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SUMMARY 
 

This work is concerned with the delineation of two adjacent regions within the 

developing telencephalon: the dorsally located cerebral cortex and the ventrally located 

ganglionic eminence (abbreviated GE). The GE gives rise to the mature striatum and 

other basal ganglia. During embryonic development, the cortex and the GE express 

distinct transcription factors, creating a sharp gene expression border between them. 

This is the emergence of the so-called cortico-striatal boundary. Since other 

boundaries in the embryo have the property to hinder the migration of cells, we have 

studied the permeability of the cortico-striatal boundary to the migration of cortical and 

GE cells. In the first part of this study we have found that the cortico-striatal boundary 

restricts cell migration in an asymmetrical way, preventing cortical cells from entering 

into the GE while enabling many cells to migrate from GE into the cortex. In the 

following parts of this work, we sought to understand the molecular mechanisms 

promoting this asymmetry. For this we studied two mouse mutants where a 

transcription factor specifically expressed in the cortex and in the boundary region was 

missing. In the Neurogenin2 mutant mouse, the migration of cortical cells into the GE 

was increased in a non-cell-autonomous way, revealing a role for Ngn2 in making the 

boundary impermeable to cortical cells. In the Pax6 mutant Small-eye, where 

Neurogenin2 is absent, both the migration of cortical cells and the migration of GE cells 

across the boundary were increased. The enhanced migration from the GE into the 

cortex hence revealed a role of Pax6 in partially restricting the migration of GE cells. 

The comparison of both mutants and their diverse molecular alterations allowed us to 

draw some conclusions about the nature of the signals promoting the asymmetry of 

migration across the boundary. These are developed in the discussion. Finally, the fifth 

part of this study deals with another feature of developmental boundaries, concerning 

the coupling of cells via gap junctions and their uncoupling at boundaries. We showed 

that the cortico-striatal boundary interrupts cell coupling, whereas in the Pax6 mutant, 

cells between the cortex and the GE retain their communication via gap junctions. 
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INTRODUCTION 
 

Regionalization is a process that occurs during the embryonic phase of development 

throughout the embryo, allowing distinct compartments to arise next to each other, in 

order to give rise to neighboring organs. This phenomenon of regionalization requires 

the formation of boundaries at the interface between groups of cells. It involves several 

molecular and cellular mechanisms that have been partly studied in different animal 

models and different parts of the body. In order to understand the context of this study, 

it is important to first consider the partial conservation of those mechanisms at the 

different boundaries along the body and throughout evolution. Six examples will be 

next briefly introduced.  

 

-1- In the drosophila embryo, 14 segments arise along the antero-posterior axis of 

the body that are subdivided in anterior and posterior compartments. The formation of 

boundaries between segments involves segment polarity genes being expressed 

distinctly in anterior and posterior compartment cells. The transcription factor Engrailed 

(En) is expressed in posterior cells of a segment, driving the expression of the signaling 

molecule Hedgehog (Hh). Posterior cells themselves cannot respond to Hh as a result 

of the repression by En of a transcription factor mediating the response to Hh, Cubitus 

interruptus (Ci). In contrast, anterior compartment cells express Ci and respond to Hh 

by first activating Ci and then expressing other signaling molecules, such as 

Decapentaplegic (Dpp) and Wingless (Wg). The differential transcriptional activity of Ci 

and En on both sides of the border results in an affinity boundary, where cells from 

both segments segregate from each other. A mechanism achieving this cell 

segregation has been proposed, in which the opposing transcriptional activities of En 

and Ci would regulate a single cell adhesion molecule. (Dahmann and Basler, 2000). 

 

-2- The drosophila embryo is also compartimentalized along its dorso-ventral axis, 

as for example in the wing imaginal disc. The mechanisms acting at this dorso-ventral 

boundary, involving the Notch signaling pathway, are very similar to the one governing 

the positioning of the apical ectodermal ridge (AER) in vertebrates, which separates the 

presumptive dorsal and ventral side of the limb bud. Fringe is a secreted 

glycosyltransferase that modulates the activity of the Notch receptor (Moloney et al., 

2000, Bruckner et al., 2000) by rendering Notch more sensitive to its ligand Delta and 

less sensitive to its ligand Serrate (Panin et al., 1997). In Drosophila, the dorsal 

expression of Fringe and serrate, and the ventral expression of Delta creates a 
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restricted territory of Notch signaling within a narrow band of cells at the dorso-ventral 

boundary. As a result, boundary cells are specified to express Wingless and organize 

the wing growth and patterning. Furthermore, by positioning a Notch signaling stripe, 

the activity of Fringe creates a boundary of cell segregation (Rauskolb et al., 1999). 

However, two transmembrane proteins expressed dorsally, Capricious and Tartan, 

have also been shown to be responsible for the specific affinity of dorsal cells and their 

segregation from the ventral compartment (Milan et al. 2001). In vertebrates as well, R-

Fringe, expressed by dorsal cells, has a positioning function of the dorso-ventral 

boundary of the limb bud. The AER has been shown to form wherever a tissue 

expressing Fringe abuts a tissue not expressing Fringe (Rodriguez-Esteban et al., 

1997, Laufer et al., 1997). Unlike at the drosophila wing dorso-ventral boundary, but 

like in the drosophila posterior compartment cells, the transcription factor Engrailed-1 is 

expressed by ventral cells lining the vertebrate AER, where it represses Fringe 

expression. As a result of the molecular interactions, the AER is a cell lineage 

boundary, preventing cells from the dorsal and ventral compartment to intermingle 

(Kimmel et al., 2000, Altabef et al.,2000). 

 

-3- Segmentation of the mesoderm along the antero-posterior axis in vertebrates 

gives rise to the somites, transient structures that will later give rise to the vertebrae 

and skeletal muscles. As for the AER and the dorso-ventral drosophila wing margin, 

the mechanisms of segmentation of the presomitic mesoderm involve signaling 

interactions through the Notch pathway. The Notch modulating molecule L-fringe is 

expressed within the border between two somites and is required for their proper 

segmentation (Zhang and Gridley, 1998). Other molecular interactions of the Notch 

pathway allowing this segmentation to occur have been identified. For instance the 

basic Helix-Loop-Helix (bHLH) transcription factor Mesp2 is expressed anteriorly in the 

presumptive somites, and inhibits the transcription of the Notch ligand Delta-like-1 

(Dll1), by inhibiting the Presenillin mediated Notch signaling pathway. (Presenilin is an 

intracellular membrane bound protein allowing the translocation of Notch to the 

nucleus). In posterior cells, presenilin is active and Dll1 is expressed (Takahashi et al., 

2000). Thus, signaling activity of Notch and the distinct molecular cascades used in the 

presumptive anterior and posterior halves of the somite play a role in the segmentation 

of the presomitic mesoderm. Additionally, the Notch signaling pathway also regulates 

the expression of cell adhesion molecules in the forming somites. For example PAPC, 

a member of the protocadherin family of cell adhesion molecules, is expressed 

anteriorly under the control of Mesp2 (Kim et. al., 2000). The Eph receptor tyrosine 
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kinase EphA4 is as well expressed anteriorly under the control of Notch pathway 

molecules, whereas ephrinB2 is expressed posteriorly (Barrantes et al., 1999; Durbin 

et al., 2000). The differential expression of Eph receptors and their ephrin ligands in 

neighboring compartments has been indeed shown to promote the segregation of cell 

groups (Mellitzer et al., 1999). 

 

Besides the different boundaries segmenting the vertebrate body, the brain itself is also 

segmented and contains boundaries that delineate several regions along the antero-

posterior and the ventro-dorsal axis.  

 

-4- The mid-hindbrain boundary (MHB) separates the developing hindbrain from 

the developing midbrain. At early neural plate stages, this boundary is visible as a 

switch between the expression of the transcription factors Otx2 in the midbrain, and 

Gbx2 in the hindbrain. The expression of molecules such as Pax2, En1, Wnt1 and 

FGF8 is induced at the interface between Otx2 and Gbx2 expressing cells and these 

molecules in turn organize the development of both adjacent regions (Rhinn and 

Brand, 2001; Wurst and Bally-Cuif, 2001). Hence, the mid-hindbrain boundary is also 

called mid-hindbrain organizer. The interface between Otx2 and Gbx2 expressing cells 

is a sharp border. However, cells in the two adjacent compartments have revealed no 

difference in adhesive properties, and the boundary does not restrict cell migration, as 

shown by an in vitro aggregation assay and by cell lineage analysis (Jungbluth et al., 

2001). Instead of a restricted migration, cells are believed to be able to change their 

fate rapidly when they cross the mid-hindbrain boundary. 

 

-5- In the diencephalon, the Zona Limitans Intrathalamica (ZLI) appears at early 

developmental stages as a wide territory, detectable as a region negative for L-fringe 

expression, at the junction between prechordal and epichordal neuraxis. This territory 

later narrows and becomes a thin boundary between the ventral and the dorsal 

thalamus. On each side of the ZLI, cells are lineage restricted within their compartment 

(Figdor and Stern, 1993). The expression of L-fringe on both sides, but not inside the 

ZLI, has been shown to prevent the mixing of ZLI cells with the surrounding cells, 

probably as a result of the Notch pathway activation. (Zeltser et al., 2001). 

 

-6- The hindbrain is divided into 7 rhombomeres separated on the antero-posterior 

axis by the inter-rhombomeric boundaries. These boundaries have been very well 

studied and several cellular and molecular mechanisms have been described in those 
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regions. At early developmental stages, the differential expression of transcription 

factors in odd and even rhombomeres induces directly the expression of different cell 

adhesion molecules. For exemple the zinc-finger transcription factor Krox20 in 

rhombomeres 3 and 5 induces the expression of EphA4 (Theil et al., 1998). As a 

consequence, the interaction of Eph receptors and their ligands in alternating 

rhombomeres promotes cell segregation at the borders by a mechanism of repulsion 

(Mellitzer et al., 1999; Xu et al., 1999, Xu and Wilkinson, 1997). Within the boundary 

region, the cells reveal the particularity of dividing slower than the cells inside the 

rhombomeres (Guthrie et al., 1991). These boundary cells specialize into radial glia 

cells, whose fibers form a fascicle. The presence of this fascicle is however not crucial 

for the segregation of the cells at the border (Nittenberg et al., 1997). Finally, despite a 

strong level of cell segregation at the borders between rhombomeres, a small 

percentage of cells is still able to migrate from one rhombomere into the next 

(Birgbauer and Fraser, 1994). Another mechanism involved in the delineation of the 

adjacent rhombomeres is the reduction of intercellular communication through gap 

junction: cells within rhombomeres are coupled via gap junctions, allowing the passage 

of mRNA and calcium ions for example, however, this communication is interrupted at 

boundaries (Martinez et al., 1992). 

 

These examples reveal that the same molecules and signaling pathways come into 

play at the diverse boundaries segmenting embryos. Molecules of the Notch pathway 

promote the exact positioning of cell-cell signaling at borders. The interaction between 

the Notch receptor and the ligands Delta and Serrate mediates both cell adhesion and 

cell-cell signaling, inducing for example the expression of Wnt signaling molecules that 

control the growth of the tissues. The Notch signaling pathway can also induce the 

expression of cell adhesion molecules, such as PAPC or Eph receptors. Notch 

signaling pathway is implicated in the dorso-ventral wing margin, in the apical 

ectodermal ridge, in the somite borders, at the ZLI and also at the rhombomere 

boundaries (where Fringe is expressed, Johnston et al., 1997) and thus seems to be a 

universal mechanism acting at boundary formation. The organization of the abutting 

regions controlled by Wnt signaling is also found in most of the boundaries, also 

independently of Notch, like in the antero-posterior compartmentalization of the 

drosophila embryo or at the mid-hindbrain boundary. Eph receptor tyrosine kinases and 

the ephrin receptors, which operate as signaling molecules and cell adhesion 

molecules at the same time, also seem to be involved in the formation of several 

boundaries, promoting the segregation of cells (for example at the somite and 
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rhombomere boundaries). Thus, boundaries seem to use common molecular 

mechanisms that allow common cellular mechanisms to take place, such as restriction 

of cell migration and growth of the abutting tissues. Signaling activity at borders and/or 

distinct affinity properties between groups of cells seem to promote at almost every 

boundary the segregation of cells into the distinct regions. 

 

In this work, we focused our attention on a particular dorso-ventral boundary in the 

developing murine forebrain: the cortico-striatal boundary. This boundary delineates 

the developing cerebral cortex, dorsally located, from the developing ganglionic 

eminence (GE), ventrally located. The GE comprises the medial ganglionic eminence 

(MGE) and the lateral ganglionic eminence (LGE). As the GE will later give rise to the 

basal ganglia, and in particular the LGE to the striatum (Olsson et al., 1995), the 

boundary is called cortico-striatal boundary. Both regions, cortex and GE, are located 

in the telencephalon which is part of the forebrain and is the anteriormost part of the 

vertebrate brain. The mature cortex will be involved in information processing, and the 

mature striatum in the control of movements. Both regions are endowed with different 

neuronal cell type composition, and different cytoarchitecture. The cortex contains 80% 

of excitatory glutamatergic projecting neurons and 20% of inhibitory gabaergic 

interneurons (Peters and Jones 1984), and the neurons are ordered in 6 layers, from 

the ventricular surface to the pial surface. On the other side of the boundary, the 

striatum contains mostly inhibitory gabaergic neurons (Gerfen, 1992) that are 

organized in nuclei instead of layers. It is therefore interesting to study how the cortex 

and striatum are delineated, and how they acquire their different phenotype during 

development.  

 

At around embryonic day 9 (E9), before neurogenesis starts in the telencephalic 

vesicle, the cortico-striatal boundary appears as a gene expression border. 

Transcription factors like Pax6, Otx1 and -2, Emx1 and -2, Ngn1 and -2 are expressed 

within the cortex, with a sharp border to the negative GE. Conversly, transcription 

factors like Dlx1, -2 and -5, Mash1 are expressed in the GE but not in the cortex. Other 

genes, coding for cell adhesion molecules, are also expressed in a region specific 

manner, like R-cadherin in the cortex. From around embryonic day 13, the cortico-

striatal boundary is then also characterized by a fascicle of radial glial cells, which 

spans from the sulcus, at the surface of the ventricle, to the pial surface. Figure 1A 

illustrates the above description, depicting an E14 coronal section through the 

telencephalon, with the cortex, the GE, and the cortico-striatal boundary in between. 
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The expression territory of several transcription factors is represented in color. 

Figure1B shows the radial glia fascicle of the cortico-striatal boundary, stained by a 

monoclonal antibody that recognizes specifically these cells. 

 

As described above, a mechanism often involved in the delineation of adjacent regions 

is the restriction of cell migration. We were therefore interested to study the 

regionalization of the telencephalon under the aspect of cell migration, and first verified 

whether the cortico-striatal boundary represents a migrational restriction boundary as 

well. A previous study had shown that cells isolated from both regions segregate from 

each other in a short-term aggregation assay (Götz et al. 1996). It had been also 

shown that ventricular zone cells of the cortex do not migrate across the boundary into 

the GE (Fishell et al., 1993). In contrast, other studies had shown in a different culture 

system that GE cells could enter into the cortex (Anderson et al., 1997; Tamamaki et 

al., 1997). But the migration across the cortico-striatal boundary had not been studied 

in both directions in a single assay.  

 

In the first part of this work, we showed that the migration across the cortico-striatal 

boundary in wild type mice is asymmetrical, allowing GE cells to enter the cortex, but 

hindering cortical cells to enter into the GE. For this, we used several experimental 

paradigms. First, injections of green fluorescent protein (GFP) containing adenovirus in 

telencephalic slices allowed the tracing of a small group of cells and the analysis of 

their migration over 48 hours in culture. These experiments revealed the strong 

restriction of cortical cell migration, and a certain degree of restriction of the GE cells in 

their migration into the cortex. Then, time-lapse recording experiments were performed, 

using transgenic mice that express GFP in neurons, in order to study the movements of 

the cells approaching the cortico-striatal boundary. Finally, transplantations in slice 

culture were performed in order to examine whether the ability to cross the cortico-

striatal boundary is cell autonomous, or substrate dependent.  

 

In order to further understand which molecular mechanisms make the boundary 

asymmetric in its permeability, we studied two mouse mutants in which transcription 

factors expressed specifically in the cortex and in the boundary were missing. The 

second part of this work hence describes the study of the Small-Eye mouse, a naturally 

occurring mutant in which the paired- homeodomain transcription factor Pax6 is non-

functional. It had been shown before that in this mutant, the radial glia fascicle of the 

cortico-striatal boundary is disrupted, and that cells from cortex and GE intermingle in 
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vitro in a higher proportion than they do in wild type (Stoykova et al. 1997). This work 

shows a massive increase in cell migration from the GE into the cortex in the Small-eye 

mutant. Thus, it reveals an important role of Pax6 in restricting GE cells to their own 

region. Cells coming from the cortex also cross the boundary in a higher amount in the 

Small-eye mutant. Further, the expression pattern of several adhesion- or signaling 

molecules known to play a role in cell migration was examined in this mutant, revealing 

two new candidates that could account for the restriction of migration at the boundary.  

The third part of this work is concerned with the migration across the cortico-striatal 

boundary in a mutant for the basic Helix-Loop-Helix transcription factor Ngn2. In 

contrast to the Pax6 mutant, where several ventral genes are up-regulated in the 

cortex, the absence of Neurogenin2 leads to the only up-regulation of Mash1 in the 

cortex. This upregulation was shown to arise by mis-specification of the mutant cortical 

cells rather than by a migration of ventral cells into the cortex (Fode et al., 2000). We 

were interested to examine what happens to the mis-specified dorsal cells that express 

a ventral gene. We found in this mutant an increase of cortical cell migration into the 

GE. Cellular and molecular defects within the mutant boundary, and transplantation 

experiments revealed a non-cell-autonomous cause for this defect. These results 

reveal a role for Ngn2 in restricting cortical cells within the cortex.  

 

The last part of this work is concerned with another aspect of boundary formation which 

involves the coupling and uncoupling of cells via gap junctions. Within organs, or 

developing organs, cells are connected via channels called gap junctions that allow the 

passage of ions and small molecules, like messenger RNA molecules. Gap junctions 

are made of connexin units that are transmembrane proteins. Depending on the pH, on 

calcium ionic concentration, or on the phosphorylation level of the connexins, gap 

junctions can be opened or closed. In certain boundary regions, for example in the 

drosophila wing imaginal disc (Weir and Lo, 1985) or at rhombomere boundaries 

(Martinez et al., 1992), the communication via gap junctions is interrupted. Within the 

developing telencephalon, progenitor cells in the cortical ventricular zone are 

connected via gap junctions and form columnar clusters (LoTurco et al., 1991). This 

coupling is regulated for example during the different phases of the cell cycle (Bittman 

et al., 1997; Owens and Kriegstein, 1998). We were interested to know whether the 

cortico-striatal boundary is a zone where the coupling is interrupted. We showed by the 

use of an electrophysiological method that cells are indeed uncoupled in the cortico-

striatal boundary. Furthermore we compared wild type animals to small-eye mutant, 

and found that this boundary feature was lost in the Small-eye mutant. 
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MATERIALS AND METHODS 
 
Animals 
The wild type mice used in this work are C56BL6 mice (Charles River company). 

The Pax-6 mutant mice used in this work carry the Sey allele on a C56BL6/6J x DBA/2J 

background. This naturally occurring point mutation in the Pax6 gene leads to the expression of 

a truncated non-functional protein (Hill et al., 1991). Heterozygous Sey/+ mice, recognized by 

their eye phenotype, were crossed to obtain homozygous, heterozygous and wild type embryos. 

In this study we used only wild type and homozygous Sey/Sey littermates, recognized by the 

lack of eyes (Hill et al., 1991).  

The Ngn2LacZKI mice (KI= knock-in) contain the LacZ reporter in the coding sequences of the 

Ngn2 bHLH domain (Fode et al., 2000). Embryos were obtained by crossing two heterozygous 

Ngn2LacZKI parents. The litters contained wild type (Ngn2WT/Ngn2WT), heterozygous 

(Ngn2WT/Ngn2LacZKI) and homozygous mutant (Ngn2LacZKI/Ngn2LacZKI). In control experiments an 

EGFP knock-in mouse (Ngn2GFPKI, Gerard Gradwohl and Francois Guillemot, unpublished data) 

was crossed to a Ngn2LacZKI mouse in order to obtain null mutants with only one LacZ copy. 

Genotyping of mice was performed by PCR on genomic DNA extracted from tails (Laird et al., 

1991) Genotyping of the Ngn2lacZKI allele was performed with primers situated in the upper 

(CCAGCTGGCGTAATAGCGAA) and lower (CGCCCGTTGCACCACAGATG) strands of the 

bacterial ß-galactosidase sequence. The Ngn2WT allele was detected using an upper primer in 

the 5´untranslated region of the gene (GGACATTCCCGGACACACAC) and a lower primer in 

the coding sequence (AGATGTAATTGTGGGCGAAG) which generates an 813 bp product. 
PCR conditions were 30 cycles of 94°C/1min; 60°C/1min; 72°C/1min (Fode et al., 2000). The 

genotype of the Ngn2GFPKI allele was revealed at the fluorescence microscope. All experiments 

were performed blind and the genotype was only revealed after analysis of the experiment.  

TauGFPKI  mice: For the time-lapse migration study, a mouse containing EGFP in the Tau locus 

was used. (Tucker et al., 2000). 

Green mice: For in vitro transplantation experiments, mice expressing the EGFP (enhanced 

green fluorescent protein) transgene under the actin promotor were used. (Okabe et al., 1997) 

Wistar rats were used as well for transplantation experiments. 

For all animals used in this work, the day of vaginal plug was considered as embryonic day 0 

(E0) and the experiments were performed at embryonic day (E) 13 to 17 (The total gestational 

time for mice and rats is 19 days). Mice were anesthetized with ether or with CO2, killed by 

cervical dislocation, embryos were removed, placed in Hanks Balanced Salt Solution (HBSS) on 

ice, decapitated and dissected immediately. 
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EGFP-adenovirus injections 
The Adenovirus construct used was made by Annette Gärtner. This adenovirus lacks the E1 

region and is thus replication incompetent. The EGFP transgene is under the control of the CMV 

promotor and has been inserted into the viral vector by homologous recombination.  

Frontal sections of the telencephalon were cut at 250-300µm thickness using a tissue chopper 

(McIlwain). The slices were collected in HBSS (Hank´s Balanced Salt Solution) containing 5mM 

HEPES, and transferred to Millipore inserts (Millicell-CM 0.4µm, 30mm diameter) in 6-well 

plates. They were cultured in 1.5 ml Dulbecco´s modified medium (DMEM) with 10% foetal calf 

serum (FCS) for two days at 37°C and 5% CO2. The injections were performed immediately 

after preparation of the slices: EGFP adenovirus was pressure injected focally onto the surface 

of the slice through a glass pipette with a 10µm opening diameter, with a Pneumatic PicoPump 

PV820 (WPI). Injections were placed either in the cortex or in the ganglionic eminence (GE). 

Usually, about 10 to 100 cells were infected in an area ranging from 200-400µm.  

In order to monitor the passive diffusion of the viral vectors, cytochalasin-D was added to the 

culture medium. Cytochalasin-D blocks actin polymerisation and thereby cell migration (Cooper 

1987). The remaining spread of green fluorescent cells under this condition reflects the amount 

of passive virus diffusion. The 2mg/ml cytochalasin-D stock solution in DMSO was diluted in 

culture medium to final concentrations of 2µg/ml to 8µg/ml and added immediately after the 

adenovirus injections.  

  

Migration analysis 

In order to follow the migration of green fluorescent cells, the infected slices were photographed 

at three time points after the injection (at 16/17, 25/26 and 44/45 hours) at the fluorescence 

microscope (Zeiss Axiophot) using the 10X objective. The distribution of green fluorescent cells 

was drawn from these photos for each time point and the drawings were superimposed. With 

increasing time a higher number of cells was detected further away from the injection site. The 

cells outside the injection site after 25 and 45 hours were considered as migrating and their 

number and distance from the injection site was quantified. The maximum distance was 

measured as the distance between the injection site and the furthest cell from the injection site 

after 25 and 45 hours. When cells were already located outside the injection spot after 16 hours 

we used their location as the zero value instead of the rim of the injection site to measure the 

distance of migration. The mean distance of migration was calculated as the average distance 

of all migrating cells in a respective slice. 

 

Dissociated cell cultures and immuncytochemistry 
The cerebral cortex and the GE of brains from E14 mice were dissected in cold HBSS and 

incubated 15 minutes at 37°C in trypsin-EDTA (Gibco). The cells were dissociated using a fire-

polished Pasteur pipette and washed three times in DMEM with 10%FCS. Cells were plated at 

106 cells/ml in DMEM/FCS (0,5ml/well) in a 24-well plate on poly-D-lysine coated coverslips. 
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After 24 hours in culture (37°C, 5% CO2) cells were fixed in 4% paraformaldehyde in phosphate 

buffered saline (PBS) for 15 minutes. Infection with 1µl GFP-adenovirus per coverslip was 

performed one hour after plating of the cells. Cultures were fixed after one day and 

immunostained as described below. Neurons were detected by a monoclonal antibody (mAb) 

directed against β-III-Tubulin (IgG2b, 1:100, Sigma), and precursor cells by a mAb against 

nestin (IgG1, 1:4, Developmental Studies Hybridoma Bank). 

 

Immunohistochemistry 
Forebrains of were dissected and fixed in 2% paraformaldehyde (PFA) in PBS at 4°C for 6 

hours. For GABA stainings brains were fixed in 4% PFA with 0.2% glutaraldehyde at 4°C for 8 

hours. After fixing, brains were embedded in 3% agarose in PBS, and 100µm thick coronal 

sections were cut on a vibratom (Campden Instruments LTD). Alternatively, 12µm thick 

cryostate sections were used. Sections of both kinds were stained by incubation in the primary 

antiserum over night at 4°C (diluted in PBS with 0.5%tritonX100 and 10% normal goat serum 

(NGS)), followed by three washings in PBS. Subsequently, dissociated cells or slices were 

incubated in fluorescently tagged (usually Cy2 or Cy3, from Dianova) secondary antisera (1:200 

in PBS) for 45 minutes at room temperature. Washings were performed in PBS and the sections 

were mounted in Aqua Polymount (Polysciences Inc) and analyzed at a Zeiss Axiophot or Leitz 

confocal microscope. Following antibodies have been used: 

Anti-calbindin and anti-calretinin: polyclonal rabbit antibodies (Swant), diluted 1:500; 

Anti-GABA: polyclonal rabbit antibody (Sigma), 1:1000;  

RC2: mouse IgM (P.Leprince, University of Liège, Belgium), 1:500;  

Anti-BLBP: polyclonal rabbit antibody (N. Heintz, Rockefeller University, New York, USA), 

1:5000; 

9-4: monoclonal rat antiserum (T.Hirata, Kyoto University, Japan), 1:10. 

 

Time-lapse study 
Brains were dissected, embedded in 1% agarose in PBS, and frontal slices of 160µm thickness 

were cut immediately on a vibratome in ice cold ACSF (Artificial Cerebrospinal Fluid, see Gap 

Junctions). One slice was laid in the flow chamber of an Axiovert microscope and fixed to the 

bottom with a transparent millicell membrane glued to a platine ring (1cm diameter). 

Oxygenated ACSF at room temperature constantly flew through the chamber. Fluorescence 

pictures were taken at the 40X objective every 10 minutes with a digital CCD camera driven by 

the Metaview software. Analysis of the cell movements was achieved by measuring in Metaview 

the x,y position of a cell in each plane of the recorded stack. The distances and rates of 

migrations were then calculated in the Excel program.   
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In vitro transplantations  
Telencephali of E14 mice or E16 rats were isolated, sectioned and cultured as for the 

adenovirus injection assay. When the slices had been placed in the millicell inserts, a small 

piece (about 300x300µm) of cortex from the green mice (Okabe et al., 1997) or from wild type 

mice was cut with a scalpel and laid onto the host slice with the help of forceps. (green mouse 

onto WT mouse slice, or WT mouse onto rat slice). The slices with transplants were cultured for 

24 hours. Slices were fixed in 4% PFA for 20 minutes, and rat slices were subsequently stained 

with M2 and M6 antisera (C.Lagenaur) diluted 1:50 in PBS with10% normal goat serum over 

night at 4°C. The secondary antibody anti-rat-Cy3 (Dianova) was diluted 1:200 and incubated 

for 30 minutes at room temperature. Slices were mounted in Acqua Polymount embedding 

medium (Polysciences) and examined at the confocal microscope.  

 

Plasmid preparation and in vitro transcription 
Plasmids were transformed in XL-1 Blue E.Coli bacteria by electroporation after the Maniatis 

protocol, with following parameters: 0.2 mm electroporation cuvettes, 2.2kV, 25µF, 400Ω. After 

recovering of the bacteria for 1 hour in the incubator, 50 µl were plated on ampicilin containing 

(50µg/ml) LB-agar plates and incubated at 37°C over night. One colony was picked the next day 

and grown for around 4 hours in 3ml LB-ampicillin medium. One ml of this culture was given to 

100ml LB-ampicilin and shuttled over night at 37°C. The plasmid was harvested following the 

Quiagen midiprep protocol, through a midi Tip100 column. The DNA pellet was dissolved in 

200µl ddH2O. 

20µg plasmid were linearized with the appropriate enzyme (40 units) in a total volume of 50 to 

60µl for 2.5 hours at 37°C. The plasmid was then  

phenol extracted:  

-Add up the volume to 200µl with pure water  

-Add 200µl phenol/chloroform/isoamylalcohol (50:49:1) under the hood  

-Vortex strongly for 1 minute 

-Centrifuge for 5 minutes in a table centrifuge a maximal speed 

-Recover the waterphase (on the top) 

-Add 1/10 vol. (20µl) sodium acetate 3M and 0.7 vol. Isopropanol 

-Let precipitate for 10 minutes at room temperature 

-Centrifuge at maximum speed for15 minutes 

-Wash the pellet quickly with 70% ethanol 

-Resuspend in 18µl TE pH8, RNAase-free. 

The linearized plasmid was ready for in-vitro transcription, and stable for about one year at –

20°C.  

in-vitro transcription: The following compounds were mixed: 

1µl (about 1µg) plasmid 

2µl NTP mix containing digoxigenin labeled UTP (DIG-UTP, Boehringer Mannheim) 

4µl 5X transcription buffer (Stratagene) 

 16



1µl RNAase inhibitor (Boehringer Mannheim) 

1µl T3, T7 or SP6 RNA-polymerase (Stratagene, 50U/µl). 

Add up to 20µl with pure H2O. 

Incubate at 37°C for 2 hours. 

Add 2µl 0.2M EDTA to stop the reaction 

Add 2.5µl 4M LiCl and 75µl pure Ethanol to precipitate the RNA 

Incubate at –20°C over night, or-80°C for two hours 

centrifuge at 4°C for 7 minutes 

Dissolve the pellet in 22.5µl ddH2O for 30 minutes at 37°C 

Add 2.5µl 4MliCl and 75µl EtOH 100% 

Incubate 2 hours at -20°C, or until the probe is needed 

Centrifuge 7 minutes at 4°C 

Resuspend in 20µl H2O and 200µl Hybridization buffer. 

 

Hybridization buffer: 

-1X salt solution 

-50% formamide 

-10% dextran sulfate (Sigma) 

-1mg/ml wheat germ tRNA (Sigma, R7876) 

-1X Denhardt´s solution (Sigma, D2532) 

-ddH2O 

The RNA concentration should be then around 100ng/µl. 

Following probes were prepared: 

Dlx5: Plasmid from Malin Parmar, Lund, Denmark. Vector pCRII, insert full length. Antisense 

RNA probe: Digest with BamH1, transcribe with T7. 
Cadherin6: Plasmid from M. Takeichi, Japan. Vector: pBluescriptII, insert full length. Antisense 

RNA probe: digest with SmaI, transcribe with T3. 

Cadherin8: Plasmid from Christoph Redies, Essen, Germany. Vector: BluescriptII SK(+). Insert: 

1.6kb in the 5´ region. Antisense RNA probe: digest with HindIII, transcribe with T3. 

Cadherin11: Plasmid from M. Takeichi, Japan. Vector: pSP73, insert 0,8kb. Antisense RNA 

probe: digest with EcoRI, transcribe with T7. 

R-Cadherin: plasmid from Andrea Wizenman, Würzburg, Germany. Vector: pBluescript-SK+; 

Insert: full length minus sacI fragment:400-500 first bp. Antisense RNA probe: digest with 

HindIII, transcribe with T3. 

EphA3: Own Plasmid. Vector pCRII, insert 0,4kb. Antisense RNA probe: digest with Pme1, 

transcribe with T7. 
EphA5: Plasmid from Lothar Lindeman, Basel, Switzerland. Vector pCRII, insert 0,3kb. 

Antisense RNA probe: digest with Not1, transcribe with SP6. 

EphrinA5: Plasmid from Lothar Lindeman, Basel, Switzerland. Vector pCRII, insert 0,6kb. 

Antisense RNA probe: digest with BamH1, transcribe with T7. 
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EphrinB1: Plasmid from Rüdiger Klein, Martinsried, Germany. Vector pGEM-T, insert 2,1kb. 

Antisense RNA probe: digest with NcoI, transcribe with SP6. 

EphrinB2: Plasmid from Rüdiger Klein, Martinsried, Germany. Vector pGEM-3Z, insert 0,9kb. 

Antisense RNA probe: digest with BamH1, transcribe with SP6. 

EphrinB3: Plasmid from Rüdiger Klein, Martinsried, Germany. Vector pGEM-T, insert full length 

(1,1kb). Antisense RNA probe: digest with BamH1, transcribe with T7. 

Ngn2: Plasmid from Francois Guillemot, Strasbourg, France. (Gradwohl et al., 1996). Vector: 

pGEM-3, Insert: 1.5kb. Antisense RNA probe: digest with BamHI, transcribe with T7. 

LacZ: Plasmid from Francesco Cecconi, Göttingen, Germany. Vector: pBluescript-SK+; Insert: 

0,9kb. Antisense RNA probe: digest with EcoRV, transcribe with T7. 

Mash1: Plasmid from Francois Guillemot, Strasbourg, France. Vector pGEM7, insert full length 

cDNA. Antisense RNA probe: digest with XbaI, transcribe with SP6. 
Math2: Plasmid from Francois Guillemot, Strasbourg, France 

Pax6: Pax6sc32, Plasmid from Claudia Walther, Göttingen, Germany. Vector: pBluescript-SK+; 

Insert: EcoRI / NheI cDNA fragement, 260bp. Antisense RNA probe: digest with HindIII, 

transcribe with T7. 
rROBO1: Plasmid from Y. Rao. Vector: pBluescript-SK+; Insert: full length. Antisense RNA 

probe: digest with HindIII, transcribe with T7. 

rROBO2: Plasmid from Katja Brose, USA. Vector: pBluescript-SK+, Insert: portion of the 

extracellular domain, 1.7kb. Antisense RNA probe: digest with NotI, transcribe with T7. 

mSlit1: Plasmid from Y. Rao. Vector: pGEM, insert: (nt1036-2508 of mSL1DO), 1.5kb. 

Antisense RNA probe: digest with BamHI, transcribe with T7. 

mSlit2: Plasmid from Y. Rao. Vector: pGEM; Insert: (nt361-1687 of mSL2DO), 1.3kb. Antisense 

RNA probe: digest with NcoI, transcribe with SP6. 

mSlit3: Plasmid from Y. Rao. Vector: pBluescript-SK; Insert: (nt2056-3300 of mSL1DO), 1.3kb. 

Antisense RNA probe: digest with HindIII, transcribe with T3. 

SFRP2: Plasmid from Samuel Pleasure, USA. Vector pBluescript II, insert 2kb. Antisense RNA 

probe: Digest with EcoR1, transcribe with T7. 

Wnt7b: plasmid constructed by Gwen Wong, Nutley, USA. Vector: pBluescript II SK; Insert: 

complete cDNA sequence, 1.5kb. Antisense RNA probe: digest with ApaI, transcribe with T3.  

 
X-Gal histochemistry 
Frontal slices of 300µm thickness where cut on a tissue chopper and fixed for 15 minutes at 

room temperature or 30 minutes at 4°C. 

Fixative: 

-0.5% Glutaraldehyde 

-2mM MgCl2 

-1.25mM EGTA 

A 10X fixative can be stored for several months at 4°C. 

Slices were washed twice in PBS and incubated over night at 37°C in X-Gal staining solution:  
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-20mM potassium ferrocyanide,  

-20mM potassium ferricyanide,  

-2mM MgCl2,  

-0.01% sodium desoxycholate,  

-0.02% NP-40,  

-1mg/ml 5-Bromo-4-chloro-3-indolyl ß-D-galactopyranoside 

in PBS.  

Alternatively whole telencephali were fixed, stained, and subsequently cut in 100µm sections 

with a vibratome (Campden). 

 

For the combination of X-gal staining with in situ hybridization, (described in Houzelstein and 

Tajbakshs, 1999) telencephali were fixed in 4% paraformaldehyde (PFA) for 1,5 hours at 4°C, 

incubated in 20%sucrose in PBS overnight, embedded in Tissue-Tek and frozen on dry ice. 

They were conserved at –80°C or immediately cut. 12µm sections were cut on a cryostat and 

recover on gelatin coated slides. The slides were stained at 30°C, for several hours (or over 

night) in the following solution: 

-0,1% PFA 

-0,4mg/ml X-Gal (stock solution 100mg/ml in DMSO) 

-4mM K3Fe(CN)6  

-4mM K4 Fe(CN)6  

-1mM MgCl2  

-0.02% tween 

in PBS 

Slides were then washed three times in PBS and hybridized as described below. 

 
In situ hybridization 
Treatment of slides: For the recovering of the cryostat sections, slides were coated with gelatin: 

The solution containing 0.5% gelatin and 0.1% potassium-chrome(III)sulfate was heated at 65°C 

about 30 minutes and filtered. Slides were drained in the gelatin solution at room temperature, 

dried over night at room temperature, and dried in the oven at 120°C for 3 hours. 

Cryostat sections were cut at 12 µm, conserved at –80°C, or immediately processed for X-Gal 

staining and in-situ hybridization, or directly in-situ hybridization. 

Non-radioactive in-situ hybridization: 

The RNA-antisense probe was diluted in hybridization buffer (see recipe in the in-vitro 

transcription protocol).  

1 liter 10X salt solution contained: 

-114g NaCl 

-14.04g Tris HCl, pH7.5 

-1.34g Tris base 

-7,8g NaH2PO4 

 19



-7.1g Na2H PO4 

-100ml 0.5M EDTA 

-ddH2O 

The diluted probe was heated at 70°C for 5 minutes in order to denature the RNA.120µl were 

applied on one defrost slide, and a clean coverslip was put on the top. Slides were incubated 

over night at 65°C in a sealed box with whatmann paper wetted with 1XSSC in 50% formamide. 

(20X SSC: 3M NaCl, 0,3M sodium citrate) 

Slides were washed in prewarmed washing solution at 65°C (Washing solution: 1XSSC, 50% 

formamide, 0,1% tween-20). First wash:10 minutes at 65°C to allow the coverslips to fall off, 

then 2 to 3 washes at 65°C for 30 minutes. 

Slides were washed twice in MABT at room temperature for 30 minutes. 

5X MABT: 

-500mM maleic acid 

-750mM NaCl, pH7.5 

-0.1% tween-20 

To prepare 2 liters of 5X MABT: 

Dissolve first 116.08g maleic acid. Adjust the pH to 7.5 with about 100ml 10N NaOH. Add 

87.76g NaCl and 20ml 10% Tween-20 and fill up to 2 liters with H2O. 

 

Slides were blocked at room temperature for at least one hour in MABT with 2% blocking 

reagent (Boehringer Mannheim) and 20% heat inactivated sheep serum (Sigma, G6767). Anti-

digoxigenin Fab fragments coupled to alkaline phosphatase were diluted 1:2500 in blocking 

solution and 150µl per slide were applied. slides were covered with parafilm. The antibody 

staining was performed at room temperature over night in a humid chamber. 

Slides were washed in MABT at room temperature 4 to 5 times for 20 minutes, and rinced twice 

in staining buffer minus NBT and BCIP for 10 minutes at room temperature rocking. 

Alkaline-phosphatase staining buffer: 

-100mM NaCl 

-50mM MgCl2 

-100mM Tris pH9.5 

-0.1% tween-20 

-1mM levamisole 

In 1ml staining solution 3.5µl 100mg/ml NBT (Boehringer Mannheim) and 3.5µl 50mg/ml BCIP 

(Boehringer Mannheim) were added. 

When the staining was strong enough (after about 12 to 24 hours) it was stopped by rinsing in 

staining buffer and shortly in water. Slides were dried for several hours at the air and mounted 

under a coverslip in acqua-polymount (Polysciences). 

 

 20



Gap junctions filling 
Brains were dissected on ice, embedded in 1% agarose in PBS at 37°C, and frontal slices of 

300µm thickness were immediately cut on a vibratome (Leica), in ice cold ACSF solution (in 

mM: NaCl 124; KCl 3; KH2PO4 1.25; MgSO4.7H2O 2; NaHCO3 26; CaCl2 2.5; d-glucose 10). 

Slices were then incubated 2 hours in oxygenated ACSF at room temperature, then laid in a 

flow chamber with oxygenated ACSF at 32°C mounted on a Zeiss IM35 microscope and 

equilibrated for 10 minutes before patching. The recording pipette was filled with internal 

solution (in mM: K-gluconat 136.5; KCl 17.5; NaCl 9; MgCl2.6H2O 1; Hepes 10; EGTA 0.2) with 

an addition of 2% neurobiotin). Positive pressure was applied to the back of the pipette which 

was then driven onto the slice, into the first two to three cell layers of the ventricular zone. Small 

voltage steps were applied, and a decrease in the current deflection signaled that the electrode 

tip was approaching a cell. Negative pressure was then applied to the electrode, resulting in a 

tight seal onto the cell membrane. A stronger negative pressure allowed breaking the 

membrane, and making a contact between cytosol and pipette solution. The cell was filled with 

neurobiotin for 10 minutes. Neurobiotin was allowed to enter the cell without applying any 

current pulses. (Cell clusters connected by gap junctions were entirely filled by neurobiotin, as 

the molecule is small enough to pass through gap junctions). The electrode was then gently 

removed from the slice. Slices remained 10 minutes more in the chamber before being fixed in 

4% PFA for 30 minutes. After 3 washings in PBS, slices were incubated over night in avidin-

biotin-HRP (A B kit solution, Vector Labs) in PBS+0,5% triton. Slices were washed and stained 

with DAB reagent for a few minutes. Slices were mounted in aqua polymount on slides, and the 

number of cells per cluster was counted at the microscope. In order to control whether cells 

would be filled by neurobiotin when the tissue is just injured by the pipette, control experiments 

were performed whereby the recording pipette was driven into the slice without making a patch, 

and left there for 10 minutes.  
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RESULTS 
 
I- ASYMMETRIC MIGRATION ACROSS THE CORTICO-STRIATAL 

BOUNDARY IN WILD TYPE MICE 
 
In order to study the extent to which cell migration is restricted across the cortico-

striatal boundary between the cortex and the ganglionic eminence (GE), we developed 

several assays that focussed on different aspects of this migration. The aim of the first 

approach was to trace the cells in slice culture and to analyze their migration by 

infecting the slices focally with an EGFP (Enhanced Green Fluorescent Protein) 

containing adenovirus. This assay revealed over a time course of two days the 

direction and speed of migration, and the degree of migrational restriction on both sides 

of the boundary. In the second approach we followed the migration of cells in slices 

with the help of time-lapse video microscopy in order to observe the behavior of cells 

when they approach the boundary. For this purpose we used a mouse that expresses 

the green fluorescence protein in neurons. The third approach consisted in 

transplanting small pieces of cortex or GE onto a host slice. The comparison between 

homotypic (cortex on cortex, or GE on GE) and heterotypic transplants (cortex on GE, 

or GE on cortex) allowed conclusions about the cell-autonomous or non-cell-

autonomous (environment dependent) mechanisms that regulate the migration at the 

boundary. 

 

I-A EGFP-adenovirus injections in cortex and GE. 
 
In order to analyze cell migration we performed focal injections of adenoviral vectors 

containing EGFP. Small groups of cells (10 to 100 cells) thus expressed EGFP and 

could be photographed at several time points after infection under the fluorescence 

microscope. Figure 2A depicts schematically the experimental paradigm, and Fig. 2B 

shows an example of a slice with a focal injection in the GE that has been 

photographed 16 hours, 26 hours and 41 hours after the injection. After 41 hours of 

culture the infected cells have spread beyond the injection site.  

 

I-A-1 Control experiments and slice morphology 

 

We first evaluated the use of GFP-adenovirus to analyze cell migration in slices of 

mouse telencephalon. The following control experiments have shown that the 
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adenovirus was a suitable tool for tracing the cells in slice culture and studying their 

migration.  

 

We examined first whether all cell types in the telencephalon were equally well infected 

by the EGFP-adenovirus. When dissociated cell cultures of embryonic day 14 (E14) 

cortex and GE were infected with the GFP-adenovirus, 44% of the GFP-fluorescent 

cells were ßIII-tubulin immunoreactive neurons and 43% were nestin-positive precursor 

cells after one day in vitro. Thus, the cell types present at this developmental stage are 

equally well infected.  

 

Secondly, in order to ascertain whether the apparent spread of GFP-expressing cells, 

as shown in Fig.2B, was due to migration or to passive diffusion of adenoviral particles, 

we blocked cell migration by addition of cytochalasin-D, which inhibits the actin 

polymerisation (Cooper, 1987). Cytochalasin-D was applied at 2-8µg/ml after the 

injection with GFP-adenovirus. No GFP expressing cell could be found outside the 

injection spot under these conditions up to 45 hours, as shown in Fig. 2C. Thus, the 

spread of infective virus particles seems to be very restricted in this preparation, 

indicating that the fluorescent cells outside the injection site observed under normal 

conditions are migrating from the injection site. Indeed these cells exhibit the 

morphology typical for migrating cells, with a small ovoid cell soma and a longer 

leading process, as shown in Fig. 2B(c´ ). 

 

Since the radial glia fascicle that indicates the cortico-striatal boundary spans the 

region from the sulcus to further ventral positions, we used the sulcus as a suitable 

‘landmark’. From there, the cortico-striatal boundary extends in a latero-ventral 

direction, as visible in phase contrast (Fig. 2B,a,b,c). This landmark was maintained 

over two days of culture. The position of the boundary was confirmed by staining for 

the radial glia fascicle, which also persisted during the two days in vitro (data not 

shown). Thus, the boundary structure is maintained in this culture system.  

 

In order to verify that the cells were able to reach the boundary, we confirmed that the 

maximum distance of migration exceeded the distance of the injection site to the 

boundary. The latter distance was 364µm (±36, n=19) in the GE and 222µm (±39, 

n=12) in cortical injections. Since cells labelled in the GE migrated a maximum distance 

of 928µm, and cells labelled in the cortex a maximum of 526µm (Table 1, 2, p.25), at 

least some cells should be able to cross the boundary from both sides. The 
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quantification of migration distance showed that 57% of cortical and 39% of GE cells 

migrated over a distance exceeding that to the boundary. Hence, we therefore consider 

this preparation to be an appropriate system for examining the restriction of migration 

between cortex and GE. 

 

I-A-2 Restriction of cortical cell migration  

 

When GFP-adenovirus was injected on the cortical side of the boundary, fluorescent 

cells were observed to migrate radially and laterally within the cortex, but hardly any 

cell crossed the boundary into the GE during the two days of observation. Very few 

cells (0.8 per slice) were found in the GE, and only 23% of all slices injected into the 

cortex showed cells in the GE. We also noted that in about 50% of all cortical 

injections, cells only migrated away from the boundary, as in the example in Fig. 3A. 

Often, the cells were distributed in a mushroom-like shape, with little spreading at the 

ventricular zone and more tangential movement in the cortical plate at the pial side 

(Fig. 3A). Interestingly, the few cells that crossed the boundary into the GE did not 

migrate as far as those migrating within the cortex did (Table 1). Taken together, these 

results show that in slice preparations, cortical cells hardly migrate into the GE at all. 

This result is in agreement with the work of Fishell et al. (1993) and Neyt et al.(1997), 

which shows that cells in the ventricular zone of the cortex in flat mounted preparation 

of the telencephalon stop their movements at the cortico-striatal boundary. 

 

I-A-3 Migration from the GE into the cortex  

 

In contrast to the cortical injections, a substantial number of cells were observed to 

migrate in the opposite direction, from the GE into the cortex, consistent with previous 

observations (Anderson et al., 1997; Tamamaki et al., 1997; Sussel et al., 1999; 

Wichterle et al., 1999). Fig.3B depicts an example of cells labeled in the GE with some 

cells in the cortex after 43 hours in vitro. Hardly any cells had crossed the boundary to 

the cortex after 25 hours, but a mean of 13 cells per slice had migrated into the cortex 

in almost every culture (89%, Table 3) 45 hours after injection into the GE. Most of the 

cells that migrated from the GE were found in the lateral cortex (see Fig.2B(c´ ), 3B), 

and some were also detected in more dorsal areas of the cortex (arrows in Fig.3B). 

Interestingly, for cells migrating into the cortex, the maximum distance of migration 

from the injection site was almost double the distance migrated by cells within the GE 

(Table 3). This is in contrast to the behavior of cortical cells that migrated less far 
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towards and across the boundary than in other directions. Thus, there is a marked 

difference in the behavior of cells around the boundary, depending on their side of 

origin.  

 

In order to examine the cells crossing the boundary more closely, we quantified cells 

moving towards and away from the boundary, as depicted in Fig.4A. The GE was 

divided into two segments by a line through the injection site parallel to the boundary 

(Fig.4A). The proportion of cells migrating towards (56%) and away from (44%, n=257) 

the boundary were similar. Moreover, the mean distance of migration was comparable 

for cells migrating in both directions (197±14, n=72; 235±14, n=112). In fact, half of the 

cells migrating towards the boundary crossed into the cortex. As depicted in Fig.4B, 

there was an obvious trough in the number of cells that migrate as far as the boundary. 

Few cells were found in the region of the boundary. This paucity of cells is reminiscent 

of that of TUJ1-positive neurons in the boundary region previously observed by Neyt et 

al., 1997. This observation suggests a certain degree of migrational restriction also for 

cells from the GE.  
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Table1: EGFP-adenovirus injections in the cortex 
  

Proportion of slices 

with cells in the GE 

45h 

 

Mean number of 

cells/slice in the GE

45h 

Maximum distance 

of migration within 

the cortex (µm) 

25h                45h 

Maximum distance 

of migration to the 

GE (µm) 

45h 

WT 23% (n=26) 0.8 331               526 
±83(n=14)       ±82(n=13) 

322 
±52(n=3) 

SEY 35% (n=26) 1.3 227               529 
±57(n=14)       ±76(n=15) 

336 
±128(n=3) 

 

 

 

Table2: Mean distances of migration (at 45hours, in µm) 
Cortex INJECTIONS GE INJECTIONS  

cells in the cortex cells in the GE cells in the GE cells in the cortex 

WT 228 +/-15(n=125) 202 +/-54(n=5) 220 +/-10(n=182) 645 +/-28(n=73) 

SEY 238 +/-15(n=125) 288 +/-78(n=4) 306 +/-10(n=301) 606 +/-13(n=264) 

 

 

 

Table3: EGFP-adenovirus injections in the GE 
 Proportion of slices 

with cells in the 

cortex 

25h             45h 

Mean number of 

cells/slice in the 

cortex 

25h          45h 

Maximum distance 

of migration within 

the GE (µm) 

25h                45h 

Maximum distance 

of migration to the 

cortex (µm) 

45h 

WT 22% (n=27) 89% 1                  13 238               525 
±34(n=19)       ±40(n=19) 

928 
±65(n=18) 

SEY 57% (n=26) 85% 3                  21 303               571 
±59(n=13)       ±48(n=19) 

997 
±53(n=16) 

 

 

Tables 1-3 
Quantitative analysis of migration in slices injected with EGFP-adenovirus into the cortex 
or GE. The number of slices analysed is depicted in Table 1 and 3 as ‘n’, whereas in table 2 n 
indicates the number of analysed cells. The standard error of the mean is depicted as ±. For 
details, see Methods.  
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I-B Time-lapse study 
 
In order to analyze more closely the restriction of migration at the boundary and to 

understand for example how the trough in the distribution of GE migrating cells is 

created around the boundary, we aimed to analyze the movements and the speed of 

the cells when they approach the boundary. For this purpose we used mice expressing 

EGFP in neurons (Tucker et al. 2000). In these mice, the gene coding for EGFP has 

been inserted into the Tau locus. Tau is an intermediate filament expressed specifically 

by neurons, and the absence of this gene does not impair the maturation and 

functioning of the neurons (Harada et al., 1994). The use of mice where neurons are 

labeled is an appropriate system to study the migration of cells around the cortico-

striatal boundary, since migrating cells were identified as neurons. Indeed, tangentially 

migrating cells within the cortex have been shown to be immunoreactive for TuJ1, an 

antibody recognizing the neuron specific ßIII-tubulin isoform (O´Rourke et al., 1997). 

Further, these TuJ1 positive cells in the cortex have been observed to respect the 

boundary region (Neyt et al., 1997). Finally, on the other side of the boundary, cells 

migrating out of the GE have also been shown to be TuJ1 positive (Tamamaki et al., 

1997, Zhu et al., 1999).  

 

We imaged living slices of E14 telencephali in a flow chamber under a fluorescence 

microscope, with time intervals of 10 minutes, over a period of 24 hours. Fig. 5A first 

depicts the distribution of the GFP expressing neurons, which are very sparse in the 

ventricular zone (VZ), and start to appear in the more differentiated subventricular zone 

(SVZ) and mantle zones of the GE and cerebral cortex. The images were taken at the 

cortico-striatal boundary in the VZ and SVZ in two fields of view (A and B). The cells 

were migrating in the direction pointed by their leading process, and we were able to 

follow 50 migrating cells. Many more cells in these images were migrating, however, 

often they where suddenly appearing or disappearing out of the plane of focus, so that 

some of them were visible only for a short time. 

 

The analysis of the image sequences revealed first that the cells could be classified in 

several groups, according their direction of migration. This classification is represented 

in Fig. 5C, and reveals the asymmetrical property of the cortico-striatal boundary. The 

proportion of cells migrating from the GE in the direction of the cortex was 76% in field 

A, and 36% in field B. Thus, a high proportion of migrating cells followed a ventral to 

dorsal direction. Some of these cells changed their plane of focus so that their further 
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path when arriving into the boundary could not be followed. They may have continued 

their migration in another plane of focus, or stopped, or changed their direction of 

migration. Cells that were tracked all the way from the GE into the cortex represented a 

proportion of 40% in A, and 16% in B, in agreement with the earlier observation that 

GE cells are able to enter into the cortex. A second group of migrating cells took a 

direction from the cortex to the GE. Cells migrating in this direction represented only 

4% of all recorded cells in field A, and 8 % in field B. In B, all these cells where also 

observed to enter into the GE, whereas in A, no cell was observed to cross the 

boundary into the GE. However, it was not clear if they had stopped their migration, or 

if we lost their path. 

 

Thus, we found a much higher proportion of cells crossing the boundary from the GE to 

the cortex, than in the opposite direction, in agreement with the results of the injection 

experiments. This asymmetry was stronger in the field A (in the SVZ) than in the field B 

(in the VZ). This difference might be explained by the location of the recording field in 

respect to the ventricular zone. GE cells crossing the boundary should be more 

numerous in the subventricular zone (SVZ) than in the VZ, according to data 

suggesting that these cells express the transcription factors Dlx2, Dlx5 and Lhx6. The 

expression pattern of these transcription factors reveals a main stream of GE cells 

entering the cortex that is located in the SVZ (Anderson et al., 1997; Lavdas et al., 

1999 and Stühmer et al., 2002). 

 

Apart from the majority of the cells migrating in the orientation GE-cortex, some other 

directions were taken by smaller groups of cells: within the GE inwardly from the VZ to 

the mantle zone, on the boundary itself in ventral direction, or in dorsal direction, or 

they migrated within the cortex towards the marginal zone. This last type of migration is 

known as radial migration, allowing mature neurons to reach their final position within 

the cortical layers (Angevine and Sidman, 1961). 

 

The next observation we made concerned the mode of migration of cells. Analyzing the 

sequence of images revealed that cells migrated in a stop-and-go way, whereby the 

cell soma remained at the same location for about 20 to 60 minutes, during this time 

just changing its shape and extending in one direction. The cell soma then suddenly 

shot into the direction of the leading process. Changes of direction were also observed 

in some cases (as for the cell circled in blue in Fig.5B): cells could make a 90° turn, by 

first sending their leading process in the new direction. The rates of migration could 
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reach maxima of 150 µm/hour, and the average was 25 µm/hour. This rate of migration 

is similar to the one observed by O´Rourke et al. (1992; 30µm/h) in cells migrating 

tangentially within the cortex. The variations in speed of migration were analyzed and 

are depicted for two examples in Fig. 5D. The depicted cell migrating within the cortex 

(circled in blue) became slower before making a 90° turn when it approached the 

boundary. However, in general it was difficult to observe any particular behavior at the 

boundary, for example whether the cells arriving around the boundary become slower 

or quicker. This difficulty may be explained by the fact that the field of view was small 

compared to the width of the boundary, so that a large part of the field observed 

included the boundary itself. The observation of a wider field of view should reveal 

more information about the speed of migration when cells approach the boundary.  

 

Overall, the imaging experiments confirm the results seen in the injection experiments, 

concerning the asymmetry of migration on both sides of the boundary. Only a few cells 

enter the GE coming from the cortex, whereas a high proportion of migrating cells from 

the GE enter the cortex. However the mechanisms regulating migration across the 

boundary are not immediately apparent. We could not observe any repulsion 

mechanism when the cells encountered the boundary. The cells we observed crossing 

the boundary might already be selected to enter into the neighboring region and 

migrate without difficulty. 

 

 

I-C Transplantation experiments 
 

The migration of a population of cells across the cortico-striatal boundary, as opposed 

to the restriction of the adjacent population of cells, could be achieved by different 

mechanisms. This asymmetry could arise as the result of the specification of selected 

cells that would be allowed to cross the boundary, where other cells would remain 

restricted. Alternatively, this asymmetry could be achieved by the existence of 

directional cues that would drive the migration of cells in one direction. A mechanism 

involving directional cues, attractant or repellant molecules in given territories, would 

mean that the location of the cells would direct their migration independently of their 

identity. In this case, GE cells placed onto the cortex should be restricted in their 

migration within the cortex and should not cross the boundary. The alternative 

mechanism involving distinct cell populations being endowed with a distinct migratory 
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capacity would imply that GE cells placed onto the cortex would still be able to migrate 

across the boundary. 

 

In order to assess which mechanisms drive cell migration across the boundary, 

whether migrational restriction and permeability is a cell autonomous mechanism 

(achieved by receptors on the cells), or a non-cell-autonomous (environment 

dependent) mechanism, we performed transplantations in slice culture. We 

transplanted cortical cells in a GE environment, or GE cells in a cortical environment 

and then examined whether migration occurred following the “rule” of the host region, 

or following the rule of the transplanted cells.  

 

In order to perform the experiment, we needed to visualize the transplanted cells on the 

host slice. We tested two approaches, as shown in the scheme 6A: one approach was 

to place mouse cells onto a rat telencephalic slice, and stain the transplanted cells with 

a mouse specific antiserum called M2M6 (Malatesta et al., 2000). As the M2M6 

antiserum recognizes a membrane-bound epitope, cell processes were strongly 

stained and cell somata weakly stained and not easily recognizable. Hence, the 

quantification of migrating cells was impaired. However, some of the slices were clear 

enough to be analyzed. In the second approach we used the green mouse, which 

expresses GFP under the actin promotor, and therefore in all cells (Okabe et al., 1997). 

In this case, the cytoplasmic staining of the transplanted cells allowed them to be easily 

recognizable. 

 

In a first step, we performed homotypical transplants, in order to test the validity of the 

assay: Cortical cells were transplanted onto the cortex, and GE cells were transplanted 

onto the GE. In this configuration, we detected after 24 hours many cells migrating out 

of the transplants. Furthermore, we observed that cortical transplanted cells migrated 

mostly within the cortex, and very few of them cross the boundary (see table 4 and 5 

and Fig. 6B). Many GE cells, in contrast, crossed the boundary into the cortex (Fig. 

6C). This experimental paradigm thus reflects the typical asymmetrical restriction at the 

cortico-striatal boundary.  

 

In order to test for the cell autonomous, or non-cell-autonomous regulation of migration, 

we performed heterotypic transplants. When GE transplants were placed onto the 

cortex, the cells revealed a stronger ability to migrate into the GE than cells of a cortical 

transplant. The mean number of cells crossing the boundary increased 14 fold, both in 
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mouse-on-rat and in green mouse-on-mouse transplants (see table 4 and 5). There are 

two possibilities to explain this difference between cortex- and GE transplanted cells. 

First, the restriction of cortical cells within the cortex could be a cell autonomous 

phenomenon, involving cell surface properties of cortex cells. Second, the migration of 

GE cells across the boundary could also be a cell autonomous phenomenon. Both 

possible mechanisms could act simultaneously. 

 

When we transplanted cortical cells onto the GE, they crossed the boundary 7 times 

less than GE cells do. This and the former comparison suggest that GE cells on both 

substrates have a higher ability to cross the boundary than cortex cells. Thus, it seems 

that the migration of GE cells across the boundary is allowed by a cell autonomous 

mechanism. On the other hand, there was also a slight increase in boundary crossings 

when GE cells were placed onto the GE substrate, as compared to the cortex substrate 

(a 1,3 and 2,3 fold increase, in both experimental paradigms). This result also implies a 

dependence on the substrate for the ability of GE cells to cross the boundary. 

However, GE cells crossed the boundary in high numbers in both directions. The 

substrate seems therefore to play a less important role for their migration across the 

boundary than the identity of the GE cells. 

 

Cortex cells placed onto the GE crossed the boundary 4.5 times more often than when 

they were placed on the opposite side of the boundary. This result suggests that the 

restriction of cortical cells in their own territory is achieved by the substrate of 

migration. In other words, there is a non-cell autonomous mechanism restricting the 

migration of cortical cells. Nevertheless, the comparison to the GE cells, that migrate 

across the boundary in both directions more often than cortex cells do, suggests that 

cortical cell restriction also has a cell-autonomous component. Molecules in the cortex 

and the boundary may be recognized by receptors present only on cortical cells and 

may not be detected by GE cells. 

 

All together the transplantation experiments do not give evidence of a mechanism 

where directional cues within the telencephalon would lead the migration of cells in one 

direction. Instead, these results suggest a mechanism where GE cells are specified to 

enter the neighboring region, whereas cortical cells recognize signals preventing them 

from crossing the boundary. 
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Table 4:  

E14 mouse on E16 rat; number of cells having migrated into the adjacent territory 

Substrate 

 

Transplant 

Cortex 
 

Ganglionic eminence 
 

Cortex  2.8±4.8, n=9 12.7±6.4, n=3 x 4.5 

Ganglionic eminence  39.0±21.5, n=3 88.5±51.8, n=10 x 2.3 

 x 14 x 7  

 

Table 5:  

E14 GFP mouse on E14 mouse; number of cells having migrated into the adjacent territory 

Substrate 

 

Transplant 

Cortex Ganglionic eminence  

Cortex  5.3± 7.6 n=44 not done  

Ganglionic eminence  73.3±11.5, n=3 96.2±6.3, n=4 x 1.3 

 x 14   
 
Table 4 and 5: The type of transplanted tissue is given vertically and the region onto which it was 
transplanted is given horizontally. The corresponding cells in the table show the number of cells (± 
standard deviation) that have crossed the boundary into the adjacent region.  
 

 

The three experimental approaches used in the first part of this study have all revealed 

the asymmetric character of the cortico-striatal boundary that permits the cells from the 

cortex and cells from the GE to have distinct migratory capacities. While only a very 

small number of cortical cells is able to cross the boundary without migrating far away 

into the adjacent GE, many GE cells migrate long distances into the cortex. The distinct 

characteristics of both cell populations had been described in independent studies 

using different experimental paradigms, but the evidence for a real asymmetry could 

only be found by assaying cells from both regions in single assays. These experiments 

have also revealed other properties of the migration across the cortico-striatal 

boundary. We have found that some GE cells encounter a barrier of migration at the 

boundary, as the distribution of migrating GE cells reveals a trough at the boundary. 

Furthermore, transplantation experiments have suggested the capacity of GE cells to 

enter the cortex to be cell autonomous, whereas the restriction of cortical cells 

appeared to be non-cell autonomous. In order to understand better the molecular 

mechanisms governing the migration across the cortico-striatal boundary, we have 
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examined the role of two transcription factors expressed in the cortex and in the 

boundary in the following parts of the study.  
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II- ENHANCED MIGRATION ACROSS THE CORTICO-STRIATAL BOUNDARY IN 
THE PAX6 MUTANT  

 

The first event leading to the delineation of distinct regions within the embryo is the 

regionalized expression of transcription factors. This patterned expression precedes 

the restriction of cell migration. One example is the early expression of the transcription 

factor Krox20 in rhombomeres r3 and r5 in the hindbrain, which directly induces the 

expression of EphA4 (Theil et al., 1998) that in turn mediates the segregation of cells at 

rhombomere boundaries. In the developing telencephalon several transcription factors 

are expressed in a patterned manner, either dorsally or ventrally. One of these genes is 

the paired homeobox transcription factor Pax6, expressed dorsally, in the cortex and in 

the boundary. Small-eye is a naturally occurring mutant of the Pax6 gene, in which a 

point mutation in Pax6 leads to a non-functional truncated protein (Hill et al., 1991). 

This causes the heterozygous mice to have a phenotype with small eyes. Previous 

analysis has shown that in the Small-eye homozygous mutant (Sey/Sey) the cortex-

specific expression of R-cadherin, as well as the region-specific segregation of cells 

from the cortex and the GE are lost (Stoykova et al., 1997). In addition, the boundary 

formed by a radial glia fascicle extending between GE and cortex fails to develop in the 

Pax6 mutant (Stoykova et al., 1997), as shown by the 9-4 immunostaining (see 

Fig.7A). These results suggest that Pax6 might be involved in restricting cell 

movements between these regions since both selective adhesion and boundary 

formation are disturbed. Furthermore, Dlx1 expression that is normally restricted to the 

GE gradually spreads into the developing cortex in this mutant (Stoykova et al., 1996). 

This raises the question of whether this is due to cell migration or to the ectopic up-

regulation of a ventral gene. We therefore studied the migration at the cortico-striatal 

boundary in the Small-eye mutant mouse embryos (Sey/Sey) and their wild type 

littermates (WT), using the adenovirus injection assay described above.  

 

 

II-A Enhanced cell migration from the GE into the cortex 
 

When we injected EGFP-adenovirus in the GE of E14 Sey/Sey mice, we found a 

significant increase in cells migrating into the cortex, as compared to WT littermates 

(Table 3, p.25). As observed in WT GE injections, cells mostly migrated to the lateral 

part of the cortex. An example showing a massive migration of cells from the GE into 

the Sey/Sey mutant cortex is depicted in Fig. 7B. Increased migration into the cortex 
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was already observed after 27 hours. Cells crossed the boundary in 57% of all slices 

from Sey/Sey, as compared with 22% in WT slices. Although few cells were found in 

the mutant cortex 27 hours after injection (a mean of 3 cells per slice), this number 

increased within 43 hours to a mean of 21 cells per slice, as compared to 13 cells per 

slice in WT slices (Table 3). We noted, however, that also the total number of cells 

labeled in the Sey/Sey GE (100±12, n=18) was higher than in WT LGE injections 

(82±8, n=23), and therefore quantified the proportion of labeled cells that crossed into 

the cortex. In Sey/Sey slices, 46% of all migrating GE cells (n=263, analyzed in 9 

slices) crossed the boundary into the cortex, whereas this was the case for only 28% of 

WT GE cells. This represents a 1.6-fold increase in cell migration from the GE into the 

cortex in Sey/Sey telencephalic slices. We also took care that the injections were not 

closer to the boundary in Sey/Sey slices (383± 35µm, n=14, Sey/Sey GE; 364± 36µm, 

n=19, WT GE) and verified that GE cells in Sey/Sey slices did not migrate faster than in 

WT (Table 2,3). The analysis of migrating cells revealed furthermore a continuous 

distribution of cells in the boundary region of the Pax6-mutant, compared to the 

prominent trough observed in WT slices (Fig. 5B/C). Thus, while in WT, cells from the 

GE were restricted to some extent in their migration into the cortex, the increased 

number of cells entering the Pax6 mutant cortex and their continuous distribution 

across the boundary suggest that GE cells are free to move into the Pax6-mutant 

cortex. Hence, this result demonstrates that Pax6 is required to restrict the migration of 

cells from the GE into the cortex.  

 

 

II-B Tangential migration in vivo 
 
The injection experiments described above reveal an enhanced migration from the GE 

into the cortex in the Small-eye mutant. In order to exclude the possibility of an in vitro 

artefact, we verified whether this migration is reflected by an increased number of 

ventral cells in dorsal territories. Cells migrating from the GE into the cortex have 

previously been shown to contain Dlx, GAD 67, GABA, calbindin and calretinin 

(DeDiego et al., 1994; Anderson et al., 1997; Lavdas et al., 1998; Sussel et al., 1999). 

This prompts the prediction that the enhanced ventro-dorsal cell migration in Sey/Sey 

mice should be reflected by an increase of GABA-immunoreactive cells in the cortex. 

Indeed, the lateral cortex of Pax6-mutants contains a dense accumulation of calbindin-

positive cells (Fig. 8A and B). A quantification of GABA-, calbindin-, and calretinin-

immunoreactive cells revealed that about twice as many immunoreactive cells were 
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located in the lateral cortex of Pax6-mutants as compared to WT littermates (Fig. 8B). 

This increase is comparable to the value obtained in our migrational analysis in slice 

preparations. Interestingly, we also noted the complete absence of calretinin- and 

calbindin-positive fibers in the intermediate zone of the cortex in the Pax6-mutant (Fig. 

8Ac/f) most likely representing the absence of thalamocortical projections in the Pax6-

mutant (Kawano et al., 1999).   

 

Since GABAergic cells are also generated in the cortex, the increase of GABAergic 

cells in Pax6-mutant mice could also be explained by a misspecification of cortical 

neurons. Therefore, we also quantified the number of GABAergic cells in the cortical 

plate of the dorsal cortex, i.e., a different cortical region of the same section (Fig. 8A, 

B). Since similar numbers of GABA-/calbindin- and calretinin-positive cells were found 

in the cortical plate of the dorsal cortex of WT and Sey/Sey mice at E15, their 

specification does not seem to be impaired in the Pax6-mutant. These results strongly 

suggest that the increase of GABAergic cells in the lateral cortex of Sey/Sey mice is 

due to an enhanced migration from the GE.  

 

When we analyzed sections at later stages, at E17, we still observed the higher 

number of calbindin-positive cells in the lateral cortex of Sey/Sey mice as compared to 

WT (2.2 fold increase; Fig. 8B). Interestingly, the number of calbindin-positive cells at 

this stage was also increased in the cortical plate of the dorsal cortex in Sey/Sey mice, 

although to a lesser extent (1.4x). Thus, the increase of immunoreactive cells in Pax6-

mutant mice seems to spread from the lateral to the dorsal cortex. These findings 

suggest that the ongoing cell migration from the GE into the cortex in Pax6-mutant 

mice leads to an ever-increasing number of GABAergic cells in the cortex.  

 

 

II-C Enhanced migration of cortical cells 
 

In order to observe the migration of cortical cells, we injected EGFP-adenovirus into the 

Sey/Sey cortex at E14 (Fig.7C). Cells in Sey/Sey cortex migrated for distances 

comparable to those observed in the WT cortex (Table 1 and 3). Nevertheless, we 

noted some differences in the distribution of green fluorescent cells in slices from 

Sey/Sey compared with these from WT. In the Pax6 mutant cortex, cells rarely 

migrated in radial columns as described above for the WT, but appeared to migrate in a 

less organized fashion (Fig.7C). The less radially directed migration within the Sey/Sey 
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cortex might account for the decrease in the net radial movement observed in BrdU-

birthdating studies (Caric et al. 1997). These defects are likely to be related to 

alterations in the radial glia cells of the Pax6-mutant cortex (Götz et al., 1998). The 

distance of the injection site from the boundary in Sey/Sey cortex (277±47µm, n=12) 

was comparable to the WT cortex (222±47µm, n=12), as was the distance of migration 

(table 1). The number of cortical cells that migrated into the GE was slightly increased, 

compared to the wild type, and the percentage of slices with cells crossing the 

boundary was higher. These results indicate an increased permeability of the Small-

eye boundary in the dorsal to ventral direction as well.  

 

 

II-D Molecular changes affecting the Sey/Sey boundary 
 
Which are the molecules that are altered in the Small-eye mutant and are responsible 

for the increased migration across the boundary? In the absence of pax6, the 

expression of some cell adhesion molecules or extracellular matrix molecules must be 

changed, provoking the enhanced migration at the cortico-striatal boundary. The cell 

adhesion molecule R-cadherin, normally expressed throughout the cortex and in the 

boundary, is in this region absent in the Sey/Sey mutant (Stoykova et al., 1997). The 

signaling molecule Wnt7a, normally expressed in the boundary and in the abutting 

lateral cortex, and its inhibitor Sfrp-2 (soluble frizzled related protein), normally 

expressed strongly in the VZ in the boundary region, are both missing in the Sey/Sey 

mutant. (Fig.9; See also Kim et al., 2000). However, the Sey/Sey mutant cortex reveals 

many defects, and it is likely that other molecules generally involved in boundary 

formation would also show an altered expression pattern in this mutant, and hence 

could play a role in the restriction of migration at the cortico-striatal boundary. We 

therefore observed in the Small-eye mutant the expression pattern of molecules known 

to play a role in cell segregation. We performed non-radioactive in-situ hybridizations 

on telencephalic cryosections of Sey/Sey and WT littermates and used dig-labeled 

antisense RNA probes coding for: EphrinB1, EphrinB2, EphrinB3, EphA3, EphA5, 

Robo1, Robo2, Slit1, Slit2 and Slit3, Cadherin6, Cadherin8 and Cadherin11. Among all 

the Eph and ephrin molecules tested, ephrinB2 revealed an interesting change in its 

expression pattern: the lateral cortex normally containing this molecule was negative in 

the Sey/Sey mutant, as depicted by the arrows in Fig.9C, G. As ephrin molecules exert 

repellent activities in cell migration, this could explain why in the Small-eye GE cells 

invade the lateral cortex very strongly. The secreted Slit signaling molecules have also 
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been shown to be repellent for migrating cells. Interestingly, Slit2 was also missing in 

the Sey/Sey cortex, as depicted by the arrow in Fig.9D, H. Thus, a possible mechanism 

would be that the expression of ephrinA2 and slit2 on cortical cells would hinder the 

entrance of GE cells into the cortex. Additional changes were noticed in the expression 

pattern of other molecules. They are summarized in table 10. Thus, several molecules 

(R-cadherin, Sfrp2, Wnt7a, ephrinB2, Slit2) are likely to promote the restriction cells on 

both sides of the cortico-striatal boundary. 
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III- ENHANCED DORSAL TO VENTRAL MIGRATION ACROSS THE CORTICO- 
STRIATAL BOUNDARY IN THE NGN2 MUTANT 

 
In the Small-eye mutant, the enhanced migration across the cortico-striatal boundary is 

accompanied by severe patterning defects of the telencephalon. Several ventral 

transcription factors, such as Mash1 and Dlx1, are upregulated dorsally, while a dorsal 

transcription factor, Neurogenin2 (Ngn2), is absent in the Sey/Sey cortex (Stoykova et 

al., 2000; Toresson et al., 2000). In the absence of Ngn2 itself in the Ngn2 mutant, 

Mash1 is also upregulated in the cortex while most other ventral transcription factors do 

not expand into the cortex (Fode et al., 2000). Hence, we were interested to examine 

the behaviour of cortical cells in the Ngn2 mutant, that, like in the Sey/Sey mutant, lack 

Ngn2 and overexpress a ventral gene, in an environment that however does not 

contain as many patterning defects as in the Sey/Sey mutant. We studied a mouse 

mutant for Ngn2, in order to see whether the loss of Ngn2 and the acquisition of Mash1 

allows the spread of cortical cells into ventral regions. 

 
 

 III-A Ectopic cells in the GE of homozygous Ngn2 LacZ  mice 
 

To trace cells from the cortex, and examine a possible role of Ngn2 in their restriction, 

we used a mutant containing the LacZ gene in the Ngn2 locus. We used X-gal 

histochemistry to first analyze the distribution of ß-galactosidase positive cells in mice 

heterozygous (Ngn2WT/Ngn2LacZ) and homozygous (Ngn2LacZ/Ngn2LacZ) for a knock-in 

allele of Ngn2 in which coding sequences have been replaced by the LacZ gene. Mice 

with only one mutant allele have previously been reported to show no phenotype (Fode 

et al. 2000). Consistent with this, the pattern of ß-galactosidase staining in the 

telencephalon of Ngn2WT/Ngn2LacZ mice at embryonic day 14 closely resembled the 

expression pattern of Neurogenin2 with a strong signal in the cortex and a sharp limit at 

the border to the unstained GE (Fig.10A). As previously reported (Fode et al., 2000), X-

gal staining was present not only in the ventricular zone (VZ) of the cortex, where 

Ngn2-expressing precursor cells are located (Gradwohl et al., 1996), but also in post-

mitotic neurons of the cortical plate that do not normally express Ngn2. The persistence 

of ß-galactosidase activity in comparison to the endogenous protein is explained by the 

relatively long half-life of the enzyme (see also Nieto et al. 2001).  
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A similar pattern of X-gal staining was detected in homozygous mutant littermates 

(Ngn2LacZ/Ngn2LacZ), with a sharp border between the ß-galactosidase-positive cortex 

and the negative GE. However, in contrast to the heterozygous situation, a large 

number of ectopic X-Gal positive cells were scattered in the GE of Ngn2LacZ/Ngn2LacZ 

mice (Fig.10B; 50±19 cells per section, n=10), with most ectopic X-gal positive cells 

located in the rostral half of the telencephalon, and few in the caudal half. A further 

difference observed between heterozygous and homozygous embryos was the 

intensity of X-gal staining. In heterozygous mice (Fig. 10A), ß-galactosidase activity 

was weaker in the cortical plate (CP) than in the ventricular zone (VZ), whereas it was 

equally strong throughout the cortex of homozygous mutants (Fig. 10B). Given that the 

increased intensity of X-gal staining in homozygous mutant embryos may account for 

the visualisation of ectopic X-gal positive cells in the GE of only homozygous and not 

heterozygous mutant embryos, we examined whether ectopic cells were also observed 

in homozygous Ngn2-mutants carrying only one LacZ allele. Heterozygous 

Ngn2WT/Ngn2LacZ and heterozygous Ngn2WT/Ngn2GFP mice were crossed to generate 

Ngn2GFP/Ngn2LacZ homozygous mutant embryos carrying only one LacZ allele. 

Interestingly, also in the Ngn2LacZ/Ngn2GFP mutant telencephalon, ectopic cells were 

detected in the GE to a similar extent than in Ngn2LacZ/Ngn2LacZ mice (Fig. 10D). The 

increased X-gal activity in the cortical plate compared to Ngn2WT/Ngn2LacZ was also 

confirmed in the Ngn2LacZ/Ngn2GFP telencephalon. Thus, the appearance of ectopic X-

gal positive cells in the GE and increased signal in the CP is not due to the increased 

copy number of LacZ in homozygous embryos, but to the loss of Ngn2 function. 

 

In order to test whether the cause for the ectopic location of cortical cells is their up-

regulation of Mash1, we crossed the Ngn2LacZ mice to Mash1 knock out mice. We 

found in the double mutant embryos lacking both Ngn2 and Mash1 that the ectopic 

cells were still present (Fig. 10E). Thus, the up-regulation of a ventral gene is not the 

cause for for the wrong location of dorsal cells in ventral positions.  

 

If the ectopic cells in the GE were due to migrational spread from the cortex, one might 

expect their accumulation over time. We therefore analyzed Ngn2LacZ mice three days 

later, at E17. Indeed, the number of ectopic cells in the GE of Ngn2LacZ/Ngn2LacZ mice 

(95±19 cells per section, n=10) was almost double the number observed at E14 (50±19 

cells per section, n=10; =1.9 fold increase). We also observed that cells had spread 

deeper into the GE at E17 than at E14 and ectopic cells were also located in the 

ventricular zone of the GE at E17 where no cells were detected at E14 (Fig. 10G). This 
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increase in ß-galactosidase-positive cells in the GE during development suggests that 

more and more cells of cortical origin become located in the GE where they 

accumulate in the absence of Ngn2 function. Indeed, an additional hint for an unusual 

cell migration from the cortex into the GE in the Ngn2LacZ/Ngn2LacZ mice is that many ß-

galactosidase positive cells in GE exhibit the morphology of migrating cells, with an 

elongated cell body and a leading process (Fig. 10H). 

 

 

 III-B Dorso-ventral cell migration from the cortex into the GE in homozygous 
Ngn2 LacZ mice 
 

To directly examine if the loss of Ngn2 function affects cell migration, we used focal 

injections of EGFP-expressing adenovirus into telencephalic slices. Cortical slices from 

E14 WT and Ngn2 mutant littermates were cut at 300µm and infected focally close to 

the cortico-striatal border with an EGFP-adenovirus as depicted in Fig.11. As observed 

previously, few cells infected in the cortex of E14 WT mice crossed the boundary into 

the GE 18 or 45 hours post-infection (Fig. 11A), with ectopic cells found in the GE in 

only 17% of slices and a mean number of 0.3 cells crossing the border per slice (Table 

6). In contrast, many labeled cells were observed to migrate within the cortex, 

confirming that infected cells retained their migratory capacity (Fig. 11A).  

 

EGFP-adenovirus infection of slices from the telencephalon of Ngn2 homozygous 

mutant embryos revealed an increased capacity for mutant cells to migrate from the 

cortex into the GE. In the example shown in Fig. 11B, four infected cortical cells 

migrated into the GE 45 hours after infection. A quantification of this effect in several 

embryos indicated that migration from the cortex into the GE was doubled in Ngn2-

homozygous mutants compared to WT littermates (0.8 versus 0.3 ectopic cells/slice) as 

depicted in Table 6. However, as the total number of cortical cells infected and 

migrating into the GE was low in these experiments, the significance of the differences 

was difficult to evaluate. To overcome this problem we increased the number of 

infected cells and thus the probability of observing cells crossing the boundary by 

placing several injections on the cortical side of the boundary. In these high density 

infections, 51% of wild-type slices had cells crossing the boundary, a number which 

was further increased to 71% in slices obtained from homozygous mutant littermates. 

Moreover, the mean number of cells crossing the cortico-striatal boundary increased 

1.8 fold in Ngn2 mutant compared to WT slices. In contrast, the migration distance into 
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the GE was comparable (WT: 315±39µm; Ngn2-/-: 371±45µm respectively). Thus, as 

suggested by the low density viral infections, there is a significant increase in the 

dorso-ventral migration of cortical cells in Ngn2-mutant slices.  

 

We also examined whether the boundary in the Ngn2-mutant telencephalon is more 

permeable to cells from the GE, by injecting EGFP-adenovirus in the GE of E14 WT 

and Ngn2-/- telencephalic slices. As previously observed, GE cells migrate into the 

cortex much more frequently than cortical cells migrate into the GE. In most of the 

injected slices (79%) cells from the GE had migrated into the cortex two days after 

labeling and no difference was detected in telencephalic slices from homozygous Ngn2 

mutants (GE cells migrated into the cortex in 89% of slices, see Table 7). Thus, the 

absence of Ngn2 does not affect cell migration from the GE into the cortex, but only 

from the cortex into the GE.  

 

Taken together, these data suggest either that Ngn2 mutant cortical cells have an 

increased migratory capacity, or that the boundary delineating the cortex and GE is 

more permeable to cortical cells in the absence of Ngn2 function.  

 
Table 6: Adenovirus injections in the cortex  
 

 
single 

injections in 
the cortex 

 

 
% of slices 

with cells in the 
GE 

 
Mean number 
of cells in the 

GE 

 
several 

injections in 
the cortex 

 

 
% of slices 

with cells in the 
GE 

 
Mean number 
of cells in the 

GE 

 
Ngn2 +/+ 

 
17%, n=29 

 
0.3±0.1 

 
Ngn2 +/+ 

 
51%, n=39 

 
1.4±0.4 

 
Ngn2  -/- 

 
33%, n=30 

 
0.8±0.4 

 
Ngn2  -/- 

 
72%, n=19 

 
2.3±0.6 

 
Normalized to 

WT 

 
x 1.9 

 
x 2.7 

 
Normalized to 

WT 

 
x 1.4 

 
x 1.6 

 

   Table 7: Adenovirus injections in the GE 

single injections in 
the ganglionic 

eminence 

 
% of slices with cells in 

the cortex 

 
Mean number of cells 

in the cortex 
 

Ngn2 +/+ 
 

79%, n=19 
 

5.5 

 
Ngn2  -/- 

 
89%, n=9 

 
6 

 
Normalized to WT 

 
x 1.1 

 
x 1.1 
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 III-C Cellular and molecular changes at the boundary between cortex and GE in 
homozygous Ngn2 LacZ mice 

 

Because cortical cells in Ngn2-deficient brains are able to cross the boundary into the 

GE in a higher proportion than in the wild type telencephalon, we tested whether this 

boundary in the mutant is affected in its cellular composition or molecular properties. A 

prominent radial glial fascicle delineates the cortex and the GE from E12 onwards 

(Edwards et al., 1990; Stoykova et al., 1997). To detect this fascicle, we performed 

immuno-stainings for RC2 and BLBP (Stoykova et al., 1997; Hartfuss et al., 2001) on 

sections of WT and homozygous Ngn2-mutant telencephali. While the characteristic 

fasciculation of RC2- and BLBP-immunoreactive radial glial fibers was present, it was 

less tight in the homozygous Ngn2-mutant telencephalon compared to WT littermates 

(Fig. 12A-D). This was seen throughout the rostrocaudal extent of the boundary. 

Similarly, immunostaining of the 9-4 antigen, a marker for boundary radial glial cells (T. 

Hirata) also revealed a certain defasciculation of radial glia fibers at the boundary in the 

homozygous Ngn2-mutant telencephalon (Fig. 12E, F). Thus, in the absence of Ngn2 

the radial glia fascicle present at the border between cortex and GE, is less well 

fasciculated, suggesting that mechanical defects may account to some extent for the 

enhanced cell migration observed at the border in Ngn2 mutants. 

 

We also examined whether molecular changes in border cells had occurred in Ngn2 

mutants. Interestingly, a molecular marker of the boundary region, the soluble frizzled 

related protein 2 (SFRP2; Kim et al., 2001) also showed a broader expression domain 

in the Ngn2-/- telencephalon compared to WT littermates (Fig. 12G, H). In WT 

embryos, Sfrp2 is most strongly expressed in the VZ of the ventral pallium, the border 

region extending from the GE to the cortico-striatal sulcus (arrow in Fig. 12G). In the 

Ngn2-/- telencephalon, however, the Sfrp2 expression domain spreads above the 

sulcus into the cortex (Fig. 12H). This enlargement of Sfrp2-expression in Ngn2-

mutants was observed at all rostrocaudal levels of the cortex. In contrast, expression of 

Wnt7b, the Sfrp2 ligand, was not affected in the lateral cortex of Ngn2 mutants (data 

not shown, analyzed at E14 and 17). Similarly, we did not see any changes in the 

expression patterns of Slit1, 2, 3 or ROBO1, 2 (data not shown), secreted molecules 

and their receptors that were previously suggested to play a role in tangential cell 

migration in the telencephalon (Zhu et al., 1999). In particular Slit2 has a prominent 

expression domain along the boundary between the cortex and GE at E16, a pattern 

that is not affected in Ngn2 mutant mice (not shown). Cadherin-mediated cell adhesion 
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has also been implicated in restricting the intermingling of cells from the cortex and the 

GE  (Götz et al, 1996; Inoue et al., 2001), but no changes were observed in the 

expression of R-Cadherin, Cadherin 6, 8 and 11 in the Ngn2-/- telencephalon (data not 

shown). Likewise, the expression patterns of ephrins (ephrin A5, B1, B2 and B3) and 

Eph receptors (Eph A5 and A3) were unaffected in Ngn2-/- telencephalon (data not 

shown). Thus, no defects were observed in the expression of cell surface and signaling 

molecules known to regulate cell adhesion and migration in the developing 

telencephalon of Ngn2-/- mice, except a broadening of the boundary between the 

cortex and the GE at cellular and molecular level. 

 

 

III-D Non-cell autonomous effects on cell migration in Ngn2-/- telencephalon 
 
Two explanations might account for the migrational defects observed in the absence of 

Ngn2 function. Either alterations occur in the substrate of migration, as suggested by 

the molecular and cellular changes observed in the cortico-striatal boundary in Ngn2 

mutants or Ngn2-deficient cortical cells acquire ventral surface properties, e.g. by up-

regulation of Mash1, allowing only the mutant cells to cross into the GE. The first 

possibility predicts that the migration defects observed in Ngn2 mutants are non-cell 

autonomous and the migration of WT cells should also be affected on a Ngn2-/- 

telencephalic substrate. In contrast, if the second possibility were correct, only Ngn2-

mutant should be able to spread into the GE. To test this idea, we used the same in 

vitro transplantation approach which was used in the first part of this work. We 

transplanted small pieces of cortex or GE from ‘green mice’, a transgenic line that 

expresses EGFP ubiquitously in all cells (Okabe et al., 1997), onto slices of Ngn2-/- or 

WT telencephali. 

 

When we transplanted pieces of green fluorescent cortex onto the cortex of slices from 

Ngn2-/- telencephalon (Fig. 13A) we observed a clear increase in the number of 

cortical cells crossing into the GE compared to transplants placed on slices from WT 

littermates. While on a WT cortex a mean number of 3.2±1.2 (n=42) green cortical cells 

had entered the GE after 1 day in vitro, more than fivefold the number of cells 

(16.0±3.3; n=28) had crossed the boundary on a Ngn2-/- substrate. Thus, WT cortical 

cells can spread to a larger extent into the GE on a Ngn2-/- versus a WT substrate. 

Two possible mechanisms could lead to this result: first, migration is enhanced on the 

Ngn2-/- telencephalon, or, second, the mutant boundary is more permissive for cortical 
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cells to enter the GE. Despite a comparable size of the transplants (see Materials and 

Methods for details), we noted that a higher number of cells migrated out of transplants 

placed on Ngn2-/- telencephalic slices compared to WT slices (1.6 fold increase, Fig. 

13B), suggesting that the mutant cortex is a more permissive substrate for migration 

than the wild type cortex. Nevertheless, taking this difference into account by 

normalizing the proportion of cells entering the GE to the total number of migrating 

cells, there were still more cells crossing the boundary on a mutant substrate 

(3.7%±0.7%) than on a WT substrate (1.2%±0.5%; Fig. 13C; 3.1 fold increase on 

Ngn2-/- substrate). This suggests that the boundary between the cortex and the GE 

has become more permissive for cortical cells in the absence of Ngn2 and that the loss 

of Ngn2 is not required in the migrating cells since also WT cells react to the substrate 

changes of Ngn2-/- slices.  

  
 Table 8: migration out of cortical transplants 

 
GFP-cortex 
transplants 

 
Transplant area 

(mm2) 

Mean number of 
migrating cells in 

the cortex 

Mean Number of 
migrating cells in 

the GE 

 
GE cells/ total 

number of cells 

WT 0.364 266±62 3±1.2 1.1% 

Ngn2 -/- 0.406 424±57 16±4.9 3.7% 

Normalized to 
WT X1.1 X1.6 X5.3 X3.4 

 

 

III-E Fate change of ectopic cells in the GE of Ngn2LacZ mice 
 
The results shown above strongly support the interpretation that the X-Gal-positive 

cells detected in the GE of Ngn2LacZ mice are indeed cortical cells having crossed the 

cortico-striatal border. These cells therefore can be used to ask whether cortical cells in 

a GE environment retain a cortical identity or whether they acquire the identity of GE 

cells. To answer this question we examined the expression of several transcription 

factors specific for dorsal or ventral regions in the developing telencephalon. First, we 

analyzed whether X-Gal positive cells still express Ngn2 transcripts (using a 

Neurogenin2 riboprobe, which hybridizes to a region still present in the mutated gene) 

or the LacZ gene at ectopic positions. In the cortex, as expected, most of the X-Gal 

positive cells express the LacZ mRNA (Fig. 14A). In contrast, the X-Gal positive cells in 

the GE did not contain detectable levels of LacZ (Fig. 14A) or Ngn2 transcripts (data 

not shown). Thus, expression from the Ngn2-locus seems to be down regulated after 
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cortical cells have crossed the boundary into the GE. Interestingly, the same was 

observed for expression of the transcription factor Pax6, which is expressed in many 

cortical precursors, but only at very low levels in the GE. Indeed, most ß-galactosidase 

positive cells in the cortex express Pax6, while most ectopic cells in the GE did not. 

Interestingly, the few X-gal-positive cells that retained Pax6 transcripts were located 

still close to the boundary (data not shown). We also examined the expression of 

Math2, a bHLH transcription factor expressed in postmitotic neurons of the cortex, but 

not the GE (Bartholomä and Nave, 1994; Fode et al., 2000) to see whether cortical 

cells might have retained their cortical identity but differentiated into neurons. Again, ß-

galactosidase containing cells in the GE of Ngn2LacZ/Ngn2LacZ did not express Math2 

(Fig. 14B). Similar results were also obtained with the riboprobe for R-Cadherin that is 

contained in both neurons and precursors in the cerebral cortex, but not in the GE 

(data not shown). Thus, cortical cells entering the GE loose their dorsal identity, raising 

the question of whether they instead acquire a ventral identity in their new 

environment? 

 

Mash1 is a bHLH transcription factor expressed in the GE, but only at low levels in the 

cortex (Casarosa et al., 1999; Fode et al., 2000). However, in the absence of Ngn2, 

Mash1 expression is up-regulated in the cortex (Fode et al. 2000). In the cortex of 

Ngn2LacZ/Ngn2WT mice most ß-galactosidase-positive cells in the cortex did not contain 

Mash1 transcripts, suggesting that Ngn2 and Mash1 are expressed in different 

populations of cortical precursors (see also Nieto et al., 2001). In the cortex of 

Ngn2LacZ/Ngn2LacZ mice, however, most ß-galactosidase-positive cells also expressed 

Mash1, consistent with the notion that Mash1 functionally replaces Ngn2 and thereby 

misspecifies cortical precursors (Fig. 14C). Also most of the ectopic ß-galactosidase 

positive cells in the GE expressed Mash1 (Fig. 14C). Although the endogenous 

expression pattern of Mash1 in the GE is restricted to the VZ and SVZ (Bulfone et al., 

1993), ectopic X-Gal-positive cells outside the VZ were clearly Mash1 positive. Since, 

however, also cortical cells express Mash1 in the absence of Ngn2, we examined other 

ventral markers, such as Dlx5 that are not expressed by the ß-galactosidase-positive 

cells in the lateral cortex abutting the LGE (Fig. 14D). Interestingly, all ectopic ß-

galactosidase positive cells in the GE contained Dlx5 transcripts suggesting that they 

start to express Dlx5 when they enter the GE (Fig.14D). Taken together, these results 

suggest that Ngn2-deficient cells migrating from the cortex into the GE lose their 

cortical identity and acquire the identity of their host region. 
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IV- COMPARISON BETWEEN THE PAX6 MUTANT AND THE NGN2 MUTANT 
 
The results presented above show that in the absence of Ngn2 in the cortex, the 

boundary becomes permeable in a dorsal to ventral direction and in the absence of 

Pax6, the boundary becomes permeable in both directions. Taking together the results 

of both studies, with the differences and similarities of both mutants, should help to 

clarify the molecular mechanisms acting in the restriction of migration at the cortico-

striatal boundary. Table 9 summarizes the principle characteristics of both mutants and 

shows some molecules which could be involved in the altered cell migration at the 

boundary. 

 

Table9: principle characteristics of the boundary in both mutants 

 Pax6 mutant (Sey/Sey) Ngn2 mutant 

PAX6 non functional unaltered 

NGN2 absent absent 
Ventral to dorsal migration increased unaltered 

Dorsal to ventral migration increased increased 
Boundary radial glia fascicle absent defasciculated 
R-cadherin absent unaltered 

Wnt7b absent unaltered 

Sfrp2 absent increased in the cortex 
Slit2 absent unaltered 

EphrinB2 decreased in the cortex unaltered 

 

We examined by in-situ hybridization the expression pattern of further molecules 

known to play a role in the segregation of cells. The results of this study are 

summarized in table 10. 
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Table10: Expression patterns in WT, Small-eye and Ngn2 mutant 

 WT SEY/SEY Ngn2-/- 
SFRP2 E14: in the VZ all around the 

ventricle, specially strong in 
the boundary region 

Absent in the boundary Boundary domain 
enlarged into dorsal 
direction 

Wnt7b E14: in cortex SVZ and CP, 
and in lateral cortex and 
boundary.  

Absent in lateral cortex 
and boundary, still 
present in CP 

No difference 

Cadherin6 E14: in cortex VZ, IZ and 
CP. In GE VZ  

 No difference 

Cadherin8 E14: in the cortex SVZ, stop 
at the boundary. In the GE 
mantle zone and weakly in 
VZ. 

Absent in the cortex No difference 

Cadherin11 E14: in the CP, and in the 
GE mantle zone 

Absent No difference 

EphrinB1 E14: in the VZ strongly in the 
cortex, weaker in the GE. 
Weak within the boundary 

No difference No difference 

EphrinB2 E14: In the Cortex and GE 
VZ/SVZ, and in the CP of the 
lateral cortex. 

Decrease in the lateral 
cortex 

No difference 

EphrinB3 E14: in the septum and 
ventrally in the GE 

No difference  

EphrinA5 E14: in the cortex VZ E16 No difference  
EphA5 E16: in the cortex SVZ and 

in boundary. E14 weak 
signal in boundary 

No difference No difference 

EphA3 E14: in the GE VZ, in the 
cortex IZ with sharp border 
to the GE, and in lateral CP 

 No difference 

Slit1 E14: in the GE VZ/SVZ and 
mantle zone. Cortex VZ only 
ventrally, and CP. 

No difference Caudally: increased 
expression in the 
cortex SVZ 

Slit2 E14: in the cortexVZ/ SVZ; 
E16 within the boundary 

E14: absent from the 
cortex 

No difference 

Slit3 E14: in the CP absent No difference 
Robo1 E14: in the CP and in the GE 

mantle zone, boundary 
negative. 

No clear border 
between positive GE 
and negative boundary 

No difference 

Robo2 E14: in cortex IZ and in GE 
mantle zone 

Decrease in the cortex No difference 

VZ=ventricular zone; SVZ= subventricular zone; IZ= intermediate zone, CP= cortical plate 
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IV GAP JUNCTION UNCOUPLING AT THE CORTICO-STRIATAL BOUNDARY: 
ANOTHER ASPECT OF REGIONALIZATION 
 
In the Pax6 mutant, the patterning of the cortex and GE is distorted (Stoykova et al., 

2000), the radial glia fascicle of the boundary is disrupted, and cell migration across the 

boundary is no longer restricted. Hence, Pax6 regulates many features of the boundary 

delineating cortex and GE. We wanted to find out whether the loss of Pax6 also 

influences a further characteristic of boundaries, concerning the coupling of cells via 

gap junctions. The uncoupling of gap junctional communication is a boundary feature 

found at the inter-rhombomeric boundaries (Martinez et al., 1992) and at drosophila 

compartmental boundaries (Blennerhasset and Caveney, 1884). Like the restricted cell 

migration, it is a mechanism that enables a distinct differentiation of adjacent regions, 

in this case by limiting the passage of small metabolites at the borders. Within the 

cortex, cells are connected via gap junctions (LoTurco et al., 1991), and we examined 

whether the cortico-striatal boundary interrupts this communication. We then examined 

the gap junctional coupling at the cortico striatal boundary in the Small-eye mutant. 

Using an electrophysiological method, we visualized gap junctional coupling of cells in 

the cortex, GE and cortico-striatal boundary in E14 telencephalic slices of wild type and 

Small-eye mutants. 

 

IV-A Control experiments 
 

As a measure of gap junctional coupling, we counted the number of cells labeled when 

single cells were filled with neurobiotin via a patch pipette in whole-cell recording 

configuration, as depicted schematically in Fig15A. Neurobiotin is a molecule small 

enough to pass through gap junctions and it allows the staining of the whole cell cluster 

(See also methods and Blanton et al., 1989). When a Gigaohm seal between patch 

pipette and cell surface was obtained the membrane was broken in order to be in 

contact with the cytoplasma, and the cell was filled through the patch electrode for 10 

minutes. In about 60% of the cases, the patch was disrupted before this time. We 

therefore verified whether the number of cells labeled in a cluster was smaller when the 

time of patching was short. We found that the number of cells per cluster did not 

correlate with the duration of patching, as seen in the Fig 15B. Therefore we also 

included in the analysis clusters that were filled less than 10 minutes.  
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To control that we were filling cell clusters connected by gap junctions and not random 

groups of cells that were injured by the patch electrode, we put the electrode into the 

slice for 10 minutes, without making a patch onto a cell. In those cases, neither single 

cells nor clusters were visible after the DAB staining of the slice (n=10). 

 

 

IV-B Uncoupling of cells within the cortico-striatal boundary 
 

We first studied slices of embryonic day 14 wild type telencephali. In each slice, one 

cell in the cortex, one cell in the GE and one cell in the cortico-striatal boundary were 

filled with neurobiotin.  

 

Clusters in the cortex revealed a columnar shape, extending from the ventricular zone 

in direction of the pial surface, as it has been also described by Lo Turco et al (1991). 

The mean cluster size consisted of 10 cells (see table 11). Fig. 15C a and b shows a 

large cortical cluster, containing 21 cells. In the GE, clusters had a triangular shape, 

being broad at the ventricular surface and thin in deeper positions, as can be seen in 

Fig. 15C. In almost all GE clusters, about one to three radial processes were visible, 

extending into the GE mantle zone. The mean cluster size was 10, the same as in the 

cortex. Clusters in the cortico-striatal boundary were much smaller, with a mean of 4.6 

cells. In shape, they resembled the clusters of the GE, with cell somata at the 

ventricular surface only, and one, or few long radial processes extending to the pial 

surface. 

 

The comparison of the cluster size distributions, depicted in Fig.16A, shows a 

significant difference between cortex, GE and boundary. While in the cortex and the 

GE, the cluster size is evenly distributed between 1 and 15 cells, 88% of the boundary 

clusters are clusters of 1 to 5 cells. The one to two-cells clusters represent already 41% 

of all boundary clusters, whereas they constitute only 10% and 14% of the cortex and 

GE clusters, respectively. Thus, the cortico-striatal boundary is a region where cells are 

less coupled, thereby disrupting communication of intracellular metabolites between 

the cortex and the GE. 
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Table 11: 

Mean cluster size 
(number of cells) 

Cortex Boundary GE 

Wild type 10.1± 1.3; n=31 4.6± 1.5; n=17 10.2± 1.5; n=21 

Small-eye 8.1± 2.3; n=19 9.3± 2.3; n=20 13.3± 2.4; n=16 

 

 

IV-C No uncoupling in the Small-eye mutant boundary 
 

As the cortico-striatal boundary is a region of uncoupling of cells, we were interested to 

study a case where the boundary is disrupted, as observed in the Small-eye mutant. 

We filled cells with neurobiotin in E14 small-eye telencephalic slices, and found several 

differences to the wild type.  

 

We found cluster sizes within the Sey/Sey boundary that were clearly shifted towards 

bigger cell clusters. The one to two cell clusters represented only 15% of all clusters in 

Sey/Sey, compared to 41% in WT. The size of clusters in the Sey/Sey boundary was 

rather evenly distributed. Most of the clusters in the boundary had a shape resembling 

clusters of the WT GE, triangular with processes extending into the direction of the pial 

surface. Thus, in a mutant where the boundary region is disrupted, an uncoupling of 

cells does not take place.  

 

In the Sey/Sey cortex, clusters were rarely organized in a columnar shape, as was the 

case in the wild type. Most of the clusters found in Sey/Sey cortex were small (53% of 

one to five cell clusters, compared to 35% in WT), and the bigger clusters did not 

extend so far in the direction of the pial surface, compared to the WT (see Fig. 15C). 

Thus, in correlation to the numerous other defects of the small-eye cortex, cells in the 

ventricular zone are not as highly connected as in they are in wild type. This may be 

related to a defect in synchronization of cell cycle events, as suggested by Bittman et 

al. (1997) and Owens and Kriegstein (1998), and may be in correlation to the excess of 

cells in S-phase in the Sey/Sey cortex (Götz et al., 1998). 

 

In the Small-eye GE, we found a slightly increased cluster size compared to the WT 

(see Fig. 16D). The shape of the clusters was similar to that in the WT, with some 

radial processes extending out of the cluster. However, the percentage of big clusters 

(containing more than 15 cells) was higher in the Sey/Sey GE compared to the WT GE. 
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Although most defects of the Small-eye mutant are found in the cortex, the zone where 

Pax6 is strongly expressed, the lateral GE also contains a very low level of Pax6 

expression and is also affected in several ways. For example, the expression territory 

of sonic hedgehog and Nkx2.1 are dorsally expanded from the medial GE to the lateral 

GE (Stoykova et al., 2000). Thus, other defects may be found in this territory. 

 

In order to find the cause for the increased gap junctional communication at the 

Sey/Sey cortico-striatal boundary, we checked whether connexins are expressed 

differently in the mutant. We performed immunostainings for Connexin 26 and 

connexin43, both connexins expressed in the telencephalon at this developmental 

stage (Nadarajah et al., 1997). We could not find any difference in the immunoreactivity 

between WT and Sey/Sey slices. This result suggests that the increased coupling of 

cells in the Sey/Sey boundary is not due to a change in the gene expression of 

connexins but rather to a change in the regulation of the channel permeability.  

 

Taken together, these results suggest a mechanism of uncoupling at the cortico-striatal 

boundary that would contribute to the delineation of the cortex and the GE. This 

mechanism is absent in the Small-eye muitant. 
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Figure1: Morphology of the telencephalon:
1A: Nissl staining (taken from the Atlas of the prenatal mouse brain, Schambra et al., 
Academic Press, 1992) of a coronal section of an embryonic day 14 (=E14) mouse 
telencephalon, depicting the dorsally located cortex, the ventrally located ganglionic eminence 
(GE), and the cortico-striatal boundary delineating both regions (represented by a doted line). 
The blue color represents the expression domain of dorsal transcription factors (i.e. Pax6, 
Ngn1 and 2, Emx2) and the brown colour the expression domain of ventral transcription factors 
(i.e. Mash1, Dlx1, -2 and -5). 
1B: Immunhistochemistry with the monoclonal antibody 9-4 on a coronal section of an E14 
mouse telencephalon, revealing the radial glia fascicle of the cortico-striatal boundary (pointed 
by the orange arrows). 
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Figure 2: GFP-adenovirus injection experiments
2A: Schematic representation of the assay
2B: Frontal slice of embryonic day 14 telencephalon injected with GFP adenovirus. The slice was photographed under both phase 
contrast and fluorescence at a 5x magnification 16 hours (a), 26 hours (b) and 41 hours (c) after the injection of adenovirus encoding the 
enhanced green fluorescent protein (EGFP) into the GE. The GE and the cortex can be discerned in phase contrast and are indicated in a 
(slice orientation: medial is to the left, lateral to the right, ventral down and dorsal up). The cortico-striatal boundary is indicated in a as a 
dotted line. The green fluorescent cells are visible as white dots in a, b and c, and can be seen in the corresponding fluorescent 
micrographs shown below b and c, and indicated by black frames in b and c. c´ is a fluorescent micrograph taken at higher magnification 
in the lateral cortex depicting four green fluorescent cells that have migrated from the GE into the cortex after 41 hours.
2C: No diffusion of the GFP-adenovirus
In order to visualize the diffusion of adenovirus, cell migration was blocked by the addition of cytochalasin-D to the culture medium. 
Pictures were taken 16, 30 and 39 hours after injection into the GE. The green fluorescence increases during this time, but does not 
spread from the site of injection.
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Figure 3: GFP-adenovirus injections into the cortical side or GE side of the boundary
Telencephalic slices from E14 wild-type mice were injected with EGFP-adenovirus in the cortex (A) or in the GE (B) and photographed at 
different times after the injections as indicated in the figure. The small drawings on top represent the telencephalic slice schematically. 
A- Injection into the cortex: dorsal and medial is up, ventral down, and lateral to the left. The green spot indicates the location of the GFP 
cells and the dotted line shows the cortico-striatal boundary. The white line in the fluorescence micrographs depicts the pial (left) and the 
ventricular surface (upper right). Radial and tangential migration of the fluorescent cells within the cortex is visible after 26 and 45 hours. 
No cell has crossed the boundary into the GE (lower right corner). 
B- Injection into the GE: Fluorescent cells have spread within the GE and have crossed the boundary into the cortex. After 26 hours, two 
GFP cells are already found in the cortex and after 45 hours about 15 cells (some are indicated by small arrows). Most of the cells that 
have migrated from the GE into the cortex are located in the lateral cortex, but one cell (indicated by a larger arrow) is located at a more 
dorsal position. 28% indicates the percentage of migrating cells that entered into the cortex, analyzed in 9 slices.
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Figure 4:  Analysis of cell migration

A- Schematic drawing of a telencephalic slice with cells as blue, green and red dots corresponding to their position at 18, 25 and 40 
hours respectively after injection into the GE. The blue, green and red circles represent the site of injection, where many fluorescent cells 
are located. The dashed line divides the GE in two segments for the analysis of cells migrating towards and away from the boundary. The 
distances of migration were measured on such drawings as explained in the methods.

B, C Quantitative analysis of the migration distance of each GE cell migrating to or beyond the cortico-striatal boundary in slices 
from WT (A, n=7 slices) and Sey/Sey (B, n=7 slices). The maximum migratory distance was divided into 20 bins in order to determine 
the frequency of cells migrating for different distances. The X-axis depicts the distance of migration in µm (60 µm per bin) and the Y-
axis the percentage of cells at this position. The position of the cortico-striatal boundary is indicated as a black line (mean from the 
different slices) and gray shading comprising the boundary location in the slices analyzed. Note the decrease in the number of cells at 
the distance of the boundary
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GFPKIFigure 5: Time lapse recording of an E14 Tau  telencephalic slice 
A: Fluorescence micrograph of a frontal telencephalic slice depicting in the bright areas the GFP-expressing neurons in the 
differentiated zones of the cortex and GE. The frames A and B depict the regions recorded and the dashed line represents the cortico-
striatal boundary. VZ= ventricular zone, SVZ= subventricular zone.
B: example of migrating cells: Two migrating cells in the field of view B are encircled in blue and orange respectively, and their position 
at 6 time points (indicated in the bottom left corner) reveals their migration path. The orange encircled cell crossed the boundary 
(represented by a dashed line) from the GE into the cortex. The blue encircled cell in the cortex made a 90° turn next to the boundary. 
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Figure 5C: classification of the directions of migration: The main migrating directions recorded around the cortico-striatal boundary 
are represented schematically. The arrows indicate the path of migration, and the numbers above the arrows indicate the proportion of 
cells migrating along this path.
5D: Variation of the speed of the migrating cells: The speed of migration of the two cells represented in C has been calculated at 
each recording point (every 10 minutes) and is shown in a graph, revealing the stop- and-go way of migration. Note that cell circled in 
blue remains in the same location for about 2 hours while searching for its new direction. 
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Figure 6: Transplantation in slice 
culture
A: Schematic representation of the 
experimental paradigm. A small piece of 
the donor telencephalon (either green 
mouse or WT mouse) is transplanted onto 
the host slice (either WT mouse or 
rat).Ctx= cortex, OB= olfactory bulb. 
B: example of a mouse cortex 
transplant (E14) onto the cortex of a rat 
slice (E16). After two days in culture the 
slice has been stained with M2M6 
antiserum, revealing the migrating mouse 
cells out of the transplant. 
C: Example of a green mouse GE 
transplant (E14) onto the GE of a WT 
mouse slice (E14). The slice has been 
fixed after 2 days of culture. In B and C, a 
dotted white line depicts the boundary and 
yellow circles indicate cells that have 
migrated out of the transplant.
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Figure 7B: Injections into the GE side of the boundary
Telencephalic slices from E14 Sey/Sey were injected with EGFP-adenovirus and photographed at the different times after injection as 
indicated in the figure. The schematic drawing indicates the injection site close to the boundary, as described in Fig. 3. The dotted line 
indicates the cortico-striatal boundary. Fluorescent cells have spread within the GE and have crossed the boundary into the cortex. 
Note the larger number of GFP-cells in the cortex of the Sey/Sey littermate. Small arrows indicate two of the three cells that have 
crossed the boundary into the cortex after 27 hours. After 43 hours, about 25 cells have migrated to the cortex. 46% indicates the 
percentage of migrating cells that entered into the cortex, counted in a total of 9 slices.
Figure 7C: Injections into the cortical side of the boundary
Telencephalic slices from E14 Sey/Sey were injected with EGFP-adenovirus in the cortex and photographed at different times after the 
injections as indicated in the figure. The small drawing on top schematically depicts the telencephalic slice. Dorsal and medial is up, 
ventral down, and lateral to the left. The green spot indicates the location of the GFP cells and the dotted line shows the cortico-striatal 
boundary. Dorsal and medial is up, ventral down, and lateral to the left. The white line in the fluorescent micrographs depicts the pial 
(lower left to right) and the ventricular surface (lower right). Radial and tangential migration of the fluorescent cells within the cortex is 
visible after 26 and 44 hours. 

Figure 7A: absence of radial 
glia fascicle in Sey/Sey
E14 telencephalic WT and 
Sey/Sey slice that have been 
stained by the 9-4 antibody, 
revealing the absence of the 
radial fascicle in the Sey/Sey 
boundary region. The arrows point 
to the location of the fascicle.
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Figure 8A: Increase of calbindin-positive cells in the lateral cortex of Pax6-mutant mice
Fluorescent micrographs of 100 µm coronal sections of an embryonic day 15 telencephalon of wild-type (a-c) and Sey/Sey (d-f) 
littermates immunostained for calbindin. a and d depict a lower magnification, showing the pial surface on the right side and the 
ventricle as the dark part in the upper left corner. The sulcus separating the ventricular zone of the cortex (up) from the GE 
(down) is indicated by an arrow. The boxed areas in a and d depict the part of the lateral cortex shown in higher magnification in 
b and e, respectively. c and f are fluorescent micrographs of the dorsal cortex of the same sections at the same magnification as 
b and e. The layers of the developing cortex are indicated in c and f. VZ: ventricular zone, IZ: intermediate zone, CP: cortical 
plate. Note the higher number of calbindin-positive cells in the lateral cortex of Sey/Sey mice (e) as compared to WT (b).
Figure 8B: Quantitative analysis of GABAergic cells in WT and Sey/Sey telencephalon
The mean number of calbindin-, calretinin- and GABA-immuno-positive cells in the lateral and dorsal cortex are depicted in 
schematic drawings of sections from embryonic day 15 and 17 telencephalon. The standard error of the mean and the number 
of slices analysed are depicted in small print. For details of counting see Methods. Note the increase of GABA-, calbindin- and 
calretinin-positive cells in the lateral cortex of Sey/Sey littermates at E15/17 compared to WT. This increase extends into further 
dorsal regions by E17.
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Figure 9: molecular changes 
affecting the Sey/Sey cortex and 
boundary
Non-radioactive in-situ 
hybridizations revealing the 
expression pattern of Wnt7b (A,E), 
Sfrp2 (B,F), Slit2 (C,G) and ephrin 
B2 (D,H) in WT (A-D) and Sey/Sey 
(E-H) telencephalic slices. The 
dark colour reveals the region of 
expression of the respective gene. 
The arrows point to regions where 
in Sey/Sey the gene expression is 
missing: Wnt7b and Sfrp2 are 
missing in the Sey/Sey boundary 
(A, E and B, F), Ephrin B2 is 
missing in the Sey/Sey lateral 
cortex (C, G) and Slit2 is missing 
in the Sey/Sey cortex (D, H). Scale 
bar in A-H: 200µm.
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LacZ LacZFigure 10: Ectopic ß-galactosidase containing cells in the ganglionic eminence of Ngn2 /Ngn2  mice
LacZKISections of the telencephalon from Ngn2  mice at E14 (A-E, H) and E17 (F, G) showing the expression pattern of ß-galactosidase in 

blue. 
WT LacZ  LacZ LacZ A: Ngn2 /Ngn2 heterozygous,and B: Ngn2 /Ngn2 homozygous littermates: The heterozygous mutant reveals a sharp 

boundary of ß-galactosidase staining between the positive cortex (CTX) and the negative ganglionic eminence (GE), whereas the 
homozygous mutant contains many ß-galactosidase positive cells scattered in the GE. The arrow in B indicates the absence of ectopic 
cells in the ventricular zone (VZ) of the GE, in contrast to later stages (E17, G). CP indicates the cortical plate containing postmitotic 
neurons.

WT LacZ GFP LacZC: Ngn2 /Ngn2  heterozygous, and D: Ngn2 /Ngn2  homozygous mutant littermates: in the homozygous mutant carrying 
only one LacZ allele (D), ectopic cells are present in the GE, in a similar amount as in B. 

LacZ LacZ E: Ngn2 /Ngn2 - Mash1-/- homozygous double mutant: In the absence of Mash1, ectopic ß-galactosidase positive cells are still 
present in the GE.

WT LacZ  LacZ LacZ F Ngn2 /Ngn2 heterozygous,and G: Ngn2 /Ngn2 homozygous littermates at E17: The number of ectopic cells in the GE 
has increased compared to E14. The arrow in F indicates ectopic cells in the ventricular zone of the GE. 

LacZ LacZ H: higher magnification of the ectopic cells in the GE of Ngn2 /Ngn2 homozygous mutants at E14. The arrows depict cells 
with morphologies characteristic of migratory neurons. 
Scale bar in A-G: 100µm; in H: 25µm.
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LacZ LacZFigure 11: Cortico-striatal cell migration is increased in Ngn2 /Ngn2  mice 
EGFP-adenovirus was injected focally in the cortex of a telencephalic slice from wild-type (WT=Ngn2+/+ in A) and a homozygous Ngn2-mutant 
littermate at E14. Micrographs of the injected sections were taken 18 hours and 45 hours after the virus injection as indicated in the figure. The 
phase contrast micrograph and fluorescence micrograph after 18 hours depict the position of the injection site, in the cortex, and the dashed line 
indicates the cortico-striatal boundary. Note that cells spread further away from the injection site after 45 hours. However, no cortical cell has 
migrated into the GE in the WT telencephalic slice, while 4 cortical cells have entered the GE of a Ngn2-/- mouse. Scale bars: 200µm.
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Figure 12: Broadening of 
the cortico-striatal 
boundary fascicle in 

LacZ LacZNgn2 /Ngn2  mice
Cortico-striatal boundary 
markers as indicated in the 
panel were detected in 
sections of telencephali at 
E16 (A-D) or E14 (E-H) in 
WT (A, C, E, G) and Ngn2 
homozygous mutant 
littermates (B, D, F, H). (A-
F) show immunostainings 
for radial glia fibers. Note 
that the width of the radial 
glial fascicle indicated by 
triangles is prominently 
enlarged in the absence of 
Ngn2. The yellow arrow in 
(E,F) indicates the cortico-
striatal sulcus.  
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Figure 13: Non-cell-autonomous 
effect on cortico-striatal cell 

LacZ LacZmigration in Ngn2 /Ngn2  mice
A: Example of a homotypic 
transplantation of a small piece of 
cortex from the 'green mice' (Okabe 
et al., 1997) on a Ngn2-/- E14 cortex 
slice fixed after one day in vitro. Note 
that most GFP cells have migrated 
within the cortex and some of them 
have crossed the boundary (depicted 
by a dashed line) into the GE 
(depicted by arrows).
A': High power view of a part of the 
explant shown in A (see arrows for 
reference). 
B: Quantification of the cells 
emigrating from transplants of WT 
cortex on slices from WT or Ngn2-/- 
littermates. Note that the overall 
number of migrating cells as well as 
the number of cortical cells entering 
the GE is higher on a Ngn2-/- 
substrate compared to WT. 
C: The histogram depicts the 
proportion of cortical cells 
entering the GE amongst all cells 
emigrating from the cortex 
transplants (see B). Note that a 3x 
larger proportion of migrating cells 
cross the boundary into the GE on a 
Ngn2-/- than on a WT substrate.
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Figure 14: Cotrical cells entering 
LacZ LacZthe GE in Ngn2 /Ngn2  mice 

acquire a ventral identity
A-D depict the cortico-striatal border 
in sections of the telencephalon from 

LacZ LacZE14 Ngn2 /Ngn2  mice stained 
for X-Gal (blue) and hybridized with 
the probes indicated in the panel 
(purple ring). Sections are oriented 
with the cortex to the left and the GE 
to the right. Double-positive cells are 
indicated by arrowheads, ß-
galactosidase-positive cells negative 
for the respective transcripts are 
marked by an arrow. Note that 
ectopic cells loose expression of 
cortical genes (LacZ in the Ngn2-
locus in A and Math2 in B), while they 
maintain (C) or acquire (D) 
expression of ventral genes such as 
Mash1 or Dlx5, respectively. The 
dotted white line represents the 
border between cortex and GE.
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Figure 15A: Schematic representation of a cluster of cells connected via gap junctions. One cell within the 
cluster (represented in orange) is patched with an electrode containing neurobiotin (in the bottom left). 
Neurobiotin is small enough to pass through the gap junctions and enter into all the cells of the cluster.
Figure 15B: Graph depicting the number of cells contained in a cluster versus the respective duration of 
patch (=time of filling). Note that the dots are not arranged in a line, thus there is no correlation between 
cluster size and duration of patch.
Figure 15C: Examples of clusters filled with neurobiotin in the cortex, boundary and GE in WT (a, b) and 
Sey/Sey (c). The WT clusters in a are visible in b in a higher magnification. Scale bar in a, b and c: 100µm.
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Figure 16: Distribution of the cluster size 
The cluster size has been binned in 4 groups (A) or 7 groups (B-D) as indicated under the x axis, and the percentage of clusters 
belonging to the respective group are represented in y. The comparison between clusters of the cortex, boundary and GE in the WT is 
depicted in A, revealing the high proportion of small clusters in the boundary. Graphs B-D show the comparison between WT and 
Small-eye clusters in the boundary (B), cortex (C) and GE (D).
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Figure 17: Model summarizing the results of this study
Schematic representation of a section of the embryonic telencephalon, with the 
cortex in gray, the GE in yellow, the boundary in blue and orange and the three 
cell populations encountered at the boundary. In WT, cortical cells (blue) 
recognize a stop signal in the boundary (blue) and remain in the cortex. 

. In the Small-eye mutant, both inhibitory 
signals are lacking, provoking an increased migration across 
the boundary. In the Ngn2 mutant, only the signal restricting cortical cells is 
lacking.

A 
population of GE cells (orange) recognizes a different stop signal in the boundary 
(orange) and remains in the GE. Another GE cell population (yellow) is driven into 
boundary directions, where a permissive signal (or the absence of a stop signal) 
allows their migration into the cortex

in both directions 



DISCUSSION 
 

The present study has revealed several characteristics of the complex mechanism 

driving delineation of cortex and GE during the embryonic development, the most 

striking feature being the asymmetry of migration across the cortico-striatal boundary. 

This asymmetry seems to be unique for the cortico-striatal boundary, as in almost all 

other developmental boundaries, cells have been shown to reduce their intermingling 

equally on both sides of the boundary. In contrast, the mechanisms acting at the 

cortico-striatal boundary allow a strong restriction of migration for cells coming from the 

cortex, opposed to a low level of restriction of cells coming from the GE. This 

asymmetry is also reflected in the distances of migration: while the few cells coming 

from the cortex migrate short distances into the GE, cells coming from the GE migrate 

far into the cortex. Previous data had left open the possibility that postmitotic neurons 

from both regions might be able to cross the cortico-striatal boundary, whereas 

precursor cells from both regions would be restrained from crossing into the adjacent 

territory (Lumsden and Gulisano, 1997). The results of this work now demonstrate a 

true asymmetry in the behavior of cortical and GE cells. The GFP-adenovirus labels 

both neurons and precursor cells. Since hardly any GFP-labeled cells migrated from 

the cortex into the GE, all cortical cells, both neurons and precursor cells, are restricted 

in their migration across the cortico-striatal boundary.  
 

Which are the molecular mechanisms enabling the asymmetry of permeability across 

the cortico-striatal boundary?  

The two mouse mutants we have studied have revealed that the transcription factors 

Pax6 and Ngn2 expressed in the cortex have a ditinct function in the restriction of 

migration at the boundary. While in the Ngn2 mutant only the restriction of cortical cells 

was impaired, the absence of Pax6 impaired the restriction of cells coming from both 

sides of the boundary. Both sets of data allowed us to shed light on the molecular 

mechanisms that could play a role in this asymmetrical migration. 

 

Theoretically, in order to achieve different degrees of restriction on both sides of a 

boundary, two mechanisms would be possible:  

 

First, the same molecular cue(s) could induce different responses from the two groups 

of cells. This signal could be an attractive or repulsive molecule, located in the 

appropriate position, driving the cells from ventral to dorsal territories, or it could be a 
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stop signal in the boundary, for which the two neighboring populations would carry 

different receptors. In this case, an alteration of the signal would affect both populations 

equally. This is the case for the Pax6 mutant, but not for the Ngn2 mutant.  

 

Alternatively, the two cell populations could respond to distinct signals in the boundary. 

This model is consistent with the situation found in the Ngn2 mutant where the 

migration of cortical cells is affected in a non-cell-autonomous manner, whereas the 

migration of GE cells is unaffected. There, only the signal for cortical restriction would 

be affected. In the Small-eye mutant, according to this model, both signals would be 

altered. Thus, a mechanism involving distinct molecular cues that regulates the 

migration on each side of the boundary is more likely. 

 

The results we obtained in wild type and in the two mutant mice allow us to define 

candidate molecules that could regulate the migration on each side of the boundary. 

 

Signal(s) regulating the restriction of cortical cells: 

The mechanism preventing cortical cells from crossing the boundary has revealed a 

non-cell-autonomous character in several experiments. In the absence of Ngn2, the 

defect leading to an increased migration of cortical cells across the boundary was 

located in the substrate, as WT cortical cells were also able to cross the mutant 

boundary. Moreover, we could show that an alteration within the mutant cortical cells, 

their up-regulation of the ventral gene Mash1 was not the cause for their abnormal 

migration into the GE. Indeed, removing Mash1 did not rescue this phenotype, as the 

ectopically located cortical cells in the GE were still present in the Mash1-Ngn2 double 

mutant. Heterotypic transplants in wild type slices have also suggested a cell non-

autonomous component in the restriction of cortical cell migration, as cortical cells 

placed onto the GE were less restricted to cross the boundary than when they were 

placed onto the cortex (they crossed the boundary 4.5 times more). Thus, one signal 

responsible for the restricted cortical cell migration is not inherent to the cortical cells 

but is located in the environment. Neyt et al. (1997) have also suggested a non-cell-

autonomous mechanism, involving the presence of a short-range signal in the 

boundary region that would hinder cortical cells from approaching this territory. 

 

However, a substrate bound signal is probably not the only cue that restricts cortical 

cell migration within the cortex. In transplantation experiments we have also found that 

a cell-autonomous component should play a role in the restriction of cortical cells. 
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Indeed, cortical cells recognize a stop signal at the boundary that is not recognized by 

GE cells placed onto the cortex. In the opposite direction, cortical cells also recognize 

to a weaker degree a stop signal that is not recognized by GE cells.  

 

A possible mechanism consistent with these results would be that a repressive signal 

in the boundary (the non-cell-autonomous component) would be specifically recognized 

by a receptor on cortical cells, which would provide the cell autonomous component. 

There could also be a signal within the cortex that would promote the affinity of cortical 

cells, keeping them together.  

 

Another clue that we have about the nature of the restricting signals for cortex cells at 

the boundary comes from the comparison between the Small-eye and the Ngn2 

mutant. We know that the signal regulating the restriction of cortical cells should be 

altered in both mutants, as the cortical cell migration was increased in both mutants, 

and Pax6 regulates the expression of Ngn2 (Stoykova et al., 2000, Scardigli et al., 

2000). In the Small-eye mutant, the increase of cells entering the GE was low 

compared to the increase of migration in the opposite direction. However the cortical 

cell migration was enhanced to a similar degree to that in the Ngn2 mutant. Moreover, 

we have also found the presence of many X-gal positive ectopic cells in the GE of the 

Pax6 LacZ knock-in mouse (data not shown), which ascertain the increase of migration 

from the cortex to the GE in the absence of Pax6.  

 

As the cortex restricting cues should be changed in both the Small-eye and the Ngn2 

mutant, we have looked at the expression pattern of diverse molecules playing roles in 

cell migration and cell segregation at boundaries. One common defect in Sey/Sey and 

in Ngn2 mutant was related to the Wnt signaling pathway: in the Ngn2 mutant, the 

expression territory of Sfrp2 in the boundary was enlarged into the cortex, suggesting 

that cortical cells lack Wnt signaling, whereas Wnt is normally inhibited only within the 

boundary. In Sey/Sey, both Wnt7b and Sfrp2 were absent from the cortex and 

boundary, respectively (also in Kim et al., 2000), also suggesting a decrease of Wnt 

signaling in cortical cells. Thus, the Wnt signaling pathway is disturbed in both mutants 

and could be a factor normally acting at the cortico-striatal boundary in restricting 

cortical cell migration. As Wnt7b is a secreted molecule, it would provide the non-cell-

autonomous mechanism to restrict cortical cells. Also in other boundaries, Wnt 

signaling plays a role in the delineation of adjacent regions. At the mid-hindbrain 

boundary Wnt1 is expressed in the midbrain in a stripe of cells aligning the border to 
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the hindbrain. It has been shown by Bally-cuif et al. (1995) to have a function in 

delineating the Otx2 positive cells of the midbrain. The Swaying mutant, where Wnt1 is 

non-functional, reveals clusters of Otx2 positive cells on the hindbrain side of the 

boundary, within a normally Otx2 negative territory. However, the authors have 

proposed that the presence of ectopic Otx2 positive cells in the hindbrain was caused 

by a lack of Otx2 down-regulation in the cells crossing the boundary, rather than by an 

increased migration across the mid-hindbrain boundary. An exact mechanism, 

involving directly Wnt signaling in the segregation of cells is not known.  

 

Other molecules revealing an altered expression in both mutants could exist but have 

not been tested so far. Inoue et al. (2001) have proposed that the R-cadherin 

expression in the cortex opposed to the Cadherin6 expression in the GE would 

promote the cell segregation from both regions. However this study concerned earlier 

stages of development (E11). Moreover we found in the Ngn2 mutant that the 

expression of R-cadherin was maintained (data not shown). 

 

Signal(s) regulating migration and restriction of GE cells across the boundary  

We have found that many cells from the GE migrate into the cortex. These cells 

entering the cortex have been shown to give rise to a population of gabaergic cells 

(Tamamaki et al.,1997, Anderson et al. 1997 and 2001, Wichterle et al.,1999; Pleasure 

et al., 2000 ) and to oligodendrocytes (He et al.,2001). However, not all GE cells are 

able to cross the boundary, some are still restricted within the GE, as shown by the 

trough around the boundary in the distribution of migrating cells. The increase in 

migration and the increase of GABA, calbindin and calretinin positive cells in the Small-

eye mutant cortex support this conclusion. Thus, a certain population of cells in the GE 

is prevented from crossing the boundary, as it is the case for almost all cells at other 

boundaries. GE cells may thus respond to distinct signals, some of which promote their 

migration into the cortex and some of which prevent them from crossing the boundary. 

These contrary signals are probably detected by distinct groups of cells, fated to give 

rise to one or the other population. Marin et al (2001) have shown for example that 

within the gabaergic interneurons migrating from the medial ganglionic eminence, the 

expression of the transmembrane receptor Neuropilin in a subpopulation makes the 

cells avoid the lateral ganglionic eminence where the ligand semaphorin is expressed, 

and instead populate the cortex. Cells that do not express Neuropilin remain in the 

lateral ganglionic eminence. Our study in wild type and in the Pax6 mutant revealed 
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several clues about the signals enabling both permeability and impermeability to GE 

cells.  

Considering the capacity of GE cells to cross the boundary, several signals have been 

suggested to drive the migration of GE cells into the cortex. As mentioned above, Marin 

et al. have suggested that the repulsive molecule semaphorin in the GE forces the cells 

expressing Neuropilin to continue their migration into the cortex. Rao et al. (1999) have 

proposed that the repulsive secreted molecule Slit, expressed in the ventricular zone, 

directs migration of cells towards the boundary. The hepatocyte growth factor (HGF), 

expressed as well in the ventricular zone, has also been suggested to promote the 

migration of cells from the GE into the cortex (Powell et al., 2001). Our results rather 

suggest a migration of GE cells across the boundary driven by a cell autonomous 

mechanism, independently of directional cues. Indeed, transplantions in wild type show 

that the side of the boundary on which GE cells are placed does not make a major 

difference in the amount of cells that cross the boundary. Thus, repulsive molecules in 

the GE cannot be the only cue allowing GE cells to cross the boundary. There must be 

also an inherent property of the GE cells allowing them to migrate across the boundary. 

This is consistent with the observations of Wichterle et al. (1999) showing that LGE and 

MGE cells have a strong capacity to migrate, as compared to cortical cells.  

 

On the other hand, we have shown that some GE cells encounter a barrier of migration 

at the boundary, and we have to consider which signal(s) mediate this restriction. The 

study of the two mutants allows two conclusions. First, the increased migration from the 

GE into the cortex in the Small-eye mutant implies that a signal in the boundary and/ or 

in the cortex promotes this restriction. Pax6 being normally expressed in the cortex and 

in the boundary, most of the defects are located in this region in the Small-eye mutant, 

and the increase in GE cell migration is likely to be promoted by a defect there. 

Second, in the Ngn2 mutant, the migration of GE cells was not affected. Thus, the 

signal responsible for GE cell restriction should be altered in the Pax6 mutant and 

unchanged in the Ngn2 mutant. We found several molecules which expression pattern 

was changed in the Small-eye mutant. The repellent molecule Slit2, which is normally 

expressed in the boundary and the cortex was missing in the Small-eye. The same was 

true for the ephrinB2 repellent molecule in the lateral part of the cortex. Ephrins and 

Eph receptors are known to mediate segregation of cells for example at rhombomere 

boundaries (Mellitzer et al., 1999). These two molecules are thus good candidates for 

the restriction of a subpopulation of GE cells at the boundary. The mechanism involving 

these molecules would cause GE cells expressing Robo, the receptor for Slit, or cells 
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expressing an Eph receptor for the ephrin B2 ligand to remain on their own side of the 

boundary. Furthermore, several other alterations in the Small-eye mutant could 

account for the increased migration of GE cells. The radial glia fascicle is missing, 

whereas it is only loosened in the Ngn2 mutant. The cell adhesion molecule R-

cadherin, expressed under the direct control of Pax6, is missing in the entire Sey/Sey 

cortex and in the boundary (Stoykova et al., 1997). Cadherins are known to mediate 

selective adhesion of cells. The expression of R-cadherin in the cortex, contiguous to 

cadherin6 in the GE has been indeed suggested to promote the restricted intermingling 

of cells at the boundary at earlier stages of development (E11; Inoue et al., 2001), and 

short-term aggregation assays have revealed a role for calcium-dependent adhesion 

molecules in the segregation of cortical cells from GE cells (Götz et al., 1996). A further 

defect in Sey/Sey concerns the expression of the extracellular matrix glycoprotein 

Reelin, known as a stop signal for the radial migration of cortical cells. This molecule is 

also expressed in the small GE territory lining the boundary, but is missing in this 

territory in Sey/Sey. The absence of reelin there could lead to the increased migration 

into the cortex. Thus, all these molecules altered in the Small-eye mutant cortex are 

likely to cause the restriction of migration of GE cells into the cortex.  

 

A model summarizing these findings would propose that three different populations of 

cells meet at the cortico-striatal boundary (see Fig.17).  

1- The cortical cell population encounters a stop signal within the boundary, which is 

not recognized by GE cells. The transition from a Wnt signaling territory to a territory 

without Wnt may play a role in this stop signal.  

2- One population of GE cells has the capacity to cross the boundary and enters the 

cortex. This migration would be helped by repellent activities of the GE (mediated by 

Slit (Zhu et al., 1999), Semaphorin (Marin et al., 2000), HGF (Powell et al., 2000)) 

Repellent activity would be necessary because of the lack of other known substrate of 

migration, like radial glial cells in the cortex.  

3- A second GE cell population expresses receptors for stop signals located in the 

boundary and/or in the cortex (which could be Slit2, ephrinB2, or reelin). These cells do 

not enter into the cortex.  

 

Change of fate of cells crossing the boundary 

Restriction of cell migration is a common mechanism that achieves the proper 

delineation of adjacent regions. However, when restriction is not observed, another 

mechanism allowing this delineation is a switch of fate when a cell enters into the 
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adjacent region, called the community effect (Gurdon, 1988). At the mid-hindbrain 

boundary for example, cells migrating into the neighboring region change their fate 

rapidly (Jungbluth et al., 2001, Bally-Cuif et al., 1995).  

 

At the cortico-striatal boundary, change of fate seems to be different depending on the 

side of origin of the cells. Cells from the GE entering the cortex retain their identity 

(they express Dlx, Lhx6, Gaba, calbindin; Lavdas et al., 1999, Anderson et al, 1997, 

2001), even over long distances of migration, like the cells that migrate to the 

hippocampus (Pleasure et al., 2000). In contrast we have shown that in the Ngn2 

mutant, cortical cells migrating across the boundary gradually acquired the fate of GE 

cells. Cells that were very close to the boundary still contained some mRNA for Pax6 

and R-cadherin but they lost this expression when they entered further into the GE, and 

started to express genes specific for the GE, such as Dlx5. In WT mice, there is a very 

low level of cell migration existing from the cortex into the GE, as revealed by the 

adenovirus injection experiments (see table 1 and 6). This leakage is reminiscent to the 

leakage of cells at the rhombomere boundaries (Birgbauer and Fraser, 1994). There, a 

mechanism involving signaling through ephrin ligands and Eph receptors promotes a 

change of fate when cells enter into the neighboring rhombomere (Xu et al., 1995). The 

cortical cells leaking into the GE probably also change their phenotype, as they do in 

the Ngn2 mutant. Hamasaki et al. (2001) have also detected a population of cells that 

migrate from the piriform cortex (the ventro lateral part of the cortex) into the GE, and 

they have found that these cells undergo apoptosis after their migration across the 

boundary. 

 

Thus, not only do the cells respond to a distinct permeability on each side of the 

cortico-striatal boundary, but also they behave differently when they enter the adjacent 

region. The few cortical cells entering the GE do not migrate far and seem to adopt the 

phenotype of GE cells, or disappear by apoptosis. On the other side of the boundary, 

GE cells entering the cortex migrate long distances and retain their phenotype. Overall, 

there seems to be a general dominance of the ventral side of the cortico-striatal 

boundary over the dorsal side. This dominance is also reflected by the alterations 

observed in mutants: when dorsal genes are mutated, the dorsal territory acquires a 

ventral fate (i.e. in the Pax6 mutant and the Ngn2 mutant), while in mutants for ventral 

genes (i.e. Mash1, Dlx1 and-2) no expression of dorsal genes in the ventral territory 

has been reported.  
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Hence, the boundary delineating the cortex and the GE is endowed with several very 

distinctive properties that are not found in the other studied developmental boundaries. 

The phylogenetically recent neocortex juxtaposed to the phylogenetically older 

structure of the basal ganglia may explain the unique properties found at the cortico-

striatal boundary. 
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