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ABSTRACT.

This thesis aims at the synthesis of oriented nanochannel systems for the synthesis

of metallic or semiconducting nanowires. Three different synthesis strategies have

been developed.

First, horizontal macro- to mesoporous anodic aluminum oxide (AAO) structures

with individually addressable channel systems were fabricated in collaboration

with the group of Dr. Anna Fontcuberta at TU München. For this purpose, a

multi-contact design of aluminum finger structures on silicon wafers was devel-

oped. Each finger structure can be individually contacted and between 2 - 5 contacts

were generated on a single silicon wafer. The aluminum contacts were electrically

isolated from each other, thus each contact can be individually anodized. This way

it is possible to synthesize different pore diameters, pore densities, and channel

lengths on a single chip. After the anodization, these channels were successfully

filled by electro-deposition and thermal chemical vapor deposition. The resulting

metal (Au, Cu, Ni, Co) and semiconductor (Te, Si) nanowires embedded within the

AAO mold were characterized by SEM and EDX measurements.

The second strategy deals with hierarchical channel structures formed from colum-

nar silica mesophases inside AAO membranes. These channels were then used for

the fabrication of high-aspect ratio copper, silver, and tellurium nanowires. The re-

sulting wires were structurally and spectroscopically characterized within the host

matrix, in the partially dissolved matrix, and completely removed from the matrix



with electron microscopy methods. Plan-view images of wires featuring 10 nm di-

ameter within the intact matrix showed the successful replication of the hexagonal

arrangement of the columnar mesoporous system.

The concept of hierarchical structures within PAA templates was again utilized for

the third strategy, where the structural behavior of periodic mesoporous organosil-

ica (PMO) mesophases within the AAO pores was studied. PMO mesophases with

different orientations with respect to the alumina pores were obtained; one of the

observed mesophases (cubic Im3m) has not been reported before. After successful

template removal, the hexagonal circular mesophase could be used for the synthe-

sis of nanowires by electrodeposition.
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1
Introduction to Nanotechnology & Nanomaterials

The use and manufacture of materials with critical sizes at the nanometer scale can

already be traced back for centuries. Gold nanoparticles have been used by the

Chinese to color ceramics already over 1000 years ago.[1] Faraday described the

preparation of colloidal gold solutions in 1857. Colloidal gold solutions were – and

are – used for the treatment of arthritis.[2] There are many other examples; but even

if nanoscale materials are not really “new”, what is new is that we are now able to

see, manipulate, and – at least partially – understand materials on the nanometer

scale.

In 1959, Richard Feynman gave the famous lecture titled “There’s plenty of room

at the bottom”.[3] At a time when most scientist were focused on the science at the

very large scale, such as astrophysics, he gave a vision of extreme miniaturization

years before the first computer chip was developed. By addressing the problems of

manipulating and controlling matter on the extremely small scale, he encouraged

scientists all over the world to start thinking for solutions of the tremendous chal-

lenges. Since then, progress a lot of progress has been made; in fact, nowadays

the word “nano” became a buzzword of the modern age. The prefix ‘nano” can be

1



CHAPTER 1. NANOTECHNOLOGY & NANOMATERIALS

found in paints, which contain very small pigments; clothes, into which nanoparti-

cles are incorporated to protect them from dirt; and of course, the modern computer

age would not be possible without highly integrated circuits at the nanometer scale,

assembled on a chip.

The prefix “nano” is derived from the greek word “nanos” meaning “dwarf”. In

the metric system it is used to denote a factor of 10-9 (0.000 000 001). Thus, one

nanometer equals one billionth of a meter. Looking at this scale from an atom’s

point of view, 1 nm equals the distance of, e. g., about 5 silicon atoms in a row.

While materials sized 1 µm and above usually exhibit properties of the bulk mate-

rial, materials with sizes on the nanometer scale might have distinctively different

properties than their bulk form. The number of atoms located on the surface of

a crystal becomes a significant fraction of the total number of atoms. As the sur-

face energy is significant for the thermal stability of crystals, nano-sized crystals

can have dramatically lower melting points than the bulk material (with melting

point differences as large as 1000 ◦C) and reduced lattice constants.[2] Materials

with semiconducting properties in their bulk form might become insulating when

being synthesized on the nanometer scale. Nano-sized gold droplets show excel-

lent low-temperature catalytic properties not known from bulk gold.

There is general agreement that the term “nanotechnology” was introduced by No-

rio Taniguchi at a meeting of the Japan Society of Precision Engineering in 1974:[4–6]

“Nano-technology mainly consists of the processing, separation, con-

solidation, and deformation of materials by one atom or by one molecule.”

Nowadays, the term nanotechnology has been slightly expanded and generally

means any technology performed on a nanoscale that has applications in the real

2



world. Thereby it encompasses the production and application of physical, chem-

ical, and biological systems at scales ranging from individual atoms or molecules

to submicrometer dimensions, as well as the integration of the resulting nanostruc-

tures into larger systems.[7] Because of this very general terminology, many peo-

ple working in nanotechnology are using this term to define their field of research.

Some people consider a bottom up approach in materials synthesis, such as biomin-

eralization of mussel shells or the self-assembly of molecules as nanotechnology.

Others claim that the study of microstructures by electron microscopy is nanotech-

nology. Lab-on-a-chip design and synthesis is also considered as nanotechnology.

There are many other examples; they all reflect the fact that nanotechnology covers

a broad spectrum of research areas and that is a highly interdisciplinary field of

science.[2]

Over the recent years two main strategies – “top-down” and “bottom-up” – have

been established for the manufacture of nanostructures (Figure 1.1). Both strategies

have their own advantages and disadvantages.

As implied by the name, top-down strategies seek to assemble small, nanoscopic

structures by directing larger ones. It has its foundations in solid-state physics and

the methods used have their source in classical microsystems technology. Tech-

niques such as photolithography, ion milling, and others are used to shape materi-

als into their desired form. It is extensively used in modern semiconductor fabri-

cation. These methods have been constantly improving over the last decades; nev-

ertheless, top-down approaches have limitations that become harder and harder to

overcome. Among others, the imperfection of surfaces structures manufactured by

top-down techniques are considered as a main drawback. Nanowires prepared by

photolithography may suffer from crystallographic damage on their surface and

3



CHAPTER 1. NANOTECHNOLOGY & NANOMATERIALS

Atomic scale
Quantum e�ects of individual atoms rule

Macroscopic regime
Collective behavior based on the whole atom population

Mesoscopic regime
On the nanometer scale, material properties are a�ected by 

both collective and individual atoms behavior

„top-down“

„bottom-up“10-9 m 

10-10 m 

10-8 m 

10-7 m 

10-6 m 

10-5 m 

Figure 1.1 — Schematic representation of the principles of top-down and bottom-up
approaches. In principle, the bottom-up approach could also be used
to create macroscopic objects. Figure adapted from [8].

contain impurities.[2] This can result in a reduced conductivity, leading to the gen-

eration of excessive heat that might cause further damage to either the wire itself

or, even worse, to the whole device that is built around it.

Bottom-up approaches are somewhat opposite to top-down, as here the aim is

to manufacture structures through the assembly of small building blocks (atoms,

molecules) into larger structures. The bottom-up principle is nothing really new

and has been used industrially since a long time. Polymers are synthesized from

smaller monomers to form molecules of tremendous sizes; crystals grow by the ar-

rangement of small growth species (atoms, ions, or clusters) on a growth surface.

Still, bottom-up is playing an important role in the synthesis of nanostructures and

nanomaterials. One of the drawbacks of top-down techniques, such as surface de-

fects and contaminations, can be overcome by starting on the atomic or molecular

level. This is possible because bottom-up processes are driven mainly by the reduc-

4



tion of the Gibbs free energy. That way, nanostructures and nanomaterials can be

produced in a state that is very close to the thermodynamic equilibrium state.[2]

Creating an arsenal of molecular and nanoscale devices by self-assembly is just the

first step in the organization of components for e. g. nanoelectronics. Interconnect-

ing and integrating these devices is likely to be even more challenging. To date,

molecular switches or inorganic solids that can as transistors have been hooked to

conventional wires created by lithography. In many cases, the molecular “glue”

is represented by thiol-terminated organic molecules attached to gold electrodes

forming self-assembled monolayers. Such strategies can be seen as a combination

of both top-down and bottom up; the lithographic creation of the gold electrodes

meets the self-assembly of molecules.

Nanomaterials are often categorized according to their dimensionality. Zero-di-

mensional (0-d) objects are dots; all kinds of spherically shaped nanoparticles

– such as colloidal crystals or quantum dots – fall into this category. Nanowires and

nanorods are one-dimensional nanoobjects. Thin films represent two-dimensionali-

ty. All other objects that cannot be easily grouped into one of these categories, such

as micro- or mesoporous bulk materials, fullerenes, etc. would make up a special

category.
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2
Introduction to Nanoporous Materials

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Porous Anodic Alumina . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Barrier-type and porous-type anodization of aluminum . . . 10

2.2.2 Synthesis of PAA . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Applications of anodic alumina . . . . . . . . . . . . . . . . . 17

2.3 Mesoporous structures in confined environments . . . . . . . . . . 19

2.3.1 Introduction to periodic mesoporous materials . . . . . . . . 19

2.3.2 Synthesis of mesostructures within AAO membranes . . . . 26

2.3.3 PMO and carbon mesophases . . . . . . . . . . . . . . . . . 48

2.3.4 Inclusion chemistry . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.5 Separation/release . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.1 Introduction

Porous solids of all kinds are of high interest both from a scientific and technolog-

ical point of view.[9–12] Due to their porous nature, they can interact with atoms,
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CHAPTER 2. INTRODUCTION TO NANOPOROUS MATERIALS

ions, and molecules not only on a limited external surface, but also on the far larger

internal surface of their pore walls. Classical applications in fields such as adsorp-

tion, ion exchange and catalysis all take advantage of the large accessible surface

area. Besides the large surface area, these solids can be synthesized with highly or-

dered pore systems, such as for example in classical zeolite materials. Nanoporous

compounds are usually classified into three sub-classes according to their pore size

(table 2.1).[13] To perform the desired functions, the arrangement of the empty voids

(geometry of the pore system, pore size distribution, pore volume) within the solid

is a key factor. Materials with uniform pore sizes have the ability to separate

molecules according to their size, thus narrow pore size distributions are usually

desired.

Table 2.1 — Definitions of porous materials with respect to the pore size according

to IUPAC.

Pore diameter Pore type

< 2 nm Micropores

2 nm < Ø< 50 nm Mesopores

> 50 nm Macropores

8



2.2. POROUS ANODIC ALUMINA

2.2 Porous Anodic Alumina

Anodic oxidation describes a process in which an electrochemically active species

(in this case aluminum) is oxidized in an electric field using appropriate electrolytes.

The process of aluminum anodization is already known for several decades; early

reports date back as long as 1905.[14] Anodic alumina films have widespread ap-

plications in modern industry, such as dielectrics in aluminum capacitors, keying

layers for organic coatings and protection layers for aluminum substrates.[15] Be-

sides these commercial aspects there is great scientific interest in these materials

for applications as filter membranes and as a template material for the synthesis of

nanostructures.

During anodic oxidation of aluminum, the aluminum serves as the anode and a

chemically stable metal such as platinum, copper etc. serves as the cathode. Pos-

sible electrolytes include phosphoric, chromic, oxalic, malonic, citric, and sulfuric

acid. In general, aluminum can be anodized either using direct current (dc) or alter-

nating current (ac). During ac anodization, only the anodic half-cycle is effective.[16]

The anodization is usually carried out at a constant temperature.

Aluminum anodization is widely used in industry both to increase corrosion re-

sistance and to allow dyeing. When exposed to the atmosphere, aluminum forms

a passive oxide layer which provides moderate protection against corrosion. In

its pure form aluminum self-passivates very effectively, but its alloys are far more

prone to atmospheric corrosion and therefore benefit from the protective quality of

anodizing. Aluminum alloy parts are therefore anodized to increase the thickness

of this oxide layer for corrosion resistance.

9



CHAPTER 2. INTRODUCTION TO NANOPOROUS MATERIALS

a)

b)

Figure 2.1 — Scheme illustrating a section of (a) barrier-type film and (b) porous-
type film on aluminum; after [17]

2.2.1 Barrier-type and porous-type anodization of aluminum

The morphology, physical and structural properties of the anodic oxide films as

well as the kinetics of the oxide growth depend on the applied voltage or current,

temperature and most importantly, the type of the electrolyte. Generally, two types

of alumina films, barrier-type and porous-type, can be obtained by anodization. A

schematic depicting both types can be seen in Fig. 2.1.

“Barrier-type aluminas” are compact and dense oxides. Almost all of the electro-

chemically available aluminum is converted to alumina with – as general rule –

no dissolution of the oxide formed. The thickness of the film is strongly depen-

dent on the electric field applied during the anodization process. An average value

of 1.3 nm/V was experimentally found as a growth ratio (also referred to as an-

odizing ratio).[15,16,18] Thus, an anodization voltage of 100 V will produce a dense

barrier-type film of 130 nm thickness. Commonly used electrolytes are boric acid,

ammonium borate, and some organic electrolytes such as glycolic or maleic acid.

10



2.2. POROUS ANODIC ALUMINA

“Porous-type films” are formed in mild acidic or selected alkaline electrolytes, in

which the oxide is slightly soluble. As already implied by the name, the formed

films have a porous structure with pore diameters in the range of approximately

10 nm to 400 nm. The thickness of the porous layer is dependent on the anodiza-

tion time, current density, electric field and temperature. The achievable film thick-

ness is mainly limited by the solubility of the oxide in the respective electrolyte;

porous alumina can be grown to 100 µm thickness and higher. Commonly used

electrolytes are aqueous solutions of sulfuric acid, oxalic acid, and phosphoric acid.

Porous anodic alumina (PAA) or anodic aluminum oxide (AAO) is widely used in

industry due to various properties. It shows excellent corrosion and abrasion resis-

tance after sealing the pore system; hence it can be used as a protection layer for

metal surfaces. By filling the pores with dyes highly decorative metallic surfaces

can be produced. Furthermore, due to the porous nature of this material, research

labs all over the world use PAA as a template material for the synthesis of various

nanostructures.[19–21]

2.2.2 Synthesis of porous anodic alumina

Porous anodic alumina can be synthesized either by Faraday oxidation or plasma-

chemical oxidation of aluminum surfaces.[16] While the latter one is feasible for a

number of elements (Al, Si, Ti, and others), it always produces highly irregular

porous structures. In comparison, highly ordered, regular structures can be ob-

tained by electrochemical Faradaic oxidation of aluminum. In this work, only AAO

structures made by electrochemical oxidation have been used; hence the plasma-

chemical oxidation will not be further discussed in this introduction.

11



CHAPTER 2. INTRODUCTION TO NANOPOROUS MATERIALS

ba

Figure 2.2 — SEM micrographs of porous anodic alumina films. a) Commercial
membrane (Whatman Anodisc, nominal pore diameter 0.2 µm). The
scale-bar of the image is 2 µm. b) PAA film anodized in the laboratory
using aqueous H2SO4 as the electrolyte for the anodization. The pore
size is about 30 nm.

Because of the high affinity between aluminum and oxygen, aluminum surfaces

are always covered with a thin, native layer of aluminum oxide when exposed to

oxygen-containing atmospheres or solutions. The thickness of this layer is approx-

imately 15 nm. It can easily be removed by washing the aluminum substrates with

alkaline solutions such as sodium hydroxide.

The voltages and current densities used for electrochemical anodization have to be

in a range at which no discharging or burning occurs. The overall electrochemical

reactions that occur during electrochemical oxidation of aluminum can be written

as follows:

Anode: 2 Al (s) + 3 H2O (l) → 2 Al2O3 (s) + 6 H+ (l) + 6 e− (1)

Al(s) → Al3+(l) + 3 e− (2)

Cathode: 6 H+ (l) + 6 e− → 3 H2 (g) (3)

12



2.2. POROUS ANODIC ALUMINA

For porous alumina films, a combination of reaction (1) and (2) occurs and their

individual rates are given by the electrode kinetics, the pH, the temperature of the

electrolyte and the applied potential/current density. The real chemical reactions

are rather complex. The resulting oxide film consists of two regions: next to the alu-

minum there is a thin, dense and compact layer of alumina, the barrier layer. Oxide

dissolution and formation rate are in dynamic equilibrium at the barrier layer dur-

ing the anodization process, which means that is has a constant thickness. Above

this layer, facing the electrolyte, there is a thick porous alumina layer.

The porous aluminum oxide layer has a structure composed of hexagonal cells,

each of which contains a pore at its center (see Fig. 2.4). Those pores are oriented

perpendicular to the surface and parallel to each other. Two mechanisms play a

role in the formation of these nanoscopic holes. On the one hand the growth of alu-

minum oxide at the interface between the aluminum metal and the already present

alumina due to the transport of Al3+, OH− and O2− ions within the alumina film

and on the other hand the dissolution and deposition of aluminum oxide at the

interface between the alumina and the electrolyte.[17]

Pore formation. Several models have been developed for the pore formation and

growth of porous anodic alumina films. The – to date – most widely accepted one

is a hypothetical model proposed by K. Heber.[22] The basic principle is depicted

in Figure 2.3. In the first stage, prior to the anodization process itself, the bare

aluminum is covered only by a thin layer of its native oxide. When the electric

field is applied, the current is increasing and colloidal Al(OH)3 is formed. This thin

layer is very fragile and its stability depends on a variety of factors. It represents the

precursor for the alumina and is growing linearly over time according to Faraday’s

13
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Native Al2O3

Barrier-type

Al

Pore growthPocket formation

Figure 2.3 — Mechanism for anopore growth according to the Heber model.[22] Un-
der the influence of an electric field, pockets are formed within the na-
tive oxide layer. During the anodization process, these pockets open
up; thus they act as the nucleation sites for the pore growth.

law. Within this colloidal boundary layer, small “pockets” – or better described as

bubbles – in the range of several nanometers are formed. Incoming OH- ions from

the electrolyte produce an “electrolyte stream” in which the hydroxyl ions can react

with the boundary layer. The pockets, which are densely packed inside the colloidal

layer, contain Al3+, OH-, and the ions of the electrolyte (e.g. HC2O−4 , HSO−4 , etc.).

This results in an inner pressure from osmotic or electro hydrodynamic forces; thus,

the pockets open up. At the same time, the surrounding colloid coagulates to yield

solid aluminum oxide. From now on, both the thickness of the alumina and the

length of the pores are increasing and an equilibrium growth is achieved. Over the

whole anodization process, the barrier layer is moving deeper into the aluminum

as the porous layer grows. The overall growth rate is controlled by Faraday’s law.

The most important parameters that affect the textural properties of the oxide film

(pore diameter, pore density, wall thickness, etc.) are the applied voltage and cur-

rent density, the pH, the type of the electrolyte, and the temperature. The model of

14
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Porous-type
oxide

Barrier-type
oxide

Aluminum

Cell
size

Pore
diameter

Wall
thickness

Figure 2.4 — Scheme illustrating a section through a porous anodic alumina film
and the most important textural parameters. The thick porous-type
alumina layer is separated from the unanodized aluminum by a thin,
non-porous barrier-type film of aluminum oxide. Adapted from [23].

an alumina membrane showing the most important textural parameters is shown

in Fig. 2.4.

E�ect of the electrolyte. The different electrolytes determine the possible pore

size ranges; however, the mechanism is still unclear at this point. The experimental

data for the three most commonly used acids are given in Table 2.2. The data show

that H3PO4 has the tendency to form the largest pore sizes and unit cells of these

three; while the use of H2SO4 as electrolyte will result in small pore diameters.
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E�ect of the pH. At a constant current density, increasing the pH will decrease

the dissolution rate and hence increase the barrier layer thickness. In turn this in-

creases the equilibrium voltage. As the interpore spacing is strongly dependent on

the voltage, a strong effect of pH on pore spacing is observed. This also leads to

an increase in pore size, but with a weaker dependence on pH. The result of these

effects is a decrease in porosity due to a stronger increase in pore spacing than pore

diameter. At a constant voltage, increasing the pH decreases the dissolution current

density. However, to maintain a constant voltage, the oxidation current density

must also decrease. Thus the total equilibrium current density will decrease with

pH.

Acid Voltage Pore diameter [nm] Cell diameter [nm]

H2SO4 25-27 V > 13 50-60

(COOH)2 40 V > 25 90

H3PO4 195 V > 200 500

Table 2.2 — Typical anodization voltages, anopore diameters and cell sizes obtained

by standard anodization conditions using different acids.[17]

E�ect of the applied voltage/current density. In general, the applied electrical

field (voltage) and the current density depend on each other; thus one of both can be

neglected. The equilibrium total current density and the total aluminum reacted in-

creases with increasing voltage as both the oxidation and dissolution rates increase

with increasing voltage. However, the oxidation increases at a faster rate than the

dissolution and hence the ionic current efficiency is increased with increasing volt-

age. Thus, the porosity decreases with increasing the voltage.[24] This implies a
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weaker than linear dependence of the pore diameter on the applied voltage. Only

at high voltage the observed porosities are independent of the applied voltage. As

the pore spacing increases linearly with voltage, the density of pores is inversely

proportional to the square of the applied voltage. Since the dependence of cur-

rent efficiency for oxidation on the applied voltage is stronger than the porosity

dependence especially at higher voltages, the increase in total volume of alumina

is accompanied by an increase in the thickness of the porous alumina layer.

2.2.3 Applications of anodic alumina

Application of anodic alumina in industry

Because of its low density combined with good mechanical properties, aluminum is

a widely used metal in architecture, engineering, aircraft construction, etc. Unfortu-

nately, pure aluminum is rather reactive; thus aluminum surfaces very often have to

be protected with coatings. In industry, anodic alumina coatings have widespread

use due to their diverse properties. Some of these properties include an excellent

corrosion resistance, a decorative appearance (including the possibility to include

dyes to produce colored surfaces), and high mechanical strength.[16] Furthermore,

aluminum oxide is not reported to present any toxicological risks.

For the use as protective coatings, so-called hard anodization processes have been

developed in addition to the standard anodization processes. Hard anodization is

carried out at comparably high anodization currents and voltages.[25] This leads

to the formation of films with up to 100 µm thickness and excellent mechanical
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strength. Thus, typical applications of hard anodized films are coatings for mechan-

ically and thermally stressed aluminum or aluminum alloy components.[16,26]

Another highly important application of anodized alumina surfaces is the fabrica-

tion of colored and decorative metal surfaces. AAO films, synthesized using the

standard procedures, are colorless. By the incorporation of dyes into the porous

system of the AAO film, highly attractive surfaces can be produced.

Application of anodic alumina in nanoscience

Nowadays, scientific interest in porous anodic alumina membranes is mainly fo-

cused on the their use for the template synthesis of 1-D nanostructures, such as

nanowires and nanorods. Anodic alumina membranes offer a number of attractive

features, for example::

• Adjustable pore sizes (between 10 to 400 nm)

• High pore densities (up to 1011 pores/cm2)

• High aspect ratios of the anopore channel system

• The ability to produce ordered systems over large areas

• A fast and well-documented process; no clean room is necessary during the

synthesis

The template synthesis of 1-D nanostructures is discussed later on in the thesis (see

Section 2.3 for mesoporous nanofibers and Chapter 3 for nanowires).

18
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2.3 Mesoporous structures in con�ned

environments

This section is based on the review article “Mesoporous structures in confined en-

vironments” submitted to Advanced Materials.[21]

2.3.1 Introduction to periodic mesoporous materials

According to IUPAC, materials with diameters in the range of 2-50 nm are classi-

fied as mesoporous and are distinguished from macroporous or microporous ma-

terials that have larger or smaller pore diameters, respectively.[27] Amongst them,

inorganic periodic mesoporous materials have attracted considerable attention as a

basis for designing nanoscale architectures by applying bottom-up strategies since

their discovery in 1992.[28] These materials are chemically, mechanically, and ther-

mally quite stable due to their inorganic framework[29] and exhibit not only high

specific surface areas but also monomodal pore size distributions and regular pore

arrangements. Highly ordered powder materials have been produced in basic

or acidic media,[28,30] and worm-like phases have been prepared under neutral

conditions,[31] always exhibiting a uniform pore size and Bragg-reflections at small

angles in the corresponding diffraction patterns. The synthesis of periodic meso-

porous material is based on the use of surfactant molecules acting as structure di-

recting agents (SDAs). Surfactants (surface active agents) are molecules with hy-

drophobic and hydrophilic parts that self-organize in solution into micelles and

eventually assemble into liquid crystal phases, depending on stoichiometry.[32,33]

Inorganic precursors are added to a solution of a surfactant and are condensed us-
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ing appropriate conditions, such as basic or acidic catalysis. Condensation takes

place at the surfactant/water interface and finally leads to the formation of a in-

organic/organic composite material.[34,35] The remarkable ability to tune structural

order, pore size, and pore topology has resulted in periodic materials with different

cubic,[35–38] hexagonal,[28,35] and lamellar[35] structures, based on spherical, elon-

gated, rod- or sheet-like micellar structures, respectively (Fig. 2.5).

Figure 2.5 — Schematic illustration of different lamellar, hexagonal, and cubic struc-
tures formed with sheet-like, cylindrical, or spherical micellar struc-
tures. Differently colored micelles in the sketch of the cubic Pm3n
structure are used to clarify the structure. The blue micelles are ar-
ranged in a cubic body-centered manner, two yellow micelles each are
positioned on each plane of the cube.

While mesoporous silica materials have been most widely studied, other frame-

work compositions could be realized as well, e.g., with the oxides of titanium,

aluminum, zirconium, tin, or multimetal oxides, respectively.[39,40] Even non-oxide

materials such as metal sulfides,[41] selenides,[42] or phosphates,[43] or pure meso-

porous metals[44] have been synthesized. Inorganic mesoporous materials were

20



2.3. MESOPOROUS STRUCTURES IN CONFINED ENVIRONMENTS

also used as template for the synthesis of porous carbon replicas (exo-templating)[45]

or nanoporous polymer-carbon composites.[46] Organically functionalized periodic

mesoporous materials have been synthesized via post-synthesis grafting, co-con-

densation, or as organic-inorganic hybrid materials, often motivated by their high

potential for applications in heterogeneous catalysis.[10]

Mesopore systems have been used as optical waveguides,[47] as hosts for numer-

ous molecular and cluster-based catalysts,[48] for selective sequestration of conta-

minants,[49] chromatography,[50] and for novel drug delivery systems.[51,52] Periodic

mesoporous organosilica coatings were reported to have low dielectric constants,

suggesting potential utility as low-k layers in microelectronics.[53] Living cells were

immobilized in biocompatible silica mesostructures and used as a model eukaryotic

sensor.[54] Indivudual bacteria of Staphylococcus aureus were immobilized within

mesoporous silica nanospheres by Brinker and coworkers.[55] That way, it was pos-

sible to study the quorum sensing of individual, isolated S. aureus bacteria.

Many of the envisioned applications, such as separation membranes, sensors or op-

toelectronic devices would benefit from growing mesoporous materials as films at

surfaces or interfaces. Thin mesostructured silica films have been prepared on a

variety of substrates by coating of conventional synthesis solutions,[56,57] or via the

evaporation-induced self-assembly method (EISA).[58] The EISA approach employs

homogeneous coating-solutions with volatile solvent (e.g. ethanol) and surfactant

concentrations below the critical micelle concentration (see Fig. 2.6). Silica pre-

cursors are typically obtained by acid-catalyzed hydrolysis of tetraethyl orthosili-

cate (TEOS) or related precursors. The synthesis-solutions are spin- or dip-coated

or cast on various substrates. Rapid solvent evaporation drives the self-assembly

process towards the critical micelle concentration and the formation of the liquid-
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Precuror solution 
deposition

Partially hydrolyzed
silica + single

surfactant molecules

Solvent evaporation

Silica condensation
and cooperative

self-assembly

Dry �lm

Final mesostructure

Evaporation induced self-assembly (EISA)

Figure 2.6 — Scheme of the EISA process. The synthesis procedure is shown on the
top, the bottom line illustrates the cooperative self-assembly and silica
condensation towards the final mesophase film.

crystal mesophase. Simultaneously, the silica-condensation is induced by increas-

ing the concentration of acid. The dynamic, liquid crystalline character of the as-

deposited films is indicated by self-healing processes or the possibility of phase

transformations prior to solidification by, e.g., thermal treatment of the as-synthe-

sized films.[58,59] Different phases were found to form even after completion of the

EISA process depending on the humidity during aging, thus the presence of a mod-

ulable steady state was postulated.[60] An ’EISA adapted diagram of textures’ was

established for mesoporous silica films prepared with CTAB as structure directing

agent.[61]

The mesoporous domains in thin films on flat supports often exhibit preferred ori-

entation with respect to the substrate surface. However, for most systems, the

domains are randomly rotated against each other on the substrate plane (Figure

2.7).[62] For some of the potential applications of these systems, for example in

nanoscale electrical or optical devices, further control over the mesopore orienta-
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200 nm

Figure 2.7 — HR-SEM image of a mesoporous silica thin film prepared by spin-
coating with 2D hexagonal channel systems. The individual domains
are rotated against each other leading to the formation of multiple
phase boundaries.

tion would be highly desirable.[63–65] Thus, there have been great efforts during

the last years to control the domain size and orientation, particularly for meso-

porous films with 2D hexagonal structure on flat substrates. These efforts include

the application of external forces such as electric[66–68] or magnetic[69,70] fields, syn-

thesis within a flow,[71] or use of chemically[72,73] or lithographically[65] treated sub-

strates.

Among the different possible orientations of 2D hexagonal mesoporous structures,

a vertical alignment of the mesopores relative to a flat substrate appears to be the

most difficult to achieve. Recently, a promising approach towards such films was

developed, employing chemically modified substrates that exhibit no preferential

interaction with either part of the surfactants employed. The lack of preferential in-

teractions between substrate and organic template apparently promotes the desired
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structural alignment.[74–76] Following this principle, the synthesis of films with ver-

tically aligned pores that are optimal as potential templates for nanowire growth

was reported.[77] In that publication, films with vertical pore alignment in the film

center have been prepared. Nevertheless, the films still feature a mesopore align-

ment parallel with respect to the substrate at the film-substrate and film-air inter-

faces. The authors focused their attention on preventing the parallel mesopore-

alignment at the interfaces by substrate modification and ageing the films under

controlled atmosphere for several days. There was no further comment on the un-

usual pore-alignment observed in the film center. Another interesting approach to

obtain a perpendicular orientation is pore alignment driven by applying an electric

field.[78,79] By using a conductive substrate and applying voltages in the range of -

1.7 V (against Ag/AgCl) on ITO substrates and -2.2 V (against Ag/AgCl) on glassy

carbon substrates, the authors were able to synthesize mesostructured silica thin

films. Depending on the synthesis conditions, they could obtain films with a 2D

hexagonal mesostructure perpendicular to the substrate surface. Perpendicularly

oriented thin films can also be obtained by utilizing a “nanometer-scale epitaxy”

approach.[80] By matching the lattice parameters of a cubic Titania film in (111) ori-

entation to the lattice parameter of a subsequently synthesized 2D hexagonal silica

film on top, a mesoporous thin film with mesopore channels running perpendicular

to the original substrate orientation was obtained.

This review focuses on another feasible, recently developed method to control the

orientation of the mesopore system, which is the synthesis of mesoporous materials

within regular, larger channels of anodic aluminum oxide membranes (AAO mem-

branes, also named AAM for anodic alumina membranes or PAA for porous anodic

alumina).[81,82] The latter membranes are produced by electrochemical oxidation of
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Evaporation-induced
self assembly

(EISA)

Sol-gel process

Vapor-phase synthesis Separation

Inclusion chemistry

Release

Figure 2.8 — Synthesis pathways and applications of ordered mesostructured mate-
rials confined within the pores of anodic alumina.

aluminum, with the metal directly acting as the anode (anodization).[15,83–85] Dis-

solution and redeposition processes during anodization lead to the formation of

porous films exhibiting monomodal sized and vertically oriented channels with di-

ameters between about 10-500 nm. In a related context, these membranes were

found to induce the orientation of various types of crystals such as apatite.[86–89]

As we discuss in the following, these high aspect ratio channels can also induce

orientation in mesoporous phases.
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2.3.2 Synthesis of inorganic mesostructured materials within

the vertical channels of aluminum oxide membranes

In general, three different synthesis routes have been followed to include mesostruc-

tured systems in the AAO matrix. The first approach is based on the sol-gel syn-

thesis of mesostructured powders and involves the immersion of the porous mem-

branes in a synthesis solution throughout the gelation process.[90–94] Typical solu-

tions for such a process contain relatively low amounts of solvent and high surfac-

tant concentrations. The gelation process is often induced by hydrothermal treat-

ment and takes from several hours up to days. The second approach follows the

EISA process[58] conventionally used in thin film synthesis. It involves soaking the

alumina substrate with small amounts of precursor solutions and subsequent sol-

vent evaporation-induced gelation and structure formation.[95–103] Synthesis solu-

tions used for this approach contain comparatively high amounts of volatile solvent

and low surfactant concentrations. This is done in order to obtain cooperative mi-

celle formation and self-assembly of the condensing silica species. The rate of the

synthesis in this case is limited by the rate of solvent evaporation, which usually

takes a few minutes. A third approach reported recently is based on a vapor-phase

synthesis of the mesophase within the alumina channels.[104] In a first synthesis

step, the alumina template is soaked in a solution of the surfactant at a concentra-

tion already above the critical micelle concentration (cmc). Then, in second step,

the membrane is transferred into a closed vessel, which contains tetraethoxy silane

(TEOS) vapor. The TEOS molecules then can diffuse into the pre-ordered micelles

and the final mesophase is formed. An overview of the different approaches re-

ported in the literature for the synthesis of mesostructured materials inside AAO-
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channels and the observed mesophases and their morphology is given in Table

2.3.

Table 2.3 — Summary of reported procedures for synthesis of mesophases within
AAO membrane channels and overview on the reported mesophases.

Lit. SDA
Initial sol-gel compositiona

[SiO2 : SDA : H+]
Method Structure, Morphology

[90] F127 1 : 0.005 : 0.01 Sol-gel
Circular hexagonal tubes in un-
modi�ed, rods in modi�ed AAO
membranes

[91] P123 1 : 0.017 : 0.02 Sol-gel Columnar hexagonal rods

[92] P123 1 : 0.012-0.023 : 0.009 Sol-gel

Mixture of circular hexagonal and
columnar hexagonal phase, with
increasing surfactant content for-
mation of lamellar phase rods

[93] P123 1 : 0.017 : 0.02 Sol-gel

Circular hexagonal or colum-
nar hexagonal depending on wa-
ter vapor present during ageing
tubes (aged outside AAO), rods
(aged inside AAO)

[94] P123 1 : 0.017 : 0.02 Sol-gel

Circular hexagonal or Mixture of
columnar hexagonal and lamellar
phase depending on water vapor
present during ageing rods (aged
inside AAO)

[95] P123 1 : 0.0096 : 0.001
EISA

(dip-coating)
Circular phasesc, rods

[96] CTAB 1 : 0.075 : 0.004
EISA

(casting)
Disordered columnar hexagonal
rods

[97] CTAC
No detailed composition

given

Circular hexagonal phase with
P123 and CTAC, cubic phase
with F127 (not further classi�ed)
rods

[98] F127 1 : 0.006 : 0.065
EISA

(sequential
casting)

Cubic Im3m structure with
F127 according to powder XRD
(higher order in silica material
according to TEM) rods

continued on next page
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continued from previous page

Lit. SDA
Initial sol-gel compositiona

[SiO2 : SDA : H+]
Method Structure, Morphology

[99] Brij 56 1 : 0.135 : 0.0035
EISA

(dip-coating)

Mixture of circular hexagonal and
cubic Ia3d phases (according to
powder XRD) rods

[100�102]
CTAB
P123
Brij 56

1 : 0.177 � 0.26 : 0.06
1 : 0.013 � 0.017 : 0.06
1 : 0.133 � 0.181 : 0.6

EISA
(casting)

Columnar hexagonal structure
with ionic CTAB, pure cir-
cular hexagonal or mixtures
of circular/columnar hexagonal
or columnar hexagonal/tubular
lamellar phases with non-ionic
P123 or Brij56 rods

[103]
P123
Brij 56

1 : 0.013 : 0.06
1 : 0.133 : 0.06

EISA
(casting)

Columnar hexagonal structures
with non-ionic P123 or Brij56
and inorganic salt additives rods

[104]

DeTAB
DTAB
TTAB
CTAB

n. a. Vapor-Phase

Columnar hexagonal structures
with CTAB; with decreasing
length of the alkyl chain of the
surfactant the structure is tilted
more and more towards a circular
phase.

[a] all amounts were re-calculated corresponding to 0.01 mol silica precursor for comparison

[b] room temperature (RT)

[c] Due to synthesis in very small AAO-channels, unusual circular phases were observed, leading
to the formation of chains of spherical micelles in channels with diameters smaller than 30 nm.

2.3.2.1 Sol-gel processes

In a first approach using a sol-gel method (scheme depicted in Figure 2.9) the tri-

block copolymer Pluronic F-127 (PEO100PPO65PEO100) was used as structure di-

recting agent.[90] The anodic alumina membranes were used either as-purchased

or after hydrophobization of the alumina surface with octyltrichlorosilane. They

were immersed in a surfactant and TEOS-containing synthesis sol for 12 hours.

After complete infiltration, the AAO membranes were taken out, the residual sol

was scratched away from the membrane surface and the silica condensation was

28



2.3. MESOPOROUS STRUCTURES IN CONFINED ENVIRONMENTS

performed by exposing the composite membranes to air for 2 hours, followed by

ageing at 60 ◦C for one hour and template removal at 450 ◦C for 3 hours. In unmod-

ified AAO, the silica material was observed to form nanotubes, while nanofibers

were formed when hydrophobized membranes were used as substrate. The tubes

or fibers were found to have a 2D-hexagonal mesostructure with circular orienta-

tion. Similar (free standing) unusual mesophase structures are known from CTAB-

templated fibers prepared by solvothermal methods and were named “circulites”

or circular crystals.[105,106] Silica-titania core-shell nanofibers were produced by im-

mersing the silica nanotube-containing alumina membrane in tetrabutyltitanate for

12 hours and then inducing the sol-gel process by ageing in moist atmosphere for

48 hours (Figure 2.10).

When the surfactant concentration was increased, a mixture of circularly oriented

mesopores and mesopores that were aligned along the long axes of the AAO-channels

(columnar orientation) was observed in TEM images. A pure columnar orienta-

tion of mesoporous silica nanofibers was reported elsewhere using Pluronic P123

(PEO20PPO70PEO20) as template and a sol-gel approach.[91] The porous alumina

membrane was placed inside the synthesis sol for 20 hours followed by additional

ageing within the sol at 60 ◦C for 20 hours. On the contrary, silica fibers compris-

ing a phase mixture of circular and columnar orientations were produced with the

same recipe but different immersion time of the AAO within the synthesis sol (2-4

hours) and ageing outside the sol for 12 hours at ambient condition.[92] Palladium

replicas of the circular silica mesostructure were obtained, leading to the assump-

tion of a helical extension of the pore system instead of the formation of a closed

donut-shaped circular phase. A concentric, tubular lamellar phase was postulated

to form at higher surfactant concentrations. It is difficult to confirm this phase as
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Precursor solution containing:
   • Solvent
   • Precursor (e.g., TEOS)
   • SDA
   • Catalyst (e.g., acid/base)

Colloidal solution Mesostructured composite

Immersion
of the AAM

Gelation
process

Figure 2.9 — Scheme of the synthesis of mesostructured material within AAO pores
by a sol-gel/immersion method.

Tetrabutyltitanate

Aging (48 h)
Calcination

Mesoporous
silica

Mesoporous

Figure 2.10 — Preparation of silica-titania core-shell material.
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the side-view TEM images presented show the same stripe-pattern as the columnar

hexagonal orientation. An overview over the structures and mesopore orientations

within the channels of porous alumina membranes is given in Figure 2.11. Note

that cubic phases were synthesized inside anodic alumina membranes,[97,98,107] but

so far no details regarding their orientation with respect to the channel wall have

been discussed.

In a more systematic investigation of the influence of synthesis conditions on the

final silica mesostructure, AAO membranes were immersed in a synthesis sol con-

taining Pluronic P123 at the same surfactant: silica ratio as in the studies discussed

above.[93] After 30 minutes immersion time, one membrane was removed from the

sol and aged at 60 ◦C for 12 hours. A second and third membrane were kept in the

sol and aged at 60 ◦C for 12 hours with and without the presence of water vapor,

respectively. While the formation of silica nanotubes was observed for the sam-

ple aged outside the sol, dense silica fibers were formed when the membrane was

kept within the sol throughout the synthesis. It was suggested that during ageing

within the sol material is constantly incorporated into the alumina channels, while

ageing outside the sol limits the amount of included material. During gelation

the volume of the sol decreases and the material is deposited only at the channel

b)a) c) d)

Figure 2.11 — Overview over observed mesostructures within AAO channels. The
hexagonal phase is observed with two different orientations, either
circular (helical or donut-like) or columnar.
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walls, thus forming tubular arrays of mesostructured silica. Ageing within the sol

in the presence of water vapor resulted in silica rods with a circular hexagonal ar-

rangement of mesopores, while ageing without water vapor lead to the formation

of silica rods with columnar hexagonal mesostructure. In a later publication, the

silica fibers were reported to consist of a tubular lamellar structure surrounding a

columnar hexagonal phase.[94] It was suggested that the water vapor influences the

rate of silica-hydrolysis (water vapor enhances condensation rate) and therefore has

a strong impact on the structure formed. Thus, the circular hexagonal phase was

presumed to be kinetically favored over the columnar hexagonal structure.
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2.3.2.2 Synthesis via EISA

One can also take advantage of the efficient EISA method[58] for the preparation

of AAO-mesoporous composite materials, by applying coating solutions typically

used for the deposition of mesoporous silica films. In one of the first studies, var-

ious porous alumina membranes with distinct channel diameters from 18 nm to

80 nm were employed as substrates and dip-coated with a synthesis solution con-

taining Pluronic P123, which was used as structure directing agent.[95] The com-

posite membranes were aged at 25 ◦C and 65-70 % relative humidity for 24 hours

and then calcined at 500 ◦C. Different mesostructures were found depending on the

confinement conditions imposed by the different diameters of the alumina nanochan-

nels, ranging from single chains of spherical mesopores to concentric or chiral he-

lical mesopores (Fig. 2.12). These systems were compared to structures simulated

by self-consistent field theory. Domain sizes of the isolated structures imaged by

TEM were found to be quite large. Thus, a formation mechanism was proposed

invoking an evaporation-induced solvent gradient within the AAO-channels, and

subsequent structure formation at the disorder-to-order interface moving through

the channel height. Although the formation of mesostructures inside membranes

with different channel diameters is an interesting subject, to date not many studies

have addressed this subject. This may be due to the limited availability of differ-

ent channel diameters; commercially available membranes are limited at around

200 nm channel diameter and the synthesis of porous alumina membranes having

small channel diameters and highly ordered patterns requires precise control of

processing parameters.[84,95,108]

Replicas of the above structures were obtained by electrochemically filling the meso-
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Figure 2.12 — Representative TEM images of mesostructures formed inside alumina
nanochannels with differing confinement dimensions. The confining
nanochannel diameter is indicated underneath each image. Reprint
from [95].

Figure 2.13 — Simulated structures of the confined self-assembly in cylindrical con-
finement with varying cylinder diameter (D). Calculations were made
using selfconsistent field theory. Reprint from [95].

34



2.3. MESOPOROUS STRUCTURES IN CONFINED ENVIRONMENTS

pores of the calcined samples with silver[95,109] as well as with nickel and copper

oxide.[109] After dissolving the silica/alumina matrix, a TEM investigation revealed

the formation of dense and hollow nanowires, including even coaxial multilay-

ered metal structures.[109] Surface enhanced Raman spectroscopy was performed

on a bundle of silver mesostructured nanowires with Rhodamine G6 molecules ad-

sorbed. Surprisingly, even replicas from concentric circular mesopores (donut-like)

were obtained by the electrochemical deposition method. These stacked circular

structures were reported to break into individual rings upon sonication. Thus, a

connection between the mesopores through micropores similar to those observed

in bulk mesoporous SBA-15 was discussed.

A very similar phase behavior as discussed above was confirmed in another pub-

lication Lai et al.[110] Here, the confinement effect of silica filaments was stud-

ied in AAO and EPC (track-etched polycarbonate) membranes with diameters in

the range between 10 to 200 nm by scanning transmission electron microscopy

(STEM).

Cationic CTAB was also used as a surfactant template for the synthesis of mesostruc-

tured silica - alumina composite membranes.[96] A typical EISA solution was dropped

onto a commercially available AAO membrane and sucked into the alumina chan-

nels by careful aspiration, followed by drying under ambient conditions. The re-

sulting silica material showed some level of columnar mesopore alignment in the

vicinity of the alumina walls while little order was observed in the remaining vol-

ume of the silica fibers. It was suggested that adsorption of CTAB at the alumina

induces the growth of mesostructured material at the channel walls leading to de-

creased concentration of surfactant and silica deeper inside the alumina channels.

Thus, the nanocomposite is supposed to form only near the front surface of the
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membrane. This is contrary to the observations discussed above, showing that

the mesostructured material tends to shrink in radial direction rather than along

the alumina channels. Adsorption-desorption isotherms of the composite mem-

branes were obtained after calcination at 400 ◦C showing type-IV isotherms typical

for mesoporous materials. The composite membranes showed promising behav-

ior for molecular separation, specifically when uncalcined. Comparatively small

molecules such as Rhodamine B and vitamin B 12 could pass through the meso-

pores, while larger molecules such as myoglobin or bovine serum albumin could

not.

First comprehensive diffraction experiments on the formation of mesophases inside

the AAO channels were published in a combined two-dimensional small-angle X-

ray scattering (2D SAXS) and TEM study.[100] Composite membranes of mesostruc-

tured silica in AAO substrates were produced with three of the most often used sur-

factants CTAB, Brij56, and P123, respectively. The AAO membranes were loaded

with precursor solutions having different surfactant-to-silica ratios, and left to dry

under ambient condition (temperature, pressure) and controlled humidity. Diffrac-

tion patterns from the as-synthesized intact composite membranes provided semi-

quantitative information about the volume distribution between the different phases

even in phase-mixtures (Figure 2.14). While circular hexagonal phases exhibit two

01r-reflections (in qx-direction, denoted as in-plane (ip)-reflections) and additional

10r reflections (out-of-plane (op)-reflections), the columnar hexagonal structure shows

exclusively the two reflections in qx-direction (01, 0-1, see Figure 2.14). The ratio of

the intensity of the 10r-reflections and the intensity of the reflections in qx-direction

gives the semi-quantitative information about the distribution between the phases.

A ratio of about 1 represents a pure circular hexagonal phase, a ratio of 0 a pure
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Figure 2.14 — Sketch of the observed structures within the AAO-channels and de-
scription of their intensity-maxima in reciprocal space and their re-
spective diffraction patterns corresponding to the 10 reflection of a
normal hexagonal (a-c) or lamellar (d) lattice. The circular hexagonal
structure forming rings (a) or spirals (b) results in two 01r-, and two
visible 10r-reflections (the other two -10r-reflections are obscured by
the sample holder). The index “r” denominates “ring” for reflections
from ring-shaped intensity maxima, indexation is referring to a nor-
mal hexagonal lattice. The columnar hexagonal structure (c) and the
tubular lamellar phase (d) both result in two reflections in the hori-
zontal plane of the primary beam. Reprint from [101].
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columnar hexagonal structure. In this study, ionic CTAB was found to exclusively

lead to pure columnar hexagonal structures, the non-ionic surfactants Brij56 and

P123 were observed to either lead to the formation of a pure circular, or mixtures of

circular and columnar phases. The formation of the circular phase was enhanced

by low silica-to-surfactant ratios and low humidity, respectively. The preferred for-

mation of a columnar phase was observed at higher silica-to-surfactant ratios, or

high humidity.

In a later study employing in-situ GISAXS with synchrotron radiation, the authors

identified a third, tubular lamellar phase that sometimes was even the main phase

in the mesoporous composites made with high silica-to-surfactant ratios.[101] Fig-

ure 2.14 shows that the tubular lamellar structure exhibits two reflections in qx-

direction (01r-reflections) just like the columnar hexagonal phase. Both phases can

only be distinguished because the d-spacing of the hexagonal phase is smaller than

the d-spacing of the lamellar phase by a factor of sin(120◦) (Figure 2.15).

As mentioned earlier, the identification of the tubular lamellar structure is critical

not only in diffraction but also when imaged with TEM. When the lamellar fibers

are viewed from the side, they show a similar stripe-pattern as the columnar hexag-

onal phase. When the fibers are imaged in cross-section, they exhibit a circular pat-

tern similar to the circular hexagonal structure. However, the lamellar phase was

found to collapse in the electron beam when the plane perpendicular to the fiber

axis is imaged, most probably due to a lack of a three dimensional network when

thinned for TEM imaging. In this case, the collapsed lamellar phase can be distin-

guished from the regular circular pattern of a circular hexagonal structure. In any

case, high resolution diffraction, a combination of diffraction and TEM, or TEM-

imaging of the fibers in side- and plan-views will allow the detection of a tubular
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Figure 2.15 — Diffraction pattern collected with synchrotron radiation during an
in-situ experiment while all three phases are present in the sample,
the circular and columnar hexagonal structure as well as the tubular
lamellar phase. The label oop denotes the out-of-plane reflection (10r),
ip the in-plane reflections (the 01r, 0-1 and 01-reflections of the circu-
lar and the columnar hexagonal structures, and the 01r-reflections of
the tubular lamellar phase).

lamellar phase.[101]

The above in-situ investigation of the structure formation also showed that using

the ionic surfactant CTAB, the columnar hexagonal phase was formed directly from

the beginning. When non-ionic surfactants (Brij 56, P123) were used, the circular

hexagonal phase was found to form first, followed by a direct, partial transforma-

tion towards the columnar hexagonal structure (P123-sample), or complete trans-

formation towards a columnar hexagonal / tubular lamellar phase mixture (Brij56-

sample). Thus, the circular hexagonal structure was concluded to be kinetically

favored and eventually transformed into more stable phases (compare [93]). The

phase transformations were found to start after complete solvent evaporation in a

period comparable to the modulable steady state found in thin film synthesis.[60]

In a subsequent study, the phase formation and transformations were investigated

in more detail, and a formation mechanism was proposed.[102] The focus was on

samples synthesized with non-ionic surfactants (Brij56, P123) at different relative
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humidity (compare [100]). Again, the formation of ordered phases was found to

start directly (no formation of intermediate wormlike phases) and quite late during

synthesis, when almost all solvent is evaporated. Strikingly, phase transformations

occur even after complete solvent evaporation. These transformations, depending

on their type, were supposed to proceed from the channel wall towards the cen-

ter of the fiber or from the fiber center towards the channel wall. For example,

the tubular lamellar structure is preferentially formed at the channel wall, avoid-

ing formation of highly curved lamellae directly in the fiber-center. The columnar

hexagonal phase evolves from the circular phase preferentially at the fiber center,

where the difference in energy between the strongly curved circular structure and

the straight columnar channels is high. Moreover, several interfaces between do-

mains with different structures were found along the fiber axis. Based on these

observations, a formation mechanism was proposed (Figure 2.16), invoking fairly

homogeneous removal of solvent by evaporation and formation of a disordered

gel, followed by nucleation of structured domains at the channel walls at various

nucleation sites distributed all over the height of the membrane-channels. During

the last period, growth of the ordered domains and transformations between the

different phases take place.

The content of solvent (water, since the volatile solvent ethanol has already evap-

orated) at the time of first structure formation and after complete solvent evapora-

tion was compared for samples synthesized with the same precursor solution but

at different relative humidities. The ratio of the sample weight after the respective

synthesis times divided by the initial weight in percent was used as representative

for the water content. Surprisingly, the results were found to differ for samples

synthesized with Brij 56 and P123 as the SDA. The time at which the first structure
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Figure 2.16 — Proposed mechanism for the structure formation within the confined
space of AAO channels. The authors distinguish three major time pe-
riods. Period A is dominated by solvent evaporation and the forma-
tion of a disordered gel. During period B the final sample weight
is reached, accompanied by the formation of ordered mesostructure.
The sample weight is constant during period C, corresponding to the
completion of the EISA process. Various phase transformations are
observed during this time period, as shown in the figure. Reprint
from [102].
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formation could be observed varied with the humidity for the Brij 56 templated

samples and was constant with P123 as the SDA. After completion of the EISA

process, the relative sample weight was found to be constant for the Brij samples,

regardless of the humidity during EISA, while the P123 samples were found to be

dependend on the humidity. The authors concluded that the structure formation in

samples synthesized with Brij56 is kinetically controlled (different ways towards a

similar final chemical composition depending on the humidity), while structure for-

mation in samples synthesized using P123 is more equilibrium controlled (similar

way towards a different final chemical composition depending on the humidity).

In this publication it was reported that under kinetic control (Brij56-samples), the

kinetically favored circular hexagonal phase is formed at low humidity. At high

humidity, when the flexibility of the system is maintained for longer time, transfor-

mation towards the columnar hexagonal phase takes place (compare [100]). In con-

trast, in equilibrium-controlled samples (P123) transformation towards the colum-

nar hexagonal structure is more pronounced at low humidity than at high humid-

ity. This is because under equilibrium control the final sample contains less water

at low humidity. Thus, the head-group area of the surfactant is decreased and the

formation of less curved phases is favored (e.g., the columnar orientation).[61,111]

These mechanistic studies can explain why the production of samples with phase-

pure circular hexagonal structure using non-ionic surfactants and EISA was eas-

ily achieved,[100–102] while synthesis of the interesting columnar hexagonal phase

is challenging. Higher surfactant-to-silica ratios lead to a higher volume fraction

of columnar hexagonal structure,[100] but formation of the tubular lamellar phase

starts before phase-pure systems can be reached.[101,102] Slow synthesis at high hu-

midity leaves the system enough flexibility to transform from the kinetically fa-
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vored circular towards the columnar orientation, but high water content at high

humidity enhances the stability of structures with higher curvature (the circular

orientation).

Figure 2.17 — SAXS patterns of samples a) synthesized with P123 and lithium chlo-
ride at 30 ◦C, b) synthesized with Brij56 and lithium chloride at 30 ◦C.
The intense reflections in the horizontal plane of the primary beam
show the strong domination of the columnar hexagonal phase. Plan-
view TEM images of the samples c) synthesized with P123 and lithium
chloride at 30 ◦C, d) synthesized with Brij56 and lithium chloride
at30 ◦C, showing pure columnar orientation of the mesostructure.
Reprint from [103].

In a recent study, however, the synthesis of phase-pure columnar hexagonal sys-

tems was achieved using non-ionic surfactants and additional inorganic salts.[103]

The intention was to mimic the behavior of the ionic surfactant CTAB[96,100,101] by
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adding inorganic salt to precursor solutions containing non-ionic PEO-based struc-

ture directing agents. It is known that metal ions can be complexed by the ether

chains in PEO, thus the surfactant can assume a more polar nature. The distribu-

tion between the phases was evaluated based on two-dimensional SAXS patterns

in combination with TEM. The temperature was found to play a key role in the

salt-induced formation of the columnar phase. For samples synthesized with P123,

room temperature was reported to be sufficient, while higher temperatures (at min-

imum 30 ◦C) were necessary for the synthesis of the columnar structure. Different

inorganic salts were investigated. Large anions were found to lead to a distor-

tion of the mesostructure, while small cations were observed to be more efficient

structure-directors for the columnar phase than larger cations. Best results were

obtained with lithium chloride as inorganic salt (Fig. 2.17).

The structures were found to be calcination-stable with respect to structural quality

and orientation. Sorption isotherms of ground samples revealed accessible meso-

porosity. Besides enabling the synthesis of quasi pure-phase columnar hexagonal

structure, the addition of inorganic salt was observed to enhance the interaction be-

tween the silica phases and the alumina surface of the matrix. For further applica-

tions such as molecular separators it is desirable to produce composite membranes

where the mesoporous material completely fills the AAO channels. Especially in

calcined samples, shrinkage of the mesostructure is often observed, thus leaving

a gap between silica fibers and the alumina channel walls. The stronger interac-

tion between the mesoporous material with the alumina channel walls can pre-

vent formation of such gaps during calcination. The mechanical stress was found

to be compensated by the formation of structures with comparatively large pore-

diameters. In some cases, merging of the mesopores was observed rather than frac-
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2nd EISA step

calcination

Mesoporous TiO2 or ZrO2
(F127 templated)

Empty void Mesoporous TiO2 or ZrO2
(F127 templated)

Mesoporous SiO2
(F127 templated)

Heterogeneous mesoporous oxides:

2nd EISA step

calcination

Mesoporous SiO2
(CTAC or P123 templated)

Empty void Mesoporous SiO2
(CTAC or P123 templated)

Mesoporous SiO2
(F127 templated)

Multiple silica mesophases:

Figure 2.18 — Preparation of multiple silica mesophases or heterogeneous meso-
porous oxide composites via sequential EISA processing.

ture between the silica material and the alumina wall.

In related work, sequential loading techniques were employed to overcome the

problem of incomplete pore-filling, resulting not only in multiple mesoporous sil-

ica phases[97] but also in composites of different mesoporous oxides (Fig. 2.18).[98]

In a first approach, ionic CTAC and Pluronic P123 were used as structure direct-

ing agents to obtain mesostructured composite membranes via the EISA approach.

These materials were calcined leaving mesophases that only partially fill the AAO

channels but mimic their respective shape. This behavior was attributed to com-

pletely filled channels at an early stage of the synthesis followed by shrinkage of
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the structure most probably during template removal. The resulting composite

membranes were used as substrates in a second synthesis step, where cubic sil-

ica mesostructures were obtained with Pluronic F127 acting as surfactant. Com-

plete filling of the AAO channels with the hexagonal - cubic composite material

was observed in TEM images. In a second approach, Pluronic F127 was used as

template for the formation of mesostructured titania or zirconia in the AAO chan-

nels, followed by calcination. In a second step the voids between mesoporous oxide

and the alumina channel walls were filled with mesostructured silica and calcined

again. Complete filling of the AAO channels was probed by air permeability mea-

surements. The measured values were reported to be in good agreement with liter-

ature values for permeation through mesoporous silica powder having 3 nm pore

size.

2.3.2.3 Vapor-phase synthesis

Recently, a third approach for the synthesis of silica mesophases within alumina

channels was reported by Lee et al.[104] Inspired by a synthesis strategy known

from silica films,[112,113] the authors developed a vapor-deposition hydrolysis pro-

cess, where the silica source (TEOS) is diffused into an already pre-aligned surfac-

tant phase. In sol-gel chemistry and the EISA processes, various parameters, such

as pH, molar composition, and temperature have to be precisely controlled. The

main advantage of synthesis from a vapor phase may be experimental simplicity.

The synthesis procedure is depicted in Figure 2.19. In a first step, the AAO mem-

brane is immersed into the surfactant solution. Due to the negative surface charge

of the alumina material, the head groups of the cationic surfactant molecules are

expected to align on the pore walls, resulting in lamellar arrangement of the surfac-
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Drying

Surfactant 
mesophase

TEOS vapor

2h @ 100 °C

AAM in 
surfactant solution

Final mesostrutured 
AAO/SiO2 composite

Figure 2.19 — Scheme of the vapor-deposition experiment. First, the alumina mem-
brane is soaked in the surfactant solution. After removal, it is trans-
ferred to a closed vessel containing TEOS vapor. Upon the treatment,
the mesostructure undergoes a phase change from a lamellar surfac-
tant phase to columnar or tilted mesophases.

tant phase. The membrane is then transferred into a closed reactor and TEOS vapor

is introduced. The vapor deposition and hydrolysis step itself is then carried out at

a temperature of (minimum 100 ◦C) over 2 hours. Upon this diffusion of the TEOS

molecules into the liquid crystalline phase, the former lamellar arrangement of sur-

factant molecules changes to hexagonal phases. While the authors found that the

formed mesophase is independent of the concentration of the surfactant (as long

as the concentration exceeds the cmc), the chain length of the surfactant used has

a strong influence on the mesophase geometry. With decreasing chain length from

CTAB (16 Carbon atoms alkyl chain) to DeTAB (Decyltrimethyl-ammonium bro-

mide, 10 Carbon atoms alkyl chain length), the mesophase arrangement changed

from a parallel alignment (hex. columnar phase) to a tilted alignment, which more

and more resembled the circular hexagonal mesophase. The authors explain this

by an enhanced surface tension.
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2.3.3 PMO and carbon mesophases

By organic modification of the porous material one is able to tailor the properties

of the inorganic silica to specific needs; thus it is possible to combine the advan-

tages of inorganic mesoporous silicas (such as tunable pore sizes, high specific sur-

face areas, and ordered pore systems) with the great diversity of organic chemistry.

These kinds of materials can be classified as mesoporous organic-inorganic hybrid

materials.[10] Several strategies, such as co-condensation, post-synthesis grafting,

and the direct synthesis from pure organo-silsesqiuoxanes have been developed

for their synthesis. An excellent review on these class of materials is given by Hoff-

mann et al.[10]

A widely used method for the in-situ functionalization of mesoporous silica is the

co-condensation of a pure silica precursor (e.g. TEOS) with a respective organosi-

lane. That way, a large number of functional groups – e.g., alkyl,[114,115] aromatic,[114]

amino,[115] and thiol[115] groups – have been successfully introduced into the wall

material of mesoporous silica powders and thin films. The co-condensation method

enables a homogeneous incorporation of functional groups into the walls of the

mesoporous structures. In a recent study, the influence of the presence of func-

tionalized silanes on the structures and the orientation of the mesophase system

within the AAO channels was evaluated by SAXS, TEM, and solid state NMR

measurements.[116] Both Brij 56 and Pluronic P123 were chosen as structure direct-

ing agents, and for both surfactants a remarkably different phase behavior was

found. In unmodified Brij 56 templated samples, predominantly the formation

of the circular mesophase was observed. This is in good agreement to previous

studies.[100,101] Depending on the humidity present during the EISA process, slight
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variations in the ratio of the circular mesophase to the hexagonal mesophase were

found. SAXS results on samples synthesized at a relative humidity of 40 % indi-

cated the formation of a purely circular mesophase (oop/ip ratio 0.99). In contrast,

a relative humidity of 60 % led to the formation of a circular and columnar mixed

phase (oop/ip ratio 0.55). For samples templated with Brij 56, two different sets

of functionalizations were studied: alkyl-functional groups (with a varying alkyl

chain length of 1 to 8 Carbon atoms) and functional groups having different chem-

ical properties. Remarkably, the alkyl functionalization experiments could be di-

vided into two groups. For short alkyl chain lengths (methyl to isobutyl) and low

TEOS ratios the phase changed from circular to a partially columnar structure. With

increasing silane to TEOS ratio, the phase changed back to the circular phase before

forming a dense phase (no structure) at ratios exceeding 30 % organosilane. In case

of the co-condensation experiments with longer alkyl chains (from pentyl to octyl)

a different trend was observed. Here, the addition of already small amounts of the

respective organosilane led to the formation of a lamellar side-phase. The func-

tionalization with groups carrying basic (cyanopropyl), neutral (phenyl), or acidic

(mercaptopropyl) moieties again showed a behavior similar to that observed with

the short alkyl chain length. The authors therefore conclude that the length of the

functional group plays a key role on the structure to be formed. Different confor-

mations in the surfactant molecules (gauche vs. trans conformation) result in small

shifts in the NMR spectrum; thus conformational effects of the alkyl chains on the

surfactant molecules can be monitored that way. The gauche conformation can be

associated with a higher degree of disorder of the template chains due to its higher

mobility than the all-trans conformation. Therefore, decrease in the fraction of tem-

plate molecules in all-trans indicates lower degree of order in the aggregates formed
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by the template molecules. At some point a critical fraction of SDA molecules show-

ing gauche conformation is exceeded and the formation of an ordered phase is no

longer possible. These considerations are supported by the experimental data ob-

tained by NMR spectroscopy. Similar experiments were carried out using Pluronic

P123 as the SDA; however, already the presence of already 5 % of functionalized

silanes led to a phase transformation to the lamellar phase. Suprisingly, also the

influence of the humidity present during the EISA process and even changing the

P123/Si ratio did not show a strong influence on the phase formation process.

Periodic mesoporous organosilicas are a special group in the field of mesoporous

organic-inorganic hybrids. They were discovered independently in 1999 in the

labs of S. Ingaki,[117] A. Stein,[118] and G. A. Ozin.[119] PMOs are synthesized di-

rectly from bis(alkoxysilyl) precursors in the presence of an appropriate surfactant

without any addition of an inorganic silica source. Thus, materials with a high

loading of functional groups dispersed evenly over the whole wall material can

be obtained. To date, a variety of different materials with linker groups such as

ethylene, benzene, or thiophene have been synthesized. By choosing appropriate

bridging groups it is also possible to synthesize PMO materials that exhibit var-

ious new and interesting properties unknown in purely siliceous mesostructured

materials, such as crystal-like pore walls.[120] Recently, the synthesis of PMO ma-

terial within the channels of AAO membranes was reported.[107] Starting from bis-

(triethoxysilyl)ethane (BTSE) as the organosilica source, the phase behavior in the

presence of CTAB and Brij 56 as SDA was studied. SAXS measurements in com-

bination with TEM micrographs of CTAB based PMO/AAO composites revealed

the exclusive formation of the circular hexagonal mesophase. This contrasts to the

aforementioned purely siliceous systems, where the only mesophase that can be
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a b

Figure 2.20 — TEM micrographs of Ethylene-bridged PMO material within AAO
pores. The micrograph in a) is taken from the cubic mesostructure,
b) represents the hexagonal circular variant.

observed is the hexagonal circular phase.[96,100,104] One reason for this remarkably

different behavior could be the result of a change in polarity and size of the organo-

silica species in the PMO phase. When using Brij 56 instead of CTAB as the SDA for

the EISA process, the existence of a cubic Fm3m phase was reported, in addition to

the formation of the hexagonal circular and a lamellar phase. TEM images revealed

excellent filling rates of the AAO channels, particularly in case of the cubic phase

(Fig. 2.20). The possibility of removing the majority of the template molecules from

these hierarchical systems by annealing at 120 ◦C and subsequent acidic ethanol

extraction was proven by nitrogen sorption experiments. Because of the isotherm

shape and rather broad pore-size distributions an incomplete surfactant removal

was assumed. This assumption could be further proven by 13C MAS-NMR mea-

surements of respective samples. For a more efficient removal of the SDA molecules
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from the PMO mesophases, different calcination temperatures were tested. The

highest BET surface area (85 m2/g) was found for samples calcined at 250 ◦C in

air. 13C-NMR data showed that the template could be removed completely at this

temperature and SAXS diffractograms and TEM micrographs confirmed that the

mesostructure for both the cubic and the circular phase was perfectly retained. Po-

tential applications of these hierarchical systems in nanofiltration and other fields

require that the porous system is accessible for ions and molecules over the com-

plete 60 µm length of the pores. In order to evaluate access into the PMO/AAO

systems, the pores of a calcined hexagonal circular sample were replicated by the

electro−deposition of nickel.

In the last years, several methods to produce silicon-free mesoporous carbon-based

structures (ordered mesoporous carbons, OMC) have been developed.[74,121,122] In

addition to high surface areas and large pore volumes, OMCs also show a high

chemical inertness and - if carbonized - also electrical conductivity. Possible appli-

cations of OMCs therefore could include electrode materials for batteries, superca-

pacitors, fuel cells, adsorbents for separation and gas storage, and as catalyst sup-

ports. Furthermore, they could serve - similar to siliceous mesostructures - as hosts

for the generation of periodic arrays of nanostructures. OMC bulk materials are

usually synthesized either by hard-templating or soft-templating methods. Hard

templating describes a process where an existing mesostructure (e.g., mesoporous

silica) is replicated by a carbon based material; thus a “negative” of the original

mesostructure is generated.[123–127] The need for an inorganic template, which has

to be removed by selective etching after the impregnation with the carbonic phase,

can be considered as a possible drawback of this technique.

The soft-templating method involves an organic-organic self-assembly process of a
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preformed oligomeric resol precursor and a structure directing agent.[74,121,122,128]

The resulting powders show BET surface areas of up to 1500 m2/g and very high

thermal stabilities of up to 1400 ◦C. The mesopore arrangements found for these

powders are similar to those known from mesoporous silica: two-dimensional hexag-

onal (p6mm), three-dimensional bicontinuous (Ia3d), body centered cubic (Fm3m),

and lamellar.

Despite their novelty, there have been already several reports on the synthesis of

OMCs in confined environments. In one of the first reports, the self-assembly

of a block-copolymer (polystyrene-co-poly(4-vinylpyridine), PS-PVP) and carbohy-

drates within AAO channels was studied.[129] After the carbonization at a temper-

ature above 460 ◦C, the templating copolymer was removed and porous structures

were obtained. SEM micrographs of the carbon structures obtained after dissolv-

ing the alumina support showed that not completely filled filaments, but tubular

structures were synthesized. TEM images of these tubes revealed that the tube wall

material had a thickness of about 15 nm and that it was nanoporous. An average

pore size of 16 nm was determined by nitrogen sorption.

Zheng et al.[130] produced core-shell mesoporous carbon nanofibers by a self−as-

sembly process using an oligomeric resol precursor and Pluronic F127 as template.

After carbonization at 700 ◦C, individual fibers could be obtained by removing the

alumina template with hydrofluoric acid. TEM micrographs of fibers synthesized

in 80 nm alumina pores revealed a core-shell structure with parallel aligned meso-

pores. Fibers dissolved from larger mesopores (300 nm in average) also showed

a core-shell structure, but with differently ordered mesopore systems in the shell

and in the inner core. The outer shell of the nanofibers appears to be composed of

parallel mesopores perpendicular to the fiber main axis with pore diameters of 12
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nm. This outer shell could be removed by sonification of the fibers. SEM and TEM

micrographs of the remaining fiber core then revealed a circular orientation of the

mesopore system. No reflections in the wide-angle region were found, thus only

amorphous carbon phases were obtained. This is also supported by corresponding

Raman data.

Steinhart et al.[131] synthesized mesoporous carbon fibers by solvent-free infiltration

of a precursor mixture into porous alumina and carbonization at moderate temper-

atures of 500 ◦C. The synthesis started from a solution containing phloroglucinol as

the carbon precursor, formaldehyde, dilute HCl in an ethanol/water mixture, and

Pluronic F127 as the SDA. After stirring this solution for some time a phase sepa-

ration was observed. The polymer-rich phase was further dried and then spread

onto AAO substrates with pore sizes of 400 nm and 60 nm, respectively. By remov-

ing the solvents before the casting process, macroscopic phase separation as well as

hydrodynamic instabilities could be avoided. After crosslinking of the phloroglu-

cinol molecules and carbonization at 500 ◦C, the PEO microdomains are converted

to amorphous carbon and thus mesoporous carbon filaments were obtained. These

filaments were dissolved from the alumina matrix and probed for their mesostruc-

ture by electron microscopy. While for the filaments synthesized within the 400 nm

pores a mesopore orientation corresponding to a bulk phase was found, the 60 nm

filaments showed confinement effects and the formation of a helical mesophase is

reported.

As mentioned above, mesoporous carbon powders and films can be synthesized

from resol precursors and block-copolymer surfactants.[121] This synthesis concept

has been successfully adapted for the synthesis of free-standing OMC nanofibers

on a silicon wafer.[132,133] In a first step, the carbon fibers were synthesized on a sili-
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con wafer within AAO pores. This was possible due to the strong adherence of the

AAO membrane to the silicon wafer after immersing both into the precursor sol.

After carbonization at 600 ◦C, the AAO membrane was dissolved. The removal of

the alumina usually leads to an entanglement of the fibers during the following dry-

ing process; the authors prevented this entanglement by using supercritical carbon

dioxide that reduces the liquid-gas interface during the drying process. Pluronic

P123 templated nanostructures were obtained in the form of mesostructured rib-

bons, which show circular mesochannels. Using F127 as the SDA, filaments with

the circular hexagonal orientation of the mesopore system were obtained as shown

with TEM micrographs. Some fibers feature columnar oriented mesochannels in

the fiber center that are wrapped by the circular phase. The OMC filaments were

further characterized with respect to their conductive properties using conductive

atomic force microscopy (C-AFM). That way it is possible to measure the conductiv-

ity of individual fibers and thereby prove that they are conductive over the whole

fiber length. The fibers showed linear I-V characteristics; the resistivity of single

fibers was found to be in the remarkably low range of 0.014-0.018 Ωm.

The possible shrinkage of the mesophase system upon the calcination/carbonization

process is a common challenge, as the mesoporous silica/carbon fibers can delami-

nate from the alumina wall and thus create large voids within the composite mem-

brane. Cao and coworkers[134] found that this shrinkage does not necessarily occur

for carbon phases synthesized within hard templates such as AAO or SiO2 col-

loidal crystals due to a ’new restriction effect’. The evaluation of TEM micrographs

of carbon fibers synthesized within 90 nm AAO pores and carbonized at 350 ◦C

showed an average pore diameter of 11 nm and an average wall thickness of 5 nm.

A remarkable increase in pore size to 15 nm was found for samples carbonized at

55



CHAPTER 2. INTRODUCTION TO NANOPOROUS MATERIALS

Figure 2.21 — Schematic illustration of the restriction effect of AAO regarding the
shrinkage of mesoporous polymer during carbonization.

700 ◦C; at the same time, the mean thickness of the wall material was decreased

to about 2 nm. Thus, the diameter of the fibers stayed constant for both samples

and fit the diameter of the templating anopores (Figure 2.21). These findings from

electron microscopy were further confirmed by data obtained by nitrogen sorption

experiments.

OMC filaments have also been synthesized by hard templating. Thus, the repli-

cation of Fe-containing silica mesopores within AAO channels by carbon material

was demonstrated.[135] In a first step, the silica mesopore system was synthesized

by an EISA process of a precursor solution containing TEOS, Pluronic P123 and

Fe(NO)3 as the iron source. SAXS measurements and TEM micrographs showed the

formation of the 2D hexagonal circular phase. After surfactant removal by calcina-

tion, the iron centers were reduced in a hydrogen atmosphere at 750 ◦C. This com-
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posite was then used as the template for carbon incorporation from a CO2/xylene

mixture using a supercritical fluid deposition technique. By dissolving the silica

and alumina host matrices, pure carbon replica were obtained. TEM micrographs

of these replicas perfectly resemble the original silica mesostructures (Figure 2.22).

The graphitic nature of the carbon filaments was demonstrated by Raman measure-

ments showing the characteristic vibrations of sp2-type carbon.
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Figure 2.22 — TEM images of the Fe-containing silica mesostructured nanofilaments
with (a) circular and (b) columnar channels; (c) and (d) are the corre-
sponding TEM images of the filaments inside the pores of an AAO,
and TEM images of isolated carbon replicas with (e) and (f) circular,
and (g) columnar mesopores. Reprint from [135].

58



2.3. MESOPOROUS STRUCTURES IN CONFINED ENVIRONMENTS

2.3.4 Inclusion chemistry

Oriented silica mesophases embedded in AAO matrices make ideal template struc-

tures for the synthesis of nanostructures via inclusion chemistry. Due to the long-

range order, high aspect ratios, and tunable pore diameters of the porous host sys-

tems, the synthesis of nanowires is the most obvious implementation of this con-

cept. As already discussed above, Stucky and coworkers successfully replicated the

structure of helical mesophases by the electrodeposition of silver.[95] Subsequently

both the alumina and silica mold were dissolved and thus the respective nanowires

could be obtained. The free nanowires perfectly resembled the orientation of the

original silica mesophase as demonstrated by TEM micrographs (Fig. 2.13). In

that particular study, no columnar mesophase and therefore no straight nanowires

were obtained. By using the recently published mesopore alignment assisted by

the addition of lithium chloride salt (see above), 2D hexagonal columnar structures

of Pluronic P123 templated mesopores can be synthesized.[103] Thus this approach

should open up the possibility of synthesizing straight, non curled nanowires. This

concept was employed in a recent study for the synthesis of silver, copper, and tel-

lurium nanowires.[136] To obtain the highest possible fraction of the columnar phase

over the circular silica phase, the synthesis conditions were further optimized with

respect to the temperature and humidity conditions during the EISA process. As

already reported earlier, both the temperature and the humidity present during

EISA have a strong influence on the phase formation. The authors found that the

highest fraction of the columnar phase can be obtained for samples synthesized

at constantly high humidities (> 70 % r.h.) and temperatures above 29 ◦C. After

surfactant removal by calcination, the membranes were sputtered on one side with

a thin layer of gold acting as the electrode for the electrodeposition of the wires.
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Both the concentration of the electrolyte and the potential used for the electrode-

position were observed to have a strong influence on the growth of the nanowires.

Due to the high aspect ratio of the mesopore system, diffusion of the respective

ions to the electrode surface is critical. Defects such as cracks, voids, or even empty

anopore channels are expected to show a faster mass transport of the precursor

species than in the mesopore system. Therefore high electrolyte concentrations and

low deposition potentials yielded the best filling rates. Consequently, the depo-

sition of tellurium, which had to be carried out from a highly dilute electrolyte

solution, showed only poor filling rates. Additionally, due to the long deposition

time in highly acidic media, the orientation of the underlying mesopore system

was strongly disturbed. Copper and silver nanowires, electrodeposited from much

more concentrated solutions, showed drastically better filling rates. Though both

elements were deposited from comparably concentrated electrolytes and by using

the same deposition potentials, filling rates appeared to be higher for the copper

system (see Fig. 2.23).

Plan view TEM micrographs of the wires embedded within the AAO/silica mold

system still show the hexagonal arrangement of the original silica mesophase. To

obtain information on the long range order of both the nanowires and the origi-

nal mesopore system, the alumina mold was selectively dissolved; thus compos-

ite silica/nanowire filaments were obtained. TEM micrographs of these filaments

showed occasional defects in the arrangement of the mesopores. Besides the hexag-

onal columnar phase as the main phase, domain boundaries between the hexagonal

columnar and the hexagonal circular mesophase were found in TEM images. Wires

grown in regions exhibiting the hexagonal columnar phase illustrate that in such

’defect-regions’ the porous system is twisted, while leaving the hexagonal short-
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cba

Figure 2.23 — TEM micrographs of nanowires obtained from electrochemical depo-
sition into silica/AAO composites. a) Copper nanowires recorded in
plan view. The wires reproduce the original hexagonal arrangement
of the underlying mesostructure. b) Image of Cu wires in an isolated
silica filament. c) Bundles of free silver nanowires obtained by the
total dissolution of the host matrices.

range order intact. This tortuosity was already anticipated from plan-view im-

ages.The presence of domain boundaries along the length of the anopore host is

not surprising given the synthesis mechanism with multiple nucleation sites dis-

cussed above.[102] To finally obtain free standing wires, both the alumina and the

silica matrix had to be dissolved. This was done in hot sodium hydroxide solution;

unfortunately, only the silver wires survived this treatment while the thin copper

wires were dissolved as well. The straight polycristalline wires observed in the

TEM were always found to be bundled; this is explained by the presence of in-

terconnecting micropores within the silica mold system, a feature well known for

block-copolymer-templated mesoporous silica.[137]

The successful inclusion of noble metal (Pt, Au, Pd) and semiconductor (Ge) nano-

wires into silica mesophases synthesized within AAO channels can also be accom-

plished by wet chemical impregnation.[138] Platinum nanowires have been synthe-
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sized in the channels of calcined AAO/silica composites by a repeated impreg-

nation with Pt(NH3)Cl2 followed by a hydrogen reduction step. Plan-view TEM

images of the AAO/silica/Pt system show that the original hexagonal order of the

initial mesophase is retained, while the mean diameter of the wires has shrunk to

about 5 nm (compared to about 8 nm initial pore diameter). Images of silica/Pt fil-

aments show well-defined nanowires that extend to several hundreds of nanome-

ters. They are composed of small segments suggesting a chainlike morphology,

which is commonly observed for metal nanostructures prepared by wet chemical

impregnation.[139] In a related strategy, gold nanostructures could be prepared in

previously functionalized columnar mesopores. For this purpose, aminopropyltri-

ethoxysilane (APTES) was grafted into the calcined composite membranes. After

the impregnation with H[AuCl4] as gold precursor, the final reduction step was

carried out in air, upon which the membranes changed color to violet. Besides the

impregnation of metal precursors into calcined samples, treatment of the uncal-

cined mesophases with a Palladium precursor containing ethanol/water solution

was described, resulting in simultaneous extraction of the template, and one-step

deposition and reduction of the metal precursor within the silica mesopores dur-

ing impregnation. This mild reduction method resulted in a higher loading of the

mesophase with the respective metal ions as compared to gold reduction in the

calcined mesopore system. Additionally, the authors report that no or only little

shrinkage of the mesopore system was observed.

The three aforementioned methods all include a solvent-based nucleation and

growth mechanism. To facilitate mass transfer and thus enhance the continuity

of the nanowires, a solvent-assisted supercritical fluid (SCF) deposition of germa-

nium nanowires was studied. This technique is reported to allow the growth of
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continuous semiconductor nanostructures in SBA materials.[140] During the depo-

sition step, the orientation of the mesophase system is preserved and Ge nanowires

with 8 nm were obtained. In some cases, the formation of Ge nanotubes was also

observed, resulting from germanium deposition only at the pore walls.

2.3.5 Separation/release

In addition to the utilization of the mesoporous composite membranes for the tem-

plated synthesis of nanowires[95,109,135,136,138] another evident application for those

composites is the use as separation membranes. For those studies, permeable meso-

structures such as the hexagonal columnar phase or bicontinuous cubic phases are

essential. A significant number of such experiments was reported by the group of

N. Teramae, and composite membranes including the CTAB-templated columnar

hexagonal phase were employed.[96]

In a detailed permeation study, chromatographic experiments were carried out us-

ing a non-calcined CTAB-templated composite membrane as column.[141] A mix-

ture of toluene and phenol was separated in a chromatographic experiment, where

the composite membrane was used as column and the mobile phase was n-hexane

at a constant flow rate of 0.2 mL/minute (Figure 13). The retention time of phenol

was found to be greater than that of toluene, which was attributed to stronger in-

teractions of phenol with the silica-surfactant composite due to dipole interactions

with the ionic interface at the silica pore wall.

Additional permeation flux measurements were done using a U-tube, the feed half-

cell containing the solute (phenol, benzene sulfonate, or benzene disulfonate) in
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mesostructured
composite membranes

empty AAM

hexane �ow
(0.2ml/s)

+
phenol or toluene

 to UV detector

Figure 2.24 — Scheme of the chromatography experiment (after [141]). Two porous
alumina membranes were used to stabilize the composite membrane.
The composite membrane was used with the surfactant template still
present.

water or an ethanol-water mixture, the permeation half-cell containing only sol-

vent. Transport through the membrane was measured by monitoring the UV ab-

sorption as a function of time in the permeation half-cell. If water was used as sol-

vent, the transport through the membrane was fast for phenol and less pronounced

for the sulfonate-molecules in agreement with the molecular charge. The authors

concluded from partitioning experiments that the higher charged sulfonates are ad-

sorbed within the composite membrane, thus showing less pronounced transport

through the membrane, while phenol shows high permeation flux. If an ethanol-

water mixture was used as a solvent and the ethanol content was successively in-

creased, the permeation of phenol decreased while the permeation of the charged

sulfonates increased. Moreover, the interactions with the composite membrane are

strongly influenced by the choice of solvent.

A mechanism for the incorporation of charged dye molecules into non-calcined

CTAB-templated composite membranes was proposed by the same authors (Fig-

ure 2.25).[142] The dyes were extracted from aqueous solutions containing various

types and concentrations of inorganic salts. The extraction of cationic Rhodamine

64



2.3. MESOPOROUS STRUCTURES IN CONFINED ENVIRONMENTS

a) Cationic dye: ion-pair formation b) Anionic dye: anion exchange
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Figure 2.25 — Illustration of the proposed mechanism (after [142]) for incorporation
of dye molecules into a silica mesophase containing cationic template.
One possibility is the incorporation into hydrophobic areas after ion-
pair matching. Another possibility is exchange with the template
counter ions
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6G was facilitated by inorganic salt addition. The strongest effect was observed

for sodium perchlorate followed by sodium nitrate and bromide, the smallest effect

was observed for sodium chloride, which is consistent with the Hofmeister series

of salts.[143] The Hofmeister series of salts reflects the dehydration energy of an-

ions, chloride having the highest energy and perchlorate having the lowest. Thus,

the authors propose an ion-pair extraction process for the cationic dye molecules,

involving counter ion matching and incorporation into the hydrophobic part of the

micelles. In contrast, the effect of dye incorporation into the membrane is inhib-

ited by the addition of inorganic salt for anionic sulforhodamine B according to the

Hofmeister series. The authors conclude that the anionic dye molecule is extracted

from aqueous solution via a different mechanism by replacing the bromide counter

ion of CTAB at the silica-surfactant interface. In a related study, the local environ-

ment of neutral and anionic coumarin dyes incorporated in non-calcined CTAB-

templated composite membranes was investigated by time-resolved fluorescence

spectroscopy.[144]

Furthermore, permeation measurements of tris(2,2’-bipyridyl)ruthenium through

a composite membrane after the one-step extraction of the ionic surfactant and si-

multaneous modification of the silica with alkylsilanes[145] were carried out.[146]

The transport of the ruthenium complex through the membrane was recorded by

time-dependent absorption spectroscopy of a feed and a permeate solution. Dif-

fusion coefficients estimated from observed lag-times were compared for silanes

with different alkyl chain lengths and for various solvents. The lag-time is the time

before the transport of the ruthenium complex into the permeate solution shows

linear behavior. Diffusion coefficients for silanes having short alkyl chains (methyl-

and butyl-groups) were several orders of magnitude smaller than in the respective
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bulk solutions, when ethanol was used as solvent. Diffusion in mesopores that were

modified with long alkyl chains (dedecyl-groups) was about two orders of magni-

tude smaller than in bulk ethanol solution. This behavior is attributed to stronger

hydrogen-bonding interactions between the solvent molecules in the cavity of the

mesopores slowing down the molecular diffusion. If the alkyl chains are very long,

the authors assume that less solvent molecules are present in the mesopore chan-

nels and diffusion can again be faster.

Gas permeation measurements were performed by a another group investigating

composite membranes composed of anodic alumina and Brij 56-templated meso-

porous silica prepared by dip-coating of an EISA precursor solution.[99] The syn-

thesis procedure was previously reported for thin film preparation, resulting in a

bicontinuous cubic phase. However, in the mesoporous/AAO composite, silica

fibers with circular hexagonal and cubic structures were observed with transmis-

sion electron microscopy. Powder X-ray diffraction patterns were obtained from

as-synthesized membranes showing peaks that were attributed to a surface layer

formed on the planar membrane surface and assigned to a mixture of lamellar

and Ia3d cubic phases. After ethanol extraction of the surfactant, no peaks were

observed in powder diffraction anymore, but some of the circular hexagonal and

cubic mesoporous material was still observed by TEM imaging. This observation

shows that careful investigation of the composite membrane before and after dilu-

tion experiments is crucial, since the structural features might be destroyed during

the experiment.

Gas permeation measurements were performed with the extracted composite ma-

terial. The transport of nitrogen, helium, and propane through the membranes

was investigated and compared with the permeation properties of commercially
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available separation membranes having 200 nm, 20 nm, 10 nm, and 5 nm nominal

pore size. Those membranes are generally composed of a large pore alumina sup-

port and a thin layer of material exhibiting the smaller pore sizes. The permeance

and permselectivity of the membranes were compared; the permselectivity being

represented by the ratio of helium to nitrogen permeance or propane to nitrogen

permeance, respectively. It was found that the effective pore size of the compos-

ite membranes depends on the number of dip-coating cycles, reaching consistency

with the expected pore size after four cycles for the Brij 56-templated mesoporous

material according to TEM and powder X-ray diffraction experiments. The perms-

electivity for a four-time dip-coated membrane was much higher than for commer-

cially available membranes with nominally 5 nm pore size, which was attributed to

the narrow pore size distribution and absence of pinhole defects in the mesoporous

material.

As indicated above, the potential of the composite membranes as molecular sepa-

rators is promising. However, in order to arrive at clear conclusions regarding the

relationship between separation behavior and mesopore morphology, subsequent

analysis of the structural and morphological nature and quality of the composite is

essential.

The influence of morphological features on molecular diffusion was addressed in a

recent study.[147,148] Thus, drug uptake and release into and from mesoporous silica-

anodic alumina composite membranes was investigated and compared with drug

release properties of SBA-15 powder samples having fibrous (20− 30 µm fiber-

length) or microspherical (4.5− 7 µm diameter) morphology, respectively.[147] The

larger diameter of the columnar mesopores is due to the swelling effect of lithium

chloride, which was added to induce the phase shift.[103] Three different compos-
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ite systems were employed: one synthesized with CTAB having columnar pore-

alignment and 4.5 nm pore diameter (i), the other two synthesized with Pluronic

P123 as surfactant and having circular hexagonal structure and 7 nm pore diameter

(ii), or exhibiting a columnar hexagonal main phase (iii) with 9 nm pore diame-

ter, respectively. In this study, the antibiotic vancomycin was introduced into the

calcined samples through immersion in drug-containing simulated body fluid.

The CTAB-synthesized sample (i) with pore dimensions comparable to those of

the vancomycin molecule was found to adsorb 30.5 mg/g (normalized to the ab-

solute mass of the composite membrane). The drug-loaded composites showed

pore-blocking in nitrogen sorption experiments. This is attributed to either van-

comycin being located in the outer volume segment of the sample, or due to the

deposition of hydroxyapatite-precursors derived from interactions of the silica ma-

terial with the SBF solvent. The hypothesis that the drug molecules are mainly

located in the outer volume segment of the host material is supported by the find-

ing that drug-release is much faster in the CTAB-synthesized sample than in the

columnar sample synthesized with P123, despite the larger pore diameters of the

P123-templated material. However, the presence of inorganic precipitate was found

in all samples by scanning electron microscopy combined with energy dispersive

X-Ray spectroscopy (EDX) after exposure to both the dissolved vancomycin or the

simulated body fluid alone. Assuming the same influence of the inorganic species

on the molecule uptake and release, the authors therefore conclude that differences

between the samples can be attributed to the different structural and morphological

features alone.

The circular sample synthesized with Pluronic P123 adsorbs only 11 mg/g of the

maximum possible amount of vancomycin, which is lower than the relative amount
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adsorbed by the empty AAO alone. The pore size distribution derived from sorp-

tion measurements before and after drug-uptake is the same, indicating that the

molecules are not adsorbed into the inner pores but rather in small quantities at

the mouths of the pores. This is also supported by the fact that the circularly struc-

tured mesoporous material shows the fastest drug delivery of all studied AAO-

composites.

The P123-synthesized composite material having mainly columnar hexagonal struc-

ture and a circular hexagonal side-phase (iii) shows with 49.9 mg/g the highest

uptake of vancomycin. The pore size distributions from measurements before and

after drug-uptake indicate that the vancomycin is located in the columnar pores,

resulting in the longest diffusion paths and slowest release in this host.

The authors conclude that pore diameter, pore tortuosity and length, and the acces-

sibility of the pore entrance are critical factors for drug-uptake and release kinet-

ics.

2.3.6 Summary

Great progress has been made in the recent years towards understanding the struc-

ture formation and the synthesis process. Although not all questions are cleared

yet, a set of parameters for optimization of the quality of the composite membranes

is available, ranging from the choice of the right template for the envisioned pur-

pose and optimal synthesis conditions[90,93,95,100–102] all through the eventual uti-

lization of additives.[103]

From the studies discussed above it is clear that anodic alumina - mesoporous ma-
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terial composite membranes are of great interest for the design of complex hierar-

chical nanostructures. They offer a largely independent control of pore size, pore

topology, pore orientation, molecular functionalization and possibly also pore wall

composition. Potential functionality and applications include molecular

separators,[96,99,141,142,146,147] or host materials for the inclusion of conducting or

semi-conducting nanostructures.[92,95,109,135,136,138] For example, composite mem-

branes were found to exhibit superior permselectivity than commercially available

membrane systems in gas permeation experiments.[99] Furthermore, as compared

to conventional mesoporous powder systems, higher control over the structural

and morphological features of the pore system can be achieved in composite mem-

branes, enabling greater tunability of the materials properties, for instance regard-

ing the host-guest interactions in potential drug delivery systems.[147]
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One-dimensional Nanostructures
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3.1 Introduction

Nanoscale objects can be grouped according to their dimensionality (see chapter

1). One-dimensional nanostructures can be defined as systems in which the free

mean path of charge carriers is larger in one direction that in the two other spa-

tial dimensions. Thus, the carriers are confined for transport phenomena only in

one dimension as it is the case for nanowires, nanotubes, and related materials.[149]

Nanotubes are defined as hollow nanowires, whose walls have a thickness of less
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than a micron. Nanowires and -tubes can be synthesized in a variety of ways and

both show very interesting properties; nevertheless, nanotubes are not within the

scope of this thesis and will therefore not be discussed here.

Nanowires already have a long history in science; in 2007, the fiftieth anniversary of

silicon-nanowire research was commemorated.[150] Over the times, different terms

– nanowhiskers and nanowires – have been used, both referring to the same 1-d

nanostructures. In modern literature, the latter one is used almost exclusively.

There is no clear definition of the difference between nanowires and nanowhiskers

on the one side and nanorods on the other side; generally speaking, wires have a

larger aspect ratio than rods.

The synthesis, properties, and applications of 1-d nanostructures , be it nanowires,

-rods, or -tubes, is a field of highly active research.[151] With electronic circuits be-

coming smaller and smaller, the size of electronic components – if the trends con-

tinues – will reach atomic dimensions within the next two decades. Thus, a lot

of effort has to be put into the synthesis, characterization, and properties of such

small structures. Besides their role in modern semiconductor physics, nanowires

are also to be expected to play an important role in optical, electrochemical, and

electromechanical devices.[152–154]

3.2 Nanowire synthesis

Since there is a long tradition in nanowire research, a large number of synthesis

strategies has been developed. These different techniques can be grouped into four

categories:[2]
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1. Spontaneous growth

a) Vapor (or solution)-liquid-solid growth

b) Evaporation (or dissolution)-condensation

c) Stress-induced recrystallization

2. Template-based synthesis

a) Electroplating and electrophoretic deposition

b) Colloid dispersion, melt, or solution filling

c) Conversion with chemical reaction

3. Electrospinning

4. Lithography

The first three methods – spontaneous growth, template based synthesis, and elec-

trospinning – are bottom-up approaches, with access to the vast number of chemi-

cal synthesis methods that can be applied. The last item, lithography, is a classical

top-down approach.

3.2.1 Spontaneous growth

The spontaneous growth technique is based on the reduction of the Gibbs free en-

ergy. Some solids naturally crystallize in an anisotropic crystal structure. If growth

only occurs along the longitudinal direction of a crystallite and in the other direc-

tions only little growth occurs, nanowires or -rods may be formed. As spontaneous

growth involves a crystallization process, defects and impurities may have a strong

influence on the morphology of the final products. There are several mechanisms

known that result in an anisotropic growth:[2]
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1. A different growth rate of different crystal facets. In silicon, the growth rate

of {110} facets is higher than that of {111} facets.

2. Presence of imperfections in a specific crystal direction.

3. Preferential accumulation of impurities on specific facets.

Spontaneous growth is a widely used method for the synthesis of nanowires. In a

pioneering paper, Ellis and Wagner reported on the synthesis of silicon nanowires

by vapor-liquid-solid (VLS) growth.[155] Although the interest in this work faded in

the first decades after the original publication, research on the VLS process gained

a lot of momentum back in the ’90 of the last century. Since then, the VLS (and the

related solution-liquid-solid growth, SLS) method became the by far most widely

used method for the growth of semiconductor nanowires. This method allows the

synthesis of highly crystalline semiconductor (Si, Ge, etc.) nanowires with several

micrometers in length and diameters on the nanometer scale. The VLS process al-

ways involves a catalyst in the form of a liquid droplet in the presence of vapor

precursor. The classic (and to date best studied) example is the growth of silicon

nanowires from a gold catalyst and silane (SiH4) gas. The VLS process can be best

understood with the help of phase diagrams. In general, a phase diagram depicts

phases and their compositions in mixtures depending on the relative concentra-

tions and temperature in thermodynamic equilibrium. The phase diagram of the

binary system gold and silicon is depicted in Figure 3.1 (left). In a first step, a sub-

strate (usually a silicon wafer) is coated with a thin layer of gold. This substrate is

then annealed above the temperature of the eutectic point E (363 ◦C). This causes

the formation of small, liquid gold droplets, as the gold and silicon mix until the

eutectic composition is reached. During the whole (dynamic equilibrium) growth

process, this composition is constant. Now the silicon precursor is introduced in
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Figure 3.1 — Left: Binary phase diagram of Au/Si. The green line marks the evolu-
tion of the concentration inside the droplet during nucleation. Point L
depicts the zone where the concentration is high enough to form a liq-
uid droplet. Point D marks the crossing of the liquidus line and point S
denotes the zone in which gold is still solid. Right: Gold droplet in the
nucleation process. The impinging silane is catalytically decomposed
on the droplet surface. The increasing silicon concentration leads to a
diffusion to the center. The volume outside the diffusion front is in a
liquid state. Adapted from [156]
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vaporized form. The precursor is preferentially decomposed on the catalyst (gold)

surface and the silicon atoms now diffuse into the gold droplet. As the composi-

tion of the droplet always always has to be constant, the droplet gets supersatu-

rated with silicon; thus, the silicon starts to precipitate at the solid-liquid interface.

As this interface is always located at the bottom of the droplet, one-dimensional

growth is achieved which results in the formation of nanowires. Depending on the

growth conditions, the resulting nanowires can be obtained in single-crystalline,

polycrystalline, or amorphous form.

Because of the growth process, nanowires prepared by vapor-liquid-solid growth

always usually carry their catalyst on top (see Fig. 3.2). The size of the nanowires

is mainly determined by the droplet size; however, very small droplets will show

growth in all directions because of an increased surface curvature and therefore

higher solubility of the precursor within the droplet.[2] Small amounts of the cata-

lyst are often found to be decorating the nanowire surface or even being incorpo-

rated into the wire causing defects. Especially in the case of gold this is an impor-

tant issue, as Au is a deep level impurity in Si and Ge that significantly degrades the

carrier mobility and causes fast nonradiative electron-hole pair recombination.[157,158]

Therefore, different catalysts than Au are often desired. The incorporation of cata-

lyst atoms into the wire core can also have beneficial consequences. By controlling

the amount of the incorporated atoms, it is possible to dope the nanowires and thus

tune their electronic band-gap. Additionally, if the catalyst is slowly consumed the

droplet size is reducing with on-going wire growth; thereby, nanowires with a con-

ical shape can be grown.

VLS growth is not limited by the type of the substrate, precursor and the cata-

lyst used; as long as the phase diagram shows a eutectic point and the precur-
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a b

Figure 3.2 — SEM (a) and TEM (b) micrographs of silicon nanowires grown by a
VLS process. The wires were grown on the top surface of a gold sput-
tered AAO/SiO2 surface. The dark tip of the wire in the TEM image
represents the gold catalyst; the small dark spots are traces of gold dec-
orating the nanowire surface.

sor is preferentially decomposed at the catalyst surface, one-dimensional growth

might be achieved. Besides the Si/Au system, a variety of other systems have been

successfully used for VLS growth. Si nanowires can also be grown using an iron

catalyst.[159] Germanium nanowires can be grown using indium and bismuth as

catalysts.[157,160] A broad range of single-crystalline multicomponent semiconduc-

tor nanowires (GaAs, CdSe, SiGe, and others) have been prepared in the group

of Charles Lieber.[161] A combination of VLS and template growth has also been

demonstrated by growing silicon nanowires within anodic alumina pores.[20,162,163]

To date, only a few different materials, mainly oxides, could be synthesized in the

form of nanowires by evaporation (or dissolution)-condensation processes. The

successful synthesis of single-crystalline semiconducting oxide (ZnO, SnO2, In2O3,

CdO) nanobelts has been shown by the group of Zhong Lin Wang.[164] The syn-
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thesis was based on thermal evaporation of the respective oxide powders under

controlled conditions. They obtained wires with rectanglelike cross sections (typi-

cal widths of 30 to 300 nanometers), width-to-thickness ratios of 5 to 10, and up to a

few millimeters length. Tin oxide nanorods could also be synthesized by a conver-

sion of amorphous SnO2 nanoparticles at elevated temperatures.[165] The synthesis

of elemental nanowires has been achieved by the thermal evaporation of silicon

monoxide in a reducing hydrogen atmosphere.[166]

3.2.2 Template-based synthesis

A template-based approach for the synthesis of nanowires and nanostructures in

general is probably the most versatile technique to date. Quite a few different tem-

plate materials have been successfully employed for this purpose. Most commonly,

porous anodic alumina and track-etched polycarbonate substrates are used, but

also other materials such as mesoporous silicates, nanochannel array glass, and

even carbon nanotubes have been demonstrated as templates.

The beauty of templates-based approaches for the synthesis of nanostructures is

that the resulting objects are always replicas of the original (porous) structures;

thus it is possible to specifically tailor those objects regarding their size (diame-

ter, length), morphology, and density. The materials used as the templates have to

fulfill certain requirements:

• Compatibility with the processing conditions (e. g., the template should be

chemically inert under the synthesis conditions)

• The deposition solution or material must be able to wet the template walls
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• For the synthesis of nanowires, it must be possible to start the growth from

the bottom of the pores

The most widely employed synthesis strategy in template-based synthesis of na-

nowires and related materials is probably electrochemical deposition; this has been

used extensively during this work, thus the later considerations will focus on this

technique. Other strategies used in this context are melt and solution filling, chem-

ical vapor deposition and VLS (see above), and deposition by centrifugation.

The electrochemical deposition process (also called electrodeposition or electroplat-

ing) can be understood as a special electrolysis that results in the deposition of a

solid material on the electrode surface.[2] In an electrochemical cell, two electrodes

(cathode and anode) are immersed into a solution containing the electrolyte. The

anode is connected to the positive part of a power supply and serves as the counter

electrode; the cathode is connected to the negative part and serves as the working

electrode. If the applied potential exceeds the standard potential E0 of half-reaction

of the element to be deposited, an electrochemical reaction will occur and the re-

spective cations will be reduced to their elements at the cathode. In an electro-

chemical system, the electrode potential E is defined by the Nernst equation:

E = E0 +
RT
ziF

ln (ai) (3.1)

E0: standard electrode potential
R: universal gas constant
zi: number of electrons transferred in the cell reaction or half-reaction
F: Faraday constant
ai: chemical activity of the relevant species
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Template synthesis Addition of the electrode Electrochemical growth Dissolution of the template

Figure 3.3 — Schematic of the template-based synthesis of nanowires by electro-
chemical deposition. The main steps (synthesis of a mold system, wire
growth, and the eventual dissolution of the host material) are valid for
all template-based processes in general.

The basic principle of electrodeposition of nanowires by a template-based approach

is shown in Fig. 3.3. In a first step, an appropriate porous mold – commonly in the

form of a thin membrane – is synthesized. If necessary, this membrane is coated

in a second step with a thin conductive layer that serves as the working electrode.

The system is then exposed to a bath containing appropriate electrolytes and an

electrical voltage is applied. Now the wires grow until the electric field is switched

off again. Finally, the templating material can be dissolved and free wires can be

obtained.

Figure 3.4a depicts an SEM micrograph of Nickel nanowires synthesized by elec-

trodeposition into a porous anodic alumina membrane (av. pore diameter 200 nm).

One key advantage of electrochemical growth is the possibility to exactly control

the length of the resulting wires by monitoring the current over time. Once the elec-

trical field is switched off, the growth process will stop immediately. The growth

process itself can be separated into three different stages:

1. Buildup of the double layer and reduction of the first ions close to the elec-

trode surface.

2. Diffusion-controlled growth within the pores.

3. Unconfined growth once the wires reach the pore ends.
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Figure 3.4 — a) SEM micrograph of copper wires prepared by electrodeposition into
200 nm anodic alumina pores. b) depicts the characteristic current be-
havior for the electrodeposition into nanoporous template. The con-
centration of CuSO4 was 0.05 mol/l, the potential applied was 0.01 V.

These three stages can be seen in the graph depicted in Fig. 3.4b. In the beginning,

just after the field is on, the current increases to a rather high value. All ions close

to the electrode are reduced to Cu. Once they are consumed, new ions have to be

transported to the electrode by diffusion through the porous system. This process

is slow; thus the electrical current is decreased. As the rate of diffusion is almost

constant as long as the wires grow within the pores the currents stays almost con-

stant. Finally the wires reach the end of the pores. The electrochemical reduction is

now no longer limited by the diffusion within the pores; additionally, the electrode

surface area is increasing. This again leads to an increase in the electrical current.

This characteristic behavior can be used to stop the wire growth exactly when the

wires reach the end of the pores; thus, completely filled composites can be obtained.

Besides electrodeposition some other methods have been explored to fill the tem-

plates. The pores of mesoporous silicas can be filled by electroless reduction meth-
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Figure 3.5 — SEM image of mesoporous organosilica filaments templated within an-
odic alumina pores. The alumina mold has been etched to obtain free
filaments.

ods.[167] Electrophoretic deposition can be used to fill a template material with col-

loids from colloidal solutions or sols with the help of an electric field.[168,169] Col-

loidal solutions or sols can also be used directly for the synthesis of 1d nanostruct-

ures.[107,136] This method was employed for the synthesis of mesostructured silica

filaments within AAO pores. Nanowires have also successfully been templated by

direct infiltration of porous substrates with melts of the desired materials or ade-

quate precursors.[170,171]

3.2.3 Electrospinning and lithography

Electrospinning is used mainly for the preparation of polymer nanofibers. Its main

advantage is the simplicity combined with low costs. It makes use of the electro-

static repulsions between surface charges to reduce the diameter of a viscoelastic
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jet or a glassy filament.[172] Classic materials that have been employed in eloec-

trospinning are – amongst many others – organic polymers such as Nylon-6,6,

polyurethane, and polycarbonate.

In contrast to all the aforementioned methods optical lithography (and all other

micro- or nanolithographical methods) are a classic top-down techniques. Lithog-

raphy in general describes a process in which a pattern or structure is replicated

onto a given substrate. A large number of different methods, that fall under the

generic term lithography, have been developed in the last decades, making it a

very versatile method that is widely applied in both research labs and industry.

3.3 General Properties of Nanowires

It is generally accepted that nanoscale objects show remarkably different proper-

ties than their bulk counterparts. It is obvious that one-dimensional nanostruc-

tures with well-controlled dimension, composition, and crystallinity represent a

new class of intriguing systems for the investigation of structure-property relations

and related applications. The properties that are attractive and dependent on the

nanosized dimensions are: thermal, mechanical, phonon transport, optical, field

emission, and electronic (e. g., transport and quantum confinement)properties .[8]

The investigation of the mechanical properties of nanostructures is essential for

the atomic-scale manipulation of these materials in constructing composites with

improved mechanical properties. Single crystalline one-dimensional nanostruc-

tures that are essentially defect-free tend to be significantly stronger than larger

structures.[173] This can be explained by the reduction in the number of the defect

85



CHAPTER 3. ONE-DIMENSIONAL NANOSTRUCTURES

sites per unit length as a result of decreased lateral dimensions. Measurements of

the mechanical properties of one-dimensional nanostructures were preformed by

attaching the nanowires to STM tips.[174]

For their implementation as building blocks in nanoelectronic devices, the ther-

mal stability of one-dimensional nanostructures is a critical feature. In general it

can be said that the melting point of a nanostructure can be significantly reduced

if compared to the corresponding bulk material.[175] In the case of nanowires, the

lowering of the melting point is inversely proportional to the nanowire length. In

detail, Wu and Yang found that the melting points of germanium nanowires ap-

proach bulk values for long nanowires;[176] however, if the nanowire lengths were

reduced to nanometer scales, the melting point was drastically reduced. This was

attributed to a large hysteresis in the melting and recrystallization process. The au-

thors therefore concluded, that the chemical and thermal stability of new devices

may be limited.

The electronic properties of nanowires and nanorods are of primary interest nowa-

days because there is a need to go beyond the traditional microelectronic approaches.

As the critical dimensions of an individual device become smaller and smaller, the

electron transport properties of their components become an important issue to

study. Quantization due to the transverse confinement and the resulting finite level

spacing of electronic and phononic states are responsible for some novel effects.[8]

The electrical transport characteristics of nanowires strongly depend on their diam-

eter. Wires with diameters above the carrier mean free path have similar I-V charac-

teristics as the corresponding bulk materials. But if the wire diameter is decreased

below the carrier mean free path, the electron transport properties begin to differ
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Figure 3.6 — Electronic density of states for a) 3-D crystalline semiconductor, b) 2-
D quantum well, c) 1-D nanowire or nanorod, c) 0-D quantum dot.
Adapted from [8].

from their bulk counterparts. For this reason, electron transport properties become

an interesting area of study as a material is reduced from three-dimensional or two-

dimensional to one-dimensional or even zero-dimensional. When a nanowire or

nanotube diameter becomes small, singularities in the electronic density of states

develop at special energies, called van Hove singularities, where the electronic den-

sity of states becomes very large resembling more closely the case of molecules and

atoms but appearing to be very different from the case of crystalline solids or even

two-dimensional systems (Figure 3.6). Therefore, much effort has been dedicated to

the study of how the nanowire diameter controls the electronic transport properties.

The electronic transport properties of metallic or semiconductor nanowires have

been studied by measuring the current/voltage characteristics at different temper-

atures and show that some metal nanowires can become semiconducting as their

diameters are reduced to below certain values. For semiconductor nanowires such

as GaN it has been shown that they still could function properly as a semiconductor

as their dimensions are decreased to several nanometers.[177]
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4.1 Introduction

Over the last decades, numerous methods for the characterization of nanostruc-

tured materials have been developed. Usually, a material has to be characterized

by a combination of these methods, as no single technique is capable of providing

complete characterization of a specific material. The main characterization tools

can be grouped into three main categories; these are diffraction, microscopic, and

spectroscopic techniques. In addition to that, other techniques such as sorption of

gases, or thermal analysis, may give valuable information.

The purpose of this chapter is to summarize different characterization techniques

that have been used in this study with emphasis on the characterization methods

used for thin membranes and nanostructured materials. It is assumed that the fun-

damental knowledge behind all the methods is well known.

4.2 X-Ray di�raction (XRD)

While microscopes usually cover only a small part of the sample, scattering tech-

niques provide structural information over larger areas, so statistically relevant

data can be obtained.

X-rays are part of the electromagnetic spectrum and have a wavelength λ of less

than one nanometer. Electromagnetic waves propagate because an electric field (~E)

causes a magnetic field (~H) and so on. Electromagnetic waves can interact with the
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electrons in matter, which can be described by the model of the harmonic oscilla-

tor. The electric component ~E0(t) of the incident wave can “deform” the electron

shell of an atom that now relaxes by emitting radiation of the same wavelength.

These waves are called scattered waves ~Es(t), that can be measured by a detector

system.

In a crystal, the atoms (or structural elements) are organized in lattice planes. The

distance between these lattice planes is of the same order of magnitude as the wave-

length of X-rays and therefore constructive or destructive interference will occur.

This interference can be recorded as a function of the incident angle. The relation-

ship between the incident angle (θ), the lattice plane spacing (d), and the X-ray

wavelength can be described by the Bragg equation (eq. 4.1).

2d · sin θ = n · λ (4.1)

4.2.1 Small angle X-ray scattering

Small angle X-ray scattering allows the study of structures in the range from ap-

proximately 1 nm to 50 nm. Depending on the setup it is also possible to obtain

a two-dimensional scattering pattern. This makes it an ideal tool for the analysis

of anisotropic and ordered systems such as aligned mesopores.[178–181] Other typi-

cal applications include microemulsions,[182,183] lipid membranes,[184] polymer sys-

tems and the determination of the particle sizes of nano powders (in suspension).
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Figure 4.1 — Scheme of the diffraction of x-rays on the lattice planes of a crystal to
illustrate the Bragg equation. θ denotes the angle of incidence.
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Theoretical background of SAXS. As the scattering step is an intermediate step

in all microscopic techniques similar relations can be applied for scattering exper-

iments like SAXS. As the name implies, the scattered X-rays are detected at low

angles (typically about 0.07◦ < Θ <7◦). The basic concept is the same as for all

X-ray scattering methods.[185]

As already mentioned above, a scattering experiment and a microscope have many

things in common, so similar relations are valid for both experiments. Objects can

only by resolved, when their size r is between a smallest and a biggest possible

value (∆r ≤ r ≤ Dmax).[185] The values ∆r and Dmax define the lower and the upper

resolution limit and depend on the wavelength of the incident beam and the range

of angles the instrument can detect. The lower resolution ∆r can be calculated via

∆r ≥ π

qmax
(4.2)

with

qmax =
4π

λ
sin(Θmax/2) (4.3)

The largest objects Dmax, that can be resolved in a SAXS experiment can be calcu-

lated in a similar way via

Dmax ≥
π

qmin
(4.4)

with

qmin =
4π

λ
sin(Θmin/2) (4.5)

In SAXS experiments the position of a reflex is called q-value. This value corre-

sponds to the so called Bragg-spacing d (as commonly used in wide-angle XRD)
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Figure 4.2 — Experimental setup for a SAXS experiment on a porous membrane.
The incident collimated X-Ray beam is slightly tilted towards the mem-
brane. While most of the x-rays pass the specimen without interaction
and are absorbed by the beam stop, some are diffracted to produce a
characteristic pattern.

via

d =
2π

qpeak
(4.6)

where the value d is the distance between the lattice planes of the crystal.

Experimental Setup The sample is brought into a monochromatic, collimated

X-ray beam. As most of the X-rays will pass the sample without being scattered

(“zero-diffraction beam”), those X-rays have to be eliminated by the beam-stop.

The scattered X-rays are recorded on a 2D detection system (image plate or a CCD)

(fig. 4.2).
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4.2.2 Wide angle XRD

Very similar considerations as already discussed above for small angles are valid

for wide-angle X-ray scattering or diffraction (WAXS or just XRD) experiments.

As in a WAXS experiment higher angles than in SAXS are detected, materials can

be probed regarding their crystallinity; thus, information on crystal structure and

sometimes even the composition of the material becomes available.

In a common powder set up with a diffractometer in Θ – Θ geometry, the source

of monochromatic X-rays (usually an X-ray tube) and the detector (scintillator or

semiconductor detector) will scan along Θ (giving a plot of intensities against 2Θ)

to record the so-called XRD pattern. Because a powder is usually randomly ori-

ented and the various lattice planes are also presented in every possible orienta-

tion, cones of diffraction are created rather than “spots”. Nevertheless, because

of the one-dimensional detection, well-resolved lines (Bragg peaks, reflections) are

only recorded when the Bragg condition (eq. 4.1) is fulfilled.
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4.3 Electron microscopy

Due to the comparably large wavelength of visible light (400 to 800 nm), normal

light microscopes are limited to a magnification factor of 1000 and a resolution in

the range of 0.2 micrometers. By reducing the wavelength used for imaging, much

higher resolutions and magnifications can be achieved. In electron microscopy,

highly accelerated electrons are used for this purpose. The wavelength of these

electrons is related to the accelerating voltage U by equation 4.7:

λ =
hc

[2m0eU(1 + eU/2m0c2)]
1/2 (4.7)

where m0 is the mass and e is the elementary charge of an electron, h is the Planck

constant and c the speed of light. In transmission electron microscopy (TEM) an

accelerating potential of 200 kV is a widely used. This results in an electron wave-

length of only 2.51 pm, making an atomic resolution possible. In order to be able

to focus the electron beam, electromagnetic lenses are used. For example, the con-

denser lens in the TEM is used to control the size and the angular spread of the

electron beam that is incident on the sample.

The first electron microscope was developed by Max Knoll and Ernst Ruska in 1931.

They built a transmission electron microscope analogous to an optical microscope

with the only difference of using a focused electron beam instead of visible light.

Scanning electron microscopes (SEM) were developed in the early 1950’s and com-

mercially available around 1965.
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4.3.1 Scanning electron microscopy

Scanning electron microscopes (SEM) permit the visualization and characterization

of materials down to the nanometer range. The popularity of SEM is based on its

capability of obtaining topographic images of surfaces over a very wide range of

materials.[186] Nevertheless, the versatility of scanning electron microscopes is not

limited to topography.

In a SEM, an electron beam is generated by an electron gun (usually a tungsten

filament or a field emission gun) producing a beam of electrons. A set of condenser

lenses demagnifies the beam until it has a diameter of only 2-10 nm as it hits the

specimen.[187] A set of coils sweeps the beam in a grid fashion (like a television),

dwelling on points for a period of time determined by the scan speed. In more

modern instruments the same effect can be achieved by a digital control of the beam

position on the sample. Finally the third objective lens focuses the beam on the

specimen. For each spot of the scan, the signal resulting from the interaction of the

electrons with the sample is detected and can be used for contrast generation with

a CRT or a computer screen. A general setup is shown in Fig. 4.3.

The mechanism for magnification is very simple. The raster scanned by the electron

beam is made smaller than the raster displayed on the screen. If, for example, the

scanned specimen area is 10 µm × 10 µm and the image displayed is in the size of

100 mm × 100 mm, the magnification factor is 10000.

Secondary electrons are by far the most often used signal in scanning electron

microscopy.[187] These electrons stem from the sample region close to the surface

and have an energy below 50 eV. They have a sharp emission maximum at the area

close to the incoming beam enabling high resolution. They can be detected with the
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Figure 4.3 — Schematic of the operational principle of a scanning electron micro-
scope (SEM).

use of a scintillator emitting photons which can be collected and amplified with a

photomultiplier.

4.3.2 Transmission electron microscopy

Similar to a SEM a beam of highly accelerated electrons is directed at the specimen

in transmission electron microscopy (TEM). But while the SEM provides mostly

information of the specimen surface, a TEM can provide information about the

internal structure. As shown in Fig. 4.4, the illumination system of a TEM (like

electron gun and condenser system) is similar to that of an SEM, while the process

of imaging is totally different.

The electron gun mounted on top of the instrument, is commonly a thermoionic

gun (containing LaB6- or W) or for better resolution a field emission gun (FEG).
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Figure 4.4 — Schematic image of a transmission electron microscope. Image taken
from [188].

Using a FEG, the coherence and the brightness of the beam can be improved. The

electrons are then accelerated by a high potential difference in the range of 40 to

3000 kV. The acceleration voltage depends on the type of the specimen and the

required information. Microscopes using very high voltages (HVEM) have some

advantages over those working in the standard range (120 to 200 kV) and those

working at a medium voltage (300 to 400 kV), such as potential higher resolution

and a better translumination of the sample. But the application range of those mi-

croscopes has narrowed with the improving possibilities of sample preparation and

the emergence of the field emission guns delivering a greater spatial resolution by

a better coherence of the beam.

The electrons now pass a pair of condenser lenses that align and focus the beam

until it hits the specimen. In TEM, the specimen has to be very thin (some tens of
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nanometers) to allow the electrons to pass the sample. Behind the specimen the

objective lens forms the first enlarged image that is magnified to the final image by

the projector lenses. The lens system – especially the performance of the objective

lens – is the main limiting factor for the resolution of the microscope. By variation

of the lens current and the aperture sizes the illuminated area, the brightness, the

contrast mechanism as well as the size of the beam (“spot size”) can be tuned.

On the bottom of the column a fluorescence screen displays the final image. To

record the image a CCD camera (or also a conventional film camera) is used. The

number of pixels and the performance of the camera are also limiting factors for the

performance of the microscope.

Besides the above mentioned ’standard’ TEM mode, microscopes can also operate

in other modes. In this thesis, Z-contrast images were obtained by using scanning

transmission electron microscopy (STEM). In this mode, the electron beam is fo-

cused to form a small, convergent beam on the specimen surface. The image is

then formed by raster scanning the beam on the specimen and detecting the elec-

trons transmitted from the specimen as a function of the scattering angle (Fig. 4.5).

For high angle scattered electrons, the scattering probability strongly depends on

the atom number. Therefore, the use of high angle annular dark field (HAADF)

detectors is most popular.

In this thesis, both a Jeol JEM 2010 microscope (operating at 200 kV) and a FEI

Titan microscope (operating at 300 kV) were used. STEM HAADF images and EDX

spectra obtained from TEM images were recorded on the Titan microscope.
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Figure 4.5 — Schematic of a scanning transmission electron microscopy (STEM) ex-
periment and signals used for STEM imaging. BF: bright field, ADF:
annular dark field, HAADF: high angle annular dark field. Adapted
from Williams and Carter.[189]

4.3.3 Elemental analysis

Modern electron microscopes can be used to obtain information about the elemen-

tal composition of a specimen using characteristic x-rays. When a sample is placed

in the microscope and bombarded with high energy electrons, electronic transitions

can occur that result in the generation of X-rays. These X-rays result in characteris-

tic emission spectra of the elements present in the sample. These emission spectra

can be obtained by measuring the energy dispersion of the generated x-rays (en-

ergy dispersive x-ray spectroscopy, EDX) or by sorting the x-rays according to their

wavelength (wavelength dispersive spectroscopy, WDX). Using this technique, el-

ements with atomic number as low as 4 (Beryllium) can be detected.[190] While it

is possible to obtain EDX spectra from both TEM and SEM instruments, WDX data

can only be recorded in an SEM.
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4.4 Sorption measurements

Nitrogen sorption is commonly used in the characterization of porous solids, giv-

ing access to the specific surface area, pore volume, and pore size distribution.[13,191]

The terms “physical sorption” or “physisorption” refer to the phenomenon of gas

molecules adhering to a surface at a pressure less than the vapor pressure of the

respective gas used during the experiment.[192] With the discovery of the ordered

mesoporous materials, the theoretical models for the estimation of the aforemen-

tioned parameters have been successfully proven.[193] A result of the gas sorption

measurement is a plot of the volume of gas adsorbed/desorbed vs the relative pres-

sure p/p0 (p is the absolute pressure, p0 is the saturation vapor pressure) at con-

stant temperature, called sorption isotherm. Nitrogen-sorption instruments present

an important characterization tool for many laboratories dealing with nanoporous

materials. The basic principle of physisorption is a weak bonding (mostly van-der-

Waals bonding) of molecules on a surface. The following terms and definitions are

essential for the discussion:

• (Ad)sorptive: the gas to be adsorbed.

• (Ad)sorbent: the substrate to be covered by the adsorptive.

• (Ad)sorbate: the adsorbed adsorptive.

Experimental gas-adsorption isotherms are categorized by IUPAC into six cate-

gories[13] (Figure 4.6). The most important isotherms for gas adsorption on porous

solids are those of a shape following type I, II, and IV. Isotherms of type I repre-

sent a sorption experiment on microporous materials, with micropore filling taking

place during the steep slope at low relative pressures. Type II isotherms character-
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I II III

IV VIV

Figure 4.6 — Classification of sorption isotherms as defined by IUPAC. Isotherms of
type I are characteristic for microporous materials or chemisorption.
Isotherms following type II are obtained from macro- or nonporous
materials with a high heat of adsorption. Nonporous materials with
low adsorption enthalpies follow type III. Type IV and V isotherms
with a steep second slope (cappilary condensation step) are character-
istic for mesoporous materials with high (IV) or low (V) adsorption
enthalpies; they often show a hysteresis loop. Type VI isotherms are
attributed to several possibilities, e.g., layer-by-layer adsorption.

ize sorption on macroporous/nonporous materials. In Type IV isotherms the gas

absorption proceeds via multilayer adsorption followed by capillary condensation

(steep steps in the isotherms).

Surface area determination. At present, there are two methods for the determi-

nation of the surface area from an isotherm: the BET method and the χ method.[192]

The BET theory,[194] available since 1938 and named after its authors S. Brunauer,
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P. Emmett, and E. Teller, is the method most widely used today. The BET equation

in its standard form is displayed in equation 4.8, where na is the amount adsorbed

at the relative pressure p/p0, na
m is the monolayer capacity and C is a constant de-

pending on the shape of the isotherm.

p
na(p0 − p)

=
1

na
mC

+
(C− 1)

na
mC

·
p
p0

(4.8)

The determination of the surface area is based on the evaluation of the monolayer

capacity (the number of the adsorbed molecules in the monolayer on the surface of

a material), which can be derived by plotting the BET equation in an appropriate

form. The monolayer capacity is multiplied by the cross-sectional area of the ad-

sorbed molecules in the monolayer formed on a given surface. The derivation of the

BET model is based on the Langmuir equation relating the number of molecules ad-

sorbing on the surface with the number of molecules evaporating (desorbing) from

the sample, involving three main assumptions:

• There are no interactions between particles in a layer.

• The adsorption enthalpy for the agglomeration of all layers is the same, with

the exception of the first layer. The adsorption enthalpy for the first layer is

different as it is only based on the interactions between the adsorbent and the

adsorptive.

• There is no limit in the number of layers that can be adsorbed.

In the case of adsorption on real solids, these assumptions often do not hold exactly.

Therefore caution must be exercised regarding the interpretation of the specific sur-

face area of the solids derived from the BET model. Despite the limitations, the BET

104



4.4. SORPTION MEASUREMENTS

model is currently a standard method for the specific surface area evaluation, and

relative comparisons provide valuable information.

Determination of the pore size. Standard methods for the determination of the

pore size of mesoporous solids, such as the original BJH approach, are usually

based on a modified form of the Kelvin equation. Thus, the accuracy of the cal-

culated pore size distribution (PSD) mainly depends on the applicability and the

deficiencies of the Kelvin equation.[195] The Kelvin equation describes the change

of the vapor pressure of a liquid upon the formation of a curved liquid/vapor in-

terface. This can be assigned to the process of capillary condensation in mesopores.

However, in very narrow pores, such as micropores or also small mesopores, the

thermodynamic concept of a smooth liquid/vapor interface and a bulk-like pore

fluid is no longer a realistic description of the system. Therefore, significant de-

viations from the real PSD can be expected. Several attempts have been made to

establish necessary corrections to the original methods. One of them, proposed by

Kruk et al.,[196] used a corrected and calibrated form of the BJH method. A series of

MCM-41 type silica samples was used for calibration; thus, this method is only ap-

plicable for these and closely related kinds of materials. In recent years, microscopic

methods based on Density Functional Theory (DFT) calculations and Grand Canon-

ical Monte Carlo (GCMC) simulations became available. These methods correctly

describe the local fluid structure near curved solid walls on a microscopic level.[195]

Comparison measurements between these new methods vs. methods derived from

classical thermodynamic BJH related methods showed that the DFT based models

give correct results for all pore size ranges from micropores to large mesopores.

Therefore, future calculations of the PSD should always be done by applying the
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DFT and GCMC based models.

In this thesis, the nitrogen-sorption measurements on powdered mesoporous ma-

terials were performed with a NOVA 4000e Surface area & Pore Size Analyzer or an

Autosorb-1 by Quantachrome Instruments. All samples were outgassed at 120 ◦C

for 12 hours prior to measurement. Calculations of the pore size distribution were

done by applying DFT calculations from the desorption branch (unless stated oth-

erwise).

106



4.5. OTHER CHARACTERIZATION TECHNIQUES

4.5 Other characterization techniques

4.5.1 Infrared and Raman Spectroscopy

Vibrations and rotations of molecules can be excited by absorbance of radiation in

the infrared region of the electromagnetic spectra. There are two major alternatives

for measuring these vibrations and rotations:[197]

• directly as absorption in an infrared spectrum

• indirectly as scattered light in a Raman spectrum

The Raman effect is based on the inelastic scattering of light. The scattered light can

show either a shift towards lower frequencies (Stokes shift), that corresponds to an

energy loss, or towards higher frequencies (anti-Stokes shift), that corresponds to

an energy gain from the sample. The variety of bands in a Raman spectrum can

be assigned to various vibrations in the molecule and thus can help to identify the

molecule can be identified. Raman experiments are often carried out via a spec-

trometer attached to a light microscope.[187] A modern development is the use of

Raman scattering in confocal microscopes to produce chemical maps of the speci-

men.

4.5.2 Thermogravimetric analysis

Thermogravimetry is a technique for measuring the change in weight of a sub-

stance as a function of temperature or time. The sample is usually heated at a

constant rate and has a constant weight until it begins to decompose at a certain

temperature. The differences in the weights and the slopes of the decomposition
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steps are characteristic for the decomposition process and can be used for quantita-

tive calculations of compositional changes.

4.5.3 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) experiments can give information about the

local chemical environment (connectivity, coordination numbers, local symmetry)

of certain magnetic isotopes in molecules.[198] For nuclei that possess a permanent

magnetic moment, the orientations of their magnetic moments are limited to dis-

crete quantum states relative to an applied external magnetic field. Transitions be-

tween these states can be observed by irradiation of a sample with electromagnetic

waves in the radio frequency region, if the respective frequency meets the reso-

nance condition given by equation 4.9:

ω = γ · Bloc = γ(B0 + Bint) (4.9)

with

ω: frequency of the electromagnetic field at resonance condition

γ: gyromagnetic ratio

Bloc: strength of the magnetic field at the nucleus

B0: external magnetic field

Bint: internal field

The measured difference between the local magnetic field strength and the applied

external field gives insights into the electronic and chemical environment of the nu-

clei. In the case of solids, dipole-dipole interactions between the magnetic moments
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of nearby nuclei lead to a line-broadening in the spectra, making the interpretation

of the spectra difficult or impossible. This anisotropic effect can be eliminated by ro-

tating the sample at an angle of 54.7◦ (so-called magic angle) with respect to the ap-

plied field; hence this technique is named magic-angle spinning nuclear magnetic

field resonance (MAS-NMR). In liquids this line-broadening effect is eliminated, as

the mobility of the nuclei in a liquid is averaging these dipole-dipole interactions

out.
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This chapter is based on the article “Multiple Nanowire Species Synthesized on a

Single Chip by Selectively Addressable Horizontal Nanochannels”, published in

Nano Letters.[163]

5.1 Introduction

One-dimensional nanostructures such as nanowires and nanorods have become a

major research topic over the last years.[199–203] To date, a variety of methods for the
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synthesis of these materials has been developed, such as vapor-liquid-solid (VLS)

growth,[155,161] sol-gel techniques,[204] and template based approaches.[205–208] Tem-

plate based methods offer access to a wide variety of nanowires with a broad di-

versity in composition and shape. As template material most commonly substrates

such as track-etched polycarbonate membranes,[209] mesoporous silica,[138] and po-

rous anodic alumina membranes[210,211] are used. Anodic aluminum oxide (AAO or

Porous anodic alumina, PAA) membranes are widely used as they give an easy ac-

cess to self-organized pores with high aspect ratios and tunable pore sizes.[108,211–214]

These pores are then used as a molding system for the synthesis of the desired

nanostructures. Most commonly, the alumina pores are aligned perpendicular with

respect to the membrane surface, making it difficult to integrate the synthesized

structures into a chip. Recently, procedures to synthesize horizontally aligned an-

odic alumina pores on a chip have been reported,[215,216] enabling the fabrication

of single-pore devices.[210] These pores were then subsequently filled by electro-

deposition with different materials to form nanowires. The so formed nanowires

are expected to have possible applications in fields such as sensing,[217,218] nanobio-

technology,[202] nano-optophotonics,[202] and in nanoelectronics.[205]

For many of these applications it is desirable to integrate different nanostructure

morphologies and species on a single chip. Recently, a process where a focused

ion beam was used to selectively block and unblock pores of certain regions was

reported.[219] Thus it was possible to deposit silver and copper nanowires in dif-

ferent regions on the same substrate. This is a very elegant technique for vertical

AAO substrates. However, it has limitations for the generation of multiple (more

than two) elements on a chip and for the use in horizontal alumina pores. Further-

more, using this technique it is difficult to obtain pores of different morphologies
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Figure 5.1 — Schematic of a multi-contact horizontal anodic aluminum oxide device.
Due to separation of the Al contacts, anodic microscopic finger ensem-
bles can be anodized individually, enabling the fabrication of a hori-
zontal porous alumina structure containing different pore morpholo-
gies, i.e., different pore diameter, interpore distances, and pore length.
The resulting composite can then be used for the subsequent growth
of nanowire arrays. Due to the electrical insulation of the individual
contacts it is possible to grow different nanowires of different compo-
sitions (as indicated by the different colors of the wires in the above
scheme) on the same chip.

and lengths on the same device.

The advantage of the multi-contact design reported here (Figure 5.1) is that indi-

vidual contacts with various sizes are electrically separated from each other, en-

abling their individual anodization. Thus, a single chip can be fabricated containing

various nanopore morphologies, i.e., different pore diameters and different inter-

pore distances. Furthermore, a variation of the anodization time for the individual

contacts would result in nanopore channels exhibiting different aspect ratios. De-

pending on the width of the individual aluminum fingers, one can easily control

the number of nanopores grown within the microscopic fingers when the same an-

odization conditions are applied. When anodizing different contacts equipped with

equally sized fingers at different anodization conditions, one would obtain differ-

ent pore densities, enabling the fabrication of multi contact densities on the same
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sample.

5.2 Experimental

2 inch silicon wafers were thermally oxidized to cover the surface with a 1 µm thick

silicon dioxide layer. Subsequently, a 1 µm thick aluminum thin film was thermally

evaporated onto the substrate from a high purity source and annealed in 10 % hy-

drogen in nitrogen (forming gas) at 500 ◦C for 4 h. The wafers were then cut into

pieces with a size of 1 cm x 1.5 cm. The multi-contact design is shown in Figure

5.1.

To fabricate samples having in-plane contacts on a single chip that are individually

addressable during anodization, special optical lithography masks were designed

to pattern the 1 µm thick aluminum on the sample surface. Different contact con-

figurations were investigated, starting from a single contact, up to 2-, 3-, 4-, and

5-contact samples. Figure 5.2 summarizes multiple contact sample species investi-

gated in this work. 2-, 3-, 4-, and 5-contact samples were fabricated where the total

aluminum width was kept at 5 mm.

To ensure electrical separation between neighboring contacts, a spacer width of

25 µm between two contacts was chosen. Within a single contact, equally sized and

equally spaced microscopic fingers with a finger width varying between 1 µm and

5 µm were fabricated; the distance between individual fingers was fixed at 5 µm.

Apart from the number of contacts chosen, one can individually tune the width

of the microscopic fingers according to the application requirements, enabling the

control over the number of nanochannels and thus the amount of nanowires grown.
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Al

SiO2

a) b)

c) d)

Figure 5.2 — Optical images of representative 2- to 5-contact devices, respectively.
The upper bright part (denoted with Al) is serving as electrical contact
area and therefore freed of silicon dioxide. The slightly darker grey
part below shows the microscopic aluminum fingers insulated against
the electrolyte solution by a dense silicon dioxide layer. The contacts
are electrically isolated from each other, thus securing their individual
anodization.
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Solution Deposition Voltage
[M] Mode [V]

Au 0.001 M HAuCl4 dc -0.5

Cu 0.64 M CuSO4 dc -0.3

Co 0.4 M CoSO4 dc -1
0.7 M H3BO3

Te 1 mM TeO2 ac 8 ms@10V
0.5 M K2SO4 992 ms@0V

Ni 1.14 M NiSO4*6 H2O ac 8 ms@10V
0.19 M NiCl 42 ms@0V

0.73 M H3BO3 *6 H2O

Table 5.1 — Electro-deposition parameters used for metallic and semiconducting
nanowire synthesis. All potentials are measured relative to a sil-
ver/silver chloride reference electrode.

To form pores with the desired diameters, samples were anodized in various elec-

trolytes at 0 ◦C and various voltages as given in Table 5.1. Prior to the anodization

process, all neighboring contact pairs were measured using a multimeter to ensure

physical and electrical isolation.

In this work gold, copper, cobalt, nickel and tellurium nanowires were electro-

deposited within the multi-contact samples. The respective parameters used for de-

position are given in Table 5.1. Both direct current (dc) and pulsed electro-deposition

was applied.

CVD growth of silicon nanowires was performed by electro-depositing a thin gold

layer as catalyst. For this purpose, one tenth of the time needed to completely

fill the pores as described previously was employed, corresponding to a filling of

approximately 100 nm. After mounting the sample inside the CVD chamber and

flushing with nitrogen gas, the growth chamber was evacuated to a pressure of 1.4

mbar at 10 sccm of hydrogen flux. The growth chamber was then heated up to
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630 ◦C in order to anneal the gold catalyst. A period of 30 minutes annealing in hy-

drogen atmosphere was employed, followed by the decrease of the temperature to

the growth temperature. Once the growth temperature of 570 ◦C for gold-catalyzed

Si nanowire growth was reached, 1 sccm of silane was introduced into the chamber.

After a total growth time of 3 h, the deposition was stopped, the growth chamber

flushed with nitrogen, and the cooling process was started.

To investigate multi-contact samples, various combinations of anodization condi-

tions were explored. Anodization experiments were carried out in sulfuric, oxalic,

and phosphoric acid at 0 ◦C. The anodization voltages were chosen within a range

between 20 V and 110 V, and the anodization time varied between 1 h and 16 h.

Temperature Voltage Concentration
[ ◦C] [V] [M]

H2SO4 0 20 - 30 0.3
(COOH)2 0 20 - 40 0.3

H3PO4 0 50 - 110 0.4

Table 5.2 — Conditions used for the anodic oxidation of the Al thin film structures.

5.3 Results and discussion

Efforts were made to obtain single chips containing different pore sizes and pore

densities, and different channel lengths.

For the anodization runs using different electrolytes and different anodization volt-

ages on a single device, representative SEM images are illustrated in Figure 5.3.

Here, a 2-contact sample was subsequently anodized in phosphoric and oxalic acid

at 0 ◦C for 1 h. As expected, since different electrolytes and anodization voltages
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were applied, two different sizes of nanopores could be observed on a single sub-

strate. While the contact anodized in phosphoric acid results in large-pore diame-

ters and interpore distances (pore diameter 80 nm and interpore distance 120 nm),

the second contact anodized in oxalic acid shows smaller-sized nanopores (pore

diameter 27 nm and interpore distance 87 nm). The pore sizes obtained on multi-

contact samples are identical to those obtained in a previous publication reporting

on horizontal microscopic finger structures.[210]

The anodization of fingers having different finger widths under the same anodiza-

tion conditions results only in a difference of the total number of nanopores per

finger. The pore size and pore density remain constant. As shown previously,[210]

it is generally possible to decrease the finger size such that only one nanopore per

finger is formed, enabling the fabrication of single-pore, and therefore single-wire

devices.

When the same electrolyte, the same anodization voltage, but different anodization

times were applied during anodization of individual contacts on a single sample,

both the pore diameters and the interpore distances do not significantly differ from

the results obtained within microscopic finger structures. The diameter and the

interpore distance remain the same, only the length of the nanopores is changed

following the growth rate of approximately 1 µm per hour. This is reasonable, since

during anodization the alumina dissolution is field-assisted and only takes place at

the bottom of each pore.

After performing the anodization of the first contact, SEM characterization indi-

cated that the surface of the remaining non-anodized contacts was not significantly

affected by the electrolyte bath. Thus, no pre-patterning effect of the non-anodized

118



5.3. RESULTS AND DISCUSSION

20 µm
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200 nm

a)
b)

Figure 5.3 — SEM images of a representative 2-contact device. The anodization of
each contact was carried out within different types of solutions and dif-
ferent anodization voltages. The left contact of the 2-contact sample in
a) was anodized in phosphoric acid at 50 V, followed by the anodiza-
tion of the right contact in oxalic acid at 40 V (depicted in b). While
the microscopic fingers of the left contact reveal pore diameters and an
interpore distance of 80 nm and 120 nm, respectively, the zoom-in of
b) indicates a smaller pore size. The pore diameter and the interpore
distance of the right contact are 27 nm and 87 nm, respectively.
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fingers was observed. When the same anodization conditions were subsequently

applied to all contacts, the already anodized ones necessarily were etched by the

electrolyte for the time the neighboring fingers were being anodized. To quantify

this undesired etching step, the etching rate of the non-connected contacts had to

be studied. Therefore, individual contacts were anodized at 0 ◦C in oxalic acid. The

anodization voltage was 40 V and the anodization time was 1 h. The difference be-

tween the 3 images in Figure 5.4 is the time period that each contact was immersed

inside the electrolyte until the neighboring contacts were anodized. While image

a) presents an as-anodized contact, b) and c) show contacts that were immersed

inside oxalic acid baths for 1 h and 16 h, respectively. The average pore diameter

histograms of the samples described above are shown in Figure 5.4a-c (bottom).

The results show that the average diameter is not significantly altered when the

contacts are immersed in the electrolyte while anodizing the neighboring contacts.

All samples show an average diameter of approximately 27 nm. Furthermore, with

the average pore diameter being almost constant, the alumina pore wall thickness is

also not significantly decreased. In principle, a slight etching of the alumina would

be expected. We attribute this slow etching rate to the low working temperature.

At a low anodization temperature, the chemical reaction rate is lowered compared

to a higher temperature, e.g., room-temperature experiments.

The special design of the multi-contact chips allows for the synthesis of multi-sized

horizontal nanostructures integrated into a single device. In bio-sensing applica-

tions it is desirable to have the possibility of detecting several different molecules,

for instance enzymes or DNAs within the same solution. Additionally, horizon-

tally aligned multi nanowire species could be integrated into existing technologies

for CMOS fabrication, enabling the direct integration into electronic and electro-
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Figure 5.4 — SEM images showing the effect of pore widening during anodization of
neighboring contacts. a) As-anodized sample, b) refers to an anodized
sample etched for 1 h in oxalic acid, and c) shows a sample etched for
16 h in oxalic acid. All etching experiments were carried out at 0 ◦C.
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optical devices.

An essential prerequisite for the successful electro-deposition of nanowires into the

pores is a thorough barrier-layer thinning prior to wire growth. For this purpose,

an adapted stepwise voltage reduction method as described by Furneaux et al.[220]

was used. When a constant voltage is applied during anodization, the barrier layer

thickness remains constant due to the constant electric field oxidizing Al at the

metal-oxide interface and constant oxide etching at the tip of the pores. Thus it is

possible to reduce the barrier layer thickness by lowering the anodization voltage.

Eventually, a total elimination of the barrier layer can be achieved by lowering the

anodization voltage to a sufficiently low value.

The parameters and conditions used for pore filling are summarized in Table 5.1.

Characteristic SEM images for metallic Au and Cu as well as semiconducting Te

nanowires are depicted in Figure 5.5. Corresponding data for Co and Ni and EDX

data obtained from those electro-deposited nanowires are presented in the sup-

porting information. The data clearly demonstrate the successful deposition of the

respective materials within the anodic alumina pores of an individual contact on a

multi-contact device.

For DC electro-deposition, a low filling rate was obtained, as shown by Au and Cu

in Figure 5.5. The reason for the absence of nanowires in several pore openings

could be a result of a partially incomplete barrier layer thinning. A thin insulating

alumina layer would shield the electric field applied, thus leading to a slower rate

of reduction or preventing any reduction at all. Additionally, due to an inhomo-

geneous barrier layer thinning, pores equipped with a barrier layer possessing the

optimum field strength are more favored as nucleation centers. Thus the filling rate
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500 nm200 nm 500 nm

a) b) c)

Figure 5.5 — SEM micrographs of electrodeposited nanowires within the anodic alu-
mina pore system: (a) gold nanowires, (b) copper nanowires, (c) Te
nanowires.

differs slightly, causing a variation in the length of the nanowires grown. Please

note that here we only consider nanowires for the filling rate that have reached the

pore opening.

A remarkable increase of the filling rate was obtained by AC electro-deposition of

tellurium nanowires, as illustrated in Figure 5.5 with filling rates reaching approxi-

mately 90 %. As reported in the literature,[214] AC deposition can result in a higher

filling rate even with inhomogeneous barrier-layer thinning. This is generally ex-

plained by the rectifying effect of aluminum oxide. Aluminum oxide is a so-called

’valve metal oxide’,[221] that is, it preferentially conducts an electronic current in

one direction (cathodic).[222] This allows reduction of the metal cations only during

the cathodic half-cycle, while no oxidation reaction can occur during the following

anodic half-cycle.

To demonstrate the feasibility of chemical vapor deposition of semiconductor nano-

wires into the porous system, in a first step a small amount of gold as catalyst was

electro-deposited at the pore bottom. As shown previously, the pores of anodic

alumina can be filled with silicon nanowires by chemical vapor deposition.[20,162]
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Figure 5.6 — SEM images of as-grown silicon nanowires synthesized by thermal
CVD inside horizontal microscopic alumina fingers. Once the wires
reach the outside of the porous system, the wire diameter is enlarged.

In order to only fill the pore bottom, the time for electro-deposition was limited

to about 4 seconds, corresponding to a filling of approximately 100 nm. After an-

nealing and the subsequent CVD growth, silicon nanowires were obtained. Rep-

resentative SEM images showing an as-grown sample are presented in Figure 5.6.

Horizontally aligned, equally sized nanowires are growing out of the pore open-

ing. The diameter of the nanowires is about 100 nm, even though the initial pore

diameter of the alumina pores is smaller. This could be explained by the following

growth mechanism. First, during the growth within the porous alumina system,

the wire diameter is defined by the spatial confinement given by the diameter of

the anodic pore system. Once the catalyst reaches the pore opening, the catalyst

droplet is now able to spread out to its thermodynamic equilibrium size, leading to

a larger diameter of the nanowires outside the porous system. Please note that the

growth direction is still conserved, even though the diameter is changed.
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5.4 Conclusion

In summary, we have successfully demonstrated the concept of multi-contact an-

odization on a single chip with subsequent filling of the anodic pores with various

metals and semiconductors. The fabrication of individually contacted and sepa-

rately addressable aluminum finger structures is shown. These fingers can be in-

dividually anodized using different conditions or even using different electrolytes.

Thus, different pore sizes, pore lengths, and total numbers of pores per finger are

possible. The pore density is not affected by the width of the individual fingers.

It was also successfully demonstrated that the already anodized structures are not

significantly altered while the neighboring contacts are being anodized. The bar-

rier layer of the anodized pores could be successfully thinned, allowing the electro-

deposition of metallic (Au, Co, Ni, Cu) and semi-conducting (Te) nanowires. Fur-

thermore, the possibility to synthesize silicon nanowires via chemical vapor depo-

sition is demonstrated.

The multi-contact design opens up an effective and reproducible platform to syn-

thesize multiple nanowire species, individually and independently addressable on

a single chip. When using semiconductor nanowires, such as silicon or germa-

nium, the multi-contact design offers the potential to create multiplex nanowire

field-effect sensing devices. For example, by modifying individual nanowires with

different surface receptors, they will enable the detection and quantification of a

broad range of biological and chemical species simultaneously on a single plat-

form. Therefore, it is anticipated that this sample design has a high potential to

impact the future synthesis of complex nanostructures for sensing and nanoelec-

tronic applications.
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6.1 Introduction

During the last decade one-dimensional nanosystems such as nanowires and nano-

rods have become a burgeoning field of research.[199,223,224] Several methods have

been developed for the synthesis of such structures, including vapor-liquid-solid

(VLS) growth[201,225] and template based methods.[138,153,226] The VLS method is

widely used to grow semiconductor nanowires, due to its ability to grow large

numbers of highly pure and single-crystalline nanostructures. The growth pro-

cess involves a liquid catalyst droplet, which adsorbs precursor molecules from the

gas phase. While this approach can produce highly crystalline, high aspect ratio

nanowires of numerous materials, the wires are typically not ordered and issues

such as contamination from the catalyst can limit the scope of this method.[199]

In contrast, template-based synthesis offers the generation of a large variety of

nanostructures, does not depend on a catalytic process, and can be used for the

synthesis of vastly different materials, such as metals,[214] metal oxides,[227] and

semiconductors.[228] Template-based synthesis offers a variety of processing meth-

ods to incorporate the required growth species into the template host. Among the

most popular methods are electrochemistry, sol-gel chemistry, and impregnation

techniques.

Porous anodic aluminum oxide (AAO)[229,230] or track-etched polycarbonate mem-

branes[231,232] are often used as templates, due to their commercial availability and

relatively easy synthesis of different channel diameters and channel densities. These

porous substrates have a channel system running perpendicular to the membrane

surface, allowing the synthesis of nanowires with diameters ranging from about

10 to 400 nm. Periodic mesoporous silicates with their tunable pore sizes down
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Porous anodic alumina membrane
 Pore size: ~200 nm
 Pore length: 60 μm

Mesoporous AAM/SiO2 composite
 Pore size: 3 to 10 nm
 Pore length: 60 μm

Nanowires within composite
 Diameter: 3 to 10 nm

 Wire length: up to 60 μm

Figure 6.1 — Scheme illustrating the concept of the synthesis of nanowires within hi-
erarchical mesoporous silica/AAO composites. The AAO pores serve
as the template for the synthesis of a columnar mesoporous silica struc-
ture. This can afterwards be used as the mold for the electrodeposition
of nanowires. The AAO/silica mold can be chemically dissolved; thus,
free nanowires can be obtained.

to about 2 nm could extend this range to even smaller diameters, however, they

are usually synthesized in the form of powders or thin films. Due to the random

orientation of the channel orientation in powders, there is practically no way to con-

tact the individual particles to an electrode; thus these systems cannot be used for

electrochemical and directed growth of wires within their mesopores. Mesoporous

thin films could overcome this issue, but the mesophase system usually aligns par-

allel to the substrate surface, thus making oriented vertical growth impossible. To

overcome this challenge, several methods such as “nanometer-scale epitaxy”[80] or

mesopore alignment by electric field[78,79] have been reported. Recently, Stucky

and coworkers published the synthesis of nanowires by a hierarchical two-mold

process, which involves the synthesis of a first mold of anodic aluminum oxide

film that is subsequently filled by a silica mesophase.[95] In that work, the orienta-

tion of the mesophase was tuned by changing the diameter of the alumina matrix,

resulting in the formation of helical mesopores or isolated mesopore spheres. This

mesophase was then used as a template for the replication of the mesopore system

129



CHAPTER 6. SYNTHESIS OF NANOWIRES BY ELECTRODEPOSITION
WITHIN COLUMNAR SILICA/ALUMINA COMPOSITES

by electrodeposition of silver; that way, bundles of spiral-shaped nanowires were

obtained.

The orientation of the silica mesophase embedded within the alumina channels can

also be controlled by choosing appropriate synthesis conditions during the self-

assembly process.[100,103] This makes it possible to extend the mesopore orientation

to hexagonal circular, hexagonal columnar, and lamellar arrangements.

Here we report on the synthesis of metal (copper, silver, tellurium) nanowires within

the pores of hexagonal columnar Pluronic P123 triblock copolymer templated meso-

pores (a scheme of the synthesis is shown in Fig. 6.2). The mesopore synthesis was

carried out using commercially available anodic alumina membranes, thus giving

access to high aspect ratios and allowing a reproducible synthesis. By further tun-

ing the synthesis conditions during the evaporation-induced self-assembly process

(EISA), mesoporous composites with a high fraction of the hexagonal columnar

phase over the hexagonal circular phase have been prepared.[103] Further filling of

these mesopores by electrochemical deposition led to the formation of nanowires.

Characterization of the wires in plan-view orientation (perpendicular view to the

membrane surface) without dissolution of the surrounding AAO/silica matrix re-

veals high filling factors for copper and silver. The wires were further characterized

by partial dissolution of the alumina matrix, thus revealing the long-range order of

the mesopore channels. Finally, it was possible to obtain individual bundles of sil-

ver wires by complete dissolution of the double-mold matrix.
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6.2 Experimental

Synthesis of the columnar mesophase system. Whatman Anodiscs (47 mm di-

ameter, nominal pore diameter 0.02 µm, effective pore diameter between 150 and

250 nm) were used as anodic aluminum oxide (AAO) membranes. The colum-

nar mesopores were synthesized similar to a previously published procedure (Fig.

6.2).[103] Typically, a prehydrolosis solution was prepared by mixing 1.8 g (10 mmol)

of water, 3.0 g (corresponding to 17 mmol of H2O and 0.60 mmol of HCl) of hy-

drochloric acid (0.2 molar in water), 3.95 g (85 mmol) of Ethanol, and 2.08 g (10

mmol) Tetraethylorthosilicate (TEOS). This solution was then prehydrolized at 60 ◦C

for one hour. To this solution, 0.75 g (0.13 mmol) of Pluronic P123 in 11.86 g (260

mmol) of Ethanol and 0.045 g (1 mmol) of Lithium chloride were added to induce

the formation of the columnar phase. After thoroughly mixing the solution, 0.75

ml were cast onto an AAO membrane and dried overnight at various temperatures

and humidities. The resulting composite membranes were subsequently calcined

in air at 500 ◦C for 5 hours, using a heating rate of 0.5 ◦C per minute.
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Figure 6.2 — Scheme of the mesophase synthesis within anodic alumina pores.

Electrodeposition. A 100 nm thick gold film was sputtered onto one side of the

calcined membranes serving as the working electrode. A thin copper wire was

attached onto the gold film using silver paste. Finally, the electrode side of the

composite was carefully isolated against the electrolyte solution using nail polish.
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Typically, for all the experiments a volume of 25 ml of the respective electrolyte so-

lution was used for electroplating. The electrodeposition was performed at various

potentials (-0.01 V to -1 V) using a three electrode setup and a PAR 2271 potentio-

stat from Princeton Applied Research. Platinum foil served as counter electrode. A

constant flow of nitrogen was bubbled through the electrolyte solution to remove

oxygen. The electrodeposition of silver was performed with a two electrode setup

from a solution containing 0.5 mol/L AgNO3 and 0.57 mol/L B(OH)3. The depo-

sition potential was set to 0.01 V using a PAR 2271 potentiostat. A constant flow

of nitrogen was bubbling through the electrolyte solution to remove oxygen. Tel-

lurium was electrodeposited from a solution containing 1 mmol of TeO2and 500

mmol of K2SO4. The pH of the electrolyte solution was adjusted to pH 2 by addi-

tion of hydrochloric acid to partially dissolve TeO2.[233,234] To dissolve selectively

only the silica filaments, a small sample was immersed into 2.5 wt-% NaOH in a

1:1 mixture of water/ethanol. For a total dissolution of the matrix, a small piece of

sample was immersed into 5 wt-% NaOH at 60 ◦C.

Instrumentation. Transmission electron microscopy (TEM) images were recorded

using a JEOL JEM 2011 operated at 200 kV and a FEI Titan 80-300 operated at 300 kV.

On the latter microscope we also performed energy-dispersive X-ray spectroscopy

(EDX) and scanning transmission electron microscopy (STEM). STEM images were

recorded in high angle annular dark field (HAADF) mode using a Fischione detec-

tor and a camera length of 190 mm.
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6.3 Results and discussion

6.3.1 Optimization of the composite membrane synthesis

The general synthesis of mesoporous silica/AAO composites with a hexagonal

columnar arrangement of pores has been published recently.[103] As already men-

tioned in that previous report, the temperature plays a key role during the synthesis

of these composites, as high quality hexagonal columnar mesophase systems were

only found at an elevated temperature (30 ◦C). In this work, the synthesis was

slightly altered, as the temperature and humidity were precisely controlled and

kept constant during the EISA process. The resulting mesophases were evaluated

by 2D SAXS (small angle X-ray scattering) measurements. In a 2D SAXS exper-

iment, the ratio of the hexagonal columnar mesophase to the hexagonal circular

mesophase can be estimated by calculating the ratio of the in-plane reflections to

the out-of-plane reflections.[103] The results of this evaluation yield a trend (Figure

6.3a), as the oop/ip ratios for 27 ◦C at 70 % humidity and the oop/ip ratios for 29 ◦C

and 50 % humidity showed strong deviations and were not reproducible even on

the same membrane. We attribute this behavior to the presence of a phase bound-

ary, where already very small energetic differences have a strong influence on the

phase formation. Specimens synthesized at temperatures above 29 ◦C and humidi-

ties above 70% did not show this variation and oop/ip ratios were reproducibly

low (<0.1).

When adding this additional aging step we were able to further enhance the overall

structural quality and the yield of the hexagonal columnar phase. In particular, we

found by SAXS experiments that an aging temperature over 29 ◦C and a relative
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Figure 6.3 — a) Graph illustrating the trends in the formation of the circular vs. the
columnar phase depending on the temperature and the relative humid-
ity. b) and c) 2D SAXS patterns of a sample synthesized at 31 ◦C and
70 % r.h. before (b) and after calcination (c).

humidity of 70 % over at least 12 hours yields the highest fraction of the columnar

phase. In the SAXS experiment, only very weak reflections characteristic for the

hexagonal circular phase could be detected for these experimental conditions. Fig-

ures 6.3b and 6.3c show typical SAXS patterns as obtained from an as-synthesized

sample (b) and a sample calcined at 400 ◦C (c). The calcined sample shows even

stronger reflection intensities than the as-synthesized sample; this result clearly

proves that the hexagonal columnar order is perfectly maintained throughout the

surfactant removal process.
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6.3.2 Structure of the mesoporous host and nanowire synthesis

- In�uence of the electrolyte concentration and the

deposition potential

TEM micrographs before electrochemical pore-filling show that not all of the pores

are completely filled with the silica mesostructure prior to deposition. In particu-

lar, three main defect types have to be considered. First, a few pores of the anodic

alumina membrane appear to be unfilled or only partially filled by the mesoporous

silica system. Second, the existence of voids between the anodic alumina pore wall

and the silica mesostructure has to be taken into account. These defects might be

a result from incomplete filling by the precursor sol, or more likely, could result

from pore shrinkage during calcination. Third, due to multi-point nucleation of

the silica mesophase in the anopore channels one would expect mesophase domain

boundaries at fairly large distances in the anopore membrane; this could cause a

few discontinuities in the overall mesopore system along the 60 µm anopore chan-

nels.

For the successful electrodeposition of the wires within the mesoporous system,

the concentration of the electrolyte and the deposition potential play an impor-

tant role. Due to the very high aspect ratio of the pore diameter to the accessible

pore length, the rate of diffusion of the ions to the electrode is an important issue.

Empty AAO pores or voids in the mesopore/AAO system will show an increased

diffusion rate over the small mesopores, while domain boundaries in the silica

mesophase can block deposition in certain mesopores. To ensure that the deple-

tion of the ions close to the electrode is slower than the wire growth in adventitious

big voids, the concentration of the respective ions must be chosen sufficiently high.
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Experiments carried out at lower concentrations (0.01 M to 0.1 M) of the respective

ions showed almost no filling of the mesoporous system, while a deposition in the

empty pores/voids was still observed.

When choosing the correct deposition potential, similar considerations have to be

taken into account to enable the deposition in the mesopores. The rate of reduction

must be kept low enough to allow simultaneous deposition in the small mesopores

and possibly existing voids, cracks, or empty anodic alumina pores. For copper and

silver, the same potential of -0.01 V was found to produce optimal results. When

choosing higher deposition potentials, predominant deposition in big voids and/or

empty anodic alumina pores was found. When choosing lower potentials, the fill-

ing rate of pores decreased and the formation of wires also decreased.

6.3.3 Plan view TEM micrographs

Plan view images give a good overview over the wire system embedded within the

matrix, as both structural aspects and the degree of filling can be visualized. Figure

6.4 shows plan view TEM micrographs of copper, silver and tellurium nanowires.

The micrographs of copper and silver in Fig. 6.4a-c clearly show the structure char-

acteristic for the original hexagonal columnar order of the silica mesopore system.

An estimation of the degree of filling from low magnification images is difficult and

should be done with care, as damage of the specimen during sample preparation

and the exact location within the membrane (height) cannot be determined. The im-

ages suggest that the filling rate varies over the sample. Furthermore, comparisons

between copper-filled and silver-filled samples suggest that higher filling rates can

be reached when depositing Cu.
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Figure 6.4a illustrates another interesting aspect that can be derived from plan view

images. The thickness of the silica wall material seems to be decreased in areas

with filled mesopores, while it is retained in unfilled areas. This might be a result

from wire growth, as the crystallization of the electrodeposited metal species ap-

parently exerts enough pressure to compress the amorphous and less dense silica

in the mesopore wall.

The average wire diameter is in the range of 10 nm, which is in good agreement

with the pore size obtained from nitrogen sorption measurements.[103] The micro-

graphs show that there are some deviations in the apparent wire diameter. This

might be a result of several effects. First, there might be some wires growing faster

than others, expanding the pore size due to crystallization effects and compressing

the available pore size in their neighboring pores. The wires growing there would

then have less space available for growth, leading to smaller pore sizes. The forma-

tion of connected, small crystallites is supported by STEM images of the dissolved

wires (discussed below). Second, the pore system might not be perfectly straight,

resulting in a small tilt of the tubular system. As TEM images are always projec-

tions in the direction of the electron beam, this fact would result in an apparent

elongation along one wire axis, also resulting in apparently larger wire diameters.

Third, as already discussed above for the wall thickness, deviations in the shape of

the wire might also result in the projection of a larger apparent wire diameter.

The deposition of tellurium proved to be more difficult. The solubility of tellurium

oxide in water is very low (10−4 M at pH=2),[233] thus the growth rate of the tel-

lurium wires is very slow. This results in long deposition times and very poor

filling rates. Furthermore, plan-view micrographs taken from the synthesized com-

posites (Fig. 6.4d) also show a strong distortion of the silica mesophase itself, which
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a b

c d
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Figure 6.4 — Plan view TEM images of nanowires embedded within the AAO/silica
matrix. a) TEM micrograph of copper nanowires. The wire arrange-
ment still perfectly resembles the original hexagonal pattern of the un-
derlying silica mesostructure. b) Close-up TEM and c) HRTEM micro-
graphs of silver nanowires embedded within the silica mold. d) Tel-
lurium nanowires within the silica structure. The severe distortion of
the silica mesophase might result from the rigorous conditions during
electrodeposition (see text).
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we attribute to the long deposition times (> 12 h) in the highly acidic media.

In the case of copper and silver nanowires, further characterization by selected-

area diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDX) was car-

ried out (Fig. 6.5). The SAED patterns obtained from both materials prove that

the wires are crystalline. The EDX spectrum of the alumina/silica/composite ma-

terials shows – besides carbon – no elements other than those expected from the

alumina/silica double mold and the wires themselves; thus, the synthesized struc-

tures are chemically clean.

6.3.4 TEM of �laments

Plan view micrographs of silica mesophases embedded in an AAO matrix only

show a local cross section of the porous system. Thus, the long-range order of the

porous system and of the embedded wires cannot be visualized this way. Standard

TEM cross sections also suffer from such a drawback, as the electron-transparent

area is rather small. Furthermore, these preparation methods involve abrasive steps

during specimen preparation (grinding and ion milling). The effect of these steps

on the specimen is yet unclear, but we suppose that different milling rates of the

ceramic host and the metallic nanowires may lead to changes in morphology. In

particular, the degree of filling of the mesopore system with nanowires might be

underestimated. Thus, to reveal the long range order of the silica mesophase and

the wires embedded therein, the AAO matrix was selectively dissolved by immers-

ing the samples into a sodium hydroxide solution. This way it was possible to

obtain long silica/nanowire composite filaments, whose structure can be studied

by TEM.
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Figure 6.5 — SAED patterns of a) copper and b) silver nanowires embedded within
the silica mold. The patterns can be indexed to the respective element
phases (both elements crystallize in the Fm3m space group). c) shows
an EDX spectrum obtained from an alumina/silica/silver composite.
The copper signals are an artifact of the supporting copper grid in
TEM.
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� �

� �

Figure 6.6 — TEM micrographs of silica filaments dissolved from the AAO mold and
filled with copper nanowires. a) silica filament filled with columnar
nanowires. b) Filament with the hexagonal circular mesostructure. The
wires still follow the circular host structure. c) TEM micrograph of
a phase-change region. The mesosystem orientation changes from a
columnar to a circular domain. d) Filament with a copper chunk.
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TEM micrographs of the specimens revealed a large variety of empty, partially

filled, and completely filled silica filaments. Here we focus on the imaging of par-

tially filled filaments, because completely filled filaments tend to become intrans-

parent for electrons due to their projected thickness of up to 300 nm. Micrographs

of partially filled filaments (Figure 6.6) give an overview on the structural diversity

of filaments. As already discussed above for the plan view images, the hexagonal

arrangement of the original mesopore system is perfectly replicated. The average

wire diameter is again in the range of 10 nm. The hexagonal columnar phase is the

dominant phase; however, orientational switching of the hexagonal phase between

the columnar and the circular orientation of the hexagonal channel system can be

observed in some regions over the whole length of the filaments. Wires grown in

regions exhibiting the hexagonal columnar phase (Figure 6.6a) illustrate that the

porous system can be twisted in such regions, while leaving the hexagonal short-

range order intact. This cannot be readily visualized with thin sliced plan view

samples. In regions exhibiting the hexagonal circular phase (Figure 6.6b) similar

geometries as for plan view images can be observed as expected. Many of the silica

filaments show phase boundaries from one phase orientation to another, with the

wires following these structures (Figure 6.6c).

Another interesting feature is the existence of larger chunks attached to the sides of

the some filaments as depicted in Figure 6.6d. These metal objects are attributed to

defect sites in the anopore channels that had not been completely filled by meso-

porous silica, but could still be filled with metal through diffusion from neighboring

mesopores. By stitching together a series of images (“mapping”), the long-range ar-

rangements in such filaments can be visualized over several micrometers.
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6.3.5 TEM of free standing wires

Free silver nanowires could be obtained by dissolving the host matrix completely

in a hot sodium hydroxide solution (TEM and STEM micrographs in Figure 6.7).

Dissolution experiments carried out at room temperature resulted only in the dis-

solution of the alumina membrane, while the silica/metal filaments stayed intact.

The free standing wires vary in length; most of the wires appear to be broken either

during preparation for TEM or directly during the dissolution process (Figure 6.7a).

Due to the nature of electrochemical growth with the wire tip always acting as

the active cathode for further wire growth, all broken wire fragments must have

been connected during growth and as long as they were still embedded within the

silica matrix. In micrographs obtained from the isolated silica filaments (Figure

6.6) no evidence for broken wires could be found. It is noteworthy to mention

that no coiled wires could be found that would have resulted from the hexagonal

circular mesostructure, which implies that these wires have either uncoiled or that

the fraction of the circular mesophase was negligible. The average wire diameter

measured from the micrographs is still within the range of 10 nm.

HRTEM micrographs as depicted in Figure 6.7b did not show any direct evidence

for the presence of interwire connects resulting from deposition within the micro-

porous pore walls of the silica phase. However, the wires were always found to be

agglomerated to bundles; Ryoo et al. have attributed the existence of such bundles

to the presence of micropore interconnects,[137] gluing together individual wires

even after removal of the silica mold. The indexing of the SAED patterns in the in-

set of Figure 6.8a reveals the formation of the standard cubic (Fm3m) silver phase.

This also corresponds to wide-angle X-ray diffraction data obtained from the re-
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a b

c

Figure 6.7 — Characterization of the dissolved silver wires. a) TEM micrograph of
a bundle of Ag nanowires adhered to the carbon support of a TEM
grid. b) Corresponding HRTEM micrograph of the wires, illustrating
the polycrystalline nature of the wires. c) HAADF STEM image of the
isolated silver wires.
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spective membranes. STEM-HAADF images show that the individual wires exhibit

slight variations in their contrast (Figure 6.7c), which could be due to variations in

thickness.

The complete dissolution of the host matrix could be clearly proven by EDX mea-

surements. The spectra depicted in Figure 6.8b show strong signals for silver, but

no signals for the elements of the double mold matrix (aluminum and silicon). The

signals for copper result from the copper grid used as a substrate for electron mi-

croscopy. The presence of only traces of oxygen indicates that the wires have not

been oxidized to silver oxide, which is confirmed by SAED diffraction (inset in Fig-

ure 6.7a). In contrast to the silver nanowires, free copper nanowires could not be

successfully prepared by the described approach. TEM micrographs taken from

such samples only showed formation of large amounts of salts, as copper is most

probably not noble enough to withstand the treatment with hot NaOH.
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Figure 6.8 — a)SAED pattern of the free wires. The pattern can be indexed to the
standard silver phase (space group Fm3m). b) EDX data proving the
complete absence of the composite mold material (AAO/silica matrix).
The low oxygen content also indicates that the wires have not been
oxidized during the mold removal process. The copper signals result
from the supporting copper grid in TEM.
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6.4 Conclusion

In summary, we have successfully synthesized copper and silver nanowires with

diameters of approximately 10 nm by electrochemistry within hierarchical meso-

porous composite structures. The existence of these wires within the matrix was

demonstrated with plan-view TEM, STEM and EDX measurements. TEM micro-

graphs of free silica filaments filled with copper show that the metal phase can

replicate the mesoporous phase over a long distance (>1 µm). Individual silver

nanowires could be completely dissolved from the matrix. The plan-view micro-

graphs of both the silver and the copper nanowires embedded in the mesoporous

composite matrix show an almost perfect hexagonal alignment originating from

the host silica mesophase. TEM-maps generated from micrographs of isolated sil-

ica filaments filled with copper provide insights into the domain structure of the

anopore-embedded mesoporous silica; an orientational switching between colum-

nar and circular hexagonal phases can be observed. Finally, silver nanowires could

be completely isolated from the host matrix as proven by TEM, STEM, and EDX

measurements.
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6.5 Outlook - Silica Mesopores within AAO on

Conductive Substrates

The possibility to obtain high-aspect ratio metal nanowires by electrodeposition

into mesoporous AAO/silica composites was successfully demonstrated above;

nevertheless, there are some important challenges – such as homogeneity of the

mesophase, the existence of voids, and the over-all fill rate – remaining. These

challenges are addressed by creating a slightly adapted synthesis strategy as de-

picted in Figure 6.9. First, a 500 nm thick aluminum film is sputter-coated onto

a glass substrate covered by a thin, conductive oxide film. Due to this conduc-

tive layer, the aluminum can then be anodized directly on the substrate. As the

ITO itself is not etched during the electrolysis, the Al can be completely anodized;

thus, no subsequent removal of the barrier oxide is necessary. By moving from

the commercially available, large pore Whatman Anodisc substrates towards lab-

anodized thin films much more regular pore systems with an almost circular pore

cross-section can be obtained. Furthermore, the pore size of the anopores can be

tailored to an optimized size. The synthesis of the silica mesophase is, similar to

the experiments in the commercial membranes, carried out using an EISA process.

The precise compositions are given already in section 6.2. After the removal of the

structure-directing agent, the composites can be used directly for the electrodeposi-

tion of metallic nanowires. As the FTO/glass substrate itself is already conductive,

no further attachment of an electrode is necessary; thus, the time-consuming and

delicate steps of applying the electrical contact and sealing the electrode backside

by nail polish can be avoided.

148



6.5. OUTLOOK

ITO glass substrate Al �lm Anodize Al

Mesophase synthesis Electrodeposition

Figure 6.9 — Scheme of the improved synthesis strategy for the electrochemical de-
position of nanowires within AAO/silica composites. In a first step a
conductive ITO glass substrate is sputter-coated with a 500 nm thick
Al film. After anodization, the anodic alumina pores are filled with a
silica mesostructure. As the substrate itself is already conductive, the
nanowires can be directly filled by electrodeposition.

Experimental details. The experiments are still in a very early stage and rep-

resent merely a proof of concept rather than optimized results; thus only limited

experimental details are presently available. Glass slides with approx. 1 cm by 1

cm in size covered by a 100 nm thick layer of either tin-doped indium oxide (ITO)

or fluorine-doped tin oxide (FTO) were used as conductive substrates. After care-

ful cleaning using dilute HCl and ethanol, an approximately 500 nm thick film of

aluminum was sputter coated onto the substrate surface. The anodization was car-

ried out in a 0.3 molar oxalic acid electrolyte at 40 V. An electronic feedback system

based on current ensured that the power was switched off at the moment the an-

odization process reached the conductive oxide film to prevent delamination of the

AAO film. A final pore size of 60 to 80 nm was obtained after pore widening in

an aqueous 5 % phosphoric acid solution for 1 hour. For the synthesis of the sil-

ica mesostructures, sol solutions with the compositions as already discussed above

were used. This precursor solution was then spin-coated, cast, or dipcoated onto
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the substrates to allow the mesophase formation by the EISA method. The resulting

composites could be calcined successfully at 500 ◦C.

a b

Figure 6.10 — SEM micrographs of aluminum films on FTO/glass substrates. a) de-
picts a film prepared by a sputter coating process; b) is prepared by
a thermal evaporation process. Both films show a similar degree of
fragmentation by a grainy structure.

Results and discussion. As the pore nucleation and formation process preferably

starts at defect sites (see Chapter 2.2), it is desirable to have a homogeneous and flat

aluminum film surface after the sputter process. Unfortunately, such films could

not yet be produced. Figure 6.10a depicts an SEM image of a sputter-coated alu-

minum film. The film surface consists of small aluminum grains with sizes at the

order of about 100 nm. SEM cross-sections prepared from such films show that this

grainy structure is maintained over the whole film. At this moment, we attribute

the grain formation to the sputtering process itself. Due to the high energy, alu-

minum clusters rather than single Al atoms may be knocked out of the aluminum

target. Initial experiments showed indeed that the cluster size is increasing with

increasing plasma energy used for the sputtering process. Thus, it would be de-
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sirable to sputter at very low plasma energies; unfortunately, already at the lowest

possible energy at which Al sputtering occurs large clusters are obtained. Al films

on conductive oxide glass slides were also prepared by thermal evaporation of alu-

minum. For these films, a similar grainy film morphology is observed (Fig. 6.10b).

As we did not have easy access to such a machine, no detailed investigations or

optimizations were carried out on these films.

The effect of the grainy aluminum film morphology on the anodization process and

the resulting porous aluminum films can be seen in SEM images of the as-anodized

films (Fig. 6.11). The pore nucleation and growth is much more pronounced at

the Al grain boundaries, leading to an increased pore size and and an elongated

pore shape in these regions. The pores growing in the grain centers appear to

be smaller and of a more rounded shape. The initial pore size is in the range of

about 20 nm, which is too small for the following mesophase synthesis. To widen

up the pores, they were etched in an aqueous phosphoric acid solution at room

temperature. This is a very common process to tailor the pore size of AAO films

after anodization to specific requirements.[210,235] Fortunately, it also evens out the

anopore inhomogeneities to some extent, thus giving the whole film morphology

look much more regular appearance. For the later synthesis of the silica mesophase,

an anopore diameter of about 60 nm was targeted, as this diameter allows the syn-

thesis of a significant number of mesopores per channel while keeping the effect of

confinement low enough not to obtain isolated spherical pores as reported by the

Stucky group.[95] The pore widening effect was therefore studied and it was found

that the pore diameter scales linearly with the etching time. After 60 minutes of

etching in H3PO4, an average pore diameter of 50 nm can be obtained. The SEM

micrograph of such a film depicted in Figure 6.11b shows well-defined pores with a
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Figure 6.11 — Effect of pore widening on the porous anodic alumina film morphol-
ogy. a) as-synthesized film without any further treatment after an-
odization, b) after 60 min. of pore widening, c) after 90 min. of
pore widening. The graph in d) depicts the linear dependence of the
anopore diameter from the etching time in phosphoric acid.
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sufficiently narrow pore size distribution. Films with a pore size of 60 nm, as orig-

inally aimed for, can in principle also be obtained after 90 minutes of etching time

(Fig. 6.11c). Unfortunately, some pores were found to already merge as the alumina

pore walls were partially consumed by the phosphoric acid. As this leads to a very

inhomogeneous pore-size distribution and strongly elongated anopore shapes, an

etching time of 60 minutes was preferred for the following experiments with the

silica mesophase.

Initial experiments on the synthesis of silica mesophases within the anopores have

already been carried out and characterized. As a starting point, precursor solu-

tions with compositions as already used for the synthesis of SiO2 mesopores within

the commercial Whatman membranes have been used. In addition to the casting

method employed there, also dip-coating and spin-coating experiments have been

carried out. Best results (with respect to mesopore order) were found for samples

prepared by the spin-coating technique. The TEM micrographs of such composites

are shown in Fig. 6.12 show the evolution of a highly ordered mesophase. The

filling of the anopores with the confined mesophase was found to be complete in

all electron-transparent regions. No voids caused by bubbles or incomplete pene-

tration of the pores with the precursor sol were found. In the images, only a thin

surface layer of the silica mesophase was observed, as it can be expected for a spin-

coating experiment. The mesophase orientation is most likely to be circular hexag-

onal, although a cubic phase cannot be completely ruled out. This could best be

clarified by 2D SAXS measurements; unfortunately, successful experiments were

not yet possible with our laboratory equipment. Due to the fast evaporation pro-

cess during spin-coating, we might expect that the phase to be formed will usually

be the kinetically more accessible one. In experiments on the Whatman membranes,
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a b

Figure 6.12 — TEM micrographs of a silica mesophase synthesized within AAO thin
films prepared by spin-coating. The cross-sections show excellent de-
grees of filling with a high order of the mesostructure.

this was usually the circular mesophase rather than the hexagonal columnar one.

Thus it is still an open question if a highly columnar mesophase can be synthesized

by spin-coating.

Ordered silica mesophases could also be obtained by spin-coating and casting meth-

ods. TEM micrographs of these composites did not yet show as nicely ordered sys-

tems as those that were obtained from dip-coated samples. Nevertheless, as the

speed of evaporation can be slowed down by adjusting the humidity and tempera-

ture during the EISA process, these experiments could finally lead to the formation

of hexagonal columnar mesophases. First results from dip-coated samples already

suggest that this might indeed be possible (Fig. 6.13), but up to now only poorly

structured specimens could be prepared from such systems making further opti-

mization necessary.
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a b

Figure 6.13 — TEM cross-sectional micrographs of composites prepared by a) cast-
ing and b) dip-coating with the precursor solutions.

Conclusion. The first results that were obtained from the experiments already

demonstrate the high potential of this strategy. By being able to control not only

the conditions during the EISA process, but having the control over the anopore

morphology in combination with the lower aspect ratio one can synthesize almost

defect-free composite materials. Further optimization of the synthesis protocol and

the conditions present during the EISA process could finally lead to a hexagonal

columnar mesophase without any circular side phase. These systems would then

be ideal substrates for the subsequent nanowire growth by electrodeposition or

other techniques.
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7.1 Introduction

Surfactant-driven synthesis of mesoporous silicates has been a field of extensive

research since their discovery by Mobil Oil researchers in 1992.[36] These kinds of

materials are expected to offer a wide field of potential applications, such as sepa-

ration, drug delivery, support for various catalysts, or as host for the synthesis of

nanostructures.[167,236–238] The combination of the advantages of inorganic meso-

porous silicas such as tunable pore sizes (between 2 nm and 15 nm), high specific

surface areas, and ordered pore systems with the great diversity of organic chem-

istry led to the development of mesoporous organic-inorganic hybrid materials.[10]

The organic modification of the porous materials allows one to tailor the properties

of the inorganic silica to specific needs. A special group in this field of materials

is represented by periodic mesoporous organosilicas (PMO), which were discov-

ered in 1999.[117,119] They can be synthesized from bis(alkoxysilyl) precursors in the

presence of surfactants such as tetraalkylammonium halides or nonionic triblock-

copolymers acting as structure-directing agents. This approach permits a high load-

ing of organic functional groups, which are homogeneously distributed through-

out the silica matrix. By choosing appropriate linker molecules it is also possible

to synthesize PMO materials that exhibit various new and interesting properties

unknown in purely siliceous mesostructured materials, such as crystal-like pore

walls.[120,239]

To date, PMO materials have been synthesized in the form of powders and thin

films. In thin films, the alignment of the pore system is usually parallel with respect

to the substrate (see, however, recent reports on mesoporous silica films with other

orientations[76,77,80]). Recently, the incorporation of mesostructured silica within the
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pores of anodic aluminum oxide (AAO) membranes has been report-

ed.[81,95–97,100,102,110] These types of composite materials permit the synthesis of meso-

pores aligned perpendicular to the membrane surface. The synthesis was achieved

by employing evaporation-induced self-assembly (EISA).[58] These composites can

offer significant advantages over thin films, such as high mechanical stability and

high aspect ratios of the mesophase system, making them excellent candidates for

applications such as separations, nanofiltration or nanotemplating. Due to the con-

finement of the silica within the alumina pores, the formation of unusual mesophase

morphologies was observed. There have been reports on a 2D hexagonal columnar

mesophase (mesopore orientation along the alumina pore), a 2D hexagonal circular

mesophase (mesopore orientation perpendicular to the alumina pore), and a circu-

lar lamellar phase.[97,100]

Here we report on the synthesis of PMO materials based on bis(triethoxysilyl)ethane

(BTSE) confined within the pores of anodic alumina membranes. In addition to the

previously reported 2D hexagonal circular phase and the lamellar phase, for the

first time we observed a circular phase that was formed by an ionic surfactant. Fur-

thermore, the existence of a 3D porous system (cubic Im3m) was observed, which

has not yet been reported for these types of confined materials. These hierarchical

systems offer excellent fill factors in the alumina channels and very high surface

areas.
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7.2 Experimental

General synthesis. Whatman Anodiscs (47 mm diameter, nominal pore diameter

0.02 µm) were used as porous alumina substrates. SEM measurements showed

that these membranes have an effective pore diameter between 150 and 250 nm.

Bis(triethoxysilyl) ethane (BTSE, 98 %, Gelest) served as silica precursor. Non-

ionic decaethylene glycol hexadecyl ether (Brij 56, Aldrich) as well as ionic hexade-

cyltrimethylammonium bromide (CTAB, Aldrich) were used as structure directing

agents. All chemicals were used without further purification. PMO mesophases

were synthesized in a two step method similar to previous reports.14 A first solu-

tion containing 1.72 g (5 mmol) BTSE, 1.92 g H2O (107 mmol), 3.0 g HCl (0.2 M,

0.6 mmol of HCl), and 3.84 g (83 mmol) of Ethanol were mixed in a closed plastic

beaker and pre-hydrolyzed for one hour at 60 ◦C. Meanwhile, another solution con-

taining various amounts of the structure directing agent was prepared. For CTAB

and Brij 56, 0.800 g of water, 1.500 g of HCl (0.2 M, 0.3 mmol of HCl), and 3.785 g of

Ethanol were mixed with the respective SDA. In case of CTAB, amounts of 0.72 g

up to 3.28 g, corresponding to 2 - 9 mmol of CTAB were dissolved in this solution.

When using Brij 56 as SDA, 0.546 g (0.8 mmol, B1), 0.684 g (1 mmol, B2), or 0.956 g

(1.4 mmol) of Brij 56 were dissolved, respectively. Finally, both the solutions, con-

taining the silesquioxane and the SDA, were mixed and a volume of 0.75 ml was

cast onto the anodic alumina membrane. In case of laboratory experiments, this

membrane was laying on a flat PTFE substrate, while for GISAXS experiments at

the synchrotron, the membrane was lying on a grooved PTFE plate (grove width

0.5 cm, depth 0.4 cm).

Calcination protocol. The samples with Brij 56 as SDA were calcined using a multi-
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ple step calcination protocol. In a first ramp (0.5 ◦C/min) the samples were heated

from room temperature up to 120 ◦C. This temperature was held for at least five

hours. This step was followed by another ramp (0.5 ◦C/min) up to 180 ◦C, which

was kept constant for another five hours. After that the samples were finally heated

up to either 200 ◦C or 250 ◦C with a heating rate of 0.25 ◦C/min, this final temper-

ature was kept for 10 hours for complete surfactant removal.

Electrodeposition of nickel. For the deposition of nickel within the mesopores, a

small fragment of the calcined composite material (B2) was sputtered on one side

with a thin gold layer acting as electrode material and connected to a wire using

silver paint. Finally the electrode was isolated against the electrolyte solution using

nail polish. The electrolyte solution was composed of 30 g/l NiCl2 · 6 H2O, 100 g/l

NiSO4 · 6 H2O, and 40 g/l H3BO3.

Characterization. TEM micrographs were recorded using a JEOL 2011 transmis-

sion electron microscope, the acceleration voltage was set to 200 kV. Nitrogen sorp-

tion measurements were carried out at 77 K using an Autosorb-1 by Quantachrome

Instruments. 2D small angle X-ray scattering experiments were carried out using

the SAXSess system by Anton Paar in combination with a CCD detector system

(Roper Scientific). The wavelength of the incident beam is 0.154056 nm (Cu Kα),

the sample-detector distance was set to 307.8 mm. Samples were measured with a

tilt angle of 10◦ with respect to the primary beam. GISAXS experiments were per-

formed at beamline BL 5.2 L at Synchrotrone Elettra (Triest, Italy). The wavelength

of the incident beam was 0.154980 nm (8 keV), and the sample-detector distance

was 641.7 mm. The incident angle of the beam to the substrate was 2.35◦ in a trans-

mission mode. The substrate was placed on a grooved PTFE plate (groove width

0.5 cm, depth 0.5 cm). Solid state NMR measurements were performed using a
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Bruker DSX Avance 500 FT.

7.3 Results and discussion

7.3.1 CTAB-template

Hexadecyltrimethylammonium bromide is a commonly-used template in the syn-

thesis of mesoporous materials. In the CTAB/Silica/AAO system, the only meso-

phase previously found for these composites has a hexagonal columnar structure.

To determine the structure of the new CTAB/PMO/AAO mesophase systems, 2D

- small angle X-ray scattering (SAXS) experiments in combination with TEM were

performed. In contrast to our previous results on inorganic silica/AAO compos-

ites, the SAXS patterns for the confined PMO systems showed only evidence for

the hexagonal circular mesophase (Figure 1a).[96] The average d-spacing calculated

from the SAXS patterns was 4.5 nm. Additionally, TEM micrographs of this phase

(Figure 1b) confirm the formation of the hexagonal circular phase. The d-spacing

calculated from the electron micrographs is 4.0 nm, somewhat smaller than the d-

spacing resulting from X-ray-diffraction. This can be attributed to the shrinkage

of the porous system during the ion milling procedure, which is a crucial step in

the TEM specimen preparation, as well as the effect of the exposure to the electron

beam under vacuum in the TEM column.

In comparison to silica, the remarkably different PMO structures formed during the

EISA process could be the result of a change in polarity and size of the organo-silica

species in the PMO phase. This might lead to different interactions between the
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50 nm

a b

Figure 7.1 — a) 2D-SAXS pattern and b) TEM micrograph of CTAB-based as-
synthesized composite material representing the circular hexagonal
mesophase.

SDA and the organosilica wall material, making the hexagonal circular mesophase

favorable over the hexagonal columnar one.

7.3.2 Brij 56-template

The use of Brij 56 as a structure directing agent for EISA synthesis resulted in the

formation of two different mesophases. For SDA/BTSE ratios above 0.09 (sample

B2), the formation of a circular mesophase was observed by SAXS (Fig. 7.2 (a)),

yielding the typical diffraction pattern for this mesophase.[96,100] The average d-

spacing calculated from the diffraction pattern is 5.8 nm, which is in agreement with

the corresponding TEM data (Fig. 7.2b). At a SDA/BTSE ratio between 0.06 and

0.08 (sample B1), the formation of a previously unknown structure for mesophases
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confined within the pores of AAO membranes was detected.

X-ray diffraction in a laboratory SAXS experiment (incident angle 10◦ with respect

to the AAO membrane surface) revealed six reflection spots above the horizon (in-

strumental lower limit) (inset in Fig. 7.2 c) with an average d-spacing of again

5.8 nm. In contrast to these results, experiments carried out at the Elettra syn-

chrotron resulted in a diffraction pattern known from literature for cubic Im3m

phases (Fig 7.2 (c)).[240,241] The d-spacing of the indexed 110 reflections of 5.8 nm is

the same as for the laboratory experiments. The difference in the diffraction pat-

terns from the laboratory instrument and the ones obtained at the synchrotron can

be explained by the different measurement geometries.[242] Due to the relatively

low photon flux and the larger beam size of the in-house diffractometer, the inci-

dent angle of the beam with respect to the sample has to be set to 10◦ in order to

observe diffraction patterns intense enough for evaluation. Using the high photon

flux of the synchrotron, it was possible to reduce the incident angle to 2.353◦, result-

ing in the diffraction patterns depicted in Figure 2c. The same patterns could also

be obtained with the laboratory instrument at a low angle of incidence, but the data

quality did not permit quantitative evaluation. TEM data obtained from this cubic

phase support the formation of a cubic Im3m mesophase. The micrograph depicted

in Figure 2d shows a view along the [110] zone axis, with the mesophase perfectly

aligned to the anopore curvature. The distances of the structural elements are 3.9

nm and 5.8 nm (corresponding to d110), which is in very good agreement with the

X-ray diffraction data (showing only the reflections for the [110] zone axis). The

calculation of the d-values along the [111] direction and a corresponding TEM mi-

crograph can be found in the supporting information.
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a b

c d

Figure 7.2 — a) 2D SAXS diffraction pattern (obtained from the laboratory SAXS
equipment) and b), corresponding TEM micrograph showing the
hexagonal circular mesostructure of a calcined sample B2-c. c) SAXS
diffraction pattern of the cubic Im3m mesophase (sample B1) obtained
at the Elettra synchrotron. The inset shows a diffraction pattern of
the same phase recorded with our laboratory SAXS machine. d)
Corresponding TEM micrograph along the [110] zone axis of an as-
synthesized sample.
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7.3.3 Removal of the template

The removal of the surfactant template molecules from the mesophases to form

open pore systems is a crucial step for possible applications of these hybrid mate-

rials. For powdered materials a variety of methods such as extraction, calcination,

or surface modification[243] can generally be used. However, standard extraction

techniques (using EtOH/HCl) of the as-synthesized PMO/AAO samples always

resulted in a complete loss of structure. Surface modification with silane coupling

agents can work well for the removal of surfactants (SDA) from inorganic silica in

AAO membranes, but this route fails for PMO materials within AAO, as it can-

not completely remove the SDA. The destruction of the mesophase in both cases is

tentatively attributed to the low degree of condensation of the silica network and

the HCl attacking the alumina. To increase the degree of condensation and thus

strengthen the structure, the samples were annealed at 120 ◦C and subsequently

extracted in pure ethanol. For both sample types, X-ray diffraction confirmed the

retention of the previously formed mesophase (Figure 7.3).

The nitrogen sorption isotherm of a cubic, template-extracted sample annealed

at 120 ◦C (Fig.7.3 a) gives a BET surface area of 60 m2/g and a pore volume of

0.04 ml/g. This is in accordance with literature data for comparable silica/AAO

composites.[96] As indicated by the shape of the capillary condensation step and

the hysteresis in the isotherm, the sample shows a relatively broad pore-size distri-

bution with sizes ranging between 2 and 6 nm and an average of about 4 nm. This is

attributed to the incomplete removal of the surfactant molecules during extraction,

thus creating pores with different local diameters and some tortuosity. Accordingly,

13C-MAS-NMR data of the corresponding sample (Figure 5a) show intensive sig-
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a b

Figure 7.3 — 2D SAXS patterns of a sample B1 annealed at 120 ◦C. a) Before extrac-
tion, b) after extraction with ethanol.

nals representing Brij molecules, indicating that the removal is not yet completed.

At a calcination temperature of 200 ◦C in air, the decomposition of the SDA is al-

ready far advanced and a subsequent extraction with ethanol is no longer needed.

The BET surface area of 70 m2/g, calculated from the nitrogen sorption isotherm, is

in the expected range for these types of composite systems, but 13C MAS NMR mea-

surements indicate that the removal of the Brij molecules from the mesophase is not

yet complete (Figure 5a). 29Si NMR of the calcined sample also already exhibits a

minor broad signal around -100 ppm, which can be assigned to Qn sites, indicating

the beginning cleavage of the organic linker groups. The X-ray diffraction pattern

of a sample calcined at 250 ◦C yields the strongest reflection intensities, the highest

surface area (85 m2/g) and the sharpest pore size distribution. The corresponding

29Si spectrum shows signals for the T-Species at around -60 ppm, indicating that the

majority of the Si-C bonds were not oxidized upon calcination. The second signal

167



CHAPTER 7. PERIODIC MESOPOROUS ORGANOSILICAS IN CONFINED
ENVIRONMENTS

Figure 7.4 — Sorption isotherms of template-removed composites synthesized using
Brij 56 as the SDA. a) Sample annealed at 120 ◦C and subsequently ex-
tracted in ethanol, b) and c) correspond to calcined samples, of which
the sample in b) has been calcined at 200 ◦C, and the sample in c) has
been calcined at 250 ◦C. d) shows the corresponding pore size distri-
butions of samples a) to c) (calculated using a DFT model from the
adsorption branch).
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at around -99 ppm can be assigned to Qn-sites (x=1 to 4). These signals originate

from Si-Ox species, so some of the ethylene bridges were cleaved. Heating to even

higher calcination temperatures will result in a total cleavage of the organic groups.

However, even at a calcination temperature of 500 ◦C the mesostructure itself stays

intact.

7.3.4 Replication of the porous system

Potential applications of these hierarchical systems in nanofiltration and other fields

require that the porous system is accessible for ions and molecules over the com-

plete 60 µm length of the pores. In order to evaluate access into the PMO/AAO

systems, the pores of a calcined (250 ◦C, see Experimental section) hexagonal cir-

cular sample (B2) were replicated by the electrodepositon of nickel. The general

possibility of using silica/AAO composites as nanotemplates has been reported

before.[138] After the electrodeposition, the sample showed some islands of bulk

nickel on the membrane surface opposite to the electrode. TEM samples were pre-

pared by grinding and ion-polishing a specimen close to the electrode surface. TEM

micrographs (Figure 7.6) reveal the successful replication of the pore geometry by

the deposited nickel. Electron diffraction on individual, filled mesopores indicates

that the nickel is crystalline. The electrodeposition only took place in some isolated

pores with the majority of the pores still empty. This can be attributed to the fact

that the pore system is mainly formed by the circular hexagonal phase and only

some pores exhibit the helical system (or defects) with access to the gold electrode

throughout the whole length of the 60 µm anopores.
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a b

Figure 7.5 — NMR spectra of the PMO/AAO samples treated under different con-
ditions to remove the surfactant. a) 13C-MAS-NMR spectra of cubic
samples. Compared to the as-synthesized sample at the bottom, the
signals originating from the Brij molecules (at around 30 and 70 ppm,
respectively) decrease for the extracted sample and the sample calcined
at 200 ◦C. At a calcination temperature of 250 ◦C, the surfactant signals
can be hardly recognized (all spectra are normalized to the signal of the
ethylene bridges at 4.5 ppm; the a.s. spectrum was scaled down by a
factor of 3 to fit the graph). b) 29Si spectra of cubic samples before (bot-
tom) and after the different steps of template removal. The signal at
-60 ppm corresponds to T-sites, while the broad resonance at -99 ppm
corresponds to Q-sites, indicating the beginning decomposition of the
ethylene bridges.
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Figure 7.6 — TEM micrograph of PMO mesopores filled with nickel by electrodepo-
sition. The inset in the left micrograph shows an electron diffraction
pattern from a few wires.

7.3.5 Additional details

Benzene-bridged PMO. The above discussed results dealt only with the rela-

tively simple ethylene-bridged PMO precursor. However, ordered PMO meso-

phases within the pores of AAO membranes could also successfully be synthesized

using a benzene-bridged precursor, bis(triethoxysilyl)benzene (BTSB). Some of the

results presented here will be reported in a following publication.[244] As already

mentioned in the introduction, the use of aromatic precursor allows in principle

the generation of “quasi-crystalline” PMO materials. Unfortunately, this is true

only for PMO’s synthesized in alkaline media;[120,245] a synthesis route, that is not

applicable for alumina substrates due to their solubility in basic media. The ben-

zene ring in the organosilica framework allows the introduction of diverse chemi-

cal moieties by reactions known from organic chemistry. An amination reaction of
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benzene-bridged PMO thin films having crystal-like pore walls has recently been

demonstrated by the Inagaki research group.[246] The authors found high conver-

sion rates (ca. 27 %), with the mesopore system and the crystal-like periodicity

was retained well. The resulting materials could be used to catalyze a Knöevenagel

condensation.

BrBr Si(OEt)3(EtO)3Si
THF

3 h re�ux
2 Si(OEt)4 2 Mg+ + ++ MgBr2 Mg(OEt)2

Figure 7.7 — Reaction scheme for the synthesis of bis(triethoxysilyl)benzene (BTSB).

Bis(triethoxysilyl)benzene (BTSB) was synthesized after Burleigh et. al by a Grig-

nard reaction.[247] A dry three-neck flask was equipped with a reflux condenser, a

septum and a dropping funnel was flushed with nitrogen. Magnesium turnings

(5.92 g, 244 mmol), THF (120 ml), tetraethoxy silane (178 ml, 800 mmol), and one

iodine crystal were added. The soltuion was heated to reflux. To this, a solution

of 1,4-dibromo benzene (18.9 g, 80.1 mmol) in THF (40 ml) was added drop wise

within two hours. The solution was left to reflux for another hour. After cooling to

room temperature, 200 ml of pentane were added to precipitate remaining MgBr2.

The precipitate was filtered of and the solvent was evaporated in vacuum. After

distillation at reduced pressure, BTSB was obtained in form of a clear, colorless oil

(14.6 g, 36.3 mmol).

13C NMR (68 MHz, CDCl3): δ= 134.87, 134.10, 130.39, 77.55, 77.08, 76.61, 59.22,

58.83, 18.25.

29Si NMR (54 MHz, CDCl3): δ= -57.54.

The mesophase synthesis described here followed the EISA protocol of the BTSE
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mesophases (see Section 7.2, p. 160). The synthesis of CTAB templated compos-

ites followed exactly the synthesis steps as described already above for BTSE with

the only exemption that BTSE was substituted by corresponding amounts of BTSB.

Composites with Brij 56 or Pluronic acting as the SDA ware prepared by the fol-

lowing steps: In a small plastic beaker, a solution containing BTSB (0.50 g, 1.25

mmol), 0.2 M HCl (0.75 g, 0.15 mmol of HCl), water (0.48 g, 68 mmol including the

water content from the 0.2 M HCl), and absolute ethanol (0.96 g, 21 mmol) were

thoroughly mixed. Because of an enhanced hydrolysis rate of the BTSB precursor,

the prehydrolysis time at 60 ◦C was reduced to 10 minutes. If Brij 56 was used as

the SDA, a solution containing Brij 56 (0.273 g), water (0.75 g, 42 mmol) and ethanol

(3.785 g, 82 mmol) was added to the prehydrolyzed solution. Samples with Pluronic

P123 as the surfactant were synthesized by adding various amounts of 5 weight-%

solution of P123 in Ethanol to the prehydrolyzed solution. The formation of the

circular hexagonal phase was observed after adding 7.33 g of the ethanol/P123

mixture to the solution containing the BTSB precursor. After extensive mixing, 0.75

ml of the respective solutions were cast onto one Anodisc.

The experiments were carried out using either CTAB, Brij 56, or Pluronic P123 as

the SDA. In contrast to the experiments with BTSE, no ordered mesophases were

obtained with CTAB at similar BTSB/SDA molar ratios. Representative SAXS pat-

terns only revealed the diffuse scattering resulting from the host membrane itself.

The synthesis of mesophases templated by Brij 56 more was more successful; in this

case disordered (wormlike) phases were found in TEM images of as-synthesized

specimens (Fig. 7.8). Corresponding SAXS patterns did not show any distinct re-

flection spots indicating an ordered mesostructure.

Ordered benzene-bridged PMO mesophase within anodic alumina pores could only
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Figure 7.8 — Representative TEM micrograph of the wormlike BTSB mesophase
templated by Brij 56.

be obtained with Pluronic P123 acting as the SDA. The SDA : Si ratio was varied in

the range from 1 : 0.013 to 1 : 0.035. The formation of an ordered, hexagonal circular

mesophase was found for ratios above 0.021. TEM micrographs (Fig. 7.9a) indicate

good fill rates with the mesostructured material. Also, only a minor shrinkage of

the PMO filaments was observed. SAXS experiments showed the characteristic re-

flections of the hexagonal circular mesophase (Fig. 7.9b).

One possible major advantage of benzene-bridged PMO material over the ethylene-

bridged material is its higher thermal stability against decomposition; thus, calci-

nation experiments could be carried out at higher temperatures. Measurements by

differential thermal analysis (DTA) showed the decomposition of the benzene-silica

wall material starting at temperatures around 300 ◦C. At this temperature the SDA

molecules are already completely decomposed (see above). These findings were

also supported by NMR measurements (Fig. 7.9c). Nitrogen sorption data of the

calcined samples showed BET surface areas of 49 m2/g.
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Figure 7.9 — a) TEM micrograph and b) SAXS data of an as-synthesized benzene-
bridged PMO. c) 13C MAS-NMR data obtained from an as-synthesized
benzene-bridged PMO sample and from a sample calcined at 250 ◦C.
Bands marked with an asterisk (*) are rotational side-bands.
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Addition of salts. Experiments with purely siliceous mesoporous material within

anopores – when using non-ionic surfactants – have shown that the phase for-

mation process can be influenced by the addition of small amounts of inorganic

salts.[103,136] In combination with a precise control of the temperature and the rela-

tive humidity during the EISA process, composite membranes with a high fraction

of the hexagonal columnar phase can be synthesized. Similar experiments have

been carried out for PMO material (with BTSE and BTSB as precursors) in order to

synthesize hexagonal columnar PMO mesophases within AAO pores.

Ethylene bridged samples were synthesized from the BTSE precursor in the pres-

ence of Pluronic P123 as the SDA at three different humidities (28 %, 55%, and

96 % r.h.). The compositions of the precursor solutions was identical to those dis-

cussed already for the BTSB precursor. As expected, SAXS measurements showed

the formation of the hexagonal circular mesophase. Nevertheless, the reflex inten-

sity in the SAXS experiment increased strongly with an increase in humidity. This

corresponds to the findings obtained from composites synthesized from TEOS and

P123.[136] The calcination of these membranes leads to a broadening of the reflec-

tions, indicating an inhomogeneous shrinkage of the porous system. This was sup-

ported by corresponding TEM micrographs. By the addition of LiCl (0.04 g) to the

respective precursor solutions it was possible to increase the ratio of the hexagonal

columnar phase over the hexagonal circular phase, as indicated by TEM micro-

graphs (Fig. 7.10a). These results were qualitatively supported by corresponding

SAXS measurements (Fig. 7.10); nevertheless, as it was not possible to synthesize

membranes with the columnar phase as the main phase, no numerical evaluation

of the patterns (by calculating the oop/ip ratio) was done.

Very similar results were obtained for the BTSB system. The reflection intensity in
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Figure 7.10 — TEM image (a) of a composite membrane synthesized from BTSE as
the organosilica precursor in the presence of LiCl. The formation of
hexagonal columnar domains is clearly visible. The corresponding
SAXS diffractogram (b) shows that there is still a high fraction of the
hexagonal circular phase present.

the SAXS experiments increased with increasing humidity; thus, better ordered sys-

tems were obtained. Furthermore, the synthesis of partially columnar mesophases

by the addition of lithium chloride to the EISA precursor solution was achieved.

Nevertheless, it was still not possible to get a pure hexagonal columnar phase.

7.4 Conclusions and perspectives

In summary, PMO mesophases based on the ethylene-bridged silsesquioxane BTSE

have been successfully synthesized within the pores of anodic alumina membranes.

Depending on the surfactant used, different mesophases were observed. SAXS ex-

periments and TEM measurements carried out on CTAB-based PMO/AAO com-

posites yielded exclusively the diffraction patterns and images characteristic for

a hexagonal circular mesophase. This contrasts with purely siliceous, CTAB-tem-
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plated AAO composites, where the hexagonal columnar structure is the exclusive

phase.

Furthermore, for the first time a cubic Im3m phase was found in these confined

environments when using Brij 56 as structure directing agent. The existence of this

phase was proven by X-ray scattering experiments (SAXS) as well as electron mi-

croscopy (TEM). Nitrogen sorption data show that most of the template from these

hierarchical systems can be removed by annealing at 120 ◦C and subsequent acidic

ethanol extraction. Furthermore, we were able to calcine the samples using a step-

wise calcination protocol while retaining the majority of the organic functionality

in the pore walls. 13C-NMR data show that the template was removed completely

at a calcination temperature of 250 ◦C. In addition, 29Si NMR data proved that the

majority of the ethylene linker bridges survived this treatment, leading to higher

surface areas as compared to the extracted material. The successful template re-

moval from the cubic mesophase makes this kind of composites interesting for ap-

plications in nanofiltration or as membranes.

The structure of a hexagonal circular mesophase could be successfully replicated by

electrochemically filling the mesopores with nickel. This illustrates that the porous

system is accessible for molecules and ions throughout the whole membrane length

of 60 microns.

Finally, additional experiments with benzene-bridged PMO/AAO systems showed

that it is also possible to synthesize mesoporous PMO/AAO composites with chem-

ically more attractive bridges. Current experiments show that it is even possible to

synthesize PMO mesophases with biphenyl bridges.[244] These kind of composites

show promising optical properties.
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General Conclusions

In the course of this thesis, metal and semiconductor nanowires have been prepared

within porous host systems. For this challenging task, the synthesis and character-

ization of corresponding host materials was an important part of the project.

Porous anodic alumina substrates are widely used for the synthesis of nanowires

of all kinds. The new multicontact horizontal AAO design introduced in Chapter

5 further expands the possibilities of this method. In a first step, several horizon-

tal aluminum finger structures were prepared on silicon wafers using lithography.

Each of these fingers could be contacted individually, allowing the directed an-

odization of each finger. Thus, different anopore morphologies could be obtained

on a single chip. These individual anodic alumina finger structures could then be

filled in a second step with metals and semiconductors to create nanowire systems.

By making it possible to create arrays of differently sized nanowires and/or even

nanowires of different materials on a single silicon wafer, a new field of application

of such systems in sensing and nanoelectronics is opening up.

The original aim of this thesis, the synthesis and characterization of metal and semi-

conductor nanowires within composite mesoporous host materials, has been suc-
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cessfully demonstrated in Chapter 6. In this process, the synthesis and charac-

terization of suitable hosts proved to be almost as challenging as the preparation,

characterization, and final liberation of the nanowires from the host matrix. Dur-

ing the preparation of the mesoporous AAO/silica composites it became apparent

that external influences – namely temperature and humidity during the EISA pro-

cess – are key factors for the successful preparation of continuous, highly columnar

mesostructures within the AAO pores. Even at optimized conditions, completely

pure mesophases could not be obtained; the systems always showed orientational

boundaries within the mesostructure switching from the hex. columnar arrange-

ment to the hexagonal circular arrangement. This switching behavior could be vi-

sualized by a TEM study on silica/nanowire filaments dissolved from the alumina

matrix. It was further shown, that it is possible to completely dissolve the complete

AAO/SiO2 host material, thus bundled silver nanowires could obtained. One of the

main challenges of this system - the ability to obtain pure, single-phase mesostruc-

tures - is addressed in the outlook of Chapter 6. First experiments showed already

that it is indeed possible to obtain a pure mesophase by reducing the aspect ratio of

the anopore system.

The concept of confining silica mesophases within the pores of anodic alumina was

also adopted for the synthesis of periodic mesoporous organosilica mesophases

(Chapter 7). Using an ethylene bridged silsesquioxane as the precursor, a variety of

mesophases – including a formerly unknown cubic mesophase – could be synthe-

sized within the AAO channel system. The hexagonal and the cubic mesophase

were stable against surfactant removal by extraction or a mild calcination pro-

cess. Sorption measurements of the resulting porous alumina/organosilica hybrids

showed high BET surface areas. Finally, these composite membranes could also be
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used for the successful preparation of nanowires.

While the aforementioned findings had the character of a “proof of principle”,

further studies based on these experiments with chemically more attractive or-

ganic bridges have already been conducted in our group and will be continued.

AAO/PMO composites with benzene bridges have been prepared, opening up the

whole wide field of organic chemistry on aromatic systems. The biphenyl system

shows interesting fluorescent properties. Furthermore, it is possible to synthesize

mesostructures with a high degree of structural order, which has always been a

challenge for these kind of PMO materials when synthesized in the form of thin

films. These results will be published shortly in a following publication.[244]

The chemistry of mesophases within AAO pores is not limited to silicates or oxides.

In another upcoming publication,[248] the synthesis of ordered mesoporous carbons

(OMC) within AAO pores will be described. In contrast to OMC thin films, the

mesoporous system does not shrink significantly if carbonized at temperatures as

high as 1000 ◦C.
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List of abbreviations

AAM Anodic alumina membrane
AAO Anodic aluminum oxide
ac Alternating current
BET Brunauer-Emmet-Teller
Brij 56 Polyoxyethylene (10) cetyl ether
CMC Critical micelle concentration
CVD Chemical vapor deposition
CTAB Hexadecyltrimethylammonium bromide
dc direct current
e.g. Exempli gratia
EDX Energy-dispersive X-ray spectrocopy
EISA Evaporation induced self assembly
FIB Focused ion beam
FTO Fluorine-doped tin oxide
GISAXS Grazing incidence X-ray diffraction
hex. Hexagonal
IR Infrared
ITO Indium tin oxide, tin-doped indium oxide
LMU Ludwig-Maximilian-Universität
MCM Mobil Composition of Matter
OMC Ordered mesoporous carbons
PAA Porous anodic alumina
Pluronic P123 Poly(ethylene oxide)20-block-poly(propylene oxide)70-block-

poly(ethylene oxide)20
r.t. Room temperature
SAED Selected-area electron diffraction
SAXS Small angle X-ray scattering
SDA Structure directing agent
SEM Scanning electron microscopy
STEM Scanning transmission electron microscopy
TEM Transmission Electron Microscopy
TEOS Tetraethylorthosilicate
THF Tetrahydrofuran
TMS-Cl Trimethylchlorosilane
UV Ultraviolet
VLS Vapor-liquid-solid growth
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