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1 Zusammenfassung 

Der WHO/UNAIDS Bericht „Global summary of the AIDS epidemic”, veröffentlicht im 

Dezember 2009 schätzt, dass 33 Millionen Menschen mit HIV leben, dass sich im 

vergangenem Jahr 2,7 Millionen Menschen mit HIV infizierten und 2 Millionen an AIDS 

starben. Trotz über zwei jahrzehntelanger Forschung existiert bis heute weder eine präventive 

noch eine therapeutische Vakzine. Und auch definitive Korrelate einer immunologischen 

Protektion gegen die HIV-Infektion sind nicht bekannt. 

T-Zell vermittelte Immunität wird für die Kontrolle der HIV Infektion und der Progression zu 

AIDS  als essentiell erachtet. Mehrere potentielle Impfstoff-Kandidaten haben die  

Stimulation von zellulären Immunantworten zum Ziel und werden derzeit in klinischen 

Studien der Phase I bis Phase III geprüft. Daher ist es erforderlich Assays, die eine 

verlässliche, informative und sensitive Messung von CD4- und CD8 T-Zell Antworten 

ermöglichen, zu etablieren. Unter den vielversprechendsten Impfstoffkandidaten befinden 

sich rekombinante modifizierte Vaccinia Viren vom Typ Ankara (MVA), lebend-virale 

Vekorsysteme für den Transport von HIV Antigenen. Solche rekombinanten MVA Vektoren 

werden und wurden in mehreren klinischen Impfstudien getestet.  

Derzeit wird der auf der Messung von IFN-γ vermittelten T-Zell Immunantworten basierende 

ELISPOT Assay als Gold Standard erachtet und stellt den primären und bevorzugten in 

Impfstudien verwendeten Assay dar. Trotz der hohen Sensitivität des Tests, kann durch die  

reine Messung von IFN-γ Produktion durch T-Zellen jedoch nur beschränkt eine Aussage 

über die Qualität einer Immunantwort gemacht werden. Auf polychromatischer 

Durchflusszytometrie beruhende Methoden, wie intrazelluläre Zytokinfärbung (ICS) eröffnen 

die Möglichkeit mehrere Parameter auf einer einzelnen Zelle zu detektieren. Ergebnisse aus 

Quer- und Längsschnitt- Studien, die sich mit der Untersuchung verschiedener Grade von 

HIV Kontrolle befassten, heben die Wichtigkeit von Assays, die die simultane Messung 

multipler Parameter auf Einzel-Zell Niveau ermöglichen, hervor. Dadurch empfielt sich die 

Anwendung von polychromatischer Durchflusszytometrie zum Monitoring von zellulären 

Immunantworten. 

In dieser Arbeit wurden auf polychromatischer Durchflusszytometrie basierende Methoden 

zum Zwecke des T-Zell Immunmonitorings entwickelt, optimiert und standardisiert. 

Zusätzlich wurden diese intrazellulären Zytokinfärbungs-Methoden mit ELISPOT Assays 

verglichen, die jeweils in spezialisierten Laboratorien durchgeführt wurden. Die komparative 

Analyse zeigte, dass durch die Anwendung einer speziellen Analysemethode die Sensitivität 
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des ICS bis zu einem Niveau erhöht werden konnte, das vergleichbar zu demjenigen eines 

ELISPOT Assays war. Diese Erkenntnisse sind bedeutend für die Auswahl geeigneter 

Immunassays, die sowohl Phänotyp als auch Funktionen spezifischer T-Zellen auf akkurate 

und sensitive Weise charakterisieren. 

Der etablierte ICS kam in Kombination mit einem polychromatischen CFSE-basierten 

Proliferations-Assay in der Re-Evaluation einer klinischen Studie zur Anwendung, in der ein 

rekombinantes HIV-1 Nef exprimierendes MVA (MVA-nef) in HIV-1 infizierten, 

antiretroviral behandelten Individuen getestet wurde. In dieser Studie wurde der Einfluss der 

immunologischen Intervention mit MVA-nef auf die Nef spezifische zelluläre Immunantwort 

im Hinblick auf Zytokin- und Chemokinproduktion (IFN-γ, IL-2, MIP-1β), Aktivierungs- und 

Differenzierungsmarkerexpression (CD154, CD45RA) und proliferatives Potential untersucht. 

Vakzine-induzierte Polyfunktionalität und proliferative Kapazität, die in einigen Studien mit 

nicht progressiver HIV-Infektion assoziiert wurden, konnten durch die Kombination beider 

oben beschriebener Immunassays beobachtet werden. Anhand des kürzeren ICS konnte ein 

der Impfung folgender signifikanter Anstieg von polyfunktionalen CD4 T-Zellen beobachtet 

werden, die gleichzeitig IFN-γ, IL-2 and CD154 exprimierten. Mit der MVA-nef 

Immunisierung assoziierte Änderungen der Qualität der CD8 T-Zell Immunantwort konnten 

nicht festgestellt werden. Nur die zusätzliche Anwendung des polychromatischen CFSE-

basierten Proliferationsassay, der eine längere ex vivo Stimulationsdauer einschließt, zeigte 

auch vakzine-induzierte, Nef spezifische CD8 T-Zellen mit proliferativem Potential. Die 

signifikante Korrelation zwischen dem MVA-nef induzierten Anstieg der IL-2 Produktion in 

CD4 T-Zellen und dem Anstieg der proliferierenden, Nef spezifischen CD8 T-Zellen lässt 

einen möglichen kausalen Zusammenhang zwischen beiden Funktionen vermuten.  

Das Verständnis, das in dieser Arbeit gewonnen werden konnte übertrifft bei Weitem die 

Informationen, die aus der primären Analyse der klinischen MVA-nef Studie durch 

Anwendung einfacher IFN-γ basierter Tests resultierten. Die Ergebnisse heben die 

Wichtigkeit der Kombination hoch entwickelter Immunmonitoring Methoden hervor um 

versteckte Effekte immnologischer Interventionen aufzuzeigen. Die Daten unterstützen des 

Weiteren die Anwendung des von Pockenviren abstammenden MVA Vektors zur Stimulation 

effektiver HIV-spezifischer T-Zell Immunantworten. Aus technischer Sicht sind die 

Ergebnisse dieser Arbeit bedeutend um geeignete Assays zur Messung antigen spezifischer 

zellulärer Immunantworten in klinischen Studien zur Verfügung zu stellen, die eine sensitive 

Untersuchung von Funktion und Phänotyp ermöglichen.  

 



Summary 
 

 - 10 - 

2 Summary 

The WHO/UNAIDS “Global summary of the AIDS epidemic” released in December 2009, 

estimates that 33 million of people are living with HIV, 2.7 million were newly infected and 

2.0 million of people died of AIDS in the last year. After more than two decades of research 

an effective preventive or therapeutic vaccine against HIV remains elusive and 

immunological correlates of protection remain unknown.   

T-cell mediated immunity is considered to play an important role in controlling HIV infection 

and progression to AIDS. Several candidate vaccines against HIV aiming to stimulate cellular 

immune responses are investigated in phase I to phase III clinical trials and assays enabling 

for a reliable, informative and sensitive measurement of CD4 and CD8 T-cell need to be 

implemented. Among the most promising vaccine candidates is recombinant modified 

vaccinia virus Ankara (MVA), a live viral vector system for the delivery of HIV-derived 

antigens. Several vaccination trials have made use of the modified vaccinia virus Ankara 

(MVA) as delivery vector. 

At present, the IFN-γ-based ELISPOT assay is considered as a gold standard and preferred 

primary assay in vaccine trials. However, despite its high sensitivity the measurement of the 

sole IFN-γ production provides limited information on the quality of the immune response. 

Polychromatic flow-cytometry-based assays as intracellular cytokine staining (ICS) offer the 

possibility to detect several markers on the same cell. Several findings from cross-sectional 

and longitudinal studies investigating different grades of HIV control highlight the importance 

of developing assays able to simultaneously measure several parameters on a single-cell level 

and strongly suggest the use of flow cytometry to monitor immune responses. In this work 

polychromatic flow-cytometry based assays were developed, optimized, and standardized for 

T-cell immunomonitoring purposes. In addition, these ICS based methods were compared 

with ELISPOT assays performed in two different experienced laboratories. The comparative 

study provided evidence that by the use of a special analysis system, the sensitivity of the ICS 

could be increased up to levels comparable to the sensitivity of the ELISPOT assay. 

The established polychromatic ICS together with a polychromatic CFSE-based proliferation 

assay were applied to a re-evaluation study of a vaccination trial using recombinant MVA 

expressing HIV-1-Nef (MVA-nef) in HIV-1 infected HAART treated individuals. In this 

study, the impact of the immunologic intervention with MVA-nef on the specific anti-Nef T-

cell immune response was investigated in regard to cytokine production (IFN-γ and IL-2), 

chemokine production (MIP-1β), activation and differentiation marker expression (CD154 

and CD45RA, respectively) and proliferative potential. Vaccine-induced polyfunctionality 
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and proliferative capacity, which were associated with nonprogressive HIV-1 infection in 

several studies, were detectable by combining the two immune assays. By means of short-

term ICS, a significant increase of polyfunctional Nef-specific CD4 T cells expressing IFN-γ, 

IL-2 and CD154 was observed following vaccination, whereas changes in the quality of the 

CD8 T-cell response could not be observed. Only the additional use of a long-term 

polychromatic CFSE-based proliferation assay revealed vaccine-induced Nef-specific CD8 as 

well as CD4 T cells with proliferative capacity. The correlation between the vaccine-induced 

IL-2 production by CD4 T cells and the increase of proliferating Nef-specific CD8 T cells 

suggests a causal link between these two functions. The insight gathered in this reevaluation 

study exceeded by far the information obtained in the original work using a simple IFN-γ-

based immune assay. These results highlight the importance of combining sophisticated 

immunomonitoring tools to unravel concealed effects of immunologic interventions and 

support the use of the poxvirus-derived MVA vector to stimulate effective HIV-specific T-

cell responses. From a technical point of view, these findings are important to guide the 

choice for suitable immune assays able to characterize the phenotype and function of specific 

T-cells in a highly sensitive way. 
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3 Introduction 

3.1 Human Immunodeficiency Virus (HIV)  

3.1.1 Epidemiological profile 

The WHO resport dating from the end of 2008 indicates that to date around 33 million people 

are living with HIV, the virus that causes AIDS. Each year around 2.7 million more people 

become infected with HIV. Young people, 15–24 years of age account for about 45% of all 

new HIV infections in adults. Every year, approximately 2 million people die of AIDS related 

causes (http://www.unaids.org; “Report on the global AIDS epidemic”). Although HIV and 

AIDS are found in all parts of the world, the worst affected region is sub-Saharan Africa, 

where in some countries more than one in five adults is infected with HIV. Worldwide 

prevalence is shown in Figure 1. The epidemic is spreading most rapidly in Eastern Europe 

and Central Asia, where the number of people living with HIV increased of 66% between 

2001 and 2008 (http://www.unaids.org; “AIDS epidemic update 2009”) [1].  

 

 

Figure 1. A global view of HIV infection, 2007. 33.4 million [31.1-35.8 million] of people are living with HIV 

infection. The global distribution of adult prevalence is shown as indicated by the color coding in the picture. 

Although HIV and AIDS are found in all parts of the world, the most affected region is sub-Saharan Africa, 

where in a few countries more than one in five adults is infected with HIV. Taken fromUNAIDS: “Report on the 

global AIDS epidemic 2008”  

 

Epidemiologic data from Germany where since the beginning of the epidemic about 28,000 

people died of AIDS related causes, are shown in Figure 2. Each year there are still 3000 

people newly infected with HIV and about 1100 start suffering from AIDS. 
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Figure 2. Estimated HIV and AIDS incidence, prevalence and deaths in Germany 2009. HIV incidence 

(blue line), AIDS incidence (red line), HIV/AIDS related deaths (black line) relate to left y-axes scaling 

(incidence); HIV prevalence (yellow area), AIDS prevalence (orange area) relate to right y-axes scaling 

(prevalence). Epidemiologisches Bulletin 48/2009; Robert Koch Institut. 

 

3.1.2 Virological profile 

Between the two types HIV-1 and HIV-2 [2-4] the latter is less easily transmitted, and the 

period between initial infection and illness is longer in the case of HIV-2 [5, 6]. Worldwide, 

the predominant virus is HIV-1. HIV-2 is concentrated in West Africa and is rarely found 

elsewhere [1]. On the basis of differences in the env gene, three groups of HIV-1 have been 

identified: M, N, and O [7]. Group M is the most prevalent and is subdivided into eight 

subtypes (clades) A through I, based on the whole genome, which are geographically distinct. 

The most prevalent is subtype B (mainly in North America and Europe), A and D (mainly in 

Africa), and C (mainly in Africa and Asia) [8, 9]. The closely HIV related simian 

immunodeficiency virus (SIV) exhibits a somewhat different behavior: in its natural hosts, 

African green monkeys and sooty mangabeys, the retrovirus is present in high levels in the 

blood, but evokes only a mild immune response [10], does not cause the development of 

simian AIDS [11],  and does not undergo the extensive mutation and recombination typical of 

HIV [12]. By contrast, infection of heterologous hosts (rhesus or cynomolgus macaques) with 

SIV results in the generation of genetic diversity that is on the same order as HIV in infected 

humans; these heterologous hosts also develop simian AIDS [13, 14]. 
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In 1983, Barre-Sinoussi et al. reported the discovery of a T-lymphotropic retrovirus in a 

patient at risk of AIDS. This was the virus that we now call HIV [15]. Afterwards, Gallo et al. 

showed that the discovered virus was the etiologic agent of AIDS [16-19] and succeeded to 

grow it in continuous T-cell cultures enabling the development of a blood test for detection of 

HIV. These two works opened the way to a period of intense research and discovery. The 

HIV genome was sequenced [20, 21], the HIV antigenic variation was discovered [22], 

macrophages were found to be target of HIV [23], various modes of transmission were 

elucidated [24-26], all HIV genes and proteins were defined and the HIV receptor CD4 was 

identified [27, 28]. 

 

 
Figure 3. Structure of HIV-1.  HIV-1 is composed of two copies of single-stranded RNA enclosed by a conical 
capsid comprising the viral protein p24 (in dark blue), typical of lentiviruses. An association of the matrix 
protein p17 (in light blue) is surrounded by a plasma membrane of host-cell origin. The envelope includes the 
glycoproteins gp120 and gp41. Source: http://en.wikipedia.org/wiki/HIV 

 

 

HIV belongs to the lentivirus subgroup of retroviruses and is one of two important human T-

cell lymphotropic retroviruses. HIV is around 120 nm in diameter and roughly spherical. It is 

composed of two copies of positive single-stranded RNA enclosed by a conical capsid 

composed of subunits of the viral protein p24. A matrix composed of subunits of the viral 

protein p17 surrounds the capsid ensuring the integrity of the virion particle, In turn, this is 

surrounded by the viral envelope, a plasma membrane of host-cell origin. Proteins from the 

host cell are embedded in the viral envelope with the complex HIV protein Env that protrudes 

through the surface of the virus particle. Env consists of a cap made of three molecules 

glycoprotein (gp) 120, and a stem consisting of three molecules gp41 that anchors the 

structure into the viral envelope [29]. 
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The 10kB RNA genome codes for the virus's nine genes; group specific antigen (gag), 

polymerase (pol), envelope (env), transcription transactivator (tat), regulator of virion gene 

expression (rev), negative factor (nef), viral infectivity factor (vif), viral protein r (vpr) and 

viral protein u (vpu). Two of these genes, gag and env, contain information needed to make 

the structural proteins for new virus particles: 

� The env gene codes for a protein called gp160 that is cleaved in the host ER to form 

the two envelop proteins gp120 and gp41. This glycoprotein complex enables the virus 

to attach to and fuse with target cells [29].  

� The gag gene encodes the two internal core proteins p17 (matrix protein) and p24 

(capsid), with p24 used as antigen for serological tests. Furthermore, it encodes the 

nucleocapsid proteins p6 and p7 which are tightly bound to the viral RNA. 

Three of the genes, pol, tat and rev, are regulatory genes that are required for viral replication:  

� The pol gene encodes several proteins, including the reverse transcriptase, which 

synthesizes DNA by using the viral RNA as a template, the integrase that integrates 

viral into cellular DNA and the protease that cleaves the various viral precursor 

proteins. 

� The tat gene codes for two Tat proteins (p16 and p14), which are transcriptional 

transactivators for the long terminal repeat (LTR) promoter and activate transcription 

of viral genes [30]. 

� The rev gene codes for the Rev protein, which is involved in shuttling RNAs from the 

nucleus and the cytoplasm [31].  

The four remaining genes nef, vif, vpr, and vpu (or vpx in the case of HIV-2) encode for 

proteins that control the ability of HIV to infect cells, or to cause disease.  

� The nef gene codes for the Nef protein, which down-regulates CD4 [32, 33], as well as 

the MHC class I and class II molecules [34-36]. Nef furthermore induces apoptosis in 

uninfected CD4 and CD8 T cells [37, 38]. Further description of Nef can be found in 

the section. 3.3.2 Nef 

� The vif gene encodes the Vif protein. This protein enhances infectivity by preventing 

the action of APOBEC3G (a cellular protein that causes hypermutation by 

deaminating cytosins in both mRNA and retroviral DNA. Thereby these molecules are 

inactivated and infectivity is reduced) [211].  
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� The vpr gene encodes the Vpr protein, which transports viral core from cytoplasm into 

nucleus in non-dividing cells and arrests cell division at G2/M [211].  

� The vpu gene encodes the Vpu protein, which enhances the release of new virus 

particles from infected cells [211]. 

The ends of each strand of HIV RNA contain the RNA sequence called LTR. Regions in the 

LTR (e.g. the Psi element or the SLIP element) act as switches to control production of new 

viruses and can be triggered by proteins from either HIV or the host cell.  

                   

Figure 4. HIV life cycle. Small arrowheads, viral entry to integration. Curved arrows, early replication. Double-
headed arrows, late replication. (1) Adsorption to CD4 receptor and either CXCR4 or CCR5 co-receptor. (2) 
Fusion. (3) Uncoating of viral genomic RNA dimer. (4) Reverse transcription (RT, reverse transcriptase). (5) 
Formation of pre-integration complex (PIC). (6) Nuclear import of PIC. (7) Integration of proviral DNA into 
host genome. (8) Transcription of early multiply spliced mRNAs. (9) Translation of early regulatory proteins, 
Tat and Rev. (10) Nuclear import of Tat and Rev. Tat increases transcription of viral mRNAs. (11) Rev mediates 
export of singly spliced and unspliced viral mRNAs. (12) Translation of viral structural proteins. (13) Assembly 
at the plasma membrane of viral genomic RNA, proteins, and cellular factors including tRNA(Lys3), the 
obligate primer for reverse transcription. (14) Viral budding. (15) Viral maturation. Cellular factors involved in 
viral transcription: RNA polIII, TRBP, NF-κB and PCAF [39]. Source:  [39] 

 

The replication cycle of HIV is shown and described in Figure 4. In general, it follows the 

typical retroviral cycle. The initial step in the entry of HIV into the cell is the binding of 

gp120 to the main receptor CD4 triggering a conformational change that exposes the 

coreceptor binding site. It then interacts with the coreceptor (CCR5 or CXCR4) (1); the fusion 
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domain of the gp41 is exposed and can interact with the membrane of the target cell, leading 

to fusion (2) and entry of the virion into the cell [40]. The coreceptors CCR5 and CXCR4 

identify two phenotypic variants of HIV-1, R5 (M tropic) and X4 (T tropic) viruses, 

respectively. Generally, recently infected individuals harbor a R5 virus while X4 viruses, 

which are more pathogenic, predominate in the late stages of the disease. Mutations in the 

CCR5 encoding gene, such as the well described “delta32” mutation endow the individual 

with protection from HIV infection or disease progression [41]. After uncoating (3), the 

reverse transcriptase (RNA dependant DNA polymerase) transcribes the viral RNA into 

double stranded DNA. One reason for the high mutation rate of HIV is the lack of an editing 

function in this reverse transcription process. Following the formation of a pre-integration 

complex (PIC) (5) and transportation to the nucleus (6), the viral genome integrates into the 

host cell, mediated by the viral integrase (endonuclease) (7). Early multiply spliced mRNAs 

are transcribed (8) and the early regulatory proteins Tat and Rev are translated (9). Tat and 

Rev are imported into the nuceleus (10) and Tat increases transcription of viral mRNAs. Rev 

mediates export of singly spliced and unspliced viral mRNAs (11). Viral mRNAs are 

translated into several large polyproteins (12). In the following there is assembly at the plasma 

membrane of viral genomic RNA, proteins, and cellular factors including tRNA(Lys3), the 

obligate primer for reverse transcription (13). Cleavage of the Gag and Pol polyproteins by 

the viral protease (the Env polyprotein is cleaved by a cellular protease) occurs as the 

immature virion buds from the cell membrane (14). This cleavage process results in a mature, 

infectious virion (15). [39]. 

3.1.3 Clinical profile 

The clinical course of HIV infection can be divided into three stages: an early, acute stage; an 

asymptomatic, latent stage; and a late, immunodeficiency stage [42] [211]. As indicated in 

Figure 5, the acute stage usually begins 2-4 weeks after infection. Mononucleosis-like 

symptoms with fever, lethargy, sore throat and generalized lymphadenopathy occurs. The 

acute stage, typically with high level viremia, usually resolves spontaneously in about 2 

weeks. Resolution of the acute stage is accompanied by a decreasing viremia and increase of 

CD8 T cells directed against HIV. Antibodies to HIV typically appear 10-14 days after 

infection and most patients will seroconvert by 3-4 weeks after infection. After initial viremia, 

a viral set point is reached, which can be different from  in individual cases and usually 

remains stable over the years of the latent infection period. In the latent stage, lasting usually 

7-11 years, patients are asymptomatic. A syndrome called AIDS Related Complex (ARC) can 

occur during the latent period with manifestations of persistent fevers, fatigue, weight loss and 
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lymphadenopathy. Although plasma viremia usually is low to undetectable in this period, the 

virus itself does not enter a latent phase as a large amount of HIV is produced and sequestered 

within the lymph node. Nevertheless, plasma viral RNA, together with CD4 T-cell counts 

serve to guide treatment decisions and prognosis [43]. The late stage of HIV infection is 

AIDS, manifested by a decline of CD4 T-cell counts to below 400cells/µl and an increase in 

the frequency of and severity of opportunistic infections. The two most characteristic 

manifestations of AIDS are Pneumocystis pneumoniae and Kaposi’s sarcoma, but also other 

opportunistic infections occur. These include viral infections such as disseminated Herpes 

simplex, Herpes zoster, Cytomegalovirus infections; fungal infections such as thrush (caused 

by Candida albicans), cryptococcal meningitits and disseminated histoplasmosis; protozoal 

infections such as toxoplasmosis; and disseminated bacterial infections such as those caused 

by Mycobacterium tuberculosis. Many AIDS patients have severe neurological problems, e.g. 

dementia and neuropathy either caused by HIV infection of the brain or opportunistic 

organisms.   

 

      

Figure 5. Schematic diagram of the course of HIV-1 infection. The diagram illustrates the relationship 
between HIV-1 virus load (brown line) and CD4+ T-cell count (black line) over time in a typical case of 
untreated HIV-1 infection. The different stages of infections are indicated in the graph. Taken from: [John M. 
Coffin, Stephen H Hughes, Harold E. Varmus: Course of HIV and SIV infection. In: Retroviruses. Cold Spring 
Harbour Press, 1997, ISBN 0-87969-571-4] 

 

3.1.4 Therapy options 

To date, with no vaccine available, the only effective remedy against HIV-1 infection remains 

highly active antiretroviral therapy (HAART).  By inhibiting viral replication HAART leads 
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to reversion of symptoms caused by the infection, to a halt of disease progression and to 

achieve clinically relevant immune reconstitution [44]. 

In 1987, the first anti-HIV drug entered in clinical use. One year before, a study published in 

the New England Journal of Medicine demonstrated that a drug called azidothymidine (AZT) 

decreased mortality and the frequency of opportunistic infections in subjects with AIDS [45]. 

AZT belongs to the class of nucleoside and nucleotide reverse transcriptase inhibitors (NRTI). 

NRTI target the viral enzyme reverse transcriptase (RT), a key enzyme responsible for the 

retrotranscription of viral RNA to DNA, a process that precedes the integration of the proviral 

DNA in the host cell genome. NRTI are incorporated into the newly synthesized viral DNA 

and prevent its further elongation. In 1995, the FDA approved the drug saquinavir, the first 

member of a new class of anti-HIV drugs. Saquinavir is an HIV-specific protease inhibitor 

(PI) [46]. The drugs belonging to this new class of antiretroviral drugs inhibit the viral 

protease. This enzyme cleaves viral precursor proteins needed for the assembly of a mature 

virion. As consequence, infected cells release immature and non-infectious particles. In 1996 

the FDA approved the first non-nucleoside reverse transcriptase inhibitor (NNRTI) Nevirapin 

[47]. NNRTIs inhibit reverse transcriptase directly by binding to the enzyme and interfering 

with its function. A number of more recently developed drug substances target further viral or 

cell associated structures leading to an interference with viral replication [48-51]. The fusion 

inhibitor Enfuvirtide is a 36-mer synthetic peptide derived from the HIV-1 gp41 

transmembrane protein and was approved in 2003 for treatment of advanced HIV infection. 

Maraviroc is another entry inhibitor which blocks the chemokine receptor and HIV co-

receptor CCR5. It was approved by the FDA in 2007 for use in drug experienced patients. To 

predict efficacy, HIV tropism has to be determined prior to treatment. The first integrase 

inhibitor approved by the FDA in 2007 was Raltegravir which can be administered in 

combination with optimized background therapy. Standard antiretroviral therapy regimen 

consist of the use of at least three antiretroviral drugs to maximally suppress the HIV virus 

and stop the progression of HIV disease [52][210]. Viral load reduction of 0.6 to 2 log10 

decreases morbidity and mortality [53]. A decrease of viral load to 20-50 RNA copies/ml is 

able to impede development of resistance and consecutive therapy failure. Preferred 

combinations are shown in the scheme below. 
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HAART contributed substantially to reducing AIDS-related opportunistic infections and death 

[44]. However, HAART is not able to clear HIV-1 infection and virus still persists in resting 

CD4 T-cells [54]. As a result, cessation of HAART is accompanied by a rebound in viremia 

in the quasi totality of patients. Moreover, HAART has several short term side effects that 

have yet to be entirely discovered. The most common side effects include gastrointestinal 

problems such as bloating, nausea and diarrhea, lipodystrophy, hepatotoxicity, lactic acidosis, 

osteoporosis and skin rash [55]. Nevertheless, its use is strictly necessary to control HIV 

replication. In addition, in developing countries the high cost and the required lifelong 

adherence are major limitations for the diffusion of HAART. Although from 2001 to 2007, 

the number of people receiving antiretroviral medicines in low- and middle-income countries 

has increased ten-fold, reaching almost 3 million people by the end of 2007 there are still 

millions without access to any treatment, an unacceptable situation (http://www.unaids.org; 

“Report on the global AIDS epidemic”).  

 

In this scenario, a preventive vaccine is desperately needed and therapeutic vaccination may 

represent an alternative strategy aiming to re-induce immunological competence and to 

impede or delay progression to AIDS [56, 57]. 

 

NRTI combinations 

Tenofovir/Emtricitabin 

Abacavir /Lamivudin 
1
 

NNRTI 

Efavirenz
2
 

Nevirapin
3
 

Atazanavir 

Fosamprenavir 

Lopinavir 

Saquinavir 

PI 

+ 

Figure 6. Preferred combinations of antiretroviral drugs  
1 After negative screening for HLAB5701, with reservation if plasma viral load >105 copies/mL and high 
cardiovascular risk (Framingham score >20%). 2 No administration during pregnancy or wish/risk of pregnancy
3With reservation in case of liver disease, male patients with >400 CD4 T-cells/µl, female patients with >250 
CD4 T-cells/µl. [Leitlinie zur antiretroviralen Therapie der HIV Infektion; Deutsche AIDS Gesellschaft; 
September 2008] 
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3.2 Vaccination 

Vaccine development has become more and more complex in the last decades, pursuing new 

strategies for stimulating immune responses against infectious agents of viral, bacterial or 

parasitic origin and against cancer. There is no doubt, that a prophylactic, as well as a 

therapeutic vaccine against HIV is desperately needed as they might be the only hope to stop 

the worldwide AIDS pandemic. Numerous vaccination strategies that include the use of 

recombinant envelope proteins, synthetic peptides, virus like particles, whole inactivated 

viruses, plasmid DNA, recombinant orthopoxviruses or adenoviruses and antigen pulsed 

dendritic cells have been already tested in humans [58, 59].  

3.2.1 Prophylactic HIV vaccination 

A number of unique characteristics of the biology of HIV infections make the creation of an 

HIV vaccine particularly difficult. High levels of viral replication persist in infected 

individuals despite ongoing humoral and cell-mediated immune responses towards HIV. This 

persistence of viral replication could indicate that it is problematical to generate immune 

protection against viral infection. Thus, the way to a successful HIV vaccine represents an 

unprecedented scientific challenge. The traditional approaches for creating effective antiviral 

vaccines have proved inadequate for making one against HIV-1 [60, 61]. The challenges 

involved in the development have accumulated from the time of the first clinical trials to the 

highly publicized Vaxgen trial [60, 62, 63] and the recent “STEP” [64, 65] and “THAI” trial 

[66]. A challenging aspect of HIV biology regarding vaccine development is the extraordinary 

genetic diversity of the virus [67]. This diversity is apparent both in a single infected 

individual and at a global level in geographically disparate infected people. Because of the 

inaccuracy of the replication machinery of the virus, new mutations are introduced into 

virtually every virion generated in an infected individual. As many as a billion new and 

unique viral particles can be created each day in an infected person, so the virus population in 

an individual must be considered a swarm or quasi-species. At a global level, the genetic 

diversity of the virus is manifest in distinct HIV clades. Several HIV envelope–based vaccines 

were aimed at inducing neutralizing antibody responses, as several groups had shown that 

passive transfer of large amounts of neutralizing antibodies could protect primates against 

infection [68-71]. Unfortunately, these trials failed. The main reasons for the failures are 

likely to include the genetic variability of the viral envelope proteins, which allows the virus 

to escape neutralizing antibodies and the difficulty in identifying immunogens and 

immunization platforms that consistently induce antibodies able to neutralize several HIV 

clades as explained above [72]. In the same way, vaccine candidates aiming to induce cellular 



Introduction 
 

 - 22 - 

immune responses have to overcome immune escape caused by continuous viral mutation. 

HIV is transmitted both as cell-free and as cell-associated virus. Because cell-free virus can 

only be eliminated through binding to neutralizing antibody and cell-associated virus by cell-

mediated immune responses, a vaccine may have to elicit both types of immune responses to 

protect against infection with HIV. When antibodies fail to prevent infection an effective T 

cell response will probably be required to control infection. Because the set-point level of 

viremia after infection predicts both disease progression and the likelihood of subsequent 

transmission, a vaccine that does not protect against infection could still be effective if it 

induced sufficient immune responses to dramatically lower the steady-state viral load in case 

of infection [73]. The rationale for a T-cell-based AIDS vaccine stems from data in monkey 

models and in humans indicating that T-cells play a role in control of HIV. CD8 T-cell 

depletion during acute [74] or chronic [75] SIV infection increases viral load. Expression of 

particular HLA class I alleles correlates with delayed disease progression in HIV-1 infected 

humans [76, 77]. CD8 T-cells drive a strong selective pressure in SIV [78] and HIV-1 [79] 

infection. However, the mechanism by which T-cells contain SIV- and HIV-replication 

remains unclear.  

 

Viral vector vaccines expressing one or several HIV-1 genes generally aim to stimulate 

mainly cellular immune responses and have been evaluated in preclinical and clinical studies 

ranging from Phase I to Phase III  [58, 80-83]. One of these candidate vaccines, adenovirus 

serotype 5 vectors expressing either HIV-1 gag, pol or nef  (MRKAd5 HIV-1 gag/pol/nef) 

was tested in the so called STEP trial, a double-blind, placebo controlled phase II, test-of-

concept study with 3000 HIV-1-seronegative participants at 34 different sites in North 

America, the Caribbean, South America, and Australia [64].  The vaccine did not reduce 

plasma viraemia after infection, and HIV-1 incidence was higher in vaccine-treated than in 

placebo-treated men with pre-existing adenovirus serotype 5 (Ad5) immunity. Nevertheless 

the vaccine was highly immunogenic for inducing HIV-1-specific CD8 T cells [84] and thus 

the question has to be asked why the induced CD8 T cells failed to confer any protection. The 

most recent large scale clinical vaccination trial (“THAI trial”) was a community-based, 

randomized, multicenter, double-blind, placebo-controlled efficacy trial with 16,402 healthy 

participants. Efficacy of four priming injections of a recombinant canarypox vector vaccine 

(ALVAC-HIV [vCP1521]) plus two booster injections of a recombinant glycoprotein 120 

subunit vaccine (AIDSVAX B/E) was evaluated. Several previous trials of diverse 

canarypox–HIV vector primes and boosters containing subunit gp120 or gp160 had 
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established the prime–boost concept as a candidate for advanced testing [85], although the 

phase 3 trial of bivalent gp120 AIDSVAX B/E vaccine alone had shown no effect on HIV-1 

acquisition [86]. In the “THAI trial” the vaccine efficacy was 31.2% (95% CI, 1.1 to 51.2; 

P=0.04), but vaccination did not affect the degree of viremia or the CD4+ T-cell count in 

subjects in whom HIV-1 infection was subsequently diagnosed. The partial success of a 

combination of the AIDSVAX B/E vaccine, mainly aiming at the induction of neutralizing 

antibodies, with the canaypox-based ALVAC vaccine, mainly aiming at inducing T-cell 

immune responses, support further evaluation of vaccine regimens aiming at eliciting both, 

humoral and cellular immune responses. In spite of this modest success, the results brought 

hope to the scientific community as for the first time an indication for vaccine-mediated 

protection against HIV infection was observed. Furthermore, this trial supports the use of pox 

virus derived vectors in future HIV vaccine development. 

 

A major problem of HIV vaccine research is that despite of the extensive research, various 

studies and increasing knowledge reliable immunological correlates of protection against HIV 

infection do not yet exist. Therefore predicting the efficacy T-cell responses elicited by a 

vaccine remains difficult and complex. An appropriate assessment of T-cell responses 

includes various distinct properties and requires sophisticated tools and methods [87]. 

 

3.2.2 Therapeutic HIV vaccination 

Despite substantial benefits, HAART is not able to clear HIV-1 infection and the virus still 

persists in resting CD4 T cells [88]. Since interruption of the antiviral treatment inevitably 

leads to disease progression, lifelong HAART administration is required. Unfortunately, 

HAART administration is associated with serious side effects, long-term toxicity and 

selection of multidrug-resistant viral strains. In addition, in developing countries the high cost 

and the required lifelong adherence are major limitations for the diffusion of HAART. In this 

scenario, therapeutic vaccination may represent an alternative strategy aiming to induce 

immunological competence and to impede or delay progression to AIDS [56, 57].  

 

Requirements for a therapeutic vaccine are substantially different from those for a 

prophylactic vaccine. A prophylactic vaccine aims at preventing infection and has to face a 

limited amount of pathogen confined to a small area. A therapeutic vaccine has to face either 

a generalized infection with large amounts of pathogen in untreated HIV infection or 

pharmacologically suppressed viral replication in ART treated patients. The former scenario 
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is found mainly in developing countries, where viral load and CD4 T-cell counts are usually 

unknown; the latter scenario is found mainly in developed countries with access to 

antiretroviral treatment for HIV infected patients, where a therapeutic vaccine would be 

administrated during HAART treatment. Treated patients have low or undetectable viral load 

and following vaccination, they will have the option to interrupt treatment. For these reasons 

it might be necessary to develop two different therapeutic HIV vaccines, each one adapted to 

the specific situation of application. Whatever the case may be, the aim of a therapeutic 

vaccine would be to enhance pre-existing immune responses to such extent that the chronic 

pathogen can be controlled or in the best scenario completely cleared [89]. 

3.3 Modified Vaccinia Virus Ankara (MVA) and MVA-nef 

3.3.1 MVA 

Vaccinia virus (VV) is considered to be the best known member of the poxvirus family and to 

be the prototype live viral vaccine. It is closely related to the virus that causes cowpox. VV is 

a large, complex, enveloped virus with a linear, double-stranded DNA genome approximately 

190 kbp in length, which encodes for approximately 250 genes [90, 91]. VV replicates in the 

cytoplasm of the host cell, its DNA does not integrate into the host cell genome and it is non-

oncogenic [92]. The genome of VV can accommodate large amounts of heterologuos DNA 

and viral gene expression is highly efficient. VV is therefore an attractive candidate for the 

development of viral vaccine vectors [91].  

 

Modified Vaccinia Virus Ankara (MVA) was attenuated from the parental strain 

chorioallantois vaccinia virus Ankara by 516 serial passages in primary chicken embryo 

fibroblast cells (CEF) [93]. During passaging, MVA has suffered a multitude of mutations 

within its genome and six major deletions resulting in the loss of 15% (30kbp) of original 

genetic information. The deletions affect a number of virulence and host range genes as well 

as the gene for the Type A inclusion bodies [94]. As a consequence, MVA exhibits a severely 

restricted host range, and replicates only very poorly, if at all, in most mammalian cell types, 

including primary human cells and most transformed human cell lines [95, 96]. Therefore 

non-recombinant MVA was used in more than 120,000 human subjects in a smallpox 

vaccination campaign in Germany [97]. Recombinant MVA viruses, encoding tumor antigens 

or other antigens of immunological interest, were shown to generate efficient immune 

responses in vivo protecting animals from challenges with both tumor cells and infectious 

agents like influenza or parainfluenza viruses, immunodeficiency viruses, or malaria parasites  
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[96, 98-100]. Considering the characteristics of MVA, which are the restricted host range, the 

efficient expression of heterologous genes, the immunogenicity, the avirulence in animal 

models and the excellent safety record as a smallpox vaccine, the recombinant MVA is a 

promising human vaccine candidate against HIV and other infectious agents.  

3.3.2 Nef 

The misnamed negative factor Nef is an early-expressed, highly conserved, accessory protein 

of primate lentiviruses. It is a small cytoplasmic protein of 27 kDa in HIV-1 and 34 kDa in 

HIV-2 and SIV [101] that is expressed in abundance in the early phase of HIV infection from 

episomal as well as integrated proviruses [102] and is a virulence factor critical for attaining 

high virus loads and the development of AIDS [103]. Being mainly a conglomerate of 

protein–protein interaction domains, Nef does not have any enzymatic activity. It carries out 

its functions by establishing connections between its targets and effectors, which are usually 

part of trafficking or signalling pathways, to assist in viral escape from host immune attack 

[104].  

 

Nef mainly interferes with three important pathways in the cell: downregulation of CD4 as 

well as major histocompatibility complex I downregulation (MHC I) expression on the cell 

surface and perturbation of the cellular signal transduction pathways (Pak2 activation, and 

enhancement of virion infectivity) [105]. Furthermore it has been suggested that simian 

immunodeficiency viruses are non-pathogenic in their hosts because they have Nef being able 

to downregulate CD3 which is not the case for HIV-1 Nef [106]. The expression of Nef in T 

cells unleashes a series of signaling events that are similar to those that occur following T-cell 

activation through the TCR and co-stimulatory pathways [107]. Nef influences apoptosis in 

both infected and uninfected immune effector cells [108]. It induces apoptosis in HIV specific 

CD8 T-cells [109] and blocks death signalling pathways within an infected cell to aid 

resistance to apoptosis [110, 111].  

 

The replication of HIV-1 in vitro is restricted to dividing (activated) cells. In macrophages, 

the first cell type to be infected by HIV, Nef intersects the CD40 signaling pathway leading 

ultimately to T-lymphocyte proliferation through the activation of B-cells [112]. In addition, 

the ability of Nef to induce the release of two CC chemokines in HIV-1-infected macrophages 

leads to chemotaxis and activation of resting T lymphocytes. This generates an environment 

that is promoting viral replication in the host by increasing the pool of substrate lymphocytes 

without additional stimuli [113]. In resting T cells, Nef can be expressed from unintegrated 
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viral DNA and increases T cell activation and viral replication [114]. The interference of Nef 

in T-cell receptor (TCR) or nuclear factor of activated T cells (NFAT) signaling pathways 

also promotes the susceptibility of T cells to HIV replication [115, 116]. In primary cells, in 

which the effects of Nef are most profound, Nef increases viral replication in the infected cell 

and improves infectivity of progeny virions after their release. This effect is dependent on the 

association of this protein with the plasma membrane and is determined at the stage of virus 

particle formation [117]. Due to these features, the Nef gene has been employed in several 

approaches to generate a HIV vaccine. 

3.3.3 MVA-HIV-1LAI-nef (MVA-nef) 

Recombinant MVA expressing one or several different HIV genes has been extensively tested 

in humans [82, 118, 119]. One of the candidate vaccines is MVA-HIV-1LAI-nef (MVA-nef).  

The MVA-nef construct was generated using the MVA-F6 clone originating from the 574th 

passage of MVA in primary chicken embryo fibroblast cells. The gene encoding the HIV-1 

Nef gene under the control of the vaccinia early/late promotor P7.5 has been inserted into the 

site of deletion II by homologous recombination using flanking MVA sequences. MVA-nef 

has been already tested in several preclinical [120] and independent clinical trials summarized 

in Table 1. In all studies vaccination resulted to be safe with minor side effects. All studies 

demonstrated that the vaccine is immunogenic. However, approved correlates of HIV-1 

protection do not yet exist. Yet, recent advances in immune monitoring technologies offer the 

possibility to assess immunological benefits following MVA-nef vaccination and can possibly 

predict the efficacy of MVA-nef administration. Since the vaccine is safe and immunogenic in 

both, healthy and HIV-1 positive individuals, it has the potential to be used in settings where 

the HIV-1 status of the individuals is unknown (i.e. large vaccination campaign in developing 

countries). 
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Table 1. Summary of clinical trials using MVA-nef 

Reference VACCINE HIV 

status, nr 

subjects 

Administr

ation 

Phase Notes/ 

Results 

Safety Reference 

 
Cosma et al. 
[119] 

 
5x108 MVA-
Nef 
 

 
HIV+, 10 

 
Sc; 0, 2, 16 
weeks 

 
I 

 
CD4 increase or 
new: 8/10 
CD8 increase 2/10 

 
confirmed 

 
Cosma et al. [119] 

 
Harrer et al.  
[118] 

 
5x108 MVA-
Nef 

 
HIV+, 14 

 
Sc; 0, 4, 16 
weeks 

 
I 

 
New CD8 9/14 
New CD4 2/14 

 
confirmed 

 
Harrer et al.  
[118] 

 
Harrer et al.  
CROI 
conference, 
2006 

 
5x108 MVA-
Nef 

 
HIV-, 14 

 
Sc; 0, 4, 16 
weeks 

 
I 

 
CD8 or CD4 9/14 

 
confirmed 

 
Harrer et al.  
CROI conference, 
2006 

 
Harrer et al.  
AIDS Vaccine 
Conference, 
Seattle 2007 
and Cape 
Town 2008 
 

 
1x108 MVA-wt 
1x108 MVA-
Nef 
5x108 MVA-
Nef 
 

 
HIV+, 26, 
25, 26 

 
0, 8, 16  
weeks 

 
II 

 
T-cell responses: 
Dose 1x108 44% 
Dose 5x108 62% 

 
confirmed 

 
Harrer et al.  
AIDS Vaccine 
Conference, Seattle 
2007 and Cape Town 
2008 

 
 

3.4 Immunonmonitoring technologies 

3.4.1 Flow cytometry 

Flow cytometry uses the principles of light scattering, light excitation, and emission of 

fluorochrome molecules to generate specific multi-parameter data from particles and cells in 

the size range of 0.5µm to 40µm diameter. Cells are hydro-dynamically focused in a sheath of 

PBS before intercepting an optimally focused light source (laser). As cells or particles of 

interest intercept the light source, they scatter light and fluorochromes are excited to a higher 

energy state. This energy is released as a photon of light with specific spectral properties 

unique to different fluorochromes. Light is sent to different detectors by using optical filters. 

The most common type of detector used in flow cytometry is the photomultiplier tube (PMT). 

The electrical pulses originating from light detected by the PMTs are processed by a series of 

linear and log amplifiers. The data generated by flow-cytometers can be plotted in a single 

dimension, to produce a histogram, in two-dimensional dot plots or even in three dimensions. 

The regions on these plots can be sequentially separated, based on forward scatter, side scatter 

and fluorescence intensity, by creating a series of subset extractions, termed "gates". Because 

different fluorescent dyes' emission spectra overlap, signals at the detectors have to be 

compensated electronically as well as computationally. Data accumulated using a flow 

cytometer can be analyzed using specialized software.  
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Immunfluorescence staining and flow cytometric analysis are used for the simultaneous 

analysis of surface molecules and intracellular cytokines at a single-cell level. For the 

detection of cellular immune responses cells usually are re-stimulated ex vivo, stained for 

surface antigens and then fixed and permeabilized to allow for anti-cytokine antibodies to 

stain intracellularly. Ex vivo re-stimulation of cells is usually required for detection of 

cytokines by flow cytometry since otherwise cytokine levels are typically too low for 

detection. Stimulation of cells with the appropriate antigenic reagent depends on the cell type 

and the experimental conditions. The establishment of a flow-cytometry based intracellular 

cytokine staining assay should include several controls: 

 

• The Isotype control address nonspecific binding of an antibody of a particular isotype, 

e.g. IgG1 conjugated to a particular fluorochrome, e.g. FITC. Unspecific binding 

should be excluded. 

• Fluorescence minus one (FMO) controls check for the residual spillover of different 

antibody-fluorochrome-conjugates in a detection channel after compensation. For each 

antibody-fluorochrome-conjugate there is a sample including all ABs except the one 

of interest. The combination of several antibody-fluorochrome-conjugates can result in 

a loss of resolution sensitivity, as there can be residual spillover as background. The 

FMO control is a possible gating control for markers which don‘t have a very distinct 

division between positive and negative populations. 

• Biological comparison controls (standard negative and positive control) are 

unstimulated or irrelevantly stimulated samples. They have to be included in each 

experiment. During the simulation, these wells do not contain any antigenic peptide or 

an irrelevant peptide to determine the biological background of functional markers, 

produced in response to antigens. This control generally serves to set negative and 

positive gates. Usually the biological background is subtracted from the response 

observed for re-stimulated cells. 

3.4.2 T-cell immunomonitoring 

Along with vaccine development, immunomonitoring technologies have become more 

complex in the last decades. An effective prophylactic or therapeutic HIV vaccine, such as 

vaccines against several other intracellular pathogens like plasmodia or mycobacteria as well 

as against cancer will need to elicit effective T-cell immune responses. Therefore, methods 

that qualify and quantify antigen-specific, functional T cells in a precise, sensitive, and robust 

way are essential.  
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Function-dependent assays usually require a brief in vitro restimulation to induce specific 

effector functions, such as the enzyme-linked immune spot assay (ELISPOT) and intracellular 

cytokine staining (ICS) or secretion assays. T cells responding specifically to antigen are 

detected through their ability to rapidly produce effector cytokines such as IFN-γ, TNF-α, IL-

2, IL-4, IL-5 or MIP-1β. Other methods determine proliferation or degranulation of T cells in 

response to antigen-recognition, which can be quantified by flow cytometry-compatible 

labelling or staining techniques (e.g. CFSE and CD107 staining). All these assays detect 

antigen-specific T cells based on effector functions, like rapid production of cytokines or 

induction of cell proliferation in response to in vitro restimulation with antigen; only T cells 

capable of responding with the readout effector function under the chosen in vitro 

restimulation conditions can be detected. It is unlikely that function-dependent T-cell 

detection assays will be able to detect the entire population as some antigen specific T-cells 

possibly do not produce any effector cytokine. In this case, T-cell detection methods that are 

independent of effector functions, like MHC class I and class II tetramer staining are more 

suitable. Tetramer staining methods that do not require ex vivo re-stimulation have proven to 

be most useful for extensive phenotypic characterizations of antigen-specific T cell 

populations. Several surface and/or intracellular markers have been identified, which indicate 

whether a single T cell belongs to a certain subtype of effector or memory T cells. 

Combination of staining for several different T cell markers with MHC multimers by using 

multicolor flow cytometry has recently opened a new level of T cell phenotyping. Based on 

these different technologies, a substantial number of parameters for antigen-specific T cells 

can be monitored: absolute frequencies, phenotypical subpopulations, functional capacities 

(cytokine secretion, degranulation, proliferation, cytotoxicity), functional and structural 

avidity. It becomes more and more clear, that it is necessary to determine most of these 

parameters to obtain a meaningful immune monitoring analysis.  

 

At present, the standard assays that are commonly used for this purpose are IFN-γ based 

ELISPOT, HLA class I and class II multimer staining and ICS. The ELISPOT assay is 

currently considered the gold standard in vaccine trials due to its sensitivity and extensive 

standardization and validation [121-124]. In fact, several reports demonstrated that the 

ELISPOT assay is more sensitive in detecting weak responses when compared to the ICS 

assay [125-128], a feature that represents an important advantage for the detection and 

measurement of the immune response in vaccine trials [129]. The most commonly used 
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ELISPOT assay measures IFN-γ secretion by total PBMC stimulated by specific antigens. 

Albeit ELISPOT assays being able to measure the secretion of two different cytokines have 

been recently established [130], it is unlikely that future development will increase the 

simultaneous measurement of cytokines for this kind of assays. On the other hand, the 

introduction of new reagents, instruments and software, strongly improved the capacity of 

flow cytometry based assays such ICS and multimer staining to simultaneously measure 

several parameters in the same sample and on the same cell [131-133]. However, between 

ICS and multimer staining, the former seems to be more suited to be employed in vaccine 

trials since it does not require previous HLA typing and a priori knowledge of specific 

epitopes [134, 135]. Hence, it is generally accepted that ICS provides more information 

regarding the quality of the immune response whereas ELISPOT grants a high capacity of 

detecting low magnitude responses, while multimer staining is the method of choice for a 

detailed analysis of the immune response in a selected and limited number of samples. 

 

Clear immunological correlates of protection from HIV infection and disease progression do 

not yet exist although there is strong evidence that CD4 and CD8 T-cells play a role in the 

control of viral replication [73]. However, neither the magnitude of the immune response 

(measured as production of IFN-γ) nor the breadth of recognized epitopes constitute per se 

valid correlates of protection [136-138]. Recently, studies have shown that polyfunctional 

CD8 T-cell responses are preferentially observed in long term non-progressors (LTNP) when 

compared to persons with progressive disease [139]. Furthermore, antigen-specific terminally 

differentiated CD8 T-cells, defined by the lineage markers CCR7 and CD45RA, have been 

preferentially found in long-term non-progressors [140] and early infections with future 

control of HIV-1 viremia [141]. These findings highlight the importance of developing assays 

able to simultaneously measure several parameters in the same sample and strongly suggest 

the use of flow cytometry to monitor immune responses. 



Results 
 

 - 31 - 

4 Results  

4.1 Development of flow-cytometry based assays for the 

characterization of T-cell immune responses 

Several candidate vaccines against HIV-1, among them MVA expressing HIV-1 Nef, aim at 

stimulating cellular immune responses, either alone or together with the induction of 

neutralizing antibodies, and assays able to measure CD8 and CD4 T-cell responses need to be 

implemented. At present, the IFN-γ-based ELISPOT assay is considered the gold standard 

and it is broadly preferred as primary assay for detection of antigen-specific T-cell responses 

in vaccine trials. However, in spite of its high sensitivity, the measurement of the sole IFN-γ 

production provides limited information on the quality of the immune response. The 

introduction of polychromatic flow-cytometry-based assays such as the intracellular cytokine 

staining (ICS) and the continuous technical advancements in flow cytometry strongly 

improved the capacity to detect several markers on a single cell level. 

 

The first task of this work was the development, optimization and standardization of flow-

cytometry based assays able to determine the function and the memory phenotype of antigen 

specific CD4 and CD8 T-cells, suitable to be applied in clinical HIV vaccination trials and 

also other settings. Based on literature research, markers that should be included in the flow-

cytometric staining panel were defined. As for the application in clinical trials, a certain grade 

of standardization was necessary.  

4.1.1 Establishment of 9 – color Intracellular cytokine staining (ICS) 

A 9-color ICS that allowed the simultaneous determination of the function and the memory 

phenotype of antigen specific CD4 and CD8 T-cells was developed. The established assay 

had the capacity to detect the expression of IFN-γ, representing the reference marker to detect 

and quantify specific antiviral T-cell immune responses [142]; the cytokine IL-2, which is 

associated with helper function and essential for proliferation of antigen-specific T cells and 

memory development [133, 143-145]; the chemokine MIP-1β, which has been shown to 

dominate HIV-1-specific immune responses [139] and the CD4 T-cell-specific activation 

marker CD154 (CD40L), which allows the interaction with CD40 expressing antigen-

presenting cells (APCs) and therefore represents a link between innate and adaptive immunity 

[146-148]. For the characterization of the memory phenotype, we used CD45RA, an isoform 

of a membrane phosphatase that is expressed by both naïve and terminally differentiated T-
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cells [149]. By the expression of CD45RA discrimination between effector and memory T 

cells [149] was possible.  

 

The experimental procedure is shown in Figure 7. It generally started with the isolation of 

peripheral blood mononuclear cells (PBMC) from heparinized blood. Isolated PBMC 

subsequently were either cryopreserved or directly processed. After isolation, or in case of 

crypreserved PBMC, after thawing, 1x106 PBMC were resuspended in medium supplemented 

with 10% FCS and 1% PenStrep. The ex vivo re-stimulation with peptides was performed in 

the presence of costimulatory antibodies. Following 60 minutes incubation, Brefeldin A was 

added to the cell suspension and the incubation was carried out for additional four hours. 

Brefeldin A interferes with protein transport from the Golgi apparatus to the endoplasmic 

reticulum. This leads to proteins accumulating inside the ER and allows their intracellular 

detection. After an optional overnight storage at 4°C, stimulated cells were resuspended in 

staining buffer and incubated with the photoreactive fluorescent label ethidiummonoazide to 

asses their viability. Usually cell surface molecules are now stained with fluorochrome-

conjugated antibodies. This step was omitted to reduce duration of the assay for routine 

application. During the establishment of the assay, all staining methods have been carefully 

compared (data not shown). The next step was fixation and permeabilization to render the 

cells permeable for fluorochrome-conjugated staining antibodies. A particular two-step 

protocol, which was established additionally, allows freezing at -80°C after the fixation and 

permeabilization step. This protocol is suitable for clinical trials at different sites, where fresh 

cells can be stimulated, frozen and sent to a centralized analysis facility. It holds the 

advantage that in this way stimulation with complete proteins is possible and the immune 

responses observed in fresh cells usually are higher compared to cryopreserved cells. The 

suitability of the two-step protocol has been tested in collaboration with an Italian and 

Egyptian laboratory for clinical investigations of HIV and HCV/schistosoma specific immune 

responses, respectively (Figure 8). It is furthermore planned to use the protocol for future 

clinical trials in sub-Saharan Africa. After fixation and permeabilization or after thawing in 

case of the two-step protocol, cells were incubated with the following fluorochrome-

conjugated antibodies: CD8-PacB, CD3-AmCyan, CD4-PerCP, CD45RA-PECy7, CD154-

FITC, IFN-γ-Al700, IL-2-APC and MIP1β-PE. After washing, cells were acquired using an 

LSRII flow cytometer equipped with a high throughput system. Sample analysis was 

performed using FlowJo software. FMO control and Isotype control experiments were 
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performed during the establishment of the panel and a biological negative control was 

included in each experiment to enable for background subtraction.  
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Figure 7. Experimental procedure. PBMC are isolated and restimulated with antigenic peptide formulations 
for five hours. After an optional overnight storage at 4°C stimulated cells are resuspended in staining buffer and 
incubated with the photoreactive fluorescent label ethidiummonoazide to asses their viability. Following fixation 
and permeabilization an optional freezing step can be included and allows storage or transportaion. After fixation 
and permeabilization or after thawing in case of the two-step protocol, cells are incubated with the following 
fluorochrome-conjugated antibodies: CD8-PacB, CD3-AmCyan, CD4-PerCP, CD45RA-PECy7, CD154-FITC, 
IFN-γ-Al700, IL-2-APC and MIP1β-PE. Samples are acquired using an LSRII flow cytometer (Becton 
Dickinson) equipped with a high throughput system. Sample analysis is performed using FlowJo software. 
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Figure 8. Two-step ICS effector 45. A particular two-step protocol if the effector 45 ICS was established to 
allow freezing at -80°C after the fixation and permeabilization step. This protocol is suitable for clinical trials at 
different sites, where fresh cells can be stimulated, EMA stained, fixed and permeabilized (STEP 1), frozen and 
then sent to a centralized analysis facility for staining acquisition and data anlalysis (STEP 2). It holds the 
advantage that in this way stimulation with complete proteins is possible and the immune responses observed in 
fresh cells usually are higher compared to cryopreserved cells. The suitability of the two-step protocol has been 
tested in collaboration with an Italian and Egyptian laboratory for clinical investigations of HIV and 
HCV/schistosoma specific immune responses, respectively. Further application is planned in future clinical trials 
in Africa. 
 

 
A gating strategy has been developed and is shown in Figure 9. Lymphocytes were gated on a 

forward scatter area versus side scatter area pseudo-color dot plot and dead cells were 

removed according to EMA staining. CD3+ events were gated versus IFN-γ, IL-2, MIP-1β 

and CD154 to account for activation induced down-regulation. CD3+ events were then 

combined together using the Boolean operator “Or”. The same procedure was used to 

subsequently gate CD8+ events. CD4+ events were excluded before creating a gate for each 

function or phenotype. CD4+ events were defined vice versa. By calculating every possible 

combination of the five resulting populations, Boolean gating analysis identified 32 response 

patterns. Response patterns with at least one positive functional marker were taken in 

consideration for analysis, thus resulting in a total of 30 immune response patterns. 
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Figure 9. Gating strategy. Representative example showing the gating strategy of the 9 color ICS applied on a 
PBMC sample stimulated with peptide pool 6. Lymphocytes are gated on a forward scatter area (FSC-A) versus 
side scatter area (SSC-A) pseudo-color dot plot (A) and dead cells are removed according to EMA staining (B). 
CD3+ events are gated versus CD154 (C), IFN-γ (D), IL-2 (E) and MIP-1β (F) to account for down-regulation. 
CD3+ events are then combined together using the Boolean operator “Or”. The same procedure is used to 
subsequently gate CD8+ (G, H, I and J) and CD4+ (K, L, M and N) events. CD4+ events are excluded from the 
CD8+ population using the exclusion gate in O before creating a gate for each function or phenotype (P, Q, R, S 
and T). CD8+ events are excluded from the CD4+ population using the exclusion gate in O before creating a 
gate for each function or phenotype (U, V, W, X and Y). 

 
 

4.1.2 Establishment of a Carboxyfluorescein succinimidyl ester (CFSE) -
based proliferation assay 

Cell division can be measured accurately within CFSE-labelled populations because of the 

reproducibility, efficiency and stability of CFSE-labeling of cytoplasmic proteins, resulting in 

an exceptionally bright and uniform signal that is divided between daughter cells with high 

conformity. A polychromatic CFSE-based proliferation assay was developed in order to allow 

for simultaneous evaluation of the proliferative capacity in combination with the expression 

pattern of the functional markers IFN-γ, IL-2 and MIP-1β in CD4 and CD8 T cells. CD45RA 

was also included in the staining combination, but as this differentiation marker was 

downregulated after the prolonged ex-vivo re-stimulation of 5 days, it was excluded from 

further analysis.   
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After thawing, PBMC were resuspended in 0.1 µM CFSE. Cells were incubated for 10’ at 37° 

C in the dark for staining and plated at 106 cells/200µl per well. In the presence of antigenic 

peptides and costimulatory antibodies cells were cultured for 5 days in complete medium 

without addition of any further exogenous stimulus. During cell division in these 5 days 

CFSE staining is diluted with each division of a cell resulting in a low staining level in 

proliferating cells and bright staining for non-proliferating cells. At day 5, media was 

exchanged and cells were restimulated applying the same procedure and conditions as for the 

ICS.  Following EMA staining and fixation/permeabilization, cells were stained with the 

fluorochrome-conjugated antibodies used in the ICS protocol. The CD154-FITC antibody was 

omitted not to interfere with the detection of the CFSE. Acquisition and sample analysis were 

performed in concordance with the ICS protocol. Functional markers and ex vivo proliferative 

activity, defined by the low CFSE staining level, were gated according to a gating strategy 

depicted Figure 10. According to the differential expression of CD45RA, IFN-γ, IL-2, MIP1β 

and the CFSE staining level, 30 responding CD4 and CD8 T-cell subpopulations were 

identified.  

 

 
Figure 10. Gating strategy polychromatic CFSE-based proliferation assasy. Representative example (subject 
V11) of the gating strategy for the polychromatic intracellular cytokine staining assay (ICS) in A and 
polychromatic CFSE-based proliferation assay in B. From left to right the gates for CD154, IFN-γ, MIP-1β and 
IL-2 are shown in A. From left to right the gates for CFSE staining level, IFN-γ, MIP-1β and IL-2 are shown in 
B. Upper panels show CD4 T-cell gating. Dot plots represent total CD4 T cells and numbers indicate the positive 
events as defined by the gate in percentage of total CD4 T cells.  Lower panels show CD8 T-cell gating.  

 

4.1.3 Data processing and storage 

Following the application of the defined gating strategy for each assay, Boolean combination 

of all positive populations identified 32 response patterns. Response patterns with at least one 

positive functional marker were taken in consideration for analysis, thus resulting in a total of 

30 immune response patterns in ICS, as well as in the proliferation assay. Via classical excel 

tables data were transferred to Pestle to subtract background. Since background levels varied 

between subpopulations, i.e. CD154 staining showed a higher background than IFN-γ and the 
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combination of 3 or more functions had extremely low background, an individual threshold 

level for each subpopulation was calculated.  The threshold level was defined for each 

functional combination as the 90th percentile of the distribution of negative values from a total 

of 147 samples stimulated with mainly Nef and Tat derived antigenic formulations from 37 

HIV-1 infected individuals, including the study participants. Values lower than the respective 

individual threshold level were set to 0. Furthermore, a general threshold of 0.005% was 

applied for all CD8+ and CD4+ T-cell subsets to exclude minor responses. As a result the 

minimal threshold was ranging from 0.005% of the parent population to 0.11% and 0.06% for 

CD8 and CD4 T-cell response subpopulations, respectively. 

 

For the CFSE-based proliferation assay the threshold level was defined for each functional 

combination as the 95th percentile of the distribution of negative values from a total of 201 

samples stimulated with mainly Nef and Tat derived antigenic formulations from 16 HIV-1 

infected individuals, including the study participants. The 95th percentile was chosen for the 

proliferation assay as in long-term assays T-cell responses as well as background levels tend 

to have a higher variability than in short-term assays. A general threshold of 0.005% for all 

CD8+ and CD4+ T-cell subsets was applied to exclude minor responses. All data derived 

from FlowJo were furthermore inserted into a database, where results could be connected to 

clinical data. Data processing workflow is described in Figure 11. 

 

 
 
 
 

 
Figure 11. Data processing workflow. 

polychromatic ICS and  
polychromatic proliferation 

 assay 

Clinical data 
Database 
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4.1.4 Characterization of the phenotype in ICS and MHC class I tetramer 
staining  

The memory phenotype of CD8 T-cells from 4 different HIV infected individuals were 

compared as detected by ICS and MHC class I tetramer staining regarding CD45RA 

expression. Cells from the same blood collection and freezing procedure were used both 

assays. In ICS PBMC were stimulated with the same antigenic peptide (optimal CD8 epitope) 

that was loaded on the tetramer.  

Responding functional CD8 T cells as detected by ICS were compared to antigen specific 

CD8 T cells as detected by tetramer staining. Figure 12 displays the expression of IFN-γ 

compared to MIP-1β in subject 4. In this case, the measurement of MIP-1β detects 

approximately the double amount of responding cells (7.64% versus 4.28%) but does not 

reach the number of antigen specific cells detected using tetramer staining (9.18%). Although 

varying in different subjects, as shown in Table 2, generally more Nef-specific CD8 T cells 

were producing MIP-1β than IFN-γ. Thus, the extent to which antigen specific cells are 

detected by functional assays was depending on the respective functional marker as well as on 

patients and antigens. 

 

Another question to be answered was, if using the ICS including a 5 hours in vitro re-

stimulation and an overnight rest at 4°C, the observed CD45RA expression phenotype of 

antigen specific cells was comparable to the results of the tetramer staining without ex vivo re-

stimulation. Figure 12 shows a representative example displaying the CD45RA phenotype in 

both assays. A ratio of the frequency of antigen specific CD8+CD45RA+ T-cells divided by 

the frequency of CD45RA- antigen specific CD8 T cells (CD45RA+/CD45RA-) as detected 

by ICS and tetramer staining was built for several functional subsets. The detection of 

CD45RA expression was found to be very similar in both assays, thus indicating that the 

memory phenotype does not change after 5 h ex vivo re-stimulation and storage over night. 

Tetramer staining and ICS were therefore equivalent regarding the investigation of CD45RA 

expression. 
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Figure 12. Analysis of the CD45RA phenotype in ICS and MHC class I tetramer staining. Expression of 
IFN-γ and MIP-1β upon stimulation with the HIV-1 Nef peptide FL8 in CD8+ T cells of subject V4. The results 
in ICS are compared with a MCH class I tetramer staining using the specific tetramer loaded with the same 
peptide. The CD45RA expression is compared in IFN-γ+, MIP1-ß+ and tetramer+ cells. The percentage numbers 
after background subtraction are indicated on the graph.  
 
 
 
 
 
 

Tetramer/ 

epitope 

MIP1b+         

[% of CD8 
T cells] 

ratio 

CD45RA+/- 

IFNg+  

[% of CD8 
T cells] 

ratio 

CD45RA+/- 

tetramer+ 
[% of CD8 

T cells] 

ratio 

CD45RA+/- 

 

V04 FL8 B8 

 

7.64 

 

0.47 

 

4.28 

 

0.48 

 

9.18 

 

0.44            

V05 TL10 B7 0.56 

 

all 

CD45RA- 

0.69 

 

all 

CD45RA- 

0.88 

 

all 

CD45RA- 

V06 TL10 B7 1.02 

 

all 

CD45RA- 

0.89 

 

all 

CD45RA- 

1.42 
 

0.01 

 

V11 YY9 B35 

 

0.61 

 

0.08 

 

0.49 

 

0.06 

 

0.37 

 

0.02 

 
Table 2. Expression of IFN-γ and MIP-1β in CD8+ T cells of 4 subjects (V04,V05,V06,V11) stimulated with 
different peptides (ICS) compared to the detection of antigen specific cells via MHC class I tetramer staining. 
The column besides the marker expression lists the ratio of the percentage of CD45RA+ marker expressing to 
CD45RA- marker expressing CD8 T cells for the respective antigen and patient. 
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4.1.5 Establishment of an analysis system based on the evaluation of of 

IFN-γγγγ+ MIP-1ββββ+ T-cells 

The cumulative analysis of 275 samples obtained from 31 HIV-1 positive individuals 

stimulated with peptides derived from 5 different HIV-1 proteins using the polychromatic 

ICS, revealed an interesting feature of HIV-1 specific IFN-γ-based responses. Upon antigenic 

stimulation the majority of the IFN-γ producing CD8 T-cells were also producing MIP-1β 

(IFN-γ+ MIP-1β+ CD8 T-cells in %: mean±SD, 0.245±0.6341), whereas CD8 T-cells 

characterized by the sole production of IFN-γ were rarely detected (IFN-γ+ MIP-1β- CD8 T-

cells in %: mean±SD, 0.016±0.0652) (Figure 13 A). This trend was observed for all the CD8 

T-cell responses whereas the few detected CD4 T-cell responses were more heterogeneous, 

since antigen-specific cells producing IFN-γ but not MIP-1β were detectable (IFN-γ+ MIP-

1β+ CD4 T-cells in %: mean±SD, 0.±0.; IFN-γ+ MIP-1β- CD4 T-cells in %: mean±SD, 0. 

±0.; Figure 13 B).  

 

 

Figure 13. IFN-γ and MIP1-β expression in CD8 and CD4 T-cells stimulated with HIV-1-derived antigens. 
IFN-γ and MIP1-β expression in CD8 and CD4 T-cells stimulated with HIV-1-derived antigens. Percentages of 
IFN-γ+ MIP-1β- and IFN-γ+ MIP-1β+ CD8 (A) or CD4 (C) T-cells are shown for a total of 275 samples. The 
mean is depicted for each T-cell population. Representative pseudo-color dot plots of data gated on living CD8+ 
CD3+ lymphocytes (B) or living CD4+ CD3+ lymphocytes (D) from 4 different patients are shown. In each plot 
the percentage of IFN-γ+ MIP-1β-, IFN-γ+ MIP-1β+ and IFN-γ- MIP-1β+ is indicated in the bottom right 
corner. The pools used for PBMC stimulation are described in Table 1. TL10, TPGPGVRYPL. 
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The analysis of T cells positive for both markers was of particular interest, since the 

simultaneous evaluation of two or more functions is supposed to decrease the non-specific 

background [139]. In order to investigate this observation in our experimental setting, 52 

mock stimulated samples from 31 HIV-1 positive subjects were analyzed. Mock stimulated 

samples were run for each analyzed patient to measure spontaneous cytokine production and 

unspecific antibody staining. They were processed just as the other samples but in the absence 

of antigenic peptides. The measured background in the mock stimulated samples was 

significantly reduced (around 4-fold lower; p<0.0001, Wilcoxon matched pairs test) in the 

IFN-γ+ MIP-1β+ CD8 T-cells when compared to the total IFN-γ+ CD8 T-cells (Figure 14 A). 

Similarly, a 7-fold decrease (p<0.0001, Wilcoxon matched pairs test) of the non-specific 

background in IFN-γ+ MIP-1β+ CD4 T-cells was observed when compared to total IFN-γ+ 

CD4 T-cells (Figure 14 B). Representative plots of responding CD8 T-cells and their negative 

control are shown in Figure 14 C.  
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Figure 14. Magnitude of IFN-γ+ MIP-1β+ T-cells and IFN-γ+ T-cells in mock stimulated samples. 

Percentages of total IFN-γ+ and IFN-γ+ MIP-1β+ CD8 (A) or CD4 (B) T-cells are shown. The lines indicate the 
median percentage of the observed background. P values were determined by Wilcoxon matched pairs test. In 
(C) representative data from one study subject are shown. PBMC are gated on CD8+ CD3+ lymphocytes and 
were stimulated as indicated at the top of the figure. The peptide LDLWIYHTQGYFPDWQNY (LY18), 
included in pool 8, was here used alone. Data were analyzed with the IFN-γ+ MIP-1β+ (zebra plot in the upper 
row) or the total IFN-γ+ (pseudo-color dot plot in the bottom row) data analysis system. IFN-γ+ MIP-1β+ CD8 
T-cells are depicted in blue whereas a red gate select for total IFN-γ+ CD8 T-cells. The percentage of IFN-γ+ 
MIP-1β+ and total IFN-γ+ CD8 T-cells is indicated in the upper-right corner of each plot. According to the rule 
described in the Methods section, samples were scored as positive or negative (upper-left corner). 

 

A linear regression analysis was performed to examine the correlation between percentages of 

total IFN-γ+ and percentages of IFN-γ+ MIP-1β+ CD8 and CD4 T cells in samples stimulated 

with HIV-1-derived peptides. Percentages of total IFN-γ+ and IFN-γ+ MIP-1β+ CD8 T cells 

showed a goodness of fit of r2=0.9929 and a slope of 1.052 demonstrating an almost perfect 

linearity of the two measurements (Figure 15 A). The goodness of fit was slightly lower for 

CD4 T cells; although it was still characterized by an r² value of 0.7817 (Figure 15 B). The 
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slope was 1.190, confirming the presence of HIV-1 specific CD4 T-cells producing IFN-γ but 

not MIP-1β, as previously shown (Figure 13 B). 

 

 

Figure 15. Linear regression analysis. Linear regression analysis between frequencies of IFN-γ+ MIP-1β+ T-
cells and total IFN-γ+ T-cells is shown for CD8 (A) and CD4 (B) T-cells. The slope (s) and the goodness of fit 
(r2) are indicated in each graph. The regression line is depicted in each graph. 

 

Since the numbers of IFN-γ+ MIP-1β+ T-cells were essentially equivalent to those of total 

IFN-γ+ T-cells whereas the background was strongly decreased in the former, the assumption 

was made, that the evaluation of double positive IFN-γ+ MIP-1β+ T-cells could represent an 

interesting option to increase the sensitivity of the ICS assay in the detection of IFN-γ 

mediated HIV-1-specific responses. 

 

In order to compare the sensitivity of the two modalities to evaluate the IFN-γ T-cell 

response, the previously described 275 independent samples (Figure 16 A) were analyzed. 

The 90th percentile of the negative values after background subtraction was calculated for 

total IFN-γ+ and IFN-γ+ MIP-1β+ T cells. This value was considered as a threshold. Samples 

were considered positive when higher than the threshold and at least 2-fold higher than their 

respective negative control. In the CD8 T-cell population, 187 positive responses were 

detected using the IFN-γ+ MIP-1β+ data evaluation, while only 146 positive responses were 

detected using the total IFN-γ+ data evaluation. The difference was significant performing a 

Fisher’s exact test (p=0.0005). The difference between positive CD4 T-cell responses 

calculated using the two modalities was not significant. When CD8 and CD4 T-cell responses 

were considered together, the difference achieved significance with a p value of 0.0058 

(Fisher’s exact test). The contingency tables in Figure 16 B show that the IFN-γ+ MIP-1β+ 
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data evaluation allowed the detection of 41 CD8 responses that were otherwise missed by 

evaluation of the total IFN-γ+ T-cells. As expected, the simultaneous detection of IFN-γ+ and 

MIP-1β+ did not increase the capacity to detect antigen-specific CD4 T-cell responses. In 

fact, 11 CD4 T-cell responses were exclusively detected by the total IFN-γ+ data evaluation 

whereas 5 were exclusively observed with the simultaneous detection of IFN-γ+ and MIP-

1β+. 

 

            

Figure 16. Number of detected positive responses. (A) The histogram plots show the number of positive CD8, 
CD4 or total T-cell responses detected with the IFN-γ+ MIP-1β+ and the total IFN-γ+ data evaluation systems. 
The p values (Fisher’s exact test) are shown for each graph. Not significant difference (ns). (B) 2x2 contingency 
tables comparing the two data evaluation systems are shown for CD8 and CD4 T-cell responses. 

 

4.1.6 Comparison of the IFNγγγγ+ MIP1ββββ+ data analysis system in 
comparison to the ELISPOT assay 

ICS is generally considered less sensitive than ELISPOT in detecting low magnitude 

responses [125-127]. Therefore, it was tested whether the simultaneous detection of MIP-1β 

and IFN-γ might increase its sensitivity in comparison to two ELISPOT assays performed in 

independent laboratories. Each laboratory used its own ELISPOT method, including a 

different ELISPOT reader and a different procedure to determine positive responses (see 
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Methods). To facilitate the comparison with the ELISPOT, ICS results were expressed as the 

sum of the CD8 and CD4 T-cell responses and a response in ICS was considered positive 

when a CD8 or a CD4 T-cell response was scored as positive. 

Laboratory 1 analyzed 67 samples from 17 HIV-1 infected subjects stimulated with 14 

different peptide formulations derived from two different HIV-1 proteins. Correlation analysis 

of the responses measured by ELISPOT and by ICS expressed in terms of IFN-γ+ MIP-1β+ 

CD8 T-cells or total IFN-γ+ CD8 T-cells demonstrated in both cases a significant correlation 

(Figure 17A). The ELISPOT detected 50 positive responses in 67 samples, while in the ICS 

positive responses expressed as IFN-γ+ MIP-1β+ CD8 or CD4 T-cells were 55 and in the ICS 

positive responses expressed as total IFN-γ+ CD8 or CD4 T-cells were 45. By measuring 

IFN-γ+ MIP-1β+ T-cells 6 positive responses were detected that were otherwise missed by 

ELISPOT whereas, in contrast, only 1 response detected by ELISPOT was missed in the ICS 

determination. Determination of the total IFN-γ+ cells, enabled to detect 4 positive responses 

that were missed by the ELIPOT, but the ELISPOT was able to detect 9 responses missed by 

the ICS. 

 

Laboratory 2 analyzed 29 samples obtained from 3 HIV-1 infected subjects stimulated with 

18 different peptide formulations derived from 5 HIV-1 proteins using an ELISPOT assay 

approved by the Cancer Vaccine Consortium [150]. As observed with the results generated 

from the first laboratory, the correlation with the ELISPOT results was significant for both 

ICS methodologies (Figure 17 B). A total of 29 positive responses were detected by 

ELISPOT, while 27 and 20 positive responses were detected by ICS using the IFN-γ+ MIP-

1β+ and the total IFN-γ+ methods, respectively. Only 2 positive responses were lost by the 

IFN-γ+ MIP-1β+ data evaluation system, whereas 9 responses were lost by the total IFN-γ+ 

data evaluation system in comparison to the ELISPOT performed in laboratory 2. These 

combined results of the 2 laboratories demonstrated that the new evaluation method based on 

the simultaneous detection of IFN-γ and MIP-1β increased the capacity of the ICS to detect 

low-magnitude responses that would be otherwise missed using the ELISPOT or the detection 

of the total IFN-γ+ T-cells. 



Results 
 

 - 46 - 

 

Figure 17. Comparison between the ICS and two independently performed ELISPOT assays. The two ICS 
data evaluation systems are compared with ELISPOT assays performed by laboratory 1 (A) and laboratory 2 (B). 
Correlations between frequencies of responding T-cells detected by ELISPOT and by ICS using the IFN-γ+ 
MIP-1β+ or the total IFN-γ+ data evaluation system are determined by Spearman’s rank correlation. r and p 
values are shown in each graph. 2x2 contingency tables comparing the positive T-cell responses detected by 
ELISPOT and by ICS with the two data evaluation systems are also shown. 
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4.1.7 Influence of the variation in cell number input in the ICS assay 

Cell counting is a basic technique in use in all cell culture laboratories. Nevertheless, it 

constitutes an important source of experimental error [150]. The number of cells per sample is 

a critical parameter in the ELISPOT assay, since results are directly calculated from the total 

amount of cells seeded in each well. In contrast, in the ICS assay responding cells are 

calculated as a percentage of total CD4 or CD8 T cells and therefore the results are 

independent from the total number of cells used in each experimental sample. However, 

variation in the cell number might still affect the experimental outcome because of changes in 

the proportion between the amount of cells, growth factors and stimulants. Therefore, the 

impact of varying the amount of PBMC per experimental sample in our 9-color ICS assay we 

tested. Stimulation with 2 different peptides representing optimal CD8 T-cell epitopes was 

performed using 0.45, 0.91, 1.82 and 3.66 million of cells/well, while the amount of peptides 

was kept constant at 2 µg/ml. There was neither a trend nor a high variation between the 

results for either the total IFN-γ+ response as well as for the combined IFN-γ and MIP-1β 

positive cells (Figure 18). Of note, the background levels were not affected by the number of 

cells seeded per well. 

 

                                 

Figure 18. Variation in the number of cells/well in ICS assay. Different amounts of PBMC were stimulated 
with 2 different Nef derived optimal CD8 epitopes (FLKEKGGL, FL8 and RRQDILDLWIY, RY11). Analyzed 
responses are shown on the x axis.  
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4.2 Re-evaluation of a therapeutic vaccination trial using MVA-nef 

in HIV-1 infected individuals 

In a previous Phase I study, it was shown that a modified vaccinia virus Ankara vector 

expressing HIV-1LAI-nef (MVA-nef) was safe and immunogenic in 10 HIV-1-infected 

individuals under HAART. Participants received MVA-nef vaccination twice (week 0 and 2) 

with a third vaccination 12 weeks after the second administration (week 16). MVA-nef was 

able to elicit or increase Nef-specific CD4 T-cell responses in 8 out of 10 participants, as 

measured by IFN-γ-based ICS assay [119]. 

 

As the sole evaluation of IFN-γ provides limited information on the quality of antigen-specific 

T-cell responses [139, 151-153], a re-evaluation of the study was performed using the 

methods established as described in 4.1. The study mainly focused on the evaluation of the 

quality of the immune response in regard to several markers and the ex-vivo proliferative 

potential. Therefore data were analyzed using a more complex system than the IFN-γ+ MIP-

1β+ data evaluation system. The data analysis system applied in the re-evaluation of the 

clinical trial is described in section  4.1.1 Establishment of 9 – color Intracellular cytokine 

staining (ICS),  4.1.2 Establishment of a Carboxyfluorescein succinimidyl ester (CFSE) -based 

proliferation assay and  4.1.3 Data processing and storage. 

4.2.1 MVA-nef vaccination increases the magnitude of the total Nef-
specific CD4 T-cell response 

The above described polychromatic ICS was used to examine Nef-specific CD4 and CD8 T 

cells in cryopreserved PBMC samples obtained from 9 vaccine recipients. The analysis 

included PBMC collected before the first and after the second administration of the vaccine. 

The ICS assay included the measurement of four functional markers (IFN-γ, IL-2, MIP-1β 

and CD154) and one differentiation marker (CD45RA) in CD4 and CD8 T-cell subsets. By 

summing the frequencies of CD4 or CD8 T cells of each unique T-cell population expressing 

at least one functional marker, the magnitude of the total specific response (Figure 19 A and 

C) was analyzed. The total frequency of Nef-specific CD4 T cells was significantly increased 

by two immunizations (p=0.0078; Wilcoxon signed rank test) and was further boosted after 

the third administration in study subjects V01, V03, V04 and V08. The magnitude of the CD4 

T-cell response ranged from 0 to 0.204% (median 0.022%) before the administration of the 

vaccine, from 0 to 1.028% (median 0.074%) and 0 to 0.967% (median 0.066%) after the 

second and the third immunization, respectively. The total frequency of Nef-specific CD8 T 

cells did not show any significant variation temporally associated with the administration of 



Results 
 

 - 49 - 

the vaccine. The magnitude of the CD8 T-cell response ranged from 0.012 to 0.461% (median 

0.27%) before the administration of the vaccine, from 0.01 to 0.566 (median 0.206%) and 

from 0.028 to 0.582% (median 0.249%) after the second and the third immunization, 

respectively. As a control, CD4 and CD8 T-cell responses to the regulatory HIV protein Tat 

were equally monitored, and significant variations temporally associated with the 

administration of the vaccine were not observed (data not shown). These data confirm the 

previous first-line characterization of the T-cell response induced by the MVA-nef vaccine as 

measured by IFN-γ-based ICS [119], in that Nef-specific CD4 but no CD8 T-cell responses 

were induced by the administration of the vaccine. 

 

       

Figure 19. Total CD4 and CD8 T-cell responses throughout the course of the MVA-nef vaccination trial 

detected by polychromatic ICS and polychromatic CFSE-based proliferation assay. Total Nef-specific CD4 
(A and B) and CD8 (C and D) T cells are shown before, after 2 and after 3 MVA-nef administrations as detected 
by ICS (A and C) and CFSE-based proliferation assay (B and D). Nine subjects were analyzed by ICS; the total 
response is calculated by summing all responding subsets defined by IFN-γ, IL-2, MIP-1β secretion and CD154 
expression. Eight subjects are analyzed by CFSE-based proliferation assay; the total response is calculated by 
summing all responding subsets defined by IFN-γ, IL-2, MIP-1β secretion and a low CFSE staining level 
representing proliferative activity. All the data are background subtracted. Minor responses are excluded by the 
use of a predefined threshold system. To account for multiple comparison differences between the three time-
points we applied nonparametric Friedman’s test for three-way comparison followed by a two-way Wilcoxon 
signed rank test. 

 
 



Results 
 

 - 50 - 

4.2.2 MVA-nef vaccination induces Nef-specific CD4 and CD8 T cells able 
to proliferate 

Since proliferative potential of antigen-specific T cells is considered a key factor in 

maintaining or restoring effective antiviral immunity [154-156], it was of special interest to 

simultaneously evaluate the functional profile and the proliferative potential in combination 

with functional markers of Nef-specific CD4 and CD8 T cells during the course of the study. 

Since there was not enough cell material available from study subject V10, the analysis of the 

proliferative potential included only 8 study subjects. By summing the frequencies of CD4 or 

CD8 T cells of each unique T-cell population positive for at least one functional marker or 

able to proliferate, the magnitude of the total specific response was analyzed (Figure 19 B and 

D). The magnitude of the total Nef-specific CD4 T cells ranged from 0.015 to 0.467% 

(median 0.023) before the administration of the vaccine. Following the second and the third 

immunization the specific CD4 T-cell response ranged from 0.012 to 1.357% (median 0.04%) 

and from 0 to 0.825% (median 0.069%). Thus, the magnitude of the CD4 T-cell response 

detected by proliferation assay was in the same quantitative range as the response detected by 

standard ICS (Figure 19 A and, B). Interestingly, the CFSE-based proliferation assay revealed 

a clear increase of functional and proliferating Nef-specific CD8 T cells following MVA-nef 

vaccination (Figure 19 D). The magnitude of the total Nef-specific CD8 T cell responses 

ranged from 0 to 3.093% (median 0.152%) before the administration of the vaccine. 

Following the second and the third administration, the CD8 T cells responding to Nef ranged 

from 0 to 8.698% (median 0.537%) and from 0 to 8.042% (median 0.355%), respectively. 

Figure 20 shows representative staining examples of ICS and proliferation assay performed 

before and after two vaccine administrations for study subject V11. CD4 T-cell responses to 

Nef were similarly detected using the two immune assays (Figure 20 A and B), whereas the 

proliferation assay turned out to be dramatically more effective in detecting the vaccine 

induced CD8 T-cell responses in comparison to the ICS (Figure 20 C and D). These results 

highlight a differential capacity of the ICS and proliferation assay to reveal specific immune 

responses. In particular, the proliferation assay allowed the detection of CD8 T-cell responses 

elicited by the vaccine, not observed using the ICS assay. 
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Figure 20. Representative CD4 and CD8 T-cell responses before and after 2 administrations of MVA-nef 
as measured by polychromatic ICS and polychromatic CFSE-based proliferation assay.  Density plots 
show total CD4 (A and B) or CD8 (C and D) T cells in gray, overlaid by total responding, marker-expressing 
cells of study subject V11 in violet. Results obtained from polychromatic ICS are depicted in A and C, whereas 
results obtained from the polychromatic CFSE-based proliferation assay are depicted in B and D. In each panel, 
left plots show the unstimulated negative controls and right plots samples stimulated with the Nef N terminus or 
Nef C terminus peptide pool. The upper plots show the time point before the administration of MVA-nef, 
whereas the lower plots show the time point after two MVA- nef administrations. Numbers indicated on the 
graphs are the % of total responding cells relative to the parent population (CD4 or CD8) after background 
subtraction. 

 

4.2.3 MVA-nef vaccination increases the grade of functionality of CD4 T 
cells  

The breakdown of the total Nef-specific response into specific functional categories as 

detected by polychromatic ICS assay is shown in Figure 21. First the CD4 T-cell responses 

were analyzed (Figure 21 A). CD4 T cells responding to Nef were mainly CD45RA negative. 

Only a single subject showed a clear CD45RA positive Nef-specific subset before the 

administration of the vaccine, which declined after the 2nd vaccination and disappeared 

following the 3rd administration of the vaccine. This suggests a shift towards the CD45RA 

negative memory population in this specific individual. As it is not possible to draw 

conclusions from a single subject, CD45RA was excluded from further CD4 T cell analysis. 

The analysis of the degree of functionality showed that before the administration of the 

vaccine mono-, bi-, tri- and tetra-functional Nef-specific CD4 T cells accounted for 52.5, 

29.7, 16.6 and 1.3% of the total response, respectively. After two vaccine administrations tri- 
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and tetra-functional specific T cells increased to 21.2 and 6.6% of the total CD4 response, 

respectively. Following the third administration of the vaccine, a further increase to 30.6 and 

7.6% of the total responding CD4 T cells was observed. The breakdown into specific 

functional categories demonstrated a significant increase of the Nef-specific CD4 T cells 

expressing CD154, IFN-γ and IL-2 following the second (p=0.031) and the third (p=0.023) 

administration of the vaccine. A significant increase of the Nef-specific CD4 T cells 

expressing CD154 and IFN-γ (p=0.031) was additionally observed following the second 

administration of the vaccine. CD4 T cells expressing CD154, IFN-γ, IL-2 and MIP-1β were 

detected only in one study subject (V10) before the administration of the vaccine. Following 

the administration of the vaccine these tetra-functional T cells became detectable in three 

additional study subjects (V01, V04 and V11) and they were strongly boosted in study subject 

V10. Remarkably, CD154 expression on Nef-specific CD4 T cells was increased after the 

administration of MVA-nef, indicating an improved capacity of these CD4 T cells to interact 

with antigen-presenting cells.  

 

The degree of functionality of Nef-specific CD8 T cells did not change following vaccination, 

and the breakdown of the response into specific functional categories did not show any 

significant variation associated with the administration of the vaccine (Figure 21 B). 

Expression of CD45RA on CD8 T cells showed a memory phenotype that differed among 

individuals but was not influenced by the administration of MVA-nef. 
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Figure 21. Functional breakdown of total CD4 and CD8 T-cell responses as measured by polychromatic 

ICS.  Pie charts and aligned dot plots are shown for CD4 (A) and CD8 (B) T-cell responses of all study 
participants. Pie charts show the functional subsets grouped according to their grade of functionality. Fractions 
of tetra- (red), tri- (green), bi- (blue), and monofunctional (grey) responding T cells are shown for samples 
collected before (brown border), after 2 (turquoise border) and after 3 (orange border) vaccine administrations. 
CD4 T cell functions taken into account were CD154 expression and IFN-γ, IL-2 and MIP-1β secretion. CD8 T-
cell functions taken into account were IFN-γ, IL-2 and MIP-1β secretion. Aligned dot plots show all possible 
combinations of 1 to 4 markers in absolute % of the parent populations before (brown) and after 2 (turquoise) or 
3 (orange) vaccine administrations. Markers taken into account are specified in the respective graph. To account 
for multiple comparisons between the 3 time-points, we applied a nonparametric Friedman’s test for three-way 
comparison followed by a two-way Wilcoxon signed rank test. 

 

4.2.4 Detailed analysis of the CD4 T-cell immune response throughout 
the trial in a single subject V04 

To obtain a more detailed picture of the impact of MVA-nef on the T-cell immune response, 

an in depth analysis of subject V04 was conducted, from which sufficient cell material was 

available. The immune response of V04 was of particular interest as this subject underwent a 

therapy interruption one year after the last administration of MVA-nef. Proximately, this 

participant maintained viral control and stable CD4 counts for the following 6 years.  

The CD4 T-cell response against Nef was separately analysed for the N-terminal and the C-

terminal part of the protein using two separate pools of peptides. Samples were selected from 

the timepoints indicated in the scheme below.  
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Before MVA-nef immunization there was no detectable CD4 T-cell response against the N-

terminal Nef and a response with a maximum of two functions against the C-terminal Nef. 

After the second administration of MVA-nef, a CD4 T-cell response against the  

N-terminal Nef, which included tetra-functional subsets, was elicited de novo and the 

maximal grade of functionality in the response against the C-terminal part of Nef increased 

from bi- to tetra-functional. Specific tetra-functional CD4 T-cells against the N-terminal part 

of Nef were still present after one year. Functionality of CD4 T-cell responses directed against 

the C-terminal part of Nef was reduced to two functions after one year and returned to pre-

vaccination level. Of note, neither the quantity nor the quality of the CD8 T-cell response 

against none of the different regions of Nef was changed significantly by the administration of 

MVA-nef (Figure 22). 

W-4 W4 W20 W71.5  W16 

W0 W2 W16 

Sample selection 

MVA-nef vaccination 
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Figure 22.  Detailed analysis of Nef specific CD4 T-cell responses of a single subject. Pie charts and bar 
charts show  the CD4 T-cell response against the N-terminal (A) and C-terminal (B) Nef of subject V04. Pie 
charts show the functional subsets grouped according to their grade of functionality. Fractions of tetra- (red), tri- 
(green), bi- (blue), and monofunctional (grey) responding T cells are shown for samples collected at week -4 , 
week 4, week 16, week 20 and week 71.5 respective to the first MVA-nef administration. IL-2 production is 
indicated as yellow circle around the pie charts. CD4 T cell functions taken into account are CD154 expression 
and IFN-γ, IL-2 and MIP-1β secretion. Bar charts show all possible combinations of 1 to 4 markers in absolute 
% of the parent populations at week -4 (brown), week 4 (turquoise), week 16 (grey), week 20 (orange) and week 
71.5 (pink). 

 
 

4.2.5 Functional characteristics of the proliferating Nef-specific CD4 and 
CD8 T cells 

Nef-specific CD4 (Figure 23 A) or CD8 (Figure 23 B) T cells detected by proliferation assay 

were dissected into functional categories according to their differential expression of IFN-γ, 

IL-2  MIP-1β and the capacity to proliferate. The total amount of CFSE low Nef-specific CD4 

T cells increased after the second administration of the vaccine from a median of 0% (range: 0 

to 0.022%) to 0.04% (range: 0 to 0.232%). The functional breakdown showed that these cells 
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were mainly producing IFN-γ and MIP-1β, but the increase was limited to few study subjects 

and did not reach statistical significance. On the contrary, a strong effect of the vaccination on 

the capacity of Nef-specific CD8 T cells to proliferate was observed. The total amount of 

CFSE low Nef-specific CD8 T cells ranged from 0 to 3.093% (median 0.152%) before the 

administration of the vaccine, from 0 to 8.395 (median 0.482%) and from 0 to 8.042% 

(median 0.2%) after the second and the third immunization, respectively. In addition, 

significant differences were observed in specific CD8 T cells holding a proliferative potential 

and producing MIP-1β alone or MIP-1β and IFN-γ following the second (p=0.016; Wilcoxon 

signed rank test) and the third administration (p=0.023; Wilcoxon signed rank test), 

respectively. 

 

                   

Figure 23. Functional breakdown of total CD4 and CD8 T-cell responses as measured by polychromatic 

CFSE-based proliferation assay. Aligned dot plots are shown for CD4 (A) and CD8 (B) T-cell responses. All 
possible combinations of 1 to 4 markers in absolute % of the parent populations (CD4 or CD8 T cells) before 
(brown) and after 2 (turquoise) or 3 (orange) vaccine administrations are shown. To account for multiple 
comparisons between the 3 time points, we applied a Friedman’s test followed by a Wilcoxon signed rank test. 

 

4.2.6 Correlation between CD4 T-cell responses and CD8 T-cell 
proliferative activity 

In HIV-infected subjects, a causal link between IL-2 production by CD4 T cells and T-cell 

proliferative capacity has been proposed [143, 157]. Therefore, it was determined whether 
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there was a correlation between the increase of the Nef-specific CD4 T-cell response detected 

by ICS assay and the increase in the proliferation activity observed in the Nef-specific CD8 T 

cells. The analysis included the 8 study subjects that had been analyzed in both assays and 

compared the increment of the responses observed after the second and the third 

administration of the vaccine. Following the second administration of MVA-nef, a  significant 

correlation between the increase of Nef-specific CD4 T cells co-expressing CD154, IFN-γ and 

IL-2 as detected by ICS assay and the increase of total Nef-specific CD8 T cells as detected 

by proliferation assay was shown [p=0.022; Spearman’s correlation test (data not shown)]. 

Following the third vaccination, a significant correlation between the increase of Nef-specific 

CD4 T cells co-expressing CD154, IFN-γ and IL-2 as detected by ICS assay and the increase 

of total Nef-specific CD8 T cells as well as the proliferating MIP-1β+ IFN-γ+ subset as 

detected by proliferation assay was found (p=0.028 and p=0.022, respectively; Spearman’s 

correlation test). In addition, correlation analysis showed a significant association between the 

increase of total IL-2 production by CD4 T cells detected by ICS assay with the increase of 

total proliferating CD8 T cells following two and three administrations of MVA-nef (p=0.022 

and p=0.007, respectively; Spearman’s correlation test). 

4.2.7 Vaccine induced polyfunctional CD4 T cells produce high 
quantities of cytokines 

Polyfunctional T cells produce more cytokines on a single-cell level than mono- or bi-

functional T cells [158-160]. A high level of cytokine expression might account for an 

effective control of viral replication by polyfunctional T cells [152]. To assess the MFI of the 

polyfunctional Nef-specific CD4 T cells elicited by the vaccine, the responding subsets were 

grouped according to their grade of functionality and then the relative MFI (rMFI) for the 

expression of IFN-γ, IL-2, CD154 and MIP-1β was calculated (Figure 24). rMFI values were 

calculated by dividing the MFI of the functional subsets by the MFI of nonfunctional CD4 T 

cells. Tetra-functional Nef-specific CD4 T cells expressed significantly higher levels of IFN-γ 

than tri-, bi- and mono-functional cells. A similar pattern was observed for the expression of 

CD154 with the exception that tetra- and tri-functional T cells had similar relative MFI. The 

distribution of the MFI for IL-2 expression was identical to that observed for CD154, but 

since a small number of bi- and monofunctional CD4 T cells expressed IL-2, differences were 

not statistically significant. Finally, MIP-1β expression was significantly lower in 

monofunctional than in tetra-, tri- and bi-functional responding CD4 T cells, but among poly-, 

tri- and bi-functional CD4 T cells no differences were observed. These data suggest that the 

Nef-specific polyfunctional CD4 T cells observed in this study present the typical phenotype 
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of highly functional effector cells. The overlaid dot plots in Figure 24 B show the florescence 

intensity of the mono-, bi-, tri- and tetra-functional cells in the representative study subject 

V10 during the course of the study. Following the administration of the vaccine, a clear 

increase of the Nef-specific CD4 T cells with a polyfunctional phenotype clearly expressing 

highest amounts of IFN-γ, IL2 and CD154 on a per-cell basis was observed. 
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Figure 24. Characterization of polyfunctional CD4 T cells.  (A) CD4 T cells responding to stimulation with 
Nef derived peptide pools are grouped according to their grade of functionality and expression of IFN-γ, IL-2, 
MIP-1β or CD154 into tetra- (red), tri- (green), bi- (blue), and mono-functional (grey).  Relative MFI (rMFI) 
values were calculated by dividing the MFI of the functional subsets by the MFI of nonfunctional CD4 T cells. 
Each point represents a positive CD4 T-cell response detected with the Nef peptide pools covering either the N 
terminus or the C terminus of the Nef protein. To account for multiple comparisons, differences between the 
functional groups were assessed by nonparametric Kruskal-Wallis test for four-way comparison followed by a 
pairwise Mann-Whitney test. (B) Representative flow cytometric data from subject V10 are depicted in overlaid 
dot plots. Mono-, bi-, tri- and tetra-functional Nef-specific CD4 T cells are indicated using the same color coding 
as for the graphs in (A). Asterisks indicate the level of significance with *** indicating p≤0.0001; ** indicating 
p≤0.001; * indicating p≤0.05. 
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4.2.8 Comparison of the CD4 T-cell immune response in MVA-nef 
vaccinated subjects to CD4 T-cell responses in persistent but 
controlled viral infections regarding functionality 

To investigate the role of Nef-specific CD4 T-cell subsets with different grades of 

functionality, they were compared to CD4 T-cell responses in controlled chronic viral 

infections. CMV and EBV specific CD4 T-cell responses in 23 healthy individuals were 

investigated. The expression profile of CD154, IFN-γ, IL-2 and MIP-1β was evaluated in 

order to be compared to the responses seen in vaccinated HIV-1 infected study participants. 

CD4 T-cells responding upon stimulation with the immunodominant phospho-protein pp65 

and the immediate-early protein IE-1 of CMV, and the latent membrane proteins LMP-1 and 

LMP-1 of EBV were assessed. A CD4 T-cell response towards pp65 was observed in 14 out 

of 23 individuals [median: 0.172% (0.006%-2.557%)]; towards IE-1 in 8 out of 23 individuals 

[median: 0.028% (0.005%-0.089%)]; towards LMP-1 in 6 out of 23 individuals [median: 

0.038% (0.006%-0.208%)]; and towards LMP-2 in 5 out of 23 individuals [median: 0.013% 

(0.006%-0.185%)]. The functional breakdown of the responses revealed that 9 out of 14 

responses towards CMV pp65 contained a tetra-functional fraction with a median of 0.022% 

(0.009%-0.983%). Tri-functional cells expressing CD154, IFN-γ and MIP-1β were present in 

8 of the 14 responses towards CMV pp65 [median: 0.022% (0.000%-1.246%)] and tri-

functional cells expressing CD154, IFN-γ and IL-2 were present in 11 out of 14 responses 

towards CMV pp65 [median: 0.028% (0.000%-0.170%)] (Figure 25 A). No tetra-functional 

cells were detected within the response towards CMV IE-1. Tri-functional cells expressing 

CD154, IFN-γ and IL-2 were detected in 7 out of 8 responses towards IE-1 with a median of 

0.011% (0.005%-0.055%) (Figure 25 B). 1 out of 6 responses towards EBV LMP-1 and 1 out 

of 5 responses towards EBV LMP-1 contained a tetra-functional fraction with a frequency of 

0.012% and 0.023% of CD4 T-cells, respectively (Figure 25 C and D). Taken together it can 

be stated that the CD4 T-cell responses against antigens of controlled chronic viral infections 

were highly functional. 
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Figure 25. Analysis of CD4 T-cell responses against CMV and EBV derived antigens as examples for 

controlled chronic viral infections. The analysis summarizes a study including 23 healthy volunteers. Pie 
charts and aligned dot plots show the CD4 T-cell response against the CMV pp65 (A), CMV IE-1 (B), EBV 
LMP-1 (C) and EBV LMP-2 (D). The number of responding individuals is indicated in the graph as n. Pie charts 
show the functional subsets grouped according to their grade of functionality. Tetra- (red), tri- (green), bi- (blue), 
and monofunctional (grey) responding T cells are shown for all responders. CD4 T cell functions taken into 
account are CD154 expression and IFN-γ, IL-2 and MIP-1β secretion. Aligned dot plots show all possible 
combinations of 1 to 4 markers in absolute % of the CD4 T-cell population.  

 
 



Discussion 
 

 - 62 - 

5 Discussion  

To date, the only effective remedy against HIV and AIDS remains antiretroviral therapy. 

Despite of substantial benefits, HAART is not able to clear HIV infection and has several 

short-term and long-term side effects, yet, its use is strictly necessary to control HIV 

replication. Thus, alternative therapeutic and prophylactic solutions to cure progression to 

AIDS and prevent HIV infection have to be found. 

Vaccination is one of the possible alternative strategies to contain HIV, both in a therapeutic 

or in prophylactic setting. The rationale behind a therapeutic vaccine is to improve the 

magnitude and the quality of the anti-HIV immune responses to an extent that will be able to 

control viral replication without the help of anti-retroviral therapy while a prophylactic 

vaccine should aim at eliciting an immune response able to face the first encounter with the 

virus. The example of long term non-progressors (LTNP) demonstrates that control of viral 

replication by the immune system is possible in the context of the natural course of the 

disease. The comparative analysis of anti-HIV immune response in LTNP, chronically HIV 

infected individuals under HAART and individuals with progressive disease highlighted some 

possible correlates of protection and some possible immunological mechanisms of viral 

control [140, 141, 154, 161-164]. Thus, it can be suggested that the immune system might be 

able to control viral replication. However, from all these studies it is difficult to define clear 

protection markers, since often studies are focalized on one specific aspect of the immune 

response. The available methods for analysis of antigen-specific T cells are still technically 

challenging, and further improvements, as well as the establishment of generally accepted 

standard operation procedures are currently being developed [165]. Therefore, the first aim of 

this work was the establishment of assays holding the potential to evaluate simultaneously 

several markers with a particular role in HIV infection to gain further insights in the 

functional profile, differentiation phenotype, proliferative potential and activation state of 

HIV specific T cells. The developed assays were then applied to a setting of a therapeutic 

vaccination using MVA-nef, including a small comparative study with immune responses 

towards CMV and EBV derived antigens as an example for controlled viral infections in 

regard to qualitative aspects. 
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5.1 Establishment of flow-cytometry based assays for the 

characterization of T-cell immune responses 

The polychromatic ICS and CFSE-based proliferation assay established in this work are 

function-dependent assays such as the ELISPOT. They detect antigen-specific T cells based 

on effector functions, like production of cytokines and chemokines or induction of cell 

proliferation in response to antigenic ex vivo re-stimulation; only T cells capable of 

responding with the readout effector function under the chosen ex-vivo re-stimulation 

conditions can be detected. T cell detection assays will be able to detect the entire population. 

For this reason, T cell detection methods that are independent of effector functions and do not 

require in vitro incubation, especially MHC class I tetramers have proven to be useful for 

extensive phenotypic characterization of antigen-specific T cell populations. Several surface 

and/or intracellular markers (CD127, CD69, CD38, CD45RA, CCR7, CD62L), which 

indicate whether a single T cell belongs to a certain subtype of effector or memory T cells 

have been identified [166]. When evaluating the T-cell differentiation in diverse viral 

infections such as CMV, EBV and HIV it has been shown, that the maturation phenotype is 

skewed mainly regarding the CD45RA expression [167]. Detection of this marker is usually 

combined with the measurement of the homing receptor CCR7 to distinguish between TCM 

(central memory, CD45RA-CCR7+) TEM (effector memory CD45RA-CCR7-), TEMRA 

(terminally differentiated, CD45RA+CCR7-) and naïve cells (CD45RA+CCR7+) [149]. 

When combined with at least one functional marker CD45RA alone in theory is able to 

discriminate between TCM/TEM and TEMRA cells as the large majority of functional, responding 

cells is not naïve. Two studies recently could demonstrate the potential protective role of an 

HIV specific, IFN-γ functional, CD8 TEMRA cell subset in different HIV infected cohorts. 

They revealed that a CD45RA positive phenotype of IFN-γ producing functional cells in the 

early state of infection correlates with a lower viral load in later phases [141]. Furthermore 

there could be indicated a relationship between the CD45RA+IFN-γ+ cell subset and a long 

term nonprogressor status [140]. Therefore, this marker had been included in the staining 

combination of the polychromatic assays. It has been reported that CD45RA expression is 

varying depending on the time elapsed since antigen stimulation. After a stimulation of two 

days the loss of CD45RA expression was observed to be approximately 14-fold [168]. The 

direct comparison performed in this work provides a confirmation that the memory phenotype 

regarding the CD45RA expression observed in the ICS assay after 5 hours of in vitro 

restimulation and an overnight rest at 4°C is comparable to the results of the MHC class II 

tetramer staining without ex vivo re-stimulation. The results prove that the developed ICS 
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assay allows detection of the memory phenotype regarding the CD45RA expression and is 

equivalent to a specific tetramer staining from this point of view. On the contrary, when using 

the CFSE based proliferation assay incorporating the prolonged ex-vivo re-stimulation of 5 

days, CD45RA was downregulated on antigen-specific cells and was therefore excluded from 

further analysis in this assay. 

 

It is generally established that the number of detected functional cells by ICS after stimulation 

with single peptides in general does not reach the range of cells detected by specific tetramer 

staining using the same epitope, because not all antigen specific cells are supposed to be 

functional in cytokine production and cytotoxic activity [135, 169]. The experiments display 

that the extent to which antigen specific T cells are detected by a functional assay is 

depending on the respective functional markers being measured and on patient specific 

characteristics.  It could be shown that the 9-color ICS investigating MIP-1β can reach almost 

the range of cells detected by a tetramer staining using the same antigenic epitope. 

 

The ELISPOT assay is currently considered the gold standard in vaccine trials due to its 

sensitivity and extensive standardization and validation [121-124, 150]. In fact, several 

reports demonstrated that the ELISPOT assay is more sensitive in detecting weak responses 

when compared to the ICS assay [125-128], a supporting issue in favour of the use of the 

IFN-γ ELISPOT as primary assay in vaccine trials [129]. In this work, experimental evidence 

is provided in support of the combined IFN-γ and MIP-1β ICS method that, unlike commonly 

used methods based on the flow-cytometric detection of IFN-γ, achieved sensitivity 

comparable to that typical of ELISPOT assays. In this regard, the key observation was that the 

majority of the IFN-γ producing T-cells were simultaneously producing MIP-1β rendering 

this new modality of evaluation equivalent to the measurement of the total IFN-γ producing 

T-cells. With the relevant advantage of a consistent decrease of background the sensitivity of 

the assay can be increased. The results provide support for an expanded use of polychromatic 

flow cytometry as primary assay in vaccine trials. The 9-color ICS method optimized during 

this work allows the simultaneous measurement of several fluorescence markers without 

losing sensitivity in comparison to the gold standard IFN-γ ELISPOT. However, instead of a 

9-color assay the same method could be applied to any staining combination including IFN-γ 

and MIP-1β in combination with the appropriate lineage markers. Thus, for investigators with 

no access to sophisticated flow cytometers, a simplified panel could be used for immune-

monitoring purpose as alternative to the ELISPOT not losing sensitivity and with the 
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advantage to discriminate CD4 and CD8 T-cell mediated responses. Alternatively, more 

complex staining combinations could be designed for laboratory facilities where complex 

instrumentation is available, provided the inclusion of the simultaneous measurement of IFN-

γ and MIP-1β. The present study comparing the combined IFN-γ and MIP-1β detection 

method to the classical IFN-γ based ICS was limited to the analysis of the HIV-1-specific T-

cell responses. Nevertheless, this method can be extended to other antigen specific immune 

responses if T-cells expressing IFN-γ and MIP-1β represent the majority of the total IFN-γ 

producing T-cells. In this regard, a possible extension of the methodology is the coupling of 

an activation marker (i.e. CD69, CD154, etc.) to the measurement of cytokines or chemokines 

(i.e. IFN-γ, IL-2 and MIP-1β). Generally, targeting 2 or more molecules on the same cell 

population should increase the sensitivity of the assay for the selected cell population. Since 

flow cytometry is continuously advanced by the development of new instrumentation and 

reagents, the inclusion of more markers in a single sample should aim not only to increase the 

amount of information per cell but also to increase the sensitivity for populations of special 

interest. The cell number study demonstrated that the amount of cells used in each 

experimental sample does not affect the readout of the 9-color ICS. Since the procedure of 

manual cell counting is a usual source of experimental error and the number of cells directly 

affects the ELISPOT readout, the data support the concept of a reduced experimental error 

associated with the use of ICS assays and strengthens the idea to apply ICS as primary assay 

in vaccine trials. 

 

The polychromatic CFSE-based proliferation assay established in the present work can be 

regarded as a combination of a classical CFSE staining method [170] and the classical ICS 

[171]. It allowed for simultaneous evaluation of the proliferative capacity in combination with 

the expression pattern of the functional markers IFN-γ, IL-2 and MIP-1β in CD4 and CD8 T 

cells. The two methods have been previously combined for mouse T-cell evaluation [172, 

173] and recently a similar method has been established for human PBMC [174]. 

Nevertheless, the assay established in this work is unique in that no exogenous proliferative or 

anti-apoptotic cytokines are added and observed proliferation, survival, and cytokine 

production depend solely on endogenous cytokines produced in response to the antigen. The 

combination of the standard ICS and the CFSE-based proliferation assay proved extremely 

useful to examine qualitative and quantitative aspects of the MVA-nef-induced, anti-Nef-

specific immunity.  
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5.2 Re-evaluation of a therapeutic vaccination trial using MVA-nef 

in HIV-1 infected individuals 

Therapeutic vaccination may represent a valuable tool to achieve viral control in HIV-1-

infected individuals by boosting the virus-specific immune response. Various HIV-1 

immunogens have been tested in HIV-1-infected individuals and were able to stimulate 

specific CD4 and CD8 T-cell responses [118, 119, 175-180]. Vaccine-specific immune 

responses were evaluated with immune assays such as ELISPOT [118, 179, 181], 

proliferation assay [175, 176, 179, 181] and ICS [177, 179, 181]. However, most of these 

studies investigated single parameters like the secretion of IFN-γ [177, 178] or proliferative 

responses [175, 176]. Recently, Ondondo et al. observed an increase of the production of IFN-

γ and IL-2 in HIV-1 infected individuals immunized with an MVA vector expressing HIV-1 

gag p24/p17 as investigated by ICS [181]. 

 

The first clinical trial demonstrating safety and immunogenicity of an MVA vectored vaccine 

in chronically HIV-1 infected individuals was performed in the Institute of Molecular 

Virology of the Helmholtz Zentrum München (formerly GSF) in 2001-2002. Ten chronically 

HIV infected individuals undergoing HAART were vaccinated with a modified vaccinia virus 

Ankara (MVA)-HIV-1LAI-nef vector [119]. The MVA-nef vaccine was administered three 

times. No significant adverse events were observed during the course of vaccination and 

during one year of follow up indicating for the first time that the highly attenuated vaccinia-

virus vector MVA is safe in HIV-1 infected individuals. The first line analysis demonstrated 

that recombinant MVA-nef was immunogenic in regard to CD4 T-cell, but not CD8 T-cell 

responses as detected by a simple IFN-γ-based ICS. CD4 T-cell responses directed to 

previously unidentified Nef epitopes were detected in two subjects. As already described in 

this work, the sole evaluation of IFN-γ provides limited information about the quality of 

antigen-specific T-cell responses and other important parameters.  

 

Applying the polychromatic flow cytometry based methods, established in this work, a re-

evaluation on the samples collected during the MVA-nef vaccination trial was performed to 

further investigate the T-cell responses elicited by the vaccine. As observed in this re-

evaluation, the MVA-nef vaccine was able to increase significantly the frequencies of Nef-

specific CD4 T cells expressing CD154 and IFN-γ, as well as CD4 T cells expressing CD154, 

IFN-γ and IL-2. In addition, Nef-specific CD4 T cells expressing CD154, IFN-γ, IL-2 and 

MIP-1β were induced in four out of nine subjects. As demonstrated by the MFI analysis, the 
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vaccine-elicited polyfunctional CD4 T cells showed increased production of IFN-γ, CD154 

and IL-2 on a per-cell level whereas the quantity of produced MIP-1β was independent from 

the grade of functionality. These data indicate that the polyfunctional CD4 T cells secreting 

highest amounts of cytokines observed in the present study are similar to polyfunctional T 

cells that have been associated with successful immune responses reviewed by Seder et al. 

[152]. A correlation between the presence of antigen-specific CD4 T cells co-producing 

multiple cytokines and nonprogressive chronic HIV-1 infection has been shown in several 

cross-sectional studies [162, 182-184]. Multifunctional CD4 or CD8 T cells are furthermore 

proposed to represent a correlate of vaccine-mediated protection against various infectious 

diseases [159, 160, 185]. While initial studies characterized the expression profile of IFN-γ 

and IL-2 [162, 182, 183], more recent studies have expanded the investigation and analyzed 

more complex functional patterns [139, 184].  

 

To compare the CD4 T-cell immune responses found in HIV infected individuals during the 

clinical trial to the responses in controlled human viral infections like the human cytomegalus 

virus (CMV) and Epstein-Barr virus (EBV) using the established methods, the polychromatic 

ICS was applied to a study including 23 healthy volunteers. CMV and EBV establish 

persistent viral infections and provide well-established models to study the role of effective 

host T-cell responses [186, 187]. In these models CD4 T-cell help could be shown to be 

important for the induction and maintenance of an effective immune response in animal 

models and in humans [188-191]. Especially CMV pp65 specific CD4 T-cells have been 

found to exhibit direct antiviral effector functions (e.g. IFN-γ, IL-2, MIP-1β, CD154, 

Perforin), suggesting a role in viral control beyond cognate help in this setting [191, 192].  

 

Nef specific CD4 T-cell responses in the MVA-nef vaccinated study participants were 

compared to CD4 T-cell responses towards the CMV proteins pp65 and IE-1, and the EBV 

proteins LMP-1 and LMP-2 in healthy individuals using them as an example of effective T-

cell mediated control of persistent viral infections. Concordant with other data, CMV pp65 

specific CD4 T-cells were detected in more individuals and in higher frequencies than CMV 

IE-1 specific CD4 T-cells [193, 194]. Frequencies of EBV specific CD4 T-cell responses 

were low, but generally CMV and EBV specific immune responses in healthy individuals 

were more functional than Nef specific responses before MVA-nef vaccination in HIV 

infected individuals. If a polyfunctional CD4 T-cell phenotype is sufficient to explain control 

of CMV and EBV in healthy individuals remains to be clarified, but production of highest 
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amounts of several functional markers can be clearly seen as a sign of an actual good 

functional state.   

 

IL-2 secretion by CD4 T cells is associated with control of HIV-1 replication in infected 

individuals and is related to the proliferative potential of CD4 and CD8 T cells [87, 143, 157]. 

HIV-1 viremia, in particular, impedes the establishment of IL-2-producing HIV-1-specific 

memory CD4 T cells endowed with proliferative capacity [195]. Several lines of evidence 

indicate that the proliferative capacity is maintained in primary and nonprogressive HIV-1 

infection and impaired in chronic progressive infection [143, 154, 196]. Whether the 

proliferative impairment is reversible by endogenous or exogenous IL-2 [143, 155, 157] is 

still a matter of discussion. Whatever the case may be, the MVA-nef vaccine was able to 

increase the number of Nef-specific IL-2 producing CD4 T cells and Nef-specific CD4 and 

CD8 T cells capable to proliferate ex vivo. This indicates an improved capacity of effector 

CD4 and particularly CD8 T cells to expand in response to HIV-1 antigens. Along with the 

functional profile, the proliferative capacity of antigen-specific T cells is believed to be a key 

factor in maintaining or restoring effective antiviral immunity [154, 155]. In the present study, 

it could be verified that MVA-nef was able to induce specific CD4 and CD8 T cells endowed 

with proliferative potential. In addition, following vaccination, a significant correlation 

between the increase in IL-2 production by specific CD4 T cells and the increase in 

proliferative activity of CD8 T-cells has been observed, suggesting a causal link between the 

two functions. 

 

Mono-functional CD4 T-cells secreting only IFN-γ are associated with progressive HIV-1 

infection [195, 197] and indicate ongoing exhaustion also in other chronic infectious diseases 

like tuberculosis and HCV infection [198, 199]. A clearly decreased mono-functional fraction 

of the Nef specific CD4 T-cell response was observed following MVA-nef vaccination. CD4 

T-cells producing anti-viral chemokines like MIP-1β offer the potential to protect virus-

specific CD4 T-cells from HIV infection [200]. Higher amounts of beta-chemokines have 

been found in successfully treated, chronically infected patients [201]. In this study, increased 

numbers of MIP-1β producing CD4 T-cells were observed along with the increased total Nef 

specific CD4 T-cell response upon MVA-nef vaccination. The induction of CD154+ CD4 T 

cells is typically impaired in HIV-1 infection [202] and in progressive infection CD154-

expressing CD4 T cells are selectively depleted [147]. Thus, the vaccine-induced increase of 
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Nef-specific CD4 T cells expressing CD154 suggests a reversion of the impaired CD154 

expression and likely, an improved interaction potential between CD4 T cells and APC. 

 

Taken together, it can be stated, that the MVA-nef vaccine was able to modify the Nef-

specific response towards a T-cell phenotype associated with a good prognosis of HIV-1 

disease progression and observed in effective immune responses towards controlled human 

viral infections. Nevertheless, it has not been assured if these polyfunctional and proliferative 

immune responses are able to provide protection against HIV-1 infection or to improve viral 

control in already HIV-1-infected individuals. Polyfunctional CD8 and CD4 T-cells which are 

usually associated with successful immune responses have been detected in healthy subjects 

vaccinated with a defective Adenovirus vaccine vector [203]. However, the same vaccine was 

ineffective in protecting against infection in a proof of concept phase IIb trial [204]. 

Therefore, though the MVA-nef vaccine was able to elicit responses normally associated with 

slow HIV-1 disease progression in infected individuals and with naturally controlled 

infectious diseases, efficacy studies will be warranted to assess eventual clinical benefits 

provided by the vaccine. In this regard, future immunization studies should incorporate a 

period of HAART discontinuation to assess whether vaccine-elicited responses are associated 

with improved control of viral replication.  

 

From a methodological point of view, the re-evaluation of the therapeutic MVA-nef 

vaccination trial highlighted how the use of the polychromatic CFSE-based proliferation assay 

augmented the perceived immunogenicity of the MVA-nef vaccine. In fact, both the ex vivo 

IFN-γ-based ICS performed in a previous study [119] and the polychromatic ICS performed 

in the present study underestimated the vaccine-induced Nef-specific CD8 T-cell responses 

clearly detected by the proliferation assay. Recently, Winstone and colleagues [205] used a 

cultured IFN-γ ELISPOT assay to re-examine vaccine-induced T-cell responses in trial IAVI-

006. The cultured IFN-γ ELISPOT assay detected 5 times more vaccine-induced responses in 

study participants as compared to the classical ELISPOT [82, 206].  The proliferation assay 

used in the re-evaluation study and the cultured IFN-γ ELISPOT assay used to evaluate the 

IAVI-006 trial have in common several days of incubation in the presence of the antigen, 

suggesting that an expansion step may be required to reveal specific responses otherwise 

undetectable. The polychromatic CFSE-based proliferation assay simultaneously assessing 

functional markers and proliferative capacity represents therefore an innovative and sensitive 

immunoassay, well-suited to reveal concealed effects of immunologic interventions. The 
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combination of the polychromatic ICS and the CFSE-based proliferation assay was 

particularly important to assess qualitative and quantitative aspects of the MVA-nef-induced, 

anti-Nef-specific immunity.  
 

The re-evaluation data, alongside previous reports in which an HIV-1 gag/multiepitope 

immunogen was delivered by the MVA vector [181], demonstrate the capacity of MVA to 

improve the quality of the HIV-1-specific immune response in infected individuals. In the re-

evaluation, as well as in the first-line analysis, both using short stimulation periods, more CD4 

than CD8 T-cell specific to Nef were detected. Recently, it has been reported, that compared 

to New York vaccinia virus (NYVAC), MVA is able to stimulate in an equilibrated way both 

CD4 and CD8 T-cell responses in rhesus macaques primed with a DNA vaccine [207]. As a 

possible explanation for the fact that in this study more CD4 than CD8 T-cell specific to Nef 

were detected it could be suggested that the expansion of CD4 T-cells requires sustained 

antigen presentation in contrast to CD8 T-cells [208]. It can be hypothesized that CD4 T-cell 

expansion is favored in chronic infection where there is continuous presence of the antigen. In 

addition, induction of apoptosis in cells infected by the MVA vector followed by MHC class 

II restricted antigen crosspresentation might be a possible reason for the preferential 

elicitation of specific CD4 T cells. Nevertheless, the mechanism for the differential 

stimulation of CD4 and CD8 T-cell responses remains to be clarified by mechanistic studies. 

The Nef specific CD4 T-cell response in a single subject V04 before the vaccination consisted 

solely of CD4 T-cells expressing IFN-γ and MIP-1β directed against the C-terminal part of 

Nef. This response was altered by MVA-nef and shortly after vaccine administration 

tetrafunctional subsets were detectable. MVA-nef was furthermore able to induce de novo 

tetrafunctional CD4 T cells expressing CD154, IFN-γ, IL-2 and MIP-1β directed against the 

N-terminal Nef.  The distinct characteristics of the response to the different regions of the 

protein suggested that MVA-nef is able to elicit an immune response targeting also new 

epitopes but holds also the potential to elicit fully functional CD4 T-cell responses against 

epitopes already targeted by the host. This finding goes along with the results of a study 

conducted by Ondondo et al. [181]. Taken together, a general capacity of the MVA vector to 

induce highly functional responses against heterologous genetic inserts can be suggested. 

Specifically, this study demonstrates the elicitation of T-cell responses against the 

nonstructural, highly conserved and early expressed Nef protein encoded by the MVA vector. 
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6 Conclusions  

After more than two decades of research, an effective preventive or therapeutic vaccine 

against HIV-1 remains elusive. Despite some indications, definite immunological correlates 

of protection against HIV infection as well as disease progression remain unknown.  

T-cell mediated immunity is considered to play an important role in controlling HIV infection 

and progression to AIDS. Reliable and informative assays able to measure CD8 and CD4 T-

cell responses need to be implemented. Polychromatic flow cytometry based immune assays 

established in this work, namely an ICS including a short-term ex vivo re-stimulation and a 

CFSE based proliferation assay including a long-term ex vivo re-stimulation offer the 

possibility to investigate several functional, differentiation and activation markers 

simultaneously. The methods were optimized, standardized and compared to other widely 

used immune assays. At present, the IFN-γ-based ELISPOT assay is considered as a gold 

standard and preferred primary assay in vaccine trials. In this work, it could be demonstrated 

that the use of the combined detection of IFN-γ and MIP-1β could scale-up the sensitivity of 

ICS assays to levels comparable to those of IFN-γ-based ELISPOT for detection of HIV 

specific T-cell immune responses. The application of the IFN-γ+ MIP-1β+ method in other 

diseases and immunological fields remains to be assessed.  

Several vaccination trials are making use of MVA as delivery vector for HIV-1 derived and 

other antigens. The established highly sophisticated polychromatic flow cytometry based 

methods were applied to a re-evaluation of a therapeutic vaccination trial using MVA-nef. 

The impact of the immunologic intervention with MVA-nef on the specific anti-Nef T-cell 

immune response in regard to cytokine production (IFN-γ and IL-2), chemokine production, 

activation marker expression (CD154) and proliferative potential in HAART treated, HIV-1 

infected individuals was assessed. By means of short-term polychromatic ICS,  we observed a 

significant increase of polyfunctional Nef-specific CD4 T cells expressing IFN-γ, IL-2 and 

CD154 following vaccination, whereas changes in the quality of the CD8 T-cell response 

could not be observed. Only the additional use of the long-term polychromatic CFSE-based 

proliferation assay revealed vaccine-induced Nef-specific CD8 as well as CD4 T cells with 

proliferative capacity. The correlation between the vaccine-induced IL-2 production by CD4 

T cells and the increase of proliferating Nef-specific CD8 T cells suggests a causal link 

between these two functions. In conclusion, the MVA-nef vaccine was able to change the 

quality and quantity of the Nef-specific immune response in HIV-1-infected subjects under 

HAART. Whether highly functional HIV-1-specific CD4 and CD8 T cells endowed with 
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proliferative capacity will be clinically relevant in HIV-1 infection remains to be determined. 

Further clinical trials designed to test the immunogenicity in combination with the therapeutic 

efficacy of MVA-nef vaccination will help to define the clinical relevance of the observed 

immune responses. 

The insight gathered in this re-evaluation study exceeds by far the information obtained in the 

original study using simple IFN-γ-based immune assays. These data are important to guide the 

choice for suitable immune assays and to build reagent panels able to characterize accurately 

the phenotype and function of responding T-cells in an extensive and highly sensitive way. 

The results concerning recombinant MVA expressing a single gene of HIV-1 are novel and 

important, and may encourage the use of pox virus derived, viral vector vaccines in the HIV-1 

field as well as for other infectious diseases. This work highlights the importance of 

combining sophisticated immunomonitoring tools to unravel concealed effects of 

immunologic interventions and shall encourage further clinical trials designed to test the 

immunogenicity in combination with the therapeutic efficacy of MVA-nef and similar 

recombinant viral vector vaccines. 
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7 Materials and Methods 

7.1 Patients and samples 

7.1.1 Mva-nef vaccination trial 

Inclusion criteria required participants to have CD4 counts above 400/µl and stable viral loads 

for at least 6 months. Patient’s clinical characteristics are shown in Table 3. Ten subjects have 

been enrolled in the vaccination trial and they were all under therapy for 71.7 months on 

average. Participants were vaccinated with MVA-nef and received three subcutaneous 

immunizations of 5x108 pfu of MVA-nef at week 0, 2 and 16 to assess safety and 

immunogenicity of the vaccine. Eight out of 9 participants had undetectable viral load. In 

subject V3, the viral load was 8710 RNA copies/ml. CD4 T-cell counts ranged from 407 to 

1421 cells/mm3 with a median of 549 [119]. Samples from prevaccination timepoints as well 

as samples from timepoints after the second and third vaccine administration were 

investigated in the reevaluation study. PBMC obtained from 9 individuals could be re-

examined in the present study according to available cryopreserved banked samples. Pre-

vaccination samples were not available from study subject V02 and this participant was 

excluded from the present evaluation. Subject V10 was analyzed only by polychromatic ICS, 

since not enough material was available to perform the proliferation assay.  

 

Table 3. Patients characteristics. [119] 
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Patient ID 
Vaccination 

timepoints (week) 

Sample  

timepoints  

ICS (week) 

Sample 

timepoints  

CFSE (week) 

V01 W0 / W2 / W16 W-4 / W4 / W18 W-4 / W8 / W18 

V02 W0 / W2 / W16  -   -  

V03 W0 / W2 / W16 W-4 / W4 / W18 W-4 / W4 / W18 

V04 W0 / W2 / W16 W-4 / W4 / W20 W-4 / W4 / W20 

V05 W0 / W2 / W16 W0  / W4 / W19 W0  / W4 / W19 

V06 W0 / W2 / W16 W-4 / W3 / W18 W-4 / W3 / W18 

V07 W0 / W2 / W16 W-4 / W3 / W17 W-4 / W3 / W32 

V08 W0 / W2 / W16 W-4 / W4 / W20 W-4 / W4 / W20 

V10 W0 / W2 / W16 W-6 / W4 / W20  -  

V11 W0 / W2 / W16 W-4 / W4 / W18 W-4 / W8 / W20 

    
 

Table 4. Specification of exact timepoints of sampling for the re-evaluation study relative to the first 

administarion of MVA-nef. 

 

7.1.2 IFN-γ+ MIP-1β+ data evaluation and ELISPOT comparison 

275 PBMC samples obtained from 31 HIV-1 infected individuals were analyzed for the 

establishment of the IFN-γ+ MIP-1β+ data evaluation and its comparison to the ELISPOT. 

The median CD4 T-cell count was 502 cells/µl (range 229 to 1,042). Twenty-one study 

subjects were under antiretroviral therapy and 16 of them had undetectable viral load. When 

detectable the median viral load was 2,581 RNA copies/ml (range 151 to 50,577). Six of the 

study subjects under antiretroviral therapy with undetectable (<50 copies of RNA/ml) viral 

load underwent treatment interruption and their range of viremia was then from 600 to 49,600 

RNA copies/ml at the time of sampling. 

7.1.3 Evaluation of CMV and EBV specific immune responses in healthy 
volunteers 

23 healthy volunteers were included in the study. Median age was 29 years (range: 25-67). 

The study included 10 male and 13 female participants. CMV and EBV status was unknown 

prior to the investigation. 
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7.2 Materials 

7.2.1 Reagents and solutions 

 
Reagents: 

Reagent  Identification Manufacturer Catalogue 

number 

Culture medium RPMI 1640 medium 
 

Cambrex, 
Taufkirchen, 
Germany 

BE12-702F/U1 

 
FCS Supplement (10%) 

 
heat-inactivated 
FCS 
 

 
Biochrom AG, 
Berlin, Germany 

S0115 

Penstrep Supplement (1%) PenStrep 
 

Cambrex DE17-602E 

Live dead discriminator 
for counting 

Trypan Blue Gibco, Invitrogen 15250-061 

freezing media 10% DMSO in FCS 
(see above) 

Sigma D2650 

Ficoll separating solution 
density 1.077g/ml 

Bicoll Biochrom AG L6115 

 
BFA (Golgi stop) 
Stock solution with a 
concentration of 5mg/ml 
in DMSO, store small 
single-use-aliquots at -
20°C 

 
Brefeldin A 

 
Sigma-Aldrich,  
Taufkirchen, 
Germany 

 
B-7651 

 
EMA  
(live/dead discriminator) 
Stock solution with a 
concentration of 2mg/ml in 
DMFA, store at -20°C for 
long time,  
once thawed to keep at 
4°C 

 
Ethidium 
monoazide bromide 

 
Molecular 
Probes/Invitroge, 
Karlsruhe, Germany 

 
E-1374 

 
Buffer solutions 

 
FACS staining 
buffer  
(0,2% BSA, 0,09% 
Na Azide in DPBS) 

 
Becton Dickinson,  
Heidelberg, 
Germany 
 

 
554657 

  
Perm/Wash solution 
10x to dilute with 
H2O (from Kit) 

 
Becton Dickinson 

 
554714 
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PBS buffer  pH 7.4  0.14 M  NaCl  

2.7 mM  KCl  

3.2 mM  Na2HPO4  

1.5 mM  KH2PO4 

 

  

CFSE stock solution 
25mg powder diluted in 
4,48ml DMSO to get the 
10mM stock solution 
 

Carboxyfluorescein 
succinimidyl ester 

Invitrogen C1157 

Cytofix/Cytoperm reagent 
kit 

Cytofix/Cytoperm 
Perm/Wash 

Becton Dickinson 554714 

    
 

7.2.2 Peptides 

Peptide pools:  
2µg/ml peptide in a total sample volume of 200µl  
 
HIV derived peptides: 

Pool Antigen 
HIV-1 

subtype 

Length 

(aa) 

Overlap 

(aa) 

# of 

peptides 

amount/ 

sample 

(µl) 

Source 

1 Nef LAI 20 10 20 0.80 
NIBSC, 
London, 
UK 

2 Tat LAI 20 10 8 0.43 NIBSC 

3 Rev LAI 20 10 11 0.48 NIBSC 

4 p24 LAI 20 10 22 0.88 NIBSC 

5 p17 SF2 15 5 13 0.52 NIBSC 

6 Nef opt LAI 8-11 NA 16 3.55 NIBSC 

7 Nef (1-96) Bru variable variable 15 6 NIBSC 

8 Nef (96-205) Bru variable variable 15 6 NIBSC 

9 Tat BH10 variable variable 11 4.4 NIBSC 

        

aa=Amino acids; NA=not applicable 
 

(1) 20-mer peptides overlapping by 10 amino acids spanning the HIV-1 LAI Nef protein;  

(2) 20-mer peptides overlapping by 10 amino acids spanning the HIV-1 LAI Tat protein;  

(3) 20-mer peptides overlapping by 10 amino acids spanning the HIV-1 LAI Rev protein;  

(4) 20-mer peptides overlapping by 10 amino acids spanning the HIV-1 LAI p24 protein;  
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(5) 15-mer peptides overlapping by 5 amino acids spanning the HIV-1 SF2 p17 protein;  

(6) pool of 16 Nef derived peptides corresponding to previously described optimal CD8 

epitopes [9];  

(7) variable length overlapping peptides spanning the 1 to 96 region of HIV-1 Bru Nef;  

(8) variable length overlapping peptides spanning the 96 to 205 region of HIV-1 Bru Nef and 

(9) variable length overlapping peptides spanning HIV-1 BH10 Tat.  

Pool 1 to 6 and 7 to 9 were previously described by Cosma et al [119] and Vardas et al. [209], 

respectively. The peptide sets were validated for use in cytokine secretion T-cell ELISPOT as 

well as in intracellular-cytokine staining assay within the European Commission-sponsored 

AIDS Vaccine Integrated project (AVIP) consortium. Peptides were obtained through the 

Centre for AIDS Reagents, National Institute for Biological Standards and Control, 

Hertfordshire, UK. Several peptides contained in the pools 7, 8 and 9 were used alone in some 

experiments. The following peptides corresponding to previously described optimal CD8 

epitopes [9] were also used in some stimulation experiments: FLKEKGGL (FL8), 

TPGPGVRYPL (TL10), YPLTFGWCY and RRQDILDLWIY (RY11). All the peptide pools 

were tested for specificity in healthy subjects in previous studies [119, 209] 

 

CMV and EBV derived peptides: 
Pool Origin Antigen Length 

(aa) 

Overlap 

(aa) 

# of 

peptides 

amount/ 

sample 

(µl) 

Source 

1 CMV pp65 15 11 138 4 JPT, 
Berlin, 
Germany 

2 CMV IE-1 15 11 120 4 JPT 

3 EBV LMP-1 15 11 94 4 JPT 

4 EBV LMP-2 15 11 122 4 JPT 

 

(1) 15-mer peptides overlapping by 11 amino acids spanning the CMV pp65 protein;  

(2) 15-mer peptides overlapping by 11 amino acids spanning the CMV IE-1 protein;  

(3) 15-mer peptides overlapping by 11 amino acids spanning the EBV LMP-1 protein;  

(4) 20-mer peptides overlapping by 10 amino acids spanning the EBV LMP-2 protein;  

Peptide pools (25µg each) were diluted in 40µl DMSO and 210µl PBS.  
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7.2.3 Antibodies 

Antibody  Company Cat.no. 

Costimulating antibodies CD28 pure  
 
CD49 pure 

Becton Dickinson,  
 
Becton Dickinson 

340975 
 
340976 

 
Compensation antibodies: 

Antibody Company Cat.no. (µl) 

CD8-FITC Becton Dickinson 345772 4 

CD8-PE Becton Dickinson 345773 2 

CD4-PerCP Becton Dickinson 345770 5 

CD8-PacB Biozol DAK-PB984 2.5 

CD8-APC Becton Dickinson 345775 0.5 

CD45RA-PECy7 Becton Dickinson 341111 0.7 

CD3-AmCyan Becton Dickinson 339186 1 

CD3-Al700 Becton Dickinson 557943 0,5 

 
 

 

Intracellular staining antibody mix: 

for 1 sample Company Cat.no. (µl) 

CD3-AmCyan Becton Dickinson 339186 1 

CD8-PacB Biozol DAK-PB984 2.5 

CD4-PerCP Becton Dickinson 345770 5 

CD154-FITC Becton Dickinson 
Pharmingen 

555699 5 

IL2-APC Becton Dickinson 341116 5 

IFNγ-Al700 Becton Dickinson 
Pharmingen 

557995 0,4 

MIP1ß-PE Becton Dickinson 
Pharmingen 

550078 0,2 

CD45RA-PECy7 Becton Dickinson 337186 0,7 
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7.2.4 Consumables 

Consumables: 

Product Manufacturer 

Cell culture plates, 96-well (3799&3598) Corning, New York, USA 

Cryotubes Nunc, Wiesbaden, Germany 

Eppendorf tubes 0.5µl-2,0µl Eppendorf, Hamburg, Germany 

FACS plates, 96-well, v-bottom Falcon/BD Pharmingen, Hamburg, Germany 

FACS tubes  Bio-Rad, Munich, Germany 

Falcon tubes (15 ml, 50 ml; PS, PP)  BD Pharmingen, Hamburg, Germany 

Gloves Kimberly-Clark, Mainz, Germany  

Pipettes, 5ml, 10 ml, 25ml, 10ml shorty 

Cellstar 

Greiner, Nürtingen, Germany 

 
 

7.2.5 Laboratory equipment 

 

Laboratory Equipment: 

Equipment Model/ type manufacturer 

CO2 Incubator  
 

CB 150 Binder, Tuttlingen, 
Germany 

 
Fridge (4°C)  
 

 
Profi Line 
 

 
Liebherr, Biberach, 
Germany 

 
Freezer (-20°C)  
 

 
Premium 

 
Liebherr 

Freezer (-80°C)  
 

VIP-Series Sanyo, 
Pfaffenhofen, 
Germany 

 
Microscope 
 

 
Telaval 31 

 
Carl Zeiss, Carl 
Zeiss, Oberkochen, 
Germany 

 
Centrifuge 
 

 
Rotanta 400R 
Micro 200R 

 
Heraeus, Hanau, 
Germany 

 
Flow Cytometer 
 

LSRII with HTS Beckton Dickinson 

Haematocytometer  
 

Neubauer counting 
chamber 

Karl Hecht KG, 
Sondheim, Germany 
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Vortexer Scientific Industries 
 

 
Lab dancer 

 
IKA, Staufen, 
Germany 

 
Laminar flow  
 

 
Hera safe 
ClassII Type A7B3 

 
Haereus 
NuAire, Plymouth, 
USA 

 
Nitrogen container 
 

 
Arpege 170 
 
 
Cryo 200 

 
Air Liquide, 
Düsseldorf, 
Germany 
Thermo Scientific 

 
Eppendorf pipettes 
 

 
Pipetman P10-1000  
 

 
Gilson,  
Middleton,USA 

 
Multi Channel pipettes 
 

 
Pipetman Ultra 
20-300µl 
SL-Pette 5-50µl 

 
Gilson 
 
Südlabor, Gauting, 
Germany 

 
„Mr. Frosty”  

  
Nunc 

 
Pipettus 

 
accu-jet pro 

 
Brand, Wertheim, 
Germany 

 

7.2.6 Software 

 

Software: 

Product Manufacturer 

 
FacsDIVA 
 
FlowJo version 8.5.3 
 
GraphpadPrism 4 
 
MS Office 
 
Spice version 4.1.5 
 
 
Pestle version 5.0.1 

 
Becton Dickinson 
 
Treestar, Ashland, USA 
 
Graph Pad Software, San Diego, USA 
 

Microsoft, Redmond, USA 
 
kindly provided by Mario Roederer, NIH, 
USA 
 
kindly provided by Mario Roederer 
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7.3 Methods 

7.3.1 Purification of Peripheral Blood Mononuclear Cells (PBMC) using 
Ficoll density gradient 

Heparinated blood was centrifuged in 50ml Falcon tubes for 10 min at 1800 rpm at 21°C. 

Plasma was removed from the blood and separately stored in small aliquots at -80°C. 

Prewarmed RPMI (room temperature) was added to refill the volume to 35ml, and mixed 

gently. The diluted blood was slowly layered above Ficoll (15ml, previously prepared in 50ml 

Falkon tubes) and centrifuged for 17 min at 2100 rpm at 21°C without brake. The 

lymphocyte ring was aspirated together with media and Ficoll using a 10ml shorty-pipette and 

transferred to a new 50ml Falcon tube. Lymphocytes were washed in 50ml, volume refilled 

with RPMI, and centrifuged for 13 min at 1600 rpm at 21°C. Supernatant was discarded, 

PBMC pellet dissolved and two additional wash steps in 25ml RPMI were performed (1600 

rpm, 13', 21°C and 1300 rpm, 5', 21°C). 

7.3.2 Counting & freezing PBMC 

PBMC were live/dead stained with Trypan Blue and counted under the Microscope using a 

Neubauer counting chamber. They were frozen in the desired concentration in 1 ml freshly 

prepared freezing media containing 10% DMSO in FCS. Cells were slowly cooled down (-

1°C/min) in “Mr. Frosty” to -80° in a -80° freezer. The following day they were transferred to 

liquid N2 for long-term storage. 

7.3.3 Thawing PBMCs 

PBMC stored in cryotubes in liquid N2, were thawed at 37°C in a waterbath and subsequently 

washed three times with RPMI-10 prewarmed at room temperature to remove DMSO. 

Centrifuging steps during the washes were carried out for 5 min at1500 rpm in 21°C. 

7.3.4 Intracellular cytokine staining (ICS) 

After thawing in media at room temperature cryopreserved PBMC were washed twice. 106 

PBMC were resuspended in 150 µl culture medium RPMI 1640  supplemented with 10% FCS 

and 1% PenStrep. Peptide-stimulated and mock-stimulated samples were run in parallel to 

define the background. The stimulation was performed with 0.4 µg peptide /106 cells in the 

presence of 1.3 µg/ml anti CD28 and 1.3 µg/ml anti CD49d costimulatory antibodies (0.2 

µl/well). Following 60 min of incubation, 10 µg/ml of Brefeldin A was added to the cell 

suspension and the incubation carried out for additional 4 h. Stimulated cells were labelled 

with the photoreactive fluorescent viability marker ethidium monoazide, fixed and 

permeabilized using the BD Cytofix/CytopermTM Kit during 20 minutes of incubation. Cells 
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were stained with the following fluorochrome-conjugated antibodies: CD3-AmCyan, CD8-

PacB, CD4-PerCP, CD45RA-PECy7, CD154-FITC, IFN-γ-Al700, IL-2-APC and MIP1β-PE. 

Samples were acquired using an LSRII flow cytometer equipped with a high throughput 

system. Analysis was performed using FlowJo version 8.5.3. Gating strategy is shown in 

Figure 9. According to the differential expression of CD45RA, CD154, IFN-γ, IL-2 and 

MIP1β, 30 responding CD4 and CD8 T-cell subpopulations were identified. A threshold level 

for each subpopulation was calculated following background subtraction, and responses lower 

than the respective threshold level, were set to 0. Furthermore, a general threshold of 0.005% 

was applied for all CD8+ and CD4+ T-cell subsets to exclude minor responses.  

7.3.5 CFSE proliferation assay 

After thawing, PBMC were resuspended in 0.1 µM CFSE. Cells were incubated for 10’ at 37° 

C in the dark, rinsed in complete medium and plated at 200µl/well (106 cells/200µl). Peptide 

antigens and costimulatory antibodies were added as for the ICS, and cells were cultured for 5 

days in complete medium. At day 5, cells were resuspended in 200µl culture media and 

restimulated applying the same procedure and conditions as for the ICS.  Following EMA 

staining and fixation/permeabilization, cells were stained with the fluorochrome-conjugated 

antibodies used in the ICS protocol. The CD154-FITC antibody was omitted not to interfere 

with the detection of the CFSE. Acquisition and sample analysis were performed in 

concordance with the ICS protocol. Functional markers and ex vivo proliferative activity, 

defined by low CFSE staining level, were gated according to a gating strategy depicted in 

Figure 10. According to the differential expression of CD45RA, IFN-γ, IL-2, MIP1β and the 

CFSE staining level, 30 responding CD4 and CD8 T-cell subpopulations were identified. An 

individual threshold was calculated as described for the ICS procedure and general threshold 

of 0.005% for all CD8+ and CD4+ T-cell subsets was applied to exclude minor responses.  

7.3.6 Tetramer staining 

Thawed PBMC were adjusted to 5×106 cells/ml in RPMI 1640 (Cambrex), 10% FCS, 1% 

PenStrep (Cambrex) and incubated EMA (Molecular Probes, Leiden, The Netherlands) used 

as viability dye. After washing cells were stained with the Tetramer and CCR7-FITC and 

fixed. Then they were stained with the following antibodies: CD3-PacB (DAKO cytomation, 

Hamburg, Germany), CD28-PerCP-Cy5.5, CD45RA-Pe-Cy7, CD27-APC (Becton Dickinson, 

Heidelberg, Germany), CD8-APC-Cy7 (Caltag, Hamburg, Germany). Cells were acquired 

after washing with an LSRII flow cytometer (Becton Dickinson) and data were analyzed 
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using FlowJo software (Tree Star, San Carlos, CA). Tetramer staining experiments were 

kindly conducted by Rashmi Nagaraj. Tetram 

 

7.3.7 ELISPOT assay (laboratory 1) 

Laboratory 1 used the TriSpotTM Human IFN-γ/IL-2 ELISPOT Kit (Endogen, Rockford, 

IL/USA) according to the manufacturer instructions. Briefly, PBMC from ACD whole blood 

were separated on Lymphoprep™ (Axis-Shield PoC, Oslo, Norway), washed in RPMI 

medium (RPMI 1640, supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin and 2 

mM L-glutamine, all from BioWhittaker Europe, Verviers, Belgium)  and counted by Trypan 

Blue exclusion for assessing viability. After resuspension in complete medium (RPMI 

medium supplemented with 10% heat inactivated fetal bovine serum, BioWhittaker), PBMC 

were transferred to the ELISPOT plate with a concentration of 0.8 to 2x105cells/well in 

duplicate. Peptides were added at a final concentration of 3 µg/ml each. PBMC in medium 

alone or stimulated with phytohemagglutinin (PHA-P, Sigma) at 5 µg/ml were used as 

negative and positive controls, respectively. Incubation was carried out at 37°C in a 5% CO2 

incubator for 18 hours.  The resulting spots were counted using the Automated ELISA-Spot 

Assay Video Analysis System Eli-Scan with the software Eli.Analyse V4.2 (A.EL.VIS, 

Hannover, Germany). PBMC from each study subject were mock stimulated in duplicate and 

the mean background value subtracted from the mean of the duplicate samples. Responses 

were empirically scored as positive when the stimulated sample minus background value was 

>50 SFU per 106 PBMC and higher than the mean value of the negative controls plus two 

standard deviations. This ELISPOT assay was kindly conducted by Silvia Heltai. 

 

7.3.8 ELISPOT assay (laboratory 2) 

Frozen PBMC were thawed, washed with CTL WashTM Supplement culture medium (Cellular 

Technology Ltd., Cleveland, Ohio) plus benzonase nuclease (50 U/ml; Novagen, Madison, 

WI), rested for 3h at 37 °C, counted and seeded at 1 to 2x105 cells in triplicates on antibody 

precoated PVDF plates (Mabtech AB, Nacka, Sweden). The capture antibody (Mabtech) was 

the IFN-γ-specific clone 1-D1K. Beforehand, the plates were incubated at 37°C in RPMI 

1640 culture medium supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 

penicillin/streptomycin (100 U/ml) and 10% human AB serum (BioWhittaker, Verviers, 

Belgium) to block unspecific binding. The PBMC were stimulated directly with different 

peptides and peptide pools (2 µg/ml), and assessed in the ELISPOT assay after 24 h of culture 
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in CTL TestTM medium. The development of the spots was performed as described previously 

(Brill2006, Frankenberger2005, Pohla2000) with the following exceptions: the plates were 

extensively washed first with PBS/0.05% Tween20, then with only PBS, incubated with a 

directly streptavidin-alkaline phosphatase (ALP) conjugated biotinylated detection antibody 

clone 7-B6-1 (Mabtech), washed again and a ready-to-use BCIP/NBT-plus substrate solution 

was used (Mabtech). Spots were counted using the AID reader system ELR03 with the 

software version 4.0 (AID Autoimmun Diagnostika GmbH, Strassberg, Germany). Responses 

were scored as positive if the test wells contained a mean number of spot-forming units (SFU) 

higher than the mean value plus two standard deviations in negative control wells. The 

ELISPOT standard operation procedure was approved in the international panel analysis of 

the Cancer Vaccine Consortium [150]. This ELISPOT assay was kindly conducted by Birgit 

Stadlbauer. 

7.3.9 Data processing and statistical analysis  

Spice version 4.1.5 (Mario Roederer, Vaccine Research Center, National Institute of Allergy 

and Infectious Diseases, National Institutes of Health) and Prism version 5.01 (GraphPad 

Software Inc., San Diego, CA) were used for graphical representation and statistical analysis.  

Nonparametric statistical tests were applied in all cases.  

Background comparison was performed using Wilcoxon matched pairs tests. A linear 

regression analysis was performed to examine the correlation between assays. Fisher’s exact 

test was used for sensitivity comparison of different ICS modalities and between ICS and 

ELISPOT. 

For MVA-nef trial re-evaluation Friedman tests accounting for multiple comparisons, 

followed by pair-wise post-hoc Wilcoxon signed rank tests were used to assess significance of 

change in values between study timepoints. Spearman’s correlation test was used for 

correlation analysis. A confidence interval of 95% was used for all statistical considerations. 
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