetries,
which in particular means supersymmetry and R-symmetry. If we can determine the
coefficients of these terms (using for example supersymmetry), then the action we obtain
is the correct action of the theory. Furthermore, as in the ABJM theory, to determine
whether a (super)symmetry enhancement occurred, a helpful step is to integrate out the
fields Φi. We emphasize that integrating out the Φi does not change the theory, however.
The equations of motion for the Φi’s are simply algebraic constraints: the theory already
has whatever symmetry it has before we formally integrate out the Φi’s.

Our recipe has advantages and disadvantages. Let us first consider the advantages. One
advantage is the fact that, in principle at least, our recipe is guaranteed to produce the
correct field theory. Another advantage is the fact that the input for our recipe is a known
D3/Dp theory, that is, our recipe is a kind of machine that takes a known D3/Dp theory
and outputs the field theory for flavor fields coupled to the ABJM theory. Notice also that
the action we obtain in the flavor sector will generally be valid for all values of Nc and k,
although we will primarily be interested in the limits where gauge-gravity duality is under
best control (such as Nc ≫ k5).

Now let us consider some disadvantages. Although in principle our recipe is guaranteed
to work, in practice some of the steps can be difficult. Indeed, having studied many of the
Dp-branes listed in table 7.1, we can say from experience that Steps 2 and 4 often present
technical challenges, especially in cases where the flavor fields are confined to a defect.

In Step 2 for example, for defect flavor fields, näıvely imposing the NS5-brane boundary
conditions often leaves us with field content that does not easily fit into simple repre-
sentations of the defect’s supersymmetry group. (We know what supersymmetry the
system should have from the gravity analysis.) In such cases, a more rigorous analysis of
supersymmetry-preserving boundary conditions, along the lines of [204], may be required.
Such an example is presented in section 6 of [6].

As for Step 4, several special issues arise. Step 4 often requires careful analysis of su-
persymmetric non-renormalization theorems. In the ABJM construction (without flavor),
we begin with an N = 3 supersymmetric Yang-Mills-Chern-Simons-matter theory. An

Dp-branes not extended along x6. We can start with the D3/Dp intersection and immediately add an NS5-
brane and the (1, k)5-brane. Once again, we first do a dimensional reduction to (2+1) dimensions. We then
impose a boundary condition for the NS5-brane and a separate boundary condition for the (1, k)5-brane.
Together these set to zero the N = 4 hypermultiplet and introduce a Chern-Simons term [203,204,215]. In
these operations, the only changes in the flavor sector are the same that occur with just NS5-branes: some
couplings are eliminated when the boundary conditions set adjoint fields to zero. Otherwise the action in
the flavor sector does not change. For flavor Dp-branes extended along x6, more work may be required to
determine the effect of the (1, k)5-brane boundary condition on the flavor fields, along the lines of [204].
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important feature of N = 3 supersymmetry is that the action is fully determined by the
symmetry [212]. That means that the low-energy limit consists only of discarding the
kinetic terms for the N = 4 vector multiplet (while leaving the Chern-Simons terms). The
action cannot change otherwise, for example the superpotential cannot acquire new terms,
and the Kähler potential cannot be renormalized. When we add defect flavor, however, the
Lorentz symmetry of the ABJM theory is broken to the subgroup that leaves the defect in-
variant, and the amount of supersymmetry is also reduced. In such cases a prerequisite for
Step 4 is to re-examine non-renormalization theorems for defect theories. For the defect
field theories corresponding to the D3/D5 and D3/D3 intersections ((3+1)-dimensional
N = 4 SYM with defect flavor), proofs of non-renormalization appear in [95, 100]. Our
examples in sections 7.5 and 7.6 have enough symmetry to avoid this issue.

Step 4 also involves integrating out the fields Φi. For codimension-zero flavor fields that is
usually straightforward. If our flavor fields are codimension one or two, however, this pro-
cedure is more difficult. In particular, we would need to decompose the (2+1)-dimensional
fields of the ABJM theory into lower-dimensional multiplets, and then integrate out the
lower-dimensional fields corresponding to the Φi.

A useful strategy for Step 4 is to work backwards, that is, to use symmetries of the gravity
description to guess the final result. In other words, given the symmetries on the gravity
side, we can write all possible terms consistent with those symmetries in the field theory.
In cases where a symmetry enhancement occurs, we must demonstrate that these are all
the terms allowed by the original symmetry, so that we retroactively justify the result.

Lastly, let us explain the field theory meaning of SU(4) equivalence. On the gravity side,
SU(4) equivalence was the statement that two Dp-branes in the type IIB setup, which
may be located in different places or even have different dimensionality, but which must
have the same codimension in (2+1) dimensions, become the same type of object in M-
theory on C4/Zk, where the embeddings of the the two objects are related by an SU(4)
isometry transformation. In the field theory what is happening is simply that two different
theories, with different symmetries for example, including possibly different amounts of
supersymmetry, flow to the same low-energy fixed point in Step 4. We will discuss that
further, and present an explicit example, in section 7.7.

To illustrate various features of our recipe, we now turn to several examples.

7.5 Codimension Zero N = 3 Supersymmetric Flavor

In this section we study codimension-zero N = 3 supersymmetric flavor fields, which have
already been studied in [206, 220, 221]. For us this section serves as a particularly nice
illustration of our general recipe. Compared to other examples, however, this example
lacks many interesting features. For example, no supersymmetry enhancement occurs in
the “near-horizon” limit, as we will review.

7.5.1 Supergravity with KK-monopoles/D6-branes

To obtain codimension-zero N = 3 supersymmetric flavor, we follow [206, 220, 221], and
add D5-branes extended along (012789) in the type IIB setup. We are free to choose their
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position on the x6 circle. We will add two stacks of D5-branes, each with Nf coincident
D5-branes, on opposite sides of the circle, away from the NS5-brane and (1, k)5-brane. The
strings from the D5-branes to the two stacks of D3-branes thus introduce massless flavor
in both gauge groups. As shown in table 7.1 in section 7.4.1, these D5-branes preserve 6
real supercharges in the type IIB setup.

After T-duality in x6 the D5-branes become D6-branes. The 2Nf D6-branes are coincident,
and have a U(2Nf ) symmetry broken to U(Nf ) × U(Nf ) by a Z2-valued Wilson line, as
explained in [206]. (The Wilson line simply tells us where the D5-branes were in type
IIB.) After uplift to M-theory and the “near-horizon” limit, the D6-branes become KK
monopoles associated with the x♯ circle in M-theory on C4/Zk. The authors of [206] argue
that the embedding of the KK monopole is described by the equations z1 = z̄3, z2 = z̄4 inC4/Zk. The authors of [206] then showed that, by using the SU(4) symmetry of C4/Zk,
we can map this embedding to Im(zi) = 0 for i ∈ {1, 2, 3, 4}. In other words, the two
embeddings are SU(4) equivalent. The symmetries preserved by the KK monopoles are
easier to see in the latter embedding, however. In the latter embedding, the KK monopoles
are extended along (012) and along Re(zi) for i ∈ {1, 2, 3, 4}.

The circle direction associated with the KK monopoles corresponds to the U(1)b symmetry
of the background, so the KK monopoles preserve this symmetry. The KK monopoles
break the SU(4) symmetry to an SO(4) under which (z1, z2, z3, z4) transforms as a 4.
The total symmetry group that the KK monopoles preserve is SO(4)× U(1)b = SU(2)×
SU(2)×U(1)b [206,220,221]. In appendix B.3.1 we find that the KK monopoles preserve
6 real supercharges.

If we take Nc →∞, we can replace the M2-branes by their near-horizon geometry, which
is AdS4 ×S7/Zk. The KK monopoles are extended along AdS4 and wrap a three cycle in
S7/Zk. In appendix B.3.2 we analyze the κ-symmetry condition for these monopoles and
find that after the near-horizon limit the number of preserved supercharges has doubled
to 12.

For large k, such that k5 ≫ Nc and the appropriate description is type IIA on AdS4×CP3,
the monopoles become D6-branes wrapping AdS4 ×RP3 [206,220,221].

To summarize: as explained in [206, 220, 221], in the type IIB setup we can add D5-
branes that produce fundamental matter for both gauge group factors. These become KK
monopoles in M-theory on C4/Zk. These KK monopoles preserve 6 real supercharges, so
we expect a dual field theory with N = 3 superconformal symmetry. The corresponding
R-symmetry group has to be SO(3), which fits into the symmetry found above. We now
proceed to review the dual field theories constructed in [206, 220, 221], and check that it
has the right symmetries and amount of supersymmetry.

7.5.2 The Field Theory

We will first review the theory described in [206,220,221], and then re-derive it using our
recipe.

In the type IIB setup we introduce two stacks of Nf coincident D5-branes along (012789)
on opposite sides of the x6 circle. These D5-branes preserve the N = 3 supersymmetry
of the type IIB setup (see appendix B.1). The strings stretched between each stack of
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D3-branes and each stack of D5-branes will produce N = 2 chiral superfields transforming
in the U(Nf ) and U(Nc) representations (N̄f , Nc) and (Nf , N̄c) of each U(Nc). We will
denote these as Qi and Q̃i, respectively, where again i labels the gauge group, i = 1, 2.
The field Q1, for example, transforms in the N̄f representation of U(Nf ) and the Nc

representation of the first (i = 1) U(Nc) gauge group, while Q̃1 transforms in the conjugate
representations, Nf and N̄c. For notational simplicity, we will suppress flavor indices.

N = 3 supersymmetry completely determines the action [212]. The kinetic terms of the
flavor fields are

Sfund = −
∫

d3x d4θ
(

Q̄ie
−ViQi + Q̃ie

Vi ¯̃Qi

)

. (7.5.16)

Here we have left summation over i implicit. The superpotential now has extra terms,

W = − k

8π
Tr(Φ2

1 − Φ2
2) + Tr(BaΦ1Aa) + Tr(AaΦ2Ba) + Q̃1Φ1Q1 − Q̃2Φ2Q2. (7.5.17)

At low energy we again integrate out Φ1 and Φ2, which gives

W =
2π

k
Tr
[

(AaBa +Q1Q̃1)
2 − (BaAa −Q2Q̃2)

2
]

. (7.5.18)

Now let us derive the action above using our recipe.

Step 1: Construct the D3/D5 Theory

We return to type IIB and consider D3-branes alone in flat space, so for now let x6 be
non-compact and remove the NS5- and (1, k)5-brane. We then add Nf flavor D5-branes,
which intersect the D3-branes in (2+1) dimensions. This D3/D5 intersection has 4 ND
directions and preserves 8 real supercharges.

The D3/D5 theory was constructed in [94, 95] and discussed in section 2.5.1. Let us
review the field theory shortly. In the flavor sector we have two N = 2 chiral superfields
(which comprise an N = 4 hypermultiplet), which of course propagate only in (2+1)
dimensions. In the adjoint sector, we start with the theory on the D3-branes, (3+1)-
dimensional N = 4 SYM theory. The (3+1)-dimensional N = 4 multiplet decomposes
into two (2+1)-dimensional N = 4 multiplets, a vector multiplet and a hypermultiplet.
The (2+1)-dimensional N = 4 vector multiplet then further decomposes into an N = 2
vector multiplet and an N = 2 chiral multiplet. The kinetic term for the flavor fields
is then precisely the one above, i.e. the flavor fields have the standard coupling to the
N = 2 vector superfield. The superpotential is also precisely the one above (at least, the
terms involving the flavor fields are the same), i.e. a coupling to the adjoint N = 2 chiral
superfield from the N = 4 vector multiplet. (See for example equation (4.7) in [95].) The
entire action preserves N = 4 supersymmetry, that is, 8 real supercharges. We emphasize
that the flavor fields do not couple to the (2+1)-dimensional N = 4 hypermultiplet at all.

Step 2: Add the NS5-branes

We add the NS5-brane and NS5′-brane along (012345) and separated in x6 (which for
now is still non-compact), and let the D3-branes end on them in x6. We first perform a
dimensional reduction in x6, which does not affect the flavor action in this case (since it is
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already (2+1)-dimensional). The NS5-brane boundary conditions set to zero the (2+1)-
dimensional N = 4 hypermultiplet. As we mentioned, however, the flavor fields do not
couple to the N = 4 hypermultiplet, so this step actually has no effect on the action in
the flavor sector. The theory retains N = 4 supersymmetry.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory

Now we compactify x6 and add another stack of D3-branes, so that the gauge group of
the D3-branes’ worldvolumes is U(Nc)× U(Nc), and another stack of Nf D5-branes. We
thus obtain two sets of flavor fields, the Qi and Q̃i, with i = 1, 2, mentioned above, and
correspondingly, two copies of the defect action. As we argued in section 7.4, forming
the (1, k)5-brane and lifting to M-theory does not change the defect action. The action
acquires Chern-Simons terms, however, which break the supersymmetry to N = 3.

Step 4: Take the low-energy limit

Lastly, we must take the low-energy limit, which means writing all terms consistent with
the symmetries of the field theory. Our theory has N = 3 supersymmetry. As mentioned
above, N = 3 supersymmetry completely determines the form of the action [212]. The
flavor action thus remains the same, and hence we arrive at equations (7.5.16) and (7.5.17).
The very last step is to integrate out the Φi, as we did above, the result being equation
(7.5.18).

Once we have the result for the field theory action, we must ask whether any symmetry
enhancement occurred in the low-energy limit, as happened in the ABJM theory without
flavor.

Inspecting the superpotential above, we can see that the theory retains the U(1)b baryon
number symmetry under which Aa → eiαAa and Ba → e−iαBa. The theory additionally
has a global U(Nf )×U(Nf ) flavor symmetry, of which the overall, diagonal U(1) (usually
also called baryon number) acts as Qi → e−iβQi and Q̃i → eiβQ̃i.

From the superpotential in equation (7.5.18) we can also see that codimension-zero flavor
breaks the SU(2)A×SU(2)B symmetry to the diagonal subgroup that leaves invariant the
product of fields AaBa. If we perform SU(2)A and SU(2)B transformations,

(
A1

A2

)

→ eimjσj

(
A1

A2

)

,

(
B1

B2

)

→ einjσj

(
B1

B2

)

,

where mj and nj are the parameters of the transformation, and the σj are the Pauli
matrices (j = 1, 2, 3), then we have

AaBa =
(
A1, A2

)
(
B1

B2

)

→
(
A1, A2

)
eimjσT

j einjσj

(
B1

B2

)

,

eimjσ
T
j einjσj = 12 + imjσ

T
j + injσj + . . .

= 12 + i(m1 + n1)σ1 + i(−m2 + n2)σ2 + i(m3 + n3)σ3) + . . . ,

where we have expanded the exponentials, 12 stands for the 2 × 2 identity matrix, and
. . . stands for terms of higher order in mj and nj. By demanding that the terms linear in
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mj and nj vanish, we find that only the subspace of the SU(2)A × SU(2)B algebra where
n1 = −m1, n2 = m2 and n3 = −m3 leaves AaBa, and hence the superpotential, invariant.
We will denote this diagonal subgroup SU(2)D.

The theory also has N = 3 supersymmetry and hence retains the SU(2)R symmetry,

under which (A1, B
∗
1), (A2, B

∗
2), and (Qi,

¯̃Qi) transform as doublets. In the ABJM theory
without flavor, the superpotential exhibited the symmetry SU(2)A ×SU(2)B , which does
not commute with SU(2)R. The conclusion was that in fact the full R-symmetry was
SU(4), and hence the theory had N = 6 supersymmetry, as we reviewed in section 7.3.1.

The crucial question is thus whether or not SU(2)R and the SU(2)D subgroup of SU(2)A×
SU(2)B commute. As mentioned in [206,220,221], they do commute, as we will now show
explicitly10. Let the 4× 4 matrices δRj = iσj ⊗ 12 and

δAj =

(
iσj 02

02 02

)

, δBj =

(
02 02

02 −iσ∗j

)

,

represent the generators of SU(2)R, SU(2)A and SU(2)B , respectively that act on the
vector (A1, A2, B

∗
1 , B

∗
2). Here 02 represents the 2× 2 null matrix. We then find

[
δR1 , δ

A
j

]
= iσ2 ⊗ σj ,

[
δR2 , δ

A
j

]
= −iσ1 ⊗ σj ,

[
δR3 , δ

A
j

]
= 0 ,

[
δR1 , δ

B
j

]
= iσ2 ⊗ σ∗j ,

[
δR2 , δ

B
j

]
= −iσ1 ⊗ σ∗j ,

[
δR3 , δ

B
j

]
= 0 .

and hence we immediately find that the subgroup SU(2)D commutes with SU(2)R:
[
δRj , δ

A
1 − δB1

]
=
[
δRj , δ

A
2 + δB2

]
=
[
δRj , δ

A
3 − δB3

]
= 0.

The SU(2)R is therefore not enhanced, so the system has only N = 3 supersymmetry.

To summarize: classically the theory has N = 3 superconformal symmetry, with bosonic
subgroup SO(3, 2), and global symmetry SU(2)R × SU(2)D × U(1)b × U(Nf ) × U(Nf )
which matches perfectly with the symmetries in the supergravity description above.

As this case was a rather trivial example of our recipe, we now turn to a slightly more
involved example, in particular, an example that exhibit supersymmetry enhancement.

7.6 Codimension One N = (0, 6) Supersymmetric Flavor

In this section we study an example of a probe brane that introduce codimension-one
flavor fields, that is, flavor fields propagating in a (1+1)-dimensional subspace of the
(2+1)-dimensional ABJM theory. The brane we study, a D7/D8/M9-brane, were first
studied in type IIA on AdS4 × CP3 in [222]. We review and extend the gravity results
of [222], and write the dual field theory Lagrangian explicitly for the D7/D8/M9-brane.

In (1+1) dimensions the supersymmetries divide into left- and right-handed sectors. We
begin in this section with a chiral codimension-one theory, which preserves N = (0, 6)
supersymmetry. In the next section we study non-chiral flavor.

10The fact that SU(2)R and SU(2)D commute is a familiar feature of SU(4). The SU(4) algebra has two
obvious SU(2) × SU(2) sub-algebras, whose diagonal SU(2)’s commute with one another. In the ABJM
theory these are SU(2)A × SU(2)B , with diagonal SU(2)D, and SU(2)1 × SU(2)2, with diagonal SU(2)R.
Here SU(1)1 acts on (A1, B

∗
1 ) as a doublet and leaves (B∗

2 , A2) invariant, while for SU(2)2 (A1, B
∗
1 ) is

invariant and (B∗
2 , A2) is a doublet.
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7.6.1 Supergravity with M9/D8-brane probes

We begin by adding D7-branes extended along (01345789) in the type IIB setup. We are
free to choose their position on the x6 circle. We will add two stacks of D7-branes, each
with Nf coincident D7-branes, on opposite sides of the circle, away from the NS5-brane
and (1, k)5-brane. The strings from the D7-branes to the two stacks of D3-branes introduce
massless flavor in both gauge groups. (In contrast, the authors of [222] considered matter
fields that coupled only to a single gauge group.) Notice also that the D7-branes and
D3-branes have 8 ND directions, hence the flavor fields will be chiral, as we mentioned
in section 7.4.2. As shown in table 7.1 in section 7.4.1, these D7-branes preserve 3 real
supercharges in the type IIB setup.

After T-duality in x6 the D7-branes become D8-branes. The 2Nf D8-branes are coincident,
and have a U(2Nf ) symmetry broken to U(Nf )×U(Nf ) by a Z2-valued Wilson line (similar
to what happened in section 7.5.1). After uplift to M-theory and the “near-horizon” limit,
the D8-branes become M9-branes extended along (01) and along all of C4/Zk. Obviously
the branes preserve the full SU(4) × U(1)b symmetry of C4/Zk. In appendix B.3.1 (see
also [222]) we find that the M9-branes preserve 6 real supercharges.

If we take Nc →∞, we can replace the M2-branes by their near-horizon geometry, which
is AdS4 × S7/Zk. The M9-branes are extended along AdS3 inside AdS4 and wrap all of
S7/Zk. In appendix B.3.2 we analyze the κ-symmetry condition for these branes and find
that after the near-horizon limit the number of preserved supercharges has doubled to 12.

For large k, such that k5 ≫ Nc, the M9-branes reduce to D8-branes in type IIA that wrap
AdS3 ×CP3. These probe D8-branes were first studied in [222].

To summarize: in the type IIB setup we can add D7-branes that produce fundamental
matter for both gauge group factors. They have 8 ND directions (with respect to the
D3-branes), so the flavor fields will be chiral. These D7-branes become M9-branes in M-
theory on C4/Zk. These M9-branes preserve 6 real supercharges, so we expect a dual field
theory with (in (1+1)-dimensional notation) N = (0, 6) superconformal symmetry. The
corresponding R-symmetry group must be SU(4) ∼= SO(6), which fits into the symmetry
of the brane construction. We now proceed to construct the dual field theory and check
that is has the right symmetries and amount of supersymmetry.

7.6.2 The Field Theory

Let us apply our recipe.

Step 1: Construct the D3/D7 Theory

Once again we consider a single stack of D3-branes alone in flat space (so again let x6 be
non-compact and remove the NS5-brane and (1, k)5-brane), and add a codimension-two
D7-brane. Such a D3/D7 intersection has 8 ND directions and preserves 8 real super-
charges. What is the field theory for such a D3/D7 intersection? This question was
answered11 in [96–98]. With 8 ND directions, the NS sector zero-point energy is 1/2, so

11Much of the analysis of [96–98] focused on what we would call back-reaction, that is, effects that result
from leaving the probe limit. Strictly speaking, all of our statements apply only in the probe limit.
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the ground state is in the Ramond sector. What survives the GSO projection is a single
Weyl spinor confined to the (1+1)-dimensional intersection, transforming in the (Nc, N̄f ).
We thus obtain chiral flavor. Our Weyl fermion will be left-handed.

The immediate question is: with only fermions in the ground state, how can the theory be
supersymmetric? The answer is that all of the preserved supercharges are right-handed.
The theory has (1+1)-dimensional N = (0, 8) supersymmetry. The flavor fermions are
completely inert under both supersymmetry and the R-symmetry.

The action is then remarkably simple. From the D3-branes we of course have the (3+1)-
dimensional N = 4 U(Nc) SYM theory action. For the defect flavor fields, the claim
of [96–98] is that the only marginal and gauge-invariant terms that respect all of the
symmetries are

Sfund =

∫

dx+dx− ψ†
q (i∂− −A−)ψq, (7.6.19)

where we have used (1+1)-dimensional coordinates x± = x0 ± x1, ψq is our left-handed
Weyl fermion, and A− is the restriction of the ambient U(Nc) gauge field to the defect.
Of crucial importance is the fact that A− is inert under N = (0, 8) supersymmetry trans-
formations [96–98].

Step 2: Add the NS5-branes

We add the NS5-brane and NS5′-brane along (012345) and separated in x6 (which for now
is still non-compact), and let the D3-branes end on them in x6. The NS5-brane boundary
conditions set to zero the (2+1)-dimensional N = 4 hypermultiplet. The flavor fields only
couple to the gauge field, however, so adding the NS5-branes does not alter the action in
the flavor sector. The supersymmetry is reduced to N = (0, 4), however.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory

We compactify x6 and add another stack of D3-branes, so that the gauge group of the D3-
branes’ worldvolumes is U(Nc) × U(Nc), and another stack of Nf D7-branes. We obtain
two sets of flavor fields, which we will denote as ψiq with i = 1, 2. We obtain two copies of
the action above, one for each ψiq. The rest of the construction (forming the (1, k)5-brane,
T-duality, etc.) also leaves the action in the flavor sector untouched. The Chern-Simons
terms break the supersymmetry to N = (0, 3).

Step 4: Take the low-energy limit

Lastly, we must take the low-energy limit, which means writing all terms consistent with
the symmetries of the field theory. Let us review the symmetries of the theory at the
end of Step 3. Our theory has N = (0, 3) supersymmetry and the corresponding SU(2)R
R-symmetry. (The SU(2)R is easy to see in the type IIB setup, being exactly the same
SU(2)R, which rotates (345) and (789) simultaneously, that appears in the theory without
flavor.) The theory also has a baryon number symmetry that shifts the phase of ψiq and
leaves all other fields invariant. Recall also that the theory of course has (1+1)-dimensional
Lorentz invariance and gauge invariance. We will now argue that in fact these symmetries
forbid any new (relevant or marginal) terms.
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First let us do some dimension counting. The fields ψq are (1+1)-dimensional fermions,
hence they are dimension 1/2. (We will drop the i index on ψiq for now.) We must also
consider the restriction of the (2+1)-dimensional fields to (1+1) dimensions. We will use
φ to denote a generic (2+1)-dimensional scalar restricted to the defect, and Ψ to denote a
(2+1)-dimensional fermion restricted to the defect. φ is dimension 1/2 and Ψ is dimension
1.

Terms with an odd number of ψq and ψ†
q, whether relevant or marginal, are forbidden

by gauge invariance and by the U(1) baryon number that shifts the phase of ψq. Terms

with two ψq that are relevant include couplings to scalars, of the form φψ†
qψq, which is

dimension 3/2. These are forbidden by Lorentz invariance. ψq is a (1+1)-dimensional

left-handed fermion. Its conjugate ψ†
q is also left-handed, hence ψ†

qψq is not a Lorentz

singlet. Marginal couplings of the form φ2ψ†
qψq and Ψψ†

qψq, and the marginal quartic

term (ψ†
qψq)

2, are forbidden for the same reason. (We can also eliminate many such terms,
and/or linear combinations of them, using the R-symmetry and/or supersymmetry.) The
only term involving derivatives and/or the gauge field that is allowed by the symmetries is
the gauge-covariant kinetic term itself. The overall normalization of that term can change,
but of course such an overall constant can be removed by a rescaling of ψq.

Our conclusion is that the form of the defect action does not change in Step 4. We can
thus write the defect action easily. We have two Weyl fermions, ψiq, where again i = 1, 2
labels the gauge group, that is, under U(Nc)k×U(Nc)−k×U(Nf )×U(Nf ) the ψ1

q fermion
transforms as (Nc,1, N̄f ,1) and the ψ2

q fermion transforms as (1, Nc,1, N̄f ). We add to
the ABJM action the terms

Sfund =

∫

dx+dx− ψi†q
(
i∂− −Ai−

)
ψiq, (7.6.20)

where here again Ai− are the defect values of the bulk gauge fields, and summation over i
is implicit.

We show in appendix B.4 that A− is invariant under N = (0, 6) supersymmetry transfor-
mations, hence the flavor action preserves N = (0, 6) supersymmetry. The action is also
trivially invariant under the full SU(4)R × U(1)b symmetry. These symmetries perfectly
match those of the brane construction.

7.7 SU(4) Equivalence of Probe Flavor

Although the ABJM construction starts with a fairly complicated brane setup in type IIB,
we have seen in section 7.3 that after the “near-horizon” limit we end up with M2-branes
probing C4/Zk. The “near-horizon” limit, that is, zooming in on the C4/Zk singularity
of the space X8 mentioned in section 7.3.3, discards much of the complicated information
of the type IIB setup. After taking Nc →∞ we reach M-theory on AdS4 × S7/Zk.
For k = 1 the addition of flavor branes in M-theory, namely codimension-two M2-branes
and codimension-one M5-branes, was studied in [113]. There the authors had to consider
only one embedding for each probe brane since the SO(8) isometry group of C4 or S7 can
map any two supersymmetric embeddings into each other. If two brane embeddings are
related by such an SO(8) symmetry transformation, then they are physically equivalent.



7.7. SU(4) Equivalence of Probe Flavor 177

In other words, when k = 1 all supersymmetric codimension-two M2-branes are physically
equivalent, and similarly for supersymmetric codimension-one M5-branes.

For general k, the Zk orbifold of C4 breaks the SO(8) isometry group to SU(4) × U(1)b.
Two supersymmetric brane embeddings may be related by an SO(8) element that is not
contained in SU(4)×U(1)b. In that case, we have two physically distinct ways of adding
flavor. An interesting question is whether we can fully classify the supersymmetric em-
beddings of flavor branes in the ABJM theory, but that is beyond the scope of this paper.
Here, we will discuss how to use the unbroken SU(4)×U(1)b symmetry to show that cer-
tain probe branes are physically equivalent although they look very different in the type
IIB setup. When that occurs, we will call the two type IIB D-branes SU(4)-equivalent.

On the gravity side, we will present an explicit example of SU(4)-equivalent pairs. In the
field theory, SU(4) equivalence occurs when two different theories flow to the same low-
energy fixed point. In the language of our recipe, the two different theories are the theories
we obtain at the end of Step 3, which flow to the same theory at low energy in Step 4. We
will present one explicit example of such flow in what follows, for the codimension-zero
case.

Two necessary conditions for two D-branes to be SU(4)-equivalent are 1.) they become
the same object in M-theory and 2.) they have the same codimension. More precisely, as
we do a T-duality along x6 to go from type IIB to type IIA, two SU(4)-equivalent D-branes
must have the same codimension in the directions (012). Furthermore, if both D-branes
wrap x6 or both do not wrap x6, then they have to be both Dp-branes. Another possibility
is that a type IIB D(p+1)-brane is equivalent to a type IIB D(p-1)-brane, if the D(p+1)-
brane wraps x6 and the D(p-1)-brane does not. Notice also that, in M-theory on C4/Zk,
the orientation of the object does not affect the symmetries it preserves. (That is obvious
in the k = 1 case.) That means that, in addition to an SU(4)×U(1)b transformation, we
can also reverse the orientation of an object, so that, in type IIB, Dp-branes and anti-Dp-
branes may be SU(4) equivalent. Finally, an especially important point is that, due to the
“near-horizon” limit in which the R-symmetry SO(3)R is enhanced to SU(4)R, two branes
in type IIB that preserve different amounts of supersymmetry and different subgroups of
the SO(3)R may still be SU(4) × U(1)b equivalent.

7.7.1 Codimension-zero KK monopoles

We start with the codimension-zero D5-branes along (012789) from section 7.5. As shown
in [206], these D5-branes become KK-monopoles on C4/Zk with the embedding equations
z1 = z̄3, z2 = z̄4. As we argued above, we can perform an SU(4) transformation from the
old coordinates zi to new coordinates zinew, such that the embedding becomes Im(zinew) = 0
for i ∈ {1, 2, 3, 4}. Explicitly, the SU(4) transformation is

z1
new =

1√
2
(z1 + z3), z2

new =
−i√

2
(z1− z3), z3

new =
1√
2
(z2 + z4), z4

new =
−i√

2
(z2− z4).

(7.7.21)
What happens if we start with a KK monopole described by Im(zi) = 0 for i ∈ {1, 2, 3, 4}
and return to type IIB (using the results of appendix B.2)? Up to an SU(4)×U(1)b trans-
formation that only changes the constant value of x6, we find D7-branes along (01235679)
(If we reverse the orientation of the KK monopole, we can obtain anti-D7-branes, as ex-
plained above). These D7-branes are SO(3)R equivalent to the D7-branes along (01234678)
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listed in table 7.1. We summarize the SU(4) equivalence in the following table.

Type IIB D5 (012789) D7 (01235679)

M-theory KK z1 = z̄3, z2 = z̄4 KK Im(zi) = 0

We have found two different types of D-branes in type IIB that lead to the same con-
figuration in M-theory, and are therefore physically identical in M-theory. That might
be surprising since the D-branes preserve different amounts of supersymmetry and differ-
ent subgroups of the SO(3)R symmetry in the type IIB setup. We will, therefore, now
show on the field theory side that both D-branes lead to the same theory upon taking the
low-energy limit.

For the flavor D5-branes we reviewed the field theory in section 7.5.2, following [206,
220, 221]. The action of the N = 3 supersymmetric (2+1)-dimensional flavor appears
in equations 7.5.16 and 7.5.18. Here we will begin instead with anti-D7-branes along
(01234678). We will apply our recipe once again.

Step 1: Construct the D3/D7 Theory

We begin with D3-branes along (0126) and anti-D7-branes along (01234678). Such an
intersection preserves 8 real supercharges. The intersection has 4 ND directions, hence we
obtain non-chiral flavor propagating in (3+1) dimensions (along (0126)). The field theory
of the 4 ND D3/D7 intersection is well known: it is (3+1)-dimensional SU(Nc) N = 4
supersymmetric Yang-Mills theory coupled to N = 2 supersymmetric hypermultiplets in
the fundamental representation of SU(Nc). The action is usually written in N = 1 super-
space, and includes the usual kinetic terms for the flavor fields as well as a superpotential
coupling for the flavor fields whose form is dictated by N = 2 supersymmetry. If we
decompose the N = 4 vector multiplet into an N = 1 vector multiplet and three N = 1
chiral multiplets, then the superpotential includes a coupling of the flavor fields to the
N = 1 chiral multiplet whose scalars represent fluctuations of the branes in the overall
transverse directions, which here are (59). For more details about the D3/D7 theory, see
section 2.5.1 as well as [92] and references therein.

Step 2: Add the NS5-branes

We now add the NS5-brane and NS5′-brane along (012345), and let the D3-branes end
on them. As mentioned in appendix B.1, the system then preserves 4 real supercharges.
Technically, we should perform a dimensional reduction from (3+1) dimensions to (2+1)
dimensions (since the anti-D7-branes are extended along x6) and then impose the NS5-
brane boundary conditions. We know what the result has to be, however. The NS5-
brane boundary conditions set to zero the scalars (789). That means that after imposing
those boundary conditions, the flavor fields couple only to the single scalar 5. We also
know that the theory has 4 real supercharges, or in (2+1)-dimensional language, N = 2
supersymmetry. The flavor fields must of course have kinetic terms, with the usual coupling
to the N = 2 vector multiplet. The key observation is that the N = 2 vector multiplet
includes a single real scalar (which, recalling the type IIB construction of the ABJM
theory, must indeed be 5). We can conclude that the (2+1)-dimensional flavors have
no superpotential: any superpotential coupling must preserve N = 2 supersymmetry,
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and hence must be a coupling to an N = 2 chiral superfield, but that would introduce
couplings to additional scalars that are obviously absent here. In short, the flavor fields
only couple to enough scalars for an N = 2 vector multiplet! The (2+1)-dimensional
action in the flavor sector is then simply the N = 2 kinetic term, whose explicit form
appears in equation (7.5.16).

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory

As usual, these steps leave the form of the flavor action untouched. Notice also that in this
case the supersymmetry remainsN = 2 throughout. For example, table 7.1 in section 7.4.1
shows that after we form the (1, k)5-brane the system still preserves 4 real supercharges.
Notice also that the symmetries of the field theory and the brane construction agree.
N = 2 supersymmetry has a U(1) R-symmetry, and the anti-D7-brane along (01234678)
clearly preserves the U(1) subgroup of SO(3)R that rotates (34) and (78) simultaneously.

Step 4: Take the low-energy limit

Now we come to the crucial step. We must write all terms consistent with N = 2 super-
symmetry, the U(1) R-symmetry, and the U(1)b symmetry. Here we will borrow some
arguments from [212]. Only one such term exists, a coupling to the N = 2 chiral fields
Φi, of the form written in equation (7.5.17). We must therefore add such a term to the
superpotential, with some coefficient. Arguments similar to those in [212], based on the
sign of the two-loop beta function, then suggest that the coefficient flows to precisely the
right value to produce the enhancement to N = 3 supersymmetry. The coupling is then
identical to the term in equation (7.5.17), and we thus recover exactly the same theory as
in section 7.5.

We have thus seen how two different field theories flow to the same low-energy fixed point,
and hence how SU(4)-equivalence appears on the field theory side. Notice that these two
theories preserved different symmetries: the D5-brane along (012789) preserved the whole
SO(3)R while the anti-D7-brane along (01234678) preserved only a U(1) subgroup.

7.8 Other Flavor branes in AdS4/CFT3

In this chapter we discussed a general recipe how to add flavor degrees of freedom to
the ABJM theory, i.e. to N = 6 2 + 1-dimensional supersymmetric Chern-Simons-matter
theory with gauge group U(Nc)k × U(Nc)−k. We applied this general procedure to two
examples: a D6-brane in type IIA (a KK-monopole in M-theory) describing codimension-
zero N = 3 supersymmetric flavor fields and a D8-brane in type IIA giving rise to chiral,
N = (0, 6) supersymmetric flavor fields. In [6] we considered also two other examples:

• A D3-brane that becomes a D4-brane in type IIA and an M5-brane in M-theory,
and which introduces codimension-one, non-chiral, N = (3, 3) supersymmetric flavor
fields.

• A D3-brane that becomes a D2-brane in type IIA and an M2-brane in M-theory,
and which introduces codimension-two, N = 4 supersymmetric flavor fields.
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To summarize, in this chapter we have added flavor degrees of freedom to N = 6 U(Nc)×
U(Nc) Chern-Simons-Matter theory, which is the low-energy description of Nc coincident
M2-branes. The flavor degrees of freedom have been realized on the gravity side by
membranes or by other non-perturbative objects, such as KK-monopoles. In particular,
we have explicitly written down the couplings of the flavor fields to the Chern-Simons-
Matter theory on the gauge theory side and have determined the preserved symmetries.

The analysis presented in this chapter is one of the basic ingredients to study (2+1)-
dimensional Quantum Hall liquids in a holographic setup. Therefore, in the future we
should investigate the thermodynamics of the models discussed here and determine the
spectral functions of mesons and mesinos.



8
Conclusions and Outlook

In this thesis we have presented new methods which are necessary to generalize the
AdS/CFT correspondence towards applications to condensed matter systems. In partic-
ular, we have extend the calculation of direct-current conductivities to arbitrary constant
electric and magnetic fields. Moreover we have determined the conductivity for alternating
and direct currents for a non-relativistic system with Schrödinger symmetry. Whereas the
AC conductivity is calculated in linear response, the direct-current conductivity capture
effects in all orders of the electric and magnetic fields considered.

Moreover we have investigated holographic superconductors in string theory embeddings.
We find a second order phase transition between a state spontaneously breaking an U(1)
symmetry and a symmetry-preserving state. The phase transition have mean-field critical
exponents. Finally we have also studied holographic fermions and non-Fermi liquids in
string theory embeddings. In particular, we identify an emerging Fermi surface for low
temperatures. Finally we also determine the fermionic response in the superconducting
phase.

Before I review how to add charge carriers to Chern-Simons theories, let me recall our
string theory setup in more detail. As discussed in section 1.3 of the introduction, we use
strongly-coupled N = 4 supersymmetric Yang-Mills theory in the large-Nc limit. Note
that this field theory is conformal. The dual gravity side is given by type IIB supergravity
on AdS5 × S5. In order to add Nf mass-degenerate flavor fields we consider Nf Dp-
branes in this geometry. The bound state of flavor fields, i.e. mesons and their fermionic
superpartners, mesinos, are described by fluctuations of scalar, spinor and gauge fields
living on the worldvolume of the Dp-brane.

Note that we assume that the branes do not backreact on the geometry, but rather probe
only the geometry. This so-called probe-approximation is valid for Nf ≪ Nc and cor-
responds to the quenched approximation on the field theory side. This limit has one
immediate consequence. The field theory including the matter fields is also conformal,
which is convenient for the description of quantum critical theories with dynamical scaling
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exponent z = 1, as discussed in section 1.2.

The Nf mass-degenerate flavor fields give rise to a U(Nf ) global symmetry corresponding
to the local U(Nf ) gauge symmetry of Dp-branes’ scalar, spinor and gauge fields. In
particular, we investigate the effect of two subgroups in more details: the overall U(1)-
symmetry, corresponding to the U(1)-baryon symmetry on the field theory side and, in
the case of Nf = 2, the non-Abelian subgroup SU(2), which is identified as the isospin
symmetry on the field theory. A non-trivial gauge field At(u), where u is the radial
direction of Anti-de Sitter spacetime, corresponds to a state of finite baryon number density
and baryon chemical potential on the field theory side. Therefore we can consider a finite
density of charge carriers, which are charged under the flavor symmetry subgroup U(1). In
the following, we embed holographic superconductors and holographic (non-)Fermi liquids
into this or a similar setup. Moreover, we can calculate the conductivities associated with
the baryon number density.

The last project presented in the thesis is more technical. We have considered a purely
(2+1)-dimensional Chern-Simons-Matter theory arising from the low-energy limit of M2-
branes. This theory may also serve as a candidate for the quantum critical theory. In
chapter 7 we have investigated how to add flavor fields, giving rise to charge carriers,
to that theory. In particular, we have determined the effective couplings of the flavor
fields to the Chern-Simons-Matter theory on the field theory side. Moreover, we have
also constructed the dual gravitational configuration consisting of probe D-branes, KK-
monopoles or M-branes.

In the following, the main projects are summarized in detail. Furthermore we also suggest
directions for future research.

Conductivities in relativistic and non-relativistic theories

First let us consider the direct-current conductivity tensor for a relativistic system. In
particular, in section 3.3 we have computed the conductivity tensor of N = 2 supersym-
metric flavor fields propagating through a strongly-coupled N = 4 SYM theory plasma at
finite temperature T . We have included a finite U(1) baryon number density 〈J t〉 and have
considered the most general configuration of constant external fields, namely an electric
field E and a magnetic field with a component Bz perpendicular to E and a component
Bx parallel to E.

The direct-current conductivity components σxx and σxz consists of two terms adding in
quadrature. These two terms can be traced back to two types of charge carriers. First
we have the density of charge carriers we introduced explicitly by 〈J t〉 6= 0. Even when
〈J t〉 = 0 we find a non-zero conductivity components σxx and σxz and hence a non-zero
current 〈Jx〉 and 〈Jz〉. We have given evidence that the other type of charge carriers come
from pair production in the electric field. In contrast, note that σxy depends only on the
density of charge carriers.

Note that in the analysis presented in section 3.3 and reviewed above, we have applied
a constant electric fields, i.e. the charge carriers have to be accelerated forever and our
quasi-static ansatz for the holographic setup would be inconsistent. However, due to the
probe-approximation Nf ≪ Nc we build in a mechanism for dissipation. Since the charge
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carriers are of order NfNc but the quantum critical theory, i.e. N = 4 super Yang-Mills
theory, is of order N2

c , the charge carriers can transfer energy and momentum to the
quantum critical theory, but the rates at which they do so are of order Nc. That means
that only at times of order Nc the charge carriers have transferred order N2

c amounts of
energy and momentum to the plasma, and hence the motion of the N = 4 SYM plasma is
no longer negligible. Therefore, the probe limit thus provides the charge carriers with an
apparent mechanism for dissipation.

For the non-relativistic theories, we have computed in chapter 6 both DC and AC con-
ductivities associated with a finite baryon number density of charge carriers in a strongly-
coupled theory with non-relativistic symmetry. The quantum critical theory is N = 4
SYM theory deformed by a dimension-five operator that breaks the relativistic confor-
mal group down to the Schrödinger group, with dynamical scaling exponent z = 2. On
the gravity side we have to perform a solution-generating method, the Null-Melvin-Twist
(NMT).

The charge carriers are comprised of a finite baryon density of massive N = 2 supersym-
metric hypermultiplets. We find that, generally speaking, both the DC and AC conductiv-
ities exhibit relativistic scaling, with temperature or frequency, respectively in the IR and
non-relativistic scaling, with z = 2, in the UV. These results are in accord with our ex-
pectations, given the origin of the non-relativistic symmetry via an irrelevant deformation
of the theory.

For the future, we can think of many questions that deserve further research:

First, we could introduce a thermal gradient into both holographic setups and compute the
thermal conductivity and the thermo-electric transport coefficients (called αij in the intro-
duction) associated with the flavor fields. A further extension would be to work with two
coincident D7-branes, and hence two flavors in the SYM theory, and to compute the ther-
mal conductivity and thermo-electric transport coefficients associated with isospin charge.
As demonstrated in chapter 4, a sufficiently large isospin chemical potential triggers a
phase transition to a superconducting, or more accurately a superfluid, phase.

Notice that also a more detailed analysis of probe D-branes in Schrödinger spacetime
would be extremely useful. Given background Sch5 geometries that preserve some super-
symmetry [187, 188], can we find supersymmetric embeddings of probe D-branes? What
happens to the many phase transitions that occur in the relativistic setting when the probe
D-branes are instead in Sch5?

Introducing a magnetic field on the worldvolume of a probe D-brane is straightforward, and
allows us to compute not only the Hall conductivity but indeed the entire conductivity
tensor, in the DC limit [5, 106]. What scaling does the Hall conductivity have in the
Schrödinger case?

Moreover, with probe D-branes that do not wrap all coordinates of AdS5, we have more
options about how to perform the NMT. Consider for example a D5-brane extended along
AdS4×S2 inside AdS5×S5. Here we must make a choice: the D5-brane may be extended
along the T-duality direction y or not. If the D5-brane is along y, we expect the results
to be similar those of section 6.2.3 for the D7-brane. What happens when the D5-brane
is transverse to y, however?

Perhaps the most exciting direction for future research would be model-building of the kind
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advocated in [185]. Our results indicate that a straightforward way to engineer scaling
exponents would be to start in the relativistic case, i.e. probe D-branes in AdS5 × S5,
introduce a scalar to produce the desired IR exponents, and then perform the NMT. We
generically expect that the result will be DC and AC conductivities that in the UV have
non-relativistic scalings, with z = 2, and in the IR have whatever scalings we initially gave
them.

Holographic superconductors

In chapter 4 we have embedded holographic p-wave superconductors in a string theory
setup. In particular, we have considered on the field theory side two different kinds of mass-
degenerate charge carriers, giving rise to a SU(2) global symmetry. Moreover, we have
turned on finite temperature and an SU(2) isospin chemical potential, breaking SU(2) to
the subgroup U(1)3. The two kinds of charge carriers have opposite chemical potentials.

In the holographic setup we had to embed two coincident Dp-branes into (4+1)-dimensional
Schwarzschild Anti-de Sitter spacetime. Since the effective action for two coincident Dp-
branes is only known up to order F 4 in the field strength tensor F, we use three different
prescriptions for the effective non-Abelian Dp-brane action and compare the results. In
all three cases, the physics agrees qualitatively.

Below a critical temperature Tc, or equivalently above a critical isospin chemical potential,
we have found a new phase with non-vanishing meson condensate 〈Jx1 〉. We have explicitly
shown that this new phase is favored thermodynamically. The phase transition is second
order and has a mean-field critical exponent. Note that 〈Jx1 〉 breaks the remaining U(1)3-
symmetry spontaneously. Therefore we have interpreted the meson condensate 〈Jx1 〉 as
a meson superfluid. If we would gauge the global U(1)3-symmetry on the field theory
side, we may view the new state as a superconductor with p-wave symmetry. We have
shown that the superconducting phase persists at finite quark mass and have determined
the phase diagram as function of the isospin chemical potential, the temperature and the
mass of the flavor fields.

In addition, we have considered the linear response of the superconductor to electrical
fields. In particular, we have computed the frequency-dependent conductivity for alter-
nating currents. We have found that there is a gap in the real part of the conductivity
for small frequencies. The gap increases as we lower the temperature. Moreover, using
Kramers-Kronig relations, we have realized that there is a delta peak in the real part
of the AC conductivity for zero frequency. We have also determined the response to a
magnetic field. As expected, the critical temperature of the superconductor is lowered if
we switch on the finite magnetic field. Note that we do not expect that the system expels
magnetic fields since the U(1), which is spontaneously broken, is a global symmetry. But
our calculation have shown that if we gauge this symmetry weakly, i.e. by promoting it to
a local symmetry and introducing the corresponding gauge fields, we can generate currents
which will induce magnetic fields opposite to the external fields [3].

Let me suggest directions for future research.

An interesting question is whether we can only realize p-wave superconductors by embed-
ding probe branes, or if we also find other symmetry breaking patterns. Of course, we can
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first try to find an s-wave superconductor in this framework. For condensed matter ap-
plications towards High-Tc superconductors, it is interesting to find the dual holographic
description of d-wave superconductors. So far first steps in this direction have been taken
in the bottom-up approach, but it is not clear whether there is a consistent string theory
embedding. To obtain a condensate with d-wave symmetry, a spin-two operator has to
condense. An obvious candidate is the graviton. In the holographic setup presented here,
we have other fields with the correct symmetry: higher spin mesons. This observation
can be the starting point for the construction of d-wave superconductors in the top-down
approach.

Moreover, for the application towards High-Tc superconductors it is instructive to calculate
the thermo-electric transport as mentioned in the previous paragraph. This may be rele-
vant for high-Tc superconductors, which exhibit unusually large thermo-electric response
even outside the superconducting phase.

Holographic fermions and (non-)Fermi liquids

In chapter 5 we have embedded fermions and holographic (non-)Fermi liquids in our top-
down approach using probe branes. We have considered the fermionic part of the action
of Dp-branes, as proposed in [167–169], and have specialized the action to the background
of Nc D3-branes, which we considered so far. In particular, we have computed the effec-
tive mass of the worldvolume fermions for Dp-branes in AdS5 × S5, which allowed us to
determine the conformal dimensions of the dual field theory operators, i.e. of the mesinos.
For a particular example, the codimension one D3/D5 intersection which wraps AdS4×S2

in the dual gravity setup, we have written down in section 2.5.1.2 the explicit form of the
mesinos. Moreover, we have explicitly mapped the mesinos to the fermionic fluctuations
in section 2.5.2.3, borrowing the results of chapter 5.

In addition, in section 2.3 we have performed the holographic renormalization for fermions
in AdS in order to get a finite partition function and finite renormalized one-point func-
tions. We have explicitly determined the counterterms for massive fermions and compute
the renormalized one- and two-point functions in Euclidean signature. Finally, we describe
in section 3.2.4 a new efficient algorithm for computing retarded Green’s functions from
bulk fermions that couple to one another.

Using the above ingredients, we have numerically computed the fermionic spectral func-
tions in the background used for p-wave superconductors in chapter 4. We have been able
to determine the spectral measure, i.e. the trace of the retarded Green’s function, but also
single components of it. For simplicity, we have considered only the spectral measure in
chapter 5 and have left a full-detailed study of the components of the retarded Green’s
function for the future.

For low temperatures, we have observed an emerging Fermi surface as we cool down the
system in the normal phase. However, we know that the normal phase is not thermo-
dynamically preferred. The thermodynamically preferred state is a holographic p-wave
superfluid. If we cool the system through the p-wave superfluid transition, the Fermi
surface collapses to isolated points.

Using the machinery that we have developed, we can think of a number of directions for
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future research.

Introducing a magnetic field on the worldvolume of a probe Dp-brane is straightforward
to do, and has many interesting consequences [3, 120, 122–126, 130, 131, 133, 223]. Our
embedding of p-wave superfluids, and of charged fermions, into string theory may be
a useful arena in which to study the effects of magnetic fields both on holographic p-
wave superfluids, along the lines of [3], and on holographic Fermi surfaces, along the lines
of [224–227].

Typically the mesinos carry some R-charge, so another avenue to study holographic Fermi
surfaces would be to embed probe Dp-branes into background geometries corresponding to
field theory states with finite R-charge density. In those cases the T = 0 limit is accessible
within the probe approximation. These geometries are generically charged dilatonic black
hole solutions. The most attractive of such solutions, for condensed matter applications,
may be the solution discussed in [228], which produced in the field theory specific heats
linear in temperature.

We have focused in chapter 5 on probe D5-branes extended along AdS4×S2 inside AdS5×
S5, and have worked only with the massless worldvolume fermion. With the methods
presented in the thesis, the Fermi surfaces of other types of charge carriers, given by other
Dp-branes, and worldvolume fermions of other masses, deserve further study.

Charge carriers in (2+1)-dimensional Chern-Simons Theory

In chapter 7 we have studied a large class of supersymmetric flavor branes in the brane
construction of the ABJM theory, and have provided a general method to derive the
corresponding field theories. We have applied our method to two different examples. We
first have studied codimension-zero N = 3 supersymmetric flavor, which appeared in the
supergravity description as KK-monopoles in M-Theory or as D6-branes in the type IIA
limit. We then have studied codimension-one chiral N = (0, 6) supersymmetric flavor,
which appeared in supergravity as a D7/D8/M9-brane.

For both cases, on the field theory side we have written the kinetic terms and couplings
of the flavor fields explicitly and have matched the symmetries to the supergravity de-
scription. Finally, we have argued how in general different probe branes in type IIB can
become physically equivalent in M-theory and therefore give rise to the same field theory.

Many extensions and generalizations are possible. We have not explored the matching
of supergravity fields to field theory operators. Many deformations are also possible, for
example, we can give the flavor fields a supersymmetric or non-supersymmetric mass in
various ways. A nonzero mass, which breaks scale invariance, would allow us to compute
meson spectra along the lines of [89]. We can also deform the background, for example by
replacing C4 with a cone over some non-trivial seven-dimensional manifold, such that the
theory to which we add flavor would have reduced supersymmetry. We can also ask what
role flavor fields play in various dualities, such as mirror symmetry [229]. More general
types of probe branes are also possible [230], for example the author of [231] studied the
addition of co-isotropic codimension zero probe D8-branes on the gravity side, and the
authors of [232] studied more generally the addition of codimension-one domain walls.
Many applications are also possible, especially in the context of hydrodynamics and/or
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condensed matter physics, for example along the lines of [127,174,233].

Another particularly interesting extension of our work would be to study backreaction
effects. The effect of the KK monopoles on the metric of eleven-dimensional supergravity
has already been studied in [220, 221, 234]. As stated in [222, 235, 236], when we include
backreaction the D8-brane will source the Romans mass (Ramond-Ramond zero-form field
strength), which means that the sum of the Chern-Simons levels of the two gauge groups
will no longer be zero.

Our work is only the tip of the iceberg. We can now use the results of chapter 7 to study
condensed matter systems near quantum critical points which are effectively described by
Chern-Simons theories. The first step towards it is to investigate the phase diagram of
Chern-Simons matter theories with a finite baryon or isospin density. Then, we can study
fractional Quantum Hall liquids or Luttinger liquids using these models.

Outlook

In this thesis we have studied strongly coupled theories with a finite density of charge
carriers. We have extended the AdS/CFT correspondence towards condensed matter
applications by embedding holographic superconductors and (non-)Fermi liquids in string
theory. In particular, we have used a top-down approach in which the field theory is
explicitly known, as opposed to the bottom-up approach which we discussed in section
1.3.

A main advantage of the approach used here is that we can compare the results of this
thesis, which were obtained at strong coupling, to a perturbative analysis. Therefore we
should investigate for example the phase diagram of the field theory for finite chemical
potential, temperature and mass of the flavor fields perturbatively. As we discussed in
section 4.2, we expect that a meson condense below a critical temperature. But does
the critical temperature at weak coupling agree with the critical temperature at strong
coupling? Do we also observe a vector meson condensate. What happens to the Fermi
surface in the superconducting phase at weak coupling? Does it also collapse to points?
What about the non-Fermi liquid behavior we observed?

As emphasized in the introduction, we do not claim to make quantitative predictions in
this thesis. However, gauge/gravity dualities are a very convenient tool for discovering
universal features. The prime example is, of course, the ratio of the shear viscosity, η, to
the entropy density, s. For any strongly-coupled, large-Nc gauge theory η/s is given by
η/s = 1/(4π) [237]. The smoking gun for High-Tc superconductors is Homes’ law, which
we discussed in section 1.2. Is this really a universal law? Do we find violations of this
law in holographic models or, even better, can we find evidence in favor of it? These are
natural questions we can ask within the framework of the AdS/CFT correspondence.

Phase transitions can easily be studied in holographic systems. The partition function
is given as the exponent of the on-shell action of the corresponding gravity action. In
the string theory embedding studied in this thesis, the action is given by the sum of
type IIB supergravity and the effective action of the Dp-branes. In the most cases, the
phase transition can even be interpreted in a geometric way. Note that most holographic
phase transitions are either first order or second order with mean field critical exponents.
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Although higher order phase transitions are not forbidden by any limit we take, but they
are not very common. An example of a third order phase transition was already mentioned
in the thesis. The meson-melting phase transition above a critical value for the chemical
potential is third order.

The mean-field behavior of second order phase transitions can be traced back to the large-
Nc limit of the quantum critical theory. Therefore an obvious question is whether it is
possible to study non-mean field phase transitions in holographic systems using probe
Dp-branes?

So far we have also considered second order phase transitions in effectively (2+1)-dimen-
sional systems at finite temperature, although, according to the Coleman-Mermin-Wagner-
Hohenberg theorem, there should not be such a phase transition since quantum fluctua-
tions may destroy it. But since we work in the large-Nc limit, such quantum fluctuations
are suppressed in 1/Nc. Therefore an interesting question is whether we can do calculations
beyond the large-Nc limit.

Another question which deserves future study is if it is possible to go beyond Landau’s
description of a phase transition in holographic systems. According to Landau’s theory, an
order parameter is associated with each phase transition. However, since the 1980’s phase
transitions are known which cannot be described by local order parameters or long-ranged
correlations, since the order of the phase is of topological nature.

To conclude, this PhD thesis is only the starting point of applying the AdS/CFT cor-
respondence to condensed matter systems, in particular using probe Dp-branes in the
top-down approach. There are further interesting questions which await to be answered
using holographic techniques.



A
Glossary

Here we explain the most important technical terms of string theory such that the reader
who is not familiar with this theory can follow and understand the main points of the
thesis.1 In section A.1 we review the basics of bosonic strings. In particular we discuss the
Polyakov action of a fundamental string, the equations of motions as well as the different
possible boundary conditions for fundamental strings. After quantizing the string we
discuss string perturbation theory and strings in curved backgrounds. Thereafter the
generalization to superstring theory is discussed in section A.2. In particular, type IIA
and type IIB superstring theories are defined. Moreover, the low-energy theory of type
IIB superstring theory, which is called type IIB supergravity, is mentioned. Subsequently,
a few examples of dualities are discussed which connect the five consistent string theories:
T-duality and S-duality. Finally, in section A.3, D-branes are introduced and their double
life – being soliton-like solutions of supergravity and hyperplanes where open strings can
end – is discussed in detail.

A.1 Bosonic String Theory

Whereas in conventional quantum field theory the elementary particles are pointlike ob-
jects, the fundamental objects in perturbative string theory are one-dimensional strings.
As a string evolves in time, it sweeps out a two-dimensional surface in spacetime, the
worldsheet of the string, which is the string counterpart of the world-line for a point
particle. To parameterize the worldsheet of the string, two parameters are needed: the
worldsheet time coordinate τ = σ0, which parameterizes the world-line in the case of a
pointlike particle, and σ = σ1 parameterizing the spatial extent of the string. The em-
bedding of the worldsheet of the fundamental string into (target) spacetime is given by
the functions Xµ(τ, σ), which are also referred to as the embedding functions or target
spacetime string coordinates. Since the action of a pointlike particle is given by the length

1Parts of the glossary was published in [4].
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of the world-line, the natural generalization to the action of a string propagating through
flat spacetime is given by the area of the worldsheet,

S = − 1

2πα′

∫

d2σ
√

−det∂αXµ∂βXµ, (A.1.1)

where d2σ = dσ0dσ1 = dτdσ. This is the Nambu-Goto action of a fundamental string.
The determinant is taken with respect to α, β = 0, 1, where α and β label the worldsheet
coordinates. Moreover we use the short hand notation ∂α = ∂

∂σα . The only free parameter
appearing in this action is α′, which is related to the length of the string, α′ = l2s . The
dimensionful prefactor T = (2πα′)−1 can be interpreted as the string tension or the energy
per length. To get rid of the square root in the action of the fundamental string in view of
quantization, an auxiliary field hαβ(σ

0, σ1) is introduced, which has to satisfy constraints
given below. This gives rise to the Polyakov action,

S = − 1

4πα′

∫

d2σ
√
−hhαβ∂αXµ∂βXµ, (A.1.2)

which is classically equivalent to (A.1.1) using the equations of motion of hαβ . In (A.1.2), h
is the determinant of the matrix hαβ and hαβ is the inverse matrix of hαβ , i.e. h

αβhβγ = δαγ .
The auxiliary field hαβ is called the worldsheet metric. The Polyakov action is invariant
under the following symmetries:

• Poincaré transformations
These transformations are global symmetries of the worldsheet fields Xµ of the form

δXµ = ΛµνX
ν + aµ and δhαβ = 0, (A.1.3)

where Λµν and aµ are Lorentz transformations and space-time translations respec-
tively.

• Reparametrizations
The Polyakov action is invariant under reparametrizations since a change in the
worldsheet parameterization of the form σα → fα(σ) = σ′α with

hαβ(σ) =
∂fγ

∂σα
∂f δ

∂σβ
hγδ(σ

′) and X ′µ(τ ′, σ′) = Xµ(τ, σ) (A.1.4)

does not change the action.

• Weyl transformations
The action is also invariant under rescaling of the worldsheet metric hαβ

hαβ → eω(σ,τ)hαβ and δXµ = 0. (A.1.5)

Since this transformation is a local symmetry of the action, the energy-momentum
tensor of the field theory defined on the worldsheet is traceless, i.e. T aa = 0. After
quantization, Weyl Symmetry is potentially broken by a conformal anomaly. In
string theory, this anomaly has to be absent, which is only the case if the spacetime
dimension of the target space is D = 26 for bosonic string theory. Moreover there
are restrictions on the form of the background fields allowed (see section A.1.4).
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The local symmetries may be used to choose a gauge which brings the components of the
worldsheet metric into a simple form. In particular, the equations of motion of the action
can be simplified by choosing the gauge

hαβ = ηαβ =

(
−1 0
0 1

)

. (A.1.6)

In this and other conformal gauges, the equation of motion for Xµ(τ, σ) is a relativistic
wave equation,

(∂2
τ − ∂2

σ)X
µ = 0, (A.1.7)

supplemented by the Virasoro constraints

∂τX
µ∂σXµ = 0, (A.1.8)

∂τX
µ∂τXµ + ∂σX

µ∂σXµ = 0. (A.1.9)

These constraints are derived from the equations of motion of the auxiliary field hαβ in
the Polyakov action and have to be satisfied to ensure the equivalence of the two actions
(A.1.1) and (A.1.2) at the classical level.

A.1.1 Open and closed strings

By applying variational methods, it is possible to derive not only the equations of motion
but also the possible boundary conditions for the string. There are two different types of
strings: open and closed strings.

A.1.1.1 Closed strings

Closed strings are topologically equivalent to a circle, i.e. they do not have endpoints. If
we parameterize these strings by the parameter σ ∈ [0, 2π[ , the boundary conditions read

Xµ(τ, 0) = Xµ(τ, 2π), ∂σX
µ(τ, 0) = ∂σX

µ(τ, 2π), hαβ(τ, 0) = hαβ(τ, 2π). (A.1.10)

This means that the string coordinates Xµ are periodic, i.e. the endpoints are joined to
form a closed loop. The mode expansion for the closed string is simply given by a pair of
left and right-moving waves, which travel around the string in opposite directions,

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ). (A.1.11)

XR (XL) are the right (left) moving parts, respectively. The mode decompositions of the
left and right-moving parts are given by

Xµ
R(τ − σ) =

1

2
xµ0 + α′pµR(τ − σ) + i

√

α′

2

∑

n 6=0

1

n
αµne

−2in(τ−σ) (A.1.12)

and

Xµ
L(τ + σ) =

1

2
xµ0 + α′pµL(τ + σ) + i

√

α′

2

∑

n 6=0

1

n
α̃µne

−2in(τ+σ). (A.1.13)
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xµ0 and pµ are the center of mass position and momentum of the string, respectively. The
periodicity condition requires that pµR = pµL, and reality of Xµ requires the conditions
αµ−n = (αµn)⋆ and α̃µ−n = (α̃µn)⋆. Moreover the center of mass momentum pµ can be
identified with the zero mode of the expansion by

αµ0 = α̃µ0 =

√

α′

2
pµ. (A.1.14)

A.1.1.2 Open strings

For open strings, two different boundary conditions in each direction µ of the spacetime are
possible, Neumann or Dirichlet boundary conditions. In the case of Neumann boundary
conditions, the component of the momentum normal to the boundary of the worldsheet
vanishes, i.e.

∂σXµ(τ, 0) = ∂σXµ(τ, π) = 0. (A.1.15)

Note that the open string is now parametrized by σ ∈ [0, π]. The boundary condition
implies that there is no momentum flowing through the ends of the string. The mode
decomposition of the embedding function Xµ(τ, σ) is given by

Xµ(τ, σ) = xµ0 + 2α′pµτ + i
√

2α′
∑

n 6=0

1

n
αµne

−inτ cos(nσ). (A.1.16)

Due to the Neumann boundary condition, the left and right-moving waves of an open
string are reflected into each other. As in the case of the closed string, the center of mass
momentum pµ of the string can be identified with the zero mode αµ0 of the expansion,

αµ0 =
√

2α′pµ. (A.1.17)

If we choose Dirichlet boundary conditions along the µ direction of spacetime, the end-
points of the string are fixed, i.e.

Xµ(τ, 0) = Xµ(τ, π) = xµ0 , (A.1.18)

where xµ0 is a constant. The mode decomposition is then given by

Xµ(τ, σ) = xµ0 +
√

2α′
∑

n 6=0

1

n
αµne

−inτ sin(nσ). (A.1.19)

The string coordinate Xµ is real if the usual property (αµn)⋆ = αµ−n holds. Note that
the zero mode αµ0 is not present in directions where Dirichlet boundary conditions are
imposed, since the center of mass momentum of the string vanishes.

The modern interpretation of open string boundary conditions is that they correspond to
hyperplanes, so-called Dp-branes, on which open strings can end. In p spatial dimensions
and in the time direction, Neumann boundary conditions are implemented, whereas in the
remaining 26 − (p + 1) dimensions Dirichlet boundary conditions are used. We will have
a closer look at D-branes in section A.2 when we discuss T-duality and in section A.3.
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A.1.2 Quantization of bosonic string theory

The theory can be quantized by using the standard commutation relations for the fields
Xµ and the momentum Pµ, which is conjugate to Xµ. These commutation relations imply
commutation relations for creation and annihilation operators, αµn and α̃µn, acting on the
ground state of the fundamental string.2

The masses squared M2 of the excited states are

M2 =
1

α′ (N − 1) (A.1.20)

for open strings and

M2 =
2

α′ (N + N̄ − 2) (A.1.21)

for closed strings. N and N̄ are the mass levels and are given by

N =
∞∑

n=1

αµ−nαnµ, N̄ =
∞∑

n=1

α̃µ−nα̃nµ. (A.1.22)

The mass levels N and N̄ have integer eigenvalues, which are also called N and N̄ ,
respectively.

Physical string states of the closed string have to obey the level-matching condition N = N̄
for the mass levels. Due to this condition, αµn and α̃µn are not independent. The spectrum
of the closed string at the first two mass levels consists of

• N = N̄ = 0 : tachyon with mass M2 = − 4
α′ .

• N = N̄ = 1 : a rank two massless tensor field, which can be decomposed into an
antisymmetric part Bµν (the Kalb-Ramond field), a symmetric traceless part gµν
(the graviton) and the trace of the symmetric part φ (the dilaton).

Since every string theory involves closed strings, a rank two symmetric tensor field, which
will be identified with the graviton in section A.1.4, is necessarily incorporated in string
theory. Moreover we will see that the vacuum expectation value of φ is related to the
string coupling constant. The tachyon in the closed string spectrum is much more severe
since it may indicate an instability of the theory. Such a tachyon will not appear in the
spectrum of closed superstrings if we demand that supersymmetry is not explicitly broken
in the embedding space.

The physical states of the open string ending on a Dp-brane at the first two mass levels
are

• N = 0 : A tachyon with M2 = − 1
α′ appears in the spectrum. According to Sen’s

conjectures [238], this is related to the fact that in bosonic string theories, D-branes
are unstable and will decay to radiation of closed strings.

• N = 1 : A massless vector boson. This will give rise to a U(1) gauge theory on the
Dp-brane. Furthermore if p < 25 massless scalars for each direction normal to the
Dp-brane are found in the open string spectrum.

2We consider only non-interacting strings. The creation and annihilation operators can be considered
as exciting internal degrees of freedom of the string.
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A.1.3 String Perturbation Theory: Interactions and scattering ampli-
tudes

The Feynman path integral is a very natural method for describing interactions in string
theory. In this approach amplitudes are given by summing over all worldsheets, weighted
by the factor exp

(
iS

~

)
, which connect initial and final string configurations, as shown in

figure A.1 for the closed string.

+ +...

Figure A.1: Examples of worldsheets connecting initial and final string configurations.

For closed oriented strings, to which we restrict ourselves in this section, the sum is taken
over all oriented two-dimensional worldsheets without boundaries. To take open strings
into account, worldsheets with boundaries have to be included. Interactions of the strings
are already implicit in the sum over worldsheets. The worldsheet of a decay of one closed
string into two is given in figure A.2. Thus the worldsheet is similar to a Feynman diagram
in which propagator lines are replaced by cylinders. A loop now corresponds to a handle
of the worldsheet. An example is shown in figure A.3. The partition function Z, i.e. the
integral over all (Euclidean) worldsheet metrics hαβ and over all embeddings Xµ(τ, σ) is
given by, with ~ = 1,

Z =

∫

[dXµ] [dhαβ ] exp(−S). (A.1.23)

The Euclidean action S contains the usual Polyakov action Sp, supplemented by a topo-
logical term weighting the different topologies of the string worldsheet Σ,

S = Sp + λχ with χ =
1

4π

∫

Σ
d2σ
√
hR(h), (A.1.24)

where R(h) is the Ricci scalar of the worldsheet metric hαβ . Since χ is a topological term
measuring the Euler number of the worldsheet, it does not contribute to the equations of
motion. The factor exp(−λχ) in the path integral only affects the relative weighting of
different topologies. Adding a handle to any worldsheet reduces the Euler number by two
and therefore adds a factor of exp(2λ). Since the process which is described by adding a
handle corresponds to emitting and reabsorbing a closed string, the coupling constant of
a closed string is given by gclosed = exp(λ). By analogous arguments, a string coupling
constant gopen of open strings can be introduced, which is related to gclosed by

gs ≡ gclosed = g2
open = eλ. (A.1.25)

+ +...

Figure A.2: Joining and splitting of strings.
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Figure A.3: Comparison between Feynman diagrams of quantum field theory and interacting string
diagrams.

In section A.1.4, we will see that the string coupling constant is fixed by the vacuum
expectation value of the dilaton field.

A.1.4 Bosonic string theory in background fields

Up to now we considered the propagation of open and closed strings in Minkowski space-
time. By coupling the fundamental string to the massless closed string excitations (see
section A.1.2), strings propagating through curved spacetimes can be described. In par-
ticular we will see that the massless closed string excitation gµν – which is traceless and
symmetric – can be identified with the metric of the target spacetime. Since the quantized
string theory in curved spacetime should be Weyl invariant, we obtain restrictions on the
target spacetime allowed: The spacetime has to satisfy the vacuum Einstein equations (at
least in lowest order of α′). This is the goal of this section.

Now we will generalize the (Euclidean) Polyakov action in a simple manner to take into
account couplings to the massless closed string excitations: the antisymmetric tensor field
B(2) (the components are called Bµν),

3 the symmetric traceless component gµν as well as
the trace φ. Since gµν is symmetric and traceless, the only possibility to couple it to the
string (given by Xµ) is

SP = − 1

4πα′

∫

d2σ
√
hhαβ∂αX

µ∂βX
νgµν(X

ρ). (A.1.26)

We see that this equation is a generalization of the Polyakov action (A.1.2) to curved
target spacetimes. Furthermore we can couple the Kalb-Ramond field Bµν(X

ρ) and the
dilaton field φ(Xρ) to the fundamental string by adding

SB,φ =
1

4πα′

∫

d2σ
√
h
(

iǫαβ∂αX
µ∂βX

νBµν(X
ρ) + α′R(h)φ(Xρ)

)

(A.1.27)

to the Polykov action (A.1.26), whereR(h) is the Ricci scalar with respect to the worldsheet
metric hαβ . Comparing the dilaton dependent part of SB,φ to (A.1.24), we see that the
dilaton sets the string coupling constant. Using (A.1.25) the string coupling constant gs
is given by

gs = eφ. (A.1.28)

Moreover, for ensuring Weyl invariance of the quantum theory (see remark after (A.1.5)),
we impose the tracelessness of the energy momentum tensor of the worldsheet theory in

3Throughout the thesis we denote the number of indices of an antisymmetric tensor field by numbers
in brackets. Therefore B(2) has two indices. If we exchange the indices, we obtain a minus sign, i.e.

Bµν = −Bνµ. Since the number of indices are apparent in the component notation, this number is omitted.
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D = 26 dimensions,

T aa = − 1

2α′β
g
µνh

ab∂aX
µ∂bX

ν − i

2α′β
B
µνǫ

ab∂aX
µ∂bX

ν − 1

2
βφR, (A.1.29)

with

βgµν = −α′
(

Rµν + 2∇µ∇νφ−
1

4
HµρσH

ρσ
ν

)

+O(α′ 2), (A.1.30)

βBµν = α′
(

−1

2
∇ρHρµν +∇ρφHρµν

)

+O(α′ 2), (A.1.31)

βφ = α′
(

−1

2
∇2φ+∇ρφ∇ρφ−

1

24
HρµνH

ρµν

)

+O(α′ 2) (A.1.32)

to lowest order of α′. Hρµν are the components of the field strength H(3) of the Kalb-
Ramond field B(2), i.e.

Hρµν = ∂ρBµν + ∂µBνρ + ∂νBρµ. (A.1.33)

The Polyakov action leads to a Weyl-invariant quantum theory if all three functions
βgµν , βBµν and βφ vanish. Remarkably, the consistency equations βgµν = βBµν = βφ = 0
can be derived as equations of motion from the target spacetime action

S =
1

2κ0

∫

d26X
√−ge−2φ

[

R+ 4∇µφ∇µφ−
1

12
HµνρH

µνρ +O(α′)
]

. (A.1.34)

This is the effective action for the massless string states Bµν , gµν and φ of the closed string
sector, where the effects due to the tachyon are omitted. Here R is the Ricci scalar of the
symmetric tensor field gµν and ∇µ are the covariant derivatives.

As discussed above, the string coupling constant is given by the expectation value of
the dilaton gs = eφ. Moreover the massless rank two symmetric tensor field gµν can be
identified with the graviton since gµν has to satisfy the equations of motion βgµν = 0,
which also follow immediately from the effective action. The first term in (A.1.34) is an
Einstein–Hilbert term coupled to a dilaton. Therefore gµν is identified with the target
spacetime metric (see also (A.1.26)).

Moreover we can canonically normalize the Einstein–Hilbert term of the action (A.1.34).
Rescaling the metric4

g̃µν = e
1
6
(φ0−φ)gµν , (A.1.35)

the action (A.1.34) can be rewritten in the form

S =
1

2κ2

∫

d26X
√

−g̃
[

R̃− 1

6
∇µφ̃∇µφ̃−

1

12
e−

1
3
φ̃HµνρH

µνρ +O(α′)
]

, (A.1.36)

with φ̃ = φ− φ0 and κ = κ0e
φ0 =

√
8πGN . Looking at the part involving the Ricci scalar

R̃, which is determined by the rescaled metric g̃µν , we see that we have removed the factor
involving the dilaton φ in the Einstein–Hilbert part of the action (A.1.36). Whereas the
action written in terms of the original fields is called the string-frame action, the latter,
canonically normalized action is referred to as the Einstein-frame action.

4The rescale of the metric depends on the dimension D of the target spacetime. For simplicity we used
here D = 26.
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In view of coupling the open string to the Abelian gauge field Aµ living on a D-brane, we
have to include a term of the form

SA =

∫

∂Σ

dτAµ(X
ρ) ∂τX

µ, (A.1.37)

where ∂Σ denotes the boundary of the worldsheet Σ. The effective action of the open
string sector, summarizing the leading order (in α′) open string physics at tree level, is
given by5

S = −C
∫

d26X e−φ Tr FµνF
µν , (A.1.38)

where C is a dimensionful constant. Therefore the physics of the open string sector at
tree level is described by Yang-Mills theories. In the case of one D-brane the gauge group
is U(1), but can be generalized to non-Abelian gauge groups. In the section A.3.1 we will
discuss the effective action of D-branes, which determines the open string physics.

A.1.5 Chan-Paton factors

So far we have seen that open strings on one Dp-brane are described by a U(1) gauge
theory. In order to generalize this to non-Abelian gauge theories, Chan-Paton factors are
introduced on a stack of coincident N Dp-branes. Chan-Paton factors are non-dynamical
degrees of freedom from the worldsheet point of view, which are assigned to the endpoints
of the string. These factors label the open strings that connect the various coincident
D-branes. For example, the Chan-Paton factor λij labels strings stretching from brane i
to brane j, with i, j ∈ {1, . . . , N}. The resulting matrix λ is an element of a Lie algebra.
It turns out that the only Lie algebra consistent with open string scattering amplitudes
is U(N) in the case of oriented strings, where N is the number of coincident D-branes.
Therefore λ can be chosen as a hermitean matrix and λij are the corresponding entries of
the matrix.

Although the Chan-Paton factors are global symmetries of the worldsheet action, the
symmetry turns out to be local in the target spacetime. The theory of open strings ending
on coincident D-branes can effectively be described by a non-Abelian gauge theory.

A.2 Superstring Theory

The bosonic string theory is unsatisfactory in two respects. Since we observe fermions
in nature, these particles should not be excluded in string theory. Moreover the bosonic
string theory is inconsistent because tachyons occur in the closed string spectrum. This
indicates an severe instability of the theory.

Remarkably, both problems can be solved by incorporating supersymmetry into string
theory. There are two different approaches to superstring theory:6

5For details how to compute the effective D-Brane action see [239].
6Recently, various approaches using spinor formalism were suggested by Berkovits. For a review see

[240].
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• The Green-Schwarz (GS) formalism is supersymmetric in ten-dimensional Minkowski
spacetime, and can be generalized to curved background geometries with fluxes.

• The Ramond-Neveu-Schwarz (RNS) formalism is supersymmetric on the worldsheet
of the fundamental string.

These approaches are equivalent at least in ten-dimensional Minkowski spacetime.

In this section the RNS approach to superstring theory is explained.

A.2.1 The RNS formalism of superstring theory

The Polyakov action of the bosonic string in D-dimensional Minkowski spacetime reads,
in the conformal gauge hαβ = eω(τ,σ)ηαβ,

S = − 1

4πα′

∫

d2σ ∂αXµ∂
αXµ. (A.2.39)

This action is supplemented by Virasoro constraints (A.1.8) and (A.1.9). For a supersym-
metric worldsheet action, we have to introduce D Majorana fermions ψµ transforming in
the vector representation of the Lorentz group SO(D − 1, 1). We therefore consider the
Polyakov action supplemented by the usual Dirac action for D free massless fermions,

S = − 1

4πα′

∫

d2σ
(
∂αXµ∂

αXµ + ψ̄µγα∂αψµ
)
. (A.2.40)

Here, γα are two-dimensional Dirac matrices satisfying the anticommutation relations
{γα, γβ} = 2ηαβ1. A convenient basis is

γ0 =

(
0 −1
1 0

)

and γ1 =

(
0 1
1 0

)

. (A.2.41)

The worldsheet fields ψµ are Grassmann numbers consisting of two components

ψµ =

(
ψµ−
ψµ+

)

, (A.2.42)

where ψµ− and ψµ+ are real. In this notation, the fermionic part of the action takes the
form

Sf =
i

2πα′

∫

d2σ
(
ψµ−∂+ψ−µ + ψµ+∂−ψ+µ

)
, (A.2.43)

with ∂− = ∂
∂σ− , ∂+ = ∂

∂σ+ and σ± = τ±σ. The equations of motion are ∂+ψ
µ
− = ∂−ψ

µ
+ = 0,

which describe left- and right-moving waves. The action is invariant under the infinitesimal
transformations

δǫX
µ = ǭψµ, (A.2.44)

δǫψ
µ = γα∂αX

µǫ, (A.2.45)

where ǫ is a constant infinitesimal Majorana spinor. This transformation mixes bosonic
and fermionic worldsheet fields and is therefore a global supersymmetry transformation.
Unfortunately, the supersymmetry algebra closes only on-shell, i.e. when the equations
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of motion are imposed. 7 Note that in the case of superstrings, the critical dimension is
D = 10.

A.2.2 Boundary conditions for fermions

Next we consider the boundary conditions that arise from the superstring action. The
possible boundary conditions of the bosonic fieldsXµ are discussed in A.1.1. The boundary
condition for the fermionic part reads

δSf =

∫

dτ
[
ψµ+δψ+ µ − ψµ−δψ− µ

]σ=π

σ=0
. (A.2.46)

Open strings

For open strings we have to demand that the two terms for σ = 0 and σ = π vanish
independently, i.e.

ψµ+δψ+ µ − ψµ−δψ− µ = 0 for σ = 0, π. (A.2.47)

Note that this is equivalent to

δ (ψ+µ)
2 = δ (ψ−µ)

2 for σ = 0, π. (A.2.48)

Since the overall sign of the components can be chosen arbitrarily, we demand ψµ+(τ, 0) =
ψµ−(τ, 0). If we want to impose the boundary conditions at σ = π we have two options
corresponding to the Ramond (R) sector and the Neveu-Schwarz (NS) sector of the theory,

R : ψµ+(τ, π) = +ψµ−(τ, π), (A.2.49)

NS : ψµ+(τ, π) = −ψµ−(τ, π). (A.2.50)

The mode decomposition in the R and NS sector is given by

R : ψµ∓(τ, σ) =
1√
2

∑

n∈Z dµne−inσ∓ , (A.2.51)

NS : ψµ∓(τ, σ) =
1√
2

∑

r∈Z+ 1
2

bµr e
−irσ∓ , (A.2.52)

where dµn and bµr are Grassmann numbers.

The string states are constructed by acting on the ground state of the NS and R sector
with creation operators. The ground state in the NS sector |0〉NS is a spacetime boson and
therefore all string states in this sector are bosonic in spacetime since the oscillators act
as vectors in spacetime. Furthermore the ground state of the NS sector is tachyonic and
will be removed. The first excited string state, which is generated by applying a creation
operator to the ground state of the NS sector, we obtain a massless vector boson.

By contrast, the ground states in the R sector, which are massless spacetime fermions,
are degenerate and differ by chirality in spacetime. By applying creation operators to the

7However, closure of the algebra can be achieved by introducing auxiliary fields. Moreover we used the
worldsheet theory in conformal gauge. There is a more fundamental formulation in which the worldsheet
supersymmetry is a local symmetry.
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ground state of the NS sector, massive string states are obtained. Moreover all states of
the R sector are spacetime fermions.

The spectrum of the NS and R sector can be truncated in a specific way which eliminates
the tachyon. This truncation is called GSO projection, named after Gliozzi, Scherk and
Olive [241]. The GSO projection also ensures that the partition function on the two-
torus is modular invariant. In the NS sector only states with an odd number of creation
operators bµ−r, r > 0 applied to the ground state |0〉NS are kept in the spectrum. The
GSO projection leaves an equal number of bosons and fermions at each mass level, as
required by spacetime supersymmetry. At the massless level the states of the NS sector
are massless gauge bosons, whereas the R sector includes the supersymmetric partner of
the gauge boson, the gaugino.

Closed string

As we saw in bosonic string theory, a closed string consists essentially of left- and right-
moving copies of an open string. Since an open superstring has two different sectors (NS
and R), the closed string sector can be constructed in four ways by combining the left-
moving sector (NS and R) and the right-moving one (NS and R). The NS-NS and R-R
states are spacetime bosons, whereas the NS-R and R-NS states are spacetime fermions.
Applying a GSO projection as in the open superstring case lead to a supersymmetric
theory in spacetime.

The NS-NS sector of oriented strings includes at the massless level exactly the same states
as the closed sector of the oriented bosonic string theory: the graviton gµν , the Kalb-
Ramond field Bµν and the dilaton φ. The NS-R and R-NS states, which are fermionic
in spacetime, contain the gravitino, the supersymmetric partner of the graviton, and the
dilatino, the supersymmetric version of the dilaton. The story for the R-R sector is a little
more subtle due to the degeneracy of ground states of the R-sector. We will see that two
different superstring theories are obtained: type IIA and type IIB.

A.2.3 Type IIA and type IIB superstring

Since the R-sector has two possible inequivalent ground states, which differ by chirality,
we can choose ground states with the same chirality for the left- and right-moving sector.
This corresponds to type IIB superstring theory. The R-R sector consists of a scalar field
C(0), an antisymmetric field C(2) and a totally antisymmetric rank four tensor field C(4)

at the massless level.8 If the R sector ground states for the left- and right-moving modes
have different chiralities, we are lead to type IIA superstring theory. In the type IIA theory
the massless R-R bosons are given by a gauge field C(1) and a totally antisymmetric rank
three tensor field C(3).

9

Although type IIA and type IIB superstring theories are inequivalent, there exist dualities
between both theories. For example, T-duality relates type IIA and type IIB string theories

8The components of C(0), C(2) and C(4) are denoted by C, Cµν and Cµνρσ, i.e. the number of indices is
not explicitly specified for the components.

9The components of C(1) and C(3) are called Cµ and Cµνρ respectively.
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Type number of bosonic massless fields non-Abelian gauge group
supercharges

heterotic SO(32) 16 gµν , φ,B(2), A
a
µ SO(32)

heterotic E8 × E8 16 gµν , φ,B(2), A
a
µ E8 × E8

IIA 16 + 16 gµν , φ,B(2), C(1), C(3) -

IIB 16 + 16 gµν , φ,B(2), C(0), C(2), C(4) -

I 16 gµν , φ,A
a
µ, C(2) SO(32)

Table A.1: Bosonic massless fields of the five consistent superstring theories in ten spacetime
dimensions. gµν and φ are the metric and the dilaton, respectively. The Kalb-Ramond field is
denoted by B(2). Moreover in superstring theories there exist p-form gauge potentials C(p) in the
R-R sector of the closed string. In heterotic and type I superstring theories there are also non-
Abelian gauge degrees of freedom Aa

µ present. The corresponding gauge groups are listed in the
last column. By adding D-branes to string theories other gauge groups are possible.

on different target spacetimes. Moreover, in type IIB string theory there is strong-weak
duality build in, known as S-duality.

Altogether, there are five consistent superstring theories in ten spacetime dimensions: type
I, type IIA and type IIB as well as SO(32) heterotic and E8 ×E8 heterotic string theory.
Although all these theories describe vibrating strings, the details are quite different. We
will not discuss type I and the two heterotic string theory in this glossary. A few details
of these theories may be found in table A.1.

A.2.4 Low-energy effective action of superstring theory

As in the bosonic case (see section A.1.4) we can write down a spacetime action taking
into account the effects of the massless superstring excitations. These excitations are listed
in table A.1. Since the effective supersymmetric action necessarily incorporates gravity,10

the theory is called supergravity.

The low-energy effective action for type IIA and type IIB superstring theories are called
type IIA and type IIB supergravity, respectively. As an example, we consider the action of
type IIB supergravity. Type IIB superstring theory consists of the following closed string
states at the massless level: the metric gµν , the NS-NS Kalb-Ramond field Bµν , the dilaton
φ as well as the p-form R-R potentials C(0), C(2) and C(4). Moreover we define as linear
combinations of these fields the axion-dilaton scalar τ as well as the complex three-form
G(3) by

τ = C(0) + ie−φ, G(3) = F(3) − τH(3). (A.2.53)

Here, F(3) and H(3) are the field strength of C(2) and B(2), i.e. F(3) = dC(2) and H(3) =
dB(2). The field strength of C(4) is given by F(5) = dC(4). More important is the self-dual
combination

F̃(5) ≡ F(5) +
1

2
B(2) ∧ F(3) −

1

2
C(2) ∧H(3). (A.2.54)

10These effective spacetime theories are not only invariant under global supersymmetry transformations,
but also under local ones. Since the commutator of two supersymmetry transformations is a translation,
the theory is also invariant under local diffeomorphisms and therefore contains gravity.
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The type IIB supergravity action in the Einstein frame then reads

SIIB =
1

2κ2
10

∫

d10x
√−g

[

R− |∂µτ |2
2(Im τ)2

−
|G(3)|2
12Im τ

−
|F̃(5)|2
4 · 5!

}

+
1

8iκ2
10

∫
C(4) ∧G(3) ∧G(3)

Imτ
, (A.2.55)

where the ten-dimensional gravitational coupling is 2κ2
10 = 16πG10 = 1

2π (2πls)
8g2
s and

ls =
√
α′ is the string length. Moreover we have to impose the self-duality constraint of

F̃(5) at the level of the equations of motion by hand, i.e. ⋆F̃(5) = F̃(5), where ⋆ denotes the
ten-dimensional Hodge star operator.

A.2.5 T-duality

T-Duality (or target space duality) denotes the equivalence between two superstring the-
ories compactified on different background spacetimes. For simplicity, let us consider
only bosonic string theory compactified on a circle, i.e. the coordinate X25 is periodically
identified in the following way,

X25 ∼ X25 + 2πR. (A.2.56)

T-duality of closed strings

Now let us restrict ourselves to closed strings. The embedding function X25(τ, σ) has to
satisfy the periodicity condition

X25(τ, σ + 2π) = X25(τ, σ) + 2mπR, (A.2.57)

whereR is the radius of the circle andm is an arbitrary integer. The numberm counts how
often the closed string winds around the compactified direction X25 and is therefore called
winding number. In the non-compactified directions, the mode decomposition (A.1.12)
and (A.1.13) for the right and left-moving modes can be used subject to pµR = pµL. In the
compactified direction the same mode decomposition can be applied, however now with
p25
R 6= p25

L . Omitting the oscillatory terms, we have the decomposition

X25
R (τ − σ) =

1

2
xµ0 + α′pµR(τ − σ) + . . . ,

X25
L (τ + σ) =

1

2
xµ0 + α′pµL(τ + σ) + . . . . (A.2.58)

Since X25 = X25
L +X25

R , the periodicity condition reads

α′(p25
L − p25

R ) = mR. (A.2.59)

Since theX25 direction is compactified, the center of mass momentum p25
R +p25

L is quantized
in units of 1/R, i.e.

p25
L + p25

R =
n

R
. (A.2.60)



A.2. Superstring Theory 203

Thus p25
R and p25

L are given by

p25
L =

1

2

(
n

R
+
mR

α′

)

, (A.2.61)

p25
R =

1

2

(
n

R
− mR

α′

)

. (A.2.62)

We are now interested in the spectrum of the closed string states. First of all, the level-
matching condition (see section A.1.2) for the closed string is modified,

N̄ −N = nm, (A.2.63)

and the mass formula for string states reads

M2 =

(
mR

α′

)2

+
( n

R

)2
+

2

α′
(
N + N̄ − 2

)
. (A.2.64)

However this is not the whole story. The closed string sector has an remarkable symmetry.
Considering the mass formula, it turns out that the closed string spectrum for a compact-
ification with radius R is identical to the closed string spectrum for a compactification
with radius R̃ = α′/R if we interchange the winding number m and momentum number
n,

R↔ R̃ =
α′

R
, (A.2.65)

(n,m)↔ (m,n) . (A.2.66)

Although here we have described the proof for T-duality only for free strings, it can be
shown that T-duality of closed strings is an exact symmetry at the quantum level also if
interactions are included.

In fact it is not possible to distinguish between both compactifications. Note that if R is
large, then the dual radius R̃ is small. This is a remarkable feature, which is not present in
usual field theories of pointlike particles. Since T-duality exchanges the winding number
on the circle with the quantum number of the corresponding (discrete) momentum, it is
clear that this symmetry has no counterpart in ordinary point particle field theory, as the
ability of closed strings to wind around the compact dimension is essential.

T-duality of open strings

At first sight, it seems that T-duality does not apply to theories with open strings, since
open strings do not have a winding sector. However, this is only apparent [242]. T-duality
can be restored in the open string sector with the help of D-branes which are hyperplanes
where open strings end. By applying T-duality, not only the radius of the compactified
dimension changes, but also the dimension of the D-brane.

To see this, let us consider the propagation of open bosonic strings in a spacetime which
is compactified in the X25 direction. Furthermore we assume for simplicity that we have
a space-filling D25-brane, i.e. the endpoints of the string can move freely. As it was in
the case of closed strings, the center of mass momentum in the compactified direction is
quantized, i.e. p25 = n/R and contributes terms of the form n2/R2 to the mass formula of
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string states. However, this contribution changes if we apply the T-duality rules of closed
strings only. Since the dual radius is R̃ = α′/R, the contribution to the mass formula
changes to n2R̃2/α′ 2.

T-duality can be restored in the open string sector by considering D-branes. Instead of the
D25-brane described above, consider now a D24-brane in the dual theory, which does not
wrap the X25-direction. Due to the Dirichlet boundary conditions, we have no momentum
states in the compact direction. In addition, the endpoints of the open string must remain
attached to points with x25 = x25

0 + 2πnR̃, where x25
0 is the position of the D24-brane

in the compactified direction. Therefore we get winding states in the dual theory which
contribute to the mass formula by

(

nR̃

α′

)2

=
( n

R

)2
. (A.2.67)

This is precisely the contribution of the momentum states in the original theory with a
space filling D25-brane.

Therefore T-duality is an exact symmetry of the open string sector, if the dimension of
the D-brane is also changed. This means that the type of boundary conditions of open
strings (Neumann or Dirichlet) has to be exchanged in the direction in which T-duality is
performed.

As an example consider a D24-brane stretched along the coordinates X0,X1, . . . ,X24. In
these directions Neumann boundary conditions for open strings are imposed. Moreover in
the X25 direction open strings will satisfy Dirichlet boundary conditions. Assuming that
theX24 andX25 directions are compactified on circles with radiusR24 andR25 respectively
we can apply T-duality to both compact directions. If we perform a T-duality along X25,
the open strings in the dual theory in the X25-direction obey also Neumann boundary
conditions. Therefore in the dual theory a D25-brane exists and the radii of the two
compactified directions are given by R24 and α′/R25, respectively. If we apply a T-duality
along X24 instead, the open strings no longer satisfy Neumann boundary conditions in
the X24-coordinate. Therefore we are left with a D23-brane in the dual theory, which is
compactified on circles with radii α′/R24 and R25.

A.2.5.1 T-duality in superstring theory

Up to now we have only discussed the rules of T-duality in bosonic string theory. However,
T-duality is also an exact symmetry of superstring theories. In fact T-duality relates the
following superstring theories:

• heterotic SO(32) superstring theory on a circle with radius R and heterotic E8×E8

superstring theory on a circle with radius α′/R.

• type IIA superstring theory on a circle with radius R and type IIB superstring theory
on a circle with radius α′/R.
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A.2.6 S-duality

S-duality is a strong-weak coupling duality, in the sense that a superstring theory in the
weak coupling regime is mapped to another strongly coupled superstring theory. S-duality
relates the string coupling constant gs to 1/gs in the same way that T-duality maps the
radii of the compactified dimension R to α′/R.

The most prominent example where S-duality is present is type IIB superstring theory.
This theory is mapped to itself under S-duality. This is due to the fact that S-duality is
a special case of the SL(2,Z) symmetry of type IIB superstring theory: In the massless
spectrum of type IIB superstring theory, the scalars φ and C(0) and the 2-form potentials
B(2) and C(2) are present in pairs. Arranging the R-R scalar C(0) and the dilaton φ in a
complex scalar τ = C(0) + i exp(−φ), the SL(2,R) symmetry of the equations of motion
of type IIB supergravity (see (A.2.55)) acts as

τ → aτ + b

cτ + d
, (A.2.68)

with the real parameter a, b, c, d satisfying ad−bc = 1. Moreover, the R-R 2-form potential
C(2) and the NS-NS B(2) transform according to

(
B(2)

C(2)

)

→
(

d −c
−b a

)(
B(2)

C(2)

)

. (A.2.69)

Due to charge quantization, this symmetry group breaks down to SL(2,Z) of the full
superstring theory. A particular case of the above symmetry is S-duality. If the R-R
scalar C(0) vanishes, the coupling constant gs = exp(φ) of type IIB superstring theory can
be mapped to 1/gs by the SL(2,Z) transformation with a = d = 0, and b = −c = 1, i.e.

φ→ −φ, B(2) → C(2), C(2) → −B(2). (A.2.70)

Note that the SL(2,Z) duality of type IIB superstring theory is a strong-weak coupling
duality relating different regimes of the same theory.

Since the NS-NS field B(2) couples to the fundamental string, the fundamental string
carries one unit of B(2) charge, but is not charged under the NS-NS 2-form field C(2).
However, there are also solitonic strings which are charged under the NS-NS 2-form field
C(2), but not under the Kalb-Ramond field B(2). This objects are D1-branes (see also
section A.3). Under S-duality, a fundamental string is transformed into a D1-brane and
vice versa. Moreover a general SL(2,Z) transformation maps the fundamental string into
a bound state (p, q), carrying p units of NS-NS charge and q units of R-R charge.

A.3 D-branes

D-branes are non-perturbative objects in string theory which have an interesting double
life. So far we considered D-branes as hyperplanes where fundamental strings can end.
This is an microscopic point of view, since D-branes are defined as boundaries of world-
sheets of open strings. We will see that this interpretation of D-branes is appropriate if
the string coupling constant gs is small, i.e. gs ≪ 1. In this case the tension (or equiva-
lently the energy density) of the D-brane is much bigger in comparison to the tension of
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a fundamental string. Therefore the deformation of the D-brane in the transverse space
may be described by scalar fields. Moreover, the open strings give rise to gauge fields
living on the brane. To be precise, the massless string excitations of open strings ending
on D-branes can be described in general by a supersymmetric (non-)Abelian gauge theory.

In addition, D-branes are also soliton-like solutions to the macroscopic equations of motion
for the low-energy theory of superstring theory, governed effectively by supergravity. In
that macroscopic point of view D-branes are objects such as black holes, cosmic strings,
monopoles, which curve the surrounding spacetime (and which are charged as we will see
below). This description is reliable if the surrounding spacetime is weakly curved. As
we will see later in this section this is the case if gsN ≫ 1, where N is the number of
coincident D-branes.You should view these D-branes as further ingredient to superstring
theory besides fundamental strings. So called BPS D-branes carry charges of the R-R
p-form gauge fields C(p). Due to charge conservation BPS D-branes are stable. In type
IIA/IIB superstring theory Dp-branes with p even/odd are BPS since in this superstring
theories RR gauge potentials C(p+1) are present to which Dp-branes couple [243].

Both interpretations of D-branes will be discussed in the subsequent sections.

A.3.1 Effective action of D-branes

In this section we consider D-branes as hyperplanes where open strings can end. The
massless excitations of open strings give rise to gauge fields and scalar fields (as well as
their fermionic superpartners, e.g. gauginos). For simplicity we consider in the following
only the effective action for one Dp-brane. Later in this section we generalize the effective
action to describe coincident Dp-branes.

The dynamics of the massless bosonic open string modes ending on one Dp-brane (or on
one anti-Dp-brane) is described by an effective action

SDp = SDBI ± SCS, (A.3.71)

consisting of a Dirac-Born-Infeld (DBI) and a Chern-Simons (CS) action. The relative sign
between the DBI and CS part of the action depends whether it is a Dp or anti-Dp-brane
(also denoted by Dp-brane). The plus sign corresponds to a Dp-brane.

The interaction of the NS-NS massless fields gµν , Bµν and φ as well as the NS field strength
Fab on the Dp-brane are given by the DBI action

SDBI = −τp
∫

Dp
dp+1ζ e−φ̃

√

−det (P[g]ab + Fab) , (A.3.72)

where Fab = (2πα)′ 2Fab +P[B]ab and P[B]ab,P[g]ab are the pullback of Bµν and gµν , i.e.

P[B]ab = ∂aX
µ∂bX

νBµν , P[g]ab = ∂aX
µ∂bX

νgµν , (A.3.73)

with ∂a = ∂
∂ζa and a, b,= 0, . . . , p are the worldvolume indices. The Dp-brane is embedded

into the target spacetime by the functions Xµ(ζa). Implicitly, equation A.3.72 employs
static gauge. We identify the worldvolume coordinates of the Dp-brane with the first
p coordinates of the target spacetime, i.e. Xa = ζa. Therefore we are left with 9 − p
dynamical scalar fields, which we sometimes call Φi(ζa).
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Finally, φ̃ is related to the dilaton field φ by

φ̃ = φ− φ∞ , (A.3.74)

where φ∞ is an asymptotic value setting the string coupling constant gs = exp(φ∞).

The tension of the Dp-brane τp is given by τp = (2π)−pα′ −(p+1)/2g−1
s for type II theories.

Note that we get the right dilaton dependence g−1
s for the effective open string tree level

action. Throughout the thesis we use φ̃ instead of the Dilaton field φ. To simplify the
notation we will drop the tilde of φ̃.

Expanding the DBI action by using det(1+M) = 1− 1
4tr(M2) for antisymmetric matrices

M we see that the DBI action is a generalization of a Yang-Mills action

SDBI ≃
(2πα′)2

4
τp

∫

Dp
dp+1ζ FabFab , (A.3.75)

if consider only a constant dilaton field φ̃. The prefactor of the action (2πα′)2τp/4 may be
identified with the gauge coupling constant 1/(g2

Y M ). Therefore we obtain for gYM

g2
YM = (2π)p−2α′ (p−3)/2gs . (A.3.76)

For D3-branes, i.e. for p = 3, this specializes to

g2
YM = 2πgs. (A.3.77)

The Chern-Simons part of the action describes the interaction of the R-R fields as well as
the interaction with the NS-NS fields

SCS = µp

∫

Dp

∑

q

P
[
C(q+1)

]
∧ tr eF . (A.3.78)

The integral is restricted only to p+ 1-forms. Moreover, µp is related to τp by µp = τpgs.

The DBI and CS part together form the relevant action for a single Dp-brane at leading
classical order in the string coupling gs, i.e. at disk level, and at leading order in the
derivatives. Note that it is also possible to write down an effective action of a Dp-brane
describing the fermionic massless excitations of open strings. The fermionic part of the Dp-
brane action (truncated to order α′ 2 will be discussed in chapter 5. Note that the fermionic
part of the effective action for a single D-brane in arbitrary backgrounds (including RR
fields) is known to all orders in α′ and quadratic order in the fermionic fields [167–169].
We will see in section 5.2 that the form of the action is determined by supersymmetry and
T-duality [169],

So far we only discussed the effective action for a single Dp-brane. Let us now discuss
the generalization of the effective action to multiple coincident Dp-branes. As review in
section A.1, we have to introduce Chan-Paton factors to keep track of all different massless
open string excitations by numbering the Dp-branes on which the two endpoints of the
open string end. That means we have to promote the scalar fields and Abelian gauge fields
to non-Abelian scalar and gauge fields, respectively. In the case of N Dp-branes in type
IIA/IIB string theory, the gauge group is U(N). The full non-Abelian action for such a
stack of Dp-branes is not completely known.11

11However, note that if we are only interested in the overall U(1) subgroup of the U(N) gauge group
the (unknown) non-Abelian action reduces to the Abelian action discussed above if we multiply the whole
action by N.
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Although the action is not completely known, it is possible to write down an effective
action [193] which captures the right terms up to order F 4 [244],12 but fails to be correct
at order F 5. The non-Abelian DBI action in static gauge reads

SDBI = −τp Str

∫

Dp
dp+1ξ

√

detQ

[

det
(

Pab

[
Eµν + Eµi(Q

−1 − δ)ijEjν

]
+ 2πα′Fab

)
] 1

2

(A.3.79)
with

Qij = δij + i2πα′[Φi,Φk]Ekj . (A.3.80)

Here we also used the short-hand notation Eµν = gµν +Bµν . Besides the term (Q−1 − δ)
the other new ingredient in the non-Abelian DBI action is the prescription (denoted by
Str) how to order the generators of the gauge group. In this action we have to use the
symmetrized trace prescription invented by Tseytlin [245]: first symmetrize the product
of the generators of the gauge group and then take the usual trace.

A.3.2 D-branes as charged BPS objects

In superstring theories Dp-branes carry conserved charges of topological nature. In par-
ticular N coincident Dp-branes are described at low energies by solitonic supersymmetric
solutions of the effective supergravity equations of motion that carry R-R charge, which
is given by (A.3.88). Splitting the ten-dimensional spacetime into the worldvolume direc-
tions a, b = 0, . . . , p (with coordinates xa) and the transverse directions i, j = p+ 1, . . . , 9
(with coordinates yi), the solution for the metric, dilaton and the R-R p-form potentials
are given by

ds2 = Hp(r)
−1/2 ηab dx

adxb +Hp(r)
1/2 dyidyi (A.3.81)

eφ = gsHp(r)
(3−p)/4 (A.3.82)

C(p+1) =
(
Hp(r)

−1 − 1
)
g−1
s dx0 ∧ dx1 ∧ · · · ∧ dxp (A.3.83)

Bµν = 0, (A.3.84)

where the harmonic function Hp(r) with r2 =
∑9

i=p+1 y
2
i is

Hp(r) = 1 +

(
Lp
r

)7−p
. (A.3.85)

The characteristic length Lp is given by

L7−p
p = (4π)(5−p)/2Γ

(
7− p

2

)

gsNα
′(7−p)/2. (A.3.86)

For N D3-branes we get the well-known relation

L4
3 = 4πgsNα

′ 2. (A.3.87)

Whereas C(q+1) vanishes for a Dp-brane (q 6= p), the Dp-brane induces a non-trivial p+2-
form field strength13 F(p+2) = dC(p+1) as well as a non-trivial dilaton for p 6= 3. The charge

12To be precise, the derivative corrections are known up to order D4F 4 and D8F 2 where D represents
the gauge-covariant derivative.

13Note that for type IIB string theory and supergravity F(5) has to be self-dual, i.e. F(5) = ⋆F(5). There-
fore in the case of D3-branes, the five-form field strength can be calculated by F(5) = 1

2

(
dC(4) + ⋆dC4

)
.
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of Dp-branes can be calculated by integrating the R-R flux through the (8−p)-dimensional
sphere at infinity (surrounding the pointlike charge in the (9− p)-dimensional transversal
space)

Q =

∫

S8−p
∞

⋆F(p+2), (A.3.88)

where ⋆ is the ten-dimensional Hodge operator. For the solution A.3.81 the charge Q is
given by Q = N, i.e. the charge Q encodes the total number of Dp-branes.





B
Appendix to Chapter 7

We present the main calculations for chapter 7 in this appendix. In chapter 7 we have
studied a (2+1)-dimensional Chern-Simons-Matter theory and added flavor degrees of
freedom, transforming in the fundamental representation of the gauge group.

Here, we consider probe branes in the type IIB configuration of the ABJM setup in section
B.1. Moreover we show how to lift the type IIB setup to M-theory in section B.2. In
particular we relate the coordinates of type IIB setup to the coordinates of C4/Zk on the
M-theory side. Then we calculate in B.3 the preserved supersymmetry of certain flavor
configurations in M-theory. Finally we work out explicitly the N = (0, 6) supersymmetry
transformations of the codimension one field theory in section B.4.

B.1 Supersymmetry of Type IIB Probes

In this section we add supersymmetry-preserving D-branes to the type IIB setup of the
ABJM theory. Our starting point is the list of probes in [102], since these are known to
be mutually supersymmetric with respect to the D3-branes, but now we have two new
ingredients: the NS5-branes and the (1,k)5-brane.1 These new ingredients break the usual
SO(6) symmetry, which rotates the (345789) directions into one another, down to the
SO(3) that rotates (345) and (789) simultaneously.

As mentioned in section 7.4.1, we limit our search for supersymmetric probes by imposing
four constraints. First, we consider only D1-, D3-, D5- and D7-brane probes (the list from
[102]). Second, we do not separate any probes from the D3-branes in overall transverse
directions. Third, when we consider multiple probes, i.e. Nf > 1, we do not separate them
from each other, so that they retain a U(Nf ) symmetry. Fourth, we consider only probes

1Another new ingredient is that the x6 direction is compact. While that is crucially important for
deriving the low-energy (2+1)-dimensional worldvolume field theory, it does not affect the counting of
supersymmetries.
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aligned along the coordinate axes. More generally the probe brane could be at an angle
with respect to these axes. We studied a few special cases of probes at angles (see below)
and found that such probes never appear to exhibit enhanced supersymmetry.

Our results are summarized in table 7.1 in section 7.4.1, reproduced here as table B.1.
The details of the notation (such as the column headings) appear in section 7.4.1.

Type IIB Type IIA M theory codim wrapping SUSY SUSY (anti)

D1 D2 M2 2 0(7) 2 2

D3 D2 M2 0 0126 6 0

D3 D4 M5 1 01(37) 3 3

D3 D4 M5 1 01(38) 2 2

D3 D2 M2 2 0(34)6 2 2

D3 D2 M2 2 06(78) 2 2

D5 D6 KK 0 012(347) 2 2

D5 D6 KK 0 012(349) 4 2

D5 D6 KK 0 012789 6 0

D5 D4 M5 1 013456 3 3

D5 D4 M5 1 01(378)6 2 2

D5 D4 M5 1 01(389)6 3 3

D5 D6 KK 2 0(34)789 2 2

D7 D6 KK 0 0126(3478) 2 4

D7 D6 KK 0 0126(3479) 2 2

D7 D8 M9 1 01345789 3 3

Table B.1: List of D-branes (extended along the coordinate axes) that we can add to the type IIB
construction while still preserving some supersymmetry.

To count unbroken supercharges we follow [215] very closely. In particular, we perform
a different T-duality from the one that leads to the ABJM theory: we T-dualize in x2,
not x6, and then lift to M-theory. The type IIB construction reviewed in section 7.3.2
then has a very simple interpretation in terms of M-branes alone (rather than M-branes in
some nontrivial geometry). The D3-branes become M2-branes along (016), the NS5-brane
becomes an M5-brane along (012345), and the (1, k)5-brane becomes an M5-brane tilted
at an angle θ in the (37), (48), and (59) directions and an angle −θ in the (2#) directions,
relative to the other M5-brane, where tan θ = k.

Let ǫ denote the 32-component Majorana spinor and ΓA the 32 × 32 Γ-matrices of 11-
dimensional supergravity. The Γ matrices obey the flat space Clifford algebra {ΓA,ΓB} =
2ηAB , where we use a mostly-plus metric. Let ΓABC... denote the totally antisymmetric
product of Γ-matrices, equivalent to the usual product due to the Clifford algebra. The
product Γ0123456789# = 132, where 132 is the 32× 32 identity matrix.

The M2- and M5-branes give rise to projection conditions on ǫ,

Γ016ǫ = ǫ, Γ012345ǫ = ǫ, RΓ012345R
−1ǫ = ǫ, (B.1.1)

where the last condition, for the rotated M5-brane, involves the rotation matrix

R(θ) = exp

(

−θ
2
Γ2# +

θ

2
Γ37 +

θ

2
Γ48 +

θ

2
Γ59

)

. (B.1.2)



B.1. Supersymmetry of Type IIB Probes 213

Notice that R−1(θ) = R(−θ). Making use of the fact that all of the Γ-matrices in R
anti-commute with Γ012345, we can simplify the condition for the rotated M5-brane,

RΓ012345 R
−1ǫ = R2Γ012345ǫ = R2ǫ = ǫ, (B.1.3)

where we used the projection condition for the un-rotated M5-brane. We can then write
the rotated M5-brane’s projection condition as (R2 − 132)ǫ = 0. At this point we need to
write the matrices appearing in the projection conditions explicitly, in order to count the
number of preserved supercharges. Following [215], we use a basis in which the following
set of mutually-commuting matrices are diagonal:

Γ012345 = (116,−116)

Γ016 = (12,−12,−12,12,−12,12,12,−12, . . .)

Γ2#37 = (18,−18, . . .)

Γ2#48 = (14,−14,14,−14, . . .)

Γ2#59 = (12,−12,12,−12,12,−12,12,−12, . . .).

In this basis, the matrix in the projection condition for the rotated M5-brane becomes

R2 − 132 = 2RΓ2# (sin(−2θ)12, sin(−θ)12, sin(−θ)12, 02, sin(−θ)12, 02, 02, sin(θ)12, . . .) .
(B.1.4)

The 02’s in this equation that overlap with the 12’s in Γ016 indicate which components
of ǫ are preserved, hence the full system of M2-brane, M5-brane, and rotated M5-brane
preserves 6 real supercharges.

To study probe branes we first need to translate all the type IIB D-branes to the M-theory
description, which produces various M2- and M5-branes, as well as KK monopoles. We
do not present every case in detail, rather, we just show a few representative examples,
with decreasing amounts of supersymmetry.

First we note that when k = 0, such that the rotation matrix R is simply the identity (and
in the type IIB description we have just NS5-branes), all of the objects we study preserve
4 real supercharges, with two exceptions: the D3-branes along (0126) and the D5-branes
along (012789). These two D-branes preserve 8 real supercharges when k = 0.

For nonzero k, the easiest example is in fact the D5-brane along (012789) (see also
[203, 215]), which upon T-duality in x2 and lift to M-theory becomes an M5-brane along
(01789#). The projection condition is Γ01789#ǫ = ǫ. We can use Γ0123456789# = 132 to
write Γ01789# = Γ016Γ012345, hence this M5-brane does not impose any additional con-
straint on ǫ, and preserves 6 real supercharges.

An example preserving 4 real supercharges is a D5-brane along (012349), which upon T-
duality in x2 and uplift to M-theory becomes an M5-brane along (01349#). In this case
we use 132 = −Γ25Γ25 to write Γ01349# = −Γ012345Γ2#59. In the upper-left 16× 16 block,
Γ012345 is simply the identity, so in this subspace Γ01349# = −Γ2#59. Using the Γ-matrices
written explicitly above, we can count that this probe preserves 4 real supercharges. The
same steps obviously apply for cases related to this one by SO(3) rotations. An anti-D5-
brane has −Γ01349# = Γ2#59, and hence preserve 2 real supercharges.

An example preserving 3 real supercharges is a D3-brane along (0137). Here we first rotate
the D3-brane so that it is extended along (0237), which then becomes an M2-brane along
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(037). We insert 132 = −Γ2#Γ2# to write Γ037 = −Γ02#Γ2#37. We need to know the
additional Γ matrix,

Γ02# = (σ1, σ1,−σ1,−σ1, σ1, σ1,−σ1,−σ1, . . .) , (B.1.5)

where σ1 is the first Pauli matrix, σ1 = ((0, 1), (1, 0)). We thus have

Γ037ǫ = −Γ02#Γ2#37ǫ = (−σ1,−σ1, σ1, σ1, σ1, σ1,−σ1,−σ1, . . .) ǫ = ǫ. (B.1.6)

Each σ1 imposes an additional constraint on the two components of ǫ in that 2× 2 block,
hence this brane kills half of the supercharges, i.e it preserves 3 real supercharges.

The cases preserving 2 real supercharges are slightly more involved. For example, consider
the D1-brane along (07), which becomes an M2-brane along (027). Inserting 132 = Γ3Γ3

we have Γ027ǫ = −Γ23Γ037ǫ = ǫ. We know that Γ037 is 2× 2 block-diagonal in this basis,
but Γ23 is not (it can be written as Γ23 = −i12 ⊗ 12 ⊗ σ1 ⊗ σ1 ⊗ 12). Nevertheless, these
cases are straightforward to check explicitly, although we do not present the details.

As mentioned above, we could also consider probe branes rotated with respect to the
coordinate axes. In principle, such branes could have enhanced supersymmetry. We have
not analyzed all possible rotations. For many of the branes in our table we considered
the special case in which the brane is rotated by one angle in the (37), (48) and (59)
planes simultaneously and by an independent angle in the (2#) plane. In all cases the
rotated brane never exhibits enhanced supersymmetry, and in most cases preserves fewer
supersymmetries.

B.2 Type IIB to M-theory

When we add flavor branes to the brane construction of the ABJM theory, many aspects of
the field theory are best understood from the type IIB description, while the symmetries
and the amount of supersymmetry preserved become manifest after the “near-horizon”
limit in M-theory. To determine where the probe D-branes of the type IIB setup end up
in M-theory on R2,1 × C4/Zk, we need to find the coordinate transformations from the
type IIB coordinates, xm with m = 0, . . . , 9, to the M-theory coordinates zi, i = 1, 2, 3, 4
on C4. Our objective in this appendix is to write the zi in terms of the xm (and vice
versa) explicitly, so that we can translate directly between the two coordinate systems.

As reviewed in section 7.3.3, when we T-dualize along x6 and then lift to M-theory, the
NS5-brane and (1, k)5-brane both become KK monopoles in M-theory extended along
(012), so that we only need to consider the eight other directions, which we denote by

ϕ1 = x6, ϕ2 = x♯, ~x1 =





x7

x8

x9



 , ~x2 =





x3

x4

x5



 . (B.2.7)

Both x6 and x♯ have 2π periodicity. The metric describing the intersection of the two KK
monopoles is [246]

ds2 = Uijd~x
i · d~xj + U ij(dϕi +Ai)(dϕj +Aj), (B.2.8)

Ai = d~xj · ~ωji = dxjaω
a
ij, ∂

xj
a
ωbki − ∂xk

b
ωaji = ǫabc∂

xj
c
Uki, (B.2.9)
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where U ij is the transposed inverse of Uij. Notice in particular that the metric is uniquely
determined by the matrix U and that the equations are linear in U so that we can obtain
the configuration for two monopoles simply by linear superposition.

The NS5-brane becomes a KK monopole associated with the circle ϕ1 = x6 and transverse
directions ~x1. The corresponding U matrix reads

U =

(
1 0
0 1

)

+

(
h1 0
0 0

)

, h1 =
1

2|~x1| . (B.2.10)

The identity matrix in U indicates that asymptotically the space is R
6 × T 2. The (1, k)5-

brane is rotated in the (~x1, ~x2)- and (ϕ1, ϕ2)-plane. The U matrix of such a KK monopole
is

U =

(
1 0
0 1

)

+

(
h2 kh2

kh2 k2h2

)

, h2 =
1

2|~x1 + k~x2| . (B.2.11)

The metric describing the two intersecting KK monopoles is then

U =

(
1 0
0 1

)

+

(
h1 0
0 0

)

+

(
h2 kh2

kh2 k2h2

)

. (B.2.12)

The metric in equation (B.2.8), with the U matrix in equation (B.2.12), is the metric of
the space X8 mentioned in section 7.3.3.

To relate the type IIB coordinates ϕ1, ϕ2, ~x
1 and ~x2 to the C

4 coordinates zi, we proceed
in five steps. The first step is to take the “near-horizon” limit [137] that we described in
section 7.3.3. The four subsequent steps are simply changes of coordinates.

The “near-horizon” limit consists of taking ~x1 ∼ ~x2 ∼ 0, which in simple terms means we
drop the identity matrix from the U in equation (B.2.12).

Now we change coordinates four times. The first change of coordinates diagonalizes the
new U , producing the “near-horizon” metric of strictly perpendicular KK monopoles [137]:

~x
′1 = ~x1, ~x

′2 = ~x1 + k~x2, (B.2.13)

ϕ′
1 = x6 − 1

kx
♯, ϕ′

2 =
1

k
x♯, (B.2.14)

with new U matrix U ′,

U ′ =

(
1

2|~x′1| 0

0 1
2|~x′2|

)

. (B.2.15)

The new circle coordinates, ϕ′
i, i = 1, 2, are 2π periodic, but the 2π periodicity of x♯ leads

to an extra identification

(ϕ′
1, ϕ

′
2) ∼ (ϕ′

1, ϕ
′
2) +

2π

k
(−1, 1), (B.2.16)

that is, if we shift ϕ′
1 by a multiple of 2π

k and simultaneously shift ϕ′
2 by the opposite

amount, we end up at the same point. The above periodicity leads to the Zk action onC4, as we see below. In the new coordinates we have two perpendicular KK monopoles
so we treat them simultaneously. The Taub-NUT metric of a single KK monopole in the
“near-horizon” limit is

ds2i =
1

2|~x′i|(d~x
′i)2 + 2|~x′i|

(
dϕ′

i +Ai
)2
, (B.2.17)
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where i = 1, 2 labels the KK monopoles.

Now we do the second change of coordinates, which is simply a change from Euclidean to
spherical coordinates, (d~x

′i)2 = dr2i + r2i (dθ
2
i + sin 2θidφ

2
i ), so that we obtain

ds2i =
1

2ri
dr2i +

ri
2

(
dθ2
i + sin 2θidφ

2
i

)
+ 2ri

(

dϕ′
i +

1

2
cos θidφi

)2

, (B.2.18)

where we have used Ai = 1
2 cos θidφi.

In the third change of coordinates we define a new radial coordinate ri = ρ2
i /2 and new an-

gles ϕ′
i = ψi/2. The metric then becomes that of flat space, with an extra Zk identification,

ds2i = dρ2
i +

ρ2
i

4
(dθ2

i + dφ2
i + dψ2

i + 2cos θidφidψi). (B.2.19)

The three angles have ranges 0 ≤ θi < π, 0 ≤ φi < 2π and 0 ≤ ψi < 4π, and the ψi have
the extra identification

(ψ1, ψ2) ∼ (ψ1, ψ2) +
4π

k
(−1, 1), (B.2.20)

following from equation (B.2.16).

In the fourth and final change of coordinates, we introduce complex coordinates for the
first KK monopole,

z1 = ρ1 cos

(
θ1
2

)

e−i(ψ1+φ1)/2, z2 = ρ1 sin

(
θ1
2

)

e−i(ψ1−φ1)/2, (B.2.21)

while for the second KK monopole we choose something similar, but with i→ −i,

z3 = ρ2 cos

(
θ2
2

)

ei(ψ2+φ2)/2, z4 = ρ2 sin

(
θ2
2

)

ei(ψ2−φ2)/2. (B.2.22)

In these coordinates, the Taub-NUT metrics in the “near-horizon” limit have become

ds21 = dz1dz̄1 + dz2dz̄2, ds22 = dz3dz̄3 + dz4dz̄4, (B.2.23)

and the Zk transformation of equation (B.2.20) acts as zj → e
2πi
k zj.

Tracing back through our coordinate transformations, we can write the original type IIB
coordinates (plus x♯) in terms of the zi:

x6 =
1

2
arg (z̄1z̄2z3z4), (B.2.24)

x♯ =
k

2
arg (z3z4), (B.2.25)





x7

x8

x9



 =





Re(z1z̄2)
−Im(z1z̄2)

1
2(|z1|2 − |z2|2)



 , (B.2.26)





x3

x4

x5



 =
1

k









Re(z3z̄4)
Im(z3z̄4)

1
2(|z3|2 − |z4|2)



−





Re(z1z̄2)
−Im(z1z̄2)

1
2 (|z1|2 − |z2|2)







 . (B.2.27)
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Inverting the above expressions, we can write the zi in terms of the type IIB coordinates
(plus x♯):

|z1|2 = x9 +
√

(x7)2 + (x8)2 + (x9)2,

|z2|2 = −x9 +
√

(x7)2 + (x8)2 + (x9)2,

|z3|2 = (x9 + kx5) +
√

(x7 + kx3)2 + (x8 + kx4)2 + (x9 + kx5)2,

|z4|2 = −(x9 + kx5) +
√

(x7 + kx3)2 + (x8 + kx4)2 + (x9 + kx5)2,

arg z1 =
x♯

k
− x6 − 1

2
arctan

x8

x7
, (B.2.28)

arg z2 =
x♯

k
− x6 +

1

2
arctan

x8

x7
,

arg z3 =
x♯

k
+

1

2
arctan

x8 + kx4

x7 + kx3
,

arg z4 =
x♯

k
− 1

2
arctan

x8 + kx4

x7 + kx3
.

Recall that the zi transform as a 4 of SU(4), which clearly acts non-trivially on the xm.
The U(1)b is just a common phase shift zj → eiαzj . The only coordinate that changes
under the U(1)b is x♯, which shifts as x♯ → x♯ + kα.

As explained in section 7.3.4, we can take a large-Nc limit in M-theory, so that the geometry
becomes AdS4 × S7/Zk, and then take also large k, so that a circle in M-theory shrinks
and we obtain type IIA in AdS4 ×CP3. Where in the geometry is the circle that shrinks
when k →∞? To answer this question, notice that the circle direction

x6 =
1

2
arg (z̄1z̄2z3z4) (B.2.29)

is invariant under the Zk action, hence the circle that shrinks when k →∞ must be part
of x♯. To show this explicitly, we return to our third change of coordinates, which involved
the angles ψ1 and ψ2, with Zk acting as in equation (B.2.20). Tracing back through
the changes of coordinates, we find x6 = 1

2 (ψ1 + ψ2), which is of course invariant, and

x♯ = k
2ψ2, on which the Zk acts as a 2π shift. We can then define a coordinate y,

y =
1

4
(ψ2 − ψ1) = −1

2
x6 +

1

k
x♯. (B.2.30)

such that the Zk acts as y ∼ y + 2π
k but leaves all other coordinates invariant. The

direction y is thus the circle that shrinks when k → ∞. From a type IIB perspective we
are decomposing x♯ as x♯ = ky + kx6

2 . In terms of the zi,

arg z1 = y − x6

2
− φ1

2
, arg z2 = y − x6

2
+
φ1

2
,

arg z3 = y +
x6

2
+
φ2

2
, arg z4 = y +

x6

2
− φ2

2
,

which shows that y is simply the sum of the phases of the zi.

A crucial question is whether a D-brane in type IIB remains a D-brane in type IIA on
AdS4 × CP3. After T-duality from type IIB, when we first lift to M-theory, the circle
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ϕ1

2π

ϕ 2

(-2π /k, 2π /k)

y

(2π -2π /k, 2π /k)

'

'

Figure B.1: The torus spanned by (ϕ′
1, ϕ

′
2). We have indicated the fundamental domain (the

parallelogram) and the y direction (the dotted line). A basis of one cycles is a curve in the y
direction and a curve in the ϕ′

1 direction. When k →∞, the y circle shrinks, and the parallelogram
collapses onto the ϕ′

1 axis.

x♯ opens up. We then take the “near-horizon” limit and Nc → ∞ to obtain M-theory
on AdS4 × S7/Zk, and then we take large k, so that the y circle shrinks, and the theory
reduces to type IIA on AdS4 ×CP3. In short, x♯ opens up but y shrinks. A D4-brane in
type IIA becomes an M5-brane when x♯ opens up, but what happens when y closes? Does
the M5-brane reduce to a D4-brane again, or an NS5-brane with D4-brane flux?

The easiest way to see what happens is to return to our first change of coordinates, and in
particular to consider the torus spanned by the coordinates ϕ′

1 = x6 − 1
kx

♯ and ϕ′
2 = 1

kx
♯.

These two coordinates are orthogonal (as opposed to, say, x6 and x♯). The Zk action
on these coordinates appears in equation (B.2.16). We draw the fundamental domain of
the (ϕ′

1, ϕ
′
2) torus in the figure. We also indicate the y direction in the figure, where in

these coordinates y = 1
2 (ϕ′

2 − ϕ′
1). The generators of homology are the y and ϕ′

1 axes
as drawn, i.e. these form a basis of one-cycles. When k → ∞, the upper bound of the
fundamental domain moves down, so that the parallelogram collapses (in the y direction)
onto the ϕ′

1 axis. The cycles that shrink in this process are all the ones that have net
winding around y and zero winding around ϕ′

1. The shortest cycles that shrink are parallel
to the y-axis, so here again we identify y as the M-theory circle (when descending to type
IIA on AdS4 ×CP3).

Let’s consider what happens to our flavor branes when x♯ opens up and then y collapses.
We have four options: a brane can wrap x♯ but not x6, x6 but not x♯, or a brane can wrap
both, or a brane can wrap neither.

Consider a brane that wraps x♯ and sits at fixed x6. The key point is that, from the
definition of ϕ′

1 and ϕ′
2, we immediately see that such a brane is parallel to the y-axis, so

such a brane returns to whatever it was in IIA. For example, a D4-brane localized in x6,
which lifts to an M5-brane wrapping x♯, would descend back to a D4-brane localized in
x6 when y closes.

Now consider a brane that wraps x6 and sits at fixed x♯. Such a brane extends along
ϕ′

1 at fixed ϕ′
2 (a horizontal line in the figure). Since ϕ′

1 is the direction that remains
when k → ∞ we see that such a brane again returns to whatever it was (now in IIA on
AdS4 ×CP3).
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The last two cases are basically trivial. A brane that wraps both directions or neither
returns to whatever it was. For example, a D2-brane localized in x6 lifts to an M2-brane
that wraps neither x6 nor x♯, and returns to a D2-brane localized in x6 when y collapses.
A D4-brane wrapping x6 lifts to an M5-brane wrapping both x6 and x♯, and hence wraps
the entire (ϕ′

1, ϕ
′
2) torus, and becomes a D4-brane wrapping x6 when y collapses.

To summarize: x♯ opens up and y shrinks, and all D-branes remain the same D-branes
when we go to IIA on AdS4 ×CP3.

B.3 Supersymmetry of M-theory Objects

In this appendix we calculate the supersymmetry preserved by probes added to the Nc

M2-branes along R2,1 sitting at the origin of C4/Zk and also for probes added to the
near-horizon geometry of Nc → ∞ M2-branes, AdS4 × S7/Zk (see [247, 248] for similar
calculations).

The number of supersymmetries preserved by our probes is the number of solutions of the
κ-symmetry condition

Γκǫ = ǫ, Γκ =
1

n!

1√−g ǫ
12...n γ12...n, (B.3.31)

where ǫ is the 32-component spinor of the background, n is the dimensionality of the
object (KK monopole or M-brane), and gmn = ∂mX

I∂nX
JgIJ and γm = ∂mX

IeAIΓA are
the pullbacks of the background metric and the Γ-matrices to the worldvolume of the
object. Here XI represent the scalars on the worldvolume of the object, eAI are vielbeins,
and A,B . . . are tangent space indices. The ΓA satisfy the tangent space Clifford algebra
{ΓA,ΓB} = 2ηAB , where we use a mostly-plus metric. We calculate the spinor ǫ by
demanding that the supersymmetry transformation of the gravitino, Ψ, vanishes

δΨI =

(

∂I +
1

4
ωABI ΓAB

)

ǫ− 1

288

(

ΓABCDI F
(4)
ABCD − 8ΓBCDF

(4)
IBCD

)

ǫ = 0. (B.3.32)

Here ωABI is the spin connection and F (4) is the four-form field strength of M-theory, while
I is a general coordinate index (A,B,C,D are still tangent space indices).

B.3.1 Objects in R2,1 ×C4/Zk
In this subsection we consider M-theory on R2,1 × C4/Zk, without flux (F (4) = 0). We
add M2-branes along R2,1 and a variety of KK monopoles and M-branes. We use polar
coordinates on C4 such that zi = ri e

iϕi . The metric is

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 +
4∑

i=1

(dr2i + r2i dϕ
2
i ). (B.3.33)

In these coordinates the spinor on R2,1 ×C4 is

ǫ = ei
ϕ1
2

Γr1ϕ1 ei
ϕ2
2

Γr2ϕ2 ei
ϕ3
2

Γr3ϕ3 ei
ϕ4
2

Γr4ϕ4 ǫ0 ≡Mǫ0, (B.3.34)
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where ǫ0 is a constant 32-component spinor. The Zk acts as ϕi → ϕi+
2π
k , ∀i. We write ǫ0

as a sum of eigenspinors ǫs1s2s3s4 that satisfy Γriϕiǫs1s2s3s4 = isiǫs1s2s3s4 for i = 1, . . . , 4,
where si = ±1. For the spinor to be invariant we demand that

∑

i si = 0 for k > 2. This
means that of the 16 combinations of (s1, s2, s3, s4) = (±1,±1,±1,±1), we project out
10 combinations and preserve 6. A spinor in R2,1 has two real components so that the
6 preserved combinations correspond to a total of 12 real preserved supercharges. From
∑

i si = 0 we find that
∏

i si = 1 and therefore that ǫ = Γ01...r4ϕ4ǫ = Γ012(i)
4s1s2s3s4ǫ =

Γ012ǫ, so the projection condition for the color M2-branes is automatically satisfied, i.e.
the M2-branes do not break any additional supersymmetry.

Now we can calculate Γκ for any given embedding using equation (B.3.31), check how
many supercharges are preserved by the condition2 Γκǫ = ǫ⇔M−1ΓκMǫ0 = ǫ0, where ǫ0
is the 12-component spinor from above. The calculation is fairly easy. We summarize our
results in table B.2, and work out explicit examples in the more complicated background
of AdS4 × S7/Zk in the next subsection. In the table we restrict ourselves to objects that
sit at the origin of C4/Zk. We can use the SU(4) × U(1) symmetry to set any constant
phase factor to zero so that configurations that differ from those in the table by constant
shifts in any of the ϕi preserve the same amount of supersymmetry. The table contains the
four examples studied in this paper and also some other easy configurations. The second
column indicates what the resulting object is in type IIA for k →∞ and the third column
gives the codimension of the probe in R2,1.

M-theory Type IIA codim real supercharges worldvolume coordinates

M2 D2 0 12 x0, x1, x2

KK D6 0 6 x0, x1, x2, r1, r2, r3, r4
KK KK 0 8 x0, x1, x2, z1 = z2, z3 = z4

M5 D4 1 6 x0, x1, z1 = z2, z3 = z4

M5 NS5 1 6 x0, x1, r1, r2, r3, r4
M9 D8 1 6 x0, x1, ri, ϕi, i = 1, 2, 3, 4

M2 D2 2 4 x0, r3 = r4, ϕ3 = −ϕ4

M2 F1 2 6 x0, z1 = z2 = z3 = z4

Table B.2: List of supersymmetry-preserving objects of given codimension and given worldvolume
directions in C4/Zk. The second column indicates what the probes become in type IIA (large k).
For details see the accompanying paragraph.

B.3.2 Objects in AdS4 × S7/Zk
In this section we study objects in the geometry obtained as the near-horizon limit (Nc →
∞) of the Nc M2-branes. First we introduce new coordinates

z1 = r cosα sin β eζ1 , z2 = r cosα cosβ eζ2 z3 = r sinα sin γ eζ3 , z4 = r sinα cos γ eζ4

2The cautious reader might worry whether this procedure is applicable to KK monopoles and the
mysterious M9-branes. We do not give a direct proof, rather we think of this one condition as a combination
of the two projection conditions for the left- and right-handed spinors for D6- and D8-branes in type IIA.
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With these coordinates, the metric of AdS4 × S7 becomes

ds2 =
R2

4

(
dr2 + e2r(−dt2 + dx2

1 + dx2
2)
)

+R2
(
dα2 + cos 2α dβ2 + sin 2α dγ2(B.3.35)

+ cos 2α sin 2β dζ2
1 + cos 2α cos 2β dζ2

2 + sin 2α sin 2γ dζ2
3 + sin 2α cos 2γ dζ2

4

)
,

where 0 ≤ α, β, γ ≤ π
2 and 0 ≤ ζi < 2π. We also have the flux F (4) = 3

8R
3ΩAdS4 with

ΩAdS4 being the volume form of AdS4.

From the supersymmetry variation of the gravitino we find that the spinor preserved by
this background is

ǫ = e−
r
2
ΓrΓ̂

(132 +
1

2
xµΓµΓ̂(132 + ΓrΓ̂)

)

e
α
2
ΓαΓ̂e

β
2
Γβ Γ̂e

γ
2
Γαγe

ζ1
2

Γβζ1e
ζ2
2

Γζ2
Γ̂e

ζ3
2

Γγζ3 e
ζ4
2

Γαζ4 ǫ0

≡ MAdSMαβγMζǫ0 ≡Mǫ0, (B.3.36)

where ǫ0 is a constant 32-component spinor, Γ̂ = Γ012r = −Γ012r, MAdS is the part of M
that depends on AdS4 coordinates, and similarly for Mαβγ and Mζ . The Zk quotient acts

as ζi → ζi+
2π
k . We write the spinor ǫ0 as a sum of eigenspinors of (Γβζ1 ,Γζ2 Γ̂,Γγζ3 ,Γαζ4),

that is, Γβζ1ǫs1s2s3s4 = is1ǫs1s2s3s4, etc.; since only the eigenspinors that satisfy
∑4

i=1 si = 0
are invariant under Zk for k > 2, the background preserves 24 real supercharges for k > 2.
This can be seen from 132 = Γ01...ζ3ζ4 = s1s2s3s4132 which implies an even number of
positive and negative si. The condition

∑4
i=1 si = 0 therefore projects out the two cases

where all si are the same, and is satisfied for the other six cases, so 6
8 of the 32 supercharges

(hence 24) are preserved.

Now we explicitly solve the κ-symmetry equation for the two objects discussed in sections
7.5 and 7.6 as well as two further examples summarized in section 7.8. As mentioned in
the previous subsection, we think of this one condition in M-theory as a combination of
the two projection conditions for the left- and right-handed spinors for D-branes in type
IIA.

We start with the codimension-zero KK monopole of section 7.5. Although we can use the
SU(4) × U(1) symmetry of the background to set constant phases to zero, we keep them
explicitly in our calculation. This is useful if we consider multiple stacks of probes that sit
at different constant phases. Instead of choosing the embedding such that Im(zi) = 0, ∀i,
we are more general and take the worldvolume coordinates to be x0, x1, x2, r, α, β, γ and
set the phase to constant values ζ0

i . For this embedding we find Γκ = Γ012rαβγ and

M−1ΓκM = M−1
ζ ΓκMζ = ΓκM

2
ζ = Γ012rαβγe

ζ01Γβζ1eζ
0
2Γζ2

Γ̂eζ
0
3Γγζ3 eζ

0
4Γαζ4 . (B.3.37)

Solving Γ012rαβγe
ζ01Γβζ1eζ

0
2Γζ2

Γ̂eζ
0
3Γγζ3 eζ

0
4Γαζ4 ǫ0 = ǫ0 we find that 12 real components are

preserved. Comparing with the second row in table B.2, we see that after the near-horizon
limit the amount of supersymmetry has doubled, as expected.

Now we look at the codimension-one case of section 7.6, that is, the lift of D8-branes to
M-theory. We choose the ten worldvolume coordinates to be (x0, x1, r, α, β, γ, ζ1 , ζ2, ζ3, ζ4),
and find that Γκ = Γ01rαβγζ1ζ2ζ3ζ4 = Γ2, where we have used Γ012rαβγζ1ζ2ζ3ζ4 = 132. Γκ
commutes with Mαβγ and Mζ , so we find

M−1ΓκM = M−1
AdSΓκMAdS = (132− x2Γ2Γ̂(132 + ΓrΓ̂))Γκ = (132 − x2Γ2Γ̂(132 + ΓrΓ̂))Γ2.

(B.3.38)
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Demanding that M−1ΓκMǫ0 = ǫ0 again reduces the components of ǫ0 by a factor of 1
2 , so

that we find 12 preserved supercharges.

The next codimension-one case, discussed shortly in section 7.8, are M5-branes extended
along AdS3 inside AdS4 and embedded such that z1 = z2 = 0. This embedding is in fact
SU(4)-equivalent to the one used in table B.2 (see section 8.2 of [6]). The worldvolume
coordinates are (x0, x1, r, γ, ζ3, ζ4) and we have to set α = π

2 , which leads to Γκ = Γ01rγζ3ζ4 .

Since M−1
αβγΓκMαβγ = −Γ̂ΓαΓκ and Mζ commutes with that, we find

M−1ΓκM = −M−1
AdSΓ̂ΓαΓκMAdS = −(132 − x2Γ2Γ̂(132 + ΓrΓ̂))Γ̂ΓαΓκ

= −(132 − x2Γ2Γ̂(132 + ΓrΓ̂))Γ2αγζ3ζ4 .(B.3.39)

We then find that 12 real supercharges are preserved. Again we see that the probes
reduce the amount of supersymmetry of the background by a factor of 1

2 , and that the
near-horizon limit leads to a doubling of the preserved supercharges (see table B.2).

Finally we look at the example mentioned in section 7.8, codimension-two M2-branes
embedded such that z1 = z2 = 0, z3 = z̄4. Again we are slightly more general and
allow for constant phases. We take the worldvolume coordinates to be x0, r, ζ3 and set
α = π

2 , γ = π
4 , ζ1 = ζ0

1 , ζ2 = ζ0
2 , ζ4 = −ζ3 + ζ0, where ζ0

1 , ζ
0
2 , ζ

0 are constants. We then find

Γκ =
1√
2
Γ0r(Γζ3 − Γζ4). (B.3.40)

Next we write M = MAdSMαβγMζ and note that the AdS part commutes with the rest,
so we first calculate

M−1
AdSΓκMAdS = (132 − (x1Γ1 + x2Γ2)Γ̂(132 + ΓrΓ̂))Γκ. (B.3.41)

We then use α = π
2 to find

M−1
αβγM

−1
AdSΓκMAdSMαβγ

= (132 − (x1Γ1 + x2Γ2)Γ̂(132 + ΓrΓ̂))e−
γ
2
Γαγe−

β
2
ΓβΓ̂e−

α
2
ΓαΓ̂Γκe

α
2
ΓαΓ̂e

β
2
Γβ Γ̂e

γ
2
Γαγ

= (132 − (x1Γ1 + x2Γ2)Γ̂(132 + ΓrΓ̂))e−
γ
2
Γαγe−

β
2
ΓβΓ̂Γκe

αΓαΓ̂e
β
2
ΓβΓ̂e

γ
2
Γαγ

= (132 − (x1Γ1 + x2Γ2)Γ̂(132 + ΓrΓ̂))e−
γ
2
ΓαγΓκΓαΓ̂e

γ
2
Γαγ (B.3.42)

= (132 − (x1Γ1 + x2Γ2)Γ̂(132 + ΓrΓ̂))Γκ
1√
2
(Γα + Γγ)Γ̂

= (Γ̂ + (x1Γ1 + x2Γ2)(132 − ΓrΓ̂))Γκ
1√
2
(Γα + Γγ)

=
1

2
(Γ̂ + (x1Γ1 + x2Γ2)(132 − ΓrΓ̂))Γ0r(−Γαζ3 + Γαζ4 − Γγζ3 + Γγζ4).

Since equation (B.3.42) commutes with Γβζ1 and Γζ2 Γ̂ we have

M−1ΓκM = e−
ζ4
2

Γαζ4e−
ζ3
2

Γγζ3
1

2
(Γ̂ + (x1Γ1 + x2Γ2)(132 − ΓrΓ̂))Γ0r

× (−Γαζ3 + Γαζ4 − Γγζ3 + Γγζ4)e
ζ3
2

Γγζ3 e
ζ4
2

Γαζ4 (B.3.43)

=
1

2
(Γ̂ + (x1Γ1 + x2Γ2)(132 − ΓrΓ̂))Γ0r

× (Γαζ4 − Γγζ3 + cos ζ0(Γγζ4 − Γαζ3) + sin ζ0(Γαγ + Γζ3ζ4)).
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Acting with this on the 24-component constant spinor ǫ0, we find that such branes preserve
8 real supercharges. Note that although the projector depends on ζ0, we find that the
preserved supercharges depend only on the position in x1, x2 and not on the constant
phases ζ0

1 , ζ
0
2 , ζ

0.

B.4 N = (0, 6) Supersymmetry Transformations

In this appendix we discuss the supersymmetry transformations of the codimension-one
flavor field theories of sections 7.6 as well as the one discussed in section 7.8. In partic-
ular, we show that the gauge field component A−, appearing in the Lagrangian of the
codimension-one chiral field theory of section 7.6, equation (7.6.20), is invariant under
N = (0, 6) supersymmetry.

The supersymmetry algebra of the ABJM theory is

{Q(I)
α ,Q(J)

β } = −2δIJ (γµ)αβ Pµ, (B.4.44)

where (γµ)αβ is given by γµ = (−1,−σ3, σ1) and µ = 0, 1, 2. The index α = 1, 2 labels
the components of the real two-component spinor Q. (Notice that we are using different
conventions from those in section 7.3.1.)

Let us place the defect at x2 = 0. Since the translational invariance in x2 direction and
therefore the momentum P2 is broken, some of the supersymmetry charges are also broken.
Let us discuss the broken supersymmetry generators for the N = (0, 6) and N = (3, 3)
supersymmetric flavor theories.

The broken supersymmetry generators for the N = (0, 6) supersymmetric flavor theory

are Q(I)
1 . An explicit check shows that, upon setting Q(I)

1 = 0, the algebra reduces to a
supersymmetry algebra for a (1+1)-dimensional theory, i.e. P2 drops out.

The broken supersymmetry generators for the N = (3, 3) supersymmetric flavor theory are
more complicated since the obvious guess, setting half of the supersymmetry generators
Q(I) to zero, is wrong. For simplicity let us consider the algebra just for two supersymmetry
generators, say I = 1 and I = 2,

{Q(1)
α ,Q(1)

β } = {Q(2)
α ,Q(2)

β } = −2 (γµ)αβ Pµ, {Q(1)
α ,Q(2)

β } = 0 . (B.4.45)

Since we aim to eliminate P2 and σ2 is off-diagonal, we have to define the new supersym-
metry charges,

Q̃1 ≡ Q(1)
1 , ¯̃Q2 ≡ Q(2)

2 , /̃Q1 ≡ Q
(2)
1 , /̃Q2 ≡ Q

(1)
2 , (B.4.46)

and set /̃Q1 = /̃Q2 = 0. The remaining supersymmetry generators Q̃α, α = 1, 2, satisfy
the (1+1)-dimensional supersymmetry algebra. This procedure can be straightforward
generalized to six supersymmetry generators. The unbroken supercharges generate a N =
(3, 3) supersymmetric algebra in (1+1) dimensions.

In order to determine the supersymmetry transformation for A− in the N = (0, 6) super-
symmetric theory, we use the conventions and supersymmetry transformations of [249].
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Let us quote the supersymmetry transformation of the gauge fields Aµ and Âµ (the gauge
fields of the two gauge groups),

δAµ = ΓIAB ǭ
IγµΨ

AXB − Γ̃IABXBΨ̄Aγµǫ
I , (B.4.47)

δÂµ = ΓIABX
B ǭIγµΨ

A − Γ̃IABΨ̄Aγµǫ
IXB , (B.4.48)

where XA, A = 1, . . . , 4 are the four complex scalars and ΨA are the spinor fields of
the ABJM theory (in the notation of [249]). The spinor field ΨAα has a lower spinor
index, whereas the conjugated field Ψ̄α

A carries an upper spinor index. Note that (γµ) β
α =

(iσ2, σ1, σ3) for µ = 0, 1, 2. The conjugate fields ΨA and XB are denoted by upper indices.
Moreover, ǫI are real two-component spinors for I = 1, . . . , 6, and the 4 × 4 matrices
ΓI , I = 1, . . . , 6 satisfy the commutation relation

ΓI Γ̃J + ΓJ Γ̃I = 2 δIJ , (B.4.49)

where Γ̃I =
(
ΓI
)†
. Let us decompose ǫI into

ǫI =

(
ǫIR
ǫIL

)

, (B.4.50)

and set ǫIL to zero since the Q̃(I)
2 are broken in the N = (0, 6) algebra. Finally, intro-

ducing lightcone coordinates x± = x0 ± x1, the unbroken right-handed supersymmetry
transformations δR,I with respect to ǫIR of the gauge field components read

δR,I A+ = ΓIABǫ
I
RΨA

RX
B − Γ̃IABXBΨRAǫ

I
R , (B.4.51)

δR,I A− = 0 , (B.4.52)

δR,I Â+ = ΓIABX
BǫIRΨA

R − Γ̃IABΨRAǫ
I
RXB , (B.4.53)

δR,I Â− = 0 . (B.4.54)

In particular we see that A− and Â− do not transform under N = (0, 6) supersymmetry.
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noll, Christopher Herzog, Jegors Korovins, Simon Körs, Benjamin Jurke, Felix Karbstein,
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