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Abstract 
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) 
on invading organisms and are the first line of defense in innate immunity. To date, 
much has been learned about TLRs and their roles in autoimmune diseases are being 
unraveled. The autoimmune disease systemic lupus erythematosus (SLE) progresses 
as a consequence of the inappropriate recognition of self nucleic acids by TLRs. For 
the development of therapeutic approaches of SLE it is necessary to understand 
possible negative regulation mechanisms of TLR. Single immunoglobulin 
interleukin-1 receptor-related molecule (SIGIRR) is the best characterized TLR 
signaling inhibitor. It can interfere with the receptor complexes and attenuate the 
recruitment of downstream adaptors to the receptors. So far, the mechanisms of 
structural interactions between SIGIRR, TLRs and adaptor molecules are unknown. 
To develop a working hypothesis for these interactions, we constructed three- 
dimensional models for these single molecules based on computational predictions. 
Then, models of essential complexes involved in the TLR signaling and the SIGIRR 
inhibiting processes were yielded through protein-protein docking analysis. 

With the high-throughput genome sequencing projects, a central repository for the 
growing amount of TLR sequence information has been created. However, subsequent 
annotations for these TLR sequences are incomplete. For example, the indicated 
numbers and positions of leucine-rich repeat (LRR) motifs contained in individual 
TLR ectodomains are greatly distinct or missing in established databases. In this vein, 
we have developed a database of TLR structural motifs called TollML 
(http://tollml.lrz.de). It integrates all TLR protein sequences that have been identified 
to date. These sequences were semi-automatically partitioned into three levels of 
structural motif categories. The manual motif identification procedure provided 
TollML with the most complete and accurate database of LRR motifs compared with 
other databases that contain TLR data. 

LRR motifs are present not only in TLRs, but also in many other proteins. To date, 
more than 6,000 LRR protein sequences and more than 130 crystal structures of them 
have been determined. This knowledge has increased our ability to use individual 
LRR structures extracted from the crystal structures as building blocks to model LRR 
proteins with unknown structures. Because the individual LRR structures are not 
directly available from any protein structure database, we have developed a 
conformational LRR database called LRRML (http://lrrml.lrz.de). It collects three- 
dimensional LRR structures manually identified from all determined crystal structures 
of LRR-containing proteins and thus provides a source for the structural modeling and 
analysis of LRR proteins. With the help of TollML and LRRML, we constructed 
models of the human/mouse TLR5-13 ectodomains and suggested some potential 
receptor-ligand interaction residues based on these models. 
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1. Introduction 
The recognition of invading pathogenic organisms is critical in the proper activation 
of the immune system [1]. Inappropriate activation may cause immunodeficiency 
diseases and autoimmune diseases. The immune system consists of the antigen 
-unspecific innate immune system and the antigen-specific adaptive immune system. 
Toll-like receptors (TLRs) are responsible for the innate immunity. They recognize a 
wide variety of pathogen-associated molecular patterns (PAMPs) via their extracellular 
domains, acting to trigger intracellular signaling pathways [2]. In the signaling 
pathways, the association of receptors and downstream adaptors leads to the induction 
of inflammatory cytokines. Nevertheless, excessive production of cytokines 
contributes to the pathogenesis of autoimmune diseases [3]. TLR signaling must 
therefore be under tight negative regulation to maintain an immune balance. The 
single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) was shown 
to be involved in the negative regulation of TLR signaling [4]. Recent studies 
revealed that SIGIRR can inhibit the nuclear antigen-recognizing TLRs’ stimulation- 
induced over-activation of immune responses in the body suffered by the systemic 
lupus erythematosus (SLE) [5]. Thus, explicit structural knowledge of molecular 
interactions between TLRs and SIGIRR can help to develop small drug molecules that 
mimic SIGIRR’s functional region and bind to TLRs to block their inappropriate 
activation. As yet, no information has been published on the three-dimensional (3D) 
structure of SIGIRR, and SIGIRR’s inhibiting mechanism from a structural point of 
view remains largely unknown. In this study, we constructed 3D structural models for 
the interacting domains of SIGIRR and TLRs based on homology modeling. Then, 
models of essential complexes involved in the TLR signaling and the SIGIRR 
inhibiting processes were yielded through protein-protein docking analysis. These 
results are expected to facilitate efforts to design further mutagenesis experiments to 
clarify the regulatory role of SIGIRR in innate immune responses and autoimmune 
diseases. 

The ligation of the TLR extracellular domain starts the TLR signaling [3]. Therefore, 
explicit structural knowledge of receptor-ligand interactions can help to develop 
agonists and antagonists of TLRs that have therapeutic significance for infectious 
diseases. To date, several crystal structures of TLR-ligand complexes have been 
determined [6-9]. However, compared with the large number of known TLR protein 
sequences, the structures of most TLRs are still unknown. Computational methods can 
carry out fast and large-scale structure predictions based on these known TLR 
structures. The TLR extracellular domain comprises a number of intricately organized, 
contiguous leucine-rich repeats (LRRs). In order to provide a convenient workbench 
for structure predictions of TLR extracellular domains, we have developed two 
databases. The TollML database contains structural motif annotations for all known 
TLR sequences. The LRRML database contains individual 3D LRR structures 
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identified from all experimentally determined structures of LRR-containing proteins. 
None of the data in these two databases are in any other database. 

This dissertation consists of seven chapters. Chapter 1 is a brief introduction. The 
biological background of TLRs and the bioinformatics theories commonly used in 
protein structure predictions are reviewed in Chapters 2-4. All computational methods 
used in the database construction and the TLR/SIGIRR modeling are described in 
Chapter 5. Chapter 6 very briefly summarizes the results published in scientific 
journals. The dissertation ends with a conclusion summarizing the investigations 
conducted (Chapter 7). 
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2. Immune diseases and Toll-like receptors 

2.1 Immune system and immune diseases 

The immune system comprises a complex network of organs, specialized tissues, cells 
and molecules that protects organisms from infections with pathogenic organisms and 
other harmful substances through triggering immune responses [1]. In general, the 
immune system recognizes a wide variety of invading pathogens such as viruses, 
bacteria, fungi and parasites. To function properly, it needs to distinguish them from the 
host’s healthy cells and tissues. Thus, the function of immune system is a complicated 
balancing act based on the ability of self/non-self recognition. A malfunction of the 
immune system can result in diseases. On one hand, when the immune system is less 
active than normal, immunodeficiency occurs and results in recurring and life- 
threatening infections. A well-known example is the acquired immune deficiency 
syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV) [10]. 
On the other hand, an overactive immune system can attack substances and tissues 
normally present in the host as if they were foreign organisms and result in autoimmune 
diseases or susceptibility to infections. SLE is a chronic autoimmune disease that 
primarily afflicts women of childbearing age (15-44 years) [11]. It progresses as a 
consequence of the production of autoantibodies to components of the host cell 
nucleus and attacks the body’s heart, joints, skin, lungs, blood vessels, liver, kidneys 
and nervous system, resulting in inflammation, pain and tissue damage. SLE can be 
fatal. Survival for people with SLE in North America and Europe is approximately 95% 
at five years, 90% at 10 years and 78% at 20 years [11]. The treatment of such 
autoimmune diseases is typically with immunosuppression, which decreases the 
immune response. Currently, numerous new immunosuppressive drugs are being 
actively tested for SLE, such as cyclophosphamide, a nitrogen mustard alkylating agent 
that can decrease the immune response to various diseases and conditions [12]. 
Nevertheless, the use of immunosuppressive therapy in SLE carries significant risks for 
infection. Consequently, careful monitoring of infectious complications is warranted in 
patients receiving such therapies [13]. 

The immune system consists of two components: the innate immune system and the 
adaptive immune system. The innate immune system generates an immediate and a 
rather unspecific response to an infection or cell damage, whereas the adaptive immune 
system is a more sophisticated and more recently evolved antigen-specific system [14]. 
The adaptive immune system is present only in vertebrates, in which B and T 
lymphocytes utilize antigen receptors such as immunoglobulin (Ig) and T cell receptors 
to recognize pathogens specifically. The adaptive immune responses can also provide a 
long-lasting protection. They allow immunological memory, in which each pathogen is 
“remembered” by a signature antigen. Unlike the adaptive immune system, innate 
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immune systems are found in all plants and animals [15]. In fact, the innate immune 
system is the first line of defense against invading microorganisms. If pathogens 
successfully evade the innate response, vertebrates possess the adaptive immune 
defense that is activated by the innate response. The main players in innate immunity 
are phagocytes such as neutrophils, macrophages and dendritic cells. These cells 
express a limited number of germline-encoded pattern recognition receptors (PRRs) 
that specifically recognize PAMPs, which are displayed by microbes but not found in 
the host [16]. For viruses, nucleic acids, including double-stranded RNA (dsRNA), 
single-stranded RNA (ssRNA) and cytosine-phosphate-guanine (CpG) DNA, serve as 
PAMPs and can be recognized by multiple PRRs [17]. Following the recognition of 
viral nucleic acids, PRRs initiate signaling pathways that lead to the synthesis of 
multiple inflammatory cytokines such as type I interferon (IFN) and tumor necrosis 
factor-α (TNFα). In particular, type I IFN plays an essential role in the elimination of 
viruses. It upregulates the transcription of many IFN-inducible genes that influence 
protein synthesis, growth arrest and apoptosis to create an antiviral state. It also 
functions to enhance dendritic cell maturation, natural killer (NK) cell activation, 
antibody production and the differentiation of virus-specific cytotoxic T lymphocytes 
(CTL), which consequently facilitate adaptive immune responses in vertebrates. The 
best characterized family of PRRs is the TLR family. 

2.2 Toll-like receptors in innate immunity 

The term “Toll” was derived from a German word meaning “fantastic” or “amazing”. In 
the early 1980s, Nüsslein-Volhard and Anderson first used “Toll” to refer to a gene that 
they discovered in a genetic screen of the fruit fly Drosophila melanogaster, the 
phenotype of which they thought to be “Toll” [18, 19]. Toll was initially implicated in 
the establishment of dorsoventral polarity in the early Drosophila embryo [20]. In 1996, 
Toll was shown by Hoffmann and co-workers to be an essential receptor for host 
defense against fungal infection in Drosophila, which has only the innate immunity 
[21]. One year later, Medzhitov and co-workers described a mammalian homolog of the 
Toll receptor (now termed TLR4), which was shown to induce the expression of genes 
involved in inflammatory responses [22]. Shortly after this important discovery, the 
progress of genome projects led to the identification of more than ten receptors in 
vertebrates that were direct homologs of the Toll receptor, and these became known as 
the Toll-like receptors (TLRs) [23]. TLRs play a key role in innate immunity. They 
recognize a remarkably wide variety of PAMPs, including glycolipids such as bacterial 
lipopolysaccharides (LPS), proteins such as bacterial flagellin and viral nucleic acids 
[2]. The ligation of receptors rapidly initiates intracellular signal transduction 
pathways to trigger the expression of genes, whose products can control innate 
immune responses. 

All TLRs have a common domain organization, with an LRR ectodomain, a single 
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transmembrane helix and an intracellular Toll/interleukin-1 receptor (TIR) domain 
[24]. The ectodomain is a horseshoe-shaped solenoid structure consisting of 17-26 
consecutive LRR motifs sandwiched between two terminal LRR modules (LRRNT 
and LRRCT) [25]. The sequence length of the ectodomain varies from 500 to 800 
amino acids. Ectodomains are directly involved in the recognition of a variety of 
pathogens. The intracellular TIR domain comprises about 150 residues. It is 
conserved across all TLRs and is also shared by downstream signaling adaptor 
molecules [2]. The 20-30-amino acid-long transmembrane helix links the extracellular 
and intracellular portions and determines the subcellular localization of TLRs [26]. A 
common structure of TLRs is shown in Figure 1. 

 

Figure 1. A typical TLR structure. 

An LRR motif is defined as an array of 20-30 amino acids that is rich in the 
hydrophobic amino acid leucine [27]. All LRR sequences can be divided into a highly 
conserved segment (HCS) and a variable segment (VS). Each LRR forms a loop in 
which the residues of the HCS generate the concave surface of the LRR arc or 
horseshoe while the residues of VS form the convex surface. The HCS consists of an 
eleven- or twelve-residue stretch with the consensus sequence LxxLxLxxN(Cx)xL. 
Here, the letter L stands for Leu, Ile, Val or Phe, which form the hydrophobic core in 
the arc or horseshoe structure; N stands for Asn, Thr, Ser or Cys, which form 
hydrogen bonds between the adjacent loops, and x is any amino acid. The VS varies 
in length and consensus sequence; accordingly, eight types of LRRs have been 
proposed [27, 28] (detailed in section 6.2). Of these, only the typical type (T) and the 
bacterial type (S) are detected in the TLR LRRs with consensus sequences 
xxLxxxxLxxLxx and xxLPx(x)LPxx, respectively, where the letter P stands for Pro. 
As previously reported, LRRs of different types never occur simultaneously in the 
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same protein and probably evolved independently [27], but the T and S types are 
exceptions to this rule. They are often observed at the N-terminal part of one TLR 
protein and form the super-motif of one S-type LRR followed by two T-type LRRs 
(STT), which is repeated as STTSTTSTT or _TTSTTSTT [29]. It is assumed that both 
types evolved from a common precursor [30]. The terminal LRRNT and LRRCT 
modules do not match any consensus sequence of the eight types. They contain two to 
five cysteine residues forming disulfide bonds and stabilize the protein structure by 
shielding its hydrophobic core from exposure to solvents. 

Mammalian TLRs comprise a large family with at least 13 members. Humans have ten 
members (TLR1-10), and mice have 13 (TLR1-13). Other mammalian species have 
between ten and 13 members [25]. TLR1-9 are conserved between the human and 
mouse. Although both the human and mouse have TLR10, the mouse TLR10 appears to 
have been damaged at some point in the past by a retrovirus. In addition, mice express 
TLR11, 12 and 13, none of which is represented in humans. Compared with mammals, 
many more TLR members (≥ 20) have been identified in non-mammalian genomes 
[25]. 

According to the molecular tree of vertebrate TLRs proposed by Roach et al. (2005), 
mammalian TLR members can be divided into six major families [31]. The TLR1 
family consists of TLR1, 2, 6 and 10. This family contains fewer (20 or 21) LRRs 
than the other families. So far, the crystal structures of human/mouse TLR1, 2 and 6 
ectodomains and human TLR1, 2 and 10 TIR domains have been determined [6, 9, 32, 
33]. TLR1 and 2 heterodimerize, and the resulting dimer senses bacterial triacylated 
lipopeptides. TLR6 and 2 also heterodimerize and recognize bacterial diacylated 
lipopeptides [34, 35]. The function of TLR10 is still unknown. In the TLR3 family, 
the only member (TLR3) contains 25 LRRs, as shown by the crystal structure of 
human/mouse TLR3, and senses synthetic and viral dsRNA [36-39]. TLR4 constitutes 
the TLR4 family and contains 23 LRRs. It recognizes the Gram-negative bacterial 
product LPS [40]. The crystal structures of TLRs in both the TLR1 and TLR4 families 
show a feature in which irregular LRRs concentrate mainly at the central part of the 
ectodomains (LRR9-13) [6-9]. TLR5 in the TLR5 family contains 22 LRRs and 
detects flagellin from bacteria [41]. The TLR7 family consists of TLR7, 8 and 9 and 
contains 27 LRRs. A remarkable feature of the TLR7 family is the presence of a less 
structured region in the middle of the ectodomain. TLR8, which is highly similar to 
TLR7, can sense viral ssRNA and synthetic imidazoquinolene compounds such as 
imiquimod [42]. TLR9 is the receptor for unmethylated CpG DNA motifs, which 
occur in bacterial and viral DNA [43]. TLR11, 12 and 13 are included in the TLR11 
family, which contains 24-27 LRRs. TLR11 senses parasite profilin, while the ligands 
of TLR12 and 13 remain unknown [44]. In contrast to other TLRs that are localized 
on the cell surface, the nucleic acid-recognizing TLR3 and 7-9 function in 
intracellular compartments such as endosomes and endolysosomes [3]. 

The above-mentioned crystal structures of TLR1 and 2 with triacylated lipopeptide, 
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TLR3 with dsRNA and TLR4 in a complex with LPS and MD2 explain the molecular 
mechanisms for TLR dimerization. The binding of ligand causes the C-termini of TLR 
ectodomains to associate, and this adds stability to the dimer. Simultaneously, the two 
intracellular TIR domains are brought into contact, which results in the recruitment of 
TIR domain-containing adaptor molecules to initiate downstream signaling [32]. Four 
such signaling adaptors have so far been characterized: myeloid differentiation 
factor-88 (MyD88), MyD88 adaptor-like protein (Mal), TIR domain-containing 
adaptor inducing interferon-β (TRIF) and TRIF-related adaptor protein (TRAM) 
(Figure 2). 

MyD88 was discovered in 1990 [45]. Its function in TLR signaling was not implicated 
until 1998 [46, 47]. MyD88, harboring an N-terminal death domain (DD), a linker 
stretch and a C-terminal TIR domain, associates with the TIR domain of TLRs [48]. 
Upon stimulation, MyD88 recruits interleukin-1 receptor-associated protein kinase-4 
(IRAK4) through the interaction of the DDs of both molecules, and it facilitates 
IRAK4-mediated phosphorylation of IRAK1. Activated IRAK1 then associates with 
tumor necrosis factor receptor-associated factor-6 (TRAF6), leading to activation of the 
TAK1/TAB kinase complex, which enhances activity of the IκB kinase (IKK) complex 
consisting of IKKα, IKKβ and IKKγ. Once activated, the IKK complex induces the 
phosphorylation and subsequent degradation of inhibitor nuclear factor-kappa B (IκB), 
which leads to nuclear translocation of transcription factor NF-κB and the induction of 
inflammatory cytokines such as type I IFN, TNFα, nucleosome assembly protein-1 
(NAP1), interleukin-1 and interleukin-6 [49]. MyD88 is involved in the signaling 
pathways initiated by all TLRs, with the exception of TLR3 [50]. TLR3 exclusively 
uses TRIF for signaling in a MyD88-independent manner. Additionally, TLR4 can 
signal via both the MyD88-dependent and the TRIF-dependent pathways [2]. 

Mal, also known as TIR domain-containing adaptor protein (TIRAP), was the second 
characterized TLR adaptor protein [51]. It contains an N-terminal phosphatidylinositol 
4, 5-bisphosphate (PIP2)-binding domain and a C-terminal TIR domain [52]. Mal and 
MyD88 play different roles in TLR2 and 4 signaling. MyD88 serves as an essential 
‘‘signaling adaptor’’ that transmits signals from ligand-activated TLRs to downstream 
factors to initiate kinase-dependent signaling cascades, whereas Mal functions as a 
‘‘sorting adaptor’’ that recruits MyD88 to the plasma membrane via its PIP2-binding 
domain to promote interactions between MyD88 and activated TLR2 and 4 beneath the 
membrane [53]. It was found that Mal’s “sorting” function is only essential for the 
MyD88-dependent signaling pathways via TLR2 and 4, as Mal-deficient mice are not 
impaired in their response to TLR3, 5, 7 and 9 ligands [54]. Furthermore, binding 
assays by Ohnishi and co-workers suggested that MAL can simultaneously bind to 
TLR4 and MyD88 through its TIR domain, and there is no direct interaction between 
the TIR domains of TLR4 and MyD88 [55]. However, Mal was shown to be 
dispensable for TLR4 signaling when MyD88 is fused to the PIP2 targeting domain 
[53]. This observation indicated that there may be weak interactions between TIR 
domains of TLR4 and MyD88. An alternative Mal-independent, but MyD88-dependent, 
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pathway could contribute to TLR4 signaling [56]. 

 
Figure 2. TLRs and their intracellular signaling pathways. The ectodomains of TLR3 (left) are 
monomeric in solution until they bind to dsRNA and the dimerization occurs. The dimerization is 
proposed to bring the two TIR domains into contact to initiate downstream signaling. Two 
downstream signaling pathways are subsequently triggered, leading to activation of NF-κB and 
IRF3. TLR4 (middle) and MD2 interact before stimulation with LPS. LPS induces dimerization of 
two TLR4-MD2 complexes. Dimerization also brings the TIR domains together and initiates 
downstream signaling through the adaptor molecules MyD88, Mal, TRIF and TRAM, which leads 
to the activation of the transcription factor NF-κB and the release of inflammatory cytokines. TLR2 
and TLR1 (right) can heterodimerize and respond to triacylated lipopeptides, or TLR2 can bind to 
TLR6 and respond to diacylated lipopeptides. Both complexes utilize the adaptors MyD88 and Mal 
to initiate downstream signaling. Reproduced from [57] with permission from The Biochemical 
Society (http://www.biochemj.org). 

TRIF is much larger than MyD88 and Mal in that it contains an extra 
receptor-interacting protein (RIP) homotypic interaction motif (RHIM) at the 
C-terminal region after its TIR domain [58]. TRIF is involved in the TLR3 and TLR4 
MyD88-independent pathways. It is able to activate NF-κB through association with 
either RIP1 or TRAF6 (as with MyD88 and Mal). By contrast with MyD88 and Mal, 
TRIF is also able to associate with TRAF3 and activate the transcription factor IRF3, 
leading to the production of IFN-β. 

TRAM, also known as TIR domain-containing adaptor molecule-2 (TICAM2) and TIR 
domain-containing protein (TIRP), was identified in 2003 [59]. TRAM contains an 
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N-terminal myristoylation site and a C-terminal TIR domain. It is involved in the 
TLR4-mediated, but not TLR3-mediated, activation of IRF3 and induction of IFN-β 
[60]. Thus, TRAM is essential for the TLR4-mediated, MyD88-independent, but TRIF- 
dependent, pathway. It acts as a “sorting adaptor” that delivers TRIF to the plasma 
membrane via its myristoylation site to promote interactions between TRIF and 
activated TLR4 [61]. 

In both MyD88-dependent and MyD88-independent pathways, the stimulation of 
TLRs triggers the induction of inflammatory cytokines. When all these cytokines are 
produced in excess, they induce serious systemic disorders with a high mortality rate 
in the host [3]. It is therefore not surprising that organisms have evolved mechanisms 
for modulating their TLR-mediated responses. The MyD88-dependent pathway is 
negatively regulated by a spliced variant of MyD88, known as MyD88 short 
(MyD88s). Its expression is induced in response to continuous stimulation with 
bacterial products or pro-inflammatory cytokines [62]. Overexpression of MyD88s 
results in impaired LPS-induced NF-κB activation through inhibition of IRAK4- 
mediated IRAK1 phosphorylation [63]. Another molecule that was shown to 
negatively regulate MyD88-dependent signaling is the transforming growth factor-β 
(TGF-β). TGF-β blocked NF-κB activation and cytokine production in response to 
TLR2, 4 and 5 ligands by decreasing MyD88 protein [64]. 

Besides MyD88s and TGF-β, the single immunoglobulin interleukin-1 receptor- 
related molecule (SIGIRR), also known as Toll/interleukin-1 receptor-8 (TIR8), has 
been found to be involved in the negative regulation of MyD88-dependent TLR 
signaling [4]. Overexpression of SIGIRR in Jurkat or HepG2 cells resulted in 
substantially reduced LPS (TLR4)-/ CpG DNA (TLR9)-induced activation of NF-κB 
[4, 65, 66]. Thus, SIGIRR has attracted tremendous research interest in the 
immunosuppressive therapy for autoimmune diseases. For example, SIGIRR can 
inhibit TLR7 and 9 stimulation-induced NF-κB over-activation in the body, as occurs in 
SLE [5]. SLE is characterized by the production of diverse autoantibodies, 
predominantly against nucleosomal antigens derived from the host [67]. The 
nucleosomal antigens are known to stimulate TLR7 and 9, which causes the activation 
of dendritic cells and the induction of interleukins. Homozygous deletion of the Sigirr 
gene was associated with a significant increase of interleukin production upon 
exposure to nucleosome immune complexes [5]. Compared with wild-type mice, 
Sigirr-deficient mice develop excessive lymphoproliferation when introduced into the 
context of a lupus susceptibility gene (Figure 3), as reported by Lech et al. (2008). 
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Figure 3. Lack of SIGIRR is associated with massive lymphoproliferation in B6lpr/lpr mice (right). 
Reproduced from [5] with permission from The Journal of Experimental Medicine. 

The elucidation of the detailed molecular mechanism of SIGIRR’s action is critical for 
understanding the regulatory role of SIGIRR in inflammatory and innate immune 
responses and is essential for evaluating the therapeutic potential of SIGIRR. Similar 
to TLRs, SIGIRR is also a membrane-bound protein consisting of an ectodomain and 
an intracellular TIR domain linked by a transmembrane helix. Unlike TLRs, 
SIGIRR’s ectodomain is a small single Ig that does not support ligand-binding. Its 
intracellular domain cannot activate NF-κB because it lacks two essential amino acids 
(Ser447 and Tyr536) in its highly conserved TIR domain [68]. Moreover, the TIR 
domain of SIGIRR extends over that of TLRs by more than 70 amino acids at the 
C-terminus. To identify which part of SIGIRR is required for its interaction with 
TLRs, three deletion mutants of SIGIRR were generated by Qin et al. (2005): ΔN 
(lacking the extracellular Ig domain, with the deletion of amino acids 1-119), ΔC 
(lacking the C-terminal tail, with the deletion of amino acids 313-410) and ΔTIR 
(lacking the TIR domain, with the deletion of amino acids 161-313) (Figure 4A). The 
deletion of the intracellular TIR domain (ΔTIR) abolished the ability of SIGIRR to 
interact with the TLR4, MyD88, IRAK and TRAF6 upon LPS stimulation, whereas 
the deletion of the extracellular Ig domain (ΔN) or the C-terminus (ΔC) did not affect 
the interaction of SIGIRR with the TLR4 complex. Consistent with the inability of 
mutant ΔTIR to associate with TLR4 complex, this mutant also failed to inhibit LPS- 
induced NF-κB activation. These results indicated that the TIR domain of SIGIRR is 
necessary for both its association with TLR4 and its inhibition of LPS-induced NF-κB 
activation. A potential model was raised to explain these results (Figure 4B and 4C). 
Without SIGIRR, TLR4 dimerizes to recognize LPS and recruits MyD88 dimer, 
resulting in a signaling tetramer. SIGIRR can bind to TLR4 monomer only by its TIR 
domain, thus preventing TLR4 from dimerizing, binding ligand and recruiting MyD88 
dimer. On the other hand, SIGIRR can bind to MyD88 and form a MyD88-SIGIRR 
heterodimer, interrupting the MyD88 homodimer formation and receptor-adapter 
interactions. Based on this hypothesis, we modeled 3D structures for the TIR domains 
of TLR4, 7, MyD88 and SIGIRR and proposed the essential molecular complexes 
involved in the TLR4 and 7 signaling pathways and the SIGIRR inhibiting process 
(detailed in section 6.3). 
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Figure 4. (A) Schematic structures of full-length SIGIRR and its deletion mutants by Qin et al. 
(2005). Protein lengths are indicated in amino acids (aa). Reproduced from [66] with permission 
from The Journal of Biological Chemistry. (B) A model of ligand-induced tetramer formation of 
TLR and MyD88. Without SIGIRR, TLR forms a homodimer to recognize ligands and recruit the 
MyD88 homodimer. (C) A model of SIGIRR inhibiting TLR signaling. The TIR domain of 
SIGIRR may bind to that of TLR, thus preventing TLR from homodimerization and from binding 
to MyD88. Simultaneously, SIGIRR may bind to the MyD88 monomer to disturb the functional 
MyD88 homodimer form. 
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3. Biological databases 

3.1 Application of biological databases 

A biological database is a library of life sciences information that allows for proper 
storage, searching and retrieval of biological data. Biological data comes in many 
different types depending on the research project: texts (textual information and 
references related to biological data), sequence data (nucleic acid and protein 
sequences), protein structures (3D coordinates and motifs of protein structures), links 
(cross-references from one database to other databases providing related resources), 
numerical data (gene expression data as well as other microarray data), images (2D gel 
and microscopic images), etc. Owing to the variety of biological data types, the 
biological knowledge is distributed among many different general and specialized 
databases. Some databases are large and contain global data collections maintained and 
kept up to date by the responsible organization, whereas others are small and local and 
may be only maintained for a limited period of time while a specific project is going on. 
Up to 2008, more than 1,000 biological databases had been established [69]. Most of 
these databases have a web interface for data search and are freely accessible. They 
often use keywords as a common mode of searching. Cross-references of accession 
numbers help to navigate from one database to another easily. Depending on the nature 
of information stored, these biological databases can be divided into four main 
categories as follows: 

Nucleotide sequence databases. The International Nucleotide Sequence Database 
Collaboration (INSDC) consists of a joint effort to collect and disseminate databases 
containing DNA and RNA sequences. It involves the following computerized databases: 
the EMBL nucleotide sequence database [70] hosted by the European Bioinformatics 
Institute (EBI) at the European Molecular Biology Laboratory (EMBL), the GenBank 
nucleotide sequence database [71] produced at the National Center for Biotechnology 
Information (NCBI) (USA) and the DNA Data Bank of Japan (DDBJ) [72] located at 
the National Institute of Genetics of Japan. These databases have been maintained for 
more than 20 years. 

Protein sequence databases. The world’s most comprehensive resource on protein 
information is the universal protein resource (UniProt) [73]. The mission of UniProt is 
to provide the scientific community with a comprehensive, high-quality and freely 
accessible resource of protein sequence and functional information that is essential for 
modern biological research. UniProt is produced by the UniProt consortium, which 
consists of groups from the EBI, the Protein Information Resource (PIR) and the Swiss 
Institute of Bioinformatics (SIB). Each consortium member is heavily involved in 
protein database maintenance and annotation. EBI and SIB together produced 
Swiss-Prot/TrEMBL [74], while PIR produced the Protein Sequence Database 
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(PIR-PSD) [75]. Swiss-Prot is a curated protein sequence database that strives to 
provide a high level of annotation, a minimal level of redundancy and a high level of 
integration with other databases. TrEMBL is a computer-annotated supplement of 
Swiss-Prot that contains all of the translations of EMBL nucleotide sequence entries not 
yet integrated in Swiss-Prot. The PIR-PSD is a public domain protein sequence 
database. Moreover, in addition to storing nucleotide sequence data, NCBI stores 
almost all kinds of biological sequence-related data. Of these, the protein entries stored 
in the NCBI protein database have been compiled from a variety of sources, including 
Swiss-Prot, PIR, Protein Data Bank (PDB) [76] and translations from annotated coding 
regions in GenBank and NCBI Reference Sequence (RefSeq) [77]. Other important 
protein sequence databases are Pfam (a protein family database of alignments and 
HMMs) [78], InterPro (an integrated database of predictive protein “signatures”) [79], 
SMART (a web-based tool and database for the study of genetically mobile domains) 
[80] and others. 

Protein structure databases. The Protein Data Bank (PDB) [76] is the single 
worldwide repository for the processing and distribution of 3D structure data of large 
molecules of proteins, nucleic acids and complex assemblies. The data in PDB are 
experimentally determined by X-ray crystallography or nuclear magnetic resonance 
(NMR) spectroscopy and are directly submitted by biologists and biochemists from 
around the world. The determined structures of molecules are recorded in the PDB file 
format (.pdb), which is a textual file format describing the 3D coordinates of atoms and 
containing free-form annotations. PDB files can be displayed by various molecular 
visualization software tools, such as VMD [81], Jmol (www.jmol.org) and PyMOL 
(www.pymol.org). The Protein Structure Classification (CATH) database [82] 
classifies protein structures from the PDB according to a four-level hierarchy. Another 
protein structure classification database, called the Structural Classification of Proteins 
(SCOP) [83], describes structural and evolutionary relationships between all known 
protein structures and provides a number of links to other online resources related to 
protein structure and to sequence databases in general. 

Specialized databases. In addition to the above-mentioned databases, there are many 
specialized biological databases that hold very detailed information about only one 
particular subject. For example, STRING: a protein-protein interaction database [84], 
KEGG: a metabolic pathway database [85], ArrayExpress: a microarray database [86] 
and Flybase: a Drosophila genomes database (a species-specific database) [87]. 

3.2 Data storage and management in databases 

Biological data in the databases can be represented in heterogeneous forms. The form 
of flat-files structured by a field or value convention was most widely used in the past 
decades. Nevertheless, flat-files have a number of inevitable shortcomings [88]: i) the 
text format may not be described uniformly by different databases; ii) it is difficult to 
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represent complex (hierarchical) data; iii) the meaningful units of information are not 
represented well, such that it is hard to extract a subunit from a database entry; iv) the 
assembly of objects into bigger aggregates is difficult. Another absolutely different data 
storage form, XML (extensible markup language) files, can well overcome these 
shortcomings. XML was standardized in the 1990s. It has been accepted as an 
alternative data storage/transfer medium by most fundamental biological databases, 
such as Swiss-Prot, NCBI and PDB, since the beginning of the 21st century. XML is a 
set of rules for defining semantic tags that break a document into meaningful units 
(elements) and access the different units of the document [89]. Tags can be flexibly 
defined as needed via a document type definition (DTD) with a terse formal syntax. A 
transformation language, XML stylesheet language (XSL), can transform an XML file 
into another XML file or into an HTML file for web browsing. Simple examples of the 
XML, DTD and XSL files are shown in Figure 5. 

 
Figure 5. Simple examples of the XML, DTD and XSL files. (A) An XML file. Tags begin with the 
less-than character “<” and end with the greater-than character “>”. An element consists of a start 
tag “<…>”, possibly followed by text or other complete elements, then followed by an end tag 
</…>. (B) A DTD file that standardizes the XML file in (A). (C) An XSL file that transforms the 
XML file in (A) into an HTML file. (D) A web page representation of the HTML file transformed 
from the XML file in (A) by the XSL file in (B). 

As shown in Figure 5, an XML file is a strictly structured “collection of data.” In this 
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sense, an XML file is definitely a database. Nevertheless, it is not a ready-to-use 
database yet, as a database needs a software package to control the creation, 
maintenance and retrieval of data. Such a software package is called a database 
management system (DBMS). A DBMS provides users with query languages to 
manipulate data and even develop database applications. XPath and XQuery 
(www.w3.org) are the World Wide Web Consortium-recommended and the most 
widely used query languages by native XML-DBMSs. Their expressions are well 
adapted to the structure of XML and can intelligently execute queries across the data 
from XML files. For example, the XPath expression ./TLRs/TLR[Name= 
“TLR3”]/Ligand can directly return the ligand of the entry named “TLR3” from the 
XML file presented in Figure 5A. Currently, there are a number of open source native 
XML-DBMSs available, e.g., eXist-db (exist-db.org), 4Suite (4suite.org), myXMLDB 
(myxmldb.sourceforge.net) and DBDOM (dbdom.sourceforge.net). In this study, the 
open source native XML-DBMS eXist-db (detailed in section 5.1), which uses 
XPath/XQuery as query languages, was used to develop two biological databases, 
TollML and LRRML (detailed in sections 6.1 and 6.2). 
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4. Protein structure prediction 

4.1 Motif identification of TLRs 

Since the first TLR sequence (human TLR4) was identified in 1997 by Medzhitov and 
co-workers [22], only several atomic-resolution crystal structures of TLRs have been 
determined. They are the structures of the TIR domains of human TLR1, 2 and 10 and 
the ectodomains of human TLR1-4 and mouse TLR2-4 and 6 [6-9, 32, 33, 36-38]. 
Nevertheless, more than 2,000 TLR protein sequences have been translated by high- 
throughput genome sequencing projects in these years. Figure 6 shows the status of 
data that can be obtained using the search keywords “Toll” and “TLR” from the NCBI 
protein database. It is clear that the discrepancy between the rate at which novel protein 
sequences are discovered and the rate at which detailed structural information on 
proteins can be obtained from X-ray diffraction or NMR spectroscopy will persist for 
the foreseeable future. Thus, a comprehensive comparative analysis on the sequence 
level is a useful way to identify and characterize structural motifs of TLRs [30, 90] and 
to gain insight into how the LRR-based platform is adapted to ligand recognition. 
Currently, due to the variability of LRR motifs, the indicated number and positions 
(beginning/end of a repeating unit) of LRR motifs contained in individual TLRs are 
greatly distinct or missing in established databases. Protein databases that contain 
information about TLRs, such as Pfam, InterPro, SMART and Swiss-Prot, predict the 
number and positions of LRRs by various computational methods. Thus, false-negative 
predictions occur at high frequency. Table 1 lists the numbers of LRRs in human 
TLR1-4 and mouse TLR6 reported by these databases compared with those counted 
from the corresponding crystal structures. Moreover, there has been no collection of 
annotations for structural features within LRR motifs, such as HCS, VS and sequence 
insertions. In this vein, a specialized database that comprehensively organizes the 
structural motifs of TLRs is desirable. Such a database could be useful for developing 
pattern recognition programs, modeling structures and understanding functional 
mechanisms of TLRs. 
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Figure 6. The growth of “Toll” and “TLR” data in the NCBI protein database (results obtained on 28 
December 2009). 
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 TLR1 TLR2 TLR3 TLR4 TLR6 
InterPro 4 4 8 7 3 
Pfam 4 4 7 7 3 
SMART 6 9 19 12 7 
Swiss-Prot 8 14 22 21 13 
Crystal Structure 21 21 25 23 21 

Table 1. Comparison of the numbers of LRRs in human TLR1-4 and mouse TLR6 reported by 
different databases and counted from crystal structures (results obtained on 24 February 2009). The 
databases generally underreported many LRRs. 

We have developed a TLR structural motif database called TollML (available at 
http://tollml.lrz.de). It is supported by the eXist-db DBMS. TollML is not only the name 
of the database but also stands for the Toll-like receptor markup language, aiming at a 
formal textual representation of TLR structural motif annotations. The TLR structural 
motifs are represented in three levels by the DTD of TollML: i) signal peptide, 
ectodomain, transmembrane domain and TIR domain of each TLR; ii) LRRs of each 
ectodomain; iii) HCS, VS and insertions of each LRR. These three-level structural 
motifs include comprehensive structural information of TLR ectodomains on the 
sequence level, and thus they supply an abundant and reliable source to train the LRR 
prediction methods of different machine-learning algorithms. We developed a position- 
specific weight matrix (PSWM) of LRR motifs based on the LRR and HCS partitions 
from TollML. A PSWM is a commonly used representation of patterns in biological 
sequences. It calculates scores for each alphabet symbol at each position in the pattern. 
Using the PSWM, the number and positions of LRRs contained in a query sequence can 
be predicted with both high sensitivity and high specificity. This program is called 
LRRFinder. It is implemented on the web page http://tollml.lrz.de. As all LRR types 
possess the same HCS pattern, this method can be extended to predict LRR motifs in 
other LRR proteins in addition to TLRs (detailed in section 6.2). 

4.2 Protein structure prediction theories 

Determining protein structure is critical in understanding protein function. However, 
the experimental determination using X-ray diffraction or NMR spectroscopy is hard 
work, and many proteins do not yield to these methods. The NMR spectroscopy 
technique determines the structure in solution and is primarily limited to relatively 
small proteins (usually smaller than 35 kDa). The X-ray diffraction technique 
determines the structure in single crystals and thus is not available for proteins that are 
difficult to crystallize. Moreover, both of these experimental techniques require months 
or years of work. It is clear that in the near future no experimental structures will be 
available for most of the known protein sequences. Therefore, the output of 
experimentally determined structures is lagging far behind the output of protein 
sequences. In this regard, computational prediction approaches can be used as an 
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alternative to bridge the gap between sequence determination and structure 
determination. 

All current protein structure prediction methods predict the 3D structure of a protein 
from its amino acid sequence. A protein is a polymer of amino acids linked together by 
peptide bonds. Various, mostly non-covalent interactions between amino acids in the 
linear sequence stabilize a specific folded 3D structure (conformation) for each protein. 
There are four levels of protein structural organization [91]. Primary protein structure 
refers to the sequence of amino acids. Secondary protein structure is the local 
conformation primarily stabilized by hydrogen bonds between atoms of the peptide 
backbone. The α-helix, β-strand and turn are the most prevalent elements of secondary 
protein structure. Certain combinations of secondary structures give rise to different 
motifs, which are found in a variety of proteins and often are associated with specific 
functions. Tertiary protein structure results from hydrophobic interactions and disulfide 
bonds that stabilize the folding of the secondary structure into a compact overall 
arrangement or conformation. Large proteins often contain multiple independently 
folded regions of tertiary structures with characteristic structural and functional 
properties. This constitutes a quaternary protein structure. Not all proteins exhibit the 
quaternary structure. The 3D protein structure prediction in most cases means the 
prediction of a protein’s tertiary structure from its primary structure. 

There are three major protein structure prediction algorithms: homology modeling, 
threading and ab initio prediction. Homology modeling, also called comparative 
modeling, is based on the assumption that similar sequences among evolutionarily 
related proteins share an overall structural similarity [92]. As a consequence, a 3D 
model of a protein of interest (target) can be generated based on homologous protein(s) 
of known structure (template) that share statistically significant sequence identity 
(usually higher than 30%). The homology modeling procedure consists of several 
consecutive steps usually repeated iteratively until a satisfactory model is obtained: i) 
finding suitable template protein(s) related to the target; ii) aligning target and template 
sequences; iii) building coordinates of the 3D model based on the alignment; iv) 
refining and evaluating the resulting model. In the case in which homologous proteins 
of known structure cannot be found, threading methods are used. The amino acid 
sequence of an unknown structure is matched one-by-one to a database of solved 
structures (templates) [93]. In each case, a scoring function is used to assess the 
energetic compatibility of the sequence to the structure without consideration of target- 
template sequence identity. The structure with the best score is selected as the template 
for modeling. This method is also known as 3D-1D fold recognition, due to its 
compatibility analysis between 3D structures and linear protein sequences. Both 
homology modeling and threading methods use previously solved structures as one of 
the starting points. In contrast, the ab initio algorithm predicts structures based on 
physical principles rather than on previously solved structures [94]. Indeed, the protein 
amino acid sequence already contains all information needed to create a correctly 
folded protein [95]. This makes the ab initio method possible for protein structure 
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prediction. All the energetics involved in the protein folding process are calculated by 
energy functions to find the structure with the lowest free energy. However, the 
enumerative energy calculations are extremely time-consuming. Thus, this method can 
be performed only for small molecules (< 100 amino acids). At present, a variety of 
protein structure prediction services are available on the Internet, including molecular 
modeling software and model quality assessment programs (detailed in sections 5.2 and 
5.3). 

4.3 Structure prediction of SIGIRR 

SIGIRR can negatively regulate MyD88-dependent signaling of TLRs through direct 
interactions of its TIR domain with that of TLR and MyD88. Understanding the 
inhibitory function of SIGIRR is a key issue towards the development of therapeutic 
approaches against autoimmune diseases caused by the production of autoantibodies to 
components of the cell nucleus. Thus, structural models of TIR domain interactions 
involved in the TLR inhibition processes will give the first insight into the 
understanding of SIGIRR’s structure-function relationship and will provide possible 
theoretical frameworks for the next experiment design. 

The TIR domain is conserved across all TIR domain-containing proteins. The known 
crystal structures of the TIR domains of human TLR1, 2 and 10 and interleukin-1 
receptor accessory protein-like (IL-1RAPL) [32, 33, 96] revealed similar 
conformations, with a five-stranded β-sheet (βA-βE) surrounded by five α-helices 
(αA-αE). The β-strands and the α-helices alternate, with loop structures of varying 
length connecting them. The connecting region between the second β-strand (βB) and 
the second α-helix (αB), referred to as the BB-loop, was shown to be essential in the 
TIR-TIR interactions of many TIR domain-containing molecules [32, 33, 40, 97]. A 
single point mutation, Pro712His, in the BB-loop of mouse TLR4’s TIR domain 
abolished the TLR4 response to LPS [40]. Mutation of the equivalent residue in human 
TLR2, Pro681His, disrupted signal transduction in response to stimulation by yeast and 
Gram-positive bacteria [32]. A heptapeptide, which mimics the BB-loop of MyD88’s 
TIR domain, strongly interfered with the dimerization of MyD88 [97]. The crystal 
structure of human TLR10’s TIR homodimer further proved the crucial role of the 
BB-loop in the TIR-TIR interactions, where the BB-loop and α-helix C of each 
monomer constituted the major part of the symmetric dimer interface [33]. 

SIGIRR can protect from lupus via suppressing TLR7 signal transduction. To 
determine the structural mechanism of SIGIRR’s inhibitory function for TLR7, we 
constructed 3D models of TIR domains of human TLR4, 7, MyD88 and SIGIRR by 
homology modeling. We chose TLR4 as an additional example to elucidate the 
mechanisms involved in the negative regulation of the MyD88-dependent TLR signals 
by SIGIRR, because the different mechanisms of TLR4 recognizing LPS and TLR7 
recognizing ssRNA may lead to different structural interactions of receptor with 
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SIGIRR. In order to explain how SIGIRR disturbs the MyD88-dependent TLR4 and 7 
signaling, an understanding of the interaction mode of receptor and adaptor complexes 
without the presence of SIGIRR is indispensable. We thus performed a protein-protein 
docking study to construct models of TLR4-TLR4, TLR7-TLR7, MyD88-MyD88, 
TLR4-TLR4-MyD88-MyD88 and TLR7-TLR7-MyD88-MyD88 complexes. 
Previously, Dunne and co-workers modeled the TLR4-MyD88 heterodimer using 
TLR4 and MyD88 monomers. This monomer-to-monomer model, however, may not 
fully reflect the molecular interactions. Our model of the receptor dimer docking to the 
MyD88 dimer provided additional information for the structural interpretation. We 
further constructed the models of the TLR4-SIGIRR, TLR7-SIGIRR and MyD88- 
SIGIRR complexes that could interfere with the proper signaling complexes. All 
docking results indicated the importance of the BB-loop in the TIR-TIR interactions. 
We suggested that SIGIRR might exert its inhibitory effect through blocking the 
molecular interface of TLR4, TLR7 and the MyD88 adaptor mainly via its BB-loop 
(detailed in section 6.3). 

The TIR domain of SIGIRR extends from that of other TIR domains at the C-terminal 
end by a 73-amino acid-long stretch (C-terminal tail). A similarity search against PDB 
returned no homologue structure to serve as a template. In this case, the threading 
method was used to determine a template structure. The finally selected template was 
the N-terminal domain of N-ethylmaleimide sensitive factor (PDB code: 1QCS). 

4.4 Homology modeling of TLR ectodomains 

The TLR ectodomain consists of consecutive LRR motifs. The structure of LRR motifs 
and their arrangement in repetitive stretches of variable lengths generate a versatile and 
highly evolvable framework for the binding of diverse proteins and non-protein ligands 
[90]. Up to the present, more than 130 crystal structures of LRR-containing proteins 
have been determined. They show that all LRR domains adopt an arc or horseshoe 
shape [30]. This knowledge has increased our ability to use known LRR structures as 
templates to model TLR ectodomains with unknown structures. In practice, due to the 
various repeat numbers and the distinct arrangements of LRRs in the TLR ectodomains, 
a proper full-length template with a sufficiently high sequence identity (≥30%, as 
required by homology modeling) to the TLR ectodomains is often missing. This 
limitation can be overcome by disassembling crystal structures into individual LRR 
building blocks and then reassembling the blocks to build a TLR ectodomain. In this 
approach, first the most similar (on the sequence level) structurally known LRR is 
found for each LRR in the target sequence as a local template. Second, the sequences of 
all local templates are combined to generate a multiple sequence alignment for the 
entire target sequence. Last, the templates together with the sequence alignment are 
input into an automatic model construction program to obtain a model as with the 
standard homology modeling. Such an approach requires a comprehensive database of 
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LRR structures to extract adequate template candidates. As yet, the individual 3D LRR 
structures are not directly available from the current databases, and there are only a few 
detailed annotations for them. Additional information such as sequence insertions and 
LRR types is missing. In order to consolidate this information and to provide a source 
for homology modeling and the structural analysis of LRR proteins, we have developed 
LRRML, a database and an extensible markup language description of LRR structures. 
It is available at http://lrrml.lrz.de. LRRs stored in LRRML were extracted from all 
known LRR-containing protein structures from PDB. A similarity search tool was 
implemented for the database. It returns the structures of similar LRRs with ranking for 
a query LRR sequence. After a successful test-case validation of the LRR assembly 
method, we constructed models of the human TLR5-10 and mouse TLR11-13 
ectodomains with this method. These models can be used as the first passes for a 
computational simulation of ligand docking (detailed in section 6.6). 

A recent study showed that the ectodomains of TLR7 and 9 are cleaved in the 
endolysosome to recognize ligands [98]. Only the C-terminal cleaved forms of them 
can recruit MyD88 on activation. This cleavage process may also happen to TLR8, 
because of the high homology with TLR7-9. To better understand the ligand-binding 
mechanisms of TLR7-9, we also developed structural models of their ectodomains in 
cleaved form. On the basis of the resulting models, we suggested their potential ligand- 
binding sites and inferred possible configurations of the receptor-ligand 2:1 complexes 
(detailed in section 6.5). 
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5. Methods 

5.1 Database construction 

This section describes the database management system (DBMS) supporting the 
TollML and LRRML databases. All programming languages used to develop the web 
applications of both databases are also characterized in brief. 

eXist-db. eXist-db is an open source native XML-DBMS written in Java (a class-based, 
object-oriented programming language). The eXist-db distribution 1.1.1 was deployed 
inside a servlet-engine on a Linux system. eXist-db supports many web technology 
standards, making it an excellent platform for developing online applications. It 
provides storage of XML documents in hierarchical directories and efficient query 
processing, including keyword searches, queries on proximity of search terms or 
regular expressions through the query languages of XPath/XQuery. 

Programming languages. All data in the two databases, TollML and LRRML, are 
stored in XML (www.w3.org) documents according to the syntax in the corresponding 
document type definition (DTD) file. The HTML display of each database entry on the 
web interface is directly converted from the original XML documents by the pre- 
designed XML Stylesheet (XSL). XPath/XQuery serve as the query languages of the 
databases. Complicated calculating programs for the web applications are written in 
Java, Perl (an interpreted, dynamic programming language), Python (an interpreted, 
interactive, object-oriented, extensible programming language) and R (a programming 
language specialized for statistical computing and graphics). 

5.2 Protein structure prediction 

This section describes the programs used for generating protein structural models, 
including protein tertiary structures and secondary structures. At present, numerous 
software tools for protein structure prediction have been developed. The prediction 
protocols from alternative software tools, however, can produce dramatically different 
models, even when using the exact same input target-template alignments. We then 
chose the most commonly accepted and long-tested software tools for our protein 
structure predictions. 

MODELLER. MODELLER [99] is one of the most widely used computer programs 
for homology modeling of protein 3D structures. In the simplest case, the input is an 
alignment of a sequence to be modeled with the sequence(s) of template structure(s) 
and the atomic coordinates of the template(s). MODELLER then automatically 
calculates a model containing all non-hydrogen atoms. It implements homology 
modeling by the satisfaction of spatial restraints, by which a set of geometrical criteria 
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are used to create a probability density function for the location of each atom in the 
protein. 

ModLoop. ModLoop [100] is a web tool for automated modeling of loops in protein 
structures. The input is the atomic coordinates of a protein structure in PDB format 
and the specifications of the starting and ending residues of the one or more segments 
to be modeled, containing no more than 20 residues in total. The output is the 
coordinates of the non-hydrogen atoms in the modeled segments. The modeling relies 
on a protocol consisting of conjugate gradient minimization and molecular dynamics 
simulation. 

THREADER. THREADER [101] is a protein fold recognition method, whereby a 
query sequence is fitted (threaded) directly onto the carbon backbone coordinates of 
non-redundant protein structures derived from PDB. The degree of compatibility 
between the sequence and each proposed structure is evaluated by means of a set of 
empirical potentials derived from proteins of known structure. The specific aspect of 
this approach is that the matching of sequence to backbone coordinates is performed in 
full 3D space, incorporating specific pair interactions explicitly. 

pGenTHREADER. pGenTHREADER [102] is a sequence profile-based structural 
template recognition method for protein homology modeling. It calculates sequence 
profiles from an input sequence and generates profile-profile alignments of the input 
and template sequences. The algorithm of the alignments linearly combines secondary 
structure specific gap-penalties, pair potentials and solvation potentials. The output is 
the PDB structures, which serve as candidate templates ranked by target-template 
similarities. 

PSIPRED. PSIPRED [103] is a protein secondary structure prediction method. It 
performs a PSI-BLAST search [104] for a query sequence and then feeds the resulting 
profiles of the query through two consecutive feed-forward neural networks (a 
machine-learning algorithm) in order to predict secondary structure. 

5.3 Protein model quality assessment 

Protein model quality assessment programs (MQAPs) receive as input a 3D 
model/structure in PDB format and produce as output a real number representing the 
quality of the model. In this section, several popular and up-to-date MQAPs used in 
this study are listed. 

ProQ. ProQ [105] is a neural network-based method to predict the quality of a protein 
model. It extracts structural features from an input model, such as the frequency of 
atom-atom contacts, and measures them either by LGscore [106] (for long target 
proteins) or MaxSub [107] (for short ones). 

MetaMQAP. MetaMQAP [108] is a very up-to-date protein model evaluation tool. It 
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is a meta-predictor based on a multivariate regression model that uses scores of eight 
previously published model evaluation methods. MetaMQAP predicts the absolute 
deviation (in Ångströms) of individual Cα atoms between the model and the unknown 
true structure as well as global deviations (expressed as root mean square deviation). 

ModFOLD. ModFOLD [109] combines scores obtained from the ModSSEA method 
[110], the MODCHECK method and the two ProQ methods using a neural network. It 
can provide (i) a single score and a P-value, which represents a quantitative measure 
of the confidence in a model related to the predicted quality of a single protein model; 
(ii) rankings for multiple models for the same protein target according to predicted 
model quality; (iii) predictions of the local quality (per-residue errors) within multiple 
models. 

PROCHECK. PROCHECK [111] provides a check on the stereochemistry of a 3D 
protein structure or model. Its outputs comprise a number of plots, such as the 
Ramachandran plot [112], and a comprehensive residue-by-residue listing. These give 
an assessment of the overall quality of the structure as compared with well-refined 
structures of the same resolution and also highlight regions that may need further 
investigation. 

5.4 Protein-protein docking 

This section describes two excellent-performance rigid-body protein-protein docking 
tools. Rigid-body docking is known as when a conformational change does not occur 
within the components at any stage of complex generation. 

GRAMM-X. GRAMM-X [113] uses the correlation technique Fast Fourier 
Transformation (FFT) for the global search of the best rigid-body conformations. 
During the FFT search, the protein surface representation is smoothed to account for 
possible conformational changes upon binding. The search results are further refined by 
optimization in continuous coordinates and rescoring with several knowledge-based 
potential terms. 

ZDOCK. ZDOCK [114] is also a FFT search-based rigid-body docking method. An 
important feature of ZDOCK is that it employs a powerful scoring function that 
integrates, pairwise, the shape complementarity, desolvation and electrostatics, during 
the FFT search. 

5.5 Protein structure visualization and analysis 

The predicted protein 3D models or protein-protein interacting complexes need further 
examination through various visualization and analysis tools. This section describes 
several tools used in our studies on primary (amino acid sequence), tertiary (3D 
conformation) and quaternary (complex model) protein structures. Figures presenting 
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our models in this thesis were also rendered with these tools. 

MUSCLE. MUSCLE [115] stands for MUltiple Sequence Comparison by Log- 
Expectation. It is a computer program for creating multiple alignments of protein 
sequences with high speed and accuracy, especially for large numbers of sequences. 
The input is a set of protein sequences, and the output is an alignment generated in a 
table form that exhibits the evolutionary relationship between the input sequences. In 
this table, the rows show the input sequences and the columns show the positions in the 
alignment. Gaps are inserted between the residues in the sequences so that identical or 
similar amino acids are aligned in successive columns. 

Jalview. Jalview [116] was used to view and edit multiple sequence alignments. It 
allows the identification of functional residues by the comparison of subgroups of 
sequences arranged on a cluster tree. A number of color schemes were predefined to 
color alignments or groups. 

VMD. VMD [81] is a molecular graphics program designed for the display and 
analysis of biopolymers such as proteins and nucleic acids. Molecules are displayed 
as one or more “representations,” in which each representation embodies a particular 
rendering method and coloring scheme for a selected subset of atoms. It contains a set 
of tools for interactive problem solving in structural biology. 

SPDBV. SPDBV [117] is a molecular graphics program that provides a user-friendly 
interface and allows the analysis of several proteins simultaneously. A very useful 
function of SPDBV is that the protein structures can be superimposed to deduce 
structural alignments and compare their active sites or any other relevant parts. Amino 
acid mutations, H-bonds, angles and distances between atoms can be obtained using 
the intuitive graphic and menu interface. 

Jmol. Jmol (www.jmol.org) is a free, open source molecule viewer for biochemical 
structures in 3D. Its interactive web browser applet can be integrated into web pages for 
high-performance online 3D rendering in web-accessible databases. 

SuperPose. SuperPose [118] is a web server for both pairwise and multiple protein 
structure superpositions using a modified quaternion eigenvalue approach. SuperPose 
generates sequence alignments, structure alignments, PDB coordinates and root mean 
square deviation statistics, as well as difference distance plots and images of the 
superimposed molecules. 

PISA. PISA [119] is an interactive tool for the exploration of macromolecular (protein, 
DNA/RNA and ligand) interfaces, prediction of probable quaternary structures, 
database searches of structurally similar interfaces and assemblies and searches on 
various assembly and PDB entry parameters. 
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6. Results (extended abstracts of manuscripts) 

6.1 Paper 1: TollML: a database of Toll-like receptor structural motifs 

(Manuscript, see appendix at page 49) 

Comprehensive and systematic structural motif annotations of Toll-like receptors 
(TLRs) on the sequence level will be useful for structural analysis and homology 
modeling of TLRs. Such annotations are not available in any current databases. In this 
regard, we have developed the TollML database, which is supported by the native 
extensible markup language (XML) database management system eXist-db. TollML 
integrated all of the TLR sequencing data from the NCBI protein database. Entries were 
first divided into TLR families (TLR1-23) and then were semi-automatically 
subdivided into three levels of structural motif categories: i) signal peptide (SP), 
ectodomain (ECD), transmembrane domain (TD) and Toll/interleukin-1 receptor (TIR) 
domain of each TLR; ii) LRRs of each ECD; iii) highly conserved segment (HCS), 
variable segment (VS) and insertions of each LRR. These categories can be quickly 
searched using an easy-to-use web interface and are dynamically displayed by graphics. 
Additionally, all entries have hyperlinks to various sources including NCBI, Swiss-Prot, 
PDB, LRRML and PubMed to provide broad external information for users. TollML 
also stands for Toll-like receptor markup language, a formal textual representation of 
TLR structural motif annotations. A database construction pipeline is shown in Figure 
7. 

 
Figure 7. The TollML database construction pipeline. 

The TollML release 3.1 contains 2,572 TLR entries divided into 23 families (entry 
distribution shown in Table 2). Of these, 2,350 entries contain an ectodomain and thus 
received motif annotations that correspond to the second and third levels of motif 
categorization. The other entries contain only a TIR domain with or without a 
transmembrane domain. A total of 46,720 LRR motifs were recognized from the 
ectodomain-containing TLRs.  
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TLR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20-23 Total 

Mammalian 85 146 108 443 132 106 109 101 124 72 10 11 9 0 0 0 0 0 0 1,456 

Non-mamm. 356 276 84 77 58 3 102 11 30 0 0 1 4 6 42 2 7 5 52 1,116 

Total 441 422 192 520 190 109 211 112 154 72 10 12 13 6 42 2 7 5 52 2,572 

Table 2. Entry distribution over TLR families for mammalian/non-mammalian groups. 

TollML supplies a large and reliable source to train the LRR prediction methods of 
machine-learning algorithms. We developed a 20×12 position-specific weight matrix 
(PSWM) for LRR motif predictions using the LRR partitions (the second level of 
structural motifs) and the HCS partitions (the third level) from TollML. The 20 rows in 
the PSWM correspond to the 20 amino acids, while the twelve columns correspond to 
the twelve positions in the LRR HCS consensus sequence. Thus, a matrix element 
denotes the frequency probability of a certain amino acid occurring at a certain position 
in the LRR HCS. With this PSWM, each position of a query sequence will be scored to 
judge whether it may be the beginning position of an LRR. Finally, the number and 
positions of LRRs contained in the query sequence are returned. This automatic LRR 
prediction program is called LRRFinder. As LRR motifs of all LRR proteins possess 
the same HCS pattern, this method can be extended to predict LRR motifs in other 
LRR proteins in addition to TLRs. The TollML database and LRRFinder program are 
available at http://tollml.lrz.de. 

6.2 Paper 2: LRRML: a conformational database and an XML 
description of leucine-rich repeats (LRRs) 

(Manuscript, see appendix at page 57) 

Leucine-rich repeats (LRRs) are present in more than 6,000 proteins. They are found in 
organisms ranging from viruses to eukaryotes and play an important role in protein- 
ligand interactions. To date, more than 100 crystal structures of LRR proteins have been 
determined. This knowledge has increased our ability to use individual LRR structures 
as building blocks to model Toll-like receptor (TLR) ectodomains or other LRR 
proteins. Because the individual 3D LRR structures are not directly available from the 
established databases and there are only a few detailed annotations for them, a 
conformational LRR database that is useful for homology modeling of LRR proteins is 
desirable. We have developed LRRML, a conformational database of LRRs. The 
LRRML release 0.2 contains 1,261 individual LRR structures, which were identified 
from 112 PDB protein structures. All LRR entries were provided with three groups of 
manual annotations: i) classification into eight LRR types; ii) partition into a highly 
conserved segment (HCS) and a variable segment (VS); iii) labeling of insertion 
segments (IS) longer than three amino acids according to LRR consensus sequences. In 
addition, an extensible markup language (XML) textual structure was defined to 
exchange and store the LRR conformation. A database construction pipeline is shown 
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in Figure 8. 

 
Figure 8. The LRRML database construction pipeline. 

To demonstrate the capabilities of the database, we modeled the mouse TLR3 
ectodomain as a test-case by combining multiple LRR templates obtained from 
LRRML. A comparison of the model with the corresponding crystal structure (PDB 
code: 3CIG) showed a very good structural agreement. In conclusion, LRRML 
provides a source for the homology modeling and structural analysis of LRR proteins. 
This database is available at http://lrrml.lrz.de. 

6.3 Paper 3: Inhibition of Toll-like receptors TLR4 and 7 signaling 
pathways by SIGIRR: a computational approach 

(Manuscript, see appendix at page 67) 

Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) has 
therapeutic potential towards systemic lupus erythematosus because of its inhibitory 
function in Toll-like receptor (TLR) signaling. So far, the mechanism of structural 
interactions between SIGIRR, TLRs and adaptor molecules is unclear. To develop a 
working hypothesis for this interaction, we constructed 3D models for the 
Toll/interleukin-1 receptor (TIR) domains of TLR4, 7, MyD88 and SIGIRR based on 
computational modeling (Figure 9). Through protein-protein docking analysis using 
GRAMM-X and ZDOCK (detailed in section 5.4), we developed models of essential 
complexes involved in the TLR4 and 7 signaling and the SIGIRR inhibiting processes. 
Receptor activation would trigger the formation of TLR4 and 7 TIR dimers, recruiting 
MyD88 TIR dimers and resulting in a signaling tetramer. Model predictions including 
SIGIRR revealed that SIGIRR binds to TLR4 and 7 by occupying their self-interacting 
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sites. On the other hand, the MyD88-SIGIRR dimer shows a resemblance to the 
MyD88 homodimer. That is, SIGIRR replaces a MyD88 monomer, interrupting the 
MyD88 homodimer formation. In all cases the BB-loop of SIGIRR plays a key role in 
binding. 

 
Figure 9. 3D models of TIR domains of TLR4, 7, MyD88 and SIGIRR. The BB-loops and αE 
regions are highlighted in orange and green respectively. 

Both of the tetramers (TLR4 dimer-MyD88 dimer and TLR7 dimer-MyD88 dimer) 
exposed in our study demonstrated that the stimulus-induced dimerization of TIR 
domains creates a new negatively charged molecular pocket for the binding of the 
positively charged αE of the MyD88 adaptor (Figure 9). In the presence of SIGIRR, the 
proper shape and electric environment of the MyD88-binding pocket are completely 
disturbed. Remarkably, TLR4 and 7 possess a more extensive molecular interface with 
SIGIRR (heterodimer) than with themselves (homodimer). These observations 
highlighted the strong molecular affinity of SIGIRR as an inhibitor. 

 
Figure 10. Surface charge distribution of TIR dimers. Both the TLR4-TLR4 and TLR7-TLR7 
dimers generate a negatively charged (red) pocket adjacent to their dimer interface to hold the 
positively charged (blue) αE of MyD88. The incorporation of SIGIRR completely disturbed the 
proper shape and electric environment of the pocket. The αE is represented by a green tube, and the 
other part of MyD88 is omitted for better view. 

In summary, we proposed a residue-detailed structural framework of SIGIRR inhibiting 
the TLR4 and 7 signaling pathways. These results can facilitate efforts to design further 
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mutagenesis experiments to clarity the regulatory role of SIGIRR in inflammatory and 
innate immune responses. 

6.4 Paper 4: Lack of SIGIRR/TIR8 aggravates hydrocarbon 
oil-induced systemic lupus 

(Manuscript, see appendix at page 76) 

Multiple genetic factors contribute to the clinical variability of spontaneous systemic 
lupus erythematosus (SLE) but their role in drug-induced SLE remains largely 
unknown. Hydrocarbon oil-induced SLE depends on mesothelial cell apoptosis and 
Toll-like receptor TLR7-mediated induction of type I interferons. Hence, we 
hypothesized the single immunoglobulin interleukin-1 receptor-related molecule 
(SIGIRR, also known as TIR8), an endogenous TLR inhibitor, prevents oil-induced 
SLE. Sigirr-deficient dendritic cells expressed higher TLR7 mRNA levels and TLR7 
activation resulted in increased interleukin-12 production in vitro. In vivo, lack of 
SIGIRR increased surface CD40 expression on spleen CD11c+ dendritic cells and 
MX-1, TNF, interleukin-12, BAFF and BCL-2 mRNA expression 6 months after 
pristane injection. Spleen cell counts of CD4-/CD8-“autoreactive” T cells and B220+ B 
cells were also increased in Sigirr-deficient mice. Serum autoantibody analysis 
revealed that Sigirr-deficiency specifically enhanced the production of rheumatoid 
factor (from 4 months of age) and anti-snRNP IgG (from 5 months of age) while 
anti-Smith IgG or anti-dsDNA IgG were independent of the Sigirr genotype. This effect 
was sufficient to significantly aggravate lupus nephritis in Sigirr-deficient mice. 
Structural model prediction identified the BB-loop of SIGIRR’s intracellular TIR 
domain to interact with TLR7 and MyD88. BB-loop deletion was sufficient to 
completely abrogate SIGIRR’s inhibitory effect on TLR7 signaling. Thus, 
SIGIRR/TIR8 protects from hydrocarbon oil-induced lupus via suppressing the TLR7- 
mediated activation of dendritic cells most likely via its intracellular BB-loop. 

6.5 Paper 5: Homology modeling of human Toll-like receptors TLR7, 
8 and 9 ligand-binding domains 

(Manuscript, see appendix at page 89) 

The Toll-like receptors TLR7, 8 and 9 compose a family of intracellularly localized 
TLRs that signal in response to pathogen-derived nucleic acids. After bacteria and 
viruses are internalized to the cell endosome, nucleic acids might be released to be 
recognized by these TLRs. So far, there are no crystallographic structures for TLR7-9. 
For this reason, their ligand-binding mechanisms are poorly understood. To enable first 
predictions of the receptor-ligand interaction sites, we developed 3D structures for the 
leucine-rich repeat ectodomains of human TLR7-9 based on homology modeling. The 
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predicted results can guide experimentalists to design site-directed mutation 
experiments to unravel the ligand-binding mechanisms of these receptors. To achieve 
a high sequence similarity between targets and templates, structural segments from all 
known TLR ectodomain structures (human TLR1-4 and mouse TLR3-4) were used as 
candidate templates for the modeling. The resulting models support previously reported 
essential ligand-binding residues. They also provide a basis to identify three potential 
receptor dimerization mechanisms. Additionally, potential ligand-binding residues are 
identified using combined procedures. We suggest further investigations of these 
residues through mutation experiments. Our modeling approach can be extended to 
other members of the TLR family or other repetitive proteins. 

6.6 Paper 6: A leucine-rich repeat assembly approach for homology 
modeling of human TLR5-10 and mouse TLR11-13 ectodomains 

(Manuscript, see appendix at page 98) 

So far, 13 groups of mammalian Toll-like receptors (TLRs) have been identified. Most 
TLRs have been shown to recognize pathogen-associated molecular patterns from a 
wide range of invading agents and initiate both innate and adaptive immune responses. 
The TLR ectodomains are composed of varying numbers and types of leucine-rich 
repeats (LRRs). Because the crystal structures are currently missing for most TLR 
ligand-binding ectodomains, computational modeling enables the first predictions of 
their 3D structures. The determined crystal structures of TLR ectodomains can provide 
structural templates for homology modeling of other TLR ectodomains. However, the 
quality of the predicted models that are generated from full-length templates can be 
limited due to low sequence identity between the target and templates. To obtain better 
templates for modeling, we have developed a multiple LRR templates assembly 
approach. Individual LRR templates that are locally optimal for the target sequence are 
assembled into multiple templates. This method was validated through the comparison 
of a predicted model with the crystal structure of mouse TLR3. With this method we 
also constructed ectodomain models of human TLR5-10 and mouse TLR11-13 that can 
be used as the first passes for a computational simulation of ligand docking or to design 
mutation experiments. This template assembly approach can be extended to other 
repetitive proteins. 
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7. Conclusions 
The topics of this thesis include the construction of databases with full-scale 
annotations for TLR structural motifs (TollML) and LRR conformations (LRRML) to 
facilitate computational modeling of the TLR structure and the computational 
investigation of the molecular interactions between TLRs and their inhibitor, SIGIRR. 

TollML includes all known TLR sequences extracted from the NCBI protein database. 
Three levels of TLR structural motifs were identified and annotated by a semi- 
automatic procedure. The TollML release 3.1 contains 2,572 TLR entries separated into 
23 families. Of these, 2,350 entries contain ectodomains, from which a total of 46,720 
LRR motifs were recognized. With these LRR partitions, an automatic LRR motif 
prediction program named LRRFinder was developed. A five-fold cross-validation 
against all TollML entries indicated that the sensitivity and specificity of this program 
are both greater than 93%. The TollML database and the LRRFinder program are freely 
available at http://tollml.lrz.de. Another database is a conformational LRR database 
named LRRML, which contains individual 3D LRR structures with manual structural 
annotations. The LRRML release 0.2 contains 1,261 LRR entries identified from 112 
PDB structures. A total of 548 of the 1,261 LRRs are distinct on sequence level, 
indicating that different molecules can share identical LRRs. This fact enhances the 
confidence in the computational modeling of LRR proteins using individual LRR 
building blocks. To simplify the homology modeling, a similarity search tool was 
implemented on the LRRML web page. It returns the structures of the most similar 
LRRs for a query LRR sequence. The LRRML database is freely available at 
http://lrrml.lrz.de. The TollML and LRRML stand for Toll-like receptor Markup 
Language and LRR Markup Language, respectively. They standardize the 
representation of TLR and LRR annotations for convenient information exchanges in 
the future. With the help of these two databases, we constructed the 3D structural 
models for human/mouse TLR5-13 full-length ectodomains, human TLR7-9 cleaved 
ectodomains and the TIR domains of human TLR4, 7, MyD88 and SIGIRR. 

Through protein-protein docking analysis, we developed models of essential 
complexes involved in the TLR4 and 7 signaling and the SIGIRR inhibiting processes. 
The results could be assembled to derive a working hypothesis for the receptor 
signaling transductions and the SIGIRR inhibiting mode. Receptor activation would 
trigger the formation of TLR4- (or TLR7-) TIR dimers and the recruitment of MyD88 
dimers, resulting in a signaling tetramer. SIGIRR could bind to TLR4 (or TLR7) by 
occupying its self-interacting sites. On the other hand, SIGIRR would replace a MyD88 
monomer, interrupting the functional MyD88 homodimer. In all cases, the BB-loop of 
SIGIRR plays a key role in binding. Mutation experiments proved that BB-loop 
deletion was sufficient to completely abrogate SIGIRR’s inhibitory effect on TLR7 
signaling. Notably, the molecular interfaces of TLR4, 7 and MyD88 were more 
extensive with SIGIRR (heterodimer) than with themselves (homodimer). These 
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observations highlight the strong molecular affinity of SIGIRR as an inhibitor. 

Based on the structural models of the cleaved TLR7-9 ectodomains, we identified 
potential ligand-binding residues using a combined procedure. Only highly conserved, 
non-negatively charged, surface residues that were positively predicted by at least two 
docking programs were considered as potential ligand-binding residues. Finally, we 
suggested three possible receptor dimerization schemes that require different minimum 
ligand sizes. 

The TLR signaling pathways are an intricate physiological system that encompasses 
numerous and diverse sequential molecular interactions. The lack of structural 
knowledge is in part responsible for our incomplete understanding of the basis of 
receptor specificity and the activation mechanisms. For the receptors with solved 
crystal structures in a ligand-binding form, further work is required to establish how 
the same TLR ligand-binding domains interact with the structurally diverse ligand 
variants from different viruses or bacteria. Moreover, with the continual discovery of 
new components or regulatory functions of known components involved in TLR 
signaling, more and more molecular interactions need to be investigated to provide a 
comprehensive map of the TLR signaling network. Here, bioinformatics efforts will 
facilitate the understanding of all these interactions from a structural viewpoint in 
concert with experimental techniques. This will also be highly valuable for the future 
development of innovative therapies for the manipulation of infectious diseases and 
autoimmune diseases. 
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Abstract Toll-like receptors (TLRs) play a key role in the
innate immune system. TLRs recognize pathogen-
associated molecular patterns and initiate an intracellular
kinase cascade to induce an immediate defensive response.
During recent years TLRs have become the focus of
tremendous research interest. A central repository for the
growing amount of relevant TLR sequence information has

been created. Nevertheless, structural motifs of most
sequenced TLR proteins, such as leucine-rich repeats
(LRRs), are poorly annotated in the established databases.
A database that organizes the structural motifs of TLRs
could be useful for developing pattern recognition pro-
grams, structural modeling and understanding functional
mechanisms of TLRs. We describe TollML, a database that
integrates all of the TLR sequencing data from the NCBI
protein database. Entries were first divided into TLR
families (TLR1-23) and then semi-automatically subdivided
into three levels of structural motif categories: (1) signal
peptide (SP), ectodomain (ECD), transmembrane domain
(TD) and Toll/IL-1 receptor (TIR) domain of each TLR; (2)
LRRs of each ECD; (3) highly conserved segment (HCS),
variable segment (VS) and insertions of each LRR. These
categories can be searched quickly using an easy-to-use
web interface and dynamically displayed by graphics.
Additionally, all entries have hyperlinks to various sources
including NCBI, Swiss-Prot, PDB, LRRML and PubMed in
order to provide broad external information for users. The
TollML database is available at http://tollml.lrz.de.

Keywords TollML . Toll-like receptor .

Leucine-rich repeats . XML database . Homology modeling

Introduction

Since the Drosophila Toll gene was discovered in the mid-
1980s [1], genome projects have led to the identification of
13 receptors in mammalian and more than 20 receptors in
non-mammalian genomes that are homologs of Drosophila
Toll. These receptors have been termed collectively Toll-
like receptors (TLRs). TLRs play a key role in innate
immunity. They recognize invading microbial pathogens
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and rapidly initiate intracellular signal transduction path-
ways to trigger expression of genes, whose products can
control innate immune responses [2]. All TLRs have a
common domain organization, with an extracellular ecto-
domain (ECD), a helical transmembrane domain (TD), and
an intracellular Toll/IL-1 receptor homology (TIR) domain
[3]. The ectodomain is a horseshoe-shaped solenoid
structure and is directly involved in the recognition of a
variety of pathogens including lipopolysaccharide, lipopep-
tide, cytosine-phosphate-guanine (CpG) DNA, flagellin,
imidazoquinoline and dsRNA [4]. The transmembrane
domain determines the subcellular localization of TLRs
[5]. The TIR domain is conserved across all TLRs and IL-1
receptors, and is also shared by downstream signaling
adaptor molecules. Upon receptor ligation, a TIR signaling
complex is formed between the receptor and the adaptor
TIR domains [6].

The TLR ectodomain contains varying numbers of
leucine-rich repeat (LRR) motifs, which are arrays of 20
to 30 amino acid-long protein sequences that are enriched
with the hydrophobic amino acid leucine. All LRR
sequences can be divided into a highly conserved segment
(HCS) and a variable segment (VS). The HCS consists of
an 11 or 12 residue stretch with the consensus sequence
LxxLxLxxN(Cx)xL. In this notation, the letter L represents
the amino acids leucine, isoleucine, valine or phenylala-
nine, which form a hydrophobic core, N represents
asparagine, threonine, serine or cysteine, and x is any
amino acid. The variable segment can vary in both length
and consensus sequence. Accordingly, several types of
LRRs have been proposed [7, 8]. Of these, typical (T) type
(xxLxxxxLxxLxx) and bacterial (S) type (xxLPx(x)LPxx)
LRRs have been observed in TLRs [9]. All LRRs in TLRs
are capped by N- and C-terminal LRRs that are usually
irregular and do not match any type of LRR consensus
sequences.

The atomic-detail crystal structure of the human TLR1
and TLR2 TIR domain was published in 2000 and gave the
first insight into the molecular basis of TIR signaling [10].
The crystal structures of the ectodomains of human TLR1-4
and mouse TLR2-4 have also been resolved [11–16]. These
structures demonstrate how the LRR-based platform is
adapted to ligand recognition. Nevertheless, more than
2,000 TLR proteins have been sequenced by high-
throughput genome sequencing projects. It is clear that the
discrepancy between the rate at which novel protein
sequences are discovered and the rate at which detailed
structural information on proteins can be obtained from
X-ray diffraction or nuclear magnetic resonance spectros-
copy will persist for the foreseeable future. Thus, a
comparative analysis at the sequence level is a useful
approach to identify and characterize structural motifs of
TLRs [9, 17] and to gain insight into how receptors and

ligands interact. Due to the variability of LRR motifs in
TLRs, however, the indicated repeat number and positions
(beginning/end of a repeating unit) for individual TLRs are
quite different or missing in established databases. Currently,
there is no collection of structural information for features that
are contained within LRRs, such as HCS, VS and sequence
insertions.

In this paper, we describe a database of TLR structural
motifs called TollML. The current release (3.1) includes all
known TLR sequences from the NCBI protein database
[18]. Structural motifs were identified and annotated by a
semi-automatic procedure that included comparison of
sequences with the sequences of TLRs that have a known
structure, consensus sequence matching, secondary struc-
ture prediction and multiple sequence alignments. Three
levels of motif elements were generated: (1) signal peptide
(SP), ectodomain (ECD), transmembrane domain (TD) and
TIR domain of each TLR; (2) LRRs of each ECD; and (3)
HCS, VS and insertions of each LRR. Some program
application examples are presented in the last section of the
paper.

Construction and content

Data extraction and pre-processing

Initial TLR sequences were extracted from the NCBI
protein database. Two groups of search results were
obtained using the search keys toll* and tlr*, where the
asterisk stands for any suffix, to ensure that all TLRs were
included. A manual data pre-processing step was performed
before the motif identification of these sequences. We
inspected the NCBI annotations of entries one-by-one to
exclude TLR related molecules such as adaptors, protein
kinases and transcription factors. After we performed these
filtering steps, 2,572 TLR entries remained (NCBI release:
1 September 2009). We then categorized the TLRs into
different families (TLR1-23) based on their original
annotations. In the instances in which entries were not
associated with explicit comments, we compared the
sequences with well classified TLR sequences using
sequence BLAST.

Motif identification

Three levels of structural motif categories were generated
adapting to the structural organization of TLRs. First,
each full length TLR sequence was divided into ECD,
TD and TIR domain. If a sequence started with a SP,
which directs the subcellular transport of a protein, the
presence of a SP was also indicated. Second, the ECD of
each TLR was partitioned into individual LRRs including
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canonical LRRs and N/C-terminal LRRs. Third, each
LRR was further divided into a highly conserved
segment (HCS) and a variable segment (VS). Insertions
within the VS that are longer than three residues were
identified and annotated.

The procedure mentioned above was semi-automated.
We first sorted the TLR sequences from each family into
subgroups, so that an arbitrary pair of sequences from the
same subgroup had a local sequence similarity greater than
90%. Then, the three-level structural motifs were identified
manually for a selected template sequence from each
subgroup. This selected template sequence was a full length
sequence that had the most detailed original annotations so
that the most accurate motif identifications could be
performed. Finally, the other members of the subgroup
received their motif partition assignments through multiple
alignments with the template. More than 300 subgroups
were generated for the 2,572 entries. Thus more than 300
templates were processed manually.

The manual motif identification of a template sequence
combined three approaches: consensus sequence matching,
secondary structure prediction and reference to original
annotations or literatures. The four domains on the first
level of the motif categorization (SP, ECD, TD and TIR)
have characteristic sequence features, so are usually
accurately divided in the original annotation of a selected
template. If a template did not have clear annotations, then
its sequence was compared to similar sequences with
known domains to determine its domain partitions. For
the second level of motif categorization, if a selected
template was associated with a reliable reference such as a
known crystal structure, its LRR partition was then
assigned accordingly. Otherwise, we matched the LRR
consensus sequence LxxLxLxxN(Cx)xL to the template
sequence amino-acid-by-amino-acid and detected LRR
motifs manually. In addition, protein secondary structure
predictions (PredictProtein [19], NNPREDICT [20],
PSIPRED [21] and SSPro [22]) helped to improve the
accuracy of LRR detection because all known crystal
structures of TLRs show that there is always a short
β-strand (3–5 residues) beginning at approximately the
third position of an LRR motif [11–15]. After an LRR was
identified, consensus sequence matching was used to
identify its HCS and VS motifs, as well as any insertions
that were longer than three residues for the third level.
Simultaneously, each LRR motif was classified into
different types (detailed in Database content) according to
the VS consensus sequences.

Database content

The TollML release 3.1 contains 2,572 TLR entries divided
into 23 families (entry distribution shown in Table 1).

Among these, 2,350 of the sequences contain an ectodo-
main and thus received motif annotations that correspond to
the second and third levels of motif categorization. The
other entries contain only a TIR domain with or without a
transmembrane domain. A total of 46,720 LRR motifs were
recognized from the ectodomain containing TLRs. These
LRR motifs were classified into five types: typical (T),
bacterial (S), N-terminal (NT), C-terminal (CT) and
irregular (I). A histogram of LRR length statistics (Fig. 1)
shows the characteristic length distribution of each LRR
type. The standard length of the T type LRR is 24 amino
acids. A large number of T type LRRs have insertions
and only some have deletions. These statistics suggest
that the evolution of T type LRRs may prefer insertion
over deletion. By contrast, the S type LRRs are more
highly conserved. Their lengths are concentrated on 20
and 21. N-terminal LRRs vary in length and do not form
a peak value in length distribution. Most C-terminal
LRRs contain four cysteines that are distantly separated
at the sequence level and form disulfide bonds with each
other. C-terminal LRRs are generally greater than 35
amino acids in length.

Annotations for each TLR entry include:

(1) Data management information: TollML ID and access/
modification date;

(2) Primary information extracted from the NCBI and
related literature: FASTA sequence, biological defini-
tion, cell information, glycosylation sites and ligands;

(3) Protein family classification;
(4) Database cross links: NCBI, Swiss-Prot [23], PDB

[24], LRRML [8] and PubMed [25];
(5) Three-level motif information.

Database comparison

Currently, several protein databases, such as Pfam [26],
InterPro [27], SMART [28] and Swiss-Prot, contain
information about TLRs. These databases predict the LRR
numbers and positions for their TLR entries by various
computational methods, thus resulting in a high frequency
of false negative predictions. Table 2 illustrates the LRR
numbers for human TLR1–10 as reported by these data-
bases. The manual motif identification procedure discussed
here provides TollML with the most complete database of
LRR motifs. Although Swiss-Prot presents more accurate
results than the other three databases that we investigated
(Table 2), TollML has four prominent characteristics that
distinguish it from Swiss-Prot:

(1) Comprehensive entry coverage. TollML covers 2,572
TLR sequences from 121 species and all sequences are
provided with detailed motif annotations. Swiss-Prot
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covers 636 TLR sequences from 17 species and only
59 sequences have LRR annotations (results obtained
on 24 February 2009).

(2) Structural motifs within an LRR. TollML annotates
the HCS, VS and insertion for each LRR. This
information is not present in any other published
protein databases.

(3) Uniform LRR definition. The beginning/end positions
of LRRs have been defined inconsistently across
researchers due to the periodicity of LRR motifs. This
variation leads to non-uniform LRR assignments in
Swiss-Prot. All LRR motifs in TollML start at the
beginning of the HCS and end at the end of the VS,
just before the HCS of the next LRR.

(4) Accessibility of motif sequences. The amino acid
sequence of any available motif is directly accessible
in TollML, whereas only the full length sequence is
directly accessible in Swiss-Prot.

Utility

Web application

The extensible markup language (XML) was standardized
in the 1990s and is well established as a format for
hierarchical biological data. TollML was designed by using

eXist [29], an XML database management system, and
XPath/XQuery [30] for processing queries and web forms.
The document type definition (DTD) file of TollML is
provided in the electronic supplementary material (ESM;
Supplementary file 1).

The entire database is browsable. When browsing,
entries appear in a summary table containing ID, definition,
family, species and links of motif partitions. Clicking on an
entry opens an XML Stylesheet (XSLT) [30] converted
HTML web page that describes the entry in detail. The
original XML file can also be downloaded. The XSLT file
that the program uses is provided in the ESM (Supplemen-
tary file 2). Aside from the textual view, the structural
motifs of TLRs can be exhibited by three-level dynamic
graphics. Figure 2 demonstrates the motif assignment for an
example entry (ID: TLR_561).

On the advanced search page of TollML, users can
search entries flexibly by inputting keywords, specifying
search fields, and defining annotation contents of the
output. After selected entries are returned, a search within
result button allows for further term filtering. The resulting
entries, or an arbitrarily selected subset thereof, can be sent
to generate multiple sequence alignments supplied by the
T-Coffee package [31]. In addition, a Wu-BLAST search
tool [32] is available. A query sequence can be BLASTed
against the entire database, against a certain TLR family, or
against a collection of sequences marked by a user-defined
label (available for registered users).

Fig. 1 Leucine-rich repeat (LRR) length distribution

Table 1 Entry distribution over Toll-like receptor (TLR) families for mammalian/non-mammalian groups

TLR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20–23 Total

Mammalian 85 146 108 443 132 106 109 101 124 72 10 11 9 0 0 0 0 0 0 1,456

Non-mammalian 356 276 84 77 58 3 102 11 30 0 0 1 4 6 42 2 7 5 52 1,116

Total 441 422 192 520 190 109 211 112 154 72 10 12 13 6 42 2 7 5 52 2,572
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Application in LRR prediction

The automatic identification of motifs in a protein sequence
is essentially a statistical pattern recognition problem.
Therefore, the performance of a prediction method is thus
strongly dependent on the quality and scale of the training
data set. A recent program, LRRscan [17], demonstrated the
feasibility of a statistics-based consensus matching algo-
rithm applied to LRR detection. TollML supplies a large
and reliable source to train LRR prediction methods of
different algorithms. As an example, we developed a 20×
12 position-specific weight matrix of LRR motifs based on

the LRR partitions from TollML (matrix available on the
TollML webpage). A matrix element denotes the frequency
probability of a certain amino acid occurring at a certain
position in the LRR HCS. We have already obtained
confident results through this sort of matrix scan with an
appropriate cut-off score. A five-fold cross validation
against all TollML entries indicates that the sensitivity and
specificity are both greater than 93%. This program was
implemented on the TollML webpage and has been named
LRRFinder. This method can be extended to predict LRR
motifs in other LRR containing proteins besides TLRs,
since all LRR types possess the same HCS pattern.

TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10

InterPro 4 4 8 7 7 3 9 10 6 4

Pfam 4 4 7 7 8 3 8 9 6 4

SMART 6 9 19 12 10 7 16 17 19 7

Swiss-Prot 8 14 22 21 15 13 27 24 26 15

TollML 21 21 25 23 23 21 28 28 28 21

Table 2 Comparison of leucine-
rich repeat (LRR) numbers of
human TLR1–10 in different
databases (results obtained on
24 February 2009)

Fig. 2 Online graphic display
of three-level structural motifs
of a database entry
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Application in homology modeling

Homology modeling is currently the most accurate compu-
tational method to predict protein structure. This system
constructs a structural model for a target protein sequence
from a template structure of a homologous protein. For this
method to work, the target and template structures must
have a sequence identity over 30%. The known crystal
structures of human TLR1–4 and mouse TLR2–4 ectodo-
mains supply valuable templates for the homology modeling
of other TLR ectodomains. However, given the variability in
repeat numbers and type arrangements of LRRs contained
within TLRs, a full length template with a sufficient sequence
identity is typically not available. This limitation can be
overcome by assembling multiple LRR templates. First, all
LRRs in the target sequence are identified. Then, the most
similar structure-known LRR based on sequence is found for
each LRR in the target sequence as a local template. Finally,
all local templates are assembled to generate a multiple
sequence alignment for the complete target sequence. TollML
enables the direct accessibility of accurate LRR sequence
partitions for the first step. The LRRML database [8] can
further provide suitable LRR structural templates. This LRR
template assembling approach was proven to be both feasible
and significant by recent structure modeling research into
human TLR7–9 [33].

Conclusions

We have developed a specialized database of TLR
structural motifs called TollML. It is supported by an
XML database management system and can be searched
and browsed with an easy-to-use web interface. This
interface is suitable for use with most graphical web
browsers and has been tested on the Windows, Mac and
Linux operating systems. TollML includes all TLR sequences
that are published in the NCBI protein database and semi-
automatically creates three levels of motif annotations. This
database can help to develop motif prediction programs, to
model three-dimensional structures of TLRs and to design
new mutation experiments to better understand receptor–
ligand or receptor–receptor interactions. We plan to update
TollML every 2–3 months since the number of sequenced
TLR proteins increases constantly.

Availability and requirements

This database is freely available at http://tollml.lrz.de. Any
internet user can search and download data from the
database, but only registered users can define and save
labels for arbitrary entries.
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Abstract

Background: Leucine-rich repeats (LRRs) are present in more than 6000 proteins. They are found in
organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions.
To date, more than one hundred crystal structures of LRR containing proteins have been determined.
This knowledge has increased our ability to use the crystal structures as templates to model LRR
proteins with unknown structures. Since the individual three-dimensional LRR structures are not
directly available from the established databases and since there are only a few detailed annotations for
them, a conformational LRR database useful for homology modeling of LRR proteins is desirable.

Description: We developed LRRML, a conformational database and an extensible markup
language (XML) description of LRRs. The release 0.2 contains 1261 individual LRR structures,
which were identified from 112 PDB structures and annotated manually. An XML structure was
defined to exchange and store the LRRs. LRRML provides a source for homology modeling and
structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we
modeled the mouse Toll-like receptor 3 (TLR3) by multiple templates homology modeling and
compared the result with the crystal structure.

Conclusion: LRRML is an information source for investigators involved in both theoretical and
applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

Background
Leucine-rich repeats (LRRs) are arrays of 20 to 30 amino
acid long protein segments that are unusually rich in the
hydrophobic amino acid leucine. They are present in
more than 6000 proteins in different organisms ranging
from viruses to eukaryotes [1]. The structure of the
LRRs and their arrangement in repetitive stretches
of variable length generate a versatile and highly
evolvable framework for the binding of manifold

proteins and non-protein ligands [2]. The crystal
structure of the ribonuclease inhibitor (RI) yielded the
first insight into the three-dimensional molecular basis
of LRRs [3]. It has a horseshoe shaped solenoid structure
with parallel b-sheet lining the inner circumference and
a-helices flanking its outer circumference. To date, there
are over one hundred crystal structures available.
All known LRR domains adopt an arc or horseshoe
shape [1].
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The LRR sequences can be divided into a highly conserved
segment (HCS) and a variable segment (VS). The highly
conserved segment consists of an 11 or 12 residue stretch
with the consensus sequence LxxLxLxxN(Cx)xL. Here, the
letter L stands for Leu, Ile, Val or Phe forming the
hydrophobic core, N stands for Asn, Thr, Ser or Cys, and x
is any amino acid. The variable segment is quite diverse in
length and consensus sequence, accordingly eight classes
of LRRs have been proposed [4, 5]: 'RI-like (RI)', 'Cysteine-
containing (CC)', 'Bacterial (S)', 'SDS22-like (SDS22)',
'Plant-specific (PS)', 'Typical (T)', 'Treponema pallidum
(Tp)' and 'CD42b-like (CD42b)'.

The discrepancy between the numbers of structure-known
LRR proteins and the structure-unknown ones triggered
studies focusing on the homologymodeling of LRR proteins
[6-8]. Homology modeling is a computational method,
which is widely used to identify structural features defining
molecular interactions [8-10]. The modeling results are an
important input for the design of biochemical experiments.
The first step of homology modeling is the selection of a
structure-known protein, which serves as a template for the
unknown target structure. In practice, however, it is difficult
to find a complete template which has a high enough
sequence identity to the target repetitive protein (single
template modeling), due to different repeat numbers and
varying arrangements. This limitation can be overcome by
combining multiple templates. First, the most similar
structure-known LRRs are found for each LRR in the target
sequence as a local template. Second, all local templates are
combined to generate the multiple sequence alignments for
the entire target sequence. Thus, it is possible to construct a
start model for further investigation, even if no adequate
single template is available. Such an approach, however,
requires a comprehensive database of LRRs to extract
adequate template candidates. So far, the individual three-
dimensional LRR structures are not directly available from
the established databases and there are only a few detailed
annotations for them. Additional information such as
sequence insertions and types is missing. In order to
consolidate this information and to provide a source for
homologymodeling and structural analysis of LRR proteins,
we developed LRRML, a database and an extensible markup
language (XML) description of LRR structures.

Construction and content
Structure-known LRR proteins were extracted from the
Protein Data Bank (PDB) [11] release Sept 10, 2008. In
order to ensure that all LRR proteins were found, we
combined three groups of search results. First, 'leucine rich
repeat', 'leucine rich repeats', 'leucine-rich repeat', 'leucine-
rich repeats', 'lrr' and 'lrrs' were used as keywords in the PDB
quick search; second, 'SCOP classification -> Alpha and beta
proteins (a/b) -> Leucine-rich repeat' was used as options in

PDB advanced search; third, 'CATH classification -> Alpha
Beta -> Alpha-Beta Horseshoe -> Leucine-rich repeat' was
used as options in PDB advanced search. Because of the
irregularity (mutations and insertions in the sequence) of
LRRs reliable identifications of LRRs contained in the LRR
proteins could only be performed manually. We inspected
the three-dimensional structures of the LRR proteins using
molecular viewers and identified each LRR based on two
criteria:

1. A LRR begins at the beginning of the highly conserved
segment (HCS) and ends at the end of the variable segment
(VS) (just before the HCS of the next LRR).

2. TheHCS of a LRRmust pose a typical conformation, i.e. a
short b-sheet begins at about position 3 and a hydrophobic
core is formed by the four L residues at position 1, 4, 6,
and 11.

The LRRs were then manually classified according to the
consensus sequences [4, 5]. In addition to the eight
canonical LRR classes listed in the background section we
included a new class 'other' for the N-/C-terminal LRRs and
some hyper-irregular LRRs. Table 1 illustrates the consensus
sequences of the eight canonical LRR classes.

During the LRR identification and classification all sequence
insertions longer than 3 residueswere annotated. About one
tenth of entries have insertions longer than 3 residues while
few entries have deletions, which suggests that the evolution
of LRRs may prefer insertion to deletion.

The LRRML release 0.2 contains 1261 LRR entries from
112 PDB structures. Among them 548 LRRs are distinct on
sequence level, indicating that different molecules can
share identical LRRs. By superimposition, we found that
they also have highly similar structures. This fact enhances
the confidence in modeling LRR proteins using multiple
LRR templates. A histogram of entry length distribution

Table 1: Consensus sequences of the eight canonical LRR classes
[4, 5].

Classes HCS VS

Typical type (T) LxxLxLxxNxL xxLxxxxLxxLxx
Bacterial type (S) LxxLxLxxNxL xxLPx(x)LPxx
Ribonuclease inhibitor-like
type (RI)

LxxLxLxxNxL xxxxxxxLxxxLxxxxx

SDS22-like type (SDS22) LxxLxLxxNxL xxLxxLxxLxx
Cysteine-containing type (CC) LxxLxLxxCxxL TDxxxxxLxxxCxx
Plant-specific type (PS) LxxLxLxxNxL xxxLPxxLGxLxx
Treponema pallidum type (Tp) LxxLxLPxxLxx LxxxAFxxCxx
CD42b type (CD42b) LxxLxLxxNxL xxLPxxxxxxxxx

L: Leu, Ile, Val, Phe; N: Asn, Thr, Ser, Cys; P: Pro; T: Thr; D: Asp; G: Gly;
A: Ala; F: Phe; C: Cys; x: random residues.
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(Figure 1) shows that the LRR lengths are concentrated in
the interval from 20 to 29, which covers the characteristic
lengths of consensus sequences of the eight canonical
LRR classes. Some entries have a sequence longer than 30,
because they contain large insertions. Table 2 presents the
distribution of LRR entries and PDB entries over the nine
classes respectively. The classification results are consis-
tent with a previous report which showed that LRRs from
different classes never occur simultaneously in the same
protein and have most probably evolved independently
[4]. Exceptions to this rule are the T and S types which
often exist in the same protein forming the super motif
'STT' [12]. It is assumed that both evolved from a
common precursor [1].

Currently, there are several protein databases containing
information on LRRs, such as Pfam [13], InterPro [14],
SMART [15] and Swiss-Prot [16]. These databases predict
the LRR numbers and boundaries for their LRR protein
entries by various computational methods, no matter
whether the entries have known three-dimensional

structures or not, thereby 'false negative' occurs frequently.
Table 3 lists the numbers of structure-known LRR proteins
and their LRRs covered by these databases. As more
detailed examples, LRR numbers of LRR proteins from
different classes reported by the established databases are
compared in Table 4. Additionally, the individual three-
dimensional LRR structures are not directly available from
these databases. In order to combine the information
required for homology modeling and structural analysis,
LRRML is provided with three prominent characteristics:

1. Each database entry is an individual three-dimen-
sional LRR structure, which was identified with high
accuracy.

2. Extensive annotations, such as systematic classifica-
tion, secondary structures, HCS/VS partitions and
sequence insertion, are provided.

3. LRRs were extracted from all structure-known LRR
protein structures from PDB.

Figure 1
LRR entry length distribution. The most common entry lengths vary from 20 to 29. Each LRR class has a characteristic
length distribution. Some entries have a sequence length larger than 29 due to insertions.

Table 2: Numbers of LRR and PDB entries (release 0.2) in the nine LRR classes.

T S RI SDS22 CC PS Tp CD42b Other Total

LRR structures 272 72 151 372 184 10 0 0 200 1261

LRR entries 169 40 59 114 28 10 0 0 128 548

PDB entries 32 13 50 16 1 0 0 - 112

Up to present, no crystal structures for LRR proteins of Tp/CD42b types are determined. Different from other LRR types, the S type and T type LRRs
evolved from a common precursor [1] and thus can exist in the same PDB entry simultaneously.
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XML description
The extensible markup language (XML) was standardized
in the 90s and is well established as a format for
hierarchical data. It can be queried and parsed more
easily by application programs. Therefore, more and
more biological databases use the XML as data saving
format and database management system (DBMS)
[17-19]. LRRML was designed by using eXist [20], an
XML DBMS, and using XPath/XQuery [21] for processing
queries and web forms. We developed a LRR markup
language (LRRML) for exchanging and storing LRR
structures. It consists of four blocks of information:

1. The sequence information (XML tag <l:Sequence>):
amino acid sequence and sequence length.

2. The classification information (XML tag <l:Type>):
class name and consensus sequences.

3. The sequence partitions (XML tag <l:Regions>): amino
acid sequence, position, length and insertion of HCS
and VS.

4. The corresponding PDB sources (XML tag
<l:Sources>): ID, chain, LRR number and classification
of the source PDB entries; serial number, position,
DSSP [22] secondary structure and three-dimensional

coordinates of the current LRR in these source PDB
entries.

An example describing the LRR3 from PDB entry 2O6S is
shown in Figure 2. The document type definition (DTD)
file of LRRML is provided asAdditional file 1.

Utility
Web application
The entire database can be browsed by LRR IDs or by
PDB IDs. When browsing, the entries appear in a
summary table containing at first ID, type and sequence.
Clicking on an ID opens an XML Stylesheet (XSLT) [21]
converted HTML web page that presents the entry in
detail. The original XML file and the coordinates file in
PDB format can also be downloaded. The XSLT file used
is provided as Additional file 2. Aside from the textual
view, a LRR structure can be visualized by the online
molecular viewer Jmol [23]. After loading, users can
change the view settings flexibly by themselves. LRRML
is provided with various search functions, including PDB
ID search which returns all LRRs contained in this PDB
structure, class search which returns all LRRs of this class,
or length search which returns all LRRs with this
sequence length. To simplify the homology modeling,
the similarity search was implemented. It returns the
structures of the most similar LRRs for a structure-
unknown LRR. The target LRR sequence can be searched
against the entire database, a certain LRR class or LRRs
with a certain length. At first, a global pair wise sequence
alignment with sequence identity will be generated for
the target LRR and each of the LRRs in the user selected
set. Then, the most similar LRRs will be returned as
template candidates, ranked by sequence identity.

The DBMS provides a REST-style application programming
interface (API) through HTTP, which supports GET and
POST requests. A unique resource identifier (URI) 'http://
zeus.krist.geo.uni-muenchen.de:8081/exist/rest/...' is trea-
ted by the server as path to a database collection. Also,
request parameters can help select any required elements.

Table 3: Coverage of LRR proteins with PDB structures of
different databases.

Databases Numbers of LRR proteins
with PDB structures

Numbers of identified
LRRs

InterPro 62 325
Swiss-Prot 98 997
Pfam 48 173
SMART 84 547
LRRML 112 1261

The results were obtained on October 13, 2008.

Table 4: Comparison of LRR numbers of different LRR proteins by different databases.

PDB codes Protein functions LRR classes InterPro Swiss-Prot Pfam SMART LRRML

2A0Z Immune System T 18 22 7 20 25
1G9U Toxin S 7 15 1 0 15
2FT3 Structural Protein T+S 8 8 5 9 12
1K5D Signaling Protein RI 2 8 0 0 11
1GWB Glycoprotein SDS22 6 6 4 7 8
2P1M Signaling Protein CC 2 16 0 6 18
1OGQ Inhibitor PS 7 10 2 0 10

All listed LRR numbers include N-/C-terminal LRRs. To date, only the LRRML database contains the complete set of LRRs of all LRR proteins with
known structures. The results were obtained on October 13, 2008.
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Figure 2
The LRRML description of a LRR structure. This entry is a 24 residue long typical LRR. The first 11 residues compose
its HCS and the last 13 residues compose its VS (no insertions). It is contained only in the chain A of PDB structure
2O6S (a protein involved in the immune system). It is the third one of the 7 LRRs of 2O6S, from position 77 to 100.
Its secondary structure was extracted from DSSP and its three-dimensional coordinate file is available though the hyperlink on
the corresponding web page.
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Figure 4
Ramachandran plot of model and crystal structure of mouse TLR3 ectodomain. (A) Predicted model of mouse
TLR3 ectodomain. (B) Crystal structure of mouse TLR3 ectodomain. The different colored areas indicate 'disallowed' (white),
'generously allowed' (light yellow), 'additional allowed' (yellow), and 'most favored' (red) regions.

Figure 3
Comparison of model and crystal structure of mouse TLR3 ectodomain at the two ligand interaction regions. Blue:
structure obtained by homology modeling; orange: crystal structure (PDB code: 3CIG). (A) The modeled backbone structure of
mouse TLR3 ectodomain. (B) Model and crystal structure superimposed at the N-terminal interaction region. The root mean square
deviation is 1.96 Å. (C) Superimposition at the C-terminal interaction region. The root mean square deviation is 1.9 Å. The reported
interacting residues are presented with side chain and labelled with residue name and position in (B) and (C).
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For example, '_query' executes a specified XPath/XQuery;
the URL "http://zeus.krist.geo.uni-muenchen.de:8081/
exist/rest/db/lrrml?_query=//LRR [.//TAbbr='S']" returns
all the S type LRRs.

Application in homology modeling
LRRML was designed as a tool for template selection in
homology modeling of LRR proteins. Traditionally, the
template used in homology modeling is one or more full
length protein structures obtained via similarity search.
Nevertheless, due to the different repeat numbers and
arrangements of LRRs, the sequence identity between the
target and the full length template is usually not high
enough for homology modeling. With LRRML the most
similar structure-known LRR can be found for each LRR
in the target sequence as a local template. The combina-
tion of all local templates through multiple alignments
helps to achieve a high sequence identity to the target.

As test case we modeled the structure of mouse Toll-like
receptor 3 (TLR3) ectodomain. We assumed that the
structure of mouse TLR3 ectodomain were unknown and
excluded the LRRs of mouse/human TLR3 ectodomain
from LRRML. Through similarity search the optimal
template for each of the 25 LRRs in mouse TLR3 was
found. The sequence identity between each LRR pair
(target/template LRR) is listed in Table 5. Then a 26-line
multiple alignment was generated by the 25 template
sequences and the target sequence as the input of
MODELLER 9v3 [24]. The resulting three-dimensional
model (Figure 3A) was evaluated by PROCHECK [25],
with 98.2% residues falling into the most favored or
allowed regions of the main chain torsion angles
distribution, whereas the result of the TLR3 crystal
structure (PDB code: 3CIG) was 98.6% (Figure 4). The
mouse TLR3 has been shown to bind double-stranded
RNA ligand with both N-terminal and C-terminal sites
on the lateral side of the convex surface of TLR3 [26]. The
N-terminal interaction site is composed of LRRNT and
LRR1-3, and the C-terminal site is composed of LRR19-
21. We superimposed the resulting model onto the
crystal structure of mouse TLR3 ectodomain at the two
interaction sites by using SuperPose v1.0 [27]. The root
mean square deviations of the structures are 1.96 Å and
1.9 Å respectively (Figure 3B/C), indicating that the
predicted model sufficiently well matched the crystal
structure and was useful for prediction of ligand
interaction sites. These results demonstrate that homol-
ogy modeling using combined multiple templates
obtained from LRRML can create valuable information
to trigger further biochemical research. Interpretation of
structural details, however, should be done exercising
due care.

Conclusion
A specialised conformational leucine-rich repeats data-
base called LRRML has been developed. It is supported
by an XML database management system and can be
searched and browsed with either an easy-to-use web
interface or REST like interface. The interface is suitable
for most graphical web browsers and has been tested on
the Windows, Mac and Linux operating systems. LRRML
contains individual three-dimensional LRR structures
with manual structural annotations. It presents useful
sources for homology modeling and structural analysis
of LRR proteins. Since the amount of structure-deter-
mined LRR proteins constantly increases, we plan to
update LRRML every 2 to 3 months.

Availability and requirements
This database is freely available at http://zeus.krist.geo.
uni-muenchen.de/~lrrml.
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a b s t r a c t

Toll-like receptors (TLRs) belong to the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) superfamily
which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. TLRs recognize
pathogen-associated molecular patterns and initiate an intracellular kinase cascade to trigger an imme-
diate defensive response. SIGIRR (single immunoglobulin interleukin-1 receptor-related molecule),
another member of the TLR/IL-1R superfamily, acts as a negative regulator of MyD88-dependent TLR sig-
naling. It attenuates the recruitment of MyD88 adaptors to the receptors with its intracellular TIR
domain. Thus, SIGIRR is a highly important molecule for the therapy of autoimmune diseases caused
by TLRs. So far, the structural mechanism of interactions between SIGIRR, TLRs and adaptor molecules
is unclear. To develop a working hypothesis for this interaction, we constructed three-dimensional mod-
els for the TIR domains of TLR4, TLR7, MyD88 and SIGIRR based on computational modeling. Through pro-
tein–protein docking analysis, we developed models of essential complexes involved in the TLR4 and 7
signaling and the SIGIRR inhibiting processes. We suggest that SIGIRR may exert its inhibitory effect
through blocking the molecular interface of TLR4, TLR7 and the MyD88 adaptor mainly via its BB-loop
region.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Toll-like receptors (TLRs) are essential for the innate immune
system because they recognize molecules, such as single-stranded
RNA or CpG DNA that are associated with pathogens. Such nuclear
antigen-recognizing receptors are also important in the autoim-
mune disease systemic lupus erythematosus. The disease pro-
gresses as a consequence of the recognition of self nucleic acids
by TLRs (Rahman and Eisenberg, 2006). For the future development
of therapeutic approaches it is important to understand possible
TLR inhibition mechanisms from a structural point of view.

TLRs belong to the Toll-like receptor/interleukin-1 receptor
(TLR/IL-1R) superfamily, which is defined by the presence of a
conserved cytoplasmic Toll/interleukin-1 receptor (TIR) domain
(Bowie and O’Neill, 2000) connected to an ectodomain through a
single transmembrane stretch. To date, 13 TLRs have been identi-

fied in mammals. Their ectodomains consist of 16–28 leucine-rich
repeats (LRRs). These LRRs provide a variety of structural frame-
works for the binding of protein and non-protein ligands including
lipopolysaccharide (LPS), lipopeptide, CpG DNA, flagellin, imidazo-
quinoline and double-/single-stranded RNA (Gay and Gangloff,
2007). TLRs are capable of recognizing ligands in a dimer form
(Latz et al., 2007; Liu et al., 2008; Park et al., 2009; Peter et al.,
2009; Wei et al., 2009). Upon receptor activation, an intracellular
TIR signaling complex is formed between the receptor and down-
stream adaptor TIR domains (O’Neill and Bowie, 2007). MyD88
(Myeloid differentiation primary response protein 88) was the first
intracellular adaptor molecule characterized among all known
adaptors in the TLR signaling (Takeda and Akira, 2004). It consists
of an N-terminal death domain (DD) separated from its C-terminal
TIR domain by a linker sequence. MyD88 also forms a dimer
through DD-DD and TIR-TIR domain interactions when recruited
to the receptor complex (Burns et al., 1998). MyD88 can recruit
IRAK (IL-1RI-associated protein kinases) through its DD to continue
signaling and, finally, to induce the nuclear factor-jB (NF-jB) lead-
ing to the expression of type I interferons. Although the MyD88-
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dependent pathway is common to most TLRs, TLR3 exclusively
uses TRIF (TIR domain-containing adapter inducing interferon-b)
for signaling (MyD88-independent) while the TLR4 can signal via
both pathways (Takeda and Akira, 2004).

SIGIRR (Single immunoglobulin interleukin-1 receptor-related
molecule), also known as TIR8, was initially identified as an Ig do-
main-containing receptor of the TLR/IL-1R superfamily (Thomas-
sen et al., 1999). Both the extracellular and intracellular domains
of SIGIRR differ from those of other Ig domain-containing recep-
tors, as its single extracellular Ig domain does not support li-
gand-binding. Its intracellular TIR domain cannot activate NF-jB
because it lacks two crucial amino acids, Ser447 and Tyr536. More-
over, the TIR domain of SIGIRR extends that of the typical TLR/IL-1R
superfamily member by more than 73 amino acids at the C-termi-
nal (C-tail) (Thomassen et al., 1999). Instead, SIGIRR acts as an
endogenous inhibitor for MyD88-dependent TLR and IL-1R signal-
ing. This behavior was shown by over expression of SIGIRR in Jur-
kat or HepG2 cells which showed substantially reduced LPS, CpG
DNA or IL-1-induced activation of NF-jB (Polentarutti et al.,
2003; Qin et al., 2005; Wald et al., 2003). Thus, SIGIRR has attracted
tremendous research interest because of its regulating function in
cancer-related inflammation and autoimmunity (Lech et al., in
press). For example, systemic lupus erythematosus is caused by
TLR7-mediated induction of type I interferons. Compared with
wild type mice Sigirr-deficient mice develop excessive lymphopro-
liferation when introduced into the context of a lupus susceptibil-
ity gene (Lech et al., 2008). Although the significance of SIGIRR has
been widely acknowledged, its inhibition mechanism remains un-
clear owing to a lack of structural information.

Mutagenesis studies investigated three deletion mutants of SI-
GIRR (Qin et al., 2005): DN (lacking the extracellular Ig domain),
DTIR (lacking the intracellular TIR domain) and DC (lacking the
C-tail of the TIR domain with deletion of residues 313–410). The
results showed that only the TIR domain (excluding the C-tail part)
is necessary for SIGIRR to inhibit TLR4 signaling (Qin et al., 2005).
Nevertheless, detailed structural interaction mechanisms of SI-
GIRR’s TIR domain are still missing.

So far, the structures of the TIR domains of human TLR1, 2, 10
and IL-1RAPL have been determined by X-ray crystallography
(Khan et al., 2004; Nyman et al., 2008; Xu et al., 2000). The TLR1
and 2 modules occur as monomers in solution and the packing of
the molecules in the crystal lattice does not suggest a likely
arrangement for a functional dimer. In contrast, the TLR10 and
IL-1RAPL TIR domains were present as homodimers. Although they
demonstrate different dimer conformations, a highly conserved
BB-loop region plays a crucial role in both dimer interfaces. Using
this information, we have constructed three-dimensional models
for TIR domains of TLR4, TLR7, MyD88 and SIGIRR by homology
modeling and protein threading. Models of essential molecular
complexes involved in the TLR4 and 7 signaling pathways and
the SIGIRR inhibiting process are proposed and compared based
on results of protein–protein docking studies. We chose TLR4 as
an additional example to elucidate the mechanisms involved in
the negative regulation of the MyD88-dependent TLR signals by SI-
GIRR, because different mechanisms of TLR4 recognizing LPS and
TLR7 recognizing single-stranded RNA may lead to different struc-
tural interactions of receptor with SIGIRR, which enables further
insight into the molecular interaction.

2. Methods

2.1. Templates identification and sequence alignments

Amino acid sequences of the target proteins, human TLR4
(GenBank Accession No. O00206), TLR7 (Q9NYK1), MyD88

(AAC50954) and SIGIRR (CAG33619) were extracted from the NCBI
protein database (Wheeler et al., 2008). Three-dimensional models
of TLR4 (Asn672-Ala814), TLR7 (Cys889-Asp1036), MyD88
(Glu159-Pro296) and SIGIRR (Tyr165-Pro308, without the C-tail
Arg309-Ser392) were constructed by homology modeling. Due to
the homology of the target proteins, four common templates were
obtained via BLAST search against the Protein Data Bank (PDB)
(Berman et al., 2000). They were TLR1 (PDB code: 1FYV), TLR2
(1FYW), TLR10 (2J67) and IL-1RAPL (1T3G). Multiple sequence
alignment of each target with the templates was generated with
MUSCLE (Edgar, 2004) and analyzed with Jalview (Clamp et al.,
2004). Because the secondary structure of the TIR domain is com-
posed of well-organized alternating b-strands and a-helixes, we
adjusted the alignments manually according to the secondary
structure information to improve the alignment quality. The sec-
ondary structure of each target was predicted by PSIPRED (Bryson
et al., 2005). In addition, the C-terminal tail of the TIR domain,
which is unique to SIGIRR, has no homologue of known structure
to serve as a template. In this case we employed the protein
threading method THREADER 3.5 (Jones et al., 1995) to determine
a template structure. The selected template was NSF-N (N-terminal
domain of N-ethylmaleimide sensitive factor, PDB code: 1QCS).

2.2. Model construction and validation

The initial three-dimensional coordinates of the models were
generated by the fully automated program MODELLER 9v3 (Fiser
et al., 2000). The input files for each model were a 5-line multiple
alignment file (one target and four templates) and coordinate files
of the templates. During modeling, gap regions in the alignment
produced 3–8 residue-long loop structures in the model, which
deteriorated the model’s accuracy. ModLoop (Fiser and Sali,
2003) was used to rebuild the coordinates of these loop regions.
ModLoop optimizes the positions of non-hydrogen atoms of a loop
(shorter than 20 residues) relying on a protocol consisting of a con-
jugate gradient minimization and a molecular dynamics simula-
tion. Finally, we used the model quality assessment programs
ProQ (Wallner and Elofsson, 2003), ModFOLD (McGuffin, 2008)
and MetaMQAP (Pawlowski et al., 2008) to evaluate the output
candidate models and select the most reliable one.

2.3. Model docking

Unrestrained pairwise model docking included eight com-
plexes of TIR domains: TLR4-TLR4, TLR7-TLR7, MyD88-MyD88,
TLR4 dimer-MyD88 dimer (tetramer), TLR7 dimer-MyD88 dimer
(tetramer), TLR4-SIGIRR, TLR7-SIGIRR and MyD88-SIGIRR. We
used GRAMM-X (Tovchigrechko and Vakser, 2006) and ZDOCK
(Chen et al., 2003), which are widely accepted rigid-body pro-
tein–protein docking programs, to predict and assess the interac-
tions between these complexes. Both programs rank the 10 most
probable predictions out of thousands of candidates based on
geometry, hydrophobicity and electrostatic complementarity of
the molecular surface. We then selected the most reasonable
solution from these top 10 lists in consideration of further qual-
ifications. Briefly, these qualifications included residue conserva-
tion of the interaction sites, steric compatibility of the amino
acid linker to the transmembrane helix, and knowledge from
published articles (Bell et al., 2006; Loiarro et al., 2007; Nunez
Miguel et al., 2007; Nyman et al., 2008; Park et al., 2009; Polto-
rak et al., 1998). The buried surface interaction area of dimer
models were calculated with the protein interfaces, surfaces
and assemblies service (PISA) at the European Bioinformatics
Institute (Krissinel and Henrick, 2007).
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3. Results

3.1. Molecular modeling of TIR domains

In the secondary structure-aided alignments for the homology
modeling, the average target-template sequence similarity of
TLR4, TLR7, MyD88 and SIGIRR was 51.7%, 50.4%, 44.5% and
42.7%, respectively (detailed in Table 1). The resulting structures
exhibit a typical TIR domain conformation in which a central
five-stranded parallel b-sheet (bA-bE) is surrounded by a total of
five a-helixes (aA–aE) on both sides (Fig. 1A). The loops are named
by the letters of the secondary structure elements that they con-
nect. For example, the BB-loop connects b-strand B and a-helix
B. The structure of NSF-N was identified as a template for SIGIRR’s
C-tail through protein threading. This template was first-ranked by

THREADER according to the energy Z-score (Z = 2.7: borderline sig-
nificant (Jones et al., 1995)). The C-tail contains a four-stranded
parallel b-sheet with an a-helix and several loop structures on
one side, while the other side points to SIGIRR’s TIR (Fig. 1A). These
results suggest that the TIR domain and the C-tail of SIGIRR are not
an integrative structure, but two interconnected individual mod-
ules. There is a 3 residue-long short linker (Leu307-Arg309) be-
tween the last secondary structure aE of SIGIRR’s TIR and the
first secondary structure bA of SIGIRR’s C-tail. Therefore, the C-tail
can only be situated next to the aE of the TIR domain. Further eval-
uation of the models involved analysis of geometry, stereochemis-
try and energy distributions of the molecules. The evaluation
results (Table 2) indicate high quality for all models in terms of
overall packing.

Multiple sequence alignment of TIR domains from different
molecules detected seven conserved boxes in the TIR domain
(Fig. 1B). Our models show that they correspond to b-strand A
(bA), b-strand B (bB), BB-loop, b-strand C (bC), b-strand D (bD), b-
strand E (bE) and a-helix E (aE). Functional significance can usually
be observed in conserved regions. Nevertheless, the five b-strands
(boxes 1, 2, 4–6) are embedded structures that form a hydrophobic
core of the TIR domain and hence are not likely to interact with
other molecules. Also, the aE (box 7) of SIGIRR is blocked because
it is linked to the C-tail. In this vein, the BB-loop (box 3) and aE of
TLR4, TLR7 and MyD88, along with the BB-loop of SIGIRR, may be

Table 1
Protein sequence similarities (%) between targets and templates.

TLR1 TLR2 TLR10 IL-1RAPL Avg

TLR4 53.4 57.8 51.4 44.2 51.7
TLR7 51.0 55.8 49.3 45.6 50.4
MyD88 44.5 45.3 40.6 47.4 44.5
SIGIRR 41.8 42.3 37.7 49.0 42.7

Fig. 1. Three-dimensional structures and conserved regions of TIR domains of TLR4, TLR7, MyD88 and SIGIRR. (A) The BB-loop and aE regions are highlighted in orange and
green respectively. As there is a three residue-long linker between the two modules of SIGIRR’s TIR, the orientation of the C-tail as shown here is speculative. (B) Multiple
sequence alignment of different TIRs indicates seven conserved boxes. (C) Surface charge distribution (APBS electrostatics) of BB-loop and aE with red indicating areas of
negative charge and blue indicating positive charge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

J. Gong et al. / Journal of Structural Biology 169 (2010) 323–330 325



important to ensure binding specificity achieved by different com-
binations of TIRs during signaling (Fig. 1A). Fig. 1C illustrates the
electrostatic surface potential of these BB-loops and aEs. Accord-
ingly, all BB-loops can be divided into two self-complementary
parts. The N-terminal (upper region of BB-loops in Fig. 1C) is neg-
atively charged, whereas the C-terminal (lower region of BB-loops
in Fig. 1C) is positively charged. The aEs, by contrast, are predom-
inantly positive.

3.2. Pairwise docking of TIR domains

The procedure of protein–protein docking is highly computation-
ally oriented. The reliability of docking results strongly depends on
the quality of docking methods. In order to verify the prediction con-
fidence of TIR-TIR interaction of both methods GRAMM-X and
ZDOCK, we unrestrainedly inputted as test case the TIR domains of
human TLR10 as test case, for which the dimeric crystal structure
is known. The native dimerization geometry of TLR10 was present
in the top 10 solutions of both GRAMM-X and ZDOCK and was
first-ranked by GRAMM-X and sixth-ranked by ZDOCK. The incom-
pleteness of TLR10’s crystal structure led to the first five incorrect
predictions of ZDOCK, in which large structural gaps were involved
in the dimer interfaces. It was therefore straightforward to exclude
these five solutions. This test highlights the feasibility and reliability
of GRAMM-X and ZDOCK applied in TIR-TIR docking.

As noted above, TIR domains are able to interact heterotypically
with each other. To elucidate how SIGIRR disturbs the MyD88-
dependent TLR4 and 7 signals, an understanding of the interaction
mode of the TLR4 and 7 signaling complexes without the presence
of SIGIRR is indispensable. We thus performed unrestrained rigid-
body docking for eight TIR complexes. Each docking method re-
turned the 10 most probable models for an input. Thus each com-
plex received a total of 20 candidate models separated into two
sets. Some models from the same set had similar conformations
whereas most differed considerably from one another. There were
some shared models (intersection) across both sets for each com-
plex. These shared models were considered as more confident
solutions than others. The optimal docking solution was selected
for each complex from the 20 candidates based on three criteria,
as follows:

1. Exclude models that do not exist in the intersection of both
resulting sets.

2. Exclude models that contain a steric incompatibility of the
amino acid liker to the transmembrane helix.

3. Include only those models in which the dimerization geometry
is supported by reported experimental data or the dimerization
interface is associated with highly conserved boxes as described
in Fig. 1B.

For most complexes this three-step filtering led to a unique
solution. In the case of the TLR4-TLR4 and the TLR7 dimer-

MyD88 dimer, where these three rules did not yield a unique solu-
tion, a further qualification had to be considered. The highest-
ranked model by ZDOCK/GRAMM-X ranking was then accepted
as the optimal model. The ZDOCK/GRAMM-X ranking and the bur-
ied surface interaction area of all optimal models are detailed in
Table 3. All resulting docking models are provided in Supplemen-
tary file 1.

3.2.1. TLR4–TLR4
The signaling mechanism of TLR4 involves receptor dimeriza-

tion (Park et al., 2009). After the three-step filtering two candidate
models remained. Their ZDOCK/GRAMM-X rankings were 1/6 and
9/2. The first model was accepted because it was best ranked on
average and ZDOCK provided a clear-cut ranking. TLR4’s TIR re-
veals an axially symmetric dimer (Fig. 2A) with the BB-loop (in-
volved residues: Pro714-Ala717) of one monomer protruding
into a groove formed by the aC (Cys747-Ile748) and DD-loop
(Gln782) of the other. The aB (Ala719) of each monomer interacts
tightly with each other in the middle of both BB-loop connections.
In this model, the Pro714 of one monomer and the Gln782 of the
other are connected by a hydrogen bond, which supports Poltorak’s
(1998) conclusion that the corresponding residue Pro712 is essen-
tial to mouse TLR4’s function.

3.2.2. TLR7–TLR7
TLR7’s TIR forms a face-to-tail conformation. The BB-loop (face,

Glu930–Pro938) of one monomer is preceded by the aE (tail,
Tyr1024–Ala1032) of the other (Fig. 2B). The BB-loop also interacts
with some other regions close to the aE, including: CD-loop
(Lys982–Val983), bD (Ile986–Leu988), aD (Gly1009), DE-loop
(Ser1010–Ser1011), bE (Val1012–Pro1016) and EE-loop (Thr1017
and Ala1021). Aside from this connection, the EE-loop (Thr1017–
Ala1021) of the frontal monomer approximates the aA (Thr905–
Glu917) of the posterior. Since the BB-loop and aE are located on
opposite sides of a TIR domain, such a face-to-tail dimer can be ex-
tended by additional TIRs. This dimer model may be relevant for a
possible oligomerization of nucleic acid-recognizing TLRs. As dis-
cussed by Bell et al. (2006), oligomers might be formed if a nucleic
acid ligand is sufficiently long to aggregate several receptors.

3.2.3. MyD88–MyD88
MyD88 forms a dimer when it is incorporated into a receptor

complex (Burns et al., 1998). In this model, the BB-loops
(Asp195–Cys203) from both monomers were docked together in
an antiparallel self-complementary packing (Fig. 2A). Additionally,
both aCs (Cys233–Lys238) were brought into contact next to the
BB-loop connection. The model is axially symmetric similar to
the dimeric crystal structure of human TLR10 (Nyman et al.,
2008). Our model is consistent with Loiarro’s (2007) conclusion
that a heptapeptide, which mimics the BB-loop of MyD88’s TIR do-
main, strongly interferes with dimerization of MyD88.

Table 2
Model evaluation. ProQ_LG: >1.5 fairly good; >2.5 very good; >4 extremely good.
ProQ_MS: >0.l fairly good; >0.5 very good; >0.8 extremely good. ModFOLD_Q: >0.5
medium confidence; >0.75 high confidence. ModFOLD_P: <0.05 medium confidence;
<0.01 high confidence. MetaMQAP_GDT/RMSD: an ideal model has a GDT score over
59 and a RMSD around 2.0 Å.

ProQ_LG/MS ModFOLD_Q/P MetaMQAP_GDT/RMSD

TLR4 4.764/0.705 0.6177/0.022 76.923/2.123 Å
TLR7 4.374/0.579 0.6199/0.022 71.791/2.138 Å
MyD88 3.966/0.628 0.5749/0.027 73.188/2.202 Å
SIGIRR 3.783/0.438 0.7589/0.010 65.068/2.737 Å
C-tail 2.018/0.300 0.7731/0.009 52.083/3.023 Å

Table 3
Ranking and interaction area of the selected docking models.

ZDOCK GRAMM-X Interaction area (Å2)

TLR4–TLR4 1 6 639.0
TLR7–TLR7 1 3 965.3
MyD88–MyD88 1 7 737.2
TLR4 � 2-MyD88 � 2 4 1 1395.1
TLR7 � 2-MyD88 � 2 1 5 1249.3
TLR4–SIGIRR 1 6 1092.4
TLR7–SIGIRR 4 1 1055.2
MyD88–SIGIRR 2 9 818.1

326 J. Gong et al. / Journal of Structural Biology 169 (2010) 323–330



3.2.4. TLR4 dimer–MyD88 dimer
The receptor dimers and MyD88 dimer described above were

assembled into tetramers. The TLR4 dimer provides a negatively
charged binding pocket adjacent to its interface (Fig. 3). This pock-
et is constituted by the aC (Gln755) of one TLR4 monomer as well
as the aB (Ala719–His724) and aC (Tyr751–Thr756) of the other
monomer (TLR4*). The highly conserved, positively charged aE
(Cys280–Arg288) of a MyD88 monomer just fills the pocket and
makes interactions with the above described residues of TLR4
(Fig. 2A). This connection is further stabilized by three surrounding
links: MyD88’s DE-loop (Ile271) to TLR4’s CD-loop (Arg763–
Ala764); MyD88’s EE-loop (Asp275–Thr277) to TLR4’s CD-loop
(Thr756–Gln758); and MyD88’s aA (Gln181–Asn186) to TLR4*’s
CD-loop (Trp757–Leu760).

3.2.5. TLR7 dimer–MyD88 dimer
After the three-step filtering, two candidate models remained

for this dimer. Their ZDOCK/GRAMM-X rankings were 1/5 and 4/
6, respectively. The first model obtained the higher ranking in both
programs and was thus accepted as optimal. Although TLR7 dimer-
izes in a different manner as compared to TLR4, it also generates a
negatively charged aE-binding pocket for MyD88 at the corre-
sponding location (Figs. 2B and 3). The pocket is composed of aA

(Glu906–Glu911) and EE-loop (Trp1015–Pro1019) of one TLR7
monomer, and AA-loop (Thr899–Val904) and aA (Thr905–
Glu906) of the other monomer (TLR7*). This pocket connection is
further stabilized by three surrounding links: TLR7’s aA (Glu906)
and AA-loop (Thr899–Pro902) to MyD88’s CD-loop (His248–
Arg251); TLR7’s EE-loop (Pro1019–Ala1021) to MyD88’s AB-loop
(Asn186–Arg188) and bB (Leu189); and TLR7*’s aA (Glu906–
Ala914) to MyD88’s AB-loop (Thr185–Asn186) and aA (Gln181–
Gln184). Both TLR4–MyD88 and TLR7–MyD88 tetramers show a
T-shaped conformation, where the highly conserved aE of
MyD88 plays a central role (Fig. 2).

3.2.6. TLR4-sigirr
SIGIRR heterodimerizes with TLR4 and acts as an inhibitor of

TLR signaling (Qin et al., 2005). Our docking model exhibits an
extensive interface that is composed of three patches, which indi-
cates a strong molecular affinity (Fig. 2A). First, a consecutive
stretch containing SIGIRR’s BB-loop (Asp200–Glu209) and aB
(Pro210–Ser211) interacts with TLR4’s CD-loop (Trp757–Leu760).
Second, SIGIRR’s aC (Arg235–Arg243) protrudes into the groove
formed by TLR4’s aB (Ala719–His728) and aC (Tyr751–Gln755).
Third, SIGIRR’s aD (Pro268–Ala269) interacts with TLR4’s BB-loop
(Val716–Ala717). Fig. 3 shows that the proper MyD88’s aE-binding

Fig. 2. Models of SIGIRR inhibiting the MyD88-dependent TLR4 and 7 signaling. Interacting regions of BB-loop and aE are labeled in orange and green respectively. Other
interacting regions are labeled in yellow. All interacting residues (orange/green/yellow) are represented using CPK (Corey, Pauling & Kultun) convention. (A) Models of SIGIRR
inhibiting the TLR4 signaling. (B) Models of SIGIRR inhibiting the TLR7 signaling.
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pocket presented by the TLR4–TLR4 dimer does not persist in the
TLR4-SIGIRR dimer. Notably, the C-tail of SIGIRR is located on the
opposite side of SIGIRR’s interacting surface. Therefore, it may
not participate in the dimer interface (Qin et al., 2005).

3.2.7. TLR7–SIGIRR
Similar to TLR7–TLR7, the TLR7–SIGIRR model is face-to-tail, with

SIGIRR replacing the rear TLR7 monomer as shown in Fig. 2B. The
molecular interface between TLR7 and SIGIRR is larger than that be-
tween TLR7 and TLR7. SIGIRR’s BB-loop (Asp200–Ala208) together
with the beginning of the adjacent aB (Pro210–Ser211) interacts
with TLR7’s aE (Tyr1024–Thr1035), CD-loop (Lys982–Asp984), bD
(Val985–Leu988), DE-loop (Ser1010–Ser1011) and bE (Val1012–
Glu1014). Simultaneously, TLR7’s DD-loop (Lys993–Phe995) inter-
acts with SIGIRR’s AA-loop (Asp173) and aA (Asn182). Likewise,
there is no MyD88 aE-binding pocket on this dimer (Fig. 3) and SI-
GIRR’s C-tail does not seem to play any role (Qin et al., 2005).

3.2.8. MyD88–SIGIRR
SIGIRR interferes with the functional dimer conformation of

MyD88 by heterodimerization with MyD88 (Qin et al., 2005). The
molecular interface between MyD88 and SIGIRR is also quite large
(Fig. 2A). SIGIRR’s BB-loop (Asp201–Ala208) complements
MyD88’s BB-loop (Asp195–Val204) by substituting the other BB-
loop in the customary MyD88 homodimer. Furthermore, SIGIRR’s
AA-loop (Ser172–Cys174) and aC (Arg235–Ala236) interacts with
MyD88’s aC (Gln229–Thr237) under the BB-loops. This model is
similar to the dimeric crystal structure of human TLR10 (Nyman
et al., 2008), where the BB-loop was identified as a main compo-
nent of interactions. Likewise, SIGIRR’s C-tail does not seem to af-
fect the dimer (Qin et al., 2005).

4. Discussion

So far, the only crystallized dimer structure of TLR’s TIR do-
main is the TLR10 dimer (Nyman et al., 2008), where the BB-loop
and aC of each monomer constitute the major part of the sym-
metric dimer interface. Nunez Miguel et al. (2007) assumed that
TLR4 dimerizes in a manner identical to that of TLR10 despite

having no direct evidence. However, we do not consider them
to be necessarily identical, because the TIR domain has various
inherent dimer conformations (Khan et al., 2004; Nyman et al.,
2008; Tao et al., 2002) and TLR4 has different ligand-binding
and signaling mechanisms than TLR10. Poltorak et al. (1998) re-
ported that a single point mutation (Pro712His) of the TIR domain
of murine TLR4 abolished the TLR4 response to LPS. Our human
TLR4 dimer model supports their results. The corresponding res-
idue Pro714 is located at the very tip of the BB-loop and interacts
tightly with Gln782 of the other monomer. In contrast to the
intensively studied TLR4, structural information about the TIR do-
main of TLR7 is missing. We thus propose a dimer model of the
TLR7 TIR domain. The dimer interaction is maintained mainly
by the BB-loop and aE, which are highly conserved among TIRs
of different molecules (Fig. 1B).

Triggering of the TLR causes the adaptor protein MyD88 to be
recruited to the receptor complex, which in turn promotes associ-
ation with kinases IRAK4/1. Mal (MyD88-adaptor-like) is another
TIR domain-containing adapter protein specifically required by
the TLR2 and 4 signaling (Gray et al., 2006). A previous study indi-
cated that Mal promotes the recruitment of MyD88 to TLR4 as a
bridging factor and there is no direct interaction between MyD88
and TLR4 (Brown et al., 2006). However, Mal has been shown to
be dispensable for TLR4 signaling when MyD88 is fused to a PIP2
targeting domain (Kagan and Medzhitov, 2006). Therefore, direct
interactions between TIR domains of MyD88 and TLR4 may medi-
ate signal transduction. This alternate Mal-independent pathway
could contribute to signaling as discussed recently (Monie et al.,
2009; Ohnishi et al., 2009). Dunne et al. (2003) modeled the
TLR4-MyD88 heterodimer using TLR4 and MyD88 monomers. This
monomer to monomer model, however, may not fully reflect the
molecular interactions. Our model of the receptor dimer docking
to the MyD88 dimer provides additional information for a struc-
tural interpretation. In particular, both tetramers (TLR4 dimer-
MyD88 dimer and TLR7 dimer-MyD88 dimer) exposed in our study
demonstrate that the stimulus-induced dimerization of TIR do-
mains creates a new negatively charged molecular pocket for the
binding of the positively charged aE of the MyD88 adaptor
(Fig. 3). In the presence of SIGIRR, the proper shape and electric

Fig. 3. Surface charge distribution of TIR dimers.Both TLR4-TLR4 and TLR7-TLR7 dimers generate a negatively charged (red) pocket adjacent to their dimer interface to hold
the positively charged (blue) aE of MyD88 (charge of aE shown in Fig. 1C). The incorporation of SIGIRR completely disturbed the proper shape and electric environment of the
pocket. The aE is represented by a green tube and the other part of MyD88 is omitted for better view. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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environment of the MyD88-binding pocket are completely dis-
turbed (Fig. 3).

The results from the pairwise docking studies presented here
could be assembled to derive a working hypothesis for the TLR4
and 7 signaling transductions and the SIGIRR inhibition mode
(Fig. 2). Receptor activation would trigger the formation of TLR4
and 7 TIR dimers recruiting MyD88 TIR dimers resulting in a
signaling tetramer. Model predictions including SIGIRR reveal that
SIGIRR binds to TLR4 and 7 by occupying their self-interacting
sites. On the other hand, the MyD88-SIGIRR dimer shows a resem-
blance to the MyD88 homodimer. That is, SIGIRR replaces a MyD88
monomer, interrupting the MyD88 homodimer formation. In all
cases the BB-loop of SIGIRR plays a key role in binding. The relative
positions of all these TIR complexes to the cell/endosome mem-
brane are difficult to expatiate because MyD88 is dissociated from
the membrane, and TIR domains of TLR4, TLR7 and SIGIRR are con-
nected to their transmembrane helix by a 20–30 amino acid-long
loop stretch which endows the TIR domain with flexible depth
and orientation in a cell. Remarkably, TLR4, TLR7 and MyD88 pos-
sess a more extensive molecular interface with SIGIRR (heterodi-
mer) than with themselves (homodimer) (Table 3). Fig. 3 also
shows that the spatial approximation of receptor-SIGIRR is closer
than that of receptor-receptor. These observations highlight the
strong molecular affinity of SIGIRR as an inhibitor. In addition,
according to our model, SIGIRR’s unique C-tail is distant from the
active BB-loop consistent with the observation that this tail is
not required for SIGIRR’s inhibitory effect on TLR signaling (Qin
et al., 2005).

In summary, we propose a residue-detailed structural frame-
work of SIGIRR inhibiting the TLR4 and 7 signaling pathways.
These results were obtained by computer modeling and are ex-
pected to facilitate efforts to design further site-directed mutagen-
esis experiments to clarity the regulatory role of SIGIRR in
inflammatory and innate immune responses.
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Abstract
Multiple genetic factors contribute to the clinical variability of spontaneous systemic lupus
erythematosus (SLE) but their role in drug-induced SLE remain largely unknown. Hydro-
carbon oil-induced SLE depends on mesothelial cell apoptosis and Toll-like receptor (TLR)-
7-mediated induction of type I interferons. Hence, we hypothesized that TIR8/SIGIRR,
an endogenous TLR inhibitor, prevents oil-induced SLE. Sigirr-deficient dendritic cells
expressed higher TLR7 mRNA levels and TLR7 activation resulted in increased IL-12
production in vitro. In vivo, lack of SIGIRR increased surface CD40 expression on spleen
CD11c+ dendritic cells and MX-1, TNF, IL-12, BAFF and BCL-2 mRNA expression
6 months after pristane injection. Spleen cell counts of CD4−/CD8− ‘autoreactive’ T cells
and B220+ B cells were also increased in Sigirr−/− mice. Serum autoantibody analysis
revealed that Sigirr deficiency specifically enhanced the production of rheumatoid factor
(from 4 months of age) and anti-snRNP IgG (from 5 months of age), while anti-Smith IgG
or anti-dsDNA IgG were independent of the Sigirr genotype. This effect was sufficient to
significantly aggravate lupus nephritis in Sigirr-deficient mice. Structure model prediction
identified the BB loop of SIGIRR’s intracellular TIR domain to interact with TLR7 and
MyD88. BB loop deletion was sufficient to completely abrogate SIGIRR’s inhibitory effect
on TLR7 signalling. Thus, TIR8/SIGIRR protects from hydrocarbon oil-induced lupus by
suppressing the TLR7-mediated activation of dendritic cells, via its intracellular BB loop.
Copyright  2009 Pathological Society of Great Britain and Ireland. Published by John
Wiley & Sons, Ltd.
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Introduction

Genetic and environmental factors drive both the
onset and the progression of autoimmune diseases
[1]. As such, a number of variants in immunoreg-
ulatory genes increase the risk for systemic lupus
erythematosus (SLE) [2–4]. In mice, lack of single
genes, such as TGFβ1, DNAse1, Lyn, Fas or C1q,
is sufficient to cause late-onset lupus-like autoim-
munity [5–9]. Mutant Sle1 or TLR9 can trig-
ger lupus in C57BL/6 mice only in the presence
of a second genetic factor, eg the lpr mutation
[10,11]. Weaker modifier genes, such as IL-10 or
IL-27R, enhance lupus only in a genetic context
of multiple susceptibility genes, eg being provided
by the specific genetic background of MRL mice
[12,13].

The TIR8 gene encodes for single immunoglobu-
lin IL-1-related receptor (SIGIRR), a member of the
Toll-like receptor (TLR)/IL-1 receptor family [14,15].

Over-expression of SIGIRR in Jurkat or HepG2
cells suppresses LPS or IL-1-induced activation of
NF-κB, hence SIGIRR is an endogenous inhibitor of
TLR and IL-1 signalling [14,16,17]. Sigirr-deficient
mice develop severe immunity-mediated tissue dam-
age upon pathogen challenge or dextran-induced dam-
age of the intestinal epithelium [16,18–21]. Lack
of SIGIRR also enhances spontaneous autoimmu-
nity in C57BL/6lpr/lpr mice [22]. These mice suf-
fer from defective Fas-induced apoptosis of autore-
active lymphocytes, which massively increases the
exposure of nuclear autoantigens to the immune
system [23]. Hence, the aggravated phenotype of
Sigirr-deficient C57BL/6lpr/lpr mice could best be
explained by a suppressive effect of Sigirr on self-
RNA and -DNA-mediated activation of dendritic cells
and B cells, a process known to involve TLR7 and
TLR9 [10,24–27]. For example, plasmacytoid den-
dritic cells are the major source of type I inter-
ferons upon recognition of RNA via TLR7 [25],

Copyright  2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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whereas conventional dendritic cells produce inter-
feron mainly upon cytosolic RNA recognition recep-
tors [28].

Whether SIGIRR also suppresses environmentally-
induced autoimmunity is unknown. To address this
question would require SLE-like disease to be induced
in genetically unaltered mice without a predisposing
autoimmune genetic background. We therefore used
the hydrocarbon oil 2,6,10,14-tetramethyl-pentadecane
(pristane) to induce SLE in Sigirr−/− and Sigirr+/+
mice of an identical C57BL/6 background. Intraperi-
toneal injection of pristane induces apoptosis of
mesothelial cells, followed by granulomatous peri-
tonitis with the formation of ectopic lymphoid tis-
sue [29]. In this model, the persistent abundance of
apoptotic peritoneal cells in the context of chronic
inflammation triggers TLR7 signalling, type I inter-
feron expression and the subsequent evolution of
antinuclear antibodies, immune complex disease and
lupus nephritis [30,31]. We hypothesized a role for
Tir8/Sigirr in limiting pristane-induced SLE by sup-
pressing intraperitoneal inflammation and/or autoanti-
body generation.

Methods

Animal studies

Sigirr-deficient mice on a F6 C57BL/6 genetic back-
ground were generated as previously described [19].
The genotype was assured by PCR in each mouse at
5 weeks of age before mice of both genotypes were
intraperitoneally injected with 0.5 ml pristane (Sigma-
Aldrich, Steinheim, Germany). Blood samples were
taken at monthly intervals after pristane injection (at
age 6 weeks) until sacrifice at 6 months after pristane
injection. In a subgroup of mice, peritoneal lavage
fluid was obtained at 2 and 28 days after pristane
injection. All experiments were performed in accor-
dance with the German animal care and ethics legisla-
tion and had been approved by the local government
authorities.

Phenotype analysis

Flow cytometry, real-time quantitative (TaqMan) RT–
PCR, and autoantibody analysis were performed as
previously described [22,32]. PCR primers are listed
in Table 1. Formalin-fixed tissue sections (2 µm) for
periodic acid–Schiff (PAS) stains were prepared fol-
lowing routine protocols. The severity of kidney
disease was graded by an observer blinded to the
genotype of the mice, using a glomerulonephritis
activity score (0–24) normally used for the assess-
ment of human lupus nephritis [31]. Immunostain-
ing was performed on either paraffin-embedded or
frozen sections as described [26], using the fol-
lowing primary antibodies: anti-mouse C3c (com-
plement, GAM/C3c/FITC, 1 : 200; Nordic Immuno-
logical Laboratories, Tilburg, The Netherlands) or

anti-mouse B220 (BD Pharmingen, Heidelberg, Ger-
many). Negative controls included incubation with a
respective isotype antibody. Semi-quantitative scor-
ing of glomerular C3c deposits from 0 to 3+ was
performed on 15 cortical glomerular sections, as
described [33].

Structure and interaction model predictions

Amino acid sequences of human TLR7, MyD88 and
SIGIRR (targets) were extracted from the NCBI pro-
tein database [34]. TIR domains of TLR7, MyD88 and
SIGIRR (TYR165-PRO308, without the C-terminal
extension) were modelled by homology modelling.
Four template structures were obtained via BLAST
search against the Protein Data Bank (PDB) [35]:
TLR1 (PDB code 1FYV), TLR2 (1FYW), TLR10
(2J67) and IL-1RAPL (1T3G). Multiple alignments of
target-template sequences and structural coordinates of
templates were submitted to MODELLER 9v3 [36]
to generate the three-dimensional (3D) target struc-
tures. Since the C-terminal extension of SIGIRR has
no structure-known homologue, we built its struc-
ture using protein threading (THREADER 3.5 [37]).
The resulting models were then evaluated by ProQ
[38] and MetaMQAP [39]. The protein docking pro-
grams GRAMM-X [40] and ZDOCK [41] were used
to predict the pairwise interactions between these TIR
domains. Both programs can return 10 models ranked
as the most probable predictions, selected from thou-
sands of candidates, based on geometry, hydropho-
bicity and electrostatics complementarity of molecule
surfaces.

In vitro studies

HEK 293 cells (2 × 105), stably transfected with
hTLR7, were cultured overnight in 1 ml DMEM com-
plete medium before being transiently transfected with
lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)
and pUNO, full-length hSIGIRR or SIGIRR mutants,
all in pUNO expressing vector (Invivogen, San Diego,
CA, USA) and the NF-κB luciferase reporter con-
struct (Clontech, Mountain View, CA, USA) with a
final amount of 2 µg. After 24 h the cells were stimu-
lated with 1 µg imiquimod (Invitrogen) and luciferase
activity was determined after 6 h using Promega’s
Dual-Glo luciferase kit. The primers were designed
to anneal to the template sequences flanking the target
sites, which were sequences to be deleted (�BB loop-
SIGIRR, forward, 5′-GACTGCCCCGACCTCTTGG
TGAACCTGAG-3′, reverse, 5′-CAAGAGGTCGGGG
CAGTCGCTGTAGGAG-3′;�TIR-SIGIRR, forward,
5′-GTGGAGATACGGAAGGTGCAGTACAGGC-3′,
reverse, 5′-CACCTTCCGTATCTCCACCTCCCCAT
AC-3′). The pUNO-hSIGIRR plasmid was used as
the template for mutagenesis. A 25 µl PCR reaction
was composed of 1 µl template (200 ng), 1 µl each
primer (20 pM each), 2 µl dNTP mixture, 2.5 ml 10×
buffer, 0.5 µl Pfu Turbo DNA polymerase (2.5 U)
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and dH2O. The reaction was started with 2 min at
95 ◦C to pre-denature the template. This was followed
by 18 cycles of 1 min at 95 ◦C, 1 min at 58 ◦C and
1 min/kbp at 68 ◦C. Following the PCR reaction, 1 µl
DpnI (20 U; NEB, Ipswich, MA, USA) was added
and the mixture was incubated at 37 ◦C for 1 h to
degrade the original unmodified plasmid templates.
After DpnI digestion, 2 µl of the mixture was used
to transfect DHα-competent cells by heat shock. After
a 1 h recovery in 300 µl LB medium without antibi-
otics, the transformed Escherichia coli was spread on
Blas-Agar Blasticidin plates (Invivogen, San Diego,
CA, USA) and incubated at 37 ◦C overnight. Colonies
were selected and grown overnight in 3 ml LB with
blasticidin.

Statistical analysis

Statistical significance was evaluated by ANOVA or
by two-tailed Student’s t-test (two group comparisons)
at p < 0.05. Data were expressed as mean ± SEM.

Results

Sigirr modulates peritoneal cytokine production
after pristane exposure

Intraperitoneal injection of pristane induces massive
apoptosis of mesothelial cells and infiltrating neu-
trophils [29], lipogranuloma formation and interferon
signalling by peritoneal macrophages [30]. Macro-
scopically we did not detect any difference in the
peritoneal cavities of Sigirr+/+ and Sigirr−/− mice
2 and 28 days after pristane injection (Figure 1A,
left). Lavage fluids from these time points revealed
large numbers of dead mesothelial cells and mono-
cyte/macrophages often ingesting apoptotic neutrophils
(Figure 1A, right), but cell counts were identical in
Sigirr+/+ and Sigirr−/− mice (not shown). Lavage
fluid flow cytometry for propidium iodine and annexin
V revealed comparable levels of early apoptotic
(annexin V+) cells and late apoptotic (annexin V/
propidium iodine+) cells in Sigirr+/+ and Sigirr−/−
mice at all time points (not shown). Real-time
RT–PCR from peritoneal lavage fluid cell mRNA
showed significantly higher levels for IL-12 and TNFα
at 2 days and IFNγ and the IFNα/β-dependent gene
Mx1 28 days after pristane injection (Figure 1B).
Lavage fluid ELISA revealed significantly higher lev-
els of TNFα but not of IL-12p40 2 days after pris-
tane injection, while IFNα, -β and -γ were not
detectable by ELISA (Figure 1C). At 28 days, TNFα
and IL-12p40 levels had increased but were genotype-
independent (Figure 1C).

Sigirr suppresses the activation of dendritic cells
6 months after pristane exposure

We used flow cytometry to quantify the numbers
of splenic CD11c dendritic cells that stain positive

for the activation marker CD40 at 6 months of age.
Lack of Sigirr significantly increased the numbers of
CD40+ dendritic cells (Figure 2A). Lack of Sigirr was
also associated with increased mRNA levels of Mx1,
TNFα, IL-4 and IL-12 in these cells (Figure 2B).
Sigirr-deficient spleen dendritic cells also expressed
higher levels of Baff and Bcl2 (Figure 2C), which
support the survival of B and/or T cells [42]. Con-
sistent with the stronger activation of dendritic cells,
Sigirr-deficient mice had higher IL-12p40 serum levels
as compared to wild-type mice injected with pristane
at 6 months of age (5.9 ± 1.6 versus 1.1 ± 0.8 ng/ml,
p < 0.0001). Thus, Sigirr suppresses dendritic cell
activation and serum IL-12p40 levels 6 months after
pristane exposure.

Sigirr suppresses pristane-induced
lymphoproliferation

Pristane induced mild splenomegaly at 6 months
in wild-type mice. Lack of Sigirr caused a trend
towards higher spleen weights, but with consider-
able interindividual variability (Figure 2D), but flow
cytometry revealed sigificantly higher numbers of
spleen cells in Sigirr-deficient mice treated with pris-
tane (Figure 2E). This was due to lymph follicle
hyperplasia with massive enlargement of B220+ B
cell areas (Figure 2F). We also observed higher num-
bers of CD4/CD8 double-negative ‘autoreactive’ T
cells and CD4+CD25+ ‘regulatory’ T cells in Sigirr-
deficient mice treated with pristane (Figure 3C, D).
The latter was consistent with a significant induction
of Foxp3 mRNA levels in CD3+CD4+CD25+ cells
of Sigirr-deficient mice (Figure 3E). The numbers of
CD3+CD4+ and CD3+CD8+ cell were not affected
by the Tir8 genotype (Figure 3A, B). However, in
CD4+CD25−T cells, lack of Sigirr was associated
with higher mRNA expression levels of the Th1 mark-
ers T-bet and IFNγ (Figure 3F) and the Th2 markers
Gata and IL-4 (Figure 3G). The Th17 marker Ror-
γ was significantly down-regulated, although IL-17
mRNA levels were markedly induced in pristane-
treated Sigirr-deficient mice (Figure 3H). Together,
Sigirr suppresses the expansion of spleen B cells as
well as of autoreactive and regulatory T cells after
pristane injection.

Sigirr suppresses pristane-induced autoantibodies
to nuclear autoantigens

We obtained serum samples at monthly intervals
from pristane-treated mice of both genotypes and
antibody levels were determined by ELISA. Total
serum IgG levels were comparable at all time points
in Sigirr-deficient and wild-type mice (Figure 4).
Small amounts of antibodies directed against dsDNA
IgG of the IgG1 isotype and against nucleosomes
were detectable by ELISA but the levels did not
differ between Sigirr-deficient and wild-type mice
(Figure 4). The specificity of dsDNA autoantibodies
was confirmed by Critidiae luciliae assay (not shown).

J Pathol 2010; 220: 596–607 DOI: 10.1002/path
Copyright  2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.



Sigirr/Tir8 in pristane-induced lupus 599

Figure 1. Tir8/Sigirr genotype and pristane-induced peritonitis. Pristane injection into Sigirr+/+ and Sigirr−/− mice caused
lipogranuloma formation in the peritoneal cavity, as indicated by white arrows in the left image of (A). The right image of (A) shows
microscopic analysis of peritoneal fluids, which revealed large amounts of apoptotic cells (black arrows) inside and outside of
phagocytes (white arrows and insert), independent of the Sigirr−/− genotype. (B) Real-time RT–PCR of peritoneal fluid samples
taken 2 and 28 days after pristane injection was used to quantify intraperitoneal mRNA expression. Data are expressed as a ratio
to respective 18s rRNA as a reference gene. (C) Peritoneal fluid levels of TNFα and IL-12p40 were determined by ELISA. Data in
(B, C) are expressed as means ± SEM of 14 mice in each group of Sigirr+/+ (black bars) and Sigirr−/− mice (white bars). ∗p < 0.05
versus wild-type; #p < 0.05 versus 2 days

Anti-dsDNA of the IgG2a/c, IgG2b and IgG3 isotypes
remained undetectable at all time points (not shown).
By contrast, lack of Sigirr significantly induced the
production of rheumatoid factor and anti-SnRNP IgG
from 4 and 5 months after pristane exposure, respec-
tively (Figure 4). Antibodies against the Smith anti-
gen were produced from month 4, but the levels
did not differ between the two genotypes (Figure 4).
Thus, Sigirr specifically suppresses the production of

rheumatoid factor and anti-SnRNP IgG but does not
affect DNA autoantibody production after pristane
exposure in mice.

Sigirr prevents pristane-induced lupus nephritis

Pristane does not cause major autoimmune tissue
lesions in C57BL/6 mice, although mild
glomerulonephritis may develop [30]. Lack of Sigirr
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Figure 2. Sigirr genotype, dendritic cell activation and spleen morphology. (A) The total number of spleen CD11c+ dendritic
cells positive for the activation marker CD40 was quantified 6 months after pristane injection by flow cytometry. Data represent
means ± SEM from 14 mice in each group. #p < 0.05 versus pristane-injected wild-type mice. (B, C) RNA was isolated from
spleen CD11c+ cells from Sigirr−/− (white bars) and Sigirr+/+ mice (black bars) 6 months after pristane injection for real-time
RT–PCR analysis. Data are expressed as means of the ratio of the specific mRNA to that of 18S rRNA ± SEM. ∗p < 0.05 versus
wild-type mice. (D, E) Spleen weight (D) was determined 6 months after pristane injection in untouched wild-type mice (grey bar),
pristane-injected wild-type mice (black bar) and Sigirr-deficient mice (white bar). Total spleen cell numbers (E) were determined by
flow cytometry, as described in Methods. ∗p < 0.05 versus untouched wild-type mice; #p < 0.05 versus pristane-injected wild-type
mice. (F) Representative images of spleen PAS stains and B220 immunostaining from mice at 6 months. Original magnification, ×100

was associated with diffuse mesangio-proliferative
glomerulonephritis, as indicated by glomerular hyper-
cellularity, PAS-positive matrix expansion and
glomerular leukocyte infiltrates (Figure 5A). Glomeru-
lar C3c deposits were scored 1.2 ± 0.2 in Sigirr−/−
mice and 0.3 ± 0.1 in wild-type mice (p = 0.003;
Figure 5A). The composite activity score for lupus
nephritis was 6.8 ± 0.6 in Sigirr−/− mice and 3.5 ±
0.3 in wild-type mice (p = 0.0002; Figure 5B). Albu-
minuria constantly increased in Sigirr-deficient mice
and started to be significantly higher at 5 months as

compared to wild-type mice (Figure 5C). The differ-
ence was highest at 6 months. Together, Sigirr protects
mice from diffuse proliferative lupus nephritis after
pristane exposure.

In silico structure analysis predicts the BB loop
of Sigirr’s TIR domain as the interaction site
with TLR7 and Myd88

Because lupus autoantigens drive SLE by ligat-
ing TLR7, we speculated that Sigirr is induced by
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Figure 3. Sigirr genotype and T cell subsets. Six months after pristane injection, spleen T cell subsets were assessed by flow
cytometry (A–D), as described in Methods. The histograms presents mean ± SEM of at least 14 mice in each group. (E–H)
Real-time RT–PCR from CD4+CD25+ cells or CD4+CD25− cells was used to quantify additional T cell markers. Data ratios
to respective 18s rRNA as a reference gene and are expressed as means ± SEM of 10 mice in each group. #p < 0.05 versus
pristane-injected wild-type mice

inflammation and that it suppresses TLR7 signalling,
especially in antigen-presenting cells. Sigirr mRNA
was induced in spleen monocytes by LPS or TNFα/
IFNγ , with a maximum expression level at 18 h of
stimulation (Figure 6A, B). In addition, the TLR7 ago-
nist imiquimod activated bone marrow dendritic cells
to produce IL-12, a response that was five-fold higher
in Sigirr-deficient dendritic cells (Figure 6C), perhaps
also because the basal TLR7 mRNA expression was
significantly higher in Sigirr-deficient dendritic cells
(Figure 6D). But can Sigirr directly interfere with
TLR7 signalling at the structural level?

Because crystallographic structures of human TLR7,
MyD88 and SIGIRR TIR domains are not avail-
able, we developed 3D structural models based on
homology modelling and protein threading. The pre-
dicted structures of TLR7, MyD88 and SIGIRR TIR

domains were evaluated as extremely good or ideal
by several model quality assessment programs (data
not shown). The BB loop (face) and the α-helix
E region (neck) appeared to be conserved among
all the different TIR domains (Figure 7A) and are
localized on opposite regions of the SIGIRR TIR
domain (Figure 7B). Then, the protein-docking soft-
wares GRAMM-X and ZDOCK were used to pre-
dict pairwise molecular interaction sites of com-
plexes formed by TLR7–TLR7, MyD88–MyD88,
TLR7–SIGIRR and MyD88–SIGIRR. The top-ranked
dimer model was selected for each complex
(Figure 7C). According to these predictions, receptor
activation would trigger the formation of TLR7 TIR
dimers in a face-to-neck orientation, recruiting MyD88
TIR face-to-face dimers and forming a T-shaped
signalling tetramer (complex B in Figure 7C). The
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Figure 4. Sigirr genotype and serum immunoglobulin and
lupus autoantibody levels. Wild-type mice (open squares) and
Sigirr-deficient mice (black squares) were bled at monthly
intervals after pristane injection to determine serum levels
of IgG and a number of different autoantibodies, as indicated by
ELISA. Data represent means ± SEM from at least 14 mice in
each group. ∗p < 0.05 versus wild-type mice at the same time
point

stimulus-induced dimerization of TIR domains cre-
ates a molecular pocket for the binding of α-helix E
of the MyD88 adaptor. Model predictions, including
SIGIRR’s TIR, revealed that SIGIRR interacts with
TLR7 by occupying TLR7 TIR’s α-helix E region
with its BB loop, which should interrupt TLR7 homod-
imer formation (complex A in Figure 7C). In addi-
tion, SIGIRR’s BB loop was predicted to interact
with the BB loop of MyD88, which should inter-
rupt MyD88 homodimer formation (complex C in
Figure 7C). According to our model, SIGIRR TIR’s
unique C-terminal extension (ca. 100 amino acids;
Figure 7B) is located distant from the BB loop, con-
sistent with the observation that this extension is
not required for SIGIRR’s inhibitory effect on TLR
signalling (16).

Table 1. Primers used for RT–PCR

Gene name Primer sequence

Baff Forward 5′-CCTCCAAGGCATTTCCTCTT-3′
Reverse 5′-GACTGTCTGCAGCTGATTGC-3′

Bcl2 Forward 5′-GATCCAGGATAACGGAGGCT-3′
Reverse 5′-GGTCTTCAGAGACAGCCAGG-3′

FoxP3 Forward 5′-TTCATGCATCAGCTCTCCAC-3′
Reverse 5′-CTGGACACCCATTCCAGACT-3′

Gata3 Forward 5′-GCCTGCGGACTCTACCATAA-3′
Reverse 5′-AGGATGTCCCTGCTCTCCTT-3′

Ifn-γ Forward 5′-ACAGCAAGGCGAAAAAGGAT-3′
Reverse 5′-TGAGCTCATTGAATGCTTGG-3′

Il-4 Forward 5′-TGAACGAGGTCACAGGAGAA-3′
Reverse 5′-CGAGCTCACTCTCTGTGGTG-3′

Il-12 Forward 5′-CTAGACAAGGGCATGCTGGT-3′
Reverse 5′-GCTTCTCCCACAGGAGGTTT-3′

Il-17 Forward 5′-TCCAGAAGGCCCTCAGACTA-3′
Reverse 5′-TGAGCTTCCCAGATCACAGA-3′

Mx1 Forward 5′-TCTGAGGAGAGCCAGACGAT-3′
Reverse 5′-CTCAGGGTGTCGATGAGGTC-3′

Ror-γ Forward 5′-ACAGAGACACCACCGGACAT-3′
Reverse 5′-GGTGATAACCCCGTAGTGGA-3′

Tbet Forward 5′-TCAACCAGCACCAGACAGAG-3′
Reverse 5′-ATCCTGTAATGGCTTGTGGG-3′

Tnf-α Forward 5′-CCACCACGCTCTTCTGTCTAC-3′
Reverse 5′-AGGGTCTGGGCCATAGAACT-3′

18s RNA Forward 5′-GCAATTATTCCCCATGAACG-3′
Reverse 5′-AGGGCCTCACTAAACCATCC-3′

A Sigirr TIR mutant lacking the BB loop
can no longer block TLR7 signalling

To verify the functional role of the BB loop for
TLR7 signalling, we over-expressed full-length TLR7
in HEK293 cells, together with full-length Sigirr or
various Sigirr mutants. Full-length Sigirr potently sup-
pressed NF-κB reporter gene expression 6 h after stim-
ulation with the TLR7 agonist imiquimod (Figure 7D).
By contrast, lack of the TIR domain or the BB
loop only completely abrogated this inhibitory effect
on TLR7 signalling. Together, Sigirr TIR’s BB loop
mediates the inhibitory effect of Sigirr on TLR7
signalling.

Discussion

Lack of Sigirr clearly aggravated pristane-induced
autoimmune tissue injury. In the kidney, Sigirr-
deficiency was associated with diffuse proliferative
lupus nephritis and significant albuminuria as com-
pared to wild-type C57BL/6 mice, which revealed only
minor glomerular abnormalities. The role of Sigirr in
inhibiting pristane-induced autoimmunity was clearly
documented by increased dendritic cell activation,
increased numbers of CD4/CD8 double-negative T
cells and B cells in spleen as well as increased serum
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Figure 5. Sigirr genotype and lupus nephritis 6 months after pristane injection. (A) Renal sections were stained with PAS and
immunostaining was performed for complement factor C3c (DAPI stains cell nuclei blue), as indicated. Original magnification, ×200.
Images are representative for 10 mice in each group. (B) The lupus nephritis activity index (range 0–24) was assessed on renal
PAS-stained sections at 6 months after pristane injection, as described in Methods. (C) Urinary albumin : creatinine ratio was
determined from urine samples taken from at least 14 wild-type mice (open squares) and Sigirr-deficient mice (black squares) at
monthly intervals after pristane injection. #p < 0.05 versus pristane-injected wild-type mice

levels of IL-12 and selected autoantibodies in Sigirr-
deficient mice. In this regard, the data from pristane-
induced lupus matches our previous data obtained
from Sigirr-deficient C57BL/6lpr/lpr mice with sponta-
neous autoimmunity [22]. However, in C57BL/6lpr/lpr

mice Sigirr had a global suppressive effect on the
evolution of hypergammaglobulinaemia and autoanti-
bodies of multiple specificities as early as at 2 months

of age [22]. By contrast, in pristane-induced lupus,
lack of Sigirr massively increased the production of
rheumatic factor and RNA autoantibodies, but not
before 4–5 months after pristane exposure. This was
most obvious for anti-Sm IgG and anti-U1snRNP,
because the Sm (Smith) antigen is the protein com-
ponent and U1snRNP the RNA component of the
U1snRNP ribonucleoprotein complex [43,44].
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Figure 6. Sigirr suppresses TLR7 signalling in dendritic cells. (A) Sigirr mRNA expression was determined by real-time RT–PCR
on RNA samples from spleen monocytes 12 h after stimulation with various doses of LPS or TNFα/IFNγ . (B) Sigirr induction was
quantified in spleen monocytes at various time intervals after stimulation with a given dose of LPS or TNFα/IFNγ . Data represent
mean ratios of Sigirr/18s rRNA ± SEM from three independent experiments. (C) Bone marrow dendritic cells from wild-type
mice (black bars) and Sigirr-deficient mice (white bars) were stimulated with imiquimod, as described in Methods. IL-12p40 was
determined after 24 h in cell culture supernatants. (D) Basal TLR7 mRNA expression was determined in the same cells by real-time
RT–PCR and is illustrated as a ratio to the respective 18s rRNA expression. Data represent means ± SEM from three independent
experiments. ∗p < 0.05 versus medium; #p < 0.05 versus wild-type mice

Because Sigirr-deficient mice did not display a
broader spectrum of autoantibodies than wild-type
mice, Sigirr does not seem to directly promote loss-
of-tolerance or epitope spreading. Obviously, Sigirr
rather specifically fosters the expansion of IgG and
RNA autoreactive lymphocyte clones that produce the
necessary components for pathogenic RNA immune

complexes. In turn, such RNA immune complexes are
known trigger TLR7 activation and type I interferon
signalling, a positive amplification loop [24,45–46].
In fact, pristane-induced lupus is driven by TLR7
signalling [30,31] and, most interestingly, lack of
TLR7 selectively impaired the production of pristane-
induced snRNP antibodies [30,31]. We therefore
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Figure 7. Models of SIGIRR inhibiting the TLR7 signalling pathway. (A) Amino acid sequence homologies of the intracellular TIR
domains of human TLR7, MyD88 and SIGIRR. (B) The 3D structural model of SIGIRR’s intracellular TIR domain was predicted as
described in Methods. The BB loop is indicated in orange; the α-helix E region is indicated in green. Note that the SIGIRR-specific
C-terminal extension links at the α-helix E. (C) Complex B, TLR7 homodimers (dark blue), linked by BB loop (orange)–α-helix
E (green) interaction, bind MyD88 homodimers (light blue), forming a T-shaped conformation. MyD88 homodimers are formed
by BB loop interactions (orange). The TLR7–MyD88 complex may not form when SIGIRR recruits to this complex as follows:
the predicted TLR7–SIGIRR interaction (complex A) should affect TLR7 homodimer formation, and SIGIRR–MyD88 interaction
(complex C) may affect MyD88 homodimer formation (SIGIRR interfering sites indicated by open arrows). (D) HEK293 cells,
constitutively expressing TLR7, were seeded at a concentration of 2 × 105 cells/well in a 12-well plate, and cultured overnight
in 1 ml DMEM complete medium. The next day the cells were transfected with TIR8 or TIR8 mutants or pUNO control vector
and the NF-κB luciferase reporter construct, as described in Methods. Cells were stimulated with 1 µg imiquimod and luciferase
activity was determined after 6 h. The values are percentages of the imiquimod-stimulated cells expressing empty pUNO vector.
Data represent means ± SEM of at least two independent experiments. ∗p < 0.05 versus pUNO control

hypothesized that Sigirr may directly inhibit TLR7
signalling.

Previous studies suggested that Sigirr can inhibit
TLR4 (but not TLR3 or TLR5) signalling via inter-
action at the level of their respective intracellular TIR

domains, which inhibits the necessary recruitment of
its adaptor Myd88 [17]. Our structure-based prediction
model of putative TIR–TIR interaction sites identified
the BB loop of SIGIRR’s intracellular TIR domain
as the most likely interaction site with TLR7, as well
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as with MyD88. Deletion of the BB loop completely
abrogated SIGIRR’s inhibitory effect on TLR7 sig-
nalling, as did the deletion of the entire TIR domain.
These data are in line with the report of Qin et al [17]
and further prove that SIGIRR also inhibits TLR7 via
this mechanism. In addition, Sigirr suppresses TLR7
mRNA expression, which adds to its suppressive effect
on TLR7 signalling.

In pristane-induced lupus, the immunoregulatory
function of Sigirr clearly localizes to the central
lymphoid organs, as indicated by the impact of Sigirr
deficiency on lymphocyte numbers and activation
states and autoantibody production.

We conclude that genes that regulate autoantigen-
driven dendritic cell activation determine environmen-
tally triggered autoimmunity, and that Tir8/Sigirr loss-
of-function mutations represent a novel genetic risk
factor for hydrocarbon oil-induced autoimmunity in
mice.
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Abstract: Toll-like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and

9 compose a family of intracellularly localized TLRs that signal in response to pathogen-derived

nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason,
their ligand-binding mechanisms are poorly understood. To enable first predictions of the

receptor–ligand interaction sites, we developed three-dimensional structures for the leucine-rich

repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high
sequence similarity between targets and templates, structural segments from all known TLR

ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates

for the modeling. The resulting models support previously reported essential ligand-binding
residues. They also provide a basis to identify three potential receptor dimerization mechanisms.

Additionally, potential ligand-binding residues are identified using combined procedures. We

suggest further investigations of these residues through mutation experiments. Our modeling
approach can be extended to other members of the TLR family or other repetitive proteins.

Keywords: Toll-like receptor; leucine-rich repeats; protein-nucleic acid interaction; homology

modeling

Introduction

Toll-like receptors (TLRs) play an essential role in the

innate immunity, recognizing invasion of microbial

pathogens and initiating intracellular signal transduc-

tion pathways to trigger expression of genes, the prod-

ucts of which can control innate immune responses.1

To understand how these receptors work, it is crucial

to investigate them from a structural perspective. To

date, only the crystal structures of the ectodomains of

human TLR1/2/3/4 and mouse TLR3/4 have been

determined.2–6 The progress of genome projects, how-

ever, already led to the identification of 13 TLRs in

mammalian and more than 20 TLRs in nonmamma-

lian. A total of more than 2000 TLR proteins has been

sequenced.7 Thus, the structures of most TLRs are still

unknown because structure determination by X-ray

diffraction or nuclear magnetic resonance spectroscopy

experiments remains time-consuming. Here, computa-

tional methods can help to bridge the gap between

sequence determination and structure determination.

To this end, homology modeling is a powerful tool to

predict the three-dimensional structure of proteins.

Homology modeling is based on the assumption

that similar sequences among evolutionarily related

proteins share an overall structural similarity. The

modeling procedure can be divided into a number of
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steps.8,9 First, selection of suitable template(s) related

to the target sequence. A template segment assembly

can usually improve the model quality.10 Second,

alignment of the target sequence to the template(s).

Third, building coordinates of the three-dimensional

model based on the alignment. Fourth, evaluation of

the model and its refinement. The resulting model can

then be used to infer biological functionalities or to

generate hypotheses for new experiments. A recent

study on TLR411 highlighted the reliability and the sig-

nificance of homology modeling applied to TLRs.

The structure of a TLR consists of a leucine-rich

repeat (LRR) ectodomain, a helical transmembrane

domain, and an intracellular Toll/IL-1 receptor homol-

ogy (TIR) signaling domain.12 The ectodomain contains

varying numbers of LRRs and resembles a solenoid bent

into a horseshoe shape. At both ends there is a terminal

LRR that shields the hydrophobic core of the horseshoe.

These ectodomains are highly variable. They are directly

involved in the recognition of a variety of pathogen-

associated motifs including lipopolysaccharide, lipopep-

tide, cytosine–phosphate–guanine (CpG) DNA, flagellin,

imidazoquinoline, and ds/ssRNA.13 Upon receptor acti-

vation, a TIR signaling complex is formed between the

receptor and adaptor TIR domains.14

The receptors TLR7, 8, and 9 compose a family15

with a longer amino acid sequence than other TLRs.

They are localized intracellularly and signal in

response to nonself nucleic acids. They also contain an

irregular segment between their LRR14 and 15. A

recent study showed that the ectodomains of TLR9

and 7 are cleaved in the endolysosome to recognize

ligands.16 Only the cleaved forms can recruit MyD88

on activation. In the absence of the crystallographic

structures, we developed structural models of cleaved

ligand-binding domains of TLR7/8/9 by homology

modeling. From the structural model we predict

potential ligand-binding sites and infer possible con-

figurations of the receptor–ligand complex.

Results

Template identification

Our target structures are the cleaved functional ectodo-

mains of the human TLR7/8/9 comprising LRR15–25

and N/C-terminal LRRs. All the six structure-known

TLR homologues were employed as template sources:

human TLR1/2/3/4 and mouse TLR3/4. The TLR ecto-

domain is composed of strictly organized LRRs. Never-

theless, the LRR number of cleaved ligand-binding

domain of human TLR7/8/9 is 13 (LRR15–25 and N/C-

terminal LRR),16 whereas the LRR number of the struc-

ture-known TLRs varies from 20 to 25. Therefore, none

of the structure-known TLRs is suitable to serve as a full

length template. To overcome this limitation, LRR seg-

ments with higher sequence similarity to the individual

LRRs in the target were selected from the six complete

homologous structures. The segments were then com-

bined into the multiple templates. Figure 1 shows the

multiple alignment models for the three proteins TLR

7/8/9, presenting the relationship between target and

template segments. The sequence similarity between

each LRR pair (target/template LRR) is listed in Table

I. The average target–template similarities of TLR7/8/9

are 47.70, 47.20, and 46.78%, respectively.

Remarkably, the group of TLR7/8/9 has a unique

structural character that is absent in other TLRs. A

specific segment (26–32 residue long) is located

Figure 1. Models of multiple alignments between targets

and templates. The numbers 01–25 denote the canonical

LRRs; NT and CT denote N-/C-terminal LRRs. (A) Five

segments selected from four structures (2Z80 chain A:

human TLR2; 3CIG chain A: mouse TLR3; 2Z64 chain A:

mouse TLR4; 2A0Z chain A: human TLR3) were used as

templates for the human TLR7 ectodomain. (B) Six segments

selected from three structures (2Z66 chain A: human TLR4;

2A0Z chain A: human TLR3; 2Z7X chain A: human TLR2)

were used as templates for the human TLR8 ectodomain. (C)

Four segments selected from two structures (2A0Z chain A:

human TLR3; 2Z63 chain A: human TLR4) were used as

templates for the human TLR9 ectodomain.

Table I. Sequence Similarities (%) of Target–Template LRR Pairs

NT 15 16 17 18 19 20 21 22 23 24 25 CT Avg

TRL7 28.60 58.30 60.00 41.70 47.10 58.30 46.20 52.00 50.00 33.30 46.20 48.30 50.00 47.70
TRL8 29.40 41.70 52.00 50.00 57.70 60.00 40.60 44.00 52.00 36.00 60.00 42.30 53.30 47.20
TRL9 32.30 58.30 48.00 50.00 44.40 41.70 46.90 51.90 36.00 54.20 50.00 52.00 42.40 46.78

In the header line, 15–25 denote canonical LRRs. NT and CT denote N-/C-terminal LRRs. Avg denotes the average values.
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before LRR15, which was described as an undefined

region.17–19 The sequence similarity search against Pro-

tein Data Bank (PDB) provided no significant results.

Thus, we carried out secondary structure predictions for

this region with four different methods. As example, the

results for TLR9 are shown in Figure 2. All methods

indicated a short b-sheet at position 3–5 of the segment,

which is a prominent characteristic of LRRs. In addi-

tion, we compared its amino acid sequence with the

consensus sequence of LRRs. The most significant posi-

tions of the LRR consensus sequence, LxxLxLxxNxL,

are the four L residues which form the hydrophobic

core of a LRR structure. Here, the letter L not only

stands for leucine but also for other highly hydrophobic

residues. As illustrated in Figure 2, the specific segment

of TLR9 contains three of the four highly hydrophobic

residues. Also, the corresponding segment of TLR7/8

has the same features. Thus we regard this segment as

an irregular LRR. Because the N-terminal LRR together

with LRR1–14 of the receptor ectodomain are deleted

upon arriving in endolysosome, this irregular LRR may

become a new N-terminal LRR of the truncated struc-

ture. Moreover, multiple alignments of all known

mammalian sequences showed that this region is very

variable within each of the TLR7/8/9 groups. The struc-

ture of this LRR may be relatively relaxed, because it

lacks the first L residue that participates in forming the

hydrophobic core of a LRR structure and the N residue

that forms hydrogen bonds between neighboring LRRs.

These features also support the hypothesis that this

irregular LRR is an N-terminal LRR. For this reason, a

N-terminal LRR with known structure was selected as

corresponding template (Fig. 1).

Structure modeling and evaluation
The three-dimensional coordinates of the models were

created by MODELLER24 and modified by ModLoop.25

The final structures of the ectodomains of TLR7/8/9

reveal a large, arc-shaped assembly consisting of 11

canonical LRRs and two terminal LRRs, which

adopted a right-handed solenoid structure (Fig. 3).

The TLRs are distinct from other LRR proteins in that

their LRR consensus motifs are often interrupted by

extended insertions.26 Two 4–7-residue-long insertions

protuberate from the structure surface at LRR18 and

LRR20, respectively. These insertions are well con-

served in length and position on the sequence level in

the three TLRs. The models show that the insertions

are all located on one face of the arc, whereas the

other face is insertion-free (Fig. 3). The convex site

b-sheets are directed toward the insertion face. This

feature is consistent with the known structures of

TLR1/2/3/4. Because all the known ligand-binding

sites of TLR1/2/3/4 are on the insertion face of the

structure, the insertions suggest some functional sig-

nificance. In addition, the human TLR7/8/9 are glyco-

sylated as it is the case for other TLRs. The glycans

were shown to be nonfunctional for ligand binding.2–6

The NCBI protein database provides seven predicted

N-linked glycosylation sites for TLR7/8 cleaved form

and six for TLR9. All sites are located on the inser-

tion-free faces. The PDB format files of the three final

models are provided as Supporting Information Files

1–3. Evaluation of the models involved analysis of

geometry, stereochemistry, and energy distributions in

the models. The evaluation results (Table II) are indic-

ative of a good quality of all three models.

Figure 2. Irregular region analysis of TLR9. Four methods (PredictProtein,20 NNPREDICT,21 SSPro,22 and GOR IV23) were

used to predict the secondary structures of the irregular region of TLR9. The results (italic letters) indicate a short b-sheet at
position 3–5 of this region. Besides, this region matches the LRR pattern at three important positions (bold letters). These

features support the presumption that this irregular region is a beginning N-terminal LRR after the ectodomain cleavage.

Table II. Model Evaluation

TLR7 TLR8 TLR9 TLR3

ProQ_LG/MS 5.340/0.461 4.613/0.402 4.355/0.339 7.923/0.526
PROCHECK 97.4% 96.2% 97.5% 99.6%
ModFOLD_Q/P 0.7588/0.01 0.7100/0.0126 0.7166/0.0121 0.7116/0.0124
MetaMQAP_GDT/RMSD 57.534/3.049 Å 53.908/3.121 Å 54.645/3.244 Å 79.322/1.566 Å

All these displayed scores indicate the models to be reliable in terms of overall packing. For comparison purpose, the values of
TLR3 crystal structure (PDB code: 2A0Z) were also listed. ProQ_LG: >1.5 fairly good; >2.5 very good; >4 extremely good.
ProQ_MS: >0.l, fairly good; >0.5, very good; >0.8, extremely good. PROCHECK: percentage of residues in most favored
regions and additional allowed regions. ModFOLD_Q: >0.5, medium confidence; >0.75, high confidence. ModFOLD_P: <0.05,
medium confidence; <0.01, high confidence. MetaMQAP_GDT/RMSD: an ideal model has a GDT score over 59 and a RMSD
around 2.0 Å.
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Figure 3. Structural models and ligand-binding regions of TLR7/8/9. Insertions are located on one face of the horseshoe,

whereas the other face is insertion-free. The reported essential residues are located on the insertion face (labeled in blue).

The orange regions are potential ligand-binding regions on the insertion face. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 4. Partial multiple sequence alignments of different mammalian TLR7/8/9. The multiple sequence alignments represent

the conservation of each residue in the potential ligand-binding regions (corresponding to the orange regions in Fig. 3). In the

first line below the alignments, plus signs designate important residues as reported in the literature and the asterisks

designate highly conserved positions. In the second line, the number of positive docking predictions of each position is

indicated. In the third line, blue squares designate important residues as reported in the literature and green squares indicate

the suggested ligand-binding residues. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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Potential ligand-binding residues

Several residues are essential for the ligand recogni-

tion: Asp543 in TLR8; Asp535 and Tyr537 in

TLR9.18,27 Our models can help to understand the bio-

logical function of these residues (Fig. 3). According to

these reported residues and the sequence comparison

of TLR7/8/9, we inferred a ligand-binding region for

TLR7/8/9, respectively (detailed in the Discussion sec-

tion). It is located at the insertion face of the ectodo-

main around LRR17 (Fig. 3). Because of the consider-

able size of the nucleic acids, the ligand-binding

region should contain more interacting residues. We

identified potential ligand-binding residues in the

ligand-binding region aside from the experimentally

determined ones. To accomplish this goal we inte-

grated results from manual analyses and automatic

docking programs.

TLR3 is closely related to the TLR7/8/9 family

because of its intracellular localization and nucleic

acid ligand. Therefore, we used the recently published

crystal structure of the mTLR3-dsRNA 2:1 complex6 as

a guide to predict the essential interacting residues in

TLR7/8/9. From all interacting residues of mTLR3, we

identified three principles for the essential residues:

1. The essential residues are located on the protein

surface and spatially close to each other.

2. They are highly conserved among species.

3. They create a nonnegatively charged environment.

On basis of these principles, we searched for addi-

tional residues that might be essential for ligand rec-

ognition. At first, surface residues that were spatially

close (within two LRRs) to the experimentally deter-

mined essential residues were marked on the predicted

models (orange regions in Fig. 3). These residues can

be far from each other on the sequence level. Then,

multiple alignments of all known mammalian TLR7/8/

9 sequences were generated to select the highly con-

served residues (columns with an asterisk in Fig. 4)

from the marked ones. Notably, the L (or I, V) and N

residues of the LRR consensus sequence LxxLxLxxNxL

are conserved, but they cannot interact with ligands,

because they are buried to form the hydrophobic core

of an LRR. These residues are not labeled with aster-

isks in Figure 4.

Four protein-RNA docking programs and five

protein-DNA docking programs (listed in the Materials

and Methods section) were used to predict ligand-bind-

ing residues in TLR7/8 and TLR9. A residue from the

prefiltered regions was marked as a ligand-binding resi-

due, if it was positively predicted by at least two pro-

grams. In Figure 4, the number of positive predictions

is listed for each target residue. The surface charge dis-

tributions of the regions of interest were calculated to

verify the charge pattern in the predicted ligand-bind-

ing regions [Fig. 5(A)]. The resulting residues corre-

spond to positively charged or neutral environments.

Figure 5(B) illustrates the protein surface residues

from the different steps of our investigation for TLR7/

8/9, respectively. All final predicted ligand-binding

residues are summarized in Table III. These residues

are indicated in green in both Figures 4 and 5(B).

Discussion

All three resulting models revealed similar conforma-

tions. This supports the assumption that TLR7/8/9 share

Figure 5. Surface analysis of ligand-binding regions

of TLR7/8/9. (A) Surface charge distribution (APBS

electrostatics) of ligand-binding regions of TLR7/8/9.

Blue: positive charge; white: neutral; red: negative

charge. (B) Important residues in ligand-binding regions

of TLR7/8/9. Blue: important residues as reported in

the literature; pink: residues close the blue ones but excluded

from the potential ligand-binding residues

through investigating processes; green: suggested

potential ligand-binding residues (residue name and

number are labeled). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Table III. Potential Ligand-Binding Residues
of TLR7/8/9

TLR7 K502 S504 G526 Q531 N551 R553 L556 S575 H578
TLR8 S492 Q519 N539 R541 F544 H566
TLR9 R481 N483 T486 H505 Q510 H530 K532 Y554 S556

Q557
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a common ligand-binding and signaling mechanism.18

We compared and analyzed the predicted structures to

suggest the receptor–ligand 2:1 complex models.

Ligand-binding region

The mouse TLR9 contains a short fragment in its

LRR17 that is homologous to the methyl CpG DNA

binding domain protein.27 The mutant of Asp535 and

Tyr537 in this fragment abolished the TLR9 func-

tion.27 In the human TLR8, the Asp543 that corre-

sponds to TLR9’s Asp535 was determined to be

required for the TLR8 function.18 Through sequence

comparison, the Asp residue was found to be highly

conserved in the TLR7/8/9 family but not in other

TLRs. We considered this Asp to be significant for

TLR7, because the TLR7/8/9 are highly homologous

and their ligands are all pathogen-derived nucleic

acids. In particular, the TLR7 and 8 are present as

tandem duplication in many studied genomes dis-

cussed by Roach et al.15 In this regard, TLR7/8/9 have

a ligand-binding region located spatially around the

Asp residue.

We can further exclude the necessity of other

ligand-binding regions on the ectodomains, because

the minimum size of stimulatory oligonucleotides is

six bases.28 These oligonucleotides are not large

enough to reach another ligand-binding region on the

receptor.

Receptor dimerization
The signaling mechanism of all TLRs is likely to

involve dimerization of the ectodomains.18 However,

this can be achieved in various ways by using different

receptors and stimuli. TLR9 is a preformed dimer. The

distance between both monomers is reduced upon

contact with CpG DNA.29 TLR1/2 are activated and

connected into a heterodimer by triacylated lipopep-

tide.4 TLR4 recognizes lipopolysaccharide indirectly

through the coreceptor protein MD-2 and is induced

to form a TLR4-MD-2 homodimer.5 In the TLR3

homodimer the dsRNA interacts with two regions of

each receptor ectodomain. Direct protein–protein

interactions between both receptors occur at their

C-terminal LRRs, whereas the other regions are sepa-

rated by the dsRNA.6

The structures obtained by the homology model-

ing together with the identification of possible ligand-

binding sites can be used to derive a working hypothe-

sis for the structure of the receptor–ligand complex.

We propose three possible receptor–ligand 2:1 com-

plex models for the TLR7/8/9 family (Fig. 6). In all

three models, the ssRNA or CpG DNA ligand interacts

with the binding region on the insertion surface of

both receptor ectodomains. The ectodomains are on

opposite sides of the ligand. Simultaneously, the intra-

cellular TIR domains are also in a dimer configuration.

Thus the C-terminal LRRs of each monomer, which

are connected to the TIR through a 20-amino-acid-

long transmembrane stretch, are spatially close to each

other. The main difference between the three models

is the relative position of the ectodomains. In the first

model [Fig. 6(A)], both C-terminal LRRs are brought

into proximity, forming a protein–protein contact.

Both binding regions sandwich the ligand. In the sec-

ond model [Fig. 6(B)], both receptors are shifted apart

along the ligand extending directions back to back. In

the third model [Fig. 6(C)], both receptors are shifted

in opposite directions face to face. Obviously, the min-

imum ligand size required by the first model is the

smallest. Therefore, a CpG DNA of six bases is already

long enough to stimulate TLR9.28 The minimum size

required by the second and third models is larger.

These two models, however, cannot be excluded,

because there is so far no evidence that TLRs have

only one dimer form. Without the crystal structure of

their ligands, it is difficult to determine a more precise

Figure 6. Proposed models of receptor–ligand 2:1 complex.
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model for the receptor dimerization. Hence, it remains

interesting to study the atomic structure of the stimu-

latory ssRNA/CpG DNA and to further determine the

detailed interactions between ligands and receptors.

Materials and Methods

Template identification and

sequence alignments

Amino acid sequences with LRR motif partitions of

human TLR7/8/9 ectodomain were extracted from

TollML.7 TollML is a specialized database of TLR

sequence motifs, derived from the NCBI protein data-

base.30 Multiple sequence alignments of all individual

LRRs of TLR7/8/9 to the LRR consensus sequence are

provided as Supporting Information File 4. Because

the TLR ectodomain is a repetitive protein (LRRs), we

selected and combined segments from all the six

known TLR ectodomain structures into multiple tem-

plates to optimize the sequence similarity between tar-

gets and templates. The six candidate templates were

human TLR1/2/3/4 and mouse TLR3/4 and were

obtained from the PDB.31 The PDB codes are 2Z7X,

2Z80, 2A0Z, 2Z63, 2Z66, 3CIG and 2Z64, respectively.

Three steps led to the identification of structural tem-

plates. First, we partitioned the known structures into

a total of 136 individual LRRs. Because of the irregu-

larity of the LRR sequences, the partition according to

the LRR consensus sequences was performed man-

ually. Second, the LRRs were collected into the

LRRML database,32 which can return the most similar

LRR for an input LRR sequence through similartiy

search. Third, optimal template pieces for each target

were found and combined to generate multiple

alignments. Because the TLR LRRs follow common

characteristic consensus sequences, target–template

alignments were generated more accurately by hand

than through software.

Structure construction and analysis
The initial three-dimensional coordinates of the mod-

els were generated by the fully automated program

MODELLER 9v3.24 The input files were the multiple

alignment file and the coordinate files of the tem-

plates. The ligand-binding domains of TLR7/8/9 con-

tain two 4–7-residue-long insertion regions, which

correspond to gaps in the multiple alignment. During

the modeling these regions became loop structures,

which limited the model accuracy. ModLoop25 was

used to modify these loop regions. The resulting

models were evaluated by PROCHECK,33 ProQ,34

ModFOLD,35 and MetaMQAP.36

The detection of potential ligand-binding sites was

achieved through residue conservation analysis, sur-

face charge analysis, and several automatic docking

programs. BindN,37 DP-Bind,38 DBS-PRED,39 DBS-

PSSM,40 and PreDs41 were used for protein-DNA

docking of TLR9. BindN, Pprint,42 RNAbindR,43 and

RISP44 were used for protein-RNA docking of TLR7/8.

Conclusions

We predicted three-dimensional structures of the

closely related TLR7/8/9 ligand-binding domains by

homology modeling. LRR segments were selected from

known TLR structures, which are locally optimal for

the target sequences. These segments were then com-

bined into multiple templates.

To predict essential residues in the ligand-binding

region, sequence conservation and charge distributions

were examined. Only highly conserved nonnegative

residues that are positively predicted by at least two

docking programs can be considered as potential

ligand-binding residues. Based on these models we

also suggest three possible receptor dimerization

schemes which require different minimum ligand

sizes.

In summary, our models provide a structural

framework that can act as a guide to develop a func-

tional hypothesis to interpret experimental data of

TLR7/8/9. They may also facilitate efforts to design

further site-directed mutagenesis to learn the ligand

recognition and the downstream signaling mecha-

nisms. The presented modeling approach can be

extended to other repetitive protein domains.
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Abstract 
So far, 13 groups of mammalian Toll-like receptors (TLRs) have been identified. Most TLRs have been 

shown to recognize pathogen-associated molecular patterns from a wide range of invading agents and 

initiate both innate and adaptive immune responses. The TLR ectodomains are composed of varying 

numbers and types of leucine-rich repeats (LRRs). As the crystal structures are currently missing for most 

TLR ligand-binding ectodomains, homology modeling enables first predictions of their three-dimensional 

structures on the basis of the determined crystal structures of TLR ectodomains. However, the quality of 

the predicted models that are generated from full-length templates can be limited due to low sequence 

identity between the target and templates. To obtain better templates for modeling, we have developed an 

LRR template assembly approach. Individual LRR templates that are locally optimal for the target 

sequence are assembled into multiple templates. This method was validated through the comparison of a 

predicted model with the crystal structure of mouse TLR3. With this method we also constructed 

ectodomain models of human TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10 and mouse TLR11, TLR12, 

and TLR13 that can be used as first passes for a computational simulation of ligand docking or to design 

mutation experiments. This template assembly approach can be extended to other repetitive proteins. 

Key words 

Toll-like receptor; leucine-rich repeats; homology modeling; template assembly; 
TollML; LRRML 
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1. Introduction 
Cells of the innate immune system, such as macrophages and dendritic cells, express a 
limited number of germline-encoded pattern-recognition receptors (PRR) that 
specifically recognize pathogen-associated molecular patterns (PAMPs) within 
microbes. These molecular patterns are unique to these microbes and are absent in the 
host [1]. Toll-like receptors (TLRs) are currently the best-characterized members of the 
PRRs [2]. The progress of genome sequencing projects has led so far to the 
identification of 13 groups of TLRs in mammalian genomes, ten in humans and 13 in 
mice [3], and more than 20 in non-mammalian genomes [4]. All TLRs have a common 
domain organization, with an extracellular ectodomain, a helical transmembrane domain, 
and an intracellular Toll/IL-1 receptor homology (TIR) domain [5]. The extracellular 
domain (ectodomain) is responsible for the recognition of common structural patterns in 
various microbial molecules. For example, lipoproteins or lipopeptides are recognized 
by TLR2 complexed with TLR1 or TLR6, viral double-stranded RNAs by TLR3, 
lipopolysaccharides by TLR4, bacterial flagellins by TLR5, single-stranded RNAs by 
TLR7 or TLR8, and microbial CpG DNAs by TLR9 [6, 7]. The TIR domains of TLRs 
are associated with the intracellular signaling cascade leading to the nuclear 
translocation of the transcription factor NF-κB [8]. 

A TLR ectodomain contains 19 to 27 consecutive leucine-rich repeat (LRR) motifs 
sandwiched between two terminal LRR modules (LRRNT and LRRCT) [4]. LRRs exist 
in more than 6000 proteins and more than 100 crystal structures of these proteins have 
been deposited in the Protein Data Bank (PDB) [9, 10]. In every case, the protein adopts 
an arc or horseshoe shape. An individual LRR motif is defined as an array of 20 to 30 
amino acids that is rich in the hydrophobic amino acid leucine. All LRR sequences can 
be divided into a conserved segment and a variable segment. The conserved segments, 
LxxLxLxxNxL, generate the concave surface of the LRR arc or horseshoe by forming 
parallel β-strands, while the variable parts form its convex surface consisting of helices 
or loops. The terminal LRRNT and LRRCT modules stabilize the protein structure by 
shielding its hydrophobic core from exposure to solvent. 

To date, only the crystal structures of the ectodomains of human TLR1 through 4 and 
mouse TLR2 through 4 have been determined [11-15]. High-throughput genome 
sequencing projects, however, have led to the identification of more than 2000 TLR 
sequences. Thus, the structures of most TLRs are still unknown because structure 
determination by X-ray diffraction or nuclear magnetic resonance spectroscopy 
experiments remains time-consuming. Protein structure prediction methods are 
powerful tools to bridge the gap between sequence determination and structure 
determination. 

Homology modeling, also referred to as comparative modeling, is currently the most 
accurate computational method for protein structure prediction. This approach 
constructs a three-dimensional model for a target protein sequence from a three-
dimensional template structure of a homologous protein. Thus, the quality of the 
homology model strongly depends on the sequence identity between the target and 
template. Below 30% identity, serious errors may occur [16]. Due to different repeat 
numbers and distinct arrangements of LRRs in the TLR ectodomains, a proper full-
length template with a sufficiently high sequence identity to the target is often missing. 
This limitation can be overcome by assembling multiple LRR templates. In this 
approach the most similar (on the sequence level) LRR with a known structure is 
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searched as a local template for each LRR in the target sequence. Such an LRR template 
may be derived from TLRs or from other proteins. Thereby, a suitable template may be 
found even for an insertion-containing irregular LRR. All local template sequences are 
then combined to generate a multiple sequence alignment for the complete target 
sequence. Thus, a high-quality model can be created, even if no adequate single 
template is available. To facilitate a multiple template assembly of LRR proteins, we 
have developed the LRRML database [9], which archives individual LRR structures 
manually identified from all known LRR protein structures. In addition, we have 
developed TollML [4], a database of sequence motifs of TLRs. In TollML, all known 
sequences of TLR ectodomains were semi-automatically partitioned into LRR segments 
and are made available for query. For newly sequenced TLRs that are not yet archived 
in TollML, we have implemented an LRR prediction program named LRRFinder on the 
TollML webpage. It requires as input an LRR-containing amino acid sequence and 
returns the number and positions of LRRs in the input sequence. LRRFinder recognizes 
LRR motifs based on a position-specific weight matrix scan, with the sensitivity and 
specificity both higher than 93%. With the help of these two databases, LRR partitions 
of a TLR ectodomain can be directly obtained, and an optimal structure template for 
each LRR segment can be quickly found. A schematic flowchart of the modeling 
procedure is shown in Figure 1. 

In this study, we apply the multiple template assembly approach to TLRs. To 
demonstrate the potential of the method we constructed two models of the mouse TLR3 
ectodomain as a test case using our LRR template assembly method and a standard 
profile-profile alignment-aided full-length template recognition method. Both models 
were then compared with the crystal structure of mouse TLR3. The overall and ligand-
binding site conformation of the template assembly-based model is closer to that of the 
crystal structure than that based on the standard method. We also modeled the human 
TLR5 through 10 and mouse TLR11 through 13 ectodomains, which represent 
mammalian TLR ectodomains with unknown structures. A comparison of the model for 
human TLR6 with the very recently reported crystal structure of mouse TLR6 shows a 
very good structural agreement. 

2. Methods 

2.1 Template selection and sequence alignment 

Amino acid sequences of mouse TLR3, human TLR5 through 10, and mouse TLR11 
through 13 ectodomains were extracted from TollML release 3.0 (IDs 627, 531, 571, 
992, 575, 1022, 851, 703, 705, and 704). Their LRR partitions were annotated by 
TollML. For each LRR sequence contained in each target TLR, the three-dimensional 
LRR structure with the highest sequence identity was selected as a template from 
LRRML through a sequence similarity search. Then, a multiple sequence alignment of a 
target with all its local LRR templates was generated with each template comprising one 
alignment line. For instance, the mouse TLR3 has a total of 25 LRRs and accordingly 
required 25 templates. The associated multiple sequence alignment then has 26 lines 
(Figure 1). Because of the characteristic consensus sequences of LRRs, these 
alignments were made more accurately manually than automatically. To generate an 
alternate model with standard methods, the widely acknowledged template recognition 
program pGenTHREADER [17] was executed to find templates for mouse TLR3. This 
method calculates sequence profiles from an input sequence and combines profile-
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profile alignments with secondary structure specific gap-penalties, pair potentials, and 
solvation potentials using a linear combination. The output is the complete PDB 
structures that serve as candidate templates ranked by P-values. Each candidate 
sequence is aligned with the target sequence. 

2.2 Model construction and validation 

The initial three-dimensional coordinates of all models were calculated by MODELLER 
9v7 [18]. The above-described alignment file and the corresponding template structures 
of a target model were inputted into the default ‘model’ routine of MODELLER. A 
given number of three-dimensional models were calculated. The ectodomains of TLRs 
contain a number of insertion regions. Some of them corresponded to four to 15 amino 
acid-long gaps in the alignments because their templates do not contain a corresponding 
insertion. During modeling, these gaps produced loop structures in the model, thus 
deteriorating the model accuracy. ModLoop [19] was used to rebuild the coordinates of 
these loop regions. Finally, we used the model quality assessment programs ProQ [20] 
and MetaMQAP [21] to evaluate the output candidate models and select the one with 
the best scores as the final model. The structure superimpositions and molecular 
electrostatics involved in the structural analysis were carried out using SuperPose v1.0 
[22] and VMD [23], respectively. The docking studies of TLR11 and its ligand profilin 
were performed with GRAMM-X [24]. 

3. Results 

3.1 LRR templates 

The number of LRRs in the full-length ectodomains of mouse TLR3, human TLR5 
through 10, and mouse TLR11 through 13 is 25, 23, 21, 28, 28, 28, 21, 26, 25, and 27, 
respectively. Consequently, a total of 252 individual LRR templates sourced from 41 
different PDB structures were selected from LRRML. Their sequence identities with the 
targets vary from 26.0% to 95.7% (43.8% on average), and similarities from 39.0% to 
100% (58.2% on average). Remarkably, all cases of relatively low sequence identity (< 
35%) were caused by highly irregular target LRRs. These highly irregular sequences 
include LRRNT/CTs, the highly mutated LRR15 of TLR7/8/9, and the insertion-
containing LRRs whose templates do not include a similar insertion. The sources 
(LRRML IDs) and sequence identities of all LRR templates are listed in Table 1. 

As the modeling of mouse TLR3 was carried out to verify our approach, we assumed 
that the crystal structure of the mouse TLR3 ectodomain was unknown and excluded the 
corresponding LRR entries of mouse and human TLR3 ectodomains from LRRML 
before the template search. The selected individual LRR templates for mouse TLR3 
were associated with 18 PDB structures, 14 of which were from non-TLR proteins. The 
target-template sequence identities range from 33.3% to 50.0% (44.1% on average). By 
contrast, pGenTHREADER provided only complete PDB structures of LRR proteins as 
candidate templates, with each candidate possessing a pairwise sequence alignment with 
the target. Because no single template covered the entire sequence of mouse TLR3, we 
selected the first seven candidates by rank (except mouse and human TLR3) and 
combined them into a multiple alignment to avoid template gaps. These templates 
included PDB structures 2Z64, 2Z81, 1O6V, 3FXI, 2Z7X, 1JL5, and 3BZ5, which 
covered the closest homologues (mouse TLR2/4 and human TLR1/4) to mouse TLR3 
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among all proteins with known structures. Nevertheless, the sequence identities of the 
seven templates to mouse TLR3 range from 16.1% to 21.2% (18.7% on average), which 
fell much below the cut-off value 30% for homology modeling [16]. 

3.2 Structural models 

3.2.1 Model of mouse TLR3 

Recently, we constructed a model of mouse TLR3 with the LRR template assembly 
method as a test case of the LRRML database [9]. It revealed a horseshoe-shaped 
assembly adopting a regular solenoid structure without disordered regions. The model 
was superimposed with the crystal structure of mouse TLR3 ectodomain (PDB code: 
3CIG) [14] at its both ligand-binding regions, LRRNT through LRR3 and LRR19 
through LRR21. The backbone root mean square deviation (RMSD) is 1.96 Å and 1.90 
Å, respectively [9]. To verify the improvements of the database and the modelling 
process, we reconstructed the mouse TLR3 model (Figure 2b) with up-to-date LRR 
templates. Compared with the old model, four of the 25 LRRs of TLR3 in the new 
model were assigned new templates with higher sequence identities (Table 1). Because 
these four LRRs are not involved in the TLR3 ligand-binding sites, the corresponding 
RMSD values of the new model were the same as for the previous model. These values 
indicate that the model predicted with our method well matches the crystal structure and 
can be used to predict potential ligand-binding sites [25]. 

For comparison purposes, the mouse TLR3 ectodomain was also modeled with a 
standard profile-profile alignment-aided full-length template recognition method. All of 
the ten output models obtained from MODELLER for the full-length templates-based 
standard alignment showed a serious structural disorder spanning from LRR6 through 
LRR10 (Figure 2a). The LRR6 through LRR10 on the crystal structure form a regular 
solenoid structure with an α-helix in the variable segment of LRR8 (Figure 2c). By 
contrast, the corresponding LRRs on the model completely lost the proper LRR shape 
and interwove with one another. The disorder was caused by mismatches or target gaps 
in the alignment, where only two to four template LRRs were assigned to five target 
LRRs (Figure 2d). The standard alignment could not create a one-to-one 
correspondence between the target and template LRR units due to the irregularity of the 
LRRs. ProQ and MetaMQAP were used to evaluate the quality of the different models 
of mouse TLR3 (Table 2). Both programs make an integrative assessment of the 
structure quality considering geometry, stereochemistry, and energy distribution of the 
structures. Both template assembly-based models received better scores than the model 
based on standard method. 

3.2.2 Models of human TLR5 through 10 and mouse TLR11 through 13 

With the LRR template assembly method we modeled the human TLR5 through 10 and 
mouse TLR11 through 13 ectodomains. All of the resulting models are provided in 
Supplementary File 1. Ramachandran plots of these models were created with 
PROCHECK [26] and are provided in Supplementary File 2. Model evaluation data by 
ProQ and MetaMQAP are listed in Table 2. The models reveal a horseshoe shape 
(Figure 3), where a longer or shorter sequence (more or less LRR units) implies a 
smaller or larger horseshoe opening, e.g., TLR7/8 (smaller opening) and TLR6/10 
(larger opening). Their overall structural similarity reflects the phylogenetic 



7 

relationships among these TLRs. For example, TLR6 is similar to TLR10 while TLR7 
is similar to TLR8, consistent with the molecular tree proposed by Roach and co-
workers [27]. Mammalian TLRs are distinct from other LRR proteins in that they 
contain two to seven insertion-containing irregular LRRs, which may be necessary for 
ligand-binding and receptor dimerization. Our models show that all insertions are 
located on that face of the horseshoe, to which the convex site β-strands point, whereas 
the other face is completely insertion-free. 

To highlight the availability of these models for an analysis of receptor-ligand 
interaction mechanisms, we performed molecular electrostatics calculations of the 
mouse TLR11 model with a ligand. TLR11 can recognize profilin of some 
apicomplexan protozoa parasites. This protein is involved in parasite motility and 
invasion [28]. Expression of TLR11 is suppressed in humans [29]. The electrostatic 
analysis (Figure 4a) shows that the entire surface of the profilin of P. falciparum (PDB 
code: 2JKF) is predominantly negatively charged, whereas TLR11 exhibits several 
positively charged patches (Figure 4b). Protein docking studies using GRAMM-X 
showed that profilin and the positive patches on TLR11 possess compatible sizes and 
electrostatic complementarity (Supplementary File 3). 

Very recently, the crystal structure of the TLR6 ectodomain complexed with TLR2 and 
a Pam2CSK4 ligand was released in PDB (PDB code: 3A79). The TLR6 structure is a 
hybrid structure of mouse and inshore hagfish, where 18 mouse LRRs (LRRNT through 
LRR17) were hybridized with two hagfish LRRs (LRR18 and LRRCT) [30]. This 
crystal structure served as an additional benchmark for our template assembly approach. 
The superimposition of the mouse part of the crystal structure with our human TLR6 
model yielded a backbone RMSD of 1.94 Å, which indicates that the model is very 
similar to the crystal structure (Figure 5). A second model of human TLR6 was 
generated with pGenTHREADER in a similar procedure as described for the mouse 
TLR3 (Supplementary File 1). The backbone RMSD between the crystal structure and 
this model is 1.89 Å. The only full-length template used for this model was the structure 
of human TLR1 (PDB code: 2Z7X). Because TLR6 and TLR1 possess the same 
number of LRRs and have a very high sequence identity (63.3%), the structure of TLR1 
serves as an excellent full-length template. Under these very good conditions, both, the 
standard and the template assembly approaches, provided high-quality models. 

4. Discussion 
In template-based protein modeling, the overall sequence identity between the target 
and template is an important criterion for the selection of suitable templates [31]. For 
repetitive LRR proteins, however, there is often no appropriate full-length template 
available due to different repeat numbers and distinct arrangements. This problem can 
be solved by combining individual repeating units that are locally optimal for the target 
sequence. In the method validation with mouse TLR3, the average target-template 
sequence identity achieved by our method was 44.8%, which was significantly higher 
than that (18.7%) achieved by a standard profile-profile alignment-aided template 
recognition method. However, both the standard and the template assembly methods 
produced models of human TLR6 very well matched the crystal structure of mouse 
TLR6. The comparison between the models obtained with both methods highlights the 
potential of the template assembly approach. It can produce models with a similar 
quality as the standard profile-profile alignment method. The template assembly method, 
however, reveals its particular strength in situations where no adequate full-length 
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templates are available. In the case of TLR3, the standard profile-profile alignment 
method failed to predict a reliable model due to significant gaps in the template. Here, 
the template assembly method overcomes the difficulties and generates a realistic model. 

In a previous work, we constructed models of human TLR7/8/9 ligand-binding domains 
by combining LRR segments that were extracted from all known crystal structures of 
TLRs [32]. The average target-sequence similarities for TLR7/8/9 were 47.7%, 47.2%, 
and 46.8%, respectively. The resulting models supported experimentally determined 
ligand-binding residues [33, 34] and provided a reliable basis to identify potential 
ligand-binding residues and potential receptor dimerization mechanisms. Here, we went 
a step further and extended the scope of the approach by searching LRR segments from 
all LRR-containing proteins with known structures with the LRRML database because 
the same type of LRRs can exist in different proteins [9]. Consequently, 33 of the 41 
source PDB structures are non-TLR proteins (numbers derived from Table 1). The 
average target-sequence similarities for TLR7/8/9 increased to 55.9%, 58.2%, and 
59.2%. 

Another key issue in LRR protein modeling is the sequence-level LRR partition of the 
target TLR sequence. The indicated number and beginning/end positions of LRRs in 
TLRs vary largely across different databases or research reports due to the irregularity 
and periodicity of LRRs. TollML reports the most complete and accurate LRR motifs 
for TLRs as compared with a number of databases [4]. In addition, TollML provides a 
statistics-based LRR prediction program LRRFinder for new TLR entries that are not 
yet collected in TollML. It can recognize LRRs from an input amino acid sequence with 
high confidence. 

In conclusion, this work depicts an LRR template assembly approach for protein 
homology modeling. The comparison of a mouse TLR3 model with its crystal structure 
underlined feasibility and reliability of the method. With this method, a series of 
mammalian TLR ectodomains were modeled. These models can be used to perform 
ligand docking studies or to design mutagenesis experiments and hence to investigate 
TLR ligand-binding mechanisms. Our modeling approach can be extended to other 
repetitive proteins. 
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Table 1: Source and sequence identity (%) of the LRR templates. 
 mTLR3 hTLR5 hTLR6 hTLR10 mTLR12 

LRR LRRML ID Iden LRRML ID Iden LRRML ID Iden LRRML ID Iden LRRML ID Iden
NT 406 47.6 125 34.6 333 72.7 150 40.9 125 28.6
1 65 45.8 284 45.8 334 54.2 334 45.8 90 37.5
2 212 45.8 264 42.3 335 70.8 335 62.5 178 58.3
3 465 41.7 259 54.2 336 81.0 578 42.9 465 40.7
4 151 50.0 464 46.2 337 80.0 337 68.0 578 40.9
5 177 50.0 259 48.0 338 60.9 338 47.8 21 35.5
6 110 46.2 252 34.6 339 36.0 111 33.3 497 56.0
7 275 45.8 494 29.0 340 33.3 340 41.7 202 40.9
8 8 41.4 135 37.0 341 33.3 28 34.6 39 34.6
9 203 42.3 359 26.6 342 48.1 342 44.4 356 45.8

10 484 54.2 357 41.7 343 34.6 343 46.4 179 45.8
11 293 50.0 140 50.0 344 48.3 365 29.0 177 42.3
12 270 33.3 316 50.0 345 45.5 345 40.9 566 54.2
13 357 41.7 151 45.8 346 41.7 346 41.7 66 50.0
14 65 42.9 216 45.0 347 61.5 358 48.0 468 45.8
15 152 50.0 153 38.1 348 40.0 369 41.7 501 44.0
16 259 40.0 253 36.0 349 68.2 349 45.5 581 34.8
17 316 37.5 356 40.0 350 95.7 350 43.5 372 30.8
18 152 38.5 566 41.4 351 52.0 372 45.5 283 37.0
19 239 50.0 72 58.3 128 37.5 513 36.0 396 38.7
20 239 45.8 579 45.5 - - - - 260 37.5
21 92 50.0 484 40.9 - - - - 496 41.4
22 80 41.7 - - - - - - 315 45.8
23 628 46.2 - - - - - - 110 35.7
CT 575 42.9 149 31.7 149 31.7 514 29.9 149 20.0

 hTLR7 hTLR8 hTLR9 mTLR11 mTLR13 
LRR LRRML ID Iden LRRML ID Iden LRRML ID Iden LRRML ID Iden LRRML ID Iden
NT 257 40.6 250 30.0 125 29.0 125 36.7 125 26.5
1 293 45.8 509 45.8 314 41.7 76 38.5 491 54.2
2 107 36.0 573 48.0 101 41.7 191 37.5 107 50.0
3 106 52.4 581 47.6 219 55.0 288 44.0 254 54.2
4 261 45.8 509 45.8 310 41.7 559 36.4 152 50.0
5 140 44.0 564 44.0 157 41.7 557 40.0 4 53.8
6 583 47.6 106 52.4 106 47.6 238 30.4 419 52.0
7 105 45.8 509 45.8 501 41.7 463 44.0 285 44.0
8 573 45.8 573 50.0 259 37.5 271 45.8 135 41.7
9 79 45.8 494 41.7 357 50.0 157 45.8 488 52.0

10 500 46.2 573 42.3 367 37.0 506 44.0 498 36.7
11 500 52.0 316 54.2 337 40.0 237 45.8 128 33.3
12 488 40.7 261 37.0 274 31.0 509 46.2 288 48.0
13 129 44.0 92 37.5 92 33.3 500 54.2 505 45.8
14 386 37.9 259 44.0 357 34.6 7 50.0 573 54.2
15 36 33.3 300 29.6 139 15.6 111 45.8 260 50.0
16 316 41.7 494 41.7 170 37.5 38 42.3 148 36.0
17 358 46.2 158 40.0 316 40.0 484 43.5 262 45.8
18 316 41.7 314 41.7 135 45.8 360 29.2 293 50.0
19 494 50.0 296 37.5 316 44.0 73 37.5 105 45.8
20 503 41.7 128 45.8 493 40.0 403 28.6 260 48.0
21 92 41.7 77 45.8 252 41.7 102 30.4 466 46.2
22 78 48.0 573 60.0 288 44.0 121 34.5 565 41.7
23 552 45.8 169 36.0 111 37.5 316 50.0 93 50.0
24 210 50.0 283 53.8 289 41.7 35 36.0 79 50.0
25 133 40.7 271 45.8 259 45.8 - - 573 41.7
26 274 48.3 144 42.3 357 52.0 - - - - 
CT 149 36.7 149 33.9 149 28.8 469 26.2 149 36.5
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Table 2: Evaluation of the crystal structure and models of the TLRs. Higher ProQ_LG/MS and 
MetaMQAP_GDT values indicate higher model qualities; higher MetaMQAP_RMSD values indicate 
lower model qualities. a Model of Wei et al. (2008). 

Structure/Model 
ProQ_ 
LG/MS 

MetaMQAP_ 
GDT/RMSD 

mTLR3 crystal 7.215/0.469 69.840/1.962 
mTLR3 
pGenTHREADER 4.013/0.357 41.943/4.691 

mTLR3 a 5.136/0.423 54.068/3.080 
mTLR3 new 5.349/0.405 54.542/3.030 
hTLR5 4.707/0.358 54.803/3.126 
hTLR6 5.807/0.439 73.230/1.907 
hTLR7 4.980/0.381 52.816/3.224 
hTLR8 5.053/0.408 53.490/3.113 
hTLR9 5.025/0.386 53.774/3.181 
hTLR10 4.835/0.362 59.918/2.883 
mTLR11 4.371/0.351 49.178/3.433 
mTLR12 4.546/0.337 46.131/3.493 
mTLR13 4.827/0.407 55.709/2.982 
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Figure 1: Flowchart of the LRR template assembly method. 
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Figure 2: Homology models and crystal structure of the mouse TLR3 ectodomain. (a) The homology 
model based on the standard method. The framed region exhibits serious disorder. (b) The homology 
model based on template assembly method. (c) The crystal structure (PDB code: 3CIG). The dotted 
region is an insertion on LRR20 that is missing in the crystal structure. (d) The target-template sequence 
alignment of the disordered region of the standard method based model. The mismatches and target gaps 
resulted in the disorder in (a), where two to four template LRRs were wrongly assigned to five target 
LRRs. 
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Figure 3: Models of human TLR5 through 10 and mouse TLR11 through 13 ectodomains. The N-linked 
glycan sites of these TLRs were obtained from the NCBI protein database and are labelled with black 
balls. 
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Figure 4: Surface charge analysis (APBS electrostatics) of (a) the crystal structures of profilin (PDB code: 
2JKF) and (b) the model of mouse TLR11 ectodomain. Blue: positive charge; red: negative charge. 
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Figure 5: Superimposition of the homology model and the crystal structure of the TLR6 ectodomain. 
Green: homology model of human TLR6 (LRRNT through LRR17); orange: crystal structure of mouse 
TLR6 (LRRNT through LRR17). The Pam2CSK4 ligand-bind site is located on the variable parts of 
LRR10 through LRR12. The overall backbone RMSD is 1.94 Å and the backbone RMSD of the ligand-
binding region is 1.18 Å. 
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Supplementary file 1: Three-dimensional models of human TLR5-10 and mouse TLR10-13 ectodomains. 

Supplementary file 2: Ramachandran plots of the models. 

Supplementary file 3: Docking models of TLR11 and profiling ligand. 
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