
MICROSCOPIC ORIGIN OF

MAGNETISM IN THE

HEMATITE-ILMENITE SYSTEM

by

Seyed Hasan Sadat Nabi

PhD thesis

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Dr. rer. nat.

at the

Faculty of Geosciences
Ludwig-Maximilians University

Munich, Germany

February 2010



Supervisor:
PD Dr. Rossitza Pentcheva

Supervisor:
Prof. Dr. Wolfgang Moritz

Date of Oral Examination: 27.05.2010



i
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Introduction

Transition metal oxides show a series of interesting and exciting magnetic and elec-
tronic properties. Among all these intriguing features, magnetism is a phenomenon
occurring both at the microscopic and macroscopic scale and there is a particular
interest to understand its origin. Not only inherent magnetic materials can show
magnetic behavior, but also magnetism can occur spontaneously at the interface
even of nonmagnetic materials [1].

Interfaces of complex oxides provide rich physics and new possibilities for func-
tional devices in future applications, particularly in the growing field of spintron-
ics [2, 3]. Spintronics is an emerging technology that exploits the intrinsic spin of
the electron and its associated magnetic moment. This allows the elaboration of
a new generation of devices, which are smaller and more versatile than those cur-
rently working based on electrical charge carriers. Although most of the interest on
interface phenomena in the past years has been concentrated on heterostructures
containing perovskites, this is not the only family of structures showing challenging
properties. Already in the 1950’s, Akimoto and Ishikawa [4] reported a remanent
magnetization up to 900 K in the Fe2O3-FeTiO3 system, although the end mem-
bers are a canted antiferromagnet (CAF) (TN = 948 K) and a room temperature
paramagnet (TN = 56 K), respectively, both with a corundum(-derived) structure.
The system has a complex phase diagram due to the interplay between cation and
magnetic ordering, as well as exsolution processes [5]. Exsolution phenomena occur
down to the nanoscale (1-3 nm), which corresponds to a thickness of only 1-2 unit
cells. This system has attracted attention in paleomagnetism as a possible cause of
magnetic anomalies in the Earth’s deep crust and on other planets [6].

Recently, Ti doped α-Fe2O3 has also received considerable attention in the spin-
tronics area for future device applications [7, 8]. Most of the efforts on designing
ferromagnetic semiconductors operating at room temperature concentrate on homo-
geneous doping of semiconductors with magnetic impurities [3,9–12]. Furthermore,
since the type of conductivity (p- or n-type ) can be tuned by the concentration of
Ti doped into hematite, this system is interesting for use in electronic devices such
as low-voltage varistors [13].

Nowadays, with an increased ability to grow oxide heterostructures with atomic
scale control, intensive theoretical study is demanded to shed more light on the
origin of novel physical phenomena occurring at oxide interfaces. The application
of quantum theory to solids has revolutionized our understanding of materials and
their properties. To explain the unusually stable remanent magnetization observed
in hematite-ilmenite natural samples, Robinson et al. suggested the presence of
uncompensated spins within the mixed Fe2+/Fe3+ contact layer between hematite
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2 INTRODUCTION

and ilmenite lamellae. The so-called lamellar magnetism hypothesis [14] is based on
Monte Carlo simulations with empirical magnetic and chemical parameters, but a
material-specific understanding of this phenomenon was lacking at the beginning of
this study. Therefore, in this work, systematic ab-initio calculations are performed
in order to provide an atomistic insight into this phenomenon.

The goal of this study is (i) to identify the compensation mechanism and its
influence on the electronic and magnetic properties, (ii) to determine the relative
stability of layered configurations versus solid solutions and (iii) to extract accurate
magnetic interaction parameters for the interface that are not accessible from ex-
periment. These parameters can then be used for Monte Carlo simulations to study
the equilibrium thermodynamical properties and magnetic ordering of the system
at the mesoscopic scale.

To understand the underlying mechanisms of this system and to extract the mag-
netic interaction parameters, density functional theory (DFT) calculations are car-
ried out with the all-electron full-potential linear augmented plane wave (FP-LAPW)
method as implemented in the WIEN2K package [15]. Correlation effects are taken
into account within the generalized gradient approximation by adding a Hubbard pa-
rameter (GGA+ U) [16]. By systematically varying the concentration, distribution
and charge state of Ti (Fe) in a hematite (ilmenite) host, we compile a phase diagram
of the stability with respect to the end members. Besides the lamellar magnetism
hypothesis (Fe2+, Fe3+), further possible compensation mechanisms, e.g., through
Ti3+/Ti4+ or Fe3+/Ti3+are considered in this work.

Another important aspect is the effect of strain on Fe2−xTixO3 films grown on
different substrates. Hematite/ilmenite films are typically grown on an Al2O3(0001)-
substrate which causes a strong compressive strain. To explore this effect, a compar-
ative study is carried out in Fe2−xTixO3 films grown on three different substrates:
Fe2O3(0001), FeTiO3(0001) and Al2O3(0001). The effect of strain on the compen-
sation mechanism is investigated. Also, the energetic stability of different arrange-
ments (layered vs. solid solutions) strained on different substrates are considered.
Furthermore, strain induced by the substrate can be used to tune the electronic
properties. Thus, the influence of the strain on the electronic properties is investi-
gated.

A further topic of research is the electronic structure and magnetism of EuTiO3

and EuLiH3. EuTiO3 (ETO) is a perovskite with cubic symmetry (space group
Pm3m) at ambient conditions and magnetically ordered below 5.5 K [17–19]. The
dielectric permittivity of ETO exhibits an anomaly at the magnetic ordering tem-
perature [17], suggesting magnetoelectric coupling of the polarization and magne-
tization. However, compared to other well-known magnetoelectrics [20–22], ETO
has been less investigated. Although magnetic susceptibility measurements on ETO
show features of antiferromagnetic ordering, these have not been investigated in
detail, presumably due to the fact that naturally occurring Eu has a very large
absorption cross-section for thermal neutrons. The results of DFT calculations for
ETO are reported, using an all-electron approach and taking into account electronic
correlations within the LSDA/GGA + U method. The system shows a sensitive
balance between antiferromagnetic (G-type) and ferromagnetic states for realistic
values of U . Furthermore, a comparative study is done between EuTiO3 and ferro-



INTRODUCTION 3

magnetic EuLiH3 and the marked difference in magnetic behavior and magnitude
of the nearest-neighbor exchange interaction are discussed.

This thesis is organized in six Chapters as following: In Chapter 1 the the-
oretical methods are introduced. The electronic and magnetic properties of bulk
hematite and ilmenite are presented in Chapter 2. Chapter 3 is the main chap-
ter showing the results on the origin of magnetism in the Fe2O3-FeTiO3 system.
The effect of substrate induced strain on the stability and electronic properties of
Fe2O3-FeTiO3 heterostructures is investigated. Furthermore, the magnetic coupling
parameters at the Fe2O3-FeTiO3 interface are extracted here for the first time from
first principles. Chapter 4 is devoted to the electronic and magnetic properties
of bulk EuTiO3. Thereafter, a comparative study between EuTiO3 and EuLiH3

is carried out in Chapter 5. Finally, the conclusions and future perspectives are
presented in Chapter 6.





Chapter 1

Introduction to Ab-initio
Calculations

Exploring the electronic, magnetic and structural properties of materials is one
of the most interesting subjects in condensed matter physics. To understand the
material properties from a theoretical point of view, quantum mechanics provides a
rigorous tool to study the behavior of materials at the atomic scale. The main factor
to determine is how atoms interact in solids and how these interactions influence
their properties and behavior. However, this constitutes a many-body problem for
which, with the available mathematical tools, exists no analytical solution. Although
the exact solution is not known, there are many methods to deal with many-body
problems by simplifying the general Hamiltonian with the introduction of some
approximations. In this chapter, Density Functional Theory (DFT) is introduced
as a method dealing with many-body systems. Therefore, in the following section,
the main concepts of many-body quantum mechanics are briefly discussed. With
the introduced terminology, a description of DFT is followed, in relation to the
implementation used in this study. Finally, a brief description of the code used for
the calculations is presented in the last section of this chapter.

1.1 Many-body quantum mechanics

It is worth to introduce some of the principles of many-body quantum mechanics
applied to a system consisting of atomic nuclei and electrons. Thereafter, the Born-
Oppenheimer approximation, used to decouple the nuclear motion from that of the
electrons, is described in detail. As a consequence, the many-body Hamiltonian is
reduced to a system of N interacting electrons moving in a static potential generated
by the charge of the nuclei.

1.1.1 Principle of quantum mechanics

Quantum mechanics is based on the fundamental concepts of wave functions and
operators [23,24]. Wave functions are square-integrable functions of the system pa-
rameters and time which provide a complete description of the system. For a system
containing atomic nuclei and electrons, the system parameters are the positions of
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6 CHAPTER 1. Introduction to Ab-initio Calculations

all particles in the system. In order to refer to electronic and nuclear variables, small
and capital letters are used respectively, i.e., {ri,Rj}. The wave function of the sys-
tem is thus typically denoted by Ψ(ri,Rj; t). Another useful convention, to ease the
typesetting of the related mathematical expressions, is to use Dirac’s notation [25].
In this reference, the wave function is written as |ψ〉, known as a ket, which is one of
the many representations of a single state-vector in Hilbert space. There also exists
a dual space containing a bra vector, denoted by 〈ψ| and defined as the conjugate
of a ket. The scalar product of these vectors is written as a braket: 〈ψ|φ〉. A set of
normalized vectors can also be defined, such that the scalar product of the vector
with its own conjugate equals unity:

〈ψ|ψ〉 =

∫ ∏
i

d3ri

∏
j

d3Rjψ
?(ri,Rj; t)ψ(ri,Rj; t) = 1. (1.1)

The operator corresponding to some observable is often written as Ô. In general,
when this operator acts on some state-vector |ψ〉, a different state-vector |φ〉 will
result:

Ô|ψ〉 = |φ〉. (1.2)

However, for each operator there exists a set of normalized eigenstates {|χn〉}
which remain unchanged by the action of the operator, i.e.:

Ô|χn〉 = λn|χn〉, (1.3)

where the constant λn is the eigenvalue of state |χn〉 .
The postulates of quantum mechanics [26] affirm that for a system in state |ψ〉:
1. The outcome of a measurement of a dynamical variable is always one of the

eigenvalues λn of the corresponding operator.

2. Immediately following a measurement, the state-vector collapses to the eigen-
state |χn〉 corresponding to the measured eigenvalue.

3. The probability of such measurement is:

P (λn) = |〈χn|φ〉|2. (1.4)

1.1.2 Expectation values

From Sturm-Liouville theory, the eigenstates of the operator Ô form a complete set,
meaning that any valid state-vector can be expressed as a linear superposition of
the eigenstates with appropriate coefficients {cn}:

|ψ〉 =
∑

n

cn|χn〉. (1.5)

The coefficients are easily obtained for hermitian operators because the eigen-
states are orthogonal, which means that the scalar product of two different eigen-
states vanishes:

〈χn|χm〉 = δnm. (1.6)
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By taking the scalar product on both sides of equation (1.5) with the eigenstates
〈χm|, or by using the following concise expression of completeness:

∑
n

|χn〉〈χn| = 1, (1.7)

the expansion coefficients {cn} are determined as:

cn = 〈χn|ψ〉, (1.8)

where
|ψ〉 =

∑
n

|χn〉〈χn|ψ〉. (1.9)

Applying this result to the quantity 〈ψ|Ô|ψ〉:

〈ψ|Ô|ψ〉 =
∑
m

〈χm|ψ〉?〈χm|Ô
∑

n

|χn〉〈χn|ψ〉

=
∑
m

〈χm|ψ〉?
∑

n

λn〈χm|χn〉〈χn|ψ〉

=
∑
m

〈χm|ψ〉?
∑

n

λnδnm〈χn|ψ〉

=
∑
m

λm|〈χm|ψ〉|2, (1.10)

it is evident that only the eigenvalues {λn} with corresponding probability |〈χn|ψ〉|2
are the possible outcomes of the measurement of observable O, corresponding to
operator Ô. The quantity 〈ψ|Ô|ψ〉 is interpreted as an expectation value of O for
a system in state |ψ〉. The normalization condition establishes that the sum of
probabilities is unity. Therefore, the expectation value is uniquely determined by
the eigenvalues {λn}.

The final postulate of quantum mechanics states that the state-vector evolves in
time according to the time-dependent Schrödinger equation:

Ĥ|Ψ〉 = i~
∂

∂t
|Ψ〉, (1.11)

where operator Ĥ is the energy operator and it is called the Hamiltonian of the
system. For a system consisting of atomic nuclei and electrons, the non-relativistic
Hamiltonian takes the form:

Ĥ = −~
2

2

∑
i

∇2
ri

mi

− ~
2

2

∑
i

∇2
Ri

Mi

− 1

4πε0

∑
i,j

e2Zj

|ri −Rj|

+
1

8πε0

∑

i6=j

e2

|ri − rj| +
1

8πε0

∑

i6=j

e2ZiZj

|Ri −Rj| ,
(1.12)

with mi and Mj the mass of the electron and of the nucleus positioned at ri and
Rj, respectively.
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The first two terms on the right hand side represent the kinetic energy opera-
tor of electrons and nuclei, respectively. The remaining terms describe the Coulomb
interaction between electron and nucleus, between the electrons and between the nu-
clei, respectively. Finally, after solving the time-independent Schrödinger equation,
the eigenvalue equation and the time-dependent wave function of the Hamiltonian
takes a simple form. The following separation of variables is done:

|Ψ〉 = Ψ(r,R; t) = ψ(r,R)Θ(t), (1.13)

which leads to the following equations:

Ĥψ(r,R) = Eψ(r,R) (1.14)

i~
d

dt
Θ(t) = EΘ(t), (1.15)

where E is the separation constant.
The ordinary differential equation (1.15) can be easily solved so that the eigen-

functions of the Hamiltonian with energy E take the form:

Ψ(r,R; t) = ψ(r,R)e−iE
~ t. (1.16)

The states which are the eigenfunctions of the Hamiltonian are known as sta-
tionary states because the expectation value of any time-independent operator for
these states is also independent in time:

〈Ψ|Ô|Ψ〉 =

∫ ∏
i

d3ri

∏
j

d3RjΨ
?(ri,Rj; t)ÔΨ(ri,Rj; t)

=

∫ ∏
i

d3ri

∏
j

d3Rjψ
?(ri,Rj)e

iE
~ tψ(ri,Rj)e

−iE
~ t

= 〈ψ(r,R)|Ô|ψ(r,R)〉. (1.17)

From this point, the exponential time-dependent part of the eigenstates will
be neglected to deal only with the stationary state |ψ〉 exclusively. Therefore, to
determine the state of the system ψ(r,R) = |ψ〉, the corresponding Schrödinger
equation has to be solved:

ĤΨ(r,R) = EΨ(r,R), (1.18)

which constitutes a many-body problem which cannot be treated analytically in
systems containing more than two interacting particles.

1.1.3 The Born-Oppenheimer approximation

Since in practical systems the Hamiltonian contains an order of ∼ 1023 particles, the
many-body problem cannot be solved without introducing some approximations.
As the electromagnetic forces on both electrons and nuclei are of the same order
of magnitude, the change in their momenta as a result of these forces must also
be the same. Then, since the mass of electrons is much smaller than that of the
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nuclei, they must accordingly have much higher velocity (103 m/s). Therefore, it is
plausible that on the typical time scale of nuclear motion, the electrons will very
rapidly relax to the instantaneous ground-state configuration.

Thus, when solving the time-independent Schrödinger equation, the nuclei can
be regarded as stationary and the electronic part can be solved first. Given the
energy of the system in that configuration, the nuclear contribution is calculated
then with classical mechanics and added to the electronic solution. This separation
of electronic and nuclear motion is known as the Born-Oppenheimer or adiabatic
approximation. The assumption of an instantaneous electronic equilibrium for ev-
ery nuclear configuration implies that the electronic wave function is a solution of
the Schrödinger equation for a Hamiltonian (1.12) with fixed nuclear positions as
following:

Ĥ = −~
2

2

∑
i

∇2
ri

mi

− 1

4πε0

∑
i,j

e2Zj

|ri −Rj| +
1

8πε0

∑

i 6=j

e2

|ri − rj|

+
1

8πε0

∑

i6=j

e2ZiZj

|Ri −Rj| .
(1.19)

This Hamiltonian describes the electronic motion in the external potential pro-
duced by the nuclei. Subsequently, the nuclei can be shifted in order to minimize
the forces on the atoms. The forces are calculated through the first derivative of
the Hamiltonian with respect to the positions. Therefore, the Hamiltonian can be
written in the following form:

Ĥ = T̂ + V̂ext + V̂ee + V̂NN , (1.20)

where the last term (V̂NN) contributes to the total energy as a constant amount.
As a consequence, removing this term from the Hamiltonian will not affect the
corresponding eigenfuntions. The resulting Hamiltonian becomes then:

Ĥ = Ĥe + V̂NN , (1.21)

with:
Ĥe = T̂ + V̂ext + V̂ee. (1.22)

Equation (1.22) represents the electronic part of the Hamiltonian, where T̂ rep-
resents the kinetic energy of the electrons, V̂ee the electron-electron repulsions and
V̂ext the electron-nucleus interactions.

1.2 Density Functional Theory

Despite the separation of electronic and nuclear motion introduced with the Born-
Oppenheimer approximation, the many-body Hamiltonian (1.21) is still too complex
to be solved for a large system. In order to deal with realistic materials, further
simplifications have to be made.

In the historically important Hartree-Fock (HF) approximation, the solution
was constructed with Slater determinants. However, while the HF method fulfils
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the Pauli exclusion principle, the correlation effects are not taken into account.
Therefore, the ground state energy converges to a minimum, known as the HF
limit, which from variational principle is always higher than the actual ground state
of the system. Moreover, the HF method is numerically demanding, both in time
and memory space, and its implementation in periodic systems is difficult. For more
details on the HF approximation the reader is referred to Ref. [27].

A breakthrough in the parameter free description of real materials was reached
with the development of density functional theory by Hohenberg and Kohn [28]
and Kohn and Sham [29]. With the introduction of DFT, the problem of finding
the ground state energy was simplified to that of determining the electron density,
rather than explicitly specifying the many-body wave function. To accomplish this
simplification, which retains the exact description of the many-body interactions,
a mapping is done from a system of interacting electrons to a fictitious system of
non-interacting quasi-particles with the same ground state density.

Introducing some basic notation, in the framework of the Born-Oppenheimer
approximation, the Coulomb potential arising from the nuclei is treated as a static
external potential Vext of the form:

Vext(r) = − 1

4πε0

∑
j

eZj

|r−Rj| , (1.23)

so that, by defining the remaining part of Eq. (1.22) as:

F̂ = T̂ + V̂ee = −~
2

2

∑
i

∇2
ri

mi

+
1

8πε0

∑

i6=j

e2

|ri − rj| , (1.24)

the electronic Hamiltonian becomes Ĥe = F̂ + V̂ext, with V̂ext =
∑

i eVext(ri).

Since F̂ is the same for all N -electron systems, the Hamiltonian and hence the
ground state |Ψ0〉, are completely determined by N and Vext(r). In the following,
the first and second theorems of density functional theory, as introduced in 1964 by
Hohenberg and Kohn [28], are described.

First theorem: The external potential Vext(r) is uniquely determined by the cor-
responding ground state electron density n(r). In other words, there is a one-to-one
correspondence between the ground state density n(r) and the external potential
Vext(r). An immediate consequence is that the ground state expectation value of
any observable Ô is an unique functional of the exact ground state electron density:

〈Ψ0|Ô|Ψ0〉 = O[n(r)]. (1.25)

Proof: assume that a second different external potential V ′
ext(r) with ground

state |Ψ′
0〉 gives rise to the same density n(r). The ground state energies are

E0 = 〈Ψ0|Ĥe|Ψ0〉 and E ′
0 = 〈Ψ′

0|Ĥ ′
e|Ψ′

0〉, where Ĥ ′
e = F̂ + V̂ ′

ext. Taking |Ψ′
0〉

as a trial wave function for the Hamiltonian Ĥe, from the variational principle the
following strict inequality is obtained:

E0 < 〈Ψ′
0|Ĥe|Ψ′

0〉 = 〈Ψ′
0|Ĥe + Ĥ ′

e − Ĥ ′
e|Ψ′

0〉
< 〈Ψ′

0|Ĥ ′
e|Ψ′

0〉+ 〈Ψ′
0|Ĥe − Ĥ ′

e|Ψ′
0〉

< E ′
0 +

∫
n(r)[Vext(r)− V ′

ext(r)]d
3r, (1.26)
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whereas taking the |Ψ0〉 as a trial wave function for Ĥ ′
e gives:

E ′
0 < 〈Ψ0|Ĥ ′

e|Ψ0〉 = 〈Ψ0|Ĥ ′
e + Ĥe − Ĥe|Ψ0〉

< 〈Ψ0|Ĥe|Ψ0〉+ 〈Ψ0|Ĥ ′
e − Ĥe|Ψ0〉

< E0 +
∫

n(r)[V ′
ext(r)− Vext(r)]d

3r. (1.27)

Since adding equation (1.26) to (1.27) results in a contradiction:

E0 + E ′
0 < E ′

0 + E0, (1.28)

it is hereby demonstrated that solely the ground state density determines the ex-
ternal potential of the system. Once known, any ground state property can be
calculated.

Second theorem: Assuming that the ground state E0e of the electronic part of
the Hamiltonian is known, the density n(r) can be calculated in principle from the
N -electron wave function, i.e., from the ground state wave function |Ψ0〉. Therefore:

E0e = 〈Ψ0|Ĥe|Ψ0〉. (1.29)

Since |Ψ0〉 is the ground state, E0e must be the lowest possible value of 〈Ψ|Ĥe|Ψ〉,
that is:

E0e = min〈Ψ|Ĥe|Ψ〉. (1.30)

Furthermore, as |Ψ〉 leads to the correct electron density n(r), it also verifies
that:

E0e = min
|Ψ〉→n(r)

〈Ψ|Ĥe|Ψ〉, (1.31)

which formally expresses E0e as a function of n(r):

E0e = E0e[n(r)] = min
|Ψ〉→n(r)

〈Ψ|Ĥe|Ψ〉. (1.32)

If another density n(r) 6= n′(r) is inserted into the functional, according to the
first theorem, two densities can not be constructed from the same wave function.
Therefore, the wave function |Ψ′〉 leads to a minimum of:

Ee[n
′(r)] = min

|Ψ′〉→n′(r)
〈Ψ′|Ĥe|Ψ′〉, (1.33)

which is not that of the ground state of the system. Therefore, any expectation
value 〈Ψ′|Ĥe|Ψ′〉 of equation (1.33) is larger than that of equation (1.32), i.e., the
energy functional obeys the variational principle with respect to the ground state
density:

Ee[n
′(r)] ≥ E0e[n(r)]. (1.34)

This is the second Hohenberg-Kohn theorem, which states that Ee[n
′(r)] has a

minimum for the correct ground state density n(r).



12 CHAPTER 1. Introduction to Ab-initio Calculations

1.2.1 The Kohn-Sham method

The Hohenberg-Kohn theorems do not provide a scheme for calculating the ground
state properties from the electron density. This was accomplished in 1965 with the
approach proposed by Kohn and Sham [29], from which DFT acquired a practical
dimension.

Since the second theorem of Hohenberg-Kohn implies that:

δEe[n(r)] = Ee[n(r) + δn(r)]− Ee[n(r)] = 0, (1.35)

where only the changes of δn(r) which do not alter the total number of electrons
are allowed, i.e., n(r) should verify that:

∫
n(r)d3r = N, (1.36)

this constitutes a minimization problem in the presence of a constraint. Therefore,
with the introduction of a Lagrange multiplier µ, Eq. (1.35) and (1.36) can be
combined as:

δ{Ee[n(r)]− µ[
∫

n(r)d3r−N ]} = 0, (1.37)

which must hold for any variation in n(r).
Applying the concept of functional derivatives, whose mathematical formulation

is presented in Appendix A, Eq. (1.37) can be rewritten as:

δ

δn(r)
{Ee[n(r)]− µ[

∫
n(r)d3r−N ]} = 0, (1.38)

where the term Ee[n(r)] contains the kinetic energy T = T [n(r)], the external po-
tential

∫
Vext(r)n(r)d3r, the averaged Coulomb interaction energy:

1

2

1

4πε0

∫ ∫
n(r)n(r′)
|r− r′| d3rd3r′ =

1

2

∫
VC(r)n(r)d3r,

with:

VC(r) =
1

4πε0

∫
n(r′)
|r− r′|d

3r′

representing the Hartree term and further terms accounting for the exchange and
correlation effects. A factor of 1/2 is included in the Coulomb interaction in or-
der to avoid double counting. The exchange term accounts for the Pauli exclusion
principle by introducing a repulsive interaction among electrons of the same spin.
While exchange effects were already present in the Hartree-Fock approximation [27],
other extra contribution arising from the correlation of the electronic motion were ne-
glected. Both these effects are now included in E ′

xc, where “xc” stands for exchange-
correlation. Since all the other terms are written as a functional of n(r), E ′

xc must
be a functional of n(r) too.

In total, the electronic energy is given by:

Ee[n(r)] = T [n(r)] +

∫
Vext(r)n(r)d3r +

1

2

∫
VC(r)n(r)d3r + E ′

xc[n(r)], (1.39)
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so that taking the functional derivative of Eq. (1.39) with respect to n(r) results in:

δEe

δn(r)
=

δT [n(r′)]
δn(r)

+
δ

δn(r)

[∫
Vext(r)n(r′)d3r′ +

1

2

1

4πε0

∫ ∫
n(r)n(r′)
|r− r′| d3rd3r′

]

+
δE ′

xc[n(r′)]
δn(r)

. (1.40)

In order to calculate the functional derivative of the terms inside the bracket, a
change in the variable n(r) must be introduced as:

n(r) → n(r) + δn(r), (1.41)

from where, considering only the first-order change and neglecting the second or
higher order variations in δn(r), it can be shown that:

δEe

δn(r)
=

δT

δn
+ Vext(r) + VC(r) +

δE ′
xc

δn
, (1.42)

which by direct substitution in Eq. (1.38) results in:

δT

δn
+ Vext(r) + VC(r) +

δE ′
xc

δn
= µ. (1.43)

The approach of Kohn-Sham is the following: They considered a fictitious system
of non-interacting quasi-particles with the same energy and density as the real sys-
tem. In order to ensure that both systems are equivalent, these particles are assumed
moving in some effective external potential (Veff (r)). However, as these particles are
non-interacting, their total energy has a considerably simpler expression:

Ee = T0[n(r)] +

∫
Veff (r)n(r)d3r, (1.44)

for which it can be shown that the analogous of Eq. (1.43) for a non-interacting
system becomes:

δT0

δn
+ Veff (r) = µ, (1.45)

where the kinetic energy T0 is not identical to that of the interacting system T in
Eq. (1.39), since these particles are different.

Therefore, equaling Eq. (1.45) to Eq. (1.43):

Veff (r) =
δT

δn
− δT0

δn
+ Vext(r) + VC(r) +

δE ′
xc

δn
(1.46)

= Vext(r) + VC(r) +
δ

δn
(T − T0 + E ′

xc) (1.47)

and defining Exc = T − T0 + E ′
xc as the energy of the system containing the correc-

tions to the kinetic energy due to the electronic interactions, leads to the so-called
exchange-correlation potential:

δExc

δn
= Vxc(r), (1.48)



14 CHAPTER 1. Introduction to Ab-initio Calculations

which substituted into Eq. (1.46) reduces it to:

Veff (r) = Vext(r) + VC(r) + Vxc(r). (1.49)

In this approach, the energy operator of the system is given by:

ĤKS = Ĥe =
N∑

i=1

[
− ~2

2me

∇2
ri

+ Veff (ri)

]
=

N∑
i=1

ĥeff (i), (1.50)

which is known as the Kohn-Sham Hamiltonian.
As ĤKS contains only single-particle operators:

ĥeff (i) = − ~2

2me

∇2
ri

+ Veff (ri), (1.51)

it is a Schrödinger-like Hamiltonian for which the solution can be written exactly as
a single Slater determinant:

Ψ = det{ψ1, ψ2, ..., ψN}, (1.52)

where the single-particle orbitals ψi are determined by the single-particle equation
ĥeff ψi = εiψi.

Density functional theory is therefore formulated in the following way: the exact
ground state density of an N -electron system is:

n(r) =
N∑

i=1

ψ?
i (r)ψi(r) =

N∑
i=1

|ψi(r)|2, (1.53)

where the single-particle wave functions ψi(r) are the N -lowest solutions of the
Kohn-Sham equation ĤKSψi = εiψi.

Thus, instead of solving an equation for interacting particles, a system of N
Schrödinger like equations is solved for non-interacting single-particles. Two addi-
tional remarks have to be made. First, the single-particle wave functions are not
the wave functions of electrons: they describe mathematical quasi-particles, with-
out any physical meaning. Second, the Kohn-Sham Hamiltonian depends on the
electron density through the Coulomb and exchange-correlation terms, while the
electron density depends on the calculated ψi. Therefore, this is a self-consistency
problem, for which an iterative procedure must be implemented. In the first itera-
tion, with a reasonable guess for the electron density, the Kohn-Sham Hamiltonian is
constructed. Solving the equation results in a new set of ψi and, therefore, in a new
electron density. A new ĤKS is constructed with this new density and the process is
repeated until the resulting density, as well as the total energy, are converged. Thus,
the Kohn-Sham equation provides a practical tool to solve many-body systems.

Apart from the Born-Oppenheimer approximation, DFT conforms an exact the-
ory. However, solving the Kohn-Sham equation requires the introduction of some
approximations, to specify a functional for the exchange-correlation potential and
to construct the eigenfunctions in an appropriate basis set. In following sections,
the above mentioned topics are briefly discussed, maintaining a strict relationship
with the approximations used in this study.
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1.2.2 The LDA and GGA potentials

If the exact form of the exchange-correlation functional Exc[n] is known, the Kohn-
Sham equation can be solved. However, as the analytical expression of this func-
tional cannot be exactly derived, the introduction of an approximation is needed.
Remarkably, a simple approximation for the exchange-correlation energy has been
developed, which for much systems works reasonably well. This is the so-called local
density approximation (LDA) [28–32], which remains to the present the most often
used.

Another frequently used type of functionals are those formulated within the
generalized gradient approximation (GGA) [33–35], which introduce a semi-local
approximation and are used in this investigation. There are some other non-local
methods, such as hybrid functionals, meta-GGA and the self-interaction-corrected
approximation (SIC) which are not used in this investigation.

The central idea of LDA lays on the model of the homogeneous electron gas1. The
assumption that Exc can be written in the following form was already introduced in
the original paper by Kohn-Sham [29]:

ELDA
xc [n(r)] =

∫
n(r)εxc[n(r)]d3r, (1.54)

where εxc[n(r)] is the exchange-correlation energy of an uniform electron gas of
density n(r). This energy per particle is weighted with the probability n(r) that
there is in fact an electron at this position in space. The quantity εxc[n(r)] can be
further split into exchange and correlation contributions:

εxc[n(r)] = εx[n(r)] + εc[n(r)]. (1.55)

The exchange part εx[n(r)] for an electron in an uniform electron gas of a particu-
lar density was determined by Slater in his approximation of Hartree-Fock exchange
and was originally derived by Bloch and Dirac in the late 1920’s [36, 37]. However,
as there is no explicit expression for the correlation part εc[n(r)], several approaches
have been proposed. In the pioneering work of Ceperly and Adler [31], highly accu-
rate Monte Carlo simulations of the homogeneous electron gas were used to construct
a numerical solution for εc[n(r)]. Then, the most widely used analytical expression
of εc[n(r)] is based on the sophisticated quantum Monte Carlo interpolation scheme
developed by Vosko, Wilk and Nusair [32]. Finally, the most recent and also most
accurate approximation has been given by Perdew and Wang [34].

LDA is based on the local nature of the exchange-correlation potential and on
the assumption that the density distribution does not vary too rapidly. However, as
the local variations on the electron density can induce important correlation effects,
incorporating the density gradient into εxc as in:

EGGA
xc [n(r)] =

∫
n(r)εxc[n(r),∇n(r)]d3r. (1.56)

1This is a hypothetical system where electrons move in a positive background charge distribution
of the nuclei, such that the total ensemble is electrically neutral. The uniform electron gas has a
prominent place in DFT since it is the only system for which the exact form of the exchange and
correlation effects are known.
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leads to the generalized gradient approximation.
Since a straightforward expansion in terms of the gradient violates the sum rules

for the exchange hole, different approaches to GGA have been proposed [33–35]. For
applications in real systems, the GGA of Perdew et al. [35] is the most widely used.

There are several studies covering the advantages or disadvantages of LDA versus
GGA in literature (see Refs. [35,39] for example). Some of the tendencies observed
through comparison with experiments are as following:

1. The lattice constants calculated using LDA are in general 2% smaller than
the experimental ones, while GGA matches in most cases quite well with
the experimental values or slightly overestimates them. This overcorrection
can lead however to an underestimation of the bond strengths, in contrast to
experiments and LDA.

2. LDA wrongly predicts a nonmagnetic fcc structure to be the most stable phase
of Fe [38], while within GGA, the experimentally observed ferromagnetic bcc
structure is reproduced as the ground state [39].

In order to treat magnetic systems, the total electron density needs to be sepa-
rated into the spin-up and spin-down components as:

n(r) = n↑(r) + n↓(r), (1.57)

so, while for a nonmagnetic system:

n↑(r) = n↓(r), (1.58)

for a spin-polarized system this is not the case, i.e., the magnetization density:

m(r) = n↑(r)− n↓(r) (1.59)

is different from 0. The Hohenberg-Kohn theorems have to be extended so that Ee

(or any other ground state property) becomes a functional of both n(r) and m(r)
as:

Ee = Ee[n(r),m(r)]. (1.60)

In this framework, extending the local density approximation to the unrestricted
(spin-polarized) case, leads to in the local spin density approximation (LSDA), which
takes the following form:

ELSDA
xc [n↑, n↓] =

∫
n(r)εxc[n↑(r), n↓(r)]d3r. (1.61)

The same argument can be applied for semi-local or non-local approximations.
Therefore, the exchange-correlation energy for GGA can be written as:

EGGA
xc [n↑, n↓] =

∫
n(r)εxc[n↑(r), n↓(r),∇n↑(r),∇n↓(r)]d3r, (1.62)

for its spin-polarized analogous.
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1.2.3 Beyond LDA/GGA: The LDA+U method

Both the LSDA and GGA approximations work sufficiently well for a large number of
systems. Nevertheless, they have been reported to encounter difficulties in describing
the electronic properties of strongly correlated materials, such as transition metals
and rare-earth ions. Since these approximations are orbital-independent, only the
electron density is taken into account. When such a system is treated with LDA
or GGA, a partially filled d (or f) band with a metallic character is found. This
behavior arises because spin and orbital polarization are driven by the exchange-
correlation of the homogeneous electron gas, instead of the screened on-site Coulomb
interaction [41, 42]. As a consequence, LDA and GGA fail in describing orbital
polarization correctly.

It was shown by Terakura et al. [43, 44] that for many of the transition metal
oxides, the DFT-LSDA predicts a metallic ground state instead of the experimentally
observed insulating one. Therefore, adequate description of the strong Coulomb
repulsion beyond LSDA is needed to overcome this limitation [45–47].

In the folowing, the so-called LDA+U (Hubbard U parameter) approach, as it
is relevant to this work, is described in detail.

The LDA+U energy

One way to tackle the strong electron correlation in a system is by introducing a
Hubbard U parameter. A semiempirical functional is added to the conventional
energy functional only for the d (or f) orbitals which are expected to have strong
correlation. Simultaneously, the double counting of interaction is avoided, as these
orbitals are already present in the LDA functional. The strength of the Coulomb
interaction is introduced as an additional parameter. Therefore, this technique is no
longer parameter free. In reward, the Hamiltonian becomes orbital dependent and
treats the strong correlation explicitly.

The correction to the Hamiltonian is in principle an additional contribution
from a Coulomb interaction (from electron pairs with antiparallel spins) and from
an exchange interaction (from electron pairs with parallel spins) for the strongly
correlated orbitals. The aim is to correct the orbital energy of the LSDA scheme.
The calculation is therefore separated into pure LSDA(GGA) for delocalized orbitals
and LSDA+U for the localized (d or f) part. Therefore, the LDA+U energy can be
written as:

ELDA+U = ELDA + (EU − Edc), (1.63)

where the EU term is the electron-electron interaction energy of the localized elec-
trons and Edc is the double counting term which cancels the electron-electron inter-
action energy, included in the ELDA part.

The EU term is taken as the expectation value of an operator Ŵ containing the
corrections to the Hamiltonian:

EU = 〈Ψ|Ŵ |Ψ〉, (1.64)

where:

Ŵ =
1

2

∑

i6=j

e2

|ri − rj| =
∑

i6=j

Ĝij (1.65)
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and

Ψ = det{ψ1(r1), ψ2(r2), ..., ψn(rn)} (1.66)

is the single Slater determinant wave function.

Introducing a permutation operator as:

P̂ =
n∑

l=1

(−1)lpl[ψ1(r1), ψ2(r2), ..., ψn(rn)], (1.67)

for each electron pair (i, j) with i 6= j, the outcome of Eq. (1.64) can be expressed
in a simpler form:

〈Ψ|Ĝij|Ψ〉 = 〈ψ1(r1)ψ2(r2)...ψn(rn)|Ĝij|P̂ [ψ1(r1)ψ2(r2)...ψn(rn)]〉 (1.68)

and since by definition, all wave functions are orthonormal (〈ψi|ψj〉 = δij), when
expanding the right hand side of Eq. (1.68), only those terms with index i = j will
contribute, while the remaining terms will vanish. Therefore:

〈Ψ|Ĝij|Ψ〉 = 〈ψi(ri)ψj(rj)|Ĝij|[ψi(ri)ψj(rj)− ψi(rj)ψj(ri)]〉 (1.69)

and thus:

EU = 〈Ψ|Ŵ |Ψ〉 =
∑

i 6=j

〈Ψ|Ĝi,j|Ψ〉

=
1

2

∑

i6=j

[
〈ψi(ri)ψj(rj)| e2

|ri − rj| |ψi(ri)ψj(rj)〉 (1.70)

− 〈ψi(ri)ψj(rj)| e2

|ri − rj| |ψi(rj)ψj(ri)〉
]
,

where the first and the second terms in Eq. (1.70) correspond respectively to the
direct and exchange interaction.

Since one electron wave functions ψi in quantum mechanics can be expressed as
a linear combination of a position and spin-dependent basis set ϕk(r)χσ(s):

ψi(ri) =
N∑

k=1

∑

σ=↑,↓
Ci

kσϕk(ri)χσ(s), (1.71)

by substituting Eq. (1.71) in Eq. (1.70) and using the orthogonality of the spin part
〈χσi

|χσj
〉 = δσiσj

and the definition of the density matrix as following:

ρσ1σ2
k1k2

=
∑
i∈occ.

Ci
k1σ1

C i?

k2σ2
, (1.72)
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it can be shown that:

EU =
1

2

∑

i6=j

[ ∑

{k1,k2,k3,k4}

∑

{σ1,σ2,σ3,σ4}
ρσ1σ3

k1k3
ρσ2σ4

k2k4

{
〈ϕk1(ri)ϕk2(rj)| e2

|ri − rj| |ϕk3(ri)ϕk4(rj)〉δσ1σ3δσ2σ4

− 〈ϕk1(ri)ϕk2(rj)| e2

|ri − rj| |ϕk3(rj)ϕk4(ri)〉δσ1σ4δσ2σ3

}]

=
1

2

∑

i6=j

[ ∑

{k1,k2,k3,k4}

∑

{σ1,σ2}

{
ρσ1σ1

k1k3
ρσ2σ2

k2k4
〈ϕk1(ri)ϕk2(rj)| e2

|ri − rj| |ϕk3(ri)ϕk4(rj)〉

− ρσ1σ2
k1k3

ρσ2σ1
k2k4

〈ϕk1(ri)ϕk2(rj)| e2

|ri − rj| |ϕk3(rj)ϕk4(ri)〉
}]

. (1.73)

It is worth to mention that in Eq. (1.73), the direct part contains the diagonal
spin-elements of the density matrix, while the non-diagonal spin-elements are incor-
porated into the exchange part. In order to describe the EU term, a proper basis
set for computational purposes must be defined. The discussion on the selection
of an efficient basis set is presented later in section 1.2.4. In this section, a set of
augmented plane waves (APW) is considered for the development of the following
expressions, as it simplifies the mathematical formulation.

As it will be discussed in more detail, in this method space is divided into atomic
spheres and the interstitial region and the basis functions have the following form:

ϕkn(r) =

{ 1√
V

eikn.r if r ∈ Interstitial
∑lmax

l=0

∑l
m=−l A

kn
l,mul(r)Yl,m(r̂) if r ∈ Sphere α,

(1.74)

where here V stands for the volume of the unit cell, kn is the wave vector and
r̂ = r/|r| is the unit vector.

Substituting ϕkn(r) within the sphere in Eq. (1.73) and using the definition of
occupation number matrix as following:

nσ1σ2
m1m2

=
∑
i∈occ.

∑

k1n,k2n

Ci
k1nσ1

Ci?

k2nσ2
Ak1n

l,m1
Ak2n

?

l,m2

=
∑

k1n,k2n

ρσ1σ2
k1nk2n

Ak1n
l,m1

Ak2n
?

l,m2
, (1.75)

results in:

EU =
1

2

∑

i6=j

lmax∑

l=0

∑

{m1,m2,m3,m4}

∑

{σ1,σ2}

∫
d3rid

3rj (1.76)

{
nσ1σ1

m1m3
nσ2σ2

m2m4

e2u?
l (ri)u

?
l (rj)ul(ri)ul(rj)

|ri − rj| Y ?
l,m1

(r̂i)Y
?
l,m2

(r̂j)Yl,m3(r̂i)Yl,m4(r̂j)

− nσ1σ2
m1m3

nσ2σ1
m2m4

e2u?
l (ri)u

?
l (rj)ul(rj)ul(ri)

|ri − rj| Y ?
l,m1

(r̂i)Y
?
l,m2

(r̂j)Yl,m3(r̂j)Yl,m4(r̂i)

}
.
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The matrix elements of the on-site Coulomb interaction are defined as following:

Um1m2m3m4 = 〈m1m2| e2

|ri − rj| |m3m4〉

=

∫

ri,rj≤RMT

d3rid
3rj

e2|ul(ri)|2|ul(rj)|2
|ri − rj| Y ?

l,m1
(r̂i)Y

?
l,m2

(r̂j)Yl,m3(r̂i)Yl,m4(r̂j)

=

∫

ri,rj≤RMT

d3rid
3rj

e2|ul(ri)|2|ul(rj)|2
|ri − rj| 〈lm1|lm3〉〈lm2|lm4〉, (1.77)

by direct substitution in Eq. (1.76) yields:

EU = 1
2

∑
i6=j

∑lmax

l=0

∑
{m}

∑
{σ1,σ2}{

nσ1σ1
m1m3

nσ2σ2
m2m4

Um1m2m3m4 − nσ1σ2
m1m3

nσ2σ1
m2m4

Um1m2m4m3

}
,

(1.78)

where Um1m2m3m4 and Um1m2m4m3 are identified as the pair Coulomb and exchange
interaction, respectively. For simplicity

∑
{m} is used instead of

∑
{m1m2m3m4}.

By using the expansion of 1
|ri−rj | as a Legendre polynomial:

1

|ri − rj| =
1

r>

∞∑

k=0

(
r<

r>

)kpk(cos γij)

if ri < rj ⇒ ri = r< and rj = r>

else ⇒ ri = r> and rj = r<

(1.79)

and applying the addition theorem in the spherical coordinate system:

pk(cos γij) =
4π

2k + 1

k∑

q=−k

(−1)qYk,q(θi, ϕi)Yk,−q(θj, ϕj) (1.80)

Yk,−q(θ, ϕ) = (−1)qY ?
k,q(θ, ϕ).

it can be shown that Eq. (1.77) becomes:

Um1m2m3m4 =

∫

ri,rj≤RMT

d3rid
3rje

2|ul(ri)|2|ul(rj)|2
∞∑

k=0

r<
k

r>
k+1

4π

2k + 1

k∑

q=−k

Yk,q(Ω̂i)Y
?
k,q(Ω̂j)〈lm1|lm3〉〈lm2|lm4〉.

(1.81)

Separating the radial part from the angular part of the integrand in Eq. (1.81),
i.e., d3ri = ri

2dridΩ̂i where dΩ̂i = sin θidθidφi, Eq. (1.81) can be expressed as a
Slater integral Fk:

Um1m2m3m4 =
∞∑

k=0

ak(m1m2m3m4)Fk, (1.82)

where:

ak(m1m2m3m4) =
4π

2k + 1

k∑

q=−k

∫ ∫
dΩ̂idΩ̂j〈lm1|Yk,q(Ω̂i)|lm3〉〈lm2|Y ?

k,q(Ω̂j)|lm4〉
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and:

Fk = e2

∫ ∞

0

ri
2dri

∫ ∞

0

rj
2drj

r<
k

r>
k+1

|ul(ri)|2|ul(rj)|2. (1.83)

Similarly, for the exchange part Um1m2m4m3 in Eq. (1.78), it can be shown that:

Um1m2m4m3 =
∞∑

k=0

aex
k (m1m2m4m3)Fk, (1.84)

where:

aex
k (m1m2m4m3) =

4π

2k + 1

k∑

q=−k

∫ ∫
dΩ̂idΩ̂j〈lm1|Yk,q(Ω̂i)|lm4〉〈lm2|Y ?

k,q(Ω̂j)|lm3〉.

Since the expansion is done inside the sphere (ri, rj ≤ RMT ), the summation in
Eq. (1.82) and (1.84), as well as in Eq. (1.79), has to terminate at a finite number
(2lmax), which is the maximum orbital number included inside the sphere.

Finally, the EU term can be written as following:

EU =
1

2

∑

i 6=j

lmax∑

l=0

∑

{m}

∑

{σ1,σ2}

2l∑

k=0

(1.85)

{
nσ1σ1

m1m3
nσ2σ2

m2m4
ak(m1m2m3m4)− nσ1σ2

m1m3
nσ2σ1

m2m4
aex

k (m1m2m4m3)

}
Fk,

but for simplicity, it is more convenient to use the Einstein summation convention
to avoid repeating the

∑
symbols. Thus, Eq. (1.85) can now be written in the

following form:

EU =
1

2

∑

{m}

∑

{σ1,σ2}
(1.86)

{
nσ1σ1

m1m3
nσ2σ2

m2m4
ak(m1m2m3m4)− nσ1σ2

m1m3
nσ2σ1

m2m4
aex

k (m1m2m4m3)

}
Fk.

The double counting term is diagonal in the spin-part and is given by:

Edc =
U

2
n(n− η)− J

2

∑

σ=↑,↓
nσ(nσ − ησ), (1.87)

where:

nσ =
l∑

m=−l

nσσ
mm and η =

η↑ + η↓

2
.

which can be specified in two ways: in the fully localized limit [16], ησ = 1; while in
the around mean field version [48], ησ = 〈nσ〉.
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The LDA+U potential

The corresponding potential (vσσ′
mm′), which needs to be added to V LSDA, can be

calculated from the EU −Edc term. By taking the functional derivative of the total
energy with respect to the charge density of a particular orbital δ/δnσσ′

mm′ , its effective
potential is obtained. This means that the matrix elements of the potential (vσσ′

mm′),
which will be added to V LSDA are:

vσσ′
mm′ =

∂(EU − Edc)

∂nσσ′
mm′

. (1.88)

After simple algebra and by assuming that only the diagonal matrix elements
are nonzero and equal to U , independent of m and m′, the diagonal and off-diagonal
terms of the potential are expressed as following:

vσσ
mm = (U − J)(

η

2
− nσσ

mm) (1.89)

vσσ′
mm′ = −Unσ′σ

mm′ . (1.90)

This potential reveals clearly the effect of the LDA+U method. The diagonal
term (1.89) will shift the center of the orbital level depending on its average occupa-
tion. In the fully localized limit (η = 1), a completely empty state (n = 0) is moved
upward by 1

2
(U − J), while a completely filled state (n = 1) is shifted downward by

an amount −1
2
(U − J).

In principle, it is possible to calculate the LDA+U parameters U and J from first
principles. For example, the constrained LDA [50] or linear response method [49],
propose a scheme with which both these values can be estimated.

1.2.4 Solving the Kohn-Sham equation

As explained before, the Kohn-Sham equations that resulted from the variational
principle are:

ĤKSψi(r) = εiψi(r), (1.91)

for each single particle wave function ψi.
An important step to find the solution is to expand the single-particle wave

functions in a suitable basis set, let’s say {φp|p = 1, 2, ..., P}:

ψi(r) =
P∑

p=1

cpφp. (1.92)

In principle, this basis set is infinite (P = ∞), although in practice it must have a
finite dimension for numerical calculations. It is therefore important to determine a
suitable limited basis set, from which a good approximation of ψi can be constructed.
Then, the expectation value for the energy is written as:

〈E〉 =

∫
ψ?

i (c1, ..., cP )ĤKSψi(c1, ..., cP )d3r∫
ψ?

i (c1, ..., cP )ψi(c1, ..., cP )d3r
. (1.93)
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Since ψi is a trial wave function, which is a linear combination of basis functions
φp, from the variational principle, the expectation value of any trial wave function
is always greater than the eigenvalue of the exact wave function. Therefore, the
minimization of 〈E〉 requires that the derivative with respect to cp must vanish.
This yields the following set of secular equations:

P∑
q=1

(HKS
pq − αpSpq)cq = 0 (1.94)

HKS
pq =

∫
φ?

pĤKSφqd
3r (1.95)

Spq =

∫
φ?

pφqd
3r, (1.96)

where the HKS
pq are the matrix elements of the single particle Kohn-Sham Hamil-

tonian and Spq are the elements of the overlap matrix. Once the αp are known,
they can be substituted in Eq. (1.94) to determine the coefficients cq and thus de-
fine the trial wave function ψi. This represents a general eigenvalue problem. Since
Eq. (1.94) can be diagonalized, the many-body problem has been reduced to a solv-
able problem, which can be easily implemented in a computer code. As mentioned
before, the choice of an adequate basis set is crucial. The accuracy of the approx-
imation, as well as the needed computational time, strongly depend on the choice
of the basis set. Not only the size of the basis set but also the shape of the basis
functions play a major role in reducing the computational cost. Therefore, in the
following sections some efficient basis sets are presented for this purpose.

The augmented plane wave method

Historically, an important example of a basis set are the augmented plane waves
(APW) proposed by Slater in 1937 [36]. At first glance, the use of a plane wave
basis set might appear appropriate, since, according to the Bloch theorem, every
eigenfunction of the periodic Hamiltonian can be expanded in a plane wave basis set.
Moreover, the ψi(r) =

∑P
p=1 cpφp and the energy εi can be labeled by the quantum

numbers of Bloch theorem, now becoming ψn
i and εn

i , respectively. However, a large
number of plane wave basis functions is needed in order to describe the oscillating
behavior of the eigenfunctions close to the nucleus, which makes the expansion
with plane waves highly inefficient. For this reason another description must be
introduced around the nucleus.

In the region far from the nuclei, electrons behave like free electrons and hence,
they can be described by plane waves. As in this region the potential is almost con-
stant, the wave function is better described by plane waves which are the solution of
the Schrödinger equation for a constant potential. Close to the nuclei, the electrons
behave similar to the electrons of a free atom. Therefore, it is more suitable to
describe them by atomic-like wave functions. Thus, the space is divided into two
regions. Around each atom, a sphere (Sα) with radius Rα is defined and called the
muffin tin sphere. The part of space occupied by the spheres is the muffin tin region
and the remaining part is called the interstitial region (I) [27, 51]. The APW basis
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set can be thus defined as following:

φk
K(r, E) =

{ 1√
V

ei(k+K).r if r ∈ I
∑

l,m Aα,k+K
l,m uα

l (r′, E)Yl,m(r̂′) if r ∈ Sα,
(1.97)

where k is the wave vector in the first Brillouin zone, K is the lattice vector and with
V representing again the volume of the unit cell. Aα,k+K

l,m are expansion coefficients
and uα

l (r′, E) is the solution of the radial Schrödinger equation:

[
d2

dr2
+

l(l + 1)

r2
+ V (r)− E

]
(ruα

l (r, E)) = 0, (1.98)

within the muffin tin sphere α at a given energy E. The Yl,m(r̂′) are the spherical
harmonics with angular momentum indexes l and m and where r′ = r− rα, with rα

the atomic position within the unit cell of atom α.
The coefficients Aα,k+K

l,m are obtained by imposing the boundary condition that
uα

l (r′, E) and the corresponding plane wave must be continuous at the muffin tin
sphere. Therefore, the plane wave must be expanded in terms of the spherical
harmonics about the origin of atom α:

1√
V

ei(k+K).r = 4π√
V

ei(k+K).rα
∑

l,m iljl(|k + K||r′|)Y ?
l,m(k̂ + K)Yl,m(r̂′),

where jl(x) is a Bessel function of order l. Therefore, at the sphere boundary, the
condition becomes:

∑

l,m

Aα,k+K
l,m uα

l (r′, E)Yl,m(r̂′)

∣∣∣∣∣
r′=Rα

=
1√
V

ei(k+K).(r′+rα)

∣∣∣∣∣
r′=Rα

, (1.99)

from which the coefficients Aα,k+K
l,m are uniquely defined by:

Aα,k+K
l,m =

4πilei(k+K).rα

√
V uα

l (Rα, E)
jl(|k + K|Rα)Y ?

l,m(k̂ + K), (1.100)

apart from the undetermined E.
In principle, there is an infinite number of coefficients, but for computational

purposes, the summation is truncated at some practical value lmax. For a given lmax,
Ylmax,m(θ, ϕ) can have at most 2lmax nodes on the α sphere. Therefore, the number
of nodes per unit of length is lmax/πRα, while the plane wave with the shortest
period (2π/Kmax) has Kmax/π nodes per unit of length. The cut-off parameter for
the plane waves (Kmax) and for the angular function (lmax) are comparable values
if the number of nodes per unit of length is identical. This yields the condition
RαKmax = lmax, which allows to determine a good lmax for a given Kmax. However,
if the muffin tin radii for different atoms are too different, there would not exist a
suitable value of lmax for each atom.

Unfortunately, the APW method has an important drawback: the energy depen-
dence of uα

l (r′, E). In order to describe the eigenfunction ψi of Kohn-Sham equation
(1.91), they must be evaluated at the corresponding eigenvalue εi. Therefore, the
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secular equation (1.91) becomes non-linear in E and must be solved by an iterative
process. As a consequence, the APW method is computationally expensive and it
is no longer in practical use.

There exist another formulation of this method, called the KKR method [52,53],
though it will not be an object of this discussion.

The linear augmented plane wave method

A great simplification was introduced with the so-called linear augmented plane wave
(LAPW) method [54]. In this approximation, the non-linear eigenvalue problem is
overcome by performing a Taylor expansion of the radial wave function around some
fixed energy E0 = Eα

l [51,54–56]. Truncating the Taylor series at the first order term
results in:

uα
l (r′, E = εn

k) = uα
l (r′, Eα

l ) + (Eα
l − εn

k)
∂uα

l (r′, E)

∂E

∣∣∣∣∣
E=Eα

l︸ ︷︷ ︸
u̇α

l (r′,Eα
l )

+ O((Eα
l − εn

k)
2),

(1.101)

where the linearization energy Eα
l is chosen such that it is close to the expected

eigenvalue. Therefore, the wave function within the interstitial (I) and the atomic
sphere (Sα) can be written as:

φk
K(r, E) =





1√
V

ei(k+K).r if r ∈ I

∑
l,m

[
Aα,k+K

l,m uα
l (r′, Eα

l )

+ Bα,k+K
l,m u̇α

l (r′, Eα
l )

]
Yl,m(r̂′) if r ∈ Sα.

(1.102)

In order to determine the augmentation coefficients Aα,k+K
l,m and Bα,k+K

l,m , the
wave function inside the muffin tin must match with the plane wave both in value
and slope at the sphere boundary.

With Eα
l being fixed, the basis functions can be calculated in a single diagonal-

ization step. The accuracy of the augmented plane wave basis set is determined by
Kmax. By reducing Kmax, the size of matrix is restricted and, as matrix diagonal-
ization is expensive, a large Rα can significantly reduce the computational time. On
the other hand, Rα cannot be too large because the spherical harmonics can not be
described suitably by a wave function in a region far away from the nucleus. There-
fore, a better quantity to judge the accuracy in a LAPW basis set is Rmin

α Kmax,
where Rmin

α is the smallest muffin tin radius among all atoms in the unit cell.

1.3 The WIEN2K code

This section briefly discusses the main functionalities of the code used in this study.
For more details the reader can consult the WIEN2K user’s guide [15]. In order
to start, some input files must be created. Among them, the “case.struct” is the
master input file which contains all the information about the structure, such as
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the lattice parameters, the fractional positions of the atoms inside the unit cell, the
lattice type, the atomic number of each atom and the space group. After gener-
ating the “case.struct” file, several commands must be invoked to generate other
necessary input files for running a self-consistent filed (SCF) cycle. To initialize the
calculations, there exist the following commands:

• instgen lapw: this command uses “case.struct” and generates a “case.inst”
file which contains the atomic configurations (1s2/2s2, 2p6/,...), available also
in the table of elements. Core state configurations (closed shells) are specified
by the preceding inert gas (He, Ne, Ar,...).

• x nn: this command uses “case.struct” and calculates the nearest neighbor
distance of all the atoms. Moreover, this program checks if the atomic spheres
specified by the muffin tin radius for each atom overlap or not.

• x sgroup: this program uses the information of “case.struct” and determines
the space group as well as all point groups of the non-equivalent sites. It can
find possible smaller unit cells and produce a new structure file with the proper
lattice type.

• x symmetry: This program generates the space group symmetry operations
and writes them into “case.struct st” file. In addition, the point group of each
atomic site is determined and the quantum numbers (l, m) for the spherical
harmonics are printed in “case.in2 sy” file.

• x kgen: this program generates the k-points within the irreducible part of the
Brillouin zone. The k-mesh is written in “case.klist” file.

• x lstart: this program generates the atomic densities, which are used by
dstart to generate the initial charge density as an input for running a SCF cy-
cle. Furthermore, it generates all the necessary input files to control a SCF run,
namely, “case.in0”, “case.in1”, “case.in2”, “case.inc” and “case.inm”. While
running lstart, the user will be asked to specify the exchange correlation po-
tential, e.g., LSDA, GGA, and an energy parameter for separating core and
valence states.

• x dstart: this program generates the initial charge density by a superpo-
sition of atomic densities generated by lstart. Information is written in
“case.clmsum” file. In case of spin-polarized systems, x dstart must be called
with a -up(-dn) switch to generate the “case.clmup(dn)” files.

After initialization, the SCF cycle calculation proceeds as following:

• lapw0: calculates the total potential as a sum of the exchange-correlation,
Coulomb and external potential by using the total electron density as an input.

• orb: calculates the orbital dependent potential.

• lapw1: constructs the Hamiltonian and the overlap matrices and computes
by diagonalization the eigenvectors and the eigenvalues. This is the most time
consuming part of the program (80-90% of CPU time).
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• lapw2: computes the Fermi energy and the expansion of the electronic charge
density for each occupied state and each k-vector.

• lapwdm: calculates the density matrix needed for the orbital dependent po-
tentials generated in ORB.

• lcore: computes the core state for the spherical part of the potential.

• mixer: combines the electron densities of core, semi-core and valence states
to build up the new density for the next iteration. Therefore, in this step,
the old and the generated density are mixed and the convergence criteria is
checked.

In order to get more insight about all the described parts of the code above,
Fig. 1.1 illustrate the program flow in WIEN2K code.
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Figure 1.1: The flowchart showing the program flow in the WIEN2K code [15].



Chapter 2

Properties of
Bulk α-Fe2O3 and FeTiO3

Hematite and ilmenite are both transition metal oxides which have got fundamental
importance in the study of rock magnetism. Ilmenite is an economically important
mineral for the production of titania pigments. The solid solution of ilmenite and
hematite is used to interpret the historical fluctuations in the Earth’s magnetic field.
Hematite is also an important end-member compound in geophysics for the under-
standing of the role of ferric oxides in the composition and dynamics of Earth’s
mantle. Both hematite (a = 5.035 Å, c = 13.751 Å [57]) and ilmenite (a = 5.177 Å,
c = 14.265 Å [58]) crystallize in a corundum-like structure, shown in Fig. 2.1, where
the oxygen ions form a distorted hexagonal close packed lattice and the cations
occupy 2/3 of the octahedral sites. In hematite (space group R3̄c), there is a nat-
ural modulation of electronic density along the [0001]-direction, where negatively
charged 3O2− layers alternate with positively charged 2Fe3+ layers. Hematite is a
canted antiferromagnet below 948 K (Néel temperature): the Fe3+-spins lie in the
basal plane (perpendicular to the c-axis) with antiferromagnetic (AFM) coupling be-
tween neighboring layers. A small spin-canting in the basal plane above the Morin
temperature (TM=260 K) results in a weak net magnetic moment along the c-plane.
Below the Morin temperature, the orientation of spins switches to parallel to the
c-axis with a perfect AFM coupling.

In ilmenite (FeTiO3), Fe- and Ti-layers alternate reducing the symmetry to space
group R3̄ and the corresponding sequence of layers along [0001] is 3O2−/ 2Fe2+/
3O2−/ 2Ti4+. Above TN=55 K ilmenite is paramagnetic, while below TN the Fe2+

layers couple antiferromagnetically and are separated by magnetically inert Ti4+ lay-
ers. The spins of the Fe2+ layers align perpendicular to the c-axis.

In this chapter, the results on hematite and ilmenite obtained in the framework of
DFT are presented. This chapter is organized as follows: the computational details
are described in section 2.1. The results for ilmenite and hematite are discussed
in section 2.2 and 2.3, respectively. The structural, electronic, magnetic properties
and the comparison between GGA and GGA+U with previous studies (B3LYP and
Hartree-Fock approximation) on ilmenite are described in subsection 2.2.1, 2.2.2
and 2.2.3, respectively. The results are summarized in section 2.4.

29
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Figure 2.1: Crystal structure of Fe2O3, showing half of the 60-atom unit cell. The
cation sites are numbered and oxygen occupies the edges of the octahedra. In FeTiO3, Fe
and Ti alternate in subsequent cation layers.

2.1 Calculational details

Density functional theory calculations were performed using the all-electron full-
potential linear augmented plane wave (FP-LAPW) [15] method as implemented in
the WIEN2K code. For the exchange-correlation potential the generalized gradient
approximation (GGA) [35] is used and the electronic correlations are considered
within GGA+U in the fully localized limit [16].

Bulk hematite and ilmenite are modelled in a hexagonal unit cell with 30 and
60 atoms, respectively, as shown in Fig. 2.1. For Fe and Ti a muffin tin (MT) ra-
dius of 1.80 bohr and for oxygen 1.60 bohr are used. Inside the muffin tins, wave
functions are expanded in spherical harmonics up to lwf

max = 10 and non-spherical
contributions to the electron density and potential up to lpot.

max = 6 are used. The
energy cutoff for the plane wave representation in the interstitial is Ewf

max = 19 Ry
for the wave functions and Epot.

max = 196 Ry for the potential. In the irreducible part
of the Brillouin zone, 15 and 24 k-points are used for the integration in reciprocal
space for ilmenite and hematite, respectively. A full structural optimization of in-
ternal parameters within GGA+U is performed. The convergence criteria ensure a
numerical accuracy in energy differences better than 0.01 eV/60-atom cell.
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2.2 Bulk properties of FeTiO3

2.2.1 Structural properties

Ilmenite is a weakly magnetic iron-black or steel-gray mineral. Depending on the
pressure and temperature conditions, the polymorphs of FeTiO3 crystallize in the
ilmenite, lithium niobate (LiNbO3) and perovskite structures. Ilmenite is a sta-
ble phase at ambient conditions, while perovskite is stable at high pressure and
room temperature. In ilmenite, Fe and Ti form alternating bilayers with Fe-Ti-
V-Ti-Fe (V: vacant) ordering along the c-axis. The Fe and Ti are octahedrally
coordinated, where each octahedron shares one face with the adjacent octahedron
of the other type cation and one face with an empty (vacant) octahedron along the
(001)-direction (see Fig. 2.2a). Within the layers, octahedra form a honeycomb-
like structure of edge-sharing octahedra (see Fig. 2.2b). Concerning the magnetic
arrangements, ferromagnetic (FM) and antiferromagnetic (AFM) coupling to the
next adjacent layer (inter-bilayers) are considered. Different oxidation states are
contemplated: AFM+2 (AFM-Fe2+/Ti4+), FM+2 (FM-Fe2+/Ti4+), AFM+3 (AFM-
Fe3+/Ti3+) and FM+3 (FM-Fe3+/Ti3+). Within the bilayers, only FM coupling is
taken into account between the atoms, which is experimentally confirmed by Kato
et al. [59]. Additionally, in their calculations, Wilson et al. [60] also investigated an
AFM arrangement.

Figure 2.2: (a) The side view of ilmenite structure with Fe-Ti-V-Ti-Fe (V: empty space)
ordering along the (001)-direction. (b) Top view of ilmenite structure, a honeycomb-like
structure formed by Fe or Ti octahedron. Within the layer octahedra share the common
edges.
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2.2.2 Equation of state

The bulk properties of a crystalline material can be determined by calculating the
total energy as a function of the cell volume. In order to find the ground state config-
uration, total energy versus volume calculations for AFM and FM arrangements of
ilmenite, both within GGA and GGA+U , are performed. Within GGA, the volume

is underestimated by 3.59% with respect to the experimental value (332 Å
3
), while

GGA+U gives a perfect agreement with experimental volume with only 0.24% de-
viation. Within GGA, the FM arrangement is found to be slightly more stable than
AFM configuration by about 0.03 eV/f.u., while within GGA+U , the FM and AFM
are almost degenerate with slight preference toward AFM arrangement. The total
energies for AFM and FM configurations within GGA and GGA+U as a function
of volume are fitted to the Murnaghan equation of state [61, 62] and displayed in
Fig. 2.3-c and -d.
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Figure 2.3: The absolute value of the magnetic moment of Fe in ilmenite within (a)
GGA, (b) GGA+U (U = 8 eV) and total energies (c-d) as a function of volume. The
volume is given in percent with respect to the experimental value which is set to 0% and
marked with an arrow. Energies are given with respect to the configuration with lowest
energy (set to 0).
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The value of the bulk modulus B0 and its pressure derivative B′
0 are obtained

by fitting to the Murnaghan equation of state:

E(V ) = E0 +
1

14703.6

[
B0V

B′
0

(
(V0/V )B′0

B′
0 − 1

+ 1)− B0V0

B′
0 − 1

]
. (2.1)

From the calculated E(V) curve, B0 and B′
0 are found to be 192 GPa and 4.3 GPa,

respectively for U = 8 eV. The bulk modulus calculated by GGA+U is in closer
agreement with experiment (177 GPa) than that of GGA (201 GPa). In Table 2.1,
the equilibrium lattice parameters computed within GGA, GGA+U (this study)
and B3LYP [60] are compared with the experimental values by Wechsler et al. [63]
and Harrison et al. [58].

Table 2.1: The lattice parameters and bulk modulus of ilmenite computed within GGA,
GGA+U , B3LYP [60] and from experiment [58].

Exp. GGA GGA+U B3LYP (Ref. [60])

a(Å) 5.18 5.12 5.19 5.15

c(Å) 14.27 14.10 14.29 14.09

V (Å
3
) 331.6 319.6 332.4 323.6

∆V (◦/◦) —– -3.59 0.24 -2.53a

B0(GPa) 177b 201 192 174
B′ 4 4.6 4.3 4

aThe experimental lattice constants (a=5.088, c=14.083 Å) used for the calcula-
tions by Wilson [60] are taken from Ref. [63]

b Refer to Ref. [63]

2.2.3 Electronic and magnetic properties: GGA vs. GGA+U

Ilmenite is a wide bandgap semiconductor with an experimental gap of ∼ 2.58 to
2.90 eV [64, 65]. The total energy and total density of states are calculated for
two spin polarized magnetic configurations (AFM and FM) at two oxidation states
(Fe2+/Ti4+ and Fe3+/Ti3+) for the experimental lattice constants. The electronic
properties can be described by the density of states (DOS). The total and projected
DOS on Fe2+, Ti4+ and O2− states for the most stable configuration within GGA and
GGA+U are plotted in Fig. 2.4. The value of the band gap is sensitive to the value
of the Hubbard parameter, increasing with increasing U -value. For 0 ≤ U ≤ 3 eV
a metallic state is obtained between filled Fe-3d states and unfilled Ti-3d states.
Beyond U = 3 eV a band gap opened and, considering the Fe2+ sites for one spin
direction, all the Fe-3d orbitals are occupied. For the other spin direction the 3dz2

(a1g) orbital is occupied.
It is well known that the HF approximation considerably overestimates the band

gap of materials, while B3LYP underestimates it by 10-20% for a wide range of ma-
terials. However, a better estimation of the band gap is possible using the GGA+U
approach, which can treat correctly the electron correlation effects by choosing a
proper U -value. In this study, a Hubbard U parameter of 8 eV was used, resulting



34 CHAPTER 2. Properties of Bulk α-Fe2O3 and FeTiO3

-40
-20
0

20
40

 

 

 

a) Total
GGA+U

 

 

 

GGA
Total

g
=2.21eV

-4
-2
0
2
4

 

 

 

b) Fe 3d

 

 

 

Fe 3d

-4
-2
0
2
4

 

 

 D
O

S
(s

ta
te

s/
eV

,s
pi

ns
)

c) Ti 3d

 

 

 

Ti 3d

-6 -4 -2 0 2 4 6
-0.4
0.0
0.4

 
 

 

Energy (eV)

d) O 2p

-6 -4 -2 0 2 4 6

 

 

Energy (eV)

O 2p

Figure 2.4: The total (a) and projected (b-d) density of states (DOS) for FeTiO3

on Fe2+, Ti4+ and O2− states within GGA (left panel) and GGA+U (right panel) with
U = 8 eV. The band gap between the filled Fe-3d and unfilled Ti-3d states is 2.21 eV.

in a band gap of 2.21 eV. In Table 2.2, band gaps and the corresponding stable
configurations for ilmenite obtained from different approaches (HF, B3LYP, GGA,
GGA+U) and experiment are listed. Comparing all these methods, it is found that
GGA+U with U = 8 eV and J = 1 eV predicts the experimentally observed con-
figuration (AFM2+) as a stable state with a fairly good value for the band gap as
well.

Fig. 2.3-a and -b show the deviation of the absolute value of the iron magnetic
moment (MFe) in FeTiO3 with respect to the expansion or contraction of the volume
within GGA and GGA+U , respectively. In fact, the MFe in the studied volume range
did not vary much and no transition from high-spin (HS) to low-spin (LS) in FM
and AFM configurations was observed.

Concerning the magnetic arrangement, within GGA (see Fig. 2.3c) it is found
that AFM+2 is by 0.03 eV/f.u. less stable than FM+2, while within GGA+U (see
Fig. 2.3d ), AFM+2 and FM+2 are almost degenerate (FM+2 lies 0.001 eV/f.u. above
AFM+2). The nearly degenerate solution is consistent with the low magnetic order-
ing temperature of ilmenite (TN=55 K). The magnetic interaction parameters will
be discussed in more detail in the next chapter (section 3.4.1), where also TN will be
estimated. The AFM+2 is also the experimentally spin-ordering observed by Kato
et al. [59]. The FM+3 configuration lies 1.54 eV/f.u. above AFM+2 and AFM+3
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Table 2.2: The band gap, ∆g (eV), and the corresponding stable configuration for
ilmenite obtained by HF, B3LYP, GGA and GGA+U as well as experiment. The band
gap by HF is highly overestimated while B3LYP predicts almost half of the experimental
value. A metallic state within GGA is obtained, while the GGA+U with U = 8 eV showed
an insulating state with a bandgap in fairly good agreement with the experimental one.
See the text for more details about the stability of the different configurations.

Method HF [60] B3LYP [60] GGA GGA+U Exp.

∆g (eV) 13.00 1.20 Metallic 2.21 2.58 to 2.90 [65]
Config. FM+2 AFM-(within-bilayer) FM+2 AFM+2 AFM+2 [59]

is unstable, transforming to the AFM+2 configuration consistent with the B3LYP
results [60]. The energy difference with respect to the stable configuration and the
magnetic moment of iron are presented in Table 2.3.

Table 2.3: The magnetic moment of Fe and the energy difference relative to the lowest-
energy state (set to 0) within GGA and GGA+U in the 60-atom cell.

Method GGA GGA+U

Configuration (AFM+2) (FM+2) (AFM+2) (FM+2) (AFM+3) (FM+3)
MFe (µB) 3.4 3.4 3.5 3.5 Not stable 4.0
∆E(eV/f.u.) 0.03 0.00 0.00 0.001 Not stable 1.54

Consistent with these results, Wilson et al. [60, 66] found a degenerate AFM+2

and FM+2 state within the Hartree-Fock (HF) approximation. In contrast, their
B3LYP result predicts a configuration with AFM coupling within the bilayer for
Fe2+/Ti4+-state as the ground state which is not supported by experiments. Fur-
thermore, within the HF approximation they found FM+3 to be more stable than
AFM+3 by 0.03 eV/f.u.

2.3 Bulk properties of α-Fe2O3

The electronic, magnetic and structural properties of hematite are described within
GGA and GGA+U . The bulk properties of hematite have been intensively stud-
ied by several experimental [67–71] and theoretical [72–74] groups in literature.
GGA+U turns out to be necessary in order to describe the correct electronic be-
havior consistent with the experiment. To determine the equilibrium geometry of
α-Fe2O3, the plots of the total energy versus volume of the cell for the AFM and FM
configurations are presented in Fig. 2.5. As shown in Fig. 2.5-c and -d, the AFM
order is found to be the ground state both within GGA and GGA+U . The absolute
value of the magnetic moment of Fe (MFe) within GGA reveals a transition from
HS to LS by contraction of the volume, as shown in Fig. 2.5a. On the other hand,
within GGA+U , MFe remained nearly constant (4.2 µB) in the studied volume range
and no transition from HS to LS is observed (see Fig. 2.5b).

In Table 2.4, the calculated (GGA, GGA+U) and experimental values of the
equilibrium lattice constants, volume and bulk modulus are listed. Concerning the
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GGA, (b) GGA+U and the total energies (c-d) as a function of volume. The volume is
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with an arrow. Energies are given with respect to the configuration with lowest energy
(set to 0).

structural properties, the volume calculated within GGA and GGA+U deviate from

the experimental value (302 Å
3
) by 0.76% and 5.0%, respectively.

Concerning the electronic behavior, the band gap of Fe2O3 is strongly underesti-
mated (0.41 eV) within GGA. Using GGA+U with U = 6 eV and J = 1 eV, resulted
in a band gap of 2.25 eV, in very good agreement with the reported experimental
value (2.2 eV) by Gilbert et al. [67] and other groups (2.14-2.36 eV) [75, 76]. The
type of band gap also changes from a Mott-Hubbard between occupied and empty
Fe-3d within GGA, to a charge transfer type between occupied O-2p and empty
Fe-3d within GGA+U . In Fig. 2.6, the total and the projected DOS are plotted
within GGA and GGA+U . The calculation showed that the inclusion of an on-site
Coulomb repulsion parameter is indispensable to obtain the band gap consistent
with the experiment.
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Table 2.4: The lattice parameters and bulk modulus of hematite computed by GGA
and GGA+U . The starting values for the calculation in this study are taken from Ref. [57]
and the experimental bulk moduli are from Ref. [70, 71].

Exp. GGA GGA+U

a(Å) 5.04 5.07 5.29

c(Å) 13.75 13.85 14.44

V (Å
3
) 301.9 304.28 317.04

∆V (◦/◦) —– 0.76 5.0
B0(GPa) 231a-178b(258c) 162 199
B′ 4 3.2 3.9

a For P<3 (GPa) refer to Ref. [70]
b For 3<P<10 (GPa) refer to Ref. [70]
c This value corresponds to the volume of 301.76 Å

3
taken from Ref. [71]
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Figure 2.6: The total (a) and projected (b-c) density of states (DOS) for Fe2O3 on Fe3+

and O2− states within GGA (left panel) and GGA+U (right panel) with U = 6 eV. The
band gap within GGA+U between the empty Fe-3d and occupied O-2p states is 2.25 eV.
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2.4 Summary

Ab-initio density functional theory calculations were carried out on α-Fe2O3 and
FeTiO3. Correlation effects were incorporated for the Fe-3d and Ti-3d orbitals
within the GGA+U method. Different magnetic arrangements were considered
for hematite and ilmenite (e.g. AFM, FM), as well as different oxidation states
for ilmenite (Fe2+/Ti4+ and Fe3+/Ti3+). The calculations for hematite show that
the AFM configuration is the most stable one. However, for ilmenite, the AFM
and FM are almost degenerate consistent with the low Néel temperature. GGA
underestimates the band gap of hematite and for ilmenite a metallic behavior is pre-
dicted. Including the Hubbard parameter within GGA+U , an insulating behavior
is reproduced for both hematite (∆g=2.25 eV) and ilmenite (∆g=2.21 eV), in good
agreement with the experimentally observed band gap. Furthermore, a transition
from high spin to low spin for hematite is found within GGA, while GGA+U did
not show such a transition in the studied volume range. For ilmenite, no transition
from HS to LS was observed in the studied volume range both within GGA and
GGA+U .



Chapter 3

Origin of Magnetism in
Hematite-Ilmenite
Heterostructures

The previous chapter was devoted to the properties of bulk materials (α-Fe2O3,
FeTiO3). In this chapter, the origin of magnetism at the interface of these two
oxides is investigated from first principles. This chapter includes the results of
manuscripts M1, M2 and M3.

Before dealing with the interface properties, the phase diagram obtained by
Burton [77] is briefly described. Ensuing, the effect of strain on the energetic stability
is considered for systems grown on substrates of Fe2O3(0001), FeTiO3(0001) and
Al2O3(0001). Finally, the magnetic interaction parameters are extracted from first
principles in the last section of this chapter.

3.1 Fe2O3-FeTiO3 phase diagram

The cluster variation method is used by Burton [77] in order to investigate theo-
retically the composition-temperature phase diagram of the Fe2O3-FeTiO3 system.
The calculated [78] and the experimental [79] phase diagram are shown in Fig. 3.1.
In panel (a), the bulk composition is given in Ti2O3 mole fraction to emphasize
that FeTiO3 is the intermediate phase of the Fe2O3-Ti2O3 system at X = 1/2. The
transition between R3̄cPM and R3̄PM (cation order-disorder transition in Fig. 3.1b)
occurs in the Ti-rich region, while the transition between R3̄cPM and R3̄cCAF (mag-
netic order-disorder transition in Fig. 3.1b) occurs in the Ti-poor region. Concerning
the symmetries, the region (R3̄cPM + R3̄PM) is asymmetric in the sense that more
ilmenite will dissolve in hematite-solid solution (SS) than hematite in ilmenite-SS.
Below this region, with decreasing temperature, the region (R3̄cCAF + R3̄PM) be-
comes approximately symmetric. An important equilibrium occurs at the eutectic
point, in which the R3̄cPM phase breaks down on cooling to a mixture of antiferro-
magnetically ordered hematite-SS and paramagnetic ilmenite-SS (R3̄cCAF + R3̄PM).

39
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(a) Calculated phase diagram (b) Experimental phase diagram

Figure 3.1: The calculated (a) and experimental (b) phase diagram of Fe2O3-FeTiO3

system taken from Ref. [78] and [79],respectively. Subscripts on space group symbols
indicate the paramagnetic (PM) and the canted antiferromagnetic (CAF) phases.

3.2 Fe2O3-FeTiO3 interface

In order to design ferromagnetic semiconductors operating at room-temperature
(RT) for spintronics devices, most of the efforts focus on homogeneous doping of
semiconductors with magnetic impurities [9–12], but the interfaces in complex oxides
prove to be another source of novel behavior [1, 80, 81]. Besides applications in
spintronics, this material is also discussed in paleomagnetism as a possible cause
of anomalies in the Earth’s magnetic field, as well as for electronic devices (e.g.,
varistors) because it is a wide band gap semiconductor that can be either n- or
p-type depending on the doping concentration [13].

In Fe2O3 the charge is compensated by alternating layers of positively charged
2Fe3+ and negatively charged 3O2−, while FeTiO3 is formed by stacking of 2Fe2+/
3O2−/ 2Ti4+/ 3O2− layers. Thus, at the interface between hematite and ilmenite,
the charge neutrality is interrupted. One of the main questions is the charge com-
pensation mechanism in the heterostructures or solid solutions of these two oxides.
Based on bond valence models and kinetic Monte Carlo simulations with empirical
chemical and magnetic interaction parameters, Robinson et al. [14] proposed the so-
called lamellar magnetism hypothesis, stating that there is a mixture of Fe3+/Fe2+

at the interface to compensate the disruption of charge neutrality. Since there were
no first principles studies to explain the behavior at the atomic scale, we got moti-
vated to investigate the microscopic origin of magnetism at the interface of Fe2O3-
FeTiO3. In order to resolve the question, different compensation mechanisms are
studied, e.g., disproportionation through Ti3+/Ti4+ and Fe3+/Fe2+. Many different
arrangements are contemplated, e.g., layered versus more random distributions. We
have varied systematically the concentration, distribution and the charge state in
Ti doped Fe2O3 and Fe doped FeTiO3. Some of the selected configurations in a 30-
and 60-atom unit cell used in this study are shown in Figures 3.2, 3.3 and 3.4. The
33% Ti doped in a hematite host is shown in Fig. 3.3, while Fig. 3.4 illustrates the
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concentrations of 17%, 50%, 66% and 83%. For each structure the local and total
magnetic moments are given.

Figure 3.2: Selected structures modelled in a 30-atom unit cell together with the local
magnetic moment and total magnetic moment under the cell. (a-d) correspond to 33%
and (e-f) show 66% Ti doped Fe2O3. Fe, Ti and O are shown in red, black and grey
spheres, respectively. Positions of the Fe2+ are marked by pink circles and the remaining
iron atoms are Fe3+.
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Figure 3.3: Selected structures modelled in a 60-atom unit cell together with the local
magnetic moment and total magnetic moment under the cell. (a-d) show a concentration of
33% Ti doped Fe2O3. Fe, Ti and O are shown in red, black and grey spheres, respectively.
Positions of the Fe2+ are marked by pink circles and the remaining iron atoms are Fe3+. In
(a) and (b) layered arrangements, while in (c) and (d) randomly distributed Ti in Fe2O3

are shown in the same and different spin sublattices, respectively.
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Figure 3.4: Selected structures modelled in a 60-atom unit cell together with the local
magnetic moment and total magnetic moment under the cell: (a) is the single Ti layer
with a concentration of 17%, (b) 50%, (c) 66% and (d) corresponds to 83% Ti doped
Fe2O3. Fe, Ti and O are shown in red, black and grey spheres, respectively. Positions of
the Fe2+ are marked by pink circles and the remaining iron atoms are Fe3+.
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3.2.1 Structural relaxation

A full structural optimization of the internal parameters has been performed. Ta-
ble 3.1 lists the cation-anion distances up to the 6th nearest-neighbor in Fe2O3,
FeTiO3 and three different concentrations of Ti doped hematite (33%, 50% and
66%). An interesting trend is observed in the shortest cation-oxygen bond lengths,
which tend to relax towards the values in the respective end member. While dFe3+-O

remains close to the value in bulk hematite (1.96 Å), the bond lengths of the Ti-
impurity (dTi4+-O) and the neighboring Fe2+ (dFe2+-O) relax towards the values in
bulk ilmenite (1.94 and 2.11 Å, respectively).

Table 3.1: The cation-anion distances (given in Å) up to the 6th nearest-neighbor in
Fe2O3, FeTiO3 and three different concentrations of Ti doped hematite. Subscript IF
refers to the cations at the interface. ∆d1 and ∆d2 are the deviation of the two shortest
bond lengths in each system with respect to the values of the end member.

Systems dCat.-Oxy.(Å) 1st ∆d1(%) 2nd ∆d2(%) 3rd 4th 5th 6th

Fe2O3 dFe3+-O 1.96 2.09 3.40 3.61 3.78 4.11

FeTiO3
dFe2+-O 2.11 2.25 3.41 3.68 3.94 4.20
dTi4+-O 1.94 2.06 3.60 3.83 3.84 4.28

33% Ti

dFe2+IF -O 2.08 -1.42 2.12 -5.78 3.31 3.64 3.75 4.08
dFe3+IF -O 1.90 -3.06 2.18 4.31 3.40 3.53 3.86 4.14
dFe2+-O 2.04 -3.32 2.16 -4.00 3.35 3.66 3.81 4.09
dTi4+-O 1.89 -2.58 2.03 -1.46 3.48 3.71 3.77 4.09
dFe3+-O 1.95 -0.51 2.08 -0.48 3.41 3.64 3.76 4.07

50% Ti

dFe2+IF -O 2.08 -1.42 2.11 -6.22 3.11 3.63 3.75 4.08
dFe3+IF -O 1.90 -3.06 2.18 4.31 3.39 3.51 3.86 4.14
dFe2+-O 2.04 -3.32 2.17 -3.56 3.34 3.63 3.80 4.08
dTi4+-O 1.90 -2.06 2.02 -1.94 3.51 3.72 3.74 4.14
dFe3+-O 1.95 -0.51 2.09 0.00 3.39 3.56 3.78 4.09

66% Ti

dFe2+IF -O 2.03 -3.79 2.42 7.56 3.34 3.53 3.96 4.33
dFe3+IF -O 2.05 4.59 2.09 0.00 3.55 3.79 3.90 4.16
dFe2+-O 2.13 0.95 2.27 0.89 3.39 3.61 3.95 4.23
dTi4+-O 1.94 0.00 2.06 0.00 3.61 3.83 3.87 4.31
dFe3+-O 2.00 2.04 2.15 2.87 3.50 3.78 3.88 4.21

3.2.2 Compensation mechanism and energetic trends

We start the discussion with Ilm33 which corresponds to four Ti-ions out of 24 cations
in the 60-atom cell. We find that the formation of a compact ilmenite-like block
with a Fe-layer sandwiched between two Ti-layers (Fig. 3.3b), is by 0.36 eV more
favorable than incorporation of single Ti layers in the hematite host (Fig. 3.3a). One
can see that iron in the central layer turns into Fe2+ and the charge mismatch at the
interface compensated by Fe2+ and Fe3+ in the contact layer [82]. The formation of
layered arrangements (Fig. 3.3a) is favored compared to a more random distribution
with 50% Ti-substituted cation layers (e.g., Fig. 3.3-c and -d).
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The Fe2+-layer sandwiched between two Ti-layers in Fig. 3.3b is only weakly
coupled to the next Fe-layer (parallel and antiparallel orientation of the magnetic
moments are nearly degenerate as in the ilmenite end member). Therefore, at tem-
peratures above the Néel temperature of ilmenite, such layers will not contribute
to the total magnetization. In contrast, Fe2+ in the contact layer shows a strong
antiferromagnetic coupling to the neighboring Fe-layer of the hematite host (for the
structure in Fig. 3.3b the total magnetic moment is 8.0 µB). These defect interface
moments are responsible for the ferrimagnetic behavior of the system.

With respect to magnetism, each Ti ion adds a magnetic moment of 4 µB inde-
pendent of whether the extra electron is localized at Ti (Ti3+) or at a neighboring Fe
(Fe2+). Furthermore, it is found that the incorporation of Ti in the same spin sub-
lattice (Fig. 3.3c), which maximizes the magnetic moment of the system, is favored
compared to incorporation in the different spin sublattice (Fig. 3.3d) by 0.22 eV.
The trend towards layered arrangements is retained for 66%, while for 83% the or-
dered and disordered phases are nearly degenerate. By substituting Fe for Ti in
FeTiO3, iron is Fe3+ and additionally one of the Fe in the next layer becomes Fe3+

to compensate the charge. Thus, a mixed Fe2+, Fe3+ contact layer is formed. The
substituted Fe shows a strong tendency to couple antiparallel to the neighboring Fe
layer. The magnetic coupling at the interface of Fe2O3-FeTiO3 between Fe2+ and
Fe3+ are extracted and will be explained in section 3.4.

Concerning the electronic properties, doping Fe2O3 with Ti leads to an impurity
level in the band gap arising from the dz2 (a1g) orbital of Fe2+ in the contact layer.
The density of states (DOS) for x = 33% Ti doped hematite is plotted in Fig. 3.5.
The Fe2+ formed in the contact layer has an impurity state pinned at the Fermi
level for all the layered and solid solution structures shown in Fig. 3.3. This trend
is robust with respect to the U -values, as well as to the concentration of Ti in
the system, which is observed in most of the structures illustrated in Fig. 3.2 and
Fig. 3.3.

For the concentrations x = 17%, 50%, 66% and 83% of Ti-doped hematite the
DOS plots are shown in Fig. 3.6, with the corresponding structures illustrated in
Fig. 3.4. In other concentrations also the formation of Fe2+ in the contact layer leads
to an impurity state in the band gap that is pinned at the Fermi level and reduces
the band gap from ∼ 2.1 eV in α-Fe2O3 to 1.65, 1.73, 1.64 and 1.29 for x = 17%,
50%, 66% and 83%, respectively.

3.2.3 Phase diagram

Nearly 50 different systems are studied to compile a phase diagram of stability. The
energetic stability with respect to the end members is described by the formation
energy Ef = EFe2−xTixO3 − (1− x)EFe2O3 − xEFeTiO3 , where EFe2−xTixO3 , EFe2O3 and
EFeTiO3 are the total energies of the system with a concentration x of ilmenite and the
two end members, respectively. The formation energy as a function of x is plotted
in Fig. 3.7. We have found that the compensation mechanism through Ti4+ and
a disproportionation of iron into Fe2+, Fe3+ in the contact layer is more favorable
than the mechanisms involving Ti3+. Moreover, the layered arrangements are more
stable than randomly distributed configurations for 17% ≤ x ≤ 83%.
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Figure 3.5: Density of states (DOS) of Fe2−xTixO3 for x = 33%: DOS of (a) a single Ti
layer within Fe2O3 bulk (see Fig. 3.3a), (b) an ilmenite-like block in Fe2O3 (see Fig. 3.3b).
In (c) and (d) the DOS of a solid solution with 50% Ti-substituted in layers with the same
(Fig. 3.3c) and different spin orientation (Fig. 3.3d) are shown.
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(a) 17% Ti-doped Fe2O3
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(b) 50% Ti-doped Fe2O3
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(c) 66% Ti-doped Fe2O3
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Figure 3.6: Density of states (DOS) of Fe2−xTixO3 for x = 17%, 50%, 66% and 83%:
For comparison also the DOS of cations further away from the interface are shown.
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Figure 3.7: Formation energy (eV/f.u.) as a function of FeTiO3 concentration, x, with
respect to the end members. Layered arrangements and solid solutions (SS) are denoted
by full and open symbols, respectively. (Lines are guide for the eyes)

The linear increase in the formation energy indicates that the systems with
growing x become unstable when strained to the hematite lattice parameters. On
the other hand, using the ilmenite lattice parameters instead of hematite, there is
a gain of about 0.22 eV/f.u. in the energy (red filled up triangles in Fig. 3.7). The
effect of strain on the stability and electronic properties will be considered in more
detail in section 3.3 (results of manuscript M2).

3.2.4 Summary

In summary, a comprehensive GGA+U study of the cation, charge and magnetic
order in the hematite-ilmenite system is presented. The results provide the first
theoretical evidence for the lamellar magnetism hypothesis [14], where the polar dis-
continuity is accommodated with a disproportionated Fe2+, Fe3+ contact layer [82].
The uncompensated moments that arise at the interface due to the charge mismatch
have a strong tendency to couple antiferromagnetically to the next hematite layer,
leading thus to a ferrimagnetic behavior of the system. The dz2 (a1g) orbital of Fe2+

in the contact layer is at the Fermi level, resulting in an impurity state in most of
the studied compositions.

3.3 Strain effect

The effect of strain on the stability and electronic properties of a Fe2−xTixO3 film,
as presented in manuscript M2, is described in this section.

The incorporation of Ti in hematite introduces a substantial strain: the volume of
the end member ilmenite is 9.7% larger than the one of hematite. The experimental
lattice constants and corresponding volumes are presented in Table 3.2. Indeed, lens-
shaped dark contrasts around nanoscale hematite lamellae in an ilmenite host are
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Table 3.2: The experimental lattice constants and corresponding volumes.

Al2O3 [83] Fe2O3 [57] FeTiO3 [58]

a(Å) 4.757 5.035 5.177

c(Å) 12.991 13.751 14.265

Volume(Å
3
) 254.52 301.92 331.06

imaged by transmission electron microscopy (cf. Fig. 3.8) which indicate significant
strain fields [14].

Figure 3.8: Transmission electron microscope image of hematite exsolution lamellae in
an ilmenite host taken from Ref. [14]. Dark lens-shape fringes around lamellae indicate
lattice strain.

Epitaxial Fe2−xTixO3 films [8,9,13,84–86] are typically grown on an Al2O3(0001)-
substrate which introduces a substantial compressive strain of 5.8% and 8.8% com-
pared to Fe2O3 and FeTiO3. Only rarely, a Cr2O3-buffer layer is used [10] to reduce
the lattice mismatch.

Epitaxial strain can have a strong impact on the film properties. For example,
it can tune the magnetic interactions in magnetoelastic composites [87], enhance
ferroelectricity [88, 89] or even induce orbital reconstructions [90]. The goal of the
present study is to explore the effect of strain on the properties of Fe2−xTixO3. In
particular we address its influence on (i) the energetic stability and compensation
mechanism as well as on (ii) the electronic, magnetic and structural properties of the
system. DFT calculations are performed on solid solution and layered configurations
with x = 0.17, 0.33, 0.50 and 0.66; strained laterally at the lattice parameters of
Al2O3(0001), Fe2O3(0001) and FeTiO3(0001).

The optimized c/a-ratio and volume (Fig. 3.9a-b) show a linear increase with xIlm

in accordance with Vegard’s law, similar to what was observed experimentally in syn-
thetic hematite-ilmenite solid solutions [4]. Furthermore, for a given concentration,
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both c/a and V are largely independent of the distribution of Ti-impurities. The
c/a-ratio of bulk FeTiO3 (2.76) is slightly larger than the one of α-Fe2O3 and Al2O3

(2.73). Due to the small tensile/compressive strain, when using aFeTiO3/ aFe2O3 , the
c/a-ratio of Fe2−xTixO3 is slightly reduced (-1.1 to -2.8%)/increased (3.1-5.2%), re-
spectively. In contrast, due to the high compressive strain on an Al2O3-substrate, c/a
increases strongly by 14.7-16.6%, which corresponds to crel = 14.89− 15.15 Å. Nev-
ertheless, the volume does not completely relax: the volume of the system strained
at the Al2O3-lateral lattice constant is 6.8% (10.2%) smaller than when strained
at aFe2O3 (aFeTiO3). The volumes of Fe2−xTixO3 strained at aFeTiO3 and aFe2O3 lie
between the ones of the end members Fe2O3 and FeTiO3.

X-ray diffraction data for Fe2−xTixO3 films on Al2O3(0001) [91,92] indicate sig-
nificant lateral strain relaxation: already in a 10 nm thick film, a relaxes to the bulk
value of FeTiO3 with only a small change in c/a (see Fig. 3.9a). The c/a values and
volumes obtained by Takada et al. [92] are in good agreement with the DFT values
of the systems strained at aFeTiO3 .

Next we turn to the influence of strain on the energetic stability. The formation
energy with respect to the end members as a function of xIlm is shown in (Fig. 3.9c)
for the three different substrate lattice constants. For each Ti-concentration several
different cation arrangements are considered, e.g., for x = 0.33 these include an or-
dered arrangement with an Fe layer sandwiched between two Ti layers (Fig. 3.3b) or
solid solutions with Ti ions either in the same (Fig. 3.3c) or different spin-sublattices
(Fig. 3.3d). We find that compensation through Ti4+ and disproportionation in Fe2+,
Fe3+ is more favorable over mechanisms involving Ti3+. Furthermore, the formation
energy increases linearly with xIlm. These features are independent of the substrate
lattice parameters. Systems strained laterally at aFeTiO3 are more stable than the
ones on aFe2O3 . In contrast, the formation energy of films strained at aAl2O3 increases
by 0.7 eV as compared to films on aFe2O3 . This implies that the strong compressive
strain is energetically unfavorable. While for systems strained on hematite and
ilmenite substrates, layered arrangements (full symbols) are more favorable than
homogeneous distributions (open symbols), the trend is reversed for x = 0.33 and
x = 0.66 on an Al2O3(0001)-substrate.

In solid solutions, Ti substitution in different spin-sublattices (e.g., in adjacent
layers) resulting in a zero net magnetization is less favorable compared to substi-
tution in the same spin-sublattice, which maximizes the total magnetization. This
trend leads to a ferrimagnetic behavior in the system.

Concerning the electronic properties of the hemo-ilmenite system, Fig. 3.10 plots
the density of states of a Ti-double layer in a hematite host (Fig. 3.3b), but similar
behavior is observed for all studied systems. Upon Ti4+ substitution, an iron ion
from the neighboring layer turns Fe2+, as observed also for isolated impurities by
Velev et al. [93]. The Fe2+O6 and the TiO6-octahedron are corner- (and not face-)
sharing. The so formed Fe2+-ions in the contact layer have an impurity state of
a1g symmetry (dz2) that is pinned at the Fermi level for systems strained at aFe2O3

and aFeTiO3 . Such a mid-gap state was recently reported from x-ray valence band
photoemission [94] and optical measurements [86], although it was attributed to the
low oxygen pressure during deposition. The main feature related to strain is the
change in bandwidth: while for tensile strain at aFeTiO3 the bands are narrowed, for
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compressive strain at aAl2O3 they are strongly broadened. This results in a reduction
of the band gap (between the impurity state defining the Fermi level and the bottom
of the conduction band) from 1.90 eV for aFeTiO3 and 1.79 eV for aFe2O3 to 1.43 eV
for aAl2O3 . For comparison, the corresponding values for x = 66% are 1.64 eV for
aFeTiO3 and 1.46 eV for aFe2O3 to 0.78 eV for aAl2O3 .
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Figure 3.10: Density of states of Fe1.67Ti0.33O3 containing two Ti-layers in a hematite
host (shown in Fig. 3.3b) illustrating the total (a) and projected DOS on the Fe-3d states
of Fe2+ in the interface layer (b) and between the two Ti-layers (c). The DOS of the
system strained at the lateral lattice parameters of Fe2O3, Al2O3, and FeTiO3 is shown
with a grey shaded area, red (dark grey), and black line, respectively.

The local magnetic moments and total magnetization of the systems with x = 0.33
is displayed in Fig. 3.3a-d. Strain has only a small impact on the magnetic moments
of Fe2+ (∼ 3.5 µ B) and Fe3+ (∼ 4.1 µB) which are reduced by less than 0.05 µB at
aAl2O3 . The Fe2+-layer sandwiched between two Ti-layers in Fig. 3.3b is only weakly
coupled to the next Fe-layer (parallel and antiparallel orientation of the magnetic
moments are nearly degenerate as in the ilmenite end member). Therefore, at tem-
peratures above the Néel temperature of ilmenite, such layers will not contribute to
the total magnetization. In contrast, Fe2+ in the contact layer shows a strong an-
tiferromagnetic coupling to the neighboring Fe3+-layer of the hematite host. These
defect interface moments are responsible for the ferrimagnetic behavior of the sys-
tem (Mtot = 8.0 µB). In solid solutions, Ti substitution in different spin-sublattices
(e.g. in adjacent layers as shown in Fig. 3.3d) resulting in a zero net magnetization
is less favorable compared to substitution in the same spin-sublattice (Fig. 3.3c),
which maximizes the total magnetization (Mtot = −16.0 µB). This trend promotes
ferrimagnetic behavior in the system.

In conclusion, we find that in hematite-ilmenite heterostructures and solid so-
lutions, the charge compensation takes place through a mixed Fe2+, Fe3+ contact
layer. This mechanism is robust with respect to substrate-induced strain. Further-
more, layered arrangements are more stable than solid solutions, but compressive
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strain at aAl2O3 is likely to cause a stronger competition and even reverse the trend
for x = 0.33 and x = 0.66. The growth of epitaxial films on an Al2O3-substrate
is connected with a high energy cost. Therefore, in order to release strain, such
films may roughen or buckle in the first layers as recently reported by Popova et
al. [91]. In contrast, the growth on lattice matched substrates or even substrates
that produce a small tensile strain like FeTiO3 is energetically favored. Our DFT re-
sults indicate that strain can have a strong impact on the structural and electronic
properties in the hematite-ilmenite system: e.g., by tuning the bandwidth or the
position of impurity levels in the band gap and thus changing the concentration of
spin-polarized carriers.

3.4 Magnetic exchange interaction parameters

The polar discontinuity has been recognized as a driving force in the emergence
of unexpected electronic phases at oxide interfaces. One example is the stable
room temperature remanent magnetization observed in nanoscale intergrowths of
the Fe2O3/ FeTiO3 system [4]. Robinson et al. [14] proposed that this phenomenon
arises due to a mixture of Fe2+ and Fe3+ at the interface. Recent GGA+U calcula-
tions have provided first theoretical evidence for this so-called lamellar magnetism
hypothesis (LMH) [82]. The study of Robinson et al. [14] was based on Monte Carlo
simulations that used an empirical set of magnetic interaction parameters based on
the untested assumption that Fe3+-Fe2+ interactions (for which there are no litera-
ture data) should have the same sign but lower magnitudes than the corresponding
Fe3+-Fe3+ interactions (for which literature data exist). Exchange interaction pa-
rameters can be derived for example by fitting inelastic neutron scattering data to
the theoretical dispersion relation expression [95,96] and magnetic susceptibility [97].
On the other hand first principles calculations can be very useful to extract these
quantities either by fitting total energy differences of several magnetic configura-
tions on a Heisenberg Hamiltonian [98–101] or by using the second variation of the
total energy [102]. Such methods have been applied in the past to bulk materials or
impurities in diluted magnetic semiconductors [103]. In this section, we provide for
the first time magnetic interaction parameters for an oxide interface, which are not
accessible from experiment.

We have extracted the magnetic interaction parameters for the end members,
Fe2O3 and FeTiO3 from DFT calculations and compared with parameters available
from inelastic neutron scattering data [59, 104–106]. For Fe2O3 we compare our
results with previous theoretical study [107]. The main goal here is to determine
the magnetic interaction parameters between Fe2+ and Fe3+ at the hematite-ilmenite
interface (results of manuscript M3).

3.4.1 Calculation of magnetic interaction parameters

In order to map the total energy from the DFT calculations on a Heisenberg Hamil-
tonian, we separate it in a nonmagnetic (H0) and magnetic contribution:
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H = H0 − 1

2

∑
i,j

k∑
m=1

nmJq
m(rij)Si.Sj, (3.1)

where the summation is over all distinct spin-pairs. Si is the spin vector at the ith

lattice site, and Jq
m(rij) is the magnetic exchange interaction parameter between the

magnetic moments on site i and j. The index m ranges from first to kth neighbor,
nm is the multiplicity of neighbors corresponding to Jm and q defines the type of
cations in the pair. For example, J3+,3+

m is an interaction between Fe3+-pairs, while
J2+,3+

m is an interaction between Fe2+ and Fe3+. Jq
m < 0 (> 0) corresponds to anti-

ferromagnetic (ferromagnetic) coupling. The interaction type (Jij) and connectivity
(Si.Sj) matrix are given in appendix C and D, respectively.

Fig. 3.11 illustrates the magnetic pair exchange interactions used in our mod-
elling. J1 is the interlayer interaction between cations in face-sharing octahedra. J2

is the intralayer interaction between cations in edge-sharing octahedra. J3, J4 and
J5 correspond to the interlayer interactions among cations with corner-sharing oc-
tahedra and J6, J7 and J8 are the interactions with cations from the second nearest
layer.

Figure 3.11: Definition of the pair magnetic exchange parameters J1 to J8 between the
cations.
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Because hematite does not show spin-canting below the Morin temperature, we
have investigated only collinear magnetic configurations. Jq

m(rij) are calculated by
mapping the energy differences of these spin-arrangements to the Heisenberg Hamil-
tonian in Eq. (3.1). The fitting of the DFT energy differences to the Hamiltonian is
done by multi-variable least-squares method.

3.4.2 Magnetic exchange interaction of the end members

We first test the method for the end members for which we have calculated 23
and 10 different collinear spin arrangements, respectively, as presented in Table B.1
and B.2.

The calculated values for hematite (J3+,3+
m ) are displayed in Fig. 3.12a together

with the values obtained from neutron scattering [104]. We find that for hematite,
the dominating parameters are the interlayer magnetic interactions J3 = −72 K,
J4 = J5 = −50 K. The negative sign implies a strong antiferromagnetic coupling
between the Fe3+-layers and explains the AFM ground state of hematite. The val-
ues are in good agreement both with the experimental data of Samuelsen and Shi-
rane [104] as well as with previous LDA/LDA+U calculations by Mazurenko and
Anisimov [107], who also took into account spin-orbit coupling.

In contrast to experiment, J1 and J2 are found to be negative. However, both
parameters are significantly smaller than J3-J5 and play therefore a minor role in
the resulting magnetic ordering. Thus, the strong interlayer AFM coupling enforces
ferromagnetic coupling within each Fe3+-layer. Furthermore, our values support
the assumption by Goodenough [108] and Anderson [109] that cation interactions
mediated by an anion (superexchange) (J3, J4, J5) are negative in sign and much
stronger than direct interactions between cations in face (edge) sharing octahedra,
J1 (J2).

The calculated values for ilmenite (J2+,2+
m ) are shown in Fig. 3.12b. In ilmenite,

Fe2+-layers alternate with Ti4+-layers. Since Ti is in 4+ state (d0), all the Fe-
Ti interactions are zero (J1, J3, J4, J5). The positive J2 implies that magnetic
interactions within the Fe2+-layer are ferromagnetic. On the other hand, J6 and
J7 have a small negative value leading to an antiferromagnetic coupling with Fe
in layers above and below the Ti layers. The positive J2 and negative J6 and J7

determine the correct antiferromagnetic ground state for ilmenite. In fact, the total
energies for FM and AFM coupling between the Fe2+-layers are nearly degenerate,
which explains the slightly lower values compared to the ones obtained by Kato et
al. [59, 106] by fitting data at T= 12 K to the magnon dispersion relation.

From the magnetic interaction parameters we can estimate the Néel tempera-
ture for the end members. In the mean-filed approximation (MFA), the transition
temperature is defined as:

kBTMFA =
1

3
S(S + 1)

∑
m

nmJm, (3.2)

where kB is the Boltzmann constant.
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for the interface in (c) are calculated for the configuration shown in Fig. 3.13b.
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Table 3.3: Néel temperature for hematite and ilmenite calculated within the mean field
approximation (MFA) and from Monte Carlo simulations for U = 6 and 8 eV.

Monte Carlo MFA
Material U = 6 eV U = 8 eV U = 6 eV U = 8 eV
Fe2O3 1150 ± 10 910 ± 10 1416 ± 41 1107 ± 37
FeTiO3 50 ± 2 15 ± 5 43 ± 18 19 ± 5

It is an established fact that MFA cannot give the exact value for the transition
temperature but provides a qualitative estimation. The estimated Néel temper-
ature for hematite and ilmenite within the mean field approximation (MFA) and
from Monte Carlo simulations for U = 6 and 8 eV are listed in Table 3.3. Us-
ing equation (3.2) and the spin magnetic moment of S = 5/2 for Fe3+ we obtain
TMFA

N = 1416 ± 41 K (1107 ± 37 K) for hematite with U = 6 (8) eV, respectively.
A previous DFT study [110] reported a higher value (1711 K). Both MFA-values
overestimate the experimental Néel temperature (953-966 K) [111]. Monte Carlo
simulations, following the method of Harrison [112], were used to obtain a more
accurate estimate of TN= 1150 ± 10 (910 ± 10) K for U = 6(8) eV, which are closer
to the experimentally observed value. For ilmenite, the mean-field estimated tem-
perature using a spin magnetic moment of S = 4/2 for Fe2+ with U = 6 and 8 eV
are TMFA

N = 43 ± 18 and 19 ± 5 K. Monte Carlo (MC) simulations yielded a value
of 50 ± 2 (15 ± 5) K for U = 6(8) eV.

The low Néel temperature for U = 8 eV in ilmenite can be traced back to the
small value of J2 = 2.4 K, which is the interaction responsible for driving ferro-
magnetic ordering within the Fe-layers. Harrison et al. [113] found that a value of
J2 = 10.8 K was required to obtain the correct Néel temperature for the end mem-
ber ilmenite using Monte Carlo simulations, which is close to the empirical value
obtained by Kato et al. [59,106]. The low value of J2 is likely due to the high on-site
Coulomb parameter U = 8 eV which was used to describe correctly the size of the
band gap. Using U = 6 eV, J2 is significantly enhanced (J2 = 6.0 K), resulting in
a Néel temperature of 50 ± 2 K from MC simulations. A similar dependence of
the magnetic interaction parameters on U is obtained for hematite and reported for
Cr2O3 [100]. For example, using U = 8 eV instead of U = 6 eV for hematite leads to
a reduction of the Ji (i = 3, 4, 5) by ∼ 20%. This would result in an even stronger
reduction of Ji (i = 2, 6) in ilmenite up to ∼ 60%.

3.4.3 Magnetic interactions at the Fe2O3/FeTiO3 interface

As mentioned previously, an Fe3+ and Fe2+ contact layer is formed at the Fe2O3/
FeTiO3 interface as a result of the disruption of charge neutrality [14, 82]. In order
to extract the magnetic interaction parameters at the interface (J2+,3+

m ), we have
considered several cation configurations. Fig. 3.13a shows a heterostructure con-
taining an ilmenite and a hematite block, while Fig. 3.13b contains a layered part
as well as mixed Fe-Ti layers. Because not all interaction parameters are accessible
in the former (e.g., J2+,3+

3,6 ), we have chosen the one in Fig. 3.13b to determine all
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Figure 3.13: The structures with 60 atoms in the unit cell chosen for the calculation
of interface magnetic interaction parameters. (a) ilmenite block in a hematite host and
(b) a more solid solution-like structure in hematite part. The red, black and grey sphere
are showing Fe, Ti and oxygen atoms respectively. The position of Fe2+ are marked with
pink/grey circles and the remaining iron atoms are Fe3+.

J2+,3+
m . For the latter a total of 16 different spin-arrangements is calculated.

The extracted parameters for the interface (J2+,3+
m ) together with the ones for

the end members (J3+,3+
m and J2+,2+

m ) are displayed in Fig. 3.12 and Table 3.4. The
different magnetic arrangements used for the calculation are displayed in Tables B.3
and B.4. Similar to hematite, we find that the dominant interaction parameters at
the interface are J3, J4 and J5. These have the same sign but are lower in magni-
tude than the corresponding Fe3+-Fe3+ interactions. This result validates the main
assumption made in previous Monte Carlo studies of the solid solution [112, 113].
Although the absolute values of these interactions are generally smaller than in
hematite, their negative value implies that Fe2+ in the contact layer couples anti-
ferromagnetically to the next hematite layer. As a consequence, the direction of
uncompensated magnetic moment at the interface will be pinned with respect to
the hematite host, resulting in a ferrimagnetic behavior of the system. Monte Carlo
simulations of magnetic ordering with a 4× 4× 4 supercell were performed for the
configuration in Fig. 3.13a, which corresponds to the ground state cation configura-
tion for this bulk composition [82]. Magnetic transitions at 860 ± 10 (1080 ± 10) K
were obtained in the hematite part of the heterostructure and 25 ± 5 (60 ± 5) K in
ilmenite regions of the supercell with U = 8(6) eV, respectively, suggesting that the
magnetic ordering temperature of both phases is modified by the presence of the
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Table 3.4: Magnetic pair exchange interactions in K for hematite (J3+,3+
m ), ilmenite

(J2+,2+
m ) and the interface (J2+,3+

m ) for U = 6 and 8 eV. The index m describes the type of
interaction following the definition in Fig. 3.11, nm is the multiplicity of Jm and dij(Å) is
the distance between the cations in each system. Positive/negative signs of J correspond
to FM/AFM coupling.

m nm dij(Å) J3+,3+
m dij(Å) J2+,2+

m dij(Å) J2+,3+
m

U = 6 eV U = 8 eV U = 6 eV U = 8 eV U = 6 eV U = 8 eV
1 1 2.86 -15.9±1.6 -7.9±1.4 2.92 0.0 0.0 2.84 10.0±10.0 -0.8±0.8
2 3 2.96 -6.3±0.2 -1.5±0.2 3.07 6.0±0.4 2.4±0.1 2.97 -5.5±3.0 -5.9±1.6
3 3 3.38 -72.1±0.5 -53.8±0.5 3.51 0.0 0.0 3.36 -23.0±5.0 -23.7±2.7
4 3 3.701 -50.1±0.5 -39.0±0.5 3.73 0.0 0.0 3.683 -37.5±3.8 -30.2±2.1
5 3 3.704 -50.2±0.7 -38.8±0.6 3.91 0.0 0.0 3.688 -39.6±4.3 -28.4±2.3
6 1 4.01 -9.0±2.3 -4.3±2.1 4.08 -7.5±2.8 -2.9±0.7 3.999 -11.7±11.1 -7.4±6.0
7 3 5.426 -3.4±1.0 -3.2±0.9 5.616 -1.0±0.6 -0.3±0.1 5.36 -1.9±1.9 -1.8±1.8
8 3 5.431 -3.1±0.4 -1.7±0.4 5.617 2.5±1.2 0.5±0.3 5.43 -1.9±1.9 -1.8±1.8

interface.
The slight decrease in Néel temperature for hematite can be explained by the

reduced strength of magnetic interactions in the contact layer (J2+,3+
m ) and a lower

average number of interactions per cation due to the presence of the paramagnetic
ilmenite. The increase in Néel temperature of ilmenite is likely caused by interaction
of Fe2+ spins within the ilmenite lamellae with the magnetically ordered Fe2+-Fe3+

spins within the contact layers.
In Fig. 3.14 the calculated magnetic interaction parameters in this work for the

interface model shown in Fig. 3.13b are compared with the guessed parameters used
by Harrison [113] in order to model the magnetic ordering in the Fe2O3-FeTiO3 solid
solution. The guessed values are fairly close to our first principle values.
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Figure 3.14: Comparison of the calculated values for U = 6 and 8 eV of J2+,3+
m for the

interface model shown in Fig. 3.13b with the guessed values (red/grey stars) by Harrison
taken from the Ref. [113].
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3.4.4 Effect of strain on the magnetic interactions

In this section we have considered the effect of lateral strain on the magnetic inter-
action parameters by fixing the lateral lattice constant of the system to the Al2O3

bulk value. The c-lattice constant is relaxed.
Table 3.5 and Fig. 3.15a-c display the magnetic interaction parameters calculated

for hematite, ilmenite and the interface model (Fig. 3.13b) on an Al2O3 (0001)-
substrate. The main effect of strain is observed on J3+,3+

1 due to the smaller lat-
tice constant of Al2O3 (∆a/aFe2O3 = −5.5% and ∆crel/cFe2O3 = 14.1%) and thus
compressive strain induced by the Al2O3 substrate. All other magnetic interaction
parameters in hematite on Al2O3 substrate did not show a significant change in their
values compared to the bulk hematite values.

In ilmenite, J2 is larger and J6 is smaller on the Al2O3 substrate with both
U = 6 and 8 eV compared to ilmenite bulk values as a result of strong strain
(∆a/aFeTiO3 = −8.1% and ∆crel/cFeTiO3 = 7.2%). For the interface model, the
dominant parameters on the Al2O3 substrate are slightly larger than the values cal-
culated without straining the system (Ji(aAl2O3)/Ji ∼ 0.9, 1.1, 1.9 for i = 3, 4 and
5, respectively). In spite of the changes in the absolute values of the magnetic in-
teraction parameters, the bulk systems did not show any change in the sign of the
parameters. This implies that the magnetic ordering in the bulk systems is not influ-
enced by straining the system on an Al2O3 substrate. Furthermore, for the interface
interaction parameters (J2+,3+

m ), the main changes are in the absolute values of the
parameters and no change in the sign of the dominant parameters were observed.
This implies that the ferrimagnetic behavior observed at the contact layer in the
interface model is not affected by straining the system on an Al2O3(0001) substrate.

Table 3.5: Magnetic pair exchange interactions in K for hematite (J3+,3+
m ), ilmenite

(J2+,2+
m ) and the interface (J2+,3+

m ) for U = 6 and 8 eV on an Al2O3(0001) substrate
for the structure presented in Fig. 3.13b. The index m describes the type of interaction
following the definition in Fig. 3.11, nm is the multiplicity of Jm and dij(Å) is the distance
between the cations in each system. Positive/negative signs of J correspond to FM/AFM
coupling.

m nm dij(Å) J3+,3+
m dij(Å) J2+,2+

m dij(Å) J2+,3+
m

U = 6 eV U = 8 eV U = 6 eV U = 8 eV U = 6 eV U = 8 eV
1 1 2.86 -83.3±11.3 -66.6±9.2 2.92 0.0 0.0 2.84 -22.1±15.6 -13.9±10.5
2 3 2.96 -2.7±1.7 3.5±1.4 3.07 12.2±0.4 1.0±0.1 2.97 3.5±3.5 -3.8±2.9
3 3 3.38 -65.5±3.8 -51.9±3.1 3.51 0.0 0.0 3.36 -20.8±7.1 -22.2±4.8
4 3 3.701 -58.8±3.8 -44.0±3.1 3.73 0.0 0.0 3.683 -42.8±5.5 -36.0±3.7
5 3 3.704 -48.9±5.1 -35.2±4.2 3.91 0.0 0.0 3.688 -75.5±6.2 -59.5±4.2
6 1 4.01 -23.4±16.7 -2.5±2.5 4.08 -5.2±3.0 -3.7±0.7 3.999 -13.4±13.4 -9.4±9.4
7 3 5.426 -13.3±7.2 -15.3±5.8 5.616 0.4±0.4 0.2±0.1 5.36 -7.5±5.4 -3.5±3.5
8 3 5.431 15.4±2.9 13.2±2.3 5.617 0.0±0.0 0.1±0.1 5.43 -7.5±5.4 -3.5±3.5
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up to 8th neighbor are shown for (a) hematite (J3+,3+
m ), (b) ilmenite (J2+,2+

m ) and (c)
the interface (J2+,3+

m ). Results for U = 6 and 8 eV are marked by filled squares and
open triangles, respectively. The experimental value for hematite (open red/grey circle)
are taken from Ref. [104] and for ilmenite (open red/grey circles and stars) are taken
from Refs. [59, 106]. The parameters for the interface in panel (c) are calculated for the
configuration shown in Fig. 3.13b.
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3.4.5 Summary

The magnetic pair exchange interaction parameters for the end members (hematite
and ilmenite) are extracted based on DFT calculations by mapping the total energies
on a Heisenberg Hamiltonian. For the end members, we find a good agreement with
experimental values from inelastic neutron scattering data. The magnetic interaction
parameters between Fe3+ and Fe2+ at the interface of hematite-ilmenite, which are
not accessible from experiment, are extracted here for the first time. Similar to
hematite, the dominating interaction is an antiferromagnetic coupling between Fe2+

in the contact layer and Fe3+ from the next hematite layer, fixing the orientation of
the defect spins at the interface. Furthermore, while strain influences the absolute
values of magnetic interaction parameters, the overall trend was not affected.



Chapter 4

Bulk Properties of EuTiO3

EuTiO3 (ETO) is one of the rare perovskites that exhibits cubic symmetry (space
group Pm3m) at ambient conditions [115–117]. ETO is magnetically ordered be-
low 5.5 K [17–19]. Furthermore, the dielectric permittivity of ETO also shows an
anomaly at the magnetic ordering temperature [17], suggesting magnetoelectric cou-
pling of the polarization and magnetization. However, compared to other well-known
magnetoelectrics [20–22], ETO has been less investigated. Very recently, using first-
principles calculations, a design strategy for magnetic and electric phase control in
epitaxial ETO has been proposed [118]. Although magnetic susceptibility measure-
ments on ETO show features of antiferromagnetic ordering, the features of magnetic
ordering have not been investigated in detail, presumably due to the fact that nat-
urally occurring Eu has a very large absorption cross-section for thermal neutrons.
An old report, however, suggests a G-type antiferromagnetic (AFM) spin arrange-
ment in ETO [18]. Magnetic susceptibility measurements have shown that ETO
is one of the few antiferromagnetic materials with a positive Curie-Weiss constant
(θ = +3.8 K) [18].

Density functional theory calculations are carried out for the multiferroic EuTiO3

using the LDA+U approach. Total-energy calculations for ferromagnetic (F), and
antiferromagnetic A-, C- and G-type arrangements (see Fig. 4.1) show that the
ground state depends very sensitively on the on-site Coulomb repulsion parameter
U and volume. Calculations show that in the cubic phase, the ground-state mag-
netic configuration is G-type antiferromagnetic for U = 6 eV and ferromagnetic for
U = 7 eV. Values of first- and second-neighbor exchange integrals are extracted by
mapping the energy difference between the different magnetic configurations to a
Heisenberg Hamiltonian. The system seems to be critically balanced between fer-
romagnetic and antiferromagnetic states for realistic values of U and switches from
antiferromagnetic to a ferromagnetic ground state on hydrostatic expansion of the
volume. In this chapter, the results of manuscript M4 [114] are briefly discussed.
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Figure 4.1: (a) Crystal structure of cubic EuTiO3. The corner atoms represent Eu,
and the atoms at the body-centered and the face-centered positions represent Ti and O,
respectively. (b) Schematic diagram of the four collinear magnetic structures, A, C, F, and
G, considered for cubic EuTiO3. The arrows indicate spin directions at the Eu sublattice.

4.1 Equilibrium lattice constant and

bulk modulus

Total energy calculations for four different collinear magnetic structures, A, C, F,
and G, were considered in the present study. A schematic picture of the four mag-
netic structures with the crystal structure of cubic EuTiO3 is shown in Fig. 4.1.
For the A-type antiferromagnetic structure, the nearest-neighbor moments are fer-
romagnetically coupled within the ab plane and antiferromagnetically coupled along
the c-direction. On the other hand, for a C-type antiferromagnetic, there is a FM
coupling along the c-direction but AFM within the plane. For a G-type antifer-
romagnetic structure, all the nearest-neighbor moments are antiferromagnetically
coupled.

Total energy versus volume calculations were performed to determine the equi-
librium cell volume at U = 0, 3, 6 and 9 eV. Fig. 4.2 shows E(V) for U = 6 eV. The
energy differences between the various magnetic configurations are very small, and
on the scale shown in this figure, the energies of the four magnetic configurations
at any particular volume appear nearly degenerate. The theoretical equilibrium
volume (∼ 246.6 Å3) is nearly insensitive to the different magnetic structures and
also to the value of the U parameter used. The equivalent cubic lattice parame-
ter, a = (V/4)1/3 = 3.950 Å, is larger than the experimentally reported value of
3.905 Å [17] by 1%.

The value of the bulk modulus B0 and its pressure derivative B′
0, were obtained by

fitting the Murnaghan equation of state, to the calculated E(V) curve. For U = 6 eV,
B0 and B′

0 were found to be 172.6 GPa and 4.1, respectively.
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Figure 4.2: Total energy versus volume for F, A, C, and G magnetic structures of
cubic EuTiO3 calculated at U = 6 eV.

4.2 Electronic and magnetic structures of EuTiO3

The total energy and total density of states (DOS) were calculated for the four
magnetic configurations, F, A, C, and G, at the experimental lattice constant for
U = 0, 3, 5, 6, 7, 8 and 9 eV. It is found that the G-type AFM structure possesses
lowest energy for U ≤ 6 eV. For U ≥ 7 eV, the ferromagnetic (F) structure becomes
stable. Previous theoretical studies on divalent Eu compounds have reported that
realistic values of U for Eu lie in the range 6 ≤ U ≤ 9 eV [119, 120]. Interestingly
enough, we found that at U = 6 eV the ground-state magnetic configuration changes
from G-type AFM to ferromagnetic (F) on increasing the volume hydrostatically
beyond the experimental value.

Fig. 4.3 shows the total and partial density of states (PDOS) for the O-2p states,
Eu-f and d states, and Ti-d states in both spin channels. It is evident from this
figure that the major contribution to the filled valence band comes from the O-
2p states. A narrow occupied 4f band lies just below the Fermi level. A similar
feature was also reported in the band structure of EuS [121]. The conduction band
is formed by the Ti-3d states on the low-energy side and by the Eu-5d states at
higher energies. Hybridization of the Ti-3d and O-2p states between -2 to 7 eV is
also observed, suggesting some covalent bonding between the Ti and O atoms, a
feature common to most of the oxide perovskites. The absence of the Eu-6s states
in the valence band part of the DOS suggests that Eu is almost completely ionized
and forms ionic bonds with the O in the structure.
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Figure 4.3: Total and partial density of states of Eu-s, Eu-d, Eu-f , Ti-d, and O-p
orbitals for the G-type magnetic structure (U = 6 eV).

4.3 Calculation of exchange integrals

We have calculated the nearest-neighbor (nn) and next-nearest-neighbor (nnn) ex-
change interactions (Jnn

ij and Jnnn
ij ) by mapping the energy difference between the

different magnetic configurations of this system to the Heisenberg Hamiltonian as:

H = −2
∑
i>j

JijSi.Sj (4.1)

The ground state of the Eu2+ ion corresponds to spin S = 7/2 and orbital
moment L = 0. The zero orbital moment adds a simplification to the calculations
in the sense that the exchange interaction can be considered isotropic to a good
approximation. The total numbers of nn and nnn Eu2+ bonds in the tetragonal
cell considered for calculating the total energies are 12 and 20 respectively. The
corresponding energy expressions for the four magnetic configurations, F, A, C, and
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Table 4.1: Values of the first-nearest-neighbor (Jnn
ij ) and second-nearest-neighbor

(Jnnn
ij ) exchange integrals (in units of kelvin) obtained after mapping the difference in

the total energies of the various configurations to a Heisenberg Hamiltonian (see text).

Exchange integral U=0 eV U=3 U=5 U=6 U=7 U=8 U=9

Jnn
ij (K) -0.12 -0.24 -0.06 0.01 0.03 0.05 0.06

Jnnn
ij (K) 0.26 0.12 0.08 0.05 0.04 0.03 0.02

G can be written as:

EF = E0 + 2|S|2(−12Jnn
ij − 24Jnnn

ij ) (4.2)

EA = E0 + 2|S|2(−4Jnn
ij + 8Jnnn

ij ) (4.3)

EC = E0 + 2|S|2(4Jnn
ij + 8Jnnn

ij ) (4.4)

EG = E0 + 2|S|2(12Jnn
ij − 24Jnnn

ij ). (4.5)

From S = 7/2, it follows that |S|2 = S(S + 1) = 15.5 for Eu2+. The values of
the exchange interactions obtained with least squares fitting procedure, in units of
Kelvin, are listed in Table 4.1. While Jnn

ij changes sign from negative to positive
between U = 5 and 6 eV, the sign of Jnnn

ij remains positive for all values of U under
consideration. In general, it is noted that Jnn

ij increases and Jnnn
ij decreases upon

increase of U . Values of exchange integrals in ETO have also been reported in the
past using parameters derived from temperature-dependent magnetic susceptibility
measurements [18, 19]. The values of Jnn

ij and Jnnn
ij reported in [18] are -0.02 and

0.04 K, respectively. Chien et al. [19], on the other hand, have reported slightly
different values: Jnn

ij = -0.014 K and Jnnn
ij = 0.037 K. It is evident from Table 4.1,

that a similar value of Jnn
ij is obtained theoretically for a value of U in the range

5 ≤ U ≤ 6 eV. The small values of the exchange constants indicate a very weak
interaction between the magnetic ions in ETO.

4.4 Summary

The electronic structure and magnetic properties of cubic EuTiO3 were investigated
using density functional theory + Hubbard U (LDA/GGA + U). The ground state
corresponds to a G-type antiferromagnetic structure for U = 6 eV and a ferromag-
netic (F) structure for U = 7 eV. The values of the first- and second-nearest-neighbor
exchange integrals have been calculated by mapping the energy difference between
four different magnetic configurations onto a Heisenberg Hamiltonian. The system is
critically balanced between ferromagnetic and antiferromagnetic states for realistic
values of U . The system switches from G-type AFM to a ferromagnetic ground state
on increasing volume, opening a possibility of tailoring its magnetic properties and
also the associated dielectric properties, e.g., by appropriate chemical substitutions
at the Ti site of this material.





Chapter 5

Comparative Study on EuLiH3
and EuTiO3

Divalent europium chalcogenides are among the important compounds in the area
of magnetic semiconductors. This family of materials have attracted remarkable
attention in developing new devices for future spintronics applications. In this fam-
ily, while EuO and EuS exhibit a ferromagnetic (F) ground state, [123] EuSe and
EuTe are antiferromagnetic [124] (AFM) at ambient pressure. The magnetism in
these compounds arises from the half filled 4f band of the divalent Eu2+ ion. Apart
from the chalcogenide family, the divalent oxidation state of Eu is also present in
compounds crystallizing in the cubic perovskite structure such as EuTiO3 (ETO)
(Refs. [18, 19, 116]) and EuLiH3 (ELH). ETO shows G-type AFM ordering below
5.5 K and exhibits significant spin-lattice coupling at low temperatures [17], while
ELH exhibits ferromagnetic behavior [125–127] and hence, with regard to the mag-
netic structure, ELH is akin to EuO. Furthermore, it has been known that the
magnitude of the effective nearest-neighbor (nn) exchange interaction (J1) of ETO
is considerably smaller than that of EuO and ELH [19, 125]. Chien et al. [19]
have proposed an intra-atomic 4f -5d exchange interaction, according to the Good-
enough [128] and Kasuya [129] rules, to explain this abnormal difference. It has
been suggested that the exchange interaction (J1) between the nearest-neighbor Eu
cations is of the form J1 ∼ Jintrab

2/∆2, where b is a transfer integral between nn
cations, ∆ is the energy separation between 4f and 5d levels of Eu, and Jintra is the
Hund’s rule coupling constant [19]. In view of the similarity of the Eu-Eu distance,
to a first approximation, b was treated to be nearly constant for EuO, ETO, and
ELH. The difference in the magnitudes of J1 was therefore attributed to the differ-
ence in the magnitude of ∆, which in turn depends on the magnitude of the crystal
field splitting of the 5d states. A larger crystal field splitting would cause the eg

level to come close to the 4f level and thereby, reduce the value of ∆ [19]. In this
scenario, the anomalously small magnitude of the J1 in ETO, as compared to ELH
and EuO, has been explained by proposing a relatively weak crystal field splitting
of the Eu-5d states in ETO as compared to ELH and EuO [19].

In this chapter, the properties of bulk EuLiH3 in comparison to EuTiO3 from
first principles calculations are briefly discussed. These are the results of manuscript
M5 [122].
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Table 5.1: Relative energies in (eV) of the various magnetic structures of EuLiH3

calculated at different values of U . For each U , the minimum energy among the four
configurations is set to zero.

Mag. structure U=0 U=3 U=4 U=5 U=6 U=7 U=8 U=9

F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A 0.110 0.039 0.029 0.021 0.015 0.009 0.006 0.002
C 0.175 0.066 0.051 0.038 0.030 0.022 0.017 0.012
G 0.186 0.071 0.055 0.042 0.033 0.026 0.021 0.017

5.1 Results and discussion

Similar to the calculations on EuTiO3 described in the previous chapter, in EuLiH3

four different magnetic structures were chosen, namely, ferromagnetic (F) and three
AFM (A, C, and G types). The spin configurations corresponding to the four mag-
netic structures are shown in Fig. 4.1b. For more detail on the calculations refer to
the manuscript M5. Table 5.1 lists the relative energies of the four magnetic struc-
tures of ELH for different values of U . It is evident that the ferromagnetic state has
the lowest energy for all U . This may be contrasted with ETO, for which the lowest
energy state switches from G-type AFM to ferromagnetic structure by increasing U
beyond 6 eV (see previous chapter and manuscript M4). J1 and J2 were obtained in
units of Kelvin by a least-square fitting to the Heisenberg Hamiltonian.
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Figure 5.1: Variation in first (J1) and second (J2) nn effective exchange interactions
of EuLiH3 as a function of U .

Fig. 5.1 depicts the variation in the J1 and J2 as a function of U . Previous
studies have shown that a realistic value of U for Eu-based systems lies in the range
of 5-7 eV [114, 119, 120, 130, 131]. For ETO, a value of U between 5 to 6 eV was
found to give exchange interactions, J1 and J2, very close to the experimentally
obtained values [114]. Assuming the U parameter of Eu for ELH to be similar to
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that of ETO, J1 ∼ 0.53 K and J2 ∼ 0.06 K for ELH (Fig. 5.1) are obtained. These
values are reasonably close (within the experimental error) to the experimental ones
reported earlier (J1 = 0.8±0.2 K, J2 = ±0.05 K) using susceptibility data [126,127].
A comparison of the magnitudes of J1 of ELH, ETO, and EuO reveals that it
is more than an order of magnitude smaller in ETO (J1 ∼ 0.01 K) [131] than in
ELH [126, 127] and in EuO (J1 = 0.72 K) [119]. To investigate the sensitivity of
J1 to the nn Eu-Eu distance, calculations were performed at different cell volumes
of ELH, so as to cover the Eu-Eu distance observed in EuO (3.63 Å) and ETO
(3.905 Å).

Fig. 5.2 shows the exchange interactions (J1 and J2) as a function of the cubic
lattice parameter, which is also the nn Eu-Eu distance for the perovskite structure.
It is evident from this graph that J1 and J2 at 3.905 Å (corresponding to the Eu-
Eu distance in ETO) are 0.41 and 0.03 K, respectively. The value of J1 is still
considerably larger than the value reported for ETO [114]. Furthermore, J1 and
J2 obtained from extrapolation of the fitted curves at 3.63 Å (corresponding to the
Eu-Eu distance in EuO) are found to be 1.0 and 0.17 K, respectively. Considering
the fact that the crystal structure of EuO is different from that of ELH, these
values are not very much off from what has actually been reported (J1 = 0.72 K
and J2 = 0.22 K) for EuO [119]. This analysis therefore suggests that the Eu-Eu
distance cannot be the primary factor affecting the strength of J1 in ETO.
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Figure 5.2: Variation in J1 and J2 with cubic lattice parameter of EuLiH3. The solid
curves are fitted lines with a third order polynomial. The arrows indicate the lattice
parameter corresponding to the equilibrium value.
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Fig. 5.3 shows the total energy curves of ELH versus cell volume for the four
magnetic structures mentioned above at U = 6 eV. The energy of the ferromag-
netic state was found to be lowest for all volumes. The cubic lattice parameter
corresponding to the equilibrium volume is 3.78 Å, which is almost the same as the
experimental value of 3.79 Å reported for this compound [127].
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Figure 5.3: Variation in the relative energy of the A, C, F, and G magnetic structures
of EuLiH3 as a function of unit cell volume calculated for U = 6 eV. The minimum energy
in the graph is chosen as the reference energy and it is set to zero. The volume corresponds
to the bigger (tetragonal) unit cell whose volume is four times the cubic cell volume.

Fig. 5.4 shows the total and partial density of states (PDOS) of the ground state
magnetic structures of ELH calculated at U = 6 eV. The absence of s states of Eu
in the conduction band indicates that Eu forms highly ionic bonds with H and O
in ELH and ETO, respectively. A noticeable hybridization between the Eu-5d and
H-s states suggests however a considerable degree of covalent character in the Eu-H
bond of ELH. Furthermore, the absence of Li-s states in the conduction band seems
to suggest a strongly ionic nature of the Li-H bond. In contrast, the Ti-O bond
in ETO has a significant covalent contribution as evident from the hybridization
between the O-2p and Ti-3d states in Fig. 4.3.

The valence bands of both the ELH and ETO are formed by the valence states
of their respective anions. The narrow Eu-4f band lies between the Fermi level and
the broad valence band in both cases. A comparable feature has been reported for
EuO as well [119]. Similar to EuO, the conduction band of ELH is formed by the
Eu-5d states. This band starts at ∼ 0.8 eV above the Fermi level and spreads up to
∼ 11 eV, i.e., a bandwidth of about 10 eV. On the other hand, the conduction band
in ETO is formed by Ti-3d states. The Eu-5d band starts at 3.5 eV above the Fermi
level and persists up to 8.6 eV, i.e., a bandwidth of ∼ 5 eV. The width of the Eu-5d
band in ETO is, therefore, nearly half the corresponding value in ELH. Furthermore,
there is a significant overlap of the Eu-5d and Ti-3d bands in the energy range of
3.5-7 eV. In the framework of the mechanism proposed by Chien et al. [19], this
feature may influence strongly the exchange interaction in this system as compared
to ELH.
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Figure 5.4: DOS of ferromagnetic EuLiH3. The top panel is the total DOS and the
remaining correspond to projected DOS on the Eu, Li and H states.

Fig. 5.5 shows the variation in the band gap of ELH, i.e., the difference in the
energy of the top of the Eu-4f band and the bottom of the Eu-5d conduction band as
a function of U . For sake of comparison, the band gap variation with U of ETO was
also included. It may be mentioned that, in the latter, the band gap is between the
Eu-4f and the Ti-3d state. Linear extrapolation through the data points suggests
that the gap in ELH and ETO opens above U = 2.8 eV and 4.6 eV, respectively. At
the realistic value of the U , i.e., U = 6 eV, the gaps in ELH and ETO are ∼0.8 and
∼0.4 eV, respectively. Due to the larger gap, ELH is expected to exhibit a better
insulating property than ETO at any finite temperature.
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Figure 5.5: Variation in the band gap of ELH and ETO with U .
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5.2 Summary

In conclusion, it is demonstrated that the GGA+U approach correctly predicts the
ferromagnetic ground state of EuLiH3. Mapping the total energies of four different
magnetic structures on a Heisenberg Hamiltonian, the extracted first and second
nn effective exchange interactions were found to be in good agreement with exper-
imental values. With regard to the relative position of the 4f and 5d Eu bands in
ELH and ETO, these results not only confirm the schematic model proposed earlier
by Chien et al. [19], but also shed new light with regard to the factors at play in
determining this energy difference. The intervening Ti-3d states between the Eu-4f
and 5d states seem to push the Eu-5d band to higher energies in ETO and to reduce
its bandwidth. Furthermore, in the context of the exchange mechanism proposed
by Chien et al. [19], the significant overlap of the Ti-3d and Eu-5d bands would
imply that the Ti-3d band should also participate in the exchange process. The
results clearly demonstrate the unique role of Ti-3d states in drastically decreasing
the effective J1 value in EuTiO3 as compared to EuLiH3 and EuO.



Chapter 6

Conclusions and Perspectives

This work represents a systematic first principles investigation of the origin of in-
terface magnetism in Fe2O3-FeTiO3 heterostructures and solid solutions.

As a starting point, the bulk properties of the end members α-Fe2O3 and FeTiO3

were studied. Concerning the electronic properties, the band gap of Fe2O3 is under-
estimated within GGA and for FeTiO3, even a metallic state is predicted. The results
show that the incorporation of correlation effects within the GGA+U method is nec-
essary in order to describe correctly the electronic behavior of the system. Within
the GGA+U method, both compounds are insulating with a band gap of ∆g=2.25
and 2.21 eV for Fe2O3 and FeTiO3, respectively. The U -values of 6 eV for hematite
and 8 eV for ilmenite, are used in order to reproduce the experimentally observed
band gap. For bulk Fe2O3 and FeTiO3 different magnetic arrangements (AFM and
FM), as well as different oxidation states for FeTiO3 (Fe2+Ti4+O3 vs. Fe3+Ti3+O3),
are considered. The AFM arrangement is found to be the ground state configura-
tion for hematite, while in ilmenite, Fe2+Ti4+O3 is found to be the ground state
with almost degenerate FM and AFM solutions, which is consistent with the low
magnetic ordering temperature of this material.

Due to the stacking of · · · 2Fe3+/ 3O2−· · · in Fe2O3 and · · · 2Fe2+/ 3O2−/ 2Ti4+ /
3O2−· · · in FeTiO3, the charge neutrality is disrupted at the Fe2O3-FeTiO3 interface.
Several possible compensation mechanisms were considered, such as disproportiona-
tion on the Fe sublattice through Fe2+/ Fe3+, as well as other mechanisms involving
Ti3+, like Ti3+/ Ti4+ and Fe3+/ Ti3+. By systematically varying the concentra-
tion, distribution and charge state of Ti (Fe) doped into a hematite (ilmenite) host,
the energetic stability, electronic and magnetic properties of the Fe2O3-FeTiO3 sys-
tem have been investigated. The GGA+U results show that the most favorable
compensation mechanism is through a disproportionation into Fe2+, Fe3+ in the
contact layer [82], giving the first theoretical evidence for the lamellar magnetism
hypothesis [14]. The formation of Fe2+ at the interface leads to impurity levels
in the band gap that are pinned at the Fermi level for all studied concentrations
(x = 17, 33, 50, 66, 83%) of Ti doped in hematite. One of the main findings is that
ordered configurations such as hematite/ilmenite heterostructures are more stable
than solid solutions, except for very high Ti concentrations, in accordance to the
experimental phase diagram of Fe2O3-FeTiO3 [79, 82].

A further aspect studied was the effect of strain on the energetic stability of
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Fe2−xTixO3 heterostructures and solid solutions grown on different substrates like
Fe2O3(0001), FeTiO3(0001) and Al2O3(0001). Due to the strong compressive strain
of 5.8% and 8.8% with respect to the lattice parameter of Fe2O3 and FeTiO3, systems
grown on Al2O3(0001) are found to be energetically unfavorable compared to the
ones with a larger lateral lattice constant, e.g., FeTiO3(0001). This gives a possible
explanation to why a lateral strain relaxation occurs in Fe2−xTixO3 films grown on
Al2O3(0001) [91,92]. The main feature related to strain is the change in bandwidth:
while for tensile strain at aFeTiO3 the bands are narrowed, for compressive strain
at aAl2O3 they are strongly broadened. Furthermore, the impurity state shifts to
lower energies with respect to the Fermi level upon decrease of the lateral lattice
constant, e.g., from aFeTiO3 to aAl2O3 . This provides a path to control the electronic
properties of the system. Also, the calculations show that the trend of stability
of cation order can change on an Al2O3(0001)-substrate. For example, the layered
configurations are more stable on Fe2O3(0001) and FeTiO3(0001)-substrates, while
the disordered (solid solutions) structures are in strong competition with the ordered
phase, particularly for concentrations of x = 33 and 66% Ti in hematite [132].

Previous Monte Carlo simulations [113] on this system were carried out based
on empirical parameters. One of the main goals of this study is to extract accurate
magnetic interaction parameters from DFT calculations. This is done by calculating
the total energies of different spin arrangements and mapping them on a Heisenberg
Hamiltonian. The magnetic interaction parameters for bulk hematite (J3+,3+) and
ilmenite (J2+,2+) are determined and found to be in good agreement with available
theoretical and experimental data. Most importantly, the parameters at the Fe2O3-
FeTiO3 interface (J2+,3+), which are not accessible from experiment, are obtained for
the first time from first principles. We note that the uncompensated moments gen-
erated at the interface due to the charge mismatch show a strong tendency to couple
antiferromagnetically to the next hematite layer, thus leading to ferrimagnetism in
the system. The interface magnetism in this system is a further example of how
the polar discontinuity at oxide interfaces can lead to novel functional properties,
thereby opening possibilities for electronics and spintronics applications.

An interesting topic for future studies is to take into account the effect of non-
collinearity and spin-orbit coupling in order to determine the direction of magnetic
moments in the interface layer. This can give an insight into the mechanism of
exchange-bias recently observed in this system [5].

Furthermore, the electronic structure and magnetic properties of cubic EuTiO3

were investigated using density-functional theory and taking into account the corre-
lation effects, by adding a Hubbard U parameter within the LDA/GGA + U method.
The values of the first and second nearest-neighbor exchange interactions have been
calculated by mapping the energies of four different magnetic configurations on a
Heisenberg Hamiltonian. The system is critically balanced between ferromagnetic
and antiferromagnetic states for realistic values of U and switches from G-type AFM
to a ferromagnetic state upon volume increase. This opens a possibility to tailor
the magnetic properties and also the associated dielectric properties, e.g., by ap-
propriate chemical substitutions at the Ti site of this material. This switchover
of magnetic states by altering the volume was recently confirmed by experiments
on the epitaxial thin films of EuTiO3 grown on a SrTiO3 substrate by pulsed laser
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deposition [133,134].
The DFT total energies of EuLiH3 were mapped on a Heisenberg Hamiltonian.

The extracted first and second nearest-neighbor effective exchange interactions were
found to be in good agreement with experimental values. A comparative study
between EuLiH3 and EuTiO3 shows that the Ti-3d states, intervening between the
Eu-4f and 5d states, seem to push the Eu-5d band to higher energies in ETO and to
reduce its bandwidth. Moreover, in the context of the exchange mechanism proposed
by Chien et al. [19], the significant overlap of the Ti-3d and Eu-5d bands implies
that the Ti-3d band should also participate in the exchange process. The results
clearly demonstrate the unique role of the Ti-3d states in drastically decreasing the
effective J1 value in EuTiO3 as compared to EuLiH3 and EuO.





Appendix A

Functional Derivatives

Compared with the well-known derivatives where a given function is differentiated
with respect to one or more variables, we consider here a functional of some functions
and differentiate this with respect to those functions. Let us first consider a function
of several parameters (variables):

F = F (z1, z2, ..., zN). (A.1)

We will assume that each of the parameters zi are a function of the parameter,
r, i.e.:

zi = zi(r), (A.2)

then
dF

dr
=

N∑
i=1

∂F

∂zi

dzi

dr
. (A.3)

Here, F is a function which depends on a set of parameters. We modify this
example and let the set of zi become a continuous set, then F becomes a functional
of the function z. In principle, this corresponds to N →∞. Still z is a function of
r and we will obtain as a generalization from (A.3) in the continuous form:

dF

dr
=

∫
δF

δz

dz

dr
dz, (A.4)

where δF/δz is a functional derivative of F with respect to z. In general, the
functional derivative of the functional F with respect to the function z is defined as:

δF [z(r)]

δz(r)
= lim

δz(r)→0

F [z(r) + δz(r)]− F [z(r)]

δz(r)
, (A.5)

which is similar to the traditional derivative. If we suppose that F = z in Eq. (A.4),
then,

dz

dr
=

∫
δz

δz′
dz′

dr
dz′. (A.6)

This identity can be valid in the general case only if:

δz

δz′
= δ(z − z′), (A.7)
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which shows that any function can be written as a functional. For example:

φ(t) =

∫
φ(t′)δ(t− t′)dt′. (A.8)

This functional is a function of φ(t′) only, therefore:

δφ(t)

δφ(t′)
= δ(t− t′). (A.9)

The main purpose is to find an extremum of a functional (maximum or mini-
mum), suppose we have a function F [z] of a function z(r) which involves the inte-
gration of another function of r and z over the variable r:

F [z] =

∫ b

a

f(r, z)dr, (A.10)

where the limits of integration are constant. To find an extremum of F [z] with
respect to changes in z(r) in the interval r ∈ [a, b], suppose we change z to z′ by
adding a function δz(r) = εζ(r):

z′(r) = z(r) + δz(r) = z(r) + εζ(r), (A.11)

where ζ(r) is an arbitrary function and ε is an infinitesimal quantity (ε → 0). In
addition, ζ(a) = ζ(b) = 0, so that we do not introduce changes in the limits of
integral. Therefore, the corresponding F will be given by:

F [z′] =

∫ b

a

f(r, z′)dr =

∫ b

a

f(r, z(r) + εζ(r))dr. (A.12)

Taking the derivative with respect to ε from the Eq. (A.12) and setting it equal
to zero to obtain the extremum, we find:

dF [z′]
dε

=

∫ b

a

∂f

∂z′
dz′

dε
dr =

∫ b

a

∂f

∂z′
ζ(r)dr = 0. (A.13)

Since this must hold for ε → 0 and an arbitrary ζ(r), we conclude that we must
have:

δF [z′]
δz

= lim
ε→0

∂f(r, z)

∂z′
=

∂f(r, z)

∂z
= 0. (A.14)

Thus, the necessary condition for finding an extremum of F (z) with respect to
variation in z(r), is the vanishing of the partial derivative with respect to z of the
integrand appearing in F .
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Table B.1: The relative energies ∆E(Ry) of different spin arrangements in Fe2O3

with 30 atoms in the unit cell containing 12 iron atoms. The spin magnitude of Fe3+ is
S1 = S2 = ... = S12 = |SFe3+ | = 5/2 and the spin orientations are shown by up and down
arrows.

No. S1, S2, S3 ,..., S12 ∆E
1 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ -0.4013
2 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1491
3 ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.2376
4 ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.2421
5 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.2387
6 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.3216
7 ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ -0.3249
8 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ -0.3241
9 ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.2399
10 ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ -0.2639
11 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ -0.2400
12 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ -0.3216
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ -0.2387
14 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ -0.2376
15 ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1934
16 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ -0.1935
17 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ -0.1934
18 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ -0.1936
19 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ -0.2120
20 ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ -0.2717
21 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ -0.2249
22 ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.2357
23 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ -0.2251
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Table B.2: The relative energies ∆E(Ry) of different spin arrangements in FeTiO3 with
60 atoms in the unit cell containing 12 Fe2+ and 12 magnetically inert Ti4+ atoms. The
spin magnitude of Fe2+ is S1 = S2 = ... = S12 = |SFe2+ | = 4/2 and the spin orientations
are shown by up and down arrows.

No. S1, S2, S3 ,..., S12 ∆E
1 ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ -0.1121
2 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1114
3 ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1107
4 ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1118
5 ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ -0.1103
6 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ -0.1106
7 ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ -0.1119
8 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.1120
9 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1109
10 ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.1117

Table B.3: The relative energies ∆E(Ry) and the corresponding spin arrangements of
the Fe2O3-FeTiO3 interface for 2 different sets of magnetic configurations with 60 atoms
shown in Fig. 3.13a containing 18 Fe (12 Fe3+ and 6 Fe2+) and 6 magnetically inert Ti4+

atoms. In set one (column ∆E1) the energies with corresponding magnetic configuration
are presented: S3+

1 = S3+
2 = ... = S3+

12 = 5/2 (hematite part) and S2+
13 = S2+

14 = ... =
S2+

18 = 4/2 (ilmenite part). In set two (column ∆E2) the magnetic state of S12 and S13 are
exchanged now becoming S2+

12 = 4/2, S3+
13 = 5/2 and the reset of the magnetic moments

are preserved like set one.

No. S1, S2, S3, S4 ,..., S12, S13 ,..., S18 ∆E1 ∆E2

1 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.5559 -0.5351
2 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ -0.5564 -0.5354
3 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ -0.3623 -0.3503
4 ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.4294 -0.4172
5 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.4931 -0.4718
6 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ -0.5076 -0.5044
7 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ -0.5080 -0.4819
8 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ -0.5064 -0.5130
9 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ -0.4930 -0.4810
10 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.3617 -0.3497
11 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ -0.3607 -0.3489
12 ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.5558 -0.5351
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.4190 -0.3795
14 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ -0.3767 -0.3863
15 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ -0.4309 -0.4089
16 ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.5452 -0.5088
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Table B.4: The relative energies ∆E(Ry) and the corresponding spin arrangements of
the Fe2O3-FeTiO3 interface with 60 atoms shown in Fig. 3.13b containing 16 Fe (8 Fe3+

and 8 Fe2+) and 8 magnetically inert Ti4+ atoms. In this structure S1, S2 and S7 to S12

are Fe3+ with the spin magnitude of 5/2 and the rest of the iron are Fe2+ with the spin
magnitude of 4/2.

No. S1, S2, S3 ,..., S12, S13 ,..., S16 ∆E
1 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.2720
2 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ -0.2726
3 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ -0.1755
4 ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.1849
5 ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ -0.2197
6 ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ -0.2338
7 ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ -0.2329
8 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ -0.2203
9 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ -0.2064
10 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.1748
11 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ -0.1737
12 ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ -0.2719
13 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.2313
14 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ -0.1894
15 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ -0.2427
16 ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ -0.2612
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Appendix D

The Connectivity Matrix

The connectivity matrix (Si.Sj) is directly connected to the interaction type matrix
(Jij) in appendix C. In this matrix (Si.Sj) the first row give the index of the atom
and columns of matrix show its connectivity to the other atoms in the unit cell and
gives information on the multiplicity of a given interaction type. For instance in
the first column atom 1 is connected once to atom 6 with interaction type J1, three
times to atom 2 with J2 and three times to atom 3 with J3, etc.

87



88 APPENDIX D. The Connectivity Matrix

S
i.
S

j
=

                                        

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

S
6

S
5

S
9

S
1
0

S
2

S
1

S
1
3

S
1
4

S
3

S
4

S
1
7

S
1
7

S
7

S
8

S
2
1

S
2
2

S
1
1

S
1
2

S
2
4

S
2
3

S
1
5

S
1
6

S
2
0

S
1
9

S
2

S
1

S
5

S
6

S
3

S
4

S
9

S
1
0

S
7

S
8

S
1
4

S
1
3

S
1
2

S
1
1

S
1
7

S
1
8

S
1
5

S
1
6

S
2
1

S
2
2

S
1
9

S
2
0

S
2
4

S
2
3

S
2

S
1

S
5

S
6

S
3

S
4

S
9

S
1
0

S
7

S
8

S
1
4

S
1
3

S
1
2

S
1
1

S
1
7

S
1
8

S
1
5

S
1
6

S
2
1

S
2
2

S
1
9

S
2
0

S
2
4

S
2
3

S
2

S
1

S
5

S
6

S
3

S
4

S
9

S
1
0

S
7

S
8

S
1
4

S
1
3

S
1
2

S
1
1

S
1
7

S
1
8

S
1
5

S
1
6

S
2
1

S
2
2

S
1
9

S
2
0

S
2
4

S
2
3

S
3

S
4

S
1

S
2

S
7

S
8

S
5

S
6

S
1
2

S
1
1

S
1
0

S
9

S
1
6

S
1
5

S
1
4

S
1
3

S
1
9

S
2
0

S
1
7

S
1
8

S
2
3

S
2
4

S
2
1

S
2
2

S
3

S
4

S
1

S
2

S
7

S
8

S
5

S
6

S
1
2

S
1
1

S
1
0

S
9

S
1
6

S
1
5

S
1
4

S
1
3

S
1
9

S
2
0

S
1
7

S
1
8

S
2
3

S
2
4

S
2
1

S
2
2

S
3

S
4

S
1

S
2

S
7

S
8

S
5

S
6

S
1
2

S
1
1

S
1
0

S
9

S
1
6

S
1
5

S
1
4

S
1
3

S
1
9

S
2
0

S
1
7

S
1
8

S
2
3

S
2
4

S
2
1

S
2
2

S
5

S
6

S
7

S
8

S
1

S
2

S
3

S
4

S
1
3

S
1
4

S
1
5

S
1
6

S
9

S
1
0

S
1
1

S
1
2

S
2
1

S
2
2

S
2
3

S
2
4

S
1
7

S
1
8

S
1
9

S
2
0

S
5

S
6

S
7

S
8

S
1

S
2

S
3

S
4

S
1
3

S
1
4

S
1
5

S
1
6

S
9

S
1
0

S
1
1

S
1
2

S
2
1

S
2
2

S
2
3

S
2
4

S
1
7

S
1
8

S
1
9

S
2
0

S
5

S
6

S
7

S
8

S
1

S
2

S
3

S
4

S
1
3

S
1
4

S
1
5

S
1
6

S
9

S
1
0

S
1
1

S
1
2

S
2
1

S
2
2

S
2
3

S
2
4

S
1
7

S
1
8

S
1
9

S
2
0

S
4

S
3

S
2

S
1

S
9

S
1
0

S
1
2

S
1
1

S
5

S
6

S
8

S
7

S
1
8

S
1
7

S
1
9

S
2
0

S
1
4

S
1
3

S
1
5

S
1
6

S
2
4

S
2
3

S
2
2

S
2
1

S
4

S
3

S
2

S
1

S
9

S
1
0

S
1
2

S
1
1

S
5

S
6

S
8

S
7

S
1
8

S
1
7

S
1
9

S
2
0

S
1
4

S
1
3

S
1
5

S
1
6

S
2
4

S
2
3

S
2
2

S
2
1

S
4

S
3

S
2

S
1

S
9

S
1
0

S
1
2

S
1
1

S
5

S
6

S
8

S
7

S
1
8

S
1
7

S
1
9

S
2
0

S
1
4

S
1
3

S
1
5

S
1
6

S
2
4

S
2
3

S
2
2

S
2
1

S
7

S
8

S
4

S
3

S
1
2

S
1
1

S
1

S
2

S
1
6

S
1
5

S
6

S
5

S
2
0

S
1
9

S
1
0

S
9

S
2
3

S
2
4

S
1
4

S
1
3

S
2
2

S
2
1

S
1
7

S
1
8

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

S
2
2

S
2
3

S
2
4

S
9

S
1
0

S
6

S
5

S
4

S
3

S
2

S
1

S
1

S
2

S
1
9

S
2
0

S
2
2

S
2
1

S
8

S
7

S
1
0

S
9

S
1
1

S
1
2

S
1
4

S
1
3

S
1
8

S
1
7

S
9

S
1
0

S
6

S
5

S
4

S
3

S
2

S
1

S
1

S
2

S
1
9

S
2
0

S
2
2

S
2
1

S
8

S
7

S
1
0

S
9

S
1
1

S
1
2

S
1
4

S
1
3

S
1
8

S
1
7

S
9

S
1
0

S
6

S
5

S
4

S
3

S
2

S
1

S
1

S
2

S
1
9

S
2
0

S
2
2

S
2
1

S
8

S
7

S
1
0

S
9

S
1
1

S
1
2

S
1
4

S
1
3

S
1
8

S
1
7

S
8

S
7

S
1
2

S
1
1

S
1
3

S
1
4

S
1
6

S
1
5

S
1
8

S
1
7

S
4

S
3

S
5

S
6

S
2
3

S
2
4

S
2
4

S
2
3

S
2
2

S
2
1

S
2
0

S
1
9

S
1
5

S
1
6

S
8

S
7

S
1
2

S
1
1

S
1
3

S
1
4

S
1
6

S
1
5

S
1
8

S
1
7

S
4

S
3

S
5

S
6

S
2
3

S
2
4

S
2
4

S
2
3

S
2
2

S
2
1

S
2
0

S
1
9

S
1
5

S
1
6

S
8

S
7

S
1
2

S
1
1

S
1
3

S
1
4

S
1
6

S
1
5

S
1
8

S
1
7

S
4

S
3

S
5

S
6

S
2
3

S
2
4

S
2
4

S
2
3

S
2
2

S
2
1

S
2
0

S
1
9

S
1
5

S
1
6

                                        



Manuscript M1

Interface magnetism in Fe2O3/FeTiO3 heterostructures

Phys. Rev. B 77, 172405, (2008)

89





Manuscript M2

Effect of strain on the stability and electronic
properties of ferrimagnetic Fe2−xTixO3 heterostructures

from correlated band theory

J. Appl. Phys. 106, 073912, (2009)

95





Manuscript M3

Magnetic coupling parameters at an oxide-oxide
interface from first principles: Fe2O3-FeTiO3

Phys. Rev. B 81, 214432 (2010)

101





Manuscript M4

Electronic structure and magnetism of EuTiO3: a
first-principles study

J. Phys.: Condens. Matter 19, 406217, (2007)

109





Manuscript M5

First principles study of magnetism in divalent Eu
perovskites

J. Appl. Phys. 105, 053905, (2009)

121





Bibliography

[1] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan,
W. G. van der Wiel, G. Rijnders, D. H. A. Blank and H. Hilgenkamp, Nature
Mater. 6, 493 (2007).

[2] J. Chakhalian, J. W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J. C.
Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.-U. Habermeier
and B. Keimer, Nature Phys. 2, 244 (2006).

[3] H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh and Y. Tokura,
Science 305, 646 (2004).

[4] Y. Ishikawa and S. Akimoto, J. Phys. Soc. Jpn. 12, 1083 (1957).

[5] S. A. McEnroe, B. Carter-Stiglitz, R. J. Harrison, P. Robinson, K. Fabian and
C. McCammon, Nature Nano. 2, 631 (2007).

[6] T. Kasama, S. A. McEnroe, N. Ozaki, T. Kogure and A. Putnis, Earth Planet.
Sci. Lett. 224, 461 (2004).

[7] Y. Takada, M. Nakanishi, T. Fujii and J. Takada, J. Magn. Magn. Matter. 310,
2108 (2007).

[8] H. Hojo, K. Fujita, K. Tanaka, and K. Hirao, Appl. Phys. Lett. 89, 142503
(2006).

[9] S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and
Tomasz Dietl, Nature Mater. 6, 440 (2007).

[10] S. A. Chambers, T. C. Droubay, C. M. Wang, K. M. Rosso, S. M. Heald, D. A.
Schwartz, K. R. Kittilstved, and D. R. Gamelin, Materials Today 9, 28 (2006).

[11] J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater. 4, 173
(2005).

[12] A. H. MacDonald, P. Schiffer and N. Samarth, Nature Mater. 4, 195 (2005).

[13] F. Zhou, S. Kotru and R. K. Pandey, Thin Solid Films, 408, 33 (2002).

[14] P. Robinson, R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, Nature 418,
517 (2002).

127



128 BIBLIOGRAPHY

[15] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k,
An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal
Properties (Technical University of Wien, Austria, 2001), ISBN3-9501031-1-2.

[16] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk and G. A.
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To resolve the microscopic origin of magnetism in the Fe2O3 /FeTiO3 system, we have performed density
functional theory calculations that take into account on-site Coulomb repulsion. By systematically varying the
concentration, distribution, and charge state of Ti in a hematite host, we compile a phase diagram of the
stability with respect to the end members and find a clear preference to form layered arrangements as opposed
to solid solutions. The charge mismatch at the interface is accommodated through Ti4+ and a disproportionation
in the Fe contact layer into Fe2+, Fe3+, leading to uncompensated moments in the contact layer and giving first
theoretical evidence for the lamellar magnetism hypothesis. This interface magnetism is associated with im-
purity levels in the band gap, showing a half-metallic behavior and making Fe2O3 /FeTiO3-heterostructures
prospective materials for spintronics applications.

DOI: 10.1103/PhysRevB.77.172405 PACS number�s�: 75.70.Cn, 73.20.Hb, 71.28.�d

A challenge of today’s materials science is to design fer-
romagnetic semiconductors that operate at room temperature
�RT� for spintronics devices. Most of the efforts concentrate
on homogeneous doping of semiconductors with magnetic
impurities,1–4 but the interfaces in complex oxides prove to
be another source of a novel behavior.5–7 The unique mag-
netic properties of the hematite-ilmenite system8–10 �a canted
antiferromagnet and a RT paramagnet, respectively� cur-
rently receive revived interest as a possible cause of mag-
netic anomalies in Earth’s deep crust and on other planets11

as well as for future device applications.3,12,13

Both hematite �a=5.035 Å, c=13.751 Å �Ref. 14�� and
ilmenite �a=5.177 Å, c=14.265 Å �Ref. 15�� crystallize in
a corundum�-derived� structure, which is shown in Fig. 1,
wherein the oxygen ions form a distorted hexagonal close
packed lattice and the cations occupy 2/3 of the octahedral

sites. In �-Fe2O3 �space group R3̄c�, there is a natural modu-
lation of electronic density along the �0001� direction
wherein negatively charged 3O2− layers alternate with posi-
tively charged 2Fe3+ layers. At RT, the magnetic moments of
subsequent iron layers couple antiferromagnetically �AFM�
in-plane with a small spin canting, which is attributed to
spin-orbit coupling.16–18 In ilmenite FeTiO3, Fe and Ti layers

alternate, which reduces the symmetry to R3̄, and the corre-
sponding sequence is 3O2− /2Fe2+ /3O2− /2Ti4+ with AFM
coupling between the Fe layers and TN=56–59 K.19

At the interfaces �IFs� in hematite-ilmenite exsolutions,
the charge neutrality is disrupted. One way to balance the
excess charge at the interface is by a disproportionation in
the Fe layer, which now becomes mixed Fe2+ and Fe3+. This
lamellar magnetism hypothesis (LMH) was proposed by
Robinson et al.20 based on bond valence models and kinetic
Monte Carlo �kMC� simulations with empirical chemical and
magnetic interaction parameters. The increased technological
interest in this system calls for an atomistic material specific
understanding that can only be obtained from first principles
calculations. A previous density functional theory �DFT�
study within the generalized gradient approximation �GGA�
found no evidence for the LMH.21 However, electronic cor-
relations, which are not included in the local �spin-� density
approximation �LSDA� or the GGA of the DFT, play an im-

portant role in transition metal oxides. Such effects were
recently considered within LSDA+U22 or by using hybrid
functionals23 for single Ti impurities in hematite; however,
layered arrangements and interfaces were not addressed.

In this Brief Report, we have performed DFT calculations
including a Hubbard U24 for the end members Fe2O3 and
FeTiO3, as well as their interfaces and solid solutions �SS�.
By systematically varying the concentration, distribution,
and charge state of Ti incorporated in a �-Fe2O3 host, we
explore different scenarios for the charge compensation
mechanism and its consequences for the magnetic and elec-
tronic behavior. Finally, we compile a phase diagram of the
stability of the different configurations with respect to the
end members as a function of Ti doping by also taking the
effect of strain into account.

Our DFT-GGA25 calculations are performed by using the
all-electron full-potential augmented plane waves method, as

1 2
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FIG. 1. �Color online� Crystal structure of FeTiO3 showing half
of the 60-atom unit cell. The cation sites are numbered and oxygen
occupies the edges of the octahedra.
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implemented in WIEN2K.26 Electronic correlations are consid-
ered within the fully localized limit �LDA+U�.24 The sys-
tems are modeled in the hexagonal primitive unit cell �shown
in Fig. 1� containing 30 and 60 atoms. For these, 24 and 15
k points in the irreducible part of the Brillouin zone were
used, respectively. Inside the muffin tins �RMT

Fe,Ti

=1.80 bohr, RMT
O =1.60 bohr� wave functions are expanded

in spherical harmonics up to lmax
wf =10 and nonspherical con-

tributions to the electron density and potential up to lmax
pot. =6

are used. The energy cutoff for the plane wave representation
in the interstitial is Emax

wf =19 Ry for the wave functions and
Emax

pot. =196 Ry for the potential. These convergence param-
eters ensure a numerical accuracy of energy differences bet-
ter than 0.01 eV/60-atom cell. A full structural optimization
of internal parameters within GGA�U27 has been per-
formed.

As a starting point, we have modeled the end members
Fe2O3 and FeTiO3. In agreement with previous
calculations,22,28 GGA+U considerably improves the band
gap of hematite from 0.43 eV �GGA� to 2.2 eV for U
=6 eV and J=1 eV in close agreement with measured val-
ues of 2.14–2.36 eV.29,30 Also, the type of band gap changes
from a Mott–Hubbard between Fe3d-Fe3d states to charge
transfer after the scheme of Zaanen et al.31 between occupied
O 2p and empty Fe 3d states.

For ilmenite, the GGA incorrectly predicts a metallic
state;32 hence, the inclusion of Hubbard U �U=8 eV, J
=1 eV� is decisive to obtain a Mott–Hubbard gap of 2.18 eV
��exp=2.54 eV9� between the occupied Fe dz2 orbital and the
unoccupied Fe 3d states in one spin channel �all Fe 3d orbit-
als being occupied in the other spin channel�. These U and J
values are used both on Fe and Ti in the following: A

Fe3+ /Ti3+ charge arrangement lies 0.63 eV/p.f.u. above the
ground state Fe2+ /Ti4+. For Fe2+Ti4+O3, the AFM and FM
couplings between Fe layers are nearly degenerate, which is
consistent with the low TN.

In the following, we vary the concentration and distribu-
tion of Ti in a Fe2O3 host. The positions of the Ti ions are
given as subscripts and follow the notation in Fig. 1, e.g.,
T3,4,7,8,11,12 describes pure ilmenite. Table I contains the en-
ergetic stability, structural, magnetic, and electronic proper-
ties of different cation arrangements and concentrations. We
start the discussion with Ilm33, which corresponds to four Ti
ions out of 24 cations in the 60-atom cell. We find that the
formation of a compact ilmenite-like block with a Fe layer
sandwiched between two Ti layers �T3,4� is 0.36 eV more
favorable than the incorporation of the single Ti layers in the
hematite host �T1,2,13,14�. The spin density of T3,4 plotted in
Fig. 2�a� shows that the central Fe layer turns into Fe2+ and
the charge mismatch at the IF is compensated by Fe2+, Fe3+

in the contact layer, which gives theoretical evidence from
first principles for the lamellar magnetism hypothesis of
Robinson et al.20 Our GGA+U calculations show that Ti4

4+

shares faces with Fe5
3+, while Fe6

2+ shares faces with Fe8
3+

from the next hematite layer. Such a configuration was pro-
posed by using bond-valence sums33 and kMC simulations34

only after considering both chemical and magnetic interac-
tions.

The formation of layered arrangements �T3,4� is favored
compared to a more random distributions with 50% substi-
tuted cation layers �e.g., T5,10, T5,7, or T5,8�. With respect to
magnetism, each Ti ion adds a magnetic moment of 4�B
independent of whether the extra electron is localized at Ti
�Ti3+� or at a neighboring Fe �Fe2+�. In solid solutions, the
total magnetic moment depends on the site and sublattice

TABLE I. Relative stability �eV/60-atom cell� of the different cation arrangements in the Ti4+, Fe2+, Fe3+

charge state �strained at the Fe2O3 lattice parameters� with respect to the most stable configuration, whose
energy is set to 0.0 eV. The positions occupied by Ti are denoted as subscripts according to Fig. 1 �SSL: spin
sublattice�. The total magnetic moment, electronic behavior �hm and m denote half-metallic and metallic,
respectively�, as well as the Ti4+-O and Fe2+-O distances at the interface are also displayed.

System �E
�eV�

dTi4+−O

Å
dFe2+−O

Å
Mtot

��B�
�

�eV�

Ilm17

T1,2: 1 Ti layer 0.0 1.90 2.08 −8.0 hm

T7: single impurity 0.20 1.93 2.02 12.0 hm

Ilm33

T1,2,13,14: 1 Ti layer 0.36 1.90 2.08 −16.0 hm

T3,4: 2 Ti layers 0.00 1.89 2.08 16.0 hm

T5,10: same SSL 0.19 1.86 2.04 −16.0 hm

T5,7: different SSL 0.41 1.92 2.02 0.0 m

T5,8: different SSL 1.24 1.86 2.06 0.0 hm

Ilm50

T1,2,5,6: 3 Ti layers 0.00 1.90 2.07 −24.0 hm

T3,4,7: Ti-Fe@IF 1.23 1.96 2.00 8.0 hm

Ilm66

T3,4,11,12: 4 Ti layers 0.00 1.90 2.07 16.0 hm

T3,6,9,12: SS 0.95 1.92 2.02 0.0 hm
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where Ti is built in. We find that incorporation in the same
spin-sublattice T5,10 �which maximizes the magnetic mo-
ment� is favored by 0.22 eV compared to the AFM T5,7.
Taking local lattice relaxations into account enhances the en-
ergy gain compared to previous calculations by Velev et al.22

�0.08 eV�. Still, some degree of Ti disorder is likely in
quickly cooled samples, which reduces the expected magne-
tization as observed by Chambers et al.3 �0.5�0.15�B /Ti
for xTi=0.15�. For higher Ti concentrations and longer an-
nealing steps, the formation of the thermodynamically more
stable layered ferrimagnetic phase is expected, which is con-
sistent with the strong correlation between cation order and
ferrimagnetism found in annealed samples8,12 and the satura-
tion magnetization of 3�B /mol measured in epitaxial films
with xTi�0.63.13 Below the ordering temperature of il-
menite, only ilmenite lamella with an odd number of Ti lay-
ers are expected to carry a nonzero magnetization, whereas,
above 56 K, the net magnetic moment will be solely due to
the uncompensated magnetic moments in the contact layers,
which is independent of the number of Ti layers within the
paramagnetic ilmenite lamella.

Concerning the electronic properties, doping Fe2O3 with
Ti leads to impurity levels in the band gap arising from the
occupied dz2 orbital of Fe2+ ions in the contact layer. The
density of states plotted in Fig. 2�d� shows that these states
are pinned at the Fermi level, which leads to fully spin-
polarized carriers and half-metallic behavior for T3,4. This
trend is robust with respect to U �Ref. 35� and is observed for
most of the studied cation concentrations and arrangements
after structural relaxation. Experimentally, a semiconducting
behavior and a drop in resistivity of several orders with re-
spect to the end members is measured.3,9,12,13 The measured
values suggest localized rather than itinerant carriers consis-

tent with the picture, we obtain from LDA+U.
Next, we turn to the energetic stability as a function of the

Ti concentration displayed in Table I and the phase diagram
in Fig. 3. Charge compensation through Ti4+ and dispropor-
tionation of iron into Fe2+, Fe3+ is strongly favored compared
to compensation involving Ti3+, especially after optimization
of the internal structural parameters. Moreover, the formation
of layered configurations �full symbols� is preferred over dis-
ordered arrangements �empty symbols� except for very high
��83%� and very low concentrations ��17%�, which is con-
sistent with the miscibility gap from thermodynamic data
�e.g., Refs. 21 and 36�. The linear increase in formation en-
ergy in the range between Ilm17 and Ilm66 indicates that
straining Ti doped Fe2O3 to the Fe2O3 lattice parameters gets
increasingly unfavorable with growing x. On the other hand,
using the ilmenite lattice parameters at x=66% instead of
hematite �volume increase of 8.7%� leads to an energy gain
of 0.22 eV/p.f.u. for T7,8,11,12 �red filled up triangles in Fig.
3�.

An interesting trend is observed in the shortest cation-
oxygen bond lengths �cf. Table I�, which tend to relax toward
the values in the respective end member. While dFe3+−O �not
shown� remains close to the value in bulk hematite �1.96 Å�,
the bond lengths of the Ti impurity and the neighboring Fe2+

relax toward the values in bulk ilmenite �1.92 and 2.07 Å,
respectively�.

In Fe doped ilmenite, the trend toward layered arrange-
ments is retained for 66%, e.g., T7,8,11,12 is favored by 0.21
eV compared to T3,8,11,12, but ordered and disordered phases
are nearly degenerate at 83%. Fe substituting for Ti in the
ilmenite lattice is Fe3+. Additionally, one Fe in the neighbor-
ing layer turns Fe3+ to compensate the charge, which forms a
Fe2+, Fe3+ contact layer. The substituted Fe shows a strong
tendency to couple antiparallel to the neighboring Fe layers.

In summary, we present a comprehensive GGA+U study
of the cation, charge, and magnetic order in the hematite-
ilmenite system, which shows a strong preference toward

a)

Fe
2+
1,2

Ti
4+
3,4

Fe 2+
6

[110]
[0001]

Fe
3+
5

Fe
3+
7,8

dz2
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FIG. 2. �Color online� �a� Spin density distribution and ��b�–�e��
total and projected density of states of Ti double layer in hematite
�T3,4� with Fe1,2

2+ , Ti3,4
4+ and a disproportionated Fe5

3+, Fe6
2+ layer at

the interface. The position of the Fermi level is set to 0.0 eV and
denoted by a short line. In �a�, positions of Ti, Fe, and O are marked
by the light gray, red �dark gray�, and small black circles,
respectively.
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formation of layered configurations as opposed to solid so-
lutions. At the interface between hematite and ilmenite
blocks, we find evidence for the lamellar magnetism
hypothesis20 with a disproportionated Fe2+, Fe3+ contact
layer to accommodate the polar discontinuity. These uncom-
pensated moments lead to the ferrimagnetic behavior of the
system. The dz2 orbital in one spin channel �all d orbitals
being occupied in the other� at the Fe2+ sites in the contact
layer crosses the Fermi level leading to half-metallic behav-
ior in most of the studied compositions. The ferrimagnetism
emerging at the interface of two antiferromagnetic oxides
such as hematite and ilmenite is an impressive example of
the novel functionality that can arise as a consequence of a
polar discontinuity and the richer possibilities to compensate

it that complex oxides offer.37,38 Recently, an exchange bias
of more than 1 T was reported in this system.39 Further phe-
nomena such as oscillatory exchange coupling and spin-
polarized transport remain to be explored in controlled epi-
taxial Fe2O3-FeTiO3 multilayers on the route to possible
device applications.
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Effect of strain on the stability and electronic properties of ferrimagnetic
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Based on density functional theory calculations including an on-site Hubbard U term, we investigate
the effect of substrate-induced strain on the properties of ferrimagnetic hematite-ilmenite solid
solutions and heterostructures. While the charge compensation mechanism through formation of a
mixed Fe2+, Fe3+-contact layer is unaffected, strain can be used to tune the electronic properties of
the system, e.g., by changing the position of impurity levels in the band gap. Straining
Fe2O3–FeTiO3 films at the lateral lattice parameters of Al2O3�0001�, commonly used as a substrate,
is found to be energetically unfavorable as compared to films on Fe2O3�0001� or
FeTiO3�0001�-substrates. © 2009 American Institute of Physics. �doi:10.1063/1.3243083�

I. INTRODUCTION

In the fabrication of ferromagnetic semiconductors for
spintronics applications a lot of research focuses on the ho-
mogeneous doping of conventional or oxide semiconductors
with 3d ions.1–4 However, the coupling between magnetic
impurities and charge carriers is often too weak, leading to
Curie temperatures �TC� way below room temperature �RT�.
On the other hand, materials such as Fe2−xTixO3 exhibit in-
trinsic semiconducting and ferrimagnetic properties, al-
though the end members �-Fe2O3 and FeTiO3 are antiferro-
magnetic insulators with TN=948 and 56 K, respectively.
Besides applications in spintronics, this material is also dis-
cussed in paleomagnetism as a possible cause of anomalies
in Earth’s magnetic field, as well as for electronics devices
�e.g., varistors� because it is a wide band gap semiconductor
that can be either n- or p-type depending on the doping
concentration.5 A Curie temperature above RT and a reduc-
tion in resistivity were observed in synthetic solid solutions
�SSs� with Ti concentrations up to 70%.6,7 Moreover, TC was
found to increase upon annealing both in these samples and
in thin epitaxial films.8 This behavior can be attributed to
cation ordering phenomena related to a miscibility gap in the
rather complex phase diagram of the system.9

The origin of ferrimagnetic behavior remained unclear
until recently. Both materials have a corundum �-related�
structure �see Fig. 1� with a stacking of 2Fe3+ /3O2− in he-

matite �space group R3̄c� and 2Fe2+ /3O2− /2Ti4+ /3O2− in il-

menite �R3̄� along the �0001�-direction. Thus at an interface
or in a SS, charge is not compensated, if all ions preserved
their bulk valence states. Density functional theory �DFT�
calculations considering correlation effects within LDA+U
�Ref. 10� showed that the charge mismatch is accommodated
by a mixed Fe3+, Fe2+ contact layer at the interface,11 pro-
viding first theoretical evidence for the lamellar magnetism
hypothesis.12 The Fe2+-ions at the interface give rise to un-

compensated moments and also to impurity states in the band
gap.

The incorporation of Ti in hematite13 �a=5.04 Å, c
=13.75 Å� introduces a substantial strain: The volume of the
end member ilmenite14 �a=5.18 Å, c=14.27 Å� is 9.7%
larger than the one of hematite. Indeed, lens-shaped dark
contrasts around nanoscale hematite lamellae in an ilmenite
host, imaged by transmission electron microscopy, indicate
significant strain fields.12

Epitaxial Fe2−xTixO3 films5,8,15–18 are typically grown on
an Al2O3�0001�-substrate �a=4.76 Å, c=12.99 Å�, which
introduces substantial compressive strains of 5.8% and 8.8%
compared to Fe2O3 and FeTiO3 and only rarely, a
Cr2O3-buffer layer is used19 to reduce the lattice mismatch.

Epitaxial strain can have a strong impact on the film

a�Electronic mail: pentcheva@lrz.uni-muenchen.de.

FIG. 1. �Color online� Crystal structure of the 60-atom unit cell of
Fe2−xTixO3 for x=0.33 with �a� a layered and more homogeneous arrange-
ment of the Ti-cations with Ti in the �b� same and �c� different spin sublat-
tices. Oxygen, Fe, and Ti are shown with light gray, red �gray�, and black
spheres, respectively. Pink �gray� circles mark the Fe2+-positions, while the
rest of the iron are Fe3+. The local magnetic moments at the cation sites and
the total magnetization of the system in �B are given on the right side and
bottom of each configuration, respectively.
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properties, e.g., by tuning the magnetic interactions in mag-
netoelastic composites,20 enhancing ferroelectricity21,22 or
even inducing orbital reconstructions.23 The goal of the
present study is to explore the effect of strain on the proper-
ties of Fe2−xTixO3. In particular we address its influence on
�i� the energetic stability and compensation mechanism as
well as on �ii� the electronic, magnetic, and structural prop-
erties of the system. DFT calculations are performed on SS
and layered configurations with x=0.17, 0.33, 0.50 and 0.66,
strained laterally at the lattice parameters of Al2O3, Fe2O3,
and FeTiO3.

II. CALCULATIONAL DETAILS

We use the all-electron full-potential linear augmented
plane wave method as implemented in the WIEN2K code24

and the generalized gradient approximation �GGA�.25 Within
LDA+U �Ref. 10� U=8.0 eV and J=1.0 eV are applied to
the Fe and Ti 3d states. These values were found to repro-
duce correctly the ground state of FeTiO3.11 The systems are
simulated in a hexagonal unit cell with 60 atoms �Fig. 1�.
Besides the layered configurations �cf. Fig. 1�a�� more homo-
geneous distributions are generated by substituting 50% of
Fe in a bilayer by Ti, as shown, e.g., in Figs. 1�b� and 1�c�.
For further details on the calculation see �Ref. 11�.

III. RESULTS AND DISCUSSION

The optimized c /a-ratio and volume �Figs. 2�a� and
2�b�� show a linear increase with xIlm in accordance with
Vegard’s law, similar to what was observed experimentally in
synthetic hematite-ilmenite SSs.6 Furthermore, for a given
concentration both c /a and V are largely independent of the
distribution of Ti-impurities. The c /a-ratio of bulk FeTiO3

�2.76� is slightly larger than the one for �-Fe2O3 and Al2O3

�2.73�. Due to the small tensile/compressive strain when us-
ing aFeTiO3

/aFe2O3
the c /a-ratio of Fe2−xTixO3 is slightly re-

duced ��1.1% to �2.8%�/increased �3.1%–5.2%�, respec-
tively. In contrast, due to the high compressive strain on an
Al2O3-substrate, c /a increases strongly by 14.7%–16.6%,
which corresponds to crel=14.89–15.15 Å. Nevertheless,
the volume does not completely relax: The volume of the
system strained at the Al2O3-lateral lattice constant is 6.8%
�10.2%� smaller than when strained at aFe2O3

�aFeTiO3
�. The

volumes of Fe2−xTixO3 strained at aFeTiO3
and aFe2O3

lie be-
tween the ones for the end members Fe2O3 and FeTiO3.

X-ray diffraction data for Fe2−xTixO3 films on
Al2O3�0001� �Refs. 26 and 27� indicate significant lateral
strain relaxation: already in a 10 nm thick film a relaxes to
the bulk value of FeTiO3 with only a small change in c /a
�see Fig. 2�a��. The c /a values and volumes obtained by
Takada et al.27 are in good agreement with the DFT values of
the systems strained at aFeTiO3

.
Next we turn to the influence of strain on the energetic

stability. The formation energy with respect to the end mem-
bers as a function of xIlm is shown in Fig. 2�c� for the three
different substrate lattice constants. For each Ti-
concentration we have considered several different cation ar-
rangements, e.g., for x=0.33 these include an ordered ar-
rangement with an Fe-layer sandwiched between two Ti-

layers �Fig. 1�a�� or SSs with Ti ions either in the same �Fig.
1�b�� or different spin sublattices �Fig. 1�c��. We find that
compensation through Ti4+ and disproportionation in Fe2+,
Fe3+ is more favorable over mechanisms involving Ti3+. Fur-
thermore, the formation energy increases linearly with xIlm.
These features are independent of the substrate lattice param-
eters. Systems strained laterally at aFeTiO3

are more stable
than the ones on aFe2O3

. In contrast, the formation energy of
films strained at aAl2O3

increases by 0.7 eV as compared to
films on aFe2O3

. This implies that the strong compressive
strain is energetically unfavorable and gives a possible ex-
planation why a lateral strain relaxation occurs in Fe2−xTixO3

films.26,27 While for systems strained on hematite and il-
menite substrates layered arrangements �full symbols� are
more favorable than homogeneous distributions �open sym-
bols�, the trend is reversed for x=0.33 and x=0.66 on an
Al2O3�0001�-substrate.

FIG. 2. �Color online� �a� c /a-ratio, �b� volume, and �c� formation energy
�eV/f.u.� vs ilmenite concentration xIlm for Fe2−xTixO3 strained at the Al2O3

�red/dark gray�, Fe2O3 �gray�, and FeTiO3 �black� lateral lattice constants.
Circles �triangles� denote compensation involving Ti4+�Ti3+�. Open/filled
symbols refer to SSs/layered configurations �l�. Horizontal lines mark the
bulk c /a ratio and volume of the end members and Al2O3. Red �dark gray�
squares indicate experimental data from Ref. 27.
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Concerning the electronic properties of the hemoilmenite
system, we have plotted in Fig. 3 the density of states of a
Ti-double layer in a hematite host �Fig. 1�a��, but similar
behavior is observed for all studied systems. Upon Ti4+ sub-
stitution, an iron ion from the neighboring layer turns Fe2+,
as observed also for isolated impurities by Velev et al.28 The
Fe2+O6 and the TiO6-octahedron are corner �and not face�
sharing. The so formed Fe2+-ions in the contact layer have an
impurity state of a1g symmetry �dz2� that is pinned at the
Fermi level for systems strained at aFe2O3

and aFeTiO3
. Such a

midgap state was recently reported from x-ray valence band
photoemission29 and optical measurements,17 although it was
related to the low oxygen pressure during deposition. The
main feature related to strain is the change in bandwidth:
While for tensile strain at aFeTiO3

the bands are narrowed, for
compressive strain at aAl2O3

they are strongly broadened.
This results in a reduction in the band gap �between the
impurity state defining the Fermi level and the bottom of the
conduction band� from 1.90 eV for aFeTiO3

and 1.79 eV for
aFe2O3

to 1.43 eV for aAl2O3
. The corresponding values for

x=66% show the same trend but are smaller: 1.64 eV for
aFeTiO3

and 1.46 eV for aFe2O3
to 0.78 eV for aAl2O3

.
The local magnetic moments and total magnetization for

the three systems with x=0.33 are displayed in Fig. 1. Strain
has only a small impact on the magnetic moments of Fe2+

��3.5�B� and Fe3+ ��4.1�B�, respectively, which are re-
duced by less than 0.05�B at aAl2O3

. The Fe2+-layer sand-
wiched between two Ti-layers in Fig. 1�a� is only weakly
coupled to the next Fe-layer �parallel and antiparallel orien-
tations of the magnetic moments is nearly degenerate as in
the ilmenite end member�. Therefore, at temperatures above
the Néel temperature of ilmenite, such layers will not con-
tribute to the total magnetization. In contrast, Fe2+ in the
contact layer shows a strong antiferromagnetic coupling to

the neighboring Fe-layer of the hematite host. These defect
interface moments are responsible for the ferrimagnetic be-
havior of the system �Mtot=8.0�B�. In SSs, Ti substitution in
different spin sublattices �e.g., in adjacent layers, as shown in
Fig. 1�c��, resulting in a zero net magnetization, is less fa-
vorable compared to substitution in the same spin sublattice
�Fig. 1�b��, which maximizes the total magnetization �Mtot

=−16.0�B�. This trend promotes ferrimagnetic behavior in
the system.

IV. CONCLUSIONS

DFT calculations within GGA+U show that the charge
compensation in hematite-ilmenite heterostructures and SSs
take place through a mixed Fe2+, Fe3+ contact layer. This
mechanism is robust with respect to substrate-induced strain.
For Fe2O3�0001� or FeTiO3�0001� substrates layered ar-
rangements are more stable than SSs. However, the compres-
sive strain at aAl2O3

is likely to cause a stronger competition
and even reverse the trend for x=0.33 and x=0.66. The
growth of epitaxial films on an Al2O3-substrate is connected
with a high energy cost. Therefore, in order to release strain
such films may roughen or buckle in the first layers, as re-
cently reported by Popova et al.26 In contrast, the growth on
lattice matched substrates or even substrates that produce a
small tensile strain like FeTiO3 is energetically favored. Our
DFT results indicate that strain can have a strong impact on
the structural and electronic properties in the hematite-
ilmenite system, e.g., by tuning the bandwidth or the position
of impurity levels in the band gap and thus changing the
concentration of spin-polarized carriers.
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Magnetic coupling parameters at an oxide-oxide interface from first principles: Fe2O3-FeTiO3
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Charge mismatch at the interface between canted antiferromagnetic hematite ��-Fe2O3� and antiferromag-
netic ilmenite �FeTiO3� is accommodated by the formation of mixed Fe2+ and Fe3+ contact layers, leading to
uncompensated magnetic moments in the system. To derive the magnetic exchange interaction parameters of
the end members and interface, we map total-energy differences of collinear spin arrangements obtained from
density-functional theory calculations to a Heisenberg Hamiltonian using the least-squares method. Parameters
for the end members, hematite �Jm

3+,3+� and ilmenite �Jm
2+,2+� are in good agreement with the values obtained

from inelastic neutron-scattering data. The magnetic interaction parameters between Fe2+ and Fe3+ �Jm
2+,3+� in

the contact layer show a strong antiferromagnetic coupling to the adjacent hematite layers and thus explain the
ferrimagnetism in the system.
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I. INTRODUCTION

The polar discontinuity has been recognized as a driving
force in the emergence of unexpected electronic phases at
oxide interfaces. One example is the stable room-temperature
remanent magnetization observed in nanoscale intergrowths
of hematite and ilmenite.1 In this system, the valence mis-
match arises at the interface due to a stacking of 2Fe3+ /3O2−

in hematite and 2Fe2+ /3O2− /2Ti4+ in ilmenite. Robinson et
al.2 proposed that magnetism emerges due to a mixture of
Fe2+ and Fe3+ at the interface. Recent density-functional
theory calculations with an on-site Coulomb repulsion term
have provided theoretical evidence for this compensation
mechanism and the resulting interface �lamellar�
magnetism.3 The study of Robinson et al.2 was based on
Monte Carlo �MC� simulations that used an empirical set of
magnetic interaction parameters based on the untested as-
sumption that Fe3+-Fe2+ interactions �for which there are no
literature data� should have the same sign but lower magni-
tudes than the corresponding Fe3+-Fe3+ interactions �for
which literature data exist�.

Obtaining accurate magnetic exchange interaction param-
eters is thus essential in understanding and modeling the
magnetic behavior of this material. Exchange interaction pa-
rameters can be derived, for example, by fitting inelastic
neutron-scattering data to the theoretical dispersion-relation
expression4,5 and magnetic susceptibility.6 On the other hand,
first-principles calculations can be very useful to extract
these quantities either by fitting total-energy differences
of several magnetic configurations to a Heisenberg
Hamiltonian7–10 or by using the second variation in the total
energy.11 Such methods have been applied in the past to bulk
materials or impurities in diluted magnetic semiconductors.12

In this paper, we provide magnetic interaction parameters for
an oxide interface, which are not accessible, e.g., from ex-
periment.

Both end members, hematite ��-Fe2O3� and ilmenite
�FeTiO3�, crystallize in a corundumlike structure with space

group R3̄c and R3̄, respectively. The oxygen ions form a

distorted hexagonal-closed-packed lattice and cations occupy
2/3 of the octahedral sites resulting in buckled layers. Hema-
tite is a canted antiferromagnet below 948 K: the Fe3+ spins
lie in the basal plane �perpendicular to the c-axis� with anti-
ferromagnetic �AFM� coupling between neighboring layers.
A small spin canting above the Morin temperature
�TM=260 K� results in a weak net magnetic moment within
the basal plane. Below the Morin temperature, the orienta-
tion of spins switches to be almost parallel to the c-axis.
Ilmenite is an antiferromagnet below TN=55 K: Fe2+ layers
separated by magnetically inert Ti4+ layers couple antiferro-
magnetically with Fe2+ spins oriented parallel and antiparal-
lel to the c-axis.

The magnetic interaction parameters extracted here from
DFT calculations for the end members, Fe2O3 and FeTiO3
are compared with available inelastic neutron-scattering
data.13–16 Previous theoretical work on Fe2O3 �Ref. 17� is
also discussed. The main goal of the paper is to determine
the magnetic interaction parameters between Fe2+ and Fe3+ at
the hematite-ilmenite interface.

Briefly, in this paper Sec. II is devoted to details of the
DFT calculation. Section III describes the method applied to
extract the magnetic interaction parameters. The results for
the bulk phases �Fe2O3 and FeTiO3� as well as the interface
are discussed together in Secs. III A and III B with implica-
tions for the magnetic properties of the interface. The main
findings are summarized in Sec. IV.

II. CALCULATIONAL DETAILS

Density-functional theory calculations have been per-
formed using the all-electron full-potential linear augmented
plane-wave method as implemented in the WIEN2K code.18

For the exchange-correlation potential, the GGA �Ref. 19� is
used and electronic correlations are considered by including
a Coulomb repulsion parameter U within the fully localized
limit of LDA �local density approximation�/GGA �general-
ized gradient approximation�+U method.20 For hematite,
U=6 eV and J=1 eV is used to reproduce the experimental
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band gap while for ilmenite, U=8 eV and J=1 eV is
needed. Thus the latter values have been used for FeTiO3 and
the intermediate members. In order to explore how the value
of U affects the absolute values of the magnetic interaction,
we have also performed calculations with U=6 eV. We note
that similar values are typically used to describe iron bearing
oxides.21–24 For comparison, the U values obtained from con-
strained LDA �Ref. 25� for magnetite are 6.2 eV for Fe2+ in
octahedral coordination and 7.69 and 8.73 eV for Fe3+ in a
tetrahedral and octahedral site, respectively.26

The systems are modeled in a hexagonal unit cell with 30
atoms for Fe2O3 and 60 atoms for FeTiO3 and intermediate
members. The muffin-tin radii are 1.80 bohrs for Fe and Ti
and 1.60 bohrs for oxygen. Inside the muffin tins, wave func-
tions are expanded in spherical harmonics up to lmax

wf =10 and
nonspherical contributions to the electron density and poten-
tial up to lmax

pot. =6 are used. The energy cutoff for the plane-
wave representation in the interstitial is Emax

wf =25 Ry for the
wave functions and Emax

pot. =196 Ry for the potential. For he-
matite and the intermediate members, the lattice parameters
of hematite27 �a=5.04 Å, c=13.75 Å� are used while for
ilmenite, the corresponding bulk lattice constants of
ilmenite28 �a=5.18 Å, c=14.27 Å� are used. For each spin
configuration, the internal degrees of freedom are fully
relaxed.29 For the integration in reciprocal space, we have
used 24 and 15 k-points in the irreducible part of Brillouin
zone for hematite and ilmenite, respectively. The conver-
gence criteria ensure a numerical accuracy of energy differ-
ences better than 0.1 mRy/60-atom cell.

III. CALCULATION OF MAGNETIC INTERACTION
PARAMETERS

In order to map the total energy from the DFT calcula-
tions onto a Heisenberg Hamiltonian, we separate it into a
nonmagnetic �H0� and magnetic contribution,

H = H0 −
1

2�
i,j

JijSi · S j , �1�

where the summation is over all distinct spin pairs. Si is
the spin vector at the ith lattice site and Jij is the isotropic
magnetic exchange interaction parameter between the mag-
netic moments on-site i and j. In the following, we use
Jij =Jm

q �rij�, where the index m ranges from first to eighth
neighbor and q defines the type of cations in the pair.
For example, Jm

3+,3+ is an interaction between Fe3+-Fe3+

pairs while Jm
2+,3+ is an interaction between Fe2+ and Fe3+.

Jm
q �0��0� corresponds to antiferromagnetic �ferromagnetic

�FM�� coupling.
Figure 1 illustrates the magnetic pair exchange interac-

tions which are used in our modeling. J1 is the interlayer
interaction between cations in face-sharing octahedra. J2 is
the intralayer interaction between cations in edge-sharing oc-
tahedra. J3, J4, and J5 correspond to the interlayer interac-
tions among cations with corner-sharing octahedra and J6, J7,
and J8 are the interactions with cations from the second-
nearest layer.

Because we focus here on the properties of the
Fe2O3-FeTiO3 interface and not on the origin of spin canting

of the end-member hematite which occurs above the Morin
temperature, we have investigated only collinear magnetic
configurations. Isotropic Jm

q �rij� are calculated by mapping
the energy differences of these spin arrangements to the
Heisenberg Hamiltonian in Eq. �1�. The energy differences
depend on the type of spin configuration: while some can be
10–40 mRy/30-atom cell, for hematite, the maximum energy
difference between the ground-state AFM and a FM configu-
ration is 250 mRy, consistent with the high magnetic order-
ing temperature of this material. The fitting of the DFT en-
ergy differences to the Hamiltonian is done by a
multivariable least-squares �LS� method. The error bars for
the obtained parameters from LS method are calculated
within the confidence level of 0.99.

A. Bulk phase: Fe2O3 and FeTiO3

We first test the method for the end members for which
we have calculated 23 and 10 different collinear spin ar-
rangements, respectively. The calculated values for hematite
�Jm

3+,3+� are displayed in Fig. 2�a� together with the values
obtained from neutron scattering.13 We find that for hematite,
the dominant parameters are the interlayer magnetic interac-
tions J3=−72 K, J4=J5=−50 K. The negative sign implies
a strong antiferromagnetic coupling between the Fe3+ layers
and explains the AFM ground state of hematite. The values

FIG. 1. �Color online� Side view of the corundum structure
showing only the cation positions with alternating cationic layers
denoted by light and dark atoms. Additionally, the pair magnetic
exchange parameters J1 to J8 between the cations are defined.
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are in good agreement both with the experimental data of
Samuelsen and Shirane13 as well as with previous LDA
and LDA+U calculations by Mazurenko and Anisimov17

who additionally took into account spin-orbit coupling. In
contrast to experiment, J1 and J2 are found to be negative.
However, both parameters are significantly smaller than
J3-J5 and play therefore a minor role in the resulting mag-
netic ordering. Thus the strong interlayer AFM coupling en-
forces ferromagnetic coupling within each Fe3+ layer. Fur-
thermore, our values support the reasoning of Goodenough30

and Anderson31 that cation interactions mediated by an anion
�superexchange� with cation-anion-cation angles between
120° –180° �J3 ,J4 ,J5� are negative in sign and much stron-
ger than direct interactions between cations in face- �edge-�
sharing octahedra, J1 �J2�.

The calculated values for ilmenite �Jm
2+,2+� are shown in

Fig. 2�b�. In ilmenite, Fe2+ layers alternate with Ti4+ layers.
Since Ti is in 4+ state �d0�, all the Fe-Ti interactions are zero
�J1, J3, J4, and J5�. The positive J2 implies that magnetic

interactions within the Fe2+ layer are ferromagnetic. On the
other hand, J6 and J7 have a small negative value leading to
an antiferromagnetic coupling with Fe in layers above and
below the Ti layers. The positive J2 and negative J6 and J7
determine the correct antiferromagnetic ground state for il-
menite. However, the absolute values are lower compared to
the experimental ones obtained by Kato et al.15,16 by fitting
data at T=12 K to the magnon dispersion relation.

Useful comparisons with previous results for hematite
can be made by calculating the Néel temperature using
the mean-field approximation �MFA�, defined as kBTMFA

= 1
3S�S+1��mnmJm, where kB is the Boltzmann constant and

nm is the multiplicity of neighbors corresponding to Jm. It is
an established fact that MFA cannot give the exact value for
the transition temperature but provides a qualitative estima-
tion. Using the MFA expression above and the spin magnetic
moment of S=5 /2 for Fe3+, we obtain TN

MFA=1416�41 K
�1107�37 K� for hematite with U=6�8� eV, respectively
�Table I�. A previous DFT study32 reported a higher value
�1711 K�. Both MFA values overestimate the experimental
Néel temperature �953–966 K�.33 A recent LDA+DMFT
�Dynamical Mean Field Theory� study obtained
TN=1600 K for hematite.34 Monte Carlo simulations, fol-
lowing the method of Harrison35 were used to obtain a
more accurate estimate of TN=1150�10 �910�10� K for
U=6�8� eV, which are closer to the experimentally observed
value. For ilmenite, the mean-field estimated temperatures
using a spin magnetic moment of S=4 /2 for Fe2+ with
U=6 and 8 eV are TN

MFA=43�18 and 19�5 K. Monte
Carlo �MC� simulations yielded a value of 50�2 �15�5� K
for U=6�8� eV.

The low Néel temperature for U=8 eV in ilmenite can be
traced back to the small value of J2=2.4 K, which is the
interaction responsible for the ferromagnetic ordering within
the Fe layers. Harrison et al.36 found a value of J2=10.8 K
was required to obtain the correct Néel temperature for end-
member ilmenite using Monte Carlo simulations, which is
close to the empirical values obtained by Kato et al.15,16 The
low value of J2 is likely due to the high on-site Coulomb
parameter U=8 eV which was used in order to describe cor-
rectly the size of the band gap. Using U=6 eV, J2 is signifi-
cantly enhanced �J2=6.0 K�, resulting in a Néel temperature
of 50�2 K from MC simulations. A similar dependence of
the magnetic interaction parameters on U is obtained for
hematite and reported for Cr2O3.9 For example, using
U=8 eV instead of U=6 eV for hematite leads to a reduc-
tion in Jm �m=3,4 ,5� by �20%.

FIG. 2. �Color online� The magnetic pair interaction parameters
�Jm

q �K�� up to eighth neighbor are shown in �a� for hematite �Jm
3+,3+�,

�b� for ilmenite �Jm
2+,2+�, and �c� for the interface �Jm

2+,3+�. Results for
U=6 and 8 eV are marked by filled and open squares, respectively.
The experimental values for hematite �open red/gray circle� are
taken from Ref. 13 and for ilmenite �open red/gray circles and stars�
are taken from Refs. 15 and 16. The parameters for the interface in
panel �c� are calculated for the configuration shown in Fig. 3�b�.

TABLE I. Néel temperature for hematite and ilmenite calculated
within the MFA and from Monte Carlo simulations for U=6 and 8
eV.

Material

Monte Carlo MFA

U=6 eV U=8 eV U=6 eV U=8 eV

Fe2O3 1150�10 910�10 1416�41 1107�37

FeTiO3 50�2 15�5 43�18 19�5
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B. Magnetic interactions at the interface of Fe2O3 and FeTiO3

As mentioned previously, a Fe3+ and Fe2+ contact layer is
formed at the Fe2O3 /FeTiO3 interface as a result of the dis-
ruption of charge neutrality.2,3 The sixth electron of Fe2+ oc-
cupies an a1g orbital. This localized state is pinned at the
Fermi level �for more details on the electronic properties, the
reader is referred to Refs. 3 and 37�. In order to extract the
magnetic interaction parameters at the interface �Jm

2+,3+�, we
have considered several cation configurations. Figure 3�a�
shows a heterostructure containing an ilmenite and a hema-
tite block while Fig. 3�b� contains a layered part as well as
mixed Fe-Ti layers. Because not all interaction parameters

are accessible in the former �e.g., J3,6
2+,3+�, we have chosen the

one in Fig. 3�b� to determine all Jm
2+,3+. For the latter, a total

of 16 different spin arrangements were calculated.
The extracted parameters for the interface �Jm

2+,3+� to-
gether with the ones for the end members �Jm

3+,3+ and Jm
2+,2+�

are displayed in Fig. 2 and Table II. Similar to hematite, we
find that the dominant interaction parameters at the interface
are J3, J4, and J5. These have the same sign but are lower in
magnitude than the corresponding Fe3+-Fe3+ interactions.
This result validates the main assumption made in previous
Monte Carlo studies of the solid solution.35,36 Although the
absolute values of these interactions are generally smaller
than in hematite, their negative value implies that Fe2+ in the
contact layer couples antiferromagnetically to the next hema-
tite layer. As a consequence, the direction of uncompensated
magnetic moments at the interface will be pinned with re-
spect to the hematite host, resulting in a ferrimagnetic behav-
ior of the system. Monte Carlo simulations of magnetic or-
dering with a 4�4�4 supercell were performed for the
configuration in Fig. 3�a�, which corresponds to the ground-
state cation configuration for this bulk composition.3 Mag-
netic transitions at 860�10 �1080�10� K were obtained in
the hematite part of the heterostructure and 25�5
�60�5� K in ilmenite regions of the supercell with
U=8�6� eV, respectively, suggesting that the magnetic or-
dering temperature of both phases is modified by the pres-
ence of the interface.

The slight decrease in Néel temperature for hematite can
be explained by the reduced strength of magnetic interac-
tions in the contact layer �Jm

2+,3+� and a lower average number
of interactions per cation due to the presence of the paramag-
netic ilmenite. The increase in Néel temperature of ilmenite
is likely caused by interaction of Fe2+ spins within the il-
menite lamellae with the magnetically ordered Fe2+-Fe3+

spins within the contact layers.

IV. SUMMARY

The isotropic magnetic pair exchange interactions for the
end members �hematite and ilmenite� are extracted from
DFT calculations by mapping the total energies on a Heisen-

FIG. 3. �Color online� Side view of the configurations with 60
atoms in the unit cell chosen for the calculations of interface mag-
netic interaction parameters: �a� represents an ilmenite block �three
Ti4+ layers separated by Fe2+ layers� within a hematite host and �b�
contains additionally mixed Fe-Ti layers in the hematite part. The
red, gray, and black spheres are showing Fe, Ti, and oxygen atoms,
respectively. The positions of Fe2+ are marked with pink/gray
circles and the rest of the iron are Fe3+.

TABLE II. Isotropic magnetic pair exchange interactions in kelvin for hematite �Jm
3+,3+�, ilmenite �Jm

2+,2+�, and the interface �Jm
2+,3+� for

U=6 and 8 eV. The index m describes the type of interaction following the definition in Fig. 1, nm is the multiplicity of Jm. rij�Å� is the
distance between the cations in each compound. Positive/negative signs of Jm

q correspond to FM/AFM coupling.

m nm

rij

�Å�

Jm
3+,3+

rij

�Å�

Jm
2+,2+

rij

�Å�

Jm
2+,3+

U=6 eV U=8 eV U=6 eV U=8 eV U=6 eV U=8 eV

1 1 2.86 −15.9�1.6 −7.9�1.4 2.92 0.0 0.0 2.84 10.0�10.0 −0.8�0.8

2 3 2.96 −6.3�0.2 −1.5�0.2 3.07 6.0�0.4 2.4�0.1 2.97 −5.5�3.0 −5.9�1.6

3 3 3.38 −72.1�0.5 −53.8�0.5 3.51 0.0 0.0 3.36 −23.0�5.0 −23.7�2.7

4 3 3.701 −50.1�0.5 −39.0�0.5 3.73 0.0 0.0 3.683 −37.5�3.8 −30.2�2.1

5 3 3.704 −50.2�0.7 −38.8�0.6 3.91 0.0 0.0 3.688 −39.6�4.3 −28.4�2.3

6 1 4.01 −9.0�2.3 −4.3�2.1 4.08 −7.5�2.8 −2.9�0.7 3.999 −11.7�11.1 −7.4�6.0

7 3 5.426 −3.4�1.0 −3.2�0.9 5.616 −1.0�0.6 −0.3�0.1 5.36 −1.9�1.9 −1.8�1.8

8 3 5.431 −3.1�0.4 −1.7�0.4 5.617 2.5�1.2 0.5�0.3 5.43 −1.9�1.9 −1.8�1.8
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berg Hamiltonian. For hematite, we find a good agreement
with experimental values from inelastic neutron-scattering
data. For ilmenite, the ground state is reproduced correctly
but with a weaker intralayer interaction parameter. We at-
tribute this to the higher value of U=8 eV needed to obtain
the experimental band gap of ilmenite. The magnetic inter-
action parameters between Fe3+ and Fe2+ at the interface of
hematite-ilmenite, extracted here, are dominated by a strong
antiferromagnetic coupling between the interfacial Fe2+ and
Fe3+ from the next hematite layer, similar to the end member

hematite. Although the absolute values are lower than in he-
matite, the negative sign fixes the orientation of defect spins
at the interface leading to a ferrimagnetic behavior in the
heterostructure.
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Abstract
Density-functional theory calculations were carried out for the multiferroic
EuTiO3 using the LDA + U approach. Total-energy calculations for
ferromagnetic (F), and antiferromagnetic A-, C-, and G-type arrangements in
the cubic phase shows that the ground-state magnetic configuration is G-type
antiferromagnetic for U � 6 eV and ferromagnetic for U � 7 eV. Values
of first- and second-neighbour exchange integrals have been calculated by
mapping the energy difference between the different magnetic configurations
to a Heisenberg Hamiltonian. The system seems to be critically balanced
between ferromagnetic and antiferromagnetic states for realistic values of
U , and switches from antiferromagnetic to a ferromagnetic ground state on
hydrostatic expansion of volume.

1. Introduction

EuTiO3 (ETO), like SrTiO3 (STO), KTaO3 (KTO) and BaZrO3 (BZO), is one of the rare
perovskites that exhibits cubic symmetry (space group Pm3m) at ambient conditions [1–3].
However, unlike the other cubic perovskites, mentioned above, ETO exhibits magnetic ordering
below 5.5 K [4–6]. The dielectric permittivity of ETO also exhibits an anomaly at the
magnetic ordering temperature [4], suggesting magnetoelectric coupling of the polarization
and magnetization. However, compared to other well-known magnetoelectrics [7–9], ETO
has been less investigated. Very recently, using first-principles technique, a design strategy
for magnetic and electric phase control in epitaxial ETO has been proposed [10]. Although
magnetic susceptibility measurements on ETO show features of antiferromagnetic ordering,
the details of magnetic ordering have not been investigated in detail, presumably due to the fact
that naturally occurring Eu has a very large absorption cross section for thermal neutrons. An
old report, however, suggests a G-type antiferromagnetic (AFM) spin arrangement in ETO [5].
Magnetic susceptibility measurements have shown that ETO is one of the few antiferromagnetic
materials with a positive Curie–Weiss constant (θ = +3.8 K) [5]. Since the magnetic ion,
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Figure 1. Crystal structure of cubic EuTiO3. The corner atoms represent Eu, and the atoms at the
body-centred and the face-centred positions represent Ti and O, respectively.

(This figure is in colour only in the electronic version)

Eu2+, in ETO occupies the A-site of the cubic perovskite structure (see figure 1), the nearest-
neighbour (nn) Eu2+ magnetic ions see each other directly. On the other hand, the O2− ions
intercept in between the next-nearest-neighbour (nnn) Eu2+ ions. The Eu2+ valency results
in a half-filled 4f shell. However, due to the localized nature of the f electrons, the exchange
interaction between the nn and nnn Eu2+ ions is only possible through mediation of the other
valence electronic states. A small intra-atomic admixture of 5d wavefunctions to the 4f states
has been suggested in the past [6] as a possible mechanism of exchange in Eu compounds.
With advances in ab initio electronic structure calculations based on density-functional theory
(DFT), it has become possible to explain the electronic and magnetic properties of transition
metal and rare earth compounds in significant detail. In this paper we report the results of
DFT calculations for ETO using an all-electron approach and taking into account electronic
correlations in the LSDA + U method. The magnetic ground state of this material is found
to be dependent on the U parameter. The system seems to be critically balanced between
antiferromagnetic (G-type) and ferromagnetic states for realistic values of U , and switchover
from one state to another is possible by tuning the volume.

2. Computational details

Density-functional theory calculations were performed using the all-electron full-potential
linearized augmented-plane-wave (FPLAPW) method as implemented in the WIEN2k
code [11]. The LAPW method is among the most accurate band structure methods currently
available. The exchange–correlation potential is approximated by the generalized-gradient
approximation (GGA) of Perdew et al [12]. The maximum l-value in the radial sphere
expansion of the wavefunction was lmax = 10, and the largest l-value for the non-spherical
part of potential and density was lmax,ns = 6. The cut-off energy, K 2

max, was fixed at 19 Ryd
for the plane waves and Gmax = 14 for the charge density, so that no shape approximation to
the potential occurs. The muffin-tin radii for Eu, Ti and O were chosen as 2.5, 1.9 and 1.6 au,
respectively. We have used 30 k-points in the irreducible part of the Brillouin zone (IBZ).
Increasing the number of k-points to 140 in the IBZ led to changes in total energy smaller
than 0.01–0.02 mRyd. In view of the small energy difference between the various magnetic
configurations, the total energy was calculated with an accuracy of 0.02 mRyd.

A Hubbard-type on-site Coulomb repulsion parameter U was used to account for the
strong correlations of the f electrons of Eu, as well as to ensure an insulating behaviour of this

2
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A C

F G

Figure 2. Schematic diagram of the four collinear magnetic structures, A, C, F, and G, considered
for cubic EuTiO3. The arrows indicate spin directions at the Eu sublattice.

compound in the band structure calculations [13]. Although the standard parameterization of
the on-site Coulomb interaction involves two parameters, U and J , the completely filled spin-
up f shell and completely empty spin-down f shell reduce the role of J to merely normalize
the U value. We can, therefore, set J = 0 and make use of an effective U in the calculations.
Recent reports of DFT calculations on some europium compounds have validated the use of
this approach for divalent Eu compounds as well [14–18].

3. Results and discussion

3.1. Equilibrium lattice constant and bulk modulus

Since the structure of ETO has been reported to be cubic (Pm3m) down to the lowest
temperature, the only variable structural parameter is the lattice parameter, ac. In general, for
cubic perovskites, different magnetically ordered structures are possible [19, 20]. Total-energy
calculations for four different collinear magnetic structures, A, C, F, and G, were considered
in the present study. Of these, F corresponds to the ferromagnetic structure, while the other
three correspond to different antiferromagnetic spin arrangements. A schematic diagram of
the four magnetic structures is shown in figure 2. For the A-type antiferromagnetic structure,
the nearest-neighbour moments are ferromagnetically coupled within a defined plane, and
antiferromagnetically coupled between neighbouring planes. The reverse situation occurs for
a C-type antiferromagnetic structure. For a G-type antiferromagnetic structure, all the nearest-
neighbour moments are antiferromagnetically coupled. For the sake of technical consistency
and to minimize the numerical error, we have chosen a tetragonal unit cell with four formula
units of ETO for all the four magnetic structures considered above. The lattice parameters of the
tetragonal cell (at and ct) are related to ac in the following manner: at = √

2ac, ct = 2ac. Total-
energy versus volume calculations were performed to determine the equilibrium cell volume at
U = 0, 3, 6 and 9 eV. Figure 3 shows E(V ) for U = 6 eV. The energy differences between
the various magnetic configurations are very small, and on the scale shown in this figure, the
energies of the four magnetic configurations at any particular volume appear nearly degenerate.
The theoretical equilibrium volume (∼246.6 Å

3
) is nearly insensitive to the different magnetic

structures and also to the value of the U parameter used. The equivalent cubic lattice parameter,
a = (V/4)1/3 = 3.950 Å, is larger than the experimentally reported value of 3.905 Å [4]
by 1%.

3
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Figure 3. Total energy versus volume for F, A, C, and G magnetic structures of cubic EuTiO3

calculated at U = 6 eV. The volume of the true cubic cell is four times smaller.

Table 1. Relative total energies of four different magnetic configurations of EuTiO3 at different
values of U , calculated at the experimental lattice parameter. For each U , the lowest energy has
been set to zero.

Relative total energy (meV)

Magnetic
configuration U = 0 eV U = 3 eV U = 5 eV U = 6 eV U = 7 eV U = 8 eV U = 9 eV

F 8.4 18.1 5.5 0.9 0.0 0.0 0.0
A 22.7 17.6 8.9 4.3 3.6 3.5 3.1
C 30.8 20.9 11.5 5.9 5.0 4.3 3.6
G 0.0 0.0 0.0 0.0 2.0 3.4 3.8

The value of the bulk modulus, B0, and its pressure derivative B ′
0, were obtained by fitting

the Murnaghan equation of state [21, 22]:

E(V ) = E0 + B0V

B ′
0

(
(V0/V )B ′

0

B ′
0 − 1

+ 1

)
− B0V0

B ′
0 − 1

(1)

to the calculated E–V curve. B0 and B ′
0 were found to be 172.6 GPa and 4.1, respectively for

U = 6 eV. Since corresponding values from experiments are lacking, it was not possible to
compare these numbers with corresponding experimental values for this material.

3.2. Electronic and magnetic structures of EuTiO3

The total energy and total density of states (DOS) were calculated for the four magnetic
configurations, F, A, C, and G, at the experimental lattice constant for U = 0, 3, 5, 6 7, 8,
and 9 eV. Table 1 lists the relative energies of the different configurations for each value of U .
The lowest energy is assigned the value zero as reference energy. It is found that the G-type
AFM structure possesses lowest energy for U � 6 eV. For U � 7 eV, the ferromagnetic (F)
structure becomes stable (see table 1). Previous theoretical studies on divalent Eu compounds
have reported that realistic values of U for Eu lie in the range 6 � U � 9 eV [16, 17].
Interestingly enough, we found that, at U = 6 eV, the ground-state magnetic configuration
changes from G-type AFM to ferromagnetic (F) on increasing the volume hydrostatically
beyond the experimental value. Figure 4 shows the DOS plots for the F-, A-, C-, and G-
type magnetic structures for U = 6 eV. The essential features of the DOS plots for all the

4
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Figure 4. Total density of states for A, C, F, and G magnetic structures of EuTiO3 with U = 6 eV.

Figure 5. Total density of states for different values of U for the G-type magnetic structure of
EuTiO3.

configurations appear similar. Figure 5 shows representative DOS plots for the G-type AFM
structure calculated at different U values. It is interesting to note that, compared to the occupied
lower Hubbard f band, the unoccupied upper Hubbard f band shifts quite drastically with
increasing U . For U = 0 and 3 eV, the Fermi energy lies near the edge of the Ti 3d band,

5
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Figure 6. Variation of band gap of EuTiO3 with U .

Figure 7. Partial density of states of Eu s, Eu d, Eu f, Ti d, and O p orbitals for the G-type magnetic
structure (U = 6 eV).

resulting in a metallic behaviour. A gap opens up for U � 5 eV. Figure 6 shows the variation
of band gap with U . The band gap increases from 0.14 eV at U = 5–1.1 eV for U = 9 eV. A
band structure plot revealed that the minimum of the band gap corresponds to the � point. The
filled f band just below the Fermi level was nearly dispersionless. The maximum value of the
gap (2.1 eV for U = 6 eV) occurs at the R and X points of the cubic Brillouin zone.

Figure 7 shows the partial density of states (PDOS) for the O p states, Eu f and d states,
and Ti d states in both spin channels. It is evident from this figure that the major contribution to
the filled valence band comes from the O 2p states. A narrow occupied 4f band lies just below
the Fermi level. A similar feature was also reported in the band structure of EuS [14]. The
conduction band is formed by the Ti 3d states on the low-energy side and by the Eu 5d states
at higher energies. Some fraction of the Ti d states is also occupied, suggesting some covalent
bonding between the Ti and the O atoms, a feature common to most of the oxide perovskites.
The absence of the Eu s states in the valence band part of the DOS suggests that Eu is almost
completely ionized and forms ionic bonds with the O in the structure.
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Table 2. Values of the first-nearest-neighbour (J nn
i j ) and second-nearest-neighbour (J nnn

i j ) exchange
integrals (in units of kelvin) obtained after mapping the difference in the total energies of the various
configurations, mentioned above, to a Heisenberg Hamiltonian (see text).

Exchange integral U = 0 eV U = 3 eV U = 5 eV U = 6 eV U = 7 eV U = 8 eV U = 9 eV

J nn
i j (K) −0.12 −0.24 −0.06 0.01 0.03 0.05 0.06

J nnn
i j (K) 0.26 0.12 0.08 0.05 0.04 0.03 0.02

3.3. Estimation of exchange integrals

We have calculated the nearest-neighbour (nn) and next-nearest-neighbour (nnn) exchange
interactions (J nn

i j and J nnn
i j ) by mapping the energy difference between the different magnetic

configurations of this system to the Heisenberg Hamiltonian as [23]

H = −2
N∑

i> j

Ji j Si · Sj . (2)

The ground state of Eu2+ ion corresponds to spin S = 7/2 and orbital moment L = 0. The
zero orbital moment adds a simplification to the calculations in the sense that the exchange
interaction can be treated isotropic to a good approximation. The total numbers of nn and nnn
Eu2+ bonds in the tetragonal cell considered for calculating the total energies are 12 and 20
respectively. The corresponding energy expressions for the four magnetic configurations, F, A,
C, and G can be written as

EF = E0 + 2|S|2(−12J nn
i j − 24J nnn

i j ) for F type, (3)

EA = E0 + 2|S|2(−4J nn
i j + 8J nnn

i j ) for A type, (4)

EC = E0 + 2|S|2(4J nn
i j + 8J nnn

i j ) for C type, (5)

and

EG = E0 + 2|S|2(12J nn
i j − 24J nnn

i j ) for G type. (6)

Since S = 7/2, |S|2 = S(S + 1) = 15.5 for Eu2+. The values of the exchange interactions
obtained with least squares fitting procedure, in units of kelvin, are listed in table 2. While
J nn

i j changes sign from negative to positive between U = 5 and 6 eV, the sign of J nnn
i j remains

positive for all values of U under consideration. In general, it is noted that the value of J nn
i j

increases and that of J nnn
i j decreases upon increase of U . Values of exchange integrals in

ETO have also been reported in the past using parameters derived from temperature-dependent
magnetic susceptibility measurements [5, 6]. The values of J nn

i j and J nnn
i j reported in [5] are

−0.02 and 0.04 K, respectively. Chien et al [6], on the other hand, have reported a slightly
different value, J nn

i j = −0.014 K and J nnn
i j = 0.037 K. It is evident from table 2 that a

similar value of J nn
i j can be obtained theoretically for a value of U somewhere in the range

5 � U � 6 eV. The small values of the exchange constants indicate a very weak interaction
between the magnetic ions in ETO. For EuO (TC = 69 K), the values of J nn

i j and J nnn
i j have

been reported to be 0.72 and 0.22 K, respectively [14]. As can be noted, J nn
i j in EuO is nearly

35 times larger than in ETO. This difference can be attributed in part to the larger Eu–Eu bond
distances in ETO compared to EuO, and also to the relative arrangement of the oxygen ions
around the Eu. In ETO the first-nearest-neighbour and the second-nearest-neighbour Eu ions
lie at 3.91 Å, and 5.53 Å, respectively, while in EuO they are at 3.63 Å and 5.14 Å [24]. The
second important factor is the fact that there are 12 oxygen atoms surrounding each Eu ion
in the ETO structure as compared to 6 in EuO. This would result in a stronger shielding of

7
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the d-state-mediated direct exchange interactions between the Eu ions in ETO compared to
EuO, thereby weakening the strength of the exchange interactions in the former compound.
In addition, the increased number of 90◦ cation–anion–cation superexchange between nearest-
neighbour Eu atoms may promote ferromagnetic order, leading to a small negative value of J nn

i j
in ETO.

3.4. Incipient magnetoelectricity and possibility of non-collinear magnetic structure

As noted above, the exchange interactions are very weak in ETO, and J nn
i j even changes sign in

the critical region of U . The system seems to be critically balanced between a ferromagnetic (F)
state and a G-type antiferromagnetic state. Further, the fact that the system is known to exhibit
a dielectric anomaly at the magnetic ordering temperature (5.5 K) suggests that ETO may be
considered as an incipient magnetoelectric multiferroic material. In the normal magnetoelectric
multiferroics such as RMnO3 (with R = Tb, Gd) [7, 25], RMn2O5 (R = Y, Tb etc) [26], and
hexaferrite [27], the ferroelectric order preferentially develops in spiral or helicoidal magnetic
structures. The inversion symmetry in spiral magnetic structures is intrinsically broken, and
such systems are close to becoming ferroelectric. The magnetic spiral can influence the
charge and lattice via Dzyaloshinskii’s antisymmetric exchange [28] to produce a ferroelectric
state [29]. Although no ferroelectric behaviour has been reported in ETO, the anomaly in the
dielectric permittivity at 5.5 K is indicative of a tendency to develop such an order. Since the
temperature concerned is quite low, the quantum-mechanical fluctuations of the lattice, as has
been reported in SrTiO3 [30], can suppress the onset of a regular ferroelectric state. In view of
these recent developments in the understanding of the magnetoelectric multiferroic materials,
and also the small energy difference between the various magnetic configurations observed
in our calculations, a possibility of a non-collinear magnetic configuration in ETO cannot be
completely ruled out. It may be mentioned again that due to very large absorption cross section
of naturally occurring Eu for thermal neutrons, it is not easy to determine the magnetic structure
of Eu compounds by neutron diffraction experiments.

4. Summary

We have studied the electronic structure and magnetic properties of cubic EuTiO3 using
density-functional theory + Hubbard U (LDA + U ). The lowest-energy state corresponds
to a G-type antiferromagnetic structure for U � 6 eV and a ferromagnetic (F) structure for
U � 7 eV. The values of the first- and second-nearest-neighbour exchange integrals have been
calculated by mapping the energy difference between four different magnetic configurations
onto a Heisenberg Hamiltonian. The system is critically balanced between ferromagnetic
and antiferromagnetic states for realistic values of U . The system switches from G-type
AFM to a ferromagnetic ground state on increasing volume, opening a possibility of tailoring
its magnetic properties, and also perhaps the associated dielectric properties, by appropriate
chemical substitutions at the Ti site of this material.
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A comparative first principles study has been carried out for EuLiH3 �ELH� and EuTiO3 �ETO�
using the generalized gradient approximation +U approach. While ELH exhibits ferromagnetic
ground state for all volumes, the magnetic ground state of ETO has the tendency to switch from
G-type antiferromagnetic to a ferromagnetic state with change in volume. The marked difference in
magnetic behavior and magnitude of the nearest neighbors exchange interaction of both the
compounds are shown to be related to the difference in their respective electronic structure near the
Fermi level. The Ti 3d states are shown to play predominant role in weakening the strength of the
exchange interaction in ETO. © 2009 American Institute of Physics. �DOI: 10.1063/1.3079791�

I. INTRODUCTION

With the emergence of “spintronics,” there is significant
interest in the area of magnetic semiconductors. Divalent eu-
ropium chalcogenides are among the important compounds
in this regard.1 In this family, while EuO and EuS exhibit a
ferromagnetic �F� ground state,2 EuSe and EuTe are
antiferromagnetic3 �AFM� at ambient pressure. The magne-
tism in these compounds arises from the half filled 4f orbit-
als of the divalent Eu2+ ion. Apart from the chalcogenide
family, the divalent oxidation state of Eu is also present in
compounds crystallizing in the cubic perovskite structure
such as EuTiO3 �ETO� �Refs. 4–6� and EuLiH3 �ELH�.7–9

ETO shows G-type AFM ordering below 5.5 K and exhibits
significant spin-lattice coupling at low temperatures.10 A pos-
sibility of multiferroic behavior in thin ETO film has also
been predicted recently.11 ELH, on the other hand, exhibits
ferromagnetic behavior,7–9 and hence with regard to the mag-
netic structure, ELH is akin to EuO. Furthermore, it has been
known that the magnitude of the effective nearest neighbor
�nn� exchange interaction �J1� of ETO is considerably
smaller than that of EuO and ELH.5,7 Chien et al.5 have
proposed intra-atomic 4f-5d exchange interaction, on the
lines of Goodenough12 and Kasuya,13 to explain for this ab-
normal difference. It has been suggested that the exchange
interaction �J1� between the nn Eu cations is of the form J1

�Jintrab
2 /�2, where b is a transfer integral between nn cat-

ions, � is the energy separation between 4f and 5d levels of
Eu, and Jintra is the Hund’s rule coupling constant.5 In view
of the similarity of the Eu-Eu distance, to a first approxima-
tion b was treated to be nearly constant for EuO, ETO, and
ELH. The difference in the magnitudes of J1 was therefore
attributed to the difference in the magnitude of �, which in
turn is dependent on the magnitude of the crystal field split-
ting of the 5d states. A larger crystal field splitting would
cause the eg level to come close to the 4f level and thereby
reduce the value of �.5 In this scenario, the anomalously

small magnitude of the J1 in ETO, as compared to ELH and
EuO, has been explained by proposing a relatively weak
crystal field splitting of the Eu 5d states in ETO as compared
to ELH and EuO.5 In this paper, we have examined this issue
using first principles calculations. It is demonstrated that the
similarity of the magnetic behavior of ELH and EuO is
closely related to similarity of their respective electronic
structures near the Fermi level. The presence of Ti 3d states
just above the Fermi level in ETO completely alters the rela-
tive disposition of the Eu 4f and 5d bands, and weakens the
exchange interaction.

II. COMPUTATIONAL DETAILS

LSDA+U method was used to describe the correct fill-
ing and positions of the Eu 4f bands.14 This approach has
been successful in predicting the magnetic behavior of the
Eu-based systems.11,15–20 Furthermore, the divalent state of
Eu �Eu2+� results in half filling of the Eu 4f shell and thereby
reduces the role of J to merely normalizing the U value. We
can, therefore, set J=0 and make use of an effective U in the
calculations.16–19 The calculations were performed using the
WIEN2K

21 implementation of the full-potential linearized
augmented-plane-waves �FLAPW� method. The exchange-
correlation potential is approximated by the generalized-
gradient approximation �GGA� of Perdew et al.22 The
muffin-tin radii of Eu, Li, and H were fixed at 2.7, 1.6, and
1.2 bohr, respectively. A cutoff of RmtKmax=5 and a total of
800-k-grid points �84 irreducible k points� are used to
achieve an energy convergence of �0.04 mRy. A tetragonal
unit cell, the a and b lattice parameters of which are face
diagonals of one of the cube face, and the c parameter of
which is twice the lattice parameter, was chosen to realize
four different magnetic structures: namely, ferromagnetic �F�
and three AFM �A, C, and G types�, within the same volume.
The spin configurations corresponding to the four magnetic
structures are shown in Fig. 1. The total energies were cal-
culated as a function of volume for different U values. For
each spin configuration Etot

min was mapped on a Heisenberg
Hamiltonian,

a�Author to whom correspondence should be addressed. Electronic mail:
rajeev@materials.iisc.ernet.in.
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H = − 2�
i�j

N

JijSi . Sj , �1�

to determine the first �J1� and second �J2� nn effective ex-
change interactions.

III. RESULTS AND DISCUSSION

Table I lists the relative energies of the four magnetic
structures of ELH for different values of U. It is evident that
the ferromagnetic state has the lowest energy for all U. This
may be contrasted with ETO for which it has been reported
that, on increasing U beyond 6 eV, the lowest energy state
switches from G-type AFM to ferromagnetic structure.20 The
total number of nn and next nearest neighbor �nnn� Eu2+

bonds in the tetragonal cell considered are 12 and 24, respec-
tively. Energy expression �1� for the four magnetic configu-
rations, F, A, C, and G, therefore takes the form:

EF = E0 + 2�S�2�− 12J1 − 24J2� for F type, �2�

EA = E0 + 2�S�2�− 4J1 + 8J2� for A type, �3�

EC = E0 + 2�S�2�4J1 + 8J2� for C type, �4�

and

EG = E0 + 2�S�2�12J1 − 24J2� for G type, �5�

where E0 is the part of the total energy without exchange
interaction. By subtracting any two of the above expressions,
we obtain a total of six equations. J1 and J2 were obtained in
units of Kelvin by least-squares fitting of these six difference

equations. Figure 2 depicts the variation in the J1 and J2 as a
function of U. Previous studies have shown that the realistic
value of U for Eu-based systems lies in the range of 5–7
eV.16–20 For ETO, U close to 6 eV was found to give ex-
change interactions, J1 and J2, very close to the experimen-
tally obtained values.20 Assuming the U parameter of Eu for
ELH to be similar to that for the ETO, we obtain J1

�0.53 K and J2�0.06 K for ELH �Fig. 2�. These values
are reasonably close �within the experimental error� to the
ones reported earlier �J1=0.8�0.2 K, J2= �0.05� using
susceptibility data.8,9 A comparison of the magnitudes of J1

of ELH, ETO, and EuO reveals that it is more than an order
of magnitude smaller in ETO �J1�0.01 K� �Ref. 19� than
ELH �Refs. 8 and 9� and EuO �J1=0.72 K�.16 To investigate
the sensitivity of J1 to the nn Eu-Eu distance, calculations
were performed at different cell volume of ELH so as to
cover the Eu-Eu distance observed in EuO �3.63 Å� and ETO
�3.905 Å�.

Figure 3 shows the total energy curves of ELH versus
cell volume for the four magnetic structures mentioned
above at U=6 eV. The energy of the ferromagnetic state
was found to be lowest for all volumes. The cubic lattice
parameter corresponding to the equilibrium volume is 3.78
Å, which is almost the same as the experimental value of
3.79 Å reported for this compound.9 Figure 4 shows the ex-
change interactions �J1 and J2� as a function of the cubic
lattice parameter, which is also the nn Eu-Eu distance for the
perovskite structure. It is evident from this graph that J1 and
J2 at 3.905 Å �corresponding to the Eu-Eu distance in ETO�
are 0.41 and 0.03 K, respectively. The value of J1 is still
considerably larger than the value reported for ETO.20 Fur-
thermore, J1 and J2 obtained from extrapolation of the fitted
curves at 3.63 Å �corresponding to the Eu-Eu distance in
EuO� are found to be 1.0 and 0.17 K, respectively. Consid-
ering the fact that the crystal structure of EuO is different
from that of ELH, these values are not very much off from

FIG. 1. Schematic depiction of the F, A, C, and G type magnetic structures.
The arrows represent spin direction in a cubic lattice.

TABLE I. Relative energies of the various magnetic structures of EuLiH3 calculated at different values of U.
For each U, the minimum energy among the four configurations has been set to zero.

Magnetic structure

Relative energy �eV�

U=0 eV U=3 eV U=4 eV U=5 eV U=6 eV U=7 eV U=8 eV U=9 eV

F 0 0 0 0 0 0 0 0
A 0.110 0.039 0.029 0.021 0.015 0.009 0.006 0.002
C 0.175 0.066 0.051 0.038 0.030 0.022 0.017 0.012
G 0.186 0.071 0.055 0.042 0.033 0.026 0.021 0.017

FIG. 2. �Color online� Variation in first �J1� and second �J2� nn effective
exchange interactions of EuLiH3 with U.
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what has actually been reported �J1=0.72 K and J2

=0.22 K� for EuO.16 This analysis, therefore, suggests that
the Eu-Eu distance cannot be the primary factor affecting the
strength of J1 in ETO.

Figure 5 shows the energy difference between the two
competing magnetic states F and G of ETO as a function of
volume. A switching from a G-type AFM state to a ferromag-
netic state is observed around the experimental volume for
U�6 eV �Fig. 5�b��. The critical volume is, however, sen-
sitive to U as shown in Figs. 5�a� and 5�c�. A similar trend
was observed for biaxial and uniaxial strains as well al-
though the energy difference between the G and F states was
noted to decrease further when decreasing the dimensionality
of strain. This prediction of a transition to a ferromagnetic
state during change in volume is in conformity with the fer-
romagnetic state reported recently in thin ETO films.23

Figure 6 shows the partial density of states �DOS� of the
ground state magnetic structures of ELH and ETO, both cal-
culated at U=6 eV. The absence of s states of Eu in the
conduction band indicates that Eu forms highly ionic bonds
with H and O in ELH and ETO, respectively. A noticeable
hybridization between the Eu 5d and H s states, however,
suggests a considerable degree of covalent character in the
Eu-H bond of ELH. Furthermore, the absence of Li s states
in the conduction band seems to suggest a strongly ionic

nature of the Li-H bond. In contrast, the Ti-O bond in ETO
has a significant covalent contribution as evident from the
hybridization between the O 2p and Ti 3d states.

The valence bands of both the ELH and ETO are formed
by the valence states of their respective anions. The narrow
Eu 4f band lies between the Fermi level and the broad va-
lence band in both the cases. A similar feature has been re-
ported for EuO as well.16 Similar to EuO, the conduction

FIG. 3. �Color online� Variation in the relative energy of the A, C, F, and G
magnetic structures of EuLiH3 as a function of unit cell volume calculated
for U=6 eV. The minimum energy in the graph is chosen as the reference
energy and is set at zero. The volume corresponds to the bigger �tetragonal�
unit cell whose volume is four times the cubic cell volume.

FIG. 4. Variation in J1 and J2 with cubic lattice parameter of EuLiH3. The
solid curves are fitted lines with a third order polynomial. The arrows indi-
cate the lattice parameter corresponding to the equilibrium value.

FIG. 5. Energy difference between F and G magnetic structures of EuTiO3

as a function of cell volume. The arrow in the figure denotes the equilibrium
volume.

FIG. 6. �a� DOS of ferromagnetic EuLiH3 and �b� G-type AFM of EuTiO3

at U=6 eV. The top panel is the total DOS while the rest corresponds to
partial DOS.
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band of ELH is formed by the Eu 5d states. This band starts
at �0.8 eV above the Fermi level and spreads up to
�11 eV, i.e., a bandwidth of about 10 eV. On the other
hand, the conduction band in ETO is formed by Ti 3d states.
The Eu 5d band starts at 3.5 eV above the Fermi level and
persists up to 8.6 eV, i.e., a bandwidth of �5 eV. The width
of the Eu 5d band in ETO is, therefore, nearly half the cor-
responding value in ELH. Furthermore, there is a significant
overlap of the Eu 5d and Ti 3d bands in the energy range of
3.5–7 eV. In the framework of the mechanism proposed by
Chien et al.,5 this feature may influence strongly the ex-
change interaction in this system as compared to ELH. Fig-
ure 7 shows the variation in the band gap of ELH, i.e., the
difference in the energy of the top of the 4 f band and the
bottom of the Eu 5d conduction band, with U. For sake of
comparison we have also included the band gap variation
with U of ETO. It may be mentioned that, in the later case,
the band gap is between the Eu 4f and the Ti 3d state. Linear
extrapolation through the data points suggests that the gap in
ELH and ETO opens above U=2.8 eV and 4.6 eV, respec-
tively. At the realistic value of the U, i.e., U=6 eV, the gaps
in ELH and ETO are �0.8 and �0.4 eV, respectively. Due
to the larger gap, ELH is expected to exhibit a better insu-
lating property than ETO at any finite temperature.

In conclusion, we have shown that GGA+U approach
correctly predicts the ferromagnetic ground state of EuLiH3.
Mapping the total energies of four different magnetic struc-
tures on a Heisenberg Hamiltonian, the extracted first and
second nn effective exchange interactions was found to be in
good agreement with experimental values. With regard to the
relative position of the 4f and 5d Eu bands in ELH and ETO,
our results not only confirm the schematic model proposed
earlier by Chien et al.5 but also throw new light with regard
to the factors at play in determining this energy difference.

The intervening Ti 3d states between the Eu 4f and 5d states
seem to push the Eu 5d band to higher energies in ETO.
Furthermore, in the context of the exchange mechanism pro-
posed by Chien et al.,5 the significant overlap of the Ti 3d
and Eu 5d bands would imply that the Ti 3d band should
also participate in the exchange process. The results clearly
demonstrate the unique role of Ti 3d states in drastically de-
creasing the effective J1 value in EuTiO3 as compared to
EuLiH3 and EuO.

ACKNOWLEDGMENTS

We acknowledge gratefully the computational grant at
the Leibniz Rechenzetrum. R.P. acknowledges discussions
with Darrell Schlom.

1A. Mauger and C. Godart, Phys. Rep. 141, 51 �1986�.
2L. Passell, O. W. Dietrich, and J. Als-Nielsen, Phys. Rev. B 14, 4897
�1976�.

3M. Ishizuka, Y. Kai, R. Akimoto, M. Kobayashi, K. Amaya, and S. Endo,
J. Magn. Magn. Mater. 166, 211 �1997�.

4M. W. Shafer, J. Appl. Phys. 36, 1145 �1965�.
5Chia-Ling Chien, S. DeBenedetti, and F. De S. Barros, Phys. Rev. B 10,
3913 �1974�.

6T. R. McGuire, M. W. Shafer, R. J. Joenk, H. A. Alperin, and S. J. Pickart,
J. Appl. Phys. 37, 981 �1966�.

7J. E. Greedan, Cahi-Liang Chien, and R. G. Johnston, J. Solid State Chem.
19, 155 �1976�.

8Chia-Ling Chien and J. E. Greedan, Phys. Lett. 36A, 197 �1971�.
9J. E. Greedan, J. Phys. Chem. Solids 32, 819 �1971�.

10T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 �2001�.
11C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 �2006�.
12J. D. Goodenough, Magnetism and the Chemical Bond �Interscience, New

York, 1963�, pp. 146–167.
13T. Kasuya, IBM J. Res. Dev. 14, 214 �1970�.
14V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A.

Sawatzky, Phys. Rev. B 48, 16929 �1993�.
15P. Larson and W. R. L. Lambrecht, J. Phys.: Condens. Matter 18, 11333

�2006�.
16J. Kuneš, W. Ku, and W. E. Pickett, J. Phys. Soc. Jpn. 74, 1408 �2005�.
17J. Kuneš and W. E. Pickett, Phys. Rev. B 69, 165111 �2004�.
18J. Kuneš and R. Laskowski, Phys. Rev. B 70, 174415 �2004�.
19J. Kuneš and W. E. Pickett, Physica B 359–361, 205 �2005�.
20R. Ranjan, H. S. Nabi, and R. Pentcheva, J. Phys.: Condens. Matter 19,

406217 �2007�.
21P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, 2001

WIEN 2k, An Augmented Plane Wave � Local Orbitals for Calculating
Crystal Properties �Karlheinz Schwarz, Techn Universität Wien, Wien�.

22J. P. Perdew, K. Bruke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
�1996�.

23K. Kugimiya, K. Fujita, K. Tanaka, and K. Hirao, J. Magn. Magn. Mater.
310, 2268 �2007�.

2 4 6 8 10
0.0

0.4

0.8

1.2 ELH
ETO

En
er
gy
ga
p
(e
V)

U (eV)

FIG. 7. �Color online� Variation in the band gap of ELH and ETO with U.

053905-4 Ranjan, Nabi, and Pentcheva J. Appl. Phys. 105, 053905 �2009�

Downloaded 16 Mar 2009 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1016/0370-1573(86)90139-0
http://dx.doi.org/10.1103/PhysRevB.14.4897
http://dx.doi.org/10.1016/S0304-8853(96)00432-5
http://dx.doi.org/10.1063/1.1714142
http://dx.doi.org/10.1103/PhysRevB.10.3913
http://dx.doi.org/10.1063/1.1708549
http://dx.doi.org/10.1016/0022-4596(76)90163-8
http://dx.doi.org/10.1103/PhysRevB.64.054415
http://dx.doi.org/10.1103/PhysRevLett.97.267602
http://dx.doi.org/10.1103/PhysRevB.48.16929
http://dx.doi.org/10.1088/0953-8984/18/49/024
http://dx.doi.org/10.1143/JPSJ.74.1408
http://dx.doi.org/10.1103/PhysRevB.69.165111
http://dx.doi.org/10.1103/PhysRevB.70.174415
http://dx.doi.org/10.1088/0953-8984/19/40/406217
http://dx.doi.org/10.1103/PhysRevLett.77.3865

	thesis.pdf
	interface magnetism in hem-ilm heterostructures-R.Pentcheva-HSN-PRB-2008.pdf
	Effect of strain on the stability and electronic properties of ferrimagnetic Fe2-xTixO3 heterostructures from correlated band theory-HSN-JAP-2009.pdf
	Magnetic coupling parameters at an oxide-oxide interface from first principles- Fe2O3-FeTiO3-PRB-HSN-2010.pdf
	Electronic structure and magnetism of EuTiO3 a first principle study-R.Ranjan-HSN- J.Phys. cond. mat. 2007.pdf
	1. Introduction
	2. Computational details
	3. Results and discussion
	3.1. Equilibrium lattice constant and bulk modulus
	3.2. Electronic and magnetic structures of EuTiO_3
	3.3. Estimation of exchange integrals
	3.4. Incipient magnetoelectricity and possibility of non-collinear magnetic structure

	4. Summary
	Acknowledgments
	References

	First principles study of magnetism in divalent Eu perovskites-R.Ranjan-HSN-JAP-2009.pdf

