Molekulare Mechanismen der viral-getriggerten Glomerulonephritis:
Effekte der Toll-like Rezeptor-abhängigen und -unabhängigen
Erkennung viraler RNA in glomerulären Mesangialzellen.

Dissertation
zum Erwerb des Doktorgrades der Humanmedizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität
zu München

vorgelegt von

Katharina Theresia Flür

aus Mutlangen

2010
Mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians-Universität,
München

1. Berichterstatter: Prof. Dr. Hans-Joachim Anders
2. Berichterstatter: Prof. Dr. Gunnar Schotta

Mitberichterstatter: Prof. Dr. Walter Samtleben
Prof. Dr. Karl-Klaus Conzelmann

Dekan: Prof. Dr. med. Dr. h.c. M. Reiser, FACR, FRCR

Tag der mündlichen Prüfung: 29.04.2010
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Einleitung</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Chronisches Nierenversagen</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Glomerulonephritis</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Proliferative Glomerulonephritiden</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Nichtproliferative Glomerulonephritiden</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Virusassozierte Glomerulonephritis</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Mesangialzellen</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Immunsystem</td>
<td>16</td>
</tr>
<tr>
<td>1.5.1 Die angeborene Immunantwort</td>
<td>16</td>
</tr>
<tr>
<td>1.5.2 Die erworbene Immunantwort</td>
<td>20</td>
</tr>
<tr>
<td>1.6 Erkennung viraler RNA</td>
<td>20</td>
</tr>
<tr>
<td>1.6.1 Toll-like Rezeptoren</td>
<td>20</td>
</tr>
<tr>
<td>1.6.2 RIG-like Helikasen</td>
<td>22</td>
</tr>
<tr>
<td>1.6.3 Immuneffekte nach Erkennung viraler RNA</td>
<td>23</td>
</tr>
<tr>
<td>1.7 Interferone und ihre Rezeptoren</td>
<td>24</td>
</tr>
<tr>
<td>1.7.1 Typ I-Interferone</td>
<td>25</td>
</tr>
<tr>
<td>1.7.2 Typ II-Interferone</td>
<td>26</td>
</tr>
<tr>
<td>1.7.3 Signalnetzwerk der Interferoninduktion</td>
<td>26</td>
</tr>
<tr>
<td>1.7.4 Kontinuierliche Interferonproduktion</td>
<td>29</td>
</tr>
<tr>
<td>1.8 Ziel der Untersuchungen und Hypothese</td>
<td>30</td>
</tr>
<tr>
<td>2 Material und Methoden</td>
<td>32</td>
</tr>
<tr>
<td>2.1 Zellisolation</td>
<td>33</td>
</tr>
<tr>
<td>2.2 Zellkultur</td>
<td>35</td>
</tr>
<tr>
<td>2.3 ELISA</td>
<td>37</td>
</tr>
<tr>
<td>2.4 RNA-Gewinnung und Umschreiben in cDNA</td>
<td>41</td>
</tr>
<tr>
<td>2.5 Real time RT-PCR (TaqMan)</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Proliferationsassay</td>
<td>46</td>
</tr>
<tr>
<td>2.7 Western Blot</td>
<td>47</td>
</tr>
<tr>
<td>2.8 Zellfärbung</td>
<td>51</td>
</tr>
<tr>
<td>2.9 Durchflusszytometrie</td>
<td>52</td>
</tr>
<tr>
<td>2.10 Tierexperimentelle Methoden</td>
<td>54</td>
</tr>
<tr>
<td>2.10.1 Tierhaltung</td>
<td>54</td>
</tr>
<tr>
<td>2.10.2 Herstellung der Trif-mutanten Mäuse</td>
<td>54</td>
</tr>
<tr>
<td>2.10.3 Genotypisierung der Mäuse</td>
<td>55</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

2.10.4 Serumnephritis-Studie ... 57
2.11 Experimente mit menschlichem Biopsiematerial ... 62
2.12 Statistische Auswertung .. 62
3 Ergebnisse ... 64
 3.1 Immunzytochemische Charakterisierung der Mesangialzellen .. 64
 3.2 Toll-like Rezeptor-Expression auf Mesangialzellen ... 64
 3.3 Mesangialzellen exprimieren die zytoplastischen viralen RNA Rezeptoren Mda5, Rig-I und deren mitochondrialen Adaptor Ips-1 ... 65
 3.4 Virale RNA induziert die Produktion von Interleukin-6 in glomerulären Mesangialzellen ... 68
 3.5 Mesangialzellen produzieren Tlr-3/Trif-unabhängig große Mengen Interleukin-6 und Typ I-Interferone, wenn sie mit viraler RNA, die mit kationischen Lipiden komplexiert wurde, stimuliert wurden .. 69
 3.6 Interferon-α und -β veranlassen primäre Mesangialzellen zur Interleukin-6-Produktion 71
 3.7 Die virale Doppelstrang-RNA-induzierte Aktivierung von Mesangialzellen beinhaltet eine Typ I-Interferon autokrin-parakrine Aktivierung .. 75
 3.8 Virale RNA, die mit kationischen Lipiden komplexiert ist, reduziert in Mesangialzellen die Proliferation .. 78
 3.9 Virale RNA führt in Mesangialzellen zum Zelltod .. 80
 3.10 Komplexe aus viraler RNA und kationischen Lipiden induzieren eine diffuse glomeruläre Nekrose und Mesangiolyse in Mäusen, die an nephrotoxischer Serumnephritis leiden 82
 3.11 Die mit chronischer Hepatitis C-assozierte Glomerulonephritis ist assoziiert mit einer gesteigerten glomerulären Interferon-α-Expression beim Menschen ... 86
4 Diskussion .. 88
 4.1 Bedeutung der angeborenen RNA-Rezeptoren ... 88
 4.2 Effekte der RNA-Erkennung in Mesangialzellen ... 91
 4.3 Reaktion der Mesangialzellen auf Interferone ... 93
 4.4 Existenz einer autokrinen Aktivierung in Mesangialzellen ... 95
 4.5 Klinische Bedeutung für die Glomerulonephritis ... 97
5 Zusammenfassung .. 100
6 Literaturangaben ... 104
Abkürzungsverzeichnis ... 113
Danksagung ... 116
Vorbemerkungen

Betreut wurde die Arbeit durch Herrn Professor Dr. med. Hans-Joachim Anders.

Rechtliche Grundlage der Tierversuche

Förderung des Projektes

Aus dieser Arbeit ging folgende Originalarbeit hervor

Kapitel 1:
Einleitung
1 Einleitung

1.1 Chronisches Nierenversagen

![Abbildung 1: Jahresvergleich: Chronische Nierenersatztherapie 1995-2005 pro Million Einwohner (pmp). Prävalenz sowie Inzidenz der Dialysepatienten in Deutschland nehmen ständig zu [1].]
Einleitung

Als Ursache für das terminale Nierenversagen wurde in Deutschland 2005 bei 23 % der Patienten eine diabetische Nephropathie und bei ebenfalls 23 % eine Glomerulonephritis diagnostiziert. Diese Verteilung ändert sich etwas, wenn die Anzahl der Dialysepatienten zugrunde gelegt wird. Hier steht der Diabetes mellitus mit 28 % an erster Stelle. An zweiter Stelle folgt jedoch schon die Glomerulonephritis mit 19 % (Abbildung 3) [1]. Betrachtet man die Indikationen, die im Jahr 2006 für eine Nierentransplantation in Deutschland gestellt wurden, so zeigt sich, dass die Glomerulonephritis mit 30 % den Großteil der Indikationen darstellte. An zweiter Stelle standen andere Ursachen mit 25 % und an dritter Stelle die diabetische Nephropathie mit 13 % (Tabelle 1) [4].

Die gezeigten Daten machen die Notwendigkeit der Entwicklung geeigneter Therapiemöglichkeiten zur Erhaltung der Nierenfunktion deutlich. Dabei ist zu beachten, dass chronische Nierenerkrankungen, ungeachtet der Ätiologie, einen ähnlichen Verlauf aufweisen. Der Verlust der Nierenfunktion schreitet in der Regel so langsam fort, dass eine vermeintlich geringfügige Verlangsamung der Progredienz zu einer beträchtlichen Änderung der Langzeitprognose führt [5].
Einleitung

Tabelle 1: Indikationen für eine Nierentransplantation in Deutschland 2006 [4]

<table>
<thead>
<tr>
<th>Indikation</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerulonephritis</td>
<td>761</td>
</tr>
<tr>
<td>Andere</td>
<td>710</td>
</tr>
<tr>
<td>Diabetische Nephropathie</td>
<td>369</td>
</tr>
<tr>
<td>Zystennieren</td>
<td>385</td>
</tr>
<tr>
<td>Interstitielle Nephritis</td>
<td>173</td>
</tr>
<tr>
<td>Vaskuläre Erkrankungen</td>
<td>172</td>
</tr>
<tr>
<td>Immunologische Systemerkrankungen</td>
<td>143</td>
</tr>
<tr>
<td>Kongenitale Veränderungen</td>
<td>25</td>
</tr>
<tr>
<td>Hereditäre Nierenerkrankung</td>
<td>57</td>
</tr>
<tr>
<td>HUS</td>
<td>22</td>
</tr>
<tr>
<td>Amyloid- und Plasmozytomnieren</td>
<td>7</td>
</tr>
</tbody>
</table>

2824

1.2 Glomerulonephritis

Histologisch lassen sich die Glomerulonephritiden in zwei Gruppen einteilen: proliferativ und nichtproliferativ. Zu den proliferativen Glomerulonephritiden zählen die mesangioproliferative Glomerulonephritis, die membranoproliferative Glomerulonephritis, die diffus endokapillär
proliferative Glomerulonephritis, die fokal-segmentale Glomerulonephritis sowie die intraextrakapilläre proliferative Glomerulonephritis. Nichtproliferative Glomerulonephritiden sind die minimal change-Glomerulonephritis, die fokal-segmentale Glomerulosklerose und die membränöse Glomerulonephritis.

Im Folgenden werden die verschiedenen Glomerulonephritiden anhand ihrer histologischen Klassifikation näher erläutert.

1.2.1 Proliferative Glomerulonephritiden

Mesangioproliferative Glomerulonephritis

Membranoproliferative (mesangiokapilläre) Glomerulonephritis

Einleitung

affälsig, 16-30 % jedoch auch durch eine akute Nephritis [10]. Die symptomatische Therapie steht im Vordergrund. Die Prognose ist ungünstig; auch nach Nierentransplantation tritt die Glomerulonephritis bei 50 % der Patienten wieder auf.

Endokapilläre Glomerulonephritis

1.2.2 Nichtproliferative Glomerulonephritiden

Minimal change-Glomerulonephritis

Die minimal change-Glomerulonephritis ist die häufigste Ursache des nephrotischen Syndroms im Kindes- und Jugendalter. Die Ätiologie der Minimalläsion ist unklar; vermutet wird ein von T-Zellen produzierter, zirkulierender Faktor, der die glomeruläre Permeabilität beeinflusst. Histologisch findet sich ein Verlust der Podozyten an der glomerulären Basalmembran. Die Erkrankung beginnt plötzlich mit einem nephrotischen Syndrom und geht stets ohne Niereninsuffizienz einher. Diese Glomerulonephritis spricht zumeist gut auf eine Kortikoidtherapie an [7].
Einleitung

Fokal-segmental sklerosierende Glomerulonephritis (Fokal-segmentale Glomerulosklerose)

Membranöse Glomerulonephritis

Einleitung

... schlecht; bei der sekundären Form kann es durch Therapie der Grunderkrankung zu einer deutlichen Verbesserung der Nierenfunktion kommen [8].

1.3 Virusassozierte Glomerulonephritis

Tabelle 2: Mechanismen der virusassozierten Glomerulonephritis [14]

<table>
<thead>
<tr>
<th>1. Zirkulierende Immunkomplexe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aus viralem Antigen und antiviralem Antikörper [15]</td>
<td></td>
</tr>
<tr>
<td>• Aus endogenem Antigen, das durch virale Verletzung und Autoantikörper verändert wurde [18]</td>
<td></td>
</tr>
<tr>
<td>2. In situ immunvermittelte Mechanismen, bei denen virale Antigene an glomeruläre Strukturen gebunden wurden [19, 20]</td>
<td></td>
</tr>
<tr>
<td>3. Expression von viralen Proteinen oder anormalen körpereigenen Proteinen, die</td>
<td></td>
</tr>
<tr>
<td>• Durch Apoptose, Nekrose oder Zelldysfunktion den Zelltod auslösen [21]</td>
<td></td>
</tr>
<tr>
<td>• Die Matrixsynthese erhöhen und/oder die Matrixdegeneration vermindern</td>
<td></td>
</tr>
<tr>
<td>• Zur Ausschüttung von Zytokinen, Chemokinen, Adhäsionsmolekülen oder Wachstumsfaktoren führen [22]</td>
<td></td>
</tr>
<tr>
<td>4. Direkter zytopathogenetischer Effekt auf glomeruläre Zellen mit unbestimmtem Mechanismus [23]</td>
<td></td>
</tr>
</tbody>
</table>
Einleitung

| Tabelle 3: Virale Infektionen, die Nierenerkrankungen hervorrufen/verschlechtern können [14] |
|-----------------------------------|---------------------------------|
| Hepatitis B-Virus (HBV) | membranöse Nephropathie, |
| | mesangiokapilläre GN, IgA-Nephritis |
| Hepatitis C-Virus (HCV) | Kryoglobulinämie, mesangiokapilläre GN |
| Humanes Immundefizit-Virus (HIV) | HIV-Nephropathie |
| Parvovirus B 19 (PV 19) | fokal-segmentale Glomerulosklerose |
| Cytomegalie-Virus (CMV) | Allograft-Nephropathie? |
| Epstein-Barr-Virus (EBV) | Lupusnephritis? |
| Polyoma-Virus BK (BKV) | BK (Allograft)-Nephropathie |
| Hantavirus | akutes Nierenversagen |
| Coronavirus | akutes Nierenversagen |

Die WHO nimmt an, dass es momentan 170-200 Millionen Hepatitis C-Infizierte weltweit gibt. Die häufigste renale Manifestation der Hepatitis C-Infektion ist die mesangiokapilläre Glomerulonephritis Typ I, meist im Zusammenhang mit der gemischten Kryoglobulinämie [30]. Zwei Gründe werden für die extrahepatische Manifestation der Hepatitis C angenommen. Erstens ist das Hepatitis C-Virus dafür bekannt, die Immunelimination zu umgehen und dadurch zu chronischer Infektion und zur Akkumulation von Immunkomplexen zu führen. Zweitens stimuliert es die Produktion von monoklonalen Rheumafaktoren, was eine gemischte Kryoglobulinämie verursacht [16]. Zwischen 35 und 90 % der Hepatitis C-Infizierten leiden unter gemischter Kryoglobulinämie [31, 32]. Typischerweise treten die mit Hepatitis C-assoziierten Nierenerkrankungen um die fünfte oder sechste Lebensdekade auf. Etwa ein Viertel der Patienten stellt sich mit einem akuten nephritischen Syndrom
Einleitung

1.4 Mesangialzellen

Der Raum zwischen den Kapillaren des Glomerulus wird vom Mesangium eingenommen, einem schmalen Bindegewebsraum, in dem die Mesangialzellen (Abbildung 6) in die sehr faserarme, extrazelluläre Matrix eingebettet sind [38]. Das Mesangium hilft den Kapillarwänden des Glomerulus dem recht hohen intrakapillären Druck stand zu halten [37]. Mesangialzellen besitzen nicht nur eine
anatomisch zentrale Position im renalen Glomerulus sondern auch eine Funktionelle. Sie bieten strukturelle Unterstützung für die Kapillarschlingen, reagieren in ihrer Eigenschaft als glatte Muskelzellen auf vasokonstriktorische (z.B. Angiotensin II, Vasopressin, Norepinephrin und Histamin) und vasorelaxierende (erhöhte Erzeugung von cAMP und cGMP) Faktoren, was zur lokalen Beeinflussung der glomerulären Filtration führt, und erzeugen vasoaktive Substanzen, wie Renin, Prostaglandin und den Plättchenaktivierungsfaktor. Außerdem sind sie am Auf- und Abbau der Basalmembran und anderer Biomatrixkomponenten beteiligt. Mesangialzellen sind auch zur Endozytose von Makromolekülen einschließlich Immunkomplexen fähig; diese wird durch Bindung an einen spezifischen Rezeptor ausgelöst, was zur Bildung des Plättchenaktivierungsfaktors führt. Des Weiteren sind Mesangialzellen zur Synthese von Zytokinen, wie Interleukin-1 und dem platelet-derived growth factor fähig und reagieren auf diese in einer autokrinen Weise. Das bedeutet, dass die Mesangialzellen nicht nur die glomeruläre Filtration kontrollieren können sondern auch bei der Immunantwort auf lokale, glomeruläre Verletzungen beteiligt sein können [39].
1.5 Immunsystem

Neben den genannten Zellen sind das Komplementsystem, Zytokine, Akute-Phase-Proteine und Antikörper für die Immunantwort von großer Bedeutung [40].

1.5.1 Die angeborene Immunantwort

Das angeborene Immunsystem bildet die erste Station in der Abwehr von Krankheitserregern. Dieser Abwehrmechanismus ist in allen Mehrzellorganismen vorhanden. Zunächst verhindern die Körperepithelien das Eindringen von Erregern dadurch, dass sie eine chemische, mechanische und mikrobielle Barriere darstellen. Falls dieser Abwehrmechanismus versagt, versuchen Phagozyten und das Komplement die Infektion zu stoppen. Die sofortige erfolgreiche Phagozytose ist die Hauptaufgabe der neutrophilen Granulozyten (Abbildung 8) [40].

Makrophagen haben zusätzlich zur Phagozytose noch die Aufgabe der Signalweiterleitung und damit der Induktion weiterer Reaktionen. Hierfür ist der Toll-like Rezeptorsignalweg von Bedeutung. Über diesen werden sie aktiviert, Chemokine und Zytokine freizusetzen; dadurch kommt es zum klassischen Bild der Entzündungsreaktion, d.h. zur Erweiterung lokaler Blutgefäße (Rötung und Erhitzung), zur Extravasation von Leukozyten, insbesondere Granulozyten, und zur erhöhten Durchlässigkeit der Gefäßwand, wodurch sich Flüssigkeit und Plasmaproteine wie Komplement am Infektionsherd anreichern können (Schwellung und Schmerz). Durch diese akute Entzündung wird neben einer möglichen Beseitigung des Erregers auch die Ausbreitung des Pathogens verhindert (Abbildung 9) [40].
Einleitung

Abbildung 8: Angeborene Effektormechanismen: Sofortreaktion. Epithelien stellen die erste physikalische und chemische Abwehrmaßnahme dar. Dringt der Erreger ins Blut vor, kommt es durch die Aktivierung von Komplement zur Opsonierung und Phagozytose durch Granulozyten und ggf. zur Abtötung des Pathogens. Dringt der Erreger ins Gewebe ein, kommt es zur Aufnahme durch ortsständige Makrophagen, die durch Phagozytose aktiviert werden und mikrobizide Faktoren produzieren, was ggf. zur Vernichtung des Pathogens führt. Gelingt die Beseitigung nicht in der Sofortreaktion, werden weitere Effektormechanismen induziert [40].

Einleitung

Mustererkennungsmoleküle können lösliche Rezeptoren, Zelloberflächenrezeptoren und intrazelluläre PRRs sein, um Mikroorganismen in allen intra- und extrazellulären Kompartimenten erkennen zu können. Abbildung 10 zeigt Beispiele für Mustererkennungsstrukturen der angeborenen und erworbenen Immunantwort.

Einleitung

Häufig werden eindringende Pathogene von Antikörpern (Abbildung 11) gebunden. Dabei entstehen Immunkomplexe, bestehend aus einem Antikörper (Immunglobulin) und einem Antigen. Es ist schon seit Längerem bekannt, dass diese Antigen-Antikörper-Komplexe über den Fc-Rezeptor von Makrophagen und neutrophilen Granulozyten erkannt werden, was diese Zellen dazu veranlasst, die Komplexe zu phagozytieren. Ob die virale RNA dieser Immunkomplexe auch direkt über pattern recognition receptors erkannt werden kann, ist bislang unklar (Abbildung 12).

Abbildung 12: Immunkomplexerkennung über Fc-Rezeptoren und PRRs. Das Fc-Fragment des Antikörpers von Immunkomplexen kann von Makrophagen über den Fc-Rezeptor auf dessen Zelloberfläche erkannt werden. Ob auch der Antigenteil der Immunkomplexe über pattern recognition receptors auf der Zelloberfläche oder intrazellulär erkannt werden kann, ist bislang unklar.
1.5.2 Die erworbene Immunantwort

Da die erworbene Immunantwort für die vorliegende Arbeit nicht weiter von Bedeutung ist, wird auf eine nähere Beschreibung verzichtet.

1.6 Erkennung viraler RNA

1.6.1 Toll-like Rezeptoren

Adhäsiionsmoleküle, NO-Synthase) essentiell für die angeborene und die erworbene Immunantwort sind. Tabelle 4 zeigt die bisher bekannten Toll-like Rezeptoren und ihre Antigene [47].

Bisher wurden vier Adaptormoleküle identifiziert: MyD88, TIR-assoziiertes Protein (TIRAP), TIR domain-containing adaptor protein inducing IFN-β (TRIF) und TRIF related adaptor molecules (TRAM) [50-54]. MyD88 und TIRAP sind verantwortlich für die Induktion der proinflammatorischen Gene, TRIF und TRAM für die Induktion der Interferone [46]. Abbildung 13 zeigt die Toll-like Rezeptoren und ihre Signalkaskade mit Adaptormolekülen [47].

Einleitung

Tabelle 4: Pathogenassozierte Moleküle und ihre Toll-like Rezeptoren [47]

<table>
<thead>
<tr>
<th>Pathogen bestandteile</th>
<th>Molekulares Muster</th>
<th>Toll-like Rezeptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakterienwand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alle Bakterien</td>
<td>Peptidoglykan</td>
<td>TLR-2</td>
</tr>
<tr>
<td>Gram- Bakterien</td>
<td>Lipopolysaccharide</td>
<td>TLR-4</td>
</tr>
<tr>
<td>Gram+B Bakterien</td>
<td>Triacyl-Lipopeptide</td>
<td>TLR-1/TLR-2</td>
</tr>
<tr>
<td></td>
<td>Lipoteichonsäure</td>
<td>TLR-2 – TLR-6</td>
</tr>
<tr>
<td></td>
<td>Diacyl-Lipopeptide</td>
<td>TLR-2 – TLR-6</td>
</tr>
<tr>
<td></td>
<td>Porine</td>
<td>TLR-2</td>
</tr>
<tr>
<td>Mykobakterien</td>
<td>Lipoarabinomannan</td>
<td>TLR-2</td>
</tr>
<tr>
<td></td>
<td>Triacyl-Lipopeptide</td>
<td>TLR-1/TLR-2</td>
</tr>
<tr>
<td>Mikrobielle oder virale Nukleinsäure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>CpG-DNA</td>
<td>TLR-9</td>
</tr>
<tr>
<td></td>
<td>dsDNA</td>
<td>-</td>
</tr>
<tr>
<td>RNA</td>
<td>dsRNA</td>
<td>TLR-3</td>
</tr>
<tr>
<td></td>
<td>ssRNA</td>
<td>TLR-7, TLR-8</td>
</tr>
<tr>
<td></td>
<td>3P-RNA</td>
<td></td>
</tr>
<tr>
<td>Andere Pathogenbestandteile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flagella</td>
<td>Flagellin</td>
<td>TLR-5</td>
</tr>
<tr>
<td>Uropathogener E. coli</td>
<td>?</td>
<td>mTLR-11</td>
</tr>
<tr>
<td>Virale Hüllproteine</td>
<td>RSV-Hüllprotein</td>
<td>TLR-4</td>
</tr>
<tr>
<td></td>
<td>Masern-Virus-Hämagglutinin</td>
<td>TLR-2</td>
</tr>
<tr>
<td></td>
<td>CMV, HSV1-Proteine</td>
<td>TLR-2</td>
</tr>
<tr>
<td>Pilzzellwand</td>
<td>Candida-Phospholipomannan</td>
<td>TLR-2</td>
</tr>
<tr>
<td></td>
<td>Candida Mannan</td>
<td>TLR-4</td>
</tr>
<tr>
<td></td>
<td>Sacharomyces Zymosan</td>
<td>TLR-2/TLR-6</td>
</tr>
</tbody>
</table>

1.6.2 RIG-like Helikasen

Im Gegensatz zu den Toll-like Rezeptoren, die hauptsächlich auf dendritischen Zellen exprimiert sind, kommen die RIG-like Rezeptoren auf vielen Zelltypen vor und schützen alle virusinfizierten Zellen [41, 55]. Sie zählen wie die Toll-like Rezeptoren zu den Mustererkennungsmolekülen der angeborenen Immunantwort. In die Gruppe der RIG-like Rezeptoren gehören das Retinoic acid-inducible gene 1 (RIG-I), das melanoma differentiation-associated gene 5 (MDA5) und das laboratory of genetics and physiology 2 (LGP2) [56]. Die RIG-like Rezeptoren befinden sich intrazellulär, erkennen virale Doppelstrang-RNA und werden durch Interferon-α/β-Aktivierung hochreguliert [41]. Nach Aktivierung erfolgt eine Signalkaskade über die CARD-Domäne zu dem CARD-enthaltenden Adaptorprotein IPS-1 (Interferon-β promoter stimulator 1), auch bekannt als MAVS, VISA oder Cardif, was in der Aktivierung von IRF-3 (Interferon regulating factor) und NF-κB resultiert und zur Produktion antiviral Proteine führt [57]. In Abbildung 14 ist die durch virale RNA ausgelöste Aktivierung von RIG-I dargestellt [58].

1.6.3 Immuneffekte nach Erkennung viraler RNA

1.7 Interferone und ihre Rezeptoren

Abbildung 15: Struktur von IFN-α2b, IFN-β und IFN-γ. Die Alpha-Helices sind grün dargestellt, die loops gelb, die 310 Helices dunkelblau und die β-Stränge hellblau [67].
1.7.1 Typ I-Interferone

1.7.2 Typ II-Interferone

Interferon-γ verwendet die Rezeptorketten IFN-γR1 und IFN-γR2 [76]. Der Ligand IFN-γ ist ein Dimer, das an beide IFN-γR1-Ketten, nicht aber direkt an die IFN-γR2-Ketten bindet. Nach Bindung phosphorylieren die Jak-Kinasen sich zunächst gegenseitig; anschließend phosphorylieren die aktivierten Jak-Kinasen das Tyrosin 457 jeder IFN-γR1-Kette, was zur Rekrutierung von Stat-1α führt. Stat-1α bindet an das phosphorylierte Tyrosin 457 jeder IFN-γR1-Kette, bewegt die Rezeptorketten auseinander [77] und wird von der Jak-Kinase phosphoryliert. Das phosphorylierte Stat-1α-Protein löst sich von der IFN-γR1-Kette, bildet einen Transkriptionsfaktor, der in den Zellkern gebracht wird, um dort die Interferon-γ-regulierenden Gene zu aktivieren (Abbildung 17) [67].

1.7.3 Signalnetzwerk der Interferoninduktion

Einleitung

Abbildung 18-2: Reaktion der Zielzelle auf die gebildeten Interferone. Die gebildeten Interferone binden an Interferonrezeptoren der Zielzellen, was zur Bildung weiterer Interferone und anderer antiviraler Proteine führt [78].

NS3/S4A-Protease: schneidet TRIF und IPS-1
V-Protein: inhibiert MDA5 und Stat
A46R-Protein: inhibiert verschiedene TIR-Adaptoren
NS5A, E2: verhindert die Aktivierung von PKR und eIF-2α
E3L: bindet RNA und verhindert die Aktivierung von PKR und eIF-2α
K3L: mimt eIF-2α und inhibiert seine Funktion
vIFN-α/β-BP (B16R): bindet und inhibiert Typ I-Interferone; PKR: Protein-Kinase R

1.7.4 Kontinuierliche Interferonproduktion

Wie oben bereits erwähnt, werden Interferon-alpha und -beta in großen Mengen vor allem nach viraler Infektion gebildet. Es gibt jedoch auch Anzeichen für die kontinuierliche geringe Expression dieser Interferone in Fibroblasten, Splenozyten, Makrophagen und dendritischen Zellen in Abwesenheit von Viren oder anderer Interferoninduzierern [79, 80]. Es gibt Beweise dafür, dass dieses, durch kontinuierlich exprimierte Interferone ausgelöste, schwache Signaling wichtig dafür ist, dass die Zellen effektiv auf Stimulation durch IFN-γ, Interleukin-6 oder Viren reagieren können [81, 82]. In Abbildung 19 ist das Modell dieser autokrinen Aktivierung dargestellt [78].

Abbildung 19: Hypothetisches Modell der durch ständiges schwaches IFN-αβ-Signaling ausgelösten verstärkten Immunantwort. Dieses Modell zeigt, dass bestimmte (alle?) Zellen kontinuierlich eine geringe Menge IFN produzieren und es dadurch bei viraler Infektion oder bei Stimulation durch Zytokine zu einer effizienteren Immunantwort kommt [78].
Einleitung

1.8 Ziel der Untersuchungen und Hypothese

Kapitel 2:
Material und
Methoden
2 Material und Methoden

Verwendete Geräte und Materialien

2 100 Bioanalysator
BioRad Semi-Dry Blotting System
ELISA-Reader Tecan, GENios Plus
ELISA-Washer
Entwickler Curix 60
FacsCalibur™
Gel-Kammer (für PCR)
Lichtmikroskop Leitz Diavert
Lichtmikroskop Leitz DMRBE
Mini-PROTEAN® II Electrophoresis Cell
pH meter WTW
Photometer Ultrospec 1000
RNA 6000 LabChip
Schneidgerät
Shandon Citadel™ 2000 Tissue Protector
Spektrophotometer Beckman DU® 530
Steril Card Hood Class II, Typ A/B3
Sonicater
TaqMan ABI prism™ 7700 sequence detector
Thermomixer 5436
Vortex Genie 2™
Waage Mettler PJ 3000
Wasserbad HI 1210
Zellinkubator Type B5060 EC-CO₂
Zentrifuge Heraeus, Minifuge T
Zentrifuge Heraeus, Sepatech Biofuge A
UNO-II-Cycler (Thermocycler)
UV-Licht

24-well-Platten
6-well-Platten
Analysesiebe aus Stahl (Ø 50 mm, 45-105 µm)
Material und Methoden

Einbettkassetten neoLab Migge, Heidelberg, Deutschland
Einmal-Küvetten 1,5 ml Plastibrand®
Eppendorfgefäße 1,5 ml
Falcons 15 ml und 50 ml
Immobilon PVDF Transferrmembran
Kodak BioMax XAR Film
Kryobox Cryo 1 °C Freezing cont
Kryovials
Multikanalpipette Eppendorf Research
Nadeln BD Microlance 26 G x ½
Nunc-Immuno™ 96 Microwell™ Plates
Perfusorspritze
 Pipettenspitzen 1-1,000 µl Typ Gilson®
 Pipettenspitzen epT.I.P.S. Standard
 Pipetten Pipetman® P
 Pipettierhilfe Pipetus®-classic
 Plastikfilter 70 µm
 Preseparationsfilter
 Serologische Pipetten 5, 10, 25 ml
 Skalpelle No. 20
 Spritzen BD Plastipak 1000 µl, 5 ml
 Whatman-Papier
 Zellkulturschalen 10 cm
 Zellschaber 24 cm

2.1 Zellisolation

di-Natriumhydrogenphosphat (Na₂HPO₄) Merck, Darmstadt, Deutschland
Collagenase Type IV 210 Worthington Biochemical, Lakewood, NY
Fötales bovines Serum (FCS) Biochrom KG, Berlin, Deutschland
Insulin-Transferrin-Sodium Selenite (ITS) Roche-Diagnostics, Mannheim, D
Kaliumchlorid (KCl) Merck, Darmstadt, Deutschland
Kaliumhydrogenphosphat (KH₂PO₄) Merck, Darmstadt, Deutschland
Natriumchlorid (NaCl) Merck, Darmstadt, Deutschland
Penicillin/Streptomycin (PS) (100x) PAA Laboratories GmbH, Cölbe, D
RPMI 1640-Medium Invitrogen, Karlsruhe, Deutschland
Material und Methoden

10 x PBS: 80,0 g NaCl; 11,6 g Na₂HPO₄; 2,0 g KH₂PO₄; 2,0 g KCl gelöst in 1 l doppelt deionisiertem Wasser, pH 7

In der Zellkultur wurde der Überstand abgesaugt, mit 1 ml RPMI-Medium resuspendiert und auf ca. 10 ml aufgefüllt. Daraufhin wurde diese Lösung durch einen 70-µm-Plastikfilter in ein neues Röhrchen gespült. Dieser Inhalt wurde durch einen 30-µm-Preseparationsfilter gespült. Alle Glomeruli bleiben in diesem Filter hängen. Der Filter wurde umgedreht und der Inhalt mit ca. 20 ml RPMI in ein neues Röhrchen gespült. Zu diesem wurde 20 ml Collagenase IV-Lösung (1 mg/ml) gegeben und das Ganze 20 Minuten bei 37 °C im Wasserbad inkubiert. Dadurch kommt es zur Andauung der Glomeruli. Nach der Inkubationszeit wurde nochmals 7 Minuten bei 4 300 Umdrehungen/Minute und 4 °C zentrifugiert. Anschließend der Überstand abgesaugt und mit 1-2 ml RPMI resuspendiert. Zuletzt wurde das Ganze mit RPMI (+ 20 % FCS, 1 % PS und ITS) auf 60 ml aufgefüllt und auf fünf 6-well-Platten verteilt (je 2 ml pro well). Die Platten kamen für 5-6 Tage in den Inkubator (37 °C, 5 % CO₂), dann erfolgte der erste Mediumwechsel; dazu wurde das Medium sehr vorsichtig abgesaugt und zwei Milliliter frisches Medium dazu gegeben. Von nun an erfolgte alle zwei bis drei Tage ein Mediumwechsel. Nach etwa 10 Tagen begann das erste Auswachsen von Zellen aus den Glomeruli.

2.2 Zellkultur

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagle Medium (D-MEM)</td>
<td>Invitrogen, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Dulbecco’s PBS (1x)</td>
<td>PAA Laboratories GmbH, Köln, Deutschland</td>
</tr>
<tr>
<td>EDTA (Versen)</td>
<td>Biochrom KG, Berlin, Deutschland</td>
</tr>
<tr>
<td>Fötales bovines Serum (FBS Superior)</td>
<td>Biochrom KG, Berlin, Deutschland</td>
</tr>
<tr>
<td>Insulin-Transferrin-Sodium Selenite (ITS)</td>
<td>Roche Diagnostics, Mannheim, D</td>
</tr>
<tr>
<td>Penicillin/Streptomycin (PS) (100x)</td>
<td>PAA Laboratories GmbH, Köln, Deutschland</td>
</tr>
<tr>
<td>RPMI 1640-Medium</td>
<td>Invitrogen, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>Sigma Aldrich, Deisenhofen, Deutschland</td>
</tr>
</tbody>
</table>
Material und Methoden

Zellkultivierung und Zellpassage

Die primären Mesangialzellen wurden unter Standardbedingungen (bei 37 °C im Inkubator mit 5 % CO₂ in RPMI 1640-Medium unter Zusatz von 10 % FCS und 1 % PS (100 U/ml Penicillin, 100 µg/ml Streptomycin) in Petrischalen mit 10 cm Durchmesser kultiviert. Die Zelllinie wurde in DMEM unter Zusatz von 5 % und 1 % PS kultiviert. Waren die Zellen zu 100 % konfluent, wurden sie mit PBS gewaschen und mit PBS und 1,5 mM EDTA für fünf bis zehn Minuten im Wärmeschrank inkubiert; dabei lösten sie sich von der Petrischale ab. Anschließend wurde Medium mit FCS hinzugegeben, die Zellsuspension in ein Röhrchen pipettiert und bei 1 300 Umdrehungen/Minute für 5 Minuten zentrifugiert. Nach der Zentrifugation wurde der Überstand abgesaugt, die Zellen mit Medium resuspendiert und im Verhältnis 1: 2 oder 1: 4 auf neue Petrischalen passagiert, bzw. für Stimulationsversuche auf 6-, 12- oder 24-well-Platten verteilt.

Einfrieren und Auftauen der Zellen

Zellzählung

Um die Zellen zu zählen, wurde das Pellet nach Zentrifugation mit 1 ml Medium resuspendiert, dann 50 µl davon mit 50 µl PBS gemischt. Hieraus wurden wieder 50 µl entnommen und zu 50 µl Trypanblau gegeben. Diese Mischung wurde in eine Zählkammer pipettiert und die hellen (lebenden) Zellen von zehn Großquadraten meanderförmig ausgezählt. Anschließend wurde die Zellzahl pro Milliliter mit folgender Formel berechnet: (Gezählte Zellen/Anzahl der ausgezählten Großquadrate) * Verdünnung * 10⁴ = Zellzahl/ml
Stimulationsexperimente

Lipofectamine™ 2000 Invitrogen, Karlsruhe, Deutschland
Mouse Interferon-β PBL Biomedical, Piscataway, NJ, USA
Opti-MEM® Invitrogen, Karlsruhe, Deutschland
Poly I:C Invivogen, Toulouse, Frankreich
Polymyxin B Sigma Aldrich, Deisenhofen, Deutschland
Rat Monoclonal Antibody against Mouse Ifn-α PBL, Piscataway, NJ, USA
Rat Monoclonal Antibody against Mouse Ifn-β PBL, Piscataway, NJ, USA
Recombinant Murine Interferon-α AbD Serotec, Martinsried, Deutschland
Recombinant Murine Interferon-γ PeproTech INC., London, UK
Tumor Necrosis Factor alpha (Tnf-α) ImmunoTools GmbH, Friesoythe, D
Ultra Pure E. coli LPS Invivogen, Toulouse, Frankreich

Die Stimulationen an den primären Mesangialzellen wurden in RPMI mit 5 % FCS durchgeführt, die an der Zelllinie in DMEM mit 2,5 % FCS. Bei allen Versuchen waren die Zellen zu 70-80 % konfluent und hatten, wenn angegeben, 24 Stunden gehungert (RPMI bzw. DMEM mit 1 % Penicillin/Streptomycin, ohne FCS).

Die primären Mesangialzellen wurden von Passage 6 bis 20 verwendet. Um den Überstand für ELISAs zu gewinnen wurden 24-well-Platten mit 0,5 ml Medium verwendet, um RNA für die real time RT-PCR zu bekommen, 6-well-Platten mit 2 ml Medium. Vor der Stimulation wurden die Zellen eine halbe Stunde mit Polymyxin B inkubiert, um LPS-Kontamination zu vermeiden. Wurde poly I:C mit Lipofectamin transfektiert, wurde dafür zunächst die gewünschte Menge poly I:C in 25 µl Opti-MEM gegeben und gemischt; in einem anderen Eppendorfgefäβ wurde die 1,5-fache Menge Lipofectamin ebenfalls in 25 µl Opti-MEM gemischt. Dann wurde der Inhalt des zweiten Eppendorfgefäβs zum Ersten gegeben, alles gemischt und für 20 Minuten inkubiert.

2.3 ELISA

Material und Methoden

II-6-ELISA

II-6-ELISA-Kit BD OptEIA BD Biosience, Heidelberg, Deutschland
Enthält: *Bindeantikörper:* Anti-Maus II-6; *Standard:* rekombinantes Maus II-6; *Arbeits-Detektor-Reagenz:* biotinierter Detektions-Antikörper Anti-Maus II-6 in Probenverdünnner 1: 500 gelöst, dazu das Enzymereagenz (mit *Horseradish-Peroxidase* markiertes Streptavidin) im Verhältnis 1: 250

Di-Natriumhydrogenphosphat (Na₂HPO₄) Merck, Darmstadt, Deutschland
Fötales bovines Serum (FBS Superior) Biochrom KG, Berlin, Deutschland
Kaliumchlorid (KCl) Merck, Darmstadt, Deutschland
Kaliumhydrogenphosphat (KH₂PO₄) Merck, Darmstadt, Deutschland
Natriumcarbonat (Na₂CO₃) Merck, Darmstadt, Deutschland
Natriumchlorid (NaCl) Merck, Darmstadt, Deutschland
Natriumhydrogencarbonat (NaHCO₃) Merck, Darmstadt, Deutschland
Tween 20 Fluka, Sigma Aldrich, Deisenhofen, D

Substratlösung: Tetramethylbenzidin und Hydrogen-Peroxid im Verhältnis 1: 1 (BD Pharming ™ TMB-Substrate, Heidelberg, Deutschland); Stopflösung (2 N H₂SO₄)

10 x PBS: 80,0 g NaCl; 11,6 g Na₂HPO₄; 2,0 g KH₂PO₄; 2,0 g KCl gelöst in 1 l doppelt deionisiertem Wasser, pH 7

Beschichtungspuffer: 8,4 g NaHCO₃, 3,56 g Na₂CO₃ gelöst in 1 l doppelt deionisiertem Wasser, pH 9,5

Waschpuffer: PBS + 0,05 % FCS

Probenverdünnung: PBS mit 10 % FCS
Material und Methoden

Interferon-α-ELISA

Ifn-α-ELISA-Kit PBL Biomedical Laboratories, Piscataway, NJ, USA

Zu Beginn wurden je 100 µl der Proben, des Standards (Verdünnungsreihe von 500 pg/ml bis 12,5 pg/ml) und des Verdünnungspuffers als Leerwert auf die vorbeschichtete 96-well-Platte gegeben (die obere und untere Reihe der Platte wurde dabei ausgelassen, da hier die Leerwerte höher sind) und für eine Stunde verschlossen inkubiert. Anschließend wurde einmal mit Waschpuffer gewaschen und 100 µl/well der Antikörper-Lösung aufgetragen. Die Platte wurde für 24 Stunden verschlossen im Dunkeln inkubiert. Nach der Inkubation wurde dreimal gewaschen und 100 µl der HRP-Konjugat-Lösung in jede Vertiefung gegeben. Nach einer Stunde Inkubation wurde viermal gewaschen und 100 µl TMB-Substratlösung dazu gegeben. Nach 15 Minuten wurde die Reaktion mit 100 µl Stopplösung beendet, die Absorption bei 450 nm gemessen und mittels Standardkurve die Interferonkonzentration berechnet.
Material und Methoden

Interferon-β-ELISA

Ifn-β-ELISA-Kit PBL Biomedical Laboratories, Piscataway, NJ, USA
Enthält: Waschlösung; Standard: Maus Interferon-beta; Probenverdünnner; Antikörper-Lösung: Antikörperkonzentrat lotspezifisch verdünnt in Konzentrat-Verdünnner; HRP-Konjugat-Lösung: HRP-Konjugat-Konzentrat lotspezifisch verdünnt in Konzentrat-Verdünnner; TMB-Substratlösung; Stopplösung

Interferon-γ-ELISA

Ifn-γ-ELISA-Kit BD Biosience, Heidelberg, Deutschland

di-Natriumhydrogenphosphat (Na$_2$HPO$_4$) Merck, Darmstadt, Deutschland
Föttales bovines Serum (FBS Superior) Biochrom KG, Berlin, Deutschland
Kaliumchlorid (KCl) Merck, Darmstadt, Deutschland
Kaliumhydrogenphosphat (KH$_2$PO$_4$) Merck, Darmstadt, Deutschland
Natriumcarbonat (Na$_2$CO$_3$) Merck, Darmstadt, Deutschland
Natriumchlorid (NaCl) Merck, Darmstadt, Deutschland
Natriumhydrogencarbonat (NaHCO$_3$) Merck, Darmstadt, Deutschland
Tween 20 Fluka, Sigma Aldrich, Deisenhofen, D
Substratlösung: Tetramethylbenzidin und Hydrogen-Peroxid im Verhältnis 1: 1 (BD Pharming TM TMB-Substrate, Heidelberg, Deutschland); Stopplösung (2 N H$_2$SO$_4$)
Material und Methoden

10 x PBS: 80,0 g NaCl; 11,6 g Na₂HPO₄; 2,0 g KH₂PO₄; 2,0 g KCl gelöst in 1 l doppelt deionisiertem Wasser, pH 7

Beschichtungspuffer: 8,4 g NaHCO₃, 3,56 g Na₂CO₃ gelöst in 1 l Wasser, pH 9,5

Waschpuffer: PBS + 0,05 % FCS

Probenverdünnern: PBS mit 10 % FCS

2.4 RNA-Gewinnung und Umschreiben in cDNA

0,1M DTT Invitrogen, Karlsruhe, Deutschland
15 µg/ml Linear Acrylamide Ambion, Darmstadt, Deutschland
25nM dNTPS dNTP-Set, GE Healthcare, München
40 U/µl RNasin Promega, Mannheim, Deutschland
5*First Strand Buffer Invitrogen, Karlsruhe, Deutschland
Agarosepulver Invitrogen, Karlsruhe, Deutschland
β-Mercaptoethanol Roth, Karlsruhe, Deutschland
Diethyl-Pyrocarbonat (DEPC) Fluka, Sigma Aldrich, Deisenhofen, Deutschland
DNAse Set Qiagen GmbH, Hilden, Deutschland
(enthält DNAse, RDD-Puffer und RNAs freies Wasser)
Hexanucleotide Roche, Mannheim, Deutschland
Mops Roth, Karlsruhe, Deutschland
Natriumacetat (CH₃COONa) Merck, Darmstadt, Deutschland
Material und Methoden

RNA Sample Loading Buffer
Sigma Aldrich, Deisenhofen, Deutschland

RNase Mini Kit
Qiagen GmbH, Hilden, Deutschland

Superscript II
Invitrogen, Karlsruhe, Deutschland

10 x MOPS-Puffer:
20,93 g 200 mM Mops, 3,4g 50 mM Na-Acetat, 10 ml 0,5 M EDTA, gelöst in 500 ml Wasser, pH 7

Agarose-Gel:
0,75 g Agarose-Pulver + 50 ml Mops-Puffer

Zur RNA-Gewinnung wurde das RNeasy-Kit von Qiagen verwendet. Es wurde an einem RNAse-freien Arbeitsplatz auf Eis gearbeitet. Alle Eppendorfröhrchen wurden vorher mit DEPC behandelt.

Zelllyse

RNA-Isolation

Die Proben wurden auf Eis aufgetaut und im Verhältnis 1:1 mit 70 % nicht vergälltem Alkohol gemischt. Die Mischung wurde anschließend auf die Filtriersäulen gegeben und eine halbe Minute bei 10 000 Umdrehungen/Minute zentrifugierte. Dabei blieb die RNA auf der Membran hängen. Die Flüssigkeit im unteren Gefäß wurde abgegossen. Jetzt wurden 350 µl RW1-Puffer (wäschht Ethanol und Reststoffe aus) darauf gegeben und bei 10 000 Umdrehungen/Minute 30 Sekunden zentrifugierte. Währenddessen wurde das DNase-Puffer-Gemisch hergestellt. Dazu wurde zunächst das DNase-Pulver mit 550 µl RNAse-freiem Wasser aufgelöst, anschließend je Probe 10 µl der DNase mit 70 µl RDD-Puffer gemischt. Nachdem der Überstand abgegossen war, wurden 80 µl DNase-Puffer-Gemisch mittig auf die Säulen gegeben und 20 Minuten inkubiert. Nach der Inkubationszeit wurde nochmals mit 350 µl RW1-Puffer gewaschen und wie oben zentrifugierte, anschließend die Säulen in neue Gefäße umgesetzt, 500 µl RPE-Puffer dazu gegeben und nochmals zentrifugierte. Nachdem der Überstand abgegossen war, wurden erneut 500 µl RPE-Puffer dazu gegeben und dieses Mal zwei Minuten bei 10 000 Umdrehungen/Minute zentrifugierte, anschließend der Überstand abgegossen. Dann wurden die Säulen zwei Minuten bei 13 000 Umdrehungen/Minute trocken zentrifugierte.
Material und Methoden

Schließlich wurden die Säulen in Eppendorfgefäße umgesetzt und 30 µl RNase-freies Wasser mittig aufgegeben und zwei Minuten bei 10 000 Umdrehungen/Minute zentrifugiert. Das Wasser löst die RNA von der Membran. Diese befindet sich nach Zentrifugation im Eppendorfgefäß und kann bei -80° C aufbewahrt werden.

Messen der optischen Dichte

Im Anschluss an die RNA-Isolation wurde die optische Dichte gemessen, um den RNA-Gehalt zu bestimmen. Dazu wurden die Proben zunächst 1: 50 mit RNase-freiem Wasser verdünnt (2 µl Probe + 98 µl Wasser). Anschließend die 100 µl Probe in die Kuvette gegeben und die Werte für 260 nm, 280 nm und das Verhältnis abgelesen. Die Werte sind verwertbar bei einem Verhältnis zwischen 1,7 und 2,2. Darunter liegt eine Proteinkontamination vor, darüber eine DNA-Kontamination.

Gel-Elektrophorese

Die Gel-Elektrophorese wurde gemacht, um die Reinheit der isolierten RNA zu bestimmen. Dazu wurden 2 µl der Probe mit 5 µl RNA-Ladepuffer gemischt und zehn Minuten bei 37 °C im Thermomixer gemischt.

Berechnung der RNA-Konzentration

Um die RNA in cDNA umzuschreiben sind 2 µg RNA nötig. Die Konzentration der RNA, die gewonnen wurde, lässt sich mit der Formel: c (µg/ml) = Extinktion bei 260 nm * Verdünnungsfaktor * 1 optische Dichte (für RNA 40 µg/ml) berechnen. Daraus lässt sich mittels Dreisatz bestimmen, in wie viel µl der gewonnenen Lösung 2 µg RNA sind.

Umschreiben der mRNA in cDNA

Die Menge der Proben, in der 2 µg RNA sind, wurden in ein neues Eppendorfgefäß pipettiert und mit Wasser auf 30 µl aufgefüllt. Das Ganze zweimal (einmal für cDNA+ und einmal für cDNA-). Für den Mastermix wurden je Probe 9 µl 5*Puffer, 1 µl 25mM dNTPS, 2 µl 0,1M DTT, 1 µl 40 U/µl rNasin, 0,5 µl 15 µg/ml linear Acrylamide und 0,5 µl Hexanucleotide verwendet. Zusätzlich für die cDNA+ 1 µl reverse Transkriptase (Superscript) und für die cDNA– 1 µl RNase freies Wasser. Anschließend
wurden 15 µl Mastermix zu jeder Probe gegeben und die Proben im Thermomixer bei 42 °C eine Stunde gemischt. Die cDNA wurde bei –20° C aufbewahrt.

2.5 Real time RT-PCR (TaqMan)

Die *real time* RT-PCR ist eine Vervielfältigungsmethode für Nukleinsäuren, die gleichzeitig eine Quantifizierung während eines PCR-Zyklus zulässt. Für die Quantifizierung wird zu den Proben zusätzlich zum *Forward* - und *Reverse*-Primer eine Sonde gegeben, die an ihrem 5’ Ende einen *Quencher* (TAMRA), am 3’ Ende einen Reporter-Fluoreszenzfarbstoff (VIC, FAM oder TET) enthält.

Durch Erhitzen wird der Doppelstrang zunächst aufgespalten und Primer und Sonde lagern sich am komplementären Strang an.

Wenn die TaqPolymerase, die gleichzeitig Exonukleaseaktivität besitzt, am Strang entlang wandert und die einzelnen Nukleotide verbindet, spaltet sie auch die Sonde ab.

Dadurch entfernen sich *Quencher* und Reporter voneinander, der *Quencher* kann die Fluoreszenz des Reporters nicht mehr unterdrücken (*quenching*) und eine steigende Reporterfluoreszenz kann gemessen werden.
Material und Methoden

18S rRNA (pre-developed TaqMan Assay Reagents) Applied Biosystems, Darmstadt, D
EDTA Merck, Darmstadt, Deutschland
GAPDH (pre-developed TaqMan Assay Reagents) Applied Biosystems, Darmstadt, D
TaqMan PCR-Master-Mix Roche, Mannheim, Deutschland
(enthält AmpliTaq Gold®DNA Polymerase, AmpErase®UNG, dNTPs mit dUTP, passive Referenz, Puffer)
Tris (Trihydroxymethylaminomethan)-HCl Merck, Darmstadt, Deutschland

TE-Puffer: 10 mM Tris-HCl, 0,1 mM EDTA

Verwendete Primer (murin)
Il-6 AssayID Mm00446190_m1 FAM 5'-AAATGAGAAAAGAGTTGTGCAATGG-3’
Mx-1 AssayID Mm00487796_m1 FAM 5’-TGACTGCTAAGTCCAAAATTAAAG-3’
Ifn-β AssayID Mm00439546_s1 FAM 5’-TTCACGCTGCGTTCCTGCTGTGTGCTT-3’
Ifn-γ AssayID Mm00801778_m1 FAM 5’-CTATTITTAACTCAAGTGGCATAGAT-3’
Ips-1/Visa AssayID Mm00523168_m1 FAM 5’-AGTGACCCAGAGACTGAGGCTT-3’
Mda5 AssayID Mm00459183_m1 FAM 5’-GACACCAGGAGCGGATTCTCCTG-3’
Rig-I AssayID Mm00554529_m1 FAM 5’-CCAAACCAGGAGGAGGAGGCA-3’
Tlr-3 Accession Number AF355152 FAM 5’-CACTTAAAGTTCTCCC-3’
Tlr-7 Accession Number AY035889 FAM 5’-CCAAGAAAATGATTTTAATAAC -3’
Ifn-Rezeptor 1 Assay ID Mm00439544_m1

Verwendete Primer (human)
IFN-α FAM 5’-CAG ACA TGA CTT TGG ATT TCC CCA GG-3’
Zunächst wurden die cDNAplus- und die cDNAminus-Proben im Verhältnis 1:10 mit TE-Puffer gemischt (5 µl Probe + 45 µl TE-Puffer). Dann wurde der Mix für das Ziel-Gen hergestellt. Dazu wurden je Probe 10 µl Taq-Mix, 1 µl des jeweiligen Primers (enthält Forward- und Reverse-Primer sowie die Sonde), und 7 µl Wasser gemischt. Anschließend wurden 18 µl davon in ein Eppendorfgefäss gegeben und 2,2 µl der cDNA RT+ hinzugefügt. Als Housekeeper (Referenz-Gen) wurde 18S rRNA verwendet. Dazu wurden je Probe 10 µl Taq-Mix, 1 µl 18s rRNA und 7 µl Wasser gemischt und je 20 µl davon plus 2,2 µl der cDNA RT+ in ein Eppendorfgefäss gegeben und gemischt. Anschließend wurde in jede Vertiefung der 96-well-Platte 20 µl des Ziel-Gen-Mixes und des Housekeepers jeweils in Duplikaten aufgetragen. Für die cDNA RT- wurde zunächst 20 µl des rRNA-Mixes auf die Platte gegeben, anschließend 2,2 µl der cDNA RTminus-Probe dazu gefügt (in Unikaten). Dann wurde die Platte mit Folie gut verschlossen und in den TaqMan Abi Prism gegeben. Dort lief die real time RT-PCR für 1 Stunde 48 Minuten ab. Dabei erfolgte die erste Inkubation für 2 Minuten bei 50 °C, anschließend für 10 Minuten bei 95 °C. Danach wurde die DNA während 40 Zyklen, die jeweils 15 Sekunden bei 95 °C und 1 Minute bei 60 °C beinhalteten, vervielfältigt. Für die Auswertung wurde zunächst die cDNA RT- betrachtet. Waren diese Werte mehr als 5 verschieden von der cDNA RT+, lag keine DNA-Kontamination vor und die Werte konnten verwendet werden. Danach wurde für jede Probe der Housekeeper von dem Wert des Ziel-Gens abgezogen. Wurde dieser Wert noch mit 2^x berechnet, kam man auf das Ergebnis.

2.6 Proliferationsassay

CellTiter 96® AQueous One Solution Cell Proliferation Assay Promega, Mannheim, D

Der Proliferationsassay dient dazu, die Zellproliferation auf bestimmte Stimuli hin zu bestimmen. Zunächst wurde die dafür am besten geeignete Zellzahl bestimmt. Hierfür wurden die Zellen gezählt (siehe 2.2), anschließend Zellkonzentrationen von 200 000 Zellen/ml bis 3 125 Zellen/ml auf je 8 wells einer 96-well-Platte in RPMI + 1 % FCS gegeben; zusätzlich in 8 wells nur Medium als Leerwert. Nach 48 Stunden erfolgte ein Mediumwechsel. Nach weiteren 44 Stunden wurden je well 20 µl der One Stop Solution hinzugegeben und nach 3 Stunden die Absorption bei 492 nm gemessen. Die Zellzahl, die sich im aufsteigenden Teil der Kurve befand, wurde für weitere Versuche verwendet. Für die Messung der eigentlichen Proliferation wurden je 30 000 Zellen/ml auf eine 96-well-Platte mit RPMI + 1 % FCS + 1 % PS verteilt. Nach 24 Stunden wurde das Medium gewechselt und die Liganden dazu gegeben. Nach 44 Stunden im Inkubator wurden je well 20 µl One Stop Solution hinzugegeben und nach 2 Stunden die Absorption bei 492 nm mittels ELISA-Lesegerät bestimmt und im Diagramm aufgetragen.
2.7 Western Blot

Western Blot bedeutet die Übertragung (das Blotten) von Proteinen von einem Gel auf eine Trägermembran. Der Name geht auf den Erfinder der Blotting-Technik, Edwin Southern, zurück, der 1975 den Southern Blot, das Blotten von DNA, erstmals beschrieben hat.

10 % Ammoniumpersulfat (APS) BioRad, München, Deutschland
10 % SDS BioRad, München, Deutschland
2-Buthanol Merck, Darmstadt, Deutschland
30 % Acrylamide (Rotiphorese Gel 30) Roth, Karlsruhe, Deutschland
β-Mercaptoethanol Roth, Karlsruhe, Deutschland
Bio-Rad Protein Assay BioRad, München, Deutschland
Blockierlösung Western Blocking Reagent Roche, Mannheim, Deutschland
Bovines Serum-Albumin (BSA) Roche, Mannheim, Deutschland
Bromphenolblau Merck, Darmstadt, Deutschland
Desoxycholicacid Sigma Aldrich, Deisenhofen, Deutschland
ECL (Chemilumineszenz) NEN™, Life Science Prod., Boston, USA
ECL Rabbit-IgG HRP-linked GE Healthcare, München, Deutschland
EDTA Merck, Darmstadt, Deutschland
Eisessig Merck, Darmstadt, Deutschland
Glycin Roth, Karlsruhe, Deutschland
Glycerol Roth, Karlsruhe, Deutschland
HCL Merck, Darmstadt, Deutschland
Methanol Merck, Darmstadt, Deutschland
NaCl Merck, Darmstadt, Deutschland
Polyclonal Antibody to Cardif (Ips1) Alexis, San Diego, Ca, USA
Polyclonal Antibody to Helicard (Mda5) Alexis, San Diego, Ca, USA
Ponceau S Roth, Karlsruhe, Deutschland
Material und Methoden

Proteasen-Inhibitor-Cocktail Complete: Roche, Mannheim, Deutschland
Rig-I Antibody: ProSci Inc., Poway, CA, USA
Standard peqGOLD Protein-Marker II: Peqlab, Erlangen, Deutschland
TEMED: BioRad, München, Deutschland
Tris: Roth, Karlsruhe, Deutschland
Triton X-100: Fluka, Sigma Aldrich, Deisenhofen, D
Tween 20: Fluka, Sigma Aldrich, Deisenhofen, D

RIPA-Lysepuffer: 4 ml Triton X-100, 4 g Desoxycholic acid, 2 ml SDS 20 %, 12 ml 5 M NaCl, 20 ml 1 M Tris, 8 ml 0,5 M EDTA auf 400 ml Wasser auffüllen

2 Trenngele (10 %): 7,9 ml Millipore-Wasser; 6,7 ml 30 % Acrylamidemix; 5 ml 1,5 M Tris-HCl pH 8,8 (36,3 g Tris in 150 ml Wasser, mit HCl auf pH 8,8; mit Wasser auf 200 ml auffüllen); 0,2 ml 10 % SDS; 0,2 ml 10 % APS; 0,008 ml TEMED

2 Sammelgele: 5,6 ml Millipore-Wasser; 1,7 ml 30 % Acrylamidemix; 2,5 ml 0,5 M Tris-HCl pH 6,8 (12,1 g Tris in 150 ml Wasser, mit HCl auf pH 6,8; auf 200 ml mit Wasser auffüllen); 0,1 ml 10 % SDS; 0,1 ml 10 % APS; 0,01 ml Temed

2 x Probenpuffer: 2,5 ml 1,25 M Tris-HCl, pH 6,8; 5,8 ml Glycerol (87 %); 1 g SDS; 2,5 ml β-Mercaptoethanol; 5 mg Bromphenolblau; 40 ml Millipore-Wasser

10 x Elektrophoresepuffer: 144 g Glycin; 30 g Tris; 30 g SDS in 1 l Wasser

Transferpuffer: 17,46 g Tris; 8,79 g Glycin; 11,25 ml SDS 10 %; 600 ml Methanol; mit Millipore-Wasser auf 3 Liter auffüllen

TBS: 24,22 g 200 mM Tris; 80 g 1,37 M NaCl; 1 l Millipore-Wasser; pH 7,6

TBS-T: TBS + 0,05 % Tween 20

Ponceau S-Färbelösung: 5 g Ponceau S, 10 ml Eisessig, 990 ml Millipore-Wasser

Gel gießen

Zunächst wurde die Gelkammer zusammengesetzt, dann das Trenngel wie angegeben hergestellt. Kurz vor dem Gießen wurde TEMED hinzugegeben. Das Trenngel wurde bis ca. 2 cm unterhalb des Randes in die Kamern gegossen, etwas 2-Buthanol darüber gegeben, damit das Gel plan abschließt und das Ganze 20 Minuten erstarren gelassen. War das Gel fest, wurde das Buthanol abgegossen, gut nachgespült und getrocknet. Danach wurde das Sammelgel hergestellt und wieder kurz vor Verwendung TEMED hinzugegeben. Schließlich wurde das Sammelgel in die Gelkammer auf das Trenngel gegossen, die Kämme hinein gesteckt und ebenfalls erstarren gelassen.
Proteingewinnung

Um die Proteine zu isolieren, wurde zunächst zu 1 ml RIPA-Puffer 40 µl Proteasen-Inhibitor-Cocktail gegeben. Anschließend das Medium von der 10 cm Zellkulturplatte abgesaugt, zweimal mit PBS gewaschen und gut abgesaugt. Dann wurden je Platte 120 µl RIPA-Puffer auf der Platte verteilt und mit dem Zellschaber die Zellen abgekratzt und in ein Eppendorfgefäss pipettiert, dieses 10 Minuten auf Eis inkubiert und anschließend 10 Minuten bei 15 000 Umdrehungen/Minute zentrifugiert. Der Überstand, in dem sich die Proteine befanden, wurde in ein neues Eppendorfgefäss gegeben.

Proteinmessung und Laden der Proteine

SDS-Page

Zunächst wurde das Gel in die Elektrophoresekammer eingesetzt, mit Elektrophoresepuffer gefüllt und die Kämme entfernt. Nachdem die Taschen mit Puffer gut gespült worden waren, um Gelreste zu entfernen, wurde in die erste Tasche jedes Gels 5 µl des Standards (Protein-Marker II) gegeben. In die anderen Taschen kamen die Proben. Die Elektrophorese wurde bei 100 V einlaufen gelassen, bis die Trennlinie erreicht war und lief schließlich bei 130 V so lange weiter, bis die Proben den unteren Rand erreicht hatten. Dann wurde der Puffer abgegossen und das Gel auf der kleinen Glasplatte zum Äquilibrieren in den Transferpuffer gelegt.

Blotting

Material und Methoden

Entwicklung

Für die Entwicklung wurden je Membran zwei Milliliter der Lösungen 1 und 2 der Chemilumineszenz getrennt abgefüllt und in der Dunkelkammer zusammen gegeben. Der Blot wurde eine Minute im Dunkeln in der Lösung inkubiert, auf Whatman-Papier leicht abgetrocknet, in Frischhaltefolie eingepackt und eine Minute auf den Filmstreifen gelegt. Nach Entwicklung des Filmstreifens wurde entschieden, ob der Blot länger oder kürzer auf dem Filmstreifen inkubiert werden muss.

2.8 Zellfärbung

Bovines Serum-Albumin (BSA) Roche, Mannheim, Deutschland
Dulbecco’s PBS (1x) PAA Laboratories GmbH, Köln, D
Fischgelatine Merck, Darmstadt, Deutschland
Fötiales bovines Serum (FBS Superior) Biochrom KG, Berlin, Deutschland
Goat Anti-Mouse FITC-Conjugated ImmunoTools, Friesoythe, Deutschland
Monoclonal Mouse Anti-Human Smooth Muscle Actin Dako, Hamburg, Deutschland
Mounting Medium with Dapi Vector, Burlingame, CA, USA
Mouse Anti-Cytokeratin 18 Chemicon, Temecula, CA, USA
Paraformaldehyd (PFA) Merck, Darmstadt, Deutschland
Sucrose Sigma Aldrich, Deisenhofen, Deutschland
Triton X-100 Fluka, Sigma Aldrich, Deisenhofen, D

PFA-Fixierpuffer: 2 % PFA, 4 % Sucrose in 1 x PBS
0,3 % Triton: 150 µl Triton in 50 ml PBS
Blockierlösung: 2 % FCS, 2 % BSA, 0,2 % Fischgelatine in PBS
Material und Methoden

2.9 Durchflusszytometrie

Material und Methoden

Ac-IETD-CHO Caspase-Inhibitor | Biomol, Hamburg, Deutschland
Annexin V Binding-Buffer | BD, Heidelberg, Deutschland
Annexin V-FITC | BD, Heidelberg, Deutschland
Dulbecco’s PBS (1x) | PAA Laboratories GmbH, Köln, D
Material und Methoden

Maus-Serum Black6 Eigene Gewinnung
Propidium Jodid Staining-Solution BD, Heidelberg, Deutschland
Ratten-Serum Eigene Gewinnung

2.10 Tierexperimentelle Methoden

2.10.1 Tierhaltung

2.10.2 Herstellung der Trif-mutanten Mäuse

Die Trif-mutanten Mäuse (mit C57BL/6-Hintergrund) wurden in den Laboratorien von Bruce Beutler (La Jolla, San Diego, USA) mittels Keimbahnmutationen hergestellt. Zunächst wurden hierfür

2.10.3 Genotypisierung der Mäuse

10 x HotStar PCR-Puffer Qiagen GmbH, Hilden, Deutschland
25 mM dNTP-Mix GE Healthcare, Little Chalfont, UK
Agarosepulver Invitrogen, Karlsruhe, Deutschland
Borsäure Fluka, Sigma, Deisenhofen, Deutschland
Bromphenolblau Merck, Darmstadt, Deutschland
EDTA Merck, Darmstadt, Deutschland
Ethidiumbromid Sigma Aldrich, Deisenhofen, Deutschland
Gelatine Sigma Aldrich, Deisenhofen, Deutschland
Glycerin Roth, Karlsruhe, Deutschland
Material und Methoden

KCl Merck, Darmstadt, Deutschland
HotStar Polymerase Qiagen GmbH, Hilden, Deutschland
Isopropanol Merck, Darmstadt, Deutschland
MgCl₂ Merck, Darmstadt, Deutschland
NP40 Fluka, Sigma, Deisenhofen, D
Proteinase K Merck, Darmstadt, Deutschland
Tris Roth, Karlsruhe, Deutschland
Tris-HCl Roth, Karlsruhe, Deutschland
TWEEN 20 Fluka, Sigma, Deisenhofen, D
QIAquick Gel Extraction Kit Qiagen, Hilden, Deutschland

Agarose-Gel: 2 g Agarose in 100 ml 1 x TBE plus 4 µl Ethidiumbromid (10 mg/ml); aufkochen
10 x Ladepuffer: 25 ml 50 % Glycerin, 0,125 g 0,25 % Bromphenolblau, 0,125 g 0,25 % Xylencyanol, 10 ml 100mM EDTA, 15 ml Wasser
10 x TBE-Puffer: 108 g Tris, 55 g Borsäure, 5,84 g EDTA, auf 1 l Wasser auffüllen
PBND-Puffer: 2,5 ml 2M KCl, 1 ml 1M Tris-HCl, 0,25 ml 1M MgCl₂, 10 ml 0,1 % Gelatine, 0,45 ml 100 % NP40, 0,45 ml 100 % Tween 20; auf 100 ml Wasser auffüllen

Um die DNA zu amplifizieren wurde zunächst eine PCR durchgeführt. Dafür wurden kleine Stückchen der Schwanzspitzen mit 200 µl PBND-Puffer und 1 µl Proteinase K für 4 h bei 56 °C angedaut, abzentrifugiert und der Überstand (mit der DNA) für die nachfolgende PCR verwendet. Für die PCR wurden dann folgende Reagenzien verwendet: 1 µl DNA, 2,5 µl PCR-Puffer, 2 µl dNTPs, 1 µl des oben genannten Forward-Primers (10 pM) und 1 µl des Reverse-Primers (10 pM) sowie 0,5 µl Polymerase und 16,5 µl Wasser. Die PCR lief im Thermostyler ab. Zunächst fand ein 5-minütiger Inkubationsschritt bei 94 °C statt, dann begann der eigentlich Zyklus mit 30 Sekunden bei 94 °C, 90 Sekunden bei 61 °C und 90 Sekunden Inkubation bei 72 °C. Dieser Zyklus wurde 35-mal wiederholt und das Programm endete mit einer 10-minütigen Inkubation bei 72 °C.

Anschließend wurde eine Elektrophorese durchgeführt, um die Proben aufzutrennen. Hierfür wurden diese zunächst mit einem Sechstel des 10-fachen DNA-Ladepuffers gemischt und auf das Agarosegel aufgetragen, das sich in TBE-Puffer befand. Es wurde Strom angelegt und die Fragmente anhand ihrer
Größe aufgetrennt. Unter UV-Licht konnten die Banden durch das Ethidiumbromid sichtbar gemacht werden. Die entstandene Bande wurde unter UV-Licht aus dem Gel ausgeschnitten. Mit Hilfe des Gel-Extraktions-Kit wurde aus der Bande die DNA isoliert. Hierfür wurde die Bande zunächst so klein wie möglich ausgeschnitten und gewogen. Dann wurde die dreifache Menge des Gelgewichts an Puffer QG (Löslichmach-Puffer) hinzugegeben. Nach 10 Minuten Inkubation bei 50 °C wurde die einfache Menge Isopropanol zu den Proben gegeben. Die Probe wurde in eine Säule gegeben und für eine Minute zentrifugiert. Der Überstand wurde verworfen und es wurden 0,5 ml des QG-Puffers auf die Säule gegeben und wiederum für 1 Minute zentrifugiert. Anschließend wurden 0,75 ml des PE-Puffers (Washpuffer) auf die Säule gegeben und zentrifugiert. Schließlich wurde die Säule bei 13 000 rpm für eine Minute trockenzentrifugiert, die Säulen in neue Eppendorfgefäße umgesetzt und die DNA mit 50 µl EB-Puffer (Auswaschpuffer) durch Zentrifugation von der Säule in das Gefäß gebracht. Anschließend konnte die DNA zur Sequenzierung zu Medigenomix (Martinsried) geschickt werden. Bei der Sequenzierung zeigte sich, dass in den mutierten Mäusen ein G in der Trif-Region fehlte.

2.10.4 Serumnephritis-Studie

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller und Lieferant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freund’s Adjuvans (Complete)</td>
<td>Sigma Aldrich, Deisenhofen, Deutschland</td>
</tr>
<tr>
<td>Dotap</td>
<td>Roche-Diagnostics, Mannheim, D</td>
</tr>
<tr>
<td>Hepes</td>
<td>Sigma Aldrich, Deisenhofen, Deutschland</td>
</tr>
<tr>
<td>NaCl</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Poly I:C</td>
<td>Invivogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>Jackson Immuno., West Grove, Pa, USA</td>
</tr>
<tr>
<td>Nephrotoxisches Serum VV-NTS III</td>
<td>Eigene Herstellung</td>
</tr>
</tbody>
</table>

HBS (HEPES-buffered saline): 20 mM HEPES, 150 mM NaCl, pH 7,4; 876 mg NaCl in 90 ml Wasser + 2 ml 1 M HEPES, auf 100 ml auffüllen

Studiendesign

Proteinurie. Nach fünf bis sieben Tagen entwickelt sich die zweite Phase. In dieser binden autologe Antikörper an heterologe Immunglobuline, die bereits an der Basalmembran abgelagert sind. Es kommt zur nachfolgenden Aktivierung von Komplement, der Ablagerung von Fibrin, der Akkumulation polymorphkerniger Granulozyten und der Nekrose glomerulärer Kapillaren [88].

Im Alter von 8 Wochen wurden die Mäuse in vier Gruppen eingeteilt:

- Gruppe 1 (n = 5): HBS-Kontrollgruppe; diese Tiere bekamen 3-mal pro Woche 200 µl des Vehikels HBS intraperitoneal injiziert.
- Gruppe 2 (n = 4): Dotap-Kontrollgruppe; diese Tiere bekamen 3-mal pro Woche je 50 µl Dotap in 150 µl HBS intraperitoneal injiziert.
- Gruppe 3 (n = 5): poly I:C-Gruppe; diesen Tieren wurden 3-mal pro Woche je 50 µl poly I:C-RNA in 150 µl HBS injiziert.
- Gruppe 4 (n = 5): poly I:C + Dotap-Gruppe; Zunächst wurden je Tier in ein Eppendorfgefäß 50 µl poly I:C-RNA zu 50 µl HBS gegeben und in ein anderes Eppendorfgefäß 50 µl Dotap ebenfalls zu 50 µl HBS. Dann wurde der Inhalt des ersten Gefäßes zum Zweiten gegeben und vorsichtig vermischt. Das Ganze wurde für 15 Minuten bei Raumtemperatur inkubiert und anschließend intraperitoneal injiziert. Dies erfolgte ebenfalls 3-mal pro Woche.

Alle Injektionslösungen wurden unter sterilen Bedingungen zubereitet und unter dem Abzug injiziert. Zu Beginn wurde in C57BL/6 Wildtyp-Mäusen die oben beschriebene nephrotoxische Serumnephritis induziert. Hierfür fand an Tag −3 die Vorimmunisierung statt. Dazu wurden 2 ml Rabbit IgG (0,2 mg/ml) mit 2 ml Complete Freund’s Adjuvans gemischt und mittels Sonicater eine dicke Emulsion zubereitet. Jeweils 100 µl dieser Emulsion wurden subkutan in beide Flanken der Mäuse injiziert. An Tag 0 wurden allen Mäusen 50 µl des nephrotoxischen Serums VV-NTS III in die Schwanzvene injiziert. Dieses wurde durch Immunisierung von Hasen mit einer Suspension aus der glomerulären Basalmembran von Mäusenieren hergestellt [88, 89].

Die poly I:C-RNA-Injektionen erfolgten anschließend an Tag 0, 2, 4, 7 und 9 intraperitoneal. Eine Urinabnahme erfolgte an Tag 0, 7 und 10. Die Blut- und Gewebssentnahme an Tag 10.

Blutentnahme

EDTA (Versen) Biochrom KG, Berlin, Deutschland

Die Blutentnahme vor der Tötung erfolgte in Allgemeinnarkose. Das Vollblut wurde in ein Eppendorfgefäßen mit 20 µl EDTA gegeben. Davon wurde das Serum durch Zentrifugieren mit 8 000 Umdrehungen/Minute für 5 Minuten gewonnen und bei −20 °C gelagert.
Nierenentnahme
Formaldehydlösung 37 % Merck, Darmstadt, Deutschland
RNA-later Qiagen GmbH, Hilden, Deutschland

Albumin-ELISA

Mouse Albumin-ELISA Quantification Kit Behyl Laboratories, Montgomery, TX, US
Enthält: Bindeantikörper: Goat Anti-Mouse Albumin-Affinity Purified; Kalibrator: Mäuse-Referenz-Serum; HRP-Detektions-Antikörper: Goat Anti-Mouse Albumin-HRP-Conjugate

Bovines Serum-Albumin (BSA) Roche, Mannheim, Deutschland
Fötiales bovines Serum (FBS Superior) Biochrom KG, Berlin, Deutschland
NaCl Merck, Darmstadt, Deutschland
Natriumbicarbonat Merck, Darmstadt, Deutschland
Natriumcarbonat Merck, Darmstadt, Deutschland
Tris Roth, Karlsruhe, Deutschland
Tween 20 Fluka, Sigma Aldrich, Deisenhofen, D

Substratlösung: Tetramethylbenzidin und Hydrogen Peroxid im Verhältnis 1:1 (BD Pharming™ TMB Substrate, Heidelberg, Deutschland); Stopplösung (2 N H₂SO₄)

Beschichtungspuffer: 5,3 g Natriumcarbonat; 4,2 g Natriumbicarbonat; 1000 ml deionisiertes Wasser; auf pH 9,6 einstellen
Puffergrundsubstanz: 6,057 g Tris; 8,1816 g NaCl; 1000 ml deionisiertes Wasser; auf pH 8,0 einstellen
Blockierlösung: 200 ml Puffergrundsubstanz; 2 ml BSA (2 g Feststoff); auf pH einstellen
Probenverdünnner: 100 ml Blockierlösung; 50 µl Tween 20
Waschlösung: 800 ml Puffergrundsubstanz; 400 µl Tween 20; auf pH 8 einstellen
Material und Methoden

Am Vortag wurde die Platte mit 100 µl in Beschichtungspuffer 1:10 verdünntem Bindeantikörper beschichtet und über Nacht bei 4 °C inkubiert. Dann wurde die Platte mit 300 µl Waschlösung dreimal gewaschen und mit 100 µl/well Blockierlösung geblockt. Nach 60 Minuten wurde wiederum dreimal gewaschen. Anschließend wurden je 100 µl des Kalibrators (Verdünnungsreihe von 7,8 ng/ml bis 500 ng/ml), der in Probenverdünner 10⁻³-10⁻⁶ verdünnten Proben bzw. des Probenverdünners als Leerwert aufgetragen und für 60 Minuten inkubiert. Nach fünfmaligem Waschen wurde der HRP-Detektions-Antikörper 1:50 000 in Probenverdünner verdünnt und 100 µl in jedes well gegeben. Die Platte wurde wiederum für 60 Minuten inkubiert und fünfmal gewaschen. Anschließend wurden 100 µl der Substratlösung aufgetragen und solange inkubiert, bis der am stärksten verdünnte Standard eine leichte Blaufärbung annahm (10 bis 30 Minuten). Dann wurde die Reaktion mit Stopflüssigkeit gestoppt und die Absorption bei 450 nm mittels ELISA-Lesegerät gemessen. Mit Hilfe der Standardkurve konnte der Albumingehalt in ng/ml bestimmt werden. Dieser musste dann noch in die gewünschte Einheit mg/dl unter Berücksichtigung der Verdünnung umgerechnet werden.

Wir führten den Albumin-ELISA durch, um die Albuminmenge im Urin der jeweiligen Mäusegruppen zu quantifizieren und darüber Schlüsse der glomerulären Schädigung ziehen zu können. Da die einmalig bestimmte Albuminmenge im Urin abhängig von der Konzentrierung des Urins ist, wird die Proteinurie unter Zuhilfenahme des Albumin-Kreatinin-Quotienten bestimmt.

Kreatininmessung

Kreatinin FS
DiaSys, Holzheim, Deutschland

Enthält: Reagenz 1 (Natriumhydroxid 0,16 mol/l), Reagenz 2 (Pikrinsäure 4,0 mmol/l), Standard (2 mg/dl)

Zunächst wurde der Urin 1:10 mit destilliertem Wasser verdünnt, das Plasma wurde nicht verdünnt; außerdem wurden vier Teile des Reagenz 1 mit einem Teil des Reagenz 2 gemischt. Dies ergab das Gebrauchsreagenz. Für die Messung wurden zunächst 50 µl der verdünnten Proben bzw. des

Die Kreatininkonzentration im Urin bzw. Plasma berechnet sich daraus wie folgt:

$\Delta E = [(E2-E1) \text{ Probe oder Standard}] - [(E2-E1) \text{ Reagenzienleerwert}]$

Kreatinin [mg/dl] = $\Delta E \text{ Probe} / \Delta E \text{ Standard} \times \text{ Konzentration Standard [mg/dl]} \times 10$ bei Urin

Histologische Auswertung

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniumpersulfat (APES)</td>
<td>Bio-Rad, München, Deutschland</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Formaldehydlösung 37 %</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>Mounting Medium Vecta Mount</td>
<td>Vector, Burlingame, CA, USA</td>
</tr>
<tr>
<td>PAS</td>
<td>Bio-Optica, Mailand, Italien</td>
</tr>
<tr>
<td>Xylol</td>
<td>Merck, Darmstadt, Deutschland</td>
</tr>
</tbody>
</table>

Vorbereitung der Paraffinschnitte:

Das entnommene Gewebe wurde in 10%igem Formalin für 24 Stunden fixiert und in Paraffin eingebettet. 2 µm dicke Schnitte wurden mit einem Schneidegerät angefertigt, auf mit APES vorbehandelten Objektträgern aufgetragen und für 12 Stunden in einem Trockenschrank bei 37 °C aufbewahrt.

Als erster Schritt bei jeder Färbung wurden die Schnitte in Xylol und einer absteigenden Alkoholreihe (100 %, 96 %, 70 %, 50 %) entparaffiniert und in wässrige Lösung gebracht.

PAS-Färbung:

Histopathologische Indizes (Fokaler Nekrose-Score):
Der fokale glomeruläre Nekrose-Score wurde in 15 kortikalen glomerulären Abschnitten semiquantitativ bestimmt und mit jeweils 0-4 Punkten bewertet. Dabei bedeutet: 0 = keine Läsionen, 1 = < 25 % Sklerose, 2 = 25-49 % Sklerose, 3 = 50-74 % Sklerose, 4 = 75-100 % Sklerose. Die Mesangiolyse wurde in Prozent der betroffenen Glomeruli (n = 15) quantifiziert. Es wurde jeweils bei einer Vergrößerung von 100 und 400 mikroskopiert.

2.11 Experimente mit menschlichem Biopsiematerial

2.12 Statistische Auswertung

Die Ergebnisse sind als Mittelwert ± standard error of the mean (SEM) dargestellt. Die Gruppen wurden mittels Student’s t-test verglichen. Der Vergleich mehrerer Gruppen erfolgte mittels ANOVA-Test mit post hoc Bonferroni-Korrektur. Ein p-Wert < 0,05 wurde als statistisch signifikant angesehen. Die Fehlerindikatoren repräsentieren den standard error of the mean (SEM).
Kapitel 3:
Ergebnisse
3 Ergebnisse

3.1 Immunzytochemische Charakterisierung der Mesangialzellen

3.2 Toll-like Rezeptor-Expression auf Mesangialzellen

Der endosomale Toll-like Rezeptor (Tlr)-3 erkennt virale Doppelstrang-RNA, während der Toll-like Rezeptor-7 virale Einzelstrang-RNA bindet [91]. Um festzustellen, ob diese Toll-like Rezeptoren auch in Mesangialzellen exprimiert sind, wurden primäre Mesangialzellen nach einer 24-stündigen Hungerzeit für 3 Stunden mit poly I:C-RNA, einem Liganden für Tlr-3, stimuliert und anschließend die real time RT-PCR für Tlr-3 und Tlr-7 durchgeführt (Abbildung 26). Es zeigte sich, dass der TLR-3 basal exprimiert und nach Stimulation hochreguliert wird; der Tlr-7 wird, wie erwartet, durch die Doppelstrang-RNA nicht hochreguliert, ist aber basal ebenfalls nicht vorhanden.

Ergebnisse

Im nächsten Versuch wurden die Zellen mit Imiquimod, einem Liganden für den Tlr-7, stimuliert und der Interleukin-6-Gehalt mittels ELISA bestimmt (Abbildung 27). Hierbei zeigte sich, dass die Zellen nicht auf die Stimulation mit Imiquimod reagierten und die Interleukinproduktion ausblieb, was darauf schließen lässt, dass der Tlr-7 in Mesangialzellen nicht vorhanden ist. Um die Reaktion der Mesangialzellen auf virale RNA zu zeigen, verwendeten wir deshalb für unsere weiteren Versuche ausschließlich die synthetische Doppelstrang-RNA poly I:C als Liganden.

![Abbildung 27: Mesangialzellen reagieren nicht auf Stimulation mit Tlr-7-Liganden. Primäre Mesangialzellen wurden mit steigenden Dosen Imiquimod stimuliert und für 24 Stunden inkubiert. Anschließend erfolgte die Bestimmung des Interleukin-6-Gehaltes mittels ELISA. Als Positivkontrolle dienten mit poly I:C-RNA und Lipofectamin stimulierte Zellen. * p < 0.05 vs. Medium](image)

3.3 Mesangialzellen exprimieren die zytosolischen viralen RNA Rezeptoren Mda5, Rig-I und deren mitochondrialen Adaptor Ips-1

Ergebnisse

Es zeigte sich, dass die beiden zytosolischen RNA-Rezeptoren, sowie ihr Adaptor molekül in basalem Zustand vorhanden sind und dass Mda5 nach Stimulation mit viraler RNA hoch reguliert wurde. Dahingegen ging die Expression von Rig-I und Ips-1 unter den gleichen Bedingungen eher zurück.

Um die Ergebnisse auf Proteinebene zu bestätigen, führten wir einen Western Blot für diese Faktoren durch. Dazu wurden die Zellen zunächst mit Zytokinen (Tnf-α und Ifn-γ) für 24 Stunden vorstimuliert und im Anschluss daran mit poly I:C-RNA, die mit kationischen Lipiden komplexiert war, für die angegebenen Zeiten stimuliert. Auch hier zeigte sich, dass alle Faktoren in basalem Zustand vorhanden sind und dass Mda5 im Gegensatz zu Rig-I und Ips-1 nach Stimulation hoch reguliert wurde (Abbildung 29). Diese Ergebnisse zeigen, dass Mesangialzellen sowohl die zytosolischen Rezeptoren Rig-I und Mda5 als auch deren mitochondriales Adaptor molekül Ips-1 exprimieren und dass proinflammatorische Zytokine, wie Tnf-α und Ifn-γ die Expression von Mda5 und Rig-I induzieren. Dies könnte daraufhin deuten, dass die Erkennung viraler RNA in inflammatorischem Milieu verstärkt ist.

Um die virale RNA ins Zytoplasma zu bringen und die zytosolischen Rezeptoren zu aktivieren, verwendeten wir in den weiteren Versuchen die synthetische Doppelstrang-RNA poly I:C, komplexiert mit dem kationischen Lipid Lipofectamin.
Abbildung 29: Mesangialzellen exprimieren Rig-I, Mda5 und deren mitochondrialen Adaptor Ips-1.
3.4 Virale RNA induziert die Produktion von Interleukin-6 in glomerulären Mesangialzellen

Etablierte murine und humane Mesangialzell-Zelllinien exprimieren den Toll-like Rezeptor-3 und produzieren Interleukin-6 nach Stimulation mit poly I:C-RNA, einer synthetischen viralen Doppelstrang-RNA [84, 85]. Um diese Beobachtung in primären murinen Mesangialzellen zu bestätigen, isolierten wir, wie im Methodenteil beschrieben, glomeruläre Mesangialzellen aus den Nieren von C57BL/6-Mäusen und stimulierten diese anschließend mit steigenden Dosen poly I:C-RNA. Im daraufhin durchgeführten ELISA zeigte sich, dass die Stimulation mit verschiedenen Dosen poly I:C-RNA, wie erwartet, dosisabhängig zur Interleukin-6-Produktion in diesen Zellen führt (Abbildung 30).

Um diese Beobachtung auf mRNA-Ebene zu überprüfen, stimulierten wir die Zellen wiederum mit steigenden Dosen poly I:C-RNA und führten anschließend zu drei verschiedenen Zeitpunkten eine real time RT-PCR für Interleukin-6 durch. Hierbei zeigte sich, dass die Interleukin-6-mRNA-Expression in diesen Zellen zeit- und dosisabhängig verläuft und ihr Maximum nach einer dreistündigen Inkubation und bei einer Dosis von 3µg/ml poly I:C-RNA (Abbildung 31). Wir haben bereits gezeigt, dass primäre murine Mesangialzellen den Toll-like Rezeptor-3 exprimieren (Abbildung 26). In diesen Versuchen konnten wir jetzt zeigen, dass diese primären Zellen, ebenso wie die Mesangialzell-Zelllinien, virale RNA über den Toll-like Rezeptor-3 erkennen und daraufhin zur Interleukin-6-Produktion fähig sind. Die Interleukinproduktion zeigt eine zeit- und dosisabhängige Verlaufskurve.

Abbildung 30: Mesangialzellen produzieren Interleukin-6 nach Exposition auf poly I:C-RNA. Die Mesangialzellen wurden nach einer 24-stündigen Hungerzeit mit steigenden Dosen poly I:C-RNA für 24 Stunden stimuliert. Anschließend wurde der Interleukin-6-Gehalt mittels ELISA bestimmt. Die Daten sind Mittelwerte ± SEM von zwei unabhängigen Experimenten, die in Duplikaten analysiert wurden. * p < 0.05 vs. Medium.
3.5 Mesangialzellen produzieren Tlr-3/Trif-unabhängig große Mengen Interleukin-6 und Typ I-Interferone, wenn sie mit viraler RNA, die mit kationischen Lipiden komplexiert wurde, stimuliert wurden

Abbildung 31: Das Maximum der Interleukin-6-mRNA-Expression ist nach drei Stunden und bei einer poly I:C-RNA-Dosis von 3 µg/ml erreicht. Nachdem die primären murinen Mesangialzellen 24 Stunden gehungert hatten, wurden sie für eine, drei bzw. sechs Stunden mit steigenden Dosen poly I:C-RNA (in µg/ml) stimuliert. Im Anschluss daran wurde die Interleukin-6-mRNA-Expression mittels real time RT-PCR gemessen. Die Werte sind als Verhältnis von Il-6-mRNA zu 18S rRNA dargestellt. * p < 0.05 vs. Medium
kam, nehmen wir an, dass dies ein Effekt war, der über die zytosolischen Rezeptoren Mda5 und Rig-I vermittelt wurde.

Ergebnisse

Diese Daten zeigen, dass Mesangialzellen Trif-unabhängig große Mengen Interleukin-6 und Typ I-Interferone produzieren können, wenn sie viraler RNA, die mit kationischen Lipiden komplexiert ist, ausgeliefert sind. Ist die virale RNA hingegen nicht mit kationischen Lipiden komplexiert, kommt es nicht zur Interferonproduktion. Die Interleukin-6-Produktion ist in diesem Fall in Trif-mutanten Zellen reduziert, was bedeuten könnte, dass diese RNA-Erkennung zum Teil über den Toll-like Receptor-Weg abläuft, aber nicht gänzlich von diesem abhängt (Abbildung 32).

3.6 Interferon-α und -β veranlassen primäre Mesangialzellen zur Interleukin-6-Produktion

Im letzten Versuch haben wir gezeigt, dass Mesangialzellen Interferone produzieren können (Abbildung 32). Um heraus zu finden, ob Mesangialzellen auch auf Stimulation mit Interferonen reagieren, wurden die primären murinen Mesangialzellen nach einer 24-stündigen Hungerzeit mit verschiedenen Dosen Interferon-α, -β und -γ stimuliert. 24 Stunden nach Stimulation wurde die Proteinkonzentration mittels Interleukin-6-ELISA bestimmt. Es zeigte sich, dass es auf Stimulation mit Typ I-Interferon dosisabhängig zur Interleukin-6-Produktion kommt, nicht jedoch nach Stimulation mit Interferon-γ (Abbildung 33).

Wir überprüften diese Ergebnisse auch auf mRNA-Ebene mittels real time RT-PCR. Hierbei zeigte sich jedoch, dass es nicht nur nach Stimulation mit Interferon-alpha und –beta, sondern auch nach Stimulation mit Interferon-gamma zur Interleukin-6-Produktion kommt, wenn auch in geringerem Maße (Abbildung 34).

Abbildung 33: Interferon-α und -β induzieren die Interleukin-6-Produktion in primären Mesangialzellen. Die murinen primären Wildtyp-Mesangialzellen wurden in RPMI 1640-Medium mit 10 % FCS und 1 % Penicillin/Streptomycin kultiviert. Nach einer 24-stündigen Hungerzeit erfolgte die Stimulation mit Interferon-α, -β oder -γ in den angegebenen Konzentrationen (in U/ml). 24 Stunden nach Stimulation wurde die Proteinkonzentration mittels IL-6-ELISA bestimmt. Dieser wurde laut Herstellerprotokoll durchgeführt. Die Daten zeigen den Mittelwert ± SEM aus zwei unabhängigen Experimenten. * p < 0.05 vs. Medium

Abbildung 34: Interferon-α, -β und (in geringerem Maße) -γ induzieren die Interleukin-6-Produktion in primären Mesangialzellen. Die murinen primären Wildtyp-Mesangialzellen wurden in RPMI 1640-Medium mit 10 % FCS und 1 % Penicillin/Streptomycin kultiviert. Nach einer 24-stündigen Hungerzeit erfolgte die Stimulation mit Interferon-α, -β oder -γ in den angegebenen Konzentrationen (in U/ml). 3 Stunden nach Stimulation wurde die RNA-Konzentration mittels real time RT-PCR bestimmt. Die Daten zeigen den Mittelwert ± SEM aus zwei unabhängigen Experimenten. * p < 0.05 vs. Medium
Abbildung 35: Vorstimulation mit Typ I-Interferonen erhöht die IL-6 Antwort auf Stimulation mit viraler Doppelstrang-RNA. Die murinen primären Mesangialzellen wurden mit 1000 U/ml Interferon-α, -β oder -γ für 24 Stunden vorstimuliert. Anschließend wurden sie mit synthetischer Doppelstrang-RNA (poly I:C, pI:C) in den angegebenen Konzentrationen stimuliert. Nach weiteren 24 Stunden wurde der IL-6-Gehalt im Überstand mittels ELISA bestimmt. * p < 0.05 vs. Medium

Die Tatsache, dass durch Interferonvorstimulation und nachfolgende poly I:C-RNA-Stimulation die Interleukin-6-Produktion anstieg (Abbildung 35), kann auf die Hochregulation des Toll-like Rezeptors-3 durch die Interferone zurückzuführen sein (Abbildung 36). Da durch die Interferon-beta-Vorstimulation die gesamte RNA-Erkennungsmaschinerie hochreguliert wird (Abbildung 36) - also auch die zytosolischen Rezeptoren Rig-I und Mda5 - überlegten wir, dass die Interleukinproduktion auch steigen müsste, wenn die RNA-Erkennung über diese Rezeptoren abläuft. Um dies zu überprüfen, stimulierten wir die Mesangialzellen für 24 Stunden mit Interferon-alpha und -beta (1000 U/ml) und anschließend für weitere 24 Stunden mit poly I:C-RNA kombiniert mit dem kationischen Lipid Lipofectamin. Anschließend wurde der Interleukin-6-Gehalt mittels ELISA bestimmt. Dabei zeigte sich, dass die Interleukinproduktion in den mit poly I:C und kationischen Lipiden stimulierten Zellen - wie erwartet und wie bereits in Abbildung 32 zu sehen war - deutlich höher lag, als in den nur mit poly I:C-RNA stimulierten Zellen aus Abbildung 35. Überraschenderweise stieg die Interleukinproduktion in den mit Interferonen vorstimulierten Zellen jedoch nicht an, sie war im Gegenteil sogar deutlich reduziert. Worauf das zurückzuführen ist, ist bislang unklar (Abbildung 37). Da der Verlauf auch dosisabhängig ist, ist es eher unwahrscheinlich, dass es durch eine Überstimulation zum Zelltod kam.
Abbildung 37: Vorstimulation mit Typ I-Interferonen erhöht die Il-6-Antwort auf Stimulierung mit
viraler, mit kationischen Lipiden komplexierter, Doppelstrang-RNA nicht. Die murinen primären
Mesangialzellen wurden mit 1000 U/ml Interferon-α, -β oder -γ für 24 Stunden vorstimuliert.
Anschließend wurden sie mit synthetischer Doppelstrang-RNA (poly I:C, pl:C), komplexiert mit
kationischen Lipiden (CL), in den angegebenen Konzentrationen stimuliert. Nach weiteren 24 Stunden
wurde der Il-6-Gehalt im Überstand mittels ELISA bestimmt. Die Daten zeigen den Mittelwert aus
zwei unabhängigen Experimenten ± SEM.

3.7 Die virale Doppelstrang-RNA-induzierte Aktivierung von Mesangialzellen beinhaltet
 eine Typ I-Interferon autokrin-parakrine Aktivierung

In dendritischen Zellen führt die Erkennung viraler RNA zur Freisetzung von Typ I-Interferonen, was
unter anderem dazu führt, dass das TLR-Signaling über einen autokrin-parakrinen
Erkennungsmechanismus der Typ I-Interferone verstärkt wird [95]. Eine wesentliche Rolle spielen
hierbei der Typ I-Interferon-Rezeptor und die Stat-1-Phosphorylierung. Unsere bisherigen Ergebnisse,
dass Mesangialzellen große Mengen Typ I-Interferone nach Tlr-unabhängiger Erkennung von viraler
Doppelstrang-RNA produzieren und auch auf die Stimulation mit Interferonen reagieren, ließen die
Frage aufkommen, ob es in Mesangialzellen ebenfalls eine solche autokrin-parakrine Aktivierung gibt.
Zunächst stellte sich die Frage, ob Mesangialzellen den Typ I-Interferon-Rezeptor exprimieren, um
über diesen Interferone erkennen zu können. Dies konnten wir mittels real time RT-PCR an
unstimulierten und stimulierten Zellen zeigen (Abbildung 38).
Um zu zeigen, dass die Typ I-Interferone, die von Mesangialzellen selbst produziert werden, die in 3.6 beschriebene Induktion der RNA-Maschinerie auslösen können (Abbildung 36) und somit eine autokrin-parakrine Aktivierung in Mesangialzellen ebenfalls vorhanden ist, stimulierten wir primäre murine Mesangialzellen mit Komplexen aus poly I:C-RNA und kationischen Lipiden in Anwesenheit oder Abwesenheit von steigenden Dosen an Antikörpern, die die Funktion von Interferon-α und -β neutralisieren. Durch das Blockieren beider Typ I-Interferone mit einer entsprechend hohen Dosis blockierender Antikörper wurde die durch RNA und kationische Lipide induzierte Interleukin-6 Produktion beinahe vollständig unterdrückt (Abbildung 39). Diese Daten zeigen, dass die durch virale Doppelstrang-RNA ausgelöste Aktivierung der Mesangialzellen von einer Typ I-Interferon autokrin-parakrinen Aktivierung abhängig ist, die die RNA-Erkennung mittels der Induktion von Rig-I und Mda5 vermittelt.

Ergebnisse

Abbildung 39: Das Blockieren von Ifn-α und -β reduziert die Il-6-Produktion nach Stimulation mit viraler Doppelstrang-RNA. Vor Stimulation wurden verschiedene Konzentrationen eines blockierenden Antikörpers (Rabbit Polyclonal Antibody against Mouse Interferon-alpha, against Mouse Interferon-beta) zu den murinen primären Mesangialzellen gegeben. 24 Stunden nach Stimulation mit steigenden Dosen poly I:C (synthetische Doppelstrang-RNA, pI:C), komplexiert mit kationischen Lipiden (CL, Lipofectamine®), wurde der Il-6-Gehalt im Überstand mittels ELISA bestimmt. Die Daten zeigen Mittelwerte ± SEM. * p < 0.05 vs. Gruppe ohne Antikörper (t-test).

![Abbildung 41: Sowohl Interferon-alpha als auch -beta induzieren die Produktion von Interferon-alpha. Die murinen primären Wildtyp-Mesangialzellen wurden in RPMI 1640-Medium mit 10 % FCS und 1 % Penicillin/Streptomycin kultiviert. Nach einer 24-stündigen Hungerzeit erfolgte die Stimulation mit Interferon-α oder -β in den angegebenen Konzentrationen (in U/ml). 3 Stunden nach Stimulation wurde die RNA-Konzentration an Mx1 bzw. Ifn-β mittels real time RT-PCR bestimmt. * p < 0.05 vs. Medium](image)

3.8 Virale RNA, die mit kationischen Lipiden komplexiert ist, reduziert in Mesangialzellen die Proliferation

Ergebnisse

Abbildung 42: Die zytosolische RNA-Erkennung führt zu reduzierter Proliferation. Nachdem 30 000 murine primäre Mesangialzellen/ml 48 Stunden lang in einer 96-well-Platte mit RPMI 1640-Medium + 1 % FCS + 1 % Penicillin/Streptomycin gewachsen waren, erfolgte die Stimulation mit der synthetischen Doppelstrang-RNA poly I:C (pI:C) in den angenommen Konzentrationen. Wenn angegeben, war diese mit kationischen Lipiden (CL, Lipofectamine®) komplexiert. Nach weiteren 48 Stunden wurde der CellTiter 96®AQueousOne Solution Cell Proliferation Assay hinzugegeben und nach 3 Stunden die optische Dichte bei 492 nm gemessen. * p < 0.05 vs. Medium

Abbildung 42 zeigt, dass die Stimulation mit ausreichend hohen Dosen viraler RNA nicht mehr zu einer Zunahme der Proliferation führt, wie es bei niedrigeren Dosen RNA der Fall ist, sondern dass dadurch in den Mesangialzellen ein Mechanismus ausgelöst wird, der die Proliferation der Zellen verlangsamt bzw. aufhält. Wenn die RNA mit Hilfe kationischer Lipide direkt ins Zytosol gebracht wird, ist dieser Proliferationsrückgang noch stärker. Ob für diesen starken Rückgang der Proliferation auch Interferone eine Rolle spielen, ist bislang unklar. Um dies zu untersuchen, stimulierten wir im nächsten Versuch Wildtypzellen und Interferon-alpha-Rezeptor-defiziente Mesangialzellen mit viraler RNA, komplexiert mit kationischen Lipiden und verglichen anschließend die Proliferation der Wildtypzellen im Gegensatz zu den knock out-Zellen. Wurde die Proliferation der unstimulierten Wildtypzellen und der unstimulierten Ifnar-defizienten Zellen auf 100 % gesetzt, so zeigte sich, dass der Proliferationsrückgang nach Stimulation bei den knock out-Zellen wesentlich langsamer erfolgte als bei den Wildtypzellen (Abbildung 43). Dies lässt annehmen, dass die autokrine Interferonaktivierung, der wir in den vorherigen Versuchen schon eine Rolle für die Zytokinproduktion der Mesangialzellen zuschrieben, für die Zellproliferation ebenfalls von Bedeutung ist.
Abbildung 43: Der Rückgang der Zellproliferation ist in Typ I-Interferonrezeptor-defizienten Zellen wesentlich geringer als in Wildtypzellen. 30 000 murine primäre Wildtyp- bzw. Interferonrezeptor-defiziente Mesangialzellen/ml wurden 48 Stunden lang in einer 96-well-Platte mit RPMI 1640-Medium + 1% FCS + 1% Penicillin/Streptomycin wachsen gelassen. Dann erfolgte die Stimulation mit der synthetischen Doppelstrang-RNA poly I:C (pI:C), komplettiert mit kationischen Lipiden (CL, Lipofectamine®). Nach weiteren 48 Stunden wurde der CellTiter 96®AQueousOne Solution Cell Proliferation Assay hinzugefügt und nach 3 Stunden die optische Dichte bei 492 nm gemessen. * p < 0,05 vs. Wildtyp.

3.9 Virale RNA führt in Mesangialzellen zum Zelltod

Abbildung 44: Virale RNA führt in Mesangialzellen zum Zelltod. Die murinen Mesangialzellen wurden, nach 24-stündiger Hungerzeit, in RPMI-Medium + 5 % FCS für 24 Stunden mit den angegebenen Dosen poly I:C-RNA, gegebenenfalls komplexiert mit Lipofectamin (CL), stimuliert. Anschließend wurden sie, wie im Methodenteil beschrieben, von den Platten entfernt, mit Annexin und Propidium Jodid gefärbt und die FACS-Analyse mittels der FACScalibur Maschine und der CellQuest software von BD Pharming durchgeführt. * p < 0.05 vs. Medium

Bei diesem Versuch zeigte sich, dass die Zahl der nicht anfärbbaren, lebenden Zellen in den stimulierten Gruppen niedriger und die Zahl der Propidium Jodid und Annexin gefärbten Zellen, also der Zellen, die einen solchen Schaden erlitten haben, dass ihre Plasmamebran durchlässig geworden ist, signifikant höher war (Abbildung 44).

Abbildung 45: Der Zelltod in Mesangialzellen beruht, zumindest zum Teil, auf Apoptose. Zu den murinen Mesangialzellen wurde 6 Stunden vor Stimulation der Caspase-8-Inhibitor Ac-IETD-CHO (5 µg/ml) hinzugegeben. Anschließend erfolgte ein Mediumwechsel und die Zellen wurden in RPMI-Medium + 5 % FCS für 24 Stunden mit den angegebenen Dosen poly I:C, gegebenenfalls komplexiert mit Lipofectamin (CL), stimuliert. Danach wurden die Zellen mit Propidium Jodid (PI) angefärbt und die FACS-Analyse durchgeführt. Die Zellzahl der Mediumkontrolle wurde gleich 100 % gesetzt. Die Daten zeigen den Mittelwert aus zwei Experimenten ± SEM. * p < 0,05 vs. Medium und vs. „mit Caspase-8-Inhibitor“

3.10 Komplexe aus viraler RNA und kationischen Lipiden induzieren eine diffuse glomeruläre Nekrose und Mesangiolyse in Mäusen, die an nephrotoxischer Serumnephritis leiden

Unsere Arbeitsgruppe hat kürzlich gezeigt, dass die vorübergehende Exposition auf virale Doppelstrang-RNA die Immunkomplex-Glomerulonephritis in Mäusen verschlimmern kann [84]. Der hier entdeckte Mechanismus würde allerdings implizieren, dass virale RNA, die z.B. mit kationischen Lipiden komplexiert ist, eine vorbestehende Glomerulonephritis deutlich verstärken kann. Um diese Hypothese zu testen, injizierten wir C57BL/6 Mäusen, die an einer autologen nephrotoxischen Serumnephritis litten, entweder das Vehikel (HBS), kationische Lipide (Dotap), pl:C (Doppelstrang-RNA) oder pl:C komplext mit kationischen Lipiden. Die Dosis, die gewählt wurde um die nephrotoxische Serumnephritis zu induzieren, verursacht normalerweise nach 21 Tagen eine Immunkomplex-Glomerulonephritis mit massiver Albuminurie. Entsprechend unserer Hypothese zeigte sich in der Gruppe, die mit Komplexen aus pl:C-RNA und kationischen Lipiden behandelt wurde, bereits nach 10 Tagen eine signifikant höhere Proteinurie als in den Kontrollgruppen (Abbildung 46).
Ergebnisse

Abbildung 46: Der Albumin/Kreatinin-Quotient an Tag 10 ist in der pI:C und der pI:C + CL-Gruppe deutlich höher als in den Kontrollgruppen. Von allen Mäusegruppen wurde der an Tag 0 und Tag 10 gewonnene Urin mittels ELISA auf Albumin und mittels Farbassay auf Kreatinin quantitativ untersucht. Aus den gewonnen Angaben (jeweils in µg/ml) wurde der Albumin/Kreatinin-Quotient berechnet und im Diagramm dargestellt. Dieser entspricht der Proteinurie. * p < 0,05 vs. Tag 0; # p < 0,05 vs. Vehikel

Bei Bestimmung des Kreatinins im Serum zeigte sich, dass dieses an Tag 10 in der pI:C- und der pI:C+CL-Gruppe signifikant höher war als in den Kontrollgruppen. Zwischen diesen beiden Gruppen bestand jedoch kein Unterschied (Abbildung 47).

Des Weiteren konnte in den PAS-gefärbten Nierenschnitten gezeigt werden, dass die Komplexe aus Doppelstrang-RNA (poly I:C) und kationischen Lipiden zu einer diffusen und schweren Mesangiolyse in den nephritischen C57BL/6-Mäusen geführt haben, was mit unseren Daten über den Zelltod in Mesangialzellen übereinstimmt (Abbildung 49 und 50).

Diese Daten unterstützen die Theorie, dass der bei den vorhergehenden in vitro Versuchen in primären Mesangialzellen entdeckte Mechanismus der antiviralen Immunantwort nach Stimulation mit viraler RNA, ebenfalls in vivo für die murine Glomerulonephritis zutrifft.

Abbildung 48: Die Gruppe, die mit pI:C und CL behandelt wurde, zeigt eine signifikant höhere Nekrose als diejenige, die nur mit pI:C behandelt wurde. Die fokale glomeruläre Nekrose je Gruppe wurde in PAS-gefärbten Nierenschnitten unter Zuhilfenahme eines semiquantitativen Scores von 0-3 in 15 Glomeruli je Abschnitt bestimmt. * p < 0,05 vs. Medium; # p < 0,05 pI:C + CL vs. pI:C

Abbildung 49: Die Gruppe, die mit pI:C und CL behandelt wurde, zeigt eine signifikant höhere Mesangiolyse als diejenige, die nur mit pI:C behandelt wurde. Der Prozentanteil der Glomeruli, die von Mesangiolyse betroffen waren, wurde in PAS-gefärbten Nierenschnitten in 15 Glomeruli je Abschnitt bestimmt. * p < 0,05 vs. Medium; # p < 0,05 pI:C + CL vs. pI:C
3.11 Die mit chronischer Hepatitis C-assoziierte Glomerulonephritis ist assoziiert mit einer gesteigerten glomerulären Interferon-α-Expression beim Menschen

Abbildung 51: Interferon-α-Expression bei menschlicher MPGN. Glomeruläre und tubulointestinale cDNA-Isolate aus mikrodissezierten menschlichen Nierenbiopsien wurden mittels real time RT-PCR auf ihren Interferon-α-Gehalt untersucht. * p < 0.05
Kapitel 4:
Diskussion
4 Diskussion

4.1 Bedeutung der angeborenen RNA-Rezeptoren

Infektionen induzieren die Interferonproduktion über die Rig-like Helikasen und nicht über Toll-like Rezeptoren, wohingegen systemische Infektionen die Toll-like Rezeptoren der pDCs aktivieren [71]. Die Zusammenarbeit des Tlr-Systems und der Rig-like Helikasen bei der Viruserkennung wurde kürzlich von Takeuchi et al. beschrieben [102].

Mit Hilfe Trif-mutanten muriner Mesangialzellen liefern wir hier den experimentellen Beweis, dass sowohl die Tlr-3/Trif-abhängige als auch die Tlr-3/Trif-unabhängige Erkennung viraler RNA die spezifische antivirale Immunität in glomerulären Mesangialzellen triggern kann. Es zeigte sich, dass

Es ist bekannt, dass die Expression der Gene, die für die Rig-like Helikasen codieren, stark durch Interferone induziert wird [102]. Die zwei RNA-Erkennungsrezeptoren Rig-I und Mda5 konnten auch in Mesangialzellen durch Stimulation mit Interferon-beta induziert werden. Vor kurzem wurde nachgewiesen, dass Rig-I bei der Lupusnephritis exprimiert wird [113], einer Krankheitssituation, die mit dem Typ I-Interferonsignaling eng verbunden ist [114, 115].

Ergebnisse belegen, dass Mda5 verantwortlich für die Erkennung von poly I:C-RNA ist [92, 117] und dass Rig-I 5'-Triphosphat Einzelstrang-RNA erkennt [118, 119]. Da dies aber noch nicht gänzlich geklärt ist, schreiben wir in der vorliegenden Arbeit die zytoplasmatische Erkennung viraler RNA den Rig-like Helikasen zu ohne genauer darauf einzugehen über welchen Rezeptor die Erkennung letztendlich abläuft.

4.2 Effekte der RNA-Erkennung in Mesangialzellen

Es wurde bereits nachgewiesen, dass virale RNA Mesangialzellen zur Produktion proinflammatorischer Zytokine, wie Interleukin-6, veranlasst [84]. Wir konnten dies bestätigen und zeigten außerdem einen Zeit- und Dosis-Verlauf der mRNA-Expression, der sein Maximum bei einer Stimulation mit 3 µg/ml poly I:C-RNA und nach 3-stündiger Inkubation hatte. Komplexiert wir diese synthetische Doppelstrang-RNA mit kationischen Lipiden, was eine gängige Methode ist, um die RNA ins Zytosol zu bringen, zeigte sich eine ca. 10-fache Interleukin-6-Produktion verglichen mit der alleinigen poly I:C-RNA-Stimulation. Da wir davon ausgehen, dass die RNA-Erkennung bei alleiniger poly I:C-RNA-Stimulation über den Toll-like Rezeptorweg abläuft, die RNA bei Transfektion ins Zytosol hingegen Tlr-unabhängig von den zytosolischen Rezeptoren Rig-I und Mda5 erkannt wird, deutet dies darauf hin, dass die Toll-like Rezeptor-unabhängige Erkennung viraler RNA eine wesentliche größere Rolle bei der Aktivierung von Mesangialzellen spielt als die Toll-like Rezeptor-abhängige. Hierbei ist allerdings zu beachten, dass wir nur die Interleukin-6-Produktion als Marker der Zytokinantwort untersucht haben. In unserem Immunsystem spielen aber wesentlich mehr proinflammatorische Zytokine eine Rolle, über deren Expression wir keine Aussagen machen können. Es wäre ebenfalls denkbar, dass einige dieser Zytokine bei der Toll-like Rezeptor-abhängigen RNA-Erkennung vermehrt produziert werden.

Diskussion

4.3 Reaktion der Mesangialzellen auf Interferone

Diskussion

Diskussion

zurückzuführen sein [17]. So wird Interferon-γ beispielsweise von natürlichen Killerzellen oder aktivierten T-Zellen im Rahmen der angeborenen Immunantwort produziert [135].

4.4 Existenz einer autokrinen Aktivierung in Mesangialzellen

Wenn dendritische Zellen Interferon-alpha und -beta produzieren, hat das Auswirkungen auf andere Zellen und auf die dendritischen Zellen selbst, beispielsweise in einer autokrin-parakrinen Aktivierung [17, 136]. So kommt es in Interferonrezeptor-defizienten dendritischen Zellen aus dem Knochenmark oder aus Monozyten zu einer wesentlich geringeren Zytokinantwort nach Stimulation mit poly I:C-RNA als in Wildtypzellen [95]. Offensichtlich führt die Sekretion von Typ I-Interferonen in autokriner Weise zur Verstärkung des Interferon-Signalings in dendritischen Zellen aus dem Knochenmark oder aus Monozyten. Dieser Mechanismus wurde ebenfalls für Endothel- und Epithelzellen gezeigt [137]. Erstaunlicherweise scheinen plasmozytische dendritische Zellen, die professionellen interferonproduzierenden Zellen, einen anderen Mechanismus der Interferonproduktion zu haben [138, 139]. Es konnte gezeigt werden, dass pDCs kontinuierlich große Mengen des Irf-7 produzieren, was zu einer schnellen und starken Interferonproduktion bei viraler Infektion führt. Im Gegensatz dazu ist die Interferonproduktion in Zellen, die den Irf-7 nicht oder nur in sehr geringem Maße kontinuierlich produzieren, stark vom positiven Feedback abhängig, da nur durch dieses der Irf-7 exprimiert wird und es somit zur verstärkten Interferonproduktion kommen kann [140]. Prakash et al. verfolgten die Hypothese, dass der Weg der Infektion bei der Aktivierung verschiedener Zellarten eine Rolle spielt und systemische Infektionen zur effizienten Aktivierung von pDCs führen, während lokale Infektionen nur die betroffenen lokalen Zellen beeinflussen, wobei jedoch eine autokrine Aktivierung für die Interferonproduktion nötig ist. Sie untersuchten die
Auswirkungen einer inhalativen Influenza-Virus-Stimulation auf Wildtyp-Mäuse, verglichen mit Mäusen, die nicht auf Interferone reagieren können, da ihnen entweder das Protein Stat-1 oder der Typ I-Interferonrezeptor fehlte. Hierbei zeigte sich, dass für die lokale respiratorische Immunantwort der positive Verstärkungsmechanismus über den Irf-7 und die Interferonproduktion nötig ist [140].

Unsere Hypothese war, dass derselbe Mechanismus die antivirale Antwort auf Exposition mit viraler Doppelstrang-RNA in Mesangialzellen verstärken kann. Es konnte mittels real time RT-PCR gezeigt werden, dass Mesangialzellen den Typ I-Interferonrezeptor exprimieren und mittels ELISA, dass Mesangialzellen dazu fähig sind, Typ I-Interferone zu produzieren. Außerdem zeigten wir, dass Mesangialzellen Interleukin-6 nach Stimulation mit Typ I-Interferonen produzieren und die Anwesenheit von Typ I-Interferonen, nicht jedoch von Typ II-Interferonen, die durch virale Doppelstrang-RNA induzierte Interleukin-6-Antwort verstärkte. Der endgültige Beweis für die Existenz einer autokrinen Aktivierung kam, als wir die intrinsischen Typ I-Interferone mittels neutralisierender Antikörper blockierten und dies zur drastischen Reduktion der auf RNA-Stimulation hin produzierten Interleukin-6-Menge führte. Dieses Ergebnis wurde unter Zuhilfenahme von Typ I-Interferonrezeptor-defizienten Mesangialzellen bestätigt. In diesen Zellen zeigte sich eine deutlich reduzierte Interleukin-6-Produktion im Vergleich zu den Wildtypzellen nach Stimulation mit viraler RNA. Somit konnten wir zeigen, dass virale Doppelstrang-RNA Mesangialzellen zur Produktion von Typ I-Interferonen aktiviert, was wiederum die Produktion proinflammatorischer Zytokine, wie Interleukin-6, in einer autokrin-parakrinen Weise über den Typ I-Interferonrezeptor verstärkt. Wir untersuchten hier jedoch immer die Typ I-Interferone, also Interferon-alpha und Interferon-beta gemeinsam. Yarilina et al. zeigten beispielsweise, dass es in Makrophagen durch Tnf-alpha zur Entstehung einer Interferon-beta-abhängigen autokrinen Aktivierung kommt [141]. Ob in Mesangialzellen eines dieser Interferone eine bedeutendere Rolle spielt oder ob beide Interferone für die autokrine Aktivierung in Mesangialzellen von gleicher Bedeutung sind, lässt sich somit nicht sagen.

Eine weitere mögliche Aufgabe der lokalen Interferonproduktion wurde kürzlich von Fairhurst et al. untersucht [143]. Sie konnten zeigen, dass die von Nierenzellen gebildeten Typ I-Interferone nicht nur die systemische Autoimmunantwort beim Lupus erythematoses beeinflussen, sondern auch lokal zum End-Organ-Schaden bei der durch Autoantikörper vermittelten Lupus-Nephritis führen können.

4.5 Klinische Bedeutung für die Glomerulonephritis

Kapitel 5:
Zusammenfassung
5 Zusammenfassung

Dieser bisher unbekannte Mechanismus lässt vermuten, dass Typ I-Interferone eine wichtige lokale Rolle bei der virusassozierten Glomerulonephritis spielen.
Kapitel 6:
Literaturangaben
6 Literaturangaben

86. FACSLab UM: Was ist Durchflußzytometrie. http://www.facslab.toxikologie.unimainz.de/zytometrie.jsp

89. Vielhauer V, Stavrakis G, Mayadas TN: Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. *J Clin Invest* 115:1199-1209, 2005

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS, APES</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>BAFF</td>
<td>B-Zell-Aktivierungsfaktor</td>
</tr>
<tr>
<td>BKV</td>
<td>Polyoma-Virus BK</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serum-Albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>Zyklisches Adenosin-Mono-Phosphat</td>
</tr>
<tr>
<td>CARD</td>
<td>Caspase-Rekrutierungs-Domäne</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementäre Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>cGMP</td>
<td>Zyklisches Guanosin-Mono-Phosphat</td>
</tr>
<tr>
<td>CH₃COOONa</td>
<td>Natriumacetat</td>
</tr>
<tr>
<td>CL</td>
<td>Kationisches Lipid</td>
</tr>
<tr>
<td>CMV</td>
<td>Zytomegalie-Virus</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosin-phosphatidyl-Guanosin</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl-Pyrocarbonat</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Doppelstrang-Ribonukleinsäure</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EBV</td>
<td>Eppstein-Barr-Virus</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>Fab</td>
<td>Fragment antigen binding</td>
</tr>
<tr>
<td>FBS</td>
<td>Fötala bovine Serum</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>Fc</td>
<td>Fragment crystallizable</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum, fötala Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein-Isocyanat</td>
</tr>
<tr>
<td>GBM</td>
<td>Glomeruläre Basalmembran</td>
</tr>
<tr>
<td>GN</td>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HBV, HCV</td>
<td>Hepatitis B-Virus, Hepatitis C-Virus</td>
</tr>
<tr>
<td>HIV</td>
<td>Humanes Immundefizienz-Virus</td>
</tr>
<tr>
<td>HIVAN</td>
<td>HIV-assozierte Nephropathie</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simplex-Virus</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IFNAR</td>
<td>Interferon-alpha-Rezeptor</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunglobulin A</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunglobulin M</td>
</tr>
<tr>
<td>IKKε/ι</td>
<td>IκB Kinase ε/ι</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IPS</td>
<td>Interferon-β promoter stimulator</td>
</tr>
<tr>
<td>IRAK</td>
<td>IL-1 Rezeptor-assoziierte Kinase</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferonregulierender Faktor</td>
</tr>
<tr>
<td>ISGF</td>
<td>Interferon-stimulated gene factor</td>
</tr>
<tr>
<td>ISRE</td>
<td>Interferon-stimulated response element</td>
</tr>
<tr>
<td>ITS</td>
<td>Insulin-Transferrin-Sodium Selenite</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus-aktivierter Kinase</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Kaliumhydrogenphosphat</td>
</tr>
<tr>
<td>k.o.</td>
<td>Knock out</td>
</tr>
<tr>
<td>LGP</td>
<td>Laboratory of genetics and physiology</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucin-rich repeat, leucinreiche Wiederholungen</td>
</tr>
<tr>
<td>MAL</td>
<td>MyD88 adaptor-like protein</td>
</tr>
<tr>
<td>MAVS</td>
<td>Mitochondrial antiviral signaling protein</td>
</tr>
<tr>
<td>MDA</td>
<td>Melanoma differentiation-associated gene</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>μg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MMTV</td>
<td>Mouse mammary tumor virus, Maus-Mammatumorvirus</td>
</tr>
<tr>
<td>MPGN</td>
<td>Membranoproliferative Glomerulonephritis</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation primary response gene 88</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Natriumhydrogencarbonat</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>di-Natriumhydrogenphosphat</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease virus</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide oligomerisation domain</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen associated molecular pattern, Musterstruktur</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic acid Schiff</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline, Phosphat-gepuff. Kochsalz</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction, Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>pDC</td>
<td>Plasmozytische dendritische Zelle</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Jodid</td>
</tr>
<tr>
<td>pI:C</td>
<td>poly I:C</td>
</tr>
<tr>
<td>PKR</td>
<td>Protein-Kinase R</td>
</tr>
<tr>
<td>PRD</td>
<td>Positive regulatory domain</td>
</tr>
<tr>
<td>PRD-LE</td>
<td>PRD-like element</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor, Mustererkennungs molekül</td>
</tr>
<tr>
<td>PS</td>
<td>Penicillin/Streptomycin</td>
</tr>
<tr>
<td>RICK</td>
<td>Rip-like interacting CLARP kinase</td>
</tr>
<tr>
<td>RIG</td>
<td>Retinoic acid-inducible gene</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transkriptase PCR</td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-Dodecylsulfat</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SeV</td>
<td>Sendai-Virus</td>
</tr>
<tr>
<td>SMA</td>
<td>Smooth muscle actin</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Einzelstrang-RNA</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducers and activators of transcription</td>
</tr>
<tr>
<td>TBK</td>
<td>TANK-binding kinase</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>TICAM</td>
<td>TIR-containing adaptor molecule</td>
</tr>
<tr>
<td>TIR</td>
<td>Toll/interleukin-1 receptor</td>
</tr>
<tr>
<td>TIRAP</td>
<td>TIR domain-containing adaptor protein</td>
</tr>
<tr>
<td>TIRP</td>
<td>TIR-containing protein</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like Rezeptor</td>
</tr>
<tr>
<td>TRAM</td>
<td>TRIF-related adaptor molecules</td>
</tr>
<tr>
<td>TRIF</td>
<td>TIR domain-containing adaptor protein inducing IFN-β</td>
</tr>
<tr>
<td>VISA</td>
<td>Virus-induced signaling adaptor</td>
</tr>
<tr>
<td>VSV</td>
<td>Vesicular stomatitis virus</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation, Weltgesundheitsorganisation</td>
</tr>
</tbody>
</table>
Danksagung

Danke auch an Dr. Daniel Zecher, der mir sein Projekt überließ und mich in den ersten Wochen mit viel Geduld in meine neuen Aufgaben eingearbeitet hat.

Mein Dank gilt auch dem „Graduiertenkolleg 1202“, sowohl für die finanzielle Unterstützung als auch für die Möglichkeit mit den anderen Teilnehmern über mein Projekt zu diskutieren und somit hilfreiche Tipps für das weitere Vorgehen zu bekommen.

Mein besonderer Dank gilt der gesamten Arbeitsgruppe: danke für die vielen nützlichen Ratschläge mein Projekt und die Laborarbeit betreffend, danke für die Hilfe im Umgang mit dem Computer, danke für die gemeinsamen Diskussionen und die unzählichen aufmunternden Worte, die das Arbeiten auch am Wochenende angenehm werden ließen.

Bedanken möchte ich mich auch bei Frau Hörrlein und meinem Papa, die meine Arbeit mit viel Geduld und Ausdauer Korrektur gelesen haben und mich noch auf einige Fehler hinweisen konnten.

Zuletzt möchte ich mich bei meiner Familie und meinen Freunden bedanken, die mir, obwohl sie von der Thematik wenig verstanden haben, immer mit offem Ohr zuhörten und die mich in schwierigen Phasen immer wieder ermutigten, weiter zu machen.