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1. Introduction 

 

Bovine viral diarrhea virus (BVDV) is grouped in the genus Pestivirus in the family 

Flaviviridae (Mayo, 2002). BVDV was first described in the United States, where it was 

isolated as the causative agent of a diarrhea in cattle in 1946 (Olafson et al., 1946). It has a 

single-stranded RNA genome of positive orientation, approximately 12.4 kb in size, which 

codes for structural and non-structural proteins. Two species, BVDV-1 and BVDV-2, are 

delineated (Ridpath et al., 1994; Harpin et al., 1995) due to marked genetic and antigenic 

differences. Within both, there are two biotypes, cytopathic (cp) and noncytopathic (ncp), 

characterised by their effect on cultured cells (Lee and Gillespie, 1957). BVDV occurs 

worldwide and despite the development of different vaccines and eradication programs, it still 

causes pronounced economic losses in the cattle industry. 

Most infections are subclinical. Animals with clinical manifestations show respiratory, 

gastrointestinal or reproductive symptoms. Infection of seronegative cows during pregnancy 

can result in diverse disorders and, as a special feature of this disease, in the generation of 

persistently infected (PI) offspring when the dam is infected with a non-cytopathic strain of 

either species during the first 120 days of pregnancy (Moennig and Liess, 1995). These 

BVDV carriers can be inconspicuous at birth but continuously shed high amounts of virus and 

are the most important factor in virus spread (Houe, 1999). 

Therefore, the primary aim of BVDV vaccination is to prevent fetal infection and the birth of 

BVDV carriers. To be an effective tool in BVDV control, a vaccine must fulfill high 

requirements (Beer et al., 2000; Fulton et al., 2003), and no currently commercially available 

vaccine meets all of them. Several modified-live virus (MLV) vaccines and inactivated 

vaccines are licensed for use in Germany. Modified-live virus vaccines are considered 

efficacious in inducing protective immunity, but their safety concerning viremia and vaccine 

virus shedding is a matter of controversy. The available inactivated vaccines are safe, but their 

efficacy is not satisfactory. To control BVDV infections, there is a need for better, safer 

vaccines. Different attempts using genetically modified variants seek to combine advantages 

while diminishing disadvantages. In the work presented here, two approaches for attenuated 

and efficacious BVDV-2 mutants derived from a recently constructed BVDV-2 full-length 

cDNA clone (Mischkale et al., 2009) were tested in vivo. Newly generated virus derived from 

the full-length clone was also tested for virulence compared to the parental wild type strain.  
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2. Bovine viral diarrhea virus (BVDV) - Literature review 

 

 

2.1. Taxonomy and molecular characteristics 

 

The family of Flaviviridae comprises three different genera: Flavivirus, Hepacivirus and 

Pestivirus. Four species are included in the genus Pestivirus (Mayo, 2002) which are non-

zoonotic animal pathogens: Classical swine fever virus (CSFV), Border disease virus (BDV), 

and BVDV-1 and BVDV-2. Liu et al. (2009) suggested a new classification, including the 

introduction of a third BVDV species, BVDV-3, encompassing atypical bovine pestiviruses. 

Subgroups were often described but the significance is a matter of debate. European BVDV-1 

strains have been divided into 11 subgroups (Vilcek et al., 2001), while BVDV-2 strains were 

segregated into only 2 subgroups (Becher et al., 1999a; Flores et al., 2002) namely BVDV-2a 

and -2b. 

All members of the Flaviviridae family have a genome of approximately 12.4 kb in conserved 

organization with one open reading frame (ORF) flanked by untranslated regions (UTR) at the 

5’ and 3’ end. The structural proteins are encoded in the 5’ region while the non-structural 

genes lie at the 3’ end. BVDV replicates in the cytoplasm. The viral proteins are translated 

into one single polyprotein, and co- and post-translational cleavage by viral and cellular 

proteinases is necessary (Collett et al., 1988; Lackner et al., 2004) (Fig.1). The order of the 

individual proteins is as follows: N
pro

 – C – E
RNS

 – E1 – E2 – p7 – NS2/3 – NS4a – NS4b – 

NS5a – NS5b.  

Unique to the pestiviruses are the N
pro

 and the E
RNS

 proteins (Ridpath and Bolin, 1995, 1997). 

N
pro

 functions as an autoproteinase and E
RNS

, a glycoprotein of the envelope, has an intrinsic 

RNase function (Schneider et al., 1993; Hulst et al., 1994). 

The spherical BVDV virions (40 to 60 nm in diameter) have a lipid envelope derived from the 

host cells. This envelope makes them susceptible to detergent and solvent inactivation. 

BVDV-1 and -2 have different antigenic and genetic profiles (Ridpath et al., 2000; Fulton et 

al., 2003). This pronounced variation has an impact on BVDV detection and control. Today, 

comparing the sequence of the 5’UTR region is a widely used method for classification as this 

is the best-conserved region of the pestivirus genome (Becher et al., 1997; Ridpath et al., 

2000; Beer et al., 2002), followed by N
pro

, parts of the E
RNS

 and E1 protein. Differentiating 

PCR-tests target its two variable regions. The most variable protein in the ORF is E2, 

BVDV’s major immunogen (Donis et al., 1988; Bolin and Ridpath, 1989). 
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Fig.1      Virion morphology of BVDV, genome organization, co/post-translational cleavage sites  

and mechanisms of the single proteins (source: H.Granzow; FLI; Insel Riems). 

 

Both species can be further subdivided into two biotypes – cytopathic (cp) and noncytopathic 

(ncp) – based on the phenotype when propagated in cell culture (Lee and Gillespie, 1957; 

Gillespie et al., 1960). Cytopathogenicity does not correlate with a strain’s virulence in vivo, 

as most if not all strains of high virulence are ncp isolates (Corapi et al., 1990; Carman et al., 

1998; Ridpath et al., 2000; Liebler-Tenorio et al., 2002). Furthermore, cp BVDV amplifies 

viral RNA at pronouncedly higher levels than the ncp counterparts (Kümmerer and Meyers, 

2000; Glew et al., 2003).  

The single-stranded positive-sense RNA genome is prone to mutations as the RNA-dependent 

RNA polymerase has no proofreading function. This leads to genetic drift and in time to the 

development of different genotypes. In RNA viruses, strong replication with high error rates 

creates a virus population resembling an inhomogenous cloud of mutants, “quasispecies” 

(Eigen, 1993) grouped around a most frequent sequence (Becher et al., 1999b; Moya et al., 

2000). This is one aspect of viral immunoevasion (Bolin et al., 1991). On the other hand, a 

stabilization of the genome has been described in PI animals (Hamers et al., 1998, 2001) and 

for herd-specific strains (Paton et al., 1995). 

Receptor-mediated endocytosis involving cell surface proteins (heparin surface proteoglycans 

and low density lipoprotein receptor [LDLR]; Iqbal et al., 2000; May et al., 2003) and viral 
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envelope proteins (E
RNS

 and E2) leads to binding of and entry into the host cell (Agnello et 

al., 1999). Viral RNA is unpacked in the cytoplasm, where it immediately acts as mRNA 

directing the translation of viral proteins, initiated by the internal ribosome entry site (IRES) 

in the 5’ UTR that mediates binding of the correct initiation codon to the ribosome (Pestova et 

al., 1998; Pestova and Hellen 1999). Recruitment of cellular factors is necessary for a 

successful translation of BVDV polyprotein. After initial translation a stem loop formation at 

the far end of the 5’ UTR switches the viral RNA from mRNA to a template for RNA 

replication (Behrens et al., 1998; Li and McNally, 2001) by the replicase complex (assembled 

nonstructural viral proteins and cellular components). Maturation takes place in intracellular 

vesicles and only mature particles are released by exocytosis (Heinz et al., 2000; Grummer et 

al., 2001). 

Untranslated regions (UTR) at the 5’ and 3’ ends: The well-conserved 5’UTR serves as 

internal ribosome entry site (IRES) that mediates ribosomal attachment to the translation 

initiation codon. The 3’ UTR encodes for critical replication structures initializing e.g. 

negative strand synthesis (Yu et al., 1999; Fields et al., 2001).  

The single proteins C, E
RNS

, E1 and E2 are structural components of mature virions. The 

Capsid protein (C) forms the capsid, packing the RNA, and is relatively conserved. Heinz et 

al. (2000) state that it codes for an internal signal sequence directing translocation of the 

structural glycoproteins to the endoplasmatic reticulum. Glycoprotein E
RNS

, as a part of the 

lipid envelope, has ribonuclease activity and forms disulfide-linked homodimers sometimes 

associated with E1E2 heterodimers. It can also be found in a free, soluble form in infected 

cells in vitro (Rümenapf et al., 1993). Neutralizing antibodies (nab) against E
RNS

 are formed 

upon infection (König et al., 1995) but their role in disease control is still a matter of 

controversy. E
RNS

 can be found as a precursor protein together with E1 (E
RNS

-E1), which is 

stable but not essential for virus formation (Wegelt et al., 2009). 

Glycoproteins E1 and E2 are components of the viral envelope as well and form heterodimers 

(Weiland et al., 1990). E2 is the immunodominant protein of BVDV with several neutralizing 

epitopes, and its high antigenic variation can contribute to vaccine failure (Bolin and Ridpath, 

1989; Ridpath et al., 2000; Van Campen et al., 2000). Cleavage of structural proteins is 

mediated by cellular signal peptidases (Rümenapf et al., 1993; Elbers et al., 1996; Wegelt et 

al., 2009).  

The first non-structural protein in the ORF is N
pro

 that functions as an autoprotease and as an 

inhibitor of the host’s innate immune system (Hilton et al., 2006; Ruggli et al., 2003, 2005). 

The role of the small p7 protein in the replication and assembly process of BVDV is still 
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putative, but it is discussed as viroporin in other members of Flaviviridae (Hepatitis C virus; 

Cook and Opella, 2009) and in BVDV (Reimann et al., 2009). NS2/3 has a serine protease 

function residing in the NS3 portion, and cleaves the nascent non-structural proteins from the 

polyprotein. Its additional roles as RNA helicase and RNA-activated NTPase (Warrener and 

Collett, 1995) are essential for viral viability (Gu et al., 2000). Antibodies against NS2/3 or 

NS3 are formed but have no neutralizing abilities. NS4a acts as co-factor for the serine 

protease function of NS2/3. NS4b and NS5a are suspected to play a role in the replicase 

complex, but the exact functions are unknown. NS5a interacts with cellular elongation factor 

1 α which also binds to the secondary structure of the 3’ UTR. This may be used for correct 

positioning and/or orientation of the RNA template for replication. NS5b provides the RNA 

polymerase function for viral replication (Lai et al., 1999). 

 

 

2.2. Distribution, economical aspects and control programs 

 

BVDV is a global pathogen of cattle. Both species have been reported in Europe (van Rijn et 

al., 1997; Wolfmeyer et al., 1997; Vilcek et al., 2002) and the Americas (Pellerin et al., 1994; 

Canal et al., 1998; Jones et al., 2001). The prevalence of BVDV antibody positive animals in 

Germany varies between 42 and 55% while the herd prevalence is clearly higher with 67 to 

97% (Schirrmeier; personal communication). 

There are noticeable differences in the prevalence of BVDV-2, which was initially isolated in 

the U.S. and Canada in the early 1990s (Corapi et al., 1989, 1990b; Carman et al., 1998). 

BVDV-2 isolates are rarely found in Europe (Wolfmeyer et al., 1997; Vilcek et al., 2002; 

Drew et al., 2002), but comprise 24 to 48% of BVDV isolates in North America (Carman et 

al., 1998; Bolin and Ridpath, 1998; Fulton et al., 2000a; Ridpath, 2005). Beer and Wolf 

(1999) identified 6.5% of field isolates (1993-1997), Wolfmeyer et al. (1997) 11% of tested 

German field strains (1992-1996) as BVDV-2 while a more recent investigation claims 14.3% 

(Cedillo Rosales S., 2004). 

Persistently infected (PI) animals are estimated to comprise up to 2% of the cattle population 

(Bolin et al., 1985a; Howard et al., 1986; Houe et al., 1995a, 1995b; Beer and Wolf, 1999; 

Wittum et al., 2001; Moennig und Greiser-Wilke, 2003), depending on the country and 

situation in the field. Distribution of BVDV-1 and -2 among PI animals found in field studies 

in the U.S. seems to be equal (Wittum et al., 2001). PI cases are often clustered: while in the 

majority of herds no persistent infections are present, in some affected herds there are several 

PI animals (Bolin, 1990). 
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BVDV causes continued substantial economic losses in the cattle industry worldwide (Duffel 

et al., 1986; Houe and Heron, 1993; Innocent et al., 1997). Reproductive dysfunctions and 

losses through abortions, reduced conception rates and birth of weak offspring present the 

main economic impact of BVDV infection (Kirkbride, 1992; Dubovi, 1994; Moennig and 

Liess, 1995; Rüfenacht et al., 2001), closely followed by production losses through decreased 

weight gain and milk production and secondary infections. 

The complex pathogenesis and diverse clinical manifestation of BVDV along with its 

genomic diversity complicate effective control. As one of the first countries, Sweden 

introduced a national BVDV program in 1993 that is used today as a template for similar 

programs in many other countries (Moennig and Greiser-Wilke, 2003). In herds, freedom 

from BVDV is confirmed by bulk milk screening and maintained without vaccination (Bitsch 

and Ronsholt, 1995). In countries with high BVDV prevalence and intensive trade, the aim 

should be to minimize infection pressure (Moennig and Greiser-Wilke, 2003), while the 

identification and elimination of PI animals is of utmost importance in any scenario (Schelp 

and Greiser-Wilke, 2003). 

The reintroduction of BVDV after elimination of PI animals must be prevented by good 

management and vaccination. In 2004, BVDV was made a notifiable animal disease in 

Germany (Anonymous, 2004). The “Verordnung zum Schutz der Rinder vor einer Infektion 

mit dem Bovinen Virusdiarrhoe-Virus” (BVDV-Verordnung) (Anonymous, 2008) was passed 

in December 2008 and will be implemented from January 2011. This includes the eradication 

of persistently infected animals detected by compulsory testing, certification of herds without 

PI animals and protection against BVDV reintroduction by restricting trade to certified non-PI 

cattle. In addition, vaccination is recommended to avoid the scenario of a seronegative, highly 

susceptible population. 

BVDV freedom in Germany can only be realized in the long term and vaccination plays an 

essential part in the program by reducing the infection pressure and the number of susceptible 

animals. To this end, vaccines should contain at least one strain of both species (Fulton et al., 

2003). 
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2.3. Transmission and disease 

 

Horizontal transmission over various routes is described as BVDV is shed in most excretions 

and secretions. Amount and duration of virus shedding and viremia vary, depending on strain 

virulence (Bolin and Ridpath, 1992) and immune status. Sources are often PI animals and less 

likely transiently infected cattle (Niskanen et al., 2000). Direct contact, artificial insemination 

(Paton et al., 1990; Kirkland et al., 1994), natural service (Wentink et al., 1989), embryo 

transfer and milk are described as routes of infection together with iatrogenic transmission 

(Lang-Ree et al., 1994; Houe, 1995) and contamination of biologicals (e.g. FCS, vaccines). 

Vertical transmission plays an important role in keeping the virus in a population. Acute 

infection of the dam with an ncp strain of either species or vaccination with an MLV vaccine 

containing an ncp strain in the first 90 days of gestation can lead to persistently infected 

offspring. Interspecies transmission among domestic and wild ruminant species is also an 

important aspect for BVDV control programs (Loken, 1995; Nettleton and Entrican, 1995).  

BVDV is transmitted primarily through aerosols. Virus progeny created by replication in 

epithelial cells of the nasal mucosa and draining lymph nodes is spread by circulating 

lymphocytes. With the blood the virus reaches all other organs causing multiple systemic 

effects after an incubation period of 5 to 7 days. The majority of infections stays subclinical or 

mild (Ames, 1986). When clinical disease is manifest, typical signs can be observed: a 

biphasic pyrexia, leukopenia, anorexia associated with depression, decrease in production 

(milk, weight gain) (Moerman et al., 1994), reproductive disorders (Archbald et al., 1979; 

Kirkland et al., 1994; Kafi et al., 2002), as well as respiratory and intestinal illness (Bolin and 

Ridpath, 1992; Bruschke et al., 1998; Hamers et al., 2000; Stoffregen et al., 2000; Liebler-

Tenorio et al., 2002, 2003a, 2003b). Highly virulent strains can spread to the bone marrow 

(infecting myeloid cells and megakaryocytes), and often show a wider distribution later in the 

infection. Infections with ncp strains in general are cleared later than cp virus (Spagnuolo-

Weaver et al., 1997). Recovery and repair of lesions may take up to two weeks, even longer 

for more virulent strains (Liebler-Tenorio et al., 2002, 2003b). 

Two patterns are observed: acute infection varying in severity with a transient virus shedding 

in immune-competent animals and possible transplacental transmission and persistent 

infection of the fetus. Species, biotype and virulence of the strain determine the outcome of 

infection as do immune status and competence, overall health and age of the host.  

A particularly severe form of acute BVD (Carman et al., 1998; Flores et al., 2000; Liebler-

Tenorio et al., 2002), termed hemorrhagic syndrome, is mainly associated with ncp BVDV-2 
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strains. It is characterized by fast progression, high fever, leucopenia and marked 

thrombocytopenia leading to petechiation of mucosal surfaces epistaxis and bloody diarrhea 

with high letality (Corapi et al., 1990). 

BVDV infection plays a role in the bovine respiratory disease complex (Potgieter et al., 1984; 

Castrucci et al., 1992; Fulton et al., 2000b; Shahriar et al., 2002; Callan and Garry, 2002) 

owing to its immunosuppressive effect. Extensive lymphoid depletion of both B- and T-

lymphocytes (Bolin et al., 1985b; Beer et al., 1997) and diminished leukocyte functionality 

(Bruschke et al., 1997; Ellis et al., 1988) are a consistent finding, more pronounced in extent 

and duration with virulent strains (Kelling et al., 2002).  

In addition to clinical disease of the dam, first-time infection of pregnant animals can lead to 

viremia and transplacental infection causing early embryonic death, abortion or congenital 

defects (Done et al., 1980; Duffel and Harkness, 1985; McGowan et al., 1993; Sanderson and 

Gnad, 2002; Grooms et al., 2002). Both species and both biotypes can cross the placental 

barrier (Vanroose et al., 1998; Brock and Chase, 2000; Wittum et al., 2001). Infection with 

non-cytopathic strains between days 90 and 120 of gestation may lead to fetal 

immunotolerance to BVDV (Brownlie et al., 1998). Pregnancy can be maintained and the 

dam gives birth to a persistently infected animal, virus positive and seronegative before 

colostral uptake. PI animals are carrying a higher risk of severe illness as they are more 

predisposed to other infections (Roth et al., 1981, 1986; Werdin et al., 1989; Munoz-Zanzi et 

al., 2003). The induction of persistent infections by ncp strains was attributed to an inhibition 

of interferon (IFN) type I production (Charleston et al., 2001).  

Superinfection of a persistently infected animal with a homologous or antigenically closely 

related (Howard et al., 1987) cytopathic strain by either natural infection, vaccination with an 

MLV vaccine (Ridpath and Bolin, 1995) or de novo mutation of the persisting virus causes 

“mucosal disease” (Ramsey and Chivers, 1953; Tautz et al., 1998). Affected animals develop 

typical mucosal lesions and severe diarrhea, and usually die due to dehydration or septic 

infections within 3 to 10 days. Mortality reaches approximately 100% (Tautz et al., 1994). 
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2.4. Diagnosis 

 

The differences in genotype, antigenic profile, virulence and biotype have an impact on 

detection and control. Clinical signs, which are highly variable, may only lead to a 

presumptive diagnosis which has to be confirmed in the laboratory. 

Infection can be assessed directly by antigen detection. PI animals have very high virus loads 

in almost every tissue, so some methods and sample types for their detection are of limited 

use in transiently infected animals with low, inconsistent amounts of antigen. Virus isolation 

in highly susceptible cell culture systems visualized by immunofluorescence or 

immunoperoxidase staining is the most reliable method (“gold standard”) to detect viral 

antigen. Monoclonal antibodies (mab) must be chosen carefully due to cross-reactivity 

between strains and species (Ridpath et al., 1994). RT-PCR (reverse transcription polymerase 

chain reaction) detecting nucleic acids is a highly sensitive and rapid alternative to other 

BVDV detection methods. It can also be used in pooled samples like bulk milk or blood. 

BVDV’s high variability requires careful primer design (Ridpath et al., 1993) to detect all 

strains. Differential PCR assays can distinguish between species and sub-genotypes (Ridpath 

and Bolin, 1998: BVDV-1a, -1b, -2), and contribute to identification and grouping of strains 

together with sequencing. Antigen-capture enzyme-linked immunosorbent assays (ELISA) 

using monoclonal antibodies e.g. against NS2/3 or E
RNS

 to detect the majority of strains are 

commercially available (Gottschalk et al., 1992; Brinkhof et al., 1996; Kampa et al., 2007). 

Virus in tissue sections is visualized using immunohistochemistry (Thür et al., 1996). 

Antibody detection is an indirect measure of infection. BVDV proteins inducing neutralizing 

antibody development in the host are predominantly E2 and to a minor extend E
RNS

. 

Antibogies against NS3 are also formed, but have no neutralizing abilities. They are produced 

after natural infection, vaccination or can be acquired by passive transfer over colostrum. 

Reference strains from both species are required and paired samples are useful to distinguish 

between acutely and persistently infected animals. The virus neutralization assay is the “gold 

standard” (Rossi and Kiesel, 1971) due to its high sensitivity, high specificity and good 

correlation with protective immunity (Fulton et al., 1997). ELISA systems detecting 

antibodies employ whole virus antigen, nonstructural proteins, peptides and mab. An E
RNS

 

peptide based ELISA for species-independent detection of pestivirus antibodies was 

developed by Langedijk et al. in 2001. Further ELISA systems are commercially available 

detecting NS3 or E2 antibodies. Improvements are possible using defined antigens (Haines 

and Ellis, 1994).  
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2.5. Immunology 

 

BVDV has a predilection for infecting immune cells (Sopp et al., 1994), and is in some cases 

able to evade immune recognition through its antigenic plasticity. E
RNS

, E2 and NS2/3 (NS3) 

induce antibody responses and E2 is the immunodominant protein, leading to production of 

neutralizing antibodies (Donis et al., 1988; Weiland et al., 1989). Active immunity in virus 

infections is based on the development of a humoral and cellular response, with viral 

replication apparently essential (Zinkernagel, 1994) for the latter. Maximal antibody levels 

against BVDV are reached 10-12 weeks post infection (Howard et al., 1992), slowly declining 

afterwards. Passive immunity is acquired by the colostral transfer of maternal antibodies 

within the first 24 to 48 hours of life and decreases from 4-6 months of age (Munoz-Zanzi et 

al., 2002; Ridpath et al., 2003). High titers of maternal antibody may block the development 

of an active immune response while T-cell responses improve vaccination efficacy (Endsley 

et al., 2003, 2004). These are known to play an important role in immunity acquired against 

BVDV (Beer et al., 1997; Rhodes et al., 1999; Collen et al., 2002). 

Cytokines mediate reactions of individual parts of the immune response by influencing 

cellular function (activation, deactivation). BVDV infection of macrophages leads to a 

decrease in chemotaxis (Ketelsen et al., 1979) and reduced production of tumor necrosis 

factor-α (TNF-α) (Adler et al., 1996, 1997), which is a modulator of many other cytokines 

(Chase et al., 2004). Interferon (IFN) is the most important cytokine in innate defense 

mechanisms to limit infection. BVDV targets interferon regulatory factor-3 (IRF-3), an 

activator of IFN transcription, causing its proteasomal degradation. Ruggli et al. (2003) 

determined the role of the N
pro

 protein of pestiviruses in this process. Interference with both 

cytokines probably contributes to the immunosuppression observed in BVDV infections. 

 

 

2.6. Vaccination 

 

A number of vaccines are licensed for use in cattle in Germany, some with the label claim of 

“fetal protection”. Two different types of vaccines are registered: Modified-live virus (MLV) 

vaccines lead to a protective humoral and cellular immune response after one-time 

application, mediating long-lasting immunity. On the other hand, MLV vaccines carry the risk 

of vaccine virus viremia and shedding due to systemic propagation in the vaccinated animal 

(Cortese et al., 1997; Fulton et al., 2003) and should not be used in pregnant animals. 
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Additionally, they can trigger MD, cause immunosupression, reproductive disorders 

(Thierauf, 1993) or even disease similar to field infection after vaccination. The other type are 

killed or inactivated vaccines. Killed vaccines are only weakly immunogenic and high 

amounts of antigen with adjuvants are needed, increasing production costs. They are 

considered safe as no viremia or shedding is possible, but immunity is not complete especially 

against heterologous strains. Therefore, a two-step vaccination scheme has been endorsed, 

comprising vaccination with an inactivated vaccine followed by a booster immunization with 

a modified-live vaccine before breeding to reduce viremia and shedding of the latter 

(Hofmann, 1998). 

Routine vaccination is helpful in reducing the number of PI animals in a population. 

Understanding the antigenic and genetic diversity of BVDV and the high rate of genetic 

insertion and recombination events (Fields et al., 2001) is important for the evaluation of 

advantages and limitations of BVDV vaccines. Early vaccines merely reduced the extent of 

clinical disease. The standards a vaccine has to meet to qualify for a label claim of “providing 

fetal protection” have been designed only recently (Anonymous, 2001). These vaccines 

reduce the risk of generating new PI animals that are responsible for sustained virus 

circulation in a herd. But protection against heterologous challenge may be incomplete (Bolin 

et al., 1991; Van Campen et al., 2000) depending on the homology between the vaccine strain 

and the field strains to which the animals are exposed. If homology is low, cross-protection is 

usually poor. Numerous studies (reviewed by Van Oirschot et al. [1999] or Bolin [1995]) 

have been carried out to determine the efficacy of BVDV-1 vaccines against BVDV-2 

challenges (Beer et al., 2000; Makoschey et al., 2001; Ficken et al., 2006), even in pregnant 

cattle (Brock and Cortese, 2001). The overall conclusion was that only including both species 

in vaccines can reduce the risk of an infection with BVDV-1 and BVDV-2. A vaccine 

containing only BVDV-1 had little to no protective effect against a BVDV-2 challenge 

(Ficken et al., 2006). Dubovi (1992) even recommended the use of multiple strains in one 

vaccine for a better and broad immunity as protection through vaccination increases with 

strain homology. For registration, vaccines have to meet safety, quality (purity and potency) 

and efficacy requirements (Anonymous, 1998). For example vaccines have to be tested in 

vaccination-challenge studies under experimental conditions. Virulent strains must be used for 

challenge, but the strain itself is not prescribed. Transmission experiments must be conducted 

before proceeding with field trials (Van Oirschot et al., 1999). Recombinations are an 

important issue for new vaccine candidates, as they have been shown to happen between 

persisting strains and vaccine strains (Becher et al., 2001), BVDV-1 and BVDV-2 (Ridpath 
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and Bolin, 1995), ncp and cp strains (Ridpath and Bolin, 1995) as well as between BVDV and 

the host cell genome (Meyers et al., 1998; Becher et al., 2002). 

 

2.6.1. New BVDV vaccines using recombinant technologies 

 

New vaccine developments should strive to combine the advantages of both types of vaccines 

and minimize their disadvantages. Subunit vaccines using the E2 glycoprotein were used 

experimentally against CSFV and BVDV (Bolin and Ridpath, 1996; Bruschke et al., 1999; de 

Smit et al., 2000, 2001; Thomas et al., 2009) as were DNA vaccines with a herpesviral 

promoter in mice and cattle (Harpin et al., 1997, 1999; Liang et al., 2008) and vector-based 

E2 vaccines (Kweon et al., 1999; Schmitt et al., 1999). Widjojoatmodjo et al. (2000), van 

Gennip et al. (2002) and Reimann et al. (2007) described the use of replicons as a promising 

approach. Naturally occuring replicons are “defective interfering particles” (pestivirus 

prototype: DI9; Tautz et al., 1994), i.e. viral genomes with deletions in the structural protein 

genes which replicate effectively but need the support of a co-infecting helper virus (Huang 

and Baltimore, 1970) to generate infectious progeny. After selective deletions in infectious 

full-length clones in vitro (Behrens et al., 1998; Moser et al., 1999; Reimann et al., 2003) 

(example: Fig.3), genetically engineered replicons can be complemented in-trans using helper 

cell lines (Reimann et al., 2003, 2007) or co-replicating intact or defect genomes (Varnavski 

and Khromykh, 1999). Generated “pseudovirions” (DISC [defective in second cycle] virions, 

virus-replicon particles [VRP] [Maurer et al., 2005] or pseudo particles [Liang et al., 2009]) 

are one-time infectious particles. Infection of a non-complementing cell leads to replication 

and expression of viral genes on a scale resembling natural infection but without infectious 

progeny, suggesting replicons as very safe attenuated vaccine candidates. BVDV-1 replicons 

lacking a part of the small structural Capsid protein already proved to be successful against a 

heterologous BVDV-1 challenge (Reimann et al., 2007).  
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Fig.3      Example for the construction of a replicon based on a full-length cDNA clone; 

partial deletion of the Capsid protein encoding region still enabling effective  

cleavage between single proteins 

 

Another approach is attenuation by knocking-out viral virulence factors such as the non-

structural protein and autoproteinase N
pro

. This protein is involved in the suppression of the 

host’s innate immune system (Ruggli et al., 2003) and could have an important function in the 

establishment of persistent infections (Tratschin et al., 1998; Ruggli et al., 2003, 2005; Gil et 

al., 2006). It is dispensable for viral replication (Tratschin et al., 1998) and growth in vitro so 

deletion mutants (example: Fig.4) can be propagated on conventional cell lines. Pestivirus 

virions lacking N
pro

 are clearly attenuated in vivo (Mayer et al., 2004), and were tested safe 

and efficacious for BVDV-1 (König, unpublished) and CSFV (Mayer et al., 2004).  

 

 

            

Fig.4      Example for the construction of an N
pro

-deletion mutant based on a full-length cDNA clone; 

partial deletion of the N
pro 

protein encoding region leaving the IRES domain functional. 

 

For a chimeric pestivirus, the possibility of differentiating between vaccinated and infected 

animals (DIVA) has recently been shown (Reimann et al., 2003; Koenig et al., 2007; Leifer et 

al., 2009b) and the same principles can also be used for N
pro

 deleted constructs. 
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However, all these approaches require functional full-length cDNA clones, which have been 

constructed for BVDV-1 (strains CP7, NADL and Oregon; Meyers et al., 1996; Vassilev et 

al., 1997; Mendez et al., 1998; Kümmerer and Meyers, 2000) and BVDV-2 (strain ncp NY93 

and 890) (Meyer et al., 2002; Mischkale et al., 2009).  

 

2.7. Objectives: 

 

Currently no vaccines licensed in Germany offer cross-protection against BVDV-2 infections. 

Therefore, two different approaches of attenuating a virulent BVDV-2 full-length cDNA 

clone for enhanced safety and effective immune response were tested.  

Virus (v890FL) derived from the infectious full-length clone of BVDV-2 strain 890 (p890FL; 

Mischkale et al., 2009) and genetically engineered deletion mutants were characterized in vivo 

in two independent animal trials. First, v890FL was compared to its parental strain in an 

infection study (trial A – see Fig.5). Two groups of cattle were intranasally infected with the 

same TCID50 of each virus stock (v890FL or 890 wildtype respectively) and were monitored 

for signs of clinical disease, viremia and nasal virus shedding.  

 

 

 

 

Fig.5     Design of trial A – in vivo comparison of virus derived from the constructed BVDV-2  

             full-length clone v8900FL to BVDV-2 wildtype strain 890. 

 

 

 

 

BVDV-1 and BVDV-2 deletion mutants, each lacking a major part of the N
pro

 gene 

(BVDV-1ΔN
pro

 / v890ΔN
pro

), as well as BVDV-2 pseudovirions derived from a Capsid 

protein deletion mutant (replicon; v890ΔC) were tested against a heterologous, virulent 
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BVDV-2 challenge infection (trial B – see Fig.6). Pseudovirions were handled like killed 

vaccines and were administered twice, 25 days apart. Animals were vaccinated only once if 

receiving an N
pro

 deletion mutant. The four immunized groups of cattle (v890ΔC, v890ΔN
pro

, 

BVDV-1ΔN
pro

, combination of v890ΔN
pro

 and BVDV-1ΔN
pro

) and a naïve control group 

were challenged with a virulent German BVDV-2 field strain. Safety of the mutants (post 

vaccinational disease, vaccine virus viremia and shedding) was evaluated as was their efficacy 

protecting against the challenge infection.  

 

 

 

 

 

Fig.6      Design of trial B – vaccination-challenge trial – safety of selected mutants and  

              efficacy against a heterologous BVDV-2 challenge were investigated.  
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Abstract 

Based on their genomic sequences, two genotypes of Bovine viral diarrhea virus (BVDV) can 

be differentiated, BVDV type 1 (BVDV-1) and BVDV type 2 (BVDV-2). The complete 

genomic sequence of the highly virulent BVDV-2 strain 890 was cloned as cDNA to establish 

the infectious cDNA clone p890FL. In vitro-synthesised full-length RNA of p890FL was 

transfected into bovine cells and infectious virus could be recovered (v890FL). In vitro, 

recombinant v890FL showed similar growth characteristics as wild type virus 890WT. 

However, infection experiments in calves revealed an attenuation of recombinant v890FL in 

comparison to the parental isolate. Both leukocytopenia and fever were less pronounced in 

v890FL-infected calves. Nevertheless, viremia and virus shedding were comparable between 

recombinant and parental BVDV 890. Furthermore, mutants with partial deletions of the 

genomic region encoding for the autoprotease N
pro

 (p890 N
pro

) or the capsid protein 

(p890 C) were constructed and characterised. In order to generate pseudovirions, replicon 

v890 C was efficiently trans-complemented on a helper cell line. In summary, the newly 

developed construct p890FL represents the first infectious full-length cDNA clone for the 

BVDV-2 strain 890 and offers a useful tool for further studies on the pathogenesis of 

BVDV-2 and the development of novel recombinant BVDV-2 specific vaccine candidates. 

 

Keywords:  Bovine viral diarrhea virus type 2; pestivirus; infectious pestivirus clone 
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1. Introduction 

The Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family 

Flaviviridae. BVDV is closely related to the classical swine fever virus (CSFV) and the ovine 

border disease virus (BDV) (Fauquet et al., 2005). The pestiviral genome consists of a single 

stranded positive-sense RNA with a length of about 12.3 kb. It contains one large open 

reading frame (ORF), which is flanked by non-translated regions (NTR) on both genome 

termini. The single ORF is translated into one polyprotein, which is co- and post-

translationally processed into the mature proteins N
pro

, C, E
rns

, E1, E2, p7, NS2/3, NS4a, 

NS4b, NS5a and NS5b by viral and cellular proteases (Collett et al., 1988; Lackner et al., 

2004). In cell culture, two BVDV biotypes have been described: cytopathogenic (cp) and non-

cytopathogenic (ncp). While the cp biotype induces apoptosis and cell death (Zhang et al., 

1996), the ncp biotype leads to a persistent infection of cell cultures (Donis and Dubovi, 

1987). Since the late 1980s, a new type of BVDV infections with severe thrombocytopenia 

associated with hemorrhagic syndrome in cattle has been described in Northern America 

(Pellerin et al., 1994; Rebhun et al., 1989; Ridpath et al., 1994). In Europe, first observations 

of hemorrhagic syndrome associated with BVDV were reported in the early 1990s (Broes et 

al., 1992; Lecomte et al., 1996; Thiel, 1993). Analysis of different isolates resulted in 

classification of BVDV into genotype 1 and 2. Because of their genetic, antigenetic and 

phylogenetic marked differences, the isolates mentioned above were classified as BVDV 

genotype 2. The highly virulent strain 890 was isolated by Ridpath et al., 1994. Furthermore, 

vaccination against BVDV-1 provided only partial protection from BVDV-2 infections and 

most monoclonal antibodies against BVDV-1 failed to detect BVDV-2 (Bolin et al., 1991; 

Ridpath et al., 1994). The ncp BVDV-2 strain 890 was the first BVDV-2 to be completely 

sequenced (GenBank accession no. U18059). In comparison to other ncp pestiviruses the 

ORF is elongated due to an insertion of 228 nucleotides in the genome segment encoding for 
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the non-structural protein NS2 (Ridpath and Bolin, 1995). Here, we describe the 

establishment of an infectious BVDV-2 cDNA clone of strain 890 as well as selected deletion 

mutants, allowing further studies concerning BVDV pathogenesis, replication and 

immunoprophylaxis.  

 

2. Materials and Methods 

2.1. Cells and virus 

Bovine oesophageal cells (KOP-R, RIE244, CCLV), European bison thymus cells (WT-R, 

RIE758, CCLV) and interferon incompetent Madin-Darby bovine kidney cells (MDBK, 

RIE728, CCLV) were obtained from the collection of cell lines in veterinary medicine at the 

Federal Research Institute of Animal Health, Insel Riems (CCLV). Cells were grown in 

Dulbecco´s Modified Eagle Medium (DMEM) supplemented with 10 % BVDV-free fetal calf 

serum (FCS). BVDV-2 wild type strain 890 (v890WT) was kindly provided by H. Hehnen 

(Bayer AG, Monheim, Germany).  

 

2.2. Monoclonal antibodies 

For the detection of BVDV proteins, monoclonal antibodies (mab) WB 433 (anti-E
rns

, CVL, 

Weybridge), WB210 (IgG1, anti-E
rns

, CVL, Weybridge), CA1/2 (anti-E2, Institute for 

Virology, TiHo Hannover), CA34/1/2 (anti-E2, Institute for Virology, TiHo Hannover), and 

mab-mix WB103/105 (anti-NS3, CVL, Weybridge) were used (Edwards et al., 1988). 

Secondary antibody anti-mouse IgG ALEXA
488 

(Molecular Probes) was used for 

immunofluorescence (IF) staining.  

 

2.3. Construction of the full-length cDNA clone and the deletion mutants 

Plasmids were amplified in Escherichia coli DH10B
TM

 cells (Invitrogen) and Escherichia coli 

MDS42 (kindly provided by G.M. Keil, FLI) (Pósfei et al., 2006), respectively. Plasmid DNA 
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was purified by using Qiagen Plasmid Mini or Midi Kit or with the GFX
TM

Micro Plasmid 

Prep Kit (Amersham). Primers used for plasmid construction are presented in table 1, primers 

for mutagenesis of the plasmid constructs are listed in table 2 (synthesised by MWG-Biotech, 

Ebersberg, Germany; or OPERON Biotechnologies, Berlin, Germany). Restriction enzyme 

digestion and cloning procedures were performed according to standard protocols. 

Construction of the infectious cDNA clone p890FL is schematically illustrated in figure 1. 

Organisation of the capsid protein deletion mutant (p890 C) and of the N
pro 

deletion mutant 

(p890 N
pro

) is shown in figure 2.  

 

The full-length cDNA clone p890FL was constituted from four PCR fragments. RNA for RT-

PCR was extracted from bovine cells infected with the parental virus 890WT using TRIZOL 

reagent (Gibco-Life Technologies) or RNeasy Mini Kit (Qiagen). Copy DNA was generated 

by using the SuperScript™III Reverse Transcriptase (Invitrogen) according to the instructions 

of the manufacturer. RT–PCR was performed by using the One-step RT–PCR Kit (Qiagen) or 

the SuperScript
™

III One-Step RT-PCR System with Platinum
®

TaqDNAPolymerase 

(Invitrogen) according to the supplier´s protocol. DNA based amplification was done using 

the Expand High Fidelity PCR System (Roche Molecular Biochemicals).  

The four PCR fragments (figure 1) were generated by RT-PCR using the appropriate primers 

(table 1) and subsequently ligated into the plasmid vector pA (kindly provided by Gregor 

Meyers, FLI Tübingen). SmaI sites at the 5´end of the subcloned fragment 1 and within 

fragment 2 (nucleotide position 1978) were mutated by site-directed mutagenesis using the 

QuickChangeII XL Site-Directed Mutagenesis Kit (Stratagene) and the respective primers 

listed in table 2. Subsequently, by sequencing of the complete p890FL plasmid with the 

Genome Sequencer (GS20, Roche/454) several mismatches compared to the parental virus 

were detected. Two defects were eliminated by site-directed mutagenesis (1) a frame shift due 

to the deletion of two nucleotides in the E2 encoding region and (2) a substitution of one 
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amino acid (aa) at the 3´end of the region encoding for the NS5a protein by using the primers 

890_ORF and 890_ORF_r, and the primer pair 890_NS5 and 890_NS5_r, respectively.  

For partial deletion of the N
pro

 encoding sequence, the plasmid p890FL and a PCR fragment 

amplified with the primers 890_SalI and 890_Npro_r were cleaved with SalI and SnaBI and 

ligated to generate the construct p890∆N
pro

-E2. A second PCR fragment was generated by 

using the primer pair 890_Npro and 890_SnaBI, cleaved with NotI / SnaBI and cloned into 

the NotI and SnaBI digested plasmid p890∆N
pro

-E2 to obtain the deletion mutant p890 N
pro

. 

The deletion encompasses nt 422-889 (aa 13-168) excepting the first 12 aa which overlap 

with the internal ribosomal entry site (IRES) region. 

The capsid-deleted replicon p890ΔC contained a deletion of aa 201-243 (nt 986-1114) 

compared to the parental p890FL. The 32 N-terminal amino acids and the 27 C-terminal aa of 

the capsid protein, which constitute an essential signalase recognition site and which direct 

translocation of the envelope proteins into the endoplasmatic reticulum (ER) for further 

processing of the E
rns

-E1-E2 polyprotein (Rümenapf et al., 1991), were retained. For 

construction of p890ΔC, a PCR fragment using the primers 890_SalI and 890_Capsid_r was 

amplified. p890FL and the PCR fragment were cleaved with SalI and SnaBI and ligated to 

generate the construct p890 C-E2. In a second step, a PCR fragment was amplified by using 

the primer pair 890_Capsid and 890_SnaBI_r. The resulting amplicon and p890 C-E2 were 

digested with NotI / SnaBI and both ligated to establish the deletion mutant p890ΔC. 

 

2.4. In vitro transcription and RNA transfection 

In vitro transcription of the deletion mutants p890 N
pro

, p890 C and the full-length construct 

p890FL was performed using the T7 RiboMax Large-Scale RNA Production System 

(Promega) according to the manufactur´s instructions after linearising the plasmids with SmaI. 

The amount of RNA was estimated by ethidiumbromid staining after agarose gel 

electrophoresis. For RNA transfection, bovine cells were detached using a trypsin solution, 
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washed twice with phosphate buffered saline without Ca++/Mg++ (PBS-) and mixed with 1-5 

µg of in vitro sythesised RNA. Electroporation was done by using the GenePulser transfection 

unit (Biorad) (two pulses at 850 V, 25 µF and 156 ω). 

 

2.5. Immunofluorescence staining  

Cell cultures were fixed with 4% paraformaldehyde (PFA) and permeabilised with 0.01 % 

digitonin (IF staining of NS3) or fixed/permeabilised with 80 % acetone (E
rns

, E2), and 

incubated with the appropriate working dilution of the respective antibodies for 30 min. After 

one washing step with PBS
-
, cells were incubated with the Alexa

488
-conjugated secondary 

antibody for 30 min and finally washed. IF was analysed by using a fluorescence microscope 

(Olympus). 

 

2.6. Trans-complementation of the replicon p890 C 

2.6.1. Establishment of C-E
rns

-E1-E2 expressing WT-R2 cells 

The genomic region encoding the structural proteins (C-E
rns

-E1-E2) of ncp BVDV-1 strain 

PT810 (Wolfmeyer et al., 1997) was cloned as a chemically synthesised synthetic open 

reading frame (Syn-ORF, constructed by GeneArt, Regensburg, Germany). It consisted of 

2694 nucleotides extending from nucleotide 890 to 3584 of the nucleotide sequence of BVDV 

strain NADL (Collett et al., 1988), and was inserted into the pcDNA3.1 expression plasmid 

(Invitrogen) using KpnI and NotI restriction sites. The nucleotide sequence of Syn-ORF had 

been changed to remove splice sites (Schmitt et al., 1999), but retained the original amino 

acid sequence of ncp BVDV strain PT810 (GenBank accession no. AY078406). Additionally, 

the first codon of Syn-ORF was changed to a methionine to allow expression of the 

polyprotein under the control of the HCMV immediate-early promoter present in pcDNA3.1, 

and a stop codon was inserted behind the last codon. The resulting construct pcDNA_C-E2 (1 

_g) was used to transfect WT-R cells with the SUPERFECT reagent (Qiagen). At 2 days post 
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transfection (p.t.), cell culture medium was changed to DMEM supplemented with 10 % 

bovine serum and 0.5 mg of geneticin G418 per ml. G418-resistant colonies were isolated, 

replated several times, and stained for E
rns

 and E2 expression using mab WB210, respectively 

E2-mix (CA 1/2 and CA34/1/2). 

 

2.6.2. Trans-complementation  

In vitro-transcribed RNA of p890∆C was transfected into WT-R2 cells and at 72 h p.t. RNA 

replication was analysed by IF staining with NS3 specific mabs. Supernatants of transfected 

cells were harvested and the titre of the pseudovirion progeny v890∆C_trans was determined. 

Serial passages of v890∆C_trans were performed on complementing WT-R2 cells as well as 

on non-complementing KOP-R cells. 

 

2.7. Virus titration 

Infectious titres were determined for virus stocks as well as for growth kinetics analyses, and 

after trans-complementation of p890∆C. Cell culture supernatants of v890FL-, v890WT- and 

890∆N
pro

-infected cells were harvested, and supernatants containing the trans-complemented 

pseudovirions (v890∆C_trans) were collected. After freezing, supernatants were titrated in 

log10-dilutions on KOP-R cells, and titres were determined as median tissue culture infective 

dose per ml (TCID50/ml).  

 

2.8. Growth kinetics 

For in vitro growth kinetics, KOP-R cells were infected with the recombinant virus v890FL, 

v890 N
pro

 and with the parental virus v890WT, respectively, at a multiplicity of infection 

(MOI) of 1. Supernatants were collected at 0, 8, 12, 24, 48, 72 and 96 h post infection (p.i.) 

and virus titres (TCID50/ml) were determined.  
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2.9. Real-time RT-PCR analyses 

In order to determine the viral RNA replication levels of v890FL, v890WT, and v890∆N
pro

, 

KOP-R cells were infected at an MOI of 1 of the appropriate viruses. At 48 h p.i., 

supernatants and cells were separately collected and RNA was isolated by using the QIAamp 

Viral RNA Mini Kit (Qiagen) according to the manufacturer´s instructions. Uninfected 

KOP-R cells were included as test control. In order to minimize the risk of cross 

contamination, a one step RT-PCR was performed using the QuantiTect™ Probe RT-PCR Kit 

(Qiagen). According to Hoffmann et al. (2005, 2006), 5 µl RNA template were added to a 

total volume of 25 µl, containing 3.5 µl RNase-free water, 12.5 µl 2×QuantiTect Probe RT 

reaction-buffer, 2.0 µl panpesti-specific FAM-labeled primer/probe mix and 0.25 µl RT-

enzyme mix. For quantification of the copy numbers, serially diluted BVDV-DI9-RNA 

(Behrens et. al., 1998) was used as standard RNA. The following temperature profile was 

used: 30 min at 50 °C (reverse transcription), 14 min at 95 °C (inactivation reverse 

transcriptase/activation Taq polymerase), followed by 40 cycles of 30 sec at 95 °C 

(denaturation), 30 sec at 57 °C (annealing) and 60 sec at 62 °C (elongation). Identical 

temperature profiles were used for all real-time RT-PCR runs and fluorescence values were 

recorded during the annealing steps. 

 

2.10. Animal experiment 

Ten Simmentaler breed calves, aged between 6 and 8 month, were shown to be free of 

BVDV-antibodies and -antigen. Calves were randomly allocated into two groups of five 

animals each, and inoculated with the recombinant v890FL and the parental 890WT virus, 

respectively. Inoculation was done intranasally with 2×10
6 

 TCID50 in a volume of 2 ml (1ml 

per nostril). To confirm infectious titres, both viral suspensions were backtitrated on KOP-R 

cells after inoculation. The animals were housed under identical conditions in two different 

units and were monitored daily for clinical signs and rectal body temperatures. Blood samples 
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were collected to monitor viremia as well as to evaluate leukocyte and thrombocytes counts. 

Nasal swabs were investigated for virus shedding throughout the experiment.  

 

3. Results 

3.1. Construction and characterisation of the infectious BVDV-2 cDNA clone p890FL 

The full-length clone p890FL was constituted from four PCR fragments assembled in the low 

copy vector pA (Meyers et al., 1996b). At the 5´end, the sequence of the T7 promoter was 

added to enable in vitro transcription and at the 3´end a SmaI restriction site was introduced 

for plasmid linearisation (figure 1). First sequence analyses revealed introduction of several 

mutations into the full-length clone. Two of the mutations, a frame shift due to the deletion of 

two nucleotides in the E2 encoding region, and a substitution of one aa at the 3´end of the 

region encoding for the NS5a protein were eliminated by using site directed mutagenesis. 

Subsequently, the p890FL cDNA clone was again completely sequenced, resulting in 

detection of a bacterial insertion at aa position 648, accompanied by duplication of the aa 

sequence GLR. Sequence analysis of the bacterial insertion showed similarities to the 

bacterial IS10 element, which can be found in E. coli K-12 strain (data not shown). 

Thereupon, we analysed the sequence of the RNA re-isolated from cells infected with 

v890FL. The sequences of the bacterial insertion into the cDNA clone p890FL were not 

present in the viral RNA of v890FL. As a consequence, we used the E. coli strain MDS42 

(Pósfai et al., 2006) instead of E. coli strain DH10B for transformation of the new plasmid 

constructs, due to the engineered genome of E. coli strain MDS42 without any sequences 

encoding mobile bacterial genetic elements.  

In order to generate infectious virus progeny, in vitro-transcribed RNA of p890FL was 

transfected into KOP-R cells. 72 h p.t., RNA replication could be detected in nearly 100 % of 

the cells by IF staining using NS3 specific mabs (figure 3). By passaging the transfection 

supernatant, infectious virus v890FL could be recovered. A stock of the second passage was 
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used for in vitro and in vivo characterisation. The in vitro growth analyses indicated a very 

similar growth of the recombinant virus v890FL compared to parental virus 890WT, with 

only slightly reduced final virus titres (figure 4). In order to analyse RNA replication levels, 

we performed real-time RT-PCR analyses, which showed similar RNA replication levels of 

v890FL and v890WT. In supernatants of infected cells, 10
8
 to 10

9
 RNA copies per ml were 

detected, and intracellular levels of viral RNA revealed around 10
2
 RNA copies per cell (table 

3).  

Furthermore, the animal experiment with v890FL and v890WT demonstrated an attenuated 

phenotype of recombinant v890FL if compared to wild type virus 890WT. However, both 

animal groups showed clinical signs of a severe BVDV infection with a biphasic elevated 

body temperature curve, with a mean maximum body temperatures of nearly 41 °C for the 

wild type infected group and 39.7 °C for the group infected with the recombinant virus 

v890FL (figure 5). Interestingly, in both groups no thrombocytopenia could be observed. A 

marked leukocytopenia was present in both groups, but at lower levels for the v890FL-

infected animals (figure 6). For each animal, viremia could be detected at days 3 to 7 for the 

group infected with v890FL, and at days 2 to 10 for the group infected with the parental virus 

v890WT (figure 7). In addition, nasal virus shedding could be observed from day 2 to 10 p.i. 

(data not shown).  

 

3.2. Construction and characterisation of BVDV-2 deletion mutant p890 N
pro 

An N
pro

 autoprotease deletion mutant, p890 N
pro

 (figure 2), was constructed on basis of the 

infectious BVDV-2 clone p890FL by partial deletion of the genomic sequence encoding most 

of N
pro

 (the first 36 nt overlapping with the BVDV IRES were retained). In order to detect 

viral replication, in vitro-transcribed RNA of p890 N
pro

 was transfected into interferon 

negative MDBK cells. At 72 h p.t., expression of NS3 could be detected by IF staining in 

nearly 100 % of the transfected cells (figure 3). Transfection supernatant was passaged and 
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infectious virus progeny v890 N
pro 

could be recovered. Growth kinetics on interferon 

competent KOP-R cells showed approximately 100-fold reduced growth of the deletion 

mutant (figure 8). Nevertheless, real-time RT-PCR analyses indicated a similar RNA 

replication level of v890 N
pro 

in comparison to v890FL and v890WT (table 3).   

 

3.3. Construction, trans-complementation and characterisation of BVDV-2 replicon p890 C 

Replicon p890 C is characterised by a partial deletion of 43 aa within the encoding region for 

the capsid protein (figure 2). 48 h post transfection of in vitro-transcribed RNA into non-

complementing KOP-R cells, autonomous replication of viral proteins could be detected in 

nearly 100 % of the transfected cells by IF staining (figure 3), but no infectious virus progeny 

could be recovered. For packaging of the replicon p890 C, we established the new helper cell 

line WT-R2 derived from the European bison. Like the first available helper cell line PT805 

(Reimann et al., 2003), WT-R2 cells stably express a synthetic ORF encoding the BVDV-1 

structural genes C-E
rns

-E1-E2. For trans-complementation, in vitro-transcribed RNA of the 

replicon p890 C was transfected into WT-R2 cells, and 72 h p.t. autonomous virus 

replication was detected by IF staining (figure 9). Infectious pseudovirions v890 C_trans 

could be recovered from transfection supernatants and were serially passaged on WT-R2 cells 

(figure 9). However, no passaging was possible on non-complementing KOP-R cells, and no 

replication competent revertants or pseudo-revertants could be detected. 

 

4. Discussion 

Several pestiviral infectious cDNA clones, including CSFV (Meyer et al., 2003; Ruggli et al., 

1996) and BVDV-1 (Mendez et al., 1998; Meyers et al., 1996; Vassilev et al., 1997), have 

been described. However, only a single infectious BVDV-2 cDNA clone (strain NY´93C) is 

published (Meyer et al., 2002). In addition, an infectious transcript of the BVDV-2 strain 890 
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was established by Dehan et al. (2005). However, the construction of an infectious cDNA 

clone of strain 890 failed. This study describes construction and characterisation of the first 

infectious full-length cDNA clone of BVDV-2 strain 890 (p890FL) and its application for the 

development of further mutants (p890∆N
pro

 and p890∆C). Although PCR amplification of the 

whole genome represents a simplification of the cloning strategy, and has been described for 

pestiviruses (Rasmussen et al., 2008), the generation of a full-length PCR fragment for the 

strain 890 failed. Therefore, p890FL was constructed on the basis of four PCR fragments, 

which were assembled into the vector pA (Meyers et al., 1996). In vitro-transcribed RNA of 

p890FL was transfected into bovine cells, and replication could be demonstrated in nearly 100 

% of the cells. Subsequently, infectious virus progeny could be recovered (v890FL) from 

supernatants of transfected cells (figure 3). In vitro-characterisation of v890FL showed 

similar growth kinetics with only slightly reduced virus titres, and a similar RNA replication 

level compared to the parental virus 890WT (figure 4). In infected animals however, we 

observed an attenuated phenotype of v890FL compared to v890WT with lower mean body 

temperatures, leukocytopenia at a lower levels and a shorter viremia (figure 5, 6 and 7). 

Attenuation of RNA-viruses recovered from cDNA clones reflects their genetic variability, 

and has been also described for BVDV-2 before (Dehan et al., 2005; Meyer et al., 2002). Up 

to now, the reason for in vivo attenuation of v890FL is not definitely resolved. However, there 

are some amino acid substitutions in the full-length ORF of p890FL which could possibly 

account for the in vivo attenuation: two in the E
rns

, one in the E2, and one in the NS5a 

encoding sequences. One of the E
rns

 point mutations is located at the C-terminus, and is 

identical to a mutation in an infectious transcript of BVDV-2 890 described by Dehan et al. 

(2005), which also showed an attenuated phenotype. The second aa substitution could be 

found in the middle part of E
rns

 near the RNase motif. RNase activity is important for 

virulence and pathogenicity of BVDV (Magkouras et al., 2008; Meyer et al., 2002; Meyers et 

al., 2007), and therefore further studies will predominantly focus on the E
rns

 mutations. In 
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contrast, the aa substitution within E2 and NS5a are not located in previously defined 

functional regions (Johnson et al., 2001; Reed et al., 1998; Sapay et al., 2006).  

Furthermore, the cDNA clone p890FL was used for the construction of the deletion mutant 

p890∆N
pro

 by partial deletion of the genomic sequence encoding a predominant part of N
pro

. 

In contrast to CSFV and HCV, the extension of the IRES into the ORF of BVDV is not 

defined in detail. In order to ensure full activity of the IRES, the first 12 codons were retained. 

However, the minimum coding region essential for full efficacy of the IRES region is still 

discussed. Recent reports describe for BVDV-1 the preservation of nine to 25 codons 

downstream of the initial start codon to ensure full IRES activity (Moes and Wirth, 2007), and 

for BVDV-2 Meyers et al. (2007) reported four residual codons as sufficient for acceptable 

growth in vitro. Furthermore, alignment of BVDV-1 and BVDV-2 protein sequences, resulted 

in 13 out of the first 16 codons which are conserved in the BVDV polyprotein (Moes and 

Wirth, 2007). For CSFV a similar conservation scheme is described (Moers and Wirth 2007). 

17 codons of the N-terminus are required for full activity of the CSFV-IRES (Fletcher et al., 

2002). However, it has to be mentioned that preservation of the first 12 codons of the N
pro

-

gene of BVDV-2 strain 890 were sufficient to maintain viral replication, but also resulted in a 

capsid protein with an amino-terminal extension. The deletion mutant p890∆N
pro 

was able to 

replicate in vitro, and from supernatants of transfected interferon negative MDBK cells 

infectious virus progeny v890∆N
pro

 could be recovered. The v890∆N
pro

 virus titres detected in 

MBDK cells were comparable to the titres of v890FL detected in KOP-R cells (data not 

shown), indicating that there is no marked influence of the amino-terminal extension of the 

capsid protein on viral viability and growth in cell culture. Comparison of the in vitro growth 

kinetics of v890∆N
pro

, v890FL and v890WT on interferon-competent KOP-R cells revealed 

an approximately 100-fold reduced growth of the deletion mutant v890∆N
pro

 due to the loss of 

N
pro

 as an interferon antagonist (Gil et al., 2006). However, our results are in contrast to the 

non-reduced in vitro growth of a BVDV-2 N
pro

 deletion mutant described by Meyers et al. 
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(2007). Furthermore, N
pro

 deletion mutants are useful candidates for efficient modified live 

vaccines against BVDV-1 and BVDV-2 with the potency to induce sterile immunity without 

the risk of establishing persistent infections (P. König unpublished data; Meyers et al., 2007; 

Zemke et al., 2008). 

In addition, the BVDV-2 replicon p890∆C, with a partial deletion of the genomic region 

encoding the capsid protein, was constructed. The N-terminal 32 aa and the 27 C-terminal aa 

of the capsid protein, which are essential for signalase recognition, translocation of the 

envelope proteins into the ER, and further processing of the E
rns

-E1-E2 polyprotein 

(Rümenapf et al., 1991) were retained. In vitro-transcribed RNA of p890∆C was able to 

replicate autonomously in non-complementing bovine cells, since the structural proteins are 

not essential for pestiviral RNA replication (Behrens et al., 1998). From supernatants of 

transfected non-complementing bovine cells no infectious virus progeny could be recovered. 

However, infectious virus could be generated by packaging the defective genomes by using a 

helper virus (Kupfermann et al., 1996) or a helper cell line (Reimann et al., 2003). For trans-

complementation and packaging of the replicon p890∆C we constructed the new helper cell 

line WT-R2 essentially as described for the helper cells PT805 (Reimann et al., 2003). The 

replicon p890∆C was efficiently trans-complemented and packaged into pseudovirions by 

using WT-R2 cells. Recombination or reversion during generation of the pseudovirions was 

not observed, and in contrast to experiments with BVDV-1 C replicons and PT805 cells 

(Reimann et al., 2003, 2007), the recombinant WT-R2 cells even allowed the passaging of 

BVDV-2 C pseudovirions. 

In conclusion, the established infectious full-length cDNA clone of BVDV-2 strain 890 could 

enable new insights in viral biology, especially studies of the 228 nt insertion into the NS2 

encoding region of the ncp strain 890, and pathogenesis of BVDV-2. Furthermore, the 

generated viral mutants can be the basis for the generation of novel safe and efficacious 

BVDV-2 vaccines. 
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Tables 

Table 1: nucleotide sequence of PCR primers used for plasmid constructions 

Primer Sequence (5´to 3´) Genomic region
 a
 

F1 TTAACCCGGGTAATACGACTCACTATAGTATAC

GAGATTAGCTAAAGT 

1-21 (+) 

F1_r ATATCCCGGGGCCTATTATCTTGGTGTTTCTTGG 1950-1982 (-) 

F2 ATATCCCGGGAAGTTTGACACCAACGCCGAAG

ATGGC 

1976-2007 (+) 

F2_r ATATCCCGGGACGCGTTGGCACGAACACGAGC

ATGTTGCC  

6569-6598 (-) 

F3 CGATACGCGTAACATGGCAGTAGAAACAGC 6593-6618 (+) 

F3_r GTTCTTACTCTCTAGATAACCGGCTGCTCCC 10804-10834 (-) 

F4 GGGAGCAGCCGGTTATCTAGAGAGTAAGAAC 10804-10834 (+) 

F4_r ATATGAATTCCCCGGGGGGCCGTTAGAGGCATC

CTCTAGTC 

12486-12512 (-) 

890_Npro ATATGCGGCCGCATCCGATGAAGGGAGTAAGG

GTGCT 

890-913 (+) 

890_Npro_r ATATTACGTATGCGGCCGCTGTTTTGTATAAAA

GTTCATTTGAAAACAACTCCATGTGCC 

381-421 (-) 

890_Capsid GGATGCGGCCGCACCTGAATCAAGAAAGAAAT

TGG 

1115-1136(+) 

890_Capsid_r ATATTACGTATGCGGCCGCTTCTGACTCTTTTGG

GGC 

968-985 (-) 

890_SalI GGACGTCGACAAACTTTGAATTGG 37-60 (+) 

890_SnaBI_r CCACAGTACGTATTTACCACCCAAC 3508-3532 (-) 

a
 genomic region of BVDV-2 strain 890 (GenBank accession no. U18059), symbols in 

brackets show the polarity  
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Table 2: PCR primers used for site directed mutagenesis of plasmid constructs 

Primer Sequence (5´-3´)
a
 Genomic region

b
 

MutI AGAACTAGTGGATCCCGCGCGTAATACGACTCAC

TA 

- (+) 

MutI_r TAGTGAGTCGTATTACGCGCGGGATCCACTAGTTC

T 

- (-) 

MutII ACCAAGATAATAGGCCCAGGAAAGTTTGACACCA

ACGCC 

1961-1999 (+) 

MutII_r GGCGTTGGTGTCAAACTTTCCTGGGCCTATTATCT

TGGT 

1961-1999 (-) 

890_ORF GCTGACACACAGTGATATTGAGGTTGTGGTC 3619-3649 (+) 

890_ORF_r GACCACAACCTCAATATCACTGTGTGTCAGC 3619-3649 (-) 

890_NS5 GGCTGACTTATATCACCTAATTGGCAGTGTTGATA

GTATAAAAAG 

10024-10068 (+) 

890_NS5_r CTTTTTATACTATCAACACTGCCAATTAGGTGATA

TAAGTCAGCC 

10024-10068 (-) 

a
 mutated nucleotides are underlined and in bold 

b
 genomic region of BVDV-2 strain 890 (GenBank accession no. U18059), symbols in 

brackets show the polarity 
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Table 3: Results of the real-time RT-PCR analyses of the recombinant viruses v890 N
pro

, 

v890FL, and the wild type virus v890WT. KOP-R cells were infected at an MOI of 1. 48 h 

p.i. supernatants and cells were harvest, respectively.  

 

Virus 
Supernatants  

(RNA copies/ml) 

Cells  

(RNA copies/cell) 

  v890∆N
pro

 10
8.02

 10
1.79

 

  v890FL 10
8.27

 10
2.08

 

  v890WT 10
8.80

 10
1.79
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Figures 

Figure 1: Schematic representation of the construction of the infectious cDNA clone p890FL. 

The viral genome was amplified in 4 PCR fragments with 4 separate PCR reactions. The PCR 

products were cloned into the vector pA (G. Meyers et al., 1996b). At the 5´NTR the 

sequence of the T7 promoter was added to enable in vitro transcription. For plasmid 

linearisation a SmaI restriction site was introduced at the 3´NTR. Mutagenesis steps during 

construction of the cDNA clone are indicated by stars. Filled boxes represent the BVDV 

structural protein region. Lines at the left and the right ends indicate non-translated regions. 

N
pro

, autoprotease; C, capsid protein; E
rns

, E1, E2, envelope proteins; p7, non-structural 

protein; NS2 to NS5, non-stuctural proteins; 3'NTR and 5'NTR, non-coding regions. The size-

scale is given in kb. 

 

Figure 2: Schematic depiction of the deletion mutants p890 N
pro 

and p890 C based on the 

infectious cDNA clone p890FL. Filled boxes represent the regions encoding the BVDV 

structural proteins. Horizontal dotted lines show the deleted regions and numbers indicate the 

nucleotide (nt) or amino acid (aa) position in the BVDV full-length RNA. Lines at the left and 

the right ends indicate non-translated regions. N
pro

, autoprotease; C, capsid protein; E
rns

, E1, 

E2, envelope proteins; p7, non-structural protein; NS2 to NS5, non-structural proteins; 3'NTR 

and 5'NTR, non-coding regions. The size-scale is given in kb. 

 

Figure 3: IF analysis of bovine cells transfected with in vitro transcribed RNA of p890FL, 

p890 N
pro

 or p890 C. In addition, supernatants of transfected cells were passaged on bovine 

cells. At 72 h p.t. and 72 h p.i. NS3 expression was analyzed by IF staining using the mab WB 

103/105. Untransfected/uninfected bovine cells were used as controls. A) p890FL RNA 

transfected into KOP-R cells and passage of the supernatants on KOP-R cells. B) p890 N
pro
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RNA transfected into interferon-incompetent MDBK cells and passage of the supernatants. C) 

RNA of p890 C transfected into KOP-R cells and passage of the supernatants on KOP-R 

cells.  

 

Figure 4: Growth kinetics of the recombinant virus v890FL (broken line) and the parental 

virus v890WT (solid line). KOP-R cells were infected at an MOI of 1. Supernatants were 

harvested at the indicated time points. After freezing and thawing, virus titres (TCID50/ml) 

were determined by titration on KOP-R cells. Standard deviations are shown as error bars. 

 

Figure 5: Mean body temperatures of calves (n=5) after intranasal infection with the 

recombinant v890FL (broken lines) and the wild type virus v890WT (solid lines), 

respectively. Standard deviations are shown as error bars. 

 

Figure 6: Mean leukocyte counts of calves (n=5) following intranasal infection with the 

recombinant v890FL (broken lines) and the wild type virus v890WT (solid lines), 

respectively. The initial values were set to 100%. Standard deviations are shown as error bars.  

 

Figure 7: Course of viremia in calves infected with the recombinant v890FL (dark grey bars) 

and the wild type virus v890WT (black bars), respectively. Viremia was determined by co-

culture of purified leukocytes on highly susceptible KOP-R cells (4 replicates per 

animal/day). Virus replication was detected by immunofluorescence staining. Mean values are 

calculated from positive replicates of 5 animals each. 

 

Figure 8: Growth kinetics of the deletion mutant v890 N
pro

 (dotted line) compared with the 

recombinant virus v890FL (broken line) and the parental virus v890WT (solid line). KOP-R 
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cells were infected with the respective viruses at an MOI of 1. Supernatants were harvested at 

the indicated time points. After a freezing and thawing procedure, virus titres (TCID50/ml) 

were determined by titration on KOP-R cells. Standard deviations are shown as error bars. 

 

Figure 9: Trans-complementation studies with replicon p890 C and WT-R2 helper cells. A) 

The WT-R2 cell line stably expresses the synthetic structural genes C-E2 of BVDV-1, and E2 

expression is shown by IF staining using an E2-mab mix (CA 1/2 and CA34/1/2). NS3 as a 

marker for viral replication could not be detected by IF staining using the mab WB 103/105 in 

non-transfected cells. B) Transfection of in vitro-transcribed RNA of p890 C into WT-R2 

cells. 72 h p.t. NS3 expression could be detected by IF staining using the mab WB 103/105. 

C) Pseudovirions v890 C_trans could be recovered from supernatants of transfected WT-R2 

cells and were further passaged on WT-R2 cells. Replication of the pseudovirions was 

detected by IF staining: 72 h p.i. NS3 expression could be detected. 
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Abstract 

Protection against Bovine viral diarrhea virus (BVDV) type 2 infection of commercially 

available vaccines is often limited due to marked genetic and antigenic differences between 

BVDV type 1 (BVDV-1) and 2 (BVDV-2). Therefore, the immunogenicity of selected 

BVDV-1 and -2 mutants derived from infectious full-length cDNA clones and their use as 

modified-live vaccine candidates against challenge infection with a virulent heterologous 

BVDV-2 field isolate were investigated. Deletion mutants of BVDV-1 and BVDV-2 lacking a 

part of the N
pro

 gene (BVDV-1ΔN
pro

 / BVDV-2ΔN
pro

) were used as well as a packaged 

replicon with a deletion in the structural core protein encoding region (BVDV-2ΔC-

pseudovirions). The 25 calves used in this vaccination/challenge trial were allocated in five 

groups (n=5/group). One group received BVDV-1ΔN
pro

 (1 shot), one group BVDV-2ΔN
pro

 (1 

shot), one group received both, BVDV-1ΔN
pro

 and BVDV-2ΔN
pro

 (1 shot), and one group 

was immunised with the BVDV-2ΔC pseudovirions (2 shots). The fifth group served as non-

vaccinated control group. All groups were challenged intranasally with the BVDV-2 strain 

HI916 and monitored for signs of clinical disease, virus shedding and viremia. All tested 

BVDV vaccine candidates markedly reduced the outcome of the heterologous virulent 

BVDV-2 challenge infection showing graduated protective effects. The BVDV-2ΔN
pro

 mutant 

was able to induce complete protection and a “sterile immunity” upon challenge. Thus it 

represents a promising candidate for an efficacious future live vaccine. 

 

 

Keywords:  Bovine viral diarrhea virus type 2; pestivirus; vaccination; infectious pestivirus 

clone; pseudovirions; modified-live vaccine; 
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Introduction 

The two species of Bovine viral diarrhea virus, BVDV-1 and BVDV-2, are grouped in the 

genus Pestivirus within the family of Flaviviridae (Mayo, 2002) together with other important 

animal pathogens such as Classical swine fever virus (CSFV) and Border disease virus 

(BDV). The genome of these enveloped viruses consists of a positive-sense single stranded 

RNA of about 12.3 kb in size. Analysis revealed at least eleven genetic groups within 

BVDV-1 (BVDV-1 a-k; Vilcek et al., 2001) and two within BVDV-2 (BVDV-2 a-b; Becher 

et al., 1999a). Furthermore, a cytopathogenic (cp) and a non-cytopathogenic (ncp) biotype can 

be differentiated in both species with respect to their effects on cells in vitro.  

BVD is spread worldwide and goes along with high economic losses in the cattle industry 

(Brownlie et al., 1984; Houe, 1995). Most postnatal infections with both BVDV species take a 

subclinical course or cause only mild disease which can go along with fever, respiratory 

symptoms and reproductive disorders such as reduced fertility, abortions, congenital defects 

or stillbirth. In contrast to the infection of immunocompetent animals, which normally leads 

to an immune response and as a result to elimination of the virus, infection of pregnant 

animals in the first trimester with an ncp strain of one of both BVDV species may lead to 

transplacental infection of the fetus and to the development and birth of persistently infected 

calves (PIs) (Moennig and Liess, 1995).  

In the 1980ies, a new acute severe form of BVD was observed in North America (Carman et 

al., 1998; Corapi et al., 1989, 1990). The course of disease was characterized by a 

hemorrhagic syndrome, associated with pronounced thrombocytopenia and a significant 

lethality rate (Pellerin et al., 1994; Ridpath et al., 1994). Subsequently, the causative strains 

were found to be genetic distinct from previous BVDV isolates and were typed as BVDV-2 

(Pellerin et al., 1994; Ridpath et al., 1994; Harpin et al., 1995). Up to now, the prevalence of 

BVDV-2 increased especially in North America (up to 50 % of BVDV isolates; Ridpath, 
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2005), but was also described in Europe (Wolfmeyer et al., 1997; Letellier et al., 1999, 

Falcone et al., 1999) and other countries (Canal et al., 1998; Nagai et al., 1998). 

Different approaches are adopted for disease eradication and various comprehensive control 

programs tackling the reduction of losses in different countries are pursued. In this context, 

especially in countries with a high prevalence, high cattle density and very active and quick 

trading, BVDV vaccination is a valuable tool of BVDV control. However, after vaccination 

with commercially available BVDV-1 vaccines, protection against BVDV-2 infection is often 

limited due to a marked genetic and antigenic heterogeneity between BVDV-1 and BVDV-2 

(Becher et al., 1999a; Beer et al., 2000). In some cases clinical disease can be prevented, 

while viremia still occurs. But prevention of viremia is paramount for circumventing trans-

placental infection of the fetus and thus emergence of PI calves. Taking the heterogeneity and 

the prevalence data into account, the demand for vaccines that provide a reliable prophylaxis 

for both, BVDV-1 and BVDV-2, is strengthened (Beer et al., 2000; Fulton et al., 2003). In 

current vaccination programs modified-live vaccines are used as well as inactivated ones, but 

there are concerns about their safety and/or efficacy (Becher et al., 2001; Bolin and Ridpath, 

1995). Modified-live vaccines are considered to be efficacious as immunogenic proteins are 

amplified through viral replication, and offer a long lasting protection, but their safety is 

questionable especially when being used during pregnancy (Moennig and Liess, 1995) or in 

animals having contact to pregnant ones. The available inactivated vaccines are safe, but they 

have disadvantages concerning fetal protection, duration of protection and production costs, 

as high amounts of antigen and formulation with adjuvants are required (Beer et al., 2000; 

Beer and Wolf, 2003; Bolin and Ridpath, 1995).  

New developments aim at combining the immunogenicity of live attenuated vaccines with the 

safety of inactivated ones by the use of genetically engineered constructs like vector vaccines, 

DNA vaccines, subunit vaccines, and marker or deletion mutants (Bruschke et al., 1997; 

Reimann et al., 2007). Vaccination with pseudovirions e.g. already proved to be successful for 
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BVDV-1. These pseudovirions are infectious virus particles derived from engineered mutants 

with a deletion in the structural protein region (replicons), and are produced through in trans-

complementation by a helper cell line. They are safe through their inability to assemble new 

infectious virions when replicating in non-complementing cells so they are “defective in 

second cycle” (DISC; Reimann et al., 2007; Widjojoatmodjo et al., 2000). Another approach 

aims at attenuation through the deletion of the non-structural protein N
pro

, which is involved 

in the suppression of the host’s innate immune system. Mutants were tested safe and 

efficacious for BVDV-1 (Meyers et al., 2007; P. König, unpublished data) and CSFV 

(Tratschin et al., 1998; Mayer et al., 2003). Those mutants can be propagated on conventional 

cell lines as the autoprotease N
pro

 is dispensable for viral growth in vitro.  

In this study, selected genetically engineered BVDV deletion mutants derived from infectious 

full-length cDNA clones were characterized in vivo in a vaccination/challenge trial. A BVDV-

1 and a BVDV-2 deletion mutant, each lacking a major part of the N
pro

 gene (BVDV-1ΔN
pro

 / 

BVDV-2ΔN
pro

), as well as pseudovirions derived from a BVDV-2 core protein deletion 

mutant (replicon) were tested as modified live candidates against a heterologous, virulent 

BVDV-2 isolate for challenge infection.  

 

Materials and Methods 

 

Virus strains, deletion mutants and cells  

The cytopathogenic BVDV-1b strain CP7 was isolated from a case of fatal Mucosal Disease 

as described previously (Corapi et al., 1988). The CP7 cDNA full-length clone is based on the 

plasmid pA/BVDV and was kindly provided by G. Meyers (FLI Tübingen; Meyers et al., 

1996). The CP7 N
pro

 deletion mutant (BVDV-1ΔN
pro

) is lacking 156 aminoacids (aa) of the 

non-structural N
pro

 gene (nucleotide (nt) 422-889; Reimann et al., unpublished data).  
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The BVDV-2 strain 890 (Bolin and Ridpath, 1992) is an ncp strain belonging to the subgroup 

BVDV-2a and was isolated in the USA from a heifer that died of acute BVDV infection. The 

890 full-length cDNA clone (p890FL) was constructed and assembled by K. Mischkale et al. 

as were the BVDV-2 mutants used in this study (Mischkale et al., 2008). For receiving 

v890FLΔN
pro

 (BVDV-2ΔN
pro

) a deletion of 156 aa was set as described above for BVDV-

1ΔN
pro

. The v890FLΔC replicon (BVDV-2ΔC) has a partial deletion of 43 aa (nt 986-1114) in 

the core protein encoding region.  

The challenge strain, ncp BVDV-2a HI916, was isolated in Germany during an acute severe 

outbreak of BVD (kindly provided by G. Wolf, LMU München; Martin et al., 2005). BVDV-

1b strain SE5508 was used in neutralisation assays as a heterologous BVDV-1 prototype 

virus. 

Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% 

BVDV free foetal bovine serum and incubated at 37°C in a humidified atmosphere containing 

5% CO2.  

A diploid bovine esophageal cell line, KOP-R (RIE244, Collection of cell lines in veterinary 

medicine, CCLV, FLI Insel Riems) that is highly susceptible to BVDV infection was used for 

virus isolation and neutralisation assays. The challenge virus stock was produced on Madin 

Darby bovine kidney (MDBK) cells (RIE261; CCLV, FLI Insel Riems). Virus stocks of the 

BVDV-1 and BVDV-2 N
pro

 deletion mutants were propagated on interferon-incompetent 

MDBK cells (kindly provided by G. Keil, FLI; RIE728; CCLV, FLI Insel Riems). Generation 

of v890ΔC_trans (BVDV-2ΔC pseudovirions) was carried out using a new wisent helper cell 

line (WT-2; P. König, unpublished data). Cells and cell culture media were routinely screened 

for the absence of BVDV and BVDV-specific antibodies (CCLV, FLI Insel Riems). In vitro 

transcribed RNA of the BVDV-2ΔC replicon was transfected by electroporation into the 

trans-complementing helper cells. Infected, resp. transfected cell cultures were freeze/thawed 

once. All virus stocks were subsequently cleared from cell debris through low speed 
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centrifugation, titrated on KOP-R cells and tested for sterility and absence of mycoplasma. All 

virus preparations were stored at -70°C until use. 

 

Animals and experimental design 

25 conventionally reared female Holstein-Frisian calves were obtained from local farms after 

being tested negative for BVDV and BHV-1 (antibodies, antigen and genome). Their age 

ranged from 6 to 14 months. For the trial, animals were allocated into 5 different groups 

(n = 5 per group) and were housed in the Biosafety Level - 3 facility of the FLI. For 

vaccination, virus stocks were diluted in cell culture medium to a final concentration of 5 x 

10
5
 tissue culture infective doses 50% (TCID50) per ml. All calves were vaccinated 

intramuscularly with 2-5 ml containing approximately 1 x 10
6
 TCID50 per animal (see values 

of the backtitrations enclosed in brackets behind the assigned mutant below). One group 

received the BVDV-2ΔN
pro

 (9.3 x 10
5
 TCID50), one the BVDV-1ΔN

pro
 (9.3 x 10

5
 TCID50), 

and one group received a mixture of both N
pro

 deletion mutants in a single application 

(BVDV-2ΔN
pro

 & BVDV-1ΔN
pro

; 1.3 x 10
6
 TCID50; approximately 6.5 x 10

5
 TCID50 of each 

mutant). An additional group was vaccinated with the BVDV-2ΔC-pseudovirions (first shot: 

1.1 x 10
6
 TCID50 / second shot: 6.3 x 10

5
 TCID50) and the animals of the fifth group served as 

non-vaccinated controls.  

Two different vaccination schemes were used: animals that received the BVDV-2ΔC-

pseudovirions were immunised twice, the shots given 25 days apart (day 0 and day 25).All 

other groups were immunised only once at day 25.   

Intranasal challenge infection with the BVDV-2 strain HI916 ensued 35 days after the last 

vaccination for all 25 animals with 2.3 x 10
6
 TCID50 in a volume of 2 ml (1ml per nostril) 

with the help of a nebulizer. All viral suspensions were backtitrated on KOP-R cells after 

inoculation to confirm infectious titres of the respective inoculum.  
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Clinical evaluation 

Body temperatures were measured daily during the whole trial. Mean values of the 

BVDV-1ΔN
pro

 group had to be calculated from four animals from day 39 on, as the behavior 

of one animal did not allow further measurement. The calves were examined for adverse 

reactions immediately after vaccination and challenge infection. Further clinical examinations 

were carried out during the sampling periods and comprised noting signs of clinical disease, 

focusing on respiratory and digestive disorders, and controlling general health status 

(depression, feed intake and behavior). Cumulative clinical scores were obtained using a 

defined scoring system, ranking signs from 0 (inconspicuous) to 4 (markedly abnormal). The 

clinical score was normalized to a cutoff line for mean group values at 2 points, above which 

we stated the score as raised. The cut-off was calculated from pre-vaccination signs and 

permanent basal symptoms like mild nasal discharge and sporadic coughing. 

 

Samples 

Nasal swabs and blood samples were taken daily over a period of 10 days after vaccination 

(after the first for the BVDV-2ΔC group) and for 14 days after challenge infection (16 days in 

the control group). Serum samples were obtained weekly throughout the course of the study. 

Specimens were subjected to virological, hematological and serological investigations. 

 

 

Hematological investigations (differential blood cell counts)  

Blood samples were taken by jugular venipuncture and collected in sterile blood collection 

tubes (Monovette) with potassium EDTA as anticoagulant (Sarstedt, Nuembrecht, Germany). 

Total white blood cell counts as well as thrombocyte counts were determined by size 

distribution analysis with an Abbott CellDyn 3700 analyzer. 
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Virus isolation  

Virus isolation was done in cell culture, inoculating monolayers of KOP-R cells with 4 

replicates per animal and specimen. After 3 to 4 days of incubation viral infection and 

replication was detected by indirect immunofluorescence staining of NS3 protein using mab 

mix WB103/105 (anti-NS3, CCpro, Germany). Binding was detected using ALEXA488 goat-

anti-mouse-IgG conjugate (Molecular Probes). Evaluation was carried out using an IX51 

fluorescence microscope (Olympus, Hamburg, Germany). Furthermore, one blind passage of 

supernatants was performed after 3 to 4 days of inoculation. 

For determination of nasal virus shedding, swab sticks containing a sterile cotton plug 

(Medical wire and equipment MW&E, Corsham, England) were used. Swabs were submerged 

in 1 ml of cell culture medium supplemented with 200 U/ml penicillin, 200 µg/ml 

streptomycin and 5 µg/ml amphotericin B (Sigma–Aldrich, Deisenhofen, Germany). Four 

replicates per sample (100 µl/replicate) were co-cultivated on KOP-R cells and analyzed as 

described above. Samples were stored at -70°C until further use.  

5mL of EDTA blood per animal and day were treated with an ammonium chloride blood 

lysisbuffer (155 mM NH4Cl, 10 mM KHCO3, 1 mM EDTA/ pH 7.4). After haemolysis and 

centrifugation at 3200 rpm, pelleted leukocytes were washed twice with phosphate buffered 

saline without Ca++/Mg++ (PBS-) and were re-suspended in 1 ml PBS-. KOP-R cell cultures 

were inoculated with 4 replicates per sample, containing approximately 3 x 10
6
 

leukocytes/100 µl each, and tested for BVDV using immunofluorescence analysis as 

described above. Purified leukocytes were stored at -70°C until further use. 

 

Serology 

Sterile blood collection tubes (Monovette) with a clot activator (Sarstedt, Nuembrecht, 

Germany) were applied for the weekly serum sampling. After centrifugation at 3000 rpm, 
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serum aliquots were stored at -20°C. For serological investigations all sera were inactivated at 

56°C for 45 minutes. 

A commercially available competitive NS3 antibody ELISA (PrioCHECK
®

 BVDV Ab) was 

used and samples were processed following the manufacturer’s instructions (Prionics AG, 

Switzerland). In order to confirm results, we additionally tested all samples with a second 

antibody ELISA, primarily detecting E2 antibodies (HerdChek® BVDV Ab, IDEXX Europe 

B.V.), according to the manufacturer’s instructions. 

Furthermore, sera from all animals were tested in a standard neutralisation assay (NA) against 

selected BVDV-1 and -2 strains (BVDV-1 SE5508, BVDV-2 890 and HI916). For all three 

virus strains, inactivated serum samples were serially diluted (log2 steps) in triplicates of 50 

µl in 96-well plates using cell culture medium. 50 µl of a virus dilution (1000 TCID50/ml) was 

added per well and the plates were incubated at 37°C. After 2 h of incubation, 100 µl of a 

KOP-R cell suspension (2 x 10
4
 cells/well) were added and the plates were incubated for 4 

days. BVDV antibody-positive and antibody-negative sera were used as test controls. The 

virus titre was confirmed by backtitrations (log10 dilutions, 8 parallels). Neutralisation, i.e. 

absence of virus infection and replication, was detected by indirect immunofluorescence (see 

above). Titres were expressed as reciprocal of the highest dilution that caused 50% 

neutralisation (log2 ND50). 

 

Sequence analysis 

Total RNA from cells transfected with the full-length RNA of the BVDV-2ΔC mutant was 

extracted with the QIAamp Viral RNA Mini kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. E2-encoding sequences were amplified using the Superscript III 

One-Step RT-PCR system (Invitrogen, Karlsruhe, Germany). After agarose gel 

electrophoresis, the E2-PCR product was further purified with the QIAex II Gel Extraction kit 

(Qiagen, Hilden, Germany). Sequencing of the E2 encoding region was carried out using the 
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Big Dye® Terminator v1.1 Cycle sequencing Kit (Applied Biosystems). Nucleotide 

sequences were read with an automatic sequencer (3130 Genetic Analyzer, Applied 

Biosystems, Foster City, USA) and analyzed using the Genetics Computer Group (GCG) 

software version 11.1 (Accelrys Inc., San Diego, USA). Custom primers were used for 

sequencing (MWG Biotech, Ebersberg, Germany). 

 

Results  

Vaccination 

Following first vaccination with the pseudovirions (day 0), the general condition of the 

animals in the BVDV-2ΔC group remained unaffected. The animals showed neither adverse 

reactions nor a temperature rise (Fig. 1) or clinical signs of disease. No leukopenia could be 

observed (data not shown). To the contrary, there was even a slight increase in mean 

leukocyte counts up to a maximum of 147 % on day 7. Neither shedding via nasal excretions 

nor pseudovirion viremia was detectable by virus isolation in cell culture (Table 1 and Table 

2). Therefore, the group was not sampled following second vaccination. In the NS3-specific 

blocking ELISA, the pseudovirion-immunised animals developed only a marginal rise in the 

inhibition levels and remained negative until booster vaccination (Fig. 2). Neutralising 

antibody titres against all three strains tested were not detectable after the first vaccination 

(Fig. 3).  

After vaccination of all groups at day 25 (2
nd

 immunisation of the BVDV-2ΔC group), all 

animals stayed within the physiological temperature range (Fig. 1). One animal from the 

BVDV-1ΔN
pro

 and one out of the BVDV-2ΔN
pro

 group showed a small elevation in 

temperature for one (day 28) to two days (day 31, day 32) respectively, but did not develop 

fever. The BVDV-1ΔN
pro

 group showed some clinical reaction post vaccination (p. vacc.). 

They had slightly elevated mean clinical score values for 2 days (day 28 and day 35) due to 

mild respiratory symptoms (data not shown). None of the other groups had raised scores in 
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this period of monitoring. Calves in the groups which received the different N
pro

-mutants 

had a short and monophasic decline in their leukocyte counts, which were reduced up to 28% 

(mean group value BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

, day 29) p. vacc. (Fig. 4). In both, the 

BVDV-1ΔN
pro

 and the BVDV-2ΔN
pro

 group, up to 20% reduction of mean values was 

observed (days 29-30 and days 30-32). Thrombocyte counts also slightly decreased in all 

three sampled groups paralleling leukocyte counts (data not shown).  

Vaccine virus was detected by isolation on cell culture in the nasal swab sample from one 

BVDV-2ΔN
pro

-immunised animal on one single day (day 32, 1 replicate after blind passage; 

Table 1). No nasal virus shedding could be observed in the other groups. In addition, animals 

from all three N
pro

-groups groups had a very limited vaccine virus viremia (Table 2). Virus 

could be isolated from purified leukocytes from at least two animals per group for at least one 

day between day 29 and day 33 of the trial (BVDV-1ΔN
pro

: 3 animals, 2 days; BVDV-1ΔN
pro

 

& BVDV-2ΔN
pro

: 3 animals, 1 to 2 days; BVDV-2ΔN
pro

: 2 animals, 3 to  4 days). All animals 

vaccinated on day 25 with the N
pro

 deletion mutants were scored positive in a NS3 blocking 

ELISA (Fig. 2) from day 14 after vaccination. As mentioned above, animals in the 

BVDV-2ΔC group stayed negative after first immunisation but showed a clear boost in 

antibody development reacting ELISA positive as soon as 7 days after their second 

vaccination. Mean blocking values between 91 % and 95 % were reached in the different 

vaccination groups prior to challenge infection. Slightly lower mean inhibition values (81 %) 

were found in the BVDV-2ΔN
pro

 group (Fig. 2). All control animals stayed seronegative 

during the vaccination period. Neutralising antibody titres (Fig. 3) were found in all 

immunised groups as soon as 14 days after vaccination except for the BVDV-2ΔC-

pseudovirion group. Testing sera against the heterologous BVDV-1 strain SE5508, highest 

pre-challenge titres with a mean value of up to 891 ND50 were reached in the groups receiving 

BVDV-1ΔN
pro

 (alone or in the mixed application). All other groups stayed basal in their titres 

(mean values ≤ 2 ND50) prior to challenge (Fig. 3). Using the BVDV -2 challenge strain 
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HI916 in a neutralisation assay, slightly different results were obtained. Highest titres after 

immunisation were reached in the group receiving the BVDV-2ΔN
pro

 mutant (mean value 97 

ND50) followed by the BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

 and the BVDV-1ΔN
pro

 group (28 

ND50/11 ND50). The group vaccinated with the pseudovirion preparation (BVDV-2ΔC), 

which was clearly positive in the ELISA by day 7 after booster vaccination, however stayed at 

basal to non detectable neutralising titre levels (< 2 ND50) until challenge infection. Similar 

values and trends were seen against BVDV-2 strain 890. Mean titres of 79 ND50 were found 

in the BVDV-2ΔN
pro

 vaccinated animals at the day of challenge. The graduation between the 

groups was similar to the one obtained against BVDV-1 HI916 (BVDV-1ΔN
pro

 & BVDV-

2ΔN
pro

 18 ND50; BVDV-1ΔN
pro

 11 ND50). In the BVDV-2ΔC group, neutralising antibodies 

ranged from very low to undetectable (mean values ≤ 2 ND50) even against the parental 

BVDV-2 890 strain. 

 

 

 

Challenge infection 

After challenge infection at day 60 of the trial, all control animals showed typical and clear 

signs of clinical disease. They had a biphasic rise in their body temperatures, a slight one at 

day 3, and a pronounced one at days 8 and 9 p. chall. with maximum mean group values of up 

to 41°C (Fig. 1). Simultaneously, a marked rise in clinical scores could be found peaking at 

days 8 to 10 (data not shown). Besides fever, all calves had marked respiratory symptoms 

(coughing and mucopurulent nasal discharge), depression with reduced appetite, and 2 

animals showed watery diarrhea for 2 to 3 days. In contrast, clinical effects of the challenge 

infection were clearly reduced - or even absent - in the vaccinated groups. Vaccinated animals 

had an elevation in body temperature at day 7 p. chall. to different degrees (Fig. 1). Highest 

mean values were reached in the BVDV-1ΔN
pro

 (40°C) and in the BVDV-1ΔN
pro

 & BVDV-
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2ΔN
pro

 (39.8°C) groups. The BVDV-2ΔC group stayed in the physiological temperature 

range, peaking at 39.4°C. Temperature reaction went along with moderated respiratory 

symptoms in the BVDV-1ΔN
pro

 group (data not shown). The only animals that stayed 

completely unaffected regarding their body temperature and clinical signs were those 

vaccinated with BVDV-2ΔN
pro

.  

After challenge infection, all control animals developed a severe leukopenia (Fig. 4). They 

had a bi- to triphasic decrease (days 3, 7 and 13 p. chall.) in leukocyte counts with maximum 

levels of 48 % reduction at day 7 after challenge. The vaccinated animals showed no or only a 

monophasic decline of the leukocyte numbers. A maximum decrease of about 12 % in the 

BVDV-1ΔN
pro

 and the BVDV-2ΔC group was found at day 4. In addition, those animals 

quickly recovered to pre-infection counts (day 7 p. chall.). The group that received the mixed 

application of N
pro

 mutants (BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

) had a mean drop of 20 % at 

day 5 p. chall. and of 24 % at day 10 p. chall., and these reduced leukocyte counts persisted 

till the end of the trial (day 89/day28 p.chall.) with a mean reduction of 20 % (Fig. 4). BVDV-

2ΔN
pro

 vaccinated animals showed no decrease in leukocyte blood counts after challenge 

infection. Thrombocyte counts were not as heavily affected by BVDV-2 infection as 

expected. The control animals had a mean reduction to a maximum of 35 % at day 3 after test 

infection. All other groups showed no or only a monophasic less marked decrease (data not 

shown). No clinical effects like bloody diarrhoea, petechia or hematomas on injection/injury 

sites, which were described for the challenge virus strain, were observed. Thereafter counts 

notably increased in the controls (to mean values of 195 %), the BVDV-1ΔN
pro

 group (175 

%) and slightly in the BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

 one (125 %) corresponding to severity 

of infection and disease (data not shown). 

Performing virus isolation, we found a long and pronounced challenge virus viremia in the 

control animals for up to 11 days (day 62 – day 73; Table 2) while there was a clear reduction 

in duration (day 63 – day 68) and amount in all vaccinated groups (BVDV-2ΔC: 4 animals, 1 
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day; BVDV-1ΔN
pro

: all animals, 1 to 5 days; BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

: 2 animals, 1 to 

3 days). In contrast, no challenge virus could be isolated from the leukocytes of the 

BVDV-2ΔN
pro

 group.  

Furthermore, challenge virus was detectable in the nasal swab samples of all control animals 

from day 61 till day 71 (Table 1). Duration (day 62 – day 68) and levels of nasal virus 

shedding were again markedly reduced in the vaccinated animals (BVDV-2ΔC: all animals, 1 

to 4 days; BVDV-1ΔN
pro

: 4 animals, 1 to 3 days; BVDV-1ΔN
pro

 & BVDV-2ΔN
pro

: 2 animals, 

1 to 2 days). No challenge virus could be recovered from the nasal swab samples of the 

BVDV-2ΔN
pro

-vaccinated animals.   

From day 14 p. chall., all control animals scored positive in the NS3 blocking ELISA, while 

NS3 antibodies in all other groups were slightly boostered. Mean blocking values of 100 % 

were reached in the five groups at day 89 (Fig. 2). Infection with BVDV-2 HI916 also 

induced a boost in neutralising antibodies titres in the immunised groups detected by 

neutralisation assays peaking at day 14 to day 28 p. chall. (Fig. 3). The controls developed 

detectable neutralising titres by day 14. Against BVDV-1 SE5508 maximum titres were 

reached in the BVDV-1ΔN
pro

 and BVDV-1ΔN
pro

 & BVDV
-2

ΔN
pro

 group with 3821 ND50 and 

1552 ND50 respectively. The titres in the other three groups also increased, but mean values 

peaked at a markedly lower level (97 ND50 and 16 ND50), leaving a distinct gap between the 

two groups vaccinated with the BVDV-1 mutant and those receiving solely BVDV-2 (mutants 

or challenge strain). Tested against the BVDV-2 strain 890, sera of the BVDV-1ΔN
pro

 animals 

featured maximum titres of 1552 ND50. Values of all other groups followed closely and at the 

term of the study end titres were very similar in all groups (588 ND50). Highest neutralising 

titres against the BVDV-2 strain HI916 remained lower (274 ND50; BVDV-1ΔN
pro

 group), 

but all mean group values were again similar at the end of the trial (181 ND50) with slightly 

lower values for the BVDV-2ΔC-immunised group (69 ND50). In general, the conducted 

neutralising assays in this study showed that titres of BVDV-2 exposed animals against 
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BVDV-2 strains were lower than those of the BVDV-1 vaccinated animals against the applied 

BVDV-1 strain. 

 

Sequencing results of the E2 region of BVDV-2 ΔC 

Due to widely differing results of the NS3-specific ELISA and the neutralisation assay for the 

BVDV-2ΔC-immunised group, we sequenced the region of the replicon encoding the E2 

protein. The E2 protein is the major immunogen of BVDV and the predominant inducer of 

neutralising antibodies. We found one nucleotide change compared to the corresponding 

sequence of the parental full-length cDNA clone. It was located at nucleotide position 2736 

referred to the full-length cDNA and leads to an amino acid change from leucine to histidine. 

 

 

Discussion 

In contrast to vaccines currently licensed in Europe, commercially available vaccines in the 

United States, where BVDV-2 is highly prevalent, include BVDV-2 strains (Ridpath, 2005). 

Although data show a markedly lower prevalence in Europe (Wolfmeyer et al., 1997; Beer 

and Wolf, 1999), outbreaks of severe acute disease associated with hemorrhagic syndrome, 

reproductive losses and high lethality rates are reported. Thus, future vaccines will prove 

advantageous to also mediate a stable protection against BVDV-2 strains (Becher et al., 2000; 

Beer et al., 2000). In order to test and compare new potential BVDV-2 vaccine candidates in 

vivo we experimentally vaccinated cattle and subsequently challenged them with a recent, 

virulent German BVDV-2 field strain (HI916), which allowed graduated classification 

between the different vaccinated groups. The results of this study show that clinical 

symptoms, leukopenia, viremia and nasal virus shedding after experimental infection of 

calves could be clearly reduced or even prevented with all three tested BVDV mutants 

compared to the markedly affected control animals. However, thrombocytopenia and 
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hemorrhagic syndrome described after field-infection with BVDV-2 HI916 (Martin et al.; 

2005), could not be observed.  

In this study, a BVDV-2 replicon construct (Mischkale et al., 2008) with a deletion in the core 

protein region could be successfully complemented in trans with the help of a newly 

established helper cell line, expressing the BVDV-1-PT810 structural proteins C to E2 

(König, unpublished data). Infectious particles, so called pseudovirions, could be generated in 

sufficient amounts to characterise BVDV-2ΔC in vivo. Following immunisation with 

BVDV-2ΔC-pseudovirions neither nasal virus shedding nor pseudovirion viremia was 

detectable as it was previously described for a BVDV-1ΔC mutant (Reimann et al., 2007). 

These in vivo results clearly indicate that pseudovirions are defective in second cycle (DISC) 

and therefore neither horizontally nor vertically transmissible after vaccination. Serological 

responses after immunisation with pseudovirions resembled those of inactivated vaccines 

(Beer and Wolf, 2003), showing low NS3 antibody levels after the first application and a clear 

and quick boost effect after the second one 25 days later. Unexpectedly, these antibodies had 

very low to non-existent neutralising abilities against any of the tested BVDV-1 and -2 

strains, which is most likely the reason for the reduced protective effect in comparison to the 

previously published data from immunisation trials using BVDV-1ΔC (Reimann et al., 2007). 

Therefore, we sequenced the E2 encoding region of the replicon cDNA and found a single 

nucleotide change at nucleotide position 2736 leading to an amino acid change in a highly 

immunogenic region (leucine to histidine; aa 109 of the p890FL E2). For CSFV it was 

demonstrated by van Rijn (2007) that the local variability by one or more aminoacids in the 

E2 region may lead to differences in affinity, avidity and in cross-neutralisation. Therefore, 

we speculate that the altered E2 of BVDV-2ΔC could entail a lack of neutralising E2 

antibodies and thus less efficient protective qualities. Possible functional defects of the 

mutated BVDV-2ΔC E2 protein could be masked and functionally complemented in the 

pseudovirion particles by the structural proteins of a BVDV-1 strain provided by the helper 
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cell line. In the animal, the non-replicative BVDV-1 E2 protein from the putative hybrid-

envelopes did not induce detectable levels of neutralising antibodies against the tested 

BVDV-1 strain. However, BVDV-2ΔC had clear protective effects, which underlines the 

importance of cell-mediated responses to Pestivirus infection as it was described previously 

(Beer et al., 1997; Larsson and Fossum, 1992; Kimman et al., 1993; Pauly et al., 1995).  

As previously described, the non-structural N
pro

 protein interferes with the host’s innate 

immune response by interacting with interferon regulatory factor-3 (IRF3) and targeting it for 

proteasomal degradation (Hilton et al., 2006). Knocking out this immunosuppressive function 

through deletion of an essential part of the genome aims at attenuating BVDV strains making 

them future vaccine candidates with enhanced safety. CSFV mutants with a deletion in the 

N
pro

 gene already showed to be attenuated (Mayer et al., 2003). BVDV-1ΔN
pro

 mutants also 

proved to be highly attenuated even in pregnant animals and to mediate complete protection 

against a heterologous BVDV-1 challenge (Meyers et al., 2007; König et al., unpublished 

data). In our study, we could show that in vivo both, the BVDV-1 and the BVDV-2 N
pro

 

deletion mutant provided clinical protection against challenge infection. Interestingly, lower 

homologous titres of neutralising antibodies were necessary to gain a “sterile immunity” than 

it was described for previous studies (Bolin and Ridpath, 1995; Beer et al., 2000). It turned 

out that a neutralising titre of 64 ND50 to 128 ND50 against the challenge strain prior to 

infection was sufficient to prevent systemic challenge virus infection, irrespective to the titres 

against the reference BVDV-1 strain SE5508. In all three groups NS3-specific antibodies 

could be detected as soon as 14 days after vaccination indicating effective replication of all 

mutants. The group immunised with BVDV-1ΔN
pro

 had high neutralising antibodies against 

the BVDV-1 strain, which were apparently less effective in neutralising BVDV-2 strains in 

vitro, and this group was less protected against challenge infection than were the others. In 

contrast to the results of Beer et al. (2000), there was a marked difference in the titres 

developed against BVDV-1 and BVDV-2 when both N
pro

 deletion mutants were 
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simultaneously applied. A possible explanation could be the more efficient infection and 

higher replication levels of the cp BVDV-1ΔN
pro

, subsequently leading to interference with 

BVDV-2ΔN
pro

 infection and replication. This assumption is supported by our findings that re-

isolated virus from leukocyte samples was characterized as BVDV-1 by selective 

immunofluorescence staining. Nevertheless, only the BVDV-2ΔN
pro

 group developed a 

complete protective immune response inducing a “sterile immunity” against heterologous 

BVDV-2-challenge infection.  

The BVDV-2 strain 890 served as basis for the first approach generating this kind of BVDV-2 

deletion mutants as it offers many options for virulence studies. This advantage was used in 

the presented proof-of-principle study to investigate in detail how effectively the two applied 

mutation strategies, deleting a structural protein or a protein acing as an immunosuppressing 

modulator, attenuate such an isolate in vivo. Obtained results could then be more reliably 

transferred to less virulent strains that would be used for further developments. As infectious 

virus from the constructed BVDV-2 full-length cDNA clone (p890FL) is still moderately 

virulent in cattle (Mischkale et al., 2008), it could be concluded from this trial that all tested 

BVDV-2 deletion mutants are further attenuated. It should be additionally beneficial to the 

safety of future BVDV-2 deletion mutants to originate from a cytopathogenic full-length 

cDNA clone, since cp viruses are the standard for attenuated BVDV-1 live vaccine 

preparations (Fulton et al., 2003; van Oirschot et al., 1999; Beer and Wolf, 2003). If 

cytopathogenic vaccine viruses would be able to reach the fetus, abortion could be induced in 

sporadic cases, but the possibility of induction of a persistent infection would be excluded, as 

there are no data that indicate reversion of a cp strain to an ncp one in vivo (Ridpath et al., 

2005). Meyers et al. (2007) have shown that prevention of transplacental infection with 

BVDV-1 and -2 ΔN
pro

 mutants requires a further elimination of the RNase activity of E
RNS

. 

To investigate this safety aspect, vaccination studies with BVDV-2 N
pro

 deletion mutants in 

pregnant animals have to be carried out. Reversions or recombinations of the assessed ncp 



Results - Publication 2 

 74 

BVDV-2ΔN
pro

 as well as for prospective cp BVDV-2 ΔN
pro

 mutants with a second strain, as 

described previously (Becher et al., 1999b; Meyers et al., 1992), cannot be excluded by our 

present results. At least for BVDV-2ΔC these events are highly unlikely as discussed for 

BVDV-1 replicons that were thoroughly analysed in vitro (Reimann et al., 2003, 2007). Both 

issues, that would require extensive double infection studies in vitro as well as in vivo, were 

not addressed in the setup of this first trial, which served as promising basis for future 

developments.  

 

 

Conclusions 

All BVDV vaccine candidates tested for safety and efficacy markedly reduced the outcome of 

the heterologous BVDV-2 challenge infection in cattle while showing graduated protective 

effects with regards to clinical symptoms, nasal virus shedding and viremia. The 

BVDV-2ΔNpro mutant provided complete protection leading to a “sterile immunity” against 

the highly virulent BVDV-2 challenge infection, facilitating its possible use as a future 

efficacious vaccine candidate.  

Furthermore, the results of this study implicate further investigations, such as (i) consecutive 

vaccination with BVDV-1ΔNpro and BVDV-2ΔNpro to test for enhanced protection, (ii) 

construction and immunogenicity testing of a BVDV-2ΔC mutant without the observed amino 

acid exchange in the E2 region and (iii) development of a cp BVDV-2 full-length cDNA 

clone including corresponding deletion mutants. 
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Tables 

Table 1: Virus isolation from nasal swab samples 
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Virus isolation from nasal swabs

(A) Virus isolation from nasal swabs following vaccination

group ear tag no

days of trial

0 1 2 3 4 5 6 7 8 27 28 29 30 31 32 33 34 35 36

BVDV-2ΔC 758 0 0 0 0 0 0 0 0 0

759 0 0 0 0 0 0 0 0 0

762 0 0 0 0 0 0 0 0 0

775 0 0 0 0 0 0 0 0 0

777 0 0 0 0 0 0 0 0 0

control 496

497

500

753

773

BVDV-1ΔNpro 505 0 0 0 0 0 0 0 0 0 0

486 0 0 0 0 0 0 0 0 0 0

472 0 0 0 0 0 0 0 0 0 0

814 0 0 0 0 0 0 0 0 0 0

819 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro & 494 0 0 0 0 0 0 0 0 0 0

BVDV-1 ΔNpro 502 0 0 0 0 0 0 0 0 0 0

503 0 0 0 0 0 0 0 0 0 0

764 0 0 0 0 0 0 0 0 0 0

779 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro 468 0 0 0 0 0 0 0 0 0 0

480 0 0 0 0 0 0 0 0 0 0

499 0 0 0 0 0 1 0 0 0 0

509 0 0 0 0 0 0 0 0 0 0

767 0 0 0 0 0 0 0 0 0 0

(B) Virus isolation from nasal swabs following challenge infection

group ear tag no

days of trial

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

BVDV-2ΔC 758 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

759 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

762 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

775 0 0 3 0 4 4 1 0 0 0 0 0 0 0 0

777 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

control 496 0 0 0 0 3 4 4 4 4 1 1 2 0 0 0 0 0

497 0 0 0 0 1 2 4 4 4 1 4 1 0 0 0 0 0

500 0 1 0 1 2 1 2 3 4 3 4 1 0 0 0 0 0

753 0 0 0 0 0 0 3 2 2 1 0 0 0 0 0 0 0

773 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0

BVDV-1ΔNpro 505 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0

486 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

472 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

814 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

819 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

BVDV-2ΔNpro & 494 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

BVDV-1 ΔNpro 502 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

503 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

509 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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 Nasal virus shedding of vaccine (A) /challenge (B) virus: Highly susceptible KOP-R cell 

cultures were inoculated with 4 replicates of nasal swab fluids (100 µl / replicate) and after 3-

4 days virus replication was verified by immunofluorescence staining. Results were scored 

according to the number of positive inoculations (grey underlay) out of the 4 replicates (0 = 

no BVDV isolation  4 = all inoculations BVDV positive). A first result was confirmed after 

one blind passage of the supernatants. Samples that were only detected positive after 

passaging are highlighted in light grey. 

 

Table 2: Virus isolation from purified leukocytes 
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Virus isolation from purified leukocytes

(A) Virus isolation from leukocytes following vaccination

group ear tag no

days of trial

0 1 2 3 4 5 6 7 8 26 27 28 29 30 31 32 33 34 35 36

BVDV-2ΔC 758 0 0 0 0 0 0 0 0 0

759 0 0 0 0 0 0 0 0 0

762 0 0 0 0 0 0 0 0 0

775 0 0 0 0 0 0 0 0 0

777 0 0 0 0 0 0 0 0 0

control 496

497

500

753

773

BVDV-1ΔNpro 505 0 0 0 1 0 1 0 0 0 0 0

486 0 0 0 0 0 1 1 0 0 0 0

472 0 0 0 0 0 2 1 0 0 0 0

814 0 0 0 0 0 0 0 0 0 0 0

819 0 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro & 494 0 0 0 0 0 2 1 0 0 0 0

BVDV-1 ΔNpro 502 0 0 0 0 0 0 0 0 0 0 0

503 0 0 0 0 1 0 0 0 0 0 0

764 0 0 0 0 0 1 0 0 0 0 0

779 0 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro 468 0 0 0 0 0 0 0 0 0 0 0

480 0 0 0 0 0 1 2 1 0 0 0

499 0 0 0 0 0 0 0 0 0 0 0

509 0 0 0 0 0 0 0 0 0 0 0

767 0 0 0 0 1 1 1 1 0 0 0

(B) Virus isolation from leukocytes following challenge infection

group ear tag no

days of trial

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

BVDV-2ΔC 758 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

759 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

762 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

775 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

777 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

control 496 0 0 1 2 4 4 4 4 4 4 4 1 0 1 0 0 0

497 0 0 2 1 3 4 4 4 4 4 2 2 2 0 0 0 0

500 0 0 0 2 4 4 4 4 4 4 1 1 0 0 0 0 0

753 0 0 1 1 1 4 4 4 4 1 0 1 0 0 0 0 0

773 0 0 2 0 4 4 4 4 1 0 0 0 0 0 0 0 0

0

BVDV-1ΔNpro 505 0 0 0 4 4 4 4 2 0 0 0 0 0 0 0

486 0 0 0 1 1 3 4 1 0 0 0 0 0 0 0

472 0 0 0 0 0 2 3 2 1 0 0 0 0 0 0

814 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

819 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro & 494 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BVDV-1 ΔNpro 502 0 0 0 2 3 4 0 0 0 0 0 0 0 0 0

503 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BVDV-2ΔNpro 468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

499 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

509 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Viremia of vaccine (A) / challenge (B) virus: Highly susceptible KOP-R cell cultures were 

inoculated with 4 replicates of purified leukocytes (3 x 10
6
 leukocytes / replicate) and after 3 

to 4 days virus replication was verified by immunofluorescence staining. Results were scored 

according to the number of positive inoculations (grey underlay) out of the 4 replicates (0 = 

no BVDV isolation  4 = all inoculations BVDV positive). A first result was confirmed after 

one blind passage of the supernatants. Samples that were only detected positive after  

passaging are highlighted in light grey. 
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Figures 

 

Figure 1: Mean group values of the rectal body temperatures throughout the course of the 

study. ( ) marks day of vaccination and ( ) the day of challenge infection. Temperatures of 

the groups were recorded daily until 3 weeks after challenge infection. < 39.5°C = 

physiological temperature; >40°C = fever. Dotted lines border the raised temperature range 

(39.5 - 40°C). One animal of the BVDV-1ΔN
pro

 group could not be measured after day 38 due 

to its behavior. The mean values were calculated from the other 4 animals from that day on. 

Standard deviations (error bars) are not depicted for the individual groups for clarity. 

 

Figure 2: Development of NS3-specific antibodies after vaccination with the indicated 

mutants ( ) and challenge infection with BVDV-2 strain HI916 ( ). Serological responses 

were monitored employing a competitive NS3 antibody ELISA (Ceditest® BVDV, Cedi 

Diagnostics B.V. now: PrioCHECK
®

 BVDV Ab, Prionics AG). Relative blocking values are 

indicated as mean group values. The dotted line is marking the threshold value of the test. 

Standard deviations (error bars) are not depicted for the individual groups for clarity.  

 

Figure 3: Neutralising antibody titres against BVDV-1 SE5508 (A), the BVDV-2 890 wild 

type (B) and the BVDV-2 challenge strain HI916 (C) after vaccination and challenge 

infection were determined. Animals were vaccinated at day 0 (BVDV-2ΔC) and day 25 (all 

groups) ( ). Challenge infection followed at day 60 ( ). All values are given as mean group 

values. Standard deviations (error bars) are not shown for clarity of the curves. 

 

Figure 4: Blood leukocytes were counted after vaccination(s) (day 0 and day 25) ( ) and after 

challenge infection (day 60) ( ) with a CELL-DYN® 3700 haematology analyser (Abbott, 

Chicago, USA) using EDTA-blood.  Mean values of the different groups are shown in percent 
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of the initial values, which were set to 100 % prior to vaccination/challenge. Results of the 

BVDV-2ΔC group after vaccination (day 0) are not shown for clarity of the figure. No decline 

could be observed in this group following first immunisation and they were not sampled after 

the second one. Controls were measured starting at time of challenge infection. Standard 

deviations (error bars) are not depicted for the individual groups for clarity.  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



Results - Publication 2 

 89 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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4. Extended discussion 

 

Both types of vaccines against Bovine viral diarrhea virus licensed in Europe today, 

inactivated vaccines and modified-live virus (MLV) vaccines (Beer and Wolf, 2003), have 

clear disadvantages. Several new approaches using molecular techniques seek to combine the 

advantages of both systems while counterbalancing their drawbacks. The safety of an 

inactivated formulation and the immunogenicity of a modified-live virus vaccine (preventing 

viremia and fetal infection) (Greiser-Wilke et al., 2003; Beer and Wolf, 2003) are benchmarks 

for new candidates. Future vaccines will be held to a high standard, especially in the context 

of state-run control and eradication schemes like the compulsory program adopted in 

Germany in 2008 (Verordnung zum Schutz der Rinder vor einer Infektion mit dem Bovinen 

Virusdiarrhoe-Virus [BVDV-Verordnung]; Anonymous, 2008). Implementing European 

guidelines, the “Tierimpfstoff-Verordnung” in its 2006 revision is the legal basis for the 

licensing of veterinary vaccines in Germany.  

BVDV-2 strains are commonly included in licensed vaccines in the U.S. due to the high 

prevalence of BVDV-2. In spite of the lower prevalence in Europe, it would also be 

advantageous for vaccines licensed in Germany if reliable protection against both species 

could be mediated by a single vaccine (Becher and Thiel, 2000; Beer et al., 2000). Relevant 

prototypes have been described (Beer et al., 2000). Progress in vaccine developments meeting 

the standards mentioned above only seems possible by further refining molecular approaches. 

Similar to the designs presented in this work, several attempts to attenuate modified-live virus 

vaccines have been published, among them deletions in the 5’ UTR (Makoschey et al., 2004), 

a knock-out of the RNase function of  E
RNS

 (von Freyburg et al., 2004) or replicon systems 

(Reimann et al., 2003, 2007). 

 

In the studies presented here, v890FL virus generated from a recently constructed ncp BVDV-

2 full-length cDNA clone (p890FL) was characterised in vivo and compared to the parental 

strain by infection of cattle. Further, attenuated mutants of v890FL were examined in a 

subsequent vaccination and challenge trial assessing their safety and efficacy against a  

virulent heterologous BVDV-2 field isolate. The level of cross-protection of different 

vaccines or vaccine candidates against BVDV-1 and -2 has been examined in a number of 

studies. Makoschey et al. (2001) observed clinical protection against BVDV-2 when animals 

were vaccinated with an inactivated vaccine, in another experiment a BVDV-1 MLV vaccine 

even protected against viremia after challenge with BVDV-2 (Dean and Leyh, 1999). A 
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BVDV-1 mutant that had already proved to be safe and efficacious against BVDV-1 

challenge (König et al., unpublished) was included in this trial to investigate its cross-

neutralizing properties. The BVDV-1 mutant was administered either individually or in 

combination with the BVDV-2 mutant, since a combined application would be favourable for 

field use.  

 

4.1.  Full-length cDNA clone of ncp BVDV-2 strain 890 (p890FL): in vivo 

characterisation of generated virus (v890FL)  

 

Mischkale et al. (2009) established a full-length cDNA clone (p890FL) based on the ncp 

BVDV-2a prototype strain 890. Virus (v890FL) was generated by transfection of bovine cells 

(KOP-R; RIE244; CCLV) with p890FL RNA and subsequent passaging. The parental strain 

890 and v890FL were compared by intranasally infecting cattle and monitoring them daily for 

clinical and virological parameters over a period of 21 days. In the trial, v890FL displayed an 

attenuated phenotype, in particular by reduced clinical signs. A shorter duration of shedding 

over nasal mucosa and shorter viremia were observed. Antibody development (NS3 and 

neutralizing antibodies) was slightly delayed, but levels at day 28 were similar. Since the dose 

used for infection was the same for both strains, this suggests a lower in vivo replication 

efficiency of v890FL, in contrast to in vitro results of Mischkale et al. (2009). Causes for this 

attenuation have not yet been determined. Mischkale et al. (2009) describe four amino acid 

substitutions, two in the E
RNS

 coding region, a third in the E2 gene and the fourth in the NS5a 

region. The latter two are not in previously defined functional regions (Johnson et al., 2001; 

Sapay et al., 2006). The first substitution in the E
RNS

 region is similar to a mutation described 

by Dehan et al. (2005) in an attenuated infectious transcript of BVDV-2 890 while the second 

substitution is close to the RNase motif, an important virulence factor of BVDV (Meyer et al., 

2002; Meyers et al., 2007). This could affect the virulence of v890FL and lead to the slight 

attenuation observed in vivo.  

Full-length clones constructed for CSFV (C strain: van Gennip et al., 1999 / Eystrup: Mayer 

et al., 2003), BVDV-1 (pa/BVDV/Ins-: Meyers et al., 1996; NADL: Mendez et al., 1998) and 

BVDV-2 (NY93: Meyer et al., 2002) proved to be useful for investigating pestiviral functions 

and mechanisms (Ruggli and Rice, 1999). Despite its suitability as a basis for vaccine 

developments, the full-length infectious cDNA clone of BVDV-2 reference strain 890 lends 

itself to modifying its genomic structure (Meyers et al., 1996; Vassilev et al., 1997). This 

facilitates investigations on mechanisms of its ncp biotype, the function of the insertion in the 
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NS2 region of the parental BVDV-2 strain 890 and the replication cycle, as well as 

pathogenicity and interference features of BVDV-2. Due to its good replication efficiency and 

remaining virulence, v890FL is very suitable for testing attenuation options in vivo, as effects 

in less virulent strains are not as obvious. Mutants with a deletion either in the structural 

Capsid protein gene (replicons) or in the genome region of the non-structural protein N
pro

 

were constructed and tested in a vaccination-challenge trial. 

 

4.2. Vaccination-challenge trial  

 

Protection against field strains in the intended area of application is of utmost importance, and 

the selection of vaccine strains must be epidemiologically justified. Accordingly, HI916, a 

recent German BVDV-2 field isolate (Martin et al., 2005), was picked as a challenge strain. In 

a preceding animal trial (not included in the present work), it was shown that this isolate 

allows infection via the natural route (intranasally) and induces clear reproducible signs of 

disease, thus permitting comparisons between the different vaccinated groups. 

Thrombocytopenia and signs of hemorrhagic syndrome that had been observed in the 

outbreak where this strain was isolated (Martin et al., 2005), could never be reproduced in our 

trials with this isolate. 

 

4.2.1.  Replicon p890ΔC: trans-complementation and vaccination of cattle with 

pseudovirions (v890ΔC) 

 

Replicons are capable of effective replication without generation of infectious progeny 

(Harada et al., 2000; Reimann et al., 2003). The assembly of new infectious virions is 

inhibited by the deletion of the genes of one or more (structural) proteins, which are 

dispensable for virus replication (Behrens et al., 1998). In vitro, infectious progeny can be 

subsequently obtained by trans-complementation through a helper cell line expressing the 

missing proteins or by co-infection with a helper virus capable of in trans complementing the 

replicon proteins (Harada et al., 2000; Grassmann et al., 2001; Reimann et al., 2003, 2007). 

Based on the infectious full-length clone of BVDV-2 strain 890, a replicon lacking a major 

central part of the capsid protein gene was constructed (Mischkale et al., 2009). Amino acids 

(aa) 201-243 (nucleotides [nt] 986-1114) of p890FL were deleted (p890ΔC) while 32 aa at the 

N-terminal end and 27 aa at the C-terminal end remained. These are essential signalase 

recognition sequences and needed for correct further processing (Rümenapf et al., 1991) and 
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replication. Results of van Gennip et al. (2002) indicated difficulties in trans-

complementation by a helper cell line system. Effective trans-complementation of CSFV E2 

deletion mutants could be observed in only one of three E2 expressing cell lines after several 

serial passages. In the presented work effective trans-complementation could be demonstrated 

in a newly established helper cell line (WT-R2; RIE758; CCLV) (König et al., unpublished) 

constitutively expressing the structural proteins C to E2 of a BVDV-1 strain. This kind of 

trans-complementation was described previously for another helper cell line (PT_805) by 

Reimann et al. (2003, 2007), but WT-R2 cells provide a higher percentage of expression and 

better complementing efficiency (data not shown). Pseudovirions could be generated in 

sufficient amounts for the vaccination trials. In vitro infectivity was confirmed on 

complementing and non-complementing cell lines, while only the new cell line WT-R2 

enabled serial passaging of v890ΔC. Signs of interference and markedly reduced 

susceptibility to BVDV infection that were described for the PT_805 cells (Reimann et al., 

2003, 2007) and other cell lines expressing E2 (Hulst and Moormann, 1997; van Gennip et al., 

2002) were not observed in the WT-R2 cell line. Passages on non-complementing cell lines 

showed no infection or replication, so recombination events with the BVDV structural protein 

cassette in the cell line could be excluded throughout our studies. In replicon systems for 

other families, these occurred frequently (Weiss and Schlesinger, 1991; Bredenbeek et al., 

1993). Infectious revertants could not be detected even after several serial passages on non-

complementing and complementing cells. These events were described as highly unlikely for 

BVDV-1 replicons, and the used trans-complementing system (Reimann et al., 2003, 2007). 

One possible reason is the use of BVDV-1 proteins for trans-complementing a BVDV-2 

replicon, as homologous recombination may be complicated by genetic differences between 

strains and species. RNA-dependent RNA polymerase can switch strains/matrices in the genes 

of the non-structural proteins (Becher et al., 2001), but a switch in the structural protein 

region or a double template switch that would be necessary for a recombination event in the 

described trans-complementing system with the synthetic open reading frame (ORF) plasmid 

(Reimann et al., 2003) has not yet been reported and is obviously very improbable. 

Dual vaccination of cattle with these pseudovirions within the presented work led to a 

detectable immune answer without leukopenia, viremia or nasal virus shedding. No negative 

reactions were observed after immunisation. No BVDV-specific clinical symptoms could be 

observed post-vaccination, thus animals were not sampled after the second vaccination. The 

developed level of NS3 antibody resembles that after use of an attenuated vaccine (Beer and 

Wolf; 2003). NS3 antibody levels were low after first vaccination, but a quick, clear boost 
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was observed after the second vaccination 25 days later. NS3-positive reactions were also 

described for killed vaccines but only as a weak signal after several booster shots (Beer et al., 

2000). Unexpectedly and in contrast to the NS3 response, antibodies with neutralizing 

abilities (nab) against homologous or heterologous strains were not detected and titres stayed 

minimal throughout the vaccination period. Sequence data analysis of the virus mutant 

revealed a single nucleotide exchange leading to an amino acid substitution (leucine to 

histidine at nt position 2736 of p890FL) in a highly immunogenic region of the E2 protein, 

the major immunogen of BVDV. For CSFV van Rijn (2007) demonstrated differences in 

affinity, avidity and cross-neutralization due to the E2 variability of one or more amino acids. 

This could explain the absence of detectable neutralising antibodies and as a consequence the 

reduced protective effect of v890 ΔC after challenge infection compared to previous studies 

with similar BVDV-1 replicons (Reimann et al., 2007). BVDV-1 proteins expressed by WT-

R2 cells can mask defects in the structural protein region so that infectivity is not affected. 

Proteins of the non-replicative hybrid envelope did not lead to a humoral response in vivo, as 

no increase in nab levels against BVDV-1 strains could be found. Despite this lack of 

neutralising antibodies, the clinical outcome of the challenge, viremia and shedding were 

clearly reduced in animals of the v890 ΔC vaccinated group, clearly emphazising the 

importance of cell-mediated immunity in BVDV infections (Larsson and Fossum, 1992; Beer 

et al., 1997). 

Taking into account the results of previous experiments using BVDV-1 mutants with a similar 

deletion in the capsid protein region (Reimann et al., 2007), it is concluded that due to their 

limited one-time infectiousness the trans-complemented pseudovirions are as safe in vivo as 

they are in vitro. They replicate efficiently leading to protein expression appropriately 

answered by the animal immune system. After a first application they are able to initialize the 

activation of memory cells, which leads to a quicker and better response after booster 

immunization (prime-boost effect). These pseudovirions were defective in second cycle 

(DISC), no infectious progeny was produced, which would lead to infection of other cells and 

spread throughout the susceptive tissues of the host and subsequent transmission to other 

animals. Infection is restricted to cells at the site of application. When considering the use of 

pseudovirions as vaccines, it is essential to administer amounts sufficient for evoking an 

immune response as the infectivity is limited in contrast to the replication competence. The 

replicon system has the advantages of replication-competent MLV vaccine, but similar to an 

inactivated vaccine higher amounts of virions (pseudovirions) and at least one booster shot are 

required. Improvement of the immune answer when administering replicons could be 
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achieved by addition of classical or genetic adjuvants like immune stimulating factors IL-12 

or GM-CSF as was already suggested by van Gennip et al. (2002) for CSFV replicons. As 

inactivated vaccines are described to mediate a shorter duration of immunity (Hofmann, 1998) 

with a decline as soon as 5 month after booster immunization, the stability of immunity 

induced after vaccination with pseudovirions needs to be determined, but was not an issue in 

this study. 

It was shown for the first time that a BVDV-2 replicon (p890ΔC) can be successfully 

complemented in trans by a new helper cell line. The generated pseudovirions (v890ΔC) were 

capable of inducing an immune answer in vivo leading to a partial protection with a clearly 

reduced outcome of a virulent heterologous BVDV-2 field strain challenge. Recombinations 

and reversions restoring the ability to produce infectious progeny, which could lead to 

systemic spread and transmission, were not observed. The safety advantage of the replicon 

approach was demonstrated, confirming the results of previous studies (Reimann et al., 2007). 

In this regard pseudovirions are comparable to inactivated vaccines as transmission is not 

possible (Thierauf, 1993; Wolf et al., 1996). On the other hand, v890ΔC did not display the 

efficacy of a MLV, most likely because of an acquired mutation in a highly immunogenic 

region of the E2 gene. Its impact on the immunogenicity of v890ΔC can be tested by site-

directed mutagenesis of p890ΔC, substituting the histidinde with a leucine, followed by in 

vivo application of both variants and monitoring neutralizing antibody titres. 

Nevertheless, the obvious protective effect v890ΔC pseudovirions had even without 

detectable nab titers could be due to the developed cell-mediated immunity, which plays an 

important role in the hosts defense against BVDV infections (Beer et al., 1997).  

 

4.2.2. Attenuation by deleting N
pro

 (p890ΔN
pro

): vaccination of cattle with v890ΔN
pro 

 

Another approach to generate attenuated future vaccine candidates with enhanced safety is the 

deletion of an essential part of the genome region coding for the non-structural protein N
pro

 

unique to pestiviruses. N
pro

 is the first protein encoded in the single pestivirus ORF and 

dispensable for virus replication and the generation of infectious progeny (Tratschin et al., 

1998). This protein was described previously as an important, but not the only, virulence 

factor for pestiviruses. It interferes with mechanisms of the innate immune system, leading to 

inhibition of apoptosis and interferon-α/β production (Ruggli et al., 2005). BVDV achieves 

this effect by interaction with interferon regulatory factor 3 (IRF-3), a cellular transcription 

factor controlling interferon-α/β genes, and targeting it for proteasomal degradation (Hilton et 
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al., 2006). This function has mainly been observed in ncp strains and was supposed to enable 

the establishment of persistent infections in the fetus. Chen et al. (2007) described this way of 

interference likewise for a cp strain. The IRF-3 interaction and the autoprotease activity are 

independent but structurally overlapping functions. For CSFV, the inhibition of transcription 

of the IRF-3 gene has been shown by La Rocca et al. (2005), so CSFV seems to interfere at a 

different level in the same pathway. Recently a specific zinc-binding TRASH motif has been 

shown to be essential for virus mediated targeting of IRF-3 (Szymanski et al., 2009). In vitro, 

high interferon production and a lower replication efficiency of dendritic cells were described 

by Bauhofer et al. (2005) for CSFVΔN
pro

. Attenuation in vivo has also been shown for CSFV 

(Mayer et al., 2004) and BVDV-1 deletion mutants (König et al., unpublished). Complete 

protection against a BVDV-1 challenge after BVDV-1ΔN
pro

 vaccination was demonstrated by 

König et al. (unpublished). 

The virus mutant p890ΔN
pro

 investigated in this study lacks a major part of the genomic 

region coding for the non-structural autoproteinase N
pro

, namely aa 13 to 168 of p890FL. The 

first 12 amino acids were retained to ensure IRES functionality vital for translation. 

Subsequently the capsid protein showed an N-terminal elongation. 13 out of the first 16 

codons from the initial start codon seem to be conserved in the polyprotein of BVDV (Moes 

and Wirth, 2007). Different numbers (nine to 25) were described as essential for BVDV-1 

(Moes and Wirth, 2007) while Meyers et al. (2007) described 4 residual codons sufficient for 

IRES function in a BVDV-2 full-length cDNA clone. Generation of v890 ΔN
pro

 vaccine stock 

was conducted by transfection and subsequent passaging on an interferon-incompetent bovine 

cell line (RIE728; CCLV). Replication was effective as was recovery of sufficient amounts of 

infectious virus. Titres were lower than for v890FL and 890 wildtype in a standard diploid 

bovine oesophageal cell line (KOP-R; RIE244; CCLV). This was also demonstrated by 

Mischkale et al. (2009) in growth kinetics on KOP-R cells and is most likely due to the loss of 

the interferon-antagonistic function of N
pro

 (Gil et al., 2006). The virus stock v890 ΔN
pro

 was 

tested for correct deletion by a selective PCR and sequence analysis spanning the region of 

the deletion. 

In this trial cattle were intramuscularly vaccinated with the already described and tested 

BVDV-1ΔN
pro

 (König et al., unpublished) and the newly generated v890ΔN
pro

. One group 

received BVDV-1ΔN
pro

, one v890ΔN
pro

 and one group received a mixed application of 

BVDV-1ΔN
pro

 and v890ΔN
pro

. Both mutants showed a clearly attenuated phenotype as no 

clinical symptoms were observed after vaccination. In the group receiving v890ΔN
pro

, virus 

shedding was observed in one animal on one day at a very low level. Limited vaccine virus 
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viremia was observed in all groups. Mutants provided clinical protection against the 

heterologous challenge infection but to different degrees. Only vaccination with v890ΔN
pro

 

led to sterile immunity completely preventing challenge virus viremia and shedding. Mixed 

application was more efficient than BVDV-1ΔN
pro

, but unexpectedly inferior to v890ΔN
pro

. 

Higher infection and replication efficiencies of the cytopathic BVDV-1ΔN
pro

 could be a 

reason together with mechanisms of interference described for BVDV (Harada et al.; 2000). 

Only BVDV-1 could be reisolated after vaccination from blood leukocytes identified by 

selective indirect immunofluorescence.  

This graduated protection was also reflected by the developed antibody titres. In general, it 

can be concluded that lower neutralizing titres against BVDV-2, evolved after vaccination, 

were needed to mediate complete challenge protection than described in other studies (Bolin 

and Ridpath, 1996; Beer et al., 2000). A titre of 64 to 128 ND50 at the day of challenge 

seemed sufficient for inducing a “sterile immunity” as it was observed in the v890ΔN
pro 

group. High neutralizing titres detected in the BVDV-1ΔN
pro

 group against a BVDV-1 strain 

were obviously less effective in neutralizing BVDV-2 strains. Mixed application led to 

different titres against BVDV-1 and -2 strains, as titres against BVDV-1 were clearly higher 

which promotes the assumption of better replication and/or higher immunogenicity of the 

BVDV-1 mutant. Effective replication could be demonstrated in all groups referring to the 

NS3 antibodies developed.  

The presented data clearly demonstrate complete protection against a heterologous BVDV-2 

challenge after vaccination with v890ΔN
pro

. This mutant was as effective as other MLV 

vaccines in inducing a sterile immunity against challenge when administered individually. 

This was shown before for BVDV-1 mutants (ncp/cp) lacking the same region of the N
pro

 

gene. They proofed to be attenuated, safe and efficacious when used against a heterologous 

BVDV-1 challenge (König et al., unpublished). Cross-protection after vaccination with 

BVDV-1ΔN
pro 

was incomplete as challenge virus viremia and shedding were observed, 

underlining the need for vaccines containing both species for reliable prevention of BVDV 

field infection. The mixed application was more efficacious than BVDV-1ΔN
pro

, but did not 

offer complete protection either. Future studies with similar mutants based on cp BVDV-2 

strains with similar replication efficiency have to be conducted to investigate this issue, as 

testing of sequential vaccination (due to prevalences in Germany: 1
st
 shot BVDV-1 ΔN

pro
, 2

nd
 

shot v890 ΔN
pro

) did not lead to better protection (data not shown). The most promising 

candidate v890ΔN
pro

 is still posing a minimal risk of vaccine virus transmission due to (very 

limited) viremia and shedding. The risk of transmission to other animals in contact could not 
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be excluded as has been shown for other MLV vaccines (Thierauf, 1993). Meyers et al. 

(2007) found that abolishing the N
pro

 function in BVDV-2 was not sufficient for prevention of 

fetal infection. An additional deletion of the RNase function of E
RNS

 protein was required for 

reliable attenuation. Other studies revealed that N
pro

 deletion is sufficient for BVDV-1 and 

mutants seemed not capable of transplacental transmission when pregnant animals were 

infected (König et al., unpublished). But safety and efficacy studies with pregnant animals 

were not part of this proof-of-principle trial and neither were possibilities of recombination 

and reversion. These events cannot be ruled out based on the presented results, although they 

are very unlikely and were not observed in vitro. Extensive co-infection studies would be 

required to investigate this important issue in vivo. 

 

4.3. Conclusions and outlook 

 

Virus generated from a newly established full-length cDNA clone of BVDV-2 reference 

strain 890 was shown to be virulent, but slightly attenuated in vivo compared to the wild type 

parental strain. The attenuation of a highly virulent BVDV-2 strain by two completely 

different approaches was demonstrated in the second proof-of-principle study. A replicon 

construct missing part of the capsid protein coding region and an N
pro

 gene knock-out 

construct where an important immunosuppressive function of pestiviruses was disabled were 

tested. Both were clearly attenuated in vivo and mediated graduated protection against a 

virulent heterologous BVDV-2 challenge, as did a BVDV-1ΔN
pro

 mutant. All vaccine 

candidates clearly reduced or in case of v890ΔN
pro 

completely prevented clinical symptoms, 

complete blood count deviations and viremia after challenge. The results of this study are 

relevant to future developments in BVDV vaccination. They could be beneficial for designing 

new chimeric pestiviruses, of which some have been constructed (van Gennip et al., 2002) 

and tested successfully (Reimann et al., 2003; Koenig et al., 2007; Leifer et al., 2009a). Some 

constructs like CP7_E2alf feature beneficial marker properties which can be used in standard 

or newly developed diagnostic methods (Koenig et al., 2007; Leifer et al., 2009b) and would 

be advantageous for BVDV vaccines too. However, future vaccine candidates will derive 

their origin from less virulent BVDV strains for further attenuation. Additionally, a cytopathic 

BVDV strain, standard in most vaccine preparations (Fulton et al., 2003; Beer and Wolf, 

2003), would offer additional advantages in safety as induction of persistently infected 

offspring would be excluded both by the biotype and for example the deletion of N
pro

. 
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5. Summary 

 

Vaccination against Bovine Viral Diarrhea Virus plays a major role in the obligatory German 

control program decided in 2008. Both kinds of vaccines licensed today for the use in cattle 

have disadvantages: MLV vaccines concerning their safety and killed vaccines concerning 

efficacy, especially in terms of cross-neutralization.  

 

In the presented work, virus (v890FL) generated by transfection of conventional bovine cell 

lines with RNA derived from a BVDV-2 full-length clone (p890FL; Mischkale et al., 2009) 

was used to infect cattle. Its effects compared to the wild type strain 890 were investigated. It 

could be shown that it was still virulent but slightly attenuated. This functional full-length 

clone offers many possibilities to investigate further virulence mechanisms and genetic 

features of the BVDV-2 strain 890.  

 

Further, two mutants derived from this BVDV-2 full-length cDNA clone were tested in a 

vaccination-challenge trial in cattle randomly allocated in groups of five heads each following 

two approaches of attenuation. Their safety and efficacy as vaccine candidates were 

investigated. 

1
st
 approach: Replicon (p890∆C) and pseudovirions (v890∆C) 

Replication competent BVDV-2 genomes with a deletion in the coding region for the 

structural Capsid protein were transfected into a recently established trans-complementing 

helper cell line, constitutively expressing BVDV-1 structural proteins C to E2, and were 

trans-complemented effectively. Pseudovirions in sufficient amounts for vaccination purposes 

were produced. The group of cattle receiving v890∆C was vaccinated twice.  

2
nd

 approach: Deletion of N
pro

 (v890∆N
pro 

and BVDV-1∆N
pro

) 

A BVDV-2 mutant lacking the major part of the nonstructural N
pro

 protein (v890∆N
pro

) was 

propagated on a cell line deficient of Interferon production, as was an already described 

BVDV-1∆N
pro

 mutant. One group of animals was vaccinated with v890∆N
pro

, one with 

BVDV-1∆N
pro

 and one with a combination of both administered in a single application. 

Animals vaccinated with N
pro

 deletion mutants received only one shot.  

There was no vaccine virus shedding or viremia in the pseudovirion group. For the first time, 

the safety described for the replicon system could be verified for BVDV-2. A short viremia 

was observed in the groups vaccinated with N
pro 

mutants. A very limited shed of v890∆N
pro

 

(one animal on one day) was detected. 
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All animals including a naïve control group were challenged with a virulent heterologous 

German BVDV-2 field strain. The tested BVDV vaccine candidates markedly reduced the 

outcome of the heterologous virulent BVDV-2 challenge infection showing graduated 

protective effects in terms of reduced time and amount of shedding and viremia and milder 

clinical symptoms.  

Unlike previous studies, the protection after vaccination with replicons was not complete. 

This could be explained by nominal (undetectable) neutralizing antibody titers due to a 

mutation in the E2 gene.  

The v890ΔN
pro

 mutant was able to induce complete protection and a “sterile immunity” upon 

heterologous challenge, still bearing the risk of a very limited vaccine virus shedding. The 

deletion of N
pro

 was shown to be an additional clear attenuation factor in BVDV-2, as it was 

confirmed for the BVDV-1ΔN
pro

 mutant in this trial. This will be beneficial for future 

developments. 

 

Besides, the results of this study implicate further investigations, such as construction and 

immunogenicity testing of a p890ΔC mutant without the observed amino acid exchange in the 

E2 region and development of a cp BVDV-2 full-length cDNA clone including corresponding 

deletion mutants. 
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6. Zusammenfassung 

 

Immunisierung gegen die Bovine Virusdiarrhoe spielt eine entscheidende Rolle im 2008 

verabschiedeten, verpflichtenden BVDV Bekämpfungsprogramm. Die zwei Arten von 

Vakzinen, welche derzeit in Deutschland zur Immunisierung von Rindern zugelassen sind, 

haben jeweils klare Nachteile: Lebendvakzinen sind nicht vollständig sicher in ihrer 

Anwendung, während Totvakzinen einen oft nur unzulänglichen Schutz bieten, vor allem vor 

Infektionen mit heterologen Stämmen. 

 

In der vorliegenden Arbeit wurden Viren (v890FL), ausgehend von einem neu konstruierten 

BVDV-2 Volllängen cDNA Klon (p890FL; Mischkale et al., 2009), nach RNA Transfektion 

und Anzucht auf konventionellen Rinderzelllinien, in vivo charakterisiert und mit dem 

Wildtyp Stamm verglichen. v890FL verhielt sich in vivo virulent, jedoch schwach attenuiert 

im Vergleich zum Wildtyp. Der vorliegende Volllängenklon bietet vielfältige Möglichkeiten 

um weitere Virulenzmechanismen sowie genetische Eigenschaften des BVDV-2 Stammes 

890 im Detail zu untersuchen. 

 

Zwei verschiedene Ansätze wurden verfolgt um attenuierte Mutanten vom BVDV-2 Klon 

p890FL zu generieren. Diese wurden als Vakzinekandidaten gegen einen heterologen, 

virulenten BVDV-2 Challenge eingesetzt. Rinder in Gruppen von jeweils 5 Tieren wurden 

geimpft und die Sicherheit und Wirksamkeit der Mutanten untersucht. 

1. Ansatz: Replikon (p890∆C) basierte Pseudovirionen (v890∆C) 

Replikationskompetente BVDV-2 Genome mit einer Deletion im Bereich des Capsid 

kodierenden Gens wurden in eine neu etablierte trans-komplementierende Helferzelllinie 

transfiziert, welche permanent die Strukturproteine C bis E2 eines BVDV-1 Stammes 

exprimiert. Replikons wurden effizient in trans-komplementiert und Pseudovirionen konnten 

in ausreichenden Mengen gewonnen werden. Die Gruppe, der v890∆C Pseudovirionen 

appliziert wurden, wurde zweifach immunisiert. 

2.Ansatz: Deletion des N
pro

 Gens (v890∆N
pro

 und BVDV-1∆N
pro

) 

Für die Anzucht von BVDV-1 und BVDV-2 Mutanten, denen der größte Teil des 

Nichtstrukturproteins N
pro

 fehlt, wurde eine Interferon-defiziente Zelllinie verwendet. Eine 

Tiergruppe wurde mit v890∆N
pro

 geimpft, eine erhielt BVDV-1∆N
pro

 und eine weitere beide 

Mutanten gemischt in einer Applikation. Alle drei Gruppen wurden nur einmal geimpft.  
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Weder Vakzinevirusausscheidung noch Virämie konnten in der Gruppe, die mit 

Pseudovirionen geimpft wurde, nachgewiesen werden. Somit wurde die schon beschriebene 

Sicherheit des Replikonansatzes in vivo durch diese Studie erstmals auch für BVDV-2 

bestätigt.In den anderen immunisierten Gruppen wurde eine kurze Virämie post 

vaccinationem beobachtet, bei einem Tier aus der ∆N
pro

 Gruppe sogar eine geringgradige 

Ausscheidung an einem Tag.  

Alle geimpften Tiere inklusive naïver Kontrollen wurden mit einem virulenten heterologen 

Deutschen BVDV-2 Feldisolat infiziert. Die Immunisierung der Tiere zeigte einen deutlichen 

protektiven Effekt gegen die Challengeinfektion, wenngleich sehr abgestuft zwischen den 

einzelnen Gruppen. Die Tiere zeigten eine verminderte und verkürzte Ausscheidung und 

Virämie und deutlich geringer ausgeprägte klinische Symptome. 

Im Gegensatz zu vorhergehenden Studien wurde kein vollständiger Schutz durch die 

zweifache Immunisierung  mit Pseudovirionen erreicht. Dies könnte vermutlich durch eine 

einzelne Mutation im E2 Protein und die damit verbundenen extrem niedrigen Titer 

neutralisierender Antikörper gegen die getesteten Stämme begründet sein. 

Eine einmalige Vakzinierung mit v890∆N
pro

 führte zu einer sterilen Immunität und somit 

vollständigem Schutz vor einer Challenge Infektion mit einem heterologen BVDV-2 Isolat, 

birgt aber ein Restrisiko aufgrund der minimalen Ausscheidung der Vakzineviren. 

Eine deutliche Attenuierung durch Deletion des N
pro

 Proteins konnte in diesem Versuch für 

BVDV-2 ebenfalls gezeigt, sowie für BVDV-1 bestätigt werden und für zukünftige 

Weiterentwicklungen eine wichtige Grundlage darstellen. 

 

Die vorliegenden Ergebnisse können durch weitere Untersuchungen ergänzt werden z.B. 

durch die Konstruktion eines p890∆C ohne Mutation im E2 und einen vergleichenden Test 

der immunogenen Wirkung in vivo. Weiterhin wäre die Entwicklung einer zytopathogenen 

Variante des Volllängenklons p890FL erstrebenswert zur zusätzlichen Sicherheit generierter 

Mutanten in vivo. 
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8. Abbreviations 

 

aa    amino acid/amino acids 

BDV    Border Disease Virus 

BVDV    Bovine Viral Diarrhea Virus 

C-terminal    Carboxy-terminal end (3’end) 

CCLV Collection of Cell Lines in Veterinary medicine (FLI-Insel 

Riems) 

cDNA    complementary DNA 

 cp    cytopathic 

CSFV     Classical Swine Fever Virus 

DISC    Defective In Second Cycle 

DIVA    Differentiating Infected from Vaccinated Animals 

DNA    Deoxyribonucleic Acid 

ELISA    Enzyme-Linked Immunosorbent Assay 

et al.    et alii/et aliae 

FCS    Fetal Calf Serum 

Fig.    Figure 

fl    full-length 

GM-CSF   Granulocyte Macrophage Colony-Stimulating Factor 

IFN    Interferon 

IL-12    Interleukin-12 

IRES    Internal Ribosomal Entry Site 

IRF-3    Interferon Regulatory Factor-3 

kb    kilobase 

LDLR    Low Density Lipoprotein Receptor 

LMU    Ludwig-Maximilians-Universität, Munich 

mab    monoclonal antibody/antibodies 

MLV    Modified Live Virus 

N-terminal   Amino-terminal (5’end) 

nab    neutralizing antibody/antibodies 

ncp    noncytopathic 

ND50    50% Neutralizing Dose 
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nm    nanometer 

nt    nucleotide 

ORF     Open Reading Frame 

PCR    Polymerase Chain Reaction 

%    percent 

PI    persistently infected 

RNA    Ribonucleic Acid 

RNase    Ribonuclease 

RT-PCR   Reverse Transcription Polymerase Chain Reaction 

TNF-α    Tumor Necrosis Factor - α 

U.S.    United States of America 

UTR    Untranslated Region 

VRP    Virus Replicon Particles 

 



Curriculum vitae 

 129 

9. Acknowledgement 

 

 

 

I would like to thank 

 

 

Prof. Dr. Straubinger and the reviewers for their assessment of this work. 

 

 

My advisor PD Dr. M. Beer for offering me the possibility to work on this thesis - I 

appreciate his support and motivation. 

 

 

Dr.  P. König and Dr. I. Reimann for helpful, patient instruction and advice concerning 

the practical work in the laboratory and in the stable. 

 

 

The animal keepers of the FLI for their dedicated and professional work. 

 

 

M. Eschbaumer, Dr. S. Blome and K. Mischkale for their proof-reading. 

 

 

All colleagues working in the NRL BHV-1, NRL EIA, NRL BT and NRL CSF for 

modelling a friendly and motivating environment: technical support and discussions 

accompanied with pleasurable distraction – all in its proper time. 

 

 

My family, friends, friend for their encouragement and support at any time, in any way 

– my parents and Jig a special one.  

 

 


