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1 Einleitung 
 

1.1 Das Immunsystem des Menschen - ein Überblick 

 

Obwohl unsere Haut und Schleimhäute von einer beträchtlichen Zahl an 

Mikroorganismen bedeckt sind, bleiben wir erstaunlich gesund und erkranken nur 

selten. Der Mensch ist nicht nur der ständigen Gefahr ausgesetzt durch Mikroben, 

Schadstoffe und Toxine aus seiner Umwelt in seiner Integrität gestört zu werden, 

sondern auch durch pathologisch veränderte körpereigene Zellen. Die Mechanismen, 

die dem Schutz des Menschen vor diesen äußeren und inneren Angriffen dienen, 

werden als Immunsystem bezeichnet. Unabdingbare Voraussetzung für die 

Beseitigung potentiell schädlicher Strukturen ist deren effiziente Erkennung. Das 

Immunsystem muss daher äußerst zuverlässig zwischen „selbst“ und „fremd“ bzw. 

„ungefährlich“ und „gefährlich“ unterscheiden können. So sind das Eindringen von 

Nahrungsbestandteilen in die Blutbahn oder das Einatmen von Pollen ungefährlich, 

wohingegen ein Befall mit Pathogenen oder das Eindringen von Toxinen gefährliche 

Angriffe auf den Organismus darstellen. Angriffe des Immunsystems auf gesundes 

körpereigenes Gewebe sind unerwünscht, während die Beseitigung pathologisch 

veränderter Zellen, wie Tumorzellen und virusinfizierte Zellen, lebensnotwendig sind. 

Über Jahr Millionen haben sich hierfür die ausgefeilten und faszinierenden 

Erkennungsmechanismen des humanen Immunsystems entwickelt. 

 

 

1.1.1 Vom angeborenen zum adaptiven Immunsystem 

 

Das hochdifferenzierte und anpassungsfähige Abwehrsystem des Menschen lässt sich 

nach evolutionären und funktionellen Gesichtspunkten in zwei Komponenten einteilen 

– das angeborene und das adaptive Immunsystem. 

 

Die angeborene Immunität ist ein phylogenetisch altes Abwehrsystem und in fast allen 

mehrzelligen Organismen ausgebildet 1. Nachdem ein Pathogen eine Epithelbarriere 

überwunden hat und in den menschlichen Körper eingedrungen ist, wird dieses in den 

meisten Fällen sofort durch Zellen und Moleküle des angeborenen Immunsystems 

erkannt und bekämpft. Die angeborene Immunität stellt somit die frühesten, sofort zur 

Verfügung stehenden, Abwehrmechanismen im Rahmen einer Immunantwort. Diese 
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umfassen antimikrobielle Enzymsysteme, das Komplementsystem und zellvermittelte 

Abwehrmechanismen. Elie Metchnikoff, der Begründer der angeborenen Immunität, 

beobachtete, dass zahlreiche Mikroorganismen durch Phagozyten, die er 

Makrophagen nannte, verschlungen und verdaut werden konnten. Phagozytierende 

Zellen sind daneben Granulozyten, Monozyten und dendritische Zellen (DCs). 

Natürliche Killer Zellen (NK-Zellen) sind auf die Elimination intrazellulärer Pathogene 

bzw. transformierter körpereigener Zellen spezialisiert. Über die Produktion von 

proinflammatorischen Zytokinen wird die Ausbildung einer Entzündungsreaktion 

hervorgerufen, wodurch weitere Abwehrzellen und Moleküle rekrutiert und aktiviert 

werden, die die Ausbreitung des schädigenden Agens eindämmen und dieses zu 

beseitigen helfen. Eine Vielzahl von Mikroorganismen wird so innerhalb von Minuten 

bis Stunden durch das angeborene Immunsystem erkannt und eliminiert. Die 

angeborene Immunität ist daher essentiell, kann jedoch durch zahlreiche Pathogene 

überwunden werden. In diesen Fällen ist die Aktivierung des adaptiven Immunsystems 

entscheidend. Über spezialisierte Zellen, sogenannte Antigen-präsentierende Zellen 

(APCs), ist das angeborene Immunsystem in der Lage das adaptive zu aktivieren und 

somit eine komplette Immunantwort zu induzieren.  

 

Das phylogenetisch jüngere, adaptive Immunsystem ist nur in Vertebraten entwickelt 

und umfasst B- und T-Lymphozyten. B-Lymphozyten sind auf die Erkennung 

extrazellulärer Antigene spezialisiert und können über die Produktion von Antikörpern 

diese Antigene im Extrazellularraum erreichen und spezifisch bekämpfen. Hingegen 

erkennen T-Lymphozyten vorwiegend intrazelluläre Antigene, bzw. Antigene, die zuvor 

von APCs aufgenommen und prozessiert wurden und an deren Oberfläche präsentiert 

werden. Die Effektormechanismen der T-Zellen richten sich entsprechend 

insbesondere gegen intrazelluläre Pathogene oder Tumorzellen.  

 

B- und T-Zellen erkennen Antigene hochspezifisch mittels Antigenrezeptoren. Jeder 

einzelne Lymphozyt exprimiert auf seiner Oberfläche identische Antigenrezeptoren mit 

einzigartiger Spezifität, wobei unterschiedliche Lymphozyten unterschiedliche 

Rezeptoren tragen. Ein einzelnes Antigen bindet daher nur an wenige B- und              

T-Lymphozyten. Diejenigen Lymphozyten, die das jeweilige Antigen erkennen, werden 

aktiviert und proliferieren. Dieser Prozess wird als klonale Selektion bezeichnet, da 

Nachkommen mit identischer Spezifität aus einem Lymphozyten hervorgehen. Dieser 

Mechanismus erlaubt die Generierung eines oft lebenslangen immunologischen 

Gedächtnisses, wodurch der Organismus bei Re-Exposition schneller und stärker 

reagieren kann. Da die adaptive Immunität sämtliche Ressourcen des Immunsystems 
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auf die Bekämpfung eines Antigens fokussiert ist die resultierende Immunantwort 

äußerst effizient. Allerdings benötigt die Proliferation der Lymphozyten und deren 

Differenzierung in Effektorzellen einige Tage. Zu Beginn einer Infektion bis zur 

Etablierung der adaptiven Immunität ist der Körper daher allein auf das angeborene 

Immunsystem angewiesen. Angeborene und adaptive Immunität ergänzen sich also, 

beeinflussen sich gegenseitig und bilden ein integratives gemeinsames Abwehrsystem.     

 

 

1.1.2 Erkennungsmechanismen des angeborenen und adaptiven 

Immunsystems 

 

Die Erkennungsmechanismen des adaptiven Immunsystems, die Antigenrezeptoren 

von B- und T-Lymphozyten, als B- und T-Zell-Rezeptoren bezeichnet, sind von 

einzigartiger Spezifität. Jeder Lymphozyt exprimiert hochspezifische, identische 

Antigenrezeptoren. Von Zelle zu Zelle sind diese Rezeptoren jedoch verschieden, so 

dass die Lymphozytenpopulation insgesamt ein Repertoire an 1014 - 1018 

unterschiedlichen Rezeptoren bereithält. Dadurch ist die Detektion fast jeden 

vorstellbaren Antigens gewährleistet. Wie ist es jedoch möglich aus der begrenzten 

Anzahl menschlicher Gene diese ungeheure Diversität zu generieren und jede einzelne 

Zelle mit einem einzigartigen Rezeptor auszustatten? Die Gene der variablen Region 

von B- und T-Zell-Rezeptor sind segmental im humanen Genom angelegt und werden 

im Laufe der Entwicklung eines jeden Lymphozyten durch somatische Rekombination 

zu einem funktionsfähigen Rezeptorgen neu geordnet. Da der Rekombinationsvorgang 

zufällig verläuft, entsteht das riesige Spektrum unterschiedlicher Rezeptormoleküle. 

Allerdings entstehen nach dem Zufallsprinzip viele Rezeptoren, die entweder nicht 

funktionsfähig sind, oder aber Selbstantigene erkennen. Damit nur Lymphozyten mit 

nützlichen Antigenrezeptoren entstehen und zugleich Autoimmunität verhindert wird, 

unterliegt der Rekombinationsvorgang einer strengen Positiv- und Negativselektion. 

Deshalb überlebt nur ein Bruchteil der Lymphozyten die somatische Rekombination. 

Da der Rekombinationsvorgang irreversibel ist, wird das jeweilige Antigenrezeptorgen 

eines Lymphozyten während der klonalen Selektion an seine Nachkommen 

weitergegeben.  

 

Demgegenüber ist das angeborene Immunsystem nicht wie ursprünglich angenommen 

komplett unspezifisch, sondern kann über eine limitierte Anzahl an Rezeptoren 

zwischen „selbst“ und „fremd“ unterscheiden. Wie kann jedoch ein begrenztes 

Rezeptor-Repertoire das immense Spektrum unterschiedlicher Pathogene erkennen?  
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Dies wird durch die Detektion bestimmter Muster, sogenannter pathogen-associated 

molecular patterns (PAMPs), über Pattern-recognition-Rezeptoren (PRRs) möglich 2. 

 

PAMPs sind: 

 

(1)  konserviert zwischen unterschiedlichen Klassen von Mikroorganismen, 

(2)  essentiell für das Überleben der Mikroben und Mutationen daher nur 

eingeschränkt möglich, 

(3) nicht auf körpereigenen Zellen exprimiert. 

 

Durch (1) und (2) ist das angeborene Immunsystem in der Lage über eine limitierte 

Zahl an PRRs eine Vielzahl an Mikroorganismen zu erkennen und (3) ermöglicht die 

Unterscheidung zwischen „selbst“ und „fremd“. 

 

Die Kombination unterschiedlicher PAMPs ist charakteristisch für einen bestimmten 

Typ an Mikroorganismen und führt über die Aktivierung verschiedener                    

PRR-Kombinationen nach Integration der unterschiedlichen Signale durch das 

adaptive Immunsystem zu einer passenden Immunantwort. 

 

 

1.2 Pattern-recognition-Rezeptoren 

  

Das spannende Feld der PRRs ist ein hochaktives Forschungsgebiet. In den letzen 

Jahren sind immer neue PRR-Familien entdeckt worden. Zu diesen gehören Toll-like-

Rezeptoren (TLRs), C-type-lectin-Rezeptoren (CLRs), sowie zytoplasmatische retinoid 

acid-inducible gene I (RIG-I)-like-Rezeptoren (RLRs) und nucleotide-binding 

oligomerization domain (NOD)-like-Rezeptoren (NLRs). 

 

Zu den gemeinsamen Eigenschaften dieser PRRs zählen:  

 

(1) Sie erkennen PAMPs. 

(2) Sie sind konstitutiv exprimiert. 

(3) Sie sind Keimbahn-kodiert und damit auf bzw. in allen Zellen eines bestimmten 

Typs exprimiert - im Gegensatz zu den Antigenrezeptoren des adaptiven 

Immunsystems 3. 
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Unterschiedliche PRRs detektieren spezifische PAMPs, zeigen unterschiedliche 

Expressionsmuster, aktivieren spezifische Signalwege und führen so zu bestimmten, 

differentiellen Immunantworten. Diese Erkennungsmechanismen des angeborenen 

Immunsystems sind phylogenetisch hochkonserviert - von Pflanzen über Fliegen bis 

zum Menschen. 

 

 

1.2.1 Toll-like-Rezeptoren 

1.2.1.1 Vom Toll-Rezeptor zu Toll-like-Rezeptoren 

 

In der Fruchtfliege Drosophila melanogaster entdeckte Hashimoto 1988 den ersten 

Rezeptor der TLR-Familie - Toll. Drosophila Toll, ein Transmembran-Rezeptor, war 

zunächst als bedeutend für die Ausbildung der dorso-ventralen Polarität in der 

Embryonalentwicklung der Fruchtfliege befunden worden 4. Später wurde 

herausgefunden, dass die intrazelluläre Domäne von Drosophila Toll große Ähnlichkeit 

mit dem zytoplasmatischen Anteil des Interleukin (IL)-1-Rezeptors in Säugetieren hat. 

Basierend auf dieser Übereinstimmung war vermutet worden, dass Drosophila Toll 

eine Rolle in der Immunantwort spielen könnte 5. Bestätigt wurde dies eindeutig durch 

Lemaitre, der 1996 an Toll-mutanten Fruchtfliegen zeigte, dass Drosophila Toll 

notwendig ist für die Induktion einer effektiven Immunantwort gegen Aspergillus 

fumigatus 6. Damit war gezeigt worden, dass das angeborene Immunsystem an der 

Erkennung von Pathogenen beteiligt ist. 

 

Bereits ein Jahr nach diesem bahnbrechenden Befund identifizierte Medzhitov über 

Datenbank-Analysen den ersten humanen TLR – hToll (heute als TLR4 bezeichnet). 

Es wurde gezeigt, dass humane, mit einem konstitutiv aktiven hToll-Rezeptor 

transfizierte Zelllinien, inflammatorische Gene exprimierten 7. Nachfolgende Studien 

identifizierten zahlreiche strukturell ähnliche Proteine. Bis heute sind zehn Mitglieder 

der TLR-Familie im Menschen (TLR1 bis TLR10) und zwölf murine TLRs (TLR1 bis 

TLR9 und TLR11 bis TLR13) bekannt. Intensive Forschungsbemühungen in den 

letzten Jahren haben neue Erkenntnisse über Struktur, Liganden, Expression und 

Signalwege von TLRs erbracht.  
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1.2.1.2 Strukturelle Komponenten von Toll-like-Rezeptoren 

 

Basis für die Identifikation der humanen TLR-Familie waren Gensequenzhomologien 

zu Drosophila Toll 8. Die Analyse der Desoxyribonukleinsäure (DNA)-Sequenzen 

zeigte, dass TLRs eine modulare Struktur besitzen. TLRs sind Typ 1 transmembrane 

Glykoproteine, bestehend aus einer extrazellulären liganden-bindenden Domäne, die 

über einen Transmembrananteil mit dem intrazellulären signalweiterleitenden 

Molekülabschnitt verbunden ist. Da die zytoplasmatische Domäne große Ähnlichkeit 

mit der des IL-1-Rezeptors (IL-1R) hat, wird diese als Toll/IL-1R (TIR)-Domäne 

bezeichnet 9. Im Gegensatz dazu unterscheiden sich die extrazellulären Anteile beider 

Rezeptoren erheblich. Während IL-1Rs eine Immunglobulin (Ig)-ähnliche Domäne 

tragen, sind TLRs durch leucin-rich repeats (LRR) in ihrem extrazellulären Anteil 

charakterisiert. LRR sind, wie der Name andeutet, durch Leucin-reiche Tandemmotive 

gekennzeichnet. 19 bis 25 dieser Motive sind jeweils hintereinander angeordnet, wobei 

jedes einzelne aus 24 bis 29 Aminosäuren besteht und die Aminosäuresequenz 

XLXXLXLXX enthält 3. Ein weiteres für die Ligandenbindung wichtiges 

Charakteristikum der TLR-Ektodomäne ist ihre Glykosilierung, wobei deren Ausmaß 

von TLR zu TLR variiert. So enthält TLR3 11 N-Glykosilierungen, die 35% der Masse 

des extrazellulären Anteils ausmachen 10. 

  

An die TLR-Ektodomäne schließt sich die hydrophobe Transmembransequenz aus 

etwa 22 Aminosäuren an, die wahrscheinlich eine α-Helix bildet 11. Auf der 

zytoplasmatischen Seite ist die Transmembransequenz mit der TIR-Domäne 

verbunden. 

 

Diese rund 150 Aminosäuren langen TIR-Domänen beinhalten drei konservierte 

Regionen, Box 1 bis 3 genannt. Box 2 enthält eine sogenannte BB-Schleife, die für die 

Signalweiterleitung entscheidend ist 12. Die TIR-Domäne ist nicht nur Bestandteil der 

TLRs, sondern auch von Adaptermolekülen. Ein Vergleich der Oberflächenladungen 

von TIR-Domänen zeigte erhebliche Unterschiede in der Ladungsverteilung 13. Diese 

Ladungsunterschiede sind vermutlich für die spezifische Interaktion verschiedener  

TIR-Domänen essentiell und deshalb für die Signaltransduktion über Adapter 

entscheidend.  
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1.2.1.3 Humane Toll-like-Rezeptoren und ihre Liganden 

 

Anhand ihrer Primärstruktur lassen sich TLRs in mehrere Subfamilien einteilen. TLRs 

innerhalb einer Subfamilie erkennen verwandte PAMPs. Die Subfamilie bestehend aus 

TLR1, TLR2 und TLR6 detektiert Lipide, während TLR7, TLR8 und TLR9 

Nukleinsäuren erkennen. Das Besondere an TLRs ist jedoch, dass einige Rezeptoren 

strukturell sehr unterschiedliche Liganden binden können. In ihrer Gesamtheit 

erkennen TLRs ein großes Spektrum chemischer Strukturen. Dadurch ist das 

angeborene Immunsystem in der Lage die Vielzahl der Mikroorganismen zu 

detektieren. 

 

TLR2, TLR1 und TLR6 

TLR2 detektiert Strukturen zahlreicher Mikroorganismen. Hierzu gehören unter 

anderem Peptidoglykan (PGN) und Lipoteichonsäure (LTA) von grampositiven 

Bakterien, Lipoarabinomannan von Mykobakterien, Glykosylphosphatidylinositol (GPI)-

Anker von Trypanosomen, Zymosan von Pilzen, sowie Lipoproteine von 

gramnegativen Bakterien, Mykoplasmen und Spirochäten 14. Wie TLR2 diese Vielzahl 

an Komponenten erkennen und unterscheiden kann, lässt sich zumindest teilweise 

über seine Assoziation mit TLR1 bzw. TLR6 erklären. Die Kooperation mit diesen 

beiden Rezeptoren ermöglicht die Differenzierung feiner Unterschiede im Lipidanteil 

von Lipoproteinen. Experimente an Knock-out (KO)-Mäusen zeigten, dass TLR1 für die 

Erkennung triacetylierter Lipopeptide notwendig ist, während TLR6 zur Detektion 

diacetylierte Lipopeptide essentiell ist 15-17. Entsprechend werden synthetische 

triacetylierte bakterielle Lipopeptide, wie Pam3CSK4, via TLR1 zusammen mit TLR2 

erkannt, synthetische diacetylierte mykoplasmale Lipopeptide, wie 

macrophage-activating lipopeptide 2 (MALP-2), hingegen durch TLR2 zusammen mit 

TLR6. 

 

TLR3 

Doppelsträngige Ribonukleinsäure (dsRNA) wird durch die meisten Viren während 

ihres Replikationsvorgangs intrazellulär gebildet. Polyinosin-Polycytidin-Säure        

(Poly I:C) ist ein synthetisches Analogon von dsRNA. TLR3-KO-Mäuse zeigten 

reduzierte Immunantworten gegenüber Poly I:C 18. Damit scheint TLR3 an der 

Erkennung von dsRNA beteiligt zu sein. Die Bedeutung von TLR3 für die antivirale 

Immunität bleibt jedoch bisher unaufgeklärt, da TLR3-KO-Mäuse gegenüber 

zahlreichen Viren nicht anfälliger sind 19, 20. Neben TLR3 sind zytoplasmatische 
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Rezeptorsysteme, wie Proteinkinase R und RLRs an der Detektion von dsRNA 

beteiligt. 

 

TLR4 

Längere Zeit war bekannt, dass ein bestimmter Mausstamm, C3H/HeJ Mäuse, 

verminderte Immunantworten gegenüber Lipopolysaccharid (LPS) zeigte. 1998 

identifizierte Poltorak eine Mutation im TLR4-Gen dieser Mäuse 21. Studien mit TLR4-

KO-Mäusen bestätigten die Notwendigkeit von TLR4 für die Erkennung von LPS 22. 

LPS ist ein Bestandteil der äußeren Membran gramnegativer Bakterien und Auslöser 

des Endotoxin-Schock. LPS ist ein komplexes Glykolipid, bestehend aus einem 

hydrophilen Polysaccharidanteil und einer hydrophoben Lipiddomäne, dem Lipid A 

(Endotoxin). Lipid A ist der einzige LPS-Bestandteil der durch das angeborene 

Immunsystem bzw. TLR4 erkannt wird. Für die Erkennung von LPS sind weitere 

Moleküle nötig. Im Blut wird LPS durch das LPS-bindende Protein (LBP) gebunden und 

dem Oberflächenmolekül cluster of differentiation (CD) 14 überbracht. CD14 assoziiert 

schließlich mit einem Komplex bestehend aus TLR4 und dem Co-Rezeptor MD2 14, 23. 

Neben LPS erkennt TLR4 weitere Strukturen inklusive Virusproteine 24, 25, Paclitaxel 26, 

27 und endogene Liganden, wie Hitzeschock-Proteine (HSPs) 28-31.  

 

TLR5 

Flagellin, monomerer Bestandteil bakterieller Fortbewegungsorganellen, sogenannter 

Flagellen, wird über TLR5 erkannt 32. 

 

TLR7, TLR8 

Synthetische Verbindungen der Imidazoquinolin-Familie waren die zuerst identifizierten 

TLR7-Liganden. Imiquimod (Aldara, R837) und Resiquimod (R848) haben antivirale 

und Anti-Tumor-Eigenschaften und werden klinisch zur Therapie viraler Erkrankungen 

und von Hauttumoren eingesetzt 33, 34. Hemmi zeigte 2002 anhand von TLR7-KO-

Mäusen, dass TLR7 diese synthetischen Verbindungen erkennt 35. Im Gegensatz zur 

Maus werden diese Imidazoquinoline im Menschen auch durch TLR8 erkannt. 

Loxoribine, ein Guanosin-Analogon mit Aktivität gegen Viren und Tumoren, ist ein 

weiterer TLR7-Ligand 36. Diese Verbindungen haben alle strukturelle Ähnlichkeit zu 

RNA. Daher war vorhergesagt worden, dass TLR7 und TLR8 Nukleinsäuren erkennen. 

In darauffolgenden Studien konnte gezeigt werden, dass TLR7 und humaner TLR8 

Guanosin- und Uridin-reiche virale einzelsträngige RNA (ssRNA) detektieren 37-39. 2005 

entdeckte Hornung, dass short interfering RNA (siRNA) sequenzabhängig via TLR7 

Interferon (IFN)α in plasmazytoiden dendritischen Zellen (PDCs) induziert.             
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RNA-Oligonukleotide, welche Sequenz-Motive für TLR7 und TLR8 enthalten, wurden 

folglich als immunstimulatorische RNA (isRNA) bezeichnet 40, 41. 

 

TLR9 

Cytosin-(phosphat)-Guanin-Dinukleotid (CpG)-Motive bakterieller und viraler DNA sind 

der natürliche Ligand von TLR9. TLR9-KO-Mäuse zeigen keine Antwort auf CpG-DNA 
42-44. Im Gegensatz zu Mikroorganismen enthält die DNA von Vertebraten nur wenige 

CpG-Motive und Cytosine sind darin weitgehend methyliert. 

 

TLR10 

TLR10 ist nah verwandt mit TLR1, TLR2 und TLR6. Der TLR10-Ligand ist jedoch 

bisher unbekannt. 
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TLRs Liganden Herkunft Referenz 

TLR1 plus 
TLR2 

Triacetylierte Lipopeptide 
(Pam3CSK4) Bakterien 17 

 OspA Borrelia burgdorferi 15 
 Porin Por B Neisseria meningitidis 45 
TLR2 plus 
TLR6 

Diacetylierte Lipopeptide 
(MALP-2) Mykoplasmen 16 

TLR2 Lipoproteine Zahlreiche Pathogene 46, 47 
 PGN Grampositive Bakterien 48 
 LTA Grampositive Bakterien 48 
 Lipoarabinomannan Mykobakterien 49 
 GPI-Anker  Trypanosomen 50 
 Glykolipide Treponema maltophilum 51 
 Zymosan Pilze 52 

 Phenol-lösliches Modulin 
Staphylococcus 
epidermidis 

53 

 Porine Neisseria meningitidis 45 

 Atypisches LPS 
Leptospira interrogans, 
Porphyromonas gingivalis 

54, 55 

 HSP70 Wirt 28 
 Hyaluronan Wirt 56 
 Hämagglutinin Masern-Virus 57 
TLR3 dsRNA Viren 18 
 Poly I:C Synthetisch 18 
TLR4 LPS Gramnegative Bakterien 21 

 Flavolipin 
Flavobacterium 
meningosepticum 

58 

 Paclitaxel Pflanzen 27 

 Protein F 
Respiratory syncytial virus 
(RSV) 

24 

 Hüllproteine 
Mouse mammary tumor 
virus 

25 

 HSP60 Chlamydia pneumoniae 59 
 HSP60, HSP70 Wirt 28, 29 
 αA-Kristallin und HSPB8 Wirt 60 
 Fibronektin Wirt 61 
 Hyaluronan Wirt 62 
 Heparansulfat Wirt 63 
 Fibrinogen Wirt 64 
TLR5 Flagellin Bakterien 32 

TLR7 
Guanosin-Analoga 
(Loxoribine) Synthetisch 36 

 Bropirimine Synthetisch 65 
TLR7, 
TLR8 

Imidazoquinoline (R837, 
R848) Synthetisch 35, 66 

 ssRNA Viren 37-39 
 isRNA Synthetisch 40, 41 

TLR9 unmethylierte CpG-DNA 
Bakterien, Viren, Pilze, 
Insekten 

42-44 

 Chromatin-IgG-Komplexe Wirt 67 
TLR10 Unbekannt Unbekannt  
 
Tabelle 1: Humane Toll-like-Rezeptoren und ihre Liganden 
Die in der vorliegenden Arbeit verwendeten Liganden sind hervorgehoben.    
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1.2.1.4 Differentielle Toll-like-Rezeptor-Expression humaner Immunzellen 

 

Immunzellen als auch Nicht-Immunzellen, wie Endothelzellen oder Fibroblasten, 

exprimieren TLRs. Besonders phagozytierende und Antigen-präsentierende Zellen, die 

eine Vielzahl an Fremdstoffen aufnehmen, exprimieren hohe Level zahlreicher TLRs. 

Die Expression der TLRs variiert jedoch sehr stark unter den einzelnen 

Zellpopulationen. Eine Zusammenfassung der für die vorliegende Arbeit relevanten 

differentiellen TLR-Expression findet sich in Tabelle 2.  

 

TLRs Monozyten mDCs 
In vitro-generierte 

DCs mittels 
GM-CSF plus IL4 

TLR1 ++ ++ ++ 
TLR2 ++ ++ ++ 
TLR3 - ++ ++ 
TLR4 ++ + 68 

- 69 
++ 

TLR5 ++ + + 70 
- 68, 71 

TLR6 ++ ++ ++ 
TLR7 +72, 73 

- 68-71, 74 
+72, 73 
- 68, 69 

- 

TLR8 ++ ++ ++ 
TLR9 - - - 
TLR10 - +  
Referenz  68-74 68, 69, 72, 73 68, 70, 71, 75 

 
Tabelle 2: Toll-like-Rezeptor-Expression humaner Immunzellen 
Myeloide dendritische Zelle (mDC); Granulozyten-Makrophagen koloniestimulierender 
Faktor (GM-CSF) 
 

 

Entscheidend ist, dass die TLR-Expression nicht statisch ist, sondern vielmehr durch 

Zytokine und Liganden rasch reguliert wird. So exprimieren Monozyten TLR1, TLR2, 

TLR4 und TLR5. Während sie jedoch in Gegenwart von GM-CSF und IL-4 in unreife 

DCs differenzieren, verlieren sie diese Rezeptoren zunehmend und exprimieren 

vermehrt TLR3 71. Typ-I-Interferon führt zu verstärkter Expression von TLR7 in 

humanen B-Zellen und fördert dadurch die Stimulation von B-Lymphozyten über  

TLR7-Liganden 76. Die Stimulation muriner Makrophagen mit LPS vermindert die 

Expression von TLR4 während die von TLR2 induziert wird 77, 78.  

 

Experimente mit Inhibitoren des endosomalen Weges, wie Chloroquin oder 

Bafilomycin, haben Unterschiede in der zellulären Lokalisation der TLRs offenbart. Für 

die Funktion von TLR3, TLR7, TLR8 und TLR9 ist die Ansäuerung von Endosomen 
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nötig. Eine Signaltransduktion findet über diese Rezeptoren daher nur in intrazellulären 

azidifizierten Kompartimenten, wie späten Endosomen und Lysosomen, statt. TLR1, 

TLR2, TLR4, TLR5, TLR6 hingegen sind an der Zelloberfläche exprimiert und bedürfen 

nicht der Endosomenreifung 36, 75, 79, 80. Die intrazelluläre Lokalisation von TLR3, TLR7, 

TLR8 und TLR9 könnte zwei Vorteile haben: (1) Die Erkennung körpereigener 

Nukleinsäuren wird verhindert und (2) der niedrige pH in diesen Kompartimenten 

fördert die Freisetzung von Nukleinsäuren aus Viruspartikeln bzw. Bakterien 40. 

 

 

1.2.1.5 Signaltransduktion durch Toll-like-Rezeptoren 

 

Die Bindung von Liganden an entsprechende TLRs führt vermutlich zur Dimerisierung 

der Rezeptoren. Es resultieren entweder Homodimere oder Heterodimere wie 

zwischen TLR1 und TLR2 bzw. TLR2 und TLR6. Auf der zytoplasmatischen Seite 

dimerisieren die TIR-Domänen beider Rezeptoren. Diese TIR-TIR-Struktur kann 

intrazelluläre Proteine, sogenannte Adaptermoleküle, die ebenfalls eine TIR-Domäne 

enthalten, rekrutieren und darüber Signale in die Zelle weiterleiten. Bisher wurden fünf 

TLR-Adapter identifiziert, myeloid differentiation factor 88 (MyD88), MyD88-adapter like 

(Mal), TIR domain-containing adapter inducing interferon-β (TRIF), TRIF-related 

adapter molecule (TRAM) und sterile α and HEAT-Armadillo motifs (SARMs). MyD88 

und TRIF sind nach heutiger Auffassung die signaltransduzierenden Adaptermoleküle. 

Deshalb werden die TLR-Signalwege in (1) MyD88-abhängig und (2) TRIF-abhängig 

eingeteilt. Mal und TRAM sind für die Rekrutierung von MyD88 bzw. TRIF durch 

bestimmte TLRs notwendig. SARMs dagegen hemmen die TRIF-abhängige 

Signalweiterleitung 12, 81, 82.  

 

Über zahlreiche Protein-Protein-Interaktionen führen TLRs zur Aktivierung von nuclear 

factor kappa B (NFκB), mitogen-activated protein kinases (MAPKs) und interferon 

regulatory factors (IRFs). Diese wiederum verändern die Genexpression der Zelle, 

wodurch Zytokine, Oberflächenmoleküle und Differenzierungswege reguliert werden. 

 

MyD88-abhängige Signalwege 

Nach TLR-Stimulation rekrutiert MyD88 die beiden IL-1R-assoziierten Kinasen   

(IRAK)-1 und IRAK-4. IRAK-4 induziert die Phosphorylierung von IRAK-1, woraufhin 

IRAK-1 vom Rezeptor dissoziiert und mit tumor necrosis factor (TNF) receptor-

associated factor 6 (TRAF6) einen Komplex bildet. Dieser führt zur Aktivierung zweier 

unterschiedlicher Signalwege. Einer aktiviert via MAPKs den Transkriptionsfaktor 
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activator protein-1 (AP-1), der andere aktiviert über den transforming growth factor-β 

(TGF-β)-activated kinase 1 (TAK1)/TAK1 binding protein (TAB)-Komplex den inhibitor 

of NFκB kinase (IKK)-Komplex. Der IKK-Komplex, bestehend aus IKKα, β und γ (auch 

NFκB essential modulator (NEMO) genannt), induziert wiederum die Phosphorylierung 

und Degradierung des inhibitor of NFκB (IκB). Daraufhin kann der Transkriptionsfaktor 

NFκB in den Zellkern wandern 12.  

 

Für den MyD88-abhängigen Signalweg von TLR2 und TLR4 ist Mal als 

„Brückenadapter“ zwischen Rezeptor und MyD88 nötig 83, 84. 

 

Bedeutend ist auch, dass der MyD88-abhängige Signalweg einige IRFs aktiviert. In 

PDCs führt die Stimulation von TLR7 oder TLR9 zur Aktivierung von IRF7. MyD88, 

IRAK-1, IRAK-4 und TRAF6 assoziieren direkt mit IRF7 85-89. Daraufhin wandert IRF7 in 

den Zellkern, bindet an IFN-stimulated response element (ISRE)-Motive und induziert 

die Typ-I-Interferon-Produktion. In der Signalweiterleitung von TLR4 und TLR9 bildet 

IRF5 einen Komplex mit MyD88 und TRAF6 90. Nach Translokation in den Kern bindet 

IRF5 an ISREs von Zytokin-Genen und induziert die Produktion von IL-6, IL-12 und 

TNF. In mDCs wurde schließlich gezeigt, dass MyD88 mit IRF1 assoziiert 91. 

 

TRIF-abhängige Signalwege 

Bei der Stimulation mit LPS in MyD88-defizienten Makrophagen wurde eine 

verzögerte, jedoch nicht fehlende, Aktivierung von NFκB beobachtet 92. Dies führte zur 

Identifizierung des MyD88-unabhängigen bzw. TRIF-abhängigen Signalweges. Nur 

TLR3 und TLR4 können diesen aktivieren und über IRF3 die Produktion von           

Typ-I-Interferon induzieren. TRIF bildet einen Komplex mit TRAF-family-member-

associated NFκB activator-binding kinase1 (TBK1), IKKε und IRF3 93. Dies führt zur 

Phosphorylierung und Aktivierung von IRF3 94. Auch IRF7 wird durch TBK1 und IKKε 

durch Phosphorylierung aktiviert 86, 88. Im Signalweg von TLR3 kann IRF5 ebenfalls 

über TRIF aktiviert werden 90. Daneben interagiert TRIF mit dem receptor-interacting 

protein 1 (RIP-1). Dies induziert TRIF-abhängig NFκB 95. 

 

Während TRIF direkt an TLR3 bindet, braucht TLR4 für seine Assoziation mit TRIF 

TRAM als „Brückenadapter“ 96-98.   
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Abbildung 1: Signaltransduktion durch Toll-like-Rezeptoren 
Eine ausführliche Beschreibung findet sich im fortlaufenden Text. In Kürze, TLRs rekrutieren 
über ihre TIR-Domäne die Adapterproteine MyD88 und/oder TRIF. MyD88 induziert über die 
Assoziation mit IRAK1 und IRAK4 die Aktivierung der Transkriptionsfaktoren NFκB, AP-1, IRF5 
und IRF7. Daneben kann MyD88 mit IRF1 assoziieren. TRIF aktiviert über einen Komplex mit 
IKKε und TBK1 IRF3 und IRF7. TLR3 kann via TRIF auch IRF5 aktivieren. Über die Assoziation 
mit RIP-1 kann NFκB TRIF-abhängig induziert werden (modifiziert nach 12).  
 

 

1.2.2 Nucleotide-binding-oligomerization-domain-Proteine 

 

Zahlreiche Mikroorganismen dringen ins Zytoplasma ein und entkommen der Detektion 

durch TLRs. Intrazelluläre Rezeptorsysteme, wie NLRs und RLRs ermöglichen jedoch 

deren Erkennung. Mitglieder der RLR-Familie sind RIG-I und melanoma differentiation-

associated gene 5 (Mda-5). Diese erkennen virale RNA im Zytoplasma und induzieren 

die Produktion von Typ-I-Interferon 3. 5´-triphosphat RNA wurde als Ligand von RIG-I 

identifiziert 99, während Mda-5 Poly I:C bindet 100. Der natürliche Ligand von Mda-5 

bleibt jedoch weiterhin unbekannt.  

 

NLRs sind eine Familie aus über 20 Proteinen, deren gemeinsames Charakteristikum 

eine dreigeteilte Domänenstruktur ist. Sie bestehen aus einer Liganden-bindenden     

C-terminalen LRR-Domäne, einer zentralen NOD, die die Selbst-Oligomerisation 
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ermöglicht, sowie einer N-terminalen Protein-Protein-Interaktions-Domäne, wie 

caspase-recruitment domains (CARDs) oder Pyrin-Domänen 101.  

 

Die ursprünglich identifizierten Mitglieder der NLR-Familie sind die NOD-Proteine 

NOD1 und NOD2. Diese beiden NLRs erkennen bakterielle Moleküle, die bei Synthese 

oder Abbau von Peptidoglykan entstehen. NOD1 detektiert γ-D-Glutamyl-meso-

Diaminopimelinsäure (iE-DAP) 102, 103, das hauptsächlich von gramnegativen Bakterien 

produziert wird, jedoch nur von wenigen grampositiven. NOD2 detektiert 

Muramyldipeptid (MDP), das im Gegensatz zu iE-DAP PGN-Bestandteil fast aller 

Bakterien ist 104, 105. Es wird vermutet, dass die LRRs des C-Terminus auf die NOD 

zurückfalten und so deren Oligomerisation verhindern. Die Bindung eines Liganden an 

die LRRs ermöglicht über eine Konformationsänderung des Moleküls dessen Selbst-

Oligomerisation. Dies wiederum induziert über CARD-CARD-Interaktionen die 

Rekrutierung der receptor-interacting serine/threonine kinase, die am C-Terminus eine 

CARD-Domäne trägt. Dies mündet schließlich in der Aktivierung von NFκB und des 

MAPK-Signalweges 101, 106. NOD1 und NOD2 werden durch die Gene CARD4 bzw. 

CARD15 codiert und hauptsächlich durch Epithelzellen und APCs exprimiert. 

Makrophagen und DCs exprimieren beide NLRs, nicht jedoch B-Lymphozyten 107-109. 

 

Die Bedeutung von NOD1 und NOD2 im angeborenen Immunsystem wird dadurch 

verdeutlicht, dass Mutationen in diesen Proteinen mit dem Auftreten von 

inflammatorischen Erkrankungen und Infektionen assoziiert sind. So besteht eine 

Assoziation von NOD1-Polymorphismen mit atopischem Ekzem und Asthma 110. 

Mutationen des NOD2-Gens wurden als Risikofaktoren für die Entwicklung von Morbus 

Crohn identifiziert 111, 112. Für die Immunabwehr von Helicobacter pylori scheint NOD1 

wichtig zu sein, da Helicobacter pylori NOD1 aktiviert und NOD1-defiziente Mäuse eine 

höhere bakterielle Last zeigen 113. In NOD2-defizienten Mäusen hingegen kommt es 

nach oraler Infektion mit Listeria monocytogenes zu einem vermehrten 

Bakterienwachstum 114.  
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1.3 Effektormechanismen des angeborenen Immunsystems 

1.3.1 Monozyten 

 

Monozyten sind Bestandteil des mononukleären Phagozytensystems 115, das für die 

unspezifische Abwehr von Pathogenen und zur Tumorkontrolle von eminenter 

Bedeutung ist und welches über die Expression von Oberflächenmolekülen und 

Zytokinen immunregulatorische Funktionen ausübt. Der Begriff „Monozyten“ lässt eine 

homogene Zellpopulation mit einheitlichen funktionellen Charakteristika vermuten. 

Neuere Forschungsergebnisse zeigen jedoch, dass humane Monozyten vielmehr aus 

mehreren Subpopulationen bestehen, die sich in Morphologie und Funktion 

unterscheiden. Eine allgemeine Definition des Monozyten muss sich daher auf 

grundlegende gemeinsame Merkmale beziehen. Randolph und Kollegen haben 

kürzlich Monozyten definiert als: 

 

(1)  mononukleäre Zellen im Blut, mit  

(2) der Fähigkeit zur Phagozytose und  

(3) der Neigung in Makrophagen zu differenzieren - zumindest unter bestimmten 

Bedingungen 116.  

 

Im menschlichen Blut sind einige Zelltypen identifiziert worden, häufig als zirkulierende 

dendritische Zellen bezeichnet, welche ein oder zwei der ersten beiden 

Definitionsmerkmale erfüllen, nicht jedoch das dritte 117, 118.  

 

Monozyten entwickeln sich im Knochenmark aus CD34+ myeloiden Vorläuferzellen, 

gelangen anschließend ins Blut, wo sie für einige Tage zirkulieren, bevor sie in 

verschiedene Gewebe eindringen und in Makrophagen oder dendritische Zellen 

differenzieren. Etwa 5 bis 10% der peripheren Leukozyten im menschlichen Blut sind 

Monozyten 119.   

 

Vor fast 30 Jahren wurde gezeigt, dass Monozyten im peripheren Blut keine homogene 

Zellpopulation sind. Sie unterscheiden sich unter anderem in Größe, Granularität und 

Kernmorphologie. Zunächst wurden unterschiedliche Subtypen anhand von Größe und 

Dichte unterschieden. Die meisten Autoren unterschieden dabei zwei Populationen. So 

definierte Akiyama eine Hauptpopulation sogenannter „regulärer Monozyten“ und eine 

kleinere Population von „intermediären Monozyten“120, 121. Die „regulären Monozyten“ 

waren größer, zeigten stärkere Peroxidase-Aktivität, höhere akzessorische Aktivität in 
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mitogeninduzierter T-Zell-Proliferation und höhere antikörperabhängige zellvermittelte 

Zytotoxizität als „intermediäre Monozyten“.  

 

In neueren Studien basiert die Definition der Monozyten-Subtypen auf ihrer 

unterschiedlichen Expression von Oberflächenmarkern. In allen bisherigen Studien 

können humane Monozyten anhand von CD14 auf ihrer Oberfläche identifiziert 

werden. Allerdings variiert die Stärke der CD14-Expression. Neben stark              

CD14-positiven Monozyten (CD14++CD16- Monozyten) identifizierte Ziegler-Heitbrock 

1988 eine weitere Monozytenpopulation, die CD14 schwächer exprimiert und 

gleichzeitig CD16-positiv ist (CD14+CD16+ Monozyten) 122. Es stellte sich heraus, dass 

die zunächst beschriebenen größeren „regulären Monozyten“ mit den CD14++CD16- 

Monozyten übereinstimmen 123.  

 

Rund 90 bis 95% der Monozyten eines gesunden Erwachsenen sind CD14++CD16-, 

während nur etwa 5 bis 10% CD14+CD16+ sind. In folgenden Studien wurde gezeigt, 

dass sich diese beiden Subpopulationen auch in anderen Oberflächenmolekülen 

unterscheiden. CD14+CD16+ Monozyten exprimierten stärker humanes 

Leukozytenantigen (HLA)-DR und CD32 und es wurde vermutet, dass diese 

Monozyten reifen Makrophagen im Gewebe ähneln 124, 125. 

 

Es ist bis heute nicht eindeutig geklärt, ob diese Subpopulationen unterschiedlichen 

Stadien eines Entwicklungsweges oder unterschiedlichen Differenzierungswegen eines 

gemeinsamen Vorläufers entsprechen. In vitro-Experimente zeigten, dass sich humane 

CD14lowCD16+ Makrophagen aus CD14++ Monozyten entwickeln können 124. Dies 

indiziert, dass die CD14+CD16+ Monozyten ein fortgeschritteneres 

Entwicklungsstadium darstellen als die CD14++CD16-. 

 

Relevant ist die oben beschriebene Einteilung anhand von Oberflächenmarkern, da sie 

funktionelle Unterschiede der Monozyten widerspiegelt. Monozyten tragen nicht nur 

durch Ihre Funktion als Phagozyten zur Immunantwort bei, sondern auch durch die 

Produktion von Zytokinen, ihre Fähigkeit zur Antigen-Präsentation und ihre 

Differenzierung in Makrophagen oder dendritische Zellen. 

 

Die Zytokin-Produktion nach TLR-Stimulation ist eine der herausragenden 

Charakteristika von Monozyten. LPS-Stimulation induzierte in CD14++CD16- und 

CD14+CD16+ Monozyten die messenger RNA (mRNA) von TNF. Im Gegensatz dazu 

war IL-10-mRNA in CD14+CD16+ Monozyten gering bis nicht nachweisbar 126. Später 
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wurde mittels intrazellulärer Zytokinfärbung gezeigt, dass CD14+CD16+ Monozyten 

nach Stimulation mit LPS und Pam3Cys größere Mengen an TNF-Protein enthielten 
127. Diese hohen Level an proinflammatorischem TNF und niedrigen Level an 

antiinflammatorischem IL-10 führten zur Bezeichnung der CD14+CD16+ Subpopulation 

als proinflammatorische Monozyten. Nach in vitro-Stimulation humaner Monozyten 

mittels Tumorzellen wurde ein ähnliches Zytokinmuster wie nach LPS-Stimulation 

beobachtet. CD14+CD16+ Monozyten produzierten mehr TNF und IL-12 und weniger 

IL-10 im Vergleich zu CD14++CD16- Monozyten 128. Zusammenfassend, basierend auf 

ihrer Zytokin-Produktion können CD14+CD16+ als proinflammatorische Monozyten 

bezeichnet werden.  

 

Nach einigen Tagen in der Blutzirkulation wandern Monozyten ins Gewebe und 

differenzieren abhängig vom Zytokinmilieu in Makrophagen oder dendritische Zellen. 

Ebert und Florey beobachteten bereits 1939, dass Monozyten aus Blutgefäßen 

auswandern und sich im Gewebe in Makrophagen umwandeln.  

 

In einem in vitro-Modell zur transendothelialen Migration, in dem peripheral blood 

mononuclear cells (PBMCs) mit einer auf einer Kollagenmatrix gewachsenen Schicht 

aus humanen Endothelzellen inkubiert wurden, zeigten Randolph und Kollegen, dass 

Monozyten in vitro-Endothelzellbarrieren überschreiten können und entweder in 

Makrophagen, die in der subendothelialen Matrix bleiben, oder in dendritische Zellen, 

die über die Endothelzellschicht zurückwandern, differenzieren können 129. In diesem 

Modell entwickelten sich CD14+CD16+ Monozyten eher in dendritische Zellen als 

CD14++CD16- Monozyten 130. Entscheidend ist, dass der Anteil der Monozyten, der sich 

in Makrophagen oder dendritische Zellen entwickelt vom Zellsubtyp und vom 

Zytokinmilieu abhängt. In Gegenwart von GM-CSF und IL-4 können beide Monozyten-

Subpopulationen in dendritische Zellen differenzieren 131, 132. In einer in vivo-Studie in 

der Maus beobachtete Varol, dass Monozyten Vorläufer für dendritische Zellen in der 

intestinalen Lamina propria und der Lunge sein können, nicht jedoch für CD11chi DCs 

in der Milz 133. Mehrere neuere Studien stimmen darin überein, dass Monozyten im 

Regelfall nicht als Vorläufer von CD11chi DCs in der Milz dienen 133-135. Der Ursprung 

von DCs in nicht-lymphatischen Geweben und der Milz scheint demnach nicht 

übereinzustimmen und Monozyten scheinen nur die Quelle bestimmter                     

DC-Populationen in peripheren Geweben zu sein.  

 

Zusammengefasst, die Markierung für CD14 und CD16 ermöglicht die Differenzierung 

humaner Monozyten-Subpopulationen in CD14++CD16- und CD14+CD16+ Monozyten. 



 20 

Diese Unterscheidung hat funktionelle Relevanz und muss daher in Analysen der 

Monozyten-Funktion beachtet werden. 

 

 

1.3.2 Dendritische Zellen 

 

Für die Funktion des Immunsystems sind zwei Aufgaben entscheidend: (1) die 

Erkennung einer Vielzahl unterschiedlicher Strukturen und (2) die Generierung 

zahlreicher verschiedener, jeweils geeigneter Antworten. Dendritische Zellen sind 

zentral für beides, sie erkennen ein großes Spektrum an Antigenen und kontrollieren 

Mechanismen des angeborenen und adaptiven Immunsystems. 

 

Treibende Kraft für die Entdeckung der dendritischen Zelle 1972 durch Steinman und 

Cohn war die Frage nach den Voraussetzungen für die Immunogenität eines Antigens, 

d. h. die Fähigkeit zur Auslösung von Immunität durch dieses Antigen 136. Neben 

Antigen und Lymphozyten sind akzessorische Zellen notwendig. Bei der Untersuchung 

dieser akzessorischen Zellen entdeckte Steinman im Phasen-Kontrast-Mikroskop 

ungewöhnliche Zellen, die zuvor noch nicht gesehen worden waren. Diese Zellen 

hatten eine auffällige sternartige Form und fuhren ihre Fortsätze bzw. Dendriten 

kontinuierlich aus und ein. Kein anderer Leukozyt bewegte sich auf diese Weise. Ihnen 

fehlten andere wichtige Charakteristika von Makrophagen und Lymphozyten. Diese 

Zellen wurden aufgrund ihres verzweigten Erscheinungsbildes dendritische Zellen 

getauft, abgeleitet vom griechischen Wort „dendron“ für „baumartig“ 137.   

 

Dendritische Zellen entwickeln sich aus hämatopoetischen Stammzellen im 

Knochenmark. Der Großteil der dendritischen Zellen im Körper entwickelt sich aus 

einer gemeinsamen myeloiden Vorläuferzelle. In den 1990ern wurde es möglich DCs 

aus Vorläuferzellen in vitro zu generieren 131, 138-141. Damit wurde die zuvor nur 

mühselig zu isolierende Zellpopulation weiteren morphologischen und funktionellen 

Charakterisierungen leichter zugänglich.  

 

DCs spielen eine Schlüsselrolle in der Initiierung und Regulation der adaptiven 

Immunantwort. Sie sind effiziente Stimulatoren von B- und T-Lymphozyten. B-Zellen 

sind in der Lage mittels ihres B-Zell-Rezeptors direkt native Antigene zu erkennen.     

T-Zellen hingegen bedürfen der Prozessierung und Präsentation des Antigens durch 

APCs. Die Generierung einer T-Zell-Immunität hat einige Herausforderungen zu 

überwinden. (1) Die Frequenz antigenspezifischer T-Lymphozyten ist äußerst niedrig, 
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(2) die Menge spezifischer Antigen-MHC-Komplexe auf Tumoren und infizierten Zellen 

ist gering und (3) Tumoren und infizierten Zellen fehlen co-stimulatorische Moleküle, 

die für die T-Zell-Aktivierung notwendig sind. Diese Hürden werden durch DCs 

überwunden. Lokalisiert in den meisten Geweben, nehmen sie Antigen auf, 

prozessieren dieses und präsentieren große Mengen an Antigen-MHC-Komplexen auf 

ihrer Oberfläche. Während sie aus den Geweben in periphere lymphatische Organe, 

Lymphknoten und Milz, wandern, regulieren sie co-stimulatorische Moleküle an ihrer 

Zelloberfläche herauf. In den peripheren lymphatischen Organen treten sie in Kontakt 

zu antigenspezifischen T-Zellen und aktivieren diese. Diese DC-Aktivitäten können 

durch infektiöse Substanzen und inflammatorische Produkte induziert werden. DCs 

sind demnach mobile Sensoren von Gefahrensignalen und transportieren Antigene in 

lymphatisches Gewebe zur Aktivierung des adaptiven Immunsystems 142.  

 

Nach ihrer Aktivierung durchlaufen DCs eine Metamorphose, von einem unreifen 

Stadium der Antigen-aufnehmenden DC zum reifen Stadium der Antigen-

präsentierenden DC. Unreife DCs befinden sich in den meisten Geweben. Diesen DCs 

fehlen zwar die zur T-Zell-Aktivierung nötigen akzessorischen Signale, wie CD40, 

CD54 und CD86, dafür sind sie jedoch bestens zur Antigenaufnahme befähigt. Die 

Aktivierung und nachfolgende Reifung kann durch mikrobielle Bestandteile, 

Substanzen nekrotischer Zellen, sowie durch Zellen und Moleküle des angeborenen 

und adaptiven Immunsystems ausgelöst werden. Unreife DCs entschlüsseln und 

integrieren diese Signale und überbringen die Information den Zellen des adaptiven 

Immunsystems.  

 

Mikrobielle Bestandteile können DCs direkt über PRRs aktivieren, oder indirekt über 

die Freisetzung endogener Aktivierungsmoleküle, sogenannter danger-associated 

molecular patterns (DAMPs), aus nekrotischen Zellen. Unterschiedliche 

Mikroorganismen enthalten spezifische Kombinationen an PAMPs, die über 

verschiedene PRR-Kombinationen unterschiedlicher DC-Populationen erkannt werden 

und differentielle Signalwege aktivieren. Dadurch induzieren verschiedene 

Mikroorganismen unterschiedliche Reifungsprozesse dendritischer Zellen und folglich 

differentielle Immunantworten.  

 

Mikroorganismen induzieren die Produktion von Zytokinen in einem weiten Spektrum 

an Zellen, wie Epithelzellen, Fibroblasten, sowie Zellen des angeborenen 

Immunsystems. So produzieren Keratinozyten IL-15 und GM-CSF 143, Neutrophile und 

Makrophagen IL-1, IL-6 und TNF, Mastzellen GM-CSF, IL-4 und TNF 144, 145, sowie 
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PDCs Typ-I-Interferon 146. Diese Faktoren stimulieren unreife DCs und deren Vorläufer 

und bewirken die Entwicklung reifer dendritischer Zellen mit unterschiedlichen 

Phänotypen. So führen zum Beispiel TNF oder IL-15 zur Differenzierung in TNF-DCs 
147 bzw. IL-15-DCs 148, 149 und Typ-I-Interferon zu IFN-DCs 150-153. Diese verschiedenen 

DCs induzieren wiederum unterschiedliche T-Zell-Antworten. Über die Modulation 

dendritischer Zellen kontrolliert also das angeborene Immunsystem das adaptive. 

Damit sind DCs die Schlüsselzellen zwischen angeborener und adaptiver Immunität 

und über die Integration sämtlicher Signale zentrale Steuerstelle der Immunantwort. 

DCs werden nicht nur durch Zellen und Moleküle des angeborenen Immunsystems 

aktiviert, sondern wirken auch auf dieses zurück. So findet eine bidirektionale 

Interaktion zwischen DCs einerseits und NK-, natürlichen Killer-T-Zellen (NKT-Zellen) 

und γδ-T-Zellen andererseits statt.  

 

NK-Zellen vermögen virale Proteine, wie das Hämagglutinin des Influenza Virus, über 

ihren NKp46-Rezeptor zu erkennen. Erst kürzlich wurde jedoch eine Studie 

veröffentlicht, die zeigte, dass die Aktivierung muriner NK-Zellen der Interaktion mit 

DCs in sekundären lymphatischen Organen bedurfte. Die Trans-Präsentation von IL-15 

durch DCs war notwendige Vorraussetzung für die NK-Zell-Aktivierung 154. Im 

Gegenzug erhöhten NK-Zellen ihre IFNγ Produktion 155-157, welches wiederum in DCs 

die Synthese von Zytokinen, wie IL-12, förderte und so die Induktion einer T-Helfer 

(TH)-1-Immunantwort verstärkte 158. DCs können die Sekretion von IFNγ auch in   

NKT- und γδ-T-Zellen induzieren 159-163. Als Gegenleistung exprimieren NKT-Zellen 

CD40-Ligand (CD40L), welcher wiederum DCs aktiviert 164. 

 

Nach Antigenaufnahme und Aktivierung wandern DCs in drainierende lymphatische 

Organe und differenzieren zu reifen DCs. Dort sezernieren sie Chemokine, welche 

Lymphozyten anlocken. Über Oberflächenmoleküle und Zytokine interagieren sie mit 

B- und T-Zellen.  

 

Wie bereits weiter oben beschrieben, sind DCs die potentesten APCs des 

Immunsystems zur primären Aktivierung naiver T-Lymphozyten 165. Co-stimulatorische 

Moleküle, insbesondere der B7-Familie, sind für die Regulation von T-Zell-Immunität 

und -Toleranz durch DCs entscheidend. Zu dieser Molekülfamilie zählen auch CD80 

(B7-1) und CD86 (B7-2), die häufig als „Reifungsmarker“ dendritischer Zellen 

verwendet werden 142. Die verstärkte Expression dieser beiden Oberflächenmoleküle 

alleine scheint jedoch nicht in jedem Fall ausreichend für die Induktion einer T-Zell-

Immunität zu sein, wie Experimente mit RSV-infizierten DCs zeigten 166.  
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Es wird vermutet, dass unreife, nicht aktivierte DCs kontinuierlich Selbst-Antigene in 

Abwesenheit co-stimulatorischer Moleküle auf ihrer Oberfläche präsentieren. 

Autoreaktive T-Zellen, die diese Selbstantigene ohne gleichzeitige Co-Stimulation 

erkennen, werden nicht aktiviert, sondern vielmehr anerg oder deletiert. DCs tragen 

folglich maßgeblich zur peripheren Toleranz des Immunsystems bei und können 

Autoimmunität verhindern 167. 

 

Die Interaktion dendritischer Zellen mit T-Lymphozyten wurde eingehend untersucht, 

relativ wenige Studien dagegen haben bisher die Wechselwirkung von DCs und         

B-Zellen analysiert. DCs exprimieren auf ihrer Zelloberfläche B cell-activating factor 

belonging to the TNF family, der mit seinen entsprechenden Rezeptoren auf der         

B-Zelle interagiert 168, 169. Die Stimulation dieser Rezeptoren fördert Überleben und 

Differenzierung des B-Lymphozyten 170.  

 

DCs sind Quelle hochpotenter Zytokine, wie Typ-I-Interferon, IL-12 und IL-15. Das 

Repertoire der produzierten Zytokine variiert jedoch sehr stark zwischen den 

unterschiedlichen DC-Subpopulationen. Ebenso wie Monozyten sind DCs nicht eine 

homogene Zellpopulation, sondern können nach Morphologie und Funktion in 

verschiedene Subtypen unterteilt werden. Unreife DCs im menschlichen Blut sind 

Lineage-negative (CD3-CD14-CD19-CD56-) HLA-DR+ mononukleäre Zellen und werden 

nach ihrer Anfärbbarkeit mit Antikörpern gegen CD123 und CD11c traditionell in zwei 

Hauptgruppen eingeteilt: CD11c-CD123+ PDCs und CD11c+CD123- mDCs 171. Wie 

bereits oben beschrieben exprimieren PDCs und mDCs unterschiedliche PRRs und 

sind daher vermutlich auf die Erkennung verschiedener Pathogene spezialisiert 68, 69, 74. 

 

 

Plasmazytoide dendritische Zellen 

PDCs haben morphologische Ähnlichkeit mit Antikörper-produzierenden Plasmazellen, 

daher der Name „plasmazytoid“. Sie wurden hauptsächlich in Blut und lymphatischen 

Organen gefunden und sind essentiell für die antivirale Immunität. PDCs sind die 

Hauptproduzenten von IFNα im menschlichen Körper. Exposition gegenüber Viren und 

deren Bestandteile induziert die Sekretion großer Mengen an Typ-I-Interferon, ebenso 

wie anderer Zytokine 146, 172. Nach ihrer Aktivierung differenzieren PDCs in reife DCs 

und sind zur Antigen-Präsentation fähig 173, 174. Die Migration in periphere lymphatische 

Organe unterscheidet sich zwischen PDCs und mDCs. PDCs scheinen aus dem Blut 

über spezielle Gefäße, hochendotheliale Venolen, wie Lymphozyten direkt in 
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Lymphknoten zu wandern 175, während mDCs zunächst in entzündetes Gewebe 

eindringen und von dort über afferente lymphatische Gefäße in sekundäre 

lymphatische Organe wandern 176. 

 

 

Myeloide dendritische Zellen 

mDCs können im Körper in mindestens drei Lokalisationen gefunden werden:            

(1) ansässig in peripheren Geweben, (2) ansässig in peripheren lymphatischen 

Organen und (3) zirkulierend im Blut. In der Haut können zwei unterschiedliche mDC-

Typen in zwei verschiedenen Schichten unterschieden werden. Langerhans-Zellen 

befinden sich in der Epidermis, interstitielle DCs hingegen in der Dermis und 

Submukosa 177. Langerhans-Zellen, erstmals 1868 in der Haut visualisiert, sind 

gekennzeichnet durch CD1a, Langerin, E-Cadherin und typische intrazelluläre 

Strukturen, sogenannte Birbeck-Granula. Dadurch lassen sie sich von anderen mDCs 

abgrenzen.  

 

Die meisten Studien an humanen mDCs wurden nicht mit direkt aus den 

verschiedenen Geweben isolierten DCs, sondern mit in vitro-generierten DCs 

durchgeführt. CD34+ hämatopoetische Stammzellen differenzieren in Gegenwart von 

GM-CSF und TNF in CD1a+CD14- Langerhans-Zellen und CD1a-CD14+ interstitielle 

DCs 178. Auch aus CD14+ Monozyten 141 oder CD1a+CD11c+ Vorläuferzellen des 

peripheren Blutes 179 lassen sich nach Zugabe bestimmter Zytokine mDCs generieren. 

Inwieweit die Funktionen dieser Zellen mit denen primärer Zellen übereinstimmen und 

sich in den menschlichen Organismus übertragen lassen ist nicht abschließend geklärt.  

Während PDCs nach Aktivierung Typ-I-Interferon produzieren, sezernieren mDCs 

größere Mengen IL-12, welches schließlich die Differenzierung von CD4+ T-Zellen in 

IFNγ-produzierende TH1-Zellen fördert 180, 181. Aktivierte T-Zellen exprimieren CD40L, 

welches wiederum die Sekretion von IL-12 in einer positiven Feedback-Schleife 

verstärkt 182.  

 

Aufgrund ihrer einzigartigen immunmodulatorischen Eigenschaften und der Möglichkeit 

DCs in großer Zahl in vitro zu generieren, sind DCs Gegenstand zahlreicher Studien 

zur Entwicklung präventiver und therapeutischer Impfungen gegen 

Infektionskrankheiten und Tumoren 183. Dendritische Zellen dienen hier als „natürliches 

Adjuvanz“ zur Regulation und Verstärkung der Immunantwort 184. 
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1.3.3 Interleukin-12 

 

1989 identifizierte Kobayashi als erster Interleukin-12 und bezeichnete es aufgrund 

seiner Fähigkeit zur NK-Zell-Stimulation als „NK cell stimulatory factor“ 185. Unabhängig 

davon entdeckte Stern 1990 ein Zytokin, das zytotoxische T-Zellen beeinflusste und 

nannte es folglich „cytotoxic lymphocyte maturation factor“ 186. Es stellte sich heraus, 

dass beide Moleküle identisch waren. Seither werden sie Interleukin-12 genannt.  

 

Bereits durch diese beiden Arbeiten wurde gezeigt, dass IL-12 ein zentraler Regulator 

des angeborenen und adaptiven Immunsystems ist. Es aktiviert Zellen der 

angeborenen Immunität und ist Schlüsselzytokin für die Induktion der zellvermittelten 

TH1-Immunantwort 181, 187, 188. Diese ist gekennzeichnet durch die Produktion von IFNγ 

und ist gegen intrazelluläre Antigene gerichtet. Damit ist IL-12 für die Bekämpfung 

intrazellulärer Pathogene und Tumoren entscheidend. Als potentes 

proinflammatorisches Zytokin ist IL-12 zwar einerseits essentiell für die Immunabwehr, 

andererseits jedoch auch zentral für die Entstehung von Autoimmunerkrankungen. 

Daher unterliegt die Produktion von IL-12 einer äußerst strengen Kontrolle.  

 

 

1.3.3.1 Struktur von Interleukin-12 

 

IL-12 ist ein heterodimeres Zytokin bestehend aus zwei entsprechend ihrem 

Molekulargewicht bezeichneten Untereinheiten, p35 und p40, die über eine Disulfid-

Brücke miteinander verbunden sind. Beide bilden zusammen das biologisch aktive    

IL-12p70 Heterodimer 185. Zwischen beiden Untereinheiten besteht keine Sequenz-

Homologie, jedoch ist die 35 kDa Untereinheit homolog zu IL-6 und Granulozyten 

koloniestimulierendem Faktor (G-CSF) und hat eine α-Helix-Struktur wie viele andere 

Zytokine. Im Gegensatz dazu ist p40 nicht anderen Zytokinen ähnlich, sondern ist 

homolog zur extrazellulären Domäne der Hämatopoetin-Rezeptor-Familie. Am meisten 

ähnelt p40 dem ciliary neurotropic factor receptor und der IL-6-Rezeptor-α Untereinheit. 

Das Heterodimer IL-12p70 hat also Ähnlichkeit mit einem Zytokin, das kovalent an 

seinen extrazellulären Rezeptor gebunden ist 189. 

 

Während p40 auch als Monomer, Homodimer oder in Verbindung mit p19, einer 

anderen Untereinheit der IL-12-Familie, das Heterodimer IL-23 bildend, sezerniert wird, 

kann p35 ausschließlich nach Assoziation mit p40 freigesetzt werden 190-192. Beide 
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Untereinheiten werden durch zwei voneinander unabhängige Gene codiert und 

entsprechend getrennt reguliert. 

 

 

1.3.3.2 Produktion von Interleukin-12 

 

Die IL-12-Produktion erfolgt bereits frühzeitig während einer Immunantwort. 

Phagozyten und dendritische Zellen sind üblicherweise die ersten Leukozyten, die 

Pathogene im Gewebe erkennen. Es ist dementsprechend nicht verwunderlich, dass 

diese Zellen die Hauptproduzenten von IL-12 sind, das für die Induktion einer          

Typ-1-Immunantwort und die Verbindung von angeborenem und adaptivem 

Immunsystem zentral ist 181, 193. IL-12 wird hauptsächlich von Monozyten, 

Makrophagen, Neutrophilen, dendritischen Zellen und zu einem geringeren Teil von   

B-Lymphozyten produziert, in Reaktion auf Pathogene, lösliche und membran-

gebundene Signale anderer Immunzellen, sowie Bestandteile der entzündlichen 

extrazellulären Matrix 189. 

 

Für die Produktion des biologisch aktiven Heterodimers IL-12p70 müssen die Gene 

beider Untereinheiten in ein und derselben Zelle koordiniert exprimiert werden 194. 

Während p35 mRNA konstitutiv in geringen Mengen ubiquitär vorhanden ist, wird p40 

nur in Zellen exprimiert, die IL-12p70 produzieren 189, 193. Zahlreiche Forscher haben 

p35- oder p40-Level als Maß für IL-12p70 verwendet. Aufgrund ihrer unterschiedlichen 

Regulation und der Möglichkeit der Sekretion von p40-Monomeren oder anderer 

bimolekularer Komplexe kann dies allerdings zu einer Überschätzung der IL-12p70-

Produktion führen. IL-12p40 wird in großem Überschuss gegenüber IL-12p70 

exprimiert und sezerniert. Aufgrund der geringeren p35-Transkription, auch in 

aktivierten inflammatorischen Zellen, wurde vermutet, dass die Expression von p35 

limitierend für die Produktion des Heterodimers ist 195. 

 

Die Produktion von IL-12p70 wird durch positive und negative regulatorische 

Mechanismen streng kontrolliert. Zahlreiche Mikroorganismen oder deren Bestandteile 

induzieren die Synthese von IL-12p70. So sind gramnegative und grampositive 

Bakterien, Parasiten, Pilze und Viren starke Trigger der IL-12p70-Produktion. Auch für 

LPS, LTA, PGN, CpG-DNA und dsRNA wurde die Induktion von IL-12p70 gezeigt 189, 

196, 197. Das Ausmaß der IL-12p70-Produktion hängt dabei stark von der Expression der 

entsprechenden PRRs ab. Besonders für Phagozyten scheinen TLR-Liganden alleine 

jedoch nicht ausreichend für die Induktion von IL-12p70 und diese Zellen produzieren 
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häufig nur geringe Mengen an IL-12p40. Zahlreiche Zytokine, wie IFNγ und IL-4, 

können die Produktion des biologisch aktiven Heterodimers fördern. 

Überraschenderweise wurde gezeigt, dass die beiden TH2-Zytokine IL-4 und IL-13 die 

IL-12p70-Produktion hemmen, aber auch verstärken können 198. Dies ist insbesondere 

bedeutend, da diese Zytokine häufig für die in vitro-Generierung von DCs eingesetzt 

werden. Dadurch lässt sich erklären, dass diese DCs mehr IL-12p70 produzieren als 

ex vivo-isolierte primäre DCs. 

 

Nicht nur durch lösliche Mediatoren, sondern auch durch direkte Zell-Zell-Interaktionen 

fördern T-Lymphozyten die IL-12p70-Produktion in Phagozyten und APCs. Dies wurde 

am besten für CD40L auf aktivierten T-Zellen gezeigt, das an CD40 auf DCs oder 

Makrophagen bindet und die Produktion von IL-12p70 erhöht 199, 200. Akzessorische 

Signale können auch durch Zellen des angeborenen Immunsystems, wie NK-Zellen, 

geliefert werden 157. IL-12 selbst induziert einige akzessorische Signale, wie IFNγ, und 

damit einen positiven Feedback-Mechanismus. Da IL-12p70 nicht nur zu Beginn einer 

Immunantwort, sondern während der gesamten Dauer einer Infektion nötig ist, wird 

über diese positiven Feedback-Schleifen die IL-12p70-Produktion bis zur erfolgreichen 

Beseitigung des Pathogens aufrecht erhalten. 

 

Um eine überschießende Produktion von IL-12p70 und dadurch systemisch 

inflammatorische Nebenwirkungen zu verhindern, existieren inhibitorische 

Mechanismen. Während IL-4 in Gegenwart von GM-CSF, wie zur DC-Generierung, 

TNF, IL-6 oder IFNγ die IL-12-Produktion fördert, hemmt es diese in Abwesenheit 

dieser Zytokine 201, 202. T-Lymphozyten und NK-Zellen sezernieren nach IL-12-

Stimulation TNF. Dieses kann die Produktion von IL-12p70 sowohl fördern, als auch 

hemmen. IL-10 ist ein potenter und derzeit bestuntersuchter Inhibitor der IL-12-

Produktion 203, 204. Die essentielle regulatorische Funktion von IL-10 wurde durch 

unkontrollierte, letale, systemische inflammatorische Syndrome in IL-10-defizienten 

Mäusen gezeigt 205. Daneben haben weitere Studien gezeigt, dass die IL-12p70-

Produktion auch durch TGF-β, IL-11, Typ-I-Interferon, und Signale von G-Protein-

gekoppelte Rezeptoren gehemmt wird 197, 206, 207. Einige Zytokine können also je nach 

Umgebungsbedingungen zum einen fördernd und zum anderen hemmend auf die 

Produktion von IL-12p70 wirken.  

 

Zur Gewährleistung einer genauen Kontrolle wird die IL-12p70-Produktion auf 

mehreren Ebenen reguliert. Die Synthese der p40-Untereinheit wird auf Ebene der 
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Transkription kontrolliert. Im Gegensatz dazu wird p35 sowohl transkriptionell, als auch 

post-transkriptionell reguliert.  

 

Die Promotoren der p35- und p40-Gene und deren Bindung von Transkriptionsfaktoren 

sind in zahlreichen Studien untersucht worden. Nach TLR-Stimulation ist NFκB an der 

Transkription beider Gene beteiligt 208, 209. Auch IRFs regulieren die p35- und p40-

Expression. Die Aktivierung von IRF1 durch IFNγ oder TLR-Liganden ist notwendig für 

die Transkription des p35-Gens, nicht jedoch des p40-Gens 91, 210. IRF8, das ebenfalls 

durch IFNγ induziert wird, reguliert die Expression beider Gene 211. Für die Produktion 

von p40, nicht jedoch von p35, ist die Aktivierung von IRF5 nötig 212. Die Aktivierung 

von IRF3 downstream des TLR-Adapters TRIF induziert die p35-Expression durch    

(1) direkte Bindung des p35-Promotors und (2) indirekt durch IFNβ. IFNβ fördert die 

Transkription von p35 vermutlich durch Aktivierung von IRF7 213, 214. Zusammengefasst 

lässt sich festhalten, dass die Gene beider Untereinheiten von IL-12p70 unabhängig 

voneinander durch zahlreiche Transkriptionsfaktoren einer komplexen Regulation 

unterliegen und dass IRF1, IRF3 und IRF7 ausschließlich an der Transkription des 

p35-Gens beteiligt sind 215. Eine Übersicht über die Regulation der IL-12p70-

Transkription gibt Abbildung 16. 

 

Darüber hinaus ist die p35-Untereinheit zusätzlich post-transkriptionell reguliert. 

Alternative Transkriptions-Start-Stellen im p35-Gen führen zur Produktion mehrerer 

p35-mRNAs mit unterschiedlicher translationaler Effizienz. In unstimulierten Zellen 

enthält die hauptsächlich synthetisierte p35-mRNA ein zusätzliches upstream ATG, 

das die Translation hemmt. Nach LPS-Stimulation jedoch wird die Transkription 

verstärkt von anderen Start-Stellen im p35-Gen initiiert. Einem Großteil der so 

entstehenden mRNAs fehlt die inhibitorische Sequenz und die Translation kann 

erfolgen 216. Während p40 entsprechend dem co-translationalen Modell prozessiert 

wird, d. h. das Signalpeptid wird bei der Translokation des Proteins ins ER entfernt, 

wird IL-12p35 nicht gleichzeitig mit der Translokation ins ER sequentiell in zwei 

Schritten geschnitten. Der erste Schnitt findet im ER statt, das restliche Signalpeptid 

wird vermutlich im späten Golgi- oder Post-Golgi-Kompartiment entfernt, gleichzeitig 

mit Glykosylierung und Sekretion. Die Zusammenfügung der p35- und p40-

Untereinheiten zu IL-12p70 erfolgt im ER. Die Sekretion des Heterodimers kann durch 

Mutation der zweiten Schnittstelle oder Inhibition der Glykosylierung von IL-12p35 

gehemmt werden 190, 217, 218. Die Produktion des biologisch aktiven IL-12p70 ist also auf 

mehreren Ebenen durch komplexe Mechanismen präzise reguliert. 
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1.3.3.3 Biologische Funktionen von Interleukin-12 

 

Der IL-12-Rezeptor wird von aktivierten NK-Zellen und T-Lymphozyten und auch von 

DCs, B-Zellen und hämatopoetischen Vorläuferzellen exprimiert 219-221. Daher 

beeinflusst IL-12 das angeborene und adaptive Immunsystem.  

 

Zusammen mit anderen Mediatoren fördert IL-12 die Proliferation hämatopoetischer 

Vorläufer. In NK- und T-Zellen induziert IL-12 die Produktion zahlreicher Zytokine. 

Besonders effizient ist IL-12 in der Induktion der IFNγ-Sekretion 222, 223. IFNγ wiederum 

stimuliert u. a. die bakterizide Aktivität von Phagozyten und verstärkt so die 

angeborene Immunität. Wie bereits erwähnt fördert IFNγ im Sinne eines positiven 

Feedbacks die Produktion von IL-12. Darüber hinaus steigert IL-12 die Proliferation 

und zytotoxische Aktivität von NK- und T-Zellen 185, 189. 

 

Eine Hauptfunktion von IL-12 ist die Regulation der Entwicklung CD4+ T-Lymphozyten. 

Diese können je nach Umgebungsfaktoren in unterschiedliche Effektorzellen, wie   

TH1- und TH2-Zellen, differenzieren. Für die adaptive Immunität ist die Generierung 

geeigneter CD4+ Effektor-T-Zellen entscheidend. TH1-Zellen sind effektiv gegen 

intrazelluläre Pathogene bzw. Antigene, TH2-Zellen hingegen gegen extrazelluläre.     

IL-12 ist das Schlüsselzytokin für die Differenzierung in TH1-Lymphozyten. Daher ist 

IL-12 für die zellvermittelte Abwehr intrazellulärer Bakterien, Parasiten, Pilze und Viren, 

sowie zur Tumorbekämpfung essentiell 224-226. Im Gegensatz dazu hemmen IL-12 und 

IFNγ die Entwicklung von TH2-Zellen und die Produktion von IL-4, IL-5 und IL-13. 

 

IL-12 beeinflusst B-Lymphozyten sowohl direkt, als auch indirekt über IFNγ und     

TH1-Zellen. IL-12 fördert die Zytokin-Produktion, Proliferation und Differenzierung der 

B-Zelle, sowie die Produktion bestimmter Antikörper-Isotypen. So verstärkt IL-12 die 

IgG2a-Produktion, während es den Isotyp-Wechsel zu IgE und IgA verhindert 189, 219. 
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1.4 Fragestellung 

 

Interleukin-12 ist ein zentrales Zytokin des Immunsystems, es reguliert angeborene 

und adaptive Immunität. So ist Interleukin-12 entscheidend an der Aktivierung von   

NK-Zellen, T- und B-Lymphozyten beteiligt. Es ist ein potentes proinflammatorisches 

Zytokin und hat eine Schlüsselfunktion in der Induktion von TH1-Immunantworten. Eine 

effektive TH1-Immunantwort ist essentiell für die Bekämpfung von intrazellulären 

Pathogenen und Tumoren. Aus diesen physiologischen Funktionen von Interleukin-12 

ergeben sich potentielle therapeutische Anwendungsbereiche.  

 

In der Therapie von Infektionserkrankungen durch intrazelluläre Mikroben, wie 

beispielsweise Mycobacterium tuberculosis, könnte Interleukin-12 in Kombination mit 

antimikrobiellen Substanzen die Effektivität der Behandlung steigern. Ebenso könnte 

Interleukin-12 in der Prävention von Infektionserkrankungen, für deren Bekämpfung die 

zelluläre Immunität essentiell ist, als Vakzine-Adjuvans Anwendung finden. Die Anti-

Tumor-Aktivität von Interleukin-12, die in mehreren Mausmodellen in vivo gezeigt 

wurde, lässt auf einen erfolgreichen Einsatz dieses Zytokins, oder von Substanzen, die 

die Produktion von Interleukin-12 induzieren, im humanen System hoffen. Schließlich 

lassen Ergebnisse in der Maus den Einsatz von Interleukin-12 in der Behandlung von 

Erkrankungen, die mit einem Überwiegen von TH2-Immunantworten assoziiert sind, 

wie dem Asthma bronchiale, vielversprechend erscheinen.  

 

Interleukin-12 wird hauptsächlich durch Monozyten, Makrophagen, dendritische Zellen 

und Neutrophile in Reaktion auf die Erkennung von Pathogenen und endogenen 

Gefahrensignalen produziert und bereits frühzeitig während einer Immunreaktion 

sezerniert. PRRs, wie TLRs, sind die Erkennungsmechanismen des angeborenen 

Immunsystems.  

 

Da Interleukin-12 ein hochpotentes proinflammatorisches Zytokin ist, unterliegt dessen 

Produktion zur Verhinderung von Autoimmunität einer komplexen Regulation. Zu 

Beginn dieser Arbeit wurde angenommen, dass die IL-12p70-Produktion myeloider 

Zellen strikt durch T-Zellen kontrolliert würde. Insbesondere in Phagozyten schienen 

TLR-Liganden alleine nicht ausreichend für die Induktion von IL-12p70. Da Pathogene 

mehrere PAMPs gleichzeitig exprimieren, wäre die simultane Aktivierung 

verschiedener TLRs auf Zellen des angeborenen Immunsystems anzunehmen. Die 
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Kenntnis über die Kooperation und synergistische Wirkung unterschiedlicher TLRs war 

jedoch limitiert.  

 

Aufgrund der Schlüsselfunktion von Interleukin-12 ist es von besonderem Interesse zu 

verstehen wie seine Produktion reguliert wird. Gegenstand vorliegender Arbeit war 

somit die Analyse der Interleukin-12-Produktion myeloider Zellen des Menschen. Unter 

Entwicklung geeigneter in vitro-Modelle sollten folgende Fragestellungen beantwortet 

werden: 

 

(1) Kann die Produktion von IL-12p70 in humanen myeloiden Zellen durch       

PRR-Liganden unabhängig von T-, oder NK-Zell-Hilfe induziert werden? 

 

(2) Bestehen additive oder synergistische Effekte unterschiedlicher TLRs in Bezug 

auf die IL-12p70-Sekretion myeloider Zellen? 

 

(3) Wie unterscheidet sich die Regulation der IL-12p70-Produktion humaner 

Monozyten und myeloider dendritischer Zellen? 

 

Im Verlauf dieser Arbeit stellte sich die synergistische Wirkung von TLR4 und TLR8 in 

Bezug auf die IL-12p70-Produktion heraus. Ausgehend von dieser Beobachtung sollte 

darüber hinaus versucht werden mögliche diesem Synergismus zugrundeliegende 

Mechanismen einzugrenzen. 
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2 Methoden 

 

2.1 Geräte, Chemikalien, Reagenzien 

2.1.1 Geräte 
 

Bezeichnung Hersteller 

Brutschrank Fa. Heraeus (Hanau, D) 
Eismaschine Fa. Ziegra (Isernhagen, D) 
ELISA-Reader Fa. Dynatech-Laboratories  

(Guernsey, GB) 
FACS-Calibur  Fa. Becton Dickinson (San Jose, USA) 
Light Cycler Fa. Roche (Mannheim, D) 
Magnetische Zellseparatoren: 
MidiMACS 
MiniMACS 

Fa. Miltenyi Biotec  
(Bergisch Gladbach, D) 

Mikroskop: Axiovert 25 Fa. Zeiss (Jena, D) 
Thermocycler T3 Fa. Biometra (Göttingen, D) 
Thermocycler RoboCycler Gradient 40 Fa. Stratagene (Heidelberg, D) 
pH-Meter Fa. WTW (Weilheim, D) 
Photometer: Ultrospec 3000 pro 
UV/Visible Spectrophotometer 

Fa. Amersham Pharmacia Biotech  
(Little Chalfont, UK) 

Pipetten Fa. Eppendorf (Hamburg, D), 
Fa. Gilson (Middleton, USA),  
Fa. Abimed (Langenfeld, D), 
Fa. Thermo Fisher Scientific  
(Waltham, USA) 

Schüttler: IKA-Vibrax-VXR Typ VX7 Fa. Janke & Kunkel (Staufen, D) 
Sterilwerkbank: Lamin Air HB 244 8 Fa. Heraeus (Hanau, D) 
Thermoschüttler: Thermomixer 5436 Fa. Eppendorf (Hamburg, D)  
Vortexer:  
Vortex VF2 
Vortexer 

 
Fa. Bender & Hobein AG (Zürich, CH)  
Fa. Janke & Kunkel (Staufen, D) 

Waagen: 
Waage LP 6209 
Waage SBC 21 

 
Fa. Satorius (Göttingen, D)  
Fa. Saltec Instruments (Heiligenstadt, D) 

Wasser-Deionisierungsanlage Fa. SG Reinstwasser-Sys. (Hamburg, D) 
Zentrifugen:  
Omnifuge 2 ORS 
Zentrifuge 5417 R  

 
Fa. Heraeus (Hanau, D)  
Fa. Eppendorf (Hamburg, D) 

 
Enzyme-linked immunosorbent assay (ELISA); Fluorescence-activated cell sorter 
(FACS); Magnetic-activated cell sorting (MACS); 
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2.1.2 Verbrauchsmaterial 
 

Bezeichnung Hersteller 

Blutentnahmesysteme Fa. BD Biosciences (Heidelberg, D) 
Eppis: Safe-Lock Tubes Fa. Eppendorf (Hamburg, D)  
FACS-Röhrchen: Polystyrene Round-
bottom Tubes 

Fa. Becton Dickinson  
(San Jose, CA, USA) 

Laborhandschuhe Fa. Sempermed (Wien, A) 
LD-, LS-, MS-MACS separation columns Fa. Miltenyi Biotec  

(Bergisch Gladbach, D) 
LeucoSepTM-Röhrchen Fa. Greiner (Frickenhausen, D) 
Pipettenspitzen Fa. Sarstedt (Nümbrecht, D),  

Fa. Eppendorf (Hamburg, D), 
Fa. Gilson (Middleton, USA) 

Polypropylen (PP)-Röhrchen Fa. Sarstedt (Nümbrecht, D),  
Fa. Greiner (Frickenhausen, D) 

PCR-Tubes Fa. Biozym (Hess. Oldendorf, D) 
Zellkulturflaschen 175 cm3 / 75 cm3 Fa. Greiner (Frickenhausen, D) 
Zellkulturplatten:  
96-Well-Rundboden 
24- und 48-Well-Flachboden 

 
Fa. Greiner (Frickenhausen, D), 
Fa. Becton Dickinson  
(San Jose, CA, USA) 

Sterilfilter: Falcon Cell Strainer 40 µm Fa. Becton Dickinson  
(San Jose, CA, USA) 

Wägepapier Fa. Macherey-Nagel (Düren, D) 
Zellschaber Fa. Sarstedt (Nümbrecht, D) 
 
Polymerase-Kettenreaktion (PCR) 

 

Weitere Plastikmaterialien für die Zellkultur wurden von den Firmen Becton Dickinson 

(Le Pont de Claix, F), Bibby Sterrilin (Stone, Staffordshire, GB), Falcon (Heidelberg, D) 

und Greiner (Frickenhausen, D) bezogen. 
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2.1.3 Chemikalien 

 
Bezeichnung Hersteller 

Aqua ad injectabile Fa. Braun (Melsungen, D) 
Ethylendiamintetraacetat (EDTA), 
kristallin 

Fa. Sigma-Aldrich (Steinheim, D) 

EDTA, in Lösung 0,02% Fa. Sigma-Aldrich (Steinheim, D) 
Erylyse-Reagenz: Pharm Lyse Fa. BD PharMingen (Heidelberg, D) 
FACS-Materialien: 
FACSClean 
FACSFlow 
FACSSafe 

Fa. Becton Dickinson (San Jose, USA) 

Geneticin g-418 Sulfat (G418) Fa. GibcoBRL (Paisley, GB) 
Heparin-Natrium Fa. Ratiopharm (Ulm, D) 
NaCl 0.9% Fa. Baxter (Unterschleißheim, D) 
Natriumazid Fa. Sigma-Aldrich (Steinheim, D) 
Paraformaldehyd (PFA) Fa. Merck (Darmstadt, D) 
Saponin Fa. Sigma-Aldrich (Steinheim, D) 
Trypanblau Fa. Sigma-Aldrich (Steinheim, D) 
 

 

2.1.4 Reagenziensätze 

 
Zellaufreinigung über magnetische Zellsortierung (MACS) 
 
Bezeichnung Hersteller 

CD1c (BDCA-1) Dendritic Cell Isolation 
Kit 

Fa. Miltenyi Biotec (Bergisch Gladbach, D) 

BDCA-4 Cell Isolation Kit Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
CD3 MicroBeads Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
CD14 MicroBeads Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
CD16 MicroBeads Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
CD19 MicroBeads Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
CD56 MicroBeads Fa. Miltenyi Biotec (Bergisch Gladbach, D) 
 
Blood dendritic cell antigen (BDCA) 

 

Zytokin-Messung mittels ELISA 
 
Bezeichnung Hersteller 

human IL-10 ELISA Fa. OptEIA PharMingen (San Diego, USA) 
human IL-12p40 ELISA Fa. OptEIA PharMingen (San Diego, USA) 
human IL-12p70 ELISA Fa. OptEIA PharMingen (San Diego, USA) 
human TNF ELISA Fa. OptEIA PharMingen (San Diego, USA) 
human IFNα ELISA Fa. PBL Biomedical Laboratories  

(New Brunswick, USA) 
human IFNγ ELISA  Fa. OptEIA PharMingen (San Diego, USA) 
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Isolation von mRNA, Reverse Transkription und PCR 
 
Bezeichnung Hersteller 

MagNa Pure LC mRNA Isolation Kit I Fa. Roche Diagnostics (Mannheim, D) 
First Strand cDNA Synthesis Kit Fa. Roche Diagnostics (Mannheim, D) 
LightCycler FastStart DNA SYBR Green I 
Kit   

Fa. Roche Diagnostics (Mannheim, D) 

 
copy-Desoxyribonukleinsäure (cDNA) 
 

 

2.1.5 Zellkulturmaterialien 

 

Bezeichnung Hersteller 

Biocoll-Separationsmedium Fa. Biochrom (Berlin, D) 
Fötales Kälberserum (FCS), 30 Minuten 
bei 56°C hitzeinaktiviert 

Fa. GibcoBRL (Paisley, GB) 
 

Bovines Serumalbumin (BSA) Fa. Roth (Karlsruhe, D) 
HEPES-Puffer  Fa. Sigma-Aldrich (Steinheim, D) 
Humanes AB-Serum Fa. BioWhittaker (Wakersville, USA) 
Humanes Serumalbumin (HSA) Fa. Bayer (Leverkusen, D) 
L-Glutamin Fa. PAA (Linz, A) 
Penicillin Fa. PAA (Linz, A) 
Phosphate-buffered saline (PBS) Fa. PAA (Linz, A) 
Streptomycin Fa. PAA (Linz, A) 
Roswell Park Memorial Institute (RPMI) 
1640 Medium 

Fa. Biochrom (Berlin, D) 

 

 

2.1.6 Puffer, Lösungen und Zellkulturmedien 

 

RPMI-Medium (autologes): 
2% autologes Serum 
10 mM HEPES 
1,5 mM L-Glutamin 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
in RPMI 1640-Medium 

 
 

RPMI-Medium (FCS): 
10% (v/v) FCS 
1,5 mM L-Glutamin 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
in RPMI 1640-Medium 
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RPMI-Medium (AB): 
2% (v/v) Humanes AB-Serum 
1,5 mM L-Glutamin 
100 IU/ml Penicillin 
100 µg/ml Streptomycin 
in RPMI 1640-Medium 

 
 

MACS-Puffer: 
2 mM EDTA 
0.5% (v/v) HSA (20%) 
pH = 7,4  
in PBS (steril) 

 
 

FACS-Puffer: 
2 mM EDTA 
1% (v/v) FCS oder HSA 
in PBS 

 
 

Zell-Fixierungs-Lösung 
1% PFA 
in PBS 

 

 

2.1.7 Stimulantien und rekombinante Zytokine 

 

Bezeichnung Hersteller 

LPS Sigma-Aldrich (Steinheim, D) 
R848 InvivoGen (Toulouse, F) 
Pam3CSK4 InvivoGen (Toulouse, F) 
MALP-2 Alexis Biochemicals (Braunschweig, D) 
Poly I:C Sigma-Aldrich (Steinheim, D) 
Loxoribine Sigma-Aldrich (Steinheim, D) 
IFNα Strathmann Biotech (Hannover, D) 
IFNβ Strathmann Biotech (Hannover, D) 
IFNγ Roche (Mannheim, D)  
MDP InvivoGen (Toulouse, F) 
 
Poly I:C wurde mehr als zehnmal mit Ethanol gewaschen und präzipitiert, um 

Endotoxin-Kontaminationen zu beseitigen. Die schrittweise Aufreinigung wurde durch 

die graduelle Abnahme der Fähigkeit zur TNF-Induktion in PBMCs dokumentiert. Die 

endgültige Präparation von Poly I:C, welche in dieser Arbeit verwendet wurde, 

induzierte weder die intrazelluläre Expression von TNF in Monozyten, noch messbare 

TNF-Level in PBMCs, aktivierte jedoch weiterhin TLR3-exprimierende mDCs. Alle 

Reagenzien wurden in Hinblick auf optimale stimulatorische Bedingungen in 

unterschiedlichen Zelltypen titriert. 
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2.1.8 Antikörper 

 

Färbeantikörper für die Durchflusszytometrie 
 

Bezeichnung Spezifität Isotyp Fluoreszenz Hersteller 

anti-CD3 CD3 Maus IgG1, κ APC; FITC BD PharMingen 
anti-CD4 CD4 Maus IgG1, κ PE BD PharMingen 
anti-CD8 CD8 Maus IgG1, κ APC BD PharMingen 
anti-CD11c CD11c Maus IgG1, κ APC BD PharMingen 
anti-CD14 CD14 Maus IgG2a, κ APC; FITC BD PharMingen 
anti-CD16 CD16 Maus IgG1, κ FITC BD PharMingen 
anti-CD19 CD19 Maus IgG1, κ PE BD PharMingen 
anti-CD34 CD34 Maus IgG1, κ APC BD PharMingen 
anti-CD40 CD40 Maus IgG1, κ FITC BD PharMingen 
anti-CD56 CD56 Maus IgG1, κ PE BD PharMingen 
anti-CD80 CD80 Maus IgG1, κ PE BD PharMingen 
anti-CD83 CD83 Maus IgG1, κ FITC BD PharMingen 
anti-CD86 CD86 Maus IgG1, κ APC BD PharMingen 
anti-CD123 CD123 Maus IgG1, κ PE BD PharMingen 
anti-CD154 
(anti-CD40L) 

CD154 Maus IgG1, κ PE BD PharMingen 

anti-CD303 CD303 Maus IgG1 FITC Miltenyi Biotec 
anti-HLA-DR HLA-DR Maus IgG2a, κ PerCP; PE-Cy5.5 BD PharMingen 
anti-TNF TNF Maus IgG1, κ PE BD PharMingen 
Lineage 
Cocktail 1 (lin1) 

CD3, CD14, 
CD16, CD19, 
CD20, CD56 

Maus IgG1, κ FITC BD PharMingen 

 
Fluorescein-Isothiocyanat (FITC); Phycoerythrin (PE); Peridinin Chlorophyll Protein 
(PerCP); Cy (Cyanin); Allophycocyanin (APC) 
 

 

Antikörper für die Zellkultur 
 

Bezeichnung Spezifität Isotyp Klon Hersteller 

anti-IL-10 IL-10 Maus IgG2b 23738 RnD Systems 
(Minneapolis, USA) 

anti-IL-10Rα IL-10Rα Maus IgG1 37607 RnD Systems 
(Minneapolis, USA) 

anti-IFNΑR, 
neutralisierend 

IFNα/β-
Rezeptor 2 
(CD118) 

Maus IgG2a MMHAR-2 PBL Biomedical 
Laboratories  
(New Jersey, USA) 

anti-IFNΑR, 
nicht-
neutralisierend 

IFNα/β-
Rezeptor 2 
(CD118) 

Kaninchen  - PBL Biomedical 
Laboratories  
(New Jersey, USA) 

 
Interleukin-10-Rezeptor (IL-10R); Typ-I-Interferon-Rezeptor (IFNΑR) 
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2.2 Zellkultur 

2.2.1 Bestimmung der Vitalität und Anzahl der Zellen 

 

Zur Ermittlung der Anzahl lebender Zellen wurde der Trypanblau-Ausschlusstest 

durchgeführt. Hierzu wurden 20 bis 200 µl einer gut homogenisierten Zellsuspension in 

unterschiedlichen Volumenverhältnissen mit Trypanblau-Lösung gemischt. Während 

sich tote Zellen dabei blau anfärben, schließen lebende Zellen den Farbstoff aus. 10 µl 

der gefärbten Zellsuspension wurden auf eine Neubauer-Zählkammer aufgebracht und 

die ungefärbten Zellen bei geeigneter Verdünnung unter dem Lichtmikroskop gezählt. 

 

Die Gesamtzahl lebender Zellen wurde folgendermaßen berechnet: 

 

4
10

4
×××= VVf

N
Nges  

 

gesN : Gesamtzahl lebender Zellen einer Zellsuspension 

N : Anzahl der ungefärbten Zellen in den vier Feldern der Neubauer-Zählkammer 

Vf : Verdünnungsfaktor 

V : Volumen der Zellsuspension 

 

 

2.2.2 Allgemeine Kulturbedingungen 

 

Die Kultivierung der Zellen erfolgte in einem Brutschrank bei einer konstanten 

Temperatur von 37°C, einem 5%igen CO2/Luftgemisch und einer Luftfeuchtigkeit von 

95%. Alle Zellkultur-Experimente wurden in einem Lamin-Air-Flow unter sterilen 

Bedingungen durchgeführt. 
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2.2.3 Kultivierung von mononukleären Zellen des peripheren Blutes 

 

PBMCs oder aufgereinigte Zellpopulationen, mit Ausnahme von Monozyten-

abgeleiteten dendritischen Zellen (MoDCs), wurden in RPMI-Medium mit 2% 

autologem Serum kultiviert. Für die Herstellung des autologen Serums wurden einige 

Milliliter Blut in Serum-Röhrchen von den jeweiligen Spendern abgenommen. Nach der 

Gerinnung wurden mittels Zentrifugation (1000 g, 10 Minuten, 20°C) zelluläre 

Bestandteile des Blutes abgetrennt. Anschließend wurde das so erhaltene Serum im 

Heizblock bei 56°C für 30 Minuten hitzeinaktiviert. 

 

Für Zytokin-Bestimmungen und FACS-Analysen wurden PBMCs, Monozyten und 

mDCs in 96-Well-Rundboden-Platten inkubiert, während vor mRNA-Isolationen die 

Kultivierung der Zellen in mit im Deckel mit Löchern versehenen 1,5 ml Eppis 

durchgeführt wurde. MoDCs wurden in AB-Medium in 96-Well-Flachboden-Platten 

kultiviert.   

 

IFNα, IFNβ, oder IFNγ wurden simultan oder eine Stunde vor der Stimulation der 

Zellen hinzugefügt. Vor der Blockade von IL-10, IL-10R und IFNAR durch 

neutralisierende Antikörper wurden Fc-Rezeptoren (FcR) blockiert, um eine Bindung 

der Antiköper an diese Rezeptoren zu verhindern. Monozyten wurden hierfür nach 

Zentrifugation in MACS-Puffer resuspendiert (15 µl/107 Zellen) und in Gegenwart von 

FcR-Block (5 µl/107 Zellen) für 15 Minuten bei 4°C inkubiert. Nach erneuter 

Zentrifugation wurden diese in Medium resuspendiert. Die Zugabe der Antikörper 

erfolgte eine Stunde vor der Stimulation der Zellen. 

 

 

2.2.4 Bestrahlung von Stimulatorzellen 

 

Zur Verhinderung von Zellteilungen der Stimulator-Zellpopulationen während der Co-

Kultur mit primären humanen mononukleären Zellen wurden die jeweiligen 

Stimulatorzellen unmittelbar vor den Stimulations-Experimenten mit einer Dosis von 

0,75 J/cm2 UV-Licht bestrahlt.  
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2.2.5 Kultivierung von Zelllinien 

 

Die eingesetzte CD40L-tragende Zelllinie war durch Transfektion von baby hamster 

kidney (BHK)-Zellen generiert worden. Die Kontrollzelllinie BHK-pTCF war mit 

demselben Plasmid transfiziert worden, allerdings ohne das CD40L-cDNA-Insert und 

ist Neomycin-resistent. Beide Zelllinien wurden freundlicherweise von Prof. Engelmann 

(Universität München) zur Verfügung gestellt und regelmäßig auf Mykoplasmen 

getestet. 

 

Die Kultivierung der beiden Zelllinien erfolgte in Kulturflaschen mit RPMI-Medium plus 

10% FCS. Die Zelllinien standen permanent unter dem Selektionsdruck von             

200 µg/ml G418 und wurden der Proliferation entsprechend in regelmäßigen zeitlichen 

Abständen verdünnt und mit frischem Medium versehen. 

 

In Stimulationsexperimenten wurden beide Zelllinien jeweils im Verhältnis 1:10     

(BHK-Zellen:Monozyten) eingesetzt. 

 

 

2.3 Immunologische Methoden und Zellisolation 

2.3.1 Isolation und Aufreinigung von Zellpopulationen des peripheren 

Blutes 

2.3.1.1 Isolation mononukleärer Zellen 

 

Prinzip der Ficoll-Hypaque-Dichtegradientenzentrifugation 

Die Fraktionierung von Blut mittels Ficoll-Hypaque-Dichtegradientenzentrifugation 

basiert auf der unterschiedlichen Dichte der verschiedenen Blutbestandteile. Die 

spezifische Dichte von Ficoll beträgt 1,077 g/ml und ist somit größer als die der 

Lymphozyten, Monozyten, dendritischen Zellen und Thrombozyten, jedoch kleiner als 

die der Erythrozyten und der meisten Granulozyten. Bei der Zentrifugation einer 

zweiphasigen Lösung aus Ficoll und heparinisiertem Vollblut ergibt sich daher folgende 

Schichtung. Erythrozyten und die meisten Granulozyten sedimentieren unter der Ficoll-

Schicht auf dem Boden des Zentrifugations-Röhrchens, während sich die 

mononukleären Zellen in einer weißlich trüben Interphase über dem 

Separationsmedium und unterhalb des Blutplasmas anreichern. Die Thrombozyten 

befinden sich nach den üblichen Zentrifugationszeiten zum größten Teil im Blutplasma, 
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da sie aufgrund ihres geringen Zellvolumens langsamer sedimentieren. Es sollte 

allerdings bedacht werden, dass sich die Dichten der unterschiedlichen 

Zellpopulationen zum Teil überschneiden. Von einer Kontamination der PBMCs durch 

Basophile und Thrombozyten ist daher auszugehen.  

 

Durchführung 

Gesunden Spendern im Alter zwischen 21 und 47 Jahren wurden 100 bis 300 ml 

venöses Blut mittels Butterfly und 50 ml Perfusor-Spritze entnommen. Zuvor wurde die 

Perfusor-Spritze mit 500 µl Natrium-Heparin pro 50 ml Vollblut unter sterilen 

Bedingungen befüllt. Direkt im Anschluss an die Entnahme erfolgte die Isolation der 

mononukleären Zellen. Hierfür wurde das Blut im Verhältnis 1:1 mit NaCl verdünnt und 

je 25 ml in einem 50 ml PP-Röhrchen über 15 ml Biocoll (vorsichtig!) aufgeschichtet, so 

dass keine Mischung von Blut und Biocoll auftrat und sich zwei Phasen bildeten. 

Alternativ wurde das Blut in LeukoSepTM-Röhrchen überführt, in welche vorher 15 ml 

Biocoll durch Zentrifugation (1000 g, 30 Sekunden, 20°C) unter die 

Separationsmembran eingebracht worden war. Anschließend wurden die PP- bzw. 

LeukoSepTM-Röhrchen (bei 650 g, 30 Minuten, 20°C, Beschleunigung 1, Bremsung 1, 

bzw. 800 g, 15 Minuten, 20°C, Beschleunigung 1, Bremsung 1) zentrifugiert. Die 

Bremsung sollte so niedrig wie möglich eingestellt sein, um ein Durchmischen der 

aufgetrennten Phasen zu verhindern. Nach der Zentrifugation wurden im Falle der   

PP-Röhrchen die mononukleären Zellen in der Interphase vorsichtig – um möglichst 

wenig des zytotoxischen Biocoll aufzunehmen - abpippetiert und in ein neues           

PP-Röhrchen überführt. Bei Verwendung der LeukoSepTM-Röhrchen wurde die 

Plasmafraktion bis auf eine Schichtdicke von 0,5 mm abgenommen, um eine 

Kontamination der PBMCs mit Thrombozyten zu verhindern, und die Fraktion über der 

Separationsmembran in ein neues PP-Röhrchen gegeben. Die PBMC-Lösung in den 

neuen PP-Röhrchen wurde mit Medium aufgefüllt und zentrifugiert (500 g, 15 Minuten, 

20°C, Beschleunigung 1, Bremsung 1). Danach wurde der Überstand dekandiert, die 

Zellpellets in je 2 ml 0,9% NaCl resuspendiert und in ein PP-Röhrchen 

zusammenpippetiert. Die Röhrchen der Zellpellets wurden mit 0,9% NaCl nachgespült 

und die Spüllösung zur Zellsuspension gegeben. Nach erneuter Zentrifugation (350 g, 

10 Minuten, 4°C) und Dekandieren des Überstands wurden die PBMCs in 5 ml Erylyse 

resuspendiert und 10 Minuten bei Raumtemperatur inkubiert. Nach Zugabe von 20 ml 

Medium wurde die Zellsuspension wiederum zentrifugiert (350 g, 6 Minuten, 4°C), der 

Überstand verworfen, die Zellen in 50 ml NaCl resuspendiert und anschließend 

gezählt. 
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2.3.1.2 Aufreinigung von Zellen über magnetische Zellsortierung 

 

Zur Isolation einzelner Zelltypen aus den PBMCs kann deren unterschiedliche 

Expression von Oberflächenmolekülen genutzt werden. Unter der Aufreinigung über 

magnetische Zellsortierung (magnetic-activated cell sorting, MACS), auch als 

immunomagnetische Separation bezeichnet, versteht man eine Zellseparation mittels 

paramagnetischer Antikörper. Entsprechende Antikörper wurden hiefür zuvor an 

Magnetbeads gekoppelt.  

 

Zunächst erfolgt die Markierung bestimmter Zellpopulationen einer Zellsuspension mit 

diesen paramagnetischen Antikörpern, indem die Zellsuspension mit den Antikörpern 

inkubiert wird. Danach werden die nicht gebundenen Antikörper durch Hinzufügen von 

MACS-Puffer, anschließender Zentrifugation und Abkippen des Überstandes aus der 

Suspension entfernt. Stehen keine spezifischen paramagnetischen Antikörper zur 

Verfügung, so kann die Markierung bestimmter Zelltypen indirekt erfolgen. Hierfür 

werden die Zellen mit einem Oberflächenmarker-spezifischen Primärantikörper 

inkubiert und anschließend ein paramagnetischer Sekundärantikörper, der gegen den 

Primärantikörper gerichtet ist, hinzugefügt und weiter wie bei der direkten Markierung 

verfahren. Die abzentrifugierten Zellen werden in MACS-Puffer resuspendiert und auf 

eine sogenannte MACS-Säule geladen. Die MACS-Säule befindet sich in einem 

starken Magnetfeld und enthält eine ferromagnetische Matrix. In dieser Matrix werden 

die mit den paramagnetischen Antikörpern markierten Zellen zurückgehalten. Durch 

mehrfaches Nachspülen werden die unmarkierten Zellen aus der Säule entfernt. Die 

paramagnetisch markierte Zellpopulation lässt sich mithilfe eines Stempels und MACS-

Puffer außerhalb des Magnetfeldes aus der MACS-Säule eluieren. 

 

Über diese immunomagnetische Separation ist sowohl eine Positiv-Selektion, als auch 

eine Negativ-Selektion bestimmter Zellpopulationen möglich. Bei der Positiv-Selektion 

wird die gewünschte Zellpopulation mit Magnetbead-gekoppelten Antikörpern markiert 

und in der Säule zurückgehalten, während bei der Negativ-Selektion die unmarkierten 

Zellen, die durch die Säule hindurch laufen, angereichert werden. 

 

 

2.3.1.3 Isolation primärer humaner Monozyten 

 

Primäre humane Monozyten wurden mittels magnetischer Zellsortierung aus PBMCs 

über eine Drei-Schritt-Isolation aufgereinigt. Für die Herstellung des MACS-Puffers 
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wurden 2 mM EDTA in PBS gelöst. Nach Einstellung des pHs auf den physiologischen 

Wert (pH = 7,4) wurde die Lösung steril filtriert und 12,5 ml HSA zugesetzt.  

 

Zunächst wurden PDCs aus den PBMCs entfernt. Hierfür wurden isolierte PBMCs 

zentrifugiert (350 g, 6 Minuten, 4°C), der Überstand dekandiert und nach Hinzufügen 

von FcR-blockierenden Antikörpern (5 µl/107 Zellen) und anti-BDCA-4-MicroBeads     

(5 µl/107 Zellen) in MACS-Puffer (15 µl/107 Zellen) resuspendiert. Anschließend 

erfolgte die Inkubation bei 4°C über 15 Minuten. In der Zwischenzeit wurde eine 

MACS-Säule (LS-Säule) zur Vorbereitung mit 7 ml MACS-Puffer befeuchtet. Nach der 

Inkubationszeit wurden die nicht gebundenen Antikörper durch Zugabe von 20 ml 

MACS-Puffer, Zentrifugation (350 g, 6 Minuten, 4°C) und Abgießen des Überstands 

entfernt. Die Zellen wurden in 7 ml MACS-Puffer resuspendiert und auf die Säule 

gegeben. Das PP-Röhrchen wurde dann mit 7 ml MACS-Puffer ausgespült, um 

möglichst keine Zellen zu verlieren, die Zell-Lösung wiederum auf die Säule geladen 

und diese schließlich mit 7 ml MACS-Puffer nachgespült. Der PDC-negative Durchfluss 

wurde in einem PP-Röhrchen aufgefangen.   

 

Im zweiten Schritt wurde die PDC-negative Zellfraktion zentrifugiert (350 g, 6 Minuten, 

4°C) und der Überstand dekandiert. Zur T-Zell-Depletion wurden diese mit anti-CD3-

MicroBeads (9 µl/107 Zellen) markiert und in MACS-Puffer (15 µl/107 Zellen) 

resuspendiert. Nach erneuter Inkubation und Zentrifugation wurden die Zellen in 2 ml 

MACS-Puffer resuspendiert und je 1 ml auf die zuvor mit 2 ml MACS-Puffer 

befeuchtete LD-Säule pipettiert. Das PP-Röhrchen der PDC-negativen Zellen wurde 

mit 2 ml MACS-Puffer ausgespült und die Zellsuspension wiederum auf die Säule 

gegeben. Die LD-Säule wurde zweimal mit je 1 ml MACS-Puffer nachgespült. Die  

CD3-negative Zellfraktion wurde anschließend gezählt. 

 

Im dritten Schritt wurden B-Lymphozyten, NK-Zellen und mDCs mittels anti-CD19-

Beads (5 µl/107 Zellen), anti-CD56-Beads (5 µl/107 Zellen), anti-CD16-Beads (3 µl/107 

Zellen), anti-BDCA-1-Biotin (4 µl/107 Zellen) plus anti-Biotin-Beads (4 µl/107 Zellen) 

depletiert. Die Antikörper-Markierung und Zelldepletion über eine LD-Säule erfolgte wie 

im Schritt 2. Der Durchfluss entsprach den via Negativ-Selektion aufgereinigten 

humanen primären Monozyten. Diese wurden in geeigneter Verdünnung mit 

Trypanblau gezählt. Nach abschließender Zentrifugation (350 g, 6 Minuten, 4°C) und 

Dekandieren des Überstands wurden die Zellen in Medium resuspendiert und bis zur 

Stimulation auf Eis gestellt. Die Reinheit der Monozyten wurde stets mittels FACS-

Analyse überprüft und betrug 96 ± 2%.  
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2.3.1.4 Isolation primärer humaner myeloider dendritischer Zellen 

 

Im Unterschied zu Monozyten wurden humane myeloide dendritische Zellen nicht über 

eine Negativ-Selektion, sondern über ihre Oberflächenexpression von BDCA-1 (CD1c) 

mittels MACS positiv selektioniert. Da BDCA-1 jedoch nicht ausschließlich auf mDCs, 

sondern auch auf B-Lymphozyten und Monozyten exprimiert wird, muss die Depletion 

sämtlicher anderer BDCA-1-tragender Zellpopulationen vor einer Positiv-Selektion für 

BDCA-1 erfolgen. Daher erfolgte die Isolation humaner mDCs in einem Drei-Schritt-

Prozess.  

 

Zunächst wurden PDCs entsprechend der Monozyten-Isolation depletiert. 

Anschließend wurden B-Lymphozyten und Monozyten entfernt. Hierfür wurden die 

PDC-negativen Zellen mit anti-CD19-Beads (5 µl/107 Zellen), anti-CD14-Beads           

(4 µl/107 Zellen) und anti-BDCA-1-Biotin (5 µl/107 Zellen) in MACS-Puffer (20 µl/107 

Zellen) resuspendiert und für 15 Minuten bei 4°C inkubiert. Nach einem Waschschritt 

mit MACS-Puffer wurde die Depletion über eine LD-Säule, wie oben beschrieben, 

durchgeführt. Der Durchfluss der LD-Säule wurde wiederum zentrifugiert (350 g,          

6 Minuten, 4°C) und der Überstand dekandiert. Nach Hinzufügen der anti-Biotin-Beads  

(5 µl/107 Zellen) und dadurch magnetischer Markierung der mDCs wurde die 

depletierte Zellfraktion in MACS-Puffer (40 µl/107 Zellen) resuspendiert und bei 4°C für 

15 Minuten inkubiert. Die Positiv-Selektion erfolgte über eine LS-Säule. Nach dem 

letzten Spülen der Säule wurde diese aus dem Magnetfeld entfernt, auf ein neues    

PP-Röhrchen aufgesetzt mit 7 ml MACS-Puffer befüllt und die BDCA-1-positiven Zellen 

mit Hilfe eines Stempels eluiert. Um die Reinheit zu erhöhen erfolgte im Anschluss eine 

erneute Positiv-Selektion über eine MS-Säule. Nach Zentrifugation (350 g, 6 Minuten, 

4°C) und Entfernen des Überstands wurden die Zellen in 2 ml MACS-Puffer 

resuspendiert und je 1 ml auf die im Voraus mit 1,5 ml MACS-Puffer befeuchtete     

MS-Säule pipettiert. Das PP-Röhrchen wurde wiederum mit 2 ml MACS-Puffer gespült, 

die Zellsuspension auf die Säule gegeben und diese zweimal mit je 1 ml MACS-Puffer 

nachgespült. Nach Umsetzen der MS-Säule auf ein neues PP-Röhrchen wurden auf 

diese 3 ml MACS-Puffer pipettiert und die BDCA-1-positiven hochaufgereinigten mDCs 

mittels Stempel eluiert. Die via FACS-Analyse ermittelte Reinheit der primären 

humanen mDCs betrug 97 ± 2%. 
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2.3.2 Generierung dendritischer Zellen aus humanen Monozyten 

 

Monozyten-abgeleitete dendritische Zellen wurden aus Monozyten generiert, welche 

zuvor über ihre Adhärenz an Plastik aus PBMCs isoliert worden waren. Monozyten 

unterscheiden sich von anderen Zellpopulationen humaner PBMCs, wie Lymphozyten, 

in ihrem Adhärenzverhalten. Während Monozyten aufgrund ihrer Expression 

bestimmter Oberflächenadhäsionsmoleküle an Plastik adhärieren, verbleiben 

Lymphozyten in Lösung. Eine Anreicherung von Monozyten ist daher über ihre 

Neigung an Kunststoffoberflächen zu haften mit relativ geringem Aufwand möglich. 

 

PBMCs wurden in einer Zelldichte von 5 x 106 Zellen/ml in AB-Medium resuspendiert 

und je 20 ml der Zellsuspension in eine Zell-Kultur-Flasche überführt. Nach einer 

Inkubation von einer Stunde bei 37°C und 5% CO2 wurden nicht adhärente Zellen im 

Überstand abgenommen und die verbleibenden, am Plastik haftenden, Zellen mit 0,9% 

NaCl zweimal gewaschen. Die adhärenten Zellen wurden mit frischem AB-Medium 

versehen und für weitere 24 Stunden im Brutschrank bei 37°C und 5% CO2 inkubiert. 

Anschließend wurden diese mit Hilfe eines sterilen Zellschabers bzw. Gummispatels 

geerntet mit Medium gewaschen und die Reinheit via FACS-Analyse ermittelt. Der 

Anteil CD14+ Zellen betrug 95 bis 98%.  

 

Die so aufgereinigten Monozyten wurden zur Differenzierung in dendritische Zellen in 

einer Konzentration von 5 x 105 Zellen/ml in AB-Medium über fünf Tage in Gegenwart 

von 1000 U/ml rekombinantem humanen (rh) GM-CSF plus 500 U/ml rhIL-4, 500 U/ml 

rhIFNα, oder rhIFNβ kultiviert. Nach fünf Tagen wurde eine Probe der unreifen MoDCs 

mittels Durchflusszytometrie analysiert. In Gegenwart von GM-CSF plus IL-4 generierte 

MoDCs waren CD14-CD80lowCD83-CD86-, während mit GM-CSF und IFNα kultivierte 

Zellen CD14lowCD80lowCD83-CD86- waren. MoDCs, die über fünf Tage differenziert 

worden waren, wurden in AB-Medium resuspendiert und für nachfolgende 

Stimulations-Experimente in 96-Well-Flachboden-Platten in einer Endkonzentration von 

5 x 105 Zellen/ml ausplattiert.  
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2.3.3 Zytokin-Detektion mittels Enzyme-linked Immunosorbent Assay 

 

Die Quantifizierung von Zytokinen in Überständen von Stimulations-Experimenten 

erfolgte mittels Enzyme-linked Immunosorbent Assay. Wie aus der Bezeichnung 

bereits hervorgeht, dient bei dieser Methode ein Enzym als Marker und eine 

Komponente - im Falle dieser Arbeit, der jeweilige Erstantikörper - ist an eine feste 

Phase adsorbiert. Zur Erhöhung der Sensitivität wurde das „Sandwich-Prinzip“ 

angewandt. Voraussetzung für diese ELISA-Variante ist ein ausreichend großes 

Antigen, das mindestens zwei Epitope aufweist, und die Möglichkeit der Bindung 

zweier unterschiedlicher Antikörper an dieses Antigen. Exemplarisch wird hier die 

Bestimmung von IL-12p70 in den Zellkulturüberständen beschrieben. 

 

Zunächst wurde der Erstantikörper an spezielle 96-Well-Mikrotiterplatten über Nacht 

bei 4°C adsorbiert. Um unspezifische Proteinbindungen und die dadurch bedingte 

Hintergrundaktivität zu reduzieren, wurden nach Dekandieren des Adsorptions-Puffers 

und dreimaligem Waschen unspezifische freie Proteinbindungsstellen durch 10% FCS 

in PBS während einer Inkubation von 60 Minuten bei Raumtemperatur geblockt. 

Anschließend erfolgte das Auftragen des Standards und der Proben. Entsprechend 

dem Messbereich des ELISA wurden die zellfreien Überstände zuvor verdünnt. Die 

Bindung des Antigens an den Erstantikörper erfolgte über zwei Stunden bei 

Raumtemperatur. Danach wurden Standard und Proben abgekippt und nicht 

gebundene Moleküle durch fünfmaliges Waschen entfernt. Als nächstes wurde ein 

biotinylierter Zweitantikörper zusammen mit Streptavidin-gekoppelter-Meerrettich-

Peroxidase in jedes Well gegeben. Bei Raumtemperatur erfolgte über einen Zeitraum 

von einer Stunde die Bindung des Zweitantikörpers an das Antigen und des 

Peroxidase-Konjugates wiederum an den Zweitantikörper. Durch Ausbildung mehrerer 

Biotin-Streptavidin-Brücken pro Zweitantikörper wird eine Signalverstärkung und 

dadurch höhere Sensitivität erreicht. Überschüssiges, nicht gebundenes Konjugat 

wurde durch erneutes Waschen entfernt, die colorimetrisch detektierbare 

Substratlösung aus Tetramethylbenzidin hinzugegeben und 10 bis 30 Minuten im 

Dunkeln bei Raumtemperatur inkubiert. Durch Umsetzung von Tetramethylbenzidin 

durch die gebundene Peroxidase entsteht ein blauer Farbstoff. Die Enzymreaktion 

wurde durch Zugabe der Stopplösung (2 M H2SO4) beendet, wodurch ein 

Farbumschlag von blau nach gelb erfolgte, und schließlich die bis dahin gebildete 

Farbstoffmenge bei 450 nm im ELISA-Reader gemessen. Die Farbintensität ist 

proportional zur in der Probe enthaltenen Antigenmenge. Über die Standardreihe ist es 

möglich die Zytokin-Konzentration der einzelnen Proben zu berechnen.  
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2.3.4 Durchflusszytometrie 

2.3.4.1 Funktionsprinzip 

 

Die Durchflusszytometrie mittels eines Fluorescence-activated cell sorter ermöglicht 

die quantitative und qualitative Analyse von Zellen innerhalb kürzester Zeit. Mit dem 

verwendeten BD FACSCalibur® lassen sich bis zu 4000 Zellen pro Sekunde 

untersuchen. In einem Durchflusszytometer werden Zellen in einem laminaren 

Probenstrom einzeln an einem Laser vorbeigeleitet. Unterschiedliche Charakteristika 

der Zelle führen dabei zu Streuung und Reflexion der vom Laser ausgesandten 

Strahlung. Der gestreute und reflektierte Anteil der Strahlung wird nach Bündelung und 

Umlenkung mittels Linsen und Spiegel über Detektoren registriert. Die Streuung der 

Strahlung nach vorne, d. h. in Richtung des Laserstrahls, wird wesentlich durch die 

Zellgröße bestimmt und als Vorwärtsstreulicht (forward scatter, FSC) bezeichnet. Die in 

einem Winkel von 90° reflektierte Strahlung, auch Seitwärtsstreulicht (side scatter, 

SSC) genannt, ist vor allem von der Granularität der Zellen abhängig. Anhand von 

Größe und Granularität lassen sich Zellpopulationen des peripheren Blutes 

unterscheiden.  

 

Gleichzeitig lassen sich nach Markierung der Zellen mit Fluoreszenzfarbstoff-

gekoppelten Antikörpern Aussagen über die Expression bestimmter Antigene treffen. 

Fluoreszenzmarkierte Antikörper absorbieren einen Teil der Energie des Lichts einer 

bestimmten Wellenlänge, das vom Laser ausgesandt wird, und geben die 

aufgenommene Energie wiederum teilweise in Form von Licht einer definierten 

höheren Wellenlänge ab. Neben Antikörpern, die mit nur einem Fluorochrom gekoppelt 

sind, existieren Tandem-Konjugate, bei denen zwei Farbstoffe (wie zum Beispiel 

Phycoerythrin (PE) und Cyanin (Cy)5.5) an ein und denselben Antikörper gebunden 

sind. Hierbei absorbiert der erste Fluoreszenzfarbstoff (PE) einen Teil der 

Laserstrahlung. Das von diesem emittierte Licht führt sofort zur Anregung des 

benachbarten zweiten Farbstoffs (Cy5.5). Der zweite Farbstoff sendet wiederum Licht 

einer anderen bestimmten Wellenlänge aus, das detektiert wird. 

 

Über die Verwendung verschiedener Fluorochrome, die Licht unterschiedlicher 

Wellenlänge emittieren, können verschiedene Fluoreszenzfarbstoff-gekoppelte 

Antikörper und damit Antigene simultan gemessen werden. Mit dem hier eingesetzten  

BD FACSCalibur® ist die Messung von bis zu vier verschiedenen Farbstoffen über 

zwei Laser möglich. Das emittierte Licht wird über Linsen und Spiegel auf 
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unterschiedliche optische Filter gelenkt, wodurch die Detektion der emittierten 

Strahlung aufgetrennt nach bestimmten Wellenlängenbereichen möglich ist und 

quantitativ ausgewertet werden kann. Die Fluoreszenzintensität ist dabei zur Zahl der 

pro Zelle gebundenen Antikörper und damit der Expression der jeweiligen Antigene 

proportional.  

 

Da Zellen eine gewisse Eigenfluoreszenz aufweisen und fluoreszenzmarkierte 

Antikörper teilweise auch unspezifisch an Zellen binden, muss vor der Messung der 

Proben die Signalverstärkung der einzelnen Kanäle mittels Isotyp-Kontrollen eingestellt 

werden. Ein Problem der Mehrfarbenmessung ist, dass sich die Emissionsspektren der 

Fluorochrome teilweise überlappen, deshalb gelingt eine Auftrennung der 

verschiedenen Fluoreszenzintensitäten nicht vollständig. Mit Hilfe der sogenannten 

Kompensation lässt sich diese Überlappung korrigieren, indem von jedem 

Fluoreszenzsignal der Anteil subtrahiert wird, welcher durch Überlappung entsteht. 

Hierfür werden bei jedem Versuch vor der Messung mehrfach gefärbter Proben einfach 

gefärbte Kontrollproben gemessen, wodurch sichtbar wird wie stark ein bestimmtes 

Fluorochrom über andere Detektoren registriert wird. Die Messparameter werden 

entsprechend adjustiert. 

 

 

Fluoreszenzfarbstoff Absorptionsmaximum Emissionsmaximum 
Fluorescein-Isothiocyanat (FITC) 495 nm 519 nm  
Phycoerythrin (PE) 565 nm 578 nm 
Peridinin Chlorophyll Protein 
(PerCP) 

482 nm 678 nm 

Phycoerythrin/Cyanin 5.5 (PE/Cy5.5) 565 nm 695 nm 
Allophycocyanin (APC) 650 nm 660 nm 
 
Tabelle 3: Übersicht über die verwendeten Fluoreszenzfarbstoffe 
 

 

2.3.4.2 Markierung und Analyse von Oberflächenmolekülen 

 

Sehr leicht lassen sich die Oberflächeneigenschaften einer Zelle über die Markierung 

mit spezifischen fluoreszenzmarkierten Antikörpern im Durchflusszytometer detailliert 

analysieren. Für die Oberflächenmarkierung wurden 1 x 105 bis 5 x 105 Zellen pro 

FACS-Röhrchen, oder pro Well in einer 96-Well-Rundboden-Platte abzentrifugiert. 

Nach Dekandieren bzw. Abnahme der Überstände wurden die Zellen in je 50 µl FACS-

Puffer resuspendiert und die ausgewählten Fluorochrom-gekoppelten Antikörper 

hinzugegeben. Die Zellsuspension wurde bei Raumtemperatur im Dunkeln für zehn 
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Minuten inkubiert, anschließend zweimal mit FACS-Puffer gewaschen und in 0,2 ml 

FACS-Puffer resuspendiert. Erfolgte nicht die sofortige Messung im 

Durchflusszytometer wurden die Zellen nicht in FACS-Puffer, sondern in 0,2 ml PBS 

mit 1% PFA resuspendiert und dadurch fixiert. Die markierten, fixierten Zellen wurden 

bei 4°C im Dunkeln gelagert und innerhalb einer Woche gemessen.  

 

 

2.3.4.3 Bestimmung intrazellulärer Moleküle 

 

Zur Analyse intrazellulärer Moleküle wurden die Zellen nach der Markierung von 

Oberflächenmolekülen mit 100 µl 4% PFA in PBS bei Raumtemperatur im Dunkeln für 

15 Minuten fixiert und anschließend mit PBS gewaschen. Danach wurden 100 µl einer 

Permeabilisierungslösung (0,1% Saponin in PBS mit 1% BSA, pH = 7,4) hinzugefügt 

und erneut bei Raumtemperatur im Dunkeln für 15 Minuten inkubiert. Saponin führt zu 

einer reversiblen Permeabilisierung der Zellmembran. Nach Zentrifugation und 

Entfernen der Überstände wurden die Zellen in 50 µl der Permeabilisierungslösung 

resuspendiert, der für die intrazelluläre Färbung vorgesehenen FACS-Antikörper 

hinzugegeben und bei Raumtemperatur im Dunkeln für 15 Minuten inkubiert. 

Anschließend wurde zweimal mit 200 µl der Permeabilisierungslösung gewaschen. Die 

Zellen wurden in 200 µl PBS resuspendiert und sofort durchflusszytometrisch 

gemessen. 

 

 

2.4 Molekularbiologische Methoden 

2.4.1 Isolation von mRNA 

 

Zur Isolation von mRNA wurde das MagNA Pure LC mRNA Isolation Kit I von Roche 

Diagnostics verwendet. Nach Stimulations-Experimenten wurden die Zellen in 1,5 ml 

Eppis überführt, zentrifugiert und der Überstand vorsichtig abgesaugt. Anschließend 

wurden die Zellen mit 300 µl 0,9% NaCl gewaschen, das Zellpellet in 300 µl Lyse-

Puffer resuspendiert, durch dreimaliges Vortexen über jeweils 10 Sekunden 

homogenisiert und bei -80°C bis zur weiteren Bearbeitung eingefroren. Der Lyse-Puffer 

enthält Guanidinisothiocyanat, das Zellen lysiert und RNAsen inaktiviert. Die 

Inaktivierung der RNAsen erfolgt somit gleichzeitig mit der Zelllyse. Aus der so 

isolierten Gesamt-RNA wurde die mRNA, die darin einen Anteil von etwa 2% 
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ausmacht, mit dem MagNA Pure LC-Gerät entsprechend dem mRNA-I-Standard-

Protokoll extrahiert.  

 

 

2.4.2 Reverse Transkription und cDNA-Synthese 

 

Prinzip der Reversen Transkription und cDNA-Synthese 

RNA kann mithilfe von reversen Transkriptasen in einen komplementären DNA-Strang 

umgeschrieben werden. Anschließend kann die cDNA über eine PCR amplifiziert 

werden. Prinzipiell können Reverse Transkription (RT) und PCR in einem 

Reaktionsgefäß direkt nacheinander erfolgen, oder es wird zuerst die cDNA generiert 

und in einer nachfolgenden PCR eine Probe der RT-Reaktion als Template eingesetzt.  

In der vorliegenden Arbeit wurde letztere Variante angewandt. Über die Kopplung von 

RT und PCR kann die Sensitivität des Nachweises von RNA erheblich gesteigert 

werden, seltene Transkripte einer Zelle können so analysiert werden.  

 

Bei der RT werden die Startermoleküle (Primer) nach Bindung an die RNA-Matrize an 

ihrem 3´-OH-Ende durch die reverse Transkriptase komplementär zur RNA verlängert 

und ein DNA-Einzelstrang synthetisiert. In Abhängigkeit der eingesetzten Primer lassen 

sich sämtliche, bestimmte Subtypen, oder spezifische RNA-Moleküle in DNA 

umschreiben. Mithilfe von Oligo(dT) als Primer, der am Poly(A)-Schwanz am 3´-Ende 

der eukaryotischen mRNA hybridisiert, kann aus der Gesamtmenge an RNA gezielt 

mRNA in cDNA umgeschrieben werden. Ein anschließender Abbau der RNA durch 

eine RNAse setzt den cDNA-Einzelstrang frei.  

 

Durchführung 

Für die RT wurde das First Strand cDNA Synthesis Kit von Roche Diagnostics 

eingesetzt. Der First-Strand-Reaktionsmix enthielt folgende Reagenzien - angegeben 

in der Endkonzentration: 

 

10 mM Tris 
50 mM KCl 
5 mM MgCl2 
1 mM deoxynucleotide triphosphate (dNTP) mix 
0,04 A260 U Oligo-p(dT)15 primer 
50 U RNAse-Inhibitor 
20 U Avian Myeloblastosis Virus Reverse Transkriptase  
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8,2 µl der isolierten mRNA wurden mit 11,8 µl des Reaktionsmixes in einem 

Thermocycler für 10 Minuten bei 25°C inkubiert und anschließend für 60 Minuten auf 

42°C erhitzt. Danach wurde der Reaktionsansatz für 5 Minuten bei 99°C inkubiert, um 

Avian Myeloblastosis Virus Reverse Transkriptase zu denaturieren und deren 

Interferenz mit der nachfolgenden PCR auszuschließen. Der die cDNA enthaltende 

Reaktionsmix wurde mit destilliertem Wasser auf ein Endvolumen von 500 µl gebracht 

und bis zur PCR bei -20°C gelagert. 

 

 

2.4.3 Polymerase-Kettenreaktion 

2.4.3.1 Allgemeines Funktionsprinzip 

 

Mithilfe der PCR können von bestimmten Nukleotidsequenzen millionenfache Kopien 

innerhalb kurzer Zeit hergestellt werden. Damit ist es möglich auch geringste Mengen 

eines spezifischen DNA-Abschnitts zu amplifizieren und anschließend zu analysieren. 

Der spezifische DNA-Abschnitt dient hierbei als Matrize (Template). Eine hitzestabile 

DNA-Polymerase synthetisiert ausgehend von Oligonukleotid-Primern, die an die 

beiden Enden der zu amplifizierenden DNA-Sequenz binden, an dem als Einzelstrang 

vorliegenden DNA-Abschnitt den Zweitstrang und damit einen neuen DNA-

Doppelstrang. Die PCR durchläuft drei Schritte: 

 

1.)  thermische Denaturierung der DNA-Matrize, Aufschmelzen doppelsträngiger 

DNA in die beiden Einzelstränge (Denaturierung),  

2.)  Hybridisierung der Primer an ihre jeweilige spezifische Sequenz der DNA-

Einzelstränge (Annealing), 

3.)  von den Primern ausgehende Synthese der komplementären DNA durch die 

DNA-Polymerase (Elongation).  

 

Der neusynthetisierte Doppelstrang kann in einem nachfolgenden Zyklus wiederum 

denaturiert werden und seine beiden Einzelstränge als Matrize dienen. Durch 

mehrfache Wiederholung dieses Ablaufs ist daher eine exponentielle Vermehrung 

einer zwischen den beiden Primern gelegenen Nukleotidsequenz möglich.  

 

In der vorliegenden Arbeit wurde das LightCycler FastStart DNA SYBR Green I Kit von 

Roche Diagnostics nach folgendem Ansatz für die PCR Reaktion verwendet: 
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Reagenz Volumen Endkonzentration 
cDNA 10 µl  
dATP 
dCTP 
dGTP 
dUTP 

  
Primer sense 1 µl 0,5 µM 
Primer antisense 1 µl 0,5 µM 
DNA-Polymerase 2 µl 2 U 
PCR-Puffer 2 µl  
MgCl2 2 µl 2 mM 
SYBR Green I 2 µl  
H2O 6 µl  
 

 

Hot start-Verfahren 

Bei niedrigeren Temperaturen, wie während der Herstellung des Reaktionsansatzes 

und in der Aufwärmphase der PCR, können die Primer auch an nicht-spezifische DNA-

Abschnitte binden und untereinander Primer-Dimere bilden. Da die Taq-DNA-

Polymerase bereits bei Raumtemperatur aktiv ist, kann es zu einer Verlängerung 

dieser unspezifisch hybridisierten Primer oder der Primer-Dimere kommen. Dadurch 

werden nicht-spezifische, die PCR ev. störende Nebenprodukte gebildet. Dies kann 

durch Anwendung einer Hot start-PCR reduziert bzw. verhindert und die Spezifität der 

PCR dadurch gesteigert werden. Hierbei ist die DNA-Polymerase erst bei höheren 

Temperaturen, wenn eine spezifische Primer-Bindung erfolgt, aktiv. Prinzipiell 

existieren dafür unterschiedliche Ansätze. Die Taq-DNA-Polymerase kann unter 

anderem erst nach der initialen Aufwärmphase des Thermocyclers hinzugefügt oder 

ihre Aktivität durch hitzelabile Cofaktoren inhibiert werden, so dass sie erst nach 

thermischer Denaturierung der Inhibitoren aktiv wird. Das letztere Verfahren wurde in 

dieser Arbeit mit der FastStart Taq-DNA-Polymerase von Roche Diagnostics 

angewandt. Vor jeder PCR wurde eine Denaturierungsphase bei 95°C über zwei 

Minuten durchlaufen, um eine optimale Aktivierung der Polymerase zu erreichen. 

 

 

Touch-down-Verfahren 

Das Touch-down-Verfahren stellt eine weitere Optimierung der PCR dar, das 

Fehlhybridisierungen der Primer zu Beginn einer PCR vermindert. Die Anlagerung der 

Primer an die DNA erfolgt, wie oben beschrieben, in der Annealing-Phase. Die Stärke 

und Spezifität der Bindung der Primer an die DNA ist temperaturabhängig. Bei 

niedrigeren Temperaturen in dieser Phase ist die Anlagerung der Primer zwar 

gesteigert, jedoch weniger spezifisch. Da sich Fehlhybridisierungen insbesondere in 

den ersten Zyklen der PCR auf das quantitative Ergebnis der PCR auswirken, ist es 

je 200 µM je 2 µl 
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vorteilhaft am Anfang für eine äußerst spezifische Primer-Bindung zu sorgen. Dafür 

wird die Annealing-Temperatur zu Beginn der PCR höher eingestellt und im Verlauf 

schrittweise auf die optimale Anlagerungstemperatur erniedrigt. Die Anlagerung der 

Primer und damit die Amplifikation der DNA-Sequenz ist dadurch zu Beginn der PCR 

zwar quantitativ geringer, dafür allerdings hochspezifisch. In der vorliegenden Arbeit 

wurde die Annealing-Temperatur zu Beginn 10°C höher als das Temperaturoptimum 

der Primer-Anlagerung eingestellt und dann in 0,5°C Schritten über 20 Zyklen auf die 

eigentlich optimale Annealing-Temperatur gesenkt. 

 

 

2.4.3.2 Real-time-PCR 

 

Die Real-time-PCR ermöglicht es aus der Menge an amplifiziertem PCR-Produkt die 

Ausgangsmenge einer DNA-Matrize zu ermitteln. Nach zuvor durchgeführter Reverser 

Transkription kann außerdem auf eine spezifische RNA-Menge zurückgeschlossen 

werden und somit beispielsweise die mRNA-Expression eines Proteins bestimmt 

werden.  

 

Die Menge der gebildeten PCR-Produkte kann in speziellen Thermocyclern, wie dem 

hier eingesetzten Light Cycler, in Echtzeit (real time) verfolgt werden. Hierfür werden 

sequenzspezifische, mit Fluoreszenzfarbstoffen markierte Sondenmoleküle, oder DNA-

bindende Fluoreszenzfarbstoffe, wie das in dieser Arbeit verwendete SYBR Green I, 

eingesetzt, die nach Anregung mit einem Laser ein Fluoreszenz-Signal emittieren. 

SYBR Green I lagert sich in die kleine Furche doppelsträngiger DNA ein, wodurch die 

Fluoreszenz dieses Farbstoffs ansteigt. Die Fluoreszenzintensität ist dabei der Menge 

doppelsträngiger DNA proportional. Nach jeder Elongationsphase der PCR wird die 

Fluoreszenz der Proben im Light Cycler gemessen und gegen die Zykluszahl 

aufgetragen. Hierbei muss bedacht werden, dass nur in der Phase der PCR in der ein 

exponentieller Anstieg des PCR-Produktes erfolgt ein nachvollziehbarer 

Zusammenhang zwischen Produkt- und Ausgangsmenge besteht, während zu Beginn 

und gegen Ende nicht auf die Menge der eingesetzten DNA-Matrize geschlossen 

werden kann.  

  

Unter Anwendung eines externen Standards kann die absolute Menge der  

eingesetzten DNA über die in der exponentiellen Phase der PCR gemessenen 

Fluoreszenzen ermittelt werden. Daneben können die Fluoreszenzintensitäten der 

Zielsequenz mit denen einer Referenzsequenz verglichen werden. Als 



 54 

Referenzsequenz bei Genexpressions-Analysen dienen Gene, die unter den 

gegebenen experimentellen Bedingungen in ihrer Expression unverändert sind. Meist 

werden sogenannte housekeeping-Gene, wie β-Aktin oder Cyclophilin B, verwendet. 

Ziel- und Referenzsequenz werden aus der gleichen Nukleinsäureprobe amplifiziert. 

Damit kann die Menge der Ziel-DNA relativ zur Referenz-DNA angegeben werden. Ist 

zudem die absolute Kopienzahl der Referenzsequenz bekannt, lässt sich die 

ursprüngliche Kopienzahl der Zielsequenz in der untersuchten Probe ermitteln.  

 

In der vorliegenden Arbeit wurde nach vorausgegangener Reverser Transkription 

mittels Real-time-PCR die mRNA-Expression einiger Proteine bestimmt. Um eine 

Kontamination der mRNA mit genomischer DNA und dadurch fälschlich erhöht 

gemessene Expressionslevel auszuschließen, wurde bei mehreren zufälligen 

Stichproben das Umschreiben der mRNA in cDNA mittels RT unterlassen und direkt 

die PCR durchgeführt. Da es in keiner dieser Proben zu einer Amplifikation des 

jeweiligen Zielgens kam, konnte eine Verunreinigung mit genomischer DNA 

ausgeschlossen werden. Alle Proben wurden in zwei voneinander unabhängigen 

Reaktionsansätzen gemessen und die entsprechenden Mittelwerte berechnet. Die 

Kopienzahlen der jeweiligen Zielgene wurden auf die durchschnittliche Kopienzahl der 

beiden housekeeping-Gene β-Aktin und Cyclophilin B normalisiert. Die Kopienzahlen 

sind angegeben als Anzahl der angepassten Transkripte pro µl cDNA. Sämtliche 

Primer wurden von der Fa. Search-LC GmbH (Heidelberg, D) bezogen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 55 

2.5 Statistik 

 

Die Ergebnisse dieser Arbeit sind als arithmetisches Mittel dargestellt. Die Streuung 

der einzelnen Werte ist als Standardfehler der Mittelwerte, standard error of mean 

(SEM), angegeben. Zur Berechnung der statistischen Signifikanz der Unterschiede 

bestimmter Ergebnisse wurde der zweiseitige Student-t-Test für gepaarte Stichproben 

angewandt. Bei p-Werten < 0,05 wurde statistische Signifikanz angenommen und 

diese mit * gekennzeichnet. p-Werte < 0,001 wurden mit ** markiert. 

 

 

2.6 Software 

 

• Zur Auswertung der Ergebnisse der Durchflusszytometrie wurden die 

Programme CellQuest 4.0 (BD PharMingen, D) und FlowJo (Tree Star, USA) 

verwendet. 

• Für die rechnerische Auswertung und die graphische Darstellung wurden die 

Programme Microsoft Excel, Microsoft PowerPoint (MicrosoftCorporation, USA) 

und Adobe Illustrator (Adobe Systems, USA) eingesetzt. 
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3 Ergebnisse 

 

3.1 Isolation primärer humaner CD14++CD16- Monozyten 

 

Wie bereits einleitend beschrieben sind Monozyten keine homogene Zellpopulation, 

sondern bestehen aus unterschiedlichen Subpopulationen, die sich in Phänotyp und 

Funktion unterscheiden. 1988 identifizierte Ziegler-Heitbrock anhand der 

Oberflächenmarker CD14 und CD16 zwei unterschiedliche Monozytenpopulationen, 

sogenannte CD14++CD16- und CD14+CD16+ Monozyten 122. In der vorliegenden Arbeit 

wurde die Funktion der CD14++CD16- Monozyten untersucht, welche 90 bis 95% der 

Monozyten eines gesunden Erwachsenen umfassen. Relevant ist die Aufreinigung 

einzelner Monozytenpopulationen insbesondere deshalb, da sich die Zytokin-

Produktion beider Zelltypen unterscheidet. So produzieren CD14+CD16+ Monozyten 

mehr TNF und IL-12 und weniger IL-10 im Vergleich zu CD14++CD16- Monozyten 128. 

 

Zur Gewinnung hochaufgereinigter ruhender CD14++CD16- Monozyten wurde eine 

Mehrschritt-Negativ-Selektion aus humanen peripheren Blutzellen etabliert. Nach 

Isolation von PBMCs erfolgte die Aufreinigung der Monozyten mit Hilfe der MACS-

Technologie, wie im Methodenteil ausführlich beschrieben und schematisch in  

Abbildung 2 dargestellt. Mittels dieser Methode konnte eine Reinheit von 96 ± 2% 

erzielt werden. CD16+ Monozyten waren in der Zellpräparation nicht nachweisbar. 

Wichtig ist dabei anzumerken, dass eine Kontamination durch T- und NK-Zellen 

weitestgehend ausgeschlossen werden konnte, da in stimulierten Monozyten-

Präparationen IFNγ unterhalb der Nachweisbarkeitsgrenze war (Daten nicht gezeigt). 

Um eine Kontamination durch Endotoxin zu vermeiden, wurden alle Experimente mit 

autologem Serum anstelle von kommerziell erhältlichen Fremdseren durchgeführt.  
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Abbildung 2: Aufreinigung primärer humaner Monozyten aus PBMCs 
Unangetastete Monozyten wurden durch Depletion von PDCs und T-Zellen mittels                
anti-BDCA-4- und anti-CD3-MicroBeads und nachfolgender Depletion von B-Lymphozyten, 
mDCs, NK-Zellen und CD16+ Monozyten mittels anti-CD19-, anti-BDCA-1-, anti-CD56- und  
anti-CD16-MicroBeads isoliert. Die auf diese Weise erhaltenen Monozyten waren CD14++CD16- 
und hatten eine Reinheit von 96 ± 2%.  
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3.2 Funktionelle Toll-like-Rezeptor-Expression primärer 

CD14++CD16- Monozyten 

 

Für die Analyse der Zytokin-Sekretion nach PRR-Stimulation ist die Kenntnis der 

Expression dieser Rezeptoren wesentlich. Zahlreiche Studien hatten die TLR-

Expression humaner Monozyten im Vorfeld dieser Arbeit untersucht 68-74. Allerdings 

waren diesbezügliche Unterschiede einzelner Monozyten-Subpopulationen ungeklärt. 

Daher wurde zunächst die mRNA-Expression von TLRs und NOD-Proteinen in 

isolierten primären CD14++CD16- Monozyten bestimmt.  

 

Wenn im Folgenden von Monozyten die Rede ist, sind stets CD14++CD16- Monozyten 

gemeint, außer es wird speziell auf eine andere Monozyten-Subpopulation 

hingewiesen. 

 

Wie in Abbildung 3 zu erkennen, exprimierten Monozyten hohe Level an TLR2, 

intermediäre Level an TLR4 und NOD2, niedrige Level an TLR8, jedoch nicht NOD1, 

TLR3, oder TLR7. Da zuvor gezeigt worden war, dass Typ-I-Interferon die Synthese 

der TLR7-mRNA in humanen B-Lymphozyten förderte 76, wurde die Induzierbarkeit des 

TLR7-Gens durch Typ-I-Interferon in Monozyten untersucht. Im Gegensatz zu B-Zellen 

führte jedoch weder IFNα noch IFNβ zu einer gesteigerten Expression von TLR7, oder 

anderer PRRs in Monozyten. Demgegenüber wurde MyD88, ein wohlbekanntes 

Interferon-induzierbares Gen, verstärkt exprimiert und diente daher als Positiv-

Kontrolle. 
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Abbildung 3: PRR-Expression humaner CD14++CD16- Monozyten 
Aufgereinigte Monozyten (1,25 x 106/ml) wurden in Medium mit 2% autologem Serum ohne und 
mit IFNα (100 U/ml) bzw. IFNβ (100 U/ml) über drei Stunden inkubiert. Anschließend wurde die 
mRNA extrahiert und die PRR-mRNA-Expression mittels quantitativer Real-time-RT-PCR 
bestimmt. Die dargestellte PRR-Kopienzahl wurde normalisiert auf die durchschnittliche 
Expression von β-Aktin und Cyclophilin B und als Anzahl der angepassten Transkripte pro       
µl cDNA angegeben. Aus den erhaltenen Ergebnissen wurde jeweils der Mittelwert gebildet und 
der SEM berechnet. Gezeigt werden Daten aus fünf unabhängigen Experimenten.  
 

 

Zur Überprüfung der Funktionsfähigkeit der exprimierten TLRs wurden Monozyten als 

nächstes mit bekannten TLR-Agonisten stimuliert. Die Monozyten-Stimulation wurde 

mit dem TLR4-Agonisten LPS, dem TLR7/8-Liganden R848 und dem selektiven TLR7-

Liganden Loxoribine durchgeführt. Nach einer Inkubationszeit von 24 Stunden wurde 

die Expression von HLA-DR und CD80 auf der Zelloberfläche mittels FACS gemessen.  

 

Trotz der niedrigen Expression von TLR8-mRNA war R848 ein potenter Aktivator 

humaner Monozyten und von vergleichbarer Effektivität wie LPS. Im Gegensatz dazu 

konnte Loxoribine weder die Expression von HLA-DR, noch von CD80 induzieren.  

 

Es war gezeigt worden, dass Typ-I-Interferon die Sensitivität des TLR7 in B-Zellen 

stark erhöhte 76. Daher stimulierten wir Monozyten mit und ohne IFNα. Es zeigte sich 

allerdings, dass Typ-I-Interferon die Sensitivität von Monozyten gegenüber R848 und 

Loxoribine im Unterschied zu B-Lymphozyten nicht steigerte. In Gegenwart von 

Loxoribine war die Expression von HLA-DR und CD80 leicht unter der der Kontrolle 

ohne Zugabe eines Stimulus. Eine mögliche Erklärung hierfür wäre ein TLR-

unabhängiger toxischer Effekt von Loxoribine auf Monozyten.  
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Abbildung 4: Expression von Aktivierungsmarkern humaner Monozyten nach 
TLR-Stimulation 
Monozyten (1,25 x 106/ml) wurden mit LPS (1 µg/ml), R848 (2,5 µg/ml), oder Loxoribine        
(0,5 mM) ohne oder in Gegenwart von IFNα (100 U/ml) inkubiert. Die Oberflächen-Expression 
von HLA-DR und CD80 wurde nach 24 Stunden per FACS-Analyse gemessen. Die 
unausgefüllten Histogramme entsprechen den unstimulierten Kontrollen. Ein repräsentatives 
von mindestens drei Experimenten ist abgebildet. 
 

 

Ebenso wie die Expression von HLA-DR und CD80 wurde die Sekretion von IL-12p70, 

IL-12p40 und TNF nicht durch die Zugabe von Typ-I-Interferon beeinflusst     

(Abbildung 10). 

 

Zusammengefasst zeigen diese Daten, dass Monozyten NOD2, TLR2, TLR4 und TLR8 

exprimieren und, dass TLR4 und TLR8 im Gegensatz zu TLR7 in humanen primären 

CD14++CD16- Monozyten funktionell sind. Typ-I-Interferon hatte keinen Einfluss auf die 

untersuchten PRR-Expressionslevel. 
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3.3 Zytokin-Produktion Pattern-recognition-Rezeptor-

stimulierter Monozyten 

 

Etwa 4 bis 6% der Leukozyten des peripheren Blutes sind Monozyten. Aufgrund dieser 

relativ hohen Anzahl sind Monozyten eine bedeutende Quelle von Zytokinen im 

menschlichen Organismus, die sowohl angeborene, als auch adaptive Immunität 

beeinflussen. Nach Analyse der PRR-Expression und der Funktionalität der TLRs in 

Monozyten wurde daher die Zytokin-Produktion PRR-stimulierter Monozyten 

untersucht. 

 

 

3.3.1 Synergistische Wirkung von TLR4- und TLR8-Agonisten auf die 

Induktion von IL-12p70 

 

Kürzlich veröffentlichte Daten lassen vermuten, dass TLR4 und TLR7/8 in der 

Aktivierung muriner und humaner DCs synergistisch wirken 213, 227. Da Monozyten 

TLR8 jedoch nicht TLR7 exprimieren, wurden diese Zellen ausgewählt, um einen 

möglichen spezifischen Synergismus zwischen TLR4 und TLR8 untersuchen zu 

können. In Monozyten ist R848 ein selektiver TLR8-Stimulus, da diese keinen 

funktionellen TLR7 aufweisen. 

 

Es zeigte sich, dass ausschließlich die Kombination von TLR4- und TLR8-Liganden die 

Produktion von IL-12p70 signifikant induzieren konnte (Abbildung 5). Demgegenüber 

wurden TNF und IL-12p40 auch nach Stimulation einzelner TLRs produziert.  
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Abbildung 5: TLR-induzierte Zytokin-Produktion humaner Monozyten 
Aufgereinigte Monozyten (1,25 x 106/ml) wurden mit LPS (1 µg/ml), R848 (2,5 µg/ml), oder LPS 
(1 µg/ml) plus R848 (2,5 µg/ml) für 24 Stunden stimuliert. Die IL-12p70- (A, B), IL-12p40- (C) 
und TNF- (D) Konzentrationen wurden in den Überständen mittels ELISA gemessen. Gezeigt 
sind die Mittelwerte ± SEM der Daten aus neun unabhängigen Experimenten. Die Analyse der 
IL-12p70-Produktion offenbarte eine deutliche Variabilität zwischen unterschiedlichen 
Spendern. Die Produktion von IL-12p70 nach alleiniger Stimulation mit R848 war jedoch nur bei 
einem Spender detektierbar (B). **, p = 0,001. 
 

 

Zusammengefasst lassen diese Daten vermuten, dass die IL-12p70-Produktion 

primärer humaner Monozyten unter gemeinsamer Kontrolle von TLR4 und TLR8 steht. 

Die Produktion anderer proinflammatorischer Zytokine, wie TNF und IL-12p40, bedarf 

hingegen nicht dieses kombinatorischen Codes. 
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3.3.2 Spezifität der synergistischen Wirkung von TLR4 und TLR8 in 

Bezug auf die IL-12p70-Produktion primärer Monozyten 

 

2004 hatte Karlsson gezeigt, dass humane Monozyten, aufgereinigt mittels Positiv-

Selektion über die Expression von CD14, in Gegenwart von UV-inaktivierten 

grampositiven Bakterien (Lactobacillus plantarum) höhere Level an IL-12p70 

produzierten als nach Stimulation mit UV-inaktivierten gramnegativen Bakterien 

(Escherichia coli bzw. Veillonella parvula) 228. Da nur gramnegative Bakterien LPS 

enthalten, stellte sich die Frage ob PAMPs assoziiert mit weiteren Bakterien-Arten, 

insbesondere grampositiven Bakterien, ebenso wie LPS IL-12p70 induzieren können. 

Primäre Monozyten wurden deshalb mit den TLR2-aktivierenden bakteriellen 

Lipopeptiden Pam3CSK4 und MALP-2, sowie dem NOD2-Liganden MDP alleine, oder 

in Kombination mit LPS bzw. R848 stimuliert. Nach 24 Stunden wurden die Überstände 

abgenommen und TNF, IL-12p40 und IL-12p70 via ELISA gemessen. 

 

Monozyten produzierten TNF und IL-12p40 in Antwort auf Pam3CSK4 bzw. MALP-2, 

ebenso wie nach alleiniger LPS- oder R848-Stimulation. Es zeigte sich jedoch keine 

synergistische Wirkung dieser TLR2-Liganden mit LPS oder R848 in Hinblick auf die 

Induktion von TNF und IL-12p40. Bedeutender ist allerdings, dass keine der 

Kombinationen der TLR2-Liganden mit LPS oder R848 die Produktion von IL-12p70 

induzieren konnte. Darüber hinaus war kein Synergismus des NOD2-Agonisten mit 

LPS oder R848 nachzuweisen. Der TLR3-Ligand Poly I:C vermochte weder TNF noch 

IL-12p40 zu induzieren (Daten nicht gezeigt). Dies ist in Übereinstimmung mit der 

Feststellung, dass primäre Monozyten keine TLR3-mRNA exprimieren (Abbildung 3). 

Entsprechend dem Fehlen eines funktionellen TLR7 in primären humanen Monozyten, 

induzierte der selektive TLR7-Agonist Loxoribine weder TNF, IL-12p40, noch die 

Produktion von IL-12p70 in Kombination mit LPS (Abbildung 6). 

 

Zahlreiche vorhergehende Arbeiten hatten gezeigt, dass T-Lymphozyten die IL-12p70-

Produktion über Zytokine und Oberflächenmoleküle, insbesondere CD40L, in 

Phagozyten und APCs förderten 199, 200. Aus diesem Grund wurden Monozyten mit   

UV-bestrahlten BHK-Zellen, die scheintransfiziert (BHK-pTCF) bzw. mit CD40L 

transfiziert (BHK-CD40L) worden waren, alleine oder in Kombination mit LPS oder 

R848 über 24 Stunden co-inkubiert. Erwartungsgemäß induzierte R848 in Kombination 

mit BHK-CD40L die Sekretion von IL-12p70 (Abbildung 6). 
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Zusammengefasst zeigen diese Daten, dass die IL-12p70-Produktion nach PRR-

Stimulation in primären humanen Monozyten spezifisch ist für die synergistische 

Wirkung des TLR4-Agonisten LPS mit dem TLR8-Liganden R848. 

 

 

 

Abbildung 6: Zytokin-Produktion PRR-stimulierter Monozyten 
Aufgereinigte Monozyten (1,25 x 106/ml) wurden über 24 Stunden mit den aufgeführten PRR-
Liganden stimuliert. Die Konzentrationen von IL-12p70, IL-12p40 und TNF wurden in den 
Überständen via ELISA gemessen. Die Mittelwerte ± SEM aus vier unabhängigen 
Experimenten sind zusammengefasst dargestellt. Die Zellen wurden mit LPS (1 µg/ml), R848 
(2,5 µg/ml), LPS plus R848, Loxoribine (0,5 mM), Loxoribine plus LPS, sowie Pam3CSK4        
(1 µg/ml), MALP-2 (1 µg/ml), MDP (0,1 µg/ml), oder UV-bestrahlten BHK-CD40L- bzw. BHK-
pTCF-Zellen alleine, oder in Kombination mit LPS bzw. R848 inkubiert. Die Werte einzelner 
Spender wurden aufgrund hoher interindividueller Variabilität normalisiert, wobei die Menge der 
jeweiligen Zytokin-Sekretion nach Stimulation mit LPS plus R848 als 100% definiert wurde. 
100% entsprechen 56 ± 54 pg/ml IL-12p70 (oberes Diagramm), 1869 ± 804 pg/ml IL-12p40 
(mittleres Diagramm) und 9686 ± 916 pg/ml TNF (unteres Diagramm).  
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3.4 Pattern-recognition-Rezeptor-Expression und Zytokin-

Produktion primärer myeloider dendritischer Zellen 

 

Bereits im Vorfeld dieser Arbeit hatten sich Unterschiede in der PRR-Expression und 

der Zytokin-Sekretion humaner Monozyten und mDCs gezeigt 68, 69. Es stellte sich 

daher die Frage, ob die IL-12p70-Produktion nach PRR-Stimulation in mDCs ähnlich 

streng reguliert würde und des identischen kombinatorischen Codes bedurfte wie in 

primären humanen Monozyten. Aus diesem Grund wurden als nächstes die PRR-

Expression und die Zytokin-Sekretion in primären mDCs des peripheren Blutes 

untersucht.  

 

Zur Analyse der Expression der PRRs primärer mDCs wurden diese vor der mRNA-

Extraktion ohne und mit IFNα für drei Stunden inkubiert - entsprechend der mRNA-

Analyse von Monozyten. Mittels quantitativer Real-time-RT-PCR wurden die jeweiligen 

mRNA-Mengen anschließend bestimmt. Wie in Abbildung 7 dargestellt, exprimierten 

mDCs minimale Level an NOD1, sehr hohe Level an NOD2, sowie intermediäre Level 

an TLR2, TLR3, TLR4 und TLR8. Im Unterschied zu Monozyten zeigte sich, dass 

TLR7 verstärkt exprimiert wurde, wenn mDCs mit IFNα über drei Stunden inkubiert 

wurden.  
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Abbildung 7: PRR-Expression humaner mDCs 
mDCs wurden mittels anti-BDCA-1-MicroBeads aus PBMCs isoliert. Vor der mRNA-Isolation 
wurden mDCs (5 x 105 Zellen/ml) ohne oder mit IFNα (100 U/ml) für drei Stunden inkubiert. Die 
PRR-mRNA-Expression wurde durch quantitative Real-time-RT-PCR ermittelt. Die Ergebnisse 
aus vier unabhängigen Experimenten sind dargestellt als Mittelwerte ± SEM der angepassten 
Kopienzahl pro µl cDNA, normalisiert auf die durchschnittliche Kopienzahl der housekeeping-
Gene β-Aktin und Cyclophilin B. 
 

 

Da IFNα die Expression von TLR7 in mDCs verstärkte, wurde vermutet, dass selektive 

TLR7-Agonisten in Gegenwart von IFNα funktionell aktiv sind. Daher wurden primäre 

mDCs für die Bestimmung der Zytokin-Sekretion nach PRR-Stimulation über              

24 Stunden in Gegenwart des selektiven TLR7-Liganden Loxoribine ohne und mit IFNα 

inkubiert. Per ELISA wurden die Konzentrationen von IL-12p70, IL-12p40 und TNF in 

den Überständen ermittelt.  

 

Loxoribine konnte, wenn die TLR7-Expression durch IFNα verstärkt wurde, in 

Kombination mit LPS IL-12p70 induzieren. Die TLR2-Liganden Pam3CSK4 und  

MALP-2, sowie der NOD2-Agonist MDP induzierten weder TNF, IL-12p40, noch        

IL-12p70 in mDCs. Der TLR7/8-Ligand R848 induzierte die Produktion von IL-12p70 in 

Kombination mit LPS oder Poly I:C, jedoch nicht mit den TLR2-Agonisten Pam3CSK4 

und MALP-2. Interessanterweise war der TLR3-Ligand Poly I:C bereits alleine 

ausreichend, um IL-12p70 in mDCs zu induzieren, während Poly I:C in primären 

Monozyten, die kein TLR3 aufweisen, nicht funktionell war (TNF-Produktion (pg/ml) in 

Monozyten mit Poly I:C: 0; mit 1 µg/ml LPS: 3961; Mittelwert aus vier unabhängigen 

Experimenten). 
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Abbildung 8: Zytokin-Produktion PRR-stimulierter humaner primärer mDCs 
Aufgereinigte mDCs (2,5 x 105 Zellen/ml) wurden mit IFNα (1000 U/ml), LPS (1 µg/ml), 
Loxoribine (0,5 mM), R848 (2,5 µg/ml), Pam3CSK4 (1 µg/ml), MALP-2 (1 µg/ml), MDP          
(0,1 µg/ml) und Poly I:C (100 µg/ml), oder den angegebenen Kombinationen dieser Substanzen 
stimuliert. Nach 24 Stunden wurden IL-12p70 (oberes Diagramm), IL-12p40 (mittleres 
Diagramm) und TNF (unteres Diagramm) in den Überständen mittels ELISA gemessen. Die 
Ergebnisse fünf unterschiedlicher Spender sind als Mittelwerte ± SEM angegeben. *, p = 0,01; 
**, p = 0,0005. 
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Zusammengefasst zeigen diese Daten, dass Typ-I-Interferon in mDCs die Expression 

von TLR7 induziert und TLR7 in Gegenwart von IFNα funktionell aktiv ist. Im 

Gegensatz zu Monozyten exprimieren mDCs TLR3. In mDCs konnte der TLR3-Ligand 

Poly I:C ohne weiteren Stimulus die Produktion von IL-12p70 induzieren. 

Demgegenüber konnte der TLR7/8-Ligand R848 weder in Monozyten, noch in mDCs 

alleine, d. h. ohne simultane Stimulation mit einem anderen TLR-Liganden, die          

IL-12p70-Sekretion induzieren.  

 

 

3.5 IL-12p70-Produktion durch in vitro-generierte myeloide 

dendritische Zellen  

 

Monozyten wandern nach einigen Tagen in der Blutzirkulation in unterschiedliche 

Gewebe ein und differenzieren unter bestimmten Milieufaktoren in dendritische Zellen. 

Dendritische Zellen lassen sich auch in vitro aus Monozyten in Gegenwart bestimmter 

Zytokine generieren 141, 152. Die in vitro-Generierung von DCs wird heute von 

zahlreichen Wissenschaftlern angewandt, um große Mengen an DCs zu erhalten, da 

die Isolation primärer DCs aus dem peripheren Blut äußerst aufwendig ist und dabei 

nur relativ wenig Zellen gewonnen werden können. Während Monozyten in 

dendritische Zellen differenzieren verändert sich ihre PRR-Expression. Im Jahr 2000 

hatte Hochrein gezeigt, dass IL-4 in Gegenwart von GM-CSF, wie zur                       

DC-Differenzierung eingesetzt, die IL-12p70-Produktion in DCs förderte 201. 

 

Daraus ergab sich die Vermutung, dass sich mittels unterschiedlicher Faktoren 

generierte MoDCs in der Zytokin-Produktion unterscheiden. Aus diesem Grund wurden 

mittels GM-CSF plus IL-4 generierte MoDCs mit MoDCs generiert durch GM-CSF plus 

Typ-I-Interferon verglichen. Dabei zeigte sich ein bemerkenswerter Unterschied. 

Obwohl MoDCs generiert in Gegenwart von GM-CSF und IL-4 leicht IL-12p70 in 

Antwort auf LPS oder R848 alleine produzierten, bedurften MoDCs generiert mit     

GM-CSF und IFNα (Daten für GM-CSF und IFNβ nicht gezeigt) der gleichzeitigen 

Stimulation mit LPS und R848. Interessanterweise induzierte der selektive TLR7-

Agonist Loxoribine in Kombination mit LPS die IL-12p70-Produktion in beiden MoDC-

Zelltypen. Dies lässt das Vorhandensein eines funktionellen TLR7 in MoDCs vermuten. 
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Abbildung 9: IL-12p70-Produktion durch MoDCs 
MoDCs (5 x 105 Zellen/ml), generiert mit GM-CSF plus IL-4 (linke Seite), oder mit GM-CSF plus 
IFNα (rechte Seite), wurden mit R848 (2,5 µg/ml) und Loxoribine (0,5 mM), ohne oder in 
Gegenwart von LPS (1 µg/ml) für 48 Stunden stimuliert. Die IL-12p70-Konzentration wurde in 
den Überständen via ELISA gemessen. Gezeigt sind die Mittelwerte ± SEM aus vier 
unabhängigen Experimenten.  
 

 

3.6 Synergismus von TLR4 und TLR7 bzw. TLR8 in peripheral 

blood mononuclear cells  

 

Um die synergistische Wirkung von TLR4 und TLR7 bzw. TLR8 unter 

physiologischeren Bedingungen des peripheren Blutes zu analysieren, wurde die 

Zytokin-Produktion nach PRR-Stimulation in PBMCs untersucht. 

 

Die Notwendigkeit der gleichzeitigen Stimulation mit LPS und R848 für die Produktion 

von IL-12p70 bestätigte sich in PBMCs (IL-12p70-Produktion in PBMCs (pg/ml) mit   

0,1 µg/ml LPS: 0; 1 µg/ml LPS: 0; R848: 0; 0,1 µg/ml LPS plus R848: 54; 1 µg/ml LPS 

plus R848: 76). Ebenso wie für isolierte Monozyten, zeigte sich in PBMCs für TNF kein 

Synergismus (TNF in PBMCs (pg/ml) mit 0,1 µg/ml LPS: 987; 1 µg/ml LPS: 1328; 

R848: 3537; 0,1 µg/ml LPS plus R848: 2827; 1 µg/ml LPS plus R848: 2579; Mittelwerte 

aus vier unabhängigen Experimenten).  
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Besonders betont werden sollte, dass R848 ohne weiteren Stimulus in PBMCs          

IL-12p70 induzierte, wenn die Zellen mit FCS-Medium anstelle von autologem Serum 

inkubiert wurden. FCS, jedoch nicht autologes Serum, führte zu unspezifischer 

Stimulation von Immunzellen (Daten nicht gezeigt). 

 

 

3.7 Mechanismus der synergistischen Wirkung von TLR4 und 

TLR8 in Monozyten 

 

Zur Aufklärung des der synergistischen Wirkung von LPS und R848 in Bezug auf die 

IL-12p70-Produktion zugrundeliegenden Mechanismus wurden insbesondere die 

Funktion von Typ-I-Interferon, die PRR-Expression nach Stimulation mit diesen beiden 

TLR-Liganden, sowie die Rolle von IL-10 untersucht. 

 

 

3.7.1 Bedeutung von Typ-I-Interferon für die IL-12p70-Produktion 

primärer Monozyten 

 

Kürzlich war vermutet worden, dass die autokrine Sekretion von IFNβ entscheidend ist 

für die IL-12p70-Produktion muriner Knochenmarks-abgeleiteter dendritischer Zellen 

(BMDCs) 213. Um die Rolle von Typ-I-Interferon für die Produktion proinflammatorischer 

Zytokine in humanen primären Monozyten zu beurteilen, wurden diese mit LPS und 

R848 ohne oder in Gegenwart von exogen hinzugefügtem Typ-I-Interferon über         

24 Stunden stimuliert. Es zeigte sich, dass die Vorstimulation oder gleichzeitige 

Inkubation mit rekombinantem IFNα weder die Produktion von IL-12p70, IL-12p40, 

noch von TNF in Antwort auf LPS plus R848 förderte (Abbildung 10). 
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Abbildung 10:  Einfluss von Typ-I-Interferon auf die Zytokin-Produktion humaner 
primärer Monozyten 
Isolierte Monozyten (1,25 x 106/ml) wurden über 24 Stunden mit LPS (1 µg/ml), R848            
(2,5 µg/ml), sowie LPS plus R848 ohne und mit IFNα (1000 U/ml) stimuliert. IL-12p70 (A),       
IL-12p40 (B) und TNF (C) wurden in den Überständen mittels ELISA analysiert. Die Mittelwerte 
± SEM aus drei unabhängigen Experimenten sind zusammengefasst dargestellt. 
 

 

Da exogen hinzugefügtes IFNα keinen Effekt auf die Zytokin-Produktion zu haben 

schien, wurde anschließend die Rolle der endogenen Produktion von Typ-I-Interferon 

untersucht. Hierzu wurden Monozyten in Gegenwart von IFNAR-blockierenden 

Antikörpern bzw. Kontroll-Antikörpern mit LPS plus R848 stimuliert. Die Konzentration 

von IL-12p70, IL-12p40 und TNF wurde per ELISA in den Überständen gemessen. Wie 

in Abbildung 11 dargestellt, verhinderte die IFNAR-Blockade die IL-12p70-Produktion 

der Monozyten. 
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Abbildung 11: Effekt der IFNAR-Blockade auf die Zytokin-Sekretion von 
Monozyten 
Monozyten (1,25 x 106/ml) wurden mit einem neutralisierenden IFNΑR-Antikörper (aIFNΑR-Ab), 
oder einem nicht-neutralisierenden IFNΑR-Antikörper (control-Ab) in der Konzentration von     
20 µg/ml für eine Stunde präinkubiert. Danach erfolgte die Zugabe von LPS (1 µg/ml) plus R848 
(2,5 µg/ml) und die Stimulation über einen Zeitraum von 24 Stunden. Die Ergebnisse aus drei 
Experimenten sind zusammengefasst als Mittelwerte ± SEM dargestellt. Die Daten sind 
normalisiert auf die Zytokin-Konzentrationen nach Stimulation mit LPS plus R848 in Gegenwart 
des nicht-neutralisierenden Antikörpers. 100% entsprechen 80 ± 67 pg/ml IL-12p70,             
2549 ± 337 pg/ml IL-12p40 und 7147 ± 797 pg/ml TNF.*, p = 0,025 für IL-12p70. 

 

 

Zusammengefasst zeigen diese Daten, dass in primären Monozyten autokrines      

Typ-I-Interferon für deren IL-12p70-Produktion nach synergistischer Aktivierung durch 

LPS und R848 notwendig ist. Demgegenüber ist exogenes Typ-I-Interferon als Co-

Stimulus nicht ausreichend, um IL-12p70 in Monozyten nach Aktivierung einzelner 

TLRs zu induzieren. 
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3.7.2 Effekt der Stimulation mit LPS und R848 auf die mRNA-Expression 

von Pattern-recognition-Rezeptoren und Toll-like-Rezeptor-

Adaptern in primären Monozyten 

 

Zahlreiche Studien hatten gezeigt, dass die TLR-Expression durch Zytokine und    

TLR-Liganden schnell reguliert wird. So hatte Matsuguchi beobachtet, dass murine 

Makrophagen in Reaktion auf die Stimulation mit dem TLR4-Agonisten LPS TLR2 im 

Gegensatz zu TLR4 verstärkt exprimierten 77. Nomura hatte in murinen Makrophagen 

gezeigt, dass die Stimulation mit LPS die TLR4-mRNA-Expression reduzierte 78.  

 

Um den möglichen Einfluss der Stimulation mit LPS und R848 auf die PRR-Expression 

in humanen Monozyten zu analysieren und dadurch den Synergismus dieser         

TLR-Agonisten zumindest teilweise erklären zu können, wurden die mRNA-Level von 

PRRs in mit LPS- und R848-stimulierten Monozyten untersucht. Primäre humane 

Monozyten wurden hierfür mit LPS und/oder R848 über drei Stunden inkubiert, bevor 

mittels Real-time-RT-PCR die mRNA-Mengen bestimmt wurden. Es zeigte sich, dass 

in humanen Monozyten sowohl LPS, als auch R848 zu einer verstärkten Expression 

von TLR4, MyD88, TRIF und interferon-γ-inducible protein-10 (IP-10) führten. Kawai 

hatte 2001 gezeigt, dass Lipid A, der biologisch aktive Bestandteil von LPS, in Wildtyp 

und MyD88-defizienten murinen Makrophagen die IP-10-mRNA-Expression induzierte 
229. IP-10 wurde daher als Positiv-Kontrolle für die LPS-induzierte mRNA-Expression 

gewählt. Die Expression von IFNβ wurde minimal durch die kombinierte Stimulation mit 

LPS plus R848 erhöht. Die mRNA-Level von TLR7 und TLR8 blieben hingegen 

unverändert (Abbildung 12). 

 

Die Aufregulation der TLR4-, MyD88- und TRIF-mRNA könnte zur synergistischen 

Wirkung von LPS und R848 in Bezug auf die IL-12p70-Induktion beitragen. 
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Abbildung 12: Einfluss der Stimulation mit LPS und R848 auf die mRNA-
Expression von PRRs und TLR-Adaptern primärer humaner Monozyten 
Primäre Monozyten (1 x 106/ml) wurden vor der mRNA-Isolation mit LPS (1 µg/ml), R848    
(0,25 µg/ml), oder LPS (1 µg/ml) plus R848 (0,25 µg/ml) über drei Stunden stimuliert. Die 
mRNA-Expression wurde durch quantitative Real-time-RT-PCR bestimmt. Die Ergebnisse 
dreier unterschiedlicher Spender sind als Mittelwerte ± SEM der angepassten Kopienzahl pro  
µl cDNA, bezogen auf die durchschnittliche Kopienzahl der housekeeping-Gene β-Aktin und 
Cyclophilin B, dargestellt. 
 

 

3.7.3 Bedeutung von Interleukin-10 für die IL-12p70-Produktion humaner 

Monozyten 

 

IL-10 ist bekanntermaßen ein potenter Inhibitor der IL-12-Produktion. D´Andrea und 

Aste-Amezaga hatten berichtet, dass IL-10 die Produktion von IL-12 in LPS-

stimulierten humanen PBMCs bzw. Monozyten inhibierte 203, 204. Aus diesem Grund 

wurde als nächstes die Rolle von IL-10 für die IL-12p70-Produktion humaner primärer 

Monozyten nach PRR-Stimulation untersucht. 

 

Vorerst wurden isolierte Monozyten mit unterschiedlichen Konzentrationen an LPS und 

R848, sowie deren Kombination über 24 Stunden inkubiert und die Sekretion von      

IL-10, IL-12p70, IL-12p40 und TNF in den Überständen via ELISA gemessen. Wie in 

Abbildung 13 dargestellt induzierte R848 im Vergleich zu LPS geringere Mengen an  

IL-10, obwohl die Induktion von IL-12p40 und TNF durch R848 stärker war als durch 

LPS. Bedeutender war allerdings, dass R848 konzentrationsabhängig die durch LPS-

induzierte IL-10-Sekretion hemmte. Während die Produktion von IL-10 mit 

zunehmender R848-Konzentration abnahm, stieg die IL-12p70-Sekretion an. 
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Abbildung 13: Rolle der IL-10-Sekretion für die IL-12p70-Produktion humaner 
Monozyten nach TLR-Stimulation 
Monozyten (1,25 x 106/ml) wurden mit Medium alleine, LPS, R848, sowie LPS plus R848 in 
unterschiedlichen Konzentrationen, wie in den Diagrammen in µg/ml angegeben, inkubiert. 
Nach 24 Stunden wurden die Zytokin-Konzentrationen in den Überständen via ELISA 
gemessen. Die Daten aus drei unabhängigen Experimenten sind als Mittelwerte ± SEM 
angegeben. (A) IL-10-Sekretion. (B) Vergleich der Sekretion von IL-12p70 (oben links),           
IL-12p40 (oben rechts), IL-10 (unten links) und TNF (unten rechts).  
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Um herauszufinden ob sich zeitliche Unterschiede in der Stimulation von TLR4 und 

TLR8 auf die Inhibition der IL-10-Sekretion und die Induktion von IL-12p70 auswirkten, 

wurden Zeitreihen-Experimente durchgeführt. Primäre Monozyten wurden zum 

Zeitpunkt 0, d. h von Beginn an, mit LPS stimuliert. R848 wurde entweder gleichzeitig, 

eine Stunde, vier Stunden, oder 17 Stunden später hinzugefügt. Die Stimulationszeit 

insgesamt betrug dabei stets 24 Stunden. In den Überständen wurden mittels ELISA 

IL-12p70 und IL-10 gemessen.  

 

Es zeigte sich, dass für die Induktion von IL-12p70 durch LPS plus R848 die simultane 

Stimulation durch beide TLR-Liganden wesentlich war. Bis zu einem Zeitfenster von 

vier Stunden nach Beginn der LPS-Stimulation führte die Zugabe von R848 zur          

IL-12p70-Sekretion. Bei 17-stündiger Präinkubation mit LPS vor der Hinzufügung von 

R848 war kein IL-12p70 in den Überständen nachweisbar (Abbildung 14A). Darüber 

hinaus hemmte R848 die LPS-induzierte IL-10-Sekretion im Vergleich zur simultanen 

Stimulation weniger, wenn R848 eine oder vier Stunden nach LPS hinzugegeben 

wurde. Wurde R848 erst 17 Stunden nach LPS hinzugefügt, wurde die Sekretion von 

IL-10 sogar gefördert und nicht wie zuvor gehemmt. In weiteren Experimenten wurde 

gezeigt, dass Monozyten bereits nach 12 Stunden signifikante Mengen an IL-12p70 

sezernierten, wenn sie simultan mit LPS und R848 stimuliert wurden (Abbildung 14B). 
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Abbildung 14: Zeitabhängigkeit der IL-12p70- und IL-10-Sekretion LPS- und 
R848-stimulierter humaner Monozyten  
Aufgereinigte Monozyten (1,25 x 106/ml) wurden mit Medium alleine, LPS (0,1 µg/ml), R848  
(2,5 µg/ml), oder LPS plus R848 inkubiert. IL-12p70 und IL-10 wurden per ELISA in den 
Überständen gemessen. (A) Vergleich der Zytokin-Produktion nach Zugabe von R848 zu 
unterschiedlichen Zeitpunkten. Zum Zeitpunkt 0 wurden Monozyten mit LPS stimuliert. 
Simultan, eine, vier, bzw. 17 Stunden später wurde zu LPS-vorstimulierten Monozyten R848 
hinzugefügt. Nach insgesamt 24-stündiger Inkubation wurden die Überstände abgenommen. 
Die Daten aus drei unabhängigen Experimenten sind als Mittelwerte ± SEM angegeben.         
(B) Kinetik der IL-12p70-Produktion humaner Monozyten. In Gegenwart der angegebenen TLR-
Liganden wurden Monozyten für zwölf bzw. 24 Stunden inkubiert. Die Ergebnisse von vier 
unterschiedlichen Spendern sind als Mittelwerte ± SEM angeben. 
 

 

Um die Schlüsselfunktion von IL-10 zu bestätigen, wurden Experimente unter IL-10-

Blockade durchgeführt. Eine Stunde vor TLR-Stimulation wurden Monozyten ohne und 

mit anti-IL-10 und/oder anti-IL-10R-Antikörpern behandelt. Es zeigte sich, dass, wenn 

IL-10 blockiert worden war, sowohl LPS als auch R848 alleine IL-12p70 induzieren 

konnten. Darüber hinaus wurde die synergistische IL-12p70-Induktion durch LPS und 

R848 in Gegenwart der IL-10-Blockade weiter verstärkt (Abbildung 15). Im Gegensatz 

dazu wurde die Produktion von IL-12p40 und TNF nicht signifikant durch die Blockade 

von IL-10 beeinflusst. 
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Abbildung 15:  Effekt der IL-10-Blockade auf die monozytäre Zytokin-Produktion 
Die Fc-Rezeptoren primärer Monozyten (1,25 x 106/ml) wurden geblockt und Monozyten 
wurden anschließend mit Antikörpern gegen humanes IL-10 (aIL-10-Ab; 10 µg/ml) oder den    
IL-10R (aIL-10R-Ab; 10 µg/ml) für eine Stunde präinkubiert. Danach wurden LPS (1 µg/ml) und 
R848 (0,5 µg/ml) hinzugefügt und nach 24-stündiger Stimulation IL-12p70 (A), IL-12p40 (B) und 
TNF (C) mittels ELISA in den Überständen gemessen. Die Ergebnisse aus vier Experimenten 
sind zusammengefasst als Mittelwerte ± SEM dargestellt Die Daten sind normalisiert auf die 
durch LPS plus R848 plus aIL-10-Ab plus aIL-10R-Ab induzierte Zytokin-Produktion. 100% 
entsprechen 1019 ± 387 pg/ml IL-12p70, 4395 ± 282 pg/ml IL-12p40 und 8624 ± 767 pg/ml 
TNF. *, p = 0,012 für LPS ± (aIL-10-Ab plus aIL-10R-Ab) bzw. 0,008 für LPS plus R848 ±     
(aIL-10-Ab plus aIL-10R-Ab). **, p = 0,0005 für R848 ± (aIL-10-Ab plus aIL-10R-Ab). 
 

 

Basierend auf diesen Ergebnissen wurde gefolgert, dass die IL-12p70-Produktion LPS- 

und R848-stimulierter Monozyten durch autokrine Sekretion von IL-10 unterdrückt wird 

und, dass R848 die LPS-induzierte IL-12p70-Produktion durch Reduktion der LPS-

induzierten IL-10-Sekretion ermöglicht. 
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4 Diskussion 

 

4.1 Übersicht über die experimentellen Befunde 

 

Im ersten Teil dieser Arbeit wurde die Induktion der IL-12p70-Produktion durch PRR-

Liganden in unterschiedlichen humanen myeloiden Zellpopulationen unabhängig von 

T- oder NK-Zell-Hilfe untersucht. Voraussetzung für die gezielte Analyse CD14++CD16- 

Monozyten war deren Hochaufreinigung. Daher wurde zunächst ein Isolations-Protokoll 

zum Erhalt unangetasteter CD14++CD16- Monozyten mit einer Reinheit von 96 ± 2% 

entwickelt.  

 

Die Untersuchung der PRR-Expression und deren Funktionsfähigkeit in CD14++CD16- 

Monozyten zeigte, dass diese Monozyten-Subpopulation NOD2, TLR2, TLR4 und 

TLR8 exprimierte und Typ-I-Interferon die Expressionslevel und Funktionalität der 

PRRs nicht beeinflusste. Eine wichtige Erkenntnis der hier vorliegenden Arbeit ergab 

sich aus der Analyse der Zytokin-Produktion CD14++CD16- Monozyten nach PRR-

Stimulation. Es wurde beobachtet, dass dieser Zelltyp selektiv in Reaktion auf die 

simultane Stimulation von TLR4 und TLR8 IL-12p70 produzierte. Zwischen TLR2 oder 

NOD2 einerseits und TLR4 oder TLR8 andererseits zeigte sich dagegen keine 

synergistische Wirkung in Bezug auf die Induktion von IL-12p70. Diese Ergebnisse 

weisen darauf hin, dass die IL-12p70-Produktion CD14++CD16- humaner Monozyten 

eines kombinatorischen Codes, bestehend aus der simultanen Aktivierung von TLR4 

und TLR8, bedarf. Unter dieser Bedingung können CD14++CD16- Monozyten 

unabhängig von T-Zell-Hilfe - wie zu Beginn einer Immunreaktion - das 

Schlüsselzytokin der TH1-Immunantwort, IL-12p70, sezernieren. Im Gegensatz dazu 

zeigte sich, dass die Produktion von IL-12p40 oder TNF nicht dieses kombinatorischen 

Codes bedurfte.  

 

Humane primäre mDCs exprimierten NOD1, NOD2, TLR2, TLR3, TLR4 und TLR8. Im 

Unterschied zu CD14++CD16- Monozyten wurde beobachtet, dass Typ-I-Interferon in 

mDCs die Expression von TLR7 induzierte. In Übereinstimmung damit war TLR7 in 

Gegenwart von Typ-I-Interferon in mDCs funktionsfähig und vermochte in Synergie mit 

TLR4 IL-12p70 zu induzieren. Die synergistische Wirkung zwischen TLR4- und TLR8-

Liganden in Bezug auf die Produktion von IL-12p70 bestätigte sich auch in mDCs. Im 

Gegensatz zu TLR4-, TLR7- und TLR8-Agonisten, sowie allen weiteren getesteten 
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PRR-Liganden konnte der TLR3-Ligand Poly I:C alleine, d. h. ohne weiteren Stimulus, 

IL-12p70 in mDCs induzieren. 

 

Ein weiterer Befund dieser Arbeit ist, dass die IL-12p70-Produktion humaner MoDCs 

wesentlich durch die zu ihrer Generierung eingesetzten Zytokine beeinflusst wird. 

MoDCs generiert in Gegenwart von GM-CSF und IFNα bedurften ebenso der 

simultanen Stimulation von TLR4 und TLR7 oder TLR8, während MoDCs generiert in 

Gegenwart von GM-CSF und IL-4 bereits nach Stimulation einzelner TLRs IL-12p70 

sezernierten.  

 

Schließlich bestätigte sich der kombinatorische Code für die Induktion von IL-12p70 in 

PBMCs. Auch in dieser gemischten Zellpopulation war die simultane Stimulation von 

TRL4 und TLR8 für die IL-12p70-Produktion notwendig. 

 

Im zweiten Abschnitt der vorliegenden Arbeit wurde der Frage nach dem der 

synergistischen Wirkung von TLR4 und TLR8 in Bezug auf die IL-12p70-Produktion 

zugrundeliegenden Mechanismus nachgegangen. Es zeigte sich, dass die endogene 

Produktion von Typ-I-Interferon nach simultaner Stimulation von TLR4 und TLR8 

humaner CD14++CD16- Monozyten für deren IL-12p70-Sekretion entscheidend war. 

Exogen hinzugefügtes Typ-I-Interferon war hingegen nicht hinreichend, um nach 

Aktivierung einzelner TLRs IL-12p70 in CD14++CD16- Monozyten zu induzieren. 

 

Die Analyse der PRR-Expression und deren Adaptermoleküle nach TLR4- und/oder 

TLR8-Stimulation in CD14++CD16- Monozyten zeigte, dass LPS sowie R848 zu einer 

verstärkten Expression von TLR4, MyD88 und TRIF führten. 

 

Darüber hinaus wurde die Rolle von IL-10 in Bezug auf die IL-12p70-Produktion 

analysiert. Es wurde beobachtet, dass R848 die durch LPS vermittelte IL-10-

Produktion reduzierte. Gleichzeitig zeigte sich, dass mit abnehmender IL-10-Produktion 

eine zunehmende IL-12p70-Sekretion in CD14++CD16- Monozyten einherging. Es 

stellte sich heraus, dass die simultane - in einem Zeitfenster von vier Stunden - 

Stimulation von TLR4 und TLR8 Voraussetzung war für die Inhibition der IL-10-

Sekretion und Induktion der IL-12p70-Produktion. Die Blockade von IL-10 ermöglichte 

die IL-12p70-Sekretion bereits nach Stimulation einzelner TLRs. Daher lässt sich 

vermuten, dass die IL-12p70-Produktion TLR4- und TLR8-stimulierter CD14++CD16- 

humaner Monozyten durch die endogene Sekretion von IL-10 inhibiert wird und, dass 
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R848 über eine Hemmung der durch LPS induzierten endogenen IL-10-Sekretion die 

Produktion von IL-12p70 ermöglicht. 

 

 

4.2 Methodendiskussion 

 

Um hochaufgereinigte, ruhende CD14++CD16- Monozyten aus PBMCs zu isolieren, 

wurde in der vorliegenden Arbeit ein Protokoll für eine Negativ-Selektion mittels MACS-

Technologie entwickelt. Durch den Separationsvorgang über die magnetischen Säulen 

wäre eine Aktivierung der Zellen denkbar. Allerdings war in keiner der nachfolgenden 

Stimulations-Experimente in der Medium-Kontrolle eine Zytokin-Produktion der 

Monozyten nachweisbar, wodurch eine für die vorliegende Arbeit relevante Aktivierung 

ausgeschlossen werden konnte. Zur Vermeidung einer Endotoxin-Kontamination 

wurde der MACS-Puffer anstelle von BSA mit HSA versetzt. Auch wenn über eine 

Positiv-Selektion leichter höhere Reinheiten der gewünschten Zellpopulationen erzielt 

werden könnten, besteht zugleich die Möglichkeit der unkontrollierten Aktivierung der 

Zellen durch die gebundenen Antikörper. Zudem bleiben die Antikörper über einen 

gewissen Zeitraum auf der Zelloberfläche gebunden und könnten theoretisch mit der 

Ligandenbindung in Stimulations-Experimenten interferieren. Daher wurde die 

CD14++CD16- Monozyten-Subpopulation über eine Mehrschritt-Depletion negativ 

isoliert und dabei ein sehr hoher Reinheitsgrad erreicht.  

 

Die gleichzeitige Aktivierung von TLR4 und TLR8 als essentielle Voraussetzung für die 

IL-12p70-Produktion humaner Monozyten in der vorliegenden Arbeit unterstreicht die 

Notwendigkeit der Durchführung von Studien zur IL-12p70-Produktion in Monozyten 

unter strikt Endotoxin-freien Bedingungen. Andere Berichte, die die IL-12p70-

Produktion in Antwort auf einzelne TLR-Liganden beschreiben, sollten unter diesem 

Aspekt kritisch beleuchtet werden. In diesem Zusammenhang ist es von Bedeutung, 

dass der primäre humane Monozyt einer der LPS-sensitivsten Zelltypen ist. Aus 

diesem Grund wurde in dieser Arbeit autologes Serum des jeweiligen Spenders und 

nicht FCS verwendet. Sogar das FCS, welches im Limulus Amebocyte Lysate-Test als 

Endotoxin-negativ befunden worden war, induzierte TNF in PBMCs. In 

Übereinstimmung mit der nicht kompletten Endotoxin-Freiheit des FCS produzierten 

PBMCs nach alleiniger Stimulation mit R848 IL-12p70, wenn FCS anstelle von 

autologem Serum verwendet wurde (Daten nicht gezeigt). 

 



 82 

Um die Expression von PRRs zu analysieren, wurden die mRNA-Level der 

entsprechenden Proteine via Real-time-RT-PCR bestimmt. Vorteil dieser Methode ist, 

dass nur sehr geringe Ausgangsmengen der Zielsequenzen benötigt werden und somit 

Expressionslevel einer relativ geringen Anzahl von Zellen untersucht werden können. 

Demgegenüber ist allerdings zu bedenken, dass die Produktion eines Proteins auf 

mehreren Ebenen und nicht ausschließlich transkriptionell kontrolliert wird. Die 

Regulation der mRNA-Stabilität, der Translation, posttranslationalen Prozessierung 

und schließlich Sekretion ist ebenso entscheidend für die Menge des produzierten 

Proteins. Es besteht somit keine direkte Korrelation zwischen mRNA- und Protein-

Level.  

 

Zum Ausgleich unterschiedlicher Effizienzen der RNA-Extraktion, sowie der Reversen 

Transkription wurden in der vorliegenden Arbeit Ziel- und Referenzsequenz aus der 

gleichen Nukleinsäureprobe amplifiziert und eine relative Quantifizierung der mRNA-

Level durchgeführt. Problematisch hierbei ist allerdings, dass die Referenzgene durch 

die experimentellen Bedingungen in ihrer Expression nicht beeinflusst werden sollten.  

In der vorliegenden Arbeit wurden daher zwei voneinander unabhängige Gene, β-Aktin 

und Cyclophilin B, als Referenzgene für jede Zielsequenz eingesetzt.  

 

 

4.3 Ergebnisinterpretation im Vergleich mit der Literatur 

4.3.1 Differentielle Toll-like-Rezeptor-Expression humaner myeloider 

Zellen 

 

Welche Immunantwort eine “Fremd-Substanz“ auslöst hängt davon ab welche Zellen 

diese erkennen und welche Effektormechanismen daraufhin aktiviert werden. Für die 

erfolgreiche Beseitigung des schädigenden Agens und damit entscheidend über Leben 

und Tod ist die Induktion einer jeweils passenden Immunreaktion. Die 

Erkennungsmechanismen der angeborenen Immunität - PRRs - sind in 

unterschiedlichen Zellen differentiell exprimiert und vermitteln über intrazelluläre 

Signalwege distinkte Immunreaktionen. PRRs sind daher zentral für die Regulation der 

Immunantwort. Die Kenntnis der PRR-Expression und der durch diese Rezeptoren 

induzierten Effektormechanismen ist wesentlich für das Verständnis (patho-) 

physiologischer immunologischer Prozesse und deren gezielte therapeutische 

Beeinflussung. In der vorliegenden Arbeit wurde insbesondere die Expression von 

TLRs und deren Funktionalität in APCs analysiert.  
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4.3.1.1 Funktionelle Toll-like-Rezeptor-Expression humaner Monozyten 

 

Phagozytierende Zellen, die mit einer Vielzahl an „Fremd-Molekülen“ in Kontakt 

kommen, exprimieren eine besonders große Zahl unterschiedlicher PRRs und können 

darüber ein großes Spektrum verschiedener PAMPs erkennen. 

 

Vor Beginn dieser Arbeit war in einige Studien die TLR-Expression in humanen 

Monozyten untersucht worden 68-74. Allerdings wurden darin meist nur einzelne TLRs 

analysiert, oder nicht zwischen Monozyten-Subpopulationen unterschieden. In der 

vorliegenden Studie wurde spezifisch die TLR-Expression in humanen CD14++CD16- 

Monozyten untersucht. Hierin zeigte sich, dass diese Monozyten-Hauptpopulation 

TLR2, TLR4 und TLR8, nicht jedoch TLR3 und TLR7 aufweist. Außerdem exprimieren 

diese Zellen NOD2. Diese Ergebnisse sind im Einklang mit vorhergehenden 

Untersuchungen der monozytären TLR-Expression unserer Arbeitsgruppe 73, 74. 

Allerdings wurde in den damaligen Studien die Gesamtpopulation humaner Monozyten 

und nicht einzelne Subpopulationen analysiert. In der Veröffentlichung von Krug et al. 

ist die semiquantitative TLR-Expression in Monozyten zweier unterschiedlicher 

Spender gezeigt. In einem der beiden Spender war dabei eine relativ geringe Menge 

an TLR7-mRNA nachweisbar. Möglicherweise ist dies auf eine andere Monozyten-

Subpopulation zurückzuführen. Auch Ito beobachtete mittels semiquantitativer RT-PCR 

eine niedrige Expression von TLR7 in Monozyten 72. Da CD14++CD16- Monozyten in 

dieser Studie über CD14 positiv selektioniert worden waren, stellt sich die Frage ob 

eine Ligandenbindung an CD14 die TLR-Expression beeinflusst. Eine weitere 

Erklärung wäre die weniger exakte Darstellung der Expressionslevel via semi-

quantitativer RT-PCR im Vergleich zur Real-time-RT-PCR. Mittels Northern Blot hatte 

Muzio in Monozyten die Expression von TLR2 und TLR4, nicht aber von TLR3 

nachweisen können 70. Die Daten von Kadowaki und Visintin bestätigen ebenfalls die 

Ergebnisse dieser Arbeit 69, 71. 

 

Über die Analyse der Oberflächenmoleküle HLA-DR und CD80 nach TLR-Stimulation 

wurde die Funktionalität der monozytären TLRs belegt. Diese korrelierte mit den 

Messungen der TLR-Expression. In der gegenwärtigen Studie wurde an mehreren 

gesunden Probanden erstmals die TLR-Expression quantitativ in humanen 

unangetasteten CD14++CD16- Monozyten bestimmt. 
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4.3.1.2 Toll-like-Rezeptor-Expression humaner myeloider dendritischer Zellen 

 

Krug hatte bereits 2001 Unterschiede der TLR-Expression zwischen Monozyten und 

mDCs nachgewiesen und gezeigt, dass mDCs im Gegensatz zu Monozyten TLR3 

exprimieren 73. In Übereinstimmung mit dieser Publikation exprimierten in der 

vorliegenden Arbeit humane primäre mDCs TLR2, TLR3, TLR4, TLR7 und TLR8. Ohne 

Typ-I-Interferon-Stimulation waren die TLR7-Level jedoch sehr niedrig. Jarrossay und 

Kadowaki hatten TLR7 in mDCs mittels semiquantitativer RT-PCR möglicherweise 

aufgrund geringerer Sensitivität nicht nachweisen können 68, 69. In der Veröffentlichung 

von Kadowaki ist neben TLR7 auch TLR4 in mDCs nicht exprimiert. Im Gegensatz 

dazu wies Ito TLR7 und TLR4 in der semiquantitativen RT-PCR nach 72. In 

Zusammenschau der Literatur und der vorliegenden Daten scheinen humane mDCs im 

Unterschied zu Monozyten TLR3 und minimale Level an TLR7 zu exprimieren. 

 

 

4.3.1.3 Regulation der Toll-like-Rezeptor-Expression durch Typ-I-Interferon 

 

Es ist wohlbekannt, dass die TLR-Expression nicht statisch ist, sondern rasch unter 

anderem durch Zytokine an wechselnde Bedingungen angepasst werden kann. 

Miettinen hatte 2001 beobachtet, dass die Infektion humaner Makrophagen mit 

Influenza-A- und Sendai-Virus die mRNA-Expression von TLR1, TLR2, TLR3 und 

TLR7 verstärkte und dass Typ-I-Interferon-neutralisierende Antikörper diesen Effekt 

wettmachten. Exogen hinzugefügtes IFNα förderte hingegen die mRNA-Expression 

dieser TLRs in Makrophagen 230. Darüber hinaus hatte 2005 Bekeredjian-Ding 

herausgefunden, dass PDCs die Sensitivität humaner B-Lymphozyten gegenüber den 

TLR7-Liganden Loxoribine und R848 erhöhten. Von PDCs sezerniertes Typ-I-

Interferon führte zur de novo mRNA-Synthese von TLR7 in B-Zellen und ermöglichte 

dadurch deren polyklonale Proliferation in Antwort auf TLR7-Agonisten 76. Es war 

bisher ungeklärt inwieweit die TLR-Expression humaner Monozyten und mDCs durch 

Typ-I-Interferon beeinflusst würde. Während Monozyten in Gegenwart von exogenem 

Typ-I-Interferon keine veränderte TLR-Expression aufwiesen, wurde in mDCs TLR7 

verstärkt exprimiert. Dass diese erhöhte mRNA-Expression funktionelle Relevanz 

hatte, wurde durch die Stimulation von mDCs mit Loxoribine in Gegenwart von 

rekombinantem IFNα belegt. Nur in Kombination mit exogenem IFNα und LPS konnte 

Loxoribine IL-12p70 in mDCs induzieren. Dies lässt Spekulationen über eine 

synergistische Interaktion von PDC und mDC im Hinblick auf die TLR7-Aktivierung zu. 

Über eine Stimulation der PDC und nachfolgende Typ-I-Interferon-Sekretion würde die 



 85 

mDC gegenüber einem TLR7-Agonisten sensibilisiert und eine Immunantwort dieser 

Zelle erleichtert. Von stimulierten mDCs sezernierte Zytokine regulieren wiederum 

angeborene und adaptive Immunität.   

 

 

4.3.2 Interleukin-12-Produktion nach Pattern-recognition-Rezeptor-

Stimulation 

 

Interleukin-12 ist ein zentrales Zytokin in der Regulation von angeborenem und 

adaptivem Immunsystem. Es wird bereits frühzeitig im Rahmen einer Immunantwort - 

noch vor der Etablierung von T-Zell-Hilfe - durch Phagozyten und APCs sezerniert. Für 

die Induktion einer Typ-1-Immunantwort ist Interleukin-12 ein Schlüsselzytokin und 

daher für die Bekämpfung von Tumorzellen und intrazellulären Pathogenen essentiell. 

Demgegenüber führt die ungebremste Sekretion dieses potenten Mediators zu 

Autoimmunerkrankungen und lebensbedrohlichen systemischen inflammatorischen 

Syndromen. Eine exakte Kontrolle der Interleukin-12-Produktion ist deshalb von 

eminenter Bedeutung.  

 

 

4.3.2.1 Differentielle Interleukin-12-Produktion myeloider Zellpopulationen 

 

In der Literatur sind zahlreiche Stimuli beschrieben, welche die IL-12p70-Produktion in 

myeloiden Zellen induzieren und es ist wohl belegt, dass T-Zell-Zytokine die Sekretion 

von IL-12 ermöglichen. 1993 zeigte Tripp, dass hitzeinaktivierte Listeria 

monocytogenes in Splenozyten und Makrophagen der Peritonealhöhle aus SCID 

Mäusen die IL-12-Produktion induzierten 231. Zhang et al. wiesen 1994 erhöhte          

IL-12p70-Konzentrationen in der Pleuraflüssigkeit von Patienten mit tuberkulöser 

Pleuritis nach. Die Stimulation von Zellen der Pleuraflüssigkeit mit hitzeinaktiviertem   

M. tuberculosis führte zur Sekretion von IL-12p70 232. Intrazelluläre Bakterien scheinen 

demzufolge potente Trigger der IL-12-Produktion zu sein.  

 

Reis e Sousa beobachtete, dass DCs die initialen Produzenten von IL-12 in Mäusen 

waren, die in vivo mit Extrakten von Toxoplasma gondii oder mit LPS stimuliert worden 

waren. IL-12 wurde sehr schnell und unabhängig von IFNγ oder T-Zell-Signalen 

produziert 233. Dies deutet darauf hin, dass DCs ohne T-Zell-Hilfe nach PRR-

Stimulation relevante Mengen an IL-12 sezernieren können. Allerdings wurde in dieser 
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Studie lediglich IL-12p40 nachgewiesen. Da IL-12p40 unabhängig von IL-12p70 

freigesetzt werden kann, ist die Bestimmung von IL-12p40 nicht ausreichend, um eine 

Aussage über IL-12p70 zu treffen. Es besteht die Gefahr der Überschätzung der 

Sekretion des biologisch aktiven Heterodimers.  

 

2000 zeigte Schulz, dass aufgereinigte murine DCs in vitro in Gegenwart des aus 

Toxoplasma gondii isolierten soluble tachyzoite antigen IL-12p70 sezernierten 199. Dies 

lässt vermuten, dass DCs bereits ohne von T-Lymphozyten abgeleitete Faktoren       

IL-12p70 sezernieren. Muller-Berghaus hatte per FACS-Analyse IL-12p70 intrazellulär 

in MoDCs, welche aus Monozyten mittels GM-CSF plus IL-4 generiert worden waren, 

nach Inkubation mit attenuierten Staphylokokken nachgewiesen 234. Es sollte allerdings 

bedacht werden, dass die Regulation von IL-12p70 auf mehreren Ebenen erfolgt. Auch 

der Sekretionsvorgang des Heterodimers scheint komplex reguliert zu sein. Die 

intrazelluläre Akkumulation von IL-12p70 ist deshalb nicht mit der Freisetzung des 

biologisch aktiven Heterodimers gleichzusetzen. 

 

Karlsson beobachtete 2004, dass humane Monozyten in Antwort auf UV-inaktivierte 

grampositive Bakterien (Lactobacillus plantarum und Bifidobacterium adolescentis)    

IL-12p70 produzierten 228. In dieser Studie wurden Monozyten jedoch mit Hilfe von anti-

CD14-Antikörpern aus PBMCs positiv selektioniert. Eine getrennte Analyse der 

CD14++CD16- Monozyten wurde nicht durchgeführt. Hierbei ist zu beachten, dass sich 

Monozyten-Subpopulationen in ihrer Zytokin-Produktion unterscheiden. Wie durch 

Szaflarska gezeigt produzierten CD14+CD16+ Monozyten mehr IL-12 und weniger     

IL-10 im Vergleich zu CD14++CD16- Monozyten 128. Damit blieb in der Studie von 

Karlsson ungeklärt welche Monozyten-Subpopulation die IL-12p70-Quelle war.  

 

Scanga berichtete, dass mit T. gondii infizierte MyD88-defiziente Mäuse stark 

verminderte IL-12-Konzentrationen im Blutplasma aufwiesen und rasch der 

unkontrollierten Ausbreitung des Erregers erlagen. In vitro mit soluble tachyzoite 

antigen stimulierte Makrophagen, Neutrophile und DCs von MyD88-defizienten 

Mäusen zeigten eine dramatische Reduktion der IL-12p70-Sekretion 196. MyD88 ist ein 

bedeutendes Adaptermolekül in der Signaltransduktion sämtlicher TLRs, außer TLR3. 

Daher scheinen von TLRs weitergeleitete Signale essentiell für die IL-12p70-

Produktion in Reaktion auf PAMPs, zumindest in Assoziation mit dem intrazellulären 

Parasiten T. gondii, zu sein.  
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In der vorliegenden Arbeit wird zum ersten Mal gezeigt, dass humane primäre 

CD14++CD16- Monozyten in Gegenwart einer bestimmten Kombination von TLR-

Agonisten beträchtliche Mengen IL-12p70 sezernieren - unabhängig von T-Zell-Hilfe 

oder von aktivierten NK-Zellen abgeleiteten Faktoren.  

 

 

4.3.2.2 T-Zell-unabhängige Interleukin-12-Produktion 

 

Bereits zu Beginn einer Immunreaktion wird IL-12p70 als Regulator nachfolgender 

Effektormechanismen noch vor der Etablierung der T-Zell-Hilfe produziert. Es scheinen 

demnach Mechanismen zu existieren, die diese frühzeitige IL-12-Sekretion 

ermöglichen. Bereits 1996 beobachtete Scharton-Kersten, dass mit Toxoplasma gondii 

infizierte IFNγ-defiziente Mäuse IL-12 produzierten 235. Reis e Sousa lieferte, wie im 

vorangegangenen Abschnitt beschrieben, Hinweise für eine T-Zell-unabhängige IL-12-

Produktion in vivo im Maussystem233. Ebenso ließen die Ergebnisse von Schulz 

vermuten, dass murine DCs ohne T-Zell-Hilfe IL-12p70 sezernierten 199. In der Studie 

von Karlsson induzierten inaktivierte grampositive Bakterien die Produktion von         

IL-12p70 in humanen Monozyten 228. Die exakten Mechanismen, die zur Freisetzung 

von IL-12 nach Stimulation mit diesen Mikroorganismen führten, blieben jedoch 

ungeklärt. Vor der gegenwärtigen Arbeit war nicht gezeigt worden, dass humane 

isolierte CD14++CD16- Monozyten IL-12p70 nach alleiniger mikrobieller Stimulation 

ohne T- oder NK-Zell-Hilfe produzieren konnten. Die Daten der vorliegenden Studie 

lassen vermuten, dass Monozyten bereits frühzeitig im Rahmen einer Immunantwort 

relevante Quelle von IL-12p70 sind.  

 

Später im Verlauf der Immunreaktion wird, wie durch zahlreiche Veröffentlichungen 

belegt, die IL-12-Sekretion über positive Feedback-Mechanismen bis zur Beseitigung 

des schädigenden Agens gefördert. So verstärkt IL-12p70 die Expression von CD40L 

auf T- und NK-Zellen. Über die Interaktion von CD40L mit CD40 auf der Oberfläche 

von Phagozyten und APCs wird deren IL-12-Sekretion gefördert 182, 199, 200. Des 

Weiteren induziert IL-12p70 die Freisetzung von IFNγ, dieses wiederum wirkt auf die 

IL-12-Produzenten verstärkend zurück 185, 228, 236. IL-12p70 wird demnach vermutlich 

frühzeitig unabhängig von T-Zell-Hilfe sezerniert und dessen Produktion zur 

Aufrechterhaltung ausreichender Konzentrationen während der gesamten Dauer einer 

Immunantwort durch T-Lymphozyten und NK-Zellen gefördert. 
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4.3.2.3 Interaktion von Pattern-recognition-Rezeptoren in der Regulation der 

Interleukin-12-Produktion 

 

Jedes einzelne Pathogen enthält zahlreiche unterschiedliche PAMPs und Zellen des 

angeborenen Immunsystems exprimieren mehrere PRRs. Die gleichzeitige Stimulation 

verschiedener PRRs auf Immunzellen des Wirtes im Rahmen einer Infektion wäre 

deshalb nicht nur denkbar, sondern sehr wahrscheinlich. Dies würde zur simultanen 

Aktivierung intrazellulärer Signalwege unterschiedlicher PRRs in ein und derselben 

Zelle führen. Die verschiedenen Signale beeinflussen sich vermutlich gegenseitig, 

sodass aus der Summe der einzelnen Signale koordinierte Immunantworten induziert 

werden. Um eine effektive Immunantwort zu induzieren, müssen Pathogene 

wahrscheinlich ein komplexes Spektrum unterschiedlicher PRRs stimulieren. Die 

kombinierte Stimulation unterschiedlicher PRRs kann grundsätzlich komplementäre, 

synergistische oder antagonistische Effekte haben. Einzelne Signalwege zu verstehen 

hat seine Herausforderungen, Interaktionen unterschiedlicher Signalwege aufzuklären 

ist ein hochgestecktes Ziel. Für das Verständnis und die gezielte Beeinflussung der 

Immunantwort ist die Kenntnis der Interaktionen und der Konvergenz der Signalwege 

jedoch wesentlich. Die meisten bisherigen Studien haben sich auf die Analyse der 

Reaktionen nach Aktivierung einzelner PRRs beschränkt. Interaktionen der Signalwege 

von PRRs waren zu Beginn dieser Arbeit kaum untersucht, inzwischen hat sich dies zu 

einem hochaktiven Forschungsfeld entwickelt. 

 

In initialen Studien zur Interaktion zwischen TLRs wurde gezeigt, dass eine simultane 

Aktivierung von TLR2 und TLR4 zur synergistischen Induktion der TNF-Produktion 

führte 237, 238. Die Interpretation der Ergebnisse dieser frühen Veröffentlichungen wird 

allerdings dadurch kompliziert, dass zwischen diesen beiden TLRs Kreuztoleranz 

induziert wurde und Beutler MDP als vermeintlichen TLR2-Liganden einsetzte. Später 

wurde MDP als NOD2-Ligand identifiziert. Whitmore hatte herausgefunden, dass die 

kombinierte Stimulation muriner Makrophagen mit dem TLR3-Liganden Poly I:C und 

dem TLR9-Liganden CpG-DNA mehr als additive Level an TNF, IL-6 und IL12p40 

induzierte 239. Dies bestätigte, dass zwischen bestimmten TLRs Kooperationen 

bestehen. Im Verlauf der vorliegenden Arbeit wurden zwei Studien veröffentlicht, die 

andeuteten, dass DCs um ein Vielfaches mehr TNF, IL-1β, IL-6, IL-10, IL-12, IL-23 und 

Cyclooxygenase-2 (Cox-2) produzierten, wenn sie mit Kombinationen von TLR-

Liganden stimuliert wurden im Vergleich zur Stimulation einzelner TLRs 213, 227. 

Microarray-Analysen zeigten, dass von den durch einzelne TLR-Liganden induzierten 
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Genen nur etwa 1% in einer eindeutig synergistischen Weise verstärkt exprimiert 

wurden, wenn Kombinationen von TLR-Liganden eingesetzt wurden 227. 

 

Neben der Synergie unterschiedlicher TLR-Liganden wurde auch die synergistische 

Induktion der Zytokin-Sekretion durch TLR-Agonisten in Kombination mit anderen 

PRR-Liganden beobachtet. So wurden Synergien zwischen Dectin-1 und TLR2, sowie 

Adenosin-A2A-Rezeptor und TLR2, TLR4, TLR7 und TLR9 beschrieben 240-242. In 

humanen Monozyten und DCs wirkten NOD1- und NOD2-Liganden mit LPS 

synergistisch auf die TNF- und IL-6-Produktion 243. In THP-1-Zellen, einer humanen 

Monozyten-Zelllinie, induzierten NOD1- und NOD2-Liganden in Synergie mit TLR2-, 

TLR4- und TLR9-Agonisten die IL-8-Produktion 244. Tada berichtete 2005, dass NOD1 

und NOD2 synergistisch mit TLR3, TLR4 und TLR9 in Bezug auf die Produktion von  

IL-12p70 in humanen DCs wirkten 245. Zu beachten ist allerdings, dass in der Studie 

von Tada MoDCs, die in Gegenwart von GM-CSF und IL-4 generiert worden waren, 

analysiert wurden. In Übereinstimmung mit der vorliegenden Arbeit sezernierten diese 

MoDCs bereits nach alleiniger TLR4-Stimulation IL-12p70.  

 

Diese Studien weisen darauf hin, dass Synergien unterschiedlicher PRRs subtile 

Mechanismen der Regulation zelltypspezifischer Antworten des angeborenen 

Immunsystems darstellen. Es wurde daher die Hypothese aufgestellt, dass diese 

Synergien primäre humane Monozyten zur IL-12p70-Produktion befähigen. Es zeigte 

sich, dass unter verschiedenen TLR und NOD-Agonisten nur die Kombination aus 

TLR4- und TLR8-Liganden IL-12p70 in humanen Monozyten induzierte.  

 

 

4.3.2.4 Synergistische Induktion von IL-12p70 durch Toll-like-Rezeptor-

Agonisten 

 

Kürzlich war gezeigt worden, dass der TLR7/8-Ligand R848 zusammen mit dem TLR3-

Agonsiten Poly I:C oder dem TLR4-Liganden LPS in murinen BMDCs die Sekretion 

hoher Level des biologisch aktiven Heterodimers IL-12p70 induzierte. Mit GM-CSF und 

IL-4 generierte humane MoDCs produzierten bereits relativ große Mengen IL-12p70 in 

Gegenwart einzelner TLR-Liganden, wie LPS oder R848. Die kombinierte Stimulation 

von TLR3/4 und TLR7/8 führte auch in diesen Zellen zu einer mehr als additiven 

Steigerung der IL-12p70-Sekretion 213. Napolitani bestätigte diesen Synergismus in 

murinen BMDCs, humanen MoDCs und mDCs. In murinen BMDCs, die unter anderem 

TLR7 und TLR9 jedoch kein TLR8 exprimieren, war der Synergismus nicht auf TLR3/4 
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und TLR7 beschränkt, sondern auch für TLR3/4 und TLR9 nachweisbar. Auch 

Napolitani beobachtete, dass mit GM-CSF und IL-4 generierte humane MoDCs bereits 

nach Stimulation einzelner TLRs IL-12p70 freisetzten 227. 

 

Im Unterschied zu primären humanen Monozyten, die TLR7 nicht exprimieren, weisen 

mDCs TLR8 und TLR7 auf. Es ist bisher unbekannt ob TLR7 oder TLR8 an der 

synergistischen Aktivierung von mDCs via LPS und R848 beteiligt ist. In der 

vorliegenden Arbeit wurde zum ersten Mal gezeigt, dass die Stimulation von TLR8 

unabhängig von TLR7 für die Kooperation mit TLR4 ausreichend ist. Ein weiterer 

Vorteil der Analyse der TLR-Anforderungen in Monozyten ist die praktisch komplett 

fehlende IL-12p70-Sekretion nach Stimulation mit einzelnen TLR-Liganden. In MoDCs 

ist der selektive synergistische Effekt simultan stimulierter TLRs aufgrund einer 

höheren Hintergrund-Produktion von IL-12p70 weniger deutlich. 

 

Auf den ersten Blick erscheinen die von primären Monozyten sezernierten Mengen an 

IL-12p70 im Vergleich zu mDCs relativ gering. Bezogen auf die einzelne Zelle 

produzierten mDCs 40-mal mehr IL-12p70. Allerdings sind im menschlichen 

Organismus 20-mal mehr Monozyten als mDCs im peripheren Blut enthalten. Daher ist 

das von Monozyten insgesamt sezernierte IL-12p70 signifikant. 

 

Die Daten der Monozyten und primären mDCs unterschieden sich von denen der 

MoDCs, die in Gegenwart von GM-CSF und IL-4 generiert worden waren, in einem 

entscheidenden Punkt. In Übereinstimmung mit vorhergehenden Publikationen 213, 227 

war in diesen MoDCs die Stimulation einzelner TLR-Typen ausreichend, um die         

IL-12p70-Produktion zu induzieren. Da IL-4 zu den T-Zell-abgeleiteten Zytokinen 

gehört, welche auf die IL-12p70-Sekretion co-stimulierend wirken, könnte die 

Gegenwart von IL-4 in den MoDC-Kulturen für die erniedrigte Schwelle der IL-12p70-

Induktion verantwortlich sein. Demgegenüber bedurfte die Induktion von IL-12p70 in 

mit GM-CSF plus IFNα generierten MoDCs der kombinierten TLR-Stimulation - ähnlich 

wie in Monozyten und mDCs. 

 

Humane MoDCs sind das klassische und häufig eingesetzte in vitro-Modell für mDCs. 

Den Ergebnissen dieser Arbeit zufolge scheinen mit GM-CSF und IL-4 generierte 

MoDCs allerdings nicht das geeignete System zu sein um die IL-12p70-Induktion im 

physiologischen myeloiden Zellkompartiment des Menschen zu analysieren. Die in 

diesem Zusammenhang über MoDCs getroffenen Aussagen müssen daher kritisch 

betrachtet werden und erst anhand primärer myeloider Zellen bestätigt werden.  
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Der TLR4-Ligand LPS ist nur in gramnegativen Bakterien exprimiert. Daraus ergibt sich 

die Frage wie UV-inaktivierte grampositive Bakterien, wie in der Studie von Karlsson228, 

IL-12p70 induzieren können. Zur Beantwortung dieser Frage wurden synthetische 

TLR2-Liganden getestet. Überraschenderweise induzierte die Kombination aus TLR2-

Liganden und R848 oder LPS keine IL-12p70-Sekretion in humanen Monozyten. Eine 

mögliche Erklärung für die IL-12p70-Induktion durch grampositive Bakterien wäre, dass 

vollständige Bakterien eine höhere Dichte mikrobieller Moleküle aufweisen und 

dadurch einen stärkeren Stimulus für TLR2 darstellen. Es wäre auch denkbar, dass 

weitere bisher nicht identifizierte Moleküle und Rezeptoren an diesem Effekt beteiligt 

sind. Daneben ist zu beachten, dass Karlsson Monozyten-Subpopulationen nicht 

getrennt analysierte und möglicherweise CD14+CD16+ Monozyten die IL-12p70-Quelle 

in Reaktion auf grampositive Bakterien waren.  

 

Die fehlende IL-12p70-Produktion nach Stimulation mit TLR2-Liganden ist in Einklang 

mit den Daten von Gautier. Dieser beobachtete in humanen MoDCs keine IL-12p70-

Induktion in Gegenwart der TLR2-Agonisten PGN, Pam3Cys und Zymosan213. Es lässt 

sich spekulieren, dass das Adapterprotein Mal des TLR2-Signalweges für den 

fehlenden Synergismus eine Rolle spielt. Mal ist ausschließlich für den MyD88-

abhängigen Signalweg von TLR2 und TLR4 als „Brückenadapter“ zwischen Rezeptor 

und MyD88 nötig 83, 84. In den Signalwegen der anderen TLRs scheint Mal nicht 

involviert zu sein. 

 

TLR3, TLR4, TLR7 und TLR8 befinden sich in unterschiedlichen zellulären 

Kompartimenten. Dies lässt vermuten, dass sie mit unterschiedlicher Kinetik stimuliert 

werden. Vorausgehende Studien hatten angedeutet, dass Immunantworten in Reaktion 

auf kombinierte TLR-Stimulation durch die Stimulationsdosis des initialen TLR-

Liganden und das Zeitintervall zwischen den unterschiedlichen TLR-Agonisten 

beeinflusst werden 227, 246, 247. Ausgehend von diesen Daten wurde die Zeitabhängigkeit 

des Synergismus zwischen TLR4 und TLR8 in Monozyten untersucht. Es zeigte sich, 

dass für die IL-12p70-Induktion durch LPS plus R848 die simultane Stimulation durch 

beide TLR-Liganden essentiell war. Bis zu vier Stunden nach Beginn der LPS-

Stimulation konnte R848 hinzugefügt werden, um eine IL-12p70-Sekretion zu 

erreichen. 17 Stunden nach Vorstimulation mit LPS führte die Zugabe von R848 zu 

keiner IL-12p70-Sekretion mehr. Eine offene Frage hierbei wäre allerdings ob die 

siebenstündige Inkubationszeit nach der R848-Zugabe (nach 17 Stunden) bis zur 

Abnahme der Überstände (nach 24 Stunden) für die Sekretion von IL-12p70 nicht 

ausreichte, obwohl TLR4 und TLR8 auch nach diesem Zeitintervall noch synergistisch 
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wirkten. In Experimenten zur Kinetik der IL-12p70-Produktion waren bereits nach zwölf 

Stunden große Mengen an IL-12p70 nachweisbar, welche über den Werten nach     

24-stündiger Inkubation lagen. 

 

In Übereinstimmung mit diesen Ergebnissen hatte Napolitani festgestellt, dass die 

synergistische Wirkung von LPS und R848 in Bezug auf die IL-12p70-Produktion 

maximal war, wenn beide Stimuli innerhalb eines Zeitfensters von vier Stunden 

hinzugefügt wurden. Betrug das Zeitintervall zwischen beiden TLR-Liganden mehr als 

24 Stunden, dann war keine Synergie mehr festzustellen 227. Dies deutet darauf hin, 

dass die Aktivierung des initialen TLR-Typs ein Zeitfenster von einigen Stunden 

eröffnet, in dem die synergistische Wirkung mit einem weiteren TLR möglich ist. 

 

Zusammengefasst scheint in humane Monozyten und mDCs ein kombinatorischer 

Code für eine optimale IL-12p70-Produktion unabhängig von T- oder NK-Zell-Hilfe zu 

existieren. Dieser Code basiert auf der simultanen Stimulation von TLR3 bzw. TLR4 

und TLR7 bzw. TLR8.  

 

 

4.3.2.5 Physiologische Bedeutung der Pattern-recognition-Rezeptor-Interaktion 

 

Da IL-12 ein hochpotentes immunstimulatorisches Zytokin ist und die Entwicklung 

möglicherweise schädigender Effektorzellen fördert, ist seine strikte Kontrolle 

lebensnotwendig. Die doppelte Anforderung an die Stimulationsbedingungen könnte 

einen Sicherheitsmechanismus darstellen, der die unangemessene Sekretion dieses 

eventuell schädlichen Typ-1-Zytokins in der frühen Phase einer Immunantwort, wenn 

noch keine T-Zell-Hilfe etabliert ist, verhindert. Die simultane Stimulation von TLR3 

bzw. TLR4 und TLR7 bzw. TLR8 könnte also ein Sicherheits-Code sein, der 

gewährleistet, dass biologisch aktives IL-12p70 nur in Antwort auf eingedrungene 

Pathogene, die mindestens zwei unterschiedliche Rezeptoren gleichzeitig aktivieren, 

sezerniert wird. Da Pathogene mehrere PAMPs enthalten ist die simultane Stimulation 

unterschiedlicher PRRs unter physiologischen Bedingungen wahrscheinlich. Damit    

IL-12p70 nur in Reaktion auf definierte Pathogene induziert wird, muss die 

kombinatorische Stimulation innerhalb eines Zeitfensters von möglicherweise vier 

Stunden erfolgen. 

 

Interessanterweise könnte die kombinierte Stimulation via TLR4 und TLR8 für die 

Aktivierung myeloider Zellen durch bestimmte Viren eine Rolle spielen. So war 
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beispielsweise gezeigt worden, dass RSV Immunzellen über einen TLR4-abhängigen 

Mechanismus aktiviert und die Produktion von IL-12p70 in humanen myeloiden Zellen 

induziert 248. Andere Viren könnten IL-12p70 über die gleichzeitige Stimulation von 

TLR3 und TLR7 bzw. TLR8 induzieren 249, 250. Gemäß den Ergebnissen der 

vorliegenden Arbeit würde dies zwar nicht in Monozyten auftreten, denen TLR3 fehlt, 

wäre jedoch in humanen mDCs zu erwarten.  

 

 

4.3.3 Mechanismus der IL-12p70-Induktion in myeloiden Zellen 

 

Nachdem die synergistische Wirkung von TLR3 bzw. TLR4 und TLR7 bzw.TLR8 in 

Bezug auf die Induktion von IL-12p70 gezeigt worden war, stellte sich die Frage was 

der zugrundeliegende Mechanismus dieses Synergismus sein könnte. Es ist 

wohlbekannt, dass Zytokine TLR-vermittelte zelluläre Immunantworten regulieren und 

es wäre demnach nicht unwahrscheinlich, dass diese auch für die Interaktion 

unterschiedlicher TLRs von Bedeutung sind.  

 

 

4.3.3.1 Rolle von Typ-I-Interferon in der IL-12p70-Produktion humaner myeloider 

Zellen  

 

Im Vorfeld dieser Arbeit hatten einige Studien angedeutet, dass Typ-I-Interferon für die 

Produktion von IL-12p70 eine Rolle spielt 213, 236, 251. Die Zytokin-Familie der Interferone 

war ursprünglich aufgrund ihrer Fähigkeit Zellen vor einer Virusinfektion zu schützen 

entdeckt worden. Heute ist bekannt, dass diese Zytokine zahlreiche Funktionen in der 

Regulation des Immunsystems haben. Sie beeinflussen sowohl angeborene, als auch 

adaptive Immunität. Interferone werden klassischerweise eingeteilt in Typ-I-Interferone, 

mit mehr als 20 Subtypen wie α,β,ε,ω, etc., das einzelne Typ-II-Interferon IFNγ, sowie 

drei Typ-III-Interferone, IFNλs. Für die meisten Viren und Bakterien war die Induktion 

von Typ-I-Interferon gezeigt worden. Im Rahmen einer Virusinfektion sind PDCs die 

Hauptproduzenten von Typ-I-Interferon, vor allem IFNα 146, 252. Allerdings können die 

meisten Zellen, mDCs und Monozyten eingeschlossen, IFNβ produzieren 253. Im 

Gegensatz zu IFNα ist IFNβ im Serum kaum nachweisbar, obwohl es ähnlich starke 

Interferon-Antworten wie IFNα induziert. IFNβ könnte infolgedessen vorwiegend lokale, 

auto- und parakrine, Effekte vermitteln, während IFNα für die systemischen Interferon-

Wirkungen verantwortlich ist. 
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Fünf der zehn humanen TLRs - genauer gesagt TLR3, TLR4, TLR7, TLR8 und TLR9 - 

können Signale übermitteln, die zur Expression von Typ-I-Interferon führen. Die 

Transkription des IFNβ-Gens wird durch einen Komplex an Transkriptionsfaktoren 

reguliert. Zu diesen Transkriptionsfaktoren gehören AP-1 (ATF-2 plus c-Jun), NFκB, 

IRF3 und IRF7 254, 255. Im Unterschied zum IFNβ-Promotor enthält der IFNα-Promotor 

keine Bindungsstelle für NFκB. IRF7 ist vermutlich der entscheidende Faktor in der 

Regulation der IFNα-Expression 256. Daneben scheint IRF5 in der IFNα-Transkription 

involviert zu sein 257. 

 

Unterschiedliche TLRs induzieren über distinkte Adaptermoleküle unterschiedliche 

Transkriptionsfaktoren. Der für die Typ-I-Interferon-Induktion downstream von TLR4 

entscheidende Transkriptionsfaktor ist IRF3 258. Auch TLR3 kann Signale weiterleiten 

die IRF3 via TRIF, TBK1 und IKKε aktivieren 93, 259. Demgegenüber induziert TLR7 

unabhängig von IRF3 Typ-I-Interferon 87. Vor kurzem wurde gezeigt, dass IRF7 ein 

entscheidendes Effektormolekül in der TLR7/8-vermittelten Typ-I-Interferon-Produktion 

ist 86, 88. TRAF3 bindet an MyD88 und IRAK1, dies führt zur Assoziation mit IRF7 und 

dessen Phosphorylierung 260, 261. Aktiviertes IRF7 wiederum induziert die Expression 

von IFNα und IFNβ. In vitro-Studien lassen vermuten, dass IRF7 vornehmlich IFNα-

Promotoren aktiviert 88. Interessanterweise benötigen TLR7 und TLR8 für die Induktion 

von Typ-I-Interferon das Adaptermolekül MyD88, während die Expression von Typ-I-

Interferon in Antwort auf Signale ausgehend von TLR3 und TLR4 MyD88-unabhängig 

ist 255. Im Gegenzug regulieren IFNα und IFNβ die durch TLRs induzierte Expression 

zahlreicher Gene. Es war gezeigt worden, dass infolge TLR-Aktivierung sezerniertes 

IFNβ in einer auto- oder parakrinen Schleife die Expression Interferon-regulierter Gene 

beeinflusst 229, 262, 263 

 

1998 stellte Hermann in humanen Monozyten fest, dass die Präinkubation mit IFNα die 

durch LPS oder Staphylococcus aureus Cowan I induzierte IL-12p40-Produktion 

hemmt, jedoch die Sekretion des biologisch aktiven Heterodimers IL-12p70 fördert 236. 

Heystek beobachtete, dass exogenes Typ-I-Interferon die IL-12p70-Produktion 

humaner MoDCs nach TLR-Stimulation förderte 251. Gautier zeigte ebenfalls in 

humanen MoDCs, dass exogenes Typ-I-Interferon während LPS- oder R848-

Stimulation die Sekretion von IL-12p70 steigerte 213.  

 

Deshalb wurde vermutet, dass Typ-I-Interferon die Produktion von IL-12 in humanen 

TLR-aktivierten Monozyten verstärkt. Allerdings führte das Hinzufügen exogenen Typ-I-

Interferons in der vorliegenden Arbeit zu keiner Förderung der IL-12p70-Sekretion 
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humaner TLR-stimulierter Monozyten. Unterschiede in den Zellpopulationen, der Dauer 

der Präinkubation mit Typ-I-Interferon, sowie der Interferon-Konzentrationen könnten 

diesen vordergründigen Widerspruch erklären. 

 

Darüber hinaus beobachtete Gautier, dass die durch simultane Stimulation von TLR3 

bzw. TLR4 plus TLR7 bzw. TLR8 induzierte IL-12p70-Sekretion in BMDCs von IFNAR-

KO-Mäusen im Vergleich zu BMDC von Wildtyp-Mäusen um mehr als 75% reduziert 

war. Entsprechend blockierten neutralisierende Antikörper gegen den IFNAR in 

humanen MoDCs teilweise die IL-12p70-Produktion in Antwort auf LPS oder R848 213. 

Aus diesem Grund wurde spekuliert, dass infolge TLR-Stimulation sezerniertes IFNβ in 

einer auto- oder parakrinen Feedback-Schleife die Produktion von IL-12p70 unterstützt. 

In Übereinstimmung mit der Studie von Gautier führte die IFNAR-Blockade humaner 

Monozyten zu einer dramatischen Reduktion der IL-12p70-Sekretion. Die fehlende 

Förderung der IL-12p70-Produktion durch exogenes Typ-I-Interferon und die fast 

vollständige Hemmung der IL-12p70-Sekretion durch IFNAR-Blockade deuten an, dass 

Typ-I-Interferon zwar nicht ausreichend, jedoch notwendige Voraussetzung für die     

IL-12p70-Sekretion in Antwort auf die simultane Stimulation von TLR4 und TLR8 ist. 

 

Die Rolle von Typ-I-Interferon in der IL-12p70-Sekretion wurde durch die Analyse 

STAT1-defizienter muriner BMDCs bestätigt. Es ist wohlbekannt, dass IFNγ die 

Produktion von IL-12p70 fördert. Da IFNγ und Typ-I-Interferon einen gemeinsamen 

Signalweg über die Phosphorylierung von STAT1 aktivieren, lag die Vermutung nahe, 

dass Typ-I-Interferon ebenso wie IFNγ via STAT1 die IL-12p70-Sekretion verstärkt. 

BMDCs von STAT1-KO-Mäusen sezernierten nach TLR-Stimulation im Vergleich zu 

BMDCs von Wildtyp-Mäusen nur minimale Mengen an IL-12p70, während sich die     

IL-12p40-Produktion nicht signifikant unterschied. Die Abhängigkeit der IL-12p70-

Produktion von Typ-I-Interferon zeigte sich auch in der Analyse der IL-12-mRNA. 

Während die Expression von IL-12p40 in TLR-stimulierten BMDCs von IFNAR-KO-

Mäusen nur geringfügig vermindert war, war die IL-12p35-mRNA stark reduziert 213. 

 

Zusammengefasst scheint demnach die Stimulation bestimmter TLRs in myeloiden 

Zellen die Sekretion von IFNβ zu induzieren. Freigesetztes IFNβ steigert nachfolgend 

in einer auto- oder parakrinen Schleife via IFNAR und STAT1 die Expression von      

IL-12p35 und ermöglicht damit die IL-12p70-Produktion. Es lässt sich folglich 

spekulieren, dass im Rahmen der frühen angeborenen Immunantwort Monozyten und 

mDCs infolge simultaner Stimulation von TLR3/4 und TLR7/8 über die endogene 

Sekretion von IFNβ IL-12p70 autonom produzieren könnten. Die Kooperation mit 
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anderen Zelltypen wäre keine absolut notwendige Voraussetzung für diese frühe 

Zytokin-Produktion. 

 

Allerdings sollte erwähnt werden, dass andere Studien berichtet hatten, dass Typ-I-

Interferon die IL-12-Produktion hemmt. Die meisten dieser Studien hatten jedoch       

IL-12p40 analysiert, oder unspezifische Bioassays für IL-12p70 eingesetzt 206, 264-268 

und im Vergleich zu den endogenen IFNβ-Levels sehr hohe Interferon-Konzentrationen 

verwendet. Eine mögliche Erklärung für diese widersprüchlichen Ergebnisse wäre, 

dass Typ-I-Interferon konzentrationsabhängig unterschiedliche Effekte induziert. Diese 

Daten lassen vermuten, dass Typ-I-Interferon eine äußerst komplexe regulatorische 

Funktion in der IL-12-Produktion übernimmt. 

 

 

4.3.3.2 Einfluss der durch Toll-like-Rezeptor-Stimulation veränderten Toll-like-

Rezeptor-Expression auf die IL-12p70-Produktion myeloider Zellen 

 

Die Blockade des IFNAR führte zu einer dramatischen, aber nicht vollständigen 

Hemmung der IL-12p70-Produktion. Daher scheint die endogene IFNβ-Sekretion nicht 

die alleinige Erklärung des TLR-Synergismus zu sein.  

 

Zahlreiche Studien hatten gezeigt, dass die TLR-Expression durch die Stimulation von 

TLRs selbst beeinflusst wird. Nomura und Matsuguchi beobachteten in murinen 

Makrophagen, dass der TLR4-Ligand LPS die Expression von TLR4 und TLR2 

veränderte 77, 78. Während LPS die TLR4-Expression reduzierte, wurde die Expression 

von TLR2 verstärkt. Nilsen bestätigte den Effekt von LPS auf TLR2. Darüber hinaus 

stellte er fest, dass neben LPS weitere TLR-Agonisten die TLR2-Expression steigerten. 

Interessanterweise korrelierte die Aufregulation von TLR2 mit einer gesteigerten 

Immunreaktion muriner Makrophagen auf die nachfolgende Stimulation mit 

Lipoproteinen als TLR2-Liganden 246. In murinen BMDCs steigerte die Stimulation mit 

LPS die Expression der TLR2-, TLR4- und TLR9-mRNA. Die vermehrte TLR9-

Expression deckte sich mit einer durch LPS plus CpG-DNA verstärkten TNF-

Produktion 247. Diese Studien deuten darauf hin, dass die durch TLR-Stimulation 

induzierte TLR-Expression die Immunantwort beeinflusst. Über eine gesteigerte 

Expression könnten mehr Liganden an entsprechende TLRs binden und gemeinsam 

zu einer verstärkten zellulären Reaktion führen.  
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Daher wurde vermutet, dass die Veränderung der TLR-Expression durch TLR-

Agonisten einen weiteren möglichen Mechanismus der synergistischen Wirkung von 

TLR3/4 und TLR7/8 darstellt. In der vorliegenden Arbeit wurde gezeigt, dass in 

humanen primären Monozyten LPS und R848 die Expression von TLR4, sowie der 

beiden TLR-Adaptermoleküle MyD88 und TRIF verstärkten. Demgegenüber blieben 

die TLR7- und TLR8-mRNA-Level unbeeinflusst. 

 

R848 könnte also durch Aufregulation von TLR4 und dessen Adaptermolekülen die 

zelluläre Reaktion auf LPS steigern. Es ließe sich spekulieren, dass eine dadurch 

verstärkte Signalweiterleitung über TLR4 und TRIF zu einer gesteigerten IFNβ-

Sekretion infolge LPS-Stimulation führte. IFNβ könnte wiederum via IFNAR und STAT1 

die IL-12p35-mRNA-Expression unterstützen und die Produktion von IL-12p70 so 

ermöglichen. Da LPS jedoch bereits selbst zu einer Aufregulation von TLR4, MyD88 

und TRIF führte, bleibt ungeklärt warum die simultane Stimulation durch R848 für die 

Induktion von IL-12p70 notwendig ist. Daneben sollte beachtet werden, dass die 

Analyse der mRNA-Level keinen direkten Nachweis über die Expression auf Protein-

Ebene liefert. Der funktionelle Beitrag der gesteigerten mRNA-Expression zum TLR-

Synergismus ist daher ungewiss. 

 

 

4.3.3.3 Inhibition der Interleukin-12-Produktion durch Interleukin-10 

 

Eine Überproduktion des potenten proinflammatorischen IL-12p70 ist mit der Gefahr 

der Entstehung von Autoimmunerkrankungen und systemischen 

Entzündungsreaktionen verbunden. Viele der schweren Komplikationen einer Infektion 

sind die Folge einer überschießenden Aktivierung des Immunsystems. Zur straffen 

Kontrolle der IL-12p70-Sekretion haben sich deshalb zahlreiche inhibitorische 

Mechanismen ausgebildet. Es gibt Hinweise, dass die Bindung von Liganden an      

Gαs-verbundene G protein-coupled receptors (GPCRs) über die Induktion von cAMP 

die IL-12p70-Produktion hemmt. Ursprünglich war dies für die Unterdrückung der       

IL-12-Sekretion durch Prostaglandin E2 gezeigt worden. Später wurde dieser 

Mechanismus für weitere Gαs-verbundene GPCRs bestätigt 269, 270. Darüber hinaus 

hatten zahlreiche Studien berichtet, dass antiinflammatorische Zytokine wie TGF-β und 

IL-10 die IL-12-Produktion hemmen 203, 204, 207.  

 

IL-10 ist ein entscheidender Faktor für die Aufrechterhaltung der Balance zwischen 

effektiven Immunantworten gegen Pathogene und schädlichen systemischen 
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inflammatorischen Syndromen. Es beeinflusst auf unterschiedliche Weise angeborenes 

und adaptives Immunsystem. Einerseits wirkt IL-10 fördernd auf die Proliferation von  

B-Lymphozyten und deren Immunglobulin-Produktion, sowie auf die Aktivität von     

NK- und T-Zellen 271. Andererseits ist die Hauptfunktion dieses Zytokins jedoch die 

Eindämmung und schließlich Terminierung entzündlicher Prozesse. Ursprünglich war 

IL-10 als cytokine synthesis inhibitory factor entdeckt worden, der durch TH2-Zellen 

sezerniert wurde und TH1-Effektor-Funktionen hemmte 272. Heute ist bekannt, dass   

IL-10 vorwiegend nicht nur durch unterschiedliche T-Zell-Populationen, sondern auch 

durch Makrophagen und DCs produziert wird 273. In Reaktion auf Pathogene können 

Makrophagen und DCs IL-12, IFNβ, aber auch IL-10, welches die Immunantwort 

reguliert, sezernieren. 

 

Einige Pathogene induzieren die Produktion großer Mengen an IL-10 und führen über 

die Unterdrückung effektiver Immunreaktionen zu einer persistierenden Infektion. 

Gemeinsamkeit vieler Pathogene scheint die Induktion der IL-10-Expression über 

Signalwege ausgehend von Rezeptoren der Lektin-Familie und TLR2 zu sein 273. So 

induziert das Virulenz-Antigen low calcium response V der Yersinia spp. via TLR2 die 

Produktion von IL-10 274. Jang beobachtete, dass die IL-10-Produktion dendritischer 

Zellen in Antwort auf M. tuberculosis ebenfalls TLR2-abhängig ist 275. IL-10 kann 

jedoch auch durch Stimulation weiterer TLRs induziert werden. Der TLR4-Ligand LPS 

führte in humanen Monozyten über die MAPK p38 zur IL-10-Produktion 276. Ma 

bestätigte die p38-abhängige IL-10-Induktion durch LPS in der humanen monozytären 

Zelllinie THP-1 277. Phagozyten und APCs scheinen also nach Aktivierung IL-10 zu 

produzieren. In einer autokrinen Feedback-Schleife könnte das sezernierte 

antiinflammatorische IL-10 die Sekretion proinflammatorischer Zytokine regulieren. 

Zunächst war entdeckt worden, dass IL-10 T-Zell-Antworten reguliert. Inzwischen ist 

bekannt, dass viele der IL-10-Effekte auf NK- und T-Zellen indirekt über Phagozyten 

und APCs vermittelt werden. Makrophagen und dendritische Zellen exprimieren die 

höchsten Level des Interleukin-10-Rezeptors 273. IL-10 hemmt über die Bindung an den 

IL-10-Rezeptor zahlreiche immunstimulatorische Prozesse. Dazu gehört die Inhibition 

der Expression von MHC-II, CD80 und CD86, sowie der Produktion von Chemokinen 

und proinflammatorischen Zytokinen, einschließlich IL-1α und β, IL-6, IL-12, IL-18 und 

TNF 278.  

 

Bereits 1993 beobachtete D´Andrea, dass IL-10 ein potenter Inhibitor der IL-12-

Produktion in humanen mit Staphylococcus aureus oder LPS stimulierten PBMCs war. 

Die Expression der IL-12p40-mRNA wurde durch S. aureus oder LPS stark induziert 
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und durch IL-10 gehemmt. Im Gegensatz dazu wurde IL-12p35 konstitutiv exprimiert  

und nur minimal durch S. aureus, LPS, oder IL-10 reguliert 204. Aste-Amezaga zeigte in 

humanen Monozyten, dass IL-10 die Expression von IL-12p40 und IL-12p35 inhibierte, 

und zwar hauptsächlich auf Ebene der Transkription 203. Die Inhibition der Expression 

des IL-12p40-Gens durch IL-10 wurde auch durch Du beobachtet 207. 

Interessanterweise hatte Re bei der Aktivierung humaner MoDCs mit Kombinationen 

von TLR-Agonisten festgestellt, dass TLR2-Liganden die durch TLR3 oder TLR4 

induzierte IL-12p35-Expression hemmten. TLR2-Stimulation führte zu rascher 

Sekretion von IL-10, welches für die Inhibition der IL-12p35-Produktion verantwortlich 

schien 279. Aufgrund dieser Ergebnisse lässt sich vermuten, dass die simultane 

Stimulation unterschiedlicher TLRs die Zytokin-Sekretion nicht nur positiv, wie im Falle 

von TLR3/4 und TLR7/8, sondern auch negativ beeinflussen kann. Ausgehend von 

diesen Daten ist es nicht verwunderlich, dass TLR2-Agonisten in Kombination mit LPS 

oder R848 kein IL-12p70 induzierten. 

 

Die Schlüsselfunktion von IL-10 für die Inhibition der TLR-induzierten IL-12p70-

Produktion wurde in der vorliegenden Arbeit bestätigt. In humanen Monozyten 

induzierte die Stimulation mit TLR4- und TLR8-Agonisten unterschiedlich hohe Level 

an IL-10. In Gegenwart von LPS sezernierten primäre Monozyten sehr viel mehr IL-10 

als in Gegenwart von R848. Entscheidend war jedoch der Befund, dass R848 die 

durch LPS-induzierte IL-10-Sekretion hemmte. Nur die simultane Stimulation mit LPS 

und R848 vermochte die Produktion von IL-10 zu inhibieren. Wurde R848 erst nach 

einem Zeitfenster von vier Stunden zu LPS-stimulierten Monozyten hinzugegeben, 

wurde die IL-10-Sekretion nicht mehr gehemmt, sondern vielmehr gesteigert. Die 

zeitgleiche Aktivierung intrazellulärer Signalwege ausgehend von TLR8 scheint 

demnach die durch TLR4 weitergeleiteten Signale zur IL-10-Produktion zu hemmen. 

 

In murinen BMDCs, aktiviert durch LPS oder Poly I:C plus R848, führte die 

Neutralisierung von IL-10 mittels anti-IL-10R-Antikörpern zu einer gesteigerten           

IL-12p70-Produktion 213. Im Einklang mit diesen Vordaten wurde die durch die 

synergistische Wirkung von LPS und R848 induzierte IL-12p70-Sekretion in humanen 

Monozyten in Gegenwart IL-10-blockierender monoklonaler Antikörper verstärkt. 

Darüber hinaus ermöglichte die Neutralisierung von IL-10 die IL-12p70-Sekretion 

humaner Monozyten in Reaktion auf die Stimulation einzelner TLR-Typen. In 

Gegenwart neutralisierender anti-IL-10- oder anti-IL-10R-Antikörper konnte sowohl der 

TLR4-Ligand LPS, als auch der TLR-8-Agonist R848 IL-12p70 induzieren. In diesem 
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Zusammenhang ist bemerkenswert, dass IL-10 die Expression von Genen hemmt, 

welche über den TRIF-abhängigen TLR-Signalweg aktiviert wurden 279-281. 

 

Ausgehend von diesen Ergebnissen lässt sich spekulieren, dass in humanen 

Monozyten TLR4- und TLR8-Agonisten IL-12p70 induzieren, dessen Produktion aber 

durch die endogene Sekretion von IL-10 gehemmt wird. Nur die simultane Stimulation 

von TLR4 und TLR8 kann die autokrine Blockade der Produktion von IL-12p70 

überwinden. Dadurch würde gewährleistet, dass das biologisch aktive Heterodimer nur 

in Antwort auf bestimmte Pathogene, welche TLRs auf der Zelloberfläche und in 

Endosomen aktivieren, produziert wird. IL-10 würde so den Organismus vor einer 

unangemessenen und möglicherweise schädlichen IL-12p70-Produktion schützen. 

 

Der Mechanismus wie IL-10 seine antiinflammatorischen Effekte vermittelt ist bisher 

nur teilweise aufgeklärt. Bekannt ist bislang, dass die Bindung von IL-10 an den IL-10-

Rezeptor via Janus-Kinasen STAT-Proteine aktiviert. Hierbei scheint STAT3 das 

einzige STAT-Protein zu sein, welches für die antiinflammatorischen Effekte von IL-10 

notwendig ist. STAT3 aktiviert Gene, deren Produkte inflammatorische Signalwege, 

wie durch TLRs aktiviert, blockieren 273, 282.  

 

Es bleibt daher zu klären über welche intrazellulären Signalmoleküle und 

Transkriptionsfaktoren IL-10 die IL-12p70-Produktion in humanen Monozyten inhibiert 

und über welche Mechanismen TLR8 die durch TLR4-induzierte IL-10-Sekretion 

verhindert.  

 

 

4.3.4 Erklärungsmodelle der Regulation der Interleukin-12-Produktion 

nach Toll-like-Rezeptor-Stimulation 

 

Alle bisherigen Studien lieferten nur einzelne Anhaltspunkte über den Mechanismus, 

welcher der synergistischen Wirkung bestimmter TLRs in Bezug auf die IL-12p70-

Produktion zugrunde liegt. In der vorliegenden Arbeit wurden Hinweise zu beteiligten 

Zytokinen und Veränderung der Genexpression gegeben.  

 

Warum wirken ausgerechnet TLR3/4 und TLR7/8 synergistisch? Was ist das 

Besondere an diesen TLRs bzw. TLR-Signalwegen im Vergleich zu den anderen? 

Wodurch ist der Code der IL-12p70-Sekretion begründet? Im Folgenden werden 
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ausgehend von den Ergebnissen der vorliegenden Arbeit und bisheriger Studien 

Erklärungsmodelle des TLR-Synergismus entwickelt. 

 

Das Besondere der beteiligten TLRs ist, dass TLR3 und TLR4 die einzigen TRIF-

gekoppelten TLRs sind und, dass TLR7 und TLR8 in Endosomen lokalisiert sind. Das 

Prinzip der synergistischen Interaktion TRIF-gekoppelter TLRs mit endosomalen TLRs 

wird dadurch unterstützt, dass auch TLR9, welcher sich ebenfalls in Endosomen 

befindet, gemeinsam mit TLR3 in murinen BMDCs große Mengen an IL-12p70 

induziert 227. Neben TLR7, TLR8 und TLR9 befindet sich auch TLR3 im endosomalen 

Kompartiment.  

 

Während sich TLR3 und TLR4 durch ihr Adaptermolekül TRIF auszeichnen, 

assoziieren TLR7, TLR8 und TLR9 mit MyD88, dem kollektiven Signalmolekül 

sämtlicher TLRs. Bemerkenswert ist in diesem Zusammenhang allerdings, dass 

endosomale TLRs via MyD88 zumindest in bestimmten Zelltypen IRFs aktivieren 

können 86, 88, 89, 256. Die über MyD88 vermittelte Aktivierung von IRFs, insbesondere von 

IRF7, zeichnet diese TLRs gegenüber auf der Zelloberfläche befindlichen TLRs aus. 

Es lässt sich vermuten, dass via TRIF aktivierte Signalwege mit für endosomale TLRs 

spezifischen MyD88-abhängigen Signalwegen kooperieren. Dies wird dadurch 

bekräftigt, dass IL-12p70 in murinen und humanen myeloiden Zellen selektiv induziert 

wurde, wenn Liganden TRIF-assoziierter TLRs mit Liganden MyD88-assoziierte 

endosomaler TLRs kombiniert wurden 213, 227. In einer kürzlich veröffentlichten Studie 

wurde gezeigt, dass TRIF-assoziierte TLRs mit MyD88-assoziierten TLRs in Bezug auf 

die Induktion proinflammatorischer Zytokine in vivo und in vitro synergistisch 

zusammenwirken. Interessanterweise förderte die Aktivierung MyD88-assoziierter 

TLRs die durch LPS-induzierte IFNβ-Produktion. Die IL-12p70-Sekretion wurde in 

dieser Studie nicht analysiert. Es bleibt jedoch festzuhalten, dass TRIF-assoziierte 

TLRs mit MyD88-assoziierten TLRs interagieren und proinflammatorische 

Immunantworten verstärkt werden 283.  

 

Die Fähigkeit des TLR3-Liganden Poly I:C alleine, d. h. ohne weiteren TLR-Liganden, 

in mDCs IL-12p70 zu induzieren gibt Raum für Spekulationen. TLR3 befindet sich wie 

TLR7, TLR8 und TLR9 im endosomalen Kompartiment, koppelt allerdings im 

Unterschied zu diesen nicht an MyD88. Es wäre jedoch denkbar, dass TLR3 einerseits 

TRIF-abhängige und andererseits bisher nicht identifizierte, von MyD88-unabhängige, 

für endosomale TLRs spezifische Signalwege aktiviert. Über die Interaktion dieser 
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Signalwege würde die IL-12p70-Sekretion durch einen TLR-Liganden alleine möglich 

werden.  

 

Die Zytokin-Sekretion kann generell an unterschiedlichen Stellen im Syntheseprozess 

kontrolliert werden. So kann die Regulation auf Ebene der Transkription, der mRNA-

Stabilität, der Translation, der posttranslationalen Prozessierung, sowie der Sekretion 

stattfinden. Für die Sekretion von IL-12p70 sind diverse Regulationsmechanismen 

bekannt. Wie bereits einleitend beschrieben können je nach Aktivierungszustand der 

Zelle verschiedene p35 mRNAs mit unterschiedlicher translationaler Effizienz 

exprimiert werden. Darüber hinaus wird die p35 Untereinheit über einen besonderen 

Mechanismus prozessiert, während die Reifung von p40 entsprechend dem co-

translationalen Modell erfolgt.  

 

Napolitani hatte angedeutet, dass die synergistische TLR-Stimulation zur Aktivierung 

des Inflammasoms führen könnte. Obwohl LPS oder R848 alleine die Transkription von 

IL-1β induzierten, wurde kein IL-1β-Protein freigesetzt. Die Sekretion des durch das 

Inflammasom prozessierten IL-1β wurde jedoch durch die synergistische TLR-

Stimulation effizient induziert 227. Der Vorgang der posttranslationale Prozessierung 

von IL-12p35 ist weitgehend ungeklärt, insbesondere sind die an den Schnittprozessen 

des Proteins beteiligten Enzyme nur teilweise bekannt. Es stellt sich daher die Frage 

ob Bestandteile des Inflammasoms oder durch dieses aktivierte Moleküle in diesen 

Vorgang involviert sind. So könnte die gleichzeitige Stimulation mit LPS und R848 über 

eine Aktivierung des Inflammasoms die Reifung der p35-Untereinheit und die 

nachfolgende Sekretion des Heterodimers IL-12p70 ermöglichen. 

 

Die meisten Studien haben die Regulation der IL-12p70-Produktion auf Ebene der 

Transkription untersucht. Zahlreiche beteiligte Transkriptionsfaktoren wurden bereits 

identifiziert. Es gibt einige Hinweise, dass die synergistische Wirkung bestimmter TLRs 

in Bezug auf die IL-12p70-Produktion zumindest teilweise auf die Beeinflussung der  

IL-12p70-Transkription zurückzuführen ist. Mittels Microarray-Analyse wurde gezeigt, 

dass die simultane Stimulation mit LPS und R848 die Gen-Expression selektiv 

veränderte. Nur etwa 1% der durch einzelne TLR-Liganden induzierten Gene wurde 

durch die TLR-Interaktion signifikant stärker exprimiert. Darüber hinaus wurde 

beobachtet, dass synergistische Kombinationen von TLR-Agonisten zu einem vier- bis 

sechsfachen Anstieg der IL-12p40-mRNA und zu einem 40- bis 60fachen Anstieg der 

IL-12p35-mRNA führten 227. Demnach scheint der TLR-Synergismus überwiegend die 

Transkription der limitierenden Untereinheit p35 zu induzieren. 
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Basierend auf den bisherigen Kenntnissen über die an der Expression von IL-12p70 

beteiligten Transkriptionsfaktoren, die TLR-Signalwege und die Mechanismen der 

Interaktion zwischen TLR3/4 und TLR7/8 lässt sich ein komplexes Modell der 

transkriptionellen IL-12p70-Regulation entwickeln (Abbildung 16). Sämtliche TLRs 

können via TRIF und/oder MyD88 den Transkriptionsfaktor NFκB aktivieren. NFκB 

bindet an Promotorsequenzen beider IL-12p70 Untereinheiten, sowie des IFNβ-Gens 

und induziert deren Transkription 208, 209, 255. TLR4 und TLR3 können MyD88- bzw. 

TRIF-abhängig IRF5 aktivieren 90. Daraufhin wandert IRF5 in den Zellkern und bindet 

an ISRE-Motive im p40- und vermutlich IFNα-Gen 212, 255. TLR7, TLR3 und TLR4 

können IRF7 aktivieren. Über seine Bindung an ISREs induziert IRF7 ausschließlich 

die Expression der p35-Untereinheit. Daneben ist IRF7 in die IFNα- und IFNβ-

Expression involviert 86, 88, 255, 256. Ein weiterer IRF kann MyD88-abhängig aktiviert 

werden - IRF1. Wie IRF7 aktiviert IRF1 ausschließlich die Transkription des p35-Gens 
91, 210. Eine Besonderheit des TRIF-Signalwegs ist die Aktivierung von IRF3 94. IRF3 

wurde als Haupt-Transkriptionsfaktor des IFNβ-Gens beschrieben 284, 285. Außerdem 

bindet IRF3 an ISREs des p35-Promotors 215. Schließlich können MyD88-assoziierte 

TLRs mittels MAPKs den Transkriptionsfaktor AP-1 aktivieren 12. Demzufolge könnte 

R848 via TLR7/8 die Transkriptionsfaktoren NFκB, IRF1, IRF7 und AP-1 aktivieren und 

darüber die Gene von p35, p40, IFNβ und IFNα regulieren. LPS würde zusätzlich die 

Phosphorylierung und Aktivierung von IRF3 und IRF5 induzieren und so die 

Expression der IL-12p70- und Typ-I-Interferon-Gene verstärken. Poly I:C hingegen 

könnte über TLR3 und TRIF zwar NFκB, IRF3, IRF5 und IRF7, nicht jedoch IRF1 und 

AP-1 aktivieren.  

 

Die Bedeutung von Typ-I-Interferon für den TLR-Synergismus lässt sich auf 

Transkriptionsebene teilweise erklären. Von TLRs ausgehende Signale können die 

Typ-I-Interferon-Produktion induzieren. Sezerniertes Typ-I-Interferon bindet in einer 

autokrinen Schleife an IFNARs auf der Zelloberfläche. Die Bindung von Typ-I-

Interferon an seinen Rezeptor aktiviert via Janus-Kinasen STAT1 bis 3. Dies führt zur 

Bildung di- oder trimerer Transkriptionsfaktor-Komplexe. Der klassische 

Transkriptionsfaktor-Komplex des IFNAR-Signalweges ist der IFN-stimulated gene 

factor 3 (ISGF3), bestehend aus STAT1, STAT2 und IRF9. ISGF3 bindet an ISREs in 

Promotoren von IFN-regulated genes (IRGs). Die Bindung von Typ-I-Interferon an den 

IFNAR induziert auch die Entstehung von STAT1:1- und STAT3:3-Homodimeren und 

STAT1:3-Heterodimeren, häufig als gamma-activated factors (GAFs) bezeichnet. 

Diese wiederum binden an gamma-activated sequences (GASs) und aktivieren IRGs 
255. Zu den IRGs gehört auch IRF7. Typ-I-Interferon induziert also die Synthese von 



 104 

IRF7. Dieses wird wiederum über Signalwege ausgehend von PRRs phosphoryliert 

und dadurch aktiviert. Aktiviertes IRF7 induziert die Expression von IFNα und IFNβ. 

Somit verstärkt Typ-I-Interferon in einer positiven Feedback-Schleife seine eigene 

Produktion.  

 

Die Bedeutung von Typ-I-Interferon für die synergistische Induktion von IL-12p70 durch 

TLR3/4- und TLR7/8-Liganden ließe sich wie folgt zusammenfassen: 

 

(1) Poly I:C bzw. LPS aktivieren via TLR3 bzw. TLR4 konstitutiv exprimiertes IRF3. 

Über IRF3, den Haupt-Transkriptionsfaktor von IFNβ, wird die IFNβ-Produktion 

induziert. 

(2) Freigesetztes IFNβ bindet an den zelleigenen IFNAR und induziert die IRF7-

Synthese. 

(3) R848 aktiviert nach Bindung an TLR7/8 IRF7.  

(4) Aktiviertes IRF7 wiederum fördert die Expression der limitierenden p35-

Untereinheit.  

(5) Außerdem steigert IRF7 die Typ-I-Interferon-Produktion und verstärkt dadurch 

die IRF7-Synthese. 

 

 

Wie ist nun IL-10 in die transkriptionelle Regulation von IL-12p70 involviert? 

 

(1) TLR-Liganden, so auch LPS und R848, können die IL-10-Produktion 

induzieren. Beteiligte Transkriptionsfaktoren sind bislang weitgehend ungeklärt. 

(2) Sezerniertes IL-10 aktiviert in einer autokrinen Feedback-Schleife via IL-10R 

STAT3. 

(3) STAT3 wiederum induziert Gene deren Produkte proinflammatorische 

Signalwege, wie durch TLRs aktiviert, blockieren. 

(4) So inhibiert IL-10 die durch Typ-I-Interferon induzierte STAT1-Aktivierung 286. 

Die fördernde Funktion von Typ-I-Interferon auf die IL-12p70-Produktion würde 

dadurch verhindert. 

(5) R848 hemmt die durch LPS-induzierte IL-10-Produktion und fördert damit die 

IL-12p70-Transkription. 
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Abbildung 16: Modell der transkriptionellen IL-12p70-Regulation nach TLR-
Stimulation 
Dargestellt sind die für die vorliegende Arbeit relevanten Mechanismen. Eine ausführliche 
Beschreibung findet sich im fortlaufenden Text. In Kürze, TLR-Stimulation führt in Abhängigkeit 
vom jeweiligen TLR zur Aktivierung der Transkriptionsfaktoren NFκB, AP-1, IRF1, IRF3, IRF5 
und IRF7. Nach Translokation in den Zellkern binden diese an spezifische Promotorsequenzen 
von Zytokin-Genen, wie IL-12p35, IL-12p40, IFNβ und IL10. IFNβ induziert in einer autokrinen 
Rückkopplungs-Schleife die Synthese von IRF7, welches wiederum über TLR-Stimulation 
phosphoryliert und dadurch aktiviert wird. IL-10 hingegen hemmt die Transkription 
proinflammatorischer Zytokine - IL-12p35, IL-12p40 und IFNβ eingeschlossen.  
 

 

Insgesamt scheinen Monozyten und dendritische Zellen in Antwort auf definierte 

PAMP-Kombinationen, die den Kriterien des stimulatorischen Codes entsprechen,     

IL-12p70 zu produzieren. Diese Produktion kann autonom, unabhängig von NK- oder 

T-Zell-Hilfe erfolgen. Zum Schutz vor unangemessener IL-12-Sekretion haben sich 

faszinierende, endogene regulatorische Mechanismen ausgebildet. 

 

Obwohl die Details der synergistischen Wirkung von TLR3/4 und TLR7/8 auf die        

IL-12p70-Produktion ungeklärt bleiben, liefert die vorliegende Arbeit richtungsweisende 

Anhaltspunkte für die beteiligten Mechanismen. Weitere Studien sollten analysieren 

inwieweit andere PRRs, insbesondere RLRs und NLRs, in den Synergismus zwischen 

Poly I:C oder LPS und R848 involviert sind. 
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4.4 Klinische Relevanz der Ergebnisse 

4.4.1 Rolle von Interleukin-12 in der Pathogenese von 

Autoimmunerkrankungen und Allergien 

 

Es war gezeigt worden, dass Interleukin-12 an der Entstehung zahlreicher 

Autoimmunerkrankungen beteiligt ist. Die exzessive Produktion von IL-12 schien 

beispielweise in der Pathophysiologie der Multiplen Sklerose 287, der rheumatoiden 

Arthritis 288, oder dem Lupus erythematosus 289 eine Rolle zu spielen. 

Autoimmunerkrankungen werden bekanntermaßen durch bakterielle und virale 

Infektionen getriggert. Es lässt sich spekulieren, dass die Induktion von IL-12p70 durch 

die synergistische Aktivierung von TLR4 und TLR8 zu Autoimmunität beitragen könnte. 

Zu Autoimmunerkrankungen führende pathogene Mechanismen könnten erhöhte   

Typ-I-Interferon-Konzentrationen im Serum, eine nicht ausreichende Beseitigung 

apoptotischer Partikel und eine Erkennung körpereigener Nukleinsäuren beinhalten. 

Während einer Infektion eines prädisponierten Individuums könnte LPS eine          

TH1-Immunantwort induzieren, indem es in Synergie mit endogener RNA die 

Freisetzung von IL-12p70 aus Monozyten und mDCs ermöglicht. 

  

Im Gegensatz zur pathogenetischen Rolle der Überexpression von IL-12 für           

TH1-bedingte Erkrankungen kann ein Mangel an IL-12 zu einem Überwiegen von  

TH2-Immunantworten führen und so zur Entstehung allergischer Erkrankungen 

beitragen. Asthma ist mit hyperaktiven TH2-Antworten assoziiert. In einem Mausmodell 

verringerte die Behandlung mit IL-12 die Hyperreaktivität der Atemwege 290. In 

atopischen Patienten wurden Mutationen des IL-12-Rezeptors identifiziert und es 

wurde gezeigt, dass die IFNγ-Produktion in Reaktion auf die Stimulation mit IL-12 bei 

Atopikern verringert war 291, 292.   

 

 

4.4.2 Bedeutung von Interleukin-12 in der Infektionsabwehr 

 

Mutationen des IL-12-Rezeptors und des IL-12p40-codierenden Gens wurden auch in 

Patienten mit atypischen Infektionen durch Mykobakterien und Salmonellen gefunden 
293, 294.  
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Einem Pathogen nicht angemessene Immunantworten sind mit einer schlechten 

Prognose verbunden. IL-12 ist aufgrund seiner Funktion als Schlüsselzytokin für die 

Induktion von TH1-Reaktionen entscheidend für die Resistenz gegen intrazelluläre 

Bakterien, Parasiten, Pilze und Viren. Beispielsweise bedarf die Beseitigung einer 

Infektion mit M. tuberculosis einer starken TH1-Antwort. In manchen Fällen entwickelt 

sich jedoch statt der lebensnotwendigen TH1- eine ineffektive TH2- Immunantwort 295.  

 

In der Therapie von Infektionserkrankungen wie Tuberkulose könnte IL-12 als potenter 

Induktor von Typ-1-Immunreaktionen hilfreich sein. Insbesondere in Hinblick auf das 

zunehmende Problem der Antibiotika-Resistenz ist die Entwicklung alternativer 

Therapiestrategien bedeutend. Kombinationsbehandlungen antimikrobieller 

Substanzen zusammen mit IL-12 könnten zu einer Effektivitätssteigerung und 

gleichzeitig über eine Dosisreduktion zu einer verminderten Toxizität im Vergleich zur 

Behandlung mit den Einzelsubstanzen führen.  

 

In der Prävention von Infektionserkrankungen, für deren Bekämpfung eine effiziente 

zelluläre Immunität notwendig ist, könnte IL-12 ein potentes Vakzine-Adjuvans 

darstellen. Die Entwicklung von Adjuvantien, welche die IL-12-Produktion in APCs 

induzieren, könnte den Gebrauch von exogenem IL-12 vermeiden. Der in dieser Arbeit 

identifizierte kombinatorische Code der IL-12p70-Produktion könnte als Grundlage für 

die Entwicklung solcher Adjuvantien dienen. Insbesondere für Neugeborene, die nur 

eine geringe Kapazität der CD40L-Produktion haben, wäre dies relevant 227.   

 

Einzelne TLR7-, TLR8-, oder TLR9-Liganden wurden bereits erfolgreich als Vakzine-

Adjuvans zur Verstärkung von T-Zell-Antworten eingesetzt 296-299. Mehrere Studien 

haben die gesteigerte Effizienz der Induktion zellulärer Immunantworten durch die 

Behandlung mit Kombinationen von TLR-Liganden im Vergleich zur Therapie mit 

einzelnen TLR-Agonisten gezeigt. Beispielsweise produzierten murine BMDCs nach 

kombinierter Stimulation von TLR3 und TLR7 verstärkt IL-12p70. Höchstinteressant 

war allerdings, dass mit Antigen beladene und mit Poly I:C plus R848 aktivierte murine 

BMDCs deutlich gesteigerte Effektorfunktionen zytotoxischer T-Zellen in vivo 

induzierten im Vergleich zu BMDCs stimuliert mit nur einem der beiden TLR-Agonisten. 

Dies deutet darauf hin, dass die vollständige Aktivierung von DCs durch optimierte 

Stimulations-Protokolle ihr immunstimulatorisches Potential steigert und DC-basierte 

Vakzinierungs-Strategien verbessert 300. 
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4.4.3 Einfluss von Interleukin-12 auf Tumorerkrankungen 

 

Bereits zu Beginn der 1990er Jahre zeigten Brunda, Tahara und Nastala, dass IL-12 in 

vivo in der Maus potente Anti-Tumor-Aktivität hatte und Metastasen verringerte 301-303. 

Die Anti-Tumor-Aktivität von IL-12 ist komplex und involviert angeborenes und 

adaptives Immunsystem.  

 

An der IL-12-vermittelten Anti-Tumor-Aktivität beteiligte Mechanismen sind 

insbesondere:  

 

(1) Die Aktivierung zytotoxischer Lymphozyten, wie NK-, NKT- und CD8+ T-Zellen 185, 

189, 

(2)  die Induktion von IFNγ 222, 223, 

(3) die Produktion von CXCR3-Liganden, die wirksame Inhibitoren der Tumor-

Angiogenese sind 304, 305 und 

(4) die Induktion der Synthese von Antikörpern, die das Komplementsystem aktivieren 

und Tumorzellen opsonisieren können 226.  

 

Einige Tumoren sezernieren PGE2, das die IL-12-Produktion hemmt. Die systemische 

Gabe von rekombinantem IL-12 konnte Wachstum und Metastasierung PGE2-

sezernierender Tumoren in der Maus inhibieren 306. In vivo-Stimulationen von Mäusen 

mit Poly I:C und CpG-DNA erhöhten synergistisch die IL-12-Konzentration im Serum, 

die mit einer gesteigerten Anti-Tumor-Aktivität im Vergleich zur Behandlung mit 

einzelnen TLR-Liganden korrelierte. Die kombinierte Gabe von Poly I:C und CpG 

kontrollierte das Wachstum pulmonaler Metastasen 239. 

 

Nach den Erfolgen im Mausmodell wurde die Anti-Tumor-Aktivität von IL-12 in 

klinischen Studien untersucht. Mit Ausnahme von Patienten mit kutanen                      

T-Zell-Lymphomen, Kaposi-Sarkomen, oder Non-Hodgkin-Lymphomen, die auf eine  

IL-12-Therapie relativ gut ansprachen, war die Effektivität minimal 307. Nichtsdestotrotz 

lassen die anfänglichen Erfolge über eine Optimierung der Therapie-Strategien auf 

wirksame klinische Effekte hoffen. Der Weg ist gebahnt für die Erforschung der 

protektiven Wirksamkeit multipler TLR- und PRR-Liganden-Kombinationen in Bezug 

auf Infektions- und Tumorerkrankungen. Die Ergebnisse und diskutierten Studien der 

vorliegenden Arbeit liefern eine konzeptionelle Grundlage für diese 

Forschungsanstrengungen in Labor und Klinik. 
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5 Zusammenfassung 
 

Einleitung 

Im hochdifferenzierten Abwehrsystem des Menschen lassen sich zwei Komponenten 

unterscheiden - die angeborene und die adaptive Immunität. Für die effiziente 

Bekämpfung zahlreicher Mikroorganismen und Tumoren ist die Aktivierung beider 

Systeme notwendig. Spezialisierte Zellen des angeborenen Immunsystems, 

sogenannte Antigen-präsentierende Zellen (APCs), sind in der Lage das adaptive zu 

aktivieren und so eine komplette Immunantwort zu induzieren. Monozyten und 

dendritische Zellen sind die zentralen APCs und somit die Vermittler zwischen 

angeborener und adaptiver Immunität.  

 

APCs können über eine limitierte Anzahl sogenannter pattern recognition receptors 

(PRRs) eine Vielzahl von Mikroorganismen detektieren. Dies ist möglich, da PRRs 

bestimmte konservierte mikrobielle Muster, auch als pathogen-associated molecular 

patterns (PAMPs) bezeichnet, erkennen. Toll-like-Rezeptoren (TLRs) sind ein Subtyp 

der PRRs. Bis heute sind zehn verschiedene TLRs im Menschen bekannt. Diese 

unterscheiden sich in Ihrer Expression, ihren Liganden und Signalwegen. Die 

Aktivierung von Monozyten und dendritischen Zellen über PRRs führt unter anderem 

zur Veränderung der Expression von Oberflächenmolekülen und Sekretion von 

Zytokinen, wie Interleukin-12, und beeinflusst darüber die adaptive Immunität. 

 

Interleukin-12 ist ein zentraler Regulator des Immunsystems. Es aktiviert Zellen der 

angeborenen Immunität und ist zugleich Schlüsselzytokin für die Induktion einer     

TH1-Immunantwort. Eine effektive TH1-Immunreaktion ist essentiell für die 

Bekämpfung von intrazellulären Pathogenen und Tumoren. Interleukin-12 wird 

hauptsächlich von Monozyten, Makrophagen, dendritische Zellen und Neutrophilen in 

Reaktion auf die Erkennung von Pathogenen und endogenen Gefahrensignalen 

produziert und bereits frühzeitig im Verlauf einer Immunreaktion sezerniert. Da 

Interleukin-12 ein potentes proinflammatorisches Zytokin ist, unterliegt dessen 

Produktion zur Verhinderung von Autoimmunreaktionen und systemisch 

inflammatorischen Syndromen einer komplexen Regulation.  

 

Zu Beginn dieser Arbeit wurde angenommen, dass die IL-12p70-Produktion myeloider 

Zellen strikt durch T-Lymphozyten kontrolliert würde. Insbesondere in Phagozyten 

schienen TLR-Liganden alleine nicht ausreichend für die Induktion von IL-12p70. Da 

Pathogene mehrere PAMPs gleichzeitig exprimieren, wäre die simultane Stimulation 
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verschiedener TLRs anzunehmen. Die Kooperation unterschiedlicher TLRs war jedoch 

kaum untersucht, inzwischen hat sich dies zu einem hochaktiven Forschungsgebiet 

entwickelt. 

 

Fragestellung 

Ziel der vorliegenden Arbeit war die Identifikation regulatorischer Mechanismen der   

IL-12p70-Produktion in humanen myeloiden Zellen. Unter Anwendung geeigneter in 

vitro-Modelle sollte untersucht werden ob humane myeloide Zellen in Antwort auf PRR-

Liganden unabhängig von T- oder NK-Zell-Hilfe IL-12p70 produzieren. Dabei sollten 

kooperative Effekte unterschiedlicher TLRs in Bezug auf die IL-12p70-Sekretion 

analysiert werden. Darüber hinaus sollte die Regulation der IL-12p70-Produktion 

unterschiedlicher myeloider Zellpopulationen verglichen werden. Im Verlauf dieser 

Arbeit zeigte sich, dass TLR4 und TLR8 in Bezug auf die IL-12p70-Produktion 

synergistisch wirkten. Ausgehend von dieser Beobachtung sollte versucht werden 

mögliche diesem Synergismus zugrundeliegende Mechanismen zu charakterisieren.  

 

Ergebnisse 

Die genaue Analyse der PRR-Expression hochaufgereinigter humaner CD14++CD16- 

Monozyten zeigte, dass diese Hauptpopulation der Monozyten NOD2, TLR2, TLR4 und 

TLR8 exprimierte und Typ-I-Interferon keinen Einfluss auf Expressionslevel und 

Funktionalität der PRRs hatte. Im Vergleich zu Monozyten exprimierten primäre 

humane myeloide dendritische Zellen (mDCs) zusätzlich NOD1, TLR3 und minimale 

Level an TLR7. Im Gegensatz zu Monozyten zeigte sich in mDCs, dass Typ-I-

Interferon die Expression von TLR7 induzierte und TLR7 in Gegenwart von IFNα 

funktionell aktiv war.  

 

In der vorliegenden Arbeit wird erstmals belegt, dass humane primäre Monozyten 

unabhängig von T- oder NK-Zell-Hilfe signifikante Mengen an IL-12p70 sezernieren. 

Voraussetzung hierfür ist die simultane Stimulation von TLR4 und TLR8. Die 

Ergebnisse dieser Studie weisen darauf hin, dass unter verschiedenen TLR- und NOD-

Agonisten ausschließlich die Kombination von TLR4- und TLR8-Liganden IL-12p70 in 

humanen Monozyten induziert. Es scheint demnach, dass die IL-12p70-Sekretion 

humaner Monozyten unabhängig von T-Zell-Hilfe - wie zu Beginn einer Immunantwort - 

eines spezifischen kombinatorischen Codes bestehend aus der zeitgleichen 

Aktivierung von TLR4 und TLR8 bedarf. Dies ist in Übereinstimmung mit 

Untersuchungen zur IL-12p70-Produktion im murinen System, sowie in humanen 

Monozyten-abgeleiteten dendritischen Zellen (MoDCs) und mDCs. Die gegenwärtige 
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Studie belegt erstmals, dass die Stimulation von TLR8 unabhängig von TLR7 für den 

Synergismus mit TLR4 in Bezug auf die Produktion von IL-12p70 ausreicht. 

 

Die synergistische Wirkung von TLR4- und TLR8-Liganden bestätigte sich auch in 

primären humanen mDCs. Bemerkenswert ist, dass in mDCs der kombinatorische 

Code auf die simultane Stimulation von TLR3/4 und TLR7/8 erweitert schien und diese 

Zellen bereits nach alleiniger TLR3-Stimulation IL-12p70 sezernierten. Darüber hinaus 

wurde deutlich, dass die IL-12p70-Produktion humaner MoDCs entscheidend durch 

ihre Generierungsbedingungen beeinflusst wird. Die Notwendigkeit der zeitgleichen 

Stimulation von TLR4 und TLR7/8 zeigte sich auch in MoDCs, die in Gegenwart von 

GM-CSF und IFNα generiert worden waren. Schließlich wurde der kombinatorische 

Code der IL-12p70-Produktion in peripheral blood mononuclear cells (PBMCs) 

bestätigt.  

 

Im zweiten Abschnitt dieser Arbeit wurden die der synergistischen Wirkung von TLR4 

und TLR8 in Bezug auf die IL-12p70-Produktion zugrundeliegenden Mechanismen 

analysiert. Hierbei wurde beobachtet, dass die endogene Produktion von Typ-I-

Interferon nach simultaner TLR4- und TLR8-Stimulation für die IL-12p70-Sekretion 

humaner Monozyten essentiell war. Daneben deuten die Ergebnisse an, dass die 

verstärkte Expression von TLR4, sowie der beiden TLR-Adaptermoleküle MyD88 und 

TRIF zum Synergismus beitragen könnte. Die Schlüsselfunktion von Interleukin-10 für 

die Inhibition der TLR-induzierten IL-12p70-Produktion wurde in der vorliegenden 

Arbeit bestätigt.   

 

Schlussfolgerung 

Die kombinierte Aktivierung myeloider Zellen via TLR4 und TLR8 bietet gegenüber der 

Stimulation einzelner TLRs folgende Vorteile: (1) das Schlüsselzytokin der TH1-

Immunantwort IL-12p70 wird induziert, (2) das Verhältnis von IL-12p70 zu anderen 

proinflammatorischen Zytokinen ist zugunsten von IL-12p70 gesteigert und (3) eine 

Reduktion der Dosis, welche notwendig ist um eine effektive TH1-Immunantwort zu 

induzieren, könnte eine verminderte systemische Toxizität im Vergleich zur 

Anwendung einzelner TLR-Liganden mit sich bringen. 

 

Die kombinierte TLR4- und TLR8-Stimulation könnte zu einer Optimierung 

immuntherapeutischer Strategien von Allergien, Infektionserkrankungen und Tumoren 

beitragen. 
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Verzeichnis der Abkürzungen und Akronyme 
 

AP-1   Activator protein-1 

APC   Allophycocyanin 

APCs   Antigen-präsentierende Zellen  

BDCA   Blood dendritic cell antigen 

BHK   Baby hamster kidney 

BMDC   Knochenmarks-abgeleitete dendritische Zelle 

BSA   Bovines Serumalbumin 

CARD   Caspase-recruitment domains 

CD   Cluster of differentiation 

CD40L   CD40-Ligand 

cDNA   copy-Desoxyribonukleinsäure 

CLR   C-type-lectin-Rezeptoren  

CpG   Cytosin-(phosphat)-Guanin-Dinukleotid 

Cy   Cyanin 

DAMP   Danger-associated molecular pattern 

DC    Dendritische Zelle 

DNA   Desoxyribonukleinsäure 

dNTP   Deoxynucleotide triphosphate 

dsRNA   Doppelsträngige Ribonukleinsäure 

EDTA   Ethylendiamintetraacetat 

ELISA   Enzyme-linked immunosorbent assay 

ERK   Extracellular signal-related kinase 

FACS   Fluorescence-activated cell sorter 

FcR    Fc-Rezeptoren 

FCS   Fötales Kälberserum 

FITC   Fluorescein-Isothiocyanat 

FSC   Forward scatter 

GAF   Gamma-activated factor 

GAS   Gamma-activated sequence 

G-CSF   Granulozyten koloniestimulierender Faktor 

GM-CSF  Granulozyten-Makrophagen koloniestimulierender Faktor  

GPCR   G protein-coupled receptor 

GPI   Glykosylphosphatidylinositol 

HLA   Humanes Leukozytenantigen 

HSA   Humanes Serumalbumin 
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HSP   Hitzeschock-Protein 

iE-DAP   γ-D-Glutamyl-meso-Diaminopimelinsäure 

IFN   Interferon 

IFNΑR   Typ-I-Interferon-Rezeptor 

Ig   Immunglobulin 

IKK   Inhibitor of NFκB kinase 

IL   Interleukin 

IL-10R   Interleukin-10-Rezeptor 

IP-10   Interferon-γ-inducible protein-10 

IRAK   IL-1R-assoziierten Kinase 

IRF   Interferon regulatory factor 

IRG   IFN-regulated gene 

ISGF3   IFN-stimulated gene factor 3 

ISRE    IFN-stimulated response element 

isRNA   Immunstimulatorische RNA 

IκB   Inhibitor of NFκB 

KO   Knock-out 

LBP   LPS-bindendes Protein  

LPS   Lipopolysaccharid 

LRR   Leucin-rich repeats 

LTA   Lipoteichonsäure 

MACS   Magnetic-activated cell sorting 

Mal   MyD88-adapter like 

MALP-2  Macrophage-activating lipopeptide 2 

MAPK   Mitogen-activated protein kinase 

Mda-5   Melanoma differentiation-associated gene 5 

mDC   Myeloide dendritische Zelle  

MDP   Muramyldipeptid 

MHC   Major histocompatibility complex 

MoDCs   Monozyten-abgeleitete dendritische Zellen 

mRNA   Messenger RNA 

MyD88   Myeloid differentiation factor 88 

NEMO   NFκB essential modulator 

NFκB   Nuclear factor kappa B 

NK-Zellen  Natürliche Killer-Zellen 

NKT-Zellen  Natürliche Killer-T-Zellen 

NLR   Nucleotide-binding oligomerization domain (NOD)-like-Rezeptor 
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NOD   Nucleotide-binding oligomerization domain  

PAMP   Pathogen-associated molecular patterns 

PBMC   Peripheral blood mononuclear cell 

PBS   Phosphate-buffered saline 

PCR   Polymerase-Kettenreaktion 

PDC   Plasmazytoide dendritische Zelle 

PE   Phycoerythrin 

PerCP   Peridinin Chlorophyll Protein 

PFA   Paraformaldehyd 

PGN   Peptidoglykan 

Poly I:C  Polyinosin-Polycytidin-Säure 

PP   Polypropylen 

PRR    Pattern-recognition-Rezeptor 

rh   Rekombinant human 

RIG-I   Retinoid acid-inducible gene I 

RIP-1   Receptor-interacting protein 1 

RLR    Retinoid acid-inducible gene I (RIG-I)-like-Rezeptor  

RNA   Ribonukleinsäure 

RPMI   Roswell Park Memorial Institute 

RSV   Respiratory syncytial virus 

RT   Reverse Transkription 

SARM   Sterile α and HEAT-Armadillo motif 

SEM   Standard error of mean 

SSC   Side scatter 

ssRNA   Einzelsträngige RNA 

TAB   TAK1 binding protein 

TAK1   TGF-β-activated kinase 1 

TBK1   TRAF-family-member-associated NFκB activator-binding kinase1 

TGF-β   Transforming growth factor-β 

TH   T-Helfer 

TIR   Toll/IL-1R 

TLR   Toll-like-Rezeptor 

TNF   Tumor necrosis factor 

TRAF6   Tumor necrosis factor receptor-associated factor 6 

TRAM   TRIF-related adapter molecule 

TRIF   TIR domain-containing adapter inducing interferon-β 
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