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Summary 

Human adenoviruses (Ads) have evolved elaborate mechanisms to counteract the host’s antiviral 

immune response. The early transcription unit 3 (E3) of the virus is not essential for virus 

replication in vitro, but is known to encode proteins with immunomodulatory functions. The Ad2 

E3/10.4-14.5K proteins are both integral membrane proteins, which form a physical complex and 

function together to modulate cell surface expression of the EGFR and selective members of the 

TNF/NGF receptor superfamily, namely Fas/CD95 and TRAIL-R1, whereas TRAIL-R2 

modulation additionally requires E3/6.7K. In a process referred to as receptor down-regulation, 

10.4-14.5K relocates receptor targets from the cell surface to lysosomes for degradation. The aim of 

this study was to characterize functional determinants within the Ad2 10.4-14.5K proteins, that are 

required for down-regulation of plasma membrane receptors. In particular, I focussed on the 

characterization of potential transport motifs present in the cytoplasmic tail of both proteins: The 

Ad2 14.5K tail contains three YXXΦ sequence motifs (Y denotes tyrosine, X any amino acid and Φ 

a bulky, hydrophobic residue) while the Ad2 10.4K sequence displays two consensus elements of 

the second large class of transport signals, the dileucine motifs. Both types of motifs are 

recognized by cellular adaptor proteins which select cargo for directed transport in clathrin-coated 

vesicles. FACS analysis of stable E3-transfectants expressing 10.4-14.5K mutant proteins revealed 

that residues contained within these putative transport motifs were essential for down-regulation 

of Fas and the EGFR in vivo. Receptor expression was restored when either the dileucine pair 

(LL87,88) of 10.4K or 14.5K Y74 or Y122 were replaced by alanine. Whereas loss of function of the 

14.5K mutant Y74 can be explained by its inability to interact with 10.4K, several lines of evidence 

suggest that the 10.4K dileucine pair and 14.5 Y122XXΦ motif function as transport signals: (i) 

Surface plasmon resonance spectroscopy showed that mutation of the two motifs prevents binding 

of 10.4K and 14.5K cytoplasmic tail peptides to purified adaptor protein complexes AP-1 and AP-

2 in vitro. (ii) FACS analysis demonstrated that mutation of these motifs strongly affects FLAG-

14.5K cell surface expression. (iii) In line with the FACS data, immunofluorescence microscopy 

revealed that mutant 14.5Y122A accumulates together with 10.4K at the cell surface, suggesting that 

the Y122FNL motif normally directs internalization of 10.4-14.5K. (iv) Substitution of the 10.4K 

dileucine pair increased the transport of 10.4-14.5K into lysosomes, resulting in enhanced 

degradation of both 10.4K and 14.5K without significantly disrupting complex formation. (v) The 

accumulation of mutant 10.4-14.5K at the cell surface upon coexpression of 10.4LL/AA and 

14.5Y122A suggests that the dileucine motif acts downstream of Y122 and fulfills a sorting function 

subsequent to endocytosis. Transfer of the mutations into Ad2 and infection of primary 
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fibroblasts revealed a similar defect in trafficking of 10.4LL/AA and 14.5 Y122A mutant proteins. 

Moreover, in infected cells substitution of the 10.4K dileucine pair and 14.5K Y122 impaired 

down-regulation of Fas, EGFR and both TRAIL-R1 and TRAIL-R2, implying a general role of 

these sorting signals for the mechanism of receptor down-regulation. Thus, two distinct transport 

signals present in the different subunits of the 10.4-14.5K complex seem to act in concert to 

establish efficient down-regulation of receptor targets. 

Alanine replacement mutagenesis of several other strictly conserved amino acids in 14.5K and 

FACS analysis of stable E3-transfectants revealed that those mutants which exhibited an altered 

FLAG-14.5K surface expression had defects in Fas and EGFR down-modulation. Surprisingly, Ad4 

was unable to modulate Fas and EGFR expression, even though the Ad4 14.5K protein contained 

all the strictly conserved amino acids. As a first step to identify structural features that determine 

target specificity of 10.4-14.5K, I chose to replace the 10.4-14.5K ORFs in Ad2 by their Ad4 

homologues. Although the Ad4 10.4-14.5K proteins could be detected in Ad4-infected cells, their 

expression level was drastically reduced when encoded by the Ad2 E3 region. This indicated that 

expression of Ad4 10.4-14.5K is differently regulated as compared to Ad2, possibly due to altered 

splicing. Further exploration of this system will require a detailed analysis of splicing within the 

Ad4 E3 region. 
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Introduction 

 
1.1 Adenoviridae: classification and pathogenicity 

Adenoviruses (Ads) were first described in the early 1950s as infectious agents isolated from 

explanted human tonsillar tissue (adenoids) (Shenk, 2001). The different adenovirus types 

characterized to date have been classified into two genera, according to their host range, genome 

organization and serological criteria: Mastadenovirus infecting mammals and Aviaadenovirus 

infecting solely birds. The natural host range of most adenoviruses is confined to one species or to 

closely related species, allowing to distinguish human adenoviruses and different classes of animal 

viruses. So far, 51 different human adenovirus serotypes have been identified, which are divided 

into six subgroups A-F (Table 1) based on serum neutralization of hemagglutination, polypeptide 

composition of the virions and oncogenicity in rodents. Overall DNA homology within one 

subgroup is higher than 50%, but below 20% between different subgenera (Shenk, 2001). 

Table 1  Classification scheme of human adenoviruses 
Subgenus Serotypes 
A 12, 18, 31 
B 3, 7, 11, 14, 16, 21, 34, 35, 50 
C 1, 2, 5, 6 
D 8, 9, 10, 13, 15, 17, 19, 20, 22-30, 32, 33, 36-39, 42-49, 51 
E 4 
F 40, 41 

 

Although each Ad subtype can infect a broad variety of post-mitotic and highly 

differentiated cells of the human body, a distinct disease pattern is observed for Ads belonging to 

different subgroups. Symptoms are often mild and infections are self-limiting, but can be severe or 

even fatal in immunocompromised patients, e.g. during AIDS or in allogeneic bone marrow 

recipients (Horwitz, 2001a). Adenovirus type 2 (Ad2) and Ad5 of subgenus C are the most 

common serotypes to which adults have been exposed (Shenk, 2001). The occurrence of Ad-

specific antibodies in the human population is very high worldwide, e.g. more than 85% of adults 

carry antibodies against subgenus C Ads in their blood. Thus, the host immune response is 

insufficient to prevent spread of the virus among individuals. The most prevalent serotypes of 

subgenus B/C mainly cause acute respiratory disease, pertussis-like syndrome or pneumonia (see 

Table 2). Those of subgenus A and F cause gastrointestinal infections, primarily in infants and 

young children. Adenovirus type 4 (Ad4), the only member of subgenus E adenovirus, is known to 

cause epidemic outbreaks of an acute respiratory disease in military recruits (Barraza et al., 1999). 

Subgenus D is by far the largest subgenus, containing 31 serotypes, which tend to cause eye
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Table 2  Diseases associated with human adenovirus infections (according to (Lukashok and Horwitz, 
1998)) 
Disease Individuals at high risk Principal serotypes 
acute febrile pharyngitis infants, young children 1, 2, 3, 5, 6, 7 
pneumonia infants, young children 1, 2, 3, 7 
pertussis-like syndrome 
gastroenteritis infants, young children 40, 41 

pharyngoconjunctival fever school-age children 3, 7, 14 
acute respiratory disease military recruits  3, 4, 7, 14, 21 
pneumonia military recruits 4, 7 
epidemic keratoconjunctivitis any age group 8, (11), 19a, 37 
acute hemorrhagic cystitis young children 11, 21 
meningoencephalitis children and immuno-

compromised hosts 
7, 12, 32 

hepatitis infants and children with liver 
transplants 

1, 2, 5 

persistence of virus in the urinary 
tract 

bone marrow transplant 
recipients, patients with acquired 
immunodeficiency or other 
immunosuppression 

9, 11, 19, 20, 22, 23, 26, 27, 34, 
35, 43, 44, 45, 48, 49 

 

diseases. Specifically Ad8, Ad19a and Ad37 have been found to be associated with a severe and 

extremely contagious form of eye infection involving both the cornea and the conjunctiva, termed 

epidemic keratoconjunctivitis (EKC) (Lukashok and Horwitz, 1998).  

Following the acute phase of infection, adenoviruses may persist in the host for several 

months or even years (Horwitz, 2001a). During persistent infection the virus seems to be 

constantly produced, with intermittent shedding and excretion, thus facilitating virus spread. For 

subgroup C viruses which are considered to be endemic a low level of continuous Ad production 

in lymphoid cells has been reported (Mahr and Gooding, 1999). In the lungs of patients with 

COPD, chronic obstructive pulmonary disease, a truly latent state of adenovirus induces a 

heightened inflammatory response to air contaminants (Hayashi, 2002). As evidenced by the 

establishment of persistent infection, adenovirus can withstand attack by the host immune 

response. Intricate interactions between viral and cellular gene products result in a complex 

balance between the virus and the host immune system. 

 

1.2 Adenovirus particle 

Adenoviridae contain a linear double-stranded (ds) DNA genome, which is encapsulated in 

a non-enveloped protein shell of approximately 70-100 nm in diameter (Kay et al., 2001). Genome 

length varies between 26-45 kbp. The viral DNA is framed by inverted terminal repeats of 40-160 

bp and a virus-encoded terminal protein (TP) is covalently attached to the 5’-end of each 

strand(Shenk, 2001). The viral DNA covered with the highly basic protein VII, a small peptide 
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Fig. 1 Composition of the adenovirus particle 
Schematic drawing of the adenovirus particle, adapted from (Shenk, 2001). Protein components of the 
virion are designated with numbers (II-X), except for the terminal protein (TP). 

 
termed µ (X) and protein V form the core structure (Fig. 1). Interaction of protein V with protein 

VI seems to link the core to the capsid. The eicosahedral capsid is composed of 252 subunits, of 

which 240 are hexon (trimer of protein II) and 12 penton capsomeres. Each penton capsomere 

contains a base (five copies of protein III), which forms part of the capsid surface and a 

protruding fiber (three copies of polypeptide IV) folding into a terminal knob. Proteins named VI, 

VIII, IX, IIIa and IVa2 are minor capsid components (Fig. 1, (Russell, 2000; Shenk, 2001). 

 

1.3 Viral life cycle 

The viral life cycle can be divided into two temporally distinct phases: infection and 

replication. Infection covers the entry of the virus into the host cell and passage of the virus 

genome to the nucleus. In the nucleus the viral transcription program is initiated which leads to 

selective transcription and translation of early genes. These early events modulate the functions of 

the cell to facilitate the replication of viral DNA and expression of late genes. In the late phase 

structural proteins are expressed and assembly of new infectious viral particles occurs.  

 
1.3.1 Infection 

Adenovirus infection starts with the adsorption of the virions to the host cell. The Ad fiber 

proteins except for those from subgenus B Ads (Roelvink et al., 1998), mediate attachment by 

binding with high affinity to a 46 kD cell surface molecule called coxsackie/adenovirus receptor 

(CAR) (Roelvink et al., 1998; Tomko et al., 1997; Wang and Bergelson, 1999), which is expressed 
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in variable amounts in most tissues (Nemerow, 2000). Critical for CAR binding are extended 

loops on the lateral surface of the fiber knob (Bewley et al., 1999; Roelvink et al., 1999).  

Adenoviruses readily infect the epithelium of the lung. But, contrary to expectations the 

CAR protein is not found on the exposed apical surface of these sheets of epithelial cells, but 

rather on the basolateral membrane. It functions in allowing epithelial cells to stick to one 

another and to form a continuous sheet. Recently, it was discovered that binding of the 

adenovirus fiber protein to CAR can disrupt these cell-to-cell contacts. In productive infection of 

epithelial cells surplus fiber protein is produced, which is released along with viral progeny to the 

basolateral surface and can bind to CAR, thereby opening up holes in the sheet of epithelial cells, 

through which the virus can escape into the lungs (Walters et al., 2002). Besides CAR other 

receptors involved in adenovirus entry have been proposed (Nemerow, 2000), such as the class I 

major histocompatibility complex (MHC) α2 domain as a receptor for the Ad5 fiber knob (Hong 

et al., 1997). Some members of subgenus D, namely the EKC causing Ads Ad8, Ad19a and Ad37 

seem to utilize α(2→3)-linked sialic acid instead of CAR (Nemerow, 2000). As these attachment 

receptors are widely expressed they cannot sufficiently explain the differences in tissue tropism 

and distinct pathogenesis of Ads from different subgenera. It rather seems that viral tropism 

additionally depends on postattachment processes, e.g. internalisation, and the differential 

countermeasures against the host immune response. After initial receptor binding an exposed 

RGD motif of the penton base interacts with cellular αvβ3 or αvβ5 integrins (Nemerow and 

Stewart, 1999) triggering rapid endocytosis of the virions via clathrin-coated pits. Virus entry also 

requires activation of PI3K (phosphoinositide-3-OH kinase) and Rho guanosine triphosphatases 

which cause reorganization of the actin cytoskeleton (Russell, 2000). After internalisation, the 

virion, which is very stable outside the cell, is dismantled by an ordered elimination of structural 

proteins, in order to deliver its DNA to the nucleus. Penton base and fiber proteins are degraded 

and the capsid is partially disassembled by proteolytic activity of the viral cysteine protease p23 

(Russell, 2000). Ads escape from the endosomal/lysosomal compartment by inducing acid-

enhanced lysis of the endosomal membrane. The Ad particles migrate along microtubules to the 

nuclear pore complex driven by dynein (Russell, 2000). Penetration of the nuclear pore (40nm 

diameter) requires complete disassembly of the Ad capsid. Histon H1 and the H1 import factors 

Impβ and Imp7 facilitate injection of the viral DNA-protein complex into nucleus (Trotman et 

al., 2001). The viral DNA attaches to the nuclear matrix via interaction of the terminal protein 

(TP) with cellular factors and nuclear matrix association is required for efficient activation of 

transcription (Russell, 2000). 
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Fig. 2 Organization of the adenovirus genome (subgenus C) 
Transcription units are designated E (boldface) for early and L for late expression. The proteins encoded by 
each transcription unit are listed on top of an arrow, which describes their position in the genome map 
(Map units 0-100). Most late mRNAs originate from the major late promoter (MLP). Proteins of the E3 
transcription unit are boxed. For details see text. 

 

 
1.3.2 Genome organization 

Adenovirus encodes about 40 polypeptides, one third being structural proteins. Genes 

become expressed in a defined, temporarily regulated manner, controlled by transcription 

initiation and post-transcriptional RNA processing (reviewed in (Imperiale et al., 1995)). In this 

respect, subgroup C adenoviruses type 2 and 5 (Ad2 and Ad5) genomes, which are completely 

sequenced, have been studied in greatest detail (Fig. 2). Host RNA polymerase II (RNA Pol II) 

transcribes both DNA strands to generate transcripts belonging to five early transcription units 

(E1A, E1B, E2, E3, E4), two delayed early units (IVa2, IX) and one major late unit. Each unit 

encodes multiple mRNAs which are differentiated by alternative splicing and the use of different 

polyadenylation sites. The late unit is processed to generate five families of late mRNAs (L1 to L5). 

In fact, analysis of adenovirus mRNA structure led to the discovery of splicing (Padgett et al., 

1984). All RNA Pol II transcripts become capped and polyadenylated by cellular factors. Two non-

coding highly structured virus-associated (VA) RNAs are transcribed by host RNA Pol III and act 

as antagonists of the antiviral interferon-α and -β response by inhibiting activation of cellular 

PKR, a double-stranded RNA-dependent protein kinase (reviewed in (Burgert et al., 2002; Mahr 

and Gooding, 1999). Many of the individual adenovirus transcription units encode a series of 

polypeptides with related functions. The grouping into units that are defined by a single 

transcriptional control element allows coordinated expression of multiple polypeptides which are 

needed simultaneously to execute a certain function, such as DNA replication which is controlled 
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by E2. Moreover, it might be useful to closely group the coding regions of products that interact 

physically or functionally to reduce the frequency with which they could be separated by 

recombination. 

 
1.3.3 Viral transcriptional program and replication cycle 

E1A genes are the first to be transcribed and E1A proteins transactivate the promoters of 

early transcription units E1B, E2, E3 and E4 (Shenk, 2001). Ad infection of quiescent cells induces 

transition from G1 or G0 into S-phase of the cell cycle and cellular proliferation by 

transcriptional activation of a set of growth-promoting cellular genes (Cress and Nevins, 1996), 

which provide optimal conditions for viral replication. Adenovirus E1A, E1B and E4 gene 

products contribute to cell cycle deregulation. A huge panoply of functions has been attributed to 

E1A based mainly on in vitro studies ((Gallimore and Turnell, 2001; Russell, 2000) and references 

therein) and E1A expression is essential for both Ad-induced transformation and a productive Ad 

infection. The E1A region of human adenoviruses gives rise to two major alternatively spliced 

mRNAs of 12S and 13S. The corresponding gene products are nuclear phosphoproteins termed 

289R and 243R, based on the number of amino acid residues. Between different serotypes three 

conserved regions (CR1-3) have been identified, CR3 being unique to the 13S product. These 

regions are important in defining interactions with a number of cellular proteins. CR3 is essential 

for transactivation of both early viral and cellular promoters (Jones, 1995), as it binds 

transcription factors such as ATF-2, transcriptional mediators hSur2 and the basal transcriptional 

machinery TATA-box binding protein (TBP) directly (Gallimore and Turnell, 2001). Ad E1A binds 

the retinoblastoma protein Rb and Rb-related proteins p107, p130 through interactions with CR1 

and CR2. These interactions liberate the transcription factor E2F that stimulates expression of 

gene products involved in DNA synthesis, including adenovirus E2 gene products. E1A also binds 

p21 and related CDK (cyclin-dependent kinase) inhibitors thereby stimulating cell division and 

growth (Russell, 2000). Moreover the N-terminus of AdE1A can bind to the p300/CBP (CBP, 

CRE-binding protein; CRE, cAMP responsive element) family of transcription transactivators that 

play a key role in regulating the transcription of many components of the cell cycle (Russell, 

2000). However, these E1A-induced changes also provoke the intrinsic cellular death program. 

Transcription factors E2F and ETF, released from Rb, trigger apoptosis by promoting the 

synthesis and stability of p53 (Hale and Braithwaite, 1999). They induce transcription of p53 itself, 

but also upregulate mouse p19ARF (or human p14ARF), which can interact with Mdm2 and block 

the ubiquitin ligase activity of Mdm2, that normally mediates p53 proteolysis via the ubiquitin 

pathway (Ashcroft and Vousden, 1999). Furthermore, E1A proteins sensitize cells to induction of 
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apoptosis by external stimuli, such as TNF-α (abbreviated as TNF), Fas ligand (FasL) and TRAIL 

(Duerksen-Hughes et al., 1989; Routes et al., 2000; White, 2001). TNF-susceptibility is induced by 

E1A binding to either p300/CBP or Rb (Shisler et al., 1996), and can also occur in p53-null cells 

(Putzer et al., 2000). E1A may sensitize to TNF-induced apoptosis by eliminating synthesis of 

prosurvival factors, such as Bcl-2 family members or IAPs (inhibitor of apoptosis proteins), 

through indirect inhibition of TNF-induced nuclear factor-κB (NF-κB) activation. E1A interferes 

with IKK-mediated IκB phosphorylation, and consequently, may inhibit NF-κB release to the 

nucleus (Shao et al., 1999). Recently, it was reported that E1A can inhibit TNF-dependent 

induction of cFLIPs (cellular FLICE inhibitory proteins), thereby promoting activation of caspase 

8 at the death-inducing signaling complex (Perez and White, 2003; White, 2001). E1A also has an 

important immune evasive function, namely to block interferon-induced signal transduction in 

infected cells (Burgert et al., 2002; Mahr and Gooding, 1999).  

Two gene products of the E1B region, E1B-19K and E1B-55K counteract the apoptosis 

program initiated by E1A proteins. E1B-55K interacts directly with promoter-associated p53 

inhibiting p53-dependent transcription (Martin and Berk, 1998). Together with E4orf6 E1B-55K 

can accelerate degradation of p53 (Tauber and Dobner, 2001), and such increased turnover 

overcomes the E1A-induced increase in p53. Thus, in productive viral infection E1A seems to 

induce apoptosis mostly in a p53-independent manner. E1B-19K blocks apoptosis induced by E1A 

via both p53-dependent (oncogenic transformation) and p53-independent (viral infection) 

mechanisms, and may interfere with death signals emanating from death receptors Fas, TNFR or 

TRAIL: E1B-19K is a viral homologue of the cellular Bcl-2 gene product, and seems to interrupt 

the mitochondrial pathway of apoptosis mainly by inhibiting proapoptotic members of the Bax 

and Bak family (Desagher and Martinou, 2000; White, 2001). Bax and Bak have been identified as 

central mediators of E1A-induced apoptosis during infection, which is efficiently counteracted by 

E1B-19K. In infection with virus mutants lacking E1B-19K, Bax/Bak-mediated apoptosis reduces 

the efficiency of virus replication, indicating that the apoptotic response of the cell to infection 

has indeed evolved as an antiviral response (Cuconati et al., 2002)(Lomonosova et al., 2002). 

The Ad E2 gene products are subdivided into E2A (DNA binding protein, DBP) and E2B 

(TP and Pol), which in conjunction with cellular factors provide the machinery for replication of 

virus DNA and the ensuing transcription of late genes. 

Products of E3 genes are dispensable for replication of the virus in tissue culture and in 

vivo in cotton rat lungs (Ginsberg et al., 1989), but are thought to play a key role in regulating the 

interaction of Ads with the immune system of the host (Burgert, 1996; Burgert and Blusch, 2000; 
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Mahr and Gooding, 1999; Wold et al., 1995). Incorporation of E3 functions into a recombinant 

adenoviral vector attenuated antiviral humoral and cellular immune response and allowed long-

term gene expression in an animal model (Ilan et al., 1997). Several E3 proteins have been shown 

to counteract host defense mechanisms, such as antigen presentation, apoptosis and the 

inflammatory response (see also chapter 1.6). One of the E3 proteins (E3/11.6K) has been termed 

the adenovirus death protein (ADP), since it appears to facilitate late cytolysis and release of virus 

progeny at late stages of infection (Tollefson et al., 1996b). Although it is encoded within the E3 

transcription unit 11.6K is synthesized only in small amounts from the E3 promoter at early times 

after infection, but abundantly from the major late promoter during late stages of infection. 

E4 proteins termed orf 1-6/7 regulate virus mRNA metabolism, promote virus replication 

and shut-off of host protein DNA synthesis (Leppard, 1997). E4orf6 and E1B-55K facilitate 

nuclear export and cytoplasmic accumulation of late viral mRNAs and concomitantly inhibit 

export of cellular mRNAs (Gonzalez and Flint, 2002). E4orf6 and E4orf3 both interact with E1B-

55K, thereby influencing the activity of p53 (Konig et al., 1999). E4orf6/7 can functionally replace 

E1A in induction of E2F (O'Connor and Hearing, 2000). Proapoptotic E4orf4 seems to be 

involved in E1A-induced p53-independent apoptosis and the killing of infected cells at the end of 

the infection cycle (Lavoie et al., 1998).  

The late phase of virus infection starts with the onset of viral replication. DNA replication 

begins from two replication origins, one is present in each terminal repeat. The terminal protein 

(TP), viral polymerase and cellular factors are involved in initiating replication by a protein 

priming mechanism and the DNA binding protein (DBP) facilitates strand-displacement during 

elongation. Replication ensues transcription of the Major Late Transcription Unit. The major late 

promoter controls synthesis of a large polycistronic primary transcript that is processed by 

differential usage of polyadenylation sites and splicing to generate mRNA families L1-L5 (Fig. 2). 

During transcription of early E1A, E1B, E2, E3 and E4 genes the major late promoter is 

attenuated to a low basal level of transcription. After the onset of viral replication the IVa2 and IX 

genes are expressed at high levels and specifically activate transcription via the MLP (Lutz and 

Kedinger, 1996), whereas early gene expression is repressed (Fessler and Young, 1998). From the 

late transcripts structural components of the virus and assembly proteins are expressed, leading to 

encapsidation and maturation of virus particles in the nucleus. Despite massive production of Ad 

particles cells do not lyse and remain intact for several days. Finally, the virus is set free from the 

nucleus by active disintegration of the nuclear envelope by the adenovirus death protein 

(Tollefson et al., 1996a). 
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1.4 Host immune response to adenovirus infection 

The host immune response elicited by adenovirus has received increasing attention 

especially with the use of adenoviral vectors for gene therapy. Most of the knowledge has been 

gained following administration of replication-defective Ad vectors carrying deletions in the viral 

genome and possible insertions of transgenes into rodent models (rarely in humans). Very often 

these vectors lack the E3 region of the viral genome, which encodes immunomodulatory functions 

(see chapter 1.6), and therefore the outcome may differ from that of an infection with wt Ads.  

Ad vectors induce both humoral and cellular immune responses against the vector-derived 

proteins as well as those derived from the inserted transgenes (Dai et al., 1995) (Kaplan et al., 1997; 

Yang et al., 1996). Potent host immune response against viral proteins and the capsid result in 

transient transgene expression and an inability to readminister vectors of the same serotype to 

previously immunized subjects (Zoltick et al., 2001). In the absence of all viral transcription the 

adenoviral capsid is also immunogenic, capable of inducing chemokines, the interferon response 

and adenovirus-specific cytotoxic T lymphocytes (Kafri et al., 1998; Muruve et al., 1999; Reich et 

al., 1988). Concomitantly with virus entry Ad infection stimulates the Raf/MAPK (mitogen-

activated protein kinase) signaling pathway, possibly by interaction of the penton base with 

cellular integrins, which leads to the production of multiple chemokines, such as IL-8 (Bruder and 

Kovesdi, 1997). Chemokines recruit neutrophils, macrophages and natural killer cells to the site of 

infection and invoke an immediate inflammatory response (Muruve et al., 1999). Innate defense 

mechanisms have been proposed to play a significant role in the clearance of (partial E1- and E3-

deficient) Ad-vector-transduced cells in vivo, especially in the respiratory tract (Worgall et al., 

1997a; Worgall et al., 1997b). A major mediator of the elimination of Ad-transduced cells from the 

mouse liver are Fas-FasL interactions (Chirmule et al., 1999) and the granzyme/perforin pathway 

(Yang et al., 1995). In addition, Ad E1A activation of p53 triggers proapoptotic stimuli in the 

infected cells. As described above the intrinsic apoptosis program is counteracted by E1B products, 

whereas Ad E3 proteins (chapter 1.6) seem to have evolved to decapitate death receptor-mediated 

apoptosis pathways and cytolysis by cytotoxic T lymphocytes.  

 

1.5 Adenovirus genes counteracting host defense mechanisms:  
Viral immune evasion 

 
1.5.1 Evasion of the innate immune response 

Infected cells secrete a number of cytokines which elicit an immediate inflammatory 

response mediated predominantly by neutrophils, macrophages and NK cells (Muruve et al., 1999; 

Worgall et al., 1997b). The Ad E1A protein induces susceptibility to NK cell lysis of transformed 
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cells, whereas cells infected with Ad2 or Ad5 exhibit no increased sensitivity. This indicates an 

effective countermeasure of the virus, but the adenoviral gene products involved remain unknown 

(Routes and Cook, 1995). Ad E1A also sensitizes cells to TNF-α, FasL and TRAIL-induced 

apoptosis (White, 2001). TNF-α is a major inflammatory cytokine secreted by activated 

macrophages and monocytes and is thought to play a central role in the elimination of virally 

transduced cells (Elkon et al., 1997; Sparer et al., 1996; Zhang et al., 1998a). 

TNF-α (abbreviated as TNF) mediates its activity by binding to two receptors, TNFR1 

(p55) and TNFR2 (p75). Whereas TNFR1 is constitutively expressed in nearly all tissues, TNFR2 

expression is more restricted, e.g. to lymphoid tissue. While sharing structural similarities in their 

extracellular domain, the two TNFRs differ in their intracellular domain and consequently their 

signal transduction (Hehlgans and Mannel, 2002). TNFR2 has no death domain and its 

prominent interaction is the direct recruitment of TRAF2 and the activation of the NF-κB 

pathway. TNF-induced NF-κB upregulates transcription of a number genes of the pro-survival Bcl-

2 and inhibitors of apoptosis (IAPs) families (Barkett and Gilmore, 1999; Pahl, 1999; Wang et al., 

1998). Ligation of TNFR1 may lead to cell death by recruitment of death domain-containing 

proteins and initiation of a cascade of caspase activation or promote cell survival by activation of 

two major transcription factors, NF-κB and AP-1, which culminates in a proinflammatory and 

anti-apoptotic response (Ashkenazi and Dixit, 1998; Karin and Lin, 2002; Shaulian and Karin, 

2002). Additionally, TNF-induced expression and activation of cytosolic phospholipase A2 (cPLA2) 

leads to the production of inflammatory mediators (Wallach et al., 1999). 

The TNF-induced production of proinflammatory cytokines, mediates the initiation of the 

innate immune response to Ad infection (Borgland et al., 2000). TNF-induced cytolysis and 

inflammation is counteracted by E1B-19K, E3/14.7K and a complex of E3/10.4K and E3/14.5K 

(E3/10.4-14.5K) (Fig. 3, (Gooding et al., 1991a; Krajcsi et al., 1996; White et al., 1992). Of benefit 

to the virus, TNF-induced NF-κB also binds to NF-κB sites within the E3 promoter and thereby 

upregulates the expression of Ad E3 immunomodulatory functions (Fig. 3, (Deryckere et al., 1995; 

Korner et al., 1992). Moreover, Ad E1A can inhibit NF-κB activation (Shao et al., 1999). 

Ad infection also elicits interferon (IFN) production, and thus stimulates transcription of IFN-

stimulated genes (ISG) whose products exhibit potent antiviral, immunomodulatory and 

antiproliferative activities (Stark et al., 1998). Most cell types produce type I interferons (IFN-α/β) 

and IL-12 upon infection, which enhance NK cell cytotoxicity and stimulate NK cells to produce 

IFN-γ (Type II interferon) (Biron and Brossay, 2001). Interferons signal via activation of the janus 

kinase/signal transducers and activators of transcription pathway (JAK/STAT), which transduce
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 Fig. 3 Adenovirus encoded immune evasive functions (adapted from (Burgert et al., 2002)) 
A cartoon (not to scale) illustrating some of the sites of action of adenovirus gene products counteracting 
host defense pathways. Viral gene products (proteins and VA RNAs) are highlighted with black shading. See 
text for details. Abbreviations not explained in the text: MΦ, macrophage; PM, plasma membrane; M, 
mitochondrium; ER, endoplasmic reticulum; TAP, transporter associated with antigen processing. 
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signals to the nucleus (O'Shea et al., 2002; Stark et al., 1998). Ad E1A interferes with 

interferon signaling (Fig. 3) by decreasing levels of p48 and STAT1, which act as transactivators of 

IFN-α- and IFN-γ-responsive promoters. Secondly, E1A sequesters the transcriptional coactivator 

p300/CBP and thereby imposes a block on transcription of IFN-regulated genes (Juang et al., 

1998). Potent antiviral products of IFN-induced genes are the double-stranded RNA-induced 

Ser/Thr protein kinase PKR which arrests protein translation by phosphorylating elongation-

initiation factor 2α (eIF2α), 2’→5’ oligoadenylate synthetase which upregulates RNaseL to degrade 

RNA, and MHC class I/II molecules which present viral antigens on the cell surface (Goodbourn 

et al., 2000). In the late phase of infection Ad VA RNAs are transcribed that act as competitive 

inhibitors of PKR (Fig. 3) to preserve viral translation (Shenk, 2001). 

 

1.5.2 Evasion of the adaptive immune response 

Ad vector administration in human patients stimulates a CD4+ T cell response and the 

proliferation of B cells which generate antibodies directed against capsid components, like fiber, 

penton, hexon and core protein V (Molnar-Kimber et al., 1998). Thus, in a second encounter of 

the immune system with viral antigens neutralizing antibodies bind to viral particles, block the 

ability of virions to infect cells and mediate phagocytosis of free virus and virus-infected cells. 

Viral protein expression and turnover in the infected cells rapidly generates peptides that 

can be presented by MHC class I antigens on the cell surface. CD8+ cytotoxic T lymphocytes 

(CTLs) recognize peptide-loaded MHC class I complexes on the surface of infected cells and 

release their granular content, including granzymes, perforin and proapoptotic factors to promote 

lysis and elimination of the infected cell (Trapani et al., 2000). Alternatively, apoptosis can be 

triggered by interaction of FasL on the surface of CTLs with the death receptor Fas on the target 

cell surface (Harty et al., 2000). A well-understood protective countermeasure of the virus against 

lytic attack by CTL is the E3/19K-mediated subversion of antigen presentation (Fig. 3, for a recent 

review refer to (Burgert et al., 2002)). In transformed cells Ad12 E1A can exert transcriptional 

repression on MHC molecules and several components of the antigen processing machinery, such 

as transporter subunits TAP1 and TAP2 or components of the immune proteasome, e.g. LMP2 

(Fig. 3) (Gallimore and Turnell, 2001). Recently, the Ad assembly protein L4-100K was shown to 

inhibit granzyme B-induced apoptosis (Fig. 3, (Andrade et al., 2001). FasL- or TRAIL-induced 

apoptosis of several infected human epithelial cell lines and primary cells can be efficiently 

inhibited by a complex of E3/10.4K and E3/14.5K proteins (Fig. 3, (Benedict et al., 2001; Elsing 

and Burgert, 1998; Shisler et al., 1997; Tollefson et al., 1998). E3/10.4-14.5K has also been reported  
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 to protect some cultured human B and T lymphocytes from Fas-induced apoptosis, which might 

contribute to Ad persistence in lymphocytes (McNees et al., 2002). Ad E3 functions will be 

discussed in detail in the following chapter. 

 

1.6 Immune evasive functions encoded by the E3 region 

The E3 proteins of subgenus C viruses, which are encoded by homologous ORFs in Ads 

from all other subgroups (Fig. 4), have been attributed an immunomodulatory function (Burgert 

et al., 2002; Burgert and Blusch, 2000; Horwitz, 2001b; Mahr and Gooding, 1999; Wold et al., 

1995). The Ad2 E3/19K protein forms a complex with nascent MHC class I molecules in the 

endoplasmic reticulum (ER) and blocks their translocation to the cell surface (Fig. 3, (Andersson 

et al., 1985; Burgert and Kvist, 1985; Paabo et al., 1987)(Burgert, 1996). This results in a 

diminished lytic response in vitro if cells expressing gp19K are exposed to class I specific cytotoxic 

T cells (Burgert et al., 1987). Additionally, E3/19K can associate with TAP (transporter associated 

with antigen processing) and might block the interaction between MHC class I antigens and TAP 

(Bennett et al., 1999). 

In a murine pneumonia model E3/14.7K counteracted the antiviral and inflammatory 

effects of TNF-α (Tufariello et al., 1994). E3/14.7K prevents TNF-induced cytolysis of adenovirus-

infected C3HA mouse fibroblasts (Gooding et al., 1988; Gooding et al., 1990; Horton et al., 1991) 

independent of other Ad proteins. The mechanism of 14.7K action remains incompletely 

understood, but it has been shown that the 14.7K protein does not affect the number of TNF 

receptors or its affinity towards ligand (Gooding et al., 1990). Instead, 14.7K seems to inhibit the 

TNF-induced activation of cytoplasmic phospholipase A2 (cPLA2) and thereby prevent arachidonic 

acid release (Krajcsi et al., 1996). cPLA2 can cleave arachidonic acid (AA) from membrane 

phospholipids and provide it to cyclo- and lipoxygenases which catalyze its conversion to 

prostaglandins and leukotrienes (Balsinde et al., 1999; Leslie, 1997). cPLA2, which becomes 

activated by MAP kinases and possibly caspases, also seems to be involved in TNF-induced cell 

death (Krajcsi and Wold, 1998; Wissing et al., 1997). Maximal cPLA2 activation requires increased 

intracellular Ca2+ concentrations (micromolar amounts), which induce translocation of cPLA2 to 

cellular membranes, where it can release AA. The involvement of cPLA2 in release of AA and 

cytolysis upon infection with mutant viruses lacking E3/14.7K was confirmed by using specific 

cPLA2 inhibitors and antisense oligonucleotides (Thorne et al., 1996). Thus, 14.7K interferes with 

the function of cPLA2 which is thought to be required, but is not sufficient for TNF-induced 

cytolysis (Wallach et al., 1999; Wold et al., 1995). 
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Fig. 4 Organization of the E3 region in different adenovirus subgenera (adapted from (Burgert and 
Blusch, 2000))  
The line on top denotes the size in bp. Open reading frames (ORFs) are indicated as bars and drawn to 
scale. Significant overall homology (similarity ≥ 25%) is illustrated by identical shading. Homology to a 
portion of a protein was neglected. The shading code is depicted at the bottom of the figure. For each 
subgroup one representative member is shown, as designated on the left. The size/name of related ORFs is 
given only once. For sequence data used refer to (Burgert and Blusch, 2000). pVIII is not an E3 protein, but 
part of its sequence overlaps with the E3 promoter. 

 

By overexpression of FasL, FADD, or caspase 8 via Ad vectors it was shown that Ad5 14.7K 

protein could bind to caspase 8 (FLICE) and prevent it from triggering the downstream caspase 

cascade, suggesting that 14.7K can interfere with execution of the cell death signal (Chen et al., 

1998). As a CPP32-type caspase implicated in TNF-induced cell death signaling has been reported 

to cleave and thereby activate cPLA2 (Wissing et al., 1997), this activity could explain the activity of 

14.7K to inhibit cPLA2. However, human cells infected with an Ad2 virus mutant lacking 

expression of all E3 proteins except for 12.5K and 14.7K remained sensitive to Fas-mediated cell 

death (Elsing and Burgert, 1998), and thus during the normal course of Ad infection 14.7K cannot 

profoundly inhibit FLICE (Horwitz, 2001b). 

Yeast-2-hybrid studies revealed interactions of 14.7K with several cellular proteins, which 

were named 14.7K interacting proteins (FIPs) FIP-1, FIP-2 and FIP-3 (Li et al., 1997; Li et al., 1998a; 

Li et al., 1999), but the importance of these interactions during adenovirus infection still awaits to 

be elucidated. FIP-3 is identical with IKKγ (NEMO), which forms part of the IκB- kinase complex 

(IKK) (Li et al., 1999). IKKγ was also shown to interact with RIP, a protein recruited to the 

cytoplasmic domains of Fas and TNFR (Li et al., 1999) and essential for the activation of NF-κB 

by TNFR1. FIP-2, a protein containing two leucine zipper domains, was found to reverse the 

protective effect of 14.7K on cell death induced by overexpression of RIP or the TNFR 
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intracellular domain (Li et al., 1998a). FIP-1 is identical to the small GTPase RagA and acts in 

bridging E3/14.7K to TCTEL1, which is a component of the microtubule motor protein dynein 

(Lukashok et al., 2000). The functional significance of this ternary complex is still unknown. 

Several mouse cell lines infected with Ad mutants lacking E3/14.7K remained resistant to 

TNF-induced cytolysis, despite expression of E1A. In 11 of 15 tested mouse cell lines protection 

from TNF-cytolysis was conferred by E3/10.4-14.5K (Gooding et al., 1991b). Interestingly, the 

adenovirus-infected mouse C3HA fibroblast cell line, which had been shown to be efficiently 

protected by E3/14.7K (Gooding et al., 1988), cannot be protected against TNF by 10.4-14.5K. 

This differential effect in different cell lines might be due to a difference in expression and/or the 

mechanism of action of these two sets of proteins. It has been proposed that E3/14.7K and 

E3/10.4-14.5K function independently in Ad-infected mouse cells to inhibit both TNF-induced 

apoptosis as well as TNF-induced release of arachidonic acid (Krajcsi et al., 1996). In human cells 

(but not mouse cells) also E1B/19K can inhibit TNF cytolysis (Gooding et al., 1991a) and in its 

absence E3 proteins (either 10.4-14.5K or 14.7K) confer protection (Fig. 3). In human A549 cells it 

could be demonstrated that 10.4-14.5K inhibit TNF-induced translocation of cPLA2 to membranes 

and the subsequent arachidonic acid release without interfering with cPLA2 phosphorylation. 

E3/14.7K and E1B/19K were not required for this effect (Dimitrov et al., 1997). 10.4-14.5K do not 

appear to modulate cell surface expression of murine and human TNFR (Benedict et al., 2001; 

Shisler et al., 1997). 

Interestingly, E3/10.4-14.5K specifically down-regulate cell surface expression of other 

members of the TNF/NGF (tumor necrosis factor/nerve growth factor) receptor superfamily. 

TNFR superfamily members are type I transmembrane proteins characterized by two to five copies 

of cysteine-rich extracellular repeats, which are typically defined by three intrachain disulfide 

bridges formed between strictly conserved cysteines. Death receptors share an intracellular amino 

acid stretch within the carboxy-terminus of the receptor, called the death domain (DD) (Locksley 

et al., 2001). When death receptors TNFR1, Fas (CD95/APO-1), DR3/WSL (the receptor for APO-

3L), and the TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) receptors DR4 and DR5 are 

bound by ligand apoptosis can occur as a consequence. Ligand engagement typically causes 

homotypic interaction of the receptor’s DD with adaptors such as FAS-associated DD protein 

(FADD) or TNFR-associated DD protein (TRADD) that may ultimately lead to caspase activation 

and cell death (reviewed in (Ashkenazi and Dixit, 1998).  

In Ad-infected and E3-transfected cells 10.4-14.5K induce down-modulation of the 

apoptosis receptor Fas from the cell surface and its degradation in lysosomes (Elsing and Burgert, 

1998; Shisler et al., 1997; Tollefson et al., 1998). Thereby, E3/10.4-14.5K prevent apoptosis 
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triggered by FasL or agonist Fas antibodies (Fig. 3). Whereas Fas is constitutively expressed in a 

wide variety of tissues, Fas ligand (FasL) is largely restricted to cells of the immune system, such as 

macrophages, NK cells and activated T cells (Nagata, 1999). Expression of the CD95 gene is 

enhanced by interferon-γ and TNF and by activation of lymphocytes (Walczak and Krammer, 

2000). Besides being important for immune cell homeostasis and for down-regulation of an 

immune response (Rathmell and Thompson, 2002), Fas-FasL interactions permit CTL and NK 

cells to induce apoptosis in target cells. The contribution of Fas-mediated cytolysis in vivo to 

clearance of virus infections largely depends on the type of virus (Harty et al., 2000; Trapani et al., 

2000). As many viruses encode antiapoptotic proteins viral interference with apoptosis seems to be 

a prerequisite for effective reproduction of viruses and possibly also for establishing viral 

persistence (O'Brien, 1998; Teodoro and Branton, 1997). 

Recently, it has been discovered that E3/10.4-14.5K in conjunction with E3/6.7K act to 

block TRAIL-induced apoptosis (Fig. 3), by down-regulation of the two death-signaling receptor 

for TRAIL, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) (Benedict et al., 2001). Another study using 

different experimental conditions suggested that E3-6.7K is not required for the down-regulation 

of DR4 by 10.4-14.5K (Tollefson et al., 2001), yet it may still be required by 10.4-14.5K in down-

regulating DR5. E3/6.7K has been described as an Asn-linked integral membrane glycoprotein 

localized in the ER (Wilson-Rawls and Wold, 1993). In correlation with its localization to the ER, 

E3/6.7K appears to function also independently of 10.4-14.5K in maintaining calcium 

homeostasis, blocking thapsigargin (inhibitor of ER-associated calcium ATPase)-induced apoptosis, 

reducing death receptor-induced apoptosis and TNF-induced release of arachidonic acid (Moise et 

al., 2002). TRAIL is known to induce apoptosis selectively in tumor cells, but not in normal cells 

(Walczak and Krammer, 2000). TRAIL has been found to be expressed and involved in apoptosis 

induction by IFN-γ-stimulated monocytes (Griffith et al., 1999), IFN-α and IFN-β or TCR-

stimulated T cells (Kayagaki et al., 1999a; Musgrave et al., 1999), non-stimulated CD4+ T cells 

(Kayagaki et al., 1999b), natural killer (NK) cells (Kashii et al., 1999; Kayagaki et al., 1999c), and 

IFN-α and IFN-γ-stimulated DCs (Fanger et al., 1999). Interestingly, functional surface expression 

of TRAIL is often associated with stimulation by interferons, suggesting that TRAIL may 

contribute to the antiviral effects of IFNs and recent reports indicate an involvement of the 

TRAIL system in overcoming viral infections. Human cytomegalovirus (HCMV) infection of 

primary fibroblasts increased expression of TRAIL-R1, TRAIL-R2 and TRAIL. IFN-γ and TNF 

potentiated these effects, permitting selective killing of virus-infected cells by down-regulation of 

TRAIL receptors on the uninfected cells (Sedger et al., 1999). Reovirus-induced apoptosis is 
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mediated by TRAIL (Clarke et al., 2000). Measles virus (MV) infection of dendritic cells is 

accompanied by production of functional TRAIL (possibly induced via interferon production), 

which permits MV-infected DCs to induce apoptosis of activated T lymphocytes and might 

explain immunosuppression observed in MV infection (Vidalain et al., 2000). Increased expression 

of FasL and/or TRAIL on HIV-infected T cells, HCMV and measles-virus-infected DCs has been 

suggested to be another viral immune evasion tactic (counter-attack) aimed at killing infiltrating 

host CTLs and DCs (Xu et al., 2001). The presence of Ad functions which interfere with death 

receptor signaling at the earliest time point possible (the encounter of the receptor with its cognate 

ligand) indicates that FasL/Fas and TRAIL/TRAIL-R interactions are important effector 

mechanisms of the host immune response to adenovirus infection. The loss of death receptors 

may function to protect infected cells from cytolysis by CTLs and NK cells which express FasL 

and TRAIL upon activation ((Benedict et al., 2002). 

In addition to Fas and the TRAIL-receptors involved in apoptosis control, E3/10.4-14.5K 

also down-regulate cell surface expression of the epidermal growth factor receptor (EGFR/erbB1) 

(Carlin et al., 1989; Tollefson et al., 1991) and to a lesser extent some other structurally related 

receptor tyrosine kinases (RTK): Infection with virus mutants overexpressing both viral proteins 

has been reported to cause down-regulation of the insulin receptor and insulin-like growth factor 1 

receptor, as well as p185c-neu/erbB2, which is a RTK closely related to the EGFR (Kuivinen et al., 

1993). The purpose of EGFR down-regulation early during infection is unknown. One possibility 

is that it induces constitutively the EGFR mitogenic signal and thereby stimulates cellular 

metabolism and provides a cell environment that facilitates viral replication. This is conceivable, 

in view of primary targets of group C Ad infection in vivo being primary epithelial cells of the 

respiratory tract. Such a function might not be needed in rapidly proliferating cultured cells, but 

might increase virulence in vivo. A mitogenic potential has been proposed for a class of poxvirus 

proteins, which have EGF-like activities (Yarden and Sliwkowski, 2001). But, in contrast to 10.4-

14.5K function, these virus-encoded EGF-like ligands cause only limited receptor down-regulation, 

thereby their mitogenic potency is enhanced relative to their mammalian counterpart. Moreover, 

10.4-14.5K-mediated down-regulation occurs independently from intrinsic tyrosine kinase activity 

of the EGFR suggesting that the mechanism differs from ligand-induced down-regulation of the 

activated receptor (Hoffman and Carlin, 1994). Down-regulation of the EGFR early after virus 

infection might be important to limit inflammation. EGF binding to the EGFR stimulates AA 

release through the phosphorylation of cPLA2 mediated by MAPK ERK and p38 pathways and 

also regulates cPLA2 gene expression (Chepenik et al., 1994). Recently, it has been described that 

EGF induces gene and protein expression of a cPLA2 antagonist, known as p11, which can 
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suppress AA release at later time points after induction (Huang et al., 2002). Thus, EGFR ligation 

is implicated in the regulation of cPLA2 activity and AA release. 

In summary, many Ad E3 proteins seem to have evolved to inhibit apoptosis and allow 

viral replication even when infected cells are under immune attack.  

 

1.7 Adenovirus E3/10.4-14.5K 

In the struggle between virus and host control over the cell’s death machinery is crucial for 

survival. The E3/10.4-14.5K proteins of subgroup C viruses have been reported to selectively 

down-regulate plasma membrane receptors involved in apoptosis signaling and growth control. 

The term down-regulation has originally been invented to describe the process of ligand-induced 

internalization of activated receptors via coated pits, which involves sorting of receptor-ligand 

complexes in endosomes followed by receptor degradation in lysosomes (Sorkin and Waters, 

1993). This process serves as an important determinant of the intensity and duration of ligand-

induced signaling. Therefore, 10.4-14.5K function might be interpreted as a surrogate receptor-

ligand interaction aimed at blocking signaling of cell surface receptors by causing their removal 

from the cell surface and their degradation. In the following structural features of 10.4-14.5K 

proteins and the characteristics of the process of down-modulation of different types of receptor 

targets will be summarized. 

 

1.7.1 Biochemical characteristics of 10.4K and 14.5K encoded by subgroup C Ads 

Adenovirus E3/10.4K and 14.5K are both integral membrane proteins which associate non-

covalently with each other and localize as a complex to the plasma membrane (Fig. 5), (Hoffman 

et al., 1992b; Stewart et al., 1995). Ad2 10.4K exists as two different isoforms that are visualized as 

two distinct bands on SDS-PAGE (Tollefson et al., 1990b). One isoform is processed by cleavage of 

a signal sequence for membrane insertion between Ala-22 and Ala-23 (Krajcsi et al., 1992a). The 

other isoform represents the uncleaved full-length protein, resulting in a protein with two 

membrane-spanning regions. Both forms are type 1 transmembrane proteins that are linked by a 

disulfide-bond formed between cysteine residues (Cys-31) in the extracellular domain (Fig. 5), 

(Hoffman et al., 1992b; Krajcsi et al., 1992a). The faster migrating isoform seems to be a cleavage 

product of the long form which retains the second membrane anchor. In wt Ads, processing of the 

long isoform continues until both bands are equal in abundance, suggesting that they exist as an 

equimolar complex (Krajcsi et al., 1992a). Formation of a stable complex might also explain, why 

the cleavage reaction remains incomplete and occurs at a rate much slower than cotranslational 

signal peptidase cleavage reactions. These properties are inherent to the 10.4K sequence as 
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Fig. 5 A model depicting predicted secondary structure and orientation of the Ad2 10.4K and 14.5K 
proteins in the lipid bilayer 
10.4K is shown with both isoforms that are covalently linked by a disulfide bond. Amino acid numbers of 
the predicted full-length sequences are used to indicate lumenal, transmembrane and cytoplasmic domains. 
N- and C-termini are designated with N and C, respectively. S-S indicates the proposed disulfide bond 
formed between strictly conserved cysteine residues at position 31 in the 10.4K sequence. Sequence elements 
that correspond to the consensus of putative transport motifs are shown in circles. Their sequence is 
described in single letter amino acid code and the position of the starting residue in the Ad2 10.4-14.5K 
protein sequences is given. 

 

membrane insertion and the described stoichiometric proteolytic cleavage is reproduced in vitro in 

cell-free translation sytems in the presence of microsomes (Krajcsi et al., 1992a). Homologous 

10.4K ORFs are found in all subgroups of human adenoviruses and sequence homology is 

relatively high (35%-72%, average 47.5%, (Burgert et al., 2002)). The predicted amino acid 

sequences share a length of 91 amino acids, with the exception of subgenus F homologs (Ad40 and 

Ad41) that have 90 amino acids (see Fig. 8). A putative N-terminal signal sequence and 30-residue 

transmembrane domain has been predicted for all these homologs (Burgert et al., 2002; Burgert 

and Blusch, 2000). 

The 14.5K protein is a type one transmembrane protein (Fig. 5), (Krajcsi et al., 1992b), with 

an N-terminal signal sequence for membrane insertion. From infection studies with an Ad2 

mutant virus overexpressing the Ad2 version of 10.4K and Ad5 14.5K it was concluded that Ad5 

14.5K has mucin-type O-linked oligosaccachrides (Krajcsi et al., 1992c) attached to its lumenal 

domain, but is not N-glycosylated. Whereas 10.4K is not phosphorylated, 14.5K is phosphorylated 
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on one or two serines in the cytoplasmic domain (Krajcsi and Wold, 1992). Following transient 

transfection of Ad5 10.4K and 14.5K expression plasmids 14.5K could be shown to be 

phosphorylated on one site, Ser116, which gave rise to two separate bands of phosphorylated 

14.5K (Lichtenstein et al., 2002). Interestingly, in the absence of 10.4K phosphothreonine could 

additionally be detected in 14.5K (Krajcsi and Wold, 1992), which is reflected by a more 

pronounced heterogeneity of the banding pattern (Krajcsi et al., 1992c; Tollefson et al., 1990a). 

The 10.4K protein is not required for O-glycosylation of 14.5K to proceed to a stage where sialic 

acid is a terminal residue (Krajcsi et al., 1992c). In pulse-chase experiments it could be shown, that 

with time the fast migrating bands of 14.5K are chased into the top band, which is assumed to 

represent mainly the fully glycosylated, sialylated and phosphorylated form of 14.5K. (Krajcsi et 

al., 1992c). The sequence homology between 14.5K proteins of different subgenera is significantly 

lower (21-50%, average 30%, (Burgert et al., 2002) than that of 10.4K proteins. In addition, the 

predicted length of the mature 14.5K protein varies from 91 to 127 amino acids (Fig. 8). 10.4K 

usually coimmunoprecipitates with 14.5K implying that both proteins exist as a complex in 

infected cells (Tollefson et al., 1991). Moreover, in subgroup C viruses 10.4K and 14.5K have been 

shown to be translated primarily from the same mRNA, designated mRNA f (Tollefson et al., 

1990b; Tollefson et al., 1990a). Both proteins can be synthesized by cell-free translation from this 

particular mRNA, and 10.4K and 14.5K are over- or underexpressed in vivo by the use of virus 

mutants that over- or underproduce mRNA f, suggesting a direct relationship. Interestingly, the 

site of signal sequence cleavage in 14.5K varies depending on the presence or absence of 10.4K. In 

the presence of 10.4K, cleavage occurs predominantly between Cys-18 and Ser-19,

whereas with a virus mutant lacking 10.4K it occurred mainly between Phe-17 and Cys-18. In both 

cases, a minority of molecules was cleaved one or two residues upstream or downstream of the 

major cleavage site (Krajcsi et al., 1992b). Whereas the Phe-17/Cys-18 site appears disfavored, the 

Cys-18/Ser-19 cleavage site (compare Fig. 8) is in accord with the (–3,-1) rule for signal sequence 

cleavage, which states that residues at positions –3 and –1 must be small and neutral for cleavage 

to occur correctly (Nielsen et al., 1997). By analogy, the closely related Ad2 14.5K protein has been 

predicted to have a major signal sequence cleavage site at residues Cys-19, Ser-20 (Burgert et al., 

2002). The mechanism how 10.4K affects the cleavage site in 14.5K remains unclear. 

 
1.7.2 10.4-14.5K-mediated down-regulation of cell surface receptors  

Removal of the epidermal growth factor receptor (EGFR) from the cell surface of infected 

cells during early infection with subgroup C viruses led to the identification of the 10.4K protein. 

Its presence was accompanied by endocytosis and degradation of the human EGFR (Carlin et al., 
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1989). But initial gene mapping studies did not allow to exclude an additional requirement for 

14.5K for this activity, as these were based on virus mutants with deletions within E3 that did not 

precisely cover individual ORFs and might have caused unpredictable alterations of E3 splicing. In 

one report using retrovirus-mediated transfer of the 10.4K gene alone, 10.4K was sufficient to 

reduce EGFR cell surface expression (Hoffman et al., 1990). However, two other groups have 

clearly demonstrated that in the natural context of adenovirus infection both 10.4K and 14.5K are 

required to down-regulate the epidermal growth factor receptor (Elsing and Burgert, 1998; 

Tollefson et al., 1991). These discrepancies are most likely due to the use of different experimental 

systems and 10.4K may well be overexpressed following retrovirus infection. But the observation 

that 10.4K alone can induce changes in the trafficking and steady-state localization of the EGFR 

indicates that there is a direct or indirect association of 10.4K with this receptor. A complex of 

10.4K and 14.5K (10.4-14.5K) does not affect the initial synthesis of the EGFR, but reroutes 

surface EGFR molecules to lysosomes for degradation (Tollefson et al., 1991). Recently, it could be 

shown by use of a virus mutant overexpressing 10.4K, that 10.4K directly associates with the 

EGFR in an early endosomal compartment during the process of receptor down-regulation 

(Crooks et al., 2000). Mechanistic studies demonstrated that adenovirus-induced down-regulation 

of the EGFR occurs with an internalization rate indistinguishable from the rate of constitutive 

internalization of unoccupied receptors and independently of EGF binding to the receptor, 

receptor dimerisation or EGFR tyrosine kinase activity (Hoffman et al., 1992a; Hoffman and 

Carlin, 1994). Thus, the mechanism of 10.4-14.5K-mediated receptor down-regulation differs in 

these key characteristics from ligand-induced EGFR down-modulation. Ligand-occupied, kinase-

active EGFR dimers are internalized at a rate that is about 10-fold greater than that for receptors 

unoccupied by ligand (Opresko et al., 1995). Ligand-receptor complexes are rapidly internalized 

via clathrin-coated pits and subsequently transported to lysosomes for degradation. Cryptic sorting 

signals in the cytosolic tail of the receptor are unmasked by conformational changes after ligand 

engagement, receptor activation and autophosphorylation (Chang et al., 1993) (Nesterov et al., 

1995a; Nesterov et al., 1995b). But, although the EGFR strongly binds to the µ2 subunit of the AP-

2 complex of clathrin-coated pits via the sequence Y974RAL, mutations in this motif which abolish 

EGFR interaction with AP-2, do not significantly affect internalization of the receptor (Nesterov et 

al., 1995b; Sorkin et al., 1996) and the EGFR can be internalized in a µ2-independent manner 

(Nesterov et al., 1999). Thus, AP-2 binding is not the sole determinant for internalization of the 

activated EGFR. At present, the molecular mechanism of clathrin-dependent endocytosis of the 

EGFR is not well-understood. EGFR tyrosine kinase activity is necessary for the initial coated pit 

recruitment step of endocytosis (Sorkina et al., 2002) and tyrosine phosphorylation of eps15 is 
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specifically required for ligand-regulated EGFR internalization via clathrin-coated pits 

(Confalonieri et al., 2000). Several SH2/PTB domain containing proteins, such as c-Cbl, Grb2 and 

Shc, have been proposed to bind to phosphotyrosines in the cytoplasmic tail of the 

autophoshorylated EGFR and participate in EGFR endocytosis by recruiting the components of 

the cellular endocytosis machinery (Jiang et al., 2003; Sakaguchi et al., 2001; Soubeyran et al., 2002; 

Szymkiewicz et al., 2002) (Wang and Moran, 1996; Waterman et al., 2002). Thus, it appears that 

multiple redundant mechanisms of EGFR internalization may exist, which are regulated by 

tyrosine kinase activity of the receptor. Moreover, EGFR signaling leads to activation of the 

tyrosine kinase Src which may participate in regulation of the EGFR endocytosis by 

phosphorylation of clathrin (Wilde et al., 1999), dynamin (Ahn et al., 2002), and c-Cbl (Bao et al., 

2003; Kassenbrock et al., 2002). The activated EGFR remains phosphorylated and bound to signal 

transducers Shc, Grb2 and c-Cbl within the endosome suggesting that signaling is not attenuated 

at the internalization step (Oksvold et al., 2001). Inactivation of the receptor occurs through 

dissociation of the activating ligand, dephosphorylation of tyrosine residues of the RTK and 

degradation of both the ligand and the receptor (Gill, 2002). Whereas recycling receptors are 

confined to the limiting membrane of a late endosomal compartment called multivesicular body 

(MVB), activated EGFRs accumulate on internal vesicles. When all the recycling receptors have 

been removed, the mature MVBs fuse directly with the lysosome and EGF-EGFR complexes are 

rapidly degraded. Tyrosine kinase activity of the EGFR is required for inclusion in internal vesicles 

(Felder et al., 1990; Futter et al., 2001). EGF-induced accelerated internalization is not sufficient 

for enhanced degradation of the EGFR, which appears to require distinct sorting signals that 

mediate endosomal retention (Herbst et al., 1994) or sequestration from the recycling pathway 

(Opresko et al., 1995). Sequences within the cytoplasmic domain of the EGFR distinct from the 

kinase domain (Kil et al., 1999; Kil and Carlin, 2000; Kornilova et al., 1996; Opresko et al., 1995) 

have been shown to enhance degradation of truncated receptors, but these may be inactive in the 

full-length receptor. So far the importance of potential sorting signals for trafficking of the full-

length receptor has only been confirmed for the leucine-based determinant L679L680 (Kil et al., 

1999; Kil and Carlin, 2000). Substitution of L679L680 by alanine led to a reduction in ligand-

induced receptor degradation due to rapid recycling from early endocytic compartments, but 

without affecting internalization. How L679L680 may contribute to sequestration of the activated 

EGFR in late endosomes/lysosomes remains unknown. Recently, c-Cbl an E3 ubiquitin ligase has 

been shown to catalyze polyubiquitination of the EGFR (Levkowitz et al., 1998; Longva et al., 

2002) and thereby regulates lysosomal degradation. Sustained activation of the receptor, to 

maintain the association with c-Cbl and the ubiqitinated state, is required for directed passage into 
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MVBs (Longva et al., 2002). At the late endosome TSG101 is involved in sorting ubiquitinated 

cargo into multivesicular endosomes and tsg101 mutant cells recycle ligand-bound EGFRs instead 

of degrading (Babst et al., 2000). Another molecule involved in sorting of EGFRs to lysosomes 

may be Hrs, which becomes phosphorylated in response to EGF and inhibits lysosomal 

degradation of the EGFR when overexpressed (Chin et al., 2001; Raiborg et al., 2001). Hrs is 

recruited to early endosomes through its lipid binding domain FYVE and implicated in MVB 

formation (Lloyd et al., 2002). It interacts with sorting nexin (SNX)1 in a complex that excludes 

the EGFR. EGF-induced tyrosine phosphorylation of Hrs may liberate SNX1, which associates 

with the activated EGFR and enhances the efficiency of lysosomal targeting of the receptor 

(Kurten et al., 1996). By analogy, 10.4-14.5K may function within endosomes to increase the rate 

of lysosomal degradation of constitutively internalized EGFR without increasing the rate of 

receptor internalization. 

Several groups have demonstrated that 10.4K and 14.5K are both necessary and sufficient 

to induce internalization and degradation of the Fas receptor (Shisler et al., 1997) (Elsing and 

Burgert, 1998; Tollefson et al., 1998). 10.4-14.5K-mediated down-modulation of Fas has been 

shown to protect cultured cells from Fas-mediated apoptosis independently from other viral 

functions. Remarkably, down-regulation of Fas also occurs after infection of primary cells (Elsing 

and Burgert, 1998). The observation that the kinetic of Fas disappearance from the cell surface of 

infected cells is much more rapid than after inhibition of Fas cell surface transport by Brefeldin A 

on mock-infected cells, argues in favor of an active rerouting of Fas from the cell surface, rather 

than a direct transport from the TGN to lysosomes (Elsing and Burgert, 1998). In infected cells 

the overall levels of Fas are decreased, but this is not due to inhibition of de novo Fas synthesis 

(Shisler et al., 1997; Tollefson et al., 1998). 10.4-14.5K-induced degradation of Fas can be inhibited 

by treatment with chloroquine, ammonium chloride or Bafilomycin A1, which act as inhibitors of 

lysosomal acidification, and under these conditions Fas accumulates in vesicles staining for 

lysosome-associated membrane protein 2 (Lamp-2) (Elsing and Burgert, 1998; Tollefson et al., 

1998). Recent reports suggest that 10.4-14.5K acts in concert with E3/6.7K to protect infected cells 

from TRAIL-induced apoptosis (Benedict et al., 2001). 10.4-14.5K is necessary and sufficient to 

clear TRAIL-R1 from the cell surface and induce degradation of TRAIL-R1 in a Bafilomycin A1-

sensitive late endosomal/lysosomal compartment (Tollefson et al., 2001), but DR5 down-

regulation was shown to require E3/6.7K in addition to 10.4-14.5K (Benedict et al., 2001). 

Interestingly, E3/6.7K is found only in subgroup C viruses (Fig. 4) and therefore, it will be 

interesting to determine whether serotypes from other subgroups are also capable of down-

regulating DR5. 
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1.8 The cellular protein sorting machinery 

Obviously, many immune evasive functions of Ad E3 proteins are based on their capacity 

to deregulate trafficking of host proteins (Burgert and Blusch, 2000). Interestingly, the E3 region is 

the only part of the genome that harbors transmembrane proteins, and many of them contain 

potential sorting motifs in their cytoplasmic tails, which might permit them to exploit the cellular 

protein sorting machinery to exert their function (Windheim et al., 2003 in press). Examples from 

other viruses, such as mouse cytomegalovirus glycoproteins gp40 and gp48 (Reusch et al., 1999) 

(Ziegler et al., 2000) which interfere with the MHC class I pathway of antigen presentation or 

HIV-1 nef, a versatile adaptor protein that down-regulates CD4 and MHCI surface expression by 

multiple interactions with the cellular protein sorting machinery ((Blagoveshchenskaya et al., 

2002) and references therein), illustrate the importance of the exploitation of the cellular 

trafficking pathways for virus-host interactions. Therefore, in the following an overview about the 

principal players involved in intracellular protein trafficking and its regulation is given. 

 

1.8.1 Principles of membrane protein transport 

A characteristic feature of eucaryotic cells is their ability to maintain a diverse set of 

intracellular membrane-bound compartments, which are characterized by distinct protein 

complements, morphology and lipid composition and carry out specific functions. Although 

substances can be transported from one membrane-bound compartment to another, their unique 

identities are not compromised. Apparently, a steady-state is achieved between forward and reverse 

traffic between donor and acceptor compartments (Mellman and Warren, 2000). For the Golgi 

compartment and lysosomes also maturation models have been proposed to explain differences 

between subcompartments, namely between the cis- and trans-Golgi or early and late endosomes, 

lysosomes.  

A fundamental principle of intracellular membrane traffic involves cargo-laden vesicles and 

their associated regulatory proteins and coat components, which provide the machinery for 

selection of cargo, membrane deformation and vesicle budding from a donor compartment and 

fusion with a specific acceptor compartment. The three best understood classes of coated vesicles 

are: COPII vesicles which mediate ER to ERGIC (ER-Golgi intermediate compartment) traffic, 

COPI vesicles which direct retrograde traffic from the Golgi to the ERGIC and the ER, as well as 

anterograde traffic from the ERGIC to Golgi and traffic between Golgi cisternae, and clathrin-

coated vesicles, which mediate certain endocytic and post-Golgi vesicular trafficking steps

 (Barlowe, 2000; Kirchhausen, 2000b), Fig. 6). Membrane proteins are incorporated into transport 

vesicles upon recognition of intrinsic sorting signals that may either be directly bound by the coat 
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components (COPI, COPII) or may be recognized by so-called adaptor complexes (AP), which 

bridge between selected cargo and clathrin. The coats are derived from soluble, cytosolic precursors 

that are specifically recruited to organelle membranes in a GTP-dependent process. Budding of 

COPII vesicles at specific ER exit sites requires the small guanosine triphosphatase (GTPase) Sar1p, 

while COPI is recruited to Golgi membranes by the small GTPase (ADP ribosylation factor) Arf-1 

(Barlowe, 2000). Coat assembly leads to deformation of the donor membrane and scission of the 

budding vesicle. Shortly after formation the coats dissociate from the newly formed transport 

vesicle freeing the vesicle to fuse with target membrane. Vesicle fusion is accomplished by first 

tethering the vesicle to a target membrane and subsequent assembly of a tight membrane fusion 

complex (docking) by pairing of specific SNARE (soluble NSF attachment protein receptors) 

proteins on the vesicle membrane (v-SNARE) with those on the membrane of the target organelle 

(t-SNARE) (Chen and Scheller, 2001).  

Protein sorting begins early on in the secretory pathway at the level of the ER and may 

involve recognition of specific ER export signals or retention and retrieval motifs in ER resident 

proteins which lead to segregation of specific sets of proteins from others. The ER-Golgi-

intermediate compartment ERGIC (Fig. 6) seems to be the major site for sorting out proteins for 

anterograde transport to the Golgi, from those that must be returned to the ER. Trafficking 

between the ER, ERGIC and the Golgi/TGN complex is mainly accomplished by COPI, COPII 

coats ((Mellman and Warren, 2000), Fig. 6). Steady-state ERGIC localization of ERGIC-53 appears 

to be mediated by a C-terminal pair of phenylalanines acting as ER export signal via direct 

interaction with COPII (Hauri et al., 2000). Sorting motifs implicated in COPI binding and 

retrograde transport to the ER are C-terminal KKXX and KXKXX sequences, where K is lysine and 

X any amino acid (Teasdale and Jackson, 1996). This type of sorting signal is present and 

functionally active in the cytoplasmic tail of the adenovirus E3/19K protein and contributes to 

the ER localization of E3/19K (reviewed in Windheim et al., 2003 in press). Specific interaction of 

E3/19K with MHC class I complexes results in their retention in the ER, whereby the recognition 

of infected cells by CTLs through MHC class I-mediated presentation of viral peptides is 

impaired. Additionally, mechanisms related to quality control contribute to ER retention: correct 

assembly of oligomeric membrane receptors, such as the T cell receptor-CD3 complex is achieved 

by the presence of single basic or acidic residues within the TMD of individual subunits. Proper 

pairing of subunits neutralizes charges and allows efficient export (Letourneur and Cosson, 1998). 

Moreover, chaperones (calnexin, calreticulin) contain ER retrieval or retention motifs and thus 

trap proteins in the ER until they are correctly folded (Ellgaard et al., 1999). 
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Fig. 6 Overview of the cellular sorting machinery for transport of membrane-associated proteins 
(non-polarized cells) 
Export of membrane proteins out of the ER occurs in COPII vesicles. COPI vesicles are implicated in both 
anterograde transport from the ERGIC through the Golgi to the TGN and retrograde traffic between the 
TGN and the ER. From the TGN proteins can reach the plasma-membrane directly in secretory vesicles, or 
indirectly through late endosomes (LE) and/or early endosomes (EE), presumably by incorporation into 
calthrin-coated vesicles (CCV) involving the clathrin adaptor complexes AP-1, AP-3 or GGAs. Early 
endosomes can be reached by endocytosis through clathrin-coated pits, involving AP-2. Proteins may exit 
EE for transport to the cell surface by two pathways: 1.) by inclusion into recycling endosomes or 2.) 
recycling to the TGN likely by incorporation into CCV mediated by PACS-1 and AP-1. At the early 
endosome the formation and segregation of cargo into MVB for transport into lysosomes (Lys) is initiated, 
a process involving ubiquitin-recognizing proteins, such as Hrs/STAM and an ESCRT-1-like complex. 
Lysosomal avoidance signals in cargo proteins may be recognized by TIP47 at the late endosome. For 
abbreviations and more details refer to text. 

 

Transit through the Golgi complex involves passage through 3-5 Golgi stacks (cis, medial, 

trans). The cisternal maturation model proposes that secretory proteins transit the Golgi in 

cisternae that mature by the continuous retrograde transport of Golgi resident enzymes in vesicles 

(Allan and Balch, 1999). Additionally, COPI vesicles may mediate a fast anterograde transport of 

secretory proteins through Golgi-stacks ((Pelham and Rothman, 2000), Fig. 6). Golgi-resident 

glycosyltransferases, SNAREs and some viral proteins are sorted within the Golgi by their TMD, 

which is on average five residues shorter than that of plasma membrane proteins and therefore 

these proteins are excluded from the sphingolipid, cholesterol-rich membranes (rafts) involved in 

Golgi protein export (Munro, 1998). At the TGN proteins are sorted into specialized secretory 

vesicles, either for transport to the plasma membrane or into endosomes/lysosomes. In polarized
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 cells the TGN is also the sorting station for proteins that are targeted to the apical or basolateral 

membrane (Keller et al., 2001). In non-polarized cells trafficking to the cell surface is believed to 

occur by default and coat proteins of secretory vesicles have not been identified yet. Most other 

trafficking pathways between TGN, endosomes/lysosomes and the plasma membrane are mediated 

by clathrin-coated vesicles (CCVs) which are also implicated in basolateral transport in polarized 

cells (Heilker et al., 1999). Coats for apical transport are still unknown. 

 

1.8.2 Clathrin-coated vesicle formation: Adaptor complexes and sorting signals 

Clathrin is a heterohexameric complex composed of three heavy chains and three light 

chains. Heavy chains are joined at their C-termini, which confers the three-legged appearance of a 

triskelion (Kirchhausen, 2000a). Multimerization of triskelia into polyhedral cages is regulated by 

a number of clathrin-binding proteins (Dell'Angelica, 2001). Among them the adaptor protein 

complexes (APs) have been characterized most extensively. APs are heterotetramers with a 

molecular mass of 250-300 kDa composed of two large subunits (γ,α,δ,ε and β1-4) one medium 

subunit µ1-4 and a small subunit σ (Boehm and Bonifacino, 2001). For several subunits cell-type 

specific isoforms have been identified. The different subunits perform different functions. The β 

subunits are particularly important for clathrin-binding and a five amino acid consensus sequence 

(clathrin-box) has been identified (Dell'Angelica, 2001; Kirchhausen, 2000a). The α and γ subunits 

are known to interact with regulatory/accessory proteins involved in clathrin-coated vesicle (CCV) 

formation (Jarousse and Kelly, 2000; Owen et al., 1999; Traub et al., 1999). The µ and β subunits 

have been implicated in cargo selection (see below). Directed transport is achieved by selective 

association of different adaptors to distinct donor membranes, and specific recognition of cargo 

proteins by APs mediates sequestration of cargo in a specific type of transport vesicle for delivery 

to its intermediate or final destination (Fig. 6). 

Four APs are distinguished according to their composition (AP-1 

γσ1β1µ1, AP−2 ασ2β2µ2, AP−3 δσ3β3µ3, AP−4 εσ4β4µ4) and localization within the cell 

((Boehm and Bonifacino, 2001; Kirchhausen, 1999; Robinson and Bonifacino, 2001), Fig. 6). AP-1 

localizes to the TGN and endosomes. AP-1 is implicated in traffic directly from the TGN to 

endosomes (Heilker et al., 1999), and has been detected in coated buds of the TGN, containing 

mannose-6-phosphate receptors (MPRs). MPRs act as commuters between the TGN and the 

endosomal/lysosomal system for delivery of lysosomal hydrolases to endosomes. However, in 

mammalian cells that lack functional AP-1 MPRs accumulate in early endosomes suggesting a 

major role of AP-1 in early endosome-Golgi recycling (Black and Pelham, 2001; Meyer et al., 2000; 
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Meyer et al., 2001). In polarized epithelial cells AP-1 with its µ1B subunit directs basolateral 

sorting at the TGN (Folsch et al., 1999). AP-3 is found at the TGN and a peripheral endosomal 

compartment and has been shown to be involved in the sorting of lysosome-associated membrane 

proteins (Lamp-1 and Limp-II) directly from the TGN to lysosomes (Dell'Angelica et al., 1999; Le 

Borgne et al., 1998). AP-2 is the only adaptor known to associate with the plasma membrane and 

directs endocytosis (Bonifacino and Traub, 2003). AP-2 might also participate in the budding of 

clathrin-coated vesicles in a retrograde trafficking pathway out of the lysosomal compartment 

(Arneson et al., 1999). For AP-1 and AP-2 the association with clathrin-coated vesicles has been 

demonstrated, whereas AP-3 vesicles appear not to require clathrin, and AP-4, which has no 

clathrin-binding motif in its β4 subunit, is a component of a non-clathrin coat at the TGN. AP-4 

may be implicated in basolateral sorting at the TGN (Bonifacino and Traub, 2003). 

At the TGN and within the endosomal/lysosomal system, the membrane association of 

APs and coat components requires the activity of the small GTP-binding proteins of the ARF 

family. ARFs themselves also cycle between cytosol and membranes in a process that in turn is 

regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). 

Exchange of GTP for GDP in ARFs induces a conformational change that increases ARFs affinity 

for membranes, whereas activation of GAP triggers vesicle uncoating. The small GTP binding 

protein Arf-1 is essential for TGN association of AP-1 (Zhu et al., 1999), membrane association of 

AP-3 (Ooi et al., 1998) and AP-4 (Boehm et al., 2001). AP-2 is an exception in that its association 

with membranes is not regulated by ARFs, but rather requires synaptotagmin for nucleation of 

endocytic CCVs (Takei and Haucke, 2001). Additionally, coated vesicle fission at the plasma 

membrane requires the GTPase dynamin (Marsh and McMahon, 1999). 

Another class of small GTP binding proteins, the Rab GTPases, coordinate consecutive 

stages of transport, such as vesicle formation, vesicle movement along cytoskeletal filaments and 

tethering of vesicles to their target compartment (reviewed in (Zerial and McBride, 2001)). Rab 

effectors, such as p115 in the Golgi and EEA1 involved in endosomal fusion, act as so-called 

tethering factors to confer targeting specificity to the vesicles (Pfeffer, 1999) and regulate the 

formation of SNARE complexes (Chen and Scheller, 2001). Therefore, Rab proteins are key 

determinants of compartmental specificity in vesicular membrane transport. 

Incorporation of membrane-associated proteins into transport vesicles relies on sorting 

information contained within short peptide motifs facing the cytosol. Three distinct sorting 

signals for incorporation into CCVs have been identified: NPXY, YXXΦ (where X is any amino 

acid and Φ denotes an amino acid with a bulky hydrophobic side-chain (L, F, V, I, M) and 
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dileucine (LL) (Bonifacino and Traub, 2003). Dileucine (LL) motifs may be constituted by a pair 

of two leucines, but one of the leucines may also be substituted for by another bulky residue (I, V, 

M, F). Whereas NPXY signals mediate only rapid internalisation from the plasma membrane, 

YXXΦ and LL motifs are the most frequent sorting motifs that direct trafficking in the TGN and 

endosomal/lysosomal system.  

YXXΦ motifs binding has been mapped to the µ subunits of AP complexes (Aguilar et al., 

2001; Ohno et al., 1998). The crystal structure of a complex formed between the µ2 subunit and a 

peptide containing the YXXΦ motifs of TGN38 and the EGFR revealed that Y and Φ are key 

determinants of the interaction as they fit into two hydrophobic pockets (Owen and Evans, 1998). 

Recently, the binding site for the FDNPVY motif in the LDL receptor has also been mapped to 

the µ2 subunit, but at a site distinct from the YXXΦ binding site (Boll et al., 2002). It is currently 

controversial whether dileucine motifs are also recognized by the µ subunits (Bremnes et al., 1998) 

(Rodionov and Bakke, 1998) or the β subunits (Rapoport et al., 1998). Both YXXΦ and LL signals 

can be recognized by AP-1, AP-2 and AP-3, although sorting by dileucine motifs does not compete 

with sorting via YXXΦ motifs (Marks et al., 1996). Strikingly, YXXΦ and LL motifs both function 

in sorting processes at the TGN, in endosomes/lysosomes and basolateral transport. In a single 

cargo molecule these sorting signals can be found in multiple copies or in combination, e.g. 

invariant chain Ii (Kongsvik et al., 2002), MPR46 (Tikkanen et al., 2000). Therefore, it remains a 

puzzling question how APs can distinguish between different YXXΦ and LL motifs for cargo 

selection. At the TGN for example AP-1 and AP-3 have to recognize a distinct subset of cargo 

molecules containing YXXΦ and LL motifs for CCV-mediated transport to endosomes/lysosomes, 

from other YXXΦ or LL containing proteins destined to reach the plasma membrane for 

subsequent endocytosis via AP-2. An example is the YTRF sorting signal of the transferrin receptor 

which interacts selectively with µ2 but not µ1 (Ohno et al., 1995). By surface plasmon resonance 

analysis LL motifs of limp-II and tyrosinase have been found to exhibit a higher affinity for 

purified adaptor protein complex AP-3, than AP-1 or AP-2 (Honing et al., 1998). Some µ chains 

seem to preferentially bind to selected subsets of YXXΦ signals. By a combinatorial library 

approach for the interaction of µ2 with peptides a YXRL consensus emerged (Boll et al., 1996). In 

a yeast-2-hybrid screen mutations in the SDYQRL of TGN38 were found to differentially affect the 

interaction with µ1 and µ2 subunits, suggesting an implication of amino acids surrounding the 

critical tyrosine in binding to different types of adaptors (Ohno et al., 1996). Moreover, the 

relative position of the signal within the cytoplasmic tail is a critical feature that distinguishes 

lysosomal targeting signals from internalisation signals (Bonifacino and Traub, 2003). 
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Interestingly, the consensus lysosomal targeting signal (GYXXΦ) of LAMPs (lysosome-associated 

membrane proteins) appears to depend on the presence of both glycine and tyrosine (Honing and 

Hunziker, 1995)and a narrowly restricted distance (7 residues) from the lipid bilayer (Rohrer et al., 

1996). In a yeast two-hybrid screen using a combinatorial library of XXXYXXΦ peptide sequences a 

considerable specificity overlap, but also small variations in the sequence requirements for binding 

to different µ1-3 and µ4 subunits were observed (Aguilar et al., 2001; Ohno et al., 1998). This 

might reflect the situation in vivo in that in many cases internalisation signals and basolateral 

targeting overlap but are not identical (Heilker et al., 1999). Moreover, mutations that impair 

lysosomal targeting may have minimal effects on internalisation (Rohrer et al., 1996). In good 

correlation the µ2 chain recognizes a larger array of tyrosine-based signals than µ1, µ3 (Ohno et 

al., 1998).  

For dileucine type motifs characterized to date a consensus sequence was proposed with a 

negatively charged residue (aspartate (D), glutamate (E) or phosphoserine) at position –4 to –5 

([DE]XXXL[LI]) from the first leucine (Bonifacino and Traub, 2003; Kirchhausen, 1999). An acidic 

residue in position –4 or -5 (E, D) was required for internalisation of the invariant chain (Pond et 

al., 1995) and both the DDQRDLI and NEQLPML signals of Ii bind to AP-1 and AP-2, but not 

detectably to AP-3 (Hofmann et al., 1999). In contrast, the DERAPLI signal of LimpII binds to 

AP-3 but not to AP-1 or AP-2 (Honing et al., 1998). By surface plasmon resonance it could be 

shown that a DE pair in position –4,-5 from the LI sorting motif in LimpII was required for its 

interaction with AP-3 (Honing et al., 1998). In good correlation, by immunofluorescence analysis 

the glutamic acid at position –4 was shown to be necessary for efficient intracellular sorting of 

LimpII to lysosomes, but dispensable for internalisation (Sandoval et al., 2000). Thus, similarly to 

YXXΦ signals, the fine specificity of interactions of [DE]XXXL[LI]-type signals may be dictated by 

the X residues, e.g. proline in –1 favors AP-3 binding (Rodionov et al., 2002). Moreover, 

recognition of several dileucine type motifs seems to be positively regulated by serine 

phosphorylation (e.g. CD4 (Shin et al., 1991), CD3γ (Dietrich et al., 1994). For the function of the 

phosphorylation-dependent LL motif in CD3γ a minimum spacing of 7 amino acids between the 

phosphorylated serine and the transmembrane domain was required, and for the constitutively 

active, phosphorylation-independent dileucine-type motif a minimal spacing of 6 residues relative 

to the lipid bilayer was required for function (Geisler et al., 1998). In summary, sequence and 

positional requirements seem to exist for recognition of YXXΦ− and LL-motifs by different APs. 

Recently, a distinct subset of dileucine-based sorting signals, composed of a DXXLL 

consensus sequence has been identified. The D residue is generally found in the context of a 
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number of acidic residues, therefore this type of motif has been termed acidic cluster dileucine 

motif (reviewed in (Bonifacino and Traub, 2003)). Acidic cluster dileucine type motifs are 

specifically recognized by another type of clathrin-adaptor, the GGA proteins (Golgi-associated, γ-

ear-containing, ARF binding proteins). GGAs perform similar functions like the APs, but consist 

of only a single polypeptide chain. Three GGAs are expressed in mammalian cells and localize to 

the TGN in an ARF-dependent manner. The crystal structures of VHS domains (identified in 

VPS27, Hrs, STAM) of GGA1 and GGA3 in complex with peptides containing the acidic cluster 

sorting sequences have been solved, revealing that both acidic cluster and dileucine form key 

contacts with the VHS domain, and thus determine the affinity for recognition by GGAs and 

allow cargo selection for transport ((Kirchhausen, 2002)and references therein). GGAs recognize 

acidic cluster dileucine motifs within MPRs (mannose-6-phosphate receptors) and sortilin and 

mediate TGN export (Nielsen et al., 2001; Puertollano et al., 2001; Zhu et al., 2001). It appears that 

in yeast GGAs and AP-1 are associated with distinct populations of CCVs budding from the TGN 

(Black and Pelham, 2001; Hirst et al., 2001), and GGAs may be responsible for traffic from the 

Golgi to late endosomes, but not to early endosomes (Black and Pelham, 2000). In mammalian 

cells GGAs have been described to assist in packaging MPRs in AP-1 containing vesicles at the 

TGN (Doray et al., 2002).  

 

1.8.3 Sorting within endosomes for return to the TGN or transport to lysosomes 

Lysosomal avoidance and other sorting signals that are implicated in retrieval of proteins 

from the plasma membrane and endosomes back to the TGN have been identified. TGN 

localization of furin and the cI-MPR seems to involve a cytosolic protein named PACS-1 

(phosphofurin acidic cluster sorting protein 1) (Wan et al., 1998). PACS-1 specifically recognizes 

acidic clusters on cargo proteins in a casein-kinase II phosphorylation-dependent manner and 

physically interacts with AP-1 and AP-3, but not with AP-2. Therefore, it has been suggested to 

selectively connect the cytosolic adaptor to acidic cluster sorting signals in cargo molecules and 

direct TGN localization of these proteins (Crump et al., 2001). The retrieval of MPR46 from late 

endosomes to the TGN requires a pair of aromatic amino acids (FW) (Schweizer et al., 1997) that 

is recognized by TIP47 (tail-interacting protein of 47 kD) and acts as a lysosomal avoidance signal 

(Diaz and Pfeffer, 1998). TIP47 also specifically binds to the cI-MPR despite the absence of an FW 

sequence, and the intracellular distribution of TIP47 is compatible with a role in retrieval of MPRs 

from late endosomes (Bonifacino and Traub, 2003). 

Within endosomes proteins destined for degradation in lysosomes are incorporated into 

the internal vesicles of a late endosomal compartment, which has the appearance of a 
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multivesiclular body (MVB). MVB formation is regulated by lipid partitioning and a protein 

machinery that controls the process of inward vesiculation (Piper and Luzio, 2001). Studies from 

yeast suggest that ubiquitin might function as a sorting tag for sequestration of cargo in interior 

vesicles. In animal cells, transferrin receptors with an in-frame ubiquitin at the N-terminus are not 

recycled to the surface as efficiently as the wild-type receptor (Raiborg et al., 2002) and cells 

expressing ubiquitination-defective EGFR display elevated EGFR recycling at the expense of 

receptor degradation (Waterman et al., 2002). Therefore, it has been suggested that ubiquitin 

participates in partitioning molecules away from recycling cargo. A high density of UIM 

(ubiquitin-interacting motif)-bearing endocytic proteins on endosomal structures, as e.g. Hrs 

(hepatocyte growth factor-regulated tyrosine kinase substrate), can concentrate ubiquitinated cargo 

at that site (Raiborg et al., 2002). Recently, Hrs, signal-transducing adaptor molecules (STAM) and 

eps15 have been proposed to form a clathrin-associated multivalent ubiquitin-binding complex on 

early endosomes that might sequester ubiquitinated membrane proteins ((Bache et al., 2003), Fig. 

6) and/or assemble the machinery for inward vesiculation. Hrs might be required to recruit 

ESCRT-1 (endsomal sorting complex required for transport), composed of Vps23, 28 and 37 to 

endosomal membranes, a complex which is involved in sorting of ubiquitinated cargo into MVBs 

in yeast (Katzmann et al., 2001; Raiborg et al., 2002). In the absence of the human ortholog of 

Vps23, the tumor suppressor gene TSG101, internalized ligand-activated EGFR escapes degradation 

and is recycled to the plasma membrane (Babst et al., 2000; Bishop et al., 2002). 

 

1.9 Putative transport motifs within Ad2 10.4-14.5K 

As 10.4-14.5K are both integral membrane proteins and function to remove important 

host recognition molecules from the cell surface by rerouting them into lysosomes, the question 

was addressed whether 10.4-14.5K exploit the cellular protein sorting machinery to bring about 

down-regulation of plasma membrane receptors. Close inspection of the Ad2 10.4-14.5K sequence 

revealed that both 10.4 and 14.5K contain sequence elements within their cytoplasmic tails that 

conform to the consensus of putative transport motifs: a conserved dileucine motif in 10.4K (L87, 

L88 in Ad2 10.4K) and 3 YXXΦ motifs in 14.5K (Fig. 5). To evaluate their functional significance 

in vivo the critical tyrosines Y74, Y76 and Y122, and leucines (LL87,88) of these motifs were replaced 

by alanines (Lindberg, unpublished). Mutations were introduced in plasmids encoding the entire 

E3 region of Ad2 and stable E3 transfectants of 293 cells were selected with G418. Transfectant 

clones expressing wt (E3-45) or mutant 10.4-14.5K proteins (designated 10.4LL/AA, 14.5Y74A, Y76A  

and Y122A, respectively). with an intracellular E3/19K content (Fig. 7A, white bars) and an HLA 

reduction (Fig. 7A, black bars) equivalent to E3-45 cells were selected for FACS analysis of 
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Fig. 7 Fas and EGFR surface expression on E3+ 293 cells is restored when either the 10.4LL motif or 
YXXΦΦΦΦ motifs in position Y74 or Y122 of Ad2 14.5K are mutated 
(A) Relative expression of intracellular E3/19K (in the presence of 0,1% saponin, mAb Tw1.3) and cell 
surface HLA (mAb W6/32), as detected by FACS analysis of 293 cells and its E3+derivatives. (B) Relative 
cell surface expression of 10.4-14.5 target proteins Fas (mAb B-G27) and EGFR (mAb 528), respectively. 
FITC-labeled goat anti-mouse IgG (SIGMA, Munich, Germany) was used as secondary antibody. After 
deduction of the background staining obtained with the secondary antibody alone, the mean value of 
fluorescence (MVF) for HLA, Fas and the EGFR of each cell clone was related to that of 293 cells, which 
was set to 100%. The 19K MVFs were related to E3-45 cells, a representative clone of 293 cells expressing 
wild-type E3 proteins. Bars denote the mean value calculated from at least five measurements with three 
clones from each transfection. Error bars represent the standard error SEM. pneo designates 293 cells 
transfected with pSV2-neor. 10.4ko (clone 293E3-10.4*-2), 14.5ko (clone 293E3-14.5*8) (Elsing and Burgert, 
1998), and 10.4-14.5ko cells are mutant E3 transfectants which do not express either 10.4, 14.5 or both.  

 

Fas and EGFR surface expression (Burgert and Kvist, 1985; Elsing andBurgert, 1998). Wild-type 

10.4-14.5K proteins expressed by E3-45 cells reduce Fas and EGFR surface expression by 70-80% 

relative to 293 cells. This modulating capacity is largely retained in cells expressing the 14.5Y76A 

mutant which exhibit about 10% higher Fas and EGFR levels as compared to E3-45 cells. By 

contrast, cell surface expression of Fas and the EGFR on 293 E3+ cells is almost completely 

restored when either the LL motif of 10.4K or starting residues Y74 and Y122 of 14.5K YXXΦ 

motifs are replaced by alanines. Thus, three mutations severely suppress the function of the 10.4-

14.5 complex, resulting in receptor expression levels similar to those seen for 10.4 and 14.5 knock-

out cells, which are 293 E3 transfectants that lack expression of either 10.4 (10.4ko), 14.5 (14.5ko) 

or both ((10.4-14.5)ko). Small differences exist regarding the effectiveness of the different 

mutations. For example, Fas levels were not fully reconstituted upon mutation of Y74 and 14.5 

alone (in 10.4ko) which may indicate some residual activity towards Fas and the EGFR (Elsing and 

Burgert, 1998). In sum, two tyrosines in 14.5K at position Y122 and Y74 and the dileucine 

sequence in 10.4K of Ad2 have been shown to be of crucial functional importance in vivo, whereas 
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Y76 does not seem to be critical for 10.4-14.5 function. But it remained unknown how these 

residues affect the mechanism of receptor down-modulation. As they are part of putative transport 

motifs it should be explored whether these critical residues modify intracellular trafficking of 10.4-

14.5K and constitute transport signals that function to connect 10.4-14.5K with the cellular 

protein sorting machinery.  

 

1.10 Aims of this study 

The above presented data (from J. Lindberg) demonstrated that residues within putative 

transport motifs in 10.4K and 14.5K are essential for 10.4-14.5K-mediated down-regulation of Fas 

and the EGFR in stable E3-transfectants. It remained unclear, however, whether they function 

indeed as transport motifs or have other essential roles. Therefore, the primary aim of this study 

was to explore whether these critical residues modify intracellular trafficking of 10.4-14.5K and 

constitute transport signals which can be recognized by adaptor protein complexes. A prerequisite 

for such an investigation is that transport of 10.4-14.5K can be directly monitored. This should be 

achieved by tagging the extracellular domain of 14.5K and quantitative measurement of cell 

surface expression. In addition, a suitable expression system should be developed to compare the 

intracellular distribution of wt and mutant proteins by immunofluorescence analysis. On the 

other hand, effects of the mutation on the stability of the proteins or 10.4-14.5K complex 

formation have to be excluded. Secondly, to complete the picture the role of additional potential 

transport motifs that have not been examined yet should also be studied by mutational analysis. 

Third, the functional defects seen in stable transfectants raise the question whether these 

deficiencies can also be observed in the viral context. Therefore it should be attempted to 

incorporate the mutations into the viral genome. This would also allow to extend the analysis to 

infected primary cells. It will be of particular interest to examine whether these mutations also 

disrupt down-regulation of other 10.4-14.5K target proteins, namely the TRAIL-receptors. Thereby, 

it should be possible to find out whether the mechanism underlying down-regulation of plasma 

membrane receptors by the 10.4-14.5K is the same for all target molecules. 

A further aim was to investigate the role of strictly conserved amino acids in 14.5K for 

functional activity. As Ad4 infection does not result in the down-regulation of Fas, EGFR and 

TRAIL-R2, but solely modulates TRAIL-R1, this differential activity can be exploited to explore 

the molecular basis of target specificity of 10.4-14.5K proteins. As a first attempt to find out 

whether or not the Ad4 10.4-14.5K proteins are responsible for the altered target specificity of 

Ad4, the Ad4 10.4-14.5K genes should be introduced into the Ad2 background which is known to 

allow full target modulation. 
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Materials and Methods 

2.1 Materials 

Chemicals 
Acetic Acid Roth, Karlsruhe, Germany  
Acrylamide/Bisacrylamide 29:1 (Protogel) National Diagnostics, Atlanta, USA 
Agar for plates Invitrogen, Karlsruhe, Germany 
Agarose (low melting point, SeaPlaque) Biozym, Hess. Oldendorf, Germany 
Agarose type I Sigma, Munich, Germany 
Ammonium persulfate (APS) Sigma, Munich, Germany 
Ampicillin (Ap) Roche Diagnostics, Mannheim, Germany 
Bacto yeast extract Invitrogen, Karlsruhe, Germany 
Bacto trypton Difco Lab., Detroit, MI, USA 
Bafilomycin A1 (Baf A1) Sigma, Munich, Germany; Baf A1 was dissolved in 

DMSO, 100 µM aliquots were stored at –20°C 
Blue Dextran (50 mg/ml)/EDTA (25 mM) Perkin Elmer, Vaterstetten, Germany 
Boric acid  Roth, Karlsruhe, Germany 
Bromophenol blue Serva, Heidelberg, Germany 
BSA (bovine serum albumin) Sigma, Munich, Germany 
Chloramphenicol (Cm) Sigma, Munich, Germany 
Coomassie brilliant blue R-250 Bio-Rad, Munich, Germany 
Digitonin high purity Calbiochem, Bad Soden, Germany 
Dithiothreitol (DTT) Roth, Karlsruhe, Germany 
dNTPs Roche Diagnostics, Mannheim, Germany 
Dulbecco’s modified Eagle’s medium (DMEM) Invitrogen, Karlsruhe, Germany 
Ethanol (EtOH) Riedel-de Haën, Seelze, Germany 
Ethidium bromide Sigma, Munich, Germany 
Ethylendiamintetraacetate disodium salt(EDTA) Roth, Karlsruhe, Germany 
Fetal calf serum (FCS) Roche Diagnostics, Mannheim, Germany 
Formamide Sigma, Munich, Germany 
Ficoll (type 400) Amersham Pharmacia, Freiburg, Germany 
Geneticin disulfate salt (G418) Invitrogen, Karlsruhe, Germany 
Glycerol Roth, Karlsruhe, Germany 
Glycine Serva, Heidelberg, Germany 
HEPES Invitrogen, Karlsruhe, Germany 
Histogel mounting medium Linaris, Wertheim-Bettingen, Germany 
Hygromycin B Calbiochem San Diego, CA, USA 
Iodacetamide Sigma, Munich, Germany 
Isopropanol Riedel-de Haën, Seelze, Germany 
Kanamycin(Km) Serva, Heidelberg, Germany 
L-arabinose Sigma, Munich, Germany 
Leupeptin Sigma, Munich, Germany 
L-glutamine Invitrogen, Karlsruhe, Germany 
Paraformaldehyde J.T.Baker B.V., Deventer, Holland 
Penicillin-Streptomycin Invitrogen, Karlsruhe, Germany 
Phenol/chloroform Roth, Karlsruhe, Germany  
Phenylmethylsulfonfluoride (PMSF) Roche Diagnostics, Mannheim, Germany  
Phosphate buffered saline (liquid) Dulbecco’s Invitrogen, Karlsruhe, Germany  
Phosphate buffered saline (powder) Biochrom KG, Berlin, Germany  
Ponceau S Sigma, Munich, Germany 
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Protein A Sepharose CL-4B Amersham-Pharmacia, Freiburg, Germany 
RPMI1640 w/o Cys/Met Invitrogen, Karlsruhe, Germany  
Saponin  Calbiochem, Bad Soden, Germany 
Scintillator cocktail (Aquasafe 300 plus) Zinsser, Frankfurt, Germany 
[35S]-cysteine/methionine (Promix) Amersham-Pharmacia, Freiburg, Germany 
SeaPlaque agarose FMC bioproducts, Rockland, Maine, USA 
Sodium acetate Riedel-de Haën, Seelze, Germany 
Sodium azide Serva, Heidelberg, Germany 
Sodium chloride Riedel-de Haën, Seelze, Germany 
Sodium hydroxid J.T.Baker B.V., Deventer, Holland 
Sucrose Sigma, Munich, Germany 
Tetramethylethylendiamin (TEMED)  Amersham-Pharmacia, Freiburg, Germany 
Triton X-100 Serva, Heidelberg, Germany 
Trypsin inhibitor Sigma, Munich, Germany 
Urea Roth, Karlsruhe, Germany 
Xylene cyanole FF Fluka, Seelze, Germany 
All other chemicals were purchased from Merck, Darmstadt, Germany 
 
Additional materials 
Autoradiography films BioMaxMR Eastman-Kodak, Rochester, USA 
Cell culture plastic ware Greiner, Nürtingen, Germany 
 Nunc, Wiesbaden, Germany 
 Falcon/Becton Dickinson, Heidelberg, Germany 
Electroporation cuvettes (2mm, 4mm) BioRad, Munich, Germany 
Glass plates (round, 12 mm ∅ )  Roth, Karlsruhe, Germany 
Glass slides Marienfeld, Bad Mergentheim, Germany Hybond 
ECL Nitrocellulose membranes   Amersham-Pharmacia, Freiburg,Germany 
Sterile filter units Millipore, Bradford, MA, USA 
 
Cell lines 
A549 human lung epithelial carcinoma (American Type Culture Collection 
 (ATCC): CCL-185) 
293 human embryonic kidney cell line (ATCC: CRL-1573), established by 
 transformation with Ad5 DNA, expressing Ad5 E1A and E1B genes  
 (Graham et al., 1977).  
SeBu primary foreskin fibroblasts (Elsing and Burgert, 1998) 
SV80Fas human fibroblast cell line transformed with SV40 large T antigen and 

overexpressing the human Fas receptor (Rensing-Ehl et al., 1995) 
293 E3/F14.5+ stable cell lines expressing wt (F-19, F-8, F-16), kindly provided by A. 

Elsing, University of Munich) or mutant 10.4K and FLAG-14.5K 
proteins (this study), established by transfection of wt or mutant 
pBS∆X-E3/F14.5 and pSV2-neor, as described in Materials and 
Methods. Clone LL-11, a representative clone of pBS∆X-E3/10.4LL-
F14.5 transfectants, was kindly provided by M. Löfqvist, University of 
Munich. 

293 E3+ stable cell lines expressing wt (E3-45), kindly provided by A. Elsing, 
University of Munich) or mutant 10.4LLAA and 14.5K Y74A, Y76A, 
Y122A proteins (kindly provided by Johan Lindberg, University of 
Munich), established by transfection of wt or mutant pBS∆X-E3 and 
pSV2-neor. 
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10.4ko 293 E3+ mutant cell line lacking expression of 10.4K, (Elsing and 
Burgert, 1998) 

14.5ko 293 E3+ mutant cell line lacking expression of 14.5K, (Elsing and 
Burgert, 1998) 

10.4-14.5ko 293 E3+ mutant cell line, lacking expression of 10.4K and 14.5K, 
kindly provided by J. Lindberg, University of Munich 

pneo 293 cells transfected with pSV2-neor 
A549 (10.4 and/or F14.5)+this study 
 
Viruses 
Ad2 ATCC: VR-846 
Ad4 strain RI-67, ATCC: VR4 
Ad2/F14.5  kindly provided by Zsolt Ruzsics, Max-von-Pettenkofer Institute,  
 Gene Center, Munich, Germany 
Ad2/10.4-14.5ko  kindly provided by Zsolt Ruzsics and Susanne Obermaier,  
 Max-von-Pettenkofer Institute, Gene Center, Munich, Germany  
Ad2/10.4ko-F14.5 this study 
Ad2/14.5ko this study 
Ad2/F14.5Y122  kindly provided by Zsolt Ruzsics, Max-von-Pettenkofer Institute, Gene 

Center, Munich, Germany 
Ad2/F14.5Y74 this study 
Ad2/10.4LL-F14.5 this study 
Ad2/Ad4-10.4 #12-1 this study 
Ad2/Ad4-14.5 #7-1 this study 
Ad2/Ad4-14.5 #3-8 this study 
Ad2/Ad4-10.4-14.5 #7-4 this study 
Ad2/Ad4-10.4-14.5 #16-1 this study 
 
Bacterial strains 
DH5α Invitrogen, Karlsruhe, Germany 
DH10B Invitrogen, Karlsruhe, Germany 
RP-12 DH10B containing pUC19RP12, kindly provided by Zsolt Ruzsics, 

Max-von-Pettenkofer Institute, Gene Center, Munich, Germany 
B53αβγ DH10B containing pBADαβγ and pAd2-BAC, kindly provided by 

Zsolt Ruzsics, Max-von-Pettenkofer Institute, Gene Center, Munich, 
Germany 

 
Plasmids 
pA4E3 provided by Zsolt Ruzsics, Max-von-Pettenkofer Institute, Gene Center, 

Munich, Germany. The E3 region containing HindIII, BclI-DNA 
fragment (map units 71.3-86.9) of Ad4 (strain RI-67, ATCC VR4) was 
inserted into LITMUS 28 cloning vector (New England Biolabs, 
Frankfurt, Germany). The Ad4 E3 sequence was determined and 
submitted to GenBank (AF361223).  

pBADαβγ (Zhang et al., 1998b) 
pBluescriptII (KS+) Stratagene, Amsterdam, The Netherlands 
pBS∆X-E3 (Elsing and Burgert, 1998); pBS∆X-E3 was generated using plasmid pBS-

E3, a derivative of pBluescript II KS (Stratagene, Amsterdam, The 
Netherlands) containing the EcoRVc fragment of Ad2, that 
encompasses the entire E3 region of Ad2 (Korner et al., 1992). pBS-E3 
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was cleaved with KpnI and ClaI to eliminate the XhoI site 5’ of the 
EcoRV cloning site, yielding pBS∆X-E3 after Klenow treatment and 
blunt-end religation (Elsing and Burgert, 1998). 

pBS∆X-E310.4* XhoI cleavage of pBS∆X-E3 within the 10.4K coding sequence, blunting 
and religation generated a 4 bp frameshift 13 bp downstream of the 
E3/10.4K start codon (Elsing and Burgert, 1998). 

pBS∆X-E3/F14.5 pBS∆X-E3 was utilized for introducing a FLAG-tag downstream of the 
14.5K signal sequence using primers FLAG-14.5K 
gactataaagacgatgatgataaatcccaaacctcagcg and FLAG-14.5K rev 
atcgtctttatagtcgcaaagcacaggtaggg (A. Elsing, University of Munich). 

pBS∆X-E3/10.4LL-F14.5 provided by Madelaine Löfqvist, University of Munich 
pBS∆X-E3/F14.5Y74 provided by Madelaine Löfqvist, University of Munich 
pBS∆X-E3/F14.5 C32 this study 
pBS∆X-E3/F14.5 C43  this study 
pBS∆X-E3/F14.5 Y44  this study 
pBS∆X-E3/F14.5 S121  this study 
pBS∆X-E3/F14.5 F123  this study 
GPS1.1 New England Biolabs, Frankfurt, Germany. 
pMG InvivoGen, San Diego, USA 
pMG-10.4 this study (clone #1) 
pMG-10.4+F14.5 this study (clone #1) 
pSG5  Stratagene, Amsterdam, The Netherlands  
pSG5/10.4 this study (clone #2) 
pSG5/10.4LL this study (clone #4) 
pSG5/F14.5 this study (clone #2) 
pSG5/F14.5Y122 this study (clone #1) 
pSG5/10.4-F14.5 this study (clone #8) 
pSG5/10.4LL-F14.5 this study (clone #5) 
pSG5/10.4-F14.5Y122 this study (clone #6) 
pMG-10.4 this study (clone #1) 
pMG-10.4 +F14.5 this study (clone #1) 
pST76A (Posfai et al., 1997) 
pST76Tet (Posfai et al., 1997) 
pSV2-neor (Korner et al., 1992) 
pUC19RP12 (Posfai et al., 1999) 
 
Bacterial artificial chromosomes (BAC) 

pAd2 kindly provided by Zsolt Ruzsics, Max-von-Pettenkofer Institute, Gene 
Center, Munich, Germany. F-factor-based BAC vector (Shizuya et al., 
1992), containing the complete Ad2 genomic sequence obtained by 
redαβγ-mediated homologous recombination of linear genomic Ad2 
DNA with the left and right inverted terminal repeats of Ad2 encoded 
by plasmid pKBS2 (Ruzsics et al., manuscript in preparation).  

pAd2-H7 derived from pAd2 by insertion of a Kmr carrying mTn7 transposon 
(from plasmid GPS1.1, New England Biolabs, Frankfurt, Germany),  in 
the E3-fiber intergenic region, kindly provided by Zsolt Ruzsics, Max-
von-Pettenkofer Institute, Gene Center, Munich, Germany. The mTn 
sequence was amplified using two primers specific for the left and right 
transposon ends, respectively, with an appendix of 40 base-pairs with 
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homology to the Ad2 sequence 5’ and 3’ of the site of mTn insertion. 
The mTn insertion site was located 37 nucleotides downstream from 
the 14.7K stop codon within the GTCAGC sequence. The TCA triplet 
was changed to CTA and incorporated in the upstream primer, whereas 
the downstream primer contained TGA at its 3’ end, thus the Tns 
excision reaction yielded cohesive three nucleotide overhangs. 
Recircularization of the BAC vector after the Tn excision reaction 
generated a new NheI recognition site (GCTAGC). 

pAd2/F14.5 pAd2-BAC with a FLAG-octapeptide encoding insertion in the 14.5K 
gene obtained by a gene replacement method. The E3 region encoded 
by plasmid pBS∆X-E3/F14.5 was modified by insertion of the Kmr gene 
sequence into the unique SwaI site within the 19K CDS. The Kmr-
tagged E3 sequence was cut out of this plasmid with EcoRV and used 
for ET recombination with pAd2. The Cm-resistant BAC clone carrying 
the FLAG-14.5K sequence was freed form the Kmr gene by SwaI 
cleavage (no additional SwaI sites are present in the Ad2 genome or 
BAC sequence) and religation, reconstituting the wt E3/19K sequence. 
pAd2/F14.5 was kindly provided by Zsolt Ruzsics, Max-von-Pettenkofer 
Institute, Gene Center, Munich, Germany.  

pAd2-H7/10.4LL-F14.5 this study 
pAd2-H7/F14.5Y74 this study 
pAd2-H7/10.4ko-F14.5 this study (clone #37, #41) 
pAd2-H7/14.5ko this study 
pAd2/10.4LL-F14.5 this study 
pAd2/F14.5Y74 this study 
pAd2/F14.5Y122 kindly provided by Zsolt Ruzsics, Max-von-Pettenkofer Institute, Gene 

Center, Munich, Germany. 
pAd2/10.4ko-F14.5 this study (clone #43-1, #44-1) 
pAd2/14.5ko this study 
pAd2/(10.4-14.5)ko kindly provided by Zsolt Ruzsics and Susanne Obermaier, Max-von-

Pettenkofer Institute, Gene Center, Munich, Germany 
pAd2/(10.4Tn) this study (clone #1B) 
pAd2/(14.5Tn) this study (clone #1A) 
pAd2/((10.4-14.5)Tn) this study (clone #2A) 
pAd2/(10.4Tn)(Ad4.14.5) this study (clone #2) 
pAd2/(Ad4-10.4)TAAGC14.5 
 this study (clone #12-1) 
pAd2/10.4TAAGC(Ad4-14.5) 
 this study (clone #3-8) 
pAd2/10.4GC(Ad4-14.5)  this study (clone #7-1) 
pAd2/(Ad4-10.4)TAAGC(Ad4-14.5) 
 this study (clone #7-4) 
pAd2/(Ad4-10.4)TT(Ad4-14.5) 
 this study (clone #16-1) 
 
Oligonucleotides  

The oligonucleotides were obtained from metabion (Martinsried, Germany) except for those 

marked with a * which were purchased from Gibco, Karlsruhe, Germany. Underlining denotes 

altered nucleotides. 
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a) Oligonucleotides used for site-directed mutagenesis 

Oligonucleotides for generation of alanine replacement mutants are named by the amino acid to 
be replaced and its position within Ad2 sequences. 
template name orientation sequence (5’→→→→3’) 
pBS∆X-E3 
pBS∆X-E3F14.5 

10.4s 2395 * sense attggacggtctgaaacc 

pBS∆X-E3 
pBS∆X-E3F14.5 

14.7as 3468rev * antisense gttgaatggaataagatctctaatacc 

pBS∆X-E3 14.5*(Elsing and Burgert, 
1998) 

sense ctttaattaacgaaacggagtgtc 

pBS∆X-E3 14.5*(Elsing and Burgert, 
1998) 

antisense ccgtttcgttaattaaagaattctg 

pBS∆X-E3 14.5Y74As sense gcgatcgctccataccttgacattgg 
pBS∆X-E3 14.5Y74Aas antisense ggagcgatcgctagggcaaaaatgg 
pBS∆X-E3 14.5Y76As sense tatccagcgcttgacattggctgg 
pBS∆X-E3 14.5Y76Aas antisense gtcaagcgctggatattatggctagg 
pBS∆X-E3 
pBS∆X-E3F14.5 

14.5Y122As sense ctgagattagcgcctttaatttgacagg 

pBS∆X-E3 
pBS∆X-E3F14.5 

14.5Y122Aas antisense gtcaaattaaaggcgctaatctcagtg 

pBS∆X-E3F14.5 10.4LLAAs sense gctgatgctgccagaattctttaattatg 
pBS∆X-E3F14.5 10.4LLAAas antisense gaattctggcagcatcagctatagtcc 
pBS∆X-E3F14.5 10.4L1As sense agctgatgcactcagaattcttta 
pBS∆X-E3F14.5 10.4L1Aas antisense ttctgagtgcatcagctatagtcc 
pBS∆X-E3F14.5 10.4L2As sense tgatcttgccagaattctttaatt 
pBS∆X-E3F14.5 10.4L2Aas antisense gaattctggcaagatcagctatag 
pBS∆X-E3F14.5 10.4ILAAs sense ctcagagctgcctaattatgaaacgg 
pBS∆X-E3F14.5 10.4ILAAas antisense cataattaggcagctctgagaagatcag 
pBS∆X-E3F14.5 14.5S114As sense ccccctgctcccaccccca 
pBS∆X-E3F14.5 14.5S114Aas antisense tgggagcaggggggcgagg 
pBS∆X-E3F14.5 14.5R111A/S114Aas antisense tgggagcagggggggcagg 
pBS∆X-E3F14.5 14.5R111As sense tcagcctgcccccccttctccc 

pBS∆X-E3F14.5 14.5R111Aas antisense agggggggcaggctgattgattg 
pBS∆X-E3F14.5 14.5Y44As sense ccagctgcgcaaacaaacagagc 
pBS∆X-E3F14.5 14.5Y44Aas antisense gtttgtttgcgcagctgggaatg 
pBS∆X-E3F14.5 14.5C32As sense catatttccgccagattcactca 
pBS∆X-E3F14.5 14.5C32Aas antisense gaatctggcggaaatatgtct 
pBS∆X-E3F14.5 14.5C43As sense ttcccagcgcttacaacaaacag 
pBS∆X-E3F14.5 14.5C43Aas antisense tgttgtaagcgctgggaatgttc 
pBS∆X-E3F14.5 14.5W81As sense cattggcgccaatgccatagatg 
pBS∆X-E3F14.5 14.5W81Aas antisense atggcattggcgccaatgtcaag 
pBS∆X-E3F14.5 14.5S121As sense ctgagattgcctactttaatttg 
pBS∆X-E3F14.5 14.5S121Aas antisense taaagtacggaatctcagtggg 
 

b) Oligonucleotides used for cloning 10.4K and 14.5K coding sequences into 
expression vector pSG5 and pMG 

name (specifiying restriction sites) orientation sequence (5’→→→→3’) 
10.4EcoRI-BamHI sense cggaattcggatccgccaccatgattcctcgagttc 
10.4rBglII-XbaI disrupting EcoRI site in 10.4  antisense cgaagatctagattaaagaatcctgagaagatcagc 
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10.4LLrBglII-XbaI disrupting 10.4 EcoRI site  antisense cgaagatctagattaaagaatcctggcagcatcagc 
14.5EcoRI-ClaI  sense cggaattcatcgatgccaccatgaaacggagtgtc 
14.5rBglII-NheI antisense ccgagatctgctagctcagtcatctccacctgt 
10.4-14.5fEcoRI-BamHI  sense cggaattcggatcctgagacatgattcctcgagttc 
 

c) Oligonucleotides for synthesis of mTn containing 10.4K and F14.5K mutant 
alleles 

template primer name sequence (5’→→→→3’) 
pBS∆XE3-10.4LL-F14.5 
pBS∆XE3-10.4-F14.5Y74 

2395  attggacggtctgaaacc 

pAd2-BAC/H7 3468 for ggtattagagatcttattccattcaac 
pBS∆XE3/10.4LL-F14.5; pBS∆XE3/10.4-
F14.5Y74; pAd2/10.4ko-14.5ko 

3468 rev gttgaatggaataagatctctaatacc 

pAd2-BAC/H7 Ad2/E3-rev aacatgaggaatttgacatcc 
pAd2/F14.5; pAd2/10.4ko-14.5ko 2631for ttcattgactgggtttgtg 
pAd2-BAC/H7 2913for ccatcatctctgtcatgg 
pAd2/F14.5 2913rev ccatgacagagatgatgg 

 
d) Oligonucleotides for synthesis of mTn fragments for exposon cloning 

template primer name sequence (5’→→→→3’) 
pGPS1.1 H5 10.4L aaa cca tgt tct ctt ctt tta cag tat gat taa atg aga ctg tgg 

gcg gac aaa ata gtt gg 
pGPS1.1 H3 10.4R cgc aaa aaa tca gca aaa caa aaa tga cac tcc gtt tca ttg tgg 

gcg gac aat aaa gtc tta aac tga a 
pGPS1.1 H3 10.4R Ad4 cta gca ata gta gaa gca tga gaa gta gca aag ccc gca ttg tgg 

gcg gac aat aaa gtc tta aac tga a 
pGPS1.1 H5 14.5L cag aga cag gac tat agc tga tct tct cag aat tct tta atg tgg 

gcg gac aaa ata gtt gg 
pGPS1.1 H3 14.5R ttc ggt gtt aat tcc atc caa ttc tag atc tag aga ttc atg tgg 

gcg gac aat aaa gtc tta aac tga a 
Primers named H5 and H3 were used for PCR amplification of mTn containing DNA fragments with 
homology to the 5’ flanking region of the site of mTn insertion (H5) in the upstream primer or homology 
to the 3’ flanking region of the site of mTn insertion (H3) in the downstream primer. Sequences 
complementary to mTn ends are highlighted in boldface. Oligonucleotides longer than 50 nucleotides were 
HPLC-purified. 
 

e) Oligonucleotides for amplification of Ad4 10.4K and Ad4 14.5K coding sequences 
template primer name sequence (5’→→→→3’) 
pA4E3 Ad4 10.4 NS gtg tgc tct tca [gac] atg att cct aga cag ttc tt 
pA4E3 Ad4 10.4 CS gtg tgc tct tca [cat] gct tat cag atg agc ct 
pA4E3 Ad4 10.4 CS TTATG gtg tgc tct tca [cat] aat cag atg agc ctg agc agc t 
pA4E3 Ad4 14.5 NS gtg tgc tct tca [taa] gca tgc ggg ctt tgc ta 
pA4E3 Ad4 14.5 NS TAAGC gtg tgc tct tca [taa] taa gca tgc ggg ctt tg 
pA4E3 Ad4 14.5 CS gtg tgc tct tca [tca] gtc atc tcc acc ggt ta 

The SapI recognition site is highlighted in boldface. Sequences of trinucleotide single-stranded 5’ overhangs 
resulting from SapI cleavage are written in brackets. 
 

f) Oligonucleotides for sequencing or PCR test 
primer name sequence (5’→→→→3’) 
2395 attggacggtctgaaacc 
3468rev gttgaatggaataagatctctaatacc 
pSG5rev gacgtaagatcaacaccaaacagg 
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t7 gtaatacgactcactcactatagggc 
2913for ccatcatctctgtcatgg 
2913rev ccatgacagagatgatgg 
14.5sigfor ggagtgtcatttttgttttgctg 
14.5sigrev cagcaaaacaaaaatgacactcc 
FLAGrev tttatcatcatcgtctttatagtc 
pTnL gaatatggctcataacaccc 
pTnR ctctcatcaaccgtggctcc 
2631for ttcattgactgggtttgtg 
4913rev (Ad414.5 sequence) gattcccatgataattatcc 
3877rev (Ad414.5 sequence) cgctgttcggtgttaattcc 
4635for (Ad4 10.4 sequence) ctgggtctttgtgcgcatcg 

 
Molecular weight markers 
DNA 1kb ladder  Molecular Weight Marker (0.07-12.2 kbp) Roche 

Diagnostics, Mannheim, Germany 
Protein marker Dalton VII-L (14-70 kD) Sigma, Munich, Germany 
[14C] methylated protein marker CFA645 Amersham-Pharmacia, Freiburg, Germany 
(5,740-30 kD) 
 
Kits 
BigDye RR Terminator Amplitaq FS Kit Perkin Elmer, Applied Biosystems Division, Foster 

City, USA 
BCA Protein Assay Pierce, Rockford, USA 
ECL western blotting detection system Amersham-Pharmacia, Freiburg, Germany 
GPS1.1 Genome Priming system, New England Biolabs,  
 Frankfurt, Germany 
Nucleobond Kit  (PC100, PC500)  Macherey-Nagel, Düren, Germany 
Pharmacia GFX Micro Plasmid Kit   Amersham-Pharmacia, Freiburg, Germany 
QIAex II Agarose Gel Extraction Kit Qiagen, Hilden, Germany 
QIAquick PCR Purification Kit Qiagen, Hilden, Germany 

 
Antibodies 

a) Primary antibodies 

anti-Ad2 E3/10.4K  Bur3 (Elsing and Burgert, 1998), polyclonal rabbit antiserum raised 
against peptide CYRDRTIADLLRIL comprising the C-terminal 13 
amino acids of E3/10.4K with a cysteine added to the N-terminus to 
allow Cys-mediated coupling to ovalbumin. Unpurified serum obtained 
after the 6th boost was used in IP/WB. 

anti-Ad2 E3/10.4K cytoplasmic tail (C-tail), R59 (this study), polyclonal rabbit antiserum 
generated upon immunization with peptide 
FIDWVCVRIAYLRHHPQYRDRTIADLLRIL. Unpurified R59 was used 
in IP/WB after the 8th boost. 

anti-Ad2 E3/10.4LLAA R71 (this study), polyclonal rabbit serum was obtained by 
immunization of a Newzealand White rabbit with peptide 
CYRDRTIADAARIL coupled to keyhole limpet hemocyanin (KLH). 
R71 was used in IP/WB after the 6th boost. 

anti-Ad2 E3/14.5K  Bur4 (Elsing and Burgert, 1998), polyclonal rabbit antiserum raised 
against peptide CEISYFNLTGGDD consisting of the C-terminal 12 
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amino acids of E3/14.5K with an additional cysteine added to the N-
terminus for directed coupling to ovalbumin. Unpurified serum 
obtained after the 4th boost was used in IP/WB. Purifed rabbit anti-
14.5 serum (designated Rα14.5, a kind gift from H.-G. Burgert), was 
prepared from Bur4 serum by protA affinity chromatography and 
employed for immunofluorescence or FACS analysis. 

anti-Ad2 E3/19K  C-tail (Sester and Burgert, 1994), polyclonal rabbit antiserum raised 
against KLH-coupled synthetic peptide CKYKSRRSFIDEKKMP, used 
unpurified after the third boost (serum 83904). 

anti-Ad2 E3/19K  mouse mAb Tw1.3, (Cox et al., 1991) 
anti-Ad4 E3/19K rabbit serum 163 (a kind gift from H.-G. Burgert) used unpurified after 

the 3rd boost. 
anti-β1→4-Galactosyltransferase  mouse mAb, GTL2, (Kawano et al., 1994) 
anti-Calnexin mAb AF-8, a kind gift from H.-G. Burgert 
anti-EGFR mAb 528, ATCC HB-8509. 
anti-GM130  mouse mAb, clone 35, Transduction Laboratories, Lexington, USA. 
anti-Lamp-2  mouse mAb 2D5, (Diettrich et al., 1996) 
anti-lysobisphosphatidic acid mouse mAb 6C4 (Kobayashi et al., 1998) 
anti-TGN46  sheep polyclonal antiserum, kindly provided by S. Ponnambalam, 

University of Dundee, Scotland.  
anti-EEA1  mouse mAb, clone 14, Transduction Laboratories, Lexington, USA 
anti-HLA-A, -B, and -C  mouse mAb, W6/32, ATCC HB95 
anti-FLAG octapeptide mouse mAb, M1, Sigma, Munich, Germany 
anti-Fas mouse mAb B-G27, Chemicon, Hofheim, Germany; 
 mouse mAb B-D29 Chemicon, Hofheim, Germany;  
 mouse mAb DX3, Dianova, Hamburg, Germany;  
 mouse mAb ANC95.1/5E2, Ancell, Bayport USA.  
anti-Fas Rabbit serum anti-Fas was a kind gift of H. Engelmann, University of 

Munich. 
anti-TRAIL-R1, R2 mAbs clone 1H5 (anti-DR4), clone 3F11 (anti-DR5) or polyclonal 

rabbit antisera recognizing the extracellular domain of DR4 or DR5, 
respectively, were a kind gift from H.-G. Burgert. 

b) Secondary antibodies 

Fluorescein-isothiocyanate (FITC)- conjugated: 
Goat anti-Mouse IgG (Cat.No. F20-12) Sigma, Munich, Germany 
Goat anti-Rabbit IgG (Cat.No. F05-11) Sigma, Munich, Germany 
Goat anti-Rabbit IgG (Cat.No. 111-095-144) Dianova, Hamburg, Germany 
Donkey anti-Rabbit IgG (Cat.No. 711-095-152) Dianova, Hamburg, Germany 

Rhodamine-, Cy3 or Texas-Red-conjugated: 
Goat anti-Mouse IgG (Cat.No. 115-165-068) Dianova, Hamburg, Germany 
Goat anti-Rabbit IgG (Cat.No. 111-295-045) Dianova, Hamburg, Germany 
Donkey anti-Sheep IgG (Cat.No. 713-295-147)  Dianova, Hamburg, Germany 
Donkey anti-Mouse IgG (Cat.No. 715-295-151) Dianova, Hamburg, Germany 

Peroxidase-conjugated: 
Goat anti-Rabbit IgG (Cat.No. 111-035-144) Dianova, Hamburg, Germany 
 
Enzymes 
Expand High Fidelity PCR System Polymerase Roche Diagnostics, Mannheim, Germany 
T4 DNA Ligase New England Biolabs, Frankfurt, Germany  



Materials and Methods 

 46

Phosphatase, alkaline, shrimp (SAP) Roche Diagnostics, Mannheim, Germany 
Restriction Endonucleases  New England Biolabs, Frankfurt, Germany 
 For specific enzymes see chapter 2.2. Methods.  
Transposase ABC* New England Biolabs, Frankfurt, Germany 
AmpliTaq DNA Polymerase Roche Diagnostics, Mannheim, Germany  
 
2.2 Methods 

2.2.1 Bacterial cultures 

Propagation and cryoconservation of bacteria 

E. coli strains were grown in LB medium or on LB agar plates with addition of antibiotics 

for the appropriate selection of plasmid containing bacteria. Incubation was performed at 37°C 

and liquid cultures were grown with constant shaking at 180 rpm, with the exception of E. coli 

strains containing low copy plasmids pST76A or pST76Tet with a temperature-sensitive origin of 

replication which were kept at 30°C. For cryoconservation 1,5ml of a bacterial culture in the 

exponential growth phase obtained after inoculation from single colonies were mixed with 300 µl 

of glycerol, frozen in liquid nitrogen and stored at –80°C. 

LB medium (1 l, pH 7, sterile): 
10 g Bacto tryptone 
5 g Bacto yeast extract  
5 g NaCl  
4ml 1M NaOH 
 
LB agar: 
LB medium with 1,5 % agar 

Selection medium:  
LB medium containing either 100 µg/ml 
ampicillin in general, but 50 µg/ml ampicillin 
for selection of pBADαβγ or pUCRP12  
25 µg/ml  chloramphenicol 20 µg/ml kanamycin 
or two types of antibiotics in combination. 
Bacteria containing pMG-derived constructs were 
selected with 50 µg/ml hygromycin B. 
 

 

Transformation of chemically competent DH5αααα: Heat-shock method 

100 µl of chemically competent DH5α were added to 20 µl of the ligation reaction, mixed 

and incubated for 30 min. on ice. After the heat-shock for 2 min at 42°C, the mix was briefly put 

back on ice. 900 µl of prewarmed LB medium were added and bacteria were grown for 1 h at 37°C 

with constant shaking at 1200 rpm in table top heating block. Then 100 µl were taken and plated 

on LB agar plates with antibiotic(s). The residual bacteria were pelleted (4000 g, 2 min), 

resuspended in 100 µl LB and plated the same way. The plates were incubated o/n at 37°C.  

 
Preparation of electrocompetent DH10B strains 

a) DH10B and arabinose-induced DH10B strains containing pAd2-BACmid and/or 

pBADααααββββγγγγ.  

A single bacterial clone of DH10B containing pBADαβγ and pAd2-BACmid (encoding the 

Ad2 wt genomic sequence, Ad2/10.4-14.5ko or Ad2/(Ad414.5)#7-1) was grown o/n in 5 ml LB 
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containing 50 µg/ml Ap, 25 µg/ml Cm in a 37°C incubator with shaking at 180 rpm. 2 ml of the 

o/n culture were used to inoculate 200 ml LB medium (with 50 µg/ml Ap, 25 µg/ml Cm) and 

grown at 37°C. At OD600 of 0.15-0.18 cells 2 ml of a freshly prepared sterile-filtered arabinose 

solution (10 % w/v) were added for induction of the BAD promoter on pBADαβγ (final conc 0.1 

% w/v arabinose) and cells were grown for another 30 min at 37°C. DH10B cells were grown in 

LB to an OD600 of 0.25-0.3 without the addition of antibiotics and without arabinose induction. 

For preparation of electrocompetent cells all materials and solutions used in the following steps 

were precooled to below 0°C. The bacterial culture was put on ice for 15 min and then centrifuged  

for 10 min. at 7000 rpm in Sorvall SLA500 rotor (precooled to –4°C). The supernatant was 

discarded and the bacterial cells were carefully resuspended on ice in 200 ml 10 % glycerol 

followed by centrifugation for 10 min. at 7000 rpm in Sorvall SLA500 rotor (precooled to –4 °C). 

Resupension in 10 % glycerol and centrifugation were repeated another two times. Finally, the 

pellet was dried by inverting the tube and taking up residual liquid with a tissue without touching 

the pellet. Cells were resuspended in a final volume of 900 µl 10 % glycerol and 65 µl aliquots 

were frozen on dry-ice in pre-cooled 1.5 ml eppendorf tubes and transferred to –80°C for storage. 

b) DH10B expressing I-Sce-I for counterselection of mTn containing BACs 

A single clone of DH10B transformed with pUCRP12 DNA was grown o/n in 5 ml LB 

medium containing 50 µg/ml Ap at 37°C with constant shaking at 180 rpm, and 2 ml of the o/n 

culture were used to inoculate 200 ml of LB (50 µg/ml Ap). The bacterial culture was grown until 

OD600 reached 0.2-0.35 and subsequently transferred on ice. In the following the protocol for 

preparation of electrocompetent DH10B was followed as described in a). 

Transformation of electrocompetent DH10B strains 

a) Electroporation of plasmid DNA 

About 100 ng of plasmid DNA or 3 µl of a ligation reaction were added to 25 µl of ice-

cold electrocompetent DH10B cells, mixed and transferred to a pre-chilled electroporation cuvette 

(gap 0.2 cm) followed by an electric pulse at 2.5 kV, 200 Ω, 25 µF in BioRad Gene Pulser. 

Immediately afterwards cells were resuspended in 980 µl LB and incubated for 1 hour at 37°C 

with constant shaking (heating block, 1200rpm). 1/10 of the cells was plated on a LB agar plate 

containing the appropriate antibiotic. 

b) Cotransformation of target BAC and pBADααααββββγγγγ into electrocompetent DH10B 

65 µl of electrocompetent DH10B were added to 10 ng of target BAC (pAd2-BACmid 

encoding the Ad2 wt genomic sequence, Ad2/10.4-14.5ko or Ad2/(Ad414.5)#7-1) and 10 ng of 

pBADαβγ and transferred into a 0.2 cm prechilled cuvette for electroporation at 2.5 kV, 200 Ω, 25 
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µF in BioRad Gene Pulser. Immediately afterwards 950 µl of LB medium were added for an 1h 

incubation step at 37°C with constant shaking at 1200 rpm. 100 µl of this culture were plated on 

an agar plate containing 25 µg/ml chloramphenicol and 50 µg/ml ampicillin and incubated o/n 

at 37°C. A single colony was picked for preparation of electrocompetent cells. 

c) ET recombination 

65 µl of electrocompetent DH10B containing the target pAd2-BAC and pBADαβγ were 

thawn on ice and added to 2-5 µl of a prepared DNA recombination fragment (100-400 ng). The 

suspension was immediately transferred to prechilled 0.2 cm electroporation cuvettes and 

electroporated at 2.5 kV, 200 Ω, and 25 µF in BioRad Gene Pulser. The transformed cells were 

taken up in 1 ml LB and incubated for 90 min. at 37°C with constant shaking at 1200 rpm. To 

reduce the volume the cells were pelleted for 1 min. at 6000 rpm in a microcentrifuge and the 

pellet resuspended in 200 µl LB. The entire suspension was subdivided into two parts (1/5 and the 

rest) and plated on two agar plates containing 25 µg/ml Cm and 20 µg/ml Km, followed by 

incubation for 16 to 20 hours at 37°C. 10-30 clones were picked and transferred onto a Cm/Km 

masterplate and analysed by PCR and RFLP. For each type of mTn-containing BAC vector the 

purified BAC DNA of 3 independent clones was retransformed into DH10B and 3 clones from 

each retransformation were picked and analyzed by restriction cut of a small scale BAC DNA 

preparation to obtain a BAC DNA preparation that was free of pBADαβγ contaminating DNA. 

d) Electroporation of BAC vector DNA 

For retransformation of BAC vector DNA 1 µl of a BAC DNA mini-preparation was 

mixed with 25 µl of electrocompetent DH10B for electroporation as described in a). 

 

2.2.2 DNA techniques 

Purification of plasmid DNA from bacteria by alkaline lysis 

In small scale plasmid DNA was purified with the Pharmacia GFX Micro Plasmid Kit (3 

ml o/n culture) according to the manufacturer’s instructions and eluted with 100 µl TE.  For 

minipreparation of BAC-DNA bacteria of 10 ml o/n cultures were pelleted by centrifugation for 

10 min at 3500 rpm in Centrifuge Varifuge 3.0R. The pellet was resuspended in 300 µl buffer S1 

(50 mM Tris/HCl, 10 mM EDTA, 100 µg/ml RNAse A, pH 8,0) and mixed carefully with 300µl 

buffer S2 (200 mM NaOH, 1 % SDS). For separation from cellular DNA and cell debris buffer S3 

(2,8 M KAc pH 5.1) was added and the suspension was mixed gently by inverting the tube until a 

homogenous suspension was formed, followed by centrifugation for 12 min. at 13000 rpm. The 

supernatant was transferred to a new 2 ml eppendorf cup, and mixed with 900 µl of 
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phenol/chloroform by constant shaking for 15-30 min. (1200 rpm) followed by phase separation 

during centrifugation for 5 min. at 13000 rpm. 800 µl of the DNA containing upper phase was 

transferred to a fresh tube and precipitated by addition of 560 µl 2-propanol and centrifugation at 

15°C for 10 min. at 14000 rpm. The pellet was washed once with 560 µl 70% ethanol, dried for 10 

min. at RT and dissolved in 65 µl H2O. 

For large-scale purification plasmid DNA was purified from 200 ml (or 300 ml) o/n cultures using 

Nucleobond Kit protocol with an AX500 cartridge and resuspended in 300 µl (or 500 µl) 10 mM 

Tris pH 8.5. BAC DNA was isolated from 200ml (midi AX100 cartridge) or 500ml (maxi AX500 

cartridge) o/n cultures according to the Nucleobond Kit BAC purification procedure and the 

precipitated DNA resuspended in 120 to 150 µl of water. 

 

Determination of DNA concentration 

The concentration and purity of the purified DNA was determined by measuring the UV 

absorbance at 260 and 280 nm. The DNA concentration was calculated with the OD260 (OD260 = 

50 µg/ml dsDNA or 33 µg/ml ssDNA). The purity was estimated with the OD260/OD280 ratio, with 

a ratio of 1.8 indicating a low degree of protein contamination. 

 

Restriction endonuclease digestion 

Restriction endonuclease reactions were performed according to the supplier’s 

recommendations. For restriction cut analysis generally 1 µg of DNA was digested for 2 h at 37°C 

with 1-3 U enzyme in a total reaction volume of 20 µl. For analytical digestion of 1 µg of BAC 

DNA or 26 µl of a BAC miniprep 10 U enzyme were used in 30 µl of the appropriate buffer. 

Efficacy of the cleavage reaction was analyzed by agarose gel electrophoresis. For separation of 

cleaved pAd2-BAC DNA the entire reaction mix was loaded onto a 0.8 % agarose gel (6.5 x 9.5 

cm) for horizontal gel electrophoresis at 80 V for 2 h. 

 
Generation of alanine replacement mutants on Ad2/E3 region encoding plasmids 

Amino acid replacement mutations were introduced into plasmids pBS∆X-E3 or pBS∆X-

E3/F14.5 using the PCR-mediated oligonucleotide-directed mutagenesis of Higuchi et al. (Higuchi 

et al., 1988). Mutagenesis was carried out in a two step PCR reaction with two flanking primers 

10.4s (2395) and 14.7as (3468 rev) located 5’ and 3’ of the site to be mutagenized and two mutant 

oligonucleotides overlapping this site (see chapter 2.1, Oligonucleotides.). In the first step, two 

separate PCRs were set up with the respective flanking and mutant oligonucleotides in sense and 

antisense orientations. The gel purified amplification products of both reactions were combined in 
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a second PCR using the flanking primers to yield a cDNA spanning the region between the 

flanking primers 10.4s 2395 and 14.7as 3468.  

The DNA fragments obtained in the second PCR step were isolated from the reaction mix 

using QIAquick PCR purification kit and the DNA obtained in a 100 µl PCR was eluted with 30 

µl of 10 mM Tris pH 8.5.  

a) The PCR mixture contained: 
10 µl 10x PCR Puffer (100 mM Tris-HCl pH 8.3, 500 mM KCl,  15 mM MgSO4) 
4 µl 5 mM dNTPs (200 µM each) 
4 µl 10 µM sense primer (400 nM) 
4 µl 10 µM antisense primer (400 nM) 
1 µl AmpliTaq (5U) Perkin Elmer 
+ 0.1 µg template plasmid DNA in the first PCR step  
or 0.1 µg each of gel purified first round PCR products in the second PCR step  
+ H2O ad 100 µl. 

b) PCR cycles: {94°C, 5 min.}, {94°C, 30 sec.; 50° C, 30 sec.; 72°C 30 sec.}25, {72°C, 7 min.} 

The cloning vector pBS∆X-E3/F14.5 (4 µg) was digested with restriction endonucleases XhoI, HpaI 

(NEB, Frankfurt, Germany) in 40 µl of 1x NEB4 buffer with BSA for 2h at 37°C followed by gel 

purification. The purified PCR product (2 µg) was also cleaved by XhoI, HpaI and the 773 bp 

fragment was ligated with (XhoI, HpaI)-cut and gel-purified pBS∆X-E3 vectors, giving rise to 

pBS∆X-E3 or pBS∆X-E3/F14.5 mutant plasmids encoding the desired Ala replacement mutation. 

 
Cloning of 10.4K and 14.5K sequences into vector pSG5 or pMG 
For expression of 10.4K and 14.5K from the heterologous SV40 promoter/enhancer the 

vector pSG5 was used. PCR fragments containing the Ad2 coding sequence of wt 10.4K, 14.5K 

were cloned into the EcoRI and BglII sites and the wt 10.4-14.5 bicistronic sequence was inserted 

into BamHI and BglII sites. PCR fragments were generated by a single round of PCR using 

pBS∆X-E3/F14.5 as a template, and making use of the primers listed in table below. For 

optimizing expression from the SV40-driven pSG5 cassette the sequence 5’ of the ATG was 

modified to conform to the Kozak consensus for eucaryotic translation in single expression 

vectors (Kozak, 1987). 10.4K or F14.5K coding sequences were inserted into the pMG bicistronic 

vector into MCSI BamHI, XbaI sites (10.4) or MCSII ClaI, NheI sites (14.5), respectively. For 

generation of pSG5-vectors encoding mutant 10.4LL, F14.5Y122 or 10.4LL-F14.5 and 10.4-

F14.5Y122 the inserts were amplified by PCR from the corresponding mutant pBS∆X-E3/F14.5 

template. The PCR mixture and conditions were as described above for the generation of alanine 

replacement mutants on Ad2/E3 region encoding plasmids. The amplified fragments obtained in 

a 100 µl PCR reaction were concentrated using QIAquick PCR purification kit and elution with 

30 µl 10 mM Tris pH 8.5. The entire sample was double-digested in the appropriate 1x buffer 
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(total volume of 40 µl) with a combination of two restriction enzymes (listed in table below, 10U 

each) for 2 h at 37 °C followed by gel purification and ligation. 

construct PCR primer for insert amplification Enzyme 
pSG5-10.4 clone #2 10.4EcoRI-BamHI, 10.4rBglII-XbaI EcoRI, BglII 
pSG5-10.4LL clone # 4 10.4EcoRI-BamHI, 10.4LLrBglII-XbaI EcoRI, BglII  
pSG5-F14.5 clone #2 14.5EcoRI-ClaI, 14.5rBglII-NheI EcoRI, BglII  
pSG5-F14.5Y122 clone #1 14.5EcoRI-ClaI, 14.5rBglII-NheI EcoRI, BglII  
pMG-10.4 10.4EcoRI-BamHI, 10.4rBglII-XbaI BamHI, XbaI  
pMG-10.4 + F14.5 14.5EcoRI-ClaI, 14.5rBglII-NheI ClaI, NheI 
pSG5/10.4-F14.5 clone # 8 10.4-14.5fEcoRI-BamHI, 14.5rBglII-NheI BamHI, BglII  
pSG5/10.4LL-F14.5 clone #5 10.4-14.5fEcoRI-BamHI, 14.5rBglII-NheI BamHI, BglII 
pSG5/10.4-F14.5Y122 clone #6 10.4-14.5fEcoRI-BamHI, 14.5rBglII-NheI BamHI, BglII 

2 µg of cloning vector DNA were cleaved with the corresponding enzymes (10U) each in 20 µl of 

the appropriate buffer (enzymes and restriction endonuclease buffers were from NEB, Frankfurt, 

Germany) and cleavage efficiency controlled by separation on 1 % agarose gel.  The linearized 

vector DNA was purified using QIAquick PCR purification kit and elution with 30 µl 10 mM 

Tris pH 8,5. About 100ng of vector were used for ligation (see below). For insertion of 10.4LL-

F14.5 and 10.4-F14.5Y122 the pSG5 vector was cleaved with BamHI only.  

All pSG5 constructs were verified by dye terminator cycle sequencing. pMG constructs were 

analyzed by restriction cut for the presence of the insert, but so far have not been sequenced. 

 

5’-Dephosphorylation reaction 

Insertion of the 10.4-14.5K wt encoding DNA fragment with BamHI, BglII cohesive ends 

required 5’-dephosphorylation reaction of the target vector DNA pSG5, which had been double-

digested with BamHI and BglII. 5’ dephosphorylation of plasmid vector DNA after restriction 

endonuclease cleavage was performed with the shrimp alkaline phosphatase (SAP). 2 U SAP were 

added to about 2 µg restriction enzyme digested plasmid DNA. After 1 hour incubation at 37°C 

the phosphatase was inactivated by heating to 65°C for 15 min. and the DNA was isolated using 

QIAquick PCR purification Kit and elution with 30 µl 10 mM Tris pH 8.5. For generation of 

pSG5/10.4LL-F14.5 and pSG5/10.4-F14.5Y122 the pSG5 vector was cleaved by BamHI only before 

SAP treatment.  

 
Gel purification of DNA 

DNA fragments were separated by agarose gel electrophoresis, stained with ethidium 

bromide and detected with UV light (366 nm). The gel slice containing the DNA fragments was 

cut out and the DNA was isolated using the QIAex II Agarose Gel Extraction Kit according to the 

manufacturer’s instructions. Alternatively, DNA fragments from PCR reactions were purified 
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using the QIAquick PCR Purification Kit according to the manufacturer’s protocole. In general, 

the DNA obtained in one 100 µl PCR reaction or extraction of a 300 mg of gel slice was dissolved 

in 20 µl of 10 mM Tris pH 8.5. 

 
Phenol/chloroform extraction and ethanol precipitation of DNA 

Proteins were removed from DNA preparations by extracting first with 1x volume 

phenol/chloroform and then with 1x volume of chloroform. After shaking at 1300 rpm for 10 

min at 4°C the solution was centrifuged at 14000 rpm (microcentrifuge) for 5 min and the DNA 

containing upper phase was recovered. Then 0.1x volume 3 M sodium acetate pH 5.2 and 3x 

volume 100% EtOH (ice-cold) were added, and the mix was incubated at –20°C for 1-12 h. The 

precipitated DNA was spun down at 14000 rpm for 30 min. (4°C). Then the pellet was washed 

once with 70% EtOH (cold), and after centrifugation (14000 rpm, 15 min, 4°C) the liquid was 

removed, the pellet air-dried at RT and resuspended in 22 µl of H2O or 10 mM Tris pH 8.0.  

 
Ligation 

In a total volume of 20 µl 1x T4 DNA ligase buffer (NEB, Frankfurt, Germany) 100-200 ng 

of vector and the insert at a molar ratio of insert/vector of about 3:1 were reacted with 1 U T4 

DNA ligase (NEB, Frankfurt, Germany). After incubation o/n at 16 °C the ligase was inactivated 

by heating 10 min. at 65 °C. 

 
Agarose gel electrophoresis 

Analysis of DNA fragments and plasmids was performed by agarose gel electrophoresis in 

1x TAE. In general, agarose gels had a content of 0.8 - 1.4 % agarose. The agarose was solubilized 

in 1x TAE by heating in a microwave oven. Ethidium bromide was added to a final concentration 

of 0.1 µg/ml shortly before pouring the gel. Samples were mixed with 1/5 volume loading buffer. 

Gels (6.5 x 9.5 cm) were run horizontally at 80-120 V. DNA was detected with UV light, λ=254 nm 

or on preparative gels at λ=366 nm to cut out specific fragments. 

Loading buffer (6x in water): 0.25 % bromophenol blue 
    0.25 % xylene cyanol FF 
    15 % Ficoll (type 400) 
20x TAE:    800 mM Tris 
    400 mM NaAc 
    40 mM EDTA 
    adjusted to pH 7.8 with acetic acid 
Ethidium bromide (stock):  10 mg/ml 
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DNA sequencing 

a) PCR  

DNA sequencing was performed using the BigDye RR Terminator Amplitaq FS Kit. The 

reaction mixture contained 8 µl Premix, as a template 900 ng of plasmid DNA or 100 ng of a 

PCR fragment per 1kb length of amplification product and 10 pmol primer in 20 µl final volume. 

The following PCR was performed: {96°C, 10 sec.; 50°C, 5 sec.; 60°C, 4 min.}25. The PCR 

product was precipitated by adding 30 µl H2O, 5 µl 3 M sodium acetate pH 5.2 and 135 µl 

ethanol (RT) and subsequent centrifugation for 15 min. at 14000 rpm (microcentrifuge). The 

pellet was washed with 250 µl 70% EtOH (RT) and centrifuged for 10 min. at 14000 rpm. The 

EtOH was removed and the pellet air-dried. The DNA was resuspended in 10 µl loading buffer (1 

volume of (50 mg/ml Blue Dextran/25mM EDTA pH 8.0)-solution mixed with 4 volumes of 

formamide). For DNA sequencing of pAd2-BACs 100-200 ng of a PCR product amplified with 

primers 2395 and 3468rev served as a template in the sequencing PCR. The PCR product was 

purified with QIAquick PCR purification kit and elution with 30 µl autoclaved ddH20. 

Preparation of the template for a pAd2-BAC sequencing PCR: 
a) PCR conditions: {94°C, 5 min.}, {94°C 30 sec ; 55° C 30 sec ; 72°C 30 sec}30, {72°C, 7 min.} 

b) PCR reaction mix: 

5 µl 10x PCR Puffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 15 mM MgSO4) 
2 µl 5 mM dNTPs (200 µM each) 
2 µl 10 µM sense primer (400 nM) 
2 µl 10 µM antisense primer (400 nM) 
1 µl AmpliTaq (5U) Perkin Elmer 
+ 10 ng of pAd2-BAC to be sequenced  
+ H2O ad 50 µl. 
 
b) Polyacrylamide sequencing gel 

A 5% polyacrylamide gel (8 M urea, 200 x 560 x 0.3 mm) solution was prepared: 
5% gel: 30 g urea, 10 ml 30% acrylamide/bisacrylamide (29:1), 6 ml 10x TBE buffer, 22 ml H2O 
10x TBE buffer (1l): 108 g Tris base, 55 g Boric acid, 7.4 g EDTA 

The gel solution was incubated at 37°C until the urea was dissolved. Then the solution was 

passed through a 0.2 µm filter and degassed for 10 min. 20 µl TEMED and 350 µl 10% APS 

solution were added and the gel was poured and polymerized horizontally for 4 h. The 

precipitated DNA from the sequencing PCR reaction resuspended in 10 µl loading buffer was 

heated for 10 min at 95°C. Then the samples were put on ice for 5 min. After 1 min 

centrifugation at 14000 rpm (microcentrifuge) 4 µl of the solution was loaded on the gel. The gel 

run was performed with 1x TBE buffer at 37 Watt for 18 h (pre-run 30 min). Sequencing data were 

analyzed using the ABI PRISM software. 
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2.2.3 Generation of recombinant Ads 

Cloning of mutant pAd-BACs: pAd2/10.4LL-F14.5, pAd2/10.4-F14.5Y74,  
pAd2/10.4ko-F14.5 and pAd2/14.5ko 

a) Generation of linear minitransposon (mTn) containing recombination fragment 

In a two step PCR reaction a mutant allele containing the mTn sequence was amplified for 

ET recombination with the target BAC-mid. For generation of the 10.4LL and 14.5Y74 mutant 

sequences a pBS∆X-E3/F14.5-derived vector containing the desired mutation served as a template 

for PCR amplification using oligonucleotides 2395 as sense and 3468rev as antisense primer 

(compare Fig 24). A partially overlapping DNA fragment encompassing the mTn sequence was 

amplified by PCR on template pAd2-BAC/H7 with 3468for sense and Ad2/E3rev antisense 

primers. The two PCR products were assembled in a second round of PCR yielding a fullength 

mutant allele spanning the region between flanking primers 2395 and Ad2/E3rev.  

As the 10.4ko mutation was not yet existing on pBS∆X-E3/F14.5 a FLAG-14.5K encoding cDNA 

was amplified on pAd2/F14.5 BAC with oligonucleotides 2631for as sense and 2931rev as 

antisense primer, which was combined with the mTn encoding PCR product, that was obtained by 

PCR with primers 2931for and Ad2/E3rev on pAd2-BAC/H7 (see also Fig. 26). The assembled 

full-length mutant allele was combined by ET recombination with pAd2/10.4ko-14.5ko BAC, 

generating pAd2/10.4ko-F14.5. The pAd2-14.5ko BAC was obtained by ET recombination of a 

full-length mutant allele with wt pAd2-BAC. Primers 2631for (sense) and 3468 rev (antisense) were 

used to generate a cDNA fragment encomprising the 14.5ko mutation by PCR on template 

pAd2/10.4ko-14.5ko. PCR product one was assembled with the mTn containing PCR fragment 

generated with primers 3468for (sense) and Ad2/E3-rev (antisense) on template pAd2-BAC/H7, 

yielding a full-length mutant allele. 

The PCR reaction mix of the first round of PCR was purified using QIAquick PCR 

purification kit according to the  manufacturer’s  protocol and the DNA eluted with 30 µl 10 mM 

Tris pH 8.5. The assembled PCR product of the second round of PCR was gel purified from a 1% 

agarose gel using QIAex gel extraction kit and the elution buffer was prewarmed to 50°C to assure 

high yield of the ~3kb fragments.  

a) The PCR mixture contained: 
10 µl 10x PCR Puffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 15 mM MgSO4) 
4 µl 5 mM dNTPs (200 µM each final conc) 
4 µl 10 µM sense primer (400 nM) 
4 µl 10 µM antisense primer (400 nM) 
1 µl High Fidelity Taq Pol (3.5U/µl) (Roche Diagnostics Mannheim) 
 + 0.1 µg template plasmid DNA in the first PCR step  

or 0.1 µg each of gel purified first round PCR products in the second PCR step  
+ H2O ad 100 µl. 
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b) PCR cycle parameters: {94°C, 5 min.}, {94°C,30 sec.; 55°C, 30 sec.;72°C, 90 sec.}25, {72°C, 7 min.} 

b) ET recombination of 10.4LL, 14.5Y74, 10.4ko, 14.5ko encoding mutant alleles 
For ET recombination 120 ng of the linear recombination fragment were mixed with 65 µl 

of electrocompetent DH10B containing the target BAC vector and pBADαβγ (chapter 2.2). 

Resulting Cm/Km resistant clones were analyzed by PCR on a boiling prep (see below) for the 

presence of the mTn sequence in the intergenic space between the 14.7 CDS and fiber region (as in 

the pAd2-H7 wt clone). A combination of primers 3468for and pTnR was used and the resulting 

PCR product had a size of 423 bp (67 nt of the Ad2 genomic sequence and 366 nt of the tn 

sequence). As a positive control the same primers were used for PCR on template pAd2-BAC/H7, 

whereas PCR on pAd2-BAC yields no amplification product.  

Mutant pAd2/10.4ko-F14.5 clones were analyzed for gain of the FLAG-sequence using primers 

2395 and FLAGrev for PCR, yielding a 412 bp PCR product which was not cleaved by XhoI due to 

the mutation in 10.4CDS. Similarly, in these clones the PCR product obtained with primers 2395 

and 2913rev could not be cleaved by PacI  proving that the ATG sequence of 14.5K is intact. BAC 

DNA that was free of pBADαβγ contamination was used for sequencing of mTn containing 

10.4LL, 14.574, 10.4*, 14.5* mutant BAC clones  to assure that the full-length mutant allele had 

been inserted by ET recombination.  

 

Generation of recombinant Ad2/Ad4 chimeric viruses: Gene replacement of Ad2  
10.4K and/or 14.5K coding sequences with homologous Ad4 sequences in pAd2-BAC 
a) Generation of ET recombination fragments containing the mTn sequence  
For gene replacement mTn containing fragments were generated with 42 bp homology 

arms to the sequence flanking the site within target DNA in which the linear fragment should be 

inserted by ET recombination. Thus, for synthesis of the mTn containing recombination fragment 

upstream and downstream oligonucleotide PCR primers were designed to possess the homology 

arms to the target DNA and priming regions with homology to the mTn. The sequences of the 

priming regions (3’ ends of the oligonucleotides) were defined as 5’-tgt ggg cgg aca aaa tag ttg g-3’ 

in the upstream primer and 5’-tgt ggg cgg aca ata aag tct taa act ga-3’ in the downstream primer 

(Ruszics et al., manuscript in preparation). As the PCR cycle parameters are mainly determined by 

the priming sequences and the length of the PCR product defined priming sequences allowed to 

fix parameters for PCR amplification of mTn containing DNA which are generally applicable 

without further optimization (Ruszics et al., manuscript in preparation). The following mTn 

containing fragments were synthesized by PCR on template pGPS1.1:  

a) The PCR reaction was set up as follows: 
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1.5 µl upstream primer (conc 20 µM) 
1.5 µl downstream primer (conc 20 µM) 
1 µl GPS 1.1 DNA (8 ng) 
2 µl  10 mM dNTPs 
10 µl 10x PCR buffer 
0.8 µl High Fidelity Taq Polymerase (2.5U) 
 +H2O ad 100 µl 
b) PCR cycle parameters: {94°C, 4 min.}, {94°C, 30 sec.; 60°C, 30 sec.; 72°C, 90 sec.}30, {72°C, 7 min.} 
The PCR product was purified using QIAquick PCR purification kit and elution with 50 µl 10  
mM Tris pH8.5. 

b) Generation of mTn containing pAd2-BAC intermediates for exposon cloning 

3 µl (~300ng) of mTn containing recombination fragment DNA were added to 65 µl of 

electrocompetent DH10B containing pAd2-BAC and pBADαβγ for ET recombination. To get rid 

of pBADαβγ contamination BAC DNA was retransformed into DH10B and analyzed by 

restriction endonuclease cleavage. Cm/Km resistant bacterial clones were analyzed by PCR with a 

boiling prep (see below) for transposon insertion in place of the 10.4 CDS or the 10.4-14.5 CDS 

using primers 2395 and pTnL (420 bp PCR product, 54 bp of Ad2 sequence and 366 bp of the 

mTn), and those with the mTn replacing the 14.5 CDS with primers 2631for and pTnL (459 bp 

PCR product, 93 bp of Ad2 sequence and 366 bp of mTn). Similarly, at the 3’ end of the mTn 

replacing the 14.5 CDS a PCR product of 910 bp (366 bp of mTn and 544 bp of Ad2 sequence) 

could be amplified using a combination of primers pTnR and Ad2/E3-rev.  

c) Generation of Ad4-CDS-containing inserts 

Oligonucleotides for amplification of Ad4 inserts were designed to contain a SapI 

recognition site and a priming region with homology to the Ad4 insert. If necessary, an 

intervening sequence could be included between SapI recognition site 

construct Upstream and downstream primer 
for insert amplification 

Target BAC in Tn excision 
reaction mix 

pAd2/(Ad4-10.4)TAAGC14.5  
clone #12-1 

Ad4 10.4 NS 
Ad4 10.4 CS 

pAd2/(10.4Tn)#1B 

pAd2/10.4TAAGC(Ad4-14.5)  
clone #3-8 

Ad4 14.5 NS TAAGC 
Ad4 14.5 CS 

pAd2/(14.5Tn)#1A 

pAd2/10.4GC(Ad4-14.5) 
clone #7-1 

Ad4 14.5 NS 
Ad4 14.5 CS  

pAd2/(14.5Tn)#1A 

pAd2/(Ad4-10.4)TAAGC(Ad4-
14.5) clone #7-4 

Ad4 10.4 NS 
Ad4 14.5 CS 

pAd2/(10.4-14.5)Tn#2A 

pAd2/(Ad4-10.4)TT(Ad4-14.5) 
clone #16-1 

Ad4 10.4 NS  
Ad4 10.4 CS TTATG 

pAd2/(10.4Tn)-(Ad4-14.5)#2 

CDS to be replaced by ET 
recombination with mTn 

Upstream 
primer 

Downstream 
primer mTn containing construct 

10.4 CDS within pAd2-BAC H5 10.4L H3 10.4R pAd2/(10.4Tn)#1B 
14.5 CDS within pAd2-BAC H5 14.5L H3 14.5R pAd2/(14.5Tn)#1A 
10.4-14.5 CDS within pAd2-BAC H5 10.4L H3 14.5R pAd2/(10.4-14.5)Tn#2A 
10.4 CDS within pAd2/10.4-Ad414.5#7-1 H510.4L H3 10.4R Ad4 pAd2/(10.4Tn)(Ad4-14.5)#2
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and the Ad4-specific sequence to introduce a modification of the target site sequence flanking the 

Ad4 CDS insert. The PCR sample was purified using QIAquick PCR purification kit and elution 

with 33 µl 10 mM Tris pH8.5. 2 µg of the PCR product were digested with 4U SapI (NEB, 

Frankfurt, Germany) in 20 µl of 1x NEB4 for exactly 6 hours at 37°C, and the enzyme heat-

inactivated for 20 min at 65°C. 2µl of the SapI digest (200ng of insert) were added to the heat-

inactivated transposon excision reaction for ligation (see below). 

a) The PCR reaction was set up as follows:  
4 µl upstream primer (conc 10 µM) 
4 µl downstream primer (conc 10 µM) 
1 µl pA4E3 DNA (100 ng) 
2 µl  10 mM dNTPs 
10 µl 10x PCR buffer 
1 µl High Fidelity Taq Polymerase (2.5U) 
 +H2O ad 100 µl 
b) PCR cycle parameters: {94°C, 5 min.}, {94°C, 30 sec.; 55°C, 30 sec.; 72°C, 2 min.}30, {72°C, 7 min.} 

 
Quick PCR test with a DNA boiling prep 
To quickly analyze the DNA content of bacterial colonies single bacterial clones were 

streaked into an eppendorf tube with a screw lid. Alternatively, several colonies were picked and 

transferred to the same tube for analysis of a group of clones in one PCR. The bacterial cells were 

resuspended in 30 µl (several clones in 70 µl) of autoclaved ddH2O. The tubes were tightly closed 

and immersed in boiling water for 10 min and then put on ice to release the DNA from the cells. 

The boiling prep was centrifuged and 3 µl were used to set up a 25 µl PCR reaction.  

a) The PCR mixture contained: 
2.5 µl 10x PCR Puffer (100 mM Tris-HCl pH 8.3, 500 mM KCl,  15 mM MgSO4) 
1 µl 5 mM dNTPs (200 µM each final conc) 
1 µl 10 µM primer 1 (400 nM final conc.) 
1 µl 10 µM primer 2 (400 nM final conc.) 
0.5 µl AmpliTaq (5U/µl) (Perkin Elmer) 
+ 3 µl of boiling prep  
+ H2O ad 25 µl. 

b) PCR cycles: {95°C, 5 min.}, {95°C, 30 sec.; 55°C, 30 sec.; 72°C, 2 min}35, {72°C, 7 min.} 

The entire PCR sample was separated by gel electrophoresis for 30 min at 120 V on a 1.4% agarose gel.
 

mTn excision in vitro 

By TnsABC* treatment the Tn7-derived sequence was excised from pAd2-BAC DNA 

containing the mTn and transferred to a an acceptor suicide plasmid.  

The Tn excision reaction mix contained (molar ratio donor:target DNA of 1:4): 
1-5 µl of pAd2-BAC as Tn donor (150 ng) 
1-5 µl of pST76TET or pST76A (90 ng) as Tn acceptor (high purity!) 
2 µl 10x GPS buffer 
autoclaved ddH2O ad 18 µl 
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+ 1 µl of TnsABC* (NEB, Frankfurt Germany) 

After pipetting up and down the mix was incubated at 37 °C for 10 min to allow reaction 

complex assembly. Then, 1 µl of 0.3 M sterile MgCl2 solution was added and quickly mixed by 

pipetting up and down to start the transposon excision reaction, which was carried out by 

incubation at 37°C for 1h. To liberate the transposase from the DNA the reaction mix was heated 

for 15 min to 75 °C and then put on ice. Evaporated liquid was collected at the bottom of the 

tube by a short centrifuge spin.  

For ligation the sample was mixed with 1 µl T4 DNA ligase (NEB) and if desired a SapI cleaved 

insert (up to 200 ng) was added (see also generation of Ad4 CDS containing inserts) followed by 

incubation o/n at 16 °C.  

After heat-inactivation of the ligase for 15 min at 65 °C, 40 µl of water were added and the DNA 

purified by phenol-chloroform extraction and ethanol precipitation. The DNA was dissolved in 10 

µl of autoclaved ddH2O. 2 µl of the DNA preparation were mixed with 65 µl of electrocompetent 

DH10B expressing I-Sce I meganuclease. Following electroporation at 2.5 kV, 200 Ω and 25 µF 

cells were resuspended in 1ml LB medium and incubated with constant shaking at 37°C for 1 

hour. 1/5 and 4/5 of the bacteria were spread onto two agar plates containing 25 µg Cm and 

incubated o/n at 37 °C. 30 single clones were picked and transferred onto Cm and Cm/Km 

containing LB agar plates and grown o/n at 37 °C to identify clones which lost the Kmr. To get 

rid of pUCRP12 DNA the BAC DNA was retransformed into DH10B, single clones were picked 

and transferred onto Cm and Cm/Ap plates to assure that the pUCRP12 DNA was lost. Purified 

BAC vector DNA was analyzed by PCR and subsequent restriction endonuclease cleavage, and 

sequencing.  

 
Sequence analysis of newly generated pAd2-BAC-derived vectors after mTn excision 
Correct transposon removal introduced a new NheI in the Ad2 sequence of pAd2-mutants 

carrying the 10.4LL, 10.4ko, 14.5ko or F14.5Y74 mutations. By PCR with 1 µl of a miniprep of 

pAd2-BAC DNA with primers 2913for and Ad2/E3-rev (50 µl PCR reaction, conditions as for 

PCR test with a boiling prep) a ~760 bp DNA fragment was amplified. Half of the PCR product 

was cut by NheI (NEB, Frankfurt, Germany) in 20 µl NEB2 buffer with BSA for 1 hour at 37 °C 

and the other half was incubated in parallel without addition of enzyme. Cleavage was analyzed 

on 1.4% agarose gel to identify clones from which the transposon had been removed and with 

correct religation of the BAC vector. Purified BAC-DNA preparations were analyzed by restriction 

endonuclease cleavage (EcoRV or XhoI) to exclude any unwanted rearrangements and sequencing. 

Clones obtained by exposon cloning were tested by PCR on a boiling prep for removal of the 
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mTn and insertion of Ad4 sequence fragments. PCR with primers 2395 and 3468rev would yield a 

fragment of >1.7kb, whereas insertion of the 10.4-14.5 encoding Ad2 sequence led to generation of 

a ~1.1 kb fragment. The presence of Ad4 specific sequences was further tested by analytical 

restriction of a PCR product, obtained with the following PCR: 

5 µl 10x PCR Puffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 15 mM MgSO4) 
2 µl 5 mM dNTPs (200 µM each final conc) 
2 µl 10 µM primer 1 (400 nM final conc.) 
2 µl 10 µM primer 2 (400 nM final conc.) 
0.5 µl AmpliTaq (5U/µl) (Perkin Elmer) 
+ 100ng of purified BAC-DNA 
+ H2O ad 50 µl. 
PCR cycle parameters: {94°C, 5 min.}, {94°C, 30 sec.; 55°C, 30 sec; 72°C, 2 min.}35, {72°C, 7 min.} 

10 µl of the PCR sample were digested with 10 U XcmI or AvrII in 40 µl reaction buffer NEB2 for 

2h at 37 °C and 10 µl of the PCR sample were treated in parallel without the addtion of enzyme. 

The entire reaction was separated by gel electrophoresis on 1.4% agarose gel, 30 min at 120 V. The 

1.1kb full-length fragment was cut once by XcmI if the Ad4 10.4CDS was present, and AvrII 

cleaved once within the Ad4 14.5 coding sequence.  

 
2.2.4 Cell culture 

 
Cultivation and cryoconservation 

A549, 293 and SeBu cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 100 U/ml penicillin, 0.1 mg/ml streptomycin and 10% fetal calf 

serum at 37°C and 5% CO2. For propagation of SV80Fas cells and stable E3 transfectants of 293 

cells the medium additionally contained 200 µg/ml G418. Stable A549 transfectants were grown in 

medium containing 800 µg/ml G418. 

For cryoconservation cells were detached with trypsin and centrifuged at 300 g for 5 min. at 4°C. 

Then the cells were resuspended in 1 ml 25% FCS/10% DMSO/65% DMEM (4°C) with a final 

concentration of 0.5-1x107 cells/ml. Cryovials containing aliquots of at least 0.6 ml of the cell 

suspension were slowly cooled down to –80°C in a tightly closed styropor box. 48 hours later the 

vials were transferred into liquid nitrogen for long-term storage. Frozen aliquots were quickly 

thawn at 37°C in a waterbath, one volume DMEM was added and the suspension was carefully 

pipetted onto a 4 ml FCS cushion. After centrifugation at 300 g for 5 min. the supernatant was 

removed, cells were resuspended in complete medium without G418 selection and transferred to 

cell culture dishes. After 24 hours the medium was changed to G418-containing media, if G418 

selection was required. 
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Calciumphosphate transfection 

For transient transfection cells were grown on 6 cm ∅  dishes to 60-70% confluency. 4 h 

prior to the transfection the medium was changed to fresh DMEM/10% FCS. If the Bonifacino 

method (Marks et al., 1996) was employed, cells were seeded on the day of transfection and the 

transfection mix was added 4 to 6 hours later. For preparation of the transfection mix 250 µl of 2x 

HBS pH 7.05 were added to a 1.5 ml reaction tube. In another tube 6 µg DNA were combined 

with H2O to a total volume of 225 µl. 24.8 µl 2.5 M CaCl2 solution were added dropwise to the 

DNA solution while vortexing at low speed (300 rpm), and subsequently mixed by vortexing at 

800 rpm. Then, the DNA/CaCl2 solution was added dropwise to the tube with the 2x HBS 

constantly vortexed at 300 rpm. Finally, the complete transfection mix was vortexed for 15 sec. at 

800 rpm and then incubated for 15-20 min at RT to allow formation of the calcium-DNA 

precipitate. Subsequently, the suspension was added dropwise to the cultured cells. The next day 

the medium was changed and protein expression was assessed by immunofluorescence at 40-48h 

post transfection.  

2x HBS pH 7.05:  50 mM HEPES (2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethane sulfonic acid),  
    1.5 mM Na2HPO4 x 2 H2O, 280 mM NaCl, 12 mM glucose 
 

Generation of stable 293 E3 transfectants 

For generation of stable E3 transfectants 40 µg of  pBS∆X-E3/F14.5-derived mutant DNA  

was linearized by restriction digest with 2U enzyme/µg DNA ScaI in a total volume of 200 µl 1x 

ScaI buffer (NEB, Frankfurt, Germany). 15 µg of pSV2-neor was cut with PvuI (2U enzyme/µg 

DNA, NEB) in 100 µl 1x NEB3 buffer in the presence of BSA. After 3.5 hours incubation at 37°C 

the DNA was purified by phenol/chloroform extraction and concentrated by EtOH precipitation. 

The inner surface of the tube was rinsed with 70% EtOH to assure sterility and the DNA dried in 

the laminar flow hood for 5-10 min. The pBS∆X-E3/F14.5-derived mutant DNA was resuspended 

in 22 µl sterile H2O and pSV2-neor in 10 µl. 293 cells were grown to confluency in two T75 flasks. 

Cell monolayers in each flask were washed once with 8 ml of PBS, trypsinized for 3-5 min with 2 

ml Trypsin/EDTA and resuspended in 10 ml DMEM containing 10% FCS. Following 

centrifugation for 7 min. at 300g the two cell pellets were carefully resuspended in 2ml DMEM 

without FCS  and collected in one tube in a total volume of 10 ml DMEM without FCS. An 

aliquot was taken to determine the cell number (total number of cells ~3x107). After a second 

centrifugation step the cells were taken up in DMEM at a cell density of 107cells/ml. 0.8 ml of this 

cell suspension was mixed with 20 µg of linearized pBS∆X-E3/F14.5-derived mutant DNA and 2 

µg of linearized pSV2-neor and incubated for 10 min. at RT. Then, the suspension was transferred 



Materials and Methods 

 61

into a 0.4 cm gap electroporation cuvette and electroporated at 0.32kV, 960 µF on BioRad Gene 

Pulser. Immediately after the pulse the entire sample was mixed with 1.2ml DMEM/10%FCS and 

incubated for 10 min at RT. The cells were spread onto two 10 cm ∅  dishes with 1 ml of the cell 

suspension each. In parallel, the same number of cells was mock treated by electroporation of an 

equal volume of sterile water instead of the DNA and a 1 ml and a 0.5 ml aliquot of the 

suspension were plated. 2 days post transfection each dish was split 1:4 onto four 10 cm ∅  dishes 

taking care to spread out single cells and the medium was supplemented with 400 µg/ml G418 to 

select transfected clones. Every 3 days the medium was replaced. Six days post transfection no cells 

of the mock transfection had survived. After 10-14 days clones were trypsinized using cloning 

cylinders and transferred to 3 cm ∅  dishes. Usually, 10-20 single clones were obtained per 10 cm 

∅  dish and for each type of transfected DNA 40-50 clones were picked. The clonal lines were kept 

in DMEM/10%FCS with 200 µg/ml G418. 

 
Generation of stable transfectants of A549 expressing 10.4K and/or 14.5K 
60 µg of vector pSG5/10.4 and pSG5/F14.5 were cleaved by AatII (2U/µg DNA, NEB, 

Frankfurt, Germany) in 200 µl NEB4 buffer. 15 µg of pSV2-neor was cut with PvuI (see above). 

After 3 hours incubation at 37°C, phenol/chloroform extraction and EtOH precipitation the 

linearized pSG5 vector was resuspended in 25 µl sterile H2O and pSV2-neor in 10 µl. Three middle 

flasks of A549 cells were grown to confluency. The cells of each flask were washed with 8 ml warm 

PBS, detached with 2 ml Trypsin/EDTA for 5 min. at RT and taken up in 10 ml 

DMEM/10%FCS. After centrifugation the cells were carefully resuspended and collected in one 

tube in a total volume of 10 ml. An aliquot was taken for counting the cells (total number of cells 

~4x107). After centrifugation the cells were resuspended in DMEM without FCS at a density of 

1x107 cells/ml. To generate transfectants stably expressing the E3/10.4K and/or 14.5K protein 0.8 

ml of the A549 cell suspension were mixed with 12 µg pSG5-10.4K, 12 µg pSG5-14.5K and 2 µg 

pSV2-neor, the latter conferring G418 resistance. As a negative control, an equal number of A549 

was mixed with 20 µg of EtOH-precipitated pBluescript DNA. After incubation for 10 min. at RT 

the cells were electroporated at 0.27 kV, 960 µF in BioRad Gene Pulser in a 0.4 cm electroporation 

cuvette. Immediately after the pulse 1.7 ml of DMEM/10%FCS were added and the cells incubated 

for at least 10 min at RT before plating onto two 10 cm ∅  dishes. After two days cells were split 

1:5 and the DMEM/10%FCS medium was supplemented with 1.3 mg/ml G418. 6 days post-

transfection the medium was replaced with DMEM/10%FCS containing 1 mg/ml G418 and 

changed every 3 days. After 16 days 5-10 clones were picked from each dish. Clonal lines were 



Materials and Methods 

 62

maintained in DMEM/10%FCS containing 1 mg/ml G418 and screened by FACS analysis for 

intracellular content of 10.4K and/or 14.5K. 

 
Adenovirus infection 

Cells were grown to 80-90% confluency in 6 cm (10 cm) ∅  dishes and washed once with 

DMEM without FCS. In general, 10-100 plaque forming units (pfu) were applied per cell in 1 ml 

(3ml) DMEM without FCS. Dishes were incubated for 90 min. at 37°C, 5% CO2 and shaken every 

10-15 min. Then, the virus-containing medium was removed, and DMEM/2.5 % FCS was added. 

This time point was defined as the start of infection. Virus containing solutions were inactivated 

by disposing them in solutions with >1% SDS. 

 
Generation of infectious adenovirus particles from recombinant Ad2 genomic DNA 
Adenovirus DNA contained within the pAd2-BAC vector was liberated from the BAC 

backbone by digestion of 10 µg of BAC DNA with 25 U of SnaB1 (5’ TAC▼GTA 3’ blunt end) in 

a total volume of 120 µl for exactly 3 hours at 37°C. SnaB1-digest released linear Ad2 double-

stranded genomic DNA with intact ITRs and cleaved the vector backbone into two fragments of 2 

and 4 kb. The linearized DNA was concentrated by EtOH precipitation and resuspended in 22 µl 

sterile H2O. For transfection 2-5 µg of SnaB1-cut DNA were supplemented with EtOH-precipitated 

pBluescript DNA to give a total of 6 µg and were transfected according to the CaPO4-transfection 

protocol into 293 cells. Mock-treated cells were transfected in parallel with 6 µg of pBluescript 

DNA. 293 cells are ideal hosts for adenovirus replication as they stably express Ad E1A products. 

It was found to be advantageous to use less rapidly dividing 293 cells (low passage number), 

because growing cell number should not outcompete the accumulation of viral particles. 

293 cells were seeded in 6 cm ∅  dishes the day before transfection and reached ~40 % 

confluency at the time of transfection. The next day transfected cells were split 1:2 and distributed 

onto two 10 cm ∅  dishes. 3 days later dishes were 30% confluent and on day 6-7 small plaques 

appeared. If necessary, 3 ml of fresh medium were added. 10 days post transfection cpe was 

extensive and the virus was harvested. Cells and supernatant were centrifuged for 7 min. at 300g. 

The cell pellet was taken up in 0.5 ml DMEM and saved as a virus prestock at –80°C. The 

supernatant could be used directly to infect two T75-flasks of A549 cells. 2 days later about 90 % 

cpe was reached and virus could be harvested. The cell pellet was taken up in 2 ml DMEM 

without FCS and the virus was released by 3 cycles of freeze and thaw followed by centrifugation 

to precipitate cell debris. Thereby, 2 ml of a virus stock could be obtained, which generally had a 

titer of ~3x1010 pfu on A549. Aliquots of 0.1 or 0.5 ml were stored at –80°C.  
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Preparation of adenovirus stocks 
To prepare high-titer Ad2 virus stocks A549 cells were grown in eight T175-flasks to 90% 

confluency. The cells were washed once with 10 ml DMEM without FCS. Then 8 ml DMEM 

without FCS containing 5x108 PFUs virus were added and incubated for 1.5 h at 37°C and 5% 

CO2 with shaking every 10 min. Subsequently, 32 ml DMEM/2.5% FCS were added and cells were 

incubated until the cytopathic effect (cpe) reached 100%, which generally took 3 days. Infected 

cells were detached by shaking the flasks. The cell suspensions were centrifuged for 7 min. at 300 g 

and 4°C. The cell pellets were resuspended in a total volume of 14 ml sterile 30 mM Tris/HCl pH 

8.0. Virus stocks of mutant Ads were prepared at a smaller scale by infection of three T175-flasks 

and the cell pellets were resuspended in 7 ml sterile 30 mM Tris/HCl pH 8.0. Viruses were released 

by 3-4 freeze/thaw cycles: Cells were frozen on dry-ice and quickly thawed at 37°C in a water bath. 

Finally, cell debris was removed by centrifugation (10 min., 3500 rpm, Heraeus Varifuge 3.0R) and 

the supernatant was split into aliquots of 0.5-1 ml and stored at –80°C. 

 
Plaque assay 

Adenovirus stocks were quantified by plaque assays (Mittereder et al., 1996). Virus stocks 

were diluted 1:1010, 109, 108, 107 in DMEM without FCS. A549 cells were grown to 95% confluency 

in 6 cm ∅  dishes and washed once with DMEM without FCS. Then 1 ml DMEM containing 

different virus dilutions was added and incubated 1.5 h at 37°C, 5% CO2  with shaking every 15 

min. 2% sterile low melting point agarose (SeaPlaque, in H2O) was solubilized in the microwave 

and a sufficient volume was equilibrated to 37°C together with 2x DMEM/6% FCS. At the end of 

the adsorption time medium was removed from the dishes. 2% low melting point agarose was 

mixed 1:1 with 2x DMEM/6%FCS and 5 ml per dish was used to overlay the cells. The dishes were 

left 10 min at RT (lids not tightly closed) until the agarose hardened and then transferred to the 

incubator (37°C, 5% CO2). Every 4-5 day the 3 ml DMEM/1% agarose was added onto the overlay 

to provide sufficient nutritional components. At day 7 p.i. plaques appeared and were counted 

every day. The final PFU was determined when the plaque count was constant for 2-3 days. To 

facilitate detection of plaques neutral-red was added to the medium in the last round of overlay.  

Preparation of 2x DMEM/6% FCS (250 ml): 6.7 g 2x DMEM powder (Gibco), 1.7 g NaHCO3 were 
dissolved in 200 ml ddH2O, the pH was adjusted to 6.8-7.0 with 1N HCl and ddH2O added to a final 
volume of 232 ml. After passing the solution through a sterile filter unit 15 ml FCS (6% final conc), 2.5 ml 
P/S and 500 µl Fungizone were added. 

 
Immunofluorescence 
Subconfluent layers of A549, SV80Fas or SeBu cells were grown on sterile glass coverslips. 

Cells were rinsed with PBS and fixed with 3% (w/v) paraformaldehyde in PBS for 20 min. After 
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quenching aldehyde groups with 50 mM NH4Cl and 20 mM glycine in PBS for 10 min, cells were 

permeabilized with 0.2% saponin in PBS with 5% FCS to block non-specific binding for 10 min. 

The cells were incubated with the primary antibody diluted in 0.2% saponin/5% FCS in PBS for 

1h, washed four times with 1 ml 0.2% saponin in PBS and incubated with the secondary antibody 

(fluorescein- or rhodamine-conjugated goat or donkey anti-mouse, anti-rabbit or anti-sheep IgG, 

respectively, dilution 1:100) for 1 h. After four washing steps with 1 ml 0.2% saponin in PBS, the 

coverslips were mounted on glass slides with Histogel. The mounted cells were analyzed with a 

laser scanning confocal microscope.  

Antibody  dilution 
mouse mAb anti-Calnexin (AF8) 1:100 
mouse mAb anti-EEA1 1:100 
mouse mAb anti-Fas-Mix B-G27, B-D27, DX3 each 1:40, ANC95.1/5E2 1:400 
mouse mAb anti-FLAG octapeptide (M1) 1:1000 used in the presence of 1 mM CaCl2 
mouse mAb anti-Galactosyltransferase (GTL-2) 1:200 
mouse mAb anti-GM130 1:100 
mouse mAb anti-Lamp-2 (2D5, supernatant) 1:10 
mouse mAb anti-LBPA (6C4) 1:100 
mouse mAb Tw1.3 undiluted hybridoma supernatant with 0.2% saponin 
rabbit polyclonal serum anti-10.4K (Bur3) 1:100 
rabbit polyclonal serum anti-10.4LLAA (R71) 1:100 
rabbit polyclonal serum anti-Fas 1:100 
Rα14.5K (prot A purified Bur4) 1:100 
sheep anti-TGN46 1:100 

 

Flow cytometry analysis 

For flow cytometry analysis cells (293 or A549) in a 6 cm ∅  dish were washed once with 5 

ml PBS and detached with 0.5 ml warm Typsin/EDTA for exactly 5 min. Then, the cells were 

resuspended in 5 ml DMEM containing 10% FCS and centrifuged (300 g, 5 min). Cell pellets were 

resuspended in ice-cold FACS (fluorescence activated cell sorter) buffer. The following steps were 

carried out on ice. 30 µl containing 0.5*106 (A549) or 0.5-1*106 (293) cells were added into a well 

of a 96-well plate prefilled with 70 µl ice-cold FACS buffer containing the first antibody (ca. 1 µg 

purified antibody or undiluted hybridoma supernatant). In the negative control cells were added 

to FACS buffer without antibody. After incubation for 45 min at 4°C, the antibody solution was 

diluted by addition of 70 µl of FACS buffer and cells were centrifuged for 3 min (300g, 4°C). The 

supernatant was flicked out of the 96 well plate and the cells were resuspended by vortexing the 96-

well plate at 1300-1400 rpm. This cycle of washing and centrifugation was repeated 3 times with 

190 µl FACS buffer and subsequently 50 µl of secondary antibody solution (GαM or GαR IgG 

from Sigma, dil. 1:50) was added to the cells. The 96-well plate was gently vortexed to resuspend 

the cells in the Ab solution. Subsequently, it was incubated for 40 min at 4°C in the dark. The 



Materials and Methods 

 65

antibody binding step was stopped by addition of 130 µl of FACS buffer to each well and 

centrifugation. After three washing/centrifugation steps with 190 µl FACS buffer the cells were 

resuspended in 100 µl FACS buffer and transferred to plastic tubes with 400 µl FACS buffer and 

5000 cells were analyzed in a FACSCalibur flow cytometer. From the mean value of fluorescence 

background staining obtained with secondary Ab alone was deducted. If the MVF was measured 

using polyclonal antibodies (rabbit sera) in the primary Ab incubation step, the background 

fluorescence was determined on a separate sample incubated in parallel with the corresponding 

preserum (dil. 1:100). For determination of intracellular FLAG-14.5K content with mAb M1 

background control was carried out by incubating cells IgG2b isotype control Ab MA215. Whereas 

hybridoma supernatant of mAb Tw1.3 was used for determination of intracellular E3/19K content 

in 293 E3-transfectants, this primary antibody gave a high background on infected A549 cells, and 

supernatant 3A9 was used instead. 

FACS buffer: 3% (v/v) FCS, 0.02% (w/v) NaN3 in PBS 
For intracellular staining FACS buffer with 0.1% (w/v) saponin was used. 
 
Antibody  dilution 
3A9 anti-Ad2 E3/19K Hybridoma supernatant undil. 
528 anti-EGFR Hybridoma supernatant undil. 
B-G27 anti-Fas 1:10 
M1 anti-FLAG 1.1 µg/sample with or without addition of 0.1% saponin 
mAb DR4 1H5 0,9 µg/sample 
mAb DR5 3F11 0,8µg/sample 
Polyclonal Ab RαDR4 1:100 
Polyclonal Ab RαDR5 1:100 
Polyclonal Ab R59 anti-10.4K 1:100 in FACS buffer with saponin 
Tw1.3 anti-Ad2 E3/19K Hybridoma supernatant, used with 0.1% saponin and the 

additon of 0.7 µg/sample purified Tw1.3 
Tw1.3 anti-Ad2 E3/19K purified 3.6 µg/sample dil. in FACS buffer with saponin 
W6/32 anti-HLA-A,-B,-C 1:40 (3 µg/sample) 
 

2.2.5 Protein techniques 

Metabolic labeling and immunoprecipitation  

Cells were grown on 6 cm ∅  culture dishes to 80-90% confluency. After washing once with 

3 ml RPMI without methionine and cysteine, cells were incubated with 2 ml RPMI without 

methionine and cysteine for 1h to deplete the intracellular levels of methionine and cysteine. Then 

cells were metabolically labeled (293 E3 transfectants: 200 µCi of each [35S]-methionine and [35S]-

cysteine in 1 ml RPMI) for 1 hour. The cells were washed once with cold DMEM, once with cold 

PBS and then lysed with 1 ml IP-lysis buffer containing freshly added protease inhibitors at 4°C 

for 15 min. The supernatant was transferred to 1.5 ml tubes. After 15 min centrifugation at 14000 
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rpm (4°C, cooled microcentrifuge) supernatants were transferred to new 1.5 ml tubes. To monitor 

the incorporation of radioactive label 5 µl lysate were added to 1 ml scintillation cocktail and the 

amount of radioactivity was measured with a β-counter. All further incubations were performed at 

4°C. Preequilibrated protein A-Sepharose (see below) was washed 3x with buffer B and a 50% 

slurry was prepared. 50 µl of the 50% slurry was added to each sample, followed by incubation for 

50 min. rotating in a head-over-tail shaker. The protein A-Sepharose beads were spun down for 30 

s at 14000 rpm (microcentrifuge). The clear lysate was added to 7 µl monoclonal TW1.3 (5-10 µg) 

in a fresh 1.5 ml tube and incubated for 45 min rotating head-over-tail. 50 µl of a 50% protein A-

Sepharose slurry was added followed by another incubation for 45 min rotating in an overhead 

mixer. The protein A-Sepharose beads were centrifuged for 30 s at 14000 rpm (microcentrifuge). 

The pellet was washed 3x with 1 ml buffer B, 2x with 1 ml buffer C and 1x with 1 ml 10 mM Tris 

pH 8.0. Finally, the pellet was centrifuged for 2 min. at 14000 rpm (microcentrifuge). The 

supernatant was completely removed and the samples were resuspended in complete SDS sample 

buffer for SDS-PAGE on a 11.5-13.5% gradient Maxigel. For testing different boosters of rabbit 

serum R59 and R71 for specific antibody development infected A549 cells (12 h p.i., 10 pfu/cell) 

were labeled with 100 µCi each [35S]-methionine and [35S]-cysteine and the serum and 

corresponding preserum were used for IP in a 1:200 dilution. Immunoprecipitates were separated 

on a 15% maxigel. 

Promix™:  70% L-[35S]-methionine, 30% [35S]-cysteine, 14.3 mCi/ml, specific activity >1000 Ci/mmol 
IP-lysis buffer: 1% Triton X-100 or digitonin  

140 mM NaCl 
5 mM MgCl2 
20 mM Tris pH 7.6 
8 µg/ml PMSF (stock 20 mg/ml in isopropanol) 
10 µg/ml trypsin inhibitor (stock 10 mg/ml) 
0.5 µg/ml leupeptin (stock 2 mg/ml) 

Buffer B: 0.2% Triton X-100 or digitonin 
150 mM NaCl pH 8.0 
2 mM EDTA pH 8.0 
10 mM Tris pH 7.6 

Buffer C: 0.2% Triton X-100 or digitonin 
500 mM NaCl 
2 mM EDTA pH 8.0 
10 mM Tris pH 7.6 

Preequilibration of protein A-sepharose: 

1.5 g protein A-sepharose CL-4B were washed with 20 ml 100 mM Tris pH 8.0 for 30 min. on a 

rolling shaker at 4°C followed by centrifugation at 2200 rpm in a Varifuge 3.0R centrifuge. 

Subsequently, washing was repeated 2x with 20 ml 50 mM Tris pH 8.0 for 5 min. and once with 

20 ml 10 mM Tris pH 8.0. Finally, the protein A-Sepharose was resuspended in 10 mM Tris pH 

8.0 to obtain a 50% slurry. 
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SDS PAGE 

a) Maxigel 

Gel electrophoresis was performed using a 15% gel or a (11.5 % to 13.5 %) gradient gel 

(200 x 300 x 1 mm) (Laemmli, 1970). For pouring gradient separation gels the two solutions were 

mixed in a gradient former. During polymerization the gel was overlaid with isopropanol. The 

stacking gel solution was poured on top of the separation gel and a comb (20 wells, 0.8 cm wide) 

was inserted. The gel electrophoresis apparatus was assembled. IP samples in 25 µl complete 

sample buffer were heated for 5 min. to 95°C. After cooling to RT 5 µl 0.5 M iodacetamide was 

added and samples were incubated for 15 min at RT. Then the samples were centrifuged for 2 

min. at 14000 rpm (microcentrifuge) and loaded on the gel. 10 µl of 14C-methylated proteins were 

used as molecular weight marker (5,740-30 kD). Separation was performed at 18-25 mA constant 

current for 12-18 h. Then the gel was fixed in fixing solution for 45 min, transferred to Whatman 

paper, covered with plastic foil and dried for 2 h at 80°C under vaccum in a gel dryer. Dried gels 

were exposed to BioMaxMR films at –80° C or phosphorimager screens at RT. Radioactive bands 

were quantified using a Storm 860 Molecular Imager. ilms were developed using an automatic film 

developing machine. 

Separation gel:    11.5%  13.5%  15% 
Acrylamide/Bisacrylamide (29:1)  15.3 ml  18  ml  40 ml 
2 M Tris pH 8.8    8.4 ml  8.4 ml  16.8 ml 
20 % SDS    0.2 ml  0.2 ml  0.4 ml 
H2O     16.1 ml  3.3 ml  22.6 ml 
60% sucrose       -  10 ml    - 
10 % APS    120 µl  120 µl  120 µl 
TEMED      20 µl     20 µl    40 µl 

Stacking gel:     5%  
Acrylamide/Bisacrylamide (29:1) 5 ml 
0.5 M Tris pH 6.8   4 ml 
20 % SDS    0.15 ml 
H2O     14 ml 
60% sucrose    7 ml 
10 % APS    150 µl 
TEMED    15 µl 

Sample buffer pH 8.8 (stock):  10 ml 2 M Tris pH8.8 (200 mM final conc.) 
     57.14 ml 60% sucrose (1M final conc.) 
     1 ml 500 mM EDTA (5mM final conc.) 
     0.01 g bromophenolblue (0.01% final conc.) 
     H2O ad 100 ml 
Sample buffer (complete):  1 ml sample buffer pH 8.8, 100 µl 0.5 M DTT , 200 µl 20% SDS 
Fixing solution (1 l):   8% acetic acid, 46% methanol 
Electrophoresis buffer (5 x):   30 g/l Tris, 144 g/l glycine, 0.5% SDS (added just before use) 
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b) Minigel 

Gel electrophoresis with minigels was performed using the Protean II system (Bio-Rad) 

with 15% gels (80 x 50 x 1 mm). IP samples were mixed with 25 µl sample buffer and further 

processed as described for maxigels. As molecular weight marker 10 µl of Protein marker Dalton 

VII-L (14-70 kD, 3.5mg of lyophilized mix dissolved in 1.5ml complete sample buffer) were loaded. 

Separation gel:   15%  
Acrylamide/ Bisacrylamide (29:1) 5 ml 
2 M Tris pH 8.8   2.1 ml 
H2O     2.8 ml 
20 % SDS    50 µl  
10 % APS    40 µl 
TEMED    5 µl 
 

Stacking gel:      5%  
Acrylamide/ Bisacrylamide (29:1) 1.7 ml 
0.5 M Tris pH 6.8   1.4 ml 
H2O     6.8 ml 
20 % SDS    50 µl 
10 % APS    50 µl 
TEMED       10 µl 

Electrophoresis buffer (10 x): 30.28 g/l Tris, 144 g/l glycine, 1% SDS (added directly before use) 
 

Immunoprecitation and Western blotting 

a) Preparation of cell lysate 
Cells were grown to nearly 100% confluency in 6 cm ∅  (10 cm ∅ ) culture dishes, washed 

with ice-cold PBS and lysed with 1ml (3ml) IP-lysis buffer containing freshly added protease 

inhibitors at 4°C for 15 min. The supernatant was transferred to 1.5 ml tubes. After 15 min 

centrifugation at 14000 rpm (4°C, cooled microcentrifuge) the supernatants were transferred to 

new 1.5 ml tubes or samples with volumes of more than 1 ml were pooled in a 15ml Falcon tube. 

At this point aliquots were taken for determination of the total protein content using BCA 

protein assay kit. 1 ml aliquots of equal protein content were prepared from all samples and used 

for immunoprecipitaion or if not used immediately, stored at –80°C.  

b) Immunoprecipitation 
In modification of the immunoprecipitation protocole for radioactively labeled lysates 5 µl 

preserum (rabbit polyclonal Ab) were added to a 1 ml aliquot of the lysate, mixed by vortexing 

and  incubated on ice for 20 min. Preequilibrated protein A-Sepharose was washed 3x with buffer 

B and a 50% slurry was prepared. 50 µl of the 50% slurry was added to each sample, followed by 

incubation for 50 min rotating in a head-over-tail shaker. The protein A-Sepharose beads were 

centrifuged for 30 s at 14000 rpm (microcentrifuge). Then 980 µl of lysate was transferred to a new 

1.5 ml tube and incubated on ice with 5 µl of specific serum (rabbit) for 20 min.. 50 µl of a 50% 

protein A-Sepharose slurry was added followed by another incubation for 45 min rotating in an 

overhead mixer. The protein A-Sepharose beads were centrifuged for 1 min at 14000 rpm 

(microcentrifuge). The pellet containing the immunocomplexes was washed 3x with 1 ml buffer B, 

2x with 1 ml buffer C and 1x with 1 ml 10 mM Tris pH 8. Finally, the pellet was centrifuged for 2 



Materials and Methods 

 69

min at 14000 rpm (microcentrifuge). The liquid was completely removed and the pellets were 

resuspended in 25 µl SDS sample buffer and analyzed by SDS-PAGE on a 15 % minigel.  

c) Protein blotting and detection 

Proteins were blotted onto nitrocellulose membranes using the Trans-Blot SD Semidry 

Transfer Cell (Bio-Rad). A sheet of nitrocellulose membrane and eight pieces of Whatman filter 

paper of the same size as the gel were soaked with transfer buffer. A stack of four sheets of filter 

paper, the nitrocellulose membrane, the gel and another four sheets filter paper was assembled 

avoiding inclusion of air-bubbles and with the nitrocellulose facing the anode. Blotting was 

performed at 0.8 mA/cm2 for 80 min. Protein bands were visualized after 2 min incubation of the 

membrane in Ponceau staining solution, to cut out lanes for separate antibody incubations. 

Ponceau staining solution was removed by washing the membrane with PBS. Unspecific binding 

sites were blocked by incubation o/n at 4°C in PBS/0.05% Tween 20, 5% skim milk powder, 

0.02% NaN3. Then, incubation with the primary antibody (rabbit sera, dil. 1:200) was performed 

at RT for 1 hour in 2-4 ml PBS/0.05% Tween 20 in a rotating Falcon tube. After five washing steps 

for 15 min. in 200 ml PBS/0.05% Tween 20 the membrane was placed for 1 hour in 25 ml 

PBS/0.05% Tween 20 containing the secondary antibody Peroxidase-conjugated goat anti-Rabbit 

IgG (1:10000 – 1:20000) with constant shaking at 40 rpm. Subsequently, the membrane was washed 

5x 10 min and 1x 30 min in 200 ml PBS/0.05% Tween 20. Then the blotted proteins were detected 

using the ECL Western blotting detection system (Amersham-Pharmacia) according to the 

manufacturer’s instructions. The membrane was exposed to BIOMAX-MR autoradiography films 

for different time periods. 

Transfer buffer (1l):  5.8 g Tris base, 2.9 g Glycine, 0.37 g SDS, 200 ml Methanol, H2O ad 1l 
Ponceau solution (100 ml): 0.5 g Ponceau S, 1 ml Glacial acetic acid, 98.5 ml H2O 

d) Coomassie blue staining 

For Coomassie blue staining of proteins, SDS-PAGE gels were incubated in Coomassie 

blue staining solution (0.25% Coomassie brilliant blue R-250, 45% methanol, 10% acetic acid) for 

12 h and destained with 30% methanol/10% acetic acid by changing the destaining solution until 

the desired protein staining was visible. 

 
Surface plasmon resonance 

In order test the in vitro binding of the clathrin adaptor complexes AP-1 and AP-2 an 

interaction analysis was performed by Stefan Höning, University of Göttingen, Göttingen, 

Germany. Wt and mutant 10.4 and 14.5 cytoplasmic tail peptides were coupled to a CM5 sensor 

chip. Interaction was analyzed using a BIAcore 2000 (BIAcore AB). Purified AP-1 and AP-2 were 

used at 100 nM in buffer A (20 mM HEPES pH 7.0, 150 mM NaCl, 10 mM KCl, 2 mM MgCl2, 
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0.2 mM dithiothreitol) and injected at a flow rate of 20 µl/min. Association (2 min) was followed 

by dissociation (2 min) during which buffer A was perfused. The equilibrium constant (KD) was 

determined as described (Honing et al., 1997). 

 
Production of rabbit polyclonal antibodies 

For generation of antiserum R59 one Newzealand White rabbit was immunized with 

approximately 1 mg of 10.4 cytoplasmic tail peptide in 500 µl PBS mixed with 500 µl complete 

Freund’s adjuvant by subcutaneous injection. For generation of R71 another rabbit was 

immunized with a mixture of KLH-coupled mutant peptide and free peptide (total 725 µg of 

peptide) emulsified with complete Freund’s adjuvant. In 4 week intervals the rabbits were 

immunized with the same dose of immunogen mixed with incomplete Freund’s adjuvant. 20-25 

ml blood were taken (i.v.) on day 10 after each boost. All immunization steps and bleedings were 

performed by Christian Kuenzel, Max-von-Pettenkofer Institut, Munich, Germany. Serum was 

recovered by incubation at RT for several hours, 30 min. incubation at 37°C and o/n at 4°C 

followed by centrifugation of the blood sample for 15 min at 3000 rpm (Heraeus Varifuge 3.0R). 

A serum aliquot of 0.5 ml was kept at 4°C (0.02 % sodium azide), the rest was stored at –80°C. 

Specific antibody development was tested in immunoprecipitation/metabolic labeling experiments 

on infected A549 cells. The rabbit was sacrificed when the specific activity of the antibodies 

remained constant. 
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Results 

 
3. Relevance of strictly conserved amino acids for Ad2 10.4-14.5K function  
 
3.1 Identification of strictly conserved amino acids within 10.4K and 14.5K 

The adenovirus E3/10.4K and E3/14.5K proteins are encoded by a clustered sequence 

block which is found in all subgroups of human adenoviruses. Interestingly, these sequences 

exhibit a high degree of variability. It is thus conceivable, that amino acids conserved among 10.4-

14.5K proteins from different subgenera might be required for 10.4-14.5-induced down-regulation 

of plasma membrane receptors. Recently, the sequences of the 10.4K and 14.5K genes of subgenus 

D (Burgert and Blusch, 2000) and subgenus E Ads (Burgert et al., 2002) were determined allowing 

a complete comparison of 10.4K and 14.5K proteins from Ads of all subgroups. (Fig. 8A and 8B). 

Except for the subgenus F homologs Ad40 and Ad41 (90 residues), 10.4K sequences share a length 

of 91 amino acids, but only 15 amino acids are strictly conserved. The majority of strictly 

conserved residues is distributed over the C-terminal cytoplasmic tail sequence, which is rather 

short (~30 amino acids). Remarkably, a highly polar cysteine-serine pair is conserved in the central 

part of the predicted transmembrane domain. In the extracellular domain the cysteine residue that 

forms the disulfide bond between 10.4K species is strictly conserved (Fig. 8A). 

By contrast to the constant length of 10.4K, the length of the mature 14.5K protein varies 

from 91 to 127 amino acids (Fig. 8B). Furthermore, the sequence homology between 14.5K 

proteins of different subgenera is significantly lower (average ~30%) than that of its interaction 

partner 10.4K (40 to 52%). In the mature 14.5K protein, only 9 amino acids are strictly conserved. 

Three of them are adjacent to each other forming a SYF triplet positioned 10 amino acids 

upstream from the C-terminus. 

Another remarkable feature of the 14.5K cytoplasmic tail sequence is the high content of  

proline residues (especially in subgenus D proteins), one proline being strictly conserved. Proline-

rich sequences containing a PXXP consensus might act as protein interaction modules for SH3 

domain-containing proteins (Mayer, 2001), which might also be true for the 14.5K proline-rich 

region (Burgert and Blusch, 2000). Some of the conserved amino acids within 10.4K and 14.5K 

may be part of putative tyrosine-based or dileucine-type transport motifs, consensus sequences 

previously shown to mediate transport into endosomes/lysosomes (Bonifacino and Traub, 2003; 

Kirchhausen, 1999): In 14.5K, two YXXΦ motifs, designated Y74XXΦ and Y122XXΦ according to 

the position of the Y in the Ad2 14.5K sequence, are strictly conserved (Fig. 8B). The Y122XXΦ 

motif is commonly found in position –9 from the C-terminus, whereas Y74XXΦ may be located  
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◄ Fig.8 Identification of strictly conserved amino acids within 10.4K and 14.5K proteins from Ads of 
all human adenovirus subgenera 
Amino acid sequence comparison of E3/10.4K (A) and E3/14.5K (B) proteins. Multiple alignment was 
carried out with DNAman software using the optimal alignment instruction. For each subgroup 
representative members were chosen (listed on the left of the sequence comparison). The 14.5K sequence 
alignment was further refined manually in accordance with a more extensive sequence comparison (see 
(Burgert et al., 2002). The predicted signal sequences and transmembrane domains are underlined. Amino 
acids present with >50% homology between the given examples are shaded, a dash marks the lack of the 
corresponding amino acid. Stars (*) denote amino acids identical in all serotypes sequenced to date (Burgert 
et al., 2002). YXXΦ and LL consensus motifs are indicated on top of the sequence comparison. Genbank 
accession numbers and references for E3 sequences are as follows: Ad2 (Herisse et al., 1980; Herisse and 
Galibert, 1981), Ad5 M73260, Ad3 (Signas et al., 1986), Ad35 (Basler et al., 1996), Ad4 AF361223 (Burgert et 
al., 2002), Ad15, Ad19a (Burgert and Blusch, 2000), Ad12 (Sprengel et al., 1994) and Ad40 (Davison et al., 
1993). ‡ D not strictly conserved, as e.g. N instead of D in Ad8 of subgenus D. For details refer to text. 

close to or within the lipid bilayer (Fig. 8B and Fig. 5). A third YXXΦ sequence element with Y at 

position 76, overlapping the Y74XXΦ element, is present only in 14.5K proteins of subgenus C 

Ads. These tyrosine-based consensus motifs appear to be in close proximity to the putative 

interface with the transmembrane domain (Burgert and Blusch, 2000). Two putative dileucine 

motifs reminiscent of transport motifs can be recognized in the cytoplasmic tail of 10.4K (Fig. 

8A). One LL motif is conserved at position -4/-5 (in Ad12 at -5/-6) from the C-terminus (L87L88 in 

the Ad2 sequence) with the first Leu being replaced by Ile in subgenus D proteins. The last two 

amino acids, either IL in subgenus C or LI in subgenera B, D and E may also constitute transport 

motifs. Additional YXXΦ motifs can be recognized in the cytosolic portion of 10.4K proteins of 

subgenus D and F exclusively. 

 

3.2 Functional relevance of strictly conserved amino acids in 14.5K 

 

To investigate whether some of the strictly conserved amino acids within the 14.5K protein 

sequence are functionally relevant, the corresponding residues in the Ad2 14.5K sequence were 

replaced by alanine. Mutations were introduced into plasmid pBS∆X-E3/F14.5, containing the 

entire Ad2 E3 region which was modified to encode a FLAG-tagged version of 14.5K, with an 

octapeptide-tag fused to the N-terminus of the mature 14.5K. First, it was ensured that FLAG-

tagged 14.5 (F14.5) had a functional activity similar to unmodified 14.5. Stable E3/F14.5+ 293 

transfectants, namely E3/F14.5-19, E3/F14.5-8, and E3/F14.5-16 cells provided by A. Elsing (in Fig. 

9 referred to as F-19, F-8, F-16, respectively) were selected that expressed similar levels of 

intracellular E3/19K and surface HLA molecules as the E3+ reference cell line (E3-45) expressing 

untagged 14.5 (Fig. 9). Comparison of the FACS data for surface expression of Fas and the EGFR 

demonstrated that receptor down-modulation is as effective in cells expressing FLAG-tagged 14.5K  
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Fig. 9  Down-regulation of Fas and the EGFR in E3+ 293 cells expressing Flag-14.5K 
Relative expression of plasma membrane proteins HLA, Fas, EGFR and intracellular content of E3/19K as 
determined by FACS analysis on 293 cells and 293 E3 transfectants expressing unmodified 14.5K (clone E3-
45) or FLAG-tagged 14.5K (clones F-19, F-16, F-8). HLA and E3/19K expression was measured with mAbs 
W6/32 and Tw1.3, respectively, followed by incubation with FITC-labeled goat anti-mouse IgG (SIGMA, 
Munich, Gemany). Analysis of intracellular E3/19K content was carried out in the presence of 0.1 % 
saponin. Fas and EGFR were detected by mAbs B-G27 and 528, respectively. After deduction of the 
background staining obtained with the secondary antibody alone, the mean value of fluorescence (MVF) for 
each cell clone was related to that of 293 cells, which was set to 100%. The 19K MVFs were related to E3-45 
cells, a representative clone of 293 cells expressing wild-type E3 proteins. The bars denote the mean value 
calculated from three measurements. Error bars depict the standard error of the mean (SEM). 

 
as in cells expressing unmodified 14.5K. The E3/F14.5-19 cell line, hereafter referred to as F-19, 

was chosen as a positive control for protein expression in E3/F14.5-transfected 293 cells. 

Upon transfection of mutant plasmids into 293 cells and selection of stable transfectants 

with G418, the effect of the mutation was quantitatively assessed by measuring Fas and EGFR cell 

surface expression using FACS analysis. The 293 system was previously shown to allow efficient 

expression of E3 proteins, due to the presence of E1A proteins in 293 cells which transactivate the 

E3 promoter (Burgert and Kvist, 1985; Elsing and Burgert, 1998; Korner et al., 1992; Sester and 

Burgert, 1994). The system has the additional advantage of easy standardization of E3 protein 

expression levels (copy number) by monitoring expression of E3/19K, an unrelated E3 protein not 

affected by the mutations introduced in 10.4K and 14.5K (Elsing and Burgert, 1998). Thus, upon 

standardizing E3 expression, the effect of each mutation on Fas and EGFR modulation was 

compared. Transfectant clones were first screened for intracellular E3/19K expression. In general, 

5 or 8 independent clones from each transfection with levels comparable to transfectants 

expressing wild-type E3 proteins and with similar HLA modulation (Burgert and Kvist, 1985; 
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Elsing and Burgert, 1998) were selected for further analysis. In a series of at least three independent 

measurements the mean value of fluorescence (MVF) for each clone was determined and related to 

that of untransfected 293 cells measured in parallel. Thereby, variations introduced by different 

experimental conditions were compensated. Additionally, receptor surface expression levels on 

pSV2-neor-transfected 293 cells (pneo) were analysed. For each individual clone relative receptor 

expression levels (% of 293 cells) determined in different experiments were combined to calculate 

the arithmetic mean. Mean values of 5-8 individual clones were used to determine the overall 

arithmetic mean value and standard error for each cell line (depicted in Fig. 10). For simplicity 

mutant cell lines are designated with the single letter code of the amino acid that was replaced by 

alanine and its position in the Ad2 14.5K protein sequence. Results for the mutant cell lines were 

compared to those of the reference cell line F-19 expressing wt E3 proteins. 

The average level of intracellular E3/19K content was very similar among the selected 

clones and was comparable to that of F-19 cells set to 100% (Fig. 10A, white bars). Accordingly, 

cell surface expression of HLA in all these clones was reduced by at least 75% (Fig. 10A, black 

bars). Having established a comparable E3 protein expression level, the relative efficacy of each 

10.4-14.5K mutant to modulate Fas and EGFR was determined by flow cytometric analysis of their 

cell surface expression (Fig. 10B and 10C). In F-19 cells which expressed wild-type 10.4-14.5K 

proteins Fas surface expression was reduced to ~10% of the levels expressed on 293 cells. EGFR 

levels corresponded to ~20% of those on 293 cells. 

The down-modulating capacity was largely retained in cells expressing the 14.5Y44A mutant, 

as Fas levels on these cells were drastically reduced and similar to those of F-19. EGFR surface 

expression was decreased to 35% of the levels on 293 cells, corresponding to at least 80% of the 

reduction determined for F-19 (Fig. 10B and 10C). Replacing the neighbouring amino acid C43 by 

alanine more severely affected function. Fas expression corresponded to ~47% of that on the 

surface of 293 cells. EGFR levels were only slightly decreased, ranging at about 80% as compared 

to 293 cells. Interestingly, the other conserved cysteine in the lumenal domain, C32, showed a 

remarkably similar phenotype. The C32 cell line had mean values of E3/19K expression and HLA 

levels comparable with those of the C43 mutant, permitting to compare the results for receptor 

down-modulation of these two cell lines. Inspection of the mean values for Fas and EGFR levels 

on these transfectants revealed that on average Fas levels on C32A transfectants (37,6%) reached 

only 80% of those on C43A clones. Despite a higher variation in EGFR surface expression among 

individual C43A clones, the mean value of their EGFR levels (64,4%) appeared to be increased at a 

similar ratio. Thus, in both mutants the reduction in EGFR levels was less efficient than that of 

Fas and the C43A substitution had a slightly higher impact on Fas
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Fig. 10  Cell surface expression and function of wt and mutant FLAG-14.5K 
(A) Relative cell surface expression of HLA (black bars) and intracellular E3/19K content (white bars) as 
determined by FACS analysis on E3/F14.5+ 293 transfectants expressing wt (F-19) or mutant FLAG-14.5K, 
pSV2-neor-transfected (pneo) or untransfected 293 control cells. Mutant E3/F14.5+ cell lines are designated 
with the substituted amino acid. Antibodies were as described in Fig. 9. After deduction of the background 
staining obtained with the secondary antibody alone, the mean value of fluorescence (MVF) for each cell 
clone was related to that of 293 cells (HLA) or F-19 cells (19K), which was set to 100%. Data were compiled 
from 3 independent experiments using 3 to 8 representative clones from each mutant cell line and the 
control cells. Error bars represent the SEM. (B)+(C) Relative Fas and EGFR surface expression on cell lines 
analyzed in A. Data were derived as described in (A) except for the EGFR levels on mutant Y122 which 
were determined in a single experiment with three selected clones. (D) Anti-FLAG mAb M1 was employed 
for monitoring FLAG-14.5K surface exposure, followed by incubation with FITC-labeled goat anti-mouse 
IgG. After deduction of background staining obtained with secondary antibody alone the MVFs for each 
cell line were related to that of F-19 cells (set to 100%) determined in the same experiment.
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and EGFR down-modulation (Fig. 10B and 10C). 

Mutations of strictly conserved amino acids (S121, Y122, F123) within the 14.5K 

cytoplasmic tail sequence also affected down-modulation of both Fas and the EGFR (Fig. 10B and 

10C). As expected from the results obtained with E3/14.5Y122A mutants (see Fig.7, chapter 1.9) the 

corresponding FLAG-tagged mutant (designated Y122) showed no loss in Fas and EGFR surface 

expression. In the previous series of experiments with non-FLAG-tagged E3/14.5Y122-transfectants 

Fas and EGFR expression levels were similar to those seen for 293 E3-transfectants that lack 

expression of 10.4K and 14.5K (Fig. 7, (10.4-14.5)ko cell line). In good correlation, the FLAG-

tagged mutant cell line 14.5Y122A exhibited 85% of the Fas surface expression on 293 cells, which 

corresponded exactly to the mean value of 293 E3 transfectants expressing non-FLAG-tagged 

14.5Y122A (see Fig. 7). EGFR surface expression on Y122A clones was restored to the levels seen on 

293 cells, indicating a complete loss of function regarding down-modulation of the EGFR. In 

conclusion, alanine replacement mutation of Y122 in 14.5K severely suppressed down-regulation 

of both receptor targets, Fas and the EGFR. 

The serine S121, directly preceding Y122, seemed not to be essential for down-modulation 

to occur. Fas levels were reduced to below 30%, and EGFR levels below 50% of those on 293 cells. 

Substitution of F123, the C-terminal neighbour of Y122, more severely affected functional activity 

of 14.5K, with 40% Fas and at least 60% EGFR surface expression as compared to 293 cells. 

If one compares the reduction of surface expression levels on F-19 cells with that of the mutant 

cell lines it becomes obvious that all the mutations introduced in 14.5K caused a more 

pronounced suppression of EGFR modulation than Fas down-regulation (Fig. 9). Similarly, in the 

wild-type situation the reduction in relative surface expression on 293 E3+ cells was generally less 

for the EGFR than for Fas (Fig. 9 and Fig. 10). 

 
3.3 Surface expression levels of mutant FLAG-14.5K 

 
The FLAG-tag fused to the N-terminus of the mature 14.5K allowed to quantitatively 

monitor 14.5K expression on the cell surface by flow cytometry with monoclonal antibody (mAb) 

M1. 14.5K mutant Y44A had been shown to retain most of its functional activity and appeared to 

have normal surface expression levels (Fig. 10D). By contrast, the functional knock-out Y122A 

resulted in a 4-5 fold increase of 14.5K surface expression. Thus, functional loss by this single 

amino acid substitution in 14.5K was accompanied by a profound alteration of intracellular 

localization of the 14.5K protein. Similarly, the other alanine replacement mutations which had 

been shown to impair functionality of the 10.4-14.5K complex to some extent were associated with 
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altered surface expression levels of 14.5K. Mutation of the cysteines in the extracellular domain 

reduced 14.5K surface expression to 30-40%. The S121A mutant, which exhibited higher down-

modulation capacity also showed higher surface expression of 14.5K reaching 84% of those on F-

19 cells. Similar to the phenotype observed for the Y122A mutant, substitution of F123 led to a 

dramatic increase in 14.5K surface expression levels. About 3 fold higher amounts of 14.5K were 

detected on the cell surface as compared to F-19. Thus, strictly conserved residues Y122 and F123 

contained within the Y122XXΦ consensus caused an increase in 14.5K surface expression, whereas 

the strictly conserved residue S121 preceding this sequence element seemed not to be essential, as 

on these cells FLAG-14.5K surface expression reached 80-90% of the levels of wild-type E3/F14-5 

transfectants. The integrity of tyrosine Y122 seemed to be most critical as it was associated with an 

immense increase in FLAG-14.5K surface expression, even higher than that on F123A cells, and it 

was shown to be of crucial functional importance in vivo, inhibiting down-modulation of both 

Fas and the EGFR. 

In addition to tyrosine Y122, a second strictly conserved tyrosine within the 14.5K 

cytoplasmic tail, Y74, had previously been shown to be functionally relevant, as Fas levels on the 

mutant E3-transfectants remained at 74% and EGFR levels even higher, corresponding to 90% of 

the levels on 293 cells (as depicted in Fig. 7). Both tyrosines are part of YXXΦ consensus sequences 

found in all human adenovirus subgroups. In subgroup C viruses a third YXXΦ motif starting 

with tyrosine Y76, and partially overlapping the Y74XXΦ motif, is present in the 14.5K sequence. 

The Y76A substitution only slightly decreased the efficiency of Fas and EGFR down-regulation, and 

therefore, Y76 does not seem to be critical for 10.4-14.5 function (Fig. 7). 

Taken together, the FACS analysis of 293 E3-transfectants revealed that among the strictly 

conserved amino acids of 14.5K two strictly conserved tyrosines at position Y122 and Y74 of the Ad2 

14.5K sequence are of crucial functional importance in vivo. The aim of the following study was 

to explore the function of these critical tyrosines and their implication in the mechanism of 

receptor down-regulation. As loss of function mutant Y122A was associated with an alteration of 

14.5K surface expression levels, the importance of putative YXXΦ and dileucine type sorting 

signals for 10.4-14.5K function was analyzed.  

 
3.4 Complex formation of 10.4K with 14.5K mutants 

 
Given that both 10.4K and 14.5K are required for down-regulation of Fas and the EGFR 

and that they form a complex in infected cells in vivo (Elsing and Burgert, 1998; Tollefson et al., 

1991), it is conceivable that complex formation is a prerequisite for 10.4-14.5 function. Therefore, 
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14.5K mutants with a loss of function phenotype were examined for their ability to interact with 

10.4K. Alanine replacement mutants of Y74 and Y122 were analyzed. Additionally, the mutant cell 

line Y76 was included in the experiment, as Y76 is also the first residue of a YXXΦ consensus 

sequence in Ad2 14.5K. 

Complex formation was assayed by immunoprecipitation of 14.5K from detergent lysates 

and subsequent detection of associated 10.4K by western blotting (see also Materials and Methods). 

Interestingly, immunoprecipitation of 10.4K did not coimmunoprecipitate the 14.5K protein, 

presumably because the epitope in the 10.4K cytoplasmic tail was masked by 14.5K in the complex 

(data not shown). This is in accord, with results reported by another group, that a peptide serum 

directed against the C-terminal 15 amino acids of the Ad2 10.4K protein immunoprecipitated 

solely 10.4K, whereas immunoprecipitation of Ad5 14.5K with sera directed against amino acids 

19-34 or 118-132 efficiently coimmunoprecipitated 10.4K (Tollefson et al., 1991), indicating that 

the extreme N- and C-termini of 14.5K are accessible in the 10.4-14.5K complex. 

One representative clone from each transfection was lysed in Triton X-100 (Trit) or the less 

stringent detergent Digitonin (Dig) and from all the lysates equal amounts of protein were 

subjected to immunoprecipitation. In addition to being as effective in down-modulation of Fas 

and the EGFR on E3-transfectants as the unmodified version, the FLAG-tagged 14.5K wt protein 

was found to associate with 10.4K (Fig. 11A, lane 2). The immunoblot signal of 10.4K revealed 

two bands corresponding to the two isoforms of 10.4K. The protein represented by the upper 

band retains the N-terminal signal sequence for membrane insertion, whereas the cleaved isoform 

migrated as the lower band (Tollefson et al., 1990b). Similar to the wild-type proteins, both 

isoforms of 10.4K are visualized in the extracts containing the Y122 mutant (Fig. 11A, compare 

lanes 2 and 5). Thus, the interaction of the 14.5Y122A mutant with 10.4K was not significantly 

altered. Digitonin lysis allowed to detect higher amounts of 10.4-14.5K complexes than Triton X-

100 lysis. Therefore, the non-covalent association of 10.4K with 14.5K was sensitive to different 

types of detergents and digitonin was better suited for analysis of 10.4-14.5K complex formation. 

The interaction of the Y76A mutant seemed to be reduced as the 10.4 bands could only be detected 

after lysing the cells in the mild digitonin buffer (Fig. 11A, lane 4). Obviously, this reduced 

stability of the complex in Triton extracts was not critical for the in vivo function (compare Fig. 

7). Remarkably, no significant interaction of 10.4K with 14.5 Y74A was detected in either detergent. 

This was not due to an inefficient E3 expression in this particular clone, as E3/19K levels were 

comparable to wild-type and the other mutant cells (Fig. 11B). To examine whether the altered 

complex formation is caused by an altered expression of the individual subunits, the total
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Fig. 11  Association of 10.4K with mutant 14.5K 
(A) Representative clones of 293 E3+ cell lines, expressing F14.5K wt (F19), 14.5Y74, 14.5Y76 or F14.5Y122 
and 293 control cells were lysed in either Triton X-100 (Trit.) or Digitonin (Dig.) buffer and subjected to 
immunoprecipitation (IP) with polyclonal antiserum Bur4 against 14.5K. Immunocomplexes were 
separated by SDS-PAGE and analyzed by western blotting (WB) for the presence of 10.4K with serum Bur3. 
(B) Parallel IP/WB analysis of E3/19K expression in digitonin lysates of 293 cells (lane 1) and selected 293 
E3+ clones studied in A (lanes 2-5) using polyclonal serum RαE3/19K in a second IP step following 
immunoprecipitation of 14.5K. (C) Parallel IP/WB analysis of the total amounts of 10.4K, 14.5K, and 
E3/19K in Triton X-100 lysates of clonal lines studied in (A, B). 10.4K steady-state levels were determined 
by immunoprecipitation with polyclonal Ab R59 and western blot detection by Bur3. For detection of 14.5 
Bur4 was used in both IP and WB. 19K levels were monitored using RαE3/19K in IP and WB. Differences 
in the apparent MW between mutants 14.5Y74 (lane 3), 14.5Y76 (lane4) and wt (lane 2) and 14.5Y122 (lane 
5) are due to insertion of the FLAG-tag in the latter two. 

 
amounts of 10.4K and 14.5K were determined by immunoprecipitation/western blotting (Fig. 

11C, 10.4K and 14.5K). For the comparative analysis of 10.4K and 14.5K contents the 

corresponding E3 expression levels in the selected clones were determined by 

immunoprecipitation/western blot detection of E3/19K (Fig. 11C, 19K), in a second IP step 

following immunoprecipitation of 14.5K. While the total amount of 10.4K in the 14.5Y74A 

expressing cells was comparable to wild-type, steady-state expression of 14.5Y74A was greatly 

reduced (Fig. 11C, 14.5K). Thus, substitution of Y74 selectively reduced the stability of 14.5K, most 

likely by disrupting its association with 10.4K. The impaired interaction of 14.5Y74A with 10.4K 

might have caused the dramatic loss of functional activity observed in 293 transfectants in vivo 

(Fig. 7). The amount of 10.4K isolated in complex with FLAG-modified 14.5Y122A was markedly 

increased compared to that associated with wild-type FLAG-14.5 (Fig. 11A). This was accompanied 

by increased total amounts of immunoprecipitated 10.4 and 14.5Y122A proteins (Fig. 11C, 10.4K 

and 14.5K), if one takes into account the lower E3/19K expression in these mutant cells (Fig. 11C, 

19K, compare lanes 2 and 5). Therefore, the data indicated an increased stability of 10.4K and 

14.5K in the Y122A transfectant. 
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3.5 Functional relevance of dileucine type sequence elements within 10.4K 

 
In a previous FACS analysis of 293 E3-transfectants it had been shown, that substitution of 

the dileucine sequence element at position L87L88 in the 10.4K cytoplasmic tail sequence by alanine 

inhibited down-modulation of Fas and the EGFR (Fig. 7). In order to characterize this loss of 

function mutant in greater detail the mutation was introduced into pBS∆X-E3/FLAG-14.5, 

encoding a FLAG-tagged version of 14.5K. Thereby, it is possible to investigate by FACS analysis 

whether the mutation in 10.4 had any influence on 14.5K surface expression. Furthermore, it 

remained to be analyzed whether substitution of a single leucine accounted for the knock-out 

phenotype or whether the integrity of the dileucine pair was required for efficient receptor down-

regulation. Therefore, additional mutants were created with single leucine residues L87 (mutant cell 

line L1), L88 (mutant cell line L2) replaced by alanine. To examine all potential cytosolic dileucine 

motifs within 10.4K, the last two residues at the 10.4K C-terminus, representing an IL element in 

the Ad2 10.4K sequence (10.4I90L91), were mutated to alanine as well. Upon transfection of mutant 

plasmids into 293 cells and selection of stable transfectants in G418, functional activity of 10.4-

14.5K was assessed by FACS analysis. Transfectants were selected for similar E3/19K expression 

levels and HLA down-modulation. In a series of three independent experiments a representative 

clone of the 10.4L87L88 mutant cell line (hereafter referred to as LL-11) was compared with three 

clones from each of the 293 transfectant cell lines 10.4L87A (L1) and 10.4L88A (L2). In addition, the 

results determined in another series of three experiments with 3 representative clones of the 

10.4I90L91 mutant cell line (IL) are included in Fig. 12. The mean value of fluorescence (MVF) for 

each clone was determined and related to that of untransfected 293 cells or 293 cells expressing 

wild-type E3 proteins. Whereas cell surface expression of HLA was efficiently reduced (Fig. 11A, 

black bars) in all transfectants, intracellular 19K levels (Fig. 11A, white bars) in the selected L1, L2 

clones reached only 64% of those in F-19. Nonetheless, metabolic labeling and 

immunoprecipitation of E3/19K confirmed that individual clones synthesized E3/19K at a rate 

similar to LL-11 and E3-45, but less than F-19 cells (Fig. 13). However, the analysis of single clones 

can yield only an estimate of a mutation’s effects on receptor down-regulation, because variations 

in receptor expression among individual clones cannot be excluded. Therefore the analysis was 

based on a spectrum of three clones, and with respect to lowered E3 gene expression in these 

clones, the results give a rough approximation of the phenotype. 

In F-19 cells which expressed wild-type 10.4K and F14.5K proteins Fas surface expression 

was reduced to below ~10% of the levels expressed on 293 cells. EGFR levels corresponded to

~20% of those on 293 cells (Fig. 12B and 12C). Upon mutation of the last two amino acids (I90L91)
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Fig. 12 Functional relevance of dileucine type sequence elements within 10.4K 
(A) Relative cell surface expression of HLA (black bars) and intracellular E3/19K content (white bars) as 
determined by FACS analysis on E3/F14.5+ 293 transfectants expressing wt (E3-45, F-19) or mutant 10.4K, 
pSVrneo+-transfected (pneo) and untransfected 293 control cells. Mutant E3/F14.5+ cell lines are designated 
LL for both 10.4L87 and 10.4L88 replaced by alanine, whereas L1 indicates substitution of L87 and L2 of L88, 
respectively. Bars denote the relative percentage of expression compared to that seen on 293 cells (HLA) or 
F-19 (E3/19K). The mean value of fluorescence (MVF) of reference cell lines was set to 100%. Antibodies 
were as described in the legend to Fig. 2. Data were compiled from 3 independent experiments using cell 
clone LL-11 and 3 representative clones of L1 and L2. In another series of three experiments three 
representative clones expressing the 10.4IL mutant were compared to F-19 and control cells. Error bars 
represent the standard error (SEM). (B)+(C) Relative Fas and EGFR surface expression on the same 293 
E3/F14.5+ transfectants analyzed in A. Data were derived as described in (A). (D) FLAG-14.5K surface 
expression of the same clones analyzed in A, B and C by the method described in Fig. 10D. 

 
of Ad2 10.4, the capacity of 10.4-14.5K to down-modulate Fas and EGFR was largely retained, 

exhibiting Fas levels corresponding to 30% and EGFR levels of 40% of those on 293 cells. This 

revealed that the IL sequence element was not essential for 10.4-14.5K function. On 293 cells 

transfected with the dileucine pair mutant (LL-11) Fas and EGFR levels were restored, indicating 

that at least one of the two leucine residues was required for 10.4-14.5K function. Single alanine 

replacement mutations of either the first or second leucine resulted in significant reduction of Fas 

expression levels, whereas EGFR expression remained at 70-80% of that on 293 cells. Thus, 
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Fig. 13 E3/19K synthesis in 293 E3+ clones expressing 10.4K dileucine pair mutants 
Autoradiogram of a 11.5-13.5% acrylamide gel filmed 14 hours. 293 E3+ transfectants were labeled for 1h 
with 200 µCi of each [35S] methionine and [35S] cysteine per ml and lysed in Triton-X 100 lysis buffer for 
immunoprecipitation of Ad2 E3/19K. Immunoprecipitates were separated by SDS-PAGE. TW1.3 mAb 
precipitated a major protein as well as two less abundant products marked with asterisks. Cell clones are 
designated LL for both L87 and L88 replaced by alanine, whereas L1 indicates substitution of L87 and L2 of 
L88, respectively. Clone numbers are added to the name. M = molecular weight marker containing 14C 
methylated proteins (5.7-30kD). Quantitative phosphorimager (Storm 860 Molecular Imager, Molecular 
Dynamics, Sunnyvale, USA) analysis of band intensities confirmed that selected clones were similar in 
E3/19K synthesis to E3-45 cells, except for L2-17 which was not included in the FACS analysis, because of 
too little E3 gene expression. 

 
mutation of single leucines differentially affected Fas and EGFR down-regulation, exhibiting only 

a small reduction of EGFR levels. As the second leucine residue (L88) within the dileucine sequence 

is strictly conserved among 10.4K proteins of Ads of different subgroups (Fig. 8), this residue 

might be expected to be critical. However, disruption of either one of the two leucines led to a 

rather similar phenotype. Thus, both leucines contribute to the 10.4-14.5K function and it 

appeared that a pair of leucine residues was important. The results suggest that efficient 

modulation of cell surface receptors in vivo requires the integrity of both leucines or a dileucine-

type sequence element. In good agreement with this hypothesis, a dileucine type sequence element 

is commonly found in 10.4K proteins of all subgenera, represented by an IL pair in 10.4K 

proteins of subgroup D Ads. 

 
3.6 Influence of mutations in 10.4K on FLAG-14.5K surface expression 

 
The FLAG-tag allowed to quantitatively monitor 14.5K expression on the cell surface by 

FACS analysis on 293 E3/F14.5-transfectants expressing mutant 10.4K. Flow cytometry with 
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monoclonal antibody M1 revealed that cells expressing the 10.4IL mutant exhibited a significant 

reduction of 14.5K cell surface expression as compared with the MVF of FLAG-tagged 14.5K on F-

19 cells set to 100% (Fig. 12D). As this altered expression was associated with only a marginal 

effect on Fas and EGFR modulation, the observed steady-state surface expression level of about 

40% is obviously sufficient for functional activity (Fig. 12B, 12C).  

Remarkably, Flag-14.5K cell surface exposure was dramatically reduced in cells expressing 

10.4K proteins with a disrupted dileucine motif. As the specific signal obtained by FACS analysis 

of 14.5K surface expression on 293 E3/F14.5+ transfectants consisted of only 10 fluorescent units 

the corresponding signal for the dileucine pair mutant was only slightly above unspecific 

background signals. Relative to the steady-state surface expression levels of F-19 cells less than 5% 

were detected in the dileucine pair mutant. Replacement mutations of single leucine residues also 

significantly lowered surface expression to below 10% of wild-type. This major decrease in surface 

expression might be a consequence of either enhanced degradation of 14.5K in the early secretory 

pathway, a reduced efficiency of cell surface transport, or a reduction in its residence time at the 

cell surface, due to enhanced degradation upon internalization. Why would a mutation in 10.4K 

have such a drastic effect on the 14.5K protein? A possible reason might be a loss of interaction 

with the mutant 10.4K protein, as complex formation of 10.4-14.5K is a prerequisite for efficient 

transport to the cell surface (Stewart et al., 1995). Loss of complex formation can be due to 

disruption of the interaction interface by the mutation, or enhanced degradation of 10.4K. To 

investigate the latter question, complex formation of mutant 10.4K with 14.5K was analyzed.  

 
3.7 Complex formation of mutant 10.4K with 14.5K 

 
By immunoprecipitation and western blotting the role of putative dileucine transport 

motifs in 10.4K for interaction with 14.5K and protein stability was examined. As the 10.4 

antiserum Bur3 proved to be ineffective for detection of the mutant 10.4 proteins (data not 

shown), new antisera R59 and R71 were generated, directed to the entire 10.4 cytoplasmic tail and 

the mutated 10.4 LLAA peptide, respectively (see Materials and Methods).  

The interaction of mutant 10.4K with wild-type FLAG-14.5K was assayed in Digitonin 

lysates allowing coprecipitation of 10.4K with 14.5K (Fig. 14A) and the total amounts of 

immunoprecipitated 10.4K, 14.5K and 19K (Triton X-100) were analyzed in parallel (Fig. 14B). 

Lysates were adjusted to equal contents of total protein and E3/19K expression of the different 

clonal lines was analyzed by immunoprecipitation/western blot detection of E3/19K in a second 

IP following immunoprecipitation of 14.5K. Alanine replacement of the C-terminal two amino 
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acids (IL) of 10.4K had no obvious influence on its interaction with 14.5K (Fig. 14A, compare 

lanes 3 and 7), nor did it reduce the overall stability of the individual subunits (Fig. 14B). This is 

reflected by a nearly unaltered functional activity of 10.4-14.5K in the E3 transfectants expressing 

mutant 10.4I90L91 (see Fig. 12B,C). By contrast, no interaction could be detected for the 10.4L87L88 

mutant (Fig. 14A, lane 5), although the serum readily recognized the mutant protein (Fig. 14B, 

10.4K, lane 5). Whereas levels of 19K were similar in all transfectants, the level of 14.5K was 

strongly reduced in the 10.4L87L88 mutant cell line (Fig. 14B, 14.5K, lane 5). Furthermore, these 

cells exhibited a comparably low signal of 10.4K detected by the dileucine pair mutant specific 

serum R71 (Fig. 14B, 10.4K, lane 5). The diminished 14.5K content may indicate a reduced 

stability of 14.5 (and possibly also of 10.4LL), which is obviously a direct consequence of the L87L88 

mutation in 10.4K. These mutually dependent steady-state levels suggest that 10.4K forms 

complexes with 14.5K and that both proteins have a common fate. Therefore, one attractive 

hypothesis was that the dileucine motif in 10.4 may prevent transport of the complex into a 

degradative compartment. In support of this hypothesis, steady-state levels of 10.4 and 14.5 in 

10.4LL transfectants could be reconstituted to nearly wt levels by treatment of the cells with 

Bafilomycin A1 (Baf), an inhibitor of the vesicular ATPase which impairs endosomal/lysosomal 

acidification (van Weert et al., 1995) and protein degradation by lysosomes (Fig. 14B, 10.4K, 

14.5K, compare lanes 5 and 6 with 3 and 4). Baf-treatment increased the levels of the 10.4LL 

mutant and 14.5 by at least 10-fold, an effect repeatedly observed in multiple independent 

experiments. Interestingly, a 2 to 5-fold increase in signal intensity was observed for the wt 

proteins (Fig. 14B, compare lanes 3 and 4), indicative of lysosomal protein degradation. This 

protective effect of Baf seemed to be specific, since steady-state levels of the ER-located E3/19K 

protein were not significantly altered by this treatment (Fig. 14B, 19K). Thus, Baf affected 

primarily trafficking and degradation at the post-ER level.  

The data strongly suggested that a significant proportion of wild-type 10.4K and 14.5K was 

degraded in a Baf-sensitive compartment, and mutation of the dileucine pair in 10.4 markedly 

promoted this degradation. Bafilomycin treatment also increased the amount of 10.4K isolated in 

complex with 14.5K (Fig. 14A, compare lanes 3 and 4). Remarkably, in the mutant LL-11 cells (Fig. 

14A, compare lanes 5 and 6) treated with Baf the 10.4LL mutant protein could be coprecipitated 

with 14.5K, clearly demonstrating that the mutant protein was still capable of interacting with 

14.5K. Thus, in the mutant cell line the complex can be formed, degradation of both subunits is 

increased and steady-state expression levels are lowered. 
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Fig. 14 Mutation of the conserved 10.4K dileucine motif results in reduced 10.4K and 14.5K steady-
state levels that can be rescued by Bafilomycin treatment  
(A) Association of mutant 10.4K with wt FLAG-14.5K with (+) or without (-) Bafilomycin A1 (Baf) 
treatment (cells in culture were incubated with 100 nM Baf for 11h prior to lysis). 
Representative clones derived from transfection of 293 cells with the indicated pBS∆X-E3/F14.5 constructs 
were lysed in Digitonin buffer and subjected to immunoprecipitation (IP) with polyclonal antiserum Bur4 
against 14.5K. Immunocomplexes were separated by SDS-PAGE and analyzed by western blotting (WB) for 
the presence of wt 10.4K with serum Bur3 (lanes 1-4), for 10.4LL with specific serum R71 (lanes 5,6) and 
R59 was used to detect 10.4IL (lanes 7,8). In a second IP step from the same lysates E3/19K was detected 
using RαE3/19K in IP and WB. (B) Parallel IP/WB analysis of the total amounts of 10.4K, 14.5K, and 
E3/19K in Triton X-100 lysates of clonal lines studied in (A). 10.4K steady-state levels were determined by 
immunoprecipitation with polyclonal Ab R59 and western blot detection by Bur3 (lanes 1-4), or IP/WB 
using R71 (lanes 5,6), or R59 (lanes 7,8). 14.5K and 19K levels were analysed by IP/WB with Bur4 and 
RαE3/19K, respectively. 

 

3.8 The cellular adaptor proteins AP-1 and AP-2 bind to 10.4K and 14.5K cytoplasmic 

tail peptides in a motif-dependent fashion 

 
The observation that mutants 14.5Y122 and 10.4L87L88 were functionally defective without 

destroying complex formation, but were associated with a drastically altered cell surface exposure 

of 14.5K, suggested that Y122 and the dileucine pair may be part of transport signals that are 

critical for intracellular trafficking of the two viral proteins. To test this hypothesis, it was 

investigated whether the cytoplasmic tails of 10.4K and 14.5K were able to bind to the prominent 

cellular adaptor proteins AP-1 and AP-2 in vitro. AP-1 and AP-2 have been shown to recognize 

both dileucine- and YXXΦ-type motifs in the cytoplasmic tails of cargo proteins and are involved 

in clathrin-mediated transport (Heilker et al., 1999; Kirchhausen, 1999). To this end surface 

plasmon resonance spectroscopy (SPR) with purified AP-1 and AP-2 adaptor proteins and 
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immobilized 10.4K and 14.5K cytoplasmic tail peptides encompassing the putative transport 

motifs in native or mutated form was carried out (Table 3, the N-terminal cysteine was added to 

the peptides as these were also used for immunization which required coupling to KLH). The 

results demonstrated a significant affinity of both AP-1 and AP-2 for wild-type cytoplasmic tail 

peptides of 10.4 and 14.5 with equilibrium dissociation constants (KD) below 600nM (Table 3, 10.4 

and 14.5, respectively). Binding required the integrity of the putative transport motifs, as 

disruption of the dileucine pair in 10.4 (10.4L87L88) or mutation of Y122 to alanine in 14.5 

(14.5Y122) dramatically reduced binding. Mutation of the dileucine motif reduced the affinity to 

AP-1 and AP-2 by 154-fold and 300-fold, respectively. Similarly, the substitution of Y122 by 

alanine reduced the affinity of AP-1 and AP-2 to the tail peptide of 14.5 by a factor of 108 and  

167, respectively. Interestingly, both the 10.4K and 14.5K peptides exhibited a higher affinity.

towards AP-2 than AP-1.  

In summary, the cytoplasmic tail peptides of 10.4 and 14.5 bind to the adaptor proteins 

AP-1 and AP-2 in vitro, and this binding is dependent on the integrity of both types of motifs. 

Thus, these in vitro data provided further evidence for a role of these motifs in intracellular 

transport. 

 

Table 3  Binding of adaptor proteins AP-1 and AP-2 to cytoplasmic tail peptides of 10.4 and 14.5 as 
determined by Surface Plasmon Resonance spectroscopy (data provided by Stefan Höning, University of 
Göttingen) 

Peptide AP-1 AP-2 

 peptide sequence KD affinity 
reduction KD affinity 

reduction 
10.4 CYRDDRTIADLLRIL  0,52a) 0,4 
10.4 L87L88 CYRDDRTIADAARIL 80,0 

154xb) 
120,0 

300x 

14.5 CEISYFNLTGGDD 0,48 0,3 
14.5 Y122 CEISAFNLTGGDD 52,0 

108x 
50,0 

167x 

aKD equilibrium dissociation constants in µM  
bfold reduction  
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4 Importance of the 10.4K dileucine and 14.5K Y122XXΦΦΦΦ motifs for intracellular 

trafficking of 10.4-14.5K 

 
4.1. Establishment of an efficient heterologous expression system for 10.4-14.5K 

suitable for analysis of intracellular localization by immunofluorescence 
 

It remained to be tested whether the observed loss of binding of the mutated proteins to 

the adaptor proteins in vitro was reflected by an altered trafficking of 10.4K and 14.5K mutant 

proteins in vivo. To analyze the intracellular distribution of the viral proteins in greater detail, 

10.4 and 14.5 had to be expressed in cells more suitable for immunofluorescence than 293 cells. 

Therefore, plasmid pBS∆X-E3/FLAG-14.5 was transiently transfected into SV80Fas cells, a human 

fibroblast cell line expressing SV40 T antigen and Fas. At 40h post transfection the intracellular 

localization of E3 proteins was analyzed. Upon CaPO4-mediated transfection of SV80Fas cells only 

25% of the cells stained positive for E3/19K in the endoplasmic reticulum. Moreover, 14.5K could 

only be detected in one third of these E3 positive cells (Fig. 15). This is consistent with the 

generally lower abundance of the 10.4-14.5K encoding mRNA species of subgroup C Ads as 

compared with those encoding E3/19K (Wold et al., 1995). 14.5K localized to a perinuclear 

compartment, which was stained specifically by rabbit serum anti-14.5K (Rα14.5) and monoclonal 

anti-FLAG antibody M1 (data not shown). But, the number of positive cells as well as the staining 

intensity was insufficient for a detailed analysis of the intracellular distribution of 10.4-14.5K 

proteins by immunofluorescence.  

Therefore, an efficient 10.4-14.5 expression system independent of AdE1A products, which 

upregulate E3 expression in 293 cells had to be established. To this end, Ad2 10.4K and FLAG-

14.5K encoding ORFs were cloned separately into pSG5 expression vectors to drive 10.4K and 

14.5K synthesis by the SV40 promoter/enhancer (Fig. 16). A potentially important feature of this 

vector is the intron II of the rabbit β-globin gene for splicing of the expressed transcript. Inclusion 

of the intron might help to enhance expression by increasing mRNA half-life and improving the 

efficiency of RNA processing and transport to the cytoplasm (Kim et al., 2002). As both proteins 

are known to function as a complex it was also aimed at expressing both proteins from a single 

vector. The entire Ad2 10.4-14.5K encoding sequence was cloned into the pSG5 vector, and in 

parallel individual ORFs were introduced into the multigenic expression vector pMG (Fig. 16). 

This vector provides two different multiple cloning sites, each with a strong promoter for 

eucaryotic expression, a viral and a housekeeping promoter, thus limiting transcription 

interference. The 10.4K open reading frame was inserted into the first MCS under the control of 

the immediate-early HCMV enhancer promoter (HCMV-IA prom) and located downstream of 
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Fig. 15  Costaining of Ad2 14.5K and E3/19K in SV80Fas cells transiently transfected with plasmid 
pBS∆∆∆∆X-E3/FLAG-14.5 
SV80Fas cells were transiently transfected with plasmid pBS∆X-E3/FLAG-14.5 (calciumphosphate method) 
for immunofluorescence analysis at 40 hours post-transfection. 14.5K was detected with polyclonal serum 
Rα14.5 and 19K was stained using mAb Tw1.3 as described in Materials and Methods.   

 intron A. The 14.5K ORF was cloned into the second MCS with expression driven

 by the Elongation factor 1 alpha (hEF1) promoter in combination with the Human T-Cell 

leukemia virus (HTLV) 1 Long terminal Repeat for stabilization of the mRNA followed by an 

intron sequence (intron 117). The introns preceeding the inserted ORFs are spliced out in 

mammalian cells. Insert amplification primers for the cloning of individual ORFs  were designed 

to yield a modified sequence 5’ of the ATG that conforms to the Kozak consensus of translation 

inititation (Kozak, 1987), for optimized heterologous expression. Expression of the proteins was 

analyzed upon transient transfection of SV80Fas or A549 cells with vector DNA followed by 

immunofluorescence detection at 40 hours post-transfection. For improved transfection efficiency 

cells were seeded on the day of transfection and the DNA/CaPO4 mix was added to the cells 4-6  

Fig. 16 Circular map of pSG5 (Stratagene, Amsterdam, The Netherlands) and pMG (InvivoGen, San 
Diego, USA) used for construction of 10.4K and 14.5K expression vectors 
Coding sequences of 10.4K, 14.5K or both were inserted into the MCS of pSG5, as described in Materials 
and Methods. Additionally, the 10.4 ORF was cloned into the BamHI, XbaI sites of pMG and the FLAG-
14.5K CDS into the ClaI, NheI sites of construct pMG10.4. For a description of vector features see text.
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Fig. 17 Intracellular localization of 10.4K in SV80Fas cells and FLAG-14.5K in SV80Fas or A549 cells 
following transient transfection of single expression vectors 
SV80Fas cells were transfected with pSG5/F14.5K (A, C, D) or pSG5/10.4K (B) and processed for confocal 
laser microscopy at 40 h post transfection using polyclonal Ab Bur3 or Rα14.5 to detect 10.4 and 14.5K, 
respectively (green). Localization of 14.5K was compared with the Golgi marker galactosyltransferase, GLT 
(red, mAb GTL-2) (C), and ER-resident protein Calnexin (red, mAb AF-8) (D). (E) In A549 cells transfected 
with pSG5/F14.5K a similar distribution of FLAG-14.5K was detected using Rα14.5 or mAb M1 anti-FLAG 
(40 h post transfection).  

 hours after plating, at which time the cells had adhered to the plastic dishes but not yet 

extended(Marks et al., 1996). 

Despite the presence of strong promoters transfection of the bicistronic vector pMG 

yielded only a low percentage of positive SV80Fas cells. 10.4K was barely detectable whereas about 

20% of the cells showed a specific staining for FLAG-14.5K in a perinuclear compartment (data 

not shown). Even a smaller number of positive cells were observed upon transfection of the pMG
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Fig.18 Intracellular localization of 10.4K and F14.5K expressed in A549 (A, C) or SV80Fas (B,D) cells, 
upon transfection of pSG5/10.4-F14.5 
At 40 hours post-transfection with pSG5/10.4-F14.5 vector DNA cells were processed for 
immunofluorescence analysis. Transfected A549 cells (A) or SV80Fas cells (B) were costained for 14.5K with 
Rα14.5K (green) and mAb M1 against FLAG (red). For detection of 10.4K a single stain with Bur3 was 
performed on transfected A549 (C) or SV80Fas cells (D). 

 

vector into A549 cells (~10%). By contrast, a satisfactory expression level suitable for 

immunofluorescence analysis of intracellular protein localization could be achieved upon 

transfection of pSG5 vectors. Up to 60% of the cells exhibited a strong staining for 10.4K and 

14.5K in SV80Fas cells transfected with pSG5/10.4K or pSG5/F14.5K (Fig. 17A, 17B). A similar 

pattern was observed for 14.5K expression in A549 cells. 14.5K specific rabbit serum and 

monoclonal antibody M1 directed against the FLAG-tag revealed an identical staining pattern (Fig. 

17E). The 14.5K positive perinuclear structure corresponded to the Golgi/trans-Golgi network as it 

costained with galactosyltransferase (Fig. 17C, red) and human TGN46 (data not shown), which 

are cellular marker proteins for this compartment. Furthermore, 14.5K colocalized with Calnexin 

in the endoplasmic reticulum (Fig. 17D). In cells transfected with pSG5/10.4K 10.4K could be 

specifically stained using polyclonal rabbit serum Bur3 (Fig. 17B), or antiserum R59 directed 

against the entire cytoplasmic tail of 10.4K (data not shown). In pSG5/10.4K positive SV80Fas 

cells 10.4K localized to the ER and Golgi/TGN. 

In cells transfected with the pSG5/10.4-F14.5 vector 14.5K was detected in a perinuclear 

compartment identified to correspond to the Golgi/TGN, which also stained positive for 10.4K. 

Additionally, 14.5K localized to a few dot-like structures surrounding the perinuclear 

compartment (Fig. 18A, 18B, 14.5K). 10.4K (Fig. 18C, 18D, 10.4K) localized to the endoplasmic 

reticulum and the Golgi/TGN, as observed in cells transfected with pSG5/10.4K (Fig. 17B). 

Interestingly, 14.5K specific staining of the endoplasmic reticulum was significantly reduced as 
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compared to cells transfected with pSG5/F14.5K (compare Fig.17A, 17E and Fig. 18A, 18B, 14.5K). 

Thus, coexpression of 10.4K in the transfected cells caused a shift in 14.5K steady-state 

localization, as evidenced by a reduced ER staining. This correlates with biochemical evidence 

presented for the Ad5 14.5K protein. Ad5 14.5K can form a complex with Ad2 10.4K and it has 

been reported that the efficiency and site of cleavage of the Ad5 14.5K signal sequence depends on 

the presence of 10.4K (Krajcsi et al., 1992b). Moreover, the extent of glycosylation and 

phosphorylation of Ad5 14.5K depends on expression of 10.4K (Krajcsi et al., 1992c; Krajcsi and 

Wold, 1992). Therefore, the 10.4K-induced loss of 14.5K ER staining might be the consequence of 

association of 10.4K with 14.5K and efficient signal sequence cleavage in the 14.5K protein, which 

is then no longer retained in the ER. 

In SV80Fas cells the number of cells bearing 14.5K at the cell surface was higher than in 

A549 cells, whereas in about 5% of the transfected A549 cells 14.5K was also detected in the ER. 

The increase in 14.5K signal intensity at the cell surface of SV80Fas cells suggested enhanced 

expression of 10.4-14.5K in these cells. Given that transfection efficiency was very similar in both 

cell types increased expression in SV80Fas cells might be due to SV40 T antigen-mediated 

amplification.  

In sum, upon transient transfection of pSG5 expression constructs into SV80Fas cells a 

high number of cells could be efficiently transfected yielding expression levels that were suitable 

for immunofluorescence analysis of 10.4K and 14.5K intracellular localization. Therefore, for 

most studies the pSG5 expression constructs were introduced into SV80Fas cells. 

 

4.2. Functional activity of 10.4 and 14.5K proteins encoded by single expression vectors  
 

Apart from Fas, A549 cells express also other target molecules of E3/10.4-14.5K, like 

EGFR, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). To analyse whether heterologous expression of 

10.4K and/or 14.5K was sufficient to down-modulate these latter targets pSG5/10.4K and 

pSG5/F14.5K vectors were cotransfected together with the pSV2-neor plasmid into A549 cells (see 

also Materials and Methods) to generate stable transfectants expressing either 10.4K, 14.5K or both 

proteins. Receptor surface expression levels were determined by FACS analysis. FACS analysis also 

allowed to qualitatively determine the intracellular content of 10.4K and/or 14.5K using 

polyclonal immune sera R59 directed against 10.4K and monoclonal Ab M1 against FLAG-14.5K. 

Clones could be grouped according to their expression profile being positive for 10.4K, 14.5K or 

both. Expression levels of 10.4K and 14.5K in the preselected clones were subsequently analysed 

quantitatively by immunoprecipitation and western blot. 10.4K was immunoprecipitated from
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Fig. 19  Expression levels of 10.4K and FLAG-14.5K in selected A549 transfectants 
Parallel immunoprecipitation and western blot analysis of F14.5K and 10.4K in Triton X-100 lysates of 
stable A549 transfectants expressing 10.4K (panel A,  lane 4, clone number 36), 14.5K (panel A lane 5, clone 
number 46) or both (clones number 21, 29, 32, 37, 51, 57). Lysates were adjusted to equal protein content 
(BCA protein assay) prior to immunoprecipitation of 14.5K with polyclonal serum Bur4 and 10.4K with 
R59. Immunoprecipitates were separated on a 15% mini-gel by SDS-PAGE and analyzed by western blotting 
with Bur4 and Bur3 for the presence of 14.5K and 10.4K, respectively. The fastest migrating band on the 
14.5K immunoblot likely represents 14.5K degradation products. As negative control lysates of A549 or 
pSV2-neor transfected cells (pneo, clone number 38) were analyzed.  

 
Triton X-100 lysates with polyclonal immune serum R59 and western blot detection with 

Bur3.14.5K content was determined by immunoprecipitation and western blot with Bur4. Thereby, 

single positive clones could be identified which expressed solely 10.4K (Fig. 19A lane 4, clone 

number 36) or 14.5K (Fig. 19A lane 5, clone number 46). In selected clones expressing 10.4K 

together with 14.5K different ratios of 10.4K and 14.5K proteins were observed. Moreover, the 

pattern of the immunoblot signal for 14.5K differed among the clones and the intensity of the 

uppermost 14.5K band seemed to correlate with the amount of 10.4K expressed in these clones 

(Fig. 19B). As cleavage of the 14.5K signal sequence has been shown to depend on the presence of 

10.4K (Krajcsi et al., 1992c) the association of 14.5K with 10.4K in the ER might be a prerequisite 

for efficient processing and cell surface transport of 14.5K. Along this line, the observed 

differences in the abundance of different processed forms of 14.5K suggest that the top band 

corresponds to the fully processed form of 14.5K that is transported to the cell surface in the 

presence of 10.4K. In good correlation, for mutant 14.5K Y122A which had been shown to 

accumulate at the cell surface of 293 transfectants, the banding pattern of the 14.5K signal was 

shifted towards bands of high MW (compare Fig. 11C, 14.5K, lane 5). Thus, one would expect to 

see an increase in F14.5K cell surface exposure in the presence of 10.4K as compared to clones 

expressing 14.5K alone.  Therefore, Flag-14.5K surface expression was determined by FACS analysis 
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on selected A549 transfectants (see below). For FACS analysis of receptor surface expression levels, 

at least three independent clones expressing 10.4K, 14.5K or both were chosen (Fig. 20). On stable 

A549 transfectants coexpressing 10.4K and 14.5K Fas and EGFR levels were efficiently down-

modulated. On average Fas surface expression was decreased to 10% of the levels on A549 cells, 

and EGFR to 15%. For some of these clones receptor levels were similar to those on virus-infected 

A549 cells determined in parallel (Fig. 20A, 20B, clones number 37 and 51). By contrast, receptor 

surface expression levels remained unchanged in cell clones which expressed either 10.4K or 14.5K 

alone. Thus, heterologous expression of both 10.4K and 14.5K is necessary and sufficient to 

achieve down-regulation of Fas and the EGFR.. 

TRAIL-R1 (DR4) expression levels on A549 cells infected with Ad2 were reduced to 25%. 

Among the stable transfectants the clone with the highest expression of both 10.4 and 14.5K 

(clone number 37) exhibited down-regulation to a similar degree. On average DR4 surface 

expression on selected 10.4-14.5K expressing clones was decreased by 50% as compared to A549 

cells. By contrast, combined expression of 10.4 and 14.5K was not sufficient to achieve down-

modulation of TRAIL-R2 (DR5), whereas in virus-infected cells levels were reduced to below 20%. 

Thus, apart from 10.4K and 14.5K another viral function or protein was required to bring about 

down-regulation of DR5. It had been shown by Benedict et al. that in addition to 10.4 and 14.5K 

a third adenovirus E3 protein, E3/6.7K, was required for DR5 down-regulation. Moreover, the 

authors demonstrated that E3/6.7K can physically interact with the 10.4-14.5K complex in living 

cells (Benedict et al., 2001). 

 
Fig. 20  FACS analysis of Fas, EGFR, DR4, DR5 and F14.5K surface expression on A549 transfectants 
expressing 10.4K, 14.5K or both viral proteins  
Relative expression of plasma membrane proteins Fas (A), EGFR (B), DR4 (C), DR5 (D) as determined by 
FACS analysis on stable transfectants of A549 cells, which had received pSG5/10.4 (clones number 16, 19, 
36), pSG5/F14.5 (clones 20, 23,46) or both plasmids (3, 29, 32, 37, 40, 51) together with the pSV2-neor 
plasmid. Clone number 38 (pneo) had incorporated only the pSV2-neor plasmid. As positive measure for a 
reduction in cell surface receptor levels, A549 cells infected with Ad2 or Ad2/F14.5 viruses (18-22 h p.i.) 
were processed in parallel. Infection efficiency was monitored by determination of the percentage of 
E3/19K positive cells (purified mAb Tw1.3 was used) and reached about 100%. Fas (mAbs B-G27) and  
EGFR (mAb 528) surface expression levels were determined as described in Materials and Methods. After 
deduction of the background staining obtained with the secondary antibody alone, the mean value of 
fluorescence (MVF) for each cell clone was related to that of A549 cells, which was set to 100%. DR4 and 
DR5 levels were determined with rabbit polyclonal Ab, followed by incubation with FITC-labeled secondary 
Ab GαR IgG (SIGMA, Munich, Germany) and background staining with the corresponding pre-sera and 
secondary Ab was deducted.  The bars denote the mean value calculated from one to three experimental 
values. Error bars depict the SEM. (E) Anti-FLAG mAb M1 was employed prior to incubation with FITC-
labeled goat anti-mouse IgG for monitoring FLAG-14.5K surface exposure. After deduction of background 
staining obtained with secondary antibody alone the mean value calculated from MVFs of three 
measurements was plotted in the bar diagram. Error bars depict the SEM.   ►
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Flag-14.5K surface exposure was low in clones lacking expression of 10.4K reaching at most 

30% of the 14.5K surface expression on infected cells. Upon coexpression of 10.4K, many clones 

exhibited FLAG-14.5K surface expression levels comparable or even higher than those on infected 
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cells. Thus, the steady-state level of F14.5K surface expression was not only a function of the 

amount of 14.5K synthesized, but varied depending on the presence of the 10.4K protein, with 

high amounts of 10.4K increasing 14.5K surface expression. Clearly, coexpression of 10.4K with 

14.5K was required to achieve efficient down-modulation of plasma membrane receptors, but no 

direct correlation was found between down-regulation capacity and FLAG-14.5K surface expression 

levels. Interestingly, down-regulation efficiency was increased with increasing levels of 10.4K  

(compare the results of the FACS analysis for 10.4-14.5+ clones in Fig. 20 with the intensity of the 

bands in the IP/WB experiment Fig. 19). 

 

4.3. Analysis of intracellular trafficking of 10.4K and FLAG-14.5K coexpressed upon 
transfection of separate expression vectors 

 
SV80Fas cells received equimolar amounts of both types of expression vectors pSG5/10.4 

and pSG5/F14.5K (3 µg of DNA each) and were processed for immunofluorescence at 40 h post 

transfection. Localization of 10.4K and 14.5K was analyzed by costaining of both proteins to 

identify cells that expressed both 10.4K and 14.5K. As expected from the results obtained with 

construct pSG5/10.4-F14.5K, coexpression of 10.4K resulted in localization of 14.5K to the 

perinuclear compartment of the cells, ER staining being greatly reduced (Fig. 21A). Remarkably, 

the number of cells exhibiting 14.5K at the cell surface was increased as compared to cells 

transfected with pSG5/10.4-F14.5K (compare Fig. 18). Some cells exhibited a clear surface staining 

for 14.5K, lining the border of the cells (Fig. 21B). In at least 50% of 14.5K positive cells surface 

staining was composed of distinct patches or stippled staining which appeared at the inner rim of 

the plasma membrane and surrounding the perinuclear compartment. Surprisingly, in the 

majority of these 10.4-14.5K positive cells 10.4K was also no longer found in the ER, but localized 

exclusively to the perinuclear compartment (Fig. 21A, 21B). In cells exhibiting the most intensive 

staining, 10.4K colocalized with 14.5K at the cell surface (Fig. 21C). This phenotype had not been 

observed upon coexpression of 10.4K and 14.5K from a single vector (pSG5/10.4-F14.5), with both 

translation initiation codons residing in their natural context. In the expression vectors pSG5/10.4 

and pSG5/F14.5K the 6 bases preceding the start codon had been optimized to fit the Kozak 

consensus for eucaryotic translation initiation and therefore increased synthesis of 10.4K and 

14.5K was expected. Moreover, expression of 14.5K from a separate vector independent of the 

10.4K encoding upstream sequence might also have contributed to higher expression. A 

comparably high expression of 14.5K might have facilitated its detection at the cell surface, which 

is in agreement with the increase in number of cells exhibiting 14.5K surface staining.
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Fig. 21 Intracellular localization of 10.4K and FLAG-14.5K in SV80Fas cells transiently transfected 
with a combination of pSG5/10.4 and pSG5/F14.5 
At 42 hours post-transfection cells were processed for confocal laser scanning microscopy. Costaining with 
Bur3 against 10.4K and mAb M1 against FLAG-14.5K identified cells that expressed both 10.4K and 14.5K. 

 

Therefore, the difference in 10.4K intracellular distribution might be interpreted as a consequence 

of a different ratio of 10.4K and 14.5K levels in these cells. Increased synthesis of both 10.4K and 

14.5K might have elevated 10.4K surface expression to levels that allowed immunofluorescence 

detection of 10.4K at the cell surface. Taken together, the data suggest that cell surface transport of 

10.4K requires coexpression of 14.5K, as 10.4K is found in the ER/Golgi, when expressed alone, 

whereas 10.4K localization is shifted to Golgi and post-Golgi compartments with increasing 

amounts of 14.5K. 

The observation that in some cells 10.4K colocalized with 14.5K at the plasma membrane 

suggested that the two proteins exist as a complex at the cell surface. But as the rabbit serum 

directed against the 10.4K cytoplasmic tail had been shown to be unable to coprecipitate 14.5K 
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from detergent extracts it remained unknown whether it would allow immunofluorescence 

detection of 10.4K complexed to 14.5K. Thus, the 10.4K positive structures may well correspond 

to free 10.4K. In general, the intensity of surface staining detected with monoclonal Ab M1 against 

FLAG-14.5K was higher and a greater number of surface staining bearing cells was counted than 

for the cells stained with rabbit serum against 10.4K. This does not necessarily reflect differences 

in the level of surface expression, provided that antibody was used in excess, but could be due to 

differences in the affinities of the antibodies or the different epitopes involved. 10.4K epitopes 

may be inaccessible due to its association with 14.5K. 

In the population of 10.4K expressing cells which were obtained by transfection of 

equimolar amounts of pSG510.4 and pSG5/F14.5K, less than one third exhibited ER and Golgi-

like perinuclear staining. These cells were mostly negative for 14.5K, thus had been transfected 

only with the pSG5/10.4 construct. But in some of these cells strong surface staining for 14.5K 

was observed (Fig. 21D). This phenotype resembled the one that was observed with the pSG5/10.4-

F14.5K vector except for a higher intensity of FlAG-14.5K surface staining. 

In conclusion, upon introduction of separate expression plasmids different populations of 

transfected cells were obtained: Cells expressing only one of the two proteins in significant 

amounts were characterized by ER/Golgi localization of the corresponding protein. Upon 

coexpression of both proteins the cells exhibited less ER staining and the two proteins colocalized 

in the perinuclear Golgi-like structure. As compared to transfection of pSG5/10.4-F14.5K vector 

an increased number of cells exhibiting 14.5K surface staining and increased signal intensity was 

noted. Cell surface expression of 14.5K and/or 10.4K could only be detected in cells expressing 

both proteins. The observation that different ratios of 10.4K and 14.5K can cause a redistribution 

of both proteins from the ER to the perinuclear compartment and the cell surface suggested that a 

complex of 10.4-14.5K assembles prior to exit from the Golgi to allow efficient transport to the 

cell surface. 

 

4.4. Mutations of 10.4LL and 14.5Y122 induce missorting of 10.4-14.5K  
 

In order to study the intracellular distribution of mutant proteins 10.4LL/AA (abbreviated 

as 10.4LL) and FLAG-14.5Y122A, the corresponding nucleotide sequences were inserted separately 

into the MCS of the pSG5 vector. As with the pSG5/10.4K and pSG5/F14.5 vectors the sequence 

directly preceding the start codon was modified to conform to the Kozak consensus of translation. 

SV80Fas cells were cotransfected with different combinations of 10.4K and 14.5K wt and mutant 

plasmids and localization of 10.4K and 14.5K was analyzed by immunofluorescence. 
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Fig.22  Missorting of 14.5Y122 mutant to the cell surface and 10.4LL to intracellular vesicles  
Steady-state localization of 10.4K and 14.5K was analyzed by immunofluorescence in transiently transfected 
SV80Fas cells at 42 h post-transfection. Different combinations of 10.4 and 14.5 wt and mutant expression 
plasmids were transfected: pSG5/10.4 + pSG5/F14.5 (A), pSG5/10.4 + pSG5/F14.5Y122 (B), pSG5/10.4LL + 
pSG5/F14.5 (C), pSG5/10.4LL + pSG5/F14.5Y122 (D). Cells were costained for 14.5K with mAb M1 
against FLAG (red) and for 10.4 or 10.4LL with polyclonal antiserum Bur3 and R71, respectively (green). 
The right column shows the overlay of the red and green channel. Bars = 10 µm. 

 

The effect of the Y122 mutation in 14.5K was analyzed by combining wt 10.4K with the 

14.5Y122A mutant. This resulted in a marked increase of cells exhibiting 14.5K plasma membrane 

staining, confirming the FACS data obtained for stable 293 transfectants. Whereas transfection of 

the pSG5/10.4 together with pSG5/F14.5 revealed surface exposure of 14.5K in about 50% of 

14.5K positive cells, introduction of the 14.5K Y122A mutant resulted in 14.5K surface staining on 

the entire population of (10.4+F14.5Y122A) positive cells (Fig. 22B). In addition, the surface 

staining appeared more intense than that of wt 14.5K and lined the rim of the cells, whereas in the 

wt situation stained patches on the plasma membrane were the most common phenotype (Fig. 
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22A). Remarkably, in combination with 14.5K mutant Y122A, the 10.4K protein could also be 

detected at the plasma membrane and colocalized with 14.5K (Fig. 22B). Thus, both 10.4K and 

14.5K were expressed at the plasma membrane, where they presumably exist as a complex. The 

increased cell surface staining induced by the 14.5Y122A mutant might be explained by a prolonged 

residence time on the surface, caused by inhibition of endocytosis, due to the lack of a functional 

Y122XXΦ motif. If so, the dileucine pair present in 10.4 was obviously unable to mediate efficient 

endocytosis in the absence of the Y122FNL motif.  

When the 10.4LL mutant was coexpressed with wt F14.5, an increased staining of 

intracellular vesicles, but no surface staining of 10.4 or 14.5 was observed (Fig. 22C). Interestingly, 

14.5K also localized to 10.4LL+ vesicles, indicating that the dileucine mutation in 10.4 influenced 

trafficking of 14.5. This mutual dependence of 10.4 and 14.5 trafficking on the integrity of the 

studied motifs confirmed the idea that i) the proteins act as a complex and ii) that trafficking of 

the complex depends on two signals present in the two subunits. The prominent vesicular staining 

together with the loss of cell surface expression caused by mutating the dileucine motif could be 

explained by missorting of the 10.4-14.5 proteins either at the TGN or following endocytosis. To 

distinguish between these two possibilities, the two mutant proteins, 10.4LL and 14.5Y122 were 

coexpressed (Fig 22D). If sorting by the LL motif occurred prior to the proposed activity of the 

Y122XXΦ motif in endocytosis, the double-mutant was expected to be localized in intracellular 

vesicles and not at the cell surface. If it acted subsequently to endocytosis, a similar phenotype to 

that of the Y122 mutant could be expected. Fig. 22D shows that the latter was indeed the case. The 

majority of the cells exhibited a strong cell surface staining of both proteins. This indicated that i) 

the two mutant proteins are capable of interacting with each other and are transported together to 

the cell surface, and ii) the dileucine motif does not seem to act as sorting motif at the TGN. As 

no prominent vesicular staining was detected in this combination, it was concluded that an intact 

Y122XXΦ motif in 14.5 is required for generation of the vesicular phenotype by the 

10.4 dileucine mutant. Therefore, the Y122XXΦ motif seemed to act upstream of the LL motif, 

which appeared to have a sorting function subsequent to endocytosis. In agreement with the FACS 

data the 14.5Y122A mutant caused missorting of the 10.4-14.5K complex to the cell surface, whereas 

mutant 10.4LL caused localization of both 10.4K and 14.5K to intracellular vesicles. Thus, the 

presence of the dileucine motif prevents transport of 10.4-14.5 into intracellular vesicles and 

thereby may contribute to its efficient cell surface expression. 
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4.5. Enhanced transport of 10.4-14.5 to late endosomes/lysosomes in the absence of 
the 10.4K dileucine motif  

 
To identify the cellular compartments in which wt 10.4-14.5K are localized and to which 

these molecules are diverted to upon disruption of the dileucine pair in 10.4K the two proteins 

were coexpressed from a single vector by transfection of pSG5/10.4-F14.5 (Fig. 23A-C, 23G-I) or 

pSG5/10.4LL-F14.5 (Fig. 23D-F, 23J-L). This system was used to assure that both viral proteins are 

coexpressed in the same cell. Subsequently, their distribution was determined by costaining with 

cellular markers. In this expression system the majority of the cells exhibited a prominent ER 

staining of 10.4 in addition to the perinuclear staining seen before (Fig. 23A). This is presumably 

due to lower amounts of 14.5 synthesized, as evidenced by the reduced 14.5 cell surface expression 

seen compared to cotransfection of single expression vectors (see above). The perinuclear 

compartment was identified as the Golgi/TGN, because it stained with mAbs against 

galactosyltransferase (data not shown) and TGN46 (Fig. 23C). Only a small number of cells 

exhibited 14.5 positive vesicles close to the perinuclear compartment, but these did not colocalize 

with TGN46+ vesicles (Fig. 23C).  

The dileucine mutant of 10.4 was no longer found in the ER, but predominantly in the 

Golgi/TGN where it colocalized with 14.5K (Fig. 23D-F). This phenotype suggested an enhanced 

export of the dileucine mutant from the ER or a reduced steady-state expression level of the 

protein, possibly due to increased degradation. The latter suggestion is supported by the 

restoration of 10.4K dileucine mutant levels to wild-type levels by treatment with Bafilomycin A1 

(Fig. 14B). Therefore, it was tested whether this drug influenced the steady-state localization of wt 

10.4-14.5K. Baf treatment of cells transfected with wt 10.4-14.5K induced the appearance of a small 

but significant number of 14.5 positive vesicles, indicating that wt 14.5K enters Baf-sensitive 

endosomal/lysosomal compartments. No changes in ER/Golgi localization of 10.4K (Fig. 23G-I) 

were observed. In cells expressing the 10.4 dileucine mutant Baf triggered the appearance of a high 

number of 10.4-14.5+ vesicles, which were identified as late endosomal/lysosomal compartments, 

as they co-stained with Lamp-2 and partially also with lysobisphoshatidic acid (LBPA, Fig. 23J, K), 

but not with TGN46 (Fig. 23L). These findings corroborated the previous suggestion that 

mutation of the dileucine motif of 10.4K causes enhanced degradation of 10.4 and 14.5 in late 

endosomes/lysosomes. Therefore, the two leucines in the cytoplasmic tail of 10.4 may act as a 

sorting signal to prevent internalized 10.4-14.5 from being transported into a degradative vesicular 

compartment, and thereby protect 10.4-14.5K from degradation. Taking into account the 

drastically low 10.4-14.5K levels at the cell surface of the 293 10.4LL mutant the LL motif may be 

required to direct the viral proteins into a recycling compartment. 
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Fig. 23  
Disruption of the dileucine motif in 10.4K influences the steady-state localization of 10.4K and 14.5K 
SV80Fas cells transfected with pSG5/10.4-F14.5 (A-C and G-I), or pSG5/10.4LL-F14.5 (D-F, J-L), 
respectively, were processed for immunofluorescence analysis. At 40h post transfection without (A-F) or 
with (G-L) treatment with Bafilomycin A1 (11h, 100 nM) localization of 10.4 or 14.5 (green) was compared 
to that of marker proteins for different cellular compartments (red): Lamp-2 (late endosomes/lysosomes), 
LBPA late endosomes, TGN46 (TGN). Bars = 10 µm. The antibodies are given in Materials and Methods.  
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5. Characterization of 10.4-14.5K loss of function mutants in infected cells 
 

To examine the phenotype of mutant 10.4-14.5 proteins in the viral context and to extend 

the analysis to primary cells, the mutations that caused a loss of 10.4-14.5 function in stable 

transfectants were incorporated into the Ad genome. To achieve this, a novel method for 

manipulation of complete viral genomes was employed, that is independent of any restriction 

enzyme sites (Ruszics et al., manuscript in preparation). 

 
5.1. BAC technology for manipulation of Ad2 genomic DNA  

 
The entire genome of adenovirus type 2 had been inserted by homologous recombination 

directed by the left and right ITRs into plasmid pKBS2 yielding BACmid pAd2-BAC (Ruszics et 

al., manuscript in preparation). pKBS2 and its derivative BAC constructs are based on the well-

studied Escherichia coli F factor. Replication of the F factor in E. coli is strictly controlled, 

maintaining a low copy number (1 or 2 copies per cell), and thus reducing the potential for 

recombination between DNA fragments carried by the plasmid. pKBS2 incorporates regulatory 

genes of F factor replication including parA, parB, parC, which serve to maintain a low copy 

number, as well as the repE gene and oriS that mediate the unidirectional replication. In addition, 

pKBS2 encodes a chloramphenicol resistance marker for selective amplification of the vector. 

Incorporation of large inserts, such as adenoviral genomic DNA, into pKBS2 generates a BAC 

vector that permits easy isolation and manipulation of the large viral DNA in solution with 

minimal breaking. BAC vectors based on F factor replication exist as supercoiled circular plasmids 

in E. coli, and therefore can be stably maintained and grown up in bacteria (Shizuya et al., 1992). 

Moreover, they can be transformed into E. coli by electroporation. Compared with the chemical 

transformation procedure electroporation usually yields a higher number of transformants and 

does not bias against large molecules (>20kb). For the BAC vector pAd2-BAC with an overall size 

of 42 kb electroporation proved very useful and a sufficient number of transformants was readily 

obtained.  

 
5.2. Generation of recombinant Ad mutants by ET cloning:  

5.2.1. Generation of 10.4LL-F14.5 and F14.5Y74A mutant alleles by PCR 

The BAC vector pAd2-BAC had been employed to generate recombinant Ad2 expressing a 

FLAG-tagged version of wt 14.5K, and FLAG-14.5Y122A instead of wt 14.5K (Ruszics, unpublished). 

In this study a similar approach was used to create virus mutants Ad2/10.4LL-F14.5 and 

Ad2/FLAG-14.5Y74A. The procedure was based on a gene replacement strategy, replacing the wt by 
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the mutant allele. Advantage was taken of the fact that mutations for the generation of 14.5Y74A 

and 10.4LL/AA were preexisting on plasmid pBS∆X-E3/FLAG-14.5 expressing FLAG-tagged 

versions of 14.5K, and therefore this plasmid was used as a template to amplify a linear fragment 

of DNA encomprising the mutant sequence by PCR (Fig. 24, primers 1 and 2). 

 

Fig.24 Generation of linear recombination fragment for ET recombination 
Mutant alleles were combined with the mTn sequence in a two-step PCR, making use of the following 
primers: 1, 2395; 2, 3468rev; 3, 3468for; 4, Ad2/E3-rev. 

 
In order to be able to control the replacement process and to select for clones carrying the 

mutant allele, a selection marker was fused to the mutant allele. In a second PCR reaction using a 

forward primer (primer 3) that overlaps with primer 2 a fragment of the Ad2 genome sequence 

was amplified which possessed a tranposon (mTn) harboring a Km resistance gene cassette (Fig. 24, 

primers 3 and 4). BACmid pAd2-H7, which corresponds to the pAd2-BAC with a Tn7 kanamycin 

resistance gene (Kmr) inserted into the intergenic region between E3B polyadenylation site and the 

E3 fiber protein served as a template. By assembly PCR using primers 1 and 4 and the two 

primary PCR products a full-length mutant allele containing the transposon encoded kanamycin 

resistance gene as a marker was obtained. The assembled PCR product was purified by gel 

extraction to exclude any contamination with other types of DNA, e.g. the vector template.  

 

5.2.2. ET recombination strategy 

 
For gene replacement to occur the assembled PCR product had to be introduced into an 

appropriate bacterial strain that would allow homologous recombination of the mutant allele with 

the target BAC. This was achieved by electroporation into DH10B cells containing pAd2-BAC and 

pBADαβγ. High-copy plasmid pBADαβγ (Zhang et al., 1998b) encodes gene products of the λ 
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phage red operon, which is similar to the RecET recombination system, to promote efficient 

homologous recombination. In a method referred to as ET cloning recE and recT recombinases, 

encoded by part of the RAC prophage integrated in E. coli K12, have been transferred to a mobile 

unit, plasmid pBADETγ and exploited to force homologous recombination of linear DNA

 

 

Fig.25 Circular Map of plasmid pBADααααββββγγγγ encoding 
genes of the phage λ red operon. 
Redα expression is controlled by the pBAD promoter, which 
is repressed by the regulatory protein araC. Addition of 
arabinose (0,1% w/v in the culture medium) frees the 
promoter from the bound regulatory protein, leading to 
promoter activation. In the presence of glucose dissociation 
of the araC protein is blocked and promoter activity is 
inhibited. Redβ expression is driven by the EM7 promoter 
and redγ by the Tn5 promoter. pBADαβγ has a size of 7010 
bp and encodes an ampicillin (Amp) resistance gene. 
 
 

 

fragments with circular DNA in various E. coli hosts. (Zhang et al., 1998b). For the same purpose 

plasmid pBADαβγ had been developed (Zhang et al., 1998b). In pBADαβγ (Fig. 25) expression of 

Redα (exo), a 5’→3’ exonuclease, is regulated by an arabinose-inducible pBAD promoter 

(Invitrogen). It progressively degrades the 5’-ended strand of double-stranded DNA, generating 3’ 

overhangs (Poteete, 2001). Redβ (bet), binds to single-stranded DNA, promotes renaturation of 

complementary strands and is capable of mediating strand annealing and exchange reactions in 

vitro (Li et al., 1998b). The strong, constitutive EM7 promoter permits a high level of redβ 

expression in order to promote efficient recombination. Redγ (gam) is required to suppress cellular 

recBCD-mediated degradation of the introduced linear double-stranded DNA (Murphy, 1991). 

Therefore, it is constitutively  expressed upon Tn5 promoter transcription.  

For the red recombination system 25 to 60 bp homology ends suffice to direct efficient 

recombination (Muyrers et al., 1999). The amplification primers 1 and 4 had been chosen in a way 

that the full-length mutant allele carrying the transposon insertion had sufficient flanking 

homology regions to the wild-type sequence to be replaced. Redα, Redβ mediated a double 

crossing-over between the homologous ends of the linear PCR fragment and the wt pAd2-BAC 

generating a mutant pAd2-BAC containing the transposon sequence (mTn), which could be 

selectively amplified in Cm/Km containing media. 
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5.2.3. ET cloning strategy for the generation of 10.4K and 14.5K single knock-out 
viruses 

 
Instead of deleting the 10.4K or 14.5K open reading frames, which might have caused 

alteration of gene expression in the complex E3 transcription unit (Brady and Wold, 1988; Wold 

et al., 1995) 10.4K and 14.5K coding sequences were modified by introducing a frameshift in 

10.4K or mutating the start codon of 14.5K to create single knock-outs. The mutations were 

identical to those on plasmids pBS∆X-E3-10.4*, pBS∆X-E3-14.5* (Elsing and Burgert, 1998), and 

had been introduced into the BAC vector yielding pAd2/(10.4-14.5)ko (Obermaier, unpublished). 

For generating pAd2-BAC vectors with the desired mutation the above described ET 

recombination strategy was applied with the following modifications. To generate PCR product 1 

encompassing the 14.5ko mutation, BAC vector pAd2/10.4ko-14.5ko was used as a template (Fig. 

26A, primers 1 and 2). PCR product 1 was assembled with the minitransposon- containing DNA 

fragment of the second PCR reaction (Fig. 26A, primers 3 and 4). The assembled PCR product 
 

Fig.26 (A) primer 1, 2631for; primer2, 3468rev; primer 3, 3468for; primer 4, Ad2/E3-rev. (B) primer 1 
2631for; primer 2, 2913rev; primer 3, 2913for; primer 4, Ad2/E3-rev. 
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was gel-purified and transformed into DH10B cells containing pAd2-BAC and pBADαβγ for ET 

recombination. To create pAd2/10.4ko-F14.5 a FLAG-14.5K encoding fragment was used to 

replace the mutant 14.5K sequence in pAd2/10.4ko-14.5ko. Thus, as a first PCR product a short 

fragment overlapping the 10.4K 3’ end and the first 210 nt of the FLAG-14.5K sequence was 

synthesized and assembled with PCR product 2 (Fig. 26B). The assembled PCR product was gel-

purified and transformed into DH10B containing pAd2/10.4*-14.5* and pBADαβγ for ET 

recombination. 

 

5.2.4. Analysis of minitransposon-containing mutant pAd2-BACs 
 
Even though pBADαβγ lacks Cm/Km resistance genes it usually was found to copurify 

with a first round of small scale preparation of pAd-BAC mutant DNA. As a high copy plasmid it 

could hardly be diluted out in subsequent rounds of bacterial growth in ampicillin-free liquid 

cultures. Retransformation of the BAC-DNA into DH10B allowed to generate clones which were 

Cm/Km-resistant, but could not grow on ampicillin-containing media. Only bacterial clones that 

were rid of this contaminant were used for large scale purification of Cm/Km-resistant pAd2-BAC 

mutant DNA.  

Correct insertion of the mutant allele was analyzed by restriction cut of BAC DNA. The 

mutation in the 14.5ko Ad2 genome could by identified by gel electrophoresis of mutant BAC 

DNA cleaved by PacI. The mutation introduced to eliminate the 14.5K start codon had caused a 1 

bp frameshift and a new PacI site, which resulted in generation of an additional 1.5 kb band that 

could be visualized on the gel (Fig. 27A, PacI). A complete list of PacI restriction sites of wt and 

mutant BAC DNA and resulting restriction fragment size is given in annexe. Similarly, mutation 

of 14.5K Y74 introduced a new PvuI site and therefore an additional DNA fragment of 1.5kb 

appeared on the gel (Fig. 27A, PvuI, refer to annexe for a list of PvuI sites). To exclude any 

unwanted rearrangements of the BAC sequence mutant clones were cut by EcoRV, which yielded 

the correct banding pattern expected for mTn-containing clones (Fig. 27A, EcoRV, constructs 1-4, 

and EcoRV-list in annexe). The mTn sequence contains two EcoRV sites. Therefore, the EcoRV 

cleavage of mTn containing BAC constructs generated three characteristic fragments that were not 

obtained upon cleavage of the pAd2-BAC without the transposon (Fig. 16A, EcoRV, compare 

constructs 1-4 with construct 5). 
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Fig. 27 Analytical restriction cut of mTn-containing mutant pAd2-BACs 
Analytical restriction digests of mutant pAd2-BAC DNA were separated on a 0.8% agarose gel. Restriction 
enzymes used are listed above the lanes. Numbers on top of the lanes denote the type of BAC DNA 
analyzed. M, 1kb DNA ladder. Arrowheads highlight the appearance of additional fragments, that were not 
obtained with wt pAd2-BAC. 
(A) construct number 1, pAd2-H7/F14.5Y74; 2, pAd2-H7/14.5ko; 3, pAd2-H7/10.4ko-F14.5; 4, pAd2-
H7/10.4LL-F14.5; 5, pAd2-BAC. 
(B) construct number 1, pAd2-H7; 2, pAd2-H7/10.4ko-F14.5 #37; 3, pAd2-H7/10.4ko-F14.5 #41. 

 

Disruption of the 10.4K open reading frame was achieved by deletion of a XhoI site within 

the 10.4K coding sequence which introduced a 4bp frameshift 13 bp downstream of the 10.4K 

start codon. Therefore, the banding pattern of a XhoI restriction cut was different from the one 

obtained with the wt sequence (clone pAd2-H7) with a 8.3kb band instead of two smaller 

fragments (Fig. 27B, XhoI), but the EcoRV and HindIII restriction pattern was identical to that of 

unmodified pAd2-H7. A complete list of XhoI, EcoRV and HindIII restriction sites and resulting 

fragment sizes in the mTn-containing BAC vectors is given in annexe). The mutagenized part of 

the E3 region was sequenced to assure the correctness of 10.4K or 14.5K mutant gene sequences.  

 

5.2.5. Transposon removal 
 
As the Kmr gene was part of a bacterial Tn7-derived transposon sequence, it could be 

excised from pAd2-BAC mutant DNA in vitro by use of a Tn7 transposition system, TnsABC*, 

and subsequent religation of the gap (Ruzsics et al in preparation).  

TnsABC* (New England Biolabs, Frankfurt, Germany) consists of wt bacterial proteins 

TnsA, TnsB, which act interdependently to execute the catalytic steps of the transposition reaction 

(Biery et al., 2000a), and a mutant variant of TnsC. Wt TnsC is an ATP-dependent DNA-binding 

protein (Gamas and Craig, 1992). TnsC binds DNA without any obvious sequence specificity, but 
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it depends on Tn7-encoded TnsD or TnsE target selection proteins to enable transposition. Gain 

of function mutant TnsC* (TnsCA225V) can activate TnsA+B in the absence of TnsD or TnsE to 

give very robust levels of recombination with low target site selectivity (Biery et al., 2000b; 

Stellwagen and Craig, 2001). The TnsABC*-mediated transposon excision reaction is initiated 

following specific recognition of the inverted repeats at the Tn7 transposon ends by TnsB. TnsC* 

binds to target DNA and interacts with TnsB. TnsA associates with TnsB:DNA. Thus, a three 

protein, two DNA complex is assembled and allows TnsA and TnsB to carry out the strand 

transfer reaction in the presence of cofactors ATP and Mg2+. The donor DNA is cleaved three 

bases 5’ to the transposon in one strand and precisely at the transposon 3’ end in the other strand. 

This occurs on both sides of the transposon, creating three base single-stranded 5’ overhangs in the 

donor DNA. In the target DNA a five-base staggered cut is made. Transposon insertion results in a 

five-base duplication of target sequences (Craig, 1996). 

For transposon excision from Km-resistant mutant pAd2-BAC DNA to occur, TnsABC* 

was applied to an in vitro reaction mix containing both pAd2-BAC donor DNA and plasmid 

pST76Tet as transposon acceptor (as described in Materials and Methods). Plasmid pST76Tet carries 

a temperature-sensitive mutation in the pSC101 replicon and cannot replicate at 37-42°C (Posfai et 

al., 1997; Posfai et al., 1999). Thus, the transposon will be received by a suicide plasmid and during 

bacterial growth cells are easily cured of that plasmid.  

TnsABC*-mediated transposon excision from pAd2-H7-derived mutant BAC vectors 

created 3’-overhangs which could anneal as they contained complementary bases (Ruszics et al, 

manuscript in preparation). These cohesive ends were religated by addition of T4 DNA ligase. 

Correct transposon removal from pAd2-H7-derived mutant BAC vectors and religation of the gap 

was characterized by creation of a new NheI restriction site (Ruszics et al., manuscript in 

preparation, and data not shown). 

To efficiently eliminate Km-resistant BAC vectors that persist due to incomplete 

transposition a strong counterselection tool was applied. The reaction mix was electroporated into 

E. coli strain RP-12, which constitutively expressed a meganuclease I-Sce I from high copy plasmid 

pUC19RP12 (Posfai et al., 1999). Meganuclease I-Sce I (Intron encoded meganuclease from 

Saccharomyces cerevisiae) recognizes a specific sequence of 18 nucleotides in the transposon 

sequence. Because of the length of the recognition sequence such a meganuclease target site is 

extremely rare and thus not present in the BAC vector backbone, in the E.coli genome, nor in the 

Ad2 genomic sequence (Posfai et al., 1999), Ruszics et al, manuscript in preparation). 

Meganuclease cleavage induces a double-stranded break in the mTn containing DNA, generating 

free DNA ends that trigger degradation of these DNA species. 
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Fig. 28 Analysis of mutant pAd2-BACs by restriction cut 
Analytical restriction digests of mutant pAd2-BAC DNA were separated on a 0.8% agarose gel. 
Enzymes used for the restriction cut are listed above the lanes. Numbers on top of the lanes denote the 
type of BAC DNA analysed, as listed below the gel pictures. M, 1kb DNA ladder.  

 

To eliminate contamination by high copy plasmid pUC19RP12, the BAC-DNA was 

isolated from RP-12 cells, retransformed into DH10B and Cmr/Aps clones were selected. The 

integrity of the newly generated mutant pAd2-BAC vectors was analyzed by restriction cuts (Fig. 

28). For a detailed overview of restriction fragments, see annexe. 

XhoI cleavage of the mutant BACs pAd2/14.5ko (no FLAG-sequence), pAd2/10.4LL-F14.5, 

pAd2/F14.5Y74 (Fig. 28A) yielded the expected band pattern which was similar to that of 

pAd2/F14.5 (shown in Fig. 28B, XhoI cut of construct 1, and annexe). The top band that was 

present in all XhoI restriction cuts seemed to result from incomplete digestion. The 10.4ko 

mutation abolished one XhoI site, thus the 5864 bp and 7918 bp fragments were not generated, but 

migrated as one band of 13778 bp in size (Fig. 28A, XhoI, and annexe). The mutant BAC clone 

pAd2/10.4ko-F14.5 was additionally cut by PacI to confirm that the 14.5* ORF in the acceptor 

BAC DNA had been replaced by the FLAG-14.5K sequence. The mutated 14.5K start codon had 

been successfully replaced, as no 1.5kb fragment was obtained (Fig. 28B, PacI, annexe). EcoRV and 

HindIII digestion of pAd2/10.4ko-F14.5 yielded the correct pattern, identical to the wt situation 

(Fig. 28B, annexe). 

SnaB1 digestion liberated the viral DNA framed by intact flanking ITRs from the BAC 

vector backbone and a purified preparation of 2-6 µg of linear Ad2 mutant genomes was 
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transfected into 293 cells (~2*106 cells) for reconstitution of viral particles (described in Materials 

and Methods). 

 

5.3. Recombinant Ads expressing 10.4-14.5 mutants are defective in receptor down-
modulation 

 

With the gene replacement strategy for manipulation of entire Ad genomes described 

above the desired mutations could be introduced into the viral genes in their native location, 

allowing to study mutant proteins in the context of Ad infection and under natural conditions of 

viral protein expression. Moreover, virus mutants would allow to extend the analysis to primary 

cells. Therefore, the mutations that caused a loss of 10.4-14.5 function in stable transfectants were 

incorporated into the Ad genome. Recombinant adenoviruses expressing wt 10.4K and FLAG-

14.5K (Ad2/F14.5) and mutant viruses encoding FLAG-tagged versions of 14.5 were created. The 

mutant viruses expressed 10.4LL, 14.5Y74A or 14.5Y122A mutant proteins. 

For functional characterization of the mutant proteins A549 cells were infected with 

recombinant Ads at MOI 100 pfu/cell and receptor levels were measured by FACS analysis at 21-

24 hours p.i. On A549 cells the entire series of surface receptors identified as targets of 10.4-14.5K 

induced down-regulation, namely Fas, EGFR and both TRAIL receptors DR4 and DR5 are 

sufficiently expressed to allow FACS analysis of their surface expression levels. As a marker of 

infection efficiency the cell population was analyzed for intracellular E3/19K levels. Cells infected 

with mutant viruses expressed at least as much E3/19K as those infected with wt and in all cases 

infection efficiency was close to 100% (data not shown). Thereby, it was ascertained that receptor 

surface expression levels were determined on a similar population of cells infected with wild-type 

or mutant Ads. Similar to wt Ad2 (Elsing and Burgert, 1998), Ad2/F14.5 infection of A549 cells 

diminished cell surface expression of Fas and EGFR by more than 95%, as measured by FACS 

analysis (Fig. 29A, B). By contrast, recombinant viruses lacking expression of either 10.4K, 14.5K 

or both were incapable of down-modulating Fas, but rather induced its cell surface expression. 

This may be due to Ad-induced NF-κB activation which in turn stimulates the Fas promoter (Gil 

et al., 1999; Kuhnel et al., 2000) or by Ad-induced activation of p53 resulting in a transient 

upregulation of Fas on the cell surface (Bennett et al., 1998). Independent of which 10.4-14.5 

knock-out Ad was utilized for infection, EGFR levels consistently declined to about 80% of that in 

uninfected cells, indicating an additional, 10.4-14.5K-independent modulation, presumably caused 

by E1A-induced transcriptional repression (Prudenziati et al., 2000). Of note, the Ad2/14.5ko virus 

caused an even stronger reduction in EGFR surface expression levels. 
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Fig. 29  Functional activity of mutant 10.4-FLAG-14.5K in infected cells 
A549 cells were infected at equal MOI (100 pfu/cell) with wt Ad2 or recombinant Ads expressing 10.4-F14.5 
wt and mutant proteins or lacked expression of 10.4K, 14.5K or both, as indicated below the figure. At 21 –
24 hours p.i. cell surface expression of Fas (A, mAb B-G27), EGFR (B, mAb 528) and FLAG-14.5K (C, mAb 
M1) were determined by FACS analysis, as described in Materials and Methods, and related to those on 
mock-infected A549 cells (A, B) or Ad2/F14.5-infected cells (C), determined in parallel and set to 100%. 
Infection efficiency was nearly 100%, as judged by parallel FACS analysis of intracellular E3/19K levels 
(mAb 3A9). Data were compiled from at least 5 independent experiments. Error bars represent the SEM.  
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Fig. 30 
Relative cell surface expression of DR4, DR5 on A549 cells infected with 10.4-14.5K mutant viruses  
A549 cells were infected with wt Ad2 or recombinant Ads (MOI 100 pfu/cell) that expressed 10.4-F14.5K wt 
and mutant proteins or lacked expression of 10.4K, 14.5K or both (as indicated below the figure). Relative 
DR4 (A) and DR5 (B) surface expression levels were determined by FACS analysis at 24 hours p.i. MAb 
1H5 and 3F11 were used to detect DR4 and DR5, respectively, and GαM FITC (SIGMA, Munich, 
Germany) was used as secondary Ab. Experimental values minus unspecific background were related to 
those on mock-infected A549 cells determined in parallel and set to 100%. Results from 3 independent 
experiments were compiled to calculate the arithmetic mean (bars) and SEM (error bars). For clarity a 
horizontal line is drawn to illustrate the levels on cells infected with Ad2/(10.4-14.5)ko.  

 
Confirming the data obtained in transfectants, the Y122A mutation completely abolished 

the function of the 10.4-14.5K complex, in that both Fas and EGFR expression on the cell surface 

remained unaffected upon infection with Ad2/F14.5Y122. Fas and EGFR levels were comparable 

to those on Ad2/10.4-14.5ko-infected cells. Furthermore, in line with the accumulation seen in the 

293 transfectants, the Y122A substituted FLAG-14.5K protein accumulated to roughly 2.7 fold 

higher levels at the plasma membrane compared to wild-type FLAG-14.5 (Fig. 29C). Remarkably, 

in cells infected with Ad2/10.4ko-F14.5, lacking coexpression of 10.4K, F14.5K surface expression 

reached only 6.5% of wt levels. This underscores the results of the immunofluorescence analysis 

which suggested that efficient cell surface transport of 14.5K depends on 10.4K. As illustrated in 

Fig. 17 and Fig. 18 steady-state localization of 14.5K changed upon coexpression of 10.4K, 14.5K 

was relocated from the ER into post-Golgi compartments. 

Interestingly, inactivation of 10.4-14.5K was incomplete in the Ad2/10.4LL-F14.5 virus 

lacking the di-leucine pair of 10.4K. While down-regulation of the EGFR was similarly 

compromised as upon infection with the 14.5ko virus, Fas levels were reduced to 53 % of the 

levels on mock-infected cells. Related to levels on cells infected with the double knock-out virus 
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the mutant 10.4LL-14.5 retained 56 % of the activity of wt 10.4-14.5 towards Fas. Strikingly, in 

Ad2/10.4LL-F14.5-infected cells F14.5 surface expression levels reached only 13 % of the wild type 

(Fig. 29C), a level only slightly above that seen upon infection with the Ad2/10.4ko-F14.5 virus 

(6.5% of wt). Thus, also in the virus context disruption of the 10.4K di-leucine pair caused a 

strong reduction of F14.5 surface expression levels. The Y74A mutant exhibited normal F14.5 

surface expression and retained the capacity to efficiently down-regulate Fas (98 % of the 

reduction on Ad2/F14.5 as related to levels on Ad2/10.4-14.5ko-infected cells), but induced only a 

partial (69% of the reduction on Ad2/F14.5 compared with Ad2/10.4-14.5ko-infected cells) down-

modulation of the EGFR (Fig. 29A, B). This differs from the phenotype seen in stable 

transfectants, in which EGFR levels were similar to those of (10.4-14.5)ko transfectants and Fas 

levels indicated a residual activity of only 20% (Fig. 7). The differential effect of the 10.4LL and 

14.5K Y74 mutation on Fas and the EGFR down-modulation might argue for a different 

mechanism of receptor down-modulation. Presumably, the increased de novo synthesis in the 

infected versus transfected cells could partially compensate the defects of the 14.5Y74 and 10.4 di-

leucine mutants.  

Concerning down-modulation of DR4 and DR5, respectively, a similar picture was 

obtained (Fig. 30). Recombinant Ads lacking expression of either 10.4K, 14.5K or both were 

incapable of down-modulating these receptors. DR4 levels remained equivalent to those on mock-

treated A549 cells, and similar to the situation with the EGFR the Ad2/14.5ko virus caused a 

slight reduction (see discussion). DR5 levels on A549 cells were generally increased upon infection 

with 10.4ko, 14.5ko and 10.4-14.5ko viruses, to at least 120% of those on mock-infected cells. Wt 

Ad2 and Ad2/F14.5K efficiently reduced receptor levels of DR4 and DR5 to below 5% and 10-

15%, respectively, of those seen in A549 cells. Virus mutant Ad2/F14.5Y122 was incapable of 

reducing receptor levels. Instead, DR4 levels appeared to be significantly increased by at least 50% 

on cells infected with this mutant. As lack of either 10.4K, 14.5K or both did not induce an 

increase in surface expression, this effect seems to be a specific consequence of the mutation in 

14.5K. Given that substitution of Y122 resulted in a 2.7fold increase in F14.5K levels at the plasma 

membrane the observed increase of DR4 receptor levels might be caused by interference of 10.4-

F14.5Y122A complexes with internalization of the receptor. This scenario is consistent with 10.4-

14.5K interacting with DR4 at the plasma membrane, the interaction being either direct or 

indirect. Surface expression levels of the other 10.4-14.5K receptor targets, Fas, EGFR and DR5, 

were not specifically increased on cells infected with Ad2/F14.5Y122. This suggests that 10.4-14.5K 

act on these receptor targets subsequent to internalization, perhaps in an endosomal compartment.  
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Down-modulation of the TRAIL-R2 depends on a third E3 protein, E3/6.7K, which has 

been reported to exist in complex with 10.4-14.5K at the plasma membrane (Benedict et al., 2001). 

It is not known whether the mutation in 14.5K might disrupt the functional interaction with 

E3/6.7K, but coexpression of E3/6.7K can obviously not rescue the functional defect of the 10.4-

14.5Y122A complex, nor compensate the trafficking defect of the 14.5Y122A mutant.  

Thus, in the virus context, substitution of Y122 by alanine was detrimental to down-

regulation of 10.4-14.5K receptor targets Fas, EGFR, DR4 and DR5 and caused a dramatic increase 

in F14.5K surface expression. 

Ad2/F14.5Y4 mutant viruses efficiently down-regulated DR4, preserving nearly the activity 

of the wt proteins, whereas DR5 levels remained at about 50% of the levels on A549 cells. This 

accounted for about 70% of the reduction observed in Ad2/F14.5 infected cells as related to levels 

on Ad2/10.4-14.5ko virus-infected cells. Thus, 14.5K Y74 is not essential for receptor down-

modulation in virus-infected cells. FLAG-14.5K surface expression levels on cells infected with the 

Y74A mutant were as high as those on Ad2/F14.5-infected cells, a phenotype that affords an 

interaction of mutant 14.5Y74 with 10.4K (see below).  

The dileucine mutant of 10.4K appeared to differentially affect down-modulation of 

different receptor targets: Whereas DR5 levels were comparable to those seen on cells infected with 

the Ad2/10.4ko virus and only a low reduction in EGFR levels could be observed, DR4 levels were 

decreased to 70% and Fas levels to 53%. Related to the levels on A549 cells infected with 

Ad2/10.4-14.5ko this reduction accounted for 32 % of DR4-specific activity and 57 % of Fas-

specific activity of wt 10.4-14.5K. The increased efficiency of receptor down-regulation in the 

infected cells as compared to the stable E3 10.4LL mutant transfectant might be explained by 

increased 10.4-14.5K expression in infected cells and likely a higher gene copy number. In good 

correlation, F14.5K levels at the cell surface of the Ad2/10.4LL-F14.5-infected cells reached 13% of 

Ad2/F14.5 infected cells, whereas in the stable transfectant LL-11 F14.5K surface expression was 

below 5% of that on F-19 cells. Nonetheless, the drastically decreased F14.5K steady-state surface 

expression levels indicated that the 10.4LL mutation significantly affected transport of 10.4-14.5K 

in infected cells (see immunofluorescence analysis below). 

Thus, it can be concluded that the Y122XXΦ motif is essential for down-regulation of all 

known receptor targets of 10.4-14.5, whereas the dileucine motif was primarily critical for down-

modulation of DR5 and the EGFR and less important for modulation of DR4 and Fas. This 

differential effect may indicate mechanistic differences in the targeting of these receptors. 
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Fig. 31 10.4-14.5K complex formation upon infection of A549 cells with recombinant Ads 
(A) Digitonin extracts of infected or mock-infected A549 cells (21 h p.i.) were subjected to IP with 
polyclonal serum Bur4 directed to 14.5. After separation of immunoprecipitated material by SDS-PAGE the 
presence of 10.4 was visualized by western blotting, using antiserum Bur3 (α10.4) in lanes 1-4 (lane 1, 
mock-infected A549 cells; and infected cells in lane 2, Ad2/F14.5; lane 3, Ad2/F14.5Y74; lane 4, 
Ad2/F14.5Y122) and R71 specific for 10.4LL in lane 5 (Ad2/10.4LL-F14.5). The same lysates were 
subsequently reacted with Ranti-E3/19K and blotted material was detected with the same antibody. (B) 
Total amounts of 10.4K, 14.5K and 19K as determined by immunoprecipitation from Triton X-100 lysates 
and western blotting using the corresponding antisera, as described in Fig. 14. 

 

5.4. Complex formation of mutant 10.4-14.5K in infected cells 

 
For analysis of complex formation A549 cells were infected at a MOI 40 pfu/cell, and at 17 

hours p.i. complex formation was analyzed in digitonin extracts of infected and mock-infected 

cells (Fig. 31A). Prior to immunoprecipitation cell lysates were adjusted to equal protein content. 

As a control E3/19K was isolated from the same lysates in a second IP step (Fig. 31A). Total 

amounts of 10.4K, 14.5K and 19K proteins were analyzed in parallel by immunoprecipitation and 

western blotting in Triton X-100 cell lysates (Fig. 31B). In infected cells, 10.4-14.5 interaction was 

detectable for all three virus mutants (Fig. 31A), although, in line with the results obtained with 

E3-transfectants complex formation seemed to be reduced for the 14.5Y74 and the 10.4LL 

mutants. For the latter, this was accompanied by somewhat lower amounts of 10.4 and 14.5 and 

markedly increased amounts of low molecular weight products, that presumably represented 14.5K 

degradation products (Fig. 31B, marked with a *). Remarkably, these lower molecular weight 14.5 
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products were not visualized in cells infected with mutant Ad2/F14.5Y122, indicating that their 

generation depends on the presence of tyrosine 122.  

 
5.5. Immunofluorescence of infected primary cells 

 
The recombinant adenovirus mutants allowed to express and localize the mutant 10.4-14.5 

proteins in primary fibroblasts, such as SeBu cells (Fig. 32A-D). In SeBu cells infected with wt 

Ad2/F14.5 the ER and Golgi stained positively for 10.4K and 14.5K, and 14.5K was additionally 

detected at the plasma membrane. While upon infection with mutant Ad2/F14.5Y74 14.5 surface 

staining was similar to infection with wt Ad2 (Fig. 32B), ER/Golgi staining appeared less 

pronounced. Upon infection with the Ad2/F14.5Y122 mutant, cellular extrusions were 

prominently stained, indicating a markedly increased surface staining of 10.4-14.5K (Fig. 32C), 

compatible with the proposed role of the Y122XXΦ motif in directing internalization of the 10.4-

14.5K complex. By contrast primary fibroblasts infected with Ad2/10.4LL-F14.5 showed no surface 

staining. Even without Bafilomycin treatment a significant proportion of the cells exhibited a 

highly vesicular staining for both 10.4 and 14.5 (Fig. 32D), instead of the ER/Golgi staining seen 

for wt proteins (Fig. 32A). To characterize the nature of the vesicles SeBu cells were infected with 

Ad2/F14.5 or Ad2/10.4LL-F14.5 and processed for dual label immunofluorescence analysis to 

compare steady-state localization of 14.5K with cellular marker proteins. In the mutant (Fig. 33A) 

and the wt (Fig. 33B) situation the perinuclear compartment was costained with GM130, a cis-

Golgi marker protein. Upon Bafilomycin treatment, the number of cells bearing 14.5+ vesicles was 

further increased in cells infected with mutant Ad2/10.4LL-F14.5, but not in cells infected with wt 

Ad2, in which ER/Golgi staining for 14.5K (Fig. 33D, F, H) remained unaltered. In Ad2/10.4LL-

F14.5- infected primary fibroblasts the distribution of 14.5+ vesicles was distinct from the 

localization of EEA1, a marker for early endosomes (Fig. 33C). Similarly, vesicles did only 

partially overlap with LBPA which represents late endosomes (Fig. 33E). But both 14.5K (Fig. 33G) 

and 10.4LL (Fig. 34E) extensively colocalized with Lamp-2+ vesicles. 

Remarkably, the reduction of ER staining and redistribution of 10.4K to Lamp-2+ vesicles 

occurred selectively in cells expressing the 10.4 dileucine mutant (Fig. 34A). In cells infected with 

Ad2/F14.5 (Fig. 34B) or virus mutants Ad2/10.4-F14.5Y74 (Fig. 34C), Ad2/10.4-F14.5Y122A (Fig. 

34D) 10.4K was found in the ER and the Golgi, and did not colocalize with Lamp-2+ vesicles 

following Bafilomycin treatment (Fig. 34 F-H). Thus, disruption of the 10.4K dileucine motif leads 

to a profound redistribution of 10.4-14.5K into Lamp-2+ vesicles,
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Fig. 32  Localization of 10.4-14.5 complexes in primary fibroblasts infected with Ad2 mutants 
Primary fibroblasts (SeBu cells) were infected with 200 PFU/cell of wt (A) or mutant Ad2/F14.5 viruses (B-
D) as indicated on the right. Cells were processed for immunofluorescence analysis at 21h p.i. and stained 
for wt 10.4 or 10.4LL with polyclonal serum Bur3 or R71, respectively (green), and mAb M1 directed to 
FLAG-14.5 (red). Upon infection with Ad2/F14.5 (A) or Ad2/F14.5Y74 (B) 10.4 and 14.5 colocalize 
extensively in the ER/Golgi and 14.5K can be detected at the cell surface. (C) Increased cell surface staining 
of both 10.4K and 14.5K upon infection with mutant Ad2/F14.5Y122. (D) Infection with Ad2/10.4LL-
F14.5: 10.4LL and 14.5K colocalize in a perinuclear compartment and vesicular structures. 

 
accompanied by a reduction of ER staining, which indicated an increased ER export rate and a 

faster delivery of the complex into lysosomes. In the absence of the dileucine motif 10.4-14.5 is 

deviated from its normal trafficking route and is primarily transported to lysosomes for 

degradation. Together with the drastically lowered steady-state surface expression levels of Flag-

14.5K, the data suggest that LL may contribute to recycling to the plasma membrane. 
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Fig. 33 Disruption of the dileucine motif in 10.4K redistributes the steady-state localization of 14.5K 
in infected primary fibroblasts (SeBu cells) 
SeBu cells were infected with 200 PFU/cell of Ad2/10.4LL-F14.5 (A, C, E, G) or wt Ad2/F14.5 (B, D, F, H) 
viruses. Infected cells remained untreated (A, B) or were treated for 11 hours with 100nM Bafilomycin A1 
(C-H) before processing for immunoflorescence at 21 h p.i. Intracellular localization of 14.5K (Bur4, green) 
was compared to that of marker proteins (red) for the cis-Golgi (A, B: GM130) and different endosomal 
compartments: EEA1 (early endosomes in C,D), lysobisphosphatidic acid (LBPA, late endosomes in E, F), 
Lamp-2 (late endosomes and lysosomes in G, H). The mAbs used are listed in Materials and Methods. 
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Fig. 34 In infected primary fibroblasts disruption of the 10.4K dileucine motif diverts the mutant 
protein to lysosomes resulting in increased degradation 
Primary fibroblasts (SeBu cells) were infected with 200 PFU/cell of Ad2/10.4LL-F14.5 (A,E) Ad2/F14.5 (B, 
F), Ad2/F14.5Y74 (C, G), Ad2/F14.5Y122 (D, H) viruses and processed for immunofluorescence at 21 h p.i. 
Wt 10.4K was detected with polyclonal Ab Bur3 and the 10.4K dileucine mutant with R71 (D, H). 
Intracellular localization of 10.4K (green) was compared to localization of galactosyltransferase (GLT, red, 
mAb GTL2), a cellular Golgi-resident protein (A-D). Subsequent to treatment for 11 hours with 100nM 
Bafilomycin A1 (E-H) cells were costained for 10.4K (green) and Lamp-2 (red, mAb 2D5, late 
endosomes/lysosomes). 
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Fig. 35 10.4-14.5K-induced internalization and degradation of Fas in late endosomes/lysosomes 
SV80Fas cells overexpressing Fas were mock-infected (A) or infected with Ad2 (B-C) and processed for 
confocal laser scanning microscopy at 16 h p. i., subsequent to treatment with 100 nM Baf for 11h.  
(A, B) Intracellular localization of 14.5K (green, Ra14.5) was compared to Fas (red), which was detected 
using a combination of different mAb against Fas (anti-Fas-Mix). (C) Costaining of Fas (green, polyclonal 
rabbit serum anti-Fas) and Lamp-2 (red, mAb 2D5). Magnification was 100x instead of 63x as in A, B. 

 

5.6. 10.4-14.5K and Fas do not profoundly colocalize in Ad2-infected cells 

 
In Ad2-infected cells 10.4-14.5K induce internalization of Fas and its degradation in late 

endosomes/lysosomes (Elsing and Burgert, 1998; Tollefson et al., 1998). But it remained unknown, 

whether or not 10.4-14.5K localizes to the same endosomal/lysosomal vesicles. Therefore, the 

intracellular distribution of 10.4-14.5K and Fas was analyzed in infected SV80Fas cells which had 

been treated with Bafilomycin to inhibit Fas degradation. Bafilomycin treatment did not affect 

distribution of Fas in mock-infected cells and Fas was detected at the cell surface (Fig. 35A). By 

contrast, in the infected cells Fas was no longer found at the plasma membrane, but exclusively in 

vesicles (Fig. 35B). Fas+ vesicles costained with Lamp-2 (Fig. 35C). As Bafilomycin treatment 

inhibits the acidification of late endocytic compartments Lamp-2+ late endosomes/lysosomes (van 

Weert et al., 1995; Yoshimori et al., 1991) were increased in size and anti-Lamp-2 antibody stained 

outer membranes which appeared as red circles (Fig. 35C). Fas was found in dense, dot-like
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Fig. 36 In Ad2-infected SV80Fas cells 10.4-14.5K do not profoundly colocalize with Fas 
SV80Fas cells overexpressing Fas were infected with Ad2, treated with 100 nM Baf for 11h and processed 
for confocal laser scanning microscopy at 16 h p. i. Intracellular localization of 10.4K (A, B) or 14.5K (C, 
D) was compared to Fas localization. 10.4K and 14.5K (green) were detected using polyclonal Ab Bur3  and 
Ra14.5), respectively, and Fas (red) was costained using a combination of different mAb (anti-Fas-Mix).  

structures that localized at the outer rim, but also in the inner core of lamp-2+ vesicles (Fig. 35C).  

Thus, following 10.4-14.5K-induced down-regulation Fas becomes incorporated into the 

inner core of lysosomes. Despite Bafilomycin treatment the majority of 10.4K positive cells 

retained the ER/Golgi staining pattern (Fig. 36A). Fas could be detected in vesicles which did not 

colocalize with the 10.4K positive structures, even if 10.4K was detected in swollen vesicles (Fig. 

36B). Like for Fas, Bafilomycin-treatment also increased the number of 14.5K vesicles, but 

strikingly these 14.5 vesicles only partially overlapped with Fas+ late endosomes/lysosomes (Fig. 

36C, D). Thus, at steady state no extensive colocalization of 10.4-14.5 with Fas was observed, 

suggesting that the association of Fas with the viral proteins might be rather short-lived. 



Results 

 123

6. Analysis of homologous E3/10.4-14.5K proteins of adenovirus 4 (subgenus E) 
 

6.1. Down-regulation of cell surface receptors following infection with Ad4 

 
Adenovirus 4 (Ad4), the only member of human subgroup E adenoviruses encodes two 

E3/ORFs homologous to the adenovirus 2 E3/10.4-14.5K proteins (see Fig. 4). However, Ad4 

infection of A549 cells does not cause down-modulation of Fas (Fig. 37, Burgert, unpublished). 

FACS analysis of Ad4-infected A549 cells revealed that Fas, EGFR and TRAIL-R2 remained almost 

unchanged during infection with Ad4, but TRAIL-R1 levels were efficiently reduced to about 10% 

of the levels on uninfected A549 cells (Obermaier, unpublished). To investigate the molecular 

basis of these functional differences and to characterize a potentially different receptor target 

specificity of the Ad4 E3/10.4-14.5K proteins, Ad2/Ad4 chimeric viruses were generated with Ad4 

homologous ORFs replacing the Ad2 10.4 and/or 14.5K ORFs. Coexpression of subgenus E 

protein homologues should reveal whether a functional 10.4-14.5K complex can be established, 

and whether one of the subunits can confer target specificity to the complex. 
 

Fig. 37 Fas is expressed at the cell surface of SV80Fas cells infected by adenovirus 4 (subgroup E) 
SV80Fas cells infected with Ad4 were processed for dual label CLSM at 22 h p.i., and subsequently to 11 h 
treatment with 100nM Bafilomycin A1. Costaining for Ad4 14.5K (Rα14.5) and Fas (mAb anti-Fas-Mix) 
revealed Fas surface staining in cells expressing Ad4 14.5K. 

 

6.2. Generation of recombinant Ad2 viruses encoding Ad4 homologues of 10.4K and 
14.5K 

 

To analyze whether the different effects of Ad4 versus Ad2 on target receptor modulation 

is an intrinsic property of the corresponding subunits of the 10.4-14.5K complex the homologous 

Ad4 CDS were introduced into the adenovirus 2 genome. This approach may offer several 

advantages: (i) Both 10.4K and 14.5K are expressed from a single vector backbone, allowing to 

maintain a constant ratio of 10.4K and 14.5K expression. (ii) The splicing of the Ad2 E3 region is 

well-characterized (Imperiale et al., 1995). (iii) E3 gene expression could be standardized by 

monitoring expression of the Ad2 E3/19K protein. iv) In infected cells a high number of Ad  
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Fig. 38 Sequence composition of the mTn-containing pAd2 intermediates (A) and pAd2/Ad4 chimeric 
constructs (B).  
Nucleotide sequences are given for the coding strand (5’ to 3’), start and stop codons of the ORFs are 
highlighted in boldface. (A) mTn encoding sequences are indicated by checked boxes and adjacent 
nucleotide sequences are given to specify their position. (B) 11.6K, 10.4K and 14.5K represent Ad2 ORFs, 
whereas Ad4 CDS are designated Ad410.4K and Ad414.5K (shaded boxes). Refer to text for details. 

 genome copies is present, thus a high E3 protein expression level can be attained. Infection can be 

carried out at equal infection efficiency (equal MOI). (v) Since the target specificity of Ad2 is well-

known, the effect of the gene replacement on down-regulation of plasma membrane receptors can 

be analysed. The adenovirus 2 genome had been cloned into a BAC vector facilitating 

manipulation of the viral genomic DNA (Ruzsics et al., in preparation). In order to exchange the 

coding regions, the Ad2 10.4 and 14.5 ORFs were removed from the pAd2-BAC vector in a first 

step by ET recombination with a kanamycin cassette encoding  a mini-transposon sequence (mTn), 

generating mTn-containing intermediate BAC vectors (Fig. 38A). 
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 The mTn-containing replacement sequences were amplified by PCR using pGPS1.1 as a 

template. The linear recombination fragments had 40-43 base pair homology arms to the sequence 

flanking the target site within the pAd2-BAC, which served to direct ET recombination (described 

in Materials and Methods). For ET recombination the mTn containing PCR products were 

transformed into DH10B containing pBADαβγ and the target BAC pAd2. mTn-containing 

intermediate pAd2BAC vectors could be selected by growth of the bacteria in Cm/Km-containing 

media. The transposon sequence was excised from the pAd2-BAC vector in an in vitro reaction 

using TnsABC* (see chapter 5.2.5 Tn removal) and the gap in the pAd2 vector was ligated with an 

insert encoding the Ad4 replacement sequence. Transposase excises the transposon with 

trinucleotide 5’ overhangs on both sides of the transposon. Thereby, distinct trinucleotide single 

stranded overhangs are generated in the open vector, which preclude recircularization of the pAd2-

BAC vector and allow directed insertion of the Ad4 sequence with its correct 5’→3’ orientation. 

Ad4 inserts were amplified by PCR on plasmid pA4E3, containing part of the Ad4 E3 region 

(Genbank AF361223). Primers for synthesis of Ad4-CDS inserts (see also Materials and Methods) 

encompassed a priming region with 20 bp homology to the Ad4 sequence and SapI recognition 

sites at the 5’ ends. A trinucleotide sequence complementary to the corresponding 3 nt overhang 

in the pAd2-BAC vector was incorporated in the primer 3’ to the SapI recognition site. By this 

approach, referred to as exposon cloning (Ruszics et al., manuscript in preparation), different 

pAd2/Ad4 chimeric constructs were generated with 10.4, 14.5 or both CDS replaced by the 

corresponding Ad4 sequences. Interestingly, the Ad4-14.5K coding sequence was found to be 48 

nucleotides longer than the Ad2-14.5K ORF and in addition the spacing of the Ad4-10.4 and Ad4-

14.5 ORFs is different from the one in Ad2. In Ad4 the intercistronic sequence is 5 nt (nucleotide 

sequence TAAGC) in length instead of 2 nt (TT) in Ad2. In order to be able to generate Ad2/Ad4 

constructs with different intercistronic sequences, the position of the mTn sequence was defined in 

a way (Fig. 38A) that allowed to modify the 10.4-14.5K intercistronic sequence by incorporating 

sequence changes in the corresponding Ad4 insert. The desired sequence was included in the 

inserted fragment between the SapI cleavage site and the Ad4-specific sequence by modification of 

insert amplification primers (see also Materials and Methods).The pAd2/(10.4Tn) construct was used 

for generation of pAd2/(Ad4-10.4) by Tns excision and ligation with an Ad4-10.4 encoding insert 

(Fig. 38B, see Materials and Methods). pAd2/(Ad4-14.5) constructs #3-8 and #7-1, were obtained by 

Tn removal from pAd2/(14.5Tn) and ligation of the open vector with two different types of Ad4-

14.5 inserts. These were designed to yield pAd2/(Ad4-14.5) constructs #3-8 and #7-1, with 10.4-

14.5K intercistronic sequences of 5 or 2 nucleotides in length, respectively (refer to Fig. 38B and 
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Fig. 39 Restriction cut analysis of mTn-containing intermediate BAC vectors 
EcoRV, HindIII (A) and XhoI (B) were used for analytical restriction cut of BAC DNA and digested samples 
were separated on a 0.8% agarose gel. Lane numbers indicate the type of construct: 1, pAd2/(10.4Tn) clone 
#1B; 2, pAd2/((10.4-14.5)Tn)#2A; 3, pAd2/(14.5Tn)#1A; 4, pAd2/F14.5. In (A) the gel was photographed 
twice to visualize bands of the top and bottom part. Arrows indicate the 3 kb band of M as point of 
reference. M = 1kb DNA ladder. (C) Schematic drawing of restriction sites and fragment sizes (written in 
boldface) expected for the mTn-containing pAd2-BACs. The mTn sequence is represented by a black bar. 
For a complete list of restriction sites refer to annexe. 

 
Materials and Methods). Following transposon removal from the pAd2/((10.4-14.5)Tn)-BAC vector, 

the Ad4-(10.4-14.5) coding sequence was inserted as a whole generating pAd2/(Ad4-

10.4)TAAGC(Ad4-14.5)#7-4 (Fig. 38B). 
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Fig. 40 Circular Map of pGPS1.1, illustrating the position of EcoRV, HindIII and XhoI sites which 
also cleave within the transposon (Tn)  sequence. 
The Tn sequence is contained in pGPS1.1 between map position 3068-4767. L and R denote the left and 
right transposon ends, respectively. 

 
In order to generate pAd2/(Ad4-10.4)TT(Ad4-14.5) #16-1 with a modified intercistronic 

sequence between the Ad4 ORFs, an additional mTn--containing intermediate, 

pAd2/(10.4Tn)Ad414.5, was created (Fig. 38A). pAd2/(10.4Tn)(Ad4-14.5) was obtained from 

pAd2/10.4GC(Ad4-14.5)#7-1 by ET recombination. The mTn-containing linear recombination 

fragment consisted of a 40 bp homology region to the Ad2 sequence preceding the 10.4 ORF 

upstream of the mTn sequence and at the 3’ mTn end a homology to the first 40 nucleotides of 

the Ad4-14.5 CDS. Following transposon removal from pAd2/(10.4Tn)(Ad4-14.5) the ends of the 

BAC vector were ligated with a (Ad4-10.4)-containing insert, which had a dinucleotide (TT) 

insertion preceding the 3’ SapI site (Fig. 38B, pAd2/(Ad4-10.4)TT(Ad4-14.5) #16-1). 

The Tn-containing pAd2-BAC vectors were analysed by restriction cut with EcoRV, HindIII 

and XhoI to prove that they contained the full-length genome with the desired transposon 

insertions (Fig. 39). The inserted mTn sequence contains two EcoRV, one HindIII and one XhoI 

site (Fig. 40). EcoRV and HindIII do not cut within the Ad2-(10.4-14.5), whereas one XhoI site is 

present in the Ad2 10.4K sequence. For a list of the expected fragment sizes refer to annexe. 

Accurate incorporation of the Ad4 inserts was ascertained by sequencing of the 

corresponding region in the chimeric pAd2-BAC vectors containing Ad4 coding sequences. In 

addition the BAC vectors were cleaved by EcoRV and XhoI yielding the correct restriction pattern 

(Fig. 41). Neither Ad2 nor Ad4 10.4-14-5K coding sequences contain EcoRV sites. Therefore the 

EcoRV restriction pattern was similar among all constructs (Fig. 41A), and comparable to the that 

of the wt pAd2-BAC, although depending on the type of Ad4 insert, the fragment which 
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Fig. 41 Analytical restriction cut of pAd2/Ad4 BAC DNA 
BAC DNA was digested with EcoRV (A) or XhoI (B) and separated on a 0.8% agarose gel. Numbers on top 
of the lanes indicate the type of construct analyzed.  1, pAd2/(Ad410.4) #12-1; 2,  pAd2/(Ad414.5) #3-8; 3, 
pAd2/(Ad414.5) #7-1; 4,  pAd2/(Ad410.4-14.5) #7-4; 5, pAd2/(Ad410.4-14.5) #16-1; 6,  pAd2-BAC. M = 1kb 
DNA ladder. 

 
encomprises the 10.4-14.5K CDS slightly varied in length (4755-4803 bp). All the constructs 

containing the Ad4-10.4K sequence lack one XhoI site, which is present in Ad2-10.4K. Therefore, 

upon XhoI cleavage of these constructs one ~13.8 kb band was obtained instead of two smaller 

fragments (Fig. 41B). For a list of the exact fragment sizes refer to annexe. 

For reconstitution of infectious viral particles the modified Ad2 genomes were released from the 

BAC vector by SnaB1 digest and the linear double-stranded genome was transfected into 293 cells. 

 

6.3. Expression of Ad4 10.4K and Ad4 14.5K proteins in cells infected with Ad2/Ad4 

chimeric viruses 

 

To evaluate the amounts of 10.4K and 14.5K in cells infected with the Ad2 recombinant 

viruses encoding Ad4 10.4K and/or 14.5K proteins A549 cells were either infected at a MOI of 25 

pfu/cell with Ad2, Ad4, and Ad2-recombinants or were mock-infected. Cells were lysed in Triton 

X-100 buffer at 17 hours post infection. Cell lysates were subjected to immunoprecipitation and 

western blot detection of E3/19K, 10.4K and 14.5K. Indicative of equal infection efficiency and E3 

gene expression, all five Ad2/Ad4 chimeric viruses exhibited a similar level of E3/19K expression 

as wt Ad2 (Fig. 42A, 19K). Detection of the Ad4 E3/19K homologue required the use of Ad4 

E3/19K specific serum and thus the intensity of the band could not be directly compared to the 

Ad2 E3/19K signals. 

Ad4 14.5K was detected with polyclonal serum Bur4 directed against the cytoplasmic tail 

peptide (CEISYFNLTGGDD) of Ad2 14.5K (Fig. 42A, 14.5K), which is nearly identical to the 
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Fig. 42 10.4 and 14.5K levels in A549 cells infected with Ad2 recombinant viruses 
Parallel immunoprecipitation and western blot analysis of E3/19K, 10.4K and 14.5K in Triton X-100 lysates 
of mock-infected A549 cells (lane 1), or A549 cells infected (MOI 25 pfu/cell) with Ad4 (lane 2), Ad2 (lane 
3), Ad2/(Ad4-14.5) #7-1 (lane 4), Ad2/(Ad4-14.5) #3-8 (lane 5), Ad2/(Ad4-10.4) #12-1 (lane 6), Ad2/(Ad4-
10.4-14.5) #7-4 (lane 7 ), Ad2/(Ad4-10.4-14.5) #16-1 (lane 8). Immunoprecipitates were separated on a 15% 
minigel by SDS-PAGE, prior to transfer to a nitrocellulose membrane for western blot detection.  
(A) Immunoprecipitation and western blot detection of E3/19K employing rabbit serum against Ad4 19K 
(lanes 1,2) or Ad2 19K (lanes 3-8). Rabbit serum Bur4 was used in IP/WB of E3/14.5K and E3/10.4K was 
analyzed using rabbit serum R59 in IP and Bur3 for western blot detection. 
(B) Different exposures of the left and right portion of the western blot anti-14.5K depicted in (A) to 
visualize bands of different intensities.  

 

corresponding Ad4 sequence (see Fig. 8). In the immunoblot three major protein species were 

obtained from lysates of Ad4-infected cells, which migrated with the expected MW of about 14 to 

18 kD. The Ad4 14.5K bands differed from those of the Ad2 14.5K protein (Fig. 42 B, left panel). 

Instead of one more intense faster migrating species and two of higher MW, as seen for Ad2 

14.5K, the Ad4 14.5K protein was represented by three bands of equal intensity. Thus, in addition 

to the expected variation in size, Ad4 14.5K being 16 amino acids longer than the Ad2 

homologue, the processing of Ad4 14.5K might differ from that of Ad2 14.5K. In any case, the 

Ad4 14.5K protein is in fact synthesized in Ad4-infected cells, and lack of 14.5K expression is not 

the reason for the impaired down-regulation of Fas, EGFR and DR5 by this virus. 

10.4-like protein species were also detected in Ad4-infected cells, using the Ad2 10.4K 

specific reagents R59 and Bur3. The two protein species (faint bands) migrated somewhat faster 

than their Ad2 counterparts (compare lanes 2 and 3). As the Ad2 10.4K homologue, the Ad4 

10.4K protein is predicted to consist of 91 amino acids. The cytoplasmic tail sequence of the Ad4 

10.4K protein differs in 9 residues from the Ad2 peptide sequence, which was used to generate 
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polyclonal serum R59. Bur3 serum recognizes a stretch of 13 amino acids at the C-terminus of 

10.4K, but the corresponding Ad4 sequence differs in 6 positions. Therefore, the Ad2-specific sera 

are likely to bind the Ad4 10.4K protein with lower affinity, which is consistent with the faint 

appearance. However, the apparent MW of the detected bands is lower than expected, although the 

Ad5 version of the 10.4K protein, which also consists of 91 amino acids, has been reported to 

migrate with apparent MW of 7kD (a doublet) and 15kD (Tollefson et al., 1990b). Thus, by 

analogy and as the doublet bands were not present in lysates of uninfected A549 cells, they may 

correspond to the Ad4 10.4K protein. 

A549 cells infected with Ad2 recombinants Ad2/(Ad4-14.5) #3-8 and #7-1 encoding the 

Ad4 14.5K protein, produced qualitatively and quantitatively the same 10.4 species as seen in Ad2 

(Fig. 42A, 10.4K, compare lane 3 with lanes 4, 5). However, the corresponding Ad4 14.5K signal 

was different from that obtained by infection with wt Ad4 (Fig. 42, 14.5K, lane 4,5). Instead of 3 

bands of equal intensity two major species were detected, which migrated at an apparent MW 

different from any of the bands observed in Ad4-infected cells. Moreover, the amounts of Ad4 

14.5K isolated from lysates of cells infected with Ad2/Ad4 recombinants were lower than those 

obtained with Ad4-infected cells. Similar amounts of 14.5K were detected for both chimeric 

constructs, which differed in the spacing of 10.4-14.5K ORFs, but contained the natural context of 

translation initiation of Ad4 14.5K (TAAGC).  

Thus, the Ad4 14.5K protein encoded within the Ad2/E3 region is expressed in infected 

cells, but is less abundant and might be differently processed compared to that produced during 

Ad4 infection. None of the Ad2 recombinants in which the Ad2 10.4K sequence was replaced by 

that of Ad4 10.4K did reveal the doublet band observed after IP/WB of lysates from Ad4-infected 

cells (Fig. 42A, 10.4K, compare lane 2 with lanes 6-8). Moreover, signal intensities for both Ad2 

and Ad4 14.5K proteins were very faint (Fig. 42A, 14.5K, lanes 6-8). Qualitatively, the 14.5K 

pattern seemed to resemble that observed after infection with wt Ad2 (compare Fig. 42B lanes 3 

and 6) or with chimeric constructs Ad2/(Ad414.5) #7-1, Ad2/(Ad414.5) #3-8 (compare Fig. 42B, 

lanes 7, 8 to 4, 5), respectively. The drastic reduction in signal intensity cannot be explained by 

reduced protein stability due to the absence of the Ad2 10.4K protein, as in 293 (E3-10.4*)-

transfectants, lacking Ad2 10.4K 14.5K was stable and synthesized at a similar rate as in wt E3 

transfectants (Elsing and Burgert, 1998). Thus, replacing the Ad2 10.4K ORF and intercistronic 

sequence upstream of Ad2 14.5K with the corresponding Ad4 sequence seemed to interfere with 

Ad2 E3/14.5K expression. 

Independent of whether the intervening sequence was derived from Ad2 or Ad4, insertion 

of the Ad4(10.4-14.5) encoding sequence as a whole into the E3 region of Ad2 (Fig. 42, lane 7, 8) 



Results 

 131

did not allow expression of the Ad4 proteins in a manner similar to that found in Ad4-infected 

cells. Ad4 14.5K levels were drastically reduced and migrated as differently processed forms.  

In conclusion, the Ad4 10.4-14.5K proteins were not sufficiently expressed when placed 

within the Ad2/E3 region. For all chimeric virus constructs, the Ad2/E3 19K protein was 

constantly expressed, suggesting that the splicing of the E3 19K encoding mRNA is normal. 

Normal 10.4K expression was detected as long as the Ad2-10.4 sequence remains intact (Fig. 42, 

compare lane 3 with lanes 4,5), and was not significantly altered by insertion of Ad4 sequences 

downstream of the 10.4K ORF. By contrast, replacement of the Ad2 10.4K coding sequence and 

intercistronic sequence by the corresponding Ad4 nucleotide sequence strongly reduced the 

amounts of the Ad2 14.5K protein isolated from infected cells. Similarly, Ad4 14.5K levels were 

also drastically reduced when the Ad4 10.4K CDS was preceeding the 14.5K ORF. This reduction 

of 14.5K levels was not influenced by the type of intercistronic sequences (Ad2- or Ad4-like), or 

spacing of 10.4-14.5K coding sequences. The coordinated lack of Ad4 10.4 and Ad4 14.5 

expression suggested, that the mRNA(s) for Ad4 10.4-14.5K is not synthesized and inappropriate 

expression of the Ad4 10.4K protein may contribute to differential processing of Ad4 14.5K 

encoded by Ad2. In subgroup C viruses Ad2 10.4-14.5K have been reported to be translated from 

the same bicistronic mRNA, but so far it is unknown, how initiation of translation at the 

downstream 14.5K ORF occurs. The Ad2/Ad4 chimeric viruses reveal that expression of 14.5K in 

the Ad2 E3 region is influenced by sequences preceding the 14.5K ORF. Taken together, the data 

suggest, that expression of Ad4 10.4-14.5K is differently regulated in the Ad4 E3 region, which 

differs in size and composition from E3 region of subgenus C viruses (Fig. 4).  
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Discussion 

 
7.1. Importance of strictly conserved amino acids for the function of Ad2 10.4-14.5K 

E3/10.4-14.5K proteins are transmembrane proteins encoded by all subgroups of human 

adenoviruses, but only a small number of amino acids are strictly conserved (Fig. 8). To determine 

the role of these strictly conserved residues for 10.4-14.5K-mediated down-regulation of Fas and 

the EGFR, stable 293 E3-transfectants expressing mutant forms of 10.4-14.5K were generated and 

screened by FACS analysis for expression and down--regulation of target proteins. Analysis was 

carried out for the Ad2 FLAG-14.5K mutant proteins in which the strictly conserved residues C32, 

C43, Y44 in the extracellular domain and S121, Y122, F123 within the cytoplasmic tail were 

replaced alanine (Fig. 10). 

Besides mutant Y122 for which the results will be discussed below, the mutation of C32, 

C43, F123 and S121 signficantly impaired the functional activity of 10.4-14.5K. Y44 was not 

essential for 10.4-14.5K function as this mutant cell line exhibited a reduction in Fas and EGFR 

surface expression comparable to E3-transfectants expressing wt 10.4K and F14.5K. No alteration 

of F14.5K surface expression levels was observed for the F14.5Y44A mutant. Mutant C43 had a 

clearly reduced efficiency in down-regulation of both Fas and the EGFR, which was accompanied 

by drastically decreased F14.5 surface levels. Interestingly, a similar phenotype was observed upon 

mutation of the other strictly conserved cysteine residue C32 in the extracellular domain. One 

possible explanation for this similar phenotype might be that both are linked by a disulfide bond. 

A coordinated change of phenotype of cysteine mutants was previously observed for E3/19K. In 

that case, the existence of intramolecular disulfide bonds was confirmed biochemically (Sester and 

Burgert, 1994). So far, the 14.5K protein has not been examined for the presence of intramolecular 

disulfide bonds. This will be difficult to perform, as the loop created by the putative disulfide 

bond will be very small and migration differences are expected to be extremely difficult to detect. 

The elimination of cysteines will further complicate an analysis by metabolic labeling. How the 

Cys mutations affect surface expression and receptor target down-modulation remains unclear. 

The efficiency of 14.5K association with 10.4K, which is known to influence cell surface transport, 

should be investigated by IP/WB. Immunofluorescence analysis in suitable cells, should give 

sufficient information as to whether mutants are retained in the ER/Golgi or delivered to 

endosomes/lysosomes. 

Substitution of single residues within the strictly conserved triplet S121Y122F123 in the 14.5K 

cytoplasmic tail also impaired down-regulation of both Fas and the EGFR. Whereas S121 and 

F123 mutants retained functional activity (80% and 67% of wt activity, respectively, towards Fas 
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and 68% and 50% towards the EGFR) a complete loss of function was observed for mutant Y122. 

FLAG-14.5Y122A was shown to accumulate at the cell surface, exhibiting about 4 to 5 times higher 

steady-state expression levels than wt (F-19). 14.5F123A also showed a strong increase of surface 

expression, which reached ~60 % of surface levels of FLAG-14.5Y122, whereas the preceding serine 

residue exhibited slightly reduced 14.5K surface levels. All our experimental evidence suggests that 

the increased surface expression levels reflect a prolonged residence time of mutant 14.5 at the cell 

surface, indicative of a defect in internalisation (see below). Y122 represents the first and most 

essential residue of a strictly conserved YXXΦ transport motif. F123 being part of this motif may 

also have a profound influence on recognition of this motif by AP complexes to direct 

internalization of 14.5K. Consistent with the data shown here for S121 of Ad2 14.5K, the 

corresponding serine residue in the Ad5 protein was not phosphorylated and alanine replacement 

did not abolish functional activity of the Ad5 10.4-14.5K complex (Lichtenstein et al., 2002). 

Surprisingly, we did not observe any significant effect upon replacement of Y44 by alanine 

although the nature of the introduced amino acid is considerably different from tyrosine. Perhaps, 

there are other constraints to keep this mutant protein functional. 

So far, no direct interaction of 14.5K with receptor targets has been detected, and it is 

possible that 10.4-14.5 mediate down-regulation of targets via interaction with other cellular 

proteins (Fig. 43, factor x). Thus, it remains unknown whether strictly conserved amino acids of 

14.5K are determinants of its affinity towards the target molecules or some unknown intermediate 

interaction partner. Interestingly, in both the wt and the mutant 293 E3+ cells the reduction in 

relative surface expression was less for the EGFR than for Fas. This difference was also noted with 

fixed cells (Elsing and Burgert, 1998). This might reflect a difference in the mechanism of 10.4-

14.5K-mediated down-regulation of these receptors or a different affinity of 10.4-14.5 towards these 

receptors or towards different types of cellular factors that may be involved. Since equivalent 

amounts of Fas and EGFR were detected at the surface of 293 cells by flow cytometry, a dosage 

effect can be excluded. 

 

7.2. Functional relevance of putative transport motifs within 10.4-14.5K for receptor 
down-modulation 

 
Based on the previous observation that the 10.4-14.5 target proteins, the EGFR and Fas, are 

rerouted to a late endocytic/lysosomal compartment (Elsing and Burgert, 1998; Tollefson et al., 

1998), it was investigated whether putative transport signals in 10.4-14.5K are functionally 

important. Of the three YXXΦ motifs present in 14.5, those at position 74 and 76 may be located 
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adjacent to or even within the lipid bilayer (Fig. 8). Previous studies showed that YXXΦ sequences 

have to retain a minimal distance of 5-7 amino acids to the lipid bilayer in order to be recognized 

as transport motifs (Collawn et al., 1990; Rohrer et al., 1996). This argues against a role of these 

motifs in trafficking. Indeed, mutation of Y76, which is found only in subgenus C Ads, had no 

profound effect on the capacity of 10.4-14.5K to down-regulate Fas and the EGFR (Fig. 10). 

Interestingly, in this mutant a reduced stability of 10.4-14.5K complexes in Triton extracts was 

observed, indicative of a decreased affinity of the 14.5 Y76 mutant towards 10.4K (Fig. 11). 

In contrast, mutation of the strictly conserved tyrosine Y74 within a potential YXXΦ motif 

either containing leucine (YXXL) in subgenera C, A and F or F (YXXF) in subgenera B, E and D, 

nearly abrogated the functional activity in transfected 293 cells (Fig. 7). The functional deficiency 

correlated with a markedly reduced 10.4-14.5Y74A complex formation, presumably caused by 

enhanced degradation of 14.5Y74 (Fig. 11). Levels of 10.4K were not affected (Fig. 11C). Taken 

together, Y74 rather than being part of a transport motif appears to be required for efficient 

complex formation between the viral proteins. In infected cells, a differential effect of the Y74A 

mutation on target modulation was noted. While the 10.4-14.5K-mediated EGFR modulation was 

impaired, Fas removal from the cell surface occurred with similar efficiency as in Ad2-infected 

cells (Fig. 29). This suggests that increased expression of 14.5Y74 (and 10.4) during infection can 

partially or completely overcome the decreased 10.4-14.5 association. Consistent with this idea 

10.4-14.5Y74A complexes could be isolated from digitonin extracts of infected cells (Fig. 31A, lane 

3), but not from transfected cells. The reduced ER and Golgi staining (Fig. 32B) suggests that the 

resident time of the viral proteins in these compartments may be shorter, in line with the 

suggested higher degradation rate. The latter is also indicated by an increased amount of 14.5 

degradation product (Fig. 31B, lane 3*). At present, it is unclear whether the decreased complex 

formation is a direct consequence of the lower affinity of the 14.5Y74A mutant to 10.4 or is rather 

due to the decreased steady-state levels of mutant 14.5, presumably caused by an increased 

degradation rate. Possible alterations in the metabolic half-life of 14.5K caused by the Y74A 

mutation remain to be analysed quantitatively by metabolic labeling. 

The third YXXΦ motif (Y122XXΦ motif of Ad2 14.5K) is strictly conserved and consists of 

the sequence YXXL in subgenera B, C, E, and F, YXXI in subgenus D and YXXF in Ad12 (Fig. 8). 

The tyrosine residue is commonly found in position –9 from the C-terminus and remarkably, 

amino acids flanking the tyrosine are strictly conserved: A serine residue in position –1 and 

phenylalanine in +1. In a comparison of the sequence context of 48 functional YXXΦ motifs no 

preference for phenylalanine has been noted, but serine in position –1 is somewhat preferred 
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(Windheim et al., 2003, in press). Prominent examples are endocytosis signals in furin and the 

transferrin receptor, which have been shown to bind AP-2 in vitro (Ohno et al., 1995; Teuchert et 

al., 1999). Regarding the sequence context and position in the 14.5K cytoplasmic tail, the Y122FNL 

motif does not exhibit the characteristics of known GYXXΦ lysosomal targeting signals, found in 

Lamp-1, Lamp-2 or CD63 which share a remarkably small distance (6-9 residues) to the 

transmembrane domain (Bonifacino and Traub, 2003). The short spacing of the Lamp-1 signal to 

the transmembrane domain has been shown to be critical for the lysosomal targeting step, whereas 

endocytosis of mutant Lamp-1 could still occur (Rohrer et al., 1996). The position of the YXXΦ 

motif at the end of the cytoplasmic tail should make it easily accessible for recognition by adaptor 

protein complexes and suggests that it might constitute a functional transport motif. Indeed, 

surface plasmon resonance spectroscopy confirmed that adaptor protein complexes AP-1 and AP-2 

bound to the 14.5K tail peptide in vitro. In vivo, this Y122XXΦ motif, seems to be crucial both for 

function and transport. In 293 E3 transfectants expressing the 14.5 Y122 mutant as well as in cells 

infected with mutant Ad2/F14.5Y122, down-regulation of Fas and the EGFR is abolished, like in 

cells lacking expression of either 10.4 or 14.5 or both (Fig. 7 and 29). In these cells, steady-state 

levels of both 10.4 and 14.5 are significantly increased as are the amounts of detectable complexes 

(Fig. 11 and 31). The apparently increased stability correlated with only small amounts of 14.5K 

degradation products in extracts from Ad2/F14.5Y122-infected cells (Fig. 31B, lane 4*). Several 

lines of evidence suggest that Y122 is part of a transport motif: First of all, SPR studies in vitro 

showed that Y122 is essential for efficient binding to the 14.5-tail of the adaptor protein complexes 

AP-2 and AP-1, which are known to mediate endocytosis and transport between intracellular 

compartments, respectively. Secondly, mutation of Y122 alters the subcellular distribution of the 

10.4-14.5 complex in vivo: FACS analysis demonstrated a dramatic increase in 14.5Y122 cell surface 

expression, to 400-500% of the F14.5 levels on wt 293 E3-transfectants (Fig. 10). Similarly, in 

infected cells F14.5Y122 surface expression level was increased to 280% of that of the wt F14.5 

(Fig. 29C). A corresponding increase in cell surface expression is also observed for the 10.4 subunit 

in these cells by immunofluorescence (Fig. 32C). Together with the higher affinity of the 14.5 tail 

to AP-2, this suggested that the Y122XXΦ motif serves as a recognition signal for AP-2 binding 

which might trigger rapid endocytosis of the complex. 

This is in agreement with data obtained upon expression of Ad5 10.4-14.5K proteins in 

transiently transfected COS cells: Alanine replacement of the corresponding tyrosine Y124 in Ad5 

14.5K caused a loss of function, whereas substitution by phenylalanine did not abolish function, 

indicating that phosphorylation of 14.5K Y124 was not required for internalisation and 
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degradation of Fas and the EGFR (Lichtenstein et al., 2002). Thus, phosphotyrosine, a 

characteristic of an SH2-ligand motif doesn’t seem to play a role in 10.4-14.5K function. These 

authors also concluded that the tyrosine in 14.5K might rather be part of a tyrosine-based 

transport signal (Lichtenstein et al., 2002). 

Interestingly, also the 10.4 tail seems to contain sequence elements important for transport 

and function. The C-terminal residues of 10.4K represent an IL pair in subgenus C viruses and LI 

in subgroups B, E, and D, but this potential dileucine motif is not present in 10.4K proteins from 

subgroup A or F. Mutation of the Ad2 10.4K IL pair did not alter the ability to form complexes 

with 14.5 in Triton X-100 (data not shown) or Digitonin extracts (Fig. 14A), and had only a minor 

effect on the down-regulation capacity of 10.4-14.5 (Fig. 12, Fas and EGFR cell surface levels were 

about 10-15% higher as compared to cells expressing wild-type proteins). But cell surface display of 

14.5 in 10.4IL mutant cell lines reached only 30-40% of wild-type (Fig. 12D). Obviously, this 

reduced level is still sufficient to bring about most of the 10.4-14.5K activity. As the functionality 

of 10.4-14.5K was only slightly affected by the mutation, the molecular basis for the decreased 

surface expression was not further investigated. In contrast to this very slight effect, mutation of 

the LL motif in position –4/-5 from the C-terminus of 10.4 abolished the function of the 10.4-14.5 

complex in 293 transfectants (Fig. 7). Notably, complete loss of 10.4-14.5K function was observed 

upon substitution of the dileucine pair, whereas single replacement mutants retained a significant 

part of functional activity (Fig. 12B, C). Consistent with the profound effect, the dileucine-type 

consensus sequence is strictly conserved among 10.4K proteins from different subgroups, and 

represented by two leucines in all subgenera except for subgenus D viruses which encodes an IL 

pair instead. If isoleucine is part of functional di-leucine motifs in mammalian proteins, it is more 

frequently found in position L2 than L1. Nonetheless, functionality of an IL internalisation signal 

has recently been reported for the type II TGF-β receptor (Ehrlich et al., 2001). Comparing the 

sequence composition flanking the LL element of 10.4K with the amino acid environment of 

functional LL motifs (35 LL motifs in 31 proteins) it was noted that a number of overrepresented 

amino acids are commonly found in 10.4K proteins of subgenera C, B, D and E (Windheim et al., 

2003, in press): these are R in (+1), A in (–2), R in (–7) and Y in (-8). Ad12 (subgenus A) lacks two 

of these favorable residues, but is also able of reducing Fas and EGFR expression (Burgert, 

unpublished). But, the 10.4K dileucine pair lacks acidic residues in positions –3 to –5 from the 

first leucine, which are frequently found in functional dileucine motifs (Bonifacino and Traub, 

2003). Sometimes these are implicated in a specific sorting step, e.g. in LimpII glutamic acid at 

position –4 is required for sorting to late endosomes/lysosomes, but not for internalization 
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(Sandoval et al., 2000). A subgroup of dileucine-type signals, the acidic cluster dileucine signals, are 

characterized by a DXXLL consensus which is strictly required for GGA-mediated cargo selection 

at the TGN (Bonifacino and Traub, 2003). According to this definition the 10.4LL motif does not 

conform to the consensus of an acidic cluster dileucine motif and is therefore unlikely to be 

recognized by GGAs. However, the position of the dileucine pair close to the C-terminus may 

facilitate recognition by adaptor protein complexes and supports the idea that this motif might be 

functional. Consistent with this hypothesis, adaptor protein complexes AP-1 and AP-2 bound to a 

10.4K cytoplasmic tail peptide in vitro (Table 3).  

In 10.4LL stable transfectants Fas and EGFR cell surface expression was similar to 

untransfected cells (Fig. 12 B, C). Lack of modulation correlated with a dramatically decreased 

stability of both 10.4LL and 14.5 (Fig. 14B, lane 5), which hindered the detection of 10.4LL-14.5 

complexes in these cells (Fig. 14A, lane 5). Baf-treatment restored steady-state levels of both 10.4LL 

and 14.5, indicating that a Baf-sensitive compartment (e.g. lysosomes) is responsible for their 

accelerated degradation. Moreover, Baf-treatment revealed that the 10.4LL mutant has the ability 

to form complexes with 14.5K (Fig. 14A, lane 6). Interestingly, Baf also strongly increased the 

stability of wild-type 10.4-14.5K proteins, suggesting that normally a profound proportion of the 

viral complex is transported to and degraded in late endosomes or lysosomes. It was concluded 

that the LL/AA substitution drastically enhances degradation of the 10.4-14.5 complex and this 

may be the prime reason for the dramatic reduction (95%) of 14.5 cell surface expression (Fig. 

12D). Immunofluorescence studies showed a decreased ER staining for 10.4LL and a greatly 

increased labeling of 10.4-14.5+ intracellular vesicles after Baf-treatment which colocalized mostly 

with late endosomal and lysosomal markers (Fig. 23). Taken together, it appears that LL prevents 

extensive degradation of the 10.4-14.5 complex in late endosomes/lysosomes.  

Incorporation of the 10.4LL/AA mutation into the virus background confirmed the 

important role of the motif for both trafficking and target protein modulation, although some of 

the defects caused by the mutation were ameliorated, presumably due to the increased expression 

of viral proteins. However, some viral-induced regulatory phenomena, such as possible p53- or NF-

κB-mediated increase in Fas expression (Bennett et al., 1998; Gil et al., 1999; Kuhnel et al., 2000; 

Wallach et al., 1999), or the transcriptional repression of the EGFR promoter by E1A (Prudenziati 

et al., 2000) complicate the interpretation. Relative to levels on Ad2/(10.4-14.5)ko-infected cells, 

10.4LL-14.5 proteins exhibited 57% and 17% of the activity of wt 10.4-14.5K towards Fas and the 

EGFR, respectively (Fig. 29 A, B). Strikingly, the amount of F14.5 on the cell surface was reduced 

to ~13% of that seen upon infection with wild-type virus (Fig. 29C). Thus, the residence time on 
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the cell surface appeared to be dramatically reduced. Reduced 14.5K surface expression, together 

with the increased amounts of 14.5K degradation products (Fig. 31, lane 5*) and the vesicular 

localization (Fig. 32D) suggested that in the absence of the LL motif 10.4 and possibly 14.5 are 

preferentially degraded. Similarly to the transient transfection experiments (Fig. 23), Bafilomycin 

treatment of SeBu cells infected with Ad2/10.4LL-F14.5, revealed an increased number of 10.4-

14.5+ intracellular vesicles which colocalized with Lamp-2 (Fig. 33G, 34E). The infection 

experiments confirmed that the LL mutation has no detrimental effect on 10.4-14.5 association 

(Fig. 31A, lane 5). Thus, also in the infected cells, substitution of the 10.4K dileucine motif caused 

increased degradation of both 10.4LL and 14.5K in late endosomes/lysosomes. Increased 

degradation of 10.4LL and 14.5K was associated with concomitant reduction of 14.5K steady-state 

cell surface expression, suggesting that the di-leucine motif acts as a transport motif that 

profoundly influences intracellular transport of 10.4-14.5K complexes. This hypothesis is 

underscored by the fact that the di-leucine pair is an essential determinant for the affinity of 10.4K 

cytoplasmic tail peptides towards AP-1 and AP-2 adaptor molecules (Table 3). 

In conclusion, the data suggest that full activity of 10.4-14.5K requires the combined action 

of two sorting motifs, one (LL) in 10.4 and another one (Y122XXΦ) in 14.5. Disruption of the 14.5 

Y122FNL or the 10.4 dileucine motif causes missorting of the two viral proteins, illustrated by 

markedly different surface expression levels, but does not destroy the 10.4-14.5K complex. The 

findings obtained upon coexpression of both mutants suggest that the two sorting motifs are not 

functionally redundant, as the dileucine pair cannot substitute for the Y122XXΦ motif in directing 

rapid internalization of 10.4-14.5K. Moreover, the Y122XXΦ motif functions upstream of the LL 

motif (Fig. 22), which appears to have a sorting function subsequent to endocytosis. Thus, two 

distinct transport motifs encoded by two physical entities appear to act in concert in order to 

bring about efficient down-modulation of Fas and the EGFR. 

 

7.3. Importance of putative transport motifs for down-regulation of TRAIL-receptors 
DR4 and DR5 

 
Whereas down-regulation of Fas and EGFR by 10.4-14.5K occurs independently of other 

viral proteins, E3/6.7K has been reported to be required for down-modulation of DR5, and to 

augment 10.4-14-5K-induced down-regulation of DR4 in some cell lines (Benedict et al., 2001). 

E3/6.7K has been proposed to be an ER transmembrane protein (Wilson-Rawls and Wold, 1993). 

A tagged version of 6.7K has been shown to interact with 10.4-14.5K and to be expressed at the 

plasma membrane, suggesting that the natural 6.7K might also be expressed at the cell surface 
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(Benedict et al., 2001). In its short cytoplasmic tail 6.7K contains a YXXL sequence element, which 

conforms to the consensus of YXXΦ-type transport motifs (Windheim et al., 2003, in press). 

Therefore, it was of particular interest to investigate, whether similar to the situation with Fas and 

the EGFR, infection with the virus mutants would reveal a defect in TRAIL-R down-regulation. 

Wt Ad2 and Ad2/F14.5 reduced receptor levels of DR4 to below 5% and of DR5 to below 

10-15% on infected A549 cells. A549 cells infected with virus mutants that lack expression of 

either 10.4K or 14.5K showed an upregulation of DR5 levels to at least 120% of the levels on A549 

cells, whereas DR4 remained unchanged. This might be due to transcriptional upregulation of 

DR5 expression by NF-κB activation following infection, since a similar observation has recently 

been described for epithelial cells, in that TRAIL-mediated NF-κB activation led to a specific 

increase of DR5 expression, without upregulation of DR4 (Shetty et al., 2002). Potential NF-κB 

and p53 binding sites have been mapped to the first intronic region of the DR5 gene and the p53 

DNA binding site is involved in increased DR5 expression in lung carcinoma cell lines (Wu et al., 

1999; Yoshida et al., 2001). It is unknown, whether AdE1A functions, which sensitize infected cells 

to TRAIL-induced apoptosis in the absence of AdE1B-19K and E3 proteins (Routes et al., 2000), 

also upregulate cell surface expression of the TRAIL-receptors. In cells infected with the 

Ad2/14.5k.o. DR4 surface expression levels were decreased by 16% as compared to levels on 

Ad2/(10.4-14.5)ko-infected cells. A similar reduction was observed for the EGFR (13%), whereas 

Fas and DR5 levels remained unchanged. This effect on the DR4 and the EGFR seems to be 

related to the retained expression of 10.4K in this mutant. For the EGFR a direct interaction with 

10.4K has been reported (Crooks et al., 2000), suggesting that isolated expression of 10.4K might 

cause retention of the EGFR in intracellular stores. This may also be the case for DR4. 

Studying down-regulation of DR4 and DR5 on A549 cells infected with mutant viruses 

Ad2/F14.5Y74, Ad2/F14.5Y122 or Ad2/10.4LL-F14.5, it initially appeared that DR4 down-

regulation was similarly affected as Fas-modulation and that for the DR5 a similar picture as for 

the EGFR was obtained.  

Mutant Y74, which exhibited normal F14.5 surface expression levels, differentially affected 

down-regulation of the two TRAIL receptors. In Ad2/F14.5Y74-infected cells DR4 levels were 

reduced as efficiently as in cells infected with wt, but DR5 surface expression remained at 49% of 

the levels on A549 cells. Relative to the levels on cells infected with the Ad2/(10.4-14.5)ko virus the 

Ad2/F14.5Y74-induced decrease in DR5 levels accounted for 66 % of that observed with 

Ad2/F14.5 (Fig. 30B). These data are very similar to the results described above for Ad2/F14.5Y74-



Discussion 

 140

induced down-regulation of Fas and the EGFR corresponding to 100% and 69% of the activity of 

wt 10.4-14.5K, respectively. 

Strikingly, substitution of Y122 was detrimental to the down-regulation of all target 

molecules. However the relative expression level of the individual receptor targets differed: EGFR 

levels were at 80% (relative to the levels on A549 cells) like in cells infected with Ad2/(10.4-14.5)ko 

(Fig. 29B) and Fas and DR5 were expressed at 120% as observed after infection with virus mutants 

lacking expression of 10.4K and/or 14.5K (Fig. 29A, Fig. 30B). But DR4 surface expression levels 

were dramatically increased (170%, Fig. 30A), similar to F14.5Y122A itself. The increased expression 

of 10.4-14.5Y122A complexes and DR4 at the cell surface suggested, that 10.4-14.5K may physically 

interact with DR4 at the plasma membrane and mutation of Y122 would prevent internalization 

of the DR4/10.4-14.5 complex. Thus, with the exception of DR4 which is upregulated 

concomitantly to mutated F14.5 cell surface expression of Fas, EGFR and DR5 is regulated 

independently of 14.5. Consequently, it is likely that receptor/10.4-14.5K complexes do not exist 

at the cell surface, but may be formed subsequent to endocytosis. This is consistent with data 

published by Crooks et al., who coimmunoprecipitated 10.4K and EGFR in an early endosome 

cell fraction (Crooks et al., 2000). Localization of the EGFR to specialized plasma membrane 

sections, known as caveolae (Mineo et al., 1999), might prevent its association with 10.4-14.5K at 

the cell surface. The deficiency of 14.5Y122 to be internalized did not allow to test experimentally 

whether Y122 plays a role subsequent to endocytosis. Obviously, neither in the E3 transfectants 

nor in the virus-infected cells coexpression of 6.7K can compensate the internalization defect of 

10.4-14.5Y122A (Fig. 10D, 29C) and down-regulation of DR5 by 10.4-14.5K and 6.7K seems to 

require an intact 14.5K Y122XXΦ motif. 

The dileucine pair in 10.4K is essential for down-regulation of DR5 by 10.4-14.5 and 6.7K, 

since DR5 levels remained nearly unchanged with levels higher than those on mock-infected cells. 

The presence of E3/6.7K cannot prevent enhanced degradation of 10.4LL and 14.5K in the virus-

infected cells (Fig. 33G, 34E). 6.7K has been reported to interact with 14.5K, forming a 

heterotrimeric complex (Benedict et al., 2001). It remains to be tested experimentally whether the 

10.4K dileucine mutant also induces degradation of 6.7K in late endosomes/lysosomes. As 10.4-

14.5K appears to interact with DR4 at the plasma membrane the reduced expression of 10.4LL-

14.5K at the plasma membrane might be associated with a coordinate reduction in the efficiency 

down-modulation of DR4. Indeed, in cells infected with this mutant the decrease of DR4 levels 

corresponded only to 30% of that observed upon infection with wt. 

Taken together, mutation of the 10.4K dileucine pair and 14.5K Y122 also impaired down-

regulation of TRAIL-R1 and TRAIL-R2, implying a general role of these two sequence elements in 
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the process of 10.4-14.5K-induced receptor modulation. Furthermore, the results demonstrate that 

down-regulation of TRAIL-R2, which requires additionally E3/6.7K, also depends on the integrity 

of these motifs. These data allow to propose a transport mechanism underlying 10.4-14.5K-

mediated down-modulation of apoptosis receptors and the EGFR, which will be outlined in the 

following chapter. 

 

7.4. Transport processes underlying the mechanism of down-modulation of plasma 

membrane receptors by 10.4-14.5K 

10.4 and 14.5K are known to associate non-covalently with each other (Tollefson et al., 

1991) and are both required to induce down-regulation of Fas, the EGFR and DR4, DR5 (Elsing 

and Burgert, 1998; Shisler et al., 1997; Tollefson et al., 1991; Tollefson et al., 1998; Tollefson et al., 

2001). Thus, 10.4-14.5K complex formation appears to be a prerequisite for down-modulation of 

plasma membrane receptors and consistent with previous reports we found that individual 

subunits were incapable of reducing receptor expression levels in stable transfectants of A549 cells 

(Fig. 20) or upon infection with Ad2/10.4ko-F14.5 and Ad2/14.5ko viruses (Fig. 29, 30). 10.4-14.5 

complexes seem to assemble at the level of the ER (Fig. 43), as illustrated by the influence of 10.4K 

on signal sequence cleavage site selection in 14.5K (Krajcsi et al., 1992c). It is well-documented that 

trafficking of individual subunits to the cell surface depends on concomitant expression of the 

other protein (Stewart et al., 1995). If expressed without the interaction partner individual proteins 

localize to the ER and Golgi compartment (Fig. 17A, 17B), whereas upon coexpression both 

proteins can be detected at the cell surface (Fig. 21), where they presumably exist as a complex 

(Stewart et al., 1995). The E3/6.7K cannot replace the 10.4K protein in assisting transport of 14.5K 

protein to the cell surface (Benedict et al., 2001) and the trafficking pathway of 6.7K within post-

ER compartments remains elusive. 

Based on the observation that the rapid loss of Fas/EGFR surface expression upon 

infection with Ad2 is opposed to the slow decrease observed upon transport inhibition of newly 

synthesized molecules by Brefeldin A (Elsing and Burgert, 1998), we suggested that the 10.4-14.5K 

complex is likely to bind to the receptor target at the cell surface or shortly after internalization in 

early endosomes (Fig. 43). This would predict that 10.4-14.5K does not interact with the receptor 

in the ER or Golgi to deregulate biosynthetic cell surface transport, but may rather interfere with 

receptor trafficking at a later stage, possibly regulated through interaction with other cellular 

factors. So far, no direct interaction of 10.4-14.5K with Fas or DR4, DR5 could be observed, but 

when overexpressed, 10.4K could be isolated in complex with the EGFR in a cell fraction enriched 

for early endosomes (Crooks et al., 2000). Thus, the interaction of 10.4-14.5K with receptor targets 
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appears to be rather short-lived or possibly mediated by other cellular proteins (Fig. 43, cellular 

factor x). At present it is not known whether viral protein-receptor complexes are existing at the 

cell surface or formed subsequent to internalisation of the receptor in early endosomes. Cross-

linking experiments aimed at isolating viral protein-receptor complexes at the cell surface might 

allow to distinguish between these possibilities. Data obtained with stable transfectants of A549 

cells coexpressing 10.4-14.5K revealed no direct correlation between the level of FLAG-14.5K cell 

surface expression and the efficiency of receptor down-regulation. First of all, clones with Flag-

14.5K surface levels higher than those observed in infected cells did not exhibit a higher efficiency 

of receptor down-regulation (Fig. 20). Secondly, 10.4-14.5K-induced down-regulation appeared to 

tolerate tremendous variations in surface expression levels since significant down-regulation could 

still occur in a 10.4-14.5K+ clone exhibiting only 20% of F14.5K levels of the infected cells (Fig. 

20). However, as both 10.4K and 14.5K can be detected at the cell surface in transfected (Fig. 21) 

and infected cells (Fig. 32) the normal trafficking route of 10.4-14.5K complexes likely involves the 

cell surface. Further experimental evidence for this idea was obtained studying mutant 14.5Y122A. 

14.5Y122A accumulates together with 10.4K at the cell surface (Fig. 22B, 32C), 10.4-14.5K steady-

state levels are increased and in Ad2/F14.5Y122-infected cells the appearance of 14.5K degradation 

products is greatly diminished (Fig. 31, lane 4), suggesting that biosynthetic transport of 10.4-

14.5K involves an obligatory cell surface intermediate. However, in both stable transfectants and 

infected cells expressing the 14.5Y122 mutant receptor levels were not reduced indicating that 

plasma membrane localization of 10.4-14.5 is not sufficient for receptor down-regulation. 

At the cell surface the 10.4-14.5K complex, possibly in association with the receptor target, 

may be recognized via its tyrosine-based sorting signal by the AP-2 adaptor. Thereby, the complex 

is recruited into coated pits and rapidly internalized into endosomes (Fig. 43). Several lines of 

experimental evidence support this hypothesis: (i) The 14.5K cytoplasmic tail bound AP-1 and AP-

2 heterotetrameric adaptor protein complexes in a Y122-dependent manner, exhibiting higher 

affinity towards AP-2 (Table 3). (ii) As observed by immunofluorescence the single amino acid 

substitution of tyrosine 122 in 14.5 caused accumulation of both 10.4K and 14.5K at the plasma 

membrane. (iii) In both transfectants and infected cells 10.4-14.5Y122A complexes can be isolated, 

demonstrating that replacement of Y122 causes missorting of 10.4-14.5K without disrupting 

complex formation. Taken together, this experimental evidence suggests that 10.4 and 14.5 are 

internalized as a complex, and its endocytosis critically depends on the Y122FNL motif in 14.5. If 

10.4-14.5K interacted with the receptors at the plasma membrane one would expect that missorting 

of 10.4-14.5Y122 to the cell surface affects surface expression of the target receptors. But, whereas
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Fig. 43  Model for 10.4-14.5K-mediated down-regulation of plasma membrane receptors, e.g.Fas/CD95 
The 10.4-14.5K heteromeric complex reroutes Fas from the cell surface to late endosomes/lysosomes for 
degradation, but the viral proteins escape from degradation in lysosomes. Sorting signals within the 
cytoplasmic tails of both 10.4K and 14.5K are required for efficient down-regulation of plasma membrane 
receptors. 14.5K Y122 appears to be part of a YXXΦ transport motif that can be recognized by AP-2 to 
direct endocytosis of 10.4-14.5K complexes at the plasma membrane. The 10.4K dileucine motif plays a role 
subsequent to endocytosis. Disruption of the 10.4K dileucine motif diverts 10.4-14.5K from a recycling 
pathway to late endosomes/lysosomes for degradation. ER, endoplasmic reticulum; PM, plasma membrane; 
AP, adaptor protein complex. See text for details. 

 
DR4 was upregulated in cells infected with Ad2/F14.5Y122, the increase in F14.5Y122A at the cell 

surface was not paralleled by a similar increase in Fas, EGFR or DR5 levels. Together with the 

critical role of Y122 in the process of receptor down-regulation these data suggest the 14.5Y122FNL 

motif is most likely required for transport of 10.4-14.5K complexes into endosomes to promote 

degradation of the receptors within the endocytic route (Fig. 43), rather than for internalisation of 

viral protein-receptor complexes. However, according to the FACS data a significant fraction of 

DR4 is likely to be internalised in complex with 14.5K.  
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In the absence of Y122 the dileucine motif in 10.4 is insufficient to promote endocytosis 

(Fig. 22B and 32C). In the literature, dileucine motifs have been described acting as internalisation 

signals, as e.g. in the TGF-β receptor, CD4 and HIV-1 nef (Ehrlich et al., 2001; Greenberg et al., 

1998; Shin et al., 1991), but the experimental data clearly indicate that the dileucine motif in 10.4 

is not responsible for internalization of 10.4-14.5K.  

However, the dileucine pair is likely to function as a transport signal: (i) AP-1 and AP-2 

adaptor molecules (Table 3) bind to 10.4K cytoplasmic tail peptides in vitro, exhibiting the 

expected requirement for the critical dileucine pair. (ii) In both transfected and infected cells 

alanine substitution of the dileucine pair stimulates enhanced degradation of mutant 10.4K and 

its interaction partner without disrupting complex formation (Fig. 14). (iii) Immunofluorescence 

studies revealed that disruption of the dileucine motif in 10.4K causes 10.4-14.5K to accumulate in 

late endosomes/lysosomes, with a concomitant reduction of 10.4K ER staining (Fig. 23). (iv) 

enhanced degradation of 10.4LL and 14.5K is not due to a defect in the interaction, as the 

combined expression of 10.4LL/AA and 14.5Y122A exhibits a high surface expression. As the 

vesicular phenotype of 10.4LL/AA requires an intact Y122XXΦ motif in 14.5K (Fig. 22D), LL seems 

to be required subsequent to internalization for sorting within an endosomal compartment. 

Remarkably, the massive degradation of 10.4LL-14.5K in late endosomes/lysosomes is associated 

with a drastic decrease in 14.5K surface expression. IP/WB of 10.4-14.5K following treatment with 

or without Bafilomycin revealed that a significant fraction of wt 10.4-14.5K is degraded in a 

Bafilomycin-sensitive compartment, possibly late endosomes/lysosomes. This degradation is 

strongly increased upon disruption of the 10.4K dileucine pair, leading to a dramatic reduction of 

10.4-14.5K steady-state levels in the mutant transfectant (Fig. 14B). Taken together, these data 

suggest that the dileucine pair functions witin endosomes to direct recycling of 10.4-14.5K 

complexes to the plasma membrane (Fig. 43). The functional defect observed for the 10.4K 

dileucine mutant in both stable transfectants and infected cells, emphasizes the important role of 

the 10.4-14.5K recycling for the mechanism of receptor down-regulation. Consistent with the 

proposed role of the 10.4K-encoded dileucine motif in recycling of 10.4-14.5K, the efficiency of 

receptor down-regulation in (10.4-14.5K)+-stable transfectants was enhanced with increasing 

amounts of 10.4K (Fig. 19 and Fig. 20). Furthermore, enhanced degradation of 10.4LL-14.5K in 

late endosomes/lysosomes was not associated with an increased reduction of DR4 surface levels, 

although DR4 appears to physically interact with 10.4-14.5K at the plasma membrane. This 

suggests that the process of 10.4-14.5K-induced receptor down-regulation likely involves a more 

complex regulation, which is not determined solely at the level of internalisation of viral protein-
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receptor complexes from the plasma membrane but requires reutilization of 10.4-14.5K to 

establish efficient down-regulation of target receptors. Remarkably, the 10.4K dileucine pair was 

most critical for down-regulation of DR5, the EGFR and DR4 whereas Fas levels could be 

significantly reduced (Fig. 29, Fig. 30). Receptors such as the unoccupied EGFR, which have the 

intrinsic capacity to rapidly recycle from endosomes to the plasma membrane (Herbst et al., 1994), 

might be able to escape 10.4-14.5K-induced degradation, and recycling 10.4-14.5K molecules would 

be required to establish efficient reduction of receptor surface expression levels. However, except 

for the EGFR little is known about intracellular trafficking of the other 10.4-14.5K target 

receptors. On the other hand, 10.4-14.5K are expressed at relatively low abundance during natural 

infection, as compared to other E3 proteins (Tollefson et al., 1990b; Tollefson et al., 1990a), thus 

reutilization of 10.4-14.5K might be required to maintain a sustained depletion of cell surface 

receptor pools.  

In sum, our experimental data support the view that 10.4-14.5K might function within 

early endosomes to reroute internalised receptors to late endosomes/lysosomes for degradation, 

whereas a major fraction of 10.4-14.5K proteins is rescued from degradation into a recycling 

pathway (Fig. 43). Thereby, 10.4-14.5K might be able to target receptor molecules at the plasma 

membrane and early endosomes, but also within recycling compartments.  

Endosomal localization of wt 10.4-14.5 is consistent with results published by Crooks et 

al., showing that upon infection with a virus mutant overexpressing 10.4K, 10.4K transiently 

colocalizes with the EGFR in early endosomes (Crooks et al., 2000). Interestingly, the LLRIL 

sequence found in 10.4K proteins of subgenus C is also present in the EGFR adjacent to the TMD 

and has been described as being necessary for efficient sorting of ligand-receptor complexes in 

early endosomes en route to lysosomes (Kil et al., 1999; Kil and Carlin, 2000). It was proposed 

that interaction of 10.4K with EGFR might lead to oligomerization of dileucine-type signals 

(Crooks et al., 2000), which might be important for regulating the sorting activity of these signals 

in different compartments (Arneson and Miller, 1995), and that the 10.4K LLRIL sequence may 

function to enhance recognition of the lysosomal targeting signal of the EGFR. However, despite 

the sequence similarity with the lysosomal sorting signal of the EGFR our experimental evidence 

supports the idea that the 10.4K dileucine motif functions independently from the EGFR signal 

in regulating transport of 10.4-14.5K to avoid extensive degradation in lysosomes. In support of 

our model 10.4K was not found to be degraded at the same rate as internalized EGFR in virus-

infected cells (Crooks et al., 2000). Cell fractionation and immunocytochemistry indicated that the 

interaction of 10.4K with the EGFR in an early endosomal compartment was only transitory and 

10.4K only partially colocalized with the EGFR and subsequent to early endosomes 10.4K and the 
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EGFR follow divergent pathways. Whereas EGFRs proceed to lysosomes for degradation, 10.4K is 

retained within endosomes (Crooks et al., 2000). By immunoelectron microscopy of infected cells 

10.4K colocalized with endocytosed tracers in early endosomes and on limiting membranes of 

multivesicular endosomes (Crooks et al., 2000). However, the results of this study have to be 

interpreted with caution, since a virus-mutant overproducing 10.4K was used, and steady-state 

distribution of 10.4K differed from that observed after infection with wt Ad2. A549 cells infected 

with this virus mutant exhibited a highly vesicular staining for 10.4K which colocalized with 

transferrin receptor and RhoB in infected A549 cells (Crooks et al., 2000), leading the authors to 

suggest that 10.4K is located primarily to early endosomes and RhoB-positive immature 

multivesicular endosomes at steady-state. But in infection with wt Ad2, in both A549 cells (data 

not shown) or primary fibroblasts, 10.4K is detected in the ER and a perinuclear compartment, 

identified as the Golgi/TGN (compare Fig. 34), hindering the identification of 10.4-14.5K+ 

vesicular structures. However, in good agreement with the results obtained by Crooks et al. for 

down-regulation of the EGFR, in SV80Fas cells infected with wt Ad2 10.4-14.5K and Fas exhibit 

only a limited colocalization in endosomal/lysosomal compartments, even in the presence of 

Bafilomycin A1 (Fig. 36). Whereas Fas receptors seem to be delivered into lysosomes where they are 

degraded, the majority of 10.4 and 14.5 is retained in a prelysosomal compartment (multivesicular 

endosome or late endosome) or retrieved to early endosomes from which they might recycle to the 

plasma membrane (Fig. 43). The data presented here provide evidence that the LL motif in 10.4 is 

crucially involved in this latter sorting step and in rescuing of 10.4-14.5 from degradation. But the 

precise endosomal compartment at which LL may act remains unclear. One possibility is that LL 

is required for recruiting and directing 10.4-14.5K from the limiting membrane of late endosomes 

into a recycling pathway to the plasma membrane either via early/recycling endosomes or the 

TGN. Alternatively, LL may be important for sorting and recycling of 10.4-14.5 at the early 

endosome (Fig. 43).  

At present the mechanism for transfer from EE to RE is unclear. It may either involve 

transport vesicles or alternatively tubular RE may derive directly from EE. Despite the wealth of 

information that has been gained on the other transport steps of the biosynthetic and endocytic 

pathways no recycling motif has been identified yet, leading to the proposal that recycling from 

EE to the cell surface occurs by default. This view is difficult to reconcile with the situation in 

polarized epithelial cells in which transcytosed and recycling receptors transit through a common 

recycling endosome before being transported to opposite plasma membrane domains (Futter et al., 

1998). Remarkably, endosomal tubules have been found to generate clathrin-coated vesicles 

(Stoorvogel et al., 1996), that in polarized have been proposed to carry transferrin receptor to the 
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basolateral membrane (Futter et al., 1998). But although γ-adaptin was contained in these clathrin-

coated domains, it remains unclear whether transferrin receptors are actively sorted, possibly by 

AP-1, into these vesicles. Localization of 10.4-14.5K to recycling endosomes is particularly difficult 

to identify, since in most cell types the recycling compartment is concentrated predominantly in 

the perinuclear area, and thus by immunofluorescence it can hardly be distinguished from the 

strong signal of 10.4-14.5K in the Golgi/TGN compartment. To circumvent this problem, one 

might impose a block on 10.4-14.5K neosynthesis by cycloheximide treatment of the infected cells 

and follow 10.4-14.5K trafficking in post-Golgi compartments in a pulse-chase analysis.  

The dependence of recycling pathways from endosomes to the TGN on the presence of 

transport motifs has been demonstrated. A tyrosine-based signal in beta2 integrin has been shown 

to be required for recycling to the plasma membrane (Fabbri et al., 1999), since disruption of the 

motif diverts internalized integrins from a recycling compartment into a degradative pathway. The 

SXYQRL sequence of TGN38 can confer TGN localization to a plasma membrane protein (Wong 

and Hong, 1993). Our experimental evidence argues against a dominant role of the 14.5K Y122FNL 

transport motif in such a recycling step, as this motif cannot prevent enhanced degradation in the 

absence of the 10.4K dileucine pair. The cellular factor PACS-1 is important for TGN localization 

of Furin and the cI-MPR by a retrieval mechanism from late endosomes (Wan et al., 1998), and 

also for the ability of HIV-1 Nef to redistribute MHC-I from the cell surface to the TGN (Piguet et 

al., 2000). PACS-1 is thought to recognize acidic cluster signals in cytosolic domains of membrane 

proteins and to function as a connector molecule by linking these proteins to adaptor complexes, 

such as AP-1 (Crump et al., 2001; Wan et al., 1998). But sorting of 10.4-14.5K is unlikely to 

involve recognition by PACS-1 as neither 10.4K nor 14.5K contains a stretch of acidic residues in 

its cytoplasmic tail.  

A dileucine pair has been described to be implicated in sorting of MPR46 within 

endosomes (Tikkanen et al., 2000). MPR46 binds AP-1 and AP-2 and normally cycles between the 

TGN, endosomes and the plasma membrane (Rohn et al., 2000). The MPR46 LL/AA mutant 

accumulates in early endosomes and at the plasma membrane and was proposed to exhibit an 

impaired sorting within endosomes eliminating its return to the TGN (Tikkanen et al., 2000). In 

good correlation in AP-1 knock-out cells retrograde transport of MPRs from the endosome to the 

Golgi is inhibited (Meyer et al., 2000). By analogy the 10.4K dileucine pair may also be recognized 

by AP-1 within endosomes. But, 10.4-14.5K trafficking differs from that of MPR46 in that in the 

absence of the 10.4K dileucine pair the viral proteins cannot return to the plasma membrane.  

At present, the molecular mechanism how segregation of 10.4-14.5K receptor targets into 

lysosomes is achieved is unknown. The observation that proteins which undergo ligand-induced 
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down-regulation, such as the EGFR, have the capacity to recycle back to the plasma membrane 

argues against the simple model that receptor down-regulation is determined solely at the level of 

internalization from the plasma membrane. It rather appears to require in addition an active 

sorting determinant for entry into the lysosomal pathway. Sorting between cargo destined for 

degradation in lysosomes from material supposed to be recycled occurs in a prelysosomal, late 

endosomal compartment, named multivesicular bodies (MVBs). The signals and the protein 

machinery involved in this sorting step are being intensively studied [reviewed in (Piper and 

Luzio, 2001). Invagination of vesicles from the limiting membranes to the interior of the MVB, 

has been proposed to be promoted by segregation of lysobisphosphatidic acid and 

phosphatidylinositol 3’phosphate. As a consequence, integral membrane proteins with special 

properties of the transmembrane domain (TMD), e.g. containing polar residues may partition 

together with these lipids (Reggiori et al., 2000; Zaliauskiene et al., 2000). Interestingly, both the 

10.4 and the 14.5 proteins contain an unusually high number (6-10) of polar residues, like serine, 

threonine, cysteine or tyrosine in their TMD. This feature is conserved in proteins of Ads from all 

subgenera, with subgenus B 14.5 proteins even containing a centrally located asparagine residue in 

the TMD (Fig. 8). Therefore, compatible with the proposed role of polar residues in sorting to the 

lumenal membranes, it is an attractive possibility that 10.4-14.5 may reroute their target proteins 

by providing a polar characteristic to the intrinsically hydrophobic TMDs of Fas (3 pol. aa), the 

EGFR (none) and the TRAIL-Rs (DR4 none, DR5 2). However, this model is difficult to reconcile 

with the observation that a significant proportion of 10.4-14.5K is not present in the same vesicles 

as the target protein.  

One sorting tag involved in directing internalized receptors into a pathway that results in 

lysosomal degradation, has been identified as ubiquitin (Hicke, 2001; Urbanowski and Piper, 

2001). The ubiquitin tag can be recognized by members of the class E vacuolar protein-sorting 

(Vps) proteins, such as tumor susceptibility gene 101 (TSG101)/VPS28 and mammalian cells 

lacking TSG101 cannot effectively down-regulate the activated EGFR (Babst et al., 2000). Entry of 

the activated EGFR into the MVB pathway involves EGFR tyrosine kinase activity, sorting signals 

in the EGFR cytoplasmic tail and the ubiquitin ligase c-Cbl (Felder et al., 1990; Kil et al., 1999; Kil 

and Carlin, 2000; Kornilova et al., 1996; Levkowitz et al., 1998). The E3 ubiquitin ligase c-Cbl is 

phosphorylated upon tyrosine kinase activation, associates with the EGFR and mediates receptor 

ubiquitination (Levkowitz et al., 1998; Levkowitz et al., 1999; Lill et al., 2000). At present it is 

debated whether the interaction between c-Cbl and EGFR occurs at the plasma membrane and/or 

at the level of endosomes (de Melker et al., 2001; Levkowitz et al., 1998; Stang et al., 2000), but 

Cbl-mediated ubiquitination is not required for EGFR endocytosis (Longva et al., 2002). 
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Overexpression of c-Cbl greatly enhances the level of EGFR ubiquitination and rate of ligand-

induced degradation without altering the rate at which it is internalized from the plasma 

membrane (Levkowitz et al., 1998). It remains to be tested whether in the presence of 10.4-14.5K 

the EGFR becomes phosphorylated and/or ubiquitinated, but as 10.4-14.5K do not activate the 

receptor tyrosine kinase ubiquitination may occur by a different mechanism than ubiquitination 

of ligand-activated EGFRs. Recently, the human herpes virus 8 (HHV8) gene product K3 was 

shown to usurp the ubiquitin-dependent endosomal sorting machinery of the host cell for down-

regulation of MHC class I from the plasma membrane (Lorenzo et al., 2002). K3 possesses E3 

ubiquitin ligase activity and promotes ubiquitylation of class I molecules after export from the 

ER. Ubiquitylation provides the signal for class I internalization at the plasma membrane and late 

endosomal sorting for degradation by a mechanism involving TSG101 (Hewitt et al., 2002). 

However, 10.4K and 14.5K cytoplasmic tails do not possess any sequence homology to the 

ubiqitin ligase plant homeodomain of K3 (HHV8 K3: AAC57091.1).  

A mechanism which proposes that 10.4-14.5K functions within endosomes to enhance the 

efficiency of sequestration of the EGFR within MVBs is in accord with the observation that 10.4-

14.5K down-regulation of the EGFR is not accompanied by an increased rate of receptor 

internalization (Hoffman and Carlin, 1994). 10.4-14.5K might link the receptor to an intrinsic 

MVE sorting signal located in the viral proteins, but this would predict that 10.4-14.5K are 

degraded at the same rate as the receptor. Alternatively, the association of 10.4 with the EGFR in 

early endosomes may induce conformational changes similar to ligand-occupancy of the receptor, 

and thereby expose cryptic sorting signals in the receptors cytoplasmic tail that enhance trafficking 

to late endosomes/lysosomes. Such a sorting signal, which is active in C-terminally truncated or 

ligand-activated EGFRs of the receptor, has been identified surrounding the critical residues 

L679L680 of the receptor. This region within the receptor’s cytoplasmic tail has been reported to 

be required for 10.4-14.5K-mediated down-regulation of the EGFR, whereas other sorting signals 

located within sequences downstream of the EGFR kinase domain were dispensable for Ad-

induced down-regulation of cytoplasmically truncated receptors (Crooks et al., 2000). However, it 

has not been tested experimentally whether this region is necessary for the interaction of viral 

proteins with the receptor or functions as a sorting signal in the process of 10.4-14.5K-induced 

down-regulation. It appears likely that 10.4-14.5 target constitutively internalized EGFRs to the 

same endocytic compartment as ligand, but how 10.4-14.5K achieve segregation of the receptor 

from the recycling pathway into lysosomes independently of the EGFR kinase activity remains 

unclear.  
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Whereas the EGFR is known to be constitutively internalized by a default pathway that 

does not involve signals within the receptors cytoplasmic tail (Herbst et al., 1994), very little is 

known about trafficking of Fas and other members of the TNF/NGFR superfamily. In some cells 

(e.g. in untransformed vascular smooth muscle cells), Fas is predominantly intracellular, 

colocalizing with the Golgi marker galactosyltransferase, and to a lesser degree on the cell surface 

(Bennett et al., 1998). Likewise the TGN is the principal intracellular location of TNFR1, and 

sorting signals for localization to the TGN have been identified in the receptors cytoplasmic tail 

(Storey et al., 2002). But the TGN is not a site of TNFR1 signaling. Therefore, it has been 

proposed that there may be a regulated recycling pathway between the TGN and cell surface, 

allowing control of the amount of TNFR1 on the cell surface and other sites of the pathway, thus 

influencing signaling (Jones et al., 1999; Storey et al., 2002). In support of this model, after TNF-

binding and TNFR1 internalization from the cell surface TRADD has been shown to dissociate 

from the receptor and signaling terminates (Jones et al., 1999). The region within TNFR1 that 

contains a TGN localization signal is not conserved in the Fas cytoplasmic tail. Nonetheless, 

regulated trafficking between the Golgi and the cell surface might also be an important 

determinant of Fas signaling (Augstein et al., 2002; Bennett et al., 1998; Haynes et al., 2002). 

Stimulation of Fas by agonistic antibodies or Fas ligand results in microaggregation and clustering 

of the receptor at the plasma membrane which is followed by internalization and transport into 

transferrin receptor positive endosomes (Algeciras-Schimnich et al., 2002). Thus, Fas can enter the 

endocytic pathway in the presence of ligand. Internalization of Fas upon stimulation with ligand 

appears to modulate cell death-signaling (Strasser and O'Connor, 1998), in that rapid 

internalization may prevent assembly of the death inducing signaling complex at the receptor’s 

cytoplasmic tail. TRAIL-R1 and TRAIL-R2 have also been reported to be internalized into 

endosomes after ligand binding (Zhang et al., 2000). Thus, all known target molecules of 10.4-14.5 

seem to be able to enter the endocytic pathway in the absence of 10.4-14.5. This observation is 

compatible with the hypothesis that 10.4-14.5 do not induce endocytosis, but rather regulate a 

subsequent sorting step directing targets into lysosomes. Close inspection of the Fas sequence 

reveals four potential LL transport motifs and one YXXΦ motif. The YXXΦ motif is located in the 

death domain and a similar motif is conserved among the death domains of TRAIL-R1, TRAIL-R2 

and TNF-R1. At present, it is unclear whether these motifs are involved in trafficking or rather 

represent ITAMs. Moreover, it remains to be investigated how the 10.4-14.5K YXXΦ and LL 

motifs would contribute to the lysosomal sorting via endogenous sorting signals in the target 

receptor. First experiments have been carried out to test which elements in the Fas receptor 
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contribute to 10.4-14.5-mediated modulation. Interestingly, both the transmembrane part and the 

cytoplasmic tail of Fas are required for 10.4-14.5 mediated down-regulation (Obermeier et al., 

unpublished observation). Down-modulation of the TRAIL-R2 by the E3 complex has been 

reported to depend on the receptor’s cytoplasmic tail, but the death domain alone is not sufficient 

(Benedict et al., 2001). This is in accord with the observation that other death domain-containing 

receptors such as TNFR1 are not targeted by 10.4-14.5K. 

Thus, interestingly, adenovirus seems to have evolved two transmembrane proteins, 

E3/10.4-14.5K, which exploit the cellular protein sorting machinery to achieve selective down-

regulation of different immunologically relevant cell surface receptors, thereby contributing to 

immune evasion. This strategy appears to be specifically adapted to the target molecules, as it 

differs from the ER-retention mechanism employed by E3/19K to down-regulate MHC class I 

molecules. Apparently, E3/10.4-14.5K do not escort the receptor targets into lysosomes, therefore 

it will be interesting to identify cellular interaction partners of the targeted receptors that might 

play a role in this process. 

  

7.5. Differential requirements for expression of Ad4 10.4-14.5K proteins  

 

The Ad2 10.4-14.5K proteins are capable of specific down-modulation of receptor targets 

that are members of two different receptor families and therefore have different sequence 

requirements. It would be interesting to find out what elements define the specificity of 10.4-14.K5 

towards different types of receptors. Remarkably, the Ad4 10.4-14.5K proteins appear not to have 

the same target specificity, since in cells infected with Ad4 solely TRAIL-R1 surface expression 

levels are efficiently reduced (Burgert, unpublished observation). To test whether indeed the Ad4 

10.4-14.5K proteins are sufficient for the Ad4 target specificity the coding sequences of Ad4 10.4 

and/or 14.5 proteins were inserted into the Ad2 genome, replacing the Ad2 homologues. 

Surprisingly, expression of the Ad4 10.4-14.5K proteins encoded by the Ad2 E3 region differed 

from the pattern observed in Ad4-infected cells. The Ad4 10.4K protein was not detected and very 

little Ad4 14.5K was expressed independently of whether the Ad2 specific nucleotides or the Ad4 5 

nucleotide intercistronic sequence was present (Fig. 41, lane 7,8). For all chimeric virus constructs, 

the Ad2 E3/19K protein was constantly expressed, suggesting that the splicing of the E3/19K 

encoding mRNA is normal. Ad2 10.4K expression was not changed by insertion of Ad4 sequences 

downstream of the 10.4K ORF (Fig. 31, 10.4K, compare lane 3 with lanes 4,5). By contrast, 

replacement of the Ad2 10.4K coding sequence and intercistronic sequence by the corresponding 

Ad4 nucleotide sequence strongly reduced the amounts of the Ad2 14.5K protein isolated from
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Fig. 44 Physical Map of the E3 transcription unit of subgroup C adenoviruses (adapted from (Brady et 
al., 1992)). Arrows represent the exons of mRNAs a-h, with the thickness of the arrow indicating the relative 
abundance of the mRNA. E3 proteins expressed from the different mRNA species are listed on top of the 
arrows. Thin lines indicate the introns removed during mRNA maturation. E3A and E3B denote two 
alternative polyadenylation sites used during E3 mRNA formation. 

 

infected cells (Fig. 31, 14.5K, compare lane 3 with lane 6). Similarly, Ad4 14.5K levels were also 

drastically reduced when the Ad4 10.4K CDS was preceding the 14.5K ORF. This reduction of 

14.5K levels was not influenced by the type of intercistronic sequences (Ad2- or Ad4-like), or 

spacing of 10.4-14.5K coding sequences. Therefore, these Ad2/Ad4 chimeric viruses reveal that 

expression of 14.5K in the Ad2 E3 region is influenced by sequences preceding the 14.5K ORF. 

In cells infected with subgroup C viruses both 10.4 and 14.5K seem to be translated from 

mRNA f (Fig. 44), as they were coordinately overexpressed or underexpressed in vivo by virus 

mutants that under- or overproduce mRNA f (Tollefson et al., 1990b; Tollefson et al., 1990a). 

Thus, the 14.5K protein appears to be translated mainly from a bicistronic mRNA, the 14.5K ORF 

being located two nucleotides downstream of that translated into 10.4K. In this respect the 14.5K 

ORF differs from the other Ad2 E3 ORFs which are located on separate mRNAs, mRNA d, e for 

11.6K, mRNA h for 14.7K and are directly preceeded by a 3’ splice site (the same is true for 10.4K 

on mRNA f), which reduces the number of upstream AUGs and putative cistrons (Fig. 44). 14.5K 

can be translated in vitro in a reticulocyte extract from mRNA f purified from virus-infected cells 

(Tollefson et al., 1990a), but so far it is unknown, how initiation of translation at the downstream 

14.5K ORF occurs. Most eucaryotic RNAs are translated by a scanning mechanism that initiates at 

the mRNA 5’ terminal cap and initiates translation at the 5’ proximal efficient AUG, the 

consensus sequence being GCC(A,G)CCA+1UGG (Kozak, 1987), whereas suboptimal AUG are 
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bypassed (Kozak, 1999). The start codons of Ad2 10.4 and 14.5 appear to be of similar efficiency, 

as none of them contains G in +4, but both do contain A in –3. Besides the 10.4K start codon no 

other AUG matching the consensus of translation initiation have been identified (Tollefson et al., 

1990a). The sequence context of the Ad2 10.4 AUG seems to be suboptimal and therefore may 

allow initation of translation at the downstream 14.5K AUG. It has been proposed that ribosomes 

may terminate translation of 10.4K and then reinitiate translation of 14.5K from the same mRNA 

(Wold et al., 1995). The balance of E3 mRNA production in subgroup C viruses is regulated by 

two polyadenylation (poly(A)) signals, an atypical AUUAAA E3A signal and a typical AAUAAA 

termed E3B (Fig. 44). Interestingly, the 3’ splice site for mRNA f is only 4 bp upstream of the E3A 

polyadenylation/cleavage signal. A competition between splicing and polyadenylation factors has 

been proposed and as a result mRNA a, encoding E3/19K, is three times more abundant than 

mRNA f (Wold et al., 1995). In addition cis-acting sequences around the E3 poly(A) site have a 

crucial effect on E3 mRNA processing, e.g. a splice suppressor sequence within the 11.6K ORF 

favors production of mRNAa and downstream from the actual E3A poly A signal a GU rich 

sequence forms part of the core poly(A) site (reviewed in (Imperiale et al., 1995). 

Introduction of the Ad4 10.4K nucleotide sequence into Ad2 E3 leaves both the 

polypyrimidine tract and 3’ splice site for mRNA f intact, but introduces sequence changes 

downstream of the E3A poly(A) signal and these might influence the efficiency of 3’ end 

processing. Therefore, it cannot be predicted from the sequence whether mRNA f is being made in 

the chimeric viruses encoding Ad4 10.4K. Apparently, no increase in E3/19K production is 

observed in the chimeric viruses (Fig. 41), indicating that the balance of E3 splicing is not shifted 

towards mRNAa. To clarify this issue mRNA levels need to be analyzed experimentally. 

Since Ad2 and Ad4 10.4K CDS are of identical length, and neither the type of 

intercistronic sequence (Ad2 or Ad4), nor the spacing of 10.4 and 14.5K ORFs appeared to be the 

prime reason for drastically reduced expression of 14.5K, this defect might be attributed to 

differences between the 10.4K nucleotide sequences of Ad4 and Ad2. Sequence comparison 

revealed a remarkably higher content of GC residues in Ad4 10.4K (data not shown). The RNA 

secondary structure prediction algorithm mfold (Zuker, 1989) suggested that these differences 

might permit the Ad4 10.4K encoding RNA to fold into a hairpin structure close to the 3’ end of 

the 10.4K ORF. Interestingly, among the 15 predicted secondary structures 14 contained an 

identical hairpin structure whereas another structure represented an alternative stem loop 

involving residues further downstream. Thus, an equilibrium of 5’ and 3’ hairpin structures was 

predicted which might allow formation of a pseudoknot intermediate (Fig. 45 A).
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Fig. 45 The nucleotide sequence in the 3’ part of an Ad4 10.4K encoding mRNA can adopt a 
pseudoknot structure 
(A) A sequence with the potential to form a pseudoknot can also form two hairpin structures. (B) The 
mfold algorithm (http://bioinfo.rpi.edu/mfold/rna/form1-2.3.cgi) developed by M. Zuker was used to 
predict the secondary structure of an RNA sequence of 290 nt in length encomprising the sequence 
TGAGAC upstream and TAAGCAUG downstream of the Ad4 10.4K coding sequence. The predicted  
pseudoknot structure is positioned close to the stop codon of the Ad4 10.4K ORF. 

 

This is an interesting finding, since pseudoknots have been proposed to slow elongating 

ribosomes and thereby inhibit reinitiation of translation at a downstream ORF (Kozak, 2001). A 

possible pseudoknot structure formed at the 3’ end of the Ad4 10.4K RNA sequence is shown in 

Fig. 45B. This would suggest that in the organization of the Ad4 genome 14.5K is located on a 

separate mRNA.  

In conclusion, the data suggest that expression of Ad4 10.4-14.5K is differently regulated in 

the Ad4 E3 region, which differs in size and composition from E3 region of subgenus C viruses 

(Fig. 4). Ad4 is unusual in that it is the only known serotype of subgroup E, and it has been 

proposed that Ad4 originated only recently by recombination of genomes resembling 

contemporary subgroup B and subgroup C viruses (Gruber et al., 1993). Therefore the regulation 

of the Ad4 E3 region might resemble that of subgroup B viruses. Despite the fact that subgroup B 

adenovirus type 35 encodes homologous proteins to subgroup C the quantity of individual 

http://bioinfo.rpi.edu/mfold/rna//form1-2.3.cgi
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mRNAs differs substantially among Ad2 and Ad35 (Basler and Horwitz, 1996). Moreover, in Ad35 

10.4K and 14.5K are encoded by two separate mRNAs. Whereas subgroup C Ads devote nearly 

half of their E3 mRNAs to the production of mRNAs a and c which encode the class I MHC 

binding protein gp19K and relatively less mRNA to the production of 10.4, 14.5, 14.7K proteins, 

the Ad35 RNAs encoding 10.4K and 14.5K, respectively, are the most abundant comprising 20% 

and 48% (Basler and Horwitz, 1996; Wold et al., 1995). Analysis of Ad35 E3 mRNA regulation 

revealed that there is only one polyadenylation signal (the equivalent of the E3B poly(A)) while 

two polyadenylation signals are used in the formation of subgroup C mRNAs. In support of the 

view that E3 splicing in Ad4 might be regulated differently than that of subgroup C viruses, the 

E3A poly(A) signal of Ad2 is not conserved in Ad4. The 3’ splice site preceding the 10.4K CDS is 

present in Ad4 and it remains to be explored whether the Ad4 14.5K ORF is also preceded directly 

by a functional 3’ splice site, generating a 14.5K mRNA.  

We have chosen to use the Ad2 background in this study, since this context allows to 

monitor down-regulation of all target proteins by infection of A549 cells, which express sufficient 

amounts of all receptor targets. Moreover, we have reagents to determine expression of other E3 

proteins, e.g. E3/19K. But obviously, the viral system is highly regulated, with complex 

requirements for splicing to occur correctly and disabling succesful transfer of Ad4 genes into 

Ad2. Thus, to reproduce and analyze the Ad4-specific modulation pattern, a non-viral expression 

system has to be established despite the major disadvantage that no 10.4-14.5K-independent 

standard for E3 protein expression is available in such a system. In order to be able to 

quantitatively monitor expression of Ad4 10.4K and 14.5K, Ad4-specific antibodies need to be 

developed. Functional analysis may be carried out on stable transfectants of A549 cells expressing 

the Ad4 10.4-14.5K proteins.  
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Abbreviations 

In general, amino acids are given in single-letter code. 
AA arachidonic acid 
Ad adenovirus 
ADP adenovirus death protein 
Ala alanine 
Ap ampicillin 
AP adaptor protein 
APS ammonium persulfate 
APS ammonium persulfate 
as antisense orientation 
BAC bacterial artificial chromosome 
bp base-pairs 
cAMP cyclic adenosin-mono-phosphate 
CAR coxsackie/adenovirus receptor 
CBP CRE binding protein 
cD MPR MPR46, cation-dependent MPR 
CDK cyclin-dependent kinase 
CDS coding sequence, denotes genomic sequence from start to stop codon of translation 
cI MPR MPR 300, cation-independent MPR 
Cm chloramphenicol 
cm centimeter 
cpe cytopathic effect 
cPLA2 cytosolic phospholipase A2 
CR conserved region 
CRE cAMP responsive element 
C-tail cytoplasmic tail 
CTL cytotoxic T lymphocytes 
DBP DNA binding protein 
DD death domain 
DISC death-inducing signaling complex 
DMEM Dulbecco’s modified Eagle medium 
DMSO di-methyl-sulfoxid 
DNA desoxyribonucleic acid 
dNTP desoxynucleoside triphosphate 
ds  double-stranded 
DTT dithiothreitol 
E3 early region 3 
EDTA ethylenediamine-tetraacetic acid 
EE early endosome 
EGF epidermal growth factor 
EGFR epidermal growth factor receptor 
ER endoplasmic reticulum 
ERGIC ER-Golgi-intermediate compartment 
EtOH ethanol 
FACS fluorescence-activated cell sorter 
Fas CD95/APO-1: receptor for FasL 
FADD/TRADD Fas-associated/TNFR-associated death domain-containing protein 
FasL Fas ligand 
FCS fetal calf serum 
Fig.  figure 
FIP 14.7K interacting protein 
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FLIP FLICE (caspase 8) inhibitory proteins 
g gravitation constant 
GGA golgi-associated gamma ear containing adaptor protein 
GTPase guanosine triphosphatase 
h hour 
HCMV human cytomegalovirus 
HEPES 2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethane sulfonic acid 
HHV8 human herpesvirus 8 
HIV human immunodeficiency virus 
Hrs hepatocyte growth factor tyrosine kinase substrate 
IAP inhibitor of apoptosis protein 
IF immunofluorescence 
IFN interferon 
IKK IκB (inhibitor of NF-κB)-kinase 
IL interleukin 
IP/WB immuneprecipitation/western blot 
ITR inverted terminal repeat 
ISG IFN-stimulated genes 
JAK/STAT janus kinase/signal transducers and activators of transcription  
kb kilobase(s) 
kD kilodaltons 
KD equilibrium dissociation constant 
KLH keyhole limpet hemocyanin 
Km kanamycin 
kV kilo-Volt 
l liter 
LAMP-2 lysosome-associated membrane protein 2 
LE late endosome 
µ micro (10-6) 
µg/µl microgramm pro microliter 
µF micro-Farad 
M Mol 
MAPK mitogen-activated protein kinase 
MCMV mouse cytomegalovirus 
MCS multiple cloning site 
mdm 2 murine double minute 2 
MHC major histocompatibility complex 
min minutes 
ml milliliter 
MLP major late promoter 
MOI multiplicity of infection 
MPR mannose-6-phosphate receptor 
mRNA messenger RNA 
mTn mini-transposon (also referred to as Tn) 
MVB multivesicular body 
MVF mean value of fluorescence 
nm nano(10-9)meter 
NEB New England Biolabs 
NF-κB nuclear factor kappa B 
NK natural killer cell 
NGF nerve growth factor 
nm nanometer 
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NSF N-ethylmaleimide-sensitive factor 
OD optical density 
o/n overnight 
ORF open reading frame 
% percent 
PACS phosphofurin acidic cluster binding protein 
PBS  phosphate buffered saline 
PCR polymerase chain reaction 
pfu plaque forming units 
p.i. post infection 
PI3K phosphoinositide-3-OH kinase 
PKR ds RNA-dependent protein kinase 
PM plasma membrane 
Pol polymerase 
Poly(A) polyadenylation 
PTB Phosphotyrosine binding domain 
RID receptor internalization and degradation 
RNA ribonucleic acid 
rpm rounds per minunte 
RT room temperature 
RTK receptor tyrosine kinase 
s sense orientation 
SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis 
sec seconds 
SEM Standard error of the mean value 
SH2 Src-homology domain type 2 
SPR Surface Plasmon Resonance 
ss single-stranded 
SV40 simian virus 40 
TAP transporter associated with antigen processing 
TBP TATA-box binding protein 
Tc tetracycline 
TGF transforming growth factor 
TGN trans-Golgi-network 
TIP 47 tail-interacting protein 47 
TMD transmembrane domain 
TNF-α tumor necrosis factor alpha, also referred to as TNF 
TNFR TNF-receptor 
Tns transposase 
TP terminal protein 
TRAIL TNF-related apoptosis inducing ligand 
TRAIL-R TRAIL-receptor 
SAP shrimp alkaline phosphatase 
SEM standard error of the mean 
wt wild-type 
w/v weight per volume 
λ 

wavelength lambda (in nm) 
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Annexe 

 
Restriction fragment length pattern 
of newly generated mutant pAd2-
BACs. Variations in fragment 
length and additional restriction 
sites in comparison to wt are 
highlighted in boldface. Restriction 
sites were determined using Vector 
NTI Suite software, Informax, and 
denote the position in the 
corresponding pAd2-BAC. 
Fragment sizes are given in number 
of base-pairs. For reference, the 
circular map of pAd2/F14.5 is 
shown on the right. 
.
1.) Annotation of Fig. 27 

a) A new PacI site (position 30058) is generated by the mutation introduced in 14.5K to generate 
pAd2-H7/14.5ko 

pAd2-H7/14.5ko pAd2-H7 pAd2-H7/10.4ko-F14.5 
Fragment size Restriction sites Fragment size Restriction sites Fragment size Restriction sites 

28641 
14002 
1435 

44060-28623 
30058-44060 
28623-30058 

28641 
15436 

 

44059-28623 
28623-44059 

28641 
15456 

44079-28623 
28623-44079 

b) A new PvuI site (position 30301) is introduced by the mutation of Y74 in FLAG-14.5K in 
construct pAd2-H7/FLAG-14.5Y74A 

pAd2-H7/FLAG-14.5Y74A pAd2-H7 (lacking the FLAG-sequence) 
Fragment size Restriction sites Fragment size Restriction sites 

10438 
 

8143 
6749 
4555 
3945 
2828 
2179 
2065 
1669 
1530 

31831-42269 
 

42269-6311 
23552-30301 
7980-12535 
14714-18659 
18659-21487 
12535-14714 
21487-23552 
6311-7980 

30301-31831 

10438 
8255 
8143 

 
4555 
3945 
2828 
2179 
2065 
1669 

 

31807-42245 
23552-31807 
42245-6311 

 
7980-12535 
14714-18659 
18659-21487 
12535-14714 
21487-23552 
6311-7980 

 

c) EcoRV cleavage of mTn-containing mutant pAd2-BACs and wt pAd2 as compared to pAd2-H7 
pAd2-H7/ 

FLAG-14.5Y74A 
pAd2-H7/10.4LL-F14.5 

pAd2-H7/14.5ko 
no FLAG-sequence 

pAd2-H7/10.4ko-F14.5 pAd2-H7 
no FLAG-sequence 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

12536 
7647 
5041 
4595 
3807 
2617 
2052 

40753-9188 
10426-18073
35483-40524
18073-22668
27337-31144
24720-27337
22668-24720

12536 
7647 
5041 
4595 
3784 
2617 
2052 

40730-9188 
10426-18073
35460-40501
18073-22668
27337-31121
24720-27337
22668-24720

12536 
7647 
5041 
4595 
3803 
2617 
2052 

40749-9188 
10426-18073
35479-40520
18073-22668
27337-31140
24720-27337
22668-24720

12536 
7647 
5041 
4595 
3783 
2617 
2052 

40729-9188 
10426-18073
35459-40500
18073-22668
27337-31120
24720-27337
22668-24720
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1668 
1432 
1239 
1142 
229 
96 

33815-35483 
32383-33815 
31144-32383 
9188-10330 
40524-40753 
10330-10426 

1668 
1432 
1239 
1142 
229 
96 

33792-35460
32360-33792
31121-32360
9188-10330 
40501-40730
10330-10426

1668 
1432 
1239 
1142 
229 
96 

33811-35479
32379-33811
31140-32379
9188-10330 
40520-40749
10330-10426

1668 
1432 
1239 
1142 
229 
96 

33791-35459
32359-33791
31120-32359
9188-10330 
40500-40729
10330-10426

 
pAd2 wt (clone B53) pAd2-H7 (insertion of 1699 bp mTn sequence +3bp = 

duplication of CTA at Tn ends) 
Fragment size Restriction sites Fragment size Restriction sites 

12536 
7647 
5041 
4752 
4595 

 
2617 
2052 
1668 

 
 

1142 
229 
96 

39027-9188 
10426-18073 
33757-38798 
27337-32089 
18073-22668 

 
24720-27337 
22668-24720 
32089-33757 

 
 

9188-10330 
38798-39027 
10330-10426 

12536 
7647 
5041 

 
4595 
3783 
2617 
2052 
1668 
1432 
1239 
1142 
229 
96 

40729-9188 
10426-18073 
35459-40500 

 
18073-22668 
27337-31120 
24720-27337 
22668-24720 
33791-35459 
32359-33791 
31120-32359 
9188-10330 
40500-40729 
10330-10426 

d) HindIII and XhoI cleavage of pAd2-H7/10.4ko-F14.5 as compared to pAd2-H7 
pAd2-H7 

no FLAG-sequence 
pAd2-H7/10.4ko-F14.5 pAd2-H7 

no FLAG-sequence 
pAd2-H7/10.4ko-F14.5 

(lacking the site at 29789) 
HindIII XhoI 

Fragment size  Restriction sites  Fragment size  Restriction sites  
9229 
8053 
5324 
3433 
3284 
2761 
2720 
2284 
2192 
2081 
1321 
1011 
309 
75 

37647-2799 
18317-26370 
6232-11556 
2799-6232 

15033-18317 
33875-36636 
28963-31683 
26370-28654 
31683-33875 
11556-13637 
13712-15033 
36636-37647 
28654-28963 
13637-13712 

9229 
8053 
5324 
3433 
3284 
2761 
2740 
2284 
2192 
2081 
1321 
1011 
309 
75 

37667-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
33895-36656
28963-31703
26370-28654
31703-33895
11556-13637
13712-15033
36636-37667
28654-28963
13637-13712

10471 
9642 

 
7182 
5864 
4593 
2466 
2414 
1445 

39385-5779 
9690-19332 

 
32203-39385
23925-29789
19332-23925
5779-8245 

29789-32203
8245-9690 

10471 
9642 
8298 
7182 

 
4593 
2466 

 
1445 

39405-5779 
9690-19332 
23925-32223
32223-39405

 
19332-23925
5779-8245 

 
8245-9690 

For PacI cleavage sites  of pAd2-H7/10.4ko-F14.5, refer to 1a). 
 
2.) Annotation of Fig. 28 

a) Restriction fragments obtained by XhoI cleavage of BAC clones after the Tn removal 
pAd2/14.5ko 

no FLAG-sequence 
pAd2/10.4ko-F14.5 pAd2/FLAG14.5 

pAd2/FLAG-14.5Y74A 
pAd2/10.4LL-F14.5 

Fragment size  Restriction sites Fragment size  Restriction sites Fragment size  Restriction sites 
 

10471 
9642 
7895 
5864 
4593 
2466 

 
37684-5779 
9690-19332 
29789-37684 
23925-29789 
19332-23925 
5779-8245 

13778 
10471 
9642 

 
 

4593 
2466 

23925-37703 
37703-5779 
9690-19332 

 
 

19332-23925 
5779-8245 

 
10471 
9642 
7918 
5864 
4593 
2466 

 
37707-5779 
9690-19332 
29789-37707 
23925-29789 
19332-23925 
5779-8245 
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1445 8245-9690 1445 8245-9690 1445 8245-9690 
 

b) EcoRV, HindIII cleavage of pAd2/10.4ko-F14.5 as compared to pAd2/FLAG14.5 
pAd2/FLAG14.5 pAd2/10.4ko-F14.5 pAd2/FLAG14.5 pAd2/10.4ko-F14.5 

EcoRV HindIII 
Fragment 

size  
Restriction 

sites 
Fragment 

size  
Restriction 

sites 
Fragment 

size  
Restriction 

sites 
Fragment 

size  
Restriction 

sites 
12536 
7647 
5041 
4776 
4595 
2617 
2052 
1668 
1142 
 229 
   96 

39051-9188 
10426-18073 
33781-38822 
27337-32113 
18073-22668 
24720-27337 
22668-24720 
32113-33781 
9188-10330 
38822-39051 
10330-10426

12536 
7647 
5041 
4772 
4595 
2617 
2052 
1668 
1142 
 229 
   96 

39047-9188 
10426-18073 
33777-38818 
27337-32109 
18073-22668 
24720-27337 
22668-24720 
32109-33777 
9188-10330 
38818-39047 
10330-10426

9229 
8053 
5324 
3433 
3284 
3234 
2761 
2284 
2081 
1321 
1011 
309 
75 

35969-2799 
18317-26370 
6232-11556 
2799-6232 

15033-18317 
28963-32197 
32197-34958 
26370-28654 
11556-13637 
13712-15033 
34958-35969 
28654-28963 
13637-13712

9229 
8053 
5324 
3433 
3284 
3230 
2761 
2284 
2081 
1321 
1011 
309 
75 

25965-2799 
18317-26370 
6232-11556 
2799-6232 

15033-18317 
28963-32193 
32193-34958 
26370-28654 
11556-13637 
13712-15033 
34954-35965 
28654-28963 
13637-13712

c) PacI cleavage of pAd2/F14.5, pAd2/14.5ko, pAd2/10.4ko-F14.5 
pAd2/FLAG14.5 pAd2/14.5ko pAd2/10.4ko-F14.5 

PacI PacI PacI 
Fragment size  Restriction sites Fragment size  Restriction sites Fragment size  Restriction sites 

28641 
13758 

42381-28623 
28623-42381 

28641 
12300 
1435 

42358-28623 
30058-42358 
28623-30058 

28641 
13754 

42377-28623 
28623-42377 

d) A new NheI site is introduced by Tn removal from pAd2/H7-BAC 
pB53s11-F14.5* pAd2/FLAG14.5 

Fragment size  Restriction sites Fragment size  Restriction sites 
21677 
9902 
5156 
5032 
632 

31522-10800 
10800-20702 
25734-30890 
20702-25734 
30890-31522 

21677 
9902 
5788 
5032 

31522-10800 
10800-20702 
25734-31522 
20702-25734 

* After Tn removal from pAd2-H7 BACs a new NheI site is introduced, and the restriction pattern of a 
pAd2-F14.5 sequence with the newly generated NheI site is shown here (clone pB53s11-F14.5) for 
comparison with pAd2/F14.5 
 
3.) Annotation of Fig. 39 

a) EcoRV cleavage of  mTn-containing intermediate pAd2-BACs 
pAd2/F14.5 pAd2/10.4Tn pAd2/14.5Tn pAd2/(10.4-14.5)Tn 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

12536 
7647 
5041 
4803 
4595 

 
 

2617 
 

2052 
 

39051-9188 
10426-18073
33781-38822
27337-32113
18073-22668

 
 

24720-27337
 

22668-24720
 

12536 
7647 
5041 

 
4595 

 
2653 
2617 
2281 
2052 

 

40448-9188 
10426-18073
35178-40219

 
18073-22668

 
27337-29990
24720-27337
31229-33510
22668-24720

 

12536 
7647 
5041 

 
4595 
2929 

 
2617 

 
2052 
1891 

40334-9188 
10426-18073
35064-40105

 
18073-22668
27337-30266

 
24720-27337

 
22668-24720
31505-33396

12536 
7647 
5041 

 
4595 

 
2653 
2617 

 
2052 
1891 

40058-9188 
10426-18073
34788-39829

 
8073-22668 

 
27337-29990
24720-27337

 
22668-24720
31229-33120
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1668 
 

1142 
229 
96 

32113-33781 
 

9188-10330 
38822-39051 
10330-10426 

1668 
1239 
1142 
229 
96 

33510-35178
29990-31229
9188-10330 
40219-40448
10330-10426

1668 
1239 
1142 
229 
96 

33396-35064
30266-31505
9188-10330 
40105-40334
10330-10426

1668 
1239 
1142 
229 
96 

33120-34788
29990-31229
9188-10330 
39829-40058
10330-10426

b) HindIII cleavage of  mTn-containing intermediate pAd2-BACs 
pAd2/F14.5 pAd2/10.4Tn pAd2/14.5Tn pAd2/(10.4-14.5)Tn 

Fragment 
size  

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

9229 
8053 
5324 
3433 
3284 
3234 

 
2761 

 
2284 
2081 

 
 

1321 
1011 
309 
75 

35969-2799 
18317-26370 
6232-11556 
2799-6232 

15033-18317 
28963-32197 

 
32197-34958 

 
26370-28654 
11556-13637 

 
 

13712-15033 
34958-35969 
28654-28963 
13637-13712 

9229 
8053 
5324 
3433 
3284 

 
2932 
2761 

 
2284 
2081 

 
1699 
1321 
1011 
309 
75 

37366-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
 

30662-33594
33594-36355

 
26370-28654
11556-13637

 
28963-30662
13712-15033
36355-37366
28654-28963
13637-13712

9229 
8053 
5324 
3433 
3284 

 
 

2761 
2542 
2284 
2081 
1975 

 
1321 
1011 
309 
75 

37252-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
 
 

33480-36241
30938-33480
26370-28654
11556-13637
28963-30938

 
13712-15033
36241-37252
28654-28963
13637-13712

9229 
8053 
5324 
3433 
3284 

 
 

2761 
2542 
2284 
2081 

 
1699 
1321 
1011 
309 
75 

36976-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
 
 

33204-35965
30662-33204
26370-28654
11556-13637

 
28963-30662
13712-15033
35965-36976
28654-28963
13637-13712

c) XhoI cleavage of  mTn-containing intermediate pAd2-BACs 
pAd2/10.4Tn pAd2/(10.4-14.5)Tn pAd2/14.5Tn pAd2/F14.5 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

Fragment 
size 

Restriction 
sites 

10471 
9642 
8962 

 
 

6217 
 

4593 
2466 
1445 

39104-5779 
9690-19332 
30142-39104 

 
 

23925-30142 
 

19332-23925 
5779-8245 
8245-9690 

10471 
9642 

 
8572 

 
6217 

 
4593 
2466 
1445 

38714-5779 
9690-19332 

 
30142-38714

 
23925-30142

 
19332-23925
5779-8245 
8245-9690 

10471 
9642 

 
8572 

 
 

5864 
4593 
2466 
1445 
629 

38990-5779 
9690-19332 

 
30418-38990

 
 

23925-29789
19332-23925
5779-8245 
8245-9690 

29789-30418

10471 
9642 

 
 

7918 
 

5864 
4593 
2466 
1445 

37707-5779 
9690-19332 

 
 

29789-37707
 

23925-29789
19332-23925
5779-8245 
8245-9690 

 
4.) Annotation of Fig. 41 

a) EcoRV cleavage of chimeric pAd2/Ad4-BAC vectors 
pAd2 pAd2/Ad410.4 (#12-1) pAd2/Ad414.5 (#3-8) 

pAd2/Ad4(10.4-14.5)  
#(7-4) 

pAd2/Ad414.5(#7-1) 
pAd2/Ad4(10.4-14.5) (#16-

1) 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
12536 
7647 
5041 
4752 
4595 
2617 
2052 
1668 

39051-9188 
10426-18073 
33781-38822 
27337-32089 
18073-22668 
24720-27337 
22668-24720 
32113-33781 

12536 
7647 
5041 
4755 
4595 
2617 
2052 
1668 

39030-9188 
10426-18073
33760-38801
27337-32092
18073-22668
24720-27337
22668-24720
32092-33760

12536 
7647 
5041 
4803 
4595 
2617 
2052 
1668 

39078-9188 
10426-18073
33808-38849
27337-32140
18073-22668
24720-27337
22668-24720
32140-33808

12536 
7647 
5041 
4800 
4595 
2617 
2052 
1668 

39075-9188 
10426-18073
33805-38846
27337-32137
18073-22668
24720-27337
22668-24720
32137-33805
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1142 
229 
96 

9188-10330 
38822-39051
10330-10426

1142 
229 
96 

9188-10330 
38801-39030
10330-10426

1142 
229 
96 

9188-10330 
38849-39078
10330-10426

1142 
229 
96 

9188-10330 
38846-39075
10330-10426

b) HindIII cleavage of chimeric pAd2/Ad4-BAC vectors (data not shown) 
pAd2/F14.5 pAd2/Ad410.4 (#12-1) pAd2/Ad414.5 (#3-8) 

pAd2/Ad4(10.4-14.5) (#7-4)
pAd2/Ad414.5 (#7-1) 

pAd2/Ad4(10.4-14.5) #16-1
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
9229 
8053 
5324 
3433 
3284 
3234 
2761 
2284 
2081 
1321 
1011 
309 
75 

35969-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
28963-32197
32197-34958
26370-28654
11556-13637
13712-15033
34958-35969
28654-28963
13637-13712

9229 
8053 
5324 
3433 
3284 
3213 
2761 
2284 
2081 
1321 
1011 
309 
75 

35948-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
28963-32176
32176-34937
26370-28654
11556-13637
13712-15033
34937-35948
28654-28963
13637-13712

9229 
8053 
5324 
3433 
3284 
3261 
2761 
2284 
2081 
1321 
1011 
309 
75 

35996-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
28963-32224
32224-34985
26370-28654
11556-13637
13712-15033
34985-35996
28654-28963
13637-13712

9229 
8053 
5324 
3433 
3284 
3258 
2761 
2284 
2081 
1321 
1011 
309 
75 

35993-2799 
18317-26370
6232-11556 
2799-6232 

15033-18317
28963-32221
32221-34982
26370-28654
11556-13637
13712-15033
34982-35993
28654-28963
13637-13712

c) XhoI cleavage of chimeric pAd2/Ad4-BAC vectors 
pAd2 pAd2/Ad410.4 

(#12-1) 
pAd2/Ad414.5 

(#3-8) 
pAd2/Ad414.5 

(#7-1) 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
Fragment 

size 
Restriction 

sites 
 

10471 
9642 
7894 
5864 
4593 
2466 
1445 

 
37683-5779 
9690-19332 
29789-37683
23925-29789
19332-23925
5779-8245 
8245-9690 

13758 
10471 
9642 

 
 

4593 
2466 
1445 

23925-37683
37683-5779 
9690-19332 

 
 

19332-23925
5779-8245 
8245-9690 

 
10471 
9642 
7945 
5864 
4593 
2466 
1445 

 
37734-5779 
9690-19332 
29789-37734
23925-29789
19332-23925
5779-8245 
8245-9690 

 
10471 
9642 
7942 
5864 
4593 
2466 
1445 

 
37731-5779 
9690-19332 
29789-37731
23925-29789
19332-23925
5779-8245 
8245-9690 

 
pAd2/Ad4(10.4-14.5) (#7-4) pAd2/Ad4(10.4-14.5) (#16-1) 

Fragment size Restriction sites Fragment size Restriction sites 

13809 
10471 
9642 

 
 

4593 
2466 
1445 

23925-37734 
37734-5779 
9690-19332 

 
 

19332-23925 
5779-8245 
8245-9690 

13806 
10471 
9642 

 
 

4593 
2466 
1445 

23925-37731 
37731-5779 
9690-19332 

 
 

19332-23925 
5779-8245 
8245-9690 

5.) SnaB1 digest of pAd2-BACs 
pAd2/F14.5 

(mutant pAd2/F14.5 BACs 
are identical to 
pAd2/F14.5) 

pAd2/Ad410.4 
(#12-1) 

pAd2/Ad414.5 
(#3-8) 

pAd2/Ad4(10.4-14.5) 
(#7-4) 

pAd2/Ad414.5 
(#7-1) 

pAd2/Ad4(10.4-14.5) 
(#16-1) 

Fragment 
size  

Restriction 
sites 

Fragment 
size  

Restriction 
sites 

Fragment 
size  

Restriction 
sites 

Fragment 
size  

Restriction 
sites 

35967 
4360 
2072 

42397-35965
35965-40325
40325-42397

35946 
4360 
2072 

42376-35944
35944-40304
40304-42376

35994 
4360 
2072 

42424-35992
35992-40352
40352-42424

35991 
4360 
2072 

42421-35989
35989-40349
40349-42421
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