
Verification of Non-Regular Program

Properties

Roland Axelsson

München 2010

Verification of Non-Regular Program

Properties

Roland Axelsson

Dissertation

am Institut für Informatik

Ludwig–Maximilians–Universität

München

vorgelegt von

Roland Axelsson

München, den 27.4.2010

Erstgutachter: Prof. Dr. Martin Lange

Zweitgutachter: Prof. Dr. Thomas Wilke

Tag der mündlichen Prüfung: 25.6.2010

Abstract

Most temporal logics which have been introduced and studied in the past decades can be

embedded into the modal Lµ. This is the case for e.g. PDL, CTL, CTL∗, ECTL, LTL,

etc. and entails that these logics cannot express non-regular program properties. In recent

years, some novel approaches towards an increase in expressive power have been made:

Fixpoint Logic with Chop enriches Lµ with a sequential composition operator and thereby

allows to characterise context-free processes. The Modal Iteration Calculus uses inflation-

ary fixpoints to exceed the expressive power of Lµ. Higher-Order Fixpoint Logic (HFL)

incorporates a simply typed λ-calculus into a setting with extremal fixpoint operators and

even exceeds the expressive power of Fixpoint Logic with Chop. But also PDL has been

equipped with context-free programs instead of regular ones.

In terms of expressivity there is a natural demand for richer frameworks since program

property specifications are simply not limited to the regular sphere. Expressivity however

usually comes at the price of an increased computational complexity of logic-related deci-

sion problems. For instance are the satisfiability problems for the above mentioned logics

undecidable. We investigate in this work the model checking problem of three different log-

ics which are capable of expressing non-regular program properties and aim at identifying

fragments with feasible model checking complexity.

Firstly, we develop a generic method for determining the complexity of model checking

PDL over arbitrary classes of programs and show that the border to undecidability runs

between PDL over indexed languages and PDL over context-sensitive languages. It is

however still in PTIME for PDL over linear indexed languages and in EXPTIME for PDL

over indexed languages. We present concrete algorithms which allow implementations of

model checkers for these two fragments.

We then introduce an extension of CTL in which the until - and release- operators are

adorned with formal languages. These are interpreted over labeled paths and restrict

the moments on such a path at which the operators are satisfied. The until -operator

is for instance satisfied if some path prefix forms a word in the language it is adorned

with (besides the usual requirement that until that moment some property has to hold

and at that very moment some other property must hold). Again, we determine the

computational complexities of the model checking problems for varying classes of allowed

languages in either operator. It turns out that either enabling context-sensitive languages

in the until or context-free languages in the release- operator renders the model checking

problem undecidable while it is EXPTIME-complete for indexed languages in the until

and visibly pushdown languages in the release- operator. PTIME-completeness is a result

of allowing linear indexed languages in the until and deterministic context-free languages

in the release. We do also give concrete model checking algorithms for several interesting

fragments of these logics.

Finally, we turn our attention to the model checking problem of HFL which we have

already studied in previous works. On finite state models it is kEXPTIME-complete for

HFLk, the fragment of HFL obtained by restricting functions in the λ-calculus to order k.

Novel in this work is however the generalisation (from the first-order case to the case for

functions of arbitrary order) of an idea to improve the best and average case behaviour of

a model checking algorithm by using partial functions during the fixpoint iteration guided

by the neededness of arguments. This is possible, because the semantics of a closed HFL

formula is not a total function but the value of a function at some argument. Again, we

give a concrete algorithm for such an improved model checker and argue that despite the

very high model checking complexity this improvement is very useful in practice and gives

feasible results for HFL with lower order fuctions, backed up by a statistical analysis of

the number of needed arguments on a concrete example.

Furthermore, we show how HFL can be used as a tool for the development of algorithms. Its

high expressivity allows to encode a wide variety of problems as instances of model checking

already in the first-order fragment. The rather unintuitive – yet very succinct – problem

encoding together with an analysis of the behaviour of the above sketched optimisation

may give deep insights into the problem. We demonstrate this on the example of the

universality problem for nondeterministic finite automata, where a slight variation of the

optimised model checking algorithm yields one of the best known methods so far which

was only discovered recently.

We do also investigate typical model-theoretic properties for each of these logics and com-

pare them with respect to expressive power.

Zuasmmenfassung

Die meisten Temporallogiken, welche in den vergangenen Jahrzehnten eingeführt und von

der Forschung berücksichtigt wurden, lassen sich in den modalen µ-Kalkül einbetten. Dies

betrifft z.B. PDL, CTL, CTL∗, ECTL, LTL, etc. und beinhaltet, dass diese Logiken nicht

dazu in der Lage sind, nicht-reguläre Programmeigenschaften auszudrücken.

In den letzten Jahren wurden allerdings eine Reihe ausdruckstärkerer Logiken entwickelt:

Fixpoint Logic with Chop erweitert den µ-Kalkül um einen Operator für sequentielle Kom-

position und erlaubt es dadurch, logische Charakterisierungen von kontextfreien Prozessen

anzugeben. Im Modal Iteration Calculus führen inflationäre Fixpunkte dazu, dass seine

Ausdrucksstärke diejenige des µ-Kalküls übersteigt. Higher-Order Fixpoint Logic (HFL)

vereint in sich einen einfach getypten λ-Kalkül sowie kleinste und grösste Fixpunktquan-

toren und ist damit sogar noch ausdrucksstärker als Fixpoint Logic with Chop. Selbst PDL

wurde in der Vergangenheit bereits mit kontextfreien anstelle von regulären Programmen

untersucht.

Da Spezifikationen von Programmeigenschaften nicht auf Regularität beschränkt sind,

ergibt sich ein natürlicher Bedarf an ausdrucksstärkeren Spezifikationsformalismen. Grössere

Ausdrucksstärke ist jedoch üblicherweise mit einem Ansteigen der Komplexität der im

Zusammenhang mit der Logik stehenden Entscheidungsprobleme verbunden. Beispiels-

weise sind die Erfüllbarkeitsprobleme für jede der oben genannten Logiken unentscheidbar.

Die vorliegende Arbeit untersucht die Model Checking Probleme von drei verschiedenen

Logiken, welche im Stande sind, nicht-reguläre Eigenschaften auszudrücken und gibt Frag-

mente von ihnen an, welche eine in der Praxis noch verwertbare Komplexität in Bezug auf

das Model Checking Problem besitzen.

Zunächst wird eine generische Methode entwickelt, um die Komplexität des Model Check-

ing Problems von PDL über beliebigen Klassen von Programmen zu bestimmen. Es wird

gezeigt, dass die Grenze zur Unentscheidbarkeit zwischen PDL über indexierten Sprachen

und PDL über kontextsensitiven Sprachen verläuft. Für PDL über linear indexierten

viii

Sprachen ist das Problem noch immer in PTIME und für PDL über indexierten Sprachen

in EXPTIME. Wir geben für diese beiden Fragmente konkrete Algorithmen für eine Im-

plementierung an.

Im Anschluss führen wir eine Erweiterung von CTL ein, in welcher die until - und re-

lease-Operatoren mit formalen Sprachen ausgestattet sind. Diese Sprachen werden über

beschrifteten Pfaden interpretiert und kennzeichnen die Momente entlang solcher Pfade in

welchen die Operatoren erfüllt sein müssen. So ist beispielsweise der until -Operator erfüllt,

falls es einen Pfadpräfix gibt, welcher ein Wort in der Sprache bildet, mit der der Oper-

ator ausgestattet ist (und die übliche until -Bedingung gilt, nämlich, dass eine bestimmte

Eigenschaft in jedem Zustand bis zu diesem Zeitpunkt gegolten hat, sowie dass eine andere

in genau jenem Zeitpunkt gilt).

Wie im Fall von PDL, bestimmen wir die Komplexität des Model Checking Problems für

verschiedene Klassen von erlaubten Sprachen im jeweiligen Operator. Es stellt sich heraus,

dass sowohl die Klasse der kontextsensitiven Sprachen im until - als auch die Klasse der

kontextfreien Sprachen im release-Operator zu Unentscheidbarkeit des Model Checking

Problems führen. Es ist EXPTIME-vollständig für indexierte Sprachen im until - und vis-

ibly pushdown Sprachen im release-Operator. Linear indexierte Sprachen im until sowie

deterministisch kontextfreie Sprachen im release führen zu einem PTIME-vollständigen

Model Checking Problem. Wir geben ebenfalls wieder konkrete Model Checking Algorith-

men für ausgewählte Fragmente dieser Logiken an.

Schliesslich wenden wir uns dem Model Checking Problem für HFL zu, welches wir bereits

in vorangegangenen Arbeiten untersucht haben. Auf endlichen Modellen ist es kEXPTIME-

vollständig für HFLk (das Fragment von HFL, welches man erhält, wenn man die Ordnung

der Funktionen im λ-Kalkül auf k beschränkt). Neu ist jedoch die Verallgemeinerung einer

Idee welche für HFL1 entwickelt wurde und nun auf das gesamte HFL ausgeweitet wird, um

das Verhalten des Model Checkers im besten bzw. durchschnittlichen Fall zu verbessern,

indem partielle anstelle von totalen Funktionen während der Fixpunktapproximation in

Abhängigkeit von den benötigten Argumentstellen berechnet werden. Dies ist deshalb

möglich, weil die Semantik einer geschlossenen HFL Formel selbst keine totale Funktion

ist, sondern der Wert einer Funktion an einer bestimmten Argumentstelle.

Wir geben wieder einen konkerten Algorithmus für diesen optimierten Model Checker an

und vertreten die Ansicht, dass die Optimierung trotz der hohen Komplexität im schlecht-

esten Fall brachbare Ergebnisse in der Praxis zeitigen kann, zumindest für HFL mit Funk-

tionen niedriger Ordnung. Wir belegen diese Ansicht durch eine statistische Auswertung

der Anzahl benötigter Argumente anhand eines konkreten Beispiels.

Desweiteren zeigen wir, wie HFL als Instrument zur Entwicklung von Algorithmen ver-

wendet werden kann. Die grosse Ausdrucksstärke erlaubt es, eine Vielzahl von Problemen

als Instanzen des Model Checking Problems zu kodieren und zwar bereits in HFL1. Die

eher wenig intuitive Kodierung in Kombination mit einer Analyse des Verhaltens des op-

timierten Model Checking Algorithmus auf diesen Problemen kann tiefere Einsicht in das

Problem selbst gewähren. Wir demonstrieren dies am Beispiels des Universalitätsproblems

für nichtdeterministische endliche Automaten, wo eine leichte Veränderung des optimierten

Model Checking Algorithmus zu einer der besten bisher bekannten Methoden dafür führt,

welche erst kürzlich beschrieben wurde.

Desweiteren untersuchen wir die typischen modelltheoretischen Eigenschaften jeder dieser

Logiken und vergleichen sie untereinander in Bezug auf ihre Ausdrucksstärke.

x

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1

2 Preliminaries 9

2.1 Formal Languages and Automata . 9

2.1.1 The Chomsky Hierarchy . 10

2.1.2 Visibly Pushdown Languages . 13

2.1.3 Indexed Languages . 17

2.1.4 Linear Indexed Languages . 20

2.1.5 Alternating Context-Free Languages 23

2.2 Temporal Logics . 26

2.2.1 Labeled Transition Systems . 26

2.2.2 Logic and Program Verification . 28

2.2.3 Computational Complexity . 29

2.2.4 Properties of Temporal Logics . 30

2.2.5 Expressivity . 31

2.2.6 Propositional Dynamic Logic . 32

2.2.7 Computation Tree Logic . 34

2.2.8 The Modal µ-Calculus . 36

2.2.9 Non-Regular Logics . 39

3 Non-Regular Propositional Dynamic Logic 41

3.1 Syntax and Semantics . 41

3.2 Examples . 44

xii Table of contents

3.3 Properties . 45

3.4 Expressivity . 47

3.5 Model Checking . 52

3.5.1 A Generic Method . 52

3.5.2 A Model Checking Algorithm for PDL over IL 61

3.5.3 A Model Checking Algorithm for PDL over MCSL 72

4 Non-Regular Computation Tree Logic 79

4.1 Syntax and Semantics . 80

4.2 Examples . 82

4.3 Properties . 83

4.4 Expressivity . 84

4.5 Model Checking . 90

4.5.1 Model checking EU[PDA] . 101

4.5.2 Model checking ER[DPDA] . 105

5 Higher-Order Fixpoint Logic 109

5.1 Syntax and Semantics . 110

5.2 Examples . 116

5.3 Properties . 117

5.4 Expressivity . 117

5.5 Model Checking . 122

5.5.1 A Standard Fixpoint-Approximation Algorithm 123

5.5.2 A Model Checker Using Neededness Analysis 124

5.5.3 Soundness and Completeness . 130

5.5.4 Applications and Evaluation in Practice 133

6 Further Work 143

Bibliography . 145

Acknowledgment 151

List of Figures

2.1 Example ACFG derivation. 25

2.2 Expressive power of some regular logics. 38

3.1 Complexity of satisfiability for PDL[L]. 47

3.2 Expressive power of PDL[L]. 51

3.3 REG-intersection and emptiness for some language classes. 58

3.4 Complexity of SAT vs. model checking PDL[L]. 60

4.1 Complexity of satisfiability for CTL[L] . 84

4.2 Expressive power of CTL[L] . 91

4.3 Complexity of model checking CTL[A,B]. 100

5.1 Type inference rules for HFL. 111

5.2 Example type derivation of a HFL formula. 112

5.3 Expressive power of PDL[L], CTL[L] and HFL. 121

5.4 A model checking algorithm for HFL. 125

5.5 Algorithm MC-HFL running on NFA-UNIV. 129

5.6 Counting arguments in the function table of MC-HFL. 135

5.7 A transition system representation of a QBF formula. 138

5.8 A transition system representation of a formula in modal logic K. 140

xiv List of figures

Chapter 1

Introduction

A Quick Survey on Temporal Logics. In order to reason about program behaviour

and in particular about the stepwise execution of processes, a notion of time and a formal-

ism which enables to describe the changes over time is required.

First efforts included Hoare-style program verification [Hoa69], where valid statements

about a typically sequential program are derived by applying inference rules to each pro-

gram statement and the currently valid conditions. Following classical proof systems,

application of the inference rules required human ingenuity and made verification of larger

programs extremely tedious, because manual intervention was inevitable.

The idea to interpret modal logic in the context of temporal succession goes back to A.

Prior in 1957 [Pri57] and has since then evolved into a large and productive research

field. Its importance is rooted in the emerging industrial need for safe hard- and software

systems over the years. Techniques such as model checking, i.e. an algorithmic solution to

the question whether a given model of a system satisfies its specification provide a solid

mathematical basis to ideally guarantee that a set of properties holds for a system. The

greatest benefit herein lies in the fact that (sufficient computing power granted) the model

checking process is designed for full automation.

Many logics have since Prior been invented to formally reason about time and program

behaviour; most of them still have in common the modal foundation but otherwise differ

a lot in the machinery of temporal operators provided. Kripke’s possible world semantics

[Kri63] in general becomes a transition system in the context of program reasoning and the

meanings of possibility and necessity shift to “there is a (direct) successor in time” and

“for all (direct) successors in time”.

In the most simple temporal logics like e.g. Hennessy-Milner-Logic [HM80], reasoning about

2 1. Introduction

paths in a model can only be done by explicitly declaring the path depth, i.e. there is no

recursion device which automatically applies a certain specification scheme. Not until the

introduction of fixpoints into this setting is it possible to make a (finite) statement like e.g.

“along every path proposition q eventually holds”.

The 1977 landmark paper by Pnueli [Pnu77] introduced temporal logic, today known as

Linear Temporal Logic (LTL), in which (implicitly) universally quantified statements about

the runs of a system are possible. The universal quantification allows to merge all system

runs into models with a linear concept of time succession – hence the later adopted name

prefix. LTL has basic temporal operators: X (next-time), F (sometime), G (always) and

U (until). A formula Xϕ requires the next moment in time to satisfy ϕ, Fϕ says that ϕ

eventually holds in the future, Gϕ says that ϕ holds from now on forever and the binary

operator ϕUψ is satisfied if there exists a future state at which ψ holds and until that

moment ϕ must hold. Consider for example the formula FGp stating “(on all system runs)

sometime in the future, p will always hold”.

Another widely used temporal logic is Computation Tree Logic (CTL)[BAMP81] which

keeps different runs of a system apart by modelling the succession of time seperately for

every run, thus arriving at branching time models. CTL models explicitly incorporate non-

determinism by allowing the time to split up whenever different system behaviour opens

up a new branch of possibilites. These models preserve more information about the system

behaviour than linear ones and therefore allow a richer variety of specification formalisms.

Note that a tree model can be translated into a linear model but the converse translation

fails. In particular, CTL is – unlike LTL – capable of specifying properties regarding single

system runs, i.e. CTL allows existential quantification in addition to universal quantifica-

tion over runs.

Temporal formulas of CTL consist of the same temporal operators as LTL with a similar

meaning but must occur in the scope of a path quantifier (A and E for universal and

existential path quantification). Furthermore, no interleaving of temporal operators is

allowed unless each temporal operator is guarded by a path quantifier. So, e.g. AGEFq

states liveness of property q: “on all paths it is true everywhere that there exists a path

along which eventually q holds”. For details on the logic, see Sec. 2.2.7.

Both logics are mutually incomparable which is witnessed by the above mentioned formulas.

On the one hand, the interleaving of temporal operators F and G allowed in LTL cannot be

expressed in CTL and on the other hand there is no existential path quantification in LTL.

These features are impossible to express by other means of the respective logical languages.

3

The logic which unifies LTL and CTL is CTL∗ which combines the nesting of temporal

operators with universal and existential path quantification.

Fischer and Ladner’s Propositional Dynamic Logic (PDL) [FL79] is yet another branching

time temporal logic in which the moments in time at which certain properties should hold

are specified by regular expressions, also called programs. These programs R are syn-

tactically embedded into the modalities 〈R〉 and [R] which correspond to existential and

universal quantification over paths labeled with elements of R. Both LTL and CTL are

interpreted over unlabeled models while using labels inside the specification formalism pro-

vides additional means to model program behaviour. For instance, the formula 〈(aba)∗〉tt

states “there exists a path labeled with a word from the language (aba)∗”. Some of the

properties of unlabeled models can be simulated in PDL however: the CTL expression AGq

corresponds to [Σ∗]q for instance. In general however, PDL and CTL are incomparable.

For details on PDL, see Sec. 2.2.6.

Another extensively studied logic is Kozen’s modal µ-calculus [Koz82]. It is equipped with

single letter modalities 〈a〉 and [a] and uses extremal fixpoint constructs as recursion devices

to combine these to path properties. For instance, the expression νx.p ∧ 〈a〉〈b〉x states

“there exists an (ab)ω-labeled path along which p holds in between each ab”, where νx is the

greatest fixpoint operator. What gives µ-calculus its expressive power and (seemingly) is

the reason for the computational complexity of its model checking problem is the fixpoint

alternation. Fixpoint alternation is the mutual dependency of fixpoints and the measure

of the dependency complexity is called the alternation depth of a formula (c.f.[BS06]). The

best known model checking algorithms for the µ-calculus are exponential in the alternation

depth.

Having a fundus of different logics with a (mostly) common base, the question of expressive

power naturally arises. Interestingly, almost all well-established temporal logics can be

embedded in the µ-calculus, like e.g. LTL, CTL, CTL∗ and PDL, since the modal and

temporal operators can be expressed as least and greatest fixpoints of a certain form. In

fact they can even (except for CTL∗) be embedded into the alternation-free fragment of

the µ-calculus. For details on syntax and semantics, see Sec. 2.2.8.

Regularity and Logic. The µ-calculus plays a very important role, because via its

tight relationship with Monadic Second-Order Logic (MSO), it connects temporal logic

with automata theory.

The works of Büchi and Elgot have shown that MSO (interpreted over finite words) and

4 1. Introduction

finite automata have the same expressive power and are effectively translatable into each

other [Büc60, Elg61]. This result was later extended to finite automata over infinite words

and trees [McN66, Rab69], namely Büchi-automata and tree-automata with a Rabin-

acceptance condition.

On the other hand, the µ-calculus and the bisimulation-invariant fragment of MSO do also

have the same expressive power [JW96] and this finally links the theory of finite automata

and µ-calculus. It is in this sense that the term “regular logic” applies to µ-calculus

although it was originally coined in the context of finite automata and formal language

theory.

Temporal Logics Beyond Regularity. Although formulas specified in the µ-calculus

are usually considered hard to understand (at least with increasing alternation depth),

they still correspond to the least expressive fragment of the Chomsky hierarchy. Regular

languages are very limited in reflecting structural complexity in comparison to the context-

free and context-sensitive languages – an observation which also transfers to properties

expressible in the µ-calculus.

A demand for richer logical description and recognition frameworks is natural because

computer processes are not restricted to regularity and hence have structural properties

which cannot be expressed with regular means.

This was for instance the motivation behind the design of Fixpoint Logic with Chop (FLC)

where a logical characterisation for a class of processes called context-free or BPA (Basic

Process Algebra) processes was sought [MO99]. It turned out that it was sufficient to add

sequential composition to the modal µ-calculus to achieve this in the following way.

Formulas in branching time logics are usually interpreted as sets of states, namely those

which satisfy the formula, i.e. predicates on the total state set. In FLC, the semantics

is lifted to functions [[·]] : 2S → 2S where S is the state space; i.e. a formula is basically

a predicate transformer. Sequential composition of formulas φ;ψ is now interpreted as

function composition ([[φ]] ◦ [[ψ]])(x). This is possible because the set of all monotone func-

tions 2S → 2S forms a complete lattice with pointwise inclusion ordering which guarantees

the existence of least and greatest fixpoints. As an example property (inexpressible in

µ-calculus) consider the formula µx.τ ∧ 〈a〉; x; 〈b〉 stating “there exists a path labeled with

a word w ∈ {anbn | n ≥ 0}”, where τ simply is the identity function needed for technical

reasons regarding the FLC semantics.

The idea of formulas as functions was consequently generalized by M. and R. Viswanathan

5

by omitting the restriction of functions to first order in Higher-Order Fixpoint Logic (HFL)

[VV04]. Here, the µ-calculus is enriched with a simply typed λ-calculus and fixpoints

range over higher-order functions instead of just first-order functions. This is well-defined

because higher-order functions form a complete lattice with a pointwise inclusion order on

the function values. For formula examples, see Sec. 5.2.

FLC turns out to be easily embeddable into the first-order fragment of HFL, (even re-

stricted to arity 1) but a diagonalisation argument shows that HFL is strictly more ex-

pressive than FLC [VV04]. The question whether FLC is equivalent to the first-order

fragment of HFL is still open. If we denote by HFLk the fragment of HFL which is re-

stricted to functions of order k, then HFL0, the fragment without functions is equivalent

(even syntactically) to the µ-calculus.

Regarding the typical decision problems for logics, matters are more or less the same than

with FLC, i.e. satisfiability is undecidable and model checking is decidable on finite models

only. HFL model checking is already very hard for arbitrarily small models: we have shown

that the problem is kEXPTIME-complete for HFLk even on transition systems of size 1

[ALS07]. A direct consequence of this result is that there is also a strict hierarchy of

expressiveness with increasing order of the functions.

This may seem little encouraging, however in this work we show that the higher-order

functions which are responsible for the kEXPTIME-hardness, are not needed as total but

as partial functions on average. Only in worst case scenarios is the computation of the

values at all arguments necessary for solving the model checking problem. The leeway

between average and worst case can be exploited in practice and shown experimentally to

be sufficiently large for feasible employment at least for lower-order functions.

Another aspect we consider is that for a logic as expressive as HFL, various surprisingly

different general logical problems can be encoded into the model checking problem, e.g. :

satisfiability of modal logic K or universality of non-deterministic finite automata (NFA).

This enables a re-evaluation of known algorithms for these problems, since they are ex-

pressed in the rather unintuitive way as a fixpoint of a function. This may even lead to

better ones. For instance, with a few optimisations the model checking algorithm on the

NFA-universality problem turns out to be the same as the antichain method by Henzinger

et al. [WDHR06] which is one of the best currently known and only discovered recently.

Tailored Expressivity. It is clear that expressive power comes at the price of increased

computational complexity. This work discusses several non-regular logics which all have

6 1. Introduction

in common that they are parametric in some sense which directly affects their expressive

power. We will for instance investigate HFL, where the parameter which regulates the ex-

pressive power is the order k of functions allowed. Every restriction of the order magnitude

by one immediately pays off by exponentially lesser cost of model checking.

Another approach to achieve modularity in terms of expressive power is to directly incor-

porate formal languages into the logic as it is the case in PDL. Although the original work

investigated PDL for regular programs only, it is clearly designed as a parametric logical

framework over varying classes of programs. But since the focus of attention at the time

was on decidability and it was very early conceived by Ladner that PDL equipped with

context-free programs is undecidable c.f. [HPS83], the range of considered classes has so

far been limited to those located in between the regular and context-free ones.

Interestingly, there is an enormous complexity gap between satisfiability and model check-

ing: while PDL over context-free programs is undecidable, model checking is still in P

[Lan05]. Hence it seems worthwhile to extend the range of language classes for the latter

problem. In this work, we examine the model checking problem of PDL over arbitrary

classes of formal languages and derive complexity bounds for the model checking problem

w.r.t. the expressivity of the language class parameter. It turns out that the borderline to

undecidability of model checking lies somewhere in between the indexed languages and the

context-sensitive.

Here, the advantage of parametric frameworks becomes apparent: it is comparatively easy

to determine an adequate formal language class in which a path property can be expressed,

while the correspondence between least required function order to express such a property

in HFL is unclear.

Parametric PDL mainly draws its expressive power from the language class assigned to it

while the inherent logical machinery is still rather weak. It does for instance not feature

CTL’s release-operator. From this circumstance came the idea for a non-regular CTL

version which we have proposed in [ALL+b]. It combines the modularity of expressive

power with the ease of CTL-specification.

We consider an equally parametric framework for CTL over arbitrary classes of formal

languages and the corresponding model checking problems. CTL operators equipped with

a formal language constrain the moments in time at which subformulas are required to

hold. For instance, the formula EGLp states “there is a path on which at every moment

where the current path prefix forms a word in L, p holds”.

Since it turns out that the model checking complexity of such language-adorned temporal

7

operators differs for UL and RL, we discuss parametric CTL w.r.t. two language class pa-

rameters, each of them restricting the use of languages for one of them which adds further

granularity to the possibilities of choice in the desired logical expressivity.

Chapter Overview. The preliminary chapter recalls definitions of formal language and

automata theory as well as the temporal logics PDL, CTL and µ-calculus which form the

basis of subsequent chapters. We focus on non-standard notions from the literature and

clarify the notational conventions used throughout the thesis.

In chapters 3– 5 we introduce Parametric PDL and CTL as well as HFL. The overall

structure of each of these chapters is

• Syntax and Semantics

• Examples

• Properties

• Expressivity

• Model Checking.

After defining syntax and semantics of a logic and giving examples of properties expressible,

in the “Properties”-section, we investigate some typical properties: the finite model and

tree model property, bisimulation invariance and decidability.

Subsequently, the expressive power of the logics PDL[L], CTL[L] and HFL is compared

and delineated against regular logics.

The main results are usually to be found in the section concerned with model checking.

Starting with the simplest – PDL[L]– we interreduce its model checking problem to the

non-emptiness problem for L-intersections with regular languages and show the close rela-

tionship to graph reachability problems. The transfer of results from these areas allows to

derive computational bounds for model checking PDL[L] and a borderline to undecidabil-

ity for language classes exceeding the context-sensitive. We then develop concrete model

checking algorithms for PDL[IL] and PDL[MCSL] which are the most expressive of these

logics which retain decidability and give detailed soundness and completeness proofs.

Chapter 4 deals with the verification of CTL[L] . We give computational bounds of the

model checking problem and, again, draw the border to undecidability w.r.t. L. Here, we

consider the fragments obtained by restricting the expressive power of the language class

8 1. Introduction

parameters in either the until and release path quantifiers, since the resulting complexity

highly depends on it. We also investigate the differences arising from deterministic and

non-deterministic variants of the input automata.

In Chapter 5 the highly expressive fixpoint logic HFL is turned attention to. We generalise

the model checking algorithm developed in [AL07] for its first-order fragment to the whole

of HFL. The optimisations to the straight-forward algorithm enable us to reduce best-

and average case complexities. We give statistical evidence that this indeed enhances the

performance dramatically and leaves hope for practical feasibility despite the extremely

high worst-case complexity which is a consequence of its expressiveness. We propagate the

use of HFL as an extremely succinct “programming language” for all kinds of problems –

from universality of non-deterministic finite automata to satisfiability checking of modal

logic K – to the purpose of deriving ideas for new algorithms due to the usually rather

unintuitive problem formulation form, namely as a fixpoint of a higher-order function.

This is backed up by the coincidence of the behaviour of our model-checker on a formula

encoding universality of non-deterministic finite automata with one of the fastest methods

known so far.

The final chapter summarises the achievements of this thesis and points out the directions

of further work on the topics contained within.

Chapter 2

Preliminaries

2.1 Formal Languages and Automata

Formal languages and automata form the well-known dualism of language generation and

language recognition. Formal languages are given as grammars which define a set of rules

to derive the words of which a language consists. Their counterpart is the concept of an

automaton: given a word, an automaton decides according to a set of rules whether it

accepts or rejects the word as part of its language. We start with the well known notion

of transitive closure.

Definition 1 (Transitive Closure) Let R, S be binary relations on a universe U . De-

fine RS = {(x, y) ∈ U × U | exists z ∈ U s.t. xRz and zSy}. The following inductive

definitions for n, i ∈ N are standard:

• R0 := {(x, x) | x ∈ U}.

• Rn+1 := RRn.

• R∗ :=
⋃
i≥0R

i.

• R+ :=
⋃
i≥1R

i.

Definition 2 (Grammar) A grammar is a 4-tuple G = (N,Σ, P, S), where N is a finite

set of nonterminal symbols, Σ is a finite set of terminal symbols – also called alphabet

sometimes or set of actions in the context of logics – with N ∩Σ = ∅, S ∈ N is the starting

symbol and P ((N ∪ Σ)+ × (N ∪ Σ)∗ is a finite set of production rules.

10 2. Preliminaries

We use infix notation α → β to denote (α, β) ∈ P . An element α ∈ (N ∪ Σ)∗ is called a

sentential form and its length |α| is defined as the sum of symbol occurrences from N and

Σ in α. If the length of some sentential form is 0, we call it the empty word and denote it

by ǫ.

Definition 3 (Derivation) Let G be a grammar and α, β, γ, γ′ ∈ (N ∪ Σ)∗. We define

the derivation relation ⇒G ⊆ (N ∪ Σ)∗ × (N ∪ Σ)∗ as

αγβ ⇒G αγ
′β iff γ → γ′.

If it is clear to which grammar a derivation refers to, we often omit the index and simply

write ⇒ instead of ⇒G.

Definition 4 (Formal Language) The language of a grammar G = (N,Σ, P, S) is de-

fined as

L(G) = {w ∈ Σ∗ | S ⇒+ w}.

Typical decision problems regarding formal languages are the following:

Let w ∈ Σ∗ for an alphabet Σ and let L,L′ be formal languages.

• word problem: is w ∈ L the case?

• emptiness problem: is L = ∅ the case?

• intersection problem: is L ∩ L′ = ∅ the case?

2.1.1 The Chomsky Hierarchy

Faced with the fact that the computational complexity of solving any of the language-

related decision problems for different languages varies from trivial to undecidable it seems

natural to classify them according to the properties responsible for this.

The Chomsky hierarchy is a well-studied classification system dividing grammars (and the

languages they define) into four different classes which form an inclusion hierarchy.

Definition 5 (Chomsky Hierarchy) Let G = (N,Σ, P, S) be a grammar.

• G is of type 0 or recursively enumerable.

• G is of type 1 or context-sensitive, if |α| ≤ |β| for all α→ β.

2.1 Formal Languages and Automata 11

• G is of type 2 or context-free, if α ∈ N for all α→ β.

• G is of type 3 or regular, if it is context-free and β ∈ Σ ∪ ΣN for all α→ β.

Abbreviations used throughout this text for context-free and context-sensitive grammars

are CFG and CSG, respectively. We adopt the classification for formal languages and may

therefore say that a language is recursively enumerable or context-free, etc. if a grammar

of the corresponding type exists which generates the language. Let REG, CFL, CSL and

RE denote the classes of regular, context-free, context-sensitive and recursively enumerable

languages.

Definition 6 (Finite Automaton) A (nondeterministic) finite automaton (FA) is a 5-

tuple A = (Q,Σ, δ, q0, F), where Q ∩ Σ = ∅ and

• Q is a finite set of states,

• Σ is a finite set of terminal symbols,

• δ : Q× Σ→ 2Q is the transition function,

• q0 ∈ Q is the starting state,

• F ⊆ Q is the set of final states.

For reasons of better readability, we may write q a−→ q′ instead of q′ ∈ δ(q, a). We call a

finite automaton deterministic if |δ(q, a)| = 1 for all q ∈ Q, a ∈ Σ. A run of A on a word

w = a1a2 . . . an ∈ Σ∗ is a sequence of states q0, q1, . . . , qn s.t. q0 is the starting state and

qi
ai+1−−−→ qi+1 for all i ≥ 0. We call such a run accepting if qn ∈ F .

Theorem 1 (Myhill-Nerode, c.f. [HU79]) Let L be a regular language over Σ and

define ∼ ⊆ Σ∗ × Σ∗ as x ∼ y iff for all z ∈ Σ∗ : xz ∈ L ⇔ yz ∈ L. Then ∼ is an

equivalence relation and the number of equivalence classes is finite.

Definition 7 (Pushdown Automaton) A pushdown automaton (PDA) is a 6-tupleA =

(Q,Σ,Γ, δ, q0, F), where Q,Σ, q0 and F are defined exactly as for an NFA and

• Γ is a finite set of stack symbols,

• δ : Q× (Σ ∪ {⊥})× Γ→ 2Q×Γ∗

is the transition function.

12 2. Preliminaries

Again, we may write (q, γ) a−→(q′, γ′) instead of (q′, γ′) ∈ δ(q, a, γ). We call a pushdown

automaton deterministic if |δ(q, a, γ)| = 1 for all q ∈ Q, a ∈ Σ ∪ {ǫ}, γ ∈ Γ.

A configuration of A is an element of Q×Γ∗ and we denote the set of all its configurations

by Conf(A). In a configuration, the second component is called the current stack of A.

The starting configuration is (q0,⊥), where ⊥ denotes a special stack symbol ⊥ 6∈ Γ.

A run of A on w = a1 . . . an is a sequence of configurations C0, . . . , Cn s.t. C0 is the

starting configuration and for all Ci = (qi, σi) with 0 ≤ i < n, the following holds: there

exist γ ∈ Γ ∪ {⊥} and γ′, σ ∈ Γ∗ s.t. σi = γσ and σi+1 = γ′σ and (qi, γ)
ai−−→(qi+1, γ

′). A

run is accepting, if qn ∈ F . Note that ⊥ does always remain at the bottom of the stack.

It is clear that the transition function δ can equivalently be given as a relation δ′ ⊆

Q × (Σ ∪ {ǫ}) × Γ × Q × Γ∗, where (q, a, γ, q′, γ′) ∈ δ′ iff (q′, γ′) ∈ δ(q, a, γ). We may

occasionally use this syntax for reasons of convenience.

Furthermore, we assume that δ has the restriction that the current stack is modified by a

single application of δ exactly in one of the following three ways:

• the top stack symbol is deleted (called pop),

• the stack is left untouched (called nop),

• a stack symbol is placed on top of the (otherwise unchanged) stack (called push).

Note that by this restriction the stack height changes at most by one and at most the

top stack symbol changes. Clearly, every δ can be transformed into this normal form by

splitting up greater changes into several steps of the above form.

Definition 8 (Language Recognition) The language accepted by an NFA (PDA) A is

defined as

L(A) = {w ∈ Σ∗ | there exists an accepting run of A on w}.

Definition 9 (Pushdown System) A pushdown system (PDS) is the configuration graph

of a PDA A = (Q,Σ,Γ, δ, q0, F), i.e. an LTS T = (Q×Γ∗,−→, ℓ) with (q, γv) a−→(q′, wv) for

some v ∈ Γ∗ if (q′, w) ∈ δ(q, a, γ).

For a definition of an LTS see Def. 14. Note that PDS are infinite state systems in general.

The standard theory defines at least two more kinds of automata, namely the linear bounded

automaton (LBA) and the Turing machine (TM). But since we do never use these concepts

explicitly in this work, we omit their definitions and do just rely on their existence. The

reader is referred to [HU79] for further details.

2.1 Formal Languages and Automata 13

The following theorem manifests the dualism between the concepts of grammar and au-

tomaton.

Theorem 2 (c.f. [HU79]) For any formal language L,

• L ∈ REG iff there exists an NFA A, s.t. L(A) = L.

• L ∈ CFL iff there exists a PDA A, s.t. L(A) = L.

• L ∈ CSL iff there exists an LBA A, s.t. L(A) = L.

• L ∈ RE iff there exists a TM A, s.t. L(A) = L.

The abbreviations of the deterministic versions of the various automata types are preceeded

by a “D”, i.e. DFA, DPDA, DLBA and DTM. By convention, we use the acronym NFA

instead of FA to make the nondeterminism explicit. In the same manner we denote the

language classes recognised by the corresponding deterministic machine model with a “D”

prefix, i.e. DREG, DCFL, DCSL and DRE.

Theorem 3 (c.f. [HU79])

DREG = REG (DCFL (CFL (DCSL ⊆ CSL (DRE = RE.

This section covers the standard theory of formal languages and automata used in this

work. In the following sections some non-standard language classes are introduced.

2.1.2 Visibly Pushdown Languages

Visibly pushdown automata (VPA) were introduced by Alur and Madhusudan [AM04] in

2004 as a robust subclass of PDA which is still capable of modelling recursive program

behaviour such as nested method calls and returns. Historically, they are generalisations

of simple-minded automata (SMA) and semi-simple-minded automata (SSMA) which were

defined in [HR93, HK99]. These classes of automata are all obtained by limiting the

functionality of PDA. The definitions of SMA and SSMA were motivated by a search for

classes of languages which could be used as recursive programs in PDL (see Sec. 2.2.6)

specifications without rendering it undecidable. We refer to SML, SSML and VPL for the

classes of languages recognisable by SMA, SSMA and VPA respectively.

The strongest restrictions are imposed by SMA, where every action of the automaton is

completely determined by the input symbol, that is: the type of the operation performed

14 2. Preliminaries

(push, pop or nop), the stack symbol placed on top of the stack upon a push operation and

the next control state. SSMA generalise SMA by permitting a nondeterministic choice of

the next control state and VPA finally do only choose the type of operation according to

the input symbol.

This is achieved by partitioning the set of actions Σ into three disjoint sets Σc,Σi and Σr

according to a call, internal or return action and performing a corresponding push, nop or

pop operation on the stack.

Definition 10 (Visibly Pushdown Automaton) A visibly pushdown automaton (VPA)

is a PDA A = (Q,Σ,Γ, δ, q0, F), where

• Q ∩ Γ = ∅,

• ⊥ ∈ Γ is a distinguished symbol, called stack bottom symbol,

• Σ = Σc
·∪Σi
·∪Σr,

• δ = δc ∪ δi ∪ δr with

δc ⊆ Q× Σc × (Γ \ {⊥})×Q,

δi ⊆ Q× Σi ×Q,

δr ⊆ Q× Σr × Γ×Q.

.

It is important to note that in contrast to a PDA, a VPA contains no ǫ-transitions.

A VPA A is called deterministic (or a DVPA) if for all q ∈ Q, a ∈ Σ, γ ∈ Γ we have

|{(q′, γ′) : (q, a, γ′, q′) ∈ δc}| = |{q′ : (q, a, q′) ∈ δi}| = |{q′ : (q, a, γ, q′) ∈ δr}| = 1.

A run of A on a finite word w = a1 . . . an is a sequence of configurations C0, C1, . . . , Cn

with Ci ∈ Q×Γ+ for all i = 0, . . . , n, s.t. C0 = (q0,⊥) and for all Ci = (qi, σi) the following

holds:

• If ai ∈ Σc then there is a γ s.t. (qi, ai, γ, qi+1) ∈ δc and σi+1 = γσi.

• If ai ∈ Σi then (qi, ai, qi+1) ∈ δi and σi+1 = σi.

• If ai ∈ Σr then (qi, ai,⊥, qi+1) ∈ δr and σi+1 = σi = ⊥, or there is a γ s.t.

(qi, ai, γ, qi+1) ∈ δr and σi = γσi+1.

Note that this definition entails that ⊥ cannot be popped from the stack. It is however

read and can be used to indicate that the stack is empty.

2.1 Formal Languages and Automata 15

The definitions of accepting run and accepted language are identical to those definitions

for a PDA. A visibly pushdown language (VPL) is a language which is accepted by some

VPA.

Example 1 The language L = {anbn | n > 0} is a VPL. Let Σc = {a}, Σr = {b} and

Σi = ∅. Consider the VPA A = ({q0, q1, q2, q3},Σ, {A,#}, δ, q0, {q3}), where

δc = {(q0, a,#, q1), (q1, a, A, q1)},

δr = {(q1, b, A, q2), (q2, b, A, q2), (q2, b,#, q3), (q1, b,#, q3)},

δi = ∅.

The automaton works as follows: on an input word w ∈ L, it first parses the a-sequence

of length n > 0 and thereby produces the stack A . . . A#, since every a requires a push-

operation. The A . . . A-prefix has length n − 1. Note that the kind of symbol which is

pushed on the stack via δc-operations only depends on the control state and the input

symbol.

After reading the first b, the control state changes to q2, pops the top A and repeats this

as long as further b are seen and the top stack symbol remains A. On the last b finally the

symbol # appears on top of the stack since it matches the first a and after popping it, the

automaton is in the final state q3.

Note that if the input word w is not in L then the automaton eventually gets stuck which

is very easily verified, because the automaton is deterministic.

In this fashion all kinds of Dyck-languages such as XML can be parsed. The opening tags

are pushed on top of the stack while on closing tags the opening tags are popped.

Example 2 Let Σ = {p, c, r} with p ∈ Σc, c ∈ Σr, and r ∈ Σi. Define a VPA A =

({q0, q1, q2},Σ, {⊥, γ0, γ}, q0, δ, {q0}), where

δc = {(q0, p, γ0, q1), (q1, p, γ, q1)},

δr = {(q0, c,⊥, q2), (q1, c, γ0, q0), (q1, c, γ, q1)},

δi = {(q0, r, q0), (q1, r, q1)}.

Interpret p as a produce action, c as a consume and r as a request in the setting of an

automated production line. It is only legal to consume goods which have already been

produced. The automaton specifies correct behaviour in this sense and rejects words which

represent a violation (i.e. a stack underflow). It counts the produce actions by placing

symbols onto the stack: a γ0 for the first produce encountered and a γ for the remaining

16 2. Preliminaries

ones. On a consume action it removes γ or γ0 from the stack, the latter indicating that

only one more consume is possible. If it sees a consume action and the stack is empty

it switches into a non-final state which it never leaves again. We allow request actions

anywhere between valid prefixes of words w.r.t. the stack underflow property. Hence, we

have L(A) = {w ∈ Σ∗ | |w|c = |w|p and |v|c ≤ |v|p for all v � w}, where ≺ means the

prefix relation.

VPL are capable of expressing many of the typical context-free languages, e.g. all kinds of

Dyck-languages, but have a distinct advantage over CFL, namely their robustness. The

following theorems substantiate the fact that VPL over finite words retain all the nice

closure and determinisation properties from the regular languages.

Theorem 4 (VPL Closure Properties, [AM04]) Let L1 and L2 be VPL w.r.t. a par-

titioned set of actions Σ and let R be a regular language. Then the following languages

are VPL:

L1 ∪ L2, L1 ∩ L2, L1L2, L∗
1, L1, L1 ∩ R.

Theorem 5 (SML and SSML Closure Properties) The classes SML and SSML are

closed under intersections with regular languages.

Proof This can be shown by a simple product construction between a DFA and an SMA

or SSMA, respectively. 2

Theorem 6 (Determinisation, [AM04]) Let A1 = (Q,Σ,Γ, q0, δ, F) be a VPA w.r.t. a

partitioned set of actions Σ. Then there exists a deterministic VPA A2, s.t. L(A1) = L(A2)

and A2 has at most 2|Q|2 states and 2|Q|2 · |Σc| stack symbols.

From the above follows that the class of VPL can be embedded into the Chomsky Hierarchy

as follows.

Theorem 7

SML

(

REG (SSML (VPL = DVPL (DCFL (CFL.

2.1 Formal Languages and Automata 17

Proof Any DFA is clearly an SSMA without stack operations. Since DFA = NFA, we

have REG ⊆ SSML. Strictness of the inclusion follows from the fact that {anbn | n > 0}

is an SML [HR93] (and the SML are included in SSML) but not a regular language cf.

[HU79].

An SSMA is a generalisation of an SMA, hence SML ⊆ SSML [HK99]. Strict inclusion

follows from the property stated in [HK99] that there are only finitely many different SML

over any given alphabet Σ but infinitely many different REG and hence SSML. Intuitively,

a DFA is not an SMA, because even its next state is solely determined by the input symbol

and not by input symbol and current state. This makes in fact the expressivity of REG

and SML incomparable.

The strict inclusion of SSML in VPL is stated in [LLS07].

Finally, since VPL are closed under determinisation by Thm. 6, they are all contained in

DCFL. Strictness is witnessed by the language {anban | n ≥ 0} which is easily seen to be a

DCFL but is not an SML [HR93]. Note that the first n a-symbols require a push-operation

while the as occurring behind the b require pop-operations.

That DCFL is strictly included in CFL is a well-known standard theorem in formal language

theory cf. [HU79]. 2

Theorem 8 (VPL Emptiness) The emptiness-problem for VPL is PTIME-complete.

Proof Inclusion in PTIME is a consequence of the fact that the emptiness problem for

CFL is in PTIME (c.f. [HU79]) and that VPL is included in CFL. A hardness proof can

be found in [Lan10]. 2

Since SML and SSML are both included in VPL, their emptiness problems are obviously

also in PTIME.

Corollary 1 (SML and SSML Emptiness) The emptiness problem for SML and SSML

is in PTIME.

2.1.3 Indexed Languages

The class of indexed languages (IL) was proposed in 1968 by Aho as a result of an in-

creased interest in specification devices for all of the syntactic structures found in modern

programming languages of that time – in particular ALGOL is mentioned – for which the

CFL were too weak and the CSL were too powerful [Aho68]. Indeed, IL is located strictly

18 2. Preliminaries

in between CFL and CSL and furthermore enjoys nice closure properties. IL are equally

definable by a certain class of automata called nested stack automata as well as by a certain

class of grammars called indexed grammars (IG). A nested stack automaton is a kind of

pushdown automaton where the memory consists of nested stacks, i.e. the objects pushed

and popped from the stack are stacks themselves. In addition, the automaton may read

the contents of all of the stacks nested within itself.

We do only introduce in detail the latter characterisation via grammars since it is the one

used in the following chapters explicitly. For further information on nested stack automata,

the reader is referred to [Aho69].

The main difference to CFG is that nonterminals are equipped with a stack in an IG. This

allows to constrain derivation rules according to the top stack symbol additionally. The

stack symbols are called indices.

Definition 11 (Indexed Grammar) An IG is a 5-tuple G = (N,Σ, I, P, S) where

• N is a finite set of nonterminals,

• Σ is a finite alphabet,

• I is a finite set of index symbols,

• S ∈ N is a distinguished starting symbol,

• P is a finite set of productions of which there are the following four different types:

terminal productions : A→ a, A→ ǫ,

composite productions : A→ BC,

push productions : A→ B[f],

pop productions : A[f]→ B.

Hence, P ⊆ N ∪ (N × Σ) ∪ (N ×N2) ∪ (N ×N × I) ∪ (N × I ×N).

The three symbol sets N , Σ, and I must be mutually disjoint.

In fact, the production rules in this definition are already in a normal form given by Aho

(called reduced form there). However, every indexed grammar in Aho’s original form can

be transformed into one in normal form incurring a linear blow-up at most.

An indexed nonterminal is an element of N × I∗, written A[fn . . . f1] for example. The

index fn . . . f1 forms a stack with its top on the left. The empty stack is allowed, i.e. A[]

is also an indexed nonterminal which we usually simply write as A.

2.1 Formal Languages and Automata 19

A sentential form for an indexed grammar is a word over the alphabet (N × I∗) ∪ Σ, i.e.

we have indexed nonterminals instead of arbitrary nonterminals, and index symbols may

only occur in an index of a nonterminal.

The derivation relation ⇒ on sentential forms of an indexed grammar is the least relation

that satisfies the following for all sentential forms α, β, γ, all indices δ ∈ I∗, all index

symbols f ∈ I, all nonterminals A, and all terminals a:

A ⇒ ǫ ,if A→ ǫ

A ⇒ a ,if A→ a

A[δ] ⇒ B[δ]C[δ] ,if A→ BC

A[δ] ⇒ B[fδ] ,if A→ B[f]

A[fδ] ⇒ B[δ] ,if A[f]→ B

αA[δ]β ⇒ αγβ ,if A[δ]⇒ γ.

It is important to observe that a nonterminal passes its index to anything that is derived

from it in one step. Furthermore, terminal symbols cannot have indices. In principle one

may regard an indexed grammar as a context-free grammar with an unbounded number

of nonterminals, namely indexed nonterminals. The rules, however, can only distinguish

finitely many different indexed nonterminals by operating on the top symbol of the index

stack only.

As usual, ⇒+ and ⇒∗ denote the transitive, resp. transitive-reflexive closure of the binary

relation ⇒, and ⇒n for some n ∈ N denotes its n-fold self-composition. The language of

an indexed grammar G = (N,Σ, I, P, S) is, as usual L(G) = {w ∈ Σ∗ | S ⇒+ w}, where

the stack of S is empty.

Example 3 Consider the language L = {a2n

| n ≥ 1}. It is generated by the indexed

grammar G = ({A, S, T}, {a}, {#, f}, P, S) with P given as

S → T [#], T → T [f] | A, A[f] → AA,

A[#] → B, B → a.

A derivation of the word a8 is:

S ⇒ T [#] ⇒ T [n#] ⇒ T [nn#] ⇒ T [nnn#] ⇒

A[nnn#] ⇒ A[nn#]A[nn#] ⇒2 A[n#]A[n#]A[n#]A[n#] ⇒4

A[#]A[#]A[#]A[#]A[#]A[#]A[#]A[#] ⇒16 a8.

Further examples can be seen in Sec. 2.1.4.

20 2. Preliminaries

Theorem 9 (Closure Properties, [Aho68]) Let L1 and L2 be IL and R be a regular

language. Then the following languages are IL:

L1 ∪ L2, L1L2, L∗
1, L1 ∩ R.

The class of IL is not closed under intersection and complement.

Theorem 10 (Emptiness, [Aho68, TK07]) The emptiness-problem for IG is EXPTIME-

complete.

2.1.4 Linear Indexed Languages

A linear indexed grammar (LIG) (originally defined by Gazdar [Gaz88]) is similar to an

IG, but restricts the number of stacks propagated to the next sentential form during a

derivation to one. In every production rule righthand side, one nonterminal is appointed

to carry over the stack from the nonterminal on the lefthand side.

Definition 12 (Linear Indexed Grammar) A LIG is a 5-tuple G = (N,Σ, I, P, S) in

which all parts are defined identically to an IG, except for the composite production rules in

P , where the stack inheritant on the righthand side is indicated by a marker. We use here

a hat Â on top of the nonterminal A to identify the stack inheritant. Hence, productions

in a linear indexed grammar are of the following form:

Let A,B,C ∈ N , a ∈ Σ and f ∈ I.

terminal productions : A→ a, A→ ǫ,

composite productions : A→ B̂C, A→ BĈ,

push productions : A→ B[f],

pop productions : A[f]→ B.

A marked (indexed) nonterminal is a Â[δ] for some A ∈ N and some δ ∈ I∗. An indexed

nonterminal is, as above, a A[δ], and we write A instead of A[] again.

A sentential form of a linear indexed grammar is a sentential form in the usual sense,

i.e. a word consisting of terminal symbols and indexed nonterminals, with the additional

restriction, that at most one (indexed) nonterminal is marked.

The relation⇒ on such sentential forms is the least relation that satisfies the following for

all sentential forms α, β, γ, all indices δ ∈ I∗, all index symbols f ∈ I, all nonterminals

2.1 Formal Languages and Automata 21

A,B,C, and all terminal symbols a.

A ⇒ ǫ , Â ⇒ ǫ ,if A→ ǫ

A ⇒ a , Â ⇒ a ,if A→ a

A[δ] ⇒ B[δ]C , Â[δ] ⇒ B̂[δ]C ,if A→ B̂C

A[δ] ⇒ BC[δ] , Â[δ] ⇒ BĈ[δ] ,if A→ BĈ

A[δ] ⇒ B[fδ] , Â[δ] ⇒ B̂[fδ] ,if A→ B[f]

A[fδ] ⇒ B[δ] , Â[fδ] ⇒ B̂[δ] ,if A[f]→ B

αA[δ]β ⇒ αγβ ,if A[δ]⇒ γ

αÂ[δ]β ⇒ αγβ ,if Â[δ]⇒ γ.

The last two rules are of course only applicable if αγβ is a valid sentential form again, i.e.

contains at most one marked (indexed) nonterminal.

We remark that the definition of the derivation relation deviates from the original one in

[Gaz88] insofar as it uses marked nonterminals simultaneously to unmarked ones. The

original definition uses no markers. The use of markers is solely for technical reasons since

some theorems later on need to track the stack inheritance from nonterminal to nonterminal

through a derivation and to make this explicit. Note that by this definition there is for

every derivation using markers a corresponding one without and vice versa but they do not

get mixed up in the sense that either the currently derived sentential form has a marker on

some nonterminal during every derivation step or during none. Note that in a derivation

step α ⇒ β, it is impossible for β to contain a marked nonterminal while α does not.

Hence, if Ŝ ⇒+ w then S can derive w without markers in the derivation. If markers

are present, however, then they trace the inheritance of a stack through sentential forms.

In order to understand the language derivation mechanism of LIG it suffices to take the

definition without markers (which corresponds to the one in [Gaz88]).

The language of a LIG G is L(G) := {w ∈ Σ∗ | S ⇒+ w}. By the above remark this

means that the markers on indexed nonterminals in sentential forms are irrelevant for the

language derived by a grammar.

Example 4 Consider the language L = {anbncn | n ≥ 1}. It is generated by the linear

indexed grammar

G = ({S, SAC , SB, SC , A,B, C,D}, {a, b, c}, {f}, P, S),

22 2. Preliminaries

where P is given as

S → SAC [f], SAC → AŜC , SC → ŜC | ŜBC,

SB[f] → D, D → ŜBB, SB → ǫ,

A → a, B → b, C → c.

A derivation of the word a2b2c2 is:

S ⇒ SAC [f] ⇒ ASC [f] ⇒ AS[f]C ⇒

ASAC [ff]C ⇒ AASC [ff]C ⇒ AASB[ff]CC ⇒ AAD[f]CC ⇒

AASB[f]BCC ⇒ AADBCC ⇒ AASBBBCC ⇒7 aabbcc.

Again, there is a corresponding derivation Ŝ ⇒ a2b2c2 but it exists solely for technical

reasons and has no implications on the language derived by G.

LIL belong to the mildly context-sensitive languages (MCSL) and are equivalent to several

on first glance very different grammar formalisms, namely head grammars (HG), tree ad-

joining grammars (TAG) and combinatory categorical grammars (CCG), giving rise to the

language classes HL,TAL and CCL respectively [VsW94]. The following theorem shows

their embedding into the Chomsky hierarchy.

Theorem 11

CFL (LIL = HL = TAL = CCL (IL (CSL.

Proof CFL are LIL with empty stacks and the strictness of the inclusion is witnessed by

e.g. the language {anbncn | n ≥ 1} which is a LIL but not a CFL [HU79]. As mentioned

before, the equivalence of the four mildly context-sensitive formalisms is proved in [VsW94].

Their inclusion in IL is given by a rather simple translation: note that the composite

production rules of LIL are the only ones in which LIL differ from IL. Now, in a production

rule of the form A→ B̂C, C is substituted by a fresh dummy nonterminal C ′ (and of course

the marker is erased). It is clear that we can add further production rules in which the

stack content of C ′ is popped until it is empty and further rules which transform C ′ back

to C but with an empty stack now. This has the effect that the only way of eliminating C ′

in a sentential form during a derivation is by emptying its stack and transforming it back

into C which exactly simulates the behaviour of the original LIL rule. The same holds of

course for rules of the form A→ BĈ. Strictness is witnessed by the language {a2i

| i ≥ 0}

which is not a LIL but an IL [Aho68, Gaz88].

Finally, the strict inclusion of the class IL in CSL is shown again in [Aho68]. 2

2.1 Formal Languages and Automata 23

Theorem 12 (Closure Properties, [VsW94]) Let L1 and L2 be LIL and R be a reg-

ular language. Then the following languages are LIL:

L1 ∪ L2, L1L2, L∗
1, L1 ∩ R.

Theorem 13 (Emptiness, [Bou96]) The emptiness-problem for LIL is PTIME-complete.

2.1.5 Alternating Context-Free Languages

Lange and Okhotin have independently defined two language generation devices called

alternating context-free grammar (ACFG) [Lan02] and conjunctive grammar (CG) [Okh01],

respectively, which have been proven equivalent [Okh01, ALLa]. For this reason we do only

present one of them here. It should also be noted that the homonymous formalism defined

by Moriya in [Mor89] is to be strictly distinguished from Lange’s. Okhotin notes that CL

are strictly included in Moriya’s ACFL and hence so are Lange’s ACFL.

Syntactically, ACFG and CG are exactly the same. They extend ordinary context-free

grammars by partitioning their set of nonterminal symbols into existential and universal

ones. The underlying idea states that a (sub-)word is derived from an existential non-

terminal if some of its productions yield the word whereas it is derived from a universal

nonterminal if all of its productions yield this word.

The two proposals contained different semantics for such grammars, though. Okhotin

has explained the meaning of a conjunctive grammar by extending the derivation relation

⇒∗ for context-free languages incorporating parallelism in order to implement the idea of

universal productions. Lange has chosen a semantics for alternating context-free grammars

that is an extension of the well-known parse tree formalism for context-free grammars.

Definition 13 (Alternating Context-Free Grammar) An ACFG is a tuple G =

(N,Σ, S, P, λ) where N is a finite set of non-terminal symbols, Σ is an alphabet disjoint

from N , S ∈ N is a designated starting symbol, and P ⊆ N × (N ∪ Σ)∗ is a finite set of

production rules. Finally, λ : N → {∃, ∀} labels the non-terminals as either existential or

universal.

Let ⊢G be the smallest relation ⊢G ⊆ (N ∪ Σ)∗ × Σ∗ which is characterised by the

following rules.

(Ax)
w ⊢G w

(And)
α1 ⊢G w . . . αn ⊢G w

A ⊢G w
if A→ α1 & . . . &αn

24 2. Preliminaries

(Or)
αi ⊢G w

A ⊢G w
if A→ α1 | . . . | αn (Comp)

β ⊢G u γ ⊢G v

βγ ⊢G uv

The language derived from such a grammar is L(G) = {w ∈ Σ∗ | S ⊢G w}.

Example 5 (Okhotin [Okh01]) The grammar given by the following rules derives the

language {wcw | w ∈ {a, b}∗} over the alphabet Σ = {a, b, c}.

S → C &D, C → aCa | aCb | bCa | bCb | c,

E → aE | bE | ǫ, D → aA & aD | bB & bD | cE,

A→ aAa | aAb | bAa | bAb | cEa, B → aBa | aBb | bBa | bBb | cEb.

Intuitively, S derives the intersection of the languages derived by C and D. C generates

{xcy | x, y ∈ {a, b}∗, |x| = |y|}. D has the purpose to ensure that indeed every a or b

positioned on the left of c corresponds to the same terminal to the right of c in the correct

order. Note that A and B enforce an a or b respectively right of the c. The recursive

intersection of aA & aD and bB & bD takes care of the positions in which the a’s and b’s

occur. Formally, D derives the language {wcxw | w, x ∈ {a, b}∗} whose intersection with

the language of C indeed results in {wcw | w ∈ {a, b}∗}.

The derivation of the word abcab is shown in Fig. 2.1.

Theorem 14 (Closure Properties, [Okh01]) Let L1 and L2 be ACFL and R be a

regular language. Then the following languages are ACFL:

L1 ∪ L2, L1 ∩ L2, L1L2, L∗
1, L1 ∩R.

It is currently not known whether ACFL are closed under complement.

The closure of ACFL under finite intersections with CFL can trivially be proved since

ACFL have a direct means for intersection at hand. From this of course follows as a

corollary that ACFL are closed under intersections with REG.

Theorem 15 (Emptiness, [Okh01]) The emptiness-problem for ACFL is undecidable.

(Ax)
a ⊢G a

(Ax)
b ⊢G b

(Ax)
c ⊢G c

(Ax)
a ⊢G a

(Ax)
ǫ ⊢G ǫ

(Or)
E ⊢G ǫ

(Comp)
aE ⊢G a

(Or)
E ⊢G a

(Ax)
b ⊢G b

(Comp)
Eb ⊢G ab

(Comp)
cEb ⊢G cab

(Or)
B ⊢G cab

(Comp)
bB ⊢G bcab

(Ax)
b ⊢G b

(Ax)
c ⊢G c

(Ax)
a ⊢G a

(Ax)
b ⊢G b

(Ax)
ǫ ⊢G ǫ

(Or)
E ⊢G ǫ

(Comp)
bE ⊢G b

(Or)
E ⊢G b

(Comp)
aE ⊢G ab

(Or)
E ⊢G ab

(Comp)
cE ⊢G cab

(Or)
D ⊢G cab

(Comp)
bD ⊢G bcab

(And)
D ⊢G bcab

(Comp)
1© aD ⊢G abcab

(Ax)
a ⊢G a

(Ax)
b ⊢G b

(Ax)
c ⊢G c

(Or)
C ⊢G c

(Ax)
a ⊢G a

(Comp)
Ca ⊢G ca

(Comp)
bCa ⊢G bca

(Or)
C ⊢G bca

(Ax)
b ⊢G b

Cb ⊢G bcab
(Comp)

aCb ⊢G abcab
(Or)

C ⊢G abcab

(Ax)
a ⊢G a

(Ax)
b ⊢G b

(Ax)
c ⊢G c

(Ax)
ǫ ⊢G ǫ

(Or)
E ⊢G ǫ

(Ax)
a ⊢G a

(Comp)
Ea ⊢G a

(Comp)
cEa ⊢G ca

A ⊢G ca(Or)
(Ax)

b ⊢G b
(Comp)

Ab ⊢G cab
(Comp)

bAb ⊢G bcab
(Or)

A ⊢G bcab
(Comp)

aA ⊢G abcab 1©
(And)

D ⊢G abcab
(And)

S ⊢G abcab

F
igu

re
2.1:

A
C

F
G

d
erivation

of
a
bca

b
for

th
e

gram
m

ar
in

E
x
.
5.

26 2. Preliminaries

2.2 Temporal Logics

2.2.1 Labeled Transition Systems

Temporal logics are often interpreted over finite structures which reflect infinite behaviour.

Such a structure represents an abstract model of a program and describes its possible

configurations and the computational steps leading from one configuration to another. By

behaviour we mean the possible sequences of configurations and the computational steps

between them. Since programs need not terminate and may run forever, this behaviour

might be an infinite object. But because the behaviour is obtained by some form of

unfolding of the structure it usually offers enough regularity to maintain decidability of

verification tasks.

On the other hand there is system behaviour which cannot be described by finite struc-

tures in general, e.g. pushdown systems c.f. [BEM97]. These systems do necessarily display

infinite behaviour and thereby increase the difficulty of maintaining decidability of verifi-

cation. The existence of finite representations of such infinite structures remains however

a minimum requirement for any verification task.

In compliance with the above requirements, we adopt here the standard definition of a

Labeled Transition System (LTS) which serves as structure for all temporal logics discussed

in this work.

Definition 14 (Labeled Transition System) Let Σ be a finite set of actions and P be

a finite set of atomic propositions. An LTS is a triple T = (S,−→, ℓ), where

• S is a set of states,

• −→ ⊆ S × Σ× S is called transition relation,

• ℓ : P → 2S is called labeling function.

Instead of writing (s, a, t) ∈ −→, we use infix notation s a−→ t. By abuse of notation, the

transition relation −→ is extended to action sequences −→ ⊆ S × Σ∗ × S inductively as

s ǫ−→ t iff s = t,

s aw−−→ t iff ∃u ∈ S with s a−→u and u w−→ t,

where ǫ is the empty word and w ∈ Σ∗.

2.2 Temporal Logics 27

A path in an LTS T = (S,−→, ℓ) is a finite or infinite sequence of alternating states and

actions s0, a1, s1, a2, s2, . . ., s.t. si
ai+1−−−→ si+1 for all i ∈ N. We similarly write paths as

s0
a1−−→ s1

a2−−→ s2 . . . A path π is maximal if it is infinite or it ends in a state sn, s.t. there is

no a ∈ Σ and t ∈ S with sn
a−→ t. The length of a finite path π = s0

a1−−→ s1
a2−−→ s2 . . .

an−−→ sn

is |π| = n. If π is infinite we denote its length by |π| = ∞. Depending on the focus of

interest, we may from time to time omit the states in a path and call the projection on the

sequence of labels a path anyway or just project onto the sequence of states.

The size of an LTS T , usually written |T |, is defined as the number of states |S| of T . If

T has infinitely many states then we write |T | =∞.

A state of an LTS – or more precisely, the propositions which hold in it – represents

a configuration of a program during execution while a transition between states marks

an execution step. For instance, states may hold the program variable assignments and

transitions be labeled with program statements if this is the desired level of abstraction.

The behaviour of a program is captured by paths through the LTS which represent single

lines of possible executions from some given starting state. Note that we hereby implicitly

have introduced a non-deterministic computational model.

Definition 15 (Bisimulation) A bisimulation on an LTS T = (S,−→, ℓ) is a symmetric

binary relation R ⊆ S × S s.t. for all (s, t) ∈ R:

• s ∈ ℓ(p) iff t ∈ ℓ(p) for all p ∈ P, and

• if there is an a ∈ Σ and an s′ ∈ S s.t. s a−→ s′ then there is a t′ ∈ S s.t. t a−→ t′ and

(t, t′) ∈ R.

Two states s, t are bisimilar, written s ∼ t, iff there exists a bisimulation R with (s, t) ∈ R.

We may also speak of bisimilar states w.r.t. two LTS T and T ′, with the obvious adjust-

ments to the bisimulation relation. Given two root or starting states s, s′ of T and T ′, we

may even say that two LTS are bisimilar if s and s′ are bisimilar.

It is commonly agreed that the notion of observational behaviour of programs is equally

captured by bisimilar program models. Hence, it is a desirable property of temporal logics

not to distinguish between bisimilar models. See Def. 21 for a formal definition of this

property.

28 2. Preliminaries

2.2.2 Logic and Program Verification

In order to reason about program properties a specification language is needed in which

such properties can be expressed. A temporal logic L is a formal language, i.e. a set of

sentences called formulas. Any formula ϕ ∈ L describes a property of an LTS T = (S,−→, ℓ)

in terms of the states in which the property holds. Thus the semantics of ϕ is a subset of

S.

We will use two different kinds of formalisms to state that ϕ holds in a state s ∈ S (that is

s satisfies ϕ). For variable-free logics we define a satisfaction relation |=T ⊆ S × L over

states and formulas w.r.t. an LTS T .

In case a logic has variables it is common practice to define a semantics function [[·]]Tη :

L → 2S instead, where η is a function which interprets the free variables occurring in the

formula. The semantics function [[·]]Tη maps a formula to exactly those states in which it

holds w.r.t. η. If it is clear which LTS is meant, we usually omit it and simply write |=

and [[·]]η. For closed formulas (i.e. formulas in which no free variables occur), we may also

omit η. The formalisms are interchangeable on closed formulas since we demand

s |= ϕ iff s ∈ [[ϕ]],

from which follows

[[ϕ]] = {s ∈ S | s |= ϕ}.

We will occasionally use the symbol 6|= to indicate that the relation |= does not hold.

There are a series of desirable standard properties and decision problems regarding tem-

poral logics. From a historical perspective, modal logicians were mostly interested in

axiomatising a logic and hence in the validity problem. Since a formula of modal logic is

valid iff its negation is unsatisfiable this equally attracts notice to the satisfiability problem.

But also in the context of e.g. program synthesis – the automatic generation of executable

computer programs from specifications of their behaviour – decidability of a logic is the

main requirement.

Definition 16 (Satisfiability) A formula ϕ of some temporal logic L is satisfiable iff

there exists a model T = (S,−→, ℓ) and a state s ∈ S s.t. s |= ϕ.

Definition 17 (Decidability) A logic L is decidable iff its satisfiability problem is de-

cidable.

2.2 Temporal Logics 29

With the dedication of logics as tools for computer system and program verification and

the thereby triggered automatisation process of these tasks, the model checking problem

became more and more important while for earlier and less expressive logics the problem

was usually considered too trivial.

Definition 18 (Model Checking Problem) By the model checking problem, we mean

the question whether given an LTS T = (S,−→, ℓ) a state s ∈ S and a formula ϕ the

statement s |= ϕ indeed holds.

Note that model checking is usually easier to solve than validity or satisfiability, because for

most temporal logics, model checking can be reduced to validity by describing the model

with a succinct formula [Sch02].

Model checking is in this sense a synonym for program verification, since a program specifi-

cation in the form of a logical formula is being verified on an abstract version of a program

(given as an LTS). Decidability of a logic does also have an application in this area, namely

to prove the consistency of a system specification: if a formula is unsatisfiable, it contains

a contradiction and hence cannot have an implementation.

In this work, we are going to focus on model checking but also mention results on decid-

ability, where known.

2.2.3 Computational Complexity

One of the most important questions related to the typical decision problems of a logic

– such as the model checking and satisfiability problems – is about their computational

complexity: determine a measure of used computational resources for solving the problem

in terms of a function on the size of the input.

We assume familiarity with the concept of computational complexity and just recall a few

very basic notional conventions. See [HU79] for details.

Definition 19 Let f(n) be a function. DTIME(f(n)), NTIME(f(n)), DSPACE(f(n)) and

NSPACE(f(n)) denote the classes of languages that can be recognised by a deterministic,

resp. non-deterministic Turing Machine in time, resp. space f(n). This naturally lifts to

classes F of functions:

DTIME(F) :=
⋃

f∈F

DTIME(f),

30 2. Preliminaries

NTIME(F) :=
⋃

f∈F

NTIME(f),

DSPACE(F) :=
⋃

f∈F

DSPACE(f),

NSPACE(F) :=
⋃

f∈F

NSPACE(f).

Let 2
f(n)
0 = f(n) and 2

f(n)
k+1 = 22

f(n)
k . Define some important complexity classes mentioned

in the following as

kEXPTIME := DTIME({2p(n)
k | p(n) polynomial}),

EXPTIME := 1EXPTIME,

PTIME := 0EXPTIME,

LINTIME := DTIME({c · n | c constant}),

NPTIME := NTIME({p(n) | p(n) polynomial}),

co− NPTIME := {L | L ∈ NPTIME},

PSPACE := DSPACE({p(n) | p(n) polynomial}),

ELEMENTARY :=
⋃

k∈N

kEXPTIME,

for any k ∈ N.

Theorem 16 (cf. [HU79])

LINTIME (PTIME ⊆ PSPACE ⊆ EXPTIME (2EXPTIME (. . . (ELEMENTARY.

It is not known which of the inclusions between PTIME and EXPTIME is strict, only

that PTIME (EXPTIME.

2.2.4 Properties of Temporal Logics

Regarding the above decision problems, there are some useful properties and problems

related which will be investigated for all of the logics occurring here.

Definition 20 (Finite Model Property) A logic L has the finite model property iff for

all ϕ ∈ L we have that if ϕ is satisfiable then there exists a finite model for ϕ.

2.2 Temporal Logics 31

Settling the question whether a logic has the finite model property allows to use techniques

such as filtration in order to establish decidability. Note that if a logic has the finite model

property, its model checking problem is decidable and it is bounded w.r.t. the formula

then decidability is entailed, because it suffices to check all models up to the size of the

boundary.

Definition 21 (Bisimulation-invariance) Let T = (S,−→, ℓ) and T ′ = (S ′,−→′, ℓ′) be

LTS, s ∈ S and s′ ∈ S ′ such that s ∼ s′ (see Def. 15). That a logic L is bisimulation-

invariant means that for any ϕ ∈ L, we have s |= ϕ iff s′ |= ϕ.

Most modal and temporal logics are bisimulation-invariant and therefore do not distinguish

models which are equivalent in this sense. This is of course a reasonable assumption in the

context of program verification, since it comprises exactly the kind of abstraction which

makes modal logics so attractive for specifying program behaviour: state-basedness and

control flow simulation.

Another important aspect is that bisimulation-invariance entails the tree model property.

Definition 22 (Tree Model Property) A logic L has the tree model property iff for all

ϕ ∈ L we have that if ϕ is satisfiable then there exists a tree model for ϕ.

Theorem 17 Any bisimulation-invariant logic does also exhibit the tree model property.

For a proof see cf. [Ott06]. A very useful application of the tree model property is that it

allows to combine the theory of tree automata with program reasoning, see c.f. [VW86].

2.2.5 Expressivity

Given two different logics L1 and L2 it is natural to ask whether all properties expressible

in L1 are also expressible in L2 and vice versa.

Definition 23 (Expressivity Order) Let L1 and L2 be logics. L2 is said to be at least

as expressive as L1, written L1 ≤ L2 if there exists a ψ ∈ L2 such that for all LTS

T = (S,−→, ℓ), s ∈ S and ϕ ∈ L1 we have s |=T ϕ iff s |=T ψ. We write

L1 ≡ L2 ,if L1 ≤ L2 and L2 ≤ L1,

L1 � L2 ,if not L1 ≤ L2,

L1 � L2 ,if L1 ≤ L2 and L2 � L1.

32 2. Preliminaries

In order to emphasize on the size of the translation, we sometimes write ϕ ≤f(x) ψ, ϕ ≡f(x)

ψ, etc. to additionally require that |ψ| ≤ f(|ϕ|). If we are only concerned with the asymp-

totic behaviour, we write lin, exp, etc. instead of f(n).

2.2.6 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) was originally introduced by Fischer and Ladner

[FL79] in order to allow reasoning about programs. It describes the interactions of pro-

grams and logical propositions independently of the computation domain. PDL allows, for

example, to make assertions of the kind “after executing program α in a state satisfying

ϕ, property ψ necessarily holds”. Programs are built from atomic ones using the oper-

ations composition, nondeterministic choice and iteration. They are denoted by regular

expressions. This makes the original PDL in effect a PDL over regular programs.

Definition 24 (Propositional Dynamic Logic) Let P be a finite set of propositions

and Σ be a finite set of actions. Formulas and programs of PDL are defined mutually

recursive as the least sets Form and Prog respectively, satisfying the following conditions:

• P ⊆ Form.

• If ϕ ∈ Form then ¬ϕ ∈ Form.

• If ϕ, ψ ∈ Form then ϕ ∨ ψ ∈ Form.

• If ϕ ∈ Form and α ∈ Prog then 〈α〉ϕ ∈ Form.

• Σ ⊆ Prog.

• If α, β ∈ Prog then α β, α ∪ β and α∗ ∈ Prog.

• If ϕ ∈ Form then ϕ? ∈ Prog.

For notational convenience, we use the following standard abbreviations:

tt := q ∨ ¬q,

ff := ¬tt,

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ),

ϕ→ ψ := ¬ϕ ∨ ψ,

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ),

[α]ϕ := ¬〈α〉¬ϕ.

2.2 Temporal Logics 33

All these abbreviations except the last are standard from propositional logic and will be

referred to as boolean or propositional formulas. 〈·〉 and [·] will be called modal operators

or modalities. We call any program ϕ? with ϕ ∈ Form a test.

PDL formulas and programs are interpreted over LTS models. The semantics of a PDL

formula and a PDL program is given by simultaneous induction on the structure of the

formula and the program: Let T = (S,−→, ℓ) be an LTS, s, t ∈ S, q ∈ P, a ∈ Σ, α, β ∈ Prog,

and ϕ, ψ ∈ Form. By abuse of notation we define

s α β−−→ t iff there exists u ∈ S s.t. s α−→u and u β−→ t,

s α∪β−−−→ t iff s α−→ t or s β−→ t,

s α∗

−−→ t iff there exists n ∈ N, u0, . . . , un ∈ S s.t.

u0 = s and un = t and ui
α−→ui+1 for all 0 ≤ i < n,

s ϕ?−−→ t iff s = t and s |= ϕ,

s |= q iff q ∈ ℓ(s),

s |= ¬ϕ iff s 6|= ϕ,

s |= ψ ∨ ϕ iff s |= ψ or s |= ϕ,

s |= 〈α〉ϕ iff exists t ∈ S s.t. t |= ϕ and s α−→ t.

Example 6 The formula 〈(ϕ?;α) ∪ ((¬ϕ)?; β)〉tt is satisfied in some state s if either ϕ

holds in s and a path labeled with program α exists or if ϕ does not hold in s and a path

labeled with program β exists.

Therefore the program used in the modality can be used to model conditional branching

if ϕ then α else β.

Example 7 Consider the formula [α]p↔ [β]p for two programs α and β and a proposition

p. This formula states the equivalence of the programs α and β on a given structure. If

this formula holds independently of the structure then clearly α ≡ β.

Theorem 18 (c.f. [HS96]) PDL exhibits the following properties:

• finite model property,

• bisimulation-invariance,

34 2. Preliminaries

• tree model property.

Theorem 19 ([FL79, Pra80]) The satisfiability problem for PDL is EXPTIME-complete.

Theorem 20 ([FL79]) The model checking problem for PDL is PTIME-complete.

2.2.7 Computation Tree Logic

Computation Tree Logic (CTL) by Emerson and Clarke [CE81] is a widely used branching

time logic which emerged from a proposal of Ben-Ari, Manna and Pnueli in 1981 called

Unified Branching Time Logic and essentially is CTL without binary temporal operators

but just EF and AG instead [BAMP81]. CTL has shown itself to be very useful in the

design, specification and automatic verification of reactive and concurrent systems [MP92].

It has a distinct advantage over PDL, since it is capable of expressing a typical correctness

specification statement like “all executions of a program will eventually reach a state in

which property ϕ holds” which is impossible in PDL.

Definition 25 (Computation Tree Logic) Let P be a countably infinite set of propo-

sitions. CTL is the following set of formulas:

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | E(ϕRϕ)

where q ∈ P.

Standard abbreviations include the propositional abbreviations tt, ff,∧,→,↔ defined pre-

cisely as for PDL and the following:

A(ϕUψ) := ¬E(¬ϕR¬ψ),

A(ϕRψ) := ¬E(¬ϕU¬ψ),

AXϕ := ¬EX¬ϕ,

EFϕ := E(ttUϕ),

AFϕ := A(ttUϕ),

EGϕ := E(ffRϕ),

AGϕ := A(ffRϕ).

2.2 Temporal Logics 35

CTL formulas are interpreted in states of an LTS T = (S,−→, ℓ) as follows:

s |= q iff q ∈ ℓ(s),

s |= ¬ϕ iff s 6|= ϕ,

s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ,

s |= EXϕ iff there exist a ∈ Σ, t ∈ S s.t. s a−→ t and t |= ϕ,

s |= E(ϕUψ) iff there exists a path π = s0
a1−−→ s1

a2−−→ . . . an−−→ sn

s.t. s0 = s and sn |= ψ and for all i < n : si |= ϕ,

s |= E(ϕRψ) iff there exists a maximal path π = s0
a1−−→ s1

a2−−→ . . .

s.t. s0 = s and for all i ≤ |π| :

si |= ψ or there exists j < i s.t. sj |= ϕ.

Note that the semantics of CTL formulas is usually given over unlabeled transition systems

since the labels are ignored anyway and that it is usually required that the transition system

is total. We have chosen our definitions under the aspect of comparability between different

kinds of logics and therefore wish to have a common and most general semantical base for

both modal and temporal logics. This is important in particular with regard to the later

on introduced non-regular variants of CTL which do respect the labels. It is important to

note that on total transition systems, our definition of CTL semantics coincides with the

classical one, i.e. formulas hold in exactly the same states. The same is true if a property

is satisfied in a finite prefix of a path, i.e. for all EU formulas and also for those E(ϕRψ)-

formulas which are satisfied because ϕ holds somewhere along the path. The crucial case

is the remaining one: what if there exists a finite path along which ψ holds everywhere,

but ϕ nowhere? This case is undefined in classical CTL.

Since the main interest here is that the R-operator is the dual to U, we chose to define that

such a finite path satisfies E(ϕRψ). Another reason is that in order to ensure complete

agreement between this version of CTL and the classical one, it suffices to add the formula

AGEXtt as a conjunct to each formula, because it will render each formula to ff on a

non-total LTS.

CTL has enrichments such as CTL∗ [EH86] which allow free mixing of path operators and

quantifiers: for example, A(pUGq) is a CTL∗ formula but not a CTL formula, because the G

is not immediately preceeded by a path quantifier. In fact, CTL∗ unifies CTL and Pnueli’s

well-known linear time temporal logic LTL.

Example 8 Typical CTL definable properties include liveness of property ψ, expressed

as ϕ = AGEFψ. The formula ϕ states “on all paths at any moment there exists a path on

which ψ eventually holds”.

36 2. Preliminaries

Example 9 Dualising the path quantifiers and temporal operators yields the formula ϕ =

EFAGψ which states “there exists a path on which eventually on all paths at every moment

ψ holds”.

Theorem 21 ([EH85]) CTL exhibits the following properties:

• finite model property,

• bisimulation-invariance,

• tree model property.

Regarding the decision problems for CTL we have the following:

Theorem 22 ([FL79],[EH85]) The satisfiability problem for CTL is EXPTIME-complete.

Theorem 23 (c.f. [Sch02]) The model checking problem for CTL is PTIME-complete.

Comparing the expressivity of PDL and CTL it can easily be seen that they are mutually

incomparable, because CTL is blind to transition labels on the one hand and PDL cannot

express the EG-operator for instance.

Theorem 24

PDL � CTL and CTL � PDL.

For a proof see Thm. 48.

2.2.8 The Modal µ-Calculus

Kozen’s modal µ-calculus (Lµ) [Koz82] extends modal logic with extremal fixpoint quanti-

fiers. Regarding expressivity, it subsumes most of the commonly used modal and temporal

logics.

Definition 26 (Modal µ-Calculus) Let P be a countably infinite set of propositions,

Σ be a finite set of actions and V be a countably infinite set of monadic second-order

variables. Formulas of Lµ are given by the following grammar.

ϕ ::= q | X | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | µX.ϕ

where a ∈ Σ, q ∈ P and X ∈ V and the positivity requirement holds: in every subformula

of µX.ϕ, every occurrence of X must be under an even number of negation symbols.

2.2 Temporal Logics 37

The positivity requirement has the purpose of ensuring the existence of the fixpoint. We

write ϕ[ψ/X] for the formula produced by replacing every free occurrence of the variable

X in ϕ with ψ.

Standard abbreviations include the propositional abbreviations tt, ff,∧,→,↔ defined pre-

cisely as for PDL and the following:

〈−〉ϕ :=
∨
a∈Σ〈a〉ϕ,

[−]ϕ := ¬〈−〉¬ϕ,

[a]ϕ := ¬〈a〉¬ϕ,

νX.ϕ := ¬µX.¬ϕ[¬X/X].

The replacement of X with ¬X in the definition of νX.ϕ ensures that X occurs under the

same number of negation symbols in the resulting formula.

The semantics of a Lµ formula in a transition system T = (S,−→, ℓ) is a subset of S,

intuitively those states in which ϕ holds. It is defined inductively using an environment

ρ : V → 2S that interprets free variables in a formula. We write ρ[X 7→ T] for the

environment that maps the variable X to the state set T and behaves like ρ otherwise.

[[q]]Tρ := {s ∈ S | q ∈ ℓ(s)},

[[X]]Tρ := ρ(X),

[[¬ϕ]]Tρ := S \ [[ϕ]]Tρ ,

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ ∪ [[ψ]]Tρ ,

[[〈a〉ϕ]]Tρ := {s ∈ S | ∃t ∈ S.s a−→ t and t ∈ [[ϕ]]Tρ },

[[µX.ϕ]]Tρ :=
⋂
{T ⊆ S | [[ϕ]]Tρ[X 7→T] ⊆ T}.

Example 10 Consider the CTL formulas E(pUq) and E(pRq) for propositions p, q ∈ P.

They are expressed in Lµ as

µX.q ∨ (p ∧ 〈−〉X) and

νX.q ∧ (p ∨ 〈−〉X ∨ [−]ff)

respectively. Note that this scheme in principle suffices to translate CTL to Lµ as follows:

tr(q) = q,

tr(¬ϕ) = ¬tr(ϕ),

38 2. Preliminaries

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ),

tr(EXϕ) = 〈−〉tr(ϕ),

tr(E(ϕUψ) = µX.tr(ψ) ∨ (tr(ϕ) ∧ 〈−〉X),

tr(E(ϕRψ) = νX.tr(ψ) ∧ (tr(ϕ) ∨ 〈−〉X ∨ [−]ff).

Theorem 25 ([Koz88], c.f. [BS06]) Lµ exhibits the following properties:

• finite model property,

• bisimulation-invariance,

• tree model property.

Theorem 26 ([FL79],[EJ00]) The satisfiability problem for Lµ is EXPTIME-complete.

The lower bound in Thm. 26 is a consequence of the EXPTIME-hardness of PDL satis-

fiability and the fact that PDL is a fragment of Lµ.

Theorem 27 ([EJ88]) The model checking problem for Lµ is PTIME-hard and included

in NPTIME ∩ co−NPTIME.

As stated in the introduction, the importance of Lµ for this work is that it expresses exactly

the regular properties on words and trees modulo bisimilarity and therefore separates the

notions of regular and non-regular logics.

See Fig. 2.2 for an overview of the expressivity results for Lµ and some of the most common

temporal logics. A dotted line from a lower positioned logic L1 to a higher positioned one

L2 stands for L1 � L2. MSO/bis is used for the bisimulation-invariant fragment of MSO.

Lµ ≡ MSO/bis

CTL

CTL∗

LTL
PDL

Figure 2.2: Expressive power of some regular logics.

2.2 Temporal Logics 39

2.2.9 Non-Regular Logics

Lµ is exactly as expressive as the bisimulation-invariant fragment of Monadic Second-Order

Logic (MSO) over trees or LTS [JW96]. MSO is the fragment of Second-Order Logic which

restricts the use of second-order variables to arity 1, thus allowing to reason about sets of

elements of some kind, e.g. states.

Since MSO and Rabin tree automata are also equivalent [Rab69], every property that is

expressible in Lµ (or one of its fragments PDL, CTL, CTL∗, etc.) can also be checked

by a finite Rabin tree automaton. The class of languages recognisable by finite automata

are the regular languages – or ω-regular languages in case the considered structures are

infinite. It is in this sense that Lµ-definable properties are regular and the reason why we

call Lµ and its sublogics regular logics.

The classification of a temporal logic as regular is a statement about its expressive power

and refers to the structurally least complex class of formal languages of the Chomsky

hierarchy. Clearly, there is a large, almost unexplored space above Lµ in terms of non-

regular definable properties dual to the space above the regular languages in the Chomsky

hierarchy. Non-regular program properties arise naturally in the context of unbounded

data structures: for instance can the absence of buffer underflows not be expressed in

Lµ for unbounded buffers. Also any kind of counting properties like “at any point dur-

ing the execution of a protocol there have never been more send- than receive-actions”

are non-regular. Further examples include Emerson’s uniform inevitability stating “some

event occurs globally at the same time in all possible runs” [Eme87] or properties making

structural assertions about their models like being bisimilar to a balanced tree or word.

This work contains numerous examples of such properties. We will introduce several logics

that are capable of expressing such properties, establish basic properties about them, com-

pare them by expressive power and – most important here – determine the computational

complexity of their model checking problems.

40 2. Preliminaries

Chapter 3

Non-Regular Propositional Dynamic

Logic

The clear distinction between logic and programs in PDL comprises an appealing modu-

larity for the purpose of defining non-regular program properties, namely by enriching the

class of allowed programs in modal formulas. This idea is not new altogether: already the

earliest works on PDL have dealt with questions regarding such extensions. They were,

however, mostly concerned with decidability issues which is probably the reason why the

range of considered classes has so far been limited to those located in between the regular

and context-free ones, since this is where the borderline to undecidability runs.

3.1 Syntax and Semantics

In the following, we define PDL over different classes of formal languages L, or PDL[L]

for short. The basic building mechanism of formulas in PDL[L] is very similar to that of

PDL over regular programs, except that the programs allowed in the modalities are not

restricted to regular expressions but instead to languages L ∈ L. This raises the question

about the representation of such languages.

We do not want to artificially restrict the use of specification formalisms for formal lan-

guages of which there are numerous: e.g. automata, grammars, algebraic expressions, sys-

tems of equations, etc. On the other hand we may not omit all restrictions since our results

do not hold for every kind of language representation, e.g. for extensional or otherwise infi-

nite representations or cryptographically encrypted languages. The least restrictive format

we identify in order to ensure the validity of our results is to assume a size measure |L| for

42 3. Non-Regular Propositional Dynamic Logic

any representation of a language L which is a finite value, even though L may of course

contain infinitely many words. We identify any class of languages L with the class of a

certain kind of finite representations of its members. For instance the class REG may be

identified with the class NFA since NFA=REG and nondeterministic finite automata are

finite representations of regular languages.

We make another very reasonable assumption on each L: given an L ∈ L, its alphabet

must be computable in time O(|L|). This is not a very strong assumption since it holds

for virtually all formalisms typically used in this context and in particular for those men-

tioned above. But it does prevent the use of inadequate language representations such as

encrypted languages.

PDL over regular programs is defined using tests. A test is a special kind of program in

which a predicate on the set of states occurs. Programs and formulas are defined mutually

recursive and therefore allow arbitrary PDL formulas as test predicates. In order to extend

this definition to non-regular PDL, we have to extend the language alphabet with tests ϕ?

for any formula ϕ. Tests are allowed to occur at arbitrary positions in a word w ∈ L(A).

Definition 27 (Non-Regular PDL with Tests) Let P be a finite set of propositions, Σ

be a finite set of actions and L be a class of formal languages over Σ. Formulas and programs

of PDL[L] are defined mutually recursive as the least sets Form and Prog respectively,

satisfying the following conditions:

• P ⊆ Form.

• If ϕ ∈ Form then ¬ϕ ∈ Form.

• If ϕ, ψ ∈ Form then ϕ ∨ ψ ∈ Form.

• If ϕ ∈ Form and L ∈ Prog then 〈L〉ϕ ∈ Form.

• If L ∈ L then L? ∈ Prog, where L? = {w ∈ (Σ ∪ {ϕ? | ϕ ∈ Form})∗ | w|Σ ∈ L}.

In the last clause, w|Σ defines an operation on w which deletes all tokens except those

occurring in Σ. Hence the clause indeed defines programs as languages L ∈ L in which

tests may occur at arbitrary positions.

Note that the alphabet Σ ∪ {ϕ? | ϕ ∈ Form} for each L? in every step of the induction is

finite, because Form contains only finitely many formulas in each step. This is important

regarding finite representations of L? in e.g. automata, where the set of input symbols

consists of exactly this alphabet at a certain finite stage of the induction. It would no

3.1 Syntax and Semantics 43

longer be the case if P was chosen to be infinite, as it is usually assumed in the context of

temporal logics. This however is no limitation for the undertaking of model checking: the

input formula for a model checking routine is finite and therefore does only contain finitely

many different propositions to be considered.

Sometimes we may want to reason about PDL[L] without the test operators and distinguish

this fragment by calling it PDL6 ?[L]. Formulas of PDL6 ?[L] are obtained from the above

definition by omitting the last clause. It is clear that PDL6 ?[L] is a proper syntactical

fragment of PDL[L].

Standard abbreviations tt, ff,∧,→,↔, [L] are defined as for PDL, except of course that L

is not necessarily a regular expression but in general a formal language.

For every ϕ ∈ PDL, we define the set of all its subformulas, sub(ϕ) inductively as follows:

sub(q) = {q},

sub(¬ψ) = {¬ψ} ∪ sub(ψ),

sub(ψ1 ∨ ψ2) = {ψ1 ∨ ψ2} ∪ sub(ψ1) ∪ sub(ψ2),

sub(〈L〉ψ) = {〈L〉ψ} ∪ sub(ψ).

This gives rise to a measure of the size of a formula ϕ, defined as |ϕ| = |sub(ϕ)|.

Before we give the semantics of PDL[L] formulas, we need a function which extracts test

predicates from formulas.

Definition 28 (Test Extraction) Let ϕ be a formula of PDL[L] for some class of formal

languages L. The set of tests occurring in ϕ is inductively defined as follows:

tests(q) = ∅,

tests(¬ϕ) = tests(ϕ),

tests(ϕ ∨ ψ) = tests(ϕ) ∪ tests(ψ),

tests(〈L〉ϕ) = {ϕ? ∈ Σ | Σ is the least set, s.t. L ⊆ Σ∗} ∪ tests(ϕ).

Since we require that the alphabet of a language L used as a program in a formula ϕ is

parsable in linear time, this holds for the computation of tests(ϕ), too.

A formula ϕ of PDL[L] (and PDL6 ?[L] respectively) is interpreted over an LTS T =

(S,−→, ℓ) as follows. For every ψ? ∈ tests(ϕ), we extend the transition relation −→ by

adding ψ?-labeled self-loops on any state s ∈ S for which s |= ψ holds. Formally, we define

?−→ := −→∪{(s, ψ?, s) | s |= ψ and ψ? ∈ tests(ϕ)}

and interpret ϕ on the obtained LTS T ′ = (S, ?−→, ℓ).

44 3. Non-Regular Propositional Dynamic Logic

Definition 29 (Semantics of PDL[L]) Let T ′ = (S, ?−→, ℓ) be an LTS as described

above and s ∈ S be a state. Semantics of a PDL[L] formula is given inductively by

s |= q iff s ∈ ℓ(q),

s |= ¬ϕ iff s 6|= ϕ,

s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ,

s |= 〈L〉ϕ iff there are w ∈ L and t ∈ S s.t.

s w−→ t and t |= ϕ.

Note that in definition of the case s |= 〈L〉ϕ, the transition relation now refers to ?−→. It is

obvious that for formulas of PDL6 ?[L], the extended transition relation ?−→ is identical to

−→ and hence models need not be modified for such formulas.

3.2 Examples

Example 11 (Verification of Programs with Stack Inspection in PDL[IL]) In or-

der to detect access violations in safety critical routines, inspection of the call stack may

become necessary, e.g. in case of nested calls, where the initial call came from a method

without the required permission. This has been implemented for instance in the runtime

access control mechanism of JDK 1.2. In [NST01], such programs are modeled as the set

of possible sequences of the call stack w.r.t. the program flow, called traces. The set of

possible traces Ltr is an indexed language.

The specification of safe traces in which no access violations occur is given as a regular

language Lsafe and hence an LTS Tunsafe resembling the NFA for Lsafe can be built (see

Sec. 3.5.1) which contains the set of unsafe paths. The verification itself can be performed

by model checking the formula 〈Ltr〉tt on Tunsafe. If the state s representing the starting

configuration of the program satisfies 〈Ltr〉tt this means that there exists an unsafe path

which is labeled with a word in Ltr and hence that the program has access violating runs.

Example 12 (Model Checking PDL[CFL] in Abstract Interpretation) Consider

the system of mutually recursive functions in the left table below, where + denotes nonde-

terministic choice and ; sequential composition. The function f0 is the entry point of the

system. Supposed we were interested in detecting whether on all possible system executions

the call of f3 is preceded by a successful return of f1 (security check). Note that the stack

behaviour, i.e. the sequences of function calls and returns is non-regular in general (for a

3.3 Properties 45

non-fixed number of functions). We state the property we wish to verify as the regular

expression Lsafe = Σ∗c1Σ
∗r1Σ

∗c3Σ
∗, where a call of function fi is indicated by ci, a return

by ri respectively. It is possible to use abstract interpretation and overapproximate the

system of recursive functions into a one-state transition system with looping transitions

for all elements in Σ. In order to restrict this overapproximation to non-spurious runs one

can consider the context-free grammar G on the right below which is straight-forwardly

derived from the recursive functions. Safety of the system is then established by checking

the PDL[CFL] property ϕsafe = ¬〈L(G) ∩ Lsafe〉tt.

f0 := f2; f3 + f2; f1

f1 := f3; f1 + f2; f3 + f1; f3

f2 := f1; f2 + f2; f3 + term

f3 := f1; f1 + term

F0 → c0F2F3r0 | c0F2F1r0,

F1 → c1F3F1r1 | c1F2F3r1 | c1F1F3r1,

F2 → c2F1F2r2 | c2F2F3r2 | c2r2,

F3 → c3F1F1r3 | c3r3.

It is easy to see that the only state s does not satisfy ϕsafe: F0 ⇒ c0F2F1r0 ⇒∗ c0c2r2c3r3F1r0.

Every derivation continuing from this point will end in a violation of Lsafe, because every

derivation from F1 will be prefixed by c1.

3.3 Properties

Unlike for PDL, not every satisfiable PDL[L] formula is satisfied in a finite model if L

contains non-regular languages. This result is proved by exhibiting a PDL[VPL] formula,

showing that it is satisfiable and that any model must have infinitely many states.

Theorem 28 (Finite Model Property Absence) PDL[VPL] does not exhibit the fi-

nite model property.

Proof Let L = {anbn | n ∈ N}. As shown in Ex. 1, L is a VPL and since by Thm. 4,

VPL are closed under negation, so is L.

Consider the formula

ϕ := [a∗]〈a〉tt ∧ [a∗b+a]ff︸ ︷︷ ︸
ϕ1

∧ [L][a ∪ b]ff︸ ︷︷ ︸
ϕ2

∧ [L]〈b〉tt︸ ︷︷ ︸
ϕ3

where we use regular expressions in the modalities besides languages. Suppose T is a model

of ϕ. Because of the first conjunct of ϕ1, it must have an infinite a-path, and because of the

second conjunct, all other maximal paths must be of the form a∗b∗ or a∗bω. The latter is

46 3. Non-Regular Propositional Dynamic Logic

however impossible because of ϕ2 which states that every anbn-path is a dead end. Finally,

ϕ3 craves the existence of a path with label anbn for any n ∈ N, because any path in

L must have a b-successor and this holds in particular for every state along the infinite

a-path. Note that ϕ is satisfiable, for instance by the following infinite model.

-

a
-

a

?

b

-

a

?

b

-

?

b

�
b

�
b

�

It is easy to see that every model of ϕ must be of infinite size. Let s0
a−→ s1

a−→ s2 . . . be the

infinite a-path which needs to exist because of ϕ1. Because of ϕ2 and ϕ3, for every i ∈ N

there must be a path si
b−→ ti−1

b−→ . . . b−→ t0 having label bi and ending in a state with no

successors. This cannot exist in a finite model of size n for some n ∈ N because the b-path

from sn would have to contain a loop, but T cannot contain an infinite b-path because of

ϕ2. 2

Theorem 29 PDL[L] is bisimulation-invariant and therefore has the tree model property

for any L.

Proof For PDL6 ?[L] this follows from bisimulation-invariance of CTL[L] proved in Thm.

42 and the fact that PDL6 ?[L] is a sublogic of CTL[L] as proved in Thm. 48. Adding tests

poses no difficulties here. 2

Given the parametric nature of PDL[L], an immediate question arising regards the corre-

lation between the expressive power of the language class L and the resulting complexity

of program verification.

Early works have only considered decidability of PDL. Fischer and Ladner have shown that

PDL is decidable in nondeterministic exponential time and established a deterministic

exponential time lower bound [FL79]. The gap was then closed by Pratt who proved

decidability in deterministic exponential time [Pra80]. Ladner concluded very early that

PDL[CFL] must be undecidable since the validity problem of the formula 〈L1〉p ↔ 〈L2〉p

for two context-free languages L1, L2 amounts to the equivalence problem of CFL which is

undecidable [HU79].

A wide study of fragments of PDL[CFL] obtained by restricting the use of context-free

languages set off in the 1980ies. Harel et al. refined the previous result by showing

that satisfiability of PDL[CFL] is complete for the existential side Σ1
1 of the first level

3.4 Expressivity 47

of the analytical hierarchy and established the fact that the borderline to undecidability

runs very close to REG: already PDL augmented with the single context-free program

{anban | n ∈ N} leads to undecidability [HPS83]. Surprisingly, given the similarity of the

languages, PDL equipped with the language {anbn | n ∈ N} remains decidable [KP83].

This observation led to the identification of larger fragments of CFL over which PDL is

decidable, namely SML, SSML and finally VPL as the most general of them [HR93, HK99,

LLS07].

The following table sums up the results and cites the originators.

Satisfiability

PDL[REG] EXPTIME-complete [FL79, Pra80]

PDL[SML] 2EXPTIME-complete

PDL[SSML] 2EXPTIME-complete

PDL[VPL] 2EXPTIME-complete [LLS07]

PDL[CFL] undecidable [FL79, HPS83]

Figure 3.1: Complexity of satisfiability for PDL[L].

Upper bounds for PDL[SML] and PDL[SSML] follow from their inclusion in PDL[VPL]

and 2EXPTIME-hardness for decidability of PDL[SML] transfers from [LLS07], where the

language used to show the lower bound of PDL[VPL] is actually a SML and hence also a

SSML.

3.4 Expressivity

Our first and rather obvious observation is that classical PDL indeed coincides with

PDL[REG].

Theorem 30

PDL = PDL[REG].

Proof It is well known that regular expressions and NFAs both characterise the class

REG and are convertible into each other. Since PDL programs are regular expressions

over some Σ in which tests may be included, automata over the same alphabet and tests

characterising the same languages L ∈ REG do exist and vice versa. But then PDL and

48 3. Non-Regular Propositional Dynamic Logic

PDL[REG] formulas have identical semantics, if the corresponding automata and regular

expressions are exchanged. 2

Already in [HPS83] the term “non-regular” is applied to the logic PDL[CFL] and it can

easily be shown that there are indeed formulas in PDL[L] which are not expressible in Lµ.

However, both logics are in fact incomparable w.r.t. expressivity.

Lemma 1 Let L = {anbn | n ∈ N} ∈ L for some language class L. Then

PDL[L] � Lµ and

Lµ � PDL 6 ?[L].

Proof PDL[L] � Lµ: Consider the formula ϕ = 〈A〉tt, where A is an automaton with

L(A) = L. The formula ϕ is not expressible in Lµ. This can already be shown for finite

word models. A finite word model is an LTS s.t. its states can be arranged to a finite

sequence s0 . . . sn with exactly one transition ai+1 between each pair of adjacent states si

and si+1 for all 0 ≤ i < n. The concatenation of transition labels forms a finite word

w = a1 . . . an. Let W be a finite word model of some w. Then we have s0 |=W ϕ iff

w ∈ L(A) immediately from the definition.

Hence the set of (all words obtained from) all word models which satisfy ϕ coincides with

L. It is well-known that L 6∈ REG. But any formula of Lµ translates into a formula of the

bisimulation-invariant fragment of MSO and from there into an NFA. Hence there is no

formula which is satisfied by the same set of word models.

Lµ � PDL 6 ?[L]: The proof anticipates the definition of the logic CTL[L] from Chapter 4

and the result that PDL6 ?[L] is equivalent to the CTL[L] fragment EF[L]. In [ALL+b] it

is shown that the CTL∗ formula EGFq is not equivalent to any formula in CTL[L] . Since

CTL∗ � Lµ this entails that there is a Lµ-formula which is not equivalent to any CTL[L]

formula and in particular not to any EF[L] formula from which the claim follows. 2

We strongly suspect that the result can be extended to Lµ � PDL[L], but have no proof.

The above lemma entails that PDL over all language classes in the Chomsky hierarchy

which subsume SML are indeed non-regular.

PDL[L] receives its expressive power from the interplay between the intrinsic logical ma-

chinery common to all PDL[L] variants and the externally supplied expressive power from

the language class parameter L. It is immediately seen that for any of the language classes

3.4 Expressivity 49

REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE the ⊆-relation is inherited to

the logics equipped with the corresponding powers.

Theorem 31 For all L,L′ ∈ {REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE},

if L ⊆ L′ then

PDL 6 ?[L] ≤ PDL 6 ?[L′].

PDL 6 ?[L] ≤ PDL[L′].

PDL[L] ≤ PDL[L′].

Proof Follows from syntactic inclusion: for any ϕ ∈ PDL 6 ?[L], we have ϕ ∈ PDL 6 ?[L′]

and ϕ ∈ PDL[L′] and for any ϕ ∈ PDL[L] we have ϕ ∈ PDL[L′]. 2

It is however not obvious at all whether these inclusions are strict or not. Some of the

above statements however can be strengthened to strict results.

Theorem 32

PDL 6 ?[REG] � PDL 6 ?[SSML].

PDL 6 ?[VPL] � PDL 6 ?[DCFL].

Proof The separation of PDL6 ?[REG] and PDL 6 ?[SML] is a consequence of the fact

that PDL6 ?[REG] is contained in Lµ while by Thm. 1 we have that PDL6 ?[SML] contains

formulas inexpressible in Lµ.

The second result is obtained by an inspection of a proof in [ALL+b] where CTL[VPL] is

separated from CTL[DCFL] (see Sec. 4 for a definition of these logics). The CTL[DCFL]

formula shown to be inexpressible in CTL[VPL] is in fact already a formula of the fragment

EF[DCFL] and hence by Thm. 47 expressible in PDL6 ?[DCFL]. Since by the same theorem

PDL 6 ?[VPL] ≡ EF[VPL] we have that PDL6 ?[VPL] is included in CTL[VPL] and obtain

the result. 2

The following result states that up to the context-free language classes, parametric PDL

without tests is strictly weaker than PDL with tests.

Theorem 33

PDL 6 ?[CFL] � PDL[CFL].

50 3. Non-Regular Propositional Dynamic Logic

Proof A proof of the version of this theorem for PDL[REG] can be found in [BP81]. The

proof idea there is as follows: consider the PDL[REG] formula ϕ = 〈(p?; a)∗;¬p?; a; p?〉tt

for a proposition p and an action a. The program can be seen as an encoding of the

statement “until ¬p do a” followed by the execution of yet another a and p?. Furthermore

consider a family of ring-shaped models Tm connected by unidirectional a-transitions, each

of length 2m+ 1 for all m > 0. Name the states s0, . . . s2m. In every state the proposition

p holds except in s0, sm−1, s2m−1 and s2m, where ¬p holds, i.e. if one thinks of the states

aligned in a linear sequence then only the first, the one preceding the middle and the last

two states do not satisfy p. Clearly, s0 |=Tm
ϕ iff sm 6|=Tm

ϕ for all m > 0.

Now one shows that in test-free PDL there is no formula which can distinguish s0 and sm

on such models under two further conditions: 2m+ 1 is a prime and m− 1 is greater than

the number of 〈a〉 occurring in such a formula. Because all regular expressions on one-letter

alphabets have a normal form R ∪ R′; (an)∗ for star-free and possibly empty expressions

R,R′ and n ≥ 1, there is a corresponding normal form for PDL formulas over one-letter

regular programs, s.t. the only subformulas which may occur are of the form 〈A〉ψ, with

A = a or A = (an)∗.

Clearly, any formula distinguishing s0 and sm on such models must do so in states in which

the propositions differ. That is, in order to claim that there exists a test-free formula ψ, s.t.

s0 |=Tm
ψ iff sm 6|=Tm

ψ holds, ψ must say that only states in which p holds are reachable

from s0 and simultaneously that only states in which ¬p holds are reachable from sm or

vice versa.

However, by construction, the number of 〈a〉 occurrences does not suffice to “reach” a state

further away than m−2 a-transitions. Note that along the way equally for s0 and sm, only

p holds. Hence, these formulas do not distinguish s0 and sm.

Regarding subformulas of type 〈(an)∗〉, we have two cases: either n = 2m+1 or not. If n =

2m+1, every iteration of n a-steps returns at the starting point and hence simultaneously

reaches s0 and sm in which the same proposition holds. If n 6= 2m + 1, since 2m + 1

is prime, both s0 and sm reach every other state in Tm and hence not only states with

homogenous propositions. As a consequence, test-free PDL cannot distinguish s0 and sm

in Tm for sufficiently large m.

This proof can be extended to PDL[CFL] as follows. Since by Thm. 31, PDL[REG] ≤

PDL[CFL] the above mentioned formula ϕ is expressible in PDL[CFL]. Furthermore, it is

known that every CFL over one-letter alphabets (denoted by CFL-1) is a regular language

[HU79]. Clearly, any formula of PDL6 ?[CFL] using languages over an n-letter alphabet,

3.4 Expressivity 51

PDL ≡ PDL[REG]

PDL[SML]

PDL[SSML]

PDL[VPL]

PDL[DCFL]

PDL[CFL]

PDL[MCSL]

PDL[IL]

PDL[CSL]

PDL[RE]

PDL 6 ?[REG]

PDL 6 ?[SML]

PDL 6 ?[SSML]

PDL 6 ?[VPL]

PDL 6 ?[DCFL]

PDL 6 ?[CFL]

PDL 6 ?[MCSL]

PDL 6 ?[IL]

PDL 6 ?[CSL]

PDL 6 ?[RE]

Lµ

Figure 3.2: Expressive power of PDL[L].

where n > 1 cannot do more in terms of expressivity on the type of models described

above than a formula using one-letter languages. Thus, all relevant, i.e. PDL6 ?[CFL− 1]

formulas, translate to PDL6 ?[REG] and hence cannot distinguish s0 and sm in Tm either

for sufficiently large m.

Note that this argument is equally valid for PDL[SSML], PDL[VPL] and PDL[DCFL]. 2

Corollary 2 Let L ∈ {SSML, VPL, DCFL}.

PDL 6 ?[L] � PDL[L].

Fig. 3.2 summarises the expressivity results on PDL[L]. A line from a lower positioned

item to a higher positioned item denotes inclusion of the former in the latter. If it is dashed

this means that the inclusion is strict.

52 3. Non-Regular Propositional Dynamic Logic

3.5 Model Checking

While the complexity and decidability of the satisfiability problem for PDL w.r.t. the

class of featured programs is well understood by now, there are still some open questions

regarding decidability and complexity of the corresponding model checking problems. The

range of language classes that is interesting for the satisfiability problem, namely classes

between the regular and the context-free ones, is entirely model checkable in polynomial

time [Lan05]. Therefore it is reasonable to extend the scope of considered language classes

for the model checking problem beyond the context-free.

The only formula type in which PDL[L] and propositional logic differ is the modal expres-

sion scheme 〈L〉ϕ. Insofar it is the only formula type which poses difficulties for model

checking relative to the rather easily solved model checking of propositional logic. There is

however an observation which allows to reduce the model checking problem for this formula

type to well-studied problems of formal language theory: intuitively, solving the problem

s |= 〈L〉ϕ amounts to synchronously finding a w ∈ L and a w-labeled path in the model

starting in s and ending in a state satisfying ϕ. Clearly, it is possible to regard the model

as a language consisting of all paths starting in s or – more precisely – the concatenation

of their labels. The apparent similarity of an LTS and an NFA suggests that this path

language is regular and brings up the conjecture that the synchrony can be captured by

intersecting L and the language induced by the LTS. Checking the resulting language for

non-emptiness should then solve the model checking problem, since any witness would be

a member of L and correspond to an LTS path from s, provided that ϕ holds in the target

state.

The following section will develop this reduction formally, work out a generic method for

model checking PDL[L] and transfer the complexity results accordingly. We thereafter turn

our attention to the logics resulting from the largest classes of formal languages for which we

have deduced decidability of model checking and develop concrete model checking routines

which can be implemented straight-forwardly. We also prove soundness and completeness

of these algorithms.

3.5.1 A Generic Method

The goal of this section is to carve out the territory of formal language classes L over which

the model checking problem for PDL[L] remains decidable and to show that the method we

develop can be used generically to determine its complexity with respect to the language

3.5 Model Checking 53

parameter.

The non-emptiness problem for a class L of formal languages is the following: given a

finitely represented L ∈ L, decide whether or not L 6= ∅. Furthermore, a class L is closed

under intersections with regular languages if for every L ∈ L and every regular language

R we have L ∩R ∈ L.

Definition 30 (REG-Intersection Problem) The problem of non-emptiness of inter-

section with a regular language – REG-intersection problem for short – for L is the follow-

ing: given a finitely represented L ∈ L and an NFA A over a set of terminal symbols Σ,

decide whether or not L ∩ L(A) 6= ∅.

Clearly, if a class of languages is closed under intersections with regular languages and has

a decidable non-emptiness problem, then its REG-intersection problem is decidable, too.

Furthermore, if a class of languages is closed under intersections with regular languages

but has an undecidable non-emptiness problem then its REG-intersection problem is also

undecidable.

We start by showing the close relationship between the REG-intersection problem for L

and the graph-reachability problem for L.

Definition 31 (L-reachability Problem) Let L be a class of languages. The L-reachab-

ility problem is the following: given an LTS T = (S,−→, ℓ), a state s ∈ S, a set of states

T ⊆ S and a finitely represented L ∈ L, decide whether or not there is a w ∈ L and a

t ∈ T s.t. s w−→ t.

Lemma 2 The problem of non-emptiness of intersections with a regular language for L

reduces in linear time to the L-reachability problem.

Proof Let L ∈ L and A = (Q,Σ, δ, q0, F) be an NFA. Take a fixed proposition f and

define an LTS TA := (Q,−→, ℓ) with s a−→ t iff t ∈ δ(s, a) for any s, t ∈ Q, and ℓ(s) := {f}

if s ∈ F and ℓ(s) := ∅ otherwise.

Now, L ∩ L(A) 6= ∅ iff there exists a w := a1a2 . . . an for some n ∈ N s.t. w ∈ L and

w ∈ L(A). The latter is the case iff there are states q0, q1, . . . qn s.t. qi+1 ∈ δ(qi, ai+1) for

all i < n and qn ∈ F . This holds by construction of TA iff q0
w−→ qn and qn ∈ ℓ(f). Clearly,

TA can be constructed in O(|A|). From this follows the claim. 2

Lemma 3 The L-reachability problem reduces in linear time to the problem of non-

emptiness of intersections with a regular language for L.

54 3. Non-Regular Propositional Dynamic Logic

Proof Let T = (S,−→, ℓ) be an LTS, s ∈ S, T ⊆ S, and L ∈ L. Define an NFA

AT ,s,T := (S,Σ, δ, s, T) s.t. for all t ∈ S and all a ∈ Σ: δ(t, a) := {u | t a−→u}. Note that

AT ,s,T can be constructed in O(|T |).

Now there is a w ∈ L and a t ∈ T with s w−→ t iff there is a path in T from s to some

t ∈ T s.t. the transition labels along that path form the word w. This is the case iff

w ∈ L(AT ,s,T) ∩ L. Hence, there is such a w iff L ∩ L(AT ,s,T) 6= ∅. 2

In order to be able to transfer lower complexity bounds from the REG-intersection problem

to the model checking problem for PDL[L], we now show that the L-reachability problem

reduces in linear time to model checking PDL[L].

Lemma 4 Let L be any class of languages. The L-reachability problem reduces in linear

time to the model checking problem for PDL[L].

Proof Let L ∈ L be a language over the alphabet Σ, T = (S,−→, ℓ) be an LTS, s ∈ S

and T ⊆ S. Let qT be a proposition. Define T ′ = (S,−→, ℓ′) s.t. for all u ∈ S:

ℓ′(u) :=




{qT} , if u ∈ T

∅ , otherwise.

Now, for any L ∈ L, there is a w ∈ L and a t ∈ T with s w−→ t iff T ′, s |= 〈L〉qT .

Furthermore, both T ′ and 〈L〉qT can be constructed in time linear in T and a representation

of L. 2

It seems however unlikely that also the reverse reduction is possible, because of a lack

of direct means to encode the propositional operators of PDL[L] into the reachability or

REG-intersection problem.

But having at hand an algorithm solving the L-reachability problem, we can construct a

model checker for PDL[L] rather easily. Let reach(s, L, T) be an algorithm which solves the

L-reachability problem and takes as arguments a state s ∈ S, an appropriately represented

language L ∈ L and a set T ⊆ S . We assume here that the L-reachability problem is

decidable and will later on show for which L this is the case. Clearly, we can construct a

procedure reach(L, T) with L and T as before which returns the set of states U = {s ∈

S | reach(s, L, T) = true} by calling procedure reach(s, L, T) for each s ∈ S.

Consider now the following algorithm for model checking PDL[L].

3.5 Model Checking 55

MC-PDL(T , ϕ) =

let (S,−→, ℓ) = T in

case ϕ of

q : ℓ(q)

¬ψ : S \ MC-PDL(T , ψ)

ψ1 ∨ ψ2 : MC-PDL(T , ψ1) ∪ MC-PDL(T , ψ2)

〈L〉ψ : let {ψ1?, . . . , ψn?} = tests(L) in

−→′ := −→

for i = 1, . . . , n do

let U = MC-PDL(T ,ψi) in

for each u ∈ U do

−→′ := −→′ ∪ (u, ψi?, u)

done

done

let V = MC-PDL((S,−→′, ℓ),ψ) in

reach(L, V)

MC-PDL takes an LTS T and a formula ϕ and computes the set of states in T which

satisfy ϕ. It uses an oracle reach which differs depending on the class of languages used in

the modal formulas. In case it encounters a modal formula 〈L〉ψ it first extracts the tests

occurring in the representation of L with the subroutine tests, then computes separately

for each test ψi? all states u in which ψi holds and finally transforms the transition relation

with a ψi?-self-transition on u accordingly. Finally it computes the set of states in which

ψ holds (on the transformed LTS) and uses these states as targets for the L-reachability

problem in the oracle reach.

Soundness and completeness are proved by a straight-forward structural induction on ϕ.

The only difficulty arises from the fact that the algorithm modifies T in order to be able to

deal with potential tests contained within ϕ in case ϕ is a modal formula. The computation

of ?−→ from Def. 29 has to be performed w.r.t. each formula or, more precisely, the set of

tests occurring in each formula, because there are infinitely many tests in general.

MC-PDL however does this computation on-the-fly and for each modal subformula 〈L〉ψ

separately. At first, the set of tests is determined in the subroutine tests(L) in the

corresponding recursion step. After computing for each test ψi? in tests(L) the set of

states U in which ψi holds (by recursively calling MC-PDL on ψi), the transition relation

is updated with a ψi?-self-loop for all states in U .

56 3. Non-Regular Propositional Dynamic Logic

Hence, whenever the call of reach(L,U) is reached on any recursion level, it is ensured

that for all tests ψi? ∈ tests(L) and for all u ∈ S we have u |= ψi iff u ψi?−−→u, of course

under the assumption that the MC-PDL computation of ψi is sound and complete. This

means that just after completion of the double for-loop on any recursion level, the current

modification of −→′ coincides with ?−→ as defined for the current subformula 〈L〉ψ and the

tests contained within. On the level of the input formula ϕ, we therefore have −→′ = ?−→

after the double for-loop.

Theorem 34 (Soundness and Completeness) For all LTS T = (S,−→, ℓ), s ∈ S and

ϕ ∈ PDL[L] we have

s |= ϕ iff s ∈ MC-PDL(T , ϕ).

Proof From the preconsiderations above, it remains to show that the semantics compu-

tation on the modified LTS is sound and complete.

Soundness. We assume s ∈ MC-PDL(T , ϕ) and prove the claim by a structural induction

on ϕ. Algorithm MC-PDL treats propositional operators as expected and their proof is

entirely trivial.

In case ϕ is of the form 〈L〉ψ, we may assume that ?−→ has been computed correctly. The

actual model checking of 〈L〉ψ is performed via calling the procedure reach(L,U), where

U is the set of recursively computed target states in which ψ holds.

By I.H. for any t ∈ U we have t |= ψ. Clearly, a call of reach(L,U) on the modified LTS

then returns exactly the set of states P from which there is a path to some state in U

labeled with a w ∈ L. But then, if s ∈ P we have s |= ϕ.

Completeness. Assume s |= ϕ. Again, we show the claim by a structural induction on

ϕ. Propositional cases are trivial. If s |= 〈L〉ψ then there is a t ∈ S and a w ∈ L, s.t.

s w−→ t and t |= ψ. By I.H. we have that U = MC-PDL(T , ψ) contains t. Since the LTS

transition relation modification faithfully reflects ?−→, procedure reach(L,U) returns a set

containing s. 2

Note that the running time of MC-PDL depends on the running time of tests(L) which

in turn depends on the representation of L. As argued before, it is easy to construct cases

in which the set of tests is hard to detect and may influence the running time significantly.

The tests could for instance be encrypted and be hard to decrypt.

Since most of the following results use MC-PDL as a basis for a complexity analysis of

model checking PDL[L], it is essential that the computation of tests(L) for any L ∈ L

does not affect its asymptotic complexity. We emphasise once more that we make the

3.5 Model Checking 57

implicit assumption of a reasonable representation of L, in particular that it is finite and

its alphabet is computable in linear time (and therefore also tests(L)).

Lemma 5 The model checking problem for PDL[L] Turing-reduces to the L-reachability

problem in time O(|T | · |ϕ|).

Proof It is not hard to see that algorithm MC-PDL can be made to run in timeO(|T |·|ϕ|)

not counting the time complexity of the oracle procedure reach(L,U). Using a dynamic

programming approach one can restrict the numbers of recursive calls to one per subformula

or test occurring in the input formula. Also, set operations and updates of the labeling

function can be made to run in time O(|T |). 2

The following diagram summarises the conclusions drawn so far:

L − reachability
O(|T |)

//

O(|T |)

��

model checking PDL[L]
O(|T ||ϕ|)ks

REG-intersection for L

O(|A|)

OO

A single line from X to Y denotes a many-one reduction from X into Y transfering lower

bounds along the arrow and upper bounds in the opposite direction. A double line denotes

a Turing reduction transferring only an upper bound down the arrow but not a lower

bound up the arrow. Taken together, these results allow to transfer lower bounds on the

complexity of PDL[L] model checking from either of the other problems.

Concerning the transfer of upper bounds, we have shown that PDL[L] Turing-reduces to

L-reachability in quadratic time. Note that the number of reach(L,U) calls of MC-PDL is

bounded by the number of 〈L〉 occurrences in ϕ. Remember that every call of reach(L,U)

is realised by |S| calls of reach(s, L, T). Putting this together, we have O(|S| · |ϕ|) calls

of an oracle reach(s, L, T).

This means that we may transfer upper bounds in terms of complexity classes from either

of the problems as long as they are at least PTIME, because at this point the O(|S| · |ϕ|)

complexity of the reduction gets absorbed by the complexity of the other problems.

Theorem 35 The model checking problem for PDL[L] is equivalent under polynomial-

time Turing reductions to the problem of non-emptiness of intersections with a regular

language for L.

58 3. Non-Regular Propositional Dynamic Logic

Proof Immediately from Lemmas 3–4.

This theorem allows to transfer many known results from the theory of formal languages

to the model checking theory of PDL[L]. For example, regular languages are closed under

intersections and have a decidable non-emptiness problem. Hence, their problem of non-

emptiness of intersections of a regular language is decidable, too. In fact, it is decidable in

linear time which then yields polynomial time decidability of the model checking problem

for PDL[REG]. It is also known that CFL is closed under intersections with regular

languages and has a non-emptiness problem that is decidable in polynomial time. Hence,

Thm. 35 reproves that model checking for PDL[CFL] is PTIME-complete.

Regarding language classes L, for which the complexity of model checking PDL[L] is un-

known, the following table sums up the results from formal language theory.

Language class Closed under inter- Non-emptiness

section with REG

REG X ∈ LINTIME

SML X ∈ PTIME

SSML X ∈ PTIME

VPL X PTIME-complete

CFL X PTIME-complete

MCSL X PTIME-complete

IL X EXPTIME-complete

ACFL X undecidable

CSL X undecidable

Figure 3.3: REG-intersection and emptiness for some language classes.

In all of the above classes, the intersection with REG causes at most polynomial blow-up.

From Thm. 35 and the above table, the borderline to undecidability of model checking

PDL[L] can by now be drawn. The class CSL of context-sensitive languages is closed

under intersections with regular languages but its non-emptiness problem is undecidable.

Hence, the problem of non-emptiness of intersections with a regular language must be

3.5 Model Checking 59

undecidable, too. The same holds for the class ACFL. The exact correspondence of ACFL

and CSL is not known.

Corollary 3 The model checking problems for PDL[CSL] and PDL[ACFL] are undecid-

able.

Note that the non-emptiness problem for context-sensitive languages is r.e. because the

word problem is decidable. However, since the reduction in Lemma 5 is only a Turing-

reduction, recursive enumerability does not extend to the model checking problem.

Accordingly, the border to undecidability runs somewhere between the context-free and

the context-sensitive languages. The largest language class in this area which fulfills the

required conditions is IL: it is closed under intersections with regular languages (with

polynomial blow-ups only) and its non-emptiness problem is EXPTIME-complete [Aho68,

TK07]. From this follows that its REG-intersection problem also is.

Corollary 4 The model checking problem for PDL[IL] is EXPTIME-complete.

Other classes which contain CFL, have decidable non-emptiness problems and are closed

under intersections with regular languages are the MCSL. Again, they are closed under

intersections with regular languages and their non-emptiness problem is decidable – even

in polynomial time. Since the blow-up in the construction of the intersection of a linear-

indexed grammar with a regular language is polynomial, their REG-intersection problem

is in PTIME as well. Thm. 35 then transfers the upper bound to the corresponding model

checking. A matching lower bound follows trivially from the PTIME-hardness of the model

checking problem for PDL[CFL].

Corollary 5 The model checking problems for PDL[LIL], PDL[HL], PDL[CCL], and

PDL[TAL] are PTIME-complete.

Since we are not aware of any hardness results for the emptiness problem of SML and

SSML, we may only transfer upper bounds from the REG-intersection problem.

Corollary 6 The model checking problems for PDL[SML] and PDL[SSML] are in PTIME.

For a comparison of the complexities of satisfiability and model checking parametric PDL,

see Fig. 3.5.1. Note that some of the lower and upper bound results follow from the

expressivity results of the logics as stated in Thm. 31. Hence, for any two logics PDL[L]

and PDL[L′], where L ≤ L′ and a complexity class C, if either problem is C-hard in PDL[L]

then it is also C-hard in PDL[L′] and vice versa for upper bounds.

60 3. Non-Regular Propositional Dynamic Logic

satisfiability model checking

PDL[REG]
∈

EXPTIME [FL79, Pra80]
LINTIME[CS92]

hard

PDL[SML]
∈

2EXPTIME
PTIME

hard

PDL[SSML]
∈

2EXPTIME
PTIME

hard

PDL[VPL]
∈

2EXPTIME [LLS07] PTIME
hard

PDL[CFL]
∈

undec. [FL79, HPS83] PTIME [Lan05]
hard

PDL[MCSL]
∈

undec. PTIME
hard

PDL[IL]
∈

undec. EXPTIME
hard

PDL[CSL]
∈

undec. undec.
hard

Figure 3.4: Complexity of SAT vs. model checking PDL[L].

3.5 Model Checking 61

3.5.2 A Model Checking Algorithm for PDL over IL

In this section we present an explicit model checking procedure for PDL[IL] that runs in

deterministic exponential time and can be implemented straight-forwardly. We focus on

the difficulties imposed by the language part. A model checker is then easily obtained by

using the procedure sketched in the proof of Lemma 5.

Later, in the soundness proofs, we will need the following important properties of deriva-

tions in indexed grammars.

Lemma 6 (Stack Distribution Property) For all A,B1, . . . , Bk ∈ N and all δ ∈ I∗:

a) If A ⇒∗ B1 . . . Bk and no terminal productions are being used in this derivation then

A[δ]⇒∗ B1[δ] . . . Bk[δ].

b) If A[δ]⇒∗ B1[δ] . . . Bk[δ] and no terminal productions are being used and for all indexed

nonterminals X[δ′] occurring during the derivation, δ′ = γδ for some γ ∈ I∗, then A ⇒∗

B1 . . . Bk.

Proof Both parts follow easily from the following three observations. Let A,B,C ∈ N ,

δ ∈ I∗, f ∈ I:

• A⇒ BC iff A[δ]⇒ B[δ]C[δ],

• A⇒ B[f] iff A[δ]⇒ B[fδ],

• A[f]⇒ B iff A[fδ]⇒ B[δ].

We exemplarily show the first of these equivalences. The two others are analogous. Suppose

A ⇒ BC. According to the definition of ⇒, we must have A → BC and, hence, A[δ] ⇒

B[δ]C[δ] according to the definition of ⇒ again. The converse direction is proved in the

same way.

For part (a) suppose A⇒∗ B1 . . . Bk. By successively applying the “if” parts of the three

observations above it is easy to construct a derivation which shows A[δ]⇒∗ B1[δ] . . . Bk[δ].

For part (b) suppose A[δ] ⇒∗ B1[δ] . . . Bk[δ] s.t. no terminal productions occur during

the derivation and every nonterminal in every intermediate sentential form has an index

δ′ = γδ for some γ ∈ I∗. Then one can successively apply the “only if” parts of the three

observations above in order to construct a derivation which shows A ⇒∗ B1 . . . Bk. Note

that this would not necessarily be possible if some occurring nonterminal had an index

which is not of the required form: the proof relies on a simulation of the derivation steps

of A[δ] ⇒∗ B1[δ] . . . Bk[δ] on A with an empty stack. This is possible, as long as δ is

62 3. Non-Regular Propositional Dynamic Logic

left untouched at the bottom of all indexed nonterminals in intermediate sentential forms.

Performing a pop-production on some intermittent indexed nonterminal X[δ] cannot be

simulated on X with empty stack because the operation is not defined. 2

Lemma 7 (Commutation Lemma) For all sentential forms α, β, γ1, γ2, γ3, allA,B ∈ N

and all δ, δ′ ∈ I∗ the following holds:

γ1A[δ]γ2B[δ′]γ3 ⇒ γ1αγ2B[δ′]γ3 ⇒ γ1αγ2βγ3

iff γ1A[δ]γ2B[δ′]γ3 ⇒ γ1A[δ]γ2βγ3 ⇒ γ1αγ2βγ3.

Proof This follows immediately from the definition of ⇒. 2

Corollary 7 Let A ∈ N and w ∈ Σ∗ s.t. A ⇒+ w. Then there are sentential forms

α0, . . . , αn for some n ∈ N all of which do not contain terminal symbols, s.t. α0 = A,

αi−1 ⇒ αi for all i = 1, . . . , n, and αn ⇒m w wherem is the number of indexed nonterminals

in αn.

Proof Suppose A ⇒ β1 ⇒ . . . ⇒ βm = w for some βi. Consider the least i s.t. βi

contains a terminal symbol. If every production rule applied to the right of βi is a terminal

production then the claim holds. Assume this is not the case. Lemma 7 allows to hold

back the applied terminal production rule and instead to first apply the production rule

for βi+1. Repetitive application of this procedure allows to postpone all applications of

terminal production rules to the very last. Now note that it takes m steps to replace m

indexed nonterminals by ǫ or a terminal symbol each. 2

For the remainder of this section fix an indexed grammar G = (N,Σ, P, I, S) and a Kripke

structure T = (S,−→, ℓ).

Definition 32 (Annotated Nonterminal) An annotated nonterminal is a triple (s, A, t),

where s, t ∈ S and A ∈ N . Let N denote the set of all annotated nonterminals (over G

and T), i.e. N := S ×N ×S. We say that an annotated nonterminal (s, A, t) left-matches

another (u,B, v), if t = u.

We define a new relation between two states s, t, a sentential form E1 . . . Ek consisting

of unindexed nonterminals only, and a set B of annotated nonterminals. Intuitively,

s E1...Ek−−−−−→
B

t holds iff B can be rearranged to a sequence of annotated nonterminals in which

each left-matches its right neighbour s.t. that sequence starts with s, ends in t and the

3.5 Model Checking 63

projection onto its nonterminal symbols yields the sequence E1 . . . Ek. Annotated nonter-

minals in B can be used more than once in this sequence, but each of them has to be used

at least once. We also call such a sequence on open path from s to t because it represents

a path from s to t via intermediate states s0, . . . , sk s.t. s0 = s, sk = t and between each

si−1 and si there is a hole which, intuitively, should be closed by a proper path from si−1

to si whose label is derivable from Ei.

Definition 33 (Open Path) Let k ∈ N, s, t ∈ S, D1, . . . , Dk ∈ N , and B ⊆ N .

s D1...Dk−−−−−→
B

t iff there are s0, . . . , sk ∈ S s.t. s0 = s, sk = t

and B = {(si−1, Di, si) | i = 1, . . . , k}.

Note that the set equality in this definition does not only constrain the available nontermi-

nals which can be used in order to construct an open path from s to t. It particularly also

demands that every annotated nonterminal in this set is being used in the construction.

The left-matching property is hidden in the second conjunct.

Example 13 Let S := {s, t} and B := {(s, A, t), (t, B, s), (t, C, s)}. Then for instance

s ABAC−−−−→
B

u holds because there is a sequence of left-matching annotated nonterminals corre-

sponding to ABAC which (as a set) forms B, here namely (s, A, t), (t, B, s), (s, A, t), (t, C, s).

On the other hand, s AB−−→
B

t does not hold since the annotated nonterminal (t, C, s) is not

being used in this open path. Furthermore, s ABC−−−→
B

t also does not hold, because (t, B, s)

does not left-match (t, C, s).

Definition 34 Let C,D be sets of annotated nonterminals and f ∈ I. Define D[f] ; C

iff

• for all (u, C, v) ∈ C exists (u,D, v) ∈ D, s.t. D[f]→ C and

• for all (u,D, v) ∈ D exists (u, C, v) ∈ C, s.t. D[f]→ C.

The next lemma states some properties of the open path relation. We omit the proof since

all parts follow easily from Def. 33.

Lemma 8 For all s, t ∈ States, all B, C,D,B1, . . . ,Bk ⊆ N , all C1, . . . , Ck, D1, . . . , Dk ∈

N , all f ∈ I, and all β, γ, α1, α2, . . . ∈ N+ we have the following.

a) If s β−→
B
u and u γ−→

C
t then s βγ−−→

B∪C
t.

64 3. Non-Regular Propositional Dynamic Logic

b) If there exists f ∈ I, s.t. D[f] ; C and s D1...Dk−−−−−→
D

t then s C1...Ck−−−−−→
C

t.

c) If B = {(u1, C1, v1), . . . , (uk, Ck, vk)} and {i1, . . . , im} = {1, . . . , k} for some m ∈ N

and s
Ci1

...Cim−−−−−−→
B

t and ui
αi−−→
Bi

vi for all i = 1, . . . , k then s
αi1

...αim−−−−−−→
B1∪...∪Bk

t.

d) If s βγ−−→
B

t then there are u ∈ S and B1,B2 ⊆ N s.t. B = B1 ∪ B2 and s β−→
B1

u and

u γ−→
B2
t.

e) If s α−→
B
t and for every (u,D, v) ∈ B it holds that u = v and D → ǫ, or u a−→ v and

D → a for some a ∈ Σ, then there is a w ∈ Σ∗ s.t. α⇒+ w and s w−→ t.

Approximating IL-reachability

In order to solve the IL-reachability problem we are interested in tuples of states s, t and

nonterminals A s.t. there is a path from s to t whose label (of terminals) is derivable from

A. In order to compute these tuples for every nonterminal A we need to consider sets of

open paths first. These will be represented by a triple 〈s,B, t〉 ∈ S × 2N × S, intuitively

describing that there is an open path from s to t which uses all elements in B. We use

〈〉-brackets to distinguish such triples from annotated nonterminals.

Definition 35 For each A ∈ N , define:

99K

A := { 〈s,B, t〉 | there is α ∈ N+ with A⇒∗ α and s α−→
B
t}.

Next we describe a method for computing
99K

A . We simultaneously define, for any A ∈ N ,

a sequence
99K

A 0 ⊆
99K

A 1 ⊆
99K

A 2 ⊆ . . . that approximates
99K

A from below. We will show that⋃
j∈N

99K

A j =
99K

A . Since each of them is a subset of a finite set, it is clear that the chain has

to have a maximal element.

We start by defining the initial sets
99K

A 0 for an A ∈ N :

99K

A 0 := { 〈s, {(s, A, t)}, t〉 | s, t ∈ S}.

Intuitively, it is always possible to find a path from any state s to any state t that is labeled

with something derivable from A if one is allowed to leave a hole between s and t that

should be closed by anything derivable from A. Note that A⇒∗ A.

Now let j > 0. Define
99K

A j as the union of four sets.

99K

A j :=
99K

A j−1 ∪
99K

A j,conc ∪
99K

A j,push ∪
99K

A j,ins.

3.5 Model Checking 65

Hence, anything at level j − 1 is preserved into level j. Open paths at level j can be

constructed by concatenating two open paths at level j−1. The label of the resulting path

is of course only derivable if this is matched by a composition rule in the indexed grammar

G. Note that the holes in the resulting open path are the union of the holes in both parts.

99K

A j,conc := { 〈s,B ∪ C, t〉 | there are B,C ∈ N and u ∈ S with A→ BC and

〈s,B, u〉 ∈
99K

B j−1 and 〈u, C, t〉 ∈
99K

C j−1 }.

Another way of obtaining an open path from s to t derivable from some nonterminal A

is to start the derivation with a push production. This has to be matched in the end

by corresponding pop productions since we are interested in open paths whose labels are

unindexed nonterminal symbols.

99K

A j,push := { 〈s, C,t〉 | there are B ∈ N, f ∈ I,D ⊆ N s.t. A→ B[f] and

〈s,D, t〉 ∈
99K

B j−1 and if D = {(u1, D1, v1), . . . , (uk, Dk, vk)}

then C = {(u1, C1, v1), . . . , (uk, Ck, vk)} s.t. Di[f]→ Ci

for all i = 1, . . . , k }.

Finally, an open path on level j with a derivation of a sentential form from some nonter-

minal A can be obtained by inserting a derivation into the context of another derivation.

For technical reasons, namely to ensure completeness, we require that all parts of the open

path are being replaced simultaneously.

99K

A j,ins := { 〈s,B1 ∪ . . . ∪ Bk, t〉 | there is C = {(u1, C1, v1), . . . , (uk, Ck, vk)}

s.t. 〈s, C, t〉 ∈
99K

A j−1 and for all i = 1, . . . , k :

〈ui,Bi, vi〉 ∈
99K

Ci
j−1 }.

We proceed by showing that the sequence
99K

A 0,
99K

A 1, . . . correctly approximates
99K

A .

Lemma 9 (Soundness) For all A ∈ N and all j ∈ N we have
99K

A j ⊆
99K

A .

Proof We prove this simultaneously for all A ∈ N by induction on j. The base case

of j = 0 is rather simple. Remember that
99K

A 0 only consists of elements of the form

〈s, {(s, A, t)}, t〉. Now, clearly s A−−−−−→
{(s,A,t)}

t and A ⇒∗ A. Thus, we have 〈s, {(s, A, t)}, t〉 ∈
99K

A .

Now let j > 0. Note that
99K

A j is the union of four sets. For each of these we will show that

they are contained in
99K

A .

66 3. Non-Regular Propositional Dynamic Logic

Case (i),
99K

A j−1 ⊆
99K

A . This is trivially true by hypothesis.

Case (ii),
99K

A j,conc ⊆
99K

A . Suppose 〈s,B ∪ C, t〉 ∈
99K

A j,comp. Then A → BC and there

are 〈s,B, u〉 ∈
99K

B j−1 and 〈u, C, t〉 ∈
99K

C j−1. By hypothesis we have 〈s,B, u〉 ∈
99K

B and

〈u, C, t〉 ∈
99K

C , i.e. there are β, γ ∈ N+ s.t. B ⇒∗ β, C ⇒∗ γ and s β−→
B
u as well as u γ−→

C
t.

Then A ⇒ BC ⇒∗ βγ and according to Lemma 8 (a) we also have s βγ−−→
B∪C

t. Hence,

〈s,B ∪ C, t〉 ∈
99K

A .

Case (iii),
99K

A j,push ⊆
99K

A . Suppose 〈s, C, t〉 ∈
99K

A j,push. Then A → B[f] for some B ∈ N

and f ∈ I, and there is a 〈s,D, t〉 ∈
99K

B j−1 s.t. D = {(u1, D1, vi), . . . , (uk, Dk, vk)} and

productions Di[f]→ Ci for i = 1, . . . , k s.t. C = {(u1, C1, vi), . . . , (uk, Ck, vk)}. By hypoth-

esis, 〈s,D, t〉 ∈
99K

B , i.e. there is an α ∈ N+ s.t. B ⇒∗ α and s α−→
D
t. Let α = D1 . . .Dk.

Now we apply part (a) of Lemma 6 and obtain B[f] ⇒∗ D1[f] . . .Dk[f]. Extending this

derivation with the rule A→ B[f] at the top and the rules Di[f]→ C at the bottom yields

A ⇒∗ C1 . . . Ck. According to Lemma 8 (b) we have s C1...Ck−−−−−→
C

t. But then 〈s, C, t〉 ∈
99K

A

which was to be proved.

Case (iv),
99K

A j,ins ⊆
99K

A . Suppose 〈s,B, t〉 ∈
99K

A j,ins s.t. B is suitable decomposed into B =

B1 ∪ . . . ∪ Bk. Then there is a 〈s, C, t〉 ∈
99K

A j−1 s.t. C = {(u1, C1, v1), . . . , (uk, Ck, vk)}

and for all i = 1, . . . , k we have 〈ui,Bi, vi〉 ∈
99K

Ci
j−1. By hypothesis, 〈s, C, t〉 ∈

99K

A , i.e.

there is an α ∈ N+ s.t. s α−→
C
t, in particular A ⇒∗ α. Let α = Ci1 . . . Cim for some

m ∈ N, i1, . . . , im ∈ {1, . . . , k}. The hypothesis also yields, for every i = 1, . . . , k, that

〈ui,Bi, vi〉 ∈
99K

Ci , i.e. there are αi ∈ N+ s.t. Ci ⇒∗ αi and ui
αi−−→
Bi

vi. Hence, A⇒∗ αi1 . . . αim ,

and Lemma 8 (c) yields s
αi1

...αim−−−−−−→
B

t which shows that 〈s,B, t〉 ∈
99K

A . 2

Remember that we want to use the sequence
99K

A 0,
99K

A 1, . . . in order to compute
99K

A for some

A. The above shows that the sequence approximates it from below. We need to prove

completeness, i.e. the fact that the sequence eventually captures
99K

A . For this, we need

directedness of the family of sets
99K

A j which is an immediate consequence of the following

lemma.

Lemma 10 (Monotonicity) For all A ∈ N and all j, j′ ∈ N we have: j ≤ j′ implies
99K

A j ⊆
99K

A j′.

Proof Trivial. 2

Now we prove that eventually all open paths for all nonterminals are indeed collected by

the approximation.

3.5 Model Checking 67

Lemma 11 (Completeness) For all A ∈ N exists j ∈ N s.t.
99K

A ⊆
99K

A j .

Proof Again, we prove this simultaneously for all A ∈ N . First note that
99K

A is finite,

because so are S and N . Hence, using Lemma 10 it suffices to show that for every 〈s,B, t〉 ∈
99K

A there is a j ∈ N with 〈s,B, t〉 ∈
99K

A j. So take some 〈s,B, t〉 ∈
99K

A . Hence, there is an

α ∈ N∗ s.t. s α−→
B
t and A⇒∗ α. Thus, there is an n ∈ N with A⇒n α. We show the claim

by induction on n.

First assume n = 0. If A ⇒0 α then B = {(s, A, t)} because α = A and remember that

in s α−→
B
t all elements of B are required to contribute to the construction of the open path.

But then 〈s,B, t〉 ∈
99K

A 0.

Now let n > 0, i.e. A ⇒ β ⇒k−1 α for some sentential form β. We need to make a case

distinction according to the rule that is applied in the derivation of β from A. Note that it

cannot be a pop production because the index of A is empty. It also cannot be a terminal

production because α ∈ N+. Hence, it can only be a composite production A→ BC (with

β = BC) or a push production A → B[f] (with β = B[f]). Note furthermore, that – for

the same reason – terminal productions cannot occur anywhere in this derivation.

Case (i), A→ BC. By absence of terminal productions we must have |α| ≥ 2. Hence, there

are β, γ ∈ N+ s.t. α = βγ and B ⇒n1 β and C ⇒n2 γ with n1+n2 ≤ n−1. Furthermore, by

assumption we have s βγ−−→
B

t. Lemma 8 (d) yields a u ∈ S and a decomposition B = B1∪B2

s.t. s β−→
B1

u and u γ−→
B2
t. Since n1 < n, the hypothesis yields a j1 s.t. 〈s,B1, u〉 ∈

99K

B j1.

Equally, since n2 < n we also have 〈u,B2, t〉 ∈
99K

C j2 for some j2. Let j = max{j1, j2}. By

Lemma 10 we have 〈s,B1, u〉 ∈
99K

B j and 〈u,B2, t〉 ∈
99K

C j . By construction we then have

〈s,B, t〉 ∈
99K

A j+1 which was to be shown.

Case (ii), A → B[f]. Let α = E1 . . . Em. Furthermore, in the derivation A ⇒∗ α, every

Ei must be derived from a nonterminal C s.t. C itself stems from an application of a rule

D[f]→ C s.t. the index symbol f is inherited from B[f] at the beginning of the derivation.

In other words, for every Ei we consider the first moment that the thread in the derivation

from B[f] to α loses the bottom index symbol f . We can group α according to that. Two

adjacent symbols in α belong to the same group iff they are derived from the same symbol

C which in turn is derived from an application of a rule D[f]→ C s.t. all ancestors of D[f]

up to B[f] at the top of the derivation have the symbol f at the bottom of their stack.

This means we have

α = E1,1 . . . E1,m1E2,1 . . . E2,m2 . . . Ek,1 . . . Ek,mk

68 3. Non-Regular Propositional Dynamic Logic

for some m1, . . . , mk with m1 + . . .+mk = m.

Since each group Ei,1 . . . Ei,mi
in α stems from a C as said above there are nonterminals

C1, . . . , Ck, D1, . . . , Dk and n′, n1, . . . , nk ∈ N with n′ +(n1 +1)+ . . .+(nk +1) ≤ n−1 s.t.

Di[f]⇒ Ci ⇒
ni Ei,1 . . . Ei,mi

for every i = 1, . . . , k and

B[f]⇒n′

D1[f] . . .Dk[f]

s.t. in every intermediate sentential form, every nonterminal has the symbol f at the bottom

of their index. According to Lemma 6 (b) we also have B ⇒n′

D1 . . .Dk.

Remember that s
E1,1...E1,m1 ...Ek,1...Ek,mk−−−−−−−−−−−−−−−−→

B
t. Applying Lemma 8 (d) repeatedly yields states

s0, . . . , sk and a decomposition B = B1∪ . . .∪Bk s.t. s0 = s, sk = t, and for all i = 1, . . . , k:

si−1
Ei,1...Ei,mi−−−−−−−→

Bi
si. Hence, we have, for i = 1, . . . , k: 〈si−1,Bi, si〉 ∈

99K

Ci . Since ni < n for

all i = 1, . . . , k, we can use the hypothesis on each of them to get j1, . . . , jk ∈ N with

〈si−1,Bi, si〉 ∈
99K

Ci
ji.

Now define D := {(s0, D1, s1), . . . , (sk−1, Dk, sk)}. Note that, just because s0 = s and

sk = t, we have s D1...Dk−−−−−→
D

t and therefore 〈s,D, t〉 ∈
99K

B . Since n′ < n we can now use the

hypothesis to obtain a j′ with 〈s,D, t〉 ∈
99K

B j′. Let C := {(s0, C1, s1), . . . , (sk−1, Ck, sk)}.

Then, by construction we have 〈s, C, t〉 ∈
99K

A j′+1,push and therefore 〈s, C, t〉 ∈
99K

A j′+1.

Finally, let j := max{j′ + 1, j1, . . . , jk}. Lemma 10, together with the above, shows that

for all i = 1, . . . , k we have 〈si−1,Bi, si〉 ∈
99K

Ci
j . By construction, we then have 〈s,B, t〉 ∈

99K

A j+1,ins which finishes the proof. 2

Theorem 36 For all A ∈ N :
99K

A =
⋃
j∈N

99K

A j.

Proof By Lemmas 9 and 11. 2

Our next concern is the constructability of
⋃
j∈N

99K

A j for any A ∈ N . We start be remarking

that the number of approximation steps required for the construction is finite.

Lemma 12 (Termination) For all A ∈ N there is a j ∈ N s.t. for all j′ > j we have
99K

A j′ =
99K

A j. Moreover, j ≤ |S|2 × 2|S|
2·|N |.

Proof This follows from Lemma 10 and the fact that for all j,
99K

A j ⊆ S × 2S×N×S × S.2

Lemma 13 (Running Time) For any A ∈ N it is possible to compute
99K

A in timeO(|G|2·

|N | · |S|6 · 23|S|2·|N |).

3.5 Model Checking 69

Proof According to Thm. 36 and Lemma 12, it suffices to compute
99K

A 0,
99K

A 1, . . . until

stability is reached. Lemma 12 also states that at most |S|2 · 2|S|
2·|N | many iterations are

needed. Remember though, that this has to be done simultaneously for all A ∈ N , which

adds another factor |N | to the running time. Finally, for any A ∈ N and any j > 0,

computing

•
99K

A 0 takes time O(|S|2 · |N |),

•
99K

A j,conc takes time O(|G| · (|S|2 · 2|S|
2·|N |)2),

•
99K

A j,push takes time O(|G| · (|S|2 · 2|S|
2·|N |) · (|S|2 · |N | · |G|)),

•
99K

A j,ins takes time O((|S|2 · 2|S|
2·|N |) · |S|2 · |N |),

assuming that set operations take time O(1) because sets are represented as boolean arrays

for example, and that
99K

B j−1 have already been computed for all B ∈ N .

Putting these all together amounts to O(|G|2 · |N | · |S|6 · 23|S|2·|N |). 2

Remember that
99K

A contains triples 〈s,B, t〉 s.t. there is a path from s to t whose label is

derivable from A and which is made from elements in B. These are triples of the form

(u,B, v) with the intuitive meaning that the path from s to t can use a subpath from u

to v if it is possible to find one that can be derived from B. In the end we are of course

interested in closed paths from s to t, i.e. those that do not contain holes like the ones

between u and v anymore. These holes can be closed by considering terminal productions

now. Remember that Cor. 7 showed that in a derivation of a word it is always possible to

defer the use of terminal productions to the very end, i.e. if A⇒∗ w for some w ∈ Σ∗ then

also

A⇒∗ E1 . . . Ek ⇒
∗ w

for some k ∈ N s.t. the first part before E1 . . . Ek does not contain terminal productions,

and the second part only contains terminal productions. Here we also make use of the fact

that a terminal can only be derived from an unindexed nonterminal.

The next definition captures the intuition of closed paths from a state to another.

Definition 36 (Closed Path) For each A ∈ N , define:

−→

A := { (s, t) | s, t ∈ S and there is w ∈ Σ∗ s.t. A⇒+ w and s w−→ t}.

70 3. Non-Regular Propositional Dynamic Logic

Approximating this set of closed paths is easier than the above set of open paths. We can

define approximations such that the second of these already captures the entire
−→

A . We

define simultaneously for all A ∈ N :

−→

A 0 := {(s, s) | s ∈ S, A→ ǫ}

∪ {(s, t) | s, t ∈ S and there is a ∈ Σ s.t. A→ a and s a−→ t},
−→

A 1 :=
−→

A 0

∪ {(s, t) | there is B ⊆ N s.t. (s,B, t) ∈
99K

A and

for all (u,D, v) ∈ B : (u, v) ∈
−→

D 0}.

Again, we need to show soundness and completeness w.r.t.
−→

A .

Lemma 14 (Soundness) For all A ∈ N and we have
−→

A 1 ⊆
−→

A .

Proof We show this simultaneously for all A ∈ N . Let (s, t) ∈
−→

A 1. There are two

cases. If (s, t) ∈
−→

A 0 then the claim follows immediately. Suppose therefore that there

is a 〈s,B, t〉 ∈
99K

A , i.e. there is an α ∈ N+ with A ⇒∗ α and s α−→
B
t, and that for every

(u,D, v) ∈ B we have (u, v) ∈
−→

D 0. Then Lemma 8 (e) yields a w ∈ Σ∗ s.t. α ⇒+ w and

s w−→ t. Hence, we have A⇒+ w and therefore (s, t) ∈
−→

A . 2

Lemma 15 (Completeness) For all A ∈ N we have
−→

A ⊆
−→

A 1.

Proof Suppose (s, t) ∈
−→

A . Then there is a w ∈ Σ∗, s.t. A⇒+ w and s w−→ t. We consider

the derivation of w from A. Clearly, every symbol a in w is derived in an application

of a rule A → a s.t. A occurs with empty index in a sentential form in this derivation.

Furthermore, there can be applications of rule A→ ǫ, again, on empty index only. Cor. 7

gives us E1, . . . , Ek ∈ N s.t.

A⇒∗ E1 . . . Ek ⇒
∗ w

and in the left part no terminal productions are used and in the right part only terminal

productions are used. Let w = a1 . . . am. Note that we must have k ≥ m, i.e. some of the

Ei can be deleted in applications of the form Ei → ǫ, but no single occurrence of an Ei can

derive more than one terminal symbol aj in w. Hence, each of these nonterminals Ei is

either nulling, i.e. it is deleted in an application of a rule Ei → ǫ, otherwise it is non-nulling

and derives a terminal symbol in w. Let Ei1 . . . Eim be the subsequence of E1 . . . Ek that

consists exactly of the non-nulling nonterminals in it.

3.5 Model Checking 71

Since s w−→ t there are s0, . . . , sm ∈ S s.t. si−1
ai−−→ si for every i = 1, . . . , m and s0 = s and

sm = t. Let C = {(s0, Ei1, s1), . . . , (sm−1, Eim, sm)}. Then we have s
Ei1

...Eim−−−−−−→
C

t. Let

B := C ∪ {(si, Ei, si) | Ei is nulling in the sequence above }

First one can repeatedly apply Lemma 8 (d) in order to decompose s
Ei1

...Eim−−−−−−→
C

t into

a sequence u
Eij

−−−−−→
{(u,Eij

,v)}
v for j = 1, . . . , m. Then one can use Lemma 8 (a) in order to

recompose it into s E1...Ek−−−−−→
B

t. Hence, we have 〈s,B, t〉 ∈
99K

A . Furthermore, note that for

every (u,E, v) ∈ B we have (u, v) ∈
−→

E 0: each u, v have been chosen such that either

• u a−→ v and E → a for some a ∈ Σ, or

• u = v and E → ǫ.

By the construction, we then have (s, t) ∈
−→

A 1. 2

Lemma 16 (Running Time) For all A ∈ N , it is possible to compute
−→

A in time O(|G|2 ·

|N | · |S|6 · 23|S|2·|N |).

Proof Clearly, computing
−→

A 0 for an A ∈ N takes time O(|S|2 · |G|), and once this is done

for all A ∈ N ,
−→

A 1 can be computed in time O(|S|2 ·2|S|
2·|N | · |S|2 · |N |). Both are superseded

by the time it takes to compute
99K

A for all A which is required in advance anyway. Hence,

the result follows from Lemma 13. 2

Theorem 37 The model checking problem for PDL[IL] is in EXPTIME.

Proof We reprove this theorem by showing that the algorithm MC-PDL is in EXPTIME,

where the subroutine reach is implemented as the computation of the closed paths set as

described above. Remember that the worst-case scenario for MC-PDL is that reach is

called |ϕ|−1 times for some PDL[IL] formula ϕ since the computation of the whole seman-

tics can be decomposed into the subsequent computation of the semantics of subformulas

and furthermore the most expensive kind of subformula is 〈L〉ψ whose semantics is com-

puted by reach.

Remember also that reach(L, V) takes as parameters an indexed language L (here given

as an indexed grammar) and a set V representing the precomputed set of states in which

a subformula ψ holds.

According to Lemma 16, given an indexed grammar G with nonterminals N and starting

symbol S, and a transition system T with states S and a T ⊆ S, one can compute
−→

S in

72 3. Non-Regular Propositional Dynamic Logic

time O(|G|2 · |N | · |S|6 · 23|S|2·|N |). Then one checks in time |S|2 for which s ∈ S the set
−→

S

contains an element (s, t) with t ∈ V and returns those s.

As stated above, this is done at most |ϕ| − 1 times. Clearly, the time consumed is then

exponential in both the grammar and the transition system. 2

3.5.3 A Model Checking Algorithm for PDL over MCSL

In this section we turn our attention to a concrete implementation of reach in the model

checking algorithm MC-PDL for PDL[MCSL]. This is particularly interesting, because

despite the fact that MCSL can already be considered a rather powerful language class,

the model checking problem of PDL[MCSL] is still solvable in PTIME (see Cor. 5) just

like the model checking problem for PDL[CFL].

First of all, note that the reason for the exponential model checking for PDL[IL] is the

representation of sets of open paths through a triple 〈s,B, t〉 in which B itself is a set of

annotated nonterminals of which there are exponentially many. If one could restrict that

number to a polynomial in the number of states S and the size of the underlying grammar

G then the result would be a polynomial model checking procedure. In the following, we

will show that this is the case for LIL.

For the remainder of this section we fix, again, a LIG G = (N,Σ, I, P, S) and a Kripke

structure T = (S,−→, ℓ).

Before we can proceed with a procedure for the LIL-reachability problem, we need some

technical lemmas. First of all, note that Lemma 7 (commutativity of pairwise application

of production rules) also holds for the derivation relation in linear indexed grammars.

Lemma 17 For all A,B ∈ N , all δ ∈ I∗ and all w1, w2 ∈ Σ∗:

a) If Â⇒∗ w1B̂w2 then Â[δ]⇒∗ w1B̂[δ]w2.

b) If Â[δ] ⇒k w1B̂[δ]w2 for some k ≥ 0 and for all marked indexed nonterminals X̂[δ′]

occurring during the derivation, δ′ = γδ for some γ ∈ I∗ holds then Â⇒k w1B̂w2.

c) If Â⇒∗ w1B̂w2 then A⇒∗ w1Bw2.

d) If A⇒∗ α and α ∈ N+ then there exists B ∈ N , s.t. Â⇒∗ α1B̂α2 and α1Bα2 = α.

e) If A ⇒k w for a w ∈ Σ∗ and k > 1 then there exist v1, v2, v3 ∈ Σ∗, k1 < k, k2 < k

and B ∈ N , s.t. Â⇒k1 v1B̂v3 and B ⇒k2 v2, s.t. w = v1v2v3.

3.5 Model Checking 73

Proof For part (a) note that a simulation of the rules used during the derivation Â ⇒∗

w1B̂w2 can be done on Â[δ], apparently leaving the index δ untouched at the bottom of

all index transformations.

The same holds in part (b), since it is required that the index δ is always at the bottom

and hence no pop productions which go below the empty index can be performed in the

simulation of Â[δ]⇒∗ w1B̂[δ]w2.

Part (c) and (d) are straightforward.

For part (e), first notice that since Lemma 7 is applicable for LIG, it is possible to postpone

the application of terminal productions in a derivation to the end, s.t. A ⇒ α1 ⇒ . . . ⇒

αn ⇒|αn| w for some n ∈ N and for all 1 ≤ i ≤ n, αi ∈ (N × I∗)∗. Hence αn ∈ N+.

From application of part (d) of this lemma follows that there exist β1, β2 ∈ N∗, B ∈ N ,

s.t. Â ⇒∗ β1B̂β2 and β1Bβ2 = αn. Clearly, w may be partitioned into w1, w2, w3, s.t.

β1 ⇒∗ w1, B ⇒ w2 and β2 ⇒∗ w3. We now have proven Â⇒k1 w1B̂w3 and B ⇒ w2, hence

k2 = 1 < k. But since k > 1 and k = k1 + k2, we have that k1 < k, too. 2

Solving the LIL-Reachability Problem

As for the IL-reachability problem, we will devise a procedure that solves the reachability

problem for LIL by characterising, for each nonterminal A the pairs of states s, t for which

there is an open path from s to t whose label can be derived from A. However, since the

index of a nonterminal can only be passed on to a single nonterminal in any application of

a rule, we can restrict our attention to paths with a single hole only.

For example, an open path from s to t may be characterised by two states s′, t′ and a

nonterminal B. The intuitive meaning is the following: there are sentential forms β, γ

s.t. Â ⇒∗ βB̂γ and B̂ would inherit a stack from Â, and s β−→ s′, t′ γ−→ t, and between s′

and t′ there is a hole which has to be closed by something derivable from B. The crucial

observation now is that nothing in β or γ does inherit a stack from Â. Therefore, we can

assume these parts to be derived to terminal symbols already. This, however, means that

we need to define simultaneously the sets of open and closed paths derivable from a given

nonterminal because they mutually depend on each other.

Furthermore, this observation explains the claim of polynomial boundedness of the sets of

annotated nonterminals in the introductory part above: for an IL, the set B representing

all legal parts of an open path in a triple 〈s,B, t〉 boils down to a singleton set {(u,B, v)}

now. We therefore write those triples simply as 〈s, u, B, v, t〉 with s, t ∈ S and (u,B, v) ∈

N := S ×N × S.

74 3. Non-Regular Propositional Dynamic Logic

Definition 37 (Open/ Closed Path) For each A ∈ N , define:

99K

A := {〈s, u, B, v, t〉 | there are w1, w2 ∈ Σ∗. s.t. Â⇒∗ w1B̂w2 and

s w1−−→u and v w2−−→ t},
−→

A := {(s, t) | there is w ∈ Σ∗ s.t. A⇒+ w and s w−→ t}.

Next we define, for all A ∈ N , sets
99K

A 0,
99K

A 1, . . . ⊆ S ×N × S and
−→

A 0,
−→

A 1, . . . ⊆ S × S for

which we will show that they approximate
99K

A and, resp.,
−→

A . The two base cases are as

follows.

99K

A 0 := {〈s, s, A, t, t〉 | s, t ∈ S},
−→

A 0 := {(s, s) | s ∈ S, A→ ǫ}

∪ {(s, t) | there is a ∈ Σ s.t. A→ a and s a−→ t}.

Now let j > 0. As above, the set of open paths at level j includes the set of open paths at

level j − 1 and closes it off under applications of composite and push productions as well

as insertion of open paths into the holes of other open paths.

99K

A j :=
99K

A j−1 ∪
99K

A j,conc ∪
99K

A j,push ∪
99K

A j,ins

where

99K

A j,conc := { 〈s, t, D, u, v〉 | there are B,C ∈ N, v′ ∈ S s.t.

A→ B̂C and 〈s, t, D, u, v′〉 ∈
99K

B j−1 and (v′, v) ∈
−→

C j−1, or

A→ BĈ and (s, v′) ∈
−→

B j−1 and 〈v′, t, D, u, v〉 ∈
99K

C j−1 },
99K

A j,push := { 〈s, t, D, u, v〉 | there are B,C ∈ N, f ∈ I, s.t. A→ B[f],

C[f]→ D and 〈s, t, C, u, v〉 ∈
99K

B j−1 },
99K

A j,ins := { 〈s, t, D, u, v〉 | there is (t′, B, u′) ∈ N with 〈s, t′, B, u′, v〉 ∈
99K

A j−1

and 〈t′, t, D, u, u′〉 ∈
99K

B j−1 }.

Furthermore,

−→

A j :=
−→

A j−1

∪ {(s, t) | there is (u,B, v) ∈ N with 〈s, u, B, v, t〉 ∈
99K

A j−1 and

(u, v) ∈
−→

B j−1 }.

3.5 Model Checking 75

Lemma 18 (Soundness) For all A ∈ N and for all j ∈ N we have

a)
−→

A j ⊆
−→

A , and

b)
99K

A j ⊆
99K

A .

Proof We prove both parts by simultaneous induction on j for all A ∈ N . The base case

of (a),
−→

A 0 ⊆
−→

A , is immediate. The base case of (b),
99K

A 0 ⊆
99K

A , is not much more difficult.

Note that Â⇒∗ Â and s ǫ−→ s.

Now suppose j > 0. For part (a) suppose that (s, t) ∈
−→

A j. Then there are two cases. If

(s, t) ∈
−→

A j−1 then we simply have (s, t) ∈
−→

A by hypothesis. Hence, assume that there

is (u,B, v) ∈ N s.t. 〈s, u, B, v, t〉 ∈
99K

A j−1 and (u, v) ∈
−→

B j−1. The hypothesis for (b)

yields 〈s, u, B, v, t〉 ∈
99K

A , i.e. there is are w1, w2 ∈ Σ∗ s.t. Â ⇒∗ w1B̂w2 and s w1−−→ u and

v w2−−→ t. Then by Lemma 17 (c) we also have A⇒∗ w1Bw2. Furthermore, the hypothesis

for (a) yields (u, v) ∈
−→

B , i.e. there is a w ∈ Σ∗ s.t. B ⇒+ w and u w−→ v. Hence, we have

A⇒+ w1ww2 and s w1ww2−−−−→ t and therefore (s, t) ∈
−→

A .

For part (b) suppose 〈s, s′, D, t′, t〉 ∈
99K

A j. We need to distinguish four cases. The first case

of 〈s, s′, D, t′, t〉 ∈
99K

A j−1 trivially follows from the hypothesis.

Case 〈s, s′, D, t′, t〉 ∈
99K

A j,conc. Then there are B,C ∈ N , u ∈ S s.t. A → B̂C and

〈s, s′, D, t′, u〉 ∈
99K

B j−1 and (u, t) ∈
−→

C j−1, or A→ BĈ and (s, u) ∈
−→

B j−1 and 〈u, s′, D, t′, t〉 ∈
99K

C j−1. Suppose the former is the case – the latter is entirely dual, we therefore omit that

subcase here. Then, by hypothesis for part (b) we have 〈s, s′, D, t′, u〉 ∈
99K

B which yields

w1, w2 ∈ Σ∗ with B̂ ⇒∗ w1D̂w2, s
w1−−→ s′, and t′ w2−−→u. Furthermore, the hypothesis for

part (a) yields (u, t) ∈
−→

C , i.e. there is a w ∈ Σ∗ s.t. C ⇒+ w and u w−→ t. Putting these

together yields Â⇒ B̂C ⇒+ w1D̂w2w and t′ w2w−−−→ t. Hence, we have 〈s, s′, D, t′, t〉 ∈
99K

A .

Case 〈s, s′, D, t′, t〉 ∈
99K

A j,push. Then there are B,C ∈ N and f ∈ I s.t. A→ B[f], C[f]→ D

and 〈s, s′, C, t′, t〉 ∈
99K

B j−1. By hypothesis, we have 〈s, s′, C, t′, t〉 ∈
99K

B j−1 i.e. there are

w1, w2 ∈ Σ∗ with B̂ ⇒∗ w1Ĉw2 and s w1−−→ s′ and t′ w2−−→ t. According to Lemma 17 (a) we

also have B̂[f]⇒∗ w1Ĉ[f]w2 and therefore

Â⇒ B̂[f]⇒∗ w1Ĉ[f]w2 ⇒ w1D̂w2

which shows that 〈s, s′, D, t′, t〉 ∈
99K

A .

76 3. Non-Regular Propositional Dynamic Logic

Finally, suppose 〈s, s′, D, t′, t〉 ∈
99K

A j,ins. Then there is a (u,B, v) ∈ N s.t. 〈s, u, B, v, t〉 ∈
99K

A j−1 and 〈u, s′, D, t′, v〉 ∈
99K

B j−1. Applying the hypothesis twice yields 〈s, u, B, v, t〉 ∈
99K

A

and 〈u, s′, D, t′, v〉 ∈
99K

B , i.e. there are w1, w2, w
′
1, w

′
2 ∈ Σ∗ s.t. Â ⇒∗ w1B̂w2, s

w1−−→u,

v w2−−→ t, and B̂ ⇒∗ w′
1D̂w

′
2, u

w′
1−−→ s′ and t′

w′
2−−→ v. Putting these together yields Â ⇒∗

w1B̂w2 ⇒∗ w1w
′
1D̂w

′
2w2 and s

w1w′
1−−−−→ s′ and t′

w′
2w2−−−−→ t. Hence, we have 〈s, s′, D, t′, t′〉 ∈

99K

A

which finishes the proof. 2

Lemma 19 (Monotonicity) For all A ∈ N and all j, j′ ∈ N we have: j ≤ j′ implies
99K

A j ⊆
99K

A j′ and
−→

A j ⊆
−→

A j′.

Proof Trivial. 2

Lemma 20 (Completeness) For all A ∈ N exists j ∈ N s.t.

a)
−→

A ⊆
−→

A j , and

b)
99K

A ⊆
99K

A j .

Proof Because of Lemma 19 it suffices to show for every (s′, t′) ∈
−→

A that there is a j ∈ N

with (s′, t′) ∈
−→

A j and likewise for every 〈s, u, E, v, t〉 ∈
99K

A .

So let (s′, t′) ∈
−→

C and 〈s, u, E, v, t〉 ∈
99K

A for arbitrary A,C,E ∈ N and s, s′, t, t′, u, v ∈ S.

From the definition of these it follows that

• there is a w ∈ Σ∗ s.t. A⇒k w and s′ w−→ t′ for some k ≥ 1, and

• there are w1, w2 ∈ Σ∗ s.t. Â⇒m w1Êw2 for some m ≥ 0 and s w1−−→u and v w2−−→ t.

We prove both parts by simultaneous induction on k and m.

In the base case for part (a) we assume that k = 1 and hence either w = a or w = ǫ. In the

former case we have A → a and therefore (s′, t′) ∈
−→

A 0. In the latter case we have A → ǫ

and therefore s′ = t′ and (s′, s′) ∈
−→

A 0.

The base case for part (b), where m = 0, requires Â = Ê and w1 = w2 = ǫ and therefore

s = u and v = t. But then 〈s, s, A, t, t〉 ∈
99K

A 0.

For part (a) we now assume k > 1 and have A ⇒k w and s′ w−→ t′. Lemma 17 (e) yields

w1, w2, w3 ∈ Σ∗, k1 < k, k2 < k and a D ∈ N , s.t. Â ⇒k1 w1D̂w3 ⇒k2 w1w2w3 and

w = w1w2w3. From this follows that D ⇒k2 w2. This means there exist u′, v′ ∈ S, s.t.

3.5 Model Checking 77

s′ w1−−→u′, u′ w2−−→ v′ and v′ w3−−→ t′. By hypthesis there are i, i′ ∈ N with 〈s′, u′, D, v′, t′〉 ∈
99K

A i

and (u′, v′) ∈
−→

D i′ . Therefore, we have (s′, t′) ∈
−→

A 1+max{i,i′}.

For part (b) we assume m > 0, have Â ⇒m w1Êw2 and s w1−−→ u and v w2−−→ t. We make a

case distinctions on the type of production that is applied in the first step of this derivation.

Since m ≥ 1 andD ∈ N , it cannot be a terminal production. It cannot be a pop production

either, because A has an empty index. Hence, it must either be a composite of a push

production.

Case Â⇒ B̂C ⇒m−1 w1Êw2, i.e. A→ B̂C. Then there are x1, x2 ∈ Σ∗, s.t. B̂ ⇒m′

w1Êx1

and C ⇒m′′

x2 with m′, m′′ < k and w2 = x1x2. Furthermore, there also is a v′ ∈ S, s.t.

u x1−−→ v′ and v′ x2−−→ v. Using the hypothesis for both parts (a) and (b) yields j1, j2 ∈ N,

s.t. 〈s, t, E, u, v′〉 ∈
99K

B j1 and (v′, v) ∈
−→

Cj2 . Hence, we have 〈s, t, E, u, v〉 ∈
99K

A 1+max{j1,j2},conc,

and therefore 〈s, t, E, u, v〉 ∈
99K

A 1+max{j1,j2}. The case of Â⇒ BĈ ⇒m−1 w1Êw2 is entirely

symmetric.

Case Â ⇒ B̂[f] ⇒m−1 w1Êw2. Since the index of Ê is empty in this sentential form, the

index symbol f must have been popped somewhere during the derivation, i.e. there is a

C ∈ N and sentential forms α, β s.t.

Â⇒ B̂[f]⇒ . . .⇒ αĈ[f]β ⇒ αD̂β ⇒ . . .⇒ w1Êw2.

Note that at most one index symbol can be popped per derivation step. Let the production

C[f] → D be the first one in the above derivation that pops the bottom index symbol f

from any marked indexed nonterminal. Thus, all intermediate sentential forms occurring

between B̂[f] and αĈ[f]β in the above derivation, are of the form α′X̂[δ′f]β ′ for some

X ∈ N and some α′, β ′.

Note furthermore that there must exist w′
1, w

′′
1 , w

′
2, w

′′
2 ∈ Σ∗ s.t. w1 = w′

1w
′′
1 and w2 = w′

2w
′′
2

and α ⇒∗ w′
1 and β ⇒∗ w′′

2 and D̂ ⇒i w′′
1Êw

′
2 with i < k. This is because the marker

·̂ is laways inherited from a nonterminal in the predecessing sentential form, hence Ê in

w1Êw2 has inherited it from D̂ in αD̂β. There also must exist s′, u′ ∈ S, s.t. s
w′

1−−→ s′,

s′
w′′

1−−→ t, and u
w′

2−−→u′, u′
w′′

2−−→ t.

By the Commutation Lemma 7 we have B̂[f]⇒i′ w′
1Ĉ[f]w′′

2 with i′ < k s.t. for all marked

indexed nonterminals X[δ] occurring during this derivation, δ = δ′f for some δ′ ∈ I∗.

By Lemma 17 (b) we then have B̂ ⇒i′ w′
1Ĉw

′′
2 and the hypothesis yields a j1 ∈ N s.t.

〈s, s′, C, u′, v〉 ∈
99K

B j1 . But then 〈s, s′, D, u′, v〉 ∈
99K

A j1+1,push and therefore 〈s, s′, D, u′, v〉 ∈
99K

A j1+1.

78 3. Non-Regular Propositional Dynamic Logic

Because i < k, the hypothesis also yields a j2 ∈ N, s.t. 〈s′, t, E, u, u′〉 ∈
99K

D j2 . Putting

these together we have 〈s, t, E, u, v〉 ∈
99K

A 1+max{j1+1,j2},ins and therefore 〈s, t, E, u, v〉 ∈
99K

A 1+max{j1+1,j2} which concludes the proof. 2

Theorem 38 For all A ∈ N :
99K

A =
⋃
j∈N

99K

A j and
−→

A =
⋃
j∈N

−→

A j.

Proof By Lemmas 18 and 20. 2

The following lemma estimates the number of iterations it takes to approximate
99K

A and
−→

A

from below.

Lemma 21 (Termination) For all A ∈ N there are j, j′ ∈ N s.t. for all i > j and all

i′ > j′ we have
99K

A i =
99K

A j and
−→

A i′ =
−→

A j′. Moreover, j ≤ |S|4 × |N | and j′ ≤ |S|2.

Proof This follows from Lemma 19 and the fact that for all j,
99K

A j ⊆ S × (S ×N ×S)×S

and
−→

A j ⊆ S × S. 2

Lemma 22 For all A ∈ N , it is possible to compute
−→

A in time O(|G|2 · |N |4 · |S|10).

Proof According to Lemma 21, at most |S|4 · |N | many iterations are necessary. Each

iteration requires the computation of
99K

A j and
−→

A j for some j and every A ∈ N . Hence, at

most |S|4 · |N |2 many computations of an approximation for a single A ∈ N are needed. It

is not difficult to see that each such computation can be done in worst-case time O(|G|2 ·

|N |2 · |S|6). 2

As with indexed grammars above, we can use the approximation of open and closed paths

in order to solve the diamond problem for linear indexed languages and therefore the model

checking problem for PDL[LIL].

Theorem 39 The model checking problem for PDL[LIL] is in PTIME.

Proof Similarly as for PDL[IL] we reprove this theorem by showing that the algorithm

MC-PDL is in PTIME, where the subroutine reach is implemented as the computation of

the closed paths set as described above.

According to Lemma 22, given a LIG G with nonterminals N and starting symbol S,

and a transition system T with states S and a T ⊆ S, one can compute
−→

S in time

O(|G|2 · |N |4 · |S|10). Then one checks in time |S|2 for which s ∈ S the set
−→

S contains

an element (s, t) with t ∈ V and returns those s. Since there are maximally |ϕ| − 1 calls

of reach in the worst case it follows that the time consumed is polynomial in both the

grammar and the transition system. 2

Chapter 4

Non-Regular Computation Tree

Logic

One of the reasons why CTL has gained great popularity and is widely used in hardware

verification is that in contrast to logics like Lµ, it features very intuitive operators and

is considered easy to understand. The most common specification properties are usually

divided into safety and liveness, meaning that programs are either required to conform

with some invariant holding on all runs at any time or that some desired property should

eventually hold. These kinds of properties are explicit language constructs of CTL, realised

by AG and EF. Apart from this, the computational complexity of its model checking as well

as satisfiability problems lie within reasonable bounds: model checking is PTIME-complete

and satisfiability is EXPTIME-complete [CE81, EH85].

CTL is however very limited in expressive power and can be embedded into the alternation-

free fragment of Lµ. One of the motivations for introducing the following extension of CTL

is that it enhances the expressive power of CTL without losing its easy comprehensiveness.

Instead of quantifying over arbitrary paths, we allow control over the path structure along

which some property is required to hold by adorning the U and R operators with formal

languages L, thereby constraining the quantification to paths which correspond to words

w ∈ L. The modular style in which CTL operators are enriched resembles the approach

taken in PDL[L] and is therefore consequently named CTL[L] . But since the fragments

using solely the UL or RL operators turn out to be fundamentally different regarding the

computational complexity of for instance the model checking problem, it is natural to

seperate the classes of languages allowed in each construct. We call the resulting logical

framework parametric CTL and denote it by CTL[A,B] to emphasise the use of different

80 4. Non-Regular Computation Tree Logic

language classes A and B in either operator.

4.1 Syntax and Semantics

Like for PDL[L], the question of reasonable language representation arises for CTL[A,B].

In principle, we demand the same, i.e. the existence of finite language representations with

a linearly parsable alphabet. It turns out however that the quantification structure of the

CTL[A,B] semantics is more complex than for PDL[L] and that in particular the formats

are not exchangeable as simple as in PDL[L] with regard to the decision procedures in-

troduced. There is for instance an essential difference in the computational complexity of

the model checking problem between deterministic and nondeterministic automata repre-

sentations which is rooted in the incommutativity of alternating quantifiers on paths and

automata runs in the semantics of some operators. For more details see Sec. 4.5.

As a compromise, we define CTL[A,B] independently of the language representations and

speak of e.g. CTL[REG], CTL[CFL], etc. whenever the chosen representation is irrelevant

and use automata everywhere else. It is clear that the results we obtain are transferable

to any other format, if polynomial translations to the respective automata classes exist.

Definition 38 (Parametric CTL) Let P be a countably infinite set of propositions, Σ

a finite set of actions and A and B be classes of languages over the alphabet Σ.

CTL[A,B] is the following set of formulas:

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | E(ϕUAϕ) | E(ϕRBϕ)

where q ∈ P, A ∈ A and B ∈ B.

Subformulas of CTL[A,B] are defined identically as in PDL[L] for propositional formulas

and otherwise as follows.

sub(E(ψ1U
Aψ2)) = {E(ψ1U

Aψ2)} ∪ sub(ψ1) ∪ sub(ψ2),

sub(E(ψ1R
Aψ2)) = {E(ψ1R

Aψ2)} ∪ sub(ψ1) ∪ sub(ψ2).

The size of a formula |ϕ| is determined by the number of its subformulas |sub(ϕ)|. We

permit the propositional abbreviations tt, ff,∧,→,↔ (see section 2.2.6), as well as the

4.1 Syntax and Semantics 81

following, where Q ∈ {E, A}:

A(ϕUAψ) := ¬E(¬ϕRA¬ψ),

A(ϕRAψ) := ¬E(¬ϕUA¬ψ),

QFAϕ := Q(ttUAϕ),

QGAϕ := Q(ffRAϕ),

QFϕ := QFΣ∗

ϕ,

QGϕ := QGΣ∗

ϕ,

QXaϕ := QF{a}ϕ,

QXϕ := QFΣϕ.

As mentioned above, CTL[A] is short for CTL[A,A]. Furthermore, we identify the frag-

ments EU[A], ER[A], EF[A] and EG[A] which are obtained by restricting the use of tem-

poral operators to E(ϕUAϕ), E(ϕRAϕ), EFA and EGA respectively for some A ∈ A.

CTL[A,B] formulas are interpreted in states of an LTS T = (S,−→, ℓ).

s |= q iff s ∈ ℓ(q),

s |= ¬ϕ iff s 6|= ϕ,

s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ,

s |= E(ϕUAψ) iff there exists a path π = s0
a1−−→ s1

a2−−→ . . . an−−→ sn

s.t. s0 = s and sn |= ψ and for all i < n :

si |= ϕ and a0 . . . an ∈ A,

s |= E(ϕRBψ) iff there exists a path π = s0
a1−−→ s1

a2−−→ . . .

s.t. s0 = s and for all i ∈ N :

if a0 . . . ai ∈ B then si |= ψ or there exists j < i s.t. sj |= ϕ.

In order to illustrate the semantics of the UA and RA operators, consider exemplarily the

following models.

E(ϕUAψ) ϕ ϕ . . . ϕ ψa1 a2 an−1 an
︸ ︷︷ ︸

∈ A

Call the leftmost state s0. The formula E(ϕUAψ) is satisfied in s0, since there exists a

path starting in s0 which is labeled with w = a0a1 . . . an−1an and w forms a word in A.

82 4. Non-Regular Computation Tree Logic

Furthermore, this path ends in a state satisfying ψ and along the way, ϕ holds in every

state.

E(ϕRAψ) ψ ψ ϕ ¬ψa1 a2 a3 a4 a5

︸︷︷︸
∈ A︸ ︷︷ ︸

∈ A

︷ ︸︸ ︷∈ A

Again, call the leftmost state s0. The formula E(ϕRAψ) is satisfied in s0. Along the path

a1a2a3a4a5 . . ., the prefixes a1, a1a2a3 and a1a2a3a4a5 form words in A. The first two end

in a state which satisfies ψ. The state in which the latter ends does not satisfy ψ, but it

is preceded by a state in which ϕ holds. The implication “if a0 . . . ai ∈ A then there exists

j < i s.t. sj |= ϕ” is now valid for all future states.

4.2 Examples

Consider a concurrent producer/consumer scenario, where one process produces objects

and places them into a shared buffer. The consumer takes away one such element at a

time from the buffer. If the buffer is empty, the consumer process requests a new resource

and halts until the producer delivers a new one. Any parallel execution of these processes

should obey a non-underflow property (NBU), that is: at any moment the number of

produce actions is greater than or equal to the number of consume actions done so far.

Suppose the goal was to formally specify the above scenario including the non-underflow

property and on top of that to demand properties like, e.g. “whenever the consumer process

sends a request, the buffer is empty”.

If the buffer is realised in software it is reasonable to assume that it is unbounded. But

then these specifications become non-regular since the NBU property involves unlimited

counting of the actions and hence cannot be expressed in, e.g., Lµ. Let Σ = {p, c, r}, where

p stands for production of a buffer object, c for consumation and r for requesting such an

object. Formally, the language defining the NBU property is LNBU = {w ∈ Σ∗ | |v|c ≤ |v|p

for all v � w}, where � denotes the prefix relation. Emptiness of the buffer is modelled

by the language LEMPTY = {w ∈ Σ∗ | |w|c = |w|p}. Words in LEMPTY clearly do not

respect NBU, so in order to model traces to empty buffers which do respect NBU, we

4.3 Properties 83

define L = LEMPTY ∩ LNBU. Note that LNBU and LEMPTY are VPL and because VPL are

closed under intersection, so is L. The desired properties are now expressible as CTL[VPL]

formulas:

AGEXptt : “At any time it is possible to produce an object”.

AGL(AXcff ∧ EXrtt) : “Whenever the buffer is empty, it is impossible to consume

and possible to request”.

AGL(EXctt ∧ AXrff) : “Whenever the buffer is non-empty it is possible to

consume and impossible to request”.

EFEGc
∗

ff : “At some point there is a consume-only path”.

The conjunction of the first three properties yields a specification of the producer / con-

sumer scenario described and states that a request can only be made if the buffer is empty.

Remember that VPL are closed under complement and therefore the third property is

indeed a CTL[VPL] property. Every satisfying model gives a raw implementation of the

main characteristics of this concurrent process. Note that if it is always possible to produce

and always possible to consume (if the buffer is non-empty), yet impossible to consume on

an empty buffer, then a straight-forward model with self-loops p, c and r does not satisfy

the specification. Instead, a model with infinitely many different p transitions is required.

If we strengthen the specification by adding the fourth formula, it becomes unsatisfiable.

However, this is not trivial to see and underlines the usefulness of a decidable logic of

corresponding expressive power.

4.3 Properties

Theorem 40 CTL[REG] has the finite model property.

Proof This is a consequence of its embedding into Lµwhich has the finite model property

(see Thm. 44). 2

Theorem 41 CTL[VPL] does not exhibit the finite model property.

Proof This follows from Thm. 28 in which a PDL6 ?[VPL] formula serves as witness for

the absence of the finite model property. The formula can by Thm. 47 be translated into

an equivalent CTL[VPL] formula. Since both formulas are required to hold in exactly the

same models, the absence of the finite model property for CTL[VPL] follows. 2

84 4. Non-Regular Computation Tree Logic

Theorem 42 CTL[L] is bisimulation-invariant and therefore has the tree model property

for any L.

Proof We show bisimulation-invariance by induction on the structure of ϕ. The base

case of ϕ = q for some q ∈ P is immediate.

Case ϕ = ψ1 ∨ ψ2. Then we have s |= ϕ iff s |= ψ1 or s |= ψ2 which, by hypothesis, is the

case iff t |= ψ1 or t |= ψ2, i.e. t |= ϕ. The case of ϕ = ¬ψ is similar.

Case ϕ = E(ψ1U
Lψ2). Suppose s |= ϕ. Then there is a path π = s0

a1−−→ s1
a2−−→ s2 . . . s.t.

s0 = s and π |= ψ1U
Lψ2. Since s a1−−→ s1 and s ∼ t there is a t1 s.t. t a1−−→ t1 and s1 ∼ t1.

This can now be iterated, possibly ad infinitum, revealing a path π′ = t0
a1−−→ t1

a2−−→ t2 . . .

s.t. t0 = t, and si ∼ ti for all i ∈ N.

Now, since π |= ψ1U
Lψ2 there is a k ∈ N s.t. sk |= ψ2, a1 . . . ak ∈ L and sj |= ψ1 for all

j < k. By the hypothesis we have tk |= ψ2, and tj |= ψ1 for all j < k. But then we have

π′ |= ψ1U
Lψ2 and therefore t |= ϕ.

The case of ϕ = E(ψ1R
Lψ2) is similar. 2

The following table presents the computational complexity of the satisfiability problem of

CTL[A,B] for the most important classes A and B [ALL+b].

B = DFA NFA DVPA VPA (D)PDA

CTL[(D)FA,B]
∈

EXP
2EXP

2EXP
3EXP

undec.
hard EXP 2EXP

CTL[(D)VPA,B]
∈

2EXP 2EXP 2EXP
3EXP

undec.
hard 2EXP

CTL[(D)PDA,B]
∈

undec. undec. undec. undec. undec.
hard

Figure 4.1: Complexity of satisfiability for CTL[L] .

4.4 Expressivity

The original CTL ignores path labels and it is therefore easy to give a formula of CTL[REG]

already which cannot be expressed in CTL. This is for instance witnessed by the regular

language L = (a(Σ \ {a})∗a)∗ and the formula EGLp stating that there exists a path on

which p holds whenever an even number of as is seen. However, CTL translates into

4.4 Expressivity 85

CTL[{Σ∗,Σ}] because the universal language Σ∗ anulls the additional path constraints in

the parametric CTL semantics. The language Σ is needed in addition for the translation

of EX. On the other hand, CTL[REG] does not yet exceed regular expressivity.

Theorem 43

CTL ≡ CTL[{Σ∗,Σ}] � CTL[REG].

Proof For the proof of CTL ≡ CTL[{Σ∗,Σ}], define inductively a translation function
−→
tr : CTL→ CTL[{Σ∗,Σ}] as follows:

−→
tr (p) = p,

−→
tr (¬ψ) = ¬

−→
tr (ψ),

−→
tr (ψ1 ∨ ψ2) =

−→
tr (ψ1) ∨

−→
tr (ψ2),

−→
tr (EXψ′) = EFΣ −→tr (ψ′),

−→
tr (E(ψ1Qψ2)) = E(

−→
tr (ψ1)Q

Σ∗−→
tr (ψ2)).

for Q ∈ {U, R}. The translation function for the converse direction
←−
tr is

−→
tr −1 but has the

additional mappings

←−
tr (E(ψ1U

Σψ2)) =
←−
tr (ψ1) ∧ EX

←−
tr (ψ2),

←−
tr (E(ψ1R

Σψ2)) =
←−
tr (ψ1) ∨ EX

←−
tr (ψ2).

The proof that these translations are semantically faithful is trivial.

Considering the remaining claim, it is clear that Σ∗ and Σ are regular languages and

therefore CTL[{Σ∗,Σ}] ≤ CTL[REG]. A witness for CTL � CTL[REG] has already been

given above by the formula EGLp, where L = (a(Σ \ {a})∗a)∗.

Theorem 44

CTL[REG] � Lµ.

Proof Consider the following inductively defined translation tr : CTL[REG] → Lµ. We

assume the regular language adornments of the U- and R-operators are given as a DFA

A = (Q,Σ, δ, q0, F) with Q = {q0, . . . , qn}.

tr(p) = p,

tr(¬ψ) = ¬tr(ψ),

86 4. Non-Regular Computation Tree Logic

tr(ψ1 ∨ ψ2) = tr(ψ1) ∨ tr(ψ2),

tr(E(ψ1U
Aψ2)) = µx0.




x0
...

xi .

{
tr(ψ2) ,if qi ∈ F

ff otherwise

}
∨
(
tr(ψ1) ∧

∨
a∈Σ

〈a〉(
∨

qj=δ(qi,a)

xj)
)

...

xn




,

tr(E(ψ1R
Aψ2)) = νx0.




x0
...

xi .

{
tr(ψ2) ,if qi ∈ F

tt otherwise

}
∧
(
tr(ψ1) ∨

∨
a∈Σ

〈a〉(
∨

qj=δ(qi,a)

xj)
)

...

xn




.

The latter translations use simultaneous fixpoint notation which is explained in Def. 47.

Note that the structure of each of the inner fixpoint formulas is in principle the same as

in the translation of CTL (see Ex. 10). The difference is that only such successors are

considered which correspond to transitions in A and that the checks of the subformulas

tr(ψ2) respect final states of A.

Strictness follows from the fact that the alternation hierarchy in Lµ is strict and that the

formulas resulting from tr have alternation depth 0. Hence, any formula expressible in

CTL[REG] has alternation depth 0, but there exist Lµ-formulas with alternation depth

greater than 0 which cannot be expressed by formulas with lesser alternation depth.

Note that if the language adornment for the R-operator is given as an NFA, the translation is

of exponential size, because the NFA has to be translated into a DFA first. The construction

is not correct for NFAs in general. See the introductory paragraph of Sec. 4.5 for details.

2

For certain language classes L which are richer than REG, the following theorem confirms

that the CTL-related logical frameworks using such languages from L as adornments are

indeed capable of expressing non-regular program properties.

4.4 Expressivity 87

Theorem 45 Let L be a class of formal languages s.t. L = {anbn | n ∈ N} ∈ L. Then for

all language classes B

CTL[L,B] � Lµ.

Proof The formula used to show non-regularity of PDL[L] for any class of languages

containing at least {anbn | n ∈ N} in Lemma 1 is – as can easily be seen – from the

fragment PDL6 ?[L] without tests. Hence, by Thm. 47, it can be translated into EF[L]. So

already the fragment EF[L] contains a formula which has no equivalent in Lµ. 2

Corollary 8 For all language classes B,

CTL[SML,B] � Lµ.

Proof This follows from Thm. 45 and the fact that {anbn | n ∈ N} is an SML [HPS83].

2

But just as it is the case with PDL[L], parametric CTL is no extension of Lµ. This follows

from a theorem in [ALL+b] in which it is proved that CTL[L] is an entirely different

extension of CTL than CTL∗ is. Remember that CTL∗ is a strict fragment of Lµ.

Theorem 46 ([ALL+b]) For all language classes A,B, we have

CTL[SML,B] � CTL∗.

CTL∗ � CTL[A,B].

This result is a consequence of the fact that the fragment EF[{anbn | n ∈ N}] contains

non-regular properties inexpressible in CTL∗. On the other hand, fairness is expressible in

CTL∗ but not in CTL[A,B].

The 〈L〉-operator of parametric PDL is clearly equivalent to the EFL-operator in parametric

CTL. This observation leads to the following theorem.

Theorem 47 For all language classes L,

EF[L] ≡ PDL 6 ?[L].

Proof Note that both logics do only differ in the 〈L〉 and EFL constructs. Their semantical

equivalence is trivial to prove: s |= EFLϕ iff there exists a path π = s0
a1−−→ s1

a2−−→ . . . ai−−→ si,

s.t. s0 = s and a1 . . . ai ∈ L and si |= ϕ iff s |= 〈L〉ϕ. 2

88 4. Non-Regular Computation Tree Logic

On the other hand, there seems to be no equivalent in PDL6 ?[L] for the expression scheme

E(ψ1R
Lψ2) or even EGLϕ. We prove this up to CFL with help of the following lemma stating

that there exists an EG-formula inexpressible in EF[CFL].

Lemma 23

EG[{Σ,Σ∗}] � EF[CFL].

Proof Let w/L = {v ∈ Σ∗ | wv ∈ L} for any w ∈ Σ∗ and any formal language L. Define

the Fischer-Ladner-closure Cl(ϕ) for any formula ϕ ∈ EF[L] as the least set satisfying the

following:

• ϕ ∈ Cl(ϕ).

• if ¬ψ ∈ Cl(ϕ) then ψ ∈ Cl(ϕ).

• if ψ1 ∨ ψ2 ∈ Cl(ϕ) then ψ1, ψ2 ∈ Cl(ϕ).

• if EFLψ ∈ Cl(ϕ) then EF{a}EFa/Lψ ∈ Cl(ϕ) and ψ ∈ Cl(ϕ) for all a ∈ Σ.

Furthermore, define the quotient of a transition system T = (S,−→, ℓ) under a set of

formulas Φ ⊆ EFL as T /Φ = (S/Φ,−→, ℓ/Φ) with

• S/Φ = {[s] | s ∈ S} where [s] = {t ∈ S | s ∼Φ t} and s ∼Φ t iff ∀ϕ ∈ Φ : s |=T ϕ iff

t |=T ϕ},

• [s] a−→[t] iff ∃s′, t′ with s′ ∼Φ s, t
′ ∼Φ t, and s′ a−→ t′,

• ℓ/Φ([s]) = ℓ(s) ∩ Φ.

We do now show that for all T with states s ∈ S and all ϕ ∈ EF[L] for any L, we have

s |=T ϕ iff [s] |=T /Cl(ϕ) ϕ by induction on the structure of ϕ. The propositional cases are

entirely trivial. Now assume s |=T EFLψ and let s0
a1...an−−−−→ sn be a path witnessing this,

hence s = s0, a1 . . . an ∈ L and sn |=T ψ. By definition of −→ the path [s0]
a1...an−−−−→[sn]

indeed exists and by induction hypothesis we have [sn] |=T /Cl(ϕ) ψ.

For the other direction assume [s] |=T /Cl(ϕ) EF
Lψ and let [s0]

a1...an−−−−→[sn] be a path witnessing

this, hence s = s0, a1 . . . an ∈ L and [sn] |=T /Cl(ϕ) ψ.

Note that for all 0 ≤ i ≤ n we have [si] |=T EFa1...ai/Lψ. From this follows t |=T EFa1...ai/Lψ

for all t ∈ [si]. But then the path s0
a1...an−−−−→ sn exists and by induction hypothesis we have

sn |=T ψ which concludes the proof.

4.4 Expressivity 89

We first prove that EG[{Σ,Σ∗}] � EF[REG]. For this we need to prove that T /Cl(ϕ) has

only finitely many states for any ϕ ∈ EF[REG].

But this follows from Thm. 1 (Myhill-Nerode) and the construction of Cl(ϕ), because there

are only finitely many elements in Cl(ϕ) which can be distinguished w.r.t. |=T by any two

states.

On the other hand, consider the transition system T = ({si | i ≥ 0},−→, ℓ) with si−→ sj iff

j = i− 1 and s0−→ s0 (depicted below), and ℓ(q) = {s0}.

s0

q

s1 s2 s3 s4 s5 ...

Clearly, we have si |=T AFq for all i ∈ N. However, suppose there was an EF[REG] formula

ξ equivalent to AFq. By the above, we have si |=T AFq iff [si] |=T /Cl(ξ) ξ. Since T /Cl(ξ)

is finite, there must exist a [sj] with j > 0 and [sj]−→[sj]. But then [sk] 6|= AFq for every

k ≥ j.

That EG[{Σ,Σ∗}] � EF[CFL] now simply follows from the fact that the model used in the

proof above uses no transition labels and that CFL over single-letter alphabets are REG

and hence the same proof applies.

Theorem 48 For all language classes L ∈ {REG, SML, SSML, VPL, CFL},

PDL 6 ?[L] � CTL[L, {Σ,Σ∗}].

Proof ≤ follows from Thm. 47 and the fact that EF[L] is syntactically included in

CTL[L, {Σ,Σ∗}]. Strictness follows from Lemma 23 which states that there exists a formula

ϕ in EG[{Σ,Σ∗}] inexpressible in EF[CFL]. 2

Regarding a comparison between the expressivity of different CTL[L] fragments, the fol-

lowing correspondence holds.

Theorem 49 For all L,L′,N ,N ′, if L ⊆ N and L′ ⊆ N ′ then

CTL[L,L′] ≤ CTL[N ,N ′].

Proof Trivial. More languages at hand cannot decrease the expressive power. CTL[L,L′]

is a syntactical fragment of CTL[N ,N ′]. 2

90 4. Non-Regular Computation Tree Logic

But for certain language classes, we can strengthen the above result to strictness.

Theorem 50

CTL[REG] � CTL[VPL] � CTL[DCFL].

Proof The containment of CTL[REG] in CTL[VPL] is a consequence of Thm. 49. Strict

separation follows from Thm. 44 stating that CTL[REG] is strictly contained in Lµ and

Cor. 8 stating that CTL[SML] is strictly more expressive than Lµ. Again, by Thm. 49

CTL[SML] is contained in CTL[VPL] which finishes the proof.

Containment of CTL[VPL] in CTL[DCFL] is again a consequence of Thm. 49 while strict-

ness has been proved in [ALL+b]. The proof uses a theorem which states that every

satisfiable CTL[VPL] formula has a model which is a visibly pushdown system. Then a

CTL[DCFL] formula is constructed whose models are bisimilar to an LTS which can not

even be represented by a pushdown system. 2

Fig. 4.2 summarises the expressivity results on CTL[L] . A line from a lower positioned

item to a higher positioned item denotes inclusion of the former in the latter. If it is dashed

this means that the inclusion is strict.

4.5 Model Checking

In this section we intend to determine the computational complexity of model checking

CTL[A,B] w.r.t. the automata classes A and B. We focus on robust classes such as NFA,

VPA, PDA, etc.

First of all, we observe that the EUA and ERA are two fundamentally different operators.

Take some formula of the form E(p1U
Ap2), where A is some automaton and p1, p2 are propo-

sitions. Note that the existential path quantification and the existential quantification over

runs of A in the acceptance condition for a nondeterministic automaton A commute. This

allows product constructions of A and the underlying LTS plus some overhead stemming

from the checks of p1 and p2 along the paths. If there is a witness for non-emptiness of

the product automaton then it serves simultaneously as a path in the LTS and a word

accepted by A, which is the pattern constituting the semantics of E(p1U
Ap2).

In fact, the task is very similar to model checking a formula 〈A〉p2 ∈ PDL[L], where a

close relationship between the REG-intersection problem for a language class L and model

checking PDL[L] was established. The formula E(p1U
Ap2) only differs from 〈A〉p2 in the

4.5 Model Checking 91

PDL 6 ?[REG]

PDL 6 ?[SML]

PDL 6 ?[SSML]

PDL 6 ?[VPL]

PDL 6 ?[DCFL]

PDL 6 ?[CFL]

PDL 6 ?[MCSL]

PDL 6 ?[IL]

PDL 6 ?[CSL]

PDL 6 ?[RE]

≡

≡

≡

≡

≡

≡

≡

≡

≡

≡

EF[REG]

EF[SML]

EF[SSML]

EF[VPL]

EF[DCFL]

EF[CFL]

EF[MCSL]

EF[IL]

EF[CSL]

EF[RE]

CTL[{Σ,Σ∗}] ≡ CTL

CTL[REG]

CTL[SML]

CTL[SSML]

CTL[VPL]

CTL[DCFL]

CTL[CFL]

CTL[MCSL]

CTL[IL]

CTL[CSL]

CTL[RE]

Lµ

Figure 4.2: Expressive power of CTL[L] .

92 4. Non-Regular Computation Tree Logic

requirement of recurrent propositions p1 along the witnessing path. As has been shown

before, the actual equivalent of 〈A〉p2 in CTL[A,B] is EFAp2.

The situation changes when we take a formula of the form E(p1R
Ap2) for some nondetermin-

istic automaton A. Note that, here, the path is again existentially quantified but the runs

of the automaton on any prefix are implicitly universally quantified by the RA-operator (“on

all prefixes it either holds that A does not accept the prefix or . . . ”). The quantification

does no longer commute and this prevents using product constructions in the same way as

for EUA formulas, because it requires to keep a protocol of all nondeterministic choices of

A w.r.t. the currently considered path in the LTS, since every such choice might end up in

an accepting state. If on the other hand the automaton is deterministic, the problem does

not arise because no matter which LTS path is chosen as a witness for satisfaction, the au-

tomaton has just one state at every moment while reading the labels along the path. This

regains the property of local determinateness and simplifies model checking significantly.

Due to this difference we need to investigate CTL[A,B] not only w.r.t. the language class

parameter for the two different temporal subformula types but also w.r.t. the representing

automaton model, i.e. deterministic or nondeterministic.

The following algorithm serves as a general scheme which deals with the common base

of all CTL[A,B] fragments under consideration here. In particular, the treatment of

temporal formulas is externalised into subroutines and simplified by preparational steps on

the structure of the formula and model.

MC-CTL(T , ϕ) =

let (S,−→, ℓ) = T in

case ϕ of

q : ℓ(q)

¬ψ : S \ MC-CTL(T , ψ)

ψ1 ∨ ψ2 : MC-CTL(T , ψ1) ∪ MC-CTL(T , ψ2)

E(ψ1Q
Aψ2) : let p1, p2 : fresh propositions in

ℓ′ := ℓ[p1 7→ MC-CTL(T , ψ1)];

ℓ′ := ℓ′[p2 7→ MC-CTL(T , ψ2)];

let T ′ = (S,−→, ℓ′) in

if Q = U then MC-U(T ′, p1U
Ap2)

else MC-R(T ′, p1R
Ap2)

Algorithm MC-CTL takes an LTS T and a formula ϕ ∈ CTL[A,B] and returns the set

of states in which ϕ holds. In its current form, MC-CTL uses oracles MC-U and MC-R

4.5 Model Checking 93

(taking arguments of the same type as MC-CTL) to compute the result set for EU[A] and

ER[B] formulas. Before a call of the subroutines MC-U or MC-R takes place, the original

formula ϕ of the form E(ψ1Q
Aψ2), where Q ∈ {U, R}, and the LTS T are transformed:

the subformulas ψ1 and ψ2 are evaluated recursively in a first step and then replaced in ϕ

by fresh atomic propositions p1 and p2. The labeling function is updated accordingly, s.t.

ℓ′(p1) contains exactly the states which satisfy ψ1 and ℓ′(p2) those which satisfy ψ2.

The proof of soundness and completeness is trivial under the assumption of soundness

and completeness of the subroutines MC-U and MC-R. It consists of a straight-forward

structural induction on the input formula ϕ.

We remark that algorithm MC-CTL has two main benefits for our purposes. First of all,

the subroutines MC-U and MC-R are called on flattened versions of the original formula

which now contain propositions as nested subformulas only, i.e. only have to deal with

restricted fragments of EU[A] and ER[B] respectively. This will of course simplify any

further analysis of these subroutines. We denote these restricted fragments by EUP [A] and

ERP [A].

Furthermore, upper bounds on the computational complexity of MC-CTL can be derived

from upper bounds on MC-U or MC-R, respectively, depending on which of the corre-

sponding model checking problems for EUP [A] and ERP [B] formulas is harder to solve.

Note that MC-CTL runs in time O(|ϕ|) when regarding MC-U and MC-R as oracles.

We now turn our attention to concrete instances of the automata classes A and B as

restricting parameters for EUP [A] and ERP [B]. As mentioned before, model checking

E(p1U
Ap2) is closely related to model checking the PDL formula 〈A〉p2. Both formulas hold

if there is a path in the model which is labeled with a w ∈ L(A) and ends in a state labeled

with p2. The difference is simply that the E(p1U
Ap2) operator additionally requires p1 to

hold in every state along the path except the last.

Following this observation, it is tempting to try to establish reductions between altered

versions of the REG-intersection-, L-reachability- and the model checking problem for

EUP [A] in a similar fashion as for model checking PDL[L]. In fact, a generalisation of

the L-reachability problem which takes into account the propositions of the LTS in the

way required can easily be found and shown to be equivalent to model checking EUP [A].

However, this little difference destroys the equivalence to the REG-intersection problem

and we are not aware of any natural counterpart to cover the discrepancy. Any repair of

this defect seems technically cumbersome while upper bounds can be found much easier

by directly applying product construction techniques for a reduction on non-emptiness of

94 4. Non-Regular Computation Tree Logic

certain automata classes as follows.

Lemma 24 Model checking EUP [PDA] is in PTIME.

Proof By reduction to the non-emptiness problem of PDA. Let ϕ ∈ EUP [PDA], T =

(S,−→, ℓ) be an LTS and s ∈ S. Clearly, ϕ is of the form E(p1U
Ap2), where p1, p2 ∈ P and

A = (Q,Σ,Γ, δ, q0, F) is a PDA. To solve the question whether s |= ϕ, we construct a PDA

AT = (Q× S,Σ,Γ, δ′, (q0, s), F ′), where

• F ′ = {(q, s) | q ∈ F and s ∈ ℓ(p2)},

• δ′((q, s), a, γ) = {(q′, s′) | q′ ∈ δ(q, a, γ) and s a−→ s′ and s ∈ ℓ(p1)}.

Note that |AT | = O(|A| · |T |).

Now, assume AT does not reject every word and let w ∈ Σ∗ be a witness for this. Note that

any accepting run of AT on w simulates an accepting run of A on w and synchronously

follows a w-labeled path in T along which p1 holds in every state except the last. Further-

more, from the requirement on accepting states we have that the last state is in labeled

with p2. Hence, w ∈ L(A) and there exists a t ∈ S s.t. s w−→ t with the required p1 and p2

labels on states. It is well known that the non-emptiness problem for PDA is in PTIME

(cf. [HU79]). From this and the fact that the size of AT is polynomial in |A| and |T |

follows the claim. 2

Theorem 51 Model checking EUP [LIL] is in PTIME.

Proof We prove this by a linear-time Turing-reduction on the model checking problem

for PDL[LIL] which itself is in PTIME by Cor. 5. Let ϕ ∈ EUP [LIL] and T = (S,−→, ℓ) be

an LTS. Clearly, ϕ is of the form E(p1U
Ap2), where p1, p2 ∈ P and A is a LIL representation.

We compute an LTS T ′ obtained from T by the following steps:

• Remove all states in T in which p1 does not hold and then remove transitions leading

nowhere.

• Create a new state in which proposition p2 holds and add a-transitions to this state

from all states which sustained step 1 and have an a-transition leading to a state in

which p2 holds in the original LTS T .

4.5 Model Checking 95

Now, for any state s ∈ S, we have that s |=T E(p1U
Ap2) iff s |=T ′ 〈A〉p2. Note that in every

state along every path in T ′ proposition p1 holds except for possibly the last one in which

p2 holds. All labels between such states are conserved from T and hence all path labels

w ∈ L(A) between the remaining states are intact. Note also that the potential doubling

of a transition which leads to the new state does no harm at all.

The above sketched algorithm runs in time O(| −→|) and the resulting LTS has only one

additional state and |Σ| additional transitions in the worst case.

We therefore obtain a PTIME algorithm from this. 2

Theorem 52 Model checking EUP [IL] is in EXPTIME.

Proof This is proved by a linear-time Turing-reduction on the model checking problem

for PDL[IL] in exactly the same way as for Thm. 51. Note that model checking PDL[IL]

is in EXPTIME by Thm. 4. 2

Theorem 53 Let A ∈ {DFA, NFA, DVPA, VPA, DPDA, PDA}. Model checking EU[A]

is PTIME-complete.

Proof Let T = (S,−→, ℓ) be an LTS. In order to show containment within PTIME it

suffices to show the statement for the class PDA since DFA, NFA, DVPA, VPA and DPDA

are subclasses of PDA. For the logic EU[PDA], algorithm MC-CTL runs in time O(|ϕ|) for

any formula ϕ and does only call the oracle MC-U and never MC-R. The reduction used

in the proof of Lemma 24 allows to implement MC-U by calling the emptiness check of the

product automaton (which itself is a PTIME procedure) once for each s ∈ S. Altogether

we have O(|ϕ| · |S|) calls of a PTIME procedure and therefore established the claim.

Hardness follows from the fact that the logic EF[A] is a sublogic of EU[A] for all A. From

Lemma 47 we have that EF[A] is equi-expressive to PDL[A].

Therefore hardness results transfer from PDL[A] which in the cases of NFA, VPA, DPDA

and PDA yield PTIME. 2

Theorem 54 Model checking EU[LIL] is PTIME-complete.

Proof A PTIME implementation for MC-U has been given in Thm. 51. The complete

algorithm MC-CTL calls MC-U only O(|ϕ|) times for any formula ϕ ∈ EU[LIL] (and never

MC-R). 2

Theorem 55 Model checking EU[IL] is EXPTIME-complete.

96 4. Non-Regular Computation Tree Logic

Proof An EXPTIME implementation for MC-U has been given in Thm. 52. The com-

plete algorithm MC-CTL calls MC-U only O(|ϕ|) times for any formula ϕ ∈ EU[IL] (and

never MC-R).

Theorem 56 Model checking EF[CSL] is undecidable.

Proof From Lemma 47 we have that PDL6 ?[CSL] ≡ EF[CSL] and that the translation is

computable. Cor. 3 states that model checking PDL6 ?[CSL] is undecidable. 2

While the similarities between PDL[A] and EU[A] are by now also reflected in the com-

putational complexities of model checking, the situation is very different with the ER[A]

fragment. As has been stated earlier, it is of great importance whether the automata under

consideration are deterministic or nondeterministic. We start with deterministic automata.

Lemma 25 Model checking ERP [DPDA] is in PTIME.

Proof By a reduction to the problem of model checking a fixed LTL formula on a PDS.

Let ϕ ∈ ERP [DPDA], T = (S,−→, ℓ) be an LTS and s ∈ S. Clearly, ϕ is of the form

E(p1R
Ap2), where p1, p2 ∈ P and A = (Q,Σ,Γ, δ, q0, F) is a DPDA. We construct a PDS

TA = (Q×S ∪{g, b},Γ,∆, ℓ′), where ℓ′ : 2P ∪{pb} → Q×S∪{g, b} (for a fresh proposition

pb) is defined as ℓ′(q) = Q× ℓ(q), if q ∈ P and ℓ′(pb) = {b} otherwise.

Intuitively, g represents “good” and b “bad” states, i.e. dead-end states, in which the

property which ϕ expresses has been fulfilled or violated, respectively.

Furthermore, ∆ contains the following transition rules:

((q, s), γ) →֒





(g, ǫ) ,if (q, s) ∈ ℓ′(p1) and

(q ∈ F implies (q, s) ∈ ℓ′(p2)).

(b, ǫ) ,if q ∈ F and (q, s) /∈ ℓ′(p2).

((q′, s′), w) ,if none of the above match

and there exists a ∈ Σ, s.t.

s a−→ s′ and (q′, w) ∈ δ(q, a, γ)

for some γ ∈ Γ, w ∈ Γ∗.

Note that |TA| = O(|T | · |A|).

Now consider the LTL formula Fpb. We show that s 6|=T E(p1R
Ap2) iff ((q0, s), ǫ) |=TA Fpb.

4.5 Model Checking 97

The “only-if” direction: Assume s 6|=T E(p1R
Ap2). This means that on all paths starting

in s, (¬p1U
A¬p2) holds and hence on all paths a w = a1 . . . an ∈ L(A) and s0, . . . , sn exist,

s.t. s0
a1−−→ s1 . . .

an−−→ sn, s = s0 and for all i ≤ n we have si |=T ¬p1 and sn |=T ¬p2.

Since A is deterministic, every path in the corresponding PDS (starting in ((q0, s), ǫ))

labeled with such a w runs through a state ((q, sn), v), where q ∈ F and v ∈ Γ∗. Since

(q, sn) /∈ ℓ′(p2), every such path ends in the next state which is (b, ǫ), where pb holds.

Therefore the LTL formula Fpb holds in TA with the initial state being ((q0, s), ǫ).

The “if” direction: Assume ((q0, s), ǫ) |=TA Fpb. Hence, every path π starting in ((q0, s), ǫ)

ends in a state in which pb holds and therefore has to run through a state ((q, t), v), where

q ∈ F , (q, t) /∈ ℓ′(p2) and v ∈ Γ∗.

Note that since (g, ǫ) and (b, ǫ) are dead-ends in TA, no state along π may satisfy either of

the constraints for both transition types leading to such a dead-end and only transitions of

the third kind can be taken. Hence, for all states ((q′, s′), v′) along π, we have that before

((q, t), v) is reached, (q′, s) 6∈ ℓ′(p1) must hold.

Therefore on all paths a w ∈ L(A) exists, s.t. s w−→ t and along each such path ¬p1 holds

until ((q, t), v) is reached, where ¬p2 holds. Hence, s |=T A(¬p1U
A¬p2). From this follows

clearly that s 6|=T E(p1R
Ap2).

Finally, it is known that model checking a fixed LTL formula on a PDS is in PTIME

[BEM97]. Since the size of TA is polynomial in |T | and |A| the claim follows. 2

Theorem 57 Let A ∈ {DFA, DVPA, DPDA}. Model checking ER[A] is PTIME-complete.

Proof Along the same lines as the proof of Thm. 53. Membership in PTIME follows from

the PTIME implementation of MC-R in algorithm MC-CTL given in Lemma 25 which is

called at most O(|ϕ|) times for a formula ϕ ∈ ER[DPDA]. Since DFA and DVPA are

subclasses of DPDA, the result transfers to these. PTIME-hardness follows from PTIME-

hardness of the corresponding PDL[A] fragments. 2

Regarding nondeterministic machine models, the model checking problem seems to become

more difficult. Here, we obtain PSPACE-hardness already for the class NFA.

Lemma 26 Model checking ERP [NFA] is in PSPACE.

Proof By a reduction to the problem of model checking a fixed CTL formula on an LTS

of exponential size. Let ϕ ∈ ERP [NFA], T = (S,−→, ℓ) be an LTS and r ∈ S. Clearly, ϕ is

of the form E(p1R
Ap2), where p1, p2 ∈ P and A is an NFA.

98 4. Non-Regular Computation Tree Logic

First of all, we construct a DFA D = (Q,Σ, δ, q0, F) from A. The size of D is O(2|A|). Now

we construct an LTS TD = (Q× S, ×−→, ℓ′) with

• (q, s) ×−→(q′, s′), if there exists a ∈ Σ s.t. q′ ∈ δ(q, a) and s a−→ s′.

• ℓ′(p) = Q× ℓ(p), if p ∈ P and ℓ′(pf) = F × S for a fresh proposition pf otherwise.

Note that the size of TD is O(|T | · 2|A|).

Intuitively, the determinisation enables to annotate each model state with a unique indica-

tion of the corresponding automaton state for any path leading to this state. If the NFA is

not transformed into a DFA, such an annotation is useless since it just reflects an arbitrary

run of the NFA and makes no statement about the fact whether the automaton actually

could accept the path seen so far in some other run on the same path.

The product construction has eliminated the edge labels from T and compensates the loss

of information by the additional proposition pf which indicates accepting states of the

DFA. It is now possible to model check the CTL formula E(p1R(pf ∧ p2)) on the product

LTS TD which respects the accepting states. We conclude by showing

r |=T E(p1R
Ap2) iff (q0, r) |=TD E(p1R(pf ∧ p2)).

The “only-if” direction: Assume r |=T E(p1R
Ap2) and let π = s0

a1−−→ s1
a2−−→ . . . be a path

in T , where s0 = r and for all si we have that if a1 . . . ai ∈ L(A) then si |=T p2 or there

exists k ≤ i s.t. sk |=T p1.

Clearly, there is a corresponding path π′ = (q0, s0)−→(q1, s1)
a2−−→ . . . in TD where all states

(qi, si) are labeled with pf if a0 . . . ai ∈ L(A). Since the labels are otherwise inherited from

T , we have that π′ is a witness for (q0, r) |=TD E(p1R(pf ∧ p2)).

The “if” direction: The witnessing path is constructed entirely dual to the other direction.

Model checking a fixed CTL formula is well-known to reside in NLOGSPACE. Since the

product LTS has size O(|T | · 2|A|) we arrive at a compound complexity of PSPACE using

Savitch’s theorem (NPSPACE = PSPACE). 2

Theorem 58 ([ALL+b]) Model checking ER[NFA] is PSPACE-complete.

Proof The upper bound follows the same lines as the proof of Thm. 53. Membership

in PSPACE follows from the PSPACE implementation of MC-R in algorithm MC-CTL

given in Lemma 26 which is called at most O(|ϕ|) times for a formula ϕ ∈ ER[NFA].

PSPACE-hardness is proved in [ALL+b]. 2

4.5 Model Checking 99

The theorem holds already for the fragment EG[NFA] and a fixed transition system of size

1. The proof works by a reduction from the well-known n-tiling problem resembling the

halting problem of a nondeterministic linear-space bounded Turing Machine. Two aspects

are worth noting. First, this result – as opposed to the one for the fragment EF[A] –

heavily depends on the fact that A is a class of nondeterministic automata. For A = DFA

for instance, there is no such lower bound unless PSPACE = PTIME.

The other aspect is the fact that the formulas constructed in this reduction are of the form

EGAff, no boolean operators, no multiple temporal operators, and no atomic propositions

are needed. The principle is as follows. Tilings, successful or not, can be represented by

infinite words over the alphabet of all tiles. This basically concatenates the entire plane

row by row. However, unsuccessful tilings must have a finite prefix which is a word that

cannot be extended to a successful tiling. The reduction then constructs an automaton

A which recognises the set of all words representing a prefix of a tiling which cannot be

extended to become successful. Every possible tiling is represented by a path in a one-

state transition system with universal transition relation. The question whether or not a

successful tiling is possible then reduces to the question whether or not this single state

satisfies the formula EGAff, i.e. whether or not there is a path such that no prefix of that

path represents an error in the tiling of the corresponding plane.

Theorem 59 ([ALL+b]) Model checking ER[VPA] is EXPTIME-complete.

Proof The upper bound is easily obtained as follows. By Thm. 6 we can construct a

DVPA of exponential size from a given VPA. The result then follows from the PTIME

upper bound for model checking ER[DVPA] established in Thm. 57.

The lower bound has been proved in [ALL+b] by a reduction from the halting problem

for alternating linear-space bounded Turing machines to the model checking problem for

EG[VPA]. It does already hold for transition systems of size 1. 2

Theorem 60 ([ALL+b]) Model checking ER[PDA] is undecidable.

Proof The theorem has been proved in [ALL+b] and holds already for the fragment

EG[PDA] and a fixed transition system of size 1. The proof is, again, by a reduction from

a tiling problem. This time we consider the octant tiling problem which asks for a successful

tiling of the plane which has successively longer rows [vEB97]. The plane can, again, be

represented by an ω-word by reading it off row-by-row and, hence, as a path in a one-state

transition system. Using PDA it is then possible to link a cell in one row of unbounded

100 4. Non-Regular Computation Tree Logic

length to the cell in the same column in the following row. Thus, it is then again possible

to construct a PDA A which recognises all prefixes of a word representing a tiling which

cannot be made successful, or a word in which successive rows do not grow in length.

The tiling problem reduces to model checking the formula EGAff again. Since the octant

tiling problem resembles the halting problem for a Turing Machine with unbounded space

consumption, it is clearly undecidable which carries over to model checking EG[PDA]. 2

Summary The previous theorems on different fragments of CTL[A,B] cover all cases

necessary to give matching upper and lower bounds on model checking the full logics.

The following table summarises the computational complexities of each combination of

automata classes in either fragment under consideration. If complexity class C is positioned

in row x and column y then the logic CTL[A,B] is C-complete, where A occurs leftmost in

row x and B occurs on top of colum y. These results are simple corollaries of the theorems

in this section.

DFA DVPA DPDA NFA VPA PDA

REG

PTIME PSPACE
VPL

CFL

LIL

IL EXPTIME

CSL undecidable

Figure 4.3: Complexity of model checking CTL[A,B].

For the EU[A] fragment, the representation of formal languages – as long as they fulfill the

basic requirements aforementioned – is not relevant. For formulas of ER[B] it is however

relevant in terms of deterministic and nondeterministic automata models. Correspond-

ing results for other representations can be transferred as long as the translation to the

adequate automaton class takes at most polynomial time.

Despite the high expressivity in comparison to classical temporal logics, the table shows

that there is a wide range of logics with very feasible model checking complexity. Note that

formulas of e.g. CTL[LIL,DPDA] are capable of describing path properties even beyond the

context-free, yet the model checking problem is solvable in PTIME. But even the greatest

fragment of CTL[TM,TM], namely CTL[IL,VPA] is still model checkable in EXPTIME.

4.5 Model Checking 101

4.5.1 Model checking EU[PDA]

The reductions in the proofs of the previous sections provide tight bounds on the model

checking problems for various logics, they may however not be suitable for ad-hoc imple-

mentations. In this section and the following, we give concrete implementations of the

subroutines MC-U and MC-R for key classes of automata which complete the algorithm

MC-CTL. We start with an abstract version of MC-U for EU[PDA] formulas and explain

each subroutine in the following.

MC-U(T ′, E(p1U
Ap2)) =

let T = reduce-LTS(T ′) in

let AT = build-product(T , A) in

letM = compute-pre(AT) in

extract-states(M)

MC-U gets as arguments an LTS T ′ and a formula E(p1U
Ap2), whereA is a PDA. Regardless

of the operations of A, in order to find a path along which p1 holds until p2 holds, we

may eliminate all states of T ′ in which neither proposition holds. We call this procedure

reduce-LTS and assume that it takes as argument the LTS T ′ = (S ′,−→′, ℓ′) and returns

an LTS T = (S,−→, ℓ), s.t.

• S = {s ∈ S ′ | s ∈ ℓ′(p1) or s ∈ ℓ′(p2)},

• −→ = −→′ ∩ S × Σ× S,

• ℓ : {p1, p2} → 2S is the a function with ℓ(p) = ℓ′(p) \ S.

Recall the product PDA constructed in the proof of Lemma 24 and assume it is computed

by a procedure build-product which takes the reduced LTS T = (S,−→, ℓ) and a PDA

A = (Q,Σ, δ, q0, F) and returns the product automaton AT = (Q× S,Σ,Γ, δ′, (q0, s), F ′),

where

• F ′ = {(q, s) | q ∈ F and s ∈ ℓ(p2)},

• δ′((q, s), a, γ) = {(q′, s′) | q′ ∈ δ(q, a, γ) and s a−→ s′ and s ∈ ℓ(p1)}.

for an arbitrary s ∈ S in the starting state (q0, s) of AT . It is arbitrary, because we will use

AT rather in the fashion of a pushdown system and compute predecessor configurations in

a bottom-up algorithm where the starting state does not matter.

102 4. Non-Regular Computation Tree Logic

Consider the set of configurations Conf(AT) = {(q, s, w) | q ∈ Q and s ∈ S and w ∈ Γ∗}

which AT may take. We define the set of goal configurations Goal(AT) as F ′× Γ∗ and the

set of starting configurations as Start(AT) = {q0} × S × {ǫ}.

Furthermore, define the set of (immediate) predecessors of a set of configurations C ⊆

Conf(AT) as

Pre(C) = {(q, s, γw) ∈ Conf(AT) | there exists (q′, s′, v′w) ∈ C

and a ∈ Σ s.t. ((q′, s′), v′) ∈ δ′((q, s), a, γ)}.

Lemma 27 Let c0 = (q0, s
′, ǫ) be in Start(AT). Furthermore, let A′

T be defined as AT ,

except for the starting state which is (q0, s
′).

c0 ∈ Pre∗(Goal(AT)) iff s |=T E(p1U
Ap2).

Proof “only-if-direction”: Clearly, cg is an accepting configuration which is reachable

from c0 and hence L(A′
T) 6= ∅. Since the starting state of A′

T has been exchanged to fit

the requirements of the proof in Lemma 24, the result is an immediate consequence.

“if-direction”: If s |=T E(p1U
Ap2) then L(A′

T) 6= ∅. From this again follows the claim. 2

This reduces the task of determining the set of states in which E(p1U
Ap2) holds to the

task of computing Start(AT) ∩ Pre∗(Goal(AT)) and extracting the model states from the

resulting configurations which are exactly those c0 for which Lemma 27 applies.

Our procedure for the computation of Pre∗ is a specialisation of the idea found in [BEM97].

The procedure compute-pre takes the product automaton AT and computes the set of its

predecessor configurations. The basic data structure on which the procedure operates is

called a multi-automaton which resembles an NFA with every state being a starting state.

Definition 39 (Multi-Automaton) Let AT = (Q× S,Σ,Γ, δ′, (q0, s), F ′) be a PDA. A

multi-automaton for AT is a 5-tupleM = (Q× S,−→, F ′), where

• Q× S is a set of (product) states,

• F ′ is the set of final states inherited from AT ,

• −→ ⊆ (Q× S)× Γ× (Q× S) is the transition relation.

We use infix notation for the transition relation −→ and write (q, s) γ−→(q′, s′) instead of

((q, s), γ, (q′, s′)) ∈ −→. We also extend −→ to w ∈ Γ∗ in the same way as for an LTS.

4.5 Model Checking 103

A multi-automaton accepts a set of configurations C = {(q, s, w) | ∃(q′, s′) ∈ F ′ s.t.

(q, s) w−→(q′, s′)}.

Intuitively, compute-pre builds a multi-automaton which accepts all goal configurations

initially and successively adds transitions which enrich the set of accepted configurations

to the set of predecessor configurations. The helper routine build-transitions(AT) in

the following is expected to return the initial transition relation of a multi-automaton with

self transitions on all final states for all stack symbols: −→ = {((q, s), γ, (q, s)) | (q, s) ∈

F ′ and γ ∈ Γ}. Hence, the initial set of accepted configurations is F ′ × Γ∗, i.e. the set

Goal(AT). In order to distinguish the previously computed transition relation from the

current one, we use −→
l

and −→
c

.

compute-pre(AT) =

let (Q× S,Σ,Γ, δ′, (q0, s), F ′) = AT in

−→
c

:= build-transitions(AT)

repeat

−→
l

:= −→
c

for all ((q, s), γ) →֒ ((q′, s′), w) ∈ δ

if ∃(q′′, s′′) ∈ Q× S s.t. (q′, s′) w−→(q′′, s′′)

then −→
c

:= −→
c
∪((q, s), γ, (q′′, s′′))

until −→
c

= −→
l

return (Q× S,−→
c
, F ′)

Lemma 28 (Termination) Procedure compute-pre(AT) runs in time O(|Q|2 · |S|2 · |Γ| ·

|δ|) for a PDA AT = (Q× S,Σ,Γ, δ′, (q0, s), F ′).

Proof The repeat-loop finishes after at most (|Q|2 · |S|2 · |Γ|) − 1 iterations, because

this is the maximum size of −→
c

and after each iteration, at least one additional transition

must enter −→
c

to prevent earlier termination. Inside the repeat-loop there are |δ| many

checks of the if-condition. These can however be reduced to constant time, since it is only

necessary to check for w-matches of a newly entered transition, because all other checks

are redundant. Note that |w| ≤ 2 in our definition of a PDA (it is 0 for pop-, 2 for push-,

and 1 for non-changing stack operations). The costs of build-transitions(AT) are also

constant in the above worst-case scenario, because initially only one transition may occur

in −→
c
. 2

104 4. Non-Regular Computation Tree Logic

Lemma 29 (Soundness and Completeness) LetM be the multi-automaton computed

by compute-pre(AT) for the product PDA AT . The set of accepted configurations ofM

coincides with Pre∗(Goal(AT)).

Proof The set of accepted configurations of M at any time during the computation

is C = {(q, s, w) | ∃(q′, s′) ∈ F ′ s.t. (q, s) w−→
c

(q′, s′)}, but depends on the monotonically

growing −→
c
. We start with showing C ⊆ Pre∗(Goal(AT)) by induction on the sequence of

(different) accepted configurations C0, C1, . . . , Cn ofM during the computation.

Initially, C0 is clearly a subset of Pre∗(Goal(AT)), since C0 = Goal(AT)).

Now assume ((q, s), γ, (q′′, s′′)) enters −→
c

during some iteration inside the repeat-loop and

therefore constitutes some Ci+1. We then have that there exists (q′, s′) and a w ∈ Γ∗, s.t.

((q, s), γ) →֒ ((q′, s′), w) ∈ δ and (q′, s′) w−→(q′′, s′′).

Note that every transition added to −→
c

to constitute Ci+1 comes from a state (q, s) and

leads to a state (q′, s′) which is already connected with a state in F ′. This is due to the

fact that in the if-condition (q′, s′) w−→(q′′, s′′) is required and at the beginning only paths

to final states exist. Hence, (q′′, s′′) is either a final state or leads to one.

Therefore, the path (q′, s′) w−→
c

(q′′, s′′) u−→
c
f exists, where u ∈ Γ∗ and f ∈ F ′. But then

(q′, s′, wu) ∈ Ci and we have by I.H. that (q′, s′, wu) ∈ Pre∗(Goal(AT)). But since clearly

((q, s), γu) is an immediate predecessor configuration of ((q′, s′), wu), we have that ((q, s), γu)

is contained within Pre∗(Goal(AT)).

For the direction C ⊇ Pre∗(Goal(AT)), let (q, s, w) ∈ Pre∗(Goal(AT)). This means that

there exists a sequence of configurations (q0, s0, w0), (q1, s1, w1), . . . , (qn, sn, wn), s.t.

• (qn, sn, wn) ∈ F ′ × Γ∗ (1)

• (q0, s0, w0) = (q, s, w) (2)

• for all i ≥ 0 exist vi+1 ∈ Γ∗ and γi ∈ Γ: ((qi, si), γi) →֒ ((qi+1, si+1), vi+1) and

wi = γiw
′
i and wi+1 = vi+1w

′
i (3)

It suffices to prove that for all 0 ≤ k ≤ n we have (qk, sk)
wk−−→
c

(qn, sn), because then clearly

for all k, (qk, sk, wk) ∈ C and in particular (q, s, w) ∈ C.

For k = n, we have that (qk, sk) ∈ F ′ and since the initial multi-automaton accepts any

w ∈ Γ∗ on itself for such a state (and in particular wk), the claim follows.

Assume 0 ≤ k < n. By I.H. we have (qk+1, sk+1)
wk+1−−−→
c

(qn, sn). Note that from (3) it

follows in particular that there exist γ, v, s.t. ((qk, sk), γ) →֒ ((qk+1, sk+1), v) and wk = γw′
k

4.5 Model Checking 105

and wk+1 = vw′
k for some w′

k. Hence, (qk+1, sk+1)
vw′

k−−−→
c

(qn, sn) and therefore there clearly

exists some (q′′, s′′), s.t. (qk+1, sk+1)
v−→
c

(q′′, s′′).

Note that the following conditions are now met:

• ((qk, sk), γ) →֒ ((qk+1, sk+1), v).

• ∃(q′′, s′′), s.t. (qk+1, sk+1)
v−→
c

(q′′, s′′).

Remember that these are exactly the conditions inside the repeat-loop for adding the

transition ((qk, sk), γ, (q
′′, s′′)) to −→

c
. We therefore have established the following path:

(qk, sk)
γ−→
c

(q′′, s′′)
w′

k−−→
c

(qn, sn). Since wk = γw′
k, the claim follows. 2

Finally, the procedure extract-states takes the multi-automaton M computed by the

subroutine compute-pre and returns {s ∈ S | (q0, s, ǫ) ∈ Start(AT) ∩ C}, where C is the

set of predecessor configurations computed by M. Note that it is easy to determine this

set from given M, since all states in M are starting states and if there is an outgoing

edge from any state, then it leads to a final state. Hence this set is equal to {s ∈ S |

there exists q′ ∈ Q, s′ ∈ S, γ ∈ Γ s.t. (q0, s)
γ−→
c

(q′, s′)}.

Theorem 61

s ∈ MC-U(T , E(p1U
Ap2) iff s |= E(p1U

Ap2).

Proof Follows from Lemmas 27 – 29. 2

4.5.2 Model checking ER[DPDA]

While formulas in EUP [L] are always satisfied in the finite, a temporal formula ϕ = E(pRAq)

in ERP [L] may also be satisfied on an infinite path: clearly, a state s satisfies ϕ, if along

an infinite path starting in s, the proposition p is never seen and q holds whenever a prefix

of this path forms a word in L(A).

The general idea of the model checking algorithm for the logic ERP [DPDA] has been

presented in the proof of Lemma 25 already, where a PDS TA = (Q × S ∪ {g, b},Γ,∆, ℓ′)

is constructed as a product of an LTS T = (S,−→, ℓ) and the DPDA A = (Q,Σ,Γ, δ, q0, F)

occurring in ϕ. Model checking ϕ over T is reduced to model checking the fixed LTL

formula Fpb over TA.

We present here a direct implementation which checks the CTL formula EG¬pb instead.

Clearly, this formula is dual to the LTL formula such that soundness remains intact.

106 4. Non-Regular Computation Tree Logic

Lemma 1 ([BEM97]) Let C be a configuration of a PDS P = (Q,Γ,∆, ℓ) and q ∈ Q.

The control location q is visited infinitely often along any path of P starting in C iff there

exist configurations (p, γ), (f, u) and (p, γw) with γ ∈ Γ ∪ {ǫ} and u, w ∈ Γ∗, not all three

equal, s.t. the following conditions are met:

• C ∈ Pre∗({p} × γΓ∗).

• (p, γ) ∈ Pre+(({f} × Γ∗) ∩ Pre∗({p} × γΓ∗)).

The first condition simply claims that some configuration (p, γv) is reachable from C,

where v ∈ Γ∗. Intuitively, this configuration is the starting point of some kind of cyclic

behaviour of P: the second condition requires that from (p, γ) a configuration (f, u) is

reachable which in turn is a predecessor of some configuration (p, γw). Hence the cycle

(p, γ), (p, γw), (p, γww), . . . can be repeated forever. Taken together, the conditions estab-

lish the following infinite configuration path:

C ; (p, γv) ; (f, uv) ; (p, γwv) ; (f, uwv) ; (p, γwwv) ; . . .

Note that from this follows that the control state f is visited infinitely often.

Instead of model checking the LTL formula Fpb we may add a self-transition on the state

g in the PDS TA s.t. the only finite paths are those which end in configurations (b, x) for

some x ∈ Γ∗ and look for the existence of an infinite path.

This leads to the following implementation of algorithm MC-R for the logic ER[DPDA].

MC-R(T , E(p1R
Ap2)) =

let TA = build-PDS(T , A) in

V := ∅

for each (p, γ) ∈ ((Q× S) ∪ {g})× Γ do

M := Pre+((p, γΓ∗))

if (p, γ) ∈M then

V := V ∪ extract-states(Pre∗((p, γ)))

return V

Subroutine build-PDS is supposed to return the product PDS TA from the proof of Lemma

25 enriched with self-transitions on the state g in order to have every infinite configuration

path satisfy the CTL formula EG¬pb since pb does only hold in dead-ends. The set of LTS

states V is used to store the result set, i.e. the set of states which satisfy E(p1R
Ap2).

4.5 Model Checking 107

The central loop takes each combination of a PDS state p and a stack symbol γ and

checks the existence of a cycle starting in the corresponding configuration. This is done by

computing a multi-automaton M which represents the set of predecessor configurations

Pre+((p, γΓ∗)) and checking whether (p, γ) is a member of this set.

If this is the case, the set of all predecessors of (p, γ) is computed in turn, because all these

predecessor configurations lead to a cycle. Hence if any such configuration ((q, s)w) is a

member of Start(TA) then s satisfies E(p1R
Ap2) and is added to the result set V . Remember

from Sec. 4.5.1 that extract-states extracts the LTS states of the intersection of Start(TA)

and the configurations represented by a multi-automaton.

The computation of the relations Pre+ and Pre∗ is very similar to what the procedure

compute-pre from the previous section does and we therefore do not give details here and

instead refer to [BEM97]. The procedure compute-pre is just a problem-optimised version

of the general algorithm there.

Theorem 62

s ∈ MC-R(T , E(p1R
Ap2) iff s |= E(p1R

Ap2).

Proof Let s ∈ MC-R(T , E(p1R
Ap2). Since s ∈ V , there exists (p, γ) ∈ ((Q×S)∪{g})×Γ,

s.t. ((s, q0), ǫ) ∈ Pre∗(p, γ) and (p, γ) ∈ Pre+(p, γv) for some v ∈ Γ∗. But then there is

an infinite path π in TA starting in ((s, q0), ǫ). Since there are no outgoing edges from

configurations (b, x) for any x ∈ Γ∗ and b is the only state in which proposition pb holds,

no state along the LTS-related component of π satisfies pb. Hence ((s, q0), ǫ) |=TA EG¬pb

and by construction of TA we have s |= E(p1R
Ap2).

Let s |= E(p1R
Ap2). By construction of TA there exists an infinite path starting in ((s, q0), ǫ).

Any infinite path has a cycle which is detected by the central loop and results in s being

stored in V . 2

108 4. Non-Regular Computation Tree Logic

Chapter 5

Higher-Order Fixpoint Logic

In order to give a logical characterisation of context-free processes (CFP) [BK85], Müller-

Olm extended Lµ with a sequential composition operator and named the resulting logic

Fixpoint Logic with Chop1 (FLC) [MO99]. It is capable of expressing many non-regular –

and even non-context-free – program properties and thus exceeds the expressivity of the

Lµ [MO99, LS06]. Given that FLC is capable of expressing characteristic formulas for the

simulation of CFP, deciding simulation between CFP can be reduced on model checking

FLC. But since this is known to be undecidable, the same holds for model checking FLC

[MO99]. On finite state systems, the model checking problem for FLC is however in

EXPTIME [MO99, LS02, Lan02].

The semantics of an Lµ-formula ϕ w.r.t. an LTS is the set of states in which ϕ holds and

hence a predicate on the total state set S. In contrast, the semantics of FLC is given

as a predicate transformer on states, i.e. a (monotonic) function of type 2S → 2S . The

sequential composition operator “;” is interpreted as function composition, i.e. an FLC

formula ψ1;ψ2 is interpreted as [[ψ1]] ◦ [[ψ2]].

This idea has been generalised in Mahesh and Ramesh Viswanathan’s Higher Order Fix-

point Logic (HFL), where Lµ was equipped with a simply typed λ-calculus s.t. now arbitrary

function types based on the primitive type 2S can be built [VV04]. This makes it even more

expressive than FLC. It is possible for instance to express assume-guarantee-properties in

HFL [VV04].

Nevertheless, the model checking problem on finite state systems remains decidable, since

all occurring functions operate on finite domains and are thus effectively computable.

This section is organised as follows. After the definition of syntax and semantics, model-

1The name is a reference to Interval Logics, where the sequential composition operator is called “chop”.

110 5. Higher-Order Fixpoint Logic

theoretic properties and an expressivity analysis, we give a model checking algorithm for

HFL which is a generalisation of the algorithm we presented in [AL07] for the first-order

fragment of HFL. Since this algorithm optimises the straight-forward fixpoint approxima-

tion for HFL, we give empirical evidence that it indeed enhances the performance vastly

in practice. Thereafter, we will argue that the analysis of the behaviour of our optimised

model checker can be a valuable tool for the development of new algorithms and demon-

strate this on a couple of examples.

5.1 Syntax and Semantics

Definition 40 (Type) Let T = (S,−→, ℓ) be an LTS and a v ∈ {−,+, 0} be called a

variance. The set of HFL types is the smallest set containing the atomic type Pr and

is closed under function typing with variances, i.e. if σ and τ are HFL types and v is a

variance, then σv → τ is an HFL type.

Definition 41 (Term) Let P be a countably infinite set of atomic propositions, Σ be a

finite set of action names, V a countably infinite set of variables. The set of HFL terms is

given by the following grammar:

ϕ ::= q | X | ¬ϕ | 〈a〉ϕ | ϕ ϕ | λ(Xv : τ).ϕ | µ(X : τ).ϕ

where q ∈ P, X ∈ V, a ∈ Σ, v is a variance and τ is an HFL type.

We use the following standard abbreviations:

tt := q ∨ ¬q for some q ∈ P, ff := ¬tt,

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ,

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ), νX.ϕ := ¬µX.¬ϕ[¬X/X],

[a]ψ := ¬〈a〉¬ψ, 〈−〉ϕ :=
∨
a∈Σ〈a〉ϕ,

[−]ϕ :=
∧
a∈Σ[a]ϕ.

where ϕ[ψ/X] denotes the formula that results from ϕ by replacing simultaneously every

occurrence of X by ψ.

Definition 42 (Formula) A sequence Γ of the form Xv1
1 : τ1, . . . , X

vn
n : τn where Xi are

variables, τi are types and vi are variances is called a context (we assume allXi are distinct).

An HFL term ϕ has type τ in context Γ if the statement Γ ⊢ ϕ : τ can be inferred using the

5.1 Syntax and Semantics 111

Γ ⊢ q : Pr

v ∈ {0,+}

Γ, Xv : τ ⊢ X : τ

Γ− ⊢ ϕ : τ

Γ ⊢ ¬ϕ : τ

Γ ⊢ ϕ : Pr Γ ⊢ ψ : Pr

Γ ⊢ ϕ ψ : Pr

Γ ⊢ ϕ : Pr

Γ ⊢ 〈a〉ϕ : Pr

Γ, Xv : σ ⊢ ϕ : τ

Γ ⊢ λ(Xv : σ).ϕ : (σv → τ)

Γ ⊢ ϕ : (σ+ → τ) Γ ⊢ ψ : σ

Γ ⊢ (ϕ ψ) : τ

Γ ⊢ ϕ : (σ− → τ) Γ− ⊢ ψ : σ

Γ ⊢ (ϕ ψ) : τ

Γ ⊢ ϕ : (σ0 → τ) Γ ⊢ ψ : σ Γ− ⊢ ψ : σ

Γ ⊢ (ϕ ψ) : τ

Γ, X+ : τ ⊢ ϕ : τ

Γ ⊢ µ(X : τ).ϕ : τ

Figure 5.1: Type inference rules for HFL.

rules of Fig. 5.1. We say that ϕ is well-formed if Γ ⊢ ϕ : τ for some Γ and τ . A well-formed

HFL term of type Pr is called a formula. For a variance v, we define its complement v− as

+ if v = −, as − if v = +, and 0 otherwise. For a context Γ = Xv1
1 : τ1, . . . , X

vn
n : τn, the

complement Γ− is defined as X
v−1
1 : τ1, . . . , X

v−n
n : τn.

The purpose of variances in the typing system is to ensure that in a term µ(x : τ).ϕ,

ϕ is monotonic in x because otherwise the existence of a fixpoint cannot be guaranteed.

While in Lµ it suffices to require every occurrence of x to appear under an even number

of negation symbols, this requirement is too weak in the presence of λ-abstractions, since

the actual negative or positive occurrence may be hidden in nested function abstractions

and applications. Consider for instance the following term (taken from [VV04]):

Example 14

µ(f : Pr− → Pr).λ(z− : Pr).µ(x : Pr).f(¬x) ∨ ¬z : Pr− → Pr

Its type derivation is shown in Fig.5.2, where f appears positively and z negatively. The

variance of x – seemingly negative – however depends on the variance of its applicator f .

If f was anti-monotone, x would occur positively.

f+ : Pr− → Pr, z− : Pr, x+ : Pr ⊢ f : Pr→ Pr

f+ : Pr− → Pr, z− : Pr, x+ : Pr ⊢ x : Pr

f− : Pr− → Pr, z+ : Pr, x− : Pr ⊢ ¬x : Pr

f+ : Pr− → Pr, z− : Pr, x+ : Pr ⊢ f(¬x) : Pr

f− : Pr− → Pr, z+ : Pr, x− : Pr ⊢ z : Pr

f+ : Pr− → Pr, z− : Pr, x+ : Pr ⊢ ¬z : Pr

f+ : Pr− → Pr, z− : Pr, x+ : Pr ⊢ f(¬x) ∨ ¬z : Pr− → Pr

f+ : Pr− → Pr, z− : Pr ⊢ µ(x : Pr).f(¬x) ∨ ¬z : Pr− → Pr

f+ : Pr− → Pr ⊢ λ(z− : Pr).µ(x : Pr).f(¬x) ∨ ¬z : Pr− → Pr

∅ ⊢ µ(f : Pr− → Pr).λ(z− : Pr).µ(x : Pr).f(¬x) ∨ ¬z : Pr− → Pr

F
igu

re
5.2:

E
x
am

p
le

ty
p
e

d
erivation

of
a

H
F
L

form
u
la.

5.1 Syntax and Semantics 113

Functions which do not occur under the scope of a fixpoint quantifier are not required to

be monotonic. The expressivity of HFL would be limited if non-monotonic functions were

forbidden in general.

In order to define the size of an HFL formula, we need the following.

Definition 43 The Fischer-Ladner closure of an HFL formula ϕ0 is the least set Cl(ϕ0)

that contains ϕ0 and satisfies the following.

• If ψ1 ∨ ψ2 ∈ Cl(ϕ0) then {ψ1, ψ2} ⊆ Cl(ϕ0).

• If ¬(ψ1 ∨ ψ2) ∈ Cl(ϕ0) then {¬ψ1,¬ψ2} ⊆ Cl(ϕ0).

• If 〈a〉ψ ∈ Cl(ϕ0) then ψ ∈ Cl(ϕ0).

• If ¬〈a〉ψ ∈ Cl(ϕ0) then ¬ψ ∈ Cl(ϕ0).

• If ϕ ψ ∈ Cl(ϕ0) then {ϕ, ψ,¬ψ} ⊆ Cl(ϕ0).

• If ¬(ϕ ψ) ∈ Cl(ϕ0) then {¬ϕ, ψ,¬ψ} ⊆ Cl(ϕ0).

• If λX.ψ ∈ Cl(ϕ0) then ψ ∈ Cl(ϕ0).

• If ¬(λX.ψ) ∈ Cl(ϕ0) then ¬ψ ∈ Cl(ϕ0).

• If µX.ψ ∈ Cl(ϕ0) then ψ ∈ Cl(ϕ0).

• If ¬(µX.ψ) ∈ Cl(ϕ0) then ¬ψ[¬X/X] ∈ Cl(ϕ0).

• If ¬¬ψ ∈ Cl(ϕ0) then ψ ∈ Cl(ϕ0).

• If ¬X ∈ Cl(ϕ0) then X ∈ Cl(ϕ0).

• If ¬q ∈ Cl(ϕ0) then q ∈ Cl(ϕ0).

Note that the size of Cl(ϕ) is at most twice the length of ϕ. We define |ϕ| := |Cl(ϕ)| as the

size of ϕ.

Definition 44 (Type Semantics) The semantics of a type w.r.t. T is inductively defined

as a partially ordered set as follows:

[[Pr]]T = (2S ,⊆),

[[σv → τ]]T =
(
([[σ]]T)v → [[τ]]T ,⊑σv→τ

)
.

114 5. Higher-Order Fixpoint Logic

where for two partially ordered sets (τ,⊑τ) and (σ,⊑σ), ⊑σv→τ denotes the partial order

of all monotone functions ordered pointwise:

f ⊑σv→τ g iff for all x ∈ [[σ]]T : f x ⊑τ g x.

Moreover, complements in these partially ordered sets are denoted by f̄ and defined on

higher levels as f̄ x = f x.

A positive variance leaves a partial order unchanged, τ̄+ = (τ,⊑τ), a negative variance

turns it upside-down to make antitone functions look well-behaved, τ̄− = (τ,⊒τ), and a

neutral variance flattens it, τ̄ 0 = (τ,⊑τ ∩ ⊒τ).

Lemma 30 ([VV04]) For all HFL types τ and finite LTS T , [[τ]]T is a complete lattice.

Although variances may destroy the lattice structure, they do only occur on the left of a

typing arrow. The space of monotone functions from a partially ordered set to a complete

lattice with pointwise ordering forms a complete lattice again.

By ⊥τ and ⊤τ we denote the bottom and top elements of [[τ]]T .

Definition 45 (HFL Semantics) Let T be an LTS. An environment η is a partial map

on the variable set V. For a context Γ = Xv1
1 : τ1, . . . , X

vn
n : τn, we say that η respects

Γ, denoted by η |= Γ, if η(Xi) ∈ [[τi]]
T for i ∈ {1, . . . , n}. We write η[X 7→ f] for the

environment that maps X to f and otherwise agrees with η. If η |= Γ and f ∈ [[τ]]T then

η[X 7→ f] |= Γ, X : τ , where X ∈ V is a variable that does not appear in Γ.

For any well-formed term ϕ and environment η |= Γ, we define the semantics of ϕ induc-

tively to be an element of [[τ]]T as follows:

[[Γ ⊢ q : Pr]]Tη = {s ∈ S | q ∈ ℓ(s)},

[[Γ ⊢ X : τ]]Tη = η(X),

[[Γ ⊢ ¬ϕ : Pr]]Tη = S \ [[Γ− ⊢ ϕ : Pr]]
T
η ,

[[Γ ⊢ ¬ϕ : σv → τ]]Tη = f ∈ [[σv → τ]]T s.t. f̄ = [[Γ− ⊢ ϕ : σv → τ]]
T
η ,

[[Γ ⊢ ϕ ∨ ψ : Pr]]Tη = [[Γ ⊢ ϕ : Pr]]Tη ∪ [[Γ ⊢ ψ : Pr]]Tη ,

[[Γ ⊢ 〈a〉ϕ : Pr]]Tη = {s ∈ S | s a−→ t for some t ∈ [[Γ ⊢ ϕ : Pr]]Tη },

[[Γ ⊢ λ(Xv : σ).ϕ : σv → τ]]Tη = f ∈ [[σv → τ]]T s.t. ∀x ∈ [[σ]]T

f x = [[Γ, Xv : σ ⊢ ϕ : τ]]Tη[X 7→x],

[[Γ ⊢ ϕ ψ : τ]]Tη = [[Γ ⊢ ϕ : σv → τ]]Tη [[Γ′ ⊢ ψ : σ]]Tη ,

[[Γ ⊢ µ(X : τ)ϕ : τ]]Tη =
d
{x ∈ [[τ]]T | [[Γ, X+ : τ ⊢ ϕ : τ]]

T
η[X 7→x] ⊑τ x}.

5.1 Syntax and Semantics 115

In the clause for function application (ϕ ψ) the context Γ′ is Γ if v ∈ {+, 0}, and is Γ− if

v = −.

Definition 46 (Order, Arity) We consider fragments of HFL that can be built using

restricted types only. Note that because of right-associativity of the function arrow, every

HFL type is isomorphic to a τ = τ1 → . . . → τm → Pr where m ∈ N. Clearly, for m = 0

we simply have τ = Pr. We stratify types w.r.t. their order, i.e. the degree of using proper

functions as arguments to other functions, as well as maximal arity, i.e. the number of

arguments a function has. Order can be seen as depth, and maximal arity as the width of

a type. Both are defined recursively as follows.

ord(τ1 → . . .→ τm → Pr) := max{1 + ord(τi) | i = 1, . . . , m},

mar(τ1 → . . .→ τm → Pr) := max({m} ∪ {mar(τi) | i = 1, . . . , m}),

where we assume max(∅) = 0. Now let, for k ≥ 1 and m ≥ 1,

HFLk,m := {ϕ ∈ HFL | ∅ ⊢ ϕ : Pr using types τ with ord(τ) ≤ k and mar(τ) ≤ m only},

HFLk :=
⋃

m∈N

HFLk,m.

Note that no formula can have maximal type order k > 0 but maximal type arity m = 0.

The combination k = 0 and m > 0 is also impossible. Hence, we define

HFL0 = { ϕ ∈ HFL | ∅ ⊢ ϕ : Pr using types τ with ord(τ) = 0 only }.

We extend these measures to formulas in a straightforward way: ord(ϕ) = k and mar(ϕ) =

m iff k and m are the least k′ and m′ s.t. ϕ can be shown to have some type using types

τ with ord(τ) ≤ k′ and mar(τ) ≤ m′ only.

Definition 47 (Simultaneous Fixpoint) When using least fixpoint quantifiers it is of-

ten beneficial to recall the Békic̀ principle [Bék84] which states that a simultaneously

defined least fixpoint of a monotone function is the same as a parametrised one. We will

use this to allow formulas like

ϕ := µXi.




X1 . ϕ1(X1, . . . , Xn)
...

Xn . ϕn(X1, . . . , Xn)




in the syntax of HFL. This abbreviates

ϕ′ := µXi.ϕi(µX1.ϕ1(X1, µX2.ϕ2(X1, X2, . . . , Xi, . . .), . . . , Xi, . . .), µX2 . . . , . . . , Xi, . . .).

116 5. Higher-Order Fixpoint Logic

Note that the size of ϕ′ can be exponentially bigger than the size of ϕ, and this even

holds for the number of their subformulas. However, it is only exponential in n, not in |ϕ|:

|ϕ′| = O(|ϕ| · 2n).

5.2 Examples

Example 15 HFL can express the non-regular (but context-free) property “on any path

the number of out’s seen at any time never exceeds the number of in’s seen so far.” Let

ϕ := µ(X : Pr→ Pr).(λ(Z : Pr).〈out〉Z ∨ 〈in〉(X (X Z))) tt.

This formula is best understood by comparing it to the CFG G = ({X}, {in, out}, P,X),

where P contains the rules

X → out | inXX.

It generates the language L of all words w ∈ {in, out}∗{out} s.t. |w|in = |w|out and for

all prefixes v of w we have: |v|in ≥ |v|out which are exactly the prefixes of buffer runs

which are violating due to an underflow. Then s |= ϕ iff there is a finite path through T

starting in s that is labeled with a word in L, and ¬ϕ consequently describes the property

mentioned above. In Section 5.4 we will see that in fact every path specification given by

a context-free grammar can be checked by an HFL1,1 formula.

Example 16 Another property that is easily seen not to be expressible by a finite tree

automaton and, hence, not by a formula of Lµ either is bisimilarity to a word. Note that a

transition system T with starting state s is not bisimilar to a linear word model iff there

are two distinct actions a and b s.t. there are two (not necessarily distinct) states t1 and

t2 at the same distance from s s.t. t1
a−→ t′1 and t2

b−→ t′2 for some t′1, t
′
2. This is expressed

by the HFL formula

¬
(∨

a6=b

(
µ(F : Pr→ Pr→ Pr).λ(X : Pr).λ(Y : Pr).(X∧Y)∨(F 〈−〉X 〈−〉Y)

)
〈a〉tt 〈b〉tt

)
.

This formula is best understood by regarding the least fixpoint definition F as a functional

program. It takes two arguments X and Y and checks whether both hold now or calls

itself recursively with the arguments being checked in two (possibly different) successors

of the state that it is evaluated in.

Note that here, bisimulation does not consider the labels of states but only the actions

along transitions. It is not hard to change the formula accordingly to incorporate state

labels as well.

5.3 Properties 117

Example 17 Let 2n0 := n and 2nm+1 := 22n
m. For any m ∈ N, there is a short HFL formula

ϕm (linear in m) expressing the fact that there is a maximal path of length 21
m (number

of states on this path) through a transition system. It can be constructed using a typed

version of the Church numeral 2. Let τ0 = Pr and τi+1 = τi → τi. For i ≥ 1 define ψi of

type τi+1 as λ(F : τi).λ(X : τi−1).F (F X). Then

ϕm := ψm ψm−1 . . . ψ1

(
λ(X : Pr).〈−〉X

)
[−]ff .

Note that for any m ∈ N, ϕm is of size linear in m. This indicates that HFL is able to

express computations of Turing Machines of arbitrary elementary complexity which has

been shown in [ALS07].

5.3 Properties

Theorem 63 (Finite Model Property Absence) HFL1 does not exhibit the finite mo-

del property.

Proof Like for CTL[L] , this follows from Thm. 28 in which a PDL[VPL] formula serves

as witness for the absence of the finite model property. The formula can by Thm. 67 be

translated into an equivalent HFL1 formula. Since both formulas are required to hold in

exactly the same models, the absence of the finite model property for HFL1 follows. 2

Theorem 64 ([VV04]) HFL is bisimulation-invariant and therefore has the tree model

property.

Theorem 65 ([VV04]) HFL is undecidable.

5.4 Expressivity

HFL is clearly a much closer relative of Lµ than the other logics under consideration here.

All of them share a common propositional base but parametric CTL and PDL achieve

non-regular expressive power by rather different means than HFL: the former two by a

language plug-in mechanism which directly makes use of the expressive power contained

within the language parameter, the latter with help of logic-inherent machinery, namely

extremal fixpoints on higher-order functions.

118 5. Higher-Order Fixpoint Logic

HFL and its precursor FLC are merely generalisations of Lµ, while the relationship of Lµ
with parametric PDL and CTL is of a mutually non-inclusive form as has been proved in

previous chapters.

Theorem 66 ([MO99],[VV04],[ALS07])

Lµ ≡ HFL0,0 � FLC ≡ HFL1,1 ≤ HFL1 � HFL2 � HFL3 . . . � HFL.

Proof Note that Lµ is a syntactical fragment of HFL and that every subformula of a Lµ
formula has type rank 0 in HFL. On the other hand, any HFL0,0 formula cannot contain

a subformula of type rank ≥ 1, i.e. no λ-expressions (and hence no function applications)

or fixpoint formulas other than of type rank 0. But deleting these two clauses from the

definition of HFL’s syntax yields exactly the syntax of Lµ. It is easy to see that the HFL0,0

semantics coincide with the semantics of Lµ.

The result that Lµ � FLC originates from [MO99]. FLC can express simulations of context-

free processes which Lµ cannot.

That FLC ≡ HFL1,1 is immediately seen by comparing the resulting semantics of this HFL

restriction with FLC. The fact that FLC � HFL has been observed by [VV04].

Finally, the result that the expressive power increases in the hierarchy HFLk � HFLk+1

for all k ∈ N is a corollary of the kEXPTIME-completeness result in Thm. 68 for model

checking HFLk.

For HFL0, we have already shown that it is strictly lesser expressive than HFL1, because

HFL0 ≡ Lµ � FLC ≡ HFL1,1 ≤ HFL1. Now, assume ϕ ∈ HFLk+1 for some k ≥ 1 s.t.

model checking ϕ over some LTS is (k+1)EXPTIME-hard. But then there is no formula

in HFLk which corresponds to ϕ, because model checking HFLk is in kEXPTIME and

kEXPTIME ((k + 1)EXPTIME for all k ∈ N. 2

The conceptual unrelatedness of HFL and the language parametric logics makes a compar-

ison difficult. Clearly, the modal and temporal formulas of parametric PDL and CTL must

in fact be expressible as fixpoints in a “unifying” logic in the same manner as for instance

Lµ or MSO serve as backbones for regular PDL and CTL. But it is not clear whether there

exists any suitable candidate capable of simulating the languages used in the modalities

and expressing the corresponding fixpoint statements. To our knowledge there is no work

in the literature which systematically deals with the correspondence between the expressive

power of logics and formal languages above the regular sphere.

We are however able to embed PDL[CFG] into HFL. The idea is very similar to the

embedding of PDL[CFG] into FLC in [LS06].

5.4 Expressivity 119

Theorem 67

PDL[CFG] � HFL1,1.

Proof If ≤ holds, strictness is a consequence of Lµ � HFL1,1 and the fact that fairness is

inexpressible in PDL[L] (independently of L) but expressible in Lµ. In order to show ≤,

consider the following translation tr : PDL[CFG]→ HFL1,1 with

tr(q) = q,

tr(¬ϕ) = ¬tr(ϕ),

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ),

tr(〈G〉ψ) = tr′(〈G〉) tr(ψ),

where tr′(〈G〉) is defined for a CFGG as follows. LetG = (N,Σ, P, S). Define the righthand

sides of production rules w.r.t. a X ∈ N as rhs(X) = {α ∈ (N ∪ Σ)∗ | X → α ∈ P}.

tr′(〈G〉) = µ(S : Pr→ Pr).




X1 . λ(Z1 : Pr).
∨

α∈rhs(X1)

α̂ Z1

...

Xn . λ(Zn : Pr).
∨

α∈rhs(Xn)

α̂ Zn



.

where
n⋃
i=1

Xi = N and

α̂ =





〈a〉β̂ , if α = aβ.

tr(ψ) ∧ β̂ , if α = ψ?β.

Xi β̂ , if α = Xiβ.

ǫ , if α = ǫ.

for some a ∈ Σ, ϕ ∈ PDL[CFG] and ǫ denoting a blank.

Let T = (S,−→, ℓ) be an LTS. We will now show that for all s ∈ S and ϕ ∈ PDL[CFG], we

have

s |= ϕ iff s |= tr(ϕ).

We show this by induction on the structure of ϕ. The propositional cases are entirely

trivial in both directions and so it remains to show that s |= 〈G〉ψ iff s |= tr′(〈G〉) tr(ψ).

It is well known that L(G) is the simultaneously defined least fixpoint of an equation system

given by the grammar rules and projected onto the starting symbol S. The function tr′(〈G〉)

represents exactly this equation system but restricts derivable words in G to paths in T .

120 5. Higher-Order Fixpoint Logic

Since tr′(〈G〉) is applied to the set of states which satisfy tr(ψ), it is additionally required

that these paths end in such a state. This establishes the claim. 2

Fig. 5.3 summarises all expressivity results obtained in previous chapters.

5.4 Expressivity 121

Figure 5.3: Expressive power of PDL[L], CTL[L] and HFL.

122 5. Higher-Order Fixpoint Logic

5.5 Model Checking

In [ALS07], a game-based model checking procedure is being introduced to prove a k-

EXPTIME upper bound for HFLk. It is however likewise possible to extend standard

fixpoint approximation schemes (as known from Lµ model checkers) to the higher order

case. While the game-based procedure is hardly feasible in practice, we may use an opti-

misation technique from static analysis called neededness analysis (cf. [Jør94]) inside the

fixpoint approximation in order to obtain an algorithm which despite the high complexity

has a chance to be useable at least for formulas of lower-order HFL. We present here

a generalisation of the technique described in [AL07], where only the first-order case is

treated.

For the following, note that because of right-associativity of the function arrow, every

HFL-type is isomorphic to a τ = τ1 → . . .→ τm → Pr for a m ∈ N.

Definition 48 (HFL-Fixpoint Approximants) Let σx.ϕ be an HFL term of type τ =

τ1 → . . . → Pr, where σ ∈ {µ, ν}. We define finite approximants of this formula for all

i ∈ N as follows:

σ0x.ϕ = λ(Z1 : τ1). . . . λ(Zk : τk).




ff, if σ = µ

tt, otherwise

σi+1x.ϕ = ϕ[σix.ϕ/x].

Lemma 31 Let µx.ϕ be an HFL term of type τ = τ1 → . . .→ τk+1 and let h be defined as

h([[τk+1]]
T). Then for any finite LTS T we have [[µhx.ϕ]]

T
η = [[µx.ϕ]]Tη for any environment

η.

Proof Note that the underlying LTS is finite. According to Lemma 30, the HFL type

semantics forms a complete lattice. Because the types are all finite on finite models,

the lattice has also finite height. On the other hand, the type system guarantees that

HFL fixpoint terms are exclusively defined on monotone functions. As a consequence,

the fixpoint approximation goes through a sequence of lattice elements of which each is

greater or equal to the former w.r.t. ⊑. Since this sequence has maximally h many different

elements, the claim follows. 2

Lemma 32 [ALS07] For all HFL types τ and all LTS T with n states we have:

h(τ) ≤ (n + 1)(2
n(mar(τ)+ord(τ)−1)ord(τ)−1

ord(τ))mar(τ).

5.5 Model Checking 123

Theorem 68 (ALS07) For any k,m ≥ 1 the HFLk,m model checking problem is

kEXPTIME-complete.

5.5.1 A Standard Fixpoint-Approximation Algorithm

Consider a model checking algorithm for HFL formulas in which a subroutine FPapprox

computes fixpoint approximants as given in Def. 48. Since the least and greatest fixpoint

cases are entirely dual, we restrict our attention w.l.o.g. to least fixpoint formulas. FPapprox

takes a (not necessarily closed) HFL term µ(x : τ0 → . . . → Pr).ϕ and an environment η

which maps free variables to values of the right type and tabulates the fixpoint approxi-

mants as shown in the table below, where a0
i , . . . , a

mi

i denotes an arbitrary enumeration of

the elements in [[τi]] and h its height respectively.

The table is to be read as follows: the rows starting with arg i entries contain all possible

combinations of arguments of type τ0 → . . .→ τk. The rows underneath list the semantics

of the fixpoint approximants given as a mapping from each sequence of arguments in the

same column to the values in this column as they would successively be computed line-by-

line in the routine FPapprox. It is clear that FPapprox could stop any time before the h-th

approximant is reached, if the last and current approximant were identical in all columns

and hence the fixpoint was established earlier.

arg
0

: τ0 a
0

0
a
1

0
. . . a

m0

0
a
0

0
a
1

0
. . . a

m0

0
. . . a

0

0
a
1

0
. . . a

m0

0
. . .

arg
1

: τ1 a
0

1
a
0

1
. . . a

0

1
a
1

1
a
1

1
. . . a

1

1
. . . a

m1

1
a

m1

1
. . . a

m1

1
. . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

argk : τk a
0

k
a
0

k
. . . a

0

k
a
0

k
a
0

k
. . . a

0

k
. . . a

0

k
a
0

k
. . . a

0

k
. . .

[[µ0
x.ϕ]] ∅ ∅ . . . ∅ ∅ ∅ . . . ∅ . . . ∅ ∅ . . . ∅ . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

[[µh
x.ϕ]] v0 v1 .

This is so far a naive extension of standard fixpoint computation techniques as known

for instance from Lµ model checking algorithms. Note that an HFL-equivalent to an Lµ-

formula needs zero arguments and hence uses only a single column in the above table.

The following improvements to this procedure stem from the observation that every HFL

formula is of type Pr and hence the semantics of higher-order terms (i.e. functions) has to be

124 5. Higher-Order Fixpoint Logic

broken down by function application in order to make for a formula. This implies that the

function semantics is not necessarily needed as a whole, but just at the specific arguments

to which it is applied. It does however not imply that the computation of the value at

a single argument can be performed independently of values at other arguments, simply

because values at different arguments might be needed in the presence of recursive function

application, as may be the case in fixpoint formulas. The next section develops this idea to

the extent that fixpoint approximants are computed as partial functions, where the defined

domain is extended on demand, driven by value neededness during computation.

5.5.2 A Model Checker Using Neededness Analysis

Consider the recursive procedure MC-HFL as given in Fig. 5.4: it takes as input a typed

HFL term ϕ, a (possibly empty) list of arguments [f1, ..., fk] and an environment function

η which maps free variables to values of the correct type.

We assume that at the initial call of MC-HFL, ϕ is a well-formed HFL formula of type

Pr, the argument list is empty and η is entirely undefined for all arguments. The LTS

T = (S,−→, ℓ) over which ϕ is to be model checked is assumed to be available globally.

After termination, MC-HFL is supposed to return the set of LTS states in which ϕ holds.

Note that the formulas and terms occurring in the case distinctions reflect the full expressive

power of HFL. We omit type annotations where the type is obvious from the definition

or irrelevant for the computation. Variances are omitted as well, since the formulas are

assumed to be well-formed.

The propositional and modal formulas are handled in a standard way. The difficulties are

posed by fixpoint formulas. The idea is in principle that the algorithm maintains a table

similar to the one described in the previous section for the standard fixpoint approximation

scheme, except that it is empty initially and filled with arguments and values as needed.

This means that HFL fixpoint formulas are evaluated to functions which are stored as

tables.

Notation: A partial function f : X → Y is assumed to map any x ∈ X either to

f(x) if f is defined at x and to undef otherwise. Furthermore, dom(f) is defined as the

function which maps f to the set of arguments on which it is defined, i.e. dom(f) = {x ∈

X | f(x) 6= undef}. The expression f{z 7→ v} denotes the (partial) function f ′ which

agrees with f on all arguments x ∈ X, except possibly for z, where its value is v, i.e.

5.5 Model Checking 125

MC-HFL(ϕ, [f1, ..., fk], η) =

case ϕ of

q : ℓ(q)

¬ϕ : S \MC-HFL(ϕ, [], η)

ψ1 ∨ ψ2 : MC-HFL(ψ1, [], η) ∪MC-HFL(ψ2, [], η)

〈a〉ψ : {s ∈ S | ∃t ∈ MC-HFL(ψ, [], η) s.t. s a−→ t}

X : return η(X)([f1, . . . , fk])

x : σ → τ : if η(x)([f1, ..., fk]) = undef

then let v := if fp(x) = µ then ⊥τ else ⊤τ

η(x) := η(x){[f1, . . . , fk] 7→ v}

return η(x)([f1, . . . , fk])

λ(X : τ).ψ : if [f1, ..., fk] = []

then return λ(f : τ).MC-HFL(ψ, [], η{X 7→ f})

else return MC-HFL(ψ, [f2, . . . , fk], η{X 7→ f1})

ψ1 ψ2 : MC-HFL(ψ1, [MC-HFL(ψ2, [], η), f1, ..., fk], η)

σ(x : τ1 → . . .→ Pr).ψ : if [f1, . . . , fk] = [] and type(x) 6= Pr

then return λ(g1 : τ1) . . . λ(gk : τk).

MC-HFL(σ(x : τ1 → . . .→ τk+1).ψ, [g1, . . . , gk], η)

else let v := if fp(x) = µ then ⊥τn else ⊤τn

η(x) := {[f1, . . . , fk] 7→ v}

repeat

f := η(x)

for all [f ′
1, ..., f

′
k] ∈ dom(η(x))

η(x) := η(x){[f ′
1, ..., f

′
k] 7→ MC-HFL(ψ, [f ′

1, ..., f
′
k], η)}

until f = η(x)

return η(x)([f1, . . . , fk])

Figure 5.4: A model checking algorithm for HFL.

f ′(x) = f(x), if x 6= z and v otherwise. Note that the data structures which represent

functions have to be available globally.

⊥τ and ⊤τ denote the bottom and top elements of type τ , and [] is the empty list. λ-bound

variables are distinguished from µ- and ν-bound variables by upper- and lower-case letters

respectively.

126 5. Higher-Order Fixpoint Logic

Type Safety: The return type of algorithm MC-HFL after termination is the data type

which represents Pr. However, in several cases e.g. the subcase of λ-abstraction, where

[f1, ..., fk] = [], an anonymous function (here λ(f : τ).MC-HFL(ψ, [], η{X 7→ f})) is re-

turned for the purpose of postponing the current computation to a later moment (see next

paragraph for details). The returned λ-term is not to be confused with a HFL λ-expression,

but should be interpreted as an anonymous function in the implementing programming

language. It has to be read as a lazy evaluation of MC-HFL(ψ, [], η) which will only be

evaluated in the context of a later function application or maybe even not at all. If it

is never touched again and remains unevaluated, this means that it only occurred as an

argument in a higher-typed function.

Note however that in a real implementation it has to be type-consistent with the “eval-

uated” return types of MC-HFL. This problem could for instance be solved by using an

abstract data type encapsulating both evaluated and unevaluated return types adequatly.

Our algorithm transcipt is a concession to presentation clarity and therefore omits this

level of detail.

Step-by-Step Explanation:

• (Propositional and modal formulas) The first four cases are concerned with propo-

sitional and modal formulas of primitive type. Propositions q are immediately eval-

uated according to the labels in the LTS, the rest result in recursive evaluations of

subformulas w.r.t. the demands of the operators ¬,∨, 〈a〉.

• (Function application, λ-abstractions and λ-bound variables) Any occurring λ-bound

variable X is assumed to have been bound earlier and its value stored in the en-

vironment η. Its bound value η(X) is returned. Function application ψ1 ψ2 is

treated by recursive evaluation of ψ2 which is put into the argument list of the

recursive MC-HFL-call of ψ1. If in case of a formula λ(X : τ).ψ, the list of argu-

ments [f1, ..., fk] is empty, its denotation is currently not needed and its computa-

tion postponed until arguments are provided. This is expressed by the return value

λ(f : τ).MC-HFL(ψ, [], η{X 7→ f}), not to be confused with a HFL λ-expression, but

interpreted as an anonymous function in the implementing programming language

(see previous paragraph for details). If the list of arguments is not empty, then X

is bound to the first argument f1 provided and MC-HFL is called recursively on the

body of the expression.

5.5 Model Checking 127

• (Fixpoint computation and µ, ν-bound variables) The fixpoint computation is lo-

calised and performed on needed values only: if no arguments are provided and

x is not of primitive type, its denotation is currently not needed and the fixpoint

approximation postponed. Otherwise, the first fixpoint approximant is initialised

according to least or greatest fixpoint type with ⊥τn or ⊤τn , so far realised as the

partial function x which is only defined at [f1, ..., fk]. The repeat-loop updates x in

the line η(x) := η(x){[f ′
1, ..., f

′
k] 7→ MC-HFL(ψ, [f ′

1, ..., f
′
k], η)} and computes the ap-

proximants on the currently defined domain of x. It stops on two conditions: no fresh

arguments enter dom(η(x)) and the approximation stabilises. Then the computed

value of x at the original arguments [f1, ..., fk] is returned.

The case of µ- and ν-bound variables x is similar to λ-bound variables. Either x is

defined at the arguments in which case its value is returned, or it is undefined. This

is the case, where a fresh argument enters dom(η(x)) which is initialised with ⊥τn or

⊤τn according to the fixpoint type.

The algorithm MC-HFL improves a naive bottom-up model checker in two ways: by lazy

evaluation of functions without arguments and by demand-driven fixpoint computation.

We demonstrate both features by an example.

Example 18 Consider the formula
(
λ(F : (Pr→ Pr)→ Pr).F (λ(X : Pr→ Pr).X)

) (
µ(y : (Pr→ Pr)→ Pr).λ(G : Pr→ Pr).y G

)
.

The formula does not express anything particularly meaningful but serves our purpose. In

fact it is also independent of the transition system, because its semantics is ff on every

model. So let T be an arbitrary LTS in the following.

The basic structure is that of a function application: the least fixpoint function on the

right hand side (representing the function which maps every function of type Pr → Pr to

the least set of states on which its n-fold application stabilises) is plugged into the function

on the left which takes any function of right type and applies it to the identity function.

After β-reduction, the expression is easily seen to boil down to an application of the fixpoint

function on the identity function. However, this is a valid HFL formula and demonstrates

the usefulness of lazy evaluation.

For reasons of readability, we omit type annotations in the following and do only hint at

the development of the environment η (as side-effects) between calls of MC-HFL. Note

that η contains no bindings initially.

MC-HFL
((
λF.F (λX.X)

) (
µy.λG.y G

)
, []
)

= (1)

128 5. Higher-Order Fixpoint Logic

MC-HFL
(
λF.F (λX.X), [MC-HFL(µy.λG.y G, [])]

)
= (2)

MC-HFL
(
λF.F (λX.X), [λf.MC-HFL(µy.λG.y G, [f])]

)
= . . . (3)

So far, the algorithm has processed the argument of the function λF.F (λX.X) which

is a least fixpoint of a second-order function for which no argument has been provided.

This leads to a delay of the actual computation of the fixpoint in line 3 where just the

anonymous function λf.MC-HFL(µy.λG.y G, [f]) is returned which passes on its argument

to the fixpoint function: it is lazily evaluated and merely serves as a symbolic placeholder.

. . . =

MC-HFL
(
F (λX.X), []

)
= (4)

η := η{F 7→ λf.MC-HFL(µy.λG.y G, [f])} (5)

MC-HFL
(
F, [MC-HFL(λX.X)]

)
= (6)

MC-HFL
(
F, [λg.MC-HFL(X, [])]

)
= (7)

η := η{X 7→ g)} . . . (8)

In line 4− 5, the variable F is bound to the fixpoint function. The following lines demon-

strate yet another lazy evaluation, this time of the identity function which has no arguments

either.

. . . =

MC-HFL
(
λf.MC-HFL(µy.λG.y G, [f]), [λg.MC-HFL(X, [])]

)
= (9)

MC-HFL
(
MC-HFL(µy.λG.y G, [λg.MC-HFL(X, [])]), []

)
. (10)

Lines 9−10 perform a β-reduction on the level of the programming language (as opposed to

the level of HFL expressions) and show the whole benefit of the evaluation delay: instead of

computing the whole function, we now just have to compute the function at an argument

which was formerly hidden in the formula structure. The rule of thumb here is simply that

every function with an argument is computed immediately but restricted to that argument

while the computation of functions without arguments is delayed. This is justified by the

observation that every well-formed HFL formula sooner or later breaks down any higher-

order construct to primitive type Pr. We exclude the computation of the fixpoint here

since the next example will demonstrate this improvement on a more suitable function.

We just state as a fact here that (µy.λG.y G)(λg.MC-HFL(X, [])) = ∅ (the identity function

stabilises on every argument after one self-application and the least argument of primitive

type on which this happens is ∅).

5.5 Model Checking 129

X {3} {2, 3} {1, 2, 3}

0 ∅

1 {3} ∅

2 {3} {2, 3} ∅

3 {2, 3} {2, 3} {1, 2, 3}

4 {2, 3} {1, 2, 3} {1, 2, 3}

5 {1, 2, 3} {1, 2, 3} {1, 2, 3}

6 {1, 2, 3} {1, 2, 3} {1, 2, 3}

0 1 2 3b

b

a a

aa

b

q q

b

b

q

Figure 5.5: Algorithm MC-HFL running on a simple example.

Example 19 For the demonstration of fixpoint computation on demand, consider the

formula
(
µ(x : Pr→ Pr).λ(Z : Pr).Z ∨

∨

a∈Σ

x [a]Z
)
¬q

and the transition system shown on the right side in Fig. 5.5. Intuitively, ϕ asserts that

there is a sequence of actions s.t. all paths under that sequence lead to a state not satisfying

q. States 1, 2, 3 satisfy this property, state 0 does not. However, the meaning of this formula

is irrelevant for the understanding of how it is evaluated by algorithm MC.

The table on the left of Fig. 5.5 shows the successive calculation of the semantics of the

fixpoint formula. Although only two rows need to be stored in each iteration step – the

current one and the last one for comparison – we depict all stages in this example for the

reader to be be able to follow this step-by-step.

At the beginning, the formula ¬q is evaluated to {3}. This forms the initial argument in

the table. It is to be read as follows: time proceeds line by line from left to right. Each row

below the arguments contains a snapshot of the current state at the end of an iteration

over the current domain. Note that in general fixpoint approximants cannot easily be

read off the table since different columns may be at different stages of approximation. As

computation proceeds, arguments are added to the list.

Row 6 then represents a partial function that agrees with the total function that is the

semantics of the corresponding fixpoint formula. The return value is the one in the first

column – the value of the fixpoint function applied to the original argument.

These improvements do of course not affect the worst-case complexity of the HFL model

checking problem. Instead, they allow for better best- and average-case complexities which

otherwise would just be the same as the worst-case complexity. In Section 5.5.4, we give

empirical evidence that the improvements have significant influence on the performance of

130 5. Higher-Order Fixpoint Logic

the model checking algorithm and make it feasible in practice in the first place (of course

only for lower-order fragments of HFL).

5.5.3 Soundness and Completeness

We will now prove that MC-HFL correctly computes the semantics of any well-formed

formula of HFL. In order to do so, we need to relate the environment used in MC-HFL

which maps variables to partially defined functions (which we will call shortly “partial

environments”) with the environment of HFL term semantics which contains only total

functions (which we call “HFL environments”).

Definition 49 Let f : τ0 → . . .→ Pr be a partial function on HFL types. Define ∇(f) as

the set of all total functions which agree with f on all arguments on which f is defined, i.e.

g ∈ ∇(f) iff for all x ∈ dom(f): g(x) = f(x) and g is total. We overload the ∇-operator

to be applicable also for partial environments η. Its meaning is that if η(X) = f then for

all η′ ∈ ∇(η): η′(X) ∈ ∇(f).

Theorem 69 For all transition systems T , all partial environments η, HFL environments

η′ ∈ ∇(η) and all well-formed formulas ϕ ∈ HFL we have: MC-HFL(ϕ, [], η) = [[ϕ]]Tη′ .

We cannot prove this theorem directly: the statement is too weak as an inductive invariant

because of subformulas of type other than Pr.

We will instead prove the following stronger statement, from which the above theorem

follows immediately.

Lemma 33 For all transition systems T , all partial environments η, HFL environments

η′ ∈ ∇(η) all sequences of arguments [f1, . . . , fk] (consisting of valid HFL types) and all

(not necessarily closed) well-formed terms ϕ ∈ HFL we have:

MC-HFL(ϕ, [f1, . . . , fk], η) = [[ϕ]]Tη′([f1, . . . , fk]).

Proof We show the claim by induction on the structure of the formula ϕ. Let ϕ be a

term, η be a partial environment that maps any free variable in ϕ to a (possibly partial)

function and fi be a valid HFL type over a transition system T for all 1 ≤ i ≤ k.

The propositional and modal part. The statement is immediately seen to be true for

the case of ϕ = q for some q ∈ P. It also follows directly from the hypothesis in the cases

ϕ = ψ1 ∨ ψ2, ϕ = 〈a〉ψ and ϕ = ¬ψ . Note that in all these cases, ψ, ψ1 and ψ2 must have

type Pr. Hence, the argument list [f1, . . . , fk] must in fact be empty.

5.5 Model Checking 131

The functional part. Now consider ϕ = X, where X is a λ-,µ- or ν-bound variable:

the call of MC-HFL(X, [f1, . . . , fk], η) returns in any case η(X)([f1, . . . , fk]) which agrees

with [[X]]Tη′([f1, . . . , fk]) by definition of the semantics and the definition of ∇.

Now consider the case ϕ = λ(X : σ).ψ of type σ → τ . Note that ϕ cannot be of primitive

type Pr, i.e. it takes an argument.

We distinguish according to the two cases in MC-HFL, namely that

• an argument is provided in the list. Then MC-HFL(ϕ, [f1, . . . , fk], η) evaluates to

MC-HFL(ψ, [f2, . . . , fk], η{X 7→ f1}) which by I.H. is [[ψ]]Tη{X 7→f1}
([f2, . . . , fk]). This

is in turn equivalent to [[λ(X : σ).ψ]]Tη′([f1, . . . , fk]) by a β-reduction in which X is

overridden in η′ and bound to f1.

• no argument is provided. Then the call is MC-HFL(ϕ, [], η) and the return value is

λ(y : σ).MC-HFL(ψ, [], η{X 7→ y}), i.e. a function which for any argument y of type

[[σ]]T yields by I.H. the value [[ψ]]Tρ{X 7→y}([]) of type τ . But this is exactly [[ϕ]]Tη′([]).

Note again, that X is overridden in η′.

The case of function application ϕ = ψ1 ψ2 is simple:

MC-HFL(ψ1 ψ2, [f1, . . . , fk], η) = MC-HFL(ψ1, [MC-HFL(ψ2, [], η), f1, . . . , fk], η). By I.H.,

we have MC-HFL(ψ2, [], η) = [[ψ2]]
T
η′([]) and therefore MC-HFL(ψ1ψ2, [f1, . . . , fk], η) =

MC-HFL(ψ1, [[[ψ2]]
T
η′ , f1, . . . , fk], η) which by I.H. is [[ψ1]]

T
η′([[[ψ2]]

T
η′ , f1, . . . , fk]).

The only cases posing difficulties are those of ϕ = σX.ψ for σ ∈ {µ, ν}. Here it is helpful

to prove soundness (direction “⊆”) and completeness (direction “⊇”) separately. However,

the soundness proof for the µ-case is entirely analogous to the completeness proof of the

ν-case and vice-versa. Thus, we only present soundness and completeness of the µ-case

here.

Soundness of the µ-part. Consider the following call of the model checking algorithm:

MC-HFL(µ(x : τ1 → . . . τk+1).ψ, [f1, . . . , fk], η). Here we have to take into account that the

environment may contain partially defined functions. Thus we have to prove the following

statement:

∀[f ′
1, . . . , f

′
k] ∈ dom(η(x)) : η(x)([f ′

1, . . . , f
′
k]) ⊑ [[µ(x : τ1 → . . . τk+1).ψ]]Tη′([f

′
1, . . . , f

′
k]). (I)

The algorithm distinguishes two cases.

132 5. Higher-Order Fixpoint Logic

• If [f1, . . . , fk] = [] and the type of x is not Pr, i.e. x is a function with no argu-

ments supplied, the algorithm returns a dummy function and postpones the fixpoint

computation until arguments are provided. Formally, after β-reduction, the returned

function is the same as MC-HFL(µ(x : τ1 → . . . τk+1).ψ, [f1, . . . , fk], η). Note that

since dom(η(x)) = ∅, statement (I) trivially holds.

• In case the arguments have been provided, i.e. [f1, . . . , fk] 6= [] or x is of primitive type

Pr, statement (I) is in fact an invariant of the repeat-loop in Algorithm MC-HFL.

It trivially holds before the loop because dom(η(x)) = {[f1, . . . , fk]} only, and η(x)

maps this tuple to the bottom element of τk+1.

Furthermore, if statement (I) holds at the beginning of one iteration of the repeat-

loop then it also holds after this iteration. This is simply a consequence of monotonic-

ity, the hypothesis, and the fact that [[µ(x : τ1 → . . . τk+1).ψ]]Tη′ is a unique fixpoint of

ψ w.r.t. ⊑: if we have η(x)([f ′
1, . . . , f

′
k]) ⊑ [[µ(x : τ1 → . . . τk+1).ψ]]Tη′([f

′
1, . . . , f

′
k]) for

all such tuples then, by monotonicity and the definition of the pointwise inclusion

ordering, we also have [[ψ]]Tη′{x 7→η(x)} ⊑ [[ψ]]Tη′{x 7→[[µ(x:τ1→...τk+1).ψ]]T
η′
}. Now note that the

latter is (because it is a fixpoint) equal to [[µ(x : τ1 → . . .→ τk+1).ψ]]Tη′ .

And the former is, by hypothesis, the value of η(x) on all arguments in dom(η(x))

at the end of this repeat-loop iteration (note that η(x) is updated with the value of

MC-HFL(ψ, [f ′
1, . . . , f

′
n−1], η) for all [f ′

1, . . . , f
′
n−1] ∈ dom(η(x))).

This implicitly shows that – on finite transition systems – the loop eventually terminates.

Since dom(η(x)) at most grows in each iteration, we have [f1, . . . , fk] ∈ dom(η(x)) at

termination point, and the soundness part of Lemma (33) immediately follows from the

fact that (I) holds at this point.

Completeness of the µ-part. We will prove this part using fixpoint induction. For any

two functions f, g of type τ1 → . . .→ τk+1 and a set D ⊆ τ1 × . . .× τk, we write

f ⊑D g iff for all [a1, . . . , ak] ∈ D : f([a1, . . . , ak]) ⊑ g(a1, . . . , ak]).

Now consider again the call MC-HFL(µx.ψ, [f1, . . . , fk], η). Let D := dom(η(x)) upon

termination of the repeat-loop. An immediate consequence of the induction hypothesis

for ψ is the following:

[[ψ]]Tη′{x 7→f} ⊑D η(x). (II)

5.5 Model Checking 133

for any function f ∈ ∇(η(x)). This is because the repeat-loop is iterated on the whole of

D until stability is reached, i.e. until MC-HFL(ψ, [f ′
1, . . . , f

′
k], η) = η(x)([f ′

1, . . . , f
′
k]) holds

for all [f ′
1, . . . , f

′
k] ∈ D. By I.H. [[ψ]]Tη′([f

′
1, . . . , f

′
k]) ⊑ MC-HFL(ψ, [f ′

1, . . . , f
′
k], η) for all

[f ′
1, . . . , f

′
k]. Hence for all [f ′

1, . . . , f
′
k] ∈ D we also have [[ψ]]Tη′([f

′
1, . . . , f

′
k]) ⊑ η(x)([f ′

1, . . . , f
′
k])

and from this follows the claim by definition of ⊑D.

We now extend the function η(x) to a function η⊤(x) in the following way.

η⊤(x)([f ′
1, . . . , f

′
k]) :=




η(x)([f ′

1, . . . , f
′
k]) , if [f ′

1, . . . , f
′
k] ∈ D.

⊤τk+1
, otherwise.

Now note that we have

[[ψ]]Tη′{x 7→η⊤(x)} ⊑ η⊤(x).

i.e. the function on the right subsumes the one on the left on all arguments. For arguments

in D this is stated in (II) above. For all other arguments this is trivially true by the

construction of η⊤(x). But then η⊤(x) is a pre-fixpoint of ψ and, hence, we have [[µx.ψ]]Tη′ ⊑

η⊤(x). In particular, the inclusion holds for all argument tuples in D. Since the domain

of η(x) at most grows in each iteration of the repeat-loop, we have [f1, . . . , fk] ∈ D and

therefore [[µx.ψ]]Tη′([f1, . . . , fk]) ⊑ MC-HFL(µx.ψ, [f1, . . . , fk], η) which finishes the proof.2

5.5.4 Applications and Evaluation in Practice

The expressive power of HFL allows to encode numerous interesting problems as model

checking instances. This section covers the encoding of the following problems: NFA

universality (NFA-UNIV), Quantified Boolean Formulas (QBF), Satisfiability of modal

logic K (K -SAT) and Shortest Common Supersequence (SCS). All of these problems can

already be encoded in HFL1.

A possible benefit of studying such encodings is to extract formerly unknown algorithms

for these problems by analysing the behaviour of the optimised model checker. The justi-

fication for this potential lies in the unusual, yet very succinct problem formulation which

HFL imposes upon the “programmer”. It is fair to say that it is not common practice

among programmers to think of methods and routines as fixpoints of concrete functions.

This however is the only recursion device which is offered by HFL. In this regard we will

use HFL as an extremely succinct programming language in this section and demonstrate

the validity of the claim that HFL can be a valuable tool for designing new and original

algorithms which at least in case of NFA-UNIV and SCS are competitive to known ones.

134 5. Higher-Order Fixpoint Logic

NFA Universality

We start by picking NFA-UNIV to demonstrate how encoding a problem as a model check-

ing instance can lead to an efficient solution. In fact, we have already introduced the

encoding in Example 19 without mentioning it.

Recall the model in Example 19. If the proposition q is interpreted as a flag for being

a final state then the whole model can easily be viewed as an NFA. In this context the

formula

ϕNFA :=
(
µ(x : Pr→ Pr).λ(Z : Pr).Z ∨

∨

a∈Σ

x [a]Z
)
¬q

translates to ”there is a word w, s.t. all states reachable under w are non-final”. NFA-

UNIV is solved by checking whether or not the starting state satisfies this formula. This

problem suits well to practically evaluate the behaviour of our model checking algorithm

since we can easily generate random NFA instances upon which the formula is model

checked.

Local Fixpoint Computation in Practice We now give empirical evidence of the

benefits of local fixpoint computations and demonstrate that the necessity to compute

larger fragments of the complete domain rarely occurs. Algorithm MC-HFL has been

implemented as a prototype2 in OCaml and run on the following random model for NFAs

(by [TV05]) in order to guarantee a wide spectrum of test cases: two parameters s and

t determine the number of randomly chosen final states and transitions in an NFA w.r.t.

the total number of states n. The ratios f := s
n

and r := t
n

are called final state density

and transition density respectively. To perform the universality tests, we fix n = 10 and

generate 20 random NFAs for each of 250 pairs (r, f) with 0 ≤ r ≤ 2.5 and 0 ≤ f ≤ 1.

The average number of arguments needed in the fixpoint computation by algorithm MC-HFL

in dependence of (r, f) is depicted in Fig. 5.6. Note that the number of possible arguments

|2S| is 1024 in this case. Fig. 5.6 shows that in all cases the algorithm is far away from

exhaustive fixpoint calculation on the full argument set 2S . Even for the most difficult

instances which in our tests are f = 0.1 and r between 1.4 and 1.6, the number of needed

arguments never gets anywhere near that. The average number of arguments distributed

over all 5000 tests is just 13.2 and the highest number of arguments ever measured during

the tests is 109.

2see http://www2.tcs.ifi.lmu.de/~axelsson/veri non reg/mchfl tool doc.html

5.5 Model Checking 135

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

 0
 0.5

 1
 1.5

 2
 2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

Avg. number of arguments

Transition density (r)

Density of final states (f)

Avg. number of arguments

Figure 5.6: Number of arguments in function table (n = 10).

It is reasonable to assume that the approach of guiding the fixpoint iterations locally

through neededness analysis also proves to be successful in other cases (on different for-

mulas) unless the underlying models have been constructed pathologically to enforce an

exponential behaviour.

Optimising Algorithm MC-HFL w.r.t. a Fixed Formula There are still several

standard performance enhancements available, e.g. acceleration of the fixpoint computa-

tion by exploiting monotonicity, in order to optimise this algorithm.

However, we need to observe that algorithm MC-HFL will be used on fixed formulas

in most cases. In many verification tasks the property to be checked is fixed while the

models change. This holds especially for non-regular properties since non-regularity often

eliminates dependence on model sizes, etc. It is therefore much more beneficial to regard

MC-HFL as a template for specialised cases rather than a general algorithm for all kinds of

verification purposes. Model checking a fixed formula bears a higher potential for algorithm

optimisations which possibly cannot be achieved for varying formulas.

Consider the algorithm’s behaviour on the formula of Ex. 19 as depicted in the table there.

If we follow the succession of the fixpoint iteration closely, a simple pattern can be observed:

the iterated function λY.Y ∨
∨
a∈ΣX [a]Y takes an argument (initially the set [[¬q]]A) and

returns its union with the set of its recursive [a]-predecessors for all a ∈ Σ. But this set

is exactly the union of the elements of dom(x), each of them the result of a single [a]Y

136 5. Higher-Order Fixpoint Logic

computation step. So the return value does not provide any additional information if the

set of needed arguments is known. Furthermore, since only a union operation is performed,

it suffices to keep track of ⊆-maximal sets of arguments. This insight immediately leads to

an optimisation by discarding all redundant information. It is obviously not necessary to

protocol all these values in the fixpoint iterations – when in the end all we want to know is

whether or not the initial automaton state is included in the union over all arguments. It

suffices to iterate this schema until no more arguments enter the table, and then to form

their unions. This, however, means that, by monotonicity of the [a]-operators, one can

always discard the larger of two arguments that are comparable w.r.t. ⊆ which leads to

the idea of storing dom(x) as an antichain.

An antichain over an NFA A is a set C of pairwise incomparable (w.r.t. set inclusion) sets

of states of A. These antichains form a complete lattice when equipped with the following

order:

C ⊑ C′ iff ∀C ∈ C ∃C ′ ∈ C′ s.t. C ⊆ C ′.

This naturally induces a notion of supremum C ⊔ C′ as the smallest antichain (w.r.t. ⊑)

which contains both C and C′.

The basic principle of the optimization is to populate an antichain with sets of states

which uphold the possibility of generating a word that is not included in the language of

the automaton. This can be achieved by loosely speaking applying the modal [a]-operator

(for all a ∈ Σ) to its elements and minimizing the resulting set to an antichain. More

formally, define the following monotone operation on antichains:

CPre(C) := ⌈{S ⊆ Q | ∃T ∈ C ∃a ∈ Σ s.t. S = [[[a]X]]A{X 7→T}}⌉

where the ⌈·⌉ operator discards all sets which are subsumed by another set in this set of

sets – i.e. it makes an antichain of the expression on the right-hand side.

This is exactly the idea which Henzinger et al. have in mind when they characterise NFA-

UNIV using least fixpoints in antichain lattices in [WDHR06].

Lemma 34 ([WDHR06]) Let A be an NFA over the alphabet Σ with state set Q, initial

state q0 and final states F . Then

L(A) 6= Σ∗ iff {{q0}} ⊑
l
{C | CPre(C) ⊔ {Q \ F} ⊑ C}.

Of course, the least fixpoint can be computed by a straight-forward fixpoint iteration:

Define C0 := {∅} and Ci := CPre(Ci−1)⊔{Q\F}. The following table compares in parallel

5.5 Model Checking 137

two runs of MC-HFL and the antichain method on Ex. 19:

X {3} {2, 3} {1, 2, 3}

0 ∅

1 {3} ∅

2 {3} {2, 3} ∅

3 {2, 3} {2, 3} {1, 2, 3}

4 {2, 3} {1, 2, 3} {1, 2, 3}

5 {1, 2, 3} {1, 2, 3} {1, 2, 3}

6 {1, 2, 3} {1, 2, 3} {1, 2, 3}

C0 := {∅}

C1 := CPre(C0) ⊔ {Q \ F} = {{3}}

C2 := CPre(C1) ⊔ {Q \ F} = {{2, 3}}

C3 := CPre(C2) ⊔ {Q \ F} = {{1, 2, 3}}

C4 := CPre(C3) ⊔ {Q \ F} = {{1, 2, 3}}

The cost reduction of the antichain method is established by the fact that it simply com-

putes ⌈dom(x)⌉, i.e. the antichain of the currently present arguments. One can show

that ⌈dom(xi)⌉ = Ci+1, where dom(xi) is the currently needed domain of the ith fixpoint

approximant w.r.t. a given argument and a partial evaluation according to MC-HFL.

It turns out that the result of this optimisation is exactly the method devised by Henzinger

et al. in [WDHR06]. Their tool shows a very good performance on the universality test

for NFAs and does apparently outperform the classical powerset construction by several

orders of magnitude.

Quantified Boolean Formulas

By not just restricting the term “model checking” to a method used in automatic program

verification but understanding it as a general logic problem we can obtain algorithms for

various other problems as well. Note that NFA-UNIV is PSPACE-complete, and it is

therefore reasonable to try to encode the standard PSPACE-complete problem QBF as an

HFL1 model checking problem.

It is well-known that every quantified Boolean formula can be put into prenex CNF normal

form Q1x1. . . . Qnxn.
∧
i

∨
ji
li,ji with the Qk ∈ {∃, ∀}, and the li,ji literals over the variables

x1, . . . , xn. The problem QBF is to decide whether or not such a formula evaluates to 1

under the usual interpretation of the Boolean operators and the quantifiers over the domain

{0, 1}.

With each QBF formula Φ we associate a loop-free transition system TΦ which is exemplar-

ily shown in Fig. 5.7 for Φ = ∃x1.∀x2.∃x3.∀x4.(x2∨¬x4)∧(x1∨¬x3∨x4)∧(¬x1∨¬x2∨x3).

It uses atomic propositions ∃, ∀ to mark the type of quantification over a variable, c to

138 5. Higher-Order Fixpoint Logic

0

1
0

1

1

11

0

0

1

1

0

0, 1 0, 1 0, 1

0, 10, 1

0, 1 0, 1 0, 1

0, 1

∀∃

1

1

1

0

0

0, 1 0, 1

1

0

”x2 ∨ ¬x4””∃x1.∀x2.∃x3.∀x4”

∃ ∀

0, 1

”x1 ∨ ¬x2 ∨ ¬x3” ”x1 ∨ ¬x3 ∨ x4”

c

Figure 5.7: A transition system representation of a QBF formula.

indicate the branching into the different clauses, and 1 to mark the value of a clause under

an assignment valuation given by a path through each clause’s component. Its actions are

0 and 1 for representing variable values, and an anonymous one for branching into different

clauses and for separating the quantifiers in the prefix.

Evaluation to 1 of Φ can now be expressed in HFL1 as follows.

ϕQBF :=
(
µ(x : Pr→ Pr).λ(Z : Pr).

(
c→ [−]Z

)
∧
(
∃ → 〈−〉(x 〈0〉Z) ∨ 〈−〉(x 〈1〉Z)

)
∧

(
∀ → 〈−〉(x 〈0〉Z) ∧ 〈−〉(x 〈1〉Z)

))
1

Again, ϕQBF does not depend on the underlying QBF formula Φ. It is therefore possible

to obtain a QBF solver by analysing the behaviour of algorithm MC-HFL on ϕQBF and

specialised transition systems TΦ. For example, it is not hard to see that the fixpoint

iteration always terminates after a number of steps given by the length of the quantifier

prefix. It can therefore be made explicit through a for-loop. Furthermore, antichains can

also be used to replace the arguments of the function table. Preliminary results show that

this is far away from yielding a competitive QBF solver. However, it may be interesting

to investigate combinations of this bottom-up approach with existing solvers that mostly

work top-down.

Encoding the Satisfiability Problem for Modal Logic K

Another important problem that HFL1 can express and that therefore can be solved using

algorithm MC-HFL is the satisfiability problem for modal logic K, extending propositional

logic with the modal operators 3 and 2. For technical reasons and simplicity we assume

modal formulas to be in positive normal form and only consider the uni-modal case.

5.5 Model Checking 139

A tableau for a modal formula Φ is a finite tree whose nodes are labeled with subsets of

sub(Φ), called sequents, s.t. each inner node is an instance of one of the following rules, and

each leaf is consistent, i.e. it does not contain an atomic proposition q and its complement

q̄.

(∧)
ψ1, ψ2,Γ

ψ1 ∧ ψ2,Γ
(∨)

ψi,Γ

ψ1 ∨ ψ2,Γ
i ∈ {1, 2}

(3)
ϕ1, ψ1, . . . , ψm . . . ϕn, ψ1, . . . , ψm

3ϕ1, . . . ,3ϕn,2ψ1, . . . ,2ψm, l1, . . . , lk

where {l1, . . . , lk} must be a consistent set of literals.

We will show that K-SAT, the satisfiability problem for K can be encoded as a model

checking problem for HFL1. With a formula Φ ∈ K we associate a transition system TΦ

with states sub(Φ), the subformulas of Φ. There are five accessibility relations:

• l−→ and r−→ connect each subformula to its immediate superformula marking it as its

left, resp. right argument assuming that the modal operators only have a right one,

• s−→ (for “select”) introduces a linear order on sub(Φ) with Φ being the maximal

element,

• c−→ (for “conflict”) connects all propositions q to their complements q̄ and vice-versa,

• t−→ (for “test”) connects Φ to every other subformula.

Each subformula is labeled with one of p∧, p∨, p3, p2, prop according to the type of the

subformula. Finally, Φ is also labeled with init .

A Γ ⊆ sub(Φ), i.e. a sequent in a tableau, can be represented naturally by an object of type

Pr. The existence of a tableau for Φ can then be encoded by a function of type Pr → Pr

that takes the current sequent, decides which rule to apply and continues recursively with

the corresponding premisses. The relations l−→ and r−→ are used to model subformula

replacement in an application of a tableau rule, and relation s−→ is used to select the

principal formula of the next rule application, i.e. the one determining which rule to apply.

The transition representation of the modal formula Φ = 3(q ∧2q̄)∧2(q̄ ∨3q) is given in

Fig. 5.8. To avoid clutter we do not show the relation t−→ which simply has arcs from the

leftmost state to each other including itself.

Now consider the following formula ϕKSAT :
(
µZτ1 .λX. [t](X → [c]¬X)

140 5. Higher-Order Fixpoint Logic

cs

s

s

s
s

s

s

r

l

l

r

r

r

r

r

p3 propp∧

s

r

l

p3

p2

p2 p∨ prop

p∧

init

Figure 5.8: A transition system representation of a formula in modal logic K.

∧

(
[t](X → prop)

∨
(
[t]
(
(X ∧ ¬prop)→ (p3 ∨ p2)

)
∧

(
νY τ1 .λV.

(
[t](V → X ∧ p3)→

(
Z (〈r〉V ∨ 〈r〉(X ∧ p2))

))

∧
(
[t]¬V ∨ (Y 〈s〉V)

))
init
)

∨
(
µY τ1 .λV. [t]¬V

∨
(
[t](V → X ∧ p∧) ∧

(
Z ((X ∧ ¬V) ∨ 〈l〉V ∨ 〈r〉V)

))

∨
(
[t](V → X ∧ p∨) ∧

(
(Z ((X ∧ ¬V) ∨ 〈l〉V))∨

(Z ((X ∧ ¬V) ∨ 〈r〉V))
))

∨ (Y 〈s〉V)
))

init

))
init .

This formula will be evaluated in state Φ of TΦ. The outer least fixpoint recursion through

variable Z finds a tableau. Variable X represents a sequent in this tableau starting with

Φ, the only node satisfying init . The first line assures that X represents a propositionally

consistent sequent. This is the case iff no element of X has a c-successor in X. Note that

here we use the relation t−→ in order to test in state Φ whether or not something holds in

all states.

Then there are three disjuncts. The first one applies if X consists of propositions only,

hence, a tableau leaf is found. The second disjunct applies if X consists of literals and 3-

and 2-formulas only. Hence, rule (3) needs to be modeled. The inner fixpoint recursion

traverses through the entire set of subformulas starting with Φ. In each iteration, variable

5.5 Model Checking 141

V contains a single node only because the relation s−→ is deterministic. It then checks

whether V consists of a 3-formula in the current sequent X. If this is the case, it calls the

tableau building function Y again and passes it, as the new sequent, the argument of that

3-formula as well as the arguments of all 2-formulas in X.

Finally, the third disjunct models applications of rules (∧) and (∨). Similar to the case

above, there is an inner fixpoint function which recursively selects a Boolean subformula of

the current sequent. This is stored in V . If V consists of a conjunction it gets replaced by

its conjuncts according to rule (∧). This is modeled by calling Y again on the argument

consisting of everything in X without the node in V but adding the r- and l-predecessor

of V . A similar construction applies to model rule (∨) for disjunctions. Note that this rule

is nondeterministic, hence, we call Y with either of two arguments including either of the

two disjuncts.

Then we have, for any formula Φ ∈ K: TΦ,Φ |= ϕKSAT iff Φ is satisfiable.

Shortest Common Supersequence

Some optimisation problems that require more than a yes/no answer can also be dealt with

using an extension of algorithm MC-HFL that keeps track of parts of the solution to be

computed. We sketch a new algorithm for the Shortest Common Supersequence problem

(SCS): given a set {w1, . . . , wn} of finite words of some alphabet Σ, find a shortest v ∈ Σ∗

that contains all wi as subwords. The algorithm is obtained from the template MC-HFL

using an antichain optimisation as in the case of NFA-UNIV.

The first step consists of building a transition system T , here depicted for the words

{aaba, abab, aaa}.

a a b a

a, b a, b

q a a a

a, ba, b

a a, b

q

q

s

a, b b a b

00 10 20 30 40

01 11 21 31 41

02122232

Next, consider the HFL1 formula

ϕSCS :=
(
µ(x : Pr→ Pr).λ(Z : Pr).[−]Z ∨

∨

a∈Σ

x 〈a〉Z
)
q.

Each state in T satisfies ϕSCS which only reflects the fact that for every finite set of words

there is a word containing all of them. However, suppose the arguments in the table for the

142 5. Higher-Order Fixpoint Logic

fixpoint iteration in this formula are annotated in the following way: the initial argument

receives the annotation ǫ, and if an argument Z with annotation w causes another argument

to be created in the table through the recursive call of X 〈a〉Z then the new argument

receives the annotation aw.

Now note the apparent similarity of this formula with the one from Ex. 19 expressing

NFA-UNIV. In both cases the subformulas X ψ(Z) only occur under a disjunction. Hence,

the argument row of the function table can again be optimised into an antichain, and the

evaluation of the formula can be regarded as a fixpoint iteration in an antichain lattice.

It terminates when the topmost state of T occurs in an element of the current antichain,

and that element’s annotation is the solution to the SCS problem.

The computation of the solution aaabab using annotated antichains is found as follows.

Let I := {40, 41, 32}. For a set S we write SwI to abbreviate (S ∪ I)w where the superscript

simply denotes the word annotation of this set.

C0 := {Iǫ}

C1 := {{22, 30}
a
I , {31}

b
I}

C2 := {{22, 21, 30}
ab
I , {22, 12, 30}

aa
I , {31, 20}

ba
I }

C3 := {{22, 21, 30, 10}
aba
I , {22, 12, 02, 30}

aaa
I , {31, 11, 20}

bab
I }

C4 := {{22, 21, 01, 30, 10}
abab
I , {22, 12, 02, 30}

aaaa
I , {22, 12, 30, 00}

aaba
I ,

{02, 31, 20}
baaa
I , {31, 11, 20}

baba
I }

C5 := {{. . .}ababaI , {. . .}abaaaI , {. . .}aaaaaI , {22, 12, 01, 30, 00}
aabab
I ,

{. . .}baabaI , {. . .}baaaaI , {. . .}bababI }

C6 := { . . . , {22, 12, 02, 00, 01}
aaabab
I , . . .}

Finally, since a set containing {00, 01, 02} has been found, s is included in the next iteration,

and the solution is the annotation of this witnessing set.

Chapter 6

Further Work

We have investigated the model-theoretic properties, expressivity and model checking prob-

lem of PDL[L] for arbitrary classes of formal languages L. Some questions regarding its

expressivity are however still open. For instance the question whether the result that

PDL[L] gains additional power from the test operator up to the context-free languages

extends to PDL over more expressive language classes or if the test operator can somehow

be simulated in these fragments.

Clearly, one could also extend PDL[L] with additional operators such as converse or ∆ as

defined in [Str81]. In fact, we have compared the latter to CTL[L] in [ALL+b]. It turns

out that PDL[L] with a ∆-operator is strictly more expressive than CTL[L] for deter-

ministic automata models. Strictness is merely a consequence of the fact that CTL[L] is

not capable of expressing fairness while PDL[L] with ∆ is. The embedding is otherwise

straight-forward. Nondeterministic automata classes are however not generically embed-

dable, except when the automaton class is closed under determinisation, of course. For

instance are CTL[CFL] and PDL[CFL] with ∆ mutually incomparable.

Regarding model checking, the correspondence to the emptiness problem should extend to

PDL[L] with ∆, except that automata models with a Büchi acceptance condition need to

be considered instead of normal ones, since that is basically what the ∆-operator amounts

to.

There are also some open problems regarding the expressivity of CTL[L] . In particular,

we do not know whether CTL[DCFL] � CTL[CFL] holds.

Another idea is that in a similar manner as parametric CTL operators have been adorned

with formal languages, one can think of such extensions for CTL∗. It would be very

interesting to analyse the interplay between logical machinery and formal languages in

144 6. Further Work

such a setting.

On a more general level, we are interested in a unifying logic for all three logical frameworks

presented in this work. Some attempts were made to embed PDL[IL] into HFL but all of

them failed in the end. The problematic case is of course the diamond formula scheme

where the task is to simulate a derivation resulting in a word which coincides with a path

in the model. A direct approach which simulates the derivation relation by a simultaneous

fixpoint using nonterminals as variables in the way demonstrated by the embedding of

PDL[CFL] fails here, because the only way we could see to encode the stack of each

nonterminal was as a list of arguments in some function of the λ-calculus. However, the

encoding of lists in the simply typed λ-calculus does not support the deletion of elements

which corresponds to pop-operations on stacks and hence the whole construction fails.

Another approach was to try to encode the language derivation part of the algorithm used

for the computation of closed paths in HFL. The reasons why this failed were similar and

raise the question whether this is an inherent weakness of HFL. If so, then the question

immediately arises what kind of feature a logic has to support in order to be able to simulate

such behaviour. Or, more generally speaking, to serve as a unifying logic which links

automata classes and logics like MSO links Lµ and finite automata. The correspondence

between temporal logic and automata which exceed the regular or context-free has to our

knowledge never been analysed systematically.

On a more practically oriented level it might be interesting to follow up the matter of

algorithm development via encoding problems as model checking instances of HFL and

to observe the behaviour of the fixpoint approximation in order to gain insight into the

problem and to develop optimised algorithms from this.

Bibliography

[Aho68] Alfred V. Aho. Indexed grammars - an extension of context-free grammars.

Journal of the Association for Computing Machinery, 15(4):647–671, 1968.

[Aho69] Alfred V. Aho. Nested stack automata. Journal of the Association for Com-

puting Machinery, 16(3):383–406, 1969.

[AL07] Roland Axelsson and Martin Lange. Model checking the first order fragment

of higher-order fixpoint logic. In N. Dershowitz and A. Voronkov, editors,

Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and

Reasoning, LPAR’07, volume 4790 of LNCS, pages 62–76, Yerevan, Armenia,

2007. Springer.

[ALLa] Roland Axelsson, Martin Lange, and Markus Latte. Alternating context-free

grammars are conjuctive grammars and vice versa. Submitted for publication

2010.

[ALL+b] Roland Axelsson, Martin Lange, Markus Latte, Matthew Hague, and Stephan

Kreutzer. Extended computation tree logic. Submitted for publication 2010.

[ALS07] Roland Axelsson, Martin Lange, and Rafal Somla. The complexity of model

checking higher order fixpoint logic. Logical Methods in Computer Science,

3(2:7):1–33, 2007.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proc. of the

thirty-sixth annual ACM symposium on Theory of computing, pages 202–211,

New York, NY, USA, 2004. ACM.

[BAMP81] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic of

branching time. In Proc. of the 8th ACM SIGPLAN-SIGACT symposium on

146 BIBLIOGRAPHY

Principles of programming languages, pages 164–176, New York, NY, USA,

1981. ACM.

[Bék84] H. Békic̀. Programming Languages and Their Definition, Selected Papers, vol-

ume 177 of LNCS. Springer, 1984.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown

automata: Application to model-checking. In Proc. 8th Int. Conf. on Concur-

rency Theory, CONCUR’97, volume 1243 of LNCS, pages 135–150. Springer,

1997.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes

with abstraction. Theoretical Computer Science, 37:77–121, 1985.

[Bou96] Pierre Boullier. Another facet of lig parsing. In Proceedings of the 34th annual

meeting on Association for Computational Linguistics, pages 87–94, Morris-

town, NJ, USA, 1996. Association for Computational Linguistics.

[BP81] Francine Berman and Mike Paterson. Propositional dynamic logic is weaker

without tests. Theoretical Computer Science, 16:321–328, 1981.

[BS06] J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic.

Elsevier, 2006.

[Büc60] J. R. Büchi. On a decision method in restricted second order arithmetic. In

Proc. of the Int. Congress on Logic, Methodology and Philosophy of Science,

pages 1–11. Stanford University Press, 1960.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. In Logics of Programs: Workshop, volume 131

of LNCS, pages 52–71, Yorktown Heights, New York, 1981. Springer.

[CS92] Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algo-

rithm for the alternation-free modal mu-calculus. In Proc. of the 3rd Interna-

tional Workshop on Computer Aided Verification, pages 48–58, London, UK,

1992. Springer-Verlag.

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness

in the temporal logic of branching time. Journal of Computer and System

Sciences, 30:1–24, 1985.

BIBLIOGRAPHY 147

[EH86] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revis-

ited: on branching versus linear time temporal logic. Journal of the Association

for Computing Machinery, 33(1):151–178, 1986.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata

and logics of programs (extended abstract). In 29th Annual Symposium on

Foundations of Computer Science, pages 328–337. IEEE, 1988.

[EJ00] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata

and logics of programs. SIAM Journal on Computing, 29(1):132–158, 2000.

[Elg61] C.C. Elgot. Decision problems of finite automata design and related arith-

metics. Transactions of the American Mathematical Society, 98:21–52, 1961.

[Eme87] E. Allen Emerson. Uniform inevitability is tree automaton ineffable. Informa-

tion Processing Letters, 24(2):77–79, 1987.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular pro-

grams. Journal of Computer and System Sciences, 18:194–211, 1979.

[Gaz88] G. Gazdar. Applicability of indexed grammars to natural languages. In

U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic

Theories, pages 69–94. Reidel, Dordrecht, 1988.

[HK99] David Harel and Moshe Kaminsky. Strengthened results on nonregular pdl.

Technical Report MCS99-13, Weizmann Institute of Science, Dept. of Com-

puter Science and Applied Mathmatics, 1999.

[HM80] M. C. B. Hennessy and R. Milner. On observing nondeterminism and concur-

rency. In J. W. de Bakker and J. van Leeuwen, editors, Automata, Languages

and Programming, 7th Colloquium, volume 85 of LNCS, pages 299–309, No-

ordweijkerhout, Netherlands, 1980. Springer-Verlag.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the Association for Computing Machinery, 12(10):576–580, 1969.

[HPS83] David Harel, Amir Pnueli, and Jonathan Stavi. Propositional dynamic logic of

nonregular programs. Journal of Computer Systems and Science, 26(2):222–

243, 1983.

148 BIBLIOGRAPHY

[HR93] David Harel and Danny Raz. Deciding properties of nonregular programs.

SIAM Journal on Computing, 22(4):857–874, 1993.

[HS96] David Harel and Eli Singerman. More on nonregular pdl: Finite models and

fibonacci-like programs. Information and Computation, 128(2):109–118, 1996.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[Jør94] N. Jørgensen. Finding fixpoints in finite function spaces using neededness

analysis and chaotic iteration. In Proc. 1st Int. Static Analysis Symposium,

SAS’94, volume 864 of LNCS, pages 329–345. Springer, 1994.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propo-

sitional mu-calculus with respect to monadic second order logic. In 7th Int.

Conf. on Concurrency Theory CONCUR ’96, pages 263–277, Pisa, Italy, 1996.

[Koz82] Dexter Kozen. Results on the propositional µ-calculus. In 9th Int. Colloquium

on Automata, Languages and Programming, volume 140 of Lecture Notes in

Computer Science, pages 348–359. Springer, 1982.

[Koz88] Dexter Kozen. A finite model theorem for the propositional -calculus. Studia

Logica, 47:233–241, 1988.

[KP83] T. Koren and A. Pnueli. There exist decidable context free propositional

dynamic logics. In Logic of Programs, volume 164 of Lecture Notes in Computer

Science, pages 290–312. Springer, 1983.

[Kri63] S.A. Kripke. Semantical analysis of modal logic i - normal modal propositional

calculi. Zeitschrift fr mathematische Logik und Grundlagen der Mathematik,

9:67–96, 1963.

[Lan02] Martin Lange. Local model checking games for fixed point logic with chop.

In Lubos Brim, Petr Jancar, Mojmı́r Kret́ınský, and Antońın Kucera, editors,

13th International Conference on Concurrency Theory, volume 2421 of Lecture

Notes in Computer Science, pages 240–254. Springer, 2002.

[Lan05] M. Lange. Model checking propositional dynamic logic with all extras. Journal

of Applied Logic, 4(1):39–49, 2005.

BIBLIOGRAPHY 149

[Lan10] Martin Lange. A ptime-hardness proof for emptiness of visibly pushdown lan-

guages. http://www2.tcs.ifi.lmu.de/˜mlange/papers/emptinessvpl.pdf, 2010.

[LLS07] C. Löding, C. Lutz, and O. Serre. Propositional dynamic logic with recursive

programs. Journal of Logic and Algebraic Programming, 73(1-2):51–69, 2007.

[LS02] Martin Lange and Colin Stirling. Model checking fixed point logic with chop.

In 5th International Conference on Foundations of Software Science and Com-

putation Structures, volume 2303 of Lecture Notes in Computer Science, pages

250–263. Springer, 2002.

[LS06] Martin Lange and Rafal Somla. Propositional dynamic logic of context-

free programs and fixpoint logic with chop. Information Processing Letters,

100(2):72–75, 2006.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite

automaton. Information and Control, 9(5):521–530, 1966.

[MO99] M. Mueller-Olm. A modal fixpoint logic with chop. In Christoph Meinel

and Sophie Tison, editors, Proc. 16th. Symposium on Theoretical Aspects in

Computer Science, STACS’99, volume 1563 of LNCS, pages 510–520, Trier,

Germany, 1999. Springer.

[Mor89] E. Moriya. A grammatical characterization of alternating pushdown automata.

Theoretical Computer Science, 67(1):75–85, 1989.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems Specification. Springer, 1992.

[NST01] Naoya Nitta, Hiroyuki Seki, and Yoshiaki Takata. Security verification of

programs with stack inspection. In SACMAT, pages 31–40, 2001.

[Okh01] A. Okhotin. Conjunctive grammars. Journal of Automata, Languages and

Combinatorics, 6(4):519–535, 2001.

[Ott06] Martin Otto. Bisimulation invariance and finite models. January 2006.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science, pages 46–57. IEEE, 1977.

150 BIBLIOGRAPHY

[Pra80] Vaughan R. Pratt. A near-optimal method for reasoning about action. Journal

of Computer and System Sciences, 20(2):231–254, 1980.

[Pri57] A.N. Prior. Time and modality, 1957.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on

infinite trees. Transactions of the American Mathematical Society, 141:1–35,

1969.

[Sch02] Ph. Schnoebelen. The complexity of temporal logic model checking. In 4th

Conference on Advances in Modal logic, pages 393–436. King’s College Publi-

cations, 2002.

[Str81] Robert S. Streett. Propositional dynamic logic of looping and converse. In

Proc. of the Thirteenth Annual ACM Symposium on Theory of Computation,

pages 375–383. ACM, 1981.

[TK07] S. Tanaka and T. Kasai. The emptiness problem for indexed language is

exponential-time complete. Systems and Computers in Japan, 17(9):29–37,

2007.

[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata

constructions. In Proc. 12th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning, volume 3835 of LNCS, pages 396–411. Springer,

2005.

[vEB97] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,

Logic, and Recursion Theory, volume 187 of Lecture notes in pure and applied

mathematics, pages 331–363. Marcel Dekker, Inc., 1997.

[VsW94] K. Vijay-shanker and D. J. Weir. The equivalence of four extensions of context-

free grammars. Mathematical Systems Theory, 27:27–511, 1994.

[VV04] Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal fixed

point logic. In Philippa Gardner and Nobuko Yoshida, editors, Proc. 15th

Int. Conference on Concurrency Theory, CONCUR’04, volume 3170 of LNCS,

pages 512–528, London, UK, 2004. Springer.

151

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to au-

tomatic program verification (preliminary report). In Symposium on Logic in

Computer Science, pages 332–344. IEEE Computer Society, 1986.

[WDHR06] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new

algorithm for checking universality of finite automata. In Proc. 18th Int. Conf.

on Computer Aided Verification, CAV’06, volume 4144 of LNCS, pages 17–30.

Springer, 2006.

152

Acknowledgment

First of all, I would like to thank my supervisor Martin Lange for his generosity in terms

of time spent with me in the past few years in discussions at the whiteboard and wherever

else. From this I have incredibly profited and it was also great fun. I do also think it was

infinitely more successful than our attempts at fishing from the shore in Denmark which

in fact is quite a weak statement.

Also, he offered me the opportunity to come around in the academic as well as the physical

world from the very beginning, be it conferences, visits or extended stays abroad. Thanks

in this context also to his wife Becky and the kids who made me feel very comfortable and

welcome during my visits in all of the homes they inhabited since I started to work with

Martin.

Thanks to Martin Hofmann for initially making it possible for me to take up a position

at his chair and to get the extra funding after the expiry of the project. Thanks also for

trusting me with the work as an assistant in his lectures. His universal interest in all kinds

of disciplines has always been very inspiring. Sigrid Roden should also be named for her

manifold virtues as the secretary of the chair.

Mogens Nielsen at BRICS is to be thanked for offering me an office during my stay there

and for his help to provide me with a travel grant. Also his invaluable secretary Lene

Kjeldsten did help me in every possible way to get a place to live there and whatever else

was necessary. Thanks to the Friday café and all the nice people there just for doing what

they do every friday.

I would also like to thank Thomas Wilke for agreeing to be the external reviewer of this

thesis.

Thanks to everybody whom I forgot to thank for or did not mention, because I wish to

keep this list within reasonable bounds.

Finally, thanks to Caro, who encouraged me to take up the position in the first place

despite the fact that I was going to leave to Denmark for quite a while.

	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Formal Languages and Automata
	The Chomsky Hierarchy
	Visibly Pushdown Languages
	Indexed Languages
	Linear Indexed Languages
	Alternating Context-Free Languages

	Temporal Logics
	Labeled Transition Systems
	Logic and Program Verification
	Computational Complexity
	Properties of Temporal Logics
	Expressivity
	Propositional Dynamic Logic
	Computation Tree Logic
	The Modal -Calculus
	Non-Regular Logics

	Non-Regular Propositional Dynamic Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	A Generic Method
	A Model Checking Algorithm for PDL over IL
	A Model Checking Algorithm for PDL over MCSL

	Non-Regular Computation Tree Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	Model checking EU[PDA]
	Model checking ER[DPDA]

	Higher-Order Fixpoint Logic
	Syntax and Semantics
	Examples
	Properties
	Expressivity
	Model Checking
	A Standard Fixpoint-Approximation Algorithm
	A Model Checker Using Neededness Analysis
	Soundness and Completeness
	Applications and Evaluation in Practice

	Further Work
	Bibliography

	Acknowledgment

