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1 INTRODUCTION 

 

1.1 Nucleic acid based therapy: applications in tumor therapy 

Nucleic acid based therapy offers a promising strategy in the treatment of cancer or many 

other genetic (e.g. cystic fibrosis, severe combined immunodeficiency) and acquired (e.g. 

infectious, neuropathological) diseases by delivering therapeutic nucleic acids into patients. 

While traditional gene therapy utilizes DNA to correct a genetic defect by inserting functional 

genes into an organism in order to replace defective ones, strategies in cancer therapy range 

from inserting tumor suppressor genes to immunotherapy1. Gene therapy was already 

applied in various clinical studies2-4 using genes, for example, encoding for antigens, 

cytokines, tumor suppressors or different growth factors and receptors. 

Table 1 shows the different types of therapeutic nucleic acids which have been delivered into 

the target cell by non-viral transfer systems. 

These various types of nucleic acids achieve different effects at the molecular level. In non-

viral plasmid DNA (pDNA), for example, is mainly used for intra-nuclear delivery to replace or 

to substitute a specific genetic function in the target cell resulting in a “gain of gene function”. 

In contrast, “loss of gene function” is often mediated by intra-cytoplasmatic delivery of 

synthetic asRNA or siRNA reducing the expression of endogenous genes in a sequence-

specific manner, which can be used for silencing of pathogenic target genes or inducing 

specific antitumoral effects5-7. 

Novel strategies of exploiting the antisense mechanism include triggered exon-skipping for 

partial repair of defective genes8 and targeting miRNAs with complementary 

oligoribonucleotides (anti-miRNA)9-10 in order to improve gene expression. 

Among these, siRNA mediated gene silencing has attracted considerable research interest, 

since the discovery of RNA interference (RNAi) by Fire et al in 199811. Significant efforts and 

resources have been currently invested in exploiting the therapeutic potential of siRNA for 

the treatment of human diseases such as cancer6-7,12-17. 
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Nucleic acid Description 

pDNA 
plasmid DNA containing gene cassettes for expression of proteins, 
antisense RNAs or short hairpin silencing RNAs 

mRNA 
delivery of mRNA into the cytosol for protein expression, for example 
antigens in dendritic cells to stimulate immunity18-19 

asRNA 
single stranded antisense RNA, binds to complementary mRNA strands, 
inhibits gene expression20-21 

siRNA 
single stranded small interfering RNA, binds to complementary mRNA 
strands followed by catalytical cleavage, inhibits gene expression11,22-23 

miRNA 
single-stranded micro RNA, binds to partial complementary mRNA strands, 
inhibits gene expression  

polyIC 
poly-inosine-cytosine double-stranded RNA, interacts with endosomal toll-
like receptor 3 and cytosolic mda-5 receptor, triggers apoptosis and 
interferon response24 

decoy DNA 
oligodeoxynucleotide decoy, binds to transcription factors via consensus 
sequences as in target genes, inhibits transcription factor functions and 
gene expression25 

DNA/RNA aptamers 
DNA or RNA oligonucleotides, bind to a specific target molecules (e.g. 
nucleic acids, proteins), inhibit target molecule functions26 

Table 1: Different types of therapeutic nucleic acids delivered by non-viral (physical or 
chemical) methods. 

 

The RNA interference process makes use of double stranded RNAs for sequence specific 

gene silencing. The introduction of exogenous long dsRNA (> 30 nucleotides) into cells was 

found to inhibit cellular protein expression, but it additional provokes innate immune 

response by interferon activation causing apoptosis. Tuschl and colleagues demonstrated 

that target gene-specific RNA interference without significant side effects can be mediated by 

application of small synthetic 21-23 nucleotide based RNA duplexes22-23,27. The mechanism 

of RNA interference is presented in Figure 1, an endogenous process, which employs small 

interfering RNAs (siRNAs) to suppress target-specific gene expression by mRNA 

degradation. 
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Figure 1: The mechanism of RNA interference. After entering the cytoplasm, siRNA duplexes are 
incorporated into the RNA induced silencing complex (RISC) resulting in cleavage of the sense strand 
of siRNA by the enzyme argonaute 2 (Ago2). The activated RISC complex cleaves target mRNAs with 
complementary domains due to its endonuclease activity resulting in sequence specific gene 
silencing. 

 

Within the cytoplasm of cells, siRNA gets incorporated into a ribonucleotide protein complex 

called RNA induced silencing complex (RISC). After activation, siRNA becomes unwound by 

the enzyme argonaute 2 and the sense strand is cut off28-30. The antisense strand remains 

incorporated and triggers cleavage of mRNAs with complementary domains due to the 

catalytic nature of RISC. Cleavage of the mRNA leads to reduction of translation and, thus, in 

target specific gene silencing. With increasing knowledge on the molecular mechanisms of 

endogenous RNA interference, synthetic siRNAs promise great potential as a new class of 

therapeutic nucleic acids in the treatment of various forms of cancer and a number of other 

diseases, due to their ability to silence gene expression in a sequence specific manner31-33. 
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Although, numerous siRNA and related nucleic acid formulations have been already applied 

in clinical trials4,34-35 and have also shown very encouraging anticancer effects in vivo, such 

as inhibition of neoangiogenesis36-38, induction of apoptosis24,39-40 or reduction of tumor cell 

proliferation41-43, the lack of safe and efficient delivery systems still limits the full therapeutic 

potential of this technology and remains a major challenge in the development of nucleic acid 

based therapies44-47. 

 

 

1.2 Non-viral carrier systems for nucleic acid based therapy 

Generally, nucleic acid based therapeutics should be highly efficient and well tolerated, 

which depends, however, on several factors. Difficulty in delivering nucleic acids already 

results from their unfavorable chemical and physical properties, which are not consistent with 

that of a successful drug48. In particular, nucleic acids are highly negatively charged due to 

their phosphate backbone, highly hydrophilic due to their sugar backbone and large 

macromolecules that cannot permeate cellular membranes. 

Thus, direct delivery of naked nucleic acids in vivo, i.e. in the absence of a carrier molecule, 

can be only rarely applied with reasonable efficiency16,49, such as in case of intramuscular 

injection of naked pDNA50 or hydrodynamic delivery51-53. Also naked siRNA formulations 

have only been successful, when administered to local tissues, e.g. by direct injection into 

the eye for the treatment of age related macula degeneration54-55, which has already been 

applied in humans in clinical trials56. However, systemic applications of nucleic acids, which 

are required for the broad range of indications such as disseminated cancer, involve further 

problems like undesired interactions with blood components, susceptibility of rapid enzymatic 

degradation by serum nucleases and clearance from the bloodstream (mainly by Kupffer 

cells in the liver) resulting in short half life times of a few minutes57-60. 

In order to succeed in clinical application of nucleic acid based therapy, safe and efficient 

carrier systems have to be developed, which are able to stabilize nucleic acids in the 

extracellular environment and effectively deliver them into the target site. For this purpose, 

various viral and non-viral delivery strategies have been discovered. 

Viral vectors, especially retroviral and adenoviral vectors, are the most commonly used 

nucleic acid delivery vehicles in clinical trials due to their high delivery efficiency4,61-62 and 

their facility for in vivo tissue-specific replication, which is very useful for clinical applications 

like in cancer. However, their broad applicability may be limited in terms of safety concerns63-

64 regarding their immunogenicity65 and carcinogenicity, which is caused by mutagenesis 
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resulting from gene insertion into the host genome66-67 and their additional high production 

costs and low capacity to incorporate therapeutic nucleic acids. 

For this reason, non-viral vectors have been investigated as alternatives with useful 

characteristics, such as enhanced biosafety and pharmaceutical advantages meaning simple 

synthesis and large-scale production. However, synthetic vectors show in general far less 

efficiency compared to their viral counterparts after in vivo application68-71. 

Cationic lipid72-75 and cationic polymer76-79 based systems are the major types of non-viral 

carrier systems, which package and condense the negatively charged nucleic acids into 

particles of virus like dimensions protecting them from degradation80. Carrier molecules 

interact with nucleic acids in a reversible, non-damaging manner which is in most cases 

provided by electrostatic interactions between the positively charged groups on the carrier 

molecule and the negatively charged phosphate groups on the nucleic acid. Also covalent 

attachment of nucleic acids to carrier molecules has been exploited81-85. Cell entry mainly 

occurs via adhesion of the positively charged carrier systems to the negatively charged 

transmembrane heparin proteoglycans followed by endocytosis86-87. 

Lipoplexes88 are based on non-covalent complex formation of cationic lipids, such as DOTAP 

or DOTMA representing amphiphilic molecules with a hydrophobic tail and a hydrophilic 

cationic head group, with negatively charged nucleic acids74,89-91. Lipid formation takes place 

by spontaneous aggregation of cationic surfactants with hydrophobic moieties (long alkyl 

chains) forming hydrophobic interiors and positively charged polar head groups, which 

results in a polycationic surface. After cellular uptake, lipoplexes are able to lyse endocytotic 

vesicles caused by provoking membrane pertubation92-96 and subsequently destabilized 

lipoplexes break down resulting in efficient release of the nucleic acids into the cytoplasm97-

98. However, a major disadvantage of cationic lipid based carrier systems is that they are 

relatively unstable in physiological (i.e. serum containing) environment, which strongly 

restricts their use for extensive in vivo applications. 

Polyplexes88 are based on non-covalent complex formation of cationic polymers, such as 

PLL or PEI, with negatively charged nucleic acids70,99. Poly-L-lysine (PLL) was one of the first 

polycations used for polyplex formation71, which represents a biodegradable polymer due to 

its natural amino acid backbone. At physiological pH the primary amino groups of PLL are 

positively charged and interact electrostatically with the negatively charged nucleic acids to 

complex them into nanoparticles. Although the cellular uptake of the polyplexes is effective, 

subsequent escape from endosomes into the cytoplasm presents a major bottleneck for this 

formulation. Over the past decade polyethylenimine (PEI), first introduced by Behr and 

colleagues100, has become one of the most commonly used polycations for nucleic acid 

delivery and even has been considered as the golden standard in many in vitro and in vivo 

applications24,101-104. PEI is a non-degradable polymer with considerable buffering capacity 
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below the physiological pH promoting endosomal escape to a certain degree due to the so-

called osmotic burst or “proton sponge” effect. Osmotic swelling in combination with direct 

interaction of the polycation with the inner endosomal membrane cause local endosomal 

membrane disruption leading to a release of the nucleic acid carrier into the cytoplasm105-108. 

Polyethylenimine based polymers can be synthesized with different molecular weights in a 

linear or branched structure or can undergo functionalization by group addition or 

substitution, which strongly influences nucleic acid delivery efficiency and toxicity109-111. 

However, the major drawback of the formulation seems to be pronounced toxicity112-114, both 

in vitro and in vivo, due to the huge amount of positive surface charges and a variety of 

unspecific interactions with the biological environmen115-118. Moreover, insufficient 

metabolization and elimination due to the lack of biodegradability finally result in unintentional 

accumulation in cells and excretion organs, such as liver, which further limits the applicability 

in vivo for repeated systemic administration. Thus, degradability of polycations has become a 

crucial factor for practicability and safety of in vivo applications, which was taken into account 

for the development of novel biodegradable polycations for nucleic acid delivery45,111,119-136. 

Besides synthetic polymers, various biopolymers have been additionally exploited as non-

viral delivery vehicles, which are also able to bind or encapsulate nucleic acids into nano-

sized complexes, such as chitosan137-141, gelatine142-145, atelocollagen146-147 or other 

nanoparticles148-151. 

 

 

1.3 Extra- and intracellular barriers for nucleic acid delivery 

Nucleic acid carrier system should protect and deliver nucleic acids efficiently and exclusively 

to the site specific target cells. However, on their in vivo delivery route after systemic 

application, carriers are faced with numerous extracellular and intracellular barriers152 as 

shown in Figure 2. 
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Figure 2: Physiological barriers for systemic delivery of nucleic acids. After systemic application, 
delivery vehicles have to (1) avoid undesired interactions with blood components, aggregation, 
degradation or complement activation in the bloodstream, (2) cross the leaky tumor vascular 
endothelial barrier into the interstitial space, (3) diffuse through the extracellular matrix towards the 
target tumor tissue, (4) be internalized specifically into the target cells, (5) escape from the endosome 
and disassemble and release the nucleic acid payload within the proper intracellular compartment 
(nucleus for pDNA, cytoplasm for siRNA or mRNA). 

 

Upon systemic application, complexes have to survive in the bloodstream as they are 

surrounded by a variety of blood compounds, such as erythrocytes, salts, lipids, 

carbohydrates, serum proteins or degradative enzymes. This may also influence the 

composition of the complexes causing aggregation, dissociation or degradation as well as 
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the bioavailability due to the fact that other charged molecules can disrupt such complexes 

before they reach the target cell. Thus, even when reaching the target cells, the complexes 

may no longer exhibit the physical properties necessary for efficient nucleic acid delivery into 

the cells. 

For delivery to distant target sites the carrier systems should also show elongated plasma 

circulation times. However, as a result of introducing foreign molecules into the body, 

positively charged complexes have the ability to activate the complement system115. 

Opsonization of such particles by the complement protein C3b leads to the initiation of a 

cascade of events presumably resulting in fast clearance of comlexes due to phagocytosis 

by cells of the reticulo-endothelial-system. Moreover, the positive charge of complexes not 

only mediates target cell attachment and internalization, but also causes unspecific 

interactions with negatively charged membranes of blood components, vascular endothelial 

cells or other non-target tissues115-118. Coating the positive charges of lipoplexes and 

polyplexes with other hydrophilic macromolecules, such as polyethylene glycol (PEG), was 

found to avoid unspecific interactions with blood components and recognition by the immune 

system, which finally resulted in prolonged circulation times116,153-156. 

In order to reach the target cells, complexes have to extravasate across the leaky tumor 

vasculature into the interstitial space, where interactions with the extracellular matrix have to 

be avoided. The extracellular matrix comprises different combinations of collagens, 

proteoglycans, hyaluronic acid, fibronectin and other glycoproteins, i.e. components that 

could act as further hurdle by binding to the complexes. It was found that lipoplexes and 

polyplexes resulting in a net positive charge, could also interact with the extracellular matrix 

causing dissociation or aggregation, which consequently negatively affects the delivery 

efficiency157-158. Probably complex disassembly is more likely a problem in the case of siRNA 

compared to pDNA, as the far larger number of negative charges offered in pDNA stabilizes 

the interelectrolyte complex159-160. However, to reach the target site of action the nucleic acid 

has to stay associated with its carrier during the complete extracellular delivery process. 

Hence, either stabilization of comlexes using lateral reversible crosslinking strategies after 

complex formation131,161-163 or covalent attachment of the nucleic acid to the carrier system81-

85 have been found to be a promising tool to overcome the undesired instability of complexes 

in the presence of serum proteins or the extracellular matrix. 

At the target site, complexes have to bind specifically to the target cells, which is of crucial 

impact, as interaction with non-target cells could trigger undesired and potentially toxic side 

effects. Selective targeting to cell type specific tissues can be achieved by incorporation of 

targeting ligands into the carrier systems recognizing cell type specific receptors expressed 

on the cell surfaces resulting in cellular uptake via receptor mediated endocytosis164-165. 
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After successful internalization into the target cells, the complexes are located in intracellular 

endosomal vesicles. Acidification of endosomal vesicles prepares endosomes to fusion with 

lysosomes containing digestive enzymes and nucleases for degradation of the endosomal 

content. Thus, the release of the complexes out of the endosomes into the cytoplasm 

represents a major challenge to achieve effective nucleic acid delivery, as endosomal 

entrapment is associated with degradation of the nucleic acids upon endosomal acidification. 

Following endosomal escape, pDNA complexes still have to enter the nucleus after 

cytoplasmic trafficking in order to reach the transcriptional / translational machinery166. 

Hence, nuclear import of pDNA followed by carrier unpacking represents another major 

hurdle which has to be overcome. In contrast, for siRNA complexes the cytoplasm is the 

target site of action and effective dissociation of siRNA from the carrier systems in the 

cytoplasm is required for assembly of the RISC complex. 

Once the vectors have delivered their therapeutic nucleic, they should be easily metabolized 

and being eliminated in order to avoid accumulation in organs which results in undesired long 

term toxicity. Particle size represents another general critical factor for drug targeting167, as 

several hundred nm large complexes are not able to penetrate endothelial barriers168 or 

extravasate from the leaky tumor vasculature into the interstitial space due to size restrictions 

or even may trigger acute toxicity after systemic application. 

Altogether, nucleic acid carrier systems have to meet many requirements for successful 

delivery of nucleic acids to their target sites as a series of intracellular and extracellular 

barriers have to be overcome before the delivered nucleic acids can achieve their full 

therapeutic potential. 

 

 

1.4 Design of bioresponsive polymers with virus-like 

functionalities 

For successful nucleic acid based therapy, the development of appropriate carrier systems 

for nucleic acid delivery is a major challenge, since all of these aspects have to be taken into 

consideration. 

Thus, novel biodegradable carriers are needed, which exhibit improved efficiency, less 

toxicity and a better biocompatibility45,111,119-136. Moreover, in order to meet all the 

requirements for overcoming all the biological delivery steps, nucleic acid carriers will have to 

mediate different functions upon their delivery pathway, meaning that they have to be less 

static and should respond more dynamically to the cellular microenvironment they are 

exposed to. These requested functions can be pre-programmed into a carrier system by 
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introduction of various functional domains resulting in a so-called “synthetic virus”70,169-171 

which faces virus-like functionalities as shown in Figure 3. 

Targeting:

cell binding ligands
(growth factors, antibodies)

molecular sensors (chemical, physical)

Polyplex:

nucleic acid 
condensing carrier

Shielding:

polyethylene glycol 
(PEG)

Endosomal release:

membrane active agents
(melittin, viral peptides)

 

Figure 3: Assembly of polyplexes. Besides shielding, targeting and endosomal release 
functionalities, nucleic acid delivery systems are additionally equipped with molecular sensors for 
programmed nucleic acid delivery. The acidic or reducible cellular microenvironment triggers cleavage 
of implemented bioresponsive elements in the nanoparticles enhancing the escape from intracellular 
vesicles into the cytoplasm where further disassembly might be triggered for efficient release of the 
payload from the carrier system. 

 

Such synthetic virus-like carrier systems are more dynamic in their characteristics, like 

natural viruses, to be most effective at the different steps of extracellular and intracellular 

delivery. Mimicking the efficient, dynamic delivery process of viral infection70,169,172, ”artificial 

viruses” have been provided with a combination of certain functional attributes in order to 

protect the nucleic acid from degradation during circulation in the blood stream154,173-174 and 

shield against unspecific interactions, facilitate targeting to specific cell surface receptors 

followed by cellular uptake at the target site and trigger efficient release of nucleic acids into 

the cytoplasm. 

 

1.4.1 Shielding functionality 

In order to prevent undesired interactions with blood components during the delivery process 

carrier systems were functionalized with hydrophilic molecules, such as polyethylene 

glycol116,153,155-156, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA)175-176 or poloxamer177, 

resulting in reduced susceptibility to aggregation with serum proteins and phagocytosis by 

cells of the reticulo-endothelial-system. Furthermore, such sterically stabilized particles with 

neutral surface charge exhibit prolonged circulation times in the blood and enable passive 

accumulation in tumor tissue due to the enhanced permeability and retention (EPR) effect178. 

This “passive tumor targeting” of nanoparticles, relies on a leaky tumor vasculature combined 

with inadequate lymphatic drainage. 
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Different PEGylation strategies have been proven to be successful, e.g. direct attachment of 

PEG to the carrier system173,179-180 or to the nucleic acid151,181 prior to complexation (pre-

grafting) as well as coupling of PEG to the polyplex surface after complex formation (post-

grafting)182-183. The pre-PEGylation strategy enables the incorporation of a defined amount of 

hydrophilic polymer to the polycation, whereby the post-PEGylation strategy does not 

negatively influence the complexation process. 

PEGylation, however, also negatively affects the cellular uptake process and escape from 

intracellular vesicles due to the fact that shielding with PEG molecules reduces the positive 

surface charge of polyplexes, which is an important factor for interaction with cellular 

membranes and in consequence for cell entry and endosomal release. This loss of efficiency 

can be partly compensated by introducing of targeting ligands or pH responsive and redox 

sensitive systems into the polyplexes. 

 

1.4.2 Targeting functionality 

Efficient delivery of nucleic acids can only succeed in therapy if properly directed towards the 

target site. Specific tissue targeting can be achieved by incorporation of targeting ligands into 

nucleic acid delivery systems recognizing cell type specific receptors on cell surfaces in order 

to promote cellular uptake via receptor-mediated endocytosis. The first receptor targeted 

polyplexes and their in vivo use was described already twenty years ago184-185, as meanwhile 

many different tageting ligands have been evaluated, notably for their specific attachment to 

tumor cell surfaces153,164-165,169,186-190. 

Transferrin (Tf), a 79kDa iron transporting serum glycoprotein, has been widely studied as a 

ligand for tumor targeted delivery over many years35,40,173,191-193. Due to their high metabolism, 

cancer cells overexpress Tf receptors on their cell surface and hence can be effectively 

targeted with Tf formulated conjugates in vitro and in vivo194-199. Moreover, Tf as part of a 

carrier system also exerts an additional shielding function based on its relatively large size 

and slightly negative charge preventing unspecific interactions with blood components194. 

The epidermal growth factor (EGF) has also attracted much attention as a possible targeting 

ligand, as the EGF receptor is strongly overexpressed in many types of cancer200-201. EGF is 

a relatively small protein with a molecular weight of approximately 6kDa. Coupling to PEI, e.g 

via disulfide bonds200 or a PEG spacer153,179, as well as to other polycations resulted in 

greatly enhanced specifity and efficiency of nucleic acid delivery24,202. 

The arginine-glycine-asparagine (RGD) motif of fibronectin has also been studied for tumor 

targeted delivery of nucleic acids based on its capability to bind to the integrins that are 

expressed on the activated endothelial cells in tumor vasculature203-206. 
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Folic acid, a vitamin which is necessary for the synthesis of purines and pyrimidines, is 

another strategy to achieve site specific tumor targeting. Attachment of folic acid to various 

nucleic acid delivery systems has been investigated for target specific delivery into tumors207-

209. 

Besides natural ligands also anti-receptor antibodies, antibody fragments or completely 

synthetic ligands can be used for targeted delivery of nucleic acids210-216. 

 

1.4.3 Endosomal release functionality 

Capture of non-viral carrier systems in endocytosed intracellular vesicles after cell entry is a 

major barrier for nucleic acid delivery. Ways of overcoming endosomal entrapment in order 

to avoid endo-lysosomal degradation are, for example, making use of the “proton sponge” 

effect of some polycations or the incorporation of lytic moieties into the carrierr system 

resulting in membrane disruption and, thus, endosomal escape into the cytoplasm. 

Polycations, such as PEI possess considerable buffering capacity below the physiological pH 

promoting endosomal escape to a certain degree due to the so-called osmotic burst or 

“proton sponge” effect. This hypothesis is based on the chemical structure of PEI, which is 

only partially protonated at physiological pH, as approximately only every third nitrogen is 

positively charged. Hence, during the endosomal acidification process, protonation of the 

remaining secondary and tertiary amines acts like a “proton sponge” which is responsible for 

an increased osmotic pressure in the vesicles. Osmotic swelling in combination with direct 

interaction of the polycation with the inner endosomal membrane-cause local endosomal 

membrane rupture leading to a release of the nucleic acid carrier into the cytoplasm105-108. 

However, endosomal escape represents a major bottleneck when only small amounts of PEI 

are accumulated per endosome217. 

In addition, histidine or other imidazole containing polycations, which can also become 

protonated in the acidic endosomal environment, represent another approach to generate 

nucleic acid carrier systems capable of osmotic burst mediated endosomal release218-223. 

But not only polymers with buffering capacity can induce efficient release into the cytoplasm, 

also several cationic lipids possess endosomal escape properties. Lipid based formulations 

are able to lyse endocytotic vesicles by irreversibly absorbing lipids that are spontaneously 

released from the structurally dynamic endosomal membrane provoking membrane 

pertubation92-96. 

Another versatile method is the incorporation of membrane disrupting agents224-226 into the 

carrier system mimicking the natural endosomal escape mechanisms achieved by cell 

invading organisms such as bacteria or viruses. Lytic artificial peptide sequences or natural 
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sequences derived from Listeria monocytogenes227, adenovirus228-229, influenza virus224,230 

rhinovirus231 or other virus-derived peptides232-233 have been successfully applied for that 

purpose. Synthetic artificial amphiphatic peptides that mimic natural lytic peptides were also 

designed. GALA (repeating units of glutamic acid-alanine-leucine-alanine) and KALA 

(repeating units of lysine-alanine-leucine-alanine) represent such basic amphiphathic 

peptides. Protonation at acidic pH triggers conformational changes from a random coil to an 

amphiphatic alpha-helix exposing hydrophobic domains, which can interact with lipid bilayers 

and lead to membrane rupture226,234-237. Furthermore, melittin, a cationic lytic peptide derived 

from bee venom, has also been shown to strongly enhance the delivery efficiency of 

lipoplexes and polyplexes in vitro and in vivo238-241. 

 

1.4.4 pH responsive and redox sensitive systems 

Closer observation of the delivery process reveals that nucleic acid carrier systems not only 

have to exhibit different delivery functions, but also have to meet different requirements at 

different time. For example, carrier systems should strongly bind and protect nucleic acids in 

the extracellular environment, but efficiently release it into the cytoplasm after cellular uptake. 

Shielding with PEG should prevent undesired interactions with proteins and cell membranes 

during systemic circulation, but within the endosomes the intracellular release is hindered as 

increased membrane interaction facilities are required to ensure endosomal escape. 

Although the endosomal membrane has to be destabilized for efficient delivery, pronounced 

membrane lytic activity, e.g. based on membrane active agents, is unfavorable outside of 

endosomes and, thus, has to be miimized in the extracellular environment. 

As the described different delivery functions are required at different time points of the 

extracellular and intracellular delivery process, formulations can be pre-programmed to 

undergo dynamic changes and alter their characteristics during the delivery process like 

natural viruses, which sense their environment and respond to the biological surrounding in a 

dynamic manner70,171,242. The requested changes can be programmed into the synthetic 

carrier systems (“artificial viruses”) by introduction of bioresponsive elements ensuring that 

the particular functions are only active during the phases of the delivery process were they 

are required. Thus, molecular sensors, such as hydrolytic cleavable bonds or reducible 

disulfide bonds have been utilized, which are able to respond to biological stimuli triggered 

by small changes in the cellular microenvironment172. As biological triggers, for example, 

differences in the pH of biological compartments85,243-247 or different redox potentials inside 

and outside the cells248 have been exploited. 

While PEG shielding is important for the first steps of nucleic acid delivery, at later steps the 

shielding coat is no longer required and becomes even counter-productive, as it may prevent 
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efficient nucleic acid release from the endosomes due to hindered destabilization of vesicular 

membranes217. For triggered deshielding, endosomal acidification can be exploited as 

biological stimulus, since the extracellular and intracellular pH values are physiological 

neutral. pH-labile chemical bonds such as acetals134,243,249-251, hydrazones245,252-255, 

orthoesters91,256-258, thiopropionate linkers259-261, dialkylmaleic acid monoamides84,111 or vinyl 

ethers123,262 have been utilized for removal of the PEG shield in the acidic endosomal 

environment, strongly improving the nucleic acid delivery process174,242,263-264. 

Moreover, lytic activity of membrane active peptides, such as melittin, is an unfavorable 

effect in the extracellular environment regarding toxicity of the delivery vehicles, as the 

membrane destabilizing activity is not only focused to intracellular vesicles. In an analogous 

fashion, masking the lytic activity of the peptide melittin with pH reversible chemical bonds, 

e.g. coupling the primary amines of melittin lysine residues to dimethylmaleic anhydride, 

strongly reduces the lytic activity of the peptide at neutral pH, which is recovered following 

endosomal acidification due to cleavage of the maleamate protecting groups85,247,265-266. 

Other recently developed dynamic nucleic acid delivery systems including the activation of 

endosomolytic properties236,267-268 highlight the superiority and increasing impact of dynamic 

delivery systems in comparison with their static counterparts. 

Exploiting the differences in the redox potential between oxidizing extracellular environment 

and reducing intracellular compartment of cells offers another possibility to alter the 

properties of synthetic carrier systems during the delivery process. Disulfide bonds, for 

example, which are stable in blood circulation, enable site specific cleavage in reducing 

intracellular environment upon cell entry241,269. Hence, covalent coupling of nucleic acids to 

the carrier via reductive cleavable disulfide bonds can be utilized to mediate extracellular 

stability, i.e. preventing dissociation of the delivery vehicle, but intracellular release of the 

nucleic acids following cleavage of disulfide linkages84-85,222,270. 

Besides bioresponsive deshielding or triggered disassembly of non-viral delivery vehicles, 

the differences in pH and redox gradient can also be used for development of biodegradable 

carrier systems in order to reduce their inherent toxicity. Bioreversible crosslinking of low 

molecular weight polymers into larger molecules, either by different hydrolytic cleavable or 

reducible disulfide linkages for triggered degradation into smaller fragments, represents an 

encouraging strategy, which resulted in improved delivery efficiency associated with less 

toxicity and better biocompatibility45,111,119-136. 

The development into pre-programmed bioresponsive systems, containing targeting ligands, 

shielding domains and membrane active moieties represents an important step in the field of 

nucleic therapeutics79. 
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1.5 Aims of the thesis 

 

The lack of appropriate delivery systems limits the novel and encouraging therapeutic and 

clinical potential of siRNA for the treatment of various diseases, such as cancer. Thus, the 

major focus of the current thesis was the discovery and optimization of novel polymers as 

highly effective and biocompatible siRNA delivery systems. 

Polyethylenimine has proved to be one of the most widely used polycations for nucleic acid 

delivery, which however displays significant toxicity and - in case of siRNA delivery - only 

modest activity. The first aim of the thesis was to generate less toxic PEI derivates for siRNA 

formulation with improved biological properties. For that purpose, several modifications of 

PEI 25 had to be carried out to reduce the highly positive surface charge of the polycation, to 

optimize the therapeutic window of the formulation for siRNA delivery. 

The second aim of the thesis was to test novel biodegradable carrier systems, which exhibit 

greatly improved biocompatibility, for their efficiency in siRNA delivery. By crosslinking of low 

molecular weight polycations with biodegradable linkers high molecular weight polycations 

had been created, which can be degraded into smaller fragments in the appropriate cellular 

microenvironment128. This concept was further developed by generating a novel class of 

hyperbranched polymers, namely pseudodendrimers, which additionally exhibit a better 

defined chemical structure135. These conjugates consist of a low molecular weight polycation, 

which is functionalized with an excess of biodegradable linker in order to form a 

pseudodendritic inner core, which can be subsequently modified on its surface with different 

oligoamines. In an alternative approach, instead of crosslinking, low molecular weight 

polycations were modified with hydrophobic moieties. These low molecular weight structures 

had to be characterized as siRNA formulations in their biophysical and biological properties. 

Conceptually they would possess increased stability against dissociation and enhanced 

endosomolytic properties, thereby overcoming major bottlenecks for efficient siRNA delivery. 

The third aim of this thesis was to evaluate bioresponsive conjugates, which act more 

dynamically in response to their cellular microenvironment than their static counterparts. As 

poor endosomal escape is a major barrier of siRNA delivery, polymeric carriers should be 

tested which are equipped with membrane active peptides, such as melittin, to escape 

endosomal entrapment. To overcome undesired cytotoxicity in the extracellular compartment 

due to the general membrane destabilizing properties, the lytic activity of melittin was 

reversibly masked with a pH responsive protecting group resulting in a triggered lytic activity 

of melittin only upon acidifaction in the endosome. Additionally, due to the fact that other 

physiological biomolecules can disrupt siRNA complexes, which results in vector 

disassembly before reaching the target site, siRNA conjugates should be evaluated that are 
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covalently attached to the carrier system by bioreducible disulfide linkers ensuring release of 

siRNA in the cytoplasm. 

All the mentioned polymer classes and conjugates had to be evaluated in their biophysical 

(siRNA binding, colloidal stability, release of siRNA) and biological (siRNA delivery efficiency, 

cytotoxicity, hemolytic activity) properties, which is supposed to reveal promising candidates 

featuring high efficiency associated with low toxicity for further in vivo studies in tumor 

bearing mice. Lead candidates had to be analyzed in detail to clarify the effect of charge 

density, chemical structure, hydrophobicity or lytic activity on their biological properties. In 

particular, the effect of individual surface modifications on reporter gene silencing efficiency 

and cytotoxicity had to be investigated and correlated in order to elucidate comprehensive 

structure-activity relationships. Further studies of the stability and lytic activity of siRNA 

conjugates should offer some prediction on their fate in extracellular or endosomal 

environments. 

 



2 MATERIALS AND METHODS  17 

 

2 MATERIALS AND METHODS 

 

2.1 Chemicals, polymers and other reagents 

Oligoethylenimine with an average molecular weight of 800Da (OEI 800), branched 

polyethylenimine with an average molecular weight of 25kDa (PEI 25), poly-L-lysine-HBr 

(degree of polymerization = 153) with an average molecular weight of 32kDa as 

hydrobromide (PLL), succinic anhydride (Suc), 2,3-dimethylmaleic anhydride (DMMAn), N-

succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) and 1,4-dithiothreitol (DTT) were obtained 

from Sigma Aldrich (Steinheim, Germany). Succinimidyl propionate monomethoxy 

polyethylene glycol with a molecular weight of 5kDa (mPEG5k-SPA) was purchased from 

Fluka (Buchs, Switzerland). Linear polyethylenimine with an average molecular weight of 

22kDa (PEI 22) was synthesized by acid catalysed deprotection of poly(2-ethyl-2-oxazoline) 

(50kDa) as described in Brissault et al271 and is also commercially available from Polyplus 

Transfection (Strasbourg, France). 

Cysteine-modified melittin (Mel) was obtained from IRIS Biotech GmbH (Marktredwitz, 

Germany). Melittin had the sequence CIGAVLKVLTTGLPALISWIKRKRQQ (all-(D) 

configuration), the C-terminal amino acid was introduced as carboxylic acid, the N-terminal 

amino acid as amine. All-(D) stereochemistry was used because it is non-immunogenic while 

being as lytic as the natural all-(L) melittin peptide272-273. 

Transferrin (Tf) was obtained from Biotest (Dreieich, Germany). Deuterium oxide (D2O), 

RNAse-free water, absolute ethanol, dimethyl sulfoxide (DMSO), methylthiazolyldiphenyl-

tetrazolium bromide (MTT), ethidium bromide (EtBr) and all other chemicals were obtained 

from Sigma-Aldrich (Steinheim, Germany).  

As buffer and solvent were used HBG (HEPES-buffered glucose solution: 20mM HEPES, 5% 

glucose (w/w), pH 7) or HBS (HEPES-buffered saline: 20mM HEPES, 150mM NaCl, pH 7). 

Cell culture media, antibiotics and fetal calf serum (FCS) were purchased from Invitrogen 

(Karlsruhe, Germany). 

Ready to use siRNA duplexes were purchased from Dharmacon (Lafayette, CO, USA) and 

Eurofins MWG Operon (Ebersberg, Germany): 
 

LucsiRNA: GL3 luciferase duplex 

5’-CUUACGCUGAGUACUUCGA-3’ (sense) 

5’-thiol-CUUACGCUGAGUACUUCGA-3’ (sense) 
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RANsiRNA: RAN specific therapeutic duplex 

5’-AGAAGAAUCUUCAGUACUA-3’ (sense) 

siCONTROL: non-specific control duplex IX with similar GC content as 

LucsiRNA: 

5’-AUUGUAUGCGAUCGCAGAC-3’ 

non-targeting control duplex siCONTROL#3: 

5’-AUGUAUUGGCCUGUAUUAG-3’ (sense) 

5’-thiol-AUGUAUUGGCCUGUAUUAG-3’ (sense) 

 

Following synthetic carrier systems have been used amongst others for siRNA delivery 

studies: 

PEI-EA (13%-26%-52%) 

PEI-Prop (13%-26%-52%) 

PEI-Ac (10%-20%) 

PEI-Suc (10%-20%) 

were synthesized as described in Zintchenko et al160 

OEI-HD-1 

was obtained from Abbott Laboratories (Chicago, IL, USA) 

with an average molecular weight of 25 - 30kDa and was 

synthesized as described in Kloeckner et al128 and Tarcha et 

al274 

OEI-HD-1-Tf was synthesized as described in Tietze et al40 

OEI-ED (E-Sp-S-O) 

OEI-BD (E-Sp-S-O) 

OEI-HD (E-Sp-S-O) 

were synthesized as described in Russ et al135 

OEI-EA (5-10) 

OEI-BA (5-10) 

OEI-HA (5-10) 

OEI-LA (2.5-5) 

were synthesized as described in Philipp et al275 
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PEG-PEI 

PEG-PEI-DMMAn-Mel 
were synthesized as described in Meyer et al247 

PEG-PLL 

PEG-PLL-DMMAn-Mel 
were synthesized as described in Meyer et al247 

PEG-PLL-DMMAn-Mel-

siRNA 
was synthesized as described in Meyer et al85 

 

For biochemical, biophysical and biological studies, lyophilized conjugates were diluted in 

RNAse free water and adjusted to pH 7 with HCl. 

 

 

2.2 Additional novel polymer conjugates 

 

2.2.1 Synthesis of succinic anhydride (Suc) modified OEI-HD-1 

OEI-HD-1 (2.0µmol, 50mg) was dissolved in 0.5ml 0.5M NaCl. The desired amount of 

succinic anhydride was dissolved in DMF and added dropwise to the solution under stirring. 

The modification degree of Suc to OEI-HD-1 was 5%, 10% and 20% (reagent/amine * 100%, 

feed). After 24h at room temperature the raw product was concentrated and purified by 

ultrafiltration (Vivaspin 2, Vivascience, molecular weight cut-off 2000 HY) first three times 

with 3M NaCl to remove unreacted hydrolysed succinate and then five times with water to 

remove salt. After purification, the aqueous solution was lyophilized. 

The degree of modification with Suc was expressed as a number of modifications per PEI or 

OEI-HD-1 molecule * 100% (i.e. percentage of modified amines per PEI or OEI-HD-1) and 

analyzed by 1H-NMR spectroscopy from the ratio between the peaks of ethylene protons of 

PEI (NCH2CH2, δ 2.6 - 3.6ppm) or OEI-HD-1 (NCH2CH2, δ 2.6 - 3.5ppm) and methylene 

protons of Suc (HOOCCH2CH2CO, δ 2.5ppm). 

 

2.2.2 Synthesis of PEG modified OEI-HD-1 

OEI-HD-1 (1.0µmol, 25mg) dissolved in 1250µl HBS was mixed with mPEG5k-SPA 

(1.5µmol, 7.5mg) dissolved in 150µl DMSO. After 1h at room temperature the reaction 

mixture was purified by cation-exchange chromatography (MacroPrep High S; HR 10/10, 
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BioRad, Munich, Germany) and fractionated with a salt gradient from 0.6 to 3.0M NaCl in 

20mM HEPES (pH 7). Purification was carried out with a flow rate of 0.5ml/min. The fractions 

containing PEG-OEI-HD-1 were pooled, dialyzed against water (molecular weight cut-off 

6000 - 8000) and lyophilized. 

The degree of modification with PEG was determined by 1H-NMR spectroscopy calculated 

from the proton integrated values of PEG (OCH2CH2, δ 3.6ppm) and the OEI-HD-1 backbone 

(NCH2CH2, δ 2.6 - 3.5ppm) and from the molecular weight values given by suppliers. The 

polycation content was determined by TNBS assay. The PEG-OEI-HD-1 conjugate had a 

molar ratio of OEI-HD-1/PEG = 1/1.15. 

 

2.2.3 Synthesis of 3-(2-pyridyldithio)-propionate modified PEG-OEI-HD-1 

PEG-OEI-HD-1 (0.6µmol, 15mg) dissolved 750µl HBS was mixed with SPDP (6µmol, 

1.87mg) dissolved in 187µl DMSO. SPDP was used as a heterobifunctional crosslinker 

reacting with primary and secondary amines via the N-hydroxysuccinimidyl group and 

reacting with sulfhydryls via the pyridylthiol group. 

O

N

S

N

S

O

O

O

SPDP
 

After 2h at room temperature the reaction mixture was purified by size exclusion 

chromatography using an Äkta Basic high-performance liquid chromatography (HPLC) 

system (Amersham Biosciences, Freiburg, Germany) equipped with a Sephadex G25 

superfine HR 10/30 column (Pharmacia Biotech, Uppsala, Sweden) equilibrated in 0.5M 

NaCl, 20mM HEPES (pH 7). Gel filtration was carried out with a flow rate of 0.5ml/min and 

the fractions containing PEG-OEI-HD-1-PDP were pooled. 

The degree of modification with PDP was determined spectrophotometrically at 343nm by 

the release pyridine-2-thione after reduction with 5µl DTT (0.5µmol, 77µg) dissolved in water. 

The polycation content was determined by TNBS assay. The PEG-OEI-HD-1-PDP conjugate 

had a molar ratio of PEG-OEI-HD-1/PDP = 1/8.5. 
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2.2.4 Synthesis of DMMAn-Mel modified PEG-OEI-HD-1 

Melittin peptide (1.04µmol, 3mg) dissolved in 200µl buffer (100mM HEPES, 125mM NaOH) 

was mixed with 500µl ethanol containing DMMAn (7.9µmol, 1mg) by rapid vortexing under 

argon. After 30min at room temperature the reaction mixture was concentrated and purified 

by ultrafiltration (Vivaspin 2, Vivascience, molecular weight cut-off 2000 HY) to separate 

excess of free DMMAn from DMMAn-Mel, which would cause undesired acylation of primary 

amines on PLL during the coupling procedure. 

The final solution of acylated melittin was mixed under argon with PEG-OEI-HD-1-PDP at a 

1.5 fold molar excess of DMMAn-Mel (based on PDP content) in 1M guanidine hydrochloride 

(pH 8) in order to prevent aggregation of the negatively charged DMMAn-Mel and the 

polycation before coupling. The free sulfhydryl groups of cysteine at the N-terminus of 

DMMAn-Mel react with PDP to the desired PEG-OEI-HD-1-DMMAn-Mel conjugates. 

After 3h at room temperature the release of pyridine-2-thione from residual PDP linkers was 

measured at 343nm to determine the modification degree. Subsequent purification was 

carried out by size exclusion chromatography using an Äkta Basic HPLC system (Amersham 

Biosciences, Freiburg, Germany) equipped with a Superdex 75 HR 10/30 column 

(Pharmacia Biotech, Uppsala, Sweden) equilibrated in 0.5M NaCl, 20mM HEPES (pH 8) 

elution buffer to avoid acidic cleavage of DMMAn. Gel filtration was carried out with a flow 

rate of 0.5ml/min and the fractions containing PEG-OEI-HD-1-DMMAn-Mel were pooled and 

snap frozen in liquid nitrogen.  

The polycation content was determined by TNBS assay. The PEG-OEI-HD-1-DMMAn-Mel 

conjugate had a molar ratio of PEG-OEI-HD-1/DMMAn-Mel = 1/8. 

 

 

2.3 Biophysical characterization 

 

2.3.1 siRNA binding ability 

The siRNA binding ability of polymers was evaluated using an ethidium bromide exclusion 

assay. Intercalation of EtBr into plain siRNA results in strongly increased fluorescence of 

EtBr (λex=510nm, λem=590nm). The ability of polymers to bind siRNA displaces intercalated 

EtBr, which significantly lowers the fluorescence intensity. Hence, the siRNA binding ability of 

polymers is expressed as relative fluorescence intensities to plain siRNA with intercalated 

EtBr, which is set to 100% fluorescence. 
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Aliquots of the respective polymer were added stepwise to a siRNA solution (20µg/ml) in 

HBG containing EtBr (0.4µg/ml) and the decrease of fluorescence was measured after each 

step using a Cary Eclipse fluorescence spectrophotometer (Varian Deutschland GmbH, 

Darmstadt, Germany). 

 

2.3.2 Polyplex formation 

In all studies the composition of polyplexes was characterized by the w/w (weight/weight) 

ratio of the polymer to the nucleic acid in the mixture. Different concentrations of the 

polymers and nucleic acid were diluted at various w/w ratios in separate tubes in HBG. 

Polyplexes were prepared by adding the polymer solution to the solution of the nucleic acid 

and incubated for 30 minutes at room temperature to form stable complexes. 

 

2.3.3 Agarose gel retardation 

Polyplexes were prepared as indicated in the corresponding experimental settings containing 

0.5µg siRNA in 20µl HBG. Then complexes were mixed with loading buffer (6ml glycerine, 

1.2 ml 0.5M EDTA, 2.8ml H2O, 0.02g xylenecyanole) and placed into a 2.5% agarose gel in 

40g TBE buffer (trizma base 10.8g, boric acid 5.5g, disodium EDTA 0.75g ad 1l water) 

containing EtBr or GelRed. Electrophoresis was performed at 80V for 40 minutes and 

evaluated under UV-light. 

 

2.3.4 Polyplex stability against sodium chloride 

The stability of polyplexes was studied by dynamic light scattering using a Malvern Zetasizer 

3000HS (Malvern Instruments, Worcestershire, UK). A drop of scattering intensity was 

attributed to the dissociation of polyplexes against increasing amounts of sodium chloride. 

The NaCl concentration at which the dissociation occurred was related to the polyplex 

stability. 

Polyplexes were prepared with DNA or siRNA as indicated in the corresponding 

experimental settings at a final nucleic acid concentration of 20µg/ml in HBG. Stepwise 

addition of 3M NaCl solution to the polyplexes resulted in decrease of scattering intensity as 

a function of increasing NaCl concentration. 
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2.3.5 Particle size and zeta-potential measurement 

Particle size and zeta-potential of polyplexes were determined using a Zetasizer Nano ZS 

(Malvern Instruments, Herrenberg, Germany). Polyplexes were prepared with siRNA as 

indicated in the corresponding experimental settings in HBG. For measurement of zeta-

potential polyplexes were diluted with 1mM NaCl to give a final volume of 1ml and a siRNA 

concentration of 10µg/ml. Dispersion Technology Software 5.0 (Malvern Instruments, 

Herrenberg, Germany) was used for data acquisition and analysis. 

 

2.3.6 Transmission electron microscopy 

For transmission electron microscopy (TEM) investigations 5µl of siRNA conjugates 

(formulations containing 0.5µg siRNA became diluted 1:100 in water) were put on 3.05mm 

diameter copper grids with a mesh size of 200µm covered by a 20nm thick lacey carbon film. 

After air drying of the samples, TEM investigations were performed on a Jeol 2011 

microscope equipped with a tungsten filament source and operated with an acceleration 

voltage of 200kV. Bright field images were recorded on a bottom-mounted CCD camera with 

a resolution of 1024 x 1024 pixels using a typical exposure time of 1000ms. 

To ensure representative results, at least five different areas of 200µm x 200µm were 

inspected at high magnification on every TEM grid. The contrast is mainly given by the 

differences in thickness between the actual particle and the surrounding 20nm thick lacey 

carbon film, as no additional contrast staining was applied. 

 

 

2.4 Biological characterization 

 

2.4.1 Cell culture 

All cultured cells were grown at 37°C in 5% CO2 humidified atmosphere. Wildtype murine 

neuroblastoma cells Neuro2A (ATCC CCL-131), Neuro2A/Luc cells stably transfected with 

the GL3 luciferase gene and Neuro2A/eGFPLuc cells stably transfected with the eGFPLuc 

gene were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 1g/l glucose). Wildtype 

human hepatocellular carcinoma cells HUH7 (JCRB 0403, Tokyo, Japan) and 

HUH7/eGFPLuc cells stably transfected with the eGFPLuc gene were cultured in 

DMEM/Ham’s F-12 medium. Human lung carcinoma cells H1299/Luc stably transfected with 

the GL3 luciferase gene (kindly provided by Abbott Laboratories, Chicago, IL, USA) were 
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cultured in RPMI 1640 medium (4.5g/l glucose). All media were supplemented with 10% fetal 

calf serum (FCS), 2mM stable glutamine, 100U/ml. penicillin and 100µg/ml streptomycin. 

 

2.4.2 Luciferase reporter gene silencing 

For screening experiments cells were seeded in 96-well plates (TPP, Trasadingen, 

Switzerland) using 5000 cells per well and cultured for 24h. Polymer/siRNA complexes 

containing either LucsiRNA targeting the firefly luciferase or siCONTROL as non-targeting 

control siRNA (to clearly distinguish between specific gene silencing and unspecific toxic side 

effects due to the carrier system) were prepared as indicated in the corresponding 

experimental settings at different w/w ratios in HBG. Prior to siRNA delivery, medium was 

replaced with 80µl fresh serum containing (10% FCS) growth medium. Then 20µl of polyplex 

solution was added to each well and cells were incubated at 37°C without further medium 

change. For transferrin competition experiments, free Tf (iron containing form) in a final 

concentration of 1µg/µl was added to the cells prior to transfection and medium change was 

performed 1h following siRNA delivery. At 48h following siRNA delivery the medium was 

removed and cells were lysed with 50µl of 1:10 diluted cell culture lysis buffer (Promega, 

Mannheim, Germany). 

Luciferase activity was measured using a Lumat LB 9507 Tube Luminometer (Berthold, Bad 

Wildbad, Germany). Luciferase light units were recorded from a 25µl aliquot of the cell lysate 

with 10s integration time after automatic injection of 100µl freshly prepared luciferin using the 

Luciferase Assay System (Promega, Mannheim, Germany). The relative light units (RLU) 

were expressed as percentage related to untreated control cells. 

 

2.4.3 Metabolic activity of cells after polymer treatment 

Metabolic activity of cells after treatment with polymer/siRNA complexes or free polycations 

was determined using a MTT assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide, Sigma-Aldrich, Munich, Germany) was dissolved in phosphate 

buffered saline (PBS) at 5mg/ml and 10µl aliquots were added to each well reaching a final 

concentration of 0.5mg MTT/ml. After incubation for 2h at 37°C, the medium was removed 

and cells were frozen for 1h at -80°C. The purple formazan product was dissolved in 

100µl/well dimethyl sulfoxide (DMSO) and quantified by a microplate reader Spectrafluor 

Plus (Tecan Austria GmbH, Grödig, Austria) at 590nm with background correction at 630nm. 

Cell viability was expressed as relative metabolic activity related to untreated control cells. 
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2.4.4 Hemolytic activity of polymers 

Murine erythrocytes were isolated from freshly collected citrate buffered blood and washed 

with PBS by four centrifugation cycles at 2000rpm for 10min at 4°C. The erythrocyte pellet 

was resuspended in HBG or HBG containing FCS (3% or 10%) at a concentration of 0.1 - 

4% (V/V) (~ approximately 107 - 108 erythrocytes per ml). Polymers were serially diluted in 

75µl HBG or HBG containing FCS (3% or 10%) and mixed with 75µl erythrocyte suspension 

in a V-bottom 96-well plate (NUNC, Roskilde, Denmark). After incubation at 37°C under 

constant shaking for 10 - 45min, erythrocytes were removed by centrifugation (2000rpm for 

10min at 4°C) and 80µl of the supernatant was analyzed for hemoglobin release at 405nm 

using a microplate reader Spectrafluor Plus (Tecan Austria GmbH, Grödig, Austria). 

HBG or HBG containing FCS (3% or 10%) and 1% Triton X-100 were used as negative and 

positive controls, respectively. Haemolysis was defined as percentage (ODpolymer - 

ODbuffer)*100 / (ODTriton X-100 - ODbuffer). 

 

2.4.5 Reverse Transcriptase quantitative real-time PCR (RT-qPCR) 

For gene expression studies in vitro cells were seeded in 24-well plates (TPP, Trasadingen, 

Switzerland) using 40000 cells per well and cultured for 24h. Polymer/siRNA complexes 

were prepared as indicated in the corresponding experimental settings at different w/w ratios 

in HBG. Prior to siRNA delivery, medium was replaced with 320µl fresh serum containing 

(10% FCS) growth medium. Then 80µl of polyplex solution was added to each well and cells 

were incubated at 37°C without further medium change. At 48h following siRNA delivery the 

medium was removed and cells were lysed with 400µl lysis buffer (Roche Diagnostics, 

Mannheim, Germany) and homogenized using a syringe and needle. High molecular weight 

DNA is sheared by passing the lysate through a 20-gauge needle attached to a sterile plastic 

syringe. 

 

2.4.5.1 RNA isolation and cDNA synthesis 

RNA isolation was performed using High Pure RNA Tissue Kit (Roche Diagnostics, 

Mannheim, Germany) according to the manufacturer’s protocol and RNA concentration was 

determined at a wavelength of 260/280nm using a Biophotometer (Eppendorf, Hamburg, 

Germany).  

First-strand cDNA synthesis was performed with 100ng RNA using Transcriptor High Fidelity 

cDNA Synthesis Kit (Roche Diagnostics, Mannheim, Germany) according to manufacturer’s 

protocol. Reverse transcription was carried out using random hexamer priming. 
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2.4.5.2 Quantitative real-time PCR 

Dual-colour multiplex real-time analysis was performed on a LightCycler 480 system (Roche 

Diagnostics, Mannheim, Germany). Primer and probes were designed with the Universal 

ProbeLibrary (UPL) Assay Design Center using the web-based ProbeFinder software v.2.45 

accessible at www.universalprobelibrary.com. 
 

GL3 luciferase: UPL Probe#29 

Forward primer: 5’-TGAGTACTTCGAAATGTCCGTTC-3’ 

Reverse primer: 5’-GTATTCAGCCCATATCGTTTCAT-3’ 

Mouse RAN:  UPL Probe#2 

Forward primer: 5’-ACCCGCTCGTCTTCCATAC-3’ 

Reverse primer: 5’-ATAATGGCACACTGGGCTTG-3’ 

Mouse ACTB: UPL Reference Gene Assay (RGA) 

Mouse GAPDH: UPL Reference Gene Assay (RGA) 

 

Mouse ß-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were 

used as housekeeping genes and purchased as RGA’s from Roche Diagnostics (Mannheim, 

Germany). Primers for GL3 luciferase and mouse RAN were purchased from Eurofins MWG 

Operon (Ebersberg, Germany). 

Real-time PCR was performed according to the LightCycler 480 system protocol using the 

following parameters as shown in Table 2. 

PCR protocol Target Temp. Time 

Denaturation 95°C 10min 

Amplification 

(45 cycles) 

95°C 10s 

60°C 30s 

72°C 1s 

Cooling 40°C 30s 

Table 2: PCR parameters for quantitative real-time PCR using the LightCylcer 480 system. 

 

Advanced relative quantification based on the second derivative maximum method was used 

for data acquisition and analysis performed by the LightCycler 480 quantification software v.3 

(Roche Diagnostics, Mannheim, Germany). 
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2.5 Statistics 

Values are presented as mean ± standard deviation and statistical significance of differences 

was evaluated by one-way analysis of variance (ANOVA). P-values smaller than 0.05 were 

considered to be significant. 
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3 RESULTS 

 

3.1 Modified PEIs with reduced toxicity as efficient siRNA 

carriers 

 

3.1.1 Design of PEI conjugates with reduced charge density 

Polymeric carriers such as polyethylenimine (25kDa branched = PEI 25), which proved their 

efficiency in DNA delivery in vitro and in vivo100,103 were found to be far less effective in 

siRNA mediated gene silencing276-277 and to be rather toxic, when applied in higher 

concentrations112-114. As toxicity is mainly associated with strong positive charges of the 

polycation, which cause strong interactions with cell surfaces and lastly membrane damage, 

modifications in order to reduce the positive charges of the polymeric backbone were 

realized. A number of non-toxic derivates of PEI 25 were generated160 via modification of 

amines by ethyl-acrylate, acetylation or introduction of negatively charged propionic acid or 

succinic acid groups to the polymer structure as shown in Figure 4. 
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Figure 4: Strategies for modification of PEI 25 resulting in reduced toxicity of the polymers. 
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In the EA and Prop series, primary amino groups were transformed into secondary amino 

groups by Michael addition, while in the Ac and Suc series, primary amino groups were 

modified by acetylation into amide groups. Additionally, in the Prop and Suc series negative 

charges were introduced into the polymer backbone by incorporation of carboxylic groups in 

the structure. 

The structural composition of the resulting products was analyzed using 1H-NMR 

spectroscopy. The calculated modification degrees (expressed as a percentage of modified 

amines per PEI 25 molecule) depending on the ratios in the feed are shown in Table 3. 

polymer
reagent/amine * 100% 

(feed)
reagent/amine * 100% 

(product)

PEI-EA-13% 13% 11.5%

PEI-EA-26% 26% 17.6%

PEI-EA-52% 52% 31%

PEI-Prop-13% n.a. 11.5%

PEI-Prop-26% n.a. 17.6%

PEI-Prop-52% n.a. 31%

PEI-Ac-10% 10% 12.3%

PEI-Ac-20% 20% 21.8%

PEI-Suc-10% 10% 8.9%

PEI-Suc-20% 20% 19.4%

polymer
reagent/amine * 100% 

(feed)
reagent/amine * 100% 

(product)

PEI-EA-13% 13% 11.5%

PEI-EA-26% 26% 17.6%

PEI-EA-52% 52% 31%

PEI-Prop-13% n.a. 11.5%

PEI-Prop-26% n.a. 17.6%

PEI-Prop-52% n.a. 31%

PEI-Ac-10% 10% 12.3%

PEI-Ac-20% 20% 21.8%

PEI-Suc-10% 10% 8.9%

PEI-Suc-20% 20% 19.4%
 

Table 3: Composition of modified PEIs determined by 
1
H-NMR. The nomenclature of the polymers 

is derived from the reagent or functional group by which PEI was modified (EA, Prop, Ac, Suc) 
followed by the modification degree of the amines. Conjugate synthesis was performed by Dr. Arkadi 
Zintchenko (LMU). 

 

The modification of PEI 25 with ethyl-acrylate via Michael addition was performed at 40°C 

and a relatively short incubation time of 4h, as higher temperature or longer incubation times 

are known to cause aminolysis of ester bonds resulting in crosslinking of the polymer274. 

According to the FTIR spectra no amide bond formation and, consequently, no crosslinking 

was observed for all polymer samples of the PEI-EA series. No double bond peak was found 

in the 1H-NMR spectra indicating the complete absence of unreacted acrylate in the final 

products. 

The propionic acid modified PEI 25 was generated by acid hydrolysis of the PEI-EA 

polymers. Complete hydrolysis was verified by disappearance of the methylene protons of 

the ester bonds in the 1H-NMR spectra and the characteristic FTIR-bands (1730cm-1). The 
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absence of amide peaks in the FTIR spectra (1652 cm-1) reveals no significant crosslinking 

during hydrolysis. The degree of modification with carboxylic groups was assumed to be the 

same as in the non-hydrolyzed precursor polymers. 

The modification of PEI 25 with acetic anhydride and succinic anhydride was carried out in 

the presence of salt to avoid precipitation of the polymer. The purification of polymers via 

dialysis was performed against salt buffer to ensure complete exchange of acetic or succinic 

acid, against chloride as counterion. 

 

3.1.2 siRNA binding and complexation ability 

The capability of polymers to condense siRNA, in order to form complexes suitable for cell 

entry, was studied using an EtBr exclusion assay. The reduction of relative fluorescence was 

measured as a function of increasing polymer/siRNA mixing ratios as shown in Figure 5. 

re
la

ti
v

e
 f

lu
o

re
s

c
e

n
c
e

100%

80%

60%

40%

20%

0%
0 1 1.5 20.5

Prop-26%

EA-26%

PEI 25

Ac-10%

Ac-20%

Suc-10%

Suc-20%

w/w ratio
 

Figure 5: siRNA binding affinity of conjugates determined by EtBr exclusion assay. The 
numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). Data were generated by Dr. 
Arkadi Zintchenko (LMU). 

 

Investigating the influence of surface modification on siRNA binding, all polymers were found 

to be effective in binding of siRNA at low ionic strength buffer HBG. Regarding PEI 25 

however, siRNA binding required lower w/w ratios caused by the fact that for PEI 25 the w/w 

ratio was calculated from the base form in this case. All other modified PEIs were weighed in 

neutralized form resulting in chloride counter ions which markedly contribute to mass per 

charge ratio. Nevertheless, at a w/w ratio of 2/1 even polymers with a high degree of 

modification show a reduction of fluorescence less than 10%.  

Agarose gel shift assay (in salt containing TBE buffer), however, illustrates slight differences 

in binding stability between polymers with different modification degree as shown in Figure 6. 
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Figure 6: Gel shift assay for polyplexes of siRNA with different modified PEIs. The numbers 
represent polymer/siRNA mixing ratios (w/w). 

 

Regarding the influence of the modification degree on siRNA binding, it was found that 

surface modifications with highest modification degree showed lowest siRNA complexation 

stability, whereas lower modification degrees showed no significant differences in 

complexation of siRNA in a range of about 0.5 - 0.7 (w/w) compared to each other. 

 

The analysis of polyplex solutions mixed in HBG at w/w ratios of 2 and 4 by photon 

correlation spectroscopy did not show the formation of nanoparticles in the usual 30 - 300nm 

range. The scattering intensity from polyplex solutions was close to that of HBG buffer, which 

indicates very small polyplex sizes and low aggregation behavior of the polymers. An 

increase of salt concentration to 150mmol NaCl led to continuous aggregation of the initial 

polyplexes and formation of nanoparticles (around 500nm after 30min) in the case of 

modified PEIs, whereas unmodified PEI 25 without siRNA did not show any aggregation 

tendency. 

This behavior of PEI/siRNA polyplexes is in accordance with the findings observed by Meyer 

et al where particle sizes of around 25nm were detected by fluorescent correlation 

spectroscopy247. 
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3.1.3 Influence of conjugates on cytotoxicity 

To investigate the influence of surface modification on cytotoxicity, the metabolic activity of 

cells was monitored after treatment with various concentrations of plain polymers as shown 

in Figure 7. 
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Figure 7: Cell viability of Neuro2A cells monitored by MTT assay as a function of polymer 
concentration. (A) PEI-EA series, (B) PEI-Prop series, (C) PEI-Ac series, (D) PEI-Suc series. 

 

The toxicity profiles of modified PEIs are shifted, as expected, to higher polymer 

concentrations in comparison to unmodified PEI 25, demonstrating a decrease in toxicity. 

Relatively slight modifications (EA and Ac) have shown only moderate improvement on cell 

viability, whereas the incorporation of negative charges in PEI 25 (Prop and Suc) resulted in 

far less toxic polymers. 

 

3.1.4 siRNA delivery efficiency: structure-activity relationship 

To evaluate the siRNA delivery efficiency of modified polymers, reporter gene silencing 

studies were carried out using Neuro2A/eGFPLuc, murine neuroblastoma and 

HUH7/eGFPLuc, human hepatocellular carcinoma cell lines, stably expressing the luciferase 

reporter gene. Polyplexes were prepared in HBG containing either LucsiRNA targeting the 

firefly luciferase or siCONTROL as non-targeting control siRNA to clearly distinguish 
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between specific gene silencing and unspecific toxic side effects due to the carrier system. 

Figure 8 shows the siRNA gene silencing capability of all modified conjugates 48h after initial 

siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) growth medium. 
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Figure 8: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA (equal 
to 380nM). (A) PEI-EA series, (B) PEI-Prop series, (C) PEI-Ac series, (D) PEI-Suc series. White 
bars indicate complexes containing luciferase siRNA, grey bars indicate complexes containing control 
siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

siRNA formulations with unmodified PEI 25 were not able to mediate knockdown of 

luciferase expression without unspecific toxicity. High toxicity of PEI 25 revealed at w/w ratios 

higher than 1/1 indicated by the decrease of luciferase expression for formulations with 

control siRNA. 

In contrast, siRNA delivery efficiency of most modified PEIs (except PEI-Prop-52% and PEI-

Suc-20%) was greatly enhanced as demonstrated by luciferase knockdown up to 80 - 90%, 

while luciferase levels for formulations with control siRNA remained unaffected. Interestingly, 

PEI-EA-52% showed significant knockdown at w/w ratios of 4/1 and 6/1, whereas the 

hydrolyzed analogue PEI-Prop-52% was inactive. Thus, low amounts of negatively charged 

carboxylic groups on the polymer backbone were able to improve the knockdown efficiency 

of the formulation, whereas high amounts of negative charges resulted in non-toxic but also 

non-effective polymers. 
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The best knockdown effect was achieved by PEI-Suc-10% demonstrating gene silencing 

effects of even > 90%, while being non-toxic at all studied mixing ratios. However, further 

increase of the negative charges led to inactivation of the polymer, as PEI-Suc-20% was 

completely ineffective for luciferase knockdown at all w/w ratios. 

Even at lower amounts of siRNA, a significant knockdown was achieved, if the polymer 

amount was kept constant as shown in Figure 9. 
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Figure 9: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 62.5ng - 1000ng 
siRNA (equal to 50nM - 760nM). The concentration of unmodified PEI 25 was kept constant at 
2.5µg/ml, the concentration of modified PEIs was kept constant at 20µg/ml. White bars indicate 
complexes containing luciferase siRNA, grey bars indicate complexes containing control siRNA. The 
numbers on the x-axis represent the siRNA concentration. 

 

When polymer concentrations were fixed at 20µg/ml, modified PEIs achieved 60 - 80% 

knockdown of luciferase expression even at low siRNA concentrations of just 50nM. The 

decrease of siRNA concentration led to a certain increase of toxicity caused by an increasing 

amount of uncomplexed polymer in the transfection medium. Only PEI-Suc-10% was able to 

show up to 80% knockdown without any sign of toxicity even at 50nM siRNA. 

Unmodified PEI 25 at a concentration of 2.5µg/ml was used as a control which remained 

completely ineffective at any siRNA concentration. Higher polymer concentrations showed 

unspecific knockdown effects due to unspecific toxicity of the carrier system. 

PEI-Suc-10%, as the most promising candidate, was additionally tested for siRNA delivery 

on HUH7/eGFPLuc cells as shown in Figure 10. 
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Figure 10: siRNA gene silencing efficiency of PEI-Suc-10% on HUH7/eGFPLuc cells using 
250ng or 500ng siRNA (equal to 190nM or 380nM). White bars indicate complexes containing 
luciferase siRNA, grey bars indicate complexes containing control siRNA. The numbers on the x-axis 
represent polymer/siRNA mixing ratios (w/w). 

 

Also on this cell line, PEI-Suc-10% showed greatly enhanced siRNA delivery efficiency 

demonstrated by excellent marker gene knockdown in a dose dependant manner. At lower 

siRNA concentrations (190nM) more polymer, i.e. higher w/w-ratios of the PEI-Suc-

10%/siRNA complex is needed for efficient gene silencing. Moreover, a slightly toxic effect of 

the polymer could be observed on this cells line at a high w/w ratio of 8/1. 

 

3.1.5 Study on mechanism of the highly effective siRNA carrier 

PEI-Suc-10% 

Modified PEI formulations were superior in efficiency and toxicity compared with unmodified 

PEI 25. This difference is caused either directly by a different interaction of the polymer with 

siRNA in the polyplex, or indirectly, by the presence of additional free polymer which is 

separately internalized into endocytic vesicles278. 

To analyze this issue, siRNA polyplexes were formed at lower (ineffective) w/w ratios with 

either PEI-Suc-10% or unmodified PEI 25. At 1h after siRNA delivery free PEI-Suc-10% was 

added separately to the cells. As shown in Figure 11A, the addition of free PEI-Suc-10% 

strongly increases the siRNA delivery efficiency of PEI-Suc-10%/siRNA complexes. 
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Figure 11: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). (A) PEI-Suc-10%/siRNA complexes, (B) PEI 25/siRNA complexes. At 1h after 
siRNA delivery 1µg free PEI-Suc-10% was added separately to the cells where specified. White bars 
indicate complexes containing luciferase siRNA, grey bars indicate complexes containing control 
siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

When using unmodified PEI 25/siRNA complexes similar observations were made as shown 

in Figure 11B. While the unmodified polyplexes were ineffective, subsequent addition of free 

PEI-Suc-10% resulted in effective knockdown of luciferase expression. 

Thus, a better endosomal escape by the increased amount of the less toxic modified polymer 

seems to be the main reason for the excellent knockdown effect for modified PEIs. 

Application of the same high amount of PEI 25 would be cytotoxic (see Figure 8). 

 

3.1.6 Polyplex stability against sodium chloride induced dissociation 

The influence of PEI modifications on stability of polyplexes was studied using photon 

correlation spectroscopy. Electrostatic interactions between polycations and nucleic acids, 

largely responsible for the stability of polyplexes, can be disturbed by salt resulting in 

dissociation of polyplexes long before they reach their target site of action. Hence, dynamic 

light scattering was used to monitor complex disassembly as a function of increasing NaCl 

concentration, as intensity of scattered light is dramatically decreased when complexes 

dissociate. The salt concentration required for the dissociation was attributed to the stability 

of polyplexes as shown in Figure 12. 
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Figure 12: NaCl concentrations required for dissociation of polyplexes. Bright bars indicate 
complexes containing DNA, dark bars indicate complexes containing siRNA prepared at a w/w ratio of 
1/1 and a final nucleic acid concentration of 20µg/ml. Data were generated by Dr. Arkadi Zintchenko 
(LMU). 

 

Polyplexes with DNA appeared to be more stable than polyplexes with siRNA as dissociation 

occurred at nearly two times higher salt concentrations. However, no simple correlation 

between the stability and knockdown efficiency of polyplexes generated with siRNA was 

found, since all series of PEI modifications showed efficient knockdown of luciferase 

expression.  

According to the stability data, EA and Prop series showed lower stability than unmodified 

PEI 25 polyplexes, whereas Ac and Suc series showed higher stability of polyplexes. For 

both, DNA and siRNA polyplexes, the same tendency was observed. 

The increased colloidal stability in case of Ac and Suc series might be due to additional 

stabilization of polyplexes via hydrogen bonding between the amides in the polymer structure 

and the nucleic acids279. 

As an exception, PEI-Suc-20%, which is relatively stable with DNA, was found to be entirely 

instable with siRNA at physiological salt concentrations and hence not able to induce efficient 

siRNA mediated knockdown (see Figure 8). 
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3.2 Biodegradable OEI conjugates for siRNA delivery 

 

Polyethylenimine is one of the most studied and commonly used polycations for nucleic acid 

delivery100. However, representing a non-degradable high molecular weight polymer, 

insufficient metabolization and elimination result in undesired short- and long-term toxicity in 

vivo due to a variety of unspecific interactions with the biological environment and 

unintentional accumulation in cells and excretion organs, such as liver. 

Accordingly, our lab and other investigators have generated novel biodegradable polymer 

conjugates based on low molecular weight oligoethylenimine (OEI). These conjugates are 

designed to decompose into low molecular weight fragments which are less toxic and can be 

more easily eliminated from the organism. Furthermore, crosslinkers may be applied which 

actively improve intracellular release of the nucleic acid from the carrier system, resulting in 

enhanced delivery properties of polyplexes. 

 

3.2.1 Polymers based on oligomerized OEIs (OEI-HD-1) 

 

3.2.1.1 Design of OEI-HD-1 

One approach to generate biodegradable high molecular weight conjugates is based on low 

molecular weight oligomers with low toxicity, which are crosslinked to form larger polycationic 

carriers by conjugation with biodegradable linkers119-120,123,127-129,132-133. Thus, a more efficient 

and potentially degradable oligoethylenimine-based carrier system for siRNA delivery was 

synthesized by Michael addition of OEI 800 oligomers with hexanediol-diacrylate at a molar 

ratio of 1/1128,274. Reaction was followed by complete N-acylation of all residual ester bonds 

resulting in beta-aminopropionamide linkages as shown in Figure 13. 
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Figure 13: Synthesis of OEI-HD-1. Oligoethylenimine was coupled with hexanediol-diacrylate at a 
molar ratio of 1/1 in anhydrous DMSO followed by N-acylation of resulting ester bonds. Conjugate 
synthesis was developed by Julia Klöckner as part of her PhD thesis (LMU, 2005) and optimized by 
Dr. Peter Tarcha (Abbott). 

 

3.2.1.2 siRNA complexation ability 

The ability of OEI-HD-1 to complex siRNA in HBG was confirmed by agarose gel shift assay 

(in salt containing TBE buffer) as shown in Figure 14. 
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Figure 14: Gel shift assay for polyplexes of siRNA with PEI 22, PEI 25 and OEI-HD-1. The 
numbers represent polymer/siRNA mixing ratios (w/w). 

 

OEI-HD-1 is able to completely complex siRNA at a w/w ratio of 0.5/1 or higher in analogous 

manner to linear PEI 22 and branched PEI 25.  

Furthermore, particle sizes of complexes prepared in HBG at w/w ratios of 1/1 and 2/1 were 

determined by photon correlation spectroscopy and resulted in multimodal distribution (10 - 

1000 nm)40, whereas low scattering intensity implies that predominantly smaller particles are 

present. 
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This behavior of OEI-HD-1/siRNA polyplexes is in accordance with the findings observed by 

Meyer et al where particle sizes of around 25nm were detected by fluorescent correlation 

spectroscopy247. 

 

3.2.1.3 siRNA delivery efficiency and toxicity of OEI-HD-1 

To evaluate the siRNA delivery efficiency of OEI-HD-1, reporter gene silencing studies were 

carried out using Neuro2A/eGFPLuc, murine neuroblastoma and HUH7/eGFPLuc, human 

hepatocellular carcinoma cell lines, stably expressing the luciferase reporter gene. 

Polyplexes were prepared in HBG containing either LucsiRNA targeting the firefly luciferase 

or siCONTROL as non-targeting control siRNA to clearly distinguish between specific gene 

silencing and unspecific toxic side effects due to the carrier system. Figure 15A shows the 

siRNA gene silencing capability of linear PEI 22, branched PEI 25 and OEI-HD-1 conjugates 

48h after initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) 

growth medium. 
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Figure 15: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells (A) and cell viability of 
Neuro2A cells monitored by MTT assay (B) using 250ng siRNA (equal to 190nM). White bars 
indicate complexes containing luciferase siRNA, grey bars indicate complexes containing control 
siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

siRNA formulations with linear PEI 22 displayed only minor reduction of luciferase 

expression, as the knockdown effect is mainly associated with toxic side effects of the carrier 

system. PEI 25 in contrast, did not mediate any significant reduction in luciferase activity. 

Only OEI-HD-1 showed a remarkable knockdown effect at a w/w ratio of 4/1 in the absence 

of unspecific toxicity resulting in reporter gene silencing > 80% compared to untreated control 

cells. 

Figure 15B shows the influence on metabolic activity of Neuro2A cells after polyplex 

treatment under same conditions, which is consistent with the unspecific reduction of 

luciferase expression (siCONTROL formulations) on Neuro2A/eGFPLuc cells. 
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OEI-HD-1 was additionally tested for siRNA delivery on HUH7/eGFPLuc cells as shown in 

Figure 16. 
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Figure 16: siRNA gene silencing efficiency of OEI-HD-1 on HUH7/eGFPLuc cells using 250ng or 
500ng siRNA (equal to 190nM or 380nM). White bars indicate complexes containing luciferase 
siRNA, grey bars indicate complexes containing control siRNA. The numbers on the x-axis represent 
polymer/siRNA mixing ratios (w/w). 

 

Also on this cell line, OEI-HD-1 showed pronounced knockdown of luciferase expression 

without unspecific toxicity. When using 500ng siRNA, the optimal OEI-HD-1/siRNA ratio, 

regarding maximal efficiency at minimal toxicity, was shifted to a lower w/w ratio of 2/1 while 

significant toxicity occurred at ratios greater 2/1. 

 

Moreover, in vitro reporter gene silencing of OEI-HD-1/siRNA complexes was also evaluated 

in 24-well plates (40000 cells per well) using both the luciferase reporter gene assay and RT-

qPCR analysis (Figure 17) in order to quantify luciferase knockdown directly on mRNA level. 
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Figure 17: siRNA gene silencing efficiency on Neuro2A/Luc cells (40000 cells per well) 
following treatment with OEI-HD-1/siRNA complexes at a w/w ratio of 2/1. (A) Luciferase 
expression measured by luciferase reporter gene assay using 500ng - 2000ng siRNA (equal to 
95nM - 380nM). (B) Relative quantification of mRNA levels measured by RT-qPCR analysis 
using 2000ng siRNA (equal to 380nM). Luc mRNA levels were normalized to expression levels of 
housekeeping genes ACTB and GAPDH. White bars indicate complexes containing luciferase siRNA, 
grey bars indicate complexes containing control siRNA. 
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Polyplexes, prepared at a w/w ratio of 2/1 using 2µg siRNA per 40000 cells showed 

strongest knockdown of luciferase expression in the luciferase reporter gene assay (Figure 

17A). According to the RT-qPCR analysis specific knockdown of luciferase mRNA levels by 

polyplex treatment was also detected against the housekeepers ACTB and GAPDH (Figure 

17B) indicating that knockdown of luciferase is due to the RNA interference mechanism and 

not due to any unspecific interactions. 

 

In order to evaluate the potential therapeutic effect of siRNA mediated gene silencing in 

tumor cells, the endogenous RAS related nuclear protein RAN was selected as a 

therapeutically relevant target280-281. As the small GTPase RAN is involved in the regulation 

of nuclear transport and spindle assembly282-283, downregulation with RANsiRNA is expected 

to reduce the survival of tumor cells due to apoptotic cell death. Figure 18A shows the 

metabolic activity of wild type Neuro2A cells in 24-well plates (40000 cell per well) after 

treatment with OEI-HD-1 formulations at a w/w ratio of 2/1 containing RAN specific siRNA 

and control siRNA, respectively. 
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Figure 18: siRNA gene silencing efficiency on Neuro2A cells (40000 cells per well) following 
treatment with OEI-HD-1/siRNA complexes at a w/w ratio of 2/1. (A) Cell viability measured by 
MTT assay using 500ng - 2000ng siRNA (equal to 95nM - 380nM). (B) Relative quantification of 
mRNA levels measured by RT-qPCR analysis using 2000ng siRNA (equal to 380nM). RAN 
mRNA levels were normalized to expression levels of housekeeping genes ACTB and GAPDH. White 
bars indicate complexes containing RANsiRNA, grey bars indicate complexes containing control 
siRNA. 

 

In this approach RANsiRNA treated cells showed strongly reduced cell viability in contrast to 

the cells treated with control siRNA formulations reflecting the potential therapeutic effect of 

RANsiRNA mediated knockdown in tumor cells. RT-qPCR analysis also revealed 

pronounced knockdown of RAN mRNA levels against the housekeepers ACTB and GAPDH 

within RANsiRNA treated cells, whereby no alterations in the mRNA levels for the control 

treated and non-treated cells could be detected (Figure 18B). 

 



3 RESULTS  43 

 

3.2.1.4 Transferrin receptor targeting of siRNA polyplexes 

In order to enhance the specifity of polyplexes towards tumor cells, the serum protein 

transferrin was incorporated as a targeting ligand into OEI-HD-1 conjugates. Besides cell 

specific uptake via the Tf-receptor, transferrin additionally acts as a surface shielding agent 

optimizing siRNA polyplexes for systemic application in vivo193-194. 

Transferrin conjugated OEI-HD-1 was synthesized by Wolfgang Rödl (LMU) as described in 

Tietze et al40. 

In preliminary studies optimized transferrin containing OEI-HD-1 formulations were figured 

out consisting of 10 weight percentage of OEI-HD-1-Tf and 90 weight percentage of OEI-HD-

1, whereby the amounts were calculated in relation to the weight of unmodified OEI-HD-140. 

Notably, these targeted OEI-HD-1-Tf (10%)/siRNA complexes displayed lower zeta 

potentials compared to non-targeted formulations and effective reporter gene silencing in 

Neuro2A/eGFPLuc cells, thus appearing more suitable for in vivo applications40. 

To demonstrate Tf functionality of the targeted OEI-HD-1-Tf (10%)/siRNA formulations, Tf-

receptor expressing Neuro2A/eGFPLuc cells were saturated with free Tf prior to siRNA 

delivery as shown in Figure 19. 
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Figure 19: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). Prior to siRNA delivery, free Tf in a final concentration of 1µg/µl was added to the 
cells where specified. White bars indicate complexes containing luciferase siRNA, grey bars indicate 
complexes containing control siRNA. Complexes were prepared at a w/w ratio of 2/1 and 1h after 
siRNA delivery medium change was performed. 

 

OEI-HD-1/siRNA formulations showed knockdown of luciferase expression independent of 

the presence of free Tf. In contrast, knockdown efficiency of targeted OEI-HD-1-Tf 

(10%)/siRNA formulations was reduced to 20% when free Tf was in the medium. These 

experiments indicate the functionality of Tf ligand as part of the polyplexes making these 

formulations very interesting for further in vivo investigations performed by Nicole Tietze as 

part of her PhD thesis (LMU, 2009). 
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3.2.1.5 Succinylated OEI-HD-1 for improved effective window 

Based on the encouraging findings on improved siRNA delivery with succinylated PEI 25, 

this promising modification strategy was extended to OEI-HD-1 taking advantage of its 

biodegradability and associated low long term toxicity. 

Succinylation of OEI-HD-1 was carried out analogously to PEI 25 as shown in Figure 20. 
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Figure 20: Succinylation of OEI-HD-1 resulting in reduced toxicity of the polymer. 

 

The structural composition of the resulting products was analyzed using 1H-NMR 

spectroscopy. The calculated modification degrees (expressed as a percentage of modified 

amines per OEI-HD-1 molecule) depending on the ratios in the feed are shown in Table 4. 

polymer
Suc/amine * 100%  

(feed)

Suc/amine * 100% 

(product)

Suc/OEI mol/mol 

(product)

OEI-HD-1-Suc-5% 5% 7.8% 1.4

OEI-HD-1-Suc-10% 10% 12.0% 2.3

polymer
Suc/amine * 100%  

(feed)

Suc/amine * 100% 

(product)

Suc/OEI mol/mol 

(product)

OEI-HD-1-Suc-5% 5% 7.8% 1.4

OEI-HD-1-Suc-10% 10% 12.0% 2.3
 

Table 4: Composition of succinylated OEI-HD-1 determined by 
1
H-NMR. The nomenclature of the 

polymers is derived from the reagent by which OEI-HD-1 was modified (Suc) followed by the 
modification degree of the amines. Conjugate synthesis was performed by Dr. Arkadi Zintchenko 
(LMU). 
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The modification degree was additionally expressed as a number of succinate molecules per 

OEI 800 unit (Suc/OEI mol/mol). It was previously found that only primary amines are able to 

react with succinic anhydride in salt containing buffer. Since OEI 800 has around 7 primary 

amines (of approximately 18), 4 of those are already modified during oligomerisation by 

hexanediol-diacrylate, the Suc/OEI ratio gets saturated around a value of 3. 

 

The ability of modified OEI-HD-1 to complex siRNA in HBG was confirmed by agarose gel 

shift assay (in salt containing TBE buffer) as shown in Figure 21. 
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Figure 21: Gel shift assay for polyplexes of siRNA with succinylated OEI-HD-1. The numbers 
represent polymer/siRNA mixing ratios (w/w). 

 

To evaluate the siRNA delivery efficiency of modified OEI-HD-1, reporter gene silencing 

studies were carried out using Neuro2A/eGFPLuc, murine neuroblastoma cell line, stably 

expressing the luciferase reporter gene. Polyplexes were prepared in HBG containing either 

LucsiRNA targeting the firefly luciferase or siCONTROL as non-targeting control siRNA to 

clearly distinguish between specific gene silencing and unspecific toxic side effects due to 

the carrier system. Figure 22 shows the siRNA gene silencing capability of modified OEI-HD-

1 conjugates 48h after initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing 

(10% FCS) growth medium. 
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Figure 22: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). White bars indicate complexes containing luciferase siRNA, grey bars indicate 
complexes containing control siRNA. The numbers on the x-axis represent polymer/siRNA mixing 
ratios (w/w). 
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Succinylation of OEI-HD-1 generally resulted in far less toxic formulations in comparison to 

unmodified precursor molecules. However the efficient knockdown of luciferase expression 

was only observed for OEI-HD-1-Suc-5% formulations, whereby the optimal ratio for gene 

silencing was slightly shifted to higher w/w ratios. Thus, as expected, succinylation of OEI-

HD-1 is able to increase the therapeutic window of the formulation. 
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3.2.2 Pseudodendritic oligoamines 

 

3.2.2.1 Design of OEI core based conjugates 

Pseudodendrimers represent a novel class of biodegradable branched polymers, which 

exhibit a better defined chemical structure compared to commonly synthesized 

polycations135. Furthermore, consisting of a pseudodendritic core, which results from a low 

molecular weight polycation, e.g. oligoethylenimine, functionalized with an excess of 

degradable dioldiacrylate linker, they can be further modified on the surface due to free linker 

ends with different charge bearing compounds, as shown in Figure 23. 
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Figure 23: Concept of pseudodendrimer synthesis. Pseudodendritic core formation, using 
oligoethylenimine coupled with different dioldiacrylates at a 20-fold molar excess of linker in anhydrous 
DMSO, was followed by surface modification, using different oligoamines at a 30-fold molar excess of 
oligoamine to core OEI in anhydrous DMSO. Conjugate synthesis and further characterization was 
performed by Verena Russ as part of her PhD thesis (LMU, 2008). 

 

Pseudodendrimers with different cores and different surface modifications were synthesized 

in a two-step procedure. First, pseudodendritic cores were generated by Michael addition of 

OEI 800 oligomers with different dioldiacrylates (increasing the core hydrophobicity: ED, BD, 

HD) at a 20-fold molar excess of linker135. Synthesis was carried out at 45°C for 24h, while 

the excess of dioldiacrylate linker prevented crosslinking of the polymer resulting in a 

branched structure with free linker ends. Second, OEI cores were further modified on the 

surface with different oligoamines (increasing the number of nitrogens on surface: E, Sp, S, 

O) at a 30-fold molar excess of oligoamine to core OEI135. Synthesis was carried out at 22°C 

for 24h. 

The nomenclature of pseudodendrimers is derived from the core moiety (ED, BD, HD) 

followed by the modification on the surface (E, Sp, S, O). 

 

3.2.2.2 siRNA delivery efficiency: structure-activity relationship 

To evaluate the siRNA delivery efficiency of pseudodendrimers, reporter gene silencing 

studies were carried out using Neuro2A/eGFPLuc, murine neuroblastoma and 

HUH7/eGFPLuc, human hepatocellular carcinoma cell lines, stably expressing the luciferase 

reporter gene. Polyplexes were prepared in HBG containing either LucsiRNA targeting the 

firefly luciferase or siCONTROL as non-targeting control siRNA to clearly distinguish 

between specific gene silencing and unspecific toxic side effects due to the carrier system. 

Figure 24 shows the siRNA gene silencing capability of all pseudodendrimers 48h after initial 

siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) growth medium. 
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Figure 24: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). (A) OEI-ED series, (B) OEI-BD series, (C) OEI-HD series. White bars indicate 
complexes containing luciferase siRNA, grey bars indicate complexes containing control siRNA. The 
numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

Screening studies revealed OEI-HD-Sp and OEI-HD-S as the only effective conjugates for 

siRNA delivery. 

Regarding the effects of the different pseudodendritic core characteristics on siRNA delivery, 

increased toxicity was detected for siRNA complexes formed with OEI-HD core conjugates 

over the OEI-BD and OEI-ED core conjugates which is accompanied with increasing core 

hydrophobicity (ED < BD < HD). 

Referred to the influences of the various surface modifications on siRNA delivery, it was 

found that only Sp and S modifications within the OEI-HD core conjugates were able to 

mediate efficient knockdown of luciferase expression without unspecific toxicity. 

 

OEI-HD-Sp and OEI-HD-S were additionally tested for siRNA delivery on HUH7/eGFPLuc 

cells as shown in Figure 25. 
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Figure 25: siRNA gene silencing efficiency on HUH7/eGFPLuc cells using 250ng or 500ng 
siRNA (equal to 190nM or 380nM). (A) OEI-HD-Sp/siRNA complexes, (B) OEI-HD-S/siRNA 
complexes. White bars indicate complexes containing luciferase siRNA, grey bars indicate complexes 
containing control siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

Both conjugates showed again efficient knockdown of luciferase expression in the absence 

of unspecific toxicity. 

Apparently, efficient reporter gene silencing seems to be dependent on an optimized balance 

of core characteristics and the surface amines. The number of nitrogens upon the 

pseudodendritic OEI-HD core seem to be optimized in case of Sp (3 N per unit) and S (4 N 

per unit) exhibiting the best gene silencing effect. 
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3.2.3 Hydrophobically modified OEIs 

 

3.2.3.1 Design of modified OEI conjugates 

Polymeric carrier systems are often based on larger macromolecules, contingently resulting 

in accumulation of toxicity and narrow therapeutic windows, as low molecular weight 

polycations are known to be quite ineffective, but also non-toxic. Thus, another approach 

was evaluated: instead of covalent crosslinking into high molecular structures, the low 

molecular weight oligoamine OEI was hydrophobically modified in order to ensure short half-

life times in the organism, which is favourable for elimination275. Moreover, hydrophobic 

interactions are supposed to stabilize polyplexes during storage and administration and 

especially to enhance cell membrane interactions promoting quick release out of the 

endosomes. Thus, a biodegradable oligoethylenimine-based carrier system for siRNA 

delivery was synthesized by Michael addition of OEI 800 oligomers with different alkyl-

acrylates as shown in Figure 26. 
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Figure 26: Structure of hydrophobically modified OEIs mediating steric stabilization of 
polyplexes and causing cell membrane destabilization. 
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The structural composition of the resulting products was analyzed using 1H-NMR 

spectroscopy. The calculated modification degrees (expressed as a number of modifications 

per OEI 800 molecule) depending on the ratios in the feed are shown in Table 5. 

polymer
reagent/OEI mol/mol 

(feed)

reagent/OEI mol/mol 

(product)

OEI-EA-5 5 4.75

OEI-EA-10 10 9.03

OEI-BA-5 5 4.81

OEI-BA-10 10 9.44

OEI-HA-5 5 5.34

OEI-HA-10 10 10.5

OEI-LA-2.5 2.5 2.37

OEI-LA-5 5 5.4

polymer
reagent/OEI mol/mol 

(feed)

reagent/OEI mol/mol 

(product)

OEI-EA-5 5 4.75

OEI-EA-10 10 9.03

OEI-BA-5 5 4.81

OEI-BA-10 10 9.44

OEI-HA-5 5 5.34

OEI-HA-10 10 10.5

OEI-LA-2.5 2.5 2.37

OEI-LA-5 5 5.4
 

Table 5: Composition of modified OEIs determined by 
1
H-NMR. The nomenclature of the polymers 

is derived from the reagent by which OEI was modified (EA, BA, HA, LA) followed by the modification 
degree of the amines. Conjugate synthesis was performed by Dr. Arkadi Zintchenko (LMU). 

 

The modification of OEI 800 with alkyl-acrylates via Michael addition was performed at 40°C 

and a relatively short incubation time of 4h, as higher temperature or longer incubation time 

are known to cause aminolysis of ester bonds resulting in crosslinking of the polymer274. 

According to the FTIR spectra no amide bond formation and, consequently, no crosslinking 

was observed for all polymer samples. No double bond peak was found in the 1H-NMR 

spectra indicating the complete absence of unreacted acrylate in the final products. 

 

Further advantage of such structures (in comparison to modification with alkyl-acrylamides) 

is relatively rapid enzymatic degradation of ester bonds in the body and renal clearance of 

metabolites. Hence, degradation studies for hydrophobically modified conjugates were 

carried out at physiological pH of 7 at 37°C. The extent of degradation was determined by 
1H-NMR spectroscopy as shown in Figure 27. 
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Figure 27: 
1
H-NMR spectrum of the  degradation product of OEI-HA-10 after 3 days incubation 

at physiological pH of 7 at 37°C. 

 

Even in pH neutral buffer (without enzymes) after an incubation period of 3 days, OEI-HA-10 

revealed up to 30% degradation of ester bonds indicating low long-term toxicity of the 

conjugate. 

 

3.2.3.2 siRNA complexation ability 

The influence of surface modification on siRNA binding stability was investigated by agarose 

gel shift assay (in salt containing TBE buffer) as shown in Figure 28. 
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Figure 28: Gel shift assay for polyplexes of siRNA with different modified OEIs. The numbers 
represent polymer/siRNA mixing ratios (w/w). 
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While EtBr exclusion assay demonstrated, that unmodified OEI 800 and practically all 

modified oligoamines were effective in binding of siRNA at low ionic strength buffer HBG 

(data not shown), agarose gel shift assay illustrates differences in binding stability of the 

oligoamines to siRNA. 

Unmodified OEI 800 showed relatively poor electrophoretic retention of siRNA in salt 

containing buffer and also the incorporation of short alkyl-chains (EA series) was not able to 

improve this property, presumably due to steric barriers between the charges of siRNA and 

oligoamine introduced by the bulky ethyl-acrylate groups. Polyplexes formed with OEI-BA-5 

showed much higher complexation stability, whereas higher modification degree resulted in 

loss of binding ability. A similar trend could also be observed for modifications with higher 

hydrophobicity (HA series). Nevertheless, due to stronger hydrophobic interactions this effect 

is generally suppressed for longer alkyl-chains (LA series) featuring strong binding affinity to 

siRNA. 

Moreover, co-formulations of OEI-HA-10 with OEI-LA-5 further increased the stabilization of 

polyplexes, whereas the incorporation of unmodified OEI 800 to the polyplexes resulted in 

decreased stability against dissociation as shown in Figure 29. 
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Figure 29: Gel shift assay for polyplexes of siRNA with co-formulation mixtures of OEI-HA-
10/OEI 800 (upper panel) and OEI-HA-10/OEI-LA-5 (bottom panel). The numbers represent 
polymer/siRNA mixing ratios (w/w). 

 

3.2.3.3 Colloidal stability of polyplex particles 

Particle sizes of polyplexes prepared in HBG were determined using by photon correlation 

spectroscopy. Generally, polyplexes with OEI 800 were relatively small in size immediately 

after mixing in HBG. However, due to extremely low colloidal stability, rapid aggregation 

occurred within several minutes and, as a result, no particles were found 30min after 
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complexation, probably due to fast sedimentation of aggregates. The same behaviour was 

found in case of EA and BA modifications as shown in Table 6. 

polymer w/w
mean diameter 

[nm]

zeta-potential 

[mV]

OEI-EA-5
2/1 n.a. 7.2 ± 0.7

4/1 n.a. 10.6 ± 1.0

OEI-EA-10
2/1 n.a. -4.4 ± 0.6

4/1 n.a. -1.0 ± 0.3

OEI-BA-5
2/1 902 ± 15 16.5 ± 0.2

4/1 n.a. 7.9 ± 1.7

OEI-BA-10
2/1 n.a. -30.6 ± 3.7

4/1 n.a. -29.1 ± 0.8

OEI-HA-5
2/1 580 ± 10 12.9 ± 0.2

4/1 208 ± 2 22.9 ± 0.4

OEI-HA-10
2/1 171 ± 2 21.0 ± 0.3

4/1 194 ± 3 25.0 ± 1.8

OEI-LA-2,5
2/1 238 ± 4 8.4 ± 0.8

4/1 136 ± 4 29.2 ± 1.0

OEI-LA-5
2/1 137 ± 2 40.9 ± 1.2

4/1 119 ± 2 42.3 ± 1.6

polymer w/w
mean diameter 

[nm]

zeta-potential 

[mV]

OEI-EA-5
2/1 n.a. 7.2 ± 0.7

4/1 n.a. 10.6 ± 1.0

OEI-EA-10
2/1 n.a. -4.4 ± 0.6

4/1 n.a. -1.0 ± 0.3

OEI-BA-5
2/1 902 ± 15 16.5 ± 0.2

4/1 n.a. 7.9 ± 1.7

OEI-BA-10
2/1 n.a. -30.6 ± 3.7

4/1 n.a. -29.1 ± 0.8

OEI-HA-5
2/1 580 ± 10 12.9 ± 0.2

4/1 208 ± 2 22.9 ± 0.4

OEI-HA-10
2/1 171 ± 2 21.0 ± 0.3

4/1 194 ± 3 25.0 ± 1.8

OEI-LA-2,5
2/1 238 ± 4 8.4 ± 0.8

4/1 136 ± 4 29.2 ± 1.0

OEI-LA-5
2/1 137 ± 2 40.9 ± 1.2

4/1 119 ± 2 42.3 ± 1.6  
               n.a. not available due to low count rate 

Table 6: Particle size and zeta-potential of polyplex particles for siRNA formulations with 
modified OEIs. Hydrodynamic diameters of complexes were determined in HBG by dynamic light 
scattering. 

 

Only in case of HA and LA modifications, polyplexes were small in size and showed good 

colloidal stability even 4h after complexation as shown in Table 7. Apparently hydrophobic 

interactions between oligoamines with long hydrophobic alkyl-chains (HA and LA) could 

provide additional binding of excess oligoamine to the surface of the particle and, thus, 

provide an improved stability of the polyplexes. 

polymer w/w
mean diameter [nm] zeta-potential [mV]

t = 0 t = 2h t = 4h t = 24h t = 0 t = 2h t = 4h t = 24h

OEI-HA-10
2/1 223 ± 4 292 ± 14 272 ± 9 638 ± 17 18.0 ± 0.6 18.1 ± 0.9 17.9 ± 0.5 12.3 ± 0.2

4/1 119 ± 1 116 ± 1 152 ± 1 229 ± 7 24.2 ± 1.2 26.4 ± 3.4 28.0 ± 0.4 20.5 ± 1.1

OEI-LA-5  
2/1 122 ± 1 243 ± 4 168 ± 3 139 ± 2 36.7 ± 1.0 38.5 ± 2.4 42.1 ± 1.2 26.4 ± 1.9

4/1 125 ± 4 197 ± 2 129 ± 1 148 ± 1 40.8 ± 0.8 40.6 ± 0.8 35.9 ± 1.2 31.0 ± 0.8

OEI-HA-10/OEI-LA-5      

1/0,5

2/1 162 ± 2 215 ± 3 157 ± 2 183 ± 3 33.6 ± 1.3 29.3 ± 0.5 28.4 ± 2.5 25.6 ± 1.0

4/1 137 ± 1 125 ± 1 108 ± 3 174 ± 2 34.6 ± 1.5 30.8 ± 3.0 31.4 ± 1.2 33.2 ± 1.5

OEI-HA-10/OEI-LA-5  

1/1

2/1 154 ± 5 132 ± 2 185 ± 4 145 ± 2 30.6 ± 1.2 26.2 ± 1.6 34.4 ± 0.6 28.9 ± 0.9

4/1 128 ± 3 133 ± 1 176 ± 3 139 ± 1 41.1 ± 0.2 39.1 ± 1.9 35.8 ± 2.0 34.0 ± 3.7

OEI-HA-10/OEI-LA-5      

1/2

2/1 131 ± 1 129 ± 1 137 ± 1 151 ± 1 38.5 ± 0.6 34.8 ± 2.2 38.0 ± 3.3 37.3 ± 1.4

4/1 145 ± 4 134 ± 1 194 ± 3 145 ± 4 40.6 ± 2.1 36.5 ± 1.6 39.6 ± 0.6 39.1 ± 1.6

polymer w/w
mean diameter [nm] zeta-potential [mV]

t = 0 t = 2h t = 4h t = 24h t = 0 t = 2h t = 4h t = 24h

OEI-HA-10
2/1 223 ± 4 292 ± 14 272 ± 9 638 ± 17 18.0 ± 0.6 18.1 ± 0.9 17.9 ± 0.5 12.3 ± 0.2

4/1 119 ± 1 116 ± 1 152 ± 1 229 ± 7 24.2 ± 1.2 26.4 ± 3.4 28.0 ± 0.4 20.5 ± 1.1

OEI-LA-5  
2/1 122 ± 1 243 ± 4 168 ± 3 139 ± 2 36.7 ± 1.0 38.5 ± 2.4 42.1 ± 1.2 26.4 ± 1.9

4/1 125 ± 4 197 ± 2 129 ± 1 148 ± 1 40.8 ± 0.8 40.6 ± 0.8 35.9 ± 1.2 31.0 ± 0.8

OEI-HA-10/OEI-LA-5      

1/0,5

2/1 162 ± 2 215 ± 3 157 ± 2 183 ± 3 33.6 ± 1.3 29.3 ± 0.5 28.4 ± 2.5 25.6 ± 1.0

4/1 137 ± 1 125 ± 1 108 ± 3 174 ± 2 34.6 ± 1.5 30.8 ± 3.0 31.4 ± 1.2 33.2 ± 1.5

OEI-HA-10/OEI-LA-5  

1/1

2/1 154 ± 5 132 ± 2 185 ± 4 145 ± 2 30.6 ± 1.2 26.2 ± 1.6 34.4 ± 0.6 28.9 ± 0.9

4/1 128 ± 3 133 ± 1 176 ± 3 139 ± 1 41.1 ± 0.2 39.1 ± 1.9 35.8 ± 2.0 34.0 ± 3.7

OEI-HA-10/OEI-LA-5      

1/2

2/1 131 ± 1 129 ± 1 137 ± 1 151 ± 1 38.5 ± 0.6 34.8 ± 2.2 38.0 ± 3.3 37.3 ± 1.4

4/1 145 ± 4 134 ± 1 194 ± 3 145 ± 4 40.6 ± 2.1 36.5 ± 1.6 39.6 ± 0.6 39.1 ± 1.6  

Table 7: Colloidal stability of polyplex particles for siRNA formulations with OEI-HA-10, OEI-LA-
5 and OEI-HA-10/OEI-LA-5. Hydrodynamic diameters of complexes were determined in HBG by 
dynamic light scattering. 
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Co-formulation of OEI-HA-10 with OEI-LA-5 shows additional advantage of colloidal 

stabilization, which could be potentially important regarding stability in the blood stream in 

view of in vivo applications. 

 

3.2.3.4 Influence of conjugates on cytotoxicity 

To investigate the influence of surface modification on cytotoxicity, the metabolic activity of 

cells was monitored after treatment with various concentrations of plain polymers as shown 

in Figure 30. 
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Figure 30: Cell viability of Neuro2A/eGFPLuc cells monitored by MTT assay as a function of 
polymer concentration. (A) OEIs with lower modification degree, (B) OEIs with higher 
modification degree. 

 

Cytotoxicity studies generally revealed that increasing hydrophobicity of oligoamines results 

in decreased metabolic activity. However, the LA series, representing the highest 

hydrophobic modification, did not exhibit such a decreased metabolic activity compared to 

the HA series. Notably, the toxicity of hexyl-acrylate modified OEI is relatively high in 

comparison to all other conjugates, regarding both lower and higher modification degrees. 

Increased hydrophobicity of the HA series obviously results in strong interactions with lipid 

membranes, which may promote transfer across cellular barriers, e.g. by lysis of endosomes, 

but also lead to high toxicity during in vivo applications and, thus, may represent a problem. 
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Nevertheless, the acrylate ester bonds enable fast degradation of conjugates resulting in far 

less toxic components as shown in Figure 31. 
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Figure 31: Cell viability of Neuro2A/eGFPLuc cells monitored by MTT assay before and after 
degradation of modified oligoamines as a function of polymer concentration. Grey bars indicate 
oligoamines without preincubation, black bars indicate oligoamines after preincubation at 37°C for 7 
days in HBG. 

 

The incubation of OEI-HA-10 and OEI-LA-5 at 37°C for 7 days in HBG led to a remarkable 

decrease of toxicity, presumably due to degradation of the ester bonds, which was further 

confirmed by 1H-NMR spectroscopy (see Figure 27). Thus, long-term toxicity does not seem 

to be problematic. 

 

3.2.3.5 siRNA delivery efficiency: structure-activity relationship 

To evaluate the siRNA delivery efficiency of modified polymers, reporter gene silencing 

studies were carried out using Neuro2A/eGFPLuc, murine neuroblastoma, HUH7/eGFPLuc, 

human hepatocellular carcinoma and H1299/Luc, human lung carcinoma cell lines, stably 

expressing the luciferase reporter gene. Polyplexes were prepared in HBG containing either 

LucsiRNA targeting the firefly luciferase or siCONTROL as non-targeting control siRNA to 

clearly distinguish between specific gene silencing and unspecific toxic side effects due to 

the carrier system. Figure 32 shows the siRNA gene silencing capability of all modified 

conjugates 48h after initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing 

(10% FCS) growth medium. 



3 RESULTS  58 

 

OEI-BA-5 OEI-BA-10

re
la

ti
v

e
 l
u

c
if

e
ra

s
e

e
x

p
re

s
s

io
n 120%

100%

80%

60%

40%

20%

0%

LucsiRNA siCONTROLLucsiRNA siCONTROLB

OEI-LA-5

re
la

ti
v

e
 l

u
c
if

e
ra

s
e

e
x
p

re
s
s
io

n 120%

100%

80%

60%

40%

20%

0%

LucsiRNA siCONTROLLucsiRNA siCONTROLD

OEI-EA-5 OEI-EA-10

re
la

ti
v

e
 l

u
c

if
e
ra

s
e

e
x

p
re

s
s

io
n 120%

100%

80%

60%

40%

20%

0%

LucsiRNA siCONTROLLucsiRNA siCONTROLA

OEI-HA-5 OEI-HA-10

re
la

ti
v

e
 l
u

c
if

e
ra

s
e

e
x

p
re

s
s

io
n 120%

100%

80%

60%

40%

20%

0%

LucsiRNA siCONTROLLucsiRNA siCONTROLC

OEI-LA-2.5

OEI 800 OEI 800

OEI 800 OEI 800

21 4 80.521 4 80.521 4 80.5 21 4 80.5 21 4 80.521 4 80.5 21 4 80.521 4 80.5 21 4 80.5

21 4 80.521 4 80.521 4 80.5 21 4 80.5 21 4 80.521 4 80.5 21 4 80.521 4 80.5 21 4 80.521 4 80.521 4 80.521 4 80.5 21 4 80.5 21 4 80.521 4 80.5 21 4 80.521 4 80.5 21 4 80.5

21 4 80.521 4 80.521 4 80.5 21 4 80.5 21 4 80.521 4 80.5 21 4 80.521 4 80.5 21 4 80.5

 

Figure 32: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). (A) OEI-EA series, (B) OEI-BA series, (C) OEI-HA series, (D) OEI-LA series. 
White bars indicate complexes containing luciferase siRNA, grey bars indicate complexes containing 
control siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

Only OEI-HA-10 formulations were found to be promising siRNA carriers effective in 

knockdown of luciferase expression without unspecific toxicity. Even formulations with a 

lower degree of modification (OEI-HA-5) were completely ineffective for siRNA delivery. 

Additionally, neither formulations with shorter hydrophobic chains (EA and BA series) nor 

formulations with longer hydrophobic chains (LA series) showed any reduction of luciferase 

activity. Thus, OEI-HA-10 seems to have an optimal structure with enhanced endosomolytic 

properties, arising from 10 hexyl-acrylate residues per OEI molecule, which was found to 

have an optimal knockdown efficiency at a w/w ratio of 2/1 as shown in Figure 33. 
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Figure 33: siRNA gene silencing efficiency of OEI-HA-10 on Neuro2A/eGFPLuc cells using 
500ng siRNA (equal to 380nM). (A) 10% serum present in medium, (B) 50% serum present in 
medium. White bars indicate complexes containing luciferase siRNA, grey bars indicate complexes 
containing control siRNA. The numbers on the x-axis represent polymer/siRNA mixing ratios (w/w). 

 

Interestingly, further increase of the OEI-HA-10 content in the formulation led to certain 

decrease of knockdown efficiency, while unspecific toxicity of the formulation remained 

unaffected (Figure 33A). The formulations were also able to cause significant knockdown of 

luciferase expression even in 50% serum containing medium, however only at w/w ratios of 

2/1 – 2.5/1 (Figure 33B). 

Additionally, OEI-HA-10 was tested for siRNA delivery on HUH7/eGFPLuc and H1299/Luc 

cells as shown in Figure 34. 
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Figure 34: siRNA gene silencing efficiency of OEI-HA-10 on HUH7/eGFPLuc cells (A) and 
H1299/Luc cells (B) using 500ng siRNA (equal to 380nM). In case of H1299/Luc cells medium 
change was performed 24h after siRNA delivery. White bars indicate complexes containing luciferase 
siRNA, grey bars indicate complexes containing control siRNA. The numbers on the x-axis represent 
polymer/siRNA mixing ratios (w/w). 

 

A similar knockdown efficiency profile for OEI-HA-10 could be observed again on both cell 

lines. Such unusual bell-shaped behavior cannot be explained by formation of polyplex 

aggregates, which (in the case of standard PEI 22) may mediate more efficient delivery of 

nucleics acid in comparison to small particles284. OEI-HA-10 polyplex particles, however, 

revealed small particle sizes at all ratios under investigation (Table 6). 
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3.2.3.6 Lytic activity of conjugates 

Similar to several endosomolytic peptides, enhancement of hydrophobicity in the oligoamine 

structure could increase the ability of conjugates to lyse lipid membranes and, thus, facilitate 

efficient delivery of siRNA into the cytoplasm. To evaluate the membrane destabilizing 

activity of hydrophobic modified oligoamines, lytic activites of the conjugates were 

investigated in an erythrocyte leakage assay as shown in Figure 35. 
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Figure 35: Haemolytic activity of plain conjugates. (A) OEIs with lower modification degree, (B) 
OEIs with higher modification degree. Erythrocytes at a concentration of 4% (V/V) (~ approximately 
108 erythrocytes per ml) were incubated with increasing concentrations of conjugates in HBG 
containing 10% FCS at 37°C for 45min. Haemolysis was determined by UV measurement at 405nm 
relative to Triton X (100% lysis). 

 

In order to adjust the experimental conditions to in vivo situation, haemolytic activity of plain 

conjugates was studied in the presence of 10% serum. 

Modifications with acrylates of lowest hydrophobicity (EA series) and highest hydrophobicity 

(LA series) resulted in very low haemolytic activity. In contrast, in case of BA and HA 

modifications, significant lytic properties of the conjugates were observed discovering similar 

toxicity profiles as found in the cytotoxicity and gene silencing studies.  

Hydrophobic OEI-HA-10 exposed highest haemolytic activity (> 90% of hemoglobin release) 

exhibiting distinct membrane interactions and finally cell lysis. Thus, the addition of hexyl 

chains into OEI strongly increased the membrane destabilization activity of OEI which seems 
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to be responsible for the high toxicity of the conjugate but also for effective intracellular 

transport across cellular membranes, presumably by promoting escape from the endosomes. 

 

3.2.3.7 Co-formulation with helper polymers and lipids for improved siRNA delivery 

Incorporation of active transfection agents into an appropriative formulation could often 

improve physicochemical parameters (e.g. particle size, stability) and biological parameters 

(e.g. efficiency, biocompatibility) of the final formulation. Helper polymers285 or helper 

lipids286-290 could be utilized for this purpose. 

Due to the strong lytic activity and cytotoxicity of OEI-HA-10 formulations, co-formulations 

with different hydrophilic and hydrophobic agents (such as OEI 800, OEI-LA-5, DOPE, 

DOPC and DPPC) were investigated in order to improve the biocompatibility and efficiency of 

the formulations in vitro.  

 

A promising optimization procedure was a dilution of OEI-HA-10 in the formulation by the far 

less toxic but ineffective oligoamines OEI 800 and OEI-LA-5, respectively, as shown in 

Figure 36. 
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Figure 36: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). (A) OEI-HA-10/OEI 800 series, (B) OEI-HA-10/OEI-LA-5 series. White bars 
indicate complexes containing luciferase siRNA, grey bars indicate complexes containing control 
siRNA. The numbers on the x-axis represent total polymer/siRNA mixing ratios (w/w). 

 

Substitution of a certain amount of OEI-HA-10 by relatively non-toxic low molecular weight 

OEI 800 or OEI-LA-5 oligoamines in the formulation led to a remarkable decrease of toxicity 

associated with a gradual decrease of the OEI-HA-10 content. 

Additionally, the efficiency profile was further improved, as for example OEI-HA-10/OEI 1/2 

(w/w) formulations with siRNA induced efficient reporter gene silencing at lower mixing ratios 

in comparison to pure OEI-HA-10 revealing that efficiency was less dependent on the mixing 

ratio. The combination with OEI-LA-5 shows further advantage of colloidal stabilization, 
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which could be potentially important in view of in vivo applications, while the incorporation of 

OEI 800 to the formulation decreases colloidal stability (see Figure 29, Table 7). 

Importantly, unmodified OEI 800 and OEI-LA-5 formulations alone were not active in siRNA 

delivery at all studied mixing ratios and serve only as helper reagents in the formulation. 

 

Another approach was co-formulation of OEI-HA-10 with different helper lipids, such as 

DOPE, DOPC and DPPC, as shown in Figure 37. 
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Figure 37: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells using 500ng siRNA 
(equal to 380nM). (A) OEI-HA-10/DOPE series, (B) OEI-HA-10/DOPC and OEI-HA-10/DPPC 
series. White bars indicate complexes containing luciferase siRNA, grey bars indicate complexes 
containing control siRNA. The numbers on the x-axis represent total polymer/siRNA mixing ratios 
(w/w). 

 

The hydrophobic structure of OEI-HA-10 allows interaction with the hydrophobic domains of 

the helper lipids which results in decreased toxicity of the formulations.  

Combinations of OEI-HA-10 with DOPE resulted in only slightly less toxic formulations 

compared to OEI-HA-10 alone, however the efficiency profile was greatly improved (Figure 

37A). Particularly, formulations with lower amounts of DOPE showed a similar efficiency 

profile as pure OEI-HA-10, while formulations with higher amounts of DOPE resulted in 

efficient knockdown effect over a broad range of w/w ratios. The endosomolytic character of 

the DOPE lipid seems to be the reason for improved efficiency of OEI-HA-10/DOPE 

formulations, as it is known to destabilize the bilayer structure after incorporation into lipid 

membranes due to its inverse head-tail symmetry. 

 

Formulations with DPPC and DOPC could also decrease the toxicity but also dramatically 

decreased the efficiency of the formulations (Figure 37B). Moreover, substitution of a certain 

amount of DPPC or DOPC with DOPE was also not able to improve the gene silencing 

efficiency (data not shown). 
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3.3 Bioresponsive endosomolytic conjugates for siRNA 

delivery 

 

Poor endosomal release after cellular internalization is one of the major barriers for efficient 

nucleic acid delivery. Ways to ensure effective release of the payload from the endosome 

into the cytoplasm are for example: making use of the “proton sponge” effect of some 

polycations; and/or incorporation of lytic lipid moieties or membrane active peptides into the 

polymer. Thus, several endosomolytic peptides, which were derived from viruses224,232, 

toxins233,269,291 or synthetically designed235 had been applied for such purpose225,237,240,265,292. 

In particular, the membrane active peptide melittin, a 26 amino acid peptide, was 

incorporated into polycations in order to promote quick escape from the endosome after 

cellular uptake avoiding subsequent degradation in the endolysosomal compartment. 

 

3.3.1 DMMAn-Mel modified conjugates for siRNA delivery 

 

3.3.1.1 Design of endosomolytic conjugates 

In an approach to generate siRNA carrier systems with enhanced endosomal escape 

properties, Martin Meyer (PhD thesis 2009, LMU) functionalized polycations such as PLL and 

PEI 25 with PEG and a pH-responsive endosomolytic melittin peptide. 

As pure melittin displays a strong lytic activity, which is quite unfavorable in the extracellular 

environment resulting in toxic side effects, the amines of melittin were modified with pH labile 

dimethylmaleic anhydride, which minimizes the lytic activity at extracellular neutral pH. After 

endosomal acidification the DMMAn protecting groups are cleaved and lytic activity is 

restored265-266. Thus, endosomal acidification is exploited for a triggered activation of the lytic 

activity in the intracellular compartment. The design of the pH-resonsive melittin conjugate is 

shown schematically in Figure 38. 
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Figure 38: Design of the pH-responsive melittin conjugate. Endosomal acidification triggers fast 
cleavage of the dimethylmaleic anhydride protecting groups and restores lytic activity of melittin. 
Conjugate synthesis and further characterization was performed by Martin Meyer as part of his PhD 
thesis (LMU, 2009). 

 

In order to synthesize conjugates on the basis of a reversibly acylated melittin with the 

favored bioresponsive lytic activity, DMMAn-Mel was covalently attached via the N-terminal 

cysteine residue to the PDP-modified polycations PLL, PEI 25 and OEI-HD-1 by disulfide 

bond formation. Melittin was linked via its N-terminus which also reduces the cytotoxic 

potential at neutral pH328. 

Poly-L-lysine (MW 32kDa), one of the first polycations used for polyplex formation, 

represents a biodegradable polycation due to its peptidic nature. Furthermore, a high 

molecular weight PLL guarantees an overall positive charge of the conjugate which is 

necessary for cell interaction and internalization, however subsequent escape from the 

endosomes into the cytoplasm presents a major bottleneck, which results in low nucleic acid 

delivery efficiency. In contrast, branched PEI (MW 25kDa), currently one of the most 

frequently used polycations, may promote its escape to the cytosol from endosomes via the 

“proton sponge” effect, however it still remains ineffective tor siRNA delivery. 

Since PEI 25 represents a non-degradable high molecular weight polyethylenimine, the 

biodegradable oligoethylenimine derived polymer OEI-HD-1 was additionally chosen as 

backbone for modification with DMMAn-Mel. 
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Hydrophilic polyethylene glycol (MW 5kDa) was grafted onto the polycations prior to peptide 

attachment in order to prevent aggregation after mixing with nucleic acids and to enhance 

solubility and stability of nucleic acid complex formation. The final conjugates had a molar 

ratio of approximately 1/1/8 (PEG/polycation/DMMAn-Mel). 

 

3.3.1.2 siRNA binding ability 

The capability of polymers to condense siRNA, in order to form complexes suitable for cell 

entry, was studied using an EtBr exclusion assay. The reduction of relative fluorescence was 

measured as a function of increasing polymer/siRNA mixing ratios as shown in Figure 39. 
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Figure 39: siRNA binding affinity of conjugates determined by EtBr exclusion assay. (A) PLL 
based conjugates, (B) PEI based conjugates, (C) OEI-HD-1 based conjugates. The numbers on 
the x-axis represent polymer/siRNA mixing ratios (N/P or w/w). Data for PLL and PEI based 
conjugates were generated by Martin Meyer as part of his PhD thesis (LMU 2009). 
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Investigating the influence of peptide modification on siRNA binding, all polymers were found 

to be effective in binding of siRNA at low ionic strength buffer HBG. The effect of PEGylation 

on siRNA binding ability was negligible, however conjugates modified with negatively 

charged DMMAn-Mel peptides required slightly higher amounts of polycation to achieve 

complete binding of siRNA compared to their unmodified counterparts. 

 

Moreover, siRNA polyplexes prepared at w/w ratios of 1/1 and 2/1 in HBG showed small 

particle sizes of about 15 - 40nm in case of all conjugates indicating almost monomolecular 

structures, measured by fluorescence correlation spectroscopy using Cy5 labeled siRNA247. 

 

3.3.1.3 siRNA delivery efficiency and toxicity of conjugates 

To evaluate the influence of endosomolytic peptides on siRNA delivery efficiency, reporter 

gene silencing studies were carried out using Neuro2A/eGFPLuc, murine neuroblastoma and 

HUH7/eGFPLuc, human hepatocellular carcinoma cell lines, stably expressing the luciferase 

reporter gene. Polyplexes were prepared in HBG containing either LucsiRNA targeting the 

firefly luciferase or siCONTROL as non-targeting control siRNA to clearly distinguish 

between specific gene silencing and unspecific toxic side effects due to the carrier system.  

 

3.3.1.3.1 PEG-PLL conjugates 

Figure 40A shows the siRNA gene silencing capability of PLL based conjugates 48h after 

initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) growth 

medium. 
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Figure 40: siRNA gene silencing efficiency of PLL based conjugates on Neuro2A/eGFPLuc 
cells (A) and cell viability of Neuro2A/eGFPLuc cells monitored by MTT assay (B) using 500ng 
siRNA (equal to 380nM). White bars indicate complexes containing luciferase siRNA, grey bars 
indicate complexes containing control siRNA. The numbers on the x-axis represent polymer/siRNA 
mixing ratios (w/w). 

 

siRNA formulations with PLL or PEG-PLL were not able to induce any significant reduction in 

luciferase expression without unspecific toxicity. But after modification with DMMAn-Mel, 

siRNA delivery efficiency was greatly enhanced as demonstrated by excellent reporter gene 

knockdown (> 90%). Notably, PEG-PLL polyplexes displayed slightly increased toxicity at 

higher w/w ratios contrary to the other conjugates, as possibly in this particular case, 

PEGylation (unless applied with a higher molecular weight or a higher quantity) might provide 

detergent-like properties as copolymer with the polycation. Nevertheless, conjugation with 

DMMAn-Mel considerably reduced the acute toxicity of the polycation PEG-PLL. 

Figure 40B shows the influence on metabolic activity of Neuro2A/eGFPLuc cells after 

polyplex treatment under same conditions, which is consistent with the unspecific reduction 

of luciferase expression induced by siCONTROL formulations. 

 

Even at lower amounts of siRNA, PEG-PLL-DMMAn-Mel achieved significant knockdown of 

luciferase expression, if the polymer/siRNA mixing ratio was kept constant at 2/1 as shown in 

Figure 41. 
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Figure 41: siRNA gene silencing efficiency of PEG-PLL-DMMAn-Mel on Neuro2A/eGFPLuc cells 
using 16ng - 500ng siRNA (equal to 12nM - 380nM). The concentration of unmodified PEI 25 was 
kept constant at 2.5µg/ml, the concentration of modified PEIs was kept constant at 20µg/ml. White 
bars indicate complexes containing luciferase siRNA, grey bars indicate complexes containing control 
siRNA. The numbers on the x-axis represent the amount of applied siRNA [µg]. 

 

3.3.1.3.2 PEG-PEI conjugates 

Figure 42A shows the siRNA gene silencing capability of PEI based conjugates 48h after 

initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) growth 

medium. 
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Figure 42: siRNA gene silencing efficiency of PEI based conjugates on Neuro2A/eGFPLuc cells 
(A) and cell viability of Neuro2A/eGFPLuc cells monitored by MTT assay (B) using 500ng siRNA 
(equal to 380nM). White bars indicate complexes containing luciferase siRNA, grey bars indicate 
complexes containing control siRNA. The numbers on the x-axis represent polymer/siRNA mixing 
ratios (w/w). 

 

As expected, siRNA formulations with PEI 25 or PEG-PEI were not able to induce any 

significant reduction in luciferase expression without unspecific toxicity. Modification with 

DMMAn-Mel, however, resulted again in strongly enhanced gene silencing efficiency (> 

70%). 

Figure 42B shows the influence on metabolic activity of Neuro2A/eGFPLuc cells after 

polyplex treatment under same conditions, which is consistent with the unspecific reduction 

of luciferase expression (siCONTROL formulations). 
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PEG-PEI-DMMAn-Mel, was additionally tested for siRNA delivery on HUH7/eGFPLuc cells 

as shown in Figure 43. 
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Figure 43: siRNA gene silencing efficiency of PEG-PEI-DMMAn-Mel on HUH7/eGFPLuc cells 
using 250ng or 500ng siRNA (equal to 190nM or 380nM). White bars indicate complexes containing 
luciferase siRNA, grey bars indicate complexes containing control siRNA. The numbers on the x-axis 
represent polymer/siRNA mixing ratios (w/w). 

 

Also on this cell line, PEG-PEI-DMMAn-Mel showed greatly enhanced siRNA delivery 

efficiency demonstrated by excellent marker gene knockdown. Moreover, the knockdown 

effect was more pronounced on this cell line and remained constant even at lower amounts 

of siRNA. 

 

3.3.1.3.3 PEG-OEI-HD-1 conjugates 

Figure 44A shows the siRNA gene silencing capability of OEI-HD-1 based conjugates 48h 

after initial siRNA delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) 

growth medium. 
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Figure 44: siRNA gene silencing efficiency of OEI-HD-1 based conjugates on 
Neuro2A/eGFPLuc cells (A) and cell viability of Neuro2A/eGFPLuc cells monitored by MTT 
assay (B) using 250ng siRNA (equal to 190nM). White bars indicate complexes containing 
luciferase siRNA, grey bars indicate complexes containing control siRNA. The numbers on the x-axis 
represent polymer/siRNA mixing ratios (w/w). 
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The intrinsic siRNA delivery activity of the biodegradable polymer OEI-HD-1 was only 

marginally affected by PEGylation, as the optimal knockdown effect was marginally shifted to 

higher w/w ratios associated with slightly reduced toxicity. Furthermore, conjugation of 

DMMAn-Mel to PEG-OEI-HD-1 greatly enhanced the siRNA delivery activity as 

demonstrated by excellent knockdown of luciferase expression associated with reduced 

toxicity of the conjugate. In addition, knockdown efficiency was even shifted to lower w/w 

ratios converting the formulation into a highly efficient siRNA carrier in vitro. 

Figure 44B shows the influence on metabolic activity of Neuro2A/eGFPLuc cells after 

polyplex treatment under same conditions, which is consistent with the unspecific reduction 

of luciferase expression induced by siCONTROL formulations. 

 

3.3.1.4. pH triggered lytic activity of conjugates 

To evaluate the desired pH dependant membrane destabilizing activity of DMMAn modified 

melittin, lytic activites of the conjugates were investigated in an erythrocyte leakage assay 

before and after preincubation at endosomal pH. 

Figure 45 shows OEI-HD-1 based conjugates as representative example for the triggered 

lytic activity of DMMAn-Mel, which is similar to that of PLL and PEI based conjugates (data 

not shown). 
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Figure 45: Haemolytic activity of plain conjugates. Erythrocytes at a concentration of 0.1% (V/V) (~ 
approximately 107 erythrocytes per ml) were incubated with increasing concentrations of conjugates in 
HBG at 37°C for 30min. PEG-OEI-HD-1-DMMAn-Mel conjugates were applied directly or after acidic 
preincubation at pH 5.5 for 30min at room temperature. Haemolysis was determined by UV 
measurement at 405nm relative to Triton X (100% lysis). 

 

While OEI-HD-1 and PEG-OEI-HD-1 did not show any haemoglobin release from treated 

erythrocytes, DMMAn-Mel modified conjugates exhibited slight membrane damage in a dose 

dependent manner. In contrast, lytic activity of PEG-OEI-HD-1-DMMAn-Mel was greatly 

enhanced (> 90% haemoglobin release) after acidic preincubation at pH 5.5 due to pH-

specific cleavage of the DMMAn protecting groups. 
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3.3.2 Covalently attached siRNA-polymer conjugates for improved 

siRNA delivery 

 

3.3.2.3 Design of dynamic functionalized siRNA carriers 

Extracellular stability of electrostatically formed siRNA polyplexes is a significant concern in 

the delivery process. Especially in vivo delivery entails the danger that negatively charged 

molecules, e.g. serum proteins or the extracellular matrix, can disrupt such complexes, which 

results in complete disassembly of polyplexes before reaching the target site of action157-158. 

On the other hand, after specific cellular uptake the same carrier system should provide 

efficient release of the nucleic acid into the cytosol. As the described delivery functions are 

required at different time points of the delivery process, siRNA carriers have to be dynamic in 

their characteristics, like natural viruses, to be most effective at the different steps of 

extracellular and intracellular delivery242,293. 

Consequently, to overcome the risk of polyplex dissociation in the extracellular environment, 

siRNA was additional covalently attached to the already well established pH responsive 

PEG-PLL-DMMAn-Mel conjugate. Thereby the requested additional changes were 

programmed into the carrier system by introduction of bioresponsive cleavable bonds 

depending on the reductive cleavage of disulfides in the cytoplasm. A schematic structure of 

the bioresponsive siRNA-polymer conjugate is shown in Figure 46. 
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Figure 46: Design of the bioresponsive PEG-PLL-DMMAn-Mel-siRNA conjugate (A), pH 
triggered cleavage of DMMAn protecting groups after endosomal acidification and release of 
siRNA upon disulfide cleavage in reducing environment (B). [K] represents L-lysine monomers of 
the PLL backbone. Conjugate synthesis and further characterization was performed by Martin Meyer 
as part of his PhD thesis (LMU, 2009). 

 

Synthesis of the PEG-PLL-DMMAn-Mel-siRNA conjugate was carried out similarly to the 

PEG-PLL-DMMAn-Mel synthesis, however in high salt concentration of 1.5M NaCl to prevent 

aggregation of anionic siRNA and DMMAn-Mel with the cationic PEG-PLL-PDP85. First, 

siRNA was covalently coupled to PEG-PLL-PDP by bioreducible disulfide bonds as linkage 

between the 5’ end of the sense strand of thiol modified siRNA and PDP modified conjugate. 

Secondly, thiol containing DMMAn-Mel was coupled to the remaining PDP groups followed 

by purification (Figure 46A). 

At physiological pH the amines of melittin were masked with dimethylmaleic anhydride, which 

minimizes the lytic activity of the conjugate. Upon endosomal acidification, however, DMMAn 

protecting groups are cleaved from the conjugated melittin peptides and lytic activity is 

restored promoting intracellular release out of the endosomes. After reaching the cytoplasm, 

the intracellular reductive environment triggers cleavage of the disulfide bonds enabling 

release of siRNA from the conjugate and subsequent RISC activation (Figure 46B). 
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The final luciferase siRNA conjugates had a molar ratio of approximately 1/1/7.5/1.5 

(PEG/PLL/DMMAn-Mel/siRNA), the final control siRNA conjugates had a molar ratio of 

approximately 1/1/6/1.3 (PEG/PLL/DMMAn-Mel/siRNA). This corresponds to a PLL/siRNA 

w/w ratio of about 1.6/1, close to the optimal ratio found in the gene silencing experiments for 

the corresponding siRNA polyplexes. 

 

3.3.2.4 Particle size determination of conjugates and polyplexes 

With respect to potential in vivo applicability, particle sizes formed by the covalent siRNA-

polymer conjugates were determined using photon correlation spectroscopy. PEG-PLL-

DMMAn-Mel-siRNA conjugates displayed particles in the range of 80 - 300nm strongly 

dependant on the salt concentration85. 

Transmission electron microscopy investigations further confirmed these results presenting 

particle sizes of approximately 30 - 50nm (width) × 65 - 100nm (length) for covalent siRNA-

polymer conjugates. Similar particle sizes of approximately 40 - 50nm (width) × 60 - 100nm 

(length) were found for the corresponding analogous PEG-PLL-DMMAn-Mel/siRNA 

polyplexes (prepared at a w/w ratio of 2/1) as shown in Figure 47. 

 

Figure 47: Transmission electron microscopy images showing the morphology of different 
siRNA particles. (a) - (c) presents PEG-PLL-DMMAn-Mel-siRNA conjugates, (d) - (f) presents PEG-
PLL-DMMAn-Mel / siRNA polyplexes, (f) presents a higher magnified view of (e). Measurements were 
performed in cooperation with Dr. Daniel Kiener, research group Prof. C. Scheu, Department of 
Chemistry and Biochemistry (LMU). 
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3.3.2.5 siRNA delivery efficiency and toxicity of PEG-PLL-DMMAn-Mel-siRNA 

conjugates 

To evaluate the siRNA delivery efficiency of the covalent siRNA-polymer conjugates, reporter 

gene silencing studies were carried out using a Neuro2A/eGFPLuc, murine neuroblastoma 

cell line, stably expressing the luciferase reporter gene. siRNA-polymer conjugates and the 

corresponding formulation containing electrostatically complexed siRNA, respectively, were 

prepared in HBG containing either LucsiRNA targeting the firefly luciferase or siCONTROL 

as non-targeting control siRNA to clearly distinguish between specific gene silencing and 

unspecific toxic side effects due to the carrier system. Figure 48A shows the siRNA gene 

silencing capability of PEG-PLL-DMMAn-Mel-siRNA conjugates compared to the 

corresponding analogous PEG-PLL-DMMAn-Mel/siRNA polyplexes 48h after initial siRNA 

delivery on Neuro2A/eGFPLuc cells in serum containing (10% FCS) growth medium. 
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Figure 48: siRNA gene silencing efficiency on Neuro2A/eGFPLuc cells (A) and cell viability of 
Neuro2A/eGFPLuc cells monitored by MTT assay (B) using 125ng - 1000ng siRNA (equal to 
95nM - 760nM). PEG-PLL-DMMAn-Mel-siRNA conjugates (right) were compared to the corresponding 
analogous PEG-PLL-DMMAn-Mel/siRNA polyplexes prepared at a w/w ratio of 2/1 (left). White bars 
indicate conjugates or complexes containing luciferase siRNA. The numbers on the x-axis represent 
the amount of applied siRNA [µg]. 

 

The biological efficiency of the covalent luciferase siRNA-polymer conjugate as well as the 

viability of treated cells was compared with the corresponding luciferase siRNA polyplex 

formulation, which was electrostatically complexed at a w/w ratio of 2/1. 

High in vitro biocompatibility, i.e. absence of cytotoxicity, and efficient sequence-specific 

gene silencing (> 80%) was found for both formulations even at lower siRNA doses (0.125µg 

and 0.25µg) (Figure 48). 

While cells maintained a high metabolic activity at siRNA doses from 0.125µg to 0.75µg, the 

metabolic activity was significantly reduced at the highest applied siRNA dose of 1µg (Figure 

48B). 

The PLL/siRNA w/w ratio of the covalent luciferase siRNA-polymer conjugates is 1.6/1 (molar 

ratio of PLL/siRNA is 0.68/1, charge ratio is about 2/1), which is quite similar to the 
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polyplexes with a w/w ratio of 2/1 (molar ratio of PLL/siRNA is 0.85/1, charge ratio is about 

3/1). 

 

Additionally, the biological knockdown activity of the covalent luciferase siRNA-polymer 

conjugates was compared side-by-side with the covalent control siRNA-polymer conjugates 

over a larger range of siRNA concentrations as shown in Figure 49. 
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Figure 49: siRNA gene silencing efficiency of PEG-PLL-DMMAn-Mel-siRNA conjugates on 
Neuro2A/eGFPLuc cells using 15.6ng - 1000ng siRNA (equal to 12nM - 760nM). White bars 
indicate conjugates containing luciferase siRNA, grey bars indicate conjugates containing control 
siRNA. The numbers on the x-axis represent the amount of applied siRNA [µg]. 

 

Luciferase siRNA containing PEG-PLL-DMMAn-Mel-siRNA conjugates showed remarkable 

gene silencing effects even at low siRNA doses of 0.031µg, while no reduction of luciferase 

activity was observed with the control siRNA containing PEG-PLL-DMMAn-Mel-siRNA 

conjugates, unless the high (slightly cytotoxic) 1µg dose was applied (Figure 49). 
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3.3.2.6 pH triggered lytic activity of conjugates 

To demonstrate the pH responsiveness of the conjugate, pH triggered lytic activity of PEG-

PLL-DMMAn-Mel-siRNA conjugates was investigated in an erythrocyte leakage assay before 

and after preincubation at endosomal pH as shown in Figure 50. 
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Figure 50: Haemolytic activity of plain conjugates. Erythrocytes at a concentration of 0.1% (V/V) (~ 
approximately 107 erythrocytes per ml) were incubated with increasing concentrations of conjugates in 
HBG (upper panel) or HBG containing 3% FCS (bottom panel) at 37°C for 10min (in case of HBG) or 
20min (in case of HBG containing 3% FCS). PEG-PLL-DMMAn-Mel-siRNA conjugates were applied 
directly or after acidic preincubation at pH 5.5 for 30min at room temperature. Haemolysis was 
determined by UV measurement at 405nm relative to Triton X (100% lysis). 

 

Erythrocytes were incubated with the covalent PEG-PLL-DMMAn-Mel-siRNA conjugates in 

HBG in the absence or presence of serum. 

The lytic activity of conjugates was greatly enhanced after acidic preincubation at pH 5.5 

(Figure 50), consistent with pH-specific cleavage of the DMMAn protecting groups (see 

Figure 46B). 

This pH dependency was not negatively affected by the addition of serum (Figure 50, lower 

panel). In fact, haemolytic activity of DMMAn masked conjugates is strongly reduced by the 

presence of serum proteins, while the activity of unmasked conjugates after acidic 

preincubation at pH 5.5 is largely maintained (> 80% haemoglobin release). 
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3.3.2.7 Glutathione induced release of siRNA 

To demonstrate the redox responsiveness of the covalent PEG-PLL-DMMAn-Mel-siRNA 

conjugate and to examine, if release of siRNA is possible in cells, the siRNA-polymer 

conjugate was incubated at 37°C with physiological glutathione (GSH) concentrations and 

release of siRNA was monitored by agarose gel electrophoresis as shown in Figure 51. 

1 2 3 4 5

 

Figure 51: Gel shift assay for PEG-PLL-DMMAn-Mel-siRNA conjugates after glutathione 
treatment. Conjugates were incubated with 2 I.U. heparin (in order to eliminate electrostatic 
interactions between the polycation and the nucleic acid) and different amounts of glutathione at 37°C 
for 75min. Lane (1) 0.5µg siRNA + GSH 20mM, lane (2) siRNA conjugate (= 0.5µg siRNA), lane (3) 
siRNA conjugate (= 0.5µg siRNA) + GSH 1.25nM, lane (4) siRNA conjugate (= 0.5µg siRNA) + GSH 
2.5nM, lane (5) siRNA conjugate (= 0.5µg siRNA) + GSH 5nM. Data were generated by Martin Meyer 
as part of his PhD thesis (LMU, 2009). 

 

Glutathione is a natural reducing agent which is found in millimolar concentrations in the 

cytosol (1 - 10mM), whereas in the extracellular environment only micromolar concentrations 

are present294. 

From untreated siRNA-polymer conjugate no siRNA release is detected during agarose gel 

electrophoresis (Figure 51, lane 2). Moreover, neither glutathione (reducing agent) nor 

heparin (polyanion) treatment alone could induce a release of siRNA at conditions where the 

polyanion heparin causes disassembly of electrostatic siRNA polyplexes, indicating that 

siRNA is associated with PLL both covalently and electrostatically (data not shown). 

Treatment with heparin under reducing conditions with different glutathione concentrations 

could efficiently trigger the release of siRNA from the PEG-PLL-DMMAn-Mel-siRNA 

conjugate (Figure 51, lanes 3 - 5). 
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4 DISCUSSION 

 

Nucleic acid based therapy holds much promise in the treatment of many genetic and 

acquired diseases, although the clinical use is still limited by the lack of safe and efficient 

nucleic acid delivery systems. Synthetic carriers, such as cationic lipids and polymers, offer 

various advantages regarding biosafety and pharmaceutical issues, however they suffer from 

low efficiency compared to their viral counterparts69-71,295. Since efficiency, but also toxicity 

are depending on the structure and the molecular weight of a polymer and also on the type of 

the nucleic acid, that has to be delivered, polycations that are supposed to deliver nucleic 

acids have to be carefully selected for optimal siRNA delivery. 

The ability of siRNA to knockdown essentially any gene of interest has become a major focus 

of interest just in recent times in order to identify important therapeutic genes and develop 

siRNA based treatments6-7,12-17. This is particularly interesting for cancer therapy, where a 

large number of disease related genes have been explored296-297. However, the successful 

application of siRNA still represents a great challenge. Although many efforts have been 

already investigated in the field of gene delivery, it is known from literature that efficient 

carriers of plasmid DNA are not necessarily effective for siRNA delivery276-277. Therefore 

excellent gene silencing activity associated with low toxicity both in vitro and in vivo are the 

major considerations regarding the design of novel synthetic carrier systems optimized for 

siRNA delivery. 

 

 

4.3 Evaluation of modified PEIs with reduced toxicity as 

efficient siRNA carriers 

Polyethylenimine has emerged as one of the most widely used non-viral carrier systems that 

have been developed for in vitro and in vivo delivery of nucleic acids, as it owns several 

attributes which are necessary for efficient delivery, such as nucleic acid complexation, 

protection from nucleases, cell internalization and even endosomal buffering capacity. 

Nevertheless, high molecular weight PEI, which is a powerful agent for gene transfer100 103, 

shows only limited efficiency in siRNA mediated gene silencing276-277. Therefore aim of the 

current study was, in order to improve the properties of the formulation for use in siRNA 

delivery, to generate a series of branched PEI modifications, which showed far lower toxicity 

in comparison to unmodified branched PEI and high efficiency in siRNA delivery resulting in 

powerful knockdown activity160. 
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4.3.1 Improved biological properties of modified PEIs 

Since toxicity of PEI is mainly associated with the high positive surface charge of polycations, 

masking of PEI amines was performed in different ways. A relatively slight modification 

represents the Michael addition of ethyl-acrylate (EA), which results in transformation of the 

primary amines of PEI into secondary. Moreover, a bulky EA group introduced to the polymer 

structure could also serve as a steric barrier for interaction of PEI with negatively charged 

surfaces and, hence, reduce unspecific toxicity of the carrier system. The Ac modification 

reduces the positive charges of PEI due to acetylation of primary amines. In the Prop series, 

the transformation of primary into secondary amines was combined with the introduction of 

negatively charged propionic acid residues to the polymer. Finally, the succinylated (Suc) 

series represent the strongest reduction of the positive charges of PEI by combination of 

acylation of primary amines and introduction of negative charges into the polymer. 

Importantly, one feature that has to be complied by the conjugates is high siRNA binding 

affinity and, moreover, the ability to form stable polyplexes. As siRNA binding ability of 

polymers is strongly influenced by the charge density, this biophysical characterization 

provides preliminary information about the originated structures. Generally, there exist two 

methods to examine polyplex formation. Ethidium bromide fluorescence induced by 

intercalation into double stranded nucleic acids is strongly reduced when polycation/siRNA 

interaction results in siRNA condensation. Thus, this method can be utilized to monitor 

siRNA binding affinity in order to obtain information about the density of the polyplexes. 

Furthermore, complex formation and binding stability can be analyzed by agarose gel 

electrophoresis. As neutrally or positively charged polyplexes prevent shifting of siRNA in 

electrical fields, this method is suitable to monitor the complex integrity. In this study, it was 

shown that modified PEIs still resulted in polycationic structures which effectively bound to 

siRNA (Figure 5, 6). Nevertheless, gel retardation studies revealed that siRNA binding 

stability was strongly dependend on the modification degree, as the highest surface 

modifications showed lowest siRNA complexation stability due to the accelerating loss of 

protonable nitrogens. 

With regard to the toxicity of polymers, as expected, modifications demonstrated strong 

influence resulting in great reduction of cytotoxicity compared to non-modified polymers 

(Figure 7). Even the softer PEI modifications, i.e. EA and Ac series, strongly reduced the 

toxicity, although to a lower extent in comparison to the Prop and Suc series. The observed 

results are well in accordance with literature, where several modifications of branched PEI 

resulted in decreased charge density and lower toxicity of the polymer298-299 due to reduced 

interactions of polycations with lipid bilayers inducing nanoscale pore formation and thus to a 

certain extent membrane disruption114,300. 
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The reduction of positive charges, however, might also reduce the activity of polycations in 

nucleic acid transfer as previously reported180,271,301. However, within our series of 

modifications, only two products with the highest modification degree showed inactivation for 

siRNA transfer, namely PEI-Prop-52% and PEI-Suc-20% (Figure 8). Reduced polyplex 

stability due to the increased density of negative charges on the cationic polymer structure is 

presumably responsible for this, as for example, polyplexes of siRNA and PEI-Suc-20% 

dissociated in physiological saline (Figure 12). Importantly, all other modified PEIs were 

found to be able to induce efficient siRNA mediated knockdown of target gene expression, in 

contrast to unmodified PEI. Among these, PEI-Suc-10% was found to be the most effective 

delivery agent for siRNA. Low toxicity and high knockdown activity, also at low siRNA 

concentrations of 50nM, make this PEI modification very promising for in vitro delivery of 

siRNA. 

 

4.3.2 Structural requirements for efficient siRNA delivery 

Many factors, such as charge density or functional groups, strongly influence the delivery 

process and, thus, the efficiency as well as toxicity of resulting nucleic acid polyplexes. 

Possible reasons for the low efficiency of unmodified PEI in siRNA delivery, despite its high 

gene delivery efficiency, might be associated with the stability of polyplexes. Generally, 

requirements for the delivery of pDNA and siRNA are different. While gene transfer requires 

nuclear uptake with subsequent unpacking and release of the plasmid, relatively strong 

binding of the carrier to the pDNA might prevent early unpacking and degradation of pDNA in 

the cytoplasm. In contrast, for siRNA delivery an effective dissociation from the carrier is 

necessarily required within the cytoplasm and, thus, a lower binding affinity could be 

advantageous. Therefore, modifications in order to achieve effective siRNA delivery should 

tend on the one hand at a lower affinity of the polymer to siRNA in comparison to pDNA 

polyplexes, on the other hand lower affinity of siRNA to the carrier as compared to pDNA 

may be also the reason for insufficient knockdown due to polyplex instability159. According to 

the polyplex stability assay, the efficiency of the formulation was found to be independent 

from the stability of the modified PEI polyplexes with siRNA (Figure 8, 12). Although all PEI 

modifications in this study were expected to reduce the electrostatic affinity to nucleic acids, 

certain series, i.e. Ac and Suc, showed even higher stability of polyplexes in comparison to 

unmodified PEI. Taken into account that all modifications were able to induce significant 

knockdown, the influence of PEI modifications on the polyplex stability might not be the case 

for enhanced siRNA delivery efficiency of the formulations. The stability of siRNA 

formulations may possibly have an important impact with respect to in vivo applications; 
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however, for in vitro efficiency the extent of polyplex stability has minor importance, unless 

the polyplex is sufficiently stable to survive the cell culture medium. 

The most probable reason for the improved efficiency of modified PEIs in siRNA delivery 

compared to unmodified PEI is largely a consequence of the lower polymer toxicity. In order 

to achieve significant knockdown of target genes, PEI based formulations have to be applied 

at higher concentrations, which are required for sufficient accumulation and “proton sponge” 

effects in endosomes. This hypothesis is also supported by siRNA delivery studies with 

unmodified PEI in the presence of additional free less toxic modified polymer (Figure 11), 

which is separately internalized into endocytic vesicles278. Higher amounts of PEI finally in 

the endosomal compartments may increase escape to the cytoplasm due to a stronger 

“proton sponge” effect105-108, before the fusion of endocytotic vesicles with primary lysosomes 

takes place exposing the polyplexes to degradation by lysosomal enzymes. Such polymer 

amounts could not be applied for unmodified PEI without high carrier toxicity, whereas the far 

less toxic modified analogues could be applied in significantly higher concentrations 

facilitating efficient knockdown of target genes without any side effects. At these 

concentrations, even small amounts of siRNA were able to decrease the activity of the target 

gene expression. Therefore, the reduction of the toxicity has a really decisive effect in vitro 

on the efficiency of siRNA formulations with modified PEIs. 

 

 

4.4 Evaluation of biodegradable OEI conjugates for siRNA 

delivery 

Currently, biodegradable polymers have emerged as most promising candidates for the 

development of non-viral carrier systems with improved efficiency in nucleic acid delivery and 

better biocompatibility45,111,119-136. Reduced toxicity is undoubtedly one of the most important 

aspects with regard to in vitro and in vivo applications of synthetic nucleic acid carrier 

systems, while at the same time high delivery efficiency has to be achieved. Generally, toxic 

properties increase with the number of positive charges, the hydrophobicity and the 

molecular weight of the carrier systems109. Neutralization of the positive polymer charges by 

chemical modification is one way to obtain reduced acute toxicity, both on the cellular level 

and in the organism, however does not eliminate the long-term fate of the polymeric carrier in 

the host, which has to be also taken into consideration302. Non-degradable high molecular 

weight polymers, such as PEI, are more or less static structures which often cannot be 

metabolized and tend to accumulate mostly in the liver or kidney303 resulting in undesired 

long-term toxicity. Therefore, the main focus was to generate a variety of novel biocompatible 
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polymers of adequate sizes, which allow effective siRNA delivery and are well tolerated by 

the host organism due to their degradability into smaller non-toxic decomposition products. 

Notably, degradability in general and degradation kinetics will rather impact the long-term 

toxic effects of the carrier systems than having an explicit influence on the acute cytotoxicity. 

 

4.4.1 Oligomerized OEIs: targeting for optimized virus-like siRNA 

delivery 

Basically, non-degradable polycations with increased molecular weight provide strong 

polyplex stability and exhibit in most cases enhanced delivery efficiency of nucleic acids304, 

but also higher toxicity than their low molecular weight counterparts, as they are hardly 

eliminated by the organism302. Based on these findings, the advantage of low molecular 

weight polymers, i.e. low toxicity, was combined with the advantage of high molecular weight 

polymers, i.e. high efficiency, by bioreversibe crosslinking of low molecular weight polymers. 

In a combinatorial approach, oligomerization of small polycations via bifunctional linkers into 

larger molecules was devised in a way of increasing molecular weight and, thus, nucleic acid 

binding capacity while preserving their beneficial non-toxic nature. Several approaches have 

been already described in literature for gene delivery dealing with crosslinking of low 

molecular weight polyamines via various degradable linkages in order to reduce toxicity and 

maintain high efficiency in vitro and in vivo111,119-120,123-125,127-134. 

Thus, an important purpose of this study was to explore novel biodegradable polycations, 

which are highly effective in siRNA delivery and could be easily metabolized and eliminated 

by the host resulting in less toxic side effects. Thereby promising results have been obtained 

by propionamide crosslinked low molecular weight oligoethylenimines, which were able to 

bind effectively to siRNA (Figure 14) providing the beneficial low long-term toxic properties of 

OEI 800 and high efficiency for siRNA delivery (Figure 15). The degradation pattern of the 

originated amid bond containing OEI-HD-1 polymers, which are potentially enzymatically 

degradable, was confirmed based on time-dependent amide hydrolysis274. 

In cancer therapy high tumor specifity can be achieved in several ways, ranging from direct 

delivery of polyplexes into the target site, physical strategies, such as electroporation305-307, 

magnetofection308-311, sonoporation312-314 or photodynamic therapy129,315-319, up to utilization of 

targeting ligands for specific uptake into the cells of interest. In this study, in order to convert 

OEI-HD-1 polyplexes into even more biocompatible particles with high tumor specifity, 

transferrin was selected as cell surface targeting ligand, since transferrin receptors are 

overexpressed in a variety of tumor cells due to their higher demand of iron, needed for the 

fast growth192. Similar strategies have been already successfully applied by us and other 

researchers for specific tumor targeting of DNA116,173 and siRNA193 complexes. Moreover, 
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transferrin as protein ligand combines both a targeting function towards the tumor cells and a 

shielding function of the polyplexes reducing unspecific interactions with non-target 

sites191,194. 

Thus, the incorporation of Tf as a targeting ligand into OEI-HD-1 polyplexes in order to 

enhance the delivering specificity might a further step towards the design of more virus-like 

and biodegradable synthetic carrier systems. Investigations of the optimized Tf containing 

formulations in vitro displayed efficient knockdown activity in Neuro2A/eGFPLuc cells (Figure 

19), which are known to overexpress the Tf receptor on the cell surface194,199. Specific uptake 

via the Tf receptor was confirmed by competitive inhibition of the Tf receptor with an excess 

of free Tf ligand. Blocking the Tf receptor resulted in reduced reporter gene silencing activity 

of Tf targeted OEI-HD-1 polyplexes, while the knockdown mediated by siRNA formulations 

without targeting ligand remained unaffected due to unspecific uptake of these formulations. 

Notably, in contrast to the standard positively charged polyplexes, the transferrin modified 

formulations showed reduced zeta potentials preventing aggregation at lower w/w ratios, 

which makes them even more suitable for in vivo applications40. Further evaluation of the 

therapeutic potential of OEI-HD-1 formulated siRNA in vivo was performed by Nicole Tietze 

as part of her PhD thesis (LMU, 2009). 

 

4.4.2 Pseudodendritic oligoamines with high potential for siRNA delivery 

In a further approach, another class of biodegradable synthetic nucleic acid delivery systems, 

namely pseudodendrimers, was evaluated for their siRNA delivery potential, which also 

feature less toxic side effects compared to standard non-degradable high molecular weight 

polyethylenimine. Basically, the efforts to generate biocompatible polymers based on 

crosslinked low molecular weight polycations, as described previously, exhibited the 

disadvantage of a relatively high polydispersity regarding the resulting compounds, which 

implies that they maintain a stronger heterogeneity in their molecular weight distribution 

caused by the polymer synthesis procedure. Thus, an improvement towards better defined 

polymers was achieved in the design of pseudodendritic structures by the use of branched 

low molecular weight oligoethylenimine as core building block resulting in closer molecular 

weight distribution of the arising conjugates. Different dioldiacrylates containing hydrolysable 

ester bonds, were applied to form dendritic branches, which were additionally modified with 

various oligoamines in order to generate versatile pseudodendritic structures. The obtained 

conjugates exhibited molecular weights of about 4 - 8kDa containing high amounts of 

hydrolysable ester bonds135. 

In vitro studies showed that siRNA delivery efficiency and cytotoxicity were dependent on 

both pseudodendritic core characteristics and surface modification. Thus, enhancing the 
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pseudodendritic core hydrophobicity from OEI-ED to OEI-HD core conjugates resulted in 

increased cytotoxicity (Figure 24). Furthermore, the different surface amines of OEI-HD 

cores, but not in case of OEI-ED or OEI-BD cores, also showed an influence on cytotoxicity, 

as OEI surface modified OEI-HD core conjugates exhibited slightly decreased toxicity of 

polyplexes.  

Regarding reporter gene silencing activity, only Sp and S surface modifications within the 

OEI-HD core conjugates were able to mediate efficient knockdown of luciferase expression 

without unspecific toxicity. These results indicate that both the pseudodendritic core 

characteristics along with the surface modification within polyplexes has an important impact 

on high siRNA delivery activity and cytotoxicity as demonstrated in the OEI-HD core 

conjugates. Obviously, both cytotoxicity and siRNA delivery efficiency depend on an 

optimized balance between hydrophobic and hydrophilic domains within the 

pseudodendrimers, as for example merely hydrophilic structures like OEI-ED core 

conjugates resulted in low cytotoxicity but also none knockdown efficiency. 

The reason for why only Sp and S modified OEI-HD core conjugates showed remarkable 

knockdown efficiency could be an intrinsic endosomolytic property of these conjugates as 

reported by Julia Klöckner (PhD thesis 2005, LMU), which is highly desirable for efficient 

release of the polyplexes from intracellular vesicles. One possible explanation for this 

membrane lytic activity may be their proposed amphiphilic micelle-like structure resulting 

from a hydrophilic core, which is assembled with various hydrophobic HD residues that are 

again linked to hydrophilic spermidine or spermine moieties. This design might promote 

interactions with lipid bilayers and, thus, destabilization and disruption of cellular membranes. 

During the extracellular delivery process, high lytic activity is strongly undesired and 

considered as toxic side effects, on the other hand within the cell, membrane destabilization 

characteristics are beneficial for efficient endosomal release of the polyplexes243. 

Taken into account that polymer concentrations responsible for cellular destruction are 

expected to be higher, than needed for endosomolytic activity, for in vivo applications there 

would be a therapeutical range of polymer doses, which could potentially trigger endosomal 

release without unspecific toxicity. 

 

4.4.3 Hydrophobically modified OEIs: structural influence on biological 

activity 

The development of polymeric carrier systems for siRNA delivery is mainly attributed to high 

molecular weight polyamines, which often represent a problem for in vivo application due to 

their relatively narrow therapeutic window. Being either non-degradable as in case of PEI 25, 
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or showing relatively slow degradation kinetics, such structures may lead to accumulation of 

toxicity after repeated administration. In contrast, short oligoamines are far less toxic109,320 

and can be rapidly excreted from the body. As such formulations, however, show insufficient 

stability in blood circulation and low siRNA delivery efficiency, mainly due to poor 

endosomolytic properties, an alternative approach was evaluated. Instead of crosslinking into 

high molecular weight structures, low molecular weight oligoamines were modified with 

hydrophobic moieties290,321-322. Such a concept has several advantages: (I) these 

formulations are supposed to have low half-life times in the organism, presumably due to 

their low molecular weight, which is favorable for excretion and metabolism, (II) the 

hydrophobic interactions stabilize polyplexes during storage and administration, (III) similarly 

to endosomolytic peptides, certain modifications enhance interactions with lipid bilayers in 

order to promote transfer across cellular membranes of intracellular vesicles, e.g. by lysis of 

endosomes. 

For that purpose, low molecular weight oligoethylenimine 800Da was modified with different 

alkyl-acrylates275, which offer the advantage of relatively rapid enzymatic degradation of ester 

bonds in the body and renal clearance of the metabolites. Even in physiological pH buffer 

without enzymes, the degradation of ester bond proceeds relative quickly (Figure 27, 31). 

Moreover, the incorporation of longer alkyl chains with higher hydrophobicity, i.e. HA and LA 

modification, generally increased the stability of polyplexes in salt containing buffers due to 

stronger hydrophobic interactions among each other. On the other hand the incorporation of 

shorter alkyl chains with lower hydrophobicity, i.e. EA and BA modification, led to a decrease 

of binding affinity to siRNA, most probably due to steric barriers between the charges of 

siRNA and OEI introduced by a bulky alkyl group (Figure 28). The siRNA formulations with 

EA as well as BA modified OEIs were also quite unstable against aggregation even in salt-

free HBG buffer (Table 6). 

Gene silencing experiments revealed that OEI-HA-10 was the only effective oligoamine for 

siRNA delivery (Figure 32). All other potentially active formulations either precipitated during 

preparation or were not able to be internalized due to the large size of the polyplex particles.  

Among all oligoamines, only BA and HA modifications could effectively induce erythrocyte 

lysis (Figure 35). Surprisingly, oligoamines with long hydrophobic chains, i.e. LA modification, 

did not show any ability to lyse cellular membranes. Even OEI-LA-5, despite similar 

hydrophilic/hydrophobic balance as OEI-HA-10, was rather ineffective in erythrocyte lysis 

and consequently in siRNA delivery. 

However, due to the strong lytic activity, OEI-HA-10 formulations were relatively toxic in vitro, 

which led to enhanced acute toxicity and lethality during in vivo applications in mice 

performed by Nicole Tietze as part of her PhD thesis (LMU, 2009). 
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Therefore, a promising optimization procedure was a dilution of OEI-HA-10 in the formulation 

by far less toxic but ineffective oligoamines, such as OEI 800 and OEI-LA-5. Gradual 

decrease of the OEI-HA-10 content resulted in strongly decreased cytotoxicity of the 

formulation, while importantly no decrease of the efficiency was observed. The co-

formulation with OEI-LA-5 showed additional advantage of colloidal stabilization, which could 

be potentially important in view of in vivo applications, while incorporation of OEI 800 to the 

polyplexes decreased both colloid stability and stability against dissociation (Figure 29, Table 

7). 

The co-formulations with different lipophilic agents, such as DOPE, DOPC and DPPC, were 

also able to decrease the toxicity of the formulations in vitro. However, in most cases, except 

DOPE, these led to inactivation of the formulations, as the strongest decrease of toxicity 

corresponded to the strongest inactivation of the formulations. The OEI-HA-10/DOPE 

formulations showed only slightly less toxicity in comparison to OEI-HA-10 alone, which 

could be involved with certain restrictions for in vivo application of such formulations, but 

notably the siRNA delivery efficiency, however, was greatly improved in vitro. Due to the 

inverse head-tail symmetry of DOPE lipid, it is known to destabilize the lipid bilayer structure 

after incorporation into lipid membranes. Thus, the endosomolytic character of the DOPE 

lipid seems to be the main reason for the improved efficiency of the OEI-HA-10/DOPE 

formulations.  

Such optimized formulations with greatly improved biocompatibility and efficiency, if stable in 

the bloodstream, could potentially represent a promising siRNA delivery approach for in vivo 

applications that warrants further investigation. 

 

 

4.5 Evaluation of bioresponsive endosomolytic conjugates for 

siRNA delivery 

A key issue in the field of nucleic acid delivery remains the development of dynamic and 

bioresponsive polymers, so called “artificial viruses”70,169-171. Therefore, the sophisticated 

mechanisms that viruses have developed323 to overcome the barriers they are confronted 

with inside their host152 can serve as a guide towards the design of more flexible and stimuli 

responsive nucleic acid delivery systems. 

Especially toxicity and poor endosomal release limit the application of non-viral carrier 

systems, whereby a variety of endosomolytic peptides has been evaluated for the 

improvement of nucleic acid delivery225-226. In this study, the cationic membrane-active 

peptide melittin was utilized, displaying high lytic activity on cellular membranes, which is, 
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however, unfavorable in the extracellular environment as it mediates toxic side effects240. 

Hence, dimethylmaleic anhydride was used to mask the lytic activity of melittin at neutral pH 

which can be restored again after acidic cleavage of the protecting groups265. Maleic 

anhydrides have the property to reversibly react with the lysine residues and the N-terminal 

amino group of peptides and to be removed again after slightly acidification like in endosomal 

compartments324-325. 

 

4.5.1 DMMAn-Mel modification for enhanced siRNA delivery efficiency 

In order to evaluate the effect of pH specific membrane lytic activity on siRNA delivery 

efficiency, DMMAn masked melittin peptides were covalently attached to siRNA binding 

polycations247. For that purpose, PLL, PEI and OEI-HD-1 were chosen as backbone 

polymers. Biodegradable PLL shows no intrinsic endosomal escape mechanism, which 

enables an isolated consideration of the endosomolytic effect of melittin. In contrast, the non-

degradable PEI as one of the most frequently used polycations for nucleic acid delivery 

allows a combined effect consisting of the lytic activity of melittin and the intrinsic endosomal 

escape properties of PEI due to its “proton sponge” capacity. Finally, oligoethylenimine 

based OEI-HD-1 represents a biodegradable polymer like PLL, possesses endosomal 

escape properties like PEI and, moreover, shows inherent siRNA delivery efficiency, which 

might result in strong synergistic effects with the membrane destabilizing activity of melittin. 

In order to improve solubility and avoid undesired polyplex aggregation, PEG with an 

average molecular weight of 5kDa was primarily grafted onto the polycation prior to peptide 

coupling. Although it is known that PEGylation can almost neutralize the surface charge of 

polyplexes245, PEG with a higher molecular weight, e.g. 20kDa, has to be applied for such 

purpose. The remaining positive surface charge of the polyplexes strongly contributes to the 

interaction with cellular membranes, which is important for internalization, as none additional 

targeting ligand is included within the formulation. 

Gene silencing experiments revealed that all DMMAn-Mel modified polyplexes showed 

remarkable improved knockdown efficiency compared to the other conjugates (Figure 40, 42, 

44). While PLL and PEI are ineffective in siRNA delivery, OEI-HD-1 shows proper 

knockdown activity, which was greatly enhanced after coupling with the endosomolytic 

melittin peptides. PEGylation alone did not alter siRNA delivery activity of all formulations.  

Apart from poor endosomal release also cytotoxicity of carrier systems is one of the limiting 

barriers for siRNA delivery. In particular, high lytic activity of the polymers before reaching 

their target site of action raises this problem. Notably, DMMAn-Mel modified conjugates were 

much better tolerated by cells resulting in higher metabolic activity than their unmodified or 

PEGylated counterparts (Figure 40, 42, 44). These data indicate that DMMAn grafting of 
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melittin not only avoids the undesired lytic activity in the extracellular environment, but also 

further reduces acute toxicity of the polycationic carriers. Presumably the ability of 

polycations to interact with cellular membranes resulting in nanoscale pore formation is 

strongly decreased due to the additional negative charges of the DMMAn groups, which 

mask the regular polycationic positive charges and, hence, minimize interactions with lipid 

bilayers114,300. 

Monitoring the hemolytic activity of DMMAn-Mel modified conjugates in an erythrocyte 

leakage assay resulted in reduced lytic activity at physiological pH. However, the lytic activity 

could be entirely restored after preincubation at endosomal pH due to the cleavage of the 

DMMAn groups (Figure 45). These results demonstrate that DMMAn protecting groups are 

able to reversible mask the lytic activity of melittin, and, thus, can be utilized to generate 

bioresponsive conjugates with the desired lytic activity profile. 

In summary PEGylation and DMMAn-Mel modification of polycations allowed the formation of 

nanosized polyplexes with strongly enhanced siRNA delivery efficiency compared to their 

unmodified counterparts. 

 

4.5.2 Dynamic siRNA-polymer conjugates for programmed delivery 

In order to survive the extracellular delivery process, siRNA has to remain stable associated 

with the carrier system until they reach the site of action within the target cell. Basically, most 

lipoplex and polyplex formulations are kept together via electrostatic interactions. The risk 

therefore lies in the disruption of such complexes due to undesired interactions with other 

charged molecules before they reach the target cells. It was already shown in literature, that 

both the serum and the extracellular matrix can lead to carrier disassembly157-158, which 

consequently negatively affects the siRNA delivery efficiency, especially in view of in vivo 

applications. Carrier unpacking is rather a problem concerning siRNA than pDNA, due to the 

lower number of negative charges per nucleic acid molecule, i.e. lower stability of siRNA 

polyplexes159-160. 

An elegant approach to compensate this deficiency was achieved by covalent attachment of 

siRNA to the cationic polymeric carrier via a reversible disulfide linkage, which enables 

dissociation of polyplexes and release of the nucleic acid within the reductive intra-cellular 

environment85. Luciferase siRNA and control siRNA were each coupled to PEG-PLL-

DMMAn-Mel conjugates containing all the functional domains in one molecule, i.e. PEG for 

improved solubility, PLL as polycation, pH responsive lytic peptide melittin and bioreversible 

attached siRNA. Gene silencing experiments with electrostatic assembled siRNAs already 

revealed that the polycation to siRNA ratio has a great impact on delivery efficiency and 

cytotoxicity. In order to compare the covalently attached siRNA-polymer conjugate with the 
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electrostatic analogue, a PLL to siRNA ratio of about 2/1 (w/w) was chosen, which was found 

to mediate strong gene silencing activity in case of the electrostatic PEG-PLL-DMMAn-

Mel/siRNA polyplexes. This ratio results in an overall net positive charge of the conjugate, 

which is on the one hand necessary for cell interaction and consequently internalization, as 

none additional targeting ligand is included within the formulation, and on the other hand 

useful for additional complexation of the siRNA in order to prevent enzymatic degradation, 

e.g. by serum RNases. 

To evaluate the gene silencing capability of covalently attached PEG-PLL-DMMAn-Mel-

siRNA conjugates, siRNA delivery activity was directly compared with the electrostatic 

assembled PEG-PLL-DMMAn-Mel/siRNA polyplexes formed at w/w ratio of 2/1 (Figure 48). 

High comparable gene knockdown activity was observed for both conjugates in a dose 

dependant reduction of luciferase expression, even at lowest siRNA doses, indicating that 

covalent attachment of siRNA did not weaken the siRNA delivery efficiency. Conjugates 

containing electrostatically or covalently attached control siRNA did not negatively affect the 

luciferase expression, indicating specific siRNA mediated gene silencing.  

Additionally, significant carrier toxicity was very low for both conjugates, as reduced 

metabolic activity of cells began to occur only at the highest siRNA dose, confirming the 

transfection results obtained with formulations containing control siRNA (Figure 48). 

The expected pH responsiveness of the PEG-PLL-DMMAn-Mel-siRNA conjugate was proven 

in an erythrocyte leakage assay (Figure 50). Consistent with the acidic cleavage of the 

DMMAn masking groups from melittin, incubation of the conjugate at endosomal pH strongly 

enhanced the lytic activity. 

To further investigate the intracellular delivery process of the siRNA-polymer conjugate, the 

ability of glutathione to induce cleavage of the disulfide bond facilitating siRNA release from 

the carrier system was analyzed via agarose gel electrophoresis. The natural reducing agent 

glutathione, a tripeptide consisting of glutamate, cysteine and glycine, is excessive present in 

the intracellular compartment. Thus, to clarify if physiological cytoplasmatic glutathione 

concentrations can cleave the siRNA connecting disulfide bonds, conjugates were incubated 

for 1h at 37°C with appropriate glutathione concentrations. Additionally, the natural polyanion 

heparin, a highly sulfated glycosaminoglycan closely related in structure to heparin sulfates 

in the extracellular matrix, was applied in order to dissasemble non-covalent siRNA 

polyplexes ensuring that free siRNA is released from the conjugate85. However, without 

reductive intracellular environment and cleavage of disulfide bonds, also heparane sulfates 

as well as other negatively charged macromolecules cannot lead to carrier disassembly. As 

shown, physiological glutathione concentrations (1.25 - 5mM) in combination with heparin 

were able to release the siRNA from the conjugate (Figure 51). Based on these 
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observations, certain cleavage of the siRNA before formation of the RNA-inducing silencing 

complex is expected. 

However, it still remains unclear, if the cleavage of the disulfide linkage is required for 

biological activity of the PEG-PLL-DMMAn-Mel-siRNA conjugates. Literature indicates a 

possible advantage of bioreducibility, as for example quantum dots containing covalently 

attached siRNA, showed greater silencing efficiency when siRNA was reversibly attached by 

disulfide linkers in comparison to non-reducible thioether linkers, suggesting that disulfide 

cleavage in the intracellular environment takes place and release of siRNA is beneficial83,326. 

Similar observations have been also described where it was also found out that a 

bioreversible siRNA linkage is advantageous in terms of gene silencing activity84. 

In summary, the bioresponsive endosomolytic PEG-PLL-DMMAn-Mel-siRNA conjugates 

belong to a new generation of dynamic, multifunctional nucleic acid carrier systems, which 

are able to undergo molecular changes triggered by the physiological environment242-

244,264,269,327: (I) covalent attachment of siRNA improves the stability of the siRNA formulations 

in the extracellular environment, (II) the endosomal pH is expected to recover the lytic activity 

of melittin required for efficient release from the endosome, (III) in addition to the dynamic 

endosomolytic activity, the reducing intracellular environment triggers programmed cleavage 

of the disulfide linkage and enables release of the siRNA within the cytoplasm. Consistently, 

PEG-PLL-DMMAn-Mel-siRNA conjugates showed excellent in vitro gene silencing activity 

comparable to the electrostatically formed siRNA polyplexes. 

However, despite the very encouraging bioactivity and biocompatibility in vitro, intravenous 

and intratumoral in vivo applications in mice showed unexpectedly high acute toxicity with the 

current formulation. The reasons for this are currently not completely clear, but lack of 

targeting functionality, incomplete PEG shielding and conjugate aggregation may contribute 

to the pronounced in vivo toxicity. Thus, in order to exploit the full potential of the concept, 

optimized siRNA-polymer conjugates with targeting ligands and improved shielding moieties 

remain to be generated for further evaluation. 
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Small interfering RNA molecules offer a promising tool for the treatment of various diseases 

including cancer and a number of other inherent or acquired disorders, due to their ability to 

knockdown essentially any target gene of interest. However, the successful application of 

siRNA based therapy still represents a great challenge. As optimization of the delivery 

strategy remains one of the major restrictions for clinical use, research has progressively 

focused on the development of synthetic delivery devices suitable for safe and specific 

delivery of siRNA in order to exploit the huge potential of RNA interference. This thesis 

reports the discovery and optimization of novel polymers as highly effective and 

biocompatible siRNA delivery systems. 

Exploring the strong potential of polyethylenimine, a powerful gene delivery agent but far less 

effective in case of siRNA, various optimized less toxic PEI derivates were screened for the 

delivery of siRNA. Studies on their biophysical and biological characteristics revealed that 

modifications which reduce the highly positive surface charge of the polymer resulted in 

strongly decreased toxicity and a better therapeutic window of the formulation. Gene 

silencing studies demonstrated remarkable knockdown of target gene expression, even 

when using only small amounts of siRNA. It was elucidated that the stability of siRNA 

polyplexes had only marginal importance for knockdown activity in vitro. In contrast, reduced 

polymer toxicity exhibited crucial impact on the efficiency of siRNA delivery due to the 

applicability of higher concentrations of PEI based formulations, which are required for 

sufficient accumulation and “proton sponge” effects in endosomes. Thus, efficient release of 

the polyplexes into the cytoplasm is provided and results in high siRNA activity avoiding the 

undesired degradation by lysosomal enzymes. 

Application of non-degradable carrier systems, however, often leads to accumulation of 

toxicity in vivo, which narrows the therapeutic window and the success of nucleic acid based 

therapy. Thus, biodegradation of the carriers is a desired property which has to be taken into 

consideration in the design of novel polymers for effective treatment in vivo. Covalent 

crosslinking of low molecular weight polycations with biodegradable linkers into high 

molecular weight polycations is one strategy to achieve nucleic acid carrier systems capable 

of beeing degraded into smaller fragments in the appropriate cellular microenvironment. In 

this approach, promising results were found for propionamide crosslinked low molecular 

weight oligoethylenimines, which were highly effective in siRNA delivery. Furthermore, in 

order to optimize these conjugates into virus-like siRNA delivery systems, transferrin as site-

specific targeting ligand was successfully incorporated into the carrier systems providing the 

opportunity of increased target-specific delivery, which is primarily essential for cancer 
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therapy in vivo. The concept was further developed by generating polymers exhibiting a 

better defined chemical structure, so-called pseudodendrimers. These conjugates were 

formed by adding several monomeric moieties upon a central core unit via biodegradable 

linkages in order to obtain pseudodendritic structures. In vitro structure-activity relationship 

studies revealed that siRNA delivery efficiency and cytotoxicity were dependent on both 

pseudodendritic core characteristics and surface modification. Only spermine and spermidine 

surface modifications within the pseudodendritic cores with highest hydrophobicity emerged 

as highly effective siRNA delivery agents, presumably due to an optimized balance between 

hydrophobic and hydrophilic domains within the pseudodendrimers, which is required for 

highest siRNA delivery efficiency at low cytotoxicity. In an alternative approach, instead of 

crosslinking, low molecular weight polycations were modified with hydrophobic moieties. In 

vitro studies demonstrated that, in particular, oligoethylenimine modified by ten hexyl 

acrylates was the most promising siRNA delivery system facilitating increased stability of 

polyplexes against dissociation and improved colloidal stability due to hydrophobic 

interactions between the OEI chains. The lytic properties of these conjugates ensured 

effective intracellular transport across cellular membranes, presumably by promoting 

sufficient escape from endosomes. In addition, different co-formulation strategies, including 

helper polymer-based and lipid-based modifications, could greatly improve the 

biocompatibility and efficiency of the formulation. 

Apparently, poor endosomal escape represents a major barrier for successful siRNA 

delivery. For this reason, in order to avoid degradation in the acidic endosomal compartment, 

different polymeric carriers based on PEI, PLL and oligomerized OEI, respectively, were 

conjugated with the membrane active peptide melittin to escape endosomal entrapment. 

With the intention to prevent undesired membrane destabilizing properties in the extracellular 

environment, the lytic activity of melittin was reversibly masked with a pH responsive 

protecting group. These carriers act more dynamically in response to their cellular 

microenvironment due to a triggered lytic activity of melittin only upon acidifaction in the 

endosome mediating greatly enhanced efficiency of the formulations for siRNA delivery in 

vitro, while toxicity was remarkable reduced. However, the trend of these formulations to 

aggregate required modification with polyethylene glycol for improved solubility and 

stabilization. Principally one weakness of electrostatically associated polyplexes is due to the 

fact that other physiological biomolecules can disrupt such complexes, which results in 

vector disassembly before reaching the target site. To ensure stable association during the 

extracellular delivery process, siRNA was covalently attached to the carrier system by 

bioreducible disulfide linkers capable of facilitating release of siRNA in the cytoplasm, which 

is of crucial importance for RISC assembly and, thus, gene silencing activity. Taken together, 

such pre-programmed bioresponsive systems promoting intracellular release of siRNA in the 
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cytoplasm represent a considerably step in the optimization process. Combination with 

targeting ligands and distinct shielding elements will be an additional emphasis for the 

development of efficient delivery devices for cancer therapy. 
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6.3 Abbreviations 

Ac   acetic anhydride 

asRNA   antisense RNA 

BA   butyl-acrylate 

BD   butanediol-diacrylate 

cDNA   complementary DNA 

CMV    cytomegalovirus 

DLS   dynamic light scattering 

DMEM   Dulbecco’s Modified Eagle’s Medium 

DMMAn  dimethylmaleic anhydride 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid  

DOPC   dioleoylphosphatidylcholine 

DOPE   dioleoyl-phosphatidylethanolamine 

DPPC   dipalmitoylphosphatidylcholine 

DTT   dithiothreitol 

E   ethanolamine 

EA   ethyl-acrylate 

ED   ethyleneglycol-diacrylate 

EDTA   ethylenediamine tetraacetic acid 

eGFP   enhanced green fluorescent protein 

EPR   enhanced permeability and retention 

EtBr   ethidium bromide 

FCS   fetal calf serum 

FCS   fluorescence correlation spectroscopy 

GSH   glutathione 

HA   hexyl-acrylate 

HBG   HEPES-buffered glucose 

HD   hexanediol-diacrylate 
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HEPES  N-(2-hydroxyethyl) piperazine-N’-(2-ethansulfonic acid) 

HPLC   high pressure liquid chromatography 

LA   lauryl-acrylate 

Luc   luciferase 

Mel   all-(D)-melittin (with a cysteine residue at the N-terminus) 

miRNA   micro RNA 

mPEG   monomethoxy PEG 

mRNA   messenger RNA 

MTT   dimethylthiazolyldiphenyl-tetrazolium bromide 

MW   molecular weight 

1H-NMR  nuclear magnetic resonance 

N/P-ratio  molar ratio of nitrogen to phosphate (conjugate to nucleic acid)  

   (PLL: molar ratio of epsilonamino nitrogen to phosphate) 

OEI   oligoethylenimine 

OEI 800  OEI with an average molecular weight of 800Da 

PBS   phosphate-buffered saline 

pDNA   plasmid DNA 

PDP   pyridyldithio propionate 

PEI   polyethylenimine 

PEI 22   linear PEI with an average molecular weight of 22kDa 

PEI 25   branched PEI with an average molecular weight of 25kDa 

PEG   polyethylene glycol 

PLL   poly-L-lysine with an average molecular weight of 32kDa 

PLL50   PLL with 50 lysine monomer units 

PLL185  PLL with 185 lysine monomer units 

polyIC   poly-inosine-cytosine 

Prop   propionic acid 

RISC   RNA-induced silencing complex 

RLU   relative light units 

RNA   ribonucleic acid 

RT-qPCR  reverse transcriptase quantitative real time quantitative   

   polymerase chain reaction 
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S   spermine 

shRNA   short hairpin RNA 

SEC   size exclusion chromatography 

siRNA   small interfering RNA 

Sp   spermidine 

SPA   succinimidyl propionic acid 

SPDP   succinimidyl 3-(2-pyridyldithio) propionate 

Suc   succinic anhydride  

TBE   tris borate EDTA 

Tf   transferrin 

TNBS   trinitrobenzenesulfonic acid 

w/w ratio  weight to weight ratio (conjugate to nucleic acid) 
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6.4.1 Original papers 

• Alexander Philipp, Xiaobin Zhao, Peter Tarcha, Ernst Wagner and Arkadi Zintchenko: 

Hydrophobically Modified Oligoethylenimines as Highly Efficient Transfection Agents 

for siRNA Delivery, 2009 Nov; 20(11):2055-2061 
 

• Martin Meyer, Christian Dohmen, Alexander Philipp, Daniel Kiener, Gelja Maiwald, 

Christina Scheu, Manfred Ogris and Ernst Wagner: Synthesis and Biological 

Evaluation of a Bioresponsive and Endosomolytic siRNA-Polymer Conjugate, Mol. 

Pharm. 2009 May-Jun; 6(3):752-762 
 

• Arkadi Zintchenko, Alexander Philipp, Ali Dehshahri and Ernst Wagner: Simple 

Modifications of Branched PEI Lead to Highly Efficient siRNA Carriers with Low 

Toxicity, Bioconjug. Chem. 2008 Jul; 19(7):1448-1455 
 

• Nicole Tietze, Jaroslav Pelisek, Alexander Philipp, Wolfgang Rödl, Thomas Merdan, 

Peter Tarcha, Manfred Ogris and Ernst Wagner: Induction of Apoptosis in Murine 

Neuroblastoma by Systemic Delivery of Transferrin-Shielded siRNA Polyplexes for 

Downregulation of Ran, Oligonucleotides 2008 Jun; 18(2):161-174 
 

• Martin Meyer, Alexander Philipp, Reza Oskuee, Claudia Schmidt and Ernst Wagner: 

Breathing Life into Polycations: Functionalization with pH-Responsive Endosomolytic 

Peptides and Polyethylene Glycol Enables siRNA Delivery, J. Am. Chem. Soc. 2008 

Mar; 130(11):3272-3273 

 

6.4.2 Manuscripts in preparation 

• Verena Russ, Jane Zhang, Alexander Philipp, Ernst Wagner and John J. Rossi: 

Pseudodendritic oligoehtylenimine for efficient siRNA delivery and prolonged gene 

silencing in HIV-1 infected cells, in preparation 

 

6.4.3 Reviews 

• Alexander Philipp, Martin Meyer and Ernst Wagner: Extracellular Targeting of 

Synthetic Therapeutic Nucleic Acid Formulations, Curr. Gene Ther. 2008 Oct; 

8(5):324-334 
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• Alexander Philipp and Ernst Wagner: Receptor-Targeted Polyplexes for DNA and 

siRNA Delivery, in "Gene and Cell Therapy. Therapeutic Mechanisms and 

Strategies”, 3rd Edition N. Smyth Templeton (Ed) CRC Press 2008; pp. 341-361 

 

6.4.5 Poster presentations 

• Verena Russ, Alexander Philipp, Ernst Wagner and John J. Rossi: siRNA delivery for 

HIV treatment using pseudodendritic oligoamines, ASGT 12th Annual Meeting, San 

Diego, California, 2009 May 
 

• Arkadi Zintchenko, Alexander Philipp, Ali Dehshahri and Ernst Wagner:  Simple 

modifications of branched PEI result in powerful agents for siRNA delivery, ASGT 11th 

Annual Meeting, Boston, Massachusetts, 2008 May 
 

• Alexander Philipp, Martin Meyer, Arkadi Zintchenko, Manfred Ogris, Christian Plank 

and Ernst Wagner: Programmed Endosomolytic Conjugates for pDNA and siRNA 

Delivery, ESGCT 15th Annual Congress, Rotterdam, The Netherlands, 2007 Oct 
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and Ernst Wagner: Bioresponsive Endosomolytic Conjugates for pDNA and siRNA 

Delivery, ASGT 10th Annual Meeting, Seattle, USA, 2007 June 
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