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Abstract

Most temporal logics which have been introduced and studiedin the past decades can be

embedded into the modalL � . This is the case for e.g. PDL, CTL, CTL� , ECTL, LTL,

etc. and entails that these logics cannot express non-regular program properties. In recent

years, some novel approaches towards an increase in expressive power have been made:

Fixpoint Logic with Chop enrichesL � with a sequential composition operator and thereby

allows to characterise context-free processes. The Modal Iteration Calculus uses in
ation-

ary �xpoints to exceed the expressive power ofL � . Higher-Order Fixpoint Logic (HFL)

incorporates a simply typed� -calculus into a setting with extremal �xpoint operators and

even exceeds the expressive power of Fixpoint Logic with Chop. But also PDL has been

equipped with context-free programs instead of regular ones.

In terms of expressivity there is a natural demand for richerframeworks since program

property speci�cations are simply not limited to the regular sphere. Expressivity however

usually comes at the price of an increased computational complexity of logic-related deci-

sion problems. For instance are the satis�ability problemsfor the above mentioned logics

undecidable. We investigate in this work the model checkingproblem of three di�erent log-

ics which are capable of expressing non-regular program properties and aim at identifying

fragments with feasible model checking complexity.

Firstly, we develop a generic method for determining the complexity of model checking

PDL over arbitrary classes of programs and show that the border to undecidability runs

between PDL over indexed languages and PDL over context-sensitive languages. It is

however still in PTIME for PDL over linear indexed languagesand in EXPTIME for PDL

over indexed languages. We present concrete algorithms which allow implementations of

model checkers for these two fragments.

We then introduce an extension of CTL in which theuntil - and release- operators are

adorned with formal languages. These are interpreted over labeled paths and restrict

the moments on such a path at which the operators are satis�ed. The until -operator



is for instance satis�ed if some path pre�x forms a word in thelanguage it is adorned

with (besides the usual requirement that until that moment some property has to hold

and at that very moment some other property must hold). Again, we determine the

computational complexities of the model checking problemsfor varying classes of allowed

languages in either operator. It turns out that either enabling context-sensitive languages

in the until or context-free languages in therelease- operator renders the model checking

problem undecidable while it is EXPTIME-complete for indexed languages in theuntil

and visibly pushdown languages in therelease- operator. PTIME-completeness is a result

of allowing linear indexed languages in theuntil and deterministic context-free languages

in the release. We do also give concrete model checking algorithms for several interesting

fragments of these logics.

Finally, we turn our attention to the model checking problemof HFL which we have

already studied in previous works. On �nite state models it is kEXPTIME -complete for

HFLk , the fragment of HFL obtained by restricting functions in the � -calculus to orderk.

Novel in this work is however the generalisation (from the �rst-order case to the case for

functions of arbitrary order) of an idea to improve the best and average case behaviour of

a model checking algorithm by using partial functions during the �xpoint iteration guided

by the neededness of arguments. This is possible, because the semantics of a closed HFL

formula is not a total function but the value of a function at some argument. Again, we

give a concrete algorithm for such an improved model checkerand argue that despite the

very high model checking complexity this improvement is very useful in practice and gives

feasible results for HFL with lower order fuctions, backed up by a statistical analysis of

the number of needed arguments on a concrete example.

Furthermore, we show how HFL can be used as a tool for the development of algorithms. Its

high expressivity allows to encode a wide variety of problems as instances of model checking

already in the �rst-order fragment. The rather unintuitive { yet very succinct { problem

encoding together with an analysis of the behaviour of the above sketched optimisation

may give deep insights into the problem. We demonstrate thison the example of the

universality problem for nondeterministic �nite automata, where a slight variation of the

optimised model checking algorithm yields one of the best known methods so far which

was only discovered recently.

We do also investigate typical model-theoretic propertiesfor each of these logics and com-

pare them with respect to expressive power.



Zuasmmenfassung

Die meisten Temporallogiken, welche in den vergangenen Jahrzehnten eingef•uhrt und von

der Forschung ber•ucksichtigt wurden, lassen sich in den modalen � -Kalk•ul einbetten. Dies

betri�t z.B. PDL, CTL, CTL � , ECTL, LTL, etc. und beinhaltet, dass diese Logiken nicht

dazu in der Lage sind, nicht-regul•are Programmeigenschaften auszudr•ucken.

In den letzten Jahren wurden allerdings eine Reihe ausdruckst•arkerer Logiken entwickelt:

Fixpoint Logic with Chop erweitert den � -Kalk•ul um einen Operator f•ur sequentielle Kom-

position und erlaubt es dadurch, logische Charakterisierungen von kontextfreien Prozessen

anzugeben. Im Modal Iteration Calculus f•uhren in
ation•are Fixpunkte dazu, dass seine

Ausdrucksst•arke diejenige des� -Kalk•uls •ubersteigt. Higher-Order Fixpoint Logic (HFL)

vereint in sich einen einfach getypten� -Kalk•ul sowie kleinste und gr•osste Fixpunktquan-

toren und ist damit sogar noch ausdrucksst•arker als Fixpoint Logic with Chop. Selbst PDL

wurde in der Vergangenheit bereits mit kontextfreien anstelle von regul•aren Programmen

untersucht.

Da Spezi�kationen von Programmeigenschaften nicht auf Regularit•at beschr•ankt sind,

ergibt sich ein nat•urlicher Bedarf an ausdrucksst•arkeren Spezi�kationsformalismen. Gr•ossere

Ausdrucksst•arke ist jedoch •ublicherweise mit einem Ansteigen der Komplexit•at der im

Zusammenhang mit der Logik stehenden Entscheidungsprobleme verbunden. Beispiels-

weise sind die Erf•ullbarkeitsprobleme f•ur jede der oben genannten Logiken unentscheidbar.

Die vorliegende Arbeit untersucht die Model Checking Probleme von drei verschiedenen

Logiken, welche im Stande sind, nicht-regul•are Eigenschaften auszudr•ucken und gibt Frag-

mente von ihnen an, welche eine in der Praxis noch verwertbare Komplexit•at in Bezug auf

das Model Checking Problem besitzen.

Zun•achst wird eine generische Methode entwickelt, um die Komplexit•at des Model Check-

ing Problems von PDL •uber beliebigen Klassen von Programmen zu bestimmen. Es wird

gezeigt, dass die Grenze zur Unentscheidbarkeit zwischen PDL •uber indexierten Sprachen

und PDL •uber kontextsensitiven Sprachen verl•auft. F•ur PDL •uber linear indexierten
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Sprachen ist das Problem noch immer in PTIME und f•ur PDL •uber indexierten Sprachen

in EXPTIME. Wir geben f•ur diese beiden Fragmente konkrete Algorithmen f•ur eine Im-

plementierung an.

Im Anschluss f•uhren wir eine Erweiterung von CTL ein, in welcher die until - und re-

lease-Operatoren mit formalen Sprachen ausgestattet sind. Diese Sprachen werden •uber

beschrifteten Pfaden interpretiert und kennzeichnen die Momente entlang solcher Pfade in

welchen die Operatoren erf•ullt sein m•ussen. So ist beispielsweise deruntil -Operator erf•ullt,

falls es einen Pfadpr•a�x gibt, welcher ein Wort in der Sprache bildet, mit der der Oper-

ator ausgestattet ist (und die •ublicheuntil -Bedingung gilt, n•amlich, dass eine bestimmte

Eigenschaft in jedem Zustand bis zu diesem Zeitpunkt gegolten hat, sowie dass eine andere

in genau jenem Zeitpunkt gilt).

Wie im Fall von PDL, bestimmen wir die Komplexit•at des ModelChecking Problems f•ur

verschiedene Klassen von erlaubten Sprachen im jeweiligenOperator. Es stellt sich heraus,

dass sowohl die Klasse der kontextsensitiven Sprachen imuntil - als auch die Klasse der

kontextfreien Sprachen imrelease-Operator zu Unentscheidbarkeit des Model Checking

Problems f•uhren. Es ist EXPTIME-vollst•andig f•ur indexi erte Sprachen imuntil - und vis-

ibly pushdown Sprachen imrelease-Operator. Linear indexierte Sprachen imuntil sowie

deterministisch kontextfreie Sprachen imrelease f•uhren zu einem PTIME-vollst•andigen

Model Checking Problem. Wir geben ebenfalls wieder konkrete Model Checking Algorith-

men f•ur ausgew•ahlte Fragmente dieser Logiken an.

Schliesslich wenden wir uns dem Model Checking Problem f•urHFL zu, welches wir bereits

in vorangegangenen Arbeiten untersucht haben. Auf endlichen Modellen ist eskEXPTIME -

vollst•andig f•ur HFL k (das Fragment von HFL, welches man erh•alt, wenn man die Ordnung

der Funktionen im � -Kalk•ul auf k beschr•ankt). Neu ist jedoch die Verallgemeinerung einer

Idee welche f•ur HFL1 entwickelt wurde und nun auf das gesamte HFL ausgeweitet wird, um

das Verhalten des Model Checkers im besten bzw. durchschnittlichen Fall zu verbessern,

indem partielle anstelle von totalen Funktionen w•ahrend der Fixpunktapproximation in

Abh•angigkeit von den ben•otigten Argumentstellen berechnet werden. Dies ist deshalb

m•oglich, weil die Semantik einer geschlossenen HFL Formelselbst keine totale Funktion

ist, sondern der Wert einer Funktion an einer bestimmten Argumentstelle.

Wir geben wieder einen konkerten Algorithmus f•ur diesen optimierten Model Checker an

und vertreten die Ansicht, dass die Optimierung trotz der hohen Komplexit•at im schlecht-

esten Fall brachbare Ergebnisse in der Praxis zeitigen kann, zumindest f•ur HFL mit Funk-

tionen niedriger Ordnung. Wir belegen diese Ansicht durch eine statistische Auswertung



der Anzahl ben•otigter Argumente anhand eines konkreten Beispiels.

Desweiteren zeigen wir, wie HFL als Instrument zur Entwicklung von Algorithmen ver-

wendet werden kann. Die grosse Ausdrucksst•arke erlaubt es, eine Vielzahl von Problemen

als Instanzen des Model Checking Problems zu kodieren und zwar bereits in HFL1. Die

eher wenig intuitive Kodierung in Kombination mit einer Analyse des Verhaltens des op-

timierten Model Checking Algorithmus auf diesen Problemenkann tiefere Einsicht in das

Problem selbst gew•ahren. Wir demonstrieren dies am Beispiels des Universalit•atsproblems

f•ur nichtdeterministische endliche Automaten, wo eine leichte Ver•anderung des optimierten

Model Checking Algorithmus zu einer der besten bisher bekannten Methoden daf•ur f•uhrt,

welche erst k•urzlich beschrieben wurde.

Desweiteren untersuchen wir die typischen modelltheoretischen Eigenschaften jeder dieser

Logiken und vergleichen sie untereinander in Bezug auf ihreAusdrucksst•arke.
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Chapter 1

Introduction

A Quick Survey on Temporal Logics. In order to reason about program behaviour

and in particular about the stepwise execution of processes, a notion of time and a formal-

ism which enables to describe the changes over time is required.

First e�orts included Hoare-style program veri�cation [Hoa69], where valid statements

about a typically sequential program are derived by applying inference rules to each pro-

gram statement and the currently valid conditions. Following classical proof systems,

application of the inference rules required human ingenuity and made veri�cation of larger

programs extremely tedious, because manual intervention was inevitable.

The idea to interpret modal logic in the context of temporal succession goes back to A.

Prior in 1957 [Pri57] and has since then evolved into a large and productive research

�eld. Its importance is rooted in the emerging industrial need for safe hard- and software

systems over the years. Techniques such as model checking, i.e. an algorithmic solution to

the question whether a given model of a system satis�es its speci�cation provide a solid

mathematical basis to ideally guarantee that a set of properties holds for a system. The

greatest bene�t herein lies in the fact that (su�cient computing power granted) the model

checking process is designed for full automation.

Many logics have since Prior been invented to formally reason about time and program

behaviour; most of them still have in common the modal foundation but otherwise di�er

a lot in the machinery of temporal operators provided. Kripke's possible world semantics

[Kri63] in general becomes a transition system in the context of program reasoning and the

meanings of possibility and necessity shift to\there is a (direct) successor in time" and

\for all (direct) successors in time".

In the most simple temporal logics like e.g.Hennessy-Milner-Logic[HM80], reasoning about
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paths in a model can only be done by explicitly declaring the path depth, i.e. there is no

recursion device which automatically applies a certain speci�cation scheme. Not until the

introduction of �xpoints into this setting is it possible to make a (�nite) statement like e.g.

\along every path propositionq eventually holds".

The 1977 landmark paper by Pnueli [Pnu77] introduced temporal logic, today known as

Linear Temporal Logic (LTL), in which (implicitly) universally quanti�ed statem ents about

the runs of a system are possible. The universal quanti�cation allows to merge all system

runs into models with a linear concept of time succession { hence the later adopted name

pre�x. LTL has basic temporal operators: X (next-time), F (sometime), G (always) and

U (until). A formula X' requires the next moment in time to satisfy' , F' says that '

eventually holds in the future, G' says that ' holds from now on forever and the binary

operator ' U is satis�ed if there exists a future state at which holds and until that

moment ' must hold. Consider for example the formulaFGp stating \(on all system runs)

sometime in the future,p will always hold".

Another widely used temporal logic isComputation Tree Logic (CTL)[BAMP81] which

keeps di�erent runs of a system apart by modelling the succession of time seperately for

every run, thus arriving at branching time models. CTL models explicitly incorporate non-

determinism by allowing the time to split up whenever di�erent system behaviour opens

up a new branch of possibilites. These models preserve more information about the system

behaviour than linear ones and therefore allow a richer variety of speci�cation formalisms.

Note that a tree model can be translated into a linear model but the converse translation

fails. In particular, CTL is { unlike LTL { capable of specifying properties regarding single

system runs, i.e. CTL allows existential quanti�cation in addition to universal quanti�ca-

tion over runs.

Temporal formulas of CTL consist of the same temporal operators as LTL with a similar

meaning but must occur in the scope of a path quanti�er (A and E for universal and

existential path quanti�cation). Furthermore, no interleaving of temporal operators is

allowed unless each temporal operator is guarded by a path quanti�er. So, e.g. AGEFq

states liveness of propertyq: \on all paths it is true everywhere that there exists a path

along which eventuallyq holds". For details on the logic, see Sec. 2.2.7.

Both logics are mutually incomparable which is witnessed bythe above mentioned formulas.

On the one hand, the interleaving of temporal operatorsF and Gallowed in LTL cannot be

expressed in CTL and on the other hand there is no existentialpath quanti�cation in LTL.

These features are impossible to express by other means of the respective logical languages.
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The logic which uni�es LTL and CTL is CTL � which combines the nesting of temporal

operators with universal and existential path quanti�cation.

Fischer and Ladner'sPropositional Dynamic Logic (PDL) [FL79] is yet another branching

time temporal logic in which the moments in time at which certain properties should hold

are speci�ed by regular expressions, also called programs.These programsR are syn-

tactically embedded into the modalitieshRi and [R] which correspond to existential and

universal quanti�cation over paths labeled with elements of R. Both LTL and CTL are

interpreted over unlabeled models while using labels inside the speci�cation formalism pro-

vides additional means to model program behaviour. For instance, the formulah(aba)� i tt

states \there exists a path labeled with a word from the language(aba)� " . Some of the

properties of unlabeled models can be simulated in PDL however: the CTL expressionAGq

corresponds to [�� ]q for instance. In general however, PDL and CTL are incomparable.

For details on PDL, see Sec. 2.2.6.

Another extensively studied logic is Kozen'smodal � -calculus [Koz82]. It is equipped with

single letter modalitieshai and [a] and uses extremal �xpoint constructs as recursion devices

to combine these to path properties. For instance, the expression �x:p ^ haihbi x states

\there exists an(ab)! -labeled path along whichp holds in between eachab" , where�x is the

greatest �xpoint operator. What gives � -calculus its expressive power and (seemingly) is

the reason for the computational complexity of its model checking problem is the �xpoint

alternation. Fixpoint alternation is the mutual dependency of �xpoints and the measure

of the dependency complexity is called the alternation depth of a formula (c.f.[BS06]). The

best known model checking algorithms for the� -calculus are exponential in the alternation

depth.

Having a fundus of di�erent logics with a (mostly) common base, the question of expressive

power naturally arises. Interestingly, almost all well-established temporal logics can be

embedded in the� -calculus, like e.g. LTL, CTL, CTL� and PDL, since the modal and

temporal operators can be expressed as least and greatest �xpoints of a certain form. In

fact they can even (except for CTL� ) be embedded into the alternation-free fragment of

the � -calculus. For details on syntax and semantics, see Sec. 2.2.8.

Regularity and Logic. The � -calculus plays a very important role, because via its

tight relationship with Monadic Second-Order Logic(MSO), it connects temporal logic

with automata theory.

The works of B•uchi and Elgot have shown that MSO (interpreted over �nite words) and
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�nite automata have the same expressive power and are e�ectively translatable into each

other [B•uc60, Elg61]. This result was later extended to �nite automata over in�nite words

and trees [McN66, Rab69], namely B•uchi-automata and tree-automata with a Rabin-

acceptance condition.

On the other hand, the� -calculus and the bisimulation-invariant fragment of MSO do also

have the same expressive power [JW96] and this �nally links the theory of �nite automata

and � -calculus. It is in this sense that the term\regular logic" applies to � -calculus

although it was originally coined in the context of �nite automata and formal language

theory.

Temporal Logics Beyond Regularity. Although formulas speci�ed in the � -calculus

are usually considered hard to understand (at least with increasing alternation depth),

they still correspond to the least expressive fragment of the Chomsky hierarchy. Regular

languages are very limited in re
ecting structural complexity in comparison to the context-

free and context-sensitive languages { an observation which also transfers to properties

expressible in the� -calculus.

A demand for richer logical description and recognition frameworks is natural because

computer processes are not restricted to regularity and hence have structural properties

which cannot be expressed with regular means.

This was for instance the motivation behind the design ofFixpoint Logic with Chop (FLC)

where a logical characterisation for a class of processes called context-free or BPA (Basic

Process Algebra) processes was sought [MO99]. It turned outthat it was su�cient to add

sequential composition to the modal� -calculus to achieve this in the following way.

Formulas in branching time logics are usually interpreted as sets of states, namely those

which satisfy the formula, i.e. predicates on the total state set. In FLC, the semantics

is lifted to functions [[�]] : 2S ! 2S where S is the state space; i.e. a formula is basically

a predicate transformer. Sequential composition of formulas � ;  is now interpreted as

function composition ([[� ]] � [[ ]])(x). This is possible because the set of all monotone func-

tions 2S ! 2S forms a complete lattice with pointwise inclusion orderingwhich guarantees

the existence of least and greatest �xpoints. As an example property (inexpressible in

� -calculus) consider the formula�x:� ^ hai ; x; hbi stating \there exists a path labeled with

a word w 2 f anbn j n � 0g" , where � simply is the identity function needed for technical

reasons regarding the FLC semantics.

The idea of formulas as functions was consequently generalized by M. and R. Viswanathan
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by omitting the restriction of functions to �rst order in Higher-Order Fixpoint Logic (HFL)

[VV04]. Here, the � -calculus is enriched with a simply typed� -calculus and �xpoints

range over higher-order functions instead of just �rst-order functions. This is well-de�ned

because higher-order functions form a complete lattice with a pointwise inclusion order on

the function values. For formula examples, see Sec. 5.2.

FLC turns out to be easily embeddable into the �rst-order fragment of HFL, (even re-

stricted to arity 1) but a diagonalisation argument shows that HFL is strictly more ex-

pressive than FLC [VV04]. The question whether FLC is equivalent to the �rst-order

fragment of HFL is still open. If we denote by HFLk the fragment of HFL which is re-

stricted to functions of orderk, then HFL0, the fragment without functions is equivalent

(even syntactically) to the � -calculus.

Regarding the typical decision problems for logics, matters are more or less the same than

with FLC, i.e. satis�ability is undecidable and model checking is decidable on �nite models

only. HFL model checking is already very hard for arbitrarily small models: we have shown

that the problem is kEXPTIME -complete for HFLk even on transition systems of size 1

[ALS07]. A direct consequence of this result is that there isalso a strict hierarchy of

expressiveness with increasing order of the functions.

This may seem little encouraging, however in this work we show that the higher-order

functions which are responsible for thekEXPTIME -hardness, are not needed as total but

as partial functions on average. Only in worst case scenarios is the computation of the

values at all arguments necessary for solving the model checking problem. The leeway

between average and worst case can be exploited in practice and shown experimentally to

be su�ciently large for feasible employment at least for lower-order functions.

Another aspect we consider is that for a logic as expressive as HFL, various surprisingly

di�erent general logical problems can be encoded into the model checking problem, e.g. :

satis�ability of modal logic K or universality of non-deterministic �nite automata (NFA).

This enables a re-evaluation of known algorithms for these problems, since they are ex-

pressed in the rather unintuitive way as a �xpoint of a function. This may even lead to

better ones. For instance, with a few optimisations the model checking algorithm on the

NFA-universality problem turns out to be the same as the antichain method by Henzinger

et al. [WDHR06] which is one of the best currently known and only discovered recently.

Tailored Expressivity. It is clear that expressive power comes at the price of increased

computational complexity. This work discusses several non-regular logics which all have
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in common that they are parametric in some sense which directly a�ects their expressive

power. We will for instance investigate HFL, where the parameter which regulates the ex-

pressive power is the orderk of functions allowed. Every restriction of the order magnitude

by one immediately pays o� by exponentially lesser cost of model checking.

Another approach to achieve modularity in terms of expressive power is to directly incor-

porate formal languages into the logic as it is the case in PDL. Although the original work

investigated PDL for regular programs only, it is clearly designed as a parametric logical

framework over varying classes of programs. But since the focus of attention at the time

was on decidability and it was very early conceived by Ladnerthat PDL equipped with

context-free programs is undecidable c.f. [HPS83], the range of considered classes has so

far been limited to those located in between the regular and context-free ones.

Interestingly, there is an enormous complexity gap betweensatis�ability and model check-

ing: while PDL over context-free programs is undecidable, model checking is still in P

[Lan05]. Hence it seems worthwhile to extend the range of language classes for the latter

problem. In this work, we examine the model checking problemof PDL over arbitrary

classes of formal languages and derive complexity bounds for the model checking problem

w.r.t. the expressivity of the language class parameter. Itturns out that the borderline to

undecidability of model checking lies somewhere in betweenthe indexed languages and the

context-sensitive.

Here, the advantage of parametric frameworks becomes apparent: it is comparatively easy

to determine an adequate formal language class in which a path property can be expressed,

while the correspondence between least required function order to express such a property

in HFL is unclear.

Parametric PDL mainly draws its expressive power from the language class assigned to it

while the inherent logical machinery is still rather weak. It does for instance not feature

CTL's release-operator. From this circumstance came the idea for a non-regular CTL

version which we have proposed in [ALL+ b]. It combines the modularity of expressive

power with the ease of CTL-speci�cation.

We consider an equally parametric framework for CTL over arbitrary classes of formal

languages and the corresponding model checking problems. CTL operators equipped with

a formal language constrain the moments in time at which subformulas are required to

hold. For instance, the formulaEGL p states \there is a path on which at every moment

where the current path pre�x forms a word inL, p holds".

Since it turns out that the model checking complexity of suchlanguage-adorned temporal
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operators di�ers for UL and RL , we discuss parametric CTL w.r.t. two language class pa-

rameters, each of them restricting the use of languages for one of them which adds further

granularity to the possibilities of choice in the desired logical expressivity.

Chapter Overview. The preliminary chapter recalls de�nitions of formal language and

automata theory as well as the temporal logics PDL, CTL and� -calculus which form the

basis of subsequent chapters. We focus on non-standard notions from the literature and

clarify the notational conventions used throughout the thesis.

In chapters 3{ 5 we introduce Parametric PDL and CTL as well asHFL. The overall

structure of each of these chapters is

� Syntax and Semantics

� Examples

� Properties

� Expressivity

� Model Checking.

After de�ning syntax and semantics of a logic and giving examples of properties expressible,

in the \Properties"-section, we investigate some typical properties: the �nite model and

tree model property, bisimulation invariance and decidability.

Subsequently, the expressive power of the logics PDL[L ], CTL[L ] and HFL is compared

and delineated against regular logics.

The main results are usually to be found in the section concerned with model checking.

Starting with the simplest { PDL[ L ]{ we interreduce its model checking problem to the

non-emptiness problem forL -intersections with regular languages and show the close rela-

tionship to graph reachability problems. The transfer of results from these areas allows to

derive computational bounds for model checking PDL[L ] and a borderline to undecidabil-

ity for language classes exceeding the context-sensitive.We then develop concrete model

checking algorithms for PDL[IL] and PDL[MCSL] which are themost expressive of these

logics which retain decidability and give detailed soundness and completeness proofs.

Chapter 4 deals with the veri�cation of CTL[L ] . We give computational bounds of the

model checking problem and, again, draw the border to undecidability w.r.t. L . Here, we

consider the fragments obtained by restricting the expressive power of the language class
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parameters in either theuntil and releasepath quanti�ers, since the resulting complexity

highly depends on it. We also investigate the di�erences arising from deterministic and

non-deterministic variants of the input automata.

In Chapter 5 the highly expressive �xpoint logic HFL is turned attention to. We generalise

the model checking algorithm developed in [AL07] for its �rst-order fragment to the whole

of HFL. The optimisations to the straight-forward algorithm enable us to reduce best-

and average case complexities. We give statistical evidence that this indeed enhances the

performance dramatically and leaves hope for practical feasibility despite the extremely

high worst-case complexity which is a consequence of its expressiveness. We propagate the

use of HFL as an extremely succinct \programming language" for all kinds of problems {

from universality of non-deterministic �nite automata to satis�ability checking of modal

logic K { to the purpose of deriving ideas for new algorithms due to the usually rather

unintuitive problem formulation form, namely as a �xpoint of a higher-order function.

This is backed up by the coincidence of the behaviour of our model-checker on a formula

encoding universality of non-deterministic �nite automata with one of the fastest methods

known so far.

The �nal chapter summarises the achievements of this thesisand points out the directions

of further work on the topics contained within.



Chapter 2

Preliminaries

2.1 Formal Languages and Automata

Formal languages and automata form the well-known dualism of language generation and

language recognition. Formal languages are given as grammars which de�ne a set of rules

to derive the words of which a language consists. Their counterpart is the concept of an

automaton: given a word, an automaton decides according to aset of rules whether it

accepts or rejects the word as part of its language. We start with the well known notion

of transitive closure.

De�nition 1 (Transitive Closure) Let R; S be binary relations on a universeU. De-

�ne RS = f (x; y) 2 U � U j exists z 2 U s.t. xRz and zSyg. The following inductive

de�nitions for n; i 2 N are standard:

� R0 := f (x; x) j x 2 Ug.

� Rn+1 := RRn .

� R� :=
S

i � 0 Ri .

� R+ :=
S

i � 1 Ri .

De�nition 2 (Grammar) A grammar is a 4-tupleG = ( N; � ; P; S), where N is a �nite

set of nonterminal symbols, � is a �nite set of terminal symbols { also called alphabet

sometimes orset of actionsin the context of logics { with N \ � = ; , S 2 N is the starting

symboland P ( (N [ �) + � (N [ �) � is a �nite set of production rules.
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We use in�x notation � ! � to denote (�; � ) 2 P. An element � 2 (N [ �) � is called a

sentential form and its length j� j is de�ned as the sum of symbol occurrences fromN and

� in � . If the length of some sentential form is 0, we call it theempty word and denote it

by � .

De�nition 3 (Derivation) Let G be a grammar and�; �; 
; 
 0 2 (N [ �) � . We de�ne

the derivation relation ) G � (N [ �) � � (N [ �) � as

�
� ) G �
 0� i� 
 ! 
 0:

If it is clear to which grammar a derivation refers to, we often omit the index and simply

write ) instead of) G.

De�nition 4 (Formal Language) The languageof a grammarG = ( N; � ; P; S) is de-

�ned as

L (G) = f w 2 � � j S ) + wg:

Typical decision problems regarding formal languages are the following:

Let w 2 � � for an alphabet � and let L; L 0 be formal languages.

� word problem: is w 2 L the case?

� emptiness problem: is L = ; the case?

� intersection problem: is L \ L0 = ; the case?

2.1.1 The Chomsky Hierarchy

Faced with the fact that the computational complexity of solving any of the language-

related decision problems for di�erent languages varies from trivial to undecidable it seems

natural to classify them according to the properties responsible for this.

The Chomsky hierarchyis a well-studied classi�cation system dividing grammars (and the

languages they de�ne) into four di�erent classes which forman inclusion hierarchy.

De�nition 5 (Chomsky Hierarchy) Let G = ( N; � ; P; S) be a grammar.

� G is of type 0 or recursively enumerable.

� G is of type 1 orcontext-sensitive, if j� j � j � j for all � ! � .
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� G is of type 2 orcontext-free, if � 2 N for all � ! � .

� G is of type 3 or regular, if it is context-free and � 2 � [ � N for all � ! � .

Abbreviations used throughout this text for context-free and context-sensitive grammars

are CFG and CSG, respectively. We adopt the classi�cation for formal languages and may

therefore say that a language is recursively enumerable or context-free, etc. if a grammar

of the corresponding type exists which generates the language. Let REG, CFL, CSL and

RE denote the classes ofregular, context-free, context-sensitiveand recursively enumerable

languages.

De�nition 6 (Finite Automaton) A (nondeterministic) �nite automaton (FA) is a 5-

tuple A = ( Q; � ; �; q0; F ), where Q \ � = ; and

� Q is a �nite set of states,

� � is a �nite set of terminal symbols,

� � : Q � � ! 2Q is the transition function,

� q0 2 Q is the starting state,

� F � Q is the set of �nal states.

For reasons of better readability, we may writeq a�! q0 instead of q0 2 � (q; a). We call a

�nite automaton deterministic if j� (q; a)j = 1 for all q 2 Q; a 2 �. A run of A on a word

w = a1a2 : : : an 2 � � is a sequence of statesq0; q1; : : : ; qn s.t. q0 is the starting state and

qi
ai +1���! qi +1 for all i � 0. We call such a runacceptingif qn 2 F .

Theorem 1 (Myhill-Nerode, c.f. [HU79]) Let L be a regular language over � and

de�ne � � � � � � � as x � y i� for all z 2 � � : xz 2 L , yz 2 L. Then � is an

equivalence relation and the number of equivalence classesis �nite.

De�nition 7 (Pushdown Automaton) A pushdown automaton(PDA) is a 6-tuple A =

(Q; � ; � ; �; q0; F ), where Q; � ; q0 and F are de�ned exactly as for an NFA and

� � is a �nite set of stack symbols,

� � : Q � (� [ f?g ) � � ! 2Q� � �
is the transition function.
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Again, we may write (q; 
 ) a�! (q0; 
 0) instead of (q0; 
 0) 2 � (q; a; 
 ). We call a pushdown

automaton deterministic if j� (q; a; 
 )j = 1 for all q 2 Q; a 2 � [ f � g; 
 2 �.

A con�guration of A is an element ofQ � � � and we denote the set of all its con�gurations

by Conf(A ). In a con�guration, the second component is called the current stack of A .

The starting con�guration is (q0; ? ), where ? denotes a special stack symbol? 62�.

A run of A on w = a1 : : : an is a sequence of con�gurationsC0; : : : ; Cn s.t. C0 is the

starting con�guration and for all Ci = ( qi ; � i ) with 0 � i < n , the following holds: there

exist 
 2 � [ f?g and 
 0; � 2 � � s.t. � i = 
� and � i +1 = 
 0� and (qi ; 
 ) ai��! (qi +1 ; 
 0). A

run is accepting, ifqn 2 F . Note that ? does always remain at the bottom of the stack.

It is clear that the transition function � can equivalently be given as a relation� 0 �

Q � (� [ f � g) � � � Q � � � , where (q; a; 
; q0; 
 0) 2 � 0 i� ( q0; 
 0) 2 � (q; a; 
 ). We may

occasionally use this syntax for reasons of convenience.

Furthermore, we assume that� has the restriction that the current stack is modi�ed by a

single application of� exactly in one of the following three ways:

� the top stack symbol is deleted (calledpop),

� the stack is left untouched (callednop),

� a stack symbol is placed on top of the (otherwise unchanged) stack (called push).

Note that by this restriction the stack height changes at most by one and at most the

top stack symbol changes. Clearly, every� can be transformed into this normal form by

splitting up greater changes into several steps of the aboveform.

De�nition 8 (Language Recognition) The language accepted by an NFA (PDA)A is

de�ned as

L (A ) = f w 2 � � j there exists an accepting run ofA on wg:

De�nition 9 (Pushdown System) A pushdown system(PDS) is the con�guration graph

of a PDA A = ( Q; � ; � ; �; q0; F ), i.e. an LTS T = ( Q � � � ; �! ; `) with ( q; 
v ) a�! (q0; wv) for

somev 2 � � if (q0; w) 2 � (q; a; 
 ).

For a de�nition of an LTS see Def. 14. Note that PDS are in�nitestate systems in general.

The standard theory de�nes at least two more kinds of automata, namely thelinear bounded

automaton (LBA) and the Turing machine (TM). But since we do never use these concepts

explicitly in this work, we omit their de�nitions and do just rely on their existence. The

reader is referred to [HU79] for further details.
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The following theorem manifests the dualism between the concepts of grammar and au-

tomaton.

Theorem 2 (c.f. [HU79]) For any formal languageL,

� L 2 REG i� there exists an NFA A, s.t. L (A ) = L.

� L 2 CFL i� there exists a PDA A, s.t. L (A ) = L.

� L 2 CSL i� there exists an LBA A, s.t. L (A ) = L.

� L 2 RE i� there exists a TM A, s.t. L (A ) = L.

The abbreviations of thedeterministic versions of the various automata types are preceeded

by a \D", i.e. DFA, DPDA, DLBA and DTM. By convention, we use th e acronym NFA

instead of FA to make the nondeterminism explicit. In the same manner we denote the

language classes recognised by the corresponding deterministic machine model with a \D"

pre�x, i.e. DREG, DCFL, DCSL and DRE.

Theorem 3 (c.f. [HU79])

DREG = REG ( DCFL ( CFL ( DCSL � CSL ( DRE = RE :

This section covers the standard theory of formal languagesand automata used in this

work. In the following sections some non-standard languageclasses are introduced.

2.1.2 Visibly Pushdown Languages

Visibly pushdown automata(VPA) were introduced by Alur and Madhusudan [AM04] in

2004 as a robust subclass of PDA which is still capable of modelling recursive program

behaviour such as nested method calls and returns. Historically, they are generalisations

of simple-minded automata(SMA) and semi-simple-minded automata(SSMA) which were

de�ned in [HR93, HK99]. These classes of automata are all obtained by limiting the

functionality of PDA. The de�nitions of SMA and SSMA were motivated by a search for

classes of languages which could be used as recursive programs in PDL (see Sec. 2.2.6)

speci�cations without rendering it undecidable. We refer to SML, SSML and VPL for the

classes of languages recognisable by SMA, SSMA and VPA respectively.

The strongest restrictions are imposed by SMA, where every action of the automaton is

completely determined by the input symbol, that is: the typeof the operation performed
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(push, pop or nop), the stack symbol placed on top of the stack upon a push operation and

the next control state. SSMA generalise SMA by permitting a nondeterministic choice of

the next control state and VPA �nally do only choose the type of operation according to

the input symbol.

This is achieved by partitioning the set of actions � into three disjoint sets �c; � i and � r

according to acall, internal or return action and performing a corresponding push, nop or

pop operation on the stack.

De�nition 10 (Visibly Pushdown Automaton) A visibly pushdown automaton(VPA)

is a PDA A = ( Q; � ; � ; �; q0; F ), where

� Q \ � = ; ,

� ? 2 � is a distinguished symbol, calledstack bottom symbol,

� � = � c �[ � i �[ � r ,

� � = � c [ � i [ � r with

� c � Q � � c � (� n f?g ) � Q;

� i � Q � � i � Q;

� r � Q � � r � � � Q:

:

It is important to note that in contrast to a PDA, a VPA contain s no � -transitions.

A VPA A is called deterministic (or a DVPA) if for all q 2 Q, a 2 �, 
 2 � we have

jf (q0; 
 0) : (q; a; 
 0; q0) 2 � cgj = jf q0 : (q; a; q0) 2 � i gj = jf q0 : (q; a; 
; q0) 2 � r gj = 1.

A run of A on a �nite word w = a1 : : : an is a sequence of con�gurationsC0; C1; : : : ; Cn

with Ci 2 Q� � + for all i = 0; : : : ; n, s.t. C0 = ( q0; ? ) and for all Ci = ( qi ; � i ) the following

holds:

� If ai 2 � c then there is a
 s.t. (qi ; ai ; 
; q i +1 ) 2 � c and � i +1 = 
� i .

� If ai 2 � i then (qi ; ai ; qi +1 ) 2 � i and � i +1 = � i .

� If ai 2 � r then (qi ; ai ; ? ; qi +1 ) 2 � r and � i +1 = � i = ? , or there is a 
 s.t.

(qi ; ai ; 
; q i +1 ) 2 � r and � i = 
� i +1 .

Note that this de�nition entails that ? cannot be popped from the stack. It is however

read and can be used to indicate that the stack is empty.
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The de�nitions of accepting run and accepted language are identical to those de�nitions

for a PDA. A visibly pushdown language(VPL) is a language which is accepted by some

VPA.

Example 1 The languageL = f anbn j n > 0g is a VPL. Let � c = f ag, � r = f bg and

� i = ; . Consider the VPA A = ( f q0; q1; q2; q3g; � ; f A; # g; �; q0; f q3g), where

� c = f (q0; a;# ; q1); (q1; a; A; q1)g;

� r = f (q1; b; A; q2); (q2; b; A; q2); (q2; b;# ; q3); (q1; b;# ; q3)g;

� i = ; :

The automaton works as follows: on an input wordw 2 L, it �rst parses the a-sequence

of length n > 0 and thereby produces the stackA : : : A#, since every a requires a push-

operation. The A : : : A-pre�x has length n � 1. Note that the kind of symbol which is

pushed on the stack via� c-operations only depends on the control state and the input

symbol.

After reading the �rst b, the control state changes toq2, pops the topA and repeats this

as long as furtherb are seen and the top stack symbol remainsA. On the last b �nally the

symbol # appears on top of the stack since it matches the �rsta and after popping it, the

automaton is in the �nal state q3.

Note that if the input word w is not in L then the automaton eventually gets stuck which

is very easily veri�ed, because the automaton is deterministic.

In this fashion all kinds of Dyck-languages such as XML can beparsed. The opening tags

are pushed on top of the stack while on closing tags the opening tags are popped.

Example 2 Let � = f p; c; rg with p 2 � c, c 2 � r , and r 2 � i . De�ne a VPA A =

(f q0; q1; q2g; � ; f? ; 
 0; 
 g; q0; �; f q0g), where

� c = f (q0; p; 
 0; q1); (q1; p; 
; q1)g;

� r = f (q0; c;? ; q2); (q1; c; 
 0; q0); (q1; c; 
; q1)g;

� i = f (q0; r; q0); (q1; r; q1)g:

Interpret p as a produce action, c as a consumeand r as a request in the setting of an

automated production line. It is only legal to consumegoods which have already been

produced. The automaton speci�es correct behaviour in thissense and rejects words which

represent a violation (i.e. a stack under
ow). It counts theproduce actions by placing

symbols onto the stack: a
 0 for the �rst produce encountered and a
 for the remaining
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ones. On aconsumeaction it removes
 or 
 0 from the stack, the latter indicating that

only one moreconsumeis possible. If it sees aconsumeaction and the stack is empty

it switches into a non-�nal state which it never leaves again. We allow request actions

anywhere between valid pre�xes of words w.r.t. the stack under
ow property. Hence, we

have L(A ) = f w 2 � � j jwjc = jwjp and jvjc � j vjp for all v � wg, where � means the

pre�x relation.

VPL are capable of expressing many of the typical context-free languages, e.g. all kinds of

Dyck-languages, but have a distinct advantage over CFL, namely their robustness. The

following theorems substantiate the fact that VPL over �nite words retain all the nice

closure and determinisation properties from the regular languages.

Theorem 4 (VPL Closure Properties, [AM04]) Let L1 and L2 be VPL w.r.t. a par-

titioned set of actions � and let R be a regular language. Then the following languages

are VPL:

L1 [ L2; L1 \ L2; L1L2; L �
1; L1; L1 \ R:

Theorem 5 (SML and SSML Closure Properties) The classes SML and SSML are

closed under intersections with regular languages.

Proof This can be shown by a simple product construction between a DFA and an SMA

or SSMA, respectively. 2

Theorem 6 (Determinisation, [AM04]) Let A 1 = ( Q; � ; � ; q0; �; F ) be a VPA w.r.t. a

partitioned set of actions �. Then there exists a deterministic VPA A 2, s.t. L(A 1) = L(A 2)

and A 2 has at most 2jQj2 states and 2jQj2 � j � c j stack symbols.

From the above follows that the class of VPL can be embedded into the Chomsky Hierarchy

as follows.

Theorem 7

SML

(

REG ( SSML ( VPL = DVPL ( DCFL ( CFL:
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Proof Any DFA is clearly an SSMA without stack operations. Since DFA = NFA, we

have REG � SSML. Strictness of the inclusion follows from the fact thatf anbn j n > 0g

is an SML [HR93] (and the SML are included in SSML) but not a regular language cf.

[HU79].

An SSMA is a generalisation of an SMA, hence SML� SSML [HK99]. Strict inclusion

follows from the property stated in [HK99] that there are only �nitely many di�erent SML

over any given alphabet � but in�nitely many di�erent REG and hence SSML. Intuitively,

a DFA is not an SMA, because even its next state is solely determined by the input symbol

and not by input symbol and current state. This makes in fact the expressivity of REG

and SML incomparable.

The strict inclusion of SSML in VPL is stated in [LLS07].

Finally, since VPL are closed under determinisation by Thm.6, they are all contained in

DCFL. Strictness is witnessed by the languagef anban j n � 0g which is easily seen to be a

DCFL but is not an SML [HR93]. Note that the �rst n a-symbols require a push-operation

while the as occurring behind theb require pop-operations.

That DCFL is strictly included in CFL is a well-known standard theorem in formal language

theory cf. [HU79]. 2

Theorem 8 (VPL Emptiness) The emptiness-problem for VPL is PTIME-complete.

Proof Inclusion in PTIME is a consequence of the fact that the emptiness problem for

CFL is in PTIME (c.f. [HU79]) and that VPL is included in CFL. A hardness proof can

be found in [Lan10]. 2

Since SML and SSML are both included in VPL, their emptiness problems are obviously

also in PTIME.

Corollary 1 (SML and SSML Emptiness) The emptiness problem for SML and SSML

is in PTIME.

2.1.3 Indexed Languages

The class ofindexed languages(IL) was proposed in 1968 by Aho as a result of an in-

creased interest in speci�cation devices for all of the syntactic structures found in modern

programming languages of that time { in particularALGOLis mentioned { for which the

CFL were too weak and the CSL were too powerful [Aho68]. Indeed, IL is located strictly
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in between CFL and CSL and furthermore enjoys nice closure properties. IL are equally

de�nable by a certain class of automata callednested stack automataas well as by a certain

class of grammars calledindexed grammars(IG). A nested stack automaton is a kind of

pushdown automaton where the memory consists of nested stacks, i.e. the objects pushed

and popped from the stack are stacks themselves. In addition, the automaton may read

the contents of all of the stacks nested within itself.

We do only introduce in detail the latter characterisation via grammars since it is the one

used in the following chapters explicitly. For further information on nested stack automata,

the reader is referred to [Aho69].

The main di�erence to CFG is that nonterminals are equipped with a stack in an IG. This

allows to constrain derivation rules according to the top stack symbol additionally. The

stack symbols are calledindices.

De�nition 11 (Indexed Grammar) An IG is a 5-tuple G = ( N; � ; I; P; S) where

� N is a �nite set of nonterminals,

� � is a �nite alphabet,

� I is a �nite set of index symbols,

� S 2 N is a distinguished starting symbol,

� P is a �nite set of productions of which there are the followingfour di�erent types:

terminal productions : A ! a, A ! �;

composite productions : A ! BC;

push productions : A ! B [f ];

pop productions : A[f ] ! B:

Hence,P � N [ (N � �) [ (N � N 2) [ (N � N � I ) [ (N � I � N ).

The three symbol setsN , �, and I must be mutually disjoint.

In fact, the production rules in this de�nition are already in a normal form given by Aho

(called reduced formthere). However, every indexed grammar in Aho's original form can

be transformed into one in normal form incurring a linear blow-up at most.

An indexed nonterminal is an element ofN � I � , written A[f n : : : f 1] for example. The

index f n : : : f 1 forms a stack with its top on the left. The empty stack is allowed, i.e.A[]

is also an indexed nonterminal which we usually simply writeas A.
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A sentential form for an indexed grammar is a word over the alphabet (N � I � ) [ �, i.e.

we have indexed nonterminals instead of arbitrary nonterminals, and index symbols may

only occur in an index of a nonterminal.

The derivation relation ) on sentential forms of an indexed grammar is the least relation

that satis�es the following for all sentential forms �; �; 
 , all indices � 2 I � , all index

symbolsf 2 I , all nonterminals A, and all terminals a:

A ) � ,if A ! �

A ) a ,if A ! a

A[� ] ) B [� ]C[� ] ,if A ! BC

A[� ] ) B [f � ] ,if A ! B [f ]

A[f � ] ) B [� ] ,if A[f ] ! B

�A [� ]� ) �
� ,if A[� ] ) 
:

It is important to observe that a nonterminal passes its index to anything that is derived

from it in one step. Furthermore, terminal symbols cannot have indices. In principle one

may regard an indexed grammar as a context-free grammar withan unbounded number

of nonterminals, namely indexed nonterminals. The rules, however, can only distinguish

�nitely many di�erent indexed nonterminals by operating on the top symbol of the index

stack only.

As usual, ) + and ) � denote the transitive, resp. transitive-re
exive closureof the binary

relation ) , and ) n for somen 2 N denotes itsn-fold self-composition. The language of

an indexed grammarG = ( N; � ; I; P; S) is, as usualL (G) = f w 2 � � j S ) + wg, where

the stack ofS is empty.

Example 3 Consider the languageL = f a2n
j n � 1g. It is generated by the indexed

grammar G = ( f A; S; Tg; f ag; f # ; f g; P; S) with P given as

S ! T[#] ; T ! T[f ] j A; A [f ] ! AA;

A[#] ! B; B ! a:

A derivation of the word a8 is:

S ) T[#] ) T[n#] ) T[nn#] ) T[nnn#] )

A[nnn#] ) A[nn#] A[nn#] ) 2 A[n#] A[n#] A[n#] A[n#] ) 4

A[#] A[#] A[#] A[#] A[#] A[#] A[#] A[#] ) 16 a8:

Further examples can be seen in Sec. 2.1.4.
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Theorem 9 (Closure Properties, [Aho68]) Let L1 and L2 be IL and R be a regular

language. Then the following languages are IL:

L1 [ L2; L1L2; L �
1; L1 \ R:

The class of IL isnot closed under intersection and complement.

Theorem 10 (Emptiness, [Aho68, TK07]) The emptiness-problem for IG isEXPTIME -

complete.

2.1.4 Linear Indexed Languages

A linear indexed grammar(LIG) (originally de�ned by Gazdar [Gaz88]) is similar to an

IG, but restricts the number of stacks propagated to the nextsentential form during a

derivation to one. In every production rule righthand side,one nonterminal is appointed

to carry over the stack from the nonterminal on the lefthand side.

De�nition 12 (Linear Indexed Grammar) A LIG is a 5-tuple G = ( N; � ; I; P; S) in

which all parts are de�ned identically to an IG, except for the composite production rules in

P, where the stack inheritant on the righthand side is indicated by a marker. We use here

a hat bA on top of the nonterminal A to identify the stack inheritant. Hence, productions

in a linear indexed grammar are of the following form:

Let A; B; C 2 N , a 2 � and f 2 I .

terminal productions : A ! a, A ! �;

composite productions : A ! bBC, A ! B bC;

push productions : A ! B [f ];

pop productions : A[f ] ! B:

A marked (indexed) nonterminalis a dA[� ] for someA 2 N and some� 2 I � . An indexed

nonterminal is, as above, aA[� ], and we write A instead ofA[] again.

A sentential form of a linear indexed grammar is a sentential form in the usual sense,

i.e. a word consisting of terminal symbols and indexed nonterminals, with the additional

restriction, that at most one (indexed) nonterminal is marked.

The relation ) on such sentential forms is the least relation that satis�esthe following for

all sentential forms �; �; 
 , all indices � 2 I � , all index symbols f 2 I , all nonterminals
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A; B; C , and all terminal symbolsa.

A ) � ; bA ) � ,if A ! �

A ) a ; bA ) a ,if A ! a

A[� ] ) B [� ]C ; dA[� ] ) dB [� ]C ,if A ! bBC

A[� ] ) BC[� ] ; dA[� ] ) B dC[� ] ,if A ! B bC

A[� ] ) B [f � ] ; dA[� ] ) \B [f � ] ,if A ! B [f ]

A[f � ] ) B [� ] ; \A[f � ] ) dB [� ] ,if A[f ] ! B

�A [� ]� ) �
� ,if A[� ] ) 


� dA[� ]� ) �
� ,if dA[� ] ) 
:

The last two rules are of course only applicable if�
� is a valid sentential form again, i.e.

contains at most one marked (indexed) nonterminal.

We remark that the de�nition of the derivation relation deviates from the original one in

[Gaz88] insofar as it uses marked nonterminals simultaneously to unmarked ones. The

original de�nition uses no markers. The use of markers is solely for technical reasons since

some theorems later on need to track the stack inheritance from nonterminal to nonterminal

through a derivation and to make this explicit. Note that by this de�nition there is for

every derivation using markers a corresponding one withoutand vice versa but they do not

get mixed up in the sense that either the currently derived sentential form has a marker on

some nonterminal during every derivation step or during none. Note that in a derivation

step � ) � , it is impossible for � to contain a marked nonterminal while� does not.

Hence, if bS ) + w then S can derive w without markers in the derivation. If markers

are present, however, then they trace the inheritance of a stack through sentential forms.

In order to understand the language derivation mechanism ofLIG it su�ces to take the

de�nition without markers (which corresponds to the one in [Gaz88]).

The language of a LIGG is L(G) := f w 2 � � j S ) + wg. By the above remark this

means that the markers on indexed nonterminals in sentential forms are irrelevant for the

language derived by a grammar.

Example 4 Consider the languageL = f anbncn j n � 1g. It is generated by the linear

indexed grammar

G = ( f S; SAC ; SB ; SC ; A; B; C; D g; f a; b; cg; f f g; P; S);
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whereP is given as

S ! SAC [f ]; SAC ! A cSC ; SC ! bSC j cSB C;

SB [f ] ! D; D ! cSB B; SB ! �;

A ! a; B ! b; C ! c:

A derivation of the word a2b2c2 is:

S ) SAC [f ] ) ASC [f ] ) AS[f ]C )

ASAC [f f ]C ) AASC [f f ]C ) AASB [f f ]CC ) AAD [f ]CC )

AASB [f ]BCC ) AADBCC ) AASB BBCC ) 7 aabbcc:

Again, there is a corresponding derivationbS ) a2b2c2 but it exists solely for technical

reasons and has no implications on the language derived byG.

LIL belong to the mildly context-sensitive languages(MCSL) and are equivalent to several

on �rst glance very di�erent grammar formalisms, namelyhead grammars(HG), tree ad-

joining grammars (TAG) and combinatory categorical grammars(CCG), giving rise to the

language classes HL,TAL and CCL respectively [VsW94]. The following theorem shows

their embedding into the Chomsky hierarchy.

Theorem 11

CFL ( LIL = HL = TAL = CCL ( IL ( CSL:

Proof CFL are LIL with empty stacks and the strictness of the inclusion is witnessed by

e.g. the languagef anbncn j n � 1g which is a LIL but not a CFL [HU79]. As mentioned

before, the equivalence of the four mildly context-sensitive formalisms is proved in [VsW94].

Their inclusion in IL is given by a rather simple translation: note that the composite

production rules of LIL are the only ones in which LIL di�er from IL. Now, in a production

rule of the formA ! bBC, C is substituted by a fresh dummy nonterminalC0 (and of course

the marker is erased). It is clear that we can add further production rules in which the

stack content ofC0 is popped until it is empty and further rules which transformC0 back

to C but with an empty stack now. This has the e�ect that the only way of eliminating C0

in a sentential form during a derivation is by emptying its stack and transforming it back

into C which exactly simulates the behaviour of the original LIL rule. The same holds of

course for rules of the formA ! B bC. Strictness is witnessed by the languagef a2i
j i � 0g

which is not a LIL but an IL [Aho68, Gaz88].

Finally, the strict inclusion of the class IL in CSL is shown again in [Aho68]. 2
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Theorem 12 (Closure Properties, [VsW94]) Let L1 and L2 be LIL and R be a reg-

ular language. Then the following languages are LIL:

L1 [ L2; L1L2; L �
1; L1 \ R:

Theorem 13 (Emptiness, [Bou96]) The emptiness-problem for LIL is PTIME-complete.

2.1.5 Alternating Context-Free Languages

Lange and Okhotin have independently de�ned two language generation devices called

alternating context-free grammar(ACFG) [Lan02] andconjunctive grammar(CG) [Okh01],

respectively, which have been proven equivalent [Okh01, ALLa]. For this reason we do only

present one of them here. It should also be noted that the homonymous formalism de�ned

by Moriya in [Mor89] is to be strictly distinguished from Lange's. Okhotin notes that CL

are strictly included in Moriya's ACFL and hence so are Lange's ACFL.

Syntactically, ACFG and CG are exactly the same. They extendordinary context-free

grammars by partitioning their set of nonterminal symbols into existential and universal

ones. The underlying idea states that a (sub-)word is derived from an existential non-

terminal if someof its productions yield the word whereas it is derived from auniversal

nonterminal if all of its productions yield this word.

The two proposals contained di�erent semantics for such grammars, though. Okhotin

has explained the meaning of a conjunctive grammar by extending the derivation relation

) � for context-free languages incorporating parallelism in order to implement the idea of

universal productions. Lange has chosen a semantics for alternating context-free grammars

that is an extension of the well-known parse tree formalism for context-free grammars.

De�nition 13 (Alternating Context-Free Grammar) An ACFG is a tuple G =

(N; � ; S; P; � ) where N is a �nite set of non-terminal symbols, � is an alphabet disjoint

from N , S 2 N is a designated starting symbol, andP � N � (N [ �) � is a �nite set of

production rules. Finally, � : N ! f9 ; 8g labels the non-terminals as either existential or

universal.

Let ` G be the smallest relation` G � (N [ �) � � � � which is characterised by the

following rules.

(Ax)
w ` G w

(And)
� 1 ` G w : : : � n ` G w

A ` G w
if A ! � 1 & : : : &� n



24 2. Preliminaries

(Or)
� i ` G w

A ` G w
if A ! � 1 j : : : j � n (Comp)

� ` G u 
 ` G v

�
 ` G uv

The language derived from such a grammar isL (G) = f w 2 � � j S ` G wg.

Example 5 (Okhotin [Okh01]) The grammar given by the following rules derives the

languagef wcw j w 2 f a; bg� g over the alphabet � = f a; b; cg.

S ! C &D; C ! aCa j aCbj bCaj bCbj c;

E ! aE j bE j �; D ! aA &aD j bB &bD j cE;

A ! aAa j aAb j bAa j bAbj cEa; B ! aBa j aBb j bBa j bBbj cEb:

Intuitively, S derives the intersection of the languages derived byC and D. C generates

f xcy j x; y 2 f a; bg� ; jxj = jyjg. D has the purpose to ensure that indeed everya or b

positioned on the left ofc corresponds to the same terminal to the right ofc in the correct

order. Note that A and B enforce ana or b respectively right of the c. The recursive

intersection of aA &aD and bB &bD takes care of the positions in which thea's and b's

occur. Formally, D derives the languagef wcxw j w; x 2 f a; bg� g whose intersection with

the language ofC indeed results inf wcw j w 2 f a; bg� g.

The derivation of the word abcabis shown in Fig. 2.1.

Theorem 14 (Closure Properties, [Okh01]) Let L1 and L2 be ACFL and R be a

regular language. Then the following languages are ACFL:

L1 [ L2; L1 \ L2; L1L2; L �
1; L1 \ R:

It is currently not known whether ACFL are closed under complement.

The closure of ACFL under �nite intersections with CFL can trivially be proved since

ACFL have a direct means for intersection at hand. From this of course follows as a

corollary that ACFL are closed under intersections with REG.

Theorem 15 (Emptiness, [Okh01]) The emptiness-problem for ACFL is undecidable.
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2.2 Temporal Logics

2.2.1 Labeled Transition Systems

Temporal logics are often interpreted over�nite structures which re
ect in�nite behaviour.

Such a structure represents an abstract model of a program and describes its possible

con�gurations and the computational steps leading from onecon�guration to another. By

behaviour we mean the possible sequences of con�gurations and the computational steps

between them. Since programs need not terminate and may run forever, this behaviour

might be an in�nite object. But because the behaviour is obtained by some form of

unfolding of the structure it usually o�ers enough regularity to maintain decidability of

veri�cation tasks.

On the other hand there is system behaviour which cannot be described by �nite struc-

tures in general, e.g.pushdown systemsc.f. [BEM97]. These systems do necessarily display

in�nite behaviour and thereby increase the di�culty of main taining decidability of veri�-

cation. The existence of�nite representations of such in�nite structures remains however

a minimum requirement for any veri�cation task.

In compliance with the above requirements, we adopt here thestandard de�nition of a

Labeled Transition System(LTS) which serves as structure for all temporal logics discussed

in this work.

De�nition 14 (Labeled Transition System) Let � be a �nite set of actions and P be

a �nite set of atomic propositions. An LTS is a triple T = ( S; �! ; `), where

� S is a set of states,

� �! � S � � � S is calledtransition relation ,

� ` : P ! 2S is calledlabeling function.

Instead of writing (s; a; t) 2 �! , we use in�x notation s a�! t. By abuse of notation, the

transition relation �! is extended to action sequences�! � S � � � � S inductively as

s ��! t i� s = t;

s aw��! t i� 9u 2 S with s a�! u and u w�! t;

where � is the empty word andw 2 � � .
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A path in an LTS T = ( S; �! ; `) is a �nite or in�nite sequence of alternating states and

actions s0; a1; s1; a2; s2; : : :, s.t. si
ai +1���! si +1 for all i 2 N. We similarly write paths as

s0
a1��! s1

a2��! s2 : : : A path � is maximal if it is in�nite or it ends in a state sn , s.t. there is

no a 2 � and t 2 S with sn
a�! t. The length of a �nite path � = s0

a1��! s1
a2��! s2 : : : an��! sn

is j� j = n. If � is in�nite we denote its length by j� j = 1 . Depending on the focus of

interest, we may from time to time omit the states in a path andcall the projection on the

sequence of labels a path anyway or just project onto the sequence of states.

The size of an LTS T , usually written jT j, is de�ned as the number of statesjSj of T . If

T has in�nitely many states then we write jT j = 1 .

A state of an LTS { or more precisely, the propositions which hold in it { represents

a con�guration of a program during execution while a transition between states marks

an execution step. For instance, states may hold the programvariable assignments and

transitions be labeled with program statements if this is the desired level of abstraction.

The behaviour of a program is captured by paths through the LTS which represent single

lines of possible executions from some given starting state. Note that we hereby implicitly

have introduced a non-deterministic computational model.

De�nition 15 (Bisimulation) A bisimulation on an LTS T = ( S; �! ; `) is a symmetric

binary relation R � S � S s.t. for all (s; t) 2 R:

� s 2 `(p) i� t 2 `(p) for all p 2 P , and

� if there is an a 2 � and an s0 2 S s.t. s a�! s0 then there is at0 2 S s.t. t a�! t0 and

(t; t 0) 2 R.

Two statess; t are bisimilar, written s � t, i� there exists a bisimulation R with ( s; t) 2 R.

We may also speak of bisimilar states w.r.t. two LTST and T 0, with the obvious adjust-

ments to the bisimulation relation. Given two root or starting statess; s0 of T and T 0, we

may even say that two LTS are bisimilar ifs and s0 are bisimilar.

It is commonly agreed that the notion of observational behaviour of programs is equally

captured by bisimilar program models. Hence, it is a desirable property of temporal logics

not to distinguish between bisimilar models. See Def. 21 for a formal de�nition of this

property.
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2.2.2 Logic and Program Veri�cation

In order to reason about program properties a speci�cation language is needed in which

such properties can be expressed. Atemporal logic L is a formal language, i.e. a set of

sentences calledformulas. Any formula ' 2 L describes a property of an LTST = ( S; �! ; `)

in terms of the states in which the property holds. Thus the semantics of ' is a subset of

S.

We will use two di�erent kinds of formalisms to state that ' holds in a states 2 S (that is

s satis�es ' ). For variable-free logics we de�ne asatisfaction relation j= T � S � L over

states and formulas w.r.t. an LTST .

In case a logic has variables it is common practice to de�ne asemantics function [[�]]T� :

L ! 2S instead, where� is a function which interprets the free variables occurringin the

formula. The semantics function [[�]]T� maps a formula to exactly those states in which it

holds w.r.t. � . If it is clear which LTS is meant, we usually omit it and simply write j=

and [[�]]� . For closed formulas (i.e. formulas in which no free variables occur), we may also

omit � . The formalisms are interchangeable on closed formulas since we demand

s j= ' i� s 2 [[' ]];

from which follows

[[' ]] = f s 2 S j s j= ' g:

We will occasionally use the symbol6j= to indicate that the relation j= does not hold.

There are a series of desirable standard properties and decision problems regarding tem-

poral logics. From a historical perspective, modal logicians were mostly interested in

axiomatising a logic and hence in the validity problem. Since a formula of modal logic is

valid i� its negation is unsatis�able this equally attracts notice to the satis�ability problem.

But also in the context of e.g. program synthesis { the automatic generation of executable

computer programs from speci�cations of their behaviour {decidability of a logic is the

main requirement.

De�nition 16 (Satis�ability) A formula ' of some temporal logicL is satis�able i�

there exists a modelT = ( S; �! ; `) and a states 2 S s.t. s j= ' .

De�nition 17 (Decidability) A logic L is decidablei� its satis�ability problem is de-

cidable.
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With the dedication of logics as tools for computer system and program veri�cation and

the thereby triggered automatisation process of these tasks, the model checking problem

became more and more important while for earlier and less expressive logics the problem

was usually considered too trivial.

De�nition 18 (Model Checking Problem) By the model checking problem, we mean

the question whether given an LTST = ( S; �! ; `) a state s 2 S and a formula ' the

statement s j= ' indeed holds.

Note that model checking is usually easier to solve than validity or satis�ability, because for

most temporal logics, model checking can be reduced to validity by describing the model

with a succinct formula [Sch02].

Model checking is in this sense a synonym forprogram veri�cation, since a program speci�-

cation in the form of a logical formula is being veri�ed on an abstract version of a program

(given as an LTS). Decidability of a logic does also have an application in this area, namely

to prove the consistency of a system speci�cation: if a formula is unsatis�able, it contains

a contradiction and hence cannot have an implementation.

In this work, we are going to focus on model checking but also mention results on decid-

ability, where known.

2.2.3 Computational Complexity

One of the most important questions related to the typical decision problems of a logic

{ such as the model checking and satis�ability problems { is about their computational

complexity: determine a measure of used computational resources for solving the problem

in terms of a function on the size of the input.

We assume familiarity with the concept of computational complexity and just recall a few

very basic notional conventions. See [HU79] for details.

De�nition 19 Let f (n) be a function. DTIME( f (n)), NTIME( f (n)), DSPACE(f (n)) and

NSPACE(f (n)) denote the classes of languages that can be recognised by adeterministic,

resp. non-deterministic Turing Machine in time, resp. space f (n). This naturally lifts to

classesF of functions:

DTIME( F ) :=
[

f 2 F

DTIME( f );
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NTIME( F ) :=
[

f 2 F

NTIME( f );

DSPACE(F ) :=
[

f 2 F

DSPACE(f );

NSPACE(F ) :=
[

f 2 F

NSPACE(f ):

Let 2f (n)
0 = f (n) and 2f (n)

k+1 = 2 2f ( n )
k . De�ne some important complexity classes mentioned

in the following as

kEXPTIME := DTIME( f 2p(n)
k j p(n) polynomialg);

EXPTIME := 1EXPTIME ;

PTIME := 0 EXPTIME ;

LINTIME := DTIME( f c � n j c constantg);

NPTIME := NTIME( f p(n) j p(n) polynomialg);

co� NPTIME := f L j L 2 NPTIME g;

PSPACE := DSPACE(f p(n) j p(n) polynomialg);

ELEMENTARY :=
[

k2 N

kEXPTIME ;

for any k 2 N.

Theorem 16 (cf. [HU79])

LINTIME ( PTIME � PSPACE � EXPTIME ( 2EXPTIME ( : : : ( ELEMENTARY :

It is not known which of the inclusions between PTIME andEXPTIME is strict, only

that PTIME ( EXPTIME .

2.2.4 Properties of Temporal Logics

Regarding the above decision problems, there are some useful properties and problems

related which will be investigated for all of the logics occurring here.

De�nition 20 (Finite Model Property) A logic L has the�nite model property i� for

all ' 2 L we have that if ' is satis�able then there exists a �nite model for' .
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Settling the question whether a logic has the �nite model property allows to use techniques

such as �ltration in order to establish decidability. Note that if a logic has the �nite model

property, its model checking problem is decidable and it is bounded w.r.t. the formula

then decidability is entailed, because it su�ces to check all models up to the size of the

boundary.

De�nition 21 (Bisimulation-invariance) Let T = ( S; �! ; `) and T 0 = ( S0; �! 0; `0) be

LTS, s 2 S and s0 2 S 0 such that s � s0 (see Def. 15). That a logicL is bisimulation-

invariant means that for any' 2 L , we haves j= ' i� s0 j= ' .

Most modal and temporal logics are bisimulation-invariantand therefore do not distinguish

models which are equivalent in this sense. This is of course areasonable assumption in the

context of program veri�cation, since it comprises exactlythe kind of abstraction which

makes modal logics so attractive for specifying program behaviour: state-basedness and

control 
ow simulation.

Another important aspect is that bisimulation-invarianceentails the tree model property.

De�nition 22 (Tree Model Property) A logic L has thetree model propertyi� for all

' 2 L we have that if ' is satis�able then there exists a tree model for' .

Theorem 17 Any bisimulation-invariant logic does also exhibit the tree model property.

For a proof see cf. [Ott06]. A very useful application of the tree model property is that it

allows to combine the theory of tree automata with program reasoning, see c.f. [VW86].

2.2.5 Expressivity

Given two di�erent logics L 1 and L 2 it is natural to ask whether all properties expressible

in L 1 are also expressible inL 2 and vice versa.

De�nition 23 (Expressivity Order) Let L 1 and L 2 be logics.L 2 is said to be at least

as expressive asL 1, written L 1 � L 2 if there exists a  2 L 2 such that for all LTS

T = ( S; �! ; `), s 2 S and ' 2 L 1 we haves j= T ' i� s j= T  . We write

L 1 � L 2 ,if L 1 � L 2 and L 2 � L 1;

L 1 � L 2 ,if not L 1 � L 2;

L 1 � L 2 ,if L 1 � L 2 and L 2 � L 1:
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In order to emphasize on the size of the translation, we sometimes write ' � f (x)  , ' � f (x)

 , etc. to additionally require that j j � f (j' j). If we are only concerned with the asymp-

totic behaviour, we write lin; exp, etc. instead off (n).

2.2.6 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) was originally introduced by Fischer and Ladner

[FL79] in order to allow reasoning about programs. It describes the interactions of pro-

grams and logical propositions independently of the computation domain. PDL allows, for

example, to make assertions of the kind \after executing program � in a state satisfying

' , property  necessarily holds". Programs are built from atomic ones using the oper-

ations composition, nondeterministic choice and iteration. They are denoted by regular

expressions. This makes the original PDL in e�ect aPDL over regular programs.

De�nition 24 (Propositional Dynamic Logic) Let P be a �nite set of propositions

and � be a �nite set of actions. Formulas and programs of PDL are de�ned mutually

recursive as the least setsForm and Prog respectively, satisfying the following conditions:

� P � Form.

� If ' 2 Form then : ' 2 Form.

� If ';  2 Form then ' _  2 Form.

� If ' 2 Form and � 2 Prog then h� i ' 2 Form.

� � � Prog.

� If �; � 2 Prog then � �; � [ � and � � 2 Prog.

� If ' 2 Form then ' ? 2 Prog.

For notational convenience, we use the following standard abbreviations:

tt := q_ : q;

ff := : tt ;

' ^  := : (: ' _ :  );

' !  := : ' _  ;

' $  := ( ' !  ) ^ ( ! ' );

[� ]' := :h � i: ':
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All these abbreviations except the last are standard frompropositional logic and will be

referred to asbooleanor propositional formulas. h�i and [�] will be called modal operators

or modalities. We call any program' ? with ' 2 Form a test.

PDL formulas and programs are interpreted over LTS models. The semantics of a PDL

formula and a PDL program is given by simultaneous inductionon the structure of the

formula and the program: LetT = ( S; �! ; `) be an LTS,s; t 2 S, q 2 P , a 2 �, �; � 2 Prog,

and ';  2 Form. By abuse of notation we de�ne

s � ���! t i� there exists u 2 S s.t. s ��! u and u ��! t;

s � [ ����! t i� s ��! t or s ��! t;

s � �
��! t i� there exists n 2 N; u0; : : : ; un 2 S s.t.

u0 = s and un = t and ui
��! ui +1 for all 0 � i < n;

s ' ?��! t i� s = t and s j= ';

s j= q i� q 2 `(s);

s j= : ' i� s 6j= ';

s j=  _ ' i� s j=  or s j= ';

s j= h� i ' i� exists t 2 S s.t. t j= ' and s ��! t:

Example 6 The formula h(' ?;� ) [ (( : ' )?; � )i tt is satis�ed in some states if either '

holds in s and a path labeled with program� exists or if ' does not hold ins and a path

labeled with program� exists.

Therefore the program used in the modality can be used to model conditional branching

if ' then � else � .

Example 7 Consider the formula [� ]p $ [� ]p for two programs� and � and a proposition

p. This formula states the equivalence of the programs� and � on a given structure. If

this formula holds independently of the structure then clearly � � � .

Theorem 18 (c.f. [HS96]) PDL exhibits the following properties:

� �nite model property,

� bisimulation-invariance,
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� tree model property.

Theorem 19 ([FL79, Pra80]) The satis�ability problem for PDL is EXPTIME -complete.

Theorem 20 ([FL79]) The model checking problem for PDL is PTIME-complete.

2.2.7 Computation Tree Logic

Computation Tree Logic(CTL) by Emerson and Clarke [CE81] is a widely used branching

time logic which emerged from a proposal of Ben-Ari, Manna and Pnueli in 1981 called

Uni�ed Branching Time Logic and essentially is CTL without binary temporal operators

but just EF and AGinstead [BAMP81]. CTL has shown itself to be very useful in the

design, speci�cation and automatic veri�cation of reactive and concurrent systems [MP92].

It has a distinct advantage over PDL, since it is capable of expressing a typical correctness

speci�cation statement like \all executions of a program will eventually reach a state in

which property ' holds" which is impossible in PDL.

De�nition 25 (Computation Tree Logic) Let P be a countably in�nite set of propo-

sitions. CTL is the following set of formulas:

' ::= q j : ' j ' _ ' j EX' j E(' U' ) j E(' R' )

whereq 2 P .

Standard abbreviations include the propositional abbreviations tt ; ff ; ^ ; ! ; $ de�ned pre-

cisely as for PDL and the following:

A(' U ) := : E(: ' R:  );

A(' R ) := : E(: ' U:  );

AX' := : EX: ';

EF' := E(ttU ' );

AF' := A(ttU ' );

EG' := E(ffR ' );

AG' := A(ffR ' ):
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CTL formulas are interpreted in states of an LTST = ( S; �! ; `) as follows:

s j= q i� q 2 `(s);

s j= : ' i� s 6j= ';

s j= ' _  i� s j= ' or s j=  ;

s j= EX' i� there exist a 2 � ; t 2 S s.t. s a�! t and t j= ';

s j= E(' U ) i� there exists a path � = s0
a1��! s1

a2��! : : : an��! sn

s.t. s0 = s and sn j=  and for all i < n : si j= ';

s j= E(' R ) i� there exists a maximal path � = s0
a1��! s1

a2��! : : :

s.t. s0 = s and for all i � j � j :

si j=  or there existsj < i s.t. sj j= ':

Note that the semantics of CTL formulas is usually given overunlabeled transition systems

since the labels are ignored anyway and that it is usually required that the transition system

is total. We have chosen our de�nitions under the aspect of comparability between di�erent

kinds of logics and therefore wish to have a common and most general semantical base for

both modal and temporal logics. This is important in particular with regard to the later

on introduced non-regular variants of CTL which do respect the labels. It is important to

note that on total transition systems, our de�nition of CTL semantics coincides with the

classical one, i.e. formulas hold in exactly the same states. The same is true if a property

is satis�ed in a �nite pre�x of a path, i.e. for all EUformulas and also for thoseE(' R )-

formulas which are satis�ed because' holds somewhere along the path. The crucial case

is the remaining one: what if there exists a �nite path along which  holds everywhere,

but ' nowhere? This case is unde�ned in classical CTL.

Since the main interest here is that theR-operator is the dual toU, we chose to de�ne that

such a �nite path satis�es E(' R ). Another reason is that in order to ensure complete

agreement between this version of CTL and the classical one,it su�ces to add the formula

AGEXtt as a conjunct to each formula, because it will render each formula to ff on a

non-total LTS.

CTL has enrichments such as CTL� [EH86] which allow free mixing of path operators and

quanti�ers: for example, A(pUGq) is a CTL � formula but not a CTL formula, because theG

is not immediately preceeded by a path quanti�er. In fact, CTL � uni�es CTL and Pnueli's

well-known linear time temporal logic LTL.

Example 8 Typical CTL de�nable properties include livenessof property  , expressed

as ' = AGEF . The formula ' states \on all paths at any moment there exists a path on

which  eventually holds".
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Example 9 Dualising the path quanti�ers and temporal operators yields the formula' =

EFAG which states \there exists a path on which eventually on all paths at every moment

 holds".

Theorem 21 ([EH85]) CTL exhibits the following properties:

� �nite model property,

� bisimulation-invariance,

� tree model property.

Regarding the decision problems for CTL we have the following:

Theorem 22 ([FL79],[EH85]) The satis�ability problem for CTL is EXPTIME -complete.

Theorem 23 (c.f. [Sch02]) The model checking problem for CTL is PTIME-complete.

Comparing the expressivity of PDL and CTL it can easily be seen that they are mutually

incomparable, because CTL is blind to transition labels on the one hand and PDL cannot

express theEG-operator for instance.

Theorem 24

PDL � CTL and CTL � PDL:

For a proof see Thm. 48.

2.2.8 The Modal � -Calculus

Kozen's modal� -calculus (L � ) [Koz82] extends modal logic with extremal �xpoint quanti-

�ers. Regarding expressivity, it subsumes most of the commonly used modal and temporal

logics.

De�nition 26 (Modal � -Calculus) Let P be a countably in�nite set of propositions,

� be a �nite set of actions and V be a countably in�nite set of monadic second-order

variables. Formulas ofL � are given by the following grammar.

' ::= q j X j : ' j ' _ ' j hai ' j �X:'

wherea 2 �, q 2 P and X 2 V and the positivity requirement holds: in every subformula

of �X:' , every occurrence ofX must be under an even number of negation symbols.
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The positivity requirement has the purpose of ensuring the existence of the �xpoint. We

write ' [ =X ] for the formula produced by replacing every free occurrence of the variable

X in ' with  .

Standard abbreviations include the propositional abbreviations tt ; ff ; ^ ; ! ; $ de�ned pre-

cisely as for PDL and the following:

h�i ' :=
W

a2 � hai ';

[� ]' := :h�i: ';

[a]' := :h ai: ';

�X:' := : �X: : ' [: X=X ]:

The replacement ofX with : X in the de�nition of �X:' ensures thatX occurs under the

same number of negation symbols in the resulting formula.

The semantics of aL � formula in a transition system T = ( S; �! ; `) is a subset ofS,

intuitively those states in which ' holds. It is de�ned inductively using an environment

� : V ! 2S that interprets free variables in a formula. We write � [X 7! T] for the

environment that maps the variableX to the state setT and behaves like� otherwise.

[[q]]T� := f s 2 S j q 2 `(s)g;

[[X ]]T� := � (X );

[[: ' ]]T� := S n[[' ]]T� ;

[[' _  ]]T� := [[ ' ]]T� [ [[ ]]T� ;

[[hai ' ]]T� := f s 2 S j 9t 2 S:s a�! t and t 2 [[' ]]T� g;

[[�X:' ]]T� :=
\

f T � S j [[' ]]T� [X 7! T ] � Tg:

Example 10 Consider the CTL formulasE(pUq) and E(pRq) for propositions p; q 2 P .

They are expressed inL � as

�X:q _ (p ^ h�i X ) and

�X:q ^ (p _ h�i X _ [� ]ff )

respectively. Note that this scheme in principle su�ces to translate CTL to L � as follows:

tr(q) = q;

tr(: ' ) = : tr(' );
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tr(' _  ) = tr(' ) _ tr( );

tr(EX' ) = h�i tr(' );

tr(E(' U ) = �X: tr( ) _ (tr(' ) ^ h�i X );

tr(E(' R ) = �X: tr( ) ^ (tr(' ) _ h�i X _ [� ]ff ):

Theorem 25 ([Koz88], c.f. [BS06]) L � exhibits the following properties:

� �nite model property,

� bisimulation-invariance,

� tree model property.

Theorem 26 ([FL79],[EJ00]) The satis�ability problem for L � is EXPTIME -complete.

The lower bound in Thm. 26 is a consequence of theEXPTIME -hardness of PDL satis-

�ability and the fact that PDL is a fragment of L � .

Theorem 27 ([EJ88]) The model checking problem forL � is PTIME-hard and included

in NPTIME \ co� NPTIME.

As stated in the introduction, the importance ofL � for this work is that it expresses exactly

the regular properties on words and trees modulo bisimilarity and therefore separates the

notions of regular and non-regular logics.

See Fig. 2.2 for an overview of the expressivity results forL � and some of the most common

temporal logics. A dotted line from a lower positioned logicL 1 to a higher positioned one

L 2 stands forL 1 � L 2. MSO/bis is used for the bisimulation-invariant fragment of MSO.

L � � MSO/bis

CTL

CTL �

LTL
PDL

Figure 2.2: Expressive power of some regular logics.
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2.2.9 Non-Regular Logics

L � is exactly as expressive as the bisimulation-invariant fragment ofMonadic Second-Order

Logic (MSO) over trees or LTS [JW96]. MSO is the fragment of Second-Order Logic which

restricts the use of second-order variables to arity 1, thusallowing to reason about sets of

elements of some kind, e.g. states.

Since MSO and Rabin tree automata are also equivalent [Rab69], every property that is

expressible inL � (or one of its fragments PDL, CTL, CTL� , etc.) can also be checked

by a �nite Rabin tree automaton. The class of languages recognisable by �nite automata

are the regular languages { or! -regular languages in case the considered structures are

in�nite. It is in this sense that L � -de�nable properties areregular and the reason why we

call L � and its sublogicsregular logics.

The classi�cation of a temporal logic as regular is a statement about its expressive power

and refers to the structurally least complex class of formallanguages of the Chomsky

hierarchy. Clearly, there is a large, almost unexplored space aboveL � in terms of non-

regular de�nable properties dual to the space above the regular languages in the Chomsky

hierarchy. Non-regular program properties arise naturally in the context of unbounded

data structures: for instance can the absence of bu�er under
ows not be expressed in

L � for unbounded bu�ers. Also any kind of counting properties like \at any point dur-

ing the execution of a protocol there have never been moresend- than receive-actions"

are non-regular. Further examples include Emerson's uniform inevitability stating \some

event occurs globally at the same time in all possible runs" [Eme87] or properties making

structural assertions about their models like being bisimilar to a balanced tree or word.

This work contains numerous examples of such properties. Wewill introduce several logics

that are capable of expressing such properties, establish basic properties about them, com-

pare them by expressive power and { most important here { determine the computational

complexity of their model checking problems.
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Chapter 3

Non-Regular Propositional Dynamic

Logic

The clear distinction between logic and programs in PDL comprises an appealing modu-

larity for the purpose of de�ning non-regular program properties, namely by enriching the

class of allowed programs in modal formulas. This idea is notnew altogether: already the

earliest works on PDL have dealt with questions regarding such extensions. They were,

however, mostly concerned with decidability issues which is probably the reason why the

range of considered classes has so far been limited to those located in between the regular

and context-free ones, since this is where the borderline toundecidability runs.

3.1 Syntax and Semantics

In the following, we de�ne PDL over di�erent classes of formal languagesL , or PDL[L ]

for short. The basic building mechanism of formulas in PDL[L ] is very similar to that of

PDL over regular programs, except that the programs allowedin the modalities are not

restricted to regular expressions but instead to languagesL 2 L . This raises the question

about the representation of such languages.

We do not want to arti�cially restrict the use of speci�cation formalisms for formal lan-

guages of which there are numerous: e.g. automata, grammars, algebraic expressions, sys-

tems of equations, etc. On the other hand we may not omit all restrictions since our results

do not hold for every kind of language representation, e.g. for extensional or otherwise in�-

nite representations or cryptographically encrypted languages. The least restrictive format

we identify in order to ensure the validity of our results is to assume a size measurejL j for
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any representation of a languageL which is a �nite value, even thoughL may of course

contain in�nitely many words. We identify any class of languagesL with the class of a

certain kind of �nite representations of its members. For instance the class REG may be

identi�ed with the class NFA since NFA=REG and nondeterministic �nite automata are

�nite representations of regular languages.

We make another very reasonable assumption on eachL: given an L 2 L , its alphabet

must be computable in timeO(jL j). This is not a very strong assumption since it holds

for virtually all formalisms typically used in this context and in particular for those men-

tioned above. But it does prevent the use of inadequate language representations such as

encrypted languages.

PDL over regular programs is de�ned using tests. A test is a special kind of program in

which a predicate on the set of states occurs. Programs and formulas are de�ned mutually

recursive and therefore allow arbitrary PDL formulas as test predicates. In order to extend

this de�nition to non-regular PDL, we have to extend the language alphabet with tests' ?

for any formula ' . Tests are allowed to occur at arbitrary positions in a wordw 2 L(A ).

De�nition 27 (Non-Regular PDL with Tests) Let P be a �nite set of propositions, �

be a �nite set of actions andL be a class of formal languages over �. Formulas and programs

of PDL[L ] are de�ned mutually recursive as the least setsForm and Prog respectively,

satisfying the following conditions:

� P � Form.

� If ' 2 Form then : ' 2 Form.

� If ';  2 Form then ' _  2 Form.

� If ' 2 Form and L 2 Prog then hLi ' 2 Form.

� If L 2 L then L? 2 Prog, whereL? = f w 2 (� [ f ' ? j ' 2 Formg)� j wj � 2 Lg.

In the last clause, wj � de�nes an operation onw which deletes all tokens except those

occurring in �. Hence the clause indeed de�nes programs as languagesL 2 L in which

tests may occur at arbitrary positions.

Note that the alphabet � [ f ' ? j ' 2 Formg for eachL? in every step of the induction is

�nite , becauseForm contains only �nitely many formulas in each step. This is important

regarding �nite representations ofL? in e.g. automata, where the set of input symbols

consists of exactly this alphabet at a certain �nite stage ofthe induction. It would no
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longer be the case ifP was chosen to be in�nite, as it is usually assumed in the context of

temporal logics. This however is no limitation for the undertaking of model checking: the

input formula for a model checking routine is �nite and therefore does only contain �nitely

many di�erent propositions to be considered.

Sometimes we may want to reason about PDL[L ] without the test operators and distinguish

this fragment by calling it PDL6?[L ]. Formulas of PDL6?[L ] are obtained from the above

de�nition by omitting the last clause. It is clear that PDL 6?[L ] is a proper syntactical

fragment of PDL[L ].

Standard abbreviationstt ; ff ; ^ ; ! ; $ ; [L] are de�ned as for PDL, except of course thatL

is not necessarily a regular expression but in general a formal language.

For every ' 2 PDL, we de�ne the set of all its subformulas,sub(' ) inductively as follows:

sub(q) = f qg;

sub(:  ) = f:  g [ sub( );

sub( 1 _  2) = f  1 _  2g [ sub( 1) [ sub( 2);

sub(hLi  ) = fhLi  g [ sub( ):

This gives rise to a measure of the size of a formula' , de�ned as j' j = jsub(' )j.

Before we give the semantics of PDL[L ] formulas, we need a function which extracts test

predicates from formulas.

De�nition 28 (Test Extraction) Let ' be a formula of PDL[L ] for some class of formal

languagesL . The set of tests occurring in' is inductively de�ned as follows:

tests(q) = ; ;

tests(: ' ) = tests(' );

tests(' _  ) = tests(' ) [ tests( );

tests(hLi ' ) = f ' ? 2 � j � is the least set, s.t. L � � � g [ tests(' ):

Since we require that the alphabet of a languageL used as a program in a formula' is

parsable in linear time, this holds for the computation oftests(' ), too.

A formula ' of PDL[L ] (and PDL6?[L ] respectively) is interpreted over an LTST =

(S; �! ; `) as follows. For every ? 2 tests(' ), we extend the transition relation �! by

adding  ?-labeled self-loops on any states 2 S for which s j=  holds. Formally, we de�ne

?�! := �! [f (s;  ?; s) j s j=  and  ? 2 tests(' )g

and interpret ' on the obtained LTST 0 = ( S; ?�! ; `).
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De�nition 29 (Semantics of PDL[ L ]) Let T 0 = ( S; ?�! ; `) be an LTS as described

above ands 2 S be a state. Semantics of a PDL[L ] formula is given inductively by

s j= q i� s 2 `(q);

s j= : ' i� s 6j= ';

s j= ' _  i� s j= ' or s j=  ;

s j= hLi ' i� there are w 2 L and t 2 S s.t.

s w�! t and t j= ':

Note that in de�nition of the case s j= hLi ' , the transition relation now refers to ?�! . It is

obvious that for formulas of PDL6?[L ], the extended transition relation ?�! is identical to

�! and hence models need not be modi�ed for such formulas.

3.2 Examples

Example 11 (Veri�cation of Programs with Stack Inspection i n PDL[IL]) In or-

der to detect access violations in safety critical routines, inspection of the call stack may

become necessary, e.g. in case of nested calls, where the initial call came from a method

without the required permission. This has been implementedfor instance in the runtime

access control mechanism of JDK 1.2. In [NST01], such programs are modeled as the set

of possible sequences of the call stack w.r.t. the program 
ow, called traces. The set of

possible tracesL tr is an indexed language.

The speci�cation of safe traces in which no access violations occur is given as a regular

languageL safe and hence an LTSTunsafe resembling the NFA for L safe can be built (see

Sec. 3.5.1) which contains the set of unsafe paths. The veri�cation itself can be performed

by model checking the formulahL tr i tt on Tunsafe. If the state s representing the starting

con�guration of the program satis�es hL tr i tt this means that there exists an unsafe path

which is labeled with a word inL tr and hence that the program has access violating runs.

Example 12 (Model Checking PDL[CFL] in Abstract Interpreta tion) Consider

the system of mutually recursive functions in the left tablebelow, where + denotes nonde-

terministic choice and ; sequential composition. The function f0 is the entry point of the

system. Supposed we were interested in detecting whether onall possible system executions

the call of f3 is preceded by a successful return off1 (security check). Note that the stack

behaviour, i.e. the sequences of function calls and returnsis non-regular in general (for a
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non-�xed number of functions). We state the property we wishto verify as the regular

expressionL safe = � � c1� � r1� � c3� � , where a call of functionfi is indicated by ci , a return

by r i respectively. It is possible to use abstract interpretation and overapproximate the

system of recursive functions into a one-state transition system with looping transitions

for all elements in �. In order to restrict this overapproximation to non-spurious runs one

can consider the context-free grammarG on the right below which is straight-forwardly

derived from the recursive functions. Safety of the system is then established by checking

the PDL[CFL] property ' safe = :h L(G) \ L safei tt .

f0 := f2; f3 + f2; f1
f1 := f3; f1 + f2; f3 + f1; f3
f2 := f1; f2 + f2; f3 + term

f3 := f1; f1 + term

F0 ! c0F2F3r0 j c0F2F1r0;

F1 ! c1F3F1r1 j c1F2F3r1 j c1F1F3r1;

F2 ! c2F1F2r2 j c2F2F3r2 j c2r2;

F3 ! c3F1F1r3 j c3r3:

It is easy to see that the only states does not satisfy' safe: F0 ) c0F2F1r0 ) � c0c2r2c3r3F1r0.

Every derivation continuing from this point will end in a violation of L safe, because every

derivation from F1 will be pre�xed by c1.

3.3 Properties

Unlike for PDL, not every satis�able PDL[L ] formula is satis�ed in a �nite model if L

contains non-regular languages. This result is proved by exhibiting a PDL[VPL] formula,

showing that it is satis�able and that any model must have in�nitely many states.

Theorem 28 (Finite Model Property Absence) PDL[VPL] does not exhibit the �-

nite model property.

Proof Let L = f anbn j n 2 Ng. As shown in Ex. 1,L is a VPL and since by Thm. 4,

VPL are closed under negation, so isL .

Consider the formula

' := [ a� ]hai tt ^ [a� b+ a]ff
| {z }

' 1

^ [L][a [ b]ff
| {z }

' 2

^ [L]hbi tt
| {z }

' 3

where we use regular expressions in the modalities besides languages. SupposeT is a model

of ' . Because of the �rst conjunct of' 1, it must have an in�nite a-path, and because of the

second conjunct, all other maximal paths must be of the forma� b� or a� b! . The latter is
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however impossible because of' 2 which states that everyanbn -path is a dead end. Finally,

' 3 craves the existence of a path with labelanbn for any n 2 N, because any path in

L must have ab-successor and this holds in particular for every state along the in�nite

a-path. Note that ' is satis�able, for instance by the following in�nite model.

-
a

-
a

?

b

-
a

?

b

-

?

b

�
b

�
b

�

It is easy to see that every model of' must be of in�nite size. Let s0
a�! s1

a�! s2 : : : be the

in�nite a-path which needs to exist because of' 1. Because of' 2 and ' 3, for every i 2 N

there must be a pathsi
b�! t i � 1

b�! : : : b�! t0 having label bi and ending in a state with no

successors. This cannot exist in a �nite model of sizen for somen 2 N because theb-path

from sn would have to contain a loop, butT cannot contain an in�nite b-path because of

' 2. 2

Theorem 29 PDL[L ] is bisimulation-invariant and therefore has the tree model property

for any L .

Proof For PDL6?[L ] this follows from bisimulation-invariance of CTL[L ] proved in Thm.

42 and the fact that PDL6?[L ] is a sublogic of CTL[L ] as proved in Thm. 48. Adding tests

poses no di�culties here. 2

Given the parametric nature of PDL[L ], an immediate question arising regards the corre-

lation between the expressive power of the language classL and the resulting complexity

of program veri�cation.

Early works have only considered decidability of PDL. Fischer and Ladner have shown that

PDL is decidable in nondeterministic exponential time and established a deterministic

exponential time lower bound [FL79]. The gap was then closedby Pratt who proved

decidability in deterministic exponential time [Pra80]. Ladner concluded very early that

PDL[CFL] must be undecidable since the validity problem of the formula hL1i p $ h L2i p

for two context-free languagesL1; L2 amounts to the equivalence problem of CFL which is

undecidable [HU79].

A wide study of fragments of PDL[CFL] obtained by restricting the use of context-free

languages set o� in the 1980ies. Harel et al. re�ned the previous result by showing

that satis�ability of PDL[CFL] is complete for the existent ial side � 1
1 of the �rst level
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of the analytical hierarchy and established the fact that the borderline to undecidability

runs very close to REG: already PDL augmented with the singlecontext-free program

f anban j n 2 Ng leads to undecidability [HPS83]. Surprisingly, given the similarity of the

languages, PDL equipped with the languagef anbn j n 2 Ng remains decidable [KP83].

This observation led to the identi�cation of larger fragments of CFL over which PDL is

decidable, namely SML, SSML and �nally VPL as the most general of them [HR93, HK99,

LLS07].

The following table sums up the results and cites the originators.

Satis�ability

PDL[REG] EXPTIME -complete [FL79, Pra80]

PDL[SML] 2EXPTIME -complete

PDL[SSML] 2EXPTIME -complete

PDL[VPL] 2EXPTIME -complete [LLS07]

PDL[CFL] undecidable [FL79, HPS83]

Figure 3.1: Complexity of satis�ability for PDL[ L ].

Upper bounds for PDL[SML] and PDL[SSML] follow from their inclusion in PDL[VPL]

and 2EXPTIME-hardness for decidability of PDL[SML] transfers from [LLS07], where the

language used to show the lower bound of PDL[VPL] is actuallya SML and hence also a

SSML.

3.4 Expressivity

Our �rst and rather obvious observation is that classical PDL indeed coincides with

PDL[REG].

Theorem 30

PDL = PDL[REG] :

Proof It is well known that regular expressions and NFAs both characterise the class

REG and are convertible into each other. Since PDL programs are regular expressions

over some � in which tests may be included, automata over the same alphabet and tests

characterising the same languagesL 2 REG do exist and vice versa. But then PDL and
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PDL[REG] formulas have identical semantics, if the corresponding automata and regular

expressions are exchanged. 2

Already in [HPS83] the term \non-regular" is applied to the logic PDL[CFL] and it can

easily be shown that there are indeed formulas in PDL[L ] which are not expressible inL � .

However, both logics are in fact incomparable w.r.t. expressivity.

Lemma 1 Let L = f anbn j n 2 Ng 2 L for some language classL . Then

PDL[L ] � L � and

L � � PDL6?[L ]:

Proof PDL[L ] � L � : Consider the formula' = hAi tt , where A is an automaton with

L (A ) = L. The formula ' is not expressible inL � . This can already be shown for �nite

word models. A �nite word model is an LTS s.t. its states can bearranged to a �nite

sequences0 : : : sn with exactly one transition ai +1 between each pair of adjacent statessi

and si +1 for all 0 � i < n . The concatenation of transition labels forms a �nite word

w = a1 : : : an . Let W be a �nite word model of somew. Then we haves0 j= W ' i�

w 2 L (A ) immediately from the de�nition.

Hence the set of (all words obtained from) all word models which satisfy ' coincides with

L. It is well-known that L 62REG. But any formula of L � translates into a formula of the

bisimulation-invariant fragment of MSO and from there into an NFA. Hence there is no

formula which is satis�ed by the same set of word models.

L � � PDL6?[L ]: The proof anticipates the de�nition of the logic CTL[L ] from Chapter 4

and the result that PDL6?[L ] is equivalent to the CTL[L ] fragment EF[L ]. In [ALL + b] it

is shown that the CTL� formula EGFq is not equivalent to any formula in CTL[L ] . Since

CTL � � L � this entails that there is a L � -formula which is not equivalent to any CTL[L ]

formula and in particular not to any EF[L ] formula from which the claim follows. 2

We strongly suspect that the result can be extended toL � � PDL[L ], but have no proof.

The above lemma entails that PDL over all language classes inthe Chomsky hierarchy

which subsume SML are indeed non-regular.

PDL[L ] receives its expressive power from the interplay between the intrinsic logical ma-

chinery common to all PDL[L ] variants and the externally supplied expressive power from

the language class parameterL . It is immediately seen that for any of the language classes
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REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE the � -relation is inherited to

the logics equipped with the corresponding powers.

Theorem 31 For all L ; L 0 2 f REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE g,

if L � L 0 then

PDL6?[L ] � PDL6?[L 0]:

PDL6?[L ] � PDL[L 0]:

PDL[L ] � PDL[L 0]:

Proof Follows from syntactic inclusion: for any' 2 PDL6?[L ], we have' 2 PDL6?[L 0]

and ' 2 PDL[L 0] and for any ' 2 PDL[L ] we have' 2 PDL[L 0]. 2

It is however not obvious at all whether these inclusions arestrict or not. Some of the

above statements however can be strengthened to strict results.

Theorem 32

PDL6?[REG] � PDL6?[SSML]:

PDL6?[VPL] � PDL6?[DCFL]:

Proof The separation of PDL6?[REG] and PDL6?[SML] is a consequence of the fact

that PDL 6?[REG] is contained inL � while by Thm. 1 we have that PDL6?[SML] contains

formulas inexpressible inL � .

The second result is obtained by an inspection of a proof in [ALL+ b] where CTL[VPL] is

separated from CTL[DCFL] (see Sec. 4 for a de�nition of theselogics). The CTL[DCFL]

formula shown to be inexpressible in CTL[VPL] is in fact already a formula of the fragment

EF[DCFL] and hence by Thm. 47 expressible in PDL6?[DCFL]. Since by the same theorem

PDL6?[VPL] � EF[VPL] we have that PDL6?[VPL] is included in CTL[VPL] and obtain

the result. 2

The following result states that up to the context-free language classes, parametric PDL

without tests is strictly weaker than PDL with tests.

Theorem 33

PDL6?[CFL] � PDL[CFL] :
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Proof A proof of the version of this theorem for PDL[REG] can be found in [BP81]. The

proof idea there is as follows: consider the PDL[REG] formula ' = h(p?;a)� ; : p?;a; p?i tt

for a proposition p and an action a. The program can be seen as an encoding of the

statement \until : p do a" followed by the execution of yet anothera and p?. Furthermore

consider a family of ring-shaped modelsTm connected by unidirectionala-transitions, each

of length 2m + 1 for all m > 0. Name the statess0; : : : s2m . In every state the proposition

p holds except ins0; sm� 1; s2m� 1 and s2m , where : p holds, i.e. if one thinks of the states

aligned in a linear sequence then only the �rst, the one preceding the middle and the last

two states do not satisfyp. Clearly, s0 j= Tm ' i� sm 6j= Tm ' for all m > 0.

Now one shows that in test-free PDL there is no formula which can distinguish s0 and sm

on such models under two further conditions: 2m + 1 is a prime and m � 1 is greater than

the number ofhai occurring in such a formula. Because all regular expressions on one-letter

alphabets have a normal formR [ R0; (an )� for star-free and possibly empty expressions

R; R0 and n � 1, there is a corresponding normal form for PDL formulas overone-letter

regular programs, s.t. the only subformulas which may occurare of the formhAi  , with

A = a or A = ( an )� .

Clearly, any formula distinguishings0 and sm on such models must do so in states in which

the propositions di�er. That is, in order to claim that there exists a test-free formula , s.t.

s0 j= Tm  i� sm 6j= Tm  holds,  must say that only states in whichp holds are reachable

from s0 and simultaneously that only states in which: p holds are reachable fromsm or

vice versa.

However, by construction, the number ofhai occurrences does not su�ce to \reach" a state

further away than m � 2 a-transitions. Note that along the way equally fors0 and sm , only

p holds. Hence, these formulas do not distinguishs0 and sm .

Regarding subformulas of typeh(an)� i , we have two cases: eithern = 2m+1 or not. If n =

2m + 1, every iteration of n a-steps returns at the starting point and hence simultaneously

reachess0 and sm in which the same proposition holds. Ifn 6= 2m + 1, since 2m + 1

is prime, both s0 and sm reach every other state inTm and hence not only states with

homogenous propositions. As a consequence, test-free PDL cannot distinguish s0 and sm

in Tm for su�ciently large m.

This proof can be extended to PDL[CFL] as follows. Since by Thm. 31, PDL[REG] �

PDL[CFL] the above mentioned formula' is expressible in PDL[CFL]. Furthermore, it is

known that every CFL over one-letter alphabets (denoted by CFL-1) is a regular language

[HU79]. Clearly, any formula of PDL6?[CFL] using languages over ann-letter alphabet,



3.4 Expressivity 51

PDL � PDL[REG]

PDL[SML]

PDL[SSML]

PDL[VPL]

PDL[DCFL]

PDL[CFL]

PDL[MCSL]

PDL[IL]

PDL[CSL]

PDL[RE]

PDL6?[REG]

PDL6?[SML]

PDL6?[SSML]

PDL6?[VPL]

PDL6?[DCFL]

PDL6?[CFL]

PDL6?[MCSL]

PDL6?[IL]

PDL6?[CSL]

PDL6?[RE]

L �

Figure 3.2: Expressive power of PDL[L ].

where n > 1 cannot do more in terms of expressivity on the type of modelsdescribed

above than a formula using one-letter languages. Thus, all relevant, i.e. PDL6?[CFL � 1]

formulas, translate to PDL6?[REG] and hence cannot distinguishs0 and sm in Tm either

for su�ciently large m.

Note that this argument is equally valid for PDL[SSML], PDL[VPL] and PDL[DCFL]. 2

Corollary 2 Let L 2 f SSML, VPL, DCFLg.

PDL6?[L ] � PDL[L ]:

Fig. 3.2 summarises the expressivity results on PDL[L ]. A line from a lower positioned

item to a higher positioned item denotes inclusion of the former in the latter. If it is dashed

this means that the inclusion is strict.
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3.5 Model Checking

While the complexity and decidability of the satis�ability problem for PDL w.r.t. the

class of featured programs is well understood by now, there are still some open questions

regarding decidability and complexity of the corresponding model checking problems. The

range of language classes that is interesting for the satis�ability problem, namely classes

between the regular and the context-free ones, is entirely model checkable in polynomial

time [Lan05]. Therefore it is reasonable to extend the scopeof considered language classes

for the model checking problem beyond the context-free.

The only formula type in which PDL[L ] and propositional logic di�er is the modal expres-

sion schemehLi ' . Insofar it is the only formula type which poses di�culties for model

checking relative to the rather easily solved model checking of propositional logic. There is

however an observation which allows to reduce the model checking problem for this formula

type to well-studied problems of formal language theory: intuitively, solving the problem

s j= hLi ' amounts to synchronously �nding aw 2 L and a w-labeled path in the model

starting in s and ending in a state satisfying' . Clearly, it is possible to regard the model

as a language consisting of all paths starting ins or { more precisely { the concatenation

of their labels. The apparent similarity of an LTS and an NFA suggests that this path

language is regular and brings up the conjecture that the synchrony can be captured by

intersecting L and the language induced by the LTS. Checking the resulting language for

non-emptiness should then solve the model checking problem, since any witness would be

a member ofL and correspond to an LTS path froms, provided that ' holds in the target

state.

The following section will develop this reduction formally, work out a generic method for

model checking PDL[L ] and transfer the complexity results accordingly. We thereafter turn

our attention to the logics resulting from the largest classes of formal languages for which we

have deduced decidability of model checking and develop concrete model checking routines

which can be implemented straight-forwardly. We also provesoundness and completeness

of these algorithms.

3.5.1 A Generic Method

The goal of this section is to carve out the territory of formal language classesL over which

the model checking problem for PDL[L ] remains decidable and to show that the method we

develop can be used generically to determine its complexitywith respect to the language
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parameter.

The non-emptiness problemfor a classL of formal languages is the following: given a

�nitely represented L 2 L , decide whether or notL 6= ; . Furthermore, a classL is closed

under intersections with regular languagesif for every L 2 L and every regular language

R we haveL \ R 2 L .

De�nition 30 (REG-Intersection Problem) The problem of non-emptiness of inter-

section with a regular language{ REG-intersection problemfor short { for L is the follow-

ing: given a �nitely representedL 2 L and an NFA A over a set of terminal symbols �,

decide whether or notL \ L(A ) 6= ; .

Clearly, if a class of languages is closed under intersections with regular languages and has

a decidable non-emptiness problem, then its REG-intersection problem is decidable, too.

Furthermore, if a class of languages is closed under intersections with regular languages

but has an undecidable non-emptiness problem then its REG-intersection problem is also

undecidable.

We start by showing the close relationship between the REG-intersection problem forL

and the graph-reachability problem forL .

De�nition 31 ( L -reachability Problem) Let L be a class of languages. TheL -reachab-

ility problem is the following: given an LTST = ( S; �! ; `), a state s 2 S, a set of states

T � S and a �nitely represented L 2 L , decide whether or not there is aw 2 L and a

t 2 T s.t. s w�! t.

Lemma 2 The problem of non-emptiness of intersections with a regular language forL

reduces in linear time to theL -reachability problem.

Proof Let L 2 L and A = ( Q; � ; �; q0; F ) be an NFA. Take a �xed proposition f and

de�ne an LTS TA := ( Q; �! ; `) with s a�! t i� t 2 � (s; a) for any s; t 2 Q, and `(s) := f f g

if s 2 F and `(s) := ; otherwise.

Now, L \ L(A ) 6= ; i� there exists a w := a1a2 : : : an for somen 2 N s.t. w 2 L and

w 2 L(A ). The latter is the case i� there are statesq0; q1; : : : qn s.t. qi +1 2 � (qi ; ai +1 ) for

all i < n and qn 2 F . This holds by construction ofTA i� q0
w�! qn and qn 2 `(f ). Clearly,

TA can be constructed inO(jAj ). From this follows the claim. 2

Lemma 3 The L -reachability problem reduces in linear time to the problemof non-

emptiness of intersections with a regular language forL .



54 3. Non-Regular Propositional Dynamic Logic

Proof Let T = ( S; �! ; `) be an LTS, s 2 S, T � S , and L 2 L . De�ne an NFA

A T ;s;T := ( S; � ; �; s; T ) s.t. for all t 2 S and all a 2 �: � (t; a) := f u j t a�! ug. Note that

A T ;s;T can be constructed inO(jT j).

Now there is aw 2 L and a t 2 T with s w�! t i� there is a path in T from s to some

t 2 T s.t. the transition labels along that path form the word w. This is the case i�

w 2 L(A T ;s;T ) \ L . Hence, there is such aw i� L \ L(A T ;s;T ) 6= ; . 2

In order to be able to transfer lower complexity bounds from the REG-intersection problem

to the model checking problem for PDL[L ], we now show that theL -reachability problem

reduces in linear time to model checking PDL[L ].

Lemma 4 Let L be any class of languages. TheL -reachability problem reduces in linear

time to the model checking problem for PDL[L ].

Proof Let L 2 L be a language over the alphabet �,T = ( S; �! ; `) be an LTS, s 2 S

and T � S . Let qT be a proposition. De�neT 0 = ( S; �! ; `0) s.t. for all u 2 S:

`0(u) :=

8
<

:

f qT g ; if u 2 T

; ; otherwise:

Now, for any L 2 L , there is a w 2 L and a t 2 T with s w�! t i� T 0; s j= hLi qT .

Furthermore, both T 0andhLi qT can be constructed in time linear inT and a representation

of L. 2

It seems however unlikely that also the reverse reduction ispossible, because of a lack

of direct means to encode the propositional operators of PDL[L ] into the reachability or

REG-intersection problem.

But having at hand an algorithm solving theL -reachability problem, we can construct a

model checker for PDL[L ] rather easily. Letreach(s; L; T ) be an algorithm which solves the

L -reachability problem and takes as arguments a states 2 S, an appropriately represented

languageL 2 L and a setT � S . We assume here that theL -reachability problem is

decidable and will later on show for whichL this is the case. Clearly, we can construct a

procedurereach(L; T ) with L and T as before which returns the set of statesU = f s 2

S j reach(s; L; T ) = trueg by calling procedurereach(s; L; T ) for eachs 2 S.

Consider now the following algorithm for model checking PDL[L ].
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MC-PDL( T , ' ) =

let (S; �! ; `) = T in

case ' of

q : `(q)

:  : S n MC-PDL( T ,  )

 1 _  2 : MC-PDL( T ,  1) [ MC-PDL( T ,  2)

hLi  : let f  1?; : : : ;  n?g = tests (L) in

�! 0 := �!

for i = 1; : : : ; n do

let U = MC-PDL( T , i ) in

for each u 2 U do

�! 0 := �! 0 [ (u;  i ?; u)

done

done

let V = MC-PDL(( S; �! 0; `), ) in

reach(L, V)

MC-PDL takes an LTS T and a formula ' and computes the set of states inT which

satisfy ' . It uses an oraclereach which di�ers depending on the class of languages used in

the modal formulas. In case it encounters a modal formulahLi  it �rst extracts the tests

occurring in the representation ofL with the subroutine tests , then computes separately

for each test i ? all statesu in which  i holds and �nally transforms the transition relation

with a  i ?-self-transition onu accordingly. Finally it computes the set of states in which

 holds (on the transformed LTS) and uses these states as targets for the L-reachability

problem in the oraclereach.

Soundness and completeness are proved by a straight-forward structural induction on ' .

The only di�culty arises from the fact that the algorithm mod i�es T in order to be able to

deal with potential tests contained within' in case' is a modal formula. The computation

of ?�! from Def. 29 has to be performed w.r.t. each formula or, more precisely, the set of

tests occurring in each formula, because there are in�nitely many tests in general.

MC-PDL however does this computation on-the-
y and for eachmodal subformulahLi  

separately. At �rst, the set of tests is determined in the subroutine tests (L) in the

corresponding recursion step. After computing for each test  i ? in tests (L) the set of

statesU in which  i holds (by recursively calling MC-PDL on i ), the transition relation

is updated with a  i ?-self-loop for all states inU.
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Hence, whenever the call ofreach(L; U ) is reached on any recursion level, it is ensured

that for all tests  i ? 2 tests (L) and for all u 2 S we haveu j=  i i� u  i ?��! u, of course

under the assumption that the MC-PDL computation of i is sound and complete. This

means that just after completion of the doublefor -loop on any recursion level, the current

modi�cation of �! 0 coincides with ?�! as de�ned for the current subformulahLi  and the

tests contained within. On the level of the input formula' , we therefore have�! 0 = ?�!

after the double for -loop.

Theorem 34 (Soundness and Completeness) For all LTS T = ( S; �! ; `), s 2 S and

' 2 PDL[L ] we have

s j= ' i� s 2 MC-PDL( T ; ' ):

Proof From the preconsiderations above, it remains to show that the semantics compu-

tation on the modi�ed LTS is sound and complete.

Soundness. We assumes 2 MC-PDL( T ; ' ) and prove the claim by a structural induction

on ' . Algorithm MC-PDL treats propositional operators as expected and their proof is

entirely trivial.

In case' is of the form hLi  , we may assume that ?�! has been computed correctly. The

actual model checking ofhLi  is performed via calling the procedurereach(L; U ), where

U is the set of recursively computed target states in which holds.

By I.H. for any t 2 U we havet j=  . Clearly, a call of reach(L; U ) on the modi�ed LTS

then returns exactly the set of statesP from which there is a path to some state inU

labeled with a w 2 L. But then, if s 2 P we haves j= ' .

Completeness. Assumes j= ' . Again, we show the claim by a structural induction on

' . Propositional cases are trivial. Ifs j= hLi  then there is a t 2 S and a w 2 L, s.t.

s w�! t and t j=  . By I.H. we have that U = MC-PDL( T ;  ) contains t. Since the LTS

transition relation modi�cation faithfully re
ects ?�! , procedurereach(L; U ) returns a set

containing s. 2

Note that the running time of MC-PDL depends on the running time of tests (L) which

in turn depends on the representation ofL. As argued before, it is easy to construct cases

in which the set of tests is hard to detect and may in
uence therunning time signi�cantly.

The tests could for instance be encrypted and be hard to decrypt.

Since most of the following results use MC-PDL as a basis for acomplexity analysis of

model checking PDL[L ], it is essential that the computation of tests (L) for any L 2 L

does not a�ect its asymptotic complexity. We emphasise oncemore that we make the
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implicit assumption of a reasonable representation ofL, in particular that it is �nite and

its alphabet is computable in linear time (and therefore also tests (L)).

Lemma 5 The model checking problem for PDL[L ] Turing-reduces to theL -reachability

problem in time O(jT j � j ' j).

Proof It is not hard to see that algorithm MC-PDL can be made to run intime O(jT j�j ' j)

not counting the time complexity of the oracle procedurereach(L; U ). Using a dynamic

programming approach one can restrict the numbers of recursive calls to one per subformula

or test occurring in the input formula. Also, set operationsand updates of the labeling

function can be made to run in timeO(jT j). 2

The following diagram summarises the conclusions drawn so far:

L � reachability
O(jT j )

//

O(jT j )
��

model checking PDL[L ]
O(jT jj ' j)ks

REG-intersection for L

O(jAj )

OO

A single line fromX to Y denotes a many-one reduction fromX into Y transfering lower

bounds along the arrow and upper bounds in the opposite direction. A double line denotes

a Turing reduction transferring only an upper bound down thearrow but not a lower

bound up the arrow. Taken together, these results allow to transfer lower bounds on the

complexity of PDL[L ] model checking from either of the other problems.

Concerning the transfer of upper bounds, we have shown that PDL[L ] Turing-reduces to

L -reachability in quadratic time. Note that the number ofreach(L; U ) calls of MC-PDL is

bounded by the number ofhLi occurrences in' . Remember that every call ofreach(L; U )

is realised byjSj calls of reach(s; L; T ). Putting this together, we have O(jSj � j ' j) calls

of an oraclereach(s; L; T ).

This means that we may transfer upper bounds in terms of complexity classes from either

of the problems as long as they are at least PTIME, because at this point the O(jSj � j ' j)

complexity of the reduction gets absorbed by the complexityof the other problems.

Theorem 35 The model checking problem for PDL[L ] is equivalent under polynomial-

time Turing reductions to the problem of non-emptiness of intersections with a regular

language forL .
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Proof Immediately from Lemmas 3{4.

This theorem allows to transfer many known results from the theory of formal languages

to the model checking theory of PDL[L ]. For example, regular languages are closed under

intersections and have a decidable non-emptiness problem.Hence, their problem of non-

emptiness of intersections of a regular language is decidable, too. In fact, it is decidable in

linear time which then yields polynomial time decidabilityof the model checking problem

for PDL[REG]. It is also known that CFL is closed under intersections with regular

languages and has a non-emptiness problem that is decidablein polynomial time. Hence,

Thm. 35 reproves that model checking for PDL[CFL] is PTIME-complete.

Regarding language classesL , for which the complexity of model checking PDL[L ] is un-

known, the following table sums up the results from formal language theory.

Language class Closed under inter- Non-emptiness

section with REG

REG X 2 LINTIME

SML X 2 PTIME

SSML X 2 PTIME

VPL X PTIME-complete

CFL X PTIME-complete

MCSL X PTIME-complete

IL X EXPTIME -complete

ACFL X undecidable

CSL X undecidable

Figure 3.3: REG-intersection and emptiness for some language classes.

In all of the above classes, the intersection with REG causesat most polynomial blow-up.

From Thm. 35 and the above table, the borderline to undecidability of model checking

PDL[L ] can by now be drawn. The class CSL of context-sensitive languages is closed

under intersections with regular languages but its non-emptiness problem is undecidable.

Hence, the problem of non-emptiness of intersections with aregular language must be
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undecidable, too. The same holds for the class ACFL. The exact correspondence of ACFL

and CSL is not known.

Corollary 3 The model checking problems for PDL[CSL] and PDL[ACFL] are undecid-

able.

Note that the non-emptiness problem for context-sensitivelanguages is r.e. because the

word problem is decidable. However, since the reduction in Lemma 5 is only a Turing-

reduction, recursive enumerability does not extend to the model checking problem.

Accordingly, the border to undecidability runs somewhere between the context-free and

the context-sensitive languages. The largest language class in this area which ful�lls the

required conditions is IL: it is closed under intersectionswith regular languages (with

polynomial blow-ups only) and its non-emptiness problem isEXPTIME-complete [Aho68,

TK07]. From this follows that its REG-intersection problemalso is.

Corollary 4 The model checking problem for PDL[IL] isEXPTIME -complete.

Other classes which contain CFL, have decidable non-emptiness problems and are closed

under intersections with regular languages are the MCSL. Again, they are closed under

intersections with regular languages and their non-emptiness problem is decidable { even

in polynomial time. Since the blow-up in the construction ofthe intersection of a linear-

indexed grammar with a regular language is polynomial, their REG-intersection problem

is in PTIME as well. Thm. 35 then transfers the upper bound to the corresponding model

checking. A matching lower bound follows trivially from thePTIME-hardness of the model

checking problem for PDL[CFL].

Corollary 5 The model checking problems for PDL[LIL], PDL[HL], PDL[CCL], and

PDL[TAL] are PTIME-complete.

Since we are not aware of any hardness results for the emptiness problem of SML and

SSML, we may only transfer upper bounds from the REG-intersection problem.

Corollary 6 The model checking problems for PDL[SML] and PDL[SSML] are in PTIME.

For a comparison of the complexities of satis�ability and model checking parametric PDL,

see Fig. 3.5.1. Note that some of the lower and upper bound results follow from the

expressivity results of the logics as stated in Thm. 31. Hence, for any two logics PDL[L ]

and PDL[L 0], whereL � L 0 and a complexity classC, if either problem isC-hard in PDL[L ]

then it is also C-hard in PDL[L 0] and vice versa for upper bounds.
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satis�ability model checking

PDL[REG]
2

EXPTIME [FL79, Pra80]
LINTIME[CS92]

hard

PDL[SML]
2

2EXPTIME
PTIME

hard

PDL[SSML]
2

2EXPTIME
PTIME

hard

PDL[VPL]
2

2EXPTIME [LLS07] PTIME
hard

PDL[CFL]
2

undec. [FL79, HPS83] PTIME [Lan05]
hard

PDL[MCSL]
2

undec. PTIME
hard

PDL[IL]
2

undec. EXPTIME
hard

PDL[CSL]
2

undec. undec.
hard

Figure 3.4: Complexity of SAT vs. model checking PDL[L ].
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3.5.2 A Model Checking Algorithm for PDL over IL

In this section we present an explicit model checking procedure for PDL[IL] that runs in

deterministic exponential time and can be implemented straight-forwardly. We focus on

the di�culties imposed by the language part. A model checkeris then easily obtained by

using the procedure sketched in the proof of Lemma 5.

Later, in the soundness proofs, we will need the following important properties of deriva-

tions in indexed grammars.

Lemma 6 (Stack Distribution Property) For all A; B 1; : : : ; Bk 2 N and all � 2 I � :

a) If A ) � B1 : : : Bk and no terminal productions are being used in this derivation then

A[� ] ) � B1[� ] : : : Bk [� ].

b) If A[� ] ) � B1[� ] : : : Bk [� ] and no terminal productions are being used and for all indexed

nonterminals X [� 0] occurring during the derivation, � 0 = 
� for some
 2 I � , then A ) �

B1 : : : Bk .

Proof Both parts follow easily from the following three observations. Let A; B; C 2 N ,

� 2 I � , f 2 I :

� A ) BC i� A[� ] ) B [� ]C[� ],

� A ) B [f ] i� A[� ] ) B [f � ],

� A[f ] ) B i� A[f � ] ) B [� ].

We exemplarily show the �rst of these equivalences. The two others are analogous. Suppose

A ) BC. According to the de�nition of ) , we must haveA ! BC and, hence,A[� ] )

B [� ]C[� ] according to the de�nition of ) again. The converse direction is proved in the

same way.

For part (a) supposeA ) � B1 : : : Bk . By successively applying the \if" parts of the three

observations above it is easy to construct a derivation which showsA[� ] ) � B1[� ] : : : Bk [� ].

For part (b) suppose A[� ] ) � B1[� ] : : : Bk [� ] s.t. no terminal productions occur during

the derivation and every nonterminal in every intermediatesentential form has an index

� 0 = 
� for some
 2 I � . Then one can successively apply the \only if" parts of the three

observations above in order to construct a derivation whichshowsA ) � B1 : : : Bk . Note

that this would not necessarily be possible if some occurring nonterminal had an index

which is not of the required form: the proof relies on a simulation of the derivation steps

of A[� ] ) � B1[� ] : : : Bk [� ] on A with an empty stack. This is possible, as long as� is
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left untouched at the bottom of all indexed nonterminals in intermediate sentential forms.

Performing a pop-production on some intermittent indexed nonterminal X [� ] cannot be

simulated onX with empty stack because the operation is not de�ned. 2

Lemma 7 (Commutation Lemma) For all sentential forms�; �; 
 1; 
 2; 
 3, all A; B 2 N

and all �; � 0 2 I � the following holds:


 1A[� ]
 2B[� 0]
 3 ) 
 1�
 2B[� 0]
 3 ) 
 1�
 2�
 3

i� 
 1A[� ]
 2B[� 0]
 3 ) 
 1A[� ]
 2�
 3 ) 
 1�
 2�
 3:

Proof This follows immediately from the de�nition of ) . 2

Corollary 7 Let A 2 N and w 2 � � s.t. A ) + w. Then there are sentential forms

� 0; : : : ; � n for somen 2 N all of which do not contain terminal symbols, s.t.� 0 = A,

� i � 1 ) � i for all i = 1; : : : ; n, and � n ) m w wherem is the number of indexed nonterminals

in � n .

Proof SupposeA ) � 1 ) : : : ) � m = w for some � i . Consider the leasti s.t. � i

contains a terminal symbol. If every production rule applied to the right of � i is a terminal

production then the claim holds. Assume this is not the case.Lemma 7 allows to hold

back the applied terminal production rule and instead to �rst apply the production rule

for � i +1 . Repetitive application of this procedure allows to postpone all applications of

terminal production rules to the very last. Now note that it takesm steps to replacem

indexed nonterminals by� or a terminal symbol each. 2

For the remainder of this section �x an indexed grammarG = ( N; � ; P; I; S) and a Kripke

structure T = ( S; �! ; `).

De�nition 32 (Annotated Nonterminal) An annotated nonterminalis a triple (s; A; t),

where s; t 2 S and A 2 N . Let N denote the set of all annotated nonterminals (overG

and T ), i.e. N := S � N � S . We say that an annotated nonterminal (s; A; t) left-matches

another (u; B; v), if t = u.

We de�ne a new relation between two statess; t, a sentential form E1 : : : Ek consisting

of unindexed nonterminals only, and a setB of annotated nonterminals. Intuitively,

s E1 :::E k�����! B t holds i� B can be rearranged to a sequence of annotated nonterminals inwhich

each left-matches its right neighbour s.t. that sequence starts with s, ends in t and the
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projection onto its nonterminal symbols yields the sequence E1 : : : Ek . Annotated nonter-

minals in B can be used more than once in this sequence, but each of them has to be used

at least once. We also call such a sequence onopen pathfrom s to t because it represents

a path from s to t via intermediate statess0; : : : ; sk s.t. s0 = s, sk = t and between each

si � 1 and si there is ahole which, intuitively, should be closed by a proper path fromsi � 1

to si whose label is derivable fromE i .

De�nition 33 (Open Path) Let k 2 N, s; t 2 S, D1; : : : ; Dk 2 N , and B � N .

s D 1 :::D k�����! B t i� there are s0; : : : ; sk 2 S s.t. s0 = s; sk = t

and B = f (si � 1; D i ; si ) j i = 1; : : : ; kg:

Note that the set equality in this de�nition does not only constrain the available nontermi-

nals which can be used in order to construct an open path froms to t. It particularly also

demands that every annotated nonterminal in this set is being used in the construction.

The left-matching property is hidden in the second conjunct.

Example 13 Let S := f s; tg and B := f (s; A; t); (t; B; s); (t; C; s)g. Then for instance

s ABAC����! B u holds because there is a sequence of left-matching annotated nonterminals corre-

sponding toABAC which (as a set) formsB, here namely (s; A; t); (t; B; s); (s; A; t); (t; C; s).

On the other hand,s AB��! B t does not hold since the annotated nonterminal (t; C; s) is not

being used in this open path. Furthermore,s ABC���! B t also does not hold, because (t; B; s)

does not left-match (t; C; s).

De�nition 34 Let C; D be sets of annotated nonterminals andf 2 I . De�ne D[f ] ; C

i�

� for all (u; C; v) 2 C exists (u; D; v) 2 D , s.t. D [f ] ! C and

� for all (u; D; v) 2 D exists (u; C; v) 2 C, s.t. D [f ] ! C.

The next lemma states some properties of the open path relation. We omit the proof since

all parts follow easily from Def. 33.

Lemma 8 For all s; t 2 States, all B; C; D; B1; : : : ; Bk � N , all C1; : : : ; Ck ; D1; : : : ; Dk 2

N , all f 2 I , and all �; 
; � 1; � 2; : : : 2 N + we have the following.

a) If s ��! B u and u 
�! C t then s �
��! B[C t.
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b) If there exists f 2 I , s.t. D[f ] ; C and s D 1 :::D k�����! D t then s C1 :::Ck�����! C t.

c) If B = f (u1; C1; v1); : : : ; (uk ; Ck ; vk)g and f i1; : : : ; im g = f 1; : : : ; kg for somem 2 N

and s Ci 1 :::C i m������! B t and ui
� i��! Bi

vi for all i = 1; : : : ; k then s � i 1 :::� i m������! B1 [ :::[B k
t.

d) If s �
��! B t then there areu 2 S and B1; B2 � N s.t. B = B1 [ B 2 and s ��! B1
u and

u 
�! B2
t.

e) If s ��! B t and for every (u; D; v) 2 B it holds that u = v and D ! � , or u a�! v and

D ! a for somea 2 �, then there is a w 2 � � s.t. � ) + w and s w�! t.

Approximating IL-reachability

In order to solve the IL-reachability problem we are interested in tuples of statess; t and

nonterminals A s.t. there is a path froms to t whose label (of terminals) is derivable from

A. In order to compute these tuples for every nonterminalA we need to consider sets of

open paths �rst. These will be represented by a triplehs;B; ti 2 S � 2N � S , intuitively

describing that there is an open path froms to t which uses all elements inB. We use

hi-brackets to distinguish such triples from annotated nonterminals.

De�nition 35 For eachA 2 N , de�ne:

99K

A := f hs;B; ti j there is � 2 N + with A ) � � and s ��! B tg:

Next we describe a method for computing
99K

A . We simultaneously de�ne, for anyA 2 N ,

a sequence
99K

A 0 �
99K

A 1 �
99K

A 2 � : : : that approximates
99K

A from below. We will show that
S

j 2 N

99K

A j =
99K

A . Since each of them is a subset of a �nite set, it is clear that the chain has

to have a maximal element.

We start by de�ning the initial sets
99K

A 0 for an A 2 N :

99K

A 0 := f hs; f (s; A; t)g; ti j s; t 2 Sg:

Intuitively, it is always possible to �nd a path from any states to any state t that is labeled

with something derivable fromA if one is allowed to leave a hole betweens and t that

should be closed by anything derivable fromA. Note that A ) � A.

Now let j > 0. De�ne
99K

A j as the union of four sets.

99K

A j :=
99K

A j � 1 [
99K

A j; conc [
99K

A j; push [
99K

A j; ins:
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Hence, anything at levelj � 1 is preserved into levelj . Open paths at level j can be

constructed by concatenating two open paths at levelj � 1. The label of the resulting path

is of course only derivable if this is matched by a composition rule in the indexed grammar

G. Note that the holes in the resulting open path are the union of the holes in both parts.

99K

A j; conc := f hs;B [ C ; ti j there areB; C 2 N and u 2 S with A ! BC and

hs;B; ui 2
99K

B j � 1 and hu; C; ti 2
99K

C j � 1 g:

Another way of obtaining an open path froms to t derivable from some nonterminalA

is to start the derivation with a push production. This has to be matched in the end

by corresponding pop productions since we are interested inopen paths whose labels are

unindexed nonterminal symbols.

99K

A j; push := f hs;C;ti j there areB 2 N; f 2 I; D � N s.t. A ! B [f ] and

hs;D; ti 2
99K

B j � 1 and if D = f (u1; D1; v1); : : : ; (uk ; Dk ; vk)g

then C = f (u1; C1; v1); : : : ; (uk ; Ck ; vk)g s.t. D i [f ] ! Ci

for all i = 1; : : : ; k g:

Finally, an open path on levelj with a derivation of a sentential form from some nonter-

minal A can be obtained by inserting a derivation into the context ofanother derivation.

For technical reasons, namely to ensure completeness, we require that all parts of the open

path are being replaced simultaneously.

99K

A j; ins := f hs;B1 [ : : : [ B k ; ti j there is C = f (u1; C1; v1); : : : ; (uk ; Ck ; vk)g

s.t. hs;C; ti 2
99K

A j � 1 and for all i = 1; : : : ; k :

hui ; Bi ; vi i 2
99K

Ci
j � 1 g:

We proceed by showing that the sequence
99K

A 0;
99K

A 1; : : : correctly approximates
99K

A .

Lemma 9 (Soundness) For all A 2 N and all j 2 N we have
99K

A j �
99K

A .

Proof We prove this simultaneously for allA 2 N by induction on j . The base case

of j = 0 is rather simple. Remember that
99K

A 0 only consists of elements of the form

hs; f (s; A; t)g; ti . Now, clearly s A�����!
f (s;A;t )g

t and A ) � A. Thus, we havehs; f (s; A; t)g; ti 2
99K

A .

Now let j > 0. Note that
99K

A j is the union of four sets. For each of these we will show that

they are contained in
99K

A .
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Case (i),
99K

A j � 1 �
99K

A . This is trivially true by hypothesis.

Case (ii),
99K

A j; conc �
99K

A . Supposehs;B [ C ; ti 2
99K

A j; comp. Then A ! BC and there

are hs;B; ui 2
99K

B j � 1 and hu; C; ti 2
99K

C j � 1. By hypothesis we havehs;B; ui 2
99K

B and

hu; C; ti 2
99K

C , i.e. there are�; 
 2 N + s.t. B ) � � , C ) � 
 and s ��! B u as well asu 
�! C t.

Then A ) BC ) � �
 and according to Lemma 8 (a) we also haves �
��! B[C t. Hence,

hs;B [ C ; ti 2
99K

A .

Case (iii),
99K

A j; push �
99K

A . Supposehs;C; ti 2
99K

A j; push. Then A ! B [f ] for someB 2 N

and f 2 I , and there is ahs;D; ti 2
99K

B j � 1 s.t. D = f (u1; D1; vi ); : : : ; (uk ; Dk ; vk)g and

productionsD i [f ] ! Ci for i = 1; : : : ; k s.t. C = f (u1; C1; vi ); : : : ; (uk ; Ck ; vk)g. By hypoth-

esis,hs;D; ti 2
99K

B , i.e. there is an� 2 N + s.t. B ) � � and s ��! D t. Let � = D1 : : : Dk .

Now we apply part (a) of Lemma 6 and obtainB [f ] ) � D1[f ] : : : Dk [f ]. Extending this

derivation with the rule A ! B [f ] at the top and the rulesD i [f ] ! C at the bottom yields

A ) � C1 : : : Ck . According to Lemma 8 (b) we haves C1 :::Ck�����! C t. But then hs;C; ti 2
99K

A

which was to be proved.

Case (iv),
99K

A j; ins �
99K

A . Supposehs;B; ti 2
99K

A j; ins s.t. B is suitable decomposed intoB =

B1 [ : : : [ B k . Then there is a hs;C; ti 2
99K

A j � 1 s.t. C = f (u1; C1; v1); : : : ; (uk ; Ck ; vk)g

and for all i = 1; : : : ; k we havehui ; Bi ; vi i 2
99K

Ci
j � 1. By hypothesis, hs;C; ti 2

99K

A , i.e.

there is an � 2 N + s.t. s ��! C t, in particular A ) � � . Let � = Ci 1 : : : Ci m for some

m 2 N, i1; : : : ; im 2 f 1; : : : ; kg. The hypothesis also yields, for everyi = 1; : : : ; k, that

hui ; Bi ; vi i 2
99K

Ci , i.e. there are� i 2 N + s.t. Ci ) � � i and ui
� i��! Bi

vi . Hence,A ) � � i 1 : : : � i m ,

and Lemma 8 (c) yieldss � i 1 :::� i m������! B t which shows thaths;B; ti 2
99K

A . 2

Remember that we want to use the sequence
99K

A 0;
99K

A 1; : : : in order to compute
99K

A for some

A. The above shows that the sequence approximates it from below. We need to prove

completeness, i.e. the fact that the sequence eventually captures
99K

A . For this, we need

directedness of the family of sets
99K

A j which is an immediate consequence of the following

lemma.

Lemma 10 (Monotonicity) For all A 2 N and all j; j 0 2 N we have: j � j 0 implies
99K

A j �
99K

A j 0
.

Proof Trivial. 2

Now we prove that eventually all open paths for all nonterminals are indeed collected by

the approximation.
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Lemma 11 (Completeness) For all A 2 N exists j 2 N s.t.
99K

A �
99K

A j .

Proof Again, we prove this simultaneously for allA 2 N . First note that
99K

A is �nite,

because so areS and N . Hence, using Lemma 10 it su�ces to show that for everyhs;B; ti 2
99K

A there is a j 2 N with hs;B; ti 2
99K

A j . So take somehs;B; ti 2
99K

A . Hence, there is an

� 2 N � s.t. s ��! B t and A ) � � . Thus, there is ann 2 N with A ) n � . We show the claim

by induction on n.

First assumen = 0. If A ) 0 � then B = f (s; A; t)g because� = A and remember that

in s ��! B t all elements ofB are required to contribute to the construction of the open path.

But then hs;B; ti 2
99K

A 0.

Now let n > 0, i.e. A ) � ) k� 1 � for some sentential form� . We need to make a case

distinction according to the rule that is applied in the derivation of � from A. Note that it

cannot be a pop production because the index ofA is empty. It also cannot be a terminal

production because� 2 N + . Hence, it can only be a composite productionA ! BC (with

� = BC) or a push productionA ! B [f ] (with � = B[f ]). Note furthermore, that { for

the same reason { terminal productions cannot occur anywhere in this derivation.

Case (i),A ! BC. By absence of terminal productions we must havej� j � 2. Hence, there

are�; 
 2 N + s.t. � = �
 and B ) n1 � and C ) n2 
 with n1+ n2 � n� 1. Furthermore, by

assumption we haves �
��! B t. Lemma 8 (d) yields au 2 S and a decompositionB = B1 [B 2

s.t. s ��! B1
u and u 
�! B2

t. Since n1 < n , the hypothesis yields aj 1 s.t. hs;B1; ui 2
99K

B j 1 .

Equally, sincen2 < n we also havehu; B2; ti 2
99K

C j 2 for somej 2. Let j = maxf j 1; j 2g. By

Lemma 10 we havehs;B1; ui 2
99K

B j and hu; B2; ti 2
99K

C j . By construction we then have

hs;B; ti 2
99K

A j +1 which was to be shown.

Case (ii), A ! B [f ]. Let � = E1 : : : Em . Furthermore, in the derivation A ) � � , every

E i must be derived from a nonterminalC s.t. C itself stems from an application of a rule

D[f ] ! C s.t. the index symbolf is inherited from B[f ] at the beginning of the derivation.

In other words, for everyE i we consider the �rst moment that the thread in the derivation

from B[f ] to � loses the bottom index symbolf . We can group� according to that. Two

adjacent symbols in� belong to the same group i� they are derived from the same symbol

C which in turn is derived from an application of a ruleD[f ] ! C s.t. all ancestors ofD[f ]

up to B[f ] at the top of the derivation have the symbolf at the bottom of their stack.

This means we have

� = E1;1 : : : E1;m1 E2;1 : : : E2;m2 : : : Ek;1 : : : Ek;m k
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for somem1; : : : ; mk with m1 + : : : + mk = m.

Since each groupE i; 1 : : : Ei;m i in � stems from aC as said above there are nonterminals

C1; : : : ; Ck ; D1; : : : ; Dk and n0; n1; : : : ; nk 2 N with n0+ ( n1 + 1) + : : :+ ( nk + 1) � n � 1 s.t.

D i [f ] ) Ci ) n i E i; 1 : : : Ei;m i

for every i = 1; : : : ; k and

B[f ] ) n0
D1[f ] : : : Dk [f ]

s.t. in every intermediate sentential form, every nonterminal has the symbolf at the bottom

of their index. According to Lemma 6 (b) we also haveB ) n0
D1 : : : Dk .

Remember thats
E1;1 :::E 1;m 1 :::E k; 1 :::E k;m k����������������! B t. Applying Lemma 8 (d) repeatedly yields states

s0; : : : ; sk and a decompositionB = B1 [ : : : [B k s.t. s0 = s, sk = t, and for all i = 1; : : : ; k:

si � 1
E i; 1 :::E i;m i�������! Bi

si . Hence, we have, fori = 1; : : : ; k: hsi � 1; Bi ; si i 2
99K

Ci . Sinceni < n for

all i = 1; : : : ; k, we can use the hypothesis on each of them to getj 1; : : : ; j k 2 N with

hsi � 1; Bi ; si i 2
99K

Ci
j i .

Now de�ne D := f (s0; D1; s1); : : : ; (sk� 1; Dk ; sk)g. Note that, just becauses0 = s and

sk = t, we haves D 1 :::D k�����! D t and thereforehs;D; ti 2
99K

B . Sincen0 < n we can now use the

hypothesis to obtain aj 0 with hs;D; ti 2
99K

B j 0
. Let C := f (s0; C1; s1); : : : ; (sk� 1; Ck ; sk)g.

Then, by construction we havehs;C; ti 2
99K

A j 0+1 ;push and thereforehs;C; ti 2
99K

A j 0+1 .

Finally, let j := maxf j 0+ 1; j 1; : : : ; j kg. Lemma 10, together with the above, shows that

for all i = 1; : : : ; k we havehsi � 1; Bi ; si i 2
99K

Ci
j . By construction, we then havehs;B; ti 2

99K

A j +1 ;ins which �nishes the proof. 2

Theorem 36 For all A 2 N :
99K

A =
S

j 2 N

99K

A j .

Proof By Lemmas 9 and 11. 2

Our next concern is the constructability of
S

j 2 N

99K

A j for any A 2 N . We start be remarking

that the number of approximation steps required for the construction is �nite.

Lemma 12 (Termination) For all A 2 N there is a j 2 N s.t. for all j 0 > j we have
99K

A j 0
=

99K

A j . Moreover, j � jSj 2 � 2jSj 2 �jN j.

Proof This follows from Lemma 10 and the fact that for allj ,
99K

A j � S � 2S� N �S � S .2

Lemma 13 (Running Time) For any A 2 N it is possible to compute
99K

A in time O(jGj2�

jN j � jSj 6 � 23jSj 2 �jN j).
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Proof According to Thm. 36 and Lemma 12, it su�ces to compute
99K

A 0;
99K

A 1; : : : until

stability is reached. Lemma 12 also states that at mostjSj2 � 2jSj 2 �jN j many iterations are

needed. Remember though, that this has to be done simultaneously for all A 2 N , which

adds another factorjN j to the running time. Finally, for any A 2 N and any j > 0,

computing

�
99K

A 0 takes time O(jSj2 � jN j),

�
99K

A j; conc takes time O(jGj � (jSj2 � 2jSj 2 �jN j)2),

�
99K

A j; push takes time O(jGj � (jSj2 � 2jSj 2 �jN j) � (jSj2 � jN j � j Gj)),

�
99K

A j; ins takes time O(( jSj2 � 2jSj 2 �jN j) � jSj2 � jN j),

assuming that set operations take timeO(1) because sets are represented as boolean arrays

for example, and that
99K

B j � 1 have already been computed for allB 2 N .

Putting these all together amounts toO(jGj2 � jN j � jSj 6 � 23jSj 2 �jN j). 2

Remember that
99K

A contains triples hs;B; ti s.t. there is a path froms to t whose label is

derivable from A and which is made from elements inB. These are triples of the form

(u; B; v) with the intuitive meaning that the path from s to t can use a subpath fromu

to v if it is possible to �nd one that can be derived fromB. In the end we are of course

interested in closed pathsfrom s to t, i.e. those that do not contain holes like the ones

betweenu and v anymore. These holes can be closed by considering terminal productions

now. Remember that Cor. 7 showed that in a derivation of a wordit is always possible to

defer the use of terminal productions to the very end, i.e. ifA ) � w for somew 2 � � then

also

A ) � E1 : : : Ek ) � w

for somek 2 N s.t. the �rst part before E1 : : : Ek does not contain terminal productions,

and the second part only contains terminal productions. Here we also make use of the fact

that a terminal can only be derived from an unindexed nonterminal.

The next de�nition captures the intuition of closed paths from a state to another.

De�nition 36 (Closed Path) For eachA 2 N , de�ne:

�!

A := f (s; t) j s; t 2 S and there isw 2 � � s.t. A ) + w and s w�! tg:
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Approximating this set of closed paths is easier than the above set of open paths. We can

de�ne approximations such that the second of these already captures the entire
�!

A . We

de�ne simultaneously for allA 2 N :

�!

A 0 := f (s; s) j s 2 S; A ! � g

[ f (s; t) j s; t 2 S and there isa 2 � s.t. A ! a and s a�! tg;
�!

A 1 :=
�!

A 0

[ f (s; t) j there is B � N s.t. (s;B; t) 2
99K

A and

for all (u; D; v) 2 B : (u; v) 2
�!

D 0g:

Again, we need to show soundness and completeness w.r.t.
�!

A .

Lemma 14 (Soundness) For all A 2 N and we have
�!

A 1 �
�!

A .

Proof We show this simultaneously for allA 2 N . Let (s; t) 2
�!

A 1. There are two

cases. If (s; t) 2
�!

A 0 then the claim follows immediately. Suppose therefore thatthere

is a hs;B; ti 2
99K

A , i.e. there is an� 2 N + with A ) � � and s ��! B t, and that for every

(u; D; v) 2 B we have (u; v) 2
�!

D 0. Then Lemma 8 (e) yields aw 2 � � s.t. � ) + w and

s w�! t. Hence, we haveA ) + w and therefore (s; t) 2
�!

A . 2

Lemma 15 (Completeness) For all A 2 N we have
�!

A �
�!

A 1.

Proof Suppose (s; t) 2
�!

A . Then there is aw 2 � � , s.t. A ) + w and s w�! t. We consider

the derivation of w from A. Clearly, every symbola in w is derived in an application

of a rule A ! a s.t. A occurs with empty index in a sentential form in this derivation.

Furthermore, there can be applications of ruleA ! � , again, on empty index only. Cor. 7

gives usE1; : : : ; Ek 2 N s.t.

A ) � E1 : : : Ek ) � w

and in the left part no terminal productions are used and in the right part only terminal

productions are used. Letw = a1 : : : am . Note that we must havek � m, i.e. some of the

E i can be deleted in applications of the formE i ! � , but no single occurrence of anE i can

derive more than one terminal symbolaj in w. Hence, each of these nonterminalsE i is

either nulling, i.e. it is deleted in an application of a ruleE i ! � , otherwise it isnon-nulling

and derives a terminal symbol inw. Let E i 1 : : : Ei m be the subsequence ofE1 : : : Ek that

consists exactly of the non-nulling nonterminals in it.



3.5 Model Checking 71

Sinces w�! t there ares0; : : : ; sm 2 S s.t. si � 1
ai��! si for every i = 1; : : : ; m and s0 = s and

sm = t. Let C = f (s0; E i 1 ; s1); : : : ; (sm� 1; E i m ; sm )g. Then we haves E i 1 :::E i m������! C t. Let

B := C [ f (si ; E i ; si ) j E i is nulling in the sequence aboveg

First one can repeatedly apply Lemma 8 (d) in order to decompose s E i 1 :::E i m������! C t into

a sequenceu
E i j

�����!
f (u;E i j ;v)g

v for j = 1; : : : ; m. Then one can use Lemma 8 (a) in order to

recompose it intos E1 :::E k�����! B t. Hence, we havehs;B; ti 2
99K

A . Furthermore, note that for

every (u; E; v) 2 B we have (u; v) 2
�!

E 0: eachu; v have been chosen such that either

� u a�! v and E ! a for somea 2 �, or

� u = v and E ! � .

By the construction, we then have (s; t) 2
�!

A 1. 2

Lemma 16 (Running Time) For all A 2 N , it is possible to compute
�!

A in time O(jGj2 �

jN j � jSj 6 � 23jSj 2 �jN j).

Proof Clearly, computing
�!

A 0 for an A 2 N takes timeO(jSj2 � jGj), and once this is done

for all A 2 N ,
�!

A 1 can be computed in timeO(jSj2 � 2jSj 2 �jN j � jSj2 � jN j). Both are superseded

by the time it takes to compute
99K

A for all A which is required in advance anyway. Hence,

the result follows from Lemma 13. 2

Theorem 37 The model checking problem for PDL[IL] is in EXPTIME.

Proof We reprove this theorem by showing that the algorithm MC-PDLis in EXPTIME ,

where the subroutinereach is implemented as the computation of the closed paths set as

described above. Remember that the worst-case scenario forMC-PDL is that reach is

called j' j � 1 times for some PDL[IL] formula' since the computation of the whole seman-

tics can be decomposed into the subsequent computation of the semantics of subformulas

and furthermore the most expensive kind of subformula ishLi  whose semantics is com-

puted by reach.

Remember also thatreach(L; V ) takes as parameters an indexed languageL (here given

as an indexed grammar) and a setV representing the precomputed set of states in which

a subformula holds.

According to Lemma 16, given an indexed grammarG with nonterminals N and starting

symbol S, and a transition systemT with states S and a T � S , one can compute
�!

S in



72 3. Non-Regular Propositional Dynamic Logic

time O(jGj2 � jN j � jSj 6 � 23jSj 2 �jN j). Then one checks in timejSj2 for which s 2 S the set
�!

S

contains an element (s; t) with t 2 V and returns thoses.

As stated above, this is done at mostj' j � 1 times. Clearly, the time consumed is then

exponential in both the grammar and the transition system. 2

3.5.3 A Model Checking Algorithm for PDL over MCSL

In this section we turn our attention to a concrete implementation of reach in the model

checking algorithm MC-PDL for PDL[MCSL]. This is particularly interesting, because

despite the fact that MCSL can already be considered a ratherpowerful language class,

the model checking problem of PDL[MCSL] is still solvable inPTIME (see Cor. 5) just

like the model checking problem for PDL[CFL].

First of all, note that the reason for the exponential model checking for PDL[IL] is the

representation of sets of open paths through a triplehs;B; ti in which B itself is a set of

annotated nonterminals of which there are exponentially many. If one could restrict that

number to a polynomial in the number of statesS and the size of the underlying grammar

G then the result would be a polynomial model checking procedure. In the following, we

will show that this is the case for LIL.

For the remainder of this section we �x, again, a LIGG = ( N; � ; I; P; S) and a Kripke

structure T = ( S; �! ; `).

Before we can proceed with a procedure for the LIL-reachability problem, we need some

technical lemmas. First of all, note that Lemma 7 (commutativity of pairwise application

of production rules) also holds for the derivation relationin linear indexed grammars.

Lemma 17 For all A; B 2 N , all � 2 I � and all w1; w2 2 � � :

a) If bA ) � w1
bBw2 then dA[� ] ) � w1

dB[� ]w2.

b) If dA[� ] ) k w1
dB[� ]w2 for somek � 0 and for all marked indexed nonterminals[X [� 0]

occurring during the derivation, � 0 = 
� for some
 2 I � holds then bA ) k w1
bBw2.

c) If bA ) � w1
bBw2 then A ) � w1Bw2.

d) If A ) � � and � 2 N + then there existsB 2 N , s.t. bA ) � � 1
bB� 2 and � 1B� 2 = � .

e) If A ) k w for a w 2 � � and k > 1 then there existv1; v2; v3 2 � � , k1 < k , k2 < k

and B 2 N , s.t. bA ) k1 v1
bBv3 and B ) k2 v2, s.t. w = v1v2v3.



3.5 Model Checking 73

Proof For part (a) note that a simulation of the rules used during the derivation bA ) �

w1
bBw2 can be done ondA[� ], apparently leaving the index� untouched at the bottom of

all index transformations.

The same holds in part (b), since it is required that the index� is always at the bottom

and hence no pop productions which go below the empty index can be performed in the

simulation of dA[� ] ) � w1
dB[� ]w2.

Part (c) and (d) are straightforward.

For part (e), �rst notice that since Lemma 7 is applicable forLIG, it is possible to postpone

the application of terminal productions in a derivation to the end, s.t. A ) � 1 ) : : : )

� n ) j � n j w for somen 2 N and for all 1 � i � n, � i 2 (N � I � )� . Hence� n 2 N + .

From application of part (d) of this lemma follows that thereexist � 1; � 2 2 N � ; B 2 N ,

s.t. bA ) � � 1
bB� 2 and � 1B� 2 = � n . Clearly, w may be partitioned into w1; w2; w3, s.t.

� 1 ) � w1, B ) w2 and � 2 ) � w3. We now have provenbA ) k1 w1
bBw3 and B ) w2, hence

k2 = 1 < k . But since k > 1 and k = k1 + k2, we have thatk1 < k , too. 2

Solving the LIL-Reachability Problem

As for the IL-reachability problem, we will devise a procedure that solves the reachability

problem for LIL by characterising, for each nonterminalA the pairs of statess; t for which

there is anopen pathfrom s to t whose label can be derived fromA. However, since the

index of a nonterminal can only be passed on to a single nonterminal in any application of

a rule, we can restrict our attention to paths with a single hole only.

For example, an open path froms to t may be characterised by two statess0; t0 and a

nonterminal B . The intuitive meaning is the following: there are sentential forms �; 


s.t. bA ) � � bB
 and bB would inherit a stack from bA, and s ��! s0, t0 
�! t, and betweens0

and t0 there is a hole which has to be closed by something derivable from B. The crucial

observation now is that nothing in� or 
 does inherit a stack from bA. Therefore, we can

assume these parts to be derived to terminal symbols already. This, however, means that

we need to de�ne simultaneously the sets of open and closed paths derivable from a given

nonterminal because they mutually depend on each other.

Furthermore, this observation explains the claim of polynomial boundedness of the sets of

annotated nonterminals in the introductory part above: foran IL, the set B representing

all legal parts of an open path in a triplehs;B; ti boils down to a singleton setf (u; B; v)g

now. We therefore write those triples simply ashs; u; B; v; ti with s; t 2 S and (u; B; v) 2

N := S � N � S .
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De�nition 37 (Open/ Closed Path) For eachA 2 N , de�ne:

99K

A := fhs; u; B; v; ti j there arew1; w2 2 � � : s.t. bA ) � w1
bBw2 and

s w1��! u and v w2��! tg;
�!

A := f (s; t) j there is w 2 � � s.t. A ) + w and s w�! tg:

Next we de�ne, for all A 2 N , sets
99K

A 0;
99K

A 1; : : : � S � N � S and
�!

A 0;
�!

A 1; : : : � S � S for

which we will show that they approximate
99K

A and, resp.,
�!

A . The two base cases are as

follows.

99K

A 0 := fhs; s; A; t; t i j s; t 2 Sg;
�!

A 0 := f (s; s) j s 2 S; A ! � g

[ f (s; t) j there is a 2 � s.t. A ! a and s a�! tg:

Now let j > 0. As above, the set of open paths at levelj includes the set of open paths at

level j � 1 and closes it o� under applications of composite and push productions as well

as insertion of open paths into the holes of other open paths.

99K

A j :=
99K

A j � 1 [
99K

A j; conc [
99K

A j; push [
99K

A j; ins

where
99K

A j; conc := f hs; t; D; u; v i j there areB; C 2 N; v0 2 S s.t.

A ! bBC and hs; t; D; u; v 0i 2
99K

B j � 1 and (v0; v) 2
�!

C j � 1; or

A ! B bC and (s; v0) 2
�!

B j � 1 and hv0; t; D; u; v i 2
99K

C j � 1 g;
99K

A j; push := f hs; t; D; u; v i j there areB; C 2 N; f 2 I; s.t. A ! B [f ];

C[f ] ! D and hs; t; C; u; vi 2
99K

B j � 1 g;
99K

A j; ins := f hs; t; D; u; v i j there is (t0; B; u0) 2 N with hs; t0; B; u0; vi 2
99K

A j � 1

and ht0; t; D; u; u 0i 2
99K

B j � 1 g:

Furthermore,
�!

A j :=
�!

A j � 1

[ f (s; t) j there is (u; B; v) 2 N with hs; u; B; v; ti 2
99K

A j � 1 and

(u; v) 2
�!

B j � 1 g:
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Lemma 18 (Soundness) For all A 2 N and for all j 2 N we have

a)
�!

A j �
�!

A , and

b)
99K

A j �
99K

A .

Proof We prove both parts by simultaneous induction onj for all A 2 N . The base case

of (a),
�!

A 0 �
�!

A , is immediate. The base case of (b),
99K

A 0 �
99K

A , is not much more di�cult.

Note that bA ) � bA and s ��! s.

Now supposej > 0. For part (a) suppose that (s; t) 2
�!

A j . Then there are two cases. If

(s; t) 2
�!

A j � 1 then we simply have (s; t) 2
�!

A by hypothesis. Hence, assume that there

is (u; B; v) 2 N s.t. hs; u; B; v; ti 2
99K

A j � 1 and (u; v) 2
�!

B j � 1. The hypothesis for (b)

yields hs; u; B; v; ti 2
99K

A , i.e. there is arew1; w2 2 � � s.t. bA ) � w1
bBw2 and s w1��! u and

v w2��! t. Then by Lemma 17 (c) we also haveA ) � w1Bw2. Furthermore, the hypothesis

for (a) yields (u; v) 2
�!

B , i.e. there is aw 2 � � s.t. B ) + w and u w�! v. Hence, we have

A ) + w1ww2 and s w1ww2����! t and therefore (s; t) 2
�!

A .

For part (b) supposehs; s0; D; t 0; ti 2
99K

A j . We need to distinguish four cases. The �rst case

of hs; s0; D; t 0; ti 2
99K

A j � 1 trivially follows from the hypothesis.

Case hs; s0; D; t 0; ti 2
99K

A j; conc. Then there are B; C 2 N , u 2 S s.t. A ! bBC and

hs; s0; D; t 0; ui 2
99K

B j � 1 and (u; t) 2
�!

C j � 1, or A ! B bC and (s; u) 2
�!

B j � 1 andhu; s0; D; t 0; ti 2
99K

C j � 1. Suppose the former is the case { the latter is entirely dual,we therefore omit that

subcase here. Then, by hypothesis for part (b) we havehs; s0; D; t 0; ui 2
99K

B which yields

w1; w2 2 � � with bB ) � w1
bDw2, s w1��! s0, and t0 w2��! u. Furthermore, the hypothesis for

part (a) yields (u; t) 2
�!

C , i.e. there is aw 2 � � s.t. C ) + w and u w�! t. Putting these

together yields bA ) bBC ) + w1
bDw2w and t0 w2w���! t. Hence, we havehs; s0; D; t 0; ti 2

99K

A .

Casehs; s0; D; t 0; ti 2
99K

A j; push. Then there areB; C 2 N and f 2 I s.t. A ! B [f ], C[f ] ! D

and hs; s0; C; t0; ti 2
99K

B j � 1. By hypothesis, we havehs; s0; C; t0; ti 2
99K

B j � 1 i.e. there are

w1; w2 2 � � with bB ) � w1
bCw2 and s w1��! s0 and t0 w2��! t. According to Lemma 17 (a) we

also have dB[f ] ) � w1
dC[f ]w2 and therefore

bA ) dB[f ] ) � w1
dC[f ]w2 ) w1

bDw2

which shows thaths; s0; D; t 0; ti 2
99K

A .
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Finally, supposehs; s0; D; t 0; ti 2
99K

A j; ins. Then there is a (u; B; v) 2 N s.t. hs; u; B; v; ti 2
99K

A j � 1 and hu; s0; D; t 0; vi 2
99K

B j � 1. Applying the hypothesis twice yieldshs; u; B; v; ti 2
99K

A

and hu; s0; D; t 0; vi 2
99K

B , i.e. there arew1; w2; w0
1; w0

2 2 � � s.t. bA ) � w1
bBw2, s w1��! u,

v w2��! t, and bB ) � w0
1

bDw0
2, u w0

1��! s0 and t0 w0
2��! v. Putting these together yields bA ) �

w1
bBw2 ) � w1w0

1
bDw0

2w2 and s w1w0
1����! s0 and t0 w0

2w2����! t. Hence, we havehs; s0; D; t 0; t0i 2
99K

A

which �nishes the proof. 2

Lemma 19 (Monotonicity) For all A 2 N and all j; j 0 2 N we have: j � j 0 implies
99K

A j �
99K

A j 0
and

�!

A j �
�!

A j 0
.

Proof Trivial. 2

Lemma 20 (Completeness) For all A 2 N exists j 2 N s.t.

a)
�!

A �
�!

A j , and

b)
99K

A �
99K

A j .

Proof Because of Lemma 19 it su�ces to show for every (s0; t0) 2
�!

A that there is a j 2 N

with ( s0; t0) 2
�!

A j and likewise for everyhs; u; E; v; ti 2
99K

A .

So let (s0; t0) 2
�!

C and hs; u; E; v; ti 2
99K

A for arbitrary A; C; E 2 N and s; s0; t; t 0; u; v 2 S.

From the de�nition of these it follows that

� there is aw 2 � � s.t. A ) k w and s0 w�! t0 for somek � 1, and

� there arew1; w2 2 � � s.t. bA ) m w1
bEw2 for somem � 0 and s w1��! u and v w2��! t.

We prove both parts by simultaneous induction onk and m.

In the base case for part (a) we assume thatk = 1 and hence eitherw = a or w = � . In the

former case we haveA ! a and therefore (s0; t0) 2
�!

A 0. In the latter case we haveA ! �

and therefores0 = t0 and (s0; s0) 2
�!

A 0.

The base case for part (b), wherem = 0, requires bA = bE and w1 = w2 = � and therefore

s = u and v = t. But then hs; s; A; t; t i 2
99K

A 0.

For part (a) we now assumek > 1 and haveA ) k w and s0 w�! t0. Lemma 17 (e) yields

w1; w2; w3 2 � � , k1 < k , k2 < k and a D 2 N , s.t. bA ) k1 w1
bDw3 ) k2 w1w2w3 and

w = w1w2w3. From this follows that D ) k2 w2. This means there existu0; v0 2 S, s.t.
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s0 w1��! u0, u0 w2��! v0 and v0 w3��! t0. By hypthesis there arei; i 0 2 N with hs0; u0; D; v0; t0i 2
99K

A i

and (u0; v0) 2
�!

D i 0
. Therefore, we have (s0; t0) 2

�!

A 1+max f i;i 0g.

For part (b) we assumem > 0, have bA ) m w1
bEw2 and s w1��! u and v w2��! t. We make a

case distinctions on the type of production that is applied in the �rst step of this derivation.

Sincem � 1 andD 2 N , it cannot be a terminal production. It cannot be a pop production

either, becauseA has an empty index. Hence, it must either be a composite of a push

production.

Case bA ) bBC ) m� 1 w1
bEw2, i.e. A ! bBC. Then there arex1; x2 2 � � , s.t. bB ) m0

w1
bEx1

and C ) m00
x2 with m0; m00< k and w2 = x1x2. Furthermore, there also is av0 2 S, s.t.

u x1��! v0 and v0 x2��! v. Using the hypothesis for both parts (a) and (b) yieldsj 1; j 2 2 N,

s.t. hs; t; E; u; v0i 2
99K

B j 1 and (v0; v) 2
�!

C j 2 . Hence, we havehs; t; E; u; vi 2
99K

A 1+max f j 1 ;j 2g;conc,

and thereforehs; t; E; u; vi 2
99K

A 1+max f j 1 ;j 2g. The case ofbA ) B bC ) m� 1 w1
bEw2 is entirely

symmetric.

Case bA ) dB[f ] ) m� 1 w1
bEw2. Since the index ofbE is empty in this sentential form, the

index symbol f must have been popped somewhere during the derivation, i.e.there is a

C 2 N and sentential forms�; � s.t.

bA ) dB[f ] ) : : : ) � dC[f ]� ) � bD� ) : : : ) w1
bEw2:

Note that at most one index symbol can be popped per derivation step. Let the production

C[f ] ! D be the �rst one in the above derivation that pops the bottom index symbol f

from any marked indexed nonterminal. Thus, all intermediate sentential forms occurring

between dB[f ] and � dC[f ]� in the above derivation, are of the form� 0\X [� 0f ]� 0 for some

X 2 N and some� 0; � 0.

Note furthermore that there must existw0
1; w00

1; w0
2; w00

2 2 � � s.t. w1 = w0
1w

00
1 and w2 = w0

2w
00
2

and � ) � w0
1 and � ) � w00

2 and bD ) i w00
1

bEw0
2 with i < k . This is because the marker

b� is laways inherited from a nonterminal in the predecessing sentential form, hence bE in

w1
bEw2 has inherited it from bD in � bD� . There also must exists0; u0 2 S, s.t. s w0

1��! s0,

s0 w00
1��! t, and u w0

2��! u0, u0 w00
2��! t.

By the Commutation Lemma 7 we havedB[f ] ) i 0
w0

1
dC[f ]w00

2 with i0 < k s.t. for all marked

indexed nonterminalsX [� ] occurring during this derivation, � = � 0f for some � 0 2 I � .

By Lemma 17 (b) we then havebB ) i 0
w0

1
bCw00

2 and the hypothesis yields aj 1 2 N s.t.

hs; s0; C; u0; vi 2
99K

B j 1 . But then hs; s0; D; u0; vi 2
99K

A j 1+1 ;push and thereforehs; s0; D; u0; vi 2
99K

A j 1+1 .



78 3. Non-Regular Propositional Dynamic Logic

Becausei < k , the hypothesis also yields aj 2 2 N, s.t. hs0; t; E; u; u 0i 2
99K

D j 2 . Putting

these together we havehs; t; E; u; vi 2
99K

A 1+max f j 1+1 ;j 2g;ins and therefore hs; t; E; u; vi 2
99K

A 1+max f j 1+1 ;j 2g which concludes the proof. 2

Theorem 38 For all A 2 N :
99K

A =
S

j 2 N

99K

A j and
�!

A =
S

j 2 N

�!

A j .

Proof By Lemmas 18 and 20. 2

The following lemma estimates the number of iterations it takes to approximate
99K

A and
�!

A

from below.

Lemma 21 (Termination) For all A 2 N there are j; j 0 2 N s.t. for all i > j and all

i0 > j 0 we have
99K

A i =
99K

A j and
�!

A i 0
=

�!

A j 0
. Moreover, j � jSj 4 � j N j and j 0 � jSj 2.

Proof This follows from Lemma 19 and the fact that for allj;
99K

A j � S � (S � N � S ) � S

and
�!

A j � S � S . 2

Lemma 22 For all A 2 N , it is possible to compute
�!

A in time O(jGj2 � jN j4 � jSj10).

Proof According to Lemma 21, at mostjSj4 � jN j many iterations are necessary. Each

iteration requires the computation of
99K

A j and
�!

A j for somej and everyA 2 N . Hence, at

most jSj4 � jN j2 many computations of an approximation for a singleA 2 N are needed. It

is not di�cult to see that each such computation can be done inworst-case timeO(jGj2 �

jN j2 � jSj6). 2

As with indexed grammars above, we can use the approximationof open and closed paths

in order to solve the diamond problem for linear indexed languages and therefore the model

checking problem for PDL[LIL].

Theorem 39 The model checking problem for PDL[LIL] is in PTIME.

Proof Similarly as for PDL[IL] we reprove this theorem by showing that the algorithm

MC-PDL is in PTIME, where the subroutine reach is implemented as the computation of

the closed paths set as described above.

According to Lemma 22, given a LIGG with nonterminals N and starting symbol S,

and a transition system T with states S and a T � S , one can compute
�!

S in time

O(jGj2 � jN j4 � jSj10). Then one checks in timejSj2 for which s 2 S the set
�!

S contains

an element (s; t) with t 2 V and returns thoses. Since there are maximallyj' j � 1 calls

of reach in the worst case it follows that the time consumed is polynomial in both the

grammar and the transition system. 2



Chapter 4

Non-Regular Computation Tree

Logic

One of the reasons why CTL has gained great popularity and is widely used in hardware

veri�cation is that in contrast to logics like L � , it features very intuitive operators and

is considered easy to understand. The most common speci�cation properties are usually

divided into safety and liveness, meaning that programs are either required to conform

with some invariant holding on all runs at any time or that some desired property should

eventually hold. These kinds of properties are explicit language constructs of CTL, realised

by AGand EF. Apart from this, the computational complexity of its modelchecking as well

as satis�ability problems lie within reasonable bounds: model checking is PTIME-complete

and satis�ability is EXPTIME -complete [CE81, EH85].

CTL is however very limited in expressive power and can be embedded into the alternation-

free fragment ofL � . One of the motivations for introducing the following extension of CTL

is that it enhances the expressive power of CTL without losing its easy comprehensiveness.

Instead of quantifying over arbitrary paths, we allow control over the path structure along

which some property is required to hold by adorning theU and R operators with formal

languagesL, thereby constraining the quanti�cation to paths which correspond to words

w 2 L. The modular style in which CTL operators are enriched resembles the approach

taken in PDL[L ] and is therefore consequently named CTL[L ] . But since the fragments

using solely theUL or RL operators turn out to be fundamentally di�erent regarding the

computational complexity of for instance the model checking problem, it is natural to

seperate the classes of languages allowed in each construct. We call the resulting logical

framework parametric CTL and denote it by CTL[A; B ] to emphasise the use of di�erent
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language classesA and B in either operator.

4.1 Syntax and Semantics

Like for PDL[L ], the question of reasonable language representation arises for CTL[A; B ].

In principle, we demand the same, i.e. the existence of �nitelanguage representations with

a linearly parsable alphabet. It turns out however that the quanti�cation structure of the

CTL[A; B ] semantics is more complex than for PDL[L ] and that in particular the formats

are not exchangeable as simple as in PDL[L ] with regard to the decision procedures in-

troduced. There is for instance an essential di�erence in the computational complexity of

the model checking problem between deterministic and nondeterministic automata repre-

sentations which is rooted in the incommutativity of alternating quanti�ers on paths and

automata runs in the semantics of some operators. For more details see Sec. 4.5.

As a compromise, we de�ne CTL[A; B ] independently of the language representations and

speak of e.g. CTL[REG], CTL[CFL], etc. whenever the chosen representation is irrelevant

and use automata everywhere else. It is clear that the results we obtain are transferable

to any other format, if polynomial translations to the respective automata classes exist.

De�nition 38 (Parametric CTL) Let P be a countably in�nite set of propositions, �

a �nite set of actions andA and B be classes of languages over the alphabet �.

CTL[A; B ] is the following set of formulas:

' ::= q j : ' j ' _ ' j E(' UA ' ) j E(' RB ' )

whereq 2 P , A 2 A and B 2 B .

Subformulas of CTL[A; B ] are de�ned identically as in PDL[L ] for propositional formulas

and otherwise as follows.

sub(E( 1UA  2)) = f E( 1UA  2)g [ sub( 1) [ sub( 2);

sub(E( 1RA  2)) = f E( 1RA  2)g [ sub( 1) [ sub( 2):

The size of a formulaj' j is determined by the number of its subformulasjsub(' )j. We

permit the propositional abbreviations tt ; ff ; ^ ; ! ; $ (see section 2.2.6), as well as the
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following, whereQ 2 f E; Ag:

A(' UA  ) := : E(: ' RA :  );

A(' RA  ) := : E(: ' UA :  );

QFA ' := Q(ttU A ' );

QGA ' := Q(ffR A ' );

QF' := QF� �
';

QG' := QG� �
';

QXa' := QFf ag';

QX' := QF� ':

As mentioned above, CTL[A] is short for CTL[A; A]. Furthermore, we identify the frag-

ments EU[A], ER[A], EF[A] and EG[A] which are obtained by restricting the use of tem-

poral operators toE(' UA ' ), E(' RA ' ), EFA and EGA respectively for someA 2 A.

CTL[A; B ] formulas are interpreted in states of an LTST = ( S; �! ; `).

s j= q i� s 2 `(q);

s j= : ' i� s 6j= ';

s j= ' _  i� s j= ' or s j=  ;

s j= E(' UA  ) i� there exists a path � = s0
a1��! s1

a2��! : : : an��! sn

s.t. s0 = s and sn j=  and for all i < n :

si j= ' and a0 : : : an 2 A ;

s j= E(' RB  ) i� there exists a path � = s0
a1��! s1

a2��! : : :

s.t. s0 = s and for all i 2 N :

if a0 : : : ai 2 B then si j=  or there existsj < i s.t. sj j= ':

In order to illustrate the semantics of theUA and RA operators, consider exemplarily the

following models.

E(' UA  ) ' ' . . . '  a1 a2 an� 1 an

| {z }
2 A

Call the leftmost state s0. The formula E(' UA  ) is satis�ed in s0, since there exists a

path starting in s0 which is labeled with w = a0a1 : : : an� 1an and w forms a word in A .
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Furthermore, this path ends in a state satisfying and along the way,' holds in every

state.

E(' RA  )   ' :  a1 a2 a3 a4 a5

| {z }
2 A
| {z }

2 A

z }| {2 A

Again, call the leftmost states0. The formula E(' RA  ) is satis�ed in s0. Along the path

a1a2a3a4a5 : : :, the pre�xes a1, a1a2a3 and a1a2a3a4a5 form words in A . The �rst two end

in a state which satis�es . The state in which the latter ends does not satisfy , but it

is preceded by a state in which' holds. The implication \if a0 : : : ai 2 A then there exists

j < i s.t. sj j= ' " is now valid for all future states.

4.2 Examples

Consider a concurrent producer/consumer scenario, where one process produces objects

and places them into a shared bu�er. The consumer takes away one such element at a

time from the bu�er. If the bu�er is empty, the consumer process requests a new resource

and halts until the producer delivers a new one. Any parallelexecution of these processes

should obey a non-under
ow property (NBU), that is: at any moment the number of

produce actions is greater than or equal to the number of consume actions done so far.

Suppose the goal was to formally specify the above scenario including the non-under
ow

property and on top of that to demand properties like, e.g. \whenever the consumer process

sends a request, the bu�er is empty".

If the bu�er is realised in software it is reasonable to assume that it is unbounded. But

then these speci�cations become non-regular since the NBU property involves unlimited

counting of the actions and hence cannot be expressed in, e.g., L � . Let � = f p; c; rg, where

p stands forproduction of a bu�er object, c for consumationand r for requestingsuch an

object. Formally, the language de�ning the NBU property isLNBU = f w 2 � � j j vjc � j vjp
for all v � wg, where � denotes the pre�x relation. Emptiness of the bu�er is modelled

by the languageLEMPTY = f w 2 � � j jwjc = jwjpg. Words in LEMPTY clearly do not

respect NBU, so in order to model traces to empty bu�ers whichdo respect NBU, we
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de�ne L = LEMPTY \ LNBU . Note that LNBU and LEMPTY are VPL and because VPL are

closed under intersection, so isL. The desired properties are now expressible as CTL[VPL]

formulas:

AGEXptt : \At any time it is possible to produce an object".

AGL (AXcff ^ EXr tt ) : \Whenever the bu�er is empty, it is impossible to consume

and possible to request".

AGL (EXctt ^ AXr ff ) : \Whenever the bu�er is non-empty it is possible to

consume and impossible to request".

EFEGc� ff : \At some point there is a consume-only path".

The conjunction of the �rst three properties yields a speci�cation of the producer / con-

sumer scenario described and states that arequestcan only be made if the bu�er is empty.

Remember that VPL are closed under complement and thereforethe third property is

indeed a CTL[VPL] property. Every satisfying model gives a raw implementation of the

main characteristics of this concurrent process. Note thatif it is always possible toproduce

and always possible toconsume(if the bu�er is non-empty), yet impossible to consumeon

an empty bu�er, then a straight-forward model with self-loops p; c and r does not satisfy

the speci�cation. Instead, a model with in�nitely many di�e rent p transitions is required.

If we strengthen the speci�cation by adding the fourth formula, it becomes unsatis�able.

However, this is not trivial to see and underlines the usefulness of a decidable logic of

corresponding expressive power.

4.3 Properties

Theorem 40 CTL[REG] has the �nite model property.

Proof This is a consequence of its embedding intoL � which has the �nite model property

(see Thm. 44). 2

Theorem 41 CTL[VPL] does not exhibit the �nite model property.

Proof This follows from Thm. 28 in which a PDL6?[VPL] formula serves as witness for

the absence of the �nite model property. The formula can by Thm. 47 be translated into

an equivalent CTL[VPL] formula. Since both formulas are required to hold in exactly the

same models, the absence of the �nite model property for CTL[VPL] follows. 2
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Theorem 42 CTL[L ] is bisimulation-invariant and therefore has the tree model property

for any L .

Proof We show bisimulation-invariance by induction on the structure of ' . The base

case of' = q for someq 2 P is immediate.

Case' =  1 _  2. Then we haves j= ' i� s j=  1 or s j=  2 which, by hypothesis, is the

case i� t j=  1 or t j=  2, i.e. t j= ' . The case of' = :  is similar.

Case' = E( 1UL  2). Supposes j= ' . Then there is a path� = s0
a1��! s1

a2��! s2 : : : s.t.

s0 = s and � j=  1UL  2. Sinces a1��! s1 and s � t there is a t1 s.t. t a1��! t1 and s1 � t1.

This can now be iterated, possibly ad in�nitum, revealing a path � 0 = t0
a1��! t1

a2��! t2 : : :

s.t. t0 = t, and si � t i for all i 2 N.

Now, since� j=  1UL  2 there is a k 2 N s.t. sk j=  2, a1 : : : ak 2 L and sj j=  1 for all

j < k . By the hypothesis we havetk j=  2, and t j j=  1 for all j < k . But then we have

� 0 j=  1UL  2 and thereforet j= ' .

The case of' = E( 1RL  2) is similar. 2

The following table presents the computational complexityof the satis�ability problem of

CTL[A; B ] for the most important classesA and B [ALL + b].

B = DFA NFA DVPA VPA (D)PDA

CTL[(D)FA ; B ]
2

EXP
2EXP

2EXP
3EXP

undec.
hard EXP 2EXP

CTL[(D)VPA ; B ]
2

2EXP 2EXP 2EXP
3EXP

undec.
hard 2EXP

CTL[(D)PDA ; B ]
2

undec. undec. undec. undec. undec.
hard

Figure 4.1: Complexity of satis�ability for CTL[ L ] .

4.4 Expressivity

The original CTL ignores path labels and it is therefore easyto give a formula of CTL[REG]

already which cannot be expressed in CTL. This is for instance witnessed by the regular

languageL = ( a(� n f ag)� a)� and the formula EGL p stating that there exists a path on

which p holds whenever an even number ofas is seen. However, CTL translates into
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CTL[ f � � ; � g] because the universal language �� anulls the additional path constraints in

the parametric CTL semantics. The language � is needed in addition for the translation

of EX. On the other hand, CTL[REG] does not yet exceed regular expressivity.

Theorem 43

CTL � CTL[ f � � ; � g] � CTL[REG]:

Proof For the proof of CTL � CTL[ f � � ; � g], de�ne inductively a translation function
�! tr : CTL ! CTL[ f � � ; � g] as follows:

�! tr (p) = p;
�! tr (:  ) = : �! tr ( );

�! tr ( 1 _  2) = �! tr ( 1) _ �! tr ( 2);
�! tr (EX 0) = EF� �! tr ( 0);

�! tr (E( 1Q 2)) = E(�! tr ( 1)Q� � �! tr ( 2)) :

for Q 2 f U; Rg. The translation function for the converse direction � tr is �! tr � 1 but has the

additional mappings

 � tr (E( 1U�  2)) =  � tr ( 1) ^ EX � tr ( 2);
 � tr (E( 1R�  2)) =  � tr ( 1) _ EX � tr ( 2):

The proof that these translations are semantically faithful is trivial.

Considering the remaining claim, it is clear that �� and � are regular languages and

therefore CTL[f � � ; � g] � CTL[REG]. A witness for CTL � CTL[REG] has already been

given above by the formulaEGL p, whereL = ( a(� n f ag)� a)� .

Theorem 44

CTL[REG] � L � :

Proof Consider the following inductively de�ned translation tr : CTL[REG] ! L � . We

assume the regular language adornments of theU- and R-operators are given as a DFA

A = ( Q; � ; �; q0; F ) with Q = f q0; : : : ; qng.

tr(p) = p;

tr(:  ) = : tr( );
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tr( 1 _  2) = tr( 1) _ tr( 2);

tr(E( 1UA  2)) = �x 0:

0

B
B
B
B
B
B
B
B
B
B
@

x0 : : : :
...

x i :

(
tr( 2) ,if qi 2 F

ff otherwise

)

_
�

tr( 1) ^
W

a2 �
hai (

W

qj = � (qi ;a)
x j )

�

...

xn : : : :

1

C
C
C
C
C
C
C
C
C
C
A

;

tr(E( 1RA  2)) = �x 0:

0

B
B
B
B
B
B
B
B
B
B
@

x0 : : : :
...

x i :

(
tr( 2) ,if qi 2 F

tt otherwise

)

^
�

tr( 1) _
W

a2 �
hai (

W

qj = � (qi ;a)
x j )

�

...

xn : : : :

1

C
C
C
C
C
C
C
C
C
C
A

:

The latter translations use simultaneous �xpoint notation which is explained in Def. 47.

Note that the structure of each of the inner �xpoint formulas is in principle the same as

in the translation of CTL (see Ex. 10). The di�erence is that only such successors are

considered which correspond to transitions inA and that the checks of the subformulas

tr( 2) respect �nal states ofA .

Strictness follows from the fact that the alternation hierarchy in L � is strict and that the

formulas resulting from tr have alternation depth 0. Hence, any formula expressible in

CTL[REG] has alternation depth 0, but there exist L � -formulas with alternation depth

greater than 0 which cannot be expressed by formulas with lesser alternation depth.

Note that if the language adornment for theR-operator is given as an NFA, the translation is

of exponential size, because the NFA has to be translated into a DFA �rst. The construction

is not correct for NFAs in general. See the introductory paragraph of Sec. 4.5 for details.

2

For certain language classesL which are richer than REG, the following theorem con�rms

that the CTL-related logical frameworks using such languages fromL as adornments are

indeed capable of expressing non-regular program properties.
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Theorem 45 Let L be a class of formal languages s.t.L = f anbn j n 2 Ng 2 L . Then for

all language classesB

CTL[L ; B ] � L � :

Proof The formula used to show non-regularity of PDL[L ] for any class of languages

containing at least f anbn j n 2 Ng in Lemma 1 is { as can easily be seen { from the

fragment PDL6?[L ] without tests. Hence, by Thm. 47, it can be translated into EF[L ]. So

already the fragment EF[L ] contains a formula which has no equivalent inL � . 2

Corollary 8 For all language classesB ,

CTL[SML; B ] � L � :

Proof This follows from Thm. 45 and the fact that f anbn j n 2 Ng is an SML [HPS83].

2

But just as it is the case with PDL[L ], parametric CTL is no extension ofL � . This follows

from a theorem in [ALL+ b] in which it is proved that CTL[ L ] is an entirely di�erent

extension of CTL than CTL� is. Remember that CTL� is a strict fragment of L � .

Theorem 46 ([ALL + b]) For all language classesA; B , we have

CTL[SML; B ] � CTL � :

CTL � � CTL[A; B ]:

This result is a consequence of the fact that the fragment EF[f an bn j n 2 Ng] contains

non-regular properties inexpressible in CTL� . On the other hand, fairness is expressible in

CTL � but not in CTL[ A; B ].

The hLi -operator of parametric PDL is clearly equivalent to theEFL -operator in parametric

CTL. This observation leads to the following theorem.

Theorem 47 For all language classesL ,

EF[L ] � PDL6?[L ]:

Proof Note that both logics do only di�er in the hLi andEFL constructs. Their semantical

equivalence is trivial to prove:s j= EFL ' i� there exists a path � = s0
a1��! s1

a2��! : : : ai��! si ,

s.t. s0 = s and a1 : : : ai 2 L and si j= ' i� s j= hLi ' . 2
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On the other hand, there seems to be no equivalent in PDL6?[L ] for the expression scheme

E( 1RL  2) or evenEGL ' . We prove this up to CFL with help of the following lemma stating

that there exists an EG-formula inexpressible in EF[CFL].

Lemma 23

EG[f � ; � � g] � EF[CFL]:

Proof Let w=L = f v 2 � � j wv 2 Lg for any w 2 � � and any formal languageL. De�ne

the Fischer-Ladner-closureCl(' ) for any formula ' 2 EF[L ] as the least set satisfying the

following:

� ' 2 Cl(' ).

� if :  2 Cl(' ) then  2 Cl(' ).

� if  1 _  2 2 Cl(' ) then  1;  2 2 Cl(' ).

� if EFL  2 Cl(' ) then EFf agEFa=L  2 Cl(' ) and  2 Cl(' ) for all a 2 �.

Furthermore, de�ne the quotient of a transition system T = ( S; �! ; `) under a set of

formulas � � EFL as T =� = ( S=� ; �! ; `=�) with

� S =� = f [s] j s 2 Sg where [s] = f t 2 S j s � � tg and s � � t i� 8' 2 � : s j= T ' i�

t j= T ' g,

� [s] a�! [t] i� 9s0; t0 with s0 � � s, t0 � � t, and s0 a�! t0,

� `=�([ s]) = `(s) \ �.

We do now show that for allT with states s 2 S and all ' 2 EF[L ] for any L , we have

s j= T ' i� [ s] j= T =Cl(' ) ' by induction on the structure of ' . The propositional cases are

entirely trivial. Now assume s j= T EFL  and let s0
a1 :::an����! sn be a path witnessing this,

hences = s0, a1 : : : an 2 L and sn j= T  . By de�nition of �! the path [s0] a1 :::an����! [sn ]

indeed exists and by induction hypothesis we have [sn ] j= T =Cl(' )  .

For the other direction assume [s] j= T =Cl(' ) EFL  and let [s0]
a1 :::an����! [sn ] be a path witnessing

this, hences = s0, a1 : : : an 2 L and [sn ] j= T =Cl(' )  .

Note that for all 0 � i � n we have [si ] j= T EFa1 :::a i =L  . From this follows t j= T EFa1 :::a i =L  

for all t 2 [si ]. But then the path s0
a1 :::an����! sn exists and by induction hypothesis we have

sn j= T  which concludes the proof.
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We �rst prove that EG[ f � ; � � g] � EF[REG]. For this we need to prove thatT =Cl(' ) has

only �nitely many states for any ' 2 EF[REG].

But this follows from Thm. 1 (Myhill-Nerode) and the construction of Cl(' ), because there

are only �nitely many elements in Cl(' ) which can be distinguished w.r.t.j= T by any two

states.

On the other hand, consider the transition systemT = ( f si j i � 0g; �! ; `) with si �! sj i�

j = i � 1 and s0 �! s0 (depicted below), and`(q) = f s0g.

s0

q

s1 s2 s3 s4 s5 ...

Clearly, we havesi j= T AFq for all i 2 N. However, suppose there was an EF[REG] formula

� equivalent to AFq. By the above, we havesi j= T AFq i� [ si ] j= T =Cl(� ) � . SinceT =Cl(� )

is �nite, there must exist a [sj ] with j > 0 and [sj ] �! [sj ]. But then [sk ] 6j= AFq for every

k � j .

That EG[f � ; � � g] � EF[CFL] now simply follows from the fact that the model used in the

proof above uses no transition labels and that CFL over single-letter alphabets are REG

and hence the same proof applies.

Theorem 48 For all language classesL 2 f REG, SML, SSML, VPL, CFLg,

PDL6?[L ] � CTL[L ; f � ; � � g]:

Proof � follows from Thm. 47 and the fact that EF[L ] is syntactically included in

CTL[L ; f � ; � � g]. Strictness follows from Lemma 23 which states that there exists a formula

' in EG[f � ; � � g] inexpressible in EF[CFL]. 2

Regarding a comparison between the expressivity of di�erent CTL[ L ] fragments, the fol-

lowing correspondence holds.

Theorem 49 For all L ; L 0; N ; N 0, if L � N and L 0 � N 0 then

CTL[L ; L 0] � CTL[N ; N 0]:

Proof Trivial. More languages at hand cannot decrease the expressive power. CTL[L ; L 0]

is a syntactical fragment of CTL[N ; N 0]. 2
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But for certain language classes, we can strengthen the above result to strictness.

Theorem 50

CTL[REG] � CTL[VPL] � CTL[DCFL] :

Proof The containment of CTL[REG] in CTL[VPL] is a consequence of Thm. 49. Strict

separation follows from Thm. 44 stating that CTL[REG] is strictly contained in L � and

Cor. 8 stating that CTL[SML] is strictly more expressive than L � . Again, by Thm. 49

CTL[SML] is contained in CTL[VPL] which �nishes the proof.

Containment of CTL[VPL] in CTL[DCFL] is again a consequenceof Thm. 49 while strict-

ness has been proved in [ALL+ b]. The proof uses a theorem which states that every

satis�able CTL[VPL] formula has a model which is a visibly pushdown system. Then a

CTL[DCFL] formula is constructed whose models are bisimilar to an LTS which can not

even be represented by a pushdown system. 2

Fig. 4.2 summarises the expressivity results on CTL[L ] . A line from a lower positioned

item to a higher positioned item denotes inclusion of the former in the latter. If it is dashed

this means that the inclusion is strict.

4.5 Model Checking

In this section we intend to determine the computational complexity of model checking

CTL[A; B ] w.r.t. the automata classesA and B . We focus on robust classes such as NFA,

VPA, PDA, etc.

First of all, we observe that theEUA and ERA are two fundamentally di�erent operators.

Take some formula of the formE(p1UA p2), whereA is some automaton andp1; p2 are propo-

sitions. Note that the existential path quanti�cation and the existential quanti�cation over

runs of A in the acceptance condition for a nondeterministic automaton A commute. This

allows product constructions ofA and the underlying LTS plus some overhead stemming

from the checks ofp1 and p2 along the paths. If there is a witness for non-emptiness of

the product automaton then it serves simultaneously as a path in the LTS and a word

accepted byA , which is the pattern constituting the semantics ofE(p1UA p2).

In fact, the task is very similar to model checking a formulahAip2 2 PDL[L ], where a

close relationship between the REG-intersection problem for a language classL and model

checking PDL[L ] was established. The formulaE(p1UA p2) only di�ers from hAip2 in the
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Figure 4.2: Expressive power of CTL[L ] .
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requirement of recurrent propositionsp1 along the witnessing path. As has been shown

before, the actual equivalent ofhAip2 in CTL[ A; B ] is EFA p2.

The situation changes when we take a formula of the formE(p1RA p2) for some nondetermin-

istic automaton A . Note that, here, the path is again existentially quanti�edbut the runs

of the automaton on any pre�x are implicitly universally quanti�ed by the RA -operator (\on

all pre�xes it either holds that A does not accept the pre�x or . . . "). The quanti�cation

does no longer commute and this prevents using product constructions in the same way as

for EUA formulas, because it requires to keep a protocol of all nondeterministic choices of

A w.r.t. the currently considered path in the LTS, since everysuch choice might end up in

an accepting state. If on the other hand the automaton is deterministic, the problem does

not arise because no matter which LTS path is chosen as a witness for satisfaction, the au-

tomaton has just one state at every moment while reading the labels along the path. This

regains the property of local determinateness and simpli�es model checking signi�cantly.

Due to this di�erence we need to investigate CTL[A; B ] not only w.r.t. the language class

parameter for the two di�erent temporal subformula types but also w.r.t. the representing

automaton model, i.e. deterministic or nondeterministic.

The following algorithm serves as a general scheme which deals with the common base

of all CTL[A; B ] fragments under consideration here. In particular, the treatment of

temporal formulas is externalised into subroutines and simpli�ed by preparational steps on

the structure of the formula and model.

MC-CTL( T , ' ) =

let (S; �! ; `) = T in

case ' of

q : `(q)

:  : S n MC-CTL( T ,  )

 1 _  2 : MC-CTL( T ,  1) [ MC-CTL( T ,  2)

E( 1QA  2) : let p1; p2 : fresh propositionsin

`0 := `[p1 7! MC-CTL( T ;  1)];

`0 := `0[p2 7! MC-CTL( T ;  2)];

let T 0 = ( S; �! ; `0) in

if Q = U then MC-U(T 0; p1UA p2)

else MC-R(T 0; p1RA p2)

Algorithm MC-CTL takes an LTS T and a formula ' 2 CTL[A; B ] and returns the set

of states in which ' holds. In its current form, MC-CTL uses oracles MC-U and MC-R
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(taking arguments of the same type as MC-CTL) to compute the result set for EU[A] and

ER[B ] formulas. Before a call of the subroutines MC-U or MC-R takes place, the original

formula ' of the form E( 1QA  2), where Q 2 f U; Rg, and the LTS T are transformed:

the subformulas 1 and  2 are evaluated recursively in a �rst step and then replaced in'

by fresh atomic propositionsp1 and p2. The labeling function is updated accordingly, s.t.

`0(p1) contains exactly the states which satisfy 1 and `0(p2) those which satisfy 2.

The proof of soundness and completeness is trivial under theassumption of soundness

and completeness of the subroutines MC-U and MC-R. It consists of a straight-forward

structural induction on the input formula ' .

We remark that algorithm MC-CTL has two main bene�ts for our purposes. First of all,

the subroutines MC-U and MC-R are called on 
attened versions of the original formula

which now contain propositions as nested subformulas only,i.e. only have to deal with

restricted fragments of EU[A] and ER[B ] respectively. This will of course simplify any

further analysis of these subroutines. We denote these restricted fragments by EUP [A] and

ERP [A].

Furthermore, upper bounds on the computational complexityof MC-CTL can be derived

from upper bounds on MC-U or MC-R, respectively, depending on which of the corre-

sponding model checking problems for EUP [A] and ERP [B ] formulas is harder to solve.

Note that MC-CTL runs in time O(j' j) when regarding MC-U and MC-R as oracles.

We now turn our attention to concrete instances of the automata classesA and B as

restricting parameters for EUP [A] and ERP [B ]. As mentioned before, model checking

E(p1UA p2) is closely related to model checking the PDL formulahAip2. Both formulas hold

if there is a path in the model which is labeled with aw 2 L (A ) and ends in a state labeled

with p2. The di�erence is simply that the E(p1UA p2) operator additionally requiresp1 to

hold in every state along the path except the last.

Following this observation, it is tempting to try to establish reductions between altered

versions of the REG-intersection-,L -reachability- and the model checking problem for

EUP [A] in a similar fashion as for model checking PDL[L ]. In fact, a generalisation of

the L -reachability problem which takes into account the propositions of the LTS in the

way required can easily be found and shown to be equivalent tomodel checking EUP [A].

However, this little di�erence destroys the equivalence tothe REG-intersection problem

and we are not aware of any natural counterpart to cover the discrepancy. Any repair of

this defect seems technically cumbersome while upper bounds can be found much easier

by directly applying product construction techniques for areduction on non-emptiness of
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certain automata classes as follows.

Lemma 24 Model checking EUP [PDA] is in PTIME.

Proof By reduction to the non-emptiness problem of PDA. Let' 2 EUP [PDA], T =

(S; �! ; `) be an LTS ands 2 S. Clearly, ' is of the form E(p1UA p2), where p1; p2 2 P and

A = ( Q; � ; � ; �; q0; F ) is a PDA. To solve the question whethers j= ' , we construct a PDA

A T = ( Q � S ; � ; � ; � 0; (q0; s); F 0), where

� F 0 = f (q; s) j q 2 F and s 2 `(p2)g,

� � 0((q; s); a; 
 ) = f (q0; s0) j q0 2 � (q; a; 
 ) and s a�! s0 and s 2 `(p1)g.

Note that jA T j = O(jAj � jT j ).

Now, assumeA T does not reject every word and letw 2 � � be a witness for this. Note that

any accepting run ofA T on w simulates an accepting run ofA on w and synchronously

follows aw-labeled path inT along whichp1 holds in every state except the last. Further-

more, from the requirement on accepting states we have that the last state is in labeled

with p2. Hence,w 2 L (A ) and there exists at 2 S s.t. s w�! t with the required p1 and p2

labels on states. It is well known that the non-emptiness problem for PDA is in PTIME

(cf. [HU79]). From this and the fact that the size ofA T is polynomial in jAj and jT j

follows the claim. 2

Theorem 51 Model checking EUP [LIL] is in PTIME.

Proof We prove this by a linear-time Turing-reduction on the modelchecking problem

for PDL[LIL] which itself is in PTIME by Cor. 5. Let ' 2 EUP [LIL] and T = ( S; �! ; `) be

an LTS. Clearly, ' is of the formE(p1UA p2), wherep1; p2 2 P and A is a LIL representation.

We compute an LTST 0 obtained from T by the following steps:

� Remove all states inT in which p1 does not hold and then remove transitions leading

nowhere.

� Create a new state in which propositionp2 holds and adda-transitions to this state

from all states which sustained step 1 and have ana-transition leading to a state in

which p2 holds in the original LTS T .
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Now, for any states 2 S, we have thats j= T E(p1UA p2) i� s j= T 0 hAip2. Note that in every

state along every path inT 0 proposition p1 holds except for possibly the last one in which

p2 holds. All labels between such states are conserved fromT and hence all path labels

w 2 L (A ) between the remaining states are intact. Note also that thepotential doubling

of a transition which leads to the new state does no harm at all.

The above sketched algorithm runs in timeO(j �! j ) and the resulting LTS has only one

additional state and j� j additional transitions in the worst case.

We therefore obtain a PTIME algorithm from this. 2

Theorem 52 Model checking EUP [IL] is in EXPTIME .

Proof This is proved by a linear-time Turing-reduction on the model checking problem

for PDL[IL] in exactly the same way as for Thm. 51. Note that model checking PDL[IL]

is in EXPTIME by Thm. 4. 2

Theorem 53 Let A 2 f DFA, NFA, DVPA, VPA, DPDA, PDA g. Model checking EU[A]

is PTIME-complete.

Proof Let T = ( S; �! ; `) be an LTS. In order to show containment within PTIME it

su�ces to show the statement for the class PDA since DFA, NFA,DVPA, VPA and DPDA

are subclasses of PDA. For the logic EU[PDA], algorithm MC-CTL runs in time O(j' j) for

any formula ' and does only call the oracle MC-U and never MC-R. The reduction used

in the proof of Lemma 24 allows to implement MC-U by calling the emptiness check of the

product automaton (which itself is a PTIME procedure) once for eachs 2 S. Altogether

we haveO(j' j � jSj ) calls of a PTIME procedure and therefore established the claim.

Hardness follows from the fact that the logic EF[A] is a sublogic of EU[A] for all A. From

Lemma 47 we have that EF[A] is equi-expressive to PDL[A].

Therefore hardness results transfer from PDL[A] which in the cases of NFA, VPA, DPDA

and PDA yield PTIME. 2

Theorem 54 Model checking EU[LIL] is PTIME-complete.

Proof A PTIME implementation for MC-U has been given in Thm. 51. Thecomplete

algorithm MC-CTL calls MC-U only O(j' j) times for any formula ' 2 EU[LIL] (and never

MC-R). 2

Theorem 55 Model checking EU[IL] isEXPTIME -complete.
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Proof An EXPTIME implementation for MC-U has been given in Thm. 52. The com-

plete algorithm MC-CTL calls MC-U only O(j' j) times for any formula ' 2 EU[IL] (and

never MC-R).

Theorem 56 Model checking EF[CSL] is undecidable.

Proof From Lemma 47 we have that PDL6?[CSL] � EF[CSL] and that the translation is

computable. Cor. 3 states that model checking PDL6?[CSL] is undecidable. 2

While the similarities between PDL[A] and EU[A] are by now also re
ected in the com-

putational complexities of model checking, the situation is very di�erent with the ER[ A]

fragment. As has been stated earlier, it is of great importance whether the automata under

consideration are deterministic or nondeterministic. We start with deterministic automata.

Lemma 25 Model checking ERP [DPDA] is in PTIME.

Proof By a reduction to the problem of model checking a �xed LTL formula on a PDS.

Let ' 2 ERP [DPDA], T = ( S; �! ; `) be an LTS and s 2 S. Clearly, ' is of the form

E(p1RA p2), where p1; p2 2 P and A = ( Q; � ; � ; �; q0; F ) is a DPDA. We construct a PDS

TA = ( Q�S [ f g; bg; � ; � ; `0), where`0 : 2P [ f pbg ! Q�S [ f g; bg (for a fresh proposition

pb) is de�ned as `0(q) = Q � `(q), if q 2 P and `0(pb) = f bg otherwise.

Intuitively, g represents \good" andb \bad" states, i.e. dead-end states, in which the

property which ' expresses has been ful�lled or violated, respectively.

Furthermore, � contains the following transition rules:

((q; s); 
 ) ,!

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

(g; �) ,if ( q; s) 2 `0(p1) and

(q 2 F implies (q; s) 2 `0(p2)) :

(b; �) ,if q 2 F and (q; s) =2 `0(p2):

((q0; s0); w) ,if none of the above match

and there existsa 2 �, s.t.

s a�! s0 and (q0; w) 2 � (q; a; 
 )

for some
 2 � ; w 2 � � :

Note that jTA j = O(jT j � jAj ).

Now consider the LTL formulaFpb. We show that s 6j= T E(p1RA p2) i� (( q0; s); � ) j= TA Fpb.
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The \only-if" direction: Assume s 6j= T E(p1RA p2). This means that on all paths starting

in s, (: p1UA : p2) holds and hence on all paths aw = a1 : : : an 2 L(A ) and s0; : : : ; sn exist,

s.t. s0
a1��! s1 : : : an��! sn , s = s0 and for all i � n we havesi j= T : p1 and sn j= T : p2.

Since A is deterministic, every path in the corresponding PDS (starting in (( q0; s); � ))

labeled with such aw runs through a state ((q; sn); v), where q 2 F and v 2 � � . Since

(q; sn) =2 `0(p2), every such path ends in the next state which is (b; �), where pb holds.

Therefore the LTL formula Fpb holds in TA with the initial state being (( q0; s); � ).

The \if" direction: Assume ((q0; s); � ) j= TA Fpb. Hence, every path� starting in (( q0; s); � )

ends in a state in whichpb holds and therefore has to run through a state ((q; t); v), where

q 2 F , (q; t) =2 `0(p2) and v 2 � � .

Note that since (g; �) and (b; �) are dead-ends inTA , no state along� may satisfy either of

the constraints for both transition types leading to such a dead-end and only transitions of

the third kind can be taken. Hence, for all states ((q0; s0); v0) along � , we have that before

((q; t); v) is reached, (q0; s) 62̀ 0(p1) must hold.

Therefore on all paths aw 2 L (A ) exists, s.t. s w�! t and along each such path: p1 holds

until (( q; t); v) is reached, where: p2 holds. Hence,s j= T A(: p1UA : p2). From this follows

clearly that s 6j= T E(p1RA p2).

Finally, it is known that model checking a �xed LTL formula on a PDS is in PTIME

[BEM97]. Since the size ofTA is polynomial in jT j and jAj the claim follows. 2

Theorem 57 Let A 2 f DFA, DVPA, DPDA g. Model checking ER[A] is PTIME-complete.

Proof Along the same lines as the proof of Thm. 53. Membership in PTIME follows from

the PTIME implementation of MC-R in algorithm MC-CTL given i n Lemma 25 which is

called at most O(j' j) times for a formula ' 2 ER[DPDA]. Since DFA and DVPA are

subclasses of DPDA, the result transfers to these. PTIME-hardness follows from PTIME-

hardness of the corresponding PDL[A] fragments. 2

Regarding nondeterministic machine models, the model checking problem seems to become

more di�cult. Here, we obtain PSPACE-hardness already for the class NFA.

Lemma 26 Model checking ERP [NFA] is in PSPACE.

Proof By a reduction to the problem of model checking a �xed CTL formula on an LTS

of exponential size. Let' 2 ERP [NFA], T = ( S; �! ; `) be an LTS andr 2 S. Clearly, ' is

of the form E(p1RA p2), where p1; p2 2 P and A is an NFA.
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First of all, we construct a DFA D = ( Q; � ; �; q0; F ) from A. The size ofD is O(2jAj ). Now

we construct an LTSTD = ( Q � S ; ��! ; `0) with

� (q; s) ��! (q0; s0), if there exists a 2 � s.t. q0 2 � (q; a) and s a�! s0.

� `0(p) = Q � `(p), if p 2 P and `0(pf ) = F � S for a fresh propositionpf otherwise.

Note that the size ofTD is O(jT j � 2jAj ).

Intuitively, the determinisation enables to annotate eachmodel state with a unique indica-

tion of the corresponding automaton state for any path leading to this state. If the NFA is

not transformed into a DFA, such an annotation is useless since it just re
ects an arbitrary

run of the NFA and makes no statement about the fact whether the automaton actually

could accept the path seen so far in some other run on the same path.

The product construction has eliminated the edge labels from T and compensates the loss

of information by the additional proposition pf which indicates accepting states of the

DFA. It is now possible to model check the CTL formulaE(p1R(pf ^ p2)) on the product

LTS TD which respects the accepting states. We conclude by showing

r j= T E(p1RA p2) i� ( q0; r ) j= TD E(p1R(pf ^ p2)) :

The \only-if" direction: Assume r j= T E(p1RA p2) and let � = s0
a1��! s1

a2��! : : : be a path

in T , where s0 = r and for all si we have that if a1 : : : ai 2 L (A ) then si j= T p2 or there

exists k � i s.t. sk j= T p1.

Clearly, there is a corresponding path� 0 = ( q0; s0) �! (q1; s1)
a2��! : : : in TD where all states

(qi ; si ) are labeled withpf if a0 : : : ai 2 L (A ). Since the labels are otherwise inherited from

T , we have that � 0 is a witness for (q0; r ) j= TD E(p1R(pf ^ p2)).

The \if" direction: The witnessing path is constructed entirely dual to the other direction.

Model checking a �xed CTL formula is well-known to reside in NLOGSPACE. Since the

product LTS has sizeO(jT j � 2jAj ) we arrive at a compound complexity of PSPACE using

Savitch's theorem (NPSPACE = PSPACE). 2

Theorem 58 ([ALL + b]) Model checking ER[NFA] is PSPACE-complete.

Proof The upper bound follows the same lines as the proof of Thm. 53.Membership

in PSPACE follows from the PSPACE implementation of MC-R in algorithm MC-CTL

given in Lemma 26 which is called at mostO(j' j) times for a formula ' 2 ER[NFA].

PSPACE-hardness is proved in [ALL+ b]. 2
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The theorem holds already for the fragment EG[NFA] and a �xedtransition system of size

1. The proof works by a reduction from the well-knownn-tiling problem resembling the

halting problem of a nondeterministic linear-space bounded Turing Machine. Two aspects

are worth noting. First, this result { as opposed to the one for the fragment EF[A] {

heavily depends on the fact thatA is a class of nondeterministic automata. ForA = DFA

for instance, there is no such lower bound unless PSPACE = PTIME.

The other aspect is the fact that the formulas constructed inthis reduction are of the form

EGA ff , no boolean operators, no multiple temporal operators, andno atomic propositions

are needed. The principle is as follows. Tilings, successful or not, can be represented by

in�nite words over the alphabet of all tiles. This basicallyconcatenates the entire plane

row by row. However, unsuccessful tilings must have a �nite pre�x which is a word that

cannot be extended to a successful tiling. The reduction then constructs an automaton

A which recognises the set of all words representing a pre�x ofa tiling which cannot be

extended to become successful. Every possible tiling is represented by a path in a one-

state transition system with universal transition relation. The question whether or not a

successful tiling is possible then reduces to the question whether or not this single state

satis�es the formula EGA ff , i.e. whether or not there is a path such that no pre�x of that

path represents an error in the tiling of the corresponding plane.

Theorem 59 ([ALL + b]) Model checking ER[VPA] isEXPTIME -complete.

Proof The upper bound is easily obtained as follows. By Thm. 6 we canconstruct a

DVPA of exponential size from a given VPA. The result then follows from the PTIME

upper bound for model checking ER[DVPA] established in Thm.57.

The lower bound has been proved in [ALL+ b] by a reduction from the halting problem

for alternating linear-space bounded Turing machines to the model checking problem for

EG[VPA]. It does already hold for transition systems of size1. 2

Theorem 60 ([ALL + b]) Model checking ER[PDA] is undecidable.

Proof The theorem has been proved in [ALL+ b] and holds already for the fragment

EG[PDA] and a �xed transition system of size 1. The proof is, again, by a reduction from

a tiling problem. This time we consider the octant tiling problem which asks for a successful

tiling of the plane which has successively longer rows [vEB97]. The plane can, again, be

represented by an! -word by reading it o� row-by-row and, hence, as a path in a one-state

transition system. Using PDA it is then possible to link a cell in one row of unbounded
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length to the cell in the same column in the following row. Thus, it is then again possible

to construct a PDA A which recognises all pre�xes of a word representing a tilingwhich

cannot be made successful, or a word in which successive rowsdo not grow in length.

The tiling problem reduces to model checking the formulaEGA ff again. Since the octant

tiling problem resembles the halting problem for a Turing Machine with unbounded space

consumption, it is clearly undecidable which carries over to model checking EG[PDA]. 2

Summary The previous theorems on di�erent fragments of CTL[A; B ] cover all cases

necessary to give matching upper and lower bounds on model checking the full logics.

The following table summarises the computational complexities of each combination of

automata classes in either fragment under consideration. If complexity classCis positioned

in row x and columny then the logic CTL[A; B ] is C-complete, whereA occurs leftmost in

row x and B occurs on top of columy. These results are simple corollaries of the theorems

in this section.

DFA DVPA DPDA NFA VPA PDA

REG

PTIME PSPACE
VPL

CFL

LIL

IL EXPTIME

CSL undecidable

Figure 4.3: Complexity of model checking CTL[A; B ].

For the EU[A] fragment, the representation of formal languages { as longas they ful�ll the

basic requirements aforementioned { is not relevant. For formulas of ER[B ] it is however

relevant in terms of deterministic and nondeterministic automata models. Correspond-

ing results for other representations can be transferred aslong as the translation to the

adequate automaton class takes at most polynomial time.

Despite the high expressivity in comparison to classical temporal logics, the table shows

that there is a wide range of logics with very feasible model checking complexity. Note that

formulas of e.g. CTL[LIL; DPDA] are capable of describing path properties even beyondthe

context-free, yet the model checking problem is solvable inPTIME. But even the greatest

fragment of CTL[TM; TM], namely CTL[IL ; VPA] is still model checkable inEXPTIME .
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4.5.1 Model checking EU[PDA]

The reductions in the proofs of the previous sections provide tight bounds on the model

checking problems for various logics, they may however not be suitable for ad-hoc imple-

mentations. In this section and the following, we give concrete implementations of the

subroutines MC-U and MC-R for key classes of automata which complete the algorithm

MC-CTL. We start with an abstract version of MC-U for EU[PDA] formulas and explain

each subroutine in the following.

MC-U(T 0, E(p1UA p2)) =

let T = reduce-LTS(T 0) in

let A T = build-product (T , A ) in

let M = compute-pre(A T ) in

extract-states (M )

MC-U gets as arguments an LTST 0and a formulaE(p1UA p2), whereA is a PDA. Regardless

of the operations ofA , in order to �nd a path along which p1 holds until p2 holds, we

may eliminate all states ofT 0 in which neither proposition holds. We call this procedure

reduce-LTS and assume that it takes as argument the LTST 0 = ( S0; �! 0; `0) and returns

an LTS T = ( S; �! ; `), s.t.

� S = f s 2 S 0 j s 2 `0(p1) or s 2 `0(p2)g,

� �! = �! 0 \ S � � � S ,

� ` : f p1; p2g ! 2S is the a function with `(p) = `0(p) n S.

Recall the product PDA constructed in the proof of Lemma 24 and assume it is computed

by a procedurebuild-product which takes the reduced LTST = ( S; �! ; `) and a PDA

A = ( Q; � ; �; q0; F ) and returns the product automatonA T = ( Q � S ; � ; � ; � 0; (q0; s); F 0),

where

� F 0 = f (q; s) j q 2 F and s 2 `(p2)g,

� � 0((q; s); a; 
 ) = f (q0; s0) j q0 2 � (q; a; 
 ) and s a�! s0 and s 2 `(p1)g.

for an arbitrary s 2 S in the starting state (q0; s) of A T . It is arbitrary, because we will use

A T rather in the fashion of a pushdown system and compute predecessor con�gurations in

a bottom-up algorithm where the starting state does not matter.



102 4. Non-Regular Computation Tree Logic

Consider the set of con�gurationsConf(A T ) = f (q; s; w) j q 2 Q and s 2 S and w 2 � � g

which A T may take. We de�ne the set of goal con�gurationsGoal(A T ) as F 0� � � and the

set of starting con�gurations asStart(A T ) = f q0g � S � f � g.

Furthermore, de�ne the set of (immediate) predecessors of aset of con�gurations C �

Conf(A T ) as

Pre(C) = f (q; s; 
w) 2 Conf(A T ) j there exists (q0; s0; v0w) 2 C

and a 2 � s.t. (( q0; s0); v0) 2 � 0((q; s); a; 
 )g:

Lemma 27 Let c0 = ( q0; s0; � ) be in Start(A T ). Furthermore, let A 0
T be de�ned asA T ,

except for the starting state which is (q0; s0).

c0 2 Pre� (Goal(A T )) i� s j= T E(p1UA p2):

Proof \only-if-direction": Clearly, cg is an accepting con�guration which is reachable

from c0 and henceL (A 0
T ) 6= ; . Since the starting state ofA 0

T has been exchanged to �t

the requirements of the proof in Lemma 24, the result is an immediate consequence.

\if-direction": If s j= T E(p1UA p2) then L (A 0
T ) 6= ; . From this again follows the claim. 2

This reduces the task of determining the set of states in which E(p1UA p2) holds to the

task of computing Start(A T ) \ Pre� (Goal(A T )) and extracting the model states from the

resulting con�gurations which are exactly thosec0 for which Lemma 27 applies.

Our procedure for the computation ofPre� is a specialisation of the idea found in [BEM97].

The procedurecompute-pre takes the product automatonA T and computes the set of its

predecessor con�gurations. The basic data structure on which the procedure operates is

called a multi-automaton which resembles an NFA with every state being a starting state.

De�nition 39 (Multi-Automaton) Let A T = ( Q � S ; � ; � ; � 0; (q0; s); F 0) be a PDA. A

multi-automaton for A T is a 5-tupleM = ( Q � S ; �! ; F 0), where

� Q � S is a set of (product) states,

� F 0 is the set of �nal states inherited fromA T ,

� �! � (Q � S ) � � � (Q � S ) is the transition relation.

We use in�x notation for the transition relation �! and write (q; s) 
�! (q0; s0) instead of

((q; s); 
; (q0; s0)) 2 �! . We also extend�! to w 2 � � in the same way as for an LTS.
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A multi-automaton accepts a set of con�gurationsC = f (q; s; w) j 9(q0; s0) 2 F 0 s.t.

(q; s) w�! (q0; s0)g.

Intuitively, compute-pre builds a multi-automaton which accepts all goal con�gurations

initially and successively adds transitions which enrich the set of accepted con�gurations

to the set of predecessor con�gurations. The helper routinebuild-transitions (A T ) in

the following is expected to return the initial transition relation of a multi-automaton with

self transitions on all �nal states for all stack symbols:�! = f ((q; s); 
; (q; s)) j (q; s) 2

F 0 and 
 2 � g. Hence, the initial set of accepted con�gurations isF 0 � � � , i.e. the set

Goal(A T ). In order to distinguish the previously computed transition relation from the

current one, we use�! l and �! c .

compute-pre(A T ) =

let (Q � S ; � ; � ; � 0; (q0; s); F 0) = A T in

�! c := build-transitions (A T )

repeat

�! l := �! c

for all ((q; s); 
 ) ,! ((q0; s0); w) 2 �

if 9(q00; s00) 2 Q � S s.t. (q0; s0) w�! (q00; s00)

then �! c := �! c [ ((q; s); 
; (q00; s00))

until �! c = �! l

return (Q � S ; �! c ; F 0)

Lemma 28 (Termination) Procedurecompute-pre(A T ) runs in time O(jQj2 � jSj2 � j � j �

j� j) for a PDA A T = ( Q � S ; � ; � ; � 0; (q0; s); F 0).

Proof The repeat -loop �nishes after at most (jQj2 � jSj2 � j � j) � 1 iterations, because

this is the maximum size of�! c and after each iteration, at least one additional transition

must enter �! c to prevent earlier termination. Inside therepeat -loop there arej� j many

checks of theif -condition. These can however be reduced to constant time, since it is only

necessary to check forw-matches of a newly entered transition, because all other checks

are redundant. Note that jwj � 2 in our de�nition of a PDA (it is 0 for pop-, 2 for push-,

and 1 for non-changing stack operations). The costs ofbuild-transitions (A T ) are also

constant in the above worst-case scenario, because initially only one transition may occur

in �! c . 2
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Lemma 29 (Soundness and Completeness) Let M be the multi-automaton computed

by compute-pre(A T ) for the product PDA A T . The set of accepted con�gurations ofM

coincides withPre� (Goal(A T )).

Proof The set of accepted con�gurations ofM at any time during the computation

is C = f (q; s; w) j 9(q0; s0) 2 F 0 s.t. (q; s) w�! c (q0; s0)g, but depends on the monotonically

growing �! c . We start with showing C � Pre� (Goal(A T )) by induction on the sequence of

(di�erent) accepted con�gurations C0; C1; : : : ; Cn of M during the computation.

Initially, C0 is clearly a subset ofPre� (Goal(A T )), since C0 = Goal(A T )).

Now assume ((q; s); 
; (q00; s00)) enters �! c during some iteration inside therepeat -loop and

therefore constitutes someCi +1 . We then have that there exists (q0; s0) and a w 2 � � , s.t.

((q; s); 
 ) ,! ((q0; s0); w) 2 � and (q0; s0) w�! (q00; s00).

Note that every transition added to �! c to constitute Ci +1 comes from a state (q; s) and

leads to a state (q0; s0) which is already connected with a state inF 0. This is due to the

fact that in the if-condition ( q0; s0) w�! (q00; s00) is required and at the beginning only paths

to �nal states exist. Hence, (q00; s00) is either a �nal state or leads to one.

Therefore, the path (q0; s0) w�! c (q00; s00) u�! c f exists, whereu 2 � � and f 2 F 0. But then

(q0; s0; wu) 2 Ci and we have by I.H. that (q0; s0; wu) 2 Pre� (Goal(A T )). But since clearly

((q; s); 
u ) is an immediate predecessor con�guration of ((q0; s0); wu), we have that ((q; s); 
u )

is contained within Pre� (Goal(A T )).

For the direction C � Pre� (Goal(A T )), let ( q; s; w) 2 Pre� (Goal(A T )). This means that

there exists a sequence of con�gurations (q0; s0; w0); (q1; s1; w1); : : : ; (qn ; sn ; wn), s.t.

� (qn ; sn ; wn) 2 F 0 � � � (1)

� (q0; s0; w0) = ( q; s; w) (2)

� for all i � 0 exist vi +1 2 � � and 
 i 2 �: (( qi ; si ); 
 i ) ,! ((qi +1 ; si +1 ); vi +1 ) and

wi = 
 i w0
i and wi +1 = vi +1 w0

i (3)

It su�ces to prove that for all 0 � k � n we have (qk ; sk) wk��! c (qn ; sn ), because then clearly

for all k, (qk ; sk ; wk) 2 C and in particular (q; s; w) 2 C.

For k = n, we have that (qk ; sk) 2 F 0 and since the initial multi-automaton accepts any

w 2 � � on itself for such a state (and in particularwk), the claim follows.

Assume 0� k < n . By I.H. we have (qk+1 ; sk+1 ) wk +1���! c (qn ; sn ). Note that from (3) it

follows in particular that there exist 
; v , s.t. ((qk ; sk); 
 ) ,! ((qk+1 ; sk+1 ); v) and wk = 
w 0
k
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and wk+1 = vw0
k for somew0

k . Hence, (qk+1 ; sk+1 ) vw0
k���! c (qn ; sn ) and therefore there clearly

exists some (q00; s00), s.t. (qk+1 ; sk+1 ) v�! c (q00; s00).

Note that the following conditions are now met:

� ((qk ; sk); 
 ) ,! ((qk+1 ; sk+1 ); v).

� 9 (q00; s00), s.t. (qk+1 ; sk+1 ) v�! c (q00; s00).

Remember that these are exactly the conditions inside therepeat -loop for adding the

transition (( qk ; sk); 
; (q00; s00)) to �! c . We therefore have established the following path:

(qk ; sk) 
�! c (q00; s00) w0
k��! c (qn ; sn). Sincewk = 
w 0

k , the claim follows. 2

Finally, the procedure extract-states takes the multi-automaton M computed by the

subroutine compute-pre and returns f s 2 S j (q0; s; �) 2 Start(A T ) \ Cg , where C is the

set of predecessor con�gurations computed byM . Note that it is easy to determine this

set from given M , since all states inM are starting states and if there is an outgoing

edge from any state, then it leads to a �nal state. Hence this set is equal to f s 2 S j

there existsq0 2 Q; s0 2 S; 
 2 � s.t. ( q0; s) 
�! c (q0; s0)g.

Theorem 61

s 2 MC-U(T ; E(p1UA p2) i� s j= E(p1UA p2):

Proof Follows from Lemmas 27 { 29. 2

4.5.2 Model checking ER[DPDA]

While formulas in EUP [L ] are always satis�ed in the �nite, a temporal formula' = E(pRA q)

in ERP [L ] may also be satis�ed on an in�nite path: clearly, a states satis�es ' , if along

an in�nite path starting in s, the proposition p is never seen andq holds whenever a pre�x

of this path forms a word inL (A ).

The general idea of the model checking algorithm for the logic ERP [DPDA] has been

presented in the proof of Lemma 25 already, where a PDSTA = ( Q � S [ f g; bg; � ; � ; `0)

is constructed as a product of an LTST = ( S; �! ; `) and the DPDA A = ( Q; � ; � ; �; q0; F )

occurring in ' . Model checking' over T is reduced to model checking the �xed LTL

formula Fpb over TA .

We present here a direct implementation which checks the CTLformula EG: pb instead.

Clearly, this formula is dual to the LTL formula such that soundness remains intact.
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Lemma 1 ([BEM97]) Let C be a con�guration of a PDSP = ( Q; � ; � ; `) and q 2 Q.

The control location q is visited in�nitely often along any path of P starting in C i� there

exist con�gurations (p; 
 ); (f; u ) and (p; 
w ) with 
 2 � [ f � g and u; w 2 � � , not all three

equal, s.t. the following conditions are met:

� C 2 Pre� (f pg � 
 � � ).

� (p; 
 ) 2 Pre+ (( f f g � � � ) \ Pre� (f pg � 
 � � )).

The �rst condition simply claims that some con�guration (p; 
v ) is reachable fromC,

where v 2 � � . Intuitively, this con�guration is the starting point of so me kind of cyclic

behaviour of P : the second condition requires that from (p; 
 ) a con�guration ( f; u ) is

reachable which in turn is a predecessor of some con�guration (p; 
w ). Hence the cycle

(p; 
 ); (p; 
w ); (p; 
ww ); : : : can be repeated forever. Taken together, the conditions estab-

lish the following in�nite con�guration path:

C ; (p; 
v ) ; (f; uv ) ; (p; 
wv ) ; (f; uwv ) ; (p; 
wwv ) ; : : :

Note that from this follows that the control state f is visited in�nitely often.

Instead of model checking the LTL formulaFpb we may add a self-transition on the state

g in the PDS TA s.t. the only �nite paths are those which end in con�gurations (b; x) for

somex 2 � � and look for the existence of an in�nite path.

This leads to the following implementation of algorithm MC-R for the logic ER[DPDA].

MC-R(T , E(p1RA p2)) =

let TA = build-PDS(T , A ) in

V := ;

for each (p; 
 ) 2 ((Q � S ) [ f gg) � � do

M := Pre+ ((p; 
 � � ))

if (p; 
 ) 2 M then

V := V[ extract-states (Pre� ((p; 
 )))

return V

Subroutinebuild-PDS is supposed to return the product PDSTA from the proof of Lemma

25 enriched with self-transitions on the stateg in order to have every in�nite con�guration

path satisfy the CTL formula EG: pb sincepb does only hold in dead-ends. The set of LTS

statesV is used to store the result set, i.e. the set of states which satisfy E(p1RA p2).
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The central loop takes each combination of a PDS statep and a stack symbol
 and

checks the existence of a cycle starting in the corresponding con�guration. This is done by

computing a multi-automaton M which represents the set of predecessor con�gurations

Pre+ ((p; 
 � � )) and checking whether (p; 
 ) is a member of this set.

If this is the case, the set of all predecessors of (p; 
 ) is computed in turn, because all these

predecessor con�gurations lead to a cycle. Hence if any suchcon�guration (( q; s)w) is a

member ofStart(TA ) then s satis�es E(p1RA p2) and is added to the result setV . Remember

from Sec. 4.5.1 thatextract-states extracts the LTS states of the intersection ofStart(TA )

and the con�gurations represented by a multi-automaton.

The computation of the relations Pre+ and Pre� is very similar to what the procedure

compute-pre from the previous section does and we therefore do not give details here and

instead refer to [BEM97]. The procedurecompute-pre is just a problem-optimised version

of the general algorithm there.

Theorem 62

s 2 MC-R(T ; E(p1RA p2) i� s j= E(p1RA p2):

Proof Let s 2 MC-R(T ; E(p1RA p2). Sinces 2 V, there exists (p; 
 ) 2 ((Q�S ) [ f gg) � �,

s.t. ((s; q0); � ) 2 Pre� (p; 
 ) and (p; 
 ) 2 Pre+ (p; 
v ) for some v 2 � � . But then there is

an in�nite path � in TA starting in (( s; q0); � ). Since there are no outgoing edges from

con�gurations (b; x) for any x 2 � � and b is the only state in which propositionpb holds,

no state along the LTS-related component of� satis�es pb. Hence ((s; q0); � ) j= TA EG: pb

and by construction ofTA we haves j= E(p1RA p2).

Let s j= E(p1RA p2). By construction of TA there exists an in�nite path starting in (( s; q0); � ).

Any in�nite path has a cycle which is detected by the central loop and results ins being

stored in V. 2
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Chapter 5

Higher-Order Fixpoint Logic

In order to give a logical characterisation ofcontext-free processes(CFP) [BK85], M•uller-

Olm extended L � with a sequential composition operator and named the resulting logic

Fixpoint Logic with Chop1 (FLC) [MO99]. It is capable of expressing many non-regular {

and even non-context-free { program properties and thus exceeds the expressivity of the

L � [MO99, LS06]. Given that FLC is capable of expressing characteristic formulas for the

simulation of CFP, deciding simulation between CFP can be reduced on model checking

FLC. But since this is known to be undecidable, the same holdsfor model checking FLC

[MO99]. On �nite state systems, the model checking problem for FLC is however in

EXPTIME [MO99, LS02, Lan02].

The semantics of anL � -formula ' w.r.t. an LTS is the set of states in which' holds and

hence a predicate on the total state setS. In contrast, the semantics of FLC is given

as a predicate transformer on states, i.e. a (monotonic) function of type 2S ! 2S. The

sequential composition operator \;" is interpreted as function composition, i.e. an FLC

formula  1;  2 is interpreted as [[ 1]] � [[ 2]].

This idea has been generalised in Mahesh and Ramesh Viswanathan's Higher Order Fix-

point Logic (HFL), where L � was equipped with asimply typed� -calculuss.t. now arbitrary

function types based on the primitive type 2S can be built [VV04]. This makes it even more

expressive than FLC. It is possible for instance to expressassume-guarantee-propertiesin

HFL [VV04].

Nevertheless, the model checking problem on �nite state systems remains decidable, since

all occurring functions operate on �nite domains and are thus e�ectively computable.

This section is organised as follows. After the de�nition ofsyntax and semantics, model-

1The name is a reference to Interval Logics, where the sequential composition operator is called \chop".
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theoretic properties and an expressivity analysis, we givea model checking algorithm for

HFL which is a generalisation of the algorithm we presented in [AL07] for the �rst-order

fragment of HFL. Since this algorithm optimises the straight-forward �xpoint approxima-

tion for HFL, we give empirical evidence that it indeed enhances the performance vastly

in practice. Thereafter, we will argue that the analysis of the behaviour of our optimised

model checker can be a valuable tool for the development of new algorithms and demon-

strate this on a couple of examples.

5.1 Syntax and Semantics

De�nition 40 (Type) Let T = ( S; �! ; `) be an LTS and av 2 f� ; + ; 0g be called a

variance. The set ofHFL types is the smallest set containing the atomic typePr and

is closed under function typing with variances, i.e. if� and � are HFL types andv is a

variance, then� v ! � is an HFL type.

De�nition 41 (Term) Let P be a countably in�nite set of atomic propositions, � be a

�nite set of action names,V a countably in�nite set of variables. The set ofHFL terms is

given by the following grammar:

' ::= q j X j : ' j hai ' j ' ' j � (X v : � ):' j � (X : � ):'

whereq 2 P , X 2 V , a 2 �, v is a variance and� is an HFL type.

We use the following standard abbreviations:

tt := q_ : q for someq 2 P ; ff := : tt ;

' ^  := : (: ' _ :  ); ' !  := : ' _  ;

' $  := ( ' !  ) ^ ( ! ' ); �X:' := : �X: : ' [: X=X ];

[a] := :h ai:  ; h�i ' :=
W

a2 � hai ';

[� ]' :=
V

a2 � [a]':

where ' [ =X ] denotes the formula that results from' by replacing simultaneously every

occurrence ofX by  .

De�nition 42 (Formula) A sequence � of the formX v1
1 : � 1; : : : ; X vn

n : � n where X i are

variables,� i are types andvi are variances is called acontext (we assume allX i are distinct).

An HFL term ' has type� in context � if the statement � ` ' : � can be inferred using the
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� ` q: Pr

v 2 f 0; + g

� ; X v : � ` X : �

� � ` ' : �

� ` : ' : �

� ` ' : Pr � `  : Pr

� ` '  : Pr

� ` ' : Pr

� ` hai ' : Pr

� ; X v : � ` ' : �

� ` � (X v : � ):' : (� v ! � )

� ` ' : (� + ! � ) � `  : �

� ` ('  ) : �

� ` ' : (� � ! � ) � � `  : �

� ` ('  ) : �

� ` ' : (� 0 ! � ) � `  : � � � `  : �

� ` ('  ) : �

� ; X + : � ` ' : �

� ` � (X : � ):' : �

Figure 5.1: Type inference rules for HFL.

rules of Fig. 5.1. We say that' is well-formed if � ` ' : � for some � and � . A well-formed

HFL term of type Pr is called aformula. For a variancev, we de�ne its complementv� as

+ if v = � , as � if v = +, and 0 otherwise. For a context � = X v1
1 : � 1; : : : ; X vn

n : � n , the

complement � � is de�ned asX v�
1

1 : � 1; : : : ; X v�
n

n : � n .

The purpose of variances in the typing system is to ensure that in a term � (x : � ):' ,

' is monotonic in x because otherwise the existence of a �xpoint cannot be guaranteed.

While in L � it su�ces to require every occurrence ofx to appear under an even number

of negation symbols, this requirement is too weak in the presence of� -abstractions, since

the actual negative or positive occurrence may be hidden in nested function abstractions

and applications. Consider for instance the following term(taken from [VV04]):

Example 14

� (f : Pr� ! Pr):� (z� : Pr):� (x : Pr):f (: x) _ : z : Pr� ! Pr

Its type derivation is shown in Fig.5.2, wheref appears positively andz negatively. The

variance ofx { seemingly negative { however depends on the variance of itsapplicator f .

If f was anti-monotone,x would occur positively.



f + : Pr� ! Pr; z� : Pr; x+ : Pr ` f : Pr ! Pr

f + : Pr� ! Pr; z� : Pr; x+ : Pr ` x : Pr

f � : Pr� ! Pr; z+ : Pr; x� : Pr ` : x : Pr

f + : Pr� ! Pr; z� : Pr; x+ : Pr ` f (: x) : Pr

f � : Pr� ! Pr; z+ : Pr; x� : Pr ` z : Pr

f + : Pr� ! Pr; z� : Pr; x+ : Pr ` : z : Pr

f + : Pr� ! Pr; z� : Pr; x+ : Pr ` f (: x) _ : z : Pr� ! Pr

f + : Pr� ! Pr; z� : Pr ` � (x : Pr):f (: x) _ : z : Pr� ! Pr

f + : Pr� ! Pr ` � (z� : Pr):� (x : Pr):f (: x) _ : z : Pr� ! Pr

; ` � (f : Pr� ! Pr):� (z� : Pr):� (x : Pr):f (: x) _ : z : Pr� ! Pr
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Functions which do not occur under the scope of a �xpoint quanti�er are not required to

be monotonic. The expressivity of HFL would be limited if non-monotonic functions were

forbidden in general.

In order to de�ne the size of an HFL formula, we need the following.

De�nition 43 The Fischer-Ladner closure of an HFL formula' 0 is the least setCl(' 0)

that contains ' 0 and satis�es the following.

� If  1 _  2 2 Cl(' 0) then f  1;  2g � Cl(' 0).

� If : ( 1 _  2) 2 Cl(' 0) then f:  1; :  2g � Cl(' 0).

� If hai  2 Cl(' 0) then  2 Cl(' 0).

� If :h ai  2 Cl(' 0) then :  2 Cl(' 0).

� If '  2 Cl(' 0) then f ';  ; :  g � Cl(' 0).

� If : ('  ) 2 Cl(' 0) then f: ';  ; :  g � Cl(' 0).

� If �X: 2 Cl(' 0) then  2 Cl(' 0).

� If : (�X: ) 2 Cl(' 0) then :  2 Cl(' 0).

� If �X: 2 Cl(' 0) then  2 Cl(' 0).

� If : (�X: ) 2 Cl(' 0) then :  [: X=X ] 2 Cl(' 0).

� If ::  2 Cl(' 0) then  2 Cl(' 0).

� If : X 2 Cl(' 0) then X 2 Cl(' 0).

� If : q 2 Cl(' 0) then q 2 Cl(' 0).

Note that the size ofCl(' ) is at most twice the length of' . We de�ne j' j := jCl(' )j as the

size of' .

De�nition 44 (Type Semantics) The semantics of a type w.r.t.T is inductively de�ned

as a partially ordered set as follows:

[[Pr]]T = (2 S; � );

[[� v ! � ]]T =
�
([[� ]]T )v ! [[� ]]T ; v � v ! �

�
:
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where for two partially ordered sets (�; v � ) and (�; v � ), v � v ! � denotes the partial order

of all monotone functions ordered pointwise:

f v � v ! � g i� for all x 2 [[� ]]T : f x v � g x:

Moreover, complements in these partially ordered sets are denoted by �f and de�ned on

higher levels as�f x = f x .

A positive variance leaves a partial order unchanged, �� + = ( �; v � ), a negative variance

turns it upside-down to make antitone functions look well-behaved, �� � = ( �; w � ), and a

neutral variance 
attens it, �� 0 = ( �; v � \ w � ).

Lemma 30 ([VV04]) For all HFL types � and �nite LTS T , [[� ]]T is a complete lattice.

Although variances may destroy the lattice structure, theydo only occur on the left of a

typing arrow. The space of monotone functions from a partially ordered set to a complete

lattice with pointwise ordering forms a complete lattice again.

By ? � and > � we denote the bottom and top elements of [[� ]]T .

De�nition 45 (HFL Semantics) Let T be an LTS. An environment � is a partial map

on the variable setV. For a context � = X v1
1 : � 1; : : : ; X vn

n : � n , we say that � respects

�, denoted by � j= �, if � (X i ) 2 [[� i ]]
T for i 2 f 1; : : : ; ng. We write � [X 7! f ] for the

environment that mapsX to f and otherwise agrees with� . If � j= � and f 2 [[� ]]T then

� [X 7! f ] j= � ; X : � , whereX 2 V is a variable that does not appear in �.

For any well-formed term' and environment � j= �, we de�ne the semantics of ' induc-

tively to be an element of [[� ]]T as follows:

[[� ` q : Pr]]T� = f s 2 S j q 2 `(s)g;

[[� ` X : � ]]T� = � (X );

[[� ` : ' : Pr]]T� = S n[[� � ` ' : Pr]]T� ;

[[� ` : ' : � v ! � ]]T� = f 2 [[� v ! � ]]T s.t. �f = [[� � ` ' : � v ! � ]]T� ;

[[� ` ' _  : Pr]]T� = [[� ` ' : Pr]]T� [ [[� `  : Pr]]T� ;

[[� ` hai ' : Pr]]T� = f s 2 S j s a�! t for somet 2 [[� ` ' : Pr]]T� g;

[[� ` � (X v : � ):' : � v ! � ]]T� = f 2 [[� v ! � ]]T s.t. 8x 2 [[� ]]T

f x = [[� ; X v : � ` ' : � ]]T� [X 7! x];

[[� ` '  : � ]]T� = [[� ` ' : � v ! � ]]T� [[� 0 `  : � ]]T� ;

[[� ` � (X : � )' : � ]]T� =
d

f x 2 [[� ]]T j [[� ; X + : � ` ' : � ]]T� [X 7! x] v � xg:
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In the clause for function application ('  ) the context � 0 is � if v 2 f + ; 0g, and is � � if

v = � .

De�nition 46 (Order, Arity) We consider fragments of HFL that can be built using

restricted types only. Note that because of right-associativity of the function arrow, every

HFL type is isomorphic to a � = � 1 ! : : : ! � m ! Pr wherem 2 N. Clearly, for m = 0

we simply have� = Pr. We stratify types w.r.t. their order, i.e. the degree of using proper

functions as arguments to other functions, as well asmaximal arity, i.e. the number of

arguments a function has. Order can be seen as depth, and maximal arity as the width of

a type. Both are de�ned recursively as follows.

ord(� 1 ! : : : ! � m ! Pr) := max f 1 + ord(� i ) j i = 1; : : : ; mg;

mar(� 1 ! : : : ! � m ! Pr) := max( f mg [ f mar(� i ) j i = 1; : : : ; mg);

where we assume max(; ) = 0. Now let, for k � 1 and m � 1,

HFLk;m := f ' 2 HFL j ; ` ' : Pr using types� with ord(� ) � k and mar(� ) � m onlyg;

HFLk :=
[

m2 N

HFLk;m :

Note that no formula can have maximal type orderk > 0 but maximal type arity m = 0.

The combination k = 0 and m > 0 is also impossible. Hence, we de�ne

HFL0 = f ' 2 HFL j ; ` ' : Pr using types� with ord(� ) = 0 only g:

We extend these measures to formulas in a straightforward way: ord(' ) = k and mar(' ) =

m i� k and m are the leastk0 and m0 s.t. ' can be shown to have some type using types

� with ord(� ) � k0 and mar(� ) � m0 only.

De�nition 47 (Simultaneous Fixpoint) When using least �xpoint quanti�ers it is of-

ten bene�cial to recall the B�eki�c principle [B�ek84] whic h states that a simultaneously

de�ned least �xpoint of a monotone function is the same as a parametrised one. We will

use this to allow formulas like

' := �X i :

0

B
B
@

X 1 : ' 1(X 1; : : : ; X n)
...

X n : ' n (X 1; : : : ; X n )

1

C
C
A

in the syntax of HFL. This abbreviates

' 0 := �X i :' i (�X 1:' 1(X 1; �X 2:' 2(X 1; X 2; : : : ; X i ; : : :); : : : ; X i ; : : :); �X 2 : : : ; : : : ; X i ; : : :):
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Note that the size of ' 0 can be exponentially bigger than the size of' , and this even

holds for the number of their subformulas. However, it is only exponential in n, not in j' j:

j' 0j = O(j' j � 2n ).

5.2 Examples

Example 15 HFL can express the non-regular (but context-free) property \on any path

the number ofout's seen at any time never exceeds the number ofin's seen so far." Let

' := � (X : Pr ! Pr):(� (Z : Pr):houti Z _ hini (X (X Z ))) tt :

This formula is best understood by comparing it to the CFGG = ( f X g; f in; outg; P; X ),

whereP contains the rules

X ! out j inX X:

It generates the languageL of all words w 2 f in; outg� f outg s.t. jwj in = jwjout and for

all pre�xes v of w we have: jvj in � j vjout which are exactly the pre�xes of bu�er runs

which are violating due to an under
ow. Thens j= ' i� there is a �nite path through T

starting in s that is labeled with a word in L, and : ' consequently describes the property

mentioned above. In Section 5.4 we will see that in fact everypath speci�cation given by

a context-free grammar can be checked by an HFL1;1 formula.

Example 16 Another property that is easily seen not to be expressible bya �nite tree

automaton and, hence, not by a formula ofL � either is bisimilarity to a word. Note that a

transition system T with starting state s is not bisimilar to a linear word model i� there

are two distinct actions a and b s.t. there are two (not necessarily distinct) statest1 and

t2 at the same distance froms s.t. t1
a�! t0

1 and t2
b�! t0

2 for somet0
1; t0

2. This is expressed

by the HFL formula

:
� _

a6= b

�
� (F : Pr ! Pr ! Pr):� (X : Pr):� (Y : Pr):(X ^ Y) _ (F h�i X h�i Y )

�
hai tt hbi tt

�
:

This formula is best understood by regarding the least �xpoint de�nition F as a functional

program. It takes two argumentsX and Y and checks whether both hold now or calls

itself recursively with the arguments being checked in two (possibly di�erent) successors

of the state that it is evaluated in.

Note that here, bisimulation does not consider the labels ofstates but only the actions

along transitions. It is not hard to change the formula accordingly to incorporate state

labels as well.
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Example 17 Let 2n
0 := n and 2n

m+1 := 22n
m . For any m 2 N, there is a short HFL formula

' m (linear in m) expressing the fact that there is a maximal path of length21
m (number

of states on this path) through a transition system. It can beconstructed using a typed

version of the Church numeral 2. Let� 0 = Pr and � i +1 = � i ! � i . For i � 1 de�ne  i of

type � i +1 as � (F : � i ):� (X : � i � 1):F (F X ). Then

' m :=  m  m� 1 : : :  1
�
� (X : Pr):h�i X

�
[� ]ff :

Note that for any m 2 N, ' m is of size linear inm. This indicates that HFL is able to

express computations of Turing Machines of arbitrary elementary complexity which has

been shown in [ALS07].

5.3 Properties

Theorem 63 (Finite Model Property Absence) HFL1 does not exhibit the �nite mo-

del property.

Proof Like for CTL[L ] , this follows from Thm. 28 in which a PDL[VPL] formula serves

as witness for the absence of the �nite model property. The formula can by Thm. 67 be

translated into an equivalent HFL1 formula. Since both formulas are required to hold in

exactly the same models, the absence of the �nite model property for HFL 1 follows. 2

Theorem 64 ([VV04]) HFL is bisimulation-invariant and therefore has the tree model

property.

Theorem 65 ([VV04]) HFL is undecidable.

5.4 Expressivity

HFL is clearly a much closer relative ofL � than the other logics under consideration here.

All of them share a common propositional base but parametricCTL and PDL achieve

non-regular expressive power by rather di�erent means thanHFL: the former two by a

language plug-in mechanism which directly makes use of the expressive power contained

within the language parameter, the latter with help of logic-inherent machinery, namely

extremal �xpoints on higher-order functions.
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HFL and its precursor FLC are merely generalisations ofL � , while the relationship ofL �

with parametric PDL and CTL is of a mutually non-inclusive form as has been proved in

previous chapters.

Theorem 66 ([MO99],[VV04],[ALS07])

L � � HFL0;0 � FLC � HFL1;1 � HFL1 � HFL2 � HFL3 : : : � HFL :

Proof Note that L � is a syntactical fragment of HFL and that every subformula ofa L �

formula has type rank 0 in HFL. On the other hand, any HFL0;0 formula cannot contain

a subformula of type rank� 1, i.e. no� -expressions (and hence no function applications)

or �xpoint formulas other than of type rank 0. But deleting these two clauses from the

de�nition of HFL's syntax yields exactly the syntax of L � . It is easy to see that the HFL0;0

semantics coincide with the semantics ofL � .

The result that L � � FLC originates from [MO99]. FLC can express simulations of context-

free processes whichL � cannot.

That FLC � HFL1;1 is immediately seen by comparing the resulting semantics ofthis HFL

restriction with FLC. The fact that FLC � HFL has been observed by [VV04].

Finally, the result that the expressive power increases in the hierarchy HFLk � HFLk+1

for all k 2 N is a corollary of thekEXPTIME -completeness result in Thm. 68 for model

checking HFLk .

For HFL0, we have already shown that it is strictly lesser expressivethan HFL1, because

HFL0 � L � � FLC � HFL1;1 � HFL1. Now, assume' 2 HFLk+1 for somek � 1 s.t.

model checking' over some LTS is (k + 1) EXPTIME -hard. But then there is no formula

in HFL k which corresponds to' , because model checking HFLk is in kEXPTIME and

kEXPTIME ( (k + 1) EXPTIME for all k 2 N. 2

The conceptual unrelatedness of HFL and the language parametric logics makes a compar-

ison di�cult. Clearly, the modal and temporal formulas of parametric PDL and CTL must

in fact be expressible as �xpoints in a \unifying" logic in the same manner as for instance

L � or MSO serve as backbones for regular PDL and CTL. But it is notclear whether there

exists any suitable candidate capable of simulating the languages used in the modalities

and expressing the corresponding �xpoint statements. To our knowledge there is no work

in the literature which systematically deals with the correspondence between the expressive

power of logics and formal languagesabovethe regular sphere.

We are however able to embed PDL[CFG] into HFL. The idea is very similar to the

embedding of PDL[CFG] into FLC in [LS06].
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Theorem 67

PDL[CFG] � HFL1;1:

Proof If � holds, strictness is a consequence ofL � � HFL1;1 and the fact that fairness is

inexpressible in PDL[L ] (independently ofL ) but expressible inL � . In order to show � ,

consider the following translationtr : PDL[CFG] ! HFL1;1 with

tr(q) = q;

tr(: ' ) = : tr(' );

tr(' _  ) = tr(' ) _ tr( );

tr(hGi  ) = tr0(hGi ) tr( );

wheretr0(hGi ) is de�ned for a CFG G as follows. LetG = ( N; � ; P; S). De�ne the righthand

sides of production rules w.r.t. aX 2 N as rhs(X ) = f � 2 (N [ �) � j X ! � 2 Pg.

tr0(hGi ) = � (S : Pr ! Pr):

0

B
B
B
B
@

X 1 : � (Z1 : Pr):
W

� 2 rhs(X 1 )
b� Z 1

...

X n : � (Zn : Pr):
W

� 2 rhs(X n )
b� Z n

1

C
C
C
C
A

:

where
nS

i =1
X i = N and

b� =

8
>>>><

>>>>:

hai b� , if � = a�:

tr( ) ^ b� , if � =  ?�:

X i
b� , if � = X i �:

� , if � = �:

for somea 2 �, ' 2 PDL[CFG] and � denoting a blank.

Let T = ( S; �! ; `) be an LTS. We will now show that for alls 2 S and ' 2 PDL[CFG], we

have

s j= ' i� s j= tr(' ):

We show this by induction on the structure of' . The propositional cases are entirely

trivial in both directions and so it remains to show thats j= hGi  i� s j= tr0(hGi ) tr( ).

It is well known that L (G) is the simultaneously de�ned least �xpoint of an equation system

given by the grammar rules and projected onto the starting symbol S. The function tr0(hGi )

represents exactly this equation system but restricts derivable words inG to paths in T .
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Sincetr0(hGi ) is applied to the set of states which satisfytr( ), it is additionally required

that these paths end in such a state. This establishes the claim. 2

Fig. 5.3 summarises all expressivity results obtained in previous chapters.
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Figure 5.3: Expressive power of PDL[L ], CTL[L ] and HFL.
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5.5 Model Checking

In [ALS07], a game-based model checking procedure is being introduced to prove ak-

EXPTIME upper bound for HFL k . It is however likewise possible to extend standard

�xpoint approximation schemes (as known fromL � model checkers) to the higher order

case. While the game-based procedure is hardly feasible in practice, we may use an opti-

misation technique from static analysis called needednessanalysis (cf. [J�r94]) inside the

�xpoint approximation in order to obtain an algorithm which despite the high complexity

has a chance to be useable at least for formulas of lower-order HFL. We present here

a generalisation of the technique described in [AL07], where only the �rst-order case is

treated.

For the following, note that because of right-associativity of the function arrow, every

HFL-type is isomorphic to a� = � 1 ! : : : ! � m ! Pr for a m 2 N.

De�nition 48 (HFL-Fixpoint Approximants) Let �x:' be an HFL term of type � =

� 1 ! : : : ! Pr, where � 2 f �; � g. We de�ne �nite approximants of this formula for all

i 2 N as follows:

� 0x:' = � (Z1 : � 1): : : : � (Zk : � k):

8
<

:

ff ; if � = �

tt ; otherwise

� i +1 x:' = ' [� i x:'=x ]:

Lemma 31 Let �x:' be an HFL term of type � = � 1 ! : : : ! � k+1 and let h be de�ned as

h([[� k+1 ]]T ). Then for any �nite LTS T we have [[� hx:' ]]T� = [[ �x:' ]]T� for any environment

� .

Proof Note that the underlying LTS is �nite. According to Lemma 30, the HFL type

semantics forms a complete lattice. Because the types are all �nite on �nite models,

the lattice has also �nite height. On the other hand, the typesystem guarantees that

HFL �xpoint terms are exclusively de�ned on monotone functions. As a consequence,

the �xpoint approximation goes through a sequence of lattice elements of which each is

greater or equal to the former w.r.t.v . Since this sequence has maximallyh many di�erent

elements, the claim follows. 2

Lemma 32 [ALS07] For all HFL types � and all LTS T with n states we have:

h(� ) � (n + 1)( 2n(mar (� )+ ord (� )� 1)ord ( � ) � 1

ord (� ) )mar (� ) :
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Theorem 68 (ALS07) For any k; m � 1 the HFLk;m model checking problem is

kEXPTIME -complete.

5.5.1 A Standard Fixpoint-Approximation Algorithm

Consider a model checking algorithm for HFL formulas in which a subroutine FPapprox

computes �xpoint approximants as given in Def. 48. Since theleast and greatest �xpoint

cases are entirely dual, we restrict our attention w.l.o.g.to least �xpoint formulas. FPapprox

takes a (not necessarily closed) HFL term� (x : � 0 ! : : : ! Pr):' and an environment�

which maps free variables to values of the right type and tabulates the �xpoint approxi-

mants as shown in the table below, wherea0
i ; : : : ; am i

i denotes an arbitrary enumeration of

the elements in [[� i ]] and h its height respectively.

The table is to be read as follows: the rows starting withargi entries contain all possible

combinations of arguments of type� 0 ! : : : ! � k . The rows underneath list the semantics

of the �xpoint approximants given as a mapping from each sequence of arguments in the

same column to the values in this column as they would successively be computed line-by-

line in the routine FPapprox. It is clear that FPapproxcould stop any time before theh-th

approximant is reached, if the last and current approximantwere identical in all columns

and hence the �xpoint was established earlier.

arg0 : � 0 a0
0 a1

0 . . . am 0
0 a0

0 a1
0 . . . am 0

0 . . . a0
0 a1

0 . . . am 0
0 . . .

arg1 : � 1 a0
1 a0

1 . . . a0
1 a1

1 a1
1 . . . a1

1 . . . am 1
1 am 1

1 . . . am 1
1 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

argk : � k a0
k a0

k . . . a0
k a0

k a0
k . . . a0

k . . . a0
k a0

k . . . a0
k . . .

[[� 0x:' ]] ; ; . . . ; ; ; . . . ; . . . ; ; . . . ; . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

[[� h x:' ]] v0 v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is so far a naive extension of standard �xpoint computation techniques as known

for instance fromL � model checking algorithms. Note that an HFL-equivalent to an L � -

formula needs zero arguments and hence uses only a single column in the above table.

The following improvements to this procedure stem from the observation that every HFL

formula is of typePr and hence the semantics of higher-order terms (i.e. functions) has to be
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broken down by function application in order to make for a formula. This implies that the

function semantics is not necessarily needed as a whole, butjust at the speci�c arguments

to which it is applied. It does howevernot imply that the computation of the value at

a single argument can be performed independently of values at other arguments, simply

because values at di�erent arguments might be needed in the presence of recursive function

application, as may be the case in �xpoint formulas. The nextsection develops this idea to

the extent that �xpoint approximants are computed as partial functions, where the de�ned

domain is extended on demand, driven by value neededness during computation.

5.5.2 A Model Checker Using Neededness Analysis

Consider the recursive procedure MC-HFL as given in Fig. 5.4: it takes as input a typed

HFL term ' , a (possibly empty) list of arguments [f 1; :::; f k ] and an environment function

� which maps free variables to values of the correct type.

We assume that at the initial call of MC-HFL, ' is a well-formed HFL formula of type

Pr, the argument list is empty and � is entirely unde�ned for all arguments. The LTS

T = ( S; �! ; `) over which ' is to be model checked is assumed to be available globally.

After termination, MC-HFL is supposed to return the set of LTS states in which' holds.

Note that the formulas and terms occurring in the case distinctions re
ect the full expressive

power of HFL. We omit type annotations where the type is obvious from the de�nition

or irrelevant for the computation. Variances are omitted aswell, since the formulas are

assumed to be well-formed.

The propositional and modal formulas are handled in a standard way. The di�culties are

posed by �xpoint formulas. The idea is in principle that the algorithm maintains a table

similar to the one described in the previous section for the standard �xpoint approximation

scheme, except that it is empty initially and �lled with arguments and values as needed.

This means that HFL �xpoint formulas are evaluated to functions which are stored as

tables.

Notation: A partial function f : X ! Y is assumed to map anyx 2 X either to

f (x) if f is de�ned at x and to undef otherwise. Furthermore,dom(f ) is de�ned as the

function which mapsf to the set of arguments on which it is de�ned, i.e.dom(f ) = f x 2

X j f (x) 6= undefg. The expressionf f z 7! vg denotes the (partial) function f 0 which

agrees with f on all argumentsx 2 X , except possibly forz, where its value isv, i.e.
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MC-HFL( '; [f 1; :::; f k ]; � ) =

case ' of

q : `(q)

: ' : S nMC-HFL( '; []; � )

 1 _  2 : MC-HFL(  1; []; � ) [ MC-HFL(  2; []; � )

hai  : f s 2 S j 9t 2 MC-HFL(  ; []; � ) s.t. s a�! tg

X : return � (X )([f 1; : : : ; f k ])

x : � ! � : if � (x)([f 1; :::; f k ]) = undef

then let v := if fp(x) = � then ? � else > �

� (x) := � (x)f [f 1; : : : ; f k ] 7! vg

return � (x)([f 1; : : : ; f k ])

� (X : � ): : if [f 1; :::; f k ] = []

then return � (f : � ):MC-HFL(  ; []; � f X 7! f g)

else return MC-HFL(  ; [f 2; : : : ; f k ]; � f X 7! f 1g)

 1  2 : MC-HFL(  1; [MC-HFL(  2; []; � ); f 1; :::; f k ]; � )

� (x : � 1 ! : : : ! Pr): : if [f 1; : : : ; f k ] = [] and type(x) 6= Pr

then return � (g1 : � 1) : : : � (gk : � k):

MC-HFL( � (x : � 1 ! : : : ! � k+1 ): ; [g1; : : : ; gk ]; � )

else let v := if fp(x) = � then ? � n else > � n

� (x) := f [f 1; : : : ; f k ] 7! vg

repeat

f := � (x)

for all [f 0
1; :::; f 0

k ] 2 dom(� (x))

� (x) := � (x)f [f 0
1; :::; f 0

k ] 7! MC-HFL(  ; [f 0
1; :::; f 0

k ]; � )g

until f = � (x)

return � (x)([f 1; : : : ; f k ])

Figure 5.4: A model checking algorithm for HFL.

f 0(x) = f (x); if x 6= z and v otherwise. Note that the data structures which represent

functions have to be available globally.

? � and > � denote the bottom and top elements of type� , and [] is the empty list. � -bound

variables are distinguished from� - and � -bound variables by upper- and lower-case letters

respectively.
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Type Safety: The return type of algorithm MC-HFL after termination is the data type

which representsPr. However, in several cases e.g. the subcase of� -abstraction, where

[f 1; :::; f k ] = [], an anonymous function (here� (f : � ):MC-HFL(  ; []; � f X 7! f g)) is re-

turned for the purpose of postponing the current computation to a later moment (see next

paragraph for details). The returned� -term is not to be confused with a HFL� -expression,

but should be interpreted as an anonymous function in the implementing programming

language. It has to be read as a lazy evaluation of MC-HFL( ; []; � ) which will only be

evaluated in the context of a later function application or maybe even not at all. If it

is never touched again and remains unevaluated, this means that it only occurred as an

argument in a higher-typed function.

Note however that in a real implementation it has to be type-consistent with the \eval-

uated" return types of MC-HFL. This problem could for instance be solved by using an

abstract data type encapsulating both evaluated and unevaluated return types adequatly.

Our algorithm transcipt is a concession to presentation clarity and therefore omits this

level of detail.

Step-by-Step Explanation:

� (Propositional and modal formulas) The �rst four cases are concerned with propo-

sitional and modal formulas of primitive type. Propositions q are immediately eval-

uated according to the labels in the LTS, the rest result in recursive evaluations of

subformulas w.r.t. the demands of the operators: ; _; hai .

� (Function application, � -abstractions and� -bound variables) Any occurring� -bound

variable X is assumed to have been bound earlier and its value stored in the en-

vironment � . Its bound value � (X ) is returned. Function application  1  2 is

treated by recursive evaluation of 2 which is put into the argument list of the

recursive MC-HFL-call of  1. If in case of a formula� (X : � ): , the list of argu-

ments [f 1; :::; f k ] is empty, its denotation is currently not needed and its computa-

tion postponed until arguments are provided. This is expressed by the return value

� (f : � ):MC-HFL(  ; []; � f X 7! f g), not to be confused with a HFL� -expression, but

interpreted as an anonymous function in the implementing programming language

(see previous paragraph for details). If the list of arguments is not empty, then X

is bound to the �rst argument f 1 provided and MC-HFL is called recursively on the

body of the expression.
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� (Fixpoint computation and �; � -bound variables) The �xpoint computation is lo-

calised and performed on needed values only: if no argumentsare provided and

x is not of primitive type, its denotation is currently not needed and the �xpoint

approximation postponed. Otherwise, the �rst �xpoint approximant is initialised

according to least or greatest �xpoint type with ? � n or > � n , so far realised as the

partial function x which is only de�ned at [f 1; :::; f k ]. The repeat -loop updatesx in

the line � (x) := � (x)f [f 0
1; :::; f 0

k ] 7! MC-HFL(  ; [f 0
1; :::; f 0

k ]; � )g and computes the ap-

proximants on the currently de�ned domain ofx. It stops on two conditions: no fresh

arguments enterdom(� (x)) and the approximation stabilises. Then the computed

value of x at the original arguments [f 1; :::; f k ] is returned.

The case of� - and � -bound variablesx is similar to � -bound variables. Eitherx is

de�ned at the arguments in which case its value is returned, or it is unde�ned. This

is the case, where a fresh argument entersdom(� (x)) which is initialised with ? � n or

> � n according to the �xpoint type.

The algorithm MC-HFL improves a naive bottom-up model checker in two ways: by lazy

evaluation of functions without arguments and by demand-driven �xpoint computation.

We demonstrate both features by an example.

Example 18 Consider the formula
�

� (F : (Pr ! Pr) ! Pr):F (� (X : Pr ! Pr):X )
� �

� (y : (Pr ! Pr) ! Pr):� (G : Pr ! Pr):y G
�

:

The formula does not express anything particularly meaningful but serves our purpose. In

fact it is also independent of the transition system, because its semantics isff on every

model. So letT be an arbitrary LTS in the following.

The basic structure is that of a function application: the least �xpoint function on the

right hand side (representing the function which maps everyfunction of type Pr ! Pr to

the least set of states on which itsn-fold application stabilises) is plugged into the function

on the left which takes any function of right type and appliesit to the identity function.

After � -reduction, the expression is easily seen to boil down to an application of the �xpoint

function on the identity function. However, this is a valid HFL formula and demonstrates

the usefulness of lazy evaluation.

For reasons of readability, we omit type annotations in the following and do only hint at

the development of the environment� (as side-e�ects) between calls of MC-HFL. Note

that � contains no bindings initially.

MC-HFL
��

�F:F (�X:X )
� �

�y:�G:y G
�
; []

�
= (1)



128 5. Higher-Order Fixpoint Logic

MC-HFL
�
�F:F (�X:X ); [MC-HFL( �y:�G:y G; [])]

�
= (2)

MC-HFL
�
�F:F (�X:X ); [�f: MC-HFL( �y:�G:y G; [f ])]

�
= : : : (3)

So far, the algorithm has processed the argument of the function �F:F (�X:X ) which

is a least �xpoint of a second-order function for which no argument has been provided.

This leads to a delay of the actual computation of the �xpoint in line 3 where just the

anonymous function�f: MC-HFL( �y:�G:y G; [f ]) is returned which passes on its argument

to the �xpoint function: it is lazily evaluated and merely serves as a symbolic placeholder.

: : : =

MC-HFL
�
F (�X:X ); []

�
= (4)

� := � f F 7! �f: MC-HFL( �y:�G:y G; [f ])g (5)

MC-HFL
�
F; [MC-HFL( �X:X )]

�
= (6)

MC-HFL
�
F; [�g: MC-HFL( X; [])]

�
= (7)

� := � f X 7! g)g : : : (8)

In line 4 � 5, the variableF is bound to the �xpoint function. The following lines demon-

strate yet another lazy evaluation, this time of the identity function which has no arguments

either.

: : : =

MC-HFL
�
�f: MC-HFL( �y:�G:y G; [f ]); [�g: MC-HFL( X; [])]

�
= (9)

MC-HFL
�
MC-HFL( �y:�G:y G; [�g: MC-HFL( X; [])]); []

�
: (10)

Lines 9� 10 perform a� -reduction on the level of the programming language (as opposed to

the level of HFL expressions) and show the whole bene�t of theevaluation delay: instead of

computing the whole function, we now just have to compute thefunction at an argument

which was formerly hidden in the formula structure. The ruleof thumb here is simply that

every function with an argument is computed immediately butrestricted to that argument

while the computation of functions without arguments is delayed. This is justi�ed by the

observation that every well-formed HFL formula sooner or later breaks down any higher-

order construct to primitive type Pr. We exclude the computation of the �xpoint here

since the next example will demonstrate this improvement ona more suitable function.

We just state as a fact here that (�y:�G:y G )(�g: MC-HFL( X; [])) = ; (the identity function

stabilises on every argument after one self-application and the least argument of primitive

type on which this happens is; ).
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X f 3g f 2; 3g f 1; 2; 3g

0 ;

1 f 3g ;

2 f 3g f 2; 3g ;

3 f 2; 3g f 2; 3g f 1; 2; 3g

4 f 2; 3g f 1; 2; 3g f 1; 2; 3g

5 f 1; 2; 3g f 1; 2; 3g f 1; 2; 3g

6 f 1; 2; 3g f 1; 2; 3g f 1; 2; 3g

0 1 2 3b

b

a a

aa

b

q q

b
b

q

Figure 5.5: Algorithm MC-HFL running on a simple example.

Example 19 For the demonstration of �xpoint computation on demand, consider the

formula
�
� (x : Pr ! Pr):� (Z : Pr):Z _

_

a2 �

x [a]Z
�

: q

and the transition system shown on the right side in Fig. 5.5.Intuitively, ' asserts that

there is a sequence of actions s.t. all paths under that sequence lead to a state not satisfying

q. States 1; 2; 3 satisfy this property, state 0 does not. However, the meaning of this formula

is irrelevant for the understanding of how it is evaluated byalgorithm MC.

The table on the left of Fig. 5.5 shows the successive calculation of the semantics of the

�xpoint formula. Although only two rows need to be stored in each iteration step { the

current one and the last one for comparison { we depict all stages in this example for the

reader to be be able to follow this step-by-step.

At the beginning, the formula : q is evaluated tof 3g. This forms the initial argument in

the table. It is to be read as follows: time proceeds line by line from left to right. Each row

below the arguments contains a snapshot of the current stateat the end of an iteration

over the current domain. Note that in general �xpoint approximants cannot easily be

read o� the table since di�erent columns may be at di�erent stages of approximation. As

computation proceeds, arguments are added to the list.

Row 6 then represents a partial function that agrees with thetotal function that is the

semantics of the corresponding �xpoint formula. The returnvalue is the one in the �rst

column { the value of the �xpoint function applied to the original argument.

These improvements do of course not a�ect the worst-case complexity of the HFL model

checking problem. Instead, they allow for better best- and average-case complexities which

otherwise would just be the same as the worst-case complexity. In Section 5.5.4, we give

empirical evidence that the improvements have signi�cant in
uence on the performance of
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the model checking algorithm and make it feasible in practice in the �rst place (of course

only for lower-order fragments of HFL).

5.5.3 Soundness and Completeness

We will now prove that MC-HFL correctly computes the semantics of any well-formed

formula of HFL. In order to do so, we need to relate the environment used in MC-HFL

which maps variables to partially de�ned functions (which we will call shortly \partial

environments") with the environment of HFL term semantics which contains only total

functions (which we call \HFL environments").

De�nition 49 Let f : � 0 ! : : : ! Pr be a partial function on HFL types. De�ne r (f ) as

the set of all total functions which agree withf on all arguments on whichf is de�ned, i.e.

g 2 r (f ) i� for all x 2 dom(f ): g(x) = f (x) and g is total. We overload ther -operator

to be applicable also for partial environments� . Its meaning is that if � (X ) = f then for

all � 0 2 r (� ): � 0(X ) 2 r (f ).

Theorem 69 For all transition systemsT , all partial environments � , HFL environments

� 0 2 r (� ) and all well-formed formulas' 2 HFL we have: MC-HFL('; []; � ) = [[ ' ]]T� 0.

We cannot prove this theorem directly: the statement is too weak as an inductive invariant

because of subformulas of type other thanPr.

We will instead prove the following stronger statement, from which the above theorem

follows immediately.

Lemma 33 For all transition systems T , all partial environments � , HFL environments

� 0 2 r (� ) all sequences of arguments [f 1; : : : ; f k ] (consisting of valid HFL types) and all

(not necessarily closed) well-formed terms' 2 HFL we have:

MC-HFL( '; [f 1; : : : ; f k ]; � ) = [[ ' ]]T� 0([f 1; : : : ; f k ]):

Proof We show the claim by induction on the structure of the formula' . Let ' be a

term, � be a partial environment that maps any free variable in' to a (possibly partial)

function and f i be a valid HFL type over a transition systemT for all 1 � i � k.

The propositional and modal part. The statement is immediately seen to be true for

the case of' = q for someq 2 P . It also follows directly from the hypothesis in the cases

' =  1 _  2, ' = hai  and ' = :  . Note that in all these cases, ;  1 and  2 must have

type Pr. Hence, the argument list [f 1; : : : ; f k ] must in fact be empty.
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The functional part. Now consider' = X , where X is a � -,� - or � -bound variable:

the call of MC-HFL(X; [f 1; : : : ; f k ]; � ) returns in any case� (X )([f 1; : : : ; f k ]) which agrees

with [[X ]]T� 0([f 1; : : : ; f k ]) by de�nition of the semantics and the de�nition of r .

Now consider the case' = � (X : � ): of type � ! � . Note that ' cannot be of primitive

type Pr, i.e. it takes an argument.

We distinguish according to the two cases in MC-HFL, namely that

� an argument is provided in the list. Then MC-HFL('; [f 1; : : : ; f k ]; � ) evaluates to

MC-HFL(  ; [f 2; : : : ; f k ]; � f X 7! f 1g) which by I.H. is [[ ]]T� f X 7! f 1g([f 2; : : : ; f k ]). This

is in turn equivalent to [[� (X : � ): ]]T� 0([f 1; : : : ; f k ]) by a � -reduction in which X is

overridden in � 0 and bound to f 1.

� no argument is provided. Then the call is MC-HFL('; []; � ) and the return value is

� (y : � ):MC-HFL(  ; []; � f X 7! yg), i.e. a function which for any argumenty of type

[[� ]]T yields by I.H. the value [[ ]]T� f X 7! yg([]) of type � . But this is exactly [[' ]]T� 0([]).

Note again, that X is overridden in � 0.

The case of function application' =  1  2 is simple:

MC-HFL(  1  2; [f 1; : : : ; f k ]; � ) = MC-HFL(  1; [MC-HFL(  2; []; � ); f 1; : : : ; f k ]; � ). By I.H.,

we have MC-HFL( 2; []; � ) = [[  2]]T� 0([]) and therefore MC-HFL( 1 2; [f 1; : : : ; f k ]; � ) =

MC-HFL(  1; [[[ 2]]T� 0; f 1; : : : ; f k ]; � ) which by I.H. is [[ 1]]T� 0([[[ 2]]T� 0; f 1; : : : ; f k ]).

The only cases posing di�culties are those of' = �X: for � 2 f �; � g. Here it is helpful

to prove soundness (direction \� ") and completeness (direction \� ") separately. However,

the soundness proof for the� -case is entirely analogous to the completeness proof of the

� -case and vice-versa. Thus, we only present soundness and completeness of the� -case

here.

Soundness of the � -part. Consider the following call of the model checking algorithm:

MC-HFL( � (x : � 1 ! : : : � k+1 ): ; [f 1; : : : ; f k ]; � ). Here we have to take into account that the

environment may contain partially de�ned functions. Thus we have to prove the following

statement:

8[f 0
1; : : : ; f 0

k ] 2 dom(� (x)) : � (x)([f 0
1; : : : ; f 0

k ]) v [[� (x : � 1 ! : : : � k+1 ): ]]T� 0([f 0
1; : : : ; f 0

k ]): (I)

The algorithm distinguishes two cases.
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� If [ f 1; : : : ; f k ] = [] and the type of x is not Pr, i.e. x is a function with no argu-

ments supplied, the algorithm returns a dummy function and postpones the �xpoint

computation until arguments are provided. Formally, after� -reduction, the returned

function is the same as MC-HFL(� (x : � 1 ! : : : � k+1 ): ; [f 1; : : : ; f k ]; � ). Note that

sincedom(� (x)) = ; , statement (I) trivially holds.

� In case the arguments have been provided, i.e. [f 1; : : : ; f k ] 6= [] or x is of primitive type

Pr, statement (I) is in fact an invariant of the repeat -loop in Algorithm MC-HFL.

It trivially holds before the loop becausedom(� (x)) = f [f 1; : : : ; f k ]g only, and � (x)

maps this tuple to the bottom element of� k+1 .

Furthermore, if statement (I) holds at the beginning of one iteration of the repeat -

loop then it also holds after this iteration. This is simply aconsequence of monotonic-

ity, the hypothesis, and the fact that [[� (x : � 1 ! : : : � k+1 ): ]]T� 0 is a unique �xpoint of

 w.r.t. v : if we have � (x)([f 0
1; : : : ; f 0

k ]) v [[� (x : � 1 ! : : : � k+1 ): ]]T� 0([f 0
1; : : : ; f 0

k ]) for

all such tuples then, by monotonicity and the de�nition of the pointwise inclusion

ordering, we also have [[ ]]T� 0f x7! � (x)g v [[ ]]T� 0f x7! [[� (x :� 1 ! :::� k +1 ): ]]T� 0g. Now note that the

latter is (because it is a �xpoint) equal to [[� (x : � 1 ! : : : ! � k+1 ): ]]T� 0.

And the former is, by hypothesis, the value of� (x) on all arguments in dom(� (x))

at the end of this repeat -loop iteration (note that � (x) is updated with the value of

MC-HFL(  ; [f 0
1; : : : ; f 0

n� 1]; � ) for all [f 0
1; : : : ; f 0

n� 1] 2 dom(� (x))).

This implicitly shows that { on �nite transition systems { th e loop eventually terminates.

Since dom(� (x)) at most grows in each iteration, we have [f 1; : : : ; f k ] 2 dom(� (x)) at

termination point, and the soundness part of Lemma (33) immediately follows from the

fact that (I) holds at this point.

Completeness of the � -part. We will prove this part using �xpoint induction. For any

two functions f; g of type � 1 ! : : : ! � k+1 and a setD � � 1 � : : : � � k , we write

f v D g i� for all [ a1; : : : ; ak ] 2 D : f ([a1; : : : ; ak ]) v g(a1; : : : ; ak ]):

Now consider again the call MC-HFL(�x: ; [f 1; : : : ; f k ]; � ). Let D := dom(� (x)) upon

termination of the repeat -loop. An immediate consequence of the induction hypothesis

for  is the following:

[[ ]]T� 0f x7! f g v D � (x): (II)
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for any function f 2 r (� (x)). This is because therepeat -loop is iterated on the whole of

D until stability is reached, i.e. until MC-HFL(  ; [f 0
1; : : : ; f 0

k ]; � ) = � (x)([f 0
1; : : : ; f 0

k ]) holds

for all [f 0
1; : : : ; f 0

k ] 2 D. By I.H. [[  ]]T� 0([f 0
1; : : : ; f 0

k ]) v MC-HFL(  ; [f 0
1; : : : ; f 0

k ]; � ) for all

[f 0
1; : : : ; f 0

k ]. Hence for all [f 0
1; : : : ; f 0

k ] 2 D we also have [[ ]]T� 0([f 0
1; : : : ; f 0

k ]) v � (x)([f 0
1; : : : ; f 0

k ])

and from this follows the claim by de�nition of v D .

We now extend the function� (x) to a function � > (x) in the following way.

� > (x)([f 0
1; : : : ; f 0

k ]) :=

8
<

:

� (x)([f 0
1; : : : ; f 0

k ]) , if [ f 0
1; : : : ; f 0

k ] 2 D:

> � k +1 , otherwise.

Now note that we have

[[ ]]T� 0f x7! � > (x)g v � > (x):

i.e. the function on the right subsumes the one on the left onall arguments. For arguments

in D this is stated in (II) above. For all other arguments this is trivially true by the

construction of � > (x). But then � > (x) is a pre-�xpoint of  and, hence, we have [[�x: ]]T� 0 v

� > (x). In particular, the inclusion holds for all argument tuples in D. Since the domain

of � (x) at most grows in each iteration of therepeat -loop, we have [f 1; : : : ; f k ] 2 D and

therefore [[�x: ]]T� 0([f 1; : : : ; f k ]) v MC-HFL( �x: ; [f 1; : : : ; f k ]; � ) which �nishes the proof.2

5.5.4 Applications and Evaluation in Practice

The expressive power of HFL allows to encode numerous interesting problems as model

checking instances. This section covers the encoding of thefollowing problems: NFA

universality (NFA-UNIV), Quanti�ed Boolean Formulas (QBF ), Satis�ability of modal

logic K (K -SAT) and Shortest Common Supersequence (SCS). All of theseproblems can

already be encoded in HFL1.

A possible bene�t of studying such encodings is to extract formerly unknown algorithms

for these problems by analysing the behaviour of the optimised model checker. The justi-

�cation for this potential lies in the unusual, yet very succinct problem formulation which

HFL imposes upon the \programmer". It is fair to say that it is not common practice

among programmers to think of methods and routines as �xpoints of concrete functions.

This however is the only recursion device which is o�ered by HFL. In this regard we will

use HFL as an extremely succinct programming language in this section and demonstrate

the validity of the claim that HFL can be a valuable tool for designing new and original

algorithms which at least in case of NFA-UNIV and SCS are competitive to known ones.
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NFA Universality

We start by picking NFA-UNIV to demonstrate how encoding a problem as a model check-

ing instance can lead to an e�cient solution. In fact, we havealready introduced the

encoding in Example 19 without mentioning it.

Recall the model in Example 19. If the propositionq is interpreted as a 
ag for being

a �nal state then the whole model can easily be viewed as an NFA. In this context the

formula

' NFA :=
�
� (x : Pr ! Pr):� (Z : Pr):Z _

_

a2 �

x [a]Z
�

: q

translates to "there is a word w, s.t. all states reachable underw are non-�nal" . NFA-

UNIV is solved by checking whether or not the starting state satis�es this formula. This

problem suits well to practically evaluate the behaviour ofour model checking algorithm

since we can easily generate random NFA instances upon whichthe formula is model

checked.

Local Fixpoint Computation in Practice We now give empirical evidence of the

bene�ts of local �xpoint computations and demonstrate that the necessity to compute

larger fragments of the complete domain rarely occurs. Algorithm MC-HFL has been

implemented as a prototype2 in OCaml and run on the following random model for NFAs

(by [TV05]) in order to guarantee a wide spectrum of test cases: two parameterss and

t determine the number of randomly chosen �nal states and transitions in an NFA w.r.t.

the total number of statesn. The ratios f := s
n and r := t

n are called �nal state density

and transition density respectively. To perform the universality tests, we �x n = 10 and

generate 20 random NFAs for each of 250 pairs (r; f ) with 0 � r � 2:5 and 0� f � 1.

The average number of arguments needed in the �xpoint computation by algorithm MC-HFL

in dependence of (r; f ) is depicted in Fig. 5.6. Note that the number of possible arguments

j2S j is 1024 in this case. Fig. 5.6 shows that in all cases the algorithm is far away from

exhaustive �xpoint calculation on the full argument set 2S. Even for the most di�cult

instances which in our tests aref = 0:1 and r between 1:4 and 1:6, the number of needed

arguments never gets anywhere near that. The average numberof arguments distributed

over all 5000 tests is just 13:2 and the highest number of arguments ever measured during

the tests is 109.

2seehttp://www2.tcs.ifi.lmu.de/~axelsson/veri non reg/mchfl tool doc.html
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Figure 5.6: Number of arguments in function table (n = 10).

It is reasonable to assume that the approach of guiding the �xpoint iterations locally

through neededness analysis also proves to be successful inother cases (on di�erent for-

mulas) unless the underlying models have been constructed pathologically to enforce an

exponential behaviour.

Optimising Algorithm MC-HFL w.r.t. a Fixed Formula There are still several

standard performance enhancements available, e.g. acceleration of the �xpoint computa-

tion by exploiting monotonicity, in order to optimise this algorithm.

However, we need to observe that algorithm MC-HFL will be used on �xed formulas

in most cases. In many veri�cation tasks the property to be checked is �xed while the

models change. This holds especially for non-regular properties since non-regularity often

eliminates dependence on model sizes, etc. It is therefore much more bene�cial to regard

MC-HFL as a templatefor specialised cases rather than a general algorithm for all kinds of

veri�cation purposes. Model checking a �xed formula bears ahigher potential for algorithm

optimisations which possibly cannot be achieved for varying formulas.

Consider the algorithm's behaviour on the formula of Ex. 19 as depicted in the table there.

If we follow the succession of the �xpoint iteration closely, a simple pattern can be observed:

the iterated function �Y:Y _
W

a2 � X [a]Y takes an argument (initially the set [[: q]]A ) and

returns its union with the set of its recursive [a]-predecessors for alla 2 �. But this set

is exactly the union of the elements ofdom(x), each of them the result of a single [a]Y
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computation step. So the return value does not provide any additional information if the

set of needed arguments is known. Furthermore, since only a union operation is performed,

it su�ces to keep track of � -maximal sets of arguments. This insight immediately leadsto

an optimisation by discarding all redundant information. It is obviously not necessary to

protocol all these values in the �xpoint iterations { when in the end all we want to know is

whether or not the initial automaton state is included in theunion over all arguments. It

su�ces to iterate this schema until no more arguments enter the table, and then to form

their unions. This, however, means that, by monotonicity ofthe [a]-operators, one can

always discard the larger of two arguments that are comparable w.r.t. � which leads to

the idea of storingdom(x) as anantichain.

An antichain over an NFA A is a setC of pairwise incomparable (w.r.t. set inclusion) sets

of states ofA . These antichains form a complete lattice when equipped with the following

order:

C v C0 i� 8C 2 C 9C0 2 C0 s.t. C � C0:

This naturally induces a notion of supremumC t C0 as the smallest antichain (w.r.t.v )

which contains bothC and C0.

The basic principle of the optimization is to populate an antichain with sets of states

which uphold the possibility of generating a word that is notincluded in the language of

the automaton. This can be achieved by loosely speaking applying the modal [a]-operator

(for all a 2 �) to its elements and minimizing the resulting set to an antichain. More

formally, de�ne the following monotone operation on antichains:

CPre(C) := dfS � Q j 9T 2 C 9a 2 � s.t. S = [[[ a]X ]]Af X 7! T gge

where thed�e operator discards all sets which are subsumed by another setin this set of

sets { i.e. it makes an antichain of the expression on the right-hand side.

This is exactly the idea which Henzinger et al. have in mind when they characterise NFA-

UNIV using least �xpoints in antichain lattices in [WDHR06].

Lemma 34 ([WDHR06]) Let A be an NFA over the alphabet � with state set Q, initial

state q0 and �nal states F . Then

L(A ) 6= � � i� ff q0gg v
l

fC j CPre(C) t f Q n F g v Cg:

Of course, the least �xpoint can be computed by a straight-forward �xpoint iteration:

De�ne C0 := f;g and Ci := CPre(Ci � 1) t f QnF g. The following table compares in parallel



5.5 Model Checking 137

two runs of MC-HFL and the antichain method on Ex. 19:

X f 3g f 2; 3g f 1; 2; 3g

0 ;

1 f 3g ;

2 f 3g f 2; 3g ;

3 f 2; 3g f 2; 3g f 1; 2; 3g

4 f 2; 3g f 1; 2; 3g f 1; 2; 3g

5 f 1; 2; 3g f 1; 2; 3g f 1; 2; 3g

6 f 1; 2; 3g f 1; 2; 3g f 1; 2; 3g

C0 := f;g

C1 := CPre(C0) t f Q n F g = ff 3gg

C2 := CPre(C1) t f Q n F g = ff 2; 3gg

C3 := CPre(C2) t f Q n F g = ff 1; 2; 3gg

C4 := CPre(C3) t f Q n F g = ff 1; 2; 3gg

The cost reduction of the antichain method is established bythe fact that it simply com-

putes ddom(x)e, i.e. the antichain of the currently present arguments. Onecan show

that ddom(x i )e = Ci +1 , wheredom(x i ) is the currently needed domain of thei th �xpoint

approximant w.r.t. a given argument and a partial evaluation according to MC-HFL.

It turns out that the result of this optimisation is exactly t he method devised by Henzinger

et al. in [WDHR06]. Their tool shows a very good performance on the universality test

for NFAs and does apparently outperform the classical powerset construction by several

orders of magnitude.

Quanti�ed Boolean Formulas

By not just restricting the term \model checking" to a method used in automatic program

veri�cation but understanding it as a general logic problemwe can obtain algorithms for

various other problems as well. Note that NFA-UNIV is PSPACE-complete, and it is

therefore reasonable to try to encode the standard PSPACE-complete problem QBF as an

HFL1 model checking problem.

It is well-known that every quanti�ed Boolean formula can beput into prenex CNF normal

form Q1x1: : : : Qnxn :
V

i

W
j i

l i;j i with the Qk 2 f9 ; 8g, and the l i;j i literals over the variables

x1; : : : ; xn . The problem QBF is to decide whether or not such a formula evaluates to 1

under the usual interpretation of the Boolean operators andthe quanti�ers over the domain

f 0; 1g.

With each QBF formula � we associate a loop-free transition system T� which is exemplar-

ily shown in Fig. 5.7 for � = 9x1:8x2:9x3:8x4:(x2 _: x4) ^ (x1 _: x3 _ x4) ^ (: x1 _: x2 _ x3).

It uses atomic propositions9, 8 to mark the type of quanti�cation over a variable, c to
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Figure 5.7: A transition system representation of a QBF formula.

indicate the branching into the di�erent clauses, and 1 to mark the value of a clause under

an assignment valuation given by a path through each clause's component. Its actions are

0 and 1 for representing variable values, and an anonymous one for branching into di�erent

clauses and for separating the quanti�ers in the pre�x.

Evaluation to 1 of � can now be expressed in HFL1 as follows.

' QBF :=
�

� (x : Pr ! Pr):� (Z : Pr):
�
c ! [� ]Z

�
^

�
9 ! h�i (x h0i Z ) _ h�i (x h1i Z )

�
^

�
8 ! h�i (x h0i Z ) ^ h�i (x h1i Z )

� �
1

Again, ' QBF does not depend on the underlying QBF formula �. It is therefore possible

to obtain a QBF solver by analysing the behaviour of algorithm MC-HFL on ' QBF and

specialised transition systemsT� . For example, it is not hard to see that the �xpoint

iteration always terminates after a number of steps given bythe length of the quanti�er

pre�x. It can therefore be made explicit through afor -loop. Furthermore, antichains can

also be used to replace the arguments of the function table. Preliminary results show that

this is far away from yielding a competitive QBF solver. However, it may be interesting

to investigate combinations of this bottom-up approach with existing solvers that mostly

work top-down.

Encoding the Satis�ability Problem for Modal Logic K

Another important problem that HFL 1 can express and that therefore can be solved using

algorithm MC-HFL is the satis�ability problem for modal logic K , extending propositional

logic with the modal operators3 and 2 . For technical reasons and simplicity we assume

modal formulas to be in positive normal form and only consider the uni-modal case.
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A tableau for a modal formula � is a �nite tree whose nodes are labeled with subsets of

sub(�), called sequents, s.t. each inner node is an instance of one of the following rules, and

each leaf is consistent, i.e. it does not contain an atomic proposition q and its complement

�q.

(^ )
 1;  2; �

 1 ^  2; �
(_)

 i ; �

 1 _  2; �
i 2 f 1; 2g

(3 )
' 1;  1; : : : ;  m : : : ' n ;  1; : : : ;  m

3 ' 1; : : : ; 3 ' n ; 2  1; : : : ; 2  m ; l1; : : : ; lk

wheref l1; : : : ; lkg must be a consistent set of literals.

We will show that K-SAT, the satis�ability problem for K can be encoded as a model

checking problem for HFL1. With a formula � 2 K we associate a transition systemT�

with states sub(�), the subformulas of �. There are �ve accessibility relat ions:

� l�! and r�! connect each subformula to its immediate superformula marking it as its

left, resp. right argument assuming that the modal operators only have a right one,

� s�! (for \select") introduces a linear order onsub(�) with � being the maximal

element,

� c�! (for \con
ict") connects all propositions q to their complements �q and vice-versa,

� t�! (for \test") connects � to every other subformula.

Each subformula is labeled with one ofp^ ; p_ ; p3 ; p2 ; prop according to the type of the

subformula. Finally, � is also labeled with init .

A � � sub(�), i.e. a sequent in a tableau, can be represented naturally by an object of type

Pr. The existence of a tableau for � can then be encoded by a function of type Pr ! Pr

that takes the current sequent, decides which rule to apply and continues recursively with

the corresponding premisses. The relationsl�! and r�! are used to model subformula

replacement in an application of a tableau rule, and relation s�! is used to select the

principal formula of the next rule application, i.e. the onedetermining which rule to apply.

The transition representation of the modal formula � = 3 (q^ 2 �q) ^ 2 (�q_ 3 q) is given in

Fig. 5.8. To avoid clutter we do not show the relation t�! which simply has arcs from the

leftmost state to each other including itself.

Now consider the following formula' KSAT :
 

�Z � 1 :�X: [t](X ! [c]: X )
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Figure 5.8: A transition system representation of a formulain modal logic K .

^
�

[t](X ! prop)

_
�

[t]
�
(X ^ : prop) ! (p3 _ p2 )

�
^

�
�Y � 1 :�V:

�
[t](V ! X ^ p3 ) !

�
Z (hr i V _ hr i (X ^ p2 ))

� �

^
�
[t]: V _ (Y hsi V)

� �
init

�

_
�

�Y � 1 :�V: [t]: V

_
�

[t](V ! X ^ p^ ) ^
�
Z ((X ^ : V) _ hli V _ hr i V)

� �

_
�

[t](V ! X ^ p_ ) ^
�
(Z ((X ^ : V) _ hli V))_

(Z ((X ^ : V) _ hr i V))
� �

_ (Y hsi V)
� �

init
� !

init :

This formula will be evaluated in state � of T� . The outer least �xpoint recursion through

variable Z �nds a tableau. Variable X represents a sequent in this tableau starting with

�, the only node satisfying init . The �rst line assures that X represents a propositionally

consistent sequent. This is the case i� no element ofX has ac-successor inX . Note that

here we use the relation t�! in order to test in state � whether or not something holds in

all states.

Then there are three disjuncts. The �rst one applies ifX consists of propositions only,

hence, a tableau leaf is found. The second disjunct applies if X consists of literals and3 -

and 2 -formulas only. Hence, rule (3 ) needs to be modeled. The inner �xpoint recursion

traverses through the entire set of subformulas starting with �. In each iteration, variable
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V contains a single node only because the relations�! is deterministic. It then checks

whether V consists of a3 -formula in the current sequentX . If this is the case, it calls the

tableau building function Y again and passes it, as the new sequent, the argument of that

3 -formula as well as the arguments of all2 -formulas in X .

Finally, the third disjunct models applications of rules (̂ ) and (_). Similar to the case

above, there is an inner �xpoint function which recursivelyselects a Boolean subformula of

the current sequent. This is stored inV. If V consists of a conjunction it gets replaced by

its conjuncts according to rule (̂ ). This is modeled by callingY again on the argument

consisting of everything inX without the node in V but adding the r - and l-predecessor

of V . A similar construction applies to model rule (_) for disjunctions. Note that this rule

is nondeterministic, hence, we callY with either of two arguments including either of the

two disjuncts.

Then we have, for any formula � 2 K : T� ; � j= ' KSAT i� � is satis�able.

Shortest Common Supersequence

Some optimisation problems that require more than a yes/no answer can also be dealt with

using an extension of algorithm MC-HFL that keeps track of parts of the solution to be

computed. We sketch a new algorithm for the Shortest Common Supersequence problem

(SCS): given a setf w1; : : : ; wng of �nite words of some alphabet �, �nd a shortest v 2 � �

that contains all wi as subwords. The algorithm is obtained from the template MC-HFL

using an antichain optimisation as in the case of NFA-UNIV.

The �rst step consists of building a transition systemT , here depicted for the words

f aaba; abab; aaag.

a a b a

a; b a; b

q a a a

a; ba; b

a a; b

q

q

s

a; b b a b

00 10 20 30 40

01 11 21 31 41

02122232

Next, consider the HFL1 formula

' SCS :=
�
� (x : Pr ! Pr):� (Z : Pr):[� ]Z _

_

a2 �

x hai Z
�

q:

Each state inT satis�es ' SCS which only re
ects the fact that for every �nite set of words

there is a word containing all of them. However, suppose the arguments in the table for the
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�xpoint iteration in this formula are annotated in the follo wing way: the initial argument

receives the annotation� , and if an argumentZ with annotation w causes another argument

to be created in the table through the recursive call ofX hai Z then the new argument

receives the annotationaw.

Now note the apparent similarity of this formula with the onefrom Ex. 19 expressing

NFA-UNIV. In both cases the subformulasX  (Z ) only occur under a disjunction. Hence,

the argument row of the function table can again be optimisedinto an antichain, and the

evaluation of the formula can be regarded as a �xpoint iteration in an antichain lattice.

It terminates when the topmost state ofT occurs in an element of the current antichain,

and that element's annotation is the solution to the SCS problem.

The computation of the solution aaababusing annotated antichains is found as follows.

Let I := f 40; 41; 32g. For a setS we write Sw
I to abbreviate (S [ I )w where the superscript

simply denotes the word annotation of this set.

C0 := f I � g

C1 := ff 22; 30ga
I ; f 31gb

I g

C2 := ff 22; 21; 30gab
I ; f 22; 12; 30gaa

I ; f 31; 20gba
I g

C3 := ff 22; 21; 30; 10gaba
I ; f 22; 12; 02; 30gaaa

I ; f 31; 11; 20gbab
I g

C4 := ff 22; 21; 01; 30; 10gabab
I ; f 22; 12; 02; 30gaaaa

I ; f 22; 12; 30; 00gaaba
I ;

f 02; 31; 20gbaaa
I ; f 31; 11; 20gbaba

I g

C5 := ff : : :gababa
I ; f : : :gabaaa

I ; f : : :gaaaaa
I ; f 22; 12; 01; 30; 00gaabab

I ;

f : : :gbaaba
I ; f : : :gbaaaa

I ; f : : :gbabab
I g

C6 := f : : : ; f 22; 12; 02; 00; 01gaaabab
I ; : : :g

Finally, since a set containingf 00; 01; 02g has been found,s is included in the next iteration,

and the solution is the annotation of this witnessing set.



Chapter 6

Further Work

We have investigated the model-theoretic properties, expressivity and model checking prob-

lem of PDL[L ] for arbitrary classes of formal languagesL . Some questions regarding its

expressivity are however still open. For instance the question whether the result that

PDL[L ] gains additional power from the test operator up to the context-free languages

extends to PDL over more expressive language classes or if the test operator can somehow

be simulated in these fragments.

Clearly, one could also extend PDL[L ] with additional operators such asconverseor � as

de�ned in [Str81]. In fact, we have compared the latter to CTL[L ] in [ALL + b]. It turns

out that PDL[ L ] with a �-operator is strictly more expressive than CTL[L ] for deter-

ministic automata models. Strictness is merely a consequence of the fact that CTL[L ] is

not capable of expressing fairness while PDL[L ] with � is. The embedding is otherwise

straight-forward. Nondeterministic automata classes arehowever not generically embed-

dable, except when the automaton class is closed under determinisation, of course. For

instance are CTL[CFL] and PDL[CFL] with � mutually incompar able.

Regarding model checking, the correspondence to the emptiness problem should extend to

PDL[L ] with �, except that automata models with a B•uchi acceptance condition need to

be considered instead of normal ones, since that is basically what the �-operator amounts

to.

There are also some open problems regarding the expressivity of CTL[L ] . In particular,

we do not know whether CTL[DCFL] � CTL[CFL] holds.

Another idea is that in a similar manner as parametric CTL operators have been adorned

with formal languages, one can think of such extensions for CTL � . It would be very

interesting to analyse the interplay between logical machinery and formal languages in
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such a setting.

On a more general level, we are interested in a unifying logicfor all three logical frameworks

presented in this work. Some attempts were made to embed PDL[IL] into HFL but all of

them failed in the end. The problematic case is of course the diamond formula scheme

where the task is to simulate a derivation resulting in a wordwhich coincides with a path

in the model. A direct approach which simulates the derivation relation by a simultaneous

�xpoint using nonterminals as variables in the way demonstrated by the embedding of

PDL[CFL] fails here, because the only way we could see to encode the stack of each

nonterminal was as a list of arguments in some function of the� -calculus. However, the

encoding of lists in the simply typed� -calculus does not support the deletion of elements

which corresponds to pop-operations on stacks and hence thewhole construction fails.

Another approach was to try to encode the language derivation part of the algorithm used

for the computation of closed paths in HFL. The reasons why this failed were similar and

raise the question whether this is an inherent weakness of HFL. If so, then the question

immediately arises what kind of feature a logic has to support in order to be able to simulate

such behaviour. Or, more generally speaking, to serve as a unifying logic which links

automata classes and logics like MSO linksL � and �nite automata. The correspondence

between temporal logic and automata which exceed the regular or context-free has to our

knowledge never been analysed systematically.

On a more practically oriented level it might be interestingto follow up the matter of

algorithm development via encoding problems as model checking instances of HFL and

to observe the behaviour of the �xpoint approximation in order to gain insight into the

problem and to develop optimised algorithms from this.



Bibliography

[Aho68] Alfred V. Aho. Indexed grammars - an extension of context-free grammars.

Journal of the Association for Computing Machinery, 15(4):647{671, 1968.

[Aho69] Alfred V. Aho. Nested stack automata.Journal of the Association for Com-

puting Machinery, 16(3):383{406, 1969.

[AL07] Roland Axelsson and Martin Lange. Model checking the�rst order fragment

of higher-order �xpoint logic. In N. Dershowitz and A. Voronkov, editors,

Proc. 14th Int. Conf. on Logic for Programming, Arti�cial In telligence, and

Reasoning, LPAR'07, volume 4790 ofLNCS, pages 62{76, Yerevan, Armenia,

2007. Springer.

[ALLa] Roland Axelsson, Martin Lange, and Markus Latte. Alternating context-free

grammars are conjuctive grammars and vice versa. Submittedfor publication

2010.

[ALL + b] Roland Axelsson, Martin Lange, Markus Latte, Matthew Hague, and Stephan

Kreutzer. Extended computation tree logic. Submitted for publication 2010.

[ALS07] Roland Axelsson, Martin Lange, and Rafal Somla. Thecomplexity of model

checking higher order �xpoint logic. Logical Methods in Computer Science,

3(2:7):1{33, 2007.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. InProc. of the

thirty-sixth annual ACM symposium on Theory of computing, pages 202{211,

New York, NY, USA, 2004. ACM.

[BAMP81] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic of

branching time. In Proc. of the 8th ACM SIGPLAN-SIGACT symposium on



146 BIBLIOGRAPHY

Principles of programming languages, pages 164{176, New York, NY, USA,

1981. ACM.

[B�ek84] H. B�eki�c. Programming Languages and Their De�nition, Selected Papers, vol-

ume 177 ofLNCS. Springer, 1984.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown

automata: Application to model-checking. InProc. 8th Int. Conf. on Concur-

rency Theory, CONCUR'97, volume 1243 ofLNCS, pages 135{150. Springer,

1997.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes

with abstraction. Theoretical Computer Science, 37:77{121, 1985.

[Bou96] Pierre Boullier. Another facet of lig parsing. InProceedings of the 34th annual

meeting on Association for Computational Linguistics, pages 87{94, Morris-

town, NJ, USA, 1996. Association for Computational Linguistics.

[BP81] Francine Berman and Mike Paterson. Propositional dynamic logic is weaker

without tests. Theoretical Computer Science, 16:321{328, 1981.

[BS06] J. Brad�eld and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic.

Elsevier, 2006.

[B•uc60] J. R. B•uchi. On a decision method in restricted second order arithmetic. In

Proc. of the Int. Congress on Logic, Methodology and Philosophy of Science,

pages 1{11. Stanford University Press, 1960.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. InLogics of Programs: Workshop, volume 131

of LNCS, pages 52{71, Yorktown Heights, New York, 1981. Springer.

[CS92] Rance Cleaveland and Bernhard Ste�en. A linear-timemodel-checking algo-

rithm for the alternation-free modal mu-calculus. InProc. of the 3rd Interna-

tional Workshop on Computer Aided Veri�cation, pages 48{58, London, UK,

1992. Springer-Verlag.

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness

in the temporal logic of branching time. Journal of Computer and System

Sciences, 30:1{24, 1985.



BIBLIOGRAPHY 147

[EH86] E. Allen Emerson and Joseph Y. Halpern. \sometimes" and \not never" revis-

ited: on branching versus linear time temporal logic.Journal of the Association

for Computing Machinery, 33(1):151{178, 1986.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata

and logics of programs (extended abstract). In29th Annual Symposium on

Foundations of Computer Science, pages 328{337. IEEE, 1988.

[EJ00] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata

and logics of programs.SIAM Journal on Computing, 29(1):132{158, 2000.

[Elg61] C.C. Elgot. Decision problems of �nite automata design and related arith-

metics. Transactions of the American Mathematical Society, 98:21{52, 1961.

[Eme87] E. Allen Emerson. Uniform inevitability is tree automaton ine�able. Informa-

tion Processing Letters, 24(2):77{79, 1987.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamiclogic of regular pro-

grams. Journal of Computer and System Sciences, 18:194{211, 1979.

[Gaz88] G. Gazdar. Applicability of indexed grammars to natural languages. In

U. Reyle and C. Rohrer, editors,Natural Language Parsing and Linguistic

Theories, pages 69{94. Reidel, Dordrecht, 1988.

[HK99] David Harel and Moshe Kaminsky. Strengthened results on nonregular pdl.

Technical Report MCS99-13, Weizmann Institute of Science,Dept. of Com-

puter Science and Applied Mathmatics, 1999.

[HM80] M. C. B. Hennessy and R. Milner. On observing nondeterminism and concur-

rency. In J. W. de Bakker and J. van Leeuwen, editors,Automata, Languages

and Programming, 7th Colloquium, volume 85 ofLNCS, pages 299{309, No-

ordweijkerhout, Netherlands, 1980. Springer-Verlag.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the Association for Computing Machinery, 12(10):576{580, 1969.

[HPS83] David Harel, Amir Pnueli, and Jonathan Stavi. Propositional dynamic logic of

nonregular programs.Journal of Computer Systems and Science, 26(2):222{

243, 1983.



148 BIBLIOGRAPHY

[HR93] David Harel and Danny Raz. Deciding properties of nonregular programs.

SIAM Journal on Computing, 22(4):857{874, 1993.

[HS96] David Harel and Eli Singerman. More on nonregular pdl: Finite models and

�bonacci-like programs. Information and Computation, 128(2):109{118, 1996.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[J�r94] N. J�rgensen. Finding �xpoints in �nite function sp aces using neededness

analysis and chaotic iteration. InProc. 1st Int. Static Analysis Symposium,

SAS'94, volume 864 ofLNCS, pages 329{345. Springer, 1994.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propo-

sitional mu-calculus with respect to monadic second order logic. In 7th Int.

Conf. on Concurrency Theory CONCUR '96, pages 263{277, Pisa, Italy, 1996.

[Koz82] Dexter Kozen. Results on the propositional� -calculus. In9th Int. Colloquium

on Automata, Languages and Programming, volume 140 ofLecture Notes in

Computer Science, pages 348{359. Springer, 1982.

[Koz88] Dexter Kozen. A �nite model theorem for the propositional -calculus. Studia

Logica, 47:233{241, 1988.

[KP83] T. Koren and A. Pnueli. There exist decidable contextfree propositional

dynamic logics. InLogic of Programs, volume 164 ofLecture Notes in Computer

Science, pages 290{312. Springer, 1983.

[Kri63] S.A. Kripke. Semantical analysis of modal logic i - normal modal propositional

calculi. Zeitschrift fr mathematische Logik und Grundlagen der Mathematik,

9:67{96, 1963.

[Lan02] Martin Lange. Local model checking games for �xed point logic with chop.

In Lubos Brim, Petr Jancar, Mojm��r Kret��nsk�y, and Anton� �n Kucera, editors,

13th International Conference on Concurrency Theory, volume 2421 ofLecture

Notes in Computer Science, pages 240{254. Springer, 2002.

[Lan05] M. Lange. Model checking propositional dynamic logic with all extras. Journal

of Applied Logic, 4(1):39{49, 2005.



BIBLIOGRAPHY 149

[Lan10] Martin Lange. A ptime-hardness proof for emptinessof visibly pushdown lan-

guages. http://www2.tcs.i�.lmu.de/~mlange/papers/emptinessvpl.pdf, 2010.

[LLS07] C. L•oding, C. Lutz, and O. Serre. Propositional dynamic logic with recursive

programs. Journal of Logic and Algebraic Programming, 73(1-2):51{69, 2007.

[LS02] Martin Lange and Colin Stirling. Model checking �xedpoint logic with chop.

In 5th International Conference on Foundations of Software Science and Com-

putation Structures, volume 2303 ofLecture Notes in Computer Science, pages

250{263. Springer, 2002.

[LS06] Martin Lange and Rafal Somla. Propositional dynamiclogic of context-

free programs and �xpoint logic with chop. Information Processing Letters,

100(2):72{75, 2006.

[McN66] Robert McNaughton. Testing and generating in�nitesequences by a �nite

automaton. Information and Control, 9(5):521{530, 1966.

[MO99] M. Mueller-Olm. A modal �xpoint logic with chop. In Ch ristoph Meinel

and Sophie Tison, editors,Proc. 16th. Symposium on Theoretical Aspects in

Computer Science, STACS'99, volume 1563 ofLNCS, pages 510{520, Trier,

Germany, 1999. Springer.

[Mor89] E. Moriya. A grammatical characterization of alternating pushdown automata.

Theoretical Computer Science, 67(1):75{85, 1989.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems Speci�cation. Springer, 1992.

[NST01] Naoya Nitta, Hiroyuki Seki, and Yoshiaki Takata. Security veri�cation of

programs with stack inspection. InSACMAT, pages 31{40, 2001.

[Okh01] A. Okhotin. Conjunctive grammars. Journal of Automata, Languages and

Combinatorics, 6(4):519{535, 2001.

[Ott06] Martin Otto. Bisimulation invariance and �nite mod els. January 2006.

[Pnu77] Amir Pnueli. The temporal logic of programs. In18th Annual Symposium on

Foundations of Computer Science, pages 46{57. IEEE, 1977.



150 BIBLIOGRAPHY

[Pra80] Vaughan R. Pratt. A near-optimal method for reasoning about action.Journal

of Computer and System Sciences, 20(2):231{254, 1980.

[Pri57] A.N. Prior. Time and modality, 1957.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on

in�nite trees. Transactions of the American Mathematical Society, 141:1{35,

1969.

[Sch02] Ph. Schnoebelen. The complexity of temporal logic model checking. In4th

Conference on Advances in Modal logic, pages 393{436. King's College Publi-

cations, 2002.

[Str81] Robert S. Streett. Propositional dynamic logic of looping and converse. In

Proc. of the Thirteenth Annual ACM Symposium on Theory of Computation,

pages 375{383. ACM, 1981.

[TK07] S. Tanaka and T. Kasai. The emptiness problem for indexed language is

exponential-time complete. Systems and Computers in Japan, 17(9):29{37,

2007.

[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata

constructions. In Proc. 12th Int. Conf. on Logic for Programming, Arti�cial

Intelligence, and Reasoning, volume 3835 ofLNCS, pages 396{411. Springer,

2005.

[vEB97] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,

Logic, and Recursion Theory, volume 187 ofLecture notes in pure and applied

mathematics, pages 331{363. Marcel Dekker, Inc., 1997.

[VsW94] K. Vijay-shanker and D. J. Weir. The equivalence of four extensions of context-

free grammars.Mathematical Systems Theory, 27:27{511, 1994.

[VV04] Mahesh Viswanathan and Ramesh Viswanathan. A higherorder modal �xed

point logic. In Philippa Gardner and Nobuko Yoshida, editors, Proc. 15th

Int. Conference on Concurrency Theory, CONCUR'04, volume 3170 ofLNCS,

pages 512{528, London, UK, 2004. Springer.



151

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to au-

tomatic program veri�cation (preliminary report). In Symposium on Logic in

Computer Science, pages 332{344. IEEE Computer Society, 1986.

[WDHR06] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new

algorithm for checking universality of �nite automata. In Proc. 18th Int. Conf.

on Computer Aided Veri�cation, CAV'06 , volume 4144 ofLNCS, pages 17{30.

Springer, 2006.



152



Acknowledgment

First of all, I would like to thank my supervisor Martin Lange for his generosity in terms

of time spent with me in the past few years in discussions at the whiteboard and wherever

else. From this I have incredibly pro�ted and it was also great fun. I do also think it was

in�nitely more successful than our attempts at �shing from the shore in Denmark which

in fact is quite a weak statement.

Also, he o�ered me the opportunity to come around in the academic as well as the physical

world from the very beginning, be it conferences, visits or extended stays abroad. Thanks

in this context also to his wife Becky and the kids who made me feel very comfortable and

welcome during my visits in all of the homes they inhabited since I started to work with

Martin.

Thanks to Martin Hofmann for initially making it possible for me to take up a position

at his chair and to get the extra funding after the expiry of the project. Thanks also for

trusting me with the work as an assistant in his lectures. Hisuniversal interest in all kinds

of disciplines has always been very inspiring. Sigrid Rodenshould also be named for her

manifold virtues as the secretary of the chair.

Mogens Nielsen at BRICS is to be thanked for o�ering me an o�ceduring my stay there

and for his help to provide me with a travel grant. Also his invaluable secretary Lene

Kjeldsten did help me in every possible way to get a place to live there and whatever else

was necessary. Thanks to the Friday caf�e and all the nice people there just for doing what

they do every friday.

I would also like to thank Thomas Wilke for agreeing to be the external reviewer of this

thesis.

Thanks to everybody whom I forgot to thank for or did not mention, because I wish to

keep this list within reasonable bounds.

Finally, thanks to Caro, who encouraged me to take up the position in the �rst place

despite the fact that I was going to leave to Denmark for quitea while.


	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Formal Languages and Automata
	The Chomsky Hierarchy
	Visibly Pushdown Languages
	Indexed Languages
	Linear Indexed Languages
	Alternating Context-Free Languages

	Temporal Logics
	Labeled Transition Systems
	Logic and Program Verification
	Computational Complexity
	Properties of Temporal Logics
	Expressivity
	Propositional Dynamic Logic
	Computation Tree Logic
	The Modal -Calculus
	Non-Regular Logics


	Non-Regular Propositional Dynamic Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	A Generic Method
	A Model Checking Algorithm for PDL over IL
	A Model Checking Algorithm for PDL over MCSL


	Non-Regular Computation Tree Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	Model checking EU[PDA]
	Model checking ER[DPDA]


	Higher-Order Fixpoint Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	A Standard Fixpoint-Approximation Algorithm
	A Model Checker Using Neededness Analysis
	Soundness and Completeness
	Applications and Evaluation in Practice


	Further Work
	Bibliography


