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Abstract

Efficient and safe protein nanoparticles for the targeted delivery of small molecule, protein 

and oligonucleotide based drugs will play a key role in the field of science in the upcoming 

years. Whereas viral and liposomal formulations have been extensively tested throughout the 

last two decades, their inherent and in the case of viruses sometimes even fatal obstacles not 

seldom seem impossible to conquer. The time for the development of a new therapeutic 

option in form of an advanced drug delivery system within pharmaceutical technology, 

biopharmacy and clinical studies has come. In our eyes gelatin based nanoparticles with 

polysaccharide and peptide modifications are an optimum to fulfil this need and will therefore 

be the center of the research presented in this work.

Basically, nanoparticles with a size from 150 to 300 nm were prepared by desolvating a 

clear solution of gelatin through dropwise addition of an organic anti-solvent under heavy 

stirring. A subsequent destabilization of the water soluble protein chains resulted in round 

particles with a homogenous size distribution and an even surface. 

Initially, the polymers used for the formulation of the nanoparticles were characterized by 

such methods like asymmetric flow field-flow fractionation and nuclear magnetic resonance 

spectroscopy. Furthermore, established measurement and calculation algorithms were revised

into state-of-the-art technology and applied as so called automatic microviscosimetry for in-

depth protein analysis. The development of novel nanoparticle formulations based on these 

polymers was done in a second step using diethyl-amino-ethanol-dextran, polysorbate and

polyethylene glycol, as well as methylation and acetylation chemistry. While the modified 

dextran mainly increased the zeta potential of the nanoparticles, the other modifications were 

intended to change the pharmacokinetic distribution patterns towards e.g. prolonged 

circulation times.

In novel nanoparticle cytology science the use of a flow chamber device for cell cultivation 

allowed us to study the interaction patterns of nanoparticles with adherent cells under near to 

physiological conditions simulating blood vessels, junctions and shear stress. This in-vitro

model can be used for online preclinical and high-throughput screenings of new nanoparticle 

and protein formulations with cell monolayers. The hindrances in traditional static cell culture 
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models were shown to be overcome by comparing several nanoparticle formulations in a 

static and in a flow model.

Proper nanoparticle formulations were tested further in innovative preclinical in-vivo

models like the hamster dorsal skin fold chamber and the mouse cremaster model to elucidate 

their body distribution and targeting properties with a focus on kinetics, blood cell interaction 

and novel fluorescence detection techniques. In addition, the potential of gelatin nanoparticles 

as therapeutic options in a model for antigen induced arthritis was demonstrated.

Finally, hybrid (sandwich) nanoparticles were formulated by combining gelatin nanoparticle 

preformulations with the endosomolytic peptide Melittin from bee venom and loading them 

with small interfering RNA molecules against VEGFR2 and luciferase. The novel hybrid 

carriers were extensively tested in cell cultures towards their efficiency to induce a protein 

knock-down based on RNA interference. With these results the door for further, more 

profound in-vivo studies in the field of oncology might be opened.

Keywords: Gelatin nanoparticle, drug delivery, RNA interference, siRNA technology, 

proteomics, oncology therapy, preclinical kinetic modelling, multifunctional nanocarriers
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1 General Introduction 

1.1 Endothelial related diseases

What Robert Langer almost 20 years ago so anticipatorily called an explosion in research 

output has now become a downright supernova aimed at creating new drug delivery systems

[Langer, R. 1990]. Especially in those many new therapeutic fields related to angiogenesis, 

including cancer, and vessel related diseases, new unthought-of options are being explored 

and more and more room is given to nanotechnology and its preclinical research. With a 

simulation and a better understanding of their kinetics, nanoparticles as drug carriers may 

revolutionize therapy. Excessive angiogenesis, which is understood as the formation of new 

blood vessels from pre-existing ones [Rubanyi, G. M. 2000; Wikipedia 2009], correlates with 

a multitude of poorly treatable diseases, of which many can be solely found in western 

industrial nations. Among these are for example rheumatoid arthritis, arteriosclerosis, multiple 

sclerosis and psoriasis [Folkman, J. et al. 1987; Harris, E. D. 1990; Folkman, J. 1995]. Also, 

age related macular degeneration, where a local expansion of blood vessels may interfere with 

the physiological conditions, belongs into this field of therapeutic needs. Even in cancer, 

angiogenesis is postulated to be part of a central process in supplying tumor cells with 

nutrients and oxygen, and to foster metastasis [Uyttendaele, H. et al. 1996; Risau, W. 1997; 

Wissmann, C. et al. 2006; Baluk, P. et al. 2008]. Where traditional medications are either not 

an option or fail to ameliorate a disease, gene silencing by a mechanism called RNA 

interference (RNAi) offers new opportunities as the treatment of lung diseases such as lung 

cancer, cystic fibrosis, respiratory syncytial virus (RSV) and severe acute respiratory 

syndrome (SARS) has already shown. Hence for fighting such diseases, characterized by 

either poor or abnormal vascularization, combining the target “angiogenesis” with the rather 

futuristic but real principle of RNA interference is the right way to go.

The modern clinical application of angiogenesis can be divided into pro-angiogenic therapy 

and anti-angiogenic therapy; reviewed in [Carmeliet, P. 2005; DeWitt, N. 2005; Ferrara, N. et 

al. 2005; Greenberg, D. A. et al. 2005]. While pro-angiogenic therapies are being investigated 

as options to treat cardiovascular diseases, anti-angiogenesis is the process where our 

approach based on RNAi plays the vital part. From a molecular point of view, the targets for 
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anti-angiogenic therapy are in many cases proteins, e.g. tubulin [Rothmeier, A. S. et al. 2009], 

including several growth factors of which an overview is shown in Table 1.1

Table 1.1

List of stimulators of angiogenesis as potential targets for anti-angiogenic therapy

Stimulator Mechanism

FGF Promotes proliferation & differentiation of endothelial cells, smooth muscle 
cells and fibroblasts

VEGF Affects permeability

VEGFR and NRP-1 Integrates survival signals

Ang1 and Tie2 Stabilizes vessels

PDGF (BB-homodimer) and PDGFR Recruits smooth muscle cells

TGF-β, Endoglin and TGF-β receptors Increases the extracellular matrix production

MCP-1 Unknown

Integrins αVβ3, αVβ5 and α5β1 Binds matrix macromolecules and proteinases

VE-cadherin and CD31 Endothelial junctional molecules

Ephrin Determines the formation of arteries or veins

Plasminogen activators Remodels extracellular matrix, releases and activates growth factors

Plasminogen activator inhibitor-1 Stabilizes nearby vessels

Of these growth factors, VEGF and its receptor VEGFR2 have been identified as major 

contributors to angiogenesis by increasing the number of capillaries in the vascular network

[Goto, F. et al. 1993]. In the presence of VEGF endothelial cells will more likely proliferate 

and show signs of tube-like structures that resemble capillaries [Prior, B. M. et al. 2004].

Eventually binding of VEGF to VEGFR2 draws a cascade of reactions after it, starting from 

tyrosine kinase activation to the production of eNOS, bfGF, ICAMMs, VCAMs and matrix 

metalloproteinases (MMPs) (Figure 1.1). As a consequence, this depicted complexity has to 

be taken into close consideration for any VEGFR2 related targeting.
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Figure 1.1
The VEGF family of ligands and their respective binding patterns to the VEGFRs are shown at the top. VEGFR-

1 and neuropilin-1 (NRP-1) are mainly expressed in blood vascular endothelial cells (ECs), VEGFR-3 and NRP-

2 in lymphatic ECs, and VEGFR-2 occurs in both cell lineages. VEGFR-2 is thought to be the main signal 

transducing receptor, as it activates several downstream signalling molecules (circles), and induces responses 

such as cell proliferation, migration and survival. VEGFR-1 signalling is not fully understood. The protein 

kinase C (PKC)-mediated MEK/ERK pathway mainly produces proliferation signals, in contrast to activation of 

the PI3-kinase/Akt pathway, which is important in regulating cell survival. Focal adhesion kinase (FAK) and 

PI3-kinase have also been implicated in cell migration by stimulating the reorganization of actin and recruitment 

of actin-anchoring proteins to the focal adhesions. VEGF-C and VEGF-D are ligands for VEGFR-3, and they 

can induce LEC survival, migration and growth via activation of the MEK/ERK and PI3-kinase/Akt pathways. 

Adopted from [Karkkainen, M. J. et al. 2002]

Endothelial cells form the inner monolayer of blood and lymphatic vessels throughout the 

entire circulatory system. Besides their above described function in angiogenesis, endothelial 
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cells play a role in inflammation, arteriosclerosis, blood clotting and vasoconstriction. At 

present, the most advanced targets of anti-angiogenic molecules are those growth factors and 

their receptors that drive vessel development. However, these factors also play crucial 

physiological roles and their inhibition can lead to heavy side effects, raising the need for 

more specific targets [Di Paolo, D. et al. 2008]. Either way, the expenditures for endothelial 

or angiogenic related diseases if not treated appropriately with new biopharmaceutics will 

have a strong macroeconomic impact as shown in a study from the Milken Institute (Santa 

Monica, USA) and raise the demand of society for cost-effective, efficient products with a 

short time to market (Figure 1.2).

Figure 1.2

Treatment expenditures (direct costs) in cancer for both the baseline and optimistic scenarios 

through 2023 in the United States. The baseline course is the path we are currently on and the 

optimistic course is possible if moderate changes toward prevention and screening are made.

Adopted from http://www.chronicdiseaseimpact.com/ebcd.taf?cat=disease

Fortunate enough, over 100 years ago early pioneers of endothelial related research 

observed that the growth of tumors is often related to an increased vascularity. In this context 

the vasculature in the whole cancer area is part of the central disease principle (reviewed in 

[Ferrara, N. 2002]). In 1971, scientists hypothesized that the idea of antiangiogenesis would 

be effective to treat cancer and an active search for angiogenesis inhibitors began [Folkman, J. 

1971]. In 2004, the US Food and Drug Administration (FDA) approved Bevacizumab, a 

http://www.chronicdiseaseimpact.com/ebcd.taf?cat=disease
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humanized anti-VEGF-A monoclonal antibody, for the treatment of metastatic colorectal 

cancer in combination with 5-fluorouracil-based chemotherapy regimens [Hurwitz, H. et al. 

2004]. This followed from a phase III study showing a significant survival benefit. Also in 

2004, the FDA approved Pegaptinib, an aptamer that blocks the 165 amino-acid isoform of 

VEGF-A, for the treatment of the wet (neovascular) form of age-related macular degeneration 

(AMD) [Gragoudas, E. S. et al. 2004].

Delian and Eichhorn then summarized, that an anti-vascular treatment regimen for clinical 

use, including both anti-angiogenesis and vascular targeting, has the following theoretical 

advantages compared to conventional cytotoxic chemotherapy directed against malignant

tumor cells [Eichhorn, M. E. et al. 2004]:

(a) It is not restricted to a certain histologic tumor entity as all solid tumors 
depend on angiogenesis.

(b) The tumor microvasculature is well accessible to systemic treatment. In 
contrast to chemotherapy no endothelial barrier has to be crossed by the 
therapeutic substances.

(c) In contrast to the blood supply in organs every single tumor microvessel 
has to supply up to hundreds of critically dependent tumor cell layers. For that 
reason, anti-vascular therapy is potentially very effective.

(d) Angiogenesis in adult organisms is only induced under certain physiologic 
conditions, e.g. during the reproductive ovarian cycle or wound healing. An 
antagonism of angiogenesis is therefore a highly selective therapy promising 
less serious side effects.

(e) The endothelial cell as a target is genetically stable and therefore 
suggested to be less prone to the development of drug resistance.

While antiangiogenic therapies have been evaluated in the clinic for over 8 years and the 

first clinical phase III studies have already been completed in the year 2003, there is in 

comparison to cytotoxic drugs very little clinical experience with combinations of vascular 

targeting agents like nanoparticles and the novel therapeutic mechanism of RNAi.
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1.2 siRNA and the principle of RNA interference

RNA interference as a novel mechanism in biomolecular science

RNA interference is the process whereby doublestranded RNA (dsRNA) induces the 

sequence-specific targeting and degradation of homologous messenger RNA. The decisive 

factor in this case is the interaction with a protein termed the RNA-induced silencing complex 

(RISC) [Chiu, Y.-L. et al. 2004]. The dsRNA applied for RNAi is called siRNA and is 

composed of 21-23 nucleotides (nt) [Hammond, S. M. et al. 2001; McManus, M. T. et al. 

2002].

When exposed to foreign genetic material (e.g. RNA or DNA), many organisms mount 

highly specific counter attacks to silence the invading nucleic-acid sequences before these can 

integrate into the host genome or subvert cellular processes. At the heart of these immunity 

mechanisms is the double-stranded RNA. Interestingly, dsRNA does more than helping to 

defend cells against foreign nucleic acids – it also guides endogenous developmental gene 

regulation, and can even control the modification of cellular DNA and associated chromatin. 

In some organisms, RNA interference (RNAi) signals are transmitted horizontally between 

cells and, in certain cases, vertically through the germ line from one generation to the next

[Mello, C. C. et al. 2004]. The breakthrough observation by [Fire, A. et al. 1998] that dsRNA 

is a potent trigger for RNAi in the nematode Caenorhabditis elegans was important because it 

immediately suggested a simple approach for efficient induction of gene silencing, and 

accelerated the discovery of a unifying mechanism that underlies a host of cellular and 

developmental pathways. 

In the above mentioned studies and many more that followed, dsRNA proved to be an 

extremely potent activator of RNAi – at least 10-fold and perhaps 100-fold more effective 

than purified preparations of singlestranded RNA. Those mentioned effects of siRNA are 

transmitted through a genetically conserved pathway [Denli, A. M. et al. 2003].
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Figure 1.3

The 2006 Nobel Prize winners Craig Mello (left) and Andrew Fire (right) “for their discovery 

of RNA interference - gene silencing by double-stranded RNA”

In a short period of time and augmented by the Nobel Prize in 2006 (Figure 1.3), RNAi has 

become a popular tool to knock out specific genes in many species and even in mammalian 

cells [Novina, C. D. et al. 2004]. The discovery that synthetic double-stranded RNA 

sequences (siRNA) of 21-23 nucleotides can surrogate in this process and have the potential 

to specifically downregulate gene function in cultured mammalian cells has now opened the 

gateway to applications of the RNAi concept in functional genomics programs and in many

therapeutic applications [Elbashir, S. M. et al. 2001].

To invoke RNAi-mediated gene silencing in human cells, duplex siRNA first needs to be 

transfected into cells. Once inside the cell, siRNA duplexes undergo 5’ phosphorylation, are 

unwound, and associate with the RNA-induced silencing complex (RISC) [Nyk�nen, A. et al. 

2001; Chiu, Y.-L. et al. 2002]. Activated RISC (RISC*) and the unwound antisense strand

which is complementary to the target mRNA, then interact with the target mRNA (Figure 

1.4). Single site-specific cleavage of the target mRNA then occurs, with the cut position 

defined with reference to the 5’ end of the siRNA antisense strand [Hammond, S. M. et al. 

2000]. Once cleavage has occurred, target mRNA is degraded and RISC is recycled for 

another cleavage reaction [Hutvagner, G. et al. 2002]. Therefore a particularly fascinating 

aspect of RNAi is its extraordinary efficiency [Kennerdell, J. R. et al. 1998]. Conversion of 

the long trigger dsRNA into many 21 to 23 nt siRNA fragments would itself provide a high 

degree of amplification. Another plausible explanation for the potency of interference is that 

the RISC* is a multiple-turnover enzyme, which can catalytically perform the targeting and 

cleavage activity [Chiu, Y.-L. et al. 2002].
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Figure 1.4

siRNA synthesis and RNA interference mechanism adopted from http://www.alnylam.com

Because of its effectiveness in silencing specifically targeted genes, RNAi is a mechanism 

that is being exploited for a variety of laboratory applications and from the recent point of 

view also for future clinical therapeutics. Due to the broad potential applications of RNAi in 

biology and medicine, it is important to understand the mechanisms of RNAi well and to 

develop new solutions for a successful delivery of siRNA to the target cells.

http://www.alnylam.com
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Similarities and differences between antisense oligonucleotides and siRNA

Before the discovery of RNA interference, antisense oligonucleotides were the primary 

tools for targeted gene silencing; however, they have been shown to cause significant non-

specific effects [Stein, C. A. 1995; Cho, Y. S. et al. 2001; Fisher, A. A. et al. 2002]. In 

particular, their affinity for cellular proteins has been shown to cause significant 

complications in interpreting gene silencing effects [Brukner, I. et al. 2000]. Even though 

such complications are theoretically possible with siRNA either, little evidence can be found 

in the literature. 

In a growing number of scientific studies siRNA has been proposed and already even been 

used as a future agent and alternative to antisense oligonucleotides for the treatment of 

numerous diseases such as cancer and other disorders, some of which are even based on 

genetic dysfunction [Kim, S. H. et al. 2006]. Synthetic siRNA and antisense oligonucleotides 

share many common features but there are also important differences that become relevant in 

the technological formulation process development (Table 1.2). For instance siRNA has 

gained greater acceptance in two years than traditional antisense oligonucleotides achieved in 

twenty because it is relatively easy to apply the technique successfully once a delivery vehicle 

has been found. 

Another reason for the rapid adoption of siRNA is that research aimed at optimizing 

traditional antisense oligonucleotides has already solved many important problems. For 

example, cellular uptake of oligonucleotides is a major obstacle for the efficient gene 

inhibition inside cells and difficulties in tranfecting cells with antisense oligonucleotides 

seriously threatened the field [Hogrefe, R. I. 1999]. However, by the time siRNA appeared, a 

wide variety of efficient delivery systems for nucleic acids had been developed and was

commercially available. In addition, researchers using traditional antisense oligonucleotides 

had already described potential pitfalls and developed criteria for the essential control 

experiments needed to produce convincing results [Crooke, S. T. 2000]. While from a 

theoretical point of view a lot of know-how is available for antisense technology, the real 

advantages of double-stranded siRNA come along with delivery, loading of carriers, 

endosomal release and preclinical in-vitro and in-vivo studies.
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Table 1.2

Similarities and differences of siRNA vs. antisense oligonucleotides

Similarities Differences

Short (~20 bases) nucleic acids Two strands for siRNA, one strand for 
antisense oligonucleotides

Common methods for delivery to 
cultured cells

Unmodified duplex RNA is more stable than 
unmodified single-stranded RNA or DNA

Induce post-transcriptional gene silencing 
by targeting mRNA

Effects of siRNA mediated by the RISC 
complex

siRNA and many antisense 
oligonucleotides cause mRNA cleavage

Antisense oligonucleotides act by activation 
of RNAse H or steric inhibition

Similar biodistribution profiles

Properties can be altered by 
introducing modified bases

Rapid and widespread adoption of siRNA 
among biomedical researchers [Paroo, Z. et 
al. 2004]

siRNA chemistry and modifications

Unlike single-stranded RNA, duplex RNA is quite stable and does not require chemical 

modifications to achieve a satisfactory half-life in cell culture media [Braasch, D. A. et al. 

2003]. In addition, reduced need for chemical modifications lowers toxicity to cells [Hough, 

S. R. et al. 2003]. The structural integrity of siRNA duplex highly affects RNAi-mediated 

gene silencing efficiency [Braasch, D. A. et al. 2003; Prakash, T. P. et al. 2005]. It was 

reported that chemical modification of siRNA reduced the corresponding RNAi activity from 

10 % to 50 % depending on where it was structurally altered and also elicited cellular toxicity 

to some extent [Amarzguioui, M. et al. 2003; Kim, S. H. et al. 2006]. 

For pharmaceutical technological developments based on siRNA it is important to notice

that, in contrast to pDNA, siRNA cannot condense into particles of nanometric dimensions, 

being already a small subnanometric nucleic acid [Spagnou, S. et al. 2004]. Therefore, 
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electrostatic interactions between siRNA and a cationic particle pose two potential problems: 

(1) a relatively uncontrolled interaction process leading to particles of excessive size and poor 

stability and (2) incomplete encapsulation of siRNA molecules, which thereby exposes 

siRNA to potential enzymatic or physical degradation prior to delivery to cells. Further 

research indicates that nanoparticular transfected siRNA is located distinctly perinuclear and 

does not leave this compartment [Chiu, Y.-L. et al. 2004], which is a key factor for high 

efficiency and has a to be taken into consideration during formulation development.

Expectations put into this new mechanism in the therapeutic field

In 2001, Tuschl and co-workers demonstrated sequence-specific repression of target-gene 

expression using synthetic siRNA duplexes in mammalian cells, causing rapid adoption of the 

technology by researchers [Elbashir, S. M. et al. 2001]. From that point on, it became the 

distinct goal to develop RNAi from the laboratory bench to the patient’s bedside.

1.3 RNA interference in research and therapy

Virtually any messenger RNA (mRNA) for whatever protein linked to a certain disease can 

be silenced using the right siRNA sequence. However, one of the greatest challenges today 

remains finding a way for the successful in-vivo delivery. A transition of theory from the 

laboratory into clinical trials is hence still far from near. Only a number of approaches for 

delivering siRNA have recently been explored: one approach was to deliver DNA or RNA 

templates encoding siRNA sequences to cells that can then be transcribed to express siRNA

[Shi, Y. 2003]. These DNA- and RNA-based methods of siRNA expression rely on plasmid 

or viral vectors for delivery and require a transfection, a stable vector integration, and 

selection for maintenance of expression through generations [Lee, N. S. et al. 2002; Paddison, 

P. J. et al. 2002; Paul, C. P. et al. 2002; Shen, C. et al. 2003].

Other successful methods focus on the direct delivery of siRNA into cells, whereby fidelity 

in cellular uptake of siRNA is the key to successful RNAi using this approach. Currently, the 

most often used method for siRNA delivery is Lipofectamine� transfection [Dalby, B. et al. 

2004]. However this strategy is limited to specific cell types, and this procedure - with 

properly designed and reviewed studies still missing - could be toxic to cells and animals



General Introduction

14

[Ohki, E. C. et al. 2001]. Newer strategies include experiments to deliver siRNA using a 

TAT-peptide as an uptake-enhancer [Chiu, Y.-L. et al. 2004] or sophisticated viral or non-

viral carriers. In summary, research on the delivery of siRNA is itself at a quite preliminary 

level. For instance, despite the widespread use of cationic liposomes/lipid systems to deliver 

plasmid DNA and oligodinucleotides to cells, there has been very little reported in the 

literature concerning the formulation of siRNA in such vehicles [Spagnou, S. et al. 2004]. To 

say it with the words of Steve Dowdy, Ph.D., investigator at Howard Hughes Medical 

Institute, and professor at the Department of Cellular and Molecular Medicine at the 

University of California, San Diego (UCSD):

“The beauty of the siRNA is that you can knock down multiple targets at the same time. So, it 

looks quite promising,” he adds. In addition, he believes that, in the next five years, there will 

be a much wider variety of delivery approaches because one delivery approach won’t solve 

the problem for every disease. “RNAi has great potential - more potential than any drug 

regimen we have come up with.” [Flanagan, N. 2009]

Evidently there is not much doubt that RNAi has quickly advanced from the initial 

discovery to a key tool in today’s research, and by the same time become one of the most 

promising therapeutics with the potential to change the future of medicine. Within in Big 

Pharma’s recent purchasing activities is GlaxoSmithKline to sign a $600 million collaboration 

with Regulus. Alnylam has milestone deals from $700 million to more than $1 billion with 

Novartis and Roche. Merck bought Sirna Therapeutics for $1.1 billion. Nothing can reflect 

the faith into this new technology better than such transactions [Flanagan, N. 2009].

1.4 Viral and non-viral gene delivery

The primary challenge in gene therapy is to develop a method that delivers a therapeutic 

gene to selected cells where proper gene expression can be achieved. An ideal gene delivery 

method needs to meet three major criteria: first it should protect the transgene (RNA or DNA)

against degradation by nucleases in intercellular matrices, secondly it should bring the 

transgene across the plasma membrane and into the nucleus of target cells, and thirdly it 

should have no detrimental effects on the cell viability [Gao, X. et al. 2007].
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Viral gene vectors

Viral vectors that have found clinical interest are either retrovirus (e.g. HIV, FIV or EIAV)

or adenovirus based. The whole family of retroviruses is a class of enveloped viruses, the 

genome of which is contained in a single stranded RNA molecule of 10 kb. After penetrating 

into the cell, its genome is reversely transcribed into dsDNA and integrated into the host 

genome. Unfortunately, transgene expression has been reported to be reduced by 

inflammatory interferons [Ghazizadeh, S. et al. 1997]. Furthermore, retroviruses are 

inactivated to an extent by two elements in human sera in-vivo, the c1 complement protein 

and an anti-alpha galactosyl epitope antibody, the latter thought to provide a species barrier 

for the horizontal transmission of retrovirus [Rollins, S. A. et al. 1996]. Notably, lentiviral 

vectors, a species within the retroviridae family, represent an efficient system for both somatic 

and germ-line transduction because of their ability to transduce non-dividing cells, because 

they can pass through the intact membrane of the nucleus of the target cell. Furthermore 

immune responses to lentiviruses have not yet been reported. A major advantage of the 

lentiviral gene delivery system is also that transgenes expressed from lentiviruses are not 

silenced during development and can be used to generate transgenic animals through infection 

of embryonic stem cells or embryos [David, P. 1998; Janas, J. et al. 2006; Morris, K. V. et al. 

2006]. Adenoviruses finally are among the most commonly used vectors for gene therapy, 

second only to retroviruses. 

The acute immune response, immunogenicity, and insertion mutagenesis uncovered in gene 

therapy clinical trials have raised serious safety concerns about some commonly used viral 

vectors [Monahan, P. E. et al. 2002]. The limitation in the size of the transgene that 

recombinant viruses can carry and issues related to the production of viral vectors present 

additional practical challenges.

Non-viral gene vectors

With non-viral transgene delivery vehicles scientists seek to bypass the virus related 

hurdles. Non-viral vectors include cationic lipids, polymers, dendrimers, and peptides. 

Recently, gas filled lipidic monolayer bubbles called microbubbles have stepped in, offering 

another promising and efficient new way of gene transfer [Bekeredjian, R. et al. 2007; 

Tinkov, S. et al. 2009]. These gene delivery vectors do not have the typical limitations in the 
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size of the genetic material as viral vectors. Also, in contrast to viral delivery systems, non-

viral carriers do not have the inherent selectivity of cell surface binding and internalization 

(called tropism) and in addition the intracellular route of the transgene is more efficiently 

directed [Amiji, M. 2004]. In general, non-viral systems have been investigated even more 

intensively since a lethal complication occurred in a virus-based gene therapy trial and 

leukaemia incidents after gene therapy of children with X-linked severe combined immune 

deficiency using a retroviral gene therapy vector [Ferber, D. 2001; Kohn, D. B. et al. 2003].

So in fact, there are serious unsolved problems related to gene therapy. Besides the effective 

integration of the therapeutic genes into the genome, reducing the risk of an undesired 

immune response, inflammatory response, toxicity and oncogenesis related to the viral vectors 

is a vital part in the upcoming research. Apparently there is also another serious obstacle that 

the injection of a single gene may not be sufficient in diseases caused by variations in many 

genes like high blood pressure or heart disease. Nanoparticles, and therefore non-viral gene 

carriers as shown in this thesis, shall be presented as a safe and efficient solution to those 

above mentioned obstacles.

1.5 Nanoparticles: definitions, history and current state of 
knowledge

Nanoparticles were initially meant to be used as carriers for vaccines and anticancer drugs

but also for diagnostic purposes [Marty, J. J. et al. 1978; Couvreur, P. et al. 1979]. Later on, in 

order to enhance the tumor drug uptake, the strategy of drug targeting with nanoparticles – as 

suggested by Paul Ehrlich a century ago – came in handy, with a first focus on the 

development of methods for reducing the uptake of the nanoparticles by the cells of the 

mononuclear phagocytosis system (MPS) [Illum, L. et al. 1987]. Nanoparticles can be 

formulated from inorganic materials like TiO2 [Sugimoto, T. et al. 2003] and gold [Paciotti, 

G. F. et al. 2004] or from organic polymers either from a synthetic, semi-synthetic or natural 

origin. Many early studies used human serum albumin and poly-lactic-co-glycolic acid as 

materials for nano- and microparticle formulation [Tomlinson, E. et al. 1987; Gupta, P. K. et 

al. 1989; All�mann, E. et al. 1993]. Gelatin nanoparticles proposed and developed by Marty et 

al. [Marty, J. J. et al. 1978] and Kreuter et al. [Kreuter, J. 1983] and later improved by our 

research team [Coester, C. J. et al. 2000; Zillies, J. et al. 2004; Zwiorek, K. et al. 2004]
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indicated a milestone in the formulation of widely applicable biodegradable nanoparticles for 

drug delivery. These nanoparticles possess certain advantages over the hitherto prevalent 

liposomal delivery systems, such as a greater stability during storage, stability in-vivo and 

ease of scale-up during manufacture. Non-biodegradable matrices are possibly ideal for 

mechanistic studies in in-vivo models but might hardly get regulatory approval for in-vivo use 

in humans other than for diagnostic purposes because of unclear side-effects due to tissue 

persistence and formulation complexity. By now, one can already find studies on the 

controlled release from nanoparticles and targeting with promising results [Wan, W. K. et al. 

2007] that are summarized and highlighted in two seminal reviews from Kim Park [Park, K. 

2007] and Patrick Couvreur et al. [Brigger, I. et al. 2002].

The evolutionary stage at which nano-formulations are at the moment is reflected in an 

excerpt from the clinical studies database at the Food and Drug Agency (FDA) (Table 1.3).

With Doxil� liposomes and Abraxane� nanoparticles being the first colloidal formulations to 

gain approval for ovarian and various other cancers there are also cyclodextrin, further 

liposomal and gold based formulations in the pipeline of clinical phases one and two of 

pharmaceutical companies.

Table 1.3

Excerpt overview of nanoscaled formulations currently in clinical phases at the FDA

Source: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/

Source: http://www.accessdata.fda.gov/scripts/cde
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1.6 Gelatin based nanoparticles as colloidal drug delivery vectors

With a similar background in research as albumin from Abraxane�, gelatin has so far not 

been adopted by pharmaceutical companies for clinical trials. In close cooperation with 

Medigene AG (Martinsried) gelatin based nanoparticles shall be introduced into preclinical 

evaluation as siRNA delivery systems. Gelatin is a widely spread protein in food and in

pharmaceutical preparations. Gelatin can be produced by two different processes which 

comprise either an acid hydrolysis or a base hydrolysis of porcine or bovine skin bulk. The 

properties of the final gelatin depend on exactly this manufacturing method, its origin (bovine 

or pig), the type and quantity of amino acids, and the molecular weight. With its inherent 

properties, gelatin can be seen as advantageous to other biopolymers available for 

nanoparticle formulation. Besides being abundantly available, gelatin also reflects a relatively 

tolerable antigenicity [Schwick, H. G. et al. 1969] and formulation scientists already provide 

over a significant experience in the use of gelatin in parenteral formulations [H�ssig, A. et al. 

1969]. The preparation of gelatin nanoparticles by desolvation was first described in 1978

[Marty, J. J. et al. 1978]. However, his method turned out to be rather unsatisfactory for 

routine nanoparticle formulations due to aggregation and other colloidal instability issues. 

Truong-Le et al. in an attempt to formulate gelatin/DNA complexes employed sodium 

sulphate as a desolvating reagent to facilitate phase separation by influencing the degree of 

hydration of the two ionic species (DNA and gelatin) and thus increasing the degree of inter-

and intracoulombic forces between the ion pairs [Truong-Le, V. L. et al. 1999]. Various 

methods, including nanoencapsulation [Li, J. K. et al. 1998] and coacervation-phase 

separation [Yeh, T. K. et al. 2005], have been used to prepare gelatin nanoparticles. Other 

authors [Bajpai, A. et al. 2006] suggested a simple solvent evaporation technique following a 

publication of Cascone et al. [Cascone, M. G. et al. 2002]. Gelatin nanoparticles prepared by 

these methods were found to be large in size and have a high polydispersity index due to 

heterogeneity in molecular weight of the gelatin polymer compared to the two-step method 

where heterogeneous gelatin was in a way standardized to a narrow molecular weight fraction 

and thus enabling gelatin nanoparticles to be formulated reproducibly for preclinical studies.

The first really stable nanoparticles made from gelatin by using this desolvation technique 

were described by Coester et al. [Coester, C. J. et al. 2000; Coester, C. et al. 2006]. In these 

studies a new two-step desolvation method for manufacturing gelatin nanoparticles was 

established which will be the basis for further optimization within this thesis. Until now, 
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gelatin nanoparticles formulated accordingly have been extensively studied in-vitro and in-

vivo for antisense therapy of HIV [Coester, C. 2000] and the delivery of CpG oligonucleotides 

to lymph nodes for anti-tumor immunization [Bourquin, C. et al. 2008; Zwiorek, K. et al. 

2008]. The results in these studies reflect the potential of gelatin nanoparticles and at the same 

time demand further studies.

1.7 Body distribution of nanoparticles

Peppas et al. [Owens, D. et al. 2006] stated in their review that the study of nanoparticles 

and their opsonization is a very active and developing area of research. Even though the 

proteins and blood components involved in this process are roughly known, the mechanism 

by which they activate specific cellular responses and interact with nanoparticles is not fully 

understood. Additionally, multiple cell lines and animal models need to be studied to better 

understand these mechanisms and propose realistic solutions. Systemically administered 

nanoparticles are rapidly cleared from the blood by a complex process of opsonization and 

elimination, which is started by complement activation and a preferred uptake of the 

nanoparticles by the macrophages of the mononuclear phagocyte system (MPS) and its 

respective main organs, the liver and the spleen. In a review article, Moghimi et al. [Moghimi, 

S. M. et al. 2001] have extensively discussed the development and applications of especially

long-circulating and target-specific nanoparticles.

There are various factors that influence the degree of long circulation. These include the 

nature of the polymer used, the length of the hydrophobic anchor, the polymer molecular 

weight (energy of molecular motion), and the amount of the protective polymers on the 

particle surface [Kommareddy, S. et al. 2007]. One heavily examined and often employed 

aspect to alter the body distribution and circulation of nanoparticles and liposomes is the use 

of polyethylenglycol (PEG) chains to shield the nanocarriers with a hydrophilic surface from 

interaction with blood proteins and blood cells and prevent a fast blood clearance 

[Kommareddy, S. et al. 2007]. While some researchers demonstrated pegylation of thiolated 

gelatin nanoparticles to significantly enhance the circulation time, critical scientists have 

found contradicting arguments to the PEG-effect, which they called ABC (activated blood 

clearance) phenomenon [Ishida, T. et al. 2006]. In this case pegylated liposomes were cleared 
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from the circulation very fast through IgM and C3 complement opsonization leaving the 

implementation of PEG as a general solution to body distribution problems questionable. 

Surfactant coatings of polymeric nanoparticles showed reasonable results in influencing the 

localization of nanoparticles and prolonging the circulation half-life [Illum, L. et al. 1984].

This approach was adopted in our research and used in nanoparticle kinetic investigations in-

vivo. In addition to plasma protein adsorption studies done in our group [Zillies, J. C. 2008]

the nanoparticle cell interaction in-vivo shall be studied and related to the various nanoparticle 

modifications described above. All this effort is necessary to determine the body distribution

patterns of our nanocarrier systems that are mainly influenced by particle size and surface 

properties such as charge and hydrophilicity [Crommelin, D. J. et al. 1994; Kreuter, J. 1994].

While it was our goal to keep the nanoparticle formulation as simple as possible for reasons of 

scaling up and regulatory approval, adding functionality to nanoparticle surfaces plays an 

important role in experimental science and especially when the need demands for it.

1.8 Nanoparticle modifications

Surface modifications made to GNP

In terms of surface modification towards a cationic charge needed for drug loading, 

cholamine was one of the best established molecules used by our group. Based on the 

research and optimization done by Coester [Coester, C. 2003] and Zwiorek [Zwiorek, K. et al. 

2004] 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide hydrochloride (EDC) is used in this 

method to activate the free carboxylic groups of the gelatin molecules for the covalent 

attachment of cholamine in the following step. This method allows for sufficiently high zeta 

potentials of the nanoparticles for oligonucleotide loading [Zwiorek, K. et al. 2004] but not 

for siRNA [Zillies, J. et al. 2004]. Besides the load binding, nanoparticle integrity, colloidal 

stability and cross-linking are factors where such modification is pivotal.

Core modifications made to GNP

For these reasons and based on research by Cortesi [Cortesi, R. et al. 1999] and Dhaneshwar 

[Dhaneshwar, S. et al. 2006], diethylaminoethanol modified dextran (DEAE-dextran) as a 
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permanent cationic polysaccharide came into the focus of our research. Not so much in terms 

of crosslinking the gelatin to microspheres as Cortesi or Brannon-Peppas [Kosmala, J. D. et 

al. 2000] did, but as a means of cationizing the gelatin nanoparticles above the level of 

cholamine. The idea was picked up by Gref et al. [Gref, R. et al. 2006] who formulated

nanogels between dextran and cyclodextrin using an alkyl chain based “lock mechanism”.

Besides this cationic charge, DEAE-dextran modification allows our nanoparticles to 

potentially escape the intense capture by macrophages due to a postulated dense, brush-like 

structure preventing opsonization. They should circulate in the blood stream for a longer 

period of time [Grislain, L. et al. 1983; Passirani, C. et al. 1998], which becomes relevant in 

nanoparticle in-vivo experiments.

Other biomaterials for nanoparticles

Albumin

Nanoparticles prepared by desolvation and subsequent crosslinking of human serum 

albumin (HSA) also represent promising carriers for drug delivery and were therefore part of 

this thesis. A method for the preparation of bovine serum albumin nanoparticles in the sub-

200 nm range was described by M�ller et al. [Mueller, B. G. et al. 1996]. In 1993, Lin et al. 

[Lin, W. et al. 1999] described the preparation of human serum albumin nanoparticles of 

diameter around 100 nm using a surfactant-free pH-coacervation method. Langer et al. 

[Langer, K. et al. 2003] did extensive research on the development of a desolvation procedure 

for the preparation of human serum albumin based nanoparticles under the aspect of a 

controllable particle size between 100 and 300 nm in combination with a narrow size 

distribution. The pH value of the human serum albumin solution prior to the desolvation 

procedure was identified as the major factor determining particle size. The study is based on 

an earlier work, describing a desolvation method for human serum albumin particle 

preparation and their characterization with respect to size, zeta potential and the number of 

available amino groups on their surface [Weber, C. et al. 2000]. Further studies on the 

synthesis, cationization and loading have been done in the works of Wartlick [Wartlick, H. et 

al. 2004]. Arnedo et al. [Arnedo, A. et al. 2002] adsorbed and incorporated 21-mer 

oligonucleotides on BSA-nanoparticles crosslinked with glutaraldehyde.
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Chitosan

Chitosan is the most common, naturally occurring, positively charged polymer in 

pharmaceutical use. It is a polysaccharide composed of copolymers of glucosamine and N-

acetylglucosamine. Chitosan is produced by partial deacetylation of chitin isolated from 

crustacean shells. The term chitosan is used to describe a series of chitosan polymers with 

different molecular weights, viscosities, and degrees of deacetylation (40-98 %) [Illum, L. 

1998]. Also interestingly enough, chitosan is considered to lack a toxicity response [Arai, K. 

et al. 1968; Aspden, T. et al. 1997]. Chitosan nanoparticles are produced by either an 

emulsification crosslinking process or by use of complexation between oppositely charge 

macromolecules. Ohya et al. [Ohya, Y. et al. 1994] were the first to present data involving 

chitosan nanospheres for drug delivery applications. Using a water-in-oil (W/O) emulsion 

method followed by glutaraldehyde crosslinking of the chitosan amino groups, the group 

produced nanospheres which contained 5-fluorouracil as an anti-cancer drug.

Aside from its complexation with negatively charged polymers an interesting property of 

cationic chitosan is its ability to gel on contact with specific polyanions. This gelation process 

is due to the formation of inter- and intramolecular crosslinks, mediated by these polyanions. 

Bodmeier et al. [Bodmeier, R. et al. 1989] first reported the ionotropic gelation of chitosan 

with tripolyphosphate (TPP) for drug encapsulation. 

Mumper et al. [Mumper, R. J. et al. 1998] were then the first to propose chitosan as a gene 

delivery system. The employed method generated chitosan-DNA particulate complexes. Since 

particle formation was elicited solely by the tropism of the two oppositely charged 

macromolecules for one another, these particles were termed “complexes”. The simplicity of 

chitosan-DNA complexes is both an advantage and a drawback. Though such complexes are 

extremely easy to synthesize, the fact remains that their transfection efficacy is significantly 

below that of cationic liposomes in-vitro and viral vectors in-vivo. 

To address this issue, gelatin nanoparticles with enhanced cationic charge as presented in 

this thesis were developed and examined in novel in-vitro and in-vivo models.
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1.9 In-vitro and in-vivo models

The number of methods for the visualization of nanoparticles in-vivo is limited. A. Rolland 

was able to visualize indium-111 labeled nanoparticles and determine their kinetics, which in 

his case gave a first hint of generally very quick nanoparticle elimination from the blood 

stream in the range of 3-5 minutes [Rolland, A. 1989]. There are of course new fluorescence 

based methods with microscopic read-out systems [Schmitt-Sody, M. et al. 2003; Medarova, 

Z. et al. 2007] to localize nanoparticles beyond the blood stream, however with the drawback, 

that a monitoring can only be undertaken in certain, surgically difficult to prepare observation 

areas paired with a relative low sensitivity of the detection microscope. Positron emission 

tomography (PET) and single-photon emission computer tomography (SPECT) are among the 

newer nanoparticle tracking systems [Nahrendorf, M. et al. 2008]. For example, indirect 

computer tomography was performed, after subcutaneous injection of iodinated nanoparticles 

to swine, in order to detect cancerous lymph nodes in a cutaneous melanoma model [Wisner, 

R. et al. 1996]. In essence, for a detailed understanding of the nanoparticle fate, these tools are 

still unsatisfying and prompt the major drawback of heavily modifying the nanoparticle 

system with detection moieties towards, in many cases, totally different physicochemical

properties [Gao, X. et al. 2004; Turner, J. L. et al. 2005]. Only with the new whole body 

imaging tools used in our study and described by Bartlett et al. [Bartlett, D. W. et al. 2007]

many of the present obstacles seem conquerable, narrowing a gap in investigations of gelatin 

nanoparticle pharmacokinetics.

Nanoparticle cell interaction in a novel in-vitro flow model

The cultivation and microscopic analysis of cells has been stagnating for a long long time 

whereas the demands of high resolution fluorescence microscopy and high resolution 

nanoparticle analysis have risen drastically. Fluorescence correlation spectroscopy, 

fluorescence in-situ hybridisation and confocal laser scanning microscopy are just some of 

those modern methods that are widely used today. The traditional microscopic object plate 

cannot fulfil those demands anymore. New polymer based slides need to have high optical 

properties, be permeable for gas and show a good biocompatibility.
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The new plastic flow chambers used for our nanoparticle studies unite those requirements 

and in addition do not disturb the optical measurements by meniscus forming and medium 

condensation phenomena [Horn, E. 2006]. As a preclinical evaluation tool for nanoparticles 

the flow channels when attached to a cell culture pump can even simulate human blood 

vessels [Raedler, U. et al. 2005] and will be used by us for this purpose.

Hamster dorsal skin fold

A real quantum leap in studying nanoparticles in an in-vivo setting compared to the also 

highly innovative flow-channel model described above is the so called hamster skin fold 

model. From its first description [Sandison, J. C. 1928] almost a century ago, the method of 

implanting a transparent glass cover on top of surgically opened tissue has been improved 

manifold to ensure reproducible and intact physiological conditions [Endrich, B. et al. 1980; 

Asaishi, K. et al. 1981]. With its medical background it is clear that the model has been 

mainly used for anatomical observations, vessel and blood cells analysis [Lehr, H. A. et al. 

1993] but not for the observation of nanoparticles. Krasnici et al [Krasnici, S. et al. 2003]

successfully employed the model for their studies of liposomes and demonstrated the different

effects of surface charge on the endothelium targeting properties. The model allowed for a 

real-time analysis of fluorescent nanoparticles in a physiological milieu over sufficiently long 

time periods with a focus on blood cell and endothelium interaction.

Mouse cremaster

One of the most advanced ways to study nanoparticles in an in-vivo setting is by monitoring 

them at real-time and online from the time of application to incubation durations of several 

hours. Since we wanted to change our nanoparticles as less as possible and still be able to 

monitor their in-vivo fate from the point of injection we had to come up with a model that 

would allow us to study e.g. fluorescent labeled nanoparticles in a natural vessel environment 

and while the animal was still conscious. The model that fit most to these needs was the

mouse cremaster model that was well established at the Walter-Brendel-Center in Munich for 

toxicological research but never before had been used to study polymeric nanoparticles in-

vivo. Since the experiments with the hamster skin fold model was prone to accumulate a high 

percentage of nanoparticles in the lung and liver tissue before even one single signal could be 

detected, the advantages in the surgical and anatomical setup of the musculus cremaster 
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model was beneficial to our experiments. The first pass effect to the liver and lung are

bypassed during the first circulation of the nanoparticles allowing for a fluorescence signal 

detection right after application of the sample into the blood flow and check for aggregation 

phenomena and endothelial cell membrane targeting. 

Whole body imaging 

In order to optimize our experimental treatment strategies, a method for non-invasive 

detection of fluorescent nanoparticles or fluorescent siRNA molecules had to be found. At 

present, reports of the in-vivo imaging of fluorescent gelatin nanoparticles loaded with siRNA 

in target tissue are limited and in most cases based only on ex-vivo studies. Based on technical 

reporting from Medarova et al. [Medarova, Z. et al. 2007] and in close cooperation with 

Professor Ernst Wagner, Ph.D. and Manfred Ogris, Ph.D. (LMU Munich), an in-vivo live 

imaging tool became available. Studies of the nanoparticle and siRNA distribution under 

normal physiological conditions over a long time period allow us to monitor the nanoparticle 

fate at an unprecedented resolution as reported in a review from Rao et al. [Rao, J. et al. 2007]

Overall, this new approach could help in advancing the understanding of targeted siRNA 

delivery with nanoparticles towards therapy.

1.10 Barriers to gene transfer

Every biological level of organization presents a unique set of barriers to the delivery of 

therapeutic agents [Jabr-Milane, L. et al. 2008]. Considering these barriers, the traditional 

focus of drug delivery systems has been the optimization of pharmacokinetics and 

biodistribution [Ferrari, M. 2005]. With biological research progressing, new comprehensive 

strategies such as the use of nanoparticles have emerged. Due to their unique properties of 

nano-scale matter, the diversity of the materials and infinite design schemes, nanoparticles are 

the ideal platforms for achieving barrier bypassing. Whenever a viral or non-viral carrier 

system is employed for the delivery of genes to a cell it faces several levels of hindrances

before reaching the cytoplasm or nucleus of choice with an intact payload. As learned above

(refer to 1.3 RNA interference in research and therapy), in the case of RNAi there is no need 

for delivering the siRNA to the nucleus and overcoming the nucleic membrane because the 

mechanism takes place in the cytoplasm of the cell.
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“The rate-limiting problem is how you get the small RNA into a cell. Some cells and tissues 

will readily take up the RNAs by endocytosis; most will not. The bigger problem is, how do 

you target deep tissues or circulating cells?” [Perkel, J. M. 2007].

Generally spoken, all carrier systems developed until today face one or more drawbacks in 

their application route that eventually leads to a decreased transfection efficiency. These 

barriers shall be described next and their impact on the transfection results will be evaluated. 

We will highlight those cases, where researchers have made a significant progress in 

overcoming these barriers successfully. The major difference of viral and non-viral carriers is

that viral carriers in many cases already have the perfect toolkit to protect the load in the 

circulation and to enter many different cell types unhindered. Non-viral carriers only try to

mimic this optimal behaviour at their best. Viral carriers are therefore much less susceptible to 

the following barriers than non-viral carriers like nanoparticles, liposomes or dendrimers. The 

series of barriers to efficient non-viral gene delivery includes (1) the physical and chemical 

stability of the DNA or siRNA and the delivery vehicle in the extracellular space, (2) cellular 

uptake by endocytosis, phagocytosis or – recently discovered – a caveolae mediated uptake, 

(3) escape from the endosomal compartments before lysosomal activation, (4) cytosolic 

transport and (5) for DNA nuclear localization of the plasmid for transcription [Wiethoff, C. 

et al. 2003]. These barriers are mainly of physical and chemical nature, whereas biological 

obstacles can be observed as well. Effective delivery of siRNA to the site of action is hindered 

by biological barriers e.g. bifurcations in the lung, mucociliary clearance, lung surfactant etc. 

[Thepen, T. et al. 1994; Jeffery, P. K. et al. 1997]. In morphological studies at electron 

microscopic level positively charged lipoplexes or polyplexes adsorbed to the negatively 

charged plasma membrane, followed by a clathrin-dependent endocytosis. Especially direct 

fusion with the cell membrane or fluid phase endocytosis may contribute to the uptake

[Meyer, K. et al. 1997; Clark, P. R. et al. 1999]. Larger particles enter the cell by receptor-

and clathrin-independent endocytosis while the smaller ones (< 200 nm) can be internalized 

via coated pits [Simoes, S. et al. 1999]. In the case of lipid based nanocarriers, regardless of 

the precise mechanism of membrane disruption, only few internalized lipoplexes reached the 

cytoplasm, while the rest was degraded within in the endo-lysosome [El Ouahabi, A. et al. 

1997; Hasegawa, S. et al. 2001]. CpG containing DNA strands for example can induce an 

immune response, wanted or unwanted, and also the carrier itself can be responsible for an 

immunogenic reaction [Yew, N. S. et al. 1999; Scheule, R. K. 2000; Ruiz, F. E. et al. 2001].
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An optimisation of the above mentioned points seems detrimental for any efficient gene 

delivery approach. When it comes to evaluating the extracellular stability of the loaded gene 

carrier one has to take into account on the one hand the susceptibility of DNA and RNA 

against all types of nucleases and on the other hand the physical and colloidal stability of the 

carrier. While the rapid nucleotide degradation can be overcome by choosing the right carrier 

with protective properties or by modifying the nucleotide towards a stealth nucleotide, which 

is less reactive with nucleases and passes underneath its radar of detection [Li, S. et al. 1999; 

Roger, C. A. et al. 1999; Yongsheng, Y. et al. 2001], recent findings also indicate that the 

colloidal stability of the non-viral vectors has been underestimated to a large extend. Though 

many carriers are used at an elevated cationic charge that would stabilize the system in-vivo

some carriers have a neutral surface charge that will lead to colloidal instability. Such charge 

related effects are even stronger in the elevated ionic strength milieu inside a biological 

environment. The challenge for gene therapy with siRNA remains to pinpoint the rate limiting 

step(s) in the nanoparticle uptake and siRNA delivery – a highly complex process – and 

implement strategies to overcome these barriers [Lechardeur, D. et al. 2002].

1.11 Nanoparticles for siRNA mediated RNA interference

Hailed as the breakthrough of the year in 2002 by Science [Couzin, J. 2002] RNAi still 

holds promise as a powerful, novel therapeutic for a wide variety of diseases and viruses. Its 

capability to selectively silence whatever gene taunts scientists still struggling with substantial 

hurdles, including clinical transition, delivery, and safety. Experts agree that delivery remains 

the main obstacle, which is where most companies are currently focusing their efforts. It was 

reported the cationized-gelatin microspheres containing siRNA for VEGF could inhibit tumor 

growth in mice [Matsumoto, G. et al. 2006]. The concept of siRNA delivery to in-vitro cells 

was then adopted by [Katas, H. et al. 2006] who showed how chitosan nanoparticles could be 

loaded with siRNA and be used for temporary RNAi in cells. In an advanced study, the anti-

VEGF siRNA sustained release from microparticles showed a suppressive effect of VEGF 

levels over one month in-vitro and was also effective in-vivo after intra-tumoral injection 

[Murata, N. et al. 2008]. Going one step further, real nanoparticles made of chitosan were 

used by Pill� et al. [Pill�, J. Y. et al. 2006] to deliver siRNA after i.v. administration for a

successful therapy of breast cancer. Besides the other delivery systems for siRNA described 

in Table 1.4, gelatin nanoparticles have not been in the focus for siRNA delivery so far. Only



General Introduction

28

Zillies et al. [Zillies, J. et al. 2004] presented promising preliminary results on the loading 

capacities of siRNA molecules on cationic gelatin nanoparticles thus leaving a wide gap of 

knowledge and much research to be undertaken in this field. 

Table 1.4

Delivery systems for siRNA for in-vivo application with detailed mechanism, target tissue and 

characteristics [Gao, K. et al. 2008]

Delivery system Mechanism Target tissue or model Characteristics

Hydrodynamic i.v. or direct 
injection

High pressure contributes to 
penetration across the cell 
membrane

Rat brain, mouse[Dorn, G. 
et al. 2004] liver[Lewis, D. 
L. et al. 2007], mouse 
lung[Zhang, X. et al. 2004]

Relative simplicity of local 
administration

Cholesterol conjugation 
with siRNA

Promote distribution and 
cellular uptake via 
lipoprotein as a carrier

Dyslipidemia in 
mice[Soutschek, J. et al. 
2004] and nonhuman 
primate[Wolfrum, C. et al. 
2007]

Significantly decrease the 
complexity by conjugation 
with the sense strand

Liposomes and lipoplexes Improve pharmacokinetic 
properties and reduce 
toxicity profiles

Dyslipidemia in 
monkeys[Geisbert, 
Thomas W. et al. 2006]
pancreatic tumor xenografts 
in mice[Pirollo, K. F. et al. 
2007], breast cancer in 
mice[Ge, Q. et al. 2004], 
prostate cancer xenografts in 
mice[McNamara, J. O. et al. 
2006]

Similarity to commercial 
transfection agents

Polymers and peptide 
delivery systems for siRNA

Endosomal escape takes 
place because of proton
sponge effect. Improve
selectively and specifically 
deliver siRNA in-vivo

Ewing sarcoma in mice[Hu-
Lieskovan, S. et al. 2005], 
mouse b rain[Kumar, P. et 
al. 2007], melanoma 
xenografts in mice[Song, E. 
et al. 2005]

Condensed nanoparticles 
with siRNA . Can be 
modified with a targeting 
element for receptor
mediated uptake.

Surface modified LPD 
nanoparticles

siRNA condensed with 
protamine to form a core 
which is wrapped with 
cationic lipid membrane. 
Final PEGylation provides 
surface protection and 
targeting specificity. 

Oncogenes in solid and 
metastatic tumors can be 
effectively silenced in 
mouse models[Shyh-Dar, L. 
I. et al. 2006; Li, W. et al. 
2007; Li, S.-D. et al. 2008; 
Li, S.-D. et al. 2008]

Very high tumor uptake and 
low immunogenicity.
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1.12 Goal of the thesis

Viral and lipid based gene therapy brings several obstacles and dead-end developments with 

it. From a humanitarian, economic and scientific point of view, our research group has seen 

the need to shift the focus in oncologic therapy, at a much faster pace than in the past, towards 

protein based nanoparticles. It is our strong belief, that colloidal nanocarriers formulated from 

biodegradable, non-toxic and abundant proteins can become the lead medication for the 

generations to come. While nanoparticles will be mainly used for diagnostic and delivery 

purposes, small interfering RNA molecules and the closely related RNA interference

mechanism will definitely change the way we treat diseases today. 

The goal of this thesis was to develop and technologically improve gelatin nanoparticles 

towards potent and safe siRNA delivery vehicles. Even though this topic is more or less 

completely untouched in literature so far, we see a great demand from industry and patient 

side for nanocarriers like ours. The presented research thus will stretch from initial polymer 

characterization over several nanoparticle development strategies and optimizations to an

evaluation of their transfection and RNA interference efficiency. For the characterization of 

the polymers automatic microviscosimetry and asymmetric flow field-flow fractionation, as 

well as nuclear magnetic resonance spectroscopy are introduced as fast and reliable protein 

analysis tools. A deeper formulation focus will be put on the stable and efficient fluorescence 

labeling of either nanoparticle excipient materials or the final nanoparticles themselves.

Homogenous and small nanoparticles shall be formulated through advancements in the 

formulation procedure while the goal of high zeta potentials on the nanoparticle surface 

demanded for the combination of more than one polymer in the reaction mixture. In order to 

use our novel formulations for RNA interference experiments further modifications to the 

nanoparticle structure with endosomolytic peptides will become essential. With the final 

formulation at hand, RNA interference will be tested in state-of-the-art in-vitro assays. In a 

first step, luciferase protein knock-down will be demonstrated, while a final therapeutic 

impact of the new formulation is assayed by means of VEGF-receptor interference quantity.

From a preclinical research and developmental perspective a new in-vitro model for the new 

class of nanoparticles will be established and correlated to proof of principle studies in 

therapeutically relevant in-vivo models. The in-vitro model will comprise near to 

physiological blood flow simulations and endothelial cell adhesion studies in a transparent 
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flow-through chamber slide model. Apart from overcoming several of the drawbacks of static 

cell culture models, the flow model offers the broad applicability and depth of parameters 

needed for high-throughput studies. Last but not least, we will establish innovative preclinical 

in-vivo models like the mouse arthritic knee model, the hamster dorsal skin fold chamber 

model and the mouse cremaster model as body-distribution and endothelial cell wall targeting 

assays. In combination with the flow model we will examine similarities and differences in 

the in-vitro and in-vivo fate of nanoparticles along individual milestones (Figure 1.5).

Figure 1.5

Schematic outline of the thesis milestones from initial polymer analysis (1) and nanoparticle 

formulation and siRNA loading studies (2) to analysis of the transfection efficiency (3) and 

RNA interference capabilities (4) of the newly developed formulations. Finally, the 

nanoparticle formulations shall be investigated on their therapeutic potential (5) with a focus 

on endosomal release functionality (6). Further projects will comprise first nanotoxicologic 

investigations of our formulations and the introduction of a novel cell culture flow chamber 

model for nanoparticle pre-clinical screenings.
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2 Materials and Methods

2.1 Nanoparticle pre-formulation studies

Nanoparticle preparation was carried out under aseptic conditions in a laminar flow hood. 

Vials and flasks were heat sterilized and all solutions were sterile-filtered before use. All 

experiments including prolonged incubation steps were carried out under conditions avoiding 

microbial contaminations.

2.1.1 Chemicals and reagents

Reagent Description Supplier

1-Methyl-2-pyrrolidone p.a. Fluka
(Buchs, Switzerland)

2-Iminothiolane Traut’s reagent Sigma Aldrich 
(Wien, Austria)

Acetic anhydride 99 % (v/v) Acros Organics
(Morris Plains, USA)

Acetic acid 6% (v/v) Acros Organics
(Morris Plains, USA)

Acetone p.a. VWR International GmbH
(Darmstadt Germany)

Chitosan Low viscous Sigma Aldrich 
(Wien, Austria)

Chitosan Medium molecular weight Sigma Aldrich 
(Wien, Austria)

Cholaminechloride
hydrochloride

(2-aminoethyl)-trimethyl-
ammoniumchloride 
hydrochloride 99 % (v/v)

Sigma Aldrich Inc.
(St. Louis, USA)

Cyanoacrylat- Sico Met Ethanol 96 % (v/v) Sichel-Henkel
(Hannover, Germany)

Di-ethyl-amino-ethyl 
modified dextran

Sigma Aldrich Inc.
(St. Louis, USA)
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Dimethylformamide 99.5 % (v/v) Acros Organics
(Morris Plains, USA)

D2O 99 % Euriso-Top
(Gif-sur-Yvette, France)

Dulbeco’s phosphate 
buffered saline

pH 7. (1x concentrate) PAA Laboratories GmbH 
(Linz, Austria)

1-Ethyl-3-(3-dimethyl-
aminopropyl) carbodiimide 
hydrochloride

EDC Sigma Aldrich Inc.
(St. Louis, USA)

Ethanol 99 % (v/v) + 
1 % (v/v) Isohexane

Merck KGaA
(Darmstadt, Germany)

Gelatin type A 175 Bloom,
8-80 mmoles free carboxyl 
groups per 100 g and 
a pI of 7-8.7.

Sigma Aldrich Inc.
(St. Louis, USA)

Gelatin type MA Dodecyl-succinate modified 
gelatin prototype

Gelita AG
(Eberbach, Germany)

Gelatin type MS Succinate modified gelatin 
prototype

Gelita AG
(Eberbach, Germany)

Glutaraldehyde grade I 8,12, 25 % (v/v)
aqueous solution

Sigma Aldrich Inc.
(St. Louis, USA)

Guanidine HCl 2 M Sigma Aldrich Inc.
(St. Louis, USA)

Hydrochloric acid 2 N VWR International GmbH
(Darmstadt, Germany)

Iodine solution 1 mM VWR International GmbH
(Darmstadt, Germany)

Iodmethane 99 % (v/v), sterile Acros Organics
(Morris Plains, USA)

MilliQ highly purified 
electrolyte reduced water

Purelab Plus�, USF Elga 
Ionpure GmbH, Germany

Department of Pharmacy,
University of Munich

Methoxy-poly-ethylene-
glycol

13.000 Da Iris Biotech
(Marktredwitz, Germany)

Methoxy-poly-ethylene-
glycol succinimidylester 
propionate

5.000 Da Iris Biotech
(Marktredwitz, Germany)
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N-succinimidyl 3-(2-
pyridyldithio) propionate

Sigma Aldrich Inc.
(St. Louis, USA)

Poly-L-lysine 32.000 Da Sigma Aldrich Inc.
(St. Louis, USA)

Sodium hydroxide solution 1 N VWR International GmbH
(Darmstadt, Germany)

Sodium chloride Puriss. Riedel-de-Haen
(Seelze, Germany)

Sodium nitrite VWR International GmbH
(Darmstadt, Germany)

Sulfo-NHS Sigma Aldrich Inc.
(St. Louis, USA)

Tripolyphosphate
pentasodium hexahydrate

Sigma Aldrich Inc.
(St. Louis, USA)

Tween� 80 Polysorbate 80, Ph. Eur. Merck KGaA
(Darmstadt, Germany)

2.1.2 Materials

Material Description Supplier

0.2 �m sterile filter Cellulose acetate membrane Acrodisc, Pall
(Dreieich, Germany)

0.45 �m sterile filter Cellulose acetate membrane Acrodisc, Pall
(Dreieich, Germany)

0.45 �m suction filter 
membrane

Cellulose acetate membrane VWR International GmbH
(Darmstadt, Germany)

5 �m sterile filter Cellulose acetate membrane Acrodisc, Pall
(Dreieich, Germany)

26 G steel needle Sterican Braun
(Emmenbruecke, Germany)

96-well plates Greiner Bio-one GmbH 
(Frickenhausen, Germany)
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�kta Basic HPLC system Amersham Biosciences
(Freiburg, Germany)

Cation exchange column MacroPrep High S; HR 
10/10

BioRad
(Munich, Germany)

Eppendorf safe-lock cap 1.5 ml, 2.0 ml Eppendorf AG, Hamburg, 
Germany

Falcontubes 15.0 ml, 30.0 ml Sarstedt
(Nuernbrecht, Germany)

IKA stirring plate IKA RT5 IKA Werke GmbH
(Staufen, Germany)

Microslides/Vitrotubes 0.40 x 4.0 mm i.d. Vitrocom 
(Mt Lakes, USA)

NMR tubes 178 mm, round bottom
S-5-400-7

Norrell
(Landisville, USA)

Peristaltic pump Minipuls 3 Abimed Gilson
(Langenfeld, Germany)

pH Meter Mettler Toledo
(Giessen, Germany)

Sephadex G-25 superfine HR 
10/30 column

Pharmacia Biotech
(Uppsala, Sweden)

Superdex 75 HR 10/30 
column

Pharmacia Biotech
(Uppsala, Sweden)

Sigma centrifuge SIGMA 4K15 SIGMA GmbH
(Osterode, Germany)

Spectra/Por� Float-A-Lyzer MWCO 8,000
Volume 3ml

Spectrum Laboratories, Inc.
(Rancho Dominguez, USA)

Vivaspin 2 ultrafiltration MWCO 2000 Sartorius Vivascience AG
(Hannover, Germany)

Zetasizer Nano ZS series 
folded capillary cells

Malvern Instruments
(Worcestershire, England)
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2.1.3 Formulation of unmodified gelatin nanoparticles

Nanoparticles were prepared from Sigma Aldrich gelatin based on the established two-step 

desolvation technique [Coester, C. J. et al. 2000]. In brief, a first desolvation step was 

performed to remove the low molecular weight fractions of gelatin which is important for a 

mono-modal size distribution of the nanoparticles. Therefore a 5 % (w/w) solution of gelatin 

type A in 0.2 �m filtered highly purified water (MilliQ) was prepared under constant stirring

(500 rpm) at 50 �C on a temperature controlled stirring plate (IKA RT5, IKA Werke GmbH,

Staufen, Germany) by dissolving 1.25 g gelatin in 25 g water. The solution was given 15 

minutes time to equilibrate and to dissolve the gelatin completely. Now, 25.0 ml of acetone 

were quickly added to the stirred solution using a glass-burette to desolvate the high 

molecular weight fractions of gelatin and to separate them from the low molecular weight 

fraction. Right after addition of acetone, the beaker was removed from the stirring plate and 

desolvation was allowed to happen for a time period of 10 s after which the supernatant was 

quickly discarded. After resolvation of the sediment with filtered highly purified water ad

25.0 g and pH adjustment with 110 �l 1 N HCl, the in-situ nanoparticles were formed by drop 

wise addition of 50.0 ml acetone at a pH of 2.5. The in-situ nanoparticles were then stabilized 

by crosslinking with glutaraldehyde solution 12 % (w/w) overnight under constant stirring. 

For further studies the stabilized nanoparticle dispersion was centrifuged at 8.000 g (SIGMA 

4K15, SIGMA Laborzentrifugen GmbH, Osterode, Germany) and washed with highly 

purified water. This process was repeated two times at 16.000 g before the final dispersion 

was stored in aliquots at 4 �C. The basic formulation for all further nanoparticles was also 

formulated over 50 independently times for assessment with dynamic light scattering. 

2.1.4 Formulation of cationic gelatin nanoparticles

One of the goals in nanoparticle formulation was, to achieve highly cationic nanoparticles 

with a sufficient residual surface charge before and after siRNA loading to allow for an 

efficient cell targeting, internalization and eventually intra-cellular therapeutic effect based on

RNAi. In this context, covalent coupling of cholamine with its cationic 

trimethylammoniunchloride function was important. Cholamine cationized gelatin 

nanoparticles (C-GNP) were formulated as previously described by Coester [Coester, C. 



Materials and Methods

36

2003] by adjusting the pH of the nanoparticle dispersion after the second desolvation step and 

purification to 4.5 and adding 50 mg ethylene-diamino-carbodiimide (EDC) and 50 mg 

cholamine under constant stirring. EDC was employed to activate the free carboxyl groups on 

the surface of the unmodified nanoparticles for the coupling with cholamine. The reaction was 

stopped after 3 hours by lowering the pH to 2.5 with 2 N HCl and the nanoparticles were 

purified as described above.

2.1.5 Formulation of diethyl-amino-ethanol-dextran and cholamine 
modified gelatin nanoparticles

DEAE-dextran nanoparticles (DD-GNP) from bovine gelatin and DEAE-dextran were 

prepared using a modified two-step desolvation technique. Again in brief, a first desolvation 

step was performed to remove the low molecular weight fractions. After resolvation of the 

sediment, DEAE-dextran was added to the warm solution at different concentrations (Table 

2.1) and under stirring (250 rpm). 

Table 2.1

Representative DEAE-dextran concentrations for nanoparticle formulation. Percentage is 

expressed as (w/w) of total gelatin mass

DEAE-dextran concentrations % (w/w)

0.04 0.08 0.2

0.3 0.4 0.8

After 10 minutes to allow for thorough intercalation of the DEAE-dextran chains with the 

gelatin molecules, nanoparticles were formed at pH 2.5 by drop wise addition of acetone. For 

a higher precision in the desolvation and to ensure a good size control, a peristaltic pump 

(Miniplus 3, Abimed Gilson, Langenfeld, Germany) was used and combined with an 

immersed needle for the first time (Figure 2.1) where the organic non-solvent was added via 

a 26 G steel needle (Sterican, Braun, Emmenbruecke, Germany) into the stirred solution at a 

flow rate of 5 ml/min. 
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Figure 2.1

Schematic drawing of the aseptic nanoparticle formulation facility for large scale production 

with a good batch to batch reproducibility. A) Desolvating agent reservoir B) peristaltic pump 

with transparent and inert tubings C) nanoparticle birth and incubation vessels with external 

stirring unit and temperature controlled heating device

The in-situ nanoparticles were then stabilized by crosslinking with 110 �l glutaraldehyde 

12 % (w/w) overnight. For further studies the nanoparticle dispersion was centrifuged at 

8.000 g and washed with highly purified water. This process was repeated two times up to a 

final 16.000 g.

The Cholamine-DEAE-dextran GNP (CDD-GNP) were the most advanced cationic 

formulations within the project. We were able to formulate them by an additional 

modification step with cholamine onto the previously prepared DD-GNP. In detail, purified 

DD-GNP were transferred into a reaction beaker and adjusted to a concentration of 5 mg/ml 

in highly purified water. Again, the pH of the solution was adjusted to 4.8 before 50 mg of 

cholamine and 50 mg of EDC were added to the reaction. Slow stirring at room temperature 

was important for a successful and stable nanoparticle cationization. Also, aggregate 

formation could be suppressed this way. The reaction was stopped after 30 minutes by adding 

200 �l of a 2 N HCl solution. Nanoparticles were purified as described above.
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2.1.6 Formulation of human serum albumin nanoparticles

Nanoparticles from human serum albumin (HSA) were formulated by a desolvation method 

of the dissolved protein and a subsequent crosslinking as previously described by Weber 

[Weber, C. et al. 2000] and Marty [Marty, J. J. et al. 1978]. 250 mg HSA were dissolved in 

2.5 ml highly purified water in a 250 ml Erlenmeyer beaker under constant stirring (500 rpm). 

The macromolecule was eventually dissolved by drop wise addition of 5 ml ethanol in total.

The whole dispersion of freshly formed in-situ nanoparticles was incubated for 1 hour after 

which another 1 ml of ethanol was added to the dispersion to guarantee a maximum 

desolvation effect and hence a higher yield. Finally, the nanoparticles were crosslinked with 

60 �l glutaraldehyde 8 % (w/w) over night. The nanoparticles were purified as described 

above by several centrifugation and washing steps.

2.1.7 Formulation of polybutylcyanoacrylate nanoparticles

Polybutylcyanoacrylate (PBCA) nanoparticles were formulated by a modified emulsion 

polymerisation reaction according to Gipps [Gipps, E. M. et al. 1987]. 50 ml of 0.1 N HCl and 

450 mg of DEAE-dextran were given into a 100 ml beaker and stirred for 30 min until all 

DEAE-dextran was dissolved. Nanoparticles were formed by dropwise addition of 500 �l 

butylcyanoacrylate solution into the stirred solution. The whole reaction was allowed to 

incubate over night. Nanoparticle formation was indicated by a slight turbidity and a Tyndall

effect-like light scattering. The final particle dispersion was filtered through a 5 �m and a 

0.45 �m cellulose acetate filter to remove potentially larger agglomerates and was purified by 

3-fold dialysis. For this reason 5 ml of PBCA nanoparticle dispersion were transferred into a 

Spectra/Por� Float-A-Lyzer dialysis tube and dialysed against 10 l highly purified water for 

17 h. Within the first 5 h the 10 l dialysis medium were replaced every hour. The final 

nanoparticles were stored in 15 falcon tubes at 4 �C.
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2.1.8 Formulation of chitosan nanoparticles

2.1.8.1 Preparation of low molecular weight chitosan

Low molecular weight chitosan as the basic material for the preparation of chitosan 

nanoparticles was prepared together with Claudia Vigl at the Institute of Pharmaceutical 

Technology at the University of Innsbruck, Austria, according to a method previously

described by Bernkop-Schnuerch [Bernkop-Schn�rch, A. et al. 2006]. In brief, 2 g of chitosan 

(medium molecular weight: 400 kDa) was dissolved in 100 ml of acetic acid 6 % (v/v). 80 mg 

of sodium nitrite were dissolved in 10 ml of highly purified water and added to reaction 

vessel. The reaction was allowed to stir for 1 h at ambient temperature, after which chitosan 

was precipitated by the addition of a 4 M solution of sodium hydroxide until pH 9 was 

reached. The pH was permanently controlled using a pH meter (Mettler Toledo, Giessen, 

Germany). The resulting precipitate was filtered through a 0.45 �m cellulose acetate suction 

filter membrane (VWR) and washed several times with cold acetone. Eventually the residue 

was resolubilized in 15 ml of 0.1 M acetic acid and dialysed exhaustively against 

demineralised water. The dialysate was concentrated partially under vacuum followed by 

lyophilization at -30 �C and 0.01 mbar (Benchtop 2K, VirTis, NY, USA).

2.1.8.2 Synthesis of thiobutylamidine and N-acetylcysteine modified chitosan

The thiobutylamidine chitosan was also prepared together with Claudia Vigl according to a 

method described previously by Roldo [Roldo, M. et al. 2004]. In short, 500 mg of the low 

molecular weight chitosan prepared as described above was dissolved in 50 ml of 1 % (v/v) 

acetic acid. 200 mg of 2-iminothiolane HCl was added to the solution after adjusting the pH to 

6.5 with 1 N NaOH. The conjugation reaction was carried out for 12 h at room temperature 

under constant stirring. Dialysis of the conjugate was made two times against 5 mM HCl 

containing 1 % NaCl to quench any ionic interaction, against 5 mM HCl and last but not least 

against 0.4 mM HCl. As above, the polymer conjugate was freeze-dried at -30 �C and 0.01 

mbar (Benchtop 2K, VirTis, NY, USA) and stored at 4 �C until further need.



Materials and Methods

40

The synthesis of chitosan-N-acetylcysteine was performed according to Loretz [Loretz, B. 

et al. 2007]. In brief, 1.0 g of low viscous chitosan was dissolved in 10 ml 0.1 mol HCl and 

diluted to 100 ml after which the pH was adjusted to 5.5. 2.0 g of N-acetylcysteine dissolved 

in 10 ml highly purified water and 0.5 g sulfo-NHS dissolved in 1 ml highly purified water 

were added to the chitosan solution. 1.0 g of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDAC) was used to catalyse the reaction. After 14 h of continuous stirring, the 

thiolated chitosan solution was dialysed five times each for 12 h as described by Loretz

[Loretz, B. et al. 2007].

2.1.8.3 Preparation of unmodified and thiolated chitosan nanoparticles

Nanoparticles from those modified low molecular chitosan were obtained by an ionic 

interaction mechanism using tripolyphosphate (TPP) in aqueous solution. The method was 

basically described by Calvo [Calvo, P. et al. 1997] and v.d. Lubben [van der Lubben, I. M. et 

al. 2001]. In brief, thiolated or unmodified low molecular weight chitosan were dissolved in 

0.05 % (w/v) acetic acid solution to a final concentration of 0.25 % (w/v). Then the pH was 

adjusted to 5.5 by adding 0.5 % NaOH solution. The TPP solution was prepared at 

0.2 % (w/v) in highly purified water and 1 ml was added dropwise to 3 ml of the respective 

chitosan solution which lead to the formation of chitosan nanoparticles. After incubation of 

the dispersion for 10 h instead of 3 h the particles were oxidized by the addition of 10 �l of 

1 mM iodine solution and incubating the whole assay for 6 h. Thereafter the anions and 

oxidants were removed by dialysis against 0.1 M HCl over 12 h.

2.2 Post-formulation modification of nanoparticles

2.2.1 Methylation and acetylation

2.2.1.1 Methylation

Based on the protocol for the quaternisation of N-trimethylchitosanchloride [Polnok, A. et 

al. 2004] gelatin type A was methylated with methyl iodide as follows. A mixture of 2.0 g 

gelatin type A, 4.8 g sodium iodide and 10 ml of a 20 % (w/v) sodium hydroxide solution 

were dissolved in 40 ml 1-methyl-2-pyrrolidone. The mixture was stirred for 20 min on a 
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60 �C warm water bath before 1 ml of methyl iodide was slowly added to the solution and 

refluxed at 60 �C for another 2 h. The methylated gelatin was obtained by desolvation with 

ethanol 80�% (v/v) and subsequent centrifugation at 2800 g for 10 min. The sediment was 

washed with 20 ml diethyl ether and centrifugation at 2800 g was repeated for 10 min 

followed by another washing and centrifugation step with 20 ml of 1:1 diethyl ether:highly 

purified water. In order to exchange the iodide ions, 80 ml of a 5 % (w/v) solution of sodium 

chloride were added to the vessel and incubated for 60 min. The final methylated polymer

was obtained by adding 100 ml ethanol:diethyl ether 1:1 to desolvate the polymer and a final

filtration via a suction filter. At last the polymer was dried under vacuum for 16 h. and stored 

at 4 �C for further use to prepare nanoparticles thereof. 

The nanoparticles were formulated from the freeze-dried methylated gelatin with a single-

step desolvation method.

2.2.1.2 Acetylation

For the acetylation of gelatin type A, 3.0 g of gelatin were gently levigated in a mortar and 

transferred to a 50 ml reaction vial. The gelatin was covered with 10 ml acetic anhydride and 

dried for 2 h at 80 �C in a drying oven. After the reaction the acetylated polymer was washed 

and stored at 4 �C for further use.

The nanoparticles were formulated from the freeze-dried acetylated gelatin with a single-

step desolvation method.

2.2.2 Fluorescence labeling

For fluorescence labeling of the nanoparticles, various fluorophores had to be used and 

tested due to the different physicochemical properties of the employed mono- and polymers.

The used fluorophores (Table 2.2) were chosen based on their covalent binding properties 

with the functional groups of the polymers and also based on their relative molecular charge 

and lyophilicity behaviour, but always with the focus on maximum fluorescence emission 

intensity.
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Table 2.2

List of the used fluorophores for nanoparticle labeling

Reagent Description Supplier Excitation Emission Extinction 

Alexa 488 
succinimidyl ester

0.1 % (w/v) Invitrogen
Molecular Probes
(Carlsbad, USA)

495 nm 519 nm 71000

Coumarine 6 98 % (w/v)
500 μg/ml, 
1.43 mM 

Acros Organics
(Morris Plains, 
USA)

459 nm 505 nm 54000

FITC-dextran 50 �g/ml Sigma Aldrich 
GmbH 
(Darmstadt, 
Germany)

490 nm 520 nm 52000

Lissamine 
Rhodamine B 
sulfonyl chloride

10 mg/ml Invitrogen 
Molecular Probes
(Carlsbad, USA)

575 nm 595 nm 62000

Oregon Green 514 
carboxylic acid 
succinimidyl ester

5 mg/ml Invitrogen 
Molecular Probes
(Carlsbad, USA)

511 nm 530 nm 70000

Fluorescent neutral and cationic cholamine modified gelatin nanoparticles were formulated 

according to manufacturer’s protocol. In brief, the pH of the gelatin solution after the first 

desolvation step with acetone was adjusted to pH 9.0 using 1 N NaOH. To this solution 

300 �l Lissamine Rhodamine B sulfonyl chloride 10 mg/ml (Figure 2.2) were added and the 

solution was incubated under constant stirring and under the exclusion of light for 1 h. In the 

end, the pH of the labeled gelatin solution was lowered to pH 2.5 by the drop wise addition of 

1 N HCl and nanoparticles were formulated as described earlier (refer to 2.1.3 Formulation of 

unmodified gelatin nanoparticles) with the restriction, that all steps handling steps were 

performed under the strict exclusion of light.
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Figure 2.2
Lissamine Rhodamine B sulfonyl chloride

In case of DEAE-dextran modified gelatin nanoparticles, the fluorescent dye was also added 

to the gelatin solution right after the first desolvation step; however DEAE-dextran was added 

after the incubation time of 1 h. 

FITC-dextran labeling of the gelatin nanoparticles was done by adding 100, 200 or 600 �l 

of a 5 mg/ml FITC-dextran solution to the fractionated gelatin solution at a temperature of 

50 �C under constant stirring and the exclusion of light. Nanoparticles were formed as 

described above.

Gelatin nanoparticles were also labeled using a succinimidyl ester based coupling reaction 

with Oregon Green 514 carboxylic acid succinimidyl ester 5 mg/ml (Figure 2.3) and Alexa 

488 succinimidyl ester. The pH of the desolvated gelatin solution was adjusted to pH 8.3 

and a fluorophore amount of 100 �l was added to the stirred polymer solution. The incubation 

time amounted to 60 min.

Figure 2.3

Alexa 488 Succinimidyl ester



Materials and Methods

44

Human serum albumin nanoparticles were labeled with Lissamine Rhodamine B sulfonyl 

chloride according to the process described above for gelatin nanoparticles.

In contrast to the above covalent linking of fluorescent dyes, hydrophobic acetylated gelatin 

nanoparticles were reacted with a fluorophore based on lipophilic molecular interactions.

3.5 ml of the dispersed aGNP (refer to 2.2.1.2 Acetylation) were incubated with 100 �l 

Coumarine 6 (500 �g/ml (w/w)) (Figure 2.4) for a time period of 1 h under the exclusion of 

light. Excessive Coumarine 6 was removed by 3-fold centrifugation and washing steps at 

11000 g for 10 min with each time 3.5 ml highly purified water. Final nanoparticles were 

stored at 4 �C for further use.

Figure 2.4

Coumarine 6

2.2.3 Polysorbate and polyethylene glycol modification

Coating of the gelatin nanoparticles with polysorbate 80 was performed as per a modified 

procedure formerly described for cyanoacrylate nanoparticles [Ramge, P. et al. 2000]. In 

short, gelatin nanoparticles were suspended in phosphate buffered saline at a concentration of 

5 mg/ml under constant stirring. Polysorbate 80 was added to give a final dispersion of 1% 

polysorbate 80. After incubation for 60 minutes the nanoparticles were centrifuged once to 

remove any excess polysorbate from the disperion.

Pegylation of the gelatin nanoparticles with amine reactive mPEG-13,000 was conducted 

under permanent stirring of a 5 mg/ml nanoparticle suspension in highly purified water at a 

pH of 8.5. The nanoparticles were incubated for 120 minutes with the reagent on a 
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thermomixer (25 �C, 800 rounds per minute) and washed thoroughly afterwards with several 

centrifugation and redispersion steps. The determination of the amount of PEG bound to the 

GNP was described elsewhere [Zillies, J. C. et al. 2007].

2.2.4 Polyethylene imine modification

The gelatin PEI complex nanoparticles were formed by using our previously formulated 

CDD-GNP polysaccharide modified gelatin nanoparticles with cholamine coupling on its 

surface as the basic material. The nanoparticles were then loaded in a 96-well plate (Greiner 

Bio-one GmbH, Frickenhausen, Germany) with siRNA at concentrations of 5, 10, 20, 40, 80, 

120, 160, and 200 : 1 in HBG buffer under ambient temperature and by intensive mixing with 

the pipette tip. Lastly, 0.5 �g PEI 25br was added to each well to allow for the final 

nanoparticle sandwich formation. All samples were immediately transferred to the cell culture

wells for transfection.

2.2.5 Melittin modification

The PLL-PEG-DMMAn-Mel conjugate was synthesized in Prof. Wagner’s lab according to 

a method described elsewhere [Meyer, M. et al. 2008]. In brief, PLL was PEGylated with 

mPEG-succinimidyl propionate (MW 5000). Therefore, PLL (1.25 μmol, 40 mg PLL 

hydrobromide corresponding to 25.7 mg PLL free base, MW 32 000) in 2 mL buffer (0.5 M 

NaCl, 20 mM HEPES, pH 7.4) was mixed with SPA-mPEG (1.6 μmol, 8 mg) dissolved in 

400 μl dimethyl sulfoxide (DMSO). After 2 h at room temperature (RT) the reaction mixture 

containing modified PLL (PLL-PEG) was loaded on a cation-exchange column (MacroPrep 

High S; HR 10/10, BioRad, M�nchen, Germany) and fractionated with a salt gradient from 

0.6 to 3.0M NaCl in 20 mM HEPES pH 7.4. The fractions containing PLL-PEG were pooled, 

dialyzed against water and lyophilized.

The PEGylated polycation was further modified with heterobifunctional N-succinimidyl 3-

(2-pyridyldithio) propionate allowing subsequent coupling of DMMAn-Mel peptide via the 

N-terminal cysteine. PLL-PEG (0.313 μmol, containing 6.45 mg PLL) in 2 mL buffer (20 

mM HEPES, pH 7.4) was mixed with SPDP (3.8 μmol, 1.19 mg) dissolved in 200 μl DMSO. 
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After 2 h at RT PLL-PEG with pyridyldithio-propionate-linkers (PLL-PEG-PDP) was 

purified by gel filtration using an �kta Basic HPLC System (Amersham Biosciences, 

Freiburg, Germany) equipped with a Sephadex G-25 superfine HR 10/30 column (Pharmacia 

Biotech, Uppsala, Sweden) equilibrated in 0.5 M NaCl, 20 mM HEPES, pH 7.4; the flow rate 

was 1 mL/min. The fractions containing PLL-PEG-PDP were pooled, aliquots were snap 

frozen in liquid nitrogen and stored at -80 �C.

The PLL-PEG-PDP conjugate had a molar ratio of PLL/PEG/PDP of approximately 1/1/8.

Melittin peptide (1.38 μmol, 4 mg) (Figure 2.5) was dissolved in 400 μl of 100 mM HEPES 

and 125 mM NaOH and mixed with 1000μl ethanol containing 15.8 μmol (2 mg ) DMMAn 

by rapid vortexing under argon for 0.5 h following concentration and purification via 

ultrafiltration (Vivascience, Vivaspin 2, MWCO 2000 HY). 1.38 μmol of the acylated 

Melittin was mixed under argon with 1.06 ml PLL-PEG-PDP (116 nmol PLL, 2.39 mg PLL, 

molar ratio of PLL/PEG/PDP of approximately 1/1/8) diluted in 2M guanidine hydrochloride, 

0.5 M NaCl, 20 mM HEPES, pH 8. PLL-PEG-DMMAn-Mel conjugates were purified on the 

�kta Basic HPLC System equipped with a Superdex 75 HR 10/30 column (Pharmacia 

Biotech, Uppsala, Sweden) equilibrated in 0.5M NaCl, 20 mM HEPES, pH 8. The flow rate 

was 0.5 mL/min. The void fractions containing PLL-PEG-DMMAn-Mel (molar ratio of 

PLL/PEG/DMMAn-Mel of approximately 1/1/8) were pooled and aliquots were snap frozen 

in liquid nitrogen and stored at -80 �C.



Materials and Methods

47

Figure 2.5

The 3-D tetrameric conformation of Melittin, courtesy of Fabrice David, SIB Geneva

From http://www.uniprot.org/uniprot/P01501

The gelatin Melittin complex nanoparticles were also formed by using the previously 

formulated polysaccharide modified gelatin nanoparticles with cholamine coupling on its 

surface. The nanoparticles were loaded with siRNA at the same concentrations as for the PEI 

25br assay (refer to 2.2.4 Polyethylene imine modification) in HBG buffer under ambient 

temperature and by intensive mixing with the pipette tip. Lastly, 0.5 �g PLL-PEG-DMMAn-

Mel conjugate was added to each well to allow for the final nanoparticle sandwich formation. 

All samples were immediately transferred to the cell culture for transfection. 

http://www.uniprot.org/uniprot/P01501
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2.3 Analytics

2.3.1 Chemicals and reagents

Reagent Description Supplier

Acetic acid 6% (v/v) Acros Organics
(Morris Plains, USA)

Dimethylformamide Acros Organics
(Morris Plains, USA)

D2O 99 % (v/v) Euriso-Top
(Gif-sur-Yvette, France)

Dulbeco’s phosphate 
buffered saline

pH 7. (1x concentrate) PAA Laboratories GmbH 
(Linz, Austria)

Ethanol 99 % + 1 % Isohexane Merck KGaA
(Darmstadt, Germany)

Ethidiumbromide VWR International GmbH
(Darmstadt Germany)

Hydrochloric acid 2 N VWR International GmbH
(Darmstadt, Germany)

NaBH4 VWR International GmbH
(Darmstadt Germany)

Sodium hydroxide 1 N VWR International GmbH
(Darmstadt Germany)

Starch Soluble, p.a. VWR International GmbH
(Darmstadt Germany)

Tris buffer Tris (hydroxymethyl) 
aminomethane

Merck KGaA
(Darmstadt, Germany)

Tetramethylsilane 99.9 % (v/v) VWR International GmbH
(Darmstadt Germany)

Xylencyanol AppliChem GmbH
(Darmstadt, Germany)
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2.3.2 Materials

Material Description Supplier

Cellulose Regenerated (RC)
MWCO 5 kDa

Postnova GmbH
(Landsberg, Germany)

Cellulose Regenerated (RC)
MWCO 10 kDa

Postnova GmbH
(Landsberg, Germany)

Glass capillary 1.6 �m i.d. Anton Paar Inc
(Ashland, USA)

Steel ball Anton Paar Inc
(Ashland, USA)
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2.3.3 Asymmetric flow field-flow fractionation

2.3.3.1 Setup and function

Spacer

Frit

Filtration
Membrane

DetectorInjection PortVin

Crossflow

Spacer

Frit

Filtration
Membrane

DetectorInjection PortVin

Crossflow

Figure 2.6

Exploded view into an AF4 separation channel. From top to bottom: upper non-permeable 

block, spacer (forming the channel, ultra-filtration membrane, solvent permeable frit inside 

the bottom block)

Figure 2.7

Basic setup of the used AF4 machine comprising from left to right: a computer unit, an 

autosampler with injection port, a degassing unit, the channel flow and cross flow pumps, the 

separation channel (in the front), RI, UV and MALS (not shown) detectors
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In order to get a more detailed impression of the exact distribution of the gelatin molecules, 

which is important to guarantee uniform and therefore reproducibly transfecting 

nanoparticles, a modern separation technique like AF4 had to be used. The primary focus 

hence was to characterize the gelatin type A batch and to exclude suboptimal molar weight 

fractions that could potentially lead to extremely large and unstable nanoparticles. In a second 

analysis, the incorporation of DEAE-dextran into the nanoparticle matrix was examined by 

measuring a dextran and a nanoparticle sample and the final formulation. 

The AF4 technique is based on a parabolic flow profile of the sample liquid inside a 

separation channel with an applied cross-flow to determine the retention time of the 

molecules. The general principle has been discussed and published elsewhere [Fraunhofer, W. 

et al. 2004].

2.3.3.2 Asymmetric flow field-flow fractionation of gelatins

The AF4 studies were performed using an AF1000-FOCUS system (Postnova, Landsberg

am Lech, Germany) coupled with UV (UV100 Thermo Separation Products, Egelsbach, 

Germany) and refractive index (RI) detection (n-1000 WGE Dr. Bures, Germany) as well as a 

static light scattering (SLS) detector (Wyatt, Santa Barbara, USA) for molecular weight 

determination. The laser wavelength accounted for 690 nm, while slice collection was set to 

1200. For molar mass determination the refractive index increment was set to 0.174 ml/g and 

the second virial coefficient was set to 0. 

The separation was achieved using a PBS buffer pH 6.0 as mobile phase, a channel with 350 

�m height and an ultra-filtration membrane consisting of regenerated cellulose with 5 kDa 

cut-off (Postnova). All proteins were dissolved in analysis buffer at a concentration of 2.5 %. 

The channel flow rate accounted for 1 ml/min, while the cross flow was adjusted to 0.05 

ml/min over 10 minutes, and then reduced to 0 ml/min, which resulted in a total measurement 

period of 20 minutes.

Beside two hydrophobically modified gelatin prototypes (Gelita, Eberbach, Germany) 

called MS and MA, with succinate and dodecenylsuccinate residues, standard gelatin type A 

(Bloom ~175) from porcine skin (Sigma Aldrich, Munich, Germany) was analyzed in this 
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study. Hydrophobic succinylated (MS) and dodecenylsuccinylated (MA) gelatin samples used 

for comparison were kindly provided by Gelita AG (Germany). 

2.3.3.3 Asymmetric flow field-flow fractionation of chitosans

The modification of the chitosan raw materials (Sigma) was conducted according to 

protocols described elsewhere [Bernkop-Schnuerch, A. B. et al. 2001; Bernkop-Schnuerch, A. 

B. et al. 2003]. Chitosan low viscosity modified with N-acetylcysteine (Sigma) (lyophilized), 

chitosan low viscosity modified with thiobutylamidine (Sigma) (lyophilized), chitosan low 

molecular weight modified with N-acetylcysteine (lyophilized), and chitosan low molecular-

weight modified with thiobutylamidine (lyophilized) were investigated with the same AF4 

hardware setup as for gelatin. The solvent for the chitosan samples as well as the running 

buffer were made of 0.3 M acetic acid, 0.2 M sodium acetate and sodium hydroxide / 

hydrochloric acid quantum satis. The pH was adjusted to 4.0 at a chitosan concentration of 0.1 

%. A membrane consisting of regenerated cellulose with a cut-off of 10 kDa was used in a 

350 �m separation channel. The detector’s dn/dc was set to 0.163 ml/g and the second virial 

coefficient to 0. For chitosan the cross flow was set to 1.0 ml/min at a channel flow of 1.0 

ml/min while the focus time amounted to 350 seconds. The complete measurement period 

was 25 minutes.

2.3.3.4 Molecular weight determination via AF4

In general, the determination of macromolecular size via AF4 is prone to several 

miscalculations due to the mathematical algorithms backing up the analysis software. For 

example, calculations, comparable to photon correlation spectroscopy, expect perfectly 

spherical molecules or particles for correct results. Furthermore, an overloading of the 

channel with sample or any interaction of the analytes with the membrane can lead to 

falsifications within the method. In case of charged analytes the factor of charge and charge 

related inter- and intra-molecular repulsion can also play a pivotal role. For those above 

reasons, one nowadays employs detectors that can determine the molecular weight directly, 

such as multi-angle light scattering detectors (MALS). Since theoretical descriptions of 

scattering phenomena of dissolved polymers and suspensions by Einstein [Einstein, A. 1910]
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and Raman [Raman, C. V. 1928], light scattering has become the established method in 

polymer analytics. If the analyte is a macromolecule, the molecular weight can be 

extrapolated already with very few angles from the intensity at an angle of detection of θ=0�. 

Very often the so called Zimm-equation [Wyatt, P. J. 1993] is used for this.
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In most cases, the wavelength of the laser λ0, the Avogadro number NA and the refractive 

index of the solvent nL should be easily available. The refractive index increment dn/dc is also 

known for many substances and can be determined before the measurement. The scattering 

function Pθ can also usually be disregarded for macromolecules, since below λ0/20 the 

scattering is independent of the direction. A2 as the second viral coefficient, defining the 

interaction between the solvent and the sample has of course to be determined before the 

actual measurement, but experience here shows that the value often is very small.

The intensity of the scattered light Iθ can hence be calculated with [Wyatt, P. J. 1993]:
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Here the scattering of the solvent Iθ has to subtracted, while further parameters are Vs as the 

scattering volume and rSD as the distance between scattering volume and photo diode. Now in 

case of an angle dependent plotting of KC/Rθ 1/MW can be obtained on the ordinate, where 

MW is the weight averaged molecular weight of the macromolecule. Since this MW value 

represents only a fraction of the sample the MW of the whole sample can be calculated 

according to Winter and Noll [Winter, R. et al. 1998] via the following formula:
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Equation 4

This formula can well be used to characterize disperse samples. After all, the channel of the 

AF4 is only relevant for the separation of the sample, while the determination of molecular 

weight and size is made with MALS and concentration detectors.

The relation between intrinsic viscosity [η] and molecular weight MV is expressed in the so 

called Mark-Houwink-Kuhn-Sakurada (MHKS) equation [Berth, G. et al. 1998].


 VMk ][

Equation 5

Here kα is the constant value and α is the exponent. 

2.3.4 Lyophilization of chitosan nanoparticles

The solutions were deep-frozen and lyophilized, after adding 3.6 % (w/v) of trehalose as a 

lyoprotectant according to a method described by Loretz et al. [Loretz, B. et al. 2007].



Materials and Methods

55

2.3.5 Chitosan sulfhydryl-group and disulfide-bond quantification

The amount of sulfhydryl groups on thiolated chitosan was evaluated via an iodometric 

titration as described previously [Kast, C. E. et al. 2001]. In brief, 1 mg of the lyophilized 

thiomer was dissolved in 1 ml of highly purified water and the pH was adjusted to 1.5 by 

adding 1 M HCl. 150 �l of a 2 % solution of starch was added as the indicator. The solution 

was titrated by adding 9 �l of a 1 mM iodine solution until a persisting light blue color 

became visible. The sulfhydryl group content was calculated with the following equations:

(Equation 6, Equation 7)

SH [%] = 
thiomer

riodineiodine

m
McV 2

Equation 6

SH [�mol/g] = 410[%]


rM
SH

Equation 7

The disulfide content was measured after reduction of the disulfide bonds with NaBH4.

0.5 mg of thiomer were hydrated with 350 �l highly purified water in a 15 ml falcon tube for 

30 min and then diluted with 150 �l of TRIS buffer. 1 ml of a 4 % NaBH4 solution in highly 

purified water was added and the tube was incubated in an oscillating water bath at 37 �C for 

1 h. The reaction was stopped by adding 200 �l 5 M HCl. Iodometric titration was performed 

as described above. Via subtraction of the result of the iodometric titration of the polymer 

itself from the result of the iodometric titration after reduction lead to the amount of disulfide 

bonds.
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2.3.6 Automatic microviscosimetry

In a first step of the formulation process of uniform, small and stable nanoparticles, a 

detailed understanding of the viscosity of the used polymer solutions in respect to their 

inherent molecular weights plays an important role. Especially during the intercalation of 

gelatin and the polysaccharide DEAE-dextran molecules the success of the nanoparticle 

formation can depend on the correct viscosity of the final incubation mixture. In this context 

the microviscosimetry experiments were performed using an AMVn microviscosimeter 

(Anton-Paar, Ostfildern, Germany). In general the viscosity of a polymer liquid can be 

determined by examining the rolling time of a solid sphere under the influence of gravity in 

an inclined cylindrical tube filled with the sample liquid. 

Figure 2.8

Principle of the viscosity measurement with the automatic microviscosimeter based on the 

principle of a rolling steel ball in an inclined capillary filled with the sample. 

From http://www.anton-paar.com/001/de/Web/Document/download/1648?clng=de

A calibrated 1.6 �m glass capillary was used together with a 1.5 �m steel ball (Figure 2.8).

At a reference temperature of 25 �C the steel ball density was determined with 7.6327 g/cm3, 

while the internal system settings where a temperature adjusting time of 120 seconds 

(tolerance + 0.03 K), a sample volume of 400 �l and a measurement length of 100 mm. To 

ensure a constant temperature within the samples a built-in peltier thermostat was used 

http://www.anton
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throughout the measurements. All calibration and sample measurements were conducted 

using the Rheoplus/32 V3.21 software (Anton-Paar, Ostfildern, Germany) and repeated three 

times. The viscosity was then calculated using the laws of Stoke (Equation 8).

vdFr  3

Equation 8

Here Fr is the frictional force, η the sample viscosity, d the capillary parameter and v the 

velocity of the steel ball within the sample over a given distance and inclination angle. The 

molecular weight was approximated (according to DIN 53015 and ISO 12058) with the Mark-

Houwink or Staudinger equation. Here the molar mass was calculated as 
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with K being parameter K, η standing for viscosity and α for the Staudinger index. The 

needed relative viscosity ηr was calculated via 
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For the quintessential K-value the following equation was used
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where b = 1.5�log(ηr)
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Using these formulas the molecular weight of gelatin type A and type B (for comparative 

reasons) was calculated, as well the viscosity of the employed DEAE-dextran. The polymers 

were measured at different concentrations according to their respective final concentrations 

during the manufacturing process of the nanoparticles. In short, gelatins were measured at 

5.0 % (w/w), 2.5 % (w/w) and 0.25 % (w/w) while the highly viscous DEAE-dextran was 

measured at 0.25 % (w/w).

2.3.7 Photon correlation spectroscopy

The nanoparticle size was determined by dynamic light scattering using a Zetasizer 

Nanoseries Nano-ZS (Malvern Instruments Ltd., Worchestershire, UK) for backscatter 

measurements. The refractive index for the nanoparticles was set to 0.90, and the absorption 

index to 0.01, according to the established optical model. The refractive index for the 

dispersant was set to 1.333, corresponding to water. The Zetasizer device was equipped with a 

laser source operating at 405 nm wavelength.

2.3.8 Electrophoretic mobility measurements

The zeta potential of the nanoparticle formulations was determined by electrophoretic light 

scattering using a Zetasizer Nanoseries Nano-ZS (Malvern Instruments Ltd., Worchestershire, 

UK). For the measurements the dielectric constant (τ) was set to 78.48 (pure water at 25 �C). 

The optical parameters – refractive index and absorption index, for nanoparticles were set to 

correspondingly 0.90 and 0.01. The applied voltage value was set to 40 V and the monomodal 

analysis model was used. Measurements were carried out in triplicate for each sample. Data 

was processed using Dispersing Technology Software v.5.10 (Malvern Instruments Ltd., 

Worchestershire, UK). Disposable flow-through cells in highly purified water or phosphate 

buffered saline at a pH of 7.0 were used in order to get most valid results. To assess the 

general stability of the gelatin nanoparticle and dextran gelatin nanoparticle formulations, all 

samples were stored at room temperature and at 4 �C in 2 ml Eppendorf vials over a time 

period of 6 months with a temperature control on a daily basis. Samples were drawn from the 

storage at different time intervals and were analyzed visually for signs of sedimentation and 
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aggregation. The size distribution in this case was also analyzed by DLS as described above 

(refer to 2.3.7 Photon correlation spectroscopy).

2.3.9 Static light scattering spectroscopy

Laser diffraction measurements, also known as low angle light scattering, Fraunhofer 

diffraction or Mie scattering, were performed using a Partica LA-950 (Horiba Ltd., Kyoto, 

Japan), equipped with a blue LED laser source, operating at a wavelength of 405 nm, and a 

red laser source, operating at 650 nm. The measurement range of the device was from 40 nm 

up to 3 mm. The laser diffractometer was equipped with quartz cuvettes with volumes of 

15 ml and 10 ml and a magnetic stirring facility. An optical model was produced and data 

processing was carried out using the software Horiba LA950 v.5.00. The iteration value was 

set to 15 for all measurements, a refractive index of 1.59 (iabs=0.01) and highly purified water 

as the dispersion medium were used [Chu, B. et al. 2000]. The nanoparticle formulations were 

sampled immediately prior to measurements by addition of 20-100 �l undiluted nanoparticle 

dispersion into the dilution medium, highly purified water, under continuous stirring.

Basically the static light scattering was used for verification of the DLS results and to monitor 

potential larger aggregates more detailed. 

2.3.10 Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance is based on the interaction between the magnetic momentum of 

the atom nucleus and a homogeneous and static external magnetic field around the nucleus

[Hesse, M. et al. 1984]. 1H-NMR spectroscopy was performed using a JEOL JNM Eclipse 

400 spectrometer (JEOL GmbH, Eching, Germany) (1H: 400 MHz). The chemical shift was 

given as  values in ppm. Tetramethylsilane (TMS) was used as an internal standard ( = 

0.00 ppm) and all measurements were carried out at 50 �C in deutered water as the solvent.

For all 1H-NMR measurements 1 g of sample was diluted in 5 ml 20 (w/w) or 100 (w/w) 

D2O. Before filling, the NMR-tubes with prewarmed samples, the NMR tubes were tempered 

1 h in the cabinet drier at 50�C and kept at 50�C during the filling process using a blow drier.

The samples were measured directly after the filling process.
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2.3.11 Scanning electron microscopy

The modified gelatin and chitosan nanoparticles were analyzed by SEM to characterize the 

surface morphology of dry, non-dispersed nanoparticles. The analysis was made with a field 

emission scanning electron microscope (JSM-6500 F, JEOLl, Ebersberg, Germany) at 5.0 kV 

and a working distance of 9.7 mm. For sample preparation nanoparticles were dispersed in 

acetone at a concentration of 20 μg/mL and applied on a specifically polished sample grid. 

The samples were vacuum-dried over 12 hours and finally metallized with a 2 nm gold layer 

before microscopical analysis.

2.3.12 siRNA loading determination via ultra-violet-absorption

For siRNA loading of the nanoparticles, the respective nanoparticle dispersion was adjusted 

to a certain concentration in different loading media. HEPES buffered glucose (HEPES) pH 

7.0, PBS pH 7.0, PBS pH 7.5 and highly purified water were used for the loading studies. The 

nanoparticles were incubated with the respective amounts of siRNA and incubated on a 

thermomixer for 30 minutes at 26 �C. In order to quantify the amount of loaded siRNA the 

batches were centrifuged at 18.000 g for 1 hour and potential free siRNA was determined in 

the supernatant by UV-spectrometry. The weight to weight amount of loaded siRNA was 

calculated from unbound siRNA determined UV-spectrophotometrically at a wavelength of 

260nm (UV1, Thermo Spectronic, Dreieich, Germany) in the supernatant of the reaction 

media after separating the nanoparticles by centrifugation for 50 min at 14000 g (neo lab 

16/18, Hermle Labortechnik GmbH, Wehingen, Germany). In addition blanks of siRNA and 

gelatin nanoparticles alone were prepared accordingly.

2.3.13 siRNA loading determination via gel shift assay

For the quantification of the siRNA loading with the gel shift assay the siRNA was diluted 

to 0.25 �g/�l = 20 �M with siRNA buffer solution. Both siRNAs, the GL3 siRNA and the 

control siRNA, were checked on correct dilution with photometer read-out. Nanoparticles 

were dispersed in the correct amount of medium, siRNA was added and the dispersion was 

incubated on a thermomixer at 650 rpm and 26 �C for 30 minutes. Agarose gels were 
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prepared from 3.0 g agarose to 120 g TBE buffer one minute in the microwave when 4 �l 

ethidiumbromide (Sigma) 1:1000 was added. Sedimentation buffer was made from 0.5M 

EDTA (pH 8.0), Glycerine 100 %, MQ water (sterile) and xylencyanol and was added to each 

vial, which were then vortexed shortly. The vials were centrifuged and the whole content of 

all vials was inserted into the respective gel bags. To start the electrophoresis a voltage of 120 

V was applied to the chamber for 40 minutes. Values are given as relative light units (RLU) 

per 10,000 seeded cells as mean +/- standard deviation of at least triplicates. 2 ng of luciferase 

corresponds to 107 light units.

2.3.14 Characterization of Melittin complexes

The size distribution and polydispersity of all nanoparticles was analyzed in aqueous 

dispersion by dynamic light scattering (refer to 2.3.7 Photon correlation spectroscopy). Each 

size value and the corresponding polydispersity index was the mean of 10 subruns. Static light 

scattering was used for verification of the DLS results. All experiments were conducted on a 

LA-950 laser diffractometer with a refractive index of 1.59 (iabs=0.01) and highly purified 

water as the dispersion medium (refer to 2.3.9 Static light scattering spectroscopy). The zeta 

potential of the nanoparticles was measured with the Zetasizer Nano and flow through cells in 

highly purified water or phosphate buffered saline at a pH of 7.0 (refer to 2.3.8

Electrophoretic mobility measurements).

2.3.15 Confocal laser scanning microscopy

The cells and fluorescent nanoparticles were observed by fluorescence confocal laser-

scanning microscopy using a Zeiss LSM 510 (Carl Zeiss Microimaging, G�ttingen, 

Germany). A pinhole of 204 �m was exerted with a 63x oil-immersion objective producing 

optical slices of about 700 nm. The excitation and emission wavelengths used are represented 

in Table 2.2.
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2.3.16 Endotoxin assay

The gelatin nanoparticles and modified gelatin nanoparticles tested in the in-vitro and in-

vivo experiments were analyzed for their endotoxin content after the final formulation step. 

The samples were collected and sent to Lonza Verviers SPRL, Verviers, Belgium. The 

samples have been diluted 1/100 and 1/1000 and tested with the Limulus amebocyte lysate 

(LAL) kinetic chromogenic assay (method D described in the section 2.6.14 of the European

Pharmacopoeia). The final results are expressed in endotoxin units per milliliter (EU/ml). 

Each sample is tested with a positive product control (PPC) of 0.5 EU/ml. If the endotoxin 

recovery is between 0.25 and 1.0 EU/ml (50-200 % of the PPC), the result is valid.

2.3.17 Determination of process yield

The process yield of gelatin nanoparticles was determined as the weight percentage of the 

final product after drying, with respect to the total amount of polymer and other materials 

used for the preparation.

2.3.18 Storage conditions during stability studies

To assess the general stability of the gelatin nanoparticle and dextran gelatin nanoparticle 

formulations all samples were stored at room temperature (RT) and 4 �C in 2 ml Eppendorf 

vials over a time period of 6 months. Samples were drawn from the storage at different time 

intervals and were analyzed visually for signs of sedimentation and aggregation. The size 

distribution was analyzed by DLS. In addition, the influence of the siRNA loading process on 

zeta potential and nanoparticle size increase were as well monitored by DLS and 

electrophoretic mobility measurements. Last but not least, the stability of the loaded siRNA 

molecules over time was examined. Finally for the loaded nanoparticles the colloidal stability 

of the formulations as well as the loading stability against changing electrolyte concentrations 

and different pH values was investigated.
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2.4 In-vitro models

2.4.1 Cell culture

2.4.1.1 Chemicals and reagents

Reagent Description Supplier

Accutase Invitrogen Inc.
(Carlsbad, USA)

Cell Tracker™ Orange 
CMRA

Invitrogen Molecular Probes
(Carlsbad, USA)

Dulbeco’s modified eagle 
medium

pH 7.0-7.5 GIBCO/Invitrogen Ltd.,
(Paisley, England)

ECGM Endothelial cell growth 
medium

GIBCO/Invitrogen Ltd.,
(Paisley, England)

Fetal calf serum PAA Laboratories GmbH
(Linz, Austria)

Formaldehyde solution 4 % (v/v) VWR International GmbH
(Darmstadt Germany)

Glutamine Invitrogen Inc.
(Carlsbad, USA)

Hoechst 33342 
trihydrochloride trihydrate

10 mg/ml Invitrogen Molecular Probes
(Carlsbad, USA)

Lipofectamine Invitrogen Inc.
(Carlsbad, USA)

Optimem Invitrogen Inc.
(Carlsbad, USA)

Penicillin Invitrogen Inc.
(Carlsbad, USA)

scVEGF-Cy 5.5 Sibtech
(Newington, USA)

Streptomycin Invitrogen Inc.
(Carlsbad, USA)
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Trypan blue stain 0.4 % (v/v) GIBCO/Invitrogen Ltd.,
(Paisley, England)

Trypsin-EDTA-solution 1x concentrate PAA Laboratories GmbH
(Linz, Austria)

2.4.1.2 Materials

Material Description Supplier

Cell culture flask T75 Sigma Aldrich Inc.
(St. Louis, USA)

ibiTreat μ-slides y-shaped Ibidi  GmbH
(Munich, Germany)

ibiTreat μ-slides 8 well Ibidi  GmbH
(Munich, Germany)
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2.4.1.3 Cell lines

Cell Line Specifications Distributor Source

Neuro2A-eGFPLuc Mouse neuroblastoma 

stably expressing 

luciferase; 

(ATCC CCI-131)

Gift of Prof. Dr. E. 

Wagner, (University of 

Munich, Germany)

[Meyer, M. et al. 

2008]

KDR/293 Expressing transgene:

Full-length human 

VEGF receptor 

VEGFR-2 (KDR/Flk-

1)

Derivatives of: 293 

Human kidney 

embryonic cells 

transformed with 

adenovirus 5 DNA 

(ATCC CRL-1573)

Sibtech Inc.

(Newington, USA)

[Backer, M. V. 

et al. 2001]

HEK/293 Human adherent 

hypotriploid cells 

transformed with 

adenovirus 5 DNA

GIBCO/Invitrogen Ltd.

(Paisley, England)

[zur Hausen, H.

1967]
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2.4.1.4 Cultivation of cell lines

Cell culture media, antibiotics and fetal calf serum were purchased from Invitrogen Inc.

(Carlsbad, USA). All cultured cells were grown at 37 �C in 5% CO2 humidified atmosphere in 

sterile T75 cell culture flasks. Neuro2A-eGFPLuc cell line (mouse neuroblastoma stably 

expressing luciferase) were cultured in DMEM (1 g/L glucose) containing 10% fetal calf 

serum, 100 U/ml penicillin, 100 μg/ml streptomycin and 2mM glutamine. KDR/293 and 

HEK/293 cells were cultured in DMEM (1 g/L glucose) containing 10% fetal calf serum.

Cells were split on a routinely basis every 3 days at a ratio of 1:10. Therefore the cells were 

washed three times with 10 ml sterile PBS (Invitrogen) and detached from the flask bottom by 

incubation with 1.5 ml trypsine-EDTA (Invitrogen) for 3 min. Trypsination was stopped by 

adding 9 ml DMEM + 10% FCS. Now, 1 ml of the cell suspension was transferred to a new 

cell culture flask and gently mixed with 9 ml fresh medium. Dead cells were distinguished 

under the microscope by staining with 0.4 mg/ml trypan blue while un-stained healthy cells 

were counted with a modified Neubauer chamber. The cell concentration was adjusted 

according to each experiment using the correct amount of DMEM.

2.4.1.5 Particle stability in cell culture medium

The influence of the ingredients of the cell culture medium on nanoparticle size and zeta 

potential and also on the aggregation and hence colloidal stability was measured using the 

Zetasizer Nano ZS (Malvern, UK) as described above (refer to “2.3.5 Photon correlation 

spectroscopy and 2.3.6 Electrophoretic mobility measurements”). For this purpose 50 �l of a 

1.0 mg/ml nanoparticle dispersion was incubated with 1 ml of DMEM for 1, 5, 10, 20, 30 and 

60 min. Measurements were conducted right after the respective end time points.

2.4.1.6 Metabolic activity of luciferase silenced cells

Cells were grown in 96-well plates and treated with different amounts of loaded

nanoparticles as follows. The metabolic activity was determined using an MTT assay. To each 

well 10 μl of a 5 mg/ml solution of MTT in sterile PBS buffer were added. Cells were 

incubated at 37 �C for 2 h, the medium was removed and the samples were frozen at – 80 �C 
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for at least 2 h. 100 μl of DMSO was added and samples were incubated at 37 �C for 30 min

under constant shaking. The optical absorbance of thiazolyl blue was measured at 590 nm 

(reference wavelength 630 nm) using a microplate plate reader (Spectrafluor Plus, Tecan 

Austria GmbH, Gr�dig, Austria) and cell viability was expressed as a percent relative to 

untreated control cells. The results are presented as means of n = 3.

2.4.1.7 Cytotoxicity via microscopic observations

After incubation with polymers or polyplexes, changes in morphology and detachment of 

cells from the well plate were observed using a Zeiss Axiovert 200 microscope (Carl Zeiss 

AG, Oberkochen, Germany).

2.4.2 Flow model

Establishing the in-vitro model

For the interaction studies with endothelial cells, we had to come up with a completely new 

system, allowing for near to physiological (NEATOP) cell growth and monitoring 

conditions. With the newly developed surface plasma treated ibidi slides (ibidi GmbH, 

Martinsried, Germany) such cell adhesion and growth under medium flow conditions was 

possible, while at the same time the material guaranteed optimal fluorescent analysis 

capabilities.

Figure 2.9

Adherent cells are cultivated inside the �-slide under flow (1), fixed with formaldehyde (2), 

stained with fluorescent dyes (3) and analyzed in an inverted confocal laser scanning 

microscope
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Figure 2.10

Filling of an ibidi �-slide channel

For the experiments, 8.8 x 104 human umbilical vein cells (HUVECs) were seeded in a 

plasma surface treated y-shaped plastic �-slide channel (IBIDI, Martinsried, Germany)

(Figure 2.9, Figure 2.10). The height of the channel was given with 4.0 �m while the channel 

growth area was 2.8 cm�. After five days of cultivation in Endothelial Cell Growth Medium 

(GIBCO, Karlsruhe, Germany) under permanent flow in an incubator (37�C, 5% CO2) the 

cells were incubated with cationic and neutral nanoparticles for 60 minutes, with a media flow 

of 7 ml/min. 

Figure 2.11

Exploded view of the nanoparticle cell flow system
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The whole setup is depicted in Figure 2.11. With the computer software and a highly

precise air pressure pump connected via sterile air tubings to the slides inside the CO2

incubator the flow velocity and direction inside the ibidi �-slide can be regulated.

Following fluorescent staining with Hoechst 33342 and Cell Tracker Orange CMRA (both 

Invitrogen, Karlsruhe, Germany) and two washing steps with buffer, the cells were analyzed 

with a confocal laser scanning microscope (Zeiss LSM 510, G�ttingen, Germany). Image 

processing was done with Zeiss LSM Image Browser software 4.0. During the cell incubation, 

all chambers were analyzed microscopically to ensure that cells were in good health and did 

not show any aggregates, debris or other visible signs of contamination. The cell supernatants 

were tested for mycoplasmal contamination routinely, according to a standardized protocol at

the Department of Pharmaceutical Biology, University of Munich, Germany.

Figure 2.12

The flow model was validated in order to determine the optimal operation conditions and to 

ensure reproducibility of the results.
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2.4.3 Fluorescence activated cell sorting analysis of VEGFR 
expression

The 293 KDR cells for our experiments were meant to over-express the VEGF Receptor 2 

(VEGFR2) as a model cell monolayer for nanoparticle targeting and siRNA delivery against 

the VEGFR2. VEGFR2 [also known as KDR (kinase insert domain receptor) in humans or 

Flk-1(fetal liver kinase-1) in mice], is a member of the class III subfamily of receptor tyrosine 

kinases (RTKs) that also includes VEGFR1 (Flt-1) and VEGFR3 (Flt-4). All three receptors 

contain seven Ig-like repeats within their extracellular domains and kinase insert domains in 

their intracellular regions. The expression patterns of VEGFR1, VEGFR2, and VEGFR3 are 

almost exclusively restricted to endothelial cells. These VEGF/VEGFR2 signalling pathways 

play an important role in tumor angiogenesis and other diseases where “pathological 

angiogenesis” is involved. Inactivation of functional VEGFR2 by a blocking antibody can 

disrupt angiogenesis and prevent tumor cell invasion [Skobe, M. et al. 1997; Brekken, R. A. et 

al. 2000]. Angiogenesis induced by the HIV-1 Tat protein is mediated by VEGFR2 on 

vascular endothelial cells [Albini, A. et al. 1996]. Tat specifically binds and activates 

VEGFR2. Tat-induced angiogenesis is blocked by agents that can block VEGFR2.

FACS analysis was done in a FACSCalibur (Becton Dickinson, Franklin Lakes, USA). 

FACS analysis was conducted under assistance of Tanja Lange at Medigene AG (Munich, 

Germany). The quantification of VEGFR2 was done by using single chain scVEGF-Cy5.5.

For this reason HEK 293/KDR cells and HEK 293 control cells were plated at a number of 

250.000 cells in DMEM cell culture medium in 75 cm� cell culture flasks and grown to 40 % 

confluence. The cells were detached with 3 ml accutase, set to a concentration of 5x105 cells 

per FACS tube and incubated for another 60 minutes with scVEGF-Cy5.5 (1:100) before 

measuring 50,000 cells in FACS gate 4.

For a comparative study of the knock-down capacity of a lipid based “gold standard” 

transfection reagent, we consequently did a siRNA based transfection and FACS read-out 

using our VEGFR2 siRNA and Lipofectamine RANiMAX. For this experiment 250 �l of 

Opti-MEM reduced serum medium were pipetted into a sterile Eppendorf cap and mixed 

gently with 5 �l Lipofectamine RNAiMAX (Invitrogen?). 15 �l of a 30 pm siRNA solution

were incubated with 250 �l Opti-MEM reduced serum medium and transferred to the 



Materials and Methods

71

Eppendorf caps containing the Lipofectamine. To each well with cells 500 �l of the siRNA 

Lipofectamine RNAiMAX complex were added resulting in a final volume of 3 ml and a final 

RNA concentration of 10 nM. The cells were incubated for 24h, 48h and 72h at 37 �C in a 

CO2 incubator until ready to assay for gene knockdown. At the respective time points the cells 

were detached with 3 ml accutase, set to a concentration of 5x105 cells per FACS tube and 

incubated for another 60 minutes with scVEGF-Cy5.5 (1:100) before measuring 50.000 cells 

in FACS gate 4.

2.4.4 Coulter counter analysis of blood cells

The concentration of different blood cells after nanoparticle application was measured with 

a Beckman Coulter counter (AcT-Series, Beckman, Krefeld, Germany). Samples were drawn 

directly through a catheter at different time points from 0 to 90 minutes after nanoparticle 

infusion. In detail, white blood cells and thrombocytes and haemoglobin (photometrically)

were assayed with this method. Again, all measurements were conducted in triplicate.
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2.5 In-vivo models

2.5.1 Chemicals and reagents

Reagent Description Supplier

Cutasept� 72% (v/v) ethanol Bode Chemie
(Hamburg, Germany)

Ketavet� Ketamine hydrochloride Pharmacia GmbH
(Karlsruhe, Germany)

Pilca� med Cream Asid Bonz GmbH
(Bieblingen, Germany)

Rompun� Xylazine hydrochloride Bayer
(Leverkusen, Germany)
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2.5.2 Hamster dorsal skin fold chamber model

The surgical work demonstrated in this section was undertaken under the scientific 

supervision of Dr. med. Martin Eichhorn (Walter-Brendel-Center, Munich, Germany) and 

Siiri L�demann (Walter-Brendel-Center, Munich, Germany).

Animal model

The animals for these experiments were Syrian gold hamster from Charles River 

Laboratories (Sulzfeld, Germany). A maximum of 3 animals were hosted in a cage with free 

access to water and standard laboratory animal chow (Sniff, Soest, Germany) at an ambient 

temperature of 24 �C and a relative air humidity of 50 % (v/v). The artificial light cycles 

consisted of 12 h light/dark intervals. The median body weight of the animals was 60 g (55-

65 g) for the hamster dorsal skin fold chamber model. During the experiments the animals 

were kept in single animal cages under the same surrounding conditions as mentioned before. 

After surgical implantation of the hamster skin fold chamber, the animals were temporarily 

held in an intensive care incubator (Model 7510, Dr�gerwerk AG, L�beck, Germany) at 32 �C 

and a relative air humidity of 70 % (v/v).

Surgical preparation

In order to judge the nanoparticle accumulation and microcirculation within the tumor and 

within the endothelial vessel regions, a transparent dorsal skin fold chamber as developed by 

[Endrich, B. et al. 1980; Asaishi, K. et al. 1981] was implanted into the hamsters.

In detail, a laterally inversed titanium frame with a central circular opening for reasons of 

observation was used for this purpose and implanted in the double folded dorsal skin area of 

the hamster (Figure 2.13). One side of the skin was completely removed by surgical means 

allowing visual access to the vessel bearing tissue region. Therefore the animals were 

anaesthetized by intraperitoneal injection of 100 mg/kg ketamine hydrochloride and 10 mg/kg 

xylazine hydrochloride and the dorsal hair was removed through manual and chemical 

depilation using razor blades and Pilca�-med cream. The now hair-free dorsal skin was 

cleaned with 72 % (v/v) ethanol and knitted to the top of the titanium frame. In the following 
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surgical step the complete dermis and subcutaneous connective tissue were removed with 

micro-surgical instruments giving view to the contra-lateral side with skin muscle and 

supplying vessels. The circular opening again was covered with a coverslip (diameter 

11.8 mm, thickness 1 mm) (Edgar Hefele Medizintechnik, Munich, Germany) and fixed with 

a ferrule. Distance nuts were used at an offset of 4 mm to avoid any compression of the folded 

tissue. The chamber halves were fixed to the skin of the hamster with screws and stitches.

Figure 2.13

Anatomical model of a prepared hamster skin fold chamber (top); microscopic view of the 

chamber window with an inoculated, well vascularized tumor (bottom); pictures kindly 

provided by Claudia Nussbaum [Nussbaum, C. 2008]

Criterion for exclusion

The animals tolerated the dorsal skin fold chamber after a two to three day phase of 

reconstitution very well and did not show any signs of behavioural anomalies. Animals 

however, that lacked species-like normal behaviour, showed loss in weight or a lack of 

reaction on external stimuli were excluded from further studies.
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The chambers were examined macroscopically and microscopically and in case of traumata, 

air inclusion or general signs of inflammation, edema, another criterion for exclusion was 

fulfilled.

Venous access

One day before the nanoparticle injection the animals received a catheter into the right vena 

jugularis interna. Therefore the animals were anesthetized as described above and after 

cranial ligation of the vessel with silk (Perma Handseide, Ethicon, Nordstedt, Germany) and 

incision a polyethylene catheter (PE 10, 0.28 mm ID, Portex, Hythe, UK) was inserted and 

fixed. Until the day of the experiment, the distal end of the catheter was rolled up and secured 

with Leukosilk (3M Health Care, Neuss, Germany).

2.5.3 Mouse cremaster model

The following experiments at the mouse musculus cremaster (m. cremaster) were conducted 

under supervision of Professor Fritz Krombach, Ph.D. (Walter-Brendel-Center, Munich). The 

surgical preparation of the m. cremaster was kindly done in close cooperation with Peter 

Bihary (Walter-Brendel-Center, Munich).

The mouse cremaster model is a well established model within the international scientific 

literature for the investigation of the microcirculation [Thorlacius, H. et al. 1997]. From an 

anatomical point of view the m. cremaster is embedded in the fascia cremasteria and part of 

the lower part of the m. obliquus internus abdominis and the m. transverses abdominis. For 

our experiments the micro-surgical preparation the m. cremaster was done according to the 

first time description of Baez [Baez, S. 1973] with some slight modifications. The advantages 

of the m. cremaster model are its characteristic morphology. An almost two-dimensional 

vessel architecture combined with a high vessel density when analyzed with modern intra-

vital microscopic techniques allows for the non-overlapping imaging of anatomical structures, 

blood flow and even single cells [Reichel, C. A. 2008].
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Animal models

For the intra-vital studies of nanoparticle flow and interaction behaviour within the mouse 

musculus cremaster, male wild type (WT) C57BL/6 mice (Charles River, Sulzfeld, German) 

were used. The mice had an average body weight 25 to 35 g and were housed under 

controlled day and night light cycles in groups of 3 to 5 animals in Makrolon cages. They had 

free access to war and standard laboratory mice chow (Sniff Spezialdi�ten, Soest, Germany).

Narcotisation

During spontaneous breathing the animals were anaesthetized with ketamine and xylazin. In 

detail, the narcotization was initiated by intra-abdominal injection of a mixture of ketamin 

(100 mg/kg) and xylazin (10 mg/kg) and was kept pending during he whole examination with 

repeating injections of ketamin (100 mg/kg). The body temperature of the animals during 

surgical preparation and during the experiments was kept constantly at 37 �C by fixation on a 

medical heating plate.

Surgical preparation of the musculus cremaster

The surgical preparation of the m. cremaster was exercised under a surgeon microscope 

(Leitz, Wetzlar, Germany) using a 5 – 42x magnification and with slight modifications to the 

first time description of Baez [Baez, S. 1973]. In brief, after initiation of the anaesthetization, 

and insertion of a cannula into the arteria femoralis with a polypropylene-catheter (ID 

0.28 mm, Portex, Lythe, United Kingdom), the right testicle was exposed by ventral incision 

of the scrotum (Figure 2.14). Now, using an electro-cauther the m. cremaster was carefully 

ventrally opened in a region of low blood vessel density and strapped over a special stage.

The testicles themselves were separated from the m. cremaster and put back into the 

abdominal cavity. During this whole process, the muscle was superfunded with warm 

buffered saline solution.
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Figure 2.14

Simplified view of the preparation of the m. cremaster in the mouse: (1) canuled left arteria 

femoralis, (2) stretched m. cremaster within the superfusate [Reichel, C. A. 2008]

Intravital microscopy

All intravital microscopic examinations were done on an Olympus BX 50 microscope 

(Olympus, Hamburg, Germany). The light source was a 75 W xenon lamp equipped with a 

fluoresceine-isothiocyanate filter-block that consisted of dichroic filters and emission filters 

(DCLP 500, LP515, Olympus, Hamburg, Germany). Special care was put on setting the light 

exposure times as low as possible in order to minimize phototoxic effects during the 

fluorescence microscopy [Steinbauer, M. et al. 2000].

For the nanoparticle experiments, at first, cationic gelatin nanoparticles labeled with 

0.1 mg/ml Alexa 488 and dispersed in 10.5 % trehalose solution were prepared. A second 

mouse was treated with 1:10 of the same batch and a volume of 200 �l over a time period of 

20 seconds. In a second approach neutral gelatin nanoparticles labeled with rhodamin 

lissamine in PBS/Tween (5 % w/w) were tested. Furthermore two cremaster models received 

a total of 800 �l of a 5 mg/ml nanoparticle dispersion. Neutral gelatin nanoparticles labeled 

with Alexa 488 suspended in PBS/Tween (5% w/w) were applied to a cremaster mouse. The 

particles were diluted 1:10 to a final concentration of 0.5 mg/ml of which 100 �l were 

injected i.a. 
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2.5.4 Mouse arthritic knee model

Antigen-induced arthritis (AIA) in mice is histologically and immunologically well 

characterized and is one of the most useful models in the understanding of rheumatoid 

arthritis (RA) [Brahn, E. 1991]. AIA permits an exactly defined time course of arthritis in the 

affected joint (typically the knee joint; Figure 2.15), with inflammation characterized by 

hyperplasia of the synovial lining layer and cell infiltration. These abnormalities reach a 

maximum on day 7 [Simon, J. et al. 2001], the time point which was therefore chosen for 

imaging. Although it is impossible to determine a disease-specific antigen expressed in joints 

only in the context of arthritis, macrophages are believed to play an essential 

pathophysiologic role at a local level, with presentation of antigens and production of tissue-

degrading enzymes and mediators of inflammation [Berg van den, W. B. et al. 1996; Hansch, 

A. et al. 1996; Bresnihan, B. 1999; Kinne, R. W. et al. 2000].

Figure 2.15

Analysis of the prepared knee joint tissue with an intra vital microscopic set up

Therefore, the aim of the present study was to visualize arthritic joints with fluorochrome 

dyed nanoparticle probes in the vis range by targeting macrophages and inflamed tissue with 

fluorochrome-labeled gelatin nanoparticles. For comparative reasons chitosan nanoparticles 

and DOTAP liposomes were used.

In detail, besides our liposomal formulations (not shown) the following nanoparticle 

samples were transferred to the animal model: 



Materials and Methods

79

Table 2.3

GNP-1-0.1-VEGF Gelatine nanoparticles red + siRNA

GNP-1-0.1-Block Gelatine nanoparticles + siRNA red

Chitosan-1-0-1-VEGF Chitosan nanoparticles red + siRNA

Chitosan-1-0.1-Block Chitosan nanoparticles + siRNA red

After i.v. application of the nanoparticle samples the knee was monitored via an intra-vital 

fluorescent microscope. In addition tissue samples of the knee were fixed in 4 % (v/v)

formaldehyde (pH 7.4) and embedded in paraffin to be cut with a microtome. These 

histological cuts of ~ 6 �m thickness were stained according to various histochemical and 

immohistochemical protocols for further analysis.

2.5.5 Mouse whole body imaging

The non-invasive in-vivo analysis of the body distribution of protein and respectively gelatin 

nanoparticles today is limited due to the lack of appropriate tools and methods. Recently, 

fluorescent whole body imaging has been introduced to measure nanoparticle distribution 

under live conditions without changing the nanoparticle surface characteristics at large.

Figure 2.16

Display of the IVIS� Lumina Imaging system: photography chamber (left); cross section 

(right); the mice are placed (from http://www.caliperls.com/products/ivis-lumina.htm)

http://www.caliperls.com/products/ivis
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For the in-vivo studies, female young nude mice with an average body weight of 27.1 g 

were used. The animals received 150 �l injections of the nanoparticle formulations at 

different concentrations in HEPES buffered glucose (HBG) through the tail vein. Recording 

of the whole body images was done using the IVIS Lumina CCD whole body camera system 

equipped with an ICG filter set. Living Image� software Version 2.6.1 from Xenogen 

Corporation (California, USA) was used for picture analysis. The animal house was well 

ventilated and the animals were maintained on a 12:12 h light/dark cycle in large spacious 

cages throughout the experimental period. The animals were provided with food and water ad 

libitum. All efforts were made to minimize animals suffering and to reduce the number of 

animals for the study.

All animal procedures were approved and controlled by the local ethics committee and 

carried out according to the guidelines of the German law of protection of animal life.

2.5.6 Pharmcokinetic studies

The concentration of different blood cells during nanoparticle application was measured 

with a Beckman Coulter counter (AcT-Series, Beckman, Krefeld, Germany). Samples were 

drawn directly through a catheter inserted in the carotid artery at different time points from 0 

to 90 minutes after i.v. nanoparticle infusion. In detail, white blood cells, thrombocyte count

and hemoglobin concentration were assayed. Again, all measurements were conducted in 

triplicate.

For the nanoparticle kinetic data, blood samples (100 �l) were drawn from the animals at 

different time points via a catheter inserted into the carotid artery. The samples were 

transferred directly into microslides and fluorescence intensity was quantified by means of a 

photomultiplier tube (PMT P30A-11, Electron Tubes Limited, Middlesex, UK) coupled to a 

fluorescence microscope (modified Zeiss Axiotech microscope, Zeiss, Goettingen, Germany). 

Epiilumination using a specific fluorescence filter set (excitation: BP 546/12 nm; emission: 

575-640 nm) was performed by a 100W mercury lamp (FluoArc, Zeiss, Goettingen, 

Germany). 
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2.6 siRNA mediated gene silencing and protein knock-down

2.6.1 Chemicals and reagents

Ready to use siRNA duplexes were purchased from MWG-Biotech (Ebersberg, Germany). 

The GL3 luciferase-siRNA sequence was 5�-UUACGCUGAGUACUUCG (dTdT)-3�, and the 

non-specific control siRNA sequence was 5�-AUUGUAUGCGAUCGCAGC (dTdT)-3�. 

Ethylene-carbodiimide (EDC) and cholamine were purchased from Sigma Aldrich (Munich, 

Germany). Gelatin and diethylamino-ethanol-dextran were also obtained from Sigma Aldrich 

(Munich, Germany). Glutaraldehyde was obtained from Sigma. Branched polyethylene imine 

(PEI; average MW = 25kDa; cataloge number 40,872-7; lot number 07112DF, polydispersity 

index 3.4), Poly-L-lysine-HBr (PLL; degree of polymerization = 153, MW = 32000; cataloge

number P2636, lot number 085K5100, polydispersity index 1.2), succinimidyl 3-(2-

pyridyldithio) propionate (SPDP), 2,3-dimethylmaleicanhydride (DMMAn) and 

succinicanhydride (Succ) were obtained from Sigma-Aldrich (Munich, Germany). Cysteine 

modified Melittin (Mel) was obtained from IRIS Biotech GmbH (Marktredwitz, Germany) 

and had the sequence CIGA VLKV LTTG LPAL ISWI KRKR QQ (all-(D) configuration). 

All-(D) stereochemistry was used because it is non immunogenic while being as lytic as the

natural peptide. Succinimidyl propionate monomethoxy polyethylene glycol (SPA-mPEG, 

molecular weight 5000, cataloge number 85969, lot number 071049/1) was purchased from 

Fluka (Buchs, Switzerland). Cell culture media, antibiotics, and fetal calf serum were 

purchased from Invitrogen (Karlsruhe, Germany). Formulations for nucleic acid delivery were 

prepared in HBG (HEPES-buffered glucose solution; 20mM HEPES, 5% glucose, pH 7.4).

The PLL-PEG-DMMAn-Mel conjugate was synthesized according to a method described 

elsewhere [Meyer, M. et al. 2008]. In brief, PLL (hydrobromide, MW 32 000) was PEGylated 

with mPEG-succinimidyl propionate (MW 5000). The PEGylated polycation was further 

modified with heterobifunctional N-succinimidyl 3-(2-pyridyldithio)propionate allowing 

subsequent coupling of DMMAn-Mel peptide via the N-terminal cysteine. The resulting 

conjugates had molar ratios of approximately 1/1/8 for PLL/PEG/DMMAn-Mel.

All other solvents and reagents were either of HPLC grade or of the American Chemical 

Society reagent grade.
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2.6.2 Biological activity of nanoparticles

siRNA delivery efficiency of the loaded nanoparticles was examined with the Neuro2A-

eGFPLuc cells. Luciferase siRNA was loaded onto the nanoparticles in a HBG pH 7.0 

solution. Cells were seeded in 96-well plates (TPP, Trasadingen, Switzerland) using 5000 

cells per well 24 h prior to gene silencing. The experiments were carried out with each 

nanoparticle formulation loaded with 500 ng luciferase siRNA at different ratios. 48 hours 

after initial transfection, the cells were lysed and assayed for luciferase expression. In parallel, 

complexes with a control siRNA sequence were applied. If luciferase expression decreases 

upon transfection with control siRNA, knockdown is mainly due to carrier toxicity and can 

hereby be distinguished from a real siRNA knockdown effect. 

Luciferase activity was measured using a Lumat LB9507 instrument (Berthold, Bad 

Wildbad, Germany). Luciferase light units were recorded from a 25 μl aliquot of 50 �l cell 

lysate with 10 s integration time after automatic injection of freshly prepared luciferin using 

the Luciferase Assay System (Promega, Mannheim, Germany). Knock-down efficiency was 

evaluated as relative light units (RLU) per number of seeded cells. Two nanogram of 

recombinant luciferase (Promega, Mannheim, Germany) corresponded to 107 light units.
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3 Results and Discussion

Goal of the present thesis was to develop and modify novel nanoparticles based on gelatin 

towards an efficient siRNA carrier for cellular RNA interference and expression silencing. 

Throughout the course of formulation development, different gelatins as well as different 

cationization approaches were evaluated for their potential to link negative nucleic acids to 

the nanoparticle surface. Early stage in-vitro evaluation was carried out in cell cultures by 

incubation with nanoparticles in static and flow through conditions. The cell interaction and 

uptake profiling were thereby monitored. Accent was put on culture studies under flow-shear 

conditions in order to evaluate the contact and adhesion between cultured cells and 

nanoparticles. This innovative approach holds the chance to more closely simulate in-vivo

conditions especially in the field of nanotechnology and to allow in-vitro/in-vivo correlations.

The in-vivo experiments were then used to transport the cellular observations to a real life 

setting with the purpose to overcome the static model for nanoparticle studies. Finally, a new 

type of endosomolytic gelatin nanoparticles was developed by utilizing the strong cationic 

polysaccharide DEAE-dextran and the lytic Melittin peptide. Those newly developed 

nanoparticles were used to transport and deliver siRNA molecules to cells and stably knock-

down the inherent target protein levels.

3.1 Nanoparticle formulation

Generally, for the delivery of negative siRNA molecules under near to physiological 

conditions, under the presence of serum and flow-shear conditions, a sophisticated cationic 

nanoparticle design is needed. Negatively charged RNA molecules can be electrostatically 

attached to nanoparticles when their positive surface charge prevails strong enough in 

physiological ionic surrounding. The same interaction as with siRNA can of course be 

undergone with other nucleic acids like shorter oligonucleotides or long double stranded 

DNA. Several authors have already shown the delivery of oligonucleotides and DNA with 

nanoparticulate systems [Mao, H.-Q. et al. 2001; Zwiorek, K. et al. 2004; Cui, Z. et al. 2006; 

Remaut, K. et al. 2006]. However, it has to be mentioned that in most cases, the interaction of 

carrier or carrier polymer was facilitated by DNA condensation and compaction process due
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to its length [Porschke, D. 1991]. Since siRNA cannot be condensed, an intercalation with the 

polymer chains of the carrier becomes unrealistic and a new way of siRNA binding had to be 

developed. The ionic interaction on the surface of the nanoparticles has the potential to fulfil

this role with the restriction though, that the nanoparticles’ positive charge will be reduced by

a large extent, which has consequences for the colloidal stability. It was therefore mandatory 

to develop highly cationic nanoparticles which can remain with a sufficient residual positive 

charge after siRNA loading to stabilize the nanoparticle colloidal conformity.

All nanoparticle formulations were examined for their distinctive size distribution using 

173� angle dynamic light scattering and static light scattering. The static light scattering 

allowed for screening of larger particle agglomerates while the dynamic light scattering was 

accurate in the lower size range.

Unmodified gelatin nanoparticles

Homogenous and small nanoparticles were prepared with the given formulation conditions 

by Coester et al. [Coester, C. J. et al. 2000]. These nanoparticles were used as reference in the

loading, in-vitro and in-vivo experiments and will be further referred to as “unmodified” 

nanoparticles with a zeta potential close to the neutral. Since no cationization was made to 

these batches, the nanoparticles were not suitable for the loading and delivery of siRNA. The 

charge of unmodified nanoparticles was only determined by the available surface primary 

amino and carboxy groups. Figure 3.1 shows the average size range of unmodified 

nanoparticles reflecting an overall very narrow size distribution within our chosen formulation 

approach and very good interday and inter-batch reproducibility. The nanoparticle size ranged 

from 172 nm to 256 nm over 50 separately and independently formulated GNP batches with 

an overall size and standard deviation of 214 nm + 26.04 nm. The increased homogeneity 

compared to previous work e.g. [Zwiorek, K. 2006] was attributed to our development of a 

standardized formulation protocol and the use of standardized equipment like e.g. low-protein 

adsorptive glass stirring beads and a pump and needle based apparatus for precise dosage of 

desolvation agent. The small standard deviation was especially remarkable, since gelatin is a 

polymer from biological origin and heterogeneity in its medium molecular weight is inherent 

to it. Again in comparison to early stage studies of our group but also compared to other types 

of today’s nanoparticle [Lutsiak, M. E. C. et al. 2002] the size reproducibility in the lower size 

range was further optimized.
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Figure 3.1

Size distribution determined by DLS of gelatin nanoparticles (bars) and PDI (dotted line)

within 50 formulations showed a good batch-to-batch reproducibility in a size range from 

172 nm to 256 nm.

Yet it was not the size of the nanoparticles that should be relevant for the later siRNA 

loading process but their charge represented by the zeta potential. Figure 3.2 shows how the 

zeta potential of unmodified nanoparticles stays at a very low level ranging from -5 mV to 

+5 mV (SD 2.87 mV) in highly purified water (Figure 3.2). It has to be noted at that point, 

that the presence of ions in the measurement media dramatically influenced the zeta potential 

due to their shielding of the electronic cloud around the nanoparticles. For this reason all zeta 

potential measurements were conducted in freshly prepared highly purified water at the same 

conductivity if not stated otherwise. A comparison of the zeta potential in the different media 

was made for the modified nanoparticles in particular and is discussed in detail later (refer to 

3.10.1.2 Medium influence). The close to neutral charge can lead to the aggregation over time 

if the system is not otherwise stabilized [Hsu, J.-P. et al. 1999]. Surprisingly, neutral GNP 

remained well dispersed in low ionic water as well as in phosphate buffered saline (PBS). 

This allows for the assumption, that their colloidal state is not only stabilized via charge based 

repulsive forces but also via lack of physical interaction, thereby resembling a simpler 

occurrence of the highly complex stealth systems known from liposomes [Deol, P. et al. 

1997].
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Figure 3.2

Zeta potential (black bars) of unmodified gelatin nanoparticles over a range of 

50 independently prepared formulations

Single cationized gelatin nanoparticles

For a cationization of the gelatin nanoparticles the method of covalently coupling cholamine 

moieties to the carboxy functional groups of the final nanoparticles was used. The chemical 

reaction behind this modification required a pH adjustment and the addition of a catalyst like 

EDC as described in 2.1.4 Formulation of cationic gelatin nanoparticles. The formulation of 

nanoparticles using this method required exact amounts of the catalyst in order not to cross-

bridge the nanoparticles and create agglomerates.

As shown previously by other members of our research group, the size of cholamine 

cationized gelatin nanoparticles was 205 nm + 24 nm S.D. respectively [Zwiorek, K. et al. 

2004]. We confirmed this size range in over 200 independently cross batch measurements 

throughout the course of 3 years. More importantly the zeta potential of the single cationized 

GNP ranged between 25 and 30 mV + 4 mV S.D. before siRNA loading in highly purified

water and dropped by more than 60 % for siRNA loaded GNPs which leaves the need for the 

further enhancement of the cationization process.
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Highly cationic DEAE-dextran modified gelatin nanoparticles

After the above experiments with cholamine modification of the GNP DEAE-dextran

incorporation into the gelatin matrix was thought to be the more potent cationization step. 

Therefore a matrix of several formulation approaches was developed and the potential 

outcome of nanoparticles was evaluated. According to the assay layout in Table 3.1 it turned 

out that DEAE-dextran at concentrations as low as 0.05 % (w/w) was able to cationize the 

gelatin nanoparticles significantly (+5 - +40 mV) above the level of the above nanoparticles.

On the contrary, DEAE-dextran as a polysaccharide at concentrations above 1 % (w/w)

increased the viscosity of the gelatin solution so much that the formation of uniform 

nanoparticles was not possible. Hence the optimum range for polysaccharide modifications 

was found to be in between 0.04 % (w/w) and 0.5 % (w/w). The static light scattering results 

revealed aggregates with a size of 800 nm – 5 �m for those formulations with more than 

1 % (w/w) and to up 10 % (w/w) DEAE-dextran.

It was beneficial for the nanoparticle preparation to set the temperature for the 

protein/polysaccharide solution to 30� C + 2 �C in order to receive the smallest and most 

homogenous nanoparticles (n=3), (Figure 3.3). One possible explanation is that at this 

temperature an optimal equilibrium between medium viscosity and Brownian molecular

movement of the macromolecule chains exists. The viscosity of the medium and the 

thermodynamic influences on polymer nanoparticles has so far not been studied in literature. 

Our data suggests that low viscosities and thereby a fast molecular kinetic movement were 

beneficial for the formation of nanoparticles. These results in general demand further studies 

in the field of protein nanoparticle thermodynamics while later on in the thesis such 

considerations will become important again when nanoparticles were studied in-vitro under 

flow conditions and at elevated temperatures.
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Table 3.1

Nanoparticle formulation and DLS size results for different DEAE-dextran concentrations and 

temperatures between 25 �C and 50 �C

DEAE-dextran [%] pH T [ÉC] Size [nm] + S.D. PDI Aggregates
0.04 2.5 25 210 + 2 0.022 No
0.04 2.5 30 198 + 4 0.054 No
0.04 2.5 35 208 + 7 0.076 No
0.04 2.5 40 173 + 12 0.020 No
0.04 2.5 50 251 + 4 0.046 No
0.08 2.5 25 198 + 11 0.013 No
0.08 2.5 30 215 + 2 0.070 No
0.08 2.5 35 143 + 4 0.147 No
0.08 2.5 40 198 + 1 0.106 No
0.08 2.5 50 270 + 4 0.083 No
0.2 2.5 25 205 + 7 0.061 No
0.2 2.5 30 199 + 2 0.003 No
0.2 2.5 35 253 + 7 0.040 No
0.2 2.5 40 233 + 6 0.146 No
0.2 2.5 50 301 + 1 0.100 No
0.3 2.5 25 238 + 5 0.051 No
0.3 2.5 30 229 + 1 0.010 No
0.3 2.5 35 231 + 4 0.009 No
0.3 2.5 40 247 + 8 0.035 No
0.3 2.5 50 318 + 22 0.204 No
0.4 2.5 25 240 + 31 0.081 No
0.4 2.5 30 240 + 4 0.004 No
0.4 2.5 35 202 + 12 0.002 No
0.4 2.5 40 237 + 13 0.077 No
0.4 2.5 50 299 + 11 0.080 No
0.8 2.5 25 316 + 15 0.049 No
0.8 2.5 30 301 + 4 0.104 No
0.8 2.5 35 288 + 6 0.151 No
0.8 2.5 40 333 + 41 0.017 Yes
0.8 2.5 50 346 + 8 0.096 Yes
1.0 2.5 25 441 + 5 0.091 Yes
1.0 2.5 30 322 + 4 0.096 Yes
1.0 2.5 35 551 +16 0.180 Yes
1.0 2.5 40 304 + 8 0.199 Yes
1.0 2.5 50 589 + 4 0.444 Yes

The temperature effect on DD-GNP was studied from 25 to 55 �C (Figure 3.3) and showed 

that at 30 – 35 �C the smallest nanoparticles could be formulated. The more viscous the 
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gelatin solution became the harder it was to formulate small nanoparticles whereas the PDI 

could be maintained.
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Figure 3.3

Determination of the optimum temperature conditions for the formation of small DEAE-

dextran GNP (bars = size, line = PDI)

Also in contrast to the formulation of pure GNP, the stirring speed played a more critical 

role in nanoparticle formulation. While Zwiorek [Zwiorek, K. 2006] was able to formulate 

GNP at a stirring speed of 400 rpm, DEAE-dextran modified GNP required a slower speed of 

200-250 rpm in order to form the smallest nanoparticles possible (Figure 3.4). This can be 

explained by a higher intercalation probability of the polymer chains at higher stirring rates.
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Figure 3.4

Determination of the optimum stirring rate for the formation of small DEAE-dextran GNP 

(n=5) (bars = stirring rate, line = PDI, dotted line = trend)

Human serum albumin nanoparticles

Human serum albumin nanoparticles were successfully formulated as described above (refer 

to 2.1.6 Formulation of human serum albumin nanoparticles). It turned out that the 

nanoparticles could be formulated almost in the same way as the GNP but possessed a lower 

colloidal stability over the time period of 14 days. In detail, human serum albumin 

nanoparticles with an average size of 248 nm + 12 nm S.D. and an average PDI of 0.08 nm 

grew by 8 % in size after 3 days and by 12 % after 14 days. After all, HSA nanoparticles were 

formulated to compare their formulation feasibility and in-vitro potential as another 

biocompatible, biodegradable polymer to that of GNP.

Polybutylcyanoacrylate nanoparticles

Formulated by an emulsion polymerization reaction in acidic pH, the 

polybutylcyanoacrylate (PBCA) nanoparticles had to be dialysed after the preparation to 

remove any toxic monomers [Evans, C. E. et al. 1999]. In addition, several washing and 

centrifugation steps were made to ensure the lowest possible monomer contamination. The 
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size of the final formulation was 352 nm + 8 nm S.D. with an average PDI of 0.292. While 

GNP formulations were well stable over a long period of time and also throughout several 

changes of medium [Zwiorek, K. 2006] the PBCA nanoparticles showed a tendency of 

agglomeration after changing the medium from highly purified water to PBS, HEPES or

DMEM [Broermann, P. et al. 2008], which was in accordance to findings of Sommerfeld et 

al. [Sommerfeld, P. et al. 2000]. In addition we found out that at 4 �C PBCA NP were well 

stable while at 37 �C as a model temperature for our cell culture studies the PBCA NP 

showed signs of growth or aggregation by increasing from 372 nm + 7 nm S.D. to 427 nm +

12 nm S.D. after 240 hours (Figure 3.5).

In summary, PBCA NP served as a negative reference standard that, besides our 

comparative studies, will not be investigated further due to the mentioned stability issues and 

proposed incorporation problems of biological drugs during the harsh formulation conditions.
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Size distribution and PDI of PBCA nanoparticles measured by DLS over a time span of 240 

hours at two different storage conditions: Size at 4 �C (black column), Size at 37� C (grey 

column), PDI ( - /  )
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Chitosan nanoparticles

The other polymer that was studied was chitosan and its modified thiomers. Here small and 

uniform chitosan nanoparticles can be as easily generated the lower the molecular weight of 

the excipient polymer is [Bernkop-Schn�rch, A. et al. 2006]. By chemically “cracking” the 

chitosan (refer to 2.1.8.1 Preparation of low molecular weight chitosan) down to a molecular 

weight of approximately 10 kDa, nanoparticles from thiolated chitosan in the low nanometer 

range could be formed. When lyophilized the thiolated chitosans showed a fibrous and white

yellow color. In Table 3.2 we compared cationic GNP and GNP formulated from more 

hydrophobic prototype gelatins (MS and MA) with chitosan and thiomer nanoparticles. 

C-GNP had a zeta potential of +27 mV + 4 mV S.D. and therefore a comparable cationic 

surface charge as nanoparticles from low molecular weight chitosan with the sizes of 213 nm 

and 290 nm providing a small but significant advantage in favor to C-GNP. For the other 

thiomers nanoparticles were also formulated with a cationic charge, but interestingly in most 

cases with a comparatively high PDI value leaving chitosan an unfavorable material to 

formulate nanoparticles for in-vivo i.v. use. Chitosan-NAC-low-viscosity for instance formed 

the most cationic thiomer nanoparticles with +32 mV + 12 mV S.D. and a PDI of 0.432. The 

MS and MA nanoparticles due to their surface modified gelatin matrix prompted negative 

nanoparticle surface charges with -36 mV and – 13 mV respectively and sizes with 362 nm 

and 193 nm. 

Table 3.2

Size distribution and zeta potential of the cationic gelatin nanoparticles and chitosan

nanoparticles measured by DLS, SLS and electrophoretic mobility (n=3)

Batch Zeta [mV] Size [nm] + S.D. PDI SLS [nm] Span
C-GNP +27 � 4 213 � 22 0.005 215 0.422
MS-NP -36 � 8 362 � 45 0.053 380 0.523
MA-NP -13 � 2 193 � 18 0.107 198 0.721

Chitosan–low viscosity +21 � 2 272 � 19 0.103 273 0.881
Chitosan–low molecular weight +27 � 9 290 � 24 0.140 335 0.923
Chitosan–TBA–low viscosity +12 � 4 412 � 37 0.231 812 0.786
Chitosan–NAC–low viscosity +32 � 12 304 � 5 0.432 621 0.699
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The used ionic crosslinking of nanoparticles allowed us to quickly formulate nanoparticles 

in the desired size range with the only disadvantage of time consuming dialysis processes to 

harden the particles. The additional covalent disulfide crosslinking resulted in slightly larger 

nanoparticles due to less bridges formed between the intercalated polymer chains compared to 

ionic crosslinking. For other in-vivo studies the disulfide bonds are important not only for the 

stability of the chitosan nanoparticles but also for the muco-adhesive and permeation

enhancing properties [Roldo, M. et al. 2004]. The molecular interaction between the single 

chitosan chains is shown in Figure 3.6.

Figure 3.6

Molecular interpretation of the ionic and oxidative crosslinking process of thiomers to 

thiomer nanoparticles; (SH = sulfhydryl group, Ox = oxidation, TPP = tripolyphosphate)

[Bernkop-Schn�rch, A. et al. 2006]

It turned out that choosing the right amount of crosslinker concentration and incubation time 

were the decisive factors for a reproducible nanoparticle formulation. The formulation 

developed by Bernkop-Schn�rch could be improved by increasing the oxidation time from 3 h 

to 10 h and thereby generating nanoparticles with a lower PDI. As seen in Table 3.5

crosslinking with TPP resulted in nanoparticles of size from 170 nm + 16 nm to 348 + 36 nm. 

A threefold increase of the crosslinker amount from 0.25 0.75 % (w/v) lead to a median size 
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of 174 nm + 5 nm indicating overall very small nanoparticles. For later assays nanoparticles 

in the medium size range of GNP were used to exclude size related biological side-effects.

3.2 Nanoparticle fluorescence labeling

The fluorescence labeling was a critical part in our studies and had to be optimized not only 

for the in-vitro studies but also first-time tested for the later in-vivo studies. While all 

fluorophores were successfully coupled to the nanoparticles as indicated by fluorimetric data, 

the fluorophore concentration, coupling conditions, incubation time, nanoparticle

concentration, fluorimeter excitation and emission slit as well as the detector voltage were 

tested. Measurement of the fluorescence by fluorimetry turned out to be insufficient for a 

quantitative approach due to quenching and noise effects through the particle based light 

scattering even within rather diluted samples. In general the scatter from the dispersed 

nanoparticles made it impossible to determine the net fluorescence of the final formulations

(Figure 3.7). Figure 3.8 reveals how even increased slit width in the fluorimeter would not 

increase the signal sensitivity against the particle scatter. Therefore a work-around using 

subtractive calculations of free fluorophore in the supernatant compared to a 100 % (w/w)

solution had to be used in order to determine the fluorescence yield (9.85 % - 19.5% (w/w)).
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Observed quenching for fluorescently labeled GNP at an increased fluorophore concentration 

of 0.2 % (w/w) compared to 0.02 % (w/w) and 0.002 % (w/w) lissamine 
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Figure 3.8

Fluorescence emission recording is disturbed for GNP at a concentration of 0.01 mg/ml (left,

excitation slit 2.5, emission slits 2.5, 5, 10, 20 from bottom to top) and 0.1 mg/ml (right, 

excitation slit 2.5, emission slits 2.5, 5, 10, 20 from bottom to top) measured in PBS

Because the intention of the fluorescence measurements initially was to determine the 

emission in the same fluorescence detection setup that was used for the in-vitro and in-vivo

experiments a comparative study was conducted in microslides.

Figure 3.9
Fluorescence measurements of labeled nanoparticles in a microslide recorded by a fluorescent camera; 1. FITC-

dextran 100 �l, 200 �l, 600 �l labeled N-GNP, FITC-dextran labeled PBCA-NP; 2. Oregon Green labeled N-

GNP, diluted 1:1, 3:7, 1:9; 3. Coumarine 6 labeled aGNP, Lissamine Rhodamine B labeled C-GNP, HSA-NP; 

the arrow indicates the nanoparticle dispersion inside the slide
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Figure 3.9 shows the fluorescence plots of several fluorescence labeled nanoparticle 

formulations, quantitatively demonstrating the intensity fluctuations of the used fluorophores 

as measured with the fluorescence microscope. Here a labeling of N-GNP and C-GNP with 

FITC-dextran 600 �l and lissamine rhodamine B depicted the highest fluorescence intensities 

next to Oregon green and was therefore used for the in-vitro and in-vivo studies. FITC-dextran 

labeling of PBCA-NP on the contrary was rather low, and so was the coumarine 6 labeling of 

aGNP. For Oregon Green dilutions an almost linear reduction in fluorescence emission was 

recorded, showing a signal even at a dilution of 1:9 and therefore enough for in-vivo

experiments. With this data the quantitative results from the fluorimeter studies could be 

linked to a qualitative result which is directly relevant for the in-vivo studies.

3.3 Nanoparticle advancements with DEAE-dextran

DEAE-dextran has the potential of complexing nucleic acids due to its polymeric and 

permanent cationic nature. Several authors have shown that transfection with DEAE-dextran

is not only possible but besides being a standard method in biotechnology, it has however 

major drawbacks like decreased cell viability and lack of complex stability [Kosmala, J. D. et 

al. 2000]. DEAE-dextran (Figure 3.10) is basically a polycationic derivative of dextran and is 

commercially produced by binding diethylaminoethyl chloride with dextran. In a novel 

combination with gelatin nanoparticles as proposed in this thesis, DEAE-dextran can prove to 

be of great interest, because of the combination of the complexing and transfecting properties 

of the polysaccharide with the inherent positive properties of gelatin nanoparticles. We also 

propose a thin polymer brush like surface of the DEAE-dextran gelatin nanoparticles allowing 

for an increased siRNA binding capacity due to a better intercalation of the tiny, uncondensed 

nucleic acids. The combination of the characteristics of a nano-sphere and a polyplex to form 

something that could be called a SPHEROPLEX (Figure 3.11) might bring forward several 

synergistic effects in drug delivery and RNAi where until now no solution could be found.

The modification of the gelatin nanoparticles with DEAE-dextran resulted in slightly larger 

particles with a broader size distribution and higher standard deviations as shown in Table 

3.3. The rise in size was nearly linear to the amount of added DEAE-dextran.
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Figure 3.10
Molecular formula of DEAE-dextran

+
+
+

---

Figure 3.11

Theoretical visualization of a gelatin-DEAE-dextran spheroplex with oligonucleotides
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Table 3.3

Influence of different DEAE-dextran amounts on the size single modified GNP and 

additionally cholamine modified GNP

DEAE-dextran [mg] 0 5 10 20 30 50 75 100

N-GNP Size 190 # # # # # # #

PDI 0.001 # # # # # # #

SD 6 # # # # # # #

DD-GNP Size 175 198 209 218 227 291 322 343

PDI 0.001 0.002 0.004 0.01 0.008 0.029 0.034 0.038

SD 17 9 10 6 4 12 18 23

N-GNP + Cholamine Size 205 # # # # # # #

PDI 0.01 # # # # # # #

SD 9 # # # # # # #

CDD-GNP Size 199 185 226 253 280 301 390 398

PDI 0.005 0.03 0.04 0.04 0.05 0.08 0.06 0.09

SD 16 5 7 7 37 14 22 27

It was further observed that the post-formulation modification of the DEAE-dextran 

nanoparticles with cholamine again increased the nanoparticle size but with the tendency of a 

steeper slope at higher DEAE-dextran concentrations. N-GNP could be formulated at 190 nm 

(PDI 0.001) whereas for DD-GNP with 5 mg of DEAE-dextran an increase in size to 198 nm 

(PDI 0.02) was determined (n=3). For the following amounts of DEAE-dextran the size of the 

nanoparticles increased to a final 343 nm (PDI 0.038) indicating the successful incorporation 

of the polysaccharide into the gelatin while the PDI remained low. A second step cholamine 

modification of these nanoparticles increased the nanoparticle size and PDI only a little bit

further to 398 nm (PDI 0.09).

The zeta potential results for this formulation are shown in Figure 3.12. The optical model 

used here for our measurements was interpreted by the method of Smoluchowski in which the 

F(Ka) value was set to 1.5. Compared to neutral gelatin nanoparticles the cholamine 

modification led to sufficient cationic charged nanoparticles. However, if these nanoparticles 

were loaded with siRNA molecules, they lost much of their cationic surface potential, while a 
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combination of DEAE-dextran and cholamine has proven beneficial in this context (refer to 

3.6 siRNA containing gelatin nanoparticles (SICONs)).
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Figure 3.12

Zeta potential of DEAE-dextran modified GNP and cholamine (constant) cationized DEAE-

dextran modified GNP over DEAE-dextran amounts from 0 to 100 mg (n=3)

Depending on the amount of DEAE-dextran used for the nanoparticle formulation 

increasing zeta potentials were measured. The increase was almost linear with a plateau 

reached at 100.0 mg where an increased viscosity prevented a reproducible nanoparticle 

formation. DD-GNP had an initial zeta potential of 24.5 mV with the 5 mg DEAE-dextran 

modification, approaching a maximum between 33 and 37 mV with 100 mg. With a 

combination of cholamine and DEAE-dextran an increase of cationic zeta potential by ~37 % 

to 55 mV + 17 mV could be achieved which was an increase of 55 % compared to unmodified 

C-GNP and of 87 % compared to neutral GNP. In summary it was shown that nanoparticles 

modified with cholamine and DEAE-dextran had a much higher zeta potential than what was 

achievable with pure cholamine modification or pure DEAE-dextran modification, which in

the further formulation steps was mandatory for loading with siRNA and other molecules.
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3.4 Additional nanoparticle modifications 

Besides the above described results in formulating cationic nanoparticles additional 

techniques were transferred from chemistry to nanoparticle science. It was a major concern to 

formulate new gelatin nanoparticles with either a very hydrophobic surface or a permanent 

cationic charge. The hydrophobisation was proposed to be of invaluable help in the in-vivo

studies allowing for less interaction with blood proteins and hence an altered circulation 

profile [Ehrenberg, M. S. et al. 2009]. With the permanent cationic charge, we wanted to 

increase the chance of our nanoparticles to transfect cells. The hydrophobisation of the 

nanoparticles should be achieved through acetylation and the use of differently succinylated 

prototype gelatins while the cationization method was based on modification either with 

polyamines or aminomethylation with methyl groups. CLSM recordings of the modified 

nanoparticles after incubation with cells were used to elucidate the cellular interaction. And 

finally by comparing the particle attachment and uptake patterns on cell monolayers in our 

cell flow-system with a conventional static system we could bring forward the differences 

inherited in those new formulations and demonstrate the potential advantages of the flow-

system itself.

At first we investigated formulations of nanoparticles modified with the oligoamines 

spermine, spermidine, TEPA and TETA (Figure 3.13). The size of for spermidine GNP was 

between 198 nm and 253 nm depending on the pH, for spermine sizes between 199 nm and 

249 nm were achievable. TETA and TEPA modified GNP showed larger variations with sizes 

ranging from 198 nm to 441 nm and from 267 nm to 551 nm (n=3). In terms of zeta potential, 

only the TEPA modification with a permanently cationic charge over all examined pH values 

would be valuable for oligonucleotide or respectively siRNA loading. TEPA GNP had a zeta 

potential of ~14 mV - ~24 mV while the zeta potential for the other modifications was in all 

cases < 5 mV.
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Figure 3.13

Size and zeta potential of spermidine, spermine, TET and TEP modified GNP, prepared at pH 

values of 4.5 and 6.0

Modified methylated and acetylated nanoparticles were formulated and the production 

process was standardized. As with all new formulations, the nanoparticles were thoroughly

characterized by size, zeta and 1H-NMR. The CLSM recordings showed the expected 

different targeting and aggregation patterns depending on the modification and the type of

incubation. Further data and discussion on these special modifications will be made in 2.3.10

Nuclear magnetic resonance spectroscopy. An in-depth study of this particular project has 

been published as the Bachelor Thesis of Ms Pia Broermann, who did her work under the 

author’s supervision in 2008.

3.5 Nanoparticle and polymer analytics

3.5.1 Automatic microviscosimetry

Gelatin type A showed slightly higher viscosities than gelatin type B, e.g. a solution of 

2.5 % (w/w) of each polymer 2.5 mPas respectively 1.4 mPas (40 �C, n=20, σ=0.1). At 40 �C 

the viscosity of DEAE-dextran 0.25 % (w/w) as about the same as the for the gelatin type A 

2.5 % (w/w) solution, which made the combination of these concentrations preferable for our 

later nanoparticle formulation. At a concentration of 0.25 % (w/w) gelatin type A was still 
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within the limit of detection for the chosen method, while 5.0 % (w/w) of gelatin type A was 

analyzed as the maximum gelatin concentration used for nanoparticle preparation. The 

viscosity for these samples was in the range of 3.3 – 3.6 mPas (40 �C, n=20, σ=0.1).
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Figure 3.14

From top to bottom at 40 �C: gelatin type A 5.0 %, gelatin type A 2.5 % and DEAE-dextran 

0.25 % (30-50�C), gelatin type B 2.5 % (30-50 �C), gelatin type A 0.25 %

We showed that our used gelatin solutions at concentrations of 0.25 % (w/w) to 5 % (w/w) 

could be analyzed with our chosen capillary set-up using automatic microviscosimetry. As 

shown for the nanoparticle characterization, a mixing of these two polymer solutions with 

respect to comparable viscosities resulted in homogenous and small nanoparticles with a low 

polydispersity index and a good colloidal stability. The fact that viscosity can influence the 

nanoparticle formulation process to a large extent has indirectly been examined by Coester 

and Zwiorek in their comparative studies with different gelatin types and different molecular 

weight gelatins [Zwiorek, K. 2006]. By introducing the combination with a polysaccharide 

like DEAE-dextran into the complex nanoparticle formulation process, we expand this theory 

towards two-factorial colloidal systems. In addition, the automatic microviscosimetry has 

been shown to be a fast and reliable tool for in-process control during nanoparticle 

development. In addition to the viscosity influences shown, the molecular weight analyzed by 

AF4 plays an important role in the polymeric nanoparticle formulation.
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3.5.2 Asymmetric flow field-flow fractionation of gelatins

At first, gelatin bulk material from Sigma-Aldrich was analyzed to gain a benchmark for the 

following investigations of the modified samples. The gelatin molar mass distribution ranged

from 10 kDa to above 10,000 kDa, which confirmed the data reported by Fraunhofer et al.

[Fraunhofer, W. et al. 2004] and exceeded the findings from SE-HPLC/MALS analysis by 

more than one order of magnitude. The difference between data measured with SE-HPLC 

compared to AF4 reflects the fundamental differences between these two separation 

techniques. The separation process in SE-HPLC takes place in a packed column with high 

pressure applied to the sample; AF4 however has an open channel resulting in lower 

hydrostatic pressures and in conclusion lower shear force stress during analysis. Especially 

the high molecular weight specimen are inclined to degradation by increased shear forces and 

thus will only be detected in their native state if AF4 is used.

In a study by Zillies et al. (Figure 3.15) it had been demonstrated how the high molecular 

weight fractions of gelatin elute almost over the entire measurement cycle. Hence Zillies 

decided to only apply a weak separation force in order to expand the elution of the blend of 

molecules over a prolonged period and thereby visualizing the heterogeneous nature of 

gelatin.

Figure 3.15

UV signal (continuous line) and molecular weight (dots) calculated from respective UV and 

MALS data resulting from AF4 analysis of gelatin bulk material purchased from Sigma-

Aldrich; the circle marks the low molecular weight fraction [Zillies, J. C. 2008]
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As solely the high molecular weight fraction of Sigma gelatin can be used for the 

preparation of homogenous nanoparticles it generally has to be processed by two-step 

desolvation [Coester, C. J. et al. 2000]. Manufacturing experiments by Zillies [Zillies, J. C. 

2008], conducted with two customized Gelita batches (VP306 / VP413-2) that possessed less 

than 20 % (w/w) peptides < 65 kDa resulted in successful one-step desolvation synthesis of 

gelatin nanoparticles exhibiting equivalent size and size distribution. These findings revealed

the restriction that has especially to be made for the presence of low molecular weight 

portions in gelatin batches designated to one-step desolvation. The successful depletion of the 

low molecular weight fraction of gelatin is demonstrated in Figure 3.16.

Figure 3.16

UV signal (continuous line) and molecular weight (dots) calculated from respective UV and 

MALS data resulting from AF4 analysis of gelatin bulk material VP413-2 developed and 

provided from Gelita; the circle marks the low molecular weight fraction [Zillies, J. C. 2008]

In addition, gelatin sediment obtained from two-step desolvation after the first desolvation 

step – as the result from fractionation and used for the preparation of nanoparticles – also 

underwent AF4 analysis. Data from these experiments and from gelatin bulk material are 

displayed as function of their mean molecular weight in Figure 3.17.
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Figure 3.17

Mean molecular weight fractions calculated from respective UV and MALS data resulting 

from AF4 analysis of gelatin bulk material purchased from Sigma-Aldrich (1), of gelatin bulk 

material VP306 (2) and VP413-2 (3) developed and provided from Gelita, and of gelatin 

sediment obtained after the first desolvation step from the manufacturing process of the 

gelatin nanoparticles (4) [Zillies, J. C. 2008]

Interestingly the clear shift of the mean molecular weight of the gelatin sediment (4) by 

more than one order of magnitude compared to the bulk material (1) is not a prerequisite for a 

successful one-step desolvation. A mean molecular weight between 400 and 500 kDa 

determined for the Gelita batches VP306 and VP413-2 was already sufficient for the 

optimized one-step desolvation approach. Based on experiment findings the optimal 

molecular weight of gelatine for one-step desolvation manufacturing of gelatin nanoparticles 

is about 500 kDa with a concentration of low molecular weight fractions < 65 kDa of 

maximum 20 % (w/w). The mean molecular weight of gelatin sediment ranges clearly above 

the one of the Gelita batches, which may be attributed to even more reduced amounts of 

peptides < 65 kDa far below 20 %. Thus, the fractionation of gelatin bulk material during 

two-step desolvation supposedly led to an efficient fractionation and isolation of high-MW 

molecule fractions above 65 kDa.

As initially mentioned (refer to 3.4 Additional nanoparticle modifications) hydrophobisation 

could also be achieved by introducing succinyl (MS) - and dodecenylsuccinate (MA) groups 

into the gelatin resulting in novel prototype gelatins. These modifications were made by 

Gelita AG and were the basis for the following AF4 in-depth analysis of those prototypes 

before assessing their potential in gelatin nanoparticle formulation. In the initial process of 
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method development for the analysis of MA and MS gelatins, several ultra-filtration 

membrane types were tested due to an increased hydrophobic interaction potential of the 

prototype polymers. In particular, regenerated cellulose 5 kDa MWCO, regenerated cellulose 

10 kDa MWCO and a nitrocellulose membrane also with 5 kDa MWCO were tested with 

focus on their recovery and repeatability (n=3). The results in terms of recovery rate, 

repeatability and signal quality are presented in Table 3.4. For regenerated cellulose (5 kDa) 

the recovery was determined with 92.3 % at a medium repeatability of 97.4 %. Regenerated 

cellulose (10 kDa) had 3.4 % higher recovery with 95.7 % and a repeatability of 98.5 %. 

Nitrocellulose finally showed the lowest recovery with only 86.5 % which could be attributed 

to a too strong interaction of the analyte with the membrane making nitrocellulose 

unfavorable for further analysis of our prototypes. After experiments with different materials 

and cut-off values regenerated cellulose with a cut-off of 10 kDa proved to be the most 

adequate. Regenerated cellulose is a very low protein binder and therefore ideally suited for 

analyses that require maximum sample recovery. In addition the membrane possesses a good 

solvent resistance with both aqueous and organic solvents, and is able to work over a wide pH 

range [Klein, T. 2008].

Table 3.4

Influence of the different membrane types on recovery rate and repeatability (defined as the 

intra day repeatability of a 100 % value in per cent of 6 replicates)

Membrane and cut-off Recovery Repeatability

Regenerated cellulose 5 kDa 92.3 % 97.4 %

Regenerated cellulose 10 kDa 95.7 % 98.5 %

Nitrocellulose 5 kDa 86.5 % 91.9 %

The derivated hydrophobic prototype gelatins showed a molar mass distribution from 140 to 

10.000 kDa and 200 to 100.000 kDa for MS and MA, respectively. While the average 

molecular weight of MS was 218 kDa, MA showed an average molecular weight of 395 kDa. 

The molar mass distribution of standard gelatin was found to be between 140 to 1.000 kDa 

with an average molar mass of 158 kDa (Figure 3.18). This was in accordance with the prior 

studies, where even fractions up to 10.000 kDa were detected. The average recovery in this 

study was about 97.4%.
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According to the data from Zillies and present studies it is possible to exert the hypothesis, 

that higher molecular weights in gelatin allow a better, more homogenous nanoparticle 

formulation. Prior to the present research it was still unknown whether this hypothesis was 

transferable to other gelatin types with in our case highly altered physiochemical properties. 
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Figure 3.18

AF4 signals of the examined gelatin batches; MALS (dots) and UV signals (curves): Sigma 

gelatin (▲), MS gelatin (■) and MA gelatin (-)

But indeed we were able to formulate nanoparticles with the hydrophobic prototype gelatins 

although under completely new formulation settings. The results in size from DLS 

measurements are given in Table 3.2.
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Cumulative molar mass distribution within the gelatin samples: Sigma gelatin (▲), MS 

gelatin (■) and MA gelatin (-)
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We demonstrated the applicability of the hypothesis derived from the two-step desolvation 

theory of gelatin, namely the relevance of high molecular weight fractions and the absence of 

low molecular weight fractions for other gelatin types. Further we demonstrated that 

nanoparticles from hydrophobic gelatins could be formulated, making them a potential new 

nanotechnology platform for targeted drug delivery with either hydrophobic drugs or with the 

brain itself as the potential therapeutic target region [Fricker, G. et al. 2004]. The possibility 

of nanoparticles to pass the blood brain barrier resides at the margin of today’s 

pharmaceutical research, yet it bears a great potential, leaving room for further in-depth 

studies with our newly developed GNP. Last but not least AF4 was introduced as a valuable 

pre-formulation tool for the formulation development of biological polymer based 

nanoparticles.

3.5.3 Asymmetric flow field-flow fractionation of chitosans

Next to the nanoparticles from gelatin, chitosan nanoparticles had to be developed and 

formulated. In this case however no background data on the molecular weight characteristics 

and their direct influence on nanoparticle size and stability were published besides some data 

from Bernkop-Schnuerch [Bernkop-Schn�rch, A. et al. 2006] and Augsten [Augsten, C. 

2008]. In the case of modified chitosans such as thiomers no literature was available making a 

thorough AF4 analysis of these samples in the nanoparticle pre-formulation process 

mandatory. The regenerated cellulose (10 kDa) membrane proved to be the right choice again 

with a medium recovery rate of 97 % for all chitosans. Unmodified chitosan NV (low 

viscosity) had a molecular weight from 1.0*106 g/mol up to 2.0*107 g/mol and chitosan (low 

molecular weight) ranged from 4.0*105 to 3.0*107
. Chitosan NAC NV (low viscosity) had a 

MW range from 2.0*106 g/mol – 7.0*107 g/mol, chitosan TBA NV (low viscosity) had a MW 

of 2.0*106 g/mol to 2.0*107 g/mol, chitosan TBA (lower molecular weight) ranged from 3.0 

*105 g/mol to 3.0*107 g/mol. 

For the sake of a better comparison with the gelatin samples the cumulative mass 

distribution was plotted during the analysis of chitosan (Figure 3.20). As seen in Figure 3.21

the distribution of molecular weight fractions in chitosan was much broader than as for gelatin

(Figure 3.19).
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Figure 3.20

Chitosan molecular formula
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Figure 3.21

Cumulative weight fractions of chitosan samples, Chitosan–low viscosity (■), Chitosan–low 

molecular weight (■), Chitosan–TBA–low viscosity (■), Chitosan–TBA–low molecular 

weight (■), Chitosan–NAC–low viscosity (■)

Interestingly, chitosan LMW modified with thiobutylamidine as a potential nanoparticle 

crosslinker showed an increased amount of low molecular weight fractions compared to the 

unmodified chitosan LMW samples. (Figure 3.21) A polymer crosslinking throughout the

small molecular weight range could have been the potential reason for this data. In contrast, 

the thiobutylamidine modification of low viscosity chitosan lead to higher molar mass profiles 

over the whole range, which might be based on the natural origin of chitosan and also on a 

partial depolymerisation during the sulfhydryl modification process. 
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3.5.4 Chitosan sulfhydryl-group and disulfide-bond quantification

Since the chitosan types discussed were modified with the sulfhydryl groups we compared 

the total amount of free sulfhydryl groups and the existing disulfide bonds to the calculated 

molar masses. In Figure 3.22 these three parameters were correlated and it was shown, that a 

constant amount of disulfide bonds throughout the samples did not automatically account for 

higher molar masses of the polymers. 
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Figure 3.22

Comparison of the calculated molecular weights with disulfide bonds and free sulfhydryl 

groups in the chitosan samples. The CS-NAC low molecular weight sample was too viscous 

for analysis with AF4. Therefore an extrapolated value is shown (dotted line) under 

consideration of the factor that leads to a MW increase for CS-TBA-LMW.

Chitosan NAC (low viscosity) had 41 �mol/g in sulfhydryl groups and 370 �mol/g in 

disulfide-bonds, chitosan NAC (low molecular weight) had 38 �mol/g in sulfhydryl groups 

and 280 �mol/g in disulfide-bonds. The TBA modified chitosan acclaimed for 589 and 265 

�mol/g in sulfhydryl groups and 310 and 180 �mol/g in disulfide-bonds for TBA chitosan 

(low viscosity) and TBA chitosan (low molecular weight) respectively.
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The influence of these modifications was given exemplarily for the case of TBA modified 

chitosan in Figure 3.23. For the N-acetylcysteine modification of chitosan LMW, the 

viscosity was so high, that a molar mass calculation could not be made. In all other cases the 

molar separation and molecular weight calculation was successful and reproducible. 

Figure 3.23

Molar mass signals of chitosan samples, chitosan–low molecular weight (■, top), chitosan–

TBA–low molecular weight (■, bottom)

With the molecular weight of the thiomers determined we formulated nanoparticles from all 

unmodified and modified chitosans according to the described method (2.1.8 Formulation of 

chitosan nanoparticles) and determined the respective hydrodynamic sizes and polydispersity 

indices. (Table 3.5) It turned out that unmodified chitosans after all resulted in the smallest 

nanoparticles with a narrow size distribution indicated by a small PDI. The TBA chitosans 

with a large amount of sulfhydryl groups resulted in just slightly larger nanoparticles but with 

an increased colloidal stability over time. Last but not least, the NAC modulation of chitosan 

resulted in larger nanoparticles which was due to the high viscosity of the resulting polymer 

solution.

In conclusion, AF4 analysis was able to determine the molecular weight distribution of the 

chitosan samples and where modifications of the backbone lead to different retention 

behaviour to an increased post formulation molecular weight.
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Table 3.5

Overview of molecular weight and size of chitosan samples

Chitosan Avg. MW [g/mol] SH-groups [Ñmol/g] Size [nm] PDI

C-NV 1.0*106 – 2.7*107 *** 170 + 16 0.04

C-LMW 4.0*105 – 3.0*107 *** 190 + 4 0.09

C-TBA-NV 2.0*106 – 2.0*107 589 220 + 17 0.20

C-TBA-LMW 3.0 *105 – 3.0*107 265 289 + 23 0.08

C-NAC-NV 2.0*106 – 7.0*107 41 305 + 8 0.40

C-NAC-LMW *** 38 348 + 36 0.10

3.5.5 Asymmetric flow field-flow fractionation of DEAE-dextran

An analytical method for the analysis of free DEAE-dextran in presence of free gelatin and 

gelatin nanoparticles using the conventional AF4 technique had to be developed. Further the 

amount of free DEAE-dextran in DEAE-dextran modified gelatin nanoparticle preparations 

had to be quantified as a process quality-control, as a proof of concept and lastly as a means to 

determine the maximum loading capacity of this polysaccharide within the protein matrix. 

The analysis of dextran incorporation into gelatin nanoparticles with AF4 at the chosen 

conditions was quantitative. In the final nanoparticle formulation no free dextran could be 

detected. 

Figure 3.24

90� light scattering signals of unmodified dextran (top) and modified DEAE-dextran (bottom)
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In the course of method development at first the signals of DEAE-dextran were correlated 

with those of a pure unmodified dextran (Figure 3.24). As a result no artefacts within the 

samples were detected as exemplarily shown in the RI signals.

Figure 3.25

Differential and cumulative molar mass distribution plotted against the molecular radius of 

pure DEAE-dextran (left) compared to a sample of DEAE-dextran modified GNP (right)

Cumulative and differential analysis of the distribution of radii revealed, that the no free 

DEAE-dextran was present in the finished formulation (Figure 3.25). The radius with 182 nm 

and a shoulder at 165 nm was much larger than that of the free dextran control with 20 nm.

With AF4 it could be shown that the used amounts of DEAE-dextran were fully incorporated 

into the gelatin nanoparticle matrix and that there was no polysaccharide leaking over time.

In addition to the above studies the mobile phases NaCl and NaNO3 and two different 

membranes were evaluated. A RC 10 kDa membrane was compared to an amphiphilic YM10 

membrane. Based on these results the optimum separation conditions were determined. We 

observed that the literature based NaNO3 buffer had a negative effect on the DEAE-dextran 

samples since we could observe strong aggregation phenomena in the AF4 chromatograms as 

depicted by the presence of two peaks in the chromatogram (Figure 3.26).
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Figure 3.26

90� light scattering signals of DEAE-dextran in 0.1 M NaCl + 0.2 g/L NaN3 and in 0.1 M 

NaNO3 (two peaks)

Figure 3.27

Cross-flow profile of the dextran runs from Figure 3.26

Concerning the differences in the membrane materials for DEAE-dextran samples no 

significant differences were detected, while gelatin was found to coat the RC10 membrane in 

NaNO3 buffer. YM10 was much less susceptible to gelatin loading as confirmed by analysis 

of the 90� laser diffraction signals.
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3.5.6 Nuclear magnetic resonance spectroscopy of modified gelatins

It was a major concern to formulate new gelatin nanoparticles with either a very 

hydrophobic surface or a permanent cationic charge. 

Methylation

Methylation resulted in a pH dependent cationization of the amino groups of the gelatin and 

the respective nanoparticles formulated there from. This method of cationization was an 

alternative approach to cholamine and DEAE-dextran assays. Possibly advantageous in terms 

of a higher cationic charge is the fact, that besides amino modifications also hydroxy group 

methylations of some amino acids happened [Polnok, A. et al. 2004]. After several needful 

modifications to the protocol obtained from literature [Cafaggi, S. et al. 2007], methylation 

could be achieved while the solvent 1-methyl-2-pyrrolidon was not fully discarded, disturbing 

the signal quality. The solution was to change the desolvation agent from ethanol to an 

ethanol:diethylether mixture 1:1 (w/w) and to use acetone as the desolvation agent after ion 

exchange. The resulting modified gelatin was of a yellow shiny hue. NMR results of the probe 

showed the new methyl groups at δ [ppm] = 2.5 and at δ [ppm] = 2.7 when compared to 

unmodified gelatin (Figure 3.28).

Table 3.6

Zeta potential of mGNP at pH 5.7 (N-GNP 24 mV at this pH) and size

Batch Zeta potential [mV] Conductivity [ÑS/cm] Size [nm] PDI
Methylated GNP 1 29.8 0.319 380 0.100
Methylated GNP 2 28.1 0.480 405 0.085
Methylated GNP 3 32.6 0.420 377 0.043
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Figure 3.28
1H-NMR spectrum of methylated gelatin in D2O

Acetylation

It was the goal of the acetylation to formulate GNP with changed physicochemical 

properties and at first hand an increased hydrophobicity. This should then allow for different 

cell uptake and cell interaction patterns in the in-vitro and in-vivo studies with the long term 

goal of passing the blood-brain-barrier [L�ffler, G. et al. 2007]. The reagent for this reaction 

was acetic anhydride which reacts with nucleophilic groups like amino groups, phenolic 

groups, aliphatic amino groups, sulfhydryl and imidazole groups. As a result, the number of 

pH-dependent positive amino groups decreased and the amount of neutral acetylic groups 

increased, thus reducing the positive charge of the potential nanoparticles. Furthermore did

the electrostatic interactions between anionic carboxylic groups and cationic amino groups 

decrease [Glazer, A. N. et al. 1976].

Table 3.7

Zeta potential of aGNP at pH 5.7 (N-GNP 24 mV at this pH) and size

Batch Zeta potential [mV] Conductivity [ÑS/cm] Size [nm] PDI
Acetylated GNP 1 15.7 0.572 312 0.080
Acetylated GNP 2 16.3 0.577 318 0.062
Acetylated GNP 3 12.3 0.824 384 0.008
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The color of the acetylation product was dark yellow with a tendency to grey. Compared to 

the unmodified gelatin, acetylated gelatin was hardly soluble in water, evidently indicating the 

success of the acetylation process. The acetylation was however not significantly detectable in 

the 1H-NMR where only minor changes were detectable in an overlay of modified and 

unmodified gelatin (Figure 3.29). Nanoparticles formed from a 1:1 mixture of normal and 

modified gelatin resulted in GNP with a reduced zeta potential compared to that of normal 

neutral GNP (Table 3.7).

Figure 3.29
1H-NMR spectrum of acetylated gelatin
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3.6 siRNA containing gelatin nanoparticles (SICONs)

The zeta potential measurements of our modified nanoparticles revealed an interesting fact: 

Compared to neutral gelatin nanoparticles the cholamine modification lead to sufficient 

cationic charged nanoparticles. However, when loaded with siRNA molecules, these 

nanoparticles lost much of their cationic surface potential again. This effect was due to the 

ionic interaction of negatively charged siRNA molecules with the cationic amino groups of 

the nanoparticles. For example, a zeta potential of 25 mV was measured on common

cholamine cationized GNP that was lowered to 2 mV after loading with 0.5 % siRNA. This 

raises the question how nanoparticles with a higher zeta potential can be formulated and 

secondly what the impact of siRNA loading on their surface would be. In contrast to the 

cationic cholamine gelatin nanoparticles, cholamine DEAE-dextran modified GNP showed a 

weaker influence of the incubation medium concerning the total amount of loaded siRNA. 

The enhanced cationic charge on the surface as well as the cationic polysaccharide backbone 

was found to be the reason for this phenomenon.

The weight to weight amount of loaded siRNA was calculated from unbound siRNA 

determined UV-spectrophotometrically at a wavelength of 260 nm (refer to 2.3.12 siRNA 

loading determination via ultra-violet-absorption). Here it was shown that nanoparticles with 

cholamine modification could hold up to 10 % (w/w) siRNA on its surface, again, with the 

amount of siRNA put into direct relation to the total amount of dry nanoparticle polymer.

For dose finding studies in the following transfection studies, the nanoparticles had to be 

analyzed first on any changes of zeta potential and size at different loading ratios

Nanoparticles could be loaded with siRNA to a maximum of 2.5 % with siRNA without 

losing their positive zeta potential (Figure 3.30). Larger amounts of siRNA (above 5 % and 

up to 20 %) resulted in the zeta potential dropping beneath 0 mV. Cholamine DEAE-dextran 

gelatin nanoparticles were loaded to a maximum of 5% (w/w) before losing their positive 

charge. However any amounts above 2.5 % will not be needed for gene silencing studies due 

to the catalytic effect of the RNAi mechanism where already smallest amounts in the 

nanomole range were enough to induce a protein knock-down. More importantly these novel 

siRNA containing gelatin nanoparticles (SICONs) retained much of their initial cationic 
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surface charge after being loaded with siRNA molecules. In addition, covalently bound 

cholamine emphasized this effect even further.

siRNA loading on modified cationic GNP in H2O
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Figure 3.30

Zeta potential and conductivity of DD-GNP and cholamine modified DD-GNP at different 

siRNA loading ratios (w/w)

Additionally, Figure 3.31 shows that the change in zeta potential from positive to negative 

was also reflected in aggregation phenomena of the nanoparticles as detected by size changes 

combined with an increase in the polydispersity index.
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Size of siRNA loaded gelatin nanoparticles (+DEAE-dextran) at the following different 

loading ratios: 0.5, 0.63, 1.25, 5, 10, 12 and 20 %
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In highly purified water and without any other stress factors siRNA stayed bound on the 

nanoparticles up to a minimum time span of 60 minutes. Before this time point no significant 

changes in size and zeta were observed. We were able to demonstrate that siRNA loaded 

nanoparticles did not aggregate after 72 hours of storage at 4 �C

2.5% siRNA loaded DD GNP over time
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Figure 3.32

Zeta potential of siRNA loaded gelatin nanoparticles (+DEAE-dextran) over time (n=3)
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3.7 Sandwich nanoparticle formulation with a Melittin construct

The basic idea of our novel sandwich nanoparticles is shown in Figure 3.33. At first, based 

on the DEAE-dextran and gelatin particle core the surface was further cationized with 

cholamine residues as described earlier (refer to 2.1.4 Formulation of cationic gelatin 

nanoparticles). The second step was the incubation with siRNA followed by the final PEG-

PLL-DMMel surface coating to form the ready-to-use loaded nanoparticles. The sufficient 

and lasting binding of the siRNA was important for further formulation and gene silencing. 

The siRNA binding capacity and stability in the relevant media was therefore determined 

using quantitative gel electrophoresis for the following formulations: cholamine cationized 

gelatin nanoparticles, DEAE-dextran-GNP (DD-GNP) and cholamine cationized DEAE-

dextran gelatin nanoparticles (CDD-GNP), all loaded with siRNA molecules at different 

weight to weight ratios. The screening of these different siRNA to gelatin ratios was 

conducted in the four different loading media that were HEPES buffered glucose, MQ water 

and PBS at two different pH values (7.0 and 7.4). The quantification was done by analyzing 

the gel-shift assay with ethidium bromide staining.

Figure 3.33

Schematic principle of siRNA loading onto cholamine modified DEAE-dextran GNP and 

consecutive formation of sandwich nanoparticles with PEG-PLL-DMMel
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The chosen conditions worked well for our nanoparticle formulations and we were able to 

produce reproducible results over min. n=3 measurements. The gel shift analysis provided the 

more sensitive quantification method of the loading process compared to the conventional 

centrifugation procedure. It allowed for a broader loading screening with less time effort and 

has a higher resolution when used with modern picture analyzer software. The tested 

nanoparticles had the following characteristics:

Table 3.8

Overview of the used GNPs for the siRNA loading and gel-shift analysis

Sample Name T (�C) Z-Ave (d.nm) PdI
cGNP in PBS pH 7.4 25 194.1 0.05

cGNP in PBS pH 7.0 f 25 194.4 0.038
cGNP in MQ 25 243.3 0.03
cGNP in HBG 25 226.7 0.027

Over all cationic gelatin nanoparticle formulations loading capacities from 8.3 % (w/w) up 

to 25 % (w/w) could be achieved (Figure 3.34, Figure 3.35). An optimum loading ratio was 

found between 12:1 (w/w) and 8:1 (w/w) nanoparticle:siRNA. In HBG, siRNA was 

completely loaded onto the C-GNP nanoparticles at a nanoparticle to siRNA ratio of 8:1 

(w/w). That was equivalent to a 12.5 % loading For the CDD-GNP loading ratios up to 4:1

could be reached which was equivalent to a 25 % loading. DD-GNP could also be loaded with 

siRNA however to a smaller extent which can be explained by the lower zeta potential of the 

nanoparticles. CDD-GNP showed a strong binding of the siRNA in the highly ionic media 

PBS with PBS at pH 7.4 allowing for a slightly better binding than PBS at pH 7.0 which 

however cannot be explained by the slightly decreased zeta potential but probably by the 

physicochemical characteristics of the siRNA. Compared to older loading studies [Zillies, J. et 

al. 2004] we could facilitate the loading process by changing the complexation temperature to 

lower temperatures (room temperature rather than +30 �C). Complexation was then completed 

within 20-30 minutes compared to the often published several hours time frame [Aouadi, M. 

et al. 2009]. Due to the lower kinetic energy of siRNA and the longer contact time with the 

nanoparticles this is reasonable due to the generally exothermic adsorption process. As 

expected, the loading capacities were always slightly higher in highly purified water due to 

the low ionic background. 
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Figure 3.34

Agarose gel shift assay of cholamine modified DEAE-dextran GNP in HBG and HPW (left 

gel) and in PBS pH 7.0 and PBS pH 7.4 (right gel)

Figure 3.35

Agarose gel shift assay of cholamine modified GNP in HBG and HPW (left gel) and in PBS 

pH 7.0 and PBS pH 7.4 (right gel)

The gel-shift chromatograms were transferred to 3D projection for a better interpretation 

and quantification of the single signals (Figure 3.36, Figure 3.37). For the generated peaks, 

intensity values can be calculated for further mathematical comparison. 

Concluding, we could successfully implement this method of loading quantification into our 

nanoparticle studies. The method proved to be quick and reliable in combination with the 3D-

modelling with a high resolution, showing already small traces of leaking siRNA.
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Figure 3.36

3D projection of Figure 3.34

Figure 3.37

3D projection of Figure 3.35

Loading of new gelatin nanoparticles under stress: 

Cholamine cationized gelatin nanoparticles, DEAE-dextran GNP and cholamine cationized 

DEAE-dextran gelatin nanoparticles (CDD-GNP) were loaded with siRNA molecules under 

modified conditions (FCS, DMEM) in order to simulate the conditions during the gene 

silencing. The determination of the loading efficiency was again done by gel-shift assay with 

ethidium bromide staining on agarose gel as previously described (refer to 2.3.13 siRNA 
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loading determination via gel shift assay). siRNA stability under stress conditions was 

examined as shown in Figure 3.38.

Figure 3.38

Agarose gel shift assay of siRNA loaded CDD-GNP in DMEM and FCS at loading ratios of 

40:1 and 160:1 (w/w) as described in Table 3.9

Table 3.9

Description of the bands in the agarose gel shift assay in Figure 3.38

We found that lower temperatures were helpful for a higher siRNA loading. In terms of 

stability of the loaded siRNA in cell culture medium and FCS (fetal calf serum) we

demonstrated that the siRNA was protected from degradation and dissociation when loaded 

on the nanoparticles. While free siRNA (band 1) would of course run from the origin in the 

center of the gel to the electrode, neither nanoparticles loaded with siRNA at a ratio of 40:1 
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nor at 160:1 showed a siRNA leaking. Instead, FCS and DMEM treatments of the samples did 

also not destabilize the load making those loaded nanoparticles suitable for in-vitro and in-

vivo experiments. No free siRNA or smaller siRNA snippets could be detected. We think that 

this observed oligo-protective effect of our nanoparticles can be attributed to the sponge like 

structure and the brush-like chains from the DEAE-dextran. Our siRNA results were further 

underlined by earlier results with thiolated GNP and DNA, [Kommareddy, S. et al. 2007]

where the positive effect of our whole formulation approach was confirmed, however only 

with DNA, and not with siRNA.

The confirmation of the successful formation of sandwich nanoparticles was done by 

photometric analysis and size measurements. PEG-PLL-DMMel and siRNA could not be 

centrifuged at the given conditions due to their small size that was found to be in a range of 

40 nm in the case of complex formation and less for the single molecules, and were therefore 

measured in the supernatant (Figure 3.39).
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Figure 3.39

UV photometric characterization of the supernatant at 260 nm of nanoparticles (234 nm, PDI 

0.01, +47 mV) loaded only with siRNA and nanoparticles loaded with siRNA and PEG-PLL-

DMMel.
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If SICONs now were incubated with PEG-PLL-DMMel however, the signal of free siRNA 

and PEG-PLL-DMMel in the supernatant was greatly reduced indicating the formation of 

sandwich nanoparticles by adsorption of PEG-PLL-DMMel and siRNA onto the

nanoparticles. In this case the siRNA molecules as well as the bee peptide construct were

bound onto the charged surface of the gelatin nanoparticles taken into account their different 

electrostatic interaction potential. Without this centrifugation and photometric analysis it was 

not clear whether the PEG-PLL-DMMel was effectively bound to the nanoparticle surface 

and whether there was no interaction between PEG-PLL-DMMel and the siRNA itself. The 

GNP loaded with siRNA alone strongly bound the available siRNA molecules in the 

dispersion. From 5:1 down to a ratio of 10:1 (w/w) NP:siRNA, free siRNA was unbound in 

the nanoparticle dispersion corresponding to the gel shift assay, while at a ratio of 20:1 (w/w) 

and higher most siRNA molecules were bound. Up to a tested ratio of 200:1 (w/w) the 

sandwich complexes could be formed.
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Figure 3.40

Size distribution of SICONs loaded with PEG-PLL-DMMel () and unloaded ( )

In addition to the photometric assay, DLS based size analysis of the SICONs and the 

sandwich nanoparticles was performed (Figure 3.40). In all samples we detected a very 

narrow size distribution with sandwich nanoparticles being significantly larger by ~10 –

60 nm + 2 nm S.D. than the uncoated nanoparticles indicating the layer formation around the 

SICONs.
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Finally with our results we could show that a sandwich like loading of both siRNA and 

PEG-PLL-DMMel had taken part during the incubation time and that no siRNA was 

withdrawn from the nanoparticle surface by the cationic polymer construct. These findings 

ensured that the given cell targeting, endosomal escape and later knock-down results could be 

attributed to our novel nanoparticle system. The first report on electrostatically driven layer-

by-layer assembly of colloidal particles was published by Iler [Iler, R. K. 1966]. He showed 

the interaction between oppositely charged silica and alumina particles to multilayer 

structures. The first layer-by-layer technique for biomacromolecules was then demonstrated 

by Decher et al. [Decher, G. et al. 1991]. From then on many groups worldwide have used 

this technique to formulate novel carriers in the micrometer and nanometer range. For gelatin 

nanoparticles layer-by-layer modifications were so far only shown by Shutava et al. [Shutava, 

T. G. et al. 2009] for the delivery of polyphenols making our study a seminal step forward in 

this field and pushing the potential of gelatin nanoparticles as a multifunctional carrier a little 

further.

3.8 Storage stability of unloaded and siRNA loaded gelatin 
nanoparticles

The presented data showed that all formulations did not decrease or increase significantly in 

size and PDI. Throughout the examined time span, no major changes in the zeta potential of 

the formulation could be observed.

For the relevant stability of the formulation it was mandatory to examine the novel 

formulations over a time period of four months both at room temperature and at 4 �C. By 

analyzing the zeta potential of the stored formulations, stability issues like surface adhesion, 

polymer interactions and changes in particle shape can be brought forward. An increase in 

particle size due to aggregation phenomena paired with larger polydispersity indices 

accounted for changes within the formulation. However we could demonstrate, that over the 

given storage conditions no significant changes within the formulation could be observed. 

This again demonstrates how a potential colloidal instability could be overcome by a 

controlled increase of the zeta potential of the nanoparticles. In detail, the measured size for 

t=0 for the final sandwich formulation (the same that as tested in-vitro) was 235 nm.



Results and Discussion

129

3.9 Endotoxin assay

Endotoxins are toxins derived from structural components of bacteria. Recent research has 

demonstrated how endotoxins can promote adhesive interactions between platelets and 

microvascular endothelium in-vivo. Studies in the mouse cremaster of C57BL/6 and 

C57BL/10J mice with lipopolysaccharide (LPS) and escherichia coli endotoxin showed 

enhanced rates of venular platelet thrombus formation. The time to microvessel occlusion was 

reduced by 50% (P<0.005) compared with saline treated animals [Rumbaut, R. E. et al. 2006].

Since these findings were highly relevant to our study with nanoparticles in the mouse 

cremaster model but also plays a pivotal role in any in-vivo application of nanoparticles we 

had to make sure that our nanoparticles from the first formulation step to the final dosage 

form was generated in an endotoxin free way. Gabrielsson and Vallhov from the Karolinska

Institute in Stockholm support this notion that a high purity in the production of nanoparticles 

is essential in order not to interfere with the assessment of biological and medical effects

[Vallhov, H. et al. 2006]. Therefore our nanoparticles were analyzed with LAL test (Table 

3.10).

The final results expressed in endotoxin units per milliliter (EU/ml) are referred to as S1 for 

gelatin nanoparticles resulted in raw EU of <0.0544 and a recovery rate of 113 % for a 

dilution of 1:100 and EU of <0.005 and a valid recovery rate of 113 % for a dilution of 

1:1000. The average incubation time was 4059 sec for the nanoparticles and 1293 sec for the 

positive product control. All samples were beneath the relevant limit of 5.00 EU/ml and are 

therefore regarded endotoxin free.

With this data we could exclude endotoxin related effects on the low fluorescent signals or 

thrombotic effects of the nanoparticles during our in-vivo experiments. Also the rare 

thrombotic effects after application of highly concentrated nanoparticle dispersions shall not 

be related to endotoxin contamination but to other effects explained later.
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Table 3.10

LAL endotoxin assay

Analyst ID: 
SMARECHAL 
(VA)

BWI LAL Lot No GL 168H Exp: 18/06/2010 Time 16:51.34

Inhibition 
Enhancement 
Assay

Water Lot No GL 1294 Exp: 07/05/2010 Date: 05/06/2008

Template: SM 
05/06/08

Endotoxin Lot No GL 1157 Exp: 04/10/2011 KQCL

Temp: N/A S/N 1584

Linear Regression CORR = -0.998 SLOPE = -0234 Y Int. = 3.054
Reader Parameters Delta t = 160 Meas. Filt. 405 Delta mOD = 200 Reads No = 40

Nanoparticles
Rel. Limit: 
N/A

SAMPLES DILUTION WELL REACTION 
TIME (sec)

AVG. 
TIME

RAW EU RESULTS 
(LR) EU/ml

S2 100 C9 2187 2178 <0.0544 5.44
C10 2168

PPC 100 D9 1193 1197 0.620
D10 1200

PPC Value: 
0.5

PPC % 
recovery

113% PPC-Sample 1 Endotoxin Recovered: 0.566

Nanoparticles
Rel. Limit: 
N/A

SAMPLES DILUTION WELL REACTION 
TIME (sec)

AVG. 
TIME

RAW EU RESULTS 
(LR) EU/ml

S1 1000 G1 4071 4059 <0.005 <5.00
G2 4056

PPC 1000 H1 1290 1293 0.567
H2 1296

PPC Value: 
0.5

PPC % 
recovery

113% PPC-Sample 1 Endotoxin Recovered: 0.567

Comment LTS 4135

Even though the endotoxin analysis was not conducted prior to all in-vivo experiments 

because of the high cost, the results of the given endotoxin analysis can be extrapolated since 

all nanoparticles were prepared with the same standardized preparation method. The simple 

and easy to scale-up preparation method of our nanoparticles in an acetone milieu can be seen 

as the key role for the low endotoxin contamination observed and eventually will play a role 

when regulatory [Carpenter, J. F. et al. 2009] and scaling issues come into discussion in the 

course of preclinical development.
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3.10 In-vitro models

3.10.1 Traditional static conditions versus novel flow conditions cell 
culture model

Cells in their physiological surroundings are subject to shear stress from the blood flow. 

This force influences the cell morphology to a large extent and can also alter the cell 

metabolism, gene expression and gene differentiation. Thus, cultivating cells in a model with 

circulating medium and a persistent shear rate resembles more physiological conditions than 

doing so in a static cell culture system. The aim of the present study was to investigate the 

attachment and interaction of various nanoparticles with a cell monolayer under flow 

conditions. For cell cultivation various ibiTreat �-slides were used. These were coated with a 

special surface coating called ibiTreat where plasma was used to modify the polymer so that 

cells will adhere to the slide in a strong way. 

For our experiments 293/KDR epithelial cells and also HUVEC endothelial cells were 

cultivated for 18 h either under flow conditions in y shaped �-slides or in static 8-well �-

slides (n=6; refer to 2.4.1.4 Cultivation of cell lines). Within 6 h the cells in the flow channel 

began to adjust themselves according to the flow direction and to take over a streamlined 

morphology. After 24 h the cells were grown to 80 % confluence and had a healthy and 

uniform appearance. Three different spots on the channel were chosen from where to monitor 

the cell population (Figure 3.41).

Figure 3.41

Overview (top) and detailed microscopic (bottom) pictures of ibidi y-shaped �-slide channel 

incubated with KDR 293 cells 
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As a result the main channel had the most homogeneous cell growth, we also found cells 

directed along the flow in the side channels. The cell growth was deviating only at the split in 

the channel where tiny turbulences occurred. In contrast, the cells in the static chamber grew 

disordered with higher cell concentration in the corners of the wells, followed by a region of 

low cell growth and a maximum of confluence again in the very center of the well (Figure 

3.42). In percent of the total amount of cells grown in one well the growth patterns were 

determined as 42 %, 8 % and 50 % (from distal to proximal) Furthermore we observed the 

formation of a meniscus of the medium inside the static well followed by a multi-layer cell 

growth. We conclude from this data that traditional static cell culture models might be well 

usable for overall biological assay like receptor analysis with antibodies but for reproducible 

results in the field of nanoparticle analysis the drawbacks of the model were too eminent to be 

overseen. In terms of critical discourse with many published nanoparticle in-vitro studies a 

critical review of many results is needed if the data was generated in a static cell culture. Our 

observations indicate that not only non-reproducible growth-patterns influenced nanoparticle-

cell studies but many more factors that will be discussed next.

Figure 3.42

Overview and detailed microscopic pictures of ibidi 8 well static chamber incubated with 

KDR 293 cells 
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All nanoparticles when added to the flow model circulation were immediately taken up by 

the medium flow and moved away from the injection side towards the adherent cell 

monolayer. Thereby the nanoparticles undergo interaction with the medium components. We 

have demonstrated above (refer to 2.4.1.5 Particle stability in cell culture medium) that our 

nanoparticles whether unmodified or cationic were not prone to major increases in size due to 

adhesion of medium components or aggregation phenomena.

Figure 3.43

Nanoparticle cell interaction studies in the flow chamber model with applied flow and shear 

rate: top: nanoparticles were added to the confluent cell monolayer; middle: nanoparticles 

potentially interact with / attach to the cell membrane; bottom: some nanoparticles get 

internalized while others were floating by, entering another round of circulation.
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During the time when the nanoparticles were pumped along the cell monolayer depending 

on their surface properties, charge and size respectively they interacted with the single cells 

and attach to their surface. The theoretic principle of nanoparticle interaction with and uptake 

into cells in our flow model is depicted in Figure 3.43.

The expected targeting pattern where nanoparticles would attach to a larger percentage from 

the flow-directed side was confirmed in confocal studies (Figure 3.44).

For a deeper understanding of the later in-vivo fate of a nanoparticle we primarily 

investigated GNP with different modifications in the new flow model. The results for this 

study where we particularly examined the cell interaction potential of GNP can be seen in 

Table 3.11.

Table 3.11

Type Size [nm] PDI Zeta [mV] NP/ 100 cells

N-GNP 179 0.004 +4.3 7

DD-GNP 210 0.016 +34.7 29

CDD-GNP 214 0.007 +43.0 71

CDD-GNP 234 0.019 +52.1 83

mGNP 380 0.100 +29.8 18

aGNP 312 0.080 +15.7 9

Figure 3.44

Flow directed cationic nanoparticle attachment on epithelial KDR 293 cells under flow (arrow 

= flow direction)
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The most surprising results however were that it were the cationic nanoparticles that 

interacted with the cells in this very specific manner while the neutral nanoparticles did not 

show any sign of interaction with the cells in the flow model. They simply got washed away 

with the medium and even in the recirculation process never managed to give significant 

fluorescent signals from the cell membrane. A static model study with both neutral and 

cationic fluorescent GNP revealed that both nanoparticles interacted with the cell membrane 

leading the researcher totally in the wrong direction with those false positive results (refer to 

the bachelor thesis of Pia Broermann for detailed results). Of course, for any realistic and 

preclinical data, the flow of the blood and the homogenous monolayer of cells have to be 

taken into account for many if not all experiments. It has been shown, that shear stress lead to 

different protein patterns on the cell surface than when the cells were incubated in a static 

environment. At physiological shear stresses in the vasculature ranging from 0.5–0.75 

dyn/cm2 to several dyn/cm2 in microvessels and 30 dyn/cm2 in large vessels like arteries 

[Neumann, T. et al. 2003; Ueda, A. et al. 2004] different genes will be expressed than when 

no shear stress is applied [Dekker, R. J. et al. 2002; Ohura, N. et al. 2003]. Therefore, any 

interactions between nanocarriers and the cell membrane can vary depending on the flow rate.

This aspect is not well documented in the field of non-viral gene delivery systems. To date, 

the only recent study that has been reported was done with cationic lipids/DNA complexes

(lipoplexes) by Harris and Giorgio [Harris, S. S. et al. 2005]. Unfortunately, no statement was 

made on the type of lipid used, yet they predicted the influence of the flow rate on lipoplex 

delivery by theoretical calculations and experimental observations with ECV-304 cells and 

HeLa cells.

3.10.1.1 Toxicity screening

In terms of cell viability in the flow model compared to the static well plate incubation, 

significant differences could be observed for nanoparticle incubation. Figure 3.45 shows cell 

morphology in the static model for C-GNP, PBCA-NP, aGNP and HSA-NP. The cationic 

GNP were well tolerated and even after 1 h of incubation did not change their morphology 

when in contact with our nanoparticles. The same accounted for acetylated GNP and 

methylated GNP (not shown). HSA NPs, due to their negative zeta potential, showed a rather 

diffuse interaction with the cell membrane that can most likely be attributed to sedimentation 

and unspecific interaction. HSA NPs however also did not change the morphology in this 
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experiment significantly however 20 % cell detachment compared to untreated cells was 

observed over a time period of 1 h.

Figure 3.45

Toxicity influence of C-GNP, PBCA-NP, aGNP and HSA-NP on the cell morphology after 

incubation in a traditional static cell culture model

3.10.1.2 Medium influence

Because not only the above studies but also the gene silencing studies would be done in 

medium with serum and hence in an environment with different viscosity we had to examine 

the influence of the medium on the nanoparticle interaction patterns as well. In fact the 

quantity of serum had a negative effect on the binding capabilities of the cationic 

nanoparticles. While at 10 % serum a reduction of cell adhesion by 18 % + 6 % S.D. was 

observed (n=3, ROI), 100 % serum lead to high medium viscosity that consequently reduced 

the nanoparticle sedimentation velocity and their trajectories, only allowed those 

nanoparticles to attach that were passing the cells closer. In number of cells in the ROI this 

accounted for a reduction of attached cells by 20 % compared to 10 % serum. Since the 

binding sites on the cells like proteoglycans could also be coated with serum components, an 

additional effect to hinder nanoparticle attachment at high serum concentration is possible.
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3.10.1.3 Flow and shear stress influence

Figure 3.46

Fluorescent labeled cationic GNP (left) and fluorescent labeled unmodified cationic gelatin 

nanoparticles (right) incubated with HUVEC cells under flow conditions. The unmodified 

GNP could not target the cell membrane and got flushed away with the medium flow. Similar 

results were made for KDR 293 cells.

The present data does in fact differ from the results by Harris et al. [Harris, S. S. et al. 2005]

by means that we a) used real nanoparticles for the first time for our studies b) employed a 

closed system for nanoparticle passage on adherent monolayer cells under constant flow 

conditions with recirculation c) put our focus on adherence rather than on uptake d) used 

different cell types and e) quantitatively evaluated the attached nanoparticles by using fixed

regions of interest (ROIs) over the cells. While our results therefore cannot easily be 

compared to their study, we confirmed their results of shear stress induced carrier cell 

interaction and added the new component of nanoparticle and especially gelatin nanoparticles

and their distinct different surface characteristics. Taken together with our data, these

observations indicate that the shear stress influence both the binding and the uptake of 

nanoparticles.
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3.10.2 VEGF – studies

3.10.2.1 FACS analysis of VEGFR2 overexpression in HEK 293 / KDR cells

With respect to the initially mentioned important role of VEGF and its receptors in many 

therapeutical applications, VEGFR over-expressing cells were examined next. VEGFR2 in 

this context plays a major role as a potential target for RNAi and their suitability for the in-

vitro model had to be proven first. For this reason, human embryonic kidney (HEK) cells over

expressing the VEGFR2 (Sibtech, Inc., Newington, USA) were cultivated and tested on their 

levels of receptor expression compared to normal HEK cells. In order to elucidate the receptor 

expression a sensitive method using fluorescent single chain VEGF and FACS read-out. The 

resulting number of fluorescent events detected in the FACS was calculated from a fixed 

region of interested (gate) that was kept the same throughout all measurements.

Figure 3.47

ROI (Region of interest) settings for FACS analysis for scVEGF-CY5.5 marked endothelial 

KDR 293

The unmodified HEK cells when unmodified with scVEGF showed a total of 4001 events in 

the gate and 130 events within the M1 marker. After 1 h of incubation with scVEGF 2092 

were gated with 161 inside M1 (Figure 3.48). At the final 2 h measurement point 2395 events 

could be detected with 233 inside M1. In comparison to those values the HEK/KDR cells 

revealed the following values. While the unlabeled cells counted 2808 events total and 141 
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inside the M1 marker, after 1 h and scVEGF-Cy5.5 labeling 2367 events in total and now 816 

events inside the M1 were detected (Figure 3.49). This amount rose even further after 2 h of 

incubation to a total of 2799 and 913 events inside M1. In respect to 100% of the gated events 

this accounted to 32.62 % VEGFR2 expression and a 23 % higher receptor density than on the 

standard cells.

Figure 3.48

FACS histogram of scVEGF-Cy5.5 labeled 293 cells after 1 h incubation

Figure 3.49

FACS histogram of scVEGF-Cy5.5 labeled 293 / KDR cells after 1 h incubation

In conclusion the cells used for our flow-model experiments were capable of expressing 

higher levels of VEGFR than unmodified KDR cells and were therefore better suitable for 

strong surface attachment under shear stress application and also for VEGFR2 RNAi 

experiments with anti-VEGFR2 siRNA.
an
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3.11 In-vivo models

3.11.1 Hamster dorsal skin fold chamber model

In 1928, Sandison [Sandison, J. C. 1928] was the first to implant observation chambers into 

animals for intravital microscopy of living tissues. Since then, various chambers have been 

developed and implanted with the aim to investigate the microcirculation in mice, [Algire, G. 

H. 1943] hamsters, [Greenblatt, M. et al. 1967] rats, [Hobbs, J. B. et al. 1976] rabbits, [Clark, 

E. R. et al. 1930] and even in human subjects [Branemark, P. L. et al. 1964]. In a very central 

publication of Krasnici et al. [Krasnici, S. et al. 2003] the authors highlight the tumor 

targeting effects of their, as model nanocarriers used, cationic DOTAP liposomes in such a 

microcirculation model. Their results with liposomes were the basis for our further 

investigations with gelatin nanoparticles. The study revealed that neutral and anionic 

liposomes when applied intra venously showed a very diffuse and global distribution. 

Cationic liposomes accumulated within the tumor located inside the hamster skin fold 

chamber. In terms of fluorescence within normal tissue to tumor tissue ratio, 1.1 (neutral) -1.4 

(anionic) : 1 were measured, whereas cationic liposomes showed a ratio of up to 30:1.

Figure 3.50

Fluorescent labeled anionic (top), neutral (middle), cationic (bottom) liposomes detected in 

the hamster skin fold chamber. Cationic liposomes persist over minimum 360 minutes.
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It still remained hypothetical why these cationic charged liposomes selectively bound to 

angiogenic microvessel as demonstrated in the above results. Since neutral and anionic 

liposomes did not show this feature while revealing the same liposome size, the mechanism 

responsible for liposome binding to tumor endothelial cells is supposed to be charge related. 

Figure 3.51
Distribution of cationic (d), neutral (e) and anionic (f) liposomes. The FITC-labeled lectin 
serves as a green vascular counterstain (a–c). Cationic liposomes exhibited a strong and 
specific accumulation at sites of FITC-lectin labeled endothelium (g,k) showing a fine 
punctuate (arrowhead) and a patchy (arrow) pattern. There was apparently no extravascular 
rhodamine fluorescence. Beneath minor vascular co-localization (arrowheads, e,h), neutral 
liposomes were mainly found within the tumor parenchyma outside of blood vessels (h,l). The
anionic liposomes (f) accumulate moderately within the tumor. They co-localize sporadically 
with the tumor vessels (arrowheads) and exhibited clear leakage into the parenchyma (i,m). 
Scale bar a–i: 200 �m; scale bar k–m: 50 �m. From [Krasnici, S. et al. 2003]
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Other studies have shown similar results [Lappalainen, K. et al. 1997; McLean, J. W. et al. 

1997] suggesting that the positive charge on the liposomal surface interacts with a negative 

charge on the cell surface of angiogenic microvessels. Such endothelium of normal vessels is 

equipped with negatively charged glycocalyx [Vink, H. et al. 1996]. Given the fact that 

cationic liposomes bind preferentially to angiogenic endothelial cells due to charge related 

mechanisms, one has to hypothesize an enhanced presentation of cell surface molecules or 

negatively charged scavenger receptors on the surface of angiogenic endothelium in 

comparison to normal microvessels.

Using cationic liposomes from Medigene AG (Martinsried, Germany) as a primary model 

nanoparticle, we did distribution and tumor accumulation studies in-vivo (Figure 3.52). These 

cationic liposomes again preferably targeted the tumor inside the hamster skin fold chamber.

Over a time period of 360 minutes the fluorescence signal increased in the tumor to a 

maximum about 45-120 minutes and then slowly decreased again.

Figure 3.52

Cationic ENDOTAG� liposomes analyzed in the hamster dorsal skin fold chamber model

In comparison, neutral gelatin nanoparticles with a size of 226 nm (zeta potential +3 mV in 

highly purified water) when applied i.v. (n=6) over the same route as the liposomal 

formulation, did not show any fluorescent signal strong enough for microscopic read out.
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At the tested concentrations ranging from 0.01 mg/ml to 5 mg/ml the hamsters tolerated the 

nanoparticles well throughout the whole experimental time. Fluorescence of the nanoparticles 

themselves was confirmed by fluorescence microscopy and macroscopic fluorescent scanning 

in microslides with the result that the nanoparticle fluorescence ex-vivo was sufficient for the 

used equipment (Figure 3.53).

Figure 3.53

Cationic, fluorescent labeled gelatin nanoparticles in microslide

With regard to the ex-vivo results it was not clear why the nanoparticles were not be 

detectable in-vivo. Even at highest sensitivity neither initial signals nor a brightening over the 

time course of the experiment were detectable. These results lead to the hypothesis that either 

the detection setup for the in-vivo experiment was not sensitive enough for fluorescent 

nanoparticles when assayed in the in-vivo environment or secondly, that the nanoparticles 

were trapped in the lung right after application. Similar results were observed for cationic 

gelatin nanoparticles with a size of 340 nm and a zeta potential of 32 mV in highly purified 

water.
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Figure 3.54

Neutral gelatin nanoparticles at a size of 226 nm (PDI 0.042) and a zeta potential of 6 mV in 

the hamster dorsal skin fold chamber model

Figure 3.55

Cationic gelatin nanoparticles at a size of 340 nm (PDI 0.05) and a zeta potential of 33 mV in 

the hamster dorsal skin fold chamber model

With the low fluorescence signals of the nanoparticles we eventually decided to do a tissue 

analysis of the lung and the liver as the main filter organs for nanoscaled systems. Therefore 

the animals were sacrificed and cryocuts from these tissues were studied with fluorescent 

microscopy. As expected, strong fluorescent signals were observed in both organs (lung 
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sample shown in Figure 3.56). The cryocuts of the lung tissue revealed that both neutral and 

cationic charged gelatin nanoparticles accumulated to a large extent in the tissue.

Neutral gelatin nanoparticles in lung tissue cryocut

Figure 3.56

Cationic gelatin nanoparticles in lung tissue cryocut

Cationic gelatin nanoparticles as well as neutral gelatin nanoparticles showed a broad 

distribution throughout the whole liver and lung tissue while organs like spleen and kidney 

did not show strong signals at all.

In conclusion, the dorsal skin fold chamber model was not the model of choice for thorough 

nanoparticle analysis. Even though we were able to detect nanoparticle fluorescence within 

the chamber for both cationic and neutral nanoparticles, their local fluorescence was too low 
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to be recorded with the fluorescence camera. Also, the route of formulation application leads 

the nanoparticles through the lung and liver with a highly concentrated bolus effect which can 

lead to vessel clogging. We certainly tried to circumvent this side effect by applying the 

formulations via a long-time infusion but still they could not reach the capillary bed in the 

chamber. Of course the nanoparticles circulate within the main blood system as shown from 

interaction studies and whole body imaging later on (refer to 3.11.4 Pharmacokinetics and 

whole body imaging) yet an endothelium adsorption as in the in-vitro chamber simulation was

not possible to demonstrate.

3.11.2 Mouse cremaster model

The choice of the animal model fell onto the mouse, since this species is immunological

very well characterized. In general, a broad spectrum of antibodies and also a variety of 

differently genetically modified animals are available for investigations of the biological 

relevance of the nanoparticles and delivered siRNAs.

In this cooperation the analysis of gelatin nanoparticles in the mouse cremaster was on the 

main focus. In detail we wanted to find out whether there were any animal dependent 

differences reflected in the pharmacokinetic profiles compared to the information gained from 

the hamster skin fold studies. In addition we also wanted to analyze, if different optical 

detector setups (different microscopes, detection filters, and video software) allow for better 

nanoparticle monitoring. Last but not least, we investigated, whether the nanoparticle 

fluorescence available for our gelatin was sufficient for such a read-out system. The studies 

were completed by CLSM read-out and normal microscopic visualization of endothelium-

targeting. 

All nanoparticles were covalently labeled with fluorescent dyes and were examined in 

special microslides under a fluorescence microscope. In a second concern we wanted to get a 

better understanding of nanoparticle fate when applied via the arterial route from very low to 

very high concentrations. Again – like in the skin fold model– concentration of nanoparticles, 

viscosity, amount of applied volume and type of nanoparticle played a major part in the 

investigations. Last but not least, formulations of nanoparticles based on PLGA, HSA, 

DEAE-dextran gelatin and polybutylcyanoacrylate were tested in the cremaster model on their 
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pro-thrombic or non-thrombic effects. The nanoparticles were injected intravenously and 

monitored with intravital-microscopy on changes at the endothelial and vessel system. The 

expertise in the group of Prof. Krombach was used as a basis for these experiments. 

Figure 3.57

Cationic GNP monitored with a fluorescent microscope in the mouse cremaster model over 4 

time points: 0, 30 (top), 45, 60 (bottom) minutes

We found out that when using nanoparticles at in-vivo tolerable concentrations the 

fluorescent signal of the nanoparticles was not detectable. In combination with the results 

obtained from our experiments together with Dr. Eichhorn (Walter-Brendel-Center), we can 

state, that a low fluorescent signal was the main factor for the false “low” in-vivo circulation 

time and not charge or overall intolerability of the particles. Nanoparticles were detectable at 

concentrations of 5 mg/ml which is equivalent to 25 mg/kg b.w.. However 80 % of the 

animals showed thrombogenic effects right after application and for a time period of 5-10 

minutes. Nanoparticles applied in lower concentrations down to 0.005 mg/ml did not show 

these thrombogenic effects but were not detectable in the fluorescent microscope either. We 
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found out that optimum application concentrations of nanoparticles were in the range of 0.1 to 

0.8 mg/ml when dispersed in PBS.

Figure 3.58

Cationic GNP targeting the slightly inflamed endothelium tissue in the cremaster model after 

15 minutes post injection (vein), right (artery)

With this knowledge an optimum fluorescence or other label has to be found that is 

sufficient to monitor nanoparticle interactions with the cell membrane. HSA and DEAE-

dextran gelatin nanoparticles were tested so far with a statistically relevant amount of animals

(n>5). Interestingly the HSA nanoparticles did not show any pro-thrombic effect within the 

applied concentration range. DEAE-dextran nanoparticles however lead to small thrombic 

vessel clogging in the microcirculation. In particular we found out that in-vivo experiments 

with more or less solid nanoparticles have a very small concentration window in concerns of 

sufficient fluorescence signal and vessel thrombosis. Fluorescent nanoparticles when applied 

in concentrations low enough for no thrombic effects occurring, could not be detected 

anymore by in-vivo fluorescence imaging. It was most interesting that the thrombic effects 

were only temporarily. That means that nanoparticles at a certain concentration (high enough 

for fluorescence signalling > 25 mg/kg) induced vessel blockage for a certain time period and 

restore the original state after a few minutes if blockage was not too strong. Visualization of 

targeted fluorescent nanoparticles on excised tumor vessels would be the most promising step 

to monitor endothelium targeting. In cryocuts and CLSM picturing the fluorescent signals 

were detectable even at low concentrations of applied nanoparticles (refer to 3.11.1 Hamster 

dorsal skin fold chamber). An infusion of very small amounts of nanoparticles at several time 
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points could prevent thrombosis and allow for enough nanoparticles to be present in the 

circulation for a longer time.

The batches were injected into a cremaster mouse catheter with a volume of 200 �l i.a. over 

10 seconds. After approximately 2 minutes the blood flow was drastically reduced within the 

cremaster window until final thrombostenosis. The reduction in blood flow was less in this 

case and did not occur instantaneously. In a second approach neutral gelatin nanoparticles 

labeled with rhodamin lissamine in PBS/Tween 5 % (w/w) were tested. Analysis of 

fluorescence in this case ex-vivo on a microscopy plate did not show any sufficient 

fluorescence for further in-vivo experiments. In two cremaster mouse models, which received 

a total of 800 �l of a 5 mg/ml nanoparticle dispersion a strong arterial signal was recorded, 

from which we concluded that labeling in all cases was sufficient. But even at this 

concentration a thrombus of nanoparticles was detected with the video setup, resulting in 

signal blockage towards the veins and the rest of the blood circulation. After 3 minutes the 

thrombus dissolved. Again a second animal received 5 mg/ml nanoparticle dispersion which 

again resulted in a severe slow-down of the blood flow. After 5 minutes the normal 

circulation speed was restored. Besides this the animal did not show any signs of intolerance

of the applied nanoparticles.

In conclusion, besides a slight thrombogenic potential of highly concentrated cationic 

gelatin nanoparticles, for the first time a charge dependent in-vivo adhesion in the cremaster 

endothelium was demonstrated for gelatin nanoparticles. While the thrombogenic potential 

demands further investigations, the basic formulation remains with the potential to target 

endothelium specifically in slightly inflamed areas.

3.11.3 Mouse antigen induced arthritic knee model

Moving one step further and away from the kinetic and biodistribution profiling, the 

nanoparticles were investigated on their potential in a therapeutic model for antigen induced 

arthritis in the knee. Here the objective was to assess the targeting potential of cationic gelatin 

nanoparticles, chitosan nanoparticles and liposomal formulations either unloaded or 

complexed with fluorescent nonsense siRNA towards inflamed chronic arthritic knee tissue in 

mice. For our studies we used the so called CIA-MG5 model in cooperation with an American
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Medigene laboratory. As a result the liposomal formulations of “siRNA-red” (fluorescent 

labeled siRNA) changed the biodistribution compared with free “siRNA-red”. These cationic 

liposomes accumulated in the inflamed knee tissue prompting for a therapeutical application.

As already known from earlier studies with liposomes [Krasnici, S. et al. 2003], they of 

course could also be found in the liver and in the lung which are both the major first passage 

organs.

Figure 3.59

Cryocuts of knee-joint, synovial tissue, liver, and lung from “antigen induced arthritis” mice 

after treatment with GNP+siRNA and chitosan-NP+siRNA. Chitosan nanoparticle aggregates 

in the lung vs. a good homogenous and non-aggregated GNP distribution in the lung.

Unloaded cationic gelatin nanoparticles and formulations with siRNA seemed to be trapped 

in the lung which again strengthens a systemic depot theory (Figure 3.59). A signal of 

fluorescent siRNA delivered with GNP could be detected in the lung but no detectable signals 

were found in the arthritic knee joints and the liver. The chitosan nanoparticles compared with 

free siRNA did after all show no significant changes in terms of biodistribution of the siRNA. 

Also chitosan nano-polyplexes showed no trend of specific targeting compared to our GNP. 

In addition, when monitoring the in-vivo particle shape, a tendency of aggregation in tissues 

was higher with the chitosan nanoparticles than with the gelatin nanoparticles.
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Hence we concluded a not sufficient capability of chitosan as a siRNA delivery tool within 

our animal models. Gelatin on the other hand did show positive results in terms of targeting, 

low aggregation and siRNA delivery. Due to the fact that the amount of fluorophore mounted 

onto the liposomal formulations was several folds higher than the theoretical labeling 

maximum of gelatin nanoparticles a final correlation between liposomal and particulate 

formulations could not be made. With respect to the high costs of the experiments however 

that prevented further experiments in this field, the distilled data still shows us a trend. 

Repetition would only make sense if strong fluorescent Quantum-dots, as proposed earlier

[Broermann, P. et al. 2008], can be coupled on the nanoparticles. Studies with several 

fluorescent dyes and their influence on nanoparticle behaviour in-vitro have shown us 

however that even small amounts of fluorophore on the nanoparticle surface could change the 

nanoparticle properties extremely.

3.11.4 Pharmacokinetics and whole body imaging

Pharmacokinetics

We decided to monitor the kinetic profile of our nanoparticles with a fluorescent read out as 

this would allow a quantitative determination of free, non-endothelium-targeted nanoparticles 

at different time intervals with a high resolution detection system. While the read-out system 

had previously been used to monitor liposomal formulations it was not validated for 

fluorescent nanoparticle analysis. Therefore several validation steps with different fluorescent 

gelatin nanoparticles were conducted and the linear range of detection was determined

(Figure 3.60).

Figure 3.60

Validation with different nanoparticle batches for the full blood fluorescent analysis
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First neutral gelatin nanoparticles were compared to cationic gelatin nanoparticles and 

pegylated cationic gelatin nanoparticles over a period of 60 minutes. The concentration of 

detectable nanoparticles is shown in Figure 3.61. All three nanoparticle batches showed a 

relatively fast elimination from the blood circulation stream. After 5 minutes, the 

concentration of N-GNP was reduced by about one fourth of the initial concentration, while 

approximately one fifth was detectable for at least 30 minutes. We measured an initial 

concentration of 0.07 mg/ml for the neutral GNP and 0.017 mg/ml for the cationic GNP. The 

cationic and the pegylated nanoparticles showed almost identical concentration curves where 

after a fast drop within the first 5 to 10 minutes the concentration remained at about one 

eighth of the concentration of the neutral nanoparticles. After 30 minutes a slight increase 

could be observed. In general the neutral nanoparticles had a longer half-life than cationic or 

pegylated nanoparticles.

Figure 3.61

Full blood concentrations of neutral, cationic and pegylated cationic GNP after bolus i.v.

administration to mice recorded over 60 minutes

The modification of the nanoparticle surface with polysorbate 80 (Tween) resulted in very 

different kinetic profiles for both neutral and cationic nanoparticles. As seen in Figure 3.62, 

Tween modification of the nanoparticles resulted in prolonged circulation times of both 

neutral and cationic nanoparticles. In the case of neutral nanoparticles a higher detectable 

signal right after injection could be detected. After approximately 5 minutes of circulation the
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signal was reduced to one half of this initial value with Tween coating, while the 

concentration of uncoated nanoparticles was strongly reduced. 

Figure 3.62

Full blood concentrations of pegylated (bottom), unmodified (middle) and Tween coated

cationic DD-GNP after bolus i.v. administration to mice recorded over 60 minutes (n=3)

Another effect of the Tween modification can be seen in a small but reproducible secondary 

concentration peak after 10 minutes. Figure 3.63 shows the same secondary peak for cationic 

Tween coated nanoparticles. Also only a marginal effect of PEG as used in our experiments 

on the half-life of the nanoparticles was seen.

Figure 3.63

Full blood concentrations of unmodified and Tween coated neutral GNP after bolus i.v. 

administration to mice recorded over 60 minutes (n=3)
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As expected, the cationic nanoparticles showed less circulatory potential within the full 

blood compared to neutral nanoparticles. Similar data was shown by Bowman et al. 

[Bowman, K. et al. 2006]. An interaction of the nanoparticles with negatively charged 

endothelium surface proteins but also with lung and liver tissue could be a potential 

explanation for this phenomenon. With the fast elimination of the nanoparticles from the 

circulatory system an increase of the nanoparticle concentration at specific organ sites was 

shown (refer to Figure 3.68). But not only DEAE-dextran modification and cholamine 

modification were examined, also a coating of these cationic nanoparticles with PEG was 

studied. Based on results from Amiji et al. [Kommareddy, S. et al. 2007] we expected a 

prolonged circulation time of PEG modified nanoparticles compared to unmodified 

nanoparticles. However, PEG did not have a significant effect in the formulation with our 

novel DEAE-dextran gelatin nanoparticles. This might be due to polysaccharide chains 

already sticking out of the smooth nanoparticle surface, potentially leaving the nanoparticle 

already with a postulated PEG-like brush-type surface as a protection against opsonization. 

Last but not least, Tween was used as a special coating onto the cationic nanoparticles based 

on studies by [Kreuter, J. 1983]. The increased circulation time of Tween coated nanoparticles

described in the literature, could also be proven for our novel DEAE-dextran gelatin 

nanoparticles. With almost no loss in charge through the Tween coating, a longer circulating 

nanoparticle system was obtained. The complete mechanisms by which Tween prevents 

nanoparticles from aggregation and opsonization through blood molecules has yet not been 

discovered, but it can be postulated, that the surfactant properties on the phase transition 

gelatin – water play a pivotal role. The secondary concentration peak in (Figure 3.62, Figure 

3.63) for the Tween modified nanoparticles can possibly be explained by a nanoparticle cell 

interaction within in the endothelial regions and the major organs combined with a following 

regeneration processes. An on and off type nanoparticle depot due to this cell interaction can 

also be an explanation. Such depots as described next could be potentially formed with white 

blood cells or other types of blood cells with which the nanoparticles come into contact after 

injection.

Blood cell interaction

Based on previous in-vitro studies and the above results with cationic nanoparticles taking a 

closer look on the cellular level of nanoparticle interaction became necessary to directly 

elucidate the nanoparticle fate. Since nanoparticles first come into contact with blood cells 
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when applied i.v., the influence on these cells was extensively studied. We found that the 

strongest effect of nanoparticles on blood cells was obtained for white blood cells. All 

examined nanoparticle types and surface charges reduced the white blood cell concentration 

in full blood samples within 10 to 15 minutes by 70 to 80%. After that time a regeneration of 

the amount of white blood cells could be observed for all nanoparticle types. Within 60 

minutes the starting value of white blood cells was restored for cationic nanoparticles, while 

the white blood cell concentration was slightly increased for pegylated nanoparticles and 

decreased for the neutral nanoparticles as seen in Figure 3.64. Similar charge related 

observations have been made by other research groups [Kuhn, S. H. et al. 1983; Mayer, A. et 

al. 2008] where however in contrast to our results the white blood cell counts took several 

hours to regenerate completely. In the field of liposomal and nanoparticle research temporary 

interaction with blood cells has so far been used to prolong the circulation time of the 

respective nanoparticle in the blood [Chambers, E. et al. 2007]. Unfortunately, so far this 

observed phenomenon cannot be pinpointed to one single causa and needs further 

experiments.

Figure 3.64

White blood cell concentration measured by Coulter counter for neutral, cationic and cationic 

pegylated GNP over a time period of 60 minutes (n=3)
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The nanoparticle interaction with thrombocytes resulted in a drop of free thrombocytes in 

the full blood samples by more than 50 % of the initial value after a time span of 8-10 

minutes. As seen in other studies [Anna, R. et al. 2005], a charge related interaction between 

the platelets and the nanoparticles is the most likely explanation for these results. For neutral 

and pegylated cationic nanoparticles these effects were not strong, leaving the thrombocyte 

count around placebo level Neutral nanoparticles in our studies did not seem to influence the 

concentration of thrombocytes at all (Figure 3.65). The high thrombocyte count at 60 minutes 

for cationic pegylated nanoparticles as an outlier shall not be taken into account for further 

interpretation.

Figure 3.65

Thrombocytes concentration measured by coulter counter (n=3)

With these results, the influence of nanoparticles on the red blood cells had to be examined 

as well. Here we found out that the concentration of hemoglobin was also slightly reduced 

throughout the time of nanoparticle application. Figure 3.66 shows how, again, the cationic 

gelatin nanoparticles have the greatest interaction potential with red blood cells, while neutral 

and pegylated gelatin nanoparticles only led to minor concentration changes. In contrast to the 

white blood cell and thrombocyte kinetics, a regeneration within the analysis time could not 
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be observed. The measured hemoglobin concentration, especially in the case of cationic 

nanoparticles, stayed low [Verma, A. K. et al. 2005]. 

Figure 3.66

Hemoglobin concentration measured photometrically at different time points

Hence the nanoparticle – blood cell interaction was measured and we found out that indeed 

there is a massive decrease of white blood cells right after nanoparticle application. 

Interestingly this effect could be shown for all nanoparticle types and surface modifications. 

Yet there were differences in the regeneration of the white blood cells that suggest different 

interaction patterns and adhesion strengths of nanoparticles with those blood cells. Whether 

nanoparticles directly bind to the white blood cells or induce a general white blood cell

aggregation and therefore reduction in the measured quantity can not be told, but it can 

explain the potential reason for the afore mentioned secondary nanoparticle peak. While the 

white blood cells regenerate over a time period of 60 minutes for all tested nanoparticle 

formulations, so does the concentration of detectable Tween coated nanoparticles. An 

explanation why only Tween coated cationic nanoparticles show the secondary concentration 

peak might be a protective effect against aggregation of surfactant coated nanoparticles 

compared to pure cationic nanoparticles. A comparable effect of blood cell interaction for the 
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tested nanoparticles was found for thrombocytes, while red blood cells did not show this 

effect. When correlating the cell count data with the available nanoparticle in-vivo data, we 

can clearly show how the interaction with the measured blood cells results in a decrease of 

available nanoparticle concentration within the approximate time span of 10-15 minutes. It is 

interesting how this effect correlates with the afore-examined white blood cell depletion. 

Neutral nanoparticles in our studies did not seem to influence the concentration of 

thrombocytes at all as seen in Figure 3.65. A possible explanation might be found in the 

different surface protein patterns of thrombocytes compared to white blood cells. 

Thrombocytes for example have collagen receptors, but only when activated. White blood 

cells however, due to their immune systemic nature show a permanent potential for 

nanoparticle interaction, as could be shown especially with cationic nanoparticles.

Whole body imaging

To complete the study, in-vivo experiments with differently coated and charged 

nanoparticles were conducted in mice and particle distribution was measured using far-

infrared fluorescence camera read-out on extracted organs and anaesthetized mice. The 

analysis of the organs revealed a preferred and charge dependent accumulation of the 

nanoparticles inside the lung tissue and the liver. Especially the highly cationic DEAE-

dextran modified gelatin nanoparticles showed a high affinity to the liver and the lung. 

0 48 h

Left: N
Middle: C
Right: PBS

0 48 h0 48 h

Left: N
Middle: C
Right: PBS

Figure 3.67

Whole body images of neutral (150 nm, PDI, 0.09, 2 mV) and cationic (270, PDI, 0.05, 37 

mV) GNP applied in a concentration of 5 mg/kg b.w. Recordings were taken over 48 h.
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The lower the surface charge of the nanoparticles was in the experiments, the lower was 

also the concentration in the investigated organs. The high concentrations of cationic 

nanoparticles could also be detected under live conditions for the liver and the lung areas, 

while the fluorescence emission in all other organs was too weak for the camera setup. In The 

data in Figure 3.67 supports the hypothesis that accumulation and targeting of our

nanoparticles to lung, liver and joints (potentially inflamed) is size and charge dependent. The 

critical size for less lung accumulation as tested across several nanoparticle batches was 

determined to be below 150 nm.
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Figure 3.68

Organ distribution pattern and tumor accumulation of cationic, neutral and DD-GNP after 48 

hours in the mouse model

Detailed tumor tissue analysis did show a discriminative accumulation of our nanoparticles 

within the tumor (Figure 3.38). In this case it was questionable whether those amounts of 

nanoparticles are sufficient for an effective therapeutic approach. Even if this might not be the 

case for normal small molecule drugs, in theory, it might be enough for therapies based on 

siRNA mediated RNA interference mechanisms, where small amounts of siRNA have a large 

impact.
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3.12 In-vitro / in-vivo correlation

Basically the purpose of an in-vitro in-vivo correlation (IVIVC) is to demonstrate that a 

certain in-vitro approach can work as a valid surrogate for complex in-vivo studies. This may 

then reduce the number of expensive studies required for approval as well as be helpful for 

scale-up and post-approval changes. The United States Pharmacopoeia has defined the in-

vitro in-vivo correlation as “the establishment of a relationship between a biological property 

or a parameter derived from a biological property from a certain formulation and a 

physiological property of the same formulation” [Leeson, L. J. 1995]. In our studies the first 

incident of in-vitro in-vivo correlation was within the fluorescence labeling studies (refer to 

2.2.2 Fluorescence labeling). There we demonstrated the influence of different fluorophores 

and labeling techniques on the ex-vivo and in-vivo signal read-outs. High fluorescence signals, 

always sufficient for any in-vitro detection of the nanoparticles were well suitable for the 

conducted chamber slide preclinical studies. In-vivo however, as seen in the case of the 

hamster dorsal skin fold chamber and also in the mouse cremaster model, blood components 

and the technical setup prevented a high resolution fluorescence analysis of the nanoparticles. 

A correlation from the in-vitro model to the in-vivo whole body imaging approach shown in 

(3.11.4 Pharmacokinetics and whole body imaging) is also difficult since the fluorophore 

needed to pass a signal through the animal skin emits in the long wavelength spectrum which 

is more than 200 nm apart from the standard labeling wavelength. This holds especially true if 

we take into account different physicochemical properties of the nanoparticles for different 

fluorophores as demonstrated in a cooperation Broermann [Broermann, P. et al. 2008]. 

Nevertheless the in-vitro in-vivo correlation for our nanoparticles was successful for the 

newly developed cell culture flow model. Leaving the slight surface changes through the 

fluorophores aside, we were able to demonstrate a charge related cell interaction of the 

nanoparticle in-vitro and could confirm a similar behaviour later in all in-vivo models. A 

deeper analysis of the influence of shear stress and medium as well as vessel (channel)

diameter in the in-vitro flow model are a needful addition to elucidate the nanoparticle fate in-

vivo. Importantly, an incubation of nanoparticles under flow and at high FCS concentrations 

resulted in different cell interaction patterns than observed for “standard” static and low FCS 

conditions. As a result, nanoparticles showed less cell interaction in-vivo than what would 

have been expected from simulations in the static model compared to the near to reality 

results from the flow model.
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3.13 Application of siRNA containing gelatin nanoparticles for gene 
delivery

The big advantage of targeted nanoparticles compared to other forms of drug and gene 

delivery rather than a pure localisation inside the tumor region, is the uptake into the cell

[Bartlett, D. W. et al. 2007]. Only with the successful uptake of the carrier and its payload can 

our nanoparticles trigger the relevant RNAi mechanism. Hence for a successful RNA based 

therapy it is mandatory to effectively deliver the siRNA molecules into the cytoplasm of the 

cell without changing the morphology or viability of the cells to a large extent. From such a 

therapeutic point of view, nanoparticles loaded with reporter gene siRNA, e.g. luciferase

siRNA (luc-siRNA) need to find their target cell first and in a second step enter the cell by an 

endocytotic and endolysosomal mechanism. The target cell can be an angiogenic endothelial 

cell or any tumor cell or cell in an inflamed tissue region. 

Cholamine gelatin nanoparticles for gene silencing

In a first try, gelatin nanoparticles cationized with cholamine and loaded with either luc-

siRNA or a control siRNA (mut-siRNA) (refer to 2.3.12 siRNA loading determination via 

ultra-violet-absorption) were examined for their gene silencing potential as previously 

described (refer to 2.6 siRNA mediated gene silencing and protein knock-down).

In 10 % (v/v) FCS medium 500 ng luc-siRNA loaded onto cationic nanoparticles (234 nm, 

PDI 0.005, +53 mV) at different ratios of 1:1, 2:1, 4:1, 8:1, 12:1, 16:1, 20:1 were not able to 

induce an RNAi mediated luciferase knock-down within the chosen time window (Figure 

3.69). At this point we estimated that the nanoparticles were not taken up successfully by the 

cells due to a sub-optimal nanoparticle-cell interaction, potentially based on the low zeta 

potential of the cholamine gelatin nanoparticles. While the size of the nanoparticles with 

210 nm (PDI 0.01) was in a range where other polymeric carriers would normally be taken up 

by cells as shown by Nguyen [Nguyen, J. et al. 2008] the cationization of the nanoparticles 

after loading with the siRNA molecules was most likely not sufficient to interact with the cell 

membrane long enough to get internalized into the endosome. We determined the charge with 

41 mV after loading in MQ and with only 21 mV in the relevant transfection cell culture 
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medium. On the contrary however, internalization might after all have taken place with only 

the endosomal release not working. 

Figure 3.69

Gene silencing efficacy of the cholamine GNP loaded with luciferase siRNA revealed no 

statistically significant difference to the rates achieved with mut-siRNA. 

The pH in the endosome is known to be acidic (~5). This might influence the knock-down

through degradation of the siRNA inside the endosome. However, taken into account an 

effective protection of the siRNA by the inherent buffer capacity of the gelatin molecule, as 

proposed in literature, can elevate the pH in the lysosome again. A more basic pH level will 

then effectively diminish the activity of enzymes in the lysosome including nucleases [Seglen, 

P. O. 1983].

DEAE-dextran gelatin nanoparticles for gene silencing

Therefore in the following studies, the strong cationic nanoparticles were modified with the 

polysaccharide DEAE-dextran matrix and were examined. With the knowledge that DEAE-

dextran was many times successfully used in transfecting DNA to bacterial and even 

mammalian cells [Schenborn, E. T. et al. 2000], our formulation with DEAE-dextran

modified gelatin nanoparticles was loaded with 0.5 �g siRNA molecules as described above. 
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DEAE-dextran mediated transfection was first described by Vaheri [Vaheri, A. et al. 1965]

using viral RNA and by McCutchan [McCutchan, J. H. et al. 1968] with DNA. 

Figure 3.70

Gene silencing efficacy of the DEAE-dextran GNP loaded luciferase siRNA revealed no 

statistically significant difference to the rates achieved with mut-siRNA.

The percentage of luciferase knock-down in our experiment was again tested in the 

established luciferase assay and compared to DEAE-dextran modified gelatin nanoparticles 

loaded with a non-sense siRNA (mut-siRNA). We found out, that DEAE-dextran

nanoparticles when loaded with 500 ng luc-siRNA or 500 ng control siRNA at different ratios

(5:1 to 200:1) and incubated with the cells for 48 hours did not induce a significant luciferase 

knock-down (Figure 3.70). At a ratio of 20:1 the mean effect in luciferase signal was 90 % 

that of the control, for 40:1 an effect of 85 % was recorded and for 200:1 it was already at 

40�%. Interestingly, we detected an increased interaction of the nanoparticles with cells, 

reflected in decreased cell viability at higher nanoparticle concentrations. This however shall 

not interrupt our further studies since for RNAi much less amounts of GNP then tested here 

will be needed. It is known that DEAE-dextran when used for transfection can only achieve a 

transient gene regulation [Gluzman, Y. 1981]. Yet in our experiment no knock-down could be 

observed throughout the whole incubation time indicating that the nanoparticles, which 

eventually were taken up by the cells, could not escape the endosomal trap. With the higher 

zeta potential of siRNA loaded DEAE-dextran nanoparticles (refer to 3.6 siRNA containing 
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gelatin nanoparticles (SICONs)) the nanoparticles would attach to the cell membrane as 

shown in the in-vitro experiments and from the discussion in 3.12 In-vitro / in-vivo 

correlation.

DEAE-dextran and cholamine gelatin nanoparticles for gene silencing

Since cationic charge of the cholamine modified gelatin nanoparticles as well as of those 

nanoparticles cationized solely with DEAE-dextran was still in the medium range of 25-

35 mV we thought of pushing the boundaries of cationization even further. Some research 

groups have shown that a higher charge of their transfection reagent was directly related to the 

transfection efficacy [Takeuchi, K.-i. et al. 1996; Huang, Y.-Z. et al. 2006] and in many 

liposomal or basically lipid based transfection reagents a high net charge of the final 

nucleotide loaded formulation is centrally important. For this reason we decided to formulate 

dual modified highly cationic gelatin nanoparticles based on an incorporation of DEAE-

dextran inside the nanoparticle core and a covalent cationic linking of cholamine to the free 

carboxy groups of the protein. Those nanoparticles could be formulated in a validated process 

resulting in homogeneous and monodispersly distributed nanoparticles in the lower size range 

of 170 – 280 nm as shown in 2.1.5 Formulation of diethyl-amino-ethanol-dextran and 

cholamine modified gelatin nanoparticles.

The novelty of this formulation was not only its initial high cationic charge (53 mV) but 

also the fact that loading with siRNA molecules over a wider nanoparticle to siRNA range 

would not decrease the charge dramatically anymore (Figure 3.30).

Hence, even after loading of high siRNA ratios in HEPES buffer or PBS a cationic charge 

of the nanoparticles was present. Compared to other studies [Chen, J. et al. 2007], where the 

charge of loaded methoxypolyethyleneglycol polylactic chitosan (MePEG-PLA-CS) and

polylactic chitosan (PLA-CS) nanoparticles was in the range of 21 mV and 12 mV 

respectively the charge of our nanoparticles was even higher. Therefore the cell interaction 

and uptake probability at least in theory were maximized for this type of formulation. 
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Figure 3.71

Knock-down efficacy of the cholamine DD-GNP loaded with luciferase siRNA revealed no 

statistically significant difference to the rates achieved with mut-siRNA but for 120:1 and 

160:1 an effect was measured

This strongly cationic DEAE-dextran cholamine formulation was not able to transfer luc-

siRNA into the chosen cell culture assay (Figure 3.71). Only at a ratio of 120:1 an indication 

of a 20 % knock-down was determined, as well as at a ratio of 160:1. A therapeutically useful 

RNAi should switch protein production nearly completely and lastingly off making further 

improvements to the transfection potential of the formulation mandatory. Many researchers 

have given the cationic charge in their nanoparticle formulations not a too close look due to 

postulated negative side effects related to the high charge. Our study data suggested that 

nanoparticles when formulated from gelatin with a high cationic charge still show high cell 

viability, which is needed for an ideal transfection candidate.

PEI modified DEAE-dextran gelatin nanoparticles for gene silencing

With this knowledge, our theoretic model developed into the direction where a missing 

endosomal escape of the gelatin nanoparticles became most likely. Endosomal release of most 

carriers is usually achieved by making use of a polyamine based proton sponge effect on the 

nanoparticle surface. Polyethylene imine (PEI) is widely used for endosmolytic effects. What 

needs to be stated is that PEI alone with siRNA cannot induce RNA interference. This was 
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confirmed by us at PEI:siRNA (w/w) ratios from 0,5:1to 2:1 up to concentrations of 4:1,

where the highest cell toxicity was reached (Figure 3.72).

Figure 3.72

Knock-down assay with 0.5 �g PEI modified DEAE-dextran GNP (left), 1 �g PEI modified

DEAE-dextran GNP (center) and PEI complexed siRNA (right) prepared in HBG

Now in combination with the strongly cationic gelatin nanoparticles, PEI was able to induce

a strong silencing effect. For this experiment the cholamine cationized DEAE-dextran gelatin 

nanoparticles were loaded with siRNA at different ratios as described above. To the 

negatively charged nucleotide coating of the nanoparticle surface PEI 25br was added to form 

a monolayer of this polyamine moiety around the nanoparticle shell. Those luc-siRNA 

nanoparticles when incubated with the cells showed an effective RNAi based protein 

knockdown over the whole incubation time. These results demonstrate that our earlier 

nanoparticle formulations were, when cationic enough for cell interaction, always entrapped 

inside the endosome preventing them from releasing their payload into the cytoplasm. Here 

we could show that the same nanoparticles, that when applied alone to the cells could not 

silence the genes at all, in combination with PEI 25br showed a maximum knock-down

efficiency over the whole range of nanoparticle:siRNA ratios. For higher PEI concentrations 

of 1 �g in the formulation the cell viability decreased below 10 % indicating the maximum 
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tolerable dose of PEI for these in-vitro experiments. We were surprised that gelatin 

nanoparticles in this special case also seemed to protect the cells to a certain extent from the 

toxic influence of PEI 25br, which cannot be explained fully so far. Even at fifty times the 

amount of our nanoparticles applied to the cells compared to the PEI complex left a cell 

viability of approximately 30 % (Figure 3.72). At twenty times the amount of nanoparticles 

the viability was still at 72 % while for the PEI no cells survived the 48 hours incubation time.

At the lowest nanoparticle amount tested, which was a ratio of 5:1 compared to a 4:1 ratio for 

the PEI polyplex our DEAE-dextran cholamine modified nanoparticles coated with PEI left 

the cells at an average of 100 % viability over 48 hours, tremendously protecting the cells 

from the negative PEI side effects.

Polyamine modified gelatin nanoparticles for gene silencing

The postulated proton sponge effect responsible for the effective endosomal release of our 

PEI formulation was also tested with tetra-ethylene-pentamine (TEPA) and spermidine 

modified SICONS. Within this formulation 50 % of the cholamine was substituted with either 

TEPA or spermidine and examined in the same way as the previous nanoparticle formulations

(Figure 3.73). Neither of the two polyamine modifications was able to induce a sufficient 

proton-sponge effect or endosome rupture that would be sufficient for nanoparticle release to 

the cytoplasm. In detail, the TEPA modification lead to luciferase signals ranging from 

98.29 % + 12.17 % S.D. at 5:1 down to 58.62 % + 25.24 % S.D. at 200:1. For the spermidine 

modification signals from 83.85 % + 6.60 % S.D. at 10:1 down to 2.05 % + 1.40 % S.D. at 

200:1 were measured. Also, while TEPA modified nanoparticles showed a good cell viability 

over almost 90 % of the incubated GNP ratios, spermidine decreased the cell viability above a 

NP:siRNA ratio of 80:1 to 49.38 % + 17.68 % S.D. and as low as 0.59 % + 0.45% S.D.

preventing the use of this formulation above this concentration.
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Figure 3.73

TEPA (left) and spermidine (right) modified cationic gelatin nanoparticles

Novel sandwich gelatin nanoparticles for gene silencing

Rounded up with the above PEI results, we were able to demonstrate that our siRNA 

containing gelatin nanoparticle systems (refer to 3.6 siRNA containing gelatin nanoparticles 

(SICONs)) generally and by their inherent properties do have the potential as both highly and 

stable loadable and also efficient RNA interference mediators. The only real obstacle that had 

to be overcome at this point in our research was how to induce an endosomolytic effects in the 

SICONs. In the end the most adequate solution was to alter the actual SICON formulation 

from a single nanoparticle system to novel sandwich like PEG-PLL-DMMel modified 

SICONs. With this novel carrier system that was developed and advanced by the research 

group of Professor Dr. Ernst Wagner at the University of Munich, we can use the high 

endosomolytic efficiency of Melittin peptide combined with the inherent positive properties 

of our gelatin nanoparticles. Only with the generosity of and in close cooperation with 

Professor Wagner and his team the above luciferase transfection results as well as the 

following Melittin experiments could be realized. At first the cells were treated with standard 

DEAE-dextran SICONs and the PEG-PLL-DMMel was added right afterwards to form 

endosmolytic sandwich nanoparticles. After the incubation time the cells were lysed and 

prepared for the luciferase assay. We could show a high knock-down rate again over all 

employed loading ratios (Figure 3.74). Based on our photometric studies that showed a 

sandwich complex formation between SICONs and PEG-PLL-DMMel (refer to 3.7 Sandwich



Results and Discussion

169

nanoparticle formulation with a Melittin construct) we postulate such a novel complex 

formation either in the endosome or in the first case right in the cell reaction chamber. In both 

cases the siRNA delivery and luciferase protein knock-down was successful. Compared to 

pure PEG-PLL-DMM as the “gold standard” for this type of gene silencing, our novel 

nanoparticles showed almost 50 % greater cell viability at similar carrier concentrations. 

Sandwich SICONs
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Figure 3.74

Knock-down assay PEG-PLL-DMMel modified DD-SICONs in HBG (left) and pure PEG-

PLL-DMMel polyplex (right). SICONs show a high cell viability over all tested ratios.
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MTT assay

The general high cell tolerability of our novel nanoparticles was finally examined in a 

separate MTT assay. The above results in viability from the transfection experiments could be 

confirmed. The nanoparticles up to a ratio of 160:1 had a median cell viability of above 80 % 

and only for a ratio of 200:1 dropped to approximately 74 % (Figure 3.75).
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Figure 3.75

MTT test of CDD-GNP

In conclusion our final formulation approach with a Melittin construct on the nanoparticle 

surface was successful to induce an endosomal escape of the nanoparticles and release the 

siRNA into the cytoplasm where RNAi could take place. Compared to the pure Melittin 

construct as a polyplex the novel formulation had a higher cell viability over all tested 

concentrations.
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4 Summary and Outlook

The recent progress in the potential therapeutic applications of siRNAs is owed largely to 

major breakthroughs in delivery. Even a systemic delivery of therapeutic amounts of anti-

ApoB siRNAs in chimpanzees was recently accomplished by the use of bi-layer liposomes

[Zimmermann, T. S. et al. 2006]. These important proofs of principle studies demonstrated 

that it is indeed safe and effective to systemically delivery therapeutically relevant doses of 

siRNAs to primates, paving the way for other future systemic applications of RNA.

In the present thesis, we formulated novel nanoparticles from the bio-tolerable protein 

gelatin and the cationic polysaccharide DEAE-dextran and demonstrated their potential for 

siRNA delivery. In this context, these and other materials like thiomers were at first 

characterized in terms of molecular weight to invent new formulation techniques for small 

and homogenous nanoparticles, which were then extensively tested for their potential as 

siRNA carriers. Especially Asymmetric flow field-flow fractionation and automatic 

microviscosimetry proved to be fast and reliable methods to screen nanoparticle excipients in 

a pre-formulation environment. With a close focus on later in-vitro and in-vivo fluorescence 

based studies we evaluated the labeling efficiency of various fluorescent dyes and their impact 

on the physicochemical properties of the nanoparticles. An optimum formulation for DEAE-

dextran and cholamine modified gelatin nanoparticles was developed and enhanced with an 

endosomolytic moiety comprising a cationic backbone and a stabilized Melittin peptide for 

effective RNA interference. The final formulation with a Melittin modification was shown to 

induce an efficient protein knockdown of luciferase as a model protein and of VEGF-receptor

as a therapeutic protein. At the same time the formulation prompted a higher cell tolerability 

than several gold standard siRNA transfection reagents like for example polyethylene imine.

For the first time, gelatin nanoparticles from type A gelatin could be formulated with a 

sufficiently high cationic charge for siRNA loading and endothelium targeting and at the same 

time induce RNA interference in-vitro for a model and a therapeutic protein. In perspective, 

the targeting and transfection efficacies of siRNA loaded gelatin type A nanoparticles 

together with the newly introduced modifications comprising DEAE-dextran and PLL-PEG-

DMMAn-Mel need to be demonstrated under in-vivo conditions as a final proof of concept. 

As a first step in this direction the pharmacokinetic distribution of the newly developed 

formulations was already analyzed in the mouse model, giving a promising outlook for further 
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clinical studies. In addition, hydrophobic, methylated, acetylated, and with various other 

surface modifications altered nanoparticles were formulated and characterized for their 

potential as siRNA carrier systems. The successful surface alterations were analysed by 

nuclear magnetic resonance spectroscopy and quasi elastic light scattering. The sum of these 

nanoparticles was further examined in a newly developed in-vitro flow model where we could 

simulate for the first time under near to realistic in-vivo conditions the nanoparticle cell 

interaction patterns. We could demonstrate differences in the nanoparticle behaviour among 

various nanoparticle excipients with discrepancies in the amount of interacting nanoparticles 

per cell and cell viability if either a static cell culture was used or the novel flow model. 

Cationic nanoparticles in most cases showed an increased endothelial cell attachment 

compared to hydrophobic and neutral nanoparticles whereas the low tolerability of 

polybutylcyanoacrylate nanoparticles in the static model was confirmed even under flow 

conditions.

Last but not least, we examined our nanoparticle formulations in several in-vivo models. At 

first, we elucidated the nanoparticle fate via concentration and size finding studies in the 

hamster dorsal skin fold chamber model. Compared to highly dosed and fluorescently labeled 

liposomal formulations, did the gelatin nanoparticles not show significantly strong signals 

within this model, which could be due to the narrow capillary bed in the observation area and

a low fluorescence emission. Additional studies in the mouse cremaster model gave evidence 

of the potential of cationic gelatin nanoparticle to target inflamed endothelium tissue in-vivo. 

The antigen induced arthritis model in the mouse knee which was eventually used to compare 

the gelatin formulation loaded with siRNA to chitosan nanoparticles revealed an 

advantageous in-vivo stability or distribution homogeneity of the gelatin nanoparticles

compared to the chitosan formulation. A correlation in terms of nanoparticle surface 

properties could be drawn from the in-vitro flow model to the in-vivo observations once again 

pointing out the relevance of thorough preclinical investigations of nanoparticles for further 

therapeutic use. Based on our development of a realistic nanoparticle observation model and 

based on the results from our in-vivo observations and gene silencing studies, we see the great 

potential of using nanoparticles for targeted systemic delivery of siRNA in order to treat the 

upcoming burdens of humanity and the toll for a longer lifetime like increasing incidents of 

cancer and all the vessel related diseases. Our nanoparticles can be formulated with most 

likely any therapeutically relevant siRNA and endothelial cell interaction studies in the flow 

model will allow forecasting the later in-vivo behaviour.
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5 Final Conclusion

Goal of the presented doctoral thesis was to formulate advanced gelatin nanoparticles for 

the delivery of small oligonucleotides, especially siRNA. The intention then was to transfer 

the newly discovered principle of RNAi based protein knock-down to a protein based,

biocompatible, biodegradable nanoparticles for in-vivo therapeutic applications. 

For the characterization of the nanoparticles ex-vivo several physical, biochemical and laser 

based techniques were used. 

In a first step, novel gelatin nanoparticle formulations were developed in order to alter their 

biological and physicochemical properties for an improved siRNA loading and new and 

efficient cell targeting properties. In this context, methylation, pegylation, acetylation, 

surfactant coatings and polysaccharide incorporation nanoformulations were developed and 

characterized. 

Most importantly the development of new sandwich gelatin nanoparticles has to be 

highlighted. This novel nanoparticle carrier is based on a strong cationic gelatin 

polysaccharide matrix core that could be loaded successfully with siRNA in a layer around 

the central nanoparticle and then encapsulated with an endosmolytic peptide construct. We 

demonstrated that these gelatin sandwich nanoparticles do not only protect the siRNA from 

sudden load dumping in physiological media like many other nanoformulations but also 

efficiently overcome the endosomal trap to induce the sought for RNAi based protein knock-

down.

Secondly we adapted a novel cell-flow model for our nanoparticle cell interaction studies. 

We demonstrated that the flow model can be used as an invaluable improvement for the 

preclinical evaluation of nanoformulations in an in-vitro or respectively near-to-physiological 

environment. Furthermore, we demonstrated the charge related targeting effects of gelatin and 

other nanoparticles to endothelium cells. We delivered a proof of principle that cationic 

gelatin nanoparticles are a potential therapeutic nanoparticle system for the targeting of 

endothelium and angiogenetic related diseases.
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Next, the endothelium targeting properties and pharmacokinetic properties of gelatin 

nanoparticles were investigated in a hamster skin fold chamber and a mouse cremaster model. 

For the first time gelatin nanoparticles were monitored on the microvascular level. 

Nanoparticle size, charge and also surface coatings were found to play a major role in the 

nanoparticle half-life and endothelium attachment properties confirming the assumptions from 

the cell flow-model.

In summary, we improved gelatin nanoparticles to a carrier system for siRNA. In addition 

we could demonstrate their potential in the field of RNA interference, laying the basis for an 

anti-angiogenetic and tumor therapy. The transfer of a promising new preclinical in-vitro

evaluation model with the potential to overcome static cell culture models into the field of 

nanoparticle research was an important for a better analytical understanding of the ins and 

outs of nanoscaled biopharmaceuticals like liposomes and antibodies.

In the near future of the 21st century siRNA loaded gelatin sandwich nanoparticles could be 

an option as new delivery systems in the field of biopharmacy.
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