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Abstract

Most temporal logics which have been introduced and studidd the past decades can be
embedded into the modalL . This is the case for e.g. PDL, CTL, CTL, ECTL, LTL,
etc. and entails that these logics cannot express non-reguprogram properties. In recent
years, some novel approaches towards an increase in expvespower have been made:
Fixpoint Logic with Chop enrichesL with a sequential composition operator and thereby
allows to characterise context-free processes. The Modtdrhtion Calculus uses in ation-
ary xpoints to exceed the expressive power df . Higher-Order Fixpoint Logic (HFL)
incorporates a simply typed -calculus into a setting with extremal xpoint operators ard
even exceeds the expressive power of Fixpoint Logic with GhoBut also PDL has been
equipped with context-free programs instead of regular ose

In terms of expressivity there is a natural demand for richeframeworks since program
property speci cations are simply not limited to the regula sphere. Expressivity however
usually comes at the price of an increased computational cptaxity of logic-related deci-

sion problems. For instance are the satis ability problemdor the above mentioned logics
undecidable. We investigate in this work the model checkingroblem of three di erent log-

ics which are capable of expressing non-regular program pesties and aim at identifying

fragments with feasible model checking complexity.

Firstly, we develop a generic method for determining the copfexity of model checking
PDL over arbitrary classes of programs and show that the boed to undecidability runs
between PDL over indexed languages and PDL over context-s#tive languages. It is
however still in PTIME for PDL over linear indexed languagesind in EXPTIME for PDL
over indexed languages. We present concrete algorithms wahhiallow implementations of
model checkers for these two fragments.

We then introduce an extension of CTL in which theuntil - and release operators are
adorned with formal languages. These are interpreted ovealeled paths and restrict
the moments on such a path at which the operators are satis ed The until -operator



is for instance satis ed if some path pre x forms a word in thelanguage it is adorned
with (besides the usual requirement that until that moment sme property has to hold
and at that very moment some other property must hold). Again we determine the
computational complexities of the model checking problenfsr varying classes of allowed
languages in either operator. It turns out that either enabhg context-sensitive languages
in the until or context-free languages in theelease operator renders the model checking
problem undecidable while it is EXPTIME-complete for inderd languages in theuntil
and visibly pushdown languages in theelease operator. PTIME-completeness is a result
of allowing linear indexed languages in thantil and deterministic context-free languages
in the release We do also give concrete model checking algorithms for sealeinteresting
fragments of these logics.

Finally, we turn our attention to the model checking problemof HFL which we have
already studied in previous works. On nite state models it§ KEXPTIME -complete for
HFLX, the fragment of HFL obtained by restricting functions in the -calculus to orderk.
Novel in this work is however the generalisation (from the st-order case to the case for
functions of arbitrary order) of an idea to improve the best ad average case behaviour of
a model checking algorithm by using partial functions durig the xpoint iteration guided
by the neededness of arguments. This is possible, because semantics of a closed HFL
formula is not a total function but the value of a function at me argument. Again, we
give a concrete algorithm for such an improved model checkand argue that despite the
very high model checking complexity this improvement is vgruseful in practice and gives
feasible results for HFL with lower order fuctions, backedpuby a statistical analysis of
the number of needed arguments on a concrete example.

Furthermore, we show how HFL can be used as a tool for the despient of algorithms. Its
high expressivity allows to encode a wide variety of problesras instances of model checking
already in the rst-order fragment. The rather unintuitive { yet very succinct { problem
encoding together with an analysis of the behaviour of the ale sketched optimisation
may give deep insights into the problem. We demonstrate thisn the example of the
universality problem for nondeterministic nite automata, where a slight variation of the
optimised model checking algorithm yields one of the best &wn methods so far which
was only discovered recently.

We do also investigate typical model-theoretic propertiefor each of these logics and com-
pare them with respect to expressive power.



Zuasmmenfassung

Die meisten Temporallogiken, welche in den vergangenen Jaéhnten eingefahrt und von
der Forschung benacksichtigt wurden, lassen sich in den rdalen -Kalksl einbetten. Dies

betrit z.B. PDL, CTL, CTL , ECTL, LTL, etc. und beinhaltet, dass diese Logiken nicht
dazu in der Lage sind, nicht-regulare Programmeigenschieh auszudmacken.

In den letzten Jahren wurden allerdings eine Reihe ausdrisirkerer Logiken entwickelt:
Fixpoint Logic with Chop erweitert den -Kalkdl um einen Operator far sequentielle Kom-
position und erlaubt es dadurch, logische Charakterisiengen von kontextfreien Prozessen
anzugeben. Im Modal Iteration Calculus fahren in atiomare Fixpunkte dazu, dass seine
Ausdrucksstarke diejenige des -Kalkals wbersteigt. Higher-Order Fixpoint Logic (HFL)
vereint in sich einen einfach getypten -Kalksl sowie kleinste und gmsste Fixpunktquan-
toren und ist damit sogar noch ausdrucksstarker als Fixpat Logic with Chop. Selbst PDL
wurde in der Vergangenheit bereits mit kontextfreien anstie von regularen Programmen
untersucht.

Da Spezi kationen von Programmeigenschaften nicht auf Retarilat beschrankt sind,
ergibt sich ein natarlicher Bedarf an ausdruckssiarkene Spezi kationsformalismen. Gmssere
Ausdrucksstarke ist jedoch wblicherweise mit einem Angtigen der Komplexi@at der im
Zusammenhang mit der Logik stehenden Entscheidungsprotvle verbunden. Beispiels-
weise sind die Erfallbarkeitsprobleme fur jede der obenapannten Logiken unentscheidbar.
Die vorliegende Arbeit untersucht die Model Checking Probime von drei verschiedenen
Logiken, welche im Stande sind, nicht-regulare Eigenscfian auszudnicken und gibt Frag-
mente von ihnen an, welche eine in der Praxis noch verwertlesaKomplexit@at in Bezug auf
das Model Checking Problem besitzen.

Zunachst wird eine generische Methode entwickelt, um diedtplexiat des Model Check-
ing Problems von PDL wber beliebigen Klassen von Programmezu bestimmen. Es wird
gezeigt, dass die Grenze zur Unentscheidbarkeit zwischebBlPaber indexierten Sprachen
und PDL wber kontextsensitiven Sprachen verluft. Far PDL wber linear indexierten



viii

Sprachen ist das Problem noch immer in PTIME und far PDL wbe indexierten Sprachen
in EXPTIME. Wir geben far diese beiden Fragmente konkrete Agorithmen far eine Im-
plementierung an.

Im Anschluss fahren wir eine Erweiterung von CTL ein, in wather die until- und re-
leaseOperatoren mit formalen Sprachen ausgestattet sind. DiesSprachen werden uber
beschrifteten Pfaden interpretiert und kennzeichnen die mente entlang solcher Pfade in
welchen die Operatoren erfullt sein massen. So ist beiggsweise deuntil -Operator erfullt,
falls es einen Pfadpra x gibt, welcher ein Wort in der Sprabe bildet, mit der der Oper-
ator ausgestattet ist (und die wbliche until -Bedingung gilt, namlich, dass eine bestimmte
Eigenschaft in jedem Zustand bis zu diesem Zeitpunkt gegelt hat, sowie dass eine andere
in genau jenem Zeitpunkt gilt).

Wie im Fall von PDL, bestimmen wir die Komplexitat des Model Checking Problems fur
verschiedene Klassen von erlaubten Sprachen im jeweiligeperator. Es stellt sich heraus,
dass sowohl die Klasse der kontextsensitiven Sprachen umtil - als auch die Klasse der
kontextfreien Sprachen imreleaseOperator zu Unentscheidbarkeit des Model Checking
Problems fahren. Es ist EXPTIME-vollstandig far indexi erte Sprachen imuntil - und vis-
ibly pushdown Sprachen imreleaseOperator. Linear indexierte Sprachen imuntil sowie
deterministisch kontextfreie Sprachen inmrelease fahren zu einem PTIME-vollstandigen
Model Checking Problem. Wir geben ebenfalls wieder konkeeModel Checking Algorith-
men far ausgewahlte Fragmente dieser Logiken an.

Schliesslich wenden wir uns dem Model Checking Problem fisiFL zu, welches wir bereits
in vorangegangenen Arbeiten untersucht haben. Auf endlieh Modellen ist e KEXPTIME -
vollstandig far HFL ¥ (das Fragment von HFL, welches man erhalt, wenn man die Oradmg
der Funktionen im -Kalkal auf k beschrankt). Neu ist jedoch die Verallgemeinerung einer
Idee welche fur HFL' entwickelt wurde und nun auf das gesamte HFL ausgeweitet wlirum
das Verhalten des Model Checkers im besten bzw. durchscliinthen Fall zu verbessern,
indem partielle anstelle von totalen Funktionen wahrend dr Fixpunktapproximation in
Abhangigkeit von den bemetigten Argumentstellen berechet werden. Dies ist deshalb
meglich, weil die Semantik einer geschlossenen HFL Formstlbst keine totale Funktion
ist, sondern der Wert einer Funktion an einer bestimmten Angmentstelle.

Wir geben wieder einen konkerten Algorithmus far diesen dimierten Model Checker an
und vertreten die Ansicht, dass die Optimierung trotz der hben Komplexit@at im schlecht-
esten Fall brachbare Ergebnisse in der Praxis zeitigen karneumindest far HFL mit Funk-

tionen niedriger Ordnung. Wir belegen diese Ansicht durchiree statistische Auswertung



der Anzahl benetigter Argumente anhand eines konkreten Bspiels.

Desweiteren zeigen wir, wie HFL als Instrument zur Entwicking von Algorithmen ver-
wendet werden kann. Die grosse Ausdrucksstarke erlaubt,esne Vielzahl von Problemen
als Instanzen des Model Checking Problems zu kodieren undaavbereits in HFL. Die
eher wenig intuitive Kodierung in Kombination mit einer Andyse des Verhaltens des op-
timierten Model Checking Algorithmus auf diesen Problemekann tiefere Einsicht in das
Problem selbst gewahren. Wir demonstrieren dies am Beigs des Universalitatsproblems
fur nichtdeterministische endliche Automaten, wo eine liehte Veranderung des optimierten
Model Checking Algorithmus zu einer der besten bisher bekaten Methoden dafur fuhrt,
welche erst karzlich beschrieben wurde.

Desweiteren untersuchen wir die typischen modelltheorethen Eigenschaften jeder dieser
Logiken und vergleichen sie untereinander in Bezug auf ihfausdrucksstarke.
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Chapter 1
Introduction

A Quick Survey on Temporal Logics. In order to reason about program behaviour
and in particular about the stepwise execution of processesnotion of time and a formal-
ism which enables to describe the changes over time is reguir

First e orts included Hoare-style program veri cation [Hoa69], where valid statements
about a typically sequential program are derived by applyig inference rules to each pro-
gram statement and the currently valid conditions. Followng classical proof systems,
application of the inference rules required human ingenyitand made veri cation of larger
programs extremely tedious, because manual interventionaw inevitable.

The idea to interpret modal logic in the context of temporal accession goes back to A.
Prior in 1957 [Pri57] and has since then evolved into a largen@ productive research
eld. Its importance is rooted in the emerging industrial ned for safe hard- and software
systems over the years. Techniques such as model checking, an algorithmic solution to
the gquestion whether a given model of a system satis es its &g cation provide a solid
mathematical basis to ideally guarantee that a set of propees holds for a system. The
greatest bene t herein lies in the fact that (su cient computing power granted) the model
checking process is designed for full automation.

Many logics have since Prior been invented to formally reasabout time and program
behaviour; most of them still have in common the modal found®n but otherwise di er
a lot in the machinery of temporal operators provided. Kripk's possible world semantics
[Kri63] in general becomes a transition system in the conteaf program reasoning and the
meanings of possibility and necessity shift téthere is a (direct) successor in time" and
\for all (direct) successors in time".

In the most simple temporal logics like e.gdennessy-Milner-LogicgHM80], reasoning about



2 1. Introduction

paths in a model can only be done by explicitly declaring thegth depth, i.e. there is no
recursion device which automatically applies a certain spiecation scheme. Not until the
introduction of xpoints into this setting is it possible to make a ( nite) statement like e.g.
\along every path propositiong eventually holds’

The 1977 landmark paper by Pnueli [Pnu77] introduced tempal logic, today known as
Linear Temporal Logic (LTL), in which (implicitly) universally quanti ed statem ents about
the runs of a system are possible. The universal quanti cain allows to merge all system
runs into models with a linear concept of time succession { hee the later adopted name
pre x. LTL has basic temporal operators: X (next-time), F (sometime), G (always) and
U (until). A formula X requires the next moment in time to satisfy' , F says that'
eventually holds in the future, G says that' holds from now on forever and the binary
operator' U is satis ed if there exists a future state at which holds and until that
moment' must hold. Consider for example the formuld G stating \(on all system runs)
sometime in the future,p will always hold"

Another widely used temporal logic isComputation Tree Logic (CTL)[BAMP81] which
keeps di erent runs of a system apart by modelling the succgen of time seperately for
every run, thus arriving at branching time models. CTL moded explicitly incorporate non-
determinism by allowing the time to split up whenever di erent system behaviour opens
up a new branch of possibilites. These models preserve mar®imation about the system
behaviour than linear ones and therefore allow a richer vaty of speci cation formalisms.
Note that a tree model can be translated into a linear model litthe converse translation
fails. In particular, CTL is { unlike LTL { capable of specifying properties regarding single
system runs, i.e. CTL allows existential quanti cation in aldition to universal quanti ca-
tion over runs.

Temporal formulas of CTL consist of the same temporal operats as LTL with a similar
meaning but must occur in the scope of a path quanti er A and E for universal and
existential path quanti cation). Furthermore, no interleaving of temporal operators is
allowed unless each temporal operator is guarded by a pathamni er. So, e.g. AGE§
states liveness of propertyg: \on all paths it is true everywhere that there exists a path
along which eventuallyg holds". For details on the logic, see Sec. 2.2.7.

Both logics are mutually incomparable which is witnessed lihe above mentioned formulas.
On the one hand, the interleaving of temporal operators and Gallowed in LTL cannot be
expressed in CTL and on the other hand there is no existentighth quanti cation in LTL.
These features are impossible to express by other means @& tespective logical languages.



The logic which unies LTL and CTL is CTL which combines the nesting of temporal
operators with universal and existential path quanti cation.

Fischer and Ladner'sPropositional Dynamic Logic (PDL) [FL79] is yet another branching
time temporal logic in which the moments in time at which cemin properties should hold
are specied by regular expressions, also called program3hese programsR are syn-
tactically embedded into the modalitieshRi and [R] which correspond to existential and
universal quanti cation over paths labeled with elements DR. Both LTL and CTL are
interpreted over unlabeled models while using labels ingidhe speci cation formalism pro-
vides additional means to model program behaviour. For inahce, the formulah(abg) it
states \there exists a path labeled with a word from the languagaebg ". Some of the
properties of unlabeled models can be simulated in PDL howexv the CTL expressionAG)
corresponds to [ ]q for instance. In general however, PDL and CTL are incomparad
For details on PDL, see Sec. 2.2.6.

Another extensively studied logic is Kozen'snodal -calculus[Koz82]. It is equipped with
single letter modalitieshai and [a] and uses extremal xpoint constructs as recursion devices
to combine these to path properties. For instance, the exmsion x:p " haihbix states
\there exists an(ab)' -labeled path along whichp holds in between eachl', where x is the
greatest xpoint operator. What gives -calculus its expressive power and (seemingly) is
the reason for the computational complexity of its model cloking problem is the xpoint
alternation. Fixpoint alternation is the mutual dependeng of xpoints and the measure
of the dependency complexity is called the alternation deptof a formula (c.f.[BS06]). The
best known model checking algorithms for the-calculus are exponential in the alternation
depth.

Having a fundus of di erent logics with a (mostly) common bas, the question of expressive
power naturally arises. Interestingly, almost all well-gablished temporal logics can be
embedded in the -calculus, like e.g. LTL, CTL, CTL and PDL, since the modal and
temporal operators can be expressed as least and greatespoints of a certain form. In
fact they can even (except for CTL) be embedded into the alternation-free fragment of
the -calculus. For details on syntax and semantics, see Sec..2.2

Regularity and Logic. The -calculus plays a very important role, because via its
tight relationship with Monadic Second-Order Logic(MSO), it connects temporal logic
with automata theory.

The works of Bachi and Elgot have shown that MSO (interpretd over nite words) and
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nite automata have the same expressive power and are e ewdly translatable into each
other [Buc60, Elg61]. This result was later extended to nie automata over in nite words

and trees [McN66, Rab69], namely Bschi-automata and treautomata with a Rabin-

acceptance condition.

On the other hand, the -calculus and the bisimulation-invariant fragment of MSO @ also
have the same expressive power [JW96] and this nally linkde theory of nite automata

and -calculus. It is in this sense that the term\regular logic" applies to -calculus
although it was originally coined in the context of nite automata and formal language
theory.

Temporal Logics Beyond Regularity. Although formulas speci ed in the -calculus
are usually considered hard to understand (at least with imeasing alternation depth),
they still correspond to the least expressive fragment of hChomsky hierarchy. Regular
languages are very limited in re ecting structural compleity in comparison to the context-
free and context-sensitive languages { an observation whi@lso transfers to properties
expressible in the -calculus.
A demand for richer logical description and recognition fraeworks is natural because
computer processes are not restricted to regularity and hea have structural properties
which cannot be expressed with regular means.
This was for instance the motivation behind the design dfixpoint Logic with Chop (FLC)
where a logical characterisation for a class of processefiecthcontext-free or BPA (Basic
Process Algebra) processes was sought [MO99]. It turned dbat it was su cient to add
sequential composition to the modal -calculus to achieve this in the following way.
Formulas in branching time logics are usually interpreted aasets of states, namely those
which satisfy the formula, i.e. predicates on the total st& set. In FLC, the semantics
is lifted to functions [] : 25 ! 25 where S is the state space; i.e. a formula is basically
a predicate transformer. Sequential composition of formag ; is now interpreted as
function composition ([ ] [ 1)(x). This is possible because the set of all monotone func-
tions 25| 25 forms a complete lattice with pointwise inclusion orderingvhich guarantees
the existence of least and greatest xpoints. As an examplergperty (inexpressible in
-calculus) consider the formulax: ” hai;x;ho stating \there exists a path labeled with
awordw 2fa"d jn 0g', where simply is the identity function needed for technical
reasons regarding the FLC semantics.
The idea of formulas as functions was consequently genezall by M. and R. Viswanathan



by omitting the restriction of functions to rst order in Higher-Order Fixpoint Logic (HFL)
[VVO4]. Here, the -calculus is enriched with a simply typed -calculus and xpoints
range over higher-order functions instead of just rst-ordr functions. This is well-de ned
because higher-order functions form a complete lattice Wita pointwise inclusion order on
the function values. For formula examples, see Sec. 5.2.

FLC turns out to be easily embeddable into the rst-order frgment of HFL, (even re-
stricted to arity 1) but a diagonalisation argument shows tlat HFL is strictly more ex-
pressive than FLC [VVO04]. The question whether FLC is equiVent to the rst-order
fragment of HFL is still open. If we denote by HFE the fragment of HFL which is re-
stricted to functions of orderk, then HFL®, the fragment without functions is equivalent
(even syntactically) to the -calculus.

Regarding the typical decision problems for logics, matterare more or less the same than
with FLC, i.e. satis ability is undecidable and model checkng is decidable on nite models
only. HFL model checking is already very hard for arbitrary small models: we have shown
that the problem is KEXPTIME -complete for HFLX even on transition systems of size 1
[ALSO7]. A direct consequence of this result is that there ialso a strict hierarchy of
expressiveness with increasing order of the functions.

This may seem little encouraging, however in this work we shothat the higher-order
functions which are responsible for th& EXPTIME -hardness, are not needed as total but
as partial functions on average. Only in worst case scenasits the computation of the
values at all arguments necessary for solving the model ckieg problem. The leeway
between average and worst case can be exploited in practicelahown experimentally to
be su ciently large for feasible employment at least for lowr-order functions.

Another aspect we consider is that for a logic as expressive HFL, various surprisingly
di erent general logical problems can be encoded into the rdel checking problem, e.g. :
satis ability of modal logic K or universality of non-deterministic nite automata (NFA).
This enables a re-evaluation of known algorithms for thesergblems, since they are ex-
pressed in the rather unintuitive way as a xpoint of a functon. This may even lead to
better ones. For instance, with a few optimisations the modiehecking algorithm on the
NFA-universality problem turns out to be the same as the anthain method by Henzinger
et al. [WDHRO6] which is one of the best currently known and dy discovered recently.

Tailored Expressivity. It is clear that expressive power comes at the price of incread
computational complexity. This work discusses several naegular logics which all have
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in common that they are parametric in some sense which dirdgta ects their expressive
power. We will for instance investigate HFL, where the parapter which regulates the ex-
pressive power is the ordek of functions allowed. Every restriction of the order magnitde
by one immediately pays o by exponentially lesser cost of nael checking.

Another approach to achieve modularity in terms of expresg power is to directly incor-
porate formal languages into the logic as it is the case in PDIAlthough the original work
investigated PDL for regular programs only, it is clearly dsigned as a parametric logical
framework over varying classes of programs. But since thectes of attention at the time
was on decidability and it was very early conceived by Ladndahat PDL equipped with
context-free programs is undecidable c.f. [HPS83], the rg@ of considered classes has so
far been limited to those located in between the regular andnotext-free ones.

Interestingly, there is an enormous complexity gap betweesatis ability and model check-
ing: while PDL over context-free programs is undecidable, edel checking is still in P
[Lan05]. Hence it seems worthwhile to extend the range of lgmage classes for the latter
problem. In this work, we examine the model checking problemf PDL over arbitrary
classes of formal languages and derive complexity bounds tiee model checking problem
w.r.t. the expressivity of the language class parameter. ttrns out that the borderline to
undecidability of model checking lies somewhere in betwethre indexed languages and the
context-sensitive.

Here, the advantage of parametric frameworks becomes apgat:. it is comparatively easy
to determine an adequate formal language class in which a pagtroperty can be expressed,
while the correspondence between least required functiorder to express such a property
in HFL is unclear.

Parametric PDL mainly draws its expressive power from the fguage class assigned to it
while the inherent logical machinery is still rather weak. tldoes for instance not feature
CTL's releaseoperator. From this circumstance came the idea for a nongalar CTL
version which we have proposed in [ALLb]. It combines the modularity of expressive
power with the ease of CTL-speci cation.

We consider an equally parametric framework for CTL over aitvary classes of formal
languages and the corresponding model checking problemslLGoperators equipped with
a formal language constrain the moments in time at which subfmulas are required to
hold. For instance, the formulaEGp states \there is a path on which at every moment
where the current path pre x forms a word inL, p holds".

Since it turns out that the model checking complexity of suctanguage-adorned temporal



operators di ers for U and R, we discuss parametric CTL w.r.t. two language class pa-
rameters, each of them restricting the use of languages fareoof them which adds further
granularity to the possibilities of choice in the desired Ilgical expressivity.

Chapter Overview. The preliminary chapter recalls de nitions of formal langage and
automata theory as well as the temporal logics PDL, CTL and -calculus which form the
basis of subsequent chapters. We focus on non-standard oos from the literature and
clarify the notational conventions used throughout the thsis.

In chapters 3{ 5 we introduce Parametric PDL and CTL as well asHFL. The overall
structure of each of these chapters is

Syntax and Semantics
Examples

Properties
Expressivity

Model Checking.

After de ning syntax and semantics of a logic and giving exapies of properties expressible,
in the \Properties"-section, we investigate some typical pperties: the nite model and
tree model property, bisimulation invariance and decidabty.

Subsequently, the expressive power of the logics PU[ CTL[L] and HFL is compared
and delineated against regular logics.

The main results are usually to be found in the section conged with model checking.
Starting with the simplest { PDL[L{ we interreduce its model checking problem to the
non-emptiness problem fot -intersections with regular languages and show the closdae
tionship to graph reachability problems. The transfer of rsults from these areas allows to
derive computational bounds for model checking PDL[] and a borderline to undecidabil-
ity for language classes exceeding the context-sensitivd/e then develop concrete model
checking algorithms for PDL[IL] and PDL[MCSL] which are themost expressive of these
logics which retain decidability and give detailed soundrss and completeness proofs.
Chapter 4 deals with the veri cation of CTL[L] . We give computational bounds of the
model checking problem and, again, draw the border to undeéeability w.r.t. L. Here, we
consider the fragments obtained by restricting the expreise power of the language class
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parameters in either theuntil and releasepath quanti ers, since the resulting complexity
highly depends on it. We also investigate the di erences aing from deterministic and
non-deterministic variants of the input automata.

In Chapter 5 the highly expressive xpoint logic HFL is turned attention to. We generalise
the model checking algorithm developed in [ALO7] for its rsorder fragment to the whole
of HFL. The optimisations to the straight-forward algorithm enable us to reduce best-
and average case complexities. We give statistical evidenthat this indeed enhances the
performance dramatically and leaves hope for practical feiility despite the extremely
high worst-case complexity which is a consequence of its exgsiveness. We propagate the
use of HFL as an extremely succinct \programming languagedf all kinds of problems {
from universality of non-deterministic nite automata to satis ability checking of modal
logic K { to the purpose of deriving ideas for new algorithms due to # usually rather
unintuitive problem formulation form, namely as a xpoint of a higher-order function.
This is backed up by the coincidence of the behaviour of our mel-checker on a formula
encoding universality of non-deterministic nite automat with one of the fastest methods
known so far.

The nal chapter summarises the achievements of this thes@nd points out the directions
of further work on the topics contained within.



Chapter 2

Preliminaries

2.1 Formal Languages and Automata

Formal languages and automata form the well-known dualismf éanguage generation and
language recognition. Formal languages are given as grammahich de ne a set of rules
to derive the words of which a language consists. Their cowmpart is the concept of an
automaton: given a word, an automaton decides according to set of rules whether it
accepts or rejects the word as part of its language. We startithy the well known notion
of transitive closure

De nition 1 (Transitive Closure) Let R; S be binary relations on a universdJ. De-
ne RS = f(x;y) 2 U U] existsz 2 U s.t. xRz and zSyg. The following inductive
de nitions for n;i 2 N are standard:

RO := f(x;x) jx 2 Ug.

Rl := RR".

._S i
R =, ,R.
+ ._S i
R*:= . R\

De nition 2 (Grammar) A grammar is a 4-tupleG = (N; ;P;S), whereN is a nite

set of nonterminal symbols is a nite set of terminal symbols{ also called alphabet
sometimes orset of actionsin the context of logics {with N\ = ;,S 2 N is the starting
symbolandP ( (N[ ) * (N[ ) isa nite set of production rules
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We use in x notation ! todenote (; )2 P. Anelement 2 (N[ ) s called a
sentential form and its lengthj j is de ned as the sum of symbol occurrences frod and
in . If the length of some sentential form is O, we call it thempty word and denote it

by .

De nition 3 (Derivation) Let G be agrammarand; ;; °2 (N[ ) . Wedene
the derivation relation ) ¢ (N[ ) (N[ ) as

e 20 1@

If it is clear to which grammar a derivation refers to, we ofte omit the index and simply
write ) instead of) .

De nition 4 (Formal Language) The languageof a grammarG = (N; ;P;S) is de-
ned as
L(G)=fw2 |jS) " wg

Typical decision problems regarding formal languages arket following:
Let w2 for an alphabet and let L;L °be formal languages.

word problem isw 2 L the case?
emptiness problemis L = ; the case?

intersection problem isL\ L°= ; the case?

2.1.1 The Chomsky Hierarchy

Faced with the fact that the computational complexity of soling any of the language-
related decision problems for di erent languages variesdm trivial to undecidable it seems
natural to classify them according to the properties respaible for this.

The Chomsky hierarchyis a well-studied classi cation system dividing grammarsand the
languages they de ne) into four di erent classes which fornan inclusion hierarchy.

De nition 5 (Chomsky Hierarchy) Let G=(N; ;P;S)be agrammar.
G is of type O orrecursively enumerable

G is of type 1 orcontext-sensitiveif j j j jforall !
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G is of type 2 orcontext-free if 2 N for all !

G is of type 3 orregular, if it is context-freeand 2 [ N forall !

Abbreviations used throughout this text for context-free ad context-sensitive grammars
are CFG and CSG, respectively. We adopt the classi cation fdormal languages and may
therefore say that a language is recursively enumerable antext-free, etc. if a grammar
of the corresponding type exists which generates the lang&a Let REG, CFL, CSL and
RE denote the classes akgular, context-free, context-sensitivand recursively enumerable
languages.

De nition 6 (Finite Automaton) A (nondeterministic) nite automaton (FA) is a 5-
tuple A =(Q; ;;qo;F), whereQ\ = ; and

Q is a nite set of states,

is a nite set of terminal symbols,

'Q I 29 is the transition function,
o 2 Q is the starting state,

F Qs the set of nal states.

For reasons of better readability, we may writeg! * of instead of®2 (q;d. We call a
nite automaton deterministic if j (q;@j=1forall g2 Q;a2 . A run of A on a word
W= aa..:a, 2 is a sequence of stateg; oi;:::; ¢ S.t. @ is the starting state and

g! " g4 foralli 0. We call such a runacceptingif ¢, 2 F.
Theorem 1 (Myhill-Nerode, c.f. [HU79]) Let L be a regular language over and
de ne asx yi forall z2 Xz 2L, yz2 L. Then is an

equivalence relation and the number of equivalence classesnite.

De nition 7 (Pushdown Automaton) A pushdown automatorfPDA) is a 6-tuple A =
(Q; ; ::q0;F), whereQ; ;@ andF are de ned exactly as for an NFA and

is a nite set of stack symbols,

Q ( [f?9 ) I 2° s the transition function.
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Again, we may write (@; )! * (¢ 9 instead of > 9 2 (q;a; ). We call a pushdown
automaton deterministic if j (q;a; )j=1forall g2 Q;a2 [f g 2 .

A con guration of A is an element ofQ and we denote the set of all its con gurations
by Conf(A). In a con guration, the second component is called the cuent stack of A.
The starting con guration is (¢; ? ), where ? denotes a special stack symba&l 62 .

starting con guration and for all C; = (qg; ;) with 0 i <n, the following holds: there
exist 2 [fg and ¢ 2 st ;= and = % and(g; ) ¥ (g« 9. A
run is accepting, ifg, 2 F. Note that ? does always remain at the bottom of the stack.
It is clear that the transition function can equivalently be given as a relation®

Q ( [f 9 Q , where @;a; ;9% 92 °i (& 92 (q;a ). We may
occasionally use this syntax for reasons of convenience.

Furthermore, we assume that has the restriction that the current stack is modi ed by a
single application of exactly in one of the following three ways:

the top stack symbol is deleted (calleghop),
the stack is left untouched (calledhop),
a stack symbol is placed on top of the (otherwise unchangedpek (called push).

Note that by this restriction the stack height changes at mdsby one and at most the
top stack symbol changes. Clearly, every can be transformed into this normal form by
splitting up greater changes into several steps of the abof@m.

De nition 8 (Language Recognition) The language accepted by an NFA (PDAA is
de ned as
L(A)=fw2 |there exists an accepting run oA on wg:

De nition 9 (Pushdown System) A pushdown systenfPDS) is the con guration graph
ofaPDAA =(Q; ; ;;qoF) ie.anLTST =(Q by with (g; v)! 2 (o wv) for
somev?2 if (®w)2 (qg;a; ).

For a de nition of an LTS see Def. 14. Note that PDS are in nitestate systems in general.
The standard theory de nes at least two more kinds of automat, namely thelinear bounded
automaton (LBA) and the Turing machine (TM). But since we do never use these concepts
explicitly in this work, we omit their de nitions and do just rely on their existence. The
reader is referred to [HU79] for further details.
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The following theorem manifests the dualism between the coepts of grammar and au-
tomaton.

Theorem 2 (c.f. [HU79])  For any formal languagel,
L 2 REG i there exists an NFA A, s.t. L(A)= L.
L 2 CFL i there exists a PDA A, s.t. L(A)= L.
L 2 CSL i there exists an LBA A, s.t. L(A) = L.

L 2 RE i there exists aTM A, s.t. L(A) = L.

The abbreviations of thedeterministic versions of the various automata types are preceeded
by a \D", i.e. DFA, DPDA, DLBA and DTM. By convention, we use th e acronym NFA
instead of FA to make the nondeterminism explicit. In the sam manner we denote the
language classes recognised by the corresponding deterstin machine model with a \D"
pre x, i.e. DREG, DCFL, DCSL and DRE.

Theorem 3 (c.f. [HU79)])
DREG = REG ( DCFL ( CFL ( DCSL CSL( DRE=RE:

This section covers the standard theory of formal languagesd automata used in this
work. In the following sections some non-standard languagéasses are introduced.

2.1.2 Visibly Pushdown Languages

Visibly pushdown automataVPA) were introduced by Alur and Madhusudan [AMO4] in
2004 as a robust subclass of PDA which is still capable of mdide recursive program
behaviour such as nested method calls and returns. Histaally, they are generalisations
of simple-minded automataSMA) and semi-simple-minded automatdSSMA) which were
de ned in [HR93, HK99]. These classes of automata are all @hed by limiting the
functionality of PDA. The de nitions of SMA and SSMA were motivated by a search for
classes of languages which could be used as recursive pmogrin PDL (see Sec. 2.2.6)
speci cations without rendering it undecidable. We refer¢ SML, SSML and VPL for the
classes of languages recognisable by SMA, SSMA and VPA redpely.

The strongest restrictions are imposed by SMA, where everction of the automaton is
completely determined by the input symbol, that is: the typeof the operation performed
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(push pop or nop), the stack symbol placed on top of the stack upon a push op¢i@n and
the next control state. SSMA generalise SMA by permitting a ondeterministic choice of
the next control state and VPA nally do only choose the type & operation according to
the input symbol.

This is achieved by partitioning the set of actions into three disjoint sets .; ; and
according to acall, internal or return action and performing a corresponding push, nop or
pop operation on the stack.

De nition 10 (Visibly Pushdown Automaton) A visibly pushdown automatoifVPA)
isa PDAA =(Q; ; ;;Qo0;F), where
Q\ =3,

? 2 is a distinguished symbol, calledstack bottom symbgl

= o il
= ¢[ [ rwith

c Q ¢ ( nf?g) Q;
i Q i Q; :
r Q Q:

It is important to note that in contrast to a PDA, a VPA contain s no -transitions.

A VPA A is called deterministic (or a DVPA) if forall q2 Q, a2 , 2 we have
(% (a2 cogi=jf:(qad2 igi=jfd: (q;a; ;092 ,gj=1.
A run of A on a nite word w = a;:::a, is a sequence of con guration€y; Cy;:::;C,

with C;2Q *foralli=0;:::;n,s.t.Co=(p;?)andforall C; =(qg; ;) the following
holds:

If & 2 thenthereisa s.t. (g;a; ;0i+1)2 cand s = .
If 3 2 ; then (g;&;0+1)2 i and j+1 = .

If & 2 | then (g;&;?7;9+) 2  and 4, = = ?, or thereis a s.t.
(g:&; :qi+1) 2 rand ;= 1.

Note that this de nition entails that ? cannot be popped from the stack. It is however
read and can be used to indicate that the stack is empty.
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The de nitions of accepting run and accepted language areadtical to those de nitions
for a PDA. A visibly pushdown languagé/PL) is a language which is accepted by some
VPA.

Example 1 The languageL = fa"d' jn> Ogis a VPL. Let .= fag, = fbgand
i = ;. Consider the VPAA =(fo; on; ; kY, ;TA;#0; ;0;fxg), where

¢ f(op;a#;au); (s & A h)G;
r f(oh; b A @); (o b A b); (s b# 5 ) (chs bi# 5 ) 0;

The automaton works as follows: on an input wordv 2 L, it rst parses the a-sequence
of length n > 0 and thereby produces the staclA::: A#, since every a requires a push-
operation. The A:::A-pre x has length n 1. Note that the kind of symbol which is
pushed on the stack via .-operations only depends on the control state and the input
symbol.

After reading the rst b, the control state changes tayp, pops the topA and repeats this
as long as furtherb are seen and the top stack symbol remains. On the lastb nally the
symbol # appears on top of the stack since it matches the rsta and after popping it, the
automaton is in the nal state .

Note that if the input word w is not in L then the automaton eventually gets stuck which
is very easily veri ed, because the automaton is determirtis.

In this fashion all kinds of Dyck-languages such as XML can lparsed. The opening tags
are pushed on top of the stack while on closing tags the opegitags are popped.

Example 2 Let = fp;c;rgwith p2 ., c2 ,andr 2 ;. Dene aVPA A =
(fos a0, 31?5 o) O s 5 fpg), where

c f(0;P; 0 ) (ks P; 501)T;
‘ f(;C;?; %) (h;C; 0; ) (Ch;C; ;01)T;
i f(0p; 1; do); (Cu; 1 O1) O

Interpret p as aproduce action, ¢ as aconsumeand r as arequestin the setting of an
automated production line. It is only legal to consumegoods which have already been
produced. The automaton speci es correct behaviour in thisense and rejects words which
represent a violation (i.e. a stack under ow). It counts theproduce actions by placing
symbols onto the stack: a o for the rst produce encountered and a for the remaining



16 2. Preliminaries

ones. On aconsumeaction it removes or o from the stack, the latter indicating that
only one moreconsumeis possible. If it sees aonsumeaction and the stack is empty
it switches into a non- nal state which it never leaves again We allow request actions
anywhere between valid pre xes of words w.r.t. the stack uret ow property. Hence, we
have L(A) = fw 2 j Jwjc = jwj, and jvjc j vj, for all v wg, where means the
pre x relation.

VPL are capable of expressing many of the typical contextde languages, e.g. all kinds of
Dyck-languages, but have a distinct advantage over CFL, nasly their robustness. The
following theorems substantiate the fact that VPL over nite words retain all the nice
closure and determinisation properties from the regular teguages.

Theorem 4 (VPL Closure Properties, [AM04]) Let L, andL, be VPL w.r.t. a par-
titioned set of actions and let R be a regular language. Then the following languages
are VPL:

Li[ Lo L1\ Ly Lilo; Lq; Ly; L:\ R:

Theorem 5 (SML and SSML Closure Properties) The classes SML and SSML are
closed under intersections with regular languages.

Proof This can be shown by a simple product construction between aHA and an SMA
or SSMA, respectively. 2

Theorem 6 (Determinisation, [AMO04]) Let A;=(Q; ; ;o; ;F)beaVPAwTrLt a
partitioned set of actions . Then there exists a determinisic VPA A,, s.t. L(A1) = L(A>)
and A, has at most 2%/° states and 2 j .j stack symbols.

From the above follows that the class of VPL can be embeddedathe Chomsky Hierarchy
as follows.

Theorem 7

SML

~—

REG ( SSML ( VPL = DVPL ( DCFL ( CFL:
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Proof Any DFA is clearly an SSMA without stack operations. Since Di = NFA, we
have REG SSML. Strictness of the inclusion follows from the fact thata"b' j n > Og
is an SML [HR93] (and the SML are included in SSML) but not a ragar language cf.
[HU79].

An SSMA is a generalisation of an SMA, hence SML SSML [HK99]. Strict inclusion
follows from the property stated in [HK99] that there are on} nitely many di erent SML
over any given alphabet but in nitely many di erent REG and hence SSML. Intuitively,
a DFA is not an SMA, because even its next state is solely determined byetimput symbol
and not by input symbol and current state. This makes in fact the expressivity of REG
and SML incomparable.

The strict inclusion of SSML in VPL is stated in [LLSO7].

Finally, since VPL are closed under determinisation by Thm6, they are all contained in
DCFL. Strictness is witnessed by the languagea"bd' j n  0g which is easily seen to be a
DCFL but is not an SML [HR93]. Note that the rst n a-symbols require a push-operation
while the as occurring behind theb require pop-operations.

That DCFL is strictly included in CFL is a well-known standard theorem in formal language
theory cf. [HU79]. 2

Theorem 8 (VPL Emptiness) The emptiness-problem for VPL is PTIME-complete.

Proof Inclusion in PTIME is a consequence of the fact that the emptiess problem for
CFL is in PTIME (c.f. [HU79]) and that VPL is included in CFL. A hardness proof can
be found in [Lan10]. 2

Since SML and SSML are both included in VPL, their emptinessrpblems are obviously
also in PTIME.

Corollary 1 (SML and SSML Emptiness) The emptiness problem for SML and SSML
is in PTIME.

2.1.3 Indexed Languages

The class ofindexed languagegIL) was proposed in 1968 by Aho as a result of an in-
creased interest in speci cation devices for all of the syattic structures found in modern
programming languages of that time { in particularALGOLis mentioned { for which the
CFL were too weak and the CSL were too powerful [Aho68]. Indeell is located strictly
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in between CFL and CSL and furthermore enjoys nice closure gperties. IL are equally
de nable by a certain class of automata calledested stack automatas well as by a certain
class of grammars callethdexed grammars(lG). A nested stack automaton is a kind of
pushdown automaton where the memory consists of nested dtagi.e. the objects pushed
and popped from the stack are stacks themselves. In additiothe automaton may read
the contents of all of the stacks nested within itself.

We do only introduce in detail the latter characterisation va grammars since it is the one
used in the following chapters explicitly. For further infemation on nested stack automata,
the reader is referred to [Aho69].

The main di erence to CFG is that nonterminals are equipped Wth a stack in an IG. This
allows to constrain derivation rules according to the top stck symbol additionally. The
stack symbols are calledndices

De nition 11 (Indexed Grammar) An IG is a 5-tuple G = (N; ;I1;P;S) where

N is a nite set of nonterminals,
is a nite alphabet,
| is a nite set of index symbols,
S 2 N is a distinguished starting symbol,

P is a nite set of productions of which there are the followindgour di erent types:

terminal productions : A! a A! ;
composite productions : A! BC;
push productions Al BJ[f];
pop productions - A[f]! B:
HenceP N[ (N ) [ (N N3®O[ (N N D[(N 1 N).

The three symbol setdN, , and | must be mutually disjoint.

In fact, the production rules in this de nition are already in a normal form given by Aho
(called reduced formthere). However, every indexed grammar in Aho's original f;n can
be transformed into one in normal form incurring a linear blw-up at most.

An indexed nonterminalis an element ofN | , written A[f,:::f,] for example. The
index f,, :::f, forms a stack with its top on the left. The empty stack is allowd, i.e. A[]
is also an indexed nonterminal which we usually simply writasA.
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A sentential form for an indexed grammar is a word over the alphabetN | )[ , i.e.
we have indexed nonterminals instead of arbitrary nontermals, and index symbols may
only occur in an index of a nonterminal.

The derivation relation) on sentential forms of an indexed grammar is the least relati
that satis es the following for all sentential forms ; ; , all indices 2 | , all index
symbolsf 2 I, all nonterminals A, and all terminals a:

A) Jf AL

A ) a JPAl a
A[]l ) BlIC[] JfAl BC
Al]l ) BIf ] JEAL B[f]
Alf 1) B[] JFA[f]! B
ALl ) JEALT)

It is important to observe that a nonterminal passes its inde to anything that is derived
from it in one step. Furthermore, terminal symbols cannot hee indices. In principle one
may regard an indexed grammar as a context-free grammar witm unbounded number
of nonterminals, namely indexed nonterminals. The rules,dwever, can only distinguish
nitely many di erent indexed nonterminals by operating on the top symbol of the index
stack only.

As usual,) * and) denote the transitive, resp. transitive-re exive closureof the binary
relation ) , and) " for somen 2 N denotes itsn-fold self-composition. The language of
an indexed grammarG = (N; ;I;P;S) s, as usualL(G) = fw 2 i S) * wg, where
the stack of S is empty.

Example 3 Consider the language. = fa®' jn  1g. It is generated by the indexed
grammar G = (fA;S;Tg;fag;f#;fg;P;S) with P given as

S ! TH; T U T A A[f] | AA;
A[#] ! B; B ! a
A derivation of the word a8 is:

S ) T[#] ) T[n# ) T[hn#] ) T[nhnn#] )
Alnnn#] )  A[nn#] A[nn#] ) 2 A[n# A[n#] A[n# Aln#] ) *
A[#] A[#] A[#] A[#] A[#] A[#] A[#] A[#] ) 1© a

Further examples can be seen in Sec. 2.1.4.
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Theorem 9 (Closure Properties, [Aho68]) Let L, and L, be IL and R be a regular
language. Then the following languages are IL:

Li[ L2 LiLo; L L\ R:

The class of IL isnot closed under intersection and complement.

Theorem 10 (Emptiness, [Aho68, TKO07]) The emptiness-problem for IG i€EXPTIME -
complete.

2.1.4 Linear Indexed Languages

A linear indexed grammar(LIG) (originally de ned by Gazdar [Gaz88]) is similar to an
IG, but restricts the number of stacks propagated to the nexsentential form during a
derivation to one. In every production rule righthand sideone nonterminal is appointed
to carry over the stack from the nonterminal on the lefthand isle.

De nition 12 (Linear Indexed Grammar) A LIG is a 5-tuple G = (N; ;I;P;S) in
which all parts are de ned identically to an I1G, except for tre composite production rules in
P, where the stack inheritant on the righthand side is indicad by a marker. We use here
a hat R on top of the nonterminal A to identify the stack inheritant. Hence, productions
in a linear indexed grammar are of the following form:

Let A;B;C 2N,a2 and f 21.

terminal productions : A! a, A! ;
composite productions : Al BC,A! BGE;
push productions Al BJ[f];

pop productions . A[f]! B:

A marked (indexed) nonterminalis a,ﬁi[ ] for someA 2 N and some 2 |1 . An indexed
nonterminal is, as above, &\[ ], and we write A instead of A[] again.

A sentential form of a linear indexed grammar is a sentential form in the usualesse,
i.e. a word consisting of terminal symbols and indexed nomtainals, with the additional
restriction, that at most one (indexed) nonterminal is marled.

The relation) on such sentential forms is the least relation that satis ethe following for
all sentential forms ; ; , all indices 2 | , all index symbolsf 2 I, all nonterminals
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A;B; C, and all terminal symbolsa.

A) ; R ) if A
A) a ; R ) a ifAl a
A[l1) B[IC ; A1) #B[Ic ifAL BC
A[1) Bc[] ; A1) BE[] ifAl B
A1) BIF1 : A1) BIf] if A1 B[]
Alf 1) B[] ; Af 1) B[] ifA[f]! B
ATl ) JfFA[])
A1) it AL 1)

The last two rules are of course only applicable if is a valid sentential form again, i.e.
contains at most one marked (indexed) nonterminal.

We remark that the de nition of the derivation relation deviates from the original one in
[Gaz88] insofar as it uses marked nonterminals simultanesiy to unmarked ones. The
original de nition uses no markers. The use of markers is gy for technical reasons since
some theorems later on need to track the stack inheritanceofn nonterminal to nonterminal
through a derivation and to make this explicit. Note that by this de nition there is for
every derivation using markers a corresponding one withoand vice versa but they do not
get mixed up in the sense that either the currently derived sg¢ential form has a marker on
some nonterminal during every derivation step or during na Note that in a derivation
step ) , It is impossible for to contain a marked nonterminal while does not.
Hence, if8 ) * w then S can derivew without markers in the derivation. If markers
are present, however, then they trace the inheritance of aastk through sentential forms.
In order to understand the language derivation mechanism &fiG it su ces to take the
de nition without markers (which corresponds to the one in Gaz88]).

The language of a LIGG is L(G) = fw 2 j S) * wg. By the above remark this
means that the markers on indexed nonterminals in sententiforms are irrelevant for the
language derived by a grammar.

Example 4 Consider the languagd. = fa"bd'c" j n  1g. It is generated by the linear
indexed grammar

G = (fS;Sac;Ss;Sc;A;B;C;Dg;fa;b;@;ffg;P;S);
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whereP is given as

S I Suclf]; Sac ! ASc; Sc ! $8CjSsC;
Al g B ! b cC! c

A derivation of the word a?k?c? is:

S ) Saclf] ) ASc[f] ) AS[f]C )
ASxc[ff IC ) AASC[ffJC ) AASg[ff ]CC ) AAD[f]ICC )
AASg[f]IBCC ) AADBCC ) AASgBBCC ) 7 aabbcc:

Again, there is a corresponding derivatior ) a?k’c but it exists solely for technical
reasons and has no implications on the language derived By

LIL belong to the mildly context-sensitive language@MCSL) and are equivalent to several
on rst glance very di erent grammar formalisms, namelyhead grammars(HG), tree ad-

joining grammars (TAG) and combinatory categorical grammargCCG), giving rise to the

language classes HL,TAL and CCL respectively [VsW94]. Thellowing theorem shows
their embedding into the Chomsky hierarchy.

Theorem 11
CFL( LIL=HL=TAL=CCL ( IL ( CsL

Proof CFL are LIL with empty stacks and the strictness of the inclu®n is withnessed by
e.g. the languagd a™b'c" j n  1g which is a LIL but not a CFL [HU79]. As mentioned
before, the equivalence of the four mildly context-sensit formalisms is proved in [VsW94].
Their inclusion in IL is given by a rather simple translation note that the composite
production rules of LIL are the only ones in which LIL di er from IL. Now, in a production

rule of the formA ! BC, C is substituted by a fresh dummy nonterminalC® (and of course
the marker is erased). It is clear that we can add further pragttion rules in which the

stack content of C%is popped until it is empty and further rules which transformC° back

to C but with an empty stack now. This has the e ect that the only way of eliminating C°

in a sentential form during a derivation is by emptying its sack and transforming it back
into C which exactly simulates the behaviour of the original LIL rle. The same holds of
course for rules of the formA ! B®. Strictness is witnessed by the Ianguaqea2i ji 0Og

which is not a LIL but an IL [Aho68, Gaz88].

Finally, the strict inclusion of the class IL in CSL is shown gain in [Aho68]. 2
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Theorem 12 (Closure Properties, [VsW94]) Let L; and L, be LIL and R be a reg-
ular language. Then the following languages are LIL:

|_1[ Lo; LiLo; Ll' L1\ R:

Theorem 13 (Emptiness, [Bou96]) The emptiness-problem for LIL is PTIME-complete.

2.1.5 Alternating Context-Free Languages

Lange and Okhotin have independently de ned two language geration devices called
alternating context-free grammar(ACFG) [Lan02] and conjunctive grammar(CG) [Okh01],

respectively, which have been proven equivalent [Okh01, AR]. For this reason we do only
present one of them here. It should also be noted that the homygmous formalism de ned
by Moriya in [Mor89] is to be strictly distinguished from Large's. Okhotin notes that CL
are strictly included in Moriya's ACFL and hence so are Lange ACFL.

Syntactically, ACFG and CG are exactly the same. They extendrdinary context-free
grammars by partitioning their set of nonterminal symbolsnto existential and universal
ones. The underlying idea states that a (sub-)word is deridefrom an existential non-
terminal if some of its productions yield the word whereas it is derived from aniversal

nonterminal if all of its productions yield this word.

The two proposals contained di erent semantics for such gnamars, though. Okhotin

has explained the meaning of a conjunctive grammar by exteingj the derivation relation

) for context-free languages incorporating parallelism inrder to implement the idea of
universal productions. Lange has chosen a semantics foresttating context-free grammars
that is an extension of the well-known parse tree formalisnof context-free grammars.

De nition 13 (Alternating Context-Free Grammar) An ACFG is a tuple G =

(N; ;S;P; ) where N is a nite set of non-terminal symbols, is an alphabet disjant
from N, S 2 N is a designated starting symbol, an® N (N[ ) is a nite set of
production rules. Finally, : N !'f9 ;8g labels the non-terminals as either existential or
universal.

Let "¢ be the smallest relation” (NT ) which is characterised by the
following rules.

oW i oW
t ¢ n_© ifAl  1&:::& q

(A ——— (And :
W g W A oW
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i oW ‘s u gV
L ST WAL 4jit)ow (Comp——2 ©

(On) -
c W G uv

The language derived from such a grammar is(G) = fw2 S g wg.

Example 5 (Okhotin [Okh01]) The grammar given by the following rules derives the
languagefwcw | w 2 f a; bg g over the alphabet = fa;b;@.

S! C&bD; C ! aCajaCbjbCajbChbjc;
E! aEjbEj ; D! aA&aD jbB&bDjcE;
Al aAajaAbjbAaj bAbjcEa; B! aBajaBbjbBajbBbjcEb:

Intuitively, S derives the intersection of the languages derived iy and D. C generates
fxcy j x;y 2 fa;by;jxj = jyjg. D has the purpose to ensure that indeed every or b
positioned on the left ofc corresponds to the same terminal to the right of in the correct
order. Note that A and B enforce ana or b respectively right of the c. The recursive
intersection of aA &aD and bB &bD takes care of the positions in which the's and bs
occur. Formally, D derives the languagd wcxw j w;x 2 f a;bg g whose intersection with
the language ofC indeed results infwcwjw 2 f a; g g.

The derivation of the word abcabis shown in Fig. 2.1.

Theorem 14 (Closure Properties, [Okh01]) Let L; and L, be ACFL and R be a
regular language. Then the following languages are ACFL:

L[ L2 L1\ Lo; LiLo; Lq; L\ R:
It is currently not known whether ACFL are closed under comgment.

The closure of ACFL under nite intersections with CFL can trvially be proved since
ACFL have a direct means for intersection at hand. From this focourse follows as a
corollary that ACFL are closed under intersections with REG

Theorem 15 (Emptiness, [Okh01]) The emptiness-problem for ACFL is undecidable.
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2.2 Temporal Logics

2.2.1 Labeled Transition Systems

Temporal logics are often interpreted ovemite structures which re ect in nite behaviour.
Such a structure represents an abstract model of a program cmescribes its possible
con gurations and the computational steps leading from oneon guration to another. By
behaviour we mean the possible sequences of con gurationgladhe computational steps
between them. Since programs need not terminate and may ruaréver, this behaviour
might be an in nite object. But because the behaviour is obtemed by some form of
unfolding of the structure it usually o ers enough regulatty to maintain decidability of
veri cation tasks.

On the other hand there is system behaviour which cannot be si&ibed by nite struc-
tures in general, e.gpushdown systems.f. [BEM97]. These systems do necessarily display
in nite behaviour and thereby increase the di culty of maintaining decidability of veri -
cation. The existence ofnite representations of such in nite structures remains however
a minimum requirement for any veri cation task.

In compliance with the above requirements, we adopt here theandard de nition of a
Labeled Transition System(LTS) which serves as structure for all temporal logics disssed
in this work.

De nition 14 (Labeled Transition System) Let be a nite set of actions and P be
a nite set of atomic propositions. An LTS is atriple T = (St ; "), where

S is a set of states,
I S S is calledtransition relation,

P! 25 is calledlabeling function

Instead of writing (s;a;t) 2 , we use in x notation s!  t. By abuse of notation, the

transition relationl  is extended to action sequendesS S inductively as
g t i s=t
st®™ t i 9u2S with st? uandu!" t;

where is the empty word andw 2
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A pathinan LTS T = (St ;) is a nite or in nite sequence of alternating states and

actions Sg; a;;S1: @S 115 S.t. sl @ g4y for all i 2 N. We similarly write paths as
sd ¥ sd # s,::: Apath is maximal if it is in nite or it ends in a state s,, s.t. there is
noa2 and t2S with s,! ® t. The length ofa nite path = sd * s} 2 s,::1 % g,

isj j= n. If isinnite we denote its length by j j = 1 . Depending on the focus of
interest, we may from time to time omit the states in a path anccall the projection on the
sequence of labels a path anyway or just project onto the sace of states.

The size of an LTS T, usually written |T j, is de ned as the number of stategSj of T. If
T has in nitely many states then we writejTj= 1 .

A state of an LTS { or more precisely, the propositions which ¢id in it { represents
a con guration of a program during execution while a transibn between states marks
an execution step. For instance, states may hold the prograrariable assignments and
transitions be labeled with program statements if this is te desired level of abstraction.
The behaviour of a program is captured by paths through the L$ which represent single
lines of possible executions from some given starting statdote that we hereby implicitly
have introduced a non-deterministic computational model.

De nition 15 (Bisimulation) A bisimulation on an LTST = (St ;) is a symmetric
binary relaton R S S s.t. for all (s;t) 2 R:

s2 (p)i t2 (p)foral p2P, and

if there isana?2 andan s°2 S s.t. sl 2 s°then there is at°2 S s.t. t! @ t%and
(t;t9 2 R.

Two statess;t are bisimilar, written s t, i there exists a bisimulation R with (s;t) 2 R.

We may also speak of bisimilar states w.r.t. two LTS and T with the obvious adjust-
ments to the bisimulation relation. Given two root or starting statess;s’of T and T, we
may even say that two LTS are bisimilar ifs and s® are bisimilar.

It is commonly agreed that the notion of observational behaour of programs is equally
captured by bisimilar program models. Hence, it is a desirébproperty of temporal logics
not to distinguish between bisimilar models. See Def. 21 for arfieal de nition of this

property.
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2.2.2 Logic and Program Veri cation

In order to reason about program properties a speci cationahguage is needed in which
such properties can be expressed. t#&mporal logicL is a formal language, i.e. a set of
sentences calletbrmulas. Any formula' 2 L describes a property ofan LTS = (St ;)
in terms of the states in which the property holds. Thus the seantics of' is a subset of
S.

We will use two di erent kinds of formalisms to state that' holds in a states 2 S (that is

s satises ' ). For variable-free logics we de ne aatisfaction relaton =+ S L over
states and formulas w.r.t. an LTST .

In case a logic has variables it is common practice to de ne semantics function[]" :
L! 25 instead, where is a function which interprets the free variables occurringn the
formula. The semantics function ||]|T maps a formula to exactly those states in which it
holds w.r.t. . If it is clear which LTS is meant, we usually omit it and simpy write
and [] . For closed formulas (i.e. formulas in which no free variaéd$ occur), we may also
omit . The formalisms are interchangeable on closed formulas cnwe demand

s i s2[ 1

from which follows
[l = fs2SjsF'gq

We will occasionally use the symbo§j to indicate that the relation = does not hold.
There are a series of desirable standard properties and dsgan problems regarding tem-
poral logics. From a historical perspective, modal logias were mostly interested in
axiomatising a logic and hence in the validity problem. Sireca formula of modal logic is
valid i its negation is unsatis able this equally attracts notice to the satis ability problem.
But also in the context of e.g. program synthesis { the autont& generation of executable
computer programs from speci cations of their behaviour {decidability of a logic is the
main requirement.

De nition 16 (Satis ability) A formula ' of some temporal logicL is satis able i
there exists a modell = (St ;’)and a states2 S s.t.sfF '.

De nition 17 (Decidability) A logic L is decidablei its satis ability problem is de-
cidable.
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With the dedication of logics as tools for computer system anprogram veri cation and
the thereby triggered automatisation process of these taskthe model checking problem
became more and more important while for earlier and less argsive logics the problem
was usually considered too trivial.

De nition 18 (Model Checking Problem) By the model checking problem, we mean
the question whether given an LTST = (St ;') a states 2 S and a formula' the
statements F ' indeed holds.

Note that model checking is usually easier to solve than velty or satis ability, because for
most temporal logics, model checking can be reduced to vatjdby describing the model
with a succinct formula [Sch02].

Model checking is in this sense a synonym fprogram veri cation, since a program speci -
cation in the form of a logical formula is being veri ed on an bstract version of a program
(given as an LTS). Decidability of a logic does also have an glcation in this area, namely
to prove the consistency of a system speci cation: if a fornha is unsatis able, it contains
a contradiction and hence cannot have an implementation.

In this work, we are going to focus on model checking but alsoemtion results on decid-
ability, where known.

2.2.3 Computational Complexity

One of the most important questions related to the typical deision problems of a logic
{ such as the model checking and satis ability problems { is laout their computational
complexity: determine a measure of used computational resces for solving the problem
in terms of a function on the size of the input.

We assume familiarity with the concept of computational complexity and just recall a few
very basic notional conventions. See [HU79] for details.

De nition 19  Letf (n) be afunction. DTIME(f (n)), NTIME( f (n)), DSPACE(f (n)) and
NSPACE(f (n)) denote the classes of languages that can be recognised egerministic,
resp. non-deterministic Turing Machine in time, resp. spaf (n). This naturally lifts to
classed~ of functions:

DTIME(F) := | DTIME( f );
f2F
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NTIME(F) :=  NTIME(f);
f2F

DSPACE(F) :=  DSPACE(f);
f2F

NSPACE(F) :=  NSPACE(f):

f2F

Let 28 = f (n) and 2V = 24 . De ne some important complexity classes mentioned
in the following as

KEXPTIME := DTIME( f2X™ j p(n) polynomialg);
EXPTIME = 1EXPTIME ;
PTIME := 0 EXPTIME ;
LINTIME := DTIME( fc njcconstant);
NPTIME := NTIME( fp(n)jp(n) polynomialg);
co NPTIME := fLjL 2 NPTIMEg;
PSPACE := DSPACE(fp(n) j p(n) polynomialg);

ELEMENTARY = KEXPTIME ;
k2N

for any k 2 N.

Theorem 16 (cf. [HU79])

LINTIME ( PTIME PSPACE EXPTIME ( 2EXPTIME ( :::( ELEMENTARY

It is not known which of the inclusions between PTIME andEXPTIME s strict, only
that PTIME ( EXPTIME

2.2.4 Properties of Temporal Logics

Regarding the above decision problems, there are some ubgftoperties and problems
related which will be investigated for all of the logics ocaung here.

De nition 20 (Finite Model Property) A logic L has the nite model property i for
all* 2L we have that if' is satis able then there exists a nite model for' .
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Settling the question whether a logic has the nite model prperty allows to use techniques
such as ltration in order to establish decidability. Note that if a logic has the nite model

property, its model checking problem is decidable and it isdunded w.r.t. the formula

then decidability is entailed, because it su ces to check almodels up to the size of the
boundary.

De nition 21 (Bisimulation-invariance) Let T = (St ;)and T%= (St 29 pe
LTS, s2 S and s°2 S%such thats  s°(see Def. 15). That a logid. is bisimulation-
invariant means that for any' 2L, we havesi ' i sk '.

Most modal and temporal logics are bisimulation-invarianand therefore do not distinguish
models which are equivalent in this sense. This is of courseemsonable assumption in the
context of program veri cation, since it comprises exactlythe kind of abstraction which
makes modal logics so attractive for specifying program baViour: state-basedness and
control ow simulation.

Another important aspect is that bisimulation-invariance entails the tree model property

De nition 22 (Tree Model Property) A logic L has thetree model propertyi for all
" 2L we have that if' is satis able then there exists a tree model for .

Theorem 17 Any bisimulation-invariant logic does also exhibit the tr& model property.

For a proof see cf. [Ott06]. A very useful application of therée model property is that it
allows to combine the theory of tree automata with program m@&soning, see c.f. [VW86].

2.2.5 EXxpressivity

Given two di erent logics L, and L, it is natural to ask whether all properties expressible
in L, are also expressible ih, and vice versa.

De nition 23 (Expressivity Order) Let L; and L, be logics.L is said to be at least
as expressive as 1, written L; L , if there exists a 2 L, such that for all LTS
T=(St ;),s2Sand' 2L;wehavesFt"' i sEtT . We write

L, L » ,|f L, L gand L, L q;
L, Lo ,|f notL; L ,;
L, L, if L, L zand L, L:
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In order to emphasize on the size of the translation, we sonmaes write' ) , ' 1(x
, etc. to additionally require thatj j f(j' j). If we are only concerned with the asymp-
totic behaviour, we write lin; exp etc. instead off (n).

2.2.6 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) was originally introduced by Fischer and Ladner
[FL79] in order to allow reasoning about programs. It desdres the interactions of pro-
grams and logical propositions independently of the compation domain. PDL allows, for
example, to make assertions of the kind \after executing pgspam in a state satisfying
', property necessarily holds". Programs are built from atomic ones ugj the oper-
ations composition, nondeterministic choice and iteratim They are denoted by regular
expressions. This makes the original PDL in e ect &#DL over regular programs

De nition 24 (Propositional Dynamic Logic) Let P be a nite set of propositions
and be a nite set of actions. Formulas and programs of PDL ae de ned mutually
recursive as the least setorm and Prog respectively, satisfying the following conditions:

P Form

If ' 2 Formthen: ' 2 Form

If ; 2 Formthen' _ 2 Form

If * 2 Formand 2 Progthenh i’ 2 Form
Prog

If ; 2 Progthen ; [ and 2 Prog

If * 2 Formthen' ?2 Prog

For notational convenience, we use the following standardhreviations:

t qa_: g,
f = it
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All these abbreviations except the last are standard frorpropositional logic and will be
referred to asbooleanor propositional formulas. hi and [] will be called modal operators
or modalities We call any program' ? with ' 2 Form a test

PDL formulas and programs are interpreted over LTS models. e semantics of a PDL
formula and a PDL program is given by simultaneous inductioron the structure of the

formula and the program: LetT = (St ; )beanlTS,s;t2S,g2P,a2 , ; 2 Prog
and'; 2 Form By abuse of notation we de ne

s! t i thereexists u2S s.t.s! uandu! ft

s L ti s tors ¢

g t i thereexists n2 N;ug;:::;u, 2S s.t.
Up=sandu, =tandu;! ujy forallO i<n;

d °ti s=tandsi

SFq i g2 °(s),

SF:" 1 s
SE _' I SE ©oOrsg#§
SFhi" i existst2S st tF' ands! t

Example 6 The formula h(* ?; )[ ((: ' )?; )it is satised in some states if either '
holds in's and a path labeled with program exists or if' does not hold ins and a path
labeled with program exists.

Therefore the program used in the modality can be used to mddsonditional branching
if ' then else

Example 7 Consider the formula[]p$ [ ]pfor two programs and and a proposition
p. This formula states the equivalence of the programs and on a given structure. If
this formula holds independently of the structure then cledy

Theorem 18 (c.f. [HS96]) PDL exhibits the following properties:
nite model property,

bisimulation-invariance,
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tree model property.

Theorem 19 ([FL79, Pra80])  The satis ability problem for PDL is EXPTIME -complete.

Theorem 20 ([FL79]) The model checking problem for PDL is PTIME-complete.

2.2.7 Computation Tree Logic

Computation Tree Logic(CTL) by Emerson and Clarke [CE81] is a widely used branching
time logic which emerged from a proposal of Ben-Ari, Manna dnPnueli in 1981 called
Uni ed Branching Time Logic and essentially is CTL without binary temporal operators
but just EF and AGinstead [BAMP81]. CTL has shown itself to be very useful in t@
design, speci cation and automatic veri cation of reactiw and concurrent systems [MP92].
It has a distinct advantage over PDL, since it is capable of @xessing a typical correctness
speci cation statement like \all executions of a program wi eventually reach a state in
which property ' holds" which is impossible in PDL.

De nition 25 (Computation Tree Logic) Let P be a countably in nite set of propo-
sitions. CTL is the following set of formulas:

=gt T JEX JHOU)JEORY)

whereq2 P .

Standard abbreviations include the propositional abbregtionst ;f ;*;! ;$ de ned pre-
cisely as for PDL and the following:

AU) = CECR )
ACR) = TE:'U )
AX = EX?
EF = HtU');
AF = AtU");
EG = HfR");
AG = AfR"):
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CTL formulas are interpreted in states of an LTST = (St ;) as follows:
SFq i g2 (s);
SE i s§°
SE" _ i SFE' OorsfF ;
sE EX i thereexist a2 ;t2S st sl? tandtpE

an

SEF E'U) i thereexistsapath =sd & s # ::1 Sh
st.sp=sands,F andforalli<n :s F
siE H' R) i there exists a maximal path = sd & s§ # :::
st.sp=sandforalli j j:
Si | orthere existsj <i s.t. 5 F "
Note that the semantics of CTL formulas is usually given oveaunlabeled transition systems
since the labels are ignored anyway and that it is usually reqed that the transition system
is total. We have chosen our de nitions under the aspect of agparability between di erent
kinds of logics and therefore wish to have a common and mostngeal semantical base for
both modal and temporal logics. This is important in particdar with regard to the later
on introduced non-regular variants of CTL which do respecthe labels. It is important to
note that on total transition systems, our de nition of CTL semantics coincides with the
classical one, i.e. formulas hold in exactly the same stateBhe same is true if a property
is satis ed in a nite pre x of a path, i.e. for all EUformulas and also for thoséH' R )-
formulas which are satis ed becausé holds somewhere along the path. The crucial case
is the remaining one: what if there exists a nite path along Wwich  holds everywhere,
but * nowhere? This case is unde ned in classical CTL.
Since the main interest here is that theR-operator is the dual toU, we chose to de ne that
such a nite path satises E' R ). Another reason is that in order to ensure complete
agreement between this version of CTL and the classical onesu ces to add the formula
AGEXt as a conjunct to each formula, because it will render each foula to f on a
non-total LTS.
CTL has enrichments such as CTL[EH86] which allow free mixing of path operators and
quanti ers: for example, ApU@) is a CTL formula but not a CTL formula, because theG
is not immediately preceeded by a path quanti er. In fact, CL unies CTL and Pnueli's
well-known linear time temporal logic LTL.

Example 8 Typical CTL de nable properties include livenessof property , expressed
as' = AGEF. The formula' states \on all paths at any moment there exists a path on
which  eventually holds".
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Example 9 Dualising the path quanti ers and temporal operators yield the formula’ =
EFAG which states \there exists a path on which eventually on all @ths at every moment
holds".

Theorem 21 ([EH85]) CTL exhibits the following properties:
nite model property,
bisimulation-invariance,

tree model property.

Regarding the decision problems for CTL we have the followgn

Theorem 22 ([FL79],[EH85])  The satis ability problem for CTL is EXPTIME -complete.
Theorem 23 (c.f. [Sch02]) The model checking problem for CTL is PTIME-complete.

Comparing the expressivity of PDL and CTL it can easily be seethat they are mutually
incomparable, because CTL is blind to transition labels o one hand and PDL cannot
express theEGoperator for instance.

Theorem 24
PDL CTL and CTL PDL:

For a proof see Thm. 48.

2.2.8 The Modal -Calculus

Kozen's modal -calculus L ) [Koz82] extends modal logic with extremal xpoint quanti-
ers. Regarding expressivity, it subsumes most of the commty used modal and temporal
logics.

De nition 26 (Modal -Calculus) Let P be a countably in nite set of propositions,
be a nite set of actions and V be a countably in nite set of monadic second-order
variables. Formulas ofL are given by the following grammar.

=g Xyttt jhat X

wherea2 , g2 P and X 2V and the positivity requirement holds: in every subformula
of X:' , every occurrence oK must be under an even number of negation symbols.
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The positivity requirement has the purpose of ensuring thexestence of the xpoint. We
write ' [ =X ] for the formula produced by replacing every free occurrea®f the variable
X in"' with

Standard abbreviations include the propositional abbregtionst ;f ;*;! ;$ de ned pre-
cisely as for PDL and the following:

. w :
hi' =, ha’
[ T = :hii 5
[a] = :hai:
X:too=on Xo X=X

The replacement ofX with : X in the de nition of X:' ensures thatX occurs under the

same number of negation symbols in the resulting formula.

The semantics of aL formula in a transition systemT = (St ;) is a subset ofS,

intuitively those states in which ' holds. It is de ned inductively using an environment
: V | 25 that interprets free variables in a formula. We write [X 7! T] for the

environment that maps the variableX to the state setT and behaves like otherwise.

[d" = fs2Sjqg2°(9)g;
X1" = (X)
['] = snl'T;
[ _ 1 =071I[L71;
[rei' T = {528j9t28:5!a tandt2 [ ] g;
[X: 1" = T Sj [ 1 xay TO

Example 10 Consider the CTL formulas EpUg) and EpRg) for propositions p;q2 P.
They are expressed i as

X:q _(p™hi X) and
X:qg™((p_hi X _[ )

respectively. Note that this scheme in principle su ces to tanslate CTL to L as follows:

tr(q)
tr(: ')

a;
ptr();



38 2. Preliminaries

(" _ ) tr(" ) _tr();

tr(EX) = hitr(");
tr("U) = Xotr()_(tr(")Mhi X);
tr(' R) = Xotr()MN@r(")_hi X _[ If):

Theorem 25 ([Koz88], c.f. [BS06]) L exhibits the following properties:
nite model property,
bisimulation-invariance,

tree model property.
Theorem 26 ([FL79],[EJOO])  The satis ability problem for L isEXPTIME -complete.

The lower bound in Thm. 26 is a consequence of tieXPTIME -hardness of PDL satis-
ability and the fact that PDL is a fragment of L .

Theorem 27 ([EJ88]) The model checking problem fot. is PTIME-hard and included
in NPTIME \ co NPTIME.

As stated in the introduction, the importance ofL for this work is that it expresses exactly
the regular properties on words and trees modulo bisimildyi and therefore separates the
notions of regular and non-regular logics.
See Fig. 2.2 for an overview of the expressivity results for and some of the most common
temporal logics. A dotted line from a lower positioned logit ; to a higher positioned one
L, stands forL; L,. MSO/bis is used for the bisimulation-invariant fragment & MSO.

L MSO/bis

...
Y
PRAREIN
. Sl
P .

Figure 2.2: Expressive power of some regular logics.
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2.2.9 Non-Regular Logics

L is exactly as expressive as the bisimulation-invariant foganent ofMonadic Second-Order
Logic (MSO) over trees or LTS [JW96]. MSO is the fragment of Secor@rder Logic which
restricts the use of second-order variables to arity 1, thuslowing to reason about sets of
elements of some kind, e.g. states.

Since MSO and Rabin tree automata are also equivalent [Raljo@very property that is
expressible inL (or one of its fragments PDL, CTL, CTL , etc.) can also be checked
by a nite Rabin tree automaton. The class of languages recogable by nite automata
are the regular languages { ot -regular languages in case the considered structures are
in nite. It is in this sense that L -de nable properties areregular and the reason why we
call L and its sublogicsregular logics

The classi cation of a temporal logic as regular is a stateme about its expressive power
and refers to the structurally least complex class of formdhnguages of the Chomsky
hierarchy. Clearly, there is a large, almost unexplored spa aboveL in terms of non-
regular de nable properties dual to the space above the relgu languages in the Chomsky
hierarchy. Non-regular program properties arise naturajlin the context of unbounded
data structures: for instance can the absence of buer undews not be expressed in
L for unbounded bu ers. Also any kind of counting propertiesike \at any point dur-
ing the execution of a protocol there have never been mosend than receiveactions”
are non-regular. Further examples include Emerson's unifo inevitability stating \some
event occurs globally at the same time in all possible runsEfmne87] or properties making
structural assertions about their models like being bisirtar to a balanced tree or word.
This work contains numerous examples of such properties. Wl introduce several logics
that are capable of expressing such properties, establishsic properties about them, com-
pare them by expressive power and { most important here { detmine the computational
complexity of their model checking problems.
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Chapter 3

Non-Regular Propositional Dynamic
Logic

The clear distinction between logic and programs in PDL comises an appealing modu-
larity for the purpose of de ning non-regular program propgies, namely by enriching the
class of allowed programs in modal formulas. This idea is noew altogether: already the
earliest works on PDL have dealt with questions regarding sh extensions. They were,
however, mostly concerned with decidability issues whicls probably the reason why the
range of considered classes has so far been limited to thasmated in between the regular
and context-free ones, since this is where the borderline tmdecidability runs.

3.1 Syntax and Semantics

In the following, we de ne PDL over di erent classes of formhlanguagesL, or PDL[L]
for short. The basic building mechanism of formulas in PDL]] is very similar to that of
PDL over regular programs, except that the programs alloweth the modalities are not
restricted to regular expressions but instead to languagés2 L . This raises the question
about the representation of such languages.

We do not want to arti cially restrict the use of speci cation formalisms for formal lan-
guages of which there are numerous: e.g. automata, grammaakyebraic expressions, sys-
tems of equations, etc. On the other hand we may not omit all s¢rictions since our results
do not hold for every kind of language representation, e.grfextensional or otherwise in -
nite representations or cryptographically encrypted langages. The least restrictive format
we identify in order to ensure the validity of our results is® assume a size measujkj for
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any representation of a languagé& which is a nite value, even thoughL may of course
contain in nitely many words. We identify any class of langagesL with the class of a
certain kind of nite representations of its members. For istance the class REG may be
identi ed with the class NFA since NFA=REG and nondeterministic nite automata are
nite representations of regular languages.

We make another very reasonable assumption on eath given anL 2 L, its alphabet
must be computable in timeO(jLj). This is not a very strong assumption since it holds
for virtually all formalisms typically used in this context and in particular for those men-
tioned above. But it does prevent the use of inadequate langge representations such as
encrypted languages.

PDL over regular programs is de ned using tests. A test is a ggial kind of program in
which a predicate on the set of states occurs. Programs andrfulas are de ned mutually
recursive and therefore allow arbitrary PDL formulas as tégredicates. In order to extend
this de nition to non-regular PDL, we have to extend the langiage alphabet with tests ?
for any formula' . Tests are allowed to occur at arbitrary positions in a woradv 2 L(A).

De nition 27 (Non-Regular PDL with Tests) Let P be a nite set of propositions,

be a nite set of actions andL be a class of formal languages over . Formulas and programs
of PDL[L] are de ned mutually recursive as the least set&orm and Prog respectively,
satisfying the following conditions:

P Form

If * 2 Formthen:' 2 Form

If; 2 Formthen' = 2 Form

If * 2 Formand L 2 Progthen hLi' 2 Form

If L 2L thenL?2 Prog whereL?=fw2 ( [f'?]' 2Formg) jw, 2Lg.

In the last clause,w; de nes an operation onw which deletes all tokens except those
occurring in . Hence the clause indeed de nes programs asrguagesL 2 L in which
tests may occur at arbitrary positions.

Note that the alphabet [f ' ?j' 2 Forng for eachL? in every step of the induction is
nite , becauseForm contains only nitely many formulas in each step. This is imprtant
regarding nite representations ofL? in e.g. automata, where the set of input symbols
consists of exactly this alphabet at a certain nite stage othe induction. It would no
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longer be the case iP was chosen to be in nite, as it is usually assumed in the conteof
temporal logics. This however is no limitation for the undeaking of model checking: the
input formula for a model checking routine is nite and therdore does only contain nitely
many di erent propositions to be considered.

Sometimes we may want to reason about PDL] without the test operators and distinguish
this fragment by calling it PDL6?[L]. Formulas of PDLE&?[L] are obtained from the above
de nition by omitting the last clause. It is clear that PDL6?[L] is a proper syntactical
fragment of PDL[L].

Standard abbreviationst ;f ;*;! ;$ ;[L] are de ned as for PDL, except of course thak
is not necessarily a regular expression but in general a fahianguage.

For every' 2 PDL, we de ne the set of all its subformulassul{’ ) inductively as follows:

sul(q) = fog;

sul(: ) = - g[ sud );

sud( 1_ 2) = f 1_ 29[ sull 1) [ suld »);
sub(hLi ) = fhLi g[ sul ):

This gives rise to a measure of the size of a formulag de ned asj' j = jsul(’ )j.
Before we give the semantics of PDL| formulas, we need a function which extracts test
predicates from formulas.

De nition 28 (Test Extraction) Let' be a formula of PDLL] for some class of formal
languaged.. The set of tests occurring in is inductively de ned as follows:
test{a) = ;;
test: ') = testq");
test' ) = testq"' )| testy );
testqhLi') = f'?2 | isthe least set, s.t. L g[ test' ):

Since we require that the alphabet of a language used as a program in a formula is
parsable in linear time, this holds for the computation ofesty" ), too.

A formula ' of PDL[L] (and PDL®[L] respectively) is interpreted over an LTST =
(St ;) as follows. For every ? 2 test{' ), we extend the transition relation by
adding ?-labeled self-loops on any state2 S for whichs =  holds. Formally, we de ne

1?2 =1[f (s; 22s)jsE and 2?2 test{" )g

and interpret ' on the obtained LTST%=(S;! ? :").
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De nition 29 (Semantics of PDL[ L]) Let T®= (S;! * ;") be an LTS as described
above ands 2 S be a state. Semantics of a PDL]] formula is given inductively by

SFq i s27°(9);

SE ' i s§

SE"' _ i SFE' OorsfF ;

SE hi’ i thereare w2 L andt2S s.t.
st tandtf "

Note that in de nition of the case s hLi' , the transition relation now refers td ° . It is
obvious that for formulas of PDL&|[L], the extended transition relation! * is identical to
' and hence models need not be modi ed for such formulas.

3.2 Examples

Example 11 (Veri cation of Programs with Stack Inspection i n PDL[IL]) Inor-
der to detect access violations in safety critical routingsnspection of the call stack may
become necessary, e.g. in case of nested calls, where theirgall came from a method
without the required permission. This has been implementefbr instance in the runtime
access control mechanism of JDK 1.2. In [NSTO1], such progra are modeled as the set
of possible sequences of the call stack w.r.t. the programwop called traces. The set of
possible traced.y is an indexed language.

The speci cation of safe traces in which no access violatisroccur is given as a regular
languageL sae and hence an LTST,nsare rfesembling the NFA for Lgae can be built (see
Sec. 3.5.1) which contains the set of unsafe paths. The veration itself can be performed
by model checking the formulahL, it on Ty.sare- If the state s representing the starting
con guration of the program satises hLy it this means that there exists an unsafe path
which is labeled with a word inL, and hence that the program has access violating runs.

Example 12 (Model Checking PDL[CFL] in Abstract Interpreta tion) Consider
the system of mutually recursive functions in the left tabldoelow, where + denotes nonde-
terministic choice and ; sequential composition. The funign fy is the entry point of the
system. Supposed we were interested in detecting whetheralhpossible system executions
the call of f3 is preceded by a successful return &f (security check). Note that the stack
behaviour, i.e. the sequences of function calls and returisnon-regular in general (for a
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non- xed number of functions). We state the property we wishto verify as the regular
expressionLge= € r1 C3 , wWhere a call of functionf; is indicated by ¢, a return
by r; respectively. It is possible to use abstract interpretatio and overapproximate the
system of recursive functions into a one-state transitionystem with looping transitions
for all elements in . In order to restrict this overapproximation to non-spurious runs one
can consider the context-free grammaG on the right below which is straight-forwardly
derived from the recursive functions. Safety of the systers then established by checking
the PDL[CFL] property ' sare= :hL(G)\ Lgat .

fo == fofs+ fpfy Fo ! CoF2Faroj coF2Firo;

fi = fafi+ fofa+ fifs Fi ! cFsFirgj ciFaFsry j ciFaFary;
f, = fifo+ fpf3+ term Fo ! GFiFaraj gFaFars j cory;

fg = ffi+ term Fs ! cFiFirsj csra:

It is easy to see that the only states does not satisfy gae: Fo) CoF2F1ro)  CoCar2CsrsFiro.
Every derivation continuing from this point will end in a violation of L, because every
derivation from F; will be pre xed by ¢;.

3.3 Properties

Unlike for PDL, not every satis able PDL[L] formula is satis ed in a nite model if L
contains non-regular languages. This result is proved by ekiting a PDL[VPL] formula,
showing that it is satis able and that any model must have in nitely many states.

Theorem 28 (Finite Model Property Absence) PDL[VPL] does not exhibit the -
nite model property.

Proof LetL = fa'd jn 2 Ng. As shown in Ex. 1,L is a VPL and since by Thm. 4,
VPL are closed under negation, so is.
Consider the formula

' = [a]mit 7~ [ab alf, M [L bf, ~ [L]kdit

jalmit plabahy el B LR,
1 2 3

where we use regular expressions in the modalities besidetgluages. SupposE is a model

of ' . Because of the rst conjunct of 4, it must have an in nite a-path, and because of the

second conjunct, all other maximal paths must be of the forrm b or a b . The latter is
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however impossible because o} which states that everya"'-path is a dead end. Finally,
' 3 craves the existence of a path with labed"d" for any n 2 N, because any path in
L must have ab-successor and this holds in particular for every state algrthe in nite
a-path. Note that ' is satis able, for instance by the following in nite model.

It is easy to see that every model df must be of in nite size. Letsy! @ s;! ? s,::: be the
in nite a-path which needs to exist because 6f,. Because of , and' 3, for everyi 2 N
there must be a paths;! ® t; o/ ® ::1 P ty having labelb and ending in a state with no
successors. This cannot exist in a nite model of sizefor somen 2 N because thds-path
from s, would have to contain a loop, butT cannot contain an in nite b-path because of
', 2

Theorem 29 PDLJ[L] is bisimulation-invariant and therefore has the tree modeproperty
for any L.

Proof For PDL@[L] this follows from bisimulation-invariance of CTLL] proved in Thm.
42 and the fact that PDL&[L] is a sublogic of CTLL] as proved in Thm. 48. Adding tests
poses no di culties here. 2

Given the parametric nature of PDLL], an immediate question arising regards the corre-
lation between the expressive power of the language cldssnd the resulting complexity
of program veri cation.

Early works have only considered decidability of PDL. Fisar and Ladner have shown that
PDL is decidable in nondeterministic exponential time and stablished a deterministic
exponential time lower bound [FL79]. The gap was then closddy Pratt who proved
decidability in deterministic exponential time [Pra80]. ladner concluded very early that
PDL[CFL] must be undecidable since the validity problem oftie formulahL,ip $ h L,ip
for two context-free languages ;; L, amounts to the equivalence problem of CFL which is
undecidable [HU79].

A wide study of fragments of PDL[CFL] obtained by restrictirg the use of context-free
languages set o in the 1980ies. Harel et al. rened the premius result by showing
that satis ability of PDL[CFL] is complete for the existential side 1 of the rst level
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of the analytical hierarchy and established the fact that tle borderline to undecidability
runs very close to REG: already PDL augmented with the singleontext-free program
fa"bd j n 2 Ng leads to undecidability [HPS83]. Surprisingly, given theisnilarity of the
languages, PDL equipped with the languagkea™b’ j n 2 Ng remains decidable [KP83].
This observation led to the identi cation of larger fragmens of CFL over which PDL is
decidable, namely SML, SSML and nally VPL as the most genetaf them [HR93, HK99,
LLSO7].

The following table sums up the results and cites the origitars.

Satis ability
PDL[REG] | EXPTIME -complete [FL79, Pra80]
PDL[SML] 2EXPTIME -complete
PDL[SSML] 2EXPTIME -complete
PDL[VPL] 2EXPTIME -complete [LLSO7]
PDL[CFL] undecidable [FL79, HPS83]

Figure 3.1: Complexity of satis ability for PDL[L].

Upper bounds for PDL[SML] and PDL[SSML] follow from their irtlusion in PDL[VPL]
and 2EXPTIME-hardness for decidability of PDL[SML] transkrs from [LLSO07], where the
language used to show the lower bound of PDL[VPL] is actuallg SML and hence also a
SSML.

3.4 EXxpressivity

Our rst and rather obvious observation is that classical P indeed coincides with
PDL[REG].

Theorem 30
PDL =PDL[REG]:

Proof It is well known that regular expressions and NFAs both chacerise the class
REG and are convertible into each other. Since PDL programseregular expressions
over some in which tests may be included, automata over theane alphabet and tests
characterising the same languagds 2 REG do exist and vice versa. But then PDL and
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PDL[REG] formulas have identical semantics, if the corregmding automata and regular
expressions are exchanged. 2

Already in [HPS83] the term \non-regular” is applied to the bgic PDL[CFL] and it can
easily be shown that there are indeed formulas in PDL] which are not expressible i .
However, both logics are in fact incomparable w.r.t. exprewity.

Lemma l LetL = fa'"jn 2 Ng2L for some language clads. Then

PDL[L] L and
L PDL®LL]:

Proof PDL[L] L : Consider the formula’ = hAit , where A is an automaton with
L(A) = L. The formula' is not expressible inL . This can already be shown for nite
word models. A nite word model is an LTS s.t. its states can bearranged to a nite
sequencesy : :: s, with exactly one transition a1 between each pair of adjacent states
and s;;; for all O i < n. The concatenation of transition labels forms a nite word
W= a:::a,. Let W be a nite word model of somew. Then we havesy, pw ' |
w 2 L (A) immediately from the de nition.

Hence the set of (all words obtained from) all word models wth satisfy' coincides with
L. Itis well-known that L 62REG. But any formula of L translates into a formula of the
bisimulation-invariant fragment of MSO and from there intoan NFA. Hence there is no
formula which is satis ed by the same set of word models.

L PDL®@[L]: The proof anticipates the de nition of the logic CTL[L] from Chapter 4
and the result that PDL6[L] is equivalent to the CTL[L] fragment EF[L]. In [ALL * b] it
is shown that the CTL formula EGIg is not equivalent to any formula in CTL[L] . Since
CTL L this entails that there is aL -formula which is not equivalent to any CTLL ]
formula and in particular not to any EF[L] formula from which the claim follows. 2

We strongly suspect that the result can be extended th PDL[L], but have no proof.
The above lemma entails that PDL over all language classes fhe Chomsky hierarchy
which subsume SML are indeed non-regular.

PDL[L] receives its expressive power from the interplay betweehet intrinsic logical ma-
chinery common to all PDLL ] variants and the externally supplied expressive power fino
the language class parametdr. It is immediately seen that for any of the language classes
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REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE the -relation is inherited to
the logics equipped with the corresponding powers.

Theorem 31 ForallL;:L°2 f REG, SML, SSML, VPL, MVPL, CFL, MSCL, IL, CSL, RE o}
if L L then

PDL@L] PDL&LY:
PDL®L] PDL[LQ:
PDL[L] PDL[LY:

Proof Follows from syntactic inclusion: for any’ 2 PDL®&[L], we have' 2 PDL@&[LY
and' 2 PDL[LY and for any' 2 PDL[L] we have' 2 PDLJ[LY. 2

It is however not obvious at all whether these inclusions arstrict or not. Some of the
above statements however can be strengthened to strict rétsu

Theorem 32

PDL®[REG] PDL®[SSML]
PDL®[VPL]  PDL®[DCFL];

Proof The separation of PDI&?[REG] and PDL&[SML] is a consequence of the fact
that PDL &[REG] is contained inL while by Thm. 1 we have that PDL&[SML] contains
formulas inexpressible ir_ .

The second result is obtained by an inspection of a proof in [A* b] where CTL[VPL] is
separated from CTL[DCFL] (see Sec. 4 for a de nition of theskgics). The CTL[DCFL]
formula shown to be inexpressible in CTL[VPL] is in fact alrady a formula of the fragment
EF[DCFL] and hence by Thm. 47 expressible in PD&[DCFL]. Since by the same theorem
PDL6&[VPL] EF[VPL] we have that PDL6&[VPL] is included in CTL[VPL] and obtain
the result. 2

The following result states that up to the context-free langage classes, parametric PDL
without tests is strictly weaker than PDL with tests.

Theorem 33
PDL&[CFL] PDL[CFL]:
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Proof A proof of the version of this theorem for PDL[REG] can be fowhin [BP81]. The
proof idea there is as follows: consider the PDL[REG] formal = hp?;a) ;: p?;a;p?t

for a proposition p and an actiona. The program can be seen as an encoding of the
statement \until : p do a" followed by the execution of yet anothera and p?. Furthermore
consider a family of ring-shaped modelg, connected by unidirectionala-transitions, each
of length 2n + 1 for all m > 0. Name the statessy;:::S;n. In every state the proposition

p holds except inSy; Sy 1;Som 1 and S, Where: p holds, i.e. if one thinks of the states
aligned in a linear sequence then only the rst, the one predmg the middle and the last
two states do not satisfyp. Clearly, so =1, " 1 Sm 6j7, ' forall m> 0.

Now one shows that in test-free PDL there is no formula whichao distinguish so and sy,
on such models under two further conditions: i + 1 is a prime andm 1 is greater than
the number ofhai occurring in such a formula. Because all regular expresssoon one-letter
alphabets have a normal forrR [ R%(a") for star-free and possibly empty expressions
R;R%and n 1, there is a corresponding normal form for PDL formulas ovesne-letter
regular programs, s.t. the only subformulas which may occuare of the formbAi , with
A=aorA=(a").

Clearly, any formula distinguishingsy and s,, on such models must do so in states in which
the propositions di er. That is, in order to claim that there exists a test-free formula , s.t.
SoFT, | Sm6j1, holds, mustsay that only states in whichp holds are reachable
from sy and simultaneously that only states in which: p holds are reachable frons;, or
vice versa.

However, by construction, the number ofai occurrences does not su ce to \reach" a state
further away than m 2 a-transitions. Note that along the way equally forsy and s,,, only
p holds. Hence, these formulas do not distinguisty and s;,.

Regarding subformulas of typé(a") i, we have two cases: eithar =2m+1 or not. If n =
2m+ 1, every iteration of n a-steps returns at the starting point and hence simultaneoiys
reachessy and s,, in which the same proposition holds. Ifn 6 2m + 1, since 2n + 1
is prime, both sy and s,, reach every other state inT,, and hence not only states with
homogenous propositions. As a consequence, test-free PRInmot distinguish so and sy,
in T, for su ciently large m.

This proof can be extended to PDL[CFL] as follows. Since by Th. 31, PDL[REG]
PDL[CFL] the above mentioned formula’ is expressible in PDL[CFL]. Furthermore, it is
known that every CFL over one-letter alphabets (denoted by EL-1) is a regular language
[HU79]. Clearly, any formula of PDLB?[CFL] using languages over an-letter alphabet,
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PDL[RE]
T PDLE[RE]
PDL[CSL

] |
T ppL@[CSL]
PDL[IL]

T poLe

PDL[MCSL] |
T PDLE@MCSL]
PDL[CFL] ... |
T PDL&[CFL]
PDL[DCFL] --..__ |
T PDL&[DCFL]
PDL[VPL] --.._. §
T PDL&[VPL]
PDL[SSML]--..__ |
T PDL&[SSML]..
L ~ PDL[SML] -..._ k
el T PDL&[SML]
PDL  PDL[REG] -.._ ;
~~~~~ PDL®[REG] -

Figure 3.2: Expressive power of PDL]].

wheren > 1 cannot do more in terms of expressivity on the type of model¥escribed
above than a formula using one-letter languages. Thus, aklevant, i.e. PDL&[CFL 1]
formulas, translate to PDL&®[REG] and hence cannot distinguistsy and s, in T, either
for su ciently large m.

Note that this argument is equally valid for PDL[SSML], PDLVPL] and PDL[DCFL]. 2

Corollary 2 LetL 2f SSML, VPL, DCFLg.

PDL®LL] PDL[L]:

Fig. 3.2 summarises the expressivity results on PDL]. A line from a lower positioned
item to a higher positioned item denotes inclusion of the farer in the latter. If it is dashed
this means that the inclusion is strict.
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3.5 Model Checking

While the complexity and decidability of the satis ability problem for PDL w.r.t. the
class of featured programs is well understood by now, thereesstill some open questions
regarding decidability and complexity of the correspondim model checking problems. The
range of language classes that is interesting for the satébility problem, namely classes
between the regular and the context-free ones, is entirelyadel checkable in polynomial
time [Lan05]. Therefore it is reasonable to extend the scoé considered language classes
for the model checking problem beyond the context-free.

The only formula type in which PDL[L] and propositional logic di er is the modal expres-
sion scheméLi' . Insofar it is the only formula type which poses di culties for model
checking relative to the rather easily solved model checkjrof propositional logic. There is
however an observation which allows to reduce the model ckexg problem for this formula
type to well-studied problems of formal language theory: fuaitively, solving the problem

s F hLi' amounts to synchronously nding aw 2 L and aw-labeled path in the model
starting in s and ending in a state satisfying . Clearly, it is possible to regard the model
as a language consisting of all paths starting is or { more precisely { the concatenation
of their labels. The apparent similarity of an LTS and an NFA sggests that this path
language is regular and brings up the conjecture that the sghrony can be captured by
intersecting L and the language induced by the LTS. Checking the resultinghguage for
non-emptiness should then solve the model checking problesince any witness would be
a member ofL and correspond to an LTS path froms, provided that ' holds in the target
state.

The following section will develop this reduction formallywork out a generic method for
model checking PDLL] and transfer the complexity results accordingly. We theidter turn
our attention to the logics resulting from the largest class of formal languages for which we
have deduced decidability of model checking and develop coete model checking routines
which can be implemented straight-forwardly. We also proveoundness and completeness
of these algorithms.

3.5.1 A Generic Method

The goal of this section is to carve out the territory of formblanguage classek over which
the model checking problem for PDL[ ] remains decidable and to show that the method we
develop can be used generically to determine its complexityith respect to the language
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parameter.

The non-emptiness problenfor a classL of formal languages is the following: given a
nitely represented L 2 L, decide whether or notL 6 ;. Furthermore, a classL is closed
under intersections with regular languages for every L 2 L and every regular language
R we haveL\ R2L.

De nition 30 (REG-Intersection Problem) The problem of non-emptiness of inter-
section with a regular languagé REG-intersection problemfor short { for L is the follow-
ing: given a nitely representedL 2 L and an NFA A over a set of terminal symbols
decide whether or notL\ L(A) 6 ;.

Clearly, if a class of languages is closed under interseasowith regular languages and has
a decidable non-emptiness problem, then its REG-interséah problem is decidable, too.
Furthermore, if a class of languages is closed under inteztBens with regular languages
but has an undecidable non-emptiness problem then its RE@tersection problem is also
undecidable.

We start by showing the close relationship between the REGersection problem forL
and the graph-reachability problem forL .

De nition 31 (L -reachability Problem) Let L be a class of languages. The-reachab-
ility problem is the following: given an LTST = (St ), a states 2 S, a set of states
T S and a nitely represented L 2 L, decide whether or not there is av 2 L and a
t2Tsts!"t.

Lemma 2 The problem of non-emptiness of intersections with a reguld&anguage forL
reduces in linear time to thel -reachability problem.

Proof LetL 2L andA =(Q; ;;do;F) be an NFA. Take a xed propositionf and
denean LTS Tp :=(Qt ;" )with st ti t2 (s;a)foranys;t2 Q,and (s):= ffg
if s2 F and "(s) := ; otherwise.

Now, L\ L(A) 6 ; i there exists a w := aja,:::a, for somen 2 N st.w 2 L and
w 2 L(A). The latter is the case i there are statestp; t4;:::¢h S.t. G+1 2 (G;&+1) for
alli<n andq, 2 F. This holds by construction of T i !" ¢, andg, 2 “(f). Clearly,
Ta can be constructed inO(jAj). From this follows the claim. 2

Lemma 3 The L-reachability problem reduces in linear time to the problemof non-
emptiness of intersections with a regular language fdr.
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Proof Let T = (St ;)beanlLTS,s2S, T S,andL 2 L. Dene an NFA
Arst =(S; ;;s;T)st.forallt2S andalla2 : (ta):= fujt'® ug. Note that
A+ .s7 can be constructed inO(jT j).

Now there is aw 2 L and at 2 T with s!" ti there is a pathin T from s to some
t 2 T s.t. the transition labels along that path form the wordw. This is the case i
w2 L(Arst)\ L. Hence, thereissuchai L\ L(Ats7)6 ;. 2

In order to be able to transfer lower complexity bounds fromite REG-intersection problem
to the model checking problem for PDLUL], we now show that theL -reachability problem
reduces in linear time to model checking PDL]].

Lemma 4 Let L be any class of languages. THe-reachability problem reduces in linear
time to the model checking problem for PDLL].

Proof LetL 2L be alanguage over the alphabet ,T = (St ;') beanlLTS,s2S
andT S . Let gr be a proposition. DeneT?= (St ;9 st forallu2s:

8

< .
. fgrg ;ifu2T
) =

- - otherwise

Now, for any L 2 L, there isaw 2 L and at 2 T with s!¥ ti T%s F higr.
Furthermore, both T°and hLi gy can be constructed in time linear inT and a representation
of L. 2

It seems however unlikely that also the reverse reduction @ossible, because of a lack
of direct means to encode the propositional operators of P[] into the reachability or
REG-intersection problem.

But having at hand an algorithm solving the L -reachability problem, we can construct a
model checker for PDLL ] rather easily. Letreach(s;L; T) be an algorithm which solves the
L -reachability problem and takes as arguments a state2 S, an appropriately represented
languageL 2 L and a setT S . We assume here that thd_-reachability problem is
decidable and will later on show for whicL this is the case. Clearly, we can construct a
procedurereach(L; T) with L and T as before which returns the set of stated = fs 2

S jreach(s;L; T) = trueg by calling procedurereach(s;L; T) for eachs 2 S.

Consider now the following algorithm for model checking POL].
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MC-PDL(T, ") =
let (St ;)=Tin
case' of

q ()
: : S nMC-PDL(T, )
1_ 2. MC-PDL(T, 1)[ MC-PDL(T, »)

hLi clet £ 12000 p?29= tests (L) in
1 0=

let U=MC-PDL(T, ;)in
for each u2 U do

L% O (us i7u)
done
done
let V =MC-PDL((St %), )in
reach(L, V)

MC-PDL takes an LTS T and a formula' and computes the set of states iT which
satisfy' . It uses an oracleaeach which di ers depending on the class of languages used in
the modal formulas. In case it encounters a modal formuldi it rst extracts the tests
occurring in the representation ol with the subroutine tests , then computes separately
for each test ;? all statesu in which ; holds and nally transforms the transition relation
with a ;?-self-transition onu accordingly. Finally it computes the set of states in which
holds (on the transformed LTS) and uses these states as tatgéor the L-reachability
problem in the oraclereach.
Soundness and completeness are proved by a straight-ford/atructural induction on ' .
The only di culty arises from the fact that the algorithm mod i es T in order to be able to
deal with potential tests contained within' in case' is a modal formula. The computation
of! * from Def. 29 has to be performed w.r.t. each formula or, moraezisely, the set of
tests occurring in each formula, because there are in nitgelmany tests in general.
MC-PDL however does this computation on-the-y and for eachmodal subformulahLi
separately. At rst, the set of tests is determined in the sulputine tests (L) in the
corresponding recursion step. After computing for each tes;? in tests (L) the set of
statesU in which ; holds (by recursively calling MC-PDL on ;), the transition relation
is updated with a ;?-self-loop for all states inJ.
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Hence, whenever the call ofeach(L;U) is reached on any recursion level, it is ensured
that for all tests ;?2 tests (L) and forallu2 S we haveu ;i u! '’ u, of course
under the assumption that the MC-PDL computation of ; is sound and complete. This
means that just after completion of the doubldor -loop on any recursion level, the current
modi cation oft  °coincides with! ° as de ned for the current subformulahLi and the
tests contained within. On the level of the input formula’ , we therefore have °=17
after the doublefor -loop.

Theorem 34 (Soundness and Completeness) Forall LTS T =(St ;7),s2S and
' 2 PDL[L] we have
SE' I s2 MC-PDL(T;"):

Proof From the preconsiderations above, it remains to show that thsemantics compu-
tation on the modi ed LTS is sound and complete.

Soundness. We assumes 2 MC-PDL(T ;' ) and prove the claim by a structural induction
on' . Algorithm MC-PDL treats propositional operators as expeed and their proof is
entirely trivial.

In case' is of the formhLi , we may assume that ° has been computed correctly. The
actual model checking ofLi is performed via calling the procedureeach(L;U), where
U is the set of recursively computed target states in which holds.

By ILH. for any t 2 U we havet . Clearly, a call ofreach(L; U) on the modi ed LTS
then returns exactly the set of states? from which there is a path to some state inJ
labeled with aw 2 L. But then, if s2 P we havesf ' .

Completeness. Assumes F ' . Again, we show the claim by a structural induction on
' . Propositional cases are trivial. Ifs  hLi then thereisat 2 S and aw 2 L, s.t.
s! tandt E . By I.H. we have that U = MC-PDL( T; ) containst. Since the LTS
transition relation modi cation faithfully re ects ! ? , procedurereach(L; U) returns a set
containing s. 2

Note that the running time of MC-PDL depends on the running tme of tests (L) which

in turn depends on the representation of. As argued before, it is easy to construct cases
in which the set of tests is hard to detect and may in uence theunning time signi cantly.
The tests could for instance be encrypted and be hard to deqty

Since most of the following results use MC-PDL as a basis forcamplexity analysis of
model checking PDLL], it is essential that the computation oftests (L) forany L 2 L
does not a ect its asymptotic complexity. We emphasise oncmore that we make the
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implicit assumption of a reasonable representation a&f, in particular that it is nite and
its alphabet is computable in linear time (and therefore atstests (L)).

Lemma 5 The model checking problem for PDLL] Turing-reduces to theL -reachability
problem in time O(jTj j'J).

Proof Itis not hard to see that algorithm MC-PDL can be made to run intime O(jT j ' j)
not counting the time complexity of the oracle procedureeach(L;U). Using a dynamic
programming approach one can restrict the numbers of recins calls to one per subformula
or test occurring in the input formula. Also, set operationsand updates of the labeling
function can be made to run in timeO(jT j). 2

The following diagram summarises the conclusions drawn sar:f

QT )
L reacl"@Bility =——J/ model checking PDLL]
Oo(iTi)
O(@Ti) | |OGA)

REG-intersection forL

A single line fromX to Y denotes a many-one reduction fronX into Y transfering lower
bounds along the arrow and upper bounds in the opposite ditean. A double line denotes
a Turing reduction transferring only an upper bound down thearrow but not a lower
bound up the arrow. Taken together, these results allow to &ansfer lower bounds on the
complexity of PDL[L] model checking from either of the other problems.

Concerning the transfer of upper bounds, we have shown thaDR[L] Turing-reduces to
L -reachability in quadratic time. Note that the number ofreach(L; U) calls of MC-PDL is
bounded by the number ofLi occurrences il . Remember that every call ofeach(L; U)
is realised byjSj calls ofreach(s;L;T). Putting this together, we have O(jSj ' j) calls
of an oraclereach(s;L;T).

This means that we may transfer upper bounds in terms of congdity classes from either
of the problems as long as they are at least PTIME, because dti$ point the O(jSj |' })
complexity of the reduction gets absorbed by the complexitgf the other problems.

Theorem 35 The model checking problem for PDL[] is equivalent under polynomial-
time Turing reductions to the problem of non-emptiness of tersections with a regular
language forL.
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Proof Immediately from Lemmas 3{4.

This theorem allows to transfer many known results from thehteory of formal languages
to the model checking theory of PDLL]. For example, regular languages are closed under
intersections and have a decidable non-emptiness probletdence, their problem of non-
emptiness of intersections of a regular language is decitialtoo. In fact, it is decidable in
linear time which then yields polynomial time decidabilityof the model checking problem
for PDL[REG]. 1t is also known that CFL is closed under intergections with regular
languages and has a non-emptiness problem that is decidabiegpolynomial time. Hence,
Thm. 35 reproves that model checking for PDL[CFL] is PTIME-omplete.

Regarding language classds, for which the complexity of model checking PDL[] is un-
known, the following table sums up the results from formal laguage theory.

Language clasg Closed under inter- Non-emptiness
section with REG
REG X 2 LINTIME
SML X 2 PTIME
SSML X 2 PTIME
VPL X PTIME-complete
CFL X PTIME-complete
MCSL X PTIME-complete
IL X EXPTIME -complete

ACFL X undecidable
CSL X undecidable

Figure 3.3: REG-intersection and emptiness for some langya classes.

In all of the above classes, the intersection with REG causas most polynomial blow-up.
From Thm. 35 and the above table, the borderline to undecidality of model checking
PDL[L] can by now be drawn. The class CSL of context-sensitive lamgges is closed
under intersections with regular languages but its non-entipess problem is undecidable.
Hence, the problem of non-emptiness of intersections with regular language must be
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undecidable, too. The same holds for the class ACFL. The examrrespondence of ACFL
and CSL is not known.

Corollary 3 The model checking problems for PDL[CSL] and PDL[ACFL] are ndecid-
able.

Note that the non-emptiness problem for context-sensitivéanguages is r.e. because the
word problem is decidable. However, since the reduction inemma 5 is only a Turing-
reduction, recursive enumerability does not extend to the odel checking problem.
Accordingly, the border to undecidability runs somewhere dtween the context-free and
the context-sensitive languages. The largest language sdain this area which ful lls the
required conditions is IL: it is closed under intersectionsvith regular languages (with
polynomial blow-ups only) and its non-emptiness problem BEXPTIME-complete [Aho68,
TKO7]. From this follows that its REG-intersection problemalso is.

Corollary 4 The model checking problem for PDL[IL] iSEXPTIME -complete.

Other classes which contain CFL, have decidable non-empéiss problems and are closed
under intersections with regular languages are the MCSL. A, they are closed under
intersections with regular languages and their non-emptass problem is decidable { even
in polynomial time. Since the blow-up in the construction othe intersection of a linear-
indexed grammar with a regular language is polynomial, theREG-intersection problem
is in PTIME as well. Thm. 35 then transfers the upper bound to lhe corresponding model
checking. A matching lower bound follows trivially from thePTIME-hardness of the model
checking problem for PDL[CFL].

Corollary 5 The model checking problems for PDL[LIL], PDL[HL], PDL[CCL, and
PDL[TAL] are PTIME-complete.

Since we are not aware of any hardness results for the empseeproblem of SML and
SSML, we may only transfer upper bounds from the REG-interséon problem.

Corollary 6 The model checking problems for PDL[SML] and PDL[SSML] ar@iPTIME.

For a comparison of the complexities of satis ability and mdel checking parametric PDL,
see Fig. 3.5.1. Note that some of the lower and upper bound wéis follow from the
expressivity results of the logics as stated in Thm. 31. Heacfor any two logics PDLL]
and PDL[LY, whereL L %and a complexity clas<C, if either problem isC-hard in PDL[L]
then it is also C-hard in PDL[L9 and vice versa for upper bounds.
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satis ability model checking
LINTIME[CS92]
PDL[REG] EXPTIME [FL79, Pra8o]
hard
2 PTIME
PDL[SML] 2EXPTIME
hard
2 PTIME
PDL[SSML] 2EXPTIME
hard
2
PDL[VPL] hard 2EXPTIME [LLSO07] PTIME
2
PDL[CFL] —- undec. [FL79, HPS83] | PTIME [Lan05]
2
PDL[MCSL] undec. PTIME
hard
2
PDL[IL] undec. EXPTIME
hard
2
PDL[CSL] undec. undec.
hard

Figure 3.4:. Complexity of SAT vs. model checking PDL]].
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3.5.2 A Model Checking Algorithm for PDL over IL

In this section we present an explicit model checking proceck for PDLJ[IL] that runs in
deterministic exponential time and can be implemented stight-forwardly. We focus on
the di culties imposed by the language part. A model checkeiis then easily obtained by
using the procedure sketched in the proof of Lemma 5.

Later, in the soundness proofs, we will need the following portant properties of deriva-
tions in indexed grammars.

Lemma 6 (Stack Distribution Property) Forall A;B;:::;Bk2Nandall 21 :
a) If A) B;:::Bx and no terminal productions are being used in this derivatio then
Al]l) Bafl:iBil |

b) If A[]) B[ ]:::Bk[ ] and no terminal productions are being used and for all index
nonterminals X [ 9 occurring during the derivation, °= forsome 21 ,thenA)
Bi:::Byg.

Proof Both parts follow easily from the following three observatins. LetA;B;C 2 N,
21 ,f21:

A) BCi A[]) BLIC[]
A) BIf]i A[]) BIf ],
Alf]) Bi A[f ) B[]

We exemplarily show the rst of these equivalences. The twdlwers are analogous. Suppose
A) BC. According to the de nition of ) , we must haveA ! BC and, henceA[ ])
B[ ]C[ ] according to the de nition of ) again. The converse direction is proved in the
same way.
For part (a) supposeA ) B;:::Bg. By successively applying the \if" parts of the three
observations above it is easy to construct a derivation whicshowsA[ 1) Bq[ ]:::B[ |
For part (b) supposeA[]) B[ ]:::Bk[] s.t. no terminal productions occur during
the derivation and every nonterminal in every intermediatesentential form has an index
0=  forsome 21 . Then one can successively apply the \only if" parts of the tiee
observations above in order to construct a derivation whickhowsA ) B;:::Bk. Note
that this would not necessarily be possible if some occurgmonterminal had an index
which is not of the required form: the proof relies on a simuli@n of the derivation steps
of A[]) Bi[]:::Bk[ ] on A with an empty stack. This is possible, as long as is
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left untouched at the bottom of all indexed nonterminals inmtermediate sentential forms.
Performing a pop-production on some intermittent indexed onterminal X[ ] cannot be
simulated on X with empty stack because the operation is not de ned. 2

Lemma 7 (Commutation Lemma) For all sentential forms; ; 1; 5 3,alA;B 2 N
and all ; °2 1 the following holds:

AT B[Ts) 1 B[93) 1 2 3
[ 1A[12B[T35) A[]2 3 ) 1 2 3

Proof This follows immediately from the de nition of ) . 2

Corollary 7 Let A2 N andw 2 st. A) * w. Then there are sentential forms

o;::1; n for somen 2 N all of which do not contain terminal symbols, s.t. ¢ = A,

i 1) forali=1;:::;n,and ,) ™ wwherem isthe number of indexed nonterminals
in ,

Proof SupposeA ) 1) :::) n = w for some ;. Consider the leasti s.t. ;

contains a terminal symbol. If every production rule applié to the right of ; is a terminal
production then the claim holds. Assume this is not the caseLemma 7 allows to hold
back the applied terminal production rule and instead to r¢$ apply the production rule
for i+1. Repetitive application of this procedure allows to postpwe all applications of
terminal production rules to the very last. Now note that it takesm steps to replacem
indexed nonterminals by or a terminal symbol each. 2

For the remainder of this section x an indexed grammaG = (N; ;P;l;S) and a Kripke
structure T = (St ;).

De nition 32 (Annotated Nonterminal) An annotated nonterminalis a triple (s; A; t),
wheres;t 2 S and A 2 N. Let N denote the set of all annotated nonterminals (oveG
andT),i.,e.N ;=S N S . We say that an annotated nonterminal §; A;t) left-matches
another (u;B;v), if t = u.

We de ne a new relation between two states;t, a sentential formE; :::Ex consisting
of unindexed nonterminals only, and a seB of annotated nonterminals. Intuitively,
g El:E:;Ek t holds i B can be rearranged to a sequence of annotated nonterminalsaihich
each left-matches its right neighbour s.t. that sequence asts with s, ends int and the
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projection onto its nonterminal symbols yields the sequerd; ::: Ex. Annotated nonter-
minals in B can be used more than once in this sequence, but each of thens kabe used
at least once. We also call such a sequence @pen pathfrom s to t because it represents

si 1 and s; there is ahole which, intuitively, should be closed by a proper path frons; ;
to s; whose label is derivable fronk;.

De nition 33 (Open Path) Letk 2 N,s;t2S,Dg;:::;D¢k2N,andB N

st PuPe t i there are sp;iii;S2S St Sp=S;S =t

Note that the set equality in this de nition does not only corstrain the available nontermi-
nals which can be used in order to construct an open path fromto t. It particularly also

demands that every annotated nonterminal in this set is begqused in the construction.
The left-matching property is hidden in the second conjunct

Example 13 Let S := fs;tg and B := f(s;A;t);(t;B;s);(t;C;s)g. Then for instance
s!”82C  u holds because there is a sequence of left-matching annotat®nterminals corre-
sponding toABAC which (as a set) forms®B, here namely §; A; t); (t;B;s); (s; A;t); (t; C; s).
On the other hand,s! ABB t does not hold since the annotated nonterminalty(C; s) is not
being used in this open path. Furthermores!’*BBC t also does not hold, becausd; 8;s)

does not left-match ; C;s).

De nition 34 Let C D be sets of annotated nonterminals anfl 2 1. Dene D[f]; C
i

for all (u;C;v) 2 C exists (u;D;v) 2D, s.t. D[f]! C and
for all (u;D;v) 2D exists U;C;v) 2C, s.t. D[f]! C.

The next lemma states some properties of the open path relati. We omit the proof since
all parts follow easily from Def. 33.

Lemma 8 For all s;t 2 States, all B;C,D;Bq;:::;Bx N ,all Ci;:::;Cy; Dq;:::;Dg 2
N,allf 21,andall ;; 1; »:::2 N* we have the following.

a) If s!; uandu! . tthens s b
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b) If there existsf 2 1, s.t. D[f]; Cands! °:P tthend “7 % t.

Cil 2Cim

and s! tandul ;v foralli=1;:::;k then sl L im g

B[ :::[B «

d If s ; tthenthere areu2 S andB;;B, N st B=B;[B;and s!Bl u and

|
ulg, t.

e) If s!; tand for every (4;D;v) 2B it holds that u= vandD ! , oru! ¢ v and
D! aforsomea?2 ,thenthereisa w?2 st. ) *wands!" t.

Approximating IL-reachability

In order to solve the IL-reachability problem we are interded in tuples of statess;t and
nonterminals A s.t. there is a path froms to t whose label (of terminals) is derivable from
A. In order to compute these tuples for every nonterminah we need to consider sets of
open paths rst. These will be represented by a triplés;B;ti2S 2V S | intuitively
describing that there is an open path frons to t which uses all elements iB. We use
hi-brackets to distinguish such triples from annotated nonteninals.

De nition 35 For eachA 2 N, de ne:

99K

A = fhs;B;tij thereis 2 N* with A) ands! ; tg:
Next we describe a method for computinéiK. We simultaneously de ne, for anyA 2 N,
a sequencegﬁg\Ko AT AZ i that approximates A" from below. We will show that
99K 99K

i2nA’ = A. Since each of them is a subset of a nite set, it is clear thahe chain has
to have a maximal element.
99
We start by de ning the initial sets A© foran A 2 N:

A° = fhsf(s;At)gtij s;t2Sg:

Intuitively, it is always possible to nd a path from any states to any statet that is labeled
with something derivable fromA if one is allowed to leave a hole betwees and t that
should be closed by anything derivable fromA. Note that A) A.

Now letj > 0. De ne Al as the union of four sets.

99K 99K, 99K | 99K | 99K .
Al = Al 1 [ A Ji conc [ Aj,push [ A Jiins.
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Hence, anything at levelj 1 is preserved into levej. Open paths at levelj can be
constructed by concatenating two open paths at levgl 1. The label of the resulting path
is of course only derivable if this is matched by a compositicqule in the indexed grammar
G. Note that the holes in the resulting open path are the unionfahe holes in both parts.

Adicone .= fhs;B[C;tij there areB;C 2 N andu2 S with A! BC and
he:B;ui2 B! Yandhu:Cti2 G tg:

Another way of obtaining an open path froms to t derivable from some nonterminalA
is to start the derivation with a push production. This has tobe matched in the end
by corresponding pop productions since we are interested apen paths whose labels are
unindexed nonterminal symbols.

Alpush .= fhs;Ctij thereareB 2 N;f 21;D N st A! B[f]and

Finally, an open path on levelj with a derivation of a sentential form from some nonter-
minal A can be obtained by inserting a derivation into the context ofinother derivation.

For technical reasons, namely to ensure completeness, wguiee that all parts of the open

path are being replaced simultaneously.

Alkiins .= fhs;By[ :::[B;tij there isC= f(uy;Cq;vi); it (uk; Ck; Vik)g

. 99K .
hui;Bi;vii2 Gl

99 99K, 99K

We proceed by showing that the sequenc&?®; A 1;::: correctly approximatesA .

99

Lemma 9 (Soundness) Forall A2 N andallj 2 N we haveAl A

Proof We prove this simultaneously for allA 2 N by induction on j. The base case
of j = 0 is rather simple. Remember thatA © only consists of elements of the form

hs;f(s;A;t)g;ti. Now, clearly s! f(s_’:\_t)g tand A) A. Thus, we havebs;f(s;A;t)g;ti 2
99K

Now let j > 0. Note that AU is the union of four sets. For each of these we will show that

99K

they are contained inA.
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99K

Case (i),A) 1 A" This is trivially true by hypothesis.

Case (ii), A cone A Supposehs;B [ C;ti 2 AJicomp  Then A | BC and there
are hs;B:ui 2 B !and hu;Cti 2 CJ 1. By hypothesis we havels;B;ui 2 B and
hu; G ti 2 %K, i.e.thereare; 2 N* st B) , C) ands! ; uas well asu! . t.
Then A ) BQE:K ) and according to Lemma 8 (a) we also have s b Hence,
hs;B[C;ti2 A.

ey 99K, 99K . 99K.
Case (i), AFPsh A Supposehs;C;ti 2 AVPU" Then A ! BJf] for someB 2 N

productionsD;[f ]! C;fori=1;:::;ks.t. C= f(ug;Cq;Vvi); i 05 (uk; Ck; vk)g. By hypoth-
esis,hs;D;ti 2 9BQK, i.e. thereisan 2 N* st. B) ands!  t. Let = Dj::i:Dy.
Now we apply part (a) of Lemma 6 and obtainB[f]) Dq[f]:::Dg[f]. Extending this
derivation with the rule A'! B{[f ] at the top and the rulesD;[f]! C at the bottom yields
A') Ci:1:C. According to Lemma 8 (b) we haved “*° t. But then hs;C;ti 2 A
which was to be proved.

Case (iv), Akins A" Supposels; B;ti 2 AJins st B is suitable decomposed int@d =

hui; Bi; vii 2 %QZT i.e.thereare | 2 N* s.t.C;) i and u{! ' v;. Hence,A) il

im

and Lemma 8 (c) yieldss! *, "™ t which shows thaths;B;ti 2 A" 2
99K0. 99K1. L 99K
Remember that we want to use the sequende”; A *;::: in order to compute A for some

A. The above shows that the sequence approximates it from belo We need to prove
99K
completeness, i.e. the fact that the sequence eventuallyptares A. For this, we need
99K
directedness of the family of set&\! which is an immediate consequence of the following
lemma.

Lemma 10 (Monotonicity) Forall A2 N and all j;j °2 N we have: j j O implies

99K 99K
Al Al
Proof Trivial. 2

Now we prove that eventually all open paths for all nontermials are indeed collected by
the approximation.
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99K

Lemma 11 (Completeness) For all A2 N existsj 2 N s.t. A AT

Proof Again, we prove this simultaneously for allA 2 N. First note that A is nite,
because so ar8 and N. Hence, using Lemma 10 it su ces to show that for everys; B; ti 2
A there is aj 2 N with hs;B;ti 2 AT, So take somés; B;ti 2 A Hence, there is an
2N sts!, tandA) . Thus, there is ann 2 N with A) " . We show the claim
by induction on n.
First assumen = 0. If A) © then B = f(s;A;t)g because = A and remember that
in s!; tall elements ofB are required to contribute to the construction of the open pt.
But then Is;B;ti 2 A,
Now letn > 0, i.e.A) ) K1 for some sentential form . We need to make a case
distinction according to the rule that is applied in the dervation of from A. Note that it
cannot be a pop production because the index #f is empty. It also cannot be a terminal
production because 2 N*. Hence, it can only be a composite productioA! BC (with
= BC) or a push productionA ! BJ[f] (with = B[f]). Note furthermore, that { for
the same reason { terminal productions cannot occur anywhetin this derivation.

Case (i),A! BC. By absence of terminal productions we must hayej 2. Hence, there
are; 2N*'st = andB) " andC) "2 with n;+n, n 1. Furthermore, by
assumption we havesl , t. Lemma 8 (d) yields au 2 S and a decompositiorB = B;[B »
s.t.slg u and ulg t. Sincen; < n, the hypothesis yields aj; s.t. hs;By;ui 2 B1,
Equally, sincen, < n we also havetu; B; ti 2 Ciz for somej,. Letj = maxfj;;j.g. By
Lemma 10 we haves;Bs; ui 2 9Bng and hu; B,;ti 2 %Kj. By construction we then have
hs;B;ti 2 AT+ which was to be shown.

Case (i), A! BJ[f]. Let = E;:::En. Furthermore, in the derivation A ) , every

E; must be derived from a nonterminalC s.t. C itself stems from an application of a rule
D[f]! C s.t. the index symbolf is inherited fromB[f ] at the beginning of the derivation.
In other words, for everyE; we consider the rst moment that the thread in the derivation
from B[f ] to loses the bottom index symbof . We can group according to that. Two

adjacent symbols in belong to the same group i they are derived from the same syrob
C which in turn is derived from an application of a ruleD[f ]! C s.t. all ancestors oD|f ]

up to B[f ] at the top of the derivation have the symbolf at the bottom of their stack.

This means we have

= Eg1iiiErmE21 i Eom, 1 Bt B,
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for somemyq;:::;me with my+ :::+ mge=m
Since each groufE;1:::Eim, In  stems from aC as said above there are nonterminals
Ci::5;CeDyii;Deandn®ny;iiine 2 Nwith n%+ (ny+1)+ i+ (ng+1) n 1s.t.

B[f]) "™ Dalf]:::Dy[f]

s.t. in every intermediate sentential form, every nonternmal has the symbofF at the bottom
of their index. According to Lemma 6 (b) we also hav8® ) "° Dy :::Dy.
Remember thats ! T FFime i EkaBemic + Applving Lemma 8 (d) repeatedly yields states

B
So;:::; S« and a decompositiorB = B[ :::[BksSt.sp=85,s =t,andforalli=1;:::;k
s 4! E“”E;iE“”‘i s.. Hence, we have, foi = 1:::::k: hs 1!Bi:si 2 G;. Sincen, <n for
all i =1;:::;k, we can use the hypothesis on each of them to get;:::;jk 2 N with
hsi 1;Bi;sii 2 %Tji-
Now dene D := f(sg;D1;51);:::;(sk 1;Dk;sk)9. Note that, just becauses, = s and
sy = t, we haves! Dlng t and thereforehs;D;ti 2 9BQK. Sincen®< n we can now use the

foralli =1;:::;k we havehs; 1;B;;sii 2 %',(J By construction, we then havehs; B;ti 2
AJT+1ins which nishes the proof. 2

99K S 99K
Theorem 36 Forall A2 N: A =, A

Proof By Lemmas 9 and 11. 2

. . S 99K .
Our next concern is the constructability of ;,\ A’ forany A 2 N. We start be remarking
that the number of approximation steps required for the corruction is nite.

Lemma 12 (Termination) For all A 2 N thereisaj 2 Ns.t forall j°>j we have
9K ¢

A1°= AT, Moreover,j jSj 2 2SI*INi,
Proof This follows from Lemma 10 and the fact that for allj, Al 'S 25NS g 2

Lemma 13 (Running Time) Forany A 2 N itis possible to computegAQ\Kin time O(jGj?
iNj jsje 238ItIN),
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Proof According to Thm. 36 and Lemma 12, it suces to compute,gbg\Ko;xKl; Sooountil
stability is reached. Lemma 12 also states that at mogsj2 2SI“iNi many iterations are
needed. Remember though, that this has to be done simultanesdy for all A 2 N, which
adds another factorjNj to the running time. Finally, for any A 2 N and anyj > 0,
computing

A" takes time O(jSj? jNj),

Aleone takes time O(jGj (jSj2 2517 Ni)2),

ATPush takes time O(jGj (jSj2 257°INi) (jSj2 jNj iG)),
ATins takes time O((jSj2 2517 1Ni) |Sj2 jNj),

assuming that set operations take timé&® (1) because sets are represented as boolean arrays
99K.

for example, and thatB! ! have already been computed for aB 2 N.

Putting these all together amounts toO(jGj2 jNj jSj° 23Si%iN), 2

Remember thatA  contains triples hs; B; ti s.t. there is a path froms to t whose label is
derivable from A and which is made from elements iB. These are triples of the form
(u; B; v) with the intuitive meaning that the path from s to t can use a subpath fromu
to v if it is possible to nd one that can be derived fromB. In the end we are of course
interested in closed pathsfrom s to t, i.e. those that do not contain holes like the ones
betweenu and v anymore. These holes can be closed by considering terminebgiuctions
now. Remember that Cor. 7 showed that in a derivation of a word is always possible to
defer the use of terminal productions to the very end, i.e. &) w for somew 2  then
also

A) Ei:iiiEx) w

for somek 2 N s.t. the rst part before E;:::Eyx does not contain terminal productions,
and the second part only contains terminal productions. Herwe also make use of the fact
that a terminal can only be derived from an unindexed nonterimal.

The next de nition captures the intuition of closed paths fom a state to another.

De nition 36 (Closed Path) For eachA 2 N, de ne:

A = f(s;t)js;t2S andthereisw2 st A) “wands!" tg:
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Approximating this set of closed paths is easier than the ake set of open paths. We can
de ne approximations such that the second of these alreadyaptures the entire A. We
de ne simultaneously for allA 2 N:

A® = f(s:9jS2S:A! g
[ f (s;t)js;t2S andthereisa2 st A! aands!? tg;
Al = A0
[ f (s;t)jthereisB N s.t. (s;B;t)ZXKand
for all (u:D;v) 2 B : (u;v) 2 D °g:

Again, we need to show soundness and completeness wAt.

1

Lemma 14 (Soundness) For all A2 N and we haveAl A.

Proof We show this simultaneously for allA 2 N. Let (s;t) 2 Al There are two
cases. If §;t) 2 A° then the claim follows immediately. Suppose therefore thahere
is abhs;B;ti 2 ,QK\K, i.e. thereisan 2 N* with A) and s! ; t, and that for every
(u;D;v) 2 B we have (;Vv) 2 DO. Then Lemma 8 (e) yields aw 2 st. ) *wand
s!" t. Hence, we haveA ) * w and therefore §;t) 2 A. 2

Lemma 15 (Completeness) Forall A2 N we haveA AL

Proof Suppose §;t) 2 A Thenthereisaw?2 ,st. A) *wands!" t. We consider
the derivation of w from A. Clearly, every symbola in w is derived in an application
of arule A! as.t. A occurs with empty index in a sentential form in this derivaton.
Furthermore, there can be applications of rul& ! |, again, on empty index only. Cor. 7

A) Ei:iiEx) w

and in the left part no terminal productions are used and in tk right part only terminal

productions are used. Letww = a;:::a,. Note that we must havek m, i.e. some of the
E; can be deleted in applications of the fornk; ! , but no single occurrence of ai; can
derive more than one terminal symbok; in w. Hence, each of these nonterminal; is

either nulling, i.e. it is deleted in an application of aruleg; ! , otherwise it isnon-nulling

and derives a terminal symbol inw. Let E;, :::E;, be the subsequence d&; :::Ey that

consists exactly of the non-nulling nonterminals in it.
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Sinces!" t there aresp;:::;sm2S sit.sp 4 @ s foreveryi=1;:::;mandsy,= s and
Sm = t. Let C= f(so;Ei,;S1); 1 (Sm 1;Ei,;Sm)g. Then we haves! E‘l”(::E‘”‘ t. Let

B := C[f (si;Ei;si) j Ei is nulling in the sequence abovg

Ei;iEip .
c '™ tinto

First one can repeatedly apply Lemma 8 (d) in order to decompe s!

E;i.
a sequenceu! ' vforj =1;:::;

f(UEi; V)9
. 99K
recompose it intod "+ t. Hence, we haves;B;ti 2 A. Furthermore, note that for
every (U;E;v) 2 B we have (1;v) 2 E % eachu; v have been chosen such that either

a

u'® vandE! aforsomea?2 , or
u=vandE'!
By the construction, we then have §;t) 2 Al 2

Lemma 16 (Running Time) Forall A 2 N, itis possible to computéA intime O(jGj?
iNj jsje 298IFIN),

Proof Clearly, computingi&0 foran A 2 N takes time O(jSj? jGj), and once this is done
forall A2 N, Al can be computed in timeO(jSj? 2SiI*INi jSj2 jNj). Both are superseded
by the time it takes to compute,gég\K for all A which is required in advance anyway. Hence,
the result follows from Lemma 13. 2

Theorem 37 The model checking problem for PDLJIL] is in EXPTIME.

Proof We reprove this theorem by showing that the algorithm MC-PDLis in EXPTIME
where the subroutinereach is implemented as the computation of the closed paths set as
described above. Remember that the worst-case scenario MEC-PDL is that reach is
calledj' j 1 times for some PDL[IL] formula’ since the computation of the whole seman-
tics can be decomposed into the subsequent computation oftsemantics of subformulas
and furthermore the most expensive kind of subformula id.i whose semantics is com-
puted by reach.

Remember also thatreach(L;V ) takes as parameters an indexed languade (here given
as an indexed grammar) and a se¥ representing the precomputed set of states in which
a subformula holds.

According to Lemma 16, given an indexed grammag with nonterminals N and starting
symbol S, and a transition systemT with statesS and aT S , one can computéS in
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time O(jGj2 jNj jSj® 23S1*INI). Then one checks in timgSj2 for which s 2 S the setS
contains an element ¢;t) with t 2 V and returns thoses.

As stated above, this is done at mosf j 1 times. Clearly, the time consumed is then
exponential in both the grammar and the transition system. 2

3.5.3 A Model Checking Algorithm for PDL over MCSL

In this section we turn our attention to a concrete implemerdtion of reach in the model
checking algorithm MC-PDL for PDL[MCSL]. This is particularly interesting, because
despite the fact that MCSL can already be considered a rathgrowerful language class,
the model checking problem of PDL[MCSL] is still solvable ifrPTIME (see Cor. 5) just
like the model checking problem for PDL[CFL].

First of all, note that the reason for the exponential model leecking for PDLJIL] is the
representation of sets of open paths through a triples; B; ti in which B itself is a set of
annotated nonterminals of which there are exponentially nrg. If one could restrict that
number to a polynomial in the number of statesS and the size of the underlying grammar
G then the result would be a polynomial model checking procerki In the following, we
will show that this is the case for LIL.

For the remainder of this section we X, again, a LIGG = (N; ;I;P;S) and a Kripke
structure T = (St ;7).

Before we can proceed with a procedure for the LIL-reachalyl problem, we need some
technical lemmas. First of all, note that Lemma 7 (commutatiity of pairwise application
of production rules) also holds for the derivation relationn linear indexed grammars.

Lemma 17 Forall A;B 2 N,all 21 andallw;;w,?2
a) IFR) wiBw,then A[ 1) wiB[ Jw,.

b) If ,Q[ 1) K wllg[ Jw, for somek 0 and for all marked indexed nonterminalé([ 9
occurring during the derivation, °=  for some 21 holds thenﬁ?) K wy Bw,.

c) If R) wiBw,thenA) wBw,.
d If A) and 2 NT* then there existsB 2 N, s.t. /JQ) 1@ >and B ,=

e) IfA) Kwforaw 2 and k > 1 then there existvi;vo;v3 2, ky <k, k) <k
andB 2 N, st. R) % v;Bv; andB ) *2 vy, S.t. W= ViVpvs.
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Proof For part (a) note that a simulation of the rules used during tle derivation /Q)

w.Bw, can be done onﬂ[ ], apparently leaving the index untouched at the bottom of

all index transformations.

The same holds in part (b), since it is required that the index is always at the bottom

and hence no pop productions which go below the empty indexrcée performed in the

simulation of A[ 1) w.B[ Jwe.

Part (c) and (d) are straightforward.

For part (e), rst notice that since Lemma 7 is applicable forLIG, it is possible to postpone

the application of terminal productions in a derivation to the end, st.A) 1) :::)
n) i wforsomen2 Nandforalll i n, ;2 (N ). Hence , 2 N*.

From application of part (d) of this lemma follows that thereexist 1; 2 N ;B 2 N,

st. R ) 1@ >and ;B , = . Clearly, w may be partitioned into wy;w,; ws, S.t.
1) Ww;,B) wyand ,) ws. We now have proven@) ke Wlﬂ?wg andB ) w,, hence

ko =1 <k. Butsincek > 1 andk = k; + k,, we have thatk; <k, too. 2

Solving the LIL-Reachability Problem

As for the IL-reachability problem, we will devise a procedwe that solves the reachability
problem for LIL by characterising, for each nonterminaA the pairs of statess;t for which
there is anopen pathfrom s to t whose label can be derived fromA. However, since the
index of a nonterminal can only be passed on to a single nomanal in any application of
a rule, we can restrict our attention to paths with a single hiz only.

For example, an open path froms to t may be characterised by two states®t® and a
nonterminal B. The intuitive meaning is the following: there are sentenél forms ;
st.R) B and® would inherit a stack from &R, ands! s°t% t, and betweens’
and t°there is a hole which has to be closed by something derivabterh B. The crucial
observation now is that nothing in or does inherit a stack from&. Therefore, we can
assume these parts to be derived to terminal symbols alreadihis, however, means that
we need to de ne simultaneously the sets of open and closedhmaderivable from a given
nonterminal because they mutually depend on each other.

Furthermore, this observation explains the claim of polynmial boundedness of the sets of
annotated nonterminals in the introductory part above: foran IL, the set B representing
all legal parts of an open path in a triplehs; B; ti boils down to a singleton sef (u; B;Vv)g
now. We therefore write those triples simply a$s; u;B;v;ti with s;t2 S and (u;B;v) 2
N=S N S.
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De nition 37 (Open/ Closed Path) For eachA 2 N, de ne:

?&K = fhs;u;B;v;tij there arew;;w, 2 @ s.t. )Q) w1®w2 and
st uandvt "2 tg;

1

A = f(s;t)jthereisw2 st A) "wands!" tg:

Next we de ne, forallA 2 N, setsxKo;,g&Kl;::: S N S andAO;Al;::: S S for
which we will show that they approximate,gﬁg\K and, resp.,A. The two base cases are as
follows.

A° = fhs;s; A;t;tij s;t2 Sg;
A® = f(s:9]sS2S:A! g

[ f (s;t)jthereisa2 st A! aands!? tg

Now letj > 0. As above, the set of open paths at levglincludes the set of open paths at
levelj 1 and closes it o under applications of composite and push pductions as well
as insertion of open paths into the holes of other open paths.

99K. 99K 99K, 99K 99K .
Al = Al 1 [ A I conc [ Aj,push [ A Jiins
where
Alicone .= f hs;t;D;u;vij there areB;C 2 N;v°2 S s.t.
99K: L
Al BC andhs;t;D;u;vi2 B! Tand v®v)2Ci % or
Al B®and(s;\92B andht:D;u;vi2 G tg:
AVPush = fhs:t:D;u;vij there areB;C 2 N:f 2 I; s.t. A! BJ[f];
C[f]! Dandhs:t:C:uvi2 B g
99K . . . . . 99K,
Al = fhs;t;D;u;vij there is t%B;u% 2 N with hs;t%2B;u%vi2 A’ 1
and®t:D:u:ud2 Bl tg
Furthermore,

Al = Al L
[ f (s;1) ] there is (U;B;v) 2N with hs;u;B;v;ti2 Al ®and
(U;V)Z!Bj 1g;
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Lemma 18 (Soundness) For all A2 N and for allj 2 N we have

a) Al A, and

99Kj 99K

b) A

Proof We prove both parts by simultaneous induction on for all A 2 N. The base case
of (a), A© A is immediate. The base case of (b)Q\KO ,QAQ\ is not much more di cult.
Note that A’) Rands s,

Now supposg > 0. For part (a) suppose that €;t) 2 Al Then there are two cases. If
(s;t) 2 Al ! then we simply have §;t) 2 A by hypothesis. Hence, assume that there
is (u;B;v) 2 N s.t. Is;u;B;v;ti 2 Al T and (u;v) 2 Bi 1. The hypothesis for (b)
yields bs; u; B;v;ti 2 ,QK\K, i.e. there is arew;; w, 2 s.t. A’) wlli?wz and s "* u and
v "2 t. Then by Lemma 17 (c) we also havé ) w;Bw,. Furthermore, the hypothesis
for (a) yields (u;v) 2 B , i.e. there is aw 2 st.B) "wandu!" v. Hence, we have
A) * wyww, and s !"*""2 t and therefore 6;t) 2 A.

For part (b) supposels; s D;t%ti 2 AT We need to distinguish four cases. The rst case
of he: 2 D:t%ti 2 Al 1 trivially follows from the hypothesis.

Casehs:2D:t%ti 2 Ak  Then there areB:C 2 N, u 2 S st. A ! BC and
he:s2D:t%ui2 B !and (u;t) 2 Ci LorA! B®and (s;u) 2 Bi landhu;s®D:tCti2

8Kj 1. Suppose the former is the case { the latter is entirely dualye therefore omit that
subcase here. Then, by hypothesis for part (b) we have; s® D;t% ui 2 B which yields
Wi, Wy 2 with B ) W1I§W2, s " s% and t9 "2 u. Furthermore, the hypothesis for
part (a) yields (u;t) 2 C i.e. there is aw 2 st.C) *wandu!" t. Putting these
together yields®) BC ) * wyBw,w andtd "2 t. Hence, we haves; s® D; t% ti 2 A

Casehs; s®D:t%ti 2 AJPush Then there areB;C 2 N andf 2 | St A ! B[f],C[f]! D
and hs: 2 C:t%ti 2 BI 1, By hypothesis, we havels; s’ C;t%ti 2 Bi ! ie. there are
Wi, Wy 2 with B ) W1@W2 ands! " s?andt% 2 t. According to Lemma 17 (a) we
also have@[f 1) Wlé[f Jw, and therefore

Ry B[f]) wEfiw,) wibw,

which shows thaths: s D:t%ti 2 A
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Finally, supposebs;s®D;t%ti 2 AT Then there is a (;B;v) 2 N st hs;u;B;v;ti 2
Al 1 and hu; s D;t%vi 2 B 1, Applying the hypothesis twice yieldshs; u; B; v;ti 2 A
. 99K |
and hu;s% D;t%vi 2 B, i.e. there arew;; wy; wd;ws 2 st. R)  wBw, s ™ u,
0 0

vt and® )  wiBwd ul "t s°and t9 2 v. Putting these together yieldsA )

0 0 99K
wiBw, ) wiwlBwiw, and ¢ " sPand t? 22 t. Hence, we haves;s% D;t%t42 A

which nishes the proof. 2

Lemma 19 (Monotonicity) Forall A2 N and all j;j °2 N we have:j j%implies
99K

99K g Lo L
Al Al"andA! Al
Proof Trivial. 2

Lemma 20 (Completeness) For all A2 N existsj 2 N s.t.

a) A Al and

99K 99K

b) A Al

Proof Because of Lemma 19 it su ces to show for everysf t% 2 A that there is aj 2N
with (s%t9 2 A’ and likewise for evenys; u; E; v;ti 2 A,

So let %9 2 C andhs;u;E:v:ti2 A for arbitrary A;C;E 2 N ands;s*t;t%u;v2S.
From the de nition of these it follows that

thereisaw?2 st.A) Kwands®" t°for somek 1, and
there arew;;w, 2 s.t. R) ™ w,Bw, for somem 0ands! ™ uandv "2 t.

We prove both parts by simultaneous induction ork and m.

In the base case for part (a) we assume th&t= 1 and hence eitherw = aorw = . In the
former case we havé ! a and therefore €%t9 2 A°. In the latter case we haveA !
and therefores®= t°and (s% s9 2 A,

The base case for part (b), wheren = 0, requiresA’ = B andw; = w, = and therefore
s= uandv = t. But then Is;s; A;t;ti 2 A,

For part (a) we now assumek > 1 and haveA ) * w and s®" t% Lemma 17 (e) yields
Wi WoiWs 2, ky <k, k, <k andaD 2 N, sit. R) & w;Bw; ) % wyw,w; and
W = W;Wows. From this follows that D ) *2 w,. This means there existu®v®2 S, s.t.
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s4 ™ U0 ud ™ vPandvd " O By hypthesis there arei;i®2 N with hs®u®D;vetG2 A’
and (U%Vv9 2 D °. Therefore, we have %9 2 A trmaxfiiy,

| W1

For part (b) we assumem > 0, haveR) ™ w;Bw, ands! ™ uand vl "2 t. We make a
case distinctions on the type of production that is appliedi the rst step of this derivation.
Sincem 1landD 2 N, it cannot be a terminal production. It cannot be a pop prodution
either, becauseA has an empty index. Hence, it must either be a composite of a g
production.

CaseR) BC) ™ Lw;Bw,, i.e.A! BC. Thenthere arex;;x, 2 ,s.t.B) ™ w,Bx,
and C) ™ x, with m®m%®< k and w, = X;X,. Furthermore, there also is a®2 S, s.t.
u X vland v *? v Using the hypotheS|s for both parts (a) and (b) yleldq ;]2 2 N,
st hstE:u:vi2 Bit and (v°v) 2 Ciz . Hence, we havés; t; E: u:vi2 A Lmaxfisizgconc
and thereforets; t; E;u;vi 2 A #maxfizi20 The case ofR) B®) ™ I w,Bw, is entirely
symmetric.

Caseﬁ?) Iﬁj[f] y m 1t wlfbwz. Since the index oftf is empty in this sentential form, the
index symbolf must have been popped somewhere during the derivation, ithere is a
C 2 N and sentential forms; s.t.

Ry B[] o) €1 ) B ) ) wibBwy

Note that at most one index symbol can be popped per derivaticstep. Let the production
C[f]! D be the rst one in the above derivation that pops the bottom idex symbolf
from any marked indexed nonterminal. Thus, all intermediag¢ sentential forms occurring
between Bj[f] and @[f] in the above derivation, are of the form ‘b\[ ¥] ©for some
X 2 N and some ¢ ©

Note furthermore that there must existw?; ww3; w32  s.t. wy = wiwand w, = wiw°
and ) wland ) w®and® ) ' wi®w? with i < k. This is because the marker
b is laways inherited from a nonterminal in the predecessingstential form, hencel® in
w;Bw, has inherited it from B in B . There also must exists® u’2 S, s.t. sl wi s
A"’ ¢ andu "2 w0 U "% t.

By the Commutation Lemma 7 we haveS[f]) ° woE[f wwith i°< k s.t. for all marked
indexed nonterminalsX [ ] occurring during this derivation, = % for some °2 | .
By Lemma 17 (b) we then have® ) ° wd®wand the hypothesis yields g1 2 N s.t.
L\gsK; L C;ulvi2 Bt Butthen hs;s®D;u®vi 2 AJ*1push and thereforehs; s D; u® vi 2
Al
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Becausei < k , the hypothesis also yields g, 2 N, s.t. 's%t;E;u;ul 2 Dz, Putting
these together we havds;t;E;u;vi 2 ATmaxfii+1i20is and therefore hs: t: E; u; Vi 2

99K . . i

A *maxfii+liizg which concludes the proof. 2
99K S 99K ! S [ -

Theorem 38 Forall A2 N: A=, Al andA =, Al

Proof By Lemmas 18 and 20. 2

99K !
The following lemma estimates the number of iterations it thes to approximateA and A
from below.

Lemma 21 (Termination) For all A 2 N there arej;j °2 N s.t. foralli >j and all
i°>] %we haveA' = AJ and A°= Ai’. Moreover,j jSj * j Njandj® jSj 2

Proof This follows from Lemma 19 and the fact that for all; Al s (S NS)S
andAl S S . 2

Lemma 22 Forall A2 N, it is possible to computeiA in time O(jGj? jNj* jSj9).

Proof According to Lemma 21, at mostjSj* jNj many iterations are necessary. Each
iteration requires the computation of Al and Ai for somej and everyA 2 N. Hence, at
most jSj* jNj2 many computations of an approximation for a singlé 2 N are needed. It
is not di cult to see that each such computation can be done inworst-case timeO(jGj?
iNjZ jSj). 2
As with indexed grammars above, we can use the approximatiarf open and closed paths
in order to solve the diamond problem for linear indexed langges and therefore the model
checking problem for PDL[LIL].

Theorem 39 The model checking problem for PDL[LIL] is in PTIME.

Proof Similarly as for PDL[IL] we reprove this theorem by showinghat the algorithm
MC-PDL is in PTIME, where the subroutine reach is implemented as the computation of
the closed paths set as described above.

According to Lemma 22, given a LIGG with nonterminals N and starting symbol S,
and a transition systemT with states S and aT S, one can computéS in time
O(jGj? jNj* jSj9). Then one checks in timgSj? for which s 2 S the set'S contains
an element §;t) with t 2 V and returns thoses. Since there are maximally' j 1 calls
of reach in the worst case it follows that the time consumed is polynomal in both the
grammar and the transition system. 2



Chapter 4

Non-Regular Computation Tree
Logic

One of the reasons why CTL has gained great popularity and isidely used in hardware
veri cation is that in contrast to logics like L , it features very intuitive operators and
is considered easy to understand. The most common speci cat properties are usually
divided into safety and liveness meaning that programs are either required to conform
with some invariant holding on all runs at any time or that sone desired property should
eventually hold. These kinds of properties are explicit laguage constructs of CTL, realised
by AGand EE Apart from this, the computational complexity of its modelchecking as well
as satis ability problems lie within reasonable bounds: mael checking is PTIME-complete
and satis ability is EXPTIME -complete [CE81, EH85].

CTL is however very limited in expressive power and can be emtided into the alternation-
free fragment ofL . One of the motivations for introducing the following extesion of CTL
is that it enhances the expressive power of CTL without losgits easy comprehensiveness.
Instead of quantifying over arbitrary paths, we allow contol over the path structure along
which some property is required to hold by adorning théJ and R operators with formal
languageslL, thereby constraining the quanti cation to paths which corespond to words
w 2 L. The modular style in which CTL operators are enriched resdstes the approach
taken in PDL[L] and is therefore consequently named CTL| . But since the fragments
using solely thelU- or R operators turn out to be fundamentally di erent regarding the
computational complexity of for instance the model check problem, it is natural to
seperate the classes of languages allowed in each constri call the resulting logical
framework parametric CTL and denote it by CTL[A; B] to emphasise the use of di erent
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language classe8 and B in either operator.

4.1 Syntax and Semantics

Like for PDL[L], the question of reasonable language representation assfor CTL[A; B ].
In principle, we demand the same, i.e. the existence of nitenguage representations with
a linearly parsable alphabet. It turns out however that the ganti cation structure of the
CTL[A;B] semantics is more complex than for PDL]] and that in particular the formats
are not exchangeable as simple as in POL] with regard to the decision procedures in-
troduced. There is for instance an essential di erence in hcomputational complexity of
the model checking problem between deterministic and nongeministic automata repre-
sentations which is rooted in the incommutativity of alterrating quanti ers on paths and
automata runs in the semantics of some operators. For moretdids see Sec. 4.5.

As a compromise, we de ne CTLA; B ] independently of the language representations and
speak of e.g. CTL[REG], CTL[CFL], etc. whenever the chosempresentation is irrelevant
and use automata everywhere else. It is clear that the ressiltve obtain are transferable
to any other format, if polynomial translations to the respetive automata classes exist.

De nition 38 (Parametric CTL) Let P be a countably in nite set of propositions,
a nite set of actions andA and B be classes of languages over the alphabet .
CTL[A;B] is the following set of formulas:

CE gl JECU)ECRY)

whereq2P,A2 AandB2B.

Subformulas of CTLRA; B] are de ned identically as in PDL[L] for propositional formulas
and otherwise as follows.

fE (U 2)g[ sul{ 1) [ sul 2);
fE 1R 2)g[ sul{ 1)[ sul »):

sul(E U )
suE R )

The size of a formulaj' j is determined by the number of its subformulagsul{’ )j. We
permit the propositional abbreviationst ;f ;”;! ;$ (see section 2.2.6), as well as the
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following, whereQ 2 f E Ag:

AU ) = CHCTRY ),
AR ) = TH:TU: ),
QF*' = Q(UA);
QG = Q(RA");
QF = QF 74

QG = QG

Qe = QFag;

QX = QF "

As mentioned above, CTLA] is short for CTL[A; A]. Furthermore, we identify the frag-
ments EU[A], ER[A], EF[A] and EG|A] which are obtained by restricting the use of tem-
poral operators toE' U*' ), ' R*' ), EP* and EG respectively for someA 2 A.
CTL[A;B] formulas are interpreted in states of an LTSI = (St ;).

sFq i s27(0);

SE i s§*

SE"' _ i SF' orsE ;

sEFEH' U ) i thereexistsapath =sd & s # ::1 % g

st.sp=sands,F andforalli<n :
SE"' anday:::a, 2A;

SFEH' R ) i thereexistsapath =sd & sf # :::
st.sp=sandforalli2 N:

if ag:::a 2B thens; = orthere existsj <i s.t. s F "

In order to illustrate the semantics of theU* and R* operators, consider exemplarily the
following models.

C
O
&
O

Call the leftmost state s,. The formula E(' U* ) is satis ed in sg, since there exists a
path starting in s which is labeled withw = aya; :::a, a8, and w forms a word inA.
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Furthermore, this path ends in a state satisfying and along the way," holds in every
state.

— A {
2R Oll{aé}u A EFAEA =
AN )
2A

Again, call the leftmost statesy. The formula (' R* ) is satis ed in sg. Along the path
a,aazauas : :;, the pre xes a;, a;aa3 and a;aazazas form words in A. The rst two end

in a state which satises . The state in which the latter ends does not satisfy , but it

is preceded by a state in which holds. The implication \if ag:::a 2 A then there exists
j<i s.t.s; ' "is now valid for all future states.

4.2 Examples

Consider a concurrent producer/consumer scenario, wher@eoprocess produces objects
and places them into a shared bu er. The consumer takes away® such element at a
time from the bu er. If the bu er is empty, the consumer process requests a new resource
and halts until the producer delivers a new one. Any parallexecution of these processes
should obey a non-under ow property (NBU), that is: at any manent the number of
produce actions is greater than or equal to the number of camse actions done so far.
Suppose the goal was to formally specify the above scenamaluding the non-under ow
property and on top of that to demand properties like, e.g. \vienever the consumer process
sends a request, the bu er is empty".

If the bu er is realised in software it is reasonable to assuenthat it is unbounded. But
then these speci cations become non-regular since the NBUoperty involves unlimited
counting of the actions and hence cannot be expressed in,.elg . Let = fp;c;rg, where

p stands forproduction of a bu er object, ¢ for consumationand r for requestingsuch an
object. Formally, the language de ning the NBU property isLysy = fW2  j jvjc | Vip
for all v wg, where denotes the pre x relation. Emptiness of the bu er is modekd
by the languageLgypry = fw 2 j Jwjc = jwj,g. Words in Levpry clearly do not
respect NBU, so in order to model traces to empty bu ers whictdo respect NBU, we
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dene L = Lgwpry \ Lngu. Note that Lygy and Levpry are VPL and because VPL are
closed under intersection, so is. The desired properties are now expressible as CTL[VPL]
formulas:

AGEX : \Atany time it is possible to produce an object"
AG(AXF ~ EXt ) : \Whenever the bu er is empty, it is impossible to consume
and possible to request"
AG(EXt ~ AXf) : \Whenever the bu er is non-empty it is possible to
consume and impossible to request"
EFEGF : \At some point there is a consume-only path"

The conjunction of the rst three properties yields a specication of the producer / con-
sumer scenario described and states thatraquestcan only be made if the bu er is empty.
Remember that VPL are closed under complement and therefothe third property is
indeed a CTL[VPL] property. Every satisfying model gives aaw implementation of the
main characteristics of this concurrent process. Note thatit is always possible toproduce
and always possible tawonsume(if the bu er is non-empty), yet impossible to consumeon
an empty bu er, then a straight-forward model with self-logs p; cand r does not satisfy
the speci cation. Instead, a model with in nitely many di e rent p transitions is required.
If we strengthen the speci cation by adding the fourth formiga, it becomes unsatis able.
However, this is not trivial to see and underlines the useféss of a decidable logic of
corresponding expressive power.

4.3 Properties
Theorem 40 CTL[REG] has the nite model property.

Proof This is a consequence of its embedding into which has the nite model property
(see Thm. 44). 2

Theorem 41 CTL[VPL] does not exhibit the nite model property.

Proof This follows from Thm. 28 in which a PDL&[VPL] formula serves as witness for
the absence of the nite model property. The formula can by Tim. 47 be translated into
an equivalent CTL[VPL] formula. Since both formulas are regjred to hold in exactly the
same models, the absence of the nite model property for CTPL] follows. 2
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Theorem 42 CTL[L] is bisimulation-invariant and therefore has the tree moderoperty
for any L.

Proof We show bisimulation-invariance by induction on the struaire of ' . The base

case of = gfor someq2 P is immediate.

Case' = ;_ ,. Thenwe havesE ' i sFE jorsfFE , which, by hypothesis, is the

casei tF jortFE L ie.tE"'. Thecaseof =: s similar.

Case' = H U ,). Supposes F ' . Then there is a path = sd * s # s,:::s.t.

sp=sand F U ,. Sinced ® s;ands tthereisat,;st.t ® t;ands; ti.

This can now be iterated, possibly ad in nitum, revealing a pth %= td  t * t,:::

st.tp=t,ands; t;foralli2 N.

Now, since F U ,thereisak 2 Nst.scF . a:::a 2 L and s; F 1 for all

] <k . By the hypothesis we havey F ,, andt; F 1 forall j <k . Butthen we have
%= .U , and thereforet F ' .

The case of = H R ) is similar. 2

The following table presents the computational complexityf the satis ability problem of
CTL[A; B] for the most important classesA and B [ALL * b].

B = DFA NFA DVPA VPA (D)PDA
2 2EXP 3EXP
CTL[(D)FA :B] EXP 2EXP undec.
hard EXP 2EXP
2 3EXP
CTL[(D)VPA ;B] 2EXP || 2EXP | 2EXP undec.
hard 2EXP
2
CTL[(D)PDA ;B] hard undec. || undec. | undec. || undec.|| undec.

Figure 4.1: Complexity of satis ability for CTL[L] .

4.4 EXxpressivity

The original CTL ignores path labels and it is therefore eadyp give a formula of CTL[REG]
already which cannot be expressed in CTL. This is for instaecwitnessed by the regular
languageL = (a( nfag) a) and the formula EGp stating that there exists a path on
which p holds whenever an even number ads is seen. However, CTL translates into
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CTL[f ; g] because the universal language anulls the additional path constraints in
the parametric CTL semantics. The language is needed in adtion for the translation
of EX On the other hand, CTL[REG] does not yet exceed regular expssivity.

Theorem 43
CTL CTL[f ; ] CTL[REG]:

Proof For the proof of CTL  CTL[f ; g], de ne inductively a translation function
[
“tr :CTL! CTL[f ; g]as follows:

" tr (p)

= p;
!tr(: ) = :!tr( );
W a_ o) = () tr( o)
"W(EXY = EF tr( 9
(B 1Q ) = Htr( )Q tr( 2):

|
for Q 2 f U Rg. The translation function for the converse directiontr is tr ! but has the
additional mappings

tr( 1) EXr( 2);
tr( 1) _ EXr( »):

tr (5 .U 7))
tr (K 1R 7))

The proof that these translations are semantically faithfLis trivial.

Considering the remaining claim, it is clear that and are regular languages and
therefore CTLf ; g] CTL[REG]. A witness for CTL  CTL[REG] has already been
given above by the formulaEGp, whereL = (a( nfag) a) .

Theorem 44
CTL[REG] L :

Proof Consider the following inductively de ned translationtr : CTL[REG] 'L . We
assume the regular language adornments of thé and R-operators are given as a DFA

A=(Q; ;;90F)with Q= fq;:::;0.

~—t

=

~— —

. =
~~

-

1 1
©

ptr( )
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tr( 1_ 2) = tr( 1) _tr( 2);

f otherwise a2 G= (G:a)

1
| ( tr if g 2 F ) W W
wE W 2) = xoBx ;o T2 a tr( )~ e x) &

Xn
0 1

Xo
tr( 2) Jfg2F : W W
r | ,

tr(5 1R 2) = XoB X 2 a , Notr(oq) . hai( Xj)

t otherwise a2 4= (G

Xn

The latter translations use simultaneous Xxpoint notation which is explained in Def. 47.
Note that the structure of each of the inner xpoint formulasis in principle the same as
in the translation of CTL (see Ex. 10). The dierence is that aly such successors are
considered which correspond to transitions i® and that the checks of the subformulas
tr( ,) respect nal states ofA.

Strictness follows from the fact that the alternation hierachy in L is strict and that the
formulas resulting fromtr have alternation depth 0. Hence, any formula expressible in
CTL[REG] has alternation depth 0, but there existL -formulas with alternation depth
greater than 0 which cannot be expressed by formulas with s alternation depth.

Note that if the language adornment for theR-operator is given as an NFA, the translation is
of exponential size, because the NFA has to be translated inh DFA rst. The construction

is not correct for NFAs in general. See the introductory pagraph of Sec. 4.5 for detalils.
2

For certain language classels which are richer than REG, the following theorem con rms
that the CTL-related logical frameworks using such languags fromL as adornments are
indeed capable of expressing non-regular program propesi
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Theorem 45 Let L be a class of formal languages slt. = fa"’ jn 2 Ng 2 L. Then for
all language classeB
CTL[L;B] L :

Proof The formula used to show non-regularity of PDL[] for any class of languages
containing at leastfa™@ j n 2 Ng in Lemma 1 is { as can easily be seen { from the
fragment PDL&[L ] without tests. Hence, by Thm. 47, it can be translated into E[L]. So
already the fragment EFL] contains a formula which has no equivalent i . 2

Corollary 8 For all language classeB ,
CTL[SML:B] L :

Proof This follows from Thm. 45 and the fact thatfab' j n 2 Ng is an SML [HPS83].
2

But just as it is the case with PDL|L], parametric CTL is no extension ofL . This follows
from a theorem in [ALL" b] in which it is proved that CTL[L] is an entirely dierent
extension of CTL than CTL is. Remember that CTL is a strict fragment ofLL .

Theorem 46 (JALL * b]) For all language classeé; B, we have

CTL[SML;B]  CTL :
CTL CTL[A;B]:

This result is a consequence of the fact that the fragment EF{"b" j n 2 Ng] contains
non-regular properties inexpressible in CTL On the other hand, fairness is expressible in
CTL but notin CTL[A;B].

The hLi-operator of parametric PDL is clearly equivalent to theEF -operator in parametric
CTL. This observation leads to the following theorem.

Theorem 47 For all language classek,
EF[L] PDLeL]:

Proof Note that both logics do only di er in the hLi and ER- constructs. Their semantical
equivalence is trivial to prove:s = EF-' i there existsapath =sd & sf # ;1 & g
st.sp=sanda;:::g2Lands " i sE HRi'. 2
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On the other hand, there seems to be no equivalent in PBR[L ] for the expression scheme
E 1R ;) orevenEG' . We prove this up to CFL with help of the following lemma stathg
that there exists an EG-formula inexpressible in EF[CFL].

Lemma 23
EG[f ; 9 EF[CFL]:

Proof Letw=L=fv2 jwv2Lgforanyw?2 and any formal languagel.. De ne
the Fischer-Ladner-closureCl(" ) for any formula’ 2 EF[L] as the least set satisfying the
following:

© 2 Cl).

if: 2CIC)then 2CI").

it ,_ ,2CIC)then 1; »,2CI(").

if EB 2 CI(" ) then EF2EF- 2 CI' )and 2 CI(' )foralla2 .

Furthermore, de ne the quotient of a transition systemT = (St ;) under a set of
formulas ER asT==( S=t ;'=)with

== f[s]js2Sgwhere f]=ft2Sjs tgands ti 8 2 : sET "
tFr' o,
[s]' ® [t]i 9s%twith s° s, t© t, andsd ? t°

= sh= (90

We do now show that for allT with statess2 S and all' 2 EF[L] for any L, we have
SFr ' 1 [S]Fr=c()' by induction on the structure of' . The propositional cases are
entirely trivial. Now assumes F1 ERF and let sp! ®7%" s, be a path witnessing this,
hences = sg, a;:::a, 2 L ands, 1 . By denition of!  the path [sp]!*"® [sn]
indeed exists and by induction hypothesis we have,| F r i)

For the other direction assumeq] Fr=cic y EF  and let [so] ! %" [s,] be a path witnessing
this, hences = sp, a;:::a, 2 L and [sy] Fr=ci¢)

Note that forall0 i n we have §] 1+ EF*##=L | From this followst  EF#@=t
for all t 2 [s;]. But then the path sq! %% s, exists and by induction hypothesis we have
sy Et  which concludes the proof.



4.4 Expressivity 89

We rst prove that EG[f ; g] EF[REG]. For this we need to prove thatT =CI(* ) has

only nitely many states for any ' 2 EF[REG].

But this follows from Thm. 1 (Myhill-Nerode) and the construwction of CI(" ), because there
are only nitely many elements in CI(" ) which can be distinguished w.r.t.E 1 by any two

states.

On the other hand, consider the transition systenT = (fs;ji 0g ;) with § s i

j =i landsy so (depicted below), and (q) = fsgg.

q

Clearly, we haves; 1t AFgfor all i 2 N. However, suppose there was an EF[REG] formula
equivalent to AFg. By the above, we haves; Ft AFQi [ S]] Fr=c() . SinceT=CI( )

is nite, there must exist a [s;] with j > 0 and [5;] [s;]. But then [s.] 6] AR for every

k j.

That EG[f ; g] EF[CFL] now simply follows from the fact that the model usedn the

proof above uses no transition labels and that CFL over sirgfletter alphabets are REG

and hence the same proof applies.

Theorem 48 For all language classek 2 f REG, SML, SSML, VPL, CFLg,

PDL®[L] CTL[L;f ; dJ

Proof follows from Thm. 47 and the fact that EFL] is syntactically included in
CTL[L;f ; g]. Strictness follows from Lemma 23 which states that therexists a formula
" in EG[f ; g]inexpressible in EF[CFL]. 2

Regarding a comparison between the expressivity of di erel€TL[L] fragments, the fol-
lowing correspondence holds.

Theorem 49 Forall L:LN:NC%ifL N andL® N C°then
CTL[L:L9 CTL[N:;N9:

Proof Trivial. More languages at hand cannot decrease the expragspower. CTL[L; LY
is a syntactical fragment of CTLN ;N 9. 2
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But for certain language classes, we can strengthen the alkaesult to strictness.

Theorem 50
CTL[REG] CTL[VPL] CTL[DCFL]:

Proof The containment of CTL[REG] in CTL[VPL] is a consequence of fim. 49. Strict
separation follows from Thm. 44 stating that CTL[REG] is stictly contained in L and
Cor. 8 stating that CTL[SML] is strictly more expressive than L . Again, by Thm. 49
CTL[SML] is contained in CTL[VPL] which nishes the proof.

Containment of CTL[VPL] in CTL[DCFL] is again a consequencef Thm. 49 while strict-
ness has been proved in [ALLb]. The proof uses a theorem which states that every
satis able CTL[VPL] formula has a model which is a visibly pshdown system. Then a
CTL[DCFL] formula is constructed whose models are bisimifato an LTS which can not
even be represented by a pushdown system. 2

Fig. 4.2 summarises the expressivity results on CTL] . A line from a lower positioned
item to a higher positioned item denotes inclusion of the farer in the latter. If it is dashed
this means that the inclusion is strict.

4.5 Model Checking

In this section we intend to determine the computational coiplexity of model checking
CTL[A;B] w.r.t. the automata classesA and B . We focus on robust classes such as NFA,
VPA, PDA, etc.

First of all, we observe that theEY and ER are two fundamentally di erent operators.
Take some formula of the fornE(p,U* p,), where A is some automaton ang;; p, are propo-
sitions. Note that the existential path quanti cation and the existential quanti cation over
runs of A in the acceptance condition for a nondeterministic automan A commute. This
allows product constructions ofA and the underlying LTS plus some overhead stemming
from the checks ofp; and p, along the paths. If there is a witness for non-emptiness of
the product automaton then it serves simultaneously as a phatin the LTS and a word
accepted byA, which is the pattern constituting the semantics of(p,U* p).

In fact, the task is very similar to model checking a formulehAip, 2 PDL[L], where a
close relationship between the REG-intersection problenoifa language class and model
checking PDLL] was established. The formule&p;U*p,) only di ers from hAip, in the
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Figure 4.2: Expressive power of CTL]] .
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requirement of recurrent propositionsp; along the witnessing path. As has been shown
before, the actual equivalent ohAip, in CTL[A;B ] is EF*p..

The situation changes when we take a formula of the forf{p,R* p,) for some nondetermin-
istic automaton A. Note that, here, the path is again existentially quanti edbut the runs
of the automaton on any pre x are implicitly universally quanti ed by the R*-operator (\on
all pre xes it either holds that A does not accept the pre x or ..."). The quanti cation
does no longer commute and this prevents using product congttions in the same way as
for EU formulas, because it requires to keep a protocol of all nortdeministic choices of
A w.r.t. the currently considered path in the LTS, since everguch choice might end up in
an accepting state. If on the other hand the automaton is detministic, the problem does
not arise because no matter which LTS path is chosen as a wisisefor satisfaction, the au-
tomaton has just one state at every moment while reading thabels along the path. This
regains the property of local determinateness and simplisemodel checking signi cantly.
Due to this di erence we need to investigate CTLA; B ] not only w.r.t. the language class
parameter for the two di erent temporal subformula types bu also w.r.t. the representing
automaton model, i.e. deterministic or nondeterministic.

The following algorithm serves as a general scheme which @ewith the common base
of all CTL[A;B] fragments under consideration here. In particular, the tatment of
temporal formulas is externalised into subroutines and siph ed by preparational steps on
the structure of the formula and model.

MC-CTL(T, ") =
let (St ;)=Tin
case' of
q ()
: : S nMC-CTL(T, )
1 2 I MC-CTL(T, 1)[ MC-CTL(T, »)

H Q" ,) : let p.;po: fresh propositionsin
0= "[p 7! MC-CTL(T; )i
"0:= *qp, 7! MC-CTL(T; »);
let TO=(St ;'9in
if Q= U then MC-U(T % p,U'py)
else MC-R(T%pR\py)

Algorithm MC-CTL takes an LTS T and a formula® 2 CTL[A;B] and returns the set
of states in which' holds. In its current form, MC-CTL uses oracles MC-U and MC-R
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(taking arguments of the same type as MC-CTL) to compute theasult set for EUA] and
ER[B ] formulas. Before a call of the subroutines MC-U or MC-R taleplace, the original
formula ' of the form E ;Q* ,), where Q 2 f U/Rg, and the LTS T are transformed:
the subformulas ; and , are evaluated recursively in a rst step and then replaced ih
by fresh atomic propositionsp; and p,. The labeling function is updated accordingly, s.t.
“Apy) contains exactly the states which satisfy ; and “Yp,) those which satisfy ».

The proof of soundness and completeness is trivial under tlessumption of soundness
and completeness of the subroutines MC-U and MC-R. It consssof a straight-forward
structural induction on the input formula ' .

We remark that algorithm MC-CTL has two main bene ts for our purposes. First of all,
the subroutines MC-U and MC-R are called on attened versios of the original formula
which now contain propositions as nested subformulas onlyg. only have to deal with
restricted fragments of EUA] and ER[B ] respectively. This will of course simplify any
further analysis of these subroutines. We denote these rasted fragments by EU [A] and
ERp [A].

Furthermore, upper bounds on the computational complexityof MC-CTL can be derived
from upper bounds on MC-U or MC-R, respectively, dependingnowhich of the corre-
sponding model checking problems for E{JA] and ERp[B ] formulas is harder to solve.
Note that MC-CTL runs in time O(j' j) when regarding MC-U and MC-R as oracles.

We now turn our attention to concrete instances of the autonta classesA and B as
restricting parameters for EW[A] and ER-[B]. As mentioned before, model checking
Ep, U p,) is closely related to model checking the PDL formul&Aip,. Both formulas hold
if there is a path in the model which is labeled with av 2 L (A) and ends in a state labeled
with p,. The dierence is simply that the Ep,U*p,) operator additionally requiresp; to
hold in every state along the path except the last.

Following this observation, it is tempting to try to establish reductions between altered
versions of the REG-intersection-,L-reachability- and the model checking problem for
EUpR[A] in a similar fashion as for model checking PDL[]. In fact, a generalisation of
the L-reachability problem which takes into account the proposibns of the LTS in the
way required can easily be found and shown to be equivalent teodel checking EY [A].
However, this little di erence destroys the equivalence tdahe REG-intersection problem
and we are not aware of any natural counterpart to cover the sicrepancy. Any repair of
this defect seems technically cumbersome while upper bogndan be found much easier
by directly applying product construction techniques for areduction on non-emptiness of
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certain automata classes as follows.

Lemma 24 Model checking EW[PDA] is in PTIME.

Proof By reduction to the non-emptiness problem of PDA. Let 2 EUp[PDA], T =
(St ;")bean LTS ands2S. Clearly, ' is of the form E(p,U'p,), wherep;;p, 2 P and
A =(Q; ; ;:do;F)is aPDA. To solve the question whethes = ' , we construct a PDA
Ar=(Q S; ; ; %(ms);F9Y, where

FO=f(q;9jq2 F ands2 “(p)g,
Warsra )= ()2 (a;a )ands! @ sands2 *(py)g.

Note that jA+j = O(JA] jTj).

Now, assumeA t does not reject every word and letv 2~ be a witness for this. Note that
any accepting run ofAt on w simulates an accepting run oA on w and synchronously
follows aw-labeled path inT along whichp; holds in every state except the last. Further-
more, from the requirement on accepting states we have thahe last state is in labeled
with p,. Hence,w 2 L (A) and there exists at 2 S s.t. s!'" t with the required p; and p,
labels on states. It is well known that the non-emptiness pbtem for PDA is in PTIME
(cf. [HU79]). From this and the fact that the size ofAt is polynomial in jAj and |T j
follows the claim. 2

Theorem 51 Model checking EW[LIL] is in PTIME.

Proof We prove this by a linear-time Turing-reduction on the modekhecking problem
for PDL[LIL] which itself is in PTIME by Cor. 5. Let ' 2 EUp[LIL]and T =(St ;") be
an LTS. Clearly," is of the formEp,U* p,), wherep,;p, 2 P and A is a LIL representation.
We compute an LTST °obtained from T by the following steps:

Remove all states inT in which p; does not hold and then remove transitions leading
nowhere.

Create a new state in which propositiorp, holds and adda-transitions to this state
from all states which sustained step 1 and have amtransition leading to a state in
which p, holds in the original LTS T.
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Now, for any states 2 S, we have thats Fr Ep.U'p,) i s FrohAip,. Note that in every
state along every path inT ° proposition p; holds except for possibly the last one in which
p. holds. All labels between such states are conserved fradmand hence all path labels
w 2 L (A) between the remaining states are intact. Note also that thpotential doubling
of a transition which leads to the new state does no harm at all

The above sketched algorithm runs in timeO(jj ) and the resulting LTS has only one
additional state andj | additional transitions in the worst case.

We therefore obtain a PTIME algorithm from this. 2

Theorem 52 Model checking EW[IL] is in EXPTIME

Proof This is proved by a linear-time Turing-reduction on the modechecking problem
for PDL[IL] in exactly the same way as for Thm. 51. Note that mdel checking PDLJIL]
is in EXPTIME by Thm. 4. 2

Theorem 53 Let A 2 f DFA, NFA, DVPA, VPA, DPDA, PDA g¢. Model checking EUA]
is PTIME-complete.

Proof Let T = (St ;°) be an LTS. In order to show containment within PTIME it
su ces to show the statement for the class PDA since DFA, NFADVPA, VPA and DPDA
are subclasses of PDA. For the logic EU[PDA], algorithm MC-TL runs in time O(j' j) for
any formula' and does only call the oracle MC-U and never MC-R. The reducin used
in the proof of Lemma 24 allows to implement MC-U by calling tB emptiness check of the
product automaton (which itself is a PTIME procedure) oncedr eachs 2 S. Altogether
we haveO(j' j jSj) calls of a PTIME procedure and therefore established theaim.
Hardness follows from the fact that the logic EF}] is a sublogic of EUpA] for all A. From
Lemma 47 we have that EFA\] is equi-expressive to PDI4].

Therefore hardness results transfer from PDR] which in the cases of NFA, VPA, DPDA
and PDA yield PTIME. 2

Theorem 54 Model checking EU[LIL] is PTIME-complete.

Proof A PTIME implementation for MC-U has been given in Thm. 51. Thecomplete
algorithm MC-CTL calls MC-U only O(j' j) times for any formula® 2 EUJ[LIL] (and never
MC-R). 2

Theorem 55 Model checking EU[IL] iISEXPTIME -complete.
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Proof An EXPTIME implementation for MC-U has been given in Thm. 52. The com-
plete algorithm MC-CTL calls MC-U only O(j' j) times for any formula' 2 EUJIL] (and
never MC-R).

Theorem 56 Model checking EF[CSL] is undecidable.

Proof From Lemma 47 we have that PDIE?[CSL] EF[CSL] and that the translation is
computable. Cor. 3 states that model checking PD&[CSL] is undecidable. 2

While the similarities between PDLRA] and EU[A] are by now also re ected in the com-
putational complexities of model checking, the situationsi very di erent with the ER[ A]
fragment. As has been stated earlier, it is of great importae whether the automata under
consideration are deterministic or nondeterministic. Wetart with deterministic automata.

Lemma 25 Model checking ER [DPDA] is in PTIME.

Proof By a reduction to the problem of model checking a xed LTL fornula on a PDS.

Let ' 2 ERp[DPDA], T = (St ;') be an LTS ands 2 S. Clearly, ' is of the form

Hp.R'p2), wherep;;p, 2P and A =(Q; ; ;;qo;F) is a DPDA. We construct a PDS

Ta=(Q S[f g;ly; ; ;"9 where’®:2°[f pg! Q S[f g;ky(for afresh proposition

Py isdened as™qq)= Q °(g), if g2 P and Yp,) = fhby otherwise.

Intuitively, g represents \good" andb \bad" states, i.e. dead-end states, in which the
property which ' expresses has been ful lled or violated, respectively.

Furthermore, contains the following transition rules:

8
(9;) Jif (9;9 2 "Yp,) and
(a2 F implies (@;9 2 “qp.)):
(b;) if g2 F and (g;9 2 "Ypy):

((9;9; ) !
(g% s9; w) ,if none of the above match
and there existsa 2 , s.t.
sl® sPand (®w) 2 (g;a; )
forsome 2 ;w2

Note that jTaj = O(Tj jA]).
Now consider the LTL formulaFp,. We show thats &+ Ep:R'p2) i (( ®;S); ) F1. Fpo.
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The \only-if" direction: Assume s 6j;1 Ep.R'p,). This means that on all paths starting

st.sd 5111 % s,s=spandforalli nwe haves;Fr:p.ands, F1 : pe.
Since A is deterministic, every path in the corresponding PDS (sténg in ((p;S); ))
labeled with such aw runs through a state (Q;s));Vv), whereq2 F andv 2 . Since

(0;s) 2 “qpy), every such path ends in the next state which isb¢ ), where p, holds.

Therefore the LTL formula Fp, holds in Ty with the initial state being ((;s); ).

The \if" direction: Assume ((p;S); ) F1, Fpp. Hence, every path starting in ((tp;S); )

ends in a state in whichp, holds and therefore has to run through a state {;t);v), where
q2 F,(q;1) 2 qpz) and v 2

Note that since @; ) and (b; ) are dead-ends inl,, no state along may satisfy either of
the constraints for both transition types leading to such a dad-end and only transitions of
the third kind can be taken. Hence, for all states ( s9;Vv9 along , we have that before
((g;1); V) is reached, ¢*s) 62 {p.) must hold.

Therefore on all paths aw 2 L (A) exists, s.t.s!" t and along each such path p; holds

until (( g;1);Vv) is reached, where p, holds. Hences 1 A(: p.U': p,). From this follows

clearly that s 61 E(p:R'py).

Finally, it is known that model checking a xed LTL formula on a PDS is in PTIME

[BEM97]. Since the size of, is polynomial injT j and jAj the claim follows. 2

Theorem 57 Let A 2 f DFA, DVPA, DPDA g. Model checking ERA] is PTIME-complete.

Proof Along the same lines as the proof of Thm. 53. Membership in PMIE follows from
the PTIME implementation of MC-R in algorithm MC-CTL given i n Lemma 25 which is
called at most O(j' j) times for a formula’ 2 ER[DPDA]. Since DFA and DVPA are
subclasses of DPDA, the result transfers to these. PTIME-hdness follows from PTIME-
hardness of the corresponding PDH|] fragments. 2

Regarding nondeterministic machine models, the model clkéng problem seems to become
more di cult. Here, we obtain PSPACE-hardness already for he class NFA.

Lemma 26 Model checking ER[NFA] is in PSPACE.

Proof By a reduction to the problem of model checking a xed CTL formla on an LTS
of exponential size. Let 2 ERp[NFA], T =(St ;) be an LTS andr 2 S. Clearly,' is
of the form E(p.R*p,), wherepy;p, 2 P and A is an NFA.
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First of all, we construct a DFAD = (Q; ; ;qo;F) from A. The size ofD is O(24). Now
we construct an LTST, =(Q S ;! ;9 with

(q;9! (o sY, if there existsa2 s.t. °2 (g;a ands! ® s
Ap)=Q “(p),if p2P and Yp;)= F S for a fresh propositionp; otherwise.

Note that the size of Tp is O(jTj 24).

Intuitively, the determinisation enables to annotate eachmodel state with a unique indica-
tion of the corresponding automaton state for any path leadqg to this state. If the NFA is
not transformed into a DFA, such an annotation is useless gia it just re ects an arbitrary
run of the NFA and makes no statement about the fact whether # automaton actually
could accept the path seen so far in some other run on the samathp

The product construction has eliminated the edge labels ino T and compensates the loss
of information by the additional proposition p; which indicates accepting states of the
DFA. It is now possible to model check the CTL formulaEp;R(p: ™ p.)) on the product
LTS Tp which respects the accepting states. We conclude by showing

rEr EpiRp2) 0 (o) Fro EPR(pr » p2)):

The \only-if" direction: Assume r 1 Ep;R'p,) and let = sd * s #* :::be a path
in T, wheresy = r and for all s; we have that ifa;:::a 2 L (A) then s; g1 p, or there
existsk i s.t. scFT1 pi

Clearly, there is a corresponding path °= (p;Sp)  (ti;s1)

.1 in Tp where all states
(g;si) are labeled withps if ag:::a 2 L (A). Since the labels are otherwise inherited from
T, we have that %is a witness for €p;r) F1, EpiRpr » p2))-

The \if" direction: The witnessing path is constructed entrely dual to the other direction.
Model checking a xed CTL formula is well-known to reside in NOGSPACE. Since the
product LTS has sizeO(jTj 2A4) we arrive at a compound complexity of PSPACE using
Savitch's theorem (NPSPACE = PSPACE). 2

Theorem 58 (JALL * b]) Model checking ER[NFA] is PSPACE-complete.

Proof The upper bound follows the same lines as the proof of Thm. 53embership
in PSPACE follows from the PSPACE implementation of MC-R in &orithm MC-CTL
given in Lemma 26 which is called at mosO(j' j) times for a formula' 2 ER[NFA].
PSPACE-hardness is proved in [ALLDb]. 2
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The theorem holds already for the fragment EG[NFA] and a xedransition system of size
1. The proof works by a reduction from the well-knowm-tiling problem resembling the
halting problem of a nondeterministic linear-space boundeTuring Machine. Two aspects
are worth noting. First, this result { as opposed to the one fothe fragment EF[A] {
heavily depends on the fact thatA is a class of nondeterministic automata. FOA = DFA
for instance, there is no such lower bound unless PSPACE = PVIE.

The other aspect is the fact that the formulas constructed ithis reduction are of the form
EGTf , no boolean operators, no multiple temporal operators, anao atomic propositions
are needed. The principle is as follows. Tilings, succedsfu not, can be represented by
in nite words over the alphabet of all tiles. This basicallyconcatenates the entire plane
row by row. However, unsuccessful tilings must have a nitere x which is a word that
cannot be extended to a successful tiling. The reduction theconstructs an automaton
A which recognises the set of all words representing a pre x aftiling which cannot be
extended to become successful. Every possible tiling is regented by a path in a one-
state transition system with universal transition relatiaon. The question whether or not a
successful tiling is possible then reduces to the questiorh&ther or not this single state
satis es the formulaEGf , i.e. whether or not there is a path such that no pre x of that
path represents an error in the tiling of the correspondinglane.

Theorem 59 (JALL * b]) Model checking ER[VPA] isEXPTIME -complete.

Proof The upper bound is easily obtained as follows. By Thm. 6 we catonstruct a
DVPA of exponential size from a given VPA. The result then fébws from the PTIME
upper bound for model checking ER[DVPA] established in Thmb7.

The lower bound has been proved in [ALLb] by a reduction from the halting problem
for alternating linear-space bounded Turing machines to thmodel checking problem for
EG[VPA]. It does already hold for transition systems of sizé&. 2

Theorem 60 (JALL * b]) Model checking ER[PDA] is undecidable.

Proof The theorem has been proved in [ALLb] and holds already for the fragment
EG[PDA] and a xed transition system of size 1. The proof is, gain, by a reduction from
a tiling problem. This time we consider the octant tiling prdlem which asks for a successful
tiling of the plane which has successively longer rows [VEBP The plane can, again, be
represented by an -word by reading it o row-by-row and, hence, as a path in a onstate
transition system. Using PDA it is then possible to link a célin one row of unbounded
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length to the cell in the same column in the following row. Ths, it is then again possible
to construct a PDA A which recognises all pre xes of a word representing a tilingshich
cannot be made successful, or a word in which successive raesnot grow in length.
The tiling problem reduces to model checking the formul&Gf again. Since the octant
tiling problem resembles the halting problem for a Turing Mahine with unbounded space
consumption, it is clearly undecidable which carries ovenotmodel checking EG[PDA]. 2

Summary The previous theorems on di erent fragments of CTLA;B] cover all cases
necessary to give matching upper and lower bounds on modelecking the full logics.
The following table summarises the computational complei@s of each combination of
automata classes in either fragment under considerationf domplexity classCis positioned

in row x and columny then the logic CTL[A; B ] is C-complete, whereA occurs leftmost in
row X and B occurs on top of coluny. These results are simple corollaries of the theorems
in this section.

DFA \ DVPA \ DPDA | NFA | VPA | PDA
REG
VPL

PTIME PSPACE

CFL
LIL
IL EXPTIME
CSL undecidable

Figure 4.3: Complexity of model checking CTL4; B .

For the EU[A] fragment, the representation of formal languages { as lorag they ful Il the
basic requirements aforementioned { is not relevant. For fomulas of ERB ] it is however
relevant in terms of deterministic and nondeterministic atomata models. Correspond-
ing results for other representations can be transferred dsng as the translation to the
adequate automaton class takes at most polynomial time.

Despite the high expressivity in comparison to classical igporal logics, the table shows
that there is a wide range of logics with very feasible moddhecking complexity. Note that
formulas of e.g. CTL[LIL; DPDA] are capable of describing path properties even beyotite
context-free, yet the model checking problem is solvable RTIME. But even the greatest
fragment of CTL[TM; TM], namely CTL[IL ; VPA] is still model checkable inEXPTIME
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45.1 Model checking EU[PDA]

The reductions in the proofs of the previous sections prowdtight bounds on the model
checking problems for various logics, they may however notlsuitable for ad-hoc imple-
mentations. In this section and the following, we give conete implementations of the
subroutines MC-U and MC-R for key classes of automata whictomplete the algorithm
MC-CTL. We start with an abstract version of MC-U for EU[PDA] formulas and explain
each subroutine in the following.

MC-U(T®, EpiUpy)) =
let T = reduce-LTS(T9 in
let At = build-product (T, A)in
let M = compute-pre(At) in
extract-states (M)

MC-U gets as arguments an LTS %and a formulaE(p, U* p,), whereA is a PDA. Regardless
of the operations ofA, in order to nd a path along which p; holds until p, holds, we

may eliminate all states ofT %in which neither proposition holds. We call this procedure
reduce-LTS and assume that it takes as argument the LTS %= (S% ©°9 and returns

anLTST =(St ;) st

S =1s2S%s2 Yp) ors2 Upy)g,
! =l 0\Ss S,
Cifprpeg! 25 is the a function with “(p) = “{p) nS.

Recall the product PDA constructed in the proof of Lemma 24 ahassume it is computed
by a procedurebuild-product which takes the reduced LTST = (St ;°) and a PDA

A =(Q; ;:qo;F) and returns the product automatonA+ =(Q S ; ; ; %(m;s);F9,

where

FO=f(q;9j0g2 F ands2 “(p,)g,

Was9sa )= ()2 (g;a; )ands! * sPands 2 “(py)g.

for an arbitrary s 2 S in the starting state (; s) of At . Itis arbitrary, because we will use
A+ rather in the fashion of a pushdown system and compute predssor con gurations in
a bottom-up algorithm where the starting state does not matr.
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Consider the set of con gurationsConf(At) = f(q;s;wW)jgq2 Qands2S andw2 ¢
which At may take. We de ne the set of goal con gurationsGoa{A 1) asF° and the
set of starting con gurations asStart(At)=fgpg S f g

Furthermore, de ne the set of (immediate) predecessors of set of con gurations C
Conf(A1) as

Pre(C) = f(q;s; w) 2 Conf(A7) | there exists ¢*s®viwv) 2 C
anda2 st (( 3s);v)2 Y(a:9:a; )a:

Lemma 27 Let ¢y = (p;s% ) be in Start(At). Furthermore, let A2 be de ned asAr+,
except for the starting state which is ¢p; 9.

Co 2 Pre (GoalAr)) i sFr EpU'p):

Proof \only-if-direction": Clearly, ¢, is an accepting con guration which is reachable
from ¢, and hencel (A%) 6 ;. Since the starting state ofA has been exchanged to t
the requirements of the proof in Lemma 24, the result is an imediate consequence.
\if-direction": If st Ep;U'p,) then L(A2) & ;. From this again follows the claim. 2

This reduces the task of determining the set of states in wiicEp,U*p,) holds to the
task of computing Start(A+) \ Pre (Goa(A+)) and extracting the model states from the
resulting con gurations which are exactly thosec, for which Lemma 27 applies.

Our procedure for the computation ofPre is a specialisation of the idea found in [BEM97].
The procedurecompute-pre takes the product automatonA+ and computes the set of its
predecessor con gurations. The basic data structure on wdh the procedure operates is
called a multi-automaton which resembles an NFA with everytate being a starting state.

De nition 39 (Multi-Automaton) Let At =(Q S ; ; ; %(m;9);F9 be a PDA. A
multi-automaton for At is a 5-tupleM =(Q St :F9, where

Q S is a set of (product) states,
FCis the set of nal states inherited fromA+,

! (Q S) (Q S ) is the transition relation.

We use in x notation for the transition relation!  and write (q;9! (%Y instead of
(a;9; ; (%s9) 2 . We also exteni tow?2 inthe same way as for an LTS.
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A multi-automaton accepts a set of con gurationsC = f(q;s;w) j 9(¢®>s) 2 FOs.t.
(a; 9! (o s9g.

Intuitively, compute-pre builds a multi-automaton which accepts all goal con guratbns
initially and successively adds transitions which enrichhte set of accepted con gurations
to the set of predecessor con gurations. The helper routinkuild-transitions (A1) in
the following is expected to return the initial transition relation of a multi-automaton with
self transitions on all nal states for all stack symbold: = f((q;9; ; (0;9) j (O;9 2
FPand 2 g. Hence, the initial set of accepted con gurations ig=° , i.e. the set
Goa(A+). In order to distinguish the previously computed transiton relation from the
current one, we usé | and! _ .

compute-pre(At) =
let (Q S; ; ; %(as);FY)= Arin
| . := build-transitions (A7)
repeat

! =l
| c

for all  ((9;9; )! ((fs);w)2
if 9(q™®s%2Q S st (sH!" (s
thent . =l [ ((a;9; 5 (s
until I =,
return (Q St _;F9

Lemma 28 (Termination)  Procedurecompute-pre(A+) runs in time O(jQj? jSj? j |
jj)foraPDAAT =(Q S ; : ; %(;s);F9.

Proof The repeat -loop nishes after at most (Qj?> jSj? j j) 1 iterations, because
this is the maximum size dof . and after each iteration, at least one additional transitia
must entet _ to prevent earlier termination. Inside therepeat -loop there arej j many
checks of thef -condition. These can however be reduced to constant timenee it is only
necessary to check fow-matches of a newly entered transition, because all other etks
are redundant. Note thatjwj 2 in our de nition of a PDA (it is O for pop-, 2 for push-,
and 1 for non-changing stack operations). The costs bliild-transitions (A1) are also
constant in the above worst-case scenario, because iniabnly one transition may occur
in . 2

C
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Lemma 29 (Soundness and Completeness) Let M be the multi-automaton computed
by compute-pre(A+) for the product PDA A+. The set of accepted con gurations oM
coincides withPre (Goa(A+)).

Proof The set of accepted con gurations ofM at any time during the computation
isC= f(q;s;wW) j 9(%s) 2 FOsit. (9;9!" (% s9g, but depends on the monotonically
growind .. We start with showing C  Pre (Goa(A+)) by induction on the sequence of

Initially, G is clearly a subset oPre (Goa(A+)), since G = Goa(AT)).

Now assume (§; 9); ; (q°s%) enters _ during some iteration inside therepeat -loop and
therefore constitutes someG.;. We then have that there exists (>s% and aw 2 , s.t.
(a:9; ) ! (s)w)2 and (@s)!" (qs%.

Note that every transition added téd . to constitute G.; comes from a state ¢;s) and
leads to a state ¢ s% which is already connected with a state irF% This is due to the
fact that in the if-condition (g% s)!" (g®s% is required and at the beginning only paths
to nal states exist. Hence, ¢%9s is either a nal state or leads to one.

Therefore, the path @%s9)!" (q”s°)! Y f exists, whereu 2 and f 2 F° But then
(q® s®wu) 2 C and we have by I.H. that @ s® wu) 2 Pre (Goa{A+)). But since clearly
((g;9; u)is animmediate predecessor con guration of (¢ s9; wu), we have that ((q;9); u)
is contained within Pre (Goa(AT)).

For the direction C  Pre (Goa(A~+)), let (q;s;wW) 2 Pre (Goa(A+t)). This means that

(Ch; SnjWh) 2 FO (1)

(Qo; SosWo) = (d; s W) (2)

for all i 0 exist Vi4; 2 and ; 2 : ((9;s); i) ! ((g+1:Si+1);Vis1) and
wi = wPand Wiy = Vi WP (3)

It su ces to prove thatforall0  k  n we have €;sk)! "* (th; sn), because then clearly
for all k, (g«; sk;wk) 2 C and in particular (q;s;w) 2 C.

For k = n, we have that (g ;s¢) 2 F%and since the initial multi-automaton accepts any
w2  on itself for such a state (and in particularwy), the claim follows.

Assume 0 k < n. By LLH. we have (O+1;Sk+1) !ch+l (th;sn). Note that from (3) it
follows in particular that there exist ;v, s.t. ((G;sk); ) ! ((Gke1;Sk+1);V)andwyg = w?
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0
and Wy.1 = vwg for somew?. Hence, €k.1;Ska) of (th;Sn) and therefore there clearly
H 00 <0 . 0 <O
exists some *0s%), s.t. (G+1;Sien)! b (029).
Note that the following conditions are now met:

((Ck;Sk); )’! ((q<+1;3k+1);V).
9 (6%, S.t. (Gt S )! ¥ (60,

Remember that these are exactly the conditions inside theepeat -loop for adding the
transition ((ok;sy); ; (%s%) to! _. We therefore have established the following path:

(0; s)! . (9! WCE (th;Sn). Sincew, = w2, the claim follows. 2

Finally, the procedure extract-states  takes the multi-automaton M computed by the
subroutine compute-pre and returnsfs 2 S j (p;s; ) 2 Start(A1) \ Cg, whereC is the
set of predecessor con gurations computed byl . Note that it is easy to determine this
set from givenM , since all states inM are starting states and if there is an outgoing
edge from any state, then it leads to a nal state. Hence thise$ is equal tofs 2 S |
there exists’2 Q;s°2S; 2 st (;s)!, (o€s9g.

Theorem 61
s2 MC-U(T;EpU'p,) i siE EpU'py):

Proof Follows from Lemmas 27 { 29. 2

4.5.2 Model checking ER[DPDA]

While formulas in EUp [L] are always satis ed in the nite, a temporal formula' = EpR*q)

in ERp[L] may also be satis ed on an in nite path: clearly, a states satises ' , if along

an in nite path starting in s, the proposition p is never seen and, holds whenever a pre x
of this path forms a word inL (A).

The general idea of the model checking algorithm for the lagiERr [DPDA] has been
presented in the proof of Lemma 25 already, where a PDiR = (Q S[f g;bg ; ;79

is constructed as a product of an LTS = (St ;) and the DPDA A =(Q; ; ;;qo;F)

occurring in ' . Model checking® over T is reduced to model checking the xed LTL
formula Fp, over Ty,

We present here a direct implementation which checks the CTformula EG p, instead.
Clearly, this formula is dual to the LTL formula such that sondness remains intact.



106 4. Non-Regular Computation Tree Logic

Lemma 1 ([BEM97]) Let C be a con guration of a PDSP = (Q; ; ;)andqg2 Q.
The control location g is visited in nitely often along any path of P starting in C i there
exist con gurations (p; );(f;u) and (p; w) with 2 [f gandu;w2 , not all three
equal, s.t. the following conditions are met:

C 2 Pre(fpg ).

(p; )2 Pre"((ffg )\ Pre(fpg )

The rst condition simply claims that some con guration (p; v) is reachable fromC,

wherev 2 . Intuitively, this con guration is the starting point of so me kind of cyclic
behaviour of P: the second condition requires that fromg; ) a con guration (f;u) is

reachable which in turn is a predecessor of some con guratiqp; w). Hence the cycle
(p; ):(p; w);(p; ww);:::can be repeated forever. Taken together, the conditions abt

lish the following in nite con guration path:

C; (p;v); (fuv); (p;wv); (fuwv); (p; wwv);

Note that from this follows that the control state f is visited in nitely often.

Instead of model checking the LTL formulaFp, we may add a self-transition on the state
g in the PDS T, s.t. the only nite paths are those which end in con guratiors (b; x) for
somex 2  and look for the existence of an in nite path.

This leads to the following implementation of algorithm MCR for the logic ER[DPDA].

MC-R(T, E(p:R'p2)) =
let Ta = build-PDS(T, A) in
V=
for each (p; )2 ((Q S)[f gg) do
M = Pre'((p; )
if (p; )2M then
V := V[ extract-states (Pre ((p; )))
return V

Subroutine build-PDS is supposed to return the product PDS, from the proof of Lemma
25 enriched with self-transitions on the statg in order to have every in nite con guration
path satisfy the CTL formula EG p, sincep, does only hold in dead-ends. The set of LTS
statesV is used to store the result set, i.e. the set of states whichtisdy Ep.;Rp.).
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The central loop takes each combination of a PDS statp and a stack symbol and
checks the existence of a cycle starting in the correspondinon guration. This is done by
computing a multi-automaton M which represents the set of predecessor con gurations
Pre’ ((p; )) and checking whether p; ) is a member of this set.

If this is the case, the set of all predecessors @f, () is computed in turn, because all these
predecessor con gurations lead to a cycle. Hence if any sucbn guration ((qg;9w) is a
member ofStart(T, ) then s satis es E(p,R* p,) and is added to the result sel. Remember
from Sec. 4.5.1 thaextract-states  extracts the LTS states of the intersection oStart(Tx)
and the con gurations represented by a multi-automaton.

The computation of the relations Pre” and Pre is very similar to what the procedure
compute-pre from the previous section does and we therefore do not givetaiés here and
instead refer to [BEM97]. The procedur&gompute-pre is just a problem-optimised version
of the general algorithm there.

Theorem 62
s2 MC-R(T;EpR'p) i s EpR'py):

Proof Lets2 MC-R(T;Ep.:R'p,). Sinces2 V, thereexists p; )2 (Q S )[f gg) ,
s.t. ((s;); ) 2 Pre(p; ) and (p; ) 2 Pre"(p; v) for somev 2 . But then there is
an in nite path  in T, starting in ((s;®); ). Since there are no outgoing edges from
con gurations (b;x) for any x 2  and b is the only state in which propositionp, holds,
no state along the LTS-related component of satis es p,. Hence (6;); ) F1, EG py
and by construction of T, we haves E Ep.R'p,).

Let s E E(p.R'p,). By construction of T, there exists an in nite path starting in ((s; @); ).
Any in nite path has a cycle which is detected by the central dop and results ins being
stored in V. 2
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Chapter 5
Higher-Order Fixpoint Logic

In order to give a logical characterisation otontext-free processe$CFP) [BK85], Muller-
Olm extended L with a sequential composition operator and named the resiudg logic
Fixpoint Logic with Chop' (FLC) [MO99]. It is capable of expressing many non-regular {
and even non-context-free { program properties and thus eseds the expressivity of the
L [MO99, LS06]. Given that FLC is capable of expressing chatacistic formulas for the
simulation of CFP, deciding simulation between CFP can be deiced on model checking
FLC. But since this is known to be undecidable, the same holder model checking FLC
[MO99]. On nite state systems, the model checking problemof FLC is however in
EXPTIME [MO99, LS02, Lan02].

The semantics of arL -formula’ w.r.t. an LTS is the set of states in which' holds and
hence a predicate on the total state se§. In contrast, the semantics of FLC is given
as a predicate transformer on states, i.e. a (monotonic) fation of type 2 ! 25, The
sequential composition operator \;" is interpreted as funtton composition, i.e. an FLC
formula ; ,isinterpreted as [ 1] [ 2]-

This idea has been generalised in Mahesh and Ramesh Viswdnaat's Higher Order Fix-
point Logic (HFL), where L was equipped with asimply typed -calculuss.t. now arbitrary
function types based on the primitive type 2 can be built [VV04]. This makes it even more
expressive than FLC. It is possible for instance to expresssume-guarantee-properties
HFL [VV04].

Nevertheless, the model checking problem on nite state ggsns remains decidable, since
all occurring functions operate on nite domains and are ths e ectively computable.

This section is organised as follows. After the de nition ofyntax and semantics, model-

1The name is a reference to Interval Logics, where the sequeial composition operator is called \chop".
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theoretic properties and an expressivity analysis, we giv& model checking algorithm for
HFL which is a generalisation of the algorithm we presentechi[ALO7] for the rst-order
fragment of HFL. Since this algorithm optimises the straighforward xpoint approxima-
tion for HFL, we give empirical evidence that it indeed enhates the performance vastly
in practice. Thereafter, we will argue that the analysis oflie behaviour of our optimised
model checker can be a valuable tool for the development ofwalgorithms and demon-
strate this on a couple of examples.

5.1 Syntax and Semantics

De nition 40 (Type) Let T = (St ;)bean LTS and av 2 f ;+;0g be called a
variance. The set ofHFL types is the smallest set containing the atomic typePr and
is closed under function typing with variances, i.e. if and are HFL types andv is a
variance, then V! is an HFL type.

De nition 41 (Term) Let P be a countably in nite set of atomic propositions, be a
nite set of action names,V a countably in nite set of variables. The set ofHFL terms is
given by the following grammar:

ConE g X gt jhat gt (XY )t (X )
whereq2 P, X 2V,a2 , visavariance and is an HFL type.

We use the following standard abbreviations:

t = g_:qforsomeq2P; f = :t;

LA =t o) tl =0y

"% = (' !- A ), X-:' = WX: :'-[: X=X17;
[a] = i;]ali , hi' =, ha

[ = o [&:

where' [ =X ] denotes the formula that results from' by replacing simultaneously every
occurrence ofX by

De nition 42 (Formula) A sequence of the formXj*: 4;:::; XY : , where X; are
variables, ; are types andv; are variances is called aontext (we assume alK; are distinct).
An HFL term ' has type in context ifthe statement ~ ' : can be inferred using the
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v2f0;,+g R
T q:Pr XV T X ot
S Pr T Pr S Pr XV T
Tt Pr “hai' : Pr XV (vl )
(T ) (b )
() ¢ )
1 (0| ) ,X+: 1
() (X))

Figure 5.1: Type inference rules for HFL.

rules of Fig. 5.1. We say that iswell-formedif ~ ' : forsome and . A well-formed
HFL term of type Pr is called aformula. For a variancev, we de ne its complementv as
+if v= ,as if v=+, and O otherwise. For a context = Xj*: g;:::5; XY |, the

complement is dened asX*: 1;:ii XY

The purpose of variances in the typing system is to ensure than a term (x : )",

' is monotonic in X because otherwise the existence of a xpoint cannot be guateaed.
While in L it su ces to require every occurrence ofx to appear under an even number
of negation symbols, this requirement is too weak in the presce of -abstractions, since
the actual negative or positive occurrence may be hidden irested function abstractions
and applications. Consider for instance the following ternitaken from [VV04]):

Example 14
(f:Pr v Pp:(z :Pr): x:Pn):f(:x)_:z:Pr ! Pr

Its type derivation is shown in Fig.5.2, wherd appears positively andz negatively. The
variance ofx { seemingly negative { however depends on the variance of ipplicator f .
If f was anti-monotone,x would occur positively.
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f*:Pr

Pr:z

f*:Pr ! Pr;z :Prx":Pr’ x:Pr

Pr:x* :Pr> f :Pr! Pr f :Pr ! Prrz" :Prrx :Pr': x:Pr f :Pr ! Prz*

" Pr:x

Pr°

Z.

Pr

fr":Pr ! Priz :Prx*:Pr’ f(:x):Pr f":Pr ! Prz

CPr:x*

cPr°

. 2.

Pr

f*:Pr ! Priz :Prxt:Prrf(:x)_:1z:Pr ! Pr

fr:Pr ! Priz :Pr° (x:Pnf(:x)_:z:Pr ! Pr
f":Pr ! Pr* (z :Pr): (x:P):f(:x)_:z:Pr ! Pr
;- (fFPr P (z (P (x:POf(GXx)_z:Pr ! Pr
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Functions which do not occur under the scope of a xpoint quaner are not required to
be monotonic. The expressivity of HFL would be limited if normonotonic functions were
forbidden in general.

In order to de ne the size of an HFL formula, we need the folloing.

De nition 43  The Fischer-Ladner closure of an HFL formula ¢ is the least setCI(" o)
that contains ' o and satis es the following.

If 1 22CI" o)thenf 1; »,g CI( o).
If:(1_ 2)2CI(" o)thenf: 1;: >g CI(' o).
If ai 2 CI(" o) then 2 CI(* o).

If thai 2 CI(' o) then: 2 CI(" o).

if* 2CI("o)thenf’, ; : g CI o).

f:( )2CI o)thenf: % ; : g CI o).

f X: 2CI o) then 2 CI o).

f:(X: )2CI("o)then: 2 CI(" o).

f X: 2CI o) then 2 CI( o).

fo(X: )2CI o) then: [ X=X]2 CI( o).

fo  2CI" o) then 2 CI(" o).

f:X 2 CIC o) then X 2 CI(' o).

f:q2 CI(" o) then g2 CI(" o).

Note that the size ofCI(" ) is at most twice the length of' . We de nej' j := jCI(" )j as the
size of' .

De nition 44 (Type Semantics) The semantics of a type w.r.tT is inductively de ned
as a partially ordered set as follows:

[P =25 );
[Y! 1T"= @1 [1v v
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where for two partially ordered sets (v )and (; v ), v v, denotes the partial order
of all monotone functions ordered pointwise:

fve g i forall x2[] :fxv gx

Moreover, complements in these partially ordered sets arenbted byf and de ned on
higher levels ad x = fx.

A positive variance leaves a partial order unchanged,” = ( ; v ), a negative variance
turns it upside-down to make antitone functions look well-bhaved, = ( ;w ), and a
neutral variance attensit, °=( ;v \w ).

Lemma 30 ([VV04]) For all HFL types and nite LTS T, [ ] is a complete lattice.

Although variances may destroy the lattice structure, theydo only occur on the left of a
typing arrow. The space of monotone functions from a partibl ordered set to a complete
lattice with pointwise ordering forms a complete lattice agin.

By ? and> we denote the bottom and top elements of [|".

De nition 45 (HFL Semantics) Let T be an LTS. Anenvironment is a partial map

on the variable setV. For a context = Xj*: g;::5;X¥ @, we say that respects
, denoted by F ,if (X;) 2 |[i]|T fori 2 f1;:::;ng. We write [X 7! f] for the

environment that mapsX to f and otherwise agrees with. If F and f 2 [ ]|T then
X 7' f]E ;X : ,whereX 2V is a variable that does not appear in .

For any well-formed term' and environment [ , we de ne the semantics of ' induc-

tively to be an element of |[]|T as follows:

[ " a:Pd" = fs2Sjq2 (9)g;
[ x: 1 = (X)
[ :':P]" = sn[ ' :Pq";
[ vt 1T o= f2[vr ITstf=[ v T
[ _ Pl =10 Pl ([ :P;
[ hai':P]" = fs2Sjs'® tforsomet2[ ' :P'g;
[~ xve)r v 70 = f20Y1 I'stex2[]
fx=[; ;XV: ~": ]|T[X7!X];
SRR S R N S
[ Xy T = Y207 00X ' TV xg
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In the clause for function application { ) the context Cis if v2f+;0g, andis if
V=

De nition 46 (Order, Arity) We consider fragments of HFL that can be built using
restricted types only. Note that because of right-associatty of the function arrow, every
HFL type is isomorphictoa = ;! :::! ! Prwherem 2 N. Clearly, form =20

we simply have = Pr. We stratify types w.r.t. their order, i.e. the degree of using proper
functions as arguments to other functions, as well anaximal arity, i.e. the number of
arguments a function has. Order can be seen as depth, and nmaai arity as the width of
a type. Both are de ned recursively as follows.

ord( ¢! :::b ! Pr):

Il
3
Q
X
-
[
+
=
o

~
-

1

[ERN
«Q

mar( ! :::v 41 Pr) o

I
3
Q
P

~—
—
3
(@]
g
3
=
-

I
[ERN
3

«Q
b

where we assume maxf =0. Now let, for k 1andm 1,

HFLK™ := f' 2 HFL j; > ' :Prusing types with ord( ) kandmar( ) m onlyg;
HFL* = HFL™:
m2N
Note that no formula can have maximal type ordeik > 0 but maximal type arity m = 0.
The combinationk =0 and m > 0 is also impossible. Hence, we de ne

HFL°=1f"' 2 HFL j; > ' :Prusing types with ord( )=0 only g:

We extend these measures to formulas in a straightforward waord(' ) = kandmar(' ) =
m i k and m are the leastk® and m®s.t. ' can be shown to have some type using types
with ord( ) k%andmar( ) mConly.

De nition 47 (Simultaneous Fixpoint) When using least xpoint quanti ers it is of-
ten bene cial to recall the Bekc principle [Bek84] whic h states that a simultaneously
de ned least xpoint of a monotone function is the same as a pametrised one. We will
use this to allow formulas like

0
X1
R Xi:% : §
Xn :

in the syntax of HFL. This abbreviates

LR SEE G . ERETCCHY SPRIP O 1 CHEITED (HEE) HESED CHEE) HD GPEEIIEEED (RN



116 5. Higher-Order Fixpoint Logic

Note that the size of' ° can be exponentially bigger than the size of, and this even
holds for the number of their subformulas. However, it is ogplexponential inn, notin j' j:

i"9=00"j 2.

5.2 Examples

Example 15 HFL can express the non-regular (but context-free) propeyt\on any path
the number ofout's seen at any time never exceeds the numberiofs seen so far." Let

= (X :Pr! Pn: (Z:Pn:houtiZz _hini(X (XZ)) t:

This formula is best understood by comparing it to the CFGG = (f X g;fin; outg; P; X),
where P contains the rules
X1 outjinXX:

It generates the languagd. of all wordsw 2 fin;outg foutg s.t. jwji, = jwjey and for
all pre xes v of w we have: jvjin | Vjout Which are exactly the pre xes of bu er runs
which are violating due to an under ow. Thens F ' i there is a nite path through T
starting in s that is labeled with a word inL, and: ' consequently describes the property
mentioned above. In Section 5.4 we will see that in fact evepath speci cation given by
a context-free grammar can be checked by an HEL formula.

Example 16 Another property that is easily seen not to be expressible by nite tree
automaton and, hence, not by a formula of either is bisimilarity to a word. Note that a
transition system T with starting state s is not bisimilar to a linear word model i there
are two distinct actionsa and b s.t. there are two (not necessarily distinct) states; and
t, at the same distance frons s.t. t;! @ t9 and t! ® t9 for somet?;t3. This is expressed
by the HFL formula
(F:Pr! Pr! Pr): (X :Pn: (Y:P):(X?"Y)_(FhiXhiY) hait hot

aéb
This formula is best understood by regarding the least xpait de nition F as a functional
program. It takes two argumentsX and Y and checks whether both hold now or calls
itself recursively with the arguments being checked in twopssibly di erent) successors
of the state that it is evaluated in.
Note that here, bisimulation does not consider the labels aftates but only the actions
along transitions. It is not hard to change the formula accatingly to incorporate state
labels as well.
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Example 17 Let 2] := nand2",, :=22m, Foranym 2 N, there is a short HFL formula
' m (linear in m) expressing the fact that there is a maximal path of lengtt2 (number
of states on this path) through a transition system. It can beconstructed using a typed
version of the Church numeral 2. Leto= Prand ;1 = ;! ;. Fori 1dene ; of
type i+1 as (F: i): (X : i 1):F (F X). Then

"M m o ma1iiso1 (XPrthi X[ OJF

Note that for any m 2 N, ' , is of size linear inm. This indicates that HFL is able to
express computations of Turing Machines of arbitrary elemg&ary complexity which has
been shown in [ALS07].

5.3 Properties

Theorem 63 (Finite Model Property Absence) HFL! does not exhibit the nite mo-
del property.

Proof Like for CTL[L], this follows from Thm. 28 in which a PDL[VPL] formula serve
as witness for the absence of the nite model property. The fmula can by Thm. 67 be
translated into an equivalent HFL* formula. Since both formulas are required to hold in
exactly the same models, the absence of the nite model prapefor HFL * follows. 2

Theorem 64 ([VV04]) HFL is bisimulation-invariant and therefore has the tree mdel
property.

Theorem 65 ([VV04]) HFL is undecidable.

5.4 EXpressivity

HFL is clearly a much closer relative of. than the other logics under consideration here.
All of them share a common propositional base but parametri€TL and PDL achieve
non-regular expressive power by rather di erent means thaklFL: the former two by a
language plug-in mechanism which directly makes use of thgpeessive power contained
within the language parameter, the latter with help of logienherent machinery, namely
extremal xpoints on higher-order functions.
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HFL and its precursor FLC are merely generalisations df , while the relationship ofL
with parametric PDL and CTL is of a mutually non-inclusive fam as has been proved in
previous chapters.

Theorem 66 ([MO99],[VV04],[ALS07])
L HFL®®  FLC HFLY**  HFL'  HFL®  HFL®:::  HFL:

Proof Note that L is a syntactical fragment of HFL and that every subformula o& L
formula has type rank 0 in HFL. On the other hand, any HFI®® formula cannot contain
a subformula of type rank 1, i.e. no -expressions (and hence no function applications)
or xpoint formulas other than of type rank 0. But deleting these two clauses from the
de nition of HFL's syntax yields exactly the syntax of L . It is easy to see that the HFI%°
semantics coincide with the semantics df .

The result that L FLC originates from [MO99]. FLC can express simulations obatext-
free processes which cannot.

That FLC  HFLY! is immediately seen by comparing the resulting semantics thfis HFL
restriction with FLC. The fact that FLC HFL has been observed by [VV04].

Finally, the result that the expressive power increases irhe hierarchy HFLX ~ HFL**?
for all k 2 N is a corollary of thekEXPTIME -completeness result in Thm. 68 for model
checking HFLX.

For HFL?, we have already shown that it is strictly lesser expressiwhan HFL!, because
HFL® L FLC HFLY  HFL'. Now, assume 2 HFL*! for somek 1 st
model checking over some LTS isk+1) EXPTIME -hard. But then there is no formula
in HFL* which corresponds to , because model checking HELis in KEXPTIME and
KEXPTIME ( (k+1)EXPTIME for all k 2 N. 2

The conceptual unrelatedness of HFL and the language paratme logics makes a compar-
ison di cult. Clearly, the modal and temporal formulas of parametric PDL and CTL must

in fact be expressible as xpoints in a \unifying" logic in the same manner as for instance
L or MSO serve as backbones for regular PDL and CTL. But it is natlear whether there
exists any suitable candidate capable of simulating the lgmages used in the modalities
and expressing the corresponding xpoint statements. To @lkknowledge there is no work
in the literature which systematically deals with the corrgpondence between the expressive
power of logics and formal languagesbovethe regular sphere.

We are however able to embed PDL[CFG] into HFL. The idea is vgrsimilar to the
embedding of PDL[CFG] into FLC in [LS06].



5.4 Expressivity 119

Theorem 67
PDL[CFG] HFLY:

Proof If holds, strictness is a consequencelof ~HFL! and the fact that fairness is
inexpressible in PDLL] (independently ofL) but expressible inL . In order to show
consider the following translationtr : PDL[CFG] ! HFL*! with

tr(@ = q;

tr¢:') = :tr();
r( _ ) = w()_t();
tr(hGi ) = trq(nGi) tr( );

wheretr{hGi) is de ned for a CFG G as follows. LetG = (N; ;P;S). De ne the righthand
sides of production rules w.r.t. aX 2 N asrhgdX)=f 2 (N[ ) jX! 2 Pg.

0 W 1
X1 1 (Zy:Pr): bz 4
2rhs(X 1)
trqhGi) = (S:Pr! Pr):%) : W E:
Xn + (Zn:Pr): bz ,

2rhs(Xn)

8
where X; =N and
i=1

8
%haib Jif = a:
tr()Ab if = 2

b = _
Exib , If = Xj:

Jif =

forsomea2 , ' 2 PDL[CFG] and denoting a blank.
LetT =(St ;) bean LTS. We will now show that for alls2 S and' 2 PDL[CFG], we
have

s’ i sEtr(():
We show this by induction on the structure of' . The propositional cases are entirely
trivial in both directions and so it remains to show thats F hGi i s trqhGi) tr( ).
It is well known that L (G) is the simultaneously de ned least xpoint of an equation gstem
given by the grammar rules and projected onto the starting sybol S. The function tr{hGi)
represents exactly this equation system but restricts demble words inG to paths in T.
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SincetrqhGi) is applied to the set of states which satisfyr( ), it is additionally required
that these paths end in such a state. This establishes the oia 2

Fig. 5.3 summarises all expressivity results obtained in @vious chapters.



5.4 Expressivity 121

Figure 5.3: Expressive power of PDL]], CTL[L] and HFL.
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5.5 Model Checking

In [ALS07], a game-based model checking procedure is beintyaduced to prove ak-
EXPTIME upper bound for HFLX. It is however likewise possible to extend standard
Xpoint approximation schemes (as known fromL model checkers) to the higher order
case. While the game-based procedure is hardly feasible magiice, we may use an opti-
misation technique from static analysis called neededneasalysis (cf. [J r94]) inside the
Xpoint approximation in order to obtain an algorithm which despite the high complexity
has a chance to be useable at least for formulas of lower-ard¢FL. We present here
a generalisation of the technique described in [ALO7], wheonly the rst-order case is
treated.

For the following, note that because of right-associatiwt of the function arrow, every

HFL-type is isomorphictoa = ;! :::! ! Prforam2N.
De nition 48 (HFL-Fixpoint Approximants) Let x:' be an HFL term of type =
1P b Pr,where 2f; g. We dene nite approximants of this formula for all
i 2 N as follows:
8
< .o —
Oyt —_ . . . . ! If -
X = (Zl 1) (Zk k).. )
* t ; otherwise
Hlye = [ 'x'=x ]
Lemma 31 Let x:* beanHFL termoftype = ;! :::! 41 andleth be de ned as

h([ «+21"). Then for any nite LTS T we have ["x:' ] =[x 1" for any environment

Proof Note that the underlying LTS is nite. According to Lemma 30, the HFL type
semantics forms a complete lattice. Because the types ard alite on nite models,
the lattice has also nite height. On the other hand, the typesystem guarantees that
HFL xpoint terms are exclusively de ned on monotone functons. As a consequence,
the xpoint approximation goes through a sequence of lattie elements of which each is
greater or equal to the former w.r.t.v . Since this sequence has maximaltymany di erent
elements, the claim follows. 2

Lemma 32 [ALSO7] For all HFL types and all LTS T with n states we have:

od( ) 1
h()  (n+D(2ggey! " Py



5.5 Model Checking 123

Theorem 68 (ALS07) For any k;m 1 the HFL™ model checking problem is
KEXPTIME -complete.

5.5.1 A Standard Fixpoint-Approximation Algorithm

Consider a model checking algorithm for HFL formulas in whita subroutine FPapprox
computes xpoint approximants as given in Def. 48. Since thkeast and greatest xpoint
cases are entirely dual, we restrict our attention w.l.0.do least xpoint formulas. FPapprox

takes a (not necessarily closed) HFL term(x : ¢! :::! Pr):" and an environment
which maps free variables to values of the right type and taltates the xpoint approxi-
mants as shown in the table below, whera’;:::;d™ denotes an arbitrary enumeration of

the elements in [;] and h its height respectively.

The table is to be read as follows: the rows starting witlarg; entries contain all possible
combinations of arguments of typeo! :::! . The rows underneath list the semantics
of the xpoint approximants given as a mapping from each se@nce of arguments in the
same column to the values in this column as they would succesty be computed line-by-
line in the routine FPapprox It is clear that FPapproxcould stop any time before theh-th
approximant is reached, if the last and current approximantvere identical in all columns
and hence the xpoint was established earlier.

. 0 1 m 0 1 m 0 1 m
argo: o || @3 |ag | ... |ag° | af | & |... | &g ad | ab ag"°
arg;: 1 || ad|ay|...| & |af |af |...| al |...|al" |a™ ap

. 0 0 0 0 0 0 0 0 0

[ %]

[P 1| vol|wa

This is so far a naive extension of standard xpoint computabn techniques as known
for instance fromL model checking algorithms. Note that an HFL-equivalent toma L -
formula needs zero arguments and hence uses only a singleirool in the above table.
The following improvements to this procedure stem from thelservation that every HFL
formula is of type Pr and hence the semantics of higher-order terms (i.e. funatis) has to be
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broken down by function application in order to make for a fanula. This implies that the
function semantics is not necessarily needed as a whole, lpugt at the speci ¢ arguments
to which it is applied. It does howevernot imply that the computation of the value at
a single argument can be performed independently of valuesaher arguments, simply
because values at di erent arguments might be needed in thegsence of recursive function
application, as may be the case in xpoint formulas. The nexsection develops this idea to
the extent that xpoint approximants are computed as partid functions, where the de ned
domain is extended on demand, driven by value needednessidgrcomputation.

5.5.2 A Model Checker Using Neededness Analysis

Consider the recursive procedure MC-HFL as given in Fig. 5.4t takes as input a typed
HFL term ' , a (possibly empty) list of argumentsfy;:::; fx] and an environment function
which maps free variables to values of the correct type.
We assume that at the initial call of MC-HFL, ' is a well-formed HFL formula of type
Pr, the argument list is empty and is entirely unde ned for all arguments. The LTS
T = (St ;) over which' is to be model checked is assumed to be available globally.
After termination, MC-HFL is supposed to return the set of LTS states in which' holds.
Note that the formulas and terms occurring in the case distttions re ect the full expressive
power of HFL. We omit type annotations where the type is obvias from the de nition
or irrelevant for the computation. Variances are omitted asvell, since the formulas are
assumed to be well-formed.
The propositional and modal formulas are handled in a standa way. The di culties are
posed by xpoint formulas. The idea is in principle that the dgorithm maintains a table
similar to the one described in the previous section for theasdard xpoint approximation
scheme, except that it is empty initially and lled with arguments and values as needed.
This means that HFL xpoint formulas are evaluated to functions which are stored as
tables.

Notation: A partial function f : X ! Y is assumed to map anyx 2 X either to
f(x) if f is de ned at x and to undef otherwise. Furthermore,dom(f) is de ned as the
function which mapsf to the set of arguments on which it is de ned, i.edom(f) = fx 2
X j f(x) 6 undefg. The expressionffz 7! vg denotes the (partial) function f © which
agrees withf on all argumentsx 2 X, except possibly forz, where its value isv, i.e.
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MC-HFL("; [fq;5fk]; )=
case' of
q (9
. : SNMC-HFL(; []; )
1_ 2 : MC-HFL( 1;[I; ) [ MC-HFL( 2:[I; )
hai :fs2Sj9t2 MC-HFL( ; []; )s.t.s!? tg
X creturn (X)([fq i fk])
X | it (X)([f 1 fk]) = undef
thenlet v:=if fp(x)= then ? else >
(X):= Of[fq;::f] 7' vg
return — (X)([fq;:::;fk])
(X :): DIt [fannfd =10
then return  (f : ):MC-HFL( ; []; fX 7! fQ)
else return MC-HFL( ; [fo;:::;fk]; £X 7! f10)
1 2 : MC-HFL( 1;[MC-HFL( 2;[]; )ifwunfel )
(x: oV b Pr)r if [fqriiif] =[] and type(x) 6 Pr
then return (g : 1)::0 (G : «):
MC-HFL( (x: ¢! :2:b )i oo ol )
elselet v:=if fp(x)= then ? _ else >
(x) = f[fq;::fe] 7! vg
repeat
fi= (x)
for all  [f2::;f9 2 dom( (x))
(X) = )F[f & f 70 MC-HFL( ; [FE:5fd; )g

until f = (X)
return — (X)([f1;:::;f])

Figure 5.4: A model checking algorithm for HFL.

fqx) = f(x); if x 6 z and v otherwise. Note that the data structures which represent
functions have to be available globally.

? and> denote the bottom and top elements of type, and [] is the empty list.
variables are distinguished from - and -bound variables by upper- and lower-case letters

respectively.

-bound
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Type Safety:  The return type of algorithm MC-HFL after termination is the data type
which representsPr. However, in several cases e.g. the subcase edbstraction, where
[f1;::f«] =[], an anonymous function (here (f : ):MC-HFL( ; []; fX 7! fQ)) is re-
turned for the purpose of postponing the current computatio to a later moment (see next
paragraph for details). The returned -term is not to be confused with a HFL -expression,
but should be interpreted as an anonymous function in the im@menting programming
language. It has to be read as a lazy evaluation of MC-HFL([]; ) which will only be
evaluated in the context of a later function application or maybe even not at all. If it
is never touched again and remains unevaluated, this meansat it only occurred as an
argument in a higher-typed function.

Note however that in a real implementation it has to be type-ansistent with the \eval-
uated" return types of MC-HFL. This problem could for instarce be solved by using an
abstract data type encapsulating both evaluated and unevadted return types adequatly.
Our algorithm transcipt is a concession to presentation cldy and therefore omits this
level of detail.

Step-by-Step Explanation:

(Propositional and modal formulas) The rst four cases areancerned with propo-
sitional and modal formulas of primitive type. Propositiors g are immediately eval-
uated according to the labels in the LTS, the rest result in r@rsive evaluations of
subformulas w.r.t. the demands of the operators; _;hai.

(Function application, -abstractions and -bound variables) Any occurring -bound
variable X is assumed to have been bound earlier and its value stored ineten-
vironment . Its bound value (X) is returned. Function application ; , is
treated by recursive evaluation of , which is put into the argument list of the
recursive MC-HFL-call of ;. If in case of a formula (X : ): , the list of argu-
ments [f1;::;; f] is empty, its denotation is currently not needed and its coputa-
tion postponed until arguments are provided. This is expregd by the return value

(f : ):MC-HFL( ; []; fX 7! fg), notto be confused with a HFL -expression, but
interpreted as an anonymous function in the implementing @gramming language
(see previous paragraph for details). If the list of argumés is not empty, then X
is bound to the rst argument f, provided and MC-HFL is called recursively on the
body of the expression.
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(Fixpoint computation and ; -bound variables) The xpoint computation is lo-
calised and performed on needed values only: if no argumerte provided and
X is not of primitive type, its denotation is currently not needed and the xpoint
approximation postponed. Otherwise, the rst xpoint approximant is initialised

according to least or greatest xpoint type with? _ or > _, so far realised as the

partial function x which is only de ned at [f 1; ::;; fx]. The repeat -loop updatesx in

the line (x):= (X)f[f %51 7! MC-HFL( ; [f2::;f3; )g and computes the ap-
proximants on the currently de ned domain ofx. It stops on two conditions: no fresh
arguments enterdom( (x)) and the approximation stabilises. Then the computed

value ofx at the original arguments f 1;:::; f] is returned.

The case of - and -bound variablesx is similar to -bound variables. Eitherx is
de ned at the arguments in which case its value is returned,rat is unde ned. This
is the case, where a fresh argument entedem( (x)) which is initialised with ?  or
> according to the xpoint type.

The algorithm MC-HFL improves a naive bottom-up model cheak in two ways: by lazy
evaluation of functions without arguments and by demand-dven Xxpoint computation.
We demonstrate both features by an example.

Example 18 Consider the formula
(F:(Prt P! Pr:F( (X:Pr! Pr:X) (y:(Prt P! Pr: (G:Pr! PryG:

The formula does not express anything particularly meanirigl but serves our purpose. In
fact it is also independent of the transition system, becaasits semantics isf on every
model. So letT be an arbitrary LTS in the following.

The basic structure is that of a function application: the last xpoint function on the
right hand side (representing the function which maps everfunction of type Pr! Prto
the least set of states on which its-fold application stabilises) is plugged into the function
on the left which takes any function of right type and appliest to the identity function.
After -reduction, the expression is easily seen to boil down to apglication of the xpoint
function on the identity function. However, this is a valid H-L formula and demonstrates
the usefulness of lazy evaluation.

For reasons of readability, we omit type annotations in thedilowing and do only hint at
the development of the environment (as side-e ects) between calls of MC-HFL. Note
that contains no bindings initially.

MC-HFL F:F (XX ) Vy:GyG ;] = (1)
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MC-HFL F:F (X:X );[MC-HFL(y:GyG; [D] = (2)
MC-HFL F:F (X:X );[f: MC-HFL(y: Gy G; [f])] = ::: 3)

So far, the algorithm has processed the argument of the fumat F:F ( X:X ) which
is a least xpoint of a second-order function for which no angment has been provided.
This leads to a delay of the actual computation of the xpointin line 3 where just the
anonymous functionf: MC-HFL( y: Gy G; [f]) is returned which passes on its argument
to the xpoint function: it is lazily evaluated and merely seves as a symbolic placeholder.

MC-HFL F (X:X );[l = (4)
= fF 7' f: MC-HFL( y: Gy G; [f]g (5)
MC-HFL F;[MC-HFL( X:X )] = (6)
MC-HFL F;[g: MC-HFL(X; [])] = 7)
= X 7' g)g::: (8)

In line 4 5, the variableF is bound to the xpoint function. The following lines demon-
strate yet another lazy evaluation, this time of the identiy function which has no arguments
either.

MC-HFL f: MC-HFL( y: Giy G; [f]);[g9: MC-HFL(X; [])] = (9)
MC-HFL MC-HFL( y: Gy G; [g: MC-HFL(X; )]); [ : (10)

Lines 9 10 perform a -reduction on the level of the programming language (as opgped to
the level of HFL expressions) and show the whole bene t of thevaluation delay: instead of
computing the whole function, we now just have to compute théunction at an argument
which was formerly hidden in the formula structure. The ruleof thumb here is simply that
every function with an argument is computed immediately butestricted to that argument
while the computation of functions without arguments is delyed. This is justi ed by the
observation that every well-formed HFL formula sooner or tar breaks down any higher-
order construct to primitive type Pr. We exclude the computation of the xpoint here
since the next example will demonstrate this improvement oa more suitable function.
We just state as a fact here that (y: G:y G )( g: MC-HFL(X; [])) = ; (the identity function
stabilises on every argument after one self-application drihe least argument of primitive
type on which this happens is ).
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| || f3g | f2;3g |f1;2;3g
f’3g :
f3g 12,39

f2;3g f2;3g f1;2;3g
f2;3g f1;2;39 | f1;2;3g
f1;2;3g | f1;2;3g | f1;2;3g
f1;2;3g | f1;2;3g | f1;2;3g

o|lo|b|lw|Nv|R|lo]|| X

Figure 5.5: Algorithm MC-HFL running on a simple example.

Example 19 For the demonstration of Xxpoint computation on demand, cosider the
formula
(x:Pr! Pr): (Z:Pr:Zz_ x[aZ :q
a2

and the transition system shown on the right side in Fig. 5.5Intuitively, ' asserts that
there is a sequence of actions s.t. all paths under that seque lead to a state not satisfying
g. States 1 2; 3 satisfy this property, state 0 does not. However, the mearg of this formula
is irrelevant for the understanding of how it is evaluated bylgorithm MC.

The table on the left of Fig. 5.5 shows the successive caldigda of the semantics of the
xpoint formula. Although only two rows need to be stored in @ch iteration step { the
current one and the last one for comparison { we depict all stges in this example for the
reader to be be able to follow this step-by-step.

At the beginning, the formula: g is evaluated tof 3g. This forms the initial argument in
the table. Itis to be read as follows: time proceeds line bynke from left to right. Each row
below the arguments contains a snapshot of the current statg the end of an iteration
over the current domain. Note that in general Xxpoint approxmants cannot easily be
read o the table since di erent columns may be at di erent stages of approximation. As
computation proceeds, arguments are added to the list.

Row 6 then represents a partial function that agrees with theotal function that is the
semantics of the corresponding xpoint formula. The returnvalue is the one in the rst
column { the value of the xpoint function applied to the original argument.

These improvements do of course not a ect the worst-case cplaxity of the HFL model

checking problem. Instead, they allow for better best- andvarage-case complexities which
otherwise would just be the same as the worst-case complgxiin Section 5.5.4, we give
empirical evidence that the improvements have signi cantn uence on the performance of
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the model checking algorithm and make it feasible in practcin the rst place (of course
only for lower-order fragments of HFL).

5.5.3 Soundness and Completeness

We will now prove that MC-HFL correctly computes the semantis of any well-formed
formula of HFL. In order to do so, we need to relate the enviranent used in MC-HFL
which maps variables to partially de ned functions (which ve will call shortly \partial
environments") with the environment of HFL term semantics vhich contains only total
functions (which we call \HFL environments").

De nition 49 Letf : o! :::! Prbe a partial function on HFL types. De ner (f) as
the set of all total functions which agree withf on all arguments on whichf is de ned, i.e.
g2r (f)i forall x2 dom(f): g(x) = f(x) and g is total. We overload ther -operator
to be applicable also for partial environments . Its meaning is that if (X) = f then for
all °2r () AX)2r (f).

Theorem 69 For all transition systemsT, all partial environments , HFL environments
92 ¢ ( ) and all well-formed formulas' 2 HFL we have: MC-HFL(; [I; )=["'1".

We cannot prove this theorem directly: the statement is too ®ak as an inductive invariant
because of subformulas of type other thaRr.

We will instead prove the following stronger statement, fnrm which the above theorem
follows immediately.

Lemma 33 For all transition systems T, all partial environments , HFL environments

Proof We show the claim by induction on the structure of the formuld . Let ' be a
term, be a partial environment that maps any free variable in to a (possibly partial)
function and f; be a valid HFL type over a transition systemT forall1 i k.

The propositional and modal part. The statement is immediately seen to be true for
the case of = g for someq2 P. It also follows directly from the hypothesis in the cases
= o, =i and' =: . Note thatin all these cases,; 1 and , must have
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The functional part. Now consider’ = X, whereX isa -, - or -bound variable:

Now consider the casé = (X : ): oftype ! . Notethat' cannot be of primitive
type Pr, i.e. it takes an argument.
We distinguish according to the two cases in MC-HFL, namelyhiat

overridden in °and bound tof;.

no argument is provided. Then the call is MC-HFL{ []; ) and the return value is

(y: ):MC-HFL( ; []; fX 7! yg), i.e. a function which for any argumenty of type
[ 17 vields by IH. the value [ 1'ix4,,(0) of type . But this is exactly [' 1'«([).
Note again, that X is overridden in °©

The case of function application = ; , is simple:

The only cases posing di culties are those of = X: for 2f ; g. Here itis helpful

to prove soundness (direction \ ") and completeness (direction \ ") separately. However,

the soundness proof for the -case is entirely analogous to the completeness proof of the
-case and vice-versa. Thus, we only present soundness anthgieteness of the -case

here.

Soundness of the -part.  Consider the following call of the model checking algorithm
MC-HFL( (x: 1! ::: we1)i; [fei::;fk]; ). Here we have to take into account that the
environment may contain partially de ned functions. Thus we have to prove the following
statement:

The algorithm distinguishes two cases.
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ments supplied, the algorithm returns a dummy function and pstpones the xpoint
computation until arguments are provided. Formally, after -reduction, the returned
function is the same as MC-HFL((x : 1! ::: gs1):s [f;i:0:fk]; ). Note that
sincedom( (x)) = ;, statement (l) trivially holds.

In case the arguments have been provided, i.€.{:::;fx] 6 [] or x is of primitive type
Pr, statement (1) is in fact an invariant of the repeat -loop in Algorithm MC-HFL.

maps this tuple to the bottom element of y.; .

Furthermore, if statement (1) holds at the beginning of oneteration of the repeat -
loop then it also holds after this iteration. This is simply aconsequence of monotonic-
ity, the hypothesis, and the factthat [ (x : 1! ::: ks1): ]|T0 IS a unique xpoint of

all such tuples then, by monotonicity and the de nition of the pointwise inclusion
: T T

ordering, we also have ['ox7 () V [ Torxnp x: 11 o or): 70gr NOW NOte that the

latter is (because it is a xpoint) equalto [ (x: 1! il 1) T

And the former is, by hypothesis, the value of (x) on all arguments indom( (x))

at the end of thisrepeat -loop iteration (note that (x) is updated with the value of

termination point, and the soundness part of Lemma (33) imnukately follows from the
fact that (I) holds at this point.

Completeness of the -part.  We will prove this part using xpoint induction. For any
two functions f;g of type ;! :::! 41 and a setD 1 il ok, we write

Now consider again the call MC-HFL(: ; [f1;:::;f«]; ). Let D := dom( (x)) upon
termination of the repeat -loop. An immediate consequence of the induction hypothssi
for is the following:

|[ ]ITOfx7!fg Vb (X): (”)
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for any functionf 2r ( (x)). This is because therepeat -loop is iterated on the whole of

and from this follows the claim by de nition of v p.

We now extend the function (x) to a function ~(x) in the following way.
8

C > , otherwise.

Now note that we have
|[ ]ITOfx7! > (x)g v >(X):

i.e. the function on the right subsumes the one on the left aall arguments. For arguments

in D this is stated in (Il) above. For all other arguments this is tivially true by the

construction of > (x). Butthen >(x)is a pre- xpointof and, hence, we havef: ]%v
Z(x). In particular, the inclusion holds for all argument tuples in D. Since the domain

5.5.4 Applications and Evaluation in Practice

The expressive power of HFL allows to encode numerous intstiag problems as model
checking instances. This section covers the encoding of th@lowing problems: NFA
universality (NFA-UNIV), Quanti ed Boolean Formulas (QBF ), Satis ability of modal
logic K (K -SAT) and Shortest Common Supersequence (SCS). All of thegmblems can
already be encoded in HFL

A possible benet of studying such encodings is to extract fmerly unknown algorithms
for these problems by analysing the behaviour of the optined model checker. The justi-
cation for this potential lies in the unusual, yet very sucanct problem formulation which
HFL imposes upon the \programmer”. It is fair to say that it is not common practice
among programmers to think of methods and routines as xpota of concrete functions.
This however is the only recursion device which is o ered by L. In this regard we will
use HFL as an extremely succinct programming language in ghsection and demonstrate
the validity of the claim that HFL can be a valuable tool for deigning new and original
algorithms which at least in case of NFA-UNIV and SCS are congitive to known ones.
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NFA Universality

We start by picking NFA-UNIV to demonstrate how encoding a poblem as a model check-
ing instance can lead to an e cient solution. In fact, we havealready introduced the
encoding in Example 19 without mentioning it.
Recall the model in Example 19. If the propositiorq is interpreted as a ag for being
a nal state then the whole model can easily be viewed as an NFAn this context the
formula
NFA .= (x:Pr! Pr: (Z:Pr:Zz_ x[aZ :q

a2
translates to "there is a word w, s.t. all states reachable undew are non- nal". NFA-
UNIV is solved by checking whether or not the starting state atis es this formula. This
problem suits well to practically evaluate the behaviour obur model checking algorithm
since we can easily generate random NFA instances upon whitte formula is model
checked.

Local Fixpoint Computation in Practice We now give empirical evidence of the
bene ts of local xpoint computations and demonstrate that the necessity to compute
larger fragments of the complete domain rarely occurs. Algthm MC-HFL has been
implemented as a prototypé in OCaml and run on the following random model for NFAs
(by [TVO5]) in order to guarantee a wide spectrum of test case two parameterss and
t determine the number of randomly chosen nal states and tragitions in an NFA w.r.t.
the total number of statesn. The ratiosf := > andr := % are called nal state density
and transition density respectively. To perform the univesality tests, we x n = 10 and
generate 20 random NFAs for each of 250 pairg{) withO r 25and0 f 1.

The average number of arguments needed in the xpoint compation by algorithm MC-HFL
in dependence ofr{f ) is depicted in Fig. 5.6. Note that the number of possible atgnents
j25j is 1024 in this case. Fig. 5.6 shows that in all cases the algom is far away from
exhaustive xpoint calculation on the full argument set 2. Even for the most di cult
instances which in our tests aré =0:1 andr between 14 and 16, the number of needed
arguments never gets anywhere near that. The average numhararguments distributed
over all 5000 tests is just 12 and the highest number of arguments ever measured during
the tests is 109.

2seehttp://www2.tcs.ifi.Imu.de/~axelsson/veri _non_reg/mchfl _tool _doc.html
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Figure 5.6: Number of arguments in function tabler{ = 10).

It is reasonable to assume that the approach of guiding the point iterations locally
through neededness analysis also proves to be successfudtirer cases (on di erent for-
mulas) unless the underlying models have been constructedtpologically to enforce an
exponential behaviour.

Optimising Algorithm MC-HFL w.r.t. a Fixed Formula There are still several
standard performance enhancements available, e.g. accatien of the Xxpoint computa-
tion by exploiting monotonicity, in order to optimise this algorithm.

However, we need to observe that algorithm MC-HFL will be useon xed formulas
in most cases. In many veri cation tasks the property to be abcked is xed while the
models change. This holds especially for non-regular prapes since non-regularity often
eliminates dependence on model sizes, etc. It is thereforeain more bene cial to regard
MC-HFL as atemplate for specialised cases rather than a general algorithm fof kinds of
veri cation purposes. Model checking a xed formula bears higher potential for algorithm
optimisations which possibly cannot be achieved for varygnformulas.

Consider the algorithm's behaviour on the formula of Ex. 19sadepicted in the table there.
If we follow the succession of the xpoint iteration closelya simple pattern can be observed:
the iterated function Y:Y _ _, X [a]Y takes an argument (initially the set [ q]IA) and
returns its union with the set of its recursive §]-predecessors for ath 2 . But this set
is exactly the union of the elements oflom(x), each of them the result of a singlea]Y
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computation step. So the return value does not provide any ddional information if the
set of needed arguments is known. Furthermore, since only aion operation is performed,
it su ces to keep track of -maximal sets of arguments. This insight immediately lead®
an optimisation by discarding all redundant information. t is obviously not necessary to
protocol all these values in the xpoint iterations { when inthe end all we want to know is
whether or not the initial automaton state is included in theunion over all arguments. It
Su ces to iterate this schema until no more arguments enterlie table, and then to form
their unions. This, however, means that, by monotonicity othe [a]-operators, one can
always discard the larger of two arguments that are comparébw.r.t.  which leads to
the idea of storingdom(x) as anantichain.
An antichain over an NFA A is a setC of pairwise incomparable (w.r.t. set inclusion) sets
of states ofA. These antichains form a complete lattice when equipped witthe following
order:

CvC’ i 8cz2coc’2cC’st.Cc ct

This naturally induces a notion of supremumC t C° as the smallest antichain (w.r.t.v)

which contains bothC and C.

The basic principle of the optimization is to populate an arithain with sets of states
which uphold the possibility of generating a word that is notncluded in the language of
the automaton. This can be achieved by loosely speaking apiplg the modal [a]-operator
(for all a 2 ) to its elements and minimizing the resulting set to an antichain. More
formally, de ne the following monotone operation on antichins:

CPre(Q) = dfS Qj9T2C %2 st S=[aX]fyzr.9€

where thed e operator discards all sets which are subsumed by another getthis set of
sets { i.e. it makes an antichain of the expression on the rigghand side.

This is exactly the idea which Henzinger et al. have in mind wén they characterise NFA-
UNIV using least xpoints in antichain lattices in [WDHRO6].

Lemma 34 ((WDHRO06]) Let A be an NFA over the alphabet with state set Q, initial
state ¢p and nal states F. Then

I
L(A) 6 i ffgpggv fCjCPre(OQtf QnFgvCg:

Of course, the least xpoint can be computed by a straight-favard xpoint iteration:
Dene C := f;g andC := CPre(C 1)tf QnFg. The following table compares in parallel
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two runs of MC-HFL and the antichain method on Ex. 19:

|| f 39 f2;3g f1;2;3g

X

0 , c = fg

1 f3g ; Cct = CPre(C®)tf QnFg = ff 3gg

2 f 39 f2;3g ; — — .

. o T T2s T1i2% C = CPre(CH)tf QnFg = ff 2;3gg

4 f2;3g | f1,2:3g | f1,2;3g C = CPre(C)tf QnFg = ff 1,2,3gg
5 || fL23g | f1;2,3g | f1,2;3g Ct = CPre(C)tf QnFg = ff 1,2;3g9
6 f1;2;39 | f1;2;3g | f1;2;3g

The cost reduction of the antichain method is established bthe fact that it simply com-
putes ddom(x)e, i.e. the antichain of the currently present arguments. One&an show
that ddom(x')e= C*!, wheredom(x') is the currently needed domain of théth xpoint
approximant w.r.t. a given argument and a partial evaluatio according to MC-HFL.

It turns out that the result of this optimisation is exactly t he method devised by Henzinger
et al. in [WDHRO6]. Their tool shows a very good performancencthe universality test
for NFAs and does apparently outperform the classical powsst construction by several
orders of magnitude.

Quanti ed Boolean Formulas

By not just restricting the term \model checking” to a method used in automatic program
veri cation but understanding it as a general logic problemwe can obtain algorithms for
various other problems as well. Note that NFA-UNIV is PSPACEcomplete, and it is
therefore reasonable to try to encode the standard PSPACEmplete problem QBF as an
HFL' model checking problem.

It is well-known that \e/ve\z/r\y guanti ed Boolean formula can beput into prenex CNF normal

form QiX1::::QnXp: i lij; with the Qx 2 f9 ;8g, and thel;;, literals over the variables
X1;:::;Xn. The problem QBF is to decide whether or not such a formula ekstes to 1
under the usual interpretation of the Boolean operators anthe quanti ers over the domain
f0; 1g.

With each QBF formula we associate a loop-free transition gstem T which is exemplar-
ily shown in Fig. 5.7 for = 9x1:8X2:9%3:8X4:(X2_: Xa) ™ (X1_: X3_X4)™ (0 X1_: Xo_ X3).

It uses atomic propositions9, 8 to mark the type of quanti cation over a variable, c to
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"OX1:8X2:9X3:8%4"

Figure 5.7: A transition system representation of a QBF formia.

indicate the branching into the di erent clauses, and 1 to mek the value of a clause under
an assignment valuation given by a path through each clausecomponent. Its actions are
0 and 1 for representing variable values, and an anonymouseoior branching into di erent
clauses and for separating the quanti ers in the pre x.

Evaluation to 1 of can now be expressed in HFE as follows.

'QBE = x:Prl Pr: (Z:Pr):c! [ ]2 ~ 9'!"hi (xhizZ)_hi (xhLiz) ~

81 hi (xMiz) hi (xhiz) 1

Again, ' oge does not depend on the underlying QBF formula . It is therefoe possible
to obtain a QBF solver by analysing the behaviour of algoritm MC-HFL on ' ogr and

specialised transition systemd . For example, it is not hard to see that the xpoint

iteration always terminates after a number of steps given bthe length of the quanti er

pre x. It can therefore be made explicit through afor -loop. Furthermore, antichains can
also be used to replace the arguments of the function tableréfiminary results show that
this is far away from yielding a competitive QBF solver. Howeer, it may be interesting
to investigate combinations of this bottom-up approach wi existing solvers that mostly
work top-down.

Encoding the Satis ability Problem for Modal Logic K

Another important problem that HFL ! can express and that therefore can be solved using
algorithm MC-HFL is the satis ability problem for modal logic K, extending propositional
logic with the modal operators3 and 2. For technical reasons and simplicity we assume
modal formulas to be in positive normal form and only conside¢he uni-modal case.



5.5 Model Checking 139

A tableaufor a modal formula is a nite tree whose nodes are labeled wh subsets of
sul( ), called sequentss.t. each inner node is an instance of one of the followingles, and
each leaf is consistent, i.e. it does not contain an atomicgosition g and its complement
o]

)y —22 () —  j2f12g
1N o 1_ 2
3) o1t m D "n LI m
3'"5,:053"m2 152wyl
wherefly;:::;lkg must be a consistent set of literals.

We will show that K-SAT, the satis ability problem for K can be encoded as a model
checking problem for HFLL. With a formula 2 K we associate a transition systenT
with states suli ), the subformulas of . There are ve accessibility relat ions:

I'' and! " connect each subformula to its immediate superformula marig it as its
left, resp. right argument assuming that the modal operatar only have a right one,

I S (for \select") introduces a linear order onsul{) with being the maximal

element,

I ¢ (for \con ict") connects all propositions qto their complementsq and vice-versa,

I ' (for \test") connects to every other subformula.

Each subformula is labeled with one op~;p ;ps;p.;prop according to the type of the
subformula. Finally, is also labeled with init .

A sul( ), i.e. a sequent in a tableau, can be represented naturallby an object of type
Pr. The existence of a tableau for can then be encoded by a furioh of type Pr! Pr
that takes the current sequent, decides which rule to applyra continues recursively with
the corresponding premisses. The relatiohs and! ' are used to model subformula
replacement in an application of a tableau rule, and relatio! ° is used to select the
principal formula of the next rule application, i.e. the onadetermining which rule to apply.
The transition representation of the modal formula = 3(q® 29)”™ 2(q_ 3 9) is given in
Fig. 5.8. To avoid clutter we do not show the relatioh ' which simply has arcs from the
leftmost state to each other including itself.

Now consider the following formuld ksat :

Z X [t(X !t [c: X)
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Figure 5.8: A transition system representation of a formulan modal logicK .

A (XD prop)

[t] (X *: prop) ! (ps _p2) *
Y V[V X Aps)! o Z (v _hri(X A p,))
ATtV _ (Y bsiV) init
Y LV [tV
V! XAp)A Z (XA V)_hliv_hriv)
[tV X~Ap )~ (Z (X~ V)_hliv))_

(Z (X ~: V) _hriVv))
!

_ (Y hsiV) init init:

This formula will be evaluated in state of T . The outer least xpoint recursion through
variable Z nds a tableau. Variable X represents a sequent in this tableau starting with
, the only node satisfying init. The rst line assures that X represents a propositionally
consistent sequent. This is the case i no element o has ac-successor inX. Note that
here we use the relation' in order to test in state whether or not something holds in
all states.

Then there are three disjuncts. The rst one applies X consists of propositions only,
hence, a tableau leaf is found. The second disjunct appliésXi consists of literals and3 -
and 2 -formulas only. Hence, rule 8) needs to be modeled. The inner xpoint recursion
traverses through the entire set of subformulas starting Wi . In each iteration, variable
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V contains a single node only because the relatibri is deterministic. It then checks
whether V consists of a3 -formula in the current sequentX . If this is the case, it calls the
tableau building function Y again and passes it, as the new sequent, the argument of that
3 -formula as well as the arguments of al -formulas in X .

Finally, the third disjunct models applications of rules () and (_). Similar to the case
above, there is an inner xpoint function which recursivelyselects a Boolean subformula of
the current sequent. This is stored irV. If V consists of a conjunction it gets replaced by
its conjuncts according to rule (). This is modeled by callingY again on the argument
consisting of everything inX without the node in V but adding the r- and |-predecessor
of V. A similar construction applies to model rule () for disjunctions. Note that this rule
is nondeterministic, hence, we calY with either of two arguments including either of the
two disjuncts.

Then we have, for any formula 2 K: T ; | 'ksar | is satis able.

Shortest Common Supersequence

Some optimisation problems that require more than a yes/nonswer can also be dealt with
using an extension of algorithm MC-HFL that keeps track of pas of the solution to be
computed. We sketch a new algorithm for the Shortest Commorufersequence problem

that contains all w; as subwords. The algorithm is obtained from the template MGHFL
using an antichain optimisation as in the case of NFA-UNIV.

The rst step consists of building a transition systemT, here depicted for the words
faaba; abab; aaa

Next, consider the HFL! formula
"scsi=  (X:Pr! Pr): (Z:Pr 1Z2_  xhiZ q:
a2

Each state inT satis es' scs Which only re ects the fact that for every nite set of words
there is a word containing all of them. However, suppose theguments in the table for the
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Xpoint iteration in this formula are annotated in the following way: the initial argument
receives the annotation, and if an argumentZ with annotation w causes another argument
to be created in the table through the recursive call oK haiZ then the new argument
receives the annotatioraw.

Now note the apparent similarity of this formula with the onefrom Ex. 19 expressing
NFA-UNIV. In both cases the subformulasX (Z) only occur under a disjunction. Hence,
the argument row of the function table can again be optimisethto an antichain, and the
evaluation of the formula can be regarded as a xpoint iterabn in an antichain lattice.
It terminates when the topmost state ofT occurs in an element of the current antichain,
and that element's annotation is the solution to the SCS prdbem.

The computation of the solution aaababusing annotated antichains is found as follows.
Let | := f4o; 44;3,0. For a setS we write S to abbreviate (S[ I)" where the superscript
simply denotes the word annotation of this set.

G = flg

G = ff 23031000

G = ff 25205 300%™ 22 12; 30077 f 313 20019

G = ff 252130 10 f 25; 1 055 3097%%; £ 31; 14} 200720

G = ff 2521500 3; Logf*®: f 225 1p; 03 3007 f 223 12; 30; 0007,

f 0; 31; 2007 £ 31; 11; 200"y
G = ff g fgbdad £ g8 £ 2,0 1, 0p; 3p; 002202,
f:::gPaba f .. gPasaa. { . . .gbabaly
f 111,125, 15; 0y 0p; 0,g2%3020: - - g

G

Finally, since a set containing Op; O;; 0.g has been founds is included in the next iteration,
and the solution is the annotation of this witnessing set.



Chapter 6

Further Work

We have investigated the model-theoretic properties, exgssivity and model checking prob-
lem of PDL[L] for arbitrary classes of formal languagek. Some questions regarding its
expressivity are however still open. For instance the quésh whether the result that
PDL[L] gains additional power from the test operator up to the comixt-free languages
extends to PDL over more expressive language classes or & test operator can somehow
be simulated in these fragments.

Clearly, one could also extend PDL]] with additional operators such asonverseor as
de ned in [Str81]. In fact, we have compared the latter to CTIL] in [ALL *b]. It turns
out that PDL[ L] with a -operator is strictly more expressive than CTL[L] for deter-
ministic automata models. Strictness is merely a consequenof the fact that CTL[L] is
not capable of expressing fairness while POL] with is. The embedding is otherwise
straight-forward. Nondeterministic automata classes areaowever not generically embed-
dable, except when the automaton class is closed under detémisation, of course. For
instance are CTL[CFL] and PDL[CFL] with mutually incompar able.

Regarding model checking, the correspondence to the em@t#s problem should extend to
PDL[L] with , except that automata models with a Bachi acceptance condition need to
be considered instead of normal ones, since that is basigalthat the -operator amounts
to.

There are also some open problems regarding the expresgivaf CTL[L] . In particular,
we do not know whether CTL[DCFL] CTL[CFL] holds.

Another idea is that in a similar manner as parametric CTL opeators have been adorned
with formal languages, one can think of such extensions forTC . It would be very
interesting to analyse the interplay between logical machery and formal languages in
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such a setting.

On a more general level, we are interested in a unifying lodar all three logical frameworks
presented in this work. Some attempts were made to embed PDL] into HFL but all of
them failed in the end. The problematic case is of course theathond formula scheme
where the task is to simulate a derivation resulting in a woravhich coincides with a path
in the model. A direct approach which simulates the derivatin relation by a simultaneous
Xpoint using nonterminals as variables in the way demonstted by the embedding of
PDL[CFL] fails here, because the only way we could see to edeothe stack of each
nonterminal was as a list of arguments in some function of the-calculus. However, the
encoding of lists in the simply typed -calculus does not support the deletion of elements
which corresponds to pop-operations on stacks and hence thbole construction fails.
Another approach was to try to encode the language derivatiopart of the algorithm used
for the computation of closed paths in HFL. The reasons why it failed were similar and
raise the question whether this is an inherent weakness of HHFf so, then the question
immediately arises what kind of feature a logic has to supptan order to be able to simulate
such behaviour. Or, more generally speaking, to serve as aifyimg logic which links
automata classes and logics like MSO links and nite automata. The correspondence
between temporal logic and automata which exceed the regular context-free has to our
knowledge never been analysed systematically.

On a more practically oriented level it might be interestingto follow up the matter of
algorithm development via encoding problems as model cheéd instances of HFL and
to observe the behaviour of the xpoint approximation in orcer to gain insight into the
problem and to develop optimised algorithms from this.
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